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Preface 

It is intended that this book be used in senior- to graduate-level semester 
courses in optimization, as offered in mathematics, engineering, com­
puter science and operations research departments. Hopefully this book 
will also be useful to practising professionals in the workplace. 

The contents of the book represent the fundamental optimization mate­
rial collected and used by the author, over a period of more than twenty 
years, in teaching Practical Mathematical Optimization to undergradu­
ate as well as graduate engineering and science students at the University 
of Pretoria. The principal motivation for writing this work has not been 
the teaching of mathematics per se, but to equip students with the nec­
essary fundamental optimization theory and algorithms, so as to enable 
them to solve practical problems in their own particular principal fields 
of interest, be it physics, chemistry, engineering design or business eco­
nomics. The particular approach adopted here follows from the author's 
own personal experiences in doing research in solid-state physics and in 
mechanical engineering design, where he was constantly confronted by 
problems that can most easily and directly be solved via the judicious 
use of mathematical optimization techniques. This book is, however, not 
a collection of case studies restricted to the above-mentioned specialized 
research areas, but is intended to convey the basic optimization princi­
ples and algorithms to a general audience in such a way that, hopefully, 
the application to their own practical areas of interest will be relatively 
simple and straightforward. 

Many excellent and more comprehensive texts on practical mathematical 
optimization have of course been written in the past, and I am much 
indebted to many of these authors for the direct and indirect influence 
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their work has had in the writing of this monograph. In the text I have 
tried as far as possible to give due recognition to their contributions. 
Here, however, I wish to single out the excellent and possibly under­
rated book of D. A. Wismer and R. Chattergy (1978), which served to 
introduce the topic of nonlinear optimization to me many years ago, and 
which has more than casually influenced this work. 

With so many excellent texts on the topic of mathematical optimization 
available, the question can justifiably be posed: Why another book and 
what is different here? Here I believe, for the first time in a relatively 
brief and introductory work, due attention is paid to certain inhibiting 
difficulties that can occur when fundamental and classical gradient-based 
algorithms are applied to real-world problems. Often students, after hav­
ing mastered the basic theory and algorithms, are disappointed to find 
that due to real-world complications (such as the presence of noise and 
discontinuities in the functions, the expense of function evaluations and 
an excessive large number of variables), the basic algorithms they have 
been taught are of little value. They then discard, for example, gradient-
based algorithms and resort to alternative non-fundamental methods. 
Here, in Chapter 4 on new gradient-based methods, developed by the 
author and his co-workers, the above mentioned inhibiting real-world 
difficulties are discussed, and it is shown how these optimization dif­
ficulties may be overcome without totally discarding the fundamental 
gradient-based approach. 

The reader may also find the organisation of the material in this book 
somewhat novel. The first three chapters present the basic theory, and 
classical unconstrained and constrained algorithms, in a straightforward 
manner with almost no formal statement of theorems and presentation 
of proofs. Theorems are of course of importance, not only for the more 
mathematically inclined students, but also for practical people inter­
ested in constructing and developing new algorithms. Therefore some 
of the more important fundamental theorems and proofs are presented 
separately in Chapter 6. Where relevant, these theorems are referred 
to in the first three chapters. Also, in order to prevent cluttering, the 
presentation of the basic material in Chapters 1 to 3 is interspersed with 
very few worked out examples. Instead, a generous number of worked 
out example problems are presented separately in Chapter 5, in more 
or less the same order as the presentation of the corresponding theory 
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given in Chapters 1 to 3. The separate presentation of the example 
problems may also be convenient for students who have to prepare for 
the inevitable tests and examinations. The instructor may also use these 
examples as models to easily formulate similar problems as additional 
exercises for the students, and for test purposes. 

Although the emphasis of this work is intentionally almost exclusively 
on gradient-based methods for non-linear problems, the book will not 
be complete if only casual reference is made to the simplex method for 
solving Linear Programming (LP) problems (where of course use is also 
made of gradient information in the manipulation of the gradient vector 
c of the objective function, and the gradient vectors of the constraint 
functions contained in the matrix A). It was therefore decided to in­
clude, as Appendix A, a short introduction to the simplex method for 
LP problems. This appendix introduces the simplex method along the 
lines given by Chvatel (1983) in his excellent treatment of the subject. 

The author gratefully acknowledges the input and constructive com­
ments of the following colleagues to different parts of this work: Nielen 
Stander, Albert Groenwold, Ken Craig and Danie de Kock. A special 
word of thanks goes to Alex Hay. Not only did he significantly contribute 
to the contents of Chapter 4, but he also helped with the production of 
most of the figures, and in the final editing of the manuscript. Thanks 
also to Craig Long who assisted with final corrections and to Alna van 
der Merwe who typed the first I^T^X draft. 

J a n Snyman 

Pretoria 
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Chapter 1 

INTRODUCTION 

1.1 What is mathematical optimization? 

Formally, Mathematical Optimization is the process of 

(i) the formulation and 

(ii) the solution of a constrained optimization problem of the general 
mathematical form: 

minimize/(x), x == [xi,X2, •.. ,2;^] G R"" 
w.r.t. X 

subject to the constraints: 

gj{x) < 0, j = 1, 2, . . . , m 
hj{x) = 0, i = : l , 2, . . . , r 

(1.1) 

where / (x ) , ^j(x) and hj{x.) are scalar functions of the real column 
vector X. 

The continuous components x̂  of x = [2:1, X2,... ^Xn{^ are called the 
(design) variables, / (x ) is the objective function, gj('x) denotes the re­
spective inequality constraint functions Siud hj('K) the equality constraint 
functions. 
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The optimum vector x that solves problem (1.1) is denoted by x* with 
corresponding optimum function value /(x*). If no constraints are spec­
ified, the problem is called an unconstrained minimization problem. 

Mathematical Optimization is often also called Nonlinear Programming, 
Mathematical Programming or Numerical Optimization. In more general 
terms Mathematical Optimization may be described as the science of de­
termining the best solutions to mathematically defined problems, which 
may be models of physical reality or of manufacturing and management 
systems. In the first case solutions are sought that often correspond 
to minimum energy configurations of general structures, from molecules 
to suspension bridges, and are therefore of interest to Science and En­
gineering. In the second case commercial and financial considerations 
of economic importance to Society and Industry come into play, and it 
is required to make decisions that will ensure, for example, maximum 
profit or minimum cost. 

The history of the Mathematical Optimization, where functions of many 
variables are considered, is relatively short, spanning roughly only 55 
years. At the end of the 1940s the very important simplex method 
for solving the special class of linear programming problems was devel­
oped. Since then numerous methods for solving the general optimization 
problem (1.1) have been developed, tested, and successfully applied to 
many important problems of scientific and economic interest. There is no 
doubt that the advent of the computer was essential for the development 
of these optimization methods. However, in spite of the proliferation of 
optimization methods, there is no universal method for solving all opti­
mization problems. According to Nocedal and Wright (1999): ". . . there 
are numerous algorithms, each of which is tailored to a particular type of 
optimization problem. It is often the user's responsibility to choose an 
algorithm that is appropriate for the specific apphcation. This choice 
is an important one; it may determine whether the problem is solved 
rapidly or slowly and, indeed, whether the solution is found at all." In 
a similar vein Vanderplaats (1998) states that "The author of each algo­
rithm usually has numerical examples which demonstrate the efficiency 
and accuracy of the method, and the unsuspecting practitioner will of­
ten invest a great deal of time and effort in programming an algorithm, 
only to find that it will not in fact solve the particular problem being 
attempted. This often leads to disenchantment with these techniques 
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that can be avoided if the user is knowledgeable in the basic concepts of 
numerical optimization." With these representative and authoritative 
opinions in mind, and also taking into account the present author's per­
sonal experiences in developing algorithms and applying them to design 
problems in mechanics, this text has been written to provide a brief but 
unified introduction to optimization concepts and methods. In addition, 
an overview of a set of novel algorithms, developed by the author and 
his students at the University of Pretoria over the past twenty years, is 
also given. 

The emphasis of this book is almost exclusively on gradient-based meth­
ods. This is for two reasons, (i) The author believes that the introduc­
tion to the topic of mathematical optimization is best done via the clas­
sical gradient-based approach and (ii), contrary to the current popular 
trend of using non-gradient methods, such as genetic algorithms (GA's), 
simulated annealing, particle swarm optimization and other evolutionary 
methods, the author is of the opinion that these search methods are, in 
many cases, computationally too expensive to be viable. The argument 
that the presence of numerical noise and multiple minima disqualify the 
use of gradient-based methods, and that the only way out in such cases 
is the use of the above mentioned non-gradient search techniques, is not 
necessarily true. It is the experience of the author that, through the 
judicious use of gradient-based methods, problems with numerical noise 
and multiple minima may be solved, and at a fraction of the compu­
tational cost of search techniques such as genetic algorithms. In this 
context Chapter 4, dealing with the new gradient-based methods devel­
oped by the author, is especially important. The presentation of the 
material is not overly rigorous, but hopefully correct, and should pro­
vide the necessary information to allow scientists and engineers to select 
appropriate optimization algorithms and to apply them successfully to 
their respective fields of interest. 

Many excellent and more comprehensive texts on practical optimization 
can be found in the literature. In particular the author wishes to ac­
knowledge the works of Wismer and Chattergy (1978), Chvatel (1983), 
Fletcher (1987), Bazaraa et al. (1993), Arora (1989), Haftka and Gündel 
(1992), Rao (1996), Vanderplaats (1998), Nocedal and Wright (1999) 
and Papalambros and Wilde (2000). 
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1.2 Objective and constraint functions 

The values of the functions / (x ) , ö'j(x) and ^j(x) at any point x = 
[xi, X2,. . . , Xr^^ may in practice be obtained in different ways: 

(i) from analytically known formulae^ e.g. / (x) = x\-\- 2^2 + sinxs; 

(ii) as the outcome of some complicated computational process^ e.g. 
^i(x) = a(x) — amax5 where a(x) is the stress, computed by means 
of a finite element analysis, at some point in a structure, the design 
of which is specified by x; or 

(iii) from measurements taken oia. physical process^ e.g. hi{x) = T(x.) — 
To, where T(x) is the temperature measured at some specified 
point in a reactor, and x is the vector of operational settings. 

The first two ways of function evaluation are by far the most common. 
The optimization principles that apply in these cases, where computed 
function values are used, may be carried over directly to also be applica­
ble to the case where the function values are obtained through physical 
measurements. 

Much progress has been made with respect to methods for solving differ­
ent classes of the general problem (1.1). Sometimes the solution may be 
obtained analytically^ i.e. a closed-form solution in terms of a formula 
is obtained. 

In general, especially for n > 2, solutions are usually obtained numeri­
cally by means of suitable algorithms (computational recipes); 

Expertise in the formulation of appropriate optimization problems of 
the form (1.1), through which an optimum decision can be made, is 
gained from experience. This exercise also forms part of what is gener­
ally known as the mathematical modelling process. In brief, attempting 
to solve real-world problems via mathematical modelling requires the 
cyclic performance of the four steps depicted in Figure 1.1. The main 
steps are: 1) the observation and study of the real-world situation as­
sociated with a practical problem, 2) the abstraction of the problem by 
the construction of a mathematical model, that is described in terms 
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® 

® 

Real-world practical problem 

Practical implication and 
evaluation of x*(p): 
Adjustment of p? 
Refinement of model? 

Coustruction/refineuieut of 
mathematical model: 
fixed parameters - vector p 
(design) variables - vector x 

Mathematical solution to model: 

X*(P) 

1 r 
I I 

A L 

1 T 
I I 

J L Optimization algorithms 
Mathematical methods and computer programs 

Figure 1.1: The mathematical modelling process 

of preliminary fixed model parameters p, and variables x, the latter to 
be determined such that model performs in an acceptable manner, 3) 
the solution of a resulting purely mathematical problem, that requires 
an analytical or numerical parameter dependent solution x*(p), and 4) 
the evaluation of the solution x*(p) and its practical implications. Af­
ter step 4) it may be necessary to adjust the parameters and refine the 
model, which will result in a new mathematical problem to be solved 
and evaluated. It may be required to perform the modelling cycle a 
number of times, before an acceptable solution is obtained. More often 
than not, the mathematical problem to be solved in 3) is a mathematical 
optimization problem^ requiring a numerical solution. The formulation 
of an appropriate and consistent optimization problem (or model) is 
probably the most important, but unfortunately, also the most neglected 
part of Practical Mathematical Optimization. 

This book gives a very brief introduction to the formulation of opti­
mization problems, and deals with different optimization algorithms in 
greater depth. Since no algorithm is generally applicable to all classes 
of problems, the emphasis is on providing sufficient information to al­
low for the selection of appropriate algorithms or methods for different 
specific problems. 
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f(A 

Figure 1.2: Function of single variable with optimum at x* 

1.3 Basic optimization concepts 

1.3.1 Simplest class of problems: 
Unconstra ined one-dimensional minimizat ion 

Consider the minimization of a smooth, i.e. continuous and twice con­
tinuously differentiable (C^) function of a single real variable, i.e. the 
problem: 

minimize/(x), x G R, / G C^ (1.2) 
w.r.t.a: 

With reference to Figure 1.2, for a strong local minimum, it is required 
to determine a x* such that /(x*) < f{x) for all x. 

Clearly x* occurs where the slope is zero, i.e. where 

which corresponds to the first order necessary condition. In addition 
non-negative curvature is necessary at x*, i.e. it is required that the 
second order condition 

fix) = > 0 

must hold at x* for a strong local minimum. 

A simple special case is where f{x) has the simple quadratic form: 

fix) = ox^ + bx + c. (1.3) 
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Since the minimum occurs where f\x) = 0, it follows that the closed-
form solution is given by 

x* = - —, provided / ' (x*) = a > 0. (1.4) 

If f{x) has a more general form^ then a closed-form solution is in general 
not possible. In this case, the solution may be obtained numerically via 
the Newton-Raphson algorithm: 

Given an approximation x^, iteratively compute: 

^ ^ ^ ^ = ^ ^ - ^ ; ^ = 0. 1. 2, . . . (1.5) 

Hopefully lim x̂  = x*, i.e. the iterations converge, in which case a 

sufficiently accurate numerical solution is obtained after a finite number 
of iterations. 

1.3.2 Contour representat ion of a function of two vari­
ables (n = 2) 

Consider a function / (x) of two variables, x = [xi,X2]'^. The locus of 
all points satisfying / (x) = c = constant, forms a contour in the xi — X2 
plane. For each value of c there is a corresponding different contour. 

Figure 1.3 depicts the contour representation for the example / (x ) = 

In three dimensions (n = 3), the contours are surfaces of constant func­
tion value. In more than three dimensions (n > 3) the contours are, of 
course, impossible to visualize. Nevertheless, the contour representation 
in two-dimensional space will he used throughout the discussion of opti­
mization techniques to help visualize the various optimization concepts. 

Other examples of 2-dimensional objective function contours are shown 
in Figures 1.4 to 1.6. 
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Figure 1.3: Contour representation of the function / (x) = x\-\- 2x2 

Figure 1.4: General quadratic function 
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Figure 1.5: The 'banana' function / (x) = 10(a:2 - Xif + (1 — xi) 

10 12 14 

Figure 1.6: Potential energy function of a spring-force system (Vander-
plaats, 1998) 
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15 10 5 9M = 0 
-5 -10 -15 

Boundary of 
feasible region 

Figure 1.7: Contours within feasible and infeasible regions 

1.3.3 Contour representat ion of constraint functions 

1.3.3.1 Inequality constraint function ^(x) 

The contours of a typical inequality constraint function g{'x.)^ in ^(x) < 
0, are shown in Figure 1.7. The contour ^(x) = 0 divides the plane into 
a feasible region and an infeasible region. 

More generally, the boundary is a surface in three dimensions and a 
so-called "hyper-surface" if n > 3, which of course cannot be visualised. 

1.3.3.2 Equality constraint function /i(x) 

Here, as shown in Figure 1.8, only the hne ^(x) = 0 is a feasible contour. 
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15 10 5 ^(x) = 0 
-5 -10 -15 

Feasible contour 
(more generally a 
feasible surface) 

XI 

Figure 1.8: Feasible contour of equality constraint 

/ = 2g ^(x) = 0 

unconstrained 
minimum 

x * ; / ( x * ) = 12 
(constrained minimum) 

^ ö ( x ) < 0 
y ^ (feasible region) 

^ (x ) > 0 
(infeasible region) 

Figure 1.9: Contour representation of inequality constrained problem 

1.3.4 Contour representations of constrained optimiza­
tion problems 

1.3.4.1 Representation of inequality constrained problem 

Figure 1.9 graphically depicts the inequality constrained problem: 

min/(x) 

such that ^(x) < 0. 
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/ = 20 

unconstrained 
minimum 

(feasible line (surface)) 
/i(x) = 0 

x * ; / ( x * ) = 12 
(constrained minimum) 

A(x) < 0 
(infeasible region) 

( x ) > 0 
(infeasible region) 

Figure 1.10: Contour representation of equality constrained problem 

T 
l-x 

0 
V 

Figure 1.11: Wire divided into two pieces with xi = x and X2 = 1 — x 

1.3.4.2 Representation of equality constrained problem 

Figure 1.10 graphically depicts the equality constrained problem: 

min/(x) 

such that h{x.) — 0. 

1.3.5 Simple example illustrating the formulation and so­
lution of an optimization problem 

Problem: A length of wire 1 meter long is to be divided into two pieces, 
one in a circular shape and the other into a square as shown in Figure 
1.11. What must the individual lengths be so that the total area is a 

mmimum ( 

Formulation 1 
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Set length of first piece = x, then the area is given by f{x) — Trr̂  -f 6 .̂ 
Since r = ^ and b = ^ ^ it follows that 

/W-^h-^ 
x'\ (1 - x) 

47rV 16 ' 

The problem therefore reduces to an unconstrained minimization prob­
lem: 

minimize/(x) = 0.1421x^ - 0.125a; + 0.0625. 

Solution of Formulation 1 

The function f{x) is quadratic, therefore an analytical solution is given 
h_ 

2a 

-0.125 
0.4398 m, 

by the formula ^* = —^ (a > 0): 

2(0.1421) 

and 
1-x* = 0.5602 m with /(x*) = 0.0350 m^ 

Formulation 2 

Divide the wire into respective lengths xi and X2 {xi -i- X2 = 1). The 
area is now given by 

/ (x) =7rr^ + b'^ = 7T (-^^ + ( ^ ) ^ = 0.0796X? + 0.0625^2. 

Here the problem reduces to an equality constrained problem: 

minimize / (x) = 0.0796a;? + 0.0625a;^ 

such that /i(x) = xi + a;2 — 1 = 0. 

Solution of Formulation 2 

This constrained formulated problem is more difficult to solve. The 
closed-form analytical solution is not obvious and special constrained 
optimization techniques, such as the method of Lagrange multipliers to 
be discussed later, must be apphed to solve the constrained problem 
analytically. The graphical solution is sketched in Figure 1.12. 
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= (0.4398,0.5602) 

1 + X2 = 1 

,/ = 0.0350 

Figure 1.12: Graphical solution of Formulation 2 

1.3.6 Maximizat ion 

The maximization problem: max/(x) can be cast in the standard form 
X 

(1.1) by observing that max/(x) = — mini—/(x)} as shown in Figure 
X X 

1.13. Therefore in applying a minimization algorithm set F{x.) = —/(x). 

Also if the inequality constraints are given in the non-standard form: 
5'j(x) > 0, then set ^j(x) = —gj{x.). In standard form the problem then 
becomes: 

minimize F(x) such that ^^(x) < 0. 

Once the minimizer x* is obtained, the maximum value of the original 
maximization problem is given by — F(x*). 

1.3.7 The special case of Linear Programming 

A very important special class of the general optimization problem arises 
when both the objective function and all the constraints are linear func-
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i I 

^^-~ .̂-̂ ^ /w 

Figure 1.13: Maximization problem transformed to minimization prob­
lem 

tions of X. This is called a Linear Programming problem and is usually 
stated in the following form: 

min/(x) = c X 

such that 

Ax < b; X > 0 

(1.6) 

where c is a real n-vector and b is a real m-vector, and A is a m x n real 
matrix. A linear programming problem in two variables is graphically 
depicted in Figure 1.14. 

Special methods have been developed for solving linear programming 
problems. Of these the most famous are the simplex method proposed 
by Dantzig in 1947 (Dantzig, 1963) and the interior-point method (Kar-
markar, 1984). A short introduction to the simplex method, according 
to Chvatel (1983), is given in Appendix A. 

1.3.8 Scaling of design variables 

In formulating mathematical optimization problems great care must be 
taken to ensure that the scale of the variables are more or less of the same 
order. If not, the formulated problem may be relatively insensitive to 
the variations in one or more of the variables, and any optimization algo­
rithm will struggle to converge to the true solution, because of extreme 
distortion of the objective function contours as result of the poor scaling. 
In particular it may lead to difficulties when selecting step lengths and 
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X2 

y^ \ feasible region 

\ \ 

direction of \ 
increase in '̂  y 

\ \ y ^ 

\ 
\ 
\ J^C* 

/ \ 

\ 

linear coi 

Figure 1.14: Graphical representation of a two-dimensional linear pro­
gramming problem 

calculating numerical gradients. Scahng difficulties often occur where 
the variables are of different dimension and expressed in different units. 
Hence it is good practice, if the variable ranges are very large, to scale 
the variables so that all the variables will be dimensionless and vary 
between 0 and 1 approximately. For scaling the variables, it is necessary 
to establish an approximate range for each of the variables. For this, 
take some estimates (based on judgement and experience) for the lower 
and upper limits. The values of the bounds are not critical. Another 
related matter is the scaling or normalization of constraint functions. 
This becomes necessary whenever the values of the constraint functions 
differ by large magnitudes. 

1.4 Further mathematical prerequisites 

1.4.1 Convexity 

A line through the points x^ and x^ in M^ is the set 

L = {xlx = x^ + A(x2 - x^), for all A G (1.7) 
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Figure 1.15: Representation of a point on the straight Hne through x-̂  
and x^ 

non-convex 

Figure 1.16: Examples of a convex and a non-convex set 

Equivalently for any point x on the line there exists a A such that x may 
be specified by x = x(A) = Ax^ + (1 ~ ^)^^ ^s shown in Figure 1.15. 

1.4.1.1 Convex sets 

A set X is convex if for all x \ x̂ ^ G X it follows that 

X = Ax^ -f- (1 - A)x^ G X for all 0 < A < 1. 

If this condition does not hold the set is non-convex (see Figure 1.16). 
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1.4.1.2 Convex functions 

Given two points x^ and x^ in R'̂ , then any point x on the straight line 
connecting them (see Figure 1.15) is given by 

X = x(A) = x^ + A(x2 - x^), 0 < A < 1. (1.8) 

A function / (x) is a convex function over a convex set X if for all x^, x^ 
\nX and for all A G [0,1]: 

/(Ax2 + (1 - A)xi) < A/(x2) + (1 - A)/(xi). (1.9) 

The function is strictly convex if < applies. Concave functions are sim­
ilarly defined. 

Consider again the line connecting X"*̂  and x^. Along this line, the func­
tion / (x) is a function of the single variable A: 

F(A) ^ /(x(A)) = /(x^ + A(x2 - x^)). (1.10) 

This is equivalent to F(A) = /(Ax^ + (1 - A)x^), with F(0) = /(x^) and 
F( l ) = / (x^). Therefore (1.9) may be written as 

F{\) < XF{1) + (1 - A)F(O) = Fint 

where Fint is the linearly interpolated value of F at A as shown in Figure 
1.17. 

Graphically / (x) is convex over the convex set X if F(A) has the convex 
form shown in Figure 1.17 for any two points x^ and x^ in X. 

1.4.2 Gradient vector of /(x) 

For a function / (x) G C^ there exists, at any point x a vector of first 
order partial derivatives, or gradient vector: 

ox I 

V/(x) = 
3X2 

(^) 

OXn 

g(x). (1.11) 
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Figure 1.17: Convex form of F{X) 

Figure 1.18: Directions of the gradient vector 

It can easily be shown that if the function / (x) is smooth, then at 
the point x the gradient vector V / ( x ) (also often denoted by g(x)) is 
always perpendicular to the contours (or surfaces of constant function 
value) and is in the direction of maximum increase of / (x ) , as depicted 
in Figure 1.18. 
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1.4.3 Hess ian matrix of / ( x ) 

If / (x) is twice continuously differentiable then at the point x there 
exists a matrix of second order partial derivatives or Hessian matrix: 

H(x) 
\ dxidxj J dxidxj 

(x) j> = VV(x 

(x) 

(x) 

(x) 

9x19x2 
(x) 

9xri9xi 

Clearly H(x) is a n x n symmetrical matrix. 

(1.12) 

1.4.3.1 Test for convexity of / (x) 

If / (x ) G C^ is defined over a convex set X, then it can be shown 
(see Theorem 6.1.3 in Chapter 6) that if H(x) is positive-definite for all 
X G X, then / (x) is strictly convex over X. 

To test for convexity, i.e. to determine whether H(x) is positive-definite 
or not, apply Sylvester's Theorem or any other suitable numerical method 
(Fletcher, 1987). 

1.4.4 T h e quadratic function in 

The quadratic function in n variables may be written as 

/ (x) = ^x^Ax + b^x + c (1.13) 

where c G R, b is a real n-vector and A is a n x n real matrix that can 
be chosen in a non-unique manner. It is usually chosen symmetrical in 
which case it follows that 

V / ( x ) = Ax + b; H ( x ) - A . (1.14) 
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The function / (x) is called positive-definite if A is positive-definite since, 
by the test in 1.4.3.1, a function / (x) is convex if H(x) is positive-
definite. 

1.4.5 The directional derivative of / ( x ) in the direct ion u 

It is usually assumed that ||u|| — 1. Consider the diff'erential: 

df = ^dxi + . . . + ^dxn = V^/ (x)dx . (1.15) 

A point X on the line through x' in the direction u is given by x = 
x(A) = x' + Au, and for a small change dA in A, dx = udA. Along this 
line F{X) — / ( x ' + Au) and the differential at any point x on the given 
line in the direction u is therefore given by dF = df = V^/(x)udA. It 
follows that the directional derivative at x in the direction u is 

dF{X) df{K) 

dX dX 
V V ( x ) u . (1.16) 

1.5 Unconstrained minimization 

In considering the unconstrained problem: min/ (x) , x G X C R^, the 
X 

following questions arise: 

(i) what are the conditions for a minimum to exist, 

(ii) is the minimum unique, 

(iii) are there any relative minima? 

Figure 1.19 (after Farkas and Jarmai, 1997) depicts different types of 
minima that may arise for functions of a single variable, and for functions 
of two variables in the presence of equality constraints. Intuitively, with 
reference to Figure 1.19, one feels that a general function may have 
a single unique global minimum, or it may have more than one local 
minimum. The function may indeed have no local minimum at all, and 
in two dimensions the possibihty of saddle points also comes to mind. 
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fix) 

global minimum unique global 
minimum 

no m m i m u m 

local min imum 

global min imum 

Figure 1.19: Types of minima 
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Figure 1.20: Graphical representation of the definition of a local mini­
mum 

Thus, in order to answer the above questions regarding the nature of 
any given function more analytically, it is necessary to give more precise 
meanings to the above mentioned notions. 

1.5.1 Global and local minima; saddle points 

1.5.1.1 Global minimum 

X* is a global minimum over the set X if / (x) > /(x*) for all x G X C 

1.5.1.2 Strong local minimum 

X* is a strong local minimum if there exists an ^ > 0 such that 

where || 
Figure 1.20. 

/ ( x ) > / ( x * ) f o r a l l { x | | | x - x * | | < e } 

denotes the Euclidean norm. This definition is sketched in 
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1.5.1.3 Test for unique local global minimum 

It can be shown (see Theorems 6.1.4 and 6.1.5 in Chapter 6) that if / (x) 
is strictly convex over X, then a strong local minimum is also the global 
minimum. 

The global minimizer can be difficult to find since the knowledge of / (x ) 
is usually only local. Most minimization methods seek only a local min­
imum. An approximation to the global minimum is obtained in practice 
by the multi-start application of a local minimizer from randomly se­
lected different starting points in X. The lowest value obtained after a 
sufficient number of trials is then taken as a good approximation to the 
global solution (see Snyman and Fatti, 1987; Groenwold and Snyman, 
2002). If, however, it is known that the function is strictly convex over 
X, then only one trial is sufficient since only one local minimum, the 
global minimum, exists. 

1.5.1.4 Saddle points 

/ (x) has a saddle point at x — if there exists an £ > 0 such that 

for all X, ||x - xO|| < s and all y, ||y - yO|| < e: / (x .y») < /(xO.yO) < 
/(xO,y). 

A contour representation of a saddle point in two dimensions is given in 
Figure 1.21. 

1.5.2 Local characterization of the behaviour of a multi-
variable function 

It is assumed here that / (x) is a smooth function, i.e., that it is a twice 
continuously differentiable function (/(x) G C^). Consider again the 
hne x = x(A) = x' + Au through the point x' in the direction u. 

Along this hne a single variable function F{\) may be defined: 

F(A) = /(x(A)) = / ( x ' + Au). 
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Figure 1.21: Contour representation of saddle point 

It follows from (1.16) that 

dF{X) ^/(x(A)) 

dX dX 
= V^/(x(A))u = ^(x(A)) = G(A) 

which is also a single variable function of A along the line x = x(A) 
x' + Au. 

Thus similarly it follows that 

d^F{X) dG{X) dg{x{X)) 
dA2 dX dX 

= V^5(x(A))u 

= V ^ (V^/(x(A))u) u 

= u^H(x(A))u. 

Summarising: the first and second order derivatives of -F'(A) with respect 
to A at any point x = x(A) on any line (any u) through x' is given by 

dFjX) 

dX 

d^FjX) 
dX^ 

= V^/(x(A))u, 

u^H(x(A))u 

(1.17) 

(1.18) 
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where x(A) - x' + Au and F{X) = /(x(A)) = / ( x ' + Au). 

These results may be used to obtain Taylor's expansion for a multi-
variable function. Consider again the single variable function F{X) de­
fined on the fine through x' in the direction u by F{X) = / ( x ' + Au). It 
is known that the Taylor expansion of F{X) about 0 is given by 

F(A) = F(0) + AF'(O) + IX^F'^Q) + . . . (1.19) 

With F(0) = / (x ' ) , and substituting expressions (1.17) and (1.18) for 
respectively F'(A) and F''{X) at A = 0 into (1.19) gives 

F(A) - / ( x ' + Au) = /(xO + V ^ / ( X O A U + iAu^H(xOAu - } - . . . 

Setting J = Au in the above gives the expansion: 

/ ( x ' + S) = /(x') + V^fiK')6 + lS^H{x')S +... (1.20) 

Since the above applies for any line (any u) through x', it represents 
the general Taylor expansion for a multi-variable function about x'. If 
/ (x) is fully continuously diff'erentiable in the neighbourhood of x ' it 
can be shown that the truncated second order Taylor expansion for a 
multi-variable function is given by 

/ ( x ' + (5) = / (x ' ) + V^/(x')(5 + ^5^H(x' + OS)S (1.21) 

for some 6 G [0,1]. This expression is important in the analysis of the 
behaviour of a multi-variable function at any given point x'. 

1.5.3 Necessary and sufficient conditions for a s trong lo­
cal minimum at x* 

In particular, consider x' = x* a strong local minimizer. Then for any 
line (any u) through x' the behaviour of F{X) in a neighbourhood of x* 
is as shown in Figure 1.22, with minimum at at A == 0. 

Clearly, a necessary first order condition that must apply at x* (corre­
sponding to A = 0) is that 

dF{0) _ ^T 
dX 

V V ( x * ) u = 0, f o r a l l u / 0 . (1.22) 
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F(A) 

Figure 1.22: Behaviour of F{X) near A = 0 

It can easily be shown that this condition also implies that necessarily 
V/(x*) = 0. 

A necessary second order condition that must apply at x* is that 

^2^(0) 

d\^ 
= u ' H(x*)u > 0, for all u 7̂  0. (1.23) 

Conditions (1.22) and (1.23) taken together are also sufficient conditions 
(i.e. those that imply) for x* to be a strong local minimum if / (x ) is 
continuously differentiable in the vicinity of x*. This can easily be shown 
by substituting these conditions in the Taylor expansion (1.21). 

Thus in summary, the necessary and sufficient conditions for x* to be a 
strong local minimum are: 

V/(x*) = 0 
H(x*) positive-definite. 

In the argument above it has implicitly been assumed that x* is an 
unconstrained minimum interior to X. If x* lies on the boundary of X 
(see Figure 1.23) then 

^ > 0 , i.e. V ^ / ( x > > 0 (1.25) 

for all allowable directions u, i.e. for directions such that x* + Au G X 
for arbitrary small A > 0. 

Conditions (1.24) for an unconstrained strong local minimum play a 
very important role in the construction of practical algorithms for un­
constrained optimization. 
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Fix) 

Figure 1.23: Behaviour of F{X) for all allowable directions of u 

1.5.3.1 Application to the quadratic function 

Consider the quadratic function: 

/ (x) - i x ^ A x + b^x + c. 

In this case the first order necessary condition for a minimum implies 
that 

V / ( x ) = Ax + b = 0. 

Therefore a candidate solution point is 

X* = - A - ^ b . (1.26) 

If the second order necessary condition also apphes, i.e. if A is positive-
definite, then X* is a unique minimizer. 

1.5.4 General indirect m e t h o d for comput ing x* 

The general indirect method for determining x* is to solve the system 
of equations V / ( x ) = 0 (corresponding to the first order necessary 
condition in(1.24)) by some numerical method, to yield all stationary 
points. An obvious method for doing this is Newton's method. Since 
in general the system will be non-hnear, multiple stationary points are 
possible. These stationary points must then be further analysed in order 
to determine whether or not they are local minima. 
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1.5.4.1 Solution by Newton's method 

Assume x* is a local minimum and x* an approximate solution, with 
associated unknown error ö such that x* — -x} -\- 8. Then by applying 
Taylor's theorem and the first order necessary condition for a minimum 
at X* it follows that 

0 = V/(x*) - V/(x^ + 5) - V/(x^) + H(x^)(5 + 0\\ö\\\ 

If x^ is a good approximation then J = A, the solution of the linear 
system H(x*)A + V/(x*) = 0, obtained by ignoring the second order 
term in 6 above. A better approximation is therefore expected to be 
x^+^ = X* + A which leads to the Newton iterative scheme: Given an 
initial approximation x^, compute 

x^+i :=: x^ _ H-Hx^)V/(x^) (1.27) 

for i = 0, 1, 2, . . . Hopefully lim x̂  = x*. 

1.5.4.2 Example of Newton's method applied to a quadratic 
problem 

Consider the unconstrained problem: 

minimize / (x) — ^x"^ Ax + b"^x + c. 

In this case the first iteration in (1.27) yields 

x^ = x° - A-i (Axö + b) = x^ - x^ - A-^b - - A - ^ b 

i.e. x^ = X* = —A~-̂ b in a single step (see (1.26)). This is to be 
expected since in this case no approximation is involved and thus A — 5. 

1.5.4.3 Difficulties with Newton's method 

Unfortunately, in spite of the attractive features of the Newton method, 
such as being quadratically convergent near the solution, the basic New­
ton method as described above does not always perform satisfactorily. 
The main difficulties are: 
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y = <t>{x) 

0 X* x^ X 0 X* x^ X 

Figure 1.24: Graphical representation of Newton's iterative scheme for 
a single variable 

(i) the method is not always convergent, even if x^ is close to x*, and 

(ii) the method requires the computation of the Hessian matrix at each 
iteration. 

The first of these difficulties may be illustrated by considering Newton's 
method applied to the one-dimensional problem: solve f\x) = 0. In 
this case the iterative scheme is 

x^+i =x'- 4 Ö = (t>{x'), for z = 0, 1, 2, 
nx^) 

(1.28) 

and the solution corresponds to the fixed point x* where x* = 0(x*). 
Unfortunately in some cases, unless x^ is chosen to be exactly equal to 
X*, convergence will not necessarily occur. In fact, convergence is de­
pendent on the nature of the fixed point function (/)(a;) in the vicinity 
of X , as shown for two different 0 functions in Figure 1.24. With ref­
erence to the graphs Newton's method is: ŷ  = </>(a;*), x̂ "̂ ^ = y'^ for 
2 = 0, 1, 2, Clearly in the one case where |0'(x)| < 1 convergence 
occurs, but in the other case where |0'(x)| > 1 the scheme diverges. 

