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Preface

This book is intended as an introduction to gauge field theory for advanced
undergraduate and graduate students in high energy physics. The discussion
is restricted to the classical (nonquantum) theory. Furthermore, general rela-
tivity is outside the limits of this book.

My initial plan was to review the self-interaction problem in classical gauge
theories with particular reference to the electrodynamics of point electrons
and Yang–Mills interactions of point quarks. The first impetus to summarize
current affairs in this problem came to me from the late Professor Asim Barut
at a conference on mathematical physics in Minsk, Belarus, during the summer
of 1994. He pointed out that developing a unified approach to self-interaction
in the classical context might help to illuminate the far more involved quantum
version of this problem. The idea of writing a review of this kind came up again
in my discussions with Professor Rudolf Haag during a physics conference at
the Garda Lake, in the autumn of 1998. He advised me to extend the initial
project to cover all attendant issues so that the review would meet the needs
of senior students.

Self-interaction is a real challenge. Traditionally, students become aware of
this problem in the course of quantum field theory. They encounter numerous
divergences of the S matrix, and recognize them as a stimulus for understand-
ing the procedure of renormalization. But even after expending the time and
effort to master this procedure one may still not understand the physics of
self-interaction. For example, it is difficult to elicit from textbooks whether
the orders of divergence are characteristic of the interaction or are an arti-
fact of the perturbative method used for calculations. On the other hand, the
structure of self-interaction is explicit in solvable models. We will see that
many classical gauge theory problems can be completely or partly integrated.
In contrast, quantum field theory has defied solvability, with the exception of
two- and three-dimensional models.

The self-interacting electron was of great concern to fundamental physics
during the 20th century. However, classical aspects of this problem are gradu-
ally fading from the collective consciousness of theoretical physics. Textbooks
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which cover this topic in sufficient detail are rare. Among them, the best
known is the 1965 Rohrlich’s volume. This excellent review represents the
state of the art in the mid-1960s. Since then many penetrating insights into
this subject have been gained, in particular exact retarded solutions of the
Yang–Mills–Wong theory. It is therefore timely to elaborate a unified view of
the classical self-interaction problem. The present work is a contribution to
this task.

The book is, rather arbitrarily, divided into two parts. The first part, which
involves Chaps. 1–5 and 7, is a coherent survey of special relativity and field
theory, notably the Maxwell–Lorentz and Yang–Mills–Wong theories. In ad-
dition, Mathematical Appendices cover the topics that are usually beyond
the standard knowledge of advanced undergraduates: Cartan’s differential
forms, Lie groups and Lie algebras, γ-matrices and Dirac spinors, the con-
formal group, Grassmannian variables, and distributions. These appendices
are meant as pragmatic reviews for a quick introduction to the subject, so
that the reader will hopefully be able to read the main text without resorting
to other sources.

The second part of this book, stretching over Chaps. 6 and 8–10, focuses
on the self-interaction problem. The conceptual basis of this study is not
entirely conventional. The discussion relies heavily on three key notions: the
rearrangement of the initial degrees of freedom resulting in the occurrence of
dressed particles, and spontaneous symmetry deformation.

We now give an outline of this book.
Chapter 1 discusses special relativity. Following the famous approach of

Minkowski, we treat it as merely the geometry of four-dimensional pseu-
doeuclidean spacetime. Section 1.1 offers the physical motivation of this point
of view, and introduces Minkowski space. Mathematical aspects of special
relativity are then detailed in Sects. 1.2 through 1.6.

Chapter 2 covers the relativistic mechanics of point particles. Newton’s
second law is embedded in the four-dimensional geometry of Minkowski space
to yield the dynamical law of relativistic particles. We define the electromag-
netic field through the Lorentz force law, and the Yang–Mills field through
the Wong force law. Electromagnetic field configurations are classified ac-
cording to their algebraic properties. We develop a regular method of solving
the equation of motion for a charged particle driven by a constant and uni-
form electromagnetic field. Section 2.5 reviews the Lagrangian formalism of
relativistic mechanical systems. Reparametrization invariance is studied in
Sect. 2.6. It is shown that a consistent dynamics is possible not only for mas-
sive, but also for massless particles. Section 2.7 explores the behavior of free
spinning particles. Since the rigorous two-particle problem in electrodynam-
ics is a formidable task, we pose a more tractable approximate problem, the
so-called relativistic Kepler problem. We then analyze a binary system com-
posed of a heavy magnetic monopole and a light charged particle. Collisions
and decays of relativistic particles are briefly discussed in the final section.
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Chapter 3 gives a derivation of the equation of motion for the electro-
magnetic field, Maxwell’s equations. We show that some of the structure of
Maxwell’s equations is dictated by the geometrical features of our universe,
in particular the fact that there are three space dimensions. The residual in-
formation translates into four assumptions: locality, linearity, the extended
action-reaction principle, and lack of magnetic monopoles.

Chapter 4 covers solutions to Maxwell’s equations. It begins by considering
static electric and constant magnetic fields. Some general properties of solu-
tions to Maxwell’s equations are summarized in Sect. 4.2. Free electromagnetic
fields are then examined in Sect. 4.3. We use the Green’s function technique to
solve the inhomogeneous wave equation in Sect. 4.4. The Liénard–Wiechert
field appears as the retarded solution to Maxwell’s equations with a point
source moving along an arbitrary timelike smooth world line. A method of
solving Maxwell’s equations without resort to Green’s functions is studied in
Sect. 4.7. This method will prove useful later in solving the Yang–Mills equa-
tions. We show that the retarded electromagnetic field F generated by a single
arbitrarily moving charge is invariant under local SL(2,R) transformations.
This is the same as saying there is a frame in which the Liénard–Wiechert
field F appears as a pure Coulomb field at each observation point. The chap-
ter concludes with a discussion of the electromagnetic field due to a magnetic
monopole.

Chapter 5 covers the Lagrangian formalism of general field theories, with
emphasis on systems of charged particles interacting with the electromagnetic
field. Much attention is given to symmetries and their associated conservation
laws in electrodynamics. These symmetries are of utmost importance in the
theory of fundamental interactions. The reader may wish to familiarize himself
or herself with these concepts early in the study of field theory; the Maxwell–
Lorentz theory seems to be a good testing ground. An overview of strings and
branes completes this chapter. This material may be useful in its own right,
and as an application of the calculus of variations to systems that combine
mechanical and field-theoretic features.

Chapter 6 treats self-interaction in electrodynamics. We begin with the
Goldstone and Higgs models to illustrate the mechanism of rearrangement
whereby the original degrees of freedom appearing in the Lagrangian are re-
arranged to give new, stable modes. We then introduce the basic concept
of radiation, and derive energy-momentum balance showing that mechanical
and electromagnetic degrees of freedom are rearranged into dressed particles
and radiation. The Lorentz–Dirac equation governing a dressed particle is dis-
cussed in Sect. 6.4. Two alternative ways of deriving this equation are given
in Sect. 6.5.

The essentials of classical gauge theories are examined in Chap. 7. Sec-
tion 7.1 introduces the Yang–Mills–Wong theory of point particles interact-
ing with gauge fields, in close analogy with the Maxwell–Lorentz theory. We
briefly review a Lagrangian framework for the standard model describing the
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three fundamental forces mediated by gauge fields: electromagnetic, weak, and
strong. Section 7.3 outlines gauge field dynamics on spacetime lattices.

Exact solutions to the Yang–Mills equations are the theme of Chap. 8.
It seems impossible to cover all known solutions. Many of them are omit-
ted, partly because these solutions are of doubtful value in accounting for
the subnuclear realm and partly because they are covered elsewhere. The em-
phasis is on exact retarded solutions to the Yang–Mills equations with the
source composed of several colored point particles (quarks) moving along ar-
bitrary timelike world lines. The existence of two classes of exact solutions
distinguished by symmetry groups is interpreted as a feature of the Yang–
Mills–Wong theory pertinent to the description of two phases of subnuclear
matter.

Chapter 9 deals with selected issues concerning self-interaction in gauge
theories. The initial degrees of freedom in the Yang–Mills–Wong theory are
shown to rearrange to give dressed quarks and Yang–Mills radiation. We ad-
dress the question of whether the renormalization procedure used for treating
the self-interaction problem is self-consistent. A plausible explanation for the
paradoxes of self-interaction in the Maxwell–Lorentz theory is suggested in
Sect. 9.3.

To comprehend electrodynamics as a whole, one should view this the-
ory from different perspectives in a wider context. For this purpose Chap.
10 generalizes the principles underlying mechanics and electrodynamics. The
discussion begins with a conceivable extension of Newtonian particles (gov-
erned by the second order equation of motion) to systems whose equations
of motion contain higher derivatives, so-called ‘rigid’ particles. Most if not
all of such systems exhibit unstable behavior when coupled to a continuum
force field. Electrodynamics in various dimensions is another line of general-
izations. Two specific examples, D + 1 = 2 and D + 1 = 6, are examined
in some detail. If Maxwell’s equations are preserved, then a consistent de-
scription for D + 1 = 6 is attained through the use of rigid particle dynam-
ics with acceleration-dependent Lagrangians. With these observations, we re-
vise Ehrenfest’s famous question: ‘In what way does it become manifest from
the fundamental laws of physics that space has three dimensions?’ Nonlinear
versions of electrodynamics, such as the Born–Infeld theory, are analyzed in
Sect. 10.4. We modify the Maxwell–Lorentz theory by introducing a nonlocal
form factor in the interaction term. The final section outlines the direct-action
approach in which the interactions of particles are such that they simulate the
electromagnetic field between them.

With rare exceptions, each section has problems to be solved. Some prob-
lems explore equations that appear in the main text without derivation, while
other problems introduce additional ideas or techniques. The problems are
an integral part of the book. Many of them are essential for the subsequent
discussion. The reader is invited to read every problem and look for its so-
lution. When running into difficulties with a particular problem, the reader
may consult the answer or hint. References to problems are made by writing
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the number of the section in front of the number of the problem, for example,
Problem 10.4.2 for the second problem of Sect. 10.4.

Each chapter ends with Notes where some remarks and references for fur-
ther reading can be found. The reader should be warned that these Notes do
not pretend to provide a complete guide to the history of the subject. The se-
lection of the literature sources is a matter of the author’s personal taste and
abilities. Preference is given to the most frequently cited books, representative
reviews, classical original articles, and papers that are useful in some sense.
References are listed by the name of the author(s) and the year of publication.

I am indebted to many people with whom I have discussed the is-
sues addressed in this book. I am especially thankful to Professors Irina
Aref’eva, Vladislav Bagrov, Asim Barut, Iosif Buchbinder, Garǐı Efimov,
Dmitrǐı Gal’tsov, Iosif Khriplovich, Vladimir Nesterenko, Lev Okun, Valerǐı
Rubakov, and Georgǐı Savvidi for their illuminating remarks. E-mail corre-
spondences with Professors Terry Goldman, Matej Pavšič, Martin Rivas, and
Fritz Rohrlich were of great benefit to this project.

I thank Professor Rudolf Haag for his kind encouragement, interesting
comments, and letter of support to the International Science and Technology
Center (ISTC) with his recommendation to allot funds for writing this book.

The financial support from ISTC, under the project # 1560, during the
time the first version of this book was written, is gratefully acknowledged.

Finally, I am grateful for the assistance of Professor Richard Woodard. He
was my foreign collaborator in the ISTC project. Although the role of foreign
collaborators in project implementation is sometimes a formality, Richard
voluntarily shouldered proofreading of this rather long manuscript. He read
carefully all parts of the text, made numerous corrections of my wording,
and pointed to several mathematical mistakes. His comments, criticism, and
suggestions concerning the most difficult physical issues are of inestimable
help. In spite of his best efforts, errors minor and major, and obscurities are
solely my responsibility.

July, 2006 Boris Kosyakov
Sarov
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1

Geometry of Minkowski Space

1.1 Spacetime

The essence of special relativity can be expressed as follows:

Space and time are fused into four-dimensional spacetime which is
described by pseudoeuclidean geometry.

Hermann Minkowski in his talk at the 80th Assembly of German Natural
Scientists and Physicians on 21 September 1908 asserted: ‘Space by itself,
and time by itself, are doomed to fade away into mere shadows, and only a
kind of union of the two will preserve an independent reality’.

The mathematical aspect of this statement will be discussed in subsequent
sections. But in order that the statement may have a physical meaning, it is
necessary to clarify the terms space and time, in particular, to define proce-
dures for measuring spatial and temporal coordinates of various events.

We first consider the frames of reference which are best suited to measure
moving objects. Such frames are called inertial. In the relativistic context,
they are often referred to as Lorentz frames. At present there is no agreement
regarding the rigorous definition of inertial frames of reference, even though
the general idea can be stated quite simply: every inertial frame executes a
uniform motion along a straight line with respect to a fixed inertial frame. As
soon as one grants the existence of a single inertial frame, the whole class of
such frames is defined. For example, Newton envisioned a perfect inertial frame
as that attributed to the ‘fixed stars’. Inertial frames could then proliferate in
his celestial mechanics through launching laboratories at constant velocities
with respect to the center of mass of the solar system. However, when viewed
closely, this strategy proves untenable for it is based on the notions ‘uniform’
and ‘straight’ which defy explication in the absence of a preassigned inertial
frame.

It seems advisable to reduce the level of rigor and make a heuristic argu-
ment involving the notion of states in unstable equilibrium. States of unstable
equilibrium are maintained only in inertial frames, because shocks and blows
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associated with accelerated motions of noninertial frames prevent unstable
systems from being balanced. We thus come to a simple operational criterion
for distinguishing between inertial and noninertial frames based on the capa-
bility of inertial frames for preserving unstable equilibrations. For example,
a spaceship which drifts freely in a region of space remote from other mat-
ter, without rotation, is a frame where balanced unstable systems (such as a
magnetic needle installed halfway between north poles of two identical static
magnets perpendicular to the axis along which the magnets are lined up) sur-
vive1. It is remarkable that this definition of inertial frames can be introduced
prior to geometry, that is, using only a kind of yes-no decision.

All inertial frames are regarded as equivalent in the sense that the dy-
namical laws have the same content and form in every inertial frame. This
statement represents the so-called principle of relativity. In his lecture to a
Congress of Arts and Science at St Louis on 24 September 1904 Henri Poincaré
said: ‘According to the Principle of Relativity, the laws of physical phenomena
must be the same for a “fixed” observer as for an observer who has a uniform
motion of translation relative to him: so that we have not, and cannot possi-
bly have, any means of discerning whether we are, or are not, carried along
in such a motion.’

By contrast, the form of equations of motion changes in passing from an
inertial frame to noninertial frames. Thus, among all possible frames, inertial
frames could be thought of as having a privileged status. The analysis of any
physical problem in this book pertains to inertial frames, unless otherwise
indicated.

Another idea of primary importance in relativistic physics is the existence
of maximal velocity of motion. Looking at waves of different nature (optical,
sonic, etc.), which expand from some point of emission O, one can compare
their propagation rate even without knowledge of the numerical values of their
velocities. This is in the same spirit as an ancient allegory: Achilles is prompter
than a tortoise, an arrow is prompter than Achilles, a thunderbolt is prompter
than arrows, etc. Mathematically, we have a chain a < b < c < . . . The order-
ing is verified by inspection, and has no need of particular velocity scale. One
may suppose that there is an upper bound for propagation rates. In fact, this
supposition is well verified experimentally. A light wave runs down any mover
which left O before the light emission, except for another light wave emitted
in O. The existence of the highest propagation rate – universally referred to
as the speed of light, is a central tenet of relativity. It is generally believed
that the fundamental interactions of nature propagate at the speed of light.
This should be compared with pre-relativistic physics in which arbitrarily high
velocities of bodies are allowable, and interactions (such as Newtonian gravi-
tation) are instantaneous. Poincaré in his 1904 lecture anticipated the advent

1 To adapt this definition of idealized inertial frames to the real world we employ
testing systems which are stable against small perturbations but unstable against
perturbations above some finite threshold.
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of ‘entirely new kind of dynamics, which will be characterized above all by
the rule, that no velocity can exceed the velocity of light’.

The concept of maximal velocity is the rationale for integrating space and
time into spacetime. Given a clock and a radar ranging device, we have actually
everything required for probing the geometry of the real world. Indeed, we
can measure the distance between two points by the time that light takes to
traverse it. Taking the speed of light to be unity, we find the distance we seek
to be half the round-trip span between these points.

Why is radar location preferable to using yardsticks? In practice, it is not
always possible to lay out a grid of the yardsticks. Take, for example, cosmic
measurements. But, what is more important, when moving, the yardstick is
purported to preserve size and shape (at least in the absence of stresses and
temperature variations), which has yet to be proved. By contrast, with the
radar-location approach, the size and shape of a given rod can be verified
by continuously sounding its ends. Furthermore, the notion of rectilinearity,
stemming from geometrical optics in which light rays travel along straight
lines is an integral part of the radar-location approach.

Now, armed with a well defined and controllable standard for measuring
lengths and for determining what is a straight line, we are allowed the option
of using either yardstick or radar for a particular measurement.

Subsequent to choosing the length scale, we can define the velocity scale.
In the relativistic context, it is natural to take the convention that the speed
of light in vacuum2 is 1, and measure space and time intervals in the same
units, say, in meters. We follow this convention throughout.

An experimentalist, having different types of cyclic mechanisms operating
on various time at his disposal, may inquire whether there is a scale to express
the physical laws in the simplest form. The desired scale t actually exists. It is
defined by the condition of Galileo Galilei that all inertial frames move along
straight lines at constant rates with respect to a given inertial frame,

dx

dt
= V = const . (1.1)

This scale, called the standard or laboratory scale, is defined up to a linear
transformation, that is, up to a relabeling (say, hours may be termed minutes –
which is of course a matter of convention), and a change in the zero of time.

By comparison, if we take an arbitrary scale τ , we observe that inertial
frames execute nonuniform motions, that is, their velocities vary with τ :

dx

dτ
= v(τ) . (1.2)

However, proceeding from an arbitrary scale τ , the standard scale t readily
regains,
2 In the literature, the speed of light is usually symbolized by the letter c. However,

this designation is unnecessary if we adopt units in which c = 1.
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t = F (τ) . (1.3)

Indeed, from
dx

dt
=
dx

dτ

dτ

dt
= v

1
F ′ (1.4)

we obtain
F (τ) =

1
V

∫ τ

0

dσ v(σ) . (1.5)

Expressions (1.2) and (1.5) suggest the way for rearranging the given chrono-
meter to yield the standard scale t. Note that clocks which read the Galilean
time rate should not be regarded as ‘true’, or ‘accurate’, even if this time rate
may be judged much simpler than other rates. At present, the closest fit to
the standard time rate t show atomic clocks.

It might seem that a ‘perfect periodicity’ can be attained if light rays
are sandwiched between two parallel mirrors. To measure time one simply
counts successive reflections of this light shuttle. A virtue of this light clock is
that spatial and temporal measurements are assembled into a single process
of sending light flashes and receiving their echoes. But a closer look at this
timekeeping reveals a serious flaw: the mirrors must be separated by a fixed
distance, which is a problem. In the absence of reliable space control procedure
different from radar sounding, this chronometry would make the definition
circular.

We therefore will content ourselves with the very existence of a clock (such
as atomic clocks) whose readings conform with the requirement that relative
motions of inertial frames be uniform. In the subsequent discussion we assume
that inertial frames are equipped with clocks of this type.

It in no way follows that the light propagation is uniform if time is read on
the standard time scale. However, physical reality is so structured that such
is the case. One may treat this opportunity as a separate principle. In fact, it
was the original 1905 proposal by Albert Einstein that the constancy of the
velocity of light, together with the principle of relativity, constitute the basic
postulates of special relativity. Attention is usually drawn to the condition
that the velocity of light is the same in all inertial frames. But due regard
must be given to another aspect of Einstein’s proposal, the uniformity of light
propagation.

We now address the geometric properties of spacetime. It was pointed out
by Poincaré that the geometry by itself eludes verification. What is to be
verified is the totality of geometry and physics. A change of geometric axioms
can be accompanied by a suitable modification of physical laws in such a
way that the prediction of observed phenomena are unchanged. Nevertheless,
the entire theoretical scheme is not indifferent to the choice of a particular
geometry3. Our interest here is with the simplest physically justifiable version
of spacetime.
3 As an illustration, we refer to the problem of the field generated by a magnetic

charge. This problem can be stated in two alternative geometric settings. We
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Special relativity assumes that spacetime is described by the geometry of
Minkowski space. It is generally believed that Minkowski space is the best
geometric framework for the great bulk of phenomena, excluding situations
in which strong gravitational fields are present. The reason for this belief is
threefold:

(i) the existence of inertial frames,
(ii) the existence of a standard time scale,
(iii) the existence of the highest propagation rate (associated with the speed

of light); the uniformity of light propagation.

An inertial observer, having clocks with the standard time scale, will recog-
nize time as homogeneous in the sense that all instants are equivalent, and
space homogeneous and isotropic in the sense that there are no privileged posi-
tion in space and distinguished direction of motion. These facts are responsible
for the affine structure of Minkowski space. As this topic is reviewed again in
the following sections, we put off our discussion of it until then. For now, we
turn to the metrical structure of spacetime. An inertial observer will recog-
nize Minkowski space to be endowed with an indefinite metric. This geometric
property is most readily visualized with the aid of the so-called k-calculus by
Hermann Bondi.

Let O and O′ be two arbitrary inertial observers. Both observers carry
identical clocks with the standard time scale, and are equipped with a radar
ranging set. Suppose that O is at rest in a given inertial frame, while O′ is
moving along the x-axis at a constant velocity V . This can be expressed in
geometric terms by saying that the world lines of both observers are rectilinear.
In the two-dimensional diagram, Fig. 1.1, the vertical axis represents time,
and the horizontal axis space. Light rays are depicted as straight lines at 45◦

angles. The world line of O is a straight line parallel to the time axis, while
the world line of O′, x = x0 + V t, is tilted from the vertical axis at an angle
less than 45◦, because V < 1.

Suppose that O sends two flashes of light separated by an interval T on his
clock. The interval between reception of these flashes on the clock of O′ is kT ,
where k is the so-called k-factor. From the preceding discussion it follows that
k is a constant which depends on the relative velocity V . By the principle
of relativity, the situation is symmetric when O′ emits light signals and O
receives them: an interval between two emitted signals as measured by O′ is
multiplied by the same factor k to give an interval between reception of these
signals as measured by O. If O′ reflects signals which were sent by O, then O
records an interval k2T between reception of the two successive echoes.

will see in Sect. 4.8 that the vector potential due to a magnetic monopole Aµ as
viewed in the usual Euclidean space is singular on a line that issues out of the
magnetic charge, while Aµ as viewed in a manifold which is obtained by gluing
together two Euclidean spaces is regular everywhere except for the point where
the magnetic charge is located.
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Fig. 1.1. Bondi k-calculus

To gain insight into the physical meaning of the k-factor, we first note,
following Poincaré, that whether or not two spatially separated events are
simultaneous is, to some extent, a matter of convention. Einstein refined this
idea by the following convention (which is now called standard synchrony).
Let O emit a pulse of light when his clock reads ti. Let this pulse be reflected
at a spacetime point P , and the echo is received by O at the instant tf . Then
event P is simultaneous with the event at O that occurred at time 1

2 (ti + tf ).
We therefore assign coordinates to the event P given by

t =
1
2

(tf + ti) , x =
1
2

(tf − ti) . (1.6)

In the standard synchrony O computes the following values for the tem-
poral and spatial differences between the events at which O′ reflects the first
and second pulses

∆t =
1
2
(
k2 + 1

)
T, ∆x =

1
2
(
k2 − 1

)
T . (1.7)

Because O′ moves at constant velocity V between the two reflection events,
we obtain a relation between k and V

V =
∆x

∆t
=
k2 − 1
k2 + 1

. (1.8)

Solving for k gives

k =

√
1 + V

1 − V
. (1.9)

One may then imagine that O emits light in the form of a monochromatic
wave whose frequency ν is the reciprocal of the period of oscillations T of an
atomic clock. Hence, the wave carries the unit of time T adopted by O. Our
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analysis is based on the assumption that O′ sees a wave whose frequency ν′

differs from ν by the factor k,

k =
ν

ν′
=

√
1 + V

1 − V
. (1.10)

For V � 1, this relation becomes

ν′ = ν (1 − V ) , (1.11)

which is the Doppler red shift due to the outward motion of the source, familiar
from elementary physics. Thus, the k-factor is a relativistic manifestation of
the Doppler shift.

We now introduce another inertial observer O′′ moving along the x-axis.
Assume that a factor kOO′′ characterizes the relative motion of O and O′′,
and kO′O′′ is the corresponding factor for O′ and O′′. One can show (Problem
1.1.1) that

kOO′′ = kOO′ kO′O′′ . (1.12)

Combining (1.9) and (1.12), we get the relativistic rule for the addition of
velocities

VOO′′ =
VOO′ + VO′O′′

1 + VOO′ VO′O′′
. (1.13)

The value of VOO′′ given by (1.13) cannot exceed 1. Assuming either VOO′ or
VO′O′′ , or both, equal to 1, we find VOO′′ = 1. If VOO′ � 1, VO′O′′ � 1, then
(1.13) becomes

VOO′′ = VOO′ + VO′O′′ , (1.14)

which is the rule for the addition of velocities in Newtonian kinematics.
Let us turn back to the situation with two inertial observers O and O′.

We describe an event P as viewed by both O or O′. Suppose that O and
O′ meet at a point O, as in Fig. 1.2, and, at the instant of their meeting,
both reset their clocks to 0. A light flash, which is sent by O at ti to P ,
being reflected, returns to O at tf . Likewise, O′ locates P , the corresponding
instants being t′i and t′f . Following the pattern shown in (1.6), O assigns the
following coordinates to this event

t =
1
2

(tf + ti) , x =
1
2

(tf − ti) , (1.15)

whereas O′ gets

t′ =
1
2

(t′f + t′i) , x′ =
1
2

(t′f − t′i) . (1.16)

Taking into account that
t′i
ti

=
tf
t′f

= k , (1.17)
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•

Fig. 1.2. Derivation of the Lorentz transformation

we obtain from (1.16)

t′ =
1
2

(
k +

1
k

)
t−1

2

(
k − 1

k

)
x, x′ =

1
2

(
k +

1
k

)
x−1

2

(
k − 1

k

)
t . (1.18)

We see that the coordinates (t, x) assigned to event P by O can be expressed
in terms of the coordinates (t′, x′) assigned to this same event by O′ through
(1.18).

With (1.9), we rewrite (1.18) in the form

t′ = γ (t− V x) ,
x′ = γ (x− V t) , (1.19)

where
γ =

1√
1 − V 2

. (1.20)

Equation (1.19) is named the Lorentz transformation for its discoverer
Hendrik Antoon Lorentz. The factor γ is referred to as Lorentz factor. In the
current literature, (1.19) is often called the Lorentz boost, or simply the boost.

The inverse of the Lorentz transformation (1.19) is

t = γ (t′ + V x′) ,
x = γ (x′ + V t′) . (1.21)

Evidently (1.21) follows from (1.19) if we replace V by −V , because O′ might
say that O moves at the velocity −V along the x-axis. If V = 0, then (1.19) is
the identity transformation, t′ = t, x′ = x. Therefore, transformations (1.19)
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constitute a continuous group, the Lorentz group. The parameter V ranges
from −1 to 1,

Suppose that a rod is at rest with respect to O, and is directed parallel
to the x-axis. Let the coordinates of its ends at some instant t be x1 and x2.
Then its length as measured by O is ∆x = x2 − x1. What is the length of the
rod as measured by a moving inertial observer O′? It follows from (1.21) that

x1 = γ (x′1 + V t′) , x2 = γ (x′2 + V t′) , (1.22)

and so
∆x′ = x′2 − x′1 = γ−1 (x2 − x1) . (1.23)

The length of the rod at rest is called the proper length. Let us denote the
proper length by l, and the distance between the ends of the rod as measured
by a moving observer O′ by l′, then

l′ = l
√

1 − V 2 . (1.24)

We see that the length of the rod is not identical for different inertial ob-
servers; the maximum value l is attained in the rest frame. In general, the
length of a moving body is contracted in the direction of motion in compari-
son with its proper length. This contraction is called the Lorentz–FitzGerald
contraction, or simply the Lorentz contraction.

Equation (1.19) implies

t′
2 − x′

2 = t2 − x2 . (1.25)

This relation shows that the quadratic form t2−x2 is the same for any inertial
observer. We therefore say that t2−x2 is invariant under Lorentz transforma-
tions. It is reasonable to interpret this invariant quadratic form as a measure
of separation between P and O in the two-dimensional diagram, a prototype
of the indefinite metric in Minkowski space

t2 − x2 − y2 − z2 . (1.26)

Observing that the identity γ2 − γ2V 2 = 1 is similar to the identity
(cosh θ)2 − (sinh θ)2 = 1, we can rewrite the Lorentz transformation (1.19)
as

t′ = t cosh θ − x sinh θ ,
x′ = x cosh θ − t sinh θ , (1.27)

where θ is related to V by
V = tanh θ , (1.28)

or, in matrix notation,
(
t′

x′

)
=
(

cosh θ − sinh θ
− sinh θ cosh θ

)(
t
x

)
. (1.29)
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The composition of two boosts (1.29) specified by respective parameters
θ1 and θ2 is a new boost specified by

θ = θ1 + θ2 . (1.30)

Substituting (1.30) in (1.28) shows that the resulting boost is associated with
the velocity of relative motion

V =
V1 + V2

1 + V1V2
, (1.31)

where V1 = tanh θ1, V2 = tanh θ2. Equation (1.31) is apparently the relativis-
tic rule for the addition of velocities (1.13). Since (1.30) is simpler than (1.31),
the use of θ, called the rapidity, is sometimes more advantageous than that of
V . The rapidity θ runs from −∞ to ∞. Negative θ are mapped by (1.28) to
negative V , θ = 0 corresponds to V = 0.

Newtonian mechanics does not have a maximum velocity. A body can
travel with any velocity, and the interactions of separated bodies can be in-
stantaneous. Therefore, the requirement to synchronize clocks is no longer
relevant, because time is regarded as absolute, that is, the same for different
inertial observers. Only the space coordinates assigned to some event by two
inertial observers are different. These coordinates are related by the Galilean
transformation

x′ = x− V t . (1.32)

Note that (1.32) is not a limititing case of the Lorentz transformation (1.19)
arising as V → 0, until we assume that x is of order V t.

Problem 1.1.1. Justify (1.12).

Problem 1.1.2. Consider two Lorentz observers in relative motion with ve-
locity V. Let the Cartesian coordinates of some event as seen by one observer
be (t,x), and those as seen by the other be (t′,x′). Introduce the decomposi-
tions x = x‖ + x⊥ and x′ = x′

‖ + x′
⊥, where ‖ stands for the projection of

a given vector on V, and ⊥ labels the projection on a plane perpendicular to
V. Derive the Lorentz transformation of these coordinates.

Answer
t′ = γ

(
t− V x‖

)
, x′

‖ = γ
(
x‖ − Vt

)
, x′

⊥ = x⊥ , (1.33)

V = |V|, γ =
(
1 − V 2

)− 1
2 . (1.34)

1.2 Affine and Metric Structures

Mathematically, Minkowski space is the set R × R × R × R. Elements of this
set are called points. In order to convert an abstract set of points into a
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geometric space, one equips it with a geometric structure. The geometry of
Minkowski space derives from affine and metric structures. We therefore begin
by recalling the system of axioms (due to Hermann Weyl) which define affine
spaces.

Definition 1. Consider a set V whose elements, called vectors, can be added
and multiplied by constants. We will call such sets vector spaces. More pre-
cisely, for any two vectors a and b we define a vector c, which is their sum,
c = a+b, and for any vector a and any real number λ we define a vector λa,
the multiplication of a by λ. The operations of addition and multiplication by
constants must fulfil the following eight rules:

1◦. a + b = b + a.
2◦. a + (b + c) = (a + b) + c.
3◦. There is a vector 0, the zero vector, such that 0 + a = a.

Note that the vector 0 is unique. Assume that there are two zero vectors:
01 + a = a and 02 + a = a, then 01 = 02. Indeed, substituting a = 01 into
02 +a = a gives 02 +01 = 01, while substituting a = 02 into 01 +a = a gives
01 + 02 = 02, hence 01 = 02.

4◦. For every vector a there is a vector −a such that a + (−a) = 0.

Note that the vector −a is unique in that a + b = 0 and a + c = 0 imply
b = c. Indeed, b = 0 + b = (a + c) + b = (a + b) + c = 0 + c = c.

5◦. 1a = a.
6◦. (λ+ µ)a = λa + µa.
7◦. (λµ)a = λ (µa).
8◦. λ (a + b) = λa + λb.

If vectors are visualized as arrows, they obey the usual parallelogram law
for addition. Multiplication by a positive constant alters the length of the
vector, without changing its direction; for λ = 0, the result of multiplication
is the zero vector, 0a = 0; for λ < 0, the direction of the multiplied vector
is reversed, (−1)a = −a (Problem 1.2.1). Hereafter, b − a will stand for
b + (−a).

If we allow for multiplication of vectors by complex numbers, assuming
axioms 1◦–8◦, we obtain a complex (rather than real) vector space.

Now it is possible to form linear combinations of vectors λ1a1 + · · · +
λmam. A linear combination is nontrivial if not all coefficients λ1, . . . , λm

are vanishing. Vectors a1, . . . ,am are called linearly dependent if there is a
nontrivial combination of these vectors which is the zero vector, λ1a1 + · · ·+
λmam = 0, otherwise they are linearly independent. If a and b are linearly
dependent, a + λb = 0, then a and b are said to be collinear.

Definition 2. Let e1, . . . , en be a linearly independent family of vectors. Sup-
pose that any vector a ∈ V can be represented as a linear combination of this
family of vectors,
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a = a1e1 + · · · + anen , (1.35)

then e1, . . . , en is called a basis of V .

To the above axioms 1◦–8◦ must be added one more

9◦. There exists a basis involving n vectors.

With these axioms, V is defined as a vector space. This V is said to have
dimension n. Every basis of V includes n vectors. Furthermore, any set of
n + 1 vectors is linearly dependent. We denote this vector space by Vn if we
are to be more emphatic.

For a given basis e1, . . . , en, the decomposition (1.35) is unique. To see this,
we assume that there is an alternative decomposition a = ā1e1+· · ·+ānen. We
then have

(
a1 − ā1

)
e1 + · · ·+ (an − ān) en = 0, which implies ai − āi = 0 for

every i. We call a1, . . . , an coordinates of the vector a in the basis e1, . . . , en,
and write a = (a1, . . . , an). The decomposition (1.35) can be recast in the
brief form:

a = aiei , (1.36)

with the understanding that a repeated index is summed over. To be specific,
indices that appear both as superscripts and subscripts are summed from 1
to n. This summation convention, proposed by Einstein, is generally accepted
in the physical literature4.

It is evident that a + b has coordinates a1 + b1, . . . , an + bn, and λa has
coordinates λa1, . . . , λan. This provides a one-to-one mapping from Vn to Rn,
a space of all n-tuples of real numbers (a1, . . . , an). One-to-one mappings
which leave invariant linear operations are called isomorphisms. We see that
every n-dimensional vector spaceis isomorphic to Rn. Hence, all vector spaces
of dimension n are isomorphic to each other.

Let e1, . . . , en and e′1, . . . , e
′
n be two arbitrary bases. Each vector of the

latter basis can be expanded in terms of vectors of the former basis:

e′i = Lj
i ej . (1.37)

This can be written in matrix form:



e′1
e′2
...

e′n


 =



L1

1 L2
1 Ln

1

L1
2 L2

2 Ln
2

. . .
L1

n L2
n Ln

n







e1

e2
...

en


 . (1.38)

4 In this section, we denote indices by lower-case latin letters. The notation of
a repeated index (which is sometimes called an ‘umbral’, or ‘dummy’, index)
may be freely changed leaving the quantity unaltered. For example, aiei may
be substituted with ajej , because these expressions are identical. We will make
extensive use of this freedom for relabeling indices.
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What restrictions are there on the matrix Lj
i? Since n linearly indepen-

dent vectors e1, . . . , en are transformed into n linearly independent vectors
e′1, . . . , e

′
n, Lj

i must be a real n× n matrix such that

detL �= 0 . (1.39)

On the other hand, e1, . . . , en can be expanded in terms of e′1, . . . , e
′
n,

ei = M j
i e

′
j . (1.40)

Combining (1.37) and (1.40), we obtain

ei = M j
i L

k
j ek , (1.41)

and
e′i = Lj

iM
k
j e′k , (1.42)

For (1.41) and (1.42) to be identities, it is necessary that

M j
i L

k
j = Lj

iM
k
j = δk

i , (1.43)

where δk
i is the Kronecker delta, which is zero when k �= i, and unity when

k = i. In matrix notation,

ML = LM = 1 , (1.44)

where 1 is the unit n × n matrix whose diagonal matrix elements equals 1,
and off-diagonal matrix elements are 0. Equation (1.44) shows that M is the
inverse of L,

M = L−1 . (1.45)

That is why we impose the condition (1.39): if detL is nonzero, then there
exists a matrix inverse of L.

Let e1, . . . , en and e′1, . . . , e
′
n be two bases. Any vector a can be written

either
a = aiei (1.46)

or
a = a′

ie′i . (1.47)

Applying (1.40) to (1.46), we have

a = ajM i
j e′i , (1.48)

which, in view of (1.47), gives

a′
i = M i

j a
j . (1.49)

We see that new coordinates a′i are obtained from old coordinates ai by the
action of a matrix, which is the inverse of transposed L.
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Consider the totality of bases in Vn. One basis is related to another by a
linear transformation (1.37). These transformations form a Lie group (Prob-
lem 1.2.2), the general linear group GL(n,R). Each element of GL(n,R) is a
real n × n matrix with nonzero determinant (for an overview of Lie groups
see Appendix B). Given a fixed basis, all other bases can be produced from
it through (1.37) in which Lj

i ranges over the parameter space of GL(n,R).
By (1.49), the same is true for Rn: given some n-tuple of real numbers, say,
(1, 0, . . . , 0), all other n-tuples arise from it if M j

i ranges over the parameter
space of GL(n,R). This implies a new definition of vector spaces. Indeed, Rn

can be completely characterized by the transformation group GL(n,R). These
transformations are called automorphisms of Rn. Hence the vector becomes a
derivative concept specified by n numbers a1, a2, . . . , an and the transforma-
tion law (1.49).

Once we have a vector space, it is natural to define an associated vector
space, known as the dual space.

Definition 3. A mapping ω : V → R such that

ω(a + b) = ω(a) + ω(b), ω(κa) = κω(a) (1.50)

is called a linear functional ω. In other words, a linear functional is a rule for
writing real numbers ω(a) associated with vectors a in such a way as to obey
(1.50).

Addition and multiplication by constants are obviously defined for linear
functionals,

(ω1 + ω2)(a) = ω1(a) + ω2(a), (κω)(a) = κω(a) . (1.51)

Thus, linear functionals form the dual vector space V ′. If V is n-dimensional,
so is V ′. Indeed, let e1, . . . , en be a basis in V . Then any ω ∈ V ′ is specified by
n real numbers ω1 = ω(e1), . . . , ωn = ω(en), and the value of ω on a = aiei

is given by
ω(a) = ωia

i . (1.52)

We see that V ′ is isomorphic to V . That is why we sometimes refer to linear
functionals as covectors. A closer look at (1.52) shows that a vector a can
be regarded as a linear functional on V ′. One can show (Problem 1.2.3) that
changing the basis (1.37) implies the transformation of ωi according to the
same law:

ω′
i = Lj

i ωj . (1.53)

We will usually suppress the argument of ω(a), and identify ω with its com-
ponents ωi.

If dimension of V is infinite, then V ′ need not be isomorphic to V . Rather
V ′ and V obey the principle of complementarity. For example, in the theory
of distributions (outlined in Appendix F), in which V is a vector space of test
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functions, and V ′ is the dual space of linear continuous functionals, the larger
we make the space of test functions V , the smaller is the corresponding space
of distributions V ′.

Similarly, a bilinearfunctional is defined as a mapping ω : V ×V → R such
that

ω(a + x,b) = ω(a,b) + ω(x,b), ω(κa,b) = κω(a,b) , (1.54)

and the same for the second argument.
In a particular basis e1, . . . , en, a bilinear functional ω is specified by its

components ω(ei, ej) = ωij , and so

ω(a,b) = ωija
ibj . (1.55)

A bilinear functional is symmetric if

σ(a,b) = σ(b,a) , (1.56)

and antisymmetric if
α(a,b) = −α(b,a) . (1.57)

It is clear that components of a symmetric bilinear functional are symmetric,

σij = σji , (1.58)

while components of an antisymmetric bilinear functional are antisymmetric,

αij = −αji . (1.59)

One may define trilinear, and, generally, multilinear functionals in a similar
fashion.

We now turn to point sets which are isomorphic to vector spaces.

Definition 4. Let V be a vector space. A set A is said to be an affine space
associated with V if there is a correspondence between any ordered pair of
elements A and B of A, called points, and a vector, indicated by −−→

AB, such
that:

10◦. For any point A, called the initial point, and an arbitrary vector a,
there exists a point B, called the terminal point, for which −−→

AB = a,

11◦. For arbitrary points A, B, C, the triangle equation holds −−→AB+−−→
BC =−→

AC.

If A = B = C, then the triangle equation becomes −→
AA = 0. If A = C, then−−→

AB = −−−→
BA.

An affine space A associated with Vn has dimension n. Affine spaces are
suitable to study affine objects: points, straight lines, planes, etc. A central
construction is the affine coordinate system.



16 1 Geometry of Minkowski Space

Definition 5. Let O be a fixed point in A. For every point A there is a vector−→
OA which is called radius vector of the point A. Let e1, . . . , en be a basis of the
associated vector space V . Coordinates a1, . . . , an of −→OA in this basis are called
affine coordinates of the point A. The affine coordinate system is comprised
of the point O, the origin, and the basis e1, . . . , en.

Since −−→
OB = −→

OA+−−→
AB, the vector −−→AB has coordinates b1−a1, . . . , bn−an.

We see that A is isomorphic to Rn where (0, . . . , 0) plays the role of the
origin, and affine coordinates of any point are given by coordinates of the
radius vector of this point.

Axioms 1◦–11◦ form the basis of affine geometry. Varying the affine coor-
dinate system engenders a transformation of affine coordinates

a′
i = M i

j a
j + ci . (1.60)

Let us turn to Euclidean geometry. This geometry can be built by grafting
a metric structure onto the theory of affine spaces.

Definition 6. For any two vectors a and b we define the scalar product, which
is a real bilinear functional, denoted by a · b, such that

12◦. a · b = b · a,
13◦. a · (κb + λ c) = κ (a · b) + λ (a · c),
14◦. For every nonzero vector a there is a vector b such that a · b �= 0.

In addition, one may require that the norm of every nonzero vector a2 = a ·a
be positive:

15◦. a2 > 0.

A vector space V with a particular scalar product satisfying axioms 12◦–
15◦ is called a Euclidean vector space. If axiom 15◦ is abandoned, then the
norm is indefinite, and axioms 1◦–14◦ comprise geometry of a pseudoeuclidean
vector space.

Vectors a and b are called orthogonal if a ·b = 0. For orthogonal a and b,
we have

(a + b)2 = a2 + b2 . (1.61)

If an affine space A is associated with some Euclidean vector space, then
A is called a Euclidean affine space. The terms ‘parallel’ and ‘perpendicular’
are often used in place of the terms ‘collinear’ and ‘orthogonal’, respectively.
Let a = −→

OA be perpendicular to b = −−→
OB. Then, denoting b−a = −−→

AB, (1.61)
becomes the Pythagorean theorem

−−→
AB

2
= −→
OA

2
+ −−→
OB

2
. (1.62)

In a basis e1, . . . , en, the scalar product can be written

g(a,b) = gij a
ibj , (1.63)
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where
gij = g(ei, ej) = ei · ej . (1.64)

By axiom 12◦,
gij = gji . (1.65)

According to axiom 14◦, there is no nonzero vector a orthogonal to all
vectors. Assume that some vector a is orthogonal to an arbitrary vector b:

gij a
ibj = 0 . (1.66)

Then the coefficient of bj is zero for every j,

gij a
i = 0 . (1.67)

A nontrivial solution to this equation is ensured by

det (gij) = 0 . (1.68)

Thus, axiom 14◦ implies that

det (gij) �= 0 . (1.69)

This is the same as saying that there is a matrix inverse of gij ,

gij g
jk = δk

i . (1.70)

Both gij and gij are collectively called the metric. Using gij and gij , one can
turn vectors and covectors to each other,

ai = gijaj , ai = gija
j . (1.71)

If the index of a covector ai is raised by gij , and the index of the resulting
vector ai is lowered by gij , as shown in (1.71), then we revert to the original
covector ai. Let aj be the components of a vector a. Then ai stemming from
aj may be interpreted as the scalar product of a and the ith basis vector ei:

ai = gija
j = (ei · ej) aj = ei · (ajej) = ei · a . (1.72)

We will often ignore the distinction between Euclidean vectors and covectors,
calling them vectors. We will use the same letter for both ai and ai, keeping
in mind as a single object, a vector a, which is labelled by either covariant
(lower) or contravariant (upper) index.

In Euclidean space, it is convenient to use the so-called orthonormal basis,
which corresponds to the Cartesian coordinate system. Let us convert a basis
f1, . . . , fn into another basis e1, . . . , en composed of mutually orthogonal unit
vectors:

e2
i = 1, ei · ej = 0 . (1.73)

This can be briefly written
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ei · ej = δij , (1.74)

where δij is the Kronecker delta.
We first normalize the vector f1, that is, construct

e1 =
f1√
f2
1

, (1.75)

which is a desired unit vector, e2
1 = 1.

We then identify the part of f2 which is orthogonal to e1. That is, we write
f2 as the sum of two vectors. One of them

(e1 · f2) e1 (1.76)

is parallel to e1, and the other

f2 − (e1 · f2) e1 (1.77)

is orthogonal to e1. We eliminate (e1 · f2) e1 from this sum to obtain a vector
orthogonal to e1. We normalize the resulting vector, which gives a unit vector
e2 orthogonal to e1.

In general, proceeding from an arbitrary vector x, one can find a vector
x⊥ orthogonal to a nonzero vector a with the help of the formula

x⊥ = x − x · a
a2

a . (1.78)

Introducing the operator
a

⊥ which acts on x as

(
a

⊥ x)i =
(
gij −

ai aj

a2

)
xj = xi −

aj x
j

a2
ai , (1.79)

we bring (1.78) to the form

x⊥ =
a

⊥ x . (1.80)

With this observation, we continue the orthonormalization process by taking

e1

⊥
e2

⊥ f3 (1.81)

and normalizing this vector to give a unit vector e3 orthogonal to e1 and e2,
and so on.

The advantages of an orthonormalized basis are apparent. It is seen from
(1.74) that gij = δij . Thus, for any orthonormalized basis, the metric is given
by the n × n unit matrix. Covariant and contravariant coordinates of an ar-
bitrary vector are now identical:

ai = gija
j = δija

j = ai . (1.82)

The scalar product is diagonal:
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a · b = δijaibj = a1b1 + · · · + anbn , (1.83)

in particular,
a2 = a2

1 + · · · + a2
n . (1.84)

What is the authomorphism group of the n-dimensional Euclidean affine
space? We first remark that the automorphism group contains the transla-
tion group Tn as a subgroup, because gij(ai − bi)(cj − dj) is invariant under
translations of the origin O.

Let the origin be fixed. Consider transformations of one orthonormalized
basis to another orthonormalized basis. Coordinates of a vector transform as

a′i = Lj
i aj , (1.85)

but the norm remains invariant,

a′i a
′
j δ

ij = Lk
iL

l
j δ

ijakal = aiajδ
ij . (1.86)

Therefore,
Lk

iL
l
i = δkl . (1.87)

It follows from this equation that the inverse of L is the transpose of this
matrix:

L−1 = LT . (1.88)

Matrices satisfying (1.88) form a continuous group. To see this, we note
that

(L1L2)−1 = L−1
2 L−1

1 = LT
2 L

T
1 = (L1L2)T . (1.89)

This demonstrates the group property. The existence of the inverse of L, and
a unit matrix are evident. We thus arrive at a 1

2 (n− 1)n-parameter Lie group
which is called the orthogonal group O(n) (see Appendix B).

By (1.87),
(detL)2 = 1 . (1.90)

Transformations which are continuously connected with identity have a unit
determinant detL = 1. Such transformations, called rotations, form a sub-
group SO(n) of the group O(n). Transformations whose determinant is equal
to −1 are a composition of rotations and reflections

ei → −ei . (1.91)

We see that the authomorphism group of Euclidean affine space consists
of orthogonal transformations and translations.

We now turn to pseudoeuclidean spaces. Since our interest is with the
case n = 4, we consider a basis f0, f1, f2, f3 (following a common practice, the
subscripts begin with 0.)

In pseudoeuclidean spaces, the norm of a nonzero vector can be zero. Such
vectors are called null vectors. It is clear that there are vectors different from
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null vectors. Suppose that all vectors, specifically a and b, are null vectors.
Then (a + b)2 = 0 and (a− b)2 = 0. Combined with a2 = 0 and b2 = 0, this
results in a · b = 0, contrary to axiom 14◦.

Assume that f0, f1, f2, f3 are linearly independent vectors with finite norms.
One can render these basis vectors mutually orthogonal using the operator
(1.79). However, the normalization procedure is modified. If f2

0 > 0, then this
vector can be normalized as before to yield a unit vector e0. If f2

0 < 0, then
we take

e0 =
f0√
−f2

0

, (1.92)

which is an imaginary unit vector

e2
0 = −1 . (1.93)

One can show (Problem 1.2.5) that the vector
e0

⊥ f1 has a finite norm, and hence
can be normalized to give either unit or imaginary unit vector e1. Likewise,
e0

⊥
e1

⊥ f2 is used to obtain a normalized vector e2, and
e0

⊥
e1

⊥
e2

⊥ f3 is suitable to
build a normalized vector e3.

This process culminates in k unit and 4 − k imaginary unit basis vectors.
For a given space, k is a fixed number for any choice of f0, f1, f2, f3. Indeed, sup-
pose that there are two orthonormalized bases e0, e1, e2, e3 and ē0, ē1, ē2, ē3

such that the first basis contains k unit vectors while the second basis con-
tains k̄ unit vectors, and k > k̄. Consider a set composed of k unit vectors of
the first basis e0, . . . , ek, and 4− k̄ imaginary unit vectors of the second basis
ē0, . . . , ē3−k̄. Since the set contains 4 + k − k̄ > 4 vectors, these vectors must
be linearly dependent:

λ0 e0 + · · · + λk ek + µ0 ē0 + · · · + µ3−k̄ ē3−k̄ = 0 . (1.94)

Rewrite this equation in the form

λ0 e0 + · · · + λk ek = −µ0 ē0 − . . .− µ3−k̄ ē3−k̄ , (1.95)

and take the square of both sides:

λ2
0 + · · · + λ2

k = −µ2
0 + · · · − µ2

3−k̄ . (1.96)

Because λ0, . . . , λk and µ0, . . . , µ3−k̄ are real coefficients, (1.96) implies

λ0 = . . . = λk = 0, µ0 = . . . = µ3−k̄ = 0 , (1.97)

which runs counter to the fact that these vectors are linearly dependent. We
thus have a contradiction to the initial supposition that k > k̄.

Evidently a space with k unit and 4 − k imaginary unit basis vectors is
equivalent in metrical properties to a space with 4 − k unit and k imagi-
nary unit basis vectors. But the difference between the numbers of unit and
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imaginary unit basis vectors σ = 4 − 2k, called the signature, is an essen-
tial characteristic of the metric. There are only two types of four-dimensional
pseudoueclidean spaces which are characterized by either σ = 2 or σ = 0.
We will denote them, respectively, as R1,3 and R2,2. The case σ = 4 (or
σ = −4) corresponds to the Euclidean space E4. Minkowski space is a four-
dimensional pseudoueclidean space characterized by σ = 2 (or σ = −2). We
define the scalar product in Minkowski space as

a0b0 − a1b1 − a2b2 − a3b3 , (1.98)

and introduce a special designation M4, which will be used interchangeably
with R1,3. Pseudoueclidean spaces of the second type, R2,2, seem to be of little
importance in physics.

Problem 1.2.1. Prove that 0a = 0, and (−1)a = −a.

Proof
0a = (0 + 0)a = 0a + 0a =⇒ 0a = 0 , (1.99)

a + (−1)a = (1 − 1)a = 0a = 0 =⇒ (−1)a = −a . (1.100)

Problem 1.2.2. Prove that transformations (1.37) form a continuous group.

Hint Apart from e1, . . . , en and e′1, . . . , e
′
n, consider one more basis e′′1 , . . . , e

′′
n

such that e′′i = Kj
i e

′
j . By (1.37), e′′i = Kk

i L
j
k ej . We thus have a transfor-

mation from e1, . . . , en to e′′1 , . . . , e
′′
n with the transformation matrix Kk

i L
j
k

which is the product of matrices Kk
i and Lj

k. Taking e′′1 , . . . , e
′′
n to be identical

to e1, . . . , en, we findKk
i L

j
k = δj

i, which shows that there is a transformation
inverse of a given transformation Lj

i. Any n×n matrix L with detL > 0 can
be obtained from the n × n unit matrix by a continuous variation of matrix
elements.

Problem 1.2.3. Verify (1.53).

Problem 1.2.4. Let a and b be arbitrary vectors in an Euclidean space.
Prove the inequality

(a · b)2 ≤ a2 b2 , (1.101)

which is called the Cauchy–Schwarz–Bunyakowskǐı inequality. Show that
(1.101) becomes equality only if the vectors a and b are collinear.

Hint Consider f(t) = (a + tb)2 which, in view of axiom 15◦, is positive
definite.

Problem 1.2.5. Let f0, f1, f2, f3 be linearly independent vectors with finite
norms. Show that the orthonormalization procedure discussed in the text leads
to a basis which does not contain null vectors.
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1.3 Vectors, Tensors, and n-Forms

Vectors in Minkowski space are often called four-vectors. We denote the com-
ponents of four-vectors by Greek letters. For example, the four-dimensional
radius vector is denoted by xµ, where µ runs from 0 to 3. The value µ = 0 is
associated with time component of a four-vector, while 1, 2, 3 correspond to
space components. We will use boldface characters to designate space compo-
nents,

xµ = (x0, x1, x2, x3), or xµ = (x0,x) . (1.102)

We divide vectors of Minkowski space into three groups: a vector with
positive norm is timelike; a vector with zero norm is lightlike or null; a vector
with negative norm is spacelike. Lorentz transformations leave timelike vec-
tors timelike, null vectors null, and spacelike vectors spacelike. Null vectors
drawn from a fixed point O comprise a surface C, called the light cone, which
separates timelike vectors from spacelike vectors, as in Fig. 1.3. The light cone

�
���

							


�
�

��

timelike

spacelike

null

• O

C+

C−

Fig. 1.3. The light cone

involves two sheets: the forward sheet C+ and the backward sheet C− (other
names are the future light cone and the past light cone, respectively).

A timelike vector inside C+ cannot be transformed into a timelike vector
inside C− by a continuous Lorentz transformation connected with the identity.
Therefore, the distinction between timelike vectors pointing to the future and
timelike vectors pointing to the past is geometrically valid. The same is true
for null vectors.

Given a timelike vector kµ, it is possible to choose a Lorentz frame where
this vector is parallel to the time axis,
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kµ = (k0, 0, 0, 0) . (1.103)

If kµ points to the future, then k0 > 0. In general, a vector orthogonal to
a timelike vector kµ is a linear combination of three mutually orthogonal
spacelike vectors, which can be exemplified by eµ

1 = (0, 1, 0, 0), eµ
2 = (0, 0, 1, 0),

and eµ
3 = (0, 0, 0, 1). There is no timelike vector orthogonal to another timelike

vector.
For any spacelike vector kµ, one can find a Lorentz frame where

kµ = (0,k) . (1.104)

It is seen from (1.103) and (1.104) that, for an arbitrary timelike or space-
like vector kµ, there are three mutually orthogonal vectors eµ

1 , eµ
2 , and eµ

3 ,
which are also orthogonal to kµ. Taken together these four vectors form an
orthonormal basis obeying the completeness condition

ηµν =
kµkν

k2
+

3∑
i=1

eµ
i e

ν
i

e2i
, (1.105)

where

ηµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (1.106)

is the Minkowski metric. This means that any vector Xµ can be expressed in
terms of these basis vectors:

Xµ =
(X · k)
k2

kµ +
3∑

i=1

(X · ei)
e2i

eµ
i . (1.107)

A set of vectors of this kind is known as a vierbein, or tetrad.
One may apply the operator

ηµν − kµkν

k2
=

3∑
i=1

eµ
i e

ν
i

e2i
(1.108)

to a vector Xµ to map this vector on

3∑
i=1

(X · ei)
e2i

eµ
i . (1.109)

We see that the operator (1.108) projects Xµ onto a three-dimensional sub-
space spanned by eµ

1 , eµ
2 , eµ

3 . This clarifies the reason for constructing the

operator
k

⊥ in the form (1.79).
Consider a null vector kµ. There is a Lorentz frame in which



24 1 Geometry of Minkowski Space

kµ = ω (1, 1, 0, 0) . (1.110)

If kµ points to the future, then ω > 0.
It is clear from (1.110) that any vector qµ orthogonal to a null vector kµ is

a linear combination of two mutually orthogonal spacelike vectors eµ
1 and eµ

2 ,
which are exemplified by eµ

1 = (0, 0, 1, 0) and eµ
2 = (0, 0, 0, 1), and the vector

kµ itself,
qµ = αkµ + βeµ

1 + γeµ
2 . (1.111)

There is no timelike vector orthogonal to a null vector. If qµ is orthogonal to
a null vector kµ, then qµ is either spacelike or null (parallel to kµ). We thus
see that a basis may include a null vector, but this basis is not orthogonal.

A simple generalization of vectors and covectors are tensors. Algebraically,
a tensor T of rank (m,n) is a multilinear mapping

T : V ′ × . . .× V ′︸ ︷︷ ︸
m times

×V × . . .× V︸ ︷︷ ︸
n times

→ R . (1.112)

We have already encountered examples of tensors in the previous section: a
scalar is a rank (0, 0) tensor, a vector is a rank (1, 0) tensor, a covector is
a rank (0, 1) tensor, the metric gij is a rank (0, 2), while gij is a rank (2, 0)
tensor, and the Kronecker delta δi

j is a rank (1, 1) tensor.
Just as four-vectors can be regarded as objects which transform according

to the law
a′

µ = Λµ
ν a

ν , (1.113)

where Λµ
ν is the Lorentz transformation matrix relating the two frames of

reference, so tensors of rank (m,n) can be described in terms of Lorentz group
representations by the requirement that their transformation law be

T ′µ1···µm

ν1···νn
= Λµ1

α1
. . . Λµm

αm
Λβ1

ν1
. . . Λβn

νn
Tα1···αm

β1···βn
. (1.114)

We assign to a particular Lorentz frame a collection of numbers

T (εα1 , . . . , εαm ; eβ1 , . . . , eβn
) = Tα1···αm

β1···βn
, (1.115)

where εα is the αth basis covector, and eβ the βth basis vector. The
Tα1···αm

β1···βn
are called the components of T in that frame. The components

T ′µ1···µm

ν1···νn
in another frame are obtained from Tα1···αm

β1···βn
through the

use of the transformation law (1.114).
The set of all linear combinations of tensors of a given rank is a vec-

tor space. If A is a tensor of rank (p, q) and B is a tensor of rank (k, l),
then the tensor product T = A ⊗ B is defined as a tensor with components
T

α1···αpµ1···µk

β1···βqν1···νl
= A

α1···αp

β1···βq
Bµ1···µk

ν1···νl . It follows from (1.115)
and (1.114) that the tensor product T transforms like a tensor of rank
(p + k, q + l). To illustrate, we refer to the metric ηµν which can be writ-
ten as the sum of tensor products of basis vectors, given by (1.105),



1.3 Vectors, Tensors, and n-Forms 25

η =
k ⊗ k

k2
+

3∑
i=1

ei ⊗ ei

e2i
. (1.116)

On the other hand, one can form lower rank tensors from higher rank
tensors by the so-called contraction of indices. For example, if A is a tensor
of rank (1, 2), then the contraction of one upper index with one lower index
according to the equation Bβ = Aα

αβ defines a quantity B which transforms
like a tensor of rank (0, 1).

There are two important tensors that are invariant under Lorentz trans-
formations. One of them is the Minkowski metric ηµν . It was argued in the
previous section that the Euclidean metric gij takes a diagonal form in any
orthonormalized basis. Likewise, the Minkowski metric ηµν has the same com-
ponents in every Lorentz frame. The contravariant metric tensor ηµν (defined
by ηλµηµν = δλ

ν) can be represented by a matrix, shown in (1.106), whose
components are identical to those of ηµν .

The other invariant tensor is the completely antisymmetric rank (4, 0)
tensor

εκλµν =

{ 1 if κλµν is an even permutation of 0123,
−1 if κλµν is an odd permutation of 0123,

0 otherwise,
(1.117)

which is called the Levi-Civita tensor. The complete antisymmetry of a ten-
sor Aκλµν means that Aκλµν is antisymmetric under interchange of any two
indices. A completely antisymmetric tensor Aκλµν , whose rank is equal to the
dimension of spacetime, is reduced essentially to a single component A0123. For
coinciding indices, say, α = δ, we have Aαβγα = −Aαβγα, hence Aαβγα = 0.
Every component Aαβγδ with different α, β, γ, δ is equal to ±A0123 due to the
complete antisymmetry of Aκλµν . Putting A0123 = 1 in a particular Lorentz
frame, we obtain A′0123 = 1 in another Lorentz frame. Indeed, the Levi-Civita
tensor εαβγδ appears in the definition of the determinant of a matrix

detM = M0
κM

1
λM

2
µM

3
ν ε

κλµν . (1.118)

We will see in Sect. 1.5 that the determinant of a Lorentz transformation
matrix Λµ

α is 1, provided that Λµ
α does not include a spatial reflection. Thus,

the components of the Levi-Civita tensor are unchanged under such Lorentz
transformations,

ε′
0123 = Λ0

κΛ
1
λΛ

2
µΛ

3
ν ε

κλµν = detΛ = 1 . (1.119)

In fact, the Levi-Civita tensor is not a genuine tensor, but rather a ten-
sor density whose transformation law is determined (Problem 1.3.4) by the
equation

ε′αβγδ = (detΛ)−1
Λα

κΛ
β
λΛ

γ
µΛ

δ
ν ε

κλµν . (1.120)

In Minkowski space, vectors and covectors are related by
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kµ = ηµνkν , kµ = ηµνk
ν . (1.121)

The contravariant and covariant metric tensors ηµν and ηµν are used to raise
and lower indices on any tensor. For example, the covariant Levi-Civita tensor
εκλµν is a completely antisymmetric tensor of rank (0, 4), which is obtained
from the contravariant Levi-Civita tensor εκλµν by

εκλµν = ηκαηλβηµγηνδε
αβγδ , (1.122)

which implies
ε0123 = −ε0123 . (1.123)

A special class of tensors, called n-forms, contains all completely antisym-
metric (0, n) tensors. In a four-dimensional space, there exist only five species
of these objects: 0-forms, 1-forms, 2-forms, 3-forms, and 4-forms. As to n-
forms with n > 4, their components are automatically zero by antisymmetry.
One can readily recognize a 0-form as a scalar, and a 1-form as a covector.
Every 4-form is proportional to the Levi-Civita tensor, and 3-forms are asso-
ciated with vectors by the equation ωλµν = εκλµν k

κ. A simple example of a
2-form ω, which can be constructed from two 1-forms k and q, is given by

ω =
1
2

(k ⊗ q − q ⊗ k) = k ∧ q . (1.124)

This formula defines the exterior product of two 1-forms. One may also con-
sider the exterior product of two vectors,

Fµν =
1
2

(aµbν − aνbµ) , (1.125)

which is usually called a bivector. In general, given a m-form α and a n-form
β, we define their exterior product α ∧ β as a (m+ n)-form with components

(α ∧ β)µ1···µm+n
=

(m+ n)!
m!n!

α[µ1···µm
βµm+1···µm+n] . (1.126)

Here, the square bracket denote antisymmetrization. To antisymmetrize a ten-
sor T of rank (0, p), one takes the alternating sum of all permutations of p
indices and divides by the number of terms:

T[µ1···µp] =
1
p!

∑
σ∈Sp

sgn (σ)Tµσ(1)···µσ(p) , (1.127)

where Sp is the set of all permutations σ of 0, 1, . . . , p− 1, and sgn (σ) is 1 if
the permutation σ is even, and −1 if the permutation σ is odd. For example,

T[λµν] =
1
6

(Tλµν + Tνλµ + Tµνλ − Tµλν − Tνµλ − Tλνµ) . (1.128)

The exterior product is bilinear, and associative,
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α ∧ (β ∧ γ) = (α ∧ β) ∧ γ , (1.129)

but not commutative. Given a p-form α and a q-form β, we have

α ∧ β = (−1)pqβ ∧ α . (1.130)

Hence odd forms anticommute, and the exterior product of identical 1-forms
vanishes.

We will need also the so-called Hodge duality operation. Let Φα1···αk
be a

k-form in some d-dimensional vector space. Then the (d− k)-form

∗Φµ1···µd−k
=

1
k!
εµ1···µd−kα1···αk

Φα1···αk (1.131)

is dual of Φα1···αk
. For example, a 2-form Φαβ in a four-dimensional space is

mapped by the Hodge star to its dual ∗Φµν = 1
2 εµναβ Φ

αβ , which is again a
2-form. In Minkowski space, the recurring Hodge mapping gives ∗∗Φ = −Φ.

Consider an arbitrary 2-form ω in a d-dimensional vector space:

ω =
1
2

d∑
i,j=1

ωij f
i ∧ f j . (1.132)

What should be the set of 1-forms f i (the index i labels the collection of basis
1-forms, not components of a single vector) to make the form of ω simplest?
Suppose that d is even, d = 2n, and the rank of the matrix ωij is equal to 2n.
Then there exists a basis of 1-forms e1, e2, . . . , e2n such that

ω = e1 ∧ e2 + e3 ∧ e4 + · · · + e2n−1 ∧ e2n . (1.133)

This writing of ω is called canonical. We now sketch the procedure for trans-
forming the initial basis f1, f2, . . . , f2n to the desired basis e1, e2, . . . , e2n tak-
ing advantage of the multiplication rules f i ∧ f j = −f j ∧ f i, and f i ∧ f i = 0.
Among the various terms of (1.132), we segregate all terms involving f1 and
f2. Simple algebra gives the following expression for ω:

(
ω12f

1 − ω23f
3 − ω24f

4 − . . .− ω2df
d
)
∧
(
f2 +

ω13

ω12
f3 + · · · + ω1d

ω12
fd

)
+ω′ ,

(1.134)
where ω′ is a 2-form which involves all terms containing neither f1 nor f2.
Let us define

e1 = ω12f
1 − ω23f

3 − ω24f
4 − . . .− ω2df

d ,

e2 = f2 +
ω13

ω12
f3 + · · · + ω1d

ω12
fd . (1.135)

These expressions give just the first pair of 1-forms, e1 and e2, appearing in
(1.133). We apply a similar trick to ω′ to segregate all terms involving f3 and
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f4, which yields the next desired pair e3 and e4. And so on, until the initial
set f1, f2, . . . , f2n is exhausted.

For d = 4, the canonical decomposition becomes

ω = e1 ∧ e2 + e3 ∧ e4 . (1.136)

If the matrix ωij has a non-maximal rank 2s, that is, s < n, then the
canonical decomposition (1.133) terminates at e2s−1 ∧ e2s. Specifically, for
s = 1,

ω = e1 ∧ e2 . (1.137)

A 2-form which can be transformed to a single term, the exterior product of
two 1-forms is called decomposable.

If the dimension is odd, d = 2n + 1, then the same canonical decompo-
sition (1.133) as for d = 2n will arise. In particular, any 2-form ω in three-
dimensional space can be brought into the form (1.137).

We now turn to fields. For simplicity, we consider here only real-valued
fields. In the following we will deal also with complex-valued fields, but this
generalization is superfluous for the present discussion.

A scalar field φ is a mapping M4 → R. A scalar field φ takes a definite
numerical value at each point of Minkowski space, no matter what coordinates
are assigned to this point by different observers. Suppose that an observer O
assigns coordinates x to some point, and that a scalar field measured by O
at this point is φ(x). Another observer O′ will relate the same value of φ to
coordinates x′ of this point, giving φ′(x′). Therefore,

φ′(x′) = φ(x) . (1.138)

A scalar field φ is said to be Lorentz invariant if the functional form of φ is
invariant under Lorentz transformations. Any function of an invariant argu-
ment, φ(x2), provides an example. We will see in Sect. 10.5 that an important
class of invariant functions can be constructed from the four-dimensional Dirac
delta-function δ4(x).

A vector field φµ is a mapping M4 → M4. If two observers O and O′ assign
coordinates x and x′ of the same point to components of a vector field φµ and
φ′µ, respectively, then

φ′
µ(x′) = Λµ

νφ
ν(x) . (1.139)

The simplest example of vector fields is the four-dimensional gradient of a
scalar field ∂φ/∂xµ. The differential operator

∂µ =
∂

∂xµ
(1.140)

transforms like a covariant vector. To see this, we use the chain rule for dif-
ferentiation:

∂

∂xµ
=
∂x′ν

∂xµ

∂

∂x′ν
, (1.141)
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and note that, for linear coordinate transformations x′µ = Λµ
ν x

ν + aν ,

∂x′µ

∂xν
= Λµ

ν . (1.142)

We will always use the shorthand notation ∂µ, and treat this differential
operator as an ordinary vector. For example, from ∂µ we obtain a second-order
differential operator

� = ∂µ∂
µ , (1.143)

which is a Lorentz scalar (Problem 1.3.8). In a particular Lorentz frame,

∂µ =
(
∂

∂t
,∇
)
, ∂µ =

(
∂

∂t
,−∇

)
, � =

∂2

∂t2
−∇2 , (1.144)

where ∇ is the well-known operator ‘nabla’ whose Cartesian coordinates are
∇i = ∂/∂xi.

A tensor-valued function on spacetime is called a tensor field. The trans-
formation law for tensor fields is a generalization of (1.139). For example, a
second rank tensor transforms according to

φ′
λµ(x′) = Λλ

αΛ
µ
βφ

αβ(x) . (1.145)

The action of ∂µ on a rank (m,n) tensor field gives a rank (m,n+1) tensor
field.

Problem 1.3.1. Let cµ be the sum of two vectors, cµ = aµ + bµ. Show that
cµ can have any norm: c2 > 0, c2 < 0, and c2 = 0, irrespective of whether
(a) both aµ and bµ are timelike, or (b) both aµ and bµ are spacelike, or (c)
both aµ and bµ are null, or (d) aµ is timelike, and bµ is spacelike, or (e) aµ is
timelike, and bµ is null, or (f) aµ is spacelike, and bµ is null. Give examples of
aµ and bµ for all eighteen cases.

Problem 1.3.2. Let kµ be an arbitrary (timelike, spacelike, or lightlike) vec-
tor, and eµ

1 and eµ
2 are imaginary-unit vectors which are orthogonal to each

other and to kµ: e21 = e22 = −1, e1 · e2 = e1 · k = e2 · k = 0. Let nµ be a
timelike unit vector, n2 = 1, which is orthogonal to eµ

1 and eµ
2 . Construct an

orthonormalized vierbein from these vectors, and show that the completeness
condition for this vierbein reads

ηµν =
kµkν

k2
−

2∑
i=1

eµ
i e

ν
i +

[kµ − (k · n)nµ] [kν − (k · n)nν ]
k2 − (k · n)2

. (1.146)

Problem 1.3.3. Let kµ and qµ be two null vectors in M4. Show that (i)
(k+ q) · (k− q) = 0, and (k+ q)2 = −(k− q)2, (ii) if k · q = 0, then kµ = Cqµ,
where C is a constant. Let kµ and qµ be two arbitrary vectors such that
k2 = q2. Show that (k + q) · (k − q) = 0.
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Problem 1.3.4. Show that (1.118) implies

εαβγδ = (detΛ)−1
Λκ

αΛ
λ
βΛ

µ
γΛ

ν
δ εκλµν . (1.147)

Problem 1.3.5. Let εκλµν be the Levi-Civita tensor in Minkowski space.
Show that the rank (3, 3) tensor εκλµνεκγβα can be written as

−
(
δλ

γδ
µ
βδ

ν
α + δλ

αδ
µ
γδ

ν
β + δλ

βδ
µ
αδ

ν
γ − δλ

γδ
µ
αδ

ν
β − δλ

βδ
µ
γδ

ν
α − δλ

αδ
µ
βδ

ν
γ

)
.

(1.148)
(The first term in the parenthesis imitates the index order of εκλµνεκγβα, the
second and third terms are produced from it by cyclic permutations of indices
while the three remaining are produced from it by interchanging and cyclic
permutations of indices.)

Hint Contraction of the remaining indices gives

εκλµνεκλβα = −2
(
δµ

βδ
ν
α − δµ

αδ
ν
β

)
, (1.149)

εκλµνεκλµα = −3! δν
α , (1.150)

εκλµνεκλµν = −4! (1.151)

The last is the anticipated result, which proves the statement.
The three-dimensional Levi-Civita symbol εijk is a completely antisym-

metric object, which, in a three-dimensional space, is specified by ε123 = 1.
The use of εijk enables one to define the cross product of two vectors a and
b by the formula (a × b)i = εijk ajbk, where the summation over repeated
(lower) indices is understood.

Prove the relations

εklmεkij = (δliδmj − δljδmi) , (1.152)
εklmεkli = 2δmi , (1.153)
εklmεklm = 3! (1.154)

Since the metric of a Euclidean space in Cartesian coordinates is given by
the Kronecker delta δij , equations (1.152)–(1.154) form the basis for a useful
technique for ordinary three-dimensional vector algebra and vector analysis.

Problem 1.3.6. Let Sµν and Aµν be arbitrary symmetric and antisymmetric
tensors, respectively. Prove that SµνA

µν = 0. Let Sµν be some rank 2 sym-
metric tensor. Prove that the general solution to the equation SµνX

µν = 0 is
Xµν = Aµν where Aµν is an arbitrary antisymmetric tensor. Let Tµν be an ar-
bitrary tensor. Prove that Tµν can be uniquely represented as Tµν = Sµν +Aµν

where Sµν is a symmetric tensor, and Aµν is an antisymmetric tensor.

Problem 1.3.7. Let G = 1
2 Gij e

i ∧ ej be an arbitrary 2-form in a 2n-
dimensional vector space. Define
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Pf(G) = εi1···i2n Gi1i2 Gi3i4 . . . Gi2n−1 i2n
. (1.155)

This scalar is called the Pfaffian. Prove the relation

[Pf(G)]2 = 22n(n!)2 detG . (1.156)

Proof Let Ai
j be the matrix which brings G to the canonical form

Gij = Ak
iA

l
j Ekl , (1.157)

where

Eij =




0 1
−1 0

. . .


 (1.158)

In view of (1.155),

Pf(G) = εi1···i2n Ak1
i1
Ak2

i2
. . . A

k2n−1
i2n−1

Ak2n
i2n

Ek1k2 . . . Ek2n−1k2n
. (1.159)

The relation
εi1···i2n Ak1

i1
. . . Ak2n

i2n
= εk1···k2n detA , (1.160)

shows then that
Pf(G) = Pf(E) detA . (1.161)

Combined with
detG = (detA)2 detE (1.162)

equation (1.161) gives

detG =
[
Pf(G)
Pf(E)

]2

detE . (1.163)

It is clear from (1.158) that detE = 1. Pf(E) contains n! terms arising
from ε1···2nE12 . . . E2n−1 2n through permutations of factors E, changing the
overall sign, which must be attended with 2n interchanges of indices in each
E, reversing the signs of E and ε simultaneously but leaving the overall sign
unaltered. Therefore,

Pf(E) = 2n n! (−1)n , (1.164)

which, together with (1.163), proves the statement.

Problem 1.3.8. Show that the differential operator � defined in (1.143)
transforms as a Lorentz scalar.

Hint
ηνρ η

λµ ∂xν

∂x′µ
∂xρ

∂x′λ
= ηνρ η

λµ Λν
µΛ

ρ
λ . (1.165)



32 1 Geometry of Minkowski Space

1.4 Lines and Surfaces

In this section we discuss some basic geometric objects in Minkowski space.
We begin with affine manifolds, that is, m-dimensional subspaces of a n-

dimensional affine space. Consider the equation

φ(x) = C , (1.166)

where φ is a linear functional, and C a constant. The argument of φ is regarded
as radius vector xi drawn from the origin. Equation (1.166) can be written in
coordinate form:

φi x
i = C . (1.167)

This equation defines a (n− 1)-dimensional affine manifold Σ called a hyper-
plane.

One may then equip the affine space with a Euclidean metric by defining
the scalar product. When introducing a unit covector ni parallel to φi,

φi = k ni, n2 = 1 , (1.168)

(1.167) becomes
n · x = D . (1.169)

The vector ni is said to be normal to the hyperplane Σ. Equation (1.169)
has a clear geometric interpretation. If D = 0, then Σ consists of vectors xi

perpendicular to ni. Let D �= 0. Then D measures the distance between Σ
and the origin along an axis parallel to ni. Indeed, n · x is the projection of
the radius vectors xi (drawn from the origin to Σ) on this axis. By (1.169),
this projection takes a constant value, D, for every xi.

We are thus led to an alternative definition of hyperplanes. A hyperplane
with normal ni is a locus of points xi obeying the equation

xi = Dni + (
n

⊥x)i , (1.170)

where
n

⊥ is the projection operator defined in (1.79).
Let φ1

i , . . . , φ
m
i be m linearly independent covectors. We define a (n−m)-

dimensional affine manifold An−m by the set of m linear equations

φs
j x

j = Cs, s = 1, . . . ,m . (1.171)

In particular, a one-dimensional affine manifold A1, which is actually a
straight line, is defined by a set of n− 1 equations of the type (1.171).

On the other hand, a straight line may be thought of as a linear mapping
zi : R → An, or, in coordinate notation,

zi(τ) = zi
0 + V iτ , (1.172)

where zi
0 and V i are some constant vectors. This straight line runs through

the point zi
0 in the direction of the vector V i.
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Let V i
1 , . . . , V

i
m be m linearly independent vectors which span a m-

parameter affine manifold Am passing through a point zi
0. This manifold is

described by a linear mapping zi : Rm → An, such that

zi(τ1, . . . , τm) = zi
0 + V i

1 τ1 + · · · + V i
mτm . (1.173)

We now turn to Minkowski space M4. We will distinguish between space-
like, timelike, and null hyperplanes Σ. If nµ is timelike, then Σ is spacelike.
It is clear from (1.170) that a spacelike hyperplane Σ is characterized by the
fact that any two points on it, x, y ∈ Σ, are separated by a spacelike interval,
(x − y)2 < 0. Therefore, any spacelike hyperplane may be regarded as ‘all of
space at a given time’ in some Lorentz frame. If n2 < 0, then Σ is timelike.
One may visualize a timelike hyperplane as a world volume of a uniformly
moving membrane. If n2 = 0, then Σ is a null hyperplane.

To extend these definitions to curved manifolds, we note that a smooth
curved manifold Mm can be approximated by an affine manifold Am in the
vicinity of each point x ∈ Mm.

A curve is a smooth mapping zµ : R → M4. If we write τ = τ0 + σ, and
consider zµ(τ) for a small interval σ, then this curve is approximated by a
straight line

zµ
0 + V µσ , (1.174)

where the point zµ
0 refers to the instant τ0. The direction of this straight line

is determined by the vector

V µ =
dzµ

dτ
= żµ . (1.175)

The vector żµ given by (1.175) is said to be tangent to the curve zµ(τ) at
τ = τ0.

We define a hypersurface Mn−1 by

F (x) = C , (1.176)

where F is an arbitrary smooth function M4 → R. Differentiating (1.176)
gives

(∂µF ) dxµ = 0 . (1.177)

One may view dxµ as a covector, and ∂µF as a vector. Indeed, dxµ transforms
like a covector under linear coordinate transformations x′µ = Λµ

ν x
ν + aν ,

dx′
µ =

∂x′µ

∂xν
dxν = Λµ

ν dx
ν , (1.178)

and ∂µF transforms like a vector:

∂F

∂x′µ
=

∂xν

∂x′µ
∂F

∂xν
= Λν

µ

∂F

∂xν
. (1.179)
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In Minkowski space, vectors and covectors can be converted to each other
according to (1.121). For this reason, we will often regard dxµ as vectors.

We see that (1.177) describes a hyperplane Σ with normal ∂µF . Since the
hyperplane Σ is spanned by the vectors dxµ, it would be natural to call them
tangent vectors, and Σ the hyperplane tangent to the hypersurface Mn−1 at
the point x. A hypersurface is said to be locally spacelike, timelike, or null,
according to which case (∂µF )2 > 0, (∂µF )2 < 0, or (∂µF )2 = 0 occurs at
this point.

Am-parameter manifold Mm generalizes the idea of a parametrized curve.
It can be defined as a smooth mapping Rm → M4. A manifold Mm looks like
a m-dimensional affine space in the vicinity of each point. A general manifold
Mm is topologically nontrivial, and its complete description requires a set of
overlapping coordinate patches covering Mm.

Although we will ordinarily refer to Cartesian coordinates, curvilinear co-
ordinates occasionally prove useful. To specify the axes of a curvilinear system,
it is often convenient to introduce the so-called ‘level surfaces’, following the
pattern seen in (1.176). Let Fα be a smooth function of spacetime. Then
Fα(x) = C fixes a hypersurface on which a curvilinear coordinate ξα is con-
stant, ξα = C, and ∂µF

α is directed towards the increase of the αth coordinate
line. This construction will find use in Sect. 4.5.

We now want to define the surface elemen ton a manifold Mm. Let us first
consider a two-dimensional spacelike surface M2. We draw an infinitesimal
parallelogram spanned by spacelike tangent vectors aµ and bµ at some point
on this surface. It is well known that the area of a parallelogram is the product
of lengths of its sides times the sine of the angle between them:

A =
√
a2 b2 sin θ . (1.180)

Taking into account that
√
−b2 sin θ is the projection of the vector bµ on a

direction perpendicular to the vector aµ, we write (1.180) in an invariant form:

A =
√
a2 (

a

⊥b)2 . (1.181)

Let M2 be a timelike surface. This means that aµ is timelike, and bµ

spacelike, or the other way around. Then (1.181) is modified:

A =
√

−a2 (
a

⊥b)2 . (1.182)

Examples will occur in Sects. 4.6, 4.8, and 5.6.
Combining (1.181) and (1.182), gives

A =
√

|a2 (
a

⊥b)2| , (1.183)

which is universally applicable to spacelike and timelike parallelograms, and
even to the case that either of these vectors, aµ and bµ, is null. However, if aµ

and bµ are both null vectors, then (1.183) is no longer valid.
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An alternative method of defining the area is as follows. Consider

Ω = εµνa
µbν , (1.184)

where εµν is the two-dimensional Levi-Civita tensor whose components can
be determined from a single one ε12 = 1. Substitute the identity

bµ =
b · a
a2

aµ + (
a

⊥b)µ (1.185)

to (1.184), and take into account that εµνa
µaν = 0. The result is

Ω = εµνa
µ(

a

⊥b)ν (1.186)

which is identical to A up to overall sign (Problem 1.4.1).
Note that Ω is a more general geometric characteristic than A. Indeed,

the definition (1.184) remains valid even in the case that aµ and bµ are both
null vectors. Furthermore, Ω not only measures the area of a parallelogram,
but also indicates its orientation. We may take the convention that the pair
of spacelike vectors aµ and bµ is positively oriented if the shortest transition
from aµ to bµ is given by a counterclockwise rotation, and negatively oriented
otherwise. It is clear that Ω > 0 in the former case, and Ω < 0 in the latter
case. Any continuous deformation of the parallelogram leaves the sign of Ω
unchanged. We define the orientation to be the sign of Ω for general vectors
aµ and bµ.

These definitions extend immediately to higher dimensions. For example,
the volume of a three-dimensional parallelepiped spanned by three vectors aµ,
bµ, cµ can be defined as

A3 =
∣∣∣∣ a2 (

a

⊥b)2 (
a

⊥
b

⊥c)2
∣∣∣∣
1
2

, (1.187)

or, alternatively, as
Ω3 = ελµν a

λbµcν . (1.188)

We see that Ω3 is the determinant of the components of the three vectors aµ,
bµ, cµ. A family of three vectors eµ

1 , e
µ
2 , e

µ
3 is said to be positively or negatively

oriented according to which possibility, Ω3 > 0 or Ω3 < 0, pertains.
The oriented area of a parallelogram spanned by two vectors aµ and bµ

may be thought of as a 2-form Ω. Its value is given by the determinant of
the components of the vectors aµ and bµ. More generally, one may identify
the oriented volume of a p-dimensional parallelepiped spanned by vectors
eµ
1 , . . . , e

µ
p with a p-form Ωp given by the determinant of the components of

the vectors eµ
1 , . . . , e

µ
p .

There are three types of integrals in three-dimensional Euclidean space
which can be taken over: (1) a space region, (2) a surface, and (3) a curve.
The volume element is a 3-form

df ijk = dxi ∧ dxj ∧ dxk , (1.189)
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which can be exchanged for its dual 0-form, defined as

d3x =
1
3!
εijk df

ijk = dx1dx2dx3 . (1.190)

The surface element is a 2-form

df ij = dxi ∧ dxj , (1.191)

or, alternatively, its dual 1-form

dSk =
1
2!
εijk df

ij . (1.192)

(Because the cross product of two vectors is unchanged under space reflections
x → −x, the surface element dS = du × dv is in fact an axial vector.) The
line element is a 1-form

dxi , (1.193)

which can be exchanged for its dual 2-form

dSij = εijk dx
k . (1.194)

In numerous physical situations we are called on to evaluate volume, sur-
face, and line integrals. There are remarkable divergence and curl theorems
known, respectively, as the Gauss–Ostrogradskǐı theorem, and the Stokes the-
orem, which enable one to evaluate the net outflow from any region of space,
and the net circulation around any path.

Let J be a vector field smoothly varying in a compact region V which
is enclosed by a smooth surface ∂V . Then the Gauss–Ostrogradskǐı theorem
reads ∮

∂V

dS · J =
∫

V

d3x ∇ · J . (1.195)

Here, the vector dS is chosen to point out of V . ∇·J stands for the divergence
of the vector J, that is, the rate of increase of ‘lines of flow’ per volume.

Let J be a vector field on a compact surface S which is bounded by a
smooth closed curve C. Then the Stokes theorem reads∮

C
dx · J =

∫
S
dS · (∇× J) . (1.196)

Here, the circulation integral is along C in a clockwise direction when looking
in the direction of dS. ∇× J denotes the curl of J, a measure of the vorticity
of the field J.

In Minkowski space, we encounter four types of integrals. The volume
element is either a 4-form or its dual 0-form:

dfκλµν = dxκ ∧ dxλ ∧ dxµ ∧ dxν , d4x =
1
4!
εκλµν df

κλµν = dx0dx1dx2dx3 .

(1.197)
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The differential element for hypersurfaces is either a 3-form or its dual 1-form:

dfλµν = dxλ ∧ dxµ ∧ dxν , dσκ =
1
3!
εκλµν df

λµν . (1.198)

The differential element for two-dimensional surfaces is a 2-form

dfµν = dxµ ∧ dxν . (1.199)

It would serve no purpose to consider the dual of dfµν which is also a 2-form.
The line element is a 1-form dxν , or, alternatively, its dual 3-form:

dSκλµ = εκλµν dx
ν . (1.200)

Let Jµ be a smooth vector field in M4. A four-dimensional generalization
of the Gauss–Ostrogradskǐı theorem reads:

∫
∂U
dσµJ

µ =
∫
U
d4x ∂µJ

µ , (1.201)

where U is a spacetime volume bounded by a smooth three-dimensional surface
∂U with the surface element dσµ pointing out of U . A four-dimensional version
of the Stokes theorem reads:∫

∂S
dxµJµ =

∫
S
dfµν (∂µJν − ∂νJµ) . (1.202)

Problem 1.4.1. Show that the magnitude of Ω as given by (1.186) is identical
to the magnitude of A defined in (1.183).

Problem 1.4.2. Let x′µ = fµ(x) be a smooth, one-to-one mapping of
Minkowski space to itself, M4 → M4, and J the Jacobian of this transfor-
mation,

J = det
(
∂x′µ

∂xν

)
. (1.203)

The metric transforms according to the law

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ . (1.204)

Show that
g = det (gµν) (1.205)

transforms as
g′ = J−2g (1.206)



38 1 Geometry of Minkowski Space

1.5 Poincaré Invariance

Linear transformations of Minkowski space

x′
µ = Λµ

ν x
ν + aµ , (1.207)

which preserve the line element

dx2 = ηµν dx
µdxν , (1.208)

are called Poincaré transformations. The set of transformations (1.207) form
a group, the Poincaré group, which is the automorphism group of Minkowski
space. Elements of this ten-parameter Lie group are labelled with a matrix
Λµ

ν and a vector aµ.
The homogeneous part of the Poincaré group consists of Lorentz transfor-

mations
x′

µ = Λµ
ν x

ν . (1.209)

The scalar product of two vectors

x · y = ηµν x
µyν = x0y0 − x1y1 − x2y2 − x3y3 (1.210)

is invariant under these transformations. The set of all Lorentz transforma-
tions (1.209) form a group which is called the Lorentz group, or pseudoorthog-
onal group O(1, 3).

Another subgroup of the Poincaré group involves translations

x′
µ = xµ + aµ . (1.211)

The difference between two vectors xµ − yµ is invariant under translations.
Therefore, the full Poincaré group leaves invariant the relative norm (x− y)2,
and line element dx2.

If two points xµ and yµ are separated by a spacelike interval, (x−y)2 < 0,
then no signal moving at or below the speed of light can travel between the two
points. This is a manifestation of the causality principle which forbids cause-
effect relations between points separated by spacelike intervals. An event at
a point with coordinates xµ could play a role in what happens at a point yµ

only if (y − x)2 ≥ 0, and y0 > x0.
The invariance of the scalar product under Lorentz transformations

ηµν x
′µy′

ν = ηµν x
µyν , (1.212)

implies that
Λλ

µ ηλν Λ
ν
ρ = ηµρ . (1.213)

In matrix notation this relation reads

ΛT η Λ = η , (1.214)
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where

η =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , (1.215)

and ΛT is the transpose of Λ. Observing that the inverse of η is again η, we
write (1.214) in the form

Λ−1 = η ΛT η . (1.216)

Any real symmetric 4 × 4 matrix has 10 independent entries. Therefore,
(1.213) gives 10 constraints on the 16 elements of the matrix Λ. We see that
Λµ

ν depends on 6 free parameters, of which 3 describe spatial rotations Λi
j ,

and the remaining 3 characterize Lorentz boosts Λ0
j . For example, a rotation

in the (x1, x2)-plane around the x3-axis can be expressed in the form

Λ1
2 =




1 0 0 0
0 cosϑ sinϑ 0
0 − sinϑ cosϑ 0
0 0 0 1


 , (1.217)

and a boost along the x1-axis is given by

Λ0
1 =




cosh θ − sinh θ 0 0
− sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1


 . (1.218)

Together with 4 spacetime translations aµ, these 6 parameters form a set of
10 parameters of the Poincaré group.

By (1.214),
(detΛ)2 = 1 , (1.219)

and so
detΛ = ±1 . (1.220)

Letting µ = 0, and ρ = 0 in (1.213), we have

(Λ0
0)

2 −
3∑

i=1

(Λi
0)

2 = 1 , (1.221)

which shows that
Λ0

0 ≥ 1 , (1.222)

or
Λ0

0 ≤ −1 . (1.223)

The most important subgroup of the Lorentz group L↑
+ is specified by

two conditions: detΛ = 1 and Λ0
0 ≥ 1. All transformations of this subgroup
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are continuously connected to the identity. This subgroup consists of proper
orthochronous Lorentz transformations. The term ‘proper’ means detΛ = 1,
whereas ‘orthochronous’ means Λ0

0 ≥ 1.
An arbitrary transformation of the Lorentz group is a composition of a

proper Lorentz transformation and either space reflection P ,

Px0 = x0, Px = −x , (1.224)

or time reversal T ,
Tx0 = −x0, Tx = x , (1.225)

or spacetime reflection PT ,

PTx0 = −x0, PTx = −x . (1.226)

These discrete operations can be represented as matrices. Space reflection
takes the form

P =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (1.227)

The time reversal matrix T equals −P , and the spacetime reflection matrix
PT is −1, where 1 is the 4×4 unit matrix. The subgroup of the Lorentz group
with detΛ = 1, or proper Lorentz transformations, is denoted by SO(1, 3).

Elements of the Lorentz group in a neighborhood of unity can be written
as

Λ = exp
(
i

2
Mµν ωµν

)
= 1 +

i

2
Mµν ωµν , (1.228)

where Mµν is a 4 × 4 matrix defined by

(Mµν)α
β = i

(
ηµα δν

β − ηνα δµ
β

)
. (1.229)

These matrices obey the following commutation relations (Problem 1.5.1)

[Mκλ,Mµν ] = −i
(
ηκµMλν + ηνκMµλ + ηλνMκµ + ηµλMνκ

)
. (1.230)

The vector space spanned by linear combinations of the six generators
Mµν with real coefficients is the Lie algebra of the Lorentz group, so(1, 3).
Elements of so(1, 3) can be realized as differential operators. To see this, we
introduce four differential operators

Pµ = −i ∂

∂xµ
, (1.231)

which are commuting,
[Pµ, Pν ] = 0 , (1.232)

and act on coordinates as
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Pµ x
ν = −i δµ

ν . (1.233)

Using (1.232) and (1.233), one can show (Problem 1.5.2) that the six operators

Mµν = xµPν − xνPµ (1.234)

obey commutation relations (1.230).
The differential operators Pµ defined in (1.231) are generators of transla-

tions. Indeed, for an arbitrary smooth function Φ, we have

exp (i Pν a
ν)Φ(x) = Φ(x+ a) . (1.235)

This is readily seen from the Taylor series:

exp (a · ∂)Φ(x) =
∞∑

n=0

1
n!

(a · ∂)n
Φ(x) = Φ(x+ a) . (1.236)

With Pλ and Mµν given by (1.231) and (1.234), one can show (Problem
1.5.3) that

[Mκλ, Pµ] = −i
(
ηκµPλ − ηλµPκ

)
. (1.237)

The closed set of commutation relations (1.232), (1.237), and (1.230) furnishes
the Lie algebra of the Poincaré group. One takes these commutation relations
as the basis for investigations of the Poincaré group.

In a particular inertial frame, the anisymmetric tensor Mµν can be ex-
pressed in terms of two three-dimensional vectors: Mµν = (L, K),

Ki = M i0, Li = −1
2
εijk M

jk , (1.238)

εijk is the three-dimensional Levi-Civita symbol introduced in Problem 1.3.5.
To justify (1.238), we choose tµ for the time axis, tµ = (1, 0, 0, 0), and take the
convention that εijk = ε0ijk. Then tµMµν = (0,−K) and tµ∗Mµν = (0,−L).

Equations (1.238) can be written in matrix form:

Mµν =




0 −K1 −K2 −K3

K1 0 −L3 L2

K2 L3 0 −L1

K3 −L2 L1 0


 . (1.239)

Since the matrix M jk affects spatial indices, it may be interpreted as the
generator of rotations in the (j, k)-plane. The operator M0i is the generator
of boosts acting along the ith coordinate axis. Indeed, if we specialize κ, λ, µ,
and ν to be, respectively, k, l, m, and n, then (1.230) becomes

[Li, Lj ] = iεijkLk , (1.240)

which are commutation relations of spatial rotations so(3). The remaining
commutation relations (1.230) are equivalent to
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[Li,Kj ] = iεijk Kk , (1.241)

[Ki,Kj ] = −iεijk Lk . (1.242)

Fundamental laws of physics must be invariant under Poincaré transfor-
mations. This condition is met if we write these laws as vector or tensor
equations. More generally, we express equations governing physical systems
in terms of irreducible representations of the Poincaré group. One would say
that the formulation of a physical theory is covariant if the equations of this
theory have the same form in different Lorentz frames5.

In order to determine irreducible representations of the Poincaré group, we
should find independent invariants commuting with generators of this group.
The eigenvalues of these invariants will label irreducible representations.

There are two such invariants. One of them is P 2 (Problem 1.5.4). To
construct another invariant, we define the so-called Pauli–Lubański vector

wκ =
1
2
εκλµνMλµpν . (1.243)

One can show (Problem 1.5.5) that

w2 = wνwν = MµκM
νκpµpν − 1

2
MκλM

κλp2 (1.244)

is the desired second invariant commuting with all generators Pµ and Mµν .

Problem 1.5.1. Verify that the matrices (1.229) obey commutation relations
(1.230).

Problem 1.5.2. Verify that the operators Mµν defined in (1.234) obey com-
mutation relations (1.230).

Problem 1.5.3. Derive (1.237) from (1.232), (1.234), and (1.233).

Problem 1.5.4. Using (1.237), show that P 2 commutes with all generators
Mµν .

Problem 1.5.5. Show that the quantity w2 defined in (1.244) commutes with
Pµ and Mµν .

Hint Derive first the relations

w · p = 0 , (1.245)

[Pµ, wν ] = 0, [Mµν , wλ] = −i (ηµλwν − ηνλwµ) . (1.246)

5 This requirement on the form of physical relations should not be confused with
the classification of tensor components according to whether their indices are
covariant (lower) or contravariant (upper).
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Problem 1.5.6. Supposing that Pµ is a timelike vector, P 2 = M2, show that
there exists a Lorentz frame in which the Pauli–Lubański vector wµ becomes
wµ = M(0,S), where components Si obey the commutation relations

[Si, Sj ] = i εijk Sk . (1.247)

This suggests the interpretation of the Pauli–Lubański vector as spin for par-
ticles with nonzero mass M .

Answer A frame of reference with the time axis along the vector Pµ.

Problem 1.5.7. The noncompact Lie algebra so(1, 3) can be converted to the
compact Lie algebra so(4) if the generators Ki are exchanged for Bi = iKi.
This corresponds to converting boosts from imaginary rotations, as in (1.218),
to real rotations, as in (1.217). Show that the commutation relations of the
resulting Lie algebra so(4) are given by

[Li, Lj ] = iεijkLk, [Li, Bj ] = iεijk Bk, [Bi, Bj ] = iεijk Lk . (1.248)

Note the change of sign of the last commutator in comparison with (1.242).
Denoting Ii = 1

2 (Li +Bi) and Ji = 1
2 (Li −Bi), show that the generators

Ii and Ji form two independent Lie algebras so(3), which implies that the Lie
algebra so(4) is isomorphic to the Lie algebra so(3) ⊕ so(3).

Hint Derive the commutation relations

[Ii, Ij ] = iεijkIk, [Ji, Jj ] = iεijk Jk, [Ii, Jj ] = 0 . (1.249)

1.6 World Lines

The passage of a particle through spacetime is depicted by its world line, a
curve that extends from the remote past to the far future. The concept of
world lines merits notice.

Intuitively, a curve in En is a continuous sequence of points. However,
according to present views, the notion best suited to describe a curve is a
smooth mapping

z : τ → z(τ) (1.250)

of an interval [τ1, τ2] of the real axis R onto En, rather than a set of points. We
therefore will use the term ‘world line’ to designate a parametrized curve, which
is defined as a smooth function zµ(τ) whose argument τ ranges from −∞ to
+∞. In order to bridge the gap between this analytical definition and the
intuitive idea of curves, one may think of a world line as an equivalence class
of parametrized curves. Whatever parametrized curve among this equivalence
class is chosen, one follows along the same path, though at potentially different
values of the parameter τ . We will revert to this refined description of world
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lines in Sect. 2.6. For now, our treatment of parametrized curves seems quite
sufficient.

We are entitled to choose parametrize the world line to suit our conve-
nience. We first identify τ with laboratory time t in a particular Lorentz
frame, and keep watch of how a particle moves with respect to this frame.
This gives zµ(t) = (t, z(t)), where z(t) is the particle’s trajectory (recall that
spatial parts of four-dimensional vectors are denoted by boldface characters).
We now define the ordinary three-velocity and three-acceleration:

v =
dz
dt
, a =

dv
dt

. (1.251)

In relativistic problems, where preference is given to an explicitly covariant
description, one employs an invariant parameter of evolution τ . It is convenient
to parametrize curves with the so-called proper time s. Suppose that a particle
is equipped with a clock of the same construction as the clock of a stationary
Lorentz observer (for example, both clocks are governed by a single atomic
standard). The proper time is defined as the time read from this moving clock.
In the instantaneously comoving Lorentz frame where the particle is at rest
at a given instant, the line element dz2 equals the squared local time interval
ds2. On the other hand, in the stationary Lorentz frame, we have

dz2 = dt2 − dz2 , (1.252)

which implies
ds = dt

√
1 − v2 . (1.253)

With the use of the Lorentz factor

γ =
1√

1 − v2
, (1.254)

(1.253) becomes
dt = γ ds . (1.255)

The proper time can be interpreted geometrically as the length of the world
line,

s =
∫ t

0

dt
√

1 − v2 . (1.256)

The time dilation for moving clocks is readily apparent from (1.256). Histori-
cally, this effect was a major prediction of special relativity.

One can express s in terms of any other parameter of evolution τ by noting
that

ds =
√
dz2 =

√
żµ żµ dτ , (1.257)

where żµ = dzµ/dτ .
We now define the four-velocity vµ and the four-acceleration aµ as
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vµ =
dzµ

ds
, (1.258)

aµ =
dvµ

ds
. (1.259)

Taking into account that dz2 = ds2, we deduce from (1.258) the identity

v2 = 1 . (1.260)

Differentiating this identity with respect to s gives

v · a = 0 . (1.261)

The four-velocity vµ is by definition a tangent vector. We see from (1.260),
that vµ is a unit timelike vector. Furthermore, (1.261) shows that the four-
acceleration is always perpendicular to the four-velocity. Because any vector
perpendicular to a timelike vector is spacelike, aµ is spacelike,

a2 < 0 . (1.262)

Note that these arguments are valid only for particles moving at velocities
lower than the velocity of light. The world lines of such particles are called
timelike. A curve is said to be timelike if the tangent vector is always timelike.

Similarly, we define spacelike and lightlike (null) curves by the conditions
that the tangent vector be, respectively, spacelike or null.

Using (1.253), one can show (Problem 1.6.1) that

vµ = (γ, γ v) , (1.263)

and
aµ =

(
(a · v) γ4, a γ2 + v (a · v) γ4

)
. (1.264)

In the instantaneously comoving inertial frame where the particle is at
rest,

vµ = (1, 0) , (1.265)

aµ = (0, a) . (1.266)

By (1.266),
a2 = −a2 . (1.267)

Therefore, the magnitude of three-acceleration as viewed by a comoving
Lorentz observer is an invariant quantity.

Let a particle be moving along a straight line, say, the x-axis. Comparing
(1.260) with

(coshα)2 − (sinhα)2 = 1 , (1.268)

we can write
vµ = (coshα, sinhα, 0, 0) , (1.269)
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where α is an arbitrary function of s. Differentiation of (1.269) with respect
to s gives

aµ = α̇ (sinhα, coshα, 0, 0) , (1.270)

where the dot stands for a derivative with respect to s. Squaring (1.270) gives

a2 = −α̇2 . (1.271)

Let us take a closer look at the case that

α̈ = 0 . (1.272)

This equation can be immediately integrated to give

α = α0 + ws , (1.273)

where α0 and w are constants. By (1.271),

a2 = −w2 . (1.274)

Comparison of (1.274) and (1.267) shows that (1.273) describes uniform ac-
celeration. For reference, the motion is called uniformly accelerated if acceler-
ation a viewed by all instantaneously comoving Lorentz observers is constant.
If α0 = 0, then (1.269) becomes

vµ(s) = (coshws, sinhws, 0, 0) , (1.275)

which, when integrated, yields the world line

zµ(s) = zµ(0) +
1
w

(sinhws, coshws, 0, 0) . (1.276)

The dependence of t and x upon the proper time s is clearly revealed from
this expression:

t− t0 =
1
w

sinhws, x− x0 =
1
w

coshws . (1.277)

It follows that
x− x0 =

1
w

√
1 + w2(t− t0)2 . (1.278)

The two-dimensional plot of this curve is a hyperbola approaching asymptot-
ically to the light cone rays t + x = 0 as t → −∞ and t − x = 0 as t → ∞.
Hence the name hyperbolic motion can be used synonymously with the term
‘uniformly accelerated’ motion.

The three-velocity is

|v| =
w (t− t0)√

1 + w2(t− t0)2
. (1.279)
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It follows that |v| � 1 over a period of time that |t− t0| � w−1. Within this
period, the particle moves slowly, and the well-known formulas for uniformly
accelerated motion in Newtonian mechanics x − x0 = 1

2 w (t− t0)
2 and v =

w (t− t0) are recovered from (1.278) and (1.279).
We now direct our attention to the question: what is the class of all al-

lowable world lines? It is reasonable to assume that smooth timelike curves
belong to this class. Most relativistic expressions involve the Lorentz factor
(1.254) which becomes infinite at v2 = 1. This precludes acceleration of par-
ticles to velocities greater than that of light. No particle can be accelerated
past the light barrier. Hence, world lines with continuously joined timelike
and spacelike fragments must be eliminated from consideration.

Of even greater concern is the causality argument. If faster-than-light par-
ticles exist, then it is possible for an observer to send signals to his own past.
A sequence of events of this kind is called a causal cycle. The admission of
superluminal signals would result in a patently absurd process in which an
observer could cause his own destruction which, in turn prevents the destruc-
tive signal from being sent. This seems to forbid spacelike world lines from
classical relativistic theory.

However, there are particles which travel at luminal velocities, even though
they were never accelerated from a slower speed. These particles begin moving
with the speed of light immediately upon creation and remain in this state.
World lines of these particles are depicted by null curves. The existence of
such objects presents no problems with causality.

We thus see that the class of allowable world lines could possibly accom-
modate both timelike and null smooth world lines.

Problem 1.6.1. Derive (1.263) and (1.264).

Problem 1.6.2. Find components of ȧµ in a particular Lorentz frame.

Answer

ȧ0 =
[
(ȧ · v) + a2

]
γ5 + 4 (a · v)2 γ7 ,

ȧi = ȧ γ3 +
[
3a (a · v) + v (ȧ · v) + v a2

]
γ5 + 4v (a · v)2 γ7 , (1.280)

Problem 1.6.3. Find ȧµ for motion along a straight line.

Answer

ȧµ =
(
α̈ sinhα+ α̇2 coshα, α̈ coshα+ α̇2 sinhα, 0, 0

)
. (1.281)

Problem 1.6.4. Show that

v · ȧ = −a2, v · ä = −3 (a · ȧ) . (1.282)

Problem 1.6.5. Denote żµ = dzµ/dτ , where τ is an arbitrary parameter of
evolution, and introduce the generalized Lorentz factor
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γ =
1√
ż · ż

. (1.283)

Taking τ to be laboratory time in a particular Lorentz frame t, we have ż0 = 1,
ż = v, and (1.283) becomes identical to (1.254).

Show that the four-acceleration is given by

aµ = γ
d

dτ
(γ żµ) . (1.284)

Problem 1.6.6. Let O and P be two points separated by a timelike interval,
and Γ a timelike curve connecting these points. Various curves Γ have different
lengths s, defined in (1.256). Prove that s is maximal for a straight line. In
other words, the longest proper time is measured by a clock that moves along
a straight line between O and P .

Hint Approximate a smooth curve by polygonal lines with small rectilinear
fragments. Consider a triangle ABC whose sides AC, AB, and BC are given
by timelike intervals. Show that the sum of two sides AB and BC is smaller
than the third side AC.

Notes

1. Lorentz (1904b); Poincaré (1898, 1904, 1905, 1906), Einstein , (1905a 1905b),
and Minkowski (1909) laid the foundation of special relativity. The findings
by Einstein and Minkowski had an especially strong hold on the minds of the
scientific community in the early 20th century. The term ‘special relativity’
was introduced by Einstein. For historical details and further references see
Whittaker (1953), and Pais (1982). There are many texts on special relativity
(which is also treated at some length in most of the books on general rela-
tivity). The following have enjoyed popularity for years: Weyl (1918), Pauli
(1958), and Synge (1956).

2. Section 1.1. Analyzing the concepts of space and time, and guided by ex-
periment, Poincaré (1898, 1902, 1904) concluded that no motion with respect
to the aether is detectable. He formulated the principle of relativity, which,
coupled with the idea of a maximum signal velocity in nature, offered a clear
view that the simultaneity of spatially separated events is a matter of con-
vention. Einstein (1905a) discarded the concept of an aether, and proceeded
from two postulates: (1) the laws of physics are the same in all inertial frames,
and (2) the speed of light in vacuum is constant. He proposed a convention
for simultaneity of separated points, now known as the standard synchrony,
which provided a means of deriving the Lorentz transformation (1.19). This
transformation was earlier derived by Larmor (1900) and Lorentz (1904b)
on the hypothesis that any effect of the motion through the aether is unob-
servable. Poincaré (1905) showed that the set of all transformations (1.19),



1.6 World Lines 49

combined with space rotations, constitutes a group, to which he gave the
name the Lorentz group. The spacetime metric (1.26) was first introduced by
Poincaré (1906). Minkowski (1909) unified space and time into an indivisible
four-dimensional entity which he called ‘the world’.

Neumann (1870) noted that Newton’s first and second laws assume their
simplest form if the standard time scale is used, otherwise these laws be-
come more complicated. Grünbaum (1963) raised the question of whether a
transported yardstick is self-congruent, at least in the absence of stresses and
temperature variations.

Bondi (1967) proposed a pictorial treatment of special relativity, called
the k-calculus, which is used here to make the introduction to the subject as
simple as possible.

For those who wish to read more widely on the physical problems outlined
in this section, the following references may be of assistance: Weyl (1918),
Pauli (1958), Synge (1956), Misner et al. (1973). The foundations of special
relativity and its epistemological implications are discussed by Jammer (1954),
Reichenbach (1958), and Grünbaum (1963).

3. Section 1.2. This section is to provide a quick introduction to the Weyl
axioms of affine and Euclidean spaces. Klein (1872) developed the view of
geometry as the invariant theory of some definite group (nowadays called the
automorphism group).

4. Section 1.3. The material of this section is quite standard. For an extended
discussion see Misner et al. (1973), Spivak (1974), and Dubrovin, Fomenko &
Novikov (1992). Useful exercises can be found in Lightman et al. (1975).

5. Section 1.4. The reader should be familiar with elements of vector analysis,
including notions of curves and surfaces, vector differential operations (gra-
dient, divergence, and curl, and results of their integration (the theorems by
Gauss–Ostrogradskǐı, and Stokes). A general reference is Morse & Feshbach
(1953). The task of this section is to translate this standard knowledge into
an invariant geometric language.

The theorem that a volume integral of a divergence can be written as a
surface integral was proved by Ostrogradskǐı. This proof, reported to the St
Petersbourg Academy of Science by Ostrogradsky6 in 1828, was published in
1831. Gauss (1813) introduced the notion of surface integrals, and derived
some special cases of the theorem. Green (1828) established the relation

∫
V

d3x
(
v∇2u− u∇2v

)
=
∮

∂V

dS [v(n · ∇)u− u(n · ∇)v] , (1.285)

which is referred to by his name. The extension of the Gauss–Ostrogradskǐı
theorem from n = 3 to any integer n was made by Ostrogradskǐı in 1834.
6 Ostrogradskǐı is the same as Ostrogradsky but Ostrogradskǐı is closer to the

Russian transcription.
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The significance of this theorem was understood later. Maxwell (1873) appre-
ciated its utility in electrodynamics and emphasized Ostrogradskǐı’s priority.
Stokes (1849) proved the theorem expressed by (1.196). For the history of the
Stokes theorem see Spivak (1965). A modern formulation and derivation of
this theorem (which would be properly termed the Newton–Leibnitz–Gauss–
Green–Ostrogradskǐı–Stokes–Poincaré theorem) can be found in many books,
for example: De Rham (1955), Spivak (1965, 1974), Cartan (1967), Schwartz
(1967), and Dubrovin, Fomenko & Novikov (1992).

6. Section 1.5. Wigner (1939) demonstrated the significance of irreducible
representations of the Poincaré group. We briefly review the most important
features of the Poincaré group in this section. A general reference is Bogoli-
ubov, Logunov, Oksak & Todorov (1990), Naimark (1964), Gel’fand et al.
(1963), and Barut & Ra̧czka (1977).

7. Section 1.6. The relation of relativity and causality is discussed in many
places. For an extensive discussion of this subject see Frank (1932), and Bunge
(1959). A more sophisticated version of causality involving hypothetical su-
perluminal signals is advocated by Bilaniuk & Sudarshan (1969).

The relativistic kinematics outlined here is discussed in all books on this
theory. A detailed account can be found in Synge (1956).



2

Relativistic Mechanics

Newtonian mechanics rests on three axioms of motion:

I. Every particle continues in its state of rest or uniform motion in a straight
line unless it is acted upon by some exterior force.

II. The rate of change of momentum of a particle is proportional to the force
impressed upon it, and is in the direction in which the force is acting.

III. To every action there is an equal and oppositely directed reaction.

In relativistic mechanics, aimed at an adequate description of particles moving
at speeds comparable with the speed of light, these statements are no longer
valid when taken literally. Nevertheless, their role is every bit as important as
in Newtonian mechanics. They cease to be regarded as strict dynamical laws
of universal applicability, rather they are elevated to the status of guiding
principles.

We will see in Sect. 2.1 that Newton’s second law requires neither modifi-
cation nor generalization. It should be only embedded in the four-dimensional
geometry of Minkowski space. The key observation is that the dynamical
law, as it was originally formulated by Newton, holds in any instantaneously
comoving inertial frame. Such a treatment of Newton’s second law begets
equation (2.7) governing the behavior of relativistic particles.

It will transpire that Newton’s first law is entirely valid only for a cer-
tain class of mechanical objects, Galilean particles. In the absence of exter-
nal forces, Galilean particles move along straight world lines. However, such
an evolution law need not be the case for non-Galilean particles. We will
gain some insight into the behavior of these particles in Problem 2.1.3, and
Sect. 2.7; other examples of non-Galilean dynamics will be adduced in later
chapters.

Newton’s third law seems to be violated in relativistic mechanics where
the influence of one particle on another propagates at a finite speed, and
the response arises with some retardation. An important exception is contact
interactions, in which one particle acts upon another and experiences back
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reaction at the same point. That is the reason for the explicit conservation of
linear momentum in collisions and decays (Sect. 2.10).

Meanwhile Newton’s third law may be understood in a broader sense. As
will be shown in Sect. 3.2, the extended action–reaction principle enables us
to view the electric charge of a particle as both a measure of the influence of
electromagnetic fields on the particle and of the particle’s strength as a field
source. The Maxwell–Lorentz theory inherits the action–reaction principle as
an element of field dynamics.

The basic consequence of the action–reaction principle for mechanics is
momentum conservation. We learn from Noether’s first theorem (Sect. 2.5)
that linear momentum is conserved due to invariance of the Lagrangian under
spatial translations. Likewise, angular momentum conservation results from
invariance of the Lagrangian under spatial rotations. These conservation laws
are exact only for closed systems ‘particles plus fields’. One may imagine the
situation that these conservation laws are violated for mechanical degrees of
freedom, when the field contribution is overlooked. A breakdown of angular
momentum conservation in the system of two particles, one with an electric
charge and the other with a magnetic charge, is an example discussed in
Sect. 2.9.

2.1 Dynamical Law for Relativistic Particles

The best known form of Newton’s second law is given by an ordinary differ-
ential equation

dp
dt

= f , (2.1)

where p is the Newtonian momentum. In Newtonian mechanics, p is propor-
tional to the velocity v of the body under discussion,

p = mv . (2.2)

The coefficient of proportionality m measures inertia of the body. We will
call m the Newtonian mass. Newton envisioned the mass as the quantity of
matter that the body contains. In today’s parlance, this might be interpreted
as the number of identical atoms in the body. However, we are concerned here
with idealized particles of no size rather than real extended bodies. So for
our purposes, each point particle is simply endowed with a positive number
m. We regard this number m as a primary notion, which is associated with
inertia of the particle, and may or may not reflect the Newtonian idea of the
quantity of matter.

Before proceeding to a discussion of relativistic dynamics, let us clarify
the present status of Newton’s second law. It is still common to see the as-
sertion that (2.1) is unsuited for the description of the relativistic particle
behavior, and that a completely different equation (derived by Poincaré, and
independently by Max Planck, in 1906)
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Fig. 2.1. The hyperplanes Σ perpendicular to the world line

d

dt

mv√
1 − v2

= F (2.3)

must be used instead. Does this mean that special relativity abolishes New-
ton’s second law, or, in less categorical terms, generalizes (2.1) in such a way
as to yield (2.3)? No. The Newtonian equation (2.1) need be neither rejected
nor modified. To derive relativistic dynamics, we should embed the three-
dimensional (2.1) into the four-dimensional geometry of Minkowski space.

The idea of the embedding is based on the fact that (2.1) becomes a strictly
accurate law as v → 0. In other words, granting that an instantaneously
comoving inertial frame is given at some instant, one can precisely predict
the evolution of the particle in this frame during an ensuing evanescent time
interval. In the geometric language, the vector relation (2.1) is strict on a
hyperplane Σ perpendicular to the world line. Meanwhile the hyperplane Σ
tilts together with its normal vµ as one moves along the world line, Fig. 2.1. To
recover the global evolution one joins together the small fragments from each
of the instantaneously comoving frames. The algorithm for reconstructing the
world line is the following: fix a rest frame at the initial instant s = s0, evaluate
a local fragment of the curve using (2.1), fix a rest frame at a nearby instant
s = s0 + ε, evaluate the next local fragment, etc. The output is reminiscent of
a movie, which is actually a discrete set of pictures representing the dynamical
affair at the hyperplanes Σ.

For the embedding to be made smooth, we need an operator
v

⊥ that con-
tinually projects vectors of Minkowski space on hyperplanes Σ perpendicular
to the world line. As is clear from the discussion of Sects. 1.2 and 1.3, the
desired operator is

v

⊥µν = ηµν − vµvν

v2
. (2.4)

Note that the projector (2.4) is the same for any parametrization. If vµ =

dzµ/ds is replaced by żµ = dzµ/dτ , this leaves the form of
v

⊥ unchanged.
Let us take a closer look at how the projector (2.4) embeds the New-

tonian equations (2.1) in four dimensions. The time axis in the instantaneously
comoving frame is parallel to the tangent of the world line, hence dt equals
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ds. Formally, this follows from ds = γ−1dt, where γ goes to 1 as v → 0. Ac-
cordingly, in the instantaneously comoving frame, the derivative with respect
to t may be replaced by the derivative with respect to s.

Given the three-dimensional vector f in the hyperplane Σ, one can un-
ambiguously construct a four-dimensional vector fµ. Indeed, in the instanta-
neously comoving frame,

fµ = (0, f) . (2.5)

In an arbitrary inertial frame, components of fµ can be found from (2.5)
through the appropriate Lorentz boost. fµ is called the Minkowski force or
four-force.

In the rest frame, vµ = (1,0), and, by (2.5), vµfµ = 0. Since vµfµ is an
invariant, the Minkowski force fµ is perpendicular to the four-velocity vµ in
any Lorentz frame.

Let us define the four-momentum of the particle pµ. To this end, we con-
sider the derivative of the four-momentum with respect to the proper time
dpµ/ds, and require that its spatial components in the instantaneously co-
moving frame dpi/ds be identical to the respective components of dp/dt in
(2.1). Note, however, that dp0/ds remains indeterminate in this frame.

The desired embedding of (2.1) in hyperplanes perpendicular to the world
line is

v

⊥µν

(
dpν

ds
− fν

)
= 0 . (2.6)

This is the basic dynamical law for relativistic structureless point objects.
Expressed in symbolic form (2.6) is

v

⊥ (ṗ− f) = 0 . (2.7)

We thus may conclude that relativistic dynamics of a particle is essen-
tially contained in Newtonian dynamics in its primordial formulation (2.1).
Equation (2.7) is a mere geometric restatement of Newton’s second law.

