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Preface

The immediate advance we communicate with this monograph is the discovery of
an exact model for a critical spin chain with arbitrary spin S, which includes
the Haldane–Shastry model as the special case S ¼ 1

2: For S� 1, we propose that the
spinon excitations obey a one-dimensional version of non-Abelian statistics, where
the topological degeneracies are encoded in the fractional momentum spacings for
the spinons. The model and its properties, however, are not the only, and possibly not
even the most important thing one can learn from the analysis we present.

The benefit of science may be that it honors the human spirit, gives pleasure to
those who immerse themselves in it, and pragmatically, contributes to the
improvement of the human condition in the long term. The purpose of the indi-
vidual scientific work can hence be either a direct contribution to this improve-
ment, or more often an indirect contribution by making an advance which inspires
further advances in a field. When we teach Physics, be it in lectures, books,
monographs, or research papers, we usually teach what we understand, but rarely
spend much effort on teaching how this understanding was obtained. The
first volume of the famed course of theoretical physics by L. D. Landau and
E. M. Lifshitz [1], for example, begins by stating the principle of least action, but
does nothing to motivate how it was discovered historically or how one could be
led to discover it from the study of mechanical systems. This reflects that we teach
our students how to apply certain principles, but not how to discover or extract
such principles from a given body of observations. The reason for this is not that
we are truely content to teach students of physics as if they were students of
engineering, but that the creative process in physics is usually erratic and messy, if
not plainly embarrassing to those actively involved, and hence extremely difficult
to recapture. As with most of what happens in reality, the actual paths of discovery
are usually highly unlikely. Since we enjoy the comfort of perceiving actions and
events as more likely and sensible, our minds subconsciously filter our memory to
this effect.

One of the first topics I immersed myself in after completing my graduate
coursework was Laughlin’s theory of the fractionally quantized Hall effect [2].
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I have never completely moved away from it, as this work testifies, and take
enormous delight whenever I recognize quantum Hall physics in other domains of
physics. More important than the theory itself, however, was to me to understand
and learn from the way R. B. Laughlin actually discovered the wave function.
He numerically diagonalized a system of three electrons in a magnetic field in an
open plane, and observed that the total canonical angular momentum around the
origin jumped by a factor of three (from 3�h to 9�h) when he implemented a Cou-
lomb interaction between the electrons. At the same time, no lesser scientists than
D. Yoshioka, B. I. Halperin, and P. A. Lee [3] had, in an heroic effort, diagonalized
up to six electrons with periodic boundary conditions, and concluded that their
data were ‘‘supportive of the idea that the ground state is not crystalline, but a
translationally invariant ‘‘liquid.’’’’ Their analysis was much more distinguished
and scholarly, but unfortunately, did not yield the wave function.

The message I learned from this episode is that it is often beneficial to leave the
path of scholarly analysis, and play with the simplest system of which one may
hope that it might give away natures thoughts. For the Laughlin series of quantized
Hall states, this system consisted of three electrons. I spend most of my scientific
life adapting this approach to itinerant antiferromagnets in two dimensions, where
I needed to go to twelve lattice sites until I could grasp what nature had in mind.
But I am digressing. To complete the story about the discovery of the quantum
Hall effect, Laughlin gave a public lecture in Amsterdam within a year of having
received the Nobel price. He did not mention how he discovered the state, and at
first couldn’t recall it when I asked him in public after the lecture. As he was
answering other questions, he recalled the answer to mine and weaved it into the
answer of another question. During the evening in a cafe, a very famous Russian
colleague whom I regard with the utmost respect commented the story of the
discovery with the words ‘‘But this is stupid!’’.

Maybe it is. If it is so, however, the independent discoveries of the spin 1
2 model

by F. D. M. Haldane [4] and B. S. Shastry [5] may fall into the same category.
Unfortunately, I do not know much about these discoveries. Haldane told me that
he first observed striking degeneracies when he looked at the model for N = 6
sites numerically, motivated by the fact that the 1/r2 exchange is the discrete
Fourier transform of �ðkÞ ¼ kðk � 2pÞ in one dimension. Shastry told me that he
discovered it ‘‘by doing calculations’’, which is not overly instructive to future
generations. If my discovery of the general model I document in this monograph
will be perceived in the spirit of my friends comment, I will at least have made no
attempt to evade the charge.

In short, what I document on these pages is not just an exact model, but a
precise and reproducible account of how I discovered this model. This reflects my
belief that the path of discovery can be as instructive to future generations as the
model itself. Of course, the analysis I document does not fully reflect the actual
path of discovery, but what would have been the path if my thinking had followed
a straight line. It took me about four weeks to obtain all the results and about four
months to write this monograph. The reason for this discrepancy is not that my
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writing proceeds slowly, but that I had left out many intermediate steps when I did
the calculation. The actual path of discovery must have been highly unlikely.
In any event, it is comforting to me that, now that I have written a scholarly and
coherent account of it, there is little need to recall what actually might have
happened.

I am deeply grateful to Ronny Thomale for countless discussions and his
critical reading of the manuscript, to Burkhard Scharfenberger, Dirk Schuricht, and
Stephan Rachel for collaborations on various aspects of quantum spin chains, to
Rose Schrempp and the members of the Institute for Theory of Condensed Matter
at KIT for providing me with a pleasant and highly stimulating atmosphere, and
especially to Peter Wölfle for his continued encouragement and support.

I further wish to thank Ms. Ute Heuser from Springer for her highly profes-
sional handling of the publication process.

Karlsruhe, April 2011 Martin Greiter
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Chapter 1
Introduction and Summary

Fractional quantization, and in particular fractional statistics [1, 2], in two-
dimensional quantum liquids is witnessing a renaissance of interest in present times.
The field started more than a quarter of a century ago with the discovery of the frac-
tional quantum Hall effect, which was explained by Laughlin [3] in terms of an incom-
pressible quantum liquid supporting fractionally charged (vortex or) quasiparticle
excitations. When formulating a hierarchy of quantized Hall states [4–7] to explain
the observation of quantized Hall states at other filling fractions fractions, Halperin
[5, 6] noted that these excitations obey fractional statistics, and are hence concep-
tually similar to the charge-flux tube composites introduced by Wilczek two years
earlier [8]. Physically, the fractional statistics manifests itself through fractional quan-
tization of the kinematical relative angular momenta of the anyons.

The interest was renewed a few years later, when Anderson [9] proposed that
hole-doped Mott insulators, and in particular the t–J model [10, 11] universally
believed to describe the CuO planes in high Tc superconductors [12, 13], can be
described in terms of a spin liquid (i.e., a state with strong, local antiferromagnetic
correlations but without long range order), which would likewise support fractionally
quantized excitations. In this proposal, the excitations are spinons and holons, which
carry spin 1

2 and no charge or no spin and charge +e, respectively. The fractional
quantum number of the spinon is the spin, which is half integer while the Hilbert
space (for the undoped system) is built up of spin flips, which carry spin one. One
of the earliest proposals for a spin liquid supporting deconfined spinon and holon
excitations is the (Abelian) chiral spin liquid [14–17]. Following up on an idea
by D.H. Lee, Kalmeyer and Laughlin [14, 15] proposed that a quantized Hall wave
function for bosons could be used to describe the amplitudes for spin-flips on a lattice.
The chiral spin liquid state did not turn out to be relevant to CuO superconductivity,
but remains one of very few examples of two-dimensional spin liquids with fractional
statistics. Other established examples of two-dimensional spin liquids include the
resonating valence bond (RVB) phases of the Rokhsar–Kivelson model [18] on the
triangular lattice identified by Moessner and Sondhi [19], of the Kitaev model [20],
and of the Hubbard model on the honeycomb lattice [21].

M. Greiter, Mapping of Parent Hamiltonians, Springer Tracts in Modern Physics 244, 1
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2 1 Introduction and Summary

While usually associated with two-dimensional systems, fractional statistics is
also possible in one dimension. The paradigm for one-dimensional anyons are the
spinon excitations in the Haldane–Shastry model [22, 23], a spin chain model with
S = 1

2 and long-ranged Heisenberg interactions. The ground state can be generated
by Gutzwiller projection of half-filled bands of free fermions, and is equivalent to
a chiral spin liquid in one dimension. The unique feature of the model is that the
spinons are free in the sense that they only interact through their fractional statistics
[24, 25]. The half-fermi statistics was originally discovered and formulated through
a fractional exclusion or generalized Pauli principle [26], according to which the
creation of two spinons reduces the number of single particle states available for
further spinons by one. It manifests itself physically through fractional shifts in the
spacings between the kinematical momenta of the individual spinons [27–29].

The present renaissance of interest in fractional statistics is due to possible appli-
cations of states supporting excitations with non-Abelian statistics [30] to the rapidly
evolving field of quantum computation and cryptography [31, 32]. The paradigm for
this universality class, is the Pfaffian state introduced by Moore and Read [33] in
1991. The state was proposed to be realized at the experimentally observed fraction
ν = 5

2 [34] (i.e., at ν = 1
2 in the second Landau level) by Wen, Wilczek, and ourselves

[35, 36], a proposal which recently received experimental support through the direct
measurement of the quasiparticle charge [37, 38]. The Moore–Read state possesses
p + ip-wave pairing correlations. The flux quantum of the vortices is one half of the
Dirac quantum, which implies a quasiparticle charge of e/4. Like the vortices in a
p-wave superfluid, these quasiparticles possess Majorana-fermion states [39] at zero
energy (i.e., one fermion state per pair of vortices, which can be occupied or unoccu-
pied). A Pfaffian state with 2L spatially separated quasiparticle excitations is hence
2L fold degenerate [40], in accordance with the dimension of the internal space
spanned by the zero energy states. While adiabatic interchanges of quasiparticles
yield only overall phases in Abelian quantized Hall states, braiding of half-vortices
of the Pfaffian state will in general yield non-trivial changes in the occupations of the
zero energy states [41, 42], which render the interchanges non-commutative or non-
Abelian. In particular, the internal state vector is insensitive to local perturbations—it
can only be manipulated through non-local operations like braiding of the vortices or
measurements involving two or more vortices simultaneously. For a sufficiently large
number of vortices, on the other hand, any unitary transformation in this space can
be approximated to arbitrary accuracy through successive braiding operations [43].
These properties together render non-Abelions preeminently suited for applications
as protected qubits in quantum computation [30, 32, 44–46]. Non-Abelian anyons
are further established in certain other quantum Hall states described by Jack poly-
nomials [47–49] including Read–Rezayi states [50], in the non-Abelian phase of the
Kitaev model [20], in the Yao–Kivelson model [51], and in the non-Abelian chiral
spin liquid proposed by Thomale and ourselves [52]. In this liquid, the amplitudes
for renormalized spin-flips on a lattice with spins S = 1 are described by a bosonic
Pfaffian state.

The connection between the Haldane–Shastry ground state, the chiral spin liquid,
and a bosonic Laughlin state at Landau level filling fraction ν = 1

2 suggests that one
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may consider the non-Abelian chiral spin liquid in one dimension as a ground state
for a spin chain with S = 1. This state is related to a bosonic Moore–Read state at
filling fraction ν = 1. In this monograph, we will introduce and elaborate on this
one-dimensional spin liquid state, construct a parent Hamiltonian, and generalize the
model to arbitrary spin S. We further propose that the spinon excitations of the states
for S ≥ 1 will obey a novel form of “non-Abelian” statistics, where the internal,
protected Hilbert space associated with the statistics is spanned by topological shifts
in the spacings of the single spinon momenta when spinons are present.

Most of the book will be devoted to the construction of the model Hamiltonian for
spin S. In Chap. 2, we introduce three exact models, and the ground state for the S = 1
spin chain for which we wish to construct a parent Hamiltonian. The exact models
consist of Hamiltonians, their ground states, and the elementary excitations, which
are in some cases exact and in others approximate eigenstates of the Hamiltonian.
In Sect. 2.1, we review the Laughlin ν = 1

m state for quantized Hall liquids,

ψ0(z1, z2, . . . , zM ) =
M∏

i< j

(zi − z j )
m

M∏

i=1

e− 1
4 |zi |2, (1.1)

where the zi ’s are the coordinates of M electrons in the complex plane, and m is
odd for fermions and even for bosons. For m = 2, its parent Hamiltonian is given
by the kinetic term giving rise to Landau level quantization supplemented by a
δ-function potential, which excludes the component with relative angular momentum
zero between pairs of bosons. The ground state wave function for a bosonic m = 2
Laughlin state is similar to the ground state of the Haldane–Shastry model we review
in Sect. 2.2,

ψHS
0 (z1, z2, . . . , zM ) =

M∏

i<i

(zi − z j )
2

M∏

i=1

zi , (1.2)

where the zi ’s are now coordinates of spin flips for a spin chain with N sites on
a unit circle embedded in the complex plane, and M = N

2 . The Haldane–Shastry
Hamiltonian,

HHS =
(

2π

N

)2 N∑

α<β

SαSβ
|ηα − ηβ |2 , (1.3)

where ηα = ei 2π
N α are the coordinates of the N sites on the unit circle, how-

ever, bears no resemblance to the δ-function Hamiltonian for the Laughlin states.
We will elaborate in Sect. 3.1 that these models are both physically and mathemat-
ically sufficiently different to consider them unrelated. Even the ground state wave
functions, when adapted as far as any possible by formulating the bosonic Laughlin
state on the sphere and by inserting a quasihole at the south pole, differ due to differ-
ent Hilbert space normalizations. From a scholarly point of view, there just appears
to be no connection.

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_3


4 1 Introduction and Summary

From a pragmatic point of view, however, we may view both Hamiltonians as
devices to obtain the coefficients of the polynomial

N∏

i<i

(zi − z j )
2

for particle numbers such that the Hamiltonians can be diagonalized numerically.
In fact, Haldane [4] introduced the parent Hamiltonian for the Laughlin state in
order to obtain the coefficients of all the configurations of the state vector for N = 6,
which he could then compare numerically to the exact ground state for Coulomb
interactions. This raises the question whether the recipes used by both Hamiltonians
for obtaining these coefficients are really different. If one wishes to attribute the
results we presented to a discovery, this discovery is that they are not.

When we “derive” the Haldane–Shastry model from the bosonic m = 2 Laughlin
state and its δ-function parent Hamiltonian in Chap. 3, we really first extract this recipe
from the quantum Hall Hamiltonian, and then use it to construct a parent Hamiltonian
for the quantum spin chain, which has to be Hermitian, local, and invariant under
translations, parity, time reversal, and SU(2) spin rotations. Written in the language
of the spin system, the recipe is the condition that the Haldane–Shastry ground state
is annihilated by the operator

	HS
α =

N∑

β=1
β �=α

1

ηα − ηβ
S−
α S−

β , 	HS
α

∣∣ψHS
0

〉 = 0 ∀ α. (1.4)

The Haldane–Shastry model has been known for more than two decades, but while
Haldane and Shastry independently discovered it, we derive it. Unlike the discoveries,
this derivation lends itself to a generalization to higher spins. The construction of
exact models of critical spin chains following the line of reasoning we use in our
derivation of the Haldane–Shastry model is the subject of this monograph.

In Sect. 2.3, we review the properties of the Moore–Read state [33, 35, 36],

ψ0(z1, z2, . . . , zN ) = Pf

(
1

zi − z j

) N∏

i< j

(zi − z j )
m

N∏

i=1

e− 1
4 |zi |2, (1.5)

at Landau level filling fraction ν = 1
m , where m is even for fermions and odd for

bosons, with emphasis on the non-Abelian statistics of the half-vortex quasiparticle
excitations. For m = 1, the Pfaffian state is the exact ground state of the kinetic
Hamiltonian supplemented by the three-body interaction term [36]

V =
N∑

i, j < k

δ(2)(zi − z j )δ
(2)(zi − zk). (1.6)

http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_2
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The bosonic m = 1 ground state is similar to the ground state wave function of the
critical S = 1 spin liquid state we introduce in Sect. 2.4,

ψ S=1
0 (z1, z2, . . . , zN ) = Pf

(
1

zi − z j

) N∏

i< j

(zi − z j )

N∏

i=1

zi , (1.7)

which describes the amplitudes of renormalized spin flips

S̃+
α = Sz

α + 1

2
S+
α , (1.8)

on sites ηα = ei 2π
N α on a unit circle embedded in the complex plane. These spin

flips act on a vacuum where all the N spins are in the Sz = −1 state. In Sect. 2.4.5,
we propose that the momentum spacings between the individual spinon excitations
of this liquid alternate between being odd multiples of π

N and being either even or
odd multiples of π

N . (Since the spacings for bosons or fermions are multiples of 2π
N ,

an odd multiply of π
N corresponds to half-fermion, and an even multiple to boson

or fermion statistics.) When we have a choice between even and odd, this choice
represents a topological quantum number. The momentum spacings hence span an
internal or topological Hilbert space of dimension 2L when 2L spinons are present,
as appropriate for Ising anyons. These spacings constitute the analog of the Majorana
fermion states in the cores of the half-vortex excitations of the Moore–Read state.

In Chap. 4, we derive a parent Hamiltonian for the S = 1 spin liquid state (1.5)
from the three-body parent Hamiltonian (1.6) of the Moore–Read state. The steps
are similar to those taken for the Haldane–Shastry model, but technically more
involved. The defining condition for the state, i.e., the recipe used by the quantum Hall
Hamiltonian to specify the coefficients of the polynomial

Pf

(
1

zi − z j

) N∏

i< j

(zi − z j ),

is in the language of the S = 1 spin model given by

	S=1
α =

N∑

β=1
β �=α

1

ηα − ηβ
(S−
α )

2S−
β , 	S=1

α

∣∣ψ S=1
0

〉 = 0 ∀ α. (1.9)

As an aside, we also find that the state is annihilated by the operator


α =
N∑

β,γ=1
β,γ �=α

S−
α S−

β S−
γ

(ηα − ηβ)(ηα − ηγ )
−

N∑

β=1
β �=α

(S−
α )

2S−
β

(ηα − ηβ)2
, 
α

∣∣ψ S=1
0

〉 = 0 ∀ α,

(1.10)

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_4
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which we do not consider further. A Hermitian and translationally invariant annihi-
lation operator for the S = 1 spin liquid state (1.5) is given by

H0 = 1

2

N∑

α=1

	S=1
α

†
	S=1
α . (1.11)

Since the state is a spin singlet, i.e., invariant under SU(2) spin rotations, all the
different tensor components of (1.11) must annihilate it individually. In Sect. 4.5,
we obtain the desired parent Hamiltonian for the S = 1 spin liquid state (1.7),

H S=1 = 2π2

N 2

⎡

⎣
N∑

α �=β

SαSβ
|ηα − ηβ |2 − 1

20

N∑

α,β,γ

α �=β,γ

(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

(η̄α − η̄β)(ηα − ηγ )

⎤

⎦ ,

(1.12)
by projecting out the component of H0 which is invariant under parity, time reversal,
and SU(2) spin rotations. The energy of the ground state (1.7) is given by

E S=1
0 = −2π2

N 2

N (N 2 + 5)

15
. (1.13)

Finally, we use the same methods to obtain vector annihilation operators for the
S = 1 spin liquid state in Sect. 4.6.

In Chap. 5, we generalize the model to arbitrary spin S. We do, however, no longer
start with a quantum Hall state and its parent Hamiltonian, but generalize the spin
liquid states and the defining conditions for S = 1

2 and S = 1, i.e., the conditions
(1.4) and (1.9), directly to higher spins. To generalize the state vector, we first recall
from Sect. 2.4.4 that the S = 1 spin liquid can be obtained by taking two (identical)
Gutzwiller or Haldane–Shastry ground states and projecting onto the triplet or S = 1
configuration at each site [53]. This projection can be accomplished conveniently if
we write the Haldane–Shastry ground state (2.2.3) in terms of Schwinger bosons,

∣∣ψHS
0

〉 =
∑

{z1,...,zM ;w1,...,wM }
ψHS

0 (z1, . . . , zM ) a+
z1
. . . a†

zM
b+
w1
. . . b†

wM
|0〉

≡ �HS
0 [a†, b†] |0〉, (1.14)

where M = N
2 and the wk’s are those coordinates on the unit circle which are not

occupied by any of the zi ’s. The S = 1 spin liquid state (1.7) can then be written

∣∣ψ S=1
0

〉 =
(
�HS

0

[
a†, b†])2|0〉. (1.15)

To generalize the ground state to arbitrary spin S, we just take 2S (identical) copies
Haldane–Shastry ground state, and project at each site onto the completely symmetric
representation with total spin S. In terms of Schwinger bosons,

http://dx.doi.org/10.1007/978-3-642-24384-4_4
http://dx.doi.org/10.1007/978-3-642-24384-4_4
http://dx.doi.org/10.1007/978-3-642-24384-4_5
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
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∣∣ψ S
0

〉 =
(
�HS

0

[
a†, b†])2S|0〉. (1.16)

This state is related to bosonic Read–Rezayi states [50] in the quantum Hall system.
In Sect. 5.2, we verify that the state is annihilated by the operator

	S
α =

N∑

β=1
β �=α

1

ηα − ηβ
(S−
α )

2S S−
β , 	S

α

∣∣ψ S
0

〉 = 0 ∀α. (1.17)

In Sect. 5.3, we follow the same steps as for the S = 1 state to construct a parent
Hamiltonian for the spin S state (1.16), and obtain

H S = 2π2

N 2

⎡

⎣
N∑

α �=β

SαSβ
|ηα − ηβ |2

− 1

2(S + 1)(2S + 3)

N∑

α,β,γ

α �=β,γ

(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

(η̄α − η̄β)(ηα − ηγ )

⎤

⎦ .

(1.18)
The energy eigenvalue is given by

E S
0 = −2π2

N 2

S(S + 1)2

2S + 3

N (N 2 + 5)

12
. (1.19)

This is the main result we present. In Sect. 5.4, we construct the vector annihilation
operators

DS
α = 1

2

∑

β

β �=α

ηα + ηβ

ηα − ηβ

[
i(Sα × Sβ)+ (S + 1)Sβ − 1

S + 1
Sα

(
SαSβ

)]
,

DS
α

∣∣ψ S
0

〉 = 0 ∀ α,
(1.20)

and

AS
α =

∑

β

β �=α

Sα(SαSβ)+ (SαSβ)Sα + 2(S + 1)Sβ
|ηα − ηβ |2

+
∑

β,γ

β,γ �=α

1

(η̄α − η̄β)(ηα − ηγ )

·
[
− (SαSβ)Sα(SαSγ )+ (SαSγ )Sα(SαSβ)

S + 1

+ 2(S + 2)Sα(Sβ Sγ )− Sβ(SαSγ )− (SαSβ)Sγ

]
,

AS
α

∣∣ψ S
0

〉 = 0 ∀ α. (1.21)

http://dx.doi.org/10.1007/978-3-642-24384-4_5
http://dx.doi.org/10.1007/978-3-642-24384-4_5
http://dx.doi.org/10.1007/978-3-642-24384-4_5
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In Sect. 5.5, we evaluate the parity and time reversal invariant scalar operators

∑

α

DS
α

†
DS
α and

∑

α

SαAS
α, (1.22)

and find that both of them reproduce the model (1.18). The factorization of H S is

terms of DS
α

†
and DS

α shows that
∣∣ψ S

0

〉
is not just an eigenstate of (1.18), but also

a ground state. Numerical work [54] indicates that
∣∣ψ S

0

〉
is the only ground state of∣∣ψ S

0

〉
. In Sect. 5.6, we show that the model (1.18) reduces to the Haldane–Shastry

model if we take S = 1
2 .

We conclude with a brief discussion of several unresolved issues as well as possible
generalizations of the model in Chap. 6. These include the quest for integrability, the
correctness and universality of our assignments for the SU(2) level k = 2S anyon-
type momentum spacings of the spinon excitations and the feasibility of applications
as protected cubits in quantum computation. We outline how to generalize the model
to symmetric representations of SU(n), where the non-abelian statistics of the spinons
appears to have no correspondence in a quantum Hall system.
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Chapter 2
Three Models and a Ground State

2.1 The Laughlin State and Its Parent Hamiltonian

Laughlin’s theory [1–6] for a series of fractionally quantized Hall states is first and
foremost the key to an explanation for the experimentally observed, fractionally
quantized plateaus in the Hall resistivity of a spin-polarized, two-dimensional elec-
tron gas realized in semiconductor inversion layers [5, 7–10]. For our purposes here,
however, we will view it primarily as an exact model, that is, a ground state which
supports fractionally quantized excitations, and a model Hamiltonian for which this
ground state is exact.

We will first review the theory in a planar geometry with open boundary condi-
tions, and then turn to the spherical geometry, which will turn out to be the relevant
geometry for the mapping of quantized Hall system onto a spin chain. We begin with
a review of Landau level quantization in the plane.

2.1.1 Landau Level Quantization in the Planar Geometry

To describe the dynamics of charged particles (e.g. spin-polarized electrons) in a
two-dimensional plane subject to a perpendicular magnetic field B = −Bez , it is
convenient to introduce complex particles coordinates z = x + iy and z̄ = x − iy
[11, 12]. The associated derivative operators are

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂ z̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)
. (2.1.1)

Note that hermitian conjugation yields a − sign,

(
∂

∂z

)†

= − ∂

∂ z̄
. (2.1.2)

M. Greiter, Mapping of Parent Hamiltonians, Springer Tracts in Modern Physics 244, 11
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We further define the complex momentum

p ≡ px + ipy = −2i�
∂

∂ z̄
, p̄ = px − ipy = −2i�

∂

∂z
. (2.1.3)

The single particle Hamilton operator is obtained by minimally coupling the gauge
field to the canonical momentum,

H = 1

2M

(
p + e

c
A
)2
, (2.1.4)

where M is the mass of the particle and e > 0. In the symmetric gauge A = 1
2 Br×ez,

and with the definition of the magnetic length

l =
√

�c

eB
, (2.1.5)

we write

H = 1

2M

[(
px + �

2l2 y

)2

+
(

py − �

2l2 x

)2
]

= 1

2M

[
�2
(

p − i�

2l2 z

)
+ �2

(
p − i�

2l2 z

)]

= 1

4M

{
p − i�

2l2 z, p̄ + i�

2l2 z̄

}
,

= �
2

2Ml2

{
a, a†} (2.1.6)

where � and � denote the real and imaginary part, respectively. In the last line, we
have introduced the ladder operators [12–14] 1

a = l√
2

(
2
∂

∂ z̄
+ 1

2l2 z

)
, a† = l√

2

(
−2

∂

∂z
+ 1

2l2 z̄

)
, (2.1.7)

which obey

[
a, a†] = 1. (2.1.8)

1 We have not been able to find out who introduced the ladder operators for Landau levels in
the plane. The energy eigenfunctions were known since Landau [11]. MacDonald [13] used the
ladder operators in 1984, but neither gave nor took credit. Girvin and Jach [14] were aware of two
independent ladders a year earlier, but neither spelled out the formalism, nor pointed to references.
It appears that the community had been aware of them, but not aware of who introduced them.
The clearest and most complete presentation we know of is due to Arovas [12].
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With the cyclotron frequency ωc = eB/Mc and (2.1.8) we finally obtain

H = �ωc

(
a†a + 1

2

)
. (2.1.9)

The kinetic energy of charged particles in a perpendicular magnetic field is hence
quantized like a harmonic oscillator. The energy levels are called Landau levels.

It is convenient to write the ladder operators describing the cyclotron variables as

a = +√
2l exp

(
− 1

4l2 z̄z

)
∂

∂ z̄
exp

(
+ 1

4l2 z̄z

)
, (2.1.10)

a† = −√
2l exp

(
+ 1

4l2 z̄z

)
∂

∂z
exp

(
− 1

4l2 z̄z

)
, (2.1.11)

and introduce a second set of ladder operators for the guiding center variables,

b = +√
2l exp

(
− 1

4l2 z̄z

)
∂

∂z
exp

(
+ 1

4l2 z̄z

)
, (2.1.12)

b† = −√
2l exp

(
+ 1

4l2 z̄z

)
∂

∂ z̄
exp

(
− 1

4l2 z̄z

)
. (2.1.13)

They likewise obey
[
b, b†] = 1, (2.1.14)

and commute with the cyclotron ladder operators:
[
a, b

] = [
a, b†] = 0 (2.1.15)

A calculation similar to the one presented above for H yields

L = r × p = �
(
b†b − a†a

)
ez (2.1.16)

for the canonical angular momentum around the origin. [The kinematical angular
momentum is given by the a†a term in (2.1.16).]

Since the angular momentum (2.1.16) commutes with the Hamiltonian (2.1.9),
we can use it to classify the vastly degenerate states within each Landau level. Specif-
ically, we introduce the basis states

|n,m〉 = 1√
n!

1√
m! (a

†)n(b†)m |0, 0〉, (2.1.17)

where the vacuum state is by definition annihilated by both destruction operators,

a|0, 0〉 = b|0, 0〉 = 0. (2.1.18)
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Solving (2.1.18) yields the real space representation

φ0(z) ≡ φ0(z, z̄) = 〈r|0, 0〉 = 1√
2πl2

exp

(
− 1

4l2 |z|2
)
. (2.1.19)

(In the following, we omit z̄ from the argument of wave functions as a choice of
notation.) The basis states (2.1.17) are trivially eigenstates of both H and Lz,

H |n,m〉 = �ωc

(
n + 1

2

)

Lz|n,m〉 = �(m − n)|n,m〉 (2.1.20)

The particle coordinate and momentum are given in terms of the ladder operators by

z = √
2l
(
a + b†), p = − i�√

2l

(
a − b†). (2.1.21)

This implies that we can write a complete, orthonormal set of basis states in the
lowest Landau level (n = 0) as

φm(z) = 〈r|0,m〉
= 1√

m! (b
†)mφ0(z, z̄)

= 1√
2πl2m! (a + b†)m exp

(
− 1

4l2 |z|2
)

= 1√
2m+1πm! lm+1

zm exp

(
− 1

4l2 |z|2
)
. (2.1.22)

These states is describe narrow rings centered around the origin, with the radius
determined by

∂

∂r

∣∣∣φm(r)
2
∣∣∣
∣∣∣∣
r=rm

!= 0,

which yields rm = √
2ml. Since there are also m states inside the ring, the areal

degeneracy is

number of states

area
= m

πr2
m

= 1

2πl2 , (2.1.23)

The magnetic flux required for each state,

2πl2 B = 2π�c

e
= �0,
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is hence given by the Dirac flux quantum. This implies that in each Landau level,
there are as many single particle states in a given area as there are Dirac quanta of
magnetic flux going through it. In the following, we set l = 1, and no longer keep
track of wave function normalizations.

The N particle wave function for a filled lowest Landau level (LLL) on a circular
disk is obtained by antisymmetrizing the basis states (2.1.22),

ψ(z1, . . . , zN ) = A
{

z0
1z1

2 . . . z
N−1
N

}
·

N∏

i=1

e− 1
4 |zi |2

=
N∏

i< j

(zi − z j )

N∏

i=1

e− 1
4 |zi |2 . (2.1.24)

The most general form for the single particle wave function in the lowest Landau
level is

ψ(z) = f (z) e− 1
4 |z|2 , (2.1.25)

where f (z) is an analytic function of z. Since ψ(z) is annihilated by the destruction
operator a, the energy is trivially 1

2 �ωc. The most general N particle state in the LLL
is given by

ψ(z1, . . . , zN ) = f (z1, . . . , zN )

N∏

i=1

e− 1
4 |zi |2 , (2.1.26)

where f (z1, . . . , zN ) is analytic in all the z’s, and symmetric or antisymmetric for
bosons or fermions, respectively. If we impose periodic boundary conditions [15],
we find that ψ(z1, z2, . . . , zN ), when viewed as a function of z1 while z2, . . . , zN

are parameters, has exactly as many zeros as there states in the LLL, i.e. as there are
Dirac flux quanta going through the unit cell or principal region. If ψ(z1, . . . , zN )

describes fermions and is hence antisymmetric, there will be at least one zero seen
by z1 at each of the other particle positions. The most general wave function is hence

ψ(z1, . . . , zN ) = P(z1, . . . , zN )

N∏

i< j

(zi − z j )

N∏

i=1

e− 1
4 |zi |2 , (2.1.27)

where P is a symmetric polynomial in the zi ’s. In the case of a completely filled
Landau level, there are only as many zeros as there are particles, which implies
that all except one of the zeros in z1 will be located at the other particle positions
z2, . . . , zN . This yields (2.1.24) as the unique state for open boundary conditions.
For periodic boundary conditions, there is one additional zero as there cannot be a
zero seen by z1 at z1. The location of this zero, which Haldane and Rezayi [15] refer
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to as the center-of-mass zero, encodes the information about the boundary phases a
test particle acquires as it is taken around one of the meridians of the torus.

To elevate the most general LLL state (2.1.26) into the (n + 1)-th Landau level,
we only have to apply

(
a†
)n

to all the particles in the LLL,

ψn(z1, . . . , zN ) =
N∏

i=1

(
a†

i

)n
ψ(z1, . . . , zN )

=
N∏

i=1

e− 1
4 |zi |2

N∏

i=1

(
2
∂

∂zi
− z̄i

)n

f (z1, . . . , zN ). (2.1.28)

The energy per particle in this state is �ωc
(
n + 1

2

)
.

2.1.2 The Laughlin State

The experimental observation which Laughlin’s theory [1] explains is a plateau in
the Hall resistivity of a two-dimensional electron gas at a Landau level filling fraction
ν = 1/3. The filling fraction denotes the number of particles divided by the number
of number of states in each Landau level in the thermodynamic limit, and is defined
through

1

ν
= ∂N�

∂N
, (2.1.29)

where N� is the number of Dirac flux quanta through the sample and N is the number
of particles. For a wave function at ν = 1/3, we consequently have three times as
many zeros seen by z1 as there are particles, and the polynomial P(z1, z2, . . . , zN )

in (2.1.27) has two zeros per particle. The experimental findings, as well as early
numerical work by Yoshioka, Halperin, and Lee [16], are consistent with, if not
indicative of, a quantum liquid state at a preferred filling fraction ν = 1/3. Since the
kinetic energy is degenerate in each Landau level, such a liquid has to be stabilized
by the repulsive Coulomb interactions between the electrons. This implies that the
wave function should be highly effective in suppressing configurations in which
particles approach each other, as there is a significant potential energy cost associated
with it. We may hence ask ourselves whether there is any particular way of efficiently
distributing the zeros of P(z1, z2, . . . , zN ) in this regard.

Laughlin’s wave function amounts to attaching the additional zeros onto the par-
ticles, such that each particle coordinate z2, . . . , zN becomes a triple zero of z1 when
ψ(z1, z2, . . . , zN ) is viewed as a function of z1 with parameter z2, . . . , zN . For filling
fraction ν = 1/m, where m is an odd integer if the particles are fermions and an even
integer if they are bosons, he proposed the ground state wave function
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ψm(z1, . . . , zN ) =
N∏

i< j

(zi − z j )
m

N∏

i=1

e− 1
4 |zi |2 . (2.1.30)

There are hence no zeros wasted—all of them contribute in keeping the particles
away from each other effectively, as ψm vanishes as the mth power of the distance
when two particles approach each other. This is the uniquely defining property of
Laughlin’s state, and also the property which enabled Haldane [3] to identify a
parent Hamiltonian, which singles out the state as its unique and exact ground state.
We discuss the Hamiltonian in Sect. 2.1.6 below. The wave function (2.1.30) describes
an incompressible quantum liquid, as the construction is only possible at filling
fractions ν = 1/m.

One of the assumptions of the theory is that we can neglect transitions into higher
Landau levels, as the Landau level splitting �ωc is much larger then the potential
energy per particle, a condition met by the systems amenable to experiment. Formally,
the LLL limit requiresωc → ∞ while keeping the magnetic length l2 constant, which
is achieved by taking M → 0. The LLL limit is hence a zero mass limit.

Even within this limit, which we assume to hold in the following, the Laughlin
state (2.1.30) is not the exact ground state for electrons with (screened) Coulomb
interactions at filling fraction ν = 1/3. It is, however, reasonably close in energy and
has a significant overlap with the exact ground state for finite systems. The difference
between the exact ground state and Laughlin’s state is that in the exact ground state,
the zeros of P(z1, z2, . . . , zN ) are attached to the particle coordinates, but do not
coincide with them [2, 17]. At long distances, the physics described by both states is
identical. In particular, the topological quantum numbers of both states, such as the
charge and the statistics of the (fractionally) charged excitations, or the degeneracies
on closed surfaces of genus one and higher, are identical.

The Laughlin state can be characterized through the notion of “superfermions”
[18]. For fermions (bosons), the relative angular momentum is quantized as �l, where
l is an odd (even) integer, due to the antisymmetry (symmetry) of the wave function
under interchange of particles. In the LLL, the relative angular momentum between
pairs of fermions can only have components with l = 1, 3, 5, . . ., but no negative
values. If we interchange the particles through winding them counterclockwise
around each other, these components acquire a phase factor eiπl . The smallest com-
ponent hence acquires a phase π , as required by Fermi statistics. For the Laughlin
state (2.1.30), the smallest component of relative angular momentum is l = m, and
the phase this component acquires upon interchange is mπ , while only a phase π
is required by Fermi statistics. In this sense, the particles are “superfermions” for
m odd, m > 1. In the exact ground state for Coulomb interaction, the electrons are
“approximate superfermions”.

For completeness, we wish to mention that there is a variant of Haldane’s parent
Hamiltonian [3] for the planar geometry, due to Trugman and Kivelson [19]. They
noted that since the Laughlin state (2.1.30) contains a term (zi − z j )

m for each pair,
it is annihilated by the short range potential interaction



18 2 Three Models and a Ground State

V (m) =
N∑

i< j

(∇2
i

)(m−1)/2
δ(2)(zi − z j ) (2.1.31)

for m odd, and

V (m) =
N∑

i< j

(∇2
i

)(m−2)/2
δ(2)(zi − z j ) (2.1.32)

for m even, as well as by the same terms with any smaller power of the Laplacian.
If we combine these terms with the kinetic terms (2.1.9), the resulting Hamiltonian
will single out (2.1.30) as the exact and unique ground state.

2.1.3 Fractionally Charged Quasiparticle Excitations

Laughlin [1] created the elementary, charged excitations of the fractionally quantized
Hall state (2.1.30) through a Gedankenexperiment. If one adiabatically inserts one
Dirac quantum of magnetic flux through an infinitely thin solenoid at a position ξ ,
and then removes this flux quanta via a singular gauge transformation, the final
Hamiltonian will be identical to the initial one. The final state will hence be an
eigenstate of the initial Hamiltonian as well. The adiabatic insertion of the flux will
induce an electric field

∮
Eds = Eϕ · 2πr = 1

c

∂φ

∂t
, (2.1.33)

which in turn will change the canonical angular momentum Lz around ξ by

�Lz =
∫

Fϕ · rdt = e

2πc

∫
∂φ

∂t
dt = e

2πc
· φ0 = �. (2.1.34)

If we choose a basis of eigenstates of angular momentum around ξ , the basis states
evolve according to

(z − ξ)me− 1
4 |z|2 → (z − ξ)m+1e− 1

4 |z|2 . (2.1.35)

Note that the kinematical angular momentum, which is given by the second term
in (2.1.16), has eigenvalue −�n, where n labels the Landau level. In this process,
it remains zero as the states remain in the lowest Landau level—as there are no states
with positive kinematical angular momentum, the insertion of the flux just shifts the
states within the LLL.

The Laughlin ground state (2.1.30) evolves in the process into

ψ
QH
ξ (z1, . . . , zN ) =

N∏

i=1

(zi − ξ)

N∏

i< j

(zi − z j )
m

N∏

i=1

e− 1
4 |zi |2 , (2.1.36)
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which describes a quasihole excitation at ξ . It is easy to see that if the electron charge
is −e, the charge of the quasihole is +e/m. If we were to create m quasiholes at ξ
by inserting m Dirac quanta, the final wave function would be

ψ
mQH’s
ξ (z1, . . . , zN ) =

N∏

i=1

(zi − ξ)m
N∏

i< j

(zi − z j )
m

N∏

i=1

e− 1
4 |zi |2 , (2.1.37)

i.e., we would have created a true hole in the liquid, which is screened as all the other
particles. Since the hole has charge +e, the quasihole has charge +e/m. One may
view the quasihole as a zero in the wave function which is not attached to any of the
electrons.

The quasielectron, i.e. the antiparticle of the quasihole, has charge −e/m and is
created by inserting the flux adiabatically in the opposite direction, thus lowering the
angular momentum around some position ξ by �, or alternatively, by removing one
of the zeros from the wave function. To accomplish this formally, we first rewrite
(2.1.36) in terms of ladder operators:

ψ
QH
ξ (z1, . . . , zN ) =

N∏

i=1

(√
2b†

i − ξ
) N∏

i< j

(zi − z j )
m

N∏

i=1

e− 1
4 |zi |2 . (2.1.38)

The insertion of a flux quanta in the opposite direction, or the lowering of angular
momentum around ξ , will then correspond to the Hermitian conjugate operation.
Laughlin [4] hence proposed for the quasielectron wave function

ψ
QE
ξ̄
(z1, . . . , zN ) =

N∏

i=1

(√
2bi − ξ̄

) N∏

i< j

(zi − z j )
m

N∏

i=1

e− 1
4 |zi |2

=
N∏

i=1

e− 1
4 |zi |2

N∏

i=1

(
2
∂

∂zi
− ξ̄

) N∏

i< j

(zi − z j )
m . (2.1.39)

While the quasihole excitation (2.1.36) is still an exact eigenstate of Haldane’s parent
Hamiltonian, this is not true for the quasielectron (2.1.39). The problem here is that
while there is a clean and unique way of introducing an additional zero (we just
put it somewhere), there is no such clean way of removing one. One can view the
quasielectron as a region, in which n electrons nearby share 2n − 1 zeros attached to
the particles. In other words, one zero is missing, but not from any specific electron—
rather, the dearth is distributed among all the electrons nearby. The charge of the
quasielectron is accordingly not as localized as it is for the quasihole.

The plateau in the observed Hall resistivity occurs because the current in the
experiments is carried by edge states, which are sensitive only to the topological
quantum numbers of the state. In the vicinity of one of the prefered filling fractions
ν = 1/m, the excess density of electrons yields to a finite density of quasielectrons
or holes, which get pinned by disorder and hence do not contribute to the transport
properties.
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Fig. 2.1 Fractional statistics in two dimensions. The many particle wave function acquires a statis-
tical phase θ whenever we interchange two anyons conterclockwise

2.1.4 Fractional Statistics

Possibly the most interesting property of fractionally quantized Hall states is that
the quasiparticle excitations obey fractional statistics [20–22]. The possibility of
fractional statistics [23–31] arises in two space dimensions because the space of
trajectories for two identical particles consists of an infinite number of topologically
distinct sectors, corresponding to the number of times the particles wind around each
other. The laws of quantum mechanics allow us to assign distinct phases to paths
belonging these sectors, which only need to satisfy the composition principle.

In three or more dimensions, by contrast, there are only two topological dis-
tinct sectors, corresponding to interchanging the particles or not interchanging them.
The group which classifies all the topologically distinct trajectories is hence the
permutation group, and since amplitudes are complex numbers, the possibilities
for the quantum statistics are limited to the one-dimensional representations of the
permutation group. There are only two such representations, the symmetric and the
antisymmetric representation. These correspond to the familiar choices of Bose and
Fermi statistics.

In two dimensions, the group is the braid group. The one-dimensional represen-
tations are obtained by assigning an arbitrary phase τ(Ti ) = eiθ for each counter-
clockwise interchange Ti of the two particles, with statistical parameter θ ∈]−π, π ].
Particles interpolating between the familiar choices of bosons (θ = 0) and fermions
(θ = π ) are generically called anyons. We will see in Sect. 2.3.3 that non-Abelian
generalizations exist, where successive interchanges of anyons do not commute.

The most direct physical manifestation of the fractional statistics is the quantiza-
tion of the relative angular momentum of the anyons (see Fig. 2.1). In three dimen-
sions, there are three generators of rotations, and the relative angular momentum
is quantized as �l, with l an even integer for bosons and an odd integer l odd for
fermions. In two dimensions, the wave function may acquire a phase exp

( i
π
θϕ
)

as
two anyons wind counterclockwise around each other with winding angle ϕ, which
implies that the relative angular momentum is quantized as

L rel = �

(
− θ

π
+ 2n

)
, (2.1.40)

where n is an integer. Note that the possibility of fractional statistics exists only
for particles which are strictly two-dimensional, like vortices in an (approximately)
two-dimensional quantum fluid.
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The only established realization of fractional statistics is provided by the quasi-
particles in the fractionally quantized Hall effect [20–22]. When Laughlin introduced
the quasiparticles, he introduced them as localized defects or more precisely, vortices
in an otherwise uniform quantum liquid. To address the question of their statistics,
however, it is propitious to view them as particles, with a Hilbert space spanned by
the parent wave function for the electrons. We consider here a Laughlin state with two
quasiholes in an eigenstate of relative angular momentum in an “orbit” centered at
the origin. Since the quasiholes have charge e∗ = +e/m, the effective flux quantum
seen by them is

�∗
0 = 2π�c

e∗ = m�0, (2.1.41)

and the effective magnetic length is

l∗ =
√

�c

e∗ B
= √

ml. (2.1.42)

We expect the single quasihole wave function to describe a particle of charge e∗ in
the LLL, and hence be of the general form

φ(ξ̄ ) = f (ξ̄ )e− 1
4m |ξ |2 . (2.1.43)

The complex conjugation reflects that the sign of the quasihole charge is reversed
relative to the electron charge −e.

The electron wave function for the state with two quasiholes in an eigenstate of
relative angular momentum is given by

ψ(z1, . . . , zN ) =
∫

D[ξ1, ξ2]φp,m(ξ̄1, ξ̄2)ψ
QHs
ξ1,ξ2

(z1, . . . , zN ) (2.1.44)

with

φp,m(ξ̄1, ξ̄2) = (ξ̄1 − ξ̄2)
p+ 1

m
∏

k=1,2

e− 1
4m |ξk |2 , (2.1.45)

where p is an even integer, and

ψ
QHs
ξ1,ξ2

(z1, . . . , zN ) = (ξ1 − ξ2)
1
m
∏

k=1,2

e− 1
4m |ξk |2

·
N∏

i=1

(zi − ξ1)(zi − ξ2)

N∏

i< j

(zi − z j )
m

N∏

i=1

e− 1
4 |zi |2 . (2.1.46)

The quasihole coordinate integration extends over the complex plane,
∫

D[ξ1, ξ2] ≡
∫
. . .