In more dimensions the situation may be even more complicated. In 
addition, for a large number of variables, difficulty (ii) mentioned above 
becomes serious in that the computation of the Hessian matrix repre­
sents a major task. If the Hessian is not available in analytical form, 
use can be made of automatic differentiation techniques to compute it, 
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or it can be estimated by means of finite differences. It should also be 
noted that in computing the Newton step in (1.27) a n x n linear system 
must be solved. This represents further computational effort. There­
fore in practice the simple basic Newton method is not recommended. 
To avoid the convergence difficulty use is made of a modified Newton 
method, in which a more direct search procedure is employed in the 
direction of the Newton step, so as to ensure descent to the minimum 
X*. The difficulty associated with the computation of the Hessian is 
addressed in practice through the systematic update, from iteration to 
iteration, of an approximation to the Hessian matrix. These improve­
ments to the basic Newton method are dealt with in greater detail in 
the next chapter. 

1.6 Exercises 

1.6.1 Sketch the graphical solution to the following problem: 

minx/(x) = ( x i - 2 ) 2 + (x2-2)2 

such that xi + 2x2 = 4; xi > 0; X2 > 0. 

In particular indicate the feasible region: F = {{xi,X2)\xi -{-
2x2 = 4; 

xi > 0;X2 > 0} and the solution point x*. 

1.6.2 Show that x^ is a convex function. 

1.6.3 Show that the sum of convex functions is also convex. 

1.6.4 Determine the gradient vector and Hessian of the Rosenbrock func­
tion: 

/(X) = 100(x2-x2)2 + ( l _ x i ) 2 . 

1.6.5 Write the quadratic function / (x) = x^ -f 2xiX2 + Sx^ in the stan­
dard matrix-vector notation. Is / (x) positive-definite? 

1.6.6 Write each of the following objective functions in standard form: 

/ (x) = ^x^Ax + b^x + c. 

(i) / (x ) = x?4-2xiX24-4xiX3+3x2+2x2X3+5x3+4xi-2x2+3x3. 
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(ii) / (x ) = 5x^ + 12x1X2 - 16x1X3 + 10x| - 26x2x3 + 17x| - 2xi -
4x2 - 62:3. 

(iii) / (x ) = x\ — 4xiX2 -f 6x1X3 4- 5x1 — IOX2X3 + 8x3. 

1.6.7 Determine the definiteness of the following quadratic form: 
/(x) = x\ — 4xiX2 -f 6x1X3 + 5X2 - 10X2X3 + 8X3. 



Chapter 2 

LINE SEARCH DESCENT 
METHODS FOR 
UNCONSTRAINED 
MINIMIZATION 

2.1 General line search descent algorithm for 
unconstrained minimization 

Over the last 40 years many powerful direct search algorithms have 
been developed for the unconstrained minimization of general functions. 
These algorithms require an initial estimate to the optimum point, de­
noted by x^. With this estimate as starting point, the algorithm gen­
erates a sequence of estimates x^, x^, x^, . . . , by successively searching 
directly from each point in a direction of descent to determine the next 
point. The process is terminated if either no further progress is made, 
or if a point x^ is reached (for smooth functions) at which the first 
necessary condition in (1.24), i.e. V / ( x ) = 0 is sufficiently accurately 
satisfied, in which case x* = x^. It is usually, although not always, 
required that the function value at the new iterate x*"̂ ^ be lower than 
that at x \ 
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An important sub-class of direct search methods, specifically suitable for 
smooth functions, are the so-called line search descent methods. Basic to 
these methods is the selection of a descent direction u*"̂ ^ at each iterate 
X* that ensures descent at x* in the direction u^+^, i.e. it is required 
that the directional derivative in the direction u*"̂ ^ be negative: 

d/(x^) 
VV(x')u^ '^ ' < 0 . (2.1) 

d\ 

The general structure of such descent methods is given below. 

2.1.1 General s tructure of a line search descent m e t h o d 

1. Given starting point x^ and positive tolerances £i, £2 and £3, set 
i = 1. 

2. Select a descent direction u^ (see descent condition (2.1). 

3. Perform a one-dimensional line search in direction u^: i.e. 

minF(A) = min/(x^-^ + Au^) 

to give minimizer Â . 

4. Set x^ = x^-^ + A^u^ 

5. Test for convergence: 

if ||x^ - x^-i|| < £1, or II V/(xO| | < ^2, or |/(xO - /(x^"^)! < ^3, 
then STOP and x* ^ xS 

else go to Step 6. 

6. Set i = i + 1 and go to Step 2. 

In testing for termination in step 5, a combination of the stated termi­
nation criteria may be used, i.e. instead of or, and may be specified. 
The structure of the above descent algorithm is depicted in Figure 2.1. 

Different descent methods, within the above sub-class, differ according 
to the way in which the descent directions u^ are chosen. Another impor­
tant consideration is the method by means of which the one-dimensional 
line search is performed. 
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Figure 2.1: Sequence of line search descent directions and steps 

2.2 One-dimensional line search 

Clearly, in implementing descent algorithms of the above type, the one-
dimensional minimization problem: 

minF(A), A G R (2.2) 

is an important sub-problem. Here the minimizer is denoted by A*, i.e. 

F(A*)=:minF(A). 
A 

Many one-dimensional minimization techniques have been proposed and 
developed over the years. These methods differ according to whether 
they are to be applied to smooth functions or poorly conditioned func­
tions. For smooth functions interpolation methods, such as the quadratic 
interpolation method of Powell (1964) and the cubic interpolation algo­
rithm of Davidon (1959), are the most efficient and accurate methods. 
For poorly conditioned functions, bracketing methods, such as the Fi­
bonacci search method (Kiefer, 1957), which is optimal with respect to 
the number of function evaluations required for a prescribed accuracy, 
and the golden section method (Walsh, 1975), which is near optimal 
but much simpler and easier to implement, are preferred. Here Pow­
ell's quadratic interpolation method and the golden section method, are 
respectively presented as representative of the two different approaches 
that may be adopted to one-dimensional minimization. 
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a Al A* A2 h 

Figure 2.2: Unimodal function F[\) over interval [a, h] 

2.2.1 Golden sect ion m e t h o d 

It is assumed that F{\) is unimodal ower the interval [a, 6], i.e. that it has 
a minimum A* within the interval and that F{\) is strictly descending 
for A < A* and strictly ascending for A > A*, as shown in Figure 2.2. 

Note that if F{\) is unimodal over [a, h] with A* in [a, 6], then to deter­
mine a sub-unimodal interval, at least two evaluations of F{\) in [a, h] 
must be made as indicated in Figure 2.2. 

If F(A2) > i^(Ai) =^ new unimodal interval == [a, A2], and set 6 = A2 and 
select new A2; otherwise new unimodal interval = [Ai,6] and set a = \i 
and select new Ai. 

Thus, the unimodal interval may successively be reduced by inspecting 
values of F{Xi) and F{X2) at interior points Ai and A2. 

The question arises: How can Ai and A2 be chosen in the most eco­
nomic manner, i.e. such that a least number of function evaluations are 
required for a prescribed accuracy (i.e. for a specified uncertainty inter­
val)? The most economic method is the Fibonacci search method. It is 
however a complicated method. A near optimum and more straightfor­
ward method is the golden section method. This method is a limiting 
form of the Fibonacci search method. Use is made of the golden ratio 
r when selecting the values for Ai and A2 within the unimodal interval. 
The value of r corresponds to the positive root of the quadratic equation: 

1 = 0, thus r = ^%^ - 0.618034. r'^ ^-r 



LINE SEARCH DESCENT METHODS 37 

Al — a + r^I/o A2 = a + TLQ 

rLo r^Lo 

Figure 2.3: Selection of interior points Ai and A2 for golden section 
search 

The details of the selection procedure are as follows. Given initial uni-
modal interval [a, &] of length LQ, then choose interior points Ai and A2 
as shown in Figure 2.3. 

Then, if F(Ai) > F(A2) =^ new [a,b] = [Ai,6] with new interval length 
Li = rl/o, and 

if F{X2) > F{Xi) => new [a, b] = [a, A2] also with Li = rLo-

The detailed formal algorithm is stated below. 

2.2.1.1 Basic golden section algorithm 

Given interval [a, b] and prescribed accuracy e; then set i = 0; LQ = b—a, 
and perform the following steps: 

1. Set Al = a + r^Lo; A2 = a -f TLQ. 

2. Compute F{\i) and -F(A2); set i = i -f 1. 

3. / /F(Ai) >F(A2) then 

set a = Ai; Ai = A2; Li = {b — a); and A2 = a + rLi^ 

else 

set b = A2; A2 = Ai; Li = {b — a); and Xi = a + r^Li. 

4. If Li < e then 

set A = —-—; compute F(A*) and STOP, 

else go to Step 2. 
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P2(A) 
F{X) 

A0A1A2 \m A* 

Figure 2.4: Approximate minimum Am via quadratic interpolation 

2.2.2 Powell 's quadratic interpolat ion algori thm 

In Powell's method successive quadratic interpolation curves are fitted 
to function data giving a sequence of approximations to the minimum 
point A*. 

With reference to Figure 2.4, the basic idea is the following. Given three 
data points {(A^,F(Ai)), i = 1,2,3}, then the interpolating quadratic 
polynomial through these points P2W is given by 

P2(A) = F(Ao) + F[Ao, Ai](A - AQ) + F[Ao, Ai, Aa^A - Ao)(A - Ai) (2.3) 

where F[ , ] and F[ , , ] respectively denote the first order and second 
order divided differences. 

The turning point of p2(A) occurs where the slope is zero, i.e. where 

^ = F[Ao, Al] + 2AF[Ao, Ai, A2] - F[Ao, Ai, A2](Ao -f Ai) = 0 

which gives the turning point Xm as 

F[Ao,Ai,A2](Ao + Ai)-i^[Ao,Ai] 
Xr] 

2F[Ao,Ai,A2] 
^A* (2.4) 

with the further condition that for a minimum the second derivative 
must be non-negative, i.e. F[Ao,Ai,A2] > 0. 

The detailed formal algorithm is as follows. 
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2.2.2.1 Powell's interpolation algorithm 

Given starting point AQ, stepsize /i, tolerance e and maximum stepsize 
H\ perform following steps: 

1. Compute F(Ao) and F(Ao + h). 

2. IfF{Xo) < F{Xo + h) evaluate F(Ao - h), 

else evaluate F(Ao + 2/i). (The three initial values of A so chosen 
constitute the initial set (Ao,Ai,A2) with corresponding function 
values F{Xi), 2 = 0,1,2.) 

3. Compute turning point Xm by formula (2.4) and test for minimum 
or maximum. 

4. If Xm a minimum point and \Xm — Xn\ > H^ where A^ is the nearest 
point to Xm, then discard the point furthest from Xm and take a 
step of size H from the point with lowest value in direction of 
descent, and go to Step 3; 

^/Am a maximum point, then discard point nearest A^ and take a 
step of size H from the point with lowest value in the direction of 
descent and go to Step 3; 

else continue. 

5. If\Xm -Xn\<e then F(A*) ^ min[F(A^),F(An)] and STOP, 

else continue. 

6. Discard point with highest F value and replace it by Â T̂ ; go to 
Step 3 

Note: It is always safer to compute the next turning point by interpola­
tion rather than by extrapolation. Therefore in Step 6: if the maximum 
value of F corresponds to a point which lies alone on one side of Xm, 
then rather discard the point with highest value on the other side of A,^. 

2.2.3 Exercises 

Apply the golden section method and Powell's method to the problems 
below. Compare their respective performances with regard to the num-
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her of function evaluation required to attain the prescribed accuracies. 

(i) minimize F(A) = Â  + 2e"'^ over [0,2] with e = 0.01. 

(ii) maximize F{X) = A cos A over [0,7r/2] with s — 0.001. 

(iii) minimize F(A) = 4 ( A - 7 ) / ( A 2 + A - 2 ) over [-1.9; 0.9] by performing 
only 10 function evaluations. 

(iv) minimize F(A) = Â  - 20A^ + 0.1 A over [0; 20] with e - 10"^. 

2.3 First order line search descent methods 

Line search descent methods (see Section 2.1.1), that use the gradient 
vector V / ( x ) to determine the search direction for each iteration, are 
called first order methods because they employ first order partial deriva­
tives of / (x ) to compute the search direction at the current iterate. The 
simplest and most famous of these methods is the method of steepest 
descent, first proposed by Cauchy in 1847. 

2.3.1 The method of steepest descent 

In this method the direction of steepest descent is used as the search 
direction in the line search descent algorithm given in section 2.1.1. The 
expression for the direction of steepest descent is derived below. 

2.3.1.1 The direction of steepest descent 

At x' we seek the unit vector u such that for F{X) — / ( x ' + Au), the 
directional derivative 

df{^') 
dX 

dF{0) _ ^r 
dX 

V ^ / ( x ' ) u 

assumes a minimum value with respect to all possible choices for the 
unit vector u at x' (see Figure 2.5). 
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Figure 2.5: Search direction u relative to gradient vector at x ' 

By Schwartz's inequality: 

V^ / (xOu > - | |V/(x ') l i | |u | | - - | | V / ( x ' ) | | - least value. 

-V/(xO 
Clearly for the particular choice u — the directional derivative 

at x' is given by 

Thus this particular choice for the unit vector corresponds to the direc­
tion of steepest descent. 

The search direction 

is called the normalized steepest descent direction at x. 

2.3.1.2 Steepest descent algori thm 

Given x°, do for iteration i = 1, 2 , . . . until convergence: 

• _ - V / ( x ^ - ^ ) 

' • ' ' ' ^ - | | V / ( x ^ - i ) | | 

2. set x^ = x*~-̂  + A û* where Â  is such that 

F{Xi) - /(x^-^ + Xiu') = min/(x^-i + Au )̂ (line search). 
A 
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Figure 2.6: Orthogonality of successive steepest descent search directions 

2.3.1.3 Characteristic property 

Successive steepest descent search directions can be shown to be orthog­
onal Consider the line search through x^~^ in the direction u* to give 
x \ The condition for a minimum at Â , i.e. for optimal descent, is 

4f (x^-i + Â û ) 
d\ 

dF{Xi) 

dX 
V^/(x^)u^ = 0 

û  

V f fxM T 
and with û "̂ ^ = — , ,^ ^, .,,, it follows that u*"̂ ^ u* = 0 as shown in l|V/(xO|| 
Figure 2.6. 

2.3.1.4 Convergence criteria 

In practice the algorithm is terminated if some convergence criterion 
is satisfied. Usually termination is enforced at iteration i if one, or a 
combination, of the following criteria is met: 

(i) | | x ^ - x ^ - i | | < £ i 

(ii) | |V / (xO | |<52 

(iii) | / ( X 0 - / ( X - I ) | < e 3 . 

where si , £2 and £3 are prescribed small positive tolerances. 
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10- 10- 10-

Figure 2.7: Sensitivity of finite difference approximation to 5j 

2.3.1.5 Gradients by finite differences 

Often the components of the gradient vector is not analytically available 
in which case they may be approximated by forward finite differences: 

ö/(x) ^ A/(x) _ / ( x + g , ) - / (x ) 
dxj Sj 

(2.6) 

where Sj = [0, 0 , . . . 5j, 0 , . . . , 0]-^, 6j > 0 in the j-th position. 

Often Sj = S for all j = 1,2, . . . , n . A typically choice is J = 10~^. 
If however '^numerical noise^^ is present in the computation of / (x ) , 
special care should be taken in selecting öj. This may require doing some 
numerical experiments such as, for example, determining the sensitivity 
of approximation (2.6) to Jj, for each j . Typically the sensitivity graph 
obtained is as depicted in Figure 2.7, and for the implementation of the 
optimization algorithm a value for 5j should be chosen which corresponds 
to a point on the plateau as shown in Figure 2.7. Better approximations, 
at of course greater computational expense, may be obtained through 
the use of central finite differences. 

2.3.2 Conjugate gradient m e t h o d s 

In spite of its local optimal descent property the method of steepest de­
scent often performs poorly, following a zigzagging path of ever decreas-



44 CHAPTER 2. 

Figure 2.8: Orthogonal zigzagging behaviour of the steepest descent 
method 

ing steps. This results in slow convergence and becomes extreme when 
the problem is poorly scaled, i.e. when the contours are extremely elon­
gated. This poor performance is mainly due to the fact that the method 
enforces successive orthogonal search directions (see Section 2.3.1.3) as 
shown in Figure 2.8. Although, from a theoretical point of view, the 
method can be proved to be convergent, in practice the method may 
not effectively converge within a finite number of steps. Depending on 
the starting point this poor convergence also occurs when applying the 
method to positive-definite quadratic functions. 

There is, however, a class of first order fine search descent methods, 
known as conjugate gradient methods^ for which it can be proved that 
whatever the scaling, a method from this class will converge exactly in a 
finite number of iterations when applied to a positive-definite quadratic 
function, i.e. to a function of the form 

/ (x) = ^x^Ax + b^x + c (2.7) 

where c G M, b is a real n-vector and A is a positive-definite n x n 
real symmetric matrix. Methods that have this property of quadratic 
termination are highly rated, because they are expected to also perform 
well on other non-quadratic functions in the neighbourhood of a local 
minimum. This is so, because by the Taylor expansion (1.21), it can be 
seen that many general differentiable functions approximate the form 
(2.7) near a local minimum. 
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2.3.2.1 Mutually conjugate directions 

Two vectors u, v ^ 0 are defined to be orthogonal if the scalar product 
u-^v = (u, v) = 0. The concept of mutual conjugacy may be defined 
in a similar manner. Two vectors u, v ^ 0, are defined to be mutually 
conjugate with respect to the matrix A in (2.7) if u-^Av = (u, Av) = 0. 
Note that A is a positive definite symmetric matrix. 

It can also be shown (see Theorem 6.5.1 in Chapter 6) that if the set of 
vectors u ^ z = l , 2 , . . . , n are mutually conjugate^ then they form a basis 
in R"", i.e. any x G M"' may be expressed as 

= ^ W (2.8) 

where 

X 

i=l 

^^-(uSAuO* ^ ^̂ ^ 

2.3.2.2 Convergence theorem for mutually conjugate direc­
tions 

Suppose u% i = 1,2, . . . ,n are mutually conjugate with respect to 
positive-definite A, then the optimal line search descent method in Sec­
tion 2.1.1, using u^ as search directions, converges to the unique mini­
mum x* of / (x ) = ^x-^Ax + b^x + c in less than or equal to n steps. 

Proof: 

If x^ the starting point, then after i iterations: 

x^ = x^-i + Â û  = x'-'^-{-Xi_iu'-^ + Xiu' = . . . 
i 

= x° + 5]Afeu\ (2.10) 
k=l 

The condition for optimal descent at iteration i is 

dF{Xi) rf/(x^-i + Aiu') 
dX dX 

= K,v/(x^-i + W ) ] = 0 

= [u',V/(x^)] = 0 



46 CHAPTER 2. 

i.e. 

0 = (u',Ax' + b) 

= U \ A f x ' ' + ^ A f c u M + b j = K,AxO + b) + Ai(u',Au') 

because u' , i = l , 2 , . . . , n are mutually conjugate, and thus 

\i = -{u\ Ax° + b ) / ( u \ Au ' ) . (2.11) 

Substituting (2.11) into (2.10) above gives 

u%AxO)u^ ^ (uSA(A-ib))u^ 
;:̂  (u%Au^) ^ (u%Au^) 

Now by utilizing (2.8) and (2.9) it follows that 

x^ - x^ - x° - A-^b = - A - ^ b = X*. 

The implication of the above theorem for the case n — 2 and where 
mutually conjugate line search directions u^ and u^ are used, is depicted 
in Figure 2.9. 

2.3.2.3 Determination of mutually conjugate directions 

How can mutually conjugate search directions be found? One way 
is to determine all the eigenvectors u \ i = 1,2,... ,n of A. For A 
positive-definite, all the eigenvectors are mutually orthogonal and since 
Au^ = jj^iU^ where ßi is the associated eigenvalue, it follows directly 
that for all i ^ j that (u \ Au-^) = (u\/XjU-^) = /ij(u^,u-^) = 0, i.e. the 
eigenvectors are mutually conjugate with respect to A. It is, however, 
not very practical to determine mutually conjugate directions by finding 
all the eigenvectors of A, since the latter task in itself represents a com­
putational problem of magnitude equal to that of solving the original 
unconstrained optimization problem via any other numerical algorithm. 
An easier method for obtaining mutually conjugate directions, is by 
means of the Fletcher-Reeves formulae (Fletcher and Reeves, 1964). 
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Figure 2.9: Quadratic termination of the conjugate gradient method in 
two steps for the case n = 2 

2.3.2.4 The Fletcher-Reeves directions 

The Fletcher-Reeves directions u \ z = 1,2,... ,n, that are listed below, 
can be shown (see Theorem 6.5.3 in Chapter 6) to be mutually conjugate 
with respect to the matrix A in the expression for the quadratic function 
in (2.7) (for which V / ( x ) = Ax + b). The explicit directions are: 

ui = -V/ (xO) 

and for i = 1,2,. . . , n — 1 

„i+i ^ - v / ( x ' ) + ßiu' (2.12) 

where x* = x^ ^ + AiU% and Â  corresponds to the optimal descent step 
in iteration i, and 

i|V/(xO|P 
Ä = (2.13) 

| |V / (x - i ) | | 2 -

The Polak-Ribiere directions are obtained if, instead of using (2.13), ßi 
is computed using 

ßi = 
(V/(x') - V/(x-^))^ V/(x») 

| |V/ (x- i ) i-l\\\2 
(2.14) 

I f / (x) is quadratic it can be shown (Fletcher, 1987) that (2.14) is equiv­
alent to (2.13). 
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2.3.2.5 Formal Fletcher-Reeves conjugate gradient algorithm 
for general functions 

Given x^ perform the following steps: 

1. Compute V/ (x° ) and set u^ = -Vf{-xP). 

2. For 2 = 1,2,... ,n do: 

2.1 set X* = x*~-̂  + A û* where Â  such that 

/(x^-^ + XiM') = min/(x^-^ + Au )̂ (line search), 
A 

2.2 compute V/ (xO, 

2.3 i/convergence criteria satisfied, then STOP and x* ~ x \ else 
go to Step 2.4. 

2Ä if 1 < i < n - 1, u^+i - - V / ( x O -f ßiu' with ßi given by 
(2.13). 

3. Set x° = x^ and go to Step 2 (restart). 

If ßi is computed by (2.14) instead of (2.13) the method is known as the 
Polak-Ribiere method. 

2.3.2.6 Simple illustrative example 

Apply the Fletcher-Reeves method to minimize 

/ (x) = ^Xi + xia;2 + xl 

withxö = [10,-5]^. 

Solution: 

Iteration 1: 

V/(x) = Xi +X2 
Xi + 2^2 

and therefore u^ = —^/{x.^) = 
- 5 

0 
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x̂  = x° + Au 1 _ 10-5A 
- 5 

and 

F{\) = /(xO + Aui) = i(10 - 5A)2 + (10 - 5A)(-5) + 25. 

For optimal descent 

d\ v̂ >' ~ d\ 

This gives Ai = 1, x^ = 

Iteration 2: 

U2 = - V / ( x l ) 

5(10 - 5A) + 25 = 0 (line search). 

and V / ( x i ) = 5 
- 5 

0 
- 5 

. l |V/(xi 
||V/(xO 

= 
5 " 

- 5 + A 

= -

• - 5 • 

5 

1 ^ 

= 

1 25 
"̂  25 

5(1-
- 5 ( 1 -

" - 5 
0 

- A ) ] 
- A ) J 

== 

and 

" - 5 " 
5 _ 

x^ = x^ + Au^ = 

F(A) = /(x^ + Au2) = i[25(l - \f - 50(1 - A)̂  + 50(1 - A)^]. 

Again for optimal descent 

f (^) = I L = -25(1 - A) = 0 (line search). 

This gives A2 = 1, x^ = 2 _ and V/(x^) = 2>i - . Therefore STOP. 

The two iteration steps are shown in Figure 2.10. 

2.4 Second order Une search descent methods 

These methods are based on Newton's method (see Section 1.5.4.1) for 
solving V / ( x ) = 0 iteratively: Given x^, then 

x^ = x^-^ - H- i (x^- i )V/ (x^- i ) , 2 = 1,2,... (2.15) 

As stated in Chapter 1, the main characteristics of this method are: 

1. In the neighbourhood of the solution it may converge very fast, in 
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i 

X2 

i 

X 2 . = X* 

.-5 

.5 

\ x i 
V« 

, 10^. 

* 

Xi 

Figure 2.10: Convergence of Fletcher-Reeves method for illustrative ex­
ample 

fact it has the very desirous property of being quadratically conver­
gent if it converges. Unfortunately convergence is not guaranteed 
and it may sometimes diverge, even from close to the solution. 

The implementation of the method requires that H(x) be evalu­
ated at each step. 

To obtain the Newton step, A = x^ — x̂ ""-̂  it is also necessary to 
solve a n X n linear system H(x)A == —V/(x) at each iteration. 
This is computationally very expensive for large n, since an or­
der n^ multiplication operations are required to solve the system 
numerically. 

2.4.1 Modified N e w t o n ' s m e t h o d 

To avoid the problem of convergence (point 1. above), the computed 
Newton step A is rather used as a search direction in the general line 
search descent algorithm given in Section 2.1.1. Thus at iteration i: 
select u* = A = —H~^(x*~-^)V/(x^~^), and minimize in that direction 
to obtain a Â  such that 

/(x^-^ + Xiu') = min/(x^-i + Au )̂ 
A 

and then set x* = x̂ "-̂  + Aiu\ 
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2.4.2 Quas i -Newton m e t h o d s 

To avoid the above mentioned computational problems (2. and 3.), 
methods have been developed in which approximations to H~^ are ap­
plied at each iteration. Starting with an approximation Go to H"-^ for 
the first iteration, the approximation is updated after each line search. 
An example of such a method is the Davidon-Fletcher-Powell (DFP) 
method. 

2.4.2.1 D F P quasi-Nev^ton method 

The structure of this (rank-1 update) method (Fletcher, 1987) is as 
follows. 

1. Choose x^ and set Go = I. 

2. Do for iteration i == 1, 2 , . . . , n: 

2.1 set x ' ^ x'"^ -f A^u', where u ' = -G^_i V/ (x ' "^ ) and Â  is 
such that /(x^-^ + A^u^ = min/(x^"^ + Au^), Â  > 0 (line 

search), 

2.2 if stopping criteria satisfied then STOP, x* = x^ 

2.3 set V* = A û* and 

set y^ = V/ (xO - V/(x^- i ) , 

2.4 set 
Gi = G^_i + Ai + Bi (rank 1-update) (2.16) 

^ ^ vV^^ ^ - G , - i y ^ ( G , - i y O ^ 
where A^ = -77^-^, B^ = ^^r- . 

3. Set x° = x^; Go = G^ (or Go = I), and go to Step 2 (restart). 

2.4.2.2 Characteristics of DFP method 

1. The method does not require the evaluation of H or the explicit 
solution of a linear system. 
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2. If Gi-i is positive-definite then so is G^ (see Theorem 6.6.1). 

3. If G^ is positive-definite then descent is ensured at x* because 

dX 
.n,J+l 

= -V^ / (x^)GiV/ (x^) < 0, for all V / ( x ) ^ 0. 

4. The directions u^ i = 1,2, . . . , n are mutually conjugate for a 
quadratic function with A positive-definite (see Theorem 6.6.2). 
The method therefore possesses the desirable property of quadratic 
termination (see Section 2.3.2). 

5. For quadratic functions: G^ = A~^ (see again Theorem 6.6.2). 

2.4.2.3 The BFGS method 

The state-of-the-art quasi-Newton method is the Broyden-Fletcher-Gold-
far b-Shanno (BFGS) method developed during the early 1970s (see 
Fletcher, 1987). This method uses a more complicated rank-2 update 
formula for H~^. For this method the update formula to be used in Step 
2.4 of the algorithm given in Section 2.4.2.1 becomes 

G^ — Gi-i -f 1 + 
•y-^V^ 1 

-yll yZ 

vV'^ Gi-i + Gi_ iyV iT 

^11 •y'^ 

(2.17) 

2.5 Zero order methods and computer 
optimization subroutines 

This chapter would not be complete without mentioning something 
about the large number of so-called zero order methods that have been 
developed. These methods are called such because they do not use ei­
ther first order or second order derivative information, but only function 
values, i.e. only zero order derivative information. 
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Zero order methods are of the earliest methods and many of them are 
based on rough and ready ideas without very much theoretical back­
ground. Although these ad hoc methods are, as one may expect, much 
slower and computationally much more expensive than the higher order 
methods, they are usually reliable and easy to program. One of the 
most successful of these methods is the simplex method of Neider and 
Mead (1965). This method should not be confused with the simplex 
method for linear programming. Another very powerful and popular 
method that only uses function values is the multi-variable method of 
Powell (1964). This method generates mutually conjugate directions by 
performing sequences of line searches in which only function evaluations 
are used. For this method Theorem 2.3.2.2 applies and the method 
therefore possesses the property if quadratic termination. 

Amongst the more recently proposed and modern zero order methods, 
the method of simulated annealing and the so-called genetic algorithms 
(GAs) are the most prominent (see for example, Haftka and Gündel, 
1992). 

Computer programs are commercially available for all the unconstrained 
optimization methods presented in this chapter. Most of the algorithms 
may, for example, be found in the Matlab Optimization Toolbox and in 
the IMSL and NAG mathematical subroutine libraries. 

2.6 Test functions 

The efficiency of an algorithm is studied using standard functions with 
standard starting points x^. The total number of functions evaluations 
required to find x* is usually taken as a measure of the efficiency of the 
algorithm. Some classical test functions (Rao, 1996) are listed below. 

1. Rosenbrock's parabolic valley: 

" -1.2 
fix) = 100(0:2 - X?)2 + (1 - Xi)2; x^ = 

2. Quadratic function: 

/ (x) = (xi + 2X2 - 7)2 + (2X1 ^X2- 5)2; x° 

1.0 

X = 
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3. Powell's quartic function: 

/ (x ) = {xi + 10a;2)^ + 5(X3 - X4f + {x2 - 2x3)^ + 10(xi - 0:4)^ 

x« = [3,-1,0,1]^; X* - [0,0,0, o f . 

4. Fletcher and Powell's helical valley: 

/ (x ) = 100((a:3-10ö(a:i,X2))^ 

+ Uxl + xi - 1 j j +xi; 

{ Xo 
arctan — if xi > 0 

^1 X2 
TT + arctan — if xi < 0 

X l 

x« = [-1,0, of ; X* = [1,0, o f . 

5. A non-linear function of three variables: 

' Xl + X3 

x° = [0, l ,2f; X* = [1,1, i f . 

6. Freudenstein and Roth function: 

/ (x) - (_ i3 + xi + ( (5-X2)x2-2)x2)2 

+ ( - 2 9 + Xl -f- ((x2 + l)x2 - 14)x2)^; 

xO = [0.5,-2f; X* - [5,4p; x f , , , ! - [11 .41 . . . , -0 .8968 . . . ] ^ . 

7. Powell's badly scaled function: 

/ (x ) = (10000x1X2 - 1)^ + (exp(-xi) + exp(-X2) - 1.0001)^ 

x^ = [0,1]^; X* = [1.098-•• X 10-^ 9.106...]^. 

8. Brown's badly scaled function: 

/ (X) - ( X i - 1 0 ^ ) 2 + ( X 2 - 2 X 10-^)2 + ( x i X 2 - 2)2; 

x^ =. [ l , l f ; X* = [ 1 0 ^ 2 x l O T . 
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9. Beale's function: 

/ (x ) = ( 1 . 5 - x i ( l - X 2 ) ) 2 + ( 2 . 2 5 - x i ( l - x i ) ) 2 

+ ( 2 . 6 2 5 - x i ( l - x i ) ) ^ 

X« = [1,1]^; X* = [3,0.5]^. 

10. Wood's function: 

/ (x ) = 100(x2-x?)2 + ( l - x i ) 2 + 90(x4-x i )2 + ( l - x 3 ) 2 

+ 10(X2 + X4 - 2)2 + 0.1(X2 - Xif 

xO = [ - 3 , - 1 , - 3 , - i f ; X* = [1,1,1, i f . 



Chapter 3 

STANDARD METHODS 
FOR CONSTRAINED 
OPTIMIZATION 

3.1 Penalty function methods for constrained 
minimization 

Consider the general constrained optimization problem: 

minimize 
X 

such that 

/ (x ) 

ffj(x)<0 j = l , 2 , . . 

/ij(x) = 0 j = l,2,.. 

. ,m 

..,r. 

(3.1) 

The most simple and straight forward approach to handling constrained 
problems of the above form is to apply a suitable unconstrained op­
timization algorithm to a penalty function formulation of constrained 
problem (3.1). 
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3.1.1 T h e penal ty function formulation 

The penalty function formulation of the general constrained problem 
(3.1) is 

minimize P(x) 
X 

where 
r m 

P(x, p, ß) = /(x) + Yl P3h]{-^) + E Ä-̂ i (̂ ) (3-2) 

and where the components of the penalty parameter vectors p and ß 
are given by 

^^>>" ' ^ ^ ~ \ M i » 0 i f 5 i ( x ) > 0 . 

The latter parameters, pj and /?j, are called penalty parameters^ and 
P(x, p, ^) the penalty function. The solution to this unconstrained min­
imization problem is denoted by x*(p,/3), where p and ß denote the 
respective vectors of penalty parameters. 

Often Pj = constant = p, for all j , and also ßj = p for all j such that 
yj(x) > 0. Thus P in (3.2) is denoted by P{x,p) and the correspond­
ing minimum by x*(p). It can be shown that under normal continuity 
conditions the lim x*(p) = x*. Typically the overall penalty parameter 

p—>oo 

p is set Bit p = lO'̂  if the constraints functions are normalized in some 
sense. 

3.1.2 Il lustrative examples 

Consider the following two one-dimensional constrained optimization 
problems: 

(a) min/(x) 
such that h{x) = x — a = 0, 

then P{x) = f{x) + p{x - a)^; 

and 
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P{x) 

P{x) = fix) + Pix - af 

(a) 

Pix) = fix)+ßix-b)^ 

(b) 

Figure 3.1: Behaviour of penalty function for one-dimensional (a) equal­
ity constrained, and (b) inequality constrained minimization problems 

(b) min/(x) 
such that g{x) = x — b < 0^ 

then P{x) = f{x) + ß{x - b)'^. 

The penalty function solutions to these two problems are as depicted in 
Figures 3.1 (a) and (b). The penalty function method falls in the class 
of external methods because it converges externally from the infeasible 
region. 

3.1.3 Sequential unconstrained minimizat ion technique 
( S U M T ) 

Unfortunately the penalty function method becomes unstable and in­
efficient for very large p if high accuracy is required. This is because 
rounding errors result in the computation of unreliable descent direc­
tions. If second order unconstrained minimization methods are used for 
the minimization of P(x,p) , then the associated Hessian matrices be­
come ill-conditioned and again the method is inclined to break down. 
A remedy to this situation is to apply the penalty function method to 
a sequence of sub-problems, starting with moderate penalty parameter 
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values, and successively increasing their values for the sub-problems. 
The details of this approach (SUMT) is as follows. 

SUMT algorithm: 

1. Choose tolerances £i and 6:2, starting point x^ and initial overall 
penalty parameter value po, and set A: = 0. 

2. Minimize P(x, p/̂ ) by any unconstrained optimization algorithm 
to give x*(p/c). 

3. / / (for /c > 0) the convergence criteria are satisfied: STOP 

i.e. stop if ||x*(pfc) -x*(p/,_i) | | < si 

and/or |P(x*(pfc_i) - P(x*(pi^))| < £2, 

else 

set pk-^i = cpk, O l and x° =^ x*(p/c), 

set k = k -\-l and go to Step 2. 

Typically choose po = 1 and c = 10. 