The presence of the projector
v

⊥ in (2.7) suggests that we have three in-
dependent equations. Indeed, when contracted with vµ, the four equations
reveal a linear relation resulting from the identity

vµ
(
ηµν − vµvν

v2

)
= 0 . (2.8)

The dynamical law (2.7) is compatible with any relation between the four-
momentum pµ and kinematical variables of the particle. If a particular expres-
sion for pµ has been used in (2.7), the resulting equation is called the equation
of motion for the given particle.

The simplest mechanical entity is a Galilean particle. Such a particle is a
point object possessing the four-momentum

pµ = mvµ . (2.9)
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It follows that ṗµ = maµ. Since v · a = 0, the projector
v

⊥ in (2.6) acts as a
unit operator, and (2.6) becomes

maµ = fµ . (2.10)

It may be worth pointing out that (2.10) is the equation of motion govern-
ing only Galilean particles, while the general law for both Galilean and non-
Galilean objects is (2.6).

In the limit v → 0, space part of the four-momentum (2.9) is identical to
the Newtonian momentum (2.2). Hence m in (2.9) is the Newtonian mass.

If fµ = 0, equation (2.10) assumes

v̇µ = 0 . (2.11)

This equation has a unique solution vµ = const. Thus, a free Galilean particle
moves along straight world lines.

It is usual to take the word ‘particle’ to mean a Galilean object. We follow
this tradition, but we add the epithet ‘Galilean’ whenever the lack of emphasis
may conceal some pertinent nuance.

We now fix a particular Lorentz frame. The four-momentum of a Galilean
particle is

pµ = (ε,p) . (2.12)

Here, ε and p are interpreted as the total kinetic energy and linear momentum
of a Galilean particle. Using the decomposition vµ = γ (1,v), these quantities
evaluate to

ε = mγ , (2.13)

p = mγv . (2.14)

In the nonrelativistic region |v| � 1, these expressions can be expanded in
powers of v:

ε =
m√

1 − v2
= m+

mv2

2
+ · · · , (2.15)

p =
mv√
1 − v2

= mv + · · · . (2.16)

The term mv on the right of (2.16) is the Newtonian momentum, while the
two terms on the right of (2.15) differ from the conventional nonrelativistic
kinetic energy bym. Recall, however, that, the energy in Newtonian mechanics
is defined up to an arbitrary constant; the lowest energy level can be assigned
arbitrarily. The first term on the right of (2.15) is called the rest energy. We
see that special relativity requires that the expansion of ε should begin with
m. Thus, the Newtonian mass m is not only a measure of inertia of a Galilean
particle; in the absence of external forces, m is equal to the total energy of
this particle in its rest frame.
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Since the Minkowski force is orthogonal to the four-velocity, the compo-
nents of fµ are not independent but are subject to the constraint f0γ = f iγvi.
It is convenient to separate the Lorentz factor γ as an overall factor in fµ:

fµ = γ (F · v, F) . (2.17)

With ds = γ−1dt, we find that the spatial component of (2.10),

d

dt
(mγv) = F , (2.18)

is identical to (2.3). The force F in (2.18) should not be confused with the
Newtonian force f . Although F = f in the instantaneously comoving frame,
such is not the case in a fixed Lorentz frame.

The time component of (2.10),

d

dt
(mγ) = F · v , (2.19)

might be interpreted as the variation of the particle energy ε = mγ due to the
work performed by the force F in a unit time. A direct calculation (Problem
2.1.2) shows that (2.19) follows immediately from (2.18).

Two invariants can be built from vectors pµ and vµ,

M2 = p2 (2.20)

and
m = v · p , (2.21)

while the third invariant v2 = 1 is dynamically trivial. M and m are called the
mass and the rest mass, respectively. We use the same notation for both the
rest mass and Newtonian mass, because they are numerically equal for any
Galilean particle. Moreover, the identity v2 = 1 implies that M is coincident
with m. Thus, formulas (2.20) and (2.21) represent two different definitions
of the same quantity attributable to a Galilean particle.

In the subsequent discussion, we will consider also non-Galilean particles,
for which pµ and vµ need not be collinear, and hence M �= m. One such
example is in Problem 2.1.3.

An interesting object is a particle which moves at the speed of light. We
assume that the world lines of such particles are smooth lightlike curves di-
rected to the future. The procedure of embedding the nonrelativistic equation
(2.1) in Minkowski space is no longer valid, because a particle moving at the
speed of light cannot be brought to rest in any frame. However, as will be
seen in Sect. 2.6, a consistent dynamics of such particles is still possible.

Particles moving faster than light are called tachyons. It should be re-
marked that objects with superluminal speeds are not precluded by special
relativity but they cannot be produced by accelerating subluminal objects. As-
suming that a tachyon is endowed with the four-momentum pα = mdzα/ds,
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where m is a real coefficient and s is the Euclidean length of the tachyon world
line, one obtains p2 = −m2 < 0, because (dz/ds)2 < 0.

Although spacelike world lines are excluded from consideration, particles
moving along timelike world lines and yet possessing spacelike four-momenta,
are in principle possible. As will become evident, these particles are non-
Galilean. Throughout this book we employ the term ‘tachyon’ to denote
particles with spacelike four-momenta, p2 < 0, but moving at subluminal
velocities.

Problem 2.1.1. The mass of a Galilean particle is constant,

ṁ = 0 . (2.22)

Show that (2.22) is consistent with the fact that fµ is given by (2.5) in the
rest frame.

Hint Write the Minkowski force in the rest frame as fµ = (h, f) where h is
some function of kinematical variables of the particle. Then, in addition to
(2.7), we come to ṁ = h, which is in conflict with preservation of the particle
self-identity (2.22).

Problem 2.1.2. Show that (2.19) follows immediately from (2.18).

Problem 2.1.3. Discrete time and non-Galilean particles. One may think of
continuum physics as a very convenient but only approximate description of
physical reality which evolves in a series of very tiny steps, and try to modify
Newton’s second law through the change of the differential equation mv̇ = f
with the difference equation

m
v(t+ �) − v(t)

�
= f , (2.23)

where � is a ‘quantum of time’. This seemingly innocuous modification has a
serious mathematical impact, because we are actually dealing with the infinite
order differential equation

m

�

[
exp

(
�
d

dt

)
− 1
]
v(t) = f , (2.24)

in place of the first order differential equation. In (2.24) the exponential of
d/dt acts as

exp
(
�
d

dt

)
v(t) =

∞∑
n=0

�n

n!

(
d

dt

)n

v(t) = v(t+ �) . (2.25)

Allowance for the granularity of time is thus included in the conventional
calculus.
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It is no great surprise that the particle governed by this modified law may
show itself as a non-Galilean object. Indeed, let the particle be free, f = 0.

Verify that the general solution to (2.23) is

v(t) =
∞∑

n=0

Vn cos
(

2πn
�
t+ αn

)
, (2.26)

where Vn and αn are integration constants. This means that the free particle
executes a periodic motion, the so-called zitterbewegung, back and forth along
a straight line parallel to Vn for n ≥ 1, and moves uniformly for n = 0.

Show that a smooth embedding of the modified equation (2.23) in Minkow-
ski space culminates in the basic law of relativistic dynamics (2.7)

v

⊥ (ṗ− f) = 0 (2.27)

with
pµ(s) = m�−1 [zµ(s+ �) − zµ(s)] . (2.28)

Find the general solution to this equation when fµ = 0. Relying on this
solution, check on whether or not the equality between M and m defined in
(2.20) and (2.21) is the case.

Problem 2.1.4. Derive a covariant condition for uniform acceleration.

Answer A generalization of (1.272) reads

v

⊥ ȧ = 0 , (2.29)

or, in coordinate notation,

ȧµ + a2vµ = 0 . (2.30)

2.2 The Minkowski Force

In this section, we review some explicit forms of the Minkowski force. Let
us first note that the four-force cannot be constant. Indeed, let fµ = const.
This supposition comes into conflict with the condition that the four-force is
orthogonal to the four-velocity,

f · v = 0 . (2.31)

More precisely, given a spacelike constant vector fµ, one can always find a
timelike vector vµ such that (2.31) fails.

A similar consideration shows that fµ cannot be a function of only zµ,
the particle coordinates. It is therefore imperative that fµ be dependent on
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vµ. So, our concern in the subsequent discussion is only with fµ(z, v), and
occasionally with fµ(s, z, v).

We now consider the case that fµ is linear in vµ. The relationship fµ = αvµ

is impossible, because this fµ is not orthogonal to vµ for any α �= 0. Let us
then put

fµ = βµνvν , (2.32)

where βµν is an arbitrary tensor. By (2.31),

βµνvµvν = 0 . (2.33)

This equation is obeyed by an arbitrary vµ provided that

βµν = −βνµ . (2.34)

We thus have
fµ = βµνvν , (2.35)

with βµν being an antisymmetric tensor.
Is there a physical object which affects a particle through a four-force linear

in the four-velocity? This object, if it proves to occur, would be distributed
over all space and characterized by some βµν at each point. Such objects are
collectively known as force fields, or simply fields. Note, however, that βµν

contains information on both the state of the field and how it affects the
particle. We should separate these concepts.

It seems natural in the first instance to take a scalar coupling e, implying
that

fµ = e vνF
µν . (2.36)

This possibility is actually realized in nature. The quantity whose state at
each point of Minkowski space is specified by an antisymmetric tensor Fµν

and whose influence on particles is represented by the force law (2.36) is called
the electromagnetic field. The tensor Fµν is referred to as the electromagnetic
field tensor, or field strength.

Recall that a particle is assumed to be a point object whose nature is
preserved under time evolution. In particular, the coupling of the particle and
the electromagnetic field must be unchanged,

ė = 0 . (2.37)

We will refer (provisionally) to the scalar real quantity e as the electric charge-
coupling. If a particle may be assigned a finite e, this particle is said to be
charged. By contrast, if the electromagnetic field does not act on the particle,
we take e = 0, and include formally this case to our consideration. The particle
is then called neutral. As is well known from the experiment, there is a minimal
value of e, the elementary charge, and every charged particle carries a charge
which is a multiple of this elementary charge. However, classical field theory
leaves this charge quantization unexplained. So, the charge-coupling e to be
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considered in this book is regarded as a parameter taking any positive, zero,
and negative values.

Let us fix a particular inertial frame. Two three-dimensional vectors in
this frame, E and B, can be defined in terms of six components of the anti-
symmetric tensor Fµν ,

Ei = F0i = F i0 , (2.38)

Bk = −1
2
εklmF

lm , (2.39)

where εklm is the three-dimensional Levi-Civita symbol. The inverse of (2.39)
is

F ij = Fij = −εijkBk . (2.40)

In (2.38) and (2.40), the usual rule of raising indices of tensors in Minkowski
space is applied: when a spatial index is raised or lowered, the expression
is multiplied by the factor −1, whereas raising a time index do not change
the sign. Notice that it would be meaningless to raise indices of the three-
dimensional vectors E and B, because Ei and Bi do not present spatial com-
ponents of four-dimensional vectors; E and B behave as vectors only under
spatial rotations in the given Lorentz frame. Throughout this book, Ei and
Bi, and εijk will appear with lower indices. Although we operate only for
lower case characters in expressions with Ei, Bi, εijk, and δij , the summation
over repeated latin indices is understood, as is customary when tensors are
Euclidean.

Equations (2.38)–(2.40) can be written in matrix form. We adopt the con-
vention that the left index refers to the row, and the right index to the column.
We then have

Fµν =




0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0


 , Fµν =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


 .

(2.41)
In the language of differential forms (for notations and conventions see Ap-
pendix A), the general decomposition F = 1

2 Fµν dx
µ ∧ dxν can be specified

by analogy with (2.41):

F = Ei dx
0 ∧ dxi − εijkBi dx

j ∧ dxk . (2.42)

Consider the three-dimensional force F appearing in the force law (2.36).
Combining the definitions of E and B, equations (2.38)–(2.40), with the rela-
tions vµ = γ (1 ,−v) and fµ = γ (F · v ,−F), we obtain

F = e (E + v × B) . (2.43)

This expression for the force exerted on a charged particle is due to Oliver
Heaviside and Lorentz. Following historical tradition, we will call E and B
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the electric field intensity and the magnetic induction, respectively. Both the
three-dimensional vector F defined in (2.43) and the four-dimensional vector
fµ defined in (2.36) will go under the general name of Lorentz force; it is
usually quite clear from the context which of them is involved.

Consider the behavior of E and B under space reflections r → −r. Exper-
iment shows that the force F transforms under this discrete operation as

F → −F . (2.44)

The velocity v is also a vector,

v → −v , (2.45)

and e, by its very definition, is a scalar. It follows from (2.43)–(2.45) that E
and B are polar and axial vectors, respectively,

E → −E, B → B . (2.46)

Likewise, if the assumption is made that the basic dynamical law (2.6) is
invariant under time reversal t → −t, we immediately find from (2.43) that
this operation causes E and B to transform as

E → E, B → −B . (2.47)

We now turn to the case that the interaction of a particle and electromag-
netic field is specified by a pseudoscalar coupling e�. We define the field ∗Fµν

dual to Fµν as
∗Fµν =

1
2
εµνρσFρσ , (2.48)

and adopt the convention that the three- and four-dimensional Levi-Civita
symbols are related by

εijk = ε0ijk . (2.49)

Consider the four-force
fµ = e� vν

∗Fµν . (2.50)

Using (2.38)–(2.40), (2.48) and (2.49), we derive from (2.50)

F = e� (B − v × E) . (2.51)

Taking into account (2.44), (2.45), and (2.46), we conclude that the sign of e�

changes under space reflections, and e� is therefore a pseudoscalar.
The pseudoscalar e� is (provisionally) called the magnetic charge-coupling.

Particles that are affected by force F of the form (2.51) are referred to as mag-
netic monopoles. Doubly charged particles carrying both electric and magnetic
charges e and e�, which experience the force

F = e (E + v × B) + e� (B − v × E) , (2.52)

are called dyons.



62 2 Relativistic Mechanics

We next look at a particle, possessing additional degrees of freedom,
which is coupled with a field through a vector coupling. Let V be a vector
space of dimension n, the so-called internal space. Borrowing nomenclature
from quantum chromodynamics, we refer to V as the color space. Coordi-
nates of Minkowski space are in general unrelated to coordinates of color
vectors. The charge-coupling Qa is now a color vector (rather than a scalar,
or pseudoscalar), a is the color index running from 1 to n. If we define a dual
space V ′ of linear forms on V , and assume that the field strength Gµν

a takes
values on V ′, then the four-force fµ linear in vµ is

fµ =
n∑

a=1

QavνG
µν
a . (2.53)

However, this construction is too arbitrary, and additional constraints on
V are called for. Let us denote elements of V by A, B, C, . . . , and think of
them as n× n matrices. Linear operators Ω give rise to transformations of a
matrix A:

A′ = ΩAΩ−1, ΩΩ−1 = Ω−1Ω = 1 . (2.54)

We may interpret (2.54) as the transformations of matrix elements of A in-
duced by changes of basis of the vector space V . Given some basis, the matrix
A in it is referred to as the adjoint representation of A.

Of primary concern to our discussion is V equipped with Lie algebra struc-
ture. Simply stated, A and B may not only be added, but also multiplied. We
denote the product of A and B by [A,B]. Here, the Lie bracket [, ] is anticom-
mutative and bilinear,

[A,B] = −[B,A] , (2.55)

[αA+ βB,C] = α [A,C] + β [B,C] , (2.56)

α and β being any complex numbers. However, [, ] is not associative. [A, [B,C]]
is not equal to [[A,B], C], and the Jacobi identity

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0 (2.57)

is required instead.
To render V a Lie algebra a, a skew-symmetric bilinear map V × V → V

must be defined, namely, a rule of multiplication of any two basis elements Ta

and Tb of V ,
[Ta, Tb] = i

∑
c

fc
ab Tc , (2.58)

must be given. Note that (2.58) is invariant under the transformation (2.54).
The coefficients fc

ab = −fc
ba are called the structure constants of the Lie

algebra a. They are independent of the representation of the elements Ta and
may therefore be regarded as a property of the Lie algebra a.

The Jacobi identity (2.57) can be expressed in terms of the structure
constants,
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fd
bcf

e
ad + fd

abf
e
cd + fd

caf
e
bd = 0 . (2.59)

The structure constants fc
ab determine the Lie algebra a completely. From

fc
ab, one can construct a symmetric tensor gab = −fc

ad f
d
bc which plays the

role of the metric tensor in the color space; specifically it raises and lowers
color indices. If the tensor gab is not degenerate, det (gab) �= 0, the Lie algebra a

is semisimple1. We will henceforth deal with semisimple complex Lie algebras.
It is always possible to choose a basis for a semisimple complex Lie algebra,
called the Cartan basis, such that the structure constants fabc are real and
completely antisymmetric.

The field strength Gµν
a which takes values on a Lie algebra is called the

Yang–Mills field, to honor Chen Ning Yang and Robert Mills who introduced
and developed this concept in 1954 by the example of the SU(2) Lie algebra.

When all the structure constants are zero, the Lie algebra is Abelian. As
an example we refer to a Lie algebra with the basis {Ta} containing a single
element. Now, the color charge QaTa is in fact a real number e, and the field
strength Gµν

a T a is a real-valued tensor Fµν . In that case the color four-force
(2.53) is reduced to the Lorentz force (2.36).

For a color particle to remain identical to itself, the coupling of this particle
with the Yang–Mills field must not vary in time. This implies that the color
charge of the particle Qa is preserved in some sense. The condition Q̇a = 0,
similar to (2.37), appears undue severe, and we assume instead that the color
charge magnitude is a constant of motion,

QaQa = const . (2.60)

Thus, the color vector Qa shares with a top the property of precessing around
some axis (this axis is yet unfixed in the color space, and may vary in the
course of the particle evolution). We will see in Sect. 7.1 that (2.60) follows
from the equation for the color charge evolution.

We finally address the four-force fµ quadratic in the four-velocity vµ, and
select two examples of this force.

Consider a scalar field φ(x). We wish to extend the notion of the potential
force f = −∇Φ, commonly used in Newtonian mechanics, to the relativistic
context. Let fµ be orthogonal to the four-velocity vµ and contain gradients
of the scalar field,

fµ = −g
v

⊥µν ∂
νφ = −g (∂µφ− vµv

ν∂νφ) , (2.61)

where g is the coupling constant of the particle and the field φ, and ∂µ stands
for ∂/∂zµ. We see that the extension of the Newtonian potential force is fµ

quadratic in vµ. The second term in the parenthesis of (2.61) is

vµv
ν∂νφ = vµ

dzν

ds

∂φ

∂zν
= vµ

dφ

ds
. (2.62)

1 For an overview of basic facts of Lie algebras see Appendix B.
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One further term φaµ might be added to (2.61) without altering the or-
thogonality condition (2.31). This term is exceptional in that it introduces the
dependence of the force on higher derivatives of coordinates, but its presence
is essential, which will be clear in Sect. 2.6. Then the equation of motion for
a Galilean particle (2.10) interacting with a scalar field φ reads

d

ds
(m− g φ) vµ = −g ∂µφ . (2.63)

The fact that the four-force is quadratic in the four-velocity is here implicit.
Let us turn to the general case of the quadratic dependence

fλ = mΓλ
µνv

µvν . (2.64)

Here, Γλ
µν is some tensor, which is evidently symmetric in the indices µ and

ν. The orthogonality requirement (2.31) becomes

Γλµνv
λvµvν = 0 . (2.65)

For this equation to hold for any vµ, it is necessary that the sign of Γλµν must
change under permutation of λ and µ, and that of λ and ν. However, any
tensor Γλµν which is symmetric in µ and ν, and antisymmetric in λ and µ as
well as in λ and ν, is zero.

Nevertheless, expression (2.64) may be nontrivial if a pseudo-Riemannian
metric gµν(x) of a curved spacetime manifold (rather than the pseudoeuclid-
ean metric ηµν) is concerned. Now the line element is

ds2 = gµνdz
µdzν . (2.66)

Let this line element be not null. We then define a unit tangent vector vµ =
dzµ/ds,

gµνv
µvν = 1 , (2.67)

and so

0 =
d

ds
gµνv

µvν = 2gµνv
µaν + vµvν d

ds
gµν = 2gµνv

µaν + vµvνvλ∂
λgµν .

(2.68)
Consider Γλ

µν , expressed in terms of gµν as

Γλ
µν =

1
2
gλσ (∂µgνσ + ∂νgσµ − ∂σgµν) , (2.69)

or, equivalently,

Γλµν =
1
2

(∂µgνλ + ∂νgλµ − ∂λgµν) . (2.70)

It is easy to check from (2.68) that the equation of motion for a Galilean
particle
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dvλ

ds
+ Γλµνv

µvν = 0 (2.71)

is orthogonal to vλ in the sense of the pseudo-Riemannian metric (2.66).
Equation (2.71) is the geodesic equation for the given metric. It governs the
behavior of a test particle in the gravitational field gµν , according to the
general theory of relativity.

Problem 2.2.1. Derive the transformation law for the electromagnetic field
strengths E and B in the case that a new frame moves relative to the initial
one along x1-axis with the speed V , that is, the transformation of E and B
which is due to the Lorentz boost x0 = γ(x′0 − V x′1), x1 = γ(x′1 − V x′0),
where γ = (1 − V 2)−

1
2 .

Answer

E1 = E′
1, E2 = γ (E′

2 − V B′
3) , E3 = γ (E′

3 + V B′
2) ,

B1 = B′
1, B2 = γ (B′

2 + V E′
3) , B3 = γ (B′

3 − V E′
2) . (2.72)

2.3 Invariants of the Electromagnetic Field

The state of the electromagnetic field at each point of Minkowski space is
specified by six numbers Fµν . However, the tensor Fµν carries information
not only on the field by itself, but also on the frame which is used for the
determination of its components. To describe the field in an intrinsic way, we
need have knowledge of only two invariants of the electromagnetic field

S =
1
2
FµνF

µν and P =
1
2
Fµν

∗Fµν , (2.73)

where ∗Fµν = 1
2 ε

µναβFαβ . Indeed, let F = 1
2 Fµν dx

µ ∧ dxν be the 2-form
corresponding to the antisymmetric tensor Fµν . It was shown in Sect. 1.3
that, in the general case, there exists a canonical basis of vectors eµ

0 , eµ
1 , eµ

2 ,
eµ
3 , such that2

F = E e0 ∧ e1 −B e2 ∧ e3 . (2.74)

It immediately follows that the essential information on the geometric pecu-
liarities of F is contained in two parameters E and B, or two independent
functions of E and B, say, S and P (see Problem 2.3.3). The existence of only
two invariants, in terms of which all scalar quantities constructed from Fµν

can be expressed, derives from the fact that spacetime is four-dimensional.
Another way of looking at the intrinsic description of the 2-form F is to

to use an arbitrary basis of 1-forms dxµ. We apply the Hodge operation∗ to
F = 1

2 Fµν dx
µ ∧ dxν to obtain3

2 There may be exceptional cases, exemplified by a null field shown in (2.86), for
which the canonical decomposition (2.74) does not hold.

3 Note that the operator∗ acts on the exterior product dxµ ∧ dxν rather than on
the coefficient Fµν .
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∗F =
1
2
Fµν

∗(dxµ∧dxν) =
1
4
Fµν ε

µν
αβ dx

α∧dxβ =
1
2

∗Fαβ dx
α∧dxβ . (2.75)

From F and ∗F , two 4-forms can be built

F ∧ F =
1
4
Fµν Fαβ dx

µ ∧ dxν ∧ dxα ∧ dxβ , (2.76)

F ∧ ∗F =
1
4
Fµν

∗Fαβ dx
µ ∧ dxν ∧ dxα ∧ dxβ , (2.77)

which in turn result in two 0-forms (quantities which are independent of the
basis),

∗(F ∧ F ) =
1
4
Fµν Fαβ

∗(dxµ ∧ dxν ∧ dxα ∧ dxβ) =
1
4
Fµν Fαβ ε

µναβ = P ,

(2.78)
∗(F ∧ ∗F ) =

1
4
Fµν

∗Fαβ ε
µναβ =

1
8
Fµν F

γδ εαβγδ ε
µναβ = −1

2
Fµν F

µν = −S .

(2.79)
It is easy to verify that ∗(∗F ∧ ∗F ) = −∗(F ∧ F ). Therefore, the 0-forms
∗(F ∧F ) and ∗(F ∧∗F ) (or, equivalently, S and P) provide the desired intrinsic
description of F .

We now express S and P in terms of E and B. With the definitions of E
and B, (2.38)–(2.40), and the relation between the three- and four-dimensional
Levi-Civita symbols (2.49), we find

FµνF
µν = 2(B2 − E2), Fµν

∗Fµν = −4E · B , (2.80)

and so
S = B2 − E2, P = −2E · B . (2.81)

Because E and B behave as polar and axial vectors under space-reflections,
S is a genuine scalar, and P is a pseudoscalar.

If E and B are orthogonal in some Lorentz frame, they are orthogonal in
any frame, because E ·B = 0 is an invariant condition. If E and B have equal
magnitudes in one frame of reference, |E| = |B|, they have equal magnitudes
in all frames of reference, as the invariant condition B2−E2 = 0 suggests. The
inequality S < 0 is also Lorentz-invariant, hence the condition |E| > |B| in
some frame of reference remains unchanged in all frames of reference. Lorentz
transformations can take E and B to vectors of any magnitude and direction
subject to the condition that S and P are fixed.

Thus, all states of the electromagnetic field can be divided into three
classes:

(A) P = 0, S �= 0.

If S < 0, or, equivalently, |E| > |B|, the field is said to be of electric type.
There is a frame of reference such that B = 0 and |E| =

√
−S, that is,

the electromagnetic field is found to be in a pure electric state. If S > 0,
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or, equivalently, |B| > |E|, we have a field of magnetic type. Using Lorentz
transformations one can find a frame of reference such that E = 0, and hence
the field strength is purely magnetic.

(B) P = 0, S = 0.

E and B are equal in magnitude and orthogonal in all frames of reference.
This state is called the null-field state. With Lorentz transformations one can
make the field amplitude |E| = |B| to take any finite value, except that it is
not possible to transform an initial nonzero field to zero (Problem 2.3.4).

(C) P �= 0.

By Lorentz transformations any finite E and B can be obtained consistent
with given values of S and P. In particular, there exists a frame of reference
such that E and B are parallel.

Given P = 0, the electromagnetic field strength can be represented as

Fµν = fµgν − fνgµ , (2.82)

or
F = f ∧ g , (2.83)

with some four-vectors fµ and gµ. Therefore, in this case, the 2-form F is de-
composable. The decomposability of F is sufficient to render P vanishing, as is
apparent from the identity εαβγδf

αgβfγgδ = 0. Furthermore, the decompos-
ability of F is necessary for P to be zero. This can be proved by contradiction,
assuming that E and B, appearing in the canonical decomposition (2.74), are
both nonzero. Indeed, P = 0 is equivalent to ∗(F ∧ F ) = −2EB = 0, which
runs counter to our assumption.

Thus, classes A and B are characterized by a decomposable 2-form F .
Another way of saying this is that a tetrad eµ

0 , eµ
1 , eµ

2 , eµ
3 can be found, such

that the 2-form
F = E e0 ∧ e1 (2.84)

corresponds to a field of electric type, the 2-form

F = B e2 ∧ e3 (2.85)

corresponds to a field of magnetic type, and the 2-form

F = E (e0 + e2) ∧ e1 . (2.86)

corresponds to a null field.
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Expressions (2.81) suggest that the combination E + iB may be adapt-
able to an intrinsic description of the electromagnetic field. Consider a three-
dimensional vector space C3 composed of complex vectors

Z = E + iB . (2.87)

We define a complex quadratic form on C3

Z2 =
3∑

i=1

ZiZi = E2 − B2 + 2iE · B . (2.88)

Notice that (2.88) can not be interpreted as a metric because it is not real-
valued (unlike the Hilbert scalar product Z · Z̄). However, this quadratic form
is advantageous in constructing quantities invariant under complex orthogo-
nal transformations of the space C3. These transformations leave the magni-
tude of the complex vector Z2 (together with its real and imaginary parts,
ReZ2 = −S and ImZ2 = −P) unchanged and hence are associated with lin-
ear transformations of Minkowski space which leave S and P unaltered, the
Lorentz group transformations.

Let us turn to the case P �= 0. We take the vector Z to be Z = Zn, with
n being a unit complex vector, n2 = 1, and Z its magnitude. Rotating n,
one can convert it to another unit vector, specifically, to that aligned with a
real axis, say, e1. We write Z = E1 + iB1. Upon rotation of the initial vector
Z, we have Z′ = E′ + iB′ = (E1 + iB1) e1. This means that E′ and B′ are
parallel (aligned with the x1-axis), E′ = E1e1, and B′ = B1e1. Therefore, the
canonical 2-form

F = E e0 ∧ e1 −B e2 ∧ e3 , (2.89)

where vectors eµ
0 , eµ

1 , eµ
2 , eµ

3 are orthonormalized, corresponds to the field
states of the class C.

Problem 2.3.1. The second rank tensor Iµν constructed from n tensors Fµν ,
with all indices being sequentially contracted, except for the forward index of
the first tensor and the end index of the last tensor,

Iµν = F α1
µ F α2

α1
. . . F αn

αn−1
Fαnν , (2.90)

is called the nth power monomial of the tensor Fµν . Contraction of the re-
maining indices gives the invariant

I = F α1
µ F α2

α1
. . . F αn

αn−1
F µ

αn
. (2.91)

Show that any odd-power monomial of an antisymmetric tensor Fµν is an anti-
symmetric tensor Iµν = −Iνµ. The invariant I resulting from such a monomial
is zero. By contrast, any even-power monomial of an antisymmetric tensor Fµν

is a symmetric tensor. Thus, nonzero invariants I correspond to even-power
monomials.
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Problem 2.3.2. Let Aµν and Bµν be antisymmetric tensors. Prove the iden-
tities

∗Aαβ
∗Bαβ = −AαβB

αβ , (2.92)

1
2
ηµν AαβB

αβ = ∗Aµα
∗Bα

ν −AµαB
α
ν , (2.93)

∗(AµαB
α
ν −BµαA

α
ν) = ∗AµαB

α
ν −Bµα

∗Aα
ν = Aµα

∗Bα
ν − ∗BµαA

α
ν , (2.94)

AµαBαβ A
βν = −1

2
Aµν (Aαβ B

αβ) − 1
4

∗Bµν (Aαβ
∗Aαβ) , (2.95)

specifically,

Fµα
∗Fαν = −1

2
P δν

µ , (2.96)

∗Fµα
∗Fαν − Fµα F

αν = S δν
µ . (2.97)

Problem 2.3.3. Show that any invariant constructed from antisymmetric
tensors Fµν and ∗Fµν is expressible in terms of S and P.

Hint Consider the 2-form F in the canonical basis (2.74). In this basis,

∗F = B e0 ∧ e1 + E e2 ∧ e3 . (2.98)

It follows

∗(F ∧ F ) = −2EB = P, ∗(F ∧ ∗F ) = E2 −B2 = −S , (2.99)

and so

E2 =
1
2

(√
S2 + P2 − S

)
, B2 =

1
2

(√
S2 + P2 + S

)
. (2.100)

Any invariant built from Fµν and ∗Fµν can be expressed in terms of the coef-
ficients E and B of the canonical basis, hence in terms of S and P.

Problem 2.3.4. Let P = 0 and S = 0. Show that the amplitude of the null
field |E| = |B| might be rendered arbitrary by appropriate Lorentz transfor-
mation, with the only reservation that there is no frame of reference where
E = B = 0.

2.4 Motion of a Charged Particle in Constant
and Uniform Electromagnetic Fields

The behavior of a charged particle in a given electromagnetic field is governed
by the Lorentz force equation

m
dvµ

ds
= e vνF

µν . (2.101)
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Let the field be constant and homogeneous. Our concern here is only with
fields of the class A. We outline a regular method of solution to the Cauchy
problem for the equation of motion (2.101) with constant Fµν . The same
technique can be applied to the case of constant homogeneous fields of the
classes B and C (Problems 2.4.1 and 2.4.3), and even to some varying fields
(Problem 2.4.2). We assume for a while that the effect of the particle on the
field is neglible.

We begin with a field F of electric type defined in (2.84), or, in tensor
notation,

Fµν = E (eµ
0e

ν
1 − eν

0e
µ
1 ) (2.102)

where eµ
0 and eµ

1 are respectively timelike and spacelike basis vectors, e20 = 1,
e21 = −1, e0 · e1 = 0. We choose eµ

0 for the time axis; then the field is pure
electric, and E is parallel to the x1-axis.

At the initial instant, we put

vµ(0) = eµ
0 Γ + eµ

2 ΓV (2.103)

where V is the initial velocity parallel to the x2-axis, and Γ is the correspond-
ing Lorentz factor

Γ =
(
1 − V 2

)− 1
2 . (2.104)

Note that (2.103) is nothing but a covariant form of the decomposition vµ =
(γ, γv).

Knowledge of the driving force and the initial velocity suggest that the
particle will move in the plane of the vectors eµ

1 and eµ
2 , and thus the four-

velocity at an arbitrary instant s takes the form

vµ(s) = θ eµ
0 − η eµ

1 − ζ eµ
2 . (2.105)

The coefficients θ, η, and ζ can be expressed as projections of the four-velocity
on the basis vectors,

θ = v · e0, η = v · e1, ζ = v · e2 . (2.106)

They are unknown functions of the proper time, θ(s), η(s), and ζ(s). Com-
paring (2.105) and (2.103), we find

θ(0) = Γ, η(0) = 0, ζ(0) = −ΓV . (2.107)

By (2.102) and (2.105), equation (2.101) becomes

v̇µ = Ω (η eµ
0 − θ eµ

1 ) (2.108)

where
Ω =

eE

m
. (2.109)

We take the scalar products of (2.108) with eµ
0 , eµ

1 , and eµ
2 , to give
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θ̇ = Ω η , (2.110)

η̇ = Ω θ , (2.111)

ζ̇ = 0 . (2.112)

The general solution to (2.112) is ζ = const. With the initial condition for
ζ, (2.107), we obtain

ζ = −ΓV . (2.113)

Introduce new variables

q = θ + η, p = θ − η . (2.114)

Adding (2.110) and (2.111), we get

q̇ = Ω q . (2.115)

The solution to this equation, taking into account the initial data for θ and
η, (2.107), is

q(s) = Γ exp(Ωs) . (2.116)

To find p(s), we note that the four-velocity at each instant is a unit vector,
v2 = 1, and so

v2 = θ2 − η2 − ζ2 = (θ − η)(θ + η)− ζ2 = pq − Γ 2V 2 = pΓeΩs − Γ 2 + 1 = 1 .
(2.117)

Here, we used (2.114), (2.113), (2.116), and the identity −Γ 2V 2 = 1 − Γ 2. It
follows that

p(s) = Γ exp(−Ωs) . (2.118)

From (2.114), in view of (2.116) and (2.118), we have

θ = Γ cosh(Ωs) , (2.119)

η = Γ sinh(Ωs) . (2.120)

Substituting (2.113), (2.119) and (2.120) in (2.105), we find the four-velocity

vµ(s) = Γ {[eµ
0 cosh(Ωs) − eµ

1 sinh(Ωs)] + eµ
2 V } . (2.121)

When the initial velocity V vanishes, the solution (2.121) describes hyper-
bolic motion. We therefore conclude that if a charged particle enters an infinite
flat capacitor with velocity parallel to lines of force, then it moves through the
capacitor with a uniform acceleration. By contrast, when the initial velocity
points in some transverse direction, we deal with the sum of uniform motion
in this direction and hyperbolic motion in the direction of E.

Differentiating (2.121) and squaring the result, we find that the accelera-
tion in the rest frame is constant, a2 = −Γ 2Ω2.
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Integration of (2.121) gives the world line

zµ(s) = zµ(0) + Γ
{
Ω−1 [eµ

0 sinh(Ωs) − eµ
1 cosh(Ωs)] + eµ

2 V s
}
. (2.122)

The dependence of the coordinates z1 and z2 upon the proper time could be
read from this expression:

z1 = −Ω−1Γ cosh(Ωs), z2 = ΓV s , (2.123)

where, for the sake of simplicity, the initial values of z1(0) and z2(0) are put
to zero. Expressing s via z2 and substituting it into the preceding relation,
we obtain the trajectory

z1 = −Ω−1Γ cosh
(
Ω

ΓV
z2

)
. (2.124)

A distinctive feature of the Cauchy problem in relativistic mechanics,
which is absent from Newtonian mechanics, is that the dynamics is always
constrained. Turning to the motion under discussion, if the vector vµ is drawn
from the origin, then the endpoint of vµ will always lie on the forward hy-
perboloid v2 = 1, v0 > 0, tracing out a trajectory across this surface. In
some cases, the constraint alleviates the problem, as in the above example;
every so often, it plagues the analysis; and sometimes, one manages to choose
appropriate variables allowing for the constraint automatically.

We now consider the motion of a particle in a constant homogeneous field
of magnetic type. This field is specified by the 2-form F defined in (2.85), or
the tensor

Fµν = B (eµ
2e

ν
3 − eν

2e
µ
3 ) (2.125)

where eµ
2 and eµ

2 are orthonormal spacelike basis vectors, e22 = e23 = −1,
e2 · e3 = 0. In a frame of reference where eµ

0 is taken as the time axis, and
eµ
2 and eµ

2 are space vectors, the field is pure magnetic, with the magnetic
induction B being parallel to the x1-axis.

Let the initial four-velocity be

vµ(0) = eµ
0 Γ + Γ

(
eµ
1 V‖ + eµ

2 V⊥
)

(2.126)

where V‖ and V⊥ are the initial velocity projections on the x1- and x2-axes,
and

Γ =
(
1 − V 2

‖ − V 2
⊥

)− 1
2
. (2.127)

The four-velocity at an arbitrary instant s is

vµ(s) = θ eµ
0 − η eµ

1 − ζ eµ
2 − ξ eµ

3 (2.128)

where
θ = v · e0, η = v · e1, ζ = v · e2, ξ = v · e3 . (2.129)
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Comparing (2.128) and (2.126), we find the initial data

θ(0) = Γ, η(0) = −ΓV‖, ζ(0) = −ΓV⊥, ξ(0) = 0 . (2.130)

By (2.125) and (2.128), equation (2.101) becomes

v̇µ = ω (ξ eµ
2 − ζ eµ

3 ) (2.131)

where
ω =

eB

m
. (2.132)

We take the scalar product of (2.131) with eµ
0 , eµ

1 , eµ
2 , and eµ

3 , to yield

θ̇ = 0 , (2.133)

η̇ = 0 , (2.134)

ζ̇ = −ω ξ , (2.135)

ξ̇ = ω ζ . (2.136)

The solutions to (2.133) and (2.134), taking into account the initial data
for θ and η, (2.130), are

θ = Γ, η = −ΓV‖ . (2.137)

Introduce a new variable

x = ζ + iξ . (2.138)

Combining (2.135) and (2.136), we arrive at

ẋ = iω x . (2.139)

The solution to this equation, allowing for the initial data for ζ and ξ, (2.130),
is

x(s) = −(ΓV⊥) exp(iωs) . (2.140)

Separating real and imaginary parts of (2.140), we obtain

ζ = −(ΓV⊥) cos(ωs) , (2.141)

ξ = −(ΓV⊥) sin(ωs) . (2.142)

By (2.137), (2.141), and (2.142), the four-velocity (2.128) becomes

vµ(s) = Γ
{
eµ
0 + eµ

1 V‖ + V⊥ [eµ
2 cos(ωs) + eµ

3 sin(ωs)]
}
. (2.143)

As pointed out above, (2.143) is a covariant expression of the decomposi-
tion vµ = (γ, γv). In particular, the time component γ equals the coefficient
of eµ

0 . We see from (2.143) that γ does not vary with time; γ takes its initial
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value Γ . This means that energy of a charged particle moving in a constant
homogeneous magnetic field is constant, ε = mΓ .

Differentiating (2.143) and squaring the result, we find that the accelera-
tion in the rest frame is constant, a2 = −(ΓV⊥ω)2.

Integration of (2.143) gives

zµ(s) = zµ(0) +
(
eµ
0 + eµ

1 V‖
)
Γs+R [eµ

2 sin(ωs) − eµ
3 cos(ωs)] , (2.144)

where
R =

ΓV⊥
ω

. (2.145)

The world line (2.144) is an infinite timelike helix, starting in the remote
past and extending to the far future. The axis of the helix is inclined to the
basis vector eµ

0 at the angle α found from tanα = V‖. All turns of the helix are
identical. It follows that the particle moves uniformly at the velocity V‖ along
the magnetic field B, and orbits in a circle of radius R with cyclic frequency
ω over the plane with normal B.

Problem 2.4.1. Determine the world line of a particle in a constant homoge-
neous null field defined in (2.86). At the initial instant, the particle is at rest
at the origin. Find the particle energy ε. Find the acceleration squared in the
rest frame.

Answer

zµ(s) = eµ
0

(
w2s3

6
+ s

)
− eµ

1

w s2

2
+ eµ

2

w2s3

6
, w =

eE

m
;

ε = m (v · e0) = m

(
1 +

w2s2

2

)
; a2 = −w2 . (2.146)

Problem 2.4.2. Determine the world line of a charged particle in a plane-
wave field. The electromagnetic field is F = k ∧ e1 cosσ where kµ is a fixed
null vector, and σ = k ·x (for more detail see Sect. 4.3). For simplicity, we put
kµ = Ω eµ

+ = Ω(eµ
0 + eµ

2 ) where Ω = eE/m. At the initial instant, the particle
rests at the origin. Find the particle energy ε. Find the acceleration squared
in the rest frame.

Answer

zµ(s) = eµ
0s+

1
4
eµ
+

[
s− sin(2Ωs)

2Ω

]
+ eµ

1

cos(Ωs) − 1
Ω

;

ε = m (v · e0) = m

[
1 +

1
2

sin2(Ωs)
]

; a2 = −Ω2 cos2(Ωs) . (2.147)

Hint One can observe that k · f = 0. It follows that k · v = const, which, in
view of the initial data, gives k · v = Ω, and so σ = k · z = Ωs.
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Problem 2.4.3. Determine the motion of a particle in constant homogeneous
parallel electric and magnetic fields as defined in (2.89). At the initial instant,
the particle moves at the speed V along the x2-axis. Find the particle energy
ε. Find the acceleration squared in the rest frame.

Answer

zµ(s) = zµ(0)+ΓΩ−1[eµ
0 sinh(Ωs)−eµ

1 cosh(Ωs)]+R [eµ
2 sin(ωs)+eµ

3 cos(ωs)],

ε = m (v · e0) = mΓ cosh(Ωs), a2 = −Γ 2(Ω2 + V 2ω2) , (2.148)

where Ω, ω, and R are given, respectively, by (2.109), (2.132), and (2.145).

2.5 The Principle of Least Action. Symmetries
and Conservation Laws

As already noted in Sect. 2.2, particles interact with each other via interme-
diate agents, fields. Mathematically, fields are continuous distributions over
space. Local variations of the field state propagate at a rate lower than or
equal to the speed of light. Therefore, fields can be thought of as systems
with infinite degrees of freedom. We will embark on a study of field dynamics
in the next chapter. For now, we restrict our discussion to the Lagrangian for-
malism of particles, considering fields as external effects with some prescribed
properties. Clearly, such a description is incomplete; we will revert to the La-
grangian description of closed systems involving both particles and fields on
an equal footing in Chap. 5.

Given a mechanical system with n degrees of freedom, configurations of
this system are determined by n generalized coordinates qa where a runs from 1
to n. In the simplest case, we use Cartesian coordinates. However, qa need not
be Cartesian, one may utilize any curvilinear coordinates which are well suited
for the constraints involved. For example, the Kepler problem is conveniently
expressed by polar coordinates. One of merits of the Lagrangian formalism is
that it offers a unified description for any choice of generalized coordinates.
A state of a given system is specified by its position qa = (q1, . . . , qn), a point
in the configuration space Q, and its velocity q̇a = dqa/dt = (q̇1, . . . , q̇n), an
element of a vector space of dimension n tangent to the manifold Q at the
point qa. We assume that all dynamical properties of the system are encoded
into a single function L(t, q, q̇) called the Lagrangian4. We will suppress the
subscript a and denote coordinates and velocities by q and q̇ whenever this
concise notation leads to no confusion.
4 If the system is affected by an external force, L may depend on t explicitly, not

only through the functions q(t) and q̇(t). In addition, we will see (Problem 2.5.7)
that the use of t-dependent Lagrangians brings the problem of motion of damped
systems within reach of methods of the calculus of variation.
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One may add time to the configuration space to yield the event space TQ
whose points are specified by n+1 coordinates (t, q). The system traces out a
world line in the event space during the course of its evolution. Let (t1, q1) and
(t2, q2) be two arbitrary points of TQ. They can be connected by a multitude
of paths. Let these paths be parametrized by time, q = q(t). We define the
functional called the action

S =
∫ t2

t1

dtL(t, q, q̇) (2.149)

on a set of smooth curves connecting the points (t1, q1) and (t2, q2).
We now proceed to discuss two central issues of the calculus of variation

known as the principle of least action and Noether’s first theorem. Before
going into their precise formulation, we derive a general expression for small
variations of the action.

The net result of our analysis should not depend on the path parame-
trization. In relativistic problems it will be convenient to promote time to the
status of a dynamical variable and denote it by q0. Then t in (2.149) is to be
understood as an arbitrary invariant parameter of evolution, q a point in the
event space with coordinates (q0, q1, . . . , qn), and q̇ a vector tangent to the
world line with components (q̇0, q̇1, . . . , q̇n).

Consider a change from the given path q(t) to some contiguous path

q′(t′) = q(t) +∆q . (2.150)

The total coordinate variation

∆q = q′(t′) − q(t) (2.151)

is assumed to be small but otherwise arbitrary.
In general, a passage from one world line to another is possible not only

at a fixed instant t, but also at the instant t′ separated from t by a short time
interval,

t′ = t+∆t . (2.152)

We may separate the ‘transverse part’ of the total coordinate variation corre-
sponding to the change from one curve to another at the same t,

δq = q′(t) − q(t) . (2.153)

This quantity is usually called the local coordinate variation. We put

δq(t) = ε χ(t) (2.154)

where ε is a small parameter, and χ(t) an arbitrary smooth function. Geomet-
rically, the local variation δq results from the total variation ∆q by deleting
its ‘longitudinal part’ which is a displacement along the initial world line over
the time interval ∆t,
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δq = ∆q − q̇∆t . (2.155)

Indeed, rewriting (2.151) as

∆q = [q′(t′) − q(t′)] + [q(t′) − q(t)] , (2.156)

and taking into account (2.153), we find that the expressions in the square
brackets are respectively δq and q̇∆t up to terms of the second order in ε.

It is clear from the definition (2.153) that the operation δ commutes with
differentiation with respect to t,

δ
d

dt
=

d

dt
δ . (2.157)

By analogy with (2.155) we can write the local variation of the velocity

δq̇ = ∆q̇ − q̈ ∆t . (2.158)

We impose the condition that the functional form of the Lagrangian is
unchanged,

L′(t′, q′, q̇′) = L(t′, q′, q̇′) . (2.159)

Owing to this condition, the total Lagrangian variation is

∆L = L′(t′, q′, q̇′) − L(t, q, q̇) =
∂L

∂t
∆t+

∂L

∂qa
∆qa +

∂L

∂q̇a
∆q̇a . (2.160)

We sum over indices a (from 1 to n or n + 1, depending on whether the
configuration space Q or event space TQ is concerned) when they appear
twice, without writing the summation symbol. We separate the local variation
in (2.160) using (2.155) and (2.158),

∆L =
(
∂L

∂t
+
∂L

∂qa
q̇a +

∂L

∂q̇a
q̈a

)
∆t+

∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a . (2.161)

With (2.157), the last term can be recast as

∂L

∂q̇
δq̇ =

∂L

∂q̇

d

dt
δq =

d

dt

(
∂L

∂q̇
δq

)
− δq

d

dt

∂L

∂q̇
. (2.162)

Thus,

∆L =
dL

dt
∆t+

d

dt

(
∂L

∂q̇a
δqa

)
+
[
∂L

∂qa
− d

dt

(
∂L

∂q̇a

)]
δqa , (2.163)

where
dL

dt
=
∂L

∂t
+
∂L

∂qa
q̇a +

∂L

∂q̇a
q̈a . (2.164)

The expression in the square brackets of (2.163) will play an important
role in the subsequent discussion. We call it the Eulerian and denote
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Ea =
∂L

∂qa
− d

dt

∂L

∂q̇a
. (2.165)

The general variation of the action, due to variations of qa and t, is

∆S =
∫ t′2

t′1

dt′ L(t′, q′, q̇′) −
∫ t2

t1

dtL(t, q, q̇) . (2.166)

This variation of the action may be considered as arising from two sources,
namely, the Lagrangian variation, and the variation of the integration region,

∆S =
∫ t2

t1

dt∆L+
∫ t2

t1

dt
d∆t

dt
L . (2.167)

Substitution of (2.163)–(2.165) and (2.155) in (2.167) gives

∆S =
∫ t2

t1

dt

{
d

dt

[
L∆t+

∂L

∂q̇a
(∆qa − q̇a∆t)

]
+ Eaδqa

}
. (2.168)

We define the momentum conjugate to the coordinate qa

pa =
∂L

∂q̇a
, (2.169)

and the Hamiltonian
H = paq̇a − L . (2.170)

With these definitions, the general variation of the action (2.168) becomes

∆S =
∫ t2

t1

dt

[
d

dt
(pa∆qa −H∆t) + Eaδqa

]
. (2.171)

Finally,

∆S = (pa∆qa −H∆t)
∣∣∣t2
t1

+
∫ t2

t1

dt Eaδqa . (2.172)

We now turn to the following problem of the calculus of variations: find a
minimum of the action S on a set of smooth curves with fixed endpoints. The
first term of (2.172) is zero since we require that variations of coordinates be
vanishing at the endpoints, ∆qa|t1 = ∆qa|t2 = 0, and the integration limits
fixed, ∆t|t1 = ∆t|t2 = 0. For S to be extremal, it is necessary that

(
∂S

∂ε

)
ε=0

= 0 . (2.173)

By (2.154), ∫ t2

t1

dt Ea(q)χa(t) = 0 . (2.174)
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Recall that the function χa(t) is arbitrary. Therefore,

Ea(q) = 0 . (2.175)

Indeed, on putting χa(t) = Ba δ(t− t∗) where Ba is some constant vector, and
t1 < t∗ < t2, it follows from (2.174) that Ea(q(t∗)) = 0. Since t∗ is arbitrary,
the pointwise vanishing of Ea can be established everywhere in the interval
(t1, t2).

We come to Hamilton’s principle which reads: let the action of a given
system be minimal on some world line connecting two fixed points in the event
space, then this world line is described by the equations

d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0 , (2.176)

and the actual motion of the system proceeds along this world line.
Another name of this statement is the principle of least action. The behav-

ior of the system with Lagrangian L is governed by the differential equations
(2.176) which are called the Euler–Lagrange equations.

It is evident that (2.173) ensures an extremum, rather than minimum, of
the action. In general, solutions to the Euler–Lagrange equations qa(t) show
not a local minimum but only a saddle point of the action. This is the reason
for the name extremals assigned to solutions of (2.176). Note, however, that
the physical content of this principle does not amount to the condition (2.173).
In fact, we endeavor to construct the Lagrangian in such a way as to ensure
the availability of solutions minimizing the action.

Since the Lagrangian is a function of only qa and q̇a but is independent of
higher derivatives, (2.176) comprises a set of ordinary differential equations of
second order with the q’s as unknown functions. To set up a Cauchy problem
for these equations, initial data for the coordinates qa and velocities q̇a at
some initial instant must be given. With this in mind, the state of the system
is specified by (q1, . . . , qn) and (q̇1, . . . , q̇n).

If, on the other hand, the Lagrangian is assumed to involve higher deriv-
atives, the system is called rigid. To specify states of a rigid system, the vari-
ables qa and q̇a must be supplemented with higher derivatives. Some aspect
of the rigid dynamics will be reviewed in Sect. 10.1.

Using the definition of the momentum (2.169), the Euler–Lagrange equa-
tions (2.176) can be rewritten in the form reminiscent of Newton’s second
law,

ṗa =
∂L

∂qa
. (2.177)

In nonrelativistic mechanics, the Lagrangian is the difference between kinetic
and potential energy, L = T − U . A close agreement of (2.177) and Newton’s
second law is attained when T is independent of q, and U is independent of q̇.
To illustrate, in rectilinear coordinates qi = zi, the kinetic energy of a particle
is T = 1

2mv2, and if U = U(z), the Euler–Lagrange equations (2.177) become
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m v̇i = −∇iU . (2.178)

In curvilinear coordinates, kinetic energy is q-dependent,

T (q, q̇) =
1
2
mab(q)q̇aq̇b , (2.179)

where the symmetric tensor mab = mba can be treated as the metric in the
configuration space Q. In the general case, U depends not only on q, but
also on q̇, and hence can not be referred to as ‘potential energy’. As we will
see below, the term of the Lagrangian responsible for the electromagnetic
interaction is just written as U = U(q, q̇).

Replacing L by

L+
d

dt
f(t, q) , (2.180)

where f(t, q) is an arbitrary smooth function, leaves the Euler–Lagrange equa-
tions (2.176) unaffected. Indeed, this modifies S by the additional terms
f(t2, q2)−f(t1, q1). However, Hamilton’s principle requires that the endpoints
be subjected to no variation, hence the additional terms of S do not contribute
to Ea(q) (for another argument see Problem 2.5.4).

We see that a given system is specified by the entire class of Lagrangians
related to each other by the transformation (2.180) with arbitrary f(t, q).
If the dynamical variables qa are subjected to a canonical transformation,
qa = qa(Qb), then the new dynamical equations expressed in terms of Q’s are
a linear combination of the initial Euler–Lagrange equations, because

δS

δQa
=
δS

δqb

∂qb
∂Qa

= 0 . (2.181)

Thus, the Lagrangian Λ(Q, Q̇) defined by the equation Λ(Q, Q̇)=L[q(Q), q̇(Q)]
provides an equivalent description of the given system.

If the Hamiltonian H, rather than the Lagrangian L, is taken as a basic
quantity where complete dynamical information of a given system is encoded,
then the canonical, or Hamiltonian, formalism must be developed.

The Lagrangian formalism can be easily arranged for the description of a
relativistic particle. We identify the particle position at a given instant with
a point zµ of the event space TQ equipped with the Minkowski space metric.
The world line zµ(τ) should be regarded as a function of an arbitrary time
parameter τ , and q̇a a vector tangent to the world line, żµ = dzµ/dτ . We take
intersection points of the world line and two parallel spacelike hyperplanes as
the endpoints zµ(τ1) and zµ(τ2) of the relativistic variational problem. The
Euler–Lagrange equations (2.176) become

d

dτ

∂L

∂żµ
− ∂L

∂zµ
= 0 . (2.182)

Note that we consider only infinite timelike or lightlike curves as the world
lines to be tested. The relevance of this class of world lines to the least action
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principle is quite apparent. We abandon spacelike curves because the least
action principle with endpoints (t1, q1) and (t2, q2) separated by arbitrary
timelike intervals defies general formulation for such world lines. In addition,
we require that the curves be smooth. Neglecting to do this would cause the
occurrence of V - and Λ-shaped world lines, as in Fig. 3.3. It is clear, however,
that a spacelike hyperplane may intersect a timelike V -shaped curve twice,
otherwise it fails to intersect it at all. The same is true for Λ-shaped curves.
Therefore, an action with endpoints separated by timelike intervals cannot be
unambiguously defined for such world lines5. This subject is pursued further
in Sect. 3.2, where an extra reason for exclusion of V - and Λ-shaped curves is
adduced, charge conservation.

We now look into the relationship between conserved quantities (called
alternatively integrals of motion or constants of motion) and symmetries of
the action. Consider a p-parameter group of infinitesimal transformations G:

t→ t′ = t+∆t, qa → q′a = qa +∆qa , (2.183)

where ∆t and ∆qa are linear in infinitesimal group parameters. If the action
is left unchanged under (2.183), G is said to be symmetry group.

The Lagrangian L need not be invariant under this transformation, one
may require instead that L be invariant up to a total time derivative,

L(t′, q′, q̇′) = L(t, q, q̇) +
d

dt
l(q) , (2.184)

but, most commonly, the Lagrangian is taken to be precisely invariant,

L(t′, q′, q̇′) = L(t, q, q̇) . (2.185)

Since our interest is with quantities which remain constant throughout the
motion of the system, those are expressed in terms of solutions to the Euler–
Lagrange equations (2.176). For Ea(q) = 0, the variation of the action (2.172)
becomes

∆S = (pa∆qa −H∆t)
∣∣t2
t1
. (2.186)

This expression makes it clear that ∆qa appearing in (2.183) are unrelated to
the world line variations, and hence ∆S represents an increment of the action
as a function of its endpoints S = S(t1, q1; t2, q2), rather than the functional
with fixed endpoints.

The invariance of S under the transformation (2.183) means that ∆S = 0,
and so
5 We are not precluded from using a timelike curve with ‘harmless’ cusps which

leave the orientation of timelike world lines unaltered. The least action principle
for such world lines would be not a matter of concern. So, one may prefer to
weaken the smoothness requirement, and regard such sectionally smooth, future
oriented, curves as allowed world lines. However, this extension of the class of
allowed world lines seems superfluous in the classical context.
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(pa∆qa −H∆t) |t2 = (pa∆qa −H∆t) |t1 . (2.187)

Since t1 and t2 are arbitrary, pa∆qa−H∆t does not depend on time at all. We
are now in position to formulate the first of two theorems by Emmy Noether
(1918): let the action be invariant under a continuous group of transformations
(2.183), then there is a conserved quantity,

εJ = pa∆qa −H∆t , (2.188)

which is built from functions qa(t) obeying the Euler–Lagrange equations
(2.176). Thus, Noether’s first theorem reveals explicitly a conserved quan-
tity J which is associated with a given symmetry group6.

To illustrate, we consider the following examples:

(i) ∆t = 0, while Cartesian coordinates of particles zI (index I labels parti-
cles) are translated by an arbitrary infinitesimal vector c,

zI → z′I = zI + c , (2.189)

that is, ∆zI = c. We apply (2.189) to (2.188) to give
∑

pI · c = const . (2.190)

(From this point on, the summation Σ in each case extends over all the
particles involved.) Since c is a fixed vector,

p =
∑

pI = const . (2.191)

We thus recognize that the linear momentum p is conserved due to the
invariance of S under space translations (2.189), manifesting spatial ho-
mogeneity ‘all positions are equivalent’.

(ii) ∆qa = 0, while t is translated by a small amount ε,

t→ t′ = t+ ε , (2.192)

that is, ∆t = ε. Let the Lagrangian be explicitly time-independent. If
qa(t) are extremals, the Lagrangian is invariant under (2.192) up to a
total time derivative. Because dt is invariant under constant translations
of t, ∆S = 0. Then, by (2.188), we have

H =
∑

pI · vI − L = const . (2.193)

Whenever the Hamiltonian H is conserved, it is regarded as the total
energy and denoted by ε. Thus, the lack of explicit t-dependence of the

6 It is well to bear in mind that the action S is required to be invariant under
symmetry groups when it is expressed in terms of arbitrary qa(t) and q̇a(t), while
J in (2.188) is constant only on extremals.
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Lagrangian, which can be viewed as time homogeneity ‘all instants are
equivalent’, implies energy conservation.

It is conceivable that a Lagrangian might be invariant under transla-
tions of curvilinear coordinates qa7. Generally such a translation invari-
ance is unrelated to space homogeneity, and the corresponding conserved
quantity pa can not be interpreted as a linear momentum. For example,
if the Lagrangian of a particle in a centrally symmetric field is expressed
in terms of polar coordinates r, ϕ (Problem 2.5.2), the dependence on ϕ
is absent from it, implying pϕ = const. This is a manifestation of spa-
tial isotropy ‘all directions are equivalent’, and its associated conserved
quantity is interpreted as angular momentum.

However, a direct linkage between the angular momentum conserva-
tion and spatial isotropy becomes quite evident when we use rectilinear
coordinates.

(iii) ∆t = 0, while rectilinear coordinates of particles are rotated around some
axis by a small angle, zI → z′I = zI +∆zI , where

(∆zI)i = ωij zI
j . (2.194)

Because z′I
2 = z2

I , the infinitesimal rotation parameters ωij form an
antisymmetric tensor,

ωij = −ωji . (2.195)

Let the Lagrangian be invariant under this rotation. Applying (2.194)
and (2.195) to (2.188), we have

ωij

∑
pI

i zI
j =

1
2
ωij

∑(
pI

i zI
j − pI

j zI
i

)
= const . (2.196)

Thus, the conservation of the angular momentum

Lij =
∑(

zI
i p

I
j − zI

j p
I
i

)
(2.197)

is a consequence of rotational symmetry. In vector notation, the angular
momentum takes a familiar form

L =
∑

rI × pI . (2.198)

We digress for a while and note that both the action S and the angular
momentum L have dimension [l][m][v]. In quantum physics, L takes values
which are integral multiples of Planck’s constant �. A great notational sim-
plification has been gained by adopting a system of units in which the speed
of light and Planck’s constant are set equal to 1, the so-called natural units.
With the help of these units, it is possible to cleanse the equations of quan-
tum field theory of factors of c and �. All quantities can be reduced to the
7 A case in point is any Lagrangian which does not contain some coordinate qa

explicitly. For such Lagrangians, ∂L/∂qa = 0, and, by (2.177), ṗa = 0, hence
pa = const.
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dimensions of a powers of length by multiplication with the requisite powers
of c and �. It is easy to check that H, p and m have the same dimension while
L is dimensionless in natural units. On the other hand, since [L] = [l][m][v]
and [v] = 1, mass is reciprocal to length. Choosing the unit of distance to
be fm (a contraction of Fermi, or femtometer, 10−15 m), mass is measured
in fm−1. This scale of length is characteristic of subnuclear realm. Although
our concern is with classical theory, we resort to natural units to facilitate di-
mensional arguments and to unify the nomenclature of classical and quantum
descriptions.

If we assume certain constraints on the Lagrangian to be imposed, the
converse of Noether’s first theorem holds (Problem 2.5.5), which states that
any constant of motion is associated with a symmetry.

To extend these results to the relativistic domain, we first note that space
and time coordinates of a particle are fused here into a single spacetime event
zµ

I . The relativistic counterpart of the symmetry transformation (2.183) is
therefore

zµ
I → z′

µ
I = zµ

I +∆zµ
I , (2.199)

and the proper extension of (2.186) is

∆S =
∑ ∂L

∂żµ
I

∆zµ
I

∣∣∣τ
I
2

τI
1

. (2.200)

Invariance of the action under the transformation (2.199) implies the conser-
vation law

ε J =
∑ ∂L

∂żµ
I

∆zµ
I = const . (2.201)

Let the Lagrangian L be invariant under spacetime translations8

zµ
I → z′

µ
I = zµ

I + εµ , (2.202)

where εµ is an arbitrary infinitesimal vector. Then the total four-momentum

pµ = −
∑ ∂L

∂żµ
I

(2.203)

is conserved. The overall minus sign in (2.203) is introduced in order to relate
this formula to equation (2.169) which defines the spatial component of pµ.

Another example is the infinitesimal Lorentz transformation

zµ
I → z′

µ
I = zµ

I + ωµ
νz

ν
I . (2.204)

Because z′2 = z2, the infinitesimal group parameters consist of an antisym-
metric tensor
8 In general, such Lagrangians do not contain τI explicitly, and depend on only

differences of coordinates of Ith and Jth particles zµ
I − zµ

J .
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ωµν = −ωνµ . (2.205)

Invariance under this group implies the conservation of the total angular mo-
mentum

Mµν =
∑(

zI
µ p

I
ν − zI

ν p
I
µ

)
. (2.206)

The three spatial components Mij are identical to the corresponding compo-
nents of the tensor Lij defined in (2.197). The conservation of remaining three
components M0i means that the velocity of the center of mass of the system
is constant (Problem 2.5.3)

We now take a closer look at the Lagrangian description of a single rel-
ativistic charged particle. Reasoning from Noether’s first theorem, we select
those actions which transform as scalars under the Poincaré group. An ap-
propriate action for a free particle is

SP = −m
∫
dτ
√
żµ żµ (2.207)

where m is some constant. The world line in (2.207) can be parametrized by
any relevant time τ . We may, for instance, take τ to be laboratory time in a
particular Lorentz frame t. Because

dτ =
dτ

dt
dt, żµ =

dzµ

dτ
=
dt

dτ

dzµ

dt
,

dzµ

dt
= (1,v) , (2.208)

expression (2.207) becomes

SP = −m
∫
dt
√

1 − v2 . (2.209)

This action is due to Poincaré and Planck.
From (2.209),

p =
∂L

∂v
=

mv√
1 − v2

. (2.210)

This p is identical to the momentum of a Galilean particle defined in (2.14),
and hence m in (2.209) is a positive constant, the Newtonian mass. This
justifies the overall minus sign in (2.207); otherwise the integral, which actually
represents the length of the path between two points separated by a timelike
interval, would be maximal rather than minimal, for a straight world line
connecting those points.

The action (2.207) can be further generalized to any smooth manifold by
substituting the pseudo-Riemannian metric gµν(x) for the Minkowski space
metric ηµν ,

SP = −m
∫ √

gµν(z) dzµ dzν = −m
∫
ds . (2.211)

The corresponding Euler–Lagrange equations are the geodesic equations
(2.71) for the given metric gµν (Problem 2.5.6).
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We next take into account the interaction of a charged particle with an
electromagnetic field by appending the following term to the action

SS = −e
∫
dτ żµAµ(z) . (2.212)

Here, Aµ is the so-called vector potential of the electromagnetic field. In a
particular Lorentz frame, Aµ = (φ,A). Using (2.208), we write (2.212) as

SS = −e
∫
dt (φ− v · A) . (2.213)

The corresponding Lagrangian is

LS = −e φ+ ev · A . (2.214)

If v = 0, the first term of (2.214) represents potential energy of a particle
of the charge e in electrostatic field. Although the second term defies sim-
ilar interpretation, one can envision (2.214) as the term of the Lagrangian
which is responsible for the interaction between a charged particle and an
electromagnetic field. It is interesting that the Lagrangian (2.214) was origi-
nally discovered by Karl Schwarzschild in 1903, before the advent of special
relativity.

Consider the relativistic Euler–Lagrange equations

dpµ

dτ
= − ∂L

∂zµ
(2.215)

for the Lagrangian

L = LP + LS = −m
√
żµ żµ − eżµAµ , (2.216)

where LP and LS are its free and interaction parts. The four-momentum pµ

conjugate to the four-coordinate zµ is

pµ =
mżµ√
żα żα

+ eAµ . (2.217)

Because the line element ds relates to the differential dτ as

ds =
√
żα żα dτ (2.218)

(recall that ds2 = dzα dzα), we have

żµ

√
żα żα

=
dzµ

ds
= vµ , (2.219)

and, therefore,
pµ = mvµ + eAµ . (2.220)
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Using the identity v2 = 1, we obtain

(p− eA)2 = m2 (2.221)

which is an extension of the relation p2 = m2 allowing for the electromagnetic
interaction.

The τ derivative of Aµ can be expressed in terms of partial derivatives,

d

dτ
Aµ =

dzν

dτ

∂

∂zν
Aµ = żν∂νAµ . (2.222)

This expression can be combined with

− ∂L

∂zµ
= eżν∂µAν (2.223)

to obtain an equation of motion involving the field strength tensor

Fµν = ∂µAν − ∂νAµ . (2.224)

We divide the Euler–Lagrange equations (2.215) by
√
żα żα, and use (2.218),

(2.219), (2.222), (2.223), and (2.224), to give

maµ = evνFµν . (2.225)

We arrive at the equation of motion for a charged particle (2.101) where
the field strength Fµν descended from the vector potential Aµ according to
(2.224).

As the mathematical properties of the vector potential Aµ are reviewed in
Chap. 4, we defer our discussion until then. The only pertinent remark is that
the interaction term (2.212) is expressed in terms of an ‘auxiliary’ variable
Aµ, rather than Fµν , the quantity which characterizes electromagnetic field
states in a direct way.

Problem 2.5.1. Let N nonrelativistic particles experience an instantaneous
mutual interaction, on the same principle as Newtonian action at a distance
gravitation. Show that the sum of all forces applied to these particles is zero,
in particular, for a two-particle system, the forces exerted on these particles
are on the same line, equal, and oppositely directed when the potential energy
U depends on the difference of particle coordinates.

Problem 2.5.2. Express the Lagrangian L for a relativistic particle in a
spherically symmetric instantaneous potential U(r) in terms of polar coordi-
nates r and ϕ. Find from it the conjugate momenta and the Hamiltonian.

Answer

L = −m
√

1 − ṙ2 − r2ϕ̇2 − U(r), pr = mγṙ, pϕ = mγr2ϕ̇ ,

γ = (1 − ṙ2 − r2ϕ̇2)−1/2, H =

√
m2 + p2

r +
p2

ϕ

r2
+ U(r) . (2.226)
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Note that pϕ is identical to the angular momentum L defined in (2.198).

Problem 2.5.3. The total four-momentum Pµ of a closed system is a constant
timelike vector pointing into the future. Taking Pµ for the time axis defines
the center-of-mass (or barycentric) frame.

Show that the conservation of three components M0i of the angular mo-
mentum Mµν implies that the position of the center of mass

R =
∑
εI zI

ε
(2.227)

moves uniformly with the velocity

v =
∑

pI

ε
(2.228)

where ε =
∑
εI is the total energy of this system.

Problem 2.5.4. Verify that

La =
∂

∂qa
− d

dt

∂

∂q̇a
(2.229)

annihilates identically any function which is a total derivative, that is,

La
d

dt
f(t, q) = 0 . (2.230)

Problem 2.5.5. Prove the converse of Noether’s first theorem. The direct
relation between symmetries and conservation laws is that symmetries imply
conservation laws. The converse is that conservation laws imply symmetries.
The direct theorem is valid for any reasonable function L(q, q̇). However, the
converse is more involved, and we must impose some additional restrictions
on the Lagrangian. Consider a Lagrangian which does not depend explicitly
on time, and is nonsingular. That is, the determinant of the Hessian matrix

Hab =
∂2L

∂q̇a∂q̇b
(Hab = Hba) (2.231)

is nonzero, det ‖Hab‖ �= 0. Let J(q, q̇) be a constant of motion, which means
that the equation

d

dt
J = 0 (2.232)

is due to the Euler–Lagrange equations for this system. Suppose also that
J(q, q̇) can be expressed in terms of momenta

pa =
∂L

∂q̇a
(2.233)
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and is homogeneous of first order in these pa. [Recall that F (t) is a homoge-
neous function of nth order if F (kt) = knF (t) for any positive k.] The converse
of Noether’s theorem states: there exists an infinitesimal continuous transfor-
mation q′a = qa + ∆qa corresponding to the constant of motion J such that
the action S is invariant under this transformation. Find ∆qa in an explicit
form. Verify that S is invariant under this transformation.

Answer
∆qa = H−1

ab

∂J

∂q̇b
ε (2.234)

where H−1
ab is the inverse of the Hessian matrix, HabH

−1
bc = δac. To obtain

this result, we proceed from (2.188) with ∆t = 0, differentiate both sides of
it with respect to q̇b, and apply H−1

ab . Hab is, by definition, ∂pa/∂q̇b, hence
H−1

ab = ∂q̇b/∂pa, and ∆qa = (∂J/∂pa)ε. The variation of the action under
this transformation follows from (2.186) with ∆t = 0,

∆S = (pa∆qa) |t2t1 =
(
pa

∂J

∂pb
ε

) ∣∣∣t2
t1

= [J(t2) − J(t1)] ε = 0 . (2.235)

The Euler theorem on homogeneous functions has been used, pa(∂J/∂pa) = J .

Problem 2.5.6. Derive the geodesic equation (2.71) for the metric gµν in a
curved spacetime from the action (2.211).

Problem 2.5.7. Damped oscillator. A one-dimensional harmonic oscillator
with friction is governed by the equation

q̈ + λq̇ + ω2q = 0, λ > 0 . (2.236)

(For simplicity, we consider a particle with unit mass.) The solution to this
equation is

q(t) = Ce−λt/2 sin(Ωt+ φ0), Ω2 = ω2 − λ2

4
. (2.237)

This system is irreversible (that is, the equation of motion is not invariant
under time reversal t→ −t) and nonconservative (that is, its total mechanical
energy is not constant in time). Nevertheless, the equation of motion can be
derived from the action

S =
∫
dt

(
1
2
q̇2 − 1

2
ω2q2

)
eλt . (2.238)

Verify this.
Furthermore, there exists a canonical transformation converting this sys-

tem to one of the following conservative, free of the damping, systems: a
harmonic oscillator, a free particle, and a particle on a potential hill. Show
that the transformation
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Q = eλt/2q (2.239)

yields a new Lagrangian

L′ =
1
2
Q̇2 − 1

2
Ω2Q2 − λ

4
d

dt
Q2 . (2.240)

Because the last term is a total time derivative, it may be ignored. The new
Lagrangian L′ describes either a harmonic oscillator (Ω2 > 0), or a free parti-
cle (Ω2 = 0), or a particle on a potential hill (Ω2 < 0), depending on whether
ω is higher, equal, or lower than λ/2.

An alternative Lagrangian description with the use of complex-valued co-
ordinates is furnished by the action

S =
∫
dt

[
q̇∗q̇ +

λ

2
(q̇∗q − q∗q̇) − ω2q∗q

]
. (2.241)

Find the equations for q and q∗, and solve them. Derive expressions for the
momenta p and p∗ conjugate to the coordinates q and q∗, and for the Hamil-
tonian H. Show that H is conserved, and offer a plausible explanation of this
fact.

Answer
q̈ + λq̇ + ω2q = 0, q̈∗ − λq̇∗ + ω2q∗ = 0; (2.242)

q(t) = C e−λt/2 sin(Ωt+ φ0), q∗(t) = C∗ eλt/2 sin(Ωt+ φ0); (2.243)

p = q̇∗ − λq∗/2, p∗ = q̇ + λq/2; (2.244)

H = p q̇+p∗q̇∗−L = q̇∗q̇+ω2q∗q = (p∗−λq∗/2)(p+λq∗/2)+ω2q∗q . (2.245)

The coordinate q∗ represents a ‘mirror-image’ oscillator with negative fric-
tion. The total energy of the aggregate system, containing both q- and q∗-
subsystems, is conserved since the energy which is lost by the q-subsystem is
gained by the q∗-subsystem. This clearly means that the action comprises a
dissipative part coupled with an accumulative part.

2.6 Reparametrization Invariance

It was stated in Sect. 1.6 that a world line is an equivalence class of parame-
trized curves. By definition, a parametrized curve is a vector function zµ of a
real variable τ which takes values on some interval τ1 ≤ τ ≤ τ2. Let τ be an
increasing function of λ,

τ = τ(λ) , (2.246)

obeying the conditions τ(λ1) = τ1 and τ(λ2) = τ2, then

yµ (λ) = zµ [τ(λ)] (2.247)
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is another parametrization of the given curve. Equations (2.246) and (2.247)
define a reparametrization.

What is the criterion for equivalence of parametrized curves? Two paramet-
rized curves zµ(τ) and yµ (λ) are said to be equivalent if the functional

S =
∫ τ2

τ1

dτ L(z, ż) (2.248)

takes identical values at zµ(τ) and yµ (λ) for any Lagrangian L. In the modern
calculus of variation, the curve C is defined as just such an equivalence class
with reference to a certain zµ(τ).

However, it seems unreasonable to invoke such a refined mathematical
definition. From the geometric point of view, any world line is a rather simple
figure which can be smoothly straightened to the time axis. Observing that
the change of variables (2.246) implies

dτ =
dτ

dλ
dλ , (2.249)

we define a Lagrangian L as acceptable provided that

L [z(τ), ż(τ)] =
dλ

dτ
L [y(λ), ẏ(λ)] . (2.250)

Here, the dot denotes differentiation with respect to the natural argument, τ or
λ. When condition (2.250) holds, the action (2.248) is called reparametrization
invariant.

Because
dzµ

dτ
=
dλ

dτ

dyµ

dλ
, (2.251)

condition (2.250) is met by Lagrangians which are homogeneous functions of
the first order in żµ, as exemplified by L defined in (2.216). Further examples
are adduced below.

Let us discuss some implications of reparametrization invariance. It will be
convenient to restrict our consideration to an infinitesimal reparametrization

δτ = ε(τ) , (2.252)

where ε is an arbitrary smooth function of τ close to zero, for which

ε(τ1) = 0, ε(τ2) = 0 . (2.253)

Infinitesimal transformations of the form (2.252)–(2.253) constitute a
group which may be looked upon as an infinite continuous group. Indeed,
the Fourier expansion

ε(τ) =
∞∑

n=0

cn sin
[
πn (τ − τ1)

T

]
, T = τ2 − τ1 , (2.254)



92 2 Relativistic Mechanics

points clearly to an infinite set of parameters cn. If the action is invariant
under some infinite group, we run into the situation described by Noether’s
second theorem. We now consider the simplest version of this theorem. (For a
generalization see Problem 2.6.6.)

Variation of the evolution parameter (2.252) implies a corresponding vari-
ation of the world line coordinates

δzµ = żµε . (2.255)

Geometrically, (2.252) and (2.255) are an infinitesimal map of the given world
line to the same world line. Hence, differentiation commutes with infinitesimal
reparametrization,

d

dτ
δzµ = δżµ . (2.256)

In response to the reparametrization (2.252), the action (2.248) varies as

δS =
∫
dτ

(
∂L

∂zµ
δzµ +

∂L

∂żµ
δżµ

)
=
∫
dτ

(
∂L

∂zµ
− d

dτ

∂L

∂żµ

)
δzµ =

∫
dτ Eµż

µε ,

(2.257)
where the second equation is obtained through integration by parts, using
(2.253). Let

δS = 0 . (2.258)

Assuming ε to be an arbitrary function of τ , one concludes that

żµEµ = 0 . (2.259)

This equation is a manifestation of Noether’s second theorem which states:
invariance of the action under the transformation group (2.252) involving an
arbitrary infinitesimal function ε implies a linear relation between Eulerians.

The identity (2.259) suggests that Eµ contains the projector
v

⊥ , which
annihilates identically any vector parallel to żµ. Thus, reparametrization in-
variance bears on the projection structure of the basic dynamical law (2.7).

Recall that the projector
v

⊥ arose initially from a completely different origin:
the smooth embedding of Newtonian dynamics into sections of Minkowski
space perpendicular to the world line.

Let us discuss some examples. Reparametrization invariance of the action

S = −
∫
dτ
(
m
√
ż · ż + e ż ·A

)
(2.260)

is rather evident. Is it necessary to choose L as a homogeneous functions of
the first order in żµ if we are to ensure reparametrization invariance of the
action? The answer is: no. Consider the Lagrangian

L = −1
2

(
η ż2 +

m2

η

)
, (2.261)
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which involves an auxiliary dynamical variable η, called the einbein. We as-
sume that η transforms as

δη = ε η̇ − ε̇ η (2.262)

in response to the infinitesimal reparametrization (2.252). Accordingly,

δ

(
1
η

)
=

d

dτ

(
ε

η

)
. (2.263)

Combining (2.262) and (2.263) with the relation

δżµ = z̈µ ε+ żµ ε̇ , (2.264)

stemming from (2.255) and (2.256), one can readily show that the Lagrangian
(2.261) transforms as

δL =
d

dτ
(L ε) . (2.265)

It is then clear that the action

S = −
∫
dτ

[
1
2

(
η ż2 +

m2

η

)
+ e ż ·A

]
(2.266)

is invariant under transformation (2.252) subject to the boundary condition
(2.253).

Varying the action (2.266) with respect to η gives the Euler–Lagrange
equation

ż2 − η−2m2 = 0 . (2.267)

If m �= 0, then the solution to this equation is

η = m (ż · ż)−1/2 . (2.268)

This clarifies the physical meaning of η. If τ is chosen to be the time t in
a particular Lorentz frame, the einbein proves to be identical to energy η =
m/

√
1 − v2, and if we take τ = s, the einbein becomes mass η = m.

From (2.266), we find the four-momentum pµ conjugate to the four-
coordinate zµ,

pµ = η żµ + eAµ . (2.269)

Combining (2.269) with (2.267), we arrive at the constraint

(p− eA)2 −m2 = 0 , (2.270)

which is identical to (2.221).
Varying the action (2.266) with respect to zµ gives the Euler–Lagrange

equation
η z̈µ + η̇ żµ = eżνFµν . (2.271)

It is easy to check that (2.271), with η being given by (2.268), is identical to
(2.225). Furthermore, substitution of (2.268) in (2.266), regains (2.260). The
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actions (2.260) and (2.266) are therefore equivalent in that they give the same
Euler–Lagrange equations.

One may define a generalized Hamiltonian as

H = p · ż + L . (2.272)

This definition differs from that given by (2.170) in the overall minus sign, su-
perimposed on the minus sign of the first term which arises from the definition
of the four-momentum, (2.203). Because the quantity defined in (2.272) is a
Lorentz scalar, it has nothing to do with the energy of the system transforming
as the time component of the four-momentum. The generalized Hamiltonian
corresponding to the action (2.266) is

H =
1
2η
[
(p− eA)2 −m2

]
. (2.273)

This expression is zero due to the constraint (2.270). In the free particle case,
we have the Hamiltonian

H =
1
2η
(
p2 −m2

)
(2.274)

which is also zero. The reason why the generalized Hamiltonians (2.273) and
(2.274) are zero is the reparametrization invariance of the corresponding ac-
tions. Note also that the generalized Hamiltonian resulting from the action
(2.260) is identically zero.

However, the generalized Hamiltonian retains its validity as the generator
of evolution. By this is meant that the canonical equations

żµ =
∂H

∂pµ
, ṗµ = − ∂H

∂zµ
(2.275)

with H given by (2.273) are converted to the equation of motion (2.271),
Problem 2.6.1.

One may further define the Poisson brackets for any two quantities A and
B dependent on zµ and pν in the conventional way:

{A,B} =
∂A

∂zµ

∂B

∂pµ
− ∂A

∂pµ

∂B

∂zµ
. (2.276)

This definition leads immediately to the canonical Poisson brackets

{zα, zβ} = 0, {pα, pβ} = 0, {zα, pβ} = δα
β , (2.277)

and (2.275) becomes

żµ = {zµ,H}, ṗµ = {pµ,H} . (2.278)

We now dwell briefly on the Lagrangian description of a massless Galilean
particle. The action (2.207) is unsuited for particles with m = 0. Indeed, the
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four-momentum pµ derived from the action (2.207) vanishes as m → 0, and
the dynamics proves to be trivial.

By contrast, the action (2.266) is sound for both massive and massless
particles. On putting m = 0, we obtain

S = −
∫
dτ

(
1
2
η ż2 + eż ·A

)
. (2.279)

The variation of S with respect to η gives

ż2 = 0 . (2.280)

Therefore, massless particles move along lightlike world lines. Because the
line element is zero, dz2 = 0, the proper time s is no longer suitable for
parametrization of such curves, and we should look at another variable τ for
the parameter of evolution.

It follows from (2.280) that

ż · z̈ = 0 . (2.281)

Since żµ is a null vector, z̈µ may be either spacelike or null.
The variation of the action (2.279) with respect to zµ gives the equation

of motion for a massless particle which is identical to that for a massive par-
ticle (2.271). Thus, the only distinctive feature of the zero-mass case is the
constraint (2.280). One may suspect that η(τ) is undetermined because this
variable does not appear in (2.280). However, we are entitled to handle the
reparametrization freedom making the dynamical equations as simple as pos-
sible. For some choice of the evolution variable, the einbein can be converted
to a constant, η = η0, Problem 2.6.2. Then (2.271) becomes

η0z̈µ = eżνFµν . (2.282)

For simple external field configurations, it is advisable to apply the technique
developed in the massive case to equation (2.282), Problem 2.6.3.

Charged particles with zero mass do not appear to exist. This fact is rather
strange if we remember that massless particles interact with the Yang–Mills
field. For example, neutrinos interact with the SU(2)×U(1) Yang–Mills field
that accounts for the W and Z vector boson dynamics. However, recent ex-
periments suggest that neutrinos are endowed with a finite, albeit very small,
mass. Were this indeed the case, the absence of massless charged particles
from nature would be no great surprise.

Meanwhile the idea of a free massless particle is presently not uncommon.
We now give some attention to such particles. Switching off the electromag-
netic interaction in (2.279), e = 0, the action becomes

S = −1
2

∫
dτ η ż2 . (2.283)
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We indicate the four-momentum of a free massless particle by kµ. From (2.283)

kµ = η żµ . (2.284)

By (2.280), kµ is a null vector,

k2 = 0 . (2.285)

When this result is compared with definition of the mass (2.20), it is apparent
that the action (2.283) describes an object with M = 0, that is, a zero-mass
particle in the strict sense of the word.

Since a massless particle is free, its four-momentum kµ is constant. It is
possible to orient the axes so that we have

kµ = ω (1, 1, 0, 0) , (2.286)

where ω may be interpreted as the particle energy in this Lorentz frame.
We finally give a cursory glance at two reparametrization invariant actions

for a particle interacting with a scalar field φ(x),

S = −
∫
dτ [m− g φ(z)]

√
żµ żµ , (2.287)

and a symmetric tensor field φµν(x),

S = −
∫
dτ

[
m− g

żαżβ

ż2
φαβ(z)

]√
żµ żµ . (2.288)

Note that (2.287) and (2.288) have much in common with the action (2.260)
for a charged particle coupled with the electromagnetic vector potential Aµ(x).

Problem 2.6.1. Show that the variation of the action

S =
∫
dτ [−p · ż +H(z, p)] (2.289)

in zµ and pµ (assumed to be independent variables) yields the canonical equa-
tions (2.275). With the Hamiltonian (2.273), this action becomes

S =
∫
dτ

{
−p · ż +

1
2η
[
(p− eA)2 −m2

]}
. (2.290)

We thus conclude that η−1 plays the role of the Lagrange multiplier in the
free variation problem corresponding to a conditional variation problem with
the constraint (2.270). Verify that this S is equivalent to (2.266). Show that
the canonical equations resulting from this action can be converted to the
equation of motion (2.282).

Problem 2.6.2. Show that η must transform under global reparametrizations
as
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η(τ) =
dτ

dλ
η′(λ) . (2.291)

Let η be a given function of the label time τ . Using the above transformation
law, find the function λ(τ) expressing the new label time in terms of the old
one such that the transformed einbein be constant, η′(λ) = η0.

Answer

λ(τ) = η0

∫ τ dτ ′

η(τ ′)
. (2.292)

Problem 2.6.3. Determine the world lines zµ(τ) of a massless charged
particle in a constant homogeneous field of (a) electric type, defined in
(2.102), and (b) magnetic type, defined in (2.125). Specify the evolution pa-
rameter τ through the condition η(τ) = η0. At the initial instant τ = 0,
put: (a′) żµ(0) = eµ

0 + eµ
1 , (a′′) żµ(0) = eµ

0 + eµ
1 cosα + eµ

2 sinα, and (b)
żµ(0) = eµ

0 + eµ
1 cosα + eµ

2 sinα cosβ + eµ
3 sinα sinβ. Express the evolution

parameter τ in terms of the laboratory time z0. Find the particle energy.
Determine the world line of a massless charged particle in a constant ho-

mogeneous null field, defined in (2.86), assuming that żµ(0) = eµ
0 + eµ

2 .
Determine the motion of a massless charged particle in constant homoge-

neous parallel electric and magnetic fields, as defined in (2.89), assuming that
żµ(0) = eµ

0 + eµ
2 .

Determine the world line of a massless charged particle in a plane-wave
field specified in Problem 2.4.2, assuming that żµ(0) = eµ

0 + eµ
2 .

Compare these lightlike world lines of a massless charged particle with
their respective timelike world lines of a massive charged particle, analyzed in
Sect. 2.4.

Problem 2.6.4. Show that the equation of motion for a particle interacting
with a scalar field (2.63) results from the action (2.287).

Problem 2.6.5. Derive the equation of motion for a particle interacting with
a tensor field from the action (2.288).

Answer
d

ds

[
mvµ + g

(
φαβv

αvβvµ − 2φµνv
ν
)]

= −vαvβ∂µφαβ . (2.293)

Problem 2.6.6. Noether’s second theorem. Consider a transformation of qa
of the form

δqa = Aa(τ, q, q̇) ε+Ba(τ, q, q̇) ε̇ , (2.294)

where ε is an infinitesimal function obeying the boundary conditions (2.253).
Note that (2.294) is a transformation of the type shown in (2.262). Let the
action S be invariant under (2.294). Then the Eulerians Ea resulting from this
action satisfy the identity

EaAa − d

dτ
(EaBa) = 0 . (2.295)

Prove this statement.
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To be specific, take the Lagrangian (2.261) and the transformation

δzµ = żµ ε, δη = η̇ ε− η ε̇ . (2.296)

Verify that (2.295) holds for the Eulerians Eµ(z) = ηz̈µ + η̇żµ and E(η) =
− 1

2 (ż2 −m2η−2).

2.7 Spinning Particle

So far we were concerned with particles devoid of internal degrees of freedom.
Let us now turn to an object with intrinsic angular momentum, spin. We
outline a model proposed by Yakov Frenkel in 1926, the first consistent de-
scription of a classical point particle with spin. Such a spinning particle may
be visualized as a tiny top whose size tends to zero. For simplicity, we restrict
our discussion to the free particle case.

Let a spinning particle be moving along a world line zµ(s). Our immediate
task is to find the form of this world line.

In the absence of external fields, spacetime is homogeneous and isotropic,
hence the linear and angular momenta are conserved. The expression for the
angular momentum of a spinless particle (2.206) should be modified as

Mµν = zµpν − zνpµ + σµν , (2.297)

where σµν is an antisymmetric real-valued spin tensor. We call Lµν = zµpν −
zνpµ the orbital momentum, in contrast with the total angular momentum
Mµν which may be a combination of Lµν with the intrinsic angular momentum
σµν . In a particular Lorentz frame, σµν = (N,S), implying σ0i = Ni and
σij = −εijk Sk, or

σµν =




0 N1 N2 N3

0 −S3 S2

0 −S1

0


 . (2.298)

Note that it is just S which is associated with intrinsic spatial rotations.
We write the conservation laws in differential form:

ṗµ = 0 , (2.299)

Ṁµν = 0 . (2.300)

There is no reason to augment them with the addition of spin conservation
σ̇µν = 0, because no additional symmetry responsible for this constant of
motion is available. By (2.300), (2.297), and (2.299),

σ̇µν = pµvν − pνvµ . (2.301)

Frenkel imposed a further constraint on the spin tensor σµν : in the rest
frame only the components of S are nonzero, while N = 0. This is the reason
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to call the vector S spin. In the rest frame, vµ = (1, 0, 0, 0), hence Frenkel’s
constraint takes the invariant form

σµνv
µ = 0 . (2.302)

One may define

B =
1
2
σµνσ

µν = S2 − N2 . (2.303)

In the rest frame, B = S2 > 0 (recall that S is an ordinary Euclidean vector).
Therefore, the spin magnitude in the rest frame is a Lorentz scalar,

σµνσ
µν = 2S2 . (2.304)

From here on, we use the symbol S to mean spin as viewed by a comoving
observer.

One further useful relation can be easily deduced (Problem 2.7.1),

σλµσ
µνσνρ = −S2σλρ . (2.305)

Let us return to the equation of spin evolution (2.301). We contract it with
σµν and use (2.302), to give

σµν d

ds
σµν =

1
2
d

ds
σµνσµν =

d

ds
S2 = 0 . (2.306)

We see that the spin magnitude |S| is constant, while the direction of S may
precess around some (moving) axis. That is why Frenkel’s particle is some-
times referred to as a ‘pure gyroscope’.

The mass M and rest mass m of a spinning particle are defined as usual
by (2.20) and (2.21). Since we consider a free particle, we assume that vµ and
pµ are timelike future directed vectors. Thus, M2 > 0 and m > 0. By (2.299),
M does not vary in time. We will see later that m = const as well.

Let us define the vector quantity

ζµ = σµνpν . (2.307)

From (2.307) and (2.302) it follows that

ζ · p = 0, ζ · v = 0 . (2.308)

It can be shown (Problem 2.7.2) that ζµ is a spacelike vector,

ζ2 < 0 . (2.309)

Equation (2.301) can be recast in the form

ζ̇µ = −M2vµ +mpµ . (2.310)
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Contraction with ζµ yields ζ2 = const. This means that only the direction of
ζµ varies in time, not the magnitude.

Differentiation of (2.305), contraction with vρ, and making use of (2.301)
leads to

mvλ = pλ +
1
S2

σλµζµ , (2.311)

and further contraction with pλ results in

m2 = M2 − ζ2

S2
. (2.312)

Thus, m is a constant of motion because such are quantities in the right hand
side of (2.312). Combining (2.312) and (2.309), we conclude that

m2 > M2 . (2.313)

Why M �= m? The mass is not identical to the rest mass because vµ and
pµ are not collinear. To see this, we differentiate (2.311) and take into account
(2.299), (2.301), (2.308), (2.310), (2.302), and (2.307). The result is

S2v̇µ = ζµ . (2.314)

Further differentiation and using (2.310) leads to

S2v̈µ +M2vµ = mpµ . (2.315)

We see that pµ may be proportional to vµ, provided that v̈µ = 0 (the condition
which is trivially met for a free Galilean particle by virtue of the equation of
motion in the absence of external forces). In general, such is not the case for
a spinning particle however.

The reader will easily observe the similarity of (2.315) with the equation
of a harmonic oscillator under the action of an external constant force. Thus
a solution to (2.315) is

vµ(s) =
m

M2
pµ − αµ sinωs+ βµ cosωs , (2.316)

where pµ, αµ, and βµ are arbitrary except that they are subject to the condi-
tions α · p = β · p = α ·β = 0, α2 = β2, and ω = M/|S|. One more integration
gives the world line:

zµ(s) = zµ(0) +
m

M2
pµs+

αµ

ω
cosωs+

βµ

ω
sinωs . (2.317)

This is a helix, wound around a fixed axis parallel to pµ. The particle moves
uniformly along a straight line and rotates about it. On a large scale, this
appears as a tiny oscillation about the uniform motion. Only for αµ = βµ = 0,
the world line is straight. This non-Galilean behavior of a free particle was
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discovered by Erwin Schrödinger in 1930; since then, this oscillatory regime
of motion bears the German name ‘Zitterbewegung’.

If we assume that p2 < 0, then (2.317) is replaced by

zµ(s) = − m

M2
pµs+

αµ

Ω
coshΩs+

βµ

Ω
sinhΩs , (2.318)

where M2 = −p2, Ω = M/|S|, and αµ and βµ meet the condition α2 = −β2.
This solution, describing motion across the plane spanned by two vectors pµ

and αµ, shows a rapid increase in velocity, with the velocity of the particle
tending ultimately to the velocity of light.

If we had a Galilean particle with pµ = mvµ, then the ban against spacelike
world lines would automatically exclude spacelike four-momenta. The four-
momentum of a spinning particle pµ is expressed in terms of kinematical
variables through equation (2.315), written from the right to the left. Hence
the requirement that world lines are timelike does not imply that p2 ≥ 0. If
the condition p2 ≥ 0 is imposed explicitly, then the zitterbewegung (2.317) is
among the allowed motions, while the runaway (2.318) is not.

One may average equation (2.316) over s, that is, apply the operation

< F >= lim
T→∞

1
2T

∫ T

−T

dsF (s) (2.319)

to each term. Then
< vµ >=

m

M2
pµ . (2.320)

Let us trace the motion of a point with coordinate

yµ = zµ +
1
M2

ζµ . (2.321)

By (2.310) and (2.320),

ẏµ =
m

M2
pµ =< vµ > . (2.322)

A point with coordinate yµ traces a straight world line parallel to the vector
pµ. This point is interpreted as the ‘center of mass’ of the oscillating gyroscope.
The conserved four-momentum pµ must be assigned to an imagined carrier
that is located at the center of mass and moves along the averaged world line.

Equations (2.311) and (2.299) can readily be derived in the form of the
canonical equations (2.275) or (2.278) using the Hamiltonian

H =
1
2η

(
p2 −m2 − ζ2

S2

)
(2.323)

together with the canonical Poisson brackets (2.277) and

{xλ, σµν} = {pλ, σµν} = 0, {σµν , σρσ} = σµρηνσ +σνσηµρ−σµσηνρ−σνρηµσ .
(2.324)
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These Poisson brackets for spin variables bear a general resemblance to the
commutation relations for generators of the Poincaré group discussed in
Sect. 1.5. If we choose the parametrization of the world line such that the
einbein η is fixed as η = m, then the parameter of evolution τ is the proper
time s. Note that the expression in parentheses in (2.323) is the constraint
(2.312), whereby H = 0. Hamiltonian (2.323) differs from that for a Galilean
particle (2.274) by the presence of the last term, which generates evolution
for the spin degrees of freedom. Equation (2.310) can also be written as the
canonical equation

ζ̇ = {ζ,H} (2.325)

if we use Hamiltonian (2.323) and Poisson brackets (2.324).
The inertia of a pure gyroscope is specified by two scalars, M and m,

defined in (2.20) and (2.21). In the absence of external forces, both M and m
are conserved, and m > M .

If we attempt to define a zero-mass gyroscope, we encounter a problem.
What is meant by zero mass: M = 0 or m = 0? If we adopt M = 0, then the
role of the positive conserved scalar quantity m is obscure. If, on the other
hand, we prefer the condition m = 0, then M2 < 0, and the free ‘zero-mass
particle’ is actually in a tachyonic state.

Problem 2.7.1. Prove (2.305).

Hint One should first show that the 2-form σ obeying the constraint (2.302)
can be represented as

σ = |S| e1 ∧ e2 , (2.326)

where |S| is the spin magnitude in the rest frame in which vµ = (1, 0, 0, 0),
eµ
1 = (0, 1, 0, 0), and eµ

2 = (0, 0, 1, 0).

Problem 2.7.2. Prove (2.309).

Problem 2.7.3. So far we used only kinematical rest frames in which
vµ = (1, 0, 0, 0). One may also consider dynamical rest frames in which
pµ = M (1, 0, 0, 0). Such frames are closely related to the notion of the center
of mass, as is clear from (2.321) and (2.322).

Show that
Mµν = yµpν − yνpµ +Ξµν , (2.327)

where yµ is the center-of-mass coordinate defined in (2.321), and

Ξµν = σµν − 1
M2

(ζµpν − ζνpµ) . (2.328)

The tensor Ξµν plays the same role now as did σµν . Prove the constraint

Ξµνp
ν = 0 , (2.329)

a counterpart of (2.302). Prove relations analogous to (2.326), (2.304), and
(2.305), changing σµν to Ξµν . Verify that
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Ξ̇µν = 0 (2.330)

replaces (2.301).

Problem 2.7.4. Model with Grassmannian variables. One would like to use
real-valued odd elements of a Grassmann algebra θµ and θ5 to describe spin
degrees of freedom. An appropriate reparametrization invariant action is

S =
∫ τ2

τ1

dτ

[
−pµż

µ +
1
2η
(
p2 −m2

)
− i

2
(θ̇µθµ + θ̇5θ5) + iχ (θµpµ +mθ5)

]

− i

2
[θµ(τ1)θµ(τ2) + θ5(τ1)θ5(τ2)] , (2.331)

and the endpoint variation conditions are

∆zµ(τ1) = ∆zµ(τ2) = 0, ∆θµ(τ1) +∆θµ(τ2) = 0, ∆θ5(τ1) +∆θ5(τ2) = 0 .
(2.332)

The Grassmannian variable χ(τ) plays the role of a Lagrange multiplier of the
constraint. The even Grassmannian construction iθµθν is similar to the spin
tensor σµν .

Derive the dynamical equations

ṗµ = 0 , (2.333)

−żµ + η−1pµ + iχθµ = 0 , (2.334)

−θ̇µ + χpµ = 0 , (2.335)

−θ̇5 + χm = 0 (2.336)

(proper time is chosen to be the parameter of evolution: τ = s) and the
constraints

p2 −m2 = 0 , (2.337)

θµpµ +mθ5 = 0 . (2.338)

At first glance, the dependence between four-momentum and four-velocity
(2.334), is a direct analogue of (2.311), which was shown to imply the non-
Galilean behavior of Frenkel’s pure gyroscope. However, if we seek solutions
describing a world line and four-momentum in the field of real numbers, this
resemblance proves deceptive. Indeed, because θ0θ0 = θ1θ1 = θ2θ2 = θ3θ3 =
0, it follows from (2.334) that

(ż0−η−1p0)2 = (ż1−η−1p1)2 = (ż2−η−1p2)2 = (ż3−η−1p3)2 = 0 . (2.339)

We see that pµ is parallel to żµ. But żµ is a timelike vector pointing to the
future, hence, in view of (2.337), η = m. Equation (2.334) is satisfied only for
χ = 0. From (2.335) and (2.336) it follows that θ̇µ = 0, θ̇5 = 0, while (2.333)
and (2.334) imply żµ = const. Thus, spin and configuration variables evolve
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independently. As to inertia of this particle, it is characterized by a single
quantity, m = M

It is important to realize that the set of even elements of a Grassmann
algebra contains a subset of real numbers (c-numbers) which is a strict em-
bedding. Among the unknown functions appearing in (2.333)–(2.338), even
variables, such as χθµ, need not be c-number quantities, and the complete
collection of solutions to equations (2.333)–(2.338) is not a unique solution
describing a straight world line. However, a world line zµ(s), built from even
Grassmannian variables that are not c-numbers, has no operational definition.

2.8 Relativistic Kepler Problem

Now that we have a general grasp of a single relativistic particle, we need
to give some attention to two-particle problems. Let two charged particles
be moving along timelike world lines as in Fig. 2.2. Because electromagnetic
interactions propagate with the speed of light, particle 2 situated at a point
O, receives an impulse which is sent by particle 1 from the retarded point A
separated from O by a null interval. It is clear that Newton’s action–reaction
law fails if restricted to just the two particles. The four-force fµ

21 exerted on
particle 2 at O need not be equal in magnitude and opposite in direction to the
four-force fµ

12 acting on particle 1 at A because O and A are not simultaneous.
Alternatively, one may take the fragment of the world line zµ

1 (s1) bounded by
A and B, the points of intersection of this world line with the light cone at O.
Every point within this fragment is separated from O by a spacelike interval,
hence simultaneous with O, as seen by some Lorentz observer. However, fµ

12

varies from one point to another, and may be equal in magnitude and opposite
in direction to fµ

21 at O quite accidentally.
This retarded action-at-a-distance two-particle problem comprises the sys-

tem of six ordinary differential equations, which are in fact differential-delay

�

����

•

•

•

fµ
21

fµ
12

zµ
2 (s2)

zµ
1 (s1)

O

A

B

Fig. 2.2. Two-particle problem
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equations with retarded arguments. The exact solution to this problem is a
challenging task. (Strange though it may seem, when it comes to a realm with
one time and one space dimension, this problem is readily solved. We will
review this solution in Sect. 10.2.)

With simplifying assumptions, we can pose this problem in a more tractable
way. A key assumption is that the retardation is a small effect which can be
included by means of a perturbation expansion. Let us fix a particular Lorentz
frame. To a first approximation, we take electromagnetic interactions as in-
stantaneous, and retain only Coulomb terms. This two-particle problem is
called the relativistic Kepler problem.

Our next assumption is rather technical: we take one particle to be much
heavier than another9. As a first approximation, the former particle may be
thought of as infinitely massive and hence motionless. Our prime concern
here is with the attractive Coulomb interaction (for repulsive interactions
see Problem 2.8.1). We thus come to the following single-particle problem:
describe the motion of a particle of mass m and charge −e in a centrally
symmetric attractive field generated by a static charge Ze placed at the origin.

Anticipating the Coulomb field (which will be detailed in Sect. 4.1), the
equation of motion under an attractive central force varying inversely as the
square of the distance is

d

dt
mγv = −Ze

2

r2
n , (2.340)

where n is a unit vector aligned with the radius vector, n = r/r. The spherical
symmetry of the force implies conservation of orbital momentum L = r × p.
Indeed, taking the cross product of (2.340) with r, and using the identities
r × r = 0 and v × v = 0, we have

d

dt
r ×mγv = 0 , (2.341)

whence
L = r ×mγv = const . (2.342)

It follows from (2.342) that the particle moves over a plane with normal
parallel to L. (In general, motions in response to an arbitrary spherically sym-
metric field of force share the common property: every trajectory is planar.)
The analysis of such problems is most conveniently performed in terms of
polar coordinates r and ϕ. We introduce the radial and angular velocities
vr = ṙ = dr/dt and vϕ = rϕ̇, so that

9 A real prototype of this system is a hydrogen atom composed of a proton and an
electron, because protons are 1836 times as heavy as electrons. Another case in
point is a quarkonium, a meson composed of a light quark, say, u or d (mu ≈ 5
MeV, md ≈ 7 MeV), and a heavy quark, say, c or b (mc ≈ 1.2 GeV, mb ≈ 4.5
GeV).
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v2 = ṙ2 + r2ϕ̇2 . (2.343)

One further integral of motion, the total energy of the particle in the
Coulomb field, can be found if we take the scalar product of (2.340) with v,

v ·
(
d

dt
mγv

)
=

d

dt
mγ = −Ze2 v · r

r3
= Ze2

d

dt

(
1
r

)
. (2.344)

This implies
d

dt

(
mγ − Ze2

r

)
= 0 , (2.345)

and

ε = mγ − Ze2

r
= const . (2.346)

Of course, (2.346) can be obtained directly from the Lagrangian

L = −m
√

1 − v2 +
Ze2

r
, (2.347)

following the general line of Sect. 2.5.
One may define the radial and angular momenta conjugate to r and ϕ as

pr = ∂L/∂vr and pϕ = ∂L/∂vϕ. With (2.347) and (2.343), we have pr = mγṙ
and

pϕ = mγr2ϕ̇ = const . (2.348)

Note that pϕ is identical to L. When expressed in terms of pr and pϕ, the
Hamiltonian, equal to the total energy defined in (2.346), is

H =

√
m2 + p2

r +
p2

ϕ

r2
− Ze2

r
. (2.349)

It is possible to extend our discussion to the case an arbitrary spheri-
cally symmetric attractive interaction with a negative potential energy U(r)
vanishing at infinity (in place of −Ze2/r), and write

H =

√
m2 + p2

r +
L2

r2
+ U(r) (2.350)

(note that p2
ϕ is replaced by L2).

We put pr = 0 in (2.350) to ‘switch off’ the dynamics. This gives the
effective potential

U(r) =

√
m2 +

L2

r2
+ U(r) (2.351)

which is a useful tool for analyzing the particle behavior near the origin.
There are three alternatives. First, the potential energy U(r) is more sin-

gular at the origin than the centrifugal term |L|/r. The effective potential
U(r) in this case is shown in Fig. 2.3a. The particle can in principle orbit
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a b

U UU0

m m

• •
r2r1

ε

r

r

Fig. 2.3. Effective potential

in a circle, which corresponds to staying on the top of the potential hill U 0

provided that ε = U 0. However, such an orbit is unstable, and falling to the
center or to infinity is highly probable. For both ε > U 0 and ε < U 0, falling
one way or the other is unavoidable. One may envision it as sliding down
along the curve U(r).

Second, U(r) is less singular than |L|/r, in particular, for U(r) = −Ze2/r,
this means that Ze2 < |L|. The shape of the curve U(r) for this case is depicted
in Fig. 2.3b. If ε < m, then the particle executes a finite motion in the potential
well. Radial displacements are allowed within a domain bounded by turning
points rA, A = 1, 2, which are the roots of the equation ε = U(rA). (For the
differential equation of the orbit see Problem 2.8.2.) If ε > m, then the particle
executes an infinite motion, which may be interpreted as a scattering of the
particle by the static center of attraction. Falling to the center is impossible,
except when L = 0 which correspond to a head-on collision.

Third, the singularities of U(r) and |L|/r are identical. This alternative is
explored in Problem 2.8.3. The particle travels in a stable orbit that passes
through the center, but this does not bring the motion to a halt. Both finite
and infinite motions are possible.

To summarize, falling to the center can be prevented if the attractive
potential energy is less singular than the centrifugal term. Broadly speaking,
the reason for keeping the particle from falling to the centre is that its kinetic
energy dominates over the interaction energy of attraction.

It should be mentioned that the balancing of kinetic and interaction en-
ergies is quite subtle. To illustrate, falling to the center in the nonrelativistic
limit is impossible if the potential energy U(r) is less singular than ∼1/r2

(Problem 2.8.4). As noted above, the relativistic Kepler problem is based on
the assumption that retardation is negligible. It is reasonable to expect that
comparison between singularities of attractive and centrifugal terms is a mere
provisional, approximate criterion. We will see later that this criterion fails
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when the effect of radiation is taken into account. Furthermore, in 1940 John
Synge was able to apply a method of successive approximation to a two-
particle bound system confined by the retarded Lorentz force, without regard
to radiation, to show that energy disappears from the system. The orbiting
particle slowly spirals in, but the rate at which this occurs is much less than
that given by the formula for radiation from an accelerated charge.

Problem 2.8.1. Write the effective potential U(r) for a repulsive Coulomb
interaction. Depict it schematically.

Answer Figure 2.4

U

m
r

Fig. 2.4. Effective potential for a repulsive Coulomb interaction

Problem 2.8.2. Consider the case L2 > Z2e4 shown in Fig. 2.3b. Since the
force is central, the time t can be eliminated altogether from the equation of
motion, and we arrive at a differential equation of the path of the particle.
With this in mind, we introduce u = 1/r, and consider q as a function of ϕ.
Derive the differential equation of the orbit with u as the unknown function.

Answer
d2u

dϕ2
+
(

1 − Z2e4

L2

)
u = −Ze

2ε

L2
. (2.352)

Problem 2.8.3. Let U(r) = −Ze2/r, and Ze2 = |L|. Depict the effective
potential U(r) for this case.

Answer Figure 2.5.

Problem 2.8.4. Show that the nonrelativistic case corresponds to m2 �
L2/r2, and find the nonrelativistic expression for the effective potential U(r)
defined in (2.351). What is the criterion for the attractive potential U(r)
to ensure that decay to the center in the nonrelativistic Kepler problem is
suppressed?
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Fig. 2.5. Effective potential for the case U(r) = −Ze2/r, Ze2 = |L|

Answer

U(r) = m+
L2

2mr2
− U(r) , (2.353)

U(r) must be less singular than the nonrelativistic centrifugal term L2/2mr2.

Problem 2.8.5. While the mass of a proton and an electron is greater than
that of a hydrogen atom, because energy must be supplied to break the elec-
tromagnetic bond in the atom, one may conceive a stable binary system such
that its rest energy ε exceeds the sum of masses of its constituents. That is,
the binding energy is positive. Consider a linearly rising interaction energy

U(r) = −αs

r
+ k r (αs > 0, k > 0) , (2.354)

and take |L| > αs.
Depict the effective potential. What kind of motion is allowable? Show

that Umin > m.

Answer Figure 2.6. A finite motion within the range from r1 to r2 is allowable.

Fig. 2.6. Effective potential for a linearly rising potential energy
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Problem 2.8.6. Let a ‘relativistic hydrogen atom’ be specified by the effec-
tive potential shown in Fig. 2.3b. For ε < m, the motion is finite, and ε may
be regarded as the rest energy of this binary system minus the nuclear mass.
Loosely speaking, ε represents the mass of the bound electron. When com-
pared with a free electron, part of the mass is eaten by the Coulomb binding.
The binding energy is defined as ∆m = ε−m. The magnitude of this quantity
is maximal if the electron orbits in a circle corresponding to the minimum of
the effective potential Umin. Take |L|/Ze2 = 1 + ε where ε is a small positive
number.

Evaluate ∆m = Umin −m.

Answer
∆m ≈ m (

√
2ε/Ze2 − 1) . (2.355)

2.9 A Charged Particle Driven
by a Magnetic Monopole

Consider a binary system composed of particle 1 with massm1 possessing elec-
tric charge e and particle 2 with mass m2 possessing magnetic charge e� (a
magnetic monopole). As might be expected for reasons which are of little sig-
nificance for the present discussion and hence omitted, magnetically charged
particles are much heavier than their electrically charged counterparts. For
simplicity, we assume that particle 2 is infinitely heavy and motionless. The
two-particle problem can therefore be reduced to the problem of a single
charged particle driven by a static magnetic monopole situated at the origin.
We restrict our discussion to the nonrelativistic case which is sufficient to
clarify essential features of this problem, in particular to provide insight into
the difference between the behavior of e− e and e− e� binary systems.

We write the equation of motion for particle 1, omitting the label 1,

m
dv
dt

= ev × B . (2.356)

As will be shown in Sect. 4.8, the magnetic field B due to a static magnetic
monopole is

B = e� n
r2
, (2.357)

where n is a unit vector directed along the radius vector r. Combining (2.356)
and (2.357),

m
dv
dt

= e e� v × n
r2

. (2.358)

Take the scalar product of (2.358) with v. The result is that the kinetic en-
ergy 1

2 mv2 is conserved, specifically, |v| = const. However, the orbital angular
momentum

L = r ×mv (2.359)
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is not conserved as the force is not central (that is, not directed towards the
origin). Indeed, take the cross product of (2.358) with r,

r × d

dt
mv =

d

dt
(r ×mv) =

e e�

r2
r × v × n =

e e�

r
[v − n (v · n)] . (2.360)

Observing that
dr

dt
=

d

dt

√
r · r =

r · v√
r · r = n · v , (2.361)

and
dn
dt

=
d

dt

(r
r

)
=

1
r

[v − n (n · v)] , (2.362)

rewrite (2.360), using (2.359), as

d

dt
L = e e� d

dt
n , (2.363)

which shows that the vector

M = L − e e� n (2.364)

is conserved. We will see in Problem 5.2.10 that M is the total angular mo-
mentum of the system of two particles plus associated electromagnetic fields,
with the field contribution being e e� n, and particle contribution L. Thus,
account must be taken of the angular momentum residing in the field, which
may well be comparable to L in magnitude.

The fact that M (rather than L) is conserved, implies that the trajectory
is not planar. Indeed,

M · n = −e e� , (2.365)

so that the radius vector r makes a constant angle ψ with M,

cosψ = − e e�

|M| . (2.366)

In other words, the motion of a charged particle in the field of a static mono-
pole is a spiral on the surface of a circular cone with semi-vertical angle
cos−1(e e�/M) and axis −M with its apex at the monopole, as viewed in
Fig. 2.7. Because the trajectory goes to infinity, no bound states occur.

It follows from (2.364) that M2 = L2 +(e e�)2. Therefore, |L| is a constant
of motion.

One can show (Problem 2.9.1) that, if we consider the plane formed by
unrolling the cone, the particle trajectory is a straight line,

r · b = const. (2.367)

Furthermore, the particle moves uniformly along this straight line,

r2 = v2t2 + b2, (2.368)
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with t = 0 corresponding to the minimal separation between the particle and
the center b = |b| (which is called the impact parameter). Note that b and |v|
are specified arbitrarily.

Comparing (2.362) and (2.360), and taking into account (2.364) and
(2.359), we find

dn
dt

=
1
r2

(r × v × n) =
1

mr2
(M × n) , (2.369)

or
dn
dt

= Ω × n, Ω =
M
mr2

. (2.370)

This equation shows that n is rotating about the fixed axis M with angular
velocity Ω.

If the Newtonian equation of motion (2.356) is replaced by

m
d

dt
γv = ev × B , (2.371)

this gives minor changes of final results. Indeed,

v ·
(
d

dt
γv
)

=
d

dt
γ = 0 . (2.372)

This means that v2 = const, and (2.371) can be rewritten as

m
dv
dt

= e γ−1 v × B , (2.373)

which differs from (2.356) by the presence of a constant factor γ−1 in the right
hand side. Thus, the relativistic generalization of above formulas amounts to
the change e→ γ−1e.

Problem 2.9.1. Consider the plane formed by unrolling the cone of Fig. 2.7.
Show that the locus of motion on this plane is a straight line expressed by

M
� O

Fig. 2.7. The cone on which the trajectory lies
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equation (2.367), and r varies with t according to (2.368). Find the relation
between the angle ψ, defined in (2.366), and parameters b and |v|.
Answer

cosψ = − e e�√
m2b2v2 + (e e�)2

. (2.374)

Hint r and v belong to a plane tangent to the cone, hence both the angle
between these vectors, α, and r are maintained on the plane formed by un-
rolling the cone. Note also that |v| = const and |L| = mr|v| sinα = const,
which implies the equation of a straight line r sinα = b on the unwrapped
surface of the cone. Two legs b and |v|t and hypotenuse r span a right trian-
gle. If r = b, then v is perpendicular to r, and |L| = mb|v|, which gives the
desired relation between ψ, b, and |v|.

Problem 2.9.2. Find the relation between the maximal magnitude of angular
velocity Ω, defined in (2.370), angle ψ, defined in (2.366), and parameters b
and |v|.
Answer

Ω2
max =

v2

b2 sin2 ψ
. (2.375)

2.10 Collisions and Decays

The relativistic two-particle problem is so extremely difficult in its precise
setting because six mechanical degrees of freedom are supplemented with in-
finite degrees of freedom of the field mediating the interaction between the
particles. In two preceding sections we developed approximations simplifying
equations to the extent that it is possible to cope with the task. We now turn
to a limiting case that particles interact by contact, exemplified by head-on
collisions of point particles and disintegrations of particle aggregates into their
constituents. In this case, the original action–reaction law retains its validity.

Before considering these processes, let us go back to the equation of motion

ṗI = FI . (2.376)

We take the index I to mean the label of a particle belonging to some N -
particle system, the dot stands for the derivative with respect to time in a
particular Lorentz frame. If we sum all these equations over I, we get

∑
ṗI =

∑
Fµ

I . (2.377)

Suppose that the system is closed in that only the N particles exert forces
on one another, and there is no external force. Let us imagine that all these
N particles collide at some point of Minkowski space. Then, by the action–
reaction law,
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∑
Fµ

I = 0 , (2.378)

and (2.377) implies that contact interactions ensure conservation of the total
momentum: ∑

pI = const . (2.379)

A similar argument applies to show conservation of total energy.
Note that head-on collisions are common for particles living on a straight

line, but highly improbable in higher dimensions. With the understanding,
of course, that no central attractive force pulls the particles together, such
events comprise a set of zero measure.

Assuming that the interaction between given particles is reasonably short-
range, we may invoke only global four-momentum conservation for incoming
and outgoing particles, considering them as free objects over all spacetime,
except for regions of their ‘quasi-local’ interaction.

To be specific, consider a scattering event

1 + 2 → 3 + 4 , (2.380)

by which is meant both an elastic collision, when the mass of each incoming
particle equals the mass of a respective outgoing particle, and an inelastic
collision rendering initial particles final particles of different species. Further-
more, putting the four-momentum of either incoming particle, say, particle
1, equal to zero, we cause it to drop out of the problem, and, in place of
scattering, we have disintegration of a single particle into two pieces,

2 → 3 + 4 . (2.381)

Let the four-momenta of incoming particles be pµ
1 and pµ

2 , and those of the
outgoing particles pµ

3 and pµ
4 . Global four-momentum conservation reads

p1 + p2 = p3 + p4 . (2.382)

We ignore spin, if any, and regard these particles as Galilean. The mass
M of each particle is identical to its rest mass m; both these quantities are
indicated in this section by m. We thus have

p2
I = m2

I , I = 1, . . . , 4 . (2.383)

It is conventional to refer to (2.383) as the mass shell constraints.
Six equations (2.382) and (2.383) are intended for finding eight unknown

quantities pµ
3 and pµ

4 . The solution should therefore contain two free parame-
ters. Note also that our description is frame-dependent. As will soon become
clear, in the barycentric frame, one of the two free parameters consists of the
scattering angle, and the other gives the orientation of the plane of scattering.