∫
dx1dy1dx2dy2,

where ξ1 = x1 + iy1 and ξ2 = x2 + iy2.
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This needs explanation. We see that both φp,m(ξ̄1, ξ̄2) and ψ
QHs
ξ1,ξ2

(z1, . . . , zN )

contain multiple valued functions of ξ̄1 − ξ̄2 and ξ1 − ξ2, respectively, while the
product of them is understood to be single valued. The reason for this is that the
Hilbert space for the quasiholes at ξ1 and ξ2 spanned byψQHs

ξ1,ξ2
(z1, . . . , zN ) has to be

normalized and is, apart from the exponential, supposed to be analytic in ξ1 and ξ2.
At the same time, we expect φp,m(ξ̄1, ξ̄2) to be of the general form (2.1.41), i.e. to
be an analytic function of ξ̄1, ξ̄2 times the exponential.

The form (2.1.45) of the quasihole wave function including its branch cut,
is indicative of fractional statistics with statistical parameter θ = π/m. This indica-
tion, however, is by itself not conclusive, as it is possible to change the representation
of the wave function through singular gauge transformations [20, 21, 25], where one
removes or adds flux tubes with a fraction of a Dirac flux quanta to the particles,
and hence turn an anyonic representation into a bosonic or fermionic one and vice
versa. The physically unambivalent quantity is the relative angular momentum of the
quasiholes, which for (2.1.45) is given by

L rel = −�

(
p + 1

m

)
. (2.1.47)

Comparing this with (2.1.40) yields θ = π/m. This result agrees with the results of
Halperin [20, 21] and of Arovas, Schrieffer, and Wilczek [22], who calculated the
statistical parameter directly using the adiabatic theorem [32–35].

2.1.5 Landau Level Quantization in the Spherical Geometry

The formalism for Landau level quantization in a spherical geometry, i.e., for the
dynamics of a charged particle on the surface of a sphere with radius R, in a magnetic
(monopole) field, was pioneered by Haldane for the lowest Landau level [3, 36], and
only very recently generalized to higher Landau levels [37]. We will content ourselves
here with a review of the formalism for the lowest Landau level.

Following Haldane [3], we assume a radial magnetic field of strength

B = �cs0

eR2 (e > 0). (2.1.48)

The number of magnetic Dirac flux quanta through the surface of the sphere is

�tot

�0
= 4πR2 B

2π�c/e
= 2s0, (2.1.49)

which must be integer due to Dirac’s monopole quantization condition [38]. In the
following, we take � = c = 1.
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The Hamiltonian is given by

H = �2

2M R2 = ωc

2s0
�2, (2.1.50)

where ωc = eB/M is the cyclotron frequency,

� = r × (−i∇ + e A(r)) (2.1.51)

is the dynamical angular momentum, r = Rer, and ∇ × A = Ber. With (A.4)–(A.6)
from Appendix A we obtain

� = −i

(
eϕ
∂

∂θ
− eθ

1

sin θ

∂

∂ϕ

)
+ eR(er × A(r)). (2.1.52)

Note that

er� = �er = 0, (2.1.53)

as one can easily verify with (A.5). The commutators of the Cartesian components of
� with themselves and with er can easily be evaluated using (2.1.52) and (A.3)–(A.5).
This yields

[
�i ,� j ] = iεi jk(�k − s0 ek

r ), (2.1.54)

[
�i , e j

r

] = iεi jkek
r , (2.1.55)

where i, j, k = x, y, or z, and ek
r is the kth Cartesian coordinate of er. From

(2.1.53)–(2.1.55), we see that that the operator

L = � + s0er (2.1.56)

is the generator of rotations around the origin,

[
Li , X j ] = iεi jk Xk with X = �, er, or L, (2.1.57)

and hence the angular momentum. As it satisfies the angular momentum algebra,
it can be quantized accordingly. Note that L has a component in the er direction:

Ler = er L = s0. (2.1.58)

If we take the eigenvalue of L2 to be s(s + 1), this implies s = s0 + n, where
n = 0, 1, 2, . . . is a non-negative integer (while s and s0 can be integer or half integer,
according to number of Dirac flux quanta through the sphere).

With (2.1.56) and (2.1.53), we obtain
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�2 = L2 − s2
0 . (2.1.59)

The energy eigenvalues of (2.1.50) are hence

En = ωc

2s0

[
s(s + 1)− s2

0

]

= ωc

2s0

[
(2n + 1)s0 + n(n + 1)

]

= ωc

[(
n + 1

2

)
+ n(n + 1)

2s0

]
. (2.1.60)

The index n hence labels the Landau levels.
To obtain the eigenstates of (2.1.50), we have to choose a gauge and then explicitly

solve the eigenvalue equation. We choose the latitudinal gauge

A = −eϕ
s0

eR
cot θ. (2.1.61)

The singularities of B = ∇ × A at the poles are without physical significance. They
describe infinitly thin solenoids admitting flux s0�0 each and reflect our inability to
formulate a true magnetic monopole.

The dynamical angular momentum (2.1.52) becomes

� = −i

[
eϕ
∂

∂θ
− eθ

1

sin θ

(
∂

∂ϕ
− is0 cos θ

)]
. (2.1.62)

With (A.5) we obtain

�2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

(
∂

∂ϕ
− is0 cos θ

)2

. (2.1.63)

To formulate the eigenstates, Haldane [3] introduced spinor coordinates for the
particle position,

u = cos
θ

2
exp

(
iϕ

2

)
, v = sin

θ

2
exp

(
− iϕ

2

)
, (2.1.64)

such that

er = �(u, v) ≡ (u, v)σ

(
ū
v̄

)
, (2.1.65)

where σ = (σx, σy, σz) is the vector consisting of the three Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.1.66)

In terms of these, a complete, orthogonal basis of the states spanning the lowest
Landau level (n = 0, s = s0) is given by
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ψ s
m,0(u, v) = us+mvs−m (2.1.67)

with

m = −s, s + 1, . . . , s.

For these states,

Lzψ s
m,0 = mψ s

m,0,

Hψ s
m,0 = 1

2
ωcψ

s
m,0. (2.1.68)

To verify (2.1.68), we consider the action of (2.1.63) on the more general basis states

φs
m,p(u, v) =

(
cos

θ

2

)s+m (
sin

θ

2

)s−m

ei(m−p)ϕ

=
{
v̄−pus+mvs−m+p, for p < 0,
ū pus+m−pvs−m, for p ≥ 0.

(2.1.69)

This yields

�2φs
m,p =

[
s −

(
s cos θ − m

sin θ

)2

+
(

s0 cos θ − m + p

sin θ

)2
]
φs

m,p

=
[

s + 2(s cos θ−m+ p)(p−n cos θ)− (p2−n2 cos2 θ)

sin2 θ

]
φs

m,p,

(2.1.70)

For p = n = 0, this clearly reduces to �2ψ s
m,0 = sψ s

m,0, and hence (2.1.68).
The normalization of (2.1.67) can easily be obtained with the integral

1

4π

∫
d� ūS+m′

v̄S−m′
us+mvs−m = (s + m)!(s − m)!

(2s + 1)! δmm′ , (2.1.71)

where d� = sin θ dθ dφ.
To describe particles in the lowest Landau level which are localized at a point

�(α, β) with spinor coordinates (α, β),

�(α, β) = (α, β)σ

(
ᾱ

β̄

)
, (2.1.72)

Haldane [3] introduced “coherent states” defined by

{�(α, β)L}ψ s
(α,β),0(u, v) = sψ s

(α,β),0(u, v). (2.1.73)
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In the lowest Landau level, the angular momentum L can be written

L = 1

2
(u, v)σ

⎛

⎜⎜⎝

∂

∂u
∂

∂v

⎞

⎟⎟⎠ . (2.1.74)

Note that u, v may be viewed as Schwinger boson creation, and ∂
∂u ,

∂
∂v

the
corresponding annihilation operators (see Sect. 2.4.3). The solutions of (2.1.73) are
given by

ψ s
(α,β),0(u, v) = (ᾱu + β̄v)2s, (2.1.75)

as one can verify easily with the identity

(a σ b)(c σ d) = 2(a d)(c b)− (a b)(c d). (2.1.76)

where a, b, c, d are two-component spinors.
Haldane [3] further introduced two-particle coherent lowest Landau level states

defined by

{�(α, β)(L1 + L2)}ψ s, j
(α,β),0[u, v] = jψ s, j

(α,β),0[u, v], (2.1.77)

where [u, v] := (u1, u2, v1, v2) and j is the total angular momentum quantum
number,

(L1 + L2)
2ψ

s, j
(α,β),0[u, v] = j ( j + 1)ψ s, j

(α,β),0[u, v]. (2.1.78)

The solution of (2.1.77) is given by

ψ
s, j
(α,β),0[u, v] = (u1v2 − u2v1)

2s− j
∏

i=1,2

(ᾱui + β̄vi )
j . (2.1.79)

It describes two particles with relative momentum 2s − j precessing about their
common center of mass at �(α, β).

Since 0 ≤ j ≤ 2s, the relative momentum quantum number l = 2s − j has to
be a non-negative integer. The restriction to non-negative integers is a consequence
of Landau level quantization, and exists in the plane as well, as we discussed in
Sect. 2.1.2. For bosons or fermions, l has to be even or odd, respectively. This implies
that the projection �0 into the lowest Landau level of any rotationally invariant
operator V (r1 · r2), such as two particle interactions, can be expanded as

�0V (r1 · r2)�0 =
2s∑

l

Vl P2s−l(L1 + L2), (2.1.80)
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where the sum over l is restricted to even (odd) integer for bosons (fermions),
Vl denotes the so-called pseudopotential coefficients, and Pj (L) is the projection
operator on states with total momentum L2 = j ( j + 1).

As mentioned, this formalism was very recently generalized to include higher
Landau levels as well [37]. The key insight permitting this generalization was that
there are two mutually commuting SU(2) algebras with spin s, one for the cyclotron
variables and one for the guiding center variables. These algebras are analogous to
the the two mutually commuting ladder algebras a, a† and b, b† in the plane, which
we introduced in Sect. 2.1.1.

2.1.6 The Laughlin State and Its Parent Hamiltonian
on the Sphere

In analogy to (2.1.30), Haldane [3] writes the Laughlin ν = 1/m state for N particles
on a sphere with 2s0 = m(N − 1) as

ψm[u, v] =
N∏

i< j

(uiv j − u jvi )
m . (2.1.81)

Since the factors (uiv j − u jvi ) commute with the total angular momentum

Ltot =
N∑

i=1

Li , (2.1.82)

(2.1.81) is obviously invariant under spacial rotations around the sphere:

Ltotψm = 0. (2.1.83)

The Laughlin droplet wave function centered at �(α, β) can be recovered by multi-
plying ψm[u, v] by a factor

N∏

i=1

(ᾱui + β̄vi )
n,

and then taking the limit n→∞, R→∞, while 4πR2/n = 2πl2 = const., where l2

is the magnetic length (2.1.5).
As in the plane, the uniquely specifying property of the Laughlin state (2.1.81) is

that the smallest component of relative angular momentum is m, which is even for
bosons and odd for fermions. Haldane [3] constructed a model Hamiltonian, which,
together with the kinetic Hamiltonian (2.1.50), singles out (2.1.81) as exact and
unique zero energy ground state, by assigning a finite energy cost to the components
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of angular momentum smaller than m. With the most general two-particle interaction
Hamiltonian given by

Hint =
N∑

i< j

{
2s∑

l

VlP2s−l(Li + L j )

}
, (2.1.84)

where the values of l are restricted to even (odd) integers for bosons (fermions) and
P2s−l is as defined in (2.1.80), Haldane’s Hamiltonian amounts to taking

Vl =
{

1 for l < m,
0 for l ≥ m.

(2.1.85)

For all practical purposes, we need to rewrite (2.1.84) in terms of boson or fermion
creation or annihilation operators,

Hint =
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

s∑

m4=−s

a†
m1

a†
m2

am3 am4δm1+m2,m3+m4

·
2s∑

l=0

〈s,m1; s,m2|2s − l,m1 + m2〉Vl〈2s − l,m3 + m4|s,m3; s,m4〉,
(2.1.86)

where am annihilates a boson or fermion in the properly normalized single particle
state

ψ s
m,0(u, v) =

√
(2s + 1)!

4π(s + m)!(s − m)! us+mvs−m, (2.1.87)

and 〈s,m1; s,m2| j,m1+m2〉 etc. are Clebsch–Gordan coefficients [39]. Essentially,
we take two particles with Lz eigenvalues m3 and m4, change the basis into one where
m3 + m4 and the total two particle momentum 2s − l are replacing the quantum
numbers m3 and m4, multiply each amplitude by Vl , and convert the two particles
states back into a basis of Lz eigenvalues m1 and m2.

The fractionally charged quasihole and quasielectron excitations of the Laughlin
state (2.1.81) localized at �(α, β) on the sphere are given by

ψ
QH
(α,β)[u, v] =

N∏

i=1

(βui − αvi )

N∏

i< j

(uiv j − u jvi )
m (2.1.88)

and

ψ
QE
(α,β)[u, v] =

N∏

i=1

(
β̄
∂

∂ui
− ᾱ

∂

∂vi

) N∏

i< j

(uiv j − u jvi )
m, (2.1.89)

which increase or decrease the number of flux quanta 2s0 through the sphere by one,
and decrease or increase �(α, β)Ltot by 1

2 N .
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Due to the formal simplicity, the sphere is particularly well suited to formulate the
hierarchy of quantized Hall states, where all odd-denominator filling fractions can
be obtained through successive condensation of quasiparticles into Laughlin-type
fluids [3, 20, 21, 40].

2.2 The Haldane–Shastry Model

2.2.1 The 1/r2 Model of Haldane and Shastry

The Haldane–Shastry model [41–53] is one of the most important paradigms for a
generic spin 1

2 liquid on a chain. Consider a spin 1
2 chain with periodic boundary

conditions and an even number of sites N on a unit circle embedded in the complex
plane:

The 1/r2-Hamiltonian

HHS =
(

2π

N

)2 N∑

α<β

SαSβ∣∣ηα − ηβ
∣∣2
, (2.2.1)

where |ηα−ηβ | is the chord distance between the sites α and β, has the exact ground
state

∣∣ψHS
0

〉 =
∑

{z1,...,zM }
ψHS

0 (z1, . . . , zM )S
+
z1

· . . . · S+
zM

∣∣↓↓ . . . . . . ↓︸ ︷︷ ︸
all N spins ↓

〉
, (2.2.2)

where the sum extends over all possible ways to distribute the M = N
2 ↑-spin coor-

dinates zi on the unit circle and

ψHS
0 (z1, z2, . . . , zM ) =

M∏

i<i

(zi − z j )
2

M∏

i=1

zi . (2.2.3)

The ground state has momentum

p0 = −π
2

N , (2.2.4)

where we have adopted a convention according to which the “vacuum” state
|↓ ↓ . . . ↓〉 has momentum p = 0 (and the empty state |0〉 has p =π(N − 1))
and energy
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E0 = −π
2

24

(
N + 5

N

)
. (2.2.5)

We will verify (2.2.4) and (2.2.5) in Sects. 2.2.3 and 2.2.4, respectively.

2.2.2 Symmetries and Integrability

The Haldane–Shastry Hamiltonian (2.2.1) is clearly invariant under space transla-
tions (rotations of the unit circle), time reversal, parity, and global SU(2) spin rotations
generated by

Stot =
N∑

α=1

Sα,
[
HHS, Stot

] = 0. (2.2.6)

The total spin trivially satisfies the standard commutation relations for angular
momentum,

[
Si

tot, S j
tot

] = i εi jk Sk
tot. (2.2.7)

The model possesses an additional symmetry [46, 54] generated by the rapidity
operator

� = i

2

N∑

α,β=1
α �=β

ηα + ηβ

ηα − ηβ
Sα × Sβ,

[
HHS,�

] = 0, (2.2.8)

which measures the spin current. It transforms as a vector under spin rotations,
[
Si

tot,�
j ] = i εi jk�k . (2.2.9)

Note that even though both Stot and � commute with the Hamiltonian, they do
not commute mutually, but generate an infinite dimensional associative algebra with
certain defining relations and consistency conditions, the Yangian Y(sl2) [55, 56].
Since the commutator of the total spin squared with the rapidity operator does not
vanish in general,

[
S2

tot,�
i ] = −i εi jk{S j

tot,�
k}, (2.2.10)

elements of the Yangian algebra connect degenerate eigenstates with different total
spins. With these elements, it is possible to generate all the eigenstates of the model
from all the completely spin polarized eigenstates.

The Yangian symmetry of the model [46, 54] implies significant degeneracies in
the spectrum and hence indicates integrability. The model is not integrable in the usual
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sense, however, as the method of quantum inverse scattering [57] is not applicable
to models with long-range interactions. Talstra and Haldane [58] have nonetheless
succeeded in constructing an infinite set of mutually commuting integrals of motion
for the model by using the determinant rather than the trace of the monodromy matrix.
These integrals provide the framework for the model’s integrability. The integrability
is hence only indirectly related to the Yangian symmetry.

The model is further amenable to exact solution via the asymtotic Bethe Ansatz
[44, 47, 54, 59–64], even though the application of this method to models with
long-range interactions is likewise heuristic.

2.2.3 Ground State Properties

The ground state (2.2.3) is real (and hence both parity and time-reversal invariant),
a spin singlet, and can equivalently be obtained by Gutzwiller projection [65–71],
as we will verify now after evaluating the total momentum.

Ground state momentum. To determine the momentum p0 (in units of inverse
lattice spacings 1/a) we translate the ground state (2.2.3) counterclockwise by one
lattice spacing around the unit circle,

T
∣∣ψHS

0

〉 = eip0
∣∣ψHS

0

〉
. (2.2.11)

With T zi = ei 2π
N zi , we find

p0 = 2π

N

(
2

M(M − 1)

2
+ M

)
= πM,

and hence (2.2.4). Note that the sign of p0 is irrelevant for (2.2.3), as N is always
even, and p0 is 0 or π . The sign will become significant only in Sects. 2.2.6 and 2.2.7
below, when we assign spinons momenta for states with N odd.

Singlet property. Since Sz
tot

∣∣ψHS
0

〉 = 0, it suffices to show that
∣∣ψHS

0

〉
is annihilated

by S−
tot:

S−
tot

∣∣ψHS
0

〉 =
N∑

α=1

S−
α

∑

{z1,...zM }
ψHS

0 (z1, z2, . . . zM )S
+
z1
. . . S+

zM
|↓↓ . . . ↓〉

=
∑

{z2,...,zM }

N∑

α=1

ψHS
0 (ηα, z2, . . . , zM )

︸ ︷︷ ︸
=0

S+
z2
. . . S+

zM
|↓↓ . . . ↓〉, (2.2.12)

since ψHS
0 (ηα, z2, . . . , zM ) contains only powers η1

α, η
2
α, . . . , η

N−1
α and

N∑

α=1

ηm
α = Nδm,0 mod N . (2.2.13)
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Parity and time reversal invariance. We begin by showing that ψHS
0 is real. With

z̄i = 1/zi and hence

(zi − z j )
2 = −zi z j |zi − z j |2, (2.2.14)

we write

ψHS
0 (z1, z2, . . . , zM ) = ±

M∏

i< j

|zi − z j |2
M∏

i< j

zi z j

M∏

i=1

zi

= ±
M∏

i< j

|zi − z j |2
M∏

i=1

G(zi ) (2.2.15)

where

G(ηα) = (ηα)
N
2 =

{+1 α even
−1 α odd.

(2.2.16)

The gauge factor G(zi ) effects that the Marshall sign criteria [72] is fulfilled.
Since parity tranforms ηα → η−α = η̄α and hence zi → z̄i , the fact that ψHS

0 is
real implies that

∣∣ψHS
0

〉
is invariant under parity. Time reversal transforms [73]

i → −i, Sα → −Sα, |s,m〉 → i2m |s,−m〉,
which implies zi → z̄i , S+

α → −S−
α , and |↓↓ . . . ↓〉 → (−i)N |↑↑ . . . ↑〉. The basis

states in (2.2.2) hence transform according to

S+
z1

· . . . · S+
zM

|↓↓ . . . ↓〉 → S−
z1

· . . . · S−
zM

|↑↑ . . . ↑〉. (2.2.17)

Together with the singlet property, this implies that
∣∣ψHS

0

〉
is invariant under time

reversal.
Generation by Gutzwiller projection. The ground state of the model was first

obtained by Gutzwiller projection from a completely filled one-dimensional band
which in total contains as many spin 1

2 fermions as there are lattice sites [65, 68–71]:

∣∣ψHS
0

〉 = PGW
∣∣ψN

SD

〉
,
∣∣ψN

SD

〉 ≡
∏

q∈I
c†

q↑c†
q↓|0〉, (2.2.18)

where the Gutzwiller projector

PGW ≡
N∏

i=1

(
1 − c†

i↑ci↑c†
i↓ci↓

)
(2.2.19)

eliminates configurations with more than one particle on any site and the interval I
contains M = N

2 adjacent momenta. We will now show that (2.2.18) is equivalent
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to (2.2.3). With lattice constant a = 2π
N , the allowed momenta are given by integers,

q = 0, 1, . . . , N − 1. With

c†
q =

N∑

α=1

ei 2π
N αqc†

α =
N∑

α=1

ηq
αc†
α, (2.2.20)

the (unnormalized) single particle momentum eigenstates are given by

φq(z) = 〈z|q〉 = 〈0|czc†
q |0〉 = zq . (2.2.21)

The many particle wave function for M fermions with adjacent momenta q ∈ I =
[q1, q1 + M − 1] is hence given by

φI(z1, z2, . . . , zM ) =
M∏

i=1

zq1
i · A{z0

1z1
2 . . . z

M−1
M

} =
M∏

i=1

zq1
i

M∏

i< j

(zi − z j ). (2.2.22)

The Gutzwiller state (2.2.18) is given by
∣∣ψHS

0

〉 =
∑

{z1,...,zM ;w1,...,wM }
φI(z1, . . . , zM )φI(w1, . . . , wM )

· c†
z1↑ . . . c

†
zM ↑c†

w1↓ . . . c
†
wM ↓|0〉, (2.2.23)

where the sum extends over all possible ways to distribute the coordinates zi and wk

on mutually distinct lattice sites.
Let Ĩ contain all those M momenta not contained in I, and w1, . . . , wM denote

the sites which are not occupied by any of the zi ’s. Then

φI(w1, . . . , wM ) = 〈0|cwM . . . cw1

∏

q∈I
c†

q |0〉

= sign[z;w] · 〈0|
∏

q∈I
cq

∏

q∈Ĩ
cq c†

z1
. . . c†

zM

∏

q∈I
c†

q |0〉

= sign[z;w] · 〈0|
∏

q∈Ĩ
cq c†

z1
. . . c†

zM
|0〉

= sign[z;w] · φĨ
∗(z1, . . . , zM )

= sign[z;w] ·
M∏

i=1

z̄i
M · φI∗(z1, . . . , zM ), (2.2.24)

where

sign[z;w] ≡ 〈0|cwM . . . cw1 czM . . . cz1

∏

q∈Ĩ
c†

q

∏

q∈I
c†

q |0〉 (2.2.25)

is an overal sign associated with ordering the z’s and w’s according to the lattice sites
indices α. Since

sign[z;w] · c†
z1↑ . . . c

†
zM ↑c†

w1↓ . . . c
†
wM ↓|0〉 = S+

z1
· . . . · S+

zM
|↓↓ . . . ↓〉 (2.2.26)
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we may write

∣∣ψHS
0

〉 =
∑

{z1,...,zM }
|φI(z1, . . . , zM )|2

M∏

i=1

G(zi )S
+
z1

· . . . · S+
zM

|↓↓ . . . ↓〉. (2.2.27)

This is equivalent to (2.2.15).
As an aside, it is very easy to verify the singlet property in the Gutzwiller

formulation (2.2.18) of the ground state. To begin with, filling the same single particle
states with ↑ and ↓ spin fermions obviously yields a singlet,

Stot
∣∣ψN

SD

〉 = 0. (2.2.28)

The Gutzwiller projector (2.2.19), however, commutes with the local spin operators
and hence also with the total spin,

[
PGW, Sα

] = [
PGW, Stot

] = 0. (2.2.29)

Hence

Stot
∣∣ψHS

0

〉 = 0. (2.2.30)

Norm. The norm of the ground state is [74]

∑

{z1,...,zM }

M∏

i< j

|zi − z j |4 =
(

N

2π i

)M ∮
dz1

z1
. . .

∮
dzM

zM

M∏

i �= j

(
1 − zi

z j

)2

= N M (2M)!
2M

. (2.2.31)

Relation to the chiral spin liquid. The Haldane–Shastry ground state may be
viewed as the one-dimensional analog of the abelian or S = 1

2 chiral spin liquid
[75–82], which is essentially a Laughlin m = 2 quantized Hall state [1] for spin flips
on a two dimensional lattice. The spinons in the chiral spin liquid were understood
to obey half-Fermi statistics long before this was realized for the Haldane–Shastry
model.

2.2.4 Explict Solution

For the explict calculation presented here to be applicable to the one- and two-spinon
eigenstates investigated in Sect. 2.2.6 below, we consider wavefunctions of the form
[44, 50–52]

ψ(z1, . . . , zM ) = φ(z1, . . . , zM ) · ψHS
0 (z1, . . . , zM ), (2.2.32)
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where ψHS
0 is given by (2.2.2) and φ[z] ≡ φ(z1, . . . , zM ) a polynomial of degree

strictly less than N − 2M + 2 in each of the zi ’s. This implies that the degree of ψHS

is strictly less than N + 1. N can be even or odd. This condition enables us to use
a Taylor expansion when we calculate the action of the Hamiltonian (2.2.1) on the
state. The result is that

HHS|ψ〉 = 2π2

N 2

(
λ+ N

48
(N 2−1)+ M

6
(4M2−1)− N

2
M2
)

|ψ〉, (2.2.33)

provided that φ satisfies the eigenvalue equation

M∑

j=1

(
1

2
z2

j
∂2

∂z2
j

+
M∑

k=1
k �= j

2z2
j

z j − zk

∂

∂z j
− N − 3

2
z j

∂

∂z j

)
φ[z] = λφ[z] (2.2.34)

for λ. The derivative operators in (2.2.34) and below are understood to act on the
analytic extension of φ(z1, . . . , zM ), in which the zi ’s are allowed to take any value
in the complex plane. For φ[z] = 1, (2.2.33) shows that

∣∣ψHS
0

〉
is an eigenstate of

HHS with energy E0 given by (2.2.5).
Derivation of (2.2.33) and (2.2.34). We first use S± = Sx ± i Sy to rewrite (2.2.1)

as the sum of a “kinetic” and a “potential” term,

HHS = 2π2

N 2

N∑

α �=β

1

|ηα − ηβ |2
(

S+
α S−

β + Sz
αSz
β

)
. (2.2.35)

We first evaluate the action of the kinetic term on |ψ〉. Consider first

S+
α S−

β |ψ〉 = S+
α S−

β

∑

{z2,...,zM }
ψ(ηβ, z2, . . . , zM )S

+
β S+

z2
· . . . · S+

zM
|↓↓ . . . ↓〉

=
∑

{z2,...,zM }
ψ(ηβ, z2, . . . , zM )S

+
α S+

z2
· . . . · S+

zM
|↓↓ . . . ↓〉, (2.2.36)

where we have implicitly assumed that each spin configuration in the sum over
{z1, z2, . . . , zM } in (2.2.2) appears only once (and not M ! times due to permutations
of the zi ’s). We write this as

[
S+
α S−

β ψ
]
(ηα, z2, . . . , zM ) = ψ(ηβ, z2, . . . , zM ). (2.2.37)

Note in particlular that
[
S+
α S−

β ψ
]
(z1, z2, . . . , zM ) vanishes unless ηα equals one of

the zi ’s.
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The action of the kinetic term on ψ is given by

Tψ[z] ≡
⎡

⎣
N∑

α �=β

S+
α S−

β

|ηα − ηβ |2ψ
⎤

⎦ (z1, . . . , zM )

=
M∑

j=1

N∑

β=1
ηβ �=z j

ηβ

|z j − ηβ |2
ψ(z1, . . . , z j−1, ηβ, z j+1, . . . , zM )

ηβ
. (2.2.38)

Since the last fraction is a polynomial of degree strictly less than N in β, we can
Taylor expand it around z j ,

ψ(z1, . . . , ηβ, . . . , zM )

ηβ
=

N−1∑

l=0

(ηβ − z j )
l

l!
∂ l

∂zl
j

�(z1, . . . , zM )

z j
. (2.2.39)

The sum over β yields

N∑

β=1
ηβ �=z j

ηβ(ηβ − z j )
l

|z j − ηβ |2 = zl+1
j Al , Al = −

N−1∑

α=1

η2
α(ηα − 1)l−2, (2.2.40)

where A0, A1, and A2 are evaluated with (B.14), (B.9), and (B.2) from Appendix B,
respectively:

A0 = −
N−1∑

α=1

η2
α

(ηα − 1)2
= (N − 1)(N − 5)

12
,

A1 = −
N−1∑

α=1

η2
α

ηα − 1
= − N − 3

2
,

A2 = −
N−1∑

α=1

η2
α = 1,

Al = −
N∑

α=1

η2
α(ηα − 1)l−2 = 0 for 2 < l ≤ N − 1.

In the last line, we have used that η2
α(ηα − 1)l−2 vanishes for ηα = 1 and contains

only powers η2
α, . . . η

N−1
α for 2 < l ≤ N − 1. Substituion into (2.2.38) and (2.2.39)

yields
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Tψ[z] =
M∑

j=1

(
(N −1)(N −5)

12
z j − N −3

2
z2

j
∂

∂z j
+ 1

2
z3

j
∂2

∂z2
j

)
ψ[z]

z j

= M(N − 1)(N − 5)

12
ψ[z] − N − 3

2

M∑

j �=k

2z j

z j − zk
︸ ︷︷ ︸

=M(M−1)

ψ[z]

+
M∑

j �=k

z2
j

(z j − zk)2
ψ[z] +

M∑

j,k,m=1
j �=k �=m �= j

2z2
j

(z j − zk)(z j − zm)

︸ ︷︷ ︸
=2M(M−1)(M−2)/3

ψ[z]

+
M∑

j=1

ψHS
0 [z]

(
1

2
z2

j
∂2

∂z2
j

+
M∑

k �= j

2z2
j

z j − zk
ψ0

∂

∂z j
− N − 3

2
z j

∂

∂z j

)
φ[z],

where we have used the algebraic identity (B.7) in the evaluation of the triple sum.
For the action of the potential term we write

Sz
αSz
β =

(
Sz
α + 1

2

)(
Sz
β + 1

2

)
− 1

2
(Sz
α + Sz

β)− 1

4
.

This yields

Vψ[z] ≡
⎡

⎣
N∑

α �=β

Sz
αSz
β

|ηα − ηβ |2ψ
⎤

⎦ (z1, . . . , zM )

=
M∑

j �=k

1

|z j − zk |2ψ[z] −
N∑

α �=β

Sz
α + 1

2

|ηα − ηβ |2ψ[z] + 1

4

N∑

α �=β

1

|ηα − ηβ |2
︸ ︷︷ ︸

=N (N 2−1)/12

ψ[z].

(2.2.41)
With

M∑

j �=k

1

|z j − zk |2ψ[z] +
M∑

j �=k

z2
j

(z j − zk)2
ψ[z] = 1

2
M(M − 1)ψ[z]

and

N∑

α �=β

Sz
α + 1

2

|ηα − ηβ |2ψ[z] =
N∑

α=1

N−1∑

β=1

Sz
α + 1

2

|1 − ηβ |2ψ[z] = M
N 2 − 1

12
ψ[z],

where we have substituted ηβ → ηβηα and used (B.15), we obtain (2.2.33) and
(2.2.34).
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2.2.5 Factorization of the Hamiltonian

In Sect. 2.2.4 we have shown that
∣∣ψHS

0

〉
is an eigenstate of HHS with energy E0 given

by (2.2.5). To show that
∣∣ψHS

0

〉
is the ground state (or at least one of several ground

states), we factorize the Haldane–Shastry Hamiltonian [45, 50, 52]. For every site
ηα , we define an auxiliary operator Dα by

Dα = 1

2

N∑

β=1
β �=α

ηα + ηβ

ηα − ηβ

[
i(Sα × Sβ)+ Sβ

]
. (2.2.42)

The rapidity operator (2.2.8) is given in terms of these by

N∑

α=1

Dα = �, (2.2.43)

as one can easily see with (B.16).
We will show below that HHS can be written as:

HHS = 2π2

N

[
2

9

N∑

α=1

D†
αDα + N + 1

12
S2

tot

]
+ E0, (2.2.44)

which consists of two positive semi-definite operators (i.e., operators with only non-
negative eigenvalues) and a constant. The lowest energy eigenvalue of HHS is there-
fore E0, and

∣∣ψHS
0

〉
is a ground state.

Taking the ground state expectation value of (2.2.44) implies with

HHS
∣∣ψHS

0

〉 = E0
∣∣ψHS

0

〉
(2.2.45)

that

Dα

∣∣ψHS
0

〉 = 0, ∀ α = 1, . . . , N (2.2.46)

and Stot
∣∣ψHS

0

〉 = 0. This trivially implies

�
∣∣ψHS

0

〉 = 0, (2.2.47)

i.e., there is no spin current in the ground state. Note that if other ground states were to
exist, (2.2.44) shows that they would have to be singlets and likewise be annihilated
by Dα . It is not very difficult to verify (2.2.46) directly, but since we have verified
(2.2.45) in Sect. 2.2.4 and will verify (2.2.44) below, there is no need to do so.

Verification of (2.2.44). For convenience, we define the purely imaginary
parameter

θαβ ≡ ηα + ηβ

ηα − ηβ
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and recall

D†
α = 1

2

N∑

β=1
β �=α

θαβ
[
i(Sα × Sβ)− Sβ

]
,

Dα = 1

2

N∑

γ=1
γ �=α

θαγ
[
i(Sα × Sγ )+ Sγ

]
.

For S = 1
2 and α �= β, γ , we obtain

i(Sα × Sβ)i(Sα × Sγ ) = εi jkεilm S j
β Sk
αSl
αSm
γ

= (
δ jlδkm − δ jmδkl)S j

β

(
1

4
δkl + i

2
εkln Sn

α

)
Sm
γ

= −1

2
SβSγ − i

2
Sα(Sβ × Sγ ), (2.2.48)

and therewith

[
i(Sα × Sβ)− Sβ

] · [i(Sα × Sγ )+ Sγ
] = −3

2

[
Sβ Sγ − iSα(Sβ × Sγ )

]
.

This implies

N∑

α=1

D†
αDα = −3

8

N∑

α=1

N∑

β=1
β �=α

N∑

γ=1
γ �=α

θαβθαγ
[
Sβ Sγ − iSα(Sβ × Sγ )

]
.

For the terms with α �= β = γ , we use S × S = iS to write

Sβ Sβ − iSα(Sβ × Sβ) = 3

4
+ SαSβ,

and observe

θ2
αβ = 1 − 4

|ηα − ηβ |2 .

For the terms with α, β, and γ all distinct, the vector product term vanishes as it
changes sign under interchange of the dummy indices β and γ . For these terms we
rearrange the sums

N∑

α=1

N∑

β=1
β �=α

N∑

γ=1
γ �=α

=
N∑

β=1

N∑

γ=1

N∑

α=1
α �=β,γ
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and carry out the summation over α. With

1

(ηα − ηβ)(ηα − ηγ )
= 1

ηβ − ηγ

(
1

ηα − ηβ
− 1

ηα − ηγ

)

and

N∑

α=1
α �=β,γ

ηβ

ηα − ηβ
= − N − 1

2
− ηβ

ηγ − ηβ
,

which follows directly from (B.12), we obtain

N∑

α=1
α �=β,γ

θαβθαγ =
N∑

α=1
α �=β,γ

(
1 + 2ηβ

ηα − ηβ

)(
1 + 2ηγ

ηα − ηγ

)
= N − 8

|ηβ − ηγ |2 .

Collecting all the terms yields

8

3

N∑

α=1

D†
αDα

=
N∑

α �=β

(
4

|ηα − ηβ |2 − 1

)(
3

4
+ SαSβ

)
+

N∑

β �=γ

(
8

|ηβ − ηγ |2 − N

)
Sβ Sγ

= 12
N∑

α �=β

SαSβ
|ηα − ηβ |2 − (N + 1)

N∑

α �=β
SαSβ +

N∑

α �=β

(
3

|ηα − ηβ |2 − 3

4

)
.

With the identities

N∑

α �=β
SαSβ = S2

tot − 3

4
N

and

N∑

α �=β

(
3

|ηα − ηβ |2 − 3

4

)
= 1

4
N (N 2 − 1)− 3

4
N (N − 1),

where we have used (B.15), we obtain

N∑

α �=β

SαSβ
|ηα − ηβ |2 = 2

9

N∑

α=1

D†
αDα + N + 1

12
S2

tot − N (N 2 + 5)

48
,

and hence (2.2.44). ��
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2.2.6 Spinon Excitations and Fractional Statistics

The elementary excitations for this model are free spinon excitations, which carry
spin 1

2 and no charge. They constitute an instance of fractional quantization, which
is both conceptually and mathematically similar to the fractional quantization of
charge in the fractional quantum Hall effect [1]. Their fractional quantum number
is the spin, which takes the value 1

2 in a Hilbert space (2.2.2) made out of spin flips
S+, which carry spin 1.

One-spinon states. To write the wave function for a ↓-spin spinon localized at
site ηα , consider a chain with an odd number of sites N and let M = N−1

2 be the
number of ↑ or ↓ spins condensed in the uniform liquid. The spinon wave function
is then given by

ψα↓(z1, z2, . . . , zM ) =
M∏

i=1

(ηα − zi )ψ
HS
0 (z1, z2, . . . , zM ), (2.2.49)

which we understand substituted into (2.2.2). It is easy to verify Sz
totψα↓ =

− 1
2ψα↓ and S−

totψα↓ = 0, which shows that the spinon transforms as a spinor
under rotations.

The localized spinon (2.2.49) is not an eigenstate of the Hamiltonian (2.2.1).
To obtain exact eigenstates, we construct momentum eigenstates according to

ψm↓(z1, z2, . . . , zM ) =
N∑

α=1

(η̄α)
mψα↓(z1, z2, . . . , zM ), (2.2.50)

where the integer m corresponds to a momentum quantum number. Since
ψα↓(z1, z2, . . . , zM ) contains only powers η0

α, η
1
α, . . . , η

M
α and

N∑

α=1

ηm
α η

n
α = δmn mod N , (2.2.51)

ψm↓(z1, z2, . . . , zM ) will vanish unless m = 0, 1, . . . ,M . There are only roughly
half as many spinon orbitals as there are sites. Spinons on neighboring sites hence
cannot be orthogonal. With (2.2.33) and (2.2.34), we obtain

HHS|ψm↓〉 =
[
−π

2

24

(
N − 1

N

)
+ 2π2

N 2 m(M − m)

]
|ψm↓〉. (2.2.52)

To make a correspondence between m and the spinon momentum pm , we translate
(2.2.50) counterclockwise by one lattice spacing (which we set to unity for present
purposes) around the unit circle,

T |ψm↓〉 = ei(p0+pm )|ψm↓〉. (2.2.53)
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Fig. 2.2 Dispersion of a
single spinon in a
Haldane–Shastry chain

With ground state momentum p0 = −π
2 N , we find

pm = π − 2π

N

(
m + 1

4

)
. (2.2.54)

The energy (2.2.52) can be written as E = E0 + ε(pm), with the spinon dispersion
given by

ε(p) = 1

2
p (π − p)+ π2

8N 2 , (2.2.55)

as depicted in Fig. 2.2. The interval of allowed spinon momenta spans only half of
the Brillouin zone, and alternates with M even vs. M odd.

Two-spinon states. To write the wave function for two ↓-spin spinons localized at
sites ηα and ηβ , consider a chain with N even and M = N−2

2 . The two-spinon state
is then given by

ψαβ(z1, z2, . . . , zM ) =
M∏

i=1

(ηα − zi )(ηβ − zi )ψ
HS
0 (z1, z2, . . . , zM ). (2.2.56)

A momentum basis for the two-spinon states is given by

ψmn(z1, z2, . . . , zM ) =
N∑

α,β=1

(η̄α)
m(η̄β)

mψαβ(z1, z2, . . . , zM ), (2.2.57)

where M ≥ m ≥ n ≥ 0. For m or n outside this range, ψmn vanishes identically,
reflecting the overcompleteness of the position space basis. With (2.2.33), (2.2.34),
and the algebraic identity

x + y

x − y
(xm yn − xn ym) = 2

m−n∑

l=0

xm−l yn+l − (xm yn + xn ym), (2.2.58)
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we obtain [44, 50–52]

HHS|ψmn〉 = Emn|ψmn〉 +
lmax∑

l=1

V mn
l |ψm+l,n−l〉 (2.2.59)

with

Emn = − π2

24

(
N − 19

N
+ 24

N 2

)

+ 2π2

N 2

[
m

(
N

2
− 1 − m

)
+ n

(
N

2
− 1 − n

)
− m − n

2

]
, (2.2.60)

V mn
l = −2π2

N 2 (m − n + 2l), (2.2.61)

and lmax = min(M −m, n). Since the “scattering” of the non-orthogonal basis states
|ψmn〉 in (2.2.59) only occurs in one direction, increasing m −n while keeping m +n
fixed, the eigenstates of HHS have energy eigenvalues Emn , and are of the form

|φmn〉 =
lM∑

l=0

amn
l |ψm+l,n−l〉. (2.2.62)

A recursion relation for the coefficients amn
l is readily obtained from (2.2.59).

If we identify the single-spinon momenta for m ≥ n according to

pm = π − 2π

N

(
m + 1

2
+ s

)
, pn = π − 2π

N

(
n + 1

2
− s

)
, (2.2.63)

with a statistical shift s = 1
4 [83, 84], we can write the energy

Emn = E0 + ε(pm)+ ε(pn), (2.2.64)

where E0 is the ground state energy (2.2.5) and ε(p) the spinon dispersion (2.2.55).
Fractional statistics. The mutual half-fermi statistics of the spinons manifests

itself in the fractional shift s in the single-spinon momenta (2.2.63), as we will
elaborate now [85]. The Ansatz (2.2.57) unambiguously implies that the sum of
the two-spinon momenta is given by qm + qn = 2π − 2π

N (m + n + 1), and hence
(2.2.63). The shift s is determined by demanding that the excitation energy (2.2.64) of
the two-spinon state is a sum of single-spinon energies, which in turn is required for
the explicit solution here to be consistent with the models solution via the asymptotic
Bethe ansatz [54, 83, 86].

The shift decreases the momentum pm of spinon 1 and increases momentum
pn of spinon 2. This may surprise at first as the basis states (2.2.57) are constructed
symmetrically with regard to interchanges of m and n. To understand this asymmetry,
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Fig. 2.3 Fractional statistics in one dimension. The crossings of the anyons are unidirectional, and
the many particle wave function acquires a statistical phase θ whenever they cross

note that M ≥ m ≥ n ≥ 0 implies 0 < pm < pn < π . The dispersion (2.2.55)
implies that the group velocity of the spinons is given by

vg(p) = ∂pε(p) = π

2
− p, (2.2.65)

which in turn implies that vg(pm) > vg(pn). This means that the relative motion of
spinon 1 (with qm) with respect to spinon 2 (with qn) is always counterclockwise on
the unit circle (see Fig. 2.3). The shifts in the individual spinon momenta can hence be
explained by assuming that the two-spinon state acquires a statistical phase θ = 2πs
whenever the spinons pass through each other. This phase implies that qm is shifted
by − 2π

N s since we have to translate spinon 1 counterclockwise through spinon 2 and
hence counterclockwise around the unit circle when obtaining the allowed values
for qm from the PBCs. Similarly, qn is shifted by + 2π

N s since we have to translate
spinon 2 clockwise through spinon 1 and hence clockwise around the unit circle
when obtaining the quantization of qn .

That the crossing of the spinons occurs only in one direction is a necessary
requirement for fractional statistics to exist in one dimension. If the spinons could
cross in both directions, the fact that paths interchanging them twice (i.e., once in
each direction) are topologically equivalent to paths not interchanging them at all
would imply 2θ = 0 mod 2π for the statistical phase, i.e., only allow for the familiar
choices of bosons or fermions. With the scattering occurring in only one direction,
arbitrary values for θ are possible. Note that the one-dimensional anyons break nei-
ther time-reversal symmetry (T) nor parity (P).

The fractional statistics of the spinons manifests itself further in the fractional
exclusion (or generalized Pauli) principle introduced by Haldane [87]. If we consider
a state with L spinons, we can easily see from (2.2.50), (2.2.51), and (2.2.57) that
the number of orbitals available for further spinons we may wish to create is M + 1,
where M = N−L

2 is the number of ↑ or ↓ spins in the remaining uniform liquid. (In
this representation, the spinon wave functions are symmetric; two or more spinons
can have the same value for m.) In other words, the creation of two spinons reduces
the number of available single spinon states by one. They hence obey half-fermi
statistics in the sense of Haldane’s exclusion principle. (For fermions, the creation of
two particles would decrease the number of available single particle by two, while
this number would not change for bosons.)
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Fig. 2.4 Total spin representations of three S = 1
2 spins with Young tableaux. For SU(n) with

n > 2, the tableaux with three boxes on top of each other would exist as well

2.2.7 Young Tableaux and Many Spinon States

The easiest way to obtain the spectrum of the model is through the one-to-one corre-
spondence between the Young tableaux classifying the total spin representations of
N spins and the exact eigenstates of the the Haldane–Shastry model for a chain with
N sites, which are classified by the total spins and the fractionally spaced single-
particle momenta of the spinons [53].