3.1.4 Simple example 

Consider the constrained problem: 

min/(x) = l{xi-\-1)^ -\-X2 

such that 
1 - xi < 0; -X2 < 0. 

The problem is depicted in Figure 3.2. 

Define the penalty function: 

P(x, p) = ^(xi + 1)^ + X2 + p(l - xif + px| . 

(Of course the p only comes into play if the corresponding constraint is 
violated.) The penalty function solution may now be obtained analyti­
cally as follows. 
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2-666?,.̂ ^ \ \ 

- ^ \ \ 

feasible region 

i\^ • 
-1 -0.5 0 0.5 1 1.5 2 

Figure 3.2: Contour representation of objective function and feasible 
region for simple example 

The first order necessary conditions for an unconstrained minimum of 
P are 

ßP 
— - (xi + 1)2 - 2p(l - xi) 
OXi 

dP 
dX2 

l + 2px2 = 0. 

(3.3) 

(3.4) 

From (3.4): x^(p) = - ^ 

and from (3.3): xf + 2(1 + p)xi -\-l-2p = 0. 

Solving the quadratic equation and taking the positive root gives 

a;t(p) = - ( l + p ) + (l + p ) ( l + | ^ ) . 

Clearly hm x^ip) = 0 and lim xl{p) = 1 (where use has been made of 
p—^oo p—^oo 

the expansion (l+e)^/^ = 1 + ^e-h.. .) giving x* = [1,0]^, as one expects 
from Figure 3.2. Here the solution to the penalty function formulated 
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problem has been obtained analytically via the first order necessary con­
ditions. In general, of course, the solution is obtained numerically by 
applying a suitable unconstrained minimization algorithm. 

3.2 Classical methods for constrained 
optimization problems 

3.2.1 Equal i ty constrained problems and the Lagrangian 
function 

Consider the equality constrained problem: 

minimize / (x) 
such that /ij(x) = 0, j = 1, 2 , . . . , r < n. 

In 1760 Lagrange transformed this constrained problem to an uncon­
strained problem via the introduction of so-called Lagrange multipliers 
Aj, j = 1, 2 , . . . , r in the formulation of the Lagrangian function: 

r 

i:(x, A) = /(x) + Y. ^i^i W = / W + ^'^h(^)- (3-Ö) 

The necessary conditions for a constrained minimum of the above equal­
ity constrained problem may be stated in terms of the Lagrangian func­
tion and the Lagrange multipliers. 

3.2.1.1 Necessary conditions for an equality constrained min­
imum 

Let the functions / and hj G C^ then, on the assumption that the nxr 
Jacobian matrix 

^ ^ = [V/11(X*),V/Z2(X*),...] 

is of rank r, the necessary conditions for x* to be a constrained internal 
local minimum of the equality constrained problem (3.5) is that x* cor­
responds to a stationary point (x*, A*) of the Lagrangian function, i.e. 
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that a vector A* exists such that 

dL 
(x*,A*) = 0, i = l , 2 , . . . , n 

OXi 

^ ( x * , A * ) = 0, i = l , 2 , . . . , r . 

(3.7) 

For a formal proof of the above, see Theorem 6.2.1. 

3.2.1.2 The Lagrangian method 

Note that necessary conditions (3.7) represent n-\-r equations in the n + r 
unknowns x^, X2,.. •, x*, A | , . . . , A*. The solutions to these, in general 
non-linear equations, therefore give candidate solutions x* to problem 
(3.5). This indirect approach to solving the constrained problem is il­
lustrated in solving the following simple example problem. 

3.2.1.3 Example 

minimize / (x) = {xi - 2)^ + {x2 - 2)^ 
such that /i(x) = xi + ^2 = 6. 

First formulate the Lagrangian: 

L(x, A) = (xi - 2f + {x2 - 2f + A(xi -h X2 - 6). 

By the Theorem in Section 3.2.1.1 the necessary conditions for a con­
strained minimum are 

- - 2 ( . , - 2 ) + A ^ 0 

1 ^ = 2(x2-2) + A - 0 
0x2 
dL 
— - == XI + X2 - 6 = 0. 
o\ 

Solving these equations gives a candidate point: x\ = 3, ^2 = 3, A* = —2 
with /(x*) = 2. This solution is depicted in Figure 3.3 
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Figure 3.3: Graphical solution to example problem 3.2.1.3 

3.2.1.4 Sufficient conditions 

In general the necessary conditions (3.7) are not sufficient to imply a 
constrained local minimum at x*. A more general treatment of the 
sufficiency conditions are however very complicated and will not be dis­
cussed here. It can, however, be shown that if / (x) and the hj{x) are 
all convex functions, then conditions (3.7) indeed constitute sufficiency 
conditions. In this case the local constrained minimum is unique and 
represents the global minimum. 

3.2.1.5 Saddle point of the Lagrangian function 

Assume 

(i) / (x) has a constrained minimum at x* (with associated A*) and 

(ii) that if A is chosen in the neighbourhood of A*, then L(x, A) has 
a local minimum with respect to x in the neighbourhood of x*. 
(This can be expected if the Hessian matrix of L with respect to 
X at (x*, A*) is positive definite.) 
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Figure 3.4: Saddle point of Lagrangian function L — x ^ \{x — 1) 

It can he shown (see Theorem 6.2.2) that if (i) and (ii) applies then 
L(x, A) has a saddle point at (x*, A*). Indeed it is a degenerate saddle 
point since 

L(x, A*) > L(x*, A*) - L(x*, A). 

Consider the example: 

minimize/(x) = x such that h{x) = x — 1 = 0. 

With L = x^ -I- A(x — 1) it follows directly that x* = 1 and A* -2. 

Since along the straight line asymptotes through (x*,A*), AL = 0 for 
changes Ax and A A, it follows that 

[Ax AA] 
2 1 
1 0 

Ax 
AA 

0, or 

Ax(Ax + AA) = 0. 

The asymptotes therefore are the lines through (x*,A*) with Ax = 0, 
and ^ = — 1 respectively, as shown in Figure 3.4, i.e. the lines x = 1 
and A = —x — 1. 

In general, if it can be shown that candidate point (x*. A*) is a saddle 
point of L, then the Hessian of the Lagrangian with respect to x, H^, 
at the saddle point is positive definite for a constrained minimum. 
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3.2.1.6 Special case: quadratic function with linear equality 
constraints 

From a theoretical point of view, an important apphcation of the La-
grangian method is to the minimization of the positive-definite quadratic 
function: 

/ (x ) - ^x^Ax + b^x + c (3.8) 

subject to the hnear constraints 

C x - d . 

Here A is a n x n positive-definite matrix and C a r x n constraint 
matrix, r < n, b is a n-vector and d a r-vector. 

In this case the Lagrangian is 

X(x, A) - ^x^Ax + b^x -^c^ A^(Cx - d) 

and the necessary conditions (3.7) for a constrained minimum at x* is 
the existence of a vector A* such that 

Vxi^(x*,A*) = Ax* + b-f-C^A* 

V A L ( X * , A * ) = C x * - d = 0 

0 

I.e. 
A C^ 
C 0 

X" 

A* 
-b 
d 

The solution to this linear system is given by 

X" 

A* 
= M-

- b 
d 

where M = 
A C^ 
C 0 

(3.9) 

3.2.1.7 Inequality constraints as equality constraints 

Consider the more general problem: 

minimize / (x) 

such that dji?^) ^ 0 , j = 1, 2 , . . . , m 

/ i , ( x ) - 0 , j - l , 2 , . . . , r . 

(3.10) 
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The inequality constraints may be transformed to equality constraints 
by the introduction of so-called auxiliary variables öj, j = 1, 2 , . . . , m: 

Since ^j(x) = — ?̂ < 0 for all j , the inequality constraints are automat­
ically satisfied. 

The Lagrangian method for equality constrained problems may now be 
applied, where 

m r 

£(x ,ö , A,/.) - / (x) + X]Ajfe-(x) + e]) + J2ßM^) (3-11) 

and Xj and fij denote the respective Lagrange multipliers. 

From (3.7) the associated necessary conditions for a minimum at x are 

dL 
dxi 

dL_ 
d6j 
dL 
dXj 
dL 

dxi ^ ' dxi 

2AjÖ^=0, i = l , 2 , . . . ,m 

0, 2 = 1,2,... ,n 

gj{^) + e] = 0, j - l , 2 , . . . , m (3.12) 

/ i , ( x ) - 0 , j = l , 2 , . . . , r . 

The above system (3.12) represents a system of n-i-2m + r simultaneous 
non-linear equations in the n4-2m + r unknowns x, Ö, A and /x. Obtain­
ing the solutions to system (3.12) yields candidate solutions x* to the 
general optimization problem (3.10). The application of this approach 
is demonstrated in the following example. 

3.2.1.8 Example 

Minimize/(x) = 2xf - 3x1 - 2xi 

such that xf + ^2 < 1 by making use of auxiliary variables. 
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Introduce auxiliary variable 0 such that 

X? + x^ - 1 + 19̂  - 0 

then 

L(x, 6>, A) - 2x1 - 3x2 - 2x1 + X{x\ + x^ - 1 + O'^). 

The necessary conditions at the minimum are 

dL 
- — = 4 x i - 2 + 2 A x i - 0 (3.13) 
oxi 
dL 
-— = -6x2 + 2Ax2 = 0 (3.14) 
0X2 

^ ^ 2\e = Q (3.15) 

^ - x ? + x ^ - l + 6>2 = 0. (3.16) 

As first choice in (3.15), select A == 0 which gives xi = 1/2, X2 = 0, and 
(9̂  = 3/4. 

Since ^^ > 0 the problem is unconstrained at this point. Further since 

H = R M^ non-definite the candidate point x^ corresponds to 

a saddle point where /(x^) = —0.5. 

Select as second choice in (3.15), 

( 9 - 0 which gives x? + x^ - 1 = 0 (3.17) 

i.e. the constraint is active. From (3.14) it follows that for X2 ^ 0, A = 3, 
and substituting into (3.13) gives xi — 1/5 and from (3.17): X2 = 
±\ /24/5 = ±0.978 which give the two possibilities: x* = {^\, ^ ^ , /(x*) 

-3.189 and x* - (\, ^ = ^ ) , with /(x*) = -3.189. 

3.2.1.9 Direction of asymptotes at a saddle point x^ 

If, in the example above, the direction of an asymptote at saddle point 
x^ is denoted by the unit vector u — [i^i, 1̂ 2)̂ 5 then for a displacement 
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X-i ~\~ X<2 — -L 

Figure 3.5: Directions of asymptotes at a saddle point x^ 

Ax = u along the asymptote the change in the function value is A / = 0. 
It follows from the Taylor expansion that 

A / = / (x^ + Ax) - / (x°) - u^V/ (x° ) + ^u^Hu - 0 

for step Ax = u at saddle point x^. Since H — 
4 0 
0 - 6 

and 

V/(x^) = 0 it follows that 2ul - 31̂ 2 = 0 and also, since ||u|| =: 1: 
ul-\-U2 = 1. 

Solving for ui and U2 in the above gives 

Ul=±Jl ^2-±Vt 

which, taken in combinations, correspond to the directions of the four 
asymptotes at the saddle point x^, as shown in Figure 3.5. 
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3.2.2 Classical approach to optimization with inequality 
constraints: the KKT conditions 

Consider the primal problem (PP): 

minimize / (x) 

such that gj{x) < 0, j -= 1, 2 , . . . , m. (3.18) 

Define again the Lagrangian: 

m 

L(x,A) = / (x) + ^A,-^,-(x). (3.19) 
j=i 

Karush (1939) and Kuhn and Tucker (1951) independently derived the 
necessary conditions that must be satisfied at the solution x* of the 
primary problem (3.18). These conditions are generally known as the 
KKT conditions which are expressed in terms of the Lagrangian I/(x, A). 

3.2.2.1 The KKT necessary conditions for an inequality con­
strained minimum 

Let the functions / and QJ G C^ , and assume the existence of Lagrange 
multipliers A*, then at the point x*, corresponding to the solution of the 
primal problem (3.18), the following conditions must be satisfied: 

g M + EAlgcx-) = o.i = i,v...« 
i = i 

^,(x*) < 0, j - l , 2 , . . . , m 

A*^,(x*) = 0, i - l , 2 , . . . , m 

A* > 0, i = l , 2 , . . . , m . 

(3.20) 

For a formal proof of the above see Theorem 6.3.1. It can be shown 
that the KKT conditions also constitute sufficient conditions (those that 
imply that) for x* to be a constrained minimum, if / (x ) and the ^j(x) 
are all convex functions. 

Let X* be a solution to problem (3.18), and suppose that the KKT con­
ditions (3.20) are satisfied. If now ö'/c(x*) = 0 for some /c G {1, 2 , . . . , m}, 
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then the corresponding inequahty constraint k is said to be active and 
binding at x*, if the corresponding Lagrange multiplier Â  > 0. It is 
strongly active if Â  > 0, and weakly active if Â  == 0. However, if for 
some candidate KKT point x, ^/c(x) = 0 for some /c, and all the KKT 
conditions are satisfied except that the corresponding Lagrange multi­
plier Ajt < 0, then the inequality constraint k is said to be inactive, and 
must be deleted form the set of active constraints at x. 

3.2.2.2 Constraint qualification 

It can be shown that the existence of A* is guaranteed if the so-called 
constraint qualification is satisfied at x*, i.e. if a vector h G W^ exists 
such that for each active constraint j at x* 

V^^^(x*)h < 0 (3.21) 

then A* exists. 

The constraint qualification (3.21) is always satisfied 

(i) if all the constraints are convex and at least one x exists within 
the feasible region, or 

(ii) if the rank of the Jacobian of all active and binding constraints at 
X* is maximal, or 

(iii) if all the constraints are Hnear. 

3.2.2.3 Illustrative example 

Minimize/(x) = (xi - 2)^ + x | 

such that xi > 0, X2 > 0, (1 — xif > X2. 

Clearly minimum exists at xj = 1, X2 == 0 where 

^i(x*) = -xl < 0, ^2(x*) = -xl = 0 and ^3(x*) - x^ - (1 - xlf - 0 

and therefore ^2 and gs are active at x*. 
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Figure 3.6: Failure of constraint qualification 

At this point 

V^2 , V^3 

giving Vö'2 = —^92> at x* as shown in Figure 3.6. 

Thus no h exists that satisfies the constraint qualification (3.21). There­
fore the application of KKT theory to this problem will break down since 
no A* exists. 

Also note that the Jacobian of the active constraints at x* = [l^O]-^: 

öx 
( x * ) ^ 

dg2 dgs 
dxi dxi 
dg2 dgs 

_ dx2 dx2 -

= 
0 0 

- 1 1 

is of rank 1 < 2, and therefore not maximal which also indicates that 
A* does not exist, and therefore the problem cannot be analysed via the 
KKT conditions. 

3.2.2.4 Simple example of application of KKT conditions 

Minimize/(x) = {xi - 1)^ + {x2 - 2f 

such that xi > 0, 0:2 > 0, xi + X2 < 2 and X2 — xi = 1. 
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In s tandard form the constraints are: 

-xi < 0, -X2 < 0, x i + X2 — 2 < 0, and X2 - x i - 1 = 0 

and the Lagrangian, now including the equality constraint with Lagrange 
multiplier // as well: 

L(x ,A, / / ) = ( a ; i - l ) ^ + ( x 2 - 2 ) ^ + A 3 ( x i + X 2 - 2 ) - A i x i - A 2 X 2 + / i ( a ; 2 - x i - l ) . 

The K K T conditions are 

2(xi - 1) + As - Al - /i = 0; 2(a;2 - 2) -f A3 - A2 + yu = 0 

—xi < 0; —X2 < 0; x i + 0:2 — 2 < 0; X2 — xi — 1 = 0 

A3(xi + X2 - 2) = 0; Aixi = 0; A2X2 = 0 

Al > 0; A2 > 0; A3 > 0. 

In general the approach to the solution is combinatorial. Try different 
possibilities and test for contradictions. One possible choice is A3 7̂  0 
tha t implies xi + X2 — 2 = 0. This together with the equality constraint 
gives 

x\ = 1 , 4 = i , >^l = 1, AJ = A^ = 0, //* = 0 and / ( x * ) - \. 

This candidate solution satisfies all the K K T conditions and is indeed the 
opt imum solution. Why? The graphical solution is depicted in Figure 
3.7. 

3.3 Saddle point theory and duality 

3.3.1 Saddle point theorem 

If the point (x*, A*), with A* > 0, is a saddle point of the Lagrangian 
associated with the primal problem (3.18) then x* is a solution to the 
primal problem. For a proof of this s tatement see Theorem 6.4.2 in 
Chapter 6. 
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— r i 3iT 

[1,2]^ 
(unconstrained minimum) 

1 2 

Figure 3.7: Graphical solution to example problem in 3.2.2.4 

3.3.2 Dual i ty 

Define the dual function: 

h{X) = miniy(x, A). (3.22) 

Note that the minimizer x*(A) does not necessarily satisfy g(x) < 0, 
and indeed the minimum may not even exist for all A. 

Defining the set 
D = {X\h{X) 3 and A > 0} 

allows for the formulation of the dual problem (DP): 

maximize h(X) 
XeD 

which is equivalent to < max(minL(x, A)) >. 
t XeD X J 

(3.23) 

(3.24) 

3.3.3 Duality theorem 

The point (x*,A*), with A* > 0, is a saddle point of the Lagrangian 
function of the primal problem (PP), defined by (3.18), if and only if 
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L* = fix*) = h{y) {x\y) 

Figure 3.8: Schematic representation of saddle point solution to PP 

(i) X* is a solution to the primal problem (PP), 

(ii) A* is a solution to the dual problem (DP), and 

(iii) /(x*) = h{\*). 

A schematic representation of this theorem is given in Figure 3.8 and a 
formal proof is given in listed Theorem 6.4.4 in Chapter 6. 

3.3.3.1 Practical significance of the duality theorem 

The implication of the Duality Theorem is that the PP may be solved 
by carrying out the following steps: 

1. If possible, solve the DP separately to give A* > 0, i.e. solve an 
essentially unconstrained problem. 

2. With A* known solve the unconstrained problem: minZ/(x, A*) to 
X 

give X* = x*(A*). 

3. Test whether (x*. A*) satisfy the KKT conditions. 

3.3.3.2 Example of the application of duality 

Consider the problem: 
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minimize/(x) = x\^ 2x2 ^^^^ ^^^^ xi + X2 > 1. 

Here the Lagrangian is 

L(x, A) = x^ + 2^2 + A(l - xi — X2). 

For a given A the necessary conditions for minL(x, A) at x*(A) are 

dL 
9x1 
dL 

2 x 1 - A = 0 ^ xi=x\{X)=^^ 
OXi ^ 

^ = 4 x 2 - A - 0 ^ X2-x^(A) = | . 

Note that x*(A) is a minimum since the Hessian of the Lagrangian with 

respect to x, H ;̂, ~ n A M^ positive-definite. 

Substituting the minimizing values (i.t.o. A) into L gives 

i(x*(A), A) = MA) = {\f + 2 ( I ) ' + A (1 - f - ^) 

i.e. the dual function is /i(A) = — | A ^ + A. 

Now solve the DP: max/i(A). 

The necessary condition for a for maximum is ^ = 0, i.e. 

- | A + l = 0=4>A*==:|>0(a maximum since 0 = - | < 0). 

Substituting A* in x*(A) above gives 

and since (x*, A*), with A* = | > 0, clearly satisfies the KKT conditions, 
it indeed represents the optimum solution. 

The dual approach is an important method in some structural optimiza­
tion problems (Fleury, 1979). It is also employed in the development of 
the augmented Lagrange multiplier method to be discussed later. 



CONSTRAINED OPTIMIZATION 11 

Figure 3.9: The solution of the QP problem: may be an interior point 
or lie on the boundary of the feasible region 

3.4 Quadratic programming 

The problem of minimizing a positive-definite quadratic function subject 
to linear constraints, dealt with in Section 3.2.1.6, is a special case of 
a quadratic programming (QP) problem. Consider now a more general 
case of a QP problem with inequality constraints: 

mmimize / (x) = i x ^ A x H- b^x + c 

subject to 

C x < d 

where C is a m x n matrix and d is a m-vector. 

(3.25) 

The solution point may be an interior point or may lie on the boundary 
of the feasible region as shown for the two-dimensional case in Figure 
3.9. 

If the solution point is an interior point then no constraints are active, 
and X* -A ^b as shown in the figure. 

The QP problem is often an important sub-problem to be solved when 
applying modern methods to more general problems (see the discussion 
of the SQP method later). 
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3.4.1 Active set of constraints 

It is clear (see Section 3.2.1.6) that if the set of constraints active at x* 
is known, then the problem is greatly simplified. Suppose the active set 
at X* is known, i.e. c-̂ x* = dj for some j G {1 ,2 , . . . , m}, where c-̂  here 
denotes the 1 x n matrix corresponding to the j ^ ^ row of C. Represent 
this active set in matrix form by C'x = d'. The solution x* is then 
obtained by minimizing / (x) over the set {x|C'x = d'}. Applying the 
appropriate Lagrange theory (Section 3.2.1.6), the solution is obtained 
by solving the linear system: 

A C'^ 
a 0 

x" 
A* 

-b* 
d' 

(3.26) 

In solving the QP the major task therefore hes in the identification of 
the active set of constraints. 

3.4.2 T h e m e t h o d of Theil and Van de P a n n e 

The method of Theil and van de Panne (1961) is a straight-forward 
method for identifying the active set. A description of the method, after 
Wismer and Chattergy (1978), for the problem graphically depicted in 
Figure 3.10 is now given. 

Let F[x] denote the set of constraints violated at x. Select as initial 
candidate solution the unconstrained minimum x^ = A~^b. Clearly for 
the example sketched in Figure 3.10, V[yL^] = {1,2,3}. Therefore x° 
is not the solution. Now consider, as active constraint (set ^ i ) , each 
constraint in V[x^] separately, and let x[5i] denote the corresponding 
minimizer: 

5i = {1} => 

Si = {2} ^ 

Si = {3} => 

K[SI] -

K[SI] -

x[5i] = 

= a => V[a] = {2,3}^(t) (not empty) 

= b ^ V[h] = {3} 7̂  0 

= c=^V[c] = {l,2}^4>. 

Since all the solutions with a single active constraint violate one or more 
constraints, the next step is to consider different combinations 52 of two 
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Figure 3.10: Graphical illustration of the method of Theil and Van de 
Panne 

simultaneously active constraints from V[yi^ 

^2 = {1,2} 

52 = {1,3} 

^2 = {2,3} 

x[52] - u =^ V[\i] - 0 

x[52] = w =^ y[w] - {2} 

x[52] = V =^ V[w] = 0. 

Since both V\u\ and V[v\ are empty, u and v are both candidate so­
lutions. Apply the KKT conditions to both u and v separately, to 
determine which point is the optimum one. Assume it can be shown, 
from the solution of (3.26) that for u: Ai < 0 (which indeed is appar­
ently so from the geometry of the problem sketched in Figure 3.10), then 
it follows that u is non-optimal. On the other hand, assume it can be 
shown that for v: A2 > 0 and A3 > 0 (which is evidently the case in the 
figure), then v is optimum, i.e. x* — v. 

3.4.2.1 Explicit example 

Solve by means of the method of Theil and van de Panne the following 
QP problem: 

minimize/(x) = \x\ — X1X2 -\- x^ — 2xi + X2 
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1 /2 3^ 

Figure 3.11: Graphical solution to exphcit example 3.4.2.1 

such that 

xi > 0; X2> 0; x i + X2 < 3; 2xi — X2 < 4. 

In matrix form / (x) is given by / (x) == 4x-^Ax + b-^x, with A 

1 - 1 
-1 2 

and b = [-2,1]^. 

The unconstrained solution is x^ = A~-^b = [3,1]^. Clearly V[x^] = 
{1,2} and therefore x^ is not the solution. Continuing, the method 
yields: 

5i = {1} ^ x[5i] = a =» y[a] = {2} ^ 4> 

Sx = {2} ^ x[5i] = b =» V[h] = {l}j^<P 

S2 = {1,2} => x[S2] = c =» y[c] = 0, where c = [|, § ]^ . 

Applying the KKT conditions to c establishes the optimality of c since 
Al = A2 = i > 0. 
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3.5 Modern methods for constrained optimiza­
tion 

The most established gradient-based methods for constrained optimiza­
tion are 

(i) gradient projection methods (Rosen, 1960, 1961), 

(ii) augmented Lagrangian multiplier methods (see Haftka and Giindel, 
1992), and 

(iii) successive or sequential quadratic programming (SQP) methods 
(see Bazaraa et al., 1993). 

All these methods are largely based on the theory already presented 
here. SQP methods are currently considered to represent the state-of-
the-art gradient-based approach to the solution of constrained optimiza­
tion problems. 

3.5.1 T h e gradient project ion m e t h o d 

3.5.1.1 Equality constrained problems 

The gradient projection method is due to Rosen (1960, 1961). Consider 
the linear equality constrained problem: 

minimize / (x) 

such that Ax - b = 0 (3.27) 

where A is a r x n matrix, r < n and b a r-vector. 

The gradient projection method for solving (3.27) is based on the fol­
lowing argument. 

Assume that x' is feasible, i.e. Ax' —b = 0 in Figure 3.12. A direction s, 
(||s|| = 1) is sought such that a step as {a > 0) from x' in the direction 
s also gives a feasible point, i.e. A(x' -f as) — b = 0. This condition 
reduces to 

As = 0. (3.28) 
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{x|Ax - b = 0} 

Figure 3.12: Schematic representation of the subspace {x|Ax — b = 0} 

Also since ||s|| = 1, it also follows that 

1 - s^s : 0. (3.29) 

It is now required that s be chosen such that it corresponds to the 
direction which gives the steepest descent at x' subject to satisfying the 
constraints specified by (3.28) and (3.29). This requirement is equivalent 
to determining a s such that the directional derivative at x^ 

i?(s) = 
dF(0) 

da 
= V^/ (x ' ) s (3.30) 

is minimized with respect to s, where F{a) = / ( x ' + as). 

Applying the classical Lagrange theory for minimizing a function sub­
ject to equality constraints, requires the formulation of the following 
Lagrangian function: 

L{s, A, Ao) = V^ / (x ' ) s + A^As + Ao(l - s^s) (3.31) 

where the variables s = [51,52, •••, 5 ]̂"̂  correspond to the direction 
cosines of s. The Lagrangian necessary conditions for the constrained 
minimum are 

VsL = V/(xO + A^A - 2Aos 

VxL - As = 0 

= 0. 

= 0 

VAO^ = ( 1 - s ^ s ) 

Equation (3.32) yields 

1 
s = ^ ( V / ( x O + A^A). 

(3.32) 

(3.33) 

(3.34) 

(3.35) 
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-V/(x ') / | |V/(x ')+A^A| | A^A/II • II 

{x|Ax - b = 0} 

+V/(x')/|| • II 

Figure 3.13: Schematic representation of projected direction of steepest 
descent s 

Substituting (3.35) into (3.34) gives 

1 = ^ ( V / ( x O + A^A)^(V/(xO + A^A) 

and thus 

Ao = ± - | | V / ( x ' ) + A ^ A | | . (3.36) 

Substituting (3.36) into (3.35) gives s = ± ( V / ( x ' ) + A^A)/ | |V/ (x ' ) + 
A^AJI. 

For maximum descent choose the negative sign as shown in Figure 3.13. 
This also ensures that the Hessian of the Lagrangian with respect to 
s is positive-definite (sufficiency condition) which ensures that R{s) in 
(3.30) indeed assumes a minimum value with respect to s. Thus the 
constrained (projected) direction of steepest descent is chosen as 

s = - ( V / ( x O + A^A)/| | V/(xO + A^A||. (3.37) 

It remains to solve for A. Equations (3.33) and (3.37) imply A(V/(x')- l-
A^A) = 0. Thus if s 7̂  0 then AA^A = - A V / ( x O with solution 

A = - ( A A ^ ) - i A V / ( x O . (3.38) 

The direction s, called the gradient projection direction, is therefore 
finally given by 

s = _ ( l - A ^ ( A A ^ ) - i A ) V / ( x ' ) / | | V / ( x ' ) + A^A||. (3.39) 
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A projection matrix is defined by 

P - ( I - A ^ ( A A ^ ) - ^ A ) . (3.40) 

The un-normahzed gradient projection search vector u, that is used in 
practice, is then simply 

u = - P V / ( x ' ) . (3.41) 

3.5.1.2 Extension to non-linear constraints 

Consider the more general problem: 

minimize / (x) 

such that /ii(x) = 0, i = 1, 2 , . . . , r, (3.42) 

or in vector form h(x) = 0, where the constraints may be non-linear. 

Linearize the constraint functions /ii(x) at the feasible point x', by the 
truncated Taylor expansions: 

/ii(x) = hi{-^' + (x - xO) = hi{-K') + V^/i^(xO(x - xO 

which allows for the following approximations to the constraints: 

V^ / i i (xO(x-x ' ) = 0, i = l , 2 , . . . , r (3.43) 

in the neighbourhood of x', since the /li(x') = 0. This set of hnearized 
constraints may be written in matrix form as 

Öh(x0^^ 
9x 

- b = 0 

where 
Öh(x0 

ÖX 
X . 

The linearized problem at x ' therefore becomes 

minimize / (x) such that Ax — b = 0 

(3.44) 

(3.45) 

where A 
ÖX 

and b = 
ÖX 
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. h(x) - 0 

Figure 3.14: Schematic representation of correction steps when applying 
the gradient projection method to nonlinear constrained problems 

Since the problem is now hnearized, the computation of the gradient 
projection direction at x' is identical to that before, i.e.: 

u = P(xO V/(xO, but the projection matrix P(xO = ( I - A ^ ( A A ^ ) - i A ) 

is now dependent on x', since A is given by ' 
ÖX 

For an initial feasible point x^(= x') a new point in the gradient pro­
jection direction of descent u-̂  = —P(x^)V/(x^), is x^ == x^ + aiu-^ for 
step size a i > 0 as shown in Figure 3.14. 

In general h(x^) ^ 0, and a correction step must be calculated: x^ ^ x^. 
How is this correction step computed? Clearly (see Figure 3.14), the step 
should be such that its projection at x^ is zero, i.e. P(x^)(x^ — x^) — 0 
and also h(x^) = 0. These two conditions imply that 

(I - A ^ ( A A ^ ) - 1 A ) ( X 1 - X^) - 0 

with A evaluated at x^, which gives 

x^ ^ x^ - A^(AA^)-^h(xi ) (3.46) 

as the correction step, where use was made of the expression h(x) = 
Ax — b for both h(x^) and h(x^) and of the fact that h(x^) = 0. 

Since the correction step is based on an approximation it may have to 
be applied repeatedly until h(x^) is sufficiently small. Having found a 
satisfactory x^, the procedure is repeated successively for k — 2 , 3 , . . . 
to give x2, x^ , . . . , until P(x'^) V/(x^) ^ 0. 
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3.5.1.3 Example problem 

Minimize 

such that 

/ (x) =xl + xl-}-xl 

h{x) = a:i + X2 + X3 = 1 

with initial feasible point x^ = [1,0,0]"^. 

First evaluate the projection matrix P — I — A-^(AA"^)~-'-A. 

Here A = [1 1 1], A A ^ = 3 and (AA^)- i = | , thus giving 

1 0 0 
0 1 0 
0 0 1 

1 
3 

1 1 1 
1 1 1 
1 1 1 

1 
"~ 3 

2 
- 1 
- 1 

- 1 
2 

- 1 

- 1 
- 1 

2 

2:ri 

2X2 

2X3 

giving at x^, V / ( x ) = The gradient vector is V / ( x ) = 

The search at direction at x^ is therefore given by 

r 2 - 1 - 1 
- P V / ( x O ) = - l \ -I 2 - 1 

- 1 - 1 2 

or more conveniently, for this example, choose the search direction sim-
- 2 

• 2 " 

0 
_ 0 _ 

_ 1 
~~ 3 

4 • 

- 2 
_ - 2 

2 
"~ 3 

• - 2 " 

1 
1 _ 

ply as u = 

• - 2 ' 

1 
[ 1 _ 

= 

• 1 - 2A " 
A 
A 

For a suitable value of A the next point is given by 

x̂  = x̂  + A 

Substituting the above in /(x^) = /(x^ + Au) = F{X) = {1 - 2\f 
Â  + A ,̂ it follows that for optimal descent in the direction u: 

dF 
—- = -2 (1 - 2A)2 + 2A + 2A = 0=4>A=^ 
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which gives 

•̂  ~ L3' 3' sJ ' ^ / l ( ^ ) — Ls' 3' 3J 
2 2 2^T 

and 

P V / ( x i ) = \ 
2 - 1 - 1 

-1 2 - 1 
-1 - 1 2 

2 
3 

• 1 " 

1 
_ 1 _ 

2 
~ 9 

• 0 • 

0 
_ 0 _ 

= 0. 

Since the projection of the gradient vector at x-̂  is zero it is the optimum 
point. 

3.5.1.4 Extension to linear inequality constraints 

Consider the case of linear inequality constraints: 

Ax - b < 0 (3.47) 

where A is a m x n matrix and b a m-vector, i.e. the individual con­
straints are of the form 

Pj(x) = a-̂ x - 6j < 0, j = 1,2,.. . , m. 

where a^ denotes the 1 x n matrix corresponding to the j ^ ^ row of A. 
Suppose at the current point x , r (< m) constraints are enforced, i.e. 
are active. Then a set of equality constraints, corresponding to the active 
constraints in (3.47) apply at x^, i.e. A^x^ — b^ = 0, where Â ^ and b^ 
correspond to the set of r active constraints in (3.47). 

Now apply the gradient projection method as depicted in Figure 3.15 
where the recursion is as follows: 

u^+i = -P (x^ )V/ (x^ ) and x^+^ - x^ + Oik+in^^^ 

where 
/(x'^ + afc+iu'=+l) = min /(x'^ + au'^+l). 

a 

Two possibilities may arise: 

(3.48) 

(i) No additional constraint is encountered along u "̂̂ ^ before x "̂̂ ^ 
x^ -h a/,+iu^+i. Test whether PV/ (x^+i ) = 0. If so then x* 
x^"^\ otherwise set u "̂̂ ^ == -P(x^+^)V/(x^'^^) and continue. 
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feasible 
region 

•^k+l _ ^fc _|_ Q ; ^ _ ^ ^ U ^ + 1 

Figure 3.15: Representation of the gradient projection method for linear 
inequality constraints 

(ii) If an additional constraint is encountered before x k+l _ 
= X*" 

a^j+iu^"^^ at x^+ \ (see Figure 3.15), then set x^+^ = x^+^ and 
add new constraint to active set, with associated matrix A7.4.1. 
Compute new P and set u^+^ = -P(x^+^)V/(x^+^). Continue 
this process until for some active set at x^, P V / ( x ^ ) = 0. 

How do we know that if P V / ( x ^ ) = 0 occurs, that all the identified 
constraints are active? The answer is given by the following argument. 

If P V / ( x ^ ) - 0 it implies that (I - A ^ ( A A ^ ) - i A ) V / ( x ^ ) - 0 which, 
using expression (3.38), is equivalent to V/ (x^)+A^A = 0, i.e. V/(x'^)+ 
Yl ^i^9i{'^^) — 0 for all i e la = set of all active constraints. This ex­
pression is nothing else but the KKT conditions for the optimum at x^, 
provided that Â  > 0 for all i e la- Now, if P V / ( x ^ ) = 0 occurs, then if 
Xi < 0 for some i, remove the corresponding constraint from the active 
set. In practice remove the constraint with the most negative multiplier, 
compute the new projection matrix P , and continue. 



CONSTRAINED OPTIMIZATION 89 

3.5.2 Multiplier methods 

These methods combine the classical Lagrangian method with the penalty 
function approach. In the Lagrangian approach the minimum point of 
the constrained problem coincides with a stationary point (x*,A*) of 
the Lagrangian function which, in general, is difficult to determine ana­
lytically. On the other hand in the penalty function approach the con­
strained minimum approximately coincides with the minimum of the 
penalty function. If, however, high accuracy is required the problem 
becomes ill-conditioned. 