Besides the four squares of each four-momentum, equation (2.383), there
are two independent scalar products. It is, however, convenient to use the
three invariants
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s = (p1 + p2)2 = (p3 + p4)2 ,
t = (p1 − p3)2 = (p2 − p4)2 ,
u = (p1 − p4)2 = (p2 − p3)2 . (2.384)

With (2.382) and (2.383), the invariants s, t, u are linearly related through

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 . (2.385)

Indeed, applying (2.383) to (2.384), we obtain

(p1 +p2)2 +(p1−p3)2 +(p1−p4)2 = 3m2
1 +m2

2 +m2
3 +m2

4−2p1 ·(p2−p3−p4) ,
(2.386)

which, by (2.382), is

3m2
1 +m2

2 +m2
3 +m2

4 − 2p1 · (−p1) = m2
1 +m2

2 +m2
3 +m2

4 . (2.387)

The invariant s is the square of the total energy in the barycentric frame.
Such a frame is defined (see Problem 2.5.3) by the condition that the total
three-dimensional momentum is zero:

p1 + p2 = 0, p3 + p4 = 0 . (2.388)

With this condition,

s = (ε1 + ε2)2 = (ε3 + ε4)2 . (2.389)

The difference between four-momenta of a single incoming and outgoing
particle is called its four-momentum transfer. If the incoming particle 1 is
identical to the outgoing particle 3, the invariant t is the square of the four-
momentum transfer. One may conceive, however, a process where particle 1
is identical to particle 4, the so-called exchange process. Then the invariant u
is the square of the four-momentum transfer.

When particle 2 (the ‘target particle’) is at rest in some Lorentz frame
(this frame is usually called the laboratory frame), we have

pµ
1 = (ε̄1, p̄1), pµ

2 = (m2,0), pµ
3 = (ε̄3, p̄3), pµ

4 = (ε̄4, p̄4) . (2.390)

It follows from
s = (p1 + p2)2 = m2

1 +m2
2 + 2ε̄1m2 (2.391)

that
ε̄1 =

1
2m2

(s−m2
1 −m2

2) , (2.392)

and
p̄2

1 = ε̄21 −m2
1 =

1
4m2

2

[
(s−m2

1 −m2
2)

2 − 4m2
1m

2
2

]
. (2.393)

The latter formula can be rewritten as
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|p̄1| =

√
λ(s,m2

1,m
2
2)

2m2
, (2.394)

where λ is defined as

λ(x, y, z) = (x− y − z)2 − 4yz . (2.395)

Geometrically, this quadratic form is proportional to the area of the triangle
with the legs

√
x,

√
y, and

√
z (Problem 2.10.1).

The expression for t,

t = (p2 − p4)2 = m2
2 +m2

4 − 2ε̄4m2 , (2.396)

implies that

ε̄4 =
1

2m2
(m2

2 +m2
4 − t) . (2.397)

ε̄3 is found from the equation of energy conservation,

ε̄3 = ε̄1 +m2 − ε̄4 =
1

2m2
(s+ t−m2

1 −m2
4) . (2.398)

In view of (2.385), this can be represented as

ε̄3 =
1

2m2
(m2

2 +m2
3 − u) . (2.399)

By comparing (2.397) and (2.399) with (2.392), it is readily seen that the
corresponding momenta |p̄4| and |p̄3| are

|p̄4| =

√
λ(t,m2

2,m
2
4)

2m2
, |p̄3| =

√
λ(u,m2

2,m
2
3)

2m2
. (2.400)

We call the angle ϑ̄ between p̄1 and p̄3 the scattering angle in the labora-
tory frame. It follows from

t = (p1 − p3)2 = m2
1 +m2

3 − 2 (ε̄1ε̄3 − |p̄1| |p̄3| cos ϑ̄) (2.401)

that

cos ϑ̄ =

(
s−m2

1 −m2
2

) (
m2

2 +m2
3 − u

)
+ 2m2

2

(
t−m2

1 −m2
3

)
√
λ(s,m2

1,m
2
2)λ(u,m2

2,m
2
3)

. (2.402)

In the barycentric frame, we call p and q the in and out relative momenta,
and write

pµ
1 = (ε1,p), pµ

2 = (ε2,−p), pµ
3 = (ε3,q), pµ

4 = (ε4,−q) . (2.403)

These four-momentum decompositions are in agreement with (2.388). We have
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√
s = ε1 + ε2 , (2.404)

or √
s−

√
p2 +m2

1 =
√

p2 +m2
2 , (2.405)

which yields

ε1 =
1

2
√
s

(s+m2
1 −m2

2), ε2 =
1

2
√
s

(s−m2
1 +m2

2) , (2.406)

and

|p| =
1
2

√
λ(s,m2

1,m
2
2)

s
. (2.407)

All the remaining pertinent quantities are readily evaluated (Problem 2.10.2),

ε3 =
1

2
√
s

(s+m2
3 −m2

4), ε4 =
1

2
√
s

(s−m2
3 +m2

4) , (2.408)

|q| =
1
2

√
λ(s,m2

3,m
2
4)

s
, (2.409)

cosϑ =
s2 + s

(
2t−m2

1 −m2
2 −m2

3 −m2
4

)
+
(
m2

1 −m2
2

) (
m2

3 −m2
4

)
√
λ(s,m2

1,m
2
2)λ(s,m2

2,m
2
3)

.

(2.410)
As a simple illustration, we refer to an elastic collision of two particles of

equal masses, m1 = m2 = m3 = m4 = m. In the barycentric frame,

s = 4 (p2 +m2), t = −2p2 (1 − cosϑ), u = −2p2 (1 + cosϑ) , (2.411)

and so

ε1 = ε2 = ε3 = ε4 =
√
s

2
, p2 = q2 =

s

4
−m2, cosϑ = 1 +

2t
s− 4m2

. (2.412)

Another simple case is a decay of particle 2 into particles 3 and 4. For
particle 1 to be eliminated, we put pµ

1 = 0 in (2.384). Then

s = m2
2, t = m2

3, u = m2
4 . (2.413)

This result may be further used to evaluate the energies of the decay products,

ε3 =
m2

2 +m2
3 −m2

4

2m2
, ε4 =

m2
2 −m2

3 +m2
4

2m2
. (2.414)

The above formulae may seem to imply that every quantity specifying
the processes (2.380) and (2.381) is uniquely determined. This impression is
wrong. Take for example expressions (2.412). It is evident that the energies and
momentum magnitudes of the final particles are indeed uniquely determined,
but the same cannot be said of the scattering angle; notice that cosϑ is a
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function of the square of the four-momentum transfer t which takes arbitrary
negative values. In addition, if we rotate q through any angle around the
axis aligned with p, then all the results given above remain unchanged. What
this means is the scattering angle and orientation of the plane in which the
scattering occurs are completely arbitrary.

The topic covered by this section is often loosely called relativistic kinemat-
ics. The invariants s, t, and u, defined in (2.384), are known as the Mandelstam
parameters.

Problem 2.10.1. Show that λ(x, y, z), defined in (2.395), can be written as

λ(x, y, z) = [x− (
√
y+

√
z)2][x− (

√
y−

√
z)2] = x2 +y2 +z2−2xy−2yz−2xz

= (
√
x−√

y−
√
z)(

√
x+

√
y+

√
z)(

√
x−√

y+
√
z)(

√
x+

√
y−

√
z) . (2.415)

It is seen from the second equality that 1
4

√
−λ(x, y, z) represents the area

of a triangle with the legs
√
x,

√
y, and

√
z; hence the name triangular func-

tion for λ. It is clear from the second line that λ(x, y, z) is invariant under
permutations of any two arguments. Show that

λ(x, y, y) = x(x− 4y) ,
λ(x, y, 0) = (x− y)2 . (2.416)

The first relation pertains to an elastic scattering of particles with identical
masses, and the second one is related to an elastic scattering of a massless
particle by a massive particle.

Problem 2.10.2. Verify (2.408)–(2.410).

Notes

1. The basic reference on Newtonian mechanics is Newton (1686). For a critical
survey of Newtonian mechanics see Mach (1883). Key concepts of Newtonian
and relativistic dynamics are discussed in Jammer (1954), (1961), (1962).
Synge (1956) is an introduction to special relativity with a careful compari-
son of both geometric and dynamical concepts in Newtonian and relativistic
frameworks. Relevant exercises are collected in Kotkin & Serbo (1971), and
Lightman et al. (1975). The literature on general relativity (excluded from
discussion in this book) is vast. The standard texts are Weyl (1918), Pauli
(1958), Synge (1960), Landau & Lifshitz (1971), Misner et al. (1973), Wein-
berg (1972), Hawking & Ellis (1973), and Wald (1984).

2. Section 2.1. The relativistic form of Newton’s second law, (2.3), was dis-
covered by Poincaré (1906) and Planck (1906).

Poincaré (1900) suggested the identity of mass and energy of the electro-
magnetic field, and remarked that a charged oscillator which emits electro-
magnetic energy preponderantly in one direction should recoil as a gun does
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when it is fired. Einstein (1905b) derived the formula ε = mc2 by kinematic
arguments showing that the emission of electromagnetic radiation carrying
energy ε reduces the mass of the emitting body by ε/c2. He noted that the
mass of a body is a measure of its energy content. For detail of this dramatic
quest see Whittaker (1953).

Classical point particles may be classified as Galilean and non-Galilean.
The present discussion entertains this classification, proposed by Kosyakov
(2003). A Galilean particle is specified by the four-momentum pµ defined in
(2.9), and hence obeys the inertia law (2.11), known also as Newton’s first
law. A deep insight into this law owes much to the essay of Galilei (1632).

A general idea of faster-than-light particles can be had from Bilaniuk &
Sudarshan (1969), for an extended discussion see Tiwari (2003).

Replacing the Newtonian differential equation of motion with a differ-
ence equation, similar to that in Problem 2.1.3, was proposed by Caldirola
(1956). For the oscillatory regime of a free object see Schrödinger (1930).
Such a regime, occurred initially as a visualization of solutions to the free
Dirac equation and was long thought of as inherently quantum-mechanical.
Its classical realization, a helical world line wound around a timelike axis, was
found by Huang (1952).

3. Section 2.2. The idea of fields of force was advanced and developed by
Michael Faraday (1839). We define the electromagnetic field through the
Lorentz force law (2.43). This law was deduced by Heaviside (1889) and
Lorentz (1892). The original Heaviside’s paper is reprinted in the second vol-
ume of the collected articles by Heaviside (1892). A similar definition of the
electromagnetic field is given in Barut (1964), and Misner et al. (1973). The
virtue of this definition is that it can be extended to cover couplings with
other classical gauge fields. In particular, the classical Yang–Mills field is de-
fined through a force law of the Lorentz type. The Lie algebra structures,
specifically a bracket of the form (2.58), were introduced and studied by Lie
(1888, 1890, 1893). Wong (1970) obtained the force law (2.53) analyzing the
classical limit of the field equations for the quantum SU(2) Yang–Mills fields.

4. Section 2.3. All configurations of the electromagnetic field are separated
according to their algebraic properties into three classes. The class A incor-
porates both pure electric and pure magnetic fields. Configurations with the
electric and magnetic fields of the same strength perpendicular to each other
belong to the class B. As for the class C, there exists a Lorentz frame where
the electric and magnetic fields are parallel to each other. The fact that S and
P are Lorentz invariant was established by Poincaré (1906).

5. Section 2.4. Taub (1948) analyzed a general solution to the equation of
motion for a charged particle in an arbitrary constant electromagnetic field F
of the form

v(s) = Λv(0) = exp
( e
m
Fs
)
v(0) . (2.417)
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This result shows that the antisymmetric tensor F , describing a constant
field, determines a family of Lorentz matrices, Λ, of which it is an infinitesimal
generator. Taub gave a complete classification of such Lorentz transformations
in terms of F as well as closed expressions for Λ. The method can be extended
to the problem of a charged particle in the field of a plane wave. Salingaros
(1985) employed Clifford algebraic techniques to calculate the four-velocity
of a charged particle in constant electric and magnetic fields, and presented
a comparison of results obtained in his and other works. The Hestenes book
(1986) is an introduction to this algebraic technique.

6. Section 2.5. Euler (1744), Lagrange (1788), Hamilton (1834), Noether
(1918), Poincaré (1906), Planck (1906), and Schwarzschild (1903) are the ori-
gins of the material presented in this section. The literature on the calculus
of variations and analytical mechanics is rich and diverse. A general reference
is Whittaker (1904), and Goldstein (1950). The books by Abraham & Mars-
den (1967), Godbillon (1969), Sudarshan & Mukunda (1973), Arnold (1978),
and Marsden & Ratiu (1994) emphasize advanced mathematical topics of La-
grangian and Hamiltonian descriptions of Newtonian mechanics. Young (1969)
delves into subtle aspects of the calculus of variations. Lanczos (1949) is a less
formal introduction to the Lagrangian and Hamiltonian formalisms for New-
tonian mechanics. Noether (1918) presented the original proof of Noether’s
first theorem. This theorem is described in detail by Hill (1951). For the
converse of Noether’s first theorem see Palmieri & Vitale (1970). The incor-
poration of a damped oscillator in the Lagrangian formalism was discussed
by Denman (1966). In this connection, also see Sect. 3.2 of Morse & Feshbach
(1953), and Van der Vaart (1967).

7. Section 2.6. For more on reparametrization invariance from the mathemat-
ical point of view see Young (1969), Chap. 6. Noether (1918) presented the
original formulation and proof of Noether’s second theorem. The reparame-
trization invariant action (2.266) was proposed by Brink et al. (1976).

8. Section 2.7. A classical theory of a point particle with intrinsic angular
momentum was developed by Frenkel (1926). The present approach is loosely
patterned on that in Rafanelli (1984). For a more extended discussion see
Corben (1968), Hanson & Regge (1974), and Rivas (2001). Martin (1959)
pioneered the use of Grassmannian variables for description of spin degrees of
freedom. This model was rediscovered by Berezin & Marinov (1975), (1977),
and Casalbuoni (1976a), (1976b), and refined by Galvao & Teitelboim (1980).
An alternative action for a spinning particle, yet devoid of reparametrization
invariance, was suggested by Barut & Zanghi (1984).

9. Section 2.8. The general role of the action–reaction law, as viewed by
Poincaré (1900) and Planck (1908), is to afford momentum conservation.
Synge (1940) attempted a direct attack on the relativistic two-particle prob-
lem, based on the assumptions (i) that particle 2 maintains particle 1 in orbit
by the retarded Lorentz force, (ii) that the ratio of the masses of the two
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particles is small m1/m2 � 1, and (iii) that the effect of radiation may be ne-
glected. With a method of successive approximation, it was shown that radius
of the orbit shrinks at a rate very much less than m1/m2. Additional texts
of particular interest in relation to the integration of the relativistic Kepler
problem are Synge (1956), and Lanczos (1949). For a discussion of the three-
body problem within the scope of Newtonian mechanics see Birkhoff (1927),
Abraham & Marsden (1967), Szebehely (1967), and Marshal (1990).

10. Section 2.9. The motion of a charged particle in the field of a static mag-
netic monopole was examined by Poincaré (1896), who showed that the typical
trajectory of the particle is a geodesic on the surface of a circular cone whose
apex is at the monopole, and derived the constant of motion (2.364). Dirac
(1931), (1948) showed that a quantum-mechanical description of this system
requires that the electric charge-coupling e and the magnetic charge-coupling
e� be related by the equation e e� = 1

2n where n is an integer. Thus, the exis-
tence of just one magnetically charged particle would provide an explanation
for the quantization of electric charge. For an extended discussion of scattering
of two classical dyons with arbitrary electric and magnetic charge-couplings
(e1, e�

1) and (e2, e�
2) see Barut & Beker (1974).

11. Section 2.10. Many examples of scatterings and decays applicable to
atomic and elementary particle physics are discussed at length in Synge
(1956), Källen (1964), and Lanczos (1949). The convenience of invariant vari-
ables s, t, u in high energy physics was pointed out by Mandelstam (1958). The
use of these variables is detailed in many textbooks, for example, in Byckling
& Kajantie (1973).
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Electromagnetic Field

In the preceding chapter we defined the electromagnetic field as a physical
object that manifests itself through its influence on a particle by the four-
force linear in the particle four-velocity. To be more specific, one recognizes
the presence of electromagnetic field when particles experience the Lorentz
force. It transpired that the state of electromagnetic field at each spacetime
point is characterized by an antisymmetric tensor Fµν . In a particular frame
of reference, this is equivalent to assigning the electric field intensity E and
the magnetic induction B to each point.

In what follows, the tensor Fµν , or the associated vectors E and B, will be
called the electromagnetic field. Although this usage is common in theoretical
physics, one should realize that the object is being substituted for the set of
its states.

Our next task is to discuss the law governing the electromagnetic field
behavior in space and time. This law is given by a system of partial differential
equations known as Maxwell’s equations.

We omit the history of the development of Maxwell’s equations, and their
current experimental status, considering these topics to be well known to the
reader. Attention is centred on conceptual aspects of the subject. Our concern
at first is to understand to what extent the form of the dynamical law is ordered
by geometrical features of our world, in particular by the fact that space has
three dimensions. The complete reconstruction of Maxwell’s equations requires
the adoption of four additional assumptions of non-geometric origin, which can
be succinctly phrased. It would be tempting to think of them as the principles
that cover the whole physical content of Maxwell’s equations. One might be
satisfied with such an understanding of Maxwell’s equations, and this attitude
would be quite robust. However, later on we will see, from closer inspection of
symmetries peculiar to electrodynamics, that such principles may have much
to do with geometry.
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3.1 Geometric Contents of Maxwell’s Equations

Write the evolutionary law for the electromagnetic field in the following sym-
bolic form:

L (F ) = � (3.1)

where L is a differential operator that describes local variations of the field
state, and � is interpreted as the source of these variations.

Why is the differential operator favored over integral ones? Are algebraic
constructions with shifted (retarded or advanced) arguments pertinent? By
now difference equations play an important role in theoretical physics. To il-
lustrate, lattice field equations, with the spacetime continuum replaced by lat-
tices of discrete vertices, have become very popular in the past two decades. An
overview of the lattice formulation of gauge theories will be given in Sect. 7.3,
and we will see that the lattice dynamics is depicted by difference equations.
On the other hand, we already learned in Problem 2.1.3 that a difference
equation can be represented as a series of differential operators of increasing
orders. Therefore, differential equations of finite orders are a special case of
difference equations.

The choice of L as a differential operator relates to the fundamental theo-
retical idea of local action, by which dynamical variations of fields propagate
in space from one point to all nearest with a finite velocity. Partial differential
equations of the hyperbolic type are currently best suited for the mathemat-
ical expression of this idea. An alternative concept, the so-called action at a
distance, will be outlined in Sect. 10.6.

We assume that only first derivatives of Fµν appear in (3.1). This as-
sumption may seem to contradict the situation in mechanics, where Newton’s
second law is given by a differential equation of second order with the particle
position z as the unknown function. In fact, this is only an apparent contra-
diction because the instantaneous state of a particle is specified by the pair
of variables (z,v) or, equivalently, by the pair (qa, pa), and the evolution of
this system is given by Hamilton equations containing only first derivatives
of qa and pa. The variables Fµν take into complete account the state of the
electromagnetic field, and they should therefore be likened to the phase space
coordinates (qa, pa), not the configuration space coordinates qa.

We now fix some inertial frame of reference and consider the spatial be-
havior of the vector functions E and B. Any smooth vector function V can
be reconstructed with the knowledge of 9 components of its gradients ∂jVi.
However, to do this requires actually much less information. The tensor ∂jVi

can be written as the sum of symmetric and antisymmetric terms. In addition,
a term proportional to the trace can be separated, rendering the symmetric
term traceless,

∂jVi =
1
2

(
∂jVi + ∂iVj −

2
3
δij∂kVk

)
+

1
2

(∂jVi − ∂iVj) +
1
3
δij∂kVk , (3.2)

where the summation over repeated indices is understood.
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A remarkable feature of three-dimensional Euclidean space is that the
reconstruction of V(x) requires only the knowledge of the antisymmetric term
∂jVi − ∂iVj , which is dual to ∇×V, namely ∂iVj − ∂jVi = εijk εklm∂lVm, and
the scalar ∂kVk, which is ∇ · V, while information on 5 components of the
symmetric traceless combination ∂jVi + ∂iVj − 2

3 δij∂lVl is unnecessary. This
statement is known as the Helmholtz theorem: if a smooth vector function V
disappears at infinity, it can be reconstructed from its curl, C = ∇× V, and
divergence, D = ∇ · V.

Indeed, the relation

∇× (∇× V) = ∇ (∇ · V) −∇2 V , (3.3)

familiar from any course of the vector analysis, can be rewritten as the Poisson
equation

∇2 V = S (3.4)

with a computable function in the right side S = ∇D −∇× C. In Sect. 4.1
we will see that this equation has a unique solution. This will complete the
proof of the Helmholtz theorem.

An important implication of this result is that the field equation (3.1) can
be expressed in terms of curls and divergences of E and B. Therefore, we do
not need information on all components of the spacetime derivatives ∂λFµν ;
only linear combinations of components containing curls and divergences of
E and B matter. We recall that E and B are related to Fµν as

Ei = F0i = F i0 , (3.5)

Fij = F ij = −εijkBk , (3.6)

Bk = −1
2
εklmF

lm , (3.7)

and that the usual rule of raising and lowering indices holds for tensors in
Minkowski space. We note also that Ei, Bi, εijk, and δij occur in a particular
Lorentz frame (and, by convention, the repeated latin indices in εijkBk are to
be summed over k = 1, 2, 3).

By (3.5),
div E = ∂jEj = ∂jF

j0 . (3.8)

Using (3.7), we find

(curlB)i = εijk∂jBk = −1
2
εijk∂jεklmF

lm =
1
2
(δimδjl−δilδjm)∂jF

lm = ∂jF
ji .

(3.9)
To express div B and curlE via linear combinations of ∂λFµν , we recall

the definition
∗Fµν =

1
2
εµναβFαβ (3.10)

and the convention that the three- and four-dimensional Levi-Civita symbols
are related as
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εijk = ε0ijk . (3.11)

From (3.10), (3.11), and (3.6) it follows that

∗F i0 =
1
2
εi0αβFαβ = −1

2
ε0ijkFjk = −1

2
εijkFjk =

1
2
εijkεjklBl = δilBl = Bi ,

(3.12)
while (3.10), (3.11), and (3.5) give

∗F ji =
1
2
εjiαβ Fαβ =

1
2
εji0k F0k +

1
2
εjik0 Fk0 = ε0jik F0k = −εijk Ek . (3.13)

Therefore,
div B = ∂jBj = ∂j

∗F j0 , (3.14)

and
(curlE)i = εijk∂jEk = −∂j

∗F ji . (3.15)

Note that Fµν and εαβγδ are completely antisymmetric tensors defined
in Minkowski space. If some index (say, α) of such a tensor is fixed to be
temporal (α = 0), then the tensor vanishes unless all the other indices are
spatial (β = j, γ = k, δ = l). Only one index may be 0.

Thus the desired linear combinations of derivatives are ∂µF
µν and ∂µ

∗Fµν .
Indeed, taking into account (3.8) and (3.9), we write

∂µF
µν = (∂µF

µ0, ∂µF
µi) = (∂kF

k0, ∂0F
0i + ∂kF

ki)

= (∂kF
k0,−∂0F

i0 − ∂kεkijBj) = (∂kEk,−∂0Ei + εikj∂kBj) , (3.16)

and so

∂µF
µν =

(
div E,−∂E

∂t
+ curlB

)
. (3.17)

Likewise, using (3.14) and (3.15), we find

∂µ
∗Fµν = (∂j

∗F j0, ∂0
∗F 0i + ∂j

∗F ji) = (∂jBj ,−∂0Bi − εijk∂jEk) , (3.18)

and so

∂µ
∗Fµν =

(
div B, −∂B

∂t
− curlE

)
(3.19)

Finally, the symbolic field equation (3.1) can be made concrete:

∂λF
λµ = 4πjµ , (3.20)

∂λ
∗Fλµ = 4πmµ , (3.21)

where the pair of the four-vectors (jµ,mµ) represents � and conceivably also
part of L(F ). The factor 4π, fixing the so-called Gaussian units, will manifest
its convenience later. The construction of the four-vectors jµ and mµ remains
at this stage indeterminate.

Problem 3.1.1. Derive (3.3) using tensor calculus.

Problem 3.1.2. Show that

−ελµνσ∂ρ
∗F ρσ

λFµν + ∂νFλµ + ∂µFνλ) . (3.22)= (∂2
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3.2 Physical Contents of Maxwell’s Equations

We came to equations (3.20) and (3.21) from essentially geometric consider-
ations. It remains to clarify what are jµ and mµ. To do this requires three
additional assumptions which lead directly and unambiguously to Maxwell’s
equations. Their adoption might be motivated by reference to physical ex-
periment where solutions to Maxwell’s equations have been verified to a high
degree of precision. This gives the impression that we are dealing with the net
physical contents of Maxwell’s equations, that is, residual information which
cannot be interpreted in geometric terms.

The first assumption is that the field equation (3.1) is linear (an alterna-
tive, the Born and Infeld nonlinear version of electrodynamics, is reserved for
Chap. 10.) For this assumption not to seem excessively technical, it can be
reformulated as the so-called superposition principle (well established experi-
mentally). This principle states: if sources �1 and �2 generate fields F1 and
F2, respectively, then source a�1 + b�2 generates field aF1 + bF2. It follows
that

L(aF1 + bF2) = aL(F1) + bL(F2) (3.23)

which means that L(F ) is a linear operator.
Let us look more closely at the structure of equation (3.20). Linear com-

binations of the derivatives ∂λFµν are already taken into account. Therefore,
only terms proportional to gµFµν where gµ stands for either the coordinate
of Minkowski space xµ or a fixed vector nµ or some kinematical variable of
Ith particle, say, the four-velocity at a certain point on the world line vµ

I (sI),
are permitted. However, if it is granted that the system ‘particles plus elec-
tromagnetic field’ is closed, coefficients of all the dynamical equations, those
of (3.20) and (3.21) included, must be independent of xµ. Given some coeffi-
cient time-dependent, C = C(t), this would evidence that the system suffers
from an external influence which varies according to the law C(t), that is, the
system is not closed. The option gµ = nµ is in conflict with the spacetime
isotropy rendering the description not explicitly covariant under rotations or
Lorentz boosts. The option gµ = vµ

I (sI) is inadmissible because the instant
sI is selected in contradiction with the time homogeneity.

Thus jµ is independent of Fµν ; it may depend only on particle character-
istics, such as coupling constants eI and world line variables zµ

I (sI). What are
those dependences?

In order to clarify them, we digress for a while and observe the identity

∂µ∂νF
µν = 0 , (3.24)

which is due to the antisymmetry of the tensor Fµν . Therefore, to ensure the
consistency of (3.20), the relation

∂µj
µ = 0 (3.25)

must hold identically, namely, for any value of eI and any function zµ
I .
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Consider the integral ∫
U
d4x ∂µj

µ (3.26)

taken over a domain of Minkowski space U bounded by a timelike tube TR of
large radius R and two spacelike hypersurfaces Σ1 and Σ1 with both normals
directed towards the future, Fig. 3.1. By the Gauss–Ostrogradskǐı theorem,

U

TR TR

Σ1

Σ2

� �

�

�

Fig. 3.1. The integration domain U

(3.26) can be transformed to the integral over the boundary:
∫
U
d4x ∂µj

µ =
(∫

TR

+
∫

Σ2

−
∫

Σ1

)
dσµ j

µ . (3.27)

The minus sign of the last integral is due to the fact that the normal to the
hypersurface Σ1 is directed inward the domain U .

Assuming that jµ vanishes sufficiently rapidly in spacelike directions as
x2 → −∞, the integral over TR goes to zero as R→ ∞. In view of (3.25), we
then obtain ∫

Σ1

dσµ j
µ =

∫
Σ2

dσµ j
µ . (3.28)

Because Σ1 and Σ1 are arbitrary spacelike infinite hypersurfaces,

Q =
∫

Σ

dσµ j
µ = const . (3.29)

Q is called the total charge-source. This quantity is independent of Σ. In
particular, if the hypersurface of a fixed formΣ is shifted in timelike directions,
Q remains invariant. Equation (3.29) is known as the conservation of the total
charge-source in time.

The constancy of the charge-source Q would be tempting to relate to the
constancy of the charge-coupling e, implied by equation (2.37). How can we
do it? Let the hypersurface Σ be intersected by N world lines of charged
particles. Our second assumption is that the total charge-source is the sum of
charge-couplings of those particles,
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Q =
N∑

I=1

eI . (3.30)

Imagine for a while that only a single point particle with the coupling e is
in the universe, then

Q = e . (3.31)

This equation, implying the identity of the charge-source and the charge-
coupling, may be interpreted in the spirit of the extended action–reaction
principle. Indeed, the charge-coupling measures the variation of the particle
state for a given electromagnetic field state while the charge-source measures
the variation of the electromagnetic field state for a given particle state. There-
fore, both quantities would be reasonable to lump together as the electric
charge or briefly the charge.

How could we realize (3.30) technically? The gist of the question is that
the set of N one-dimensional objects, the world lines zµ

I (sI), should be con-
tinuously mapped onto a four-dimensional object, the field jµ(x) distributed
over the whole Minkowski space. This can be visualized as a bunch of N curves
that should be ‘smeared out’ to turn into the flux of a continuous fluid. This
mapping may seem to conflict with topological concepts of the dimension, and
such was the widely accepted belief until the 1930s. The break-through was
due to Paul Dirac who dared to identify the delta-function with the density
of zero-dimensional objects. Sergěı Sobolev and Laurent Schwartz laid the
foundation of the theory of distributions rendering the delta-function and its
derivatives respectable mathematical notions. The delta-function made the
formal status of the discrete equivalent to that of the continuous.

We now show that the desired mapping is

jµ(x) =
N∑

I=1

eI

∫ ∞

−∞
dsI v

µ
I (sI) δ4

[
x− zI(sI)

]
, (3.32)

where vµ
I (sI) is the four-velocity of Ith particle at proper time sI , and δ4 (x)

is the four-dimensional delta-function (for an overview of distribution theory
see Appendix F).

Note that changes of the parametrization of the world lines, sI = sI(τI),
leaves integrals unchanged. Indeed,

ds vµ = ds
dzµ

ds
= dτ

dzµ

dτ
. (3.33)

In lieu of proper times sI , we may use a laboratory time x0 = t, to give

jµ = (!, j) (3.34)

where

!(x, t) =
N∑

I=1

eI δ
3
[
x − zI(t)

]
, (3.35)
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j(x, t) =
N∑

I=1

eI vI(t) δ3
[
x − zI(t)

]
. (3.36)

Here, vI(t) is the three-velocity, and zI(t) the three-position of Ith particle
at the instant t.

Because the hypersurface Σ in (3.29) is arbitrary, we take Σ such that
all the world lines are perpendicular to it at intersection points. For a small
vicinity of the intersection point, we have dsI dσµv

µ
I = d4x where xµ is a

Cartesian coordinate in the Lorentz frame with the time axis directed along
vµ

I . Inserting (3.32) in (3.29), we arrive at (3.30).
jµ is called the four-current density of electric charges or simply the four-

current. Since the integral relation (3.29), expressing charge conservation, is
shown to be equivalent to the differential equation (3.25), jµ is said to obey
the local conservation law (3.25).

! and j are called respectively the charge density and the charge current
density. Using the component decomposition (3.34), we rewrite (3.25) as

∂!

∂t
+ div j = 0 (3.37)

which is known as the equation of continuity. The name originates from hy-
drodynamics and suggests the idea of a fluid with the charge density ! and
the charge current density j = v! where v is the local velocity of the charged
matter.

We define the charge contained in a three-dimensional domain V as

QV =
∫

V

d3x ! . (3.38)

When integrated over the volume of V , (3.37) becomes

d

dt
QV = −

∮
∂V

dS · j (3.39)

where the Gauss–Ostrogradskǐı theorem
∫

V

d3xdiv j =
∮

∂V

dS · j (3.40)

has been applied to derive the right hand side of (3.39). Equation (3.39)
says: the increase of the charge in the domain V in a unit time is due to all
contributions of elementary fluxes dS · v! of positive charge flowing inward
this domain through the boundary ∂V . The minus sign reflects the convention
that the normal vector of the boundary surface is always outward the enclosed
domain.

Note, however, that the idea of continuous charged matter with a reason-
ably steady charge distribution is inconsistent in classical electrodynamics.
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We will see in Sect. 4.1 that static charged systems are unstable; any external
disturbance breaks the equilibrium. A steady lump of a continuous charged
fluid is unfeasible: each part of it exerts a repulsive force on every other part
(because of the charge carried by the fluid), which cause the lump to become
a rarefied medium. A homogeneous mixture of two oppositely charged fluids
is also unstable; part of the mixture would collapse forming a neutral clus-
ter, while the remainder possessing an uncompensated residual charge would
spread.

In 1906 Poincaré conjectured that a stable existence of charged matter
is ensured by the presence of nonelectromagnetic cohesive forces. A dramatic
implication of this conjecture is that electrodynamics is fundamentally un-
closed, that is, electromagnetic phenomena defy explanation separately from
the hypothetical Poincaré forces. Although the cohesive forces should mani-
fest themselves even on macroscopic level, the form and origin of those forces
remained enigmatic for two decades.

Suddenly, in 1925, Frenkel made a striking inference that electromagnetism
may be accounted for by itself. He assumed the electron to be a point in the
precise geometric sense. A point particle can be envisioned as a sphere of
radius r in the limit r → 0. Electrostatic repulsive forces are put to distinct
points of the sphere, and, therefore, each part of the sphere tends to move
away from other parts. However, all the repulsive forces are brought into a
single point and cancel as r → 0. Therefore, a point charged particle is immune
from the explosion tendency, and the stable existence of such objects has no
need of the cohesive force conjecture.

Frenkel’s idea was of paramount importance for the ensuing development
of field theory and particle physics. Dirac was delighted with this idea, and
soon afterwards, he contrived its adequate mathematical formulation through
the delta-function. We will see in Chap. 6 that the model of a structureless
point electron poses a problem of infinite self-energy, but such is the price for
the conceptual advantage of stability. The idea of a point source was a useful
guide in quantum field theory and came up with the present paradigm of local
interactions of quantized fields.

From here on, we will keep in mind primarily a system of N particles
which form the four-current (3.32). Note in passing that point particles never
experience decay triggered by the electromagnetic repulsion, and, therefore,
their world lines cannot bifurcate.

Substituting (3.35) and (3.36) in (3.39), we find

∆QV = −∆t
N∑

I=1

eI

∮
∂V

dS · vI . (3.41)

The mechanism of charge conservation is then quite simple: the charge QV in
a domain V is constant during a time interval∆t if the total charge of particles
penetrating into this domain equals the total charge of particles leaving this
domain. Figure 3.2 illustrates this statement. We see one particle (left) with
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� � � �

V

V

∆t

Fig. 3.2. Charge conservation in a spatial domain V

a charge e entering into V , a further particle (right) with the equal charge e
departing V , and two particles (middlemost) permanently contained in V ; the
charge QV in V is thus conserved during the period ∆t. Charge can appear
and disappear in V only with its carrier, a point particle.

The charge conservation of each individual particle is a further reason for
extending world lines infinitely. World lines never terminate at finite points.

Charge conservation in the quantum realm is more involved due to the
availability of both particles and antiparticles together with their creation
and annihilation events. Given a particle moving along a timelike world line
oriented from the past to the future, its antiparticle may be thought of as
an object identical to it in every respect but moving back in time. That
is, the antiparticle world line is oriented from the future to the past, as in
Fig. 3.3. Accordingly, the annihilation of a pair that occurs at a point A (A
for annihilation) is depicted as a Λ-shaped world line of a single particle that
runs initially from the remote past to the future up to the point A and then
returns to the remote past. Likewise, the birth of a pair occurring at a point
B (B for birth) is given by a V -shaped world line of a single particle that runs

�

�

particle antiparticle

�
�

•
A

�
�

•
B

Fig. 3.3. World lines of particles and antiparticles
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V

V

∆t

�
�

�
�

� �

Fig. 3.4. Quantum charge conservation

initially from the far future to the past up to the point B and then returns to
the far future, as in Fig. 3.3. Charge is thus conserved even though its carrier
may appear or disappear, Fig. 3.4. In the quantum realm, physical quantities
are more persistent than the material carriers of these quantities.

Although present considerations are within the orthodox classical frame-
work, we should be alert to notions foreign to it. Classical theory leaves room
for both normal particles which experience the proper order of events and
antiparticles which follow the reverse order of events. However, creations and
annihilations of pairs are banned, which precludes the occurrence of V - and
Λ-shaped world lines. That is why we select infinite timelike world lines free
of breaks and bifurcations. Broken curves are absent from the classical picture
because the least action principle does not apply to V - and Λ-shaped world
lines. (Such V - and Λ-shaped world lines would be automatically excluded if
a further requirement of smoothness would be imposed on the allowable world
lines. This requirement is well substantiated in classical theory where abrupt
jumps in interparticle forces appear as a speculative, artificial construction.)

We next turn to equation (3.21). Based on the superposition principle,
we reiterate mutatis mutandis the above arguments to conclude that mµ is
independent of the field variables Fµν , yet may depend on particle character-
istics. The comparison between (3.17) and (3.19) shows that the roles of the
electric and magnetic fields are now interchanged. Therefore, only particles
possessing magnetic couplings e�

I contribute to mµ. In line with the extended
action–reaction principle, the total magnetic charge-source Q�, defined as a
conserved integral

Q� =
∫
dσµm

µ , (3.42)

equals the sum of magnetic charge-couplings,

Q� =
N∑

I=1

e�
I . (3.43)

Accordingly, we may refer to e�
I as the magnetic charge of the Ith particle.
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Our third assumption is the absence of magnetic charges e�
I from nature,

and so
mµ = 0 . (3.44)

The idea of magnetic monopoles, as such, has a number of attractive the-
oretical aspects, some of which are discussed in this text. However, despite
prodigious experimental efforts that went into searching for magnetic charges,
no manifestation of them is found.

With these observations, the electromagnetic field is governed by the equa-
tions

∂λF
λµ = 4πjµ , (3.45)

∂λ
∗Fλµ = 0 . (3.46)

These equations were formulated by James Clerk Maxwell in 1864, and have
been named for him. The interpretation of jµ as the current of charged parti-
cles is due to Lorentz. Dirac completed the picture by expressing jµ according
to (3.32).

To summarize, a major part of the information encoded in Maxwell’s equa-
tions (3.45) and (3.46) is taken from global topological properties of space-
time, and the residual information, seemingly divorced from geometry, which
represents the physical contents of these equations, translates into four as-
sumptions:

(i) Locality ;
(ii) Linearity of the dynamical equation, or the superposition principle;
(iii) Identity of the charge-source and the charge-coupling, or the extended

action–reaction principle;
(iv) Lack of magnetic monopoles.

Problem 3.2.1. Consider the four-current jµ of a single charged particle
moving along an arbitrary timelike world line zµ(s),

jµ(x) = e

∫ ∞

−∞
ds vµ(s) δ4

[
x− z(s)

]
. (3.47)

Show by a direct calculation that jµ satisfies the local conservation law

∂µj
µ(x) = 0 (3.48)

for any finite point of Minkowski space xµ.

Problem 3.2.2. Assume that the particle charge is time-dependent, e = e(s),
and the corresponding four-current is

jµ(x) =
∫ ∞

−∞
ds e(s) vµ(s) δ4

[
x− z(s)

]
, (3.49)

with the reservation that jµ satisfies the relation (3.48). Show that
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ė = 0 , (3.50)

which is consistent with (2.37).

Problem 3.2.3. Let a charged particle be alone in the world. If the extended
action–reaction principle is taken too literally, the source of electromagnetic
field, that is, the term on the right of equation (3.45) seems required to have
the form Sµ = jλF

λµ where jµ is defined in (3.47). Indeed, Sµ is the density
of the Lorentz force fµ = e vλF

λµ responsible for the variation of the particle
state. Why is this ‘source’ inappropriate?

Answer The ‘source’ Sµ = jλF
λµ does not satisfy identically the relation

∂µS
µ = 0, and hence equation (3.45) fails to be consistent.

3.3 Other Forms of Maxwell’s Equations

Maxwell’s equations in the tensor form, (3.45) and (3.46), provide a compact
encoding of geometric features of our world probed by electric charges. They
evidence that we live in a three-dimensional space with globally trivial (Euclid-
ean) topology, or, to put it otherwise, in a four-dimensional pseudoeuclidean
spacetime. The physical contents of the field dynamics are limited to charge
properties, specifically to the constraints on allowable world lines. We will see
in the subsequent text that peculiar features of electromagnetic field owe their
origin to the coupling with charged matter. For now, however, the equation
of motion as such should be discussed more elaborately.

With reference to Problem 3.1.2, equation (3.46) may be rearranged to
give

∂λFµν + ∂νFλµ + ∂µFνλ = 0 . (3.51)

We regard (3.46) and (3.51) as equivalent and call them collectively the
Bianchi identity.

We next present Maxwell’s equations in terms of differential forms. Given
the 2-form F = 1

2 Fµν dx
µ ∧ dxν , (3.45) and (3.46) become respectively

d ∗F = 4πJ , (3.52)

dF = 0 (3.53)

where the 3-form J = 1
6 Jλµν dx

λ ∧ dxµ ∧ dxν is expressed through jµ as
Jλµν = ελµνρ j

ρ.
Let us verify that (3.53) follows from (3.51). We have

dF =
1
2

(dFµν) dxµ ∧ dxν =
1
2
∂λFµν dx

λ ∧ dxµ ∧ dxν . (3.54)

Because dxλ∧dxµ∧dxν is completely antisymmetric, one may permute ∂λFµν

to obtain
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dF =
1
12

[(∂λFµν+∂νFλµ+∂µFνλ)−(∂λFνµ+∂µFλν+∂νFµλ)] dxλ∧dxµ∧dxν .

(3.55)
Any term of the second parenthesis differs from the corresponding term of the
first ones by interchanging indices of the antisymmetric tensor Fαβ . Therefore,
the expressions in both parentheses are equal and of opposite sign, and

dF =
1
6

(∂λFµν + ∂νFλµ + ∂µFνλ) dxλ ∧ dxµ ∧ dxν . (3.56)

This demonstrates that the homogeneous equations (3.51) and (3.53) are
equivalent.

Let us check that ∗d ∗ plays the role of the four-divergence, and hence
(3.45) results from (3.52). The Hodge operator acts on the 2-form dxµ ∧ dxν

as
∗(dxλ ∧ dxµ) =

1
2
ενρ

λµ dxν ∧ dxρ . (3.57)

It follows that

∗F =
1
2
Fλµ

∗(dxλ ∧ dxµ) =
1
4
Fλµ ενρ

λµ dxν ∧ dxρ =
1
2

∗Fνρ dx
ν ∧ dxρ (3.58)

where ∗Fνρ = 1
2 ενρστ F

στ , as defined in (3.10). Therefore,

d ∗F =
1
6

(∂λ
∗Fµν + ∂ν

∗Fλµ + ∂µ
∗Fνλ) dxλ ∧ dxµ ∧ dxν . (3.59)

The action of the Hodge operator on the 3-form dxλ ∧dxµ ∧dxν shows up
as

∗(dxλ ∧ dxµ ∧ dxν) = ερ
λµν dxρ . (3.60)

By (3.59) and (3.60),

∗d ∗F =
1
6

(∂λ
∗Fµν + ∂ν

∗Fλµ + ∂µ
∗Fνλ) ερλµν dxρ . (3.61)

We restrict ourselves to the calculation of only the first term in the parenthesis,

ερ
λµν ∂λ

∗Fµν =
1
2
ερ

λµν εµναβ ∂λF
αβ = (ηρβδ

λ
α − ηραδ

λ
β) ∂λF

αβ = 2∂λF
λ

ρ ,

(3.62)
since other terms may be produced by a cyclic permutation of indices.

On the other hand, applying the Hodge operator to J , in view of (3.60),
we find

∗J = ∗
(

1
6
Jλµν dx

λ ∧ dxµ ∧ dxν

)
=

1
6
ελµνα j

α ερ
λµν dxρ = jρ dx

ρ . (3.63)

We thus arrive at the relation ∂λF
λ

ρ = 4πjρ which proves the assertion.
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Equations (3.52) and (3.53) represent electrodynamics in a concise and
elegant form. This expression of Maxwell’s equations is coordinate-free. It is
applicable to any smooth four-dimensional pseudo-Riemannian manifold.

By (3.17) and (3.19), Maxwell’s equations acquire the three-dimensional
vector form:

div E = 4π! , (3.64)

curlB = 4πj +
∂E
∂t

, (3.65)

div B = 0 , (3.66)

curlE = −∂B
∂t

. (3.67)

Equations (3.64) and (3.66) contains no time derivatives. These equations
bear no relation to the field’s evolution in time, being mere constraints, similar
to the well-known mechanical constraints that cause a particle to move across
given surfaces. To set up the Cauchy problem for the evolutionary equations
(3.65) and (3.67), the constraints (3.64) and (3.66) should be properly taken
into account on the initial, as well as any subsequent, spacelike hyperplanes.

One may integrate (3.64) over the volume of a three-dimensional domain
V enclosed by a surface ∂V , and apply the Gauss–Ostrogradskǐı theorem

∫
V

d3xdiv E =
∮

∂V

dS · E (3.68)

to obtain ∮
∂V

dS · E = 4πQV . (3.69)

This is the so-called Gauss law which states: the integral flux of the electric
intensity E outward the domain V equals the charge QV contained in V times
4π.

Likewise, the integration of (3.66) gives
∮

∂V

dS · B = 0 . (3.70)

This relation tells us that the flux integral of the magnetic induction B out-
ward from any domain V is zero. The closure of magnetic lines of force, and
the lack of magnetic monopoles is thus seen.

Let a two-dimensional surface S be bounded by a loop L. We calculate the
flux of the vector equation (3.65) through S and apply the Stokes theorem

∫
S
dS · curlB =

∮
L
dx · B (3.71)
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to get ∮
L
dx · B =

∫
S
dS ·

(
4πj +

∂E
∂t

)
. (3.72)

For stationary currents, (3.72) acquires the form
∮
L
dx · B = 4π

∫
S
dS · j . (3.73)

This relation, known as Ampère’s law, implies that the line integral of B
around the loop L equals 4π of the current j through the surface S.

The term ∂E/∂t becomes essential in non-stationary situations. This term
is called the displacement current. It was introduced by Maxwell for purely
theoretical reasons, specifically, to make the equation of continuity (3.37)
valid, see Problem 3.3.3.

In a similar fashion, the integration of (3.67) leads to
∮
L
dx · E = − d

dt

∫
S
dS · B . (3.74)

The relation (3.74) is known as Faraday’s law. It implies that the line integral
of E around the loop L (called the electromotive force through L) is equal to
minus the time derivative of the flux of B through the surface S.

The laws of electromagnetism were originally discovered experimentally in
the integral forms (3.69) and (3.70), together with (3.73) and (3.74). This form
of electrodynamics is convenient for applications. In particular, Gauss’ law
(3.69) provides a simple way for the calculation of the electric field E in many
electrostatic problems, and Ampère’s law (3.73) enables the determination of
the spatial behavior of the magnetic field B generated by a stationary current.
(See Problems 3.3.1–3.3.2.)

Problem 3.3.1. Use of Gauss’ law. (i) Let a ball of radius R carry a charge Q
which is distributed homogeneously over the volume. Using Gauss’ law (3.69),
find the electric field intensity E both inside and outside the ball.

(ii) Let a charge Q be distributed homogeneously over a sphere of radius
R. Find E inside and outside the sphere.

(iii) Consider an infinite capacitor with flat parallel plates which carry
opposite charges of magnitude σ per a unit area. Find E inside and outside
the capacitor.

Answer (i) E is directed along the radius-vector,

Er = Q

[
r

R3
θ(R− r) +

1
r2
θ(r −R)

]
(3.75)

where θ(R− r) is the Heaviside step function.

(ii) Er =
Q

r2
θ(r −R) . (3.76)
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(iii) E is perpendicular to the plates at any point inside the capacitor,
E = 4πσ. Outside the capacitor, the field vanishes.

Problem 3.3.2. Use of Ampère’s law. Consider a rectilinear infinite conduc-
tor of a uniform circular cross section S and a steady current of electrons I
along it,

I =
∫
S
dS · j . (3.77)

Determine the magnetic induction B everywhere outside the conductor.

Answer Using cylindrical coordinates (z, r, and ϕ, with the z-axis parallel to
the conductor) the magnetic induction is B = (Bz, Br, Bϕ),

Bz = 0, Br = 0, Bϕ =
2I
r
. (3.78)

Problem 3.3.3 Show that the equation of continuity (3.37) follows from two
Maxwell’s equations (3.64) and (3.65). Notice the role of the displacement
current.

Notes

1. The basic references on the Maxwell–Lorentz electrodynamics, a classical
theory of charged point particles interacting with electromagnetic field, are
Maxwell (1873) and Lorentz (1909). The reader may find the two volume set by
Whittaker (1910) and (1953) a useful guide in the history of classical theories
of electromagnetism. The paper by Jackson & Okun (2001) narrates some
little-known facts concerning the formation of the notion of gauge invariance
and give further references, including historical surveys.

2. Section 3.1. We give a somewhat uncommon derivation of Maxwell’s
equations. Our line of argument rests heavily on a statement known as
the Helmholtz theorem, which is in fact a corollary of results obtained in
Helmholtz (1858). Most modern texts introduce Maxwell’s equations in a
well-established way. For example, the book by Jackson (1962) follows the
inductive method, while the text by Landau & Lifshitz (1971) postulates a
suitable action and invokes the principle of least action. Hehl & Obukhov
(2003) derives Maxwell’s equations from six assumptions, which, while having
much in common with the assumptions adopted here, follow a different logical
pattern.

3. Section 3.2. The remark that charged matter is unstable, which prompts us
to search for nonelectromagnetic cohesive forces, has been a source of much
speculation since the original work of Poincaré (1906). Frenkel (1925) argues
that a point electron is stable, and thus dispenses with the need for the co-
hesive forces. Distributions as mathematical tools were promoted in Dirac
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(1930), in particular the delta-function is systematically employed in this
book. As early as 1899, the delta-function, together with its Fourier trans-
form, was introduced in Heaviside (1899) under the name impulsive func-
tion. However, this discovery exceeded the requirements of physics at that
time, and went unnoticed. The notion of distributions as functionals on some
space of test functions was proposed in Sobolev (1936) and Schwartz (1950–
1951). Dirac (1938) gave an account of the motion of a classical point electron
through the use of the delta-function.

The electron was discovered by Thomson (1897). Analyzing the Dirac
equation, Dirac (1931) assumed that its negative-energy solutions describe
a particle with the same mass as the electron, but with opposite charge. The
positron was discovered shortly thereafter in 1932, which gave impetus to
research concerning antimatter.

The concept of magnetic monopoles was described by Dirac (1931), (1948)
within the scope of quantum mechanics. For the present status of experimental
searches for magnetic monopoles see Chap. 10 of Klapdor-Kleingrothaus &
Zuber (1997).

4. Section 3.3. Maxwell’s equations in vector notation (3.64)–(3.67) were
brought into use in Heaviside (1892). Cartan (1924) applied the differential
form calculus to represent Maxwell’s equations in a coordinate-free form. For
more detail on Maxwell’s equations in terms of differential forms see Misner
et al. (1973). Representations of Maxwell’s equations are many and varied.
Some of them can be found in the book by Fushchich & Nikitin (1987).
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Solutions to Maxwell’s Equations

In this chapter we study solutions to Maxwell’s equations

∂λ
∗Fλµ = 0 , (4.1)

∂λF
λµ = 4πjµ (4.2)

for various sources jµ. We begin with the simplest case of static electric fields
and compare it with the closely similar case of constant magnetic fields. To
solve Maxwell’s equations in the general case, we define the four-vector poten-
tial Aµ, a key element of gauge theories. We turn to the special case jµ = 0
when Maxwell’s equations reduce to the homogeneous wave equation and de-
scribe free electromagnetic fields. The inhomogeneous wave equation is used
to illustrate the Green’s function technique. We further discuss a method of
solving Maxwell’s equations with the source composed of a single arbitrarily
moving point charge, without resort to Green’s functions. This method will
be of particular assistance in solving the Yang–Mills equations in Chap. 8.
Finally we consider features of the electromagnetic field due to a magnetic
monopole.

One important point to remember is that we are dealing with a system of
linear partial differential equations of the hyperbolic type. A regular way for
examining a linear differential equation with constant coefficients is to look
at the Fourier-series or Fourier-integral expansions of the desired function
which convert this differential equation to an algebraic equation. Since our
interest is only with fields distributed over empty space, it is adequate to use
a Fourier-integral expansion.

4.1 Statics

When charges are at rest, they generate static fields, that is, ∂E/∂t =
∂B/∂t = 0. The equations of electrostatics, resulting from (3.67) and (3.64),
are
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∇× E = 0 , (4.3)

∇ · E = 4π! . (4.4)

(In the analysis given below the symbol ∇ is preferred over the traditional no-
tations grad, curl and div.) Our immediate task is to find solutions to (4.3) and
(4.4), and check the stability of these solutions against small perturbations.

One might think that the system of equations (4.3) and (4.4) is overde-
termined: four equations are intended for finding three functions E1, E2 and
E3. It is easy to see, however, that (4.3) is satisfied identically by the ansatz

E = −∇φ . (4.5)

Here, φ is an arbitrary function of r. This quantity is called the scalar potential
or simply the potential of the electric field. Combining (4.5) and (4.4), we
obtain the equation

∇2φ = −4π! (4.6)

known as the Poisson equation. We have arrived at the system of equations
(4.5) and (4.6) with the number of equations equal to the number of desired
functions.

Does relation (4.5) represent the general solution to equation (4.3)? To
make sure that this is indeed the case, we write the Fourier transform

E(r) =
1

(2π)3

∫
d3k eik·r Ẽ(k) , (4.7)

and decompose Ẽ into three basis vectors,

Ẽ = e1Ẽ1 + e2Ẽ2 + e3Ẽ3 , (4.8)

where e1 is taken to be e1 = k/k, k = |k|, and e2 and e3 are arbitrary unit
vectors which together with e1 span the orthonormalized basis,

ei · ej = δij , i, j = 1, 2, 3 . (4.9)

The action of ∇ on E amounts to the multiplication of Ẽ by ik. From (4.3)
follows

k × Ẽ = k (e3Ẽ2 − e2Ẽ3) = 0 . (4.10)

We take the scalar product of this equation with e3 and e2 using (4.9) to yield
Ẽ2 = Ẽ3 = 0, and so

Ẽ = e1Ẽ1 = −ik φ̃ (4.11)

where φ̃ is an arbitrary function of k. Note that (4.11) is just the Fourier
transform of (4.5). So, both the sense of equation (4.3), which is a constraint
eliminating some Fourier modes of the electric field, and the issue of generality
of its solution (4.5) become clear.
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Formula (4.5) defines the potential φ up to adding an arbitrary constant.
Indeed, E is unchanged by the transformation

φ→ φ′ = φ+ C, C = const . (4.12)

In nonrelativistic mechanics where eφ plays the role of potential energy, this
fact can be interpreted as the freedom in choosing the zero point of energy.

The Poisson equation (4.6) is linear in the unknown function φ. Therefore,
the general solution is φ = φ∗ + Φ where φ∗ is a particular solution of this
equation, and Φ the general solution of the associated homogeneous equation

∇2Φ =
∂2Φ

∂x2
1

+
∂2Φ

∂x2
2

+
∂2Φ

∂x2
3

= 0 (4.13)

called the Laplace equation. Functions Φ satisfying (4.13) are called harmonic.
We point out that solutions of the Laplace equation have no local maxima

and minima. Indeed, at extremum points, the first derivatives of Φ vanish
while the second derivatives have the same signs. However, equation (4.13)
implies that the second derivatives must have different signs or simultaneously
vanish, resulting in Φ = const. Thus any harmonic function in some spatial
domain takes its maximal and minimal values on the boundary of this domain.
In particular, given a harmonic function Φ vanishing on the boundary, Φ is
identically zero in this domain. (Incidentally, this is the reason for lack of
magnetic field due to static electric charges. The corresponding couple of
Maxwell’s equations ∇×B = 0, ∇·B = 0 is equivalent to the vector Laplace
equation ∇2B = 0 which admits only the trivial solution B = 0 provided that
B disappears at infinity.)

Let a single point charge e be placed at the origin. The potential φ gener-
ated by it in empty space is described by

∇2φ(r) = −4πe δ3(r) . (4.14)

We assume that φ tends to zero as r → ∞. Then the solution to the Laplace
equation is identically zero, and only a particular solution to equation (4.14)
vanishing at infinity remains to be found. We insert the Fourier transforms of
φ(r) and δ3(r),

φ(r) =
1

(2π)3

∫
d3k eik·r φ̃(k) , (4.15)

δ3(r) =
1

(2π)3

∫
d3k eik·r , (4.16)

in (4.14) to obtain
k2φ̃ = 4πe . (4.17)

It follows that
φ̃ =

4πe
k2

. (4.18)
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Inserting (4.18) in (4.15) and using spherical coordinates in the k-space with
the k3-axis collinear to r gives d3k = k2dk sinϑdϑ dϕ, k · r = kr cosϑ, and

φ(r) =
4πe

(2π)3

∫ ∞

0

dk

∫ π

0

dϑ sinϑ eikr cos ϑ

∫ 2π

0

dϕ . (4.19)

With the change of variables ξ = kr, we arrive at

φ =
e

r
β (4.20)

where β is some numerical factor. The calculation of β is quite elementary,
we give only the net result: β = 1. Thus

φ(r) =
e

r
. (4.21)

For the calculation of E, we need the derivatives of Cartesian coordinates
with respect to another Cartesian coordinates:

∂xj

∂xi
= δij , (4.22)

and also the derivatives of the radial distance with respect to Cartesian coor-
dinates:

∂r

∂xi
=

∂

∂xi

√
x2

1 + x2
2 + x2

3 =
xi

r
= ni (4.23)

where n is a unit vector directed along the radius vector. (Recall, all manip-
ulations with Euclidean vectors and tensors are carried out using subscripts,
and the repeated index summation rule is understood.) In view of (4.5),

E = e
n
r2

. (4.24)

The potential (4.21) is called the Coulomb potential, and the electric field
(4.24) is called the Coulomb field. We point out the characteristic 1/r singu-
larity of the potential and 1/r2 singularity of the field strength at the location
of the charge.

Such a simple form of the solution is due to the adoption of Gaussian
units. Were it not for the factor of 4π on the right of the Maxwell equation
(3.45) there would be the excess factor 1/4π in the potential (4.21) and field
strength (4.24).

Expressions (4.21) and (4.24) can be alternatively derived by observing
that fields generated by a point source are spherically symmetric. That is, φ
depends only on r. The Laplace equation holds everywhere outside the source.
We may restrict our consideration to the radial part of the Laplace equation
in spherical coordinates,

1
r2

∂

∂r
r2

∂

∂r
φ = 0 . (4.25)
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The general solution to this equation is readily obtained

φ =
C1

r
+ C2 (4.26)

where C1 and C2 are arbitrary constants. Because E is invariant under the
transformation (4.12), we are entitled to choose any C2, in particular C2 = 0.
Differentiating φ, we observe that E is directed along the radius vector. The
flux of E through a sphere with its center at the origin is 4πr2E. By Gauss’
law (3.69), it must be equal to 4πe, hence C1 = e.

The potential generated by several static charges can be represented as a
superposition of potentials generated by each individual charge:

φ =
N∑

I=1

eI

|r − zI |
. (4.27)

One can then guess that a solution to equation (4.6) with an arbitrary
continuous charge distribution !(r) is

φ(r) =
∫
d3x

!(x)
|r − x| . (4.28)

Indeed,

∇2φ(r) =
∫
d3x !(x)∇2 1

|r − x| = −
∫
d3x !(x) 4πδ3(r − x) = −4π!(r)

(4.29)
where we have taken into account that 1/|r− x| coincides, up to a numerical
factor and a shift of the origin, with the Coulomb solution (4.21) of the Poisson
equation (4.14).

When !(r) =
∑
eI δ

3(r − zI), the solution (4.28) regains the form (4.27).
Consider the case that a continuous distribution of charged matter is lo-

cated in a compact spatial region V . Put the origin at some point of this
region. How does the field behave at large distances from the source, that is,
for r � |x|? To answer this question, we expand 1/|r − x| in powers of x/r:

1
|r − x| =

1
r
− xi∂i

1
r

+
1
2
xixj∂i∂j

1
r

+ · · · (4.30)

We use in (4.30) relations stemming from (4.22) and (4.23)

∂i
1
r

= −ni

r2
, ∂i∂j

1
r

=
3ninj − δij

r3
, δij∂i∂j

1
r

= 0 (4.31)

where ni is the unit vector aligned with the radius vector, to obtain

1
|r − x| =

1
r

+
x · n
r2

+
3
2

(
xixj −

1
3
x2δij

)
ninj

r3
+ · · · (4.32)
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If the total charge (zeroth-order electric moment of the source)

Q =
∫

V

d3x !(x) (4.33)

is finite, the term of the potential φ proportional to 1/r dominates at large r.
If Q = 0, and yet the electric dipole moment

d =
∫

V

d3xx !(x) (4.34)

is nonzero, the potential behaves asymptotically as

φ =
d · n
r2

. (4.35)

The electric field generated by the dipole is

E = −∇ d · n
r2

=
3(d · n)n − d

r3
. (4.36)

When both Q and d vanish, but the electric quadrupole moment

Dij =
∫

V

d3x (3xixj − x2δij) !(x) (4.37)

is nonzero, the leading asymptotic term of the potential becomes

φ =
Dij ninj

2r3
. (4.38)

Thus neutral systems can interact by their multipoles. In materials com-
posed of polar molecules, such as H2O, neighboring molecular dipoles are
turned to one another by opposite poles causing their attraction. Intermolec-
ular binding of this kind is referred to as a van der Waals interaction. Although
fields generated by multipoles fall with distance faster than the Coulomb field,
the van der Waals interaction is still sufficiently strong to keep matter in a
condensed state.

Are the solutions (4.27) and (4.28) stable against small perturbations of
the charge density? In other words, is a stable equilibrium possible for a charge
introduced in electrostatic fields? The answer is ‘no’. This is due to the lack of
configurations φ with local minima, that is, lack of points where the potential
energy of the charge eφ(r) is minimal.

We now turn to the magnetostatic equations

∇ · B = 0 , (4.39)

∇× B = 4πj (4.40)

derivable from (3.66) and (3.65) when ∂E/∂t = 0. They describe constant
magnetic fields due to stationary electric currents. Recall, one refers to a
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process in a continuous medium as stationary if the density of the medium is
constant in time. In the present case, the electric charge density is constant,
∂!/∂t = 0. The equation of continuity (3.37) takes the form

∇ · j = 0 . (4.41)

This equation is often regarded as the definition of a stationary current.
While on the subject of the current j, one usually conceives the motion of

charges along a circuit. Charges forming stationary currents execute periodic
motions along closed paths. This makes clear the difference between sources
in electrostatics and those in magnetostatics. The former are composed of
charges which move along parallel straight world lines while the latter are
composed of charges which move along regular helical world lines with parallel
axes.

The system of equations (4.39) and (4.40) may also seem overdetermined.
However, the ansatz

B = ∇× A (4.42)

obeys equation (4.39) identically. We call A the vector potential of the mag-
netic field.

Formula (4.42) defines A only up to addition of gradients of arbitrary
scalar functions. Indeed, the magnetic induction B remains invariant under
the transformations

A → A′ = A + ∇χ , (4.43)

where χ is an arbitrary smooth function of r. We refer to (4.43) as gauge
transformations. Thus (4.42) defines the equivalence class of vector-valued
functions related to one other by gauge transformations (4.43), rather than a
concrete function A.

We can eliminate the gauge arbitrariness by imposing an additional con-
straint on A. For example, one may require

∇ · A = 0 , (4.44)

called the Coulomb gauge. In fact, given a representative of the equivalence
class A, one would like to check the existence of a function χ which ensures
the gauge condition ∇ ·A′ = 0 for some A′. From (4.43) and (4.44) it follows
that

∇2χ = −∇ · A . (4.45)

The desired function is constructed with the aid of (4.28):

χ(r) =
1
4π

∫
d3x

∇ · A(x)
|r − x| . (4.46)

Substituting (4.42) in (4.40) and taking into account (4.44) shows

∇2A = −4πj . (4.47)
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We thus come to the system of equations (4.42) and (4.47) where the number
of equations equals the number of desired functions.

A solution to the vector Poisson equation (4.47) patterned after (4.28) is

A(r) =
∫
d3x

j(x)
|r − x| . (4.48)

In view of (4.42), the curl of the vector potential A given by (4.48) yields the
magnetic induction

B(r) =
∫
d3x

j(x) × (r − x)
|r − x|3 . (4.49)

This relation represents the Biot and Savart law. For a system of N charged
particles, j is given by (3.36), and (4.49) becomes

B =
N∑

I=1

eI
vI × (r − zI)

|r − zI |3
. (4.50)

By analogy with the electrostatics, we separate terms of the magnetic field
which are generated by different magnetic multipole moments. We substitute
(4.32) in (4.48) and keep only two initial terms of the expansion:

Ai(r) =
1
r

∫
V

d3x ji(x) +
1
r2

∫
V

d3xnkxk ji(x) + · · · (4.51)

The first term on the right is zero. Indeed, using the stationary state condition
(4.41),

∂l (xkjl) = δkl jl + xk ∂l jl = jk . (4.52)

Therefore, any stationary current ji can be expressed as

ji = ∂l (xijl) . (4.53)

This suggests the use of the Gauss–Ostrogradskǐı theorem which transforms
the first term of (4.51) to the flux of xijl through the surface of V . But the
charged matter under examination is assumed to be confined to the region
V , and so this flux is zero. The vanishing of zeroth order magnetic moments
reflects the conjecture that magnetic monopoles do not exist. Ampère even
hypothesized that any magnetic field is due to the circuition of charges along
closed paths (the so-called Ampère’s molecular currents).

We now turn to the second term of expression (4.51). One can prove the
identity

n × (x × j) = (n · j)x − (n · x) j . (4.54)

The first term on the right hand side of this identity is equal and of opposite
sign to the second term plus the divergence of some quantity. Indeed, insertion
of (4.53) in it gives
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nkjkxi = xink∂l(xkjl) = ∂l(xinkxkjl)−xkjl∂l(xink) = ∂l(xinkxkjl)−nkxkji .
(4.55)

Thus ∫
V

d3x (n · x) j(x) = −1
2

n ×
(∫

V

d3xx × j(x)
)

(4.56)

where we discarded the surface integral of xinkxkjl. If we define the magnetic
dipole moment of the given current distribution as

m =
1
2

∫
V

d3xx × j(x) , (4.57)

we conclude that the term
A =

m × n
r2

(4.58)

of the expansion (4.51) dominates at large r. The associated magnetic induc-
tion is

B = ∇×
(

m × n
r2

)
=

3(m · n)n − m
r3

. (4.59)

Comparison of (4.59) and (4.36) shows that the magnetic induction due to
a magnetic dipole behaves identically to the electric field intensity due to an
electric dipole.

Despite the similarity between electrostatics and magnetostatics, the prob-
lem of the stability of the latter is not as simple as that of the former. The
reasoning given above for the instability of any system of motionless charges
is inapplicable to systems governed by magnetostatic laws because the vector
potential A bears no relation to the potential energy. Unlike systems of mo-
tionless charges where equilibrium is attained due to the balance of Coulomb
forces, the equilibrium of orbiting charges requires the balance of electric,
magnetic, and centrifugal forces. We note also that the very stability problem
in magnetostatics is rather artificial: only such perturbations of j are relevant
that leave j stationary. It is reasonable to address the stability problem in the
wider context of general electrodynamical systems.

Problem 4.1.1. Solve the one- and two-dimensional, D = 1 and D = 2,
Poisson equation

∇2φ(r) = −eΩD−1 δ
D(r), ΩD−1 = 2

πD/2

Γ (D/2)
, (4.60)

where ΩD−1 is the area of a (D − 1)-dimensional unit sphere (Ω0 = 2, Ω1 =
2π), by the two methods presented in the text, and find the field strength E.

Answer

φ = −e
{
|x| D = 1,
log (r/l) D = 2, (4.61)
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E = e

{
sgn(x) D = 1,
n/r D = 2, (4.62)

where l is an arbitrary parameter which has the dimensionality of length, and
sgn is the signum function: sgn(x) = 1 for x > 0, and sgn(x) = −1 for x < 0.

Problem 4.1.2. Derive the relation B = ∇ × A by a direct integration of
equation ∇ · B = 0 in an unbounded spatial region.

Hint The Fourier transform of this equation k · B̃ = 0 means geometri-
cally that B̃ belongs to a plane perpendicular to the vector k. Any vector of
this plane can be viewed as the projection of some vector Ã onto this plane
achieved by the operation k × Ã.

Problem 4.1.3. Prove the Helmholtz theorem formulated in Sect. 3.1. Does
this theorem remain valid if the Euclidean metric is substituted by an indefi-
nite metric?

Problem 4.1.4. A massive scalar field Φ is governed by the Klein–Gordon
equation

(� + µ2)Φ = J (4.63)

where µ is the field mass (in the natural units), and J is an external source. In
the static case, Φ and J are time-independent, and we arrive at the Helmholtz
equation

(∇2 − µ2)Φ(x) = −J(x) . (4.64)

Find the solution to the Helmholtz equation with a delta-function source

(∇2 − µ2)Φ(x) = −g δ3(x) (4.65)

where g is a coupling constant. This solution is known as the Yukawa potential.
Compare the spatial behavior of the Yukawa and Coulomb potentials.

Answer

Φ = g
e−µr

4πr
. (4.66)

Problem 4.1.5. Static magnetic monopole. Let a static point particle with a
magnetic charge e� be at the origin r = 0. It generates a magnetic field B(r)
described by the equation

div B = 4πe�δ3(r) . (4.67)

The introduction of the vector potential according to the relation

B = curlA (4.68)

is ill advised because of the identity div curlA = 0, valid for any smooth vector
function A. Nevertheless, Dirac proposed to use (4.68) for vector potentials
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A singular on some line that issues out of the magnetic monopole (the so-
called Dirac string). The idea is that the divergence of B vanishes almost
everywhere, hence (4.68) holds almost everywhere, and yet the total flux of
B, concentrated at the singular line, is 4πe� to suit (4.67). The string may be
conceived as a thin solenoid that carries the magnetic flux 4πe� to infinity.

Show that the application of the curl operator to the vector potential

A = e� r × û
r(r − r · û)

, (4.69)

where û is an auxiliary unit vector forming the singular line x(σ) = ûσ, 0 ≤
σ <∞, gives the magnetic field B of the Coulomb-like form

B = e� n
r2

, (4.70)

where n is a unit vector aligned with the radius vector, hence this B satisfies
(4.67). Rewrite the expression (4.69) in spherical coordinates when (i) û is
aligned with the x3-axis and (ii) opposed to it. Consider

A′ = e� (r × û) (r · û)
r [r2 − (r · û)2]

. (4.71)

Is A′ another vector potential which gives the magnetic field B defined in
(4.70)? What is the relation between A′ and A?

Answer
(i) Ar = Aϑ = 0, Aϕ = − e�

r sinϑ
(1 + cosϑ) , (4.72)

(ii) Ar = Aϑ = 0, Aϕ =
e�(1 − cosϑ)

r sinϑ
=

e� sinϑ
r(1 + cosϑ)

=
e�

r
tan

ϑ

2
. (4.73)

It is clear from (4.71) that

A′ = A − e� r × û
r2 − (r · û)2

. (4.74)

The second term is equal to half the difference between A depending on
some auxiliary vector û and A depending on the oppositely directed auxiliary
vector,

e� r × û
r(r − r · û)

+ e� r × û
r(r + r · û)

= 2e� r × û
r2 − (r · û)2

. (4.75)

Since both are vector potentials producing the same magnetic field, one may
think of A′ as resulting from A through the gauge transformation (4.43) with
some gauge function χ (for the concrete form of χ see Problem 4.8.2).
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4.2 Solutions to Maxwell’s Equations:
Some General Observations

The electromagnetic field generated by charges moving along arbitrary world
lines is described by Maxwell’s equations (3.64)–(3.67). We write them again:

∇× E = −∂B
∂t

, (4.76)

∇ · B = 0 , (4.77)

∇× B = 4πj +
∂E
∂t

, (4.78)

∇ · E = 4π! . (4.79)

The system of equations (4.76) through (4.79) is also seemingly overdeter-
mined: eight equations, two vector and two scalar, are intended for finding six
functions E and B.

The three-dimensional vector form of Maxwell’s equations (4.76)–(4.79) is
not quite convenient for the subsequent analysis. One may rewrite them in
terms of Cartan’s differential forms, (3.53) and (3.52),

dF = 0 , (4.80)

d ∗F = 4πJ , (4.81)

or, alternatively, in the four-dimensional tensor form, (3.46) and (3.45),

∂λ
∗Fλµ = 0 , (4.82)

∂λF
λµ = 4πjµ , (4.83)

where ∗Fλµ = 1
2 ε

λµνρFνρ.
The identity dd = 0 suggests that

F = dA , (4.84)

with A = Aµdx
µ being an arbitrary 1-form, is the general solution to (4.80).

The four-vector Aµ = Aµ(x) is named the vector potential of the electromag-
netic field. In coordinate notation, (4.84) takes the form:

Fµν = ∂µAν − ∂νAµ . (4.85)

This construction identically satisfies (4.82) because ελµνρ∂λ∂µ = 0.
The corresponding solution to equations (4.76) and (4.77) is not as much

evident. We express Aµ through its components in some Lorentz frame of
reference Aµ = (φ,A), or, equivalently, Aµ = (φ,−A). Taking into account
the definitions of the electric field Ei = F0i and the magnetic induction Bi =
− 1

2 εijkF
jk we obtain from (4.85)
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E = −∂A
∂t

−∇φ , (4.86)

B = ∇× A . (4.87)

One can then verify that (4.86) and (4.87) are solutions of equations (4.76)
and (4.77) by inspection.

In order to build the 1-form A from a given 2-form F (or, in other words,
to gain insight into the structure of the operator d−1 inverse to the exterior
derivative d), we write the Fourier transform

F (x) =
1

(2π)4

∫
d4k e−ik·x F̃ (k) (4.88)

where k · x = ωt − k · r. We decompose F̃ into exterior products of basis
vectors:

F̃ = F̃ 01e0∧e1 + F̃ 02e0∧e2 + F̃ 03e0∧e3 + F̃ 12e1∧e2 + F̃ 13e1∧e3 + F̃ 23e2∧e3 .
(4.89)

Let eµ
0 be taken as eµ

0 = kµ, while eµ
1 , eµ

2 and eµ
3 are arbitrary vectors which

together with eµ
0 form a not necessarily orthonormalized basis. Then (4.80)

reads
k ∧ F̃ = 0 . (4.90)

Taking into account decomposition (4.89) and the identity k∧k = 0, we obtain

F̃ 12e0 ∧ e1 ∧ e2 + F̃ 13e0 ∧ e1 ∧ e3 + F̃ 23e0 ∧ e2 ∧ e3 = 0 . (4.91)

Exterior multiplication by e3 yields F̃ 12e0 ∧ e1 ∧ e2 ∧ e3 = 0, whence we see
that F̃ 12 = 0. Likewise, F̃ 13 = F̃ 23 = 0. Therefore,

F̃ = e0 ∧ (F̃ 01e1 + F̃ 02e2 + F̃ 03e3) , (4.92)

or
F̃ = k ∧ Ã . (4.93)

Clearly (4.93) is just the Fourier image of (4.84). When (4.92) is compared
with (4.93), it is apparent which components of F̃ contribute to Ã.

For other explicit forms of the operator d−1 see Problem 4.2.4 and Appen-
dix A.

Formula (4.84) defines the 1-form A up to adding the external derivative
of a scalar function χ. Indeed, the 2-form F = dA is unaffected with respect
to the substitution

A→ A′ = A− dχ , (4.94)

or, in the coordinate language, Fµν = ∂µAν − ∂νAµ is invariant under the
transformation

Aµ → A′
µ = Aµ − ∂µχ . (4.95)
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The Fourier transform of (4.95) is

Ãµ → Ã′
µ = Ãµ + ikµχ̃ (4.96)

where χ̃ is an arbitrary scalar function of kµ. The transformation (4.94) [as
well as (4.95) and (4.96)] is called a gauge transformation. Therefore, we deal
with the entire equivalence class of vector potentials related to each other
by gauge transformations, rather than a concrete vector function. The terms
−∂µχ in (4.95) and ikµχ̃ in (4.96) are called the gauge (or longitudial) modes.
The evolution of these modes and the evolution of electromagnetic field are
divorced from each other. Gauge modes do not contribute to Fµν , hence the
dynamics of charged particles is unaffected by these modes which are missing
from the Lorentz force evνFµν . We will see presently that the inverse is also
the case: the current of charged particles jµ is not the source of gauge modes.

We insert (4.85) in (4.83) to yield

�Aµ − ∂µ∂νA
ν = 4πjµ (4.97)

where the second-order differential operator

� = ∂µ∂µ =
∂2

∂t2
−∇2 (4.98)

is called the wave operator or the d’Alembertian. We are led to the system of
equations (4.85) and (4.97) with the number of equations equal to the number
of functions sought. This amendment of the system of equations results from
augmenting the field degrees of freedom by gauge variables.

Our next task is to solve equation (4.97). The Fourier transform of this
equation is

(k2ηµν − kµkν) Ãν = −4π̃µ . (4.99)

Let us define the matrix operator

Λµν = (k2ηµν − kµkν) . (4.100)

If one assumes the existence of an operator Λ−1 inverse to Λ, a solution to
(4.99) would be Ã = −4πΛ−1̃. However, it will be shown that detΛ = 0,
hence the operator Λ has no inverse.

We first consider k2 = 0. In this case one can find a Lorentz frame such
that kµ = ω (1, 1, 0, 0), and so

Λ = −ω2




1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


 . (4.101)

Clearly, detΛ = 0 for this matrix. Because the determinant is Lorentz invari-
ant, our statement is true for any frame.
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We now turn to k2 = ω2 > 0. In this case there exists a Lorentz frame
such that kµ = ω (1, 0, 0, 0), and so

Λ = ω2




0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (4.102)

Therefore, detΛ = 0 in this case as well.
We finally take k2 = −ω2 < 0. In the frame of reference where kµ =

ω (0, 1, 0, 0), we verify in the same fashion that detΛ = 0.
This result can be obtained in an alternative way. Indeed, detΛ =

λ0λ1λ2λ3 where λ0, λ1, λ2, and λ3 are eigenvalues of the operator Λ, that
is, solutions to the eigenvalue equation

ΛµνΨ
ν
A = λAΨ

µ
A (4.103)

where A runs from 0 to 3 (there is no summation over A in the right-hand
side). It is clear from

Λµνk
ν = 0 (4.104)

that some eigenvalue (associated with the eigenvector Ψµ proportional to kµ)
is zero, hence detΛ = 0.

One can readily observe that Λ = k2
k

⊥ where
k

⊥ is the operator projecting
on directions perpendicular to the vector kµ. This suggests that equation
(4.99) governs the evolution of transverse modes of electromagnetic field. The
source ̃µ generates only transverse modes. For the longitudial modes ikµχ̃,
we have equation (4.104), which shows that such modes are unaffected by ̃µ

and evolve independently of the transverse modes.
Because detΛ = 0, Λ−1 does not exist, and hence equation (4.97) cannot

be solved directly. To tackle this problem one may take advantage of the gauge
arbitrariness and impose an additional gauge fixing condition on the vector
potential (for an alternative approach see Sect. 4.7). Choosing the so-called
Lorenz gauge fixing condition1

∂µA
µ = 0 , (4.105)

(4.97) becomes the inhomogeneous wave equation

�Aµ = 4πjµ . (4.106)

The Fourier transform of this equation

k2Ãµ = −4π̃µ (4.107)
1 The Danish physicist Ludwig Valentin Lorenz, who was the first to invoke this

condition in 1867, should not be confused with the Duch physicist Hendrik Antoon
Lorentz.
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is solvable: Ãµ = −4π̃µ/k2. The rest of the problem consists of taking the
inverse Fourier transform of Ãµ(k), and looking for the general solution to the
homogeneous wave equation

�Aµ = 0 . (4.108)

Although the Lorenz gauge is quite convenient, it is by no means the only
possible gauge choice. It is sometimes helpful to use the Coulomb gauge (4.44)
or the temporal gauge A0 = 0. Given a fixed timelike unit vector nµ, these
gauges can be represented in the formally covariant forms respectively as

[∂µ − (n · ∂)nµ]Aµ = 0 (4.109)

and
nµA

µ = 0 . (4.110)

In the frame of reference with the time axis parallel to nµ, we have nµ =
(1, 0, 0, 0), and these gauges take the familiar noncovariant form.

Introducing the vector bµ = ξ kµ − (1 − ξ)nµ where ξ is a real parameter,
these conditions can be unified in a single formula:

bµÃ
µ = 0 . (4.111)

The Lorenz and temporal gauges are regained for respectively ξ = 1 and ξ = 0,
and the Coulomb gauge appears when ξ = [1 + (n · k)]−1. Imposing the gauge
fixing condition (4.111) ensures the solvability of (4.99).

Problem 4.2.1. Show that equation (4.99) becomes solvable when the gauge
condition (4.111) is imposed.

Problem 4.2.2. Consider the world line of a charged particle

zµ(s) = θ(−s) vµ
i s+ θ(s) vµ

f s (4.112)

where vµ
i and vµ

f are fixed vectors. This world line describes a single abrupt
collision at the origin. This collision should not cause the particle to turn in
time, hence vi · vf > 0.

Find the Fourier transform of the four-current of this particle.

Answer

̃µ(k) = −ie
(

vµ
i

k · vi
− vµ

f

k · vf

)
. (4.113)

Problem 4.2.3. Find the expression for the vector potential Aµ correspond-
ing to a constant field in terms of the field strength Fµν . What is the gauge
condition which is therewith imposed on this Aµ?

Answer
Aν =

1
2
xλFλν , (4.114)
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xµAµ = 0 . (4.115)

Equation (4.115) is known as the Fock–Schwinger gauge.

Problem 4.2.4. Let zµ be a smooth vector function of xα and ξ, varying
from zµ = xµ at ξ = 0 to a point separated from xµ by a large spacelike
interval as ξ goes to −∞, so that the electromagnetic field vanishes in this
limit. Consider the nonlocal vector construction

Aµ(x) =
∫ 0

−∞
dξ Fαβ(z)

∂zα

∂ξ

∂zβ

∂xµ
, where Fαβ = ∂αAβ − ∂βAα . (4.116)

(This construction was introduced by Bryce DeWitt in 1962.) Verify the re-
lation

Aµ = Aµ − ∂µχ, where χ(x) =
∫ 0

−∞
dξ Aα(z)

∂zα

∂ξ
, (4.117)

which implies that Aµ is related to Aµ by a gauge transformation. Therefore,
Aµ is a vector potential expressed in terms of the field strength Fαβ .

Hint
(
∂Aβ

∂zα
− ∂Aα

∂zβ

)
∂zα

∂ξ

∂zβ

∂xµ
=
∂Aβ

∂ξ

∂zβ

∂xµ
− ∂Aα

∂xµ

∂zα

∂ξ

=
∂

∂ξ

(
Aβ

∂zβ

∂xµ

)
−Aβ

∂

∂ξ

∂zβ

∂xµ
− ∂

∂xµ

(
Aα

∂zα

∂ξ

)
+Aα

∂

∂xµ

∂zα

∂ξ

=
∂

∂ξ

(
Aβ

∂zβ

∂xµ

)
− ∂

∂xµ

(
Aα

∂zα

∂ξ

)
. (4.118)

Integration of this equation over ξ from −∞ to 0 gives

Aµ(x) = Aβ(z)
∂zβ

∂xµ

∣∣∣ξ=0

ξ=−∞
− ∂

∂xµ

∫ 0

−∞
dξ Aα(z)

∂zα

∂ξ
= Aµ(x) − ∂

∂xµ
χ(x) .

(4.119)

4.3 Free Electromagnetic Field

In regions free of charged matter, the electromagnetic field is governed by the
equations

∇× B =
∂E
∂t

, (4.120)

∇ · B = 0 , (4.121)

∇× E = −∂B
∂t

, (4.122)
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∇ · E = 0 . (4.123)

Such a field is called free (like the free particle in the absence of forces).
At first glance, this system of equations may appear overdetermined. How-

ever, a closer inspection shows that the number of independent equations is
equal to the number of unknown variables. Indeed, taking the curl of the left
hand side of (4.120), we find

εijk∂jεklm∂lBm = (δilδjm − δimδjl) ∂j∂lBm = ∂i∂jBj − ∂l∂lBi . (4.124)

By (4.121), the term ∂i∂jBj may be dropped, and so

∇×∇× B = −∇2B =
∂

∂t
∇× E . (4.125)

Differentiating (4.122) with respect to t and comparing the result with (4.125),
we obtain

∂2B
∂t2

−∇2B = 0 . (4.126)

Likewise, equations (4.122), (4.123) and (4.120) lead to

∂2E
∂t2

−∇2E = 0 . (4.127)

Thus the free field satisfies the homogeneous wave equation

�Fµν = 0 . (4.128)

To confirm this statement, one may derive (4.128) directly from Maxwell’s
equations in the tensor form (Problem 4.3.1). We see that the system of
Maxwell’s equations with jµ = 0 is equivalent to the system of equations
(4.128) where the number of equations equals the number of variables. Note
that we came to this result without resort to the vector potential.

The Maxwell equations (4.120)–(4.123), as well as the homogeneous wave
equations (4.126), (4.127), or (4.128), apply not only to regions empty of
charged matter. They are suited for the description of electromagnetic fields
in a world with no charges at all. We now show that the homogeneous wave
equation has nontrivial solutions. This suggests that variable electromagnetic
fields are possible in the world devoid of charges, unlike static fields governed
by the Laplace equation. Mathematically, this distinction is due to the fact
that the wave equation is hyperbolic while the Laplace equation is elliptic.

Let us consider a free field propagating in some direction, say, the x-axis.
The wave equation describing it is

(
∂2

∂t2
− ∂2

∂x2

)
F = 0 . (4.129)

The second-order differential operator in the parenthesis admits the factor-
ization:
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(
∂

∂t
− ∂

∂x

)(
∂

∂t
+

∂

∂x

)
F = 0 . (4.130)

We introduce new variables x− and x+ referred to as the light cone vari-
ables,

x− = t− x, x+ = t+ x . (4.131)

The transformation to the initial variables is

t =
1
2

(x+ + x−), x =
1
2

(x+ − x−) . (4.132)

The differential of the function F can be written in two equivalent forms:

dF = Ftdx0+Fxdx1 = F−dx−+F+dx+ =
1
2
Ft(dx++dx−)+

1
2
Fx(dx+−dx−) ,

(4.133)
where subscripts of F denote partial derivatives with respect to the variables
shown. Equating coefficients of dx− and dx+,

∂

∂x−
=

1
2

(
∂

∂t
− ∂

∂x

)
,

∂

∂x+
=

1
2

(
∂

∂t
+

∂

∂x

)
. (4.134)

Applying these expressions to (4.130) gives

∂2F

∂x−∂x+
= 0 . (4.135)

The generic solution to this equation is

F = Φ(x−) + Ψ(x+) (4.136)

where Φ and Ψ are arbitrary functions. In terms of the initial arguments, we
obtain

F = Φ(t− x) + Ψ(t+ x) . (4.137)

We may put Ψ = 0. Then Φ(t−x) represents the profile of the wave which
is initially prescribed by Φ(−x). This profile moves as a whole along the x-axis
with the speed of light. Indeed, Φ(ξ) takes equal values for any t and x when
the phase ξ = t− x is fixed. Therefore, fixing the phase ξ = ξ∗, a point of the
profile traces out the world line x = t − ξ∗. The term Ψ(t + x) in (4.137) is
associated with the wave profile which moves in the direction opposite to the
x-axis with the velocity dx/dt = −1.

The solutions Φ(t− x) and Ψ(t+ x) are called the plane waves. Notewor-
thy also is the nomenclature wave packets, or solitons, for sufficiently localized
Φ(ξ) and Ψ(ξ), like exp(−ξ2). We reserve the name ‘plane wave’ for the con-
figurations of the type Φ = A cos k(x− vt) and Ψ = A cos k(x+ vt) where A,
k and v are arbitrary constants.

Given the initial data F (0, x) = F0(x) and Ft(0, x) = V0(x), the general
solution to the wave equation (4.129) is
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F (t, x) =
1
2

[
F0(x− t) + F0(x+ t) +

∫ x+t

x−t

ds V0(s)
]
. (4.138)

Plane waves can be described in a covariant manner. If the vector potential
of a free field Aµ is subject to the Lorenz gauge condition

∂µA
µ = 0 , (4.139)

then, taking jµ = 0 in (4.106), we obtain the homogeneous wave equation

�Aµ = 0 . (4.140)

Given the electromagnetic plane wave propagating in some direction of
Minkowski space, this direction can be specified by the propagation vector kµ.
The vector potential is

Aµ(x) = εµΦ(ξ) . (4.141)

The quantity ξ = k · x is called the phase, and εµ is called the polarization
vector of the plane wave. Inserting (4.141) into (4.140) gives

k2Φ′′εµ = 0 (4.142)

where the prime denotes the derivative with respect to ξ. Because Φ(ξ) is
assumed to be arbitrary, k2 = 0. Therefore, the propagation vector of a free
field kµ is lightlike. Substitution of (4.141) in (4.139) yields

(k · ε)Φ′ = 0 , (4.143)

which implies that the polarization vector is orthogonal to the propagation
vector. There exists a Lorentz frame such that kµ = ω (1, 1, 0, 0). Any vector
orthogonal to kµ can be cast as αkµ+βeµ

1 +γeµ
2 where α, β and γ are arbitrary

constants, eµ
1 = (0, 0, 1, 0), and eµ

2 = (0, 0, 0, 1). Terms proportional to kµ are
gauge modes. Therefore, the vector potential of a free field Aµ contains in fact
only two polarization degrees of freedom proportional to eµ

1 and eµ
2 .

The field strength of the plane wave is

Fµν = (kµεν − kνεµ)Φ′ . (4.144)

It immediately follows that Fµν
∗Fµν = 0. Moreover, FµνF

µν = 2 [−(k · ε)2 +
k2]Φ′2 = 0, because k · ε = 0 and k2 = 0. The vanishing of both invariants of
electromagnetic field P and S for the plane wave implies that the vector E is
equal in magnitude and orthogonal to the vector B. Given a reference frame
in which the time axis is aligned with a timelike vector nµ, the propagation
vector is kµ = (|k|,k), and hence the plane wave propagates in the spatial
direction k. It is clear from (4.144) that nµFµν k

ν = 0 and nµ ∗Fµν k
ν = 0,

which shows that E · k = 0 and B · k = 0. Thus E and B are orthogonal to
k. The electromagnetic field of a plane wave is said to be transverse.
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One may choose Φ(ξ) to be periodic, for example, A cos ξ. This choice pro-
vides an important special case of the plane wave, the so-called monochromatic
or simple harmonic wave. It was seen before as a harmonic mode exp(−ik ·x)
in the four-dimensional Fourier transform (4.88).

Let a simple harmonic wave be propagating along the x-axis. We write
k = 2π/λ and call λ the wave length. At the initial time t = 0, we have
Φ(ξ) = A cos(2πx/λ). The phase change ∆ξ = 2πn, with integer n, leading
to regular repetition of values of Φ, corresponds to the x-increment ∆x = λn,
hence the name of λ. Because the phase ξ is dimensionless, λ has the dimension
of length, and k has the dimension of inverse length.

We now look into the general configuration of the electromagnetic field
in a world with no charges. The solution of the free field equation (4.140)
is simple because each Fourier mode propagates independently of the others.
Nevertheless, it is instructive to find a formal solution in closed form in terms
of initial condition.

Take a spacelike hyperplane Σ∗ as the initial hypersurface. We consider a
Lorentz frame where the normal to Σ∗ is nµ = (1, 0, 0, 0), and the section of
Minkowski space Σ∗ corresponds to the instant x0 = 0. For the homogeneous
wave equation (4.140), the Cauchy problem can be posed as follows: find Aλ

throughout Minkowski space in terms of the Cauchy data, the field Aλ|Σ∗ =
Aλ

∗ and its normal derivative (n · ∂)Aλ|Σ∗ = Bλ
∗ on the initial surface Σ∗. Let

us show that the solution to this problem is

Aλ(y) =
∫
d3x

[
D(y − x)Bλ

∗ (x) − ∂D(y − x)
∂x0

Aλ
∗(x)

]
(4.145)

or, in the covariant form, taking into account that ∂/∂x0 = nµ ∂/∂xµ,

Aλ(y) =
∫

Σ∗

d3xnµD(y − x)

(
∂

∂xµ
−

←
∂

∂xµ

)
Aλ(x) , (4.146)

where D(x) is the so-called fundamental solution or Green’s function of the
homogeneous wave equation:

�D(x) = 0 , (4.147)

obeying the initial-value conditions

D(x, t)|t=0 = 0,
∂D(x, t)

∂t

∣∣∣
t=0

= δ3(x) . (4.148)

Applying the d’Alembert operator �y to (4.146) and using (4.147), we find
that Aλ(y) is a solution to the homogeneous wave equation. We next must
verify that (4.146) is adapted to the Cauchy data on Σ∗.

It is helpful to employ the identity
(

∂

∂xµ
+

←
∂

∂xµ

)(
∂

∂xµ
−

←
∂

∂xµ

)
= � −

←
� . (4.149)
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Leibnitz’s rule for differentiation of the product of two functions can be rep-
resented as

∂

∂x
fg =

∂f

∂x
g + f

∂g

∂x
= f

(
∂

∂x
+

←
∂

∂x

)
g . (4.150)

With these observations,

∂

∂xµ

[
D(y − x)

(
∂

∂xµ
−

←
∂

∂xµ

)
Aλ(x)

]

= D(y − x)

(
∂

∂xµ
+

←
∂

∂xµ

)(
∂

∂xµ
−

←
∂

∂xµ

)
Aλ(x)

= D(y − x)
(
�x −

←
�x

)
Aλ(x) = 0 , (4.151)

because �A = 0 and �D = 0. Upon integrating (4.151) over a domain of
Minkowski space bounded by two parallel spacelike hyperplanes Σ∗ and Σ and
applying the Gauss–Ostrogradskǐı theorem which transforms this integral to
the boundary integral, we obtain

(∫
Σ

−
∫

Σ∗

)
d3x nµD(y − x)

(
∂

∂xµ
−

←
∂

∂xµ

)
Aλ(x) = 0 . (4.152)

We have assumed that D(y−x) and Aλ(x) are such that their product rapidly
decreases at spatial infinity, and the integral over the infinitely distant timelike
boundary vanishes. The hyperplane Σ may be chosen to contain the point y,
which, in view of (4.148), gives

∫
Σ

d3xnµ

[
D(y − x)

∂Aλ(x)
∂xµ

− ∂D(y − x)
∂xµ

Aλ(x)
]

=
∫
d3x

[
D(y − x, 0)

∂Aλ(x)
∂x0

− ∂D(y − x, y0 − x0)
∂x0

∣∣∣
y0=x0

Aλ(x)
]

=
∫
d3x δ3(y − x)Aλ(x0,x)

∣∣∣
x0=y0

= Aλ(y0,y) . (4.153)

Combining this result with (4.152),

Aλ(y) =
∫

Σ∗

d3xnµ

[
D(y − x)

∂Aλ(x)
∂xµ

− ∂D(y − x)
∂xµ

Aλ(x)
]
. (4.154)

This completes the proof of the statement that (4.146) is a solution to the
Cauchy problem.

The solution (4.145) is unique. To see this, let two solutions Aλ
1 and Aλ

2

be available. Consider their difference aλ = Aλ
2 − Aλ

1 . It satisfies the wave
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equation � aλ = 0. But the initial data aλ
∗ and bλ∗ for aλ vanish, and (4.145)

shows that aλ(x) = 0 for all x.
We now determine the explicit form of D(x). We make the three-dimen-

sional Fourier transform of this function:

D(r, t) =
1

(2π)3

∫
d3k eik·r D̃k(t) . (4.155)

Then (4.147) reduces to the ordinary differential equation

D̃′′
k + k2D̃k = 0 (4.156)

where k = |k|, and the prime stands for the derivative with respect to t. The
initial-value conditions (4.148) take the form

D̃k(0) = 0, D̃′
k(0) = 1 . (4.157)

The solution to the differential equation (4.156) with initial data (4.157) is

D̃k(t) =
sin kt
k

. (4.158)

We insert (4.158) into (4.155). We use spherical coordinates in k-space with
the k3-axis aligned with r, then d3k = k2dk sinϑdϑ dϕ and k · r = kr cosϑ.
The integrand is independent of ϕ, and so

D(r, t) =
2π

(2π)3

∫ ∞

0

dk k sin kt
∫ π

0

dϑ sinϑ eikr cos ϑ . (4.159)

The last integral is straightforward:
∫ π

0

dϑ sinϑ eikr cos ϑ =
∫ 1

−1

dζ eikrζ = 2
sin kr
kr

. (4.160)

To calculate the integral over k, we observe that the integrand

2 sin kr sin kt = cos k(t− r) − cos k(t+ r) (4.161)

is an even function of k. Therefore, the integration may be extended to the
negative semiaxis,

D(r, t) =
1

(2π)2
1
2r

∫ ∞

−∞
dk [cos k(t− r) − cos k(t+ r)]

=
1
2π

1
2r

1
2π

∫ ∞

−∞
dk
(
eik(t−r) − eik(t+r)

)
=

1
2π

1
2r

[δ(t− r) − δ(t+ r)] .

(4.162)
Finally,
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D(r, t) =
1
2π

1
2r

[δ(t− r) − δ(t+ r)] . (4.163)

Taking into account equation (F.21) of Appendix F,

sgn(t) δ(t2 − r2) =
1
2r

[δ(t− r) − δ(t+ r)] , (4.164)

where sgn(t) is the signum function

sgn(t) =
t

|t| =
{

1 if t > 0,
−1 if t < 0, (4.165)

we rewrite (4.163) in the Lorentz-invariant form:

D(x) =
1
2π

sgn(x0) δ(x2) . (4.166)

We point out that the explicit time coordinate dependence of this expression
by no means violates Lorentz invariance, because the sign of x0 is invariant for
timelike and lightlike intervals, and the presence of the delta-function ensures
that the interval is lightlike.

Problem 4.3.1. Show that the tensor Maxwell equations without sources
∂λ

∗Fλµ = 0 and ∂λF
λµ = 0 are equivalent to the homogeneous wave equation

�Fµν = 0.

Hint Apply the operator εµναβ∂
ν to ∂λ

∗Fλµ, express the contraction of the
Levi–Civita symbols εµναβε

λµρσ in terms of the Kronecker deltas, and then,
among resulting terms, drop those containing ∂λFλα or ∂νFνβ .

Problem 4.3.2. Verify that the relation

� 1
(x− a)2

= 0 (4.167)

holds everywhere away from the point xµ = aµ.

Problem 4.3.3. Verify that

Φ(t, r) =
1
r

[f(t− r) + g(t+ r)] , (4.168)

with f(x) and g(x) being arbitrary functions, is a solution to the wave equation
�Φ = 0 everywhere except the origin r = 0. Note that f(x) and g(x) are not
necessarily smooth. They may be distributions, for example, a delta-function
or one of its derivatives.

Hint Because the radial part of the Laplace operator in spherical coordinates
is

1
r

∂2

∂r2
r , (4.169)
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the problem reduces to (1 + 1)-dimensional wave equations for f and g.

Problem 4.3.4. Let Φ be a free massive scalar field governed by the homo-
geneous Klein–Gordon equation

(� + µ2)Φ = 0 . (4.170)

Show that the simple harmonic wave Φ = A exp(−ik·x) = A exp[−i(ωt−k·x)]
with an arbitrary amplitude A and the propagation vector kµ subjected to
some constraint is a solution to this equation. Find this constraint. Determine
the group velocity of propagation of this plane wave v.

Answer

k2 = µ2, or ω =
√

k2 + µ2; v = ∇k ω =
k√

k2 + µ2
, |v| < 1 . (4.171)

Problem 4.3.5. Verify the identity

(∂λ +
←
∂ λ)Γλ(∂,

←
∂ ) = (� + µ2) − (

←
� + µ2) (4.172)

where

Γλ(∂,
←
∂ ) = ∂λ −

←
∂λ . (4.173)

With this identity, show that the solution to the Cauchy problem for the
Klein–Gordon equation and initial-value data for the field Φ and its normal
derivative (n · ∂)Φ on a spacelike hyperplane Σ is

Φ(y) =
∫

Σ

d3xnµG(y − x)Γµ(∂,
←
∂ )Φ(x) . (4.174)

Here, the relevant Green function G(x) satisfies the equation

(� + µ2)G = 0 . (4.175)

and the initial-value conditions which are written in the Lorentz frame with
the time axis parallel to nµ as

G(r, t)|t=0 = 0,
∂

∂t
G(r, t)|t=0 = δ3(r) . (4.176)

Find G(x) in the explicit form.

Answer

G(x) =
1
2π

sgn(x0)

[
δ(x2) − µ

2
θ(x2)

J1(µ
√
x2)√

x2

]
(4.177)

where J1(z) is the Bessel function of the first kind.
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Problem 4.3.6. Find the four-dimensional Fourier transform of D(x) satis-
fying the homogeneous wave equation (4.147) and initial conditions (4.148).

Answer
D̃(k) = 2πi sgn(k0) δ(k2) . (4.178)

Problem 4.3.7. Let Φ be a scalar field governed by the field equation

(� + µ2)Φ = −U ′(Φ) (4.179)

where U is an analytic function U(Φ) = c3Φ
3 + c4Φ

4 + · · ·, and the prime
means the derivative with respect to Φ. Prove that a particular solution to
this equation is a function of the argument ξ = k ·x. Find the relation between
the phase ξ and amplitude Φ of this solution.

Answer
ξ + ξ0 = ±

√
k2

∫
dΦ√

2(E2 − U) − µ2Φ2
(4.180)

where ξ0 and E are arbitrary integration constants.

Problem 4.3.8. Two simple examples of the function U in Problem 4.3.7 are

u =
1
4

(φ2 − 1)2 and u = cosφ− 1 (4.181)

where ‘proper units’ x̄ = µx, t̄ = µt, φ = (
√
λ/µ)Φ, u = (µ4/λ)U are used.

Verify that the solutions of the mentioned type are

φ± = tanh
(
± 1√

2
x̄− vt̄√
1 − v2

)
and φ± = 4arctan

[
exp

(
± x̄− vt̄√

1 − v2

)]
.

(4.182)
These solutions provide an apt illustration of the notion of solitons. Although
φ± do not represent sufficiently localized functions, their derivatives do.

Find the constants k, ξ0, and E. Depict φ+(ξ) schematically.

Answer

�

�

φ+(ξ)

ξ0
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4.4 The Retarded Green’s Function

In this section, we examine solutions to the inhomogeneous wave equation

�Aµ = 4πjµ (4.183)

with the four-current jµ of the form (3.32). A powerful tool for solving linear
differential equations is the Green’s function method. We define the Green’s
function G(x) for the wave operator as a solution to the inhomogeneous wave
equation with a delta-function source,

�G(x) = δ4(x) . (4.184)

This ‘elementary’ source is nonzero within an infinitesimal domain of a single
point x, and the response to such a perturbation is given by G(x). Since jµ(x)
may be thought of as the superposition of such elementary sources,

jµ(x) =
∫
d4y δ4(y − x) jµ(y) , (4.185)

it is apparent that the response to the elementary source δ4(y−x) multiplied
by the factor 4πjµ(x) is 4πG(y − x) jµ(x), and the sum of these responses

Aµ(y) = 4π
∫
d4y G(y − x) jµ(x) (4.186)

is the desired solution to equation (4.183). Indeed, applying the d’Alembertian
�y to both sides of (4.186) and taking into account (4.184), we recover (4.183).

It is clear that the Green’s function G(x) so defined is not unique. Adding
to it any solution of the homogeneous wave equation

�G0(x) = 0 , (4.187)

gives further solutions to equation (4.184).
To fix G(y − x), we adopt the retarded boundary condition by which

G(y − x) = 0 for (y − x)2 ≥ 0, y0 < x0 (note that the second inequality
is invariant only subject to the first). The conventional interpretation of this
condition is that the signal must be absent until switching on the source:
cause precedes response. We will call G(x) satisfying this condition the re-
tarded Green’s function and denote it as Dret(x).

We now establish the explicit form of Dret(x). We insert the three-
dimensional Fourier transform of this function

Dret(t,x) =
1

(2π)3

∫
d3k eik·x D̃ret(t,k) (4.188)

and that of the three-dimensional delta-function

δ3(x) =
1

(2π)3

∫
d3k eik·x (4.189)
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in (4.184) to yield

∂2D̃ret(t,k)
∂t2

+ k2D̃ret(t,k) = δ(t) (4.190)

where k2 = k2. The function D̃ret(t,k) can be represented as

D̃ret(t,k) = θ(t) ∆̃(t,k) (4.191)

where the Heaviside step function θ(t) renders the Green’s function retarded.
We impose the following initial conditions

∆̃(t,k)
∣∣∣∣
t=0

= 0,
∂∆̃(t,k)

∂t

∣∣∣∣∣
t=0

= 1 , (4.192)

whereby the time derivatives of D̃ret(t,k), denoted by primes, are

D̃′
ret(t,k)= δ(t)∆̃(t,k)+θ(t)∆̃′(t,k)= δ(t)∆̃(0,k)+θ(t)∆̃′(t,k)= θ(t)∆̃′(t,k),

D̃′′
ret(t,k) = δ(t) ∆̃′(t,k) + θ(t) ∆̃′′(t,k) = δ(t) + θ(t) ∆̃′′(t,k) . (4.193)

It follows that ∆̃(t,k) satisfies the corresponding homogeneous equation

∂2∆̃(t,k)
∂t2

+ k2∆̃(t,k) = 0 . (4.194)

We already encountered a function obeying a differential equation identical
to (4.194) and initial conditions similar to (4.192) [see (4.156) and (4.157)].
Thus

∆̃(t,k) =
sin kt
k

. (4.195)

Inserting (4.195) in (4.188) and working out the Fourier integral, similar to
what was done in Sect. 4.3, we arrive at

Dret(t,x) =
δ(t− r)

4πr
. (4.196)

We have omitted the term θ(t) δ(t + r)/4πr whose support is the spacetime
point t = 0, r = 0. We may ignore this part of the response to the delta-
function source because it manifests itself only at the location of the source
where the response is ill-defined anyway.

It is seen from (4.196) that the signal propagates along rays of the future
light cone, t = r, in other words, the elementary source δ4(x) emits a divergent
spherical wave of infinitesimal width, Fig. 4.1. One might, however, adopt
the advanced condition and write the factor θ(−t), in lieu of the retarded
condition with the inherent factor θ(t). This would result in the advanced
Green’s function
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��

� �

•

•

Fig. 4.1. Divergent (left) and convergent (right) waves

Dadv(t,x) =
δ(t+ r)

4πr
(4.197)

suggesting the signal which propagates along rays of the past light cone t =
−r, that is, the elementary source absorbs a convergent spherical wave of
infinitesimal width, Fig. 4.1. The picture where spherical waves converge freely
to a focal point can readily be imagined: it occurs in a movie whose film shows
the reversed order of events. In the normal order of events, such a picture is
highly improbable. Hence retardation is not tantamount to causality as might
appear at first sight. In deciding between the retarded and advanced, one
usually prefers the former being guided by empirical arguments. Retardation
implies not only the causal interrelationship but also the fact that time is
unidirectional.

Using equation (F.20) of Appendix F, expressions (4.196) and (4.197) for
the retarded and advanced Green’s functions can be cast in a Lorentz-invariant
form:

Dret(x) =
1
2π

θ(x0) δ(x2) , (4.198)

Dadv(x) =
1
2π

θ(−x0) δ(x2) . (4.199)

It is clear from (4.198) and (4.199) that the retarded and advanced Green’s
functions obey the reciprocity relation

Dret(−x) = Dadv(x) . (4.200)

The support of δ(x2) is the light cone surface x2 = 0. The presence of
θ(x0) ensures that Dret(x) is concentrated in the forward sheet of this light
cone C+,

suppDret(x) : x2 = 0, x0 ≥ 0 , (4.201)

and the presence of θ(−x0) shows that Dadv(x) is concentrated in the back-
ward sheet of this light cone C−,

suppDadv(x) : x2 = 0, x0 ≤ 0 . (4.202)
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Is it possible to exploit linear combinations of Dret and Dadv? The use
of the sum of the retarded and advancedfields in the relativistic action-at-a-
distance electrodynamics goes back to Hugo Tetrode in 1922, Adriaan Fokker
in 1929, and John Wheeler and Richard Feynman in 1945. Yet, the physical
sense of any combination of Dret and Dadv is still far from clear. Action-at-
a-distance electrodynamics will receive some attention in Sect. 10.6, but until
then, the retarded condition is understood throughout the text.

We complete this sketch of the Green’s function method with the calcula-
tion of the retarded electromagnetic field due to a single point charge e moving
along an arbitrary timelike world line zµ(s). Let xµ be some point outside the
world line. Define

Rµ = xµ − zµ(s) (4.203)

the four-vector drawn from a point zµ(s) on the world line, where the signal
is emitted, to the point xµ, where the signal is received. Substituting the
retarded Green’s function (4.198) and the four-current

jµ(x) = e

∫ ∞

−∞
ds vµ(s) δ4 [x− z(s)] (4.204)

in (4.186) and taking the integral over the four-dimensional volume, we obtain

Aµ(x) = 2e
∫ ∞

−∞
ds vµ(s) θ(R0) δ(R2) . (4.205)

The equation R2 = [x−z(s)]2 = 0 has two roots with respect to s, zµ(sret)
and zµ(sadv). The step function θ(X0) selects the root zµ(sret) corresponding
to the intersection of the world line with the past light cone C− from the point
xµ, Fig. 4.2.

•
xµzµ(s)

C−

Fig. 4.2. Retarded signal received at xµ
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To integrate (4.205), we use equation (F.18) of Appendix F,

δ[U(ξ)] =
∑

n

1
|U ′(ξn)| δ(ξ − ξn) (4.206)

where ξn are the roots of the equation U(ξ) = 0, and note that

dR2

ds
= −2Rµ

dzµ

ds
= −2R · v . (4.207)

This gives

Aµ = e
vµ

R · v

∣∣∣
s=sret

. (4.208)

The relation (4.208) can be made more transparent geometrically by the
following observations. Let Rµ = xµ − zµ(sret) be the lightlike vector drawn
from the point on the world line where the signal was emitted zµ(sret), to the
point xµ, where the signal was received, and let vµ be the unit vector tangent
to this curve at the point zµ(sret). Consider a two-dimensional plane built
out of two vectors Rµ and vµ. Two relevant vectors, the spacelike normalized
vector uµ orthogonal to vµ, and lightlike vector

cµ = vµ + uµ (4.209)

can be introduced here, Fig. 4.3. All this can be expressed analytically as

v2 = −u2 = 1, u · v = 0, c2 = 0, c · v = −c · u = 1. (4.210)

We define the invariant retarded distance ρ between the points xµ and zµ(sret)
as

ρ = −R · u . (4.211)

It is clear from (4.209) and (4.210), or from Fig. 4.3, that

Rµ = ρ cµ , (4.212)

and ρ is represented in another form

•

•

�

��
�

��

zµ(sret)

vµ

ρ

uµ ρ

xµ

cµ

Fig. 4.3. Covariant retarded variables
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ρ = R · v . (4.213)

Figure 4.3 shows also that the scalar ρ is the spatial distance between the
field point and the retarded point in the instantaneously comoving Lorentz
frame in which the charge is at rest at the retarded instant sret, and uµ is the
spatial projection of cµ.

Finally, the retarded vector potential due to a single arbitrarily moving
charge e, called the Liénard–Wiechert vector potential, is

Aµ(x) = e
vµ

ρ
. (4.214)

In the general case, the source jµ is composed of N charges eI which move
along arbitrary world lines zµ

I (sI). The vector potential due to this source is
the superposition of contributions from individual charges:

Aµ(x) =
N∑

I=1

eI
vµ

I

ρI
(4.215)

where the four-velocities vµ
I are taken at the retarded instants sI ret corre-

sponding to the intersections of the world lines with the past light cone drawn
from the observation point xµ, and ρI are the invariant retarded distances
between xµ and zµ

I (sI ret).

Problem 4.4.1. Calculate the four-dimensional Fourier transforms of the
retarded and advancedGreen’s functions

D̃ret(k) =
∫
d4x eikxDret(x), D̃adv(k) =

∫
d4x eikxDadv(x) (4.216)

where Dret(x) and Dadv(x) are given respectively by (4.198) and (4.199).
Determine positions of singularities of D̃ret(k) and D̃adv(k) at the complex k0

plane.

Answer

D̃ret(k) = − 1
k2 + 2ik0ε

, D̃adv(k) = − 1
k2 − 2ik0ε

. (4.217)

The denominator of D̃ret(k) is

(k0 + iε)2 − k2 , (4.218)

and both poles
k0 = ±|k| − iε (4.219)

are below the line of integration (real axis) in the complex k0 plane. Thus,
the retarded boundary condition satisfied by Dret(x) determines the contour,
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in the complex k0 plane, by which the integration is to avoid the poles of the
integrand at k2 = 0. By contrast, both poles of D̃adv(k)

k0 = ±|k| + iε (4.220)

are above the line of integration.

Problem 4.4.2. Prove the relations

Dret(x) −Dadv(x) = D(x), Dret(x) = θ(x0)D(x), Dadv(x) = −θ(−x0)D(x)
(4.221)

where D(x) is the Green function for the homogeneous wave equation defined
in (4.166).

Problem 4.4.3. Find the retarded Green’s function Gret(x) and its Fourier
transform G̃ret(k) for the Klein–Gordon operator

(� + µ2)Gret(x) = δ4(x) . (4.222)

Specify the behavior of Gret(x) in the vicinity of the light cone. Determine the
support of Gret(x) and compare it with the support of the retarded Green’s
function for the wave operator Dret(x), equation (4.201).

Answer

Gret(x) =
1

(2π)4

∫
d4k e−ikx G̃ret(k), G̃ret(k) =

1
µ2 − k2 − ik0ε

. (4.223)

Gret(x) =
1
2π

θ(x0)

[
δ(x2) − µ

2
θ(x2)

J1(µ
√
x2)√

x2

]
. (4.224)

Gret(x) →
1
2π

θ(x0)
[
δ(x2) − µ2

4
θ(x2)

]
, x2 → 0 . (4.225)

The leading singularity of Gret(x) is identical to that of the retarded Green’s
function in the massless case µ = 0, that is, the retarded Green’s function for
the wave operator Dret(x).

suppGret(x) : x2 ≥ 0, x0 ≥ 0, suppDret(x) : x2 = 0, x0 ≥ 0 . (4.226)

Problem 4.4.4. We are already aware of the fact that a delta-function source
brings into existence a singular field: a point charge is responsible for a simple
pole of the Coulomb potential, and the singularity of the Yukawa potential
in Problem 4.1.4 is due to the source proportional to δ3(r). This raises the
question whether the reverse is true, that is, whether any field singularity
necessitates the source proportional to δ3(r). Consider a spherically symmetric
Klein–Gordon field

φ(r, t) = θ(r)Φ(r, t) . (4.227)
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Here, Φ is a regular function of r and t, and the step function θ emphasizes
that r is positive definite. Note that θ(r) represents a weak singularity at
r = 0 because differentiations of θ(r) give singular distributions. Does this
θ(r) evidence that the mere spherical symmetry of φ is sufficient to ensure the
existence of its source of the form δ3(r)?

Answer No.

Hint Recall that the radial part of ∇2 is

∂2

∂r2
+

2
r

∂

∂r
, (4.228)

and compare

θ′′(r) = δ′(r) = −δ(r)
r

and
2
r
θ′(r) =

2δ(r)
r

(4.229)

with δ3(r), expressed in terms of spherical coordinates,

δ3(r) = δ(ϕ)
1

sinϑ
δ(ϑ)

1
r2
δ(r) . (4.230)

An additional singular factor 1/r is seen in δ3(r). Therefore, Φ must be as
singular as the Coulomb potential if a δ3(r) is to occur. For example, Φ = ln r
is not singular enough to have its origin in a point source.

Problem 4.4.5. Determine the retarded Green’s function Dret(x) for the
wave operator in a world with one temporal and one spatial dimension,

�Dret(x) = δ2(x) . (4.231)

Calculate the vector potential Aµ due to an arbitrarily moving charge e with
the aid of this Dret(x).

Answer
Dret(t, x) =

1
2
θ(t− |x|), Aµ = −eRµ . (4.232)

4.5 Covariant Retarded Variables

The point zµ(sret) is rigidly linked to xµ through the constraint

R2 = 0 . (4.233)

Small variations of xµ entail certain small variations of the instant sret. This is
clear from Fig. 4.2: as the vertex xµ shifts, the past light cone C− moves along
the world line varying the intersection point zµ(sret). To derive the precise
relation between these variations, we differentiate (4.233) with respect to xµ:



4.5 Covariant Retarded Variables 175

2Rλ ∂µR
λ = 0 . (4.234)

We drop the subscript ‘ret’ and use the formulas

∂xλ

∂xµ
= δλ

µ,
∂zλ

∂xµ
=
dzλ

ds

∂s

∂xµ
(4.235)

to yield
∂µR

λ = δλ
µ − vλ∂µs . (4.236)

Combining (4.236) with (4.213) and (4.212), we obtain from (4.234)

∂µs = cµ . (4.237)

Relations (4.236) and (4.237) enable one to calculate derivatives of any
kinematic quantities, for example,

∂µvν = cµaν . (4.238)

The derivatives of the retarded distance ρ = R · v are of particular interest. It
is easy to see that

∂µρ = vµ + (a ·R− 1) cµ . (4.239)

We now define a further invariant retarded variable

λ = a ·R− 1 , (4.240)

and so
∂µρ = vµ + λ cµ . (4.241)

Further differential relations are given in Problems 4.5.1 and 4.5.2.
Invariant retarded variables are useful in constructing the so-called re-

tarded frame of reference which proves more suitable for the treatment of
retarded fields than the fixed rectilinear coordinate frame. Let zµ(s) be a
smooth timelike curve and xµ an observation point off this curve. We draw
the past light cone C− from xµ to intersect the curve at a point zµ(sret), Fig.
4.2, and define the lightlike vector Rµ = xµ − zµ(sret). In the retarded frame
of reference, the proper time s measures time evolution, Rµ plays the role
of the four-dimensional radius vector drawn from the moving origin zµ(sret),
and the invariant retarded distance ρ offers an alternative to the radial dis-
tance. In addition, we introduce the zenith and azimuth angles ϑ and ϕ by
the component decomposition of Rµ in the rest frame corresponding to the
proper time sret,

Rµ = ρ (1, sinϑ cosϕ, sinϑ sinϕ, cosϑ) . (4.242)

Derivatives of the new coordinates s and ρ with respect to the old ones
xµ are given by formulas (4.237) and (4.241). To find derivatives of ϑ =
arccos (R3/ρ) and ϕ = arctan (R2/R1), we observe that ∂/∂xµ = ∂/∂Rµ, and
so
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∂µ ϑ =
∂µ ρ cosϑ− δ3µ

ρ sinϑ
, ∂µ ϕ =

−δ1µ sinϕ+ δ2µ cosϕ
ρ sinϑ

. (4.243)

From (4.237), (4.241), (4.242) and (4.243), we obtain the Jacobian for the
transformation from new coordinates to old:∣∣∣∣∣

∂
(
s, ρ, ϑ, ϕ

)
∂
(
x0, x1, x2, x3

)
∣∣∣∣∣ = ελµνσ ∂λs ∂µρ ∂νϑ ∂σϕ =

1
ρ2 sinϑ

. (4.244)

Thus the four-dimensional volume element is

d4x = ds ρ2dρ dΩ, dΩ = sinϑdϑ dϕ . (4.245)

The integration over a four-dimensional domain U can be envisioned as
the sequence of two actions: we first integrate over the future light cone C+

with vertex at a point zµ(s) belonging to U , and then over the temporal
coordinate s which labels the one-parameter family of light cones, each drawn
from a point on the given timelike curve. A particular light cone C+ is fixed
by the equation s = const. The normal nµ to the hypersurface C+ is the
four-dimensional gradient of this equation,

nµ = ∂µs = cµ . (4.246)

With the four-dimensional volume element (4.245), we find the surface element
on the future light cone:

C+ : dσµ = cµρ2dρ dΩ . (4.247)

On the other hand, the four-dimensional integration may be performed
initially over a tube Tρ which encloses the given curve zµ(s) being separated
from it by a constant retarded distance ρ, and then over the radial coordinate
ρ which labels the family of such tubes. A particular tube Tρ is fixed by the
equation ρ = const. The normal nµ to the timelike hypersurface Tρ is

nµ = ∂µρ = vµ + λ cµ . (4.248)

The surface element on the tube Tρ is

Tρ : dσµ = (vµ + λ cµ) ρ2ds dΩ . (4.249)

One additional remark on the integration technique is in order. We will
frequently deal with expressions homogeneous of some degree in uµ, the space-
like vector directed from zµ(sret) to xµ, depicted in Fig. 4.3. The integration of
such expressions over solid angle Ω is greatly simplified through the formulas

∫
dΩ = 4π , (4.250)
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∫
dΩ uµ = 0,

∫
dΩ uλuµuν = 0, . . . (4.251)

∫
dΩ uµuν = −4π

3
v

⊥µν . (4.252)

∫
dΩ uαuβuµuν =

4π
3 · 5

( v

⊥µν

v

⊥αβ +
v

⊥αµ

v

⊥ βν +
v

⊥αν

v

⊥ βµ

)
. (4.253)

Consider first the case of odd number of vectors uµ. We have

uµ = (0, sinϑ cosϕ, sinϑ sinϕ, cosϑ) . (4.254)

The vanishing of the integrals in (4.251) is explained by the fact that uµ is
orthogonal to the integration surface. Technically, this follows from either

∫ 2π

0

dϕ (sinϕ)j (cosϕ)k = 0 (4.255)

or ∫ π

0

dϑ sinϑ (cosϑ)2l+1 =
∫ 1

−1

dζ ζ2l+1 = 0 (4.256)

where j, k and l are nonnegative integers such that j + k > 0 and l ≥ 0.
For the case of an even number of vectors uµ, consider the integral

Iµν =
∫
dΩ uµuν . (4.257)

It is symmetric with respect to interchanging µ and ν. Note also that vµIµν =
vνIµν = 0. Therefore, Iµν must be proportional to the projector onto the
hyperplane perpendicular to vµ,

Iµν = C
(
ηµν − vµvν

v2

)
= C

v

⊥µν . (4.258)

We find the proportionality constant C through contraction of indices,

Iµ
µ =

∫
dΩ u · u = −4π,

v

⊥µ
µ = δµ

µ − v · v
v2

= 4 − 1 = 3 . (4.259)

It follows that C = −4π/3, and relation (4.252) is established.
Relation (4.253) can be verified in a similar way, see Problem 4.5.4.