This correspondence yields the allowed sequences of single-spinon momenta
p1, . . . , pL as well as the allowed representations for the total spin of the states
such that the eigenstates of the Haldane–Shastry model have momenta and energies

p = p0 +
L∑

i=1

pi , E = E0 +
L∑

i=1

ε(pi ), (2.2.66)

where p0 and E0 denote the ground state momentum and energy, respectively,
and ε(p) is the single-spinon dispersion. The correspondence hence does not only
provide the quantum numbers of all the states in the spectrum, but also shows that it
is sensible to view the individual spinons as particles, rather than just as solitons or
collective excitations in many body condensates. We now proceed by stating these
rules without further motivating or even deriving them.

To begin with, the Hilbert space of a system of N identical SU(n) spins can be
decomposed into representations of the total spin, which commutes with (2.2.1)
and hence can be used to classify the eigenstates. These representations are com-
patible with the representations of the symmetric group SN of N elements, which
may be expressed in terms of Young tableaux [88, 89]. The general rule for obtain-
ing Young tableaux is illustrated for three S = 1

2 spins in Fig. 2.4. For each of the
N spins, draw a box numbered consecutively from left to right. The representations of
SU(n) are constructed by putting the boxes together such that the numbers assigned
to them increase in each row from left to right and in each column from top to
bottom. Each tableau indicates symmetrization over all boxes in the same row, and
antisymmetrization over all boxes in the same column. This implies that we cannot
have more than n boxes on top of each other for SU(n) spins. For SU(2), each tableau
corresponds to a spin S = 1

2 (λ1 −λ2) representation, with λi the number of boxes in
the i th row, and stands for a multiplet Sz = − S, . . . , S.

The one-to-one correspondence between the Young tableaux and the non-
interacting many-spinon eigenstates of the Haldane–shastry model is illustrated in
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Fig. 2.5 Young tableau decomposition and the corresponding spinon states for an S = 1
2 spin chain

with N = 4 sites. The dots represent the spinons. The spinon momentum numbers ai are given by
the numbers in the boxes of the same column. Note that

∑
(2Stot + 1) = 2N

Fig. 2.5 for a chain with N = 4 sites. The rule is that in each Young tableau, we
shift boxes to the right such that each box is below or in the column to the right
of the box with the preceding number. Each missing box in the resulting, extended
tableaux represents a spinon. The extended tableaux provide us with the total spin of
each multiplet, which is given by the representation specified by the original Young
tableau, as well as the number L of spinons present and the individual spinon momen-
tum numbers ai , which are just the numbers in the boxes above or below the dots
representing the spinons. The single-spinon momenta are obtained from those via

pi = π

N

(
ai − 1

2

)
, (2.2.67)

which implies δ ≤ pi ≤ π − δ with δ = π
2N → 0 for N → ∞.

The total momentum and the total energies of the many-spinon states are given
by (2.2.66) with

p0 = −π
2

N , E0 = −π
2

24

(
N + 5

N

)
, (2.2.68)

and the single-spinon dispersion

ε(p) = 1

2
p (π − p)+ π2

8N 2 , (2.2.69)

where we use a convention according to which the “vacuum” state |↓↓ . . . ↓〉 has
momentum p = 0 (and the empty state |0〉 has p = π(N − 1)).
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This correspondence shows that spinons are non-interacting, with momentum
spacings appropriate for half-fermions. We may interpret the Haldane–Shastry model
as a reparameterization of a Hilbert space spanned by spin flips (2.2.2) into a basis
which consists of the Haldane–Shastry ground state plus all possible many spinon
states. The reward for such a reparameterization is that a highly non-trivial Hamil-
tonian in the original basis may be approximately or exactly diagonal in the new basis,
as this basis is chosen in accordance with the quantum numbers of the elementary
excitations.

2.3 The Moore–Read State and Its Parent Hamiltonian

2.3.1 The Pfaffian State and Its Parent Hamiltonian

The Pfaffian state at even denominator Landau level filling fractions was introduced
independently by Moore and Read [90] as an example of a quantized Hall state
which supports quasiparticle excitations which obey non-Abelian statistics, and by
Wen, Wilczek, and ourselves [91, 92] as a candidate for the observed plateau in Hall
resistivity at Landau level filling fraction ν = 5/2, i.e., at ν = 1/2 in the second
Landau level [10, 93–96], a proposal which was subsequently strengthened [97–100]
and which recently received experimental support through the direct measurement
of the quasiparticle charge [101, 102].

The wave function first proposed by Moore and Read [90] is

ψ0(z1, z2, . . . , zN ) = Pf

(
1

zi − z j

) N∏

i< j

(zi − z j )
m

N∏

i=1

e− 1
4 |zi |2 , (2.3.1)

where the particle number N is even, m is even (odd) for fermions (bosons), and the
Pfaffian is is given by the fully antisymmetrized sum over all possible pairings of the
N particle coordinates,

Pf

(
1

zi − z j

)
≡ A

{
1

z1 − z2
· . . . · 1

zN−1 − zN

}
. (2.3.2)

The inverse Landau level filling fraction is given by

1

ν
= ∂N�

∂N
= ∂(m(N − 1)− 1)

∂N
= m. (2.3.3)

The state describes a Laughlin state at ν = 1/m supplemented by a Pfaffian which
implements p-wave pairing correlations. Since the Pfaffian is completely antisym-
metric, it reverses the statistics from bosons to fermions or vice versa, but does not
change the Landau level filling fraction.
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The Pfaffian describes a BCS wave function [103–106] in position space, obtained
by projecting on a definite number of particles [107, 108]. To see this, first rewrite
the (unnormalized) BCS wave function as

|ψφ〉 =
∏

k

(
1 + eiφ vk

uk
c†

k↑c†
−k↓

)
|0〉

=
∏

k

exp
(

eiφ vk

uk
c†

k↑c†
−k↓

)
|0〉

= exp
(

eiφ
∑

k

vk

uk
c†

k↑c†
−k↓

)
|0〉

= exp
(
eiφb†)|0〉, (2.3.4)

where the pair creation operator b† is given by

b† ≡
∑

k

vk

uk
c†

k↑ c†
−k↓

=
∫

d3x1d3x2ϕ(x1 − x2)ψ
†
↑(x1)ψ

†
↑ (x2)|0〉. (2.3.5)

The wave function for each of the individual pairs, which only depends on the relative
coordinate, is given by

ϕ(x) = 1

V

∑

k

vk

uk
ei kx . (2.3.6)

If we now project out a state with N/2 pairs [107–109], we obtain

|ψN 〉 = 1

2π

2π∫

0

dφe−i Nφ/2|ψφ〉

= 1

2π

2π∫

0

dφe−i Nφ/2 exp
(
eiφb†)|0〉

= 1
( N

2

)!
(
b†)N/2|0〉, (2.3.7)

which is (up to a normalization) equivalent to

|ψN 〉 =
∫

d3x1. . . d
3xNϕ(x1 − x2) · . . . · ϕ(xN−1− xN )

· ψ†
↑(x1)ψ

†
↓(x2) . . . ψ

†
↑(xN−1)ψ

†
↓(xN )|0〉. (2.3.8)
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This implies that the many-particle wavefunction is given by a Pfaffian,

ψ(x1 . . . xN ) = Pf
(
ϕ(xi − x j )

)
. (2.3.9)

This form nicely illustrates that all the pairs have condensed into the same state,
which is the essence of superfluidity. For fermion pairings with even relative angular
momentum of the pairs, such as s- or d-wave, the wave functionϕ(xi −x j ) of the pairs
is symmetric in real space, and antisymmetric in spin space (i.e., a singlet), while for
pairings with odd angular momentum, such as p-wave, ϕ(xi − x j ) is antisymmetric
in real space and symmetric in spin space (i.e., a triplet).

In the quantized Hall state, the requirement of analyticity in the complex coor-
dinates constraints the possible form of the pair wave function decisively. Since the
electrons are spin polarized, the only possible choice is the p-wave pairing described
by the Pfaffian with ϕ(zi − z j ) = 1/(zi − z j ). Note that this pair wave function
would not be normalizable if it were not multiplied by at least an m = 1 Laughlin
state.

One of the most important mathematical properties of the Pfaffian is that its square
is equal to the determinant,

Pf
(
ϕ(xi − x j )

)2 = det(Mi j ), (2.3.10)

where

Mi j =
{

0 for i = j,
ϕ(xi − x j ) for i �= j.

(2.3.11)

Another important identity, due to Frobenius [110], is given by (2.4.31) in Sect. 2.4.4
below.

The uniquely specifying property of the Pfaffian quantized Hall state (2.3.1) is that
the wave function vanishes as the (3m − 1)th power as three particles approach each
other. This property simply reflects that there can be at most only one pair among
each triplet of particles. This observation has led Wen, Wilczek, and ourselves [91,
92, 111] to propose the parent Hamiltonian

V (m) =
N∑

i, j<k

(∇2
i

)(m−1)(
δ(2)(zi − z j )δ

(2)(zi − zk)
)
, (2.3.12)

which, when supplemented with the kinetic Hamiltonian (2.1.9) as well as all sim-
ilar terms with smaller powers of the Laplacian, singles out (2.3.1) as its unique
ground state. For all practical purposes, however, it is best to formulate our parent
Hamiltonian in terms of three-body pseudopotentials, as we will elaborate in
Sect. 2.3.4.
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2.3.2 Quasiparticle Excitations and the Internal Hilbert Space

One of the key properties of superconductors is that the magnetic vortices are quan-
tized in units of one half of the Dirac flux quanta �0 = 2π�c/e, in accordance to
the charge −2e of the Cooper pairs. The paring correlations in the Pfaffian Hall state
have a similar effect on the vortices or quasiparticle excitations, which carry one half
of the flux and charge they would carry without the pairing, i.e. they carry charge
e∗ = e/2m. The wave function for two flux 1

2 quasiholes at positions ξ1 and ξ2 is
easily formulated. We simply replace each factor in the Pfaffian in (2.3.1) by

Pf

(
1

zi − z j

)
→ Pf

(
(zi − ξ1)(z j − ξ2)+ (zi ↔ z j )

zi − z j

)
, (2.3.13)

such that one member of each electron pair sees the additionally inserted zero at ξ1
and the other member sees it at ξ2. If we set ξ1 = ξ2 = ξ , we will recover a regular
quasihole in the Laughlin fluid with charge e∗ = e/m.

The internal Hilbert space spanned by the quasiparticle excitations only emerges
as we consider the wave function for four charge e∗ = e/4 quasiholes at positions
ξ1, . . . , ξ4, which is obtained by replacing the Pfaffian in (2.3.1) by

Pf

(
1

zi − z j

)
→ Pf

(
(zi − ξ1)(z j − ξ2)(zi − ξ3)(z j − ξ4)+ (zi ↔ z j )

zi − z j

)
.

(2.3.14)
We see that ξ1 and ξ3 belong to one group in that they constitute additional zeros
seen by one member of each electron pair, while ξ2 and ξ4 belong to another group
as they constitute zeros seen by the other members of each electron pair. The wave
function is symmetric (or antisymmetric, depending on the number of electron pairs)
under interchange of both groups. The state in the internal Hilbert space spanned
by the quasihole affiliations with the two groups will change as we adiabatically
interchange two quasiholes belonging to different groups, say ξ3 and ξ4. Naively,
one might think that the dimension of the internal Hilbert space is given by the
number of ways to partition the quasiholes at ξ1, . . . , ξ2n into two different groups,
i.e., by (2n − 1)!! for 2n quasiholes. Note that the number of quasiholes has to be
even on closed surfaces to satisfy the Dirac flux quantization condition [38]. The true
dimension of the internal Hilbert space, however, is only 2n−1 [112]. The reason for
this is that the internal Hilbert space is spanned by Majorana fermion states in the
vortex cores [113], as we will elaborate in the following section.

The statistics is non-Abelian in the sense that the order according to which we
interchange quasiholes matters. Let the matrix Mi j describe the rotation of the internal
Hilbert space state vector which describes the adiabatic interchange two quasiholes
at ξi and ξ j :

|ψ〉 → Mi j |ψ〉.

The statistics is non-Abelian if the matrices associated with successive interchanges
do not commute in general,
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Mi j M jk �= M jk Mi j .

Note that the internal state vector is protected in the sense that it is insensitive to
local perturbations—it can only be manipulated through braiding of the vortices. For
a sufficiently large number of vortices, on the other hand, any unitary transformation
in this space can be approximated to arbitrary accuracy through successive braiding
operations [114]. These properties together render non-Abelions preeminently suited
for applications as protected qubits in quantum computation [115–119].

2.3.3 Majorana Fermions and Non-Abelian Statistics

The key to understanding the non-Abelian statistics [119] of the quasiparticle exci-
tations of the Pfaffian state lies in the Majorana fermion modes in the vortices of
p-wave superfluids [113, 120–122]. The p-wave pairing symmetry implies that the
order parameter for the superfluid acquires a phase of 2π as we go around the Fermi
surface,

〈c†
kc†

−k〉 = �0(k) · (kx + iky), (2.3.15)

where�0(k) can be chosen real. The Hamiltonian for a single vortex at the origin is
given by

H =
∫

dr
{
ψ†
(
−∇2

2m
− εF

)
ψ + ψ†

(
eiϕ�0(r) ∗ (∂x − i∂y)

)
ψ† + h.c.

}
,

(2.3.16)
where A∗B ≡ 1

2 {A, B} denotes the symmetrized product, and r and ϕ are polar coor-
dinates. The order parameter �0(r) vanishes inside the vortex core. We can obtain
the energy eigenstates localized inside the vortex by solving the Bogoliubov–de
Gennes equations [105] equations

[
H, γ †

n (x)
] = Enγ

†
n (x), (2.3.17)

where n labels the modes and

γ †
n (x) = un(x)ψ†(x)+ vn(x)ψ(x) (2.3.18)

are the Bogoliubov quasiparticle operators. The low energy spectrum is given by
[113, 120]

En = nω0, (2.3.19)

where n is an integer andω0 = �2/εF the level spacing. Note that while in an s-wave
superfluid, the Bogoliubov operators
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γn↑(x) = un↑(x)ψ†(x)+ vn↓(x)ψ(x) (2.3.20)

combine ↑-spin electron creation operators with ↓-spin annihilation operators, in the
p-wave superfluid, the operators (2.3.18) combine creation and annihilation opera-
tors of the same spinless (or spin-polarized) fermions. Since the Bogoliubov–de
Gennes equations are not able to distinguish between particles and antiparticles, we
obtain each physical solution twice: once with positive energy as a solution of the
Bogoliubov–de Gennes equation (2.3.17) for the creation operators, and once with
negative energy as a solution of the same equation for the annihilation operators,

[
H, γn(x)

] = −Enγn(x), (2.3.21)

which is obtained from (2.3.17) by Hermitian conjugation. We resolve this technical
artifact by discarding the negative energy solutions as unphysical. For the n = 0
solution with at E0 = 0, it implies that we get one fermion solution when we
overcount by a factor of two. The physical solution at E = 0 is hence given by one
half of a fermion, or a Majorana fermion, as

γ
†
0 (x) = γ0(x). (2.3.22)

In general, one fermion ψ,ψ† consists of two Majorana fermions,

ψ = 1

2
(γ1 + iγ2), ψ† = 1

2
(γ1 − iγ2), (2.3.23)

which in turn are given by the real and imaginary part of the fermion operators,

γ1 = ψ + ψ†, γ2 = −i(ψ − ψ†). (2.3.24)

They obey the anticommutation relations

{γi , γ j } = 2δi j , (2.3.25)

as one may easily verify with (2.3.24). Majorana fermions are their own antiparticles,
as γ †

i = γi . If we write the basis for a single fermion as {|0〉, ψ†|0〉}, we can write
the fermion creation and annihilation operators as

ψ† =
(

0 0
1 0

)
, ψ =

(
0 1
0 0

)
. (2.3.26)

In this basis, the Majorana fermions are given by the first two Pauli matrices,

γ1 =
(

0 1
1 0

)
= σx, γ2 =

(
0 −i
i 0

)
= σy. (2.3.27)

Returning to vortices in a p-wave superfluid, note that the order parameter acquires
by definition a phase of 2π as we go around a vortex. This implies that the electron
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Fig. 2.6 The Majorana fermion γi+1 acquires a − sign as it crosses the branch cut from another
vortex

creation and annihilation operators acquire a phase π , or a minus sign, which implies
via (2.3.24) that the Majorana fermion states acquire likewise a minus sign,

γi → −γi , (2.3.28)

as we encircle a vortex. By choice of gauge, we can implement the phase change of
2π in the superconducting order parameter as a branch cut connecting the vortices
to the left boundary of the system, and assume a convention according to which
the Majorana fermion in each vortex crossing a branch cut acquires a minus sign,
as illustrated in Fig. 2.6.

To obtain the non-Abelian statistics, Ivanov [121] considered permutations of 2n
vortices by braiding, which form the braid group B2n [123]. This group is generated
by counterclockwise interchanges Ti of particles i and i + 1, which are neighbors
with regard to the positions of their branch cuts to the boundary. The algebra of the
group is given by

Ti Tj = Tj Ti for |i − j | > 1,

Ti Tj Ti = Tj Ti Tj for |i − j | = 1,
(2.3.29)

as illustrated in Fig. 2.7. Note that the braid group is different from the permutation
group as

T −1
i �= Ti .

The convention for the minus signs acquired by the Majorana fermions defined in
Fig. 2.6 implies the transformation rule

Ti (γ j ) =
⎧
⎨

⎩

γ j+1 for i = j,
−γ j−1 for i = j − 1,
γ j otherwise.

(2.3.30)
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Fig. 2.7 Illustration of the
defining algebra of the braid
group B2n : Ti Ti+1Ti =
Ti+1Ti Ti+1

To describe the action of these transformations on the (internal) state vectors, we
hence need to find a representation τ(Ti ) of the braid group B2n such that

τ(Ti )γ jτ(Ti )
−1 = Ti (γ j ) (2.3.31)

with Ti (γ j ) given by (2.3.30). The solution is [121]

τ(Ti ) = exp
(π

4
γi+1γi

)

= cos
(π

4

)
+ γi+1γi sin

(π
4

)
,

= 1√
2
(1 + γi+1γi ), (2.3.32)

as one can easily verify using (γi+1γi )
2 = −1. The inverse transformation is given by

τ(Ti )
−1 = 1√

2
(1 − γi+1γi ). (2.3.33)

A few steps of algebra yield

τ(T1)

{
γ1
γ2

}
τ(T1)

−1 =
{
γ2

−γ1

}
.

This representation coincides with that of Nayak and Wilczek [112] for the statistics
of the quasiholes in the Pfaffian state.

The simplest examples of this representation are the cases of two and four vortices
[112, 121, 124], which we will elaborate now. In the case of two vortices, the two
Majorana fermions γ1 and γ2 can be combined into a single fermion via (2.3.23),
and the ground state is hence two-fold degenerate. The braid group B2 has only one
generator T1 with representation
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τ(T1) = exp
(π

4
γ2γ1

)

= exp
(
−i
π

4
(ψ − ψ†)(ψ + ψ†)

)

= exp
(

i
π

4
(2ψ†ψ − 1)

)

= exp
(
−i
π

4
σz

)
, (2.3.34)

where σz is the third Pauli matrix (2.1.66) in the basis
{|0〉, ψ†|0〉}. The braiding

is hence diagonal in this basis, and only gives an overall phase, which depends on
whether the fermion state is occupied or not.

The non-Abelian statistics manifests itself only once we consider four vortices.
Following Ivanov [121], we combine the four Majorana fermions into two fermions,

ψ1 = 1

2
(γ1 + iγ2), ψ2 = 1

2
(γ3 + iγ4), (2.3.35)

and accordingly for the fermion creation operators ψ†
1 , ψ†

2 . The braid group B4
has three generators T1, T2, and T3. Their representations in a basis of fermion
occupation numbers

{|0〉, ψ†
1 |0〉, ψ†

2 |0〉, ψ†
1ψ

†
2 |0〉},

are given by two diagonal operators

τ(T1) = exp
(π

4
γ2γ1

)
= exp

(
−i
π

4
σ (1)z

)
=

⎛

⎜⎜⎝

e−iπ/4 0 0 0
0 eiπ/4 0 0
0 0 e−iπ/4 0
0 0 0 eiπ/4

⎞

⎟⎟⎠,

τ (T3) = exp
(π

4
γ4γ3

)
= exp

(
−i
π

4
σ (2)z

)
=

⎛

⎜⎜⎝

e−iπ/4 0 0 0
0 e−iπ/4 0 0
0 0 eiπ/4 0
0 0 0 eiπ/4

⎞

⎟⎟⎠,

and one off-diagonal operator,

τ(T2) = exp
(π

4
γ3γ2

)

= 1√
2

(
1 − i(ψ2 + ψ

†
2 )(ψ1 − ψ

†
1 )
)

=

⎛

⎜⎜⎝

1 0 0 −i
0 1 −i 0
0 −i 1 0

−i 0 0 1

⎞

⎟⎟⎠.

Note that since the representations τ(Ti ) given by (2.3.32) are even in the fermion
operators, i.e., change the fermion numbers only by even integers, we may restrict
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them to only even or odd sectors in the fermion numbers. For the example of four
vortices, these sectors are given by {|0〉, ψ†

1ψ
†
2 |0〉} and {ψ†

1 |0〉, ψ†
2 |0〉}. Each sector

contains 2n−1 states, which is the degeneracy found for a Pfaffian state with an even
number of electrons [112]. Physically, this reflects that while the number of fermions
is not a good quantum number in a superfluid, the number of fermions modulo two,
i.e., whether the number is even or odd, is a good quantum number.

Finally, note that the derivation of the non-Abelian statistics depends only on (a)
the vortices possessing Majorana fermion modes, and (b) the Majorana fermions
changing sign γi → −γi when the order parameter phase changes by 2π , as it does
by definition when we go around a vortex.

2.3.4 The Pfaffian State and Its Parent Hamiltonian
on the Sphere

The Pfaffian state is readily formulated in the spherical geometry [92]. The wave
function for N particles at Landau level filling ν = 1/m on a sphere with
2s0 = m(N − 1)− 1 magnetic flux quanta is given by

ψ0[u, v] = Pf

(
1

uiv j − u jvi

) N∏

i< j

(uiv j − u jvi )
m, (2.3.36)

where m is even for fermions and odd for bosons. Note that the relation between flux
and particle number implies that the states at ν = 1/2 is not its own particle-hole
conjugate [125, 126]. The formulation of quasihole excitations generalizes without
incident from the planar geometry.

As mentioned in Sect. 2.3.1, the uniquely specifying property of the Pfaffian
state (2.3.36) is that it vanishes as the (3m − 1)-th power of the distance as three
particles approach each other. For the spherical geometry, the corresponding parent
Hamiltonian can be conveniently formulated using three-body pseudopotentials
[127]. In analogy to the two-particle interaction Hamiltonian (2.1.84), we write the
three-particle interaction Hamiltonian

H (3)
int =

N∑

i< j<k

{
2s∑

l

V (3)
l P3s−l(Li + L j + Lk)

}
. (2.3.37)

The three-body parent Hamiltonian proposed by Wen, Wilczek, and ourselves
[91, 92] then amounts to taking

V (3)
l =

{
1 for l < 3m − 1,
0 for l ≥ 3m − 1.

(2.3.38)

The form (2.3.37) is not the most general one, as for l ≥ 6 for bosons (l ≥ 9
for fermions), the three particle state is no longer uniquely described by the three
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body angular angular momentum l, and one may assign different pseudopotential
coefficients to the different symmetric (antisymmetric), homogeneous, rotationally
invariant polynomials of degree l describing the three body states [127]. This, how-
ever, should not concern us here as we are only interested in the case m = 1 for
bosons and m = 2 for fermions. Furthermore, as in the case of two-body pseudopo-
tentials, where l had to be even for bosons and odd for fermions, there exists a related
restriction for the allowed values of l for three-body pseudopotentials. Specifically,
we have no state with l = 1(l = 4) for bosons (fermions).

For all practical purposes, we once again need to rewrite (2.3.37) in terms of boson
or fermion creation or annihilation operators,

H (3)
int =

s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

s∑

m4=−s

s∑

m5=−s

s∑

m6=−s

a†
m1

a†
m2

a†
m3

am4am5am6

· δm1+m2+m3,m4+m5+m6

·
2s∑

j=0

3s−| j−s|∑

l=3s−( j+s)

V (3)
l 〈s,m1; s,m2| j,m1 + m2〉

· 〈 j,m1 + m2; s,m3|3s − l,m1 + m2 + m3〉
· 〈3s − l,m4 + m5 + m6|s,m4; j,m5 + m6〉
· 〈 j,m5 + m6|s,m5; s,m6〉,

(2.3.39)
where am annihilates a boson or fermion in the properly normalized single particle
state

ψ s
m,0(u, v) =

√
(2s + 1)!

4π(s + m)!(s − m)! us+mvs−m, (2.3.40)

and 〈s,m1; s,m2|2s − l,m1 + m2〉 etc. are Clebsch–Gordan coefficients [39].

2.4 An S = 1 Spin Liquid State Described by a Pfaffian

2.4.1 The Ground State

As for the Haldane–Shastry model, we consider a one-dimensional lattice with peri-
odic boundary conditions and an even number of sites N on a unit circle embedded
in the complex plane. The only difference is that now the spin on each site is S = 1:
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The ground state wave function we consider here [128] is given by a bosonic
Pfaffian state in the complex lattice coordinates zi supplemented by a phase factor,

ψ S=1
0 (z1, z2, . . . , zN ) = Pf

(
1

zi − z j

) N∏

i< j

(zi − z j )

N∏

i=1

zi . (2.4.1)

The Pfaffian is given by the fully antisymmetrized sum over all possible pairings of
the N particle coordinates,

Pf

(
1

zi − z j

)
≡ A

{
1

z1 − z2
· . . . · 1

zN−1 − zN

}
. (2.4.2)

The “particles” zi represent re-normalized spin flips S̃+
α acting on a vacuum with all

spins in the Sz = −1 state,

∣∣ψ S=1
0

〉 =
∑

{z1,...,zN }
ψ S=1

0 (z1, . . . , zN ) S̃+
z1

· · · · · S̃+
zN

|− 1〉N , (2.4.3)

where the sum extends over all possibilities of distributing the N “particles” over the
N lattice sites allowing for double occupation,

S̃+
α ≡ Sz

α + 1

2
S+
α , (2.4.4)

and

|−1〉N ≡ ⊗N
α=1|1,−1〉α. (2.4.5)

This state may be viewed as the one-dimensional analog of the non-Abelian chiral
spin liquid [129].

Like the ground state of the Haldane–Shastry model, the S = 1 state (2.4.1)
describes a critical spin liquid in one dimension, with similarly algebraically decay-
ing correlations. It does not, however, serve as a paradigm of the generic S = 1 spin
state, as the generic state possesses a Haldane gap [130–133] in the spin excitation
spectrum due to linearly confining forces between the spinons [128, 134–137].

One of the objectives of this work is to identify a parent Hamiltonian for which
this state is the exact ground state, and hence accomplish what Haldane and Shastry
have accomplished for the spin one-half Gutzwiller wave function.

2.4.2 Symmetries

Translational invariance. As for the Haldane–Shastry model, we obtain the ground
state momentum p0 (in units of inverse lattice spacings 1/a) by translating the ground
state by one lattice spacing around the unit circle,
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T
∣∣ψ S=1

0

〉 = eip0
∣∣ψ S=1

0

〉
. (2.4.6)

With T zi = exp
(
i 2π

N

)
zi we find

p0 = 2π

N

(
− N

2
+ N (N − 1)

2
+ N

)
= πN , (2.4.7)

which implies p0 = 0 as N is even.
Invariance under SU(2) spin rotations. The proof of the singlet property is

similar to the Haldane–Shastry model, but more instructive as it motivates the
re-normalization of the spin-flip operators in (2.4.4).

Since Sz
tot

∣∣ψ S=1
0

〉 = 0 by construction, it is sufficient to show S−
tot

∣∣ψ S=1
0

〉 = 0.
Note first that when we substitute (2.4.1) with (2.4.2) into (2.4.3), we may replace
the antisymmetrization A in (2.4.2) by an overall normalization factor, as it is taken
care by the commutativity of the bosonic operators S̃α . Let ψ̃0 be ψ S=1

0 without the
antisymmetrization in (2.4.2),

ψ̃0[zi ] = (N − 1)!!
{

1

z1 − z2
· . . . · 1

zN−1 − zN

}
.

N∏

i< j

(zi − z j )

N∏

i=1

zi . (2.4.8)

Since ψ̃0(z1, z2, . . . , zN ) is still symmetric under interchange of pairs, we may
assume that a spin flip operator S−

α acting on |ψ̃0〉 will act on the pair (z1, z2),

S−
α

∣∣ψ S=1
0

〉 =
∑

{z3,...,zN }

{ ∑

z2( �=ηα)
ψ̃0(ηα, z2, z3, . . . )S

−
α S̃+

α S̃+
z2

+
∑

z1( �=ηα)
ψ̃0(z1, ηα, z3, . . . )S

−
α S̃+

z1
S̃+
α

+ ψ̃0(ηα, ηα, z3, . . . )S
−
α (S̃

+
α )

2
}

S̃+
z3
. . . S̃+

zN
| − 1〉N

=
∑

{z3,...,zN }

{∑

z2

2ψ̃0(ηα, z2, z3, . . . )S̃
+
z2

}
S̃+

z3
. . . S̃+

zN
| − 1〉N ,

(2.4.9)
where we have used

S−
α (S̃

+
α )

n|1,−1〉α = n(S̃+
α )

n−1|1,−1〉α, (2.4.10)

which follows directly form the definition (2.4.4).
This implies
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S−
tot

∣∣ψ S=1
0

〉 =
N∑

α=1

S−
α

∣∣ψ S=1
0

〉

= 2
∑

{z2...,zN }

N∑

α=1

ψ̃0(ηα, z2, . . . , zN )

︸ ︷︷ ︸
=0

S̃+
z2
. . . S̃+

zN
| − 1〉N , (2.4.11)

since ψ̃0(ηα, z2, . . . , zN ) contains only powers η1
α, η

2
α, . . . , η

N−1
α in ηα, and

N∑

α=1

ηm
α = Nδm,0 mod N .

Parity and time reversal invariance. To show that ψ0(z1, . . . , zN ) is real, and
hence that

∣∣ψ S=1
0

〉
is invariant under parity, we calculate its complex conjugate,

(
ψ S=1

0 [z]
)∗ = Pf

⎛

⎝ 1
1
zi

− 1
z j

⎞

⎠
N∏

i< j

(
1

zi
− 1

z j

) N∏

i=1

1

zi

= (−1)
N
2

N∏

i=1

1

zi
(−1)

N (N−1)
2

N∏

i< j

1

zi z j

N∏

i=1

1

z2
i

ψ S=1
0 [z]

= ψ S=1
0 [z], (2.4.12)

as N is even and zN
i = 1 for all i. Time reversal [73] transforms

i → −i, zi → z̄i , Sα → −Sα, |s,m〉 → i2m |s,−m〉,
which implies that the basis states in (2.4.3) transform according to

S̃+
z1

· · · · · S̃+
zN

|−1〉N → S̃−
z1

· · · · · S̃−
zN

|+1〉N , (2.4.13)

where

S̃−
α ≡ −Sz

α + 1

2
S−
α , |+1〉N ≡ ⊗N

α=1|1,+1〉α. (2.4.14)

Together with the singlet property, this implies that
∣∣ψ S=1

0

〉
is invariant under time

reversal.
All the symmetries properties discussed here will emerge almost trivially when we

generate the state
∣∣ψ S=1

0

〉
through projection form Gutzwiller (or Haldane–Shastry

ground) states in Sect. 2.4.4.
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2.4.3 Schwinger Bosons

Schwinger bosons [138, 139] constitute a way to formulate spin-S representations
of an SU(2) algebra (which can easily be generalized to SU(n), see e.g. [136]). The
spin operators

S = 1

2

(
a†, b†

)
σ

(
a
b

)
, (2.4.15)

where σ = (σx, σy, σz) is the vector consisting of the three Pauli matrices (2.1.66),
are given in terms of boson creation and annihilation operators which obey the usual
commutation relations

[
a, a†] = [

b, b†] = 1,
[
a, b

] = [
a, b†] = [

a†, b
] = [

a†, b†] = 0.
(2.4.16)

It is readily verified with
[
σi , σ j

] = 2iεi jkσk (2.4.17)

and (2.4.16), that Sx, Sy, and Sz satisfy the SU(2) algebra
[
Si , S j ] = iεi jk Sk . (2.4.18)

Written out in components we have

Sx + iSy = S+ = a†b,

Sx − iSy = S− = b†a,

Sz = 1

2
(a†a − b†b).

(2.4.19)

The spin quantum number S is given by half the number of bosons,

2S = a†a + b†b, (2.4.20)

and the usual spin states (simultaneous eigenstates of S2 and Sz) are given by

|S,m〉 = (a†)S+m

√
(S + m)!

(b†)S−m

√
(S − m)! |0〉. (2.4.21)

In particular, the spin- 1
2 states are given by

|↑〉 = c†
↑|0〉 = a†|0〉, |↓〉 = c†

↓|0〉 = b†|0〉, (2.4.22)

i.e., a† and b† act just like the fermion creation operators c†
↑ and c†

↓ in this case.
The difference shows up only when two (or more) creation operators act on the same
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site or orbital. The fermion operators create an antisymmetric or singlet configuration
(in accordance with the Pauli principle),

|0, 0〉 = c†
↑c†

↓|0〉, (2.4.23)

while the Schwinger bosons create a totally symmetric or triplet (or higher spin if
we create more than two-bosons) configuration,

|1, 1〉 = 1√
2
(a†)2|0〉,

|1, 0〉 = a†b†|0〉,
|1,−1〉 = 1√

2
(b†)2|0〉.

(2.4.24)

Representations of spin 1
2 states in terms of Schwinger bosons (rather than fermion

creation operators or spin flips) are ideally suited for the construction of higher spin
states through projection of 2S spin 1

2 ’s onto the spin S representations (i.e., the
symmetric representation) contained in

1
2

⊗ 1
2

⊗ . . .⊗ 1
2︸ ︷︷ ︸

2S

= S ⊕ (2S − 1)S−1 ⊕ . . . (2.4.25)

Classic examples include the formulation of the Affleck–Kennedy–Lieb–Tasaki
(AKLT) model [134, 135] in terms of Schwinger bosons [139, 140] as well as the
S = 1 chirality liquid [128].

2.4.4 Generation by Projection from Gutzwiller States

We will show now that the S = 1 ground state (2.4.1) can alternatively be gener-
ated by considering two (identical) Haldane–Shastry or Gutzwiller states (2.2.3) and
projecting onto the triplet or S = 1 configuration contained in

1
2

⊗ 1
2

= 0 ⊕ 1 (2.4.26)

at each site [128, 129]. To begin with, we rewrite (2.2.2) in terms of Schwinger
bosons,

∣∣ψHS
0

〉 =
∑

{z1,z2,...,zM }
ψHS

0 [z] S+
z1

· . . . · S+
zM

∣∣↓↓ . . . ↓ 〉

=
∑

{z1,...,zM ;w1,...,wM }
ψHS

0 [z] a+
z1
. . . a†

zM
b+
w1
. . . b†

wM
|0〉

≡ �HS
0

[
a†, b†]|0〉, (2.4.27)
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where M = N
2 and the wk’s are those lattice sites which are not occupied by any of

the zi ’s. The S = 1 state (2.4.1) is then up to an overall normalization factor given
by

∣∣ψ S=1
0

〉 =
(
�HS

0

[
a†, b†])2|0〉. (2.4.28)

To verify (2.4.28), use the identity

S
⎧
⎨

⎩

M∏

i, j=1
i< j

(zi − z j )
2

2M∏

i, j=M+1
i< j

(zi − z j )
2

⎫
⎬

⎭ = Pf

(
1

zi − z j

) 2M∏

i< j

(zi − z j ), (2.4.29)

where S indicates symmetrization over all the variables in the curly brackets, and

1√
2
(a†)n(b†)(2−n)|0〉 = (S̃+)n|1,−1〉, (2.4.30)

which is readily verified with (2.4.19), (2.4.24), and the definition (2.4.4). To proof
(2.4.29), use the following identity due to Frobenius [110],

det

(
1

zi − zM+ j

)
= (−1)

M(M+1)
2

M∏
i, j=1
i< j

(zi − z j )
2M∏

i, j=M+1
i< j

(zi − z j )

M∏
i=1

2M∏
j=M+1

(zi − z j )

. (2.4.31)

The projective construction directly reveals several interesting features, which
were not nearly as obvious in the previous formulation:

(a) Since the Haldane–Shastry ground state
∣∣ψHS

0

〉
is translationally invariant with

ground state momentum p0 = 0 or π (depending on whether N
2 is even or odd),

the S = 1 state
∣∣ψ S = 1

0

〉
is translationally invariant with p0 = 0.

(b) Since
∣∣ψHS

0

〉
is a singlet, and the projection onto spin S = 1 on each site com-

mutes with spin rotations,
∣∣ψ S = 1

0

〉
has to be a singlet as well.

(c) Since ψHS
0 (z1, . . . , zM ) is real with the sign of each spin configuration given

by
∏M

i = 1 G(zi ), the S = 1 wave function ψ S = 1
0 (z1, . . . , zM ) is likewise real

with the sign given by
∏N

i = 1 G(zi ):

ψ S=1
0 (z1, . . . , zN ) =

∣∣∣∣Pf

(
1

zi − z j

) N∏

i< j

(zi − z j )

∣∣∣∣
N∏

i=1

G(zi ), (2.4.32)

with G(ηα)= ± 1 depending on whether α even or odd.
(d) Since

∣∣ψHS
0

〉
is invariant under parity and and time reversal,

∣∣ψ S = 1
0

〉
is invariant

as well.
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2.4.5 Topological Degeneracies and Non-Abelian Statistics

We have seen in Sect. 2.3.3 that 2n spatially well separated quasiparticle excitations
or vortices carrying half of a Dirac flux quanta each in the non-Abelian quantized Hall
state described by the Pfaffian will span an internal or topological Hilbert space of
dimensions 2n(2n−1 for either even or odd fermion numbers), in accordance with the
existence of one Majorana fermion state at each vortex core. The Majorana fermion
states can only be manipulated through braiding of the vortices, with the interchanges
being non-commutative or non-Abelian.

The question we wish to address in this section is whether there is any manifes-
tation of this topological space of dimension 2n , or the 2n Majorana fermion states,
in the spinon excitation Hilbert space suggested by the S = 1 ground state (2.4.1).
In Sect. 2.2.6, we have seen that the fractional statistics of the spinons in the Haldane–
Shastry model, and presumably in any model supporting one-dimensional anyons, is
encoded in the momentum spacings of the excitations. This is not too surprising, as
there are no other suitable quantum numbers, like the relative angular momentum for
two-dimensional anyons, available. We will propose now that the topological degen-
eracies, or the occupation numbers of the n fermions consisting of the 2n Majorana
fermions, are once again encoded in the momentum spacings between single spinon
states.

In the Haldane–Shastry model, the spacings between neighboring momenta were
always half integer, in accordance with half-fermi statistics, as the difference between
consecutive spinon momentum numbers ai was always an odd integer,

ai+1 − ai = odd. (2.4.33)

This follows directly from the construction of the extended Young tableaux illustrated
in Fig. 2.5. When two spinons are in neighboring columns, the difference of the ai

is one and hence an odd integer; when we insert complete columns without spinons
in between, the number of boxes we insert is always even.

We will now show that for the S = 1 chain with the Hilbert space parameter-
ized by the ground state

∣∣ψ S=1
0

〉
and spinon excitations above it, the corresponding

rule is

ai+1 − ai = even or odd, for i odd,

ai+1 − ai = odd, for i even.
(2.4.34)

As i = 1, 2, . . . , 2n, we have a total of n spacings which can be either even or odd,
and another n spacings which are always odd. With the single spinon momenta given
by

pi = π

N

(
ai − 1

2

)
, (2.4.35)

this yields momentum spacings which can be either an integer or an half-integer
times 2π

N for i odd. This is a topological distinction—for Abelian anyons, one choice
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Fig. 2.8 Total spin representations of three S = 1 spins in terms of extended Young tableaux

corresponds to bosons or fermions (which are for many purposes equivalent in one
dimension), and the other choice to half-fermions. For spinons which are well sepa-
rated in momentum space, the states spanning this in total 2n dimensional topological
Hilbert space become degenerate as we approach the thermodynamic limit.

To derive (2.4.34), we introduce a second formalism of extended Young tableaux,
this time for spin S = 1. The general rule we wish to propose for obtaining the
tableaux is illustrated in Fig. 2.8 for three spins with S = 1. The construction is as
follows. For each of the N spins, put a row of two adjacent boxes, which is equivalent
to the Young tableau for a single spin without any numbers in the boxes. Put these
N small tableaux on a line and number them consecutively from left to right, with
the same number in each pair of boxes which represent a single spin. To obtain the
product of some extended Young tableau representing spin S0 on the left with a spin
1 tableau (i.e., a row of two boxes with the same number in it) on the right, we follow
the rule

S0 ⊗ 1 =
{

1, for S0 = 0,
S0−1 ⊕ S0 ⊕ S0+1, for S0 = 1, 2, . . .

(2.4.36)

i.e., we obtain only one new tableau with both boxes from the right added to the
top row if the tableau on the left is a singlet, and three new tableaux if it is has
spin one or higher. These three tableaux are constructed by adding both boxes to
the bottom row (resulting in a representation S0−1), by adding the first box to the
bottom row and the second box to the top row without stacking them on top of each
other (resulting in a representation S0), and by adding both boxes to the top row
(resulting in a representation S0+1). In each extended tableau, the boxes must be
arranged such that the numbers are strictly increasing in each column from top to
bottom, and that they are not decreasing from left to right in that the smallest number
in each column cannot be smaller than the largest number in the column to the left
of it. In analogy to the Haldane–Shastry model, the empty spaces in between the
boxes are filled with dots representing spinons. The spinon momentum number ai

associated with each spinon is given by the number in the box in the same column.
A complete table of all the extended Young tableaux for fours S = 1 spins is shown in
Fig. 2.9. The assignment of physical single spinon momenta to the spinon momentum
numbers (2.4.47) is identical to this assignment for the Haldane–Shastry model, as
we can obtain the 3N states of the S = 1 Hilbert space by Schwinger boson projection
(i.e., by projecting on spin S = 1 on each site) from states contained in the 2N × 2N

dimensional Hilbert space of two S = 1
2 models, a projection which commutes with
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Fig. 2.9 Extended Young tableau decomposition for an S = 1 spin chain with N = 4 sites. The
dots represent the spinons. The spinon momentum numbers ai are given by the numbers in the
boxes of the same column. Note that

∑
(2Stot + 1) = 3N

the total momentum. The correctness of this assignment has further been verified
numerically up to N = 16 sites [141].

With the tableau structure thus in place, all that is left to show is that the momentum
spacings are according to (2.4.34). Looking at any of the tableaux in Fig. 2.9, we note
that from left to right, the spinons alternate between being assigned to the first of the
two boxes with a given number and being assigned to the second of such two boxes.
This follows simply form the fact that the number of boxes in between the columns
with the two neighboring spinons must be even. The first spinon momentum number
a1 is always odd, but all the other ai ’s can be either even or odd. The rule is therefore
that if i is odd, the ith spinon is assigned to the first of the two boxes with number
ai , and the momentum spacing ai+1 − ai can be either even or odd,

If i is even, however, the ith spinon is assigned to the second of the two boxes with
number ai , and the momentum spacing ai+1 −ai has to be odd, as we can insert only
an even number of columns between the two spinons (recall that we cannot stack
two boxes with the same number in it on top of each other):
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The spacings between the single spinon momenta are hence as stated in (2.4.34).
This result is consistent with the spinon basis proposed by Bouwknegt, Ludwig, and
Schoutens [143] for the SU(2) level k = 2 Wess-Zumino-Witten model [144, 145].

2.4.6 Generalization to Arbitrary Spin S

The projective generation introduced in Sect. 2.4.4 can be generalized to arbitrary
spin S = s:

∣∣ψ S
0

〉 =
(
�HS

0

[
a†, b†])2s |0〉. (2.4.37)

In order to write this state in a form similar to (2.4.1)–(2.4.5),

∣∣ψ S
0

〉 =
∑

{z1,...,zs N }
ψ S

0 (z1, . . . , zs N ) S̃+
z1

· · · · · S̃+
zs N

|−s〉N , (2.4.38)

where

|−s〉N ≡ ⊗N
α=1|s,−s〉α (2.4.39)

is the “vacuum” state in which all the spins are maximally polarized in the negative
ẑ-direction, we introduce re-normalized spin flip operators S̃+ which satisfy

1√
(2s)! (a

†)n(b†)(2s−n)|0〉 = (S̃+)n|s,−s〉. (2.4.40)

If we assume a basis in which Sz is diagonal, we may write

S̃+ ≡ 1

b†b + 1
a†b = 1

s − Sz + 1
S+. (2.4.41)

The wave function for the spin S state (2.4.37) is then with M = N
2 given by

ψ S
0 (z1, . . . , zs N ) =

2s∏

m=1

⎛

⎜⎜⎝
m M∏

i, j=(m−1)M+1
i< j

(zi − z j )
2

⎞

⎟⎟⎠
s N∏

i=1

zi . (2.4.42)

Note that these states are similar to the Read–Rezayi states [142] in the quantized
Hall effect.
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As for the S = 1 state discussed in Sect. 2.4.4, the projective construction (2.4.37)
directly implies several symmetries. The state

∣∣ψ S
0

〉
is translationally invariant with

ground state momentum p0 = −πNs, a spin singlet, and real:

ψ S
0 (z1, . . . , zs N ) =

∣∣∣ψ S
0 (z1, . . . , zs N )

∣∣∣
s N∏

i=1

G(zi ), (2.4.43)

with G(zi ) given by (2.2.16).