In the multiplier methods (see Bertsekas, 1976) both the above ap­
proaches are combined to give an unconstrained problem which is not 
ill-conditioned. 

As an introduction to the multiplier method consider the equality con­
strained problem: 

minimize / (x) 

such that hj{yi) =-0, j = 1, 2 , . . . , r. (3.49) 

The augmented Lagrange function C is introduced as 

r r 

£(x, A, p) - /(x) + Y. î̂ i W + ^ E '̂W- (3-̂ 0) 
3=1 j=l 

If all the multipliers Xj are chosen equal to zero, C becomes the usual 
external penalty function. On the other hand, if all the stationary values 
Â  are available, then it can be shown (Fletcher, 1987) that for any 
positive value of p, the minimization of £(x, A*,p) with respect to x 
gives the solution x* to problem (3.49). This result is not surprising 
since it can be shown that the classical Lagrangian function L(x, A) has 
a saddle point at (x*. A*). 

The multiplier methods are based on the use of approximations to the 
Lagrange multiphers. If A^ is a good approximation to A* then it is pos­
sible to approach the optimum through the unconstrained minimization 
of >C(x, A^, p) without using large values of p. The value of p must only 
be sufficiently large to ensure that C has a local minimum point with 
respect to x rather than simply a stationary point at the optimum. 
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How is the approximation to the Lagrange multiplier vector A^ obtained? 
To answer this question, compare the stationary conditions with respect 
to X for C (the augmented Lagrangian) with those for L (the classical 
Lagrangian) at x*. 

For £: 

i = i + D\' + w | | = 0,-1,2 n. (3.51) 

For L: 

i = i + i : A ; | j = «,.=i.2 », (3.-) 
The comparison clearly indicates that as the minimum point of C tends 
to X* that 

\)-\-2ph^-^\]. (3.53) 

This observation prompted Hestenes (1969) to suggest the following 
scheme for approximating A*. For a given approximation X\ k = 
1,2,.. . , minimize £(x, A ,p) by some standard unconstrained mini­
mization technique to give a minimum x*^. The components of the 
new estimate to A*, as suggested by (3.53), is then given by 

A* ̂  Â +̂̂  = Â^ + 2p/i^(x*^). (3.54) 

The value of the penalty parameter p{= pk) may also be adjusted from 
iteration to iteration. 

3.5.2.1 Example 

Minimize/(x) = xl + lOx^ such that h{x.) = xi + X2 — 4: = 0. 

Here C = xl + lOx^ + A(xi + X2 - 4) + p{xi + X2 - 4)^. 

The first order necessary conditions for a constrained minimum with 
respect to x for any given A are 

2x1 H- A + 2p(xi + X2 - 4) = 0 

20x2 + A + 2p{xi + X2 - 4) = 0 
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from which it follows that 

-5A + 4Qp 
-^-^^-^= 10 + l i p -

Taking Â  = 0 and pi = 1 gives x*^ = [1.905,0.1905]^ and /^(x*^) -
-1.905. 

Using the approximation scheme (3.54) for A* gives Â  = 0+2(l)(-1.905) : 
-3 .81 . 

Now repeat the minimization of C with Â  = —3.81 and p2 = 10. This 
gives x*2 = [3.492,0.3492]^ and /i(x*2) = -0.1587, resulting in the new 
approximation: Â  = -3.81 + 2(10)(-0.1587) = -6.984. 

Using Â  in the next iteration with ps = 10 gives x*^ = [3.624, 0.3624]^, 
/i(x*^) = 0.0136, which shows good convergence to the exact solution 
[3.6363,0.3636]^ without the need for mcreasmg o. 

3.5.2.2 The multiplier method extended to inequality con­
straints 

The multiplier method can be extended to apply to inequality con­
straints (Fletcher, 1975). 

Consider the problem: 

minimize / (x) 

such that ^j(x) < 0, J = 1,2,... , m. (3.55) 

Here the augmented Lagrangian function is 

"̂  /A- \ ^ 
Ax, A,p) = /(x) + P 5 ] (^^ +^,(x)^ (3.56) 

where (a) = max(a, 0). 

In this case the stationary conditions at x* for the augmented and clas­
sical Lagrangians are respectively 

. 7 = 1 
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and 

i = s ; + i : A ; | = 0 . ^ = 1 . 2 „. ,3.8) 

The latter classical KKT conditions require in addition that A*̂ j(x*) = 
0, j = 1,2, . . . , m . 

A comparison of conditions (3.57) and (3.58) leads to the following iter­
ative approximation scheme for A*: 

A* ^ A)+i = (A,̂  + 2pk9j{^*^)) (3.59) 

where x*^ minimizes £ ( x , A ^pk)-

3 .5 .2 .3 E x a m p l e p r o b l e m w i t h inequal i ty cons tra int 

Minimize / ( x ) = xf -f 10a:2 such tha t g{yi) = 4 — xi — a;2 < 0 

Here / : (x , A, p) =x\^ lOx^ + p ( — + (4 - x i - 0:2) 

Now perform the unconstrained minimization of C with respect to x for 
given A and p. This is usually done by some s tandard method such 
as Fletcher-Reeves or BFGS but here, because of the simplicity of the 
illustrative example, the necessary conditions for a minimum are used, 
namely: 

dC 
— - = 2x1 - (A + 2p(4 - XI - X2)) - 0 (3.60) 
a x i 

— - = 20x2 - (A + 2p(4 - XI - X2)) - 0 (3.61) 
ax2 

Clearly 
xi - 10x2 (3.62) 

provided tha t ( ) is nonzero. Utilizing (3.60), (3.61) and (3.62), succes­

sive iterations can be performed as shown below. 

Iteration 1: Use A^ == 0 and pi = 1, then (3.60) and (3.62) imply 

xf = 1.9047 and x^^ - 0.19047 
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The new Â  is now given via (3.59) as Â  = (A^ + 2pi(4 - xf - x^^)) = 
3.80952. 

Iteration 2: Now with A'̂  — 3.80952 choose p2 = 10 which gives 

xf - 3.2234, xf = 0.3223 and Â  = {X^-^2p2{4-xf-xf)) = 12.8937. 

Iteration 3: With the above Â  and staying with the value of 10 for p, 
the iterations proceed as follows: 

Iteration xl^ x^^ A^+^ 

3 3.5728 0.3573 -^ 14.2913 
4 3.6266 0.3627 -> 14.5063 
5 3.6361 0.3636 -^ 14.5861 

Thus the iterative procedure converges satisfactorily to the true solution: 
X* = [3.6363,0.3636]^. 

3.5.3 Sequential quadratic programming (SQP) 

The SQP method is based on the application of Newton's method to 
determine x* and A* from the KKT conditions of the constrained op­
timization problem. It can be shown (see Bazaraa et al., 1993) that 
the determination of the Newton step is equivalent to the solution of a 
quadratic programming (QP) problem. 

Consider the general problem: 

minimize / (x) 

such that gji'^) ^ 0 ; J == 1? 2 , . . . , ?7i (3.63) 

/i,(x) = 0; j = l , 2 , . . . , r . 

It can be shown (Bazaraa et al., 1993) that given estimates (x^, A^,/L6^), 

k = 0 , 1 , . . . , to the solution and the respective Lagrange multipliers 
values, with A^ > 0, then the Newton step s of iteration /c + 1, such that 
^/c+i — x^ -f s is given by the solution to the following k-th QP problem: 
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QP-fc (x* ,̂ A*̂ ,/x*̂ ): Minimize with respect to s: 

F(s) = /(x'^) + V^/(x'=)s + is^Hi(x'=)s 

such that 

g(x'=) + 

and 

h(x^) + 

Ög(x^)^^ 

9x 

9h(x^) 

s < 0 (3.64) 

ÖX 
s = 0 

and where g = [ '̂1,̂ 2, • • • ,9m?, h = [/ii, /i2, • • •, ^r]^ and the Hessian 
of the classical Lagrangian with respect to x is 

777. r 

H L ( X ^ ) = VV(x^) 4- X ] A,^V2^,(x^) + ^/ .^^V2/i ,(x^). 

Note that the solution of QP-fc does not only yield s, but also the La­
grange multipliers A "̂ ^ and /x̂ "̂ ^ via the solution of equation (3.26) in 
Section 3.4. Thus with x "̂̂ ^ = x^ H- s we may construct the next QP 
problem: QP-Zc + 1. 

The solution of successive QP problems is continued until s = 0. It can 
be shown that if this occurs, then the KKT conditions of the original 
problem (3.63) are satisfied. 

In practice, since convergence from a point far from the solution is not 
guaranteed, the full step s is usually not taken. To improve convergence, 
s is rather used as a search direction in performing a line search mini­
mization of a so-called merit or descent function. A popular choice for 
the merit function is (Bazaraa et al., 1993): 

( m ^ \ 

^ m a x { 0 , ^ , ( x ) } + Y. I^^WI (^-ö^) 
2 = 1 Z = l / 

where 7 > maxjAi, A2,. . . , Am, |A^I | , . . . , |Mr|}. 

Note that it is not advisable here to use curve fitting techniques for the 
line search since the function is non-differentiable. More stable methods, 
such as the golden section method, are therefore preferred. 
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The great advantage of the SQP approach, above the classical Newton 
method, is tha t it allows for a systematic and natural way of selecting 
the active set of constraints and in addition, through the use of the merit 
function, the convergence process may be controlled. 

3.5 .3 .1 E x a m p l e 

Solve the problem below by means of the basic SQP method, using 
xO - [0,1]^ and A^ - 0. 

Min imize / (x ) = 2xf + 2^2 - 2a:ia;2 - 4xi - 6x2 

such tha t 

^ i (x) = 2 x 2 - x 2 < 0 

^2(x) 

5̂ 3 (x) 

^4(x) 

~ Xi-\- 5X2 

= - X I < 0 

= -X2 < 0. 

5 < 0 

Since V / ( x ) 
4x1 - 2x2 - 4 

4x2 — 2x1 — 6 
4 - 2 

- 2 4 
the start ing quadratic programming problem is: 

Thus with A' 0 0, H L 

it follows tha t V / (xO) - _ 2 

and it follows from (3.64) tha t 

QP-0: Minimize with respect to s: 

F ( s ) = - 4 - 6 5 i - 2 5 2 + ^(45? 

such tha t 

Asl 45152) 

- l - 5 2 < 0 , 5 i + 5 5 2 < 0 

—51 < 0, and —1 — 52 < 0 

where s = [51,52]"^ 

The solution to this Q P can be obtained via the method described in Sec­
tion 3.4, which firstly shows tha t only the second constraint is active, and 
then obtains the solution by solving the corresponding equation (3.26) 
giving s = [1.1290,-0.2258]^ and A^ = [0,1.0322,0,0]^ and therefore 
x^ = x^ + s = [1.1290,0.7742]^ which completes the first iteration. 
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The next quadratic program QP-1 can now be constructed. It is left 
to the reader to perform the further iterations. The method, because it 
is basically a Newton method, converges rapidly to the optimum x* = 
[0.6589,0.8682]^. 



Chapter 4 

NEW GRADIENT-BASED 
TRAJECTORY AND 
APPROXIMATION 
METHODS 

4.1 Introduction 

4.1.1 Why new algorithms? 

In spite of the mathematical sophistication of classical gradient-based 
algorithms, certain inhibiting difficulties remain when these algorithms 
are applied to real-world problems. This is particularly true in the field 
of engineering, where unique difficulties occur that have prevented the 
general application of gradient-based mathematical optimization tech­
niques to design problems. 

Optimization difficulties that arise are: 

(i) the functions are often very expensive to evaluate^ requiring, for 
example, the time-consuming finite element analysis of a struc­
ture, the simulation of the dynamics of a multi-body system, or a 
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computational fluid dynamics (CFD) simulation, 

(ii) the existence of noise^ numerical or experimental, in the functions, 

(iii) the presence of discontinuities in the functions, 

(iv) multiple local minima^ requiring global optimization techniques, 

(v) the existence of regions in the design space where the functions 
are not defined^ and 

(vi) the occurrence of an extremely large number of design variables^ 
disqualifying, for example, the SQP method. 

4.1.2 Research at the Univers i ty of Pretor ia 

All the above difficulties have been addressed in research done at the 
University of Pretoria over the past twenty years. This research has led 
to, amongst others, the development of the new optimization algorithms 
and methods listed in the subsections below. 

4.1.2.1 Unconstrained optimization 

(i) The leap-frog dynamic trajectory method: LFOP (Snyman, 1982, 
1983), 

(ii) a conjugate-gradient method with Euler-trapezium steps in which 
a novel gradient-only line search method is used: ETOP (Snyman, 
1985), and 

(iii) a steepest-des cent method applied to successive spherical quadratic 
approximations: SQSD (Snyman and Hay, 2001). 

4.1.2.2 Direct constrained optimization 

(i) The leap-frog method for constrained optimization, LFOPC (Sny­
man, 2000), and 
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(ii) the conjugate-gradient method with Euler-trapezium steps and 
gradient-only line searches, applied to penalty function formula­
tions of constrained problems: ETOPC (Snyman, 2003). 

4.1.2.3 Approximation methods 

(i) A feasible descent cone mê /ioc? applied to successive spherical quadratic 
sub-problems: FDC-SAM (Stander and Snyman, 1993; Snyman 
and Stander, 1994, 1996; De Klerk and Snyman, 1994), and 

(ii) the leap-frog method (LFOPC) applied to successive spherical quadratic 
sub-problems: Dynamic-Q (Snyman et al., 1994; Snyman and Hay, 
2002). 

4.1.2.4 Methods for global unconstrained optimization 

(i) A multi-start global minimization algorithm with dynamic search 
trajectories: SF-GLOB (Snyman and Fatti, 1987), and 

(ii) a modified bouncing ball trajectory method for global optimization: 
MBB (Groenwold and Snyman, 2002). 

All of the above methods developed at the University of Pretoria are 
gradient-based^ and have the common and unique property, for gradient-
based methods, that no explicit objective function line searches are re­
quired. 

In this chapter the LFOP/C unconstrained and constrained algorithms 
are discussed in detail. This is followed by the presentation of the SQSD 
method, which serves as an introduction to the Dynamic-Q approxima­
tion method. Next the ETOP/C algorithms are introduced, with special 
reference to their ability to deal with the presence of severe noise in the 
objective function, through the use of a gradient-only line search tech­
nique. Finally the SF-GLOB and MBB stochastic global optimization 
algorithms, which use dynamic search trajectories, are presented and 
discussed. 
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4.2 The dynamic trajectory optimization 
method 

The dynamic trajectory method for unconstrained minimization (Sny­
man, 1982, 1983) is also known as the "leap-frog" method. It has re­
cently (Snyman, 2000) been modified to handle constraints via a penalty 
function formulation of the constrained problem. The outstanding char­
acteristics of the basic method are: 

(i) it uses only function gradient information V / , 

(ii) no explicit line searches are performed, 

(iii) it is extremely robust^ handling steep valleys, and discontinuities 
and noise in the objective function and its gradient vector, with 
relative ease, 

(iv) the algorithm seeks relative low local minima and can therefore be 
used as the basic component in a methodology for global optimiza­
tion^ and 

(v) when applied to smooth and near quadratic functions it is not as 
efiicient as classical methods. 

4.2.1 Basic dynamic mode l 

Assume a particle of unit mass in a n-dimensional conservative force field 
with potential energy at x given by / (x) , then at x the force (acceleration 
a) on the particle is given by: 

a - x = - V / ( x ) (4.1) 

from which it follows that for the motion of the particle over the time 
interval [0,t]: 

i||x(i)||2 - i||x(0)||2 = /(x(0)) - /(x(i)) (4.2) 

or 
T{t) - r (0) = /(O) - fit) (4.3) 
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where T{t) represents the kinetic energy of the particle at time t. Thus 
it follows that 

f{t) + T{t) = constant (4.4) 

i.e. conservation of energy along the trajectory. Note that along the 
particle trajectory the change in the function / , A / = —AT, and there­
fore, as long as T increases, / decreases. This is the underlying principle 
on which the dynamic leap-frog optimization algorithm is based. 

4.2.2 Basic algorithm for unconstrained problems 
(LFOP) 

The basic elements of the LFOP method are as hsted in Algorithm 4.1. 
A detailed flow chart of the basic LFOP algorithm for unconstrained 
problems is given in Figure 4.1. 

4.2.3 Modif ication for constrained problems (LFOPC) 

The code LFOPC (Snyman, 2000) applies the unconstrained optimiza­
tion algorithm LFOP to a penalty function formulation of the con­
strained problem (see Section 3.1) in 3 phases. For engineering prob­
lems (with convergence tolerance Sx = 10"^) the choice po = 10 and 
pi — 100 is recommended. For extreme accuracy {sx = 10~^), use 
po = 100 and pi = 10^. 

4.2.3.1 Example 

Minimize/(x) = xli-2x2 such that ^(x) = -2:1-2:2+1 < 0 with starting 
point x^ = [3,1]-^ by means of the LFOPC algorithm. Use po == 1-0 and 
pi = 10.0. The computed solution is depicted in Figure 4.2. 
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Algorithm 4.1 LFOP algorithm 

1. Given / (x) and starting point x(0) =^ x^, compute the dynamic 
trajectory of the particle by solving the initial value problem: 

m = -v/(x(t)) 
withx(O) = 0; and x(0) = x°. (4.5) 

2. Monitor v{t) = x(t), clearly as long as T = ^ | |v ( t )p increases, 
/(x(t)) decreases as desired. 

3. When ||v(t)|| decreases, i.e. when the particle moves uphill, ap­
ply some interfering strategy to gradually extract energy from the 
particle so as to increase the likelihood of its descent, but not so 
that descent occurs immediately. 

4. In practice the numerical integration of the initial value prob­
lem (4.5) is done by the '^leap-frog'' method: compute for k = 
0 ,1 ,2 , . . . , and given time step At: 

where 
a^ = - V / ( x ^ ) and v^ - ^sfiAt, 

to ensure an initial step if a^ 7̂  0. 

5. Typically the interfering strategy is as follows: 

ŷ ||v^+i|| > ||v^|| continue the trajectory, 

else set v^ = 5(v^"^^ + v'^), x "̂̂ ^ = ^(x^"^^ + x^), compute new 
v "̂̂ ^ and continue. 

6. Further heuristics (Snyman, 1982, 1983) are introduced to deter­
mine a suitable initial time step At, to allow for the magnification 
and reduction of At, and to control the magnitude of the step 
A x = x'̂ +^ — x^ by setting a step size limit S along the computed 
trajectory. (The recommended magnitude oi S is S ^ ^ V ^ ^ 
(maximum variable range).) 
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At = pAt 

xo, a, km 

î . = 0 iim = 2 
i^ = 0 i^m = 3 
*d = 0 idm = 5 

p = 1 fe = - 1 
(5t = 0.001 

ao = - V / ( x o ) 

^^^ V 5||V/(xo)l| 
vo = aoAt 

||Axfc|| = |K||At 

hd = f d + 1 ] 

vfc = Ä t l i ^ 

r = 1 - 80£a;/f5 
Vfc = (vfc +rvfc_i)/4 
Xfc = (xfc +Xfc-i)/2 

At = At/2 
is =0 

»fc+i = -V/(xfc+i) 
Vfc+i = Vfc + |a;,^iAt 

id > idrnj^ 

P=l 

yes At = At/2 
id = 0 

Xfc+l =Xfc + Vfc At Vfc+1 = (vfc+1 +Vfc)/4 
k = k + l 

yes yT " 

' " / " -
Xfc+l 

i 

-̂ ^̂ ^̂  yes 

yes 

Vfc+i = 0 
k = k + l 
ixm = 1 

Figure 4.1: Flowchart of the LFOP unconstrained minimization algo­
rithm 
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Figure 4.2: The (a) complete LFOPC trajectory for example problem 
4.2.3.1, with x^ = [3,1]"^, and magnified views of the final part of the 
trajectory shown in (b) and (c), giving x* '^ [0.659,0.341]-^ 
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Algorithm 4.2 LFOPC algorithm 

Phase 0: 
Given some x^, then with overall penalty parameter p = po, apply LFOP 
to the penalty function P(x,po) to give x*(po)-
Phase 1: 
With x^ :— x*(po) and p := pi^ where pi ^ po? apply LFOP to P(x, pi) 
to give x*(pi) and identify the set of active constraints /Q, such that 
^za(x*(pi)) > Ofor Za e la-
Phase 2: 
WithxO:=x*(pi) use LFOP to minimize 

m 

i=l iaEla 

to give x*. 

4.3 The spherical quadratic steepest descent method 

4.3.1 Introduct ion 

In this section an extremely simple gradient only algorithm (Snyman 
and Hay, 2001) is proposed that, in terms of storage requirement (only 
3 n-vectors need be stored) and computational efficiency, may be consid­
ered as an alternative to the conjugate gradient methods. The method 
effectively apphes the steepest descent (SD) method to successive simple 
spherical quadratic approximations of the objective function in such a 
way that no explicit line searches are performed in solving the minimiza­
tion problem. It is shown that the method is convergent when applied 
to general positive-definite quadratic functions. The method is tested 
by its application to some standard and other test problems. On the ev­
idence presented the new method, called the SQSD algorithm, appears 
to be reliable and stable, and very competitive compared to the well 
established conjugate gradient methods. In particular, it does very well 
when applied to extremely ill-conditioned problems. 
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4.3.2 Classical steepest descent method revisited 

Consider the following unconstrained optimization problem: 

min/(x) , X G M ' ' (4.6) 

where / is a scalar objective function defined on R'̂ , the n-dimensional 
real Euchdean space, and x is a vector of TT- real components xi, X2-) • • • ^ ^n-
It is assumed that / is difi'erentiable so that the gradient vector V / ( x ) 
exists everywhere in R^. The solution is denoted by x*. 

The steepest descent (SD) algorithm for solving problem (4.6) may then 
be stated as follows: 

Algorithm 4.3 SD algorithm 

Initialization: Specify convergence tolerances Sg and EX^ select starting 
point x^. Set k := 1 and go to main procedure. 
Main procedure: 

1. If II V/(x^~^)| | < Eg, then set x* = x^ — x^~^ and stop; otherwise 
set u'̂  := - V / ( x ^ - i ) . 

2. Let Xk be such that /(x^~^ + A/̂ u )̂ = min^ /(x^~^ + Au^) subject 
to A > 0 {line search step}. 

3. Set x^ : - x^-^ + A^u^; if ||x^ - x^-^|| < e^, then x* ^ x^ = x^ 
and stop; otherwise set k := k -\-1 and go to Step 1. 

It can be shown that if the steepest descent method is applied to a 
general positive-definite quadratic function of the form / (x) = ^ x ^ A x + 
b^x + c, then the sequence {/(x^)} -^ /(x*). Depending, however, on 
the starting point x^ and the condition number of A associated with the 
quadratic form, the rate of convergence may become extremely slow. 

It is proposed here that for general functions / (x ) , better overall per­
formance of the steepest descent method may be obtained by applying 
it successively to a sequence of very simple quadratic approximations of 
/ (x ) . The proposed modification, named here the spherical quadratic 
steepest descent (SQSD) method, remains a first order method since only 
gradient information is used with no attempt being made to construct 
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the Hessian of the function. The storage requirements therefore remain 
minimal, making it ideally suitable for problems with a large number of 
variables. Another significant characteristic is that the method requires 
no explicit line searches. 

4.3.3 The SQSD algorithm 

In the SQSD approach, given an initial approximate solution x^, a 
sequence of spherically quadratic optimization subproblems P[k]^k = 
0,1 ,2 , . . . is solved, generating a sequence of approximate solutions x'̂ "^ .̂ 
More specifically, at each point x^ the constructed approximate subprob-
lem is P[k]: 

minÄ(x) (4.7) 

where the approximate objective function /^(x) is given by 

A(x) = /(x'^) + V^/(x'=)(x - x'^) + i ( x - x'=)^Cfc(x - x'^) (4.8) 

and Ck = diag(c;c, Ck,.. ^ ,Ck) — c/cl. The solution to this problem will 
be denoted by x*^, and for the construction of the next subproblem 
P[fc-f 1], x^+l : -x*^ . 

For the first subproblem the curvature CQ is set to CQ := | |V/(x^) | | //O, 
where p > 0 is some arbitrarily specified step limit. Thereafter, for 
/c > 1, c/c is chosen such that /(x^) interpolates / (x ) at both x^ and 
x^~^. The latter conditions imply that for /c = 1, 2 , . . . 

^ .^ 2 [/(x^-^) - /(x^) - V^/(x^)(x^-^ - x^)] 

^̂ * ||x^-i-x^f 

Clearly the identical curvature entries along the diagonal of the Hessian, 
mean that the level surfaces of the quadratic approximation //c(x), are 
indeed concentric hyper-spheres. The approximate subproblems P[k] 
are therefore aptly referred to as spherical quadratic approximations. 

It is now proposed that for a large class of problems the sequence 
x^,x^, . . . will tend to the solution of the original problem (4.6), i.e. 

l i m x ^ x * . (4.10) 
/c—»-oo 
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For subproblems P[k] that are convex, i.e. c^ > 0, the solution occurs 
where V/jt(x) = 0, that is where 

V/(x^) + Citl(x - x^) = 0. (4.11) 

The solution to the subproblem, x*^ is therefore given by 

^*k^^k_Yi^, (4.12) 

Clearly the solution to the spherical quadratic subproblem lies along a 
hne through x^ in the direction of steepest descent. The SQSD method 
may formally be stated in the form given in Algorithm 4.4. 

Step size control is introduced in Algorithm 4.4 through the specification 
of a step limit p and the test for ||x^ — x^~-̂  || > p in Step 2 of the main 
procedure. Note that the choice of CQ ensures that for P[0] the solution 
x^ lies at a distance p from x^ in the direction of steepest descent. 
Also the test in Step 3 that Ck < 0, and setting Ck := 10~^^ where 
this condition is true ensures that the approximate objective function is 
always positive-definite. 

4.3.4 Convergence of the S Q S D m e t h o d 

An analysis of the convergence rate of the SQSD method, when applied 
to a general positive-definite quadratic function, afi'ords insight into the 
convergence behavior of the method when applied to more general func­
tions. This is so because for a large class of continuously differentiable 
functions, the behavior close to local minima is quadratic. For quadratic 
functions the following theorem may be proved. 

4.3.4.1 Theorem 

The SQSD algorithm (without step size control) is convergent when 
applied to the general quadratic function of the form / (x ) = ^x-^Ax -f 
b-^x, where A is a n x n positive-definite matrix and b G R"". 

Proof. Begin by considering the bivariate quadratic function, / (x ) = 
xl -f 7X2, 7 > 1 and with x^ = [a^ß]^. Assume CQ > 0 given, and 
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Algorithm 4.4 SQSD algorithm 

Initialization: Specify convergence tolerances Sg and Sx^ step limit p > 0 
and select starting point x^. Set CQ := | |V/(x^) | | /p. Set A: := 1 and go 
to main procedure. 
Main procedure: 

1. If II V/(x^~-^)|| < Sg, then x* = x^ = x^~^ and stop; otherwise set 

C f e - l 

2. If llx*̂  - x'=-M| > p, then set 

^ • ^ ^ | |V / (x '= - i ) r 

if ||x^ - x^~^|| < Sx, then x* = x^ == x^ and stop. 

3. Set 

_ 2 [/(x^-^) - /(x^) - V^/(x^)(x^-^ - x^)] ^ 

""̂  ' " | | x ^ - i - x ^ f ' 

if c/c < 0 set c/c := 10"^°. 

4. Set /u := /u + 1 and go to Step 1 for next iteration. 
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for convenience in what follows set CQ = l/ö,S > 0. Also employ the 
notation fk — / (x^) . 

Apphcation of the first step of the SQSD algorithm yields 

^1 ^ ^0 _ V/o ^ [a(l - 2J), /?(1 - 27^)]^ (4.13) 
Co 

and it follows that 

i |xi-xO|| '=4<S2(a2+72/32) (4.14) 

and 
V / i - [2ce(l - 2(5), 27/3(1 - 27^)]^. (4.15) 

For the next iteration the curvature is given by 

^ 2 [ / o - / i - V ^ / i ( f - x ^ ) ] . ( , , , ) 
II D 1 11-̂  ^ ' 

||x^ — x^ll 
Utilizing the information contained in (4.13)-(4.15), the various entries 
in expression (4.16) are known, and after substitution c\ simplifies to 

2(a2 + ^3^2) 

a2 + 72/?2 1̂ = Z^ll;^- (4-17) 

In the next iteration, Step 1 gives 

x 2 ^ x i - I / l . (4.18) 
Cl 

And after the necessary substitutions for x-̂ , V / i and ci, given by (4.13), 
(4.15) and (4.17) respectively, (4.18) reduces to 

x2 - [a(l - 2(5)/ii,/3(l - 27(5)u;i]^ (4.19) 

where 
1 + l'^ß'^/o? 
1 + 73/32/a: 

and 
7 + X'ß'^lo? 

Mi = i - ^ ^ : ^ : ^ 3 ^ (4.20) 

'^1 = 1 - ^ 3^2/ 2- (4-21) 
1 + '-^^p^ la.^ 
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Clearly if 7 == 1, then /ii = 0 and ui = 0. Thus by (4.19) x^ == 0 and 
convergence to the solution is achieved within the second iteration. 

Now for 7 > 1, and for any choice of a and /?, it follows from (4.20) that 

0 < Ml < 1 (4.22) 

which implies from (4.19) that for the first component of x^: 

, f ) | = |a( l -2(5) / i i | < \a{l-2ö)\ = 

or introducing a notation (with a^ = a)^ that 

\a2\ = IMIO^II < |a;i|. 

.(1) (4.23) 

(4.24) 

{Note: because CQ = 1/(5 > 0 is chosen arbitrarily, it cannot be said that 
I ail < |ao|. However ai is finite.} 

The above argument, culminating in result (4.24), is for the two iter­
ations x^ -^ x-̂  —> x^. Repeating the argument for the sequence of 
overlapping pairs of iterations x-'̂  -^ x^ -^ x^; x^ -^ x^ ^ x^; . . . , it fol­
lows similarly that \az\ = |M2Ö;2| < |ce2|; \oc^\ = |/̂ 3<^3| < lo^sl;---, since 
0 < M2 ^ 1; 0 < /i3 < 1; . . . , where the /x's are given by (corresponding 
to equation (4.20) for /ii): 

fii = l -
1 + 7'ßU/aU (4.25) 

Thus in general 

and 

0 < /i j < 1 (4.26) 

(4.27) 

For large positive integer m it follows that 

\0Lm\ = \l^m-lOtm-l\ = |Mm-lMm-2<^m-2| = |Atm-l/^m-2 ' * ' Ml<^l | (4 .28) 

and clearly for 7 > 0, because of (4.26) 

lim \am\ = 0. (4.29) 
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Now for the second component of x^ in (4.19), the expression for c^i, 
given by (4.21), may be simplified to 

UJi 
1 - 7 

3/92/^2-l + 73/?2/a' 
(4.30) 

Also for the second component: 

x f ) = ß{l - 2-fö)u;i = Lüix^2^ 

or introducing ß notation 

ß2 = ^ i / ? i . 

(4.31) 

(4.32) 

The above argument is for x^ —> x^ -^ x^ and again, repeating it for the 
sequence of overlapping pairs of iterations, it follows more generally for 
j = 1 ,2 , . . . , t ha t 

ßj+i = ujjßj (4.33) 

where cuj is given by 

1 - 7 

l + 7 ^ / 5 / - i / < i 
(4.34) 

Since by (4.29), \am\ —^ 0, it follows tha t if \ßm\ -^ 0 as m -^ 00, the 
theorem is proved for the bivariate case. Make the assumption tha t \ßm\ 

does not tend to zero, then there exists a finite positive number s such 
tha t 

\ßj\>£ (4.35) 

for all j . This allows the following argument: 

UJn = 

l + 7'ßU/^-i 
< 

1 - 7 

1 + 7^^Vc^?-i 
{i-iWj-i 
a]-I + l^e^ 

. (4.36) 

Clearly since by (4.29) l^rnl —> 0 as m —> 00, (4.36) implies tha t also 
\^m\ -^ 0. This result taken together with (4.33) means tha t \ßm\ -^ 0 
which contradicts the assumption above. Wi th this result the theorem 
is proved for the bivariate case. 
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Although the algebra becomes more complicated, the above argument 
can clearly be extended to prove convergence for the multivariate case, 
where 

n 
/ (x) = ^ 7 z ^ ? , 71 = 1 < 72 < 73 < . . . < 7n. (4.37) 

z = l 

Finally since the general quadratic function 

/ (x) = - x ^ A x + b^x, A positive - definite (4.38) 

may be transformed to the form (4.37), convergence of the SQSD method 
is also ensured in the general case. D 

It is important to note that, although the above analysis indicates that 
||x^ — x*|| is monotonically decreasing with /c, it does not necessarily fol­
low that monotonic descent in the corresponding objective function val­
ues / (x^) , is also guaranteed. Indeed, numerical experimentation with 
quadratic functions shows that, although the SQSD algorithm mono­
tonically approaches the minimum, relatively large increases in / (x^) 
may occur along the trajectory to x*, especially if the function is highly 
elliptical (poorly scaled). 

4.3.5 Numerical results and conclusion 

The SQSD method is now demonstrated by its application to some test 
problems. For comparison purposes the results are also given for the 
standard SD method and both the Fletcher-Reeves (FR) and Polak-
Ribiere (PR) conjugate gradient methods. The latter two methods are 
implemented using the CG+ FORTRAN conjugate gradient program of 
Gilbert and Nocedal (1992). The 0 0 + implementation uses the line 
search routine of More and Thuente (1994). The function and gradient 
values are evaluated together in a single subroutine. The SD method is 
applied using CG+ with the search direction modified to the steepest 
descent direction. The FORTRAN programs were run on a 266 MHz 
Pentium 2 computer using double precision computations. 

The standard (refs. Rao, 1996; Snyman, 1985; Himmelblau, 1972; Manevich, 
1999) and other test problems used are fisted in Section 4.3.6 and the 
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results are given in Tables 4.1 and 4.2. The convergence tolerances ap­
plied throughout are Sg = 10~^ and Sx = 10~^, except for the extended 
homogenous quadratic function with n = 50000 (Problem 12) and the 
extremely ill-conditioned Manevich functions (Problems 14). For these 
problems the extreme tolerances Sg = 0{= 10~^^) and €x = 10"-^^, are 
prescribed in an eff'ort to ensure very high accuracy in the approximation 
x^ to X*. For each method the number of function-cum-gradient-vector 
evaluations (N^^) are given. For the SQSD method the number of itera­
tions is the same as Â -̂ .̂ For the other methods the number of iterations 
(Â **) required for convergence, and which corresponds to the number of 
line searches executed, are also listed separately. In addition the relative 
error {E'^) in optimum function value, defined by 

E' = 
/ ( x * ) - / ( X - ) 

(4.39) 
H-|/(x*)| 

where x^ is the approximation to x* at convergence, is also listed. For 
the Manevich problems, with n > 40, for which the other (SD, FR and 
PR) algorithms fail to converge after the indicated number of steps, 
the infinite norm of the error in the solution vector ( / ^ ) , defined by 
||x* — x^ll^ is also tabulated. These entries, given instead of the relative 
error in function value (£^^), are made in italics. 

Inspection of the results shows that the SQSD algorithm is consistently 
competitive with the other three methods and performs notably well for 
large problems. Of all the methods the SQSD method appears to be the 
most reliable one in solving each of the posed problems. As expected, be­
cause line searches are eliminated and consecutive search directions are 
no longer forced to be orthogonal, the new method completely overshad­
ows the standard SD method. What is much more gratifying, however, is 
the performance of the SQSD method relative to the well-established and 
well-researched conjugate gradient algorithms. Overall the new method 
appears to be very competitive with respect to computational efficiency 
and, on the evidence presented, remarkably stable. 