Problem 4.5.1. Derive the following formulas

∂µv
µ =

λ+ 1
ρ

, (4.260)

(v · ∂) ρ = λ+ 1, (a · ∂) ρ =
λ (λ+ 1)

ρ
, (ȧ · ∂) ρ = −a2 + λ (ȧ · c) , (4.261)
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∂µcν =
1
ρ

(ηµν − λ cµ cν − cµ vν − vµ cν) , (4.262)

∂µλ = aµ + ρ (ȧ · c) cµ , (4.263)

(v · ∂) cν = −λ+ 1
ρ

cν , (4.264)

(a · ∂) cν =
aν

ρ
− λ+ 1

ρ2
(vν + λ cν) , (4.265)

(ȧ · ∂) cν =
ȧν − (ȧ · c) vν + [a2 − λ (ȧ · c) ] cν

ρ
, (4.266)

(c · ∂) {s, cν , vν , aν , ȧν , etc.} = 0 , (4.267)

(c · ∂)Rν = cν , (4.268)

(c · ∂) ρ = 1 , (4.269)

(c · ∂)λ =
λ+ 1
ρ

, (4.270)

∂µc
µ =

2
ρ
. (4.271)

Consider dimensions D + 1 other than 4. Is any relation D-dependent?

Problem 4.5.2. Prove
� s =

2
ρ
, (4.272)

�2s = 0 , (4.273)

� ρ =
2 (2λ+ 1)

ρ
, (4.274)

� f(ρ) = (2λ+ 1)
(

2f ′

ρ
+ f ′′

)
, (4.275)

�
(

1
ρ

)
= 0 , (4.276)

�λ = 4 (ȧ · c) , (4.277)

� (ȧ ·X) = 4(ä · c) +
2a2

ρ
. (4.278)

Problem 4.5.3. Prove (4.243) and (4.244).

Problem 4.5.4. Prove (4.253).
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4.6 Electromagnetic Field Generated by a Single Charge
Moving Along an Arbitrary Timelike World Line

We apply the technique of retarded covariant variables to calculate the field
strength generated by a single, arbitrarily moving, charge. Differentiating the
Liénard–Wiechert vector potential (4.214) and taking into account (4.237)
and (4.241) results in

∂µAν = e

[
aνcµ

ρ
− vν(vµ + λ cµ)

ρ2

]
. (4.279)

Interchanging indices gives the field strength tensor

Fµν = cµUν − cνUµ , (4.280)

Uµ = e

(
−λ v

µ

ρ2
+
aµ

ρ

)
. (4.281)

Expression (4.280) remains the same if Uµ is transformed as

Uµ → Uµ + κ cµ (4.282)

with arbitrary κ. In particular, taking κ = e (a · u)/ρ, we obtain

Fµν =
e

ρ2
(cµV ν − cνV µ) (4.283)

where cµ is defined in (4.209),

V µ = vµ + ρ (
u

⊥ a)µ , (4.284)

and the operator
u

⊥ projects vectors onto the hyperplane with normal uµ,

u

⊥µν= ηµν + uµuν . (4.285)

We note in passing the relation

V · c = 1 (4.286)

which is due to the mutual perpendicularity of the vectors vµ, uµ and (
u

⊥a)µ.
It is particularly remarkable that the 2-form F describing the field of

a single charge is proportional to c ∧ V , that is, F is decomposable. The
decomposability of F stems from the fact that only three vectors cµ, vµ and
aµ are at our disposal for constructing bivectors c ∧ v, c ∧ a, and v ∧ a.

Given a decomposable 2-form F , the invariant P is identically zero. As
for the invariant S, using (4.286), we find S = −e2/ρ4. Therefore, a single
charge moving along an arbitrary timelike world line generates the retarded
field Fµν of electric type. In other words, whatever the motion of the charge,
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there is a frame of reference, special for each point xµ, such that only electric
field persists, more precisely, |E| = e/ρ2 and B = 0.

When the world line is straight, zµ(s) = zµ(0) + vµ s, the field strength
becomes

Fµν =
e

ρ2
(cµvν − cνvµ) =

e

ρ2
(uµvν − uνvµ) . (4.287)

In a Lorentz frame with the time axis parallel to vµ, the only nontrivial com-
ponent of (4.287) is just the Coulomb field F j0 = Ej which is directed along
the radius vector rj = ρ uj drawn from the emission point to the observa-
tion point. The charge is at rest with respect to this frame, hence the field
E = en/r2 is static, and the invariant retarded distance ρ coincides with the
usual laboratory distance r.

The field of an arbitrarily moving charge (4.283) can be derived from the
Coulomb field (4.287) by the formal replacement of V µ for vµ. To see this
‘miraculous’ conversion, rewrite (4.283) as

F =
e

ρ2
$ , (4.288)

$ = c ∧ V . (4.289)

A pictorial view of the bivector $ is the parallelogram of the vectors cµ and
V µ, see Fig. 4.4. The area A of the parallelogram is

A =

√
−V 2 (

V

⊥c)2 = V · c = 1 (4.290)

where the last equality follows from (4.286).

��

�
�

�
���

����•

•
xµ

F µν

aµ

cµ

vµ

zµ
ret

Fig. 4.4. Field F µν generated by a single charge

The bivector $ is invariant under simultaneous dilatation of cµ and con-
traction of V µ by a factor α,



4.6 Electromagnetic Field Generated by a Single Charge 181

cµ → α cµ, V µ → α−1V µ , (4.291)

and also under the transformation

cµ → cµ + β V µ, V µ → V µ + γ cµ (4.292)

with arbitrary β and γ. This can be formulated slightly more rigorously. Let
the vectors cµ and V µ be subjected to the general linear transformation

(
c′

V ′

)
=
(
M11 M12

M21 M22

) (
c
V

)
. (4.293)

It induces the transformation of the bivector $

$′ = (M11c+M12V ) ∧ (M21c+M22V ) = (M11M22 −M12M21)$ . (4.294)

The condition $′ = $ holds if the matrix M is unimodular,

detM = M11M22 −M12M21 = 1 . (4.295)

Such transformations form a group, the special linear group of real unimodular
2 × 2 matrices SL(2,R). They rotate and deform the initial parallelogram,
converting it to parallelograms of unit area which belong to the plane spanned
by the vectors cµ and V µ.

Thus the bivector $ is independent of concrete directions and magnitudes
of the constituent vectors cµ and V µ. $ depends only on the parallelogram’s
orientation. It remains to clarify what orientations are possible. For example,
is it possible for $ to be the exterior product of two spacelike vectors eµ

2 and
eµ
3? No. The parallelogram can be envisioned as constructed from a timelike

unit vector eµ
0 and a spacelike imaginary-unit vector eµ

1 perpendicular to eµ
0 ,

$ = e0 ∧ e1 . (4.296)

Indeed, consider three versions of eµ
0 and eµ

1 constructed from V µ and cµ. For
V 2 > 0,

eµ
0 =

V µ

√
V 2

, eµ
1 =

√
V 2
(
−cµ +

V µ

V 2

)
, (4.297)

for V 2 < 0,

eµ
0 =

√
−V 2

(
cµ − V µ

V 2

)
, eµ

1 =
V µ

√
−V 2

, (4.298)

and for V 2 = 0,

eµ
0 =

1√
2

(
cµ + V µ

)
, eµ

1 =
1√
2

(
V µ − cµ

)
. (4.299)

In physical terms, this means that the choice of the Lorentz frame with the
time axis parallel to the vector eµ

0 renders all components of Fµν vanishing, ex-
cept for F 01. The formulas (4.297)–(4.299) specify explicitly a frame in which
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the retarded electromagnetic field generated by a single arbitrarily moving
charge appears as a pure Coulomb field at each observation point. With a
curved world line, this frame is noninertial. The existence of this frame is of
basic importance. It provides a picture in which any specification of F , other
than the Coulombic ρ−2 dependence, is missing.

This inference may seem troublesome. Indeed, we are well aware of the
fact that not only Coulomb fields but also magnetic fields are available in
nature. Where do they come from? One can indicate at least two origins.
First, the superposition principle. For the electromagnetic field F generated
by several charges, the relations P = 0, S < 0 are generally invalid, and the
2-form F is no longer decomposable. Note that, in practice, the occurrence of
magnetic fields due to the circuition of electrons around closed paths suggests
a neutral system where electric fields of moving electrons and immovable nuclei
mutually cancel. Second, a pure magnetic field may be related to spin and its
associated magnetic dipole moment of the charged particle, as is clear from
(4.59).

Decomposability is the most salient characteristic of the 2-form F associ-
ated with the field generated by a single charge. We recall that P = 0 is the
necessary and sufficient condition for the decomposability of F .

The decomposable 2-form F is invariant under the transformations (4.293)
with the constraint (4.295). Since these transformations can be carried out in-
dependently at any spacetime point, we are dealing with the local SL(2,R)
invariance. The decomposability of F and SL(2,R) invariance will henceforth
be used synonymously. Note that the invariance under SL(2,R) is not perti-
nent to electrodynamics as a whole, hence it results in no Noether identities.
Moreover, the system of a charged particle and its electromagnetic field, as
such, is devoid of this invariance. It is rather a property of the retarded solution
Fret describing such a system. The advanced field Fadv can also be represented
in a form similar to (4.283), that is, Fadv is decomposable (Problem 4.7.1),
whereas combinations Fret + αFadv are not. We will see in Sect. 8.1 that the
2-form F associated with the Yang–Mills field generated by a single colored
particle may be of two types, electric and magnetic, according to which phase,
hot or cold, is considered. In either case, F is invariant under the local group
SL(2,R). Note also that the retarded electromagnetic field F generated by a
single charge in spacetimes of higher dimensions is no longer a bivector, see
Problem 4.7.5.

Problem 4.6.1. Apart from (4.283)–(4.284), there are further simple expres-
sions for the retarded field strength. Show that F can be written as

F =
e

ρ

d

ds
c ∧ v . (4.300)

Hint Use the relations Ṙµ = −vµ and ρ̇ = λ.
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Problem 4.6.2. Show that the bivector $ defined by (4.289) can be con-
verted to the form (4.296) where eµ

0 and eµ
1 are given by (4.297)–(4.299).

Verify that the vectors eµ
0 and eµ

1 given by formulas (4.297)–(4.299) are ac-
tually perpendicular timelike and spacelike vectors. Describe the regions of
Minkowski space which correspond to the cases V 2 < 0, V 2 > 0, and V 2 = 0.

Answer The equation ρ̄ = | a2+(a ·u)2|− 1
2 describes a tubular hypersurface Tρ̄

enclosing the world line. The case V 2 < 0 corresponds to the region outside
Tρ̄, ρ > ρ̄. The case V 2 > 0 corresponds to the region inside Tρ̄, ρ < ρ̄. And
the case V 2 = 0 corresponds to the hypersurface Tρ̄ itself, ρ = ρ̄.

4.7 Another Way of Looking at Retarded Solutions

The retarded solution can be obtained without resort to the Green’s function
method. We turn in this section to an alternate procedure based on the tech-
nique of covariant retarded variables. (This approach has some utility in the
electrodynamics of even-dimensional spacetimes, Problems 4.7.2–4.7.5. How-
ever, it will be of particular interest for the analysis of the Yang–Mills–Wong
theory, Chap. 8, where the nonlinearity of the Yang–Mills equations hinders
from the use of the Green’s function method.)

We are searching for the retarded solution to the equation

�Aµ − ∂µ∂νA
ν = 4πe

∫ ∞

−∞
ds vµ(s) δ4 [x− z(s)] (4.301)

where zµ(s) is an arbitrary smooth timelike curve, the world line of a single
point charge. To this end, we build an ansatz as follows.

As usual, let xµ be an observation point, and let zµ(sret) be the point on
the world line from which the signal was sent to xµ. We anticipate that Aµ

can depend on only two vectors, vµ(sret) and Rµ = xµ − zµ(sret). Indeed,
one should bear in mind that the retarded function for the wave equation is
concentrated in rays of the future light cone, and contains no derivative of
the delta-function. This is the same as saying the signal carries information
about the state of the source at a single point on the world line zµ(sret), and
this state is fully specified by the direction of the tangent vµ at the instant
sret. The only nontrivial scalar ρ = R · v can be constructed from the vectors
vµ and Rµ, because v2 = 1, and R2 = 0. To summarize, the retarded vector
potential is

Aµ = vµΦ(ρ) +RµΨ(ρ) (4.302)

where Φ and Ψ are as yet unknown functions, and vµ is taken at the retarded
instant sret.

Now insert (4.302) in (4.301). By (4.237), (4.241), and (4.210), the left
hand side of (4.301) becomes
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(
Φ′ +

Φ

ρ

)
[aµ + (a · u)uµ] − 1

ρ
(ρ2Ψ ′′ + 4ρΨ ′ + 2Ψ)vµ + (a · u)(ρ2Ψ ′′ + 2ρΨ ′)cµ

(4.303)
where the prime stands for differentiation with respect to ρ. This expression
vanishes outside the world line. Equating to zero the coefficients of the three
linearly independent vectors (

u

⊥a)µ = aµ + (a · u)uµ, vµ, and cµ, we arrive at
an overdetermined system of ordinary differential equations

ρΦ′ + Φ = 0 , (4.304)

ρ2 Ψ ′′ + 4 ρΨ ′ + 2Ψ = 0 , (4.305)

ρΨ ′′ + 2Ψ ′ = 0 . (4.306)

The general solution of (4.304) is

Φ(ρ) =
q

ρ
(4.307)

where q is some integration constant which will be determined below. The
solution to (4.305) and (4.306) can be represented as Ψ ∝ ρα. It follows that
either α = −1 or α = −2, due to (4.305). On the other hand, either α = −1
or α = 0, due to (4.306). Therefore, (4.305) and (4.306) are compatible when
α = −1, and their joint solution is

Ψ(ρ) =
C

ρ
(4.308)

where C is another integration constant.
Taking into account (4.237), we observe that the second term of expression

(4.302), with Ψ(ρ) of the form (4.308), is pure gauge,

RµΨ(ρ) = C
Rµ

ρ
= C ∂µs . (4.309)

This term does not contribute to Fµν , hence C is arbitrary.
We thus arrive at the retarded vector potential

Aµ = q
vµ

ρ
(4.310)

supplemented by the gauge term. We repeat calculations of Sect. 4.6 to obtain
the field strength

F =
q

ρ2
c ∧ V (4.311)

with V µ defined in (4.284). To determine q, we note that, for a straight world
line, F becomes the Coulomb field. Applying Gauss’ law to this case, q is
identified with the charge e of the particle under study. Finally, we have the
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solution which coincides with the Liénard–Wiechert vector potential (4.214),
up to the gauge term (4.309).

A feature of this procedure is that it does not require a gauge fixing condi-
tion for Aµ. We therefore obtain, not a unique solution, but rather the whole
class of equivalent potentials Aµ related by the gauge transformations

δAµ = C ∂µs . (4.312)

For C = 0, the vector potential Aµ takes the form (4.310) which satisfies the
Lorenz gauge fixing condition (4.105). For C �= 0, we have solutions which do
not satisfy the Lorenz condition because ∂µc

µ �= 0.
If the gauge invariant operator ηµν � − ∂µ∂ν is replaced by the wave op-

erator �, converting (4.301) to (4.106), the procedure we have just described
no longer works. The ansatz (4.302) is applicable only to gauge invariant field
equations.

Had we considered a massive vector field governed by the Klein–Gordon
equation, rather than the Maxwell field, the support of the retarded Green’s
function would be the entire future light cone (see Problem 4.4.3), and our
ansatz (4.302) would no longer be justified.

It is also worth mentioning that the procedure we have described rests
crucially on the assumption that the world line is timelike and smooth2.
These properties of the worldline are thus in good agreement with the re-
tarted boundary condition.

Problem 4.7.1. Modify the procedure given above to the advanced condi-
tion, and find the advanced solution to (4.301). Show that the advanced field
strength is

F =
e

ρ2
c ∧ V , (4.313)

cµ = −vµ + uµ , (4.314)

V µ = vµ − ρ (
u

⊥a)µ , (4.315)

where all kinematical variables relate to the advanced instant sadv. Compare
these with the corresponding expressions (4.283), (4.209), and (4.284) for the
retarded field.

Problem 4.7.2. Electrodynamics in even-dimensional spacetimes D+1 = 2n.
For a world with one temporal and one spatial dimension use the ansatz

Aµ = RµΨ(ρ) (4.316)

instead of (4.302). Verify that the retarded solution to Maxwell’s equations is

Aµ = −eRµ , (4.317)
2 Strictly speaking, it would suffice to rule out only cusps that render the world

line Λ- or V -shaped.
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and the associated field strength is

F = e c ∧ v . (4.318)

Problem 4.7.3. For a world with one temporal and five spatial dimensions
justify the ansatz

Aµ = vµ Φ(ρ, λ) + aµΩ(ρ, λ) +Rµ Ψ(ρ, λ) , (4.319)

where Φ, Ω and Ψ are sought functions. Verify that the retarded vector po-
tential is

Aµ =
e

3

(
−λ v

µ

ρ3
+
aµ

ρ2

)
, (4.320)

modulo the gauge terms k ∂µτ and l ∂µρ, and the field strength is

F =
e

3

(
c ∧ V +

a ∧ v
ρ3

)
, (4.321)

V µ =
vµ

ρ4

[
3λ2 − ρ2 (ȧ · c)

]
− 3λ

aµ

ρ3
+
ȧµ

ρ2
. (4.322)

Problem 4.7.4. The prepotential Hµ of the vector potential Aµ is defined as

Aµ = �Hµ . (4.323)

Verify that, for D = 1, 3 and 5, the retarded vector potentials A(D+1)
µ are

related by
�A(2)

µ ∝ (2 −D)A(4)
µ , (4.324)

�A(4)
µ ∝ (4 −D)A(6)

µ . (4.325)

Prove that any 2n-dimensional retarded vector potential A(2n)
µ (up to a nor-

malization factor) is the prepotential of the (2n + 2)-dimensional retarded
vector potential A(2n+2)

µ .

Problem 4.7.5. Show that the retarded electromagnetic field F generated
by a single charge e in even-dimensional spacetimes, D + 1 = 2n, is the sum
of n− 1 bivectors

F (2n) = f1 ∧ f2 + · · · f2n−3 ∧ f2n−2 with f1 ∧ f2 = c ∧ U (2n) . (4.326)

Here, U (2n)
µ is related to the corresponding (2n + 2)-dimensional vector po-

tential A(2n+2)
µ as

Z2n U
(2n)
µ = ρA(2n+2)

µ , (4.327)

where the numerical factor Z2n is determined by Gauss’ law.
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4.8 Field Due to a Magnetic Monopole

The idea of magnetic charge is rather old. In modern times, attention to it
was drawn by Dirac who argued that the coexistence of electric and magnetic
charges in the quantum picture gives rise to quantization of the electric charge
e according to the relation 2ee� = n where e� is a fixed magnetic charge, and
n is an integer. But we do not dwell on this subject being limited to classical
physics. This section is devoted instead to features of fields generated by a
classical magnetic monopole.

We begin with an imaginary world containing a single particle with a
magnetic charge e�. The electromagnetic field is governed by the equations

∂λF
λµ = 0 , (4.328)

∂λ
∗Fλµ = 4πe�

∫ ∞

−∞
ds vµ(s) δ4 [x− z(s)] . (4.329)

The formal resemblance of this system to that of a single charged particle
and its field enables us to give the retarded solution to equations (4.328) and
(4.329):

∗F =
e�

ρ2
$ (4.330)

where the bivector $ is defined in (4.289). It follows that

F = −e
�

ρ2
σ , (4.331)

σ = ∗(c ∧ V ) . (4.332)

The 2-form F given by (4.331) and (4.332) is decomposable. Indeed, ∗∗F =
−F , and, by analogy with the retarded field of a single charged particle, P = 0.

The other field invariant is S = 1
2 FαβF

αβ = − 1
2
∗Fαβ

∗Fαβ = (e�)2/ρ4,
which implies that we are dealing with the field configuration of magnetic
type for any timelike world line of the source, B2 > E2. Thus,

σ = e2 ∧ e3 (4.333)

where eµ
2 and eµ

3 are spacelike normalized vectors perpendicular to cµ and V µ,
as depicted in Fig. 4.5. (By eµ

1 we mean the spacelike normalized vector uµ

perpendicular to eµ
2 and eµ

3 .) Vectors eµ
2 and eµ

3 can readily be constructed
out of V µ and cµ (Problem 4.8.1).

When the world line is straight, the field strength Fµν is constant. In the
Lorentz frame with time axis parallel to vµ, the only nontrivial component of
Fµν is F 23 which is dual to a Coulomb-like magnetic field Bi = − 1

2 εijkF
jk

directed along the radius vector ri = ρ ui [this is clear from (4.331) and
(4.333), and the fact that uµ, eµ

2 and eµ
3 span an orthonormal basis in the

hyperplane with the normal vµ]. Simply stated, the magnetic field B due to
a static magnetic monopole placed at the origin is
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Fig. 4.5. Field due to a magnetic monopole

B = e� n
r2
, (4.334)

where n is a unit vector directed along the radius vector r.
Let us recall that the four-force fµ acting on a magnetically charged parti-

cle is e�vλFµλ. This expression, together with (4.330), shows that if we grant
the existence of magnetic charges and the absence of electric ones, we may
regain the conventional picture with electric charges by the merely renam-
ing dual quantities. We should therefore be concerned with the problem of
coexisting of electric and magnetic charges.

In a world where electric and magnetic charges coexist, Maxwell’s equa-
tions modify:

∂λF
λµ = 4πjµ ,

∂λ
∗Fλµ = 4πmµ , (4.335)

where jµ and mµ are the four-currents of electric and magnetic charges eI

and e�
I ,

jµ(x) =
N∑

I=1

eI

∫ ∞

−∞
dsI v

µ
I (sI) δ4 [x− zI(sI)] ,

mµ(x) =
K∑

I=1

e�
I

∫ ∞

−∞
dsI v

µ
I (sI) δ4 [x− zI(sI)] , (4.336)

obeying the local conservation laws

∂µj
µ = 0, ∂µm

µ = 0 , (4.337)

or, in vector notation,

∇× B = 4πj +
∂E
∂t
, ∇ · E = 4π! , (4.338)
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∇× E = −4πj� − ∂B
∂t
, ∇ · B = 4π!� . (4.339)

The system of equations (4.335), or, what is the same, (4.338)–(4.339),
might seem overdetermined: 8 equations determine 6 unknown functions. How-
ever, two of them are constraints. We might reduce the number of equations
by solving the constraints, namely expressing longitudial modes of E and B
in terms of ! and !�, but this would result in a nonlocal construction. It
would be reasonable to proceed in the opposite direction increasing formally
the number of unknown functions.

With the ansatz (4.85) in mind, we may, following Nicola Cabibbo and
Ezio Ferrari 1962, express the tensor Fµν in terms of two vector potentials Aµ

and Bµ as
Fµν = ∂µAν − ∂νAµ − εµναβ∂

αBβ , (4.340)

which is equivalent to

∗Fµν = ∂µBν − ∂νBµ + εµναβ∂
αAβ . (4.341)

The system of field equations (4.335) is converted to

�Aµ − ∂µ∂νA
ν = 4πjµ ,

�Bµ − ∂µ∂νB
ν = 4πmµ , (4.342)

and we therefore arrive at the system of 8 equations with 8 unknown functions.
However, the number of field degrees of freedom still remains equal to 6.

Indeed, the field strength Fµν is invariant under the gauge transformations

Aµ → A′
µ = Aµ + ∂µχ, Bµ → B′

µ = Bµ + ∂µω (4.343)

with arbitrary smooth functions χ and ω. Therefore, only transverse modes
of the vector potentials Aµ and Bµ contribute to Fµν . The longitudial modes
∂µχ and ∂µω are not dynamical degrees of freedom. On the other hand, among
the 8 equations (4.342), only 6 are independent because the four-dimensional
divergence of both sides of equations (4.342) is identically zero. These prop-
erties are most obvious for the Fourier transforms of fields. For example, the
linear dependence of the first four equations in (4.342) is clearly seen from the
identity

kµ

(
k2Ãµ − kµkνÃ

ν − 4π̃µ
)

= 0 . (4.344)

An alternative to the two-vector-potential approach is the use of one vector
potential Aµ, related to the field strength by the conventional equation

Fµν = ∂µAν − ∂νAµ . (4.345)

This equation implies ∂λ
∗Fλµ = 0, in conflict with (4.335), and is therefore

apparently incorrect for smooth vector potentials Aµ mapped on the whole
Minkowski space. And, nevertheless, following Dirac, we may use (4.345) for
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vector potentials Aµ which become singular on lines that issue from the mag-
netic charge (see Problem 4.1.5). The evolution of a magnetic monopole is
depicted by a world sheet which the singular line sweeps out. Equation (4.345)
holds almost everywhere, hence ∂λ

∗Fλµ is zero almost everywhere, except for
the singular line. Owing to this obstacle, equation (4.335) can still be valid.

It was shown by Tai Tsun Wu and Yang in 1975 that the vector potential
Aµ need not be singular. Instead, we may use two (or more) maps xµ → Aµ.
To be more specific, take the region U to be all the spacetime minus the point
of a magnetic charge. It is possible to divide U into two overlapping regions Ua

and Ub and to define (Aµ)a and (Aµ)b, each singularity free in their respective
regions, so that (i) their curls are equal to the magnetic field and (ii) in the
overlapping region (Aµ)a and (Aµ)b are related by a gauge transformation
(for more detail see Problem 4.8.2).

Problem 4.8.1. Verify that

eµ
2 =

1
|N | (Nµ − ρN2cµ), eµ

3 =
1
|N | ε

µαβγNα cβ Vγ with Nµ = (
u

⊥a)µ

(4.346)
are the vectors suited for constructing the bivector σ in (4.333). Show that
σ = e2∧e3 is nonzero even for collinear uµ and aµ, which rendersNµ vanishing.

Hint σ = 0 ⇐⇒ ∗σ = 0. However, ∗σ = c ∧ V is nonzero for any timelike
world line.

Problem 4.8.2. The Wu and Yang vector potential. Take the regions Ua and
Ub to be

Ua : 0 ≤ ϑ < π/2 + δ, 0 ≤ ϕ < 2π, for all t , (4.347)

Ub : π/2 − δ < ϑ ≤ π, 0 ≤ ϕ < 2π, for all t , (4.348)

with the overlap extending throughout π/2 − δ < ϑ < π/2 + δ. Define the
vector potentials

(At)a = (Ar)a = (Aϑ)a = 0, (Aϕ)a =
e�

r sinϑ
(1 − cosϑ) , (4.349)

(At)b = (Ar)b = (Aϑ)b = 0, (Aϕ)b =
−e�

r sinϑ
(1 + cosϑ) , (4.350)

see Problem 4.1.5 where the vector û forming the singular line should be taken
to be aligned with the x3-axis in Ub and opposed to it in Ua. Note that (Aµ)a

is regular in Ua, and (Aµ)b is regular in Ub.
Verify that (Aµ)a and (Aµ)b are related by the gauge transformation

(Aµ)b = (Aµ)a − ∂µχ with χ = 2e�ϕ (4.351)

in the overlap of the two regions.
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Hint If (Aµ)a and (Aµ)b are time-independent, then ∂µχ = (0,∇χ). To see
that χ = 2e�ϕ, use the gradient operator in spherical coordinates

∇ = er
∂

∂r
+ eϑ

1
r

∂

∂ϑ
+ eϕ

1
r sinϑ

∂

∂ϕ
, (4.352)

where er, eϑ, eϕ are unit vectors along, respectively, the radius vector, a
meridian directed toward the north pole, and a parallel of latitude in the
direction of increasing longitude.

Problem 4.8.3. Consider generalizations of the Coulomb law (4.24) and the
Biot and Savart law (4.50) for a nonrelativistic dyon carrying both electric
and magnetic charges e and e�. Find the static magnetic and electric fields B
and E due to this dyon.

Hint Use (4.24), (4.334), and (4.50), and observe that the sources 4πj and
−4πj� of equations (4.338) and (4.339) are opposite in sign.

Answer

B =
1
r2

(e� n + ev × n) , E =
1
r2

(en − e� v × n) . (4.353)

Problem 4.8.4. Consider slowly moving particle 1 possessing electric charge
e1 and magnetic charge e�

1, which interacts with static particle 2 with para-
meters e2 and e�

2. Verify that, to a first approximation in v1, the force on
particle 1 due to 2 is

F12 = (e1e2+e�
1e

�
2)

n12

r212
+(e1e�

2−e2e�
1)

v1 × n12

r212
, n12 =

z1 − z2

|z1 − z2|
. (4.354)

Problem 4.8.5. Consider a particle of charge e moving in the field of a
very massive magnetic monopole of strength e�. Find the Hamiltonian of this
particle.

Answer

H =

√
p2

r +
p2

ϑ

r2
+

(p2
ϕ + ee� cosϑ)2

r2 sin2 ϑ
+m2 . (4.355)

Hint Use (2.221) rewritten in the form H−eφ =
√

(p − eA)2 +m2. Calculate
it with φ = 0 and A given by (4.71).

Notes

1. Section 4.1. Additional references on exact solutions to the equations of
electrostatics and magnetostatics are Morse & Feshbach (1953) and Jackson
(1962). Relevant problems are collected in Batygin & Toptygin (1978).
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2. Section 4.2. The argument that Λ−1 does not exist, relying on the fact that
(4.104) is actually an eigenvalue equation corresponding to zero eigenvalue,
has been communicated to the author by Woodard.

For more historical detail of the Lorenz gauge see Jackson & Okun (2001).
A general gauge condition similar to (4.111) was discussed in Zumino (1960).

De Witt (1962) showed that the vector potential Aµ can be expressed
in terms of the field strength Fµν , even though the suggested construction
proves nonlocal. This result intimates that electrodynamics can be formulated
in terms of Fµν . On the quantum level, Aµ is more fundamental than Fµν ,
as exemplified by the Aharonov–Bohm effect. For a review of this effect see
Peshkin & Tonomura (1989).

3. Section 4.3. The identity (4.172) is sometimes referred to as the Ward–
Takahashi identity. The structure of such identities is fully considered by
Takahashi (1969). Solitons touched on in Problems 4.3.7 and 4.3.8 are dis-
cussed at greater length in many text, to mention just three: Whitham (1974),
Ablowitz & Segur (1981), and Rajaraman (1982).

4. Section 4.4. The Green’s function method is treated in most textbooks on
mathematical physics and field theory. A general reference is Morse & Fesh-
bach (1953), Courant (1962), Gel’fand & Shilov (1964), Iwanenko & Sokolow
(1953), Jackson (1962), Barut (1964), and Rohrlich (1965). The retarded
potentials for a continuous distribution of electric charge were obtained by
Lorenz (1867). The retarded potentials for discrete charges (4.215) are due to
Liénard (1898), and Wiechert (1900). Our treatment is close to Dirac (1938).

5. Section 4.5. The covariant retarded variables were defined in Dirac (1938).
The paper by Synge (1970) covered many of the subject in this section. The
surface element on the light cone can be found in the book by Synge (1956).

6. Section 4.6. Kosyakov (1994) showed that the 2-form F corresponding to
the Liénard–Wiechert field is decomposable. As a consequence, the retarded
electromagnetic field generated by an arbitrary moving charge is essentially
the same as the Coulomb field. There exists a (noninertial) frame of reference
in which the field becomes |E| = e/ρ2, B = 0. It is therefore meaningless,
contrary to a widespread belief, to divide F into the ‘radiation field’ and
‘Coulomb-like field’ scaling respectively as ρ−1 and ρ−2, because the long-
range ρ−1 field can be eliminated altogether by the mere transition to a local
frame of reference determined in the appropriate way. As will be discussed in
Sect. 6.2, the idea of radiation is embodied in some term of the electromagnetic
stress-energy tensor.

The Coulomb field, the most salient configuration of the electromagnetic
field, is due to Coulomb (1785) who invented the torsion balance for measur-
ing the electrostatic force. The idea of a freely propagating electromagnetic
wave was advanced by Lorenz (1867) and Maxwell (1873), and confirmed ex-
perimentally by Hertz (1887), (1888). For more detail see Whittaker (1910).
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7. Section 4.7. The analysis of this section follows Kosyakov (1999).

8. Section 4.8. The modification of Maxwell’s equations with the concurrent
presence of electric and magnetic sources (4.338)–(4.339) was proposed by
Heaviside (1892). Dirac (1931) and (1948) are basic references on the con-
struction of the electromagnetic field Fµν due to a magnetic monopole. This
field is expressed in terms of a vector potential Aµ which is singular on a line
called the Dirac string. Cabibbo & Ferrari (1962) constructed Fµν in terms
of two vector potentials Aµ and Bµ which are regular everywhere, except the
magnetic pole. Wu & Yang (1975) expressed Fµν in terms of a single vector
potential Aµ which has no singularity on the Dirac string, but bears on a
topologically involved layout.
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Lagrangian Formalism in Electrodynamics

5.1 Action Principle. Symmetries
and Conservation Laws

In this section we discuss general ideas about Lagrangian treatment of systems
of particles and fields. Since the particle sector has been already developed
in Sect. 2.5, it remains to see how these results can be adapted to the field
sector. We then augment our analysis by the addition of terms responsible for
the interaction of particles and fields.

The Lagrangian treatment of fields resembles that of particles in many
respects. It is therefore expedient to recapitulate briefly the procedure of
Sect. 2.5, and introduce modifications necessary for systems with infinite de-
grees of freedom.

Consider a system whose states are specified by n field variables φa(x), a =
1, . . . , n. These fields may be real or complex, scalar, vector, spinor, or tensor
functions of spacetime. Suppose that the behavior of the system is governed
by the action

S =
∫
U
d4xL(x, φ, ∂φ) , (5.1)

where U is a domain bounded by spacelike surfaces Σ1 and Σ2 which extend to
infinity. The scalar L, called the Lagrangian density, or Lagrangian for short,
is a local function of fields and their first derivatives. We assume that any
explicit dependence of the Lagrangian upon spacetime is confined to external
sources Ja(x) which enter L in the form −Ja(x)φa(x).

By analogy with mechanics, we define the local field variation as

δφa = φ′a(x) − φa(x) , (5.2)

which refers to a change from a given field configuration to a neighboring one.
The total field variation is defined by

∆φa = φ′a(x′) − φa(x) , (5.3)
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where the spacetime coordinates differ from each other by an infinitesimal
amount,

x′
µ = xµ +∆xµ . (5.4)

We remark parenthetically that local field variations are of primary concern
for the action principle, while total field variations play a decisive role in
Noether’s first theorem.

Clearly,
∆φ = δφ+∆xµ ∂µφ , (5.5)

where the last term can be thought of as a deformation of the fixed field
configuration in response to the change of spacetime variables (5.4).

Assume that the functional form of L is unchanged by these variations of
φ and x,

L′(x′, φ′, ∂φ′) = L(x′, φ′, ∂φ′) . (5.6)

Then the corresponding variation of the Lagrangian

∆L = L′(x′, φ′, ∂φ′) − L(x, φ, ∂φ) (5.7)

takes the form

∆L = (∂µL)∆xµ + ∂µ

[
∂L

∂(∂µφa)
δφa

]
+ Ea δφa . (5.8)

Here, ∂µL is the complete partial derivative with respect to xµ, that is, in-
cluding the implicit xµ dependence from the fields,

∂µL =
∂L
∂xµ

+
∂L
∂φa

∂µφa +
∂L

∂(∂νφa)
∂µ∂νφa , (5.9)

and Ea is the Eulerian associated with the variation with respect to φa,

Ea =
∂L
∂φa

− ∂µ

[
∂L

∂(∂µφa)

]
. (5.10)

The total variation of the action is

∆S =
∫
U ′
d4x′ L′(x′, φ′, ∂φ′) −

∫
U
d4xL(x, φ, ∂φ) , (5.11)

where

d4x′ = det
(
∂x′

∂x

)
d4x . (5.12)

By (5.4),

(
∂x′

∂x

)
=




1 + ∂0∆x
0 ∂0∆x

1 ∂0∆x
2 ∂0∆x

3

∂1∆x
0 1 + ∂1∆x

1 ∂1∆x
2 ∂1∆x

3

∂2∆x
0 ∂2∆x

1 1 + ∂2∆x
2 ∂2∆x

3

∂3∆x
0 ∂3∆x

1 ∂3∆x
2 1 + ∂3∆x

3


 . (5.13)
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To the first order in ∆xµ,

det
(
∂x′

∂x

)
= 1 + ∂0∆x

0 + ∂1∆x
1 + ∂2∆x

2 + ∂3∆x
3 = 1 + ∂µ∆x

µ . (5.14)

Substituting (5.12) and (5.14) into (5.11) gives

∆S =
∫
U
d4x (∆L + L ∂µ∆x

µ) , (5.15)

where ∆L is defined in (5.7). We combine (5.8) with (5.15) and rearrange
terms,

∆S =
∫
U
d4x [∂µ (L∆xµ + πµ

a δφa) + Eaδφa] , (5.16)

where πµ
a is the momentum conjugate to the field variable φa,

πµ
a =

∂L
∂(∂µφa)

. (5.17)

If the integrand falls off fast enough as |x| → ∞, then, applying the Gauss–
Ostrogradskǐı theorem, we obtain

∆S = Q(Σ2) −Q(Σ1) +
∫
U
d4x Eaδφa . (5.18)

The surface integrals

Q(Σi) =
∫

Σi

dσµ (L∆xµ + πµ
a δφa) (5.19)

can be further transformed using (5.5),

Q(Σi)=
∫

Σi

dσµ[(δµ
νL− πµ

a ∂νφa)∆xν + πµ
a∆φa]=

∫
Σi

dσµ(πµ
a∆φa − θµ

ν∆x
ν) .

(5.20)
The quantity

θµ
ν = πµ

a ∂νφa − δµ
ν L (5.21)

is known as the canonical stress-energy tensor. Thus, the general expression
for ∆S can be brought into close relation to that of mechanics, as is clear
when (5.18) is compared with (2.172).

We now specialize these general observations to the case that the boundary
surfaces Σ1 and Σ2 are fixed, and the total field variation vanishes at Σ1 and
Σ2. For such variations, the surface integrals (5.19) are zero. In this context,
we formulate the action principle: the actual field configuration makes the
action extremal, ∆S = 0. It follows from (5.18) that

∫
U
d4x Eaδφa = 0 . (5.22)
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Taking into account that δφa are arbitrary infinitesimal functions, we con-
clude that the actual field configurations are solutions to the Euler–Lagrange
equations

Ea =
∂L
∂φa

− ∂µ

[
∂L

∂(∂µφa)

]
= 0 . (5.23)

Fields φa obeying the Euler–Lagrange equations make the action an ex-
tremum, hence the name extremals.

To summarize, we have obtained partial differential equations (5.23) gov-
erning the behavior of field systems. In the field-theoretic language, these
Euler–Lagrange equations are called field equations. All essential properties
of a given system are assumed to be encoded in the Lagrangian L. Examples
of Lagrangians for the most common fields will be given below.

We now turn to Noether’s first theorem. Let

∆xµ = Γµ
k(x) εk , (5.24)

∆φa = Gka(x, φ) εk (5.25)

be a group of infinitesimal transformations depending upon p parameters
εk, k = 1, . . . , p, with the Γµ

k being group generators and the Gka being
representations of these generators acting on φa. Assume that the action is
invariant1 under the infinitesimal transformations (5.24)–(5.25), which are
called symmetry transformations. We will distinguish between internal and
spacetime symmetries. Any internal symmetry is such that the coordinates
xµ are unchanged, that is, ∆xµ = 0, and functions Gka are independent of
x. If the change of field variables (5.25) is instead induced by a coordinate
transformation (5.24), then (5.24)–(5.25) is a spacetime transformation.

Putting Ea = 0 in (5.18), we have

Qk =
∫

Σ

dσµ (πµ
a Gka − θµ

ν Γ
ν
k) = const (5.26)

for any spacelike Σ. In particular, Qk is unaffected by shifts of Σ in timelike
directions. Now Noether’s first theorem reads: invariance of the action ∆S = 0
under a continuous p-parameter group of transformations (5.24)–(5.25) implies
p global conservation laws for the integral quantities Qk.

Equations (5.26), expressing p global conservation laws, are equivalent to
a set of p equations of continuity

∂µN µ
k = 0, k = 1, . . . , p , (5.27)

where N µ
k, called the Noether current, is defined by

N µ
k = πµ

a Gka − θµ
ν Γ

ν
k . (5.28)

1 By invariance we mean that ∆S = 0 for general field variables φ, not just for
extremals.
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Another name for (5.27) is local conservation laws.
This argument is valid even if one relaxes the condition that the functional

form of the Lagrangian is invariant; rather it is sufficient to require

L(x′, φ′, ∂′φ′) = L(x, φ, ∂φ) + ∂µB
µ , (5.29)

where Bµ is an arbitrary vector function of φ, because total derivatives in
Lagrangians contribute only to surface variations. Then the Noether’s current
is added by Bµ,

N µ
k = πµ

a Gka − θµ
ν Γ

ν
k +Bµ . (5.30)

The application of Noether’s first theorem to different symmetries of electro-
dynamics will be discussed at greater length in the subsequent sections of this
chapter.

Let us look at a few examples of Lagrangian field theories. We first take
a real scalar field φ. Lagrangians linear in φ, such as L = Dφ where D is a
constant or a differential operator, are inconsistent because the corresponding
Euler–Lagrange equations are D = 0, whence L = 0. The simplest Lorentz
invariant Lagrangian is quadratic in φ,

L =
1
2

(∂αφ)(∂αφ) − µ2

2
φ2 . (5.31)

We do not show linear terms in (5.31) since they can be absorbed by rear-
ranging the quadratic form to the sum of diagonal terms (Problem 5.1.1).

Taking into account that partial integration of the action does not change
the Euler–Lagrange equations, we can rewrite (5.31) as

L = −1
2
φ
(
� + µ2

)
φ . (5.32)

Clearly the Euler–Lagrange equation resulting from (5.32) is the Klein–
Gordon equation (

� + µ2
)
φ = 0 . (5.33)

We learned from Problem 4.3.4 that solutions to the Klein–Gordon equation
propagate with the group velocity |v| < 1, and hence φ may be regarded as
a massive field by analogy with a massive particle. The real parameter µ in
(5.33) is called the mass of the field φ.

Fields governed by linear equations of motion are free. Expression (5.31)
is an example of the Lagrangian for a free field. On the other hand, if the
Lagrangian involves powers of φ higher than quadratic, such as

L =
1
2

(∂αφ)(∂αφ) − µ2

2
φ2 − λ2

4
φ4 , (5.34)

then the resulting Euler–Lagrange equations are nonlinear, and the system is
referred to as interacting. The parameter λ2 in (5.34) measures the strength
of the quartic self-interaction.
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Next in order of complexity to scalars are Dirac spinors. Let ψ be a complex
spinor field, and ψ̄ = ψ∗γ0 the Dirac conjugate of ψ. As indicated in Appendix
C, the simplest bilinear Lorentz covariant combinations of these fields are ψ̄ψ
and ψ̄γµψ. We employ them to construct the Lagrangian

L =
i

2
ψ̄γµ

(
∂µ −

←
∂ µ

)
ψ −mψ̄ψ , (5.35)

or, dropping a divergence term,

L = ψ̄ (iγµ∂µ −m)ψ . (5.36)

Rather than separately vary real and imaginary parts of the complex-valued
Dirac field ψ, we instead regard ψ and ψ̄ as two independent fields. The
Euler–Lagrange equations for ψ read

(iγµ∂µ −m)ψ = 0 . (5.37)

This equation is called the Dirac equation; it governs a free spin-1
2 field. For

ψ̄, we get
ψ̄
(
iγµ

←
∂ µ +m

)
= 0 . (5.38)

A comparison between (5.36) and (5.37), or between (5.32) and (5.33),
tells us how the Lagrangian of a free field can be directly reproduced from the
field equation.

Applying iγµ∂µ + m to the left of (5.37) and taking into account the
anticommutation relations for Dirac matrices

γµγν + γνγµ = 2ηµν , (5.39)

we obtain (
� +m2

)
ψ = 0 . (5.40)

From this and the preceding discussion it follows that m represents the mass
of the Dirac field ψ.

Since the Lagrangian (5.35) is linear in derivatives, the Dirac equation
(5.37) is a first order partial differential equation. It is possible to associate
formally a similar Lagrangian with a scalar field (Problem 5.1.2), but the field
equations we eventually reach still contain second derivatives.

Free spin-1, and spin-3
2 fields are explored in Problems 5.1.4 and 5.1.5.

An example of a self-interacting spinor field, governed by a nonlinear field
equation, is the Gürsey equation

iγµ∂µψ − σ
(
ψ̄ψ
) 1

3 ψ = 0 , (5.41)

resulting from the Lagrangian

L = iψ̄γµ∂µψ − 3
4
σ
(
ψ̄ψ
) 4

3 . (5.42)
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Here, σ is the coupling strength to measure the Gürsey self-interaction.
There are many possibilities to build Lorentz invariant terms Lint respon-

sible for the interaction between the Dirac and Klein–Gordon fields. The sim-
plest example is the Yukawa term

Lint = −g ψ̄ψφ , (5.43)

where g is the Yukawa coupling constant which measures the force between ψ
and φ.

A simple version for the direct coupling of four Dirac fields of different
species, say, those of electron ψe, electron neutrino ψνe

, muon ψµ, and muon
neutrino ψνµ

, is given by the vector four-fermion interaction term

Lint = −GF√
2
JαJ†

α , (5.44)

Jα = ψ̄eO
αψνe

+ ψ̄µO
αψνµ

, J†
α = ψ̄νe

Oαψe + ψ̄νµ
Oαψµ, O

α =
1
2

(1 + γ5) γα .

(5.45)
GF is the Fermi constant which measures the joining strength of this quadru-
ple bounded Dirac field compound (the factor 1/

√
2 is kept following a com-

mon practice).
Let us turn to electrodynamics. A suitable Lagrangian for the electromag-

netic field can be built from the invariants S and P introduced in Sect. 2.3.
Both are quadratic in the field strength F . To ensure that the Euler–Lagrange
equations be linear in F , the Lagrangian should be a linear combination of
S and P. However, expressed in terms of the vector potentials, P is a total
divergence,

P =
1
2
Fµν

∗Fµν =
1
4
εµναβ(∂µAν−∂νAµ)(∂αAβ−∂βAα) = ∂µ(εµναβAν∂αAβ) .

(5.46)
Omitting P, we can write the Lagrangian of a free electromagnetic field as

L = − 1
16π

FµνF
µν , (5.47)

or, in vector notation,

L =
1
8π
(
E2 − B2

)
. (5.48)

The overall factor of (16π)−1 in (5.47), and (8π)−1 in (5.48), characterize the
Gaussian units. The Lagrangian (5.48) was discovered by Joseph Larmor in
1900. By Fµν is meant

Fµν = ∂µAν − ∂νAµ , (5.49)

which is equivalent to the Bianchi identity

Eλµν = ∂λFµν + ∂νFλµ + ∂µFνλ = 0 . (5.50)
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Substituting (5.49) in (5.47) leads to the Euler–Lagrange equations

(� ηµν − ∂µ∂ν)Aν = 0 . (5.51)

We now return to the general line of our discussion. How can the La-
grangian formalism for a particle in an external field be combined with that
for fields? A key observation is that the interaction of the electromagnetic
field with an external current Jµ originates from

Lint = −JµA
µ . (5.52)

If we add (5.47) and (5.52), then the resulting Lagrangian gives the Euler–
Lagrange equations

(� ηµν − ∂µ∂ν)Aν = 4πJµ . (5.53)

This suggests that we choose the action to have the Poincaré–Planck term
(2.207) for the particle sector, the Larmor term (5.47) for the field sector, and
the Schwarzschild term (2.212) for the interaction between a charged particle
and the electromagnetic field:

S = −m
∫
dτ
√
żµ żµ − 1

16π

∫
d4xFµνF

µν − e

∫
dτ żµAµ(z) . (5.54)

A remarkable fact is that the action (5.54) offers a complete description of
the closed system of a charged particle and an electromagnetic field. Indeed,
we may rewrite (5.54) in the form (Problem 5.1.3)

S = −m
∫
dτ
√
żµ żµ −

∫
d4x

(
1

16π
FµνF

µν + jµAµ

)
(5.55)

where
jµ(x) = e

∫ ∞

−∞
dτ vµ(τ) δ4[x− z(τ)] . (5.56)

Varying the action (5.55) with respect to Aµ gives Maxwell’s equations

Eµ =
1
4π

(� ηµν − ∂µ∂ν)Aν − jµ = 0 , (5.57)

and varying the action (5.54) with respect to zµ results in the equation of
motion for a charged particle

ελ = mz̈λ − eżµF
λµ(z) = 0 . (5.58)

Joint solutions to the set of equations (5.57) and (5.58) will tell us all we need
to know about the behavior of this closed system of a particle and electro-
magnetic field.

The Lagrangian description of particles interacting with other fields follow
essentially the same pattern (Problem 5.1.6).
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A few words are in order concerning dimensions. Using natural units, one
can define the length dimension of any field and parameter entering the La-
grangian. To illustrate, consider the Lagrangian (5.31). Since S is dimension-
less, L has dimension [l]−4. The first term of L, containing derivatives, has
dimension [l]−2[φ]2, whence it follows that

[φ] = [l]−1 . (5.59)

We can then count dimensions by saying that scalar fields have dimension
−1. Likewise, the vector potential Aµ, and the parameters µ and m have di-
mension −1, while the Dirac field ψ has dimension − 3

2 . Coupling constants
appearing as factors of the Lagrangian interaction terms may have different
dimensions. It is easy to see that the quartic, Gürsey, Yukawa, and Schwarz-
schild terms are distinguished among other interacting terms since λ, σ, g,
and e are dimensionless. By contrast, the Fermi constant GF has dimension
2.

Problem 5.1.1. Prove that

L =
1
2

(∂αφ)(∂αφ) − µ2

2
φ2 − Cφ , (5.60)

where C is a parameter, is equivalent to the Lagrangian (5.31).

Proof
µ2

2
φ2 + Cφ =

µ2

2
(φ+ C)2 − µ2C2

2
. (5.61)

Introducing Φ = φ+C and omitting an irrelevant constant term, we come to
(5.31) where φ is substituted by Φ.

Problem 5.1.2. Show that

L =
1
2
(
φµ∂

µφ− φ∂µφµ − φµφµ − µ2φ2
)

(5.62)

gives field equations equivalent to those resulting from the Lagrangian (5.31).

Problem 5.1.3. Consider a charged particle moving along a smooth timelike
world line zµ(s) which intersects spacelike hypersurfaces Σ′ and Σ′′ at points
s′ and s′′, respectively. Show that

∫ Σ′′

Σ′
d4x jµA

µ = e

∫ s′

s′′
ds vµ(s)Aµ(z) . (5.63)

Hint ∫ Σ′′

Σ′
d4x δ4[x− z(s)] = θ(s′′ − s) θ(s− s′) . (5.64)
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Problem 5.1.4. Let φµ be a massive, real-valued field coupled to a pre-
scribed external current Jµ which is assumed to be conserved, ∂µJ

µ = 0. The
Lagrangian of this system is given by

L =
1
8π

φµ

[
(� ηµν − ∂µ∂ν) +M2ηµν

]
φν − Jµφ

µ . (5.65)

This vector field, endowed with the mass M , is known as the Proca field.
Determine the dimension of φµ. Derive the Euler–Lagrange equations, and
show that they imply

∂µφ
µ = 0 . (5.66)

Problem 5.1.5. A spin- 3
2 field, the Rarita–Schwinger field, is described by

a Dirac spinor with a Lorentz vector index, ψµ. The Lagrangian for a free
Rarita–Schwinger field is

L = εµνρσψ̄µγ5γν∂ρψσ +
1
2
κψ̄µ(γµγν − γνγµ)ψν , (5.67)

where κ is the mass of this field. Show that the Euler–Lagrange equations
resulting from this Lagrangian is

εµνρσγ5γν∂ρψσ +
1
2
κ(γµγν − γνγµ)ψν , (5.68)

which implies
(
� + κ2

)
ψµ = 0, ∂µψ

µ = 0, γµψ
µ = 0 . (5.69)

Determine the length dimension of ψµ. Show that (5.68) is equivalent to
[
(iγα∂α − κ) ηµν − i

3
(γµ∂ν + γν∂µ) +

1
3
γµ (iγα∂α + κ) γν

]
ψν = 0 . (5.70)

Hint Use equation (C.37)

3!γ5γλ = −iελµνργ
µγνγρ , (5.71)

and shift the field ψµ → ψµ + Cγµ(γ · ψ) where C is some coefficient.

Problem 5.1.6. Consider a system of N point particles interacting with a
massive scalar field. (This can be viewed as a classical version of the Yukawa
model for strongly interacting nucleons which are assumed to be held together
in atomic nuclei by a massive pseudoscalar pion field.) Write the action for
this system.

Answer

S = −
N∑

I=1

∫
dτI [mI − gIφ(zI)]

√
żI · żI +

1
2

∫
d4x

(
∂αφ∂

αφ− µ2φ2
)
,

(5.72)
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or, alternatively,

S = −
N∑

I=1

mI

∫
dτI

√
ż2

I +
∫
d4x

[
1
2
(
∂αφ∂

αφ− µ2φ2
)

+ jφ

]
, (5.73)

j(x) =
N∑

I=1

gI

∫ ∞

−∞
dτI

√
ż2

I δ
4[x− zI(τI)] . (5.74)

Problem 5.1.7. Let two particles interact through a massive scalar field.
Suppose that the charges of these particles g1 and g2 are sufficiently small,
and the motion is nonrelativistic.

Prove that the force is attractive if g1 and g2 are of like sign, and repulsive
if g1 and g2 are of opposite sign. With reference to Problem 5.1.6, this will
elucidate why nucleons attract each other, and are thus bound in a nucleus,
and why a neutron repels an antineutron. Is this result sensitive to the sign of
the coupling constant g in (5.74)? Does this statement hold for a scalar field
of zero mass µ = 0?

Proof Assuming that gφ� m, the equation of motion for a particle

d

ds
[(m− gφ)vµ] = −g∂µφ (5.75)

simplifies
ma = g∇φ (5.76)

as v → 0. The positive sign of the gradient term is due to the fact that
vµ = (γ,−γv) and ∂µ = (∂/∂t,∇). With reference to Problem 4.1.4, we give
the static field equation

(∇2 − µ2)φ(r) = −g δ3(r) , (5.77)

and its solution

φ(r) = g
exp(−µr)

4πr
. (5.78)

Let r12 be the radius vector drawn from particle 1 to particle 2. Then the
force f12 acting on particle 1 is

f12 = −g1g2
exp(−µ2 r12)

4πr312
(1 + µr) r12 . (5.79)

We see that f12 is opposite to r12 if g1g2 > 0.

Problem 5.1.8. Consider a point particle interacting with the Proca field,

S = −
∫
dτ [m

√
ż · ż + gżµφµ(z)]− 1

16π

∫
d4x [(∂µφν − ∂νφµ)2 − 2M2φµφ

µ] .

(5.80)
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This is a toy model for the weak interactions which assumes that the weak
forces between particles (say, electrons and neutrinos) are carried by a massive
vector field, the classical realization of the W and Z bosons. Show that the
force between particles 1 and 2 is attractive if their charges g1 and g2 are
of opposite sign, and repulsive if g1 and g2 are of like sign. In particular, a
neutrino repels neutrinos and attracts antineutrinos.

5.2 Poincaré Invariance

A major requirement for a theory specified by a Lagrangian L is that L be
invariant under Poincaré transformations. This ensures relativistic invariance.
To be more specific, write a coordinate transformation

xµ
′ = Λ ν

µ xν + cµ (5.81)

obeying the pseudoorthogonality condition

Λ µ
λ Λ

ν
µ = δ ν

λ , (5.82)

and suppose that (5.81) induces the field transformation

φa
′(x′) = U b

a φb(x) , (5.83)

where U b
a is the matrix of some irreducible representation of the Lorentz

group. We require that L be invariant under these transformations up to a
divergence:

L(x′, φ′, ∂′φ′) = L(x, φ, ∂φ) + ∂µB
µ . (5.84)

We first consider the consequences of translation invariance. Letting

xµ
′ = xµ + εµ , (5.85)

where εµ is a fixed infinitesimal vector, and U b
a = δ b

a , we have

φa
′(x′) = φa(x′ − ε) . (5.86)

To a first approximation,

φa
′(x′) = φa(x′) − εµ∂ ′

µφa(x′) , (5.87)

which implies that δφa = φa
′(x) − φa(x) = −εµ∂µφa, and

∆φa = 0 . (5.88)

The generators Γ ν
µ and Gka appearing in (5.24) and (5.25) take the form

Γ ν
µ = δν

µ, Gka = 0 . (5.89)
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Consequently the Noether current associated with translation invariance is
identical to the canonical stress-energy tensor

θµν =
∂L

∂(∂µφa)
∂νφa − ηµν L , (5.90)

and the corresponding conserved integral quantity is the four-momentum of
the field

Pµ =
∫

Σ

dσλ θ
λµ . (5.91)

By Noether’s first theorem [see (5.16)],

∂µθµν = −Ea ∂νφa , (5.92)

where Ea is the Eulerian resulting from the variation of the action with respect
to the field variable φa. If Ea = 0, then Pµ is independent of Σ. In particular,
Pµ does not vary under timelike shifts of Σ. It is this fact which is usually
understood as energy-momentum conservation: Pµ is constant on extremals.

Let us turn to the consequences of invariance under proper orthochronous
Lorentz transformations. Writing

x′µ = xµ + ω ν
µ xν , ωµν = −ωνµ , (5.93)

U b
a = δb

a +
1
2
ωαβ (Γαβ)b

a, Γαβ = −Γ βα , (5.94)

where the ωνµ are parameters of infinitesimal Lorentz transformations, and
the (Γαβ)b

a are the spin matrices in the representation of the Lorentz group
according to which the field φa transforms, gives

∆xµ = ω ν
µ xν , (5.95)

∆φa =
1
2
ωµν (Γµν)b

a φb . (5.96)

The spin matrices for common representations are

(Γµν)α
β =




0, if φa is a scalar field φ,
ηαµδν

β − ηανδµ
β if φa is a vector field Aµ,

1
4 (γµγν − γνγµ)α

β if φa is a spinor field ψα.
(5.97)

With (5.95) and (5.96), we arrive at the pertinent Noether current

Mλµν = θλµ xν − θλν xµ −Σλµν , (5.98)

Σλµν = πa
λ (Γµν)b

aφb , (5.99)

called the angular momentum density, and the corresponding conserved inte-
gral
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Mµν =
∫

Σ

dσλMλµν , (5.100)

called the angular momentum tensor.
It is conventional to split Mµν into orbital Lµν and spin Sµν angular mo-

mentum:
Mµν = Lµν + Sµν , (5.101)

Lµν =
∫

Σ

dσλ (θλµ xν − θλν xµ) , (5.102)

Sµν = −
∫

Σ

dσλΣλµν . (5.103)

An important fact concerning θµν is that this Noether current is defined
up to adding the divergence of an antisymmetric tensor. Indeed, in view of
the identity

∂µ∂λBλµν = 0 (5.104)

which is true for any Bλµν such that

Bλµν = −Bµλν , (5.105)

a modified quantity
Tµν = θµν + ∂λBλµν (5.106)

is a further Noether current:

∂µTµν = −Ea ∂νφa . (5.107)

As shown in Problem 5.2.1, replacing θµν by Tµν , leaves Pµ unchanged. We
thus deal with an entire equivalence class of stress-energy tensors2 related to
one other by (5.106).

If the equation of continuity for some Jµ holds identically, then this Jµ

is called a strongly conserved current, but if the equation of continuity for Jµ

holds due to the Euler–Lagrange equations, then this Jµ is called a weakly
conserved current. As an example of a strongly conserved current we refer
to ∂λBλµν in (5.104), while Tµν in (5.107) provides an example of a weakly
conserved current.

With a suitable choice of Bλµν , it is possible to make Tµν symmetric:

Tµν = Tνµ . (5.108)

Note that the symmetric Tµν is not unique (Problem 5.2.2). In 1939 Federik
Belinfante put forward Bλµν of the form

Bλµν =
1
2

(Σλµν +Σµνλ +Σνµλ) , (5.109)

2 The impossibility of fixing the stress-energy tensor Tµν uniquely is partly due to
the fact that the Lagrangian is itself only defined modulo divergence terms.
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where Σλµν is given by (5.99). Clearly Bλµν thus constructed obeys the anti-
symmetry condition (5.105) because

Σλµν = −Σλνµ (5.110)

It will be left to Problem 5.2.3 to show that Tµν of the form of (5.106) with
Bλµν defined in (5.109) and (5.99) is a symmetric tensor. The weakly con-
served current Tµν constructed according to the Belinfante prescription is
called the symmetric stress-energy tensor.

Consider
Jλµν = Tλµxν − Tλνxµ (5.111)

where Tµν is the symmetric stress-energy tensor. Because ∂λTλµ = 0,

∂λJλµν = Tνµ − Tµν = 0 . (5.112)

Therefore, Jλµν is also a weakly conserved current.
Of course, there would be little point in symmetrizing θµν for pure aes-

thetic reasons. We will see, however, that the canonical stress-energy tensor
for the electromagnetic field is not gauge invariant, while its symmetrized
modification is.

In 1915 David Hilbert proposed an alternative definition of the stress-
energy tensor which is particularly attractive in that it is symmetric from the
outset. Moreover, this definition is gauge invariant for gauge invariant actions.

The basic idea is to consider the variation of the action in response to a
small variation of an external field, and then treat the metric as that external
field. In fact, there is nothing to prevent us from using noninertial frames
or curvilinear coordinates. Let us take curvilinear coordinates yµ which are
deviate slightly from the conventional Cartesian coordinates xµ. Then tangent
vectors of coordinate lines will transform as

dyµ =
∂yµ

∂xα
dxα = dxµ + ξµ , (5.113)

where ξµ is an infinitesimal vector which measures the coordinate deviation
at the point xµ. For the line element ds2 = ηµν dx

µdxν to be invariant under
this transformation, the metric must transform according to the law

gαβ =
∂xµ

∂yα

∂xν

∂yβ
ηµν = (δµ

α + ∂αξ
µ)
(
δν

β + ∂βξ
ν
)
ηµν . (5.114)

Thus, the variation of the metric due to this ‘external’ coordinate variation is
given by

δgαβ = ∂αξβ + ∂βξα . (5.115)

We now refine our previous definition of the action to take the form

S =
∫
d4x

√
−gL , (5.116)
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where g stands for the determinant of the metric in curvilinear coordinates

g = det (gαβ) . (5.117)

Because the line element will continue to have the signature (1,−1,−1,−1),
even in curvilinear coordinates where the metric tensor may not be diago-
nal,

√−g is always real. With reference to Problem 1.4.2, the action (5.116)
turns out to be manifestly invariant under general coordinate transformations
xµ = fµ(y).

If gµν = ηµν + δgµν , then the corresponding variation of the action (5.116)
is given by

δS =
1
2

∫
d4x

√
−g Tµν δg

µν . (5.118)

Following Hilbert, we define the metric stress-energy tensor by

Tµν =
2√−g

δS

δgµν
. (5.119)

For practical implementation of this definition, it is convenient to use partial
derivatives rather than the variational derivative. One can deduce (Problem
5.2.4) the relation

δg = −g gαβ δg
αβ (5.120)

and apply it to the variation of the action (5.116),

δS =
∫
d4x [δ(

√
−g)L +

√
−g δL] =

1
2

∫
d4x

√
−g
(
−gµνL + 2

∂L
∂gµν

)
δgµν .

(5.121)
On putting

√−g = 1, which is valid for the Minkowski metric gµν = ηµν , we
obtain

Tµν = 2
∂L
∂gµν

− gµν L . (5.122)

One additional remark needs to be made. To differentiate with respect to
a symmetric tensor σµν , we should select independent components of σµν . If
some scalar is expressed in terms of independent components of σµν , then each
term of this scalar contributed by such components occurs twice, for example,
the quantity σ0i occurs twice in the expansion of σµνσ

µν = −2σ0iσ0i +σijσij .
All things considered, we may use the differentiation rule

∂σαβ

∂σµν
= δα

µ δ
β
ν + δα

ν δ
β
µ . (5.123)

It turns out that for a large class of theories, the metric and symmetric
stress-energy tensors are identical; thereafter we will use these terms inter-
changeably.

To illustrate the utility of the Hilbert approach, we evaluate the metric
stress-energy tensor for a particle governed by the Poincaré–Planck action
(2.211),
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SP = −m
∫ √

gµν(z) dzµ dzν . (5.124)

Let us first rewrite SP in the form

SP = −m
∫ Σ2

Σ1

d4x

∫ ∞

−∞
dτ δ4 [x− z(τ)]

√
gµν(x) żµ(τ) żν(τ) , (5.125)

where τ is an arbitrary parameter of evolution. Variation of SP with respect
to gµν gives

δSP = −m
2

∫
d4x

∫
dτ δ4 [x− z(τ)]

żµ żν√
gαβ żα żβ

δgµν

=
1
2

∫
d4x

√
−g
{
m

∫
ds vα(s) vβ(s) δ4 [x− z(s)]

}
gαµ gβν√−g δgµν , (5.126)

where the proper time ds =
√
gαβ żα żβ dτ is used to parametrize the world

line. We have employed the relation

δgµν = −δgαβ gαµ gβν (5.127)

which results from varying
gµνg

νλ = δ λ
µ . (5.128)

Comparing (5.118) and (5.126), we get

tµν = m

∫ ∞

−∞
ds vµ(s) vν(s) δ4 [x− z(s)] . (5.129)

Note that the Schwarzschild action

SS = −e
∫
dzµAµ (5.130)

does not contribute to the metric stress-energy tensor. Indeed, Aµ dz
µ may be

thought of as the value of a 1-form Aµ on an infinitesimal tangent vector dzµ,
rather than the scalar product of two vectors Aµ and dzµ. What this means is
that SS is metric independent. This is a special feature of the Schwarzschild
interaction term which is not shared by other interactions. For example, the
interaction of a particle with a scalar field (5.72) does contribute to the stress-
energy tensor.

We next consider the Larmor action

SL = − 1
16π

∫
d4x (∂µAν − ∂µAν)(∂µAν − ∂νAµ) . (5.131)

The canonical stress-energy tensor corresponding to this term

θµν = − 1
4π

F λ
µ ∂νAλ + ηµν

1
16π

FαβFαβ (5.132)
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is not gauge invariant owing to the presence of the vector potential Aµ.
To symmetrize the stress-energy tensor, we calculate the divergence of the

Belinfante term (5.109), using the middle line of (5.97),

∂λBλµν =
1
4π

∂λ (FµλAν) =
1
4π

Fµλ∂
λAν +

1
4π

Aν∂
λFµλ . (5.133)

For a free electromagnetic field, the last term vanishes, and so

∂λBλµν =
1
4π

F λ
µ ∂λAν . (5.134)

Combining (5.134) with (5.132), we obtain

Θµν =
1
4π

(
F α

µ Fαν +
ηµν

4
FαβFαβ

)
. (5.135)

We thus see that the Belinfante prescription makes the symmetric stress-
energy tensor of a free electromagnetic field gauge invariant. It is a matter
of straightforward computation (Problem 5.2.5) to check that the Hilbert
definition (5.119) leads to the same expression.

Let us clarify the physical meaning of the various components of Θµν . If
it is granted that the quantity Pµ given by (5.91) characterizes the energy-
momentum content of the electromagnetic field3, then

Θ00 =
1
8π
(
E2 + B2

)
(5.136)

may be interpreted as the energy density, and

Θi0 =
1
4π

(E × B)i (5.137)

as the momentum density of the the electromagnetic field. An application of
(5.136) to electrostatics is offered in Problem 5.2.6.

On the other hand, taking the equation of continuity

∂0Θ
00 + ∂iΘ

i0 = 0 , (5.138)

integrating it over a spatial domain V with the boundary ∂V , and applying
the Gauss–Ostrogradskǐı theorem, gives

∂

∂t

∫
V

d3xΘ00 = −
∫

∂V

dSiΘ
i0 . (5.139)

We see that the rate of change of energy of the electromagnetic field in a
domain V is equal to the total flux across the boundary of this domain ∂V .
3 An argument in support of this assumption, derived from mechanics, is that

the symmetry responsible for energy and momentum conservation is spacetime
homogeneity.



5.2 Poincaré Invariance 213

Consequently Θi0 represents the flux of energy in the electromagnetic field.
The three-vector G = (1/4π) (E × B) was introduced by John Henry Poynt-
ing in 1884, and is now referred to by his name.

Likewise, it is possible to show that the so-called Maxwell stress tensor

Θij =
1
4π

[
EiEj +BiBj +

1
2
δij
(
E2 + B2

)]
(5.140)

is the jth component of the flow of momentum in the electromagnetic field
through a unit surface perpendicular to the xi-axis.

Because the stress-energy tensor for the electromagnetic interaction de-
scribed by the Schwarzschild Lagrangian vanishes, the total stress-energy ten-
sor in the Maxwell–Lorentz electrodynamics reads

Tµν = tµν +Θµν , (5.141)

where tµν and Θµν are given by (5.129) and (5.135).
To conclude this section, we state the local energy-momentum conservation

law for a closed system of a charged particle and the electromagnetic field:

∂µT
λµ =

1
8π

Eλµν Fµν + Eµ F
µλ +

∫
ds ελ δ4 [x− z(s)] , (5.142)

where Eλµν , Eµ, and ελ stand for the right-hand sides of equations (5.50),
(5.57), and (5.58), respectively. The proof of this identity is left to the reader
(Problem 5.2.7).

Problem 5.2.1. Prove that one gets identical contributions to Pµ from θµν

and Tµν related by (5.106) where Bλµν is an arbitrary antisymmetric tensor
vanishing at spatial infinity.

Proof Fixing a particular Lorentz frame in which a hyperplane Σ represents
space, and choosing a domain V with spherical boundary ∂V of large radius
R, we get
∫

Σ

dσµ ∂αBαµν =
∫

V

d3x ∂αBα0ν =
∫

V

d3x ∂iBi0ν =
∫

∂V

dSiBi0ν → 0

(5.143)
as R→ ∞.

Problem 5.2.2. Let Θµν be the symmetric stress-energy tensor of a scalar
field φ. Verify that

τµν = Θµν − C (∂µ∂ν − ηµν�)φ2 (5.144)

is a further symmetric conserved tensor for any constant coefficient C. Show
that the difference between τµν and Θµν does not affect the construction of
Pµ.
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Problem 5.2.3. Show that a tensor Tµν of the form of (5.106), with the term
Bλµν defined in (5.109), is a symmetric tensor.

Hint Comparing Tµν − Tνµ = θµν − θνµ + 2∂λBλµν with ∂λMλµν = θνµ −
θµν + ∂λΣλµν = 0 where Mλµν is the Noether current defined in (5.98), one
gets the desired result.

Problem 5.2.4. Prove (5.120).

Proof By (1.147),

g =
1
4!
εκλµν εαβγδ gκα gλβ gµγ gνδ , (5.145)

which implies that
g δ ν

µ = gµαG
αν , (5.146)

where Gαν is the cofactor of gαν given by

Gκα =
1
3!
εκλµν εαβγδ gλβ gµγ gνδ . (5.147)

We differentiate (5.145) to give

∂g

∂gµν
= Gµν , (5.148)

which, in view of (5.146), yields

dg = gµνdgµν . (5.149)

Combining this with (5.127), we arrive at (5.120).

Problem 5.2.5. Consider electrodynamics in a world of dimension D + 1,

S0 =
∫
dD+1x

√
−gL0 , (5.150)

L0 = − 1
4ΩD−1

gαµ gβν F
αβFµν , ΩD−1 = 2

π
D
2

Γ (D
2 )

, (5.151)

where gµν is the metric, and ΩD−1 the area of a (D − 1)-dimensional unit
sphere.

Find Tµν for the action (5.150)–(5.151).

Answer
Tµν =

1
ΩD−1

(
gαβFµαFβν +

gµν

4
FαβFαβ

)
. (5.152)

Problem 5.2.6. Show that the electrostatic energy is
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E =
∫
d3x

E2(x)
8π

=
1
2

∫
d3xφ(x) !(x) . (5.153)

Problem 5.2.7. Verify the Noether identity (5.142).

Problem 5.2.8. Let Θλµ be the symmetric stress-energy tensor of the elec-
tromagnetic field (5.135). Show that

Θλµ =
1
8π
(
Fλ

σF
σµ + ∗Fλ

σ
∗F σµ

)
. (5.154)

Hint Use (2.97).

Problem 5.2.9. Prove that
Θµ

µ = 0 , (5.155)

ΘλµΘµν =
1

(8π)2
(
S2 + 4P2

)
δλ

ν . (5.156)

Proof To establish (5.155), we note that δµ
µ = 4 if spacetime dimension is

D+ 1 = 4. Referring back to Problem 2.3.2, and equations (2.96) and (2.97),

(8π)2ΘλµΘµν = (Fλ
σF

σµ + ∗Fλ
σ
∗F σµ)(FµαF

α
ν + ∗Fµα

∗Fα
ν)

= Fλ
σF

σµFµαF
α
ν + Fλ

σF
σµ∗Fµα

∗Fα
ν + ∗Fλ

σ
∗F σµFµαF

α
ν + ∗Fλ

σ
∗F σµ∗Fµα

∗Fα
ν

= Fλ
σF

σµ (−Sηµν + ∗Fµα
∗Fα

ν) + Fλ
σPδσ

α
∗Fα

ν + ∗Fλ
σPδσ

αF
α
ν

+∗Fλ
σ
∗F σµ(Sηµν +FµαF

α
ν) = S(∗Fλ

σ
∗F σ

ν−Fλ
σF

σ
ν)+4P2δλ

ν = (S2+4P2)δλ
ν .

(5.157)
Problem 5.2.10. Prove that the orbital angular momentum of the electro-
magnetic field due to a particle of electric charge e and a static magnetic
monopole of strength e� is given by

L = −e e� n, n =
r
r
. (5.158)

Proof Assume that the magnetic monopole is at rest at the origin. By (4.334),
it generates the magnetic field B = e� n

r2 . If this field is substituted in the
expression for angular momentum of the electromagnetic field

Li =
1
2
εijk

∫
d3x (Θ0jxk −Θ0kxj) =

1
4π

∫
d3x (x × E × B)i , (5.159)

then

Li =
1
4π

∫
d3x (x × E × B)i =

1
4π

∫
d3x [Ei (n · x) − (E · x)ni]

e�

r2

=
e�

4π

∫
d3xEl (δil − ninl)

1
r

=
e�

4π

∫
d3xEl ∇lni = − e�

4π

∫
d3x (∇ · E)ni ,

(5.160)
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where the relation
∇lni =

1
r

(δil − ninl) (5.161)

has been used. Now the desired result L = −e e�n follows from ∇ · E(x) =
4πδ3(x − z).

In quantum mechanics, the projection of L onto a fixed axis takes discrete
values which are integral multiples of 1

2 (in units of �). This may serve as a
heuristic derivation of Dirac’s quantization condition

e e� =
1
2
n . (5.162)

5.3 Conformal Invariance

Maxwell’s equations are invariant not only under the 10-parameter Poincaré
group of Lorentz transformations and translations, but under the larger, 15-
parameter conformal group of spacetime transformations C(1, 3). This fact
was discovered by Harry Bateman and Ebenezer Cunningham in 1909. Since
then the conformal symmetry has become a recurrent theme in field theory,
at times fascinating, and often discouraging researchers.

Why does conformal symmetry create such a stir? Mathematically, the con-
formal group C(1, 3) is the lowest dimensional group containing the Poincaré
group4. Of special note is that C(1, 3) is semisimple, even though the Poincaré
group is the semidirect product of the Lorentz and translation groups. Con-
formal field theories are in general much more tractable than non-conformal
theories differing from them by simple symmetry-breaking terms. The main
physical concern with conformal invariance is due to the fact that C(1, 3) is
the largest spacetime symmetry of Maxwell’s equations. Another point is that
conformal invariance singles out the linear version of electromagnetism from
all possible generalizations of Maxwell’s theory; we will see in Sect. 10.4 that
only linear equations of motion for the electromagnetic field are conformally
invariant. Furthermore, Maxwell’s equations enjoy the property of conformal
invariance only in spacetime of dimension D + 1 = 4. This result, suggest-
ing that the dimension 4 arises from conformal properties of our world, is
the subject of profound philosophic speculations. Lastly, the two-dimensional
conformal invariance is basic for string theory (which will be discussed in
Sect. 5.6).

By the conformal group C(1, 3) we mean the 15-parameter Lie group of
nonlinear point transformations on Minkowski space which map an event xµ

into another event x′µ such that

dx′
2 = e2λ(x) dx2 . (5.163)

4 An overview of most generally employed mathematical properties of the conformal
group C(m, n) acting on a pseudoeuclidean space Rm,n of dimension D = m + n
is given in Appendix D.
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A null line element dx2 = 0 is mapped onto another null line element dx′2 = 0,
and hence the light-cone structure of Minkowski space is left unchanged.

The infinitesimal transformations of C(1, 3) are described in Appendix D
by formula (D.25):

∆xµ = εµ + ωµαxα , (5.164)

∆xµ = γxµ , (5.165)

∆xµ = 2βαx
αxµ − x2βµ . (5.166)

Apart from Poincaré transformations (5.164) (which are responsible for the
existence of 10 conserved quantities Pµ and Mµν) there are infinitesimal scale
transformations, or dilatations (5.165), and special conformal transformations
(5.166). Combining Poincaré and scale transformations, we come to the group
of similitude transformations.

If we require that a theory be invariant under Poincaré transformations
(5.164) and special conformal transformations (5.166), then this theory is au-
tomatically scale-invariant. To see this, we refer to the fact that the commu-
tator of generators of translations Pλ and special conformal transformations
Kµ involves the generator of dilatations D [see (D.42)]. However, the converse
does not follow: the Lie algebra of similitude transformations (D.33)–(D.38)
is closed.

Let us begin with scale invariance. Consider a finite dilatation

x′µ = eγxµ . (5.167)

To specify the transformation law for a field φa which is induced by (5.167),
we define the scale dimension la of this field by

φ′a(x′) = elaγφa(x) . (5.168)

An argument in favor of this transformation law is given in Problem 5.3.1.
Let γ be an infinitesimal parameter. Then

∆φa = laγφa . (5.169)

Referring to (5.28), we write the Noether current Dµ associated with di-
latations

Dµ = θµν x
ν − laπ

a
µ φa . (5.170)

Using (5.21) and (5.23), and the relation δµ
µ = 4, we have

∂µDµ = θµ
µ − laπ

a
µ ∂

µφa − la
∂L
∂φa

φa = −4L + (−la + 1)πa
µ ∂

µφa − la
∂L
∂φa

φa .

(5.171)
As a case in point we refer to Lagrangians of the type

L =
1
2

(∂µφ)(∂µφ) − U(φ) (5.172)
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which are pertinent to the description of scalar and vector fields, and those of
the type

L =
i

2
ψ̄γµ

(
∂µ −

←
∂ µ

)
ψ − V (ψ) (5.173)

which are appropriate to the treatment of spinor fields. It follows from (5.171)
that if such theories are to be scale invariant (∂µDµ = 0), then lφ = −1, and
lψ = − 3

2 . (Despite the similarity between the scale dimension and the length
dimension of fields in natural units, these concepts must not be confused.
Indeed, all parameters in the Lagrangian, such as masses and coupling con-
stants, are assigned zero scale dimension.) Thus, the theories of free massless
scalar and spinor fields governed by the Klein–Gordon and Dirac Lagrangians
(5.31) and (5.35) where the mass terms have been eliminated, as well as the
free-field Maxwell’s electrodynamics, are scale invariant.

A general scale invariant interacting term has scale dimension l = −4. This
condition is clearly met for dimensionless coupling constants, exemplified by
the Gürsey, Yukawa, and quartic interaction terms, shown, respectively, in
(5.42), (5.43), and (5.34).

The dilatation current (5.170) can be simplified in a large class of field
theories5 through the so-called improved stress-energy tensor τµν , which while
differing from the Belinfante tensor Tµν by extra terms, is still conserved
and symmetric, and leaves Pµ unchanged. Given τµν , the dilatation current
becomes

Dµ = τµνx
ν . (5.174)

The condition that a theory is scale invariant then reads

∂µDµ = τµ
µ = 0 . (5.175)

Let us turn to conformal invariance. For theories of this class, the Noether
current associated with conformal invariance is simply

Kµν =
(
2xµx

α − x2δα
µ

)
ταν . (5.176)

Conformal invariance leads to precisely the same consequence: the improved
stress-energy tensor τµν must be traceless,

∂νKµν = 2xµτ
ν
ν = 0 . (5.177)

We see that both scale and conformal invariance are measured by τν
ν . The

breaking of scale invariance amounts to the breaking of conformal invariance,
because

∂νKµν = 2xµ∂
νDν . (5.178)

Thus, scale invariance implies conformal invariance for the majority of La-
grangian field theories of physical interest (even though not for all).
5 We cite this statement without proof, and refer to a particular case developed in

Problem 5.3.3.
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Note also that conformal invariance does not lead to new conserved quan-
tities in addition to those arising from Poincaré invariance, Pµ and Mµν .

So far we said nothing about the transformation of fields due to conformal
mappings of Minkowski space. The conventional way of obtaining represen-
tations of the conformal group from those of the Lorentz group is as follows.
With dx′µ = (∂x′µ/∂xα) dxα, we write the defining equation for conformal
transformations (5.163) in the form

∂x′µ

∂xα

∂x′ν

∂xβ
ηµν = e2λ(x) ηαβ . (5.179)

Taking the determinant

J2 =
[
det
(
∂x′

∂x

)]2

= e8λ(x) , (5.180)

(5.179) becomes
∂x′µ

∂xα

∂x′ν

∂xβ
ηµν = |J | 12 ηαβ . (5.181)

It follows that the Jacobian matrix of a conformal transformation ∂x′µ/∂xα

is proportional to a Lorentz transformation Λµ
α, namely,

Λµ
α = |J |− 1

4
∂x′µ

∂xα
. (5.182)

If φ transforms under the Lorentz transformation Λ as

φ′(x′) = D (Λ)φ(x) , (5.183)

then

φ′(x′) = |J | l
4 D

[
|J |− 1

4

(
∂x′

∂x

)]
φ(x) (5.184)

provides a representation of the conformal group. Here, l is the scale dimension
of φ. For Lorentz transformations, |J | = 1, and (5.184) is identical to (5.183).
For dilatations, we putD (Λ) = 1, and J = e4γ ; hence (5.184) becomes (5.168).

According to (5.181), the metric tensor transforms as

g′µν(x′) = |J | 12 ∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) , (5.185)

while the transformation law for the inverse metric gµν (defined by gµαg
αν =

δν
µ) is

g′
µν(x′) = |J |− 1

2
∂x′µ

∂xα

∂x′ν

∂xβ
gαβ(x) . (5.186)

If we suppose that the differential operator ∂µ transforms like a covector,

∂

∂x′µ
=
∂xα

∂x′µ
∂

∂xα
, (5.187)
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then (5.186) gives the transformation law for ∂µ = gµν∂ν :

∂

∂x′µ
= |J |− 1

2
∂x′µ

∂xα

∂

∂xα
. (5.188)

We see that the transformation laws for fields and their derivatives are
cumbersome. Fortunately, the analysis of the conformal properties of many
theories can be simplified if we replace C(1, 3) by a group which acts on the
metric according to the rule

ηµν → gµν(x) = e2λ(x) ηµν , ηµν → gµν(x) = e−2λ(x) ηµν , (5.189)

but leaves coordinates xµ unchanged. This group is called the group of Weyl
rescalings. The transformation law for matter fields is a minor generalization
of (5.168),

φa(x) → φ′a(x) = elaλ(x)φa(x) . (5.190)

Comparing (5.189) and (5.190), we find that the scale dimension of gµν

is l = 2, and that of gµν is l = −2. Therefore, g = det (gµν) has l = 8, and√−g has l = 4. Now, if we assign l = 0 to the vector potential Aµ
6, then the

Larmor Lagrangian

LL = − 1
16π

√
−g gµνgαβFµαFνβ , Fµν = ∂µAν − ∂νAµ (5.191)

is invariant under Weyl rescalings (5.189)–(5.190).
Because particle positions are assumed to be unchanged the effect of Weyl

rescalings on theories of this type, specifically on the Maxwell–Lorentz theory,
amounts to a rescaling of the metric alone, as indicated in (5.189).

What are implications of this symmetry? Suppose that the action S is
built out of matter variables having zero scale dimension and the metric, and
that S is invariant under Weyl rescalings with λ(x) = ε(x), where ε is an
arbitrary infinitesimal function vanishing at spatial infinity. Then

δS =
1
2

∫
d4x

√
−g Tµν δg

µν =
∫
d4x

√
−g (Tµν g

µν) ε = 0 . (5.192)

Here, Tµν is the metric stress-energy tensor defined in (5.119), and the vari-
ation of the metric in the second equation is taken to be δgµν = −2εgµν

in agreement with (5.189). As ε is an arbitrary infinitesimal function, and√−g �= 0, we have
T µ

µ = 0 . (5.193)

This equation may be regarded as a criterion for selecting Weyl invariant
theories. Without going into detail we simply state the theorem that if a
theory is Weyl invariant, then it is invariant under C(1, 3) as well.

6 Aµ = gµνAν has scale dimension l = −2.
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Let us use electrodynamics in an arbitrary spacetime dimension D + 1 to
illustrate the utility of (5.193). Consider the total stress-energy tensor Tµν

defined in (5.141), (5.129), and (5.152). The metric stress-energy tensor of the
electromagnetic field (5.152),

Θµν =
1

ΩD−1

(
F α

µ Fαν +
ηµν

4
FµνF

µν
)
, (5.194)

and the fact that δµ
µ = D + 1 imply,

Θµ
µ =

1
4ΩD−1

(D − 3)FαβF
αβ . (5.195)

Hence Θµ
µ = 0 if D+1 = 4. Remembering that the Schwarzschild action does

not contribute to Tµν , we conclude that the electromagnetic sector of the
Maxwell–Lorentz theory is conformal invariant only for D+1 = 4. Therefore,
Maxwell’s equations (which owe their origin to this sector) are invariant under
C(1, 3).

The stress-energy tensor tµν for a particle governed by the Poincaré–Planck
action,

tµν (x) = m

∫ ∞

−∞
ds vµ(s) vν(s) δ4 [x− z(s)] , (5.196)

gives

tµµ(x) = m

∫ ∞

−∞
ds δ4 [x− z(s)] , (5.197)

which is nonzero for m �= 0. Therefore, the equation of motion for a massive
particle (2.225) is not conformally invariant.

A common objection to any physical relevance for conformal symmetry is
that the conformal group violates causality. In 1960 Julius Wess pointed out
that special conformal transformations

x′
µ =

xµ − bµx2

σ(x)
(5.198)

where σ(x) = 1 − 2b · x + b2x2, can convert a timelike vector into spacelike
and vice versa, because

x′
2 =

x2

σ(x)
. (5.199)

If bµ is such that σ(x) < 0 then x2 and x′2 are opposite in sign.
There are two widely accepted interpretations of spacetime transforma-

tions, ‘passive’ and ‘active’. In the ‘passive’ interpretation, spacetime is viewed
by two observers O and O′ who assign different coordinates xµ and x′µ to
the same point and use a coordinate transformation x′µ = fµ(x) to reconcile
their views on the same geometry. In the ‘active’ interpretation, spacetime is
transformed with respect to a fixed frame of reference, each spacetime point is
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mapped into another point. Since the infinitesimal line element dx2 is rescaled,
the metric is not preserved. Therefore, such C(1, 3) mappings do not form an
automorphism group of Minkowski space. Whatever interpretation, the con-
clusion is the same: the causal relation of events separated by a finite interval
is incompatible with conformal invariance.

On the other hand, the infinitesimal line element transforms to,

dx′
2 =

dx2

σ2(x)
. (5.200)

This implies that the sign of the line element dx2 is invariant. In particular,
timelike and spacelike have an invariant meaning for tangent vectors. Confor-
mal transformations always map a timelike curve into another timelike curve.
Some people argue that only the infinitesimal line element is required for
physics, which makes conformally invariant theories less problematic.

Another way of looking at conformal invariance was advanced by Joe Rosen
in 1968. He assumed that the conformal group leaves both spacetime and the
frame of reference unaffected, and acts only on world lines and fields gener-
ated by the sources which move along these world lines. Note that conformal
transformations render a straight world line curved, and, therefore, a static
field becomes a varying field. Furthermore, a single curve can be converted
into a two-branched curve, and hence the number of particles is not preserved
by these transformations.

To be more specific, consider a straight world line aligned with the time
axis, z(t) = 0. If we perform a special conformal transformation (5.198) char-
acterized by bµ = (0, 0, 0, g), we get a two-branched curve in the (t, z) plane

t′ =
t

1 − g2t2
, z′ =

−gt2
1 − g2t2

, (5.201)

shown in Fig. 5.1. This curve is readily recognized as a hyperbola
(
z′ − 1

2g

)2

− t′
2 =

1
4g2

. (5.202)

Physically, this conformal transformation maps the history of a single particle
at rest into another history of two uniformly accelerated particles. One of
these particles move along the left branch of the hyperbola BOC oriented
from the past to the future, and the other (being actually an antiparticle)
travels back in time along the right BADC-branch.

The same observer will observe both initial and transformed processes
which occur in the same spacetime background M4, but under different con-
ditions elsewhere in the world, with the participation of other particles and
antiparticles. It is then clear that causal relations of the initial setting are
unrelated to the transformed ones, because conformal transformations switch
between two quite different physical states realized in a conformal theory. This
is Rosen’s resolution of the causality problem.
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Fig. 5.1. A vertical straight line ABOCD is mapped into a two-branched hyperbola
BOC & BADC by a conformal transformation

It seems plausible that electrodynamics of massless charged particles is
conformal invariant in the sense that every physically valid state described by
an exact simultaneous solution to Maxwell’s equations and equations of mo-
tion for massless charged particles can be obtained via a conformal transforma-
tion of a single fixed state. However, such a theory, if any, defies Lagrangian
formulation. Indeed, a particular Lagrangian refers to a definite number of
particles; applying a conformal transformation to the system governed by this
Lagrangian, we come to a system with another particle content.

Problem 5.3.1. Consider a free massless scalar field in a (D+1)-dimensional
world governed by the action

S =
1
2

∫
dD+1x (∂µφ) (∂µφ) , (5.203)

and suppose that dilatations (5.167) cause φ to transform according to the
law

φ′(x′) = φ(x) . (5.204)

Show that this action is scale invariant only for D = 1. Show that if φ instead
transforms according to (5.168), then scale invariance of the action (5.203)
follows for

lφ =
1
2

(D − 1) . (5.205)

Problem 5.3.2. Show that the dilatation current Dµ defined in (5.170) can
be written in the form

Dµ = Tµν x
ν + laπ

a
µ φa + πν

aΣµνφ
a − ∂λ(xνBλµν) , (5.206)
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where Tµν and Bλµν are the symmetric stress-energy tensor and the Belinfante
term defined respectively in (5.106) and (5.109).

Problem 5.3.3. Let a scalar field be governed by a Lagrangian of the type
of (5.172). An improved stress-energy tensor is

τµν = −L ηµν + (∂µφ)(∂νφ) − 1
6

(∂µ∂ν − ηµν�)φ2 . (5.207)

Show that Dµ can be brought to the form

Dµ = τµνx
ν +

1
6
∂ν
[
(xµ∂ν − xν∂µ)φ2

]
. (5.208)

Since the divergence of an antisymmetric tensor does not contribute to ∂µDµ

and Pµ, the last term in (5.208) may be omitted. This result is due to Curtis
Callan, Sidney Coleman, and Roman Jackiw (1970).

Problem 5.3.4. Let x → x′ be a special conformal transformation (5.198).
Show that the volume element d4x is transformed as

d4x′ = σ−4 (x) d4x . (5.209)

Assuming that Pµ transforms in the same way as ∂µ, verify that the mass M
(defined by M2 = PµP

µ) is transformed as

M ′ = σ (x)M . (5.210)

Hint Use (5.180), and the fact that d4x′ = |J | d4x.

Problem 5.3.5. Find the stress-energy tensor for a particle governed by
the action (2.266). Show that the equations of motion for a massless particle
(2.282) and (2.280) are conformally invariant.

Answer
tµν (x) =

∫ ∞

−∞
dτ η (τ) żµ (τ) żν (τ) δ4 [x− z(τ)] . (5.211)

For ż2 = 0 we have

tµµ =
∫ ∞

−∞
dτ η (τ) ż2 (τ) δ4 [x− z(τ)] = 0 . (5.212)

Problem 5.3.6. Consider the following construction

hµν(x− y) = (x− y)2
∂

∂xµ

∂

∂yν
ln (x− y)2 = ηµν −

(x− y)µ (x− y)ν

(x− y)2
.

(5.213)
Prove that hµν is a conformal tensor whose index µ transforms like a covector
at the point x while the index ν transforms like a covector at the point y:
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h′µν(x′ − y′) =
1

σ(x)σ(y)
∂xα

∂x′µ
∂xβ

∂y′ν
hαβ(x− y) . (5.214)

This construction is due to David Boulware, Lowell Brown, and Roberto Pec-
cei (1970).

Proof Let us note that ln (x− y)2 transforms additively under the special
conformal operation on (x− y)2 defined in equation (D.9) of Appendix D,

ln (x′ − y′)2 = ln (x− y)2 − lnσ(x) − lnσ(y) . (5.215)

The last two terms are annihilated by differentiation with respect to both
coordinates, so the logarithm behaves effectively as a scalar. With reference
to (5.187), we get (5.214).

5.4 Duality Invariance

The source-free Maxwell equations

∂µF
µν = 0, ∂µ

∗Fµν = 0 (5.216)

are invariant under the following duality transformation

F ′
µν = Fµν cos θ + ∗Fµν sin θ ,

∗F ′
µν = −Fµν sin θ + ∗Fµν cos θ . (5.217)

This transformation consists of a rotation between the electric and the mag-
netic fields,

E′ = E cos θ + B sin θ ,
B′ = −E sin θ + B cos θ . (5.218)

At first sight it would seem that the duality transformation is an ordinary
internal symmetry of the source-free Maxwell theory. An infinitesimal duality
transformation

δFµν = ∗Fµν δθ ,

δ∗Fµν = −Fµν δθ (5.219)

leaves the Larmor action unchanged up to a divergence term:

δS =
1
8π

∫
d4xFµνδFµν =

δθ

8π

∫
d4xFµν ∗Fµν =

δθ

4π

∫
d4x ∂µ(εµναβAν∂αAβ) .

(5.220)
The symmetric stress-energy tensor Θµν is invariant under duality transfor-
mations (5.217). This is evident from writing Θµν in a manifestly duality-
symmetric form (5.154),
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Θλµ =
1
8π
(
Fλ

σF
σµ + ∗Fλ

σ
∗F σµ

)
. (5.221)

However, the invariants of the electromagnetic field S and P do change,

S ′ = S cos 2θ + P sin 2θ ,
P ′ = −S sin 2θ + P cos 2θ . (5.222)

We see that a finite duality transformation rescales the Larmor action by a fac-
tor of cos 2θ (plus an inessential divergence term). Therefore, electric-magnetic
duality is a symmetry between the equation of motion and the Bianchi iden-
tity, rather than an invariance of the Larmor action.

Now we consider the case that sources are present. If we suppose the
coexistence of electric and magnetic charges, then Maxwell’s equations become

∂λF
λµ = 4πjµ, ∂λ

∗Fλµ = 4πmµ . (5.223)

Denoting
Fµν = Fµν − i ∗Fµν , J µ = jµ − imµ , (5.224)

we can re-express the two real equations (5.223) as the single complex equation

∂λFλµ = 4πJ µ . (5.225)

This complex equation is invariant under the duality transformation

F ′
µν = Fµν e

iθ, J ′
µ = Jµ e

iθ . (5.226)

Although this theory exhibits an extra symmetry (5.226), it is more com-
plicated in comparison with the Maxwell–Lorentz electrodynamics7. It will
suffice to mention the fact (fully considered in Sect. 2.9) that the orbital mo-
mentum of a binary system of electric change e and magnetic charge e� is not
conserved. Only the total angular momentum, including the field contribu-
tion e e�n, is conserved. Note that the magnitude of this compensating term
is independent of interparticle separation.

We learned in Sect. 4.8 that solutions to equations (5.223) are no longer
one-to-one smooth mappings Aµ of Minkowski space into another copy of this
space M4 → M4. There is instead a smooth mapping of M4 into M4 × M4

through the Cabibbo–Ferrari pair of vector potentials:

Aµ, Bµ : M4 → M4 × M4 . (5.227)

7 If the ratio of electric to magnetic charge is fixed for all particles, then perform-
ing transformation (5.226) with θ = arctan(e�/e) makes Jµ = jµ, and (5.225)
becomes the ordinary Maxwell equations ∂λF λµ = 4πjµ, ∂λ

∗F λµ = 0. For such
a reduction to be avoided we must have dyons with differing ratios of electric to
magnetic charge.
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Alternatively, one can smoothly map M4 into a four-dimensional manifold
with somewhat involved topology M4 using the Wu–Yang vector potential
Aµ:

Aµ : M4 → M4 . (5.228)
Neither (5.227) nor (5.228) is an isomorphism of M4.

A Lagrangian which engenders equations (5.223) was found by Daniel
Zwanziger in 1971. The construction is rather sophisticated and will be ap-
proached through a series of exercises (Problems 5.4.1–5.4.4).

Problem 5.4.1. Show that the general solution to the first of equations
(5.223) can be written

Fµν = −∗(∂µBν − ∂νBµ) + (n · ∂)−1 (nµjν − nνjµ) , (5.229)

and the general solution to the second equation is
∗Fµν = ∂µAν − ∂νAµ − (n · ∂)−1 ∗(nµmν − nνmµ) , (5.230)

where Aµ and Bµ are vector potentials, nµ an arbitrarily fixed four-vector,
and (n · ∂)−1 an integral operator with kernel (n · ∂)−1(x − y) satisfying
n · ∂ (n · ∂)−1 (x) = δ4(x).

Problem 5.4.2. Verify that any antisymmetric tensor Gµν obeys the identity

n2Gµν = [nµ (nαG
αν) − nν (nαG

αµ)] − ∗[nµ (nα
∗Gαν) − nν (nα

∗Gαµ)] .
(5.231)

Using this identity, show that (5.229) and (5.230) can be brought to the form

n2Fµν = nµ [nα(∂αAν − ∂νAα)] − nν [nα(∂αAµ − ∂µAα)]
−∗{nµ [nα(∂αBν − ∂νBα)] − nν [nα(∂αBµ − ∂µBα)]} , (5.232)

n2 ∗Fµν = ∗{nµ [nα(∂αAν − ∂νAα)] − nν [nα(∂αAµ − ∂µAα)]}
+nµ [nα(∂αBν − ∂νBα)] − nν [nα(∂αBµ − ∂µBα)] . (5.233)

Problem 5.4.3. Verify that applying (5.232) and (5.233) to (5.223) gives

(n · ∂)2Aµ − (n · ∂) ∂µ(n ·A) − nµ (n · ∂) (∂ ·A)
+nµ � (n ·A) − (n · ∂) εµναβ nν∂αBβ = 4π n2 jµ , (5.234)

(n · ∂)2Bµ − (n · ∂) ∂µ(n ·B) − nµ (n · ∂) (∂ ·B)
+nµ � (n ·B) + (n · ∂) εµναβ nν∂αAβ = 4π n2mµ . (5.235)

Problem 5.4.4. Show that (5.234) and (5.235) follow from the Lagrangian
L = L0 + Lint, where

8π n2 L0 = − [nα(∂αAµ − ∂µAα)]
[
nβ

∗(∂βBµ − ∂µBβ)
]

+ [nα(∂αBµ − ∂µBα)]
[
nβ

∗(∂βAµ − ∂µAβ)
]

−[nα(∂αAµ − ∂µAα)]2 − [nα(∂αBµ − ∂µBα)]2 , (5.236)

Lint = −jµAµ −mµBµ . (5.237)
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5.5 Gauge Invariance

Expressing the field strength in terms of the vector potential

Fµν = ∂µAν − ∂νAµ (5.238)

is standard practice to solve Maxwell’s equations. Thus, the vector potential
is a useful tool for analyzing field configurations in electrodynamics. Further-
more, the Schwarzschild action (2.212) responsible for the interaction of a
charged particle and the electromagnetic field depends upon Aµ, rather than
upon Fµν . One may be inclined to promote Aµ to the status of a fundamental
variable. However, the field strength does not determine the vector potential
uniquely. Both Aµ and

A′
µ = Aµ − ∂µχ (5.239)

give identical Fµν . In other words, Aµ involves redundant degrees of freedom,
gauge modes. Only gauge invariant quantities have direct experimental sig-
nificance.

Consider for example the Schwarzschild action

SS = −e
∫ τ2

τ1

dτ żµAµ(z) . (5.240)

If Aµ is changed for A′
µ according to (5.239), then the transformed action

differs from the original action in

e

∫ τ2

τ1

dτ
dzµ

dτ

∂χ

∂zµ
= e

∫ τ2

τ1

dτ
dχ

dτ
= eχ[z(τ2)] − eχ[z(τ1)] . (5.241)

For arbitrary χ (with χ = 0 at the endpoints) the variation of SS induced by
the gauge transformation (5.239) is zero. Hence, (5.240) is gauge invariant.

We now digress to discuss the interaction of an electromagnetic field with
a scalar field φ which represents continuously distributed charged matter. We
will see that charge conservation is related to the fact that φ is complex-
valued. So our immediate task is to consider the Lagrangian formulation of
complex-valued fields.

Let us begin with the case that φ is free. We may regard φ and its complex
conjugate φ∗ as two independent variables. The action

S0 =
∫
d4x

[
(∂µφ)∗ (∂µφ) − µ2 φ∗φ

]
. (5.242)

leads to the Klein–Gordon equation for both φ and φ∗:

E(φ) =
δS0

δφ
= −(�+µ2)φ∗ = 0, E(φ∗) =

δS0

δφ∗
= −(�+µ2)φ = 0 . (5.243)

Because of the juxtaposition of φ and φ∗, the action (5.242) is invariant
under phase transformations
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φ→ eieλ φ, φ∗ → e−ieλ φ∗ . (5.244)

We will see that the set of transformations (5.244), which constitute the in-
ternal symmetry group U(1), underlies charge conservation.

Write (5.244) in the infinitesimal form:

δφ = ieλφ, δφ∗ = −ieλφ∗ , (5.245)

where λ is a small real parameter. The Noether current8 associated with this
symmetry is

jµ = −
[

∂L0

∂(∂µφ)
(ieφ) +

∂L0

∂(∂µφ∗)
(−ieφ∗)

]
. (5.246)

By (5.242),

jµ = ie [φ∗∂µφ− (∂µφ
∗)φ] = ieφ∗

(
∂µ −

←
∂ µ

)
φ . (5.247)

The Noether identity for jµ reads

∂µj
µ = ie [φ E(φ) − φ∗E(φ∗)] , (5.248)

where E(φ) and E(φ∗) are the Eulerians defined in (5.243).
If the complex field φ is expressed in terms of two real variables

φ =
1√
2

(a+ ib) , (5.249)

then a and b decouple in the action:

S0 =
1
2

∫
d4x

[
(∂µa) (∂µa) − µ2 a2 + (∂µb) (∂µb) − µ2 b2

]
. (5.250)

This action is invariant under a SO(2) rotation of the fields a and b through
an angle eλ,

a′ = a cos (eλ) + b sin (eλ), b′ = −a sin (eλ) + b cos (eλ) . (5.251)

Phase transformations (5.244) are locally isomorphic to field rotations (5.251).
One may require that λ be a function of spacetime. Transformations of

this kind are called local. The term ‘local’ emphasizes the fact that the group
of transformations acts at each point xµ, quite apart from its action in other
points. The action S0 is not invariant under transformations (5.245) with local
arguments λ(x). Indeed, the variation of S0 is

δS0 = −
∫
d4x jµ ∂

µλ , (5.252)

8 The overall minus sign in (5.246) was introduced in order to relate this formula to
the other definition of current, jµ = −∂L/∂Aµ, which follows from Lint = −jµAµ.
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which is nonzero unless λ(x) is constant. Here, jµ is the current defined in
(5.247).

Invariance is regained by appropriately coupling φ to the vector potential.
We replace all partial derivatives ∂µ acting on complex fields φ by the so-called
covariant derivatives Dµ,

∂µφ→ Dµφ = (∂µ + ieAµ)φ . (5.253)

Then (5.242) becomes
∫
d4x

[
(Dµφ)∗ (Dµφ) − µ2 φ∗φ

]
. (5.254)

Combining (5.254) and (5.47), we obtain the action for the system of inter-
acting charged and electromagnetic fields

S =
∫
d4x

{
[(∂µ + ieAµ)φ]∗ (∂µ + ieAµ)φ− µ2 φ∗φ− 1

16π
FµνFµν

}
.

(5.255)
The action (5.255) is invariant under local transformations

φ(x) → eieλ(x) φ(x), φ∗(x) → e−ieλ(x) φ∗(x), Aµ(x) → Aµ(x) − ∂µλ(x) .
(5.256)

The set of these transformations form an infinite group whose parameter λ
depends of spacetime. This group is called the gauge group of electrodynamics.

To eliminate the gauge freedom, we impose the Lorenz condition ∂µA
µ = 0.

In this gauge the Euler–Lagrange equations read

E(φ) =
[
−(� + µ2) + 2ie(A · ∂) + e2A2

]
φ∗ = 0 , (5.257)

E(φ∗) =
[
−(� + µ2) − 2ie(A · ∂) + e2A2

]
φ = 0 , (5.258)

Eµ(A) =
1
4π

�Aµ − jµ = 0 , (5.259)

where
jµ = ieφ∗

(
∂µ −

←
∂ µ

)
φ− 2e2Aµ φ

∗φ . (5.260)

Since (5.259) is identical to Maxwell’s equations, jµ can be regarded as the
charge current.

If λ(x) in (5.256) is specialized to a constant, we revert to global phase
transformations (5.244). Invariance under such transformations implies con-
servation of a Noether current. We leave as an easy exercise to check that
the pertinent Noether current jµ is given by (5.260), and that the Noether
identity holds

∂µj
µ = ieφ E(φ) − ieφ∗E(φ∗) , (5.261)

where E(φ) and E(φ∗) are defined in (5.257) and (5.258).
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Taking a closer look at (5.260), one finds a surprising thing: jµ depends
of Aµ. One can readily verify (Problem 5.5.1) that jµ is invariant under the
gauge transformation (5.256). On the other hand, this dependence makes it
appear that Aµ is as much a charge carrier as φ. The Noether identity (5.261)
enables escaping this wrong impression: only E(φ) and E(φ∗) contribute to
local charge conservation, not Eµ(A). This means that the actual charge flow
occurs regardless of the vector field dynamics encoded in Eµ(A).

The relation between a local symmetry (5.256) and current conservation
(5.261) is a special case of Noether’s second theorem. To formulate this the-
orem in a general setting, we consider a system of n interacting fields φa,
and suppose that the action is invariant under infinitesimal transformations
of field variables

δφa = Q k
a εk + (R k

a )µ ∂µεk , (5.262)

where Qk
a and (R k

a )µ are some functions of φa and ∂µφa, and εk are infini-
tesimal localized parameters, εk = εk(x). We assume that the set of infinites-
imal transformations (5.262) can be integrated to give a finite N -parameter
Lie group with parameters depending on spacetime. Then, with reference to
Problem 2.6.6, we write a linear relation between Eulerians and their deriva-
tives

Q k
a Ea − ∂µ

[
(R k

a )µ Ea
]

= 0 , (5.263)

where Ea is the Eulerian corresponding to the variation of the action with
respect to φa.

Turning back to the system of fields φ and Aµ governed by the action
(5.255), we have the local U(1) symmetry with

Q(φ) = ieφ, Q(φ∗) = −ieφ∗, R µ
ν (A) = −δ µ

ν . (5.264)

The Noether identity (5.263) takes the form

ieφ E(φ) − ieφ∗E(φ∗) + ∂µEµ(A) = 0 , (5.265)

which, in view of the identity

∂µ∂λF
λµ = 0 , (5.266)

reduces to (5.261).
Gauge invariance in electrodynamics (5.256) was discovered by Vladimir

Fock in 1926, and elevated to a fundamental dynamical principle by Weyl
in 1929. Following this principle, the interaction of charged matter with the
electromagnetic field is introduced by replacing ∂µ with Dµ, which is known
as minimal coupling. One may think of this description of charged matter by
a complex-valued scalar field9 as exemplifying the idea of gauge invariance.
9 The minimal coupling prescription can be readily applied to the Dirac spinor field

describing spin- 1
2

charged fluids (see Problems 5.5.2 and 5.5.8). However, the
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Meanwhile it is possible to modify the Maxwell–Lorentz electrodynamics
in such a way as to obtain a gauge theory. For this purpose, we introduce,
quite formally, an internal ‘charge space’ for a point particle possessing the
electric charge e. Let us specify the position of the particle in this internal
space by a coordinate ζ related to e as

ζ = i
√
e , (5.267)

and write the action

S = −
∫
dτ

[√
żα żα − ζ∗

(
d

dτ
− żαAα

)
ζ

]
− 1

16π

∫
d4xFµνF

µν . (5.268)

This action is invariant under the local transformation

ζ → eiΛ ζ, ζ∗ → e−iΛ ζ∗, Aµ → Aµ + i ∂µΛ , (5.269)

because the variation of the term involving the vector potential

−i dz
α

dτ

∂Λ

∂zα
= −i dΛ

dτ
(5.270)

cancels the derivative of the phase factor coming from ζ̇.
The Euler–Lagrange equations for ζ and ζ∗

ζ̇ = (v ·A) ζ, ζ̇∗ = −(v ·A) ζ∗ (5.271)

suggest that ζ and ζ∗ are internal degrees of freedom which vary in time under
the influence of Aµ. However, using (5.271),

d

ds
(ζ∗ζ) = ζ̇∗ζ + ζ∗ζ̇ = −(v ·A) ζ∗ζ + (v ·A) ζ∗ζ = 0 . (5.272)

Therefore, ζ∗ζ is a constant which is, in fact, the particle’s charge, ζ∗ζ = e.
With this note, the term responsible for the interaction of a charged particle
and electromagnetic field in (5.268) is of the conventional form −e vαAα.
Hence, all basic equations of the Maxwell–Lorentz theory have been regained.

Problem 5.5.1. Show that the current jµ defined in (5.260) is gauge invariant.

Hint Rewrite jµ using covariant derivatives:

jµ = ie [φ∗Dµφ− (Dµφ)∗φ] . (5.273)

minimal coupling of a higher-spin complex field with the electromagnetic field
seems to be physically inconsistent. For example, the minimal coupling of the
Rarita–Schwinger spin- 3

2
field with the electromagnetic field yields a hyperbolic

equation whose solutions propagate at velocities exceeding the speed of light,
which violates causality.
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Problem 5.5.2. Apply the minimal coupling prescription to the free Dirac
Lagrangian L0 = ψ̄ (iγµ∂µ − m)ψ. Find: (i) Lagrangian for the Dirac field
ψ interacting with Aµ, (ii) field equations for ψ and ψ̄, (iii) gauge transfor-
mations, (iv) Noether current, and (v) Noether identity expressing charge
conservation.

Answer
L = ψ̄ (iγµ∂µ −m− eγµAµ)ψ , (5.274)

Eψ̄ = (iγµ∂µ −m− eγµAµ)ψ = 0, Eψ = ψ̄(iγµ
←
∂ µ +m+ eγµAµ) = 0 ,

(5.275)
ψ → eieλ ψ, ψ̄ → e−ieλ ψ̄, Aµ → Aµ − ∂µλ , (5.276)

jµ = e ψ̄γµψ , (5.277)

∂µj
µ = e

(
ψ̄ Eψ̄ + Eψψ

)
. (5.278)

The current given by (5.277) is independent of Aµ, as opposed to that of the
scalar field, (5.260).

Problem 5.5.3. Assuming the Lorenz condition ∂µA
µ = 0, show that the

conservation law (5.261) in which jµ is expressed as (5.260) is equivalent to
the Ward–Takahashi identity

φ∗(∂µ+
←
∂ µ)Γµφ = φ∗

[
(�+µ2)+2ieAµ∂µ−e2A2

]
−
[
(
←
�+µ2)−2ie

←
∂ µA

µ−e2A2
]
φ ,

(5.279)
Γµ = (∂µ + ieAµ) − (

←
∂ µ − ieAµ) . (5.280)

Compare (5.279) with the Ward–Takahashi identity for a free scalar field in
Problem 4.3.5

Problem 5.5.4. Consider a gauge transformation

φ→ φ+ ε U, ∂µφ→ ∂µφ+ (∂µε)U + ε (∂µU) , (5.281)

where ε is an arbitrary infinitesimal function of x, and U may depend on φ.
Do not assume that (5.281) necessarily leaves the action S invariant.

Using the Euler–Lagrange equations, verify that

∂µ

[
δS

δ(∂µε)

]
=
δS

δε
, (5.282)

which shows that if S is invariant under this transformation, δS/δε = 0, there
exist a conserved current

jµ =
δS

δ(∂µε)
. (5.283)

We thus arrived at a combination of Noether’s first and second theorems which
is known as the Gell-Mann–Levy result.
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Problem 5.5.5. Let ψ be a free spinor field governed by L = ψ̄ (iγµ∂µ−m)ψ.
Consider the transformation

ψ → exp(igχ γ5)ψ, ψ̄ → ψ̄ exp(igχ γ5) . (5.284)

where χ is a continuous parameter. (The plus sign of the phase of the exponen-
tial applied to ψ̄ derives from the fact that ψ̄ = ψ∗γ0, and γ5γ

0γµ = γ0γµγ5

for any γµ.) Clearly, L is not invariant under the transformation (5.284), due
to the presence of the mass term.

Calculate from (5.283) the corresponding current j5µ (which is called the
axial current), and find its four-divergence.

Answer
j5µ = gψ̄ γ5γ

µ ψ, ∂µj5µ = −2igm ψ̄ γ5 ψ . (5.285)

Problem 5.5.6. Find Tµν for the system with the action (5.255).

Answer Tµν is given by

(Dµφ)∗Dνφ+ (Dνφ)∗Dµφ− ηµν

[
(Dαφ)∗Dαφ− µ2 φ∗φ

]

+
1
4π

(
F α

µ Fαν +
ηµν

4
FαβFαβ

)
. (5.286)

Problem 5.5.7. Apply the minimal coupling prescription to a system with
the first-order Lagrangian L0 = 2φ∗µφ

µ − φ∗µ∂
µφ + (∂µφ∗µ)φ − (∂µφ∗)φµ +

φ∗∂µφ
µ − 2µ2φ∗φ, where φ and φµ are free complex-valued scalar and vector

fields. Verify that that the resulting theory is equivalent to that described by
the action (5.254).

Problem 5.5.8. Find the canonical and symmetric (Belinfante) stress-energy
tensors θµν and Tµν for the Maxwell–Dirac theory with the Lagrangian

L = − 1
16π

FµνFµν + ψ̄ (iγµDµ −m)ψ, Dµ = ∂µ + ieAµ . (5.287)

Answer

θµν =
i

2
ψ̄ γµ (∂ν −

←
∂ ν)ψ − 1

4π
Fµα∂νA

α − ηµν L , (5.288)

Tµν =
i

2
(
ψ̄ γµDν ψ + ψ̄ γν Dµ ψ

)
− ηµν ψ̄ (iγαDα −m)ψ

+
1
4π

(
F α

µ Fαν +
ηµν

4
FαβFαβ

)
. (5.289)

Problem 5.5.9. Is the Lagrangian (5.65) invariant under transformations
φ′µ = φµ − ∂µχ?
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5.6 Strings and Branes

We normally think of particles as fundamental. However, one may equally well
accord fundamental status to extended objects such as strings, membranes,
and p-branes. In fact, these objects, collectively known as branes, have been a
central preoccupation of many high-energy theorists in the last two decades.
The Lagrangian formalism for strings (and, generally, for branes) can be ob-
tained following essentially the same principles as those behind the particle
dynamics. On the other hand, a string is a system with infinite degrees of
freedom, and its dynamics share many features of field theory.

To begin let us imagine a one-dimensional flexible object whose form and
length vary arbitrarily with time. Such a system is referred to as a relativistic
string, or string for short. There are closed and open strings. The points of
the string are specified by spacetime coordinates Xµ. During its motion, the
string sweeps out a two-dimensional surface in Minkowski space, called the
world sheet,

Xµ = Xµ(σ, τ) . (5.290)

The coordinates τ and σ parameterize the world sheet: σ labels the position
of a point on the string and τ measures its time evolution.

We assume that all world sheets are timelike, smooth surfaces, which means
that a two-dimensional plane tangent to the world sheet is spanned by a
timelike and a spacelike vectors. If we set

Ẋµ =
∂Xµ

∂τ
, X ′

µ =
∂Xµ

∂σ
, (5.291)

then Ẋµ and X ′
µ may be regarded as timelike and spacelike tangent vectors.