2.4.7 Momentum Spacings and Topological Degeneracies
for Arbitrary Spin S

In Sect. 2.4.5, we have shown that the non-Abelian statistics of the Pfaffian state
(2.3.1), and in particular the topological degeneracies associated with the Majorana
fermion states in the vortex cores discussed in Sect. 2.3.3, manifests itself in topo-
logical choices for the (kinematical) momentum spacings of the spinon excitations
above the S = 1 ground state (2.4.1). Specifically, we found that if we label the
single spinon momenta in ascending order by pi < pi+1, the spacings pi+1 − pi can
be either even or odd multiples of π

N if i is odd, while it has to be an odd multiple if
i is even.

In this Section, we formulate the corresponding restrictions for the general spin
S chain with ground state (2.4.37). We will first state the rules and then motivate
them. Recall that spinons are represented by dots placed in the empty spaces of
extended Young tableaux, and that the momentum number ai of spinon i is given
by the number in the box it shares a column with. For general spin S, the tableau
describing the representation on each site is given by

i.e., a horizontal array of 2S boxes indicating symmetrization, which all contain the
same number.

If this number is n, the spinons we assign to any of these boxes will have momen-
tum number ai = n. Let us denote the number of the box a given spinon i with
momentum number ai is assigned to, by bi , such that box number bi = 1 corresponds
to the first, and box number bi = 2S to the last box with number n in it:

We will see below that if a representation of a spin S chain with L spinons is written
in terms of an extended Young tableau, the first spinon with momentum number a1
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(a)

(b)

Fig. 2.10 Non-Abelian (SU(2) level k = 2S) statistics in one dimension: flow diagram for the
(auxiliary) box numbers bi , which serve to describe the restrictions for the spinon momentum
number spacings ai+1 −ai for the critical models of spin chains introduced in Sects. 2.4.1 and 2.4.6
with a S = 1, and b general spin S. The unidirectional, horizontal arrows correspond to even integer
momentum number spacings ai+1 − ai , while the bidirectional, semicircle arrows correspond to
odd integer spacings

will always have box number b1 = 1, and the last spinon with aL will have bL = 2S.
The restrictions corresponding to the non-abelian (SU(2) level k = 2S) statistics of
the spinons are described by the flow diagram of the numbers bi shown in Fig. 2.10.

Let us elaborate this diagram first for the case S = 1, which we have already
studied in Sect. 2.4.5. In this case,

bi =
{

1, for i odd,
2, for i even.

(2.4.44)

For i odd, we may move from bi = 1 to bi+1 = 2 either via the horizontal arrow
or via the semicircle in Fig. 2.10a, and ai+1 − ai may hence be either even or odd,
respectively. For i even or bi = 2, however, the semicircle is the only available con-
tinuation, which implies that the spacing ai+1 − ai must be odd.

For general S, Fig. 2.10b implies that the spacings can be even or odd until bi = 2S
is reached, which is then followed by an odd integer spacing ai+1 − ai , as the
semicircular arrow is the only possible continuation at this point. Note that for S ≥ 1,
the minimal number of spinons is two (these two spinons then have an odd integer
spacing a2 − a1), and that we cannot have more than 2S spinons with the same
momentum number ai = n, as ai+1 − ai = 0 is even.

We will now motivate this diagram. To begin with, we generalize the formalism
of extended Young tableaux to arbitrary spin S. The construction is similar to the one
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for S = 1 outlined in Sect. 2.4.5. For each of the N spins, put a row of 2S adjacent
boxes. Put these N tableaux on a line and number them consecutively from left to
right, with the same number in each row of 2S boxes representing a single spin.
To obtain the product of some extended Young tableau representing spin S0 on the
left with a spin S tableau (i.e., a row of 2S boxes with the same number in it) on the
right, we first recall

S0 ⊗ S = |S0 − S| ⊕ |S0 − S| + 1 ⊕ . . .⊕ S0 + S, (2.4.45)

which implies that we obtain either 2S0 + 1 or 2S + 1 new tableaux, depending on
which number is smaller. In terms of extended Young tableaux, (2.4.44) translates
into

(2.4.46)

The first tableau on the right-hand side of (2.4.46) exists only for S0 ≥ S,
the second only for S0 ≥ S − 1

2 , and so on. Note that the shape of the right bound-
ary of the extended Young tableaux for S0 does not determine which tableaux are
contained in the expansion of S0 ⊗ S, as this depends only on the number S0 − S.
In the expansion (2.4.46), the 2S boxes representing a single spin S always reside
in adjacent columns. In an extended tableau, the numbers in the boxes are equal or
increasing as we go from left to right, and strictly increasing from top to bottom. The
empty spaces we obtain as we build up the tableaux via this method represent the
spinons. Note that we cannot take a given tableau and just add a pair of spinons by
inserting them somewhere, as the resulting tableau would not occur in the expansion.
In Fig. 2.11, we illustrate the principle by writing out a few terms in the expansion
for an S = 2 chain.

We now turn to the question what this construction implies for the momentum
spacings of the spinons. It is very easy to see from Fig. 2.11 that b1 = 1 and a1 is
odd, and that b2 = 2S and aL is even (odd) for N even (odd).

Let us assume we have a spinon i with momentum number ai and box number
bi . If we take S = 3, ai = 3, and bi = 2, this spinon would be represented by a dot
which shares a column with the second box with number 3 in it,



2.4 An S = 1 Spin Liquid State Described by a Pfaffian 71

Fig. 2.11 Examples of products of extended tableaux for an S = 2 spin chain

For the box number bi+1 of the next spinon, there are only two possibilities:

(i) bi+1 = bi + 1, which implies that ai+1 − ai is even. The spinons either sit
in neighboring columns with ai+1 = ai , or contain an even number of spin S
representations (with 2S boxes each) in between them. For our example, the
corresponding tableaux are

This possibility produces the unidirectional, horizontal arrows in Fig. 2.10.
If bi = 2S, this possibility does not exist, and there are either no further
spinons or ai+1 − ai has to be odd.

(ii) bi+1 = 2S − bi + 1, which implies that ai+1 − ai is odd. For our example, the
tableaux are
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This possibility produces the bidirectional, semicircle arrows in Fig. 2.10.

This concludes the motivation of the flow diagram in Fig. 2.10b. As in Sects. 2.2.7
and 2.4.5, the single spinon momenta are given by

pi = π

N

(
ai − 1

2

)
. (2.4.47)

This yields momentum spacings pi+1 − pi which can be either an integer or an
half-integer times 2π

N .
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Chapter 3
From a Laughlin State
to the Haldane–Shastry Model

3.1 General Considerations

In this section, we wish to derive, or maybe better obtain, the Haldane–Shastry model
(see Sect. 2.2) from the bosonic m = 2 Laughlin state and its parent Hamiltonian
(see Sect. 2.1.2). At first sight, this does not appear to be a sensible endeavor. Let us
briefly recall both models.

3.1.1 Comparison of the Models

The Haldane–Shastry model describes a spin 1
2 chain with periodic boundary con-

ditions. The Hamiltonian is

HHS =
(

2π

N

)2 N∑

α<β

SαSβ∣∣ηα − ηβ
∣∣2 , (3.1.1)

where ηα = ei 2π
N α with α = 1, . . . , N are sites on a unit circle embedded in the

complex plane. Written as a wave function for the position of the M = N
2 ↑-spin

coordinates zi , the ground state is given by

ψHS
0 (z1, . . . , zM ) =

M∏

i<i

(zi − z j )
2

M∏

i=1

zi . (3.1.2)

The bosonic m = 2 Laughlin state for M particles,

ψ0(z1, . . . , zM ) =
M∏

i< j

(zi − z j )
2

M∏

i=1

e− 1
4 |zi |2 , (3.1.3)
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is the exact ground state of the δ-function potential interaction Hamiltonian

V =
M∑

i< j

δ(2)(zi − z j ) (3.1.4)

in the lowest Landau level. Obviously, both models share the factor

M∏

i< j

(zi − z j )
2 (3.1.5)

in their ground state wave function, a connection which was exploited recently by
Thomale et al. [1] in their study of the entanglement spectrum of spin chains, but this
seems to be about it. The Gutzwiller or Haldane–Shastry ground state is invariant
under P and T, under translations along the chain, and under global SU(2) spin
rotations (see Sect. 2.2.3). The model further possesses a Yangian symmetry and is
integrable (see Sect. 2.2.2). The Laughlin ground state is up to a gauge transformation
invariant under rotations around the origin. The geometries of both models differ.

Let us proceed by clearing some obvious hurdles to our endeavor of connecting
the models. To begin with, the circular droplet described by the Laughlin wave
function (3.1.3) has a boundary, while the Haldane–Shastry ground state describes
a spin liquid on a compact surface. This problem, however, is easily circumvented
by formulating the quantum Hall model on the sphere (see Sect. 2.1.6). Then the
bosonic m = 2 Laughlin state for M particles on a sphere with 2s = 2M − 2 flux
quanta is given by

ψ0[u, v] =
M∏

i< j

(uiv j − u jvi )
2. (3.1.6)

Within the lowest Landau level, it is the exact and unique zero-energy ground state
of the interaction Hamiltonian

V qh =
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

s∑

m4=−s

a†
m1

a†
m2

am3
am4

δm1+m2,m3+m4

· 〈s,m1; s,m2|2s,m1 + m2〉〈2s,m3 + m4|sm3, sm4〉, (3.1.7)

where am annihilates a boson in the properly normalized single particle state

ψ s
m,0(u, v) = 〈u, v|a†

m |0〉 =
√

(2s + 1)!
4π (s + m)! (s − m)! us+mvs−m, (3.1.8)

and 〈s,m1; s,m2| j,m1 + m2〉 etc. are Clebsch–Gordan coefficients [2].
The Hamiltonian (3.1.7) assigns a finite energy cost whenever the relative angular
momentum of a pair of particles is zero. The expansion coefficients of the polynomial
(3.1.6) are still identical to those of (3.1.5).

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
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3.1.2 A Hole at a Pole

The Haldane–Shastry ground state wave function (3.1.2), however, contains an addi-
tional factor

∏
i zi . This is related to another problem. The dimension of the single

particle Hilbert space for the bosons on the sphere is 2s + 1 = 2M − 1, while the
dimension of the single particle Hilbert space for the spin flips on the unit circle is
equal to the number of sites, N = 2M . The Hilbert space dimensions of both models
hence do not match. We can adapt the quantum Hall state by insertion of a quasihole
at the south pole (α, β) = (0, 1) of the sphere. This leads to the wave function

ψ
qH
0 [u, v] =

M∏

i< j

(uiv j − u jvi )
2

M∏

i=1

ui , (3.1.9)

on a sphere with 2s +1 = 2M single particle states. It is the exact and unique ground
state of

HqH = V qH + U qH (3.1.10)

with

U qH = U0 a†
−sa−s (3.1.11)

for U0> 0 if we restrict our Hilbert space again to the lowest Landau level.
In (3.1.10), we have added a local repulsive potential U0 for the single particle
state with m = −s, i.e., the state at the south pole, to the interaction Hamiltonian
(3.1.7). Note that both V qH and U qH annihilate the ground state (3.1.9) individually.
The single particle Hilbert space dimensions match now, 2s + 1 = 2M = N, and
the expansion coefficients Cq1,...,qM for the polynomials

ψHS
0 [z] =

∑

{q1,...,qM }
Cq1,...,qM zq1

1 · · · zqM
M (3.1.12)

and

ψ
qH
0 [u, v] =

∑

{q1,...,qM }
Cq1,...,qM uq1

1 v
2s−q1
1 . . . uqM

M v
2s−qM
M (3.1.13)

are identical. Note that in both states, the amplitudes are non-zero only for 1 ≤ qi ≤
N , i.e., the q = 0 state is never occupied. For the Haldane–Shastry ground state, this
means that we never flip a spin S+

q with momentum q = 0, which is a necessary
requirement for the singlet property (see Sect. 2.2.3). For the quantized Hall state, it
means no particle occupies the m = −s state at the south pole of the sphere. Note
further that the Hamiltonians for the sphere (3.1.10) and for the spin chain (3.1.1) are
formulated in different spaces. The Hamiltonian (3.1.10) with (3.1.7) on the sphere
scatters bosons in a basis of (angular) momentum eigenstates m, while the Haldane–
Shastry Hamiltonian (3.1.1) scatters bosonic spin-flips in a position space basis of
sites ηα.

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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3.2 Hilbert Space Renormalization

There is yet another significant difference between both models. We noted above
that the coefficients in the polynomial expansions of the ground states (3.1.12) and
(3.1.13) are identical. The expansions of both states in terms of single particle states,
however, are different, due to different normalizations of the polynomials. In the
Haldane–Shastry model, the wave function acts on a Hilbert space constructed out
of spin flips at positions zi ,

∣∣ψHS
0

〉 =
∑

{z1,...,zM }
ψHS

0 (z1, . . . , zM ) S+
z1

· . . . · S+
zM

∣∣↓↓ · · · · · · ↓︸ ︷︷ ︸
all N spins ↓

〉
. (3.2.1)

The polynomial 1√
N

zq describes the normalized single particle state

1√
N

∑

{z}
zq S+

z |↓↓ · · · ↓〉 = 1√
N

∑

α

ηq
αS+
α |↓↓ · · · ↓〉 ≡ Ŝ+

q |↓↓ · · · ↓〉, (3.2.2)

and we can rewrite the state vector (3.2.1) in terms of (3.1.12) as

∣∣ψHS
0

〉 =
∑

{q1,...,qM }
Cq1,...,qM Ŝ+

q1
· . . . · Ŝ+

qM
|↓↓ · · · · · · ↓〉. (3.2.3)

The polynomials us+mvs−m, by contrast, describe the unnormalized single particle
states

gm
∣∣ψ s

m,0

〉 = gma†
m |0〉, (3.2.4)

where

gm =
√

4π (s + m)! (s − m)!
(2s + 1)! (3.2.5)

is the normalization factor from (3.1.8) and a†
m is the associated, properly normalized

creation operator. The state vector for the quantum Hall state is hence given by

∣∣ψqH
0

〉 =
∑

{m1,...,mM }
Cm1+s,...,mM +s gm1 · · · gmM a†

m1
· · · a†

mM
|0〉 (3.2.6)

This means that not only the Hamiltonians, but also the coefficients in the ground
state vectors, are different. In particular, we we diagonalize the Haldane–Shastry
Hamiltonian (3.1.1) for a finite chain, we obtain a ground state vector which is quite
different from the ground state vector of (3.1.10) with (3.1.7). If two models have
different symmetries, different Hamiltonian and different ground states, it is not clear
what the connection should be.
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If we think about the problem from a scholarly perspective, the conclusion would
probably be to abandon our undertaking. The scholarly approach, however, is not
always the most fruitful one. Haldane [3] invented the parent Hamiltonian (2.1.85)
because he was looking for an economical way to write out the coefficients of a
Laughlin state for a significant number of particles without expanding the polynomial,
which he could then compare to the ground state for Coulomb interactions. Along
these lines, note that since the single particle normalizations gm are known, it is easy
to obtain the coefficients in (3.2.3) from the coefficients in (3.2.6) and vice versa. So
regardless of how different the two states are from a scholarly point of view, there
may be practical benefit in exploring the common features.

In fact, even though the quantum Hall Hamiltonian (3.1.10) with (3.1.7) cannot
be used directly to obtain the Haldane–Shastry ground state (3.2.3), we can construct
a parent Hamiltonian for (3.2.3) from (3.1.10). To do so, consider first the following
theorem.

Theorem 3.1 Let |ψ0〉 be the exact and non-degenerate zero-energy
ground state of H,

H |ψ0〉 = 0, 〈ψH |ψ〉 ≥ 0 ∀ |ψ〉,
= 0 if and only if |ψ〉 = |ψ0〉,

and let G be an invertible matrix, G−1G = 1. Then G−1|ψ0〉 is the exact and
non-degenerate zero-energy ground state of G† H G.

Proof Trivially, G† H G G−1|ψ0〉 = 0. With |ψ ′〉 ≡ G|ψ〉, we have

〈ψG† H G|ψ〉 = 〈ψ ′ H |ψ ′〉 ≥ 0 ∀ |ψ ′〉 and hence ∀ |ψ〉,
= 0 if and only if |ψ ′〉 = |ψ0〉,

i.e., |ψ〉 = G−1|ψ0〉. �
Note that this transformation is not just a rotation of the basis. It completely

changes the Hamiltonian, but has the benefit instructing us how to obtain the zero
energy ground state of the new Hamiltonian from the original one.

While this theorem points in the right direction, we are not aware of any way of
arriving at a convenient parent Hamiltonian by employing it directly. On the positive
side, if we choose

G =
s∏

m=−s

(gm)
a†

mam , G−1 =
s∏

m=−s

(
1

gm

)a†
mam

, (3.2.7)

we obtain

G−1
∣∣ψqH

0

〉 =
∑

{m1,...,mM }
Cm1+s,...,mM +s a†

m1
· · · a†

mM
|0〉, (3.2.8)

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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which is identical to the Haldane–Shastry ground state (3.2.3) if we were to substi-
tute1 a†

m → Ŝ+
s+m . On the negative side, the Hamiltonian G† HqHG is unnecessarily

complicated. To obtain a convenient parent Hamiltonian for (3.2.8), we avail our-
selves of another theorem.

Theorem 3.2 Let |ψ0〉 be a zero-energy eigenstate of the interaction Hamiltonian

H =
∑

{m1,m2,m3,m4}
a†

m1
a†

m2
Vm1,m2,m3,m4 am3

am4
,

and let G be an invertible matrix, G−1G = 1. Then G−1|ψ0〉 is a zero-energy eigen-
state of

H ′ =
∑

{m1,m2,m3,m4}
G†a†

m1
a†

m2
G†−1

Vm1,m2,m3,m4 G−1am3
am4

G.

Proof The property H |ψ0〉 = 0 implies

∑

{m3,m4}
Vm1,m2,m3,m4 am3am4 |ψ0〉 = 0 ∀ m1, m2,

and hence
∑

{m3,m4}
Vm1,m2,m3,m4 G−1 am3am4 G G−1|ψ0〉 = 0 ∀ m1, m2,

which in turn implies H ′G−1|ψ0〉 = 0. �
Remark The theorem holds for n-body interactions as well.

The choice (3.2.7) implies G† = G and

G−1 am G = gmam, G am G−1 = 1

gm
am, (3.2.9)

G−1 a†
m G = 1

gm
a†

m, G a†
m G−1 = gma†

m . (3.2.10)

Theorem 3.2 implies that the “renormalized” quantum Hall state (3.2.8) is a zero-
energy eigenstate of

1 It is not clear whether such a substitution is sensible, since the operators a†
m and Ŝ+

s+m obey
different commutation relations. For this reason, we do not implement it, but merely mention the
possibility. We will see below that a similar transition from the Fourier transforms of a†

m to local
spin flips S+

α can be implemented sensibly.
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V =
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

s∑

m4=−s

a†
m1

a†
m2

am3
am4

δm1+m2,m3+m4

· gm1gm2〈s,m1; s,m2|2s,m1 + m2〉〈2s,m3 + m4|sm3, sm4〉gm3gm4 .

(3.2.11)
Since (3.2.8) is likewise annihilated by (3.1.11), it is also a zero energy state of

H = V + U qH. (3.2.12)

We will see in Sect. 3.3.2 that (3.2.8) is a ground state of (3.2.12), but we have not
been able to deduce this from the considerations presented so far. For our purposes,
however, it is sufficient to know that (3.2.12) annihilates the state (3.2.8).

With (3.2.5) and the explicit formula

〈s,m1; s,m2|2s,m1 + m2〉 =
√
(2s − m1 + m2)! (2s + m1 + m2)!√

(s − m1)! (s + m1)! (s − m2)! (s + m2)!
·

√
s · (2s − 1)!√
(4s − 1)! (3.2.13)

for the Clebsch–Gordan coefficients [2], we obtain

gm1gm2〈s,m1; s,m2|2s,m1 + m2〉 = √
(2s − m1 + m2)! (2s + m1 + m2)!

· 2π

(2s + 1)
√

s (4s − 1)! . (3.2.14)

The second factor in (3.2.14) does not depend on any mi and can hence be absorbed
by rescaling V accordingly. This yields

V =
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

s∑

m4=−s

a†
m1

a†
m2

am3
am4

Vm1,m2,m3,m4 (3.2.15)

with

Vm1,m2,m3,m4 = Vm1+m2 · δm1+m2,m3+m4 , (3.2.16)

Vm = (2s − m)! (2s + m)!. (3.2.17)

The essential simplification we have encountered so far is that the scattering matrix
elements Vm1,m2,m3,m4 in (3.2.15) depend only on the conserved total value of
Lz,m1 + m2 = m3 + m4, and not on the (angular) momentum transfer.

Even though the Hamiltonian (3.2.12) with (3.2.15) and (3.1.11) annihilates the
Haldane–Shastry ground state (3.2.8), we a still very far from having derived the
Haldane–Shastry Hamiltonian (3.1.1). First, (3.2.15) scatters single particle states in
momentum space, since m = q − s is effectively a momentum quantum number.
Second, (3.2.12) is not likely to share the symmetries of (3.1.1). Third, we do not
even know whether (3.2.8) is the (non-degenerate) ground state of (3.2.12).
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3.3 Fourier Transformation

3.3.1 Particle Creation and Annihilation Operators

We proceed by transforming the interaction Hamiltonian (3.2.15) into Fourier space.
To this end, we define the transformations

am = 1√
N

N∑

α=1

(η̄α)
s+maα, a†

m = 1√
N

N∑

α=1

(ηα)
s+ma†

α, (3.3.1)

where N = 2s + 1, ηα = ei 2π
N α, and η̄α = e−i 2π

N α. We may interpret α as site
indices of a periodic chain with N sites, and ηα as the positions of these sites when
the periodic chain is embedded as a unit circle in the complex plane.

The Fourier transformation yields

V = 1

N 2

∑

{α1, α2, α3, α4}
a†
α4

a†
α3

aα2
aα1

Vα1, α2, α3, α4 (3.3.2)

with

Vα1, α2, α3, α4 =
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

s∑

m4=−s

Vm1+m2 δm1+m2,m3+m4

· (ηα4)
s+m4(ηα3)

s+m3(η̄α2)
s+m2(η̄α1)

s+m1 (3.3.3)

for the interaction Hamiltonian (3.2.15) and

∣∣ψ0
〉 = G−1

∣∣ψqH
0

〉

=
∑

{α1,...,αM }

1√
N

M

∑

{m1,...,mM }
Cm1+s,...,mM +s (ηα1 )

s+m1 . . . (ηαM )
s+mM a†

α1
. . . a†

αM

∣∣0
〉

=
∑

{α1,...,αM }
ψHS

0 (ηα1 , . . . , ηαM ) a†
α1
. . . a†

αM

∣∣0
〉

(3.3.4)

for the ground state it annihilates. In (3.3.4), we have used the definition of the coef-
ficients Cm1+s,...,mM +s from (3.2.1) to (3.2.3). Since ψHS

0 (ηα1 , . . . , ηαM ) vanishes
identically whenever two coordinates ηα coincide, we are allowed to discard config-
urations with multiply occupied sites. This yields a reduced Hilbert space in which
the boson creation and annihilation operators a† and a obey the same commutation
relations as the spin flip operators S+ and S−. We may hence substitute one for the
each other.

If we substitute a†
αi

→ S+
zi
, aαi → S−

zi
, in (3.3.2) and (3.3.4), we find that the

Haldane–Shastry ground state (3.2.1) with (3.1.2) is annihilated by the interaction
Hamiltonian
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V = 1

N 2

∑

{α1, α2, α3, α4}
S+
α4

S+
α3

S−
α2

S−
α1

Vα1, α2, α3, α4 (3.3.5)

with the matrix elements (3.3.3). For the on-site potential term (3.1.11), Fourier
transformation and subsequent substitution yields

U qH = 1

N
U0 S+

tot S
−
tot, (3.3.6)

where Stot is defined in (2.2.6). This term annihilates any singlet state, and in par-
ticular the Haldane–Shastry ground state (3.2.1) with (3.1.2). It will not be helpful
in constructing a parent Hamiltonian, but it might be useful to keep in mind that this
term was required to single out the ground state wave function on the quantum Hall
sphere.

These observations, and in particular (3.3.5) with (3.3.3) and (3.2.17), are the
results of the considerations presented so far, and the starting point for the analysis
below.

3.3.2 Renormalized Matrix Elements

In this section, we wish to obtain an explicit expression for the scattering matrix
elements (3.3.3) of (3.3.5) for general Vm by direct evaluation. For convenience, we
assume α1 �= α2 and α3 �= α4, as enforced by the spin flips in (3.3.5).

This transformation may look trivial at first, but it is not. When we perform
a conventional Fourier transform from real space into momentum space or vice
versa, both spaces are periodic. In particular, if we scatter a momentum across the
boundary at one end of the Brillouin zone, it will just reappear at the other boundary.
The distinguishing feature of the Lz angular momentum quantum number m is that
it is not subject to periodic, but to hard wall boundary conditions if we attempt
to scatter m to values smaller than −s or larger than s. This does not preclude a
Fourier transformation, but it does lead to phase space restrictions we have to take
into account.

The δ-function in (3.3.3) allows us to eliminate the two summations over m3 and
m4 in favor of a single summation,

Vα1, α2, α3, α4 =
s∑

m1=−s

s∑

m2=−s

Vm1+m2

∑

q

′

(ηα4)
s+m2−q(ηα3)

s+m1+q(η̄α2)
s+m2(η̄α1)

s+m1 , (3.3.7)

where

∑

q

′ ≡
min{s−m1, s+m2}∑

q=max{−s−m1,−s+m2}
.

http://dx.doi.org/10.1007/978-3-642-24384-4_2


88 3 From a Laughlin State to the Haldane–Shastry Model

With m = m2 + m1, p = m2 − m1, we write

∑

q

′ =
s+ 1

2 min{p−m, p+m}∑

q=−s+ 1
2 max{p−m, p+m}

=
s+ p

2 − |m|
2∑

q=−s+ p
2 + |m|

2

.

With

b∑

q=a

xq = xb+1 − xa

x − 1
= xb+ 1

2 − xa− 1
2

x
1
2 − x− 1

2

, b ≥ a, (3.3.8)

we obtain

∑

q

′
(η34)

q = (η34)
s+ p

2 − |m|
2 + 1

2 − (η34)
−s+ p

2 + |m|
2 − 1

2

(η34)
1
2 − (η34)

− 1
2

,

where η34 ≡ ηα3−α4 = ηα3 η̄α4 . Note that η34 �= 1 as α3 �= α4. Using the periodicity
in Fourier space,

(ηα)
−s = (ηα)

s+1, (3.3.9)

we can rewrite the second term in the numerator, and obtain

∑

q

′
(η34)

q = −(η34)
s+ p

2 + 1
2 J (|m|, α3 − α4),

where

J (|m|, α) ≡ (ηα)
|m|
2 − (ηα)

− |m|
2

(ηα)
1
2 − (ηα)

− 1
2

. (3.3.10)

Substitution into (3.3.7) yields

Vα1, α2, α3, α4 =
s∑

m1=−s

s∑

m2=−s

Vm · (η42)
s+m2(η31)

s+m1

· (−1) · (η34)
s+ p

2 + 1
2 J (|m|, α3 − α4). (3.3.11)

With m1 = m−p
2 , m2 = m+p

2 , we can rewrite the sums as

s∑

m1=−s

s∑

m2=−s

=
2s∑

m=−2s

2s−|m|∑

p=−2s+|m|
even or odd

,
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where the last sum extends only over even (odd) values of p for m odd (even). (Since
N = 2s + 1 is even, 2s is odd.) This yields

Vα1, α2, α3, α4 =
2s∑

m=−2s

Vm · (−1) · J (|m|, α3 − α4)

·
2s−|m|∑

p=−2s+|m|
even or odd

(η42)
s+ m

2 + p
2 (η31)

s+ m
2 − p

2 (η34)
s+ p

2 + 1
2 . (3.3.12)

We proceed by evaluating the sum over the terms which depend on p,

2s−|m|∑

p=−2s+|m|
even or odd

(η42)
p
2 (η31)

− p
2 (η34)

p
2 =

s− |m|
2∑

k=−s+ |m|
2

(η12)
k

= (η12)
s− |m|

2 + 1
2 − (η12)

−s+ |m|
2 − 1

2

(η12)
1
2 − (η12)

− 1
2

= −(η12)
s+ 1

2 J (|m|, α1 − α2),

where we have used (η12)
−s = (η12)

s+1 and η12 �= 1. Substitution into (3.3.12)
yields

Vα1, α2, α3, α4 =
2s∑

m=−2s

Vm · J (|m|, α3 − α4) J (|m|, α1 − α2)

· (η42η31)
s+ m

2 (η34η12)
s+ 1

2 . (3.3.13)

Writing out the factors in the second line yields

(ηα4)
m
2 − 1

2 (ηα3)
2s+ m

2 + 1
2 (ηα2)

−2s− m
2 − 1

2 (ηα1)
− m

2 + 1
2 =

(
ηα4ηα3

ηα2ηα1

)m
2 − 1

2

.

With the definition (3.3.10) we obtain

Vα1, α2, α3, α4 =
2s∑

m=−2s

Vm · (η34)
|m|
2 − (η34)

− |m|
2

(η34)
1
2 − (η34)

− 1
2

· (η12)
|m|
2 − (η12)

− |m|
2

(η12)
1
2 − (η12)

− 1
2

·
(
ηα4ηα3

ηα2ηα1

)m
2 − 1

2

. (3.3.14)

Note that we may omit the absolute value signs from m, as both fractions in (3.3.14)
change their sign with m. This yields

Vα1, α2, α3, α4 =
2s∑

m=−2s

Vm · η
m
α4

− ηm
α3

ηα4 − ηα3

· η̄
m
α2

− η̄m
α1

η̄α2 − η̄α1

. (3.3.15)
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3.3.3 An Alternative Derivation

Inspired by the result (3.3.15), we realize that there is an alternative derivation, which
will lend itself to generalization to the case S = 1. To begin with, note that the matrix
elements (3.3.3) may be written

Vα1, α2, α3, α4 =
2s∑

m=−2s

Vm · Ām;α4, α3 Am;α2, α1, (3.3.16)

where we have defined the sums

Am;α1, α2 =
s∑

m1=−s

s∑

m2=−s

(η̄α2)
s+m2(η̄α1)

s+m1 δm,m1+m2 ,

Ām;α3, α4 =
s∑

m3=−s

s∑

m4=−s

(ηα4)
s+m4(ηα3)

s+m3 δm,m3+m4 .

(3.3.17)

As these sums are complex conjugates to each other, it is sufficient to evaluate
Am;α1, α2 .With m2 = m − m1 and the restriction −s ≤ m2 ≤ s, we find −s + m ≤
m1 ≤ s + m. This yields

Am;α1, α2 = (η̄α2)
2s+m

min{s, s+m}∑

m1=max{−s,−s+m}
(η̄12)

s+m1 , (3.3.18)

where η̄12 = η̄α1−α2 . With (3.3.8), the sum gives for 0 ≤ m ≤ 2s

s∑

m1=−s+m

(η̄12)
s+m1 = (η̄12)

2s+1 − (η̄12)
m

η̄12 − 1
,

and for −2s ≤ m < 0

s+m∑

m1=−s

(η̄12)
s+m1 = (η̄12)

2s+1+m − 1

η̄12 − 1
.

With (η̄α)2s+1 = 1, we obtain

Am;α1, α2 = −sign(m) · (η̄α2)
m−1 (η̄α1ηα2)

m − 1

η̄α1ηα2 − 1

= −sign(m) · η̄
m
α1

− η̄m
α2

η̄α1 − η̄α2

, (3.3.19)

where we have defined

sign(m) ≡
⎧
⎨

⎩

1, m > 0,
0, m = 0,

−1, m < 0.
(3.3.20)

Since the signs cancels in the sum (3.3.16), we obtain (3.3.15).
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3.4 The Defining Condition for the Gutzwiller State

3.4.1 Annihilation Operators

So far, we have shown that the Gutzwiller or Haldane–Shastry ground state
∣∣ψHS

0

〉

given by (3.2.1) with (3.1.2) above is annihilated by the interaction Hamiltonian

V = 1

N 2

∑

{α1, α2, α3, α4}
S+
α4

Sα+
3

S−
α2

S−
α1

Vα1, α2, α3, α4 (3.4.1)

with the matrix elements (3.3.15) and

Vm = (2s − m)! (2s + m)!.
If we now define an operator

Am ≡ 1

N

N∑

α1 �=α2

η̄m
α2

− η̄m
α1

η̄α2 − η̄α1

S−
α2

S−
α1

= 2

N

N∑

α1 �=α2

η̄m
α1

η̄α1 − η̄α2

S−
α2

S−
α1
, (3.4.2)

we may rewrite (3.4.1) as

V =
2s∑

m=−2s

Vm A†
m Am . (3.4.3)

The fact that V annihilates the Gutzwiller state
∣∣ψHS

0

〉
implies

〈
ψHS

0

∣∣V
∣∣ψHS

0

〉 =
2s∑

m=−2s

Vm
〈
ψHS

0

∣∣A†
m Am

∣∣ψHS
0

〉

=
2s∑

m=−2s

Vm
∥∥Am

∣∣ψHS
0

〉∥∥2 = 0. (3.4.4)

Since all the values Vm for −2s ≤ m ≤ 2s are positive, and the norms of the vectors
by definition non-negative, (3.4.4) implies that the vectors Am

∣∣ψHS
0

〉
must vanish for

all values of m ∈ [−2s, 2s]. Since Am is further periodic under m → m + N and
N ≤ 4s + 1, we have

Am
∣∣ψHS

0

〉 = 0 ∀ m. (3.4.5)

This a much stronger condition than we could have hoped to obtain. As an aside,
the form (3.4.3) implies that the spectrum of V is positive semi-definite, i.e., all the
eigenvalues are non-negative, and hence that

∣∣ψHS
0

〉
is a ground state. Of course, we

do not know whether it is the only ground state.
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Since the Gutzwiller or Haldane–Shastry state
∣∣ψHS

0

〉
is real or invariant under

parity, i.e., under ηα → η̄α, as shown in Sect. 2.2.3, it is also annihilated by the
complex conjugates Ām of Am for all m.

The state
∣∣ψHS

0

〉
is further annihilated by the operators

�HS
α ≡ 1

2

N∑

m=0

η̄m
α Ām

=
N∑

β=1
β �=α

1

ηα − ηβ
S−
α S−

β , �HS
α

∣∣ψHS
0

〉 = 0 ∀α, (3.4.6)

which are obtained from the complex conjugate of (3.4.2) by Fourier transformation,
as well as their complex conjugates:

�̄HS
α =

N∑

β=1
β �=α

1

η̄α − η̄β
S−
α S−

β , �̄HS
α

∣∣ψHS
0

〉 = 0 ∀α. (3.4.7)

Note that we would not need to exclude configurations with β =α, as the spin
operators exclude these automatically.

In Sect. 3.6, we will use the operators�α to construct a parent Hamiltonian, which
is translationally invariant, invariant under P and T, and invariant under SU(2) spin
rotations, for the Gutzwiller state

∣∣ψHS
0

〉
.Not surprisingly, this Hamiltonian will turn

out to be the Haldane–Shastry Hamiltonian (3.1.1) plus a constant to account for the
ground state energy (2.2.5).

This implies that the Haldane–Shastry Hamiltonian is completely specified by
the condition (3.4.6) plus the symmetries mentioned in the previous paragraph.
Therefore, we will refer to (3.4.6) as the defining condition of the Gutzwiller or
Haldane–Shastry ground state. The universality of this condition is such that both
the parent Hamiltonian of the bosonic Laughlin state and the Haldane–Shastry
Hamiltonian secretly use (3.4.6) or (3.4.7) to single out the Jastrow polynomial
(3.1.5) as their ground state.

3.4.2 Direct Verification

Before proceeding, however, we wish to verify the defining condition (3.4.6) directly
for the Haldane–Shastry ground state (3.1.2). This only takes a few lines, and is
reassuring after the acrobatics we performed to derive it. We have

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
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�HS
α

∣∣ψHS
0

〉 =
N∑

β=1
β �=α

1

ηα − ηβ
S−
α S−

β

∑

{z1,...,zM }
ψHS

0 (z1, z2, . . . , zM ) S+
z1

· · · S+
zM

∣∣↓ · · · ↓〉

=
∑

{z1,...,zM }

N∑

β=1
β �=α

ψHS
0 (ηα, ηβ, z3, . . . , zM )

ηα − ηβ

︸ ︷︷ ︸
=0

S+
z3

· · · S+
zM

∣∣↓ · · · ↓〉
,

(3.4.8)
since

ψHS
0 (ηα, ηβ, z3, . . . , zM )

ηα − ηβ
= (ηα−ηβ)ηαηβ

M∏

i=3

(ηα−zi )
2(ηβ−zi )

2zi

M∏

3≤i< j

(zi −z j )
2

vanishes for β =α and contains only powers η1
β, η

2
β, . . . , η

N−2
β . Note that the calcu-

lation for �̄HS
α is almost identical, since

ψHS
0 (ηα, ηβ, z3, . . . , zM )

η̄α − η̄β
= −ηαηβ ψ

HS
0 (ηα, ηβ, z3, . . . , zM )

ηα − ηβ

vanishes also for β = α and contains only powers η2
β, η

3
β, . . . , η

N−1
β .

3.4.3 The Role of the Hole

In Sect. 3.1.2, we introduced a quasihole at the south pole of the quantum Hall
sphere, such that the quantum Hall and the Haldane–Shastry ground state wave
functions would resemble each more closely and the Hilbert space dimensions of
both models would match. We introduced an additional term (3.1.11) for the quantum
Hall Hamiltonian, which morphed into the total spin term (3.3.6) under Fourier
transformation, and has played no role since.

The attentive reader will have noticed that the creation of the quasihole has played
no role in our analysis up to (3.4.5) whatsoever. In other words, if we had not created
it, instead of (3.4.5) we would have found that the state

∣∣ψN=2M−1
0

〉 =
∑

{z1,...,zM }
ψN=2M−1

0 (z1, . . . , zM ) S+
z1

·. . .·S+
zM

∣∣ ↓↓ · · · · · · ↑︸ ︷︷ ︸
all N spins ↓

〉
(3.4.9)

with

ψN=2M−1
0 (z1, . . . , zM ) =

M∏

i<i

(zi − z j )
2 (3.4.10)



94 3 From a Laughlin State to the Haldane–Shastry Model

on a unit circle with N = 2M − 1 sites is annihilated by Am as defined in (3.4.2),

Ām
∣∣ψN=2M−1

0

〉 = 0 ∀ m. (3.4.11)

The state (3.4.9) is likewise annihilated by �̄HS
α ∀α, which can easily be verified

directly along the lines of (3.4.8), as

ψN=2M−1
0 (ηα, ηβ, z3, . . . , zM )

η̄α − η̄β

= −ηαηβ(ηα − ηβ)

M∏

i=3

(ηα − zi )
2(ηβ − zi )

2
M∏

3≤i< j

(zi − z j )
2

vanishes for β = α and contains only powers η1
β, η

2
β, . . . , η

N−1
β for N = 2M − 1.

The state (3.4.9) with (3.4.10), however, is neither real (and hence not invariant
under P and T) nor a spin singlet. It is not annihilated by �HS

α for any α. It is
not a sensible spin liquid, and we have no symmetries to construct a Hamiltonian.
We conclude that while the quasihole is not essential to the mapping of the model
itself, it is essential to obtaining a sensible spin model via this mapping.

3.5 Rotations and Spherical Tensor Operators

As mentioned in Sect. 3.4.1 above, we intend to use the defining condition (3.4.6)
to formulate a parent Hamiltonian for the Gutzwiller ground state (3.1.2). We wish
the Hamiltonian to be invariant under translations, parity and time reversal transfor-
mations, and SU(2) spin rotations. This last invariance states that the Hamiltonian
must transform as a scalar under spin rotations, while �HS

α transforms as a tensor
of 2nd order. When we construct the Hamiltonian, we will project out certain ten-
sor components (like the scalar or vector component) from operators which do not
have simple transformation properties (i.e., which consist of tensor components of
different orders). For example, the operator S+

α S−
β + S−

α S+
β consists of both a scalar

component and a second order tensor component. In Chap. 4, we will have to analyze
the tensor content of more complicated operators, like Sz

α
2(S+

β S−
γ + S−

β S+
γ ).

In this section, we review the rotation properties of tensor operators [4, 2] including
the use of Clebsch–Gordan coefficients for projections onto certain tensor compo-
nents.

3.5.1 Representations of Rotations

The angular momentum operator J is the generator of SU(2) rotations. Specifically,
the operator

Rω = e−iJω, (3.5.1)

http://dx.doi.org/10.1007/978-3-642-24384-4_4


3.5 Rotations and Spherical Tensor Operators 95

rotates a state vector by an angle |ω| around the axis ω. Let | j,m〉 be an eigenstate
of J2 and J z with eigenvalues j(j + 1) and m, respectively. Since (3.5.1) commutes
with the total angular momentum, the action of Rω on this state can only change m,
i.e.,

Rω| j,m〉 =
j∑

m′=− j

| j,m′〉d( j)
m′m(ω). (3.5.2)

Since the states | j,m〉 form a complete basis set which does not contain any subgroup
of states which only transform under themselves, the matrices

d( j)
m′m(ω) = 〈 j,m′|e−i Jω| j,m〉 (3.5.3)

describe an irreducible, 2j + 1 dimensional representation of the group SU(2).2

3.5.2 Tensor Operators

We can further use the operators (3.5.1) to rotate operators,

A → Rω AR−1
ω , (3.5.4)

such that the expectation value of an operator A in a state |ψ〉 is equal to the expec-
tation value of the rotated operator Rω AR−1

ω in the rotated state Rω|ψ〉. Certain
operators transform as scalars under rotations, which means that they commute with
J and remain unchanged under (3.5.4). Other operators, like the position vector r or
the angular momentum operator J, transform as vectors. In general, an irreducible
tensor operator T ( j) of order j has 2j + 1 components T ( j)m, m = − j, . . . , j, which
transform among themselves under rotations according to

Rω T ( j)m R−1
ω =

j∑

m′=− j

T ( j)m
′
d( j)

m′m(ω), (3.5.5)

where the coefficients d( j)
m′m(ω) are given by (3.5.3). Clearly, a scalar is an irreducible

tensor of order j = 0, and a vector is an irreducible tensor of order j = 1.
If we write out (3.5.5) for infinitesimal rotations

Rε = e−i Jε ≈ 1 − i Jε, (3.5.6)

and compare coefficients to first order in ε, we obtain

2 For half integer j, these matrices constitute double valued representation of the rotation group
O(3), and a single valued representation of the larger group SU(2). For integer j, they are single
valued representations of both groups.
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[
J, T ( j)m ] =

j∑

m′=− j

T ( j)m
′ 〈 j,m′|J | j,m〉. (3.5.7)

With (C.6), this implies

[
J z, T ( j)m ] = m T ( j)m, (3.5.8)

[
J±, T ( j)m ] = √

j ( j + 1)− m(m ± 1) T ( j)m±1
, (3.5.9)

where J± ≡ J x ± i J y . Equations (3.5.8) and (3.5.9) are fully equivalent to (3.5.5),
but much more convenient to use in practise.

Since a vector operator V obeys the commutation relations

[
J i , V j ] = iεi jk V k,

(3.5.8) and (3.5.9) imply that the tensor components are (up to an overall normaliza-
tion factor) given by

V m=1 = − V x + iV y

√
2

, V m=0 = V z, V m=−1 = V x − iV y

√
2

. (3.5.10)

Note that the J z eigenvalue of

T ( j)m | j ′,m′〉
is m + m′, as one can easily verify by either considering a rotation (3.5.5) around
the z-axis, or directly with (3.5.8),

J z T ( j)m | j ′,m′〉 = [
J z, T ( j)m ]| j ′,m′〉 + T ( j)m J z | j ′,m′〉

= (m + m′) T ( j)m | j ′,m′〉. (3.5.11)

The tensor operator T ( j)m hence increases the eigenvalue of J z by m.

3.5.3 Products of Tensor Operators

Similarly, the J z quantum number m of a product of two tensors

T ( j1)m1 T ( j2)m2 (3.5.12)

is simply the sum of the J z quantum numbers of the individual tensors, m = m1 + m2.

We can again verify this by considering a rotation (3.5.5) around the z-axis, or directly
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with (3.5.8). The product (3.5.12), however, is not an irreducible tensor, but in general
rather a sum of irreducible tensors of orders | j1 − j2|, . . . , j1 + j2.

We can combine two tensors using Clebsch–Gordan coefficients, however, to
obtain a tensor of well-defined order j. Specifically, we can write

T ( j)m =
j1∑

m1=− j1

j2∑

m2=− j2

T ( j1)m1 T ( j2)m2 〈 j1,m1; j2, m2| j,m〉, (3.5.13)

where 〈 j1,m1; j2,m2| j,m〉 are Clebsch–Gordan coefficients. To verify that the left-
hand side of (3.5.13) is an irreducible tensor of order j, consider its transformation
properties under a rotation (3.5.5) with coefficient matrices (3.5.3):

Rω T ( j)m R−1
ω =

∑

m1,m2

Rω T ( j1)m1 R−1
ω Rω T ( j2)m2 R−1

ω 〈 j1, m1; j2, m2| j,m〉

=
∑

m′
1,m′

2

T ( j1)m
′
1 T ( j2)m

′
2

·
∑

m1,m2

〈 j1,m′
1; j2,m′

2|e−i Jω| j1, m1; j2, m2〉〈 j1, m1; j2, m2| j,m〉

=
∑

m′
1,m′

2

T ( j1)m
′
1 T ( j2)m

′
2

∑

j ′,m′
〈 j1, m′

1; j2, m′
2| j ′,m′〉〈 j ′,m′|e−i Jω| j,m〉

=
∑

m′
T ( j)m

′
d( j)

m′m(ω). (3.5.14)

Here we have used the completeness relations

j1∑

m1=− j1

j2∑

m2=− j2

| j1,m1; j2,m2〉〈 j1,m1; j2,m2| = 1, (3.5.15)

j1+ j2∑

j=| j1− j2|

j∑

m=− j

| j,m〉〈 j,m| = 1, (3.5.16)

of the Clebsch–Gordan algebra, which are understood to be valid in a Hilbert space
with fixed j1 and j2.