In the implementation of the SQSD method to highly non-quadratic and 
non-convex functions, some care must however be taken in ensuring that 
the chosen step limit parameter p, is not too large. A too large value may 
result in excessive oscillations occurring before convergence. Therefore 
a relatively small value, p = 0.3, was used for the Rosenbrock problem 
with n = 2 (Problem 4). For the extended Rosenbrock functions of 
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Prob. # 

i 
2 
3 
4 

5(a) 
5(b) 
6 
7 
8 
9 
10 
11 
12 

13 

14 

n 

3 
2 
2 
2 
3 
3 
4 
3 
2 
2 
2 
4 
20 
200 
2000 
20000 
50000 
10 
100 
300 
600 
1000 
20 

40 

60 

100 

200 

P 
1 
1 
1 
0.3 
1 
1 
1 
1 
10 
0.3 
1 
2 

l.E-h04 
l.E+04 
l.E+04 
l.E+04 
l.E+10 
0.3 
1 

1.73 
2.45 
3.16 
1 
10 
1 
10 
1 
10 
1 
10 
1 
10 

SQSD 

~W^~ 
12 
31 
33 
97 
11 
17 
119 
37 
39 
113 
43 
267 
58 
146 
456 
1318 
4073 
788 
2580 
6618 
13347 
20717 
3651 
3301 
13302 
15109 
19016 
16023 
39690 
38929 
73517 
76621 

E" 
3.E-14 
l.E-14 
3.E-08 
l.E-15 
l.E-12 
l.E-12 
9.E-09 
l.E-12 
l.E-22 
5.E-14 
l.E-12 
2.E-11 
l.E-11 
4.E-12 
2.E-10 
6.E-09 
3.E-16 
2.E-10 
l.E-12 
l.E-10 
l.E-11 
2.E-10 
2.E-27 
9.E-30 
5.E-27 
2.E-33 
7.E-39 
6.E-39 
l.E-49 
3.E-53 
5.E-81 
4.E-81 

Steepest Descent 

N^^ 
41 
266 
2316 

> 20000 
60 
49 

> 20000 
156 

12050* 
6065 
1309 
16701 
276 
2717 

> 20000 
> 10000 
> 10000 
> 20000 
> 20000 
> 20000 
> 20000 
> 30000 
> 20000 

> 30000 

> 30000 

> 50000 

> 100000 

Â '* 

20 
131 
1157 

29 
23 

77 
6023* 
3027 
652 
8348 
137 
1357 

E"'/!^ \ 
6.E-12 
9.E-11 
4.E-08 
3.E-09 
6.E-08 
6.E-08 
2.E-06 
3.E-11 
26* 

2.E-10 
l.E-10 
4.E-11 
l.E-11 
l.E-11 
2.E-08 
8.E+01 
5.E+02 
4.E-07 
3.E+01 
2.E-h02 
5.E+02 
9.E4-02 
9.E-01 

l.E+00 

l.E+00 

l.E-hOO 

l.E+00 

* Convergence to a local minimum with /(x^) = 48.9. 

Table 4.1: Performance of the SQSD and SD optimization algorithms 
when apphed to the test problems listed in Section 4.3.6 
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Prob. # 

i 
2 
3 
4 

5(a) 
5(b) 

6 
7 
8 
9 
10 
11 
12 

13 

14 

n 

3 
2 
2 
2 
3 
3 
4 
3 
2 
2 
2 
4 
20 

200 
2000 

20000 
50000 

10 
100 
300 
600 
1000 
20 
40 
60 
100 
200 

Fletcher-Reeves 
Â -̂ '̂  

7 
30 
45 
180 
18 
65 

1573 
132 
72* 
56 
127 
193 
42 
163 
530 
1652 
3225 

> 20000 
> 20000 
> 20000 
> 20000 
> 30000 

187 
> 30000 
> 30000 
> 50000 

> 100000 

j^zt 

3 
11 
18 
78 
7 

31 
783 
62 

27* 
18 
60 
91 
20 
80 
263 
825 
1161 

75 

ßrjjoo 

ö$ 
2.E-11 
2.E-08 
l.E-11 
6.E-08 
6.E-08 
8.E-10 
4.E-12 

26* 
5.E-11 
6.E-12 
l.E-12 
9.E-32 
5.E-13 
2.E-13 
4.E-13 
l.E-20 
2.E-02 
8.E+01 
3.E+02 
6.E-f02 
l .E+03 
8.E-24 
LE+00 
l.E+00 
l.E+00 
l.E+00 

Polak-Ribiere 
N^^ 

7 
22 
36 
66 
18 
26 
166 
57 

24* 
50 
30 
99 
42 
163 
530 
1652 
3225 
548 
1571 
3253 
5550 
8735 
1088 

> 30000 
> 30000 
> 50000 
> 100000 

J^^t 

3 
8 
14 
18 
8 
11 
68 
26 

11* 
17 
11 
39 
20 
80 
263 
825 
1611 
263 
776 
1605 
2765 
4358 
507 

£;7/°° 
0$ 

2.E-12 
6.E-11 
l.E-14 
6.E-08 
6.E-08 
3.E-09 
l.E-12 

26* 
l.E-15 
l.E-11 
9.E-14 
4.E-31 
5.E-13 
2.E-13 
4.E-13 
l.E-20 
4.E-12 
2.E-12 
2.E-12 
2.E-12 
2.E-12 
2.E-22 

l.E+00 
l.E+00 
l.E+00 
l.E+00 

* Convergence to a local minimum with /(x*^) = 48.9; $ Solution to machine accuracy. 

Table 4.2: Performance of the FR and PR algorithms when applied to 
the test problems listed in Section 4.3.6 
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larger dimensionahty (Problems 13), correspondingly larger step limit 
values (p = ^/n/lQ) were used with success. 

For quadratic functions, as is evident from the convergence analysis of 
Section 4.3.4, no step limit is required for convergence. This is borne 
out in practice by the results for the extended homogenous quadratic 
functions (Problems 12), where the very large value p •= 10"̂  was used 
throughout, with the even more extreme value oip = 10^^ for n = 50000. 
The specification of a step limit in the quadratic case also appears to 
have little effect on the convergence rate, as can be seen from the results 
for the ill-conditioned Manevich functions (Problems 14), that are given 
for both p = 1 and p = 10. Here convergence is obtained to at least 
11 significant figures accuracy (||x* —x^||^ < 10"""'̂ )̂ for each of the 
variables, despite the occurrence of extreme condition numbers, such as 
10^^ for the Manevich problem with n = 200. 

The successful application of the new method to the ill-conditioned 
Manevich problems, and the analysis of the convergence behavior for 
quadratic functions, indicate that the SQSD algorithm represents a pow­
erful approach to solving quadratic problems with large numbers of vari­
ables. In particular, the SQSD method can be seen as an unconditionally 
convergent^ stable and economic alternative iterative method for solv­
ing large systems of linear equations, ill-conditioned or not, through the 
minimization of the sum of the squares of the residuals of the equations. 

4.3.6 Test functions used for SQSD 

Minimize / (x ) : 

1. /(x) = xl + 2x1 + 3xi - 2x1 - 4x2 - 6x3 + 6, x° = [3,3,3]^, x* = 
[1,1, If, /(x*)^0.0. 

2. /(x) - xf - 2x?X2 + xf -h x| - 2x1 + 1, x^ = [3,3]^, x* = 
[l,ir, /(x*) = 0.0. 

3. /(x) = x|-8xf-f 25xf-}-4x|-4xiX2-32xi-f 16, x^ = [3,3]^, x* = 
[2,lF, /(x*) = 0.0. 

4. / (x) = 100(x2-x2)2+(l_xi)2, xO = [-1.2,1]^, X* = [ l , l F , /(x*) 
0.0 (Rosenbrock's parabolic valley, Rao, 1996). 
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5. / (x) = xf + xl — xi -\- X2 — X2 + X2 -\- xl - xs + 0:1x2x3, (Zlobec's 
function, Snyman, 1985): 

(a) x^ = [1,-1,1]^ and 

(b) x^ = [0,0,0]^, X* = [0.57085597,-0.93955591,0.76817555]^, 
/(x*) = -1.91177218907. 

6. / ( X ) - ( X 1 + 10X2)2 + 5(X3-X4)2 + (X2-2X3)^ + 10(X1-X4)^ X̂  = 
[3, -1 ,0 ,1 ]^ , X* = [0, 0,0, 0]^, /(x*) = 0.0 (Powell's quartic func­
tion, Rao, 1996). 

7. / (x ) = ~ { i ^ ( ^ ^ + sin (i^X2X3) + exp [- ( ^ " 2 ) ' ] } , x^ 

[0,l,2]^,x* = [1,1, i F , / (x ) = -3.0 (Rao, 1996). 

^ 8. / (x) = {-13 + xi + [(5-X2)x2-2]x2}2 + {-29 + xi + [(x2 + l ) x 2 -
14]x2}^ x^ = [1/2,-2]^, X* = [5,4]^,/(x*) = 0.0 (Freudenstein 
and Roth function, Rao, 1996). 

9. / (x ) = 100(a:2-xf)2+(l-a;l)^ x« = [-1.2,1]^, x* = [1,1]^, /(x*) = 
0.0 (cubic valley, Himmelblau, 1972). 

10. / (x ) = [1.5 - a;i(l - X2)Y + [2.25 - x i ( l - xj)]^ + [2.625 - x i ( l -
xDY, xO = [1,1]^, X* = [3,1/2]^, /(x*) = 0.0 (Beale's function, 
Rao, 1996). 

11. fix) = [10(X2 - xDY + (1 - xiY + 90(a;4 - xjY + (1 - xsf + 
10ix2 + X4- 2)2 + 0.1(a;2 - X4Y, x« = [ - 3 , 1 , - 3 , - 1 ] ^ , x* = 
[1,1,1,1]^, /(x*) = 0.0 (Wood's function, Rao, 1996). 

12. / (x ) = Er=i i^l x« = [3 ,3 , . . . , 3]^, X* = [0 ,0 , . . . , 0]^, /(x*) = 
0.0 (extended homogeneous quadratic functions). 

13. / (x ) = E7=l[W0{xi+,-x^f+{l-Xin x« = [-1.2,1, - 1 . 2 , 1 , . . .f, 
X* = [ 1 , 1 , . . . , 1]-^, /(x*) = 0.0 (extended Rosenbrock functions, 
Rao, 1996). 

14. /(x) = Er=i(i-^i)V2^"'.x' = [0'0'---^oF^x*==[i'i---ir' 
/(x*) = 0.0 (extended Manevich functions, Manevich, 1999). 
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4.4 The Dynamic-Q optimization algorithm 

4.4.1 Introduction 

An efficient constrained optimization method is presented in this sec­
tion. The method, called the Dynamic-Q method (Snyman and Hay, 
2002), consists of applying the dynamic trajectory LFOPC optimization 
algorithm (see Section 4.2) to successive quadratic approximations of 
the actual optimization problem. This method may be considered as an 
extension of the unconstrained SQSD method, presented in Section 4.3, 
to one capable of handling general constrained optimization problems. 

Due to its efficiency with respect to the number of function evalua­
tions required for convergence, the Dynamic-Q method is primarily in­
tended for optimization problems where function evaluations are expen­
sive. Such problems occur frequently in engineering applications where 
time consuming numerical simulations may be used for function evalu­
ations. Amongst others, these numerical analyses may take the form of 
a computational fluid dynamics (CFD) simulation, a structural analysis 
by means of the finite element method (FEM) or a dynamic simulation 
of a multibody system. Because these simulations are usually expen­
sive to perform, and because the relevant functions may not be known 
analytically, standard classical optimization methods are normally not 
suited to these types of problems. Also, as will be shown, the storage 
requirements of the Dynamic-Q method are minimal. No Hessian in­
formation is required. The method is therefore particularly suitable for 
problems where the number of variables n is large. 

4.4.2 The Dynamic-Q method 

Consider the general nonlinear optimization problem: 

min/(x) ; x = [xi,a:2,... ,Xn]^ G R"" 
X 

subject to (4.40) 

^^•(x) = 0; j = l , 2 , . . . , p 

hk{yi) = 0; A:-= l , 2 , . . . , g 
where / (x ) , ö'j(x) and /i/e(x) are scalar functions of x. 
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In the Dynamic-Q approach, successive subproblems P[z], i = 0,1, 2 , . . . 
are generated, at successive approximations x* to the solution x*, by 
constructing spherically quadratic approximations / (x ) , ^j(x) and /ifc(x) 
to / (x ) , pj(x) and hk{x). These approximation functions, evaluated at 
a point x% are given by 

/ (x) = /(x^) + V ^ / ( x ^ ) ( x - x ^ ) + ^ ( x - x ^ f A ( x - x ' ) 

9,(x) = 5,(x') + V^5,(x^)(x-x^) 

+ i ( x - x ' f B,(x - x ^ i = 1 , . . . ,p (4.41) 

hfe(x) = /lyt(x^) + V^?lfc(x^)(x - X^) 

+ i ( x - x ' f C f c ( x - x ' ) , fc=l,...,Q 

with the Hessian matrices A, B j and Ck taking on the simple forms 

A = diag(a, a^,.. ,a) = al 

Bj = bjl (4.42) 

C/c = C/cI. 

Clearly the identical entries along the diagonal of the Hessian matrices 
indicate that the approximate subproblems P[i] are indeed spherically 
quadratic. 

For the first subproblem (i = 0) a linear approximation is formed by 
setting the curvatures a, bj and c/. to zero. Thereafter a, bj and c^ 
are chosen so that the approximating functions (4.41) interpolate their 
corresponding actual functions at both x* and x*~^. These conditions 
imply that for i = 1, 2, 3 , . . . 

2 [/(x^-i) - /(xO - V^/(xO(x^- i - xO] 

| | x ^ - i - x ^ f 
(4.43) 

_ 2 [gj{^'-') - gj{^') - V^^,(xO(x^-i - xQ] . _ 

Cfc 
2 [/ifc(x^-^) - /ifc(x') - V^^fc(xO(x'-i - X')] 

- 7— —2 , /c — i , . . . , g . 
• x - " 2 

If the gradient vectors V"^/, ^^Qj and V^hk are not known analytically, 
they may be approximated from functional data by means of first-order 
forward finite differences. 
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The particular choice of spherically quadratic approximations in the 
Dynamic-Q algorithm has impHcations on the computational and stor­
age requirements of the method. Since the second derivatives of the 
objective function and constraints are approximated using function and 
gradient data, the 0{'in?) calculations and storage locations, which would 
usually be required for these second derivatives, are not needed. The 
computational and storage resources for the Dynamic-Q method are 
thus reduced to 0{n). At most, 4 + p 4 - ^ + r + 5 n-vectors need be 
stored (where p^ q^ r and s are respectively the number of inequality 
and equality constraints and the number of lower and upper limits of 
the variables). These savings become significant when the number of 
variables becomes large. For this reason it is expected that the Dynamic-
Q method is well suited, for example, to engineering problems such as 
structural optimization problems where a large number of variables are 
present. 

In many optimization problems, additional simple side constraints of 
the form ki < xi < ki occur. Constants ki and ki respectively represent 
lower and upper bounds for variable xi. Since these constraints are of 
a simple form (having zero curvature), they need not be approximated 
in the Dynamic-Q method and are instead exphcitly treated as special 
linear inequality constraints. Constraints corresponding to lower and 
upper hmits are respectively of the form 

gi{-K) = kyi-Xyi<0, l = l,2,...,r <n (4.44) 

9m\^) ^^ ^wm ~~ f^wm S U, 777- = 1, 2, . . . , 5 <; 71 

where vl e I = ( f l , i ;2 , . . . ,vr) the set of r subscripts corresponding to 
the set of variables for which respective lower bounds kyi are prescribed, 
and wm e I = {wl^w2^... ^ws) the set of s subscripts corresponding 
to the set of variables for which respective upper bounds k^m are pre­
scribed. The subscripts vl and wm are used since there will, in general, 
not be n lower and upper hmits, i.e. usually r y^ n and s ^ n. 

In order to obtain convergence to the solution in a controlled and stable 
manner, move limits are placed on the variables. For each approximate 
subproblem P[i] this move limit takes the form of an additional single 
inequality constraint 

5p(x) = | | x - x ^ - l f - p 2 < o (445-, 
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where p is an appropriately chosen step limit and x*~-̂  is the solution to 
the previous subproblem. 

The approximate subproblem, constructed at x^ to the optimization 
problem (4.41) (plus simple side constraints (4.44) and move hmit (4.45)), 
thus becomes P[i]: 

min/(x) , X = [xi,X2,...,Xn]^ e R"" 

subject to 

9j{x) < 0 , j - l , 2 , . . . , p 

/ifc(x)-0, / c - l , 2 , . . . , g (4.46) 

ÖKx)<0, / = l , 2 , . . . , r 

Öm(x) < 0, m = 1,2, . . . , 5 

^p(x) = | | x - X ^ - l f - p 2 < 0 

with solution x*\ The Dynamic-Q algorithm is given by Algorithm 4.5. 
In the Dynamic-Q method the subproblems generated are solved using 
the dynamic trajectory, or "leap-frog" (LFOPC) method of Snyman 
(1982, 1983) for unconstrained optimization applied to penalty function 
formulations (Snyman et al., 1994; Snyman, 2000) of the constrained 
problem. A brief description of the LFOPC algorithm is given in Section 
4.2. 

Algorithm 4.5 Dynamic-Q algorithm 

Initialization: Select starting point x^ and move limit p. Set i := 0. 
Main procedure: 

1. Evaluate /(x*), gji'x^) and /IA;(X*) as well as V/(x*), Vgj{yi^) and 
V^fe(x*). If termination criteria are satisfied set x* = x^ and stop. 

2. Construct a local approximation P[i] to the optimization problem 
at X* using expressions (4.41) to (4.43). 

3. Solve the approximated subproblem P[i] (given by (4.46)) using 
the constrained optimizer LFOPC with x^ := x* (see Section 4.2) 
to give x*\ 

4. Set z := i -f-1, x^ := x*^^-^) and return to Step 2. 
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The LFOPC algorithm possesses a number of outstanding characteris­
tics, which makes it highly suitable for implementation in the Dynamic-
Q methodology. The algorithm requires only gradient information and 
no explicit line searches or function evaluations are performed. These 
properties, together with the influence of the fundamental physical prin­
ciples underlying the method, ensure that the algorithm is extremely ro­
bust. This has been proven over many years of testing (Snyman, 2000). 
A further desirable characteristic related to its robustness, and the main 
reason for its apphcation in solving the subproblems in the Dynamic-Q 
algorithm, is that if there is no feasible solution to the problem, the 
LFOPC algorithm will still find the best possible compromised solution 
without breaking down. The Dynamic-Q algorithm thus usually con­
verges to a solution from an infeasible remote point without the need 
to use line searches between subproblems, as is the case with SQP. The 
LFOPC algorithm used by Dynamic-Q is identical to that presented in 
Snyman (2000) except for a minor change to LFOP which is advisable 
should the subproblems become effectively unconstrained. 

4.4.3 Numerical results and conclusion 

The Dynamic-Q method requires very few parameter settings by the 
user. Other than convergence criteria and specification of a maximum 
number of iterations, the only parameter required is the step hmit p. The 
algorithm is not very sensitive to the choice of this parameter, however, 
p should be chosen of the same order of magnitude as the diameter of 
the region of interest. For the problems listed in Table 4.3 a step limit 
oi p = I was used except for problems 72 and 106 where step limits and 
p = 100 were used respectively. 

Given specified positive tolerances £xi ^f and £c^ then at step i termina­
tion of the algorithm occurs if the normalized step size 

x^-M 

1 + l|x̂ .. 

or if the normalized change in function value 

IJ ~~ /best 

< ex (4.47) 

1 + I/best I 
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where /best is the lowest previous feasible function value and the current 
X* is feasible. The point x* is considered feasible if the absolute value of 
the violation of each constraint is less than Cc This particular function 
termination criterion is used since the Dynamic-Q algorithm may at 
times exhibit oscillatory behavior near the solution. 

In Table 4.3, for the same starting points, the performance of the Dynamic-
Q method on some standard test problems is compared to results ob­
tained for Powell's SQP method as reported by Hock and Schittkowski 
(1981). The problem numbers given correspond to the problem numbers 
in Hock and Schittkowski's book. For each problem, the actual function 
value /act is given, as well as, for each method, the calculated function 
value /* at convergence, the relative function error 

1 + I/act I 

and the number of function-gradient evaluations (A -̂̂ )̂ required for con­
vergence. In some cases it was not possible to calculate the relative 
function error due to rounding off of the solutions reported by Hock and 
Schittkowski. In these cases the calculated solutions were correct to at 
least eight significant figures. For the Dynamic-Q algorithm, conver­
gence tolerances of Sf = 10~^ on the function value, Sx = 10~^ on the 
step size and EC = 10~^ for constraint feasibility, were used. These were 
chosen to allow for comparison with the reported SQP results. 

The result for the 12-corner polytope problem of Svanberg (1999) is 
also given. For this problem the results given in the SQP columns are 
for Svanberg's Method of Moving Asymptotes (MMA). The recorded 
number of function evaluations for this method is approximate since 
the results given correspond to 50 outer iterations of the MMA, each 
requiring about 3 function evaluations. 

A robust and efficient method for nonlinear optimization, with minimal 
storage requirements compared to those of the SQP method, has been 
proposed and tested. The particular methodology proposed is made 
possible by the special properties of the LFOPC optimization algorithm 
(Snyman, 2000), which is used to solve the quadratic subproblems. Com­
parison of the results for Dynamic-Q with the results for the SQP method 
show that equally accurate results are obtained with comparable number 
of function evaluations. 
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Prob. # 

2 
10 
12 
13 
14 
15 
16 
17 
20 
22 
23 
24 
26 
27 
28 
29 
30 
31 
32 
33 
36 
45 
52 
55 
56 
60 
61 
63 
65 
71 
72 
76 
78 
80 
81 
100 
104 
106 

j 108 
118 

Svan 

n 

~2~ 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
5 
5 
6 
7 
3 
3 
3 
3 
4 
4 
4 
5 
5 
5 
7 
8 
8 
9 
15 
21 

/act 

5.04E-02 
-l.OOE+00 
-3.00E+01 
l.OOE+00 
1.39E+00 
3.07E+02 
2.50E-01 
l.OOE+00 
3.82E+01 
l.OOE+00 
2.00E+00 
-l.OOE+00 
O.OOE+00 
4.00E-02 
O.OOE+00 
-2.26E+01 
l.OOE+00 
6.00E+00 
l.OOE+00 

-4.59E+00 
-3.30E+03 
l.OOE+00 
5.33E+00 
6.33E+00 
-3.46E+00 
3.26E-02 

-1.44E+02 
9.62E+02 
9.54E-01 
1.70E+01 
7.28E+02 

-4.68E+00 
-2.92E+00 
5.39E-02 
5.39E-02 

6.80E+02 
3.95E+00 
7.05E+03 
-8.66E-01 
6.65E+02 
2.80E+02 

Nf9 
16r^ 
12 
12 
45 
6 
5 

6* 
12 
20 
9 
7 
5 

19 
25 
5 
13 
14 
10 
3 

5* 
4 
8 
8 

1 ~ 
11 
9 
10 
9 

1 1 ~ 
5 

35 
6 
9 
7 
8 

20 
19 
44 
9* 
n^ 

150 

SQP 

/* 
2.84E+01 
-l.OOE+00 
-3.00E+01 
l.OOE+00 
1.39E+00 
3.07E+02 
2.31E+01 
l.OOE+00 
3.82E+01 
l.OOE+00 
2.00E+00 
-l.OOE+00 
4.05E-08 
4.00E-02 
2.98E-21 

-2.26E+01 
l.OOE+00 
6.00E+00 
l.OOE+00 

-4.00E+00 
-3.30E+03 
l.OOE+00 
5.33E+00 
6.00E+00 
-3.46E+00 
3.26E-02 

-1.44E+02 
9.62E+02 
2.80E+00 
1.70E+01 
7.28E+02 
-4.68E+00 
-2.92E+00 
5.39E-02 
5.39E-02 
6.80E+02 
3.95E+00 
7.05E+03 
-6.97E-01 

r v 

2.80E+02 

E^ 
2.70E+01 
5.00E-08 

<1.00E-08 
5.00E-08 
8.07E-09 

<1.00E-08 
<1.00E-08 
<1.00E-08 
4.83E-09 

<1.00E-08 
<1.00E-08 
<1.00E-08 
4.05E-08 
1.73E-08 
2.98E-21 
8.59E-11 

<1.00E-08 
<1.00E-08 
<1.00E-08 
<1.00E-08 
<1.00E-08 
<1.00E-08 
5.62E-09 
4.54E-02 

<1.00E-08 
3.17E-08 
1.52E-08 
2.18E-09 
9.47E-01 
1.67E-08 
1.37E-08 
3.34E-09 
2.55E-09 
7.59E-10 
1.71E-09 

<1.00E-08 
8.00E-09 
1.18E-05 
1.32E-02 

^ 
9.96E-05 

N^9 
7* 
13 
9 

50$ 
5 

15* 
5* 
16 
4* 
3 
5 
4 

27 
28 
12 
11 
5 
10 
4 

3* 
15 
7 
12 
2* 
20 
11 
10 
6 
9 
6 

30 
8 
6 
6 
12 
16 
42 
79 
26 
38 
93 

Dynamic-Q ~ | 

/* 1 4.94E+00 
-l.OOE+00 
-3.00E+01 
9.59E-01 
1.39E+00 
3.60E+02 
2.31E+01 
l.OOE+00 
4.02E+01 
l.OOE+00 
2.00E+00 
-l.OOE+00 
1.79E-07 
4.00E-02 
7.56E-10 

-2.26E+01 
l.OOE+00 
6.00E+00 
l.OOE+00 

-4.00E+00 
-3.30E+03 
l.OOE+00 
5.33E+00 
6.66E+00 
-3.46E+00 
3.26E-02 

-1.44E+02 
9.62E+02 
9.54E-01 
1.70E+01 
7.28E+02 
-4.68E+00 
-2.92E+00 
5.39E-02 
5.39E-02 

6.80E+02 
3.95E+00 
7.05E+03 
-8.66E-01 
6.65E+02 
2.80E+02 

E'' 1 
<1.00E-08 
<1.00E-08 
<1.00E-08 
2.07E-02 
7.86E-07 
5.55E-07 

<1.00E-08 
<1.00E-08 
<1.00E-08 
<1.00E-08 
<1.00E-08 
l.OOE-08 
1.79E-07 
9.62E-10 
7.56E-10 
8.59E-11 

< l.OOE-08 
1.43E-08 

<1.00E-08 
<1.00E-08 
<1.00E-08 
l.OOE-08 
1.02E-08 
1.30E-09 
6.73E-08 
1.21E-09 
1.52E-08 
2.18E-09 
2.90E-08 
1.67E-08 
1.37E-08 
3.34E-09 
2.55E-09 
7.59E-10 
1.90E-10 
1.46E-10 
5.26E-08 
1.18E-05 
3.32E-09 
3.00E-08 
1.59E-06 

• Converges to a local minimum - listed E'^ relative to function value at local minimum; 
r-j Fails; $ Terminates on maximum number of steps 

Table 4.3: Performance of the Dynamic-Q and SQP optimization algo­
rithms 
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4.5 A gradient-only line search method for con­
jugate gradient methods 

4.5.1 Introduction 

Many engineering design optimization problems involve numerical com­
puter analyses via, for example, FEM codes, CFD simulations or the 
computer modeling of the dynamics of multi-body mechanical systems. 
The computed objective function is therefore often the result of a com­
plex sequence of calculations involving other computed or measured 
quantities. This may result in the presence of numerical noise in the 
objective function so that it exhibits non-smooth trends as design pa­
rameters are varied. It is well known that this presence of numerical 
noise in the design optimization problem inhibits the use of classical 
and traditional gradient-based optimization methods that employ line 
searches, such as for example, the conjugate gradient methods. The nu­
merical noise may prevent or slow down convergence during optimiza­
tion. It may also promote convergence to spurious local optima. The 
computational expense of the analyses, coupled to the convergence dif­
ficulties created by the numerical noise, is in many cases a significant 
obstacle to performing multidisciplinary design optimization. 

In addition to the problems anticipated when applying the conjugate 
gradient methods to noisy functions, it is also known that standard 
implementations of conjugate gradient methods, in which conventional 
line search techniques have been used, are less robust than one would 
expect from their the theoretical quadratic termination property. There­
fore the conjugate gradient method would, under normal circumstances, 
not be preferred to quasi-Newton methods (Fletcher, 1987). In par­
ticular severe numerical difficulties arise when standard line searches 
are used in solving constrained problems through the minimization of 
associated penalty functions. However, there is one particular advan­
tage of conjugate gradient methods, namely the particular simple form 
that requires no matrix operations in determining the successive search 
directions. Thus, conjugate gradient methods may be the only meth­
ods which are applicable to large problems with thousands of variables 
(Fletcher, 1987), and are therefore well worth further investigation. 
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In this section a new implementation (ETOPC) of the conjugate gra­
dient method (both for the Fletcher-Reeves and Polak-Ribiere versions 
(see Fletcher, 1987) is presented for solving constrained problem. The 
essential novelty in this implementation is the use of a gradient-only line 
search technique originally proposed by the author (Snyman, 1985), and 
used in the ETOP algorithm for unconstrained minimization. It will be 
shown that this implementation of the conjugate gradient method, not 
only easily overcomes the accuracy problem when applied to the mini­
mization of penalty functions, but also economically handles the problem 
of severe numerical noise superimposed on an otherwise smooth under­
lying objective function. 

4.5.2 Formulation of optimization problem 

Consider again the general constrained optimization problem: 

min/ (x) , x = [xi,X2,X3,...,a:J^ G i?"" (4.50) 

subject to the inequality and equality constraints: 

^ , ( x ) < 0 , i = l , 2 , . . . , m (4.51) 

hj{x) = 0, j = l , 2 , . . . , r 

where the objective function / (x) , and the constraint functions Pj(x) and 
/ij(x), are scalar functions of the real column vector x. The optimum 
solution is denoted by x*, with corresponding optimum function value 
/(x*). 

The most straightforward way of handling the constraints is via the 
unconstrained minimization of the penalty function: 

r m 

p(x) = /(x) -\-Y.pJ^^M) + E Ä - ^ I W (4-52) 
3=1 3=1 

where pj > 0, ßj = 0 if ö'j(x) < 0, and ßj = ßj ^ 0 if Qji'x.) > 0. 

Usually pj = /Xj = /i ^ 0 for all j , with the corresponding penalty 
function being denoted by P{x,fi). 
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Central to the application of the conjugate gradient method to penalty 
function formulated problems presented here, is the use of an uncon­
ventional line search method for unconstrained minimization, proposed 
by the author, in which no function values are explicitly required (Sny-
man, 1985). Originally this gradient-only line search method was applied 
to the conjugate gradient method in solving a few very simple uncon­
strained problems. For somewhat obscure reasons, given in the original 
paper (Snyman, 1985) and briefly hinted to in this section, the combined 
method (novel line search plus conjugate gradient method) was called 
the ETOP (Euler-Trapezium Optimizer) algorithm. For this historical 
reason, and to avoid confusion, this acronym will be retained here to 
denote the combined method for unconstrained minimization. In sub­
sequent unreported numerical experiments, the author was successful in 
solving a number of more challenging practical constrained optimization 
problems via penalty function formulations of the constrained problem, 
with ETOP being used in the unconstrained minimization of the se­
quence of penalty functions. ETOP, applied in this way to constrained 
problems, was referred to as the ETOPC algorithm. Accordingly this 
acronym will also be used here. 

4.5.3 Gradient-only line search 

The line search method used here, and originally proposed by the author 
(Snyman, 1985) uses no explicit function values. Instead the hne search 
is implicitly done by using only two gradient vector evaluations at two 
points along the search direction and assuming that the function is near-
quadratic along this line. The essentials of the gradient-only line search, 
for the case where the function / (x) is unconstrained, are as follows. 
Given the current design point x'̂  at iteration k and next search direction 
v^"^ ,̂ then compute 

where r is some suitably chosen positive parameter. The step taken in 
(4.53) may be seen as an "Euler step". With this step given by 

Ax^ = x^+^ - x'̂  - v^+V (4.54) 

the line search in the direction v "̂̂ ^ is equivalent to finding x*'̂ '̂ ^ defined 

by 
/(x*'=+i) = min/(x*^ + AAx*^). (4.55) 
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Figure 4.3: Successive steps in line search procedure 

These steps are depicted in Figure 4.3. 

It was indicated in Snyman (1985) that for the step x "̂̂ ^ = x^ + v^+^r 
the change in function value A/^, in the unconstrained case, can be 
approximated without explicitly evaluating the function / (x ) . Here a 
more formal argument is presented via the following lemma. 

4.5.3.1 Lemma 1 

For a general quadratic function the change in function value, for the 
step Ax^ = x^+^ — x^ = v^'^^T is given by: 

AA = -(v '=+\i(a '= + a'=+i)r) (4.56) 

where a^ = —V/(x^) and ( , ) denotes the scalar product. 

Proof: 

In general, by Taylor's theorem: 

/(x'^+i) - /(x'^) = (x'^+i - x ^ V/(x'=)) + i ( A x ^ H(X»)AX'=) 
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F{\) = /(x^ + AAx^) 

0 f<9 6 1 

Figure 4.4: Approximation of minimizer x*̂ "*"̂  in the direction v^+^ 

and 

/(x^+i) - / ( x ^ ) - (x^+i - x ^ V/(x^+i)) - i (Ax^H(x^)Ax'^) 

where x^ = x^ -f <9oAx ,̂ x^ = x^ + i9iAx^ and both OQ and (9i in the 
interval [0,1], and where H(x) denotes the Hessian matrix of the general 
function / (x ) . Adding the above two expressions gives: 

/(x'^+i) - / (x '= ) = i ( x ' = + l - x ^ V / ( x ' = ) + V/(x'=+l)) 

+ J ( A x ^ [H(x") - H(x'')]Ax'=). 

If / (x ) is quadratic then H(x) is constant and it follows that 

Afk = /(x'^+i) 

where a^ = V/ (x^) , which completes the proof. 

- / ( x ^ ) = - ( v ^ + \ i ( a ^ + a^+i)T) 

D 

By using expression (4.56) the position of the minimizer x* "̂̂ ^ (see Fig­
ure 4.4), in the direction v'̂ "^ ,̂ can also be approximated without any 
explicit function evaluation. This conclusion follows formally from the 
second lemma given below. Note that in (4.56) the second quantity in 
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the scalar product corresponds to an average vector given by the "trapez­
ium rule". This observation together with the remark following equation 
(4.53), gave rise to the name "Euler-trapezium optimizer (ETOP)" when 
applying this hne search technique in the conjugate gradient method. 

4.5.3.2 Lemma 2 

For / (x ) a positive-definite quadratic function the point x*'̂ "̂ ^ defined 
by /(x*^+^) = min^ / (x^ + AAx^) is given by 

x*/c+i ^^kj^ -eA^^ (4.57) 

where 

0 = p / ( (v^+\ i(a^ + a^+^)T) + p) and p = - ( A x ^ a^). (4.58) 

Proof: 

First determine Q such that 

/ (x^ + ÖAx'̂ ) = / (x^) . 

By Taylor's expansion: 

/ (x '=+l)- / (x '=) = p+ i{Ax^HAx*^) , i.e., i (Ax \HAx '= ) = A / , - p 

which gives for the step ^Ax: 

/ (x^ + ^Ax^) - /(x^) - Öp -H iö^(Ax^HAx^) ^Bp^ e\Afk - p). 

For both function values to be the same, 0 must therefore satisfy: 

o = e{p + eiAfk-p)) 

which has the non-trivial solution: 

e = -p/{Afk - p). 

Using the expression for A/^ given by Lemma 1, it follows that: 

Ö = p / ( ( v ' = + \ ^ ( a ' = + a ' = + » + p) 
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and by the symmetry of quadratic functions that 

D 

Expressions (4.57) and (4.58) may of course also be used in the general 
non-quadratic case, to determine an approximation to the minimizer 
^*/c+i -j^ ̂ Yie direction v^'^\ when performing successive line searches 
using the sequence of descent directions, v'̂ "^ ,̂ k = 1,2,... Thus in 
practice, for the next (A:+l)-th iteration, set x "̂̂ ^ := x*^"^ ,̂ and with the 
next selected search direction v "̂̂ ^ proceed as above, using expressions 
(4.57) and (4.58) to find x*^+2 ^^^ ^ j^^^ ĝ ^ ^k+2 _ ^*;c+2^ Continue 
iterations in this way, with only two gradient vector evaluations done 
per line search, until convergence is obtained. 