Note that the coordinate lines σ = const and τ = const need not be orthog-
onal, Ẋ ·X ′ �= 0. The area of the parallelogram formed by two infinitesimal
displacements Ẋµ dτ and X ′

µ dσ is

A =
√

(Ẋ ·X ′)2 − Ẋ2X ′2 dτ dσ . (5.292)

For the world sheet to remain timelike, the quantity under the radical sign
must be positive (Problem 5.6.1).

By analogy with the action for a particle, which is proportional to the
length of the world line, we take the action for a string proportional to the
area of the world sheet:

S = − T

2π

∫ τ2

τ1

dτ

∫ l

0

dσ

√
(Ẋ ·X ′)2 − Ẋ2X ′2 . (5.293)

This expression is known as the Nambu action. The constant T is necessary
to make the action dimensionless. It has length dimension −2 and is called
the string tension.
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Expression (5.293) can be written more compactly. Denote ua = (τ, σ), and
observe that the metric on the world sheet hab(u) induced by the Minkowski
metric ηµν is

hab(u) =
∂Xµ

∂ua

∂Xν

∂ub
ηµν , a, b = 0, 1 . (5.294)

Then (5.293) becomes

S = − T

2π

∫
d2u

√
−h , (5.295)

where h = det (hab) (Problem 5.6.2).
When using the Lagrangian

L(Ẋ,X ′) = − T

2π

√
−h , (5.296)

the action principle says: the string moves so as to minimize the area of the
world sheet, with initial and final positions of the string being fixed,

δS =−
∫ τ2

τ1

dτ

∫ l

0

dσ

(
∂

∂τ

∂L
∂Ẋµ

+
∂

∂σ

∂L
∂X ′

µ

)
δXµ+

∫ τ2

τ1

dτ

(
∂L
∂X ′

µ
δXµ

)∣∣∣σ=l

σ=0
= 0 .

(5.297)
Taking the boundary conditions

∂L
∂X ′

µ
= 0 at σ = 0, l , (5.298)

we arrive at the Euler–Lagrange equations

Eµ = − ∂

∂τ

∂L
∂Ẋµ

− ∂

∂σ

∂L
∂X ′

µ
= 0 . (5.299)

Substituting

πµ
1 =

∂L
∂Ẋµ

= − T

2π
X ′µ(Ẋ ·X ′) − ẊµX ′2√

(Ẋ ·X ′)2 − Ẋ2X ′2
, (5.300)

πµ
2 =

∂L
∂X ′

µ
= − T

2π
Ẋµ(Ẋ ·X ′) −X ′µẊ2√

(Ẋ ·X ′)2 − Ẋ2X ′2
(5.301)

in (5.298) and (5.299) gives what seem to be highly nonlinear equations of
motion. Note, however, that the action (5.293) is reparametrization invariant.
Indeed, the change of variables

τ = F (τ ′, σ′), σ = G(τ ′, σ′) , (5.302)

where F and G are smooth functions, leaves the action (5.293) invariant.
Transformations (5.302) are called world sheet diffeomorphisms. They form an
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infinite group, the gauge group of the Nambu string. Since the gauge group
involves two parameters, there are two Noether’s identities for the Euler–
Lagrange equations (5.299) (Problem 5.6.4).

To eliminate the gauge freedom of the Nambu string, we may impose two
gauge fixing conditions. A convenient choice is

Ẋ ·X ′ = 0, Ẋ2 +X ′2 = 0 , (5.303)

whose geometrical significance is that the coordinate lines τ = const and
σ = const are orthogonal and uniformly parametrized. Assuming (5.303), one
comes to the string in orthonormal gauge.

When using the gauge (5.303), the Euler–Lagrange equations (5.299) sim-
plify

X ′′
µ − Ẍµ = 0 . (5.304)

String coordinates in the orthonormal gauge obey the wave equation. The
boundary conditions (5.298) become

X ′
µ(τ, 0) = X ′

µ(τ, l) = 0 . (5.305)

These are Neumann boundary conditions. By squaring expression (5.301), and
using (5.303) and (5.298), we obtain

Ẋ2 = 0 at σ = 0, l . (5.306)

End points of strings obeying Neumann boundary conditions move at the
speed of light.

Alternatively, one may adopt Dirichlet boundary conditions

Xµ(τ, 0) = Xµ(τ, l) = 0 , (5.307)

which imply that δXµ = 0 in the last term of (5.297). With these conditions,
we are led to Dirichlet branes, or D-branes. We will return to this issue at the
close of this section.

The surface term in (5.297) vanishes if we impose periodic boundary con-
ditions

Xµ(τ, 0) = Xµ(τ, l) . (5.308)

These relations are suitable for closed strings in the orthonormal gauge.
The Lagrangian (5.296) is explicitly Poincaré invariant. Invariance under

infinitesimal transformations of string coordinates

δXµ = ωµ
νX

ν + εµ, ωµν = ωνµ (5.309)

results in conservation of the total energy-momentum

pµ =
∫ l

0

dσ πµ
1 (5.310)
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and the total angular momentum

Mµν =
∫ l

0

dσ (Xµ πν
1 −Xν πµ

1 ) (5.311)

for Xµ obeying the Euler–Lagrange equations (5.299). In the orthonormal
gauge,

pµ =
T

2π

∫ l

0

dσ Ẋµ , (5.312)

Mµν =
T

2π

∫ l

0

dσ
(
Xµ Ẋν −Xν Ẋµ

)
. (5.313)

In view of (5.312), the mass M of the string in the orthonormal gauge is given
by

M2 = p2 =
T

(2π)2

(∫ l

0

dσ Ẋµ

)2

. (5.314)

The Nambu string possesses energy and mass, unlike the Dirac string of a
magnetic monopole. Note that energy-momentum is locally conserved inside
the Nambu string, and no energy-momentum flows into or out of the ends of
open strings which obey the Neumann boundary conditions (Problem 5.6.5).

Just as there are alternative forms, (2.260) and (2.266), for the action of
a point particle, so too the string action can be defined both in the Nambu
form (5.295) and in the form

S = − T

4π

∫
d2u

√
−g gab ∂aX

µ ∂bXµ . (5.315)

Here, gab is a field on the world sheet to be independently varied, and g =
det (gab). A symmetric tensor gab is interpreted as an intrinsic world sheet
metric. Expression (5.315) is often called the Polyakov action. The actions
(5.295) and (5.315) are equivalent in that the solution to the Euler–Lagrange
equations is gab = hab (Problem 5.6.6).

The Polyakov string is reparametrization invariant,

ua = fa(u′) , (5.316)

provided that the intrinsic metric gab is transformed according to the law

gab(u) =
∂u′c

∂ua

∂u′d

∂ub
g′cd(u

′) . (5.317)

Furthermore, the action (5.315) exhibits invariance under Weyl rescalings

g′ab = e2λ(u) gab, g′
ab = e−2λ(u) gab . (5.318)

This extra symmetry owes its origin to the presence of an additional field
variable gab.
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Because gab = hab, a manifold with the intrinsic metric gab is geometrically
equivalent to a world sheet with a metric hab inherited from the metric ηµν

on ambient spacetime. We may treat the action (5.315) as that describing a
massless scalar (spacetime-valued) field Xµ(u) on this manifold. Whereas the
metric ηµν is fixed, the metric hab is dynamic.

The gauge freedom can be used to render the metric gab flat:

√
−g gab = ηab, η =

(
1 0
0 −1

)
. (5.319)

In fact, conditions (5.303) and (5.319) are equivalent (Problem 5.6.7). In the
gauge (5.319), the action (5.315) simplifies

S = − T

4π

∫
d2u ηab ∂aX

µ ∂bXµ , (5.320)

and the Euler–Lagrange equations become the wave equations (5.304).
Note that the covariant gauge (5.319) is Weyl invariant, because

√−g is
rescaled by the factor e2λ under Weyl transformations. This residual gauge
freedom corresponds to the fact that there exist an infinity of orthonormal
coordinate systems on the world sheet. We can specify completely the variables
τ and σ by introducing the light cone coordinates Xµ = (X+,X−,Xi), X± =
(X0 ±X1)/

√
2, and choosing τ to be proportional to X+,

X+ = τ. (5.321)

We see that X+ is independent of σ. The other light cone variable X− can
be expressed in terms of Xi using the constraint g01 = Ẋ ·X ′ = 0. Thus, X+

and X− are eliminated from this noncovariant gauge as independent string
variables, and only Xi, called transverse coordinates, remain dynamically sig-
nificant.

One may wonder how strings evolve. For simplicity we consider only open
strings; some insight into the behavior of closed strings can be gained from
Problems 5.6.8 and 5.6.9. Assuming l to be a finite parameter, it is natural to
look for solutions to the wave equation (5.304) as a Fourier series in σ. It is
easy to check that the series

Xi(τ, σ) = qi +
pi

p+
τ + i

√
2
T

∑
n�=0

1
n
αi

n cos
(πnσ

l

)
exp

(
− iπnτ

l

)
(5.322)

satisfies both the field equation (5.304) and boundary conditions (5.305). Here,
p+ = (p0+p1)/

√
2. The summation Σ is over all positive and negative integers

n, except n = 0. qi is the center-of-mass position of the string,

qi =
1
l

∫ l

0

dσXi(0, σ) , (5.323)



240 5 Lagrangian Formalism in Electrodynamics

and pi is its conjugate momentum (5.310). The amplitudes of the normal
modes are arbitrary complex-valued coefficients subject to the condition αi

n =
(αi

−n)∗ to keep Xi real-valued.
It follows that the string moves as a whole with the constant velocity

pi/p+. On the other hand, by (5.322), the angular momentum of the string
(5.313) is M ij = Lij + Sij where

Lij = qi pj − qj pi, Sij = −i
∞∑

n=1

1
n

(
αi
−n α

j
n − αj

−n α
i
n

)
. (5.324)

In the center-of-mass rest frame, qi = 0, and Lij = 0, but Sij need not be zero.
Hence, the string may rotate about its center-of-mass position as prescribed
by the αi

n.
The gauge conditions (5.303) can be expressed in terms of the Fourier

amplitudes αµ
n:

Ln =
T

2

∞∑
m=−∞

αµ
n−mαmµ = 0, n = 0,±1, . . . , (5.325)

where αµ
0 = pµ/T . In particular, L0 = 0 gives

M2 = p2 = −T
2

∞∑
m=−∞

(αm
µ)∗αmµ . (5.326)

The mass of the string M contains contributions from all oscillatory modes
which are proportional to the square of their amplitudes. It may seem that
M2 is indefinite, but this impression is wrong. If we use the light-cone gauge,
M2 becomes

M2 = T

∞∑
m=1

(αm
i)∗αi

m , (5.327)

which is explicitly positive definite.
More complicated string models contain Grassmannian degrees of freedom

along with transverse modes in their vibration spectra. Superstrings extend
reparametrization and Weyl invariance to incorporate supersymmetry on the
world sheet. The Green–Schwarz string enjoys also the property of supersym-
metry in spacetime, which is believed to be a key ingredient in fundamental
theory. We now review very briefly the Green–Schwarz string without going
into supersymmetry except to note that there are equal numbers of transverse
and Grassmannian degrees of freedom. A consistent quantum description of
this string requires a spacetime of dimension D+1 = 10. The supermanifold is
specified by 10 spacetime coordinates Xµ, and 32 anticommuting real-valued
spinor components θ. Adopting the noncovariant light cone gauge for Xµ, and
imposing a constraint on θ of the form (γ0+γ1) θ = 0, where γµ are the 32×32
Dirac matrices in 10 dimensions, we reduce the number of components in θ
to 16. With these conditions the Green–Schwartz action takes the form:
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S = − T

2π

∫
d2u

(
ηab∂aX

i ∂bXi + i θ ρa∂a θ
)
. (5.328)

Here, ρa are two-dimensional Dirac matrices, expressed in terms of the Pauli
matrices ρ0 = iσ2, ρ1 = σ1, which act on θ = (θ1, θ2). The Euler–Lagrange
equations read

�Xi = 0 , (5.329)

(∂τ + ∂σ) θ1 = 0, (∂τ − ∂σ) θ2 = 0 . (5.330)

Equations (5.330) reduce the number of Grassmannian variables θ to 8. Thus,
the number of independent components of θ is 8, which is just the number of
transverse coordinates Xi.

We do not consider the manifestly supersymmetric formulation of this
string. We only remark that a supersymmetric action is available, and that
the Euler–Lagrange equations resulting from it are highly nonlinear. In the
light cone gauge, the dynamical equations for strings and superstrings, (5.304)
and (5.329)–(5.330), are linear.

To couple a free open string to an external electromagnetic field Fµν =
∂µAν −∂νAµ, we add an interaction term to the free action. This term should
be chosen in a form preserving most, or, better still, all symmetries of the free
action. The only Poincaré and reparametrization invariant expression is

Sint =
e

π

∫ τ2

τ1

dτ

∫ l

0

dσ ẊµX
′
ν F

µν(X) , (5.331)

where e stands for the electric charge of the string. Because

Ẋµ
∂

∂Xµ
Aν =

∂

∂τ
Aν , X ′

ν
∂

∂Xν
Aµ =

∂

∂σ
Aµ,

(5.331) equals

Sint = − e

π

∫ τ2

τ1

dτ Ẋµ(τ)Aµ(X)
∣∣∣σ=l

σ=0
, (5.332)

plus two terms at τ = τ1 and τ = τ2, which do not contribute to the Euler–
Lagrange equations. It is clear from (5.332) that the charge of an open string
is located at its ends.

Adding (5.332) to the free action leaves the Euler–Lagrange equations
unchanged, but the Neumann boundary conditions (5.305) become

2e ẊνFµν(X) = TX ′
µ, at σ = 0, l . (5.333)

This example helps to illuminate a peculiar feature of string interactions:
open strings interact with each other at their ends. On the quantum level,
strings interact locally, without mediation of long-range fields. Open strings
may join when their ends contact, a single open string may spontaneously
split into two pieces, or become closed, or emit a closed string, etc. Joining
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and splitting are the basic interactions of strings. This form of interaction
respects all symmetries of free strings.

We finally consider p-branes, extended objects with p spatial dimensions. In
three-dimensional space, it is possible to realize only membranes, in additional
to particles (0-branes) and strings (1-branes). But in a more general world with
one temporal and k spatial dimensions, we can define all kinds of p-branes with
p < k. The points of a p-brane in some ambient spacetime are specified by
Xµ(u0, u1, . . . , up). The action is proportional to the world volume swept out
by the p-brane,

S = −Tp

∫
dp+1u

√
−h . (5.334)

Here, Tp is the constant of dimension −p− 1,

hab = ∂aX
µ ∂bXµ, a, b = 0, 1, . . . , p , (5.335)

is a metric on the world volume induced by the Lorentz metric of the ambient
spacetime, and h = det (hab). The action (5.334) is invariant under world-
volume reparametrizations

ua = fa(u′), hab(u) =
∂u′c

∂ua

∂u′d

∂ub
h′cd(u′) , (5.336)

where fa are arbitrary smooth functions. These world-volume diffeomor-
phisms form an infinite group, the gauge group of the p-brane.

Varying Xµ in (5.334) gives the Euler–Lagrange equations

1√
−h

∂

∂ua

(√
−hhab ∂

∂ub

)
Xµ = 0 , (5.337)

which are highly nonlinear. A cure for this difficulty in the case p = 1 is to
invoke the redundancy of degrees of freedom, and linearize the equations of
motion using gauge fixing conditions. Does this trick apply to p > 1? Were
the induced metric hab convertible to the form

√
−hhab = Ω ηab, ηab = diag (1,−1, . . . ,−1) , (5.338)

where Ω is a constant, one may hope that (5.337) linearizes. It can be shown,
however, that this procedure is valid only for p = 1, that is, for strings (Prob-
lem 5.6.10).

Another way of looking at p-branes is to interpret certain states of string
theory as manifestations of extended configurations. Some of these states ap-
pear in the low energy limit of string theory as soliton solutions. In particular,
if hab defined in (5.335) is extended to hab = gab + Fab, where gab and Fab

are, respectively, symmetric and antisymmetric fields on the world volume,
then we encounter a nonlinear theory of the Born–Infeld type, which pos-
sesses soliton solutions (see Sect. 10.4). Other solutions describe submanifolds
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of the ambient spacetime on which open strings terminate. These submani-
folds are dynamical objects, Dirichlet branes. Excitations of an open string
imply vibrations of its associated D-brane.

Problem 5.6.1. Show that if the expression under the radical sign in (5.293)
is positive, then the world sheet is timelike.

Hint By (1.182),

Ẋ2X ′2 − (Ẋ ·X ′)2 = Ẋ2
(Ẋ

⊥ X ′
)2

, (5.339)

which is negative if Ẋµ is timelike while X ′
µ is spacelike.

Problem 5.6.2. Verify that (5.295) is identical to (5.293).

Hint By (5.294),

det (hab) = det
(

Ẋ2 Ẋ ·X ′

Ẋ ·X ′ X ′2

)
= Ẋ2X ′2 − (Ẋ ·X ′)2 . (5.340)

Problem 5.6.3. Prove that the action (5.295) is invariant under transforma-
tions (5.302).

Proof The gauge transformation ua = fa(u′) implies

hab =
∂u′c

∂ua

∂u′d

∂ub
h′cd, deth =

[
det

(
∂u′

∂u

)]2

deth′ =
1
J2

deth , (5.341)

where J is the Jacobian of this transformation. Since the volume element d2u
transforms as d2u = |J | d2u′, the action (5.295) is gauge invariant.

Problem 5.6.4. Show that Noether’s second theorem implies the identities

ẊµEµ = X ′
µEµ = 0 , (5.342)

where Eµ is defined in (5.299). Compare (5.342) with (2.259).

Problem 5.6.5. Show that energy momentum is locally conserved inside the
string, and no energy momentum flows into or out of the ends of open strings
which obey Neumann boundary conditions (5.298). Is this statement valid if
one adopts Dirichlet boundary conditions?

Problem 5.6.6. Show that the string actions (5.295) and (5.315) are equiv-
alent.

Proof Varying gab in (5.315) gives the Euler–Lagrange equations

∂aX
µ∂bXµ =

1
2
gabg

cd∂cX
µ∂dXµ . (5.343)
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We have used the formula for the variation of determinants (5.120). In view
of gabg

bc = δc
a, and δa

a = 2, the general solution to (5.343) is

gab = Ω ∂aX
µ∂bXµ , (5.344)

where Ω is an arbitrary function. The form of Ω is of no concern because of
the Weyl invariance (5.318). Hence,

gab = hab . (5.345)

Applying (5.344) and (5.345) to (5.315) gives (5.295).

Problem 5.6.7. Show that gauge conditions (5.303) and (5.319) are equiva-
lent.

Hint With reference to Problems 5.6.2 and 5.6.6, one finds that following
(5.303) results in gab = Ẋ2ηab, hence

√−g gab = ηab. On the other hand,
proceeding from (5.319), and taking into account that gab = hab, we get
∂aX

µ∂bXµ = ηab, which is just (5.303).

Problem 5.6.8. Suppose that τ is laboratory time in a particular Lorentz
frame τ = t. Consider a closed string which forms a circle at t = 0,

X0(0, σ) = 0, X1(0, σ) = L cos(σ/L), X2(0, σ) = L sin(σ/L), X3(0, σ) = 0 ,
(5.346)

Ẋ0 = 1, Ẋi = 0, i = 1, 2, 3 . (5.347)

Verify that these initial data obey the gauge conditions (5.303). Solve the
Cauchy problem for the wave equation (5.304) with these initial data.

Solution: Using the d’Alembert formula (4.138), we have

X0 = t, X1 = L cos(t/L) cos(σ/L), X2 = L cos(t/L) sin(σ/L), X3 = 0 .
(5.348)

This is a pulsating circle which squeezes to a point at t = 1
2 π(2n+ 1)L, n =

0, 1, . . .

Problem 5.6.9. Solve equation (5.304) using a Fourier series for a closed
string.

Answer

Xi(τ, σ) = qµ +
pi

p+
τ +

i√
2T

∑ 1
n

[
αi

n e
2iπn(σ−τ)

l + βi
n e

2iπn(τ+σ)
l

]
. (5.349)

Again, the summation Σ is over all positive and negative integers n except for
n = 0, qi is the center-of-mass position of the string, pi its energy-momentum.
However, the coefficients αi

n and βi
n are independent. They are the amplitudes

of left-moving and right-moving waves along the closed string, subject to the
conditions αi

n = (αi
−n)∗ and βi

n = (βi
−n)∗.
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Problem 5.6.10. Prove that (5.337) can be linearized only for p = 1.

Proof To linearize (5.337), one should bring hab to a flat form (5.338). Since
the gauge group (5.336) contains p+1 arbitrary functions, we can enforce p+1
arbitrary conditions. On the other hand, enforcing (5.338) represents as many
conditions as there are independent entries of the symmetric (p+ 1)× (p+ 1)
matrix hab: 1

2

[
(p+ 1)2 + p+ 1

]
minus 1, to count the overall factor Ω in

(5.338). The required number of conditions, 1
2

(
p2 + 3p

)
, equals the number

of gauge degrees of freedom, p+ 1, only for p = 1.

Notes

1. Section 5.1. We discuss only elementary aspects of the Lagrangian for-
malism in field theory. We omit the complications which arise when the La-
grangian describes a constrained system, leading to functional dependences
between canonical momenta (5.17). For a close examination of constraint
systems see Dirac (1964), Gitman & Tyutin (1990), and Hanson, Regge &
Teitelboim (1976).

The equation of motion for a scalar field (5.33) appeared in the papers
by Klein (1926), Fock (1926), Kudar (1926), and Gordon (1926). The equa-
tion of motion for a spin-1

2 field (5.37) was discovered by Dirac (1928). The
Lagrangian for a massive vector field (5.65) was studied by Lanczos (1929),
and Proca (1936). Rarita & Schwinger (1941) proposed the equation of mo-
tion for a spin-3

2 field (5.70). The Lagrangians governing relativistic fields are
discussed in most textbooks on field theory. A general reference is Schweber
(1961). Since Wigner’s (1939) work, the equation of motion for a free field
φa is obtained from the condition that φa transforms according to some irre-
ducible representation of the Poincaré group. A simple generalization of this
idea to interacting fields can be found in Takahashi (1969).

The field sector of the Maxwell–Lorentz theory was proposed by Lar-
mor (1900); the particle sector is due to Poincaré (1906) and Planck (1906);
the term responsible for the electromagnetic interaction was discovered by
Schwarzschild (1903).

2. Section 5.2. Belinfante (1939), 1940 and Rosenfeld (1940) developed a pro-
cedure for making the canonical stress-energy tensor symmetric. The metric
stress-energy tensor was defined by Hilbert (1915).

Umow (1874) introduced the notions of energy density u (energy per unit
volume at a given point) and energy flow per unit area G in his treatment of
elastic solids and fluids. He discovered the energy balance equation in a region
free of sources and sinks of energy

∂u

∂t
+ div G = 0 . (5.350)
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Similar results were obtained by Poynting (1884a), (1884b) for the electromag-
netic field. He showed that the electromagnetic energy stored in unit volume
is u = (1/8π)

(
E2 + B2

)
, and the flux of energy is G = (1/4π) (E × B). The

commonly accepted derivation of this statement is as follows: one looks for
the rate at which the Lorentz force per unit volume !E + j × B does me-
chanical work on the charge distribution in a domain of unit volume. The
result is j · E, which can be transformed by means of Maxwell’s equations to
− (1/8π) ∂/∂t

(
E2 + B2

)
− (1/4π) div (E × B). Thus the rate of change of the

sum of the mechanical energy and (1/8π)
(
E2 + B2

)
is given by the surface

integral of (1/4π) (E × B). One recognizes this as a manifestation of energy
conservation if (1/8π)

(
E2 + B2

)
is taken to be the electromagnetic energy

density, and (1/4π) (E × B) is the rate of flow of energy out of the domain
through the boundary.

This view of energy balance between charged matter and electromagnetic
field will be somewhat refined Chap. 6. It will be shown that the electro-
magnetic interaction drastically rearranges mechanical and field degrees of
freedom to yield two new entities: a dressed particle and radiation.

Minkowski (1909) proposed the currently accepted interpretation for all
components of the symmetric stress-energy tensor Θµν of the electromagnetic
field. Following Minkowski, one thinks of a general stress-energy tensor Tµν

as the flux of the µth component of four-momentum through a unit surface
perpendicular to the νth axis.

3. Section 5.3. Bateman (1910a), 1910b, and Cunningham (1910) showed
that Maxwell’s equations are invariant under inversions xµ → xµ/x2, which
amounts to their invariance under special conformal transformations. In ef-
fect, the Bateman’s argument suggested that the conformal group C(1, 3) is
the largest Lie group of spacetime symmetries which leaves Maxwell’s equa-
tions invariant. Weyl (1918) reasoned that the length of a vector has no ab-
solute geometric meaning; the local Poincaré symmetry inherent in small re-
gions of the pseudo-Riemannian manifold should be extended to the local
conformal symmetry of spacetime to give the geometric framework for a uni-
fied theory of electromagnetism and gravitation. Dirac (1936) used the iso-
morphism between the conformal group in Minkowski space C(1, 3) and the
group of pseudoorthogonal transformations SO(2, 4) to derive electrodynam-
ics in six dimensions. Barut & Haugen (1972) put forward the view that a
six-dimensional spacetime can be taken to be true physical spacetime (the
fifth and sixth dimensions being related to the scale and the change of scale
from point to point) and that the physical laws take their simplest form in
this six-dimensional formulation. For a historical survey and further refer-
ences see Schouten (1949), Kastrup (1962), and Fulton, Rohrlich & Witten
(1962). Scale invariance is reviewed by Coleman (1985). The relation between
conformal and Weyl symmetries is discussed in Fulton, Rohrlich & Witten
(1962).
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Wess (1960) observed that conformal transformations violate causality.
Rosen (1968) proposed a new interpretation of conformal transformations
(other than the commonly used ‘active’ and ‘passive’ interpretations) to pro-
vide a way of avoiding causality violation.

The idea of an improved stress-energy tensor simplifying the analysis of
conformal theories was advanced and developed by Callan, Coleman & Jackiw
(1970). Boulware, Brown & Peccei (1970) constructed the conformal metric
tensor (5.213).

4. Section 5.4. The idea that electric and magnetic fields appear symmetri-
cally in Maxwell’s theory goes back to Heaviside (1892). Larmor (1900) noted
that the source-free Maxwell’s equations are invariant under a discrete trans-
formation E → B, B → −E. Rainich (1925) generalized this transformation
to the duality rotation (5.218). Zwanziger (1971) proposed a local Lagrangian
for electrodynamics involving electric and magnetic charges. For a review of
the Dirac monopole problem see Strazhev & Tomil’chik (1973), Goddard &
Olive (1978), Coleman (1983), and Blagoević & Senjanović (1988).

5. Section 5.5. Historically, the vector potential A was not always viewed as an
auxiliary variable to simplify the analysis of electrodynamics. Maxwell (1873)
deemed the vector potential as a fundamental field; he called it the electro-
tonic intensity. E and B did not come into their own as primary concepts of
electrodynamics until Heaviside (1892).

The gauge principle was developed by Fock (1926), London (1927), and
Weyl (1929). For historical detail and further references see Jackson & Okun
(2001). Gell-Mann & Levy (1960) proposed a convenient technique for the
Noether current associated with gauge invariance.

Velo & Zwanziger (1969) showed that the minimal coupling between a
charged Rarita–Schwinger field and the electromagnetic field gives rise to
acausality in the sense that solutions to the equations of motion for this system
propagate faster than light.

6. Section 5.6. Systematic studies of string theory can be found in many
books. General references are Green, Schwarz & Witten (1987), and Polchinski
(1998). The texts by Kiritsis (1998) and Siegel (1999) are available at the web.
A major part of string theory is outlined in qualitative terms by Greene (1999).

Nambu (1970a), (1970b), Goto (1971), and Hara (1971) suggested a rela-
tivistic string to reproduce the physics of dual resonance models in the theory
of strong interactions. For historical detail and further references see Green,
Schwarz & Witten (1987). A short time later, Scherk & Schwarz (1974) and
Yoneya (1974) observed that the limit T → ∞ of closed string scattering am-
plitudes reproduces the results of a variant of general relativity, while open
string amplitudes approximate Maxwell’s electrodynamics. The subsequent
development of string theory is reviewed in Green, Schwarz & Witten (1987),
and Greene (1999). This theory is now regarded as a framework for the uni-
fication of all fundamental interactions, and the value of the string tension T
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is assumed to be comparable with the square of the Planck mass. This is the
natural mass scale of quantum gravity, MP =

√
�c/G = 1.22 × 1019 GeV,

where � is Planck’s constant, c velocity of light, and G Newton’s gravitational
constant. An extended discussion of branes is found in Polchinski (1998), and
Johnson (2003), which can also be consulted for additional references.



6

Self-Interaction in Electrodynamics

Maxwell–Lorentz electrodynamics is formulated as a Lagrangian theory for a
system of charged particles and electromagnetic field. The interaction between
mechanical and electromagnetic degrees of freedom rearranges dynamical vari-
ables into dressed particles and radiation.

This rearrangement of degrees of freedom is common to a wide variety of
interacting systems. We will see in Sect. 6.1 that dynamical variables can be
rearranged even in the absence of point sources and singular fields. For exam-
ple, the initial spectrum of the Goldstone model involves tachyon modes of a
scalar field φ. The rearranged system exhibits massive and massless oscillatory
modes of φ descended from the tachyon modes.

In Sect. 6.2 we analyze the concept of radiation in Maxwell–Lorentz the-
ory. In Sect. 6.3, we trace the rearrangement of mechanical and electromag-
netic degrees of freedom through the use of energy-momentum balance. The
Lorentz–Dirac equation governing a dressed charged particle is discussed in
Sect. 6.4. Two alternative ways for deriving this equation are reviewed in
Sect. 6.5.

6.1 Rearrangement of Degrees of Freedom

The demarcation line between interacting and free systems is often fuzzy. As
indicated in Sect. 5.1, a field is regarded as a free system if its behavior in
Minkowski space is governed by a linear equation with constant coefficients.
In other words, a free field φ comes from a Lagrangian quadratic in φ. An
example is a scalar field φ obeying the Klein–Gordon equation

(� + µ2)φ = 0 , (6.1)

which is derived from

L0 =
1
2

(∂µφ∂
µφ) − µ2

2
φ2 . (6.2)
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Note, however, that linearity is sometimes a matter of convention, and may be
abandoned as the need arises. To illustrate, the equation of motion for a free
string becomes either linear or nonlinear according to which gauge condition
is adopted. Furthermore, the equation of motion for a free p-brane, p ≥ 2, is
always nonlinear.

A field φ governed by Lagrangian (6.2) is in many respects similar to a
harmonic oscillator. Let us suppose that φ depends on spacetime through the
phase ξ = k · x,

φ = φ(ξ) . (6.3)

Partial derivatives become ∂µφ = kµφ
′, where the prime denotes the derivative

with respect to ξ. Therefore,

L0 =
k2

2
φ′

2 − µ2

2
φ2 . (6.4)

If kµ is timelike, then ξ may be interpreted as an evolution parameter, and
(6.4) is the Lagrangian for a one-dimensional harmonic oscillator with kinetic
energy T = (k2/2)φ′2, and potential energy

U =
µ2

2
φ2 . (6.5)

Substituting the Fourier transform

φ(x) =
1

(2π)4

∫
d4k e−ik·x φ̃(k) (6.6)

in (6.1) gives
k2 = µ2 . (6.7)

We arrive at the so-called dispersion law for this system. One may think of kµ

as the four-momentum1 of a plane wave e−ik·x. Then, by (6.7), any Fourier
mode of φ manifests itself as a particle with mass µ. If µ = 0, then the particle
is massless.

However, there are free fields whose behavior is much different from that
of a harmonic oscillator. Let us change the sign of the mass term in (6.2),

L0 =
1
2

(∂µφ∂
µφ) +

µ2

2
φ2 . (6.8)

The field equation becomes

(� − µ2)φ = 0 . (6.9)

Taking φ in the form (6.3), we have
1 In fact, Louis de Broglie proposed in 1923 that the propagation vector kµ in a

plane wave of any matter field φ can be likened to the energy-momentum carried
by this wave.
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L0 =
k2

2
φ′

2 +
µ2

2
φ2 , (6.10)

which is the Lagrangian for a particle moving in a one-dimensional potential

U = −µ
2

2
φ2 . (6.11)

One can envision a particle which is at rest on the top of the potential hill
φ = 0 or moving downhill to φ→ ∞ or φ→ −∞, rather than oscillating in a
potential well.

By the dispersion law resulting from (6.9),

k2 = −µ2 , (6.12)

a single Fourier mode of φ manifests itself as a tachyon. Of course, the wave
front moves at a velocity lower than that of light. The Klein–Gordon equation
(6.9) is hyperbolic for any value of µ, because the hyperbolicity is related to
highest derivatives. The characteristic surface of equation (6.9) is the light
cone k2 = 0. A direct calculation (Problem 6.1.1) shows that φ propagates
inside the light cone. Fourier modes of φ are similar to tachyons only in that
their momenta kµ are spacelike.

We now turn our attention to interacting systems. We begin with a scalar
field φ governed by the Lagrangian (5.34) which involves a quartic self-
interaction,

L =
1
2

(∂µφ∂
µφ) − µ2

2
φ2 − λ2

4
φ4 . (6.13)

Taking φ in the form (6.3), we obtain a one-dimensional anharmonic oscillator,

L =
k2

2
φ′

2 − µ2

2
φ2 − λ2

4
φ4 . (6.14)

The motion of a particle in the potential

U =
µ2

2
φ2 +

λ2

4
φ4 (6.15)

is qualitatively the same as that in the potential (6.5). The only difference is
that the period of a harmonic oscillation in the potential (6.5) is independent
of its amplitude, while the period of oscillations in the potential (6.15) is
amplitude-dependent.

Meanwhile there are systems whose behavior changes drastically by swit-
ching-on the interaction. Consider a scalar real field φ which is governed by

L =
1
2

(∂µφ∂
µφ) +

µ2

2
φ2 − λ2

4
φ4 − U0 , (6.16)

where
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U0 =
µ4

4λ2
(6.17)

is a constant which is suitable for the subsequent analysis. The Lagrangian
(6.16) can be written in a compact form:

L =
1
2

(∂φ)2 − U , (6.18)

where

U =
λ2

4
(
φ2 − φ2

0

)2
, (6.19)

φ0 =
µ

λ
. (6.20)

Note that the Lagrangian (6.18) is invariant under reflection φ→ −φ.
We now look for a state of minimal energy, which is called the ground

state. The energy of the system is

E =
∫
d3x

[
1
2

(∂0φ)2 +
1
2

(∇φ)2 + U

]
. (6.21)

The derivative terms are minimized when φ is a constant. If this constant
corresponds to the minimum of U(φ), then it is seen from (6.19) and (6.20)
that the ground state is associated with either of two points

φ = ±φ0 . (6.22)

If the system is in one of these points, reflection invariance (φ → −φ) is
broken, as is evident from Fig. 6.1.

U

φ••
−φ0 φ0

Fig. 6.1. U(φ) defined in (6.19)

Assume that the ground state is realized at φ = φ0. Taking

φ = φ0 + ϕ , (6.23)

where ϕ is a small perturbation about φ0, we have

φ2 = φ2
0 + 2φ0ϕ+ ϕ2 , (6.24)
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and

U = µ2ϕ2 + λµϕ3 +
λ2

4
ϕ4 . (6.25)

The Lagrangian

L =
1
2

(∂µϕ∂
µϕ) − µ2ϕ2 − λµϕ3 − λ2

4
ϕ4 (6.26)

governs a system which exhibits an oscillatory mode with mass

m =
√

2µ , (6.27)

instead of the initial tachyon mode.
The initial system was in the state of unstable equilibrium. Upon rear-

ranging degrees of freedom, as shown explicitly in (6.23), the system comes
to a stable equilibrium. The price for this stability is that the rearranged La-
grangian (6.26) is not invariant under reflection ϕ → −ϕ. This phenomenon
is called spontaneous symmetry breaking.

We now turn to a more involved model, which is referred to as the Gold-
stone model,

L =
1
2

(∂µφ)∗ ∂µφ+
µ2

2
φ∗ φ− λ2

4
(φ∗ φ)2 − µ4

4λ2
. (6.28)

Here, φ is a complex-valued field. Writing

φ = A+ iB , (6.29)

we obtain a system of two interacting real fields A and B:

L =
1
2

(∂µA∂
µA)2 +

µ2

2
A2 +

1
2

(∂µB ∂
µB)2

+
µ2

2
B2 − λ2

4
(A2 +B2)2 − µ4

4λ2
. (6.30)

The Lagrangian (6.28) is invariant under global U(1) transformations

φ→ φ′ = eieωφ . (6.31)

The corresponding SO(2) invariance of the Lagrangian (6.30) is given by

A→ A′ = A cos (eω) +B sin (eω) ,

B → B′ = −A sin (eω) +B cos (eω) . (6.32)

The total energy of the system is

E =
∫
d3x

[
1
2

(∂0A)2 +
1
2

(∇A)2 +
1
2

(∂0B)2 +
1
2

(∇B)2 + U

]
(6.33)
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where

U =
λ2

4

(
A2 +B2 − µ2

λ2

)2

. (6.34)

Equation (6.33) suggests that the ground state is attained for constant
fields A and B determined by the condition that U is minimized. By (6.34),
this condition is met on the circle

A2 +B2 =
µ2

λ2
. (6.35)

As with the system (6.16), switching-on interaction rearranges degrees of
freedom in this system. Tachyon modes disappear leaving behind oscillatory
modes. A new feature of the Goldstone model is that the resulting oscillatory
modes include not only massive modes but also massless ones. The system
also acquires stability at the cost of spontaneous symmetry breakdown. The
occurrence of massless modes is due to the fact that the spontaneously broken
group is continuous. This statement is known as the Goldstone theorem. The
resulting massless modes are called Goldstone modes.

The Goldstone theorem is most easily proved if φ is expressed in terms of
two real fields ρ and θ,

φ = ρ eiθ . (6.36)

Then (6.28) becomes

L =
1
2
ρ2 (∂µθ ∂

µθ) +
1
2

(∂µρ ∂
µρ) − U , (6.37)

where

U =
λ2

4
(
ρ2 − ρ2

0

)2
, (6.38)

ρ0 =
µ

λ
. (6.39)

By (6.38), the ground state is given by ρ = ρ0 and arbitrary θ. For definiteness,
we fix θ to be a constant θ0. Letting

ρ = ρ0 + !, θ = θ0 + ϑ , (6.40)

where ! and ϑ are perturbations about the equilibrium, we bring (6.37) to the
form

L =
1
2

(ρ0 + !)2 (∂µϑ∂
µϑ) +

1
2

(∂µ! ∂
µ!) − µ2 !2 − λµ!3 − λ2

4
!4 . (6.41)

We see that the free part of the Lagrangian

L0 =
1
2

(∂µ! ∂
µ!) − µ2 !2 +

1
2
(
ρ2
0 ∂µϑ∂

µϑ
)

(6.42)
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contains an oscillatory massive mode ! and a massless mode ρ0ϑ. The emer-
gency of the massless mode could be expected from geometric arguments. For
ρ = ρ0, the coordinate θ circles the bottom of the potential valley (6.38). The
absence of oscillations along θ is due to the fact that the curvature in this
direction is zero.

Even greater rearrangement of dynamical variables occurs in the Higgs
model

L = − 1
16π

FµνFµν +
1
2

(Dµφ)∗Dµφ+
µ2

2
φ∗φ− λ2

4
(φ∗φ)2 − µ4

λ2
. (6.43)

Here, Fµν = ∂µAν − ∂νAµ, and Dµφ = (∂µ − ieAµ)φ. This Lagrangian de-
scribes the interaction between the electromagnetic field and a complex scalar
field φ. The sign of the term (µ2/2) (φ∗φ) is such that φ is a tachyon. The
Lagrangian (6.43) is invariant under gauge transformations

φ′(x) = eieω(x)φ(x) ,
A′

µ(x) = Aµ(x) + ∂µω(x) . (6.44)

The total energy

E =
∫
d3x

[
1
8π

(E2 + B2) +
1
2
(D0φ)∗D0φ+

1
2
(Diφ)∗Diφ+

λ2

4
(φ∗φ− φ2

0)
2

]

(6.45)
is explicitly gauge invariant. Therefore, the ground state is infinitely degener-
ate. Indeed, the ground state is associated with an entire class of field config-
urations related by gauge transformations (6.44). We choose a particular field
configuration from this class and consider perturbations about it.

The first term of (6.45) is positive definite. The minimum of this term is
achieved for E = 0 and B = 0, which implies ,

Aµ = ∂µω . (6.46)

The covariant derivative terms (6.45) are minimized for

Dµφ = (∂µ − ie ∂µω)φ = 0 , (6.47)

whence
φ = φ0e

ieω . (6.48)

The constant φ0 is determined by the condition that the last term of (6.45)
is minimized. This term is positive definite, and vanishes for

φ = φ0 =
µ

λ
. (6.49)

In (6.46) and (6.48), ω is an arbitrary function, which implies that the
ground state is degenerate. Putting ω = 0, we select the ground state to be
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Aµ = 0, φ = φ0 . (6.50)

One may perturb the scalar field about φ0:

φ = φ0 + α+ iβ . (6.51)

Perturbations of the vector potential and the field strength about zero values
of these quantities will be denoted by the same symbols Aµ and Fµν . Keeping
only terms of the first order in perturbations, the covariant derivative becomes

Dµφ = ∂µα+ i ∂µβ − ieφ0Aµ . (6.52)

Since φ∗φ = (φ0 + α)2 + β2, the potential U , up to terms quadratic in α
and β, is

U =
λ2

4
(
φ∗φ− φ2

0

)2
=
λ2

4
(
2φ0α+ α2 + β2

)2
= µ2α2 , (6.53)

where (6.49) has been taken into account. Our concern is with terms of the
Lagrangian

L = − 1
16π

FµνFµν +
1
2

∣∣∂µα+ i∂µβ − ieφ0Aµ

∣∣2 − µ2α2 (6.54)

which are quadratic in perturbations:

− 1
16π

FµνFµν +
1
2
(∂µα∂

µα)−µ2α2+
e2φ2

0

2

(
Aµ − 1

eφ0
∂µβ

)(
Aµ − 1

eφ0
∂µβ

)
.

(6.55)
The mixed term Aµ∂µβ prevents a clear interpretation of this expression. To
remedy the situation, we define

aµ = Aµ − 1
eφ0

∂µβ . (6.56)

With this new field, the quadratic form (6.55) is diagonal:

L0 = − 1
16π

fµνfµν +
e2φ2

0

2
aµaµ +

1
2

(∂µα∂
µα) − µ2α2 , (6.57)

where fµν = ∂µaν − ∂νaµ.
To summarize, we come to the Lagrangian (6.57) containing only a massive

vector field aµ with mass

M = 4πeφ0 = 4π
e

λ
µ , (6.58)

and a massive real scalar field α with mass

m =
√

2µ . (6.59)
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The massless Goldstone field β disappears2. We see that the vector field aµ

acquires mass by absorbing the Goldstone field β.
The initial Higgs Lagrangian (6.43) was formulated in terms of a complex-

valued tachyon field φ having two real components, and a massless vector
field Aµ having two polarization degrees of freedom. Upon rearranging de-
grees of freedom, shown in (6.51) and (6.56), unstable modes disappear. The
rearranged Higgs system involves stable quantities: one massive vector field
aµ with three polarization degrees of freedom, and one massive scalar field α.
The number of field components is apparently preserved.

It is notable that the rearranged Lagrangian (6.57) is gauge invariant de-
spite the fact that aµ is massive. One can verify (Problem 6.1.3) that the
vector field aµ defined in (6.56) is gauge invariant by itself. The U(1) gauge
symmetry is not really broken, it is merely hidden through the Higgs mech-
anism. This is suggested by the persistence of the chief consequence of this
symmetry: the current jµ associated with the U(1) gauge group is still con-
served (Problem 6.1.4).

Problem 6.1.1. Let φ be a free tachyon field in a world with one temporal
and one spatial dimension. The retarded Green’s function for the equation

(
� − µ2

)
G(t, x) = 2δ(t) δ(x) (6.60)

obeys the retarded boundary condition: G(t, x) = 0 for t < 0. We define an
auxiliary function

g(t, x) = e−µtG(t, x) , (6.61)

where µ > 0. This function satisfies the equation

gtt − gxx + 2µ gt = 2δ(t) δ(x) (6.62)

where subscripts of g denote partial derivatives with respect to the coordinates
shown. To solve (6.62), we use the Fourier transform of g,

g(t, x) ∼
∫
dω dk

e−i(ωt−kx)

−2iµ ω − ω2 + k2
. (6.63)

Changing the integration variables k+ = ω+k and k− = ω−k, and introducing
the light cone coordinates x+ = t+ x and x− = t− x,

g(x−, x+) ∼
∫
dk+dk−

e−
i
2 (k+x−+k−x+)

k+k− + iµ (k+ + k−)
. (6.64)

Prove that the support of g(x−, x+) is the future light cone x+ > 0, x− > 0,
that is, g(x−, x+) = 0 for x+ < 0, or for x− < 0.

Proof Let x+ < 0. We carry out the integration over k− using the Cauchy
theorem for the closed contour composed of the real axis and a semicircle of
2 This can be shown not only approximately, but also exactly (Problem 6.1.2).
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large radius in the upper half-plane of the complex variable k− = ξ+ iζ. Since
the pole has coordinates

ξ = − µ2k+

k2
+ + µ2

, ζ = − µk2
+

k2
+ + µ2

, (6.65)

it does not arise for real k+ and ζ > 0, hence g = 0. Likewise, g = 0 for x− <
0, because the integral (6.64) is invariant under interchanging (x−, k+) →
(x+, k−).

Problem 6.1.2. What is the transformation which removes completely the
Goldstone field from the Higgs Lagrangian? Write down the transformed La-
grangian.

Answer Using local gauge invariance (6.44), one can render the complex-valued
field φ = α+ iβ real, φ = α (the so-called unitary gauge). With this in mind,
ω is chosen such that tan eω = β/α, as (6.32) suggests. The transformed
Lagrangian is

L = − 1
16π

FµνFµν +
1
2

(∂µα∂µα) +
e2

2
α2AµA

µ − U(α) (6.66)

where U is given by (6.19).

Problem 6.1.3. Show that the massive vector field aµ defined in (6.56) is
invariant under the local gauge transformations (6.44) with infinitesimal gauge
parameters ω.

Problem 6.1.4. (i) Consider the current jµ defined in (5.273) where φ and Aµ

are field variables of the Higgs model after the rearrangement represented by
(6.51) and (6.56). Prove that jµ is conserved. (ii) Show that this conservation
implies that the action for the rearranged Higgs model is invariant under the
U(1) gauge group.

Hint (i) Apply the Ward–Takahashi identity (5.279) to the rearranged Higgs
system. (ii) Use the Gell-Mann–Levy identity (5.282).

6.2 Radiation

Our starting point is the action for a single charged particle and an electro-
magnetic field:

S = −m0

∫
dτ

√
ż · ż −

∫
d4x

(
Aµj

µ +
1

16π
FµνF

µν

)
. (6.67)

Here, m0 stands for the mechanical mass of the bare particle, that is, an
imaginary particle devoid of its surrounding electromagnetic field. The Euler–
Lagrange equations read:
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Eµ = ∂νFµν + 4πjµ = 0 , (6.68)

ελ = m0a
λ − evµF

λµ = 0 . (6.69)

The field equation (6.68) is supplemented with the Bianchi identity

Eλµν = ∂λFµν + ∂νFλµ + ∂µF νλ = 0 . (6.70)

The challenge now is to find a simultaneous solution of equations (6.68)–
(6.70). We begin with (6.70) and (6.68) on the assumption that the world
line of the source zµ(s) is an arbitrary timelike smooth curve. We are already
aware of the general solution to equation (6.70):

Fµν = ∂µAν − ∂νAµ . (6.71)

Imposing the retarded boundary condition, we obtain a solution to equation
(6.68) in the form of the Liénard–Wiechert vector potential

Aµ = e
vµ

ρ
. (6.72)

However, the Liénard–Wiechert field strength

Fµν =
e

ρ2
(cµV ν − cνV µ) , (6.73)

V µ = vµ + ρ (
u

⊥ a)µ (6.74)

is singular on the world line. Hence, substituting the retarded solution of
Maxwell’s equations into the equation of motion of the particle (6.69) would
result in a divergent expression. One may consider this divergence as a man-
ifestation of infinite self-interaction in this system: a charged particle experi-
ences its own electromagnetic field which is infinite at the point of origin.

A possible cure for this difficulty is to regularize the Liénard–Wiechert
field. In order to analyze regularized expressions, it is convenient to use the
Noether identity (5.142),

∂µT
λµ =

1
8π

EλµνFµν +
1
4π

EµF
λµ +

∫ ∞

−∞
ds ελ(z) δ4 [x− z(s)] . (6.75)

Here, Tµν is the symmetric stress-energy tensor of this system,

Tµν = Θµν + tµν , (6.76)

Θµν =
1
4π

(
FµαF ν

α +
1
4
ηµνFαβF

αβ

)
, (6.77)

tµν = m0

∫ ∞

−∞
ds vµ(s) vν(s) δ4 [x− z(s)] , (6.78)
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and Eλµν , Eµ, and ελ are, respectively, the left-hand sides of equations (6.70),
(6.68), and (6.69).

What is the reason for invoking the Noether identity (6.75)? If we would
ignore the divergence, then ∂µT

λµ = 0 would imply Eλµν = 0, Eµ = 0, and
ελ = 0. Therefore, the local conservation law for the stress-energy tensor is
formally equivalent to the equation of motion for a bare particle (6.69) in which
a simultaneous solution to the field equations (6.70) and (6.68) is used. We will
see, however, that the equation ∂µT

λµ = 0 is more illuminating to describe the
structure of singular self-interactions. In particular, the form of Θµν provides
insight into the nature of integrable and nonintegrable singularities.

In this section, our discussion is centered around integrable singularities.
We may therefore be careless of regularization.

Substituting (6.73) and (6.74) into (6.77) gives:

Θµν =
e2

4πρ4

(
cµV ν + cνV µ − V 2cµcν − 1

2
ηµν

)
. (6.79)

Since V 2 = 1 + ρ2 (
u

⊥a)2, expression (6.79) splits into two parts:

Θµν = Θµν
I +Θµν

II , (6.80)

Θµν
I =

e2

4πρ4

(
cµV ν + cνV µ − cµcν − 1

2
ηµν

)
, (6.81)

Θµν
II = − e2

4πρ2
(

u

⊥a)2 cµ cν . (6.82)

The first part Θµν
I containing terms proportional to ρ−3 and ρ−4 may be

thought of as ‘near’ energy-momentum density, while the second part Θµν
II ,

which is proportional to ρ−2, is interpreted as ‘far’ energy-momentum density.
One can show (Problem 6.2.2) that the following equations hold off the world
line:

∂µΘ
µν
I = 0, ∂µΘ

µν
II = 0 . (6.83)

These local conservation laws imply that Θµν
I and Θµν

II are dynamically inde-
pendent off the world line. This fact was discovered by Claudio Teitelboim in
1970.

Because Θµν
II behaves like ρ−2 near the world line, this part of the stress-

energy tensor involves integrable singularities. Following Teitelboim, we call
Θµν

II the radiation.
What are characteristic features of the radiation? We first note that Θµν

II

leaves the source at the speed of light. Indeed, by (4.247), the surface element
of the future light cone C+ is dσµ = cµρ2dρ dΩ. Since cµ is a null vector,
the flux of Θµν

II through C+ vanishes, dσµΘ
µν
II = 0. This means that Θµν

II

propagates along rays of C+.
Another feature of the radiation is that the energy-momentum flux of

Θµν
II varies as ρ−2 implying that the same amount of energy-momentum flows

through spheres of different radii.
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Note that aµ = 0 implies Θµν
II = 0. The radiation arises only when charged

particles accelerate or decelerate.
These features of Θµν

II form the basis for practical implementations of the
radiation.

None of these features is shared by Θµν
I . Indeed, let dσµ be the surface

element of the future light cone C+, then

dσµΘ
µν
I =

e2

8πρ4
cνρ2dρ dΩ . (6.84)

The flux of Θµν
I through C+ is nonzero. Therefore, Θµν

I moves slower than
light. The propagation of Θµν

II and Θµν
I is shown in Fig. 6.2. One may conclude

that Θµν
II detaches from the source, while Θµν

I remains bound to it. In other
words, Θµν

I represents a part of the electromagnetic energy-momentum that
is dragged by the charge.

�
���

�
���

�
��

�
���

C+ C+

Fig. 6.2. Propagation of Θµν
II (left plot) and Θµν

I (right plot) with respect to the
future light cone C+

It is clear from (6.81) and (6.74) that Θµν
I falls with distance at least as

ρ−3. Therefore, Θµν
I yields the flux of energy-momentum which dies out with

distance. Note also that Θµν
I is nonvanishing for any motion of the source.

One may wonder whether it is possible to identify the degrees of freedom
related to the radiation directly in the Liénard–Wiechert field. Let us split
the field strength: F = FI + FII, where

FI =
e

ρ2
c ∧ v , (6.85)

FII =
e

ρ
c ∧ (

u

⊥a) . (6.86)

One may regard FI as a ‘generalized Coulomb field’ (or ‘velocity field’, or
‘near field’), and FII as the ‘radiation field’ (other names are ‘acceleration
field’ and ‘far field’). Note that ΘII contains only FII. Furthermore, when
built from FII, the invariants P and S are zero (Problem 6.2.4). This is the
reason for denoting FII as ‘null field’.
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The terms ‘near zone’ and ‘wave zone’ are still common in the literature.
One might define the wave zone as a domain far away from the source where
FII dominates over FI. The boundary between the near zone and the wave
zone is expressed in invariant terms by FI = FII. This boundary is given by the
intersection of a tubular hypersurface V 2 = 0 enveloping the world line and
a spacelike hyperplane Σ. It can be shown, however, that there is a direction
for which this boundary is separated from the source by an infinite distance
(Problem 6.2.6). This suggests that the notion of a wave zone is problematic.

One can show (Problem 6.2.5) that FI and FII are not dynamically inde-
pendent.

Furthermore, we learned in Sect. 4.6 that there is a (noninertial) frame of
reference where only FI is nonzero, while FII disappears, that is, |E| = e/ρ2

and B = 0 at each spacetime point. Recall that FII is eliminated by a local
SL(2,R) transformation which leaves the Liénard–Wiechert field F invariant.

Therefore, the radiation is determined not only by the field F as such but
also by the frame of reference in which F is measured. On the other hand,
Θµν given by (6.79) is not invariant under such SL(2,R) transformations. This
quantity carries information about both the field F and the frame which is
used to describe F .

To sum up, we refer to a part of the stress-energy tensor Θµν
II as radiation

if
(i) ∂µΘ

µν
II = 0 , (6.87)

(ii) cµΘ
µν
II = 0 , (6.88)

(iii) Θµν
II ∼ ρ−2 . (6.89)

It is conceivable that the energy flux produced by Θµν
II is directed inward

towards the field source resulting in energy gain rather than energy loss. One
may regard this as the absorption of radiation rather than its emission. An
alternate view in this case is that the emitted energy is negative: Θ00

II =
vµΘ

µν
II vν < 0. Two examples can be drawn from Problem 6.2.8 and Sect. 9.1.

There is no universally adopted terminology that distinguishes between Θ00
II >

0 and Θ00
II < 0. We will reserve the term ‘radiation’ for the case in which the

emitted energy is positive.
In Sect. 10.2, we will analyze electrodynamics in spacetimes of dimension

D + 1 other than 4. The discussion of this section will be applicable to this
analysis if we replace a sphere enclosing the source by a (D − 1)-dimensional
sphere. Then condition (iii) becomes

(iii) Θµν
II ∼ ρ1−D . (6.90)

In addition, one would like to require that Θµν
I falls more rapidly than Θµν

II :

(iv) Θµν
I = o

(
ρ1−D

)
, ρ→ ∞ . (6.91)

This condition ensures thatΘµν
II is distinguished asymptotically fromΘµν

I . The
necessity of condition (iv) is demonstrated in Problem 6.2.9.
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Problem 6.2.1. Let the frame of reference be the instantaneously comoving
inertial frame of a radiated charge. Consider Θ00

II in this frame. Is Θ00
II positive

definite? What is the angular dependence of radiated energy?

Answer The vector (
u

⊥a)µ is spacelike, (
u

⊥a)2 = a2+(a·u)2 ≤ 0. We choose the
z-axis to be directed along the three-vector a, which is defined in this frame
by aµ = (0,a). Then angular dependence of radiated energy is proportional
to a2sin2θ, where θ is the polar angle between a and radius vector from the
emission point to the observation point. There is no radiation along a. The
intensity of radiated energy is maximal along rays perpendicular to a.

Problem 6.2.2. Using the technique developed in Sect. 4.5, verify that

∂µΘ
µν
I = 0, ∂µΘ

µν
II = 0 . (6.92)

Problem 6.2.3. Verify the Bianchi identity for Fµν
I and Fµν

II

∂λFµν
I,II + ∂νFλµ

I,II + ∂µF νλ
I,II = 0 . (6.93)

It follows that Fµν
I and Fµν

II can be derived from vector potentials Aµ
I and

Aµ
II. Find Aµ

I and Aµ
II.

Answer
Aµ

I =
e

ρ
cµ, Aµ

II = − e
ρ
uµ . (6.94)

Problem 6.2.4. Evaluate P and S for FII. Prove that P = 0 and S = 0.

Problem 6.2.5. Show that

∂µF
µν
I = −∂µF

µν
II =

2e (a · c)
ρ2

cν . (6.95)

Verify that �Fµν
II is nonzero. These results suggest that FI and FII are not

dynamically independent parts of the Liénard–Wiechert field.

Problem 6.2.6. The boundary between near and wave zones is defined by the
condition FI = FII. Bring this condition to the form V 2 = 0. Show that there
is a direction uµ to the observation point so that the boundary is separated
from the source by an infinite distance.

Answer uµ is aligned with aµ.

Problem 6.2.7 Bound and emitted angular momenta. The angular momen-
tum density

Mλµν = xλΘµν − xµΘλν (6.96)

obeys the local conservation law

∂νM
λµν = 0 (6.97)
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if Θµν is symmetric and conserved. Let Θµν be the symmetric stress-energy
tensor of electromagnetic field expressed in terms of the Liénard–Wiechert
field. The following decomposition

Mλµν = Mλµν
I +Mλµν

II , (6.98)

Mλµν
I = zλΘµν

I − zµΘλν
I +Rλςµν −Rµςλν , (6.99)

Mλµν
II = zλΘµν

II − zµΘλν
II +Rλϑµν −Rµϑλν , (6.100)

proposed by Carlos López and Danilo Villarroel in 1975, splits Mλµν into
bound and emitted parts. Here, ςλµ and ϑλµ are two parts of Θλµ

I ,

ςµν = − e2

4πρ4

(
cµcν − cµvν − vµcν +

1
2
ηµν

)
, (6.101)

ϑµν =
e2

4πρ3

[
cµ (

u

⊥a)ν + cν (
u

⊥a)µ

]
. (6.102)

With these definitions, the appropriate spatial behavior of Mλµν
I and Mλµν

II is
ensured: Mλµν

I = O(ρ−3), and Mλµν
II ∼ ρ−2, as ρ → ∞. Furthermore, Mλµν

II

obeys the condition
cνM

λµν
II = 0 , (6.103)

which implies that the flux of Mλµν
II through the future light cone is zero,

while

cνM
λµν
I =

e2

8πρ4
(zλcµ − zµcλ) . (6.104)

Prove that both Mλµν
I and Mλµν

II are separately conserved off the world
line,

∂νM
λµν
I = 0 , (6.105)

∂νM
λµν
II = 0 . (6.106)

Hint One readily obtains

∂νϑ
λν =

e2

2πρ4
(a · c) cλ , (6.107)

whence it follows
∂ν

(
Rλϑµν −Rµϑλν

)
= 0 . (6.108)

Observing that
∂ν

(
zλΘµν

II − zµΘλν
II

)
= 0 , (6.109)

one arrives at (6.106). Combining (6.106) with (6.97), one gets (6.105).
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Problem 6.2.8. Let a particle be coupled to a massless scalar field Φ. Con-
sider a closed system governed by the action

S = −m0

∫
ds

√
v · v − g

∫
dsΦ(z)

√
v · v +

1
8π

∫
d4x ∂µΦ∂

µΦ . (6.110)

The Euler–Lagrange equation for Φ reads:

�Φ = −4πg
∫ ∞

−∞
ds
√
v(s) · v(s) δ4 [x− z(s)] (6.111)

A retarded solution to this equation is Φ = −g/ρ. Evaluate Θµν
II for this field.

Answer

Θµν
II =

g2

4π
(a · c)2
ρ2

cµcν . (6.112)

Problem 6.2.9. Radiation in a world with one temporal and one spatial di-
mension. Using results of Problem 4.7.2, show that the stress-energy tensor

Θµν =
1

ΩD−2

(
FµαF

α
ν +

ηµν

4
FαβF

αβ
)

(6.113)

can be expressed in terms of the retarded field as

Θµν =
1
4
e2 (cµvν + cνvµ − cµcν) . (6.114)

Is it correct to interpret − 1
4e

2cµcν as radiation?

6.3 Energy-Momentum Balance

We return now to the Noether identity (6.75). Assume that Eλµν = 0 but Eµ

is nonzero. Then Fµν may be regarded as a regular field vanishing sufficiently
fast at spatial infinity. Substitute (6.76)–(6.78) into (6.75), and integrate this
equation over a domain of spacetime bounded by two parallel spacelike hyper-
planes Σ′ and Σ′′ with both normals directed towards the future, and a tube
TR of large radius R. Applying the Gauss–Ostrogradskǐı theorem, we obtain

(∫
Σ′′

−
∫

Σ′
+
∫

TR

)
dσµΘ

λµ+m0

∫ s′′

s′
ds aλ =

∫ s′′

s′
ds ελ +

1
4π

∫
U
d4x Eµ F

λµ .

(6.115)
Here, the relation

vµ ∂

∂xµ
δ4 [x− z(s)] = −dz

µ

ds

∂

∂zµ
δ4 [x− z(s)] = − d

ds
δ4 [x− z(s)] (6.116)

has been used to evaluate the integral of ∂µt
λµ.
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However, our concern here is with the case Eµ = 0. If Fµν is the Liénard–
Wiechert field, then (6.115) is divergent. To proceed further with this equa-
tion, a regularization is essential. The singularity must be smeared out over
a region bounded by a tube Tε of small radius ε enclosing the world line. In
addition, we should assume that the mechanical mass is a function of regu-
larization: m0 = m0(ε).

Note that the regularization scheme may be arbitrary. The only require-
ment is that it respect the symmetries of the action (6.67).

In this section, we employ a regularization known as a cutoff. The cutoff
prescription is to put Fµν = 0 within a tube enclosing the world line. To
be more specific, we define Reg ελ by an appropriate regularization of the
left-hand side of equation (6.115):
(∫

Σ′′(ε)

−
∫

Σ′(ε)

+
∫

TR

)
dσµΘ

λµ +m0(ε)
∫ s′′

s′
ds aλ =

∫ s′′

s′
dsReg ελ .

(6.117)
The cutoff prescription is achieved by perforating the hyperplanes Σ′ and
Σ′′. Here, Σ′(ε) and Σ′′(ε) are perforated hyperplanes with holes of radius ε
around the points of intersection with the world line. The function m0(ε) is
chosen to make the left-hand side of (6.117) convergent in the limit ε→ 0.

We now assume that
Reg ελ = 0 . (6.118)

This gives

lim
ε→0

[
m0(ε) vλ(s)

∣∣∣∣
s′′

s′
+

(∫
Σ′′(ε)

−
∫

Σ′(ε)
+
∫

TR

)
dσµΘ

λµ

]
= 0 . (6.119)

To ensure Lorentz invariance of this cutoff procedure, we take a hyperplane
Σ whose normal is directed along the world line. Suppose that a world line
zµ(s) is intersected by such a hyperplane Σ at an instant s. We define the
lagging instant ŝ = s− ε with an infinitesimal time lag ε, and draw the future
light cone C+ from zµ(ŝ). We then delete the set of all points on Σ bounded
by the intersection of Σ and C+. This gives an invariant (coordinate free) hole
on Σ, and renders Σ the desired perforated hyperplane Σ(ε).

The coordinates xµ of the hole are determined from the system of equations

xµ − ẑµ = ρ ĉµ ,

v ·
(
x− z

)
= 0 , (6.120)

which describe, respectively, the future light cone C+ drawn from ẑµ, and the
hyperplane Σ which is intersected along its normal by the world line at zµ.
(We denote vectors at the lagging instant ŝ by symbols with carets.) It follows
that

ρ =
�

v · ĉ , (6.121)
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where � is an invariant quantity having dimension of length,

� = v · (z − ẑ) . (6.122)

Expanding ẑµ in powers of ε,

ẑµ = zµ − ε vµ +
ε2

2
aµ − ε3

6
ȧµ + · · · , (6.123)

and combining with

v2 = 1, v · a = 0, v · ȧ = −a2 , (6.124)

we have
� = ε+O(ε3) . (6.125)

Consider the regularized four-momentum of the electromagnetic field

Pλ =
∫

Σ(ε)

dσµΘ
λµ . (6.126)

The evaluation of Pλ would be simplified if the hyperplane Σ could be
replaced by the surface formed by the future light cone C+ drawn from the
world line, and by a tube Tρ which is separated from the world line by a fixed
retarded distance ρ = const. A close look at Fig. 6.3 shows that this is indeed
possible. Let V be a region bounded by a perforated spacelike hyperplane
Σ(ε), a truncated light cone C+(ε) with vertex at ẑµ and truncation surface
defined in (6.120), and a tube TR of large radius R enveloping the world line.
Since the region V is free of sources, we have ∂µΘ

λµ = 0, and

C+(ε)

TR

Σ(ε)

V�

•

•ẑµ

zµ

vµ

Fig. 6.3. Integration over a perforated hyperplane Σ(ε) can be changed for that
over a truncated light cone C+(ε) and a tube TR
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∫
V
d4x ∂µΘ

λµ =

(∫
C+(ε)

+
∫

TR

−
∫

Σ(ε)

)
dσµΘ

λµ = 0 . (6.127)

The minus sign of the last integral signifies that normal of Σ(ε) is vµ which is
directed into the region V. We see that the flux of Θλµ flowing into V through
Σ(ε) equals the sum of fluxes flowing outward V through C+(ε) and TR.

A remarkable fact is that the integral over C+(ε) is completely due to the
contribution of Θλµ

I . By (6.88), Θλµ
II yields zero flux through the future light

cone. Using (6.84) we get
∫

C+(ε)

dσµΘ
λµ =

∫
C+(ε)

dσµΘ
λµ
I =

e2

8π

∫
dΩ ĉλ

∫ ∞

ρ

d!

!2
. (6.128)

The lower limit of the last integral is the retarded radius ρ of the truncation
surface which is determined from (6.121) and (6.122). The rest of integration
is done with the aid of (4.250)–(4.252). The result is

e2

8π�

∫
dΩ ĉλ (ĉ · v) =

e2

6�
[
4 v̂λ (v̂ · v) − vλ

]
. (6.129)

Taking into account the expansion of v̂µ in powers of ε

v̂µ = vµ − ε aµ +
ε2

2
ȧµ − . . . (6.130)

together with (6.124) and (6.125), we obtain
∫

C+(ε)

dσµΘ
λµ =

e2

2ε
vλ − 2

3
e2aλ +O(ε) . (6.131)

We see that the four-momentum associated with Θµν
I can be recast in the

form
Pµ

I =
∫

C+(ε)

dσαΘ
µα
I , (6.132)

which is equal to that evaluated using the general definition (6.126). Teitel-
boim proposed to identify Pµ

I as bound four-momentum. By (6.131),

Pµ
I =

e2

2ε
vµ − 2

3
e2aµ . (6.133)

The divergent factor

δm =
e2

2ε
(6.134)

is called the self-energy. Equation (6.133) suggests that δm is a mass of elec-
tromagnetic origin. If the charge is at rest, then δm is energy of the Coulomb
field (Problem 6.3.1).
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A crucial step is to add up the mechanical mass m0 and the self-energy
δm, and assume that

m = lim
ε→0

[m0(ε) + δm] (6.135)

is finite and positive. This procedure is known as mass renormalization. The
constant m defined in (6.135) is called the renormalized mass.

One can assemble appropriate terms in the square brackets of (6.119) to
give

pµ = mvµ − 2
3
e2aµ . (6.136)

This four-momentum is attributed to the dressed particle.
The remaining integrals in (6.119) are convergent, so that regularization

is unnecessary. Let us evaluate the flux of Θµν
II through a spacelike hyperplane

Σ,

Pµ =
∫

Σ

dσαΘ
µα
II . (6.137)

It is convenient to deform the surface of integration from Σ to the more
geometrically motivated surface formed by combining the future light cone
with a tubular hypersurface Tρ enclosing the world line. The area of Tρ scales
as ρ2. On the other hand, Θµν

II behaves as ρ−2. Turning back to Fig. 6.3,
we see that only this part of the stress-energy tensor makes a nonvanishing
contribution to the flux through TR for large R, hence

∫
Σ

dσαΘ
µα
II = lim

R→∞

∫
TR

dσαΘ
µα . (6.138)

Substitution of (4.249) and (6.82) in (6.138) gives

Pµ =
∫

TR

dσαΘ
µα
II = − e2

4π

∫ s

−∞
dτ

∫
dΩ

[
a2 + (a · u)2

]
cµ . (6.139)

The solid angle integration is made with the help of (4.250)–(4.252). The
result is

Pµ = −2
3
e2
∫ s

−∞
dτ a2vµ . (6.140)

For this expression to be convergent, the integrand must fall off sufficiently
rapidly as τ → −∞. The pertinent asymptotic condition, proposed by Rudolf
Haag, reads: every charge must move uniformly in the remote past,

lim
s→−∞

aµ(s) = 0 . (6.141)

Differentiating (6.140) with respect to s, we obtain the four-momentum
emitted by an accelerated charge per unit proper time:

Ṗµ = −2
3
e2a2vµ . (6.142)
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In a particular Lorentz frame, where Pµ = (E ,P), vµ = γ (1,v), and dt = γ ds,
the rate of radiated energy is

dE
dt

= v · Ṗ = −2
3
e2a2 . (6.143)

This is the relativistic generalization of the Larmor formula

dE
dt

=
2
3
e2 a2 , (6.144)

which gives the rate of radiated energy in an instantaneously comoving Lorentz
frame.

Let us extend this analysis to a system of N charged particles governed
by the action

S = −
N∑

I=1

mI
0

∫
dτI

√
żI · żI −

∫
d4x

(
Aµj

µ +
1

16π
FµνF

µν

)
. (6.145)

We now have the retarded solution to Maxwell’s equations

Fµν =
N∑

I=1

eI

ρ2
I

(cµI V
ν
I − cνI V

µ
I ) , (6.146)

which is the sum of one-particle Liénard–Wiechert fields (6.73). For simplic-
ity, we omit solutions to the homogeneous field equations describing a free
electromagnetic field Fµν

0 . If need be, this field could be taken into account
in the final result as a readily calculable correction.

The stress-energy tensor becomes

Θµν =
∑

I

Θµν
I +

∑
I

∑
J

Θµν
IJ , (6.147)

where Θµν
I is comprised of the field Fµν

I due to the Ith charge, and Θµν
IJ

contains mixed contributions of the fields Fµν
I and Fµν

J generated by the Ith
and the Jth charges.

One can show (Problem 6.3.2) that

∂µΘ
µν
IJ = 0 . (6.148)

Hence, a N -particle generalization of (6.119) reads

lim
ε→0

[
N∑

I=1

mI
0(ε) v

µ
I (sI)

∣∣∣∣
s′′

I

s′
I

+

(∫
Σ′′(ε)

−
∫

Σ′(ε)

+
∫

TR

)
dσαΘ

µα

]
= 0 ,

(6.149)
where Θµν is given by (6.147).
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Two modifications of the single particle procedure are required. First, the
invariant cutoff prescription must be extended to the case of N singular world
lines. Second, the mixed terms of the stress-energy tensor Θµν

IJ should be
appropriately integrated.

Suppose that the world lines are all smooth timelike curves. Consider an
integration domain bounded by two spacelike hypersurfaces Σ′ and Σ′′. Be-
cause Σ′ and Σ′′ are arbitrary, we may require that each world line intersect
Σ′ and Σ′′ at right angles. Such hypersurfaces will be called locally adjusted.
Let a smooth locally adjusted hypersurface Σ be intersected by a world line
at a point zµ

I . In the vicinity of zµ
I , this hypersurface is approximated by a

tangent hyperplane whose normal is directed along the world line. We now re-
peat the steps by which the perforation proceeds to conclude that the resulting
small hole in Σ(ε) is an invariant construction.

To integrate the bound part of Θµν
I , we replace the perforated hypersurface

Σ(ε) by a truncated light cone C+(ε). This gives an expression for the bound
four-momentum of the type (6.133). As a consequence, N dressed particles
arise, each possessing the four-momentum

pµ
I = mI v

µ
I − 2

3
e2I a

µ
I . (6.150)

When the Ith charge is accelerated, it radiates the electromagnetic four-
momentum

Pµ
I = −2

3
e2I

∫ sI

−∞
dτI a

2
I v

µ
I . (6.151)

To derive this result, we need no regularization as before. A tube enclosing
the Ith world line is the most appropriate integration surface.

We now turn to a mixed term Θµν
IJ . Evidently this term is singular on both

Ith and Jth world lines. Because the leading singularity is a pole ρ−2, any
Θµν

IJ is integrable. We therefore may substitute Σ(ε) by two tubes TI(ε) and
TJ(ε) of infinitesimal radius ε enclosing these world lines (one of these tubes is
depicted in Fig. 6.4) to evaluate the four-momentum ℘µ of the mixed terms.
One can show (Problem 6.3.3) that

℘µ
I =

∫
TI(ε)

dσα

∑
J

Θµα
IJ = −eI

∫ sI

−∞
dτI

∑
J

Fµν
IJ (zI) vI

ν(τI) , (6.152)

where Fµν
IJ (zI) is the Liénard–Wiechert field (6.146) due to the Jth charge,

which is taken at the point zI where the Ith charge is located. To interpret ℘µ
I ,

one observe that expression (6.152) represents the four-momentum extracted
from an external field Fµν

IJ (zI) during the whole past history of the Ith charge
prior to the instant sI . To put it differently, ℘µ

I is the four-momentum pro-
duced by an external Lorentz force

fµ
I (zI) = eI

∑
J

eJ

[vJ · (zJ − zI)]2
[(VJ · vI) c

µ
J − (cJ · vI)V

µ
J ] (6.153)
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zµ
I (sI)

Σ(ε) Σ(ε)

TI(ε)

C+

Fig. 6.4. A tube TI(ε) which can be used as an integration surface

during that half-infinite period,

℘µ
I = −

∫ sI

−∞
dτI f

µ
I (zI) . (6.154)

We assume that world lines are nonintersecting, and hence that the external
Lorentz force fλ

I (zI) defined in (6.153) is regular.

TR
��

�

Fig. 6.5. Contribution to the flux through a tube TR of large radius R is due to
the affair in the remote past

Let us return to (6.149). If we impose the asymptotic condition (6.141),
then the integral over TR approaches zero as R → ∞. Indeed, as Fig. 6.5
suggests, the flux of the radiation through TR vanishes because world lines
become straight in the remote past (aµ → 0), while other parts of the stress-
energy tensor fall more rapidly than R−2, and hence their contribution to this
flux disappear. Therefore, (6.149) becomes

[
mI v

µ
I (s) − 2

3
e2I a

µ
I (s)

]∣∣∣∣∣
s′′

I

s′
I

− 2
3
e2I

∫ s′′
I

s′
I

dsI a
2
I v

µ
I −

∫ s′′
I

s′
I

dsI f
µ
I = 0 , (6.155)
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where expressions (6.150), (6.151), and (6.154) are used, terms of identical
structure are collected, and each term of the sum over I is equated to zero.

Let s′′I = s′I +∆s where ∆s is a short period, then (6.155) becomes

∆pµ
I +∆Pµ

I = fµ
I ∆s . (6.156)

This is the desired energy-momentum balance: the four-momentum ∆℘µ =
−fµ∆s which is extracted from an external field during the period of time
∆s is distributed between the four-momentum of a dressed particle ∆pµ and
the four-momentum carried away by radiation ∆Pµ.

Problem 6.3.1. Evaluate the self-energy δm of a static point charge e.

Answer

δm =
1
8π

∫
d3xE2 =

1
8π

∫
d3x

e2

r4
=
e2

2
lim
ε→0

∫ ∞

ε

dr

r2
= lim

ε→0

e2

2ε
. (6.157)

Problem 6.3.2. Prove (6.148).

Problem 6.3.3. Prove (6.152).

Hint Use expressions (4.249) and (4.247) for the surface elements of a tube
Tρ and the future light cone C+. Assume that world lines of the Ith and Jth
particles are widely separated in the remote past. This assumption implies
the vanishing of the surface integral over the future light cone C+ drawn from
a worldline point in the remote past, displayed in Fig. 6.4.

Problem 6.3.4. Evaluate the emitted four-momentum Pµ for a scalar field
discussed in Problem 6.2.8.

Answer

Pµ = −g
2

3

∫ s

−∞
dτ a2vµ . (6.158)

Problem 6.3.5. Find the self-energy δm for a scalar field discussed in Prob-
lem 6.2.8.

Answer

δm = −g
2

2ε
. (6.159)

Note that δm < 0.

Problem 6.3.6. Derive the four-momentum of a dressed particle interacting
with a scalar field discussed in Problem 6.2.8.

Answer
pµ = mvµ − 1

3
g2aµ . (6.160)
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6.4 The Lorentz–Dirac Equation

Let us write (6.155) in differential form

maµ − 2
3
e2
(
ȧµ + vµa2

)
= fµ . (6.161)

This third-order differential equation for zµ is called the Lorentz–Dirac equa-
tion.

In view of identities

v2 = 1, v · a = 0, v · ȧ = −a2 , (6.162)

equation (6.161) can be brought to the form

v

⊥ (ṗ− f) = 0 , (6.163)

where
v

⊥ is the projection operator on a hyperplane with normal vµ, pµ the
four-momentum of a dressed particle defined in (6.136), and fµ an external
four-force.

It was established in Sect. 2.1 that (6.163) is Newton’s second law em-
bedded in Minkowski space. We see that a dressed particle is an object with
four-momentum pµ defined in (6.136), whose behavior is governed by New-
ton’s second law. The structure of (6.163) makes it clear that a dressed particle
experiences only an external force fµ. This equation contains no term through
which the dressed particle interacts with itself.

The state of a dressed particle is determined by its position in Minkowski
space zµ, and by its four-momentum

pµ = m (vµ − τ0 a
µ) . (6.164)

Here, τ0 stands for a characteristic time interval

τ0 =
2
3
e2

m
, (6.165)

which is τ0 ≈ 6 · 10−24 s if we choose e and m to be the charge and mass of a
real electron.

We point out that the energy of a dressed particle p0 is indefinite quantity.
Indeed, in a particular Lorentz frame,

p0 = mγ
[
1 − τ0 γ

3 (a · v)
]
. (6.166)

The fact that p0 is not positive definite is scarcely surprising. Recall that pµ

is the sum of two vectors pµ = m0v
µ +Pµ

I . The bound four-momentum Pµ
I is

a timelike future-directed vector, while the four-momentum of a bare particle
m0v

µ is a timelike past-directed vector. This is because m0(ε) < 0 for small
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ε, as (6.135) suggests. Assuming that m0v
µ + Pµ

I is a timelike vector, one
recognizes that the time component of this vector can have any sign.

On the other hand, equation (6.161) merely expresses local energy-momen-
tum balance:

ṗµ + Ṗµ = fµ . (6.167)

In a particular Lorentz frame, we write pµ = (p0,p), Pµ = (E ,P), fµ =
γ (F · v,F), γ ds = dt, and v dt = dz. Then the time component of (6.167)
becomes

dp0 + dE = F · dz , (6.168)

which expresses local energy balance. This equation tells us that the rate of
work done by an external force is equal to the rate of change in dressed particle
energy plus the rate of radiated energy. Recall that the dressed particle energy
p0 is indefinite, and hence an increase in velocity does not necessarily increase
p0.

The four-momentum of a free dressed particle pµ need not be constant.
This fact is consistent with translation invariance in the absence of external
forces. Translation invariance implies that pµ +Pµ = const, rather than that
pµ = const, which is immediately evident from (6.167) in the case that fµ = 0.

The rest mass
m = p · v (6.169)

characterizes the properties of a dressed particle at rest. This is a Lorentz
invariant conserved quantity equal to the renormalized mass. By contrast, the
mass M defined by

M2 = p2 (6.170)

is not necessarily constant. Indeed, by (6.164),

M2 = m2
(
1 + τ2

0 a
2
)
. (6.171)

We see that M depends on acceleration. M and m agree when the world line
of the dressed particle is straight.

Suppose that the acceleration of a dressed particle exceeds the critical
value,

a2τ2
0 = −1 . (6.172)

Then the dressed particle becomes a tachyon, that is, an object whose four-
momentum is spacelike, p2 < 0. It should be kept in mind that this does not
imply superluminal motion. The potentially tachyonic nature of a dressed par-
ticle results from the fact that the curvature of its world line can be excessively
high.

The Lorentz–Dirac equation is not invariant under time reversal s → −s.
Indeed, this equation involves both aµ, whose transformation law is aµ → aµ,
and ȧµ, which transforms according to ȧµ → −ȧµ. Hence, the dynamics of
dressed particles is irreversible.
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In the limit v → 0, only the space component of the Lorentz–Dirac equa-
tion survives,

mv̇ − 2
3
e2 v̈ = f , (6.173)

where the dots indicate derivatives with respect to t. This nonrelativistic
relation is known as the Abraham–Lorentz equation. One can write (6.173)
in the form

ṗ = f (6.174)

where
p = mv − 2

3
e2 a . (6.175)

While the Abraham–Lorentz equation (6.173) is linear, the Lorentz–Dirac
equation (6.161) is nonlinear. This poses severe problems for obtaining exact
solutions to (6.161). However, this equation becomes linear for straight line
motion. In that case,

vµ = (coshα,n sinhα) , (6.176)

where α is an unknown function of the proper time s, and n is a unit vector
along the direction of motion. Differentiation of (6.176) gives

aµ = α̇ (sinhα,n coshα) , a2 = −α̇2 , (6.177)

and
ȧµ = α̈ (sinhα,n coshα) + α̇2 (coshα,n sinhα) . (6.178)

We then assume that

fµ = f (sinhα,n coshα) , (6.179)

where f is a scalar function of s, zµ, and vµ. This four-force has the required
direction and is orthogonal to the four-velocity, f · v = 0.

Entering (6.176)–(6.179) back into (6.161), we obtain a linear equation

mα̇− 2
3
e2 α̈ = f . (6.180)

This equation bears a formal similarity to the Abraham–Lorentz equation,
even though it is fully relativistic.

Equation (6.180) can be integrated once to give

α̇(s) = es/τ0

[
C − 1

mτ0

∫ s

0

dσ e−σ/τ0f(σ)
]
. (6.181)

If α̇(s) is to remain finite as s→ ∞, one takes

C =
1
mτ0

∫ ∞

0

dσ e−σ/τ0f(σ) , (6.182)
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and so
α̇(s) =

1
mτ0

∫ ∞

0

dσ e−σ/τ0f(s+ σ) . (6.183)

Assuming that f vanishes as s→ ∞, we have α̇(∞) = 0, and

lim
s→∞

aµ(s) = 0 . (6.184)

This asymptotic condition is inherent in scattering problems.
If f is a known function of s, then (6.183) can be integrated again, and

the result is a solution to the one-dimensional Lorentz–Dirac equation with
this external force.

Similar arguments can be applied to the Abraham–Lorentz equation
(6.173) to obtain

ma(t) =
∫ ∞

0

du e−u f(t+ τ0u) (6.185)

and
lim

t→∞
a(t) = 0 . (6.186)

If f is a function of z and v, then (6.185) is an integro-differential equation
stemming from the Abraham–Lorentz equation and the asymptotic condition
(6.186).

Problem 6.4.1. Using the results of Problem 1.6.2, find time and space
components of the second term in (6.161).

Answer

−2
3
e2 γ5

[
3γ2(v · a)2 + v · ȧ

]
,

−2
3
e2 γ3

{
ȧ + 3γ2 (v · a) [a + v (v · a)γ2] + v γ2 (v · ȧ)

}
. (6.187)

These expressions (apart from the factor of γ) were derived by Max Abraham
in 1904.

Problem 6.4.2. Take the scalar product of (6.161) with aµ. This gives

m
[
a2 − τ0 (a · ȧ)

]
= m

(
a2 − τ0

2
d

ds
a2

)
= f · a . (6.188)

With this in mind, convert the Lorentz–Dirac equation (6.161) to an integro-
differential equation similar to (6.185).

Answer
ma2(s) =

∫ ∞

0

dσ e−σ (f · a)
(
s+

τ0
2
σ
)
. (6.189)

Problem 6.4.3. Let a dressed particle be moving in a constant homogeneous
magnetic field B. Find a damped solution to the Abraham–Lorentz equation
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(6.173) in an inertial frame where B is parallel to the x3-axis, and the initial
four-velocity is vµ = γ (1, V, 0, 0), V � 1.

Answer

v1 = V exp (−νt) cos (κt) , v2 = V exp (−νt) sin (κt) , (6.190)

ν =
1

2τ0

{[
1
2

+
1
2
(
1 + 16τ2

0ω
2
)1
2

]1
2

− 1

}
, κ =

1
2τ0

[
−1

2
+

1
2
(1 + 16τ2

0ω
2)

1
2

]1
2

,

(6.191)
and ω = eB/m. If ω is of the same order of magnitude as 1/τ0, then the
dressed particle will spiral in toward the center, and lose almost all its energy
in several revolutions.

Problem 6.4.4. Let a nonrelativistic dressed particle be driven by a constant
external force f = −mω2

0 x. Find a damped solution to the Abraham–Lorentz
equation (6.173) in an inertial frame where f is parallel to the x1-axis, and
the initial conditions are zµ = (0, 0, 0, 0) and vµ = γ (1, V, 0, 0), V � 1.

Answer
z1 =

V

κ
exp (−νt) sin (κt) , (6.192)

ν =
ω2

0

2
(M +N)2 , κ =

√
3ω2

0

2τ0

(
M2 −N2

)
, (6.193)

M =




τ0
2ω2

0

+

[(
τ0

2ω2
0

)2

+
1

27ω6
0

]1
2




1
3

, N =




τ0
2ω2

0

−
[(

τ0
2ω2

0

)2

+
1

27ω6
0

]1
2




1
3

.

(6.194)

6.5 Alternative Methods of Deriving the Equation of
Motion for a Dressed Charged Particle

There are several alternative methods of deriving the Lorentz–Dirac equation.
We outline two of them below.

We first consider a regularization prescription of a singular retarded field
through introducing advanced fields following Dirac’s original 1938 approach.

Let us begin with the equation of motion for a bare charged particle

m0a
µ = evνF

µν(z) , (6.195)

where Fµν = Fµν
ret + Fµν

ext, F
µν
ret is the retarded self-field due to the charge in

question, and Fµν
ext an external field created by other charges. We can write

Aµ
ret =

1
2

(Aµ
ret −Aµ

adv) +
1
2

(Aµ
ret +Aµ

adv) , (6.196)
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where Aµ
adv is the corresponding advanced vector potential. In symbolic form,

Aret = A(−) +A(+) . (6.197)

Expressions (4.196) and (4.197) indicate that the retarded vector potential
generated by a delta-function source behaves similar to the advanced vector
potential in the vicinity of the source. Therefore, A(−) is less singular than
Aret and Aadv, while A(+) shares the singular behavior of Aret and Aadv.

With reference to Problem 4.4.2, we write the regularized part of the vector
potential

Aµ
(−)(x) = 2π

∫
d4y D(x− y) jµ(y) , (6.198)

whereD(x) is the Green’s function of the homogeneous wave equation, defined
in (4.166),

2πD(x) = sgn(x0) δ(x2) . (6.199)

Let jµ(x) be the current of a single point charge (4.204), then

Aµ
(−)(x) = 2πe

∫ ∞

−∞
dτ vµ(τ)D[x− z(τ)] . (6.200)

Denoting Rµ = xµ − zµ(τ), we evaluate the regularized part of the field
strength:

Fµν
(−)(x) = 2πe

∫ ∞

−∞
dτ

(
dR2

dτ

)−1
d

dτ
D(R)

[
vν(τ)

∂R2

∂ xµ
− vµ(τ)

∂R2

∂ xν

]
.

(6.201)
Since

dR2

dτ
= −2R · v, ∂R2

∂ xν
= 2Rν , (6.202)

we have

Fµν
(−)(x) = 2πe

∫ ∞

−∞
dτ D(R)

d

dτ

(
Rµvν −Rνvµ

R · v

)
. (6.203)

Let the observation point xµ be on the world line, xµ = zµ(s). All other
points on the world line are separated from xµ by timelike intervals. Accord-
ingly, the delta-function in (6.199) should be understood as the limit

δ(R2) = lim
ε→0

δ(R2 − ε2) . (6.204)

Besides, we can represent the argument of the signum function in (6.199) as
R0 = R · v.

We now write τ = s + σ, and consider the intergand for a small interval
σ. Using the expansions
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zµ(s+ σ) = zµ + σ vµ +
σ2

2
aµ +

σ3

6
ȧµ + · · · , (6.205)

vµ(s+ σ) = vµ + σ aµ +
σ2

2
ȧµ + . . . , (6.206)

where the vectors on the right-hand side refer to the instant s, we find

Rµ = zµ − zµ(s+ σ) = −σ
(
vµ +

σ

2
aµ +

σ2

6
ȧµ

)
+ · · · (6.207)

It follows that

Rµvν(s+ σ) −Rνvµ(s+ σ) =
σ2

2
(vνaµ − vµaν) +

σ3

3
(vν ȧµ − vµȧν) + · · ·

(6.208)
In view of identities (6.124),

R · v(s+ σ) = −σ +O(σ3) . (6.209)

Substituting (6.208) and (6.209) into (6.203) and taking into account that

sgn(R · v) δ(R2 − ε2) = sgn(−σ) δ(σ2 − ε2) = − 1
2ε

[δ(σ − ε) − δ(σ + ε)] ,

(6.210)
we obtain

Fµν
(−)(z) =

2
3
e (ȧµvν − ȧνvµ) +O(ε) , (6.211)

and
evνF

µν
(−)(z) =

2
3
e2
(
ȧµ + a2vµ

)
+O(ε) . (6.212)

The term
Γµ =

2
3
e2
(
ȧµ + a2vµ

)
, (6.213)

again emerges. This higher-derivative term is called the Abraham term. In
the literature, Γµ is often interpreted as radiation reaction, that is, the finite
effect of the retarded Liénard–Wiechert field upon its own source. But this
interpretation is wrong. It was already mentioned in the previous section that
a dressed particle is acted upon by only an external force, and is free from
self-interaction. We will see in Sect. 9.3 that the concept of ‘radiation reac-
tion’ causes much confusion in understanding the rearranged Maxwell–Lorentz
theory.

We now look at the symmetric part of (6.197). The corresponding Green’s
function is

DP (R) =
1
2

[Dret(R) +Dadv(R)] = δ(R2) . (6.214)

We regularize this expression as follows:

δ(R2 − ε2) = δ(σ2 − ε2) =
1
2ε

[δ(σ − ε) + δ(σ + ε)] . (6.215)
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Applying this procedure to

Fµν
(+)(x) = e

∫ ∞

−∞
dτ δ(R2 − ε2)

d

dτ

(
Rµvν −Rνvµ

R · v

)
, (6.216)

we get
Fµν

(+)(z) =
e

2ε
(vµaν − vνaµ) +O(ε) . (6.217)

Therefore,

evνF
µν
(+)(z) = −e

2

2ε
aµ +O(ε) . (6.218)

We substitute (6.212) and (6.218) in (6.195) and perform mass renormal-
ization (6.135). This gives the Lorentz–Dirac equation (6.161).

We next turn to the method proposed by Azim Barut in 1974. The key idea
of this method is that the retarded field Fret can be regularized in the vicinity
of the source using a kind of analytic continuation. To be more precise, we take
the field as a function of two variables Fµν(x; z(s)) and continue it analytically
from null intervals between the observation point xµ and the retarded point
zµ(s) to timelike intervals which result from assigning xµ = zµ(s + ε) and
keeping the second variable zµ(s) fixed.

Write the analytically continued equation of motion for a bare charged
particle as

m0a
µ(s+ ε) = evν(s+ ε)Fµν(z(s+ ε); z(s)) + fµ . (6.219)

Here, Fµν(z(s + ε); z(s)) is the Liénard–Wiechert field due to the charge at
zµ(s),

Fµν =
e

ρ3
(RµV ν −RνV µ) , (6.220)

Rµ = zµ(s+ ε) − zµ(s) , (6.221)

V µ is defined in (4.284), and fµ is an external four-force. The vectors vµ and
aµ, appearing in V µ and ρ, are referred to the ‘retarded’ instant s. [Note that
the vectors Rµ in (6.207) and (6.221) are of opposite signs. This is because
xµ is identified with different points: zµ(s) in the former case, and zµ(s + ε)
in the latter case.] Combining (6.205) with (6.221), we obtain

Rµ = ε

(
vµ +

ε

2
aµ +

ε2

6
ȧµ

)
+O(ε4) . (6.222)

Take the scalar products of this expression with vµ and aµ:

v ·R = ρ = ε

(
1 − ε2

6
a2

)
+O(ε4) , (6.223)

a ·R =
ε2

2
a2 +O(ε3) . (6.224)
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It follows
1
ρ3
Rµ =

1
ε2
vµ +

1
2ε
aµ +

1
6
ȧµ +

1
2
vµa2 +O(ε) , (6.225)

V µ = vµ + ρ aµ +
(

1
ρ
Rµ − vµ

)
(a ·R) = vµ + ε aµ +O(ε3) . (6.226)

Therefore,

1
ρ3

(RµV ν −RνV µ) =
1
2ε

(vµaν − aµvν) +
1
6

(ȧµvν − ȧνvµ) +O(ε) . (6.227)

We then evaluate (6.219) by multiplying (6.227) with vν + ε aν ,

m0 a
µ(s+ ε) = e2

{
− 1

2ε
aµ +

1
6

[ȧµ − (ȧ · v) vµ] +
1
2
vµa2

}
+ fµ . (6.228)

Adding and subtracting 1
2 ȧ

µ, and using the identity ȧ · v = −a2, we find
that the expression in the brace is

e2
{
− 1

2ε
(aµ + ε ȧµ) +

2
3

(ȧµ + vµa2)
}

= e2
[
− 1

2ε
aµ(s+ ε) +

2
3

(ȧµ + vµa2)
]
,

(6.229)
where terms of order O(ε) are omitted. The first term in the square brackets
can be combined with the term in the left-hand side of (6.228) to give

(m0 + δm) aµ(s+ ε) = (m0 + δm) aµ +O(ε) =
2
3
e2 (ȧµ +vµa2)+fµ , (6.230)

where δm is the self-energy defined in (6.134). Now after mass renormalization,
we can remove the regularization ε → 0, and (6.230) becomes the Lorentz–
Dirac equation.

We see that the Liénard–Wiechert field can be regularized in different ways.
Physics at distances shorter than ε is altered: the field becomes finite but ε-
dependent. This suggests that the mechanical mass should also be a function
of regularization m0(ε). A remarkable fact is that the mass renormalization
(6.135), absorbing the self-energy divergence, makes the rearranged Maxwell–
Lorentz electrodynamics a finite and unambiguous theory.

Problem 6.5.1. Derive the equation of motion for a dressed particle inter-
acting with a massless scalar field [whose action is defined in (2.287)], using
the analytic continuation prescription of Barut.

Answer
d

ds
(m− gφ) vµ − 1

3
g2(ȧµ + a2vµ) = −g ∂µφ , (6.231)

where m is the renormalized mass, and φ is an external scalar field.

Problem 6.5.2. Derive the equation of motion for a dressed particle inter-
acting with a massless symmetric tensor field φµν whose action is defined in
(2.288).
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Answer

maµ +
5
3
g2(ȧµ + a2vµ) = g

d

ds

(
2φµνvν − φαβv

αvβvµ
)
− g ∂µφαβv

αvβ ,

(6.232)
where m is the renormalized mass, and φµν is an external tensor field.

Notes

1. The works by Thomson (1881), Larmor (1897), Heaviside (1902), Abraham
(1903), (1904), (1905) Lorentz (1904a), von Laue (1909), Dirac (1938), and
Teitelboim (1970) are milestones in the solving for the self-interaction problem
of classical electrodynamics. The opening stage is outlined by Lorentz (1904a),
Lorentz (1909), Abraham (1905), von Laue (1911), Schott (1912), Sommerfeld
(1948), and Pauli (1958). Further progress is discussed by Eliezer (1947),
Pais (1948), Iwanenko & Sokolow (1953), and Sokolov & Ternov (1986). A
pedagogical account of this problem can be found in Jackson (1962), Barut
(1964), Rohrlich (1965), and Parrot (1987). A historical survey on the self-
interaction problem in classical electrodynamics is given by Dresden (1993).

2. Section 6.1. The Goldstone theorem was formulated and proved by Gold-
stone (1961). Higgs (1964), (1966) discovered a mechanism for avoiding Gold-
stone modes in gauge theories. The Higgs mechanism rearranges degrees of
freedom in such a way that a massive vector field arises from the original sys-
tem of a scalar field plus a gauge field. The idea that the degrees of freedom
appearing in the Lagrangian can be dynamically rearranged was developed
by Umezawa (1965).

3. Section 6.2. The concept of electromagnetic radiation grew up over a long
period. For a historical account of the subject see Arzeliès (1966). Strange as
it may seem, a consistent definition of the radiation in the context of classi-
cal electrodynamics was developed only by 1970. A key observation, made by
Teitelboim (1970), is that the stress-energy tensor of the retarded Liénard–
Wiechert field can be divided into two dynamically independent parts Θµν

I and
Θµν

II according to (6.80)–(6.82). Further developments of this idea is discussed
by Teitelboim, Villarroel & van Weert (1980). Kosyakov (1994) is a critical
review of different definitions of the electromagnetic radiation. A central con-
clusion of this paper is that only the Teitelboim’s definition can be correctly
applied to the Yang–Mills–Wong theory. The decomposition of angular mo-
mentum (6.98)–(6.100) into the bound and emitted parts was discussed by
López & Villarroel (1975).

4. Section 6.3. Larmor (1897) derived the formula for the radiation rate of an
accelerated charge (6.144). Heaviside (1902) converted it to the form which, in
modern notation, appears as (6.143). Abraham (1903) obtained the rate of mo-
mentum carried away from the charge by radiation. The asymptotic condition
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on the space of allowable world lines (6.141) was imposed by Haag (1955). This
condition means that charges move uniformly in the remote past, and hence
stable bound systems, such as a hydrogen atom (which exhibits infinite helical
world lines of its constituents), are excluded from classical electrodynamics
according to this condition. Rohrlich (1960) proposed to integrate the stress-
energy tensor of the electromagnetic field generated by a point charge over a
hyperplane perpendicular to the world line of this charge. Teitelboim (1970)
succeeded in deriving expressions (6.133) for the bound four-momentum, and
(6.136) for the four-momentum of a dressed particle. Sorg (1974) showed that
the bound part of the stress-energy tensor Θλµ

I can be conveniently integrated
over a truncated future light cone C+(ε).

5. Section 6.4. Equation (6.173) was developed in the papers by Abraham
(1903), (1904) and Lorentz (1904a) as an approximated equation of motion
for a radiating electron. At that time, the electron was conceived as a finite
charge distribution whose stability was explicitly assumed. For an extended
treatment of this model see Lorentz (1909). Dirac (1938) attempted to con-
struct a classical relativistic self-interaction theory for a point electron from
first principles of the Maxwell–Lorentz electrodynamics, and came to equation
(6.161). Various procedures for deriving the Lorentz–Dirac equation (6.161)
was subsequently discussed by many authors. The treatment here is based on
Teitelboim (1970). The integro-differential equation (6.185) was obtained by
Iwanenko & Sokolow (1953). For relativistic generalizations of this equation
see Rohrlich (1965). Solutions to the Abraham–Lorentz equations are given
by Plass (1961), and Erber (1961).

6. Section 6.5. Dirac (1938) introduced the ansatz (6.196),

Aµ
ret =

1
2

(Aµ
ret −Aµ

adv) +
1
2

(Aµ
ret +Aµ

adv) . (6.233)

He proposed Aµ
ret − Aµ

adv to be interpreted as the radiation field, and Aµ
ret +

Aµ
adv as the bound field. If one would ignore the factor 2 in this definition,

then the Abraham term Γµ given by (6.213) could be interpreted as the
radiation reaction, or radiation damping force. We will see in Sect. 9.3 that
this interpretation leads to many troubles and paradoxes. Therefore, it is best
to regard (6.233) as a mere formal trick for discriminating between integrable
and nonintegrable singularities of the retarded Liénard–Wiechert field.

Barut (1974) proposed to regularize the retarded Liénard–Wiechert field
using analytic continuation from null intervals between the observation point
and the emission point to timelike intervals. This method was extended to
theories involving scalar and tensor fields by Barut & Villarroel (1975).
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Lagrangian Formalism for Gauge Theories

We already have a general idea of the Yang–Mills field which was introduced
in Sect. 2.2. In this chapter we look more closely at the dynamics of this field.

In Sect. 7.1 we retrace our steps in electrodynamics, with appropriate
modifications, to yield a classical theory of point particles interacting with a
gauge field, the so-called Yang–Mills–Wong theory, which closely resembles
the Maxwell–Lorentz theory. Exact solutions to this theory will be discussed
in subsequent chapters.

Three of the four fundamental forces are mediated by gauge fields: electro-
magnetic, weak, and strong. In Sect. 7.2 we review a Lagrangian framework
for these forces, known as the standard model. Although the standard model
is generally taken to be a quantum theory, the basic theoretical ideas under-
lying this theory are essentially classical and can be set forth in the classical
context with reasonable clarity.

In Sect. 7.3 we briefly run through the intimate connection between gauge
theories and differential geometry of fiber bundles. We then outline field dy-
namics on Euclidean spacetime lattices.

7.1 The Yang–Mills–Wong Theory

Consider a particle moving under the influence of the Wong force

fµ = QaGµν
a vν . (7.1)

Here, Qa is the non-Abelian charge carried by the particle, or the color charge.
The index a ranges over the dimension of the color space. Repeated indices are
summed over. The Wong force was defined in (2.53) as a close generalization
of the Lorentz force. We now attempt to construct a Lagrangian governing
the behavior of this color charged particle. The line of reasoning is essentially
the same as that developed at the end of Sect. 5.5.
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We use SU(N ), the Lie group of unitary unimodular transformations in N
dimensions as the basic paradigm for our approach. Let Ta be the generators
of SU(N ). This means that elements of SU(N ) can be written as

Ω = exp (iωaTa) , (7.2)

where Ta are N 2−1 independent N ×N matrices, and ωa are the parameters
of the transformation. For infinitesimal ωa, (7.2) becomes

Ω = 1 + iωaTa . (7.3)

If we apply unitarity (ΩΩ† = 1, where Ω† denotes the Hermitian adjoint
of Ω) to (7.3), we obtain

T †
a = Ta . (7.4)

Therefore, Ta is a Hermitian matrix. From the fact that Ω is unimodular,
detΩ = 1, we conclude that Ta is also traceless,

tr (Ta) = 0 . (7.5)

We thus have a set of N 2−1 Hermitian traceless matrices Ta which provide
a basis for the color space V . This space becomes the su(N ) Lie algebra
associated with the SU(N ) Lie group if we define matrix commutation as the
multiplication rule

[Ta, Tb] = ifc
ab Tc . (7.6)

The numbers fc
ab are called the structure constants of su(N ). A metric in

the color space is provided by the Killing form gab = −fc
ad f

d
bc. Using this

metric, together with its inverse gab (defined by gab g
bc = δc

a), one can raise
and lower color indices. If the set of generators Ta are assembled to form the
Cartan basis, then the fabc are real and completely antisymmetric.

Let ψ be a vector in the color space which is invariant under SU(N ):

Ω ψ = ψ . (7.7)

Using (7.3) we see that (7.7) implies N 2 − 1 equations:

Taψ = 0 , (7.8)

where a = 1, . . . ,N 2−1. If G is a subgroup of SU(N ), say, SU(n) with n < N ,
then elements of G look like Ω in (7.2), but the summation over a is from 1
to n2 − 1. The condition that ψ is invariant under G is again given by the set
of n equations (7.8), in which a = 1, . . . , n2 − 1.

One may write the color charge Qa and the field strength Ga
µν in matrix

notation:
Q = −ig QaTa, Gµν =

i

g
Ga

µνTa , (7.9)

where g is a real parameter which is called the Yang–Mills coupling constant.
Recall that quantities which can be expressed as linear combinations of the
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Ta, such as Q and Gµν , are said to transform according to the adjoint repre-
sentation of SU(N ). If we impose the orthonormalization condition1

tr (TaTb) = δab , (7.10)

then (7.1) becomes
fµ = vν tr (QGµν) . (7.11)

In order to describe a particle which carries color degrees of freedom, we
need more variables in addition to the position zµ. Our prescription is to
replace Q as the basic color variable by what is in a rough sense a square root
of the color charge Q, much as the square root of the electric charge e has
been extracted in equation (5.267):

Q = qa η∗i (Ta)i
j η

j . (7.12)

The matrix (Ta)i
j acts on the resulting square-root quantities η∗i and ηj as if

those were N -component row and column vectors. It is clear that η∗i and ηj

transform according to some representation of SU(N ). This representation is
called fundamental.

The action for a particle whose state is specified by spacetime coordinates
zµ and color variables ηj is

S = −
∫
dτ

{
m0

√
żµ żµ +

∑
a

qaη∗i

[
δi

j

d

dτ
+ żλAa

λ (Ta)i
j

]
ηj

}
. (7.13)

Here, Aa
λ are color-valued vector functions of zµ. This quantity is a general-

ization of the vector potential in electrodynamics. We will call Aa
λ the gauge

field or the Yang–Mills field. The number of color components of Aa
λ equals

the number of the group generators. For SU(N ), the color index a runs from
1 to N 2 − 1.

The Euler–Lagrange equations for ηi and η∗j read

η̇i = −(ż ·Aa) (Ta)i
j η

j ,

η̇∗j = η∗i (ż ·Aa) (Ta)i
j . (7.14)

They can be combined (Problem 7.1.1) into the Wong equation for the color
charge,

Q̇a = −ifa
bc

(
ż ·Ab

)
Qc . (7.15)

With (7.9) and

Aµ =
i

g
Aa

µ Ta , (7.16)

(7.15) becomes
1 Note that the normalization which is used in Sects. 8.1, 8.3, 8.4 differs from that

given by (7.10).
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Q̇ = −ig [Q, żµAµ] , (7.17)

Unlike spacetime coordinates, internal variables are generally associated
with first order equations of motion. An example, other than (7.17), is found
in the Frenkel model of a particle with spin, equation (2.325).

Since fabc is completely antisymmetric, (7.15) implies

QaQ̇a = 0 . (7.18)

Therefore, the color charge magnitude remains constant,

Q2 = const . (7.19)

Varying the action (7.13) with respect to zµ and taking into account (7.14),
one finds (Problem 7.1.2) the equation of motion for a colored particle

m0z̈
µ = QaGµν

a żν , (7.20)

where Gµν
a is expressed in terms of Aµ

a ,

Gµν
a = ∂µAν

a − ∂νAµ
a + if bc

a Aµ
b A

ν
c , (7.21)

or
Gµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] . (7.22)

By analogy with Maxwell–Lorentz electrodynamics where the auxiliary
variable ζ may be acted upon by U(1) phase transformations, as discussed in
Sect. 5.5, we introduce the following SU(N ) phase transformations

η → Ω η , η∗ → η∗Ω† , (7.23)

where Ω is given by (7.2). If ωa are constant, then transformations (7.23)
are called global, but if ωa are functions of the particle’s position zµ, then
the transformations are said to be local. For the action (7.13) to be invariant
under local phase transformations, the gauge field must be transformed as
well

(ż ·A) → Ω (ż ·A)Ω† − i

g
Ω̇ Ω† . (7.24)

The invariance of the action (7.13) under (7.23) and (7.24) for a local trans-
formation is ensured by the fact that

Dτ =
d

dτ
− ig (ż ·A) (7.25)

is a one-dimensional covariant derivative. With the use of Dτ , the second term
of the integrand in (7.13) can be written as

−
∑

a

qaη∗iDτη
j . (7.26)
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Our next task is to discuss the law governing the evolution of the Yang–
Mills field. This law is given by a system of nonlinear partial differential equa-
tions known as the Yang–Mills equations. The color charge Qa is assumed to
be a source of the Yang–Mills field. Unlike the electromagnetic field, which is
distributed over macroscopic regions, all fundamental forces that owe their ori-
gin to Yang–Mills fields are reputed to have very short range, characteristic of
subnuclear realm. In the absence of a clear experimental view of these forces,
we are guided by parallels with electrodynamics and by general symmetry
principles.

Because (7.24) holds for all paths we must have

Aµ → Ω

(
Aµ +

i

g
∂µ

)
Ω† , (7.27)

where Ω is defined in (7.2) and the parameters ωa being arbitrary functions
of spacetime. One can show (Problem 7.1.3) that Q and Gµν have simple
transformation properties

Q→ ΩQΩ†, Gµν → ΩGµν Ω
† (7.28)

with respect to the gauge transformation (7.23) and (7.27). The Yang–Mills
field strength Gµν is not gauge invariant (as opposed to the electromagnetic
field strength Fµν which is gauge invariant). Note that only quantities which
transform as scalars with respect to gauge transformations2 are observable.
Thus, Gµν and Q are not observable, while fµ is.

For infinitesimal ωa(x) the gauge transformation (7.27) becomes

δAa
µ = −

(
δa

c∂µ + ifa
bcA

b
µ

)
(iωc) , (7.29)

or
δAµ = − i

g
DµΩ , (7.30)

where the covariant derivative is

Dµ = ∂µ − igAµ . (7.31)

We see that the action of Dµ on any field φ = φaTa, transforming according
to the adjoint representation of SU(N ), is given by

Dµφ = ∂µφ− ig [Aµ, φ] . (7.32)

Since [∂µ, φ]χ = ∂µ(φχ)−φ∂µχ = (∂µφ)χ, we have the identity [∂µ, φ] = ∂µφ,
which, combined with (7.32), yields

Dµφ = [Dµ, φ] . (7.33)

2 Such scalar quantities are one-dimensional representations of the color SU(N )
group, hence the name color singlets.
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We now suppose that the Lagrangian governing the dynamics of the Yang–
Mills field is given by the simplest Lorentz and gauge invariant expression

L = − 1
16π

Gµν
a Ga

µν , (7.34)

similar to the Larmor Lagrangian in electrodynamics. It is impossible to
amend this Lagrangian by addition of a mass term, proportional to 1

2M
2Aa

µA
µ
a ,

without spoiling its gauge invariance. One can verify that 1
2 ε

µναβGa
µνG

a
αβ =

Ga
µν

∗Gµν
a is a total derivative (Problem 7.1.4). This invariant makes no con-

tribution to the Euler–Lagrange equations.
Note that the last term in (7.13), responsible for the interaction between

a point particle and the Yang–Mills field, can be rewritten as

−
∫
d4x jµ

aA
a
µ , (7.35)

where
jµ
a (x) =

∫ ∞

−∞
dsQa(s) vµ δ4 [x− z(s)] (7.36)

is the color charge current carried by a point particle, analogous to the electric
current. It can be shown (Problem 7.1.5) that expression (7.35) alone is gauge
invariant provided that Qa(s) obeys the Wong equation (7.15). We thus see
that the Yang–Mills sector is given by

S = −
∫
d4x

(
1

16π
Gµν

a Ga
µν + jµ

aA
a
µ

)
. (7.37)

We repeat mutatis mutandis the calculations of Sect. 5.1 to derive, from
(7.37), the Yang–Mills equations

∂µG
µν
a + ifabcA

b
µG

c
µν = 4πjν

a , (7.38)

or, in matrix notation,
[Dµ, G

µν ] = 4πjν . (7.39)

In contrast to Maxwell’s equations, these equations are nonlinear. One may
therefore expect new phenomena inherent in nonlinear dynamics. Indeed, we
will learn in the next chapter that the Yang–Mills field is capable of realiz-
ing two phases with different symmetries, which is somewhat similar to the
situation in hydrodynamics in which a fluid can be in either of two different
regimes of motion, laminar and turbulent.

Why do we focus upon the Lagrangian quadratic in the Yang–Mills field
(7.34) rather than proceed from some function of this invariant? The field
equations are nonlinear anyway. The reason for this is not just simplicity. This
choice makes the Yang–Mills sector (7.37) conformally invariant. The Yang–
Mills sector is free of dimensional parameters because its coupling constant
g, the color charge Qa and the structure constants fabc are all pure numbers
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when expressed in natural units. The metric stress-energy tensor derived from
the action (7.37),

Θµν =
1
4π

(
G λ

aµ G
a
λν +

ηµν

4
Gαβ

a Ga
αβ

)
, (7.40)

is traceless as a consequence
Θµ

µ = 0 . (7.41)

Note that the stress-energy tensor (7.40) resembles that of electrodynam-
ics. This is not surprising. The Yang–Mills action (7.37) looks like the field
action of electrodynamics, so the Hilbert definition of the stress-energy tensor
leads to similar expressions for Θµν .

We thus arrive at the Yang–Mills–Wong theory, a non-Abelian generaliza-
tion of the Maxwell–Lorentz electrodynamics, that involves dynamical equa-
tions for a particle (7.15), (7.20), and for the Yang–Mills field (7.38). Our
formulation of Yang–Mills–Wong theory can be extended to cover N particles
interacting with the Yang–Mills field. To this end, we suppose that each par-
ticle contributes a term of the form (7.13) to the action. In the following, we
will try to employ the Yang–Mills–Wong theory as a toy model of strongly
interacting quarks and gluons, taking a quark as a colored Wong particle, and
the gluon field as a classical non-Abelian gauge field.

The current of the color charge jν obeys the covariant conservation law

Dνj
ν = 0 . (7.42)

To see this, note that for any gauge covariant quantity φ

[Dµ,Dν ]φ = −ig [Gµν , φ] . (7.43)

For the case that φ is the Yang–Mills field strength we have

[Dµ,Dν ]Gµν = −ig [Gµν , Gµν ] = 0 . (7.44)

Hence (7.39) implies

4πDνj
ν = DνDµG

µν =
1
2

[Dν ,Dµ]Gµν = 0 . (7.45)

We see that (7.42) is a consistency condition for the Yang–Mills equations
(7.38). This condition arises – by virtue of Noether’s second theorem, when
one forms the invariance of the Yang–Mills action (7.37) to infinitesimal gauge
transformations (7.30).

Putting jµ = 0, we obtain the so-called pure Yang–Mills theory.
By recognizing that Gµν is expressed in terms of Aµ, according to (7.22),

we come to a condition underlying this relation, the Bianchi identity,

[Dµ,
∗Gµν ] = 0 , (7.46)
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or, equivalently,

[Dλ, Gµν ] + [Dν , Gλµ] + [Dµ, Gνλ] = 0 . (7.47)

To verify (7.47), we use the Jacobi identity

[Dλ, [Dµ,Dν ]] + [Dν , [Dλ,Dµ]] + [Dµ, [Dν ,Dλ]] = 0 , (7.48)

combined with (7.43).
If Ei = F0i and Bi = − 1

2 εijkF
jk are interpreted as respectively electric

and magnetic components of the Yang–Mills field, then the Bianchi identity
(7.46) suggests that the density of magnetic charge is in general nonvanishing:

∇ · Ba = −1
2
εijk fabc∇i Ab

jA
c
k . (7.49)

We will see in the next chapter that there exist field configurations (’t Hooft–
Polyakov monopoles) with nonzero total magnetic charge.

When the Bianchi identity 7.46) is compared with the Yang–Mills equa-
tions (7.39), it become apparent that any Yang–Mills field which is self-dual

∗Gµν = ±iGµν (7.50)

obeys automatically (7.39). Being a nonlinear partial differential equation of
first order, the self-duality condition (7.50) is much simpler to solve than the
second-order Yang–Mills equations (7.39). Some physically important field
configurations, such as instantons and monopoles, obey equation (7.50).

Our discussion regarding the SU(N ) gauge group pertains equally to other
compact Lie groups. Such groups have finite-dimensional unitary representa-
tions Ω which can be expressed in the form (7.2). Semisimple Lie groups are
best suited to the role of gauge groups because the Killing form is not degen-
erate. Note also that if the Killing form is positive definite, then the group is
compact.

If the gauge group is simple, then all its generators Ta transform irre-
ducibly under the action of this group, and gauge invariance implies that all
Aa

µ have the same coupling constant. However, if the gauge group is a prod-
uct of simple factors, such as SU(2)×U(1) to be discussed in the next section,
then the generators of different factors never mix with each other under the
action of the group, and the associated gauge fields can have different coupling
constants.

If we turn from point particles to a continuous field, then its interaction
with the Yang–Mills field is fixed by the minimal coupling prescription, namely
by replacing ∂µ with Dµ = ∂µ − igAµ. To illustrate, consider a Dirac field ψi

transforming as the fundamental representation of some gauge group. The
Lagrangian governing the behavior of this field interacting with the Yang–
Mills field is given by

L = ψ̄i

[
iγµ(Dµ)i

j −m
]
ψj , (7.51)
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where (Dµ)i
j = δi

j∂µ − igAa
µ(Ta)i

j , i, j = 1, . . . ,N . Under a gauge transfor-
mation

ψ → Ω ψ, ψ̄ → ψ̄ Ω†, Aµ → ΩAµΩ
† − i

g
(∂µΩ)Ω† , (7.52)

Dµ transforms as
Dµ → ΩDµΩ

† , (7.53)

and hence the Lagrangian (7.51) is gauge invariant.
Comparing the first term of the Lagrangian (7.51) with (7.26), one can

observe that the gauge interaction of the Dirac field ψ is much the same as
that of the particle color variable η. One would be tempted to consider η
as a kind of Dirac field in spacetime of dimension 1. However that may be,
formal switching between Wong particle and Dirac field descriptions is readily
available.

Problem 7.1.1. Show that (7.14) implies (7.15).

Problem 7.1.2. Derive (7.20) from (7.13).

Problem 7.1.3. Verify (7.28).

Problem 7.1.4. Verify that Ga
µν

∗Gµν
a (which is called the Pontryagin density)

is a total derivative,
1
2
Ga

µν
∗Gµν

a = ∂λJ λ , (7.54)

where the vector

J λ = ελµνρ

(
Aaµ∂νA

a
ρ +

1
3
fabcA

a
µA

b
νA

c
ρ

)
(7.55)

is called the topological Chern–Simons current.

Problem 7.1.5. Show that the action (7.35) is gauge invariant if the color
charge Qa(s) obeys the Wong equation (7.15).

Problem 7.1.6. Derive the Noether identity

∂µT
λµ =

1
4π

Ea
µ G

µλ
a +

∫
ds ελ(s) δ4 [x− z(s)] . (7.56)

Here, Tµν = Θµν + tµν , with Θµν and tµν being given by (7.40) and (6.78),
respectively. Ea

µ and ελ are the Eulerians corresponding to the Yang–Mills
equations (7.38) and equation of motion for a colored particle (7.20).

Problem 7.1.7. Let zµ(s) be a path between two spacetime points xµ and
yµ, and ψ a field for which the covariant derivative vanishes along this path:

żµ (Dµ) j
i ψj(z) = 0 . (7.57)
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Examples include the variables η and η∗ in equation (7.14), and the color
charge Q in (7.15). Condition (7.57) can be viewed as a first-order partial
differential equation for the unknown function ψ. Verify that (7.57) is obeyed
by

ψ(y) = P exp
[
ig

∫ y

x

ds żµ(s)Aµ(z)
]
ψ(x) , (7.58)

where P is the path ordering operator which arranges factors TaA
a
µ (z(s))

in order of increasing s in each term of the power series expansion of the
exponential.