We can use the relations (3.5.15) and (3.5.16) further to invert (3.5.13). This yields

T ( j1)m1 T ( j2)m2 =
j1+ j2∑

j=| j1− j2|

j∑

m=− j

T ( j)m 〈 j,m| j1,m1; j2,m2〉. (3.5.17)

Let us denote the projection of a tensor A onto its jth order component tensor by
{A} j . Then (3.5.17) implies
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{
T ( j1)m1 T ( j2)m2 }

j = T ( j)m1+m2 〈 j,m1 + m2| j1,m1; j2,m2〉, (3.5.18)

where T ( j)m1+m2 is given by (3.5.13), i.e.,

T ( j)m =
min{ j1, j2+m}∑

m1=max{− j1,− j2+m}
T ( j1)m1 T ( j2)m−m1 〈 j1,m1; j2,m − m1| j,m〉. (3.5.19)

For m = m1 = m2 = 0, we obtain

{
T ( j1)0T ( j2)0

}
j = 〈 j, 0| j1, 0; j2, 0〉

min{j1, j2}∑

m=−min{j1, j2}
T ( j1)m T ( j2)−m′

〈 j1,m; j2,−m|0, 0〉.

(3.5.20)

We will use this formula repeatedly below.
The tensors we can form out of up to three spin operators, and the tensor decom-

position of expressions like S+
1 S−

2 or Sz
1 S+

2 S−
3 , are given in Appendix D.

3.6 Construction of a Parent Hamiltonian
for the Gutzwiller State

We now turn to the construction of a parent Hamiltonian for the Gutzwiller state
(3.2.1) with (3.1.2) using the annihilation operator (3.4.6), i.e.,

�HS
α

∣∣ψHS
0

〉 = 0 ∀α, where �HS
α =

N∑

β=1
β �=α

1

ηα − ηβ
S−
α S−

β . (3.6.1)

The Hamiltonian has to be Hermitian, and we wish it to be invariant under translations,
time reversal (T), parity (P), and SU(2) spin rotations.

3.6.1 Translational, Time Reversal, and Parity Symmetry

The operator�HS
α

†
�HS
α is Hermitian and positive semi-definite, meaning that all the

eigenvalues are non-negative. A translationally invariant operator is given by
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H0 =
N∑

α=1

�HS
α

†
�HS
α =

∑

α,β,γ

α �=β,γ

1

η̄α − η̄β

1

ηα − ηγ
S+
α S−

α S+
β S−

γ

=
∑

α,β,γ

α �=β,γ

ωαβγ

(
Sz
α + 1

2

)
S+
β S−

γ , (3.6.2)

where we have defined

ωαβγ ≡ 1

η̄α − η̄β

1

ηα − ηγ
. (3.6.3)

The transformation properties of the individual entities in (3.6.2) under time rever-
sal (T) are [4]

T: ηα → �ηα� = η̄α, S → �S� = −S, (3.6.4)

and hence

ωαβγ → ωαβγ , S+ → −S−, S− → −S+, Sz → −Sz . (3.6.5)

The operator (3.6.2) transforms into

�H0� =
∑

α,β,γ

α �=β,γ

ωαβγ

(
−Sz

α + 1

2

)
S−
γ S+

β . (3.6.6)

We proceed with the T invariant operator

HT
0 = 1

2
(H0 +�H0�) = HT=

0 + HT �=
0 , (3.6.7)

where

HT=
0 =

∑

α,β

α �=β

ωαββ

(
1

2
Sz
α

[
S+
β , S−

β

] + 1

4

{
S+
β , S−

β

})

=
∑

α,β

α �=β

ωαββ

(
Sz
αSz
β + 1

4

)
, (3.6.8)

HT �=
0 = 1

2

∑

α,β,γ
α �=β �=γ �=α

ωαβγ S+
β S−

γ . (3.6.9)
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The transformation properties of the individual operators under parity (P) are [4]

P: ηα → ηα = η̄α, S → �S� = S, (3.6.10)

and hence ωαβγ → ωαγβ. We proceed with the P and T invariant operator

HPT
0 = 1

2

(
HT

0 +HT
0 

) = HPT=
0 + HPT �=

0 , (3.6.11)

where

HPT=
0 = HT=

0 , HPT �=
0 = 1

4

∑

α,β,γ
α �=β �=γ �=α

ωαβγ
(
S+
β S−

γ + S−
β S+

γ

)
. (3.6.12)

Since the operator S+
β S−

γ + S−
β S+

γ is symmetric under interchange of β and γ, we
can use (B.20) from Appendix B to obtain

HPT �=
0 = 1

2

∑

α �=β
ωαββ

(
S+
α S−

β + S−
α S+

β

) − 1

8

∑

α �=β

(
S+
α S−

β + S−
α S+

β

)
. (3.6.13)

Adding (3.6.8) and (3.6.13) together, we obtain with (B.15)

HPT
0 =

∑

α �=β

SαSβ
|ηα − ηβ |2 + N (N 2 − 1)

48
− 1

8

∑

α �=β

(
S+
α S−

β + S−
α S+

β

)
. (3.6.14)

3.6.2 Spin Rotation Symmetry

The Haldane–Shastry ground state
∣∣ψHS

0

〉
is annihilated by (3.6.14), and is also a

spin singlet. Since the different tensor components of (3.6.14) yield states which
transform according to different representations under SU(2) spin rotations when we
act with them on

∣∣ψHS
0

〉
, each tensor component must annihilate

∣∣ψHS
0

〉
individually.

With the exception of the last term, (3.6.14) transforms like a scalar under spin
rotations. With (D.2.4), we find that the scalar component of the last term of (3.6.14)
is given by

−1

6

∑

α �=β
SαSβ = −1

6
S2

tot + 1

6

∑

α

S2
α = −1

6
S2

tot + N

8
. (3.6.15)

The scalar component of (3.6.14) is therefore given by

{
HPT

0

}
0 =

∑

α �=β

SαSβ
|ηα − ηβ |2 + N (N 2 + 5)

48
− S2

tot

6
. (3.6.16)
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We have hence derived that
∣∣ψHS

0

〉
is an eigenstate of

HHS = 2π2

N 2

∑

α �=β

SαSβ
|ηα − ηβ |2 (3.6.17)

with energy eigenvalue

EHS
0 = −2π2

N 2

N (N 2 + 5)

48
. (3.6.18)

In other words, we have derived the Haldane–Shastry model.
This derivation by (conceptually) straightforward projection onto the scalar com-

ponent is instructive as we will employ this method for the S = 1 spin chain in Sect. 4.5.
It has the disadvantage, however, that the information regarding the semi-positive
definiteness has been lost. There are two ways to restore this information. The first
is via an alternative derivation of the model without projection from (3.6.14), we
will explain now. The second way is to derive first a vector annihilation operator for∣∣ψHS

0

〉
, and then construct the Hamiltonian from there, as explained in Sect. 3.7.

3.6.3 An Alternative Derivation

The operators H0, HT
0 , and HPT

0 constructed in Sect. 3.6.1 are all sums of terms of
the form A† A, and are hence all positive semi-definite, i.e., have only non-negative
eigenvalues. Since

∣∣ψHS
0

〉
is an eigenstate with eigenvalue zero, it is also a ground

state of these operators when we view them as Hamiltonians.
We now wish to employ (3.6.14) to derive that

∣∣ψHS
0

〉
is not only an eigenstate of

(3.6.17) with energy (3.6.18), but also a ground state. For this purpose, we rewrite
(3.6.14) as

HPT
0 + 1

8

(
S+

tot S
−
tot + S−

tot S
+
tot

)

=
∑

α �=β

SαSβ
|ηα − ηβ |2 + N (N 2 − 1)

48
+ 1

8

∑

α

(
S+
α S−

α + S−
α S+

α

)

=
∑

α �=β

SαSβ
|ηα − ηβ |2 + N (N 2 + 5)

48
, (3.6.19)

where we have used S+
α S−

α + S−
α S+

α = 1 for spin 1
2 . Since the left-hand side of

(3.6.19) is a sum of positive semi-definite operators which annihilate
∣∣ψHS

0

〉
,
∣∣ψHS

0

〉

has to be a zero energy ground state of the right-hand side as well, i.e., a ground state
of (3.6.17) with energy (3.6.18).

http://dx.doi.org/10.1007/978-3-642-24384-4_4
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3.7 The Rapidity Operator and More

3.7.1 Annihilation Operators Which Transform Even Under T

We can use the defining condition (3.6.1) further to construct a vector annihilation
operator. First note that since

�HS
α

∣∣ψHS
0

〉 = 0 ∀α,
∣∣ψHS

0

〉
is also annihilated by the Hermitian operator

Hα = �HS
α

†
�HS
α =

∑

β,γ
β,γ �=α

ωβγ

(
Sz
α + 1

2

)
S+
β S−

γ , (3.7.1)

which is just the operator (3.6.2) without the sum over α. Constructing an operator
which is even under T,

HT
α = 1

2
(Hα +�Hα�) = HT=

α + HT �=
α , (3.7.2)

with

HT=
α =

∑

β
β �=α

ωαββ

(
Sz
αSz
β + 1

4

)
, HT �=

α = 1

2

∑

β �=γ
β,γ �=α

ωαβγ S+
β S−

γ , (3.7.3)

and odd under P, we obtain

H P̄T
α = 1

2

(
HT
α −HT

α 
) = H P̄T=

α + H P̄T �=
α , (3.7.4)

where

H P̄T=
α = 0, H P̄T �=

α = 1

4

∑

β �=γ
β,γ �=α

ωαβγ
(
S+
β S−

γ − S−
β S+

γ

)
. (3.7.5)

With

ωαβγ − ωαγβ = 1

η̄α − η̄β

1

ηα − ηγ
− 1

ηα − ηβ

1

η̄α − η̄γ

= (−ηαηβ − ηαηγ )
1

ηα − ηβ

1

ηα − ηγ

= ηα
(
(ηα − ηβ)− (ηα − ηγ )

) 1

ηα − ηβ

1

ηα − ηγ

= ηα

ηα − ηγ
− 1

2
−

(
ηα

ηα − ηβ
− 1

2

)

= −1

2

(
ηα + ηβ

ηα − ηβ
− ηα + ηγ

ηα − ηγ

)
(3.7.6)
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and S+
β S−

γ − S−
β S+

γ = −2i(Sβ × Sγ )z [cf. (D.3.3)], we obtain

H P̄T
α = i

4

∑

β �=γ
β,γ �=α

ηα + ηβ

ηα − ηβ
(Sβ × Sγ )z

= i

4

∑

β
β �=α

ηα + ηβ

ηα − ηβ

(
Sβ × (Stot − Sα − Sβ)

)z

= i

4

∑

β
β �=α

ηα + ηβ

ηα − ηβ

(
(Sα × Sβ)− iSβ

)z + i

4

∑

β
β �=α

ηα + ηβ

ηα − ηβ

(
Sβ × Stot

)z
,

(3.7.7)

where we have used Sβ × Sβ = i Sβ. Since
∣∣ψHS

0

〉
is a spin singlet, it is trivially

annihilated by the second term in the last line of (3.7.7), and hence also annihilated
by the first term, which is the z component of a vector. The singlet property of the
ground state implies that

∣∣ψHS
0

〉
is annihilated by all the components of this vector, i.e.,

Dα = i

2

N∑

β=1
β �=α

ηα + ηβ

ηα − ηβ

[
(Sα × Sβ)− iSβ

]
, Dα

∣∣ψHS
0

〉 = 0 ∀α. (3.7.8)

This is exactly the auxiliary operator (2.2.42) we introduced in (2.2.5), where we
have further shown that

2

9

N∑

α=1

D†
α Dα + N + 1

12
S2

tot =
N∑

α �=β

SαSβ
|ηα − ηβ |2 + N (N 2 + 5)

48
.

This proofs once more that
∣∣ψHS

0

〉
is a ground state of (3.6.17) with energy (3.6.18).

Equation 3.7.8 implies that the Haldane–Shastry ground state is further
annihilated by

� =
N∑

α=1

Dα = i

2

N∑

α �=β

ηα + ηβ

ηα − ηβ
(Sα × Sβ), (3.7.9)

where we have used (B.16). This is the rapidity operator (2.2.8) from Sect. 2.2.2,
which together with the total spin operator generates the Yangian symmetry algebra
of the Haldane–Shastry model.

For completeness, we further wish to mention the scalar operator we can construct
from (3.7.2), which transforms even under P, and which yields the Hamiltonian
(3.6.16) when we sum over α. This operator is given by

HPT
α = 1

2

(
HT
α +HT

α 
) = HPT=

α + HPT �=
α , (3.7.10)

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
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where

HPT=
α = HT=

α , HPT �=
α = 1

4

∑

β �=γ
β,γ �=α

ωαβγ
(
S+
β S−

γ + S−
β S+

γ

)
. (3.7.11)

The scalar component of this operator is with (D.2.5) and (D.2.4) given by

{
HPT
α

}
0 = 1

3

∑

β
β �=α

SαSβ
|ηα − ηβ |2 + 1

3

∑

β �=γ
β,γ �=α

Sβ Sγ
(η̄α − η̄β)(ηα − ηγ )

+ N 2 − 1

48
,

(3.7.12)
and annihilates the Gutzwiller state,

{
HPT
α

}
0

∣∣ψHS
0

〉 = 0 ∀α.
We do not believe that this operator is useful.

3.7.2 Annihilation Operators Which Transform
Odd Under T

Finally, we consider annihilation operators we can construct from (3.7.1), and which
transform odd under T,

H T̄
α = 1

2
(Hα −�Hα�) = H T̄=

α + H T̄�=
α (3.7.13)

with

H T̄=
α =

∑

β
β �=α

ωαββ

(
1

2
Sz
α

{
S+
β , S−

β

} + 1

4

[
S+
β , S−

β

])

= 1

2

∑

β
β �=α

ωαββ
(
Sz
α + Sz

β

)

= N 2 − 1

24
Sz
α + 1

2

∑

β
β �=α

ωαββ Sz
β, (3.7.14)

H T̄�=
α =

∑

β �=γ
β,γ �=α

ωαβγ Sz
αS+
β S−

γ , (3.7.15)
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where we have used (B.15).
∣∣ψHS

0

〉
is hence annihilated by all the tensor components

of (3.7.13), which are readily obtained with (D.3.11), (D.3.1), and (D.3.3). Let us
consider first the scalar operator

{
H T̄
α

}
0 = − i

3

∑

β �=γ
β,γ �=α

Sα(Sβ × Sγ )

(η̄α − η̄β)(ηα − ηγ )
, (3.7.16)

which is odd under P. With (3.7.6), we obtain

{
H T̄
α

}
0 = i

6

∑

β �=γ
β,γ �=α

ηα + ηβ

ηα − ηβ
Sα

(
Sβ × Sγ

)

= i

6

∑

β
β �=α

ηα + ηβ

ηα − ηβ
Sα

(
Sβ × (Stot − Sα − Sβ)

)

= i

6

∑

β
β �=α

ηα + ηβ

ηα − ηβ
Sα

(
Sβ × Stot

)
, (3.7.17)

where we have used

Sα
(
Sβ × (−Sα − Sβ)

) = Sβ (Sα × Sα)− Sα
(
Sβ × Sβ

) = 0. (3.7.18)

The operator (3.7.17) annihilates every spin singlet, and is therefore useless in the
present context.

The vector component of (3.7.13), however, constitutes a viable annihilation oper-
ator for the Haldane–Shastry ground state,

Aα ≡ 5
({

H T̄=
α

}
1 + {

H T̄�=
α

}
1

)

= 5

2

∑

β
β �=α

Sα + Sβ
|ηα − ηβ |2 +

∑

β �=γ
β,γ �=α

4Sα(Sβ Sγ )− Sβ(SαSγ )− Sγ (SαSβ)

(η̄α − η̄β)(ηα − ηγ )
,

Aα
∣∣ψHS

0

〉 = 0 ∀α. (3.7.19)

This operator is even under P. Summing over α,we find that the first term annihilates
every singlet, since

1

2

∑

α,β
α �=β

Sα + Sβ
|ηα − ηβ |2 =

∑

α

Sα
∑

β
β �=α

ωαββ = N 2 − 1

12
Stot.

This implies that
∣∣ψHS

0

〉
is further annihilated by the vector operator



106 3 From a Laughlin State to the Haldane–Shastry Model

Table 3.1 Annihilation operators for the Haldane–Shastry ground state

Annihilation operators for
∣∣ψHS

0

〉

Operator Equation Symmetry transformation properties
T P Order of tensor Transl. inv.

Stot (2.2.6) − + Vector Yes
�HS
α (3.4.6) No No 2nd No{
HPT
α

}
0 (3.7.12) + + Scalar No

HHS − EHS
0 (3.6.17) + + Scalar Yes

Dα (3.7.8) + − Vector No
� (3.7.9) + − Vector Yes
Aα (3.7.19) − + Vector No
ϒ (3.7.20) − + Vector Yes

With the exception of the defining operator�HS
α ,which is the m = 2 component of a 2nd order tensor,

we have only included scalar and vector annihilation operators

ϒ = 5
∑

α

{
H T̄�=
α

}
1 =

∑

α,β,γ
α �=β �=γ �=α

4Sα(Sβ Sγ )− Sβ(SαSγ )− Sγ (SαSβ)

(η̄α − η̄β)(ηα − ηγ )
.

(3.7.20)
This is a three spin operator, and has to our knowledge not been considered before.

3.8 Concluding Remarks

The various annihilation operators for the Haldane–Shastry model are summarized
in Table 3.1.

The Haldane–Shastry model, including the operators presented in Sect. 3.7.1, have
been known for a long time. In the work of Haldane and Shastry, however, the model
was discovered, while we derived it here. Unlike the discovery, the derivation we
presented here lends itself to a generalization to higher spins, which is what we will
pursue in the following chapter.

It is worth noting that the derivation of the model presented in Sect. 3.6.1, which
only assumes the defining condition (3.4.6), is significantly simpler than the previ-
ously established verification of the model reviewed in Sect. 2.2.4 with Appendix B.
The disadvantage of the present derivation, however, is that it is not clear how to
extract information regarding excitations via the formalism employed.
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Chapter 4
From a Bosonic Pfaffian State to an S = 1
Spin Chain

4.1 General Considerations

In this section, we wish to use the bosonic Pfaffian state at Landau level filling fraction
ν = 1 and its parent Hamiltonian (see Sect. 2.3), to construct a parent Hamiltonian
for the critical S = 1 spin liquid state introduced in Sect. 2.4. The Hamiltonian
we construct should be invariant under all the trivial symmetries of the spin liquid
ground state described in Sect. 2.4.2, i.e., under space translations, P and T, and
SU(2) spin rotations. This task would probably be beyond our means if we had not
established a suitable technique in Chap. 3, when we derived the Haldane–Shastry
Hamiltonian from a bosonic Laughlin state and its parent Hamiltonian. The purpose
of this derivation was really to establish the technique which we will fruitfully use
in the present analysis.

To begin with, we briefly recall the quantum Hall model and the spin liquid ground
state.

4.1.1 A Model and a Ground State

The wave function for the bosonic m = 1 Pfaffian Hall state [1–3]

ψ0(z1, z2, . . . , zN ) = Pf

(
1

zi − z j

) N∏

i< j

(zi − z j )

N∏

i=1

e− 1
4 |zi |2 , (4.1.1)

where the particle number N is even, and the Pfaffian is is given by the fully anti-
symmetrized sum over all possible pairings of the N particle coordinates,

Pf

(
1

zi − z j

)
≡ A

{
1

z1 − z2
· . . . · 1

zN−1 − zN

}
. (4.1.2)

It is the exact ground state of the three-body Hamiltonian [2, 3]

M. Greiter, Mapping of Parent Hamiltonians, Springer Tracts in Modern Physics 244, 109
DOI: 10.1007/978-3-642-24384-4_4, © Springer-Verlag Berlin Heidelberg 2011

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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V =
N∑

i, j<k

δ(2)(zi − z j )δ
(2)(zi − zk). (4.1.3)

In Sect. 2.4, we introduced an S = 1 spin liquid state described by a Pfaffian.
We considered a one-dimensional lattice with periodic boundary conditions and an
even number of sites N on a unit circle embedded in the complex plane, ηα =
ei 2π

N α with α = 1, . . . , N . The wave function is given by a bosonic Pfaffian state in
the complex lattice coordinates zi supplemented by a phase factor,

ψ S=1
0 (z1, z2, . . . , zN ) = Pf

(
1

zi − z j

) N∏

i< j

(zi − z j )

N∏

i=1

zi . (4.1.4)

The “particles” zi represent re-normalized spin flips

S̃+
α ≡ Sz

α + 1

2
S+
α , (4.1.5)

which act on a vacuum with all spins in the Sz = −1 state,
∣∣ψ S=1

0

〉 =
∑

{z1,...,zN }
ψ S=1

0 (z1, . . . , zN ) S̃+
z1

· · · S̃+
zN

|−1〉N , (4.1.6)

where the sum runs over all possibilities of distributing the N “particles” over the N
lattice sites allowing for double occupation, and

|−1〉N ≡ ⊗N
α=1|1,−1〉α. (4.1.7)

As for the Laughlin state in Sect. 3.1.1, the circular droplet described by the
quantum Hall wave function (4.1.1) has a boundary, while the S = 1 ground state
(4.1.6) with (4.1.4) describes a spin liquid on a compact surface. To circumvent this
problem, we formulate the quantum Hall model on the sphere (see Sect. 2.1.6). Then
the bosonic m = 1 Pfaffian state for N particles on a sphere with 2s = N − 2 flux
quanta is given by

ψ0[u, v] = Pf

(
1

uiv j − u jvi

) N∏

i< j

(uiv j − u jvi ). (4.1.8)

Within the lowest Landau level, it is the exact and unique zero-energy ground state
of the interaction Hamiltonian

V qh =
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

s∑

m4=−s

s∑

m5=−s

s∑

m6=−s

· a†
m1

a†
m2

a†
m3

am4am5am6δm1+m2+m3,m4+m5+m6

· 〈s,m1; s,m2|2s,m1 + m2〉〈2s,m1 + m2; s,m3|3s,m1 + m2 + m3〉
· 〈3s,m4 + m5 + m6|s,m4; 2s,m5 + m6〉〈2s,m5 + m6|s,m5; s,m6〉,

(4.1.9)

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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where am annihilates a boson in the properly normalized single particle state

ψ s
m,0(u, v) = 〈u, v|a†

m |0〉 = 1

gm
us+mvs−m, (4.1.10)

with

gm =
√

4π(s + m)!(s − m)!
(2s + 1)! , (4.1.11)

and 〈s,m1; s,m2|2s − l,m1 + m2〉 etc. are Clebsch–Gordan coefficients [4].
The differences between the Pfaffian Hall state (4.1.8) and the spin liquid state

(4.1.4) are almost in exact correspondence to the differences between the Laughlin
state (3.1.6) and the Haldane–Shastry ground state (3.1.2). We will employ the same
techniques to adapt the quantum Hall model to the spin chain.

4.1.2 Creation of a Quasihole

The wave function of the spin liquid state (4.1.4) differs from the quantum Hall state
in that it contains an additional factor

∏
i zi .We can adapt the quantum Hall state by

insertion of a quasihole at the south pole of the sphere. This yields

ψ
qH
0 [u, v] = Pf

(
1

uiv j − u jvi

) N∏

i< j

(uiv j − u jvi )

N∏

i=1

ui , (4.1.12)

on a sphere with 2s = N − 1. It is the exact and unique ground state of

HqH = V qH + U qH (4.1.13)

with

U qH = U0a†
−sa−s (4.1.14)

for U0 > 0 if we restrict our Hilbert space again to the lowest Landau level. Note
that both V qh and U qh annihilate the ground state (4.1.12) individually. The single
particle Hilbert space dimension of the bosons on the sphere is now equal to the
dimension dimension of the single particle Hilbert space for the spin flips on the unit
circle, 2s + 1 = N . The expansion coefficients Cq1,...,qN for the polynomials

ψ S=1
0 [z] =

∑

{q1,...,qN }
Cq1,...,qN zq1

1 . . . zqN
N (4.1.15)

http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_3
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and

ψ
qH
0 [u, v] =

∑

{q1,...,qN }
Cq1,...,qN uq1

1 v
2s−q1
1 . . . uqN

N v
2s−qN
N (4.1.16)

are identical.

4.2 Hilbert Space Renormalization

While the coefficients in the polynomial expansions of the ground states (4.1.15) and
(4.1.16) are identical, the expansions of both states in terms of single particle states
are not. The state vector for the quantum Hall state is given by

∣∣ψqH
0

〉 =
∑

{m1,...,m N }
Cm1+s,...,m N +s gm1 . . . gmM a†

m1
. . . a†

m N
|0〉 (4.2.1)

where gm are the normalizations (4.1.11) of the polynomials us+mvs−m in (4.1.10).
In the spin chain, the polynomials zq require no such normalization factors, as dis-
cussed in Sect. 3.2.

To adjust the quantum Hall state, we renormalize the Hilbert space using
Theorem 3.2 of Sect. 3.2 with the same operators G given in (3.2.7). This yields
that

G−1
∣∣ψqH

0

〉 =
∑

{m1,...,m N }
Cm1+s,...,m N +s a†

m1
. . . a†

m N
|0〉 (4.2.2)

is an exact zero-energy eigenstate of

V =
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

s∑

m4=−s

s∑

m5=−s

s∑

m6=−s

· a†
m1

a†
m2

a†
m3

am4am5am6δm1+m2+m3,m4+m5+m6gm1gm2gm3

· 〈s,m1; s,m2|2s,m1 + m2〉〈2s,m1 + m2; s,m3|3s,m1 + m2 + m3〉
· 〈3s,m4 + m5 + m6|s,m4; 2s,m5 + m6〉〈2s,m5 + m6|s,m5; s,m6〉,
· gm4gm5gm6 (4.2.3)

Since (4.2.2) is likewise annihilated by (4.1.14), it is also a zero energy state of

H = V + U qH. (4.2.4)

http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_3
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With (3.2.5, 3.2.14) and the explicit formula

〈2s,m1 + m2; s,m3|3s,m1 + m2 + m3〉

=
√
(3s − m1 − m2 − m3)!(3s + m1 + m2 + m3)!√

(2s − m1 + m2)!(2s + m1 + m2)!(s − m3)!(s + m3)! · 2

√
s(2s − 1)!(4s − 1)!

3 · (6s − 1)!
(4.2.5)

for the second set of Clebsch–Gordan coefficients [4], we obtain

gm1gm2gm3〈s,m1; s,m2|2s,m1 + m2〉〈2s,m1 + m2; s,m3|3s,m1 + m2 + m3〉

= √(3s − m1 − m2 − m3)!(3s + m1 + m2 + m3)! 2√
3s(6s − 1)!

(
2π

2s + 1

) 3
2

.

(4.2.6)

The last two factors in (4.2.6) do not depend on any mi and can hence be absorbed
by rescaling V accordingly. This yields

V =
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

s∑

m4=−s

s∑

m5=−s

s∑

m6=−s

a†
m1

a†
m2

a†
m3

am4am5am6

· Vm1,m2,m3,m4,m5,m6 (4.2.7)

with

Vm1,m2,m3,m4,m5,m6 = Vm1+m2+m3 · δm1+m2+m3,m4+m5+m6 , (4.2.8)

Vm = (3s − m)!(3s + m)!. (4.2.9)

Note that the scattering matrix elements Vm1,m2,m3,m4,m5,m6 in (4.2.7) depend once
again only on the conserved total value of Lz,m1 + m2 + m3 = m4 + m5 + m6,

and not on any of the (angular) momentum transfers. This constitutes an enormous
simplification.

4.3 Fourier Transformation

4.3.1 Particle Creation and Annihilation Operators

We proceed by transforming the Hamiltonian (4.2.7) into Fourier space, using the
transformations

am = 1√
N

N∑

α=1

(η̄α)
s+maα, a†

m = 1√
N

N∑

α=1

(ηα)
s+ma†

α, (4.3.1)

http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_3
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where N = 2s + 1, and ηα = ei 2π
N α. We again interpret α as site indices of a

periodic chain with N sites, and ηα as the positions of these sites when the periodic
chain is embedded as a unit circle in the complex plane.

The Fourier transformation yields

V = 1

N 3

∑

{α1,α2,α3,α4,α5,α6}
a†
α6

a†
α5

a†
α4

a†
α3

a†
α2

a†
α1

Vα1,α2,α3,α4,α5,α6 (4.3.2)

with

Vα1,α2,α3,α4,α5,α6

=
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

s∑

m4=−s

s∑

m5=−s

s∑

m6=−s

Vm1+m2+m3δm1+m2+m3,m4+m5+m6

· (ηα6)
s+m6(ηα5)

s+m5(ηα4)
s+m4(η̄α3)

s+m3(η̄α2)
s+m2(η̄α1)

s+m1 (4.3.3)

and Vm given by (4.2.9) for the interaction Hamiltonian, and

|ψ0〉 = G−1
∣∣ψqH

0

〉

=
∑

{α1,...,αN }

1√
N

N

∑

{m1,...,m N }
Cm1+s,...,m N +s(ηα1)

s+m1 . . . (ηαN )
s+m N

· a†
α1
. . . a†

αN
|0〉

=
∑

{α1,...,αN }
ψ S=1

0 (ηα1, . . . , ηαN )a
†
α1
. . . a†

αN
|0〉, (4.3.4)

where ψ S=1
0 (ηα1 , . . . , ηαN ) is given by (4.1.4), for the ground state it annihilates.

In (4.3.4), we have used the definition of the coefficients Cm1+s,...,m N +s from (4.1.15).

4.3.2 Substitution of Spin Flip Operators for Boson Operators

The formulation of the model in terms of position space operators allows us to
substitute spin flip operators for the creation and annihilation operators, and thus to
turn our boson model into a spin model. For the S = 1 model, this step is not as
trivial as for the S = 1

2 model treated in Chap. 3, as the usual spin flip operators do
not obey the same commutation relations as bosonic ladder operators in the subspace
where each site can be doubly occupied at most. The relation

S−
α (S̃

+
α )

n|1,−1〉α = n(S̃+
α )

n−1|1,−1〉α, for n = 0, 1, 2, (4.3.5)

which follows directly form the definition (4.1.5), instructs us how to proceed.
Since

http://dx.doi.org/10.1007/978-3-642-24384-4_3
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a(a†)n|0〉 = n(a†)n−1|0〉,

we may substitute a†
αi

→ S+
αi
, aαi → S−

αi
, in the Hamiltonian and a†

αi
→ S̃+

αi
, |0〉 →

|−1〉N in the ground state. In other words, the non-Abelian S = 1 spin liquid state
(4.1.6) with (4.1.4) introduced in Sect. 2.4, is annihilated by

V = 1

N 3

∑

{α1,α2,α3,α4,α5,α6}
S+
α6

S+
α5

S+
α4

S−
α3

S−
α2

S−
α1

Vα1,α2,α3,α4,α5,α6 (4.3.6)

with the matrix elements (4.3.3). For the on-site potential term (4.1.14), Fourier
transformation and subsequent substitution yields again

U qH = 1

N
U0S+

tot S
−
tot. (4.3.7)

This term annihilates any singlet state, and will not be helpful in constructing a parent
Hamiltonian. We will keep in mind, however, that the original term was required to
single out the ground state wave function (4.1.12) on the quantum Hall sphere.

Note that this substitution does not just amount to a renaming of operators, as
it did for the spin 1

2 chain discussed in Chap. 3. In the present case, it effectively
renormalizes the single particle Hilbert spaces once more, and hence leads to a
different model. To see this, compare the normalizations of “unoccupied”, “singly
occupied”, and “doubly occupied” sites in the S = 1 spin chain,

〈1,−1|S̃−
α S̃+

α |1,−1〉 = 1

2
,

〈1,−1|(S̃−
α )

2(S̃+
α )

2|1,−1〉 = 1,

to those of bosons,

〈0|ana†n|0〉 = n!. (4.3.8)

The difference does not just amount to a different overall normalizations of the states.
If we were, for example, to renormalize the already renormalized spin operators
S̃α −→ √

2S̃α, we would obtain

〈1,−1|S̃−
α S̃+

α |1,−1〉 = 1,

〈1,−1|(S̃−
α )

2(S̃+
α )

2|1,−1〉 = 4.

This would match (4.3.8) for n = 1, but not for n = 2. The amplitudes of the
individual spin configurations in the spin state vector are hence different from those
of the corresponding amplitudes in the boson state vector.

4.3.3 Many Body Annihilation Operators

Since the scatting elements (4.3.3) depend only on the total angular momentum
quantum number m, we can rewrite (4.3.6) as

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_3
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V =
3s∑

m=−3s

Vm B†
m Bm, (4.3.9)

where Vm is given by (4.2.9), and

Bm = B �=
m + B=

m (4.3.10)

with

B �=
m = 1√

N 3

N∑

α1,α2,α3=1
α1 �=α2 �=α3 �=α1

B �=
m;α1,α2,α3

S−
α3

S−
α2

S−
α1
, (4.3.11)

B=
m = 3√

N 3

N∑

α1,α2=1
α1 �=α2

B=
m;α1,α2

(
S−
α2

)2
S−
α1
. (4.3.12)

The coefficients in (4.3.11) and (4.3.12) are given by

B �=
m;α1,α2,α3

=
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

(η̄α3)
s+m3(η̄α2)

s+m2(η̄α1)
s+m1

· δm,m1+m2+m3 , (4.3.13)

B=
m;α1,α2

=
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

(η̄α2)
s+m3(η̄α2)

s+m2(η̄α1)
s+m1

· δm,m1+m2+m3 . (4.3.14)

The factor 3 in the definition (4.3.12) of B=
m stems from the three possibilities of two

coordinates being equal.

4.3.4 Evaluation of B �=
m;α1,α2,α3

In this section, we evaluate

B �=
m;α1,α2,α3

=
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

(η̄α3)
s+m3(η̄α2)

s+m2(η̄α1)
s+m1

· δm,m1+m2+m3 (4.3.15)

subject to the condition that none the coordinates α1, α2, and α3 coincide.
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To begin with, we carry out the sum over m3, and obtain

B �=
m;α1,α2,α3

=
∑

m1

′
(η̄α1)

s+m1
∑

m2

′
(η̄α3)

s+m−m1−m2(η̄α2)
s+m2

︸ ︷︷ ︸
≡Im1

, (4.3.16)

where the primed sums are restricted such that all the exponents of the η̄α’s are
between 0 and 2s. With −s ≤ m − m1 − m2 ≤ s, we have

Im1 = (η̄α3)
2s+m−m1

min{s,s+m−m1}∑

m2=max{−s,−s+m−m1}
(η̄23)

s+m2

=
{

Am−m1;α2,α3 for − 2s ≤ m − m1 ≤ 2s,

0 otherwise,

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

η̄
m−m1
α2 − η̄

m−m1
α3

η̄α2 − η̄α3

for m ≤ m1 ≤ 2s + m,

− η̄
m−m1
α2 − η̄

m−m1
α3

η̄α2 − η̄α3

for − 2s + m ≤ m1 ≤ m − 1,

0 otherwise,

(4.3.17)

where we have defined η̄23 ≡ η̄α2−α3 = η̄α2ηα3 and used the result (3.3.19) for the
sum (3.3.18) from Sect. 3.3.3.

For the evaluation of the sum over m1, we consider three different regimes for m.

(a) −s < m ≤ s. In this regime, m − m1 changes sign as we sum over m1.

We obtain

B �=
m;α1,α2,α3

= η̄s+m
α2

η̄α2 − η̄α3

(
−

m−1∑

m1=−s

η̄
s+m1
12 +

s∑

m1=m

η̄
s+m1
12

)

+ same term with η̄α2 ↔ η̄α3

= η̄s+m
α2

η̄α2 − η̄α3

(
− η̄

s+m
12 − 1

η̄12 − 1
+ 1 − η̄s+m

12

η̄12 − 1

)

+ same term with η̄α2 ↔ η̄α3

http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_3
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= − 2η̄α2

η̄α2 − η̄α3

· η̄
s+m
α1

− η̄s+m
α2

η̄α1 − η̄α2

+ same term with η̄α2 ↔ η̄α3

= 2η̄s+m+1
α2

(η̄α1 − η̄α2)(η̄α2 − η̄α3)
+ 2η̄s+m+1

α3

(η̄α2 − η̄α3)(η̄α3 − η̄α1)

− 2η̄s+m
α1

η̄α2 − η̄α3

(
η̄α2

η̄α1 − η̄α2

− η̄α3

η̄α1 − η̄α3

)

= 2η̄s+m+1
α2

(η̄α1 − η̄α2)(η̄α2 − η̄α3)
+ 2η̄s+m+1

α3

(η̄α2 − η̄α3)(η̄α3 − η̄α1)

+ 2η̄s+m+1
α1

(η̄α3 − η̄α1)(η̄α1 − η̄α2)

≡ 2Q �=
m;α1,α2,α3

,

(4.3.18)
where Q �=

m;α1,α2,α3
is strictly periodic under m −→ m + N with N = 2s + 1.

(b) −3s ≤ m ≤ −s. Since −s ≤ m1 ≤ s, this implies that we are always in the
first regime in (4.3.17), m ≤ m1 ≤ 2s + m. This yields

B �=
m;α1,α2,α3

= η̄s+m
α2

η̄α2 − η̄α3

2s+m∑

m1=−s

η̄
s+m1
12 + same term with η̄α2 ↔ η̄α3

= η̄s+m
α2

η̄α2 − η̄α3

η̄s+m
12 − 1

η̄12 − 1
+ same term with η̄α2 ↔ η̄α3

= −Q �=
m;α1,α2,α3

. (4.3.19)

(c) s < m ≤ 3s. Since −s ≤ m1 ≤ s, this implies that we are always in the second
regime in (4.3.17), −2s + m ≤ m1 ≤ m − 1. This yields

B �=
m;α1,α2,α3

= − η̄s+m
α2

η̄α2 − η̄α3

s∑

m1=−2s+m

η̄
s+m1
12 + same term with η̄α2 ↔ η̄α3

= − η̄s+m
α2

η̄α2 − η̄α3

s∑

m1=−2s+m−1

η̄
s+m1
12

+ same term with η̄α2 ↔ η̄α3

= − η̄s+m
α2

η̄α2 − η̄α3

1 − η̄s+m
12

η̄12 − 1
+ same term with η̄α2 ↔ η̄α3

= − Q �=
m;α1,α2,α3

. (4.3.20)
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Note that since Q �=
±s;α1,α2,α3

= 0, it does not matter with which regime we asso-

ciate the cases m = ±s. As a curiosity, note further that Q �=
s+2;α1,α2,α3

= 1 [cf. (B.7)
of Appendix B].

4.3.5 Evaluation of B=
m;α1,α2

We now evaluate

B=
m;α1,α2

=
s∑

m1=−s

s∑

m2=−s

s∑

m3=−s

(η̄α2)
s+m3(η̄α2)

s+m2(η̄α1)
s+m1

· δm,m1+m2+m3 (4.3.21)

subject to the condition α1 �= α2.

To begin with, we carry out the sum over m3, and obtain

B=
m;α1,α2

=
∑

m1

′
(η̄α1)

s+m1
∑

m2

′
(η̄α2)

2s+m−m1 ,

= (η̄α2)
s+m−1

∑

m1

′
(η̄12)

s+m1
∑

m2

′
1, (4.3.22)

where the primed sums are restricted such that all the exponents of the original η̄α’s
in (4.3.21) are between 0 and 2s. With −s ≤ m − m1 − m2 ≤ s, we have

∑

m2

′
1 =

min{s,s+m−m1}∑

m2=max{−s,−s+m−m1}
1

=

⎧
⎪⎪⎨

⎪⎪⎩

N + m − m1 for m ≤ m1 ≤ 2s + m,

N − m + m1 for − 2s + m ≤ m1 ≤ m − 1,

0 otherwise,

(4.3.23)

For the evaluation of the sum over m1, we again consider three different regimes
for m.

(a) −s < m ≤ s. In this regime, m − m1 changes sign as we sum over m1. We
obtain
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B=
m;α1,α2

η̄s+m−1
α2

=
m−1∑

m1=−s

(N − m + m1)η̄
s+m1
12 +

s∑

m1=m

(N + m − m1)η̄
s+m1
12

= N
s∑

m1=−s

η̄
s+m1
12

︸ ︷︷ ︸
=0

−m

(
η̄s+m

12 − 1

η̄12 − 1
− 1 − η̄s+m

12

η̄12 − 1

)

+
m−1∑

m1=−s

m1η̄
s+m1
12 −

s∑

m1=m

m1η̄
s+m1
12 . (4.3.24)

With the formula

b∑

q=a

qxq = (b + 1)xb+1 − axa

x − 1
− xb+2 − xa+1

(x − 1)2
, b ≥ a, (4.3.25)

we obtain for the last two sums in (4.3.24),

m−1∑

m1=−s

m1η̄
s+m1
12 = mη̄s+m

12 + s

η̄12 − 1
− η̄s+m+1

12 − η̄12

(η̄12 − 1)2

−
s∑

m1=m

m1η̄
s+m1
12 = − (s + 1)− mη̄s+m

12

η̄12 − 1
+ η̄12 − η̄s+m+1

12

(η̄12 − 1)2
.

Summing up all the terms we find

B=
m;α1,α2

= η̄s+m−1
α2

(
2m − 1

η̄12 − 1
− 2

η̄s+m+1
12 − η̄12

(η̄12 − 1)2

)

= η̄s+m−1
α2

(
2m + 1

η̄12 − 1
− 2

η̄s+m+1
12 − 1

(η̄12 − 1)2

)

= (2m + 1)
η̄s+m
α2

η̄α1 − η̄α2

− 2
η̄s+m+1
α1

− η̄s+m+1
α2

(η̄α1 − η̄α2)
2

= (2m + 1)Pm;α1,α2 + 2Q=
m;α1,α2

, (4.3.26)

where we have defined

Pm;α1,α2 ≡ η̄s+m
α2

η̄α1 − η̄α2

, Q=
m;α1,α2

≡ − η̄
s+m+1
α1

− η̄s+m+1
α2

(η̄α1 − η̄α2)
2 . (4.3.27)

(b) −3s ≤ m ≤ −s. Since − s ≤ m1 ≤ s, this implies that we are always in the
first regime in (4.3.23), m ≤ m1 ≤ 2s + m. This yields
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B=
m;α1,α2

η̄s+m−1
α2

=
2s+m∑

m1=−s

(N + m − m1)η̄
s+m1
12

= (N + m)
η̄s+m

12 − 1

η̄12 − 1
− (N + m)η̄s+m

12 + s

η̄12 − 1
+ η̄s+m+1

12 − η̄12

(η̄12 − 1)2

= − N + m + s + 1

η̄12 − 1
+ η̄s+m+1

12 − 1

(η̄12 − 1)2
,

(4.3.28)
and

B=
m;α1,α2

= −(N + m + s + 1)
η̄s+m
α2

η̄α1 − η̄α2

+ η̄s+m+1
α1

− η̄s+m+1
α2

(η̄α1 − η̄α2)
2

= −(N + m + s + 1)Pm;α1,α2 − Q=
m;α1,α2

. (4.3.29)

(c) s < m ≤ 3s. Since − s ≤ m1 ≤ s, this implies that we are always in the
second regime in (4.3.23), −2s + m ≤ m1 ≤ m − 1. This yields

B=
m;α1,α2

η̄s+m−1
α2

=
s∑

m1=−2s+m

(N − m + m1)η̄
s+m1
12

=
s∑

m1=−2s+m−1

(N − m + m1)η̄
s+m1
12

= (N − m)
1 − η̄s+m

12

η̄12 − 1

+ (s + 1)+ (N − m)η̄s+m
12

η̄12 − 1
− η̄12 − η̄s+m+1

12

(η̄12 − 1)2

= N − m + s

η̄12 − 1
+ η̄s+m+1

12 − 1

(η̄12 − 1)2
, (4.3.30)

and

B=
m;α1,α2

= (N − m + s)
η̄s+m
α2

η̄α1 − η̄α2

+ η̄s+m+1
α1

− η̄s+m+1
α2

(η̄α1 − η̄α2)
2 (4.3.31)

= (N − m + s)Pm;α1,α2 − Q=
m;α1,α2

. (4.3.32)

Note that since Q=
s;α1,α2

= 0 and

Q=
−s;α1,α2

= − η̄α1 − η̄α2

(η̄α1 − η̄α2)
2 = − 1

(η̄α1 − η̄α2)
= −P−s;α1,α2 ,

it does not matter with which regimes we associate the cases m = ±s. The expres-
sions (4.3.26) and (4.3.29) are equal for m = −s, and (4.3.26) and (4.3.31) are equal
for m = s.
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4.4 The Defining Condition for the S = 1 Pfaffian Chain

4.4.1 Derivation

In Sect. 4.3, we have shown that the non-Abelian S = 1 spin liquid state (4.1.6) with
(4.1.4) introduced in Sect. 2.4, is annihilated by

V =
3s∑

m=−3s

Vm B†
m Bm, (4.4.1)

where

Vm = (3s − m)!(3s + m)! (4.4.2)

and

Bm = B �=
m + B=

m (4.4.3)

with

B �=
m = 1√

N 3

N∑

α1,α2,α3=1
α1 �=α2 �=α3 �=α1

B �=
m;α1,α2,α3

S−
α3

S−
α2

S−
α1
, (4.4.4)

B=
m = 3√

N 3

N∑

α1,α2=1
α1 �=α2

B=
m;α1,α2

(
S−
α2

)2
S−
α1
. (4.4.5)

We calculated the coefficients in (4.4.4) and (4.4.5) in Sects. 4.3.4 and 4.3.5, respec-
tively, and found

B �=
m;α1,α2,α3

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Q �=
m;α1,α2,α3

for s <m ≤ 3s,

2Q �=
m;α1,α2,α3

for −s <m ≤ s,

−Q �=
m;α1,α2,α3

for −3s <m ≤ −s,

(4.4.6)

and

B=
m;α1,α2

=

⎧
⎪⎪⎨

⎪⎪⎩

(N − m + s) Pm;α1,α2 − Q=
m;α1,α2

for s <m ≤ 3s,

(2m + 1) Pm;α1,α2 + 2Q=
m;α1,α2

for −s <m ≤ s,

−(N + m + s + 1) Pm;α1,α2 − Q=
m;α1,α2

for −3s <m ≤ −s.
(4.4.7)

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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Q �=
m;α1,α2,α3

is defined in (4.3.18), and Pm;α1,α2 and Q=
m;α1,α2

are defined in (4.3.27).
All three are periodic functions of m, i.e.,

Q �=
m+N ;α1,α2,α3

= Q �=
m;α1,α2,α3

,

Pm+N ;α1,α2 = Pm;α1,α2 ,

Q=
m+N ;α1,α2

= Q=
m;α1,α2

.