In summary, explicit function evaluations are unnecessary in the above 
line search procedure, since the two computed gradients along the search 
direction allow for the computation of an approximation (4.56) to the 
change in objective function, which in turn allows for the estimation of 
the position of the minimum along the search line via expressions (4.57) 
and (4.58), based on the assumption that the function is near quadratic 
in the region of the search. 

4.5.3.3 Heurist ics 

Of course in general the objective function may not be quadratic and 
positive-definite. Additional heuristics are therefore required to ensure 
descent, and to see to it that the step size (corresponding to the param­
eter r between successive gradient evaluations, is neither too small nor 
too large. The details of these heuristics are as set out below. 

(i) In the case of a successful step having been taken, with Afk com­
puted via (4.56) negative, i.e. descent, and 0 computed via (4.58) 
positive, i.e. the function is locally strictly convex, as shown in 
Figure 4.4, r is increased by a factor of 1.5 for the next search 
direction. 
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(ii) It may turn out that although A/^ computed via (4.56) is negative, 
that 6 computed via (4.58) is also negative. The latter implies that 
the function along the search direction is locally concave. In this 
case set 0 := —9 in computing x*̂ "̂ ^ by (4.57), so as to ensure 
a step in the descent direction, and also increase r by the factor 
1.5 before computing the step for the next search direction using 
(4.53). 

(iii) It may happen that Afk computed by (4.56) is negative and ex­
actly equal to p, i.e. Afk — p = 0. This implies zero curvature 
with 0 = 00 and the function is therefore locally linear. In this 
case enforce the value ^ = 1. This results in the setting, by (4.57), 
of x*^+^ equal to a point halfway between x^ and x^"^ .̂ In this 
case r is again increased by the factor of 1.5. 

(iv) If both A//, and 6 are positive, which is the situation depicted in 
Figure 4.4, then r is halved before the next step. 

(v) In the only outstanding and unhkely case, should it occur, where 
A/^ is positive and 0 negative, r is unchanged. 

(vi) For usual unconstrained minimization the initial step size param­
eter selection is r == 0.5. 

The new gradient-only line search method may of course be applied to 
any hne search descent method for the unconstrained minimization of a 
general multi-variable function. Here its application is restricted to the 
conjugate gradient method. 

4.5.4 Conjugate gradient search directions and SUMT 

The search vectors used here correspond to the conjugate gradient di­
rections (Bazaraa et al., 1993). In particular for /c = 0 , 1 , . . . , the search 
vectors are 

v'^+i = (-V/(x'=) + /?fc+ivVT)T = s'=+V (4.59) 

where ŝ "̂ ^ denote the usual conjugate gradient directions, /^i == 0 and 
for k > 0: 

/^,+i = ||V/(x^)||Vl|V/(x^-i)|P (4.60) 
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for the Fletcher-Reeves implementation, and for the Polak-Ribiere ver­
sion: 

ßk+i = {Vfix'^) - Vfix"-'), V/(x'=))/| |V/(x'=-i)| |2. (4.61) 

As recommended by Fletcher (1987), the conjugate gradient algorithm 
is restarted in the direction of steepest descent when k > n. 

For the constrained problem the unconstrained minimization is of course 
applied to successive penalty function formulations P(x) of the form 
shown in (4.52), using the well known Sequential Unconstrained Mini­
mization Technique (SUMT) (Fiacco and McCormick, 1968). In SUMT, 
for j = 1,2,..., until convergence, successive unconstrained minimiza­
tions are performed on successive penalty functions P(x) = P(x,/i(-^^) 
in which the overall penalty parameter /x̂ -̂ ^ is successively increased: 
lj{3+^) .— lOy^ü). The corresponding initial step size parameter is set at 
r = 0.5//j.^^^ for each sub problem j . This application of ETOP to the 
constrained problem, via the unconstrained minimization of successive 
penalty functions, is referred to as the ETOPC algorithm. In practice, 
if analytical expressions for the components of the gradient of the ob­
jective function are not available, they may be calculated with sufficient 
accuracy by finite differences. However, when the presence of severe 
noise is suspected, the application of the gradient-only search method 
with conjugate gradient search directions, requires that central finite dif­
ference approximations to the gradients be used in order to effectively 
smooth out the noise. In this case relatively excessive perturbations 6xi 
in Xi must be used, which in practice may typically be of the order of 
0.1 times the range of interest! 

In the application of ETOPC a limit A^ , is in practice set to the max­
imum allowable magnitude A* of the step A* == x*^+^ - x^. If A* is 
greater than A^ , then set 

x^+i .^ ^k ^ (^*/c+i _ x^)A^/A* (4.62) 

and restart the conjugate gradient procedure, with x^ := x̂ "̂ -̂ , in the 
direction of steepest descent. If the maximum allowable step is taken n 
times in succession, then A ^ is doubled. 
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4.5.5 Numerica l results 

The proposed new implementation of the conjugate gradient method 
(both the Fletcher- Reeves and Polak-Ribiere versions) is tested here 
using 40 different problems arbitrarily selected from the famous set of 
test problems of Hock and Schittkowski (1981). The problem num­
bers (Pr. # ) in the tables, correspond to the numbering used in Hock 
and Schittkowski. The final test problem, (12-poly), is the 12 polytope 
problem of Svanberg (1995,?). The number of variables (n) of the test 
problems ranges from 2 to 21 and the number of constraints (m plus 
r) per problem, from 1 to 59. The termination criteria for the ETOPC 
algorithm are as follows: 

(i) Convergence tolerances for successive approximate sub-problems 
within SUMT: Sg for convergence on the norm of the gradient 
vector, i.e. terminate if ||VP(x*^+^,/i)|| < Cg , and Sx for con­
vergence on average change of design vector: i.e. terminate if 
l | | x * / c + l _ x * ^ - l | | < S ^ . 

(ii) Termination of the SUMT procedure occurs if the absolute value 
of the relative difference between the objective function values at 
the solution points of successive SUMT problems is less than Sf. 

4.5.5.1 Results for smooth functions with no noise 

For the initial tests no noise is introduced. For high accuracy require­
ments (relative error in optimum objective function value to be less than 
10~^), it is found that the proposed new conjugate gradient implemen­
tation performs as robust as, and more economical than, the traditional 
penalty function implementation, FMIN, of Kraft and Lootsma reported 
in Hock and Schittkowski (1981). The detailed results are as tabulated 
in Table 4.4. Unless otherwise indicated the algorithm settings are: 
Sx = 10"^, Sg = 10-^ A ^ = 1.0, ef = 10-^, /i(^) = 1.0 and iout = 15, 
where iout denotes the maximum number of SUMT iterations allowed. 
The number of gradient vector evaluations required by ETOPC for the 
different problems are denoted by nge (note that the number of explicit 
function evaluations is zero), and the relative error in function value at 
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convergence to the point x'̂  is denoted by r / , which is computed from 

r/ = | / ( x * ) - / ( x ^ ) | / ( | / ( x * ) | + l) . (4.63) 

For the FMIN algorithm only the number of explicit objective function 
evaluations nfe are listed, together with the relative error r / at conver­
gence. The latter method requires, in addition to the number of function 
evaluations listed, a comparable number of gradient vector evaluations, 
which is not given here (see Hock and Schittkowski, 1981). 

4.5.5.2 Results for severe noise introduced in the objective 
function 

Following the successful implementation for the test problems with no 
noise, all the tests were rerun, but with severe relative random noise in­
troduced in the objective function / (x) and all gradient components 
computed by central finite differences. The influence of noise is in­
vestigated for two cases, namely, for a variation of the superimposed 
uniformly distributed random noise as large as (i) 5% and (ii) 10% of 
(1 -f |/(x*)|), where x* is the optimum of the underlying smooth prob­
lem. The detailed results are shown in Table 4.5. The results are listed 
only for the Fletcher-Reeves version. The results for the Polak- Ribiere 
implementation are almost identical. Unless otherwise indicated the al­
gorithm settings are: 5xi = 1.0, Sg — 10~^, Â ^̂  — 1.0, sj — 10~^, 
//(^^ = 1.0 and iout = 6, where iout denotes the maximum number of 
SUMT iterations allowed. For termination of sub-problem on step size, 
Ex was set to Sx -= 0.005\/n for the initial sub-problem. Thereafter it is 
successively halved for each subsequent sub-problem. 

The results obtained are surprisingly good with, in most cases, fast con­
vergence to the neighbourhood of the known optimum of the underlying 
smooth problem. In 90% of the cases regional convergence was obtained 
with relative errors Vx <C 0.025 for 5% noise and Vx <̂  0.05 for 10% noise, 
where 

r , = ||x*-x<=||/(||x*|| + l) (4.64) 

and x^ denotes the point of convergence. Also in 90% of the test prob­
lems the respective relative errors in final objective function values were 
Vf < 0.025 for 5% noise and r / < 0.05 for 10% noise, where r / is as 
defined in (4.63). 
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Pr. # 
1 
2 

10 
12 

I3W 
14 
15 
16 
17 

20f̂ ^ 
22 
23 
24 
26 
27 
28 
29 
30 
31 
32 

33^^! 
36 
45 
52 

55f̂ l 
56 
60 
61 
63 
65 
71 

72f4] 
I 76 

78 
80 

81^^^ 
106 
108 

1181̂ 1 
12-pQly^^^ 

n m r 
2 1 -
2 1 -
2 1 -
2 1 -
2 3 -
2 1 1 
2 3 -
2 5 -
2 5 -
2 5 -
2 2 -
2 9 -
2 5 -
3 - 1 
3 - 1 
3 - 1 
3 1 -
3 7 -
3 7 1 
3 7 1 
3 6 -
3 7 -
5 1 0 -
5 - 3 
6 8 6 
7 - 4 
3 6 1 
3 - 2 
3 3 2 
3 7 -
4 9 1 
4 1 0 -
4 7 -
5 - 3 

5 10 3 
5 10 3 
8 2 2 -
9 1 4 -
15 2 9 -
21 2 2 -

Fletcher-Reeves 
nge 
100 
290 
231 
163 

49931^^ 
214 
699 
334 
218 
362 
155 
257 
95 
78 
129 
17 

254 
115 
309 
205 

272 [3] 

336 
175 
403 
506 
316 
198 
205 
205 
179 
493 
317 
224 
261 
192 
138 

6060 
600 
1233 
844 

rf 
< 10-^^ 
< 10-^ 
< i o - 9 
< 10-^° 

0.028 
< 10-^° 
< i o - ^ 
< i o - 9 
< i o - ^ 
< i o - ^ 
< i o - 9 
< i o - ^ 
< 10-^^ 
< 10-^ 
< 10"^ 
< 10"^^ 
< 10-^° 
< 10-^° 
< i o - ^ 
< 10-^° 
< 10-^° 
< 10-^2 
< 10-^° 
< i o - ^ 
< i o - 9 

6 X 10-^ 
< 10-^0 
< 10-^° 
< 10-^° 
< 10"^ 
< i o - ^ 
< 10-^° 
< 10-^° 
< 10-^° 
< 10-^1 
< 10-^^ 
5 X 10"^ 
< 10-^° 
< 10-^ 
< i o - ^ 

Polak-Ribiere 
nge 
103 
318 
247 
184 

4996^2^ 
200 
632 
284 
209 
375 
202 
244 
163 
100 
115 
17 

267 
124 
274 
207 
180 
351 
150 
388 
488 
289 
189 
201 
208 
198 
536 
298 
227 
264 
194 
158 

6496 
519 
1358 
1478 

^/ 
< 10- ' ^ 
< i o - « 
< i o - ^ 
< 10-^° 

0.034 
< 10~^° 
< i o - 9 
< 10""^ 
< i o - ^ 
< i o - 9 
< i o - ^ 
< i o - 9 

2 X 10"^ 
2 X 10"^ 
< 10"^ 
< 10-2« 
< 10-1° 
< 10-1° 
< i o - ^ 
< 10-1° 
< 10-1° 
< 10-1° 
< 10-1° 
< i o - ^ 
< i o - ^ 

7 X 10-« 
< 10-1° 
< 10-1° 
< 10-1° 
< 10-1° 
< i o - 9 
< 10-1° 
< 10-1° 
< 10-1° 
< 10-11 
< 10-1° 
3 X 10-^ 
< 10-1° 
< i o - « 
< i o - 9 

nfe 
549 
382 
289 
117 

1522 
232 
729 
362 
541 
701 
174 
423 
280 
182 
173 
23 
159 

1199 
576 
874 

672̂ 5̂ 
263 
369 
374 

58lf^] 
446 
347 
217 
298 
-

1846 
1606 
424 
278 
1032 
1662 

-
984 
-
-

FMIN " 1 

^/ ^ \ 
< 10"« 

1 X 10"« 
7 X 10"« 
1 X 10-« 

0.163 
2 X 10-"^ 
4 X 10-"^ 
1 X 10-« 
1 X 10-« 
4 X 10-^ 
1 X 10-^ 
6 X 10-^ 
2 X 10-« 
1 X 10-« 
1 X 10-« 
< 10"« 
< 10-« 

4 X 10-« 
< 10-« 
< 10-« 

3 X 10-"^ 
2 X 10-^ 1 
< 10-« 
< 10-« 

3 X 10-« 
< 1 0 - 8 

1 x 1 0 - 8 
< 10 - 8 
< 1 0 - 8 

fails 
5 x 10"^ 
5 X 10-2 
< 10"« 
< 10-« 

2 X 10-« 
5 X 10"^ 

fails 
7 X 10-^ 

fails 

-
î̂  Constraint qualification not satisfied, ^^iTermination on maximura number of steps. 

f^]Convergence to local minimum. t'̂ V "̂̂  = 1-0, Am = 1.0. f̂ '/x̂ °̂  = 10^. 
^^^Gradients by central finite differences, 6xi = 10-^, £x = 10"^. 

Table 4.4: The respective performances of the new conjugate gradient 
implementation ETOPC and FMIN for test problems with no noise in­
troduced 
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4.5.6 Conclusion 

The ETOPC algorithm performs exceptionally well for a first order 
method in solving constrained problems where the functions are smooth. 
For these problems the gradient only penalty function implementation 
of the conjugate gradient method performs as well, if not better than 
the best conventional implementations reported in the literature, in pro­
ducing highly accurate solutions. 

In the cases where severe noise is introduced in the objective function, 
relatively fast convergence to the neighborhood of x*, the solution of 
the underlying smooth problem, is obtained. Of interest is the fact that 
with the reduced accuracy requirement associated with the presence of 
noise, the number of function evaluations required to obtain sufficiently 
accurate solutions in the case of noise, is on the average much less than 
that necessary for the high accuracy solutions for smooth functions. As 
already stated, ETOPC yields in 90% of the cases regional convergence 
with relative errors rx < 0.025 for 5% noise, and TX < 0.05 for 10% 
noise. Also in 90% of the test problems the respective relative errors 
in the final objective function values are r / < 0.025 for 5% noise and 
rf < 0.05 for 10% noise. In the other 10% of the cases the relative errors 
are also acceptably small. These accuracies are more than sufficient for 
multidisciplinary design optimization problems where similar noise may 
be encountered. 

4.6 Global optimization using dynamic search 
trajectories 

4.6.1 Introduction 

The problem of globally optimizing a real valued function is inherently 
intractable (unless hard restrictions are imposed on the objective func­
tion) in that no practically useful characterization of the global optimum 
is available. Indeed the problem of determining an accurate estimate of 
the global optimum is mathematically ill-posed in the sense that very 
similar objective functions may have global optima very distant from 
each other (Schoen, 1991). Nevertheless, the need in practice to find 
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a relative low local minimum has resulted in considerable research over 
the last decade to develop algorithms that attempt to find such a low 
minimum, e.g. see Torn and Zihnskas (1989). 

The general global optimization problem may be formulated as follows. 
Given a real valued objective function / (x) defined on the set x G -D in 
R^, find the point x* and the corresponding function value /* such that 

/* = /(x*) - minimum {/(x)|x G D} (4.65) 

if such a point x* exists. If the objective function and/or the feasible 
domain D are non-convex, then there may be many local minima which 
are not global. 

If D corresponds to all R"̂  the optimization problem is unconstrained. 
Alternatively, simple bounds may be imposed, with D now correspond­
ing to the hyper box (or domain or region of interest) defined by 

D = {x|^ < X < ix} (4.66) 

where £ and u are n-vectors defining the respective lower and upper 
bounds on x. 

From a mathematical point of view. Problem (4.65) is essentially un-
solvable^ due to a lack of mathematical conditions characterizing the 
global optimum, as opposed to the local optimum of a smooth continu­
ous function, which is characterized by the behavior of the problem func­
tion (Hessians and gradients) at the minimum (Arora et al., 1995) (viz. 
the Karush-Kuhn-Tucker conditions). Therefore, the global optimum 
/* can only be obtained by an exhaustive search, except if the objective 
function satisfies certain subsidiary conditions (Griewank, 1981), which 
mostly are of limited practical use (Snyman and Fatti, 1987). Typically, 
the conditions are that / should satisfy a Lipschitz condition with known 
constant L and that the search area is bounded, e.g. for all x, x G X 

| / ( x ) - / ( x ) | < L | | x - x | | . (4.67) 

So called space-covering deterministic techniques have been developed 
(Dixon et al., 1975) under these special conditions. These techniques 
are expensive, and due to the need to know L, of limited practical use. 

Global optimization algorithms are divided into two major classes (Dixon 
et al., 1975): deterministic and stochastic (from the Greek word stokhastikos, 
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i.e. 'governed by the laws of probability'). Deterministic methods can be 
used to determine the global optimum through exhaustive search. These 
methods are typically extremely expensive. With the introduction of a 
stochastic element into deterministic algorithms, the deterministic guar­
antee that the global optimum can be found is relaxed into a confidence 
measure. Stochastic methods can be used to assess the probability of 
having obtained the global minimum. Stochastic ideas are mostly used 
for the development of stopping criteria, or to approximate the regions 
of attraction as used by some methods (Arora et al., 1995). 

The stochastic algorithms presented herein, namely the Snyman-Fatti 
algorithm and the modified bouncing ball algorithm (Groenwold and 
Snyman, 2002), both depend on dynamic search trajectories to minimize 
the objective function. The respective trajectories, namely the motion 
of a particle of unit mass in a n-dimensional conservative force field, 
and the trajectory of a projectile in a conservative gravitational field, 
are modified to increase the likehhood of convergence to a low local 
minimum. 

4.6.2 T h e Snyman-Fatt i trajectory m e t h o d 

The essentials of the original SF algorithm (Snyman and Fatti, 1987) us­
ing dynamic search trajectories for unconstrained global minimization 
will now be discussed. The algorithm is based on the local algorithms 
presented by Snyman (1982, 1983). For more details concerning the 
motivation of the method, its detailed construction, convergence theo­
rems, computational aspects and some of the more obscure heuristics 
employed, the reader is referred to the original paper. 

4.6.2.1 Dynamic trajectories 

In the SF algorithm successive sample points x-̂ , j = 1,2,..., are selected 
at random from the box D defined by (4.66). For each sample point x^, 
a sequence of trajectories T*, i = 1,2,..., is computed by numerically 



142 CHAPTER 4. 

solving the successive initial value problems: 

x(i) = -V / (x ( t ) ) 
(4.68) 

x(0) = x ^ ; x ( 0 ) = 4 . 

This trajectory represents the motion of a particle of unit mass in a n-
dimensional conservative force field, where the function to be minimized 
represents the potential energy. 

Trajectory T* is terminated when x(^) reaches a point where /(x(^)) 
is arbitrarily close to the value / (XQ) while moving "uphill", or more 
precisely, if x(^) satisfies the conditions 

/(x(t)) > f{4) - eu 
(4.69) 

and x( t )^V/(x(0) > 0 

where e^ is an arbitrary small prescribed positive value. 

An argument is presented in Snyman and Fatti (1987) to show that 
when the level set {x| /(x) < / ( X Q ) } is bounded and V/(xo) 7̂  0, then 
conditions (4.69) above will be satisfied at some finite point in time. 

Each computed step along trajectory T* is monitored so that at ter­
mination the point x ^ at which the minimum value was achieved is 
recorded together with the associated velocity x ^ and function value 
/ ^ . The values of x ^ and x ^ are used to determine the initial values 
for the next trajectory T*"̂ .̂ From a comparison of the minimum values 
the best point x̂ ,̂ for the current j over all trajectories to date is also 
recorded. In more detail the minimization procedure for a given sample 
point x-̂ , in computing the sequence x̂ ,̂ i — 1,2,..., is as follows. 

In the original paper (Snyman and Fatti, 1987) an argument is presented 
to indicate that under normal conditions on the continuity of / and its 
derivatives, x̂ , will converge to a local minimum. Procedure MPl, for 
a given j , is accordingly terminated at step 3 above if | |V / (xp | | < e, 
for some small prescribed positive value e, and x^ is taken as the local 
minimizer x l , i.e. set x"l := x^ with corresponding function value fl := 

Reflecting on the overall approach outlined above, involving the compu­
tation of energy conserving trajectories and the minimization procedure, 
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Algorithm 4.6 Minimization Procedure MPl 

1. For given sample point x-̂ , set xj := x-̂  and compute T^ subject 
to XQ '-= 0 ; record x^ ,x ]^ and / ^ ; set x^ := x ^ and i := 2, 

2. compute trajectory T* with XQ := ^ (^o"^ + ^b~^) ^^^ ^o •— 
^ x ^ i , record x'^,xj^ and / ^ , 

3. if / 4 < /(x^^-^) then x̂ ^ := x ^ ; else xj, : - x^^-\ 

4. set 2 := i + 1 and go to 2. 

it should be evident that, in the presence of many local minima, the prob­
ability of convergence to a relative low local minimum is increased. This 
one expects because, with a small value of eu (see conditions (4.69)), it 
is likely that the particle will move through a trough associated with a 
relative high local minimum, and move over a ridge to record a lower 
function value at a point beyond. Since we assume that the level set 
associated with the starting point function is bounded, termination of 
the search trajectory will occur as the particle eventually moves to a 
region of higher function values. 

4.6.3 T h e modified bouncing ball trajectory m e t h o d 

The essentials of the modified bouncing ball algorithm using dynamic 
search trajectories for unconstrained global minimization are now pre­
sented. The algorithm is in an experimental stage, and details con­
cerning the motivation of the method, its detailed construction, and 
computational aspects will be presented in future. 

4.6.3.1 Dynamic trajectories 

In the MBB algorithm successive sample points x-^,j = 1,2,..., are se­
lected at random from the box D defined by (4.66). For each sample 
point x-̂ , a sequence of trajectory steps Ax^ and associated projection 
points x "̂̂ ,̂ i = 1,2,..., are computed from the successive analytical 
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relationships (with x^ := x-' and prescribed VQI > 0): 

Ax* = Vb,iiCosÖiV/(x')/||V/(x')|| (4.70) 

where 

Oi = tan-i( | |V/(x^)| |) + | , (4.71) 

1 
ti = -

9 
[Vo, smOi + {{Vo, sinOi)^ + 2gh{x')}^^^] , (4.72) 

^(x^) = f{^')^k (4.73) 

with A: a constant chosen such that /i(x) > O V x G D , ^ a positive 
constant, and 

x^+i=x^ + A x \ (4.74) 

For the next step, select Vo-^^ < VQ.. Each step Ax* represents the 
ground or horizontal displacement obtained by projecting a particle in a 
vertical gravitational field (constant g) at an elevation /i(x*) and speed 
Voi at an inclination Oi. The angle Oi represents the angle that the 
outward normal n to the hypersurface represented by y == h{'x) makes, 
at xMn n + 1 dimensional space, with the horizontal. The time of flight 
ti is the time taken to reach the ground corresponding to y = 0. 

More formally, the minimization trajectory for a given sample point 
x^ and some initial prescribed speed VQ is obtained by computing the 
sequence x*, z = 1, 2,..., as follows. 

Algorithm 4.7 Minimization Procedure MP2 

1. For given sample point x-̂ , set x^ := x-̂  and compute trajectory 
step Ax^ according to (4.70) - (4.73) and subject to VQ^ := VQ; 
record x^ := x^ + Ax^, set i := 2 and Vba '•= OiVo^ (a < 1). 

2. Compute Ax^ according to (4.70) - (4.73) to give x^+^ := x^ +Ax% 
record x*"̂ ^ and set Vb-̂ i := O^VQ.. 

3. Set i := i -\-l and go to 2. 

In the vicinity of a local minimum x the sequence of projection points 
X*, z = 1,2,..., constituting the search trajectory for starting point x-̂  
will converge since Ax* -^ 0 (see (4.70)). In the presence of many local 
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minima, the probability of convergence to a relative low local minimum 
is increased, since the kinetic energy can only decrease for a < 1. 

Procedure MP2^ for a given j , is successfully terminated if || V/(x^)| | < e 
for some small prescribed positive value e, or when aV^ < ßV^^ and x* 
is taken as the local minimizer x-l with corresponding function value 
/^ - /i(x}) - k. 

Clearly, the condition aV^ < ßV^ will always occur for 0 < /? < a and 
0 < a < 1. 

MP2 can be viewed as a variant of the steepest descent algorithm. How­
ever, as opposed to steepest descent, MP2 has (as has MPl) the ability 
for 'hill-climbing', as is inherent in the physical model on which MP2 is 
based (viz., the trajectories of a bouncing ball in a conservative gravita­
tional field.) Hence, the behavior of MP2 is quite different from that of 
steepest descent and furthermore, because of it's physical basis, it tends 
to seek local minima with relative low function values and is therefore 
suitable for implementation in global searches, while steepest descent is 
not. 

For the MBB algorithm, convergence to a local minimum is not proven. 
Instead, the underlying physics of a bouncing ball is exploited. Unsuc­
cessful trajectories are terminated, and do not contribute to the prob­
abilistic stopping criterion (although these points are included in the 
number of unsuccessful trajectories n). In the validation of the algo­
rithm the philosophy adopted here is that the practical demonstration 
of convergence of a proposed algorithm on a variety of demanding test 
problems may be as important and convincing as a rigorous mathemat­
ical convergence argument. 

Indeed, although for the steepest descent method convergence can be 
proven, in practice it often fails to converge because effectively an infinite 
number of steps is required for convergence. 

4.6.4 Global stopping criterion 

The above methods require a termination rule for deciding when to end 
the sampling and to take the current overall minimum function value / , 
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i.e. 
/ = minimum I / ^ over all j to date > (4.75) 

as the global minimum value /*. 

Define the region of convergence of the dynamic methods for a local 
minimum x as the set of all points x which, used as starting points for 
the above procedures, converge to x. One may reasonably expect that in 
the case where the regions of attraction (for the usual gradient-descent 
methods, see Dixon et al., 1976) of the local minima are more or less 
equal, that the region of convergence of the global minimum will be 
relatively increased. 

Let Rk denote the region of convergence for the above minimization 
procedures MPl and MP2 of local minimum x^ and let a^ be the asso­
ciated probability that a sample point be selected in R^. The region of 
convergence and the associated probability for the global minimum x* 
are denoted by R* and a* respectively. The following basic assumption, 
which is probably true for many functions of practical interest, is now 
made. BASIC ASSUMPTION: 

<̂ * ̂  c^k foi" S'll local minima x^. (4.76) 

The following theorem may be proved. 

4.6.4.1 Theorem (Snyman and Fatti, 1987) 

Let r be the number of sample points falling within the region of con­
vergence of the current overall minimum / after n points have been 
sampled. Then under the above assumption and a statistically non-
informative prior distribution the probability that / corresponds to /* 
may be obtained from 

Pr =̂̂ -î '<-) —In l l ^ l ^ (-> 
On the basis of this theorem the stopping rule becomes: STOP when 

Pr \f = f*\ > g*, where q* is some prescribed desired confidence level, 

typically chosen as 0.99. 
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Proof: 

We present here an outline of the proof of (4.77), and follow closely the 
presentation in Snyman and Fatti (1987). (We have since learned that 
the proof can be shown to be a generalization of the procedure proposed 
by Zielinsky, 1981.) Given n* and a*, the probability that at least one 
point, n > 1, has converged to /* is 

Pr[n* > l|n, r] = 1 - (1 - a'f . (4.78) 

In the Bayesian approach, we characterize our uncertainty about the 
value of Of* by specifying a prior probability distribution for it. This 
distribution is modified using the sample information (namely, h and 
r) to form a posterior probability distribution. Let p*(o;*|n,r) be the 
posterior probability distribution of a*. Then, 

P r [ n * > l | n , r ] = / [l - (1 - a*)^] p*(a*|n,r)da* 

= 1 - / ( l -a*)>*(a* |n , r )6 /a* . (4.79) 

Now, although the r sample points converge to the current overall mini­
mum, we do not know whether this minimum corresponds to the global 
minimum of/*. Utilizing (4.76), and noting that (1 —a)"^ is a decreasing 
function of a, the replacement of a* in the above integral by a yields 

Pr[n* > l |n,r] > / [l - {I - af]p{a\n,T)da . 
Jo 

(4.80) 
/o 

Now, using Bayes theorem we obtain 

/ ,~ X p(r\a,n)p(a) / . ^.x 
p ( a | n , r ) = /^ \ ^ jyy J— ^ ^^ g-ĵ ^ 

jQp{r\a,h)p{a)da 
Since the n points are sampled at random and each point has a proba­
bility a of converging to the current overall minimum, r has a binomial 
distribution with parameters a and n. Therefore 

p{r\a, n) = (j'^ a^{l - af-' . (4.82) 

Substituting (4.82) and (4.81) into (4.80) gives: 

Pr[n* > l |n,r] > 1 - ^^^-^ _ ^^ ^ . (4.83) 
JQ a^(l — a)'^ '^p{a)da 
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A suitable flexible prior distribution p{a) for a is the beta distribution 
with parameters a and h. Hence, 

p{a) = [l/ß(a,b)] a ^ - ^ l - a)^-\ 0 < a < 1. (4.84) 

Using this prior distribution gives: 

r ( n + a + b) r (2n -r + b) 
Pr[n* > l |n,r] > 1 -

= 1 -

r(2n + a + 6) r ( n - r + 6) 
(n + a + 6 - 1)! (2n - r -f & - 1)! 
(2n + a + 6 - 1)! (n - r + 6 - 1)!' 

Assuming a prior expectation of 1, (viz. a = 6 = 1), we obtain 

(n + l)! ( 2 n - r ) ! 
Pr[n* > l |n,r] = 1 -

which is the required result. 

(2n + l)! {n-r)V 

D 

4.6.5 Numerica l results 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Name 
Griewank G l 
Griewank G2 
Goldstein-Price 
Six-hump Camelback 
Shubert, Levi No. 4 
Branin 
Rastrigin 
Hartman 3 
Hartman 6 
Shekel 5 
Shekel 7 
Shekel 10 

ID 
G l 
G2 
GP 
C6 
SH 
BR 
RA 
H3 
H6 
S5 
S7 

SIO 

n 
2 
10 
2 
2 
2 
2 
2 
3 
6 
4 
4 
4 

Ref. 
Torn and Zilinskas; Griewank 
Torn and Zihnskas; Griewank 
Torn and Zilinskas; Dixon and Szegö 
Torn and Zilinskas; Branin 
Lucidi and Piccioni 
Torn and Zilinskas; Branin and Hoo 
Torn and Zilinskas 
Torn and Zihnskas; Dixon and Szegö 
Torn and Zilinskas; Dixon and Szegö 
Torn and Zilinskas; Dixon and Szegö 
Torn and Zilinskas; Dixon and Szegö 
Torn and Zilinskas; Dixon and Szegö 

Table 4.6: The test functions 

The test functions used are tabulated in Table 4.6, and tabulated nu­
merical results are presented in Tables 4.7 and 4.8. In the tables, the 
reported number of function values Nf are the average of 10 independent 
(random) starts of each algorithm. 
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No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

ID 
Gl 
G2 
GP 
C6 
SH 
BR 
RA 
H3 
H6 
S5 
S7 
SIO 

SF 
Nf 

4199 
25969 

2092 
426 

8491 
3922 
4799 

933 
1025 
1009 
1057 
845 

- This Study 
{rln)h 

6/40 
6/84 
4/4 
4/4 

6/29 
4/4 

6/67 
4/4 
4/4 
4/4 
5/8 
4/4 

{T/n)w 
6/75 

6/312 
5/12 

5/9 
6/104 

5/12 
6/117 

5/8 
5/10 
6/24 
6/37 
6/31 

SF - Previous 
Nf r/n 

1606 
26076 

668 
263 

— 
— 
— 

563 
871 

1236 
1210 
1365 

6/20 
6/60 

4/4 
4/4 

— 
— 
— 

5/6 
5/8 

6/17 
6/17 
6/20 

Nf 
2629 

19817 
592 
213 

1057 
286 

1873 
973 
499 

2114 
2129 
1623 

MBB 
{r/n)b 

5/8 
6/24 
4/4 
4/4 
5/7 
4/4 
4/4 
5/9 
4/4 
5/8 

6/16 
5/7 

{r/n)w 
6/23 
6/69 
5/10 
5/10 
6/26 

5/6 
6/42 
6/29 

5/9 
6/39 
6/47 
6/39 

Table 4.7: Numerical results 

Method 
TRUST 
MBB 

BR 
55 
25 

Test Function 
C6 GP RA SH 
31 103 59 72 
29 74 168 171 

H3 
58 
24 

Table 4.8: Cost {Nf) using a priori stopping condition 

Unless otherwise stated, the following settings were used in the SF al­
gorithm (see Snyman and Fatti, 1987): 7 = 2.0, a = 0.95, e = 10~^, 
uj = 10 -^ S = 0.0, q* = 0.99, and At = 1.0. For the MBB algorithm, 
a — 0.99, e = 10~^, and cf = 0.99 were used. For each problem, the ini­
tial velocity VQ was chosen such that Ax-̂  was equal to half the 'radius' 
of the domain D. A local search strategy was implemented with varying 
a in the vicinity of local minima. 

In Table 4.7, {r/n)i) and {r/n)^ respectively indicate the best and worst 
r/n ratios (see equation (4.77)), observed during 10 independent opti­
mization runs of both algorithms. The SF results compare well with the 
previously published results by Snyman and Fatti, who reported values 
for a single run only. For the Shubert, Branin and Rastrigin functions, 
the MBB algorithm is superior to the SF algorithm. For the Shekel 
functions (S5, S7 and SIO), the SF algorithm is superior. As a result 
of the stopping criterion (4.77), the SF and MBB algorithms found the 
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global optimum between 4 and 6 times for each problem. 

The results for the trying Griewank functions (Table 4.7) are encourag­
ing. Gl has some 500 local minima in the region of interest, and G2 
several thousand. The values used for the parameters are as specified, 
with At = 5.0 for Gl and G2 in the SF-algorithm. It appears that both 
the SF and MBB algorithms are highly effective for problems with a 
large number of local minima in D, and problems with a large number 
of design variables. 

In Table 4.8 the MBB algorithm is compared with the recently pub­
lished deterministic TRUST algorithm (Barhen et al., 1997). Since the 
TRUST algorithm was terminated when the global approximation was 
within a specified tolerance of the (known) global optimum, a similar 
criterion was used for the MBB algorithm. The table reveals that the 
two algorithms compare well. Note however that the highest dimension 
of the test problems used in Barhen et al. (1997) is 3. It is unclear if the 
deterministic TRUST algorithm will perform well for problems of large 
dimension, or problems with a large number of local minima in D. 

In conclusion, the numerical results indicate that both the Snyman-Fatti 
trajectory method and the modified bouncing ball trajectory method 
are effective in finding the global optimum efficiently. In particular, 
the results for the trying Griewank functions are encouraging. Both 
algorithms appear effective for problems with a large number of local 
minima in the domain, and problems with a large number of design 
variables. A salient feature of the algorithms is the availability of an 
apparently effective global stopping criterion. 
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EXAMPLE PROBLEMS 

5.1 Introductory examples 

Prob lem 5.1.1 

Sketch the geometrical solution to the optimization problem: 

minimize/(x) = 2x2 — ^i 

subject to gi{x) = xj-{- 4x1 - 16 < 0̂  

P 2 ( x ) - ( x i - 3 ) 2 + ( x 2 - 3 ) 2 - 9 < 0 

and xi > 0 and X2 > 0. 