7.2 The Standard Model

The standard model summarizes our knowledge of particles and forces in the
subnuclear realm. This realm refers to short-distance structures ranging be-
tween 1 and 10−4 fm, which can be probed by particles accelerated to energies
in the range 100 MeV – 1 TeV3.

The standard model consists of two parts: the Glashow–Salam–Weinberg
model that unifies weak and electromagnetic forces into a SU(2)×U(1) gauge
theory, and quantum chromodynamics that describes strong interactions in
terms of a SU(3) gauge theory. It is safe to say that these forces are dominant
in the subnuclear regime; gravity is feeble in this regime and may be ignored.

The Lagrangian of electroweak interactions is invariant under SU(2)×U(1),
where SU(2) is called the weak isospin group, and U(1) the weak hypercharge
group. The Higgs mechanism breaks this symmetry to a U(1) subgroup of
SU(2)×U(1). The three gauge fields associated with the broken generators
become the massive vector particles W±

µ and Z0
µ that mediate the weak inter-

action. The gauge field associated with the single unbroken generator is the
massless vector field Aµ responsible for electromagnetism. By contrast, the
SU(3) symmetry of quantum chromodynamics is unbroken. The strong force
is mediated by the exchange of massless fields Aa

µ between quarks that carry
an internal degree of freedom called color.

The full symmetry of the standard model is SU(3) × SU(2) × U(1).
This symmetry was inferred from a combination of experimental observations
and theoretical analyses, and has been impressively confirmed by experiment.
Three parameters measure the strength of the interactions involved: the strong
force coupling gs, weak isospin coupling g1, and weak hypercharge coupling
g2. The parameters g1 and g2 are expressed in terms of the electromagnetic
coupling constant e:

g1 = e cos θW , g2 = e sin θW , (7.59)

where θW is called the weak mixing angle or the Weinberg angle.
3 Recall that eV is a shorthand for electron volt – the energy acquired by an electron

when accelerated through a potential difference of 1 volt; 1 MeV = 106 eV; 1 GeV
= 109 eV; and 1 TeV = 1012 eV. Note that 1 TeV = 1.6 erg is comparable to the
kinetic energy of a mosquito.
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The standard model is formulated as a quantum field theory. The matter
fields are represented by Dirac fields. Since these fields play the role iden-
tical to that of particles in the Yang–Mills–Wong theory, we will refer to
them as ‘particles’, by recognizing that the concepts are closely related on the
Lagrangian level.

It is customary to distinguish between the gauge particles which mediate
forces – the W±, Z0 and photon – and ‘matter’ particles which experience
these forces. Matter particles can be divided into hadrons, which feel the
strong interaction, and leptons which do not. Hadrons can be subdivided into
those having half-integer spin, the baryons – typified by protons and neutrons,
and those possessing integer spin, the mesons–for example, the π-meson. An
exhaustive list of leptons follows: the electron, the muon, the τ -lepton, and
their associated neutrinos νe, νµ, and ντ .

Hadrons are not elementary, they are composed of quarks. The strong force
is mediated by the exchange of gluons between quarks and binds them inside
hadrons. Baryons are composed of three quarks of different colors, which are
combined into color-neutral states. Mesons contain quark and antiquark pairs
whose colors cancel.

At our present level of understanding, leptons and quarks are truly elemen-
tary, that is, structureless particles. There are three generations of quarks and
leptons. The first generation contains two SU(2) weak isospin doublets: the
lepton doublet (e, νe), and the quark doublet (u, d). The second and third gen-
erations are identical to the first one in every respect except for their masses;
they contain, respectively, the lepton and quark doublets (µ, νµ), (c, s), and
(τ, ντ ), (t, b).

We now briefly review the Lagrangian of the standard model. The coupling
between the matter and gauge fields is given by

Lint = −Aa
µ J

µ
a −WA

µ J
µ
A −BµJ

µ , (7.60)

where Aa
µ is the SU(3) color gauge field, WA

µ the SU(2) weak isospin gauge
field, Bµ the U(1) weak hypercharge gauge field, and the currents Jµ

a , Jµ
A and

Jµ are defined by
jµ
a = −igs

∑
f

ψ̄f γ
µ ta ψf , (7.61)

Jµ
A = − ig1

2

∑
G

ΨG γ
µ TA (1 + γ5)ΨG , (7.62)

Jµ = ig2
∑
G

ΨG γ
µ ΨG . (7.63)

Here, f labels the quark species u, d, etc., called flavors, ta and TA are gen-
erators of SU(3) and SU(2), ΨG and ΨG stand for rows and columns with
the SU(2) lepton and quark doublets of the Gth generation. For example, Ψ1

involves
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(
e
µe

)
and

(
u
d

)
, (7.64)

so that Ψ1γ
µΨ1 = ēγµe+ µ̄eγ

µµe + ūγµu+ d̄γµd. The index G runs over the
three lepton and quark generations. The presence of the projection operator

1
2

(1 + γ5) (7.65)

reflects the experimental fact that the weak interactions exhibit maximal par-
ity violation. Indeed, using simple algebra one can show (Problem 7.2.1) that
any mixture of γµ and γµγ5 violates parity conservation.

The Lagrangian of free gauge and matter fields reads

L0 = − 1
4π

Ga
µνG

µν
a − 1

4π
HA

µνH
µν
A − 1

4π
FµνF

µν +
∑
G

i ψ̄G γ
µ∂µψG , (7.66)

where
Ga

µν = ∂µA
a
ν − ∂νA

a
µ + gsf

a
bcA

b
µA

c
ν , (7.67)

HA
µν = ∂µW

A
ν − ∂νW

A
µ + g1f

A
BCW

B
µ W

C
ν , (7.68)

Fµν = ∂µBν − ∂νBµ , (7.69)

with fabc and fABC being respectively the SU(3) and SU(2) structure con-
stants.

Let us turn to the Higgs mechanism. We learned in Sect. 6.1 that this
mechanism provides longitudinal modes to Abelian gauge fields, which then
become massive. With reference to Problem 4.1.4, one may think of mas-
sive fields as mediators of short-range forces4. Why do we take trouble over
4 This terminology itself need not be evidence that we are faced with a quantum

phenomenon. Indeed, looking at the Yukawa potential (4.66),

Φ = g
e−µr

4πr
, (7.70)

we see that the mass µ acts as a cutoff, and ‘short-range’ means that Φ is essen-
tially vanishing at a distance about µ−1 from the source. The heavier the Yukawa
field, the shorter the range of the Yukawa force. However, we do invoke quantum
considerations (the Heisenberg uncertainty principle) when we convert explicitly
from space to momentum scales. For example, in natural units, a conversion for-
mula is

1 fm−1 = 197 MeV . (7.71)

Hence the π-meson field Φ, which mediates the strong interaction in Yukawa
theory and has a mass of 140 MeV, is active within a radius of 1.4 fm. This is a
typical distance between protons and neutrons in the atomic nucleus. The Yukawa
potential (7.70) describes the nuclear force which holds the nucleons together. In
fact, it is merely a phenomenological description of the residual SU(3)-color force
of the standard model, much as the van der Waals interaction between neutral
molecules is a vestigial effect of screened Coulomb forces.
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the Higgs mechanism rather than introducing mass terms explicitly? It was al-
ready mentioned that such terms violate gauge invariance. On the other hand,
the Higgs mechanism allows masses for vector fields without losing their prop-
erties under the gauge transformation. A strong reason for preserving gauge
symmetry is renormalizability. A theory is called renormalizable if all diver-
gences can be absorbed through redefinitions of parameters in the Lagrangian.
Although the SU(2)×U(1) symmetry of electroweak interactions takes a secret
form, this sector of the standard model is renormalizable. On the other hand,
the SU(3) color symmetry of the strong interactions is explicit, and this sector
of the standard model displays not only renormalizability, but also asymptotic
freedom. However, these topics are beyond the scope of the present discussion.

By a similar argument, the Higgs mechanism in a non-Abelian gauge the-
ory should endow the gauge fields with mass, so as to make the weak force
short range. Consider the simplest version of the Glashow–Weinberg–Salam
model involving a SU(2) doublet of Higgs scalar fields:

φ =
(
φ+

φ0

)
(7.72)

The component φ0 assumes a nonzero constant value which lies at the mini-
mum of the Higgs potential v. Consider the Lagrangian which describes the
Higgs field interacting with the gauge fields WA

µ and Bµ

LH =
1
2
(
∂µφ− ig1TAW

A
µ φ+ ig2Bµφ

)†(
∂µφ− ig1T

BWµ
Bφ+ ig2B

µφ
)

−λ
2

4
(
v2 − φ†φ

)2
, (7.73)

where φ†φ = |φ+|2+|φ0|2. Now shift φ0 to the minimum of the Higgs potential,
φ0 = v. This gives a mass term

Lm =
1
2
g2
1 v

2
2∑

A=1

Wµ
A W

A
µ +

1
2
v2
(
g1W

3
µ − g2B

µ
)2

=
1
2
g2
1v

2
(
W+

)µ (W−)µ +
1
2
e2v2

(
W 3

µ cos θW −Bµ sin θW

)2
, (7.74)

where the generator T3 is assumed to be diagonal, more precisely, T3 =
diag (1,−1), and W±

µ = (W 1
µ ± iW 2

µ)/
√

2. Two charged vector fields W±
µ

and one neutral vector field

Zµ = −Bµ sin θW +W 3
µ cos θW (7.75)

acquire masses, while another vector field, orthogonal to Zµ,

Aµ = Bµ cos θW +W 3
µ sin θW , (7.76)
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remains massless, and hence may be identified with the electromagnetic field.
We see that the neutral vector field Zµ proves to be more massive than the
charged ones W±

µ , M2
W = M2

Z cos θW . This is the reason for choosing the
weak hypercharge gauge group U(1) to be different from the electromagnetic
gauge group U(1)em. Note also that leaving Aµ massless is consistent with the
general condition (7.8), which now takes the form

(T3 + 1)
(

0
v

)
= 0 . (7.77)

Therefore, the unbroken U(1)em is generated by the diagonal matrix T3 + 1.
Lepton and quark fields can also be endowed with masses through their

coupling with the Higgs field, rather than through explicit mass terms. With-
out going into detail we simply note that Yukawa terms −fψ̄ψφ become
−mψ̄ψ, with m = fv, when the Higgs field takes its equilibrium value φ0 = v.

Problem 7.2.1. Find the transformation laws of γµ and γ5 under space
reflections. Show that ψγµψ and ψ̄γµγ5ψ transform as polar and axial vectors.

Hint We are looking for a space reflection operator SP such that

S−1
P γ0SP = γ0, S−1

P γiSP = −γi , (7.78)

or, in covariant notation,
S−1

P γµSP = γµ . (7.79)

Assuming that ψ → ψ′ = SPψ, equation (7.78) affords invariance of the Dirac
equation

(iγµ∂µ −m)ψ = 0 , (7.80)

because (∂t,∇) → (∂t,−∇). An appropriate choice of SP is γ0. Taking into
account that SP = (SP )† = S−1

P , we have ψ̄′ = (ψ′)†γ0 = ψ†(SP )†γ0 =
ψ†γ0S

−1
P = ψ̄S−1

P , and so ψ̄′γµψ
′ = ψ̄γµψ. With γ5SP = −SP γ5, the trans-

formation law ψ̄′γµγ5ψ
′ = −ψ̄′γµγ5ψ

′ can be read immediately. Hence, ψ̄γµψ
has opposite transformation properties from ψ̄γµγ5ψ under space reflections.
Parity violation may be achieved through the presence of both terms in the
Lagrangian.

7.3 Lattice Formulation of Gauge Theories

According to the Weyl principle, discussed in Sect. 5.5, the interaction of
charged matter with the electromagnetic field, arising from the U(1) local
gauge invariance, can be introduced by replacing ∂µ with ∂µ + ieAµ. In an
alternative approach, proposed by Stanley Mandelstam in 1962, emphasis is
given to the integral aspect of this principle. The phase factor

UΓ (x, y) = exp
[
ie

∫ y

x

dτ żµ(τ)Aµ(z)
]

(7.81)
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is adopted as a primary concept. Here, the integration is over any path Γ
between x and y. Multiplication of phase factors with a coincident endpoint
gives the phase factor on the composite path:

UΓ1(w, x)UΓ2(x, y) = UΓ1+Γ2(w, y) . (7.82)

Under a gauge transformation the phase factor U(x, y) becomes

exp
(
ie

∫ y

x

dzµAµ

)
→ exp [ieχ(y)] exp

(
ie

∫ y

x

dzµAµ

)
exp [−ieχ(y)] .

(7.83)
Now it is possible to reformulate electrodynamics in terms of manifestly gauge
invariant integral quantities. In a simply connected region, using the Stokes
theorem, we obtain

exp
(
ie

∮
C
dzµAµ

)
= exp

(
ie

∫
S
dSµνFµν

)
, (7.84)

where
Fµν = ∂µAν − ∂νAµ . (7.85)

This provides an alternative definition of the field strength Fµν .
This approach shows its full power in analyzing physical situations which

involve topology, for example, magnetic monopoles. However, we must omit
these interesting issues and instead address the following generalization of the
phase factor to non-Abelian gauge theories

UΓ (x, y) = P exp
(
−ig

∫ y

x

ds żµ(s)TaA
a
µ(z)

)
. (7.86)

Here, P denotes path ordering, that is, TaA
a
µ(z1) is to the left of TaA

a
µ(z2) if,

along the path Γ , z1 is further along the path from x to y than z2.
To elucidate the geometric meaning of UΓ (x, y), let us consider a color

vector ψ at some point x and carry out its parallel transport to a close point x+
dx. The variation of ψ, correct to first order of the infinitesimal displacement
dx, is given by

ψ(x+ dx) =
[
1 − ig TaA

a
µ(x)dxµ

]
ψ(x) . (7.87)

Here, Aa
µ(x) is regarded as a linear connection, and the appropriate space-

time dimension is ensured by the parameter g. One may unite spacetime and
the color space attached to every spacetime point into a quantity called the
principal fiber bundle. The linear mapping (7.87) links the fibers attached to
x and x+ dx. The differential equation

dψ(x) = −ig TaA
a
µ(x)ψ(x) dxµ (7.88)

can be integrated (Problem 7.1.7) to give (7.86). We see that UΓ (x, y) imple-
ments parallel transport between points x and y separated by a finite distance.
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It is instructive to derive (Problem 7.3.1) the expression for U∆x(0,∆x) re-
taining terms of order (∆x)2,

U∆x(0,∆x) = 1 − ig∆xµAµ − ig

2
∆xµ∆xν (∂µAν − igAµAν) . (7.89)

This expression will be employed below.
Let ψi(x) be a matter field belonging to some irreducible representation of

the gauge group. The index i refers to this representation and all other indices
are suppressed. Under a local gauge transformation,

ψi(x) → Ω j
i (x)ψj(x), TaA

a
µ(x) → Ω(x)

[
TaA

a
µ(x) +

i

g
∂µ

]
Ω†(x) , (7.90)

the phase factor transforms as

UΓ (x, y) → Ω(x)UΓ (x, y)Ω†(y) , (7.91)

which implies that
ψ†(x)UΓ (x, y)ψ(y) (7.92)

is gauge invariant. Therefore, the theory can be formulated in terms of gauge
invariant quantities ψ†(x)ψ(x), ψ†(x)UΓ (x, y)ψ(y), and also tr [UC(x, x)]
where C is a loop. The latter construction is usually written as

W (C) = tr
[
P exp

(
−ig

∮
C
dzµAµ

)]
, (7.93)

and called Wilson loop.
We now determine W (C) for an infinitesimal loop C. For simplicity, we

take C to be the border of a parallelogram with the sides ∆xµ and ∆yν :

U∆x(0,∆x)U∆y(∆x,∆x+∆y)U−∆x(∆x+∆y,∆y)U−∆y(∆y, 0) . (7.94)

By (7.89),

U∆x(0,∆x) = 1− ig ∆xµAµ − ig

2
∆xµ∆xν∂µAν − g2

2
∆xµ∆xνAµAν , (7.95)

U∆y(∆x,∆x+∆y) = 1−ig ∆yµAµ(∆x)− ig
2
∆yµ∆yν∂µAν−

g2

2
∆yµ∆yνAµAν

= 1−ig ∆yµAµ−
ig

2
(∆yµ∆yν + 2∆xµ∆yν) ∂µAν−

g2

2
∆yµ∆yνAµAν , (7.96)

U−∆x(∆x+∆y,∆y) = 1 + ig ∆xµAµ(∆x+∆y)

− ig
2
∆xµ∆xν∂µAν − g2

2
∆xµ∆xνAµAν
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= 1 + ig ∆xµAµ +
ig

2
(∆xµ∆xν + 2∆xν∆yµ) ∂µAν − g2

2
∆xµ∆xνAµAν ,

(7.97)

U−∆y(∆y, 0) = 1 + ig ∆yµAµ(∆y) − ig

2
∆yµ∆yν∂µAν − g2

2
∆yµ∆yνAµAν

= 1 + ig ∆yµAµ +
ig

2
∆yµ∆yν∂µAν − g2

2
∆yµ∆yνAµAν , (7.98)

where Aµ stands for Aµ(0). Combining these expressions, we obtain

U∆x(0,∆x)U∆y(∆x,∆x+∆y)U−∆x(∆x+∆y,∆y)U−∆y(∆y, 0)

= 1 − ig∆xµ∆yνGµν + · · · (7.99)

This is actually just the first two terms in the expansion of an exponential.
By extending the analysis to quartic order one can show that

W (C) = tr [exp (−ig∆xµ∆xνGµν)] . (7.100)

The net effect of parallel transport along an infinitesimal loop C is due
to the field strength Gµν . Geometrically, Gµν represents curvature on the
principal fiber bundle which is expressed in terms of the connection Aµ by
equation (7.22).

The need for an integral formulation of gauge theories becomes evident
when we ask: is it possible to discretize gauge theories in such a way as to
respect gauge invariance? In 1974 Kenneth Wilson gave an affirmative answer
to this question. In fact, he developed a general framework for gauge theories
on Euclidean spacetime lattices.

We now briefly describe the Wilson formulation of lattice gauge theo-
ries using the SU(N) color group as an example. To translate a continuum
field theory onto a lattice we introduce a discrete grid with lattice spacing
�. The hypercubic lattice is labelled by a four-dimensional vector with in-
teger components nµ = (n1, n3, n2, n4). The continuum of field variables is
replaced by a denumerable set. By enclosing the system into a box of size
L, we achieve a finite number of variables. In fact, the initial quantum field
system is approximated by the Gibbs ensemble of identical classical systems
with N ∼ N 2(L/�)4 degrees of freedom. Large computers are now common for
numerically approximating this four-dimensional statistical mechanics. Then
the numerical results are extrapolated to zero spacing �→ 0, and interpreted
in terms of the initial quantum field theory.

Our starting point is the manifestly gauge invariant expression (7.90). Con-
sider first UΓ (x, y). The path Γ is approximated by a sequence of straight line
segments joining adjacent sites. Associated with every directed bond connect-
ing a site n with the next site n + µ̂ in the µth direction is an elementary
phase factor

U(n, n+ µ̂) = exp
[
−ig� TaA

a
µ(n)

]
, (7.101)
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which acts as a piece of colored string with a constant gauge field flux through-
out it. There are no degrees of freedom for motion along this string from n to
n+ µ̂. The inverse of U(n, n+ µ̂) is the oppositely directed link:

U−1(n+ µ̂, n) = U(n, n+ µ̂) . (7.102)

The phase factor associated with a particular discretized path is the P -ordered
product of such elementary phase factors along the path. We may define the
elementary Wilson loop around a ‘plaquette’ p (that is, around an elementary
parallelogram with bonds connecting nearest neighbor nodes):

W (p) = tr [U(n, µ̂)U(n+ µ̂, n+ µ̂+ ν̂)U(n+ µ̂+ ν̂, n+ ν̂)U(n+ ν̂, n)] .
(7.103)

By (7.99),
W (p) = tr

{
exp

[
−ig�2Gµν(n)

]}
, (7.104)

where

Gµν(n) = ∂µAν(n) − ∂µAν(n) − ig [Aµ(n), Aν(n)] , (7.105)

∂µAν(n) =
1
�

[Aν(n+ µ̂) −Aν(n)] . (7.106)

Now a lattice version of the action for the gluon field may be written as

S =
1

8πg2

∑
n

∑
p

[W (p) − 1] , (7.107)

the summation is over all plaquettes and sites of the lattice. Indeed, in the
limit �→ 0,

S ≈ − 1
8πg2

∑
n

∑
p

�4

2
g2 tr (GµνG

µν) → − 1
16π

∫
d4x tr (GµνG

µν) , (7.108)

where use has been made of the fact that tr (Ta) = 0.
Quark degrees of freedom are described by discrete variables ψ(n) defined

on each lattice site n. To maintain the properties of the Dirac action under
Hermitian conjugation, the derivative ∂µψ is approximated by a symmetric
finite difference

∆µψ(n) =
1
2�

[ψ(n+ µ̂) − ψ(n− µ̂)] . (7.109)

A simple version of the lattice action for the free quark field is

S = �4
∑

n

{
1
2�

4∑
µ=1

ψ̄(n) γµ [ψ(n+ µ̂) − ψ(n− µ̂)] −mψ̄(n)ψ(n)

}
, (7.110)

where γµ represents Euclidean Dirac matrices satisfying the anticommutation
relations



7.3 Lattice Formulation of Gauge Theories 303

γµγν + γνγµ = 2δµν . (7.111)

The gauge invariant interaction between quarks and gluons is obtained by
replacing ψ̄(n)ψ(n+ µ̂) with ψ̄(n)U(n, n+ µ̂)ψ(n+ µ̂) in (7.110), which is in
any case necessary for gauge invariance,

S =
∑

n

{
4∑

µ=1

�3

2
[
ψ̄(n)γµU(n, n+ µ̂)ψ(n+ µ̂) − ψ̄(n)γµU(n, n− µ̂)ψ(n− µ̂)

]

− m�4ψ̄(n)ψ(n)

}
. (7.112)

Combining (7.107) and (7.112), we come to a manifestly gauge invariant lattice
theory.

However, the action (7.110) does not quite work. The problem is that
action (7.110) possesses new and spurious degrees of freedom (the so-called
species doubling problem, for which see Problem 7.3.2).

Problem 7.3.1. Prove (7.89).

Proof To solve the equation
dψ

dλ
= Aψ , (7.113)

let us expand A and ψ as power series in λ:

ψ = ψ0 + λψ1 +
λ2

2
ψ2 + · · · , A = A0 + λA1 + · · · . (7.114)

We have
ψ1 + λψ2 = (A0 + λA1)(ψ0 + λψ1) (7.115)

which implies

ψ1 = A0ψ0, ψ2 = A1ψ0 +A0ψ1 = (A1 +A0A0)ψ0. (7.116)

Substituting this in (7.113), we come to the equation

dψ

dλ
= [A0 + λ(A1 +A0A0)]ψ0, (7.117)

which is integrated to give

ψ = ψ0 +
[
A0λ+

λ2

2
(A1 +A0A0)

]
ψ0 . (7.118)

With the identifications

A0 = −ig vµAµ, λA0 = −ig ∆xµAµ, λ2A0A0 = −g2∆xµ∆xνAµAν ,
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λA1 = −ig vµ∆xν∂µAν , λ2A1 = −ig ∆xµ∆xν∂µAν , (7.119)

we easily read (7.89) in (7.118).

Problem 7.3.2. For simplicity, assume the quark mass to be zero. Show that
the lattice action for a free quark field (7.110) has a 16-fold degeneracy of
quark degrees of freedom.

Hint The finite-difference equation of motion following from (7.110) is

γµ [ψ(n+ µ̂) − ψ(n− µ̂)] = 0 . (7.120)

The Fourier transform

ψ(n) =
1

(2π)4

∫
d4k exp [−i(k · n)�] ψ̃(k) , (7.121)

where the integration is over the Brillouin zone −π
� ≤ kµ ≤ π

� , diagonalizes
the action

S =
1

(2π)4

∫
d4k ψ̃(−k)Λ(k)ψ(k), Λ(k) = i

4∑
µ=1

γµ
sin (�kµ)

�
. (7.122)

As �→ 0 with kµ fixed, Λ(k) → i(γ ·k) at kµ = (0, 0, 0, 0), which is the conven-
tional limit. However, Λ(k) has in addition 15 excess limits at kµ = (π, 0, 0, 0),
(0, π, 0, 0), (0, 0, π, 0), (0, 0, 0, π), (π, π, 0, 0), (π, 0, π, 0), (π, 0, 0, π), (0, π, π, 0),
(0, π, 0, π), (0, 0, π, π), (π, π, π, 0), (π, π, 0, π), (π, 0, π, π), (0, π, π, π), (π, π, π, π).

Problem 7.3.3. Construct a lattice version of the action for a complex Klein–
Gordon field. Show that this action presents no species doubling problem.

Answer

S = �4
∑

n

{
1
�2

4∑
µ=1

φ∗(n) [φ(n+ µ̂) − 2φ(n) + φ(n− µ̂)] +M2 φ∗(n)φ(n)

}
,

(7.123)
Putting M = 0, and using the Fourier transform of φ(n),

S =
1

(2π)4

∫
d4k φ∗(−k)Λ(k)φ(k), Λ(k) =

4
�2

4∑
µ=1

sin2

(
�kµ

2

)
. (7.124)

Within the Brillouin zone −π
� ≤ kµ ≤ π

� , Λ(k) goes to a single limit k2 as
�→ 0, which implies that only the usual continuum action for a free massless
scalar field is regained.
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Notes

1. The theory of gauge fields is set out in many textbooks. Some which are
different in subject matter and mathematical level are: De Witt (1965), Fad-
deev & Slavnov (1980), Konopleva & Popov (1981), Schwarz (1991), Weinberg
(1996), Siegel (1999), and Rubakov (2002). The volume edited by ’t Hooft
(2004) is a panorama of current Yang–Mills theory.

2. Section 7.1. Yang & Mills (1954), and Shaw (1955) extended the Weyl prin-
ciple of local gauge invariance to non-Abelian gauge groups. Klein (1938) was
close to the discovery of non-Abelian gauge fields. Wong (1970) constructed
classical equations of motion for a point particle with isospin degrees of free-
dominteracting with the SU(2) gauge field, analogous to the Maxwell–Lorentz
theory. Heinz (1984) derived the equation of motion for a colored spinning par-
ticle. Balachandran, Borchardt & Stern (1978) proposed the action governing
Wong particles. Balachandran, Marmo, Skagerstam & Stern (1982) is a review
of fiber bundle geometry in gauge theories.

3. Section 7.2. It is a central tenet of high energy physics that the three fun-
damental forces – strong, electromagnetic and weak, owe their origin to local
gauge symmetries and are mediated by the exchange of gauge fields. We have
given a very brief account of these forces in the framework of the standard
model omitting discussion of renormalizability, anomalies, asymptotic free-
dom, etc., because these issues are beyond the scope of the book. There are
many special-purpose books which can help to fill the gap. Three worthy of
mention are: Cheng & Li (1984), Mohapatra (1986), and Weinberg (1996).
Veltman (2003) offers an insight in subnuclear physics on a popular level.

Nambu & Jona-Lasinio (1961) suggested that Dirac fields, corresponding
to baryons, can gain their masses from spontaneous symmetry breaking. The
Higgs mechanism was discovered by Englert & Brout (1964), Guralnik, Hagen
& Kibble (1964), and Higgs (1964, 1966). A model of the weak interaction with
three intermediate vector bosons W±

µ and Zµ was studied by Glashow (1961).
The group theoretical aspects of this model were worked out by Salam &
Ward (1964). Weinberg (1967), and Salam (1968) introduced vector bosons as
SU(2)×U(1) gauge fields and applied the Higgs mechanism for generating their
masses. ’t Hooft & Veltman (1972) proved this model to be renormalizable.
For an informal (intuitive) treatment of the renormalizability condition see
Kosyakov (2001).

Gell-Mann (1964), and Zweig (1964) assumed that a fundamental SU(3)-
flavor triplet of quarks, u, d, s, particles with spin 1

2 and fractional values of
the electric charge, are the fundamental constituents from which baryons and
mesons are built up. For quark search experiments see Lions (1985). Green-
berg (1964), Han & Nambu (1965), and Bogoliubov, Struminsky & Tavkhe-
lidze (1965) introduced the SU(3)-color group as an internal symmetry group
underlying the quark model. Fritzsch, Gell-Mann & Leutweyler (1973), and
Weinberg (1973) formulated a SU(3)-color gauge model of strong interactions
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between quark and gluon fields, which was given the name quantum chromo-
dynamics. Gross & Wilczek (1973), and Politzer (1973) showed that quantum
chromodynamics offers the property of asymptotic freedom.

4. Section 7.3. Mandelstam (1962) used the phase factor as the basis for elec-
trodynamics. Yang (1974) extended this approach to non-Abelian gauge theo-
ries. Wu & Yang (1975) recognized that the geometry of principal fiber bundles
is merely the mathematical name of the Yang–Mills theory. For differential-
geometric aspects of gauge theories see Eguchi, Gilkey & Hanson (1980),
Schwarz (1991), and Dubrovin, Fomenko & Novikov (1992).

Wick (1954) showed that calculations in quantum field theory can be sim-
plified if the wave function is analytically continued to imaginary values of
t, which is tantamount to formulating quantum physics on Euclidean space-
time. Schwinger (1959) transcribed quantum electrodynamics to a Euclidean
metric. For a review of Euclidean quantum field theory see Jaffe & Glimm
(1987), and Bogoliubov, Logunov, Oksak & Todorov (1990).

Wilson (1974) put forward a gauge invariant version of quantum chromo-
dynamics on Euclidean lattices. For an extended discussion of this topic and
further references see Creutz (1983). Lepage (2005) is a review of the present
state of the art.
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Solutions to the Yang–Mills Equations

It was shown in Chap. 4 that two solutions to Maxwell’s equations, the
Coulomb field and plane wave, play a key role in electrodynamics. By con-
trast, the situation in the Yang–Mills theory falls short of this ideal. Although
a considerable body of solutions to the Yang–Mills equations exists in the lit-
erature, their physical implications are yet to be completely determined. In
this chapter we review some field configurations in gauge theories and discuss
their properties with an emphasis on their application in the physics of the
strong interactions. Our prime interest is with solutions to the Yang–Mills–
Wong theory, which seem to be well understood but have not been adequately
addressed in the literature.

Recall that the theory of strong interactions, the SU(3)-color gauge field
theory of quarks interacting with gluons, is defined by the Lagrangian

L = − 1
16π

Gµν
a Ga

µν +
∑

f

(
i ψ̄f γ

µDµ ψf −mf ψ̄f ψf

)
, (8.1)

where f runs over the different flavors u, d, s, etc., and color indices of the
quark field are suppressed. The quantized version of this theory is quan-
tum chromodynamics. Quarks are assumed to be fundamental constituents
of hadrons. However, all attempts to observe an isolated quark have failed. A
plausible explanation is that quarks cannot escape from hadrons and do not
exist as free particles. This hypothetical mechanism for keeping the quarks
inside hadrons is called confinement. Furthermore, it is deemed that gluons
are subject to the same constraint. They cannot be released from hadrons.
Thus, by confinement is often meant a more general requirement: any object
with color degrees of freedom must be coupled with other colored objects to
make a color neutral combination, namely a singlet of the gauge group1.
1 In the Yang–Mills–Wong theory, which is a toy model of the full theory of strong

interactions, the condition of color neutrality does not hold, which is a problem.
The line of attack on this problem is open to speculation.
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The most popular view of quark confinement is that a pair of a quark
and an antiquark forming a meson are bounded by an attractive force whose
strength does not decrease with distance. The force between the quark and
antiquark is constant and the energy required to pull them apart increases
linearly with their separation because the color Yang–Mills field generated
by them is squeezed into a thin tube, or even into a string, joining these
particles. The contraction of the field into a string with a constant tension
owes its origin to the properties of the gluon vacuum determined from exact
solutions of the classical Yang–Mills equations. This suggests the existence of
a classical Yang–Mills field Aµ which rises linearly with distance. As is shown
in Sects. 8.1, 8.3, and 8.4, this is indeed the case. Exact retarded solutions to
the Yang–Mills equations with the source composed of several quarks involve
such linearly rising terms, and, for some solutions, the linearly rising terms are
concentrated in strings. However, we will see in Sect. 8.4 that the force due to
this term is zero. Hence, the linearly rising terms of these classical Yang–Mills
fields have nothing to do with the string model of quark confinement.

By now it is generally agreed that a phase transition from hadron matter
to quark-gluon plasma must occur if either the temperature or the density ap-
proaches a critical point, estimated at Tc = 200 ± 50 MeV, and ρc = 1.5–2.5
GeV/fm3. This phenomenon is called deconfinement. It took place in the early
universe at 10−6 s after the big bang, and may be achieved in the core of a
collapsing neutron star or in laboratory experiments on relativistic heavy-ion
collisions. It is reasonable to assume that the two phases are endowed with dif-
ferent symmetries. This would mean that deconfinement is a phase transition
that changes not only the energy content but also the symmetry of subnuclear
realm. In support of this conjecture we obtain in Sects. 8.1–8.4 two classes
of exact solutions to the Yang–Mills–Wong theory which are distinguished by
their groups of the gauge symmetry. In Sect. 8.5, we show that these solutions
are stable against small field perturbations, and, in Sect. 8.7, we discuss the
relevance of these Yang–Mills field configurations to the description of the
two phases of subnuclear matter. In Sect. 8.6, we take a brief look at some
exact solutions to Abelian and non-Abelian Higgs models, which are repeat-
edly surveyed in the literature (vortices and monopoles), to compare them
with solutions to the Yang–Mills–Wong theory. However, Euclidean solutions
to the pure Yang–Mills theory, such as instantons and merons, will be omitted
in the present discussion since they have something to do with tunneling in
Minkowski space, and their physical meaning can be fully understood only in
the context of quantum field theory.
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8.1 The Yang–Mills Field Generated by a Single Quark

We turn now to a study of retarded Yang–Mills fields due to colored point
particles, hereafter referred to as quarks2. To begin with we consider the case
that the Yang–Mills field is generated by a single quark moving along an ar-
bitrary timelike smooth world line. We adopt the simplest non-Abelian gauge
group SO(3). In the next section, we will show that the extension to larger
gauge groups offers no significant changes in the main results.

When the gauge group is SO(3), the color space is a three-dimensional
Euclidean space which is sometimes referred to as isotopic-spin space. Boldface
characters will represent a triplet in this space. It is convenient to use a moving
color basis spanned by n1, n2, and n3. The basis vector n1 is aligned with the
quark color charge,

n1 =
Q
|Q| , (8.2)

while n2 and n3 are constrained by the conditions of orientability

ni × nj = εijk nk (8.3)

and orthogonality

ni · nj =
1
2
δij . (8.4)

The symbols × and · denote respectively the cross and scalar products of color
vectors.

With these preliminaries, the Yang–Mills and Wong equations become

∂µGµν + gAµ × Gµν = 4πg
∫ ∞

−∞
dsQ(s) vν(s) δ4[x− z(s)] , (8.5)

Q̇ = −g vµAµ × Q , (8.6)

where the field strength Gµν is expressed in terms of the vector potentials Aµ

as
Gµν = ∂µAν − ∂νAµ + gAµ × Aν . (8.7)

Equation (8.6) shows that the color charge of the source Q is a vector
precessing around the color vector vµAµ at the angular velocity Ω = g |vµAµ|.
2 This identification is rather conventional. Recall that the Yang–Mills–Wong par-

ticles are spinless objects. This does not necessarily mean that such particles are
of little use as a model of real quarks involved in hadrons since measurements
of the polarized proton structure in deep inelastic leptoproduction indicate that
quarks carry only a small fraction of the spin of the nucleon. The next remark is
that the color charge of a particle in the Yang–Mills–Wong theory transforms as
the adjoint representation of the gauge group while the field ψ in (8.1) realizes
the fundamental representation of the SU(3)-color group.
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We now attempt to extend the ansatz (4.302), usefully employed in electro-
dynamics, to the single-quark case in Yang–Mills–Wong theory by assuming
that

Aµ =
3∑

j=1

nj(s) [Φj(ρ) vµ(s) + Ψj(ρ)Rµ(s)] , (8.8)

where s stands for the retarded instant when the signal was emitted by the
quark.

We insert (8.8) in (8.5), and require that the coefficient of aµ be zero off
the world line. This gives three equations

ρΦ′
j + Φj = 0 , (8.9)

where the prime denotes the derivative with respect to ρ. They are readily
integrated:

Φj(ρ) =
qj
ρ
, qj = const . (8.10)

If one tries to substitute (8.8) and (8.10) into (8.6), then a divergence
arises: the vector potential Aµ is singular on the world line, which makes the
color charge Q precess at an infinite angular velocity. This divergence cannot
be absorbed into parameters entering the Wong equation (8.6) similar to that
the bare mass coupled to the self-energy yields the renormalized mass in the
equation of motion for a dressed particle. To see this, we recall that, apart
from the dimensionless coupling constant g, there are no free parameters in
(8.6). However, g is unsuitable for absorbing the term 1/ε, because, if this
term is to be absorbed, it must be added to another divergent term having
dimension −1.

This difficulty can be circumvented, if we take all constants of integration
in (8.10) to be zero, with one exception,

q2 = q3 = 0, q1 �= 0 , (8.11)

and assume that Ψj(ρ) is less singular than Φj(ρ), namely, ρΨj → 0 as ρ→ 0.
Then (8.6) becomes

ṅ1 = 0 . (8.12)

We thus come to the dilemma: either Q precesses at infinite angular ve-
locity, or we have a picture with the utter absence of precession. The former
option seems beyond scope of physical intuition, and we adopt the latter one,
Q̇ = 0. Although n1 is fixed, two other basis vectors n2 and n3 might precess
around n1. However, equations (8.5) and (8.6) contain no parameter of the ap-
propriate dimension which is related to the angular velocity of this precession,
and we are led to set

ṅ2 = ṅ3 = 0 . (8.13)

We further define two color vectors
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n± = n2 ± in3 , (8.14)

which together with n1 span a fixed color basis. In view of (8.10), (8.11) and
(8.14), the ansatz (8.8) reduces to

Aµ = q1 n1
vµ

ρ
+ (n1 Ψ1 + n+ Ψ+ + n− Ψ−)Rµ . (8.15)

We substitute (8.15) in (8.5) and equate to zero the coefficients of the color
basis vectors n1 and n±, and those of the spacetime vectors vµ and cµ. In the
latter case, we equate to zero separately the coefficient of a · c and the sum
of remaining terms of the coefficient of cµ. Introducing a new independent
variable ξ = log ρ and denoting the derivative with respect to ξ by a prime,
we find

Ψ ′′
1 + 3Ψ ′

1 + 2Ψ1 = 0 , (8.16)

Ψ ′′
+ + (3 − 2ig q1)Ψ ′

+ + (2 − 3ig q1 − g2q21)Ψ+ = 0 , (8.17)

Ψ ′′
1 + Ψ ′

1 = 0 , (8.18)

Ψ ′′
+ + (1 − ig q1)Ψ ′

+ = 0 , (8.19)

Ψ+Ψ
′
− − Ψ−Ψ

′
+ + 2ig q1Ψ+Ψ− = 0 , (8.20)

q1
(
Ψ ′

+ + 2Ψ+

)
+ e2ξ

(
Ψ ′

+Ψ1 − Ψ ′
1Ψ+

)
− ig q1

(
q1 + e2ξ Ψ1

)
Ψ+ = 0 , (8.21)

and three further equations derived from (8.17), (8.19), and (8.21) by complex
conjugating and changing Ψ+ for Ψ−.

Now we are dealing with an overdetermined set of equations: 9 equations
are used to determine 3 desired functions. It can be solved when all these
equations are compatible, which is the case if integration constants are not
arbitrary but take some special values.

Let us compare the system of equations (8.16)–(8.21) with the correspond-
ing system of equations in electrodynamics (4.305)–(4.306). Both are overde-
termined. However, equations (4.305) and (4.306) are linear, and their solution
is given by equation (4.308) where C is an arbitrary integration constant. This
constant serves to parametrize the family of solutions related by the gauge
transformations (4.312). On the other hand, (8.16)–(8.21) represent a nonlin-
ear and overdetermined set of equations, and unless they become linear for
some reason, their solution is feasible only for exceptional integration con-
stants.

Since equations (8.16)–(8.19) and their complex conjugate are linear, it is
reasonable to look for a simultaneous solution to these equations of the form

Ψ1 ∝ eλ1ξ, Ψ+ ∝ eλ+ξ, Ψ− = (Ψ+)∗ . (8.22)

We find λ1 = −2 or λ1 = −1 from (8.16), and λ1 = 0 or λ1 = −1 from (8.18).
Thus, (8.16) and (8.18) are compatible if

Ψ1 = η1 e
−ξ . (8.23)
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We next obtain λ+ = −2 + igq1 or λ+ = −1 + igq1 from (8.17), and
λ+ = 0 or λ+ = −1+ igq1 from (8.19). Thus (8.17) and (8.19) are compatible
if λ+ = −1+ igq1. Compatibility is also attained for λ+ = 0 when q1 = −2i/g
or q1 = −i/g.

Let us examine the compatibility of (8.17) and (8.19) with (8.20). We first
suppose that Ψ+Ψ− �= 0. It follows from (8.20) that

λ− − λ+ + 2igq1 = 0 . (8.24)

This equation is satisfied identically for λ+ = (λ−)∗ = −1 + igq1, but there is
no solution for λ+ = λ− = 0. The compatibility of (8.17), (8.19), and (8.20)
can also be established for λ+ = λ− = 0 provided that

Ψ+ Ψ− = 0 . (8.25)

We consider finally the compatibility of (8.21) with (8.16)–(8.20). Taking
λ+ = −1 + igq1, in combination with (8.23), we obtain q1Ψ+ = 0, while the
complex conjugate equation yields q1Ψ− = 0. This implies either q1 = 0, which
converts the potential (8.15) to the form

Aµ = a
Rµ

ρ
(8.26)

where a is a constant vector in the color space, or Ψ+ = Ψ− = 0, which results
in

Aµ = q1 n1
vµ

ρ
+ η1 n1

Rµ

ρ
. (8.27)

Recall that Rµ/ρ = ∂µs, hence the vector potential (8.26) as well as the second
term of (8.27) are pure gauge.

For λ+ = λ− = 0, (8.21) becomes
[
q1 (2 − igq1) + (1 − igq1) e2ξ Ψ1

]
Ψ+ = 0 . (8.28)

Let q1 = −2i/g, then (8.28) gives Ψ+Ψ1 = 0, while the complex conjugate
equation is Ψ− Ψ1 = 0. This offers two possibilities. First, Ψ+ = Ψ− = 0,
which results in Aµ of the form (8.27). Second, Ψ1 = 0, which is allowable for
η1 = 0. Since λ+ = 0, we conclude from (8.22) that Ψ+ = η+ = const.

For q1 = −i/g, the solution to (8.28) is Ψ+ = 0. With the corresponding
result for the complex conjugate equation, Ψ− = 0, we return to Aµ of the
form (8.27).

To summarize, all the equations are compatible if (8.25) holds. For Ψ+ =
Ψ− = 0, there is no constraint on the parameter q1, hence

Aµ = q n1
vµ

ρ
, (8.29)

where q is an arbitrary constant. However, if we assume that only Ψ− (or else
only Ψ+) is zero, then q1 is found to be −2i/g (or else 2i/g), and so
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Aµ = ∓ 2i
g

n1
vµ

ρ
+ η n±R

µ , (8.30)

where η is an arbitrary nonzero constant.
We thus have two types of retarded solutions: (8.29) and (8.30). It is evident

that the vector potential of the type (8.29) satisfies the relations

Aµ × Aν = 0, Aµ × Gµν = 0 . (8.31)

More generally, if Aµ is proportional to a fixed vector in color space, then
the Yang–Mills equations linearize. The solution (8.29) describes an Abelian
field of the Liénard–Wiechert type. All results obtained in Maxwell–Lorentz
electrodynamics are therefore extended to the Yang–Mills–Wong theory with
the only replacement e2 → q2.

By contrast, (8.30) represents a non-Abelian field configuration for which
the relations (8.31) do not hold. One can readily determine the field strength:

Gµν = cµWν − cνWµ , (8.32)

where
Wµ = ∓ 2i

g
n1

V µ

ρ2
+ η n± v

µ , (8.33)

and V µ is the same as that given by (4.284),

V µ = vµ + ρ(
u

⊥ a)µ . (8.34)

Let us compare the retarded electromagnetic field (4.214) and the retarded
Yang–Mills field (8.30). There are several notable distinctions.

First, the vector potential (8.30) involves a linearly rising term. Note that
this term is inherent in the non-Abelian context. It might seem that a similar
term occurs as well in electrostatics. Indeed, ∇2r = 0, and so

φ =
e

r
+ E · r , (8.35)

with E = const., satisfies the Poisson equation with a delta-function source. It
is clear, however, that only the first term of φ derives from the delta-function
source, while the second term gives the uniform electric field E inside an
infinite capacitor with flat parallel oppositely charged plates. The retarded
electromagnetic vector potential of a point charge Aµ does not contain a term
proportional to Rµ because

(� ηµν − ∂µ∂ν)Rν = −2vµ

ρ
, (8.36)

and there is no source like the term on the right of (8.36) in Maxwell’s equa-
tions.

We further note that the coefficient η of the linearly rising term of Aµ has
dimension −2, whence it follows that conformal symmetry is violated. One
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might suspect that the linearly rising term of the solution (8.30) is pure gauge.
But this impression is wrong: this term contributes to the field strength, as is
clear from (8.33). Conformal invariance is therefore broken not only for Aµ,
but also for Gµν . Nevertheless, this symmetry is restored for color singlets
built from Aµ and Gµν defined in (8.30) and (8.32)–(8.34) where a certain
sign is kept fixed (Problem 8.1.3).

The next peculiarity is that the Yang–Mills equations can determine not
only the field, but also the color charge that generates this field

Q = ∓2i
g

n1 . (8.37)

The second solution (8.30) admits only a single value for the magnitude of the
color charge carried by the quark |Q| = 2/g. Recall that the electric charge of
any particle in the Maxwell–Lorentz electrodynamics may be quite arbitrary.
The selection of a special magnitude for the color charge of the source stems
from the nonlinearity of the Yang–Mills equations.

It is natural to call the part of Gµν disappearing at spatial infinity the
generalized Liénard–Wiechert term. It can be shown (Problem 8.1.4) that
the color charge (8.37) is proportional to the flux of the generalized Liénard–
Wiechert term through any surface enclosing the quark. Note that the linearly
rising term of Aµ is unrelated to the color charge content of the quark gener-
ating this field.

From (8.32)–(8.34), one obtains the field invariants

∗Gµν · Gµν = 0, Gµν · Gµν =
8

g2ρ4
.

It immediately follows that the solution (8.30) describes a field of the ‘mag-
netic’ type.

As will be seen in Sect. 8.5, the solution (8.29) is stable against small
perturbations for real-valued q. Throughout the following text, we will assume
that q takes arbitrary real values. Hence, the solution (8.29) represents a
retarded Yang–Mills field of the ‘electric’ type, which bears a close similarity
to the Liénard–Wiechert field in electrodynamics.

We finally notice a nonanalytic dependence of the vector potential (8.30)
on g at the point g = 0. This is a rather general feature of nonperturbative
solutions of nonlinear field equations. Some physical implications of this fact
will be discussed later.

It seems advisable to rewrite our results in terms of SU(2), the double
covering of SO(3). The Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(8.38)

are common for constructing generators of SU(2). These matrices obey the
relation
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σaσb = iεabcσc + 1δab . (8.39)

It is convenient to represent the color charge Q by a diagonal matrix. The
color basis vectors are then expressed in terms of the Pauli matrices: n1 = τ3,
n2 = τ2, n3 = τ1, where τi = σi/2. One can readily see that (8.39) involves
both (8.3) and (8.4). If we denote Aµ = Aa

µ τa, then (8.29) and (8.30) become

Aµ = q τ3
vµ

ρ
, (8.40)

and
Aµ = ∓ 2i

g
τ3
vµ

ρ
+ iκ (τ1 ± iτ2)Rµ , (8.41)

where q and κ are arbitrary (nonzero) real constants.
It may appear that the two signs in the solution (8.41) are attributable to

opposite color charges 2iτ3/g and −2iτ3/g. If this were so, the particles with
such color charges could reasonably be identified as a quark and an antiquark.
However, the appearance of opposite color charges is deceptive in the single-
quark case. The sign in (8.41) can be changed (Problem 8.1.5) by a gauge
transformation,

Aµ
(+) = ΩAµ

(−)Ω
†, Ω = exp (−iπτ1) . (8.42)

By introducing an alternative matrix basis

T1 = τ1, T2 = iτ2, T3 = τ3 , (8.43)

we convert the solution (8.41) to the form Aµ = Aa
µ Ta where all coefficients

Aa
µ are pure imaginary. Elements of this basis obey the following commutation

relations
[T1, T2] = −T3, [T2, T3] = −T1, [T3, T1] = T2 , (8.44)

which underlie the sl(2,R) Lie algebra (Problem 8.1.6). Thus, the gauge group
of the solution (8.41) is actually SL(2,R). On the other hand, the gauge group
of the solution (8.40) is the initially chosen SU(2).

Likewise, the color basis {n1,n2,n3} may be replaced by a new basis

N1 = in1, N2 = n2, N3 = in3 . (8.45)

This renders the solution (8.30) real-valued with respect to this new basis.
The color space becomes a pseudoeuclidean space with the metric ηab =
diag (−1, 1,−1). The automorphism group of this space is SO(2, 1). On the
other hand, the appropriate color space for the solution (8.29) is the Euclidean
space whose automorphism group is SO(3).

Should we adopt the gauge group Sp(1), rather than SO(3) or SU(2),
we would come to identical results owing to equivalence between the three
complex Lie algebras
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sp(1,C) ∼ sl(2,C) ∼ so(3,C) , (8.46)

their real compact forms

sp(1) ∼ su(2) ∼ so(3) , (8.47)

and their real noncompact forms

sp(1,R) ∼ sl(2,R) ∼ su(1, 1) ∼ so(2, 1) . (8.48)

Imagine for a little that only a single quark is in the universe. Then the
system quark plus the Yang–Mills field exists in two phases which are distin-
guished by their groups of the gauge symmetry: SU(2) and SL(2,R). These
phases will be conventionally referred to as hot and cold.

A similar situation is found in the Higgs model where the presence of two
types of solutions implies the existence of two alternative phases. One phase,
perfectly symmetric, is unstable and rearranges into another phase possessing
only part of this symmetry. The symmetric phase becomes stable at elevated
temperatures, so that the full symmetry is restored. Note, however, that this
symmetry restoration can be achieved only in a more general temperature-
dependent theoretical framework which includes the unbroken and broken
solutions of the Higgs model.

Turning to SU(2) and SL(2,R), none of them is a subgroup of the other.
Where do these groups of symmetry come from? Their origin bears no relation
to spontaneous symmetry breakdown. SU(2) and SL(2,R) are the compact and
noncompact real forms of the complex group SL(2,C). Invariance of the action
under SU(2) automatically entails its invariance under the complexification of
this group, SL(2,C). However, a complex-valued Yang–Mills field may seem
troublesome, particularly where observable quantities, such as energy, were in-
volved. Only real forms of SL(2,C) appear to be satisfactory as gauge groups.
The emergence of a solution invariant under a real form of SL(2,C) differ-
ent from the initial SU(2) is a phenomenon specific to the Yang–Mills–Wong
theory. We will call it spontaneous symmetry deformation. It follows from
this discussion that the cold phase differs from the hot phase not only in
its symmetry aspect, but also in physical manifestations, say, producing the
Yang–Mills field of ‘magnetic’ rather than ‘electric’ type.

Problem 8.1.1. Derive (8.9) and (8.16)–(8.21).

Problem 8.1.2. Find advanced non-Abelian solutions to the Yang–Mills equa-
tions (8.5).

Answer

G = c ∧ W ,

cµ = −vµ + uµ ,

Wµ = ± 2i
g

n1
V µ

ρ2
+ η n± v

µ ,
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V µ = vµ − ρ (
u

⊥a)µ , (8.49)

and all the kinematical variables refer to the advanced instant sadv.

Problem 8.1.3. Let the sign of (8.30) be fixed. Prove that any color singlet
built from Aµ and Gµν is free of the linearly rising term contribution and
hence conformally invariant.

Hint Color vectors n±, defined in (8.14), are null vectors perpendicular to
n1: n2

± = 0, n± · n1 = 0.

Problem 8.1.4. Show that the Gauss law, as applied to (8.30), takes the
following form. Let an external source of the Yang–Mills field with the color
charge Q be contained in a domain V of a spacelike hyperplane having the nor-
mal vµ. Upon integration of (8.5) over V, the flux of the generalized Liénard–
Wiechert part of the field strength through the boundary of this domain ∂V
proves to be 4πQ, other terms cancel out.

Problem 8.1.5. Prove (8.42).

Hint Verify first that exp
(

1
2 iπσ1

)
= iσ1.

Problem 8.1.6. Verify that the matrices Ti defined in (8.43) are generators
of SL(2,R).

8.2 Ansatz

Knowing the retarded solution to Maxwell’s equations with the source involv-
ing a single point charge

Aµ = e
vµ

ρ
, (8.50)

its extension to the N -charge case follows immediately:

Aµ =
N∑

I=1

eI
vµ

I

ρI
. (8.51)

It is clear that allowing for such linear combinations of solutions with arbitrary
real coefficients is tantamount to stating that electric charges eI take arbitrary
real values.

By contrast, the superposition principle does not apply to the Yang–Mills
equations

�Aµ−∂µ∂νA
ν−ig(∂ν [Aν , Aµ]+[Aν , ∂

νAµ−∂µAν ])−g2[Aν , [Aν , Aµ]] = 4πjµ ,
(8.52)

jµ(x) =
N∑

I=1

∫ ∞

−∞
dsI QI(sI) v

µ
I (sI) δ4 [x− zI(sI)] , (8.53)
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unless they become Abelian and hence linearize. This suggests that the non-
Abelian single-quark solutions (8.41) are prevented from superposing, and
we are forced to solve the Yang–Mills equations (8.52)–(8.53) for each N
individually.

Before proceeding to the discussion of the ansatz for non-Abelian solutions,
let us give some attention to Abelian solutions. To be specific, we adopt SU(N )
as the gauge group. Taking into account that the Yang–Mills equations (8.52)
are covariant under the gauge transformations

Aµ → Ω

(
Aµ +

i

g
∂µ

)
Ω†, jµ → ΩjµΩ

† , (8.54)

one can always find a unitary matrix Ω to diagonalize the Hermitian matrix
jµ. Since the Lie algebra su(N ) is of rank N − 1, there exist N − 1 diagonal
matrices Ha, forming a Cartan subalgebra of commuting matrices. If we set

QI =
N−1∑
i=a

ea
I Ha , (8.55)

where ea
I are arbitrary coefficients, we then find that a vector potential of the

form

Aµ =
N∑

I=1

QI
vµ

I

ρI
; , (8.56)

represents generic retarded Abelian solutions to the Yang–Mills equations
(8.52)–(8.53).

The total color charge of the system of N quarks

Q =
∫

Σ

dσµjµ (8.57)

is in general surface dependent, since jµ is not a locally conserved current. It
is convenient to use a locally adjusted hypersurface of integration, which was
defined in Sect. 6.3. Then Q is the sum of color charges of quarks comprising
this system,

Q =
N∑

I=1

QI . (8.58)

Anticipating that the field is singular on world lines, which implies the
problem of an infinitely rapid precession of the color charge, we will focus on
the picture where the color charge of each quark is constant

QI = const . (8.59)

In this picture,
Q = const . (8.60)
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The Green’s function method is not appropriate to solve (8.52). Note,
however, that coefficients of the second derivatives in the Yang–Mills equations
are identical to the respective coefficients in Maxwell’s equations. Therefore,
the characteristic surface of equations (8.52) is the conventional light cone.

It remains to see how the Yang–Mills field can propagate along rays of
the light cone. In contrast to electrodynamics where solutions with different
boundary conditions can be obtained by adding solutions of the homogeneous
wave equation, the boundary condition in the Yang–Mills theory must be
enforced solution-by-solution. We assume that signals of the Yang–Mills field
are retarded.

Assume that the retarded Yang–Mills field is generated by N quarks mov-
ing along arbitrary world lines zI(sI). The null vector Rµ

I drawn from the
emission point on the world line of the Ith quark zµ

I (sret) to the observation
point xµ is Rµ

I = xµ−zµ
I (sret). From vectors Rµ

I and vµ
I , the following retarded

invariants can be built:

ρI = RI · vI ,

βIJ = vI · (RI −RJ) ,
γIJ = vI · vJ ,

∆IJ = (RI −RJ)2 = −2RI ·RJ . (8.61)

We will look for retarded solutions to (8.52)–(8.53) of the following form

Aµ =
N∑

I=1

N∑
a=1

Ta (vµ
I Φ

a
I +Rµ

I Ψ
a
I ) , (8.62)

where Ta are generators of the N -parameter gauge group involved, and the
unknown functions Φa

I and Ψa
I are assumed to be functions of ρI , βIJ , γIJ ,

and ∆IJ . Note that (8.62) is a natural generalization of the ansatz (8.8) to
the N -quark case.

We must insert (8.62) in (8.52) and perform differentiations using (4.237),
(4.241) and

∂µβIJ = [aI · (RI −RJ) − 1] cµI + γIJc
µ
J ,

∂µγIJ = (aI · vJ) cµI + (aJ · vI) c
µ
J ,

∂µ∆IJ = −2 (βIJc
µ
I + βJIc

µ
J ) . (8.63)

This gives expressions in which it is necessary to equate to zero coefficients of
the linearly independent vectors cµI , vµ

I , and aµ
I , as well as those of color basis

elements Ta. Recall that we seek solutions of the Yang–Mills equations off the
world lines where the formulas of differentiation (4.237), (4.241) and (8.63) are
valid. If the procedure is to be self-consistent, we must separately equate to
zero coefficients of every independent scalar kinematic quantity which cannot
appear in Φa

I and Ψa
I , say, scalars containing aI

µ and ȧµ
I . This leads us to a

nonlinear and overdetermined set of equations which are similar to equations
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(8.9) and (8.16)–(8.21) but may prove more complicated. The algorithm of
finding their solutions is essentially the same as that detailed in the previous
section.

A feature of this procedure is that no gauge fixing condition is necessary.
We thus arrive at an equivalence class of solutions Aµ related by gauge trans-
formations rather than a particular solution. On the other hand, combining
the condition that the color charge of every quark is constant (8.59) with the
Wong equation

Q̇I = −ig [QI , v
µ
IAµ] , (8.64)

we have
[QI , v

µ
IAµ] = 0 , (8.65)

which presents an additional constraint on the form of the solution (8.62).
We emphasize that the ansatz (8.62) is based crucially on the following

assumptions:

(i) spacetime has four dimensions;
(ii) the field dynamics is gauge invariant;
(iii) the signals are retarded (or advanced);
(iv) the world lines are timelike and smooth.

Problem 8.2.1. Verify the formulas of differentiation (8.63).

8.3 The Yang–Mills Field Generated by Two Quarks

To look for solutions to the Yang–Mills equations with a source composed of
two quarks, one should proceed from the ansatz (8.62) and pursue the strat-
egy that was outlined in the two previous sections. We do not discuss this
procedure in detail in the hope that the careful reader will go through cum-
bersome calculations for himself or herself. Our concern here is with features
of the Yang–Mills field which are exhibited by these solutions.

We now adopt SU(3), the minimal unitary group whereby the retarded
field generated by two quarks can be constructed in the general case. The
reason for this enlargement of the gauge group from SU(2) to SU(3) will be
elucidated below.

A commonly employed basis of the Lie algebra su(3) is that spanned by
eight Gell-Mann matrices λa. It is more convenient for our purposes, however,
to use an overcomplete basis comprised of the nonet of 3×3 Hermitian traceless
matrices, including three diagonal matrices

H1 =
1
2

(
λ3 +

λ8√
3

)
=

1
3


 2 0 0

0 −1 0
0 0 −1


 , (8.66)
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H2 = −1
2

(
λ3 −

λ8√
3

)
=

1
3


−1 0 0

0 2 0
0 0 −1


 , (8.67)

H3 = − λ8√
3

=
1
3


−1 0 0

0 −1 0
0 0 2


 , (8.68)

which add up to zero matrix,

3∑
n=1

Hn = 0 , (8.69)

and the six projection matrices

E+
12 =

1
2

(λ1 + iλ2) =


 0 1 0

0 0 0
0 0 0


 ,

E−
12 = E+

21 =
1
2

(λ1 − iλ2) =


 0 0 0

1 0 0
0 0 0


 , (8.70)

E+
13 =

1
2

(λ4 + iλ5) =


 0 0 1

0 0 0
0 0 0


 ,

E−
13 = E+

31 =
1
2

(λ4 − iλ5) =


 0 0 0

0 0 0
1 0 0


 , (8.71)

E+
23 =

1
2

(λ6 + iλ7) =


 0 0 0

0 0 1
0 0 0


 ,

E−
23 = E+

32 =
1
2

(λ6 − iλ7) =


 0 0 0

0 0 0
0 1 0


 . (8.72)

SU(3) is a Lie group of the order 8 and rank 2. Recall that the rank of
a given group is the maximal number of independent commuting elements in
the Lie algebra of this group. The maximal set of commuting generators of
SU(3) can be composed of two diagonal Gell-Mann matrices λ3 and λ8, or,
alternatively, three diagonal matrices H1, H2, and H3, which are defined in
(8.66)–(8.68) and satisfy the constraint (8.69). The vector space spanned by
the Hi represents the Cartan subalgebra of the Lie algebra su(3). The rank of
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the group is also the maximum number of independent polynomial invariants
which can be constructed out of the generators. For su(3), quadratic and cubic
invariants are

3
2
(
H2

1 +H2
2 +H2

3

)
=

3
4
(
λ2

3 + λ2
8

)
= 1 , (8.73)

and
27
2
H1H2H3 =

3
√

3
8
(
3λ2

3λ8 − λ3
8

)
= 1 , (8.74)

where 1 is the 3 × 3 unit matrix.
Using the color basis (8.66)–(8.72), one can check (Problem 8.3.1) that

A(1)
µ = ∓2i

g

(
H1

v1
µ

ρ1
+H2

v2
µ

ρ2

)
+ iκ (E±

13R
1
µ + E±

23R
2
µ) δ(R1 ·R2) , (8.75)

A(2)
µ = ∓2i

g

(
H3

v1
µ

ρ1
+H1

v2
µ

ρ2

)
+ iκ (E±

32R
1
µ + E±

12R
2
µ) δ(R1 ·R2) , (8.76)

A(3)
µ = ∓2i

g

(
H2

v1
µ

ρ1
+H3

v2
µ

ρ2

)
+ iκ (E±

21R
1
µ + E±

31R
2
µ) δ(R1 ·R2) (8.77)

are retarded solutions to the Yang–Mills equations (8.52) with source com-
posed of two quarks, subject to the constraint (8.65). It is possible to show
(Problem 8.3.2) that these three solutions are related by the gauge transfor-
mations,

A(j)
µ = Ω1j A

(1)
µ Ω†

1j , (8.78)

where

Ω12 = Ω−1
13 =


 0 1 0

0 0 1
1 0 0


 , Ω13 =


 0 0 1

1 0 0
0 1 0


 . (8.79)

Therefore, each of solutions (8.75)–(8.77) represents the same Yang–Mills field.
One of them, say, (8.75), might be taken alone, discarding two others.

With reference to Problem 8.3.3, one can conclude from (8.75) that the
color charge of the Ith quark is

QI = ∓ 2i
g
HI . (8.80)

Hence there are two two-quark systems with total color charge

Q =
2i
g

(H1 +H2) (8.81)

and
Q = −2i

g
(H1 +H2) . (8.82)
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Therein lies an important distinction between the single-quark and two-quark
cases. Both complex conjugate solutions (8.41) describe a Yang–Mills field
generated by the same source since one is converted to another by the gauge
transformation (8.42). In contrast, it is impossible to convert a solution with
a fixed sign (8.75) to the complex conjugate solution. The reason is that the
field invariant

I3 = tr (GλµG
µ
ν G

νλ) (8.83)

is nonzero for both solutions (8.75), and I3 changes its sign under the complex
conjugation. We thus have two different field configurations generated by two
sources with opposite total color charges (8.81) and (8.82).

We now turn to the spacetime dependence of the vector potential (8.75). It
is seen that Aµ is independent of β12 and γ12, while∆12 appears in δ(R1·R2) =
2 δ(∆12).

Since Rµ
1 and Rµ

2 are lightlike vectors, the equation of the support R1 ·R2 =
0 can be satisfied only if Rµ

1 is aligned with Rµ
2 . The linearly rising term of Aµ,

multiplied by the factor δ(X1 ·X2), is therefore concentrated on the surfaces
defined by the families of rays

xµ = zµ
1 (s) + θ(σ)nµ σ, nµ = Rµ

1 −Rµ
2 , n0 > 0, n2 = 0 ,

xµ = zµ
2 (s) + θ(σ)mµ σ, mµ = Rµ

2 −Rµ
1 , m0 > 0, m2 = 0 , (8.84)

parametrized by two parameters s and σ. Here, θ(σ) is the Heaviside step
function. The linearly rising term disappears in the region between the world
lines where Rµ

1 and Rµ
2 can not be parallel; this term is nonzero only in the

region outside this two-quark system, as viewed in Fig. 8.1. The intersection
of the two-dimensional surface defined in (8.84) with a spacelike hyperplane
gives a curve. However, this is not a finite string joining the quarks. We have
two half-infinite curves which begin at the quarks and go to spatial infinity,
Fig. 8.2.

There exists an alternative solution which is identical to that of (8.75)
in every respect except that the linearly rising terms do not have the factor
δ(R1 ·R2),

Aµ = ∓2i
g

(
H1

v1
µ

ρ1
+ g κE±

13R
1
µ

)
∓ 2i

g

(
H2

v2
µ

ρ2
+ g κE±

23R
2
µ

)
. (8.85)

The linearly rising terms of Aµ describe lines of force distributed over all
directions in space rather than being squeezed to a string.

The solution (8.85) is essentially non-Abelian in nature since

[Aµ, Aν ] �= 0, [Aµ, G
µν ] �= 0 . (8.86)

How is the nonlinearity of the Yang–Mills equations compatible with the fact
that Aµ is the sum of two single-quark potentials? Although two such terms
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1 2
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B

Fig. 8.1. Retarded signals arriving at a point in the interquark region A and at a
point in the outer region B

•
•

z1

z2

Fig. 8.2. The curves on which the linearly rising term is localized

are indeed combined in (8.85), one cannot build solution as an arbitrary super-
position of these terms. Indeed, if either of them is multiplied by a coefficient
different from 1 and added to another, no further solution arises.

The solution (8.85) describes the Yang–Mills field generated by two bound
quarks. While on the subject of a field generated by two free quarks, the sign of
the color charge of either quark may be chosen freely regardless of the sign of
the color charge of the other quark. However, if we try to change the signs
of the first term in (8.85), with the second term being fixed, we then find that
the resulting expression is no longer solution. One can only change both signs
simultaneously. This correlation of signs of one-quark constituents is what is
generally meant by the term ‘bound’ in the Yang–Mills–Wong theory.

If κ = 0, then the retarded solution is a superposition of two single-quark
potentials

Aµ =
2∑

I=1

3∑
n=1

qn
I Hn

vI
µ

ρI
, (8.87)
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where qn
I are arbitrary real parameters. This solution describes an Abelian

Yang–Mills field generated by two free quarks.
The solutions (8.75)–(8.77) and (8.85) become imaginary-valued in the

color basis

T1 = λ1, T2 = iλ2, T3 = λ3, T4 = λ4 ,

T5 = iλ5, T6 = λ6, T7 = iλ7, T8 = λ8 , (8.88)

or in the basis spanned by Hn and E±
mn. From the explicit form of Hn and

E±
mn, (8.66)–(8.72), it is clear that the Tn are traceless real 3 × 3 matrices

satisfying the commutation relations of the Lie algebra sl(3,R). Thus, the
gauge group of the solutions (8.75)–(8.77) and (8.85) is SL(3,R), while the
gauge group of the solution (8.87) is SU(3).

Let us suppose that one of two quarks, say, quark 1, disappears. Then the
solution (8.76) takes the form Aµ = A′

µ +A′′
µ where

A′
µ = ∓ 2i

g

λ3

2
vµ

ρ
+ iκE±

12Rµ, A′′
µ = ∓ i

g

λ8√
3
vµ

ρ
. (8.89)

A′
µ is just the single-quark solution (8.41) while A′′

µ is an Abelian term, de-
tached from A′

µ, because λ8 commutes with both λ3 and E±
12. The sufficiency

of SU(2) in the single-quark case is thus confirmed; the non-Abelian piece of
the solution is built out of color elements forming the Lie algebra su(2). Note
that su(2) is of rank 1, and hence the cubic field invariant I3 defined in (8.83)
is zero for the single-quark solution (8.89).

The structure of (8.75)–(8.77) and (8.85) makes it clear that the Yang–
Mills field due to a particular bound quark occupies individually a sort of
‘elementary’ sl(2,R) color cell. Neither of two such fields generated by different
bound quarks can be contained in a given sl(2,R). The expert reader will find
this to be similar to the Pauli blocking principle. Just as a cell of volume h3

(where h is Planck’s constant) in the phase space can be occupied by at most
one fermion with a definite spin polarization, so any sl(2,R) cell is suited to
the field of only one bound quark. Proceeding from SO(N ) or Sp(N ), rather
than SU(N ), one singles out the identical elementary color cell, because the
Lie algebras so(2, 1), sp(1,R), and sl(2,R) are equivalent.

Any Lie group of the rank 2 and higher is equally good for playing the
role of the gauge group of Yang–Mills fields generated by two bound quarks.
Apart from SU(3), one might use three other rank-2 groups: SO(4), SO(5), and
Sp(2). However, SO(4) is not semisimple, so that the Killing form is singular.
On the other hand, so(5,C) is isomorphic to sp(2,C). These complex-valued
Lie algebras are suitable to accommodate two elementary color cells. We thus
have two alternatives for the minimal choice of the initial gauge group: SU(3)
and SO(5) ∼ Sp(2).

Problem 8.3.1. Solve the Yang–Mills equations with the two-quark source,
and show that (8.75)–(8.77) and (8.85) are the desired retarded solutions.
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Problem 8.3.2. Show that the vector potentials A(j)
µ , j = 1, 2, 3, defined in

(8.75)–(8.77) are related by gauge transformations.

Problem 8.3.3. Extend the Gauss law formulated in Problem 8.1.4 to the
two-quark case using a locally adjusted hypersurface.

Problem 8.3.4. Verify that the cubic field invariant tr (GλµG
µ
ν G

νλ) is
nonzero and of different signs for complex conjugate fields defined in (8.75).

Problem 8.3.5. What kind of two-dimensional surface is defined in (8.84)?

Answer The warped surface formed by rays emanating in the nµ and mµ

directions, respectively, from the edges zµ
1 (s) and zµ

2 (s).

Problem 8.3.6. Proceeding from the gauge group SO(5), find retarded solu-
tions to the Yang–Mills equations with the two-quark source.

Hint Use the Cartan basis for generators of the gauge group.

8.4 The Yang–Mills Field Generated by N Quarks

The analysis of retarded solutions to the Yang–Mills equations with a source
composed of N quarks resembles the two quark case in many ways. Antici-
pating that the field generated by each bound quark needs an individual ele-
mentary sl(2,C) color cell, we adopt the gauge group SU(N ) with sufficiently
large N , at least N ≥ N + 1.

We first construct the Cartan-Weyl basis of the Lie algebra su(N ). This
basis consists of a set of N 2 matrices, including N elements of Cartan’s sub-
algebra

(Hn)AB = δAn δBn −N−1 δAB , (8.90)

which are related by
N∑

n=1

Hn = 0 , (8.91)

and N 2 −N raising and lowering elements E+
mn and E−

mn

(E+
mn)AB = δAm δBn, (E−

mn)AB = δAn δBm , (8.92)

where m, n, A, B run from 1 to N , and the successive indices m and n are
ordered such that n > m.

By the construction of the Hn’s, these matrices are diagonal, and hence
commuting. The only nontrivial commutation relations between Hm and E±

mn

are
[Hm, E

±
mn] = ±E±

mn , (8.93)

[E+
mn, E

−
mn] = Hm −Hn , (8.94)
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[E±
kl, E

±
lm] = ±E±

km . (8.95)

One may verify that the retarded Yang–Mills field

Aµ = ∓ 2i
g

N∑
I=1


HI

vI
µ

ρI
+ g κE±

I N+1R
I
µ

N−1∏
J(�=I)

δ(RJ ·RI)


 (8.96)

satisfies the Yang–Mills equations (8.52) with source composed of N quarks,
and the constraint (8.65). There exist CN

N solutions of this type. Indeed, the
transformation A′

µ = ΩAµΩ
† with

Ω = E+
1N +

N−1∑
I=1

E−
I I+1 =




0 1
0 1

. .
. .
. .

0 1
1 0 . . . 0




(8.97)

and

Ω† = E−
1N +

N−1∑
I=1

E+
I I+1 =




0 . . . 0 1
1 0

1 0
. .

. .
. .




(8.98)

increases each index of HI and E±
I N+1 by one. The transformed field A′

µ is
a further solution. All other solutions can be obtained by repetition of this
procedure. A similar situation was encountered in the two-quark case where
the solutions (8.75)–(8.77) are related by the gauge transformations of this
sort.

The solution (8.96) describes a Yang–Mills field generated by N quarks
that form a N -quark cluster. The color charge of the Ith quark is

QI = ∓ 2i
g
HI . (8.99)

The total color charge of such a cluster is either

Q(+) =
2i
g

N∑
I=1

HI (8.100)

or

Q(−) = −2i
g

N∑
I=1

HI . (8.101)
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We see that every cluster has a nonzero color charge.
There are also solutions describing Yang–Mills fields generated by several

clusters. A particular cluster is defined by the condition that the signs of the
color charges are simultaneously either + or − for every quark of this cluster,
whereas relative signs of total color charges of clusters held in this system are
arbitrary. For example, the potential generated by two two-quark clusters is
Aµ = A1

µ ±A2
µ where Aj

µ is the potential generated by the jth cluster,

A1
µ = ± 2i

g

3∑
I=2

[
HI

vI
µ

ρI
+ g κE±

1 I R
I
µ δ(R2 ·R3)

]
,

A2
µ = ± 2i

g

6∑
I=5

[
HI

vI
µ

ρI
+ g κE±

4 I R
I
µ δ(R5 ·R6)

]
. (8.102)

Omitting the factor δ(RI ·RJ) in (8.96) and (8.102) gives additional solu-
tions.

To build the Yang–Mills field generated by free quarks, one should use
color charges of the form

QI = ± i

g
(HI+1 −HI) . (8.103)

For example, the field of two free quarks, labeled by numbers 1 and 3, is

Aµ = ±i
[
i

g
(H2 −H1)

v1
µ

ρ1
+ κE±

1 2R
1
µ

]
± i

[
1
g

(H4 −H3)
v3

µ

ρ3
+ κE±

3 4R
3
µ

]
.

(8.104)
The gauge transformation A′

µ = ΩAµΩ
† with

Ω =
N − 2
N 1 +

N∑
I=3

HI + E+
1 2 + E−

1 2 =




0 1
1 0

1
1

.
.
.




(8.105)

changes the ± signs of the first square bracket of (8.104) while the signs
of the second square bracket remains invariant. It is easy to recognize this
gauge transformation which complex conjugates the single-quark potential.
We therefore see that the color charge of a free quark is determined modulo
exp (iπn).

There are many ways to separate a given N -quark system into groups of
clusters of a certain quark content and free quarks. We will call these separa-
tions scenarios of hadronization. The meaning of this term will be clarified in
Sect. 8.7.
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Let us look at the gauge symmetry of these solutions. One may define N 2

traceless real matrices Hn and E±
mn as follows:

Hn = Hn, E±
mn = E±

mn (8.106)

which are elements of the Lie algebra sl(N ,R). Thereafter, every solution given
above becomes imaginary valued with respect to this basis. The solutions built
from n2 such elements, obeying a closed set of commutation relations, are
invariant under SL(n,R).

In particular, the Yang–Mills field generated by a two-quark cluster (a toy
meson) is invariant under SL(3,R) and that of a three-quark cluster (a toy
baryon ) is invariant under SL(4,R). Since SL(3,R) is a subgroup of SL(4,R),
the Yang–Mills field of every toy hadron is determined by the gauge group
SL(4,R). This symmetry is independent of the total number of colors N and
survives in the limit N → ∞.

If κ = 0, then the Yang–Mills equations linearize, and we get an Abelian
solution

Aµ =
N∑

I=1

N∑
n=1

en
I Hn

vI
µ

ρI
, (8.107)

where en
I are arbitrary parameters. The gauge group of this solution is SU(N).

We thus have two types of retarded solutions. The Yang–Mills fields de-
scribed by solutions of the first type are invariant under the noncompact group
SL(N ,R) or its subgroups, while those of the second type are invariant under
the compact group SU(N ).

We now turn to the color forces due to the Yang–Mills fields under study.
It is clear from the expression for the Wong force acting on the Ith quark

fµ
I = vI

ν tr [QI G
µν(zI)] , (8.108)

and the trace relations
tr (Hl E

±
mn) = 0 , (8.109)

valid for any l,m, n, that the linearly rising term of Aµ does not contribute
to (8.108). Although it makes a nonzero contribution to the field strength
Gµν , the linearly rising term of Aµ results in no force. The explanation of this
result is simple. The Wong force (8.108) includes the scalar product of two
color vectors Gµν and QI . These vectors are not arbitrary; the exact solutions
constrain them to be orthogonal to each other.

Combining (8.109) and

tr
(
E±

mnE
±
mn

)
= 0 , (8.110)

one finds that the linearly rising term of Aµ does not contribute to color
singlets. This is because the linearly rising term of Aµ depends upon either
E+

mn or upon E−
mn, but not both. A more fundamental reason is that conformal

invariance, which might be violated in particular field configurations due to
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the presence of the parameter κ having dimension −2, is unbroken in color
singlets. To illustrate this, we refer to the Wong force (8.108) which is a color
singlet, and hence is free of κ.

Thus, the string scheme for quark confinement finds no support from our
study of classical solutions to the Yang–Mills equations.

Let us take a closer look at the interquark color forces in the cold phase.
These forces are essentially of the Coulomb type. Because the color charge
of the Ith bound quark is proportional to iHI , like color charges attract and
unlike ones repel. Consider these forces in the limit N → ∞, assuming the
coupling g to be fixed. The trace relations

tr (HI)
2 = 1 −N−1, tr (HI HJ ) = −N−1 (8.111)

show that the color interaction between bound quarks vanishes in this limit,
unless the number of quarks is of order N .

On the other hand, it is evident from

tr (HI+1 −HI)
2 = 2, tr (HI+1 −HI)HJ = 0 (8.112)

that a free quark, while experiencing a self-interaction, does not act on other
quarks.

We see that the Wong forces between quarks vanish in the limit N → ∞.
The bound quarks are balanced in a state of neutral equilibrium3. This is
consistent with the idea that the ground state of a hadron possesses zero
orbital momentum4. The binding is determined by the correlation of signs of
the color charges of quarks comprising a cluster.

Problem 8.4.1. With Hn and E±
mn defined in (8.90) and (8.92), derive com-

mutation relations (8.93)–(8.95).

Problem 8.4.2. Verify that (8.96), (8.102), and (8.104) are exact retarded
solutions to the Yang–Mills equations with appropriate sources.

Problem 8.4.3. Prove that A′
µ = ΩAµΩ

†, where the unitary matrices Ω
and Ω† are given respectively by (8.97) and (8.98), is a gauge transformation
increasing each index of HI and E±

I N+1 of the Yang–Mills field Aµ defined in
(8.96) by one.

Problem 8.4.4. Consider the unitary matrix Ω = Ω† of relation (8.105).
Prove that the gauge transformation A′

µ = ΩAµΩ
† of the vector potential

3 If it is granted that quarks interact only through the mediation of these color
Yang–Mills fields and are unaffected by other forces, then their motion in the
cold phase is described by straight world lines.

4 By contrast, in the string model, a string that ties quarks in a hadron is thought
to possess a constant tension per unit length, and, therefore, the string would
collapse if the quarks were stationary with respect to one another. The system
can be kept in equilibrium by centrifugal force if it is made to rotate around the
center of mass.
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(8.104) changes only the ± signs of the first square bracket of (8.104) and
leaves the second square bracket unchanged.

Problem 8.4.5. Verify (8.109)–(8.112).

Problem 8.4.6. Show that sl(4,R) ∼ so(3, 3). Proceeding from the gauge
group Sp(3), find retarded solutions to the Yang–Mills equations with three-
quark source.

Hint Use the Cartan-Weyl basis of generators for these gauge groups.

8.5 Stability

It was shown in the preceding section that quark clusters are in neutral equi-
librium. Our next task is to examine whether or not the Yang–Mills field
generated by these quarks Aµ is stable. By ‘stability’ one usually means that
if initial data are given to be Bµ(0) = Aµ(0)+bµ(0) where bµ(0) is a small ini-
tial perturbation, then the subsequent time evolution keeps the solution near
the background Aµ. More specifically, the stability requires that the equation
of motion for bµ, when linearized about Aµ, does not yield exponential growth
in time. We may represent the time dependence of each mode by an expo-
nential exp (iωt). If all modes oscillate harmonically with real ω’s, then Aµ is
stable. Complex ω’s signal instability.

The equation of motion for bµ is given by the second variation of the
Yang–Mills action

δ2S

δAa
µ(x) δAb

ν(y)
baµ(x) = 0 . (8.113)

Since our prime interest is with the ground state of clusters where the quarks
are at rest relative to each other, we consider the static background field Aµ

generated by such quarks.
Let us begin with the Yang–Mills field due to a single quark in the cold

phase, Aµ defined in (8.41). If we adopt the gauge condition

vµbµ = 0 , (8.114)

then the color charge of the quark remains constant, Q̇ = 0, even in the pres-
ence of the perturbations bµ. We consider the case that zµ(s) = zµ(0)+ vµs
where vµ = (1, 0, 0, 0). Then s may be identified with laboratory time t, and
the retarded distance ρ with the radial distance r. In this static case the gauge
condition (8.114) becomes

b0 = 0 . (8.115)

Let us restrict our discussion to the weak coupling regime g � 1. Taking
into account that Aµ goes like g−1, we may then retain in (8.113) only terms
of zero order in g.
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We denote spatial components of bµ by boldface characters, bµ = (b0,b).
Among all perturbations ba, we consider only those which are orthogonal to
gauge modes, ∫

d3xba · (∇λa + gεabc Bbλc) = 0 . (8.116)

This orthogonality condition is ensured by the local equation

∇ · ba + gεabc Bb · bc = 0 , (8.117)

which, in the weak coupling limit g → 0, becomes

∇ · ba = 0 . (8.118)

Putting
b = b3 τ3 + b+ (τ1 + iτ2) + b− (τ1 − iτ2) , (8.119)

and taking into account (8.118), we obtain from (8.113)

�b3 = 0 , (8.120)
(

� ∓ 4
r

∂

∂t
+

4
r2

)
b± = 0 , (8.121)

r · b± = 0 . (8.122)

It is clear from (8.120) that the stability of Aµ is unaffected by b3. The
function b−, satisfying (8.118), (8.121), and (8.122), and possessing oscillatory
behavior in time is given by

b− (t, r) =
∫ Λ

0

dω
∑
l,m

{αlm(ω) e−iωt Ylm (θ, φ)Kj (ωr)

+ βlm(ω) eiωt [Ylm (θ, φ)Kj (ωr)]∗} . (8.123)

Here, Λ is an appropriate cutoff parameter, Ylm(θ, φ) is a vector spherical har-
monic, Kj (ωr) is expressed in terms of the confluent hypergeometric function,

Kj(x) = xj e−ix F (j − 1, 2j + 2, 2ix) , (8.124)

and j runs through the positive roots of the equation

j(j + 1) = l(l + 1) + 4, l = 1, 2, . . . (8.125)

A similar solution b+ is obtained from (8.123) by replacing t by −t.
We are looking for solutions b± in the class of functions with an appro-

priate falloff at infinity, and which are less singular than Aµ at r = 0. Every
solution corresponding to a negative root of (8.125) is more singular than the
background Aµ defined in (8.41), and hence should be excluded.
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The function Kj(x) is regular at x = 0 while, in the limit x → ∞, it has
the asymptotic form

Kj (x) =
[
cjx+ dj +O

(
x−1

)]
exp (ix) (8.126)

where cj and dj are certain known constants.
Consider

b−(0, r)=
∫ Λ

0

dω
∑
l,m

{αlm(ω)Ylm(θ, φ)Kj(ωr) + βlm(ω)[Ylm(θ, φ)Kj(ωr)]∗} .

(8.127)
If b− (0, r) is ‘small’ with respect to Aµ(0, r), then b− (t, r) given by (8.123)
meets the same requirement for smallness.

We next discuss the case that two quarks are in the cold phase and generate
the retarded Yang–Mills field Aµ defined in (8.75). Let a perturbation bµ be
decomposed into color basis elements of the form (8.66)–(8.72),

bµ =
3∑

n=1

[
bµnHn +

3∑
k=1

(
bµkn−E

−
nk + bµkn+E

+
kn

)]
. (8.128)

We restrict our discussion to the case that the quarks are static, and adopt the
gauge condition (8.115), which ensures that the color charges of both quarks
are constant. By repeating what was done in the single-quark case, we find
that the bn satisfy equations (8.118) and (8.120), while b23± and b13± satisfy
equations (8.118), (8.121) and (8.122), with r playing the role of ρ1 for b23±
and ρ2 for b13±. From this identification, one can check that the stability of
Aµ is unaffected by these perturbations.

As for b12±, it obeys equations (8.118) and
[
� ∓ 4

(
1
r2

− 1
r1

)
∂

∂t
+ 4

(
1
r2

− 1
r1

)2
]
b12± = 0 , (8.129)

where rI = |x − zI |, and � = ∂2/∂t2 − ∇. Let the quarks be separated by
distance d. In the limit rI � d, equation (8.129) becomes the wave equation,
and its solutions have asymptotic behavior either

b12± ∼ const. (8.130)

or

b12± ∼
∑
k,l,m

jl(kr) [c±lm(k)Ylm(θ, φ) e−ikt + d±
lm(k)Ylm(θ, φ)∗eikt] , (8.131)

where jl(kr) are the spherical Bessel functions

jl (kr) ∼ 1
kr

sin
(
kr − πl

2

)
, kr � l . (8.132)

Hence b12± does not engender an instability in Aµ.
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The stability analysis of the background (8.96) generated by N -quark clus-
ters is identical to that of the two-quark case, with bI N+1±, I = 1, . . . , N play-
ing the role of b23± and b13±, while b12± being represented by bJ L±, J, L =
1, . . . , N .

Let us go over to the problem of stability for the background Aµ associated
with the hot phase. We consider the Yang–Mills fields Aµ generated by static
quarks, and restrict ourselves to the single-quark case.

The field Aµ defined in (8.40) is independent of g, and so ±2i/g must be
replaced by q in all previous relations. Equation (8.121) becomes

(
� ∓ 2igq

r

∂

∂t
− g2q2

r2

)
b± = 0 , (8.133)

Equations (8.124)–(8.126) are modified to

Kj(x) = xj e−ix F (−igq + j + 1, 2j + 2, 2ix) , (8.134)

j(j + 1) = l(l + 1) − g2q2, l = 1, 2, . . . (8.135)

Kj(x) = O (xigq−1 eix), x→ ∞ . (8.136)

It is clear from (8.136) that q must be real for the perturbation behave as
1/r at spatial infinity, as the background Aµ does. Let us compare behaviors
at r = 0. From (8.134) it follows that Kj(x) is regular at x = 0 if j ≥ 0. We
can write the positive solutions of (8.135) as

j =
1
2

(√
(2l + 1)2 − 4g2q2 − 1

)
. (8.137)

Taking the minimal allowable integer l = 1, one finds that j is positive if

g2q2 ≤ 2 . (8.138)

Thus, the background field in the hot phase Aµ defined in (8.40) is stable
provided that q is real, and q ≤

√
2/g.

Problem 8.5.1. Derive equations (8.120)–(8.122).

Problem 8.5.2. Show that (8.123) satisfies (8.118), (8.121), and (8.122).

Problem 8.5.3. Derive equation (8.129).

8.6 Vortices and Monopoles

An attractive feature of the string model of hadrons, mentioned at the begin-
ning of this chapter, is that the spectrum of a quantized string has much in
common with hadron phenomenology. The set of all known hadronic states
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can be arranged in subsets, the so-called Regge sequences or Regge trajectories,
in such a way that a linear relation between spin and mass squared

J = α0 + α′M2 (8.139)

holds for every Regge trajectory. The experimental value of α′ is approxi-
mately the same for all the trajectories. It has become customary to display
(8.139) as straight lines of a fixed slope on the Chew–Frautschi plot of hadronic
mass squared M2 versus spin J . Hadrons belonging to any Regge trajectory
are separated by intervals ∆J = 2. It is tempting to interpret such equidistant
hadronic resonances as different vibratory states of a string.

We already learned in Problem 2.8.5 that if two particles are held together
by a force derived from the potential

U(r) = −αs

r
+ k r (αs > 0, k > 0) , (8.140)

then the rest energy of this binary system may be greater than the sum of
masses of its constituents. The potential (8.140) arises in the string model,
where k is related to the string tension. It is clear that a meson of mass M
may be a system of two quarks of masses m1 and m2 such that m1 +m2 �M
if k is sufficiently large. Mass of the meson is then almost entirely due to the
string tension. To illustrate, consider a π+-meson (Mπ = 140 MeV), whose
constituents u and d̄ have masses mu ≈ 5 MeV and md ≈ 7 MeV.

Let two massless quarks be attached to a string. For simplicity, we consider
a straight string of length � which rotates as a rigid stick around its center of
mass so that its ends move with the speed of light. The velocity v of a point
separated from the center of mass by radial distance r is given by

v = 2r/� . (8.141)

Assuming that the string is specified by a constant mass per unit length T ,
one finds the string energy

E = 2
∫ �/2

0

dr
T√

1 − v2
= π�T , (8.142)

and angular momentum

J = 2
∫ �/2

0

dr
Trv√
1 − v2

=
π�2T

2
. (8.143)

These properties of the string imply that its angular momentum is propor-
tional to the square of its energy. Comparing this with (8.139), we conclude
that the string tension T is expressed in terms of the phenomenological value
of the slope α′,

T = 2πα′ ≈ 1GeV · fm−1 . (8.144)
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The phenomenological theory of strong interactions was developed
throughout the 1960s. Central to this theory is the idea that the scattering
matrix is determined by Regge trajectory exchanges, rather than by separate
hadron exchanges. Dual resonance models, in which the transition amplitudes
are invariant under cyclic permutations of external momenta and have res-
onant poles in all channels associated with a given ordering of external mo-
menta, are an outgrowth of this idea. The simplest example of an amplitude
satisfying the duality requirement is the original 1968 proposal by Gabriele
Veneziano for a process involving four external particles:

A(s, t, u) = V (s, t) + V (t, u) + V (u, s) , (8.145)

V (s, t) =
∫ 1

0

dxx−α(s)−1 (1 − x)−α(t)−1
, (8.146)

where s, t, and u are the Mandelstam parameters, (2.384), and the Regge
trajectory is

α(s) = α0 + α′s . (8.147)

Shortly thereafter, it became clear that the Veneziano model represents
the scattering of extended objects known as Nambu strings. The advent of
string models was a step in establishing the basis for the theory of strong
interactions. However, the status of such models still remained heuristic.

In 1973, Holger Nielsen and Poul Olesen showed that classical field theory
with a Higgs type Lagrangian possesses vortex-line solutions, analogous to the
vortex line in a type II superconductor. They identified these solutions with
the Nambu string. Following their treatment, we turn to an Abelian version
of the Higgs model whose Lagrangian is5

L = −1
4
FµνF

µν +
1
2
| (∂µ + ieAµ)φ|2 +

1
2
µ2 φ∗φ− 1

4
λ2 (φ∗φ)2 . (8.148)

The associated equations of motion are

�Aµ − ∂µ∂
νAν = jµ =

1
2
ie (φ∗ ∂µφ− φ∂µφ

∗) + e2Aµ |φ|2 , (8.149)

�φ+ ie (2Aµ∂µφ+ φ∂µA
µ) − e2AµAµ φ =

1
2
(
µ2 − λ2 |φ|2

)
φ . (8.150)

Let us write
φ = ρ e−iχ , (8.151)

where ρ and χ are real functions of spacetime. If the Higgs field is close to the
equilibrium point

ρ0 =
µ

λ
, (8.152)

5 In this section, we switch from the Gauss units employed throughout the book to
the Heaviside units which are traditionally used in quantum field theory. In these
units, the factor (4π)−1 moves from the Lagrangian to some solutions.
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then ρ = ρ0 almost everywhere. However, near some line, say, the x3-axis,
ρ may differ appreciably from ρ0, and χ may vary by 2πn when we make a
complete turn around this axis, so that φ remains single-valued. This is a field
configuration of the vortex type.

It follows from (8.149) that

Aµ =
1
e2

jµ
|φ|2 − 1

e
∂µχ . (8.153)

The flux of Fµν through a three-dimensional surface S bounded by a loop C
is

Φ =
∫
S
dSµνFµν =

∫
C
dxµAµ . (8.154)

We assume that there is no current jµ through S, and substitute (8.153) into
(8.154):

Φ = −1
e

∫
C
dxµ ∂µχ =

2π
e
n . (8.155)

Thus the flux of vortex lines is quantized, to be a multiple of 2π/e.
We are now looking for a vortex centred on the x3-axis. We consider the

static case, with gauge choice A0 = 0. Assuming cylindrical symmetry, we can
write the Higgs field in the form

φ = ρ(r) einϕ , (8.156)

and a vector potential of the magnetic field around this vortex

A(r) = A(r) eϕ = A(r)∇ϕ , (8.157)

where r and ϕ are polar coordinates in the equatorial plane. We put n = 1 in
(8.156), which means that the vortex contains a single unit of quantized flux.
Then equations (8.149) and (8.150) become

− d

dr

[
1
r

d

dr
(r A)

]
+ ρ2

(
e2A− e

r

)
= 0 , (8.158)

−1
r

d

dr

(
r
d

dr
ρ

)
+ ρ

[(
eA− 1

r

)2

− µ2 + λ2ρ2

]
= 0 , (8.159)

Exact solutions to these equations have yet to be found. We assume that
ρ tends to ρ0 asymptotically as r → ∞. Taking ρ(r) = ρ0 renders (8.158) a
modified Bessel equation which can be solved:

A(r) =
1
er

+
C

e
K1(eρ0r) →

1
er

+
C

e

√
π

2eρ0r
e−eρ0r, r → ∞ . (8.160)

Here, C is a constant of integration, and K1 the Hankel function of the first
kind evaluated at an imaginary argument. The magnetic induction is
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|B(r)| =
1

2πr
d

dr
Φ(r) =

1
r

d

dr
(rA) → C

√
πρ0

2er
e−eρ0r, r → ∞ . (8.161)

We see that the magnetic field deviates appreciably from zero only near the
x3-axis in a region with characteristic length � (called the penetration length
in superconductivity)

� =
1
eρ0

=
eλ

µ
. (8.162)

Taking ρ = ρ0 + η, one obtains (Problem 8.6.2) an asymptotic form for
the solution to equation (8.159)

ρ = ρ0

(
1 − e−ξr

)
, (8.163)

where ξ a new characteristic length

ξ =
1
µ

(8.164)

which measures the distance required for ρ to attain its asymptotic value ρ0.
Let � and ξ be of the same order. Then we have a well defined kernel in the

form of a thin tube of the width � ≈ ξ which contains most of the flux lines.
The magnetic field B falls exponentially outside the kernel. This magnetic
flux tube is in equilibrium against the pressure of the surrounding charged
superconducting Higgs field. It is clear from (8.163) that the Higgs field is
pressed out from the tube.

By a suitable choice of µ, e, and λ, we can arrange that the width of the
kernel � is sufficiently small. Then the magnetic field B is nonzero only within
the kernel, and acts as a sort of smeared out delta-function. Thus we come to
a string as a mathematical idealization of this kernel in the limit �→ 0. If the
string is of finite length and open, the magnetic flux must be absorbed by a
magnetic monopole at each end.

Let us now substitute this vortex solution into the Lagrangian (8.148)
and study how the result depends upon the string world sheet Xµ(τ, σ). We
denote the resulting Lagrangian by Lvortex. To take proper account of an
arbitrary motion of a vortex-string in the transverse direction, Lvortex should
be Lorentz-contracted,

Lvortex ∝
√

1 − V2
⊥ . (8.165)

Let dσ be the element of length along the vortex-string. Assuming that the
width of the vortex is constant and tiny little, we obtain the action

Svortex =
∫
d4xLvortex ∝

∫
dt dσ

√
1 − V2

⊥ . (8.166)

By definition,
V⊥ = Ẋ − X′

(
Ẋ · X′

)
, (8.167)
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where the overdot and prime stand for the derivatives with respect to t and
σ,

Svortex ∝
∫
dt dσ

√
1 − Ẋ2 +

(
Ẋ · X′

)2

. (8.168)

One can readily show (Problem 8.6.3) that Svortex is proportional to the
Nambu action (5.293). The fact that the Nambu Lagrangian is derivable from
the field theory Lagrangian (8.148) may be recognized as evidence that an
effective string dynamics is intrinsic in gauge field theories with spontaneous
symmetry breaking.

This line of reasoning had a profound impact on the confinement problem.
However, the concrete implementation of the Nielsen–Olesen vortices, now
thought to be more relevant in the confinement problem, has been revised.
One speculates that the dual Meissner effect rendering chromoelectric field
squeezed into a vortex is formally the same as the original one but with the
roles of chromoelectricity and chromomagnetism reversed. The chromoelectric
flux would be absorbed by a quark and an antiquark at the ends of the vortex.
The environment would be a medium exhibiting the superconductivity prop-
erty with respect to chromomagnetic charges. With vortex-like configurations
of the Yang–Mills field, quarks and antiquarks would be permanently bound
in pairs.

We now consider another solution, the ’t Hooft–Polyakov monopole, which
was discovered independently by Gerardus ’t Hooft and Alexander Polyakov
in 1974. This configuration is a finite-energy smooth solution to the SO(3)
gauge theory with a Higgs triplet. The Lagrangian is:

L = −1
4
Ga

µνG
µν
a +

1
2
Dµφ

aDµφa − V (φ) , (8.169)

where
Ga

µν = ∂µA
a
ν − ∂νA

a
µ + gεabcAb

µA
c
ν , (8.170)

Dµφa = ∂µφa + gεabcA
b
µφ

c , (8.171)

and the Higgs potential is

V (φ) =
1
4
λ2

(
µ2

λ2
− φ2

)2

, φ2 = φaφ
a . (8.172)

The corresponding Euler–Lagrange equations read

∂µGa
µν = gεabc

[
(Dνφ)b φc +Aµ

bG
c
µν

]
, (8.173)

∂µDµφa = gεabc

(
Dµφb

)
Ac

µ + µ2φa − λ2φaφ
2 . (8.174)

V (φ) must approach zero at spatial infinity, which implies that the Higgs
field has a nonzero limit at spatial infinity

φa → µ

λ
φ̂a(n), φ̂aφ̂a = 1, n2 = 1, r → ∞ . (8.175)
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The boundary condition (8.175) singles out a particular isotopic axis φ̂a for
each spatial direction n. Hence it breaks the SO(3) gauge invariance. However,
solutions subject to this condition are invariant under the group of rotations
about φ̂a. Thus the unbroken gauge symmetry is SO(2) or, equivalently, the
U(1) subgroup of SO(3).

The resulting U(1) gauge theory can be identified with Maxwell’s elec-
trodynamics of charged vector and scalar fields if generators Ta of the initial
gauge group SO(3) are projected on φ̂a. Then the Abelian vector potential
Aµ associated with the local U(1) gauge group is

Aµ = (φaAµ
a)
λ

µ
, (8.176)

with electric charge

e = g (φaTa)
λ

µ
. (8.177)

We ask for static spherically symmetric solution to equations (8.173)–
(8.174). We use the gauge condition Aa

0 = 0 (which gives D0φa = 0 and
Ga

oi = 0), and introduce the ansatz

φa =
xa a(r)
gr2

, (8.178)

Aa
i =

εaij xj [1 − b(r)]
gr2

. (8.179)

Equations (8.173)–(8.174) reduce (Problem 8.6.4) to

r2a′′ = a

(
2b2 − µ2r2 +

λ2

g2
a2

)
, (8.180)

r2b′′ = b
(
b2 − 1 + a2

)
, (8.181)

where the prime stands for differentiation with respect to r.
For arbitrary µ and λ, these equations have never been solved analytically.

However, in the limit µ→ 0, λ→ 0, with µ/λ <∞, the so-called Bogomol’ny–
Prasad–Sommerfield limit, an exact solution is given by (Problem 8.6.5)

a(r) = βr coth(βr) − 1, b(r) =
βr

sinh(βr)
, (8.182)

where β is an arbitrary constant.
In this limit, the Higgs field behaves as a massless long range field. It

was found that two static equally charged Bogomol’ny–Prasad–Sommerfield
monopoles repel each other by the inverse square law magnetic force which
is equal in magnitude to the attractive force exerted by the Higgs field, and
these effects exactly cancel.
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One can show (Problem 8.6.6) that the solution (8.182) is self-dual. That
is, it satisfies the condition

∗Ga
µν = iGa

µν , (8.183)

or equivalently,
iEa = Ba , (8.184)

where
Ea

i = Ga
0i, Ba

i = −1
2
εijkG

a
jk (8.185)

are the SU(2) ‘electric’ and ‘magnetic’ Yang–Mills fields.
Any self-dual solution in Minkowski space has a vanishing stress-energy

tensor. Indeed, with reference to Problem 5.2.8, we may cast the stress-energy
tensor in the form

Θµν =
1
4π

(
G λ

aµ G
a
λν +

ηµν

4
Gαβ

a Ga
αβ

)
=

1
8π
(
G λ

aµ G
a
λν + ∗G λ

aµ
∗Ga

λν

)

=
1
8π
(
G λ

aµ + i ∗G λ
aµ

)
(Ga

λν − i ∗Ga
λν) , (8.186)

which shows thatΘµν = 0 for ∗Gµν = ±iGµν . Thus, any Bogomol’ny–Prasad–
Sommerfield monopole carries zero energy.

In the general case of arbitrary µ and λ, equations (8.180) and (8.181) can
be analyzed only qualitatively. Combining (8.175) with (8.178), we obtain

lim
r→∞

φ(r) =
µ

λ
n , (8.187)

that is φ̂a = na. The ansatz (8.179) is consistent with equations (8.180) and
(8.181) if b(r) = O(1) as r → ∞. The ‘electromagnetic’ field strength Fµν

should be identified with the component of the Yang–Mills strength Ga
µν in

the direction of φ̂a, which corresponds to the unbroken U(1) symmetry. Hence,
Ga

0j = 0, and, far from the origin,

Ga
ij = −εijk

nkna

4πer2
, (8.188)

or
Fij = φ̂aG

a
ij = − 1

4πer2
εijana . (8.189)

This configuration represents a radial static magnetic field

Ba = − na

4πer2
, (8.190)

generated by the total magnetic charge e� = 1/e.
We see that the Dirac and ’t Hooft–Polyakov monopoles differ in their

structure within a core of size ∼ λ/µ. The Dirac monopole has a singularity
for which a point source has to be introduced explicitly in the action, while
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the ’t Hooft–Polyakov monopole is smooth everywhere and satisfies the field
equations (8.173) and (8.174) without external sources. Outside the core these
field configurations are similar, except that the ’t Hooft–Polyakov monopole
has no singular string.

The ’t Hooft–Polyakov monopole is electrically neutral due to the com-
bination of our gauge condition Aa

0 = 0 and our requirement that the field
configurations should be independent of time. If we abandon this gauge con-
dition and search for static solutions of the form

Aa
0(r) =

c(r)na

gr2
, (8.191)

then we have nonzero Ga
0i. Thus modified solutions (see Problems 8.6.7 and

8.6.8) can exhibit both electric and magnetic charges.
One may assume that ’t Hooft–Polyakov monopoles occur in the cold phase

of the subnuclear realm, and that their condensation causes the gluon vacuum
exhibit the dual Meissner effect. This raises the natural question as to what
actual field plays the role of the Higgs in spontaneous symmetry breaking for
quantum chromodynamics. Unfortunately, the current understanding of this
issue is far from perfect.

We finally consider an interesting aspect of the behavior of a Wong particle
with color charge 1

2 Q
i σi in the field of a ’t Hooft–Polyakov monopole. For

simplicity, we assume that the monopole is heavy and stationary. Let the
monopole be at the origin, and the Wong particle moving slowly in the distance
from it. We already discussed such a binary system of an electrically charged
particle and a magnetic monopole in Sect. 2.9. It was established that

M = L − e e� n (8.192)

is conserved. Here, M is the total angular momentum of this two-particle sys-
tem plus associated electromagnetic field. With reference to Problem 5.2.10,
we recognize e e� n as the electromagnetic field contribution to M.

Let the SO(3) gauge symmetry be spontaneously broken to U(1) by virtue
of the boundary condition (8.175). Then the Yang–Mills field of a mono-
pole outside the core is projected to φ̂aG

a
µν , which is just the magnetic field

component. The Yang–Mills stress-energy tensor become identical to the elec-
tromagnetic stress-energy tensor since Ga

µνG
αβ
a = φ̂aG

a
µν φ̂

bGαβ
b . By repeating

what was done in electrodynamics (Problem 5.2.10), we arrive at the field
contribution

−|Q| 1
e

τ , (8.193)

where |Q| =
√
QiQi, e� = 1/e, and the spatial direction ni is identified

with the isotopic direction φ̂i = τi. The occurrence of the term (8.193) is a
noteworthy effect of the coupling of a Wong particle with a ’t Hooft–Polyakov
monopole. Following a similar line of argument, Jackiw and Claudio Rebbi,
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and independently Peter Hasenfratz and ’t Hooft were led in 1976 to interpret
the term (8.193) as ‘spin originating from isospin’.

Problem 8.6.1. Verify that applying (8.156) and (8.157) to (8.149) and
(8.150) gives (8.158) and (8.159).

Problem 8.6.2. Show that (8.163) is an asymptotic solution to equation
(8.159) in the limit r → ∞.

Problem 8.6.3. Show that the Nambu action (5.293) takes the form of equa-
tion (8.168) if σ and τ are regarded as the string length and laboratory time.

Problem 8.6.4. Show that the ansatz (8.178)–(8.179) leads to equations
(8.180) and (8.181).

Problem 8.6.5. Verify that (8.182) is an exact solution to equations (8.180)
and (8.181) in the limit µ→ 0, λ→ 0, with µ/λ <∞.

Problem 8.6.6. Verify that (8.182) represents a self-dual configuration, sat-
isfying (8.183).

Problem 8.6.7. Show that the ansatz (8.178), (8.179), and (8.191) simplifies
equations (8.173)–(8.174) to give

r2a′′ = a

(
2b2 − µ2r2 +

λ2

g2
a2

)
, (8.194)

r2b′′ = b
(
b2 − 1 + a2 − c2

)
, (8.195)

r2c′′ = 2b2c . (8.196)

Problem 8.6.8. Show that, in the limit µ → 0, λ → 0, with µ/λ < ∞, an
exact solution to equations (8.194)–(8.196) is given by

a(r) = cosh[γ(βrcothβr−1)], b(r) =
βr

sinh(βr)
, c(r) = sinh[γ(βrcothβr−1)],

(8.197)
where β and γ are arbitrary constants.

8.7 Two Phases of the Subnuclear Realm

It is generally believed that confinement is a quantum phenomenon. The rea-
son for this belief is simple. Quarks are confined in hadrons whose charac-
teristic size cannot be expressed in terms of the parameters involved in the
Lagrangian (8.1)6. The actual mechanism of quark binding gives rise to a new
6 To illustrate, we turn once again to a π+-meson, a system of a quark u and

an antiquark d̄. Their masses mu ≈ 5 MeV, md ≈ 7 MeV and their associated
Compton wavelengths λu = 1/mu ≈ 40 fm, λd = 1/md ≈ 30 fm differ greatly
from the corresponding quantities for π-mesons, Mπ = 140 MeV and λπ = 1.4 fm.
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dimensional parameter specifying the confinement energy scale Λ ∼ 100 MeV,
which violates the conformal invariance of the Yang–Mills sector. From this
discussion it follows that, although classical fields Aµ may depend on di-
mensional parameters, the interquark force and the general mechanism which
assembles these fields into color singlets are free of these parameters. Hence
conformal invariance can be assumed classically for all color-neutral construc-
tions. The dynamical aspect of the mechanism responsible for the ‘mass gap’
Λ has to be explained on the quantum level.

However, distinction between the symmetry properties of the cold and hot
phases of subnuclear realm seems to be amenable to the classical treatment. It
has long been known that the symmetry of a physical system is determined by
the properties of its ground state. A theorem by Coleman states: the invariance
of the vacuum is the invariance of the world. We will not go into a discussion
of this remarkable result (which would call for quantum field theory), and only
note that the gluon vacuum exhibits the invariance of a classical Yang–Mills
background. This background is sometimes thought of as a Bose condensate
of the gluon field. Gluon quanta are excited about this condensate and inherit
its properties. Hopefully, the background for both cold and hot phases can be
seen in exact solutions to the Yang–Mills–Wong theory.

While on the subject of Lagrangians devoid of the Higgs fields, how is
it possible for the symmetry of a solutions to be different from that of
the Lagrangian? To be specific, consider the SU(N ) Yang–Mills sector. The
Lagrangian L is automatically invariant under SL(N ,C), the complexification
of SU(N ). If we have no prior knowledge of the symmetry, it can be identified
by the structure constants fabc which appear in L. The particular values of
fabc entering into the Lagrangian suggest that it is invariant under SU(N ).
However, for any simple complex Lie algebra, there exists a basis, the Cartan
basis, such that the structure constants are found to be real, antisymmetric
and identical to the structure constants of the real compact form of this Lie
algebra. The basis of the Lie algebra su(N ) is simultaneously the Cartan basis
of its complexification sl(N ,C). Thus, the presence of the structure constants
of SU(N ) in L need not imply that the symmetry group is SU(N ). Allowing
complex-valued solutions to the field equations, we enlarge the symmetry of
L to SL(N ,C). The only a priori constraint, stemming from the fact that
the coefficients of the Yang–Mills equations are real, is that each complex
solution is accompanied by the complex conjugate solution. Complex-valued
Yang–Mills fields occur only as pairs of complex conjugate solutions. Whether
or not complex-valued solutions actually occur depends on the structure of
the total Lagrangian and choice of the boundary condition.

It was demonstrated in Sects. 8.1–8.4 that the SU(N ) Yang–Mills–Wong
theory indeed leaves room for complex-valued solutions, which, however, be-
come real-valued if the complexified gauge group SL(N ,C) is specialized to
its noncompact real form SL(N ,R). For this reason, such solutions would be
more properly termed spontaneously deformed. It was pointed out at the end of
Sect. 6.1 that gauge symmetries defy spontaneous breakdown: the symmetry
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is not really broken, the Higgs mechanism makes it merely hidden. However,
gauge symmetries are capable of spontaneous deformation in the true sense of
the word.

We now look more closely at the spontaneously deformed phase of subnu-
clear realm. We assume it to be the phase favorable for hadronization, and
designate it as cold. We do not use the term ‘confinement phase’ to avoid
associations with a particular mechanism of quark binding, say, the string
mechanism discussed in the preceding section.

In the single-quark case, the gauge group may be chosen rather arbitrarily.
Indeed, the retarded Yang–Mills field generated by a single quark in the cold
phase needs an individual elementary sl(2,C) color cell. Choosing initially
SO(N ) or Sp(N ), instead of SU(N ), one singles out the same elementary
color cell because sl(2,C) ∼ so(3,C) ∼ sp(1,C).

Turning to the Yang–Mills field generated by two- and three-quark clusters
(regarded as toy mesons and toy baryons), we come respectively to SL(3,R)
and SL(4,R). Since SL(3,R) is a subgroup of SL(4,R), the background of
every toy hadron is specified by the gauge group SL(4,R).

If we wish to gain a more penetrating insight into the physics behind this
group we should digress for a while and note that just SL(4,R), was suggested
by Yuval Ne’eman and Djordje Šijački in 1985 for an exhaustive phenomeno-
logical classification of hadrons by Regge sequences. Recall that only compact
groups have finite-dimensional unitary representations, while unitary repre-
sentations of noncompact groups are infinite. The idea that Regge sequences
of hadrons may be treated as infinite unitary multiplets of a noncompact
group goes back to Yossef Dothan, Murrey Gell-Mann, and Ne’eman. In 1965,
they examined SL(3,R) as a spacetime symmetry group generated by the
angular momentum operators Li and the quadrupole operators Tij with the
commutation relations

[Li, Lj ] = iεijk Lk , (8.198)

[Li, Tjk] = iεijl Tlk + iεikl Tjl , (8.199)

[Tij , Tkl] = −i (δikεjlm + δilεjkm + δjlεikm)Lm . (8.200)

The Lie algebra given by (8.198)–(8.200) seems to be the minimal scheme
capable to model two salient features of Regge trajectories: the ∆J = 2 rule
and the apparently infinite sequence of hadronic states. The expert reader
will recognize the similarity between (8.199) and the well-known commutation
relations of the quantum-mechanical number operator n and the creation and
annihilation operators a and a+ in the harmonic oscillator problem,

[n, a] = −a, [n, a+] = a+ . (8.201)

Just as a and a+ shift occupation numbers by one unit, so Tij raises or lowers
eigenvalues of the angular momentum by two units, forming the equally spaced
Regge trajectories.
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It was found that two infinite unitary representations belonging to the
ladder series

Dladd
SL(3,R)(0; R) : J = 0, 2, 4, . . . , Dladd

SL(3,R)(1; R) : J = 1, 3, 5, . . . (8.202)

are associated with the π- and ρ-meson trajectories. In addition, there exists
a unique spinorial ladder representation related to the nucleon trajectory

Dladd
SL(3,R) ( 1

2 ; R) : J =
1
2
,

5
2
,

9
2
, . . . , (8.203)

while the representation starting with J = 3
2 belongs to the discrete series

Ddisc
SL(3,R) ( 3

2 ; R) : J =
3
2
,

5
2
,

72

2
,

92

2
,

112

2
, . . . , (8.204)

violating the rule ∆J = 2. Therefore, the SL(3,R) scheme, although quite
useful for understanding the Regge trajectories of mesons, turns out to be
inadequate to account for those of baryons.

Matters can be improved by a simultaneous application of SL(3,R) and
SO(1, 3). The commutation relations become closed by embedding the two
algebras in sl(4,R). For the mathematically inclined reader, we note that one
can utilize the decomposition of the maximal compact subgroup of SL(4,R),
SO(4) = SO(3) × SO(3), as a basis with spin-parity (JP ) content:

JP = (j1 + j2)P , (j1 + j2 − 1)−P , . . . , (|j1 − j2|)±P . (8.205)

The operator Tij shifts SO(4) multiplets in (j1, j2) by ∆j1,2 = 2, and the
structure of Regge sequences is reproduced by such shifting. Although this
scheme is quite restrictive, it is in good agreement with the known data of
hadronic spectroscopy.

A convenient basis of sl(4,R) contains 6 antisymmetric elements Mµν and
9 symmetric traceless elements Tµν , which can be regrouped in the subsets:

Li =
1
2
εijk Mjk, Ki = M0i, Tij , Ni = T0i, T00 , (8.206)

satisfying the commutation relations (8.198)–(8.200) together with

[Ki, Kj ] = −iεijk Kk, [Ni, Nj ] = iεijk Nk; (8.207)

[Li, Kj ] = iεijk Kk, [Li, Nj ] = iεijk Nk , (8.208)

[Ki, Nj ] = −i (Tij + δij T00); (8.209)

[Ki, Tjk] = −i(δij Nk + δik Nj) , (8.210)

[Ni, Tjk] = −i(δij Kk + δik Kj) , (8.211)
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[Li, T00] = [Tij , T00] = 0, [Ki, T00] = −2iNi, [Ni, T00] = −2iKi .
(8.212)

However, the Yang–Mills–Wong particle has spin zero. Furthermore, it
was mentioned in Sect. 8.4 that bound quarks move along straight world
lines, and so any toy hadron should exhibit zero orbital momentum. Where
does the necessary angular momentum come from? We suppose that it is
largely contributed by gluon degrees of freedom7. Indeed, Mµν and Tµν can
be expressed in terms of the Cartan-Weyl basis (8.90)–(8.92):

Mij = −i
(
E+

ij − E−
ij

)
, Kj = i

(
E+

0j − E−
0j

)
, (8.213)

Tij = −i
(
E+

ij + E−
ij

)
, Nj = i

(
E+

0j + E−
0j

)
, (8.214)

T00 = 2iH0, Tjj = −2iHj . (8.215)

It is conceivable that the color degrees of freedom of gluons in the SL(4,R)
chromagnetic background are converted to spin, much as spin appears in the
isospin field of a monopole. However, there is as yet no concrete mechanism
for this.

Let us turn to the hot phase. Deconfinement does not mean that quarks
become completely free. Although they are no longer bound within hadrons,
they are held together within a plasma lump. Whatever large extension of this
lump may be, it is always colorless. We suppose that the total color charge of
Yang–Mills–Wong particles in any plasma lump is zero,

N∑
I=1

QI = 0 , (8.216)

and the color charge squared
N∑

I=1

Q2
I (8.217)

is fixed. Then (8.111) shows that the most energetically advantageous field
configuration is such that the color charges of quarks are lined up into a fixed
direction in the color space, thereby reducing SU(N ) to SU(2). This is a sort
of Bose–Einstein condensation in the color space. Eventually the color space
in the hot phase is effectively specified by SU(2), and the color symmetry
specification of quantum chromodynamics, SU(3), is almost regained. One
may hope that a more careful treatment of the Yang–Mills–Wong theory or
its modifications can give just SU(3).

7 The experiment intimates that only about 20% of the nucleon’s spin is produced
by quark’s spin. The missing 80% of the spin may come from gluon spins and
the orbital angular momentum due to the motion of quarks and gluons within
the nucleon. This adds considerable support for the assumption that Yang–Mills–
Wong particles mimic real quarks in hadrons to a good approximation.
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The reader will find it curious that the roles of the ‘cold’ and ‘hot’ are
now interchanged in comparison with the usual order of things. We associate
low-temperature phenomena, such as superfluidity or superconductivity, with
quantum physics, while the cold (that is, spontaneously deformed) phase in
the Yang–Mills–Wong theory is basically classical. On the other hand, we are
aware of classical character of the great bulk of phenomena at room tem-
perature, while the hot phase of the Yang–Mills–Wong theory is inherently
quantum mechanical.

Problem 8.7.1. SL(4,R) has 15 traceless generators Iµν , µ, ν = 0, 1, 2, 3,
obeying the commutation relations

[Iµν , Iρσ] = i ηνρ Iµσ − i ηµσ Iρν . (8.218)

The set of generators Iµν can be divided into two subsets of 6 antisymmetric
generators Mµν and 9 symmetric traceless generators Tµν , which can be fur-
ther regrouped according to (8.206). Verify that the commutation relations
(8.198)–(8.200) and (8.207)–(8.212) follow from those of (8.218).

Problem 8.7.2. Show that the matrices (8.213)–(8.215) obey the commuta-
tion relations (8.198)–(8.200) and (8.207)–(8.212).