(4.4.8)

The property that
∣∣ψ S=1

0

〉
is annihilated by V implies with (4.4.1) that

〈
ψ S=1

0

∣∣V
∣∣ψ S=1

0

〉 =
3s∑

m=−3s

Vm
〈
ψ S=1

0

∣∣B†
m Bm

∣∣ψ S=1
0

〉

=
3s∑

m=−3s

Vm
∥∥Bm

∣∣ψ S=1
0

〉∥∥2 = 0. (4.4.9)

Since all the values Vm for −3s ≤ m ≤ 3s are positive, and the norms of the vectors
by definition non-negative, (4.4.9) implies that the vectors Bm

∣∣ψ S=1
0

〉
must vanish

for all allowed values of m. In other words,

Bm
∣∣ψ S=1

0

〉 = 0 ∀ m ∈ [−3s, 3s]. (4.4.10)

This implies that
∣∣ψ S=1

0

〉
is further annihilated by any linear combination of the

Bm’s, and in particular also those in which the terms involving Q �=
m+N ;α1,α2,α3

and
Q=

m+N ;α1,α2
cancel. These include for −s < m ≤ s

Bm + 2Bm−N = [(2m + 1)− 2(s + m + 1)
] N∑

α1 �=α2

Pm;α1,α2

(
S−
α2

)2
S−
α1

= −N
N∑

α1 �=α2

Pm;α1,α2

(
S−
α2

)2
S−
α1
, (4.4.11)

and for m = s + 1

Bs+1 − B−s = 2N
N∑

α1 �=α2

Ps+1;α1,α2

(
S−
α2

)2
S−
α1
. (4.4.12)

Given the periodicity of Pm;α1,α2 in m, (4.4.11) and (4.4.12) imply that

Pm
∣∣ψ S=1

0

〉 = 0 ∀ m, (4.4.13)

where we have defined
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Pm ≡
N∑

α1 �=α2

Pm;α1,α2

(
S−
α2

)2
S−
α1

=
N∑

α1 �=α2

η̄s+m
α2

η̄α1 − η̄α2

(
S−
α2

)2
S−
α1
. (4.4.14)

Since the spin liquid state
∣∣ψ S=1

0

〉
is invariant under parity, i.e., under ηα → η̄α (see

Sect. 2.4.2), it is also annihilated by the complex conjugates P̄m of Pm for all m.
The non-Abelian S = 1 spin liquid state (4.1.6) with (4.1.4) is further annihilated

by the operators

�S=1
α ≡ − 1

N

N∑

m=0

η̄s+m
α P̄m

=
N∑

β=1
β �=α

1

ηα − ηβ
(S−
α )

2S−
β , �S=1

α

∣∣ψ S=1
0

〉 = 0 ∀ α, (4.4.15)

which are obtained from the complex conjugate of (4.4.14) by Fourier transformation,
as well as their complex conjugates,

�̄S=1
α =

N∑

β=1
β �=α

1

η̄α − η̄β
(S−
α )

2S−
β , �̄S=1

α

∣∣ψ S=1
0

〉 = 0 ∀ α. (4.4.16)

Note that we would not need to exclude configurations with β = α, as the spin
operators take care of this automatically.

In Sect. 4.5, we will use the operators �S=1
α to construct a parent Hamiltonian,

which is translationally invariant, invariant under P and T, and invariant under SU(2)
spin rotations, for the non-Abelian S = 1 spin liquid state

∣∣ψ S=1
0

〉
. The analysis

will imply that
∣∣ψ S=1

0

〉
is completely specified by the condition (4.4.15) plus the the

mentioned symmetries. Therefore, we will refer to (4.4.15) as the defining condition
of non-Abelian S = 1 spin chain we introduce in Sect. 2.4.

4.4.2 A Second Condition

It is worth noting that the condition (4.4.13) with (4.4.14) implies that the remaining
terms in Bm annihilate

∣∣ψ S=1
0

〉
as well. In particular, we have

Qm
∣∣ψ S=1

0

〉 = Q̄m
∣∣ψ S=1

0

〉 = 0 ∀ m, (4.4.17)

where we have defined

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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Qm ≡1

3

N∑

α1,α2,α3=1
α1 �=α2 �=α3 �=α1

Q �=
m;α1,α2,α3

S−
α3

S−
α2

S−
α1

+
N∑

α1 �=α2

Q=
m;α1,α2

(
S−
α2

)2
S−
α1

=
N∑

α1,α2,α3=1
α1 �=α2 �=α3 �=α1

η̄s+m+1
α1

(η̄α3 − η̄α1)(η̄α1 − η̄α2)
S−
α3

S−
α2

S−
α1

−
N∑

α1 �=α2

η̄s+m+1
α1

− η̄s+m+1
α2

(η̄α1 − η̄α2)
2

(
S−
α2

)2
S−
α1

=
N∑

α1, α2, α3=1
α1 �=α2
α1 �=α3

η̄s+m+1
α1

(η̄α3 − η̄α1)(η̄α1 − η̄α2)
S−
α3

S−
α2

S−
α1

+
N∑

α1 �=α2

η̄s+m+1
α2

(η̄α1 − η̄α2)
2

(
S−
α2

)2
S−
α1
. (4.4.18)

The non-Abelian S = 1 spin liquid state
∣∣ψ S=1

0

〉
is further annihilated by the operators


α ≡ − 1

N

N∑

m=0

η̄s+m+1
α Q̄m

=
N∑

β,γ=1
β,γ �=α

S−
α S−

β S−
γ

(ηα − ηβ)(ηα − ηγ )
−

N∑

β=1
β �=α

(S−
α )

2S−
β

(ηα − ηβ)2
, 
α

∣∣ψ S=1
0

〉 = 0 ∀ α,

(4.4.19)
which are obtained from the complex conjugate of (4.4.18) by Fourier transformation,
as well as their complex conjugates 
̄α. These operators, however, do not appear
promising for the construction of a simple parent Hamiltonian for the state.

4.4.3 Direct Verification

In this section, we wish to verify the defining condition (4.4.15) directly for the S = 1
ground state (4.1.4). The method will be similar to the proof of the singlet property
in Sect. 2.4.2. To begin with, we again notice that when we substitute (4.1.4) with
(4.1.2) into (4.1.6), we may replace theantisymmetrization A in (4.1.2) by an overall
normalization factor 9 which we ignore, as it is taken care by the commutativity of
the bosonic operators S̃α. Let ψ̃0 be ψ S=1

0 without the antisymmetrization in (4.1.2),

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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ψ̃0(z1, . . . , zN ) =
{

1

z1 − z2
· . . . · 1

zN−1 − zN

}
.

N∏

i< j

(zi − z j )

N∏

i=1

zi . (4.4.20)

Since ψ̃0(z1, z2, . . . , zN ) is still symmetric under interchange of pairs, we may
assume that the spin flip operators (S−

α )
2 and S−

β of (4.4.15) will act on the pairs
(z1, z2) and (z3, z4), respectively:

(S−
α )

2S−
β

∣∣ψ S=1
0

〉 =
∑

{z5,...,zN }
(S−
α )

2(S+
α )

2

⎧
⎨

⎩
∑

z4( �=ηβ)
ψ̃0(ηα, ηα, ηβ, z4, z5, . . . , zN )S

−
β S̃+

β S̃+
z4

+
∑

z3( �=ηβ)
ψ̃0(ηα, ηα, z3, ηβ, z5, . . . , zN )S

−
β S̃+

z3
S̃+
β

+ ψ̃0(ηα, ηα, ηβ, ηβ, z5, . . . , zN )S
−
β (S̃

+
β )

2

⎫
⎬

⎭

· S̃+
z5
. . . S̃+

zN
|−1〉N

= 4
∑

{z5,...,zN }

{
∑

z4

ψ̃0(ηα, ηα, ηβ, z4, z5, . . . , zN )S̃
+
z4

}
S̃+

z5
. . . S̃+

zN
|−1〉N , (4.4.21)

where we have used

S−
α (S̃

+
α )

n|1,−1〉α = n(S̃+
α )

n−1|1,−1〉α, (4.4.22)

which follows directly form the definition (4.1.5). We hence obtain

�S=1
α

∣∣ψ S=1
0

〉 =
∑

{z4, . . . , zN }

N∑

β=1
β �=α

ψ̃0(ηα, ηα, ηβ, z4, . . . , zN )

ηα − ηβ

︸ ︷︷ ︸
=0

S̃+
z4
. . . S̃+

zN
|−1〉N ,

(4.4.23)
since

ψ̃0(ηα, ηα, ηβ, z4, . . . , zN )

ηα − ηβ
= (ηα − ηβ)η

2
αηβ

·
N∏

i=4

(ηα − zi )
2zi

N∏

i=5

(ηβ − zi )

N∏

4≤i< j

(zi − z j )

· 1

z5 − z6
· . . . · 1

zN−1 − zN

vanishes for β = α and contains only powers η1
β, η

2
β, . . . , η

N−2
β . Note that the

calculation for �̄S=1
α is almost identical, since
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ψ̃0(ηα, ηα, ηβ, z4, . . . , zN )

η̄α − ηβb
= −ηαηβ ψ̃0(ηα, ηα, ηβ, z4, . . . , zN )

ηα − ηβ

vanishes also for β = α and contains only powers η2
β, η

3
β, . . . , η

N−1
β .

4.5 Construction of a Parent Hamiltonian

We will now construct a parent Hamiltonian for the non-Abelian S = 1 spin liquid
state (4.1.6) with (4.1.4) using the annihilation operator (4.4.15), i.e.,

�S=1
α

∣∣ψ S=1
0

〉 = 0 ∀ α, where �S=1
α =

N∑

β=1
β �=α

1

ηα − ηβ

(
S−
α

)2
S−
β . (4.5.1)

The Hamiltonian has to be Hermitian, and we wish it to be invariant under translations,
time reversal (T), parity (P), and SU(2) spin rotations.

4.5.1 Translational, Time Reversal, and Parity Symmetry

The operator �S=1
α

†
�S=1
α is Hermitian and positive semi-definite, meaning that all

the eigenvalues are non-negative. A translationally invariant operator is given by

H0 = 1

2

N∑

α=1

�S=1
α

†
�S=1
α = 1

2

∑

α,β,γ

α �=β,γ

1

η̄α − η̄β

1

ηα − ηγ

(
S+
α

)2(
S−
α

)2
S+
β S−

γ

=
∑

α,β,γ

α �=β,γ

ωαβγ Sz
α

(
Sz
α + 1

)
S+
β S−

γ , (4.5.2)

where ωαβγ is defined in (3.6.3),and we have used that

(
S+
α

)2(
S−
α

)2 = 2Sz
α

(
Sz
α + 1

)

for S = 1, which is readily verified with (C.6). With the transformation properties
under time reversal,

T : ηα → ηα = η̄α, S → S = −S,

and hence

ωαβγ → ωαγβ, S+ → −S−, S− → −S+, Sz → −Sz,

http://dx.doi.org/10.1007/978-3-642-24384-4_3
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the operator (4.5.2) transforms into

H0 =
∑

α,β,γ

α �=β,γ

ωαβγ Sz
α

(
Sz
α − 1

)
S−
γ S+

β . (4.5.3)

We proceed with the T invariant operator

HT
0 = 1

2
(H0 +H0) = HT=

0 + HT �=
0 , (4.5.4)

where

HT=
0 = 1

2

∑

α,β

α �=β

ωαββ

(
Sz2
α

{
S+
β , S−

β

}+ Sz
α

[
S+
β , S−

β

])

= 1

2

∑

α �=β
ωαββ

(
Sz2

α

{
S+
β , S−

β

}+ 2Sz
αSz
β

)
, (4.5.5)

HT �=
0 =

∑

α,β,γ

α �=β �= γ �=α

ωαβγ Sz2
α S+

β S−
γ . (4.5.6)

With the transformation properties under parity,

P : ηα → �ηα� = η̄α, S → S = S, (4.5.7)

and hence ωαβγ → ωαγβ, we obtain the P and T invariant operator

HPT
0 = 1

2

(
HT

0 +�HT
0 �
)

= HPT=
0 + HPT �=

0 , (4.5.8)

where

HPT=
0 = HT=

0 , HPT �=
0 = 1

2

∑

α,β,γ

α �=β �= γ �=α

ωαβγ Sz2
α

(
S+
β S−

γ + S−
β S+

γ

)
. (4.5.9)

4.5.2 Spin Rotation Symmetry

Since the non-Abelian spin liquid state
∣∣ψ S=1

0

〉
is a spin singlet, the property that it

is annihilated by (4.5.8) with (4.5.9) and (4.5.5) implies that it is annihilated by each
tensor component of (4.5.8) individually.
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With the tensor decompositions (D.2.4), (D.2.5), and S2 = 2 for S = 1, we can
rewrite the two contributions as

HPT=
0 =

∑

α �=β
ωαββ

[(
2

3
+ 1√

6
T 0
αα

)(
4

3
− 1√

6
T 0
ββ

)
+ 1

3
SαSβ + 1√

6
T 0
αβ

]
,

(4.5.10)

HPT �=
0 =

∑

α,β,γ

α �=β �= γ �=α

ωαβγ

(
2

3
+ 1√

6
T 0
αα

)(
2

3
Sβ Sγ − 1√

6
T 0
βγ

)
. (4.5.11)

Projecting out the scalar components under SU(2) spin rotations yields

{
HPT=

0

}
0 =

∑

α �=β
ωαββ

(
8

9
− 1

6

{
T 0
ααT 0

ββ

}
0 + 1

3
SαSβ

)
, (4.5.12)

{
HPT �=

0

}
0 =

∑

α,β,γ

α �=β �= γ �=α

ωαβγ

(
4

9
Sβ Sγ − 1

6

{
T 0
ααT 0

βγ

}
0

)
. (4.5.13)

The next step is to calculate the scalar component of the tensor products in (4.5.12).

4.5.3 Evaluation of
{

T 0
ααT 0

βγ

}
0

We evaluate the scalar component of the tensor product of T 0
αα and T 0

βγ withα �=β, γ
using (3.5.20),

{
T 0
ααT 0

βγ

}
j = 〈 j, 0|2, 0; 2, 0〉

2∑

m=−2

T m
ααT −m

βγ 〈2,m; 2,−m| j, 0〉. (4.5.14)

With (D.2.3) and the Clebsch–Gordan coefficients

〈2,m; 2,−m|0, 0〉 = (−1)m√
5
, (4.5.15)

we obtain

http://dx.doi.org/10.1007/978-3-642-24384-4_3
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5
{
T 0
ααT 0

αγ

}
0 =

2∑

m=−2

(−1)m T m
ααT −m

αγ

= S−
α S−

α S+
β S+

γ

+ (Sz
αS−
α + S−

α Sz
α

)(
Sz
β S+
γ + S+

β Sz
γ

)

+ 1

6

(
4Sz
αSz
α − S+

α S−
α − S−

α S+
α

)(
4Sz
β Sz
γ − S+

β S−
γ − S−

β S+
γ

)

+ (Sz
αS+
α + S+

α Sz
α

)(
Sz
β S−
γ + S−

β Sz
γ

)

+ S+
α S+

α S−
β S−

γ . (4.5.16)

We wish to write this in a more convenient form, which directly displays that it
transforms as a scalar under spin rotations. Since

1 ⊗ 1 ⊗ 1 ⊗ 1 = 3 · 0 ⊕ 6 · 1 ⊕ 6 · 2 ⊕ 3 · 3 ⊕ 4,

we can only form three scalars from four spin operators. For α �=β �= γ �=α, three
such scalars are

S2
α(Sβ Sγ ), (SαSβ)(SαSγ ), and (SαSγ )(SαSβ).

For α �= β = γ, the latter two are identical, but we have the additional scalar SαSβ.
For α �=β, γ in general, we write

5
{
T 0
ααT 0

αγ

}
0 = a S2

α(Sβ Sγ )+ b
[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]

+ c δβγ SαSβ, (4.5.17)

where we have used the invariance of the tensor product under interchange ofβ and γ.
The coefficients a and b may depend on whether β = γ or not.

Since the S−
α S−

α term in (4.5.16) has to come form the second term in (4.5.17),
we can immediately infer b = 2. To obtain a and c, we first write out the second
term in (4.5.17) for α �=β,γ,
2
[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]

= 1

2

(
2Sz
αSz
β + S+

α S−
β + S−

α S+
β

)(
2Sz
αSz
γ + S+

α S−
γ + S−

α S+
γ

)

+ same withβ ↔ γ

= S+
α S+

α S−
β S−

γ + S−
α S−

α S+
β S+

γ

+ Sz
αSz
β

(
S+
α S−

γ + S−
α S+

γ

)+ Sz
αSz
γ

(
S+
α S−

β + S−
α S+

β

)

+ (S+
α S−

β + S−
α S+

β

)
Sz
αSz
γ + (S+

α S−
γ + S−

α S+
γ

)
Sz
αSz
β

+ 1

2
S+
α S−

α

(
S−
β S+

γ + S−
γ S+

β

)+ 1

2
S−
α S+

α

(
S+
β S−

γ + S+
γ S−

β

)

+ 4Sz
αSz
αSz
β Sz
γ , (4.5.18)
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and order the terms such that the Sβ operators are to the left of the Sγ operators,

2
[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]

= S+
α S+

α S−
β S−

γ + S−
α S−

α S+
β S+

γ

+ Sz
αS+
α Sz

β S−
γ + Sz

αS−
α Sz

β S+
γ + Sz

αS+
α S−

β Sz
γ + Sz

αS−
α S+

β Sz
γ

− Sz
αS+
α

[
S−
β , Sz

γ

]− Sz
αS−
α

[
S+
β , Sz

γ

]

+ S+
α Sz

αS−
β Sz

γ + S−
α Sz

αS+
β Sz

γ + S+
α Sz

αSz
β S−
γ + S−

α Sz
αSz
β S+
γ

− S+
α Sz

α

[
Sz
β, S−

γ

]− S−
α Sz

α

[
Sz
β, S+

γ

]

+ 1

2
S+
α S−

α

(
S−
β S+

γ + S+
β S−

γ

)+ 1

2
S−
α S+

α

(
S+
β S−

γ + S−
β S+

γ

)

− 1

2

[
S+
α , S−

α

][
S+
β , S−

γ

]

+ 4Sz
αSz
αSz
β Sz
γ . (4.5.19)

With

[
Sz
α, S+

α

][
S−
β , Sz

β

]+ [Sz
α, S−

α

][
S+
β , Sz

β

]+ 1

2

[
S+
α , S−

α

][
S+
β , S−

β

]

= S+
α S−

β + S−
α S+

β + 2Sz
αSz
β = 2SαSβ,

we finally obtain

2
[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]+ 2δαγ SαSβ

= S+
α S+

α S−
β S−

γ + S−
α S−

α S+
β S+

γ

+ Sz
αS+
α Sz

β S−
γ + Sz

αS−
α Sz

β S+
γ + Sz

αS+
α S−

β Sz
γ + Sz

αS−
α S+

β Sz
γ

+ S+
α Sz

αS−
β Sz

γ + S−
α Sz

αS+
β Sz

γ + S+
α Sz

αSz
β S−
γ + S−

α Sz
αSz
β S+
γ

+ 1

2

(
S+
α S−

α + S−
α S+

α

)(
S+
β S−

γ + S−
β S+

γ

)

+ 4 Sz
αSz
αSz
β Sz
γ . (4.5.20)

Subtracting this from (4.5.16), we obtain

5
{
T 0
ααT 0

βγ

}
0 − 2

[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]− 2δβγ SαSβ

= 1

6

(
4Sz
αSz
α − S+

α S−
α − S−

α S+
α

)(
4Sz
β Sz
γ − S+

β S−
γ − S−

β S+
γ

)

− 1

2

(
S+
α S−

α + S−
α S+

α

)(
S+
β S−

γ + S−
β S+

γ

)− 4 Sz
αSz
αSz
β Sz
γ .

= −4

3
S2
α(Sβ Sγ ), (4.5.21)

or
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5
{
T 0
ααT 0

βγ

}
0 = − 4

3
S2
α(Sβ Sγ )+ 2

[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]

+ 2δβγ SαSβ (4.5.22)

As an aside, since the Clebsch–Gordan coefficient

〈2, 0; 2, 0|1, 0〉 = 0, (4.5.23)

(4.5.14) implies that the tensor product of T 0
αα and T 0

βγ has no vector component,
i.e.,

{
T 0
ααT 0

βγ

}
1 = 0. (4.5.24)

It follows that we cannot obtain a vector annihilation operator which is even under
P and T from the operator H0 defined in (4.5.2).

4.5.4 Writing Out the Hamiltonian

Substitution of (4.5.22) into (4.5.12) and (4.5.13) yields

{
HPT=

0

}
0 = 1

15

∑

α �=β
ωαββ

[
16 − 2

(
SαSβ

)2 + 4 SαSβ
]
, (4.5.25)

{
HPT�=

0

}
0 = 1

15

∑

α,β,γ

α �=β �= γ �=α

ωαβγ

[
8 Sβ Sγ − (SαSβ)(SαSγ )− (SαSγ )(SαSβ)

]
.

(4.5.26)
With (B.20), we rewrite the first term in (4.5.26) as

8
∑

α,β,γ

α �=β �= γ �=α

ωαβγ Sβ Sγ = 16
∑

α �=β
ωαββ SαSβ − 4

∑

α �=β
SαSβ

= 16
∑

α �=β
ωαββ SαSβ − 4S2

tot + 8N .

Collecting all the terms we obtain

15
{

HPT
0
}

0 =
∑

α �=β

1

|ηα − ηβ |2
[
20 SαSβ − 2

(
SαSβ

)2]

−
∑

α, β, γ

α �=β �= γ �=α

1

η̄α − η̄β

1

ηα − ηγ

[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]

− 4S2
tot + 4N (N 2 − 1)

3
+ 8N , (4.5.27)
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and finally

3

4

{
HPT

0
}

0 =
∑

α �=β

1

|ηα − ηβ |2
[

SαSβ − 1

10

(
SαSβ

)2]

− 1

20

∑

α, β, γ

α �=β �= γ �=α

1

(η̄α − η̄β )(ηα − ηγ )

[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]

− 1

5
S2

tot + N (N 2 + 5)

15
. (4.5.28)

Note that the second term in the first line of (4.5.28) is equal to what we would get
if we were to take β = γ on the term in the second line.

In conclusion, we have derived that the non-Abelian S = 1 Pfaffian spin liquid
state

∣∣ψ S=1
0

〉
introduced in Sect. 2.4 is an exact eigenstate of

H S=1 = 2π2

N 2

⎡

⎣
∑

α �=β

SαSβ
|ηα − ηβ |2 − 1

20

∑

α, β, γ

α �=β, γ

(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

(η̄α − η̄β)(ηα − ηγ )

⎤

⎦

(4.5.29)
with energy eigenvalue

E S=1
0 = −2π2

N 2

N (N 2 + 5)

15
= −2π2

15

(
N + 5

N

)
. (4.5.30)

The information regarding the positive semi-definiteness of HPT
0 , which was still

intact on the level of (4.5.10) and (4.5.11), has unfortunately been lost as we carried
out the projection onto the scalar components (4.5.12) and (4.5.13). We will recover
this information in Sect. 5.5.1. Exact diagonalization studies [5] carried out numeri-
cally for up to N = 18 sites further show that

∣∣ψ S=1
0

〉
is the unique ground states of

(4.5.29), and that the model is gapless.

4.6 Vector Annihilation Operators

4.6.1 Annihilation Operators Which Transform Even Under T

We can use the defining condition (4.5.1) further to construct a vector annihilation
operator. First note that since

�S=1
α

∣∣ψ S=1
0

〉 = 0 ∀α,
∣∣ψ S=1

0

〉
is also annihilated by the Hermitian operator

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_5


134 4 From a Bosonic Pfaffian State to an S = 1 Spin Chain

Hα = 1

2
�S=1
α

†
�S=1
α =

∑

β, γ

α �=β, γ

ωαβγ Sz
α

(
Sz
α + 1

)
S+
β S−

γ , (4.6.1)

which is just the operator (4.5.2) without the sum over α. Constructing an operator
which is even under T,

HT
α = 1

2

(
Hα +Hα

) = HT=
α + HT �=

α , (4.6.2)

with

HT=
α = 1

2

∑

β

β �=α

ωαββ

(
Sz
α

2{S+
β , S−

β

}+ 2Sz
αSz
β

)
, (4.6.3)

HT �=
α =

∑

β �= γ
β, γ �=α

ωαβγ Sz
α

2S+
β S−

γ . (4.6.4)

and odd under P, we obtain

H P̄T
α = 1

2

(
HT
α −�HT

α �
)

= H P̄T=
α + H P̄T �=

α , (4.6.5)

where

H P̄T=
α = 0, H P̄T �=

α = 1

2

∑

β �= γ
β, γ �=α

ωαβγ Sz
α

2(S+
β S−

γ − S−
β S+

γ

)
. (4.6.6)

With (3.7.6) and S+
β S−

γ − S−
β S+

γ = −2i(Sβ × Sγ )z (cf. (D.3.3)), we obtain

H P̄T
α = ı

2

∑

β �= γ
β, γ �=α

ηα + ηβ

ηα − ηβ
Sz
α

2
(Sβ × Sγ )z. (4.6.7)

With (D.3.8) and (D.3.3) we find that the scalar component of the product of the
z-components of three vectors vanishes identically, while the vector component is
given by

5
{

Sz
α

2
(Sβ × Sγ )z

}
1 = Sz

α

(
Sα(Sβ × Sγ )

)+ (Sα(Sβ × Sγ )
)
Sz
α + 2(Sβ × Sγ )z,

where we have used α �=β, γ and S2
α = 2. The Pfaffian spin liquid state

∣∣ψ S=1
0

〉
is

hence annihilated by the vector operator

http://dx.doi.org/10.1007/978-3-642-24384-4_3
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5
{

H P̄T
α

}
1 = i

∑

β �= γ
β, γ �=α

ηα + ηβ

ηα − ηβ

[
(Sβ × Sγ )+ 1

2
Sα
(
Sα(Sβ × Sγ )

)

+ 1

2

(
Sα(Sβ × Sγ )

)
Sα

]
. (4.6.8)

With
∑

γ

γ �=α, β

Sγ = Stot − Sα − Sβ,

Sβ × Sβ = i Sβ, and (3.7.18), we find from (4.6.8) that
∣∣ψ S=1

0

〉
is also annihilated

by

i
∑

β

β �=α

ηα + ηβ

ηα − ηβ

[
(Sα × Sβ)− i Sβ + 1

2

(
Sα(Sβ × Stot)

)
Sα

]
. (4.6.9)

We can rewrite the product of the four spin operators in the last term as

(
Sα(Sβ × Stot)

)
Sd
α =

N∑

γ=1

εabc Sa
αSb
β

[
Sc
γ , Sd

α

]+ something · Sc
tot, (4.6.10)

where the second term annihilates every singlet. The first term yields

εabc Sa
αSb
β

[
Sc
α, Sd

α

] = iεabcεcde Sa
αSb
β Se
α

= i
(
δadδbe − δaeδbd)Sa

αSb
β Se
α

= iSd
α

(
SαSβ

)− iSd
β S2

α, (4.6.11)

where we have used α �=β. The Pfaffian spin liquid state (4.1.6) with (4.1.4) is
therefore also annihilated by

DS=1
α = 1

2

∑

β

β �=α

ηα + ηβ

ηα − ηβ

[
i(Sα × Sβ)+ 2Sβ − 1

2
Sα
(
SαSβ

)]
,

DS=1
α

∣∣ψ S=1
0

〉 = 0 ∀α. (4.6.12)

This is the analog of the auxiliary operator (2.2.42) or (3.7.8) of the Haldane–Shastry
model.

Equation (4.6.12) implies that
∣∣ψ S=1

0

〉
is further annihilated by

http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_3
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�S=1 =
N∑

α=1

DS=1
α = 1

2

∑

α �=β

ηα + ηβ

ηα − ηβ

[
i(Sα × Sβ)− 1

2
Sα
(
SαSβ

)]
, (4.6.13)

where we have used (B.16). This is the analog of the rapidity operator (2.2.8) or
(3.7.9) of the Haldane-Shastry model. In contrast to the Haldane–Shastry model,
however, the operator (4.6.13) does not commute with the Hamiltonian (4.5.29).

4.6.2 Annihilation Operators Which Transform Odd Under T

Finally, we consider annihilation operators we can construct from (4.6.1), and which
transform odd under T,

H T̄
α = 1

2
(Hα −Hα) = H T̄=

α + H T̄ �=
α (4.6.14)

with

H T̄=
α = 1

2

∑

β

β �=α

ωαββ

(
Sz
α

2[S+
β , S−

β

]+ Sz
α

{
S+
β , S−

β

})

=
∑

β

β �=α

ωαββ

(
Sz
α

2Sz
β + Sz

α

(
S2
β − Sz

β
2))

, (4.6.15)

H T̄ �=
α =

∑

β �= γ
β,γ �=α

ωαβγ Sz
αS+
β S−

γ . (4.6.16)

Let us first look at the component which transforms odd under P,

H P̄T̄
α = 1

2

(
H T̄
α −�H T̄

α �
)

= H P̄T̄=
α + H P̄T̄ �=

α , (4.6.17)

where

H P̄T̄=
α = 0, H P̄T̄ �=

α = 1

2

∑

β �= γ
β,γ �=α

ωαβγ Sz
α

(
S+
β S−

γ − S−
β S+

γ

)
. (4.6.18)

This operator has no vector component. With (D.3.10), we obtain the scalar compo-
nent

{
H T̄
α

}
0 = − i

3

∑

β �= γ
β,γ �=α

Sα(Sβ × Sγ )

(η̄α − η̄β)(ηα − ηγ )
, (4.6.19)

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_3
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It is identical to (3.7.16) in the Haldane–Shastry model, and annihilates every spin
singlet. We will not consider it further.

We will now turn the component which transforms even under P,

H PT̄
α = 1

2

(
H T̄
α +�H T̄

α �
)

= HPT̄=
α + HPT̄ �=

α , (4.6.20)

where

HPT̄=
α = H T̄=

α , HPT̄ �=
α = 1

2

∑

β �= γ
β,γ �=α

ωαβγ Sz
α

(
S+
β S−

γ + S−
β S+

γ

)
, (4.6.21)

which has no scalar, but a vector component. With (D.3.8) and (D.3.3), we write

{
H T̄=
α

}
1 = 1

5

∑

β

β �=α

ωαββ

[
Sz
α(SαSβ)+ Sα(Sz

α)Sβ

+ S2
αSz
β + 4Sz

αS2
β − Sα(Sz

β)Sβ − (SαSβ)Sz
β

]
.

(4.6.22)
Writing out the second term, we obtain

Sα(Sz
α)Sβ = 1

2

(
S−
α Sz

αS+
β + S+

α Sz
αS−
β

)+ Sz
αSz
αSz
β,

= Sz
α(SαSβ)+ 1

2

([
S−
α , Sz

α

]
S+
β + [S+

α , Sz
α

]
S−
β

)

= Sz
α(SαSβ)+ i(Sα × Sβ)z. (4.6.23)

Similarly, the fifth term gives

Sα(Sz
β)Sβ = (SαSβ)Sz

β + i(Sα × Sβ)z. (4.6.24)

Collecting the terms, we obtain

{
H T̄=
α

}
1 = 2

5

∑

β

β �=α

ωαββ

[
4Sz
α + Sz

β + Sz
α(SαSβ)− (SαSβ)Sz

β

]
, (4.6.25)

where we have used S2
α = S2

β = 2. With (D.3.9), we further obtain

{
H T̄ �=
α

}
1 = 1

5

∑

β �= γ
β,γ �=α

ωαβγ

[
4Sz
α(Sβ Sγ )− Sz

β(SαSγ )− Sz
γ (SαSβ)

]
. (4.6.26)

Combining (4.6.25) and (4.6.26), we finally obtain the vector annihilation operator

http://dx.doi.org/10.1007/978-3-642-24384-4_3
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AS=1
α ≡ 5

({
H T̄=
α

}
1 + {H T̄ �=

α

}
1

)

= 2
∑

β

β �=α

4Sα + Sβ + Sα(SαSβ)− (SαSβ)Sβ
|ηα − ηβ |2

+
∑

β �= γ
β,γ �=α

4Sα(Sβ Sγ )− Sβ(SαSγ )− Sγ (SαSβ)

(η̄α − η̄β)(ηα − ηγ )
,

AS=1
α

∣∣ψ S=1
0

〉 = 0 ∀ α. (4.6.27)

This operator is rather complicated, but does simplify as we sum over α. From
(4.6.15), we obtain

∑

α

{
H T̄=
α

}
1 = 2

∑

α

Sα
∑

β

β �=α

ωαββ = N 2 − 1

6
Stot.

This implies that
∣∣ψ S=1

0

〉
is also annihilated by

ϒS=1 = 5
∑

α

{
H T̄ �=
α

}
1 =

∑

α,β,γ

α �=β �= γ �=α

4Sα(Sβ Sγ )− Sβ(SαSγ )− Sγ (SαSβ)

(η̄α − η̄β)(ηα − ηγ )
.

(4.6.28)

4.7 Concluding Remarks

The various annihilation operators for the S = 1 model derived in this section are
summarized in Table 4.1.

The main result, of course, is the Hamiltonian H S=1 given by (4.5.29). It is a three-
spin operator. The three-body interaction terms fall off as 1/(r12 r13), which makes
the model long-ranged. Since the wave function (2.4.1) introduced in Sect. 2.4 is
critical, i.e., has algebraically decaying correlations, it is not surprising that we need
a Hamiltonian with long-ranged interaction to single it out as unique and exact ground
states. Hamiltonians with only short-ranged interactions, like the Heisenberg model,
tend to single out states with exponentially decaying correlations, and a Haldane gap
in the excitation spectrum [6–9].

The most intriguing feature of the S = 1 Pfaffian spin liquid state we have elevated
into an exactly soluble model here is that the spinon excitations obey a novel form of
quantum statistics, which is presumably the closest analog to non-Abelian statistics
one can define in one dimensions. As explained in Sect. 2.4.5, there is an internal,
topological Hilbert space of dimension 2n associated with a state with 2n spinons. In

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
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Table 4.1 Annihilation operators for the S = 1spin liquid ground state

Annihilation operators for
∣∣ψ S=1

0

〉

Operator Equation Symmetry transformation properties
T P Order of tensor Translationally invarient

Stot (2.2.6) − + Vector yes

�S=1
α (4.4.15) No No 3rd No


α (4.4.19) No No 3rd No

H S=1 − E S=1
0 (4.5.29) + + Scalar Yes

DS=1
α (4.6.12) + − Vector No

�S=1 (4.6.13) + − Vector Yes

AS=1
α (4.6.27) − + Vector No

ϒS=1 (4.6.28) − + Vector Yes

With the exception of the defining operator�αS=1 and 
α , which are the m = 3 components of 3rd
order tensors, we have only included scalar and vector annihilation operators

the thermodynamic limit, all the states in this internal Hilbert space become degen-
erate. We assume that the information regarding the internal state is encoded in
fractional shifts in the momentum spacings between the individual the spinons (see
Sect. 2.4.5). These shifts are topological quantum numbers, and are hence insensitive
against local, external perturbations. This makes this model, and presumably a range
of models of critical S = 1 spin chains, suited for applications as protected qubits in
quantum computing.

Preliminary numerical work [5] indicates that the rapidity operator � given in
(4.6.13) does not commute with H S=1. The model hence does not appear to share
the integrability structure of the spin 1

2 Haldane–Shastry model. We conjecture that
the reason for this is related to the rich internal structure of the Hilbert space, which
makes the universality class of the states we introduce here both much less accessible
and much more interesting than the Abelian S = 1

2 Heisenberg model.
In the following chapter, we will employ the theoretical method developed here

to generalize the model to arbitrary spin, i.e., to identify a parent Hamiltonian for
the state (2.4.37) introduced in Sect. 2.4.6.
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Chapter 5
Generalization to Arbitrary Spin S

5.1 A Critical Spin Liquid State With Spin S

5.1.1 Generation Through Projection of Gutzwiller States

In this section, we wish to generalize the model introduced and derived in the previous
section for spin S = 1 to arbitrary spin S = s.The generalization of the S = 1 ground
state (2.4.3) with (2.4.1) was introduced in Sect. 2.4.6. In essence, we combine 2s
identical copies of the Gutzwiller or Haldane–Shastry ground state with spin 1

2 , and
project the spin on each site onto spin s,

1
2

⊗ 1
2

⊗ . . .⊗ 1
2︸ ︷︷ ︸

2s

= s ⊕ (2s − 1) · s − 1 ⊕ . . .

The projection onto the completely symmetric representation can be carried out
conveniently using Schwinger bosons (see Sect. 2.4.3). In particular, if we write the
Haldane–Shastry ground state as

∣∣ψHS
0

〉 =
∑

{z1,z2,...,zM }
ψHS

0 (z1, . . . , zM ) S+
z1

· . . . · S+
zM

|↓↓ . . . ↓〉

=
∑

{z1,...,zM ;w1,...,wM }
ψHS

0 (z1, . . . , zM ) a+
z1
. . . a†

zM
b+
w1
. . . b†

wM
|0〉

≡ �HS
0

[
a†, b†] |0〉, (5.1.1)

where ψHS
0 (z1, . . . , zM ) is given by (2.2.3), M = N

2 and the wk’s are those lattice
sites which are not occupied by any of the zi ’s, we can write the spin S state obtained
by the mentioned projection as (cf 2.4.37)

∣∣ψ S
0

〉 =
(
�HS

0

[
a†, b†])2s |0〉 . (5.1.2)
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In Sect. 2.4.6, we mentioned that the state can alternatively be written as

∣∣ψ S
0

〉 =
∑

{z1,...,zSN }
ψ S

0 (z1, . . . , zSN )S̃
+
z1

· · · · · S̃+
zSN

|−s〉N , (5.1.3)

where N is the number of lattice sites,

|−s〉N ≡ ⊗N
α=1 |s,−s〉α (5.1.4)

is the “vacuum” state in which all the spins are maximally polarized in the negative
ẑ-direction, and S̃+ are re-normalized spin flip operators S̃+ which satisfy

1√
(2s)! (a

†)n(b†)(2s−n) |0〉 = (S̃+)n |s,−s〉 . (5.1.5)

In a basis in which Sz is diagonal, we may write

S̃+ ≡ 1

b†b + 1
a†b = 1

S − Sz + 1
S+. (5.1.6)

Note that (5.1.5) implies

S−(S̃+)n |s,−s〉 = b†a
1√
(2s)! (a

†)n(b†)(2s−n) |0〉
= n(S̃+)n−1 |s,−s〉 . (5.1.7)

The wave function for the spin S state (5.1.2) are then given by

ψ S
0 (z1, . . . , zSN ) =

2s∏

m=1

(
m M∏

i, j=(m−1)M+1
i< j

(zi − z j )
2

)
s N∏

i=1

zi . (5.1.8)

Note the similarity to Read–Rezayi states [1] in the quantized Hall effect.
For the purposes in Sects. 5.1.2 and 5.2.2, it is convenient to write the state in the

form

∣∣ψ S
0

〉 =
⎡

⎣
∑

{z1,...,zM }
ψHS

0 (z1, . . . , zM ) S̃+
z1

· . . . · S̃+
zM

⎤

⎦
2s

|0〉 . (5.1.9)

5.1.2 Direct Verification of the Singlet Property

The singlet property of
∣∣ψ S

0

〉
is manifest from the method we employed to con-

struct it by combining 2s copies of states which are singlets, and in particular

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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through (5.1.2). It is nonetheless instructive to proof it directly from (5.1.9), as the
proof of the defining condition for the state in Sect. 5.2.2 will proceed along similar
lines.

Since the Sz
tot component of (5.1.9) is trivially equal to zero, it is sufficient to show

that
∣∣ψ S

0

〉
is annihilated by S−

tot. As we act with S−
α on (5.1.9), we have to distinguish

between configurations with n = 0, 1, 2, . . . , 2s re-normalized spin flips S̃+
α at

site α. Since the state is symmetric under interchange of the 2s copies of ψHS
0 , we

may assume that the n spin flips are present in the first n copies, and account for the
restriction through ordering by a combinatorial factor. This yields

∑

α

S−
α

∣∣ψ S
0

〉

=
N∑

α=1

S−
α

2s∑

n=0

(
2s
n

)⎡

⎣
∑

{z2,...,zM }
ψHS

0 (ηα, z2, . . . , zM )S̃
+
α S̃+

z2
· . . . · S̃+

zM

⎤

⎦
n

·
⎡

⎣
∑

{z1,...,zM }�=ηα
ψHS

0 (z1, . . . , zM )S̃
+
z1

· . . . · S̃+
zM

⎤

⎦
2s−n

|0〉

= 2s
N∑

α=1

⎡

⎣
∑

{z2,...,zM }
ψHS

0 (ηα, z2, . . . , zM )S̃
+
z2

· . . . · S̃+
zM

⎤

⎦

·
2s∑

n=1

(
2s − 1

n − 1

)⎡

⎣
∑

{z2,...,zM }
ψHS

0 (ηα, z2, . . . , zM )S̃
+
α S̃+

z2
· . . . · S̃+

zM

⎤

⎦
n−1

·
⎡

⎣
∑

{z1,...,zM }�=ηα
ψHS

0 (z1, . . . , zM )S̃
+
z1

· . . . · S̃+
zM

⎤

⎦
2s−n

|0〉

= 2s

⎡

⎣
∑

{z2,...,zM }

N∑

α=1

ψHS
0 (ηα, z2, . . . , zM )

︸ ︷︷ ︸
=0

S̃+
z2

· . . . · S̃+
zM

⎤

⎦

·
⎡

⎣
∑

{z1,...,zM }
ψHS

0 (z1, . . . , zM )S̃
+
z1

· . . . · S̃+
zM

⎤

⎦
2s−1

|0〉 ,

(5.1.10)
where we have used (5.1.7) and that ψHS

0 (ηα, z2, . . ., zM ) contains only powers
η1
β, η

2
β, . . . , η

N−1
β .
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5.2 The Defining Condition for the Spin S Chain

5.2.1 Statement

The defining condition for the spin S state is by direct generalization of (3.4.6) and
(4.4.15) given by

�S
α =

N∑

β=1
β �=α

1

ηα − ηβ
(S−
α )

2s S−
β , �S

α

∣∣ψ S
0

〉 = 0 ∀α. (5.2.1)

Since the state is real, it is also annihilated by the complex conjugate of �S
α ,

�̄S
α =

N∑

β=1
β �=α

1

η̄α − η̄β
(S−
α )

2s S−
β , �̄S

α

∣∣ψ S
0

〉 = 0 ∀α. (5.2.2)

5.2.2 Direct Verification

Unlike for the cases of spin 1
2 and spin one, we have not derived the defining condition

(5.2.1) from the parent Hamiltonian of a quantized Hall state. The direct and explicit
verification presented here does therefore not just serve to check the validity of the
previous analysis, but is an essential part of the entire argument we present.