In particular sketch the contours of the objective function and the con­
straint curves. Indicate the feasible region and the position of the opti­
mum X* and the active constraint(s). 

The solution to this problem is indicated in Figure 5.1. 

P rob lem 5.1.2 

Consider the function / (x) = 100(x2 - xf )^ + (1 - ^i)'^-

(i) Compute the gradient vector and the Hessian matrix. 

(ii) Show that V/(x) = 0 if x* = [1,1]^ and that x* is indeed a strong 
local minimum. 
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X2 

feasible region 

/(x) =constant 

^2(x) < 0 

V/ = [ - l ,2p ^(3,3) 

Figure 5.1: Solution to problem 5.1.1 

(iii) Is / (x ) a convex function? Justify your answer. 

Solution 

(i) 

V / ( x ) = 
200(x2 - xl){-2xi) - 2(1 - xi) 

[ 200(x2 - x\) 

-400x2X1 + 400xf - 2 + 2x1 
200x2 - 200x? 

H(x) = 
-400x2 + 1200x? + 2 : -400xi 

-400x1 : 200 

(ii) V/(x) = 0 implies that 

-400x2X1 -h 400x^ - 2 + 2x1 = 

200x2 - 200x? = 

(5.1) 

(5.2) 
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From (5.2) X2 = x^, and substituting into (5.1) yields 

-400x1 + 400x1 - 2 - 2x1 = 0 

giving xi = 1 and X2 = 1 which is the unique solution. 

Therefore at x* = [1,1]^: 

H(x*) 
802 -400 

-400 200 

and since the principal minors a i = 802 > 0, and a2 = det H(x*) = 
400 > 0, it follows by Sylvester's theorem that H(x) is positive-
definite at x* (see different equivalent definitions for positive def-
initeness that can be checked for, for example Fletcher (1987)). 
Thus X* = [1,1]-^ is a strong local minimum since the necessary 
and sufläcient conditions in (1.24) are both satisfied at x*. 

(iii) By inspection, if xi — 0 and a;2 = 1 then H and 
-398 0 

0 200 
the determinant of the Hessian matrix is less than zero and H is 
not positive-definite at this point. Since by Theorem 6.1.2, / (x ) 
is convex over a set X if and only z/H(x) is positive semi-definite 
for all X in X, it follows that / (x) is not convex in this case. 

Problem 5.1.3 

Determine whether or not the following function is convex: 

/ (x) = 4x1 + ^^2 + ^^3 + 6^i^2 + xixs — Sxi — 2x2 + 15. 

Solution 

The function / (x) is convex if and only if the Hessian matrix H(x) is 
positive semi-definite at every point x. 

Here V / ( x ) = 

The principal minors are: 

8x1 + 6x2 - 3 -f X3 
6x2 + 6x1 — 2 
10X3 + Xi 

and H(x) = 
8 6 1 
6 6 0 
1 0 10 

a i = 8 > 0, a2 = 
8 6 
6 6 

12 > 0 and as IHI 114 > 0. 
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Thus by Sylvester's theorem H(x) is positive-definite and thus / (x) is 
convex. 

Problem 5.1.4 

Determine all the stationary points of 

/ (x ) = xf + 3xix | - Sxj - 3x1 + 4. 

Classify each point according to whether it corresponds to maximum, 
minimum or saddle point. 

Solution 

The first order necessary condition for a stationary point is that 

V / 
3xf + 3x1 - 6x1 
6x1x2 — 6x2 

= 0 

from which it follows that 6x2(xi — 1) = 0. 

Therefore either X2 = 0 or xi = 1 which respectively give: 

3x1 - 6x1 = 0 
3x1 (xi -2) = 0 

xi = 0; xi = 2 

or 
3 -f 3x| - 6 - 0 

xl = l 
X2 = ±1. 

Therefore the stationary points are: (0;0), (2;0); (1;1), (1;—1). 

The nature of these stationary points may be determined by substituting 
6x1 — 6 6x9 

their coordinates into the Hessian matrix H(x) = 
6x2 6x1 — 6 

and applying Sylvester's theorem. 

The results are listed below. 
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Point 

(0;0) 

(2;0) 

( i ; i ) 

Hessian Minors Nature of H Type 

negative-definite maximum 

positive-definite minimum 

6 
0 

6 
0 

0 
6 

0 
6 

0 
- 6 _ 

0 • 

6 

6 " 
0 

a i < 0 
a2 > 0 

ai>0 

a2 > 0 

a i = 0 
a2 < 0 

- 6 " 
0 

a i - 0 
«2 < 0 

indefinite 

indefinite 

saddle 

saddle 

Problem 5.1.5 

Characterize the stationary points of / (x ) = xf-\- X2 + 2x\ + 4x2 + *̂ 

Solution 

First determine gradient vector V / ( x ) and consider V / ( x ) = 0: 

3xi + 4x1 == 2:1(3x1 + 4) = 0 

3x^ -̂  8x2 = X2(3x2 + 8) = 0. 

The solutions are: (0,0); ( 0 , - | ) ; ( - | , 0 ) ; ( - | , - f ) . 

To determine the nature of the stationary points substitute their coor­
dinates in the Hessian matrix: 

H(x) 
6x1 + 4 0 

0 6x2 4 

and study the principal minors a i and a2 for each point: 
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Point X a i a2 Nature of H(x) Type / (x) 

(0,0) 4 32 positive-definite minimum 6 

( 0 , - | ) 4 -32 indefinite saddle 15.48 

( - | , 0 ) - 4 - 3 2 indefinite saddle 7.18 

(—|,—I) —4 32 negative-definite maximum 16.66 

Problem 5.1.6 

Minimize / (x) = xi — X2 4- 2a:f -i- 2xiX2 + x^ by means of the basic 
Newton method. Use initial estimate for the minimizer x^ == [0,0]-^. 

Solution 

V / ( x ) 

H(x) 
1̂  dxidxj J 

1 + 4x1 + 2x2 
1 + 2x1 + 2x2 . 

" 4 2 " 
2 2 ; H - i 

— 

= 

g(x) 

First Newton iteration: 

ĉ  = x ö - H - i g ( x O ) 
1 _ i 
2 2 

and 

g(xi) = 

l + 4(- l ) + 2 ( | ) 

-l + 2(-l) + 2(i) 
Therefore since H is positive-definite for all x, the sufficient conditions 
(1.24) for a strong local minimum at x^ are satisfied and the global 
minimum is x* = x-*̂ . 

Problem 5.1.7 

Minimize / (x) = 3xf — 2xiX2 + X2 + xi by means of the basic Newton 
method using x^ = [1,1]-^. 
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Solution 

g(x) = 
dxi 

0X2 

6xi — 2x2 + 1 
-2x1 + 2x2 

H(x) = 
6 - 2 

- 2 
and H - i = 

3 
4 J 

First Newton iteration: 

" 1 • 

_ 1 _ 

' 1 • 

_ 1 

- H - 1 
• 6 -

r 1 1-1 
4 4 

1 
L 4 

3 
4 J 

- 2 + 1 " 
-2 + 2 

" 5 • 

0 

• i - r 

- i - t . 

r 1 1 
4 

1 
L 4 J 

With V/ (x ' ) = 0 and H positive-definite the necessary and sufficient 
conditions (1.24) are satisfied at x^ and therefore the global minimum 
is given by 

1 

and /(x*) = -0.125. 

5.2 Line search descent methods 

Problem 5.2.1 

Minimize F{\) •= —A cos A over the interval [O, | ] by means of the golden 
section method. 

Solution 

The golden ratio is r = 0.618. 

First two points are: rLo = 0.9707 and r^Lo = 0.5999 

with function values: F(0.9707) = -0.5482 and F(0.599) = -0.4951. 

New points 0.6 + vLx = 1.200 with F(1.200) = -0.4350. 
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0 0.5999 0.9707 7r/2 

Lo = 7r/2 I \ \ I 
F - 0 -0.4951 -0.5482 

Figure 5.2 

0.5999 0.9707 1.200 7r/2 

Li = 0.9707 I I \ I 
F = -0.4951 -0.5482 -0.4350 

Figure 5.3 

0.5999 0.8292 0.9708 1.200 

L2 - 0.6000 I \ \ I 
F = -0.4951 -0.5601 -0.5482 -0.4350 

Figure 5.4 

0.6 0.7416 0.8292 0.9708 

L3 = 0.3708 I I \ I 
F - - 0 . 4 9 5 1 -0.5468 -0.5601 -0.5482 

Figure 5.5 

New p o i n t s 0.6 + r'^L2 = 0.8292 with F(0.8292) - - 0 . 5 6 0 1 . 

New p o i n t s 0.5999 + r^Ls = 0.7416 with F(0.7416) = -0 .5468 . 

0.7416 0.8292 0.8832 0.9708 

L4 = 0.2292 I I I I 
F = -0.5468 -0.5601 -0.5606 -0.5482 

Figure 5.6 

New p o i n t s 0.7416 + rL^ = 0.8832 with F(0.8832) = -0 .5606. 

The uncertainty interval is now [0.8282; 0.9708]. Stopping here gives 
A* = 0.9 (midpoint of interval) with F(A*) = -0 .5594 which is taken as 
the approximate minimum after only 7 function evaluations (indeed the 
actual A* = 0.8603 gives F(A*) = -0 .5611) . 
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Problem 5.2.2 Minimize the function F{\) = {X - 1)(A + 1)^, where 
A is a single real variable, by means of Powell's quadratic interpolation 
method. Choose AQ = 0 and use h — 0.1. Perform only two iterations. 

Solution 

Set up difference table: 

A 
0 
0.1 
0.2 

A^^ = 0.392 

FW F[,] F[ , , ] 

-1.152 < ..:• 1.694 
.>-0.135 •• 

-1.178 •• 
.(2) 0.336 

Turning point Â ^ given by Xm = 

First iteration: 

F[, , ](Ao + A i ) - F [ , ], 
2F[, , 

Second iteration: 

A(I) 

Ag) 

IN 1.3(0.1)+ 0.89 
2(1.3) 

1.694(0.3) + 0.63 
2(1.694) 

0.392 

= 0.336. 

Problem 5.2.3 Apply two steps of the steepest descent method to the 
minimization of / (x) = xi — X2 + 2xf +2xiX2 + ^2. Use as starting point 
xO = [0,OF. 

Solution 

Step 1 

x O -

r - 1 " 
|_ 1 _ 

" 0 " 
0 _ 

V / ( x ) 
1 + 4x1 + 2x2 

- 1 + 2x1 + 2x2 

and the first steepest descent direction u^ = —V/(x") = 
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Here it is convenient not to normahze. 

The minimizer along the direction u-*̂  is given by 

- A l 

Al 

To find Al, minimize with respect to A the one variable function: 

F{X) = / (x^ + Aui) :.. -A - A + 2A2 - 2X'^ + A .̂ 

The necessary condition for a minimum is ^ = 2A—2 = 0 giving Ai = 1 

and with —^̂ 2 = 2 > 0, Ai indeed corresponds to the minimum of 

F(A), andxi = ~J 

Step 2 

The next steepest descent direction is 

u2 = - V / ( x l ) 

x^ = x^ + A2u2 = 

and 
- I + A2 

I + A2 

To minimize in the direction of u^ consider 

F(A) = /(xi+Au2) = (_i+A)-( l+A)+2(A-l)2+2(A-l)(A+l)+(A+l)2 

and apply the necessary condition 

^ = lOA - 2 - 0. 
dX 

This gives A2 = ^ and with ^2x^ = 10 > 0 (minimum) it follows that 

•1 + 1 

5 J 

-0.8 
1.2 

P rob lem 5.2.4 
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Apply two steps of the steepest descent method to the minimization of 
/ (x) - (2x1 - X2? + (X2 + If with xO - [|, 2]^. 

Solution 

Step 1 

= 4(2x1 - X2) 
dl 
dxi 
df -L. = 4 x 2 - 4 x 1 + 2 
ax2 

giving g° = 
4(5 - 2) 

8-4(1)+ 2 
12 
0 

After normalizing, the first search direction is u^ 

. Now minimize with respect to A: 

and x^ = 

I - A l 
2 

F(A) - /(x^ + Au )̂ = (2 (I - A) - if + (2 + if = (3 - 2\f + 9. 

The necessary condition ^ = 0 gives Ai = | , and with ^p^(Ai) > 0 
ensuring a minimum, it follows that 

X 

5 _ 3 
2 2 

2 
and g = 

4(2 - 2) 
B-4 + 2 

Step 2 

thus x^ = New normalized steepest descent direction: u^ 

1 
2 - A 2 

In the direction of u^: 

F ( A ) = / ( X 1 + AU2) = A2 + ( 3 - A ) 2 . 

Setting ^ = 2A - 2(3 - A) = 0 gives A2 = | and since 0 ( A 2 ) > 0 a 
minimum is ensured, and therefore 

1 
1 

L 2 J 



162 CHAPTER 5. 

Problem 5.2.5 

Apply the Fletcher-Reeves method to the minimization of 

/ (x) = (2x1 - X2f + {X2 + if with x° = [f, 2]^ . 

Solution 

The first step is identical to that of the steepest descent method given 
for Problem 5.2.4 above, with u^ = - g ° = [-12,0]^. 

For the second step the Fletcher-Reeves search direction becomes 

u ^ ^ I l r r 0 | | 2 " 

Using the data from the first step in Problem 5.2.4, the second search 
direction becomes 

u^ = 
0 

- 6 

and 

x^ =z x^ H- A2u2 

I _36_ 
"^ 144 

- 1 2 

0 

3A2 
6A2 

- 3 
- 6 

I - 3 A 2 
2-6A2 

In the direction u^: 

F{X) = (2(1 - 3A) - 2 + 6A)2 + (2 - 6A + 1)^ = (3 - 6Xf 

and the necessary condition for a minimum is 

d\ 
-12(3 - 6A) = 0 giving A2 

and thus with ^-^;^ = 36 > 0: 

x^ = 
r 1 - ^ 1 

^ 2 

2 - ^ 
L ^ 2 J 

1 -
2 

_ - 1 _ 

with 
4 ( 2 ( - l ) - l ( - l ) ) 
4 ( - l ) - 4 ( - i ) + 2 J 
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Since g^ = 0 and H = 

Problem 5.2.6 

8 - 4 
- 4 4 

is positive-definite, x^ = x*. 

Minimize i^(x) = xi — X2 + 2x2+2xiX2 + X2 by using the Fletcher-Reeves 
method. Use as starting point x^ = [0,0]-^. 

Solution 

Step 1 

V / ( x ) 1 + 4x1 + 2x2 
- 1 + 2x1 + 2x2 

1 
- 1 u^ -g^ and x^ = x ° +Aiu^ = -Al 

Al g 

Therefore 

F{X) - / (x° + Au^) = -A - A + 2A2 - 2\^ + Â  = Â  - 2A 

and ^ = 2A - 2 = 0 giving Ai = 1 and with ^ ^ | ^ = 2 > 0 ensuring 
minimum, it follows that x^ = [—1,1]- .̂ 

Step 2 

gl = V / ( x i ) = 
- 1 
- 1 

u" 

x^ 

V + lSu' 

- 1 
1 

T 0 | | 2 ' 

+ A2 

2 

+ 2 
- 1 

1 

[-1,1 + 2A2F. 

Thus 

F ( A ) = - 1 - ( 1 + 2A) + 2 ( - 1 ) 2 + 2 ( - 1 ) ( 1 + 2A) + (1 + 2A)2 = 4 A 2 - 2 A - 1 

with dX 
(fF __ 8A - 2 = 0 giving A2 == | and therefore, with -^ = 8 > 0: 

= [-1,1.5p 2 
x"̂  = 

' - 1 • 

1 

1 
+ -4 

• 0 • 

2 
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This results in 

g 
1 - 4 + 2(1.5) 

- 1 - 2 + 2(1.5) 
[0,0]^ 

and since H is positive-definite the optimum solution is x* = x^ = 

[ - i , i . 5 F . 

Problem 5.2.7 

Minimize / (x) = x\ — xia;2 + 3x2 with x^ •= (1,2)-^ by means of the 
Fletcher-Reeves method. 

Solution 

Step 1 

Since g^ = 2x1 — ^2 
6x2 — xi 

0 
11 

ui = - g ° = [0,-11]^ and 

xi = [ l , 2 f + Ai[0, - l l ] 

This results in 

F{\) = 1 - 1(2 - UA) + 3(2 - 11A)2 

with 
dF_ 
dX 

11 + 6(2 - 11A)(-11) = 0 giving Al - | . 

Thus, with q ^ > 0: xi = [1,2]^ + i[0, -11]^ = [l, ^f. 

Step 2 

n 
6 

0 
and thus 

llp-l||2 

|g 
0112 

n 
• 6 + 36 

0 
- 1 1 

i i 1 
• 6 

"36 J 

givmg 

x2 = X̂  + A2U2 = 
1 • 

1 
L 6 J 

- A 2 

r u n 
6 

11 
L 36 J 

= 
(1 - A2f) 
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Thus 

F(A) = ( l -^Af -Hl -^Af + i ( l - ^ A r 

and f = ¥ (1 - T^ ) ( - ¥ ) = 0 gives A2 = ^ , and with ^ ^ > 0 
gives x^ = [0,0]"^. With g^ = 0, and since H is positive-definite for all 
X, this is the optimal solution. 

Problem 5.2.8 

Obtain the first updated matrix Gi when applying the DFP method to 
the minimization of / (x) = 4:x\ — 40xi + x^ — 12x2 + 136 with starting 
point 
x O - [ 8 , 9 F . • 

Solution 

Factorizing / (x) gives / (x) = 4(xi - 5)^ + (x2 - 6)^ and V / ( x ) =^ 
8x1 - 40 
2x2 - 12 

Step 1 

Choose Go - I, then for x^ = [8,9]^, g° = [24,6]^. 

and x^ = x° + A2Û  = 
8 - 24A2 
9-6A2 

The function to be minimized with respect to A is 

F{\) = / (x° + Au^) - 4(8 - 24A - 5)^ + (9 - 6A - 6)^. 

The necessary condition for a minimum, ^ = -8(24)(3-24A)+2(-6)(3-

6A) = 0 yields Ai = 0.1308 and thus with ^-§j^ > 0: 

x ^ ^ 
8 - 0.1308(24) 
9-0.1308(6) J 

4.862 
8.215 

with gl = V / ( x i ) -1.10 
4.43 
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The DFP update now requires the foUowing quantities: 

x i - x » 

and y^ = g^ — g" = 

AT^A _ 

r 4.862 - 8 1 
_ 8 .215-9 _ 

' -25.10 1 
-1.57 J 

4 , --0.785] 
[• -25.10 
[ -1.57 

-3.14 
-0.785 

= 80.05 

and y i^yi = [(25.10)2 + (-1.57)2] = 632.47 

to be substituted in the update formula (2.16): 

Gl = Go + 
1 IT 1 IT 

V V V V 

1 0 
0 1 + 

1 
80.05 

632.47 

1 0 
0 1 

-f 80.05 

-3.14 
•0.785 

-25.10 
-1.57 

9.860 2.465 
2.465 0.6161 

-3.14; -0.785] 

-25.10;-1.57] 

632.47 

0.127 -0.032 
-0.032 1.004 

630.01 3941 
39.41 2.465 

Problem 5.2.9 

Determine the first updated matrix Gi when applying the DFP method 
to the minimization of / (x) = Sxl — 2xiX2 + x^ + xi with x^ = [1,1]-^. 

Solution 

di 
dxi 

di 
3X2 

Step 

gO = 

= 6xi -

= - 2 x ] 

1 

[5,0]^ 

-2x2 + 1 

L + 2X2. 

and Go = I which results in 
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x^ = x°+Aiu^ = xO-AiGog° = 
' 1 • 

_ 1 _ - A l 
• 1 0 • 

0 1 
" 5 • 

0 — 
l - 5 A i 

1 

For the function F(A) =-3(1-öA)^-2(1-5A) + l -h( l -5A) the necessary 
condition for a minimum is ^ = 6(1 — 5A)(—5) + 10 — 5 = 0, which 

gives Al - ^ = i , and since ^ ^ - | ^ > 0: 

and v^ 

r 1 - ^ 1 
6 

[ 1 
= 

r 1 
e 

_ 1 

.1 = xi - xO = [ 

y^ = g^ --g° = 

1 • 

6 
1 _ 

6( 

-
• 1 • 

1 = 

- 2 - h l 1 

• ) + 2 J 

r 5 1 
6 

L 0 J 
-

" 5 
0 

5 

= 
" - 5 ' 

5 
L 3 J 

It follows that 

5 
1 IT 

1 IT 
y y 

0 

25 0 
36 ^ 
0 0 ^v^v-[-i,o] - 5 

5 
3 

andyiV=[-5,i] - 5 
5 
3 

25 - f 
25 25 
3 9 J 

= 25 + f = 250 
9 • 

25 
6 ' 

In the above computations Go has been taken as Go — I. 

Substituting the above results in the update formula (2.16) yields Gi as 
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follows: 

G l Go + A i + B i 

1 0 
0 1 

1 0 
0 1 

^ 25 

25 Q 
36 ^ 
0 1 

\ 0 
0 1 

250 

25 - f 

10 

r 7 _9- A. 
10 10 

_3_ 
10 

_9_ 
10 

r A A l 
15 10 

A A 
10 10 

25 
" 3 

3 

25 
9 J 

Comparing G i with H ^ =: 

r 1 i 1 
4 4 shows tha t after only one iter-
1 i 

L 4 4 

ation a reasonable approximation to the inverse has already been ob~ 
tained. 

P r o b l e m 5.2 .10 

Apply the DFP-method to the minimization / ( x ) = x i — X2 + 2x\ + 

2xiX2 + X2 with start ing point x^ = [0,0]-^. 

So lu t ion 

Step 1 

Go - I - [ J, ? 1 and gO . 1 + 4x1 + 2x2 

-1 + 2x1-1-2x2 gives 

0 _ u^ = - G o g " = - I 

x i == x^ + Aiu^ 

1 

- 1 

- A l 

Al 

and thus 

Thus F{X) = A^ - 2A, and ^ = 0 yields Ai = 1, and with ^ ^ ^ ^ > 0: 

and g^ == 
- 1 
- 1 
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Now, using v^ == 1 _ and yi = gl - o-o =: 

in the update formula (2.16), gives 

- 1 1 ] . 

Ai -
v l T y l 

Bi - -
4 0 
0 0 

Substitute the above in (2.16): 

1 - 1 
-1 1 

- 2 
0 

and since Goy 1 _ , a . 

Gl = Go + Ai + Bi = 

3 
2 J 

1 0 
0 1 + ^ 

1 
- 1 

4 0 
0 0 

Step 2 

New search direction u^ = — Gig^ 

and therefore 

+ A2 - [ - 1 , 1 + A2]' 

-1 - (1 + A) + 2 - 2(1 + A) + (1 + A)^ implies Minimizing F{X) 

^ = - 1 - 2 + 2(1 + A) = 0 which gives A2 = | . 

Thus, since ^^-^ > O5 the minimum is given by x^ 

- 1 
3 
2 

with g and therefore x^ is optimal. 
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5.3 Standard methods for constrained 
optimization 

5.3.1 Pena l ty function problems 

Problem 5.3.1.1 

Determine the shortest distance from the origin to the plane xi 4- X2 4-
X3 = 1 by means of the penalty function method. 

Solution 

Notice that the problem is equivalent to the problem: 

minimize / (x) = x\-\- x\-\- x\ such that xi + X2 -h 2:3 == 1. 

The appropriate penalty function is P = x\-\-x'2-\-x\-{'p{xi-\-X2-Yx^ — l)'^. 

The necessary conditions at an unconstrained minimum of P are 

dP 
— - = 2x1 + 2p(xi + X2 + :r3 - 1) - 0 
OXi 

dP 
- — = 2x2 + 2p(xi + X2 + X3 - 1) = 0 
0x2 
dP 
- — = 2x3 + 2p(xi 4- X2 + X3 - 1) = 0. 
ax3 

Clearly xi = X2 = X3, and it follows that xi = —p(3xi — 1), i.e. 

^l(p) = i : ^ ^ 5TX and pl^^i^^) ^ i 

The shortest distance is therefore^ y^xf + X2 + X3 = A/3(^)^ = -4^. 

Problem 5.3.1.2 

Apply the penalty function method to the problem: 

minimize / (x) = (xi - 1)^ 4- (x2 - 2)^ 

such that 

h{-x) == X2 - xi - 1 = 0, g{-x) = xi 4- X2 - 2 < 0, - x i < 0, -X2 < 0. 
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Solution 

The appropriate penalty function is 

P =^ {Xi-lf -\-{x2-2f ^- p{x2-Xi-lf -{- ßl{xi^X2-2f -^ ß2x\^- ß^xl 

where p ^ ^ and ßj — p \i the corresponding inequality constraint is 
violated, otherwise ßj = 0 . 

Clearly the unconstrained minimum [1,2]-^ violates the constraint ^(x) < 
0, therefore assume that x is in the first quadrant but outside the feasible 
region, i.e. ßi = p. The penalty function then becomes 

P - (xi - if + {X2 - 2f + p{x2 -XI- if -f p{xi ^X2- 2f. 

The necessary conditions at the unconstrained minimum of P are: 

dP 
—- = 2(xi - 1) - 2p(x2 - XI - 1) + 2p(x2 + xi - 2) = 0 
OXl 

dP 
— - = 2(x2 - 1) + 2p(x2 - XI - 1) -t- 2p(x2 + XI - 2) - 0. 
ax2 

The first condition is xi(2 + 4p) — 2 — 2p = 0, from which it follows that 

The second condition is a;2(2 + 4p) — 4 — 6p = 0, which gives 

The optimum is therefore x* = [̂ ? f]"̂ « 

Problem 5.3.1.3 

Apply the penalty function method to the problem: 

minimize / (x) = xf + 2x2 ^^^^ ^^^^ ^(^) = 1 — 3;i — X2 < 0. 

Solution 

The penalty function is P = x^ + 2x1 + /?(1 — xi — X2)^. Again the 
unconstrained minimum clearly violates the constraint, therefore assume 
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the constraint is violated in the penalty function, i.e. ß = p. The 
necessary conditions at an unconstrained minimum of P are 

dP 
- - = 2x1 - 2p(l - XI - xs) - 0 
ox I 
dP 
— = 4x2- 2p(l - XI - X2) = 0. 

These conditions give xi = 2x2, and solving further yields 

X2{p) = — = —7 ^ and thus lim^X2(p) = X2 = ^, and also 

* _ 2 x^ - 3. 

4 + 6p , ( i + e) - % - ^ i — -^ 3̂  

Problem 5.3.1.4 

Minimize / (x) = 2x1 + ^2 ^^^^ ^^^^ ^(x) = 5 — xi + 3x2 < 0 by means 
of the penalty function approach. 

Solution 

The unconstrained solution, Xi — Xo = 0, violates the constraint, there­
fore it is active and P becomes P = 2x\ + x^ + p(5 — xi + 8x2)^ with 
the necessary conditions for an unconstrained minimum: 

dP 
—— = 4x1 - 2p(5 - xi + 3x2) = 0 
axi 
dP 
— - - 2x2 + 6p(5 - XI + 3x2) = 0. 
ax2 

It follows that X2 = —6x1 and substituting into the first condition yields 

xiip) = _ 1 2 ^ ^ ^^P and lim xAp) =x\ = '^^ 0.2632. This 
'^^^ 4 + 38p p ( ^ + 38) P--^'^'^ ' '' 

gives x^ - -1.5789 with /(x*) = 2.6316. 

5.3.2 The Lagrangian method apphed to 
equality constrained problems 

Problem 5.3.2.1 
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Determine the minima and maxima of / (x ) = a:iX2, such that x\+X2 = 
1, by means of the Lagrangian method. 

Solution 

Here L = xiX2 + A(a:f + X2 — 1) and therefore the stationary conditions 
are 

dL 
-— = X2 + 2xiA = 0, X2 = -2xiA 
ox I 

-— = xi + 2X2A = 0, xi = -2X2A. 
0x2 

From the equahty it follows that 1 = x1 + x^ = 4a:̂ A^ -f- 4x2 Â  — ^A^ 
giving A = ±^ . 

Choosing A = ^ gives X2 = —xi, 2x1 — ̂ ' ^^^ ^1 — =̂ "7o-

This results in the possibilities: 

XX = i , X2 = - ^ =» r = - i 

or 

Alternatively choosing A = — ̂  gives X2 == xi, 2a:f = 1, and xi = ±-y= 
and the possibilities: 

^1 = 75 ' "̂ 2 = ; ^ =^ r = i 

or 

^i = - 7 5 ' ^ 2 = - ; ) 3 = > r = i 

These possibilities are sketched in Figure 5.7. 

Problem 5.3.2.2 

Determine the dimensions, radius r and height /i, of the solid cylinder 
of minimum total surface area which can be cast from a solid metallic 
sphere of radius VQ. 

Solution 
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x^x^i ^ f 

Figure 5.7 

This problem is equivalent to: minimize / ( r , h) — 27rr/i + 27rr^ such that 
ixT^h — \'T^T\. The Lagrangian is L{T^ h, A) = —27rrh — 27rr^ + A(7rr^/i — 
|7rro). The necessary conditions for stationary points are 

ÖL 
dr 
ÖL 
dh 
ÖL 
ÖA 

= -27rr + A7rr^ == 0 

-Kr h • j7rr, 0 0. 

The second condition gives Avrr̂  = 27rr, i.e. A = ^, and substituting in 
the first condition yields r = ^. Substituting this value in the equality 
gives 7rr^2r — l^rrg = 0, i.e. 

r = ro( | )3 , /i = 2ro(|)3 and A = ^. 
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P r o b l e m 5.3 .2 .3 

Minimize / ( x ) = —2xi — 0:2 — 10 such tha t /i(x) = xi — 2x2 — 3 = 0. 
Show whether or not the candidate point, obtained via the Lagrangian 
method, is indeed a constrained minimum. 

S o l u t i o n 

L(x, A) = - 2 x 1 - X2 - 10 + \{xi - 2x2 

and the necessary stationary conditions are 

OX I 

0 

3) 

dL 
— - = - 1 - 4 A X 2 
ax2 
dL o 
— = X I - 2 x ^ - 3 = 0. 

Solving gives the candidate point A* 
/ ( x * ) = -16 .185 . 

2, X2 x^ = 3.03 with 

To prove tha t this point, x* = [3.03,—|]-^, indeed corresponds to a 
minimum requires the following argument. By Taylor, for any step A x 
compatible with the constraint, i.e. /i(x) = 0, it follows tha t 

/ ( x * + A x ) = / (x* ) + V ^ / ( x * ) A x (5.3) 

and /i(x* + A x ) = /i(x*) + V^/ i (x*) A x + ^ A x ^ V 2 / i ( x * ) A x - 0. 

The latter equation gives 0 = [1, —4x2] 

i.e. 

A x i 

AX2 
-^[AxiAx2] 

0 0 
0 - 4 

A x i = 4x2Ax2 + 2Ax2 

and (5.3) gives 

A / 1] 
A x i 

AX2 
-2Axi - Ax2. 

(5.4) 

(5.5) 

Substi tuting (5.4) into (5.5) results in A / = -2 (4x2Ax2 + 2Ax^) - Ax2 
and setting X2 = X2 = | gives A / ( x * ) = Ax2 - 4 A x 2 - Ax2 = -AAx^ < 
0 for all Ax2. Thus x* is not a minimum, but in fact a constrained 
maximum. 

A x i 

AX2 
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Problem 5.3.2.4 

Minimize / (x) = 3xf -h ^2 + 2xiX2 -h 6xi + 2x2 such that /i(x) = 2xi — 
X2 — 4 = 0. Show that the candidate point you obtain is indeed a local 
constrained minimum. 

Solution 

The Lagrangian is given by 

L(x, A) = 3xi + ^2 + 2x1X2 + 6x1 + 2x2 + A(2xi - X2 - 4) 

and the associated necessary stationary conditions are 

dL 

Solving gives x\ 

dxi 
dL 

9X2 
ÖL 
d\ 
7 ^ 

= 6x1 + 2x2 + 6 + 2A == 0 

= 2x2 + 2x1 + 2 - A = 0 

= 2x1 - X2 - 4 = 0. 

30 
" 1 1 ' A* 24 

"11-

To prove that the above point indeed corresponds to a local minimum, 
the following further argument is required. Here 

v/ = 
6x1 + 2x2 + 6 
2x2 + 2x1 + 2 

, Vh = 
2 

- 1 
, V^/i = 0 and H -

6 2 
2 2 

is positive-definite. Now for any step Ax compatible with the constraint 
/i(x) = 0 it follows that the changes in the constraint function and 
objective function are respectively given by 

A/i = V^/iAx = [2 - 1] 

and 

Axi 
AX2 

Also since V/(x*) = ff 

as 

V^/(x*)Ax=.ff[2,-l] 

2 1 
- 1 J 

r Axi 
L AX2 

= 2Axi - Ax2 = 0, i.e. 2Axi = Ax2 

(5.6) 

A / - V^/(x*)Ax + ^Ax^H(x*)Ax. (5.7) 

, the first term in (5.7) may be written 

If (2Axi - Ax2) - 0 (from (5.6)). 
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Finally, substituting the latter expression into (5.7) gives, for any step 
A x at X* compatible with the constraint, the change in function value 
as A / = 0 + ^Ax^H(x*)Ax > 0 since H is positive-definite. The point 
X* is therefore a strong local constrained minimum. 

Problem 5.3.2.5 

Maximize / - xyz such that (f )^ -f ( | )^ + (f )^ - 1. 

Solution 

with necessary conditions: 

dL 
dx 
dL 

dy 
y 

= xz + 2X-^ 

= 0 

= 0 

9L . X ^ . 
— = x2/ + 2 A - 2 = 0 . 
oz & 

Solving the above together with the given equality, yields A = —^xyz^ 
X = ^ a , y = -^b and z = ^ c , and thus /* = ^ « ^ c . 

Problem 5.3.2.6 

Minimize (xi - 1)^ + (x2 — 1)^ + 2xiX2 such that xi + X2 == 2. 

Solution 

With /i(x) = xi + X2 — 2 = 0 the Lagrangian is given by 

L(x, A) = (xi - 1)^ + (x2 - 1)^ + 2x1X2 + A(xi + X2 - 2) 

with necessary conditions: 

= 3(xi - 1)^ + 2x2 + A = 0 
9x1 

- — = 2(x2 - 1) + 2x1 4- A =^ 0 
9X2 

^1-1-^2 = 2. 

Solving gives A* = — 2 and the possible solutions 
X i ^̂^ i , X2 ^^ i- o r X i ^̂= •Q , X2 -^ "o• 
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Analysis of the solutions: 

For any A x consistent with the constraint: 

A/i - 0 - V ^ / i A x = [1,1] 
A x i 

AX2 
i.e. Aa;i + Ax2 = 0 

and 

A / = V ^ / A x + i A x H ( x ) A x where x = x* + (9Ax, 0 < 6̂  < 1. 

For both candidate points x* above, V"^/ = [2,2] and thus: V - ^ / A x = 
2(Aa:i + Ax2) = 0. Considering only A x H ( x ) A x , it is clear tha t as 
A x —> 0, X ^ X*, and A / > 0 if H(x*) is positive-definite. 

H 
6(xi - 1) 2 

2 2 
0 2 
2 2 

4 2 
2 2 

is not 

is positive-definite. 

and thus at x* = [1,1]^, H = 

positive-definite, and at x* = [ | , ^] , H = 

Therefore the point x* = [ | , ^] is a strong local constrained minimum. 

P r o b l e m 5 .3 .2 .7 

Determine the dimensions of a cylindrical can of maximum volume sub­
ject to the condition tha t the total surface area be equal to 247r. Show 
tha t the answer indeed corresponds to a maximum, (xi = radius, x^ — 
height) 

S o l u t i o n 

The problem is equivalent to: 

minimize f{xi^X2) = —7rxfx2 such tha t 27rxf + 27rxia:2 = AQ = 247r. 