Problem 8.7.3. Consider the mass quadrupole operator of a N -particle clus-
ter

Qij =
N∑

I=1

mI

(
xI

i xI
j −

1
3

x2
I δij

)
, (8.219)

and its time derivative

Q̇ij =
N∑

I=1

[
xI

i pI
j + xI

j pI
i −

2
3

(xI · pI) δij

]
. (8.220)

Let us define Tij = Q̇ij and L =
∑

rI ×pI . Verify that these Tij and Li obey
the commutation relations (8.198)–(8.200), taking into account the canonical
commutation relations [xI

i ,p
J
j ] = −i δijδIJ .

Notes

1. The literature on exact solutions of classical Yang–Mills theories is exten-
sive and the reader interested in this topics would do best to consult the
books of Rajaraman (1982), Coleman (1985), Schwarz (1991), and Rubakov
(2002). Actor (1979) is a largely complete review of classical solutions to SU(2)
gauge theories that were known by the end of the 1970s. A detailed treatment
of monopole solutions is given in Goddard & Olive (1978), Jaffe & Taubes
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(1980), Coleman (1983), and Atiyah & Hitchin (1988). We limit our discus-
sion primarily to retarded solutions of the Yang–Mills–Wong theory, and give
a cursory glance at some other frequently cited solutions.

A general grasp of the static quark model of hadrons can be gained from
the books by Close (1979), and Perkins (1972). The string mechanism of
confinement, originating from Nielsen & Olesen (1973), became the dominant
paradigm due to the papers by Nambu (1974, 1976), and Wilson (1974). Man-
delstam (1980) and Bander (1981) cover many aspects of this mechanism. The
reader will become aware that the solution of the four-dimensional quantum
Yang–Mills theory, including the confinement problem as its key ingredient,
has been chosen to be a ‘Millennium Problem’ by the Clay Mathematical In-
stitute. The precise formulation of this problem is given by Jaffe & Witten
(1999).

The current understanding of phase transitions in quantum chromodynam-
ics, based on phenomenological models, numerical lattice simulations, and
experimental data on heavy-ion collisions, is reviewed in Meyer-Ortmanns
(1996).

2. Section 8.1. The procedure of solving the Yang–Mills–Wong theory in the
single-quark case here follows a similar route as that in Kosyakov (1998); for
the original derivation of the retarded field configuration (8.30) see Kosyakov
(1991).

3. Section 8.2. The ansatz (8.8), proposed in 1991, was further generalized to
yield expression (8.62) in the 1994, 1998, and 1999 papers of the author. It
may well be that the technique under discussion can be applied to many more
problems than those discussed in this book.

4. Section 8.3. The analysis of the retarded solution in the two-quark case is
adopted from Kosyakov (1998); for a full-length derivation of this solution see
Kosyakov (1994).

5. Section 8.4. The discussion of the Yang–Mills fields generated by N quarks
follows by Kosyakov (1998). The fact that bound quarks forming a hadron
are not affected by colorforces, and move along parallel straight world lines,
as deduced from these solutions, is consistent with the intuitive idea that the
ground state of the hadron should exhibit zero orbital momentum. A simi-
lar situation occurs in the dynamics of monopoles. As was shown by Man-
ton (1977), the Bogomol’ny–Prasad–Sommerfield monopoles forming a static
multi-monopole are unaffected by intermonopole forces, which exactly cancel
between the repulsive Yang–Mills force and the attractive Higgs force.

6. Section 8.5. For the statement of the stability problem in electrodynamics
and Yang–Mills theory see Mandula (1976), Jackiw & Rossi (1980), and Ra-
jaraman (1982). The present discussion is based on results of the paper by
Kosyakov (1998).
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7. Section 8.6. Chew & Frautschi (1961) plotted hadronic mass squared versus
spin to display the Regge trajectories graphically. Veneziano (1968) proposed
the use of dual resonance amplitudes in phenomenological description of strong
interactions. For a review of dual models see Veneziano (1974).

This section gives an overview of some exact solutions to Abelian and non-
Abelian Higgs models, bearing on the confinement problem. A key observation
is that spontaneous symmetry breaking renders the Higgs field similar to a
superconducting medium which exhibits the Meissner effect. Weak magnetic
fields are shielded, while strong fields survive in vortices penetrating the super-
conductor. Vortices in a type II superconductor were predicted by Abrikosov
(1957) from the phenomenological theory of superconductivity by Ginzburg &
Landau (1950). Nielsen & Olesen (1973) argued for the existence of vortex-line
solutions in Higgs models, and identified them with the Nambu string. Based
on this discovery, Creutz (1974), Nambu (1974), and Parisi (1975) suggested
that, in theories where spontaneous symmetry breaking occurs, and quarks
are endowed with magnetic (or, better to say, chromomagnetic) charges, vor-
tices may provide a mechanism for quark confinement. However, presently the
idea of ‘electric quark’ confinement (rather than the ‘magnetic quark’ confine-
ment) appears to have considerable promise. In the lattice gauge theory, the
chromoelectric flux is forced to lie along links of the lattice, and this bond
holds quarks together.

Non-Abelian static solutions to the pure SU(2) gauge theory can be ob-
tained using the ansatz, proposed by Wu & Yang (1969),

Aa
0 = i

xa a(r)
gr2

, Aa
i =

εaij xj [1 − b(r)]
gr2

, (8.221)

which reduces the field equations to the form

r2a′′ = 2ab2, r2b′′ = b
(
b2 − 1 + a2

)
. (8.222)

Various modifications of the Wu–Yang ansatz form the basis for a major
part of known non-Abelian solutions. Note, however, that when one seeks a
version of the Wu–Yang ansatz (in which spacetime coordinates are interwoven
with color coordinates) for the equations of motion in the Yang–Mills–Wong
theory, one runs into trouble with infinitely fast precession of the color charge
encountered in Sect. 8.1.

Polyakov (1974) and ’t Hooft (1974) analyzed the Yang–Mills–Higgs the-
ory, using an ansatz similar to that of Wu and Yang, and discovered a field
configuration possessing properties of the magnetic monopole. Prasad & Som-
merfield (1975), and Bogomol’ny (1976) studied this field configuration in the
limit µ → 0, λ → 0, with µ/λ < ∞, and obtained an exact solution, the
Bogomol’ny–Prasad–Sommerfield monopole. It differs in many respects from
the ’t Hooft–Polyakov monopole, particularly regarding its distinctive prop-
erty of self-duality. Julia & Zee (1975) modified the ’t Hooft ansatz, and ob-
tained a solution with both electric and magnetic charges, presently known as
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the Julia–Zee dyon. Jackiw & Rebbi (1976), and Hasenfratz & ’t Hooft (1976)
showed that isospinor degrees of freedom are converted into spin degrees of
freedom in the field of magnetic monopoles. This issue was further developed
by Jackiw & Manton (1980).

The material of this section is a slightly rearranged exposition of these
pioneer papers, which are probably the best introduction to the subject.

8. Section 8.7. It is generally believed that understanding the Yang–Mills
ground state may be of crucial importance in the confinement problem. Cole-
man (1966) argued that invariance of the vacuum is the invariance of world.
The analogy between the Higgs model and the Ginzburg–Landau model of
a superconductor was observed by Kirzhnits (1972), and Kirzhnits & Linde
(1972), who pointed out that the classical Higgs field at the equilibrium state
(corresponding to a minimum of the Higgs potential) can be interpreted as a
Bose condensate of Higgs quanta arising below the critical point. The phenom-
enon of spontaneously deformed gauge symmetry was discovered by Kosyakov
(1994, 1998).

Dothan, Gell-Mann & Ne’eman (1965) proposed to describe the Regge
trajectories of hadrons by infinite-dimensional unitary representations of
SL(3,R). They found that two infinite unitary representations belonging to the
ladder series may be associated with meson trajectories. However, Ogiyevetsky
& Sokachev (1975) showed that this SL(3,R) scheme is inadequate to account
for the Regge trajectories of baryons. Ne’eman & Šijački (1985, 1988, 1993)
proved that just SL(4,R) gives an exhaustive phenomenological classification
of hadrons.

The puzzle of nucleon spin is discussed comprehensively in the Stiegler’s
1996 survey. Data on deep inelastic scattering of polarized electrons and muons
on proton and deuteron targets evidence that about 20% of nucleon spin is
carried by quark spin. The remainder of the nucleon spin is thought to be due
to the quark orbital angular momenta and gluon helicity.
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Self-Interaction in Gauge Theories

9.1 Rearrangement of the Yang–Mills–Wong Theory

Following the procedure of Sects. 6.2 and 6.3, we take, as a starting point, the
action for a system of a single quark interacting with a SU(2) gauge field

S = −
∫
ds

{
m0

√
v · v +

∑
a

qaη∗i

[
δi

j

d

ds
+ vµ(Aa

µTa)i
j

]
ηj

}

− 1
16π

∫
d4xGµν

a Ga
µν , (9.1)

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + ifa

bsA
b
µA

c
ν . (9.2)

Here, Ta are generators of SU(2) expressed in terms of the Pauli matrices,
Ta = 1

2 σa, and fabc = εabc are the structure constants of SU(2).
This system is governed by the equations of motion

Q̇− ig [Q, vµAµ] = 0 , (9.3)

ελ = m0a
λ − tr

(
QGλµ

)
vµ = 0 , (9.4)

Eµ = DλGλµ − 4πjµ = 0 . (9.5)

Here, Q = −igQaTa, Aµ = (i/g)Aa
µTa, etc., and

jµ(x) =
∫ ∞

−∞
dsQ(s) vµ δ

4 [x− z(s)] . (9.6)

We are looking for solutions to the Yang–Mills equations (9.5) satisfying
the condition

Q(s) = const . (9.7)

(Abandoning this condition would pose the problem of an infinitely rapid
precession of the color charge Qa.) Let the quark be moving along an arbitrary
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timelike smooth world line zµ(s). We then have two alternative solutions,
Abelian and non-Abelian,

Aµ = qT3
vµ

ρ
, (9.8)

and
Aµ = ∓ 2i

g
T3

vµ

ρ
+ iκ (T1 ± iT2)Rµ . (9.9)

Here q and κ are arbitrary real nonzero parameters.
Our concern is with simultaneous solution of equations (9.4) and (9.5).

However, the retarded fields (9.8) and (9.9) are singular. Their substitution
into (9.4) would result in divergent expressions. Therefore, we should regu-
larize (9.8) and (9.9). To proceed further, it is convenient to use the Noether
identity (7.56),

∂µ

(
Θλµ + tλµ

)
=

1
4π

tr
(
EµG

µλ
)

+
∫
ds ελ(s) δ4 [x− z(s)] . (9.10)

Here,

Θλµ =
1
4π

tr
(
Gλ

αG
αµ +

ηλµ

4
GαβGαβ

)
, (9.11)

and tλµ is given by (6.78). Eµ and ελ are the left-hand sides of (9.5) and (9.4),
respectively.

If we take (9.8), then all results of Maxwell–Lorentz theory are reproduced
with the only replacement e2 → q2. The degrees of freedom appearing in the
action (9.1) are rearranged to give a dressed quark and Yang–Mills radia-
tion. The basic properties of the Yang–Mills radiation are similar to those of
Maxwell radiation, in particular, the four-momentum of Yang–Mills radiation
is given by

Pµ = −2
3
q2
∫ s

−∞
dτ a2vµ . (9.12)

A dressed quark possesses four-momentum

pµ = mvµ − 2
3
q2aµ . (9.13)

Its evolution is governed by the Lorentz–Dirac equation

maµ − 2
3
q2
(
ȧµ + vµa2

)
= fµ . (9.14)

Here, m is the renormalized mass, and fµ an external force.
A different situation arises with solution (9.9). We first note that this field

is generated by the color charge

Q = ±2i
g
T3 . (9.15)
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Therefore, a single quark has color charge of fixed magnitude

Q2 = − 4
g2

. (9.16)

Let us substitute (9.9) into (9.11). The linearly rising term of Aµ does not
contribute to Θµν . Therefore, Θµν splits into two parts: Θµν = Θµν

I + Θµν
II ,

withΘµν
I andΘµν

II being expressed, respectively, by (6.81) and (6.82), in which,
however, e2 is replaced by Q2.

It follows from (9.16) that the self-energy is negative (Problem 9.1.1),

δm = − 2
g2ε

< 0 . (9.17)

If m is to be finite, m0 must be positive.
Owing to (9.16), the emitted energy is negative. This implies that an

accelerated quark gains, rather than loses, energy by emitting the Yang–Mills
radiation. An explicit calculation (Problem 9.1.2) shows that this is indeed
the case:

Ṗ · v =
4
g2
a2 < 0 . (9.18)

It was already mentioned in Sect. 6.2 that this phenomenon may be inter-
preted as absorbing convergent waves of positive energy rather than emitting
divergent waves of negative energy.

We now turn to the N -quark case. It was concluded in Chap. 8 that a
consistent Yang–Mills–Wong theory can be formulated for the gauge group
SU(N ) with N ≥ N + 1.

There are two classes of retarded solutions to the Yang–Mills equations,
Abelian and non-Abelian. If we take the former, then all results of Sect. 6.3
extend to the N -quark case. It remains to consider the situation with non-
Abelian solutions. To be specific, let us refer to the field (8.85) generated by
two quarks,

Aµ = ∓2i
g

(
H1

v1
µ

ρ1
+ g κE±

13R
1
µ

)
∓ 2i

g

(
H2

v2
µ

ρ2
+ g κE±

23R
2
µ

)
. (9.19)

We note that Aµ is the sum of two single-quark terms. Due to this feature –
which is characteristic of the general N -quark case – we have

Θµν =
∑

I

Θµν
I +

∑
I

∑
J

Θµν
IJ , (9.20)

where Θµν
I is comprised of the field generated by the Ith quark, and Θµν

IJ

contains mixed contributions of the fields due to the Ith and Jth quarks. We
thus come to a stress-energy tensor Θµν which is similar in structure to that
of Maxwell–Lorentz theory.
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We integrate Θµν
I following the procedure of Sect. 6.3. All results obtained

in the single-quark case remain unchanged, except that

tr (Q2
I) = − 4

g2

(
1 − 1

N

)
. (9.21)

N dressed quarks arise possessing four-momenta

pµ
I = mI (vµ

I + �Ia
µ
I ) . (9.22)

An accelerated quark emits Yang–Mills radiation carrying four-momentum

Pµ
I = mI�I

∫ sI

−∞
dτI a

2
Iv

µ
I . (9.23)

Here, mI is the renormalized mass of the Ith quark, and

�I =
8

3mIg2

(
1 − 1

N

)
. (9.24)

Because
tr (Hl E

±
mn) = 0, tr

(
E±

klE
±
mn

)
= 0 , (9.25)

the linearly rising term of Aµ does not contribute to Θµν
IJ . Integration of Θµν

IJ

gives the four-momentum produced by an external Wong force (Problem 9.1.4)

℘µ
I = −

∫ sI

−∞
dτI f

µ
I (zI) , (9.26)

fµ
I(zI) =

∑
J

tr (QIQJ)
[vJ · (zJ − zI)]2

[(VJ · vI) c
µ
J − (cJ · vI)V

µ
J ] . (9.27)

Imposing the Haag asymptotic condition

lim
sI→−∞

aµ
I (sI) = 0 (9.28)

(and omitting quark labelling), we come to the equation for local energy-
momentum balance

ṗµ + Ṗµ = fµ . (9.29)

According to this balance relation the four-momentum d℘µ = −fµds ex-
tracted from an external field is used for changing the four-momentum of
a dressed quark dpµ and emitting the Yang–Mills radiation four-momentum
dPµ. A special feature of (9.29) is that dP0 is associated with emanating
negative-energy waves (or, absorbing positive-energy waves).

Note that (9.29) holds universally in both the Maxwell–Lorentz and Yang–
Mills–Wong theories. An intuitive idea behind this equation is as follows. An
external force exerted on a dressed particle causes it to emit (or, alternatively,
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to absorb) radiant energy dP0. The work done by this force f0ds minus dP0

equals the change in energy of the dressed particle dp0.
Substituting (9.22) (9.23), and (9.26) into (9.29) gives the equation of

motion for a dressed quark

m
[
aµ + �

(
ȧµ + vµa2

)]
= fµ . (9.30)

We see that (9.30) differs from the Lorentz–Dirac equation

m
[
aµ − τ0

(
ȧµ + vµa2

)]
= fµ (9.31)

only in the overall sign of the parenthesized term.
To appreciate this difference, we consider the case fµ = 0. For any initial

vµ and aµ, there exists a Lorentz frame in which vµ is aligned with the t-axis,
and aµ is parallel to the z-axis. It is clear then that the world line of the free
motion lies in this plane. One can readily check that the general solution to
(9.30) is

vµ(s) = V µ cosh(α0 + w0� e
−s/�) + Uµ sinh(α0 + w0� e

−s/�) . (9.32)

Here, V µ and Uµ are constant four-vectors such that V ·U = 0, V 2 = −U2 = 1,
and α0 and w0 are arbitrary parameters. The asymptotic condition (9.28)
(which is essential for the derivation of the equation of motion) can be fulfilled
only for w0 = 0. Therefore, a free dressed quark governed by (9.30) moves
along a straight line vµ(s) = const.

On the other hand, the general solution to (9.31) is

vµ(s) = V µ cosh(α0 + w0τ0e
s/τ0) + Uµ sinh(α0 + w0τ0e

s/τ0) . (9.33)

This solution (which exhibits self-acceleration or runaway behavior) obeys
asymptotic condition (9.28) for any w0. Therefore, a free a dressed particle
governed by (9.31), can behave as a non-Galilean object. We reserve this issue
for Sect. 9.3.

To summarize, there are two phases of the Yang–Mills–Wong theory, hot
and cold. In both phases, the initial degrees of freedom are rearranged to give
N dressed quarks and Yang–Mills radiation having the required properties
(6.87)–(6.89). The hot phase is realized on the Cartan subgroup of the gauge
group. In other words, the Yang–Mills field generated by quarks is Abelian.
Hence, the rearranded degrees of freedom resemble those of the Maxwell–
Lorentz theory in every detail. On the other hand, the Yang–Mills field gen-
erated by quarks in the cold phase is non-Abelian. The gauge group SU(N )
is spontaneously deformed to SL(N ,R). An accelerated quark emits Yang–
Mills radiation in the form of diverging negative-energy waves. The equation
of motion for a dressed quark (9.30) differs from the Lorentz–Dirac equation
in the overall sign of the higher-derivative term.
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Problem 9.1.1. Verify (9.17).

Problem 9.1.2. Evaluate Ṗµ for the Yang–Mills field (9.9). Verify (9.18).

Problem 9.1.3. Derive (9.22) and (9.23).

Problem 9.1.4. Verify (9.26)–(9.27).

Problem 9.1.5. Show that (9.32) is the general solution to equation (9.30)
with fµ = 0.

9.2 Self-Consistency

In analyzing the self-interaction problem in the Maxwell–Lorentz and Yang–
Mills–Wong theories, we saw that some quantities, such as δm, are divergent.
These divergences originate from the fact that electrons and quarks are consid-
ered as point particles, and the interactions between such particles and fields
are local. Consequently, electromagnetic and Yang–Mills fields are singular in
the vicinity of their sources. Does this result signify that the idea of point
particles locally coupled with fields is self-contradictory?

To gain a better insight into the divergence problem, let us look at the
static case. Referring to Problem 6.3.1, we write

δm =
∫
d3x

E2(x)
8π

. (9.34)

The Fourier transform of the Coulomb field E(x) is

E(x) =
1

(2π)3

∫
d3k eik·x Ẽ(k) . (9.35)

Substituting (9.35) into (9.34) gives

1
8π (2π)3

∫
d3k

∫
d3q Ẽ(k) · Ẽ(q)

1
(2π)3

∫
d3x ei(k+q)·x

=
1

8π (2π)3

∫
d3k

∫
d3q Ẽ(k)·Ẽ(q) δ3(k+q) =

1
8π (2π)3

∫
d3k Ẽ(k)·Ẽ(−k) .

(9.36)
With

Ẽ(k) = −ik 4πe
k2

, (9.37)

we obtain

δm =
e2

4π2

∫
d3k

k2
= lim

Λ→∞

e2

π

∫ Λ

0

dk . (9.38)

We see that the short-distance limit ε→ 0 corresponds to the limit of high
Fourier modes Λ → ∞. It is clear that (9.34) is divergent for any method of
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calculation. In field-theoretic language, expression (9.38) is said to be ultravi-
olet divergent. The name derives from the optical spectrum where ‘violet’ is
associated with high frequencies.

To handle divergent quantities, a regularization procedure must be intro-
duced. This means that the theory should be provisionally modified at small
distances so as to make the integrals convergent. Examples of invariant reg-
ularization procedures were given in Sects. 6.3 and 6.5. In the regularized
theory, we segregate finite terms from divergent ones. The latter are absorbed
by redefining physical parameters of the action. Such a redefinition was dis-
cussed for mass renormalization.

The identification
m = lim

ε→0
[m0(ε) + δm(ε)] (9.39)

was found to be sufficient to make the Maxwell–Lorentz and Yang–Mills–Wong
theories free of divergences. In general, a theory is called renormalizable if it
is possible to absorb all divergences by a redefinition of physical parameters
in the Lagrangian. A characteristic feature of renormalizable theories is that
the physics at large distances is insensitive to what happen at short distances:
the entire short-distance effect is incorporated in renormalizations of free pa-
rameters.

Renormalizability became a criterion for theory selection in the late 1940s,
and this state of affairs endured for about three decades. It is remarkable that
this scientific strategy was crucial for the development of quantum electrody-
namics and the standard model of particle physics.

However, by the early 1980s, the principle of renormalizability had been
revised (mainly due to the influential work of Wilson). The search for the
‘ultimate Lagrangian’, which would be an accurate renormalizable description
down to arbitrarily short distances, is no longer a goal of most physicists. A
new paradigm of effective field theories has emerged instead. Any field theory
is now regarded as the provisional, approximate description of some area of
physical reality, useful only in a prescribed range of distance or energy. An
effective theory is formulated in terms of only those degrees of freedom which
are actually important within the limits of validity of this description. If we
wish to go beyond these limits the theory must be replaced by a new, more
accurate theory, involving other degrees of freedom. For example, quantum
electrodynamics is an effective theory resulting from the standard model at
distances much greater than the cutoff set by the Compton wavelength of the
massive vector bosons , λW = 1/MW ≈ 2 · 10−16 cm.

The Maxwell–Lorentz theory may be understood as an effective theory
resulting from quantum electrodynamics at long distances. Its validity is
limited by the cutoff related to the Compton wavelength of the electron,
λe = 1/me = 3.86 · 10−11 cm. Indeed, at these and shorter distances, the
effects of pair creation become appreciable. Likewise, we may regard the Yang–
Mills–Wong theory as an effective theory, and associate the cutoff with the
Compton wavelength of the quark, λq = 1/mq.
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Historically, the nonrelativistic equation of motion for a dressed electron
(6.173) was derived by Lorentz and Abraham using a model of the electron as
a rigid body of finite extent. They tried to find the force of the electron on
itself, that is, the net force exerted by the fields due to different parts of the
charge distribution acting on one another. The electron was thought of as a
charged sphere of diameter d such that the entire mass of the electron was
of electromagnetic origin: m = δm. This leads to the relation d = e2/m. For
other charge distributions, we have similar relations, say, for a homogeneously
charged ball, d = 6e2/5m. The characteristic length arising in this approach

r0 =
e2

m
= 2.8 · 10−13 cm , (9.40)

is called the classical radius of the electron. The interval τ0 defined in (6.165)
may be treated as the time it takes for a light signal to travel through the
‘interior of the electron’.

Of course, Maxwell–Lorentz theory ceases to be valid at distances com-
parable with r0 because the cutoff adopted in this theory, λe, is two orders
of magnitude longer than r0. A completely different situation occurs in the
cold phase of the Yang–Mills–Wong theory, where the characteristic length �
is given by (9.24). Unlike r0, which is proportional to e2 ∼ 1/137, we see that
� is inversely related to g2. For g ∼ 1, we have � ∼ λq. However, if g � 1, then
� � λq, so that phenomena specified by � are within the range of validity of
this effective theory. For example, using (9.22), we get

p2 = m2
(
1 + �2a2

)
. (9.41)

Therefore, the dressed quark becomes a tachyon if its acceleration exceeds the
critical value 1/�. (A plausible explanation for this is that the critical point
corresponds to a phase transition between cold and hot phases.)

Why should we care about the Maxwell–Lorentz and Yang–Mills–Wong
theories? They are not accurate descriptions of real electrons and quarks any-
way. The reason is simple. We need solvable four-dimensional theories. These
toy-model descriptions have received much study because they offer exact so-
lutions. A detailed look at these solutions may be of great importance for a
deep insight into the mathematical properties of realistic gauge theories. For
example, the Yang–Mills–Wong theory is the only known mathematical frame-
work in which spontaneous symmetry deformation can be revealed explicitly.
This phenomenon may be useful in exploring phase transitions of subnuclear
matter.

9.3 Paradoxes

Many people have formed an impression of the Lorentz–Dirac equation
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maµ − 2
3
e2
(
ȧµ + vµa2

)
= fµ , (9.42)

as the equation of motion for a charged particle whose four-momentum is
defined by

pµ = mvµ . (9.43)

The particle is assumed to experience both an external force fµ and radiation
reaction (or radiation damping) force

Γµ =
2
3
e2
(
ȧµ + vµa2

)
. (9.44)

This interpretation of the Lorentz–Dirac equation leads to many paradoxes
and puzzles.

Let us consider some of them. We will show that the key to all such
problems lies with Teitelboim’s concept of a dressed particle possessing four-
momentum

pµ = mvµ − 2
3
e2aµ . (9.45)

We begin with the best known issue, namely, that the Lorentz–Dirac equa-
tion is inconsistent with local energy-momentum balance. Indeed, the so-called
Schott term

2
3
e2 ȧµ (9.46)

prevents Γµ from being regarded as what may be properly called the radiation
reaction

−Ṗµ =
2
3
e2 vµa2 . (9.47)

Naively, one expects that a radiating particle feels a recoil measured by the
negative of the emission rate (9.47). However, −Ṗµ is not a four-force, be-
cause it is not orthogonal to vµ. On the other hand, if we take Γµ (which is
orthogonal to vµ) as the radiation reaction, then energy-momentum balance
becomes problematic. To see this, write the temporal component of (9.42) in
the form

F · v =
d

dt
mγ − 2

3
e2 a2 − 2

3
e2

d

dt
a0 . (9.48)

One usually states: the rate at which the external force F does work on the
particle is equal to the increase in the particle’s kinetic energy, plus the energy
radiated, plus the energy stored in the Schott term. Although the energy
stored in the Schott term can be attributed to a reversible form of emission
and absorption of field energy, its actual role appears mysterious.

To remedy the situation, let us impose the asymptotic condition

lim
s→±∞

aµ(s) = 0 . (9.49)

Because the Schott term is a perfect differential, (9.42) can be integrated to
give
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mvµ(∞) −mvµ(−∞) − 2
3
e2
∫ ∞

−∞
ds a2vµ =

∫ ∞

−∞
ds fµ . (9.50)

It may appear that (9.50) provides a satisfactory solution to the problem. How-
ever, this conclusion does not stand up. Why is energy-momentum only con-
served globally? There is nothing in Maxwell–Lorentz theory which suggests
that electromagnetic interactions are nonlocal by their nature and, hence, that
local energy-momentum balance is impossible.

Following an accurate regularization prescription, we established in
Sect. 6.3 that the four-momentum of a dressed charged particle is given by
(9.45) rather than by (9.43)1. Recall that pµ was obtained by integrating
the sum of the stress-energy tensor for a bare particle tµν and that for the
bound part of electromagnetic field Θµν

I . The quantities tµν , Θµν
I , and Θµν

II

are dynamically independent off the world line. On a particle’s world line the
energy-momentum of an external field is converted into that of the dressed
particle and radiation:

ṗµ + Ṗµ = fµ . (9.51)

As was shown in Sect. 9.1, the local balance (9.51) holds for appropriately
rearranged degrees of freedom in Yang–Mills–Wong theory.

Closely related to this balance problem is the paradox of uniform accel-
eration. With reference to Problem 2.1.4, we invoke a covariant condition for
uniform acceleration

ȧµ + a2vµ = 0 . (9.52)

Therefore, when a charged particle is uniformly accelerated, (9.42) becomes

maµ = fµ . (9.53)

It is clear that uniform accelerations are due to constant forces fµ = const.
This could be realized by a huge capacitor with flat parallel plates if the
charge moves along the field. The paradoxial thing is that a uniformly accel-
erated charged particle, while emitting electromagnetic radiation, experiences
no back-reaction. In addition, it seems strange that the case fµ = const. is
somewhat physically distinguished.

No paradox arises for a dressed particle. We saw in Sect. 6.4 that the
Lorentz–Dirac equation can be brought to the form

v

⊥ (ṗ− f) = 0 . (9.54)

1 Ascribing pµ = mvµ to an object governed by the Lorentz–Dirac equation has
no justification except ‘to keep an analogy with mechanics’. When pµ = mvµ is
nonetheless insisted upon the corresponding stress-energy tensor T

µν should also
be explored. As can be readily verified, local conservation law ∂µT

µν = 0 does not
hold off the world line. Furthermore, regarding T µν − T

µν as the radiation part
of the the stress-energy tensor would compromise the characteristic properties of
the radiation (6.87) and (6.88).
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The structure of this equation shows that a dressed particle experiences only
an external force fµ. Note also that (9.51) contains no ‘recoil term’. The
energy-momentum which is extracted from the external field is used to change
the energy-momentum of the dressed particle and to emit radiation. It is
impossible to identify the reactive effect of radiation in these equations for
any motion, uniform acceleration is no exception.

The paradox can be formulated in another way. Suppose that neutral and
charged particles, which have identical masses m, are moving along a straight
line under a constant force fµ. As before,

vµ = (coshα, 0, 0, sinhα) , (9.55)

fµ = f (sinhα, 0, 0, coshα) . (9.56)

For example, imagine that they fall to the surface of the Earth. Both are
attracted toward the Earth by an approximately constant force f = −mg,
where g is the acceleration of gravity. Using (9.55) and (9.56), we obtain the
equation of motion for a charged particle

α̇− τ0 α̈ = −g , (9.57)

τ0 =
2e2

3m
, (9.58)

and that for a neutral particle

α̇ = −g . (9.59)

Evidently, both (9.57) and (9.59) are satisfied by

α = −gs . (9.60)

The paradox is that a given constant force causes both particles move along
the same hyperbolic world line

zµ(s) = zµ(0) + g−1 (sinh gs, 0, 0,− cosh gs) , (9.61)

even if accelerating charged particles radiate. Since this radiation carries off
energy, the charged particle might be expected to accelerate less than the
neutral one.

Recall, however, that the energy of a neutral particle is positive definite
while the energy of a dressed particle is indefinite. Despite the fact that both
particles execute identical motions, the energy associated with these motions
is different (Problem 9.3.1).

One further concern is with the so-called counter-acceleration. One nor-
mally expects that the smallness of the radiation reaction Γµ results in small
corrections to the essentially Newtonian behavior of a charged particle. But
these expectations are not always realized.
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Let a charged particle be moving along a straight line. Then, following the
procedure of Sect. 6.4, we come to the equation

α̇(s) = es/τ0

[
C − 1

mτ0

∫ s

0

dσ e−σ/τ0 f(σ)
]
, (9.62)

where C is an arbitrary initial value of α̇ at s = 0. Setting C = 0, one finds
that α̇ and f are oppositely directed.

When analyzing the behavior of a dressed particle this result presents
no difficulty. Indeed, (9.54) shows that the dynamics of a dressed particle is
Newtonian. However, this in no way implies that acceleration must be aligned
with force; aµ and fµ would have the same direction only if one makes the ad
hoc assumption that pµ = mvµ.

All this argumentation is (with minor modifications) translated into the
Yang–Mills–Wong theory. We thus see that the term ‘radiation reaction force’
is an unfortunate misnomer both in electrodynamics and Yang–Mills–Wong
theory.

We finally turn to the problem of runaways

vµ(s) = V µ cosh(α0 + w0τ0e
s/τ0) + Uµ sinh(α0 + w0τ0e

s/τ0) . (9.63)

These solutions of the Lorentz–Dirac equation are an embarrassing feature of
the theory: a free charged particle moving along the world line (9.63) contin-
ually accelerates,

a2(s) = −w2
0 exp (2s/τ0) , (9.64)

and, furthermore, continually radiates. This may seem contrary to energy
conservation.

With (9.51), the problem is solved immediately. Indeed, taking fµ = 0, we
have

ṗµ = −Ṗµ . (9.65)

This result is quite natural: the rate of change of the energy-momentum of a
dressed particle is equal to the negative of the emission rate. In this instance,
emitting radiation may be thought of as a reactive power source. Recall that
p0 is indefinite,

p0 = mγ
(
1 − τ0 γ

3 a · v
)
. (9.66)

This implies that increasing v need not be accomplished by increasing p0. In
fact, the energy of a dressed particle executing a runaway motion decreases
steadily, which exactly compensates the increase in energy of the electromag-
netic field emitted (Problem 9.3.2).

It is generally believed that the runaways are unphysical. The reason for
this is that a free electron with exponentially increasing acceleration has never
observed experimentally.

Runaway solutions also occur in the presence of external forces. For exam-
ple, the solution (9.62) describes runaway motion for every value of C, except
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that defined in (6.182). As in the free case, a dressed particle can only be
self-accelerated for a very short period ∼ τ0. Thereafter it becomes a tachyon.

Problem 9.3.1. Consider neutral and dressed charged particles moving along
the same hyperbolic world line (9.61) during a finite period from s1 to s2.
Compare the variations of their energies.

Hint The dressed particle has the energy p0 which is obtained from (9.45)
and (9.55),

p0 = mv0 − 2
3
e2a0 = m [cosh(gs) − τ0g sinh(gs)] . (9.67)

Accordingly,

∆p0 = p0(s2) − p0(s1) = m [cosh(gs) − τ0g sinh(gs)] |s2
s1
. (9.68)

The energy radiated during this period is

−2
3
e2
∫ s2

s1

ds a2v0 = mτ0g sinh(gs)|s2
s1
. (9.69)

The sum of (9.68) and (9.69) equals the work W of the force fµ defined in
(9.56),

W =
∫ s2

s1

ds f0 = m cosh(gs)|s2
s1
, (9.70)

as might be expected from (9.51).
For the neutral particle, p0 = mv0, and so

∆p0 = m cosh(gs)|s2
s1
. (9.71)

This ∆p0 is equal to W .

Problem 9.3.2. Consider a self-accelerating dressed particle. Show that en-
ergy balance

p0(s2) − p0(s1) = −
∫ s2

s1

ds Ṗ0 (9.72)

holds for the runaway world line (9.63).

Notes

1. Section 9.1. The presentation of this section follows Kosyakov (1991, 1998).

2. Section 9.2. Dyson (1949) argued that mass and charge renormalizations are
sufficient to absorb ultraviolet divergences in quantum electrodynamics. He
showed further that all infinities can be absorbed into a redefinition of parame-
ters in the Lagrangian only for a certain kind of theories. Dyson called them
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renormalizable. Since then renormalizability became a criterion for funda-
mental theory. For historical details and further references see Brown (1993),
Schweber (1994), and Cao (1999). The mathematical reason for ultraviolet
divergences is that products of singular distributions with coincident points
are ill-defined. This fact was pointed out by Bogoliubov & Parasiuk (1957).

Wilson (1979, 1983) developed the idea of effective theories. He noted that
physical systems have many length of scales, each scale associated with its own
dynamical law. For example, hydrodynamics governs liquids at the macro-
scopic level, Boltzmann’s equations come into play at the molecular level, and
so on. In Wilson’s words: ‘In general, events distinguished by a great disparity
in size have little influence on one another; they do not communicate, and so
the phenomena associated with each scale can be treated independently.’

3. Section 9.3. The treatment of the Lorentz–Dirac equation (9.42) as the
equation of motion for a radiating electron with the four-momentum pµ = mvµ

goes back to Schott (1915) and Dirac (1938). It is the source of paradoxes.
For an extended discussion of paradoxes of this kind and further references
see Rohrlich (1965).
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Generalizations

To grasp electrodynamics as a whole, the reader may wish to see its place
in a wider context. With this in mind some general theories of this type are
reviewed in this chapter.

10.1 Rigid Particle

Varying the world line of a bare particle in the action

S = −
∫
dτ
[
m0

√
ż · ż + e (ż ·A)

]
, (10.1)

we obtain a second-order differential equation. However, we learned in Chap. 6
that the original degrees of freedom of the Maxwell–Lorentz theory are re-
arranged to yield third-order equations of motion, the Lorentz–Dirac equation.
This suggests we explore Lagrangians which involve not only żµ, but also z̈µ,
and even greater derivatives. Because the additional geometric invariant one
can construct using z̈µ is the curvature of the world line, Lagrangians which
involve z̈µ are said to describe rigid particles. For simplicity, we restrict our
discussion to the case of a free particle governed by

S =
∫
dτ L(ż, z̈) . (10.2)

Here, τ is an arbitrary evolution parameter.
It is worthwhile to note two caveats before commencing the discussion.

First, there is no experimental evidence that higher derivative Lagrangians
play any role in nature. Second, ever since the Hamiltonian formulation of
these theories that was achieved by Mikhail Ostrogradskǐı in 1850, it has been
clear the Hamiltonians for higher derivative Lagrangians are almost always
unbounded below. The known exceptions occur only in cases of very high
symmetry, and only for the Lagrangians with a single higher derivative z̈µ.
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One can enforce reparametrization invariance by writing the Lagrangian

L = γ−1Φ(a2) (10.3)

in which γ is the generalized Lorentz factor1,

γ−1 =
√
ż · ż , (10.4)

and Φ an arbitrary function of the four-acceleration squared. The role of γ is
similar to that of the einbein η in the action (2.261). Recall that the curvature
squared is equal to the negative four-acceleration squared, and that, for an
arbitrary τ , the four-acceleration is given by

aµ = γ
d

dτ

(
γ
dzµ

dτ

)
. (10.5)

Following the line of reasoning of Sect. 2.5, the infinitesimal variation of
the action (10.2) is easily evaluated (Problem 10.1.1), giving

δS =
∫ τ2

τ1

dτ

[
∂L

∂zµ
− d

dτ

(
∂L

∂żµ

)
+

d2

dτ2

(
∂L

∂z̈µ

)]
δzµ

+ (H∆τ − pα∆z
α − πα∆ż

α)
∣∣∣τ2

τ1

. (10.6)

Here, δzµ is the local coordinate variation

δzµ = ∆zµ − żµ∆τ , (10.7)

pµ the four-momentum conjugate to zµ:

pµ = − ∂L

∂żµ
+

d

dτ

(
∂L

∂z̈µ

)
, (10.8)

πµ the four-momentum conjugate to żµ:

πµ = − ∂L

∂z̈µ
, (10.9)

and H the Hamiltonian:

H = p · ż + π · z̈ + L . (10.10)

It immediately follows that the Euler–Lagrange equations

∂L

∂zµ
− d

dτ

(
∂L

∂żµ

)
+

d2

dτ2

(
∂L

∂z̈µ

)
= 0 (10.11)

1 If τ is laboratory time t in a particular inertial frame, then γ takes the familiar
form γ = (1 − v2)−1/2.
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are ordinary differential equations of fourth order with zµ as the unknown
function.

If the action is translation invariant,

∆zµ = εµ , (10.12)

then pµ is conserved. Indeed, combining (10.8) and (10.11) for z-independent
L, we have

ṗµ = 0 . (10.13)

However, the action cannot be invariant under velocity translations

∆żµ = δµ . (10.14)

Such a symmetry would conflict with reparametrization invariance. Indeed, L
has a factor of γ−1 to ensure reparametrization invariance, but the presence
of γ−1 in the action eliminates (10.14) as a symmetry transformation. Thus,
πµ is not conserved.

Applying (10.5), (10.4), (10.8), and (10.9) to (10.10), one can show (Prob-
lem 10.1.2) that H = 0 if L is of the form (10.3). This is due to reparame-
trization invariance.

Let τ be the proper time s. The Euler–Lagrange equations (10.11) for a
Lagrangian of the form (10.3) read

(
v

⊥ ṗ)µ = 0 , (10.15)

which is consistent with the basic law of relativistic mechanics (2.6) in the
absence of external forces.

Let us examine the simplest case

Φ(a2) = −µ+ νa2 , (10.16)

where µ and ν are real parameters. We assume that µ > 0, for if we put ν = 0,
we would have to interpret µ as the Newtonian mass.

Substituting (10.16) into (10.8), we find

pµ = µvµ + ν (2ȧµ + 3a2vµ) . (10.17)

Let this rigid particle be moving along a straight line, say, in the x3-
direction. Then

vµ = (coshα, 0, 0, sinhα) ,
aµ = α̇ (sinhα, 0, 0, coshα) , (10.18)

and hence a2 = −α̇2. Equation (10.15) becomes

µα̇+ ν (2
...
α − α̇3) = 0 . (10.19)
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Denoting α̇ = q and µ/ν = q2∗, we can write (10.19) in the form

q̈ +
1
2
q2∗ q −

1
2
q3 = 0 . (10.20)

The first integral of this equation is

1
2
q̇2 + U(q) = E , (10.21)

U(q) = −1
8

(q2 − q2∗)
2 . (10.22)

Here, E is an arbitrary integration constant.
One may consider (10.20) and (10.21) as, respectively, the equation of

motion and energy integral for a fictitious nonrelativistic particle of unit
mass in the potential U . For ν > 0, U is shown in the left hand side of
Fig. 10.1. If −q4∗/8 < E < 0, then the fictitious particle moves within the
range −q∗ < q < q∗. This means that imposing the restriction on the ini-
tial acceleration |a2| < µ/ν, the rigid particle executes a zitterbewegung. If
E > 0, or, alternatively, E < −q4∗/8, then the fictitious particle can reach
infinity. In other words, once the initial acceleration of the rigid particle has
exceed (µ/ν)1/2, this particle is doomed to a run away. If E = 0, then the ficti-
tious particle rests at the top of the potential hill. That is, letting a2 = −µ/ν,
makes the rigid particle to execute a hyperbolic motion. However, this regime
is unstable, a small perturbation converts it to a run away. If E = −q4∗/8, then
the fictitious particle rests on the bottom of the potential, which corresponds
to uniform motion of the rigid particle, a2 = 0. It is apparent that, for ν < 0,
or, alternatively, µ = 0 (Fig. 10.1, right plot), the rigid particle always runs
away. Uniform motion of the rigid particle with such µ and ν is unstable, a
small perturbation will always convert it to the runaway regime.

××
−q∗ q∗

U(q) U(q)

ν < 0, or µ = 0ν > 0

Fig. 10.1. The potential U for the fictitious particle

These results show that rigid particles are non-Galilean objects. In the
absence of external forces, they are capable of not only moving uniformly
along a straight line, but also of zitterbewegung, runaway, and hyperbolic
evolution.
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Combining (10.18) and (10.17),

pµ = (µ− να̇2)(coshα, 0, 0, sinhα) + 2να̈(sinhα, 0, 0, coshα) . (10.23)

Therefore,
p2 = (µ− να̇2)2 − 4ν2α̈2 . (10.24)

When compared with (10.21) and (10.22), this gives

p2 = −8ν2E . (10.25)

We see that p2 < 0 is equivalent to E > 0, which is a criterion for the fictitious
particle to reach infinity. When a free rigid particle moving along a straight
line is in a state of spacelike pµ, it executes runaway motion. Conversely, if pµ

is timelike, then the only stable (against small perturbations), non-Galilean
regime for it is zitterbewegung2.

Rewriting (10.17) in the form

pµ = (µ+ νa2) vµ + 2ν (
v

⊥ ȧ)µ , (10.26)

(
v

⊥ ȧ)µ = ȧµ + a2vµ , (10.27)

we get
M2 = p2 = (µ+ νa2)2 + 4ν2(

v

⊥ ȧ)2 , (10.28)

m = p · v = µ+ νa2 . (10.29)

Both M and m depend on kinematical variables. Nevertheless, M is constant
because pµ is conserved. As for m, it varies with time when the rigid particle
executes zitterbewegung or runaway motion. The only non-Galilean regime
which leaves m unchanged, is hyperbolic motion with a2 = −µ/ν. Note that
this case is dynamically singular, pµ = 0. To see this, one should use the
equation of hyperbolic motion (2.29),

(
v

⊥ ȧ)µ = 0 , (10.30)

and put a2 = −µ/ν in (10.26).
Of the two invariant quantities, M and m, only M is a constant of motion.

Hence, it is M which characterizes the inertia of a rigid particle. This situation
is in contrast to that of a dressed particle in the Maxwell–Lorentz theory.

Problem 10.1.1. Derive (10.6)–(10.10).

Problem 10.1.2. Show that H = 0 for any Lagrangian of the form (10.3).

2 Note, however, that this regime is unstable against finite perturbations of curva-
ture whose magnitude is greater than (µ/ν)1/2.



372 10 Generalizations

10.2 Different Dimensions

In Chaps. 3–6 we studied Maxwell’s equations in four-dimensional Minkowski
spacetime. It is interesting to see how electrodynamics works in other dimen-
sions, assuming that the Lagrangian

L = − 1
4ΩD−1

FµνF
µν −Aµj

µ (10.31)

is still valid. We adopt the metric ηµν = diag (1,−1, . . . ,−1). Greek letters
take the values 0, 1, . . . ,D. Repeated indices are summed over this range. The
overall factor (16π)−1 of the Larmor term is replaced by (4ΩD−1)−1, where

ΩD−1 =
2π

D
2

Γ
(

D
2

) (10.32)

is the area of the unit (D − 1)-sphere. For D = 3, we have ΩD−1 = 4π,
establishing correspondence with our previous conventions.

The field equation resulting from (10.31) reads

∂λF
λµ = ΩD−1j

µ . (10.33)

Taking Fµν = ∂µAν −∂νAµ and imposing the Lorenz gauge condition, we can
write (10.33) in the form

�Aµ = ΩD−1 j
µ . (10.34)

Solutions to the wave equation (10.34) can be found with the aid of the
Green’s function technique. Let us show that the retarded Green’s function,
obeying

�Gret(x) = δD+1(x) , (10.35)

is given by

Gret(x) =




1
2πn θ(x0) δ(n−1)(x2) D = 2n+ 1,

(−1)n−1

πn+ 1
2
Γ
(
n− 1

2

)
θ(x0) θ(x2)

(
x2
) 1

2−n
D = 2n,

(10.36)

where δ(n−1)(x2) is the Dirac delta-function differentiated n − 1 times with
respect to its argument.

We first consider odd-dimensional spaces D = 2n + 1. Using the Fourier
transform

Gret(t,x) =
1

(2π)D

∫
dDk eik·x G̃ret(t,k) (10.37)

(to maintain contact with the notation of Chap. 4, x0 is called t), we deduce
from (10.35) that

G̃ret(t,k) =
sin kt
k

, (10.38)
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in a close analogy to what was done in Sect. 4.4. We choose D-dimensional
spherical coordinates in k-space, and assume that the kD-axis is aligned with
r, so that

dDk = k2ndk dϑ1 sinϑ2dϑ2 . . . sin2n−1 ϑ2ndϑ2n , (10.39)

and k · r = kr cosϑ2n. Inserting (10.38) into (10.37), and observing that the
integrand does not depend on ϑ1, . . . , ϑ2n−1,

Gret(t,x) =
Ω2n−1

(2π)2n+1

∫ ∞

0

dk k2n−1 sin kt
∫ π

0

dϑ sin2n−1 ϑ eikr cos ϑ , (10.40)

where ϑ stands for ϑ2n.
We now take advantage of two relations, well known in the theory of Bessel

functions,
∫ π

0

dϑ sin2n−1 ϑ eikr cos ϑ = 2n− 1
2
√
π Γ (n) (kr)

1
2−n Jn− 1

2
(kr) , (10.41)

Jn− 1
2
(kr) = (−1)n−1

√
2
π

( r
k

)n− 1
2
(

d

r dr

)n−1 sin kr
r

. (10.42)

Applying (10.41) and (10.42) to (10.40), we have

Gret(t,x) =
(−1)n−1

(2π)n−1

(
∂

r ∂r

)n−1 [ 1
2π2

1
r

∫ ∞

0

dk sin kr sin kt
]
. (10.43)

Referring to Sects. 4.3 and 4.4, the expression in the square brackets is iden-
tified as the retarded Green’s function for D = 3. Thus,

Gret(t,x) =
(−1)n−1

(2π)n−1

(
∂

r ∂r

)n−1
δ(t− r)

4πr
=
θ(t)
2πn

(
∂

∂t2

)n−1

δ(t2 − r2) ,

(10.44)
which proves the first line of (10.36).

To obtain the retarded Green’s function for D = 2n, it is sufficient to
integrate (10.44) over some spatial coordinate, say, xD+1,

G(D)(x) =
∫ ∞

−∞
dxD+1G

(D+1)(x, xD+1) , (10.45)

which becomes clear from the preceding discussion if we note that the Fourier
transforms of these Green’s functions are related by

G̃(D)(t,k) = G̃(D+1)(t,k, kD+1)
∣∣
kD+1=0

. (10.46)

Working out (10.45), we obtain the second line of (10.36). An alternative
expression for the retarded Green’s function in even space dimensions D = 2n
is
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Gret(t,x) =
(−1)n−1

(2π)n−1

(
∂

r ∂r

)n−1
θ(t− r)

2π
√
t2 − r2

. (10.47)

A sharp distinction between wave propagation in spaces of even and odd
dimensions can be understood from Huygens’ principle. Huygens’ principle
means that any retarded signal carries information on the state of a point
source at the instant of its emission. This idea is exemplified in the first line
of (10.36): the retarded Green’s function for D = 2n + 1 is concentrated on
the forward sheet of the light cone x2 = 0, x0 > 0. By contrast, if D = 2n,
then the retarded signal measured at some point xµ derives from the entire
history of the source which lies on or within the past light-cone of xµ. If we
think of the retarded signal as traveling with the speed of light then it ought
to be emitted at the instant the source intersects the past light-cone of xµ.
So Huygens’ principle fails in odd spacetime dimensions. The second line of
(10.36) shows that the support of the retarded Green’s function for D = 2n
is the interior of the future light cone x2 ≥ 0, rather than its surface.

Four-dimensional real spacetime has little in common with odd-dimen-
sional worlds. To illustrate this, we refer to Problems 10.2.11 and 10.2.12. In
the rest of this section, our main concern is with D + 1 = 2n. We explore
electrodynamics in even-dimensional worlds with two illuminating examples:
D + 1 = 2 and D + 1 = 6.

10.2.1 Two Dimensions

With reference to Problem 4.4.5, the retarded Green’s function for the two-
dimensional wave operator is given by Gret(t, x) = 1

2 θ(t − |x|). Although
Huygens’ principle fails, the procedure developed in Sect. 4.7 is still valid.
Using the result of Problem 4.7.2, we can write the retarded vector potential
generated by a single charge

Aµ = −eRµ . (10.48)

The field strength is
Fµν = e (cµvν − cνvµ) . (10.49)

We see that Fµν is nonsingular, even if discontinuous, on the world line. Fur-
thermore, Fµν is independent of acceleration. In two-dimensional electrody-
namics, fields due to charges moving along arbitrary timelike smooth world
lines are equivalent to static fields.

The stress-energy tensor for the retarded field (10.49) is

Θµν =
1
4
e2 (cµvν + cνvµ − cµcν) =

1
4
e2 (vµvν − uµuν) =

1
4
e2 ηµν . (10.50)

Here, we have used the completeness relation vµvν − uµuν = ηµν stemming
from the fact that vµ and uµ form a basis. It is then clear that ∂µΘ

µν = 0.
We may therefore define
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Pµ =
∫
B
dσν Θ

µν , (10.51)

where the integration is over a region B of an arbitrary surface (in fact, a
curve). Taking B to be a large interval L of a straight line perpendicular to
vµ,

Pµ =
1
4
e2 vµ L , (10.52)

which diverges as L→ ∞. In contrast to the four-dimensional case, where Pµ

diverges due to singularities on world lines, the divergence of (10.52) originates
from infinite limits of integration. In field-theoretic language, the quantity
(10.52) is infrared divergent3.

The stress-energy tensor (10.50) contains the term − 1
4e

2cµcν . One may
inquire whether it is possible to interpret it as radiation. Although this term
meets three conditions (6.87), (6.88), and (6.90), the fourth condition (6.91) is
violated. Indeed, − 1

4e
2cµcν is similar in its spatial behavior to the rest of the

stress-energy tensor (10.50), contrary to the requirement that the radiation
be asymptotically separated from the bound part.

There is no radiation in two-dimensions. The rearrangement of degrees of
freedom is limited by forming a dressed particle with energy-momentum

pµ = mvµ , (10.53)

where m is the renormalized mass. Equation (10.53) makes it clear that the
dressed particle is a Galilean object.

Let two charged particles be moving under each other’s influence along
a line which represents space in this two-dimensional world. The equation of
motion for the particle 1 reads

m1a
µ
1 = fµ

1 = e1e2 v
1
λ (vλ

2 c
µ
2 − cλ2v

µ
2 ) , (10.54)

and that for particle 2 is obtained from (10.54) by the label interchange 1 ↔
2. We thus have a system of lag-time differential equations. A delay in the
argument of the right-hand side of (10.54) is due to the fact that signals
propagate at the speed of light, causing the force fµ

1 to depend on position
and velocity of particle 2 at a previous time (Fig. 10.2). Surprising as it may
seem, these equations are integrable.

Looking at Fig. 10.2, one can write

vµ
1 = (coshα, sinhα), uµ

1 = (−sinhα,−coshα), vµ
2 = (1, 0), uµ

2 = (0, 1) ,
(10.55)

3 We have encountered divergences before which were absorbed into the particle
mass. However, those were ultraviolet divergences, associated with the behavior
of the fields very near the particle. Infrared divergences typically mean that the
quantity being computed is somehow unphysical. In this case the problem is that
we have assumed our two dimensional spacetime contains only a single charge.
Had there been more than one charge, so that the total charge vanished, then
there would have been no divergence.
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Fig. 10.2. Two-particle problem

where α is some unknown function of the proper time. We introduce two
invariants

Γ = v1 · v2, ∆ = v1 · u2 , (10.56)

and use (10.55), to give Γ = coshα, ∆ = −sinhα, and

Γ 2 −∆2 = 1, u1 · u2 = Γ, u1 · v2 = ∆ . (10.57)

By (10.56),
fµ
1 = e1e2 [Γ cµ2 − (Γ +∆) vµ

2 ] . (10.58)

The Lorentz force fµ
1 is perpendicular to vµ

1 , and hence parallel to uµ
1 . In view

of (10.57), f1 · u1 = e1e2. Therefore, fµ
1 = e1e2 (sinhα, coshα), and (10.54)

becomes m1α̇ = e1e2, whence α = (e1e2/m1)s1 + α0. We assume that α0 = 0
for simplicity. Integrating vµ

1 = (coshα, sinhα), we conclude that any solution
to (10.54) can be built out of fragments of the hyperbolic curve

zµ
1 (s1) = zµ

1 (0) + a−1
1 (sinh a1s1, cosh a1s1) , (10.59)

where zµ
1 (0) is the particle position at the initial instant s1 = 0, and a1 =

e1e2/m1. Particle 2 moves along a similar world line. This completely solves
the two-particle problem. The N -particle problem is handled in a like manner
(Problem 10.2.3).

Figure 10.3 depicts the world lines of two particles of equal charge mag-
nitude and mass. Oppositely charged particles execute compact periodic mo-
tions, plot A. Particles of like charges execute infinite motions, as in plot B.

10.2.2 Six Dimensions

In this subsection, we restrict our discussion to a single charged particle.
Looking at the first line of (10.36), we observe that the retarded Green’s
function for n = 2 involves a derivative of δ(x2), which implies that the
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A B

Fig. 10.3. World lines of two particles

retarded vector potential carries information on both velocity and acceleration
of the source at the point of emission. Accordingly, the ansatz (4.302) alters

Aµ = Ω(ρ, λ) aµ + Φ(ρ, λ) vµ + Ψ(ρ, λ)Rµ , (10.60)

where Ω, Φ, Ψ are unknown functions. Referring to Problem 4.7.3, we cite the
solution:

Ω =
k

ρ2
, Φ = k

(
− λ

ρ3
+ C1

)
, Ψ = k

λC1 + C2

ρ
, (10.61)

where C1 and C2 are arbitrary integration constants, and k an overall multi-
plicative. Dropping pure gauge terms C1 ∂

µρ and C2 ∂
µs,

Aµ = k

(
−λ v

µ

ρ3
+
aµ

ρ2

)
, (10.62)

whence

Fµν = k

(
aµvν − aνvµ

ρ3
+ cµV ν − cνV µ

)
, (10.63)

V µ =
ȧµ

ρ2
− 3λ

aµ

ρ3
+
vµ

ρ4

[
3λ2 − ρ2 (ȧ · c)

]
. (10.64)

We apply the Gauss law to the static field F = 3k (c ∧ v) ρ−4, to give k = 1
3 e.

Thus,

F =
e

3

(
a ∧ v
ρ3

+ c ∧ V
)
. (10.65)

We now turn to the problem of ultraviolet divergences. We wish to in-
tegrate Θµν over a five-dimensional surface to obtain the electromagnetic
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six-momentum Pµ. However, direct integration is impossible because Fµν is
singular on the world line. By (10.65),

FµαF
α
ν =

e2

9

[
−aµaν + a2 vµvν

ρ6
+ (c · V ) (cµVν + cνVµ) − cµcν V

2

+
aµVν + aνVµ

ρ3
+ (a · V )

vµcν + vνcµ
ρ3

− (v · V )
aµcν + aνcµ

ρ3

− λ+ 1
ρ4

(vνVµ + vµVν)

]
, (10.66)

so that

FαβF
αβ =

2e2

9

[
a2

ρ6
− (c · V )2 − 2

ρ3
(a · V ) +

2
ρ4

(λ+ 1) (v · V )
]
. (10.67)

Since the element of measure on a five-dimensional spacelike hyperplane
is proportional to ρ4dρ, the integration of Θµν results in cubic and linear
divergences. It is clear from (10.66) and (10.67) that the cubic divergence
occurs even in the static case. By contrast, the linear divergence, which owes
its origin to the terms scaling as ρ−2, appears only for curved world lines, that
is, in the case that either aµ or ȧµ, or both are nonzero. This implies that the
Poincaré–Planck action for a bare particle (2.207) must be endowed with a
term containing higher derivatives to absorb the linear divergence.

The simplest reparametrization invariant Lagrangian for a rigid bare par-
ticle is that discussed in Sect. 10.1:

L = −
√
v · v

(
µ0 − ν0a

2
)
. (10.68)

The corresponding six-momentum is given by (10.17),

pµ
0 = µ0v

µ + ν0(2ȧµ + 3a2vµ) . (10.69)

It follows on dimensional grounds (Problem 10.2.4) that the linearly divergent
term arising from the integration of Θµν involves vµ and ȧµ in exactly the
same way as the second term of (10.69) does. Hence, the cubic and linear
divergences are eliminated through the respective renormalization of µ0 and
ν0. This suggests that ultraviole t divergences can be tamed if the particle
action is curvature dependent.

A direct procedure for finding the equation of motion for a dressed charged
particle would be to regularize Fµν , evaluate divergent integrals and segregate
from them finite terms. For D + 1 = 6, this can be accomplished similarly to
what was done for D + 1 = 4 in Sect. 6.5 (see Problem 10.2.5). However, we
take another route. We first determine the radiation rate, and then make use
of the fact that the equation of motion for a dressed particle should involve
the projector

v

⊥ . Recall that
v

⊥ results from reparametrization invariance in



10.2 Different Dimensions 379

the Lagrangian formalism. The virtue of this procedure is that it is indepen-
dent of a particular regularization prescription because the radiation rate is
represented by a convergent integral.

Let us calculate the radiation rate. The radiation flux through a four-
dimensional sphere enclosing the source is constant for any radius of the
sphere. Therefore, the terms of Θµν responsible for this flux should scale
as ρ−4. It is seen from (10.66) and (10.67) that only −cµcν V 2 contains such
terms. We segregate in (10.64) the term scaling as ρ−2,

bµ =
e

3

[
ȧµ

ρ2
− 3

λ+ 1
ρ3

aµ + 3
(
λ+ 1
ρ2

)2

vµ − (ȧ · c) vµ

ρ2

]
. (10.70)

One can verify (Problem 10.2.6) that the tensor b2cµcν meets conditions
(6.87), (6.88), (6.90), and (6.91). It is therefore natural to identify this tensor
with the radiation: b2cµcν = Θµν

II .
The radiated six-momentum is defined by

Pµ =
∫

Σ

dσν Θ
µν
II . (10.71)

Since ∂νb
2cνcµ = 0, the surface of integration Σ in (10.71) may be chosen

arbitrarily. It is convenient to deform Σ to a tubular surface Tε of small radius
ε enclosing the world line, much as was done for the radiated four-momentum
in Sect. 6.3. The surface element on this five-dimensional tube is

dσµ = ∂µρ ρ4 dΩ4 ds = (vµ + λcµ) ε4 dΩ4 ds . (10.72)

The integral

Pµ =
∫

Tε

dσν b
2cνcµ (10.73)

becomes

−e
2

9

∫
dτ

∫
dΩ4

{[
(

v

⊥ ȧ)2 + 9(a · u)2a2 + 9(a · u)4 + (ȧ · u)2
]
vµ

−
[
3
da2

ds
(a · u) + 6(a · u)2(ȧ · u)

]
uµ

}
. (10.74)

To make the solid angle integration, we use the following formulas
∫
dΩ4 uµuν = −Ω4

5
v

⊥µν , (10.75)

∫
dΩ4 uαuβuµuν =

Ω4

5 · 7
( v

⊥µν

v

⊥αβ +
v

⊥αµ

v

⊥ βν +
v

⊥αν

v

⊥ βµ

)
, (10.76)

which are readily derived. As a result we find
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Pµ =
e2

9

∫ s

−∞
dτ

{
−4

5

[
ȧ2 − 16

7
(a2)2

]
vµ − 3

7
da2

ds
aµ +

6
5 · 7 a

2(
v

⊥ ȧ)µ

}
.

(10.77)
Therefore, the radiation rate is given by

Ṗµ =
e2

9

{
−4

5

[
ȧ2 − 16

7
(a2)2

]
vµ − 3

7
da2

ds
aµ +

6
5 · 7 a

2(
v

⊥ ȧ)µ

}
. (10.78)

It is easy to verify that

v · Ṗ = −4e2

45

[
ȧ2 − 16

7
(a2)2

]
> 0 . (10.79)

This inequality shows that P0 represents positive field energy flowing outward
from the source.

The bound six-momentum contains both divergent and finite terms. Sim-
ilar to Pµ, the finite term pµ

f is free of dimensional parameters other than
the overall factor e2. The appropriate dimension is obtained from kinematical
variables:

pµ
f = c1 ä

µ + c2 a
2aµ + c3

da2

ds
vµ , (10.80)

where c1, c2, and c3 are numerical coefficients. Let us suppose that the equa-
tion of motion for a dressed particle involves the projector

v

⊥ . Then

vµ

(
ṗµ

f + Ṗµ
)

= 0 . (10.81)

With the identities

(a · v) = 0, (ȧ · v) = −a2, (ä · v) = −3
2
da2

ds
, (

...
a · v) = −2

d2a2

ds2
+ ȧ2 ,

(10.82)
this gives

pµ
f =

4
45
e2
[
äµ +

16
7
a2 aµ + 2

da2

ds
vµ

]
. (10.83)

To find the divergent term, it is most convenient to perform the integration
of Θµν over the surface of the future light cone. Recall, however, that the
kinematic structure of the divergent six-momentum is similar to that of the
bare particle six-momentum (10.69). Therefore, it is sufficient to renormalize
µ0 and ν0 to get the combined quantity

pµ = µvµ + ν (2ȧµ + 3a2 vµ) +
4
45
e2
[
äµ +

16
7
a2aµ + 2vµ da

2

ds

]
. (10.84)

The six-momentum ℘µ extracted from an external field Fµν
0 is found by

integrating the mixed term of the stress-energy tensor Θµν
mix over a tube Tε of

small radius ε enclosing the world line. This procedure resembles that in the
four-dimensional case. So, referring to Sect. 6.3, we give the net result
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℘µ =
∫

Tε

dσν Θ
µν
mix = −

∫ s

−∞
dτ eFµν

0 vν . (10.85)

As before, ℘̇µ is the negative external Lorentz force, ℘̇µ = −fµ = −eFµν
0 vν .

By analogy with D+ 1 = 4, we write the local energy-momentum balance
as

ṗµ + Ṗµ + ℘̇µ = 0 . (10.86)

Substituting (10.84), (10.78), and (10.85) in (10.86), we arrive at the equation
of motion for a dressed charged particle

v

⊥( ṗ− f) = 0 , (10.87)

where

pµ = µvµ + ν (2ȧµ + 3a2vµ) +
1
9
e2
[
4
5
äµ + 2a2aµ +

da2

ds
vµ

]
(10.88)

is the six-momentum of the dressed particle. Writing out this equation explic-
itly is left to the reader as an exercise.

It is clear from (10.88) that neither M2 = p2 nor m = p · v is a constant of
motion. None of the scalars built from pµ and derivatives of vµ is conserved.
Thus, a dressed particle living in a six-dimensional world has nothing which
might be called its ‘mass’.

Another surprising result is the occurrence of two different momenta pµ

and pµ. Each is treated as the energy-momentum of the dressed particle in a
particular context. If we take the balance equation (10.86), then the dressed
particle is specified by pµ shown in (10.84). On the other hand, if we invoke
Newton’s second law (10.87), then the dressed particle should be assigned pµ

given by (10.88).

Problem 10.2.1. Justify (10.59) in a heuristic way.

Hint This two-particle problem can be translated into the problem of motion
of two parallel plates of a planar immense capacitor. There is only an electric
field E between the plates, which is constant for any separation and velocity
of the plates.

Problem 10.2.2. Compare the equation of motion for a dressed particle
in a genuine two-dimensional realm, (10.54), and that for the case that the
particle is moving along a straight line in the ambient space, (6.180). Explain
the discrepancy between these results.

Problem 10.2.3. Three-particle problem. Classify all possible types of evo-
lution in terms of finite and infinite motions for various charges and different
relative positions of three particles on a straight line. Consider an instanta-
neously comoving frame for particle 1, and show that this particle is affected
by the force
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f1 = e1

3∑
J=2

eJ sgn (x1 − xJ) . (10.89)

Can this particle be free despite the fact that all particles are charged? Verify
that every particle moves along a piecewise smooth world line with constant
curvature.

Problem 10.2.4. What are the dimensions of the divergent quantities e2/ε3

and e2/ε appearing in the six-momentum Pµ. Reasoning from dimensional
considerations, conclude that divergent terms of Pµ are

C1
e2

ε3
vµ, and C2

e2

ε
(ȧµ + k a2vµ) , (10.90)

where C1, C2, and k are pure numbers. Assuming that the equation of motion
for a dressed particle is orthogonal to vµ, verify that k = 3

2 . Show that C1e
2/ε3

and C2e
2/ε can be absorbed into a redefinition of µ0 and ν0.

Problem 10.2.5. Using the Dirac regularization procedure discussed in
Sect. 6.5, find Fµν

(−)(z) and Fµν
(+)(z) with the help of the relation Dret(R) =

1
2π2 θ(R0) δ ′(R2), and derive the equation of motion for a dressed charged
particle.

Answer

µaµ + ν

[
2äµ + 3a2aµ + 3

da2

ds
vµ

]
+ Γµ = fµ , (10.91)

Γµ =
e2

9

{
4
5

...
a

µ + 2a2ȧµ + 3
da2

ds
aµ +

[
8
5
d2a2

ds2
+ 2(a2)2 − 4

5
ȧ2

]
vµ

}
.

(10.92)
Problem 10.2.6. Show that b2cµcν obeys (6.87)–(6.91), where bµ is defined
in (10.70).

Problem 10.2.7. Show that Pµ is given by (10.74).

Problem 10.2.8. Prove (10.75) and (10.76).

Problem 10.2.9. Prove (10.77).

Problem 10.2.10. Prove (10.79).

Hint Use the inequality (
v

⊥ ȧ)2 = ȧ2 − (a2)2 < 0.

Problem 10.2.11. Electrodynamics in D + 1 = 3 dimensions. The Larmor
action can be augmented by the addition of the Chern–Simons term:

S = − 1
8πe

∫
d3x

(
FαβF

αβ − µ εαβγAαFβγ

)
. (10.93)
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Here, e and µ are parameters with respective dimensions − 1
2 and −1. Check

that this action is gauge invariant but not invariant under spacetime reflec-
tions.

This system is governed by the Euler–Lagrange equations

∂αF
αβ + µ ∗F β = 0 , (10.94)

where ∗Fα = 1
2 ε

αβγFβγ , together with the Bianchi identity

∂β
∗F β = 0 . (10.95)

Show that µ may be interpreted as the mass of the field Aα.

Hint Put (10.94) in the form

Λαβ(µ) ∗Fβ = (µ ηαβ + εαβγ∂γ) ∗Fβ = 0 , (10.96)

then act upon it with Λ(−µ), and use (10.95) to give

(� + µ2) ∗Fα = 0 . (10.97)

Hence Aα is massive, even though it is a gauge field. This is in sharp contrast
to the Proca field which is not gauge invariant (see Problem 5.5.9).

Problem 10.2.12. Yang–Mills theory in D + 1 = 3 dimensions. The Yang–
Mills action can be augmented by the addition of the non-Abelian Chern–
Simons term:

S = − 1
8πg

tr
∫
d3x

[
FαβF

αβ − µ εαβγAα

(
Fβγ − 2

3
AβAγ

)]
. (10.98)

Check gauge invariance. Show that µ is the mass of the field Aα.

10.3 Is the Dimension D = 3 Indeed Distinguished?

In 1918 Weyl pointed out that Maxwell’s equations are conformally invariant
only for spatial dimension D = 3. This property is shared by the Yang–Mills
equations in pure Yang–Mills theory. This may be regarded as a hint that the
D = 3 is singled out.

Another way of looking at this issue was proposed by Paul Ehrenfest in
1917. He raised the question: in what way does it become manifest in the
fundamental laws of physics that space has three dimensions? In searching for
an answer, he examined imaginary (D+1)-dimensional worlds assuming that
the laws of mechanics and electrodynamics are encoded into the conventional
action

S = −
N∑

I=1

∫
dτI

[
mI

0

√
żI · żI + eI ż

µ
I Aµ(zI)

]
− 1

4ΩD−1

∫
dD+1xFµνF

µν .

(10.99)
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Ehrenfest claimed that the value D = 3 establishes a line of demarcation
between worlds where stable bound systems (such as a hydrogen atom) can-
not exist from those where such systems are possible. His argument can be
summarized as follows.

Consider a system of two particles with charges Ze and −e. Evidently
the force law for these particles will vary with D. Ehrenfest supposed that
the two-particle problem can be reduced to a one-particle Kepler problem. It
was shown in Sect. 2.8 that the qualitative analysis of the Kepler problem is
greatly facilitated if we introduce the effective potential

U(r) =

√
m2 +

L2

r2
− U(r) . (10.100)

Here, U(r) is the potential energy between these particles, U(r) = eφ(x), and
φ(x) obeys the D-dimensional Poisson equation

∇2φ(x) = −ΩD−1 Ze δ
D(x) . (10.101)

With reference to Sect. 4.1, specifically to Problem 4.1.1, we write

φ(x) = −Ze
{

sgn(2 −D)|x|2−D D �= 2 ,
log |x| D = 2 .

(10.102)

For D > 3, the potential energy eφ(x) is more singular than the centrifugal
term |L|/r, and falling to the center (or, alternatively, going to infinity) is
unavoidable. By contrast, for D = 3 and Ze2 ≤ |L|, the potential energy is
less singular than the centrifugal term, which prevents falling to the center,
so that stable orbits are possible.

Of course, this inference is made using an oversimplified model with the
instantaneous electrostatic interaction (10.102). If radiation of the planetary
electron were taken into account, then this electron would fall to the nucleus
even in the case D = 3. Ehrenfest invoked the Bohr quantization scheme
in the hope that hydrogen atom is stable in real space due to its quantum
nature. The general idea is then clear: since the electromagnetic attraction
increases with D while the centrifugal effect is unchanged (on both classical
and quantum levels), there is a critical dimension Dc above which planetary
systems collapse. Ehrenfest believed that Dc = 3.

The pitfall in this reasoning is that the action (10.99) is inconsistent for
D = 4, 5, . . . because divergences of the self-energy proliferate with D.

If we require that the electromagnetic sector of the action (10.99) is pre-
served for every D, and that all divergences of the self-energy are absorbed by
redefining parameters which occur in the action, then the particle sector must
be supplemented by terms with higher derivatives. For example, for the case
D = 5 (discussed in Subsect. 10.2.2), acceleration-dependent terms are re-
quired. However, the two-particle problem in this rigid dynamics is no longer
Keplerian. Further, the introduction of higher derivatives typically renders
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mechanical systems unstable when coupled to a continuum force field. So we
see that the problem with higher dimensions is not the stability of atoms –
as Ehrenfest imagined – but rather the stability of the universe. It it worth
noting that this conclusion – that charged particles in higher dimensions re-
quire the inclusion of unacceptable higher derivative terms in the action – is
confirmed by local quantum field theory, although the analysis would take us
far beyond the scope of this classical treatment.

10.4 Nonlinear Electrodynamics

A major assumption underlying Maxwell’s electrodynamics is the superpo-
sition principle. One may wonder whether the equations of motion for the
electromagnetic field are linear in the strict sense or if this is merely a good
approximation for the phenomena we have so far been able to observe.

We now extend the previous framework for description of the electromag-
netic field by discarding linearity but retaining locality and the absence of
magnetic monopoles. We thus proceed from the Lagrangian L which depends
on the field strength expressed in terms of a single-valued smooth vector po-
tential,

Fµν = ∂µAν − ∂νAµ . (10.103)

Leaving aside higher-derivative theories, we limit our discussion to Lagrangians
which are functions of the invariants S and P.

The best known nonlinear theory of this type was proposed by Max Born
and Leopold Infeld in 1934. It is characterized by the Lagrangian

LBI = b2

(
1 −

√
1 +

1
b2

S − 1
4b4

P2

)
, (10.104)

which is an elaboration of the original Born theory

LB = b2
(
1 −

√
1 + b−2 S

)
. (10.105)

Here, Heaviside units are adopted; b is a constant having dimension −2.
For weak fields, LB approaches − 1

2 S which is the Larmor Lagrangian of
Maxwell’s electrodynamics4. The Born Lagrangian (10.105) was motivated
by the so-called ‘principle of finiteness’ by which a satisfactory theory should
avoid divergences in physical quantities. Born came to LB following the pas-
sage from the Lagrangian of a free Newtonian particle to the corresponding
relativistic expression,

L =
1
2
mv2 → m

(
1 −

√
1 − v2

)
. (10.106)

4 Note that the factor of 1/4π is not present in Heaviside units.
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Here, 1 is the upper bound for particle velocities. No particle can be acceler-
ated past the barrier v2 = 1, otherwise L would be imaginary. Similarly, b in
(10.105) is regarded as the maximal electric field. Electric fields larger than b
would render all physical quantities derivable from LB complex-valued, and
no physical significance could be attached to them.

Suppressing all powers of b, write (10.104) in vector notation:

LBI = 1 −
√

1 + B2 − E2 − (E · B)2 . (10.107)

Born and Infeld wanted a theory which is distinguished by invariance under
general spacetime diffeomorphisms x′µ = fµ(x). To this end, they modified
the Lagrangian to

LBI =
√

−det (gµν) −
√

−det (gµν + Fµν) , (10.108)

which can be shown (Problem 10.4.2) to be identical to (10.107) in Cartesian
coordinates. In fact, this reasoning is deceptive because every function of S
and/or P can be arranged to give a diffeomorphism invariant action of the
type (5.116).

We now turn to a general nonlinear electrodynamics with Lagrangian
L (S,P). We do not follow the historical tradition of viewing particles as soli-
ton solutions of the nonlinear field equations, but instead add explicit particle
terms to the action

S = −
∫
ds
(
m0

√
v · v + eAµż

µ
)

+
∫
d4xL (S,P) . (10.109)

We assume that L (S,P) reduces to − 1
2 S in the weak field limit.

Let us define the excitation 2-form E = 1
2 Eµν dx

µ ∧ dxν with components

Eµν =
∂L
∂Fµν

. (10.110)

By differentiation with respect to an antisymmetric tensor we mean the con-
ventional partial differentiation with respect to its independent components.
As with symmetric tensors, we may use the rule

∂Fαβ

∂Fµν
= δα

µ δ
β
ν − δα

ν δ
β
µ . (10.111)

The Euler–Lagrange equations stemming from (10.109) are

m0a
µ = evνF

µν , (10.112)

∂µE
µν = −jν , (10.113)

jµ(x) = e

∫ ∞

−∞
ds vµ(s) δ4 [x− z(s)] . (10.114)
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They should be augmented by the addition of the Bianchi identity

∂µ
∗Fµν = 0 , (10.115)

which is merely a restatement of (10.103), and the constitutive equations

Eµν = Eµν(F ) , (10.116)

following from (10.110). The constitutive equations of Maxwell’s electro-
dynamics are linear, Eµν = −Fµν . In the general case, however, equation
(10.110),

Eµν = 2
(
∂L
∂S Fµν +

∂L
∂P

∗Fµν

)
, (10.117)

need not be linear in Fµν . Hence the name nonlinear electrodynamics. For ex-
ample, (10.107) implies (Problem 10.4.3) the following constitutive equations

Eµν =
−1√

1 + S − 1
4 P2

(
Fµν − P

2
∗Fµν

)
. (10.118)

The inverse of (10.118) is

Fµν =
−1√

1 −Σ − 1
4 Π

2

(
Eµν +

Π

2
∗Eµν

)
, (10.119)

where
Σ =

1
2
Eµν E

µν , Π =
1
2

∗Eµν E
µν . (10.120)

Equations (10.112)–(10.116) form a complete set of equations of a general
nonlinear electrodynamics. It is clear from (10.113) and (10.112) that a point
charge generates Eµν but evokes response through Fµν . The action–reaction
principle is distorted.

Just as Fµν is associated with the electric field intensity E and the mag-
netic induction B, so Eµν can be related to the electric displacement D and
the magnetic field intensity H. Equations (10.113)–(10.116) expressed in terms
of E,B, and D,H(F0i = Ei, Fij = −εijkBk, Ei0 = Di, Eij = εijkHk),

∇× H =
∂D
∂t

+ j, ∇ · D = ! , (10.121)

∇× E = −∂B
∂t
, ∇ · B = 0 , (10.122)

D = D(E,B), H = H(E,B) , (10.123)

resemble the equations of electromagnetic field in macroscopic media. It is as if
the vacuum were a dispersive medium. From the mathematical point of view,
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we are dealing with a system of first order partial differential equations, linear
in derivatives, with coefficients which depend only on unknown variables.

A remarkable fact is that, of all nonlinear versions of electrodynamics
with a reasonable weak field limit, only the Born–Infeld theory describes sig-
nal propagation without shock waves. We will accept this statement without
proof.

It is an easy matter to verify (Problem 10.4.4) that the symmetric stress-
energy tensor of electromagnetic field corresponding to an arbitrary La-
grangian L (S,P) is given by

Θµν = −Fµ
αE

αν − ηµνL . (10.124)

One can show (Problem 10.4.5) that Θµν obeys

∂νΘ
µν = −Fµνjν . (10.125)

Thus, in a region free of electric charges,

∂νΘ
µν = 0 . (10.126)

Applying (10.117) to (10.124) gives

Θµ
µ = 4 (LS S + LP P) − 4L , (10.127)

where LS = ∂L/∂S and LP = ∂L/∂P. The question now arises: what should
L be to make Θµ

µ = 0? Denoting l = lnL, s = lnS, p = lnP, we can bring
this equation to the form

ls + lp = 1 . (10.128)

Integrating this is easy,

l =
1
2

(s+ p) + u(s− p) , (10.129)

where u is an arbitrary function. Expressing this in terms of L, S and P we
have

L =
√
SP U

(
S
P

)
, (10.130)

where U is an arbitrary differentiable function. For U = − 1
2

√
S/P, we come

to the Larmor Lagrangian L = − 1
2 S. So Maxwell’s electrodynamics is con-

formally invariant. However, note that LBI is outside the class of functions
covered by (10.130).

The next important issue is the electric-magnetic duality. We know that
Maxwell’s equations without sources are invariant under duality transforma-
tion (5.217). Is it possible to extend this symmetry to nonlinear modifications
of Maxwell’s theory? Put jµ = 0. Then (10.113) and (10.115) are invariant
under the SO(2) field rotation
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E′ = E cos θ + ∗F sin θ, ∗F ′ = ∗F cos θ − E sin θ . (10.131)

This is the desired generalization of (5.217). One may find it more illuminating
to show that (10.121) and (10.122) are invariant under the U(1) transforma-
tion

E′ + iH′ = eiθ (E + iH), D′ + iB′ = eiθ (D + iB) . (10.132)

Unlike the equations of motion (10.113) and (10.115), the constitutive
equations are in general devoid of this invariance. The criterion for duality
invariance (Problem 10.4.6) is

∗Eµν E
µν = ∗Fµν F

µν . (10.133)

Using (10.118), it is easy to check that LBI meets this criterion, hence the
Born–Infeld theory is duality invariant.

One may think of (10.133) as a differential equation with L as the unknown
function,

4
(
L2
S − L2

P
)
P − 8LS LP S − P = 0 . (10.134)

The Larmor and Born–Infeld Lagrangians obey this equation. The general
solution to (10.134) contains an arbitrary function of one variable, but the
physical meaning of such Lagrangians remains a mystery.

We now take a closer look at the static case. The second equation (10.121)
becomes

∇ · D(r) = e δ3(r) . (10.135)

To be specific, let us turn to the Born–Infeld theory. The constitutive equa-
tions (10.118) and (10.119) read

E =
D√

1 + b−2D2
, D =

E√
1 − b−2E2

, (10.136)

where the parameter b has been restored.
The Poisson equation (10.135) is obeyed by the usual Coulomb solution

D(r) =
e

4πr2
n , (10.137)

which is singular at r = 0. However, the field strength E derived from (10.137)
with the help of (10.136) is regular,

E(r) =
e

4π
√
r4 + �4

n . (10.138)

Here, � is a characteristic length related to the critical field b as

b =
e

4π�2
. (10.139)
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E

r

Fig. 10.4. Static solution of the Born–Infeld theory

At large r, E(r) approaches the Coulomb field. Note also that E(r) → D(r)
as �→ 0. The behavior of the solution (10.138) is shown in Fig. 10.4.

The energy density is obtained from (10.124):

Θ00 = −F0iE0i − L = E · D − L . (10.140)

By (10.105) and (10.138),

Θ00 = b2
(√

1 − b−2E2 − 1
)

+ E · D = b2
(√

1 + b−2D2 − 1
)
. (10.141)

Using (10.137) in (10.141), shows that Θ00 ∼ 1/r2 near r = 0, but this
singularity is integrable, and we see that the self-energy is finite,

δm =
∫
d3xΘ00 =

e2

4π�

∫ ∞

0

dy
(√

1 + y4 − y2
)
. (10.142)

Consider the stability of a point charge in Born-Infeld electrodynamics.
The self-force acting within an infinitesimal solid angle dΩ is

df = dΩ eE(r)|r=0 = dΩ
e2

4π�2
n . (10.143)

This is balanced by the self-force opposite in direction. Hence, the net effect
is zero. One can then explain the stability of a point charge in the Maxwell–
Lorentz theory taking (10.143) as a regularized expression for the self-force,
integrating this force over solid angle, and taking the limit � = 0.

The solution (10.138) for a charge at rest can be readily generalized for a
moving charge by a Lorentz boost (Problem 10.4.8). However, solutions for an
arbitrarily moving charge, similar to the retarded Liénard–Wiechert solution
of Maxwell’s electrodynamics, are unknown.

Problem 10.4.1. Show that

det (Fαβ) =
1
4
P2 . (10.144)
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Hint Use the result of Problem 1.3.7.

Problem 10.4.2. Show that (10.108) is identical to (10.104) for gµν = ηµν .

Hint First, verify that det (gαβ + Fαβ) = det (gαβ − Fαβ), which implies that
only terms even in F contribute to this determinant. Second, write F =
F01 dx

1 ∧ dx2 + F23 dx
2 ∧ dx3, so that S = F 2

23 − F 2
01. Third, work out ∆ =

det (ηµν + Fµν):

∆ = εαβγδ (ηα0 + Fα0)(ηβ1 + Fβ1)(ηγ2 + Fγ2)(ηδ3 + Fδ3)
= det (ηµν) + F 2

01 − F 2
23 + det (Fµν) . (10.145)

Finally, use the result of Problem 10.4.1.

Problem 10.4.3. Derive (10.118) and (10.119).

Problem 10.4.4. Verify (10.124).

Hint Write
S =

∫
d4x

√
−gL(S,P) , (10.146)

S =
1
2
gµαgνβFµνFαβ , P =

1
2
√−g ε

µναβFµνFαβ , (10.147)

use the relations

δgµν = −δgαβgµα gνβ , δg = −g gµν δg
µν , (10.148)

and take into account (10.117) and (2.96).

Problem 10.4.5. Using (10.113) and (10.115), prove (10.125).

Proof

∂νΘ
µν = −Eαν∂νF

µ
α − Fµ

α ∂νE
αν − ∂µL

= −Eαν∂
νFµα − Fµαjα − 1

2
∂L
∂Fαν

∂µFαν

= −1
2
Eαν (∂νFµα + ∂αF νµ + ∂µFαν) − Fµαjα = −Fµαjα .

(10.149)

Problem 10.4.6. Prove that (10.133) is the condition for duality invariance
of the constitutive equations (10.116).

Proof Write (10.131) in the infinitesimal form

δF = θ ∗E, δE = θ ∗F . (10.150)

Using (10.110) and the expression for δF ,
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δEµν = δFστ
∂

∂Fστ

∂L
∂Fµν

= θ ∗Eστ
∂2L

∂Fστ∂Fµν
=
θ

2
εσταβ

∂L
∂Fαβ

∂2L
∂Fστ∂Fµν

=
θ

4
εσταβ

∂

∂Fµν

(
∂L
∂Fαβ

∂L
∂Fστ

)
=
θ

4
εσταβ

∂

∂Fµν

(
Eαβ Eστ

)
. (10.151)

On the other hand,

δEµν = θ ∗Fµν =
θ

2
εµναβ F

αβ . (10.152)

Comparing (10.151) and (10.152), we find the equation

∂

∂Fµν

(
1
2
εσταβ E

αβ Eστ

)
= εµναβ F

αβ , (10.153)

whose solution is

∗Eαβ E
αβ =

1
2
εµναβ F

αβ Fµν = ∗Fµν F
µν . (10.154)

Problem 10.4.7. Define

σ = S, π =
√

S2 + P2 , (10.155)

then (10.134) becomes
L2

σ − L2
π = 1 . (10.156)

Solve this equation.

Problem 10.4.8. Generalize the static solution (10.138) to the case that the
charge e is moving along a straight line with a constant velocity V .

Hint Apart from (10.119) and (10.120), use

Rµ = ρ (vµ + uµ) = r (1,n) ,
ρ = R · v = γ r (1 − n · V) ,

Eµν =
e

4πρ2
(vµuν − vνuµ) ,

vµ = γ (1,V), uµ =
Rµ

ρ
− vµ =

(1,n)
γ (1 − n · V)

− γ (1,V) ,

Di = Ei0 = E0i, Hk =
1
2
εklmElm, ε0ijk = εijk . (10.157)
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10.5 Nonlocal Interactions

Maxwell–Lorentz electrodynamics

S = −m0

∫
ds

√
ż · ż −

∫
d4x

(
Aµj

µ +
1

16π
FµνFµν

)
, (10.158)

jµ(x) = e

∫ ∞

−∞
ds vµ(s) δ4 [x− z(s)] (10.159)

is a simple example of how local interactions are arranged. It is well known
that this theory suffers from infinite self-energy, and the same is true of most
local field theories.

Early attempts to remedy the situation were to replace the interaction
term by ∫

d4x

∫
d4y Aµ(x)F (x− y) jµ(y) , (10.160)

where the form factor F is a smooth function of (x − y)2 which looks like a
sharp pulse normalized to unit area, as, for instance,

F (x− y) = F0 exp

{
−
[
(x− y)2

�2

]2
}
. (10.161)

Interaction (10.160) can be interpreted in either of two ways. First, we may
regard Aµ as a local field coupled locally to the smeared, or effective source

jµ(y) =
∫
d4xF (x− y) jµ(x) . (10.162)

Under this interpretation one pictures the charge as if it were distributed over
a region of size �. Second, we may imagine that a point charge forming the
current (10.159) interacts with a nonlocal field

Aµ(x) =
∫
d4y F (x− y)Aµ(y) . (10.163)

A central problem of the form factor theory (10.160) is causality violation.
We might attempt to limit this by assuming the support of F (x−y) is compact,
and its characteristic size � is small5, keeping in mind that causality must
be regained for macroscopic distances. However, this leads to problems with
Lorentz invariance.
5 The smallest length constructed from constants of nature (the velocity of light

c, Planck’s constant �, and Newton’s constant G) is the Planck length lP =
(�G/c3)1/2 = 1.6× 10−33 cm. In regions of size ∼lP, quantum fluctuations of the
metric become significant, and the usual relations between cause and effect may
not apply. However, this topic is beyond the scope of the present discussion.



394 10 Generalizations

If we would require the form factor to be a function of (x − y)2, then
this would conflict with compactness. The invariant region where noncausal
phenomena are confined

(x− y)2 < �2 (10.164)

is noncompact. Indeed, near the light cone (x− y)2 = 0, the extension of this
region in space is arbitrarily large.

Let qµ be a unit vector. Introducing a positive definite quadratic form

d(x, y) = [q · (x− y)]2 − (x− y)2 , (10.165)

and assuming F to be a function of d(x, y), enables us to limit causality
violation to a compact, invariant region: d(x, y) ≤ �2. The vector qµ may be
interpreted as the four-velocity of some particle vµ. However, in the absence of
particles, we are forced to use a fixed unit vector qµ, which would distinguish
a privileged frame of reference, and violate explicit Lorentz invariance. Of
course, one may regard qµ as an auxiliary unit vector, and average F over
directions of qµ, but this procedure is rather arbitrary.

Another line of attack is due to Garǐı Efimov. Consider form factors ob-
tained by acting an entire function of the d’Alembertian on the Dirac delta-
function

F (x− y) = K(�) δ4(x− y) =
∞∑

n=0

cn�nδ4(x− y) . (10.166)

The relativistic invariance of F (x−y) is apparent: δ4(x−y) is invariant under
Poincaré transformations, and � δ4(x−y) shares this property (see Appendix
F). With the Fourier transform

F (x) =
1

(2π)4

∫
d4x e−ik·x F̃ (k) , (10.167)

(10.166) becomes

F̃ (k) = K(−k2) =
∞∑

n=0

cnk
2n . (10.168)

The power series (10.168) represents an analytic function. The radius of con-
vergence of this series depends on cn. We will discuss only those power series
which are convergent in the whole complex k2-plane. In other words, K(−k2)
is assumed to be an entire function.

If the decrease of the coefficients cn is so steep that cn = 0 for n ≥ N ,
then K(−k2) is a polynomial. In this case we are dealing with an ordinary
higher-derivative Lagrangian. This suggests that if the coefficients cn decrease
too much rapidly (even though their sequence does not terminate), then the
interaction is not smeared out, but remains in in fact local. Such interactions
are called localizable. The line of demarcation between localizable and nonlocal
interactions separates entire functions K(−k2) into two classes:
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(L) lim
n→∞

n |cn|1/n = 0 ,

(N) lim
n→∞

n |cn|1/n = A . (10.169)

With reference to Appendix F, condition (L) can be shown to be equivalent
to the following bound of asymptotic growth of K(−k2) as k2 approaches
infinity in the complex plane:

(L) |K(−k2)| < C exp(ε
√

|k2|) , (10.170)

where ε is arbitrarily small. As for nonlocal interactions, we restrict our discus-
sion to the class of form factors K(−k2) satisfying the asymptotic condition

(N) |K(−k2)| < C exp(σ
√
|k2|) (10.171)

for some fixed, positive σ.
Let us modify (10.158) by introducing a form factor of the type (10.166):

S = −m0

∫
ds

√
ż · ż −

∫
d4x

(
AµK(�)jµ +

1
16π

FµνFµν

)
, (10.172)

where jµ is defined in (10.159).
Varying the world line, we obtain the equation of motion for a bare particle

m0a
λ = evµK(�)Fλµ . (10.173)

Varying the vector potential, we get the equation of motion for the electro-
magnetic field

∂µF
µν = 4πK(�)jν . (10.174)

Consider the static case6. Equation (10.174) becomes

∇2φ(r) = −4πK(−∇2) δ3(r) . (10.175)

We have to see whether it is possible to make the solution φ(r) more regular
than 1/r by acting K(−∇2) on δ3(r).

To maintain the link with the Maxwell–Lorentz theory, we impose the
condition

K(0) = 1 . (10.176)

Substituting

φ(r) =
1

(2π)3

∫
d3k eik·r φ̃(k) (10.177)

in (10.175) gives

6 To simplify writing, throughout this section the electric charge e is set equal to
unity.
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φ(r) =
1

(2π)3

∫
d3k eik·r 4πK(k2)

k2
=

2
πr

∫ ∞

0

dk
sin kr
k

K(k2)

=
1
πr

P
∫ ∞

−∞
dk

K(k2)
k

sin kr =
1
πr

Im
{∫ ∞

−∞
dk

[
1

k + iε
+ iπδ(k)

]
K(k2) eikr

}

=
1
πr

Im
[∫ ∞

−∞
dk

1
k + iε

K(k2) eikr

]
+

1
r
, (10.178)

where P stands for the Cauchy principal value. Note that we have used equa-
tion (F.42) of Appendix F, and condition (10.176).

Let K(k2) be an entire function obeying (10.170). For large R, we define

hR(r) =
1
π

∫ R

−R

dk
K(k2)
k + iε

eikr . (10.179)

By Cauchy’s theorem, integration over the real axis can be replaced by in-
tegration over a semicircle ΓR of radius R at the upper half-plane Im k > 0.
Letting k = Reiϑ,
∣∣∣
∫

ΓR

dk

k
K(k2) eikr

∣∣∣ ≤
∫

ΓR

∣∣∣dk
k
K(k2) eikr

∣∣∣ <
∫ π

0

dϑ exp(εR) exp(−rR sinϑ) ,

(10.180)
where we have taken into account (10.170), and

|eikr| = exp |iR (cosϑ+ i sinϑ)r| = exp(−rR sinϑ) . (10.181)

In the sector 0 < ϑ ≤ π/2, the following inequality is helpful,

sinϑ ≥ 2
π
ϑ . (10.182)

From which we conclude
∫ π

0

dϑ eεR e−rR sin ϑ = 2eεR

∫ π/2

0

dϑ e−rR sin ϑ < 2eεR

∫ π/2

δ

dϑ e−
2
π ϑrR

=
π

rR

[
e−R( 2

π rδ−ε) − e−R(r−ε)
]
. (10.183)

For finite r and ε < 2rδ/π, this expression vanishes in the limit R→ ∞.
To sum up, if K(k2) obeys (10.170), then hR(r) → 0, and the potential

(10.178) is just 1/r away from r = 0. We thus see that the singularity of
φ(r) remains unaffected by applying K(−∇2) to δ3(r), and, furthermore, the
self-energy problem is not solved (Problem 10.5.2).

We next consider nonlocal interactions. Suppose that

|K(R2e2ϑ)| ≤ C exp(�R sinϑ) as R→ ∞ . (10.184)
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Then

∣∣∣
∫

ΓR

dk

k
K(k2) eikr

∣∣∣ ≤ 2C
∫ π

2

0

dϑ eR sin ϑ(�−r) ≤ 2C
∫ π

2

0

dϑ e
2
π Rϑ(�−r)

=
πC

R(�− r)

[
eR(�−r) − 1

]
. (10.185)

For r > �, this expression vanishes in the limit R → ∞. But r < � is another
matter. Let us write the potential which obeys (10.175) in the form

φ(r) = θ(r)
α(r)
r

(10.186)

implying that the range of r is the real axis. Here, α is a differentiable function
satisfying two conditions:

α(s) = α0s+O(s3), s→ 0 , (10.187)

α(s) = 1, |s| ≥ � . (10.188)

We therefore have
α′(s) =

1
π

∫ ∞

−∞
dkK(k2) eiks , (10.189)

the prime being differentiation with respect to s, and the inverse relation

K(k2) =
1
2

∫ �

−�

dsα′(s) e−iks . (10.190)

This formula is convenient for constructing K(k2) with the two required prop-
erties (10.176) and (10.184). One can to show (Problem 10.5.1) that if α(s)
is a differentiable function obeying (10.187) and (10.188), then (10.190) rep-
resents an entire function K(k2) of order 1

2 with indicatrix H(ϑ) = � sinϑ,
which is square integrable and normalized to K(0) = 1.

As a simple example of functions K(k2) and α′(s), appearing in (10.189)
and (10.190), we could take

K(k2) =
sin (k�)
k�

, α′(s) =
{
�−1 |s| < � ,
0 |s| ≥ �.

(10.191)

The corresponding potential φ(r), shown in Fig. 10.5, is a truncated Coulomb
potential. A similar solution was found in Maxwell’s electrodynamics for a
charged sphere of radius � (Problem 3.3.1). However, this similarity is decep-
tive. If the form factor K(k2) is given by (10.190), then it is easy to verify
(Problem 10.5.4) that the self-force

df = dΩ

∫ ∞

0

dr r2!(r)E(r) (10.192)
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φ

r

Fig. 10.5. Static potential of a nonlocal electrodynamics

is zero. Hence field configurations are stable without resort to Poincaré cohe-
sive forces.

A further distinction between the charged sphere and smearing by the
form factor (10.191) is that external forces acting of the sphere can disturb its
shape and charge distribution, while the truncated potential in the nonlocal
theory is always the same.

The square integrability of K(k2) implies that the self-energy is finite:

δm =
∫
d3x

E2

8π
=

1
2π

∫ ∞

−∞
dkK2(k2) <∞ . (10.193)

Consider the general case that a charge is moving along an arbitrary world
line. To solve the field equation (10.174), we adopt the retarded boundary
condition, and impose Lorenz gauge. The solution is given by

Aµ(x) = − 4π
(2π)4

∫
d4k e−ik·x K(−k2)

k2 + 2ik0ε
̃µ(k) , (10.194)

where

̃µ(k) =
∫
d4x eik·x jµ(x) =

∫ ∞

−∞
dτ eik·z(τ) żµ(τ) . (10.195)

Looking at (10.184), we observe that K(−k2) grows exponentially when
k2 → ∞. This implies that the integral (10.194) fails to converge unless ̃µ(k)
falls off appropriately in timelike directions. One can demonstrate (Problem
10.5.7) the existence of world lines zµ(τ) for which

|̃µ(k)| < Ce−(�+δ)
√

k2
, k2 → ∞ , (10.196)

with δ being some positive constant, so that expression (10.194) proves well
defined.

Using K(−k2) given by (10.190), one would intuitively expect to get Aµ(x)
identical to the Liénard–Wiechert vector potential everywhere outside a thin
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tube of radius ∼� enclosing the world line (which implies that noncausal phe-
nomena are confined to the region bounded by this tube). A rigorous proof of
this statement is left to the careful reader.

The introduction ofK(�) exerts some effect on symmetries of the Maxwell–
Lorentz theory. The presence of the dimensional parameter � violates confor-
mal invariance. By contrast, gauge invariance is not affected. Indeed, gauge
transformations δAµ = ∂µχ leave the interaction term unchanged if the local
current is conserved ∂µj

µ = 0,

−
∫
d4x jµK(�) ∂µχ =

∫
d4x ∂µj

µK(�)χ = 0 . (10.197)

A subtle point is introducing nonlocality into non-Abelian gauge theories.
The lattice formulation of gauge theories, outlined in Sect. 7.3, amounts to
using the form factor

F (x) = δ(x0 − �0) δ(x1 − �1) δ(x2 − �2) δ(x3 − �3)

= exp
(
�0

∂

∂x0
+ �1

∂

∂x1
+ �2

∂

∂x2
+ �3

∂

∂x3

)
δ(x0) δ(x1) δ(x2) δ(x3) ,

(10.198)
whose Fourier transform is an entire function F̃ (k) = exp(i�µkµ). Thus, it is
possible to retain gauge invariance with nonlocality at the sacrifice of Poincaré
invariance.

Problem 10.5.1. Let K(k2) be an entire function of order 1
2 and type �.

Suppose that K(k2) is square integrable on the real axis K ∈ L2. Prove that
α′(s) defined in (10.189) is zero for r ≥ �. Conversely, let α(s) be a differen-
tiable function obeying (10.187) and (10.188). Prove that (10.190) represents
an entire function K(k2) of order 1

2 , which is square integrable on the real
axis, normalized to K(0) = 1, and whose indicatrix is H(ϑ) = l sinϑ. This
statement is known as the Paley–Wiener theorem.

Problem 10.5.2. Let K(k2) be an entire function, which is not identically
zero, and such that

lim
R→∞

ln |K(R2e2iϑ)|
R

= 0 . (10.199)

Prove that K(k2) cannot be square integrable on the real axis.

Proof Assume that K(k2) is square-integrable. By the Paley–Wiener theo-
rem, the Fourier transform of K(k2) vanishes almost everywhere outside the
interval (−ε, ε) for any ε. Hence K(k2) is equivalent to zero, contrary to the
initial assumption.

Problem 10.5.3. Consider an entire function K(k2) described by the Paley–
Wiener theorem. Show that
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K2(k2) =
1
2

∫ 2�

−2�

ds β′(s) e−iks , (10.200)

where β(s) is a function obeying (10.187) and (10.188) with the substitution
of 2� for �. It follows that any power of K(k2) is an entire function of order
1
2 . Express β(s) in terms of α(s).

Answer

β(r) =
1
2

∫ r

0

ds

∫ �

−�

dt α′(s− t)α′(t) . (10.201)

Problem 10.5.4. Show that the self-force (10.192) is zero for any form factor
K(k2) defined by (10.190). What is df for a charged sphere in Maxwell’s
electrodynamics?

Hint Substitute !(r) = δ(r)/4πr2 and E(r) = −K(−∇2)∇φ(r) = −n [β(r)/r]′

in (10.192), where β(r) is given by (10.201), and take into account that
β′′(r) = O(r) as r → 0. For a charged sphere, !(r) = δ(r − �)/4πr2,
E(r) = n/r2, and df = n dΩ/4π�2.

Problem 10.5.5. Derive (10.193).

Problem 10.5.6. Show that

δm =
1
2
β′(0) , (10.202)

where β′(r) is related to K2(k2) by (10.200).

Problem 10.5.7. What world lines zµ(s) ensure (10.196)?

Hint For k2 > 0, we choose a Lorentz frame in which kµ = (ω, 0, 0, 0), and
denote z0 = t. Then (10.195) becomes

̃µ(ω) =
∫ ∞

−∞
dt eiωt dz

µ

dt
. (10.203)

Observing that dzµ/dt = (1,v), we have ̃0(ω) = 2πδ(ω), and

j̃(ω) =
∫ ∞

−∞
dt eiωt v(t) . (10.204)

We write v = v+ + v− + vout with v±(t) = 1
2 [v(t) ± v(−t)]− 1

2 (vout ± vin),
and assume that v±(t+ is) are holomorphic in a strip

−∞ < t <∞, |s| < �+∆ , (10.205)

for some∆ > 0. We also assume that these functions are integrable everywhere
in this strip
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∫ ∞

−∞
dt |v±(t+ is)| < C (10.206)

(in fact, these assumptions are essential only for v+). Then it follows that

∣∣∣
∫ ∞

−∞
dt eiω(t+is) v±(t+ is)

∣∣∣ ≤ e−ωs

∫ ∞

−∞
dt |v±(t+ is)| , (10.207)

and hence |̃j(ω)| < Ce−|ω|(�+δ) for 0 < δ < ∆.
Thus, the desired world lines are smooth timelike curves, subject to the

conditions of analyticity in the strip (10.205) and integrability (10.206). Non-
Galilean regimes do not fulfil the asymptotic conditions aµ(s) → 0, s→ ±∞,
and are therefore excluded from this class of allowable world lines.

Problem 10.5.8. Consider world lines for which the acceleration and its
derivatives are small: �2|a2| � 1, �4|ȧ2| � 1, . . . Show that the equation of
motion for a dressed particle in nonlocal electrodynamics (10.172) is approx-
imated by the Lorentz–Dirac equation

maµ − 2
3
e2
(
ȧµ + a2vµ

)
= fµ , (10.208)

where m = m0 + δm, with δm being represented by (10.202), and fµ an
external force.

Hint Note that

1
k2 + ik0ε

= P
(

1
k2

)
− iπ sgn(k0) δ(k2) , (10.209)

where sgn(k0) = k0/|k0|, and

2iπ sgn(k0) δ(k2)K(k2) = 2iπ sgn(k0) δ(k2) = D̃(k) , (10.210)

and employ the procedure of Sect. 6.5.

10.6 Action at a Distance

In analyzing the energy-momentum content of the Maxwell–Lorentz theory

S = −
N∑

I=1

∫
dτI

[
mI

0

√
ż2

I + eI ż
µ
I Aµ(zI)

]
− 1

16π

∫
d4xFµνF

µν , (10.211)

we observed that the degrees of freedom appearing in (10.211) are rearranged
into dressed particles and radiation. However, the line of argument we took is
more cumbersome than that used for rearranging the Higgs model in which
one merely changes variables in the Lagrangian. This raises the question:
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is it possible to rearrange the Maxwell–Lorentz theory on the Lagrangian
level? When the procedure of Sects. 6.2 and 6.3 is reviewed, three obstacles
are immediately apparent. First, evaluating the invariant S for the Liénard–
Wiechert field

F = e
c ∧ V
ρ2

(10.212)

gives

S = − e
2

ρ4
, (10.213)

which shows that the last term of (10.211) has a nonintegrable singularity.
Substituting

Aµ = e
vµ

ρ
(10.214)

into the middlemost term leads to a further ultraviolet divergence. Second,
the retarded Liénard–Wiechert field due to a single charge F reveals an extra
SL(2,R) symmetry, which implies that radiation drops out of the problem.
Indeed, the long-range part of the field (10.212), which goes like ρ−1, makes no
contribution to (10.213). Third, the equation of motion for a dressed particle
is irreversible, which casts suspicion on the possibility to accomodate the
rearranged dynamics to the Lagrangian formalism.

However, the divergent terms can be assembled (Problem 10.6.1) into the
expression

− lim
ε→0

(
e2I
2ε

)∫
dsI . (10.215)

After mass renormalization this results in a particle term with a finite mass
mI .

To remove the second and third obstacles, one may try to abandon the
retarded field in favor of half-retarded and half-advanced fields. Since the
SL(2,R) symmetry of F is now spoiled, S would furnish information on the
radiation. Furthermore, the combination 1

2 (Aret +Aadv) is symmetric in time,
which gives promise that the rearranged dynamics still reflects the time re-
versal invariance of the original Lagrangian. Indeed, omitting the self-field
contribution, the Schwarzschild term of the action becomes either

−1
2

∑
I

eI

∫
dτI

∑
J(�=I)

[
A

(J)
ret (zI) +A

(J)
adv(zI)

]
· żI(τI) (10.216)

or
−1

2

∑
J

eJ

∫
dτJ

∑
I(�=J)

[
A

(I)
ret(zJ) +A

(I)
adv(zJ)

]
· żJ(τJ ) , (10.217)

where A(I)
ret(zJ ) and A(I)

adv(zJ ) are the retarded and advanced vector potentials
at zJ coming from the Ith world line. Expressions (10.216) and (10.217) are
symmetric both in I and J , and under interchange of past and future. This
would yield the action expressed in terms of particle variables.
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The net result, suggested by Fokker in 1929, reads

SF = −
∑

I

∫
dτI


mI

√
ż2

I +
1
2

∫
dτJ

∑
J(�=I)

eIeJ ż
µ
I (τI)żJ

µ(τJ ) δ
[
(zI − zJ)2

]

 .

(10.218)
This is the so-called action-at-a-distance theory, which also bears the name
of the direct particle theory. Owing to the delta-function, the typical points
zI and zJ on the Ith and Jth world lines can be thought of as ‘interacting’
if they are connected by a null interval (which is a relativistic generalization
of interactions by contact occurring at zero distance). Note that the Fokker
action involves retarded and advanced interactions on an equal footing. There
are no unconstrained field degrees of freedom. It is as if particle I were affected
by particle J directly, that is, without mediation of the electromagnetic field.
Wheeler and Feynman assumed that radiation is completely absorbed.

What is the precise formulation of this assumption? Recall that the re-
tarded vector potential in Maxwell–Lorentz theory can be decomposed into
two terms

Aµ
ret =

1
2

(Aµ
ret +Aµ

adv) +
1
2

(Aµ
ret −Aµ

adv) = Aµ
(+) +Aµ

(−) . (10.219)

The last term
Aµ

(−) =
1
2

(Aµ
ret −Aµ

adv) (10.220)

obeys the homogeneous wave equation

�Aµ
(−) = 0 . (10.221)

With zero initial data on a spacelike hyperplane Σ, Aµ
(−)|Σ = 0 and

(n · ∂)Aµ
(−)|Σ = 0, the solution to the Cauchy problem for the wave equa-

tion (10.221) is trivial
Aµ

(−)(x) = 0 . (10.222)

Another way of looking at Aµ
(−) is using the ‘Green’s function’

D(x) =
1
2

[Dret(x) −Dadv(x)] = sgn (x0) δ(x2) (10.223)

in
Aµ

(−)(x) = 4π
∫
d4y D(x− y) jµ(y) . (10.224)

Note that Aµ
(−)(x) obeys the homogeneous wave equation (even though the

source jµ is involved in this construction) because �xD(x− y) = 0.
Let Aµ

(−)(x) be the total field due to all charges in the universe. If Aµ
(−)(x)

vanishes at one time, then it is zero at all times. Wheeler and Feynman
adopted (10.222) as a supplementary constraint to the Fokker action, and



404 10 Generalizations

interpreted it as the condition of total absorption. Therefore this approach is
often referred to as the absorber theory of radiation.

Note, however, that (10.222) does not amount to the lack of radiation
in the sense of the definition (6.87)–(6.89). It will be shown below that the
radiation effect manifests itself in the local energy-momentum balance.

Let us turn to the dynamics underlying the Fokker action. The interactions
between particles are such that they simulate the field between them. The
vector potential and the field strength adjunct to particle I are determined by
the motion of that particle, and are given by half the retarded and half the
advanced solutions to Maxwell’s equations:

A(I)
µ (x) =

∫
d4y DP (x− y) j(I)

µ (y) , (10.225)

F
(I)
λµ = ∂λA

(I)
µ − ∂µA

(I)
λ , (10.226)

where
DP (x) =

1
2
[
Dret(x) +Dadv(x)

]
= δ(x2) , (10.227)

and
j(I)
µ (x) = eI

∫
dτI ż

I
µ(τI) δ4 [x− zI(τI)] . (10.228)

These quantities identically satisfy the wave equation and the Lorenz gauge
condition:

�A(I)
µ = 4π j(I)

µ , (10.229)

∂µA(I)
µ = 0 . (10.230)

Rewrite (10.225) in the form

A(I)
µ (x) = eI

∫
dτI ż

I
µ(τI) δ

[
(x− zI)2

]
, (10.231)

and express the action (10.218) in terms of A(I)
µ (x). Varying the Ith world

line, we have

δS =
∑

I

∫
dτI


mI

d

dτI

(
żI

λ√
żI · żI

)
− eI

∑
J(�=I)

(
∂A

(J)
µ

∂zλ
I

− ∂A
(J)
λ

∂zµ
I

)
żµ

I


 δzµ

I ,

(10.232)
and so

mIa
I
λ = eIv

µ
I

∑
J(�=I)

F
(J)
λµ . (10.233)

This equation differs in two respects from the equation of motion for a
bare charged particle, derivable from the action (10.211). First, mI is the
renormalized mass. Second, the Lorentz force exerted on particle I involves
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the symmetric combination (half-retarded plus half-advanced) of fields due to
all particles, except that for particle I itself:

1
2

∑
J(�=I)

[
F

(J)
ret (zI) + F

(J)
adv(zI)

]
. (10.234)

Going back to the question posed at the beginning of this section, we can
conclude that rearranging degrees of freedom on the Lagrangian level leads to
concepts quite different from dressed particles and radiation. To fill the gap
between the two results, we should invoke the Wheeler–Feynman condition
(10.222). Indeed, let us write the field (10.234) in the form

∑
J(�=I)

F
(J)
ret (zI) +

1
2

[
F

(I)
ret (zI) − F

(I)
adv(zI)

]
− 1

2

∑
J

[
F

(J)
ret (zI) − F

(J)
adv(zI)

]
,

(10.235)
where the last term is the sum over all particles. By (10.222),

∑
J

[
F

(J)
ret (zI) − F

(J)
adv(zI)

]
= 0 (10.236)

at every point on the world line of particle I. Therefore, (10.234) becomes

∑
J(�=I)

F
(J)
ret (zI) +

1
2

[
F

(I)
ret (zI) − F

(I)
adv(zI)

]
. (10.237)

The expression in the square bracket is elaborated further (as in Sect. 6.5) to
give the Abraham term Γµ, and we come to the Lorentz–Dirac equation

mIa
I
λ − 2

3
e2I
(
ȧI

λ + a2
Iv

I
λ

)
= eIv

µ
I

∑
J(�=I)

F
(J) ret
λµ (zI) . (10.238)

Thus, the dynamical equation (10.233) subject to the constraint (10.236) is
equivalent to the conventional equation of motion for a dressed particle in
the retarded field of all other particles. Furthermore, (10.238) represents local
energy-momentum balance (6.156),

ṗµ
I + Ṗµ

I + ℘̇µ
I = 0 , (10.239)

implying that radiation effects have been incorporated in the action-at-a-
distance theory.

Wheeler and Feynman assumed that the total matter in the universe be-
haves as a perfect absorber, and proposed (10.236) as a cosmological absorber
condition. If we keep track of particle I, then the radiation of this particle is
to be completely absorbed by other particles. The absorber exerts on particle
I a force which is the sum of retarded forces due to other particles, and en-
dows it with the four-momentum pµ

I = mIv
µ − 2

3 e
2
Ia

µ
I . Recall that any point
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object with such a four-momentum becomes a tachyon if the magnitude of
its four-acceleration exceeds 3mI/2e2I . To avoid tachyonic states, we should
require that the curvature of world lines be less than the critical curvature
3mI/2e2I .

A similar procedure can be readily developed for any linear theory to
convert it to a theory of direct interparticle action (see Problem 10.6.2).

Finally, we compare the symmetry properties of the Maxwell–Lorentz and
Wheeler–Feynman theories. It is clear that both are manifestly Poincaré and
reparametrization invariant. Of course, action-at-a-distance theories are not
gauge invariant because they lack gauge fields.

The field sector of the Maxwell–Lorentz theory is conformally invariant,
whereas the second term of the Fokker action (10.218) does not possess this
symmetry. Recall that this term owes its origin to eliminating field degrees
of freedom. This procedure requires gauge fixing. If we impose the Lorenz
condition (which is the only linear Lorentz invariant gauge condition), then
conformal invariance is lost. However, one can modify this term by replacing
the Minkowski metric ηµν with a conformal metric hµν(zI − zJ) such that the
index µ transforms like a vector at the point zI while the index ν transforms
like a vector at the point zJ . This restores conformal invariance (Problem
10.6.3).

But the most striking issue is time reversal. Rearranging degrees of free-
dom in the Maxwell–Lorentz theory leads to the Lorentz–Dirac equation which
is not invariant under the discrete operation s → −s. This suggests that
the rearranged dynamics as a whole is irreversible. By contrast, the equa-
tions of motion (10.233) are reversible, because the adjunct field combination
1
2 (Fret + Fadv) is symmetric in time. If we adopt the Wheeler–Feynman con-
dition (10.236), then (10.233) becomes (10.238), and, therefore, the action-at-
a-distance theory turns out to be irreversible.

Problem 10.6.1. Let the electromagnetic field in (10.211) be represented as
the Liénard–Wiechert solution. Prove that divergent terms can be assembled
into (10.215).

Problem 10.6.2. Consider a system of particles interacting with a neu-
tral scalar field whose action is given by (5.72). Formulate the corresponding
action-at-a-distance theory.

Answer

S = −
∑

I

∫
dτI


mI

√
ż2

I +
1
2

∫
dτJ

∑
J(�=I)

gI gJ

√
ż2

I

√
ż2

J GP (zI − zJ)


 .

(10.240)
where GP is the symmetric Green’s function for the scalar field: GP =
1
2 (Gret +Gadv), (

� + µ2
)
GP (x) = δ4(x) . (10.241)



10.6 Action at a Distance 407

Problem 10.6.3. Show that

dzµ
I dz

ν
J hµν(zI − zJ) δ

[
(zI − zJ)2

]
, (10.242)

where hµν(x− y) is the Boulware–Brown–Peccei conformal metric tensor de-
fined in (5.213), behaves like a scalar under conformal transformations.

Hint By (D.9) and (F.15),

δ
[
(x′ − y′)2

]
= δ

[
σ−1(x)σ−1(y) (x− y)2

]
= |σ(x)| |σ(y)| δ

[
(x− y)2

]
.

(10.243)
Combining this with (5.214) and the transformation law for vectors dz′µ =
(∂z′µ/∂zα) dzα, we come to the desired result.

Notes

1. Section 10.1. Since the inception of Newtonian mechanics in the early 18th
century, it became conventional to formulate evolutionary laws for physical
systems in terms of second order differential equations. Ostrogradskǐı (1850)
investigated systems governed by higher-order differential equations, and de-
veloped higher derivative Lagrangian and Hamiltonian descriptions for such
systems. The peculiar properties of higher derivative Lagrangians have been
studied by many physicists over the years. Noteworthy papers on the subject
are by Pais & Uhlenbeck (1950) and by Stelle (1977, 1978). A recent review
for non-specialists has been made by Woodard (2006). For an annotated lists
of studies on the rigid-particle dynamics see Pavšič & Tapia (2001).

2. Section 10.2. Huygens proposed a general principle which describes wave
propagation as the interference of secondary wavelets arising from imaginary
point sources on the existing wave front. A rigorous treatment of this principle
employs the retarded Green’s functions for the wave operator. Those who wish
to read more widely on this subject may consult Baker & Copson (1939),
Morse & Feshbach (1953), Courant (1962), and Iwanenko & Sokolow (1953).

Two-dimensional spacetimes have many unusual features in addition to
those discussed in this section. One example is solitons. A solitary wave prop-
agating along a straight line cannot be destroyed even when colliding with
another such wave. Indestructible solitons are peculiar to two-dimensional
partial differential equations such as the sine–Gordon equation. They do not
exist in four dimensions. Solitons are discussed at length by Whitham (1974),
and Ablowitz & Segur (1981).

The line of presentation in this section follows Kosyakov (1999, 2001). For
more on gauge theories with the Chern–Simons term see Deser, Jackiw &
Templeton (1982, 1985).

3. Section 10.3. Weyl (1918) noted that Maxwell’s equations are conformally
invariant only for D = 3. Ehrenfest (1917), (1920) raised the question: what
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is the role of the fact that space has dimension D = 3 in fundamental physical
laws?

4. Section 10.4. The history of nonlinear electrodynamics began with Mie
(1912) works. The next steps in this direction was made by Born (1934), and
Born & Infeld (1934). Reasoning from the ‘principle of finiteness’, and the
(vain) attempt at constructing a genuine and unique diffeomorphism invariant
theory of gravitation and electromagnetism, they proposed the Lagrangians
(10.104) and (10.108). After a lapse of fifty years, Fradkin & Tseytlin (1985)
vindicated the Born–Infeld action, which naturally arises as the low energy
effective action of gauge fields on open strings. The literature on implications
of the Born–Infeld theory and its supersymmetric extensions in brane-world
scenarios and string theory is extensive; for a review see Gibbons (2003).