Let us consider the action of (S−
α )

2s S−
β on

∣∣ψ S
0

〉
written in the form (5.1.9). Since

ψHS
0 (z1, . . . , zM ) vanishes whenever two arguments zi coincide, one of the zi ’s in

each of the 2s copies in (5.1.9) must equal ηα; since ψHS
0 (z1, . . . , zM ) is symmetric

under interchange of the zi ’s and we count each distinct configuration in the sums
over {z1, . . . , zM } only once, we may take z1 = ηα. Regarding the action of S−

β

on (5.1.9), we have to distinguish between configurations with n = 0, 1, 2, . . . , 2s
re-normalized spin flips S̃+

β at site β. Since the state is symmetric under interchange
of the 2s copies, we may assume that the n spin flips are present in the first n copies,
and account for the restriction through ordering by a combinatorial factor. This yields

(S−
α )

2s S−
β

∣∣ψ S
0

〉

= (S−
α )

2s S−
β

2s∑

n=0

(
2s
n

)⎡

⎣
∑

{z3,...,zM }
ψHS

0 (ηα, ηβ, z3, . . .)S̃
+
α S̃+

β S̃+
z3

· . . . · S̃+
zM

⎤

⎦
n

·
⎡

⎣
∑

{z2,...,zM }�=ηβ
ψHS

0 (ηα, z2, . . .)S̃
+
α S̃+

z2
· . . . · S̃+

zM

⎤

⎦
2s−n

|0〉

http://dx.doi.org/10.1007/978-3-642-24384-4_3
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= (2s)! 2s

⎡

⎣
∑

{z2,...,zM }
ψHS

0 (ηα, ηβ, z3, . . . , zM )S̃
+
z3

· . . . · S̃+
zM

⎤

⎦

·
2s∑

n=1

(
2s − 1
n − 1

)⎡

⎣
∑

{z3,...,zM }
ψHS

0 (ηα, ηβ, z3, . . . , zM )S̃
+
β S̃+

z3
· . . . · S̃+

zM

⎤

⎦
n−1

·
⎡

⎣
∑

{z2,...,zM }�=ηβ
ψHS

0 (ηα, z2, . . . , zM )S̃
+
z2

· . . . · S̃+
zM

⎤

⎦
2s−n

|0〉

= (2s)! 2s

⎡

⎣
∑

{z3,...,zM }
ψHS

0 (ηα, ηβ, z3, . . . , zM )S̃
+
z3

· . . . · S̃+
zM

⎤

⎦

·
⎡

⎣
∑

{z2,...,zM }
ψHS

0 (ηα, z2, . . . , zM )S̃
+
z2

· . . . · S̃+
zM

⎤

⎦
2s−1

|0〉,

(5.2.3)
where we have used (5.1.7). This implies

�S
α

∣∣ψ S
0

〉 = 1

(2s)!2s

N∑

β=1
β �=α

(S−
α )

2s S−
β

∣∣ψ S
0

〉

= (2s)! 2s

⎡

⎣
∑

{z3,...,zM }

N∑

β=1

ψHS
0 (ηα, ηβ, z3, . . . , zM )

ηα − ηβ
︸ ︷︷ ︸

=0

S̃+
z3

· . . . · S̃+
zM

⎤

⎦

·
⎡

⎣
∑

{z2,...,zM }
ψHS

0 (ηα, z2, . . . , zM )S̃
+
z2

· . . . · S̃+
zM

⎤

⎦
2s−1

|0〉 , (5.2.4)

where we have used that

ψHS
0 (ηα, ηβ, z3, . . . zM )

ηα − ηβ
= (ηα−ηβ)ηαηβ

M∏

i=3

(ηα−zi )
2(ηβ−zi )

2zi

M∏

3≤i< j

(zi −z j )
2

vanishes for β =α and contains only powers η1
β, η

2
β, . . . , η

N−2
β . Note that the calcu-

lation for �̄S
α is almost identical, since

ψHS
0 (ηα, ηβ, z3, . . . zM )

η̄α − η̄β
= −ηαηβ ψ

HS
0 (ηα, ηβ, z3, . . . zM )

ηα − ηβ

vanishes also for β = α and contains only powers η2
β, η

3
β, . . . , η

N−1
β .
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5.3 Construction of a Parent Hamiltonian

5.3.1 Translational Symmetry

A Hermitian and translationally invariant operator which annihilates
∣∣ψ S

0

〉
is given

by

H0 = 1

2a0

N∑

α=1

�S
α

†
�S
α = 1

2a0

∑

α,β,γ

α �=β,γ

1

η̄α − η̄β

1

ηα − ηγ
(S+
α )

2s(S−
α )

2s S+
β S−

γ ,

(5.3.1)
where a0 is a parameter we will conveniently choose below. We wish the Hamiltonian
to be further invariant under P, T, and spin rotations. From (D.2.6), the tensor content
of S+

β S−
γ is

S+
β S−

γ = 2

3
Sβ Sγ − i(Sβ × Sγ )z − 1√

6
T 0
βγ , (5.3.2)

where

T 0
βγ = 1√

6

(
4Sz
β Sz
γ − S+

β S−
γ − S−

β S+
γ

)

= 1√
6

(
6Sz
β Sz
γ − 2Sβ Sγ

)
. (5.3.3)

This implies that we only have to know the scalar, vector and 2nd order tensor
components of (S+

α )
2s(S−

α )
2s in order to obtain the scalar component of H0.

5.3.2 Tensor Decomposition of (S+)2s(S−)2s

Since (S+)2s(S−)2s contains only a single spin operator S with Casimir
S2 = s(s + 1), its scalar component U must be a constant, its vector proportional to

V 0 = Sz (5.3.4)

(cf. (D.1.1)), its 2nd order tensor component proportional to

T 0 = 1√
6

(
4SzSz − S+S− − S−S+) = 2√

6

[
3Sz2 − s(s + 1)

]
(5.3.5)
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(cf. (D.2.3)), and its 3rd order tensor component proportional to

W 0 = − 1√
5

(
S−S+Sz + S+SzS− + SzS−S+ + S+S−Sz + S−SzS+

+ SzS+S−)+ 4√
5

SzSzSz,

= 2√
5

[
5Sz2 − 3s(s + 1)+ 1

]
Sz (5.3.6)

(cf. (D.3.7)). Our task in this section is to calculate the constants of proportionality
in the expansion

(S+)2s(S−)2s = a0
{
1 + aV 0 + bT 0 + cW 0}

+ tensors of order > 3. (5.3.7)

To begin with, note that (S+)2s and (S−)2s are up to a sign equal to the tensor
components with m = ±2s of one and the same tensor of order 2s,

T (2s)2s = (−1)2s(S+)2s,

T (2s)−2s = (S−)2s .
(5.3.8)

Recalling (3.5.17), we write

T (2s)2s
T (2s)−2s =

4s∑

j=1

T ( j)0 〈 j, 0|2s, 2s; 2s,−2s〉 , (5.3.9)

where T ( j)0 is with (3.5.13) given by

T ( j)0 =
2s∑

m=−2s

T (2s)m T (2s)−m 〈2s,m; 2s,−m| j, 0〉 . (5.3.10)

With (3.5.9), we can calculate the components T (2s)m from T (2s)±2s
,

T (2s)m±1 = 1√
2s(2s + 1)− m(m ± 1)

[
S±, T (2s)m

]
. (5.3.11)

Specifically, T (2s)2s−n
is given in terms of T (2s)2s

by

T (2s)2s−n =
(

n∏

i=1

1√
2s(2s + 1)− (2s − i + 1)(2s − i)

)

http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_3
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·
[

S−,
[

S−, . . .
[

S−, T (2s)2s
]
. . .
]]

︸ ︷︷ ︸
n operators S−

. (5.3.12)

To evaluate the first term, we use

n∏

i=1

(
s(s + 1)− (s − i + 1)(s − i)

) =
n∏

i=1

(2s − i + 1)i = (2s)! · n!
(2s − n)! , (5.3.13)

which holds for 1 ≤ n ≤ 2s, 2s and n integer. This yields

T (2s)2s−n =
√
(4s − n)!
(4s)! · n!

n∑

k=0

(
n

k

)
(−1)n−k(S−)k T (2s)2s

(S−)n−k . (5.3.14)

Similarly, we find

T (2s)−2s+n =
√
(4s − n)!
(4s)! · n!

n∑

k=0

(
n

k

)
(−1)k(S+)n−k T (2s)−2s

(S+)k . (5.3.15)

Note that (5.3.14) and (5.3.15) hold for 0 ≤ n ≤ 4s. With (5.3.8) and the shorthand
|m〉 ≡ |s,m〉 , we can write

(S−)k T (2s)2s
(S−)n−k = (−1)2s |s − k〉 〈−s + n − k|

· 〈s − k|(S−)k |s〉〈s|(S+)2s |−s〉〈−s|(S−)k−n|−s + n − k〉,
and similarly

(S+)n−k T (2s)−2s
(S+)k = (−1)2s |−s + n − k〉 〈s − k|

· 〈−s + n − k| (S+)n−k | −s〉 〈−s| (S−)2s |s〉 〈s| (S+)k |s − k〉 .

This implies that in the product T (2s)2s−n
T (2s)−2s+n

, only terms with matching
values of k in the sums (5.3.14) and (5.3.15) contribute. With (5.3.13) we obtain

〈s| (S+)k(S−)k |s〉 =

⎧
⎪⎨

⎪⎩

(2s)! · k!
(2s − k)! for 0 ≤ k ≤ 2s,

0 otherwise,

〈−s| (S−)k−n(S+)n−k |−s〉 =

⎧
⎪⎨

⎪⎩

(2s)! · (n − k)!
(2s − n + k)! for 0 ≤ n − k ≤ 2s,

0 otherwise,

〈s| (S+)2s(S−)2s |s〉 = (2s)!2. (5.3.16)
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This yields

T (2s)2s−n
T (2s)−2s+n

= (2s)!2(−1)2s+n

· (4s − n)!
(4s)! · n!

min(n,2s)∑

k=max(n−2s,0)

(
n
k

)(
n
k

)
(2s)! · k!
(2s − k)!

(2s)! · (n − k)!
(2s − n + k)! |s − k〉 〈s − k|

= (2s)!2(−1)2s+n
(

4s
n

)−1 min(n,2s)∑

k=max(n−2s,0)

(
2s
k

)(
2s

n − k

)
|s − k〉 〈s − k| .

(5.3.17)
Substitution into (5.3.10) yields

T ( j)0 =
4s∑

n=0

T (2s)2s−n
T (2s)−2s+n 〈2s, 2s − n; 2s,−2s + n| j, 0〉 .︸ ︷︷ ︸

≡C2s−n
j

(5.3.18)

With
4s∑

n=0

min(n,2s)∑

k=max(n−2s,0)

=
2s∑

k=0

2s+k∑

n=k

,

we obtain

T ( j)0 = (2s)!2(−1)2s
2s∑

k=0

⎧
⎪⎪⎨

⎪⎪⎩

2s+k∑

n=k

C2s−n
j (−1)n

(
2s
k

)(
2s

n − k

)

(
4s
n

)

⎫
⎪⎪⎬

⎪⎪⎭
|s − k〉 〈s − k|

= (2s)!2(−1)2s
2s∑

k=0

⎧
⎪⎪⎨

⎪⎪⎩

2s∑

p=0

C2s−k−p
j (−1)k+p

(
2s
k

)(
2s
p

)

(
4s

k + p

)

⎫
⎪⎪⎬

⎪⎪⎭
|s − k〉 〈s − k| .

(5.3.19)
The individual tensors in the decomposition

(S+)2s(S−)2s =
4s∑

j=1

{
(S+)2s(S−)2s}

j (5.3.20)

are hence with (5.3.8), (5.3.9), and the definition of C2s−n
j in (5.3.18) given by

{
(S+)2s(S−)2s}

j = (−1)2sC2s
j T ( j)0

= (2s)!2
2s + 1

2s∑

k=0

Pk
j |s − k〉 〈s − k| , (5.3.21)
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where we have defined

Pk
j = (2s + 1)C2s

j

2s∑

p=0

C2s−k−p
j (−1)k+p

(
2s
k

)(
2s
p

)

(
4s

k + p

) . (5.3.22)

We are not aware of any method to evaluate this sum analytically. We have used
Mathematica to evaluate it for k = 0 and j = 0, 1, 2, 3 as a function of s, and then
obtained the coefficients in the expansion (5.3.7) from these terms.

With the Clebsch–Gordan coefficients

Cm
0 = (−1)2s−m

√
4s + 1

,

Cm
1 =

√
3(−1)2s−m · m√

2s(2s + 1)(4s + 1)
,

Cm
2 =

√
5(−1)2s−m · (3m2 − 2s(2s + 1)

)
√

2s(2s + 1)(4s − 1)(4s + 1)(4s + 3)
,

Cm
3 =

√
7(−1)2s−m · m

(
5m2 + 1 − 6s(2s + 1)

)

2
√

s(s + 1)(2s − 1)(2s + 1)(4s − 1)(4s + 1)(4s + 3)
,

we find

P0
0 = 1,

P0
1 = 3s

s + 1
,

P0
2 = 5s(2s − 1)

(s + 1)(2s + 3)
,

P0
3 = 7s(2s − 1)(s − 1)

(s + 1)(2s + 3)(s + 2)
. (5.3.23)

Comparing (5.3.21) with (5.3.23) to the coefficients of |s〉 〈s| we obtain from
(5.3.4–5.3.6),

V 0 = s |s〉 〈s| + . . . ,

T 0 = 2√
6

s(2s − 1) |s〉 〈s| + . . . ,

W 0 = 2√
5

s(2s − 1)(s − 1) |s〉 〈s| + . . . , (5.3.24)
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we find

a0 = (2s)!2
2s + 1

,

a = 3

s + 1
,

b =
√

6

2

5

(s + 1)(2s + 3)
,

c =
√

5

2

7

(s + 1)(2s + 3)(s + 2)
(5.3.25)

for the coefficients in the expansion (5.3.7).

5.3.3 Time Reversal and Parity Symmetry

The for the scalar and vector component relevant part of the operator H0 introduced
(5.3.1) is with (3.6.3) and (5.3.7) given by

H ′
0 = 1

2

∑

α,β,γ

α �=β,γ

ωαβγ

{
1 + aV 0

α + bT 0
αα + cW 0

ααα

}
S+
β S−

γ . (5.3.26)

From now on, we omit the prime. With the transformation properties under time
reversal,

T: ηα → 
ηα
 = η̄α, S → 
S
 = −S,

and hence

ωα β γ → ωαγβ, S+ → −S−, S− → −S+, Sz → −Sz,

V 0 → −V 0, T 0 → T 0, W 0 → −W 0,

the operator (5.3.26) transforms into


H0
 = 1

2

∑

α,β,γ

α �=β,γ

ωαβγ

{
1 − aV 0

α + bT 0
αα − cW 0

ααα

}
S−
γ S+

β , (5.3.27)

We proceed with the T invariant operator

HT
0 = 1

2
(H0 +
H0
) = HT=

0 + HT �=
0 , (5.3.28)

http://dx.doi.org/10.1007/978-3-642-24384-4_3
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where

HT=
0 = 1

2

∑

α,β

α �=β

ωαββ

[(
1 + bT 0

αα

)1

2

{
S+
β , S−

β

}+ (aV 0
α + cW 0

ααα

)1

2

[
S+
β , S−

β

]]

= 1

2

∑

α �=β
ωαββ

[(
1 + bT 0

αα

) (2s(s + 1)

3
− 1√

6
T 0
ββ

)
+ (aSz

α + cW 0
ααα

)
Sz
β

]

(5.3.29)

HT �=
0 = 1

2

∑

α,β,γ

α �=β �=γ �=α

ωαβγ
(
1 + bT 0

αα

)
S+
β S−

γ .

= 1

2

∑

α,β,γ

α �=β �=γ �=α

ωαβγ
(
1 + bT 0

αα

) (2

3
Sβ Sγ − i(Sβ × Sγ )z − 1√

6
T 0
βγ

)
.

(5.3.30)
With the transformation properties under parity,

P: ηα → �ηα� = ηα, S → 
S
 = S, (5.3.31)

and hence ωαβγ → ωαγβ, we obtain the P and T invariant operator

HPT
0 = 1

2

(
HT

0 +�HT
0 �
) = HPT=

0 + HPT �=
0 , (5.3.32)

where

HPT=
0 = HT=

0 , (5.3.33)

HPT �=
0 = 1

2

∑

α,β,γ

α �=β �=γ �=α

ωαβγ
(
1 + bT 0

αα

) (2

3
Sβ Sγ − 1√

6
T 0
βγ

)
. (5.3.34)

5.3.4 Spin Rotation Symmetry

Since the critical spin liquid state
∣∣ψ S

0

〉
introduced in Sects. 2.4.6 and 5.1.1 is a spin

singlet, the property that it is annihilated by (5.3.32) with (5.3.33) and (5.3.34) implies
that it is annihilated by each tensor component of (5.3.32) individually.

Since we wish to construct a Hamiltonian which is invariant under SU(2) spin
rotations, we proceed by projecting out the scalar component. This yields

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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{
HPT=

0

}
0 = 1

2

∑

α �=β
ωαββ

[
2s(s + 1)

3
− b√

6

{
T 0
ααT 0

ββ

}
0 + a

3
SαSβ

]
, (5.3.35)

{
HPT �=

0

}
0 = 1

2

∑

α,β,γ

α �=β �=γ �=α

ωαβγ

[
2

3
Sβ Sγ − b√

6

{
T 0
ααT 0

βγ

}
0

]
. (5.3.36)

With (4.5.22), or specifically

5
{
T 0
ααT 0

ββ

}
0 = −4

3
s2(s + 1)2 + 4(SαSβ)2 + 2SαSβ, α �= β,

and (5.3.25), we obtain

− b√
6

{
T 0
ααT 0

ββ

}
0 = 2s2(s + 1)

3(2s + 3)
− SαSβ + 2(SαSβ)2

(s + 1)(2s + 3)
,

a

3
SαSβ = SαSβ

(s + 1)
,

and hence

{
HPT=

0

}
0 =

∑

α �=β
ωαββ

1

2s + 3

[
s(s + 1)2 + SαSβ − (SαSβ)2

(s + 1)

]
. (5.3.37)

Similarly, we use

5
{
T 0
ααT 0

βγ

}
0 = −4s(s + 1)

3
Sβ Sγ + 2

[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]
,

α �= β �= γ �= α,

to obtain

− b√
6

{
T 0
ααT 0

βγ

}
0 = 2s Sβ Sγ

3(2s + 3)
+ (SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

(s + 1)(2s + 3)

and hence

{
HPT �=

0

}
0

=
∑

α,β,γ

α �=β �=γ �=α

ωαβγ
1

2s + 3

[
(s + 1)Sβ Sγ − (SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

2(s + 1)

]
.

(5.3.38)
With (B.20), we rewrite the first sum in (5.3.38) as

http://dx.doi.org/10.1007/978-3-642-24384-4_4
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∑

α,β,γ

α �=β �=γ �=α

ωαβγ Sβ Sγ = 2
∑

α �=β
ωαββ SαSβ − 1

2
S2

tot + s(s + 1)

2
N .

Collecting all the terms we obtain

{
HPT

0

}
0 =

∑

α �=β
ωαββ

[
SαSβ − (SαSβ)2

(s + 1)(2s + 3)

]

+
∑

α,β,γ

α �=β �=γ �=α

ωαβγ
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

2(s + 1)(2s + 3)

− s + 1

2(2s + 3)
S2

tot + s(s + 1)2

2s + 3

N (N 2 + 5)

12
. (5.3.39)

Note that the second term in the first line of (5.3.39) is equal to what we would get
if we were to take β = γ on theterm in the second line.

The spin S spin liquid state
∣∣ψ S

0

〉
introduced in Sects. 2.4.6 and 5.1.1 is hence an

exact eigenstate of

H S = 2π2

N 2

⎡

⎣
∑

α �=β

SαSβ
|ηα − ηβ |2 − 1

2(s + 1)(2s + 3)

×
∑

α,β,γ

α �=β,γ

(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

(η̄α − η̄β)(ηα − ηγ )

⎤

⎦

= 2π2

N 2

⎡

⎣
∑

α �=β

SαSβ
|ηα − ηβ |2 −

∑

α,β,γ

α �=β,γ

�
{

1

(η̄α − η̄β)(ηα − ηγ )

}
(SαSβ)(SαSγ )

(s + 1)(2s + 3)

⎤

⎦ ,

(5.3.40)
where � denotes the real part. The energy eigenvalue is given by

E S
0 = −2π2

N 2

s(s + 1)2

2s + 3

N (N 2 + 5)

12
= −π

2

6

s(s + 1)2

2s + 3

(
N + 5

N

)
. (5.3.41)

This is the main result of this work. We will show in Sect. 5.5.1 that
∣∣ψ S

0

〉
is also a

ground state of (5.3.39), i.e., that all the eigenvalues of H S − E S
0 are non-negative.

Exact diagonalization studies [2] carried out numerically for up to N = 16 sites for
the S = 1 model and for up to N = 10 sites for the S = 3

2 model further show that
∣∣ψ S=1

0

〉
and

∣∣ψ S= 3
2

0

〉
are the unique ground states of (5.3.40), and that the models are

gapless. We assume this property to hold for general spin S.

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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5.4 Vector Annihilation Operators

5.4.1 Annihilation Operators Which Transform Even Under T

We can use the defining condition (5.2.1) further to construct a vector annihilation
operator. First note that since

�S
α

∣∣ψ S
0

〉 = 0 ∀α,
∣∣ψ S

0

〉
is also annihilated by the Hermitian operator

Hα = 1

2a0
�S
α

†
�S
α = 1

2a0

∑

β, γ

α �=β,γ

ωαβγ (S
+
α )

2s(S−
α )

2s S+
β S−

γ , (5.4.1)

and therefore also by the scalar and the vector components of

H ′
α = 1

2

∑

β,γ

α �=β,γ

ωαβγ

{
1 + a V 0

α + b T 0
αα + c W 0

ααα

}
S+
β S−

γ , (5.4.2)

which is just the operator (5.3.26) without the sum over α. From now on, we omit
the prime. Constructing an operator which is even under T,

HT
α = 1

2
(Hα +
Hα
) = HT=

α + HT �=
α , (5.4.3)

where

HT=
α = 1

2

∑

β

β �=α

ωαββ

[(
1 + b T 0

αα

) (2s(s + 1)

3
− 1√

6
T 0
βγ

)
+ (a Sz

α + c W 0
ααα

)
Sz
β

]
,

(5.4.4)

HT �=
α = 1

2

∑

β �=γ
β,γ �=α

ωαβγ
(
1 + b T 0

αα

) (2

3
Sβ Sγ − i(Sβ × Sγ )z − 1√

6
T 0
βγ

)
, (5.4.5)

and odd under P, we obtain

H P̄T
α = 1

2

(
HT
α −�HT

α �
)

= H P̄T=
α + H P̄T �=

α , (5.4.6)
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where

H P̄T=
α = 0, H P̄T �=

α = − i

2

∑

β �=γ
β,γ �=α

ωαβγ
(
1 + b T 0

αα

)
(Sβ × Sγ )z. (5.4.7)

With (3.7.6), we obtain

H P̄T
α = i

4

∑

β �=γ
β,γ �=α

ηα + ηβ

ηα − ηβ

(
1 + b T 0

αα

)
(Sβ × Sγ )z. (5.4.8)

While the scalar component of (5.4.8) vanishes, the vector component does not. With
(5.3.5) and (5.3.25), we write

1 + b T 0
αα = 1 + 5

(s + 1)(2s + 3)

[
3Sz2 − s(s + 1)

]

= 15Sz2

(s + 1)(2s + 3)
− 3(s − 1)

2s + 3
. (5.4.9)

With (D.3.8) and (D.3.3) we find for the vector component of the product of the
z-components

5
{

Sz
α

2
(Sβ× Sγ )z

}
1 = Sz

α

(
Sα(Sβ× Sγ )

)+(Sα(Sβ× Sγ )
)
Sz
α+s(s +1)(Sβ× Sγ )z.

Substitution into (5.4.8) yields

{
H P̄T
α

}
1 = i

4

3

2s + 3

∑

β �= γ
β,γ �=α

ηα + ηβ

ηα − ηβ

·
[
(Sβ × Sγ )z + 1

s + 1
Sα
(
Sα(Sβ × Sγ )

)+ 1

s + 1

(
Sα(Sβ × Sγ )

)
Sα

]
.

(5.4.10)
With

∑

γ

γ �=α,β

Sγ = Stot − Sα − Sβ,

Sβ × Sβ = i Sβ, and (3.7.18), we find from (5.4.10) that
∣∣ψ S

0

〉
is also annihilated by

i

2

∑

β

β �=α

ηα + ηβ

ηα − ηβ

[
(Sα × Sβ)− i Sβ + 1

s + 1

(
Sα(Sβ × Stot)

)
Sα

]
. (5.4.11)

http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_3
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With (4.6.10 and 4.6.11), we rewrite the product of the four spin operators in the last
term as

(
Sα(Sβ × Stot)

)
Sα = iSα

(
SαSβ

)− iS2
αSβ

+ term which annihilates every spin singlet, (5.4.12)

which holds for α �= β. The spin liquid state (5.1.2) is therefore also annihilated by

DS
α = 1

2

∑

β

β �=α

ηα + ηβ

ηα − ηβ

[
i(Sα × Sβ)+ (s + 1) Sβ − 1

s + 1
Sα
(
SαSβ

)]
,

DS
α

∣∣ψ S
0

〉 = 0 ∀α. (5.4.13)

This is the generalization of the auxiliary operator (3.7.8) of the Haldane–Shastry
model.

Equation (5.4.13) implies that the spin liquid state
∣∣ψ S

0

〉
is further annihilated by

�S =
N∑

α=1

DS
α = 1

2

∑

α �=β

ηα + ηβ

ηα − ηβ

[
i(Sα × Sβ)− 1

s + 1
Sα
(
SαSβ

)]
, (5.4.14)

where we have used (B.16). This is the analog of the rapidity operator (2.2.8) or (3.7.9)
of the Haldane–Shastry model. In contrast to the Haldane–Shastry model, however,
the operator (5.4.14) does not commute with the Hamiltonian (5.3.40). The model
is hence not likely to share the integrability structure of the Haldane–Shastry model.
It is possible, however, that the model is integrabel in the thermodynamic limit
N → ∞.

5.4.2 Annihilation Operators Which Transform Odd Under T

Finally, we consider annihilation operators we can construct from (5.4.2), and which
transform odd under T,

H T̄
α = 1

2
(Hα −
Hα
) = H T̄=

α + H T̄ �=
α , (5.4.15)

where

H T̄=
α = 1

2

∑

β

β �=α

ωαββ

[(
a V 0

α + c W 0
ααα

)1

2

{
S+
β , S−

β

}+ (1 + b T 0
αα

)1

2

[
S+
β , S−

β

]]

= 1

2

∑

β

β �=α

ωαββ

[(
a Sz

α + c W 0
ααα

) (2s(s + 1)

3
− 1√

6
T 0
ββ

)
+ (1+ b T 0

αα

)
Sz
β

]
,

(5.4.16)

http://dx.doi.org/10.1007/978-3-642-24384-4_4
http://dx.doi.org/10.1007/978-3-642-24384-4_4
http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_2
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H T̄ �=
α = 1

2

∑

β �=γ
β,γ �=α

ωαβγ
(
a Sz

α + c W 0
ααα

) (2

3
Sβ Sγ − i(Sβ × Sγ )z − 1√

6
T 0
βγ

)
.

(5.4.17)
Let us first look at the component which transforms odd under P,

H P̄T̄
α = 1

2

(
H T̄
α −�H T̄

α �
)

= H P̄T̄=
α + H P̄T̄ �=

α , (5.4.18)

where

H P̄T̄=
α = 0, H P̄T̄ �=

α = − i

2

∑

β �=γ
β,γ �=α

ωαβγ
(
a Sz

α + c W 0
ααα

)
(Sβ × Sγ )z. (5.4.19)

This operator has no vector component. With (D.2.5) and (5.3.25), we obtain the
scalar component

{
H T̄
α

}
0 = − i

2(s + 1)

∑

β �=γ
β,γ �=α

Sα(Sβ × Sγ )

(η̄α − η̄β)(ηα − ηγ )
. (5.4.20)

This is identical to (3.7.16) in the Haldane–Shastry model, and annihilates every spin
singlet by the line of reasoning pursued in (3.7.17). We will not consider it further.

We will now turn the component which transforms even under P,

HPT̄
α = 1

2

(
H T̄
α +�H T̄

α �
)

= HPT̄=
α + HPT̄ �=

α , (5.4.21)

where

HPT̄=
α = H T̄=

α ,

= 1

2

∑

β
β �=α

ωαββ

[(
a Sz

α + c W 0
ααα

) (2s(s + 1)

3
− 1√

6
T 0
ββ

)
+ (1 + b T 0

αα

)
Sz
β

]
.

(5.4.22)

HPT̄ �=
α = 1

2

∑

β �=γ
β,γ �=α

ωαβγ
(
a Sz

α + c W 0
ααα

) (2

3
Sβ Sγ − 1√

6
T 0
βγ

)
. (5.4.23)

which has no scalar, but a vector component. The vector components of (5.4.22) and
(5.4.23) are given by

http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4_3
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{
HPT̄=
α

}
1 = 1

2

∑

β
β �=α

ωαββ

[
a

2

{
Sz
α

(
S+
β S−

β + S−
β S+

β

)}
1 − c√

6

{
W 0
ααα T 0

ββ

}
1

+ {(1 + b T 0
αα

)
Sz
β

}
1

]
, (5.4.24)

{
HPT̄ �=
α

}
1 = 1

2

∑

β �=γ
β,γ �=α

ωαβγ

[
a

2

{
Sz
α

(
S+
β S−

γ + S−
β S+

γ

)}
1 − c√

6

{
W 0
ααα T 0

βγ

}
1

]
,

(5.4.25)
where we have rewitten the first term in the way we originally obtained it. For S = 1

2
or S = 1, these expressions simplify significantly as W 0

ααα = 0, which follows
directly from W 3

ααα = −(S+
α )

3 = 0 for S < 3
2 . For general S = s, however, we

have to evaluate
{
W 0
ααα T 0

βγ

}
1.

5.4.3 Evaluation of
{

W0
ααα T 0

βγ

}
1

We evaluate the vector component of the tensor product of W 0
ααα and T 0

βγ with
α �= β, γ using (3.5.20),

{
W 0
αααT 0

βγ

}
1 = 〈1, 0|3, 0; 2, 0〉

2∑

m=−2

W m
αααT −m

βγ 〈3,m; 2,−m|1, 0〉 . (5.4.26)

From either (D.3.6) or directly from (3.5.9), we obtain

W 3
ααα = −S+

α S+
α S+

α ,

W 2
ααα = 1√

6

[
S−
α ,W 3

ααα

]
= √

6 S+
α S+

α

(
Sz
α + 1

)
,

W 1
ααα = 1√

10

[
S−
α ,W 2

ααα

]
= −

√
3

5
S+
α

[
5Sz
α(S

z
α + 1)− s(s + 1)+ 2

]
,

W 0
ααα = 1√

12

[
S−
α ,W 1

ααα

]
= 2√

5

[
5Sz
α

2 − 3s(s + 1)+ 1
]

Sz
α

W −1
ααα = 1√

12

[
S−
α ,W 0

ααα

]
=
√

3

5
S−
α

[
5Sz
α(S

z
α − 1)− s(s + 1)+ 2

]
,

W −2
ααα = 1√

10

[
S−
α ,W −1

ααα

]
= √

6 S−
α S−

α

(
Sz
α − 1

)
,

W −3
ααα = 1√

6

[
S−
α ,W −2

ααα

]
= S−

α S−
α S−

α .

(5.4.27)

http://dx.doi.org/10.1007/978-3-642-24384-4_3
http://dx.doi.org/10.1007/978-3-642-24384-4
http://dx.doi.org/10.1007/978-3-642-24384-4_3


160 5 Generalization to Arbitrary Spin S

With (D.2.3) and the Clebsch–Gordan coefficients

〈3,m; 2,−m|1, 0〉 = 1√
7 · 5

⎧
⎨

⎩

√
5 for m = ±2,

−2
√

2 for m = ±1,
3 for m = 0,

(5.4.28)

we obtain

7 · 5

3

√
5

6

{
W 0
αααT 0

βγ

}
1 = 5 S+

α Sz
αS+
α S−

β S−
γ

+
[
5
(
S+
α Sz

αSz
α + Sz

αSz
αS+
α

)− (2s(s + 1)+ 1
)
S+
α

]

· (Sz
β S−
γ + S−

β Sz
γ

)

+
[
5Sz
α

2 − 3s(s + 1)+ 1
]

Sz
α

[
4Sz
β Sz
γ − S+

β S−
γ − S−

β S+
γ

]

+
[
5
(
S−
α Sz

αSz
α + Sz

αSz
αS−
α

)− (2s(s + 1)+ 1
)
S−
α

]

· (Sz
β S+
γ + S+

β Sz
γ

)

+ 5 S−
α Sz

αS−
α S+

β S+
γ .

(5.4.29)
We wish to write this in a more convenient form, which directly displays that it
transforms as a vector under spin rotations.

Let us consider first the case β �= γ, and try an Ansatz of the form1

2a
[
(SαSβ)Sz

α(SαSγ )+ (SαSγ )Sz
α(SαSβ)

]

+ 2b
[
Sz
β(SαSγ )+ (SαSβ)Sz

γ

]+ 2c Sz
α(Sβ Sγ ). (5.4.30)

Comparing the coefficients of the (five-spin) terms containing S−
β S−

γ and S−
β S+

γ

yields a = 5. Comparing the coefficients of the three-spin terms containing Sz
β S−
γ ,

S−
β Sz

γ , Sz
β S+
γ , and S+

β Sz
γ yields b = −2s(s + 1)− 1. If compare the coefficients of

both the three-spin and the five-spin terms containing S+
β S−

γ and S−
β S+

γ terms,

−(5Sz
α

2 − 3s(s + 1)+ 1
)
Sz
α = a

2

(
S+
α Sz

αS−
α + S−

α Sz
αS+
α

)+ cSz
α

= 5

2

(
S+
α S−

α (S
z
α − 1)+ S−

α S+
α (S

z
α + 1)

)+ cSz
α

= 5

2

((
2s(s + 1)− 2Sz

α
2)Sz

α − 2Sz
α

)+ cSz
α

= −5Sz
α

3 + (5s(s + 1)− 5
)
Sz
α + cSz

α,

we obtain c = −2s(s + 1) + 4. With these choices, the coefficients of both the
three-spin and the five-spin terms containing Sz

β Sz
γ agree as well,

1 Note that there is no relation between these coefficients and those introduced in (5.3.7).



5.4 Vector Annihilation Operators 161

(
20Sz

α
2 − 12s(s + 1)+ 4

)
Sz
α = 4a Sz

αSz
αSz
α + (4b + 2c)Sz

α.

Finally, the coefficients of the five-spin terms containing Sz
β S−
γ , S−

β Sz
γ , Sz

β S+
γ , and

S+
β Sz

γ , in (5.4.30),

a
[

Sz
αSz
β Sz
α

(
S+
α S−

γ + S−
α S+

γ

)+ Sz
αSz
γ Sz

α

(
S+
α S−

β + S−
α S+

β

)

+ (S+
α S−

β + S−
α S+

β

)
Sz
αSz
αSz
γ + (S+

α S−
γ + S−

α S+
γ

)
Sz
αSz
αSz
β

]
,

agree with those in (5.4.29).
For the equivalence to hold for the case β = γ as well, we need to order the spin

operators in all terms in (5.4.30) such that the Sβ ’s are to the left of the Sγ ’s, as this
is the order of the spin operators in (5.4.29). We hence have to replace the second
term in the first bracket in (5.4.30) by

Sα
(
Sz
α(SαSβ)

)
Sγ ≡ Si

αSz
αS j
αS j
β Si
γ ,

or equivalently add a term

Sα
(
Sz
α(SαSβ)

)
Sγ − (SαSγ )Sz

α(SαSβ)

= Si
αSz
αS j
α

[
S j
β, Si

γ

]

= −δβγ iεi jk Si
αSz
αS j
αSk
β

= −δβγ
(
iεi jk Sz

αSi
αS j
αSk
β + iεi jk[Si

α, Sz
α

]
S j
αSk
β

)

= −δβγ
(
Sz
α i(Sα × Sα)Sβ − εi jkεi zl Sl

αS j
αSk
β

)

= −δβγ
(− Sz

α(SαSβ)− (δ j zδkl − δ jlδkz)Sl
αS j
αSk
β

)

= δβγ
(
Sz
α(SαSβ)+ (SαSβ)Sz

α − s(s + 1)Sz
β

)
. (5.4.31)

Taking all the terms together, we finally obtain

7 · 5

2 · 3

√
5

6

{
W 0
αααT 0

βγ

}
1 = 5

[
(SαSβ)Sz

α(SαSγ )+ (SαSγ )Sz
α(SαSβ)

]

− (2s(s + 1)+ 1
) [

Sz
β(SαSγ )+ (SαSβ)Sz

γ

]

− (2s(s + 1)− 4
)

Sz
α(Sβ Sγ )

+ 5 δβγ
[
Sz
α(SαSβ)+ (SαSβ)Sz

α − s(s + 1)Sz
β

]
.

(5.4.32)

5.4.4 Annihilation Operators Which Transform Odd
Under T (Continued)

Substitution of (5.4.32) into (5.4.24) yields with (5.3.25), (D.3.9), (5.4.9) and (D.3.8)
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{
HPT̄=
α

}
1 = 1

2

∑

β
β �=α

ωαββ

[
3

2(s + 1)

{
Sz
α

(
S+
β S−

β + S−
β S+

β

)}
1

− 7

2(s + 1)(2s + 3)(s + 2)

√
5

6

{
W 0
ααα T 0

ββ

}
1

+ 15

(s + 1)(2s + 3)

{
Sz
α

2Sz
β

}
1 − 3(s − 1)

2s + 3
Sz
β

]

= 3

2(s + 1)

∑

β
β �=α

ωαββ

[
4

5
s(s + 1)Sz

α − 1

5
Sz
β(SαSβ)− 1

5
(SαSβ)Sz

β

− 1

5(2s + 3)(s + 2)

[
10(SαSβ)Sz

α(SαSβ)

− (2s(s + 1)+ 1
) [

Sz
β(SαSβ)+ (SαSβ)Sz

β

]

− (2s(s + 1)− 4
)

s(s + 1) Sz
α

+ 5
[
Sz
α(SαSβ)+ (SαSβ)Sz

α − s(s + 1)Sz
β

]]

+ 1

2s + 3

[
Sz
α(SαSβ)+ (SαSβ)Sz

α + s(s + 1)Sz
β

]
− s2 − 1

2s + 3
Sz
β

]

= 3

2(2s + 3)(s + 2)

∑

β
β �=α

ωαββ

[
− 2

s + 1
(SαSβ)Sz

α(SαSβ)

+ [Sz
α(SαSβ)+ (SαSβ)Sz

α

]

− [Sz
β(SαSβ)+ (SαSβ)Sz

β

]

+ 2s(s + 1)(s + 2) Sz
α + 2(s + 1) Sz

β

]

= 3

(2s + 3)(s + 2)

∑

β
β �=α

ωαββ

[
− 1

s + 1
(SαSβ)Sz

α(SαSβ)

+ Sz
α(SαSβ)− (SαSβ)Sz

β

+ s(s + 1)(s + 2) Sz
α + (s + 1) Sz

β

]
.

(5.4.33)
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Similarly, substitution of (5.4.32) into (5.4.25) yields with (5.3.25) and (D.3.9)

{
HPT̄ �=
α

}
1 = 1

2

∑

β �=γ
β,γ �=α

ωαβγ

[
3

2(s + 1)

{
Sz
α

(
S+
β S−

γ + S−
β S+

γ

)}
1

− 7

2(s + 1)(2s + 3)(s + 2)

√
5

6

{
W 0
ααα T 0

βγ

}
1

]

= 3

2(s + 1)

∑

β �=γ
β,γ �=α

ωαβγ

[
4

5
Sz
α(Sβ Sγ )− 1

5
Sz
β(SαSγ )− 1

5
(SαSβ)Sz

γ

− 1

5(2s + 3)(s + 2)

[
5
[
(SαSβ)Sz

α(SαSγ )+ (SαSγ )Sz
α(SαSβ)

]

− (2s(s + 1)+ 1
)[

Sz
β(SαSγ )+ (SαSβ)Sz

γ

]

− (2s(s + 1)− 4
)

Sz
α(Sβ Sγ )

]]

= 3

2(2s + 3)(s + 2)

∑

β �=γ
β,γ �=α

ωαβγ

[
− (SαSβ)Sz

α(SαSγ )+ (SαSγ )Sz
α(SαSβ)

s + 1

+ 2(s + 2) Sz
α(Sβ Sγ )

− Sz
β(SαSγ )− (SαSβ)Sz

γ

]
.

(5.4.34)
Combining (5.4.33) and (5.4.34), we finally obtain the vector annihilation operator

AS
α ≡2(2s + 3)(s + 2)

3

({
HPT̄=
α

}
1 + {HPT̄ �=

α

}
1

)

=
∑

β
β �=α

Sα(SαSβ)+ (SαSβ)Sα + 2(s + 1) Sβ
|ηα − ηβ |2

+
∑

β,γ
β,γ �=α

1

(η̄α − η̄β )(ηα − ηγ )

[
− (SαSβ)Sα(SαSγ )+ (SαSγ )Sα(SαSβ)

s + 1

+ 2(s + 2) Sα(Sβ Sγ )−Sβ(SαSγ )− (SαSβ)Sγ

]
,

AS
α

∣∣ψ S
0
〉 = 0 ∀α.

(5.4.35)

This operator is even more complicated than the corresponding operator (4.6.27) for
S = 1, and only simplifies moderately if we sum over α. From (5.4.33), we obtain

http://dx.doi.org/10.1007/978-3-642-24384-4_4
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Table 5.1 Annihilation operators for the general spin liquid ground state

Annihilation operators for
∣∣ψ S

0

〉

Operator Equation Symmetry transformation properties
T P Order of tensor Transl. inv.

Stot (2.2.6) − + Vector Yes

�S
α (5.2.1) No No 2s + 1 No

H S − E S
0 (5.3.40) + + Scalar Yes

DS
α (5.4.13) + − Vector No

�S (5.4.14) + − Vector Yes

AS
α (5.4.35) − + Vector No

ϒS (5.4.36) − + Vector Yes

With the exception of the defining operator�S
α, which is the m = 2s + 1 component of a tensor of

order 2s + 1, we have only included scalar and vector annihilation operators

2(2s + 3)(s + 2)

3

∑

α

{
HPT̄=
α

}
1

= − 2

s + 1

∑

α �=β
ωαββ (SαSβ)Sz

α(SαSβ) + 2(s + 1)3
∑

α

Sα
∑

β
β �=α

ωαββ

= − 2

s + 1

∑

α �=β
ωαββ (SαSβ)Sz

α(SαSβ) + (s + 1)3
N 2 − 1

6
Stot.

This implies that
∣∣ψ S

0

〉
is also annihilated by

ϒS = − 1

s + 1

∑

α,β,γ
β,γ �=α

(SαSβ)Sα(SαSγ )+ (SαSγ )Sα(SαSβ)

(η̄α − η̄β)(ηα − ηγ )

+
∑

α,β,γ
α �=β �=γ �=α

2(s + 2) Sα(Sβ Sγ )− Sβ(SαSγ )− (SαSβ)Sγ
(η̄α − η̄β)(ηα − ηγ )

. (5.4.36)

Whether this operator is of any practical use for further study of the model, however,
remains an open question. The derivation of it concludes our study of non-trivial
scalar and vector operators we can obtain from the defining condition (5.2.1) for the
critical spin liquid state (5.1.3). These operators are summarized in Table 5.1.

5.5 Scalar Operators Constructed from Vectors

We see from Table 5.1 that there are two simple ways of constructing translationally,
parity, and time reversal invariant scalar operators which annihilate

∣∣ψ S
0

〉
from vector

operators. These operators are

http://dx.doi.org/10.1007/978-3-642-24384-4_2
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∑

α

DS
α

†
DS
α and

∑

α

SαAS
α. (5.5.1)

These could potentially lead to alternative parent Hamiltonians for
∣∣ψ S

0

〉
. If we just

recover (5.3.40), the evaluation of the first operator will show that H S −E0 is positive
semi-definite, or in other words, that

∣∣ψ S
0

〉
is a ground state of H S .

5.5.1 Factorization of the Hamiltonian

In this section, we will evaluate

∑

α

DS
α

†
DS
α,

with DS
α given by (5.4.13), or explicitly

DS
α

† = 1

2

∑

β
β �=α

ηα + ηβ

ηα − ηβ

[
i(Sα × Sβ)− (s + 1)Sβ + 1

s + 1

(
SαSβ

)
Sα

]
,

DS
α = 1

2

∑

γ
γ �=α

ηα + ηγ

ηα − ηγ

[
i(Sα × Sγ )+ (s + 1)Sγ − 1

s + 1
Sα
(
SαSγ

)]
.

With α �= β, γ and

i(Sα × Sβ)i(Sα × Sγ ) = εi jkεilm S j
β Sk
αSl
αSm
γ

= δ jlδkm(S j
β Sl
αSk
αSm
γ − S j

β

[
Sl
α, Sk

α

]
Sm
γ

)− δ jmδkl S j
β Sk
αSl
αSm
γ

= (SαSβ)(SαSγ )− iSα(Sβ × Sγ )− s(s + 1)Sβ Sγ , (5.5.2)

we obtain for the product of the two square brackets

(SαSβ)(SαSγ )− iSα(Sβ × Sγ )− s(s + 1)Sβ Sγ

+ 2(s + 1)iSα(Sβ × Sγ )− 2

s + 1

(
SαSβ

)(
SαSγ

)

− (s + 1)2 Sβ Sγ + 2
(
SαSβ

)(
SαSγ

)− s

s + 1

(
SαSβ

)(
SαSγ

)

= (2s + 1)

[
1

s + 1
(SαSβ)(SαSγ )+ iSα(Sβ × Sγ )− (s + 1)Sβ Sγ

]
. (5.5.3)
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The product of the prefactors is given by

ηα + ηβ

ηα − ηβ
· ηα + ηγ

ηα − ηγ

= 1

2

[
1 + 2ηβ

ηα − ηβ

][
− 1 + 2ηα

ηα − ηγ

]
+ 1

2

[
− 1+ 2ηα

ηα − ηβ

][
1+ 2ηγ

ηα − ηγ

]

= −1 + 1 + 1 + 2
ηαηβ

(ηα − ηβ)(ηα − ηγ )
+ 2

ηαηγ

(ηα − ηβ)(ηα − ηγ )

= 1 − 2(ωαβγ + ωαγβ). (5.5.4)

We now define

BS
α ≡ i

2

∑

γ
γ �=α

[
i(Sα × Sγ )+ (s + 1)Sγ − 1

s + 1
Sα
(
SαSγ

)]

= i

2

[
i
(
Sα × Stot

)+ (s + 1)Stot − Sα
(
SαStot

)

s + 1

]
, (5.5.5)

and its Hermitian conjugate,

BS
α

† = i

2

∑

β
β �=α

[
i(Sα × Sβ)− (s + 1)Sβ + 1

s + 1

(
SαSβ

)
Sα

]
.