Thus with h{x.) = 2'KX\ -f- 27r0:1X2 — 247r = 0 the appropriate Lagrangian 

is 

L(x , A) = -TTx\x2 + \{2iTx\ + 27rxiX2 - 247r) 

with necessary conditions for a local minimum: 

dL 

dxi 

dL 

dx2 

and /i(x) = 2TTX\ -f- 27rxiX2 — 247r = 0. 

27rxiX2 + 47rAxi + 27rAx2 = 0 

-KXi + 27rAxi — 0 
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Solving gives x\ = 2, X2 = ^ with A* = 1 and / * 

Analysis of the solution: 

-167r. 

At X* for change A x compatible with the constraint it is required to 
show tha t 

A / - V ^ / A x + ^ A x ^ H A x > 0 (5.8) 

in the limit as A x -^ 0 and /i(x* + A x ) = 0. 

For / ( x ) at x* the gradient vector and Hessian are given by 

v/ 
-27rxiX2 

-47r and 

H = 
—27ra;2 —27rxi 
-27rxi 0 

-STT -47r 
-47r 0 

For satisfaction of the constraint: A/i = V ^ / i A x + ^ A x ^ V ^ / i A x = 0, 
i.e. 

V ^ / i A x = - ^ A x ^ V ^ / i A x (5.9) 

with V / i : 
47rxi + 27rx2 

27ra;i 
= 47r 

47r 27r 

27r 0 
Now clearly V/ i = — V / at the candi-and where V^/i = 

date point. 

It therefore follows tha t V / ^ A x = - V ^ / i A x = ^ A x ^ V ^ / i A x . 

Substi tuting in (5.8): 

A / - i A x ^ ( V 2 / i + H ) A x 

r Arrr O/TT- I 

A x = —7r[Aa;i Ax2] = i A x ^ 
-47r -27r 
-27r 0 

2 1 

1 0 

A x i 

AX2 

= -TTpAxi + 2AxiAx2] . 

From (5.9) in the limit as A x -^ 0, A3:2 = —4Aa;i, and thus 

A / = -7r[2Ax? + 2Axi ( -4Aa ; i ) ] = 67rAxf > 0, as expected for a 

constrained local minimum. 
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Prob lem 5.3.2.8 

Minimize / (x) = xf ^x^H hx^ such that /i(x) = xi+X2H hXn —1 = 

0. 

Solution 

The Lagrangian is 

L = (xi + X2 H h x^) + A(xi 4- X2 H h x^ - 1) 

with necessary conditions: 

dL 
7-— = 2xi + A = 0, i = 1 , . . . , n. 
OXi 

Thus ^2xi + nA = 0 =^ A = - : | and 

2xi - f = 0 =^ Xi = ^, i == 1, 2 , . . . , n. 

i=l 

n2 y ^ * Therefore the distance = y/f{x*) 

Test for a minimum at x*: 

A / = V^/(x*)Ax -h ^Ax^H(x)Ax and V ^ / = [2xi , . . . , 2xnf 

1 
1 I 

which is positive-definite, A / > 0 if and H(x) - 2 

V/(x*)Ax > 0. 

1 
1 

1 

For A x such that Ah — V /lAx = 0, gives Axi -f Ax2 H V Ax^ = 0. 

Thus V^ / (x* )Ax = 2[x | , . . . , x ; ]^Ax = f (Axi + Ax2 + - • --f-Ax^) = 0 
and therefore x* is indeed a constrained minimum. 

P rob lem 5.3.2.9 

Minimize xf + x^ + x\ such that x\ + 3x2 + 2x3 — 12 = 0. 

Solution 
L = X? + x^ + xi + A(xi + 3x2 -f 2x3 - 12) 
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dL 
-̂ — = 2x1 + A = 0 
ox I 

dL 
7—- = 2x2 + 3A = 0 
0x2 
dL 
— - = 2x3 + 2A = 0 
ÖX3 

xi + 3x2 + 2x3 = 12 

with solution: A* = - ^ , x | = f, x^ = ^ , x^ = ^ with /* - 10.286. 

Test A / for all A x compatible with the constraint: A / = V/-^Ax + 
r 2 0 

^Ax^HAx, V / = [2x1,2x2,2x3]^, H - 2 
0 2 

positive-definite and 

A/i = V^/iAx + 1 Ax^V^/iAx == 0, =^ Axi + 3Ax2 + 2Ax3 = 0. 

Therefore 

A/(x*) = 2xiAxi + 2X2AX2 + 2X3AX3 + ^ Ax^HAx 

= 2f (Axi + 3Ax2 + 2AX3) + ^Ax^HAx = 0 + ^Ax^HAx > 0. 

Thus X* is indeed a local minimum. 

5.3.3 Solut ion of inequality constrained problems 
via auxiliary variables 

Problem 5.3.3.1 

Consider the problem: 

Minimize / (x) = x^-{- x?, — 3xiX2 such that x^ + x^ — 6 < 0. 

Solution 

Introducing an auxiliary variable 6 the problem is transformed to an 
equality constrained problem with x^ +X2 — 6 + 0^ = 0. Since ^^ > 0 the 
original equality constraint is satisfied for all values of 0 for which the 
new equality constraint is satisfied. Solve the new equality constrained 
problem with additional variable 0 by the Lagrange method: 

L(x, 6, A) = xi + X2 - 3x1X2 + A(xi + x^ - 6 + 6>̂ ) 
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with necessary conditions: 

dL 
— - = 2x1 - 3x2 + 2Axi = 0 
ox I 
dL 
—- = 2x2 - 3x1 + 2Ax2 = 0 
ax2 

The third equation implies three possibilities: 

(i) \ = 0^ 0 jL 0, =^ xl = xl = 0, e'^ = 6 and / (x) = 0. 

(ii) ^ = 0, A 7̂  0, then from the first two conditions: 

2A - - 2 + ^ = - 2 + ^ ^ x? =. xi. 

Thus xi == diX2 and from the last condition it follows that xi = 
±V3. 
Choosing Xi = —x\ gives /(x*) = 15, and choosing x | = X2 == 
±V3 gives /(x*) = - 3 . 

(iii) ^ = 0 and A = 0 leads to a contradiction. 

The constrained minimum therefore corresponds to case (ii) above. 

Problem 5.3.3.2 

Minimize / (x) = 2x\ - 3x1 - 2xi such that xf + x^ < 1. 

Solution 

Introduce auxiliary variable 6 such that x\-\-x'2-\-0'^ = 1. The Lagrangian 
is then 

L(x, 6) = 2x1 - 3^2 - 2x1 + A(x? ^x\^Q^ -\) 

and the necessary conditions for a minimum: 

1 ^ = 4x1 - 2 + 2Axi =. 0, 1 ^ = -6x2 + 2Ax2 = 0, ^ = 2A^ = 0 
axi ax2 od 
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and x i + X 2 + 6>̂  = 1. 

The possibilities are: 

either (i) A = 0, 6> ^ 0 or (ii) A 7̂  0, 6> = 0 or (iii) A = 0 and i9 = 0. 
Considering each possibility in turn gives the following: 

(i) X = Q^xl = \, xl = 0, 6>*2 = I and / ( x j , x ^ ) - - \ . 

(ii) (9 = 0 =^ x^ + x | = 1; 4x1 - 2 + 2Axi = 0; X2(-6 + 2A) = 0 
giving firstly for xl = 0^xl = ± 1 ; A* = - 1 ; - 3 and / * ( l , 0 ) = 

0; / * ( - ! , 0) = 4, or secondly for A* == 3 it follows tha t x\ = \ and 

X2 = i v it? for which in both cases / * = - 3 . 2 . 

(iii) leads to a contradiction. 

Inspection of the alternatives above gives the global minima at x | = | 

and X2 = =^V M with / * = —3.2 and maximum at x̂ ^ = — 1, X2 = 0, 

with / * = 4. 

P r o b l e m 5 .3 .3 .3 

Maximise / ( x ) = —x\ -f- X1X2 — 2x3 + xi + X2 such tha t 2xi + X2 < 1, 
xi,X2 > 0 by using auxiliary variables. 

So lu t ion 

Here solve the minimization problem: min / = Xi — X1X2 + 2x2 — ^1 — ^2 

such tha t 1 — 2xi — X2 > 0. 

Introducing an auxiliary variable it follows tha t 

L(x , 0) = xf — X1X2 -f 2x2 — xi — X2 + A(l — 2x1 — X2 — O'^) 

with necessary conditions: 

dL 

dxi 
dL 
9X2 

do 
dJL 

d\ 

= 2x1 - X2 - 1 - 2A == 0 

= - x i + 4x2 - 1 - A = 0 

= -2X6 = 0 

1 - 2x1 - X2 - 6>̂  = 0. 
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The possibilities are: 

(i) A = 0 and 6 y^ 0 ^ 2xi — X2 — 1 = 0 and —xi + 4x2 — 1 = 0, giving 
xi = ^ and X2 = | . Substituting in the equality 1 —2xi —X2 —^̂  = 
0 =^ ^^ = — I < 0, which is not possible for 0 real. 

(ii) ^ = 0 and A 7̂  0 gives 1 — 2xi — X2 == 0 and solving together 
with the first two necessary conditions gives ^2 — H ' ^1 ~ H ^^^ 
\ * 1 

5.3.4 Solut ion of inequality constrained problems via t h e 
Karush-Kuhn-Tucker condit ions 

Problem 5.3.4.1 

Minimize / (x ) = 3xi + X2 

subject to ^(x) = xf + X2 — 5 < 0. 

Solution 

For L(x, A) = 3xi + X2 + A(x| + X2 — 5) the KKT conditions are: 

—— = 3 + 2Axi = 0 
ox I 
dL 
- — = 1 + 2Ax2 = 0 
ax2 

x^ + X2 — 5 

A(xi + X2 - 5) 

A 

< 0 

= 0 

> 0 

From A(xf + x^ — 5) = 0 it follows that either A = 0 or xf + X2 — 5 = 0. 

If A = 0 then the first two conditions are not satisfied and therefore 
A ^ 0 and we have the equality xf + X2 - 5 = 0. It now follows that 
XI = - ^ a n d x 2 = - ^ . 

Substituting these values into the equality yields 
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which impHes that A* = +\/^ > 0. The optimal solution is thus xl = 

- ; l ' ^ 2 - - ; ^ w i t h / ( x * ) = . - i | . 

Problem 5.3.4.2 

Minimize xf-f-x^ —14xi — 6x2 —7 such that X1+X2 < 2 and xi + 2x2 < 3. 

Solution 

L(x, A) - X? + x^ - 14x1 - 6x2 - 7 -f Al(xi + X2 - 2) + A2(xi -f 2x2 - 3) 

with KKT conditions: 

dL 
— - = 2x1 - 14 + Al + A2 = 0 
axi 
dL 
- — = 2x2 - 6 + Al 4- 2A2 = 0 
ax2 

A i ( x i + X 2 - 2 ) - 0 

A 2 ( x i + 2 x 2 - 3 ) - 0 

A > 0. 

The possibilities are: 

(i) The choice Ai 7̂  0 and A2 / 0 gives 

^1+^2—2 = 0, xi+2x2—3 = 0 =^ X2 == 1, Xl = 1, with / = —25. 

Both constraints are satisfied but A2 = —8 < 0 with A2 = 20. 

(ii) Al 7̂  0 and A2 = 0 gives xi + X2 — 2 = 0 and 

2x1 - 14 + Al = 0 

2x2 - 6 + Al = 0 

which yield 

Al = 8 > 0 and xi = 3 , X2 = —1, with / = —33 

and both constraints are satisfied. 

(iii) Al = 0 and A2 7̂  0 gives xi + 2x2 — 3 = 0 and it follows that 

A2 = 4 > 0 and xi = 5, X2 == —1, with / = —45. However, the 
first constraint is violated. 
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(iv) The final possibihty Ai = A2 = 0 gives xi = 7 and X2 = 3 with 
/ = — 65 but both the first and second constraints are violated. 

The unique optimum solution is therefore given by possibility (ii). 

Problem 5.3.4.3 

Minimize / (x) = x^ + X2 — 4xi — 6x2 + 13 such that xi + X2 > 7 and 
Xi — X2 < 2. 

Solution 

We note that in this case the KKT conditions are also sufficient since 
the problem is convex. 

L(x, A) = (x? -\-xl- 4x1 - 6x2 -f 13) -f- Al(-X1 - X2 -f 7) + A2(xi - X2 - 2) 

with KKT conditions: 

dL 
- — = 2x1 - 4 - Al + A2 = 0 
axi 
dL 
;̂— - 2x2 - 6 - Al - A2 = 0 

ax2 
A i ( - x i - X 2 + 7) = 0 

A 2 ( x i - X 2 - 2 ) = 0 

A > 0. 

The possibilities are: 

(i) Al = A2 = 0 ^ XI = 2, X2 = 3 with x i + X 2 = 2 + 3 < 7 and 
thus the first constraint is not satisfied. 

(ii) Al 7̂  0, A2 = 0 =^ 2x1 - 4 - Al = 0, 2x2 - 6 - Al - 0 and 
xi - X2 + 1 = 0. 

The above implies —xi — X2 + 7 = 0, A2 = 0, Ai = 2, X2 = 4, 
xi = 3 with / = 2. This point satisfies all the KKT conditions 
and is therefore a local minimum. 

(iii) Al = 0 and A2 7̂  0 =^ 2xi - 4 + A2 = 0, 2x2 - 6 - A2 - 0, 
2x1 + 2x2 — 10 = 0, xi — X2 — 2 = 0 and solving yields 

xi = J, Al = 0, X2 = I and A2 = —3. 

file://-/-xl-
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This point violates the condition that A2 > 0, and is therefore not 
a local minimum. 

(iv) Al 7̂  0 and A2 7̂  0 =^ 2x i -4 -A1-J -A2 = 0, 2 x 2 - 6 - A i - A 2 = 0, 
and —xi — X2 + 7 — 0, and x i — X2 — 2 = 0 ^ ^2 — ^, xi = ^ 
with Al = 2 and A2 == — 3 < 0 which violates the condition A > 0. 

The unique optimum solution therefore corresponds to possibility (ii), 
i.e. xl = 3, AJ = 2, x^ = 4, A^ = 0 with / * = 2. 

P r o b l e m 5 .3 .4 .4 

Minimize xf -h 2(x2 4-1)^ such tha t —xi -|- X2 = 2, —xi — X2 — 1 < 0. 

S o l u t i o n 

Here the Lagrangian is given by 

L(x, A, /x) = X? + 2(x2 + 1)^ + A ( - x i - X2 - 1) 4 fJ^{-xi + X2 - 2) 

with K K T conditions: 

OL 
- — = 2 x i - A - / i = 0 
a x i 

- - = 4 ( x 2 + l ) - A 4 / / = 0 
ax2 

- X l 4 a;2 - 2 = 0 

— Xl — X2 — 1 < 0 

A(—Xl — X2 — 1) = 0 

A > 0. 

Possibilities: 

(i) A 7̂  0 => - X l - X2 - 1 = 0 and with - x i 4- X2 - 2 = 0 => 
Xl = — | , X2 = 5. Substi tuting into the first two conditions give 
A == I and // = — | , and thus all conditions are satisfied. 

(ii) A==0 => 2x1 - / i = 0 and 4 x 2 4 4 + / i = 0 giving 2x14-4x2+4 == 0 
and with —xi 4 ^2 — 2 = 0 it follows tha t X2 = 0 and x i = —2. 
However, —xi— X2 — 1==1 which does not satisfy the inequality. 
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Case (i) therefore represents the optimum solution with / * = ^ . 

P r o b l e m 5.3 .4 .5 

Determine the shortest distance from the origin to the set defined by: 

4 - xi - X2 < 0, 5 - 2x1 - X2 < 0. 

S o l u t i o n 

L(x, A) = Xi + X2 + Al(4 - x i - X2) + A2(5 - 2xi - X2) 

with K K T conditions: 

dL 
- — - 2x1 - Al - 2A2 = 0 
a x i 

| ^ = 2 x 2 - A i - A 2 = 0 
ax2 

Ai^i -f A2^2 = 0 

Al, A2 > 0. 

The possibilities are: 

(i) Al = A2 = 0 => x i = X2 = 0 and both constraints are violated. 

(ii) Al = 0, A2 7̂  0 =^ 5 - 2x1 — X2 = 0 which gives X2 = 1, x i = 2 

and A2 = 2 > 0, but this violates constraint gi. 

(iii) Al 7̂  0, A2 = 0 => x i = X2 = 2 and Ai = 4 > 0. 

(iv) Al 7̂  0, A2 ^ 0 => 9i = ^ and §2 — ^ which implies tha t 
A2 = — 4 < 0 , x i = l , X2 = 3 which violates the non-negativity 
condition on A2. 

The solution x* therefore corresponds to case (iii) with shortest distance 

P r o b l e m 5.3 .4 .6 

Minimize xf + x^ - 2xi - 2x2 + 2 

such tha t - 2 x 1 - X2 + 4 < 0 and - x i - 2x2 + 4 < 0. 
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Solution 

L(x, A) = Xi+X2-2xi -2x2- | -2 + Ai( -2xi -X2 + 4) + A2(-x i -2x2 + 4) 

with KKT conditions: 

dL 
7—- - 2x1 - 2 - 2Ai - A2 = 0 
OXi 

dL 
7—- - 2x2 - 2 - Al - 2A2 - 0 
ax2 

gi = -2x1 - X2 + 4 < 0 

92 = ~xi - 2 x 2 + 4 < 0 

Ai^i = 0; A2ö'2 = 0 
Al > 0; A2 > 0. 

The fifth conditions give the following possibilities: 

(i) Al = A2 = 0 => 2x1 - 2 = 0, 2x2 - 2 = 0, xi = X2 = 1, not valid 
since both gi and 92 > 0. 

(ii) Al =- 0 and ^2 = 0 ^ 2xi - 2 - A2 = 0, 2x2 - 2 - 2A2 = 0 and 
—xi — 2x2 + 4 = 0 which yield 

XI = f, X2 - | , A2 = f > 0 

but, not valid since f̂i = 0.2 > 0. 

(iii) ^1 = 0, A2 = 0 => 2x1 - 2 - 2Ai = 0, 2x2 - 2 - Ai = 0 which 
together with gi = 0 give xi = | , X2 = | and Ai = | > 0, but not 
valid since ^2 = 0.2 > 0. 

(iv) gi= g2 = 0 =^ xi = X2 = | , Al = A2 = § > 0. 

Since (iv) satisfies all the conditions it corresponds to the optimum so­
lution with /(x*) = | . 

Problem 5.3.4.7 

Minimize (xi - | ) + (x2 - 2)^ 

such that ^i(x) = xf — X2 < 0, ^2(x) = xi + X2 — 6 < 0, and xi, X2 > 0. 
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Is the point x = (§71) ^ local minimum? 

S o l u t i o n 

L(x ,A) = (xi - I ) + (x2 -2 )^+Ai (a : i -X2)+A2(a : i+X2-6 ) -A3Xi -A4X2 

with K K T conditions: 

— = 2 (xi - f ) + 2Aia;i + A2 - A3 = 0 

- — = 2(0:2 - 2) - Al + A2 - A4 - 0 
9X2 

^i < 0 and 92 < ^ 

—xi < 0 and — X2 < 0 

Ai(xi - X2) = 0; A 2 ( x i - f X 2 - 6 ) == 0 

A3X1 = 0; A4a;2 = 0 

Al > A2 > A3 > A4 > 0. 

At X = ( | , I ) , xi and X2 7̂  0 => A3 = A4 == 0 and gi = ( | ) ^ " f = 0 
and ^2 = § + I - 6 = ^ - 6 < 0 and thus A2 = 0. 

Also from the first condition it follows tha t since 2 ( | — | ) + 2 A i | = 0 
tha t Al = ^ > 0. This value also satisfies the second condition. 

Since x satisfies all the K K T conditions, and all the constraints are 

convex, it is indeed the global constrained optimum. 

P r o b l e m 5.3 .4 .8 

Minimize x\-^ x^ — 8x1 — 10x2 such tha t 3xi + 2x2 — 6 < 0. 

S o l u t i o n 

L(x, A) = Xi + X2 - 8x1 - 10x2 + A(3xi H- 2x2 - 6) 

with K K T conditions: 

— ^ = 2 x 1 - 8 + 3 A = 0 
a x i 

r\ J-

- — - 2x2 - 10 + 2A = 0 
ax2 

A(3xi + 2x2 - 6) - : 0. 

The possibilities are: 
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(i) A = 0 then xi = 4 and X2 = ^ giving 3xi + 2x2 — 6 = 16 > 0 and 
thus this point is not valid. 

(ii) 3xi + 2x2 — 6 = 0 then A = ^ and xi = ^ , X2 = f|. 

Thus the solution corresponds to case (ii). 

Problem 5.3.4.9 

Minimize / (x) = xf — X2 such that xi > 1, X | ~r X2 < 26. 

Solution 

L(x, A) = X? - X2 + Ai(l - xi) + A2(x? + xl- 26) 

with KKT conditions: 

dL 
-—- = 2x1 - Al 4- 2A2X2 = 0 
axi 

- — = - l + 2A2X2 
ax2 

A i ( l - x i ) 

A2(xf+ x ^ - 2 6 ) 

X? + X2 - 26 

1 — xi 

Al > 0; A2 

:=: 

= 

= 
< 

< 

> 

0 

0 

0 

0 

0 

0, 

Investigate the possibilities implied by the third and fourth conditions. 

By inspection the possibility 1 — xi = 0 and xf + X2 — 26 = 0 yields 
xi = 1; X2 = 5. This gives ^2 = JQ > 0 and Ai = 2 > 0 which satisfies 
the last condition. Thus all the conditions are now satisfied. Since 
/ (x) and all the constraints functions are convex the conditions are also 
sufficient and x* = [1,5]-^ with /(x*) = —4 is a constrained minimum. 

5.3.5 Solut ion of constrained problems via 
the dual problem formulation 

Problem 5.3.5.1 
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Minimize x\ -f 2^2 such that X2 > —xi + 2. 

Solution 

The constraint in standard form is2 — xi— a;2<0 and the Lagrangian 
therefore: 

L(x, X) =:xl + 2x\ + A(2 -xx- X2). 

For a given value of A the stationary conditions are 

öl ' . . 
_ - = 2 x i - A = 0 
OX\ 
dL , , 
_ - ^ 4 x 2 - A - 0 
0x2 

giving xi = ^ and X2 = \> Since the Hessian of L, H/, is positive-definite 
the solution corresponds to a minimum. 

Substituting the solution into L gives the dual function: 

Since ^ < 0 the maximum occurs where ^ = - | A + 2 = 0, i.e. A* = | 
with 

MA*) = - 1 ( 1 ) ^ + 2 ( 1 ) ^ 1 . 

Thus X* - ( | , If with /(x*) = | . 

Problem 5.3.5.2 

Minimize x\ + x^ such that 2x1 + 2:2 < - 4 . 

Solution 
L(x, \) = x\-\-xl-\- A(2xi + X2 + 4) 

and the necessary conditions for a minimum with respect to x imply 

1 ^ = 2x1 + 2A = 0 
axi 

dL 
and - — = 2x2 + A = 0 

ax2 

giving xi = — A and X2 = — f. Since H^ is positive-definite the solution 
is indeed a minimum with respect to x. Substituting in L gives 

/ i ( A ) - - f A 2 + 4A. 
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Since ^ = - | < 0 the maximum occurs where ^ = - | A + 4 = 0, i.e. 
where A* = | > 0 and /(x*) = /i(A*) = f . 

The solution is thus ^i = — | ; 2:2 = — | which satisfies the KKT condi­
tions. 

Problem 5.3.5.3 

Minimize 2x\ + x'2 such that xi + 2x2 ^ 1-

Solution 
L(x, A) = 2xi + X2 -f A(l - xi - 2x2) 

with stationary conditions 

^ 4 x 1 - A - 0 
ox I 

—^ - 2x2 - 2A = 0 
ax2 

giving xi = ^ and X2 = A. Since Hj, is positive definite the solution is 
a minimum and 

h{X) = | A 2 + A2 + A - \\^ - 2A2 = - | A 2 + A. 

Since ^ < 0 the maximum occurs where ^ = — | A + 1 = 0, i.e. A = | 
and since A > 0, A G .D. 

Thus 

a n d Xi = 4 ( 9 ) ~ 9 ' ^2 — 9-

Test: /(x*) = 2 ( i )^ + ( | )^ = ^ + i 6 = i § ^ | ^ h{X*). 

Problem 5.3.5.4 

Minimize (xi — 1)^ + (x2 — 2)-̂  such that xi — X2 < 1 and xi 4- X2 < 2. 

Solution 

L(x, A) = (xi - 1)^ + (X2 - 2)2 + Ai(xi - X2 - 1) + A2(xi + X2 - 2) 
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and it follows that for a fixed choice of A — [Ai,A2]"^ the stationary 
conditions are: 

dL 
dxi 
dL 
dx2 

2(a;i - 1) + Al + A2 = 0 

2(^2 - 2) - Al + A2 = 0 

2 0 
0 2 

which give xi — 1 - ^(Ai-f-A2) and X2 — 2 + ^(Ai - A2). Hi, = 

is positive-definite and therefore the solution is a minimum with respect 
to X. Substituting the solution into L gives 

/i(A) = - f - f + A2. 

The necessary conditions for a maximum are 

^ ^ - - " ^ ^ + 1 = 0' - - ^ 2 = 1 

and since the Hessian of h with respect to A is given by H^, = 
- 1 0 

0 - 1 
which is negative-definite the solution indeed corresponds to a maxi­
mum, with h{X^) = ^ = /(x*) and thus x^ = ^ and x^ = ^. 

5.3.6 Quadratic programming problems 

Problem 5.3.6.1 

Minimize / (x) = xf + X2 + x"^ such that /ii(x) = xi -f X2 + 0:3 = 0 and 
/i2(x) == XI + 2x2 + 3x3 - 1 == 0. 

Solution 

Here, for the equality constrained problem the solution is obtained via 
the Lagrangian method with 

L(x, A) = Xi + X2 -f X3 + Ai(xi + X2 + X3) + A2(xi + 2x2 + 3x3 - 1). 
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The necessary conditions for a minimum give: 

— - 2x1 -h Al + A2 - 0, XI - -^(Ai + A2) 

dL 
dx2 
dL 

= 2x2 + Al H- 2A2 = 0, X2 = -^(Ai + 2A2) 

— = 2x3 + Al + 3A2 = 0, xs = -^(Ai + 3A2). 

Substituting into the equality constraints gives: 

- { ^ ^ + ^ ^ ^ + A i i ^ ^ = 0, i.e. Al + 2A2 = 0 

and 

^(Ai + A2) + (Al -t- 2A2) + i(Ai + 3A2) = - 1 , i.e. 3Ai -f 7A2 - - 1 . 

Solving for the A's: A2 = — 1 and Ai = 2. 

The candidate solution is therefore: xj = — | , ^2 = 0, X3 == ^. 

For the further analysis: 

/ ( x + Ax) = / (x) + V ^ / A x + ^ A x H A x 

where V / = (2xi,2x2,2x3)^ and thus V/(x*) = [-1,0,1]^ and H 
2 0 0 1 
0 2 0 is positive-definite. 
0 0 2 

For changes consistent with the constraints: 

0 = Ahi = V^/ i iAx + ^Ax^V^/ i iAx, with V/ii -

0 = A/i2 = V^/i2Ax -f ^Ax^V^/i2Ax, with V/i2 = 

It follows that Axi + Ax2 + AX3 = 0 and Axi + 2Ax2 + 3AX3 = 0 giving 
—Axi + Ax3 = 0 and thus 

A/(x*) - - A x i + Ax3 + ^ A x ^ H A x = ^ A x ^ H A x > 0. 
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The candidate point x* above is therefore a constrained minimum. 

Problem 5.3.6.2 

Minimize / (x) = —2xi— 6x2 + 2:^-2x1X2 + 2x2 suchthat xi > 0, X2 > 0 
and ^i(x) = xi + X2 < 2 and ^2(x) = —xi + 2x2 < 2. 

Solution 

In matrix form the problem is: 

minimize / (x ) = ^x^Ax + b-^x where A = 

subject to the specified linear constraints. 

First determine the unconstrained minimum: 

X* = - A - ^ b = -
4 2 
2 2 

- 2 
- 6 

- 2 
4 

b = 
- 2 
- 6 

Test for violation of constraints: 

xi,X2 > 0, xi + X2 = 9 > 2; - x i + 2x2 = - 5 + 8 = 3 > 2. 

Thus two constraints are violated. Considering each separately active 
assume firstly that xi + X2 = 2. For this case L = / (x ) + Xgiix) — 
ix-^Ax + b-^x + A(xi + X2 — 2). The necessary conditions are: 

' A 1 ' 

1 
_ 1 1 0 _ 

' ̂  1 
6 

_ 2 

X 

A =" 
- b 

2 
L J 

i.e. solve 
-2 1 
4 1 
1 0 

xi 

A 

This, by Cramer's rule, gives x \ ~ ^ 
^ > 0, and therefore 

\\X2 
D2 
D | a n d A = t 

xi, X2 > 0 and — xi + 2x2 4 I 2.6 _ 8 ^ o 
' 5 "^ 5 - 5 "̂  ^* 

Thus with all the constraints satisfied and A > 0 the KKT sufficient 
conditions apply and x* = [|; | ] is a local constrained minimum. In­
deed, since the problem is convex it is in fact the global minimum and 
no further investigation is required. 
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Problem 5.3.6.3 

Minimize / (x) = x^ + 4^2 — 2xi + 8x2 such that 5xi -f 2x2 ^ 4 and 

Xi, X2 > 0. 

Solution 

Try various possibilities and test for satisfaction of the KKT conditions. 

(i) For the unconstrained solution: solve V / ( x ) = 0, i.e. 2xi —2 = 0, 
8x2 + 8 = 0 giving xi = 1; X2 = — 1 which violates the second 
non-negativity constraint. 

(ii) Setting X2 = 0 results in xi = 1 which violates the constraint 
5x1 + 2x2 < 4. 

(iii) Similarly, setting xi = 0 results in X2 = —1, which violates the 
second non-negativity constraint. 

(iv) Setting 5xi + 2x2 = 4 active gives 

L(x, A) = X? -f 4x2 - '^^i + 8^2 + A(5xi + 2x2 - 4) 

with necessary conditions: 

dL 
- — = 2x1 - 2 + 5A = 0 
axi 
dL 
~— = 8x2 + 8 +2A = 0 
ax2 
dL 
•— = 5x1 + 2 x 2 - 4 = 0. 
oX 

Solving gives A = — ̂ , xi = 1.92 and X2 = —0.98 < 0, which also 
violates a non-negativity constraint. 

(v) Now setting X2 = 0 in addition to 5xi + 2x2 — 4 = 0 results in an 
additional term — A2X2 in L giving 

dL dL 
- — = 2x1 - 2 + 5Ai = 0 and —- = 8x2 + 8 + 2Ai - A2 = 0. 
axi a A 

4. ^ _ Solving together with the equalities gives xi = | ; X2 = 0 which 
^ > 0 and A2 = ^ satisfies all the constraints and with Ai = Ä > 0 and A2 = ^^ > 0. 
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(vi) Finally setting xi = 0 and 5xi -f 2x2 — 4 = 0 leads to the solution 
xi = 0, X2 = 2 but with both associated A's negative. 

Thus the solution corresponds to case (v) i.e.: 

XI = | , X2 = 0 w i t h / * = - 2 ^ 25-

Problem 5.3.6.4 

Minimize 

that 

/ (x ) = - ^x-^Ax + b-^x, A 

Xi, X2 

Xi + X 2 

2X1 - ^2 

> 

< 

< 

1 
- 1 

0 

3 

4. 

1 • 

2 
, b = 

" - 2 " 

1 _ 
such 

Solution 

First determine the unconstrained minimum: 

xO = - A - ^ b = 2 1 
1 1 

xi, X 2 > 0 , x i + X 2 = 3 + l = 4 > 3 (constraint violation), and 
2x1 — X2 = 5 > 4 (constraint violation). Now consider the violated 
constraints separately active. 

Firstly for xi + X2 — 3 = 0 the Lagrangian is 

L(x, A) = ^x^Ax + b^x + A(xi + X2 - 3) 

with necessary conditions: 

A 
X 

A — 

2 • 

- 1 
3 

, i.e. 

1 - 1 1 
- 1 2 1 

1 1 0 1 1 0 

The solution of which is given by Cramer's rule: 

x^ = ^ = :=^=. 2.4, X2 = ^ = 5 | = 0.6 and A 

This solution, however violates the last inequality constraint 

• x i " 

002 

A _ 
= 

2 " 

- 1 
3 

^ - ^ - 0 2 
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" xi 

X2 

L ^ 

= 
• 2 . 4 • 

0.8 
. 0-2 . 

Similarly, setting 2xi — 0:2 — 4 = 0 gives the solution 

which violates the first constraint. 

Finally try both constraints simultaneously active. This results in a 
system of four linear equations in four unknowns, the solution of which 
(do self) is xi = 2^, 0:2 = I and Ai = A2 = 0.11 > 0, which satisfies the 
KKT conditions. Thus x* = [2^, §]^ with /(x*) = 1.8. 

5.3.7 Appl icat ion of the gradient project ion m e t h o d 

Problem 5.3.7.1 

Apply the gradient projection method to the following problem: 

minimize / (x) = x\-\- x^-\- x\ — 2a:i 

such that 2xi -f ^2 + â s = 7; xi + 0:2 + 2x3 = 6 and given initial starting 
point x^ == [2,2,1]-^. Perform the minimization for the first projected 
search direction only. 

Solution 

P = ( I - A ^ ( A A ^ ) - ^ A ) , A 

AA^ = 6 5 
5 6 , ( A A ^ ) " ' - Ä 

(AA^)- " A - ^ "^ - 11 

A^(AA^)"'A 

It now follows that 

P - ^ 
^ 11 

11 

6 - 5 
- 5 6 

" 2 1 ^ 
1 1 
1 2 

2 1 1 
1 1 2 

7 1 -
-4 1 

1 
11 

" 2 1 1 1 
_ 1 1 2 J 

r 6 - 5 
[ - 5 6 

1 
— 11 

5 

-1 

5 

7 1 
- 4 1 

A T 
4 

7 
_ 1 
~~ 1 1 

10 

_ 
3 
1 

- 4 1 

7 J 
3 - 1 
2 3 
3 10 

1 
3 
1 

- 3 
9 

- 3 

1 
- 3 

1 
and V/(x") = 0^ _ 
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j _ 
11 This gives the projected steepest descent direction as —P V / 

and therefore select the descent search direction as u^ = [1, —3,1]-^. 

Along the hne through x^ in the direction u^, x is given by 

24 

X = x° + A 
1 ' 

- 3 
1 _ 

= 

2 + A 
2 - 3 A 
1 + A 

and 

/ (x° + Au) = F(A) = (2 + A)2 + (2-3A)2 + (l + A)2-2(2 + A). 

For a minimum ^ = 2(2 + A) - 6(2 - 3A) + 2(1 -|- A) - 2 - 0, which 
gives Al = ^ . Thus the next iterate is 

^ - l ^ ^ ^ i i ' ^ i i ' - ^ ^ i i J - 1^11'ii'-'-n; • 

Problem 5.3.7.2 

Apply the gradient projection method to the minimization of 

/ (x ) — x\^- x^ — 2xi — 4x2 such that /i(x) = xi + 4x2 — 5 = 0 

with starting point x^ = [1; 1]-^. 

Solution 

The projection matrix is P = I — A-^(AA-^)~-^A. 

Here A = [1 4] and therefore 

P = 
1 0 
0 1 

[1 4] 

2x?-2 
2 x ^ - 4 

With V/(xO) = 

u' = - P V / ( x o ) = -

or more conveniently u^ = 

[1 4] 17 
16 - 4 

- 4 1 

the search direction is 

16 - 4 
- 4 1 '17 
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Thus X = x^ + Au^ 

hne 

1-4A 
1 + A 

for the hne search. Along the search 

F(A) - (1 - 4A)2 + (1 + xf - 2(1 - 4A) + 4(1 + A) = ITA^ - 2A 

with minimum occurring where ^ = 34A — 2 = 0, giving Ai = ^ . 

Thus x^ = x° + ^ u ^ + ^ 
0.7647 
1.0588 

Next, compute u^ = - P V / ( x