Blokhintsev & Orlov (1953) showed that the nonlinear system of hyper-
bolic equations in the Born–Infeld theory is unique in the sense that their
characteristics cannot intersect, and hence no electromagnetic shock wave oc-
curs. Boillat (1970) gave a general argument that this theory is the only version
of nonlinear electrodynamics with a sensible weak field limit which is free of
the birefringence (that is, signals propagate along a single characteristic cone,
regardless of their polarization).

Weyl (1918) pointed out that, among all nonlinear generalizations of elec-
trodynamics with a reasonable weak field limit, Maxwell’s theory stands out
as the only conformal invariant theory.

Gaillard & Zumino (1981) studied general conditions for electrodynamics
to be duality invariant, and came to the criterion (10.133).

5. Section 10.5. Wataghin (1934) introduced a form factor in electrodynamics
to get rid of ultraviolet divergences. Markov (1939) conjectured that quantum
fields do not commute with spacetime variables,

[xµ, φ(x)] �= 0 . (10.244)

Snyder (1947) considered a quantized spacetime with noncommuting coordi-
nates,

[xµ, xν ] �= 0 . (10.245)

Wheeler (1957) conjectured that fluctuations of the metric in regions of size
comparable with the Planck length lP give rise to a spacetime foam. This
topic is covered in Misner et al. (1973). Witten (1986), and Seiberg & Witten
(1999) incorporated methods of noncommutative geometry in string theory.
Madore (1995) is a review of subsequent results. Spacetimes with a p-adic
order of events is discussed in the book by Vladimirov et al. (1994).

The boundary between localizable and nonlocal quantum field theories was
discovered by Meiman (1964), Jaffe (1967), and Efimov (1968). A nonlocal S
matrix theory, free of ultraviolet divergences, obeying the general conditions
of quantum field theory: unitarity, covariance, and macroscopic causality was
developed by Efimov (1970). Iofa & Fainberg (1969) extended some results
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of the axiomatic quantum field theory (PCT -invariance and connection be-
tween spin and statistics) to the case that vacuum expectation values reveal
exponential energy growth, the feature characteristic of nonlocal interactions.

A similar technique is applied to the confinement problem by Efimov &
Ivanov (1993). The absence of isolated quarks translates into the requirement
that the field equation for a free quark

L(∂)ψ(x) = 0 (10.246)

has the unique solution ψ(x) = 0. It follows that L(k) has no roots, and hence
L−1(k) is an entire function, such as

L−1(k) = Cea(γ·k−bk2) , (10.247)

where C, a, and b are some parameters, and γµ are the Dirac matrices.
The presentation of this section sketches the broad outline of Kosyakov

(1976). For more on entire functions see Titchmarsh (1932), and Paley &
Wiener (1934). The theory of generalized functions is covered in Gel’fand &
Shilov (1964, 1968).

6. Section 10.6. The notion of contact interaction was a prevailing view in
natural philosophy until it gave way to instantaneous action-at-a-distance dy-
namics, originated from Newtonian gravitation theory. The theories of elec-
tricity and magnetism, arising over the 18th and the first part of the 19th
centuries, were patterned after Newton’s inverse square law. Faraday and
Maxwell overturned this paradigm. They developed a consistent mechanism
of local interactions, by which the electromagnetic field is an agent conveying
an action-by-contact from one place to another. For a historical account see
Whittaker (1910).

Schwarzschild (1903) used the retarded Liénard–Wiechert solution to de-
rive a force law between two charged particles expressed in terms of particle
variables (that is, with no reference to field degrees of freedom). This result
was rederived by Tetrode (1922) and Fokker (1929a, 1929b), and summarized
in Fokker’s action (10.218). Wheeler & Feynman (1945),(1949) critically re-
examined the concept of the electromagnetic field as a dynamical entity, and
proposed a light-cone action-at-a-distance theory alternative to the conven-
tional Maxwell–Lorentz electrodynamics. For an exposition of those and later
developments see Pegg (1975), and Hoyle & Narlikar (1995, 1996).



Mathematical Appendices

A. Differential Forms

Differential forms are a very powerful tool for formulating physical laws on
manifolds. These mathematical objects (which in fact are antisymmetric ten-
sor fields on manifolds) have an intrinsic geometric meaning. Although coor-
dinates may appear at intermediate stages of calculations, the use of exterior
algebra can greatly reduce the length of calculations and make the final results
coordinate-free.

Élie Cartan proposed to use differential coordinates dxi as a convenient
basis of 1-forms. The differentials dxi transform like covectors under a local
coordinate change,

dx′
j =

∂x′j

∂xi
dxi . (A.1)

[If the coordinate change is specialized to Euclidean transformations x′j =
Lj

i x
i + cj , then ∂x′j/∂xi reduces to Lj

i, an orthogonal matrix with con-
stant entries, and (A.1) becomes (1.53), the transformation law for covectors.]
Furthermore, when used in the directional derivative

dxi ∂F

∂xi
, (A.2)

dxi may be viewed as a linear functional which takes real values on vectors
∂F/∂xi. The line elements dxi are called Cartan’s differential 1-forms, or
simply 1-forms.

We now define the exterior product of two 1-forms dx and dy:

dx ∧ dy =
1
2

(dx⊗ dy − dy ⊗ dx) = −dy ∧ dx . (A.3)

The exterior product is the simplest rule for constructing 2-forms from
pairs of 1-forms. In addition, we define the exterior product of three 1-forms,
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dx∧dy∧dz, and, generally, the exterior product of p 1-forms, dx1 ∧ · · · ∧dxp,
using the formula

dx1 ∧ · · · ∧ dxp =
1
p!

∑
σ∈Sp

sgn(σ) dxiσ(1) · · · dxiσ(p) . (A.4)

Here, Sp is the set of all permutations σ of 0, 1, . . . , p − 1, and sgn(σ) is 1 if
the permutation σ is even, and −1 if the permutation σ is odd. Clearly one
gets zero for p > n.

One can show (Problem A.1) that the set of all

dxi1 ∧ · · · ∧ dxip , 1 ≤ i1 < i2 < · · · < ip ≤ n (A.5)

is a basis of the vector space of all p-forms Λp, and that this space has dimen-
sion (

n
p

)
=

n!
p! (n− p)!

. (A.6)

Therefore, any element of Λp can be represented as

α =
∑

1≤i1<i2<···<ip≤n

αi1···ip
(x) dxi1 ∧ · · · ∧ dxip , (A.7)

or more commonly, as

α =
1
p!
αi1···ip

dxi1 ∧ · · · ∧ dxip , (A.8)

where every repeated index ranges over the dimension of this manifold.
Note that for arbitrary p- and q-forms α and β,

α ∧ β = (−1)pqβ ∧ α . (A.9)

We next define the exterior differentiation d as an operation which takes
p-forms into (p+ 1)-forms so that the following rules hold:

1◦. The action of d on a 0-form f (an ordinary function) gives

df =
∂f

∂xi
dxi . (A.10)

2◦. Let α and β be two p-forms, and a and b real numbers, then

d (aα+ bβ) = a dα+ b dβ . (A.11)

3◦. Let α be a p-form, and β a q-form, then

d (α ∧ β) = dα ∧ β + (−1)p α ∧ dβ . (A.12)

4◦. For any p-form α
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d (dα) = 0 . (A.13)

Consider the action of d on a general p-form α. By (A.10), (A.11), and
(A.13),

dα =
∑

dαi1···ip
∧ dxi1 ∧ · · · ∧ dxip =

∑
∂ [jαi1···ip] dx

j ∧ dxi1 ∧ · · · ∧ dxip

(A.14)
[summation as in (A.7)]. We place the new 1-form dxj to the left of the previ-
ously existing exterior products. Note also that only the totally antisymmetric
parts of the partial derivatives

∂ [i1αi2···ip+1] =
1

(p+ 1)!

∑
σ∈Sp

sgn(σ) ∂iσ(1)αiσ(2)···iσ(p+1) (A.15)

contribute to (A.14).
To illustrate, we perform the exterior differentiation of the 1-form on R3

ω = A1dx
1 +A2dx

2 +A3dx
3 . (A.16)

A simple calculation shows that

dω =
(
∂A3

∂x2
− ∂A2

∂x3

)
dx2 ∧ dx3 +

(
∂A1

∂x3
− ∂A3

∂x1

)
dx3 ∧ dx1

+
(
∂A2

∂x1
− ∂A1

∂x2

)
dx1 ∧ dx2 . (A.17)

We should check that (A.14) has the same form in every coordinate system.
To this end, we write the inverse of (A.1),

dxi =
∂xi

∂x′j
dx′

j
, (A.18)

and note that the transformation law for αi1···ip
is given by

α′
j1···jp

=
∂xi1

∂x′j1
· · · ∂x

ip

∂x′jp
αi1···ip

. (A.19)

Using (A.18) and (A.19), we have

d
(
α′

j1···jp
∧ dx′j1 ∧ · · · ∧ dx′jp

)
=d
(
∂xi1

∂x′j1
· · · ∂x

ip

∂x′jp
αi1···ip

dx′
j1 ∧ · · · ∧ dx′jp

)

=
∂xi1

∂x′j1
· · · ∂x

ip

∂x′jp
dαi1···ip

∧ dx′j1 ∧ · · · ∧ dx′jp = dαi1···ip
∧ dxi1 ∧ · · · ∧ dxip .

(A.20)
The third equation in (A.20) is obtained by observing that terms involving
∂2xi/∂x′j∂x′k vanish. Indeed, these partial derivatives are symmetric in j and
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k whereas dx′j and dx′k in the exterior product are antisymmetric in these
indices. Therefore,

d
(
α′

j1···jp
dx′

j1 ∧ · · · ∧ dx′jp

)
= d

(
αi1···ip

dxi1 ∧ · · · ∧ dxip
)
. (A.21)

It will be left to Problem A.3 to show that (A.14) is consistent with (A.12)
and (A.13). These results show that the exterior differentiation d is a well-
defined operation for p-forms. Condition 3◦ is a generalization of the usual
Leibnitz rule for differentiating the product of two functions. Condition 4◦ is
often referred to as the Poincaré lemma.

A p-form α is called exact if there exists a (p − 1)-form β such that α is
the exterior derivative of β: α = dβ. A p-form α is called closed if dα = 0.
According to the Poincaré lemma, every exact form is closed, dd = 0, but
the converse is not always true. We will see below that a closed form is exact
in some regions of the manifold. In general, by counting the types of closed
forms which are not exact one can determine the number of ‘holes’ of the
manifold. To make this idea more definite, the full-fledged machinery of de
Rham cohomology is required. However, this mathematical development is
beyond the scope of the present discussion.

Two p-forms are of basic importance in electrodynamics and Yang–Mills
theory: the 1-form A (vector potential), and the 2-form F (field strength).
They are related by

F = dA (A.22)

in electrodynamics, and by

F = dA+A ∧A (A.23)

in Yang–Mills theory.
One may wonder whether it is possible to solve

Fµν = ∂µAν − ∂νAµ (A.24)

with respect to Aµ. One would write this symbolically as

A = d−1F . (A.25)

To make this construction somewhat more concrete, we first impose a gauge
condition on Aµ. For our purposes it is appropriate to employ the Fock–
Schwinger gauge condition

xλAλ = 0 . (A.26)

We differentiate (A.26) to give

∂µ(xλAλ) = Aµ + xλ∂µAλ = 0 . (A.27)

By (A.24),
xλ∂λAµ − xλ∂µAλ = xλFλµ . (A.28)
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Combining (A.27) and (A.28), we obtain

Aµ + xλ∂λAµ = xλFλµ . (A.29)

We then put xµ = tyµ, where t is a parameter running from 0 to 1. The
left-hand side of (A.29) becomes

Aµ(ty) + tyλ

(
∂Aµ

∂xλ

)∣∣∣∣∣
x=ty

=
d

dt
[tAµ(ty)] . (A.30)

Hence, integration of (A.29) gives

Aµ(y) =
∫ 1

0

dt tyλFλµ(ty) . (A.31)

This is the desired expression of A in terms of F . From this discussion it
follows that (A.31) is valid in a star-shaped region about the origin y = 0. By
definition, a star-shaped region is an open set U of points y such that a ray
drawn from the origin to the point y is contained in U whenever y belongs to
U .

An alternative formulation of this result is: if a 2-form F is closed in a
star-shaped regions, then F is exact, F = dA. (A.31) expresses A in terms of
F , up to a gauge transformation.

Equation (A.31) can be readily generalized to express a p-form Aµ1···µp
in

terms of its exterior derivative Fλµ1···µp
for arbitrary p (Problem A.4).

Another explicit form of d−1 is derived in Problem 4.2.4. Note, however,
that (A.31) has a wider use, because it is also valid in the non-Abelian case.
To be explicit, if (A.22) is replaced by (A.23), while (A.26) is preserved, then
(A.31) still holds.

Problem A.1. Show that the set of p-forms defined in (A.5) span a basis of
Λp. Verify that Λp has dimension n!/p! (n− p)!

Problem A.2. Verify (A.9).

Problem A.3. Show that (A.14) is consistent with (A.12) and (A.13).

Problem A.4. Let Fλµ1···µp
be an exact (p+ 1)-form, that is,

Fλµ1···µp
= (p+ 1)! ∂ [λAµ1···µp] . (A.32)

Solve this equation with respect to Aµ1···µp
assuming the generalized Fock–

Schwinger gauge condition

xµ1Aµ1···µp
= 0 . (A.33)

Answer

Aµ1···µp
(x) =

∫ 1

0

dt tpxλFλµ1···µp
(tx) . (A.34)
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B. Lie Groups and Lie Algebras

The reader is assumed to be familiar with the basics of the group theory,
in particular with elementary concepts of Lie groups and Lie algebras. We
review only those definitions and properties of Lie groups and Lie algebras
which are essential for reading the main text. We will henceforth speak only
of transformation groups, and will define transformations in terms of n × n
matrices. Furthermore, our prime interest here is with compact groups. A Lie
group G is called compact if its group manifold is compact. A Lie algebra g is
said to be compact if its associated Lie group G is compact.

We begin with the general linear group GL(n,R) spanned by n × n real
matrices with nonzero determinant. Here, ‘R’ refers to real numbers. Of course,
most of this discussion can be extended to cover the complex numbers C,
quaternions H, and octonions O

1.
If all the matrices L in the defining representation of GL(n,R) obey the

constraint
det (L) = 1 , (B.1)

then we come to the special linear group SL(n,R). For an infinitesimal trans-
formation L = 1 + εX, (B.1) implies

tr (X) = 0 . (B.2)

Thus, the Lie algebra sl(n,R) associated with the special linear group involves
n2−1 independent n×n real matrices. In other words, SL(n,R) is specified by
n2−1 independent real parameters. Note that the group manifold of SL(n,R)
is noncompact.

Further constraints define the metric properties of the group. Consider a
n× n real matrix L obeying the condition

LTL = 1 (B.3)

where LT is the transpose of L. Such matrices form the orthogonal group
O(n). In addition, if we impose condition (B.1), we get the special orthogonal
group SO(n), a subgroup of O(n) which can be continuously deformed to the
identity. As is shown in Sect. 1.2, SO(n) rotates vectors a of Euclidean space
En. That is, a matrix L acts on a vector a according to the rule

a → a′ = La (B.4)

so that the norm of a is invariant, a′2 = a2. Such n-dimensional Euclidean
vectors define the fundamental representation of SO(n).

By (B.3),

1 Recall, there are exactly four normed division algebras: the real numbers R, com-
plex numbers C, quaternions H, and octonions O. Quaternions are noncommuta-
tive. Octonions are nonassociative.
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(1 + εX)T (1 + εX) = 1 , (B.5)

which implies
XT = −X . (B.6)

Thus, the 1
2 n(n−1) generators of orthogonal transformations X are n×n

antisymmetric real matrices. The group manifold of SO(n) is a unit (n − 1)-
dimensional sphere in En [for example, the group manifold of SO(2) is a unit
circle]. Therefore, SO(n) is compact. Note also that SO(n) is non-Abelian for
n ≥ 3.

As an illustration, we refer to the following generators of SO(3)

X1 =


 0 0 0

0 0 −1
0 1 0


 , X2 =


 0 0 1

0 0 0
−1 0 0


 , X3 =


 0 −1 0

1 0 0
0 0 0


 (B.7)

related to rotations around the Cartesian axes x1, x2, and x3. SO(3) is spec-
ified by three independent real parameters.

Equation (B.3) is equivalent to LT gL = g, where g is the Euclidean metric
which is proportional to the unit matrix. If this condition is replaced by

LT ηL = η , (B.8)

where η is the diagonal matrix diag (1, . . . , 1,−1, . . . ,−1), having p positive
and q negative entries, then the transformations L constitute the pseudo-
orthogonal group SO(p, q). This group rotates vectors of pseudoeuclidean
space with metric proportional to η.

We next consider the set of all n × n complex matrices obeying the
condition

L†L = 1 , (B.9)

where L† = (LT )∗ is the Hermitian conjugate of L. Such matrices form the
unitary group U(n). For example, U(1) is the set of all complex numbers with
unit modulus eiλ whose group composition is defined by the usual complex
number multiplication. If det (L) = 1, then we come to the special unitary
group SU(n). One may think of these matrices L as linear operators acting
on n-dimensional column vectors Ψ , which gives vectors Ψ ′ in the same space:
Ψ ′ = LΨ . Such vectors define the fundamental representation of SU(n). If we
define the inner product (Φ, Ψ) as the component sum

∑
Φ∗

iΨi, then, in view
of (B.9), this quantity is unchanged under SU(n) transformations:

(Φ′, Ψ ′) = (LΦ,LΨ) = (Φ,L†LΨ) = (Φ, Ψ) . (B.10)

For an infinitesimal unitary transformation L = 1 + iεX, (B.9) gives

X = X† . (B.11)

One may readily check that generators X of U(n) are n2 Hermitian n × n
matrices. With the exception of the U(1) which is an Abelian group, U(n) is



418 Mathematical Appendices

a compact non-Abelian group specified by n2 independent real parameters.
SU(n) is a subgroup of U(n) which is continuously connected to the identity.
The number of generators required to represent it is n2 − 1.

The representation defined by any n × n matrices X which serves as a
basis for the Lie algebra g is known as the adjoint representation of the group
G. In particular, if a traceless Hermitian n×n matrix Φ transforms according
to the rule

Φ→ Φ′ = LΦL†, (B.12)

where L ∈ SU(n), then Φ is said to be in the adjoint representation of SU(n).
If a Lie algebra g is spanned by D independent elements, then this Lie

algebra is of order D. The number of commuting elements of g is called the
rank of this Lie algebra. We can choose a basis in which these commuting ele-
ments are diagonal matrices Hi. The set of all Hi spans the maximal Abelian
subalgebra, which is known as the Cartan subalgebra.

Let us consider two important examples:

su(2) is a Lie algebra of the order 3 and rank 1. The Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(B.13)

span the standard basis of su(2), Xa = 1
2 σa. These traceless Hermitian 2 × 2

matrices are orthonormalized

tr (σaσb) = 2δab , (B.14)

and satisfy the following commutation relations
[σa

2
,
σb

2

]
= iεabc

σc

2
. (B.15)

The only diagonal matrix is σ3. Elements of SU(2) are given by exp
(

1
2 iω

aσa

)
.

They act on two-dimensional column vectors ψ, which are called spinors.
su(3) is a Lie algebra of the order 8 and rank 2. A conventional basis of

su(3) (proposed by Gell-Mann) is spanned by eight Hermitian traceless 3× 3
matrices of which two are diagonal

λ3 =


 1 0 0

0 −1 0
0 0 0


 , λ8 =

1√
3


 1 0 0

0 1 0
0 0 −2


 , (B.16)

and the other are written as

λ1 =


 0 1 0

1 0 0
0 0 0


 , λ2 =


 0 −i 0
i 0 0
0 0 0


 , λ4 =


 0 0 1

0 0 0
1 0 0


 , (B.17)
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λ5 =


 0 0 −i

0 0 0
i 0 0


 , λ6 =


 0 0 0

0 0 1
0 1 0


 , λ7 =


 0 0 0

0 0 −i
0 i 0


 . (B.18)

The Gell-Mann matrices obey the orthonormalization condition

tr (λaλb) = 2δab , (B.19)

and the commutation relations[
λa

2
,
λb

2

]
= ifabc

λc

2
. (B.20)

The total antisymmetric objects fabc are known as the structure constants of
SU(3). The nonzero components are:

f123 = 2f147 =−2f156 = 2f246 = 2f257 = 2f345 =−2f367 =
2f458√

3
=

2f678√
3

=1 .

(B.21)
Elements of SU(3) are given by exp

(
1
2 iω

aλa

)
.

In general, a finite element of SU(n) can be represented by

L = exp (iαaXa) , (B.22)

where Xa are traceless Hermitian n × n matrices. There is a rigorous state-
ment that any representation of a compact Lie group is equivalent to some
finite-dimensional unitary representation. In support of this statement let us
construct a unitary representation of SO(3). We first express a vector a ∈ E3

in terms of Pauli matrices:

a = a1σ1 + a2σ2 + a3σ3 =
(

a3 a1 − ia2

a1 + ia2 −a3

)
. (B.23)

We define the norm of a:

−det
(
a2
)

= (a1)2 + (a2)2 + (a3)2. (B.24)

A transformation
a′ = LaL† , (B.25)

where L ∈ SU(2), leaves this norm unchanged, det
(
LaL†LaL†) = det

(
a2
)
.

Furthermore, a′ is again a traceless Hermitian matrix. Therefore, a′ and a
are related by a rotation. We thus see that (B.23) furnishes a unitary repre-
sentation of SO(3). More precisely, (B.23) is a mapping of the fundamental
representation of SO(3) onto the adjoint representation of SU(2). Note that
L and −L in (B.25) are associated with the same SO(3) transformation of a.
Another way of saying this is that SU(2) is the double covering of SO(3).

In contrast, noncompact Lie groups have no finite-dimensional unitary rep-
resentations. If a noncompact group G describes a symmetry of some physical
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system, then we can proceed in either of two ways. First, we might use finite-
dimensional nonunitary representations of G. For example, every quantity
(such as those introduced in Chaps. 1–6) which transforms like a tensor un-
der Lorentz transformations falls into this category. Second, we might employ
infinite-dimensional unitary representations of G. This approach is taken in
Sect. 8.7.

Let H be a subgroup of a Lie group G. For any L ∈ G we can define
another subgroup H ′ = LHL−1 which is called conjugate to H. Imagine that
all the conjugate subgroups are identical: that is, H = LHL−1 for any L ∈ G.
Then H is said to be a normal subgroup. A compact group which contains
no normal subgroups is called simple. A compact group which contains no
normal Abelian subgroups is called semisimple.

Let us choose some basis of a Lie algebra g. Elements of this basis Xa obey
the commutation relations

[Xa,Xb] = ifc
abXc . (B.26)

Whatever the representation of the Xa, the structure constants fc
ab are the

same. The structure constants determine g completely.
Making the identification

(Xa)bc = ifa
bc , (B.27)

the structure constants fc
ab themselves form the adjoint representation of g.

In particular, substituting (B.27) into the Jacobi identity

[Xa, [Xb,Xc]] + [Xc, [Xa,Xb]] + [Xb, [Xc,Xa]] = 0 (B.28)

gives
fd

bcf
e
ad + fd

abf
e
cd + fd

caf
e
bd = 0 , (B.29)

which can be shown (Problem B.6) to be just the commutation relations
(B.26).

An important characteristic of Lie groups is the Killing form. From fc
ab,

one constructs a symmetric tensor

gab = −fc
adf

d
bc (B.30)

which is called the Killing form. This quantity plays the role of the metric on
the group manifold. When viewing Xa as a n × n matrix, the Killing form
can be defined by

gab = tr (XaXb) . (B.31)

This definition makes it clear that the metric is invariant under the group.
That is, if X ′

a = LXaL
−1 then g′ab = gab.

One can show that a Lie algebra g is semisimple if det (gab) �= 0. Thus,
the inverse metric gab can be defined (by gab g

bc = δc
a) for any semisimple

Lie algebra. Using gab and gab, it is possible to raise and lower group indices,
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in particular to recast the structure constants in the form fabc. A further
important statement is that if the metric gab is positive definite, for example,
if

tr (XaXb) =
1
2
δab , (B.32)

then the Lie algebra is compact. If gab is indefinite, then the Lie algebra is
noncompact.

The structure constants depend upon the choice of the basis. For simple
compact groups, there is a convenient basis, called the Cartan basis, such
that the structure constants fabc are real and completely antisymmetric. It
will be left to Problem B.7 to show that if the generators Xa satisfy the
orthonormalization condition (B.32), then the structure constants fabc are
completely antisymmetric.

Killing, Cartan, and Weyl classified all simple compact Lie groups. The
great bulk of them belong to the so-called classical Lie groups. In addition
to SU(n) and SO(n), the classical groups involve the symplectic group Sp(n).
This group is defined as the unitary group of n× n matrices over the quater-
nions. The remaining five simple compact Lie groups are known as exceptional.
These groups, denoted by G2, F4, E6, E7, and E8, can be interpreted as uni-
tary groups over the octonions.

U(1) is locally equivalent to SO(2) because the set of complex numbers of
the form eiλ can be mapped onto a unit circle. We have already learned that
su(2) ∼ so(3). In addition, SU(2) is locally isomorphic to Sp(1). To see this,
we note that Sp(1) is the set of all quaternions with unit modulus whose group
composition is defined by the rule of quaternion multiplication. Recall that
the Pauli matrices, which generate the fundamental representation of SU(2),
also happen to obey the quaternion algebra. Finally note that SO(4) is not
semisimple because so(4) = so(3) ⊕ so(3) (see Problem 1.5.7).

Let us give an explicit construction of the Cartan-Weyl basis2 for the Lie
algebra su(n). This basis consists of a set of n2 matrices, including n elements
Ha of the Cartan subalgebra

[Ha,Hb] = 0 , (B.33)

which are related by
n∑

a=1

Ha = 0 . (B.34)

We choose the commuting elements Ha to be traceless, diagonal n×n matrices

(Ha)AB = δAa δBa − 1
n
δAB (no summation in a) . (B.35)

The remaining n2 − n basis elements consist of the ‘raising’ and ‘lowering’
operators E+

ab and E−
ab,

2 This overcomplete basis slightly differs from that commonly used in the mathe-
matical literature.
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(E+
ab)AB = δAa δBb, (E−

ab)AB = δAb δBa , (B.36)

where a, b, A, B run from 1 to n, with a and b being ordered such that b > a.
The only nontrivial commutation relations are

[Ha, E
±
ab] = ±E±

ab , (B.37)

[E+
ab, E

−
ab] = Ha −Hb , (B.38)

[E±
ab, E

±
bc] = ±E±

ac . (B.39)

This basis is extensively used in Chap. 8.
A similar realization of the Cartan-Weyl basis can be proposed for SO(n):

(Xab)AB = δA
[a δ

B
b] , (B.40)

and for Sp(n):
(Xab)AB = δA

(a δ
B
b) . (B.41)

Of special interest for our discussion is the fact that every classical group
can be complexified by allowing the group parameters to be complex. To be
specific, let us complexify SU(n), a classical group which is our paradigm.
The result is SL(n,C). In fact, we need only real forms of SL(n,C). There
is a single compact real form of this group, SU(n). All other real forms are
noncompact. Among them, SL(n,R) is of great interest for our analysis of
retarded solutions to the Yang–Mills equations in Chap. 8.

Finally, we review the Lorentz and Poincaré groups. We would like to show
that the Lorentz group SO(1, 3) is locally equivalent to SL(2,C). The method
is essentially the same as that used before to establish the local equivalence
SO(3) ∼ SU(2). Let us write a vector of Minkowski space x as a Hermitian
2 × 2 matrix:

x = x01 + x1σ1 + x2σ2 + x3σ3 =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (B.42)

where 1 is the unit 2 × 2 matrix. We define the norm of x as

det
(
x2
)

= (x0)2 − (x1)2 − (x2)2 − (x3)2. (B.43)

A linear transformation
x′ = LxL† , (B.44)

where L is an arbitrary complex 2 × 2 matrix subject to the condition

det (L) = 1 , (B.45)

leaves this norm invariant:

det (x′) = det (x) . (B.46)
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Furthermore, x retains its Hermitian property under transformations (B.44).
We thus see that any vector of Minkowski space x is at the same time a rank
(1,1) tensor under SL(2,C). To put it otherwise, the fundamental representa-
tion of SO(1, 3) is the adjoint representation of SL(2,C). Note that SL(2,C)
gives a double covering of SO(1, 3) because L and −L are associated with the
same Lorentz transformation.

Poincaré transformations are obtained by combining spacetime transla-
tions aµ and Lorentz transformations Λµ

ν :

x′
µ = Λµ

ν x
ν + aµ . (B.47)

The set of all Poincaré transformations (a, Λ) form a group with the compo-
sition law

(a1, Λ1) (a2, Λ2) = (a1 + Λ1a2, Λ1Λ2) . (B.48)

Without going into detail, we simply note that, owing to (B.48), the Poincaré
group is the semidirect product of the Lorentz group and the group of trans-
lations. We would have a direct product of these groups if, instead of (B.48),
the composition rule was

(a1, Λ1) (a2, Λ2) = (a1 + a2, Λ1Λ2) . (B.49)

Problem B.1. Show that an antisymmetric n×n real matrix has 1
2 n(n− 1)

independent entries.

Problem B.2. Show that a Hermitian traceless n× n matrix is specified by
n2 − 1 independent real parameters.

Problem B.3. Verify (B.14) and (B.15).

Problem B.4. Verify (B.19) and (B.20)–(B.21).

Problem B.5. Verify (B.24).

Problem B.6. Applying (B.27) to (B.28), show that (B.29) is equivalent to
(B.26).

Problem B.7. Let elements of some Lie algebra g are subject to the ortho-
normalization condition (B.32). Show that the structure constants fabc are
completely antisymmetric.

Hint Verify that fcab + facb = 0 by writing fcab as

fcab = −2i tr ([Xa,Xb]Xc) = −2i tr (XaXbXc −XbXaXc) . (B.50)

C. The Gamma Matrices and Dirac Spinors

Following Dirac’s original approach, we take a ‘square root’ of the Klein–
Gordon equation
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(
� +m2

)
Ψ = 0 (C.1)

to give
(iγµ∂µ −m)Ψ = 0 . (C.2)

We come back to (C.1) by applying (iγµ∂µ +m) to the Dirac equation (C.2),

(iγµ∂µ +m) (iγν∂ν −m)Ψ = 0 , (C.3)

provided that
γµγν + γνγµ = 2ηµν . (C.4)

A set of mathematical objects γµ satisfying the anticommutation relations
(C.4) is called a Clifford algebra. To realize a Clifford algebra in Minkowski
space M4, Dirac proposed to use 4 × 4 matrices with complex entries, now
known as the gamma matrices.

Note that if a set of γµ obeys the anticommutation relations (C.4), then
the set of

γ′
µ = MγµM−1 (C.5)

also obey (C.4) for any nonsingular M . Thus, condition (C.4) does not de-
fine the γµ uniquely. The form of the γµ is fixed only up to a similarity
transformation (C.5). In fact, most calculations with gamma matrices can be
done without referring to a particular representation. The anticommutation
relations (C.4) and the requirement that the γµ form an irreducible set are
sufficient to characterize a particular Clifford algebra.

Consider
Γ1 = 1 , (C.6)

Γ2 = γ0, Γ3 = iγ1, Γ4 = iγ2, Γ5 = iγ3, (C.7)

Γ6 = γ0γ1, Γ7 = γ0γ2, Γ8 = γ0γ3, Γ9 = iγ2γ3, Γ10 = iγ3γ1, Γ11 = iγ1γ2 ,
(C.8)

Γ12 = γ1γ2γ3, Γ13 = iγ0γ2γ3, Γ14 = iγ0γ3γ1, Γ15 = iγ0γ1γ2, (C.9)

Γ16 = γ5 = iγ0γ1γ2γ3 , (C.10)

where γµ (µ = 0, . . . , 3) are n × n matrices obeying the anticommutation
relations (C.4), and 1 is the unit n×n matrix. With (C.4), all other products
of γµ can be written as linear combinations of Γa. Furthermore, these Γa are
linearly independent. To see this, we first note (Problem C.1) that the trace
of the product of any two Γa’s obeys, tr (ΓaΓb) = nδab. Let us suppose that
the matrices Γa defined in (C.6)–(C.10) are linearly dependent,

16∑
a=1

CaΓa = 0 . (C.11)

Multiplying (C.11) by Γb and taking the trace of this product, we obtain
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16∑
a=1

Catr (ΓbΓa) = nCb = 0 . (C.12)

It follows from (C.12) that Cb = 0 for all b. Therefore the Γa are linearly
independent.

It is impossible to realize the Clifford algebra in M4 by a set of matrices of
order n < 4. Indeed, for n < 4, there are not 16 linearly independent matrices.
On the other hand, four 4 × 4 matrices γµ do provide such a realization and
the number of independent components in an arbitrary 4 × 4 matrix is 16.

Mathematically, Ψ is a spinor. If we write Ψ in a four-component column,
then the γµ act upon Ψ according to the conventional matrix rules.

Pauli proved that if γµ and γ′µ are two irreducible sets of 4 × 4 matrices
obeying (C.4), then there exists a nonsingular matrix M which relates γµ and
γ′µ by transformation (C.5), and, furthermore, that M is unique except for
an arbitrary multiplicative factor.

Using the Pauli matrices σi together with the unit 2× 2 matrix 1, we can
give an explicit representation of gamma matrices:

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1
1 0

)
, (C.13)

which is referred to as the Dirac–Pauli, or standard basis.
We now turn to the transformation properties of the matrices γµ and

spinors Ψ under the Poincaré group. Equation (C.2) is self-evidently transla-
tion invariant. We thus have to examine the Lorentz covariance of (C.2). This
issue can be viewed in either of two alternative ways. First, we may assume
that the γµ transform like the components of a vector, as the index µ suggests.
Then (C.2) and (C.4) are covariant with respect to Lorentz transformations.
However, this assumption is unnatural in the context of field theory in which
it is only the fields that transform. Second, we may consider the γµ as fixed
matrices. Then, to maintain the covariance of (C.2), we must attribute some
transformation properties to Ψ . Consider a linear transformation law

Ψ ′(x′) = U (Λ)Ψ(x) , (C.14)

where U (Λ) is a nonsingular matrix which depends on the Lorentz transfor-
mation

x′
µ = Λµ

νx
ν . (C.15)

If we require that, for any Ψ , the transformed equation
(
iγµ ∂x

ν

∂x′µ
∂

∂xν
−m

)
UΨ =

(
iγµ (Λ−1)ν

µ

∂

∂xν
−m

)
UΨ = 0 (C.16)

follows from (C.2), or, equivalently, from

U (iγµ∂µ −m)Ψ = 0 , (C.17)
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then we must have
Uγµ = (Λ−1)µ

νγ
νU . (C.18)

Let us write

Λµν = ηµν + ωµν , (Λ−1)µν = ηµν − ωµν , (C.19)

and
U = 1 − i

4
sµν ω

µν , (C.20)

where the ωµν are the parameters which characterize an infinitesimal Lorentz
transformation (ωµν = −ωνµ), and the sµν are the the Lorentz generators in
the spinor representation. Then (C.18) becomes

[γλ, sµν ] = 2i (ηλµγν − ηλνγµ) . (C.21)

This equation is satisfied by

sµν =
i

2
(γµ γν − γν γµ) . (C.22)

Integrating (C.20), we get

U = exp
(
− i

4
sµν ω

µν

)
. (C.23)

The simplest physical observables associated with the Dirac field are con-
structed from bilinear expressions of Ψ which transform like irreducible tensor
representations of the Lorentz group. From (C.2), we obtain the equation of
motion for the Hermitian conjugate of Ψ :

Ψ †
[
i (γµ)†

←
∂ µ −m

]
= 0 . (C.24)

Using (C.5), we can always express the (γµ)† in terms of the γµ. Since (γ0)−1 =
γ0, we may write the relation

(γµ)† = γ0γµγ0 (C.25)

consistent with (C.4). It follows from (C.20) and (C.25) that

U† = γ0U−1γ0 (C.26)

Consider the field Ψ = Ψ †γ0. This field obeys the equation

Ψ
(
iγµ

←
∂ µ +m

)
= 0 . (C.27)

One can show (Problem C.3) that Ψ transforms according to the rule

Ψ
′
(x′) = Ψ(x) γ0 U† γ0 = Ψ(x)U−1 . (C.28)
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Therefore,
Ψ

′
(x′)OΨ ′(x′) = Ψ(x)U−1OU Ψ(x) . (C.29)

One can see [using (C.18)] that the bilinear form ΨγµΨ transforms like a
vector:

Ψ
′
(x′) γµ Ψ ′(x′) = Λµ

ν Ψ(x) γν Ψ(x) , (C.30)

and that ΨΨ is a scalar with respect to Lorentz boosts and space reflections.
Further examples of the transformation laws for bilinear forms are given in
Problem C.4.

Problem C.1. Consider any two Γa’s defined in (C.6) − (C.10). Show that

tr (ΓaΓb) = nδab (C.31)

Problem C.2. Derive the identities

γµγµ = 4, γλγµγλ = −2γµ, γλγµγνγλ = 4ηµν , γλγµγνγργλ = −2γργνγµ .
(C.32)

Problem C.3. Verify (C.28).

Hint Use (C.23).

Problem C.4. Show that the bilinear forms ΨsµνΨ , Ψγ5γ
µΨ , and Ψγ5Ψ trans-

form, respectively, like an antisymmetric rank (2, 0) tensor, an axial vector,
and a pseudoscalar:

Ψ
′
(x′) sµν Ψ ′(x′) = Λµ

αΛ
ν
β Ψ(x) sαβ Ψ(x) , (C.33)

Ψ
′
(x′) γ5γ

µ Ψ ′(x′) = det (Λ)Λµ
ν Ψ(x) γ5γ

ν Ψ(x) , (C.34)

Ψ
′
(x′) γ5 Ψ

′(x′) = det (Λ)Ψ(x) γ5 Ψ(x) . (C.35)

Hint Derive first the relations

γ5 = − i

4!
ελµνρ γ

λγµγνγρ , (C.36)

γ5γλ = − i

3!
ελµνρ γ

µγνγρ . (C.37)

D. Conformal Transformations

Conformal transformations of Minkowski space form a group, denoted by
C(1, 3), which consists of the 10-parameter Poincaré subgroup, the 1-parame-
ter subgroup of dilatations, or scale transformations

D : x′µ = kxµ, k > 0 , (D.1)



428 Mathematical Appendices

and the 4-parameter subgroup of special conformal transformations

C : x′µ =
xµ − bµx

2

1 − 2b · x+ b2x2
. (D.2)

The special conformal transformations are closely related to the inversion

I : x′µ =
xµ

x2
. (D.3)

More particularly, (D.2) is composed of an inversion, translation, and further
inversion:

xµ → uµ =
xµ

x2
, uµ → vµ = uµ − bµ, vµ → yµ =

vµ

v2
. (D.4)

Symbolically,
C = ITI. (D.5)

The inversion is a discrete operation, while the special conformal trans-
formations form a continuous subgroup continuously connected with the unit
(bµ = 0). Furthermore, it is an Abelian subgroup. Indeed, by (D.5), the prod-
uct of two subsequent transformations is C(b1)C(b2) = IT (b1)IIT (b2)I. Be-
cause the double application of the inversion is identity, and translations are
commutative, C(b1)C(b2) = C(b2)C(b1).

Rewriting (D.5) as I−1TI, one finds that the composition of two such
mappings is a mapping other than translation. Thus, the translation subgroup
is not an invariant subgroup of the conformal group. In fact, C(1, 3) proves to
be a semisimple Lie group.

Is it is possible to assemble the Poincaré transformations and the dilata-
tions alone into a group? As will soon become clear, this is the case. Such a
combination gives the group of similitude transformations acting on xµ lin-
early,

x′
µ = kΛµ

νx
ν + cµ , (D.6)

where Λµ
ν is a Lorentz matrix. However, the similitude group is not semisimple

because it is the semidirect product of the Lorentz rotations and dilatations
with translations.

One can show from (D.2) that

x′
2 =

x2

σ(x)
(D.7)

where
σ(x) = 1 − 2b · x+ b2x2 , (D.8)

and

(x′ − y′)2 =
(x− y)2

σ(x)σ(y)
, (D.9)

which implies
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dx′
2 =

dx2

σ2(x)
. (D.10)

It follows from (D.7) that conformal transformations map the light cone
x2 = 0 onto the light cone x′2 = 0, except for points σ(x) = 0 where the
mapping (D.2) is singular. For all points of the plane 1− 2b · x = 0, including
its intersection with the light cone x2 = 0, we have x′2 = 1/b2. Hence, singu-
lar conformal mappings render lightlike vectors either spacelike or timelike,
depending on whether b2 < 0 or b2 > 0.

Let b2 �= 0. Rewriting (D.8) as

1 − 2b · x+ b2x2 = b2
(
x− b

b2

)2

,

we see that σ(x) may be of any sign. If σ(x) < 0, then x′2 and x2 are opposite
in sign; a special conformal transformation can convert a timelike vector into
spacelike and vice versa. By contrast, (D.10) implies that the sign of the line
element is invariant, in particular, spacelike and timelike have an invariant
meaning for tangent vectors.

In summary, the conformal transformations are one-to-one mappings of
Minkowski space on itself x′µ = fµ(x) such that the resulting line element is
identical to the initial one save for an overall scale factor,

dx′
2 = e2λ(x) dx2 . (D.11)

The scale factor eλ(x) derives from the constant k in (D.1), as well as from
the coordinate dependent expression |σ(x)|−1 in (D.10).

Note that conformal transformations induce a factor of e2λ(x) not only
on dx2 but also on the scalar product of differentials dxµ

1 and dxµ
2 taken

at the same point. This becomes clear from simple algebraic operations on
(dx′1 + dx′2)

2 = e2λ(x) (dx1 + dx2)2. As a result, the cosine of angles between
intersecting curves is invariant,

cosϕ =
dx1 · dx2√
dx2

1 dx
2
2

= const. (D.12)

Hence the name ‘conformal’, which indicates that the shape of any figure is
unchanged by such transformations.

Because the special conformal transformations (D.2) comprise an Abelian
subgroup of the conformal group, one may interpret them as spacetime de-
pendent dilatations, which bear close similarity to the Weyl rescalings

ηµν → gµν = e2λ(x) ηµν , ηµν → gµν = e−2λ(x) ηµν . (D.13)

Note that coordinates xµ are unchanged by this transformation.
Proceeding from (D.11), it is possible to reconstruct the conformal group

acting on a spacetime of any dimension. Consider an infinitesimal coordinate
transformation
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x′
µ = xµ + ε ξµ(x) , (D.14)

where ξµ is an arbitrary smooth function. The line element dx2 = ηµνdx
µdxν

becomes
dx′

2 = dx2 + ε (∂µξν + ∂νξµ) dxµdxν . (D.15)

For (D.14) to be treated as a conformal transformation, the parenthesized
expression in (D.15) should be proportional to ηµν ,

∂µξν + ∂νξµ = B ηµν . (D.16)

To solve this partial differential equation, we first differentiate it with respect
to xλ,

∂λ∂µξν + ∂λ∂νξµ = ηµν∂λB , (D.17)

interchange ν and λ, and subtract the resulting equation from (D.17),

∂λ∂µξν − ∂µ∂νξλ = ηµν∂λB − ηλµ∂νB . (D.18)

One further differentiation with respect to xρ gives

∂ρ∂µ(∂λξν − ∂νξλ) = ηµν∂ρ∂λB − ηµλ∂ρ∂νB . (D.19)

Because the left side of (D.19) is symmetric in ρ and µ, the same should also
be true for the right side,

ηµν∂ρ∂λB − ηµλ∂ρ∂νB = ηρν∂µ∂λB − ηρλ∂µ∂νB , (D.20)

which, by contraction on ρ and ν, and taking into account that δν
ν = D + 1,

gives
[(D − 1) ∂µ∂λ + ηµλ�]B = 0 . (D.21)

If D+ 1 = 1, every index takes a single value, and (D.21) reads 0 ·B = 0,
which is tantamount to stating that B is an arbitrary function. If D + 1 = 2,
(D.21) becomes �B = 0. Therefore, in a two-dimensional Euclidean space R2,
B is an arbitrary harmonic function, while, in a pseudoeuclidean space R1,1,
B is a solution to the wave equation. If D + 1 > 2, then, by contraction on
µ and λ in (D.21), we find that �B = 0, which, in view of (D.21), results in
∂µ∂λB = 0. We thus conclude that B is linear in x,

B = 4βαx
α + 2γ, (D.22)

where βµ and γ are arbitrary constants. We then substitute (D.22) into (D.18)
and integrate the resulting equation with respect to xµ,

∂λξν − ∂νξλ = 4 (βλxν − βνxλ) + 2ωνλ, (D.23)

where ωνλ is a constant antisymmetric matrix. Combining (D.16) and (D.22)
in

∂λξν + ∂νξλ = (4βαx
α + 2γ) ηλν ,
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and adding it to (D.23), we get

∂λξν = 2 (βλxν − βνxλ + βαx
αηλν) + ωνλ + γ ηλν . (D.24)

Integrating (D.24) with respect to xλ we arrive at the desired solution

ξµ = εµ + ωµαx
α + γxµ + 2βαx

αxµ − x2βµ, ωµν = −ωνµ . (D.25)

In four dimensions, this solution contains 15 arbitrary real constants in εµ,
ωµν , γ, and βµ. An infinitesimal Poincaré transformation is represented by the
4 parameters in εµ and the 6 parameters in ωµν , while the 5 parameters in
γ and βµ are associated with infinitesimal dilatations and special conformal
transformation, respectively.

Let D + 1 = 1. The general solution to (D.16) is an arbitrary smooth
function. We thus see that any diffeomorphism of the real axis R is a conformal
transformation.

The case D + 1 = 2 is exceptional in that ξµ is given by either arbitrary
harmonic functions (in Euclidean signature) or solutions to the wave equation
(for pseudoeuclidean signature). The conformal group is infinite-dimensional.

Let D+ 1 > 2. ξµ is given by (D.25), and the conformal group is specified
by

(D + 1) +
1
2
D (D + 1) + 1 + (D + 1) =

1
2

(D + 2) (D + 3) (D.26)

independent parameters in εµ, ωµν , γ, and βµ. This is the same number of
parameters as necessary for the orthogonal group SO(D+3), or pseudoorthog-
onal groups SO(p, q), with p + q = D + 3. This agreement is not accidental.
We now demonstrate that the conformal group C(m,n) in a pseudoeuclidean
space Rm,n is isomorphic to the pseudoorthogonal group SO(m + 1, n + 1)
in a pseudoeuclidean space Rm+1,n+1, in particular C(1, 3) is isomorphic to
SO(2, 4).

Infinitesimal conformal transformations can be represented as

x′µ = exp
(
Gkε

k
)
xµ =

(
1 +Gkε

k
)
xµ , (D.27)

where Gk are generators of the conformal group. Let us list them:
translations

Pµ = ∂µ , (D.28)

rotations
Mµν = xµ∂ν − xν∂µ , (D.29)

dilatations
D = xα∂α , (D.30)

special conformal transformations

Kµ = 2xµx
α∂α − x2∂µ . (D.31)
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To illustrate, take ξµ for the special conformal transformation,

ξµ = (β ·K)xµ = 2β · xxµ − x2βµ . (D.32)

From these expressions, the commutation relations are readily obtainable,

[Mµν , Pλ] = (ηνλPµ − ηµλPν) , (D.33)

[Mµν ,Mρσ] = Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ , (D.34)

[Pµ,D] = Pµ , (D.35)

[Mµν ,D] = 0 , (D.36)

[Pλ, Pµ] = 0 , (D.37)

[D,D] = 0 , (D.38)

[Kλ,Kµ] = 0 , (D.39)

[Mµν ,Kλ] = (ηνλKµ − ηµλKν) , (D.40)

[Kµ,D] = −Kµ , (D.41)

[Pλ,Kµ] = 2 (ηλµD −Mλµ) . (D.42)

Restricting ourselves to the commutation relations (D.33)–(D.38), we have
the Lie algebra that generates the group of the similitude transformations
(D.6). The generators of the Poincaré transformations and dilatations form a
closed Lie algebra, which is a subalgebra of the full conformal algebra. Thus, on
purely group-theoretical grounds, there is no reason why dilatation invariance
should imply conformal invariance.

Note that commutation relations containing Pµ are similar to those con-
taining Kµ. It is thus natural to look for a realization of the commutation
relations (D.33)–(D.42) where Pµ and Kµ play interchangeable roles and take
similar analytic forms.

Let us consider a six-dimensional space R2,4 of coordinates XA, A =
0, 1, 2, 3, 4, 5 in the following way. We first define four dimensionless coor-
dinates

Xµ = κxµ, µ = 0, 1, 2, 3 , (D.43)

where κ fixes the unit of the measuring devices. A further variable λ is given
by

λ = κx2 , (D.44)

which, however, is not entirely independent but obeys the constraint

XµXµ − κλ = 0 . (D.45)

The coordinates X4 and X5 are related to κ and λ by

X4 =
1
2

(λ+ κ), X5 =
1
2

(λ− κ) . (D.46)
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We finally introduce the metric tensor

ηAB = diag(+1,−1,−1,−1,−1,+1) , (D.47)

whereby the constraint (D.45) takes the form

XAXA = 0 . (D.48)

The reason for introducing the six-dimensional space is to linearize the
nonlinear transformation (D.2). Indeed, all the finite transformations of the
conformal group C(1, 3) in the coordinates XA turn out to be linear:

translations

X ′µ = Xµ + aµκ, κ′ = κ, λ′ = λ+ 2a ·X + a2κ, (D.49)

Lorentz transformations

X ′µ = Λµ
νX

ν , κ′ = κ, λ′ = λ, (D.50)

dilatations

X ′µ = Xµ, κ′ =
1
k
κ, λ′ = λ, (D.51)

special conformal transformations

X ′µ = Xµ − bµκ, κ′ = κ− 2b ·X + b2λ, λ′ = λ . (D.52)

Note the similar form of (D.49) and (D.52).
The generators of C(1, 3) can be expressed in terms of the new coordinates

as

Pµ = κ
∂

∂Xµ
+ 2Xµ

∂

∂λ
= −X4

∂

∂Xµ
−X5

∂

∂Xµ
+Xµ

∂

∂X4
+Xµ

∂

∂X5
,

(D.53)

Mµν = Xµ
∂

∂Xν
−Xν

∂

∂Xµ
, (D.54)

D = −κ ∂

∂κ
+ λ

∂

∂λ
= X5

∂

∂X4
−X4

∂

∂X5
, (D.55)

Kµ = −λ ∂

∂Xµ
− 2Xµ

∂

∂κ
= X4

∂

∂Xµ
−X5

∂

∂Xµ
−Xµ

∂

∂X4
+Xµ

∂

∂X5
.

(D.56)
On the other hand, consider generators of rotations in R2,4,

LAB = XA∂B −XB∂A, A,B = 0, . . . , 5 , (D.57)

satisfying the standard commutation relations

[LAB , LCD] = ηADLBC + ηCALDB + ηBCLAD + ηDBLCA . (D.58)
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Comparing (D.53)–(D.56) with (D.57), one observes the correspondence

Mµν = Lµν , D = L54, Pµ = Lµ5 + Lµ4, Kµ = Lµ5 − Lµ4 , (D.59)

or, in matrix form,

LAB =


Mµν

1
2 (Pµ −Kµ) 1

2 (Pµ +Kµ)
0 D

0


 , (D.60)

with LAB = −LBA. This correspondence makes it clear that the conformal
group C(1, 3) is isomorphic to the pseudoorthogonal group SO(2, 4).

This conclusion can readily be extended to the conformal group C(m,n)
acting on coordinates xµ of a pseudoeuclidean space Rm,n of dimension D +
1 = m + n, D > 1. Following the same basic pattern, coordinates of this
space should be supplemented by two new coordinates κ and λ, or XD+1

and XD+2, together with the constraint (D.45), to yield SO(m+ 1, n+ 1), a
linear realization of the conformal Lie algebra commutation relations (D.33)–
(D.42). This isomorphism between C(m,n) and SO(m+1, n+1) implies that
any conformal group C(m,n) is semisimple, excluding the case D = 1 when
the conformal group is infinite-dimensional.

Problem D.1. Derive (D.9).

Problem D.2. Verify (D.33)–(D.42) using expressions (D.28)–(D.31).

Problem D.3. Verify (D.49)–(D.52).

Problem D.4. Prove the formulas (D.53)–(D.56).

E. Grassmannian Variables

Consider a set G which consists of even and odd elements. By definition, even
elements xi are commuting numbers,

xixj − xjxi = 0 , (E.1)

and odd elements θa are anticommuting numbers,

θaθb + θbθa = 0 . (E.2)

Furthermore, even elements commute with odd elements,

xiθa − θaxi = 0 . (E.3)

It follows from (E.2) that the square of any odd element is zero,

θ2 = 0 . (E.4)
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A vector space G with these properties is known as a Grassmann algebra.
In general, the elements of G do not take numerical values; these quantities
are defined by their algebraic properties. The class of even elements contains
a subset of real numbers, which are called c-numbers. Only c-numbers assume
(real or complex) numerical values.

A function of even and odd variables can be defined by the formal expan-
sion,

F (θ) = F0 + F aθa + F abθaθb + · · · , (E.5)

where the F a1···an are antisymmetric c-number coefficients. This series termi-
nates if the θa are finite in number. For example, if θa is a two-component
vector, a = 1, 2, then the highest power is θ1θ2. Thus, the F (θ) is defined by
the set of its coefficients F a1···an .

Derivatives are defined by

dF = dθa
∂F

∂θa
, (E.6)

with dθa on the left (left derivative).
To define ‘integration over Grassmannian variables’, we note that the ab-

stract measure must show translational invariance. For example, turning to
the conventional c-number integral,

∫ ∞

−∞
dxF (x+ a) =

∫ ∞

−∞
dxF (x) . (E.7)

With this requirement, we come to the following basic integration rules:
∫
dθa = 0,

∫
dθa θb =

i√
π
δab . (E.8)

Here, the coefficient of δab may be chosen arbitrarily; the factor i/
√
π is in-

troduced for later convenience. Combining (E.8) and (E.5), one can integrate
any function of Grassmannian variables.

A major application of the Grassmann algebra is supersymmetry. It com-
bines fields of integer and half-integer spins (that is, bosons and fermions)
into a single irreducible multiplet. Supersymmetry acts on an extended space-
time, called superspace. A point in superspace consists of Minkowski spacetime
coordinates xµ and additional anticommuting coordinates θα.

Supersymmetry is an extension of the Poincaré symmetry. Because we do
not explore this idea in the main text, we will not develop it here.

Instead, we discuss the following remarkable result of Parisi and Sourlas.
Let {xµ, θ1, θ2} be a (D + 2)-dimensional superspace where the xµ are coor-
dinates of a D-dimensional Euclidean space and θ1 and θ2 are anticommuting
coordinates which obey,

θ21 = θ22 = θ1θ2 + θ2θ1 = 0 . (E.9)
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Suppose that the quadratic form

x2 + θ1θ2 (E.10)

is invariant under superrotations. Then this superspace is equivalent to an
ordinary (D − 2)-dimensional space. In particular, a space with only the an-
ticommuting coordinates θ1 and θ2 is equivalent to an ordinary space having
dimension −2 (in the sense that physical quantities are obtained by analytic
continuation from positive dimensions). To see this, let us note that
∫
dθ1dθ2f(θ1θ2)=− 1

π

df(u)
du

∣∣∣
u=0

= lim
n→−2

Sn

∫
dr rn−1f(r2)= lim

n→−2

∫
dnrf(r2) ,

(E.11)
where Sn = 2πn/2/Γ

(
1
2 n
)

is the surface of the unit sphere in n dimensions.
We thus see that a D-dimensional superspace is equivalent to an ordinary

space of dimension D − 2 in the sense that
∫
dDx dθ1dθ2 f(x2 + θ1θ2) = − 1

π

∫
dDx f ′(x2) =

∫
dD−2x f(x2) . (E.12)

Problem E.1. Show that

− 1
π
f ′(0) = lim

n→−2
Sn

∫ ∞

0

dr rn−1 f(r2) (E.13)

Hint Write n = −2(1 − δ). Then

Sn =
2

πΓ (−1 + δ)
→ −2δ

π
(E.14)

as δ → 0. The divergent integral (E.13) can be assigned a mathematical
meaning through the regularization,
∫ ∞

0

dr

r3
f(r2) =

∫ ∞

0

dr

r3
[
f(r2) − f(0) − f ′(0)r2

]
+
∫ ∞

0

dr

r3
f(0)+

∫ ∞

0

dr

r
f ′(0) ,

(E.15)
where ∫ ∞

0

dr

r3
f(0) =

∫ ∞

0

dr e−εrrn−1 f(0) , (E.16)

and ∫ ∞

0

dr

r
f ′(0) =

∫ ∞

0

dr e−εrrn+1 f ′(0) . (E.17)

With (E.14)–(E.17),

Sn

∫ ∞

0

dr

r3
f(0) =

2
πΓ (−1 + δ)

ε2
Γ (−1 + 2δ)
−2 + 2δ

f(0) → 0 , (E.18)
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and

Sn

∫ ∞

0

dr

r
f ′(0) =

2
πΓ (−1 + δ)

ε2δ (−1 + 2δ)Γ (−1 + 2δ) f ′(0) → −f
′(0)
π

(E.19)
as ε→ 0 and δ → 0.

F. Distributions

There are three alternative ways of looking at the Dirac delta-function δ(x)
and similar objects called distributions or generalized functions. First, a distri-
bution f is defined as a linear continuous functional on a test function space,
or basic space K, namely, we associate with every test function φ ∈ K a real
number 〈f, φ〉 in such a way that, for any two φ1 and φ2 in K and real numbers
a1 and a2, we have 〈f, a1φ1 + a2φ1〉 = a1〈f, φ1〉+ a2〈f, φ2〉, and any sequence
of test functions φn converging to φ in K implies convergence of the numerical
sequence 〈f, φn〉 → 〈f, φ〉. Second, a singular functional f , such as δ(x), is
defined as a limit of a sequence of regular functionals. The third definition of
generalized functions on the real axis arises in studies of boundary values of
functions which are analytic in a complex half-plane. Any of these definitions
may be found attractive for some problems, and less convenient in others; it
is resonable to invoke them interchangeably.

Let f(x) be an ordinary summable function. It becomes a distribution
through the use of the linear functional

〈f, φ〉 =
∫ ∞

−∞
dx f(x)φ(x) , (F.1)

where φ are test functions disappearing at infinity. Rather than specify the
function f(x) by values it takes on the real axis R, we reproduce it almost
everywhere on R from data reported by the linear functional (F.1) for all test
functions φ ∈ K when K is reach enough. If a distribution f is realized in
terms of a conventional integral construction such as (F.1), we call it regu-
lar, otherwise, that is, when (F.1) has only a symbolic meaning, f is called
singular. Consider, for instance, the Heaviside step function

θ(x) =
{ 1 if x > 0,

0 otherwise.
(F.2)

We have a regular distribution

〈θ, φ〉 =
∫ ∞

0

dxφ(x) . (F.3)

By contrast, the Dirac delta-function is a singular distribution whose action
on test functions is given by
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〈δ, φ〉 =
∫ ∞

−∞
dx δ(x)φ(x) = φ(0). (F.4)

Letting φ(x) = 1, ∫ ∞

−∞
dx δ(x) = 1. (F.5)

It is generally taken that test functions φ must be infinitely differentiable
and fall rapidly as |x| → ∞. This enables us to define the derivative of a
distribution f by

∫ ∞

−∞
dx f ′(x)φ(x) =

∫ ∞

−∞
dx f(x)φ′(x) , (F.6)

or, symbolically,
〈f ′, φ〉 = −〈f, φ′〉. (F.7)

For example,

〈θ′, φ〉 = −〈θ, φ′〉 = −
∫ ∞

0

dxφ′(x) = φ(0) , (F.8)

and so
θ′(x) = δ(x) . (F.9)

Every distribution has derivatives of all orders. For example, the nth deriv-
ative of δ(x) is a distribution acting as

〈δ(n), φ〉 = (−1)n

∫ ∞

−∞
dx δ(x)φ(n)(x) = (−1)n φ(n)(0) . (F.10)

A test function φ(x) is said to be finite if it has a finite support (which is,
by definition, the closure of the set of points x where φ is nonzero). A basic
space, designated as D, is the space of all finite functions. In other words,
D contains all infinitely differentiable real functions vanishing outside closed
intervals. As an example, consider

φ(x) =
{

exp
(
− 1

a2−x2

)
if |x| < a,

0 elsewhere.
(F.11)

This finite function is said to be concentrated in the compact region |x| ≤ a.
Distributions on D form a topological vector space denoted by D′.

A wider basic space S involves all infinitely differentiable real functions
that approach zero more rapidly than any inverse power of x as |x| → ∞. Its
associated space of distributions is denoted by S ′. Because finite test functions
belong to S, D ⊂ S, and S ′ ⊂ D′. Indeed, we may regard exp(x2) as a
distribution on D′ but not on S ′.

In the nonlocal electrodynamics discussed in Sect. 10.5, the appropriate
basic space Z contains slowly increasing entire functions, that is, all functions
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φ(z) of the complex variable z = x+iy, which are analytic everywhere, except
at infinity, and are subject to the conditions

|znφ(z)| ≤ Cn exp(−a|x| + b|y|), n = 0, 1, . . . , N , (F.12)

where a, b, Cn, and N are constants (dependent on φ). Note that Z contains
no finite function, because an analytic function vanishing on a finite interval
is zero everywhere3.

One may wonder of whether it is possible to change the integration variable
x in (F.1). Let U : x → y = U(x) be a one-to-one smooth mapping, and
U−1 : y → x = U−1(y) its inverse. By analogy with classical analysis,

∫ ∞

−∞
dx f [U(x)]φ(x) =

∫ ∞

−∞
dy

1
|U ′| f(y)φ[U−1(y)] , (F.13)

where U ′ = dy/dx. To be specific, consider the delta-function and its deriva-
tives.

(i) Translation U(x) = x− a:
∫ ∞

−∞
dx δ(x− a)φ(x) =

∫ ∞

−∞
dy δ(y)φ(y + a) = φ(a). (F.14)

(ii) Dilatation U(x) = kx:

δ(kx) =
1
|k| δ(x) . (F.15)

This is interpreted as that δ(x) is a homogeneous function of order −1.
(iii) Reflection U(x) = −x:

δ(n)(−x) = (−1)n δ(n)(x) , (F.16)

in particular
δ(−x) = δ(x) , (F.17)

which suggests that δ(x) may be regarded as an even function.
(iv) A general smooth one-to-one transformation U(x):

δ[U(x)] =
∑

n

1
|U ′(xn)| δ(x− xn) , (F.18)

where xn are ordinary roots of the equation U(x) = 0.
Two cases of particular interest are δ(x2 − a2) and sgn(x0) δ(x2 − a2),

where x2 is the squared four-dimensional radius vector x2 = x0
2 − x2, and

3 It may appear that expression (F.11) provides a counterexample of this state-
ment: φ(x) is nonzero in the region |x| < a, and vanishes everywhere outside it.
However, φ(x) is not analytic (even if infinitely differentiable), since it is built

from exp
(
− 1

a2−z2

)
which has essential singularities at z = a and z = −a.
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sgn(s) = θ(s) − θ(−s) (F.19)

is the signum function. Letting a > 0, the equation U(x) = x2 − a2 = 0 has
two different roots x0 = ±

√
x2 + a2, while ∂U/∂x|x0 = 2x0, hence

δ(x2 − a2) =
1
2a

[
δ
(
x0 −

√
x2 + a2

)
+ δ

(
x0 +

√
x2 + a2

)]
, (F.20)

and

sgn(x0) δ(x2 − a2) =
1
2a

[
δ
(
x0 −

√
x2 + a2

)
− δ

(
x0 +

√
x2 + a2

)]
. (F.21)

To gain an insight regarding distributions as limits of sequences of func-
tions, imagine for a while that δ(x) is a regular function which looks like a
sharp pulse normalized to unit area, as it must according to (F.5). Each of
the following sequences of functions has this property

δε(x) =
1

2
√
πε

exp
(
−x

2

4ε

)
, (F.22)

δε(x) =
ε

π(x2 + ε2)
, (F.23)

δΛ(x) =
sin(Λx)
πx

. (F.24)

As ε approaches zero, or Λ goes to infinity, the peak becomes high and narrow,
but normalization is preserved,

1
2
√
πε

∫ ∞

−∞
dx e−

x2
4ε =

ε

π

∫ ∞

−∞

dx

x2 + ε2
=

1
π

∫ ∞

−∞
dx

sin(Λx)
x

= 1. (F.25)

With these delta sequences, it is straightforward to show that

δ(x) =
1
2π

∫ ∞

−∞
dk eikx. (F.26)

Indeed, by cutting off the integration region we obtain (F.24),

1
2π

∫ Λ

−Λ

dk eikx =
sin(Λx)
πx

, (F.27)

which approximates δ(x) in the limit Λ→ ∞.
A further trick is to regularize the integrand of (F.26) by the factor

e−εk2
, ε > 0, which goes to 1 as ε → 0. The result is the delta sequence

defined in (F.22),

1
2π

∫ ∞

−∞
dk eikx−εk2

=
1

2
√
πε

exp
(
−x

2

4ε

)
. (F.28)
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Choosing a slightly more involved regularization factor θ(k)e−εk+θ(−k)eεk,
that approaches θ(k) + θ(−k) = 1 as ε→ 0, we obtain

1
2π

(∫ 0

−∞
dk eikx+εk +

∫ ∞

0

dk eikx−εk

)
=

1
2π

(
1

ix+ ε
− 1
ix− ε

)
=

ε

π(x2 + ε2)
.

(F.29)
This expression is identical to (F.23).

In view of relation (F.26), the Fourier transform of δ(x) is 1,

δ̃(k) =
∫ ∞

−∞
dx e−ikx δ(x) = 1 , (F.30)

and the Fourier transforms of derivatives of δ(x) are monomials,

δ̃(n)(k) =
∫ ∞

−∞
dx e−ikx δ(n)(x) = (ik)n . (F.31)

From (F.29) we see that the Fourier transform of θ(x) is

θ̃(k) =
∫ ∞

−∞
dx e−ikx θ(x) =

i

−x+ iε
. (F.32)

Although distributions are not pointwise functions, their local properties
can still be examined if the basic space contains finite functions. Indeed, a
distribution f vanishes in an open domain U of a point x if 〈f, φ〉 = 0 for
every test function φ which has its support in U . The support of a distribution
f is defined as the smallest closed set of points outside which f vanishes.

One can conclude from (F.4) that the support of δ(x) is a single point
x = 0, in other words, δ(x) is concentrated in the compact (one-point) set
x = 0. Equations

x δ(x) = 0 , (F.33)

x δ′(x) = −δ(x) , (F.34)

xn δ(n)(x) = (−1)n n! δ(x) , (F.35)

derivable from (F.4) and (F.10), are immediate consequences of this fact.
It is also clear that (F.34) follows from the Euler theorem on homogeneous
functions.

Conversely,
y(x) = c δ(x) (F.36)

(where c is an arbitrary constant) is the general solution to the equation

x y(x) = 0. (F.37)

Furthermore, the general solution to the equation

xNy(x) = 0 (F.38)
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is

y(x) =
N−1∑
n=0

cn δ
(n)(x) , (F.39)

where cn are arbitrary coefficients. To prove this statement, write the Fourier
transform of (F.38),

ỹ(N)(k) = 0. (F.40)

This ordinary differential equation is readily solved to give the Fourier trans-
form of (F.39),

ỹ(k) =
N−1∑
n=0

cn (ik)n. (F.41)

Note in passing that sgn(x0) δ(x2 − a2) is a Lorentz invariant function
despite the presence of the frame dependent factor sgn(x0). Indeed, as (F.21)
shows, this function is concentrated in two sheets of the hyperboloid x0 =√

x2 + a2 and x0 = −
√

x2 + a2, each being a Lorentz invariant region.
We saw that the Fourier transform of distributions may be analytic func-

tions. In general, distributions on the real axis R of points x are closely related
to boundary values of analytic functions on the complex plane C of points
z = x+ iy. Such a relation can be illustrated by the formula

1
x+ iε

= P
(

1
x

)
− iπδ(x) , (F.42)

where P stands for the Cauchy principal value. To prove it, we first note the
identity

1
x+ iε

=
1
2

(
1

x+ iε
+

1
x− iε

)
+

1
2

(
1

x+ iε
− 1
x− iε

)
. (F.43)

Suppose that test functions φ(x) may be continued to the complex plane.
Then (F.43) can be interpreted as a rule for avoiding singularities when each
term, multiplied by φ(x), is integrated over the real axis. Because the singular
point z = −iε approaches z = 0 in the limit ε → 0, the integration contour
must be slightly curved in the upper half-plane to yield a small integration
semicircle Γ+, as in Fig. .1. Likewise, the singular point z = iε, descending
towards the real axis, makes the integration contour slightly bent in the lower
half-plane forming a semicircle Γ−. Integration of the first parenthesized term
gives just what is meant by the Cauchy principal value,

1
2

∫ ∞

−∞
dx

(
1

x+ iε
+

1
x− iε

)
φ(x) =

(∫ −ε

−∞
+
∫ ∞

ε

)
dx

φ(x)
x

, (F.44)

because the integrals along Γ+ and Γ− are equal but opposite in sign and
cancel,
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Fig. .1. The integration contours suitable for (F.43)

∫
Γ+

dz

z
φ(z) +

∫
Γ−

dz

z
φ(z) = i

(∫ 0

π

−
∫ 0

π

)
dϑφ(εeiϑ) = 0 . (F.45)

Thus,

1
2

∫ ∞

−∞
dx

(
1

x+ iε
+

1
x− iε

)
φ(x) =

∫ ∞

−∞
dxP

(
1
x

)
φ(x) . (F.46)

Integration of the second parenthesized term gives

1
2

∫ ∞

−∞
dx

φ(x)
x+ iε

− 1
2

∫ ∞

−∞
dx

φ(x)
x− iε

= −1
2

∮
dz

φ(z)
z

, (F.47)

where the closed integration contour is traversed in a counterclockwise direc-
tion with respect to the point z = 0. We thus arrive at the Cauchy integral
formula, which, in effect, amounts to the delta-function,

1
2πi

∮
dz

φ(z)
z

= φ(0) =
∫ ∞

−∞
dx δ(x)φ(x) . (F.48)

This completes proof of (F.42). Figure 1 is a pictorial representation of this
argument.

In spaces of higher dimension, the delta-function is defined as a product
of expressions whose action is equivalent to that of one-dimensional delta-
functions. For example, in Cartesian coordinates, the three-dimensional delta-
function is

δ3(x) = δ(x1) δ(x2) δ(x3) , (F.49)

which gives ∫
d3x δ3(x)φ(x) = φ(0). (F.50)

We now see that the support of δ3(x) is a single point x = 0.
Let A: x → y = Ax be a nonsingular linear mapping (that is, Aij =

∂yi/∂xj is a constant matrix such that detA �= 0). Then (F.13) extends to
the three-dimensional case as follows

δ3(Ax) =
1

|detA| δ
3(x). (F.51)
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If A is specified to be a rotation (in which case |detA| = 1), then

δ3(Ax) = δ3(x). (F.52)

Hence, δ3(x) is a rotationally invariant distribution.
In spherical coordinates,

δ3(x) =
1
r2
δ(r)

1
sinϑ

δ(ϑ) δ(ϕ). (F.53)

Dilatations are characterized by the matrices Aij = k δij , implying detA =
k3. In lieu of (F.15),

δ3(kx) =
1

|k|3 δ
3(x). (F.54)

With (F.49) and (F.26), we have

δ3(x) =
1

(2π)3

∫
d3k eik·x , (F.55)

where k · x = k1x1 + k2x2 + k3x3, and the multiple integral is understood as
usual, ∫

d3k =
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

∫ ∞

−∞
dk3. (F.56)

Likewise, the four-dimensional delta-function is

δ4(x) = δ(x0) δ(x1) δ(x2) δ(x3) , (F.57)

where x0, x1, x2, x3 are rectilinear coordinates in a particular Lorentz frame.
One can conclude that δ4(x) is a Lorentz invariant distribution concentrated
at xµ = 0, and

δ4(x) =
1

(2π)4

∫
d4k e−ik·x. (F.58)

Here, k · x stands for the pseudoeuclidean scalar product k0x0 − k · x.
In studies of nonlocal field theories à la Efimov, we deal with distributions

of the type

E(x) =
∞∑

n=0

cn�nδ4(x) , (F.59)

where � is the d’Alembertian. The Fourier transform of such a distribution is

Ẽ(k2) =
∞∑

n=0

(−1)ncnk
2n . (F.60)

Such a power series is an analytic function with radius of convergence depen-
dent on the behavior of the cn. Of primary concern to the present discussion
are those Ẽ(k2) for which the power series (F.60) are convergent everywhere
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in the complex k2-plane, and hence Ẽ(k2) are analytic functions everywhere
except at infinity, that is, entire functions.

We now recall some notions of the theory of entire functions. Let F be
a function of the complex variable z = Reiϑ, represented by an everywhere
convergent power series

F (z) =
∞∑

n=0

cnz
n . (F.61)

It is imperative that the entire function has an essential singularity at z = ∞.
This implies that, when going to |z| = ∞ along various directions, |F (z)| may
vanish asymptotically, or grow without bound, or approach any specific value.
The growth of an entire function is specified by its order ∆ and its type σ,

∆ = lim
R→∞

ln ln |F (z)|
lnR

, (F.62)

σ = lim
R→∞

ln |F (z)|
R∆

. (F.63)

It follows from (F.62) and (F.63) that the asymptotic growth of |F (z)| obeys
the bound

|F (z)| < C exp
(
σR∆

)
, R→ ∞ . (F.64)

If 0 < σ <∞, then F is said to be a function of normal type, and if σ = 0,
then F is a function of minimal type.

The order and type of entire functions are related to the rate of decrease
in sequence of its Taylor coefficients

∆ = − lim
n→∞

n lnn
ln |cn|

, (F.65)

(σ e∆)1/∆ = lim
n→∞

n1/∆|cn|1/n. (F.66)

Indeed, any term of the power series (F.61) obeys the obvious inequality

|cn|Rn ≤ max
ϑ

|F (Reiϑ)| , (F.67)

and, by (F.64),
|cn| < CR−n exp(σR∆) . (F.68)

The right-hand-side of this inequality is minimized at

R =
( n

σ∆

) 1
∆

. (F.69)

Hence for large n we have

|cn| ∼
(
eσ∆

n

) n
∆

. (F.70)

which is tantamount to stating that (F.65) and (F.66) hold.



446 Mathematical Appendices

When it comes to entire functions of order 1, (F.66) becomes

σ =
1
e

lim
n→∞

n |cn|1/n. (F.71)

An important characteristic of such functions is the directrix H(ϑ) which is
defined as

H(ϑ) = lim
R→∞

ln |F (Reiϑ)|
R

. (F.72)

Consider functions with
H(ϑ) = � sinϑ . (F.73)

Entire functions with such a directrix behave asymptotically as

|F (Reϑ)| ≤ C exp(�R sinϑ), R→ ∞ . (F.74)

Problem F.1. Show that

δ(sinx) =
∞∑

n=−∞
δ(x− πn) . (F.75)

Problem F.2. Verify

lim
ε→0

1
2
√
πε

∫ ∞

−∞
dxφ(x) exp

(
−x

2

4ε

)
= φ(0) , (F.76)

and similar equations for the delta sequences (F.23) and (F.24).

Problem F.3. Show that the following sequences of regular functions

θε(x) =
1
π

[π
2

+ arctan
(x
ε

)]
, θΛ(x) =

1
exp(−Λx) + 1

(F.77)

approximate the Heaviside step function θ(x) as ε→ 0, and Λ→ ∞.

Problem F.4. Show that (F.34) generalizes to the four-dimensional case as
follows

(x · ∂) δ4(x) = −4 δ4(x) . (F.78)

Notes

1. A. An exhaustive account of differential forms and their applications can
be found in many books, for example: De Rham (1955), Spivak (1965, 1974),
Cartan (1967), Schwartz (1967), and Dubrovin, Fomenko & Novikov (1992).

2. B. Lie (1888, 1890, 1893) laid the foundation of the theory of Lie groups
and Lie algebras. Of many mathematical books devoted to this subject we
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would like to mention Pontryagin (1939), and Bourbaki (1968). There are
texts oriented to a general physics audience. An example is provided by Georgi
(1982). The books by Gel’fand et al. (1963), Naimark (1964), and Barut &
Ra̧czka (1977) give the reader a comprehensive idea of infinite-dimensional
unitary representations of the Lorentz and Poincaré groups.

3. C. Most of the basic properties of γ-matrices presented here is due to Pauli
(1936).

4. D. The conformal group is discussed in many texts on mathematical
physics, of which we mention two: Dubrovin, Fomenko & Novikov (1992), and
Fushchich & Nikitin (1987). In this Appendix, we summarize results which
occur frequently in the physics literature, following Wess (1960), Kastrup
(1962), Fulton et al. (1962), and Barut & Haugen (1972). An application of
dilatation invariance in particle physics can be found in the book by Coleman
(1985), Chap. 3. D + 1 = 2 is of basic importance in string theory. In this
case, the conformal group is infinite. For a review of conformal invariance in
string theory see Green, Schwartz & Witten (1987), Polchinski (1998), and
Siegel (1999).

5. E. The supersymmetry was discovered by Gol’fand & Likhtman (1971),
Ramond (1971), Neveu & Schwarz (1971), Gervais & Sakita (1971), Volkov &
Akulov (1972), and Wess & Zumino (1972). Parisi & Sourlas (1979) showed
that field theories in a D-dimensional superspace {xµ, θ, θ̄} with D commuting
coordinates xµ and two anticommuting coordinates θ and θ̄ are equivalent
to similar field theories in ordinary (D − 2)-dimensional space {xµ}. The
dimensional reduction D → D−2 is attributed to the negative dimensionality
of the anticommuting variables θ and θ̄. There is a considerable amount of
pedagogical literature on supersymmetry, for example, Wess & Bagger (1983),
Gates et al. (1983), and Berezin (1987). This subject is discussed to some
extent in many texts on quantum field theory. Thorough reviews can be found
in Mohapatra (1986), Siegel (1999), and Weinberg (1996).

6. F. The basic reference on the distribution theory is Schwartz (1950–1951),
Gel’fand & Shilov (1964, 1968), and Bremermann (1966). For the use of distri-
butions in quantum field theory see Bogoliubov, Logunov, Oksak & Todorov
(1990). Nonlocal distributions have been studied extensively by Efimov (1968).
For basic properties of entire functions the reader may consult Titchmarsh
(1932), and Paley & Wiener (1934).
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Cartan, H. (1967). Calcul différentiel formes différntielles. Paris: Hermann.
Casalbuoni, R. (1976a). Relatively and supersymmetries. Physics Letters, B

62, 49.
Casalbuoni, R. (1976b). Pseudoclassical description of spinning particle.

Nuovo Cimento, A 33, 115.
Cheng, T.-P. & L.-F. Li (1984). Gauge Theory of Elementary Particle Physics.

Oxford: Clarendon.



452 References

Chew, G. F. & S. C. Frautschi (1961). Dynamical theory for strong interac-
tions at low momentum transfers but arbitrary energies. Physical Review,
123, 1478.

Close, F. E. (1979). An Introduction to Quarks and Partons. New York: Aca-
demic.

Coleman, S. (1966). The invariance of the vacuum is the invariance of world.
Journal of Mathematical Physics, 7, 787.

Coleman, S. (1983). The magnetic monopole fifty years later. In The Unity
of the Fundamental Interactions, Proceedings of the 19th Course of the In-
ternational School of Subnuclear Physics. Edited by A. Zichichi. London:
Plenum, pp. 21-117.

Coleman, S. (1985). Aspects of Symmetry: Selected Erice Lectures. Cambridge:
Cambridge University Press.

Corben, H. C. (1968). Classical and Quantum Theories of Spinning Particles.
San Francisco: Holden-Day.
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of the Poincaré group and breakdown of P -invariance. JETP Letters, 13,
323.

Gordon, W. (1926). Der Compton Effekt nach der Schrödingerschen Theorie.
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Grünbaum, A. (1963). Philosophical Problems of Space and Time. New York:

Knopf. 2nd enlarged edition 1973. Dordrecht: Reidel.
Guralnik, G. C., C. R. Hagen & T. W. B. Kibble (1964). Global conservation

laws and massless particles. Physical Review Letters, 13, 585.
Haag, R. (1955). Die Selbstwechselwirkung des Elektrons. Zeitschrift für

Naturforschung, 10a, 752.



456 References

Hamilton, W. R. (1834). On a general method in dynamics, by which the study
of the motions of all free systems of attracting or repelling points is reduced
to the search and differentiation of the central relation or characteristic
function. Philosophical Transactions of the Royal Society, London. 2, 247.

Han, M. Y. & Y. Nambu (1965). Three-triplet model with double SU(3)
symmetry. Physical Review, B 139, 1006.

Hanson, A. J. & T. Regge (1974). The relativistic spherical top. Annals of
Physics, 87, 498.

Hanson, A. J., T. Regge & C. Teitelboim (1976). Constrained Hamiltonian
Systems. Rome: Accademia Nazionale dei Lincei.

Hara, O. (1971). On origin and physical meaning of Ward-like identity in
dual-resonance model. Progress of Theoretical Physics, 46, 1549.

Hasenfratz, P. & G. ’t Hooft (1976). Fermion-boson puzzle in a gauge theory.
Physical Review Letters, 36, 1119.

Hawking, S. W. & G. F. R. Ellis (1973). The Large Scale of Spacetime. Cam-
bridge: Cambridge University Press.

Heaviside, O. (1889). On the electromagnetic effects due to the motion of
electrification through a dielectric. Philosophical Magazine, 27, 324.

Heaviside, O. (1892). Electrical Papers. Vols. I and II. London: Macmillan.
Heaviside, O. (1893, 1899, 1912). Electromagnetic Theory. Vols. I, II, and III.

London: The Electrician Co. 2nd edition 1922. London: Benn. 3rd edition
1951. London: Spon.

Heaviside, O. (1902). The waste of energy from a moving electron. Nature,
67, 6.

Hehl, F. W. & Y. N. Obukhov (2003). Foundation of Classical Electrodynam-
ics: Charge, Flux, and Metric. Boston: Birkhäuser.
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Hertz, H. (1888). Über die Einwirkung einer geradlinigen elektrischen Schwin-
gung auf eine benachbarte Strombahn. Annalen der Physik, 34, 155.

Hestenes, D. (1986). New Foundation of Classical Mechanics. 3rd edition 1990.
Dordrecht: Kluwer.

Higgs, P. S. (1964). Broken symmetries, massless particles and gauge fields.
Physics Letters, 12, 132.

Higgs, P. S. (1966). Spontaneous symmetry breakdown without massless
bosons. Physical Review, 145, 1156.

Hilbert, D. (1915). Grundlagen der Physik. Nachrichten von der Königlichen
Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische
Klasse, 3, 395.



References 457

Hill, E. L. (1951). Hamilton’s principle and the conservation theorems of math-
ematical physics. Reviews of Modern Physics, 23, 253.

Hoyle, F. & J. V. Narlikar (1995). Cosmology and action-at-a-distance electro-
dynamics. Reviews of Modern Physics, 67, 113.

Hoyle, F. & J. V. Narlikar (1996). Lectures on Cosmology and Action at a
Distance Electrodynamics. Singapore: World Scientific.

Huang, K. (1952). On the Zitterbewegung of the Dirac electron. American
Journal of Physics, 20, 479.

Iofa, M. Z. & V. Ya. Fainberg (1969). Wightman formulation for nonlocalized
field theory. Soviet Physics – JETP, 56, 1644.

Iwanenko, D. & A. Sokolow (1953). Die Klassische Feldtheorie. Translated
from the Russian edition 1951. Berlin: Akademie.

Jackiw, R. & N. Manton (1980). Symmetries and conservation laws in gauge
theories. Annals of Physics, 127, 257.

Jackiw, R. & C. Rebbi (1976). Spin from isospin in a gauge theory. Physical
Review Letters, 36, 1116.

Jackiw, R. & P. Rossi (1980). Stability and bifurcation in Yang–Mills theory.
Physical Review, D 21, 426.

Jackson, J. D. (1962). Classical Electrodynamics. 2nd edition 1975, 3rd edition
1998. New York: Willey.

Jackson, J. D. & L. B. Okun (2001). Historical roots of gauge invariance.
Reviews of Modern Physics, 73, 663.

Jaffe, A. (1967). High energy behavior in quantum field theory, I. Strictly
localizable fields. Physical Review, 158, 1454.

Jaffe, A. & J. Glimm (1987). Quantum Physics. Heidelberg: Springer.
Jaffe, A. & C. M. Taubes (1980). Vortices and Monopoles. Boston: Birkhäuser.
Jaffe, A. & E. Witten (1999). Quantum Yang–Mills theory. Available at

http://www.claymath.org/prize-problems/.
Jammer, M. (1954). Concepts of Space – A History of the Theories of Space

in Physics. Cambridge: Harvard University Press. 3rd edition 1993. New
York: Dover.

Jammer, M. (1961). Concepts of Mass in Classical and Modern Physics. Cam-
bridge: Harvard University Press.

Jammer, M. (1962). Concepts of Force. New York: Harper and Brothers.
Johnson, C. V. (2003). D-Branes. Cambridge: Cambridge University Press.
Julia, B. & A. Zee (1975). Poles with both magnetic and electric charges in

non-Abelian gauge theory. Physical Review, D 11, 2227.
Källen, G. (1964). Elementary Particle Physics. Reading: Addison–Wesley.
Kastrup, H. A. (1962). Zur physikalischen Deutung und darstellungstheoreti-

schen Analyse der konformen Transformationen von Raum und Zeit. An-
nalen der Physik, 7, 388.

Kiritsis, E. (1998). Introduction to Superstring Theory. Leuven: Leuven Uni-
versity Press. E-print hep-th/9709062.

Kirzhnits, D. A. (1972). Weinberg model and the ‘hot’ universe. JETP Letters,
15, 745.



458 References

Kirzhnits, D. A. & A. D. Linde (1972). Macroscopic consequences of the Wein-
berg model. Physics Letters, B 42, 471.

Klapdor-Kleingrothaus, H. V. & K. Zuber (1997). Teilchenastrophysik. Stutt-
gart: Teubner. English translation 1999: Particle Astrophysics. London: The
Institute of Physics Publishing.

Klein, F. (1872). Programm zum Eintritt in die philosophische Fakultät der
Universität zu Erlangen. Erlangen: Deichert. Reprinted in Mathematische
Annalen, 43, 63, 1893.

Klein, O. (1926). Quantum Theorie und fünfdimensionale Relativitätstheorie.
Zeitschrift für Physik, 37, 895.

Klein, O. (1938). On the theory of charged fields. In New Theories in Physics.
Conference organized by the International Union of Physics and the Polish
Intellectual Co-operation Committee. Warsaw, 30 May-3 June, 1938. Paris:
International Institute of Intellectual Co-operation (Scientific Collection),
pp. 77-93.

Konopleva, N. & V. Popov (1981). Gauge Fields. Translated from the Russian
edition 1972. Chur, Switzerand: Harwood Academic.

Kosyakov, B. P. (1976). Finite self-interaction of the classical electromagnetic
field. Theoretical and Mathematical Physics, 27, 423.

Kosyakov, B. P. (1991). Field of arbitrarily moving colored charge. Theoretical
and Mathematical Physics, 87, 632.

Kosyakov, B. P. (1992). Radiation in electrodynamics and the Yang–Mills
theory. Soviet Physics – Uspekhi, 35, 135.

Kosyakov, B. P. (1994). Exact solutions of the Yang–Mills equations with the
source in the form of two point color charges. Theoretical and Mathematical
Physics, 99, 409.

Kosyakov, B. P. (1998). Exact solutions in the Yang–Mills–Wong theory. Phys-
ical Review, D 57, 5032. E-print hep-th/9902039.

Kosyakov, B. P. (1999). Exact solutions of classical electrodynamics and the
Yang–Mills– Wong theory in even-dimensional space-time. Theoretical and
Mathematical Physics, 119, 493. E-print hep-th/0207217.

Kosyakov, B. P. (2001). Physical meaning of renormalizability. Physics of
Particles and Nuclei, 32, 488. E-print hep-th/0011235.

Kosyakov, B. P. (2003). On the inert properties of particles in classical theory.
Physics of Particles and Nuclei, 34, 808. E-print hep-th/0208035.

Kotkin, G. L. & V. G. Serbo (1971). Collection of Problems in Classical Me-
chanics. Translated from the Russian edition 1969. Oxford: Pergamon.

Kudar, J. (1926). Zur vierdimensionalen Formulierung der undulatorischen
Mechanik. Annalen der Physik, 81, 632.
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Poincaré, H. (1902). Science et hypothèse. Paris: Flammarion.
Poincaré, H. (1904). L’etat actuel et l’avenir de la Physique mathematiqie.

Bulletin des Sciences Mathematiques, 28, 302.
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Poincaré–Planck, 85, 202, 210, 378

Polyakov, 292

Yang–Mills, 290, 383

action at a distance, 87, 104, 124, 403

action principle, 197, 236

action–reaction, 51, 52, 104, 113, 120

extended principle, 52, 129, 134, 386

addition of velocities, 7, 10

adjoint representation, 62, 287, 418

advanced solution

to the Maxwell–Lorentz equations,
185

to the Yang–Mills equations, 316

aether, 48

affine manifold, 32

Aharonov–Bohm effect, 192

Ampère’s molecular current, 148

law, 138, 139

angular dependence of radiation, 262

angular momentum, 83, 85, 88, 98, 110,
207, 263, 335, 342, 345

intrinsic (spin), 98, 120, 207

orbital, 98, 110, 208

ansatz, 142, 147, 189, 284, 340, 343, 350
Maxwell–Lorentz theory, 183
six-dimensional theory, 186, 377
Yang–Mills–Wong theory, 310, 319

anticommutation relations, 200, 424
antineutrino, 205
antiparticle, 132, 133, 222
antiquark, 295, 308, 315, 339, 343
antisymmetrization, 26
asymptotic condition, 269, 272, 277,

283, 356, 357, 361, 395, 401
atomic nucleus, 296
automorphism, 14, 19, 38, 49, 222, 315
auxiliary variable, 87, 93, 247, 288
axial vector, 36, 61, 66, 298, 427

background field, 331, 332, 334, 344,
345, 347

Barut regularization, 281–284
barycenteric see center of mass, 330,

335
baryon, 295, 305, 329, 345, 346, 351
basis

matrix, 62, 315, 330, 336, 408, 425
orthonormal, 17, 23, 142
overcomplete, 320, 421
vector, 11

Bianchi identity, 135, 226, 291, 292,
383, 387

binary system, 109, 110, 226, 335, 342
binding energy, 109, 110
Biot–Savart law, 148, 191
bivector, 26, 179–183, 186, 187, 190
Bondi k-calculus, 6, 49



470 Index

boost, 8, 10, 41, 43, 54, 127, 390, 427
Bose–Einstein condensation, 347
bound state, 111
boundary condition

advanced, 168, 169, 320, 402
Dirichlet, 237, 243
Neumann, 237, 238, 241, 243
periodic, 237
retarded, 167, 168, 170–172, 185, 398

brane, 235, 242, 248, 250, 408
Dirichlet (D-brane), 237

Brillouin zone, 304

Cabibbo–Ferrari vector potentials, 189,
193, 226

canonical equations, 94, 96, 101
transformations, 80, 89

Cartan basis, 286, 326, 344, 421, 422
differential form, 60, 135, 140, 152
subalgebra, 318, 321, 418, 421

Cartan-Weyl basis, 326, 331, 347, 421,
422

Cauchy problem, 70, 72, 79, 137, 165
for the wave equation, 161, 244

causal cycle, 47
causality, 38, 47, 50, 169, 408
center of mass, 1, 85, 101, 102, 239, 240,

244, 330
frame, 88, 114–117, 119, 123–125

centrifugal term, 106, 107, 384
nonrelativistic, 109

characteristic surface, 251, 319
charge

chromomagnetic, 339, 350
color, 62, 63, 285–287, 293, 308–315,

317–320, 322–331, 333, 342, 347,
350, 353, 355

electric, 52, 59, 129, 187, 191, 192
elementary, 59
magnetic, 52, 61, 110, 119, 133, 150,

187, 188, 190, 191, 226, 292, 340
charge density, 130
charge quantization, 59
charge-coupling, 59, 134
charge-source, 128–130, 133, 134
chromoelectric flux, 339, 350
classical electron radius, 360
Clifford algebra, 424, 425
clocks, 3, 7

atomic, 4, 6, 44
light, 4
moving, 44, 51
synchronized, 10

closed system, 75, 88, 202, 265
collisions, 107, 113, 156, 308, 349

elastic, 114, 117, 118, 245
head-on, 107, 113
inelastic, 114, 351

color cell, 325, 345
neutrality, 307
singlet, 289, 314, 329, 344

completeness condition, 23, 29
complexification, 316, 344
Compton wavelength, 343, 359
confinement, 307, 308, 330, 339, 343,

349, 409
conformal invariance, 216, 218, 219,

222, 314, 329, 344, 406, 432, 447
special, 217, 221, 224, 428, 429, 431,

433
conformal transformation, 217, 219,

407, 433
conservation

angular momentum, 52, 83, 88, 98,
111, 226, 238, 283, 347

charge, 85, 128–130, 132–134, 228,
230–233, 241

energy, 82, 114, 118, 246, 363
four-momentum, 84, 101, 114, 207
momentum, 52, 82, 114

conservation law
covariant, 291
global, 114, 134, 198
local, 130, 188, 213, 229, 231, 246,

260, 305, 361
conserved quantity, 81, 83, 217, 275
constant of motion, 81
constraint, 72, 94, 142
contraction of indices, 25
coordinate variation (local/total), 76
coordinates

affine, 15
Cartesian, 34, 40, 75, 144, 209, 386
curvilinear, 34, 75, 80, 83, 209, 210
cylindrical, 139, 337
generalized, 75
light cone, 159, 239, 257
polar, 75, 83, 87, 105, 337



Index 471

rectilinear, 79, 83, 444

spherical, 144, 151, 191, 373, 444

transverse, 239, 241

Coulomb potential, 144, 150

Coulomb singularity, 144, 173, 174, 390

counter-acceleration, 362

coupling constant

electromagnetic, 294

Fermi, 201

gravitational, 248, 408

pseudoscalar, 61

scalar, 59

strong force, 294

vector, 62

weak hypercharge/isospin, 294

Yang–Mills, 285

Yukawa, 201, 203, 218

covariant retarded variables, 171, 174,
179, 183, 192, 318

covector, 14, 17, 24, 25, 32, 33, 219, 224

curl, 36, 125, 142, 158, 190

current, 229, 257, 393, 398

axial, 234

Chern–Simons, 293

color charge, 290, 291, 317

electric charge, 130, 135, 187, 232

magnetic charge, 188, 226

Noether, 198, 207, 208, 217, 218, 230

stationary, 138, 146, 148

curvature, 255

principal fiber bundle, 301

world line, 275, 365, 367, 374, 377,
382, 404

cutoff, 266, 271, 332, 359

d’Alembert formula, 244

d’Alembertian, 154, 167, 394, 444

damped oscillator, 89, 120

decay, 108, 117, 131

deconfinement, 308

degrees of freedom

color, 286, 305, 347, 349

field, 75, 154, 189, 402, 404, 408

initial, 357, 370, 403

mechanical, 52, 113, 246, 357

rearranged, 249, 362, 401, 406

redundant, 228, 242

delta-function, 129, 131, 150, 167, 168,
183, 279, 338, 403, 437, 439, 443,
444

derivative

covariant, 230, 232, 255, 288, 289

directional, 411

exterior, 153, 412, 415

normal, 161, 165

partial, 87, 159, 196, 210, 230, 250

total, 88, 199, 290, 292

variational, 210

DeWitt vector potential, 157, 192

diffeomorphism invariance, 386

dilatation, 217–219, 223, 427–429,
431–433, 439, 444, 447

dimension

of a vector space , 12

dipole moment, 146, 149, 182

Dirac equation, 119, 140, 200, 298, 424

matrices, 200, 240, 302, 423–425

regularization, 278, 382

spinor, 200, 204, 231, 425, 426

dispersion law, 250, 251

displacement current, 138, 139

distributions, 14, 129, 140, 366, 437,
438, 440–442, 444, 447

divergence, 259, 282, 310, 402

cubic, 378

infrared, 375

linear, 276, 378, 385

ultraviolet, 359, 365, 375, 377, 378,
402

divergence (differential operator), 36,
49, 125, 148, 189

divergence term, 200, 208, 225, 226, 310

Doppler shift, 7

Dothan–Gell-Mann–Ne’eman SL(3, R)

symmetry, 345, 350

double covering, 314, 419, 423

dual vector space, 14

duality

invariance, 225, 226, 228, 230, 389,
409

transformation, 225, 226, 228, 388,
407

dynamical law, 51, 54, 61, 92, 123, 366

rest frame, 102

dyon, 61, 121, 191, 226, 351



472 Index

effective theory, 359
eigenvalue, 42, 155, 192, 345
einbein, 93, 95, 97, 102, 368
electrodynamics, 131, 319, 349, 372

classical, 130, 283
Maxwell–Lorentz, 139, 291, 390
nonlinear, 127, 385–388, 408, 433
nonlocal, 393–396, 398, 408, 444
quantum, 306, 359, 365

electromagnetic field, 59, 119, 123, 342
constant, 69–72, 74, 141
homogeneous, 70, 72, 74
null, 65, 67, 69, 74, 97, 260
static, 141
uniform, 69, 71

electromagnetic field invariants, 65
electromotive force, 138
electron, 109, 140, 351, 359

dressed, 246, 360
free, 110, 364
planetary, 384
radiating, 284, 366

electron model
extended, 133, 284, 366
point, 131, 140, 284, 358

electron volt, 294
embedding, 53, 54, 56, 58, 92, 104, 346
energy, 55, 86

indefinite, 274, 275, 363, 364
kinetic, 55, 79, 107, 110, 250, 361
positive definite, 255, 274, 363
potential, 79, 86, 106, 250, 384
rest, 109, 335

energy balance, 245, 246, 275, 365
energy density, 212, 245
energy-momentum, 243
energy-momentum balance, 249, 273

global, 288
local, 275, 356, 362, 368, 381, 404

equation of continuity, 130, 147, 208
equation of motion, 54

linear, 127, 141, 143, 216
linearized, 245, 331
overdetermined, 142, 147, 152, 158,

184, 189
equilibrium

neutral, 330, 331, 342
unstable, 1, 107, 131, 370, 385

equivalence class, 43, 154

Euclidean metric, 25, 32, 150, 306
quantum field theory, 306
space, 16, 49, 125, 416, 417, 422, 430,

435
spacetime lattice, 285, 301
topology, 135

Euler–Lagrange equations, 79, 198
Eulerian, 77, 196, 207
event, 1, 6–8, 10, 48, 84, 216
extremal, 79

falling to the center, 107, 384
Faraday’s law, 138
field, 28, 59, 119

acceleration, 261
adjunct, 404, 406
background, 331, 344, 345, 347
boson, 95, 206, 305, 359, 435
centrally symmetric, 83, 105
charged, 230–232, 246, 247, 249, 258,

297, 298, 313, 338
complex-valued, 28, 200, 228, 231,

234, 240, 253, 257, 258, 316, 344,
386

Coulomb, 105, 144, 180, 182, 192
Dirac, 200, 201, 203, 204, 216, 218,

233, 292, 426
electromagnetic, 59, 87, 119, 123
fermion, 201, 435
free, 141, 158, 199, 218
gluon, 291, 306, 344, 347
gravitational, 5, 65
interacting, 199, 247
Klein–Gordon, 150, 165, 185, 201
massive, 150, 199, 245, 256–258, 283,

359
massless, 239, 257, 265, 294, 304, 340
matter, 250, 300
Proca, 204, 205, 245, 383
Rarita–Schwinger, 204
real-valued, 28, 204
scalar, 28, 195, 204, 207
self-interacting, 200
spherically symmetric, 340
spinor, 195, 200, 207
tachyon, 249, 251, 253–255, 257
tensor, 29, 195
vector, 28, 195, 207
Yang–Mills, 63



Index 473

field configuration
of electric type, 67, 70
of magnetic type, 187
self-dual, 292, 341, 343
stable, 146, 257, 308, 334, 398
static, 141, 253

field equation, 198
elliptic, 158
hyperbolic, 124, 158, 232, 408

field four-momentum
bound, 261, 274, 283, 375, 380
emitted, 262, 459

field strength, 59
field variation (local/total), 196
flavor, 295, 305, 307
flux

angular momentum, 263
electric intensity, 137, 247
energy, 212, 245
Liénard–Wiechert term, 313, 317
magnetic induction, 139, 337, 387
radiation, 260, 272, 273, 378
vortex lines, 336, 337

force, 51, 54
attractive, 105–108, 114, 205, 308,

340
central, 105, 108, 111, 114
centrifugal, 149, 330
external, 75, 113, 271, 273, 274, 361
Newtonian, 52, 56
repulsive, 105, 108, 131, 205, 349

2-form, 27
canonical, 27, 31, 65, 67–69
decomposable, 28, 67, 179, 182, 192

form factor, 393, 394, 397, 399, 400, 408
forward hyperboloid, 72
four-acceleration, 44

current, 130, 134, 138, 156, 170
divergence, 136, 234
momentum, 54
vector, 21
velocity, 44

Fourier mode, 142, 161, 250, 251, 358
series, 141, 239, 244
transform, 142, 143, 153, 163, 166,

167, 172, 173, 189
frame of reference, 1

fixed (stationary), 56, 66
inertial, 1–5

instantaneously comoving, 44–46, 53,
54, 56, 172, 263, 270, 381

Lorentz, 1
noninertial, 2, 182, 192, 209, 262
rest, 9, 53, 54, 56, 57, 98, 99, 102,

175, 240
retarded, 176

functional
bilinear, 15, 16
linear, 14, 32, 411, 437
multilinear, 15

fundamental representation, 292, 417

Galilean particle, 51, 55–57, 64, 85, 94,
100, 101, 119

transformation, 10
gauge field, 119

Abelian, 63, 296, 313, 318, 325, 329,
340, 354, 355, 357

non-Abelian, 291, 305, 313, 316, 323,
350, 354, 355, 357

gauge fixing condition, 155, 156, 185,
237, 242, 320

Coulomb, 149, 156
Fock–Schwinger, 157
Lorenz, 155, 160, 185, 372, 404
noncovariant, 239, 240
orthonormal, 237, 238
temporal, 156
unitary, 258

gauge group, 237, 298, 305, 309
color, 293
weak hypercharge/isospin, 294

gauge invariance, 228, 231, 258, 301,
305, 340, 399

mode, 154, 160, 228, 331
transformation, 147, 154, 190

Gauss’ law, 138, 184, 186
Gaussian units, 144, 201
Gauss–Ostrogradskǐı theorem, 49
Gell-Mann matrices, 320, 419
general linear group GL(n, R), 14
general relativity, 48, 118, 247
generator, 41, 94, 319, 331, 417, 421
geodesic, 65, 85, 89
geometry, 1, 2, 4, 5, 11, 49

affine, 15
Euclidean, 16
pseudoeuclidean, 1, 16



474 Index

Glashow–Salam–Weinberg model, 254,
283, 294

Goldstone mode, 254, 257, 283
model, 249, 253

gradient, 49, 147, 191
Grassmann algebra, 104, 435
Grassmannian variable, 103, 120, 241

even, 103, 131, 434, 435
odd, 177, 434, 435

gravitational field, 65
gravity, 248, 294, 363
Green’s function, 141, 161, 192

advanced, 169, 170, 172, 182
retarded, 167–174, 257, 372, 373, 407

ground state, 252, 254, 330, 344, 349,
351

group velocity, 165, 199

hadron, 329, 330, 334, 345, 349
matter, 308

Hamiltonian, 78, 94, 106, 191
harmonic function, 143

mode, 161
oscillator, 89, 100, 250, 345

Heaviside step function, 168, 323, 446
units, 335, 385

Heisenberg uncertainty principle, 296
Helmholtz equation, 150

theorem, 125, 139, 150
Hessian matrix, 88, 89
Higgs field, 297, 298, 337–339, 344, 350

mechanism, 257, 283, 294, 296, 297,
305, 343

model, 254, 258, 307, 316, 335, 349
Hodge duality operation, 27
homogeneity

space, 5, 82
spacetime, 215
time, 5, 82

Huygens’ principle, 374
hydrogen atom, 105, 109, 284, 384
hyperbolic motion, 46, 71, 370, 371
hyperplane, 32
hypersurface, 34

locally adjusted, 271, 318, 326

identity of mass and energy, 118
impact parameter, 112
index

color, 62, 63, 285, 286, 289, 307

contravariant, 17, 25, 26, 42

covariant, 17, 26, 44

repeated, 12, 125, 144, 285, 412

spatial, 25, 41, 60

temporal, 126, 156

index summation rule, 144

infinite continuous group, 91

infinitesimal transformation, 81, 84, 88,
91, 198, 207, 216, 225, 231, 237,
257, 288, 290, 416, 417, 426, 431

instanton, 291, 307

integral of motion, 81

interaction

contact, 51, 113, 408

Coulomb, 105, 108, 328

direct-particle, 401, 408

electromagnetic, 86, 104, 105, 202,
213

electroweak, 293, 296

four-fermion, 201, 202

fundamental, 2, 247, 284, 288, 304

Gürsey, 200, 202

gauge invariant, 289, 292, 302, 305

instantaneous, 2, 10, 87

local, 131, 134

localizable, 393, 407

nonlocal, 393–400, 407, 439, 444, 447

of a particle with a scalar field, 64,
96–97, 204

quartic, 199, 202

Schwarzschild, 202, 211

short-range, 113, 288, 295–296

string, 241

strong, 293–306

van der Waals, 146, 295

weak, 205, 293, 295, 304

Yukawa, 201, 297

interval

closed, 438

finite, 221, 439

null, 104, 164, 216, 280, 283, 401

small, 277, 398

spacelike, 38, 104, 157

timelike, 47–48, 80–81, 85, 278, 283

inverse square law, 182, 339, 408

inversion, 428

irreversibility, 89, 274, 401, 405
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isomorphism, 12, 14–15, 43, 226, 229,
246, 323, 421, 431, 434

Jacobi identity, 62–63, 291, 420
Jacobian, 37, 176, 219, 243

k-factor, 5–7
Kepler problem, 75, 105–108, 120, 383
Killing form, 63, 285, 420

degenerate (singular), 291, 323, 420
positive definite, 291, 420

kinematical rest frame, 102
kinematics

Newtonian, 6
relativistic, 50, 117

Klein–Gordon equation, 150, 199, 250
Kronecker delta, 13, 24, 30

Lagrange multiplier, 96, 103
Lagrangian, 75, 195

t-dependent, 75
acceptable, 91
nonsingular, 88
standard model, 294–296
acceleration-dependent, 366–367
coordinate-independent, 82
Dirac, 200, 301
duality invariant, 225, 388, 407
electroweak interaction, 293–296, 304
for a colored particle, 286
Higgs, 254, 257
higher derivative, 366
Klein–Gordon, 199, 303
rearranged, 252, 256, 282, 353, 401
strong interaction, 295, 306
time-independent, 82

Laplace equation, 143
operator, 164, 175

Larmor formula, 269, 282
lattice, 124, 300, 302, 398

spacing, 300
Leibnitz’s rule, 162, 414
length dimension, 203–204, 217, 235
lepton, 294–295, 297
Levi-Civita tensor, 25, 30, 60, 61, 126
Liénard–Wiechert field, VII, 192

solution, 182
vector potential, 172, 179, 185, 192

Lie algebra, 62–63, 119, 415

Abelian, 63, 417–418, 420, 428–429
compact, 43, 416, 419, 421
complex, 63, 343
semisimple, 63, 216, 420, 428
simple, 343, 420

Lie group, 14, 416
classical/exceptional, 421

light cone, 22
backward sheet, 22
forward sheet, 22, 169, 374
future, 22, 168, 176, 185
past, 22, 169, 170, 172, 175

light propagation, 4, 5
line element, 38, 64, 95, 209, 210, 217
linear

combination, 11
connection, 299

locality, VII, 134, 385
Lorentz boost

contraction, 9
factor, 8, 44, 47
force, 61, 69, 119, 131
group, 14, 38, 216
invariance, 38, 164
transformation, 8, 38

proper, 40
proper orthochronous, 40, 207

Lorentz–Dirac equation, 274, 277, 284,
357

magnetic dipole, 149, 182
magnetic monopole, 61, 134, 140, 150

’t Hooft–Polyakov monopole, 292,
339, 341, 350

Bogomol’ny–Prasad–Sommerfield,
340, 341, 349

Dirac, 140, 150, 187
Mandelstam variables, 118
manifold, 33, 137, 411
mass, 56, 57, 84, 99, 102

bare
Newtonian, 52, 56
renormalized, 269, 275, 282, 283,

354, 356, 375, 404
rest, 56, 57, 71, 99, 102

mass renormalization, 269, 281, 359,
402

mass shell, 114
maximal electric field, 386
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maximal parity violation, 296, 298
maximal velocity of motion, 2, 3, 10, 48
Maxwell stress tensor, 213
Maxwell’s equations, 123, 127, 134, 139,

152, 188, 202, 216, 246, 372
Maxwell–Lorentz theory, 139, 221, 232,

245, 282, 285, 305, 313, 355, 359,
390, 395, 399, 401–403, 406

Meissner effect, 339, 342, 350
meron, 308
meson, 105, 295, 296, 308, 329, 335, 346
metric, 17

Euclidean, 16
indefinite, 9
induced, 236
intrinsic, 238
Minkowski, 23, 25
pseudo-Riemannian, 64, 65, 85
pseudoeuclidean, 64

Millennium Problem, 349
minimal coupling, 231, 234, 247, 292
Minkowski force, 54, 58

space, 5, 9, 10, 20, 21, 37, 52
momentum

conjugate to a coordinate, 78, 86
conjugate to a field variable, 197
linear, 52, 55, 82
transfer, 115, 118

momentum density, 212
motion

accelerated, 2, 46
finite, 107, 109
infinite, 107, 113
self-accelerated, 357
uniform, 1, 4, 51, 71, 100, 370

multiplication rule, 27, 286, 421
multipole moment, 148
muon, 201, 295, 351

n-form, 26
closed, 414
exact, 414, 415

N -quark case, 319, 355
natural units, 83, 203, 218, 291, 296
Ne’eman–Šijački SL(4, R) classification

of hadrons, 345, 351
neutrino, 95, 206
Newton’s first law, 49, 51, 119

second law, 51, 54, 57, 79, 118, 124,
274, 381

Newtonian gravitation, 2, 87, 409
Nielsen–Olesen vortex, 336, 339, 349,

350
Noether first theorem, 76, 82, 196, 198

converse, 84, 88
identity, 215, 229, 233, 258, 292, 354
second theorem, 92, 118

non-Galilean particle, 51, 56, 58, 119,
357, 370

regime of motion, 101, 290, 370
nonperturbative solution, 314
norm, 16

indefinite, 16
nucleon, 204, 205, 309, 346, 351

orthogonal group O(n), 19, 416, 431
transformation (rotation), 19, 68

oscillator
anharmonic, 251
damped, 75, 89, 277
harmonic, 89, 90, 143, 251

pair creation and annihilation, 359
Paley–Wiener theorem, 399
parallel transport, 299, 301
parameter of evolution, 44, 76, 95
parametrization, 53, 76, 90, 95
parametrized curve, 43, 90
particle, 43

bare, 258, 260, 274, 278, 362, 378,
380, 395, 404

charged, 59, 69, 95
colored, 182, 288, 293, 305, 309
dressed, 269, 273, 274, 284, 354, 360,

361, 364, 375, 378, 380, 401, 405
free, VI, 55, 58, 89, 95, 98
massless, 94, 97, 223, 224, 250, 455
neutral, 59
point, 52, 54
rigid, 79, 367, 370, 378
superluminal, 56, 275, 465

path ordering, 294, 299
Pauli

blocking principle, 325
matrices, 241, 314, 315, 418, 421

Pauli–Lubański vector, 42
Pfaffian, 31



Index 477

phase, 160
factor, 298, 301, 306
transition, 308, 349, 360

Planck’s constant, 83, 248, 325, 393
length, 393, 408
mass, 248

Poincaré cohesive forces, 131, 202
group, 38, 216
invariance, 52, 90, 206
lemma, 414
transformation, 37

point, 10, 15
Poisson bracket, 94, 101, 102

equation, 94, 101, 125, 142, 149
polarization vector, 160
Pontryagin density, 293
potential, 106, 142

linearly rising, 109, 308, 313, 323,
329, 355

scalar, 63, 142
spherically symmetric, 86
vector, 86, 141, 147, 152

Poynting vector, 213, 246
prepotential, 186
principle of least action, 76, 79, 81

of gauge invariance, 231, 457
of relativity, 2, 48

product
cross, 30
exterior, 26, 181
inner, 417
scalar, 16
semidirect, 216
tensor, 24

projection operator ⊥, 32, 34, 70, 72,
92, 150, 216, 274, 296

propagation of interactions, 2, 5
vector, 160

proper length, 9
time, 44, 95

pseudoorthogonal group O(m, n), 38
puzzle of nucleon spin, 351

quantum
chromodynamics, 62, 294, 342, 460
electrodynamics, 306, 359, 365
field theory, 83, 131, 295, 301, 306,

308, 336, 344, 385, 408, 447
mechanics, 140, 216, 348

quark, V, 105, 291, 304
bound, 324, 325, 330
confined, 343, 394, 399
dressed, 354, 356, 360
free, 324, 328, 330, 409
isolated, 307
single, 309, 315, 323, 345, 349, 355

quark–antiquark pair, 295, 308
quark-gluon plasma, 308
quark/lepton generations, 295, 296
quarkonium, 105

radar-location approach, 3
radial part of ∇2, 144, 164, 174
radiation, 108, 119, 121, 192, 260, 283,

354, 356, 375, 378, 401, 405
radiation damping, 284, 361
radiation rate, 283, 378, 379
radiation reaction, 280, 284, 361, 363
radius vector, 16, 22, 144, 175
rank

Lie group, 321, 419
tensor, 24

rapidity, 10
rearranging degrees of freedom, 249,

253, 257, 283, 357
Regge sequences as infinite multiplets,

345
renormalizability, 297, 305, 359, 366
reparametrization invariance, 90, 91

scale dimension, 217, 220
invariance, 217, 218, 223, 246

Schott term, 361
self-acceleration (runaway), 357

of a dressed particle, 362–364
of a rigid particle, 371
of a spinning particle, 101

self-energy, 131, 268, 269, 273, 282, 310,
384, 390, 396, 398

self-field, 278, 402
self-force, 390, 397, 400
signal, 38, 167, 171, 183, 319, 320, 374,

388, 408
destructive, 47
light, 5
superluminal, 50

signature, 21, 210, 431
signum function, 150, 164, 279, 440
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similitude transformation, 217, 428
simultaneous events, 6
singularity, 173, 174

integrable, 260, 284, 390
nonintegrable, 260, 284, 402

soliton, 159, 166, 192, 407
space, 1

affine, 15, 19, 32, 33
color, 62
configuration, 75
Euclidean, 16, 21
event, 76, 80
internal, 62
isotopic-spin, 309
pseudo-Riemannian, 137, 246
pseudoeuclidean, 19

space dimension, 123, 135
isotropy, 5, 83
reflection, 40

spacetime, 1, 3
spacetime dimension, 65, 216

reflection, 40
special linear group SL(n, R), 181

relativity, 1, 4, 5, 44, 48, 49, 53, 118
species doubling, 303, 304
speed of light, 2, 51, 56, 83, 248, 393
spin originating from isospin, 343, 347
spinning particle, 43, 98, 101, 120, 305
spinor, 195, 200, 204, 231, 425
spontaneous symmetry breaking, 253,

305, 339, 342, 350
spontaneous symmetry deformation,

316, 344, 360
stability, 142, 149
standard synchrony, 6, 48

time scale, 4, 5, 49
star-shaped region, 415
Stokes theorem, 36, 37, 50, 299
stress-energy tensor

canonical, 197, 207, 209, 211, 245
improved, 218
metric, 210, 211
symmetric, 209, 212, 246
traceless, 218, 291

string
closed, 235, 237, 239, 241, 244, 247
Dirac, 151, 193, 238
free, 241, 250
Green–Schwarz, 240

interacting, 241
Nambu, 237
open, 235, 241, 247
Polyakov, 238
relativistic, 235, 247
tension, 235, 247

strongly/weakly conserved current, 208
structure constants, 62, 63, 344, 420,

421
superconductivity, 338, 339, 348, 350
superstring, 240
supersymmetry, 240, 435, 447
support, 257, 393, 438

delta-function, 168, 173, 338, 443, 444
distribution, 441
retarded Green’s function, 170, 173,

373, 374
surface element, 34, 36, 176
symmetry, 81, 84, 198, 289, 294, 297,

308, 316, 344, 367, 402
internal, 198, 225, 229, 305
local, 182, 229
spacetime, 198, 216, 246, 345

symplectic group Sp(n), 421

tachyon, 56, 249, 275, 360, 365, 406
tensor, 24
test function space, 437
tetrad (vierbein), 23, 67
time 1

discrete, 61
laboratory, 44, 48
proper, 44

time dilation, 44
reversal, 40, 61, 89

trajectory, 44, 72, 111, 121
planar, 105
Regge, 335, 336

translation, 19, 38, 216
invariance, 52, 82, 84, 206

transverse mode, 155
triangular function, 118
two-particle problem, 104, 110, 113,

120, 376, 381, 384
two-quark case, 323, 326, 327, 334, 349

uniform acceleration, 46, 58, 362, 363
uniformity of light propagation, 4, 5
unitary group U(n), 286, 320, 417
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representation, 292, 345, 419
unstable system, 2

vacuum, 3, 48, 308, 342, 344, 351, 387
vector

imaginary unit, 20
lightlike (null), 22, 45
normalized, 20, 171
spacelike, 22, 171, 181
tangent, 33, 64, 171, 209, 235
timelike, 22, 181
unit, 17, 64, 144, 171, 181
zero, 11

vector bosons (W , Z), 305, 359
vector space (complex/real), 11
velocity, 2–5

angular, 105, 112, 120, 309, 310
constant, 1, 3, 5, 11, 240, 392

velocity field, 261
Veneziano model, 336

Ward–Takahashi identity, 192, 233
wave

convergent, 169
divergent, 168
electromagnetic, 52, 192
monochromatic, 6, 161
plane, 74, 101, 120, 159–161, 165, 307
shock, 408

wave equation, 141
homogeneous, 141, 156, 158, 160, 167,

173, 270, 279, 319, 403
inhomogeneous, 141, 155, 167

wave length, 161
zone, 262

Weinberg angle, 294
Weyl invariance, 240, 244

rescalings, 220, 238, 429
Wilson loop, 300, 302
Wong equation, 287, 290, 309, 310, 320

force, 63, 119, 284, 329, 356
particle, 290, 305, 308, 342, 347

work, 56, 245, 275, 357, 361, 365
world line, 5, 43

Λ- and V -shaped, 81, 133
allowable, 47, 133, 284, 401
helical, 119, 147, 284
lightlike, 45, 56, 80, 95, 97
smooth, 47, 80, 137, 175, 185
spacelike, 45, 47, 57, 80
straight, 5, 55, 147, 180, 184, 187
timelike, 45, 47, 57, 80, 132, 134, 170,

175, 179, 185, 187, 190, 203
world sheet, 190, 235

volume, 242
Wu–Yang ansatz, 350

vector potential, 190, 193

Yang–Mills equations, 141, 183, 289,
290, 307, 313, 316, 323, 325, 344,
353, 355, 383, 422

Yang–Mills theory, 305, 306, 319, 383
pure, 290, 308
quantum, 119, 349

Yang–Mills–Wong theory, 183, 283, 285,
291, 295, 307–310, 313, 316, 324,
344, 347, 349, 350, 355, 357, 359,
362, 364

Yukawa model, 204
potential, 150, 173, 296

zitterbewegung, 58, 101, 370
Zwanziger Lagrangian, 227, 247