Obviously, BS
α annihilates every spin singlet, and

∣∣ψ S
0

〉
in particular. With (5.5.5),

we may write

1

2s + 1

∑

α

(
DS
α

†
DS
α + BS

α

†
BS
α

)

= −
∑

α,β,γ
β,γ �=α

ωαβγ + ωαγβ

2

[
(SαSβ)(SαSγ )

s + 1
+ iSα(Sβ × Sγ )− (s + 1)Sβ Sγ

]

= −
∑

α �=β
ωαββ

[
(SαSβ)(SαSγ )

s + 1
− SαSβ − s(s + 1)2

]

−
∑

α,β,γ
α �=β �=γ �=α

ωαβγ

[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

2(s + 1)
− (s + 1)Sβ Sγ

]

= (2s + 3)
∑

α �=β
ωαββ SαSβ −

∑

α,β,γ
β,γ �=α

ωαβγ
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

2(s + 1)

+ s(s + 1)2
N (N 2 + 5)

12
− s + 1

2
S2

tot, (5.5.6)

where we have used (B.15) and (B.20). With the Hamiltonian (5.3.40) and the ground
state energy (5.3.41) derived in Sect. 5.3, we may write
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1

(2s + 1)(2s + 3)

∑

α

(
DS
α

†
DS
α + BS

α

†
BS
α

)
+ s + 1

2(2s + 3)
S2

tot

=
∑

α �=β

SαSβ
|ηα − ηβ |2 − 1

2(s + 1)(2s + 3)

∑

α,β,γ

α �=β,γ

(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

(η̄α − η̄β)(ηα − ηγ )

+ s(s + 1)2

2s + 3

N (N 2 + 5)

12

= N 2

2π2

[
H S − E S

0

]
. (5.5.7)

Since all the operators on the left hand side of (5.5.7) are positive semi-definite,
i.e., have only non-negative eigenvalues, the operator H S − E S

0 on the right has to
be positive semi-definite as well. Furthermore, since all the operators on the left
annihilate

∣∣ψ S
0

〉
we have shown that

∣∣ψ S
0

〉
is a zero energy ground state of H S − E S

0 .

Exact diagonalization studies [2] carried out numerically for up to N = 18 sites for the
S = 1 model and for up to N = 12 sites for the S = 1

2 model further show that
∣∣ψ S=1

0

〉

and
∣∣ψ S= 3

2
0

〉
are the unique ground states of (5.3.40). We assume this property to hold

for general spin S, but are not aware of any method to prove this analytically.
Note that the derivation using the operators DS

α is actually the simplest derivation
of (5.3.40) we are aware of. As compared to our original derivation in Sect. 5.3, it has
the advantage that, except for the tensor decomposition of (S+)2s(S−)2s spelled out
in Sect. 5.3.2, we only needed the formula (D.3.8) for the vector content of Sz

1 Sz
2 Sz

3,

but not the significantly more complicated formula (4.5.22) for the scalar component
of T 0

ααT 0
βγ derived in Sect. 4.5.3. That we have arrived at the same model twice using

different methods gives us some confidence in the uniqueness of the final Hamiltonian
(5.3.40).

5.5.2 A Variation of the Model

The analysis in the previous section suggests that another, closely related Hamiltonian
is positive semi-definite as well. Writing the product of prefactors (5.5.4) as

ηα + ηβ

ηα − ηβ
· ηα + ηγ

ηα − ηγ
= −2

(
ωαβγ + ωαγβ − 1

2

)
, (5.5.8)

we can derive a model directly from

∑

α

DS
α

†
DS
α,

http://dx.doi.org/10.1007/978-3-642-24384-4_4
http://dx.doi.org/10.1007/978-3-642-24384-4_4
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without any need to introduce the operators BS
α and BS

α
†
. This yields

1

2s + 1

∑

α

DS
α

†
DS
α

= −
∑

α �=β

(
ωαββ − 1

4

)[
(SαSβ)(SαSγ )

s + 1
− SαSβ − s(s + 1)2

]

−
∑

α,β,γ

α �=β �=γ �=α

(
ωαβγ − 1

4

)[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

2(s + 1)
− (s+1)Sβ Sγ

]

= (2s + 3)
∑

α �=β

(
ωαββ − 1

4

)
SαSβ

−
∑

α,β,γ

β,γ �=α

(
ωαβγ − 1

4

)
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

2(s + 1)

+ s(s + 1)2
∑

α �=β
ωαββ − 1

4
(s + 1)

∑

α,β,γ

β,γ �=α

Sβ Sγ

= (2s + 3)
∑

α �=β

(
ωαββ − 1

4

)
SαSβ

−
∑

α,β,γ

β,γ �=α

(
ωαβγ − 1

4

)
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

2(s + 1)

+ s(s + 1)2
N (N 2 − 4)

12
− (s + 1)(N − 2)

4
S2

tot, (5.5.9)

where we have used (B.15) and (B.20). If we now define the alternative model

H̃ S ≡ 2π2

N 2

⎡

⎣
∑

α �=β

(
1

|ηα − ηβ |2 − 1

4

)
SαSβ

−
∑

α,β,γ

α �=β,γ

(
1

(η̄α − η̄β)(ηα − ηγ )
− 1

4

)
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

2(s + 1)(2s + 3)

⎤

⎦

(5.5.10)
with energy eigenvalue

Ẽ S
0 = −2π2

N 2

s(s + 1)2

2s + 3

N (N 2 − 4)

12
= −π

2

6

s(s + 1)2

2s + 3

(
N − 4

N

)
, (5.5.11)
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we may rewrite (5.5.9) as

2π2

N 2

[
1

(2s + 1)(2s + 3)

∑

α

DS
α

†
DS
α + (s + 1)(N − 2)

4(2s + 3)
S2

tot

]
= H̃ S − Ẽ S

0 .

(5.5.12)
This implies that

∣∣ψ S
0

〉
is also a ground state of H̃ S with energy Ẽ S

0 , as defined in
(5.5.10) and (5.5.11), respectively.

Since the maximal distance of ηα and ηβ on the unit circle is 2, the shift in
the coefficients in (5.5.10) (as compared to (5.3.40)) effects that these coefficients
go to zero as the sites ηα and ηβ, ηγ are maximally separated on the unit circle.
The alternative model (5.5.10) is hence more local than the original model (5.3.40).
It is possible that the alternative model (5.5.10) possesses symmetries (or even an
integrability structure) the original model does not share.

5.5.3 The Third Derivation

Finally, another translationally, parity, and time reversal invariant scalar operator
which annihilates

∣∣ψ S
0

〉
is given by

∑

α

SαAS
α, (5.5.13)

where AS
α is given by (5.4.35),

AS
α =

∑

β

β �=α

ωαββ
[
Sα(SαSβ)+ (SαSβ)Sα + 2(s + 1)Sβ

]

+
∑

β,γ

β,γ �=α

ωαβγ

[
− (SαSβ)Sα(SαSγ )+ (SαSγ )Sα(SαSβ)

s + 1

+ 2(s + 2), Sα(Sβ Sγ )− Sβ(SαSγ )− (SαSβ)Sγ

]
.

With

Sα(SαSβ)Sα = Sα
[
Sα(SαSβ)+ i Sα × Sβ

]

= (s(s + 1)− 1) SαSβ,

Sα(SαSβ)Sγ = Sα
[
Sγ (SαSβ)− iδβγ Sα × Sβ

]

= (SαSγ )(SαSβ)+ δβγ SαSβ,
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which follows from (4.6.23, 4.6.24) and holds for α �= β, γ, we obtain

∑

α

SαAS
α =

∑

α �=β
ωαββ [2s(s + 1)− 1 + 2(s + 1)− 1] SαSβ

+
∑

α,β,γ

α �=β,γ

ωαβγ

[
− (s(s + 1)− 1)

(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

s + 1

+ 2s(s + 1)(s + 2)Sβ Sγ − (SαSβ)(SαSγ )− (SαSγ )(SαSβ)
]
.

(5.5.14)
With (B.15) and (B.20), we find

∑

α,β,γ

α �=β,γ

ωαβγ Sβ Sγ = s(s + 1)
N (N 2 + 5)

12
+ 2

∑

α �=β
ωαββ SαSβ − 1

2
S2

tot,

and therewith
∑

α

SαAS
α = 2s(s + 2)(2s + 3)

∑

α �=β
ωαββ SαSβ

− s(s + 2)

s + 1

∑

α,β,γ

α �=β,γ

ωαβγ
[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]

+ 2s(s + 2)s(s + 1)2
N (N 2 + 5)

12
− s(s + 1)(s + 2)S2

tot.

(5.5.15)
We may rewrite this

1

2s(s + 2)(2s + 3)

∑

α

Sα AS
α + s + 1

2(2s + 3)
S2

tot

=
∑

α �=β

SαSβ
|ηα − ηβ |2 − 1

2(s + 1)(2s + 3)

∑

α,β,γ

α �=β,γ

(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

(η̄α − η̄β)(ηα − ηγ )

+ s(s + 1)2

2s + 3

N (N 2 + 5)

12
. (5.5.16)

In other words, we obtain the model Hamiltonian (5.3.40) for a third time.
The present derivation is the most complicated one, and does not yield any new
insights, except that it further strengthens the case that there is a certain uniqueness
to our Hamiltonian.

http://dx.doi.org/10.1007/978-3-642-24384-4_4
http://dx.doi.org/10.1007/978-3-642-24384-4_4
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5.6 The Case S = 1
2 Once More

Finally, we wish to demonstrate that the general spin S model introduced and derived
in this section includes the Haldane–Shastry model as the special case S = 1

2 .

For S = 1
2 , the higher order interaction terms in the Hamiltonian (5.3.40) simplify,

as

(SαSβ)2 = −1

2
SαSβ + 3

16
, α �= β, (5.6.1)

and

(SαSβ)(SαSγ )+ (SαSγ )(SαSβ) = 1

2
Sβ Sγ , α �= β �= γ �= α. (5.6.2)

We can verify (5.6.1) and (5.6.2) with

(SαSβ)(SαSγ ) = Si
β Si
αS j
αS j
γ

= Si
β

(
1

4
δi j + ı

2
εi jk Sk

α

)
S j
γ

= 1

4
Sβ Sγ + ı

2
Sα(Sβ × Sγ ), (5.6.3)

which holds only for S = 1
2 and α �= β, γ. Alternatively, since S+

α
2 = 0 for S = 1

2 ,

T m
αα = 0 for all m, and (4.5.22) reduces to

−Sβ Sγ + 2
[
(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

]+ 2δβγ SαSβ = 0. (5.6.4)

For β = γ and β �= γ, this yields (5.6.1) and (5.6.2), respectively.
Substitution of (5.6.1, 5.6.2), and s = 1

2 into the general Hamiltonian (5.3.40)
yields

H S= 1
2 = 2π2

N 2

⎡

⎣
∑

α �=β

1

|ηα − ηβ |2
(

SαSβ + 1

12
SαSβ − 1

32

)

− 1

24

∑

α,β,γ

α �=β �=γ �=α

Sβ Sγ
(η̄α − η̄β)(ηα − ηγ )

⎤

⎦

= 2π2

N 2

⎡

⎣
∑

α �=β

SαSβ
|ηα − ηβ |2 − 1

32

N (N 2 − 1)

12
+ 1

48
S2

tot − N

64

⎤

⎦

= HHS − 1

32

N (N 2 + 5)

12
+ 1

48
S2

tot. (5.6.5)

http://dx.doi.org/10.1007/978-3-642-24384-4_4
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The energy of the Haldane–Shastry ground state
∣∣ψHS

0

〉
is hence with (5.3.41)

given by

EHS
0 = E

S= 1
2

0 + 2π2

N 2

1

32

N (N 2 + 5)

12
= −2π2

N 2

N (N 2 + 5)

48
,

which agrees with (2.2.5). Note that as the derivation in (5.6.5) stands, we have lost
the information that HHS − EHS

0 is positive semi-definite, due to the S2
tot term. This

information, however, can be recovered if we take the last term on the left-hand side
of (5.5.7) into account. The spin S model we have derived here hence includes the
Haldane–Shastry model as the special case S = 1

2 .
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Chapter 6
Conclusions and Unresolved Issues

The model—In this monograph, we have presented an exact model of a critical spin
chain with spin S. The Hamiltonian is given by

H S = 2π2

N 2

⎡

⎣
N∑

α �=β

SαSβ
|ηα − ηβ |2

− 1

2(S + 1)(2S + 3)

N∑

α,β,γ

α �=β,γ

(SαSβ)(SαSγ )+ (SαSγ )(SαSβ)

(η̄α − η̄β )(ηα − ηγ )

⎤

⎦, (6.1)

where ηα = ei 2π
N α, α = 1, . . . , N, are the coordinates of N sites on a unit circle

embedded in the complex plane. If we write the ground state of the Haldane–Shastry
model [1, 2], which is equivalent to the Gutzwiller state obtained by projection of
filled bands [3–5], in terms of Schwinger bosons,

∣∣ψHS
0

〉 =
∑

{z1,...,zM ;w1,...,wM }
ψHS

0 (z1, . . . , zM ) a+
z1

· · · a†
zM

b+
w1

· · · b†
wM

|0〉

≡ �HS
0 [a†, b†]|0〉, (6.2)

where M = N
2 and the wk’s are those coordinates on the unit circle which are not

occupied by any of the zi ’s, then the exact ground state of our model Hamiltonian
(6.1) is given by

∣∣ψ S=1
0

〉 =
(
�HS

0

[
a†, b†])S |0〉. (6.3)

The ground state energy is

E S
0 = −2π2

N 2

S(S + 1)2

2S + 3

N (N 2 + 5)

12
. (6.4)
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For S = 1
2 , the model (6.1) reduces to the Haldane–Shastry model. Since the model

describes a critical spin chain with spin S, the low energy effective field theory is
given by the SU(2) level k = 2S Wess–Zumino–Witten model [6, 7].

The Hamiltonian was constructed from the condition

	S
α =

N∑

β=1
β �=α

1

ηα − ηβ
(S−
α )

2S S−
β , 	S

α

∣∣ψ S
0

〉 = 0 ∀α, (6.5)

which we obtained for S = 1
2 and for S = 1 from the two- and three-body parent

Hamiltonians of bosonic Laughlin and Moore–Read states in quantum Hall systems,
respectively, and then generalized to arbitrary spin.

Uniqueness and the quest for integrability—Starting with the defining condition
(6.5), we constructed a total of three translationally, parity, and time reversal invariant
scalar annihilation operator for the state (6.3)—one directly, and two by taking the
scalar products of vector operators. All three operators yielded the parent Hamiltonian
(6.1). This attests are certain uniqueness to the model.

Nonetheless, it is clear that the model is not completely unique. First, the ground
state (6.3) is trivially annihilated by all terms which annihilate every spin singlet.
For example, we could add the term

∑

α

(SαStot)
2 (6.6)

with an arbitrary coefficient to (6.1). Then (6.3) would remain the ground state as long
as the operator H S − E S

0 were to remain positive semi-definite. (This ambivalence
was exploited in Sect. 5.5.2, when we derived the alternative Hamiltonian (5.5.10).)
Another three-spin term which annihilates every spin singlet is given by (5.4.20),
even though this term is not suitable as it violates both parity and time reversal
symmetry. If we allow for four-spin interactions, there is a plethora of parity and
time reversal invariant scalar operators we could add.

Second, we could construct another parent Hamiltonian from the annihilation
operator


α =
N∑

β,γ=1
β,γ �=α

S−
α S−

β S−
γ

(ηα − ηβ)(ηα − ηγ )
−

N∑

β=1
β �=α

(S−
α )

2S−
β

(ηα − ηβ)2
, 
α

∣∣ψ S=1
0

〉 = 0 ∀α, (6.7)

which we derived in Sect. 4.4.2. This Hamiltonian will presumably contain five-spin
interactions.

The issue of uniqueness of the model is relevant to the question of whether the
model, or a closely related model, is integrable. Preliminary numerical work [8]
indicates that the model (6.1) is not integrable for finite system sizes, while the data
are consistent with integrability in the thermodynamic limit.

http://dx.doi.org/10.1007/978-3-642-24384-4_5
http://dx.doi.org/10.1007/978-3-642-24384-4_5
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Momentum spacings and topological degeneracies—The other highly important,
unresolved issue regarding the model concerns the momentum spacings of the spinon
excitations. In Sect. 2.4.5, we proposed that the spacings for the S = 1 model would
alternate between being odd multiples of π

N and being either odd or even multiples
of πN . (Recall that odd multiples of πN correspond to half-fermions in one dimension,
while even multiples represent either fermions or bosons.) Whenever we have a
choice between even and odd, this choice represents a topological quantum number,
which is insensitive to local perturbations. These topological quantum numbers span
an internal or topological Hilbert space of dimension 2L when 2L spinons are present.
All the states in this space are degenerate in the thermodynamic limit. This topological
Hilbert space is the one-dimensional analog of the topological Hilbert space spanned
by the Majorana fermion states [9–12] in the vortex cores of the Moore–Read state
[13–15] or the non-abelian chiral spin liquid [16]. In Sect. 2.4.7, we generalized these
conditions for the momentum spacings to the models with arbitrary spin S > 1.

The first unresolved issue with regard to our proposal is whether it is correct.
In view of the established momentum spacings [17] for the spinons in the Haldane–
Shastry model, the construction of the state suggests that it is. Since the model
(6.1) is presumably not integrable, however, the momenta of the individual spinons
will not be good quantum numbers when more than one spinon is present. (This is
always the case, as the minimal number of spinons for the models with S ≥ 1 is
two.) Nonetheless, the topological shifts can still be good quantum numbers. In this
regard, the situation is similar to the Moore–Read state, where, when long-ranged
interaction are present, the state vectors in the internal Hilbert space are degenerate
in the thermodynamic limit only.

Assuming that our assignment of the momentum spacings is correct, the next
question to ask is whether the picture applies only to the exact model we have
constructed in this monograph, or to a whole range of critical spin chain models with
S = 1. If it applies to a range of models, as we believe, the topological space spanned
by the spinons may be useful in applications as protected cubits. The internal state
vector can probably be manipulated though measurements involving several spinons
simultaneously, but it is far from clear how to do so efficiently.

To study the spinon excitations systematically, it would be highly desirable to
apply the method reviewed in Sect. 2.2.4 for the Haldane–Shastry model to the general
model (6.1). Unfortunately, this does not appear straightforward. The problem arises
when we write out the S+

β S−
α S+

γ S−
α term along the lines of (2.2.36–2.2.40). When we

evaluated the S+
α S−

β term in the Haldane–Shastry model, we used the Taylor series
expansion (2.2.39) to shift the variable ηβ in the function

ψ(z1, . . . , z j−1, ηβ, z j+1, . . . , zM )

ηβ

in (2.2.38) to z j . When we evaluate the action of the S+
β S−

α S+
γ S−

α term in the S = 1
model, we need to shift “two variables” ηα in the function

ψ(z1, . . . , z j−1, ηα, z j+1, . . . , zk−1, ηα, zk+1, . . . , zM )

η2
α

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
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http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_2
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via Taylor expansions, one to z j and one to zk . This yields for z j �= zk

ψ(z1, . . . , ηα, . . . , ηα, . . . , zM )

η2
α

=
N−1∑

l=0

(ηα − z j )
l

l!
N−1∑

m=0

(ηα − zk)
m

m!
∂ l

∂zl
j

∂m

∂zm
k

ψ(z1, . . . , zM )

z j zk
. (6.8)

The sum over α we need to evaluate is hence

N∑

α=1
ηα �=z j zk

η2
α(ηα − z j )

l(ηα − zk)
m

(ηα − z j )(η̄α − z̄k)
, 0 ≤ l,m ≤ N − 1. (6.9)

In the Haldane–Shastry model, the corresponding sum (2.2.40) is non-zero only for
l = 0,1, and 2. In the present case, however, further terms arise for l + m + 1 = N .
These yield terms with very high derivatives when substituted in (6.8). It is not clear
whether an analysis along these lines is feasible.

Static spin correlations—Another open issue is the static spin correlation func-
tions of the ground state (6.3). We conjecture that it can be evaluated via a gener-
alization of the method employed by Metzner and Vollhardt [4] for the Gutzwiller
wave function.

Generalization to symmetric representations of SU(n)—The generalization of
the model to symmetric representations of SU(n), like the representations 6 or 10
of SU(3), appears to follow without incident. If we write the SU(3) Gutzwiller or
Haldane–Shastry ground state [18, 19] in terms of SU(3) Schwinger bosons b†, r†, g†

(for blue, red, and green; see e.g. [20]),
∣∣ψHS

0

〉 ≡ �HS
0

[
b†, r†, g†]|0〉, (6.10)

the generalizations to the SU(3) representation 6 and 10 are given by

∣∣ψk
0

〉 =
(
�HS

0

[
b†, r†, g†])k |0〉, (6.11)

with k = 2 and k = 3, respectively. The generalization of the defining
condition (6.5) is

	k
α =

N∑

β=1
β �=α

1

ηα − ηβ
(I −
α )

k I −
β , 	k

α

∣∣ψk
0

〉 = 0 ∀α, (6.12)

where I − ≡ r†b is one of the three “lowering” operators for the SU(3) spins.
We assume that the construction of a parent Hamiltonian along the lines of Chaps. 4
and 5 will proceed without incident. The momentum spacings in the SU(n) models
are likely to follow patterns which have no analog in quantum Hall systems, and
have hence not been studied before.

http://dx.doi.org/10.1007/978-3-642-24384-4_2
http://dx.doi.org/10.1007/978-3-642-24384-4_4
http://dx.doi.org/10.1007/978-3-642-24384-4_5
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Generalization to include mobile holes—It appears likely that the model can be
generalized to include mobile holes as well, a task which has been accomplished for
the S = 1

2 model by Kuramoto and Yokoyama [21].
Conclusion—We have introduced an exact model of critical spin chains with

arbitrary spin S. For S = 1
2 , the model reduces to one previously discovered by

Haldane [1] and Shastry [2]. The spinon excitations obey non-abelian statistics for
S ≥ 1, with the internal Hilbert space spanned by topological spacings of the single
spinon momenta. There is a long list of unresolved issues, including the quest for
integrability and the viability of potential applications as protected cubits in quantum
computation.
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Appendix A
Spherical Coordinates

The formalism for Landau level quantization on the sphere developed in
Sect. 2.1.5 requires vector analysis in spherical coordinates. In this appendix,
we will briefly review the conventions. Vectors and vector fields are given by

r ¼ rer; ðA:1Þ

vðrÞ ¼ vrer þ vheh þ vueu; ðA:2Þ

with

er ¼
cos u sin h
sin u sin h

cos h

0

@

1

A; eh ¼
cos u cos h
sin u cos h
� sin h

0

@

1

A; eu ¼
� sin u
cos u

0

0

@

1

A: ðA:3Þ

where u 2 ½0; 2p½ and h 2 ½0; p�. This implies

er � eh ¼ eu; eh � eu ¼ er; eu � er ¼ eh; ðA:4Þ

and

@er

@h
¼ eh;

@eh

@h
¼ �er;

@eu

@h
¼ 0;

@er

@u
¼ sin h eu;

@eh

@u
¼ cos h eu;

@eu

@u
¼ � sin h er � cos h eh: ðA:5Þ

With

r ¼ er

@

@r
þ eh

1
r

@

@h
þ eu

1
r sin h

@

@u
ðA:6Þ

we obtain

rv ¼ 1
r2

@ðr2vrÞ
@r

þ 1
r sin h

@ðsin hvhÞ
@h

þ 1
r sin h

@vu

@u
; ðA:7Þ
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r� v ¼ er

1
r sin h

@ðsin hvuÞ
@h

� @ vh

@u

� �

þ eh
1

r sin h
@vr

@u
� 1

r

@ðrvuÞ
@r

� �

þ eu
1
r

@ðrvhÞ
@r

� 1
r

@vr

@h

� �
; ðA:8Þ

r2 ¼ 1
r2

@

@r
r2 @

@r

� �
þ 1

r2 sin h
@

@h
sin h

@

@h

� �
þ 1

r2 sin2 h

@2

@u2
: ðA:9Þ
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Appendix B
Fourier Sums for One-Dimensional Lattices

In this appendix we collect and proof some useful formulas for the explicit
calculations of the Haldane–Shastry model. In particular, we provide the Fourier
sums required for the evaluation of the coefficients Al in (2.2.40) using two dif-
ferent methods, first by contour integration loosely following Laughlin et al. [1],
and second by Feynmanesque algebra.

For ·fi ¼ ei2p
N
fi with fi ¼ 1; . . .;N the following hold:

(a)

·N
fi ¼ 1: ðB:1Þ

(b)

XN

fi¼1

·m
fi ¼ Ndm;0 mod N: ðB:2Þ

(c)

YN

fi¼1

ð·� ·fiÞ ¼ ·N � 1: ðB:3Þ

Proof The ·fi are by definition roots of 1. h

(d)

XN

fi¼1

1
·� ·fi

¼ N·N�1

·N � 1
: ðB:4Þ

Proof Take @
@· of (B.3) and divide both sides by ·N � 1: h
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(e)
XN

fi¼1

·fi
·� ·fi

¼ N

·N � 1
: ðB:5Þ

Proof Substitute ·fi ! 1
·fi
; ·! 1

·
in (B.4) and divide by ð�·Þ: h

(f)

XN

fi;fl;c¼1
fi 6¼fl6¼c 6¼fi

·2
c

ð·fi � ·cÞð·fl � ·cÞ
¼ NðN � 1ÞðN � 2Þ

3
: ðB:6Þ

Proof Use the algebraic identity

a2

ða� bÞða� cÞ þ
b2

ðb� aÞðb� cÞ þ
c2

ðc� aÞðc� bÞ ¼ 1: ðB:7Þ

h

(g)
XN�1

fi;fl¼1
fi6¼fl

1
ð·fi � 1Þð·fl � 1Þ ¼

ðN � 1ÞðN � 2Þ
3

: ðB:8Þ

Proof Substitute ·fi ! ·fi·c; ·fl ! ·fl·c in (B.6)

(h)
XN�1

fi¼1

·m
fi

·fi � 1
¼ N þ 1

2
�m; 1�m�N ðB:9Þ

Proof by contour integration Use Cauchy’s theorem [2] for the function

f ðzÞ ¼ zm�1

z� 1
; N� 2;

with the contours shown in Fig. B.1 yields

XN�1

fi¼1

·m
fi

·fi � 1
¼ 1

2pi

XN�1

fi¼1

I

C

zm�1

z� 1
·fi

z� ·fi
dz

¼ N

2pi

I

C

zm�1

ðz� 1ÞðzN � 1Þ dz

¼ � N

2pi

I

C0

zm�1

ðz� 1ÞðzN � 1Þ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼f ðzÞ

dz
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where we have first used (B.5) and then deformed the contour C such that the
radius of circle goes to infinity, used that the circle at infinity does not contribute to
the integral as the integrand falls off as at least 1=z2 for m�N, and finally
reversed the direction of integration to replace C by C0.
Since f ðzÞ has a pole of second order at z ¼ 1, the residue is given by

c�1 ¼ lim
z!1

d
dz
ðz� 1Þ2fðzÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼1=gðzÞ

¼ � lim
z!1

g0ðzÞ
g2ðzÞ:

With

gðzÞ ¼ 1
zm�1

zN � 1
z� 1

¼
XN

k¼1

zk�m�!z!1
N; ðB:10Þ

g0ðzÞ ¼
XN

k¼1

ðk�mÞzk�m�1�!z!1 NðN þ 1Þ
2

�mN; ðB:11Þ

we obtain
XN�1

fi¼1

·m
fi

·fi � 1
¼ �Nc�1 ¼

ðN þ 1Þ
2

�m:

hProof by algebra With the definition

Sm �
XN�1

fi¼1

·m
fi

·fi � 1
;

we find

Smþ1 � Sm ¼
XN�1

fi¼1

·m
fi ¼

�1; 1�m�N � 1;
N � 1; m ¼ 0:

�

and

S0 ¼
XN�1

fi¼1

1
·fi � 1

¼ �
XN�1

fi¼1

·fi
·fi � 1

¼ �S1;

C

C′

Fig. B.1 Contours for
integrations
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where we substituted ·fi ! 1
·fi
: This directly implies

S1 ¼ �S0 ¼
N � 1

2
and Sm ¼

ðN þ 1Þ
2

�m; 1�m�N:

(i)

XN�1

fi¼1

1
·fi � 1

¼ �N � 1
2

: ðB:12Þ

Proof Use (B.9) with m ¼ N. h

(j)

XN�1

fi¼1

·m
fi

ð·fi � 1Þ2
¼ �N2 � 1

12
þ ðm� 1ÞðN �mþ 1Þ

2
; 1�m�N: ðB:13Þ

Proof by contour integration In analogy to the proof of (B.9) we write
XN�1

fi¼1

·m
fi

ð·fi � 1Þ2
¼ 1

2pi

XN�1

fi¼1

I

C

zm�1

ðz� 1Þ2
·fi

z� ·fi
dz

¼ N

2pi

I

C

zm�1

ðz� 1Þ2ðzN � 1Þ
dz

¼ � N

2pi

I

C0

zm�1

ðz� 1Þ2ðzN � 1Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼hðzÞ

dz

where we have again used (B.5) and replaced the contour C by C0. As hðzÞ has a
now pole of third order at z ¼ 1, the residue is given by

c�1 ¼
1
2

lim
z!1

d2

dz2
ðz� 1Þ3hðzÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼1=gðzÞ

¼ lim
z!1

� g00ðzÞ
2g2ðzÞ þ

g0ðzÞð Þ2

g3ðzÞ w

 !

:

With gð1Þ and g0ð1Þ as given by (B.10) and (B.11) and

g00ðzÞ ¼
XN

k¼1

ðk�mÞðk�m� 1Þzk�m�2

�!z!1 NðN þ 1Þð2N þ 1Þ
6

� ð2mþ 1ÞNðN þ 1Þ
2

þmðmþ 1Þ;

we find after some algebra that �Nc�1 equals the expression on the right of
(B.13). h

Proof by algebra With the definition

Rm �
XN�1

fi¼1

·m
fi

ð·fi � 1Þ2
;
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we find

Rmþ1 � Rm ¼
XN�1

fi¼1

·m
fi

ð·fi � 1Þ ¼ Sm

and

R0 ¼
XN�1

fi¼1

1

ð·fi � 1Þ2

¼
XN�1

fi¼1

XN�1

fl¼1

1
ð·fi � 1Þð·fl � 1Þ �

XN�1

fi;fl¼1
ðfi 6¼flÞ

1
ð·fi � 1Þð·fl � 1Þ

¼ �ðN � 1ÞðN � 5Þ
12

;

where we have used (B.12) and (B.8). This implies

Rmþ1 ¼ R0 þ S0 þ
Xm

n¼1

Sn

¼ �N2 � 1
12

þ
Xm

n¼1

ðN þ 1Þ
2

� n

� �

¼ �N2 � 1
12

þmðN �mÞ
2

:

for 1�m�N: h

(k)

XN�1

fi¼1

1

ð·fi � 1Þ2
¼ �ðN � 1ÞðN � 5Þ

12
: ðB:14Þ

Proof Use (B.13) with m ¼ N: h

(l)

XN�1

fi¼1

·m
fi

j·fi � 1j2
¼ N2 � 1

12
�mðN �mÞ

2
; 0�m�N: ðB:15Þ

Proof Use (B.13) with m! mþ 1: h

(m)
XN

fi¼1
fi6¼fl

·fi þ ·fl

·fi � ·fl
¼ 0: ðB:16Þ
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Proof Substitute ·fi ! 1
·fi
; ·fl ! 1

·fl
in one of the terms or use (B.9) and (B.12).

h

(n)
XN

fi¼1
fi6¼fl; c
fl6¼c

1
�·fi � �·fl

1
·fi � ·c

¼ �
·fl

·fl � ·c
þ 2

j·fl � ·cj2
: ðB:17Þ

Proof With
1

ð·fi � ·flÞð·fi � ·cÞ
¼ 1

·fl � ·c

1
·fi � ·fl

� 1
·fi � ·c

� �
ðB:18Þ

and

XN

fi¼1
fi 6¼fl; c
fl 6¼c

·fi
·fi � ·fl

¼ N � 1
2
�

·c

·c � ·fl
; ðB:19Þ

which follows directly from (B.9), we write

XN

fi¼1

fi6¼fl; c
fl6¼c

1
�·fi � �·fl

1
·fi � ·c

¼ �
XN

fi¼1

fi 6¼fl; c
fl 6¼c

·fl

·fl � ·c

·fi
·fi � ·fl

� ·fi
·fi � ·c

� �

¼ �
·fl

·fl � ·c
�

·c

·c � ·fl
þ

·fl

·fl � ·c

� �

¼ �
·fl

·fl � ·c
1þ

2·c

·fl � ·c

� �

¼ �
·fl

·fl � ·c
þ 2

j·fl � ·cj2
:

h

(o) For symmetric operators Aflc ¼ Acfl it holds:

XN

fi;fl;c¼1
fi 6¼fl 6¼c 6¼fi

Aflc

ð�·fi � �·flÞð·fi � ·cÞ
¼
X

fl6¼c

2Aflc

j·fl � ·cj2
� 1

2

X

fl6¼c

Aflc: ðB:20Þ

Proof Use (B.17). h
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Appendix C
Angular Momentum Algebra

In this appendix, we review a few very well known relations for angular
momentum operators [3, 4]. The components of the angular momentum operator J
obey the SU(2) Lie algebra

Ja; Jb
� �

¼ ieabcJc for a; b; c ¼ x, y, z: ðC:1Þ

Since J2; Jz
� �

¼ 0, we can choose a basis of simultaneous eigenstates of

J2 and Jz,

J2jj;mi ¼2 jðj þ 1Þjj;mi;
Jzjj;mi ¼ mjj;mi;

ðC:2Þ

where m ¼ �j; . . .; j: With J� � Jx � iJy, we have

Jz; J�
� �

¼ �J�: ðC:3Þ

We further have

JþJ� ¼ ðJxÞ2 þ ðJyÞ2 � i½Jx; Jy� ¼ J2 � ðJzÞ2 þ Jz;

J�Jþ ¼ J2 � ðJzÞ2 � Jz;
ðC:4Þ

and therefore

Jþ; J�½ � ¼ 2Jz: ðC:5Þ

Equations (C.3) and (C.4) further imply

J�jj;mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þ �mðm� 1Þ

p
jj;m� 1i; ðC:6Þ

where we have chosen the phases between J�jj;mi and jj;m� 1i real.
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Appendix D
Tensor Decompositions of Spin Operators

In this appendix, we will write out the tensor components [3, 4] of all the tensors of
different order we can form from one, two, or three spins operators.

D.1 One Spin Operator

A single spin S transforms as a vector under rotations, which we normalize such
that the m ¼ 0 component equals Sz (see (3.5.10) in Sect. 3.5). The components of
Vm are

V1 ¼ � 1
ffiffiffi
2
p Sþ;

V0 ¼ 1
ffiffiffi
2
p S�;V1
� �

¼ Sz; ðD:1:1Þ

V�1 ¼ 1
ffiffiffi
2
p S�;V 0
� �

¼ 1
ffiffiffi
2
p S�:

D.2 Two Spin Operators

Since each spin operator transforms as a vector, and the representation content of
four vectors is given by

1	 1 ¼ 0
 1
 2;

we can form one scalar, one vector, and one tensor of second order from two spin
operators S1 and S2. The scalar is given by

U12 ¼ S1S2 ¼
1
2

Sþ1 S�2 þ S�1 Sþ2
	 


þ Sz
1S

z
2 ðD:2:1Þ
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and the vector by �i S1 � S2ð Þ. Written out in components, we obtain

V1
12 ¼

i
ffiffiffi
2
p ðS1 � S2Þþ ¼

1
ffiffiffi
2
p Sþ1 Sz

2 � Sz
1S
þ
2

	 

;

V0
12 ¼ �iðS1 � S2Þz ¼

1
2

Sþ1 S�2 � S�1 Sþ2
	 


; ðD:2:2Þ

V�1
12 ¼ �

i
ffiffiffi
2
p ðS1 � S2Þ� ¼

1
ffiffiffi
2
p S�1 Sz

2 � Sz
1S
�
2

	 

:

With regard to the 2nd order tensor, note that Sþ1 Sþ2 is the only operator we can
construct with two spin operators which raises the Sz

tot quantum number by two. It
must hence be proportional to the m ¼ 2 component of the 2nd order tensor. As
there is no particularly propitious way to normalize this tensor, we simply set the
m ¼ 2 component equal to Sþ1 Sþ2 , and then obtain the other components using
(3.5.9). This yields1

T 2
12 ¼ Sþ1 Sþ2 ;

T 1
12 ¼

1
2

S�1 þ S�2 ; T
2
12

� �
¼ �Sz

1S
þ
2 � Sþ1 Sz

2;

T 0
12 ¼

1
ffiffiffi
6
p S�1 þ S�2 ; T

1
12

� �
¼ 1

ffiffiffi
6
p 4Sz

1S
z
2 � Sþ1 S�2 � S�1 Sþ2

	 

;

T�1
12 ¼

1
ffiffiffi
6
p S�1 þ S�2 ; T

0
12

� �
¼ Sz

1S
�
2 þ S�1 Sz

2;

T�2
12 ¼

1
2

S�1 þ S�2 ; T
�1
12

� �
¼ S�1 S�2 : ðD:2:3Þ

Equations (D.2.1) and (D.2.3) imply

1
2

Sþ1 S�2 þ S�1 Sþ2
	 


¼ 2
3

S1S2 �
1
ffiffiffi
6
p T 0

12; ðD:2:4Þ

Sz
1S

z
2 ¼

1
3

S1S2 þ
1
ffiffiffi
6
p T 0

12: ðD:2:5Þ

Combining (D.2.4) with (D.2.2) yields

Sþ1 S�2 ¼
2
3

S1S2 � iðS1 � S2Þz �
1
ffiffiffi
6
p T 0

12;

S�1 Sþ2 ¼
2
3

S1S2 þ iðS1 � S2Þz �
1
ffiffiffi
6
p T 0

12:

ðD:2:6Þ
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For S1 ¼ S2, (D.2.6) reduces with S1 � S1 ¼ iS1 to

Sþ1 S�1 ¼
2
3

S2
1 þ Sz

1 �
1
ffiffiffi
6
p T 0

11;

S�1 Sþ1 ¼
2
3

S2
1 � Sz

1 �
1
ffiffiffi
6
p T 0

11:

ðD:2:7Þ

D.3 Three Spin Operators

Since

1	 1	 1 ¼ 0
 3 � 1
 2 � 2
 3;

we can form one scalar, three vectors, two tensors of second order, and one tensor
of third order, from three spin operators S1; S2; and S3:

The scalar is given by

U123 ¼ �iS1ðS2 � S3Þ

¼ 1
2

Sz
1 Sþ2 S�3 � S�2 Sþ3
	 


þ 2 cyclic permutations

¼ 1
2
ðSz

1S
þ
2 S�3 þ Sþ1 S�2 Sz

3 þ S�1 Sz
2S
þ
3

�Sz
1S
�
2 Sþ3 � S�1 Sþ2 Sz

3 � Sþ1 Sz
2S
�
3 Þ: ðD:3:1Þ

The three vectors are given by

S1ðS2S3Þ; S1ðS2ÞS3; and ðS1S2ÞS3; ðD:3:2Þ

where the scalar product in the second expression is understood to contract
S1 and S3. The components for each m are according to the conventions specified
in (D.1.1). For later purposes, we write for the m ¼ 0 components,

V0
a;123 ¼ Sz

1ðS2S3Þ ¼
1
2
ðSz

1S
þ
2 S�3 þ Sz

1S
�
2 Sþ3 Þ þ Sz

1S
z
2S

z
3;

V0
b;123 ¼ S1ðSz

2ÞS3 ¼
1
2
ðS�1 Sz

2S
þ
3 þ Sþ1 Sz

2S
�
3 Þ þ Sz

1S
z
2S

z
3;

V0
c;123 ¼ ðS1S2ÞSz

3 ¼
1
2
ðSþ1 S�2 Sz

3 þ S�1 Sþ2 Sz
3Þ þ Sz

1S
z
2S

z
3: ðD:3:3Þ
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To obtain a tensor operator of second order, or more precisely the m ¼ 2
component of it, all we need to do is to form the product of the m ¼ 1 components
of two vector operators constructed out of the three spins, like S1 and �iðS2 � S3Þ
or �iðS1 � S2Þ and S3. In this way, we construct the tensor operators of second
order

T 2
a;123 ¼ �iSþ1 ðS2 � S3Þþ;

T 2
b;123 ¼ �iðS1 � S2ÞþSþ3 :

ðD:3:4Þ

The other components are obtained as in (D.2.3). As we are primarily interested in
the m ¼ 0 component, we may use (D.2.3) directly to write

T 0
a;123 ¼ �

i
ffiffiffi
6
p 4Sz

1ðS2 � S3Þz � Sþ1 ðS2 � S3Þ� � S�1 ðS2 � S3Þþ
� �

¼ 1
ffiffiffi
6
p ½2Sz

1 Sþ2 S�3 � S�2 Sþ3
	 


� Sþ1 S�2 Sz
3 þ Sþ1 Sz

2S
�
3

þ S�1 Sþ2 Sz
3 � S�1 Sz

2S
þ
3 �; (D.3.5)

and similarly for T 0
b;123, which can be obtained from T 0

b;123 by a cyclical
permutation of the superscripts þ;�; z. Note that there is no third tensor of this
kind, as the sum of the three tensors obtained from (D.3.5) by cyclic permutations
of the superscripts equals zero.

We obtain the tensor of third order with the method we used to obtain the
second order tensor (D.2.3) formed by two spins:

W3
123 ¼ �Sþ1 Sþ2 Sþ3 ;

W2
123 ¼

1
ffiffiffi
6
p S�1 þ S�2 þ S�3 ;W

3
123

� �

¼ � 1
ffiffiffi
6
p ½S�1 ; Sþ1 �Sþ2 Sþ3 þ 2 cycl. permutations

¼
ffiffiffi
2
3

r

Sz
1S
þ
2 Sþ3 þ 2 cycl. permutations;

W1
123 ¼

1
ffiffiffiffiffi
10
p ½S�1 þ S�2 þ S�3 ;W

2
123�

¼ 1
ffiffiffiffiffi
15
p ð½S�1 ; Sz

1�Sþ2 Sþ3 þ Sz
1½S�2 þ S�3 ; S

þ
2 Sþ3 �Þ þ 2 cycl. permutations;

¼ 1
ffiffiffiffiffi
15
p ðS�1 Sþ2 Sþ3 � 4Sz

1S
z
2S
þ
3 Þ þ 2 cycl. permutations;
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W0
123 ¼

1
ffiffiffiffiffi
12
p ½S�1 þ S�2 þ S�3 ;W

1
123�

¼ 1

6
ffiffiffi
5
p S�1 ½S�2 þ S�3 ; S

þ
2 Sþ3 � � 4½S�1 þ S�2 ; S

z
1S

z
2�Sþ3

	

� 4Sz
1S

z
2½S�3 ; Sþ3 �



þ 2 cycl. permutations

¼ � 1
ffiffiffi
5
p ðS�1 Sþ2 Sz

3 þ 5 permutationsÞ þ 4
ffiffiffi
5
p Sz

1S
z
2S

z
3;

ðD:3:6Þ

W�1
123 ¼

1
ffiffiffiffiffi
12
p S�1 þ S�2 þ S�3 ;W

0
123

� �

¼ � 1
ffiffiffiffiffi
15
p ðS�1 S�2 Sþ3 � 4S�1 Sz

2S
z
3Þ þ 2 cycl. permutations;

W�2
123 ¼

1
ffiffiffiffiffi
10
p S�1 þ S�2 þ S�3 ;W

�1
123

� �

¼
ffiffiffi
2
3

r

S�1 S�2 Sz
3 þ 2 cycl. permutations;

W�3
123 ¼

1
ffiffiffi
6
p S�1 þ S�2 þ S�3 ;W

�2
123

� �

¼ S�1 S�2 S�3 :

The permutations here always refer to permutations of the superscripts þ;�; z, as
otherwise we would have to assume again that none of the three spin operators are
identical. In particular, writing out the m ¼ 0 yields

W0
123 ¼�

1
ffiffiffi
5
p ðS�1 Sþ2 Sz

3 þ Sþ1 Sz
2S
�
3 þ Sz

1S
�
2 Sþ3

þ Sþ1 S�2 Sz
3 þ S�1 Sz

2S
þ
3 þ Sz

1S
þ
2 S�3 Þ þ

4
ffiffiffi
5
p Sz

1S
z
2S

z
3: ðD:3:7Þ

Combining (D.3.3) and (D.3.7), we obtain

Sz
1S

z
2S

z
3 ¼

1
5

V0
a;123 þ V0

b;123 þ V 0
c;123

� �
þ 1

2
ffiffiffi
5
p W0

123; ðD:3:8Þ

and hence

1
2

Sz
1 Sþ2 S�3 þ S�2 Sþ3
	 


¼ V0
a;123 � Sz

1S
z
2S

z
3

¼ 4
5

V0
a;123 �

1
5

V0
b;123 �

1
5

V 0
c;123 �

1

2
ffiffiffi
5
p W0

123: ðD:3:9Þ

From (D.3.1) and (D.3.5) we obtain
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1
2

Sz
1 Sþ2 S�3 � S�2 Sþ3
	 


¼ 1
3

U123 þ
1
ffiffiffi
6
p T 0

a;123: ðD:3:10Þ

Combining (D.3.9) and (D.3.10) we finally obtain

Sz
1S
þ
2 S�3 ¼ þ

1
3

U123 þ
1
5

4 V0
a;123 � V 0

b;123 � V0
c;123

� �
þ 1

ffiffiffi
6
p T 0

a;123 �
1

2
ffiffiffi
5
p W0

123

¼ þ 1
3

S1ðS2 � S3Þ þ
1
5

4 Sz
1ðS2S3Þ � S1ðSz

2ÞS3 � ðS1S2ÞSz
3

� �

þ 1
ffiffiffi
6
p T 0

a;123 �
1

2
ffiffiffi
5
p W0

123;

ðD:3:11Þ

Sz
1S
�
2 Sþ3 ¼ �

1
3

U123 þ
1
5

4 V 0
a;123 � V0

b;123 � V0
c;123

� �
� 1

ffiffiffi
6
p T 0

a;123 �
1

2
ffiffiffi
5
p W0

123

¼ � 1
3

S1ðS2 � S3Þ þ
1
5

4 Sz
1ðS2S3Þ � S1ðSz

2ÞS3 � ðS1S2ÞSz
3

� �

� 1
ffiffiffi
6
p T 0

a;123 �
1

2
ffiffiffi
5
p W0

123:

ðD:3:12Þ
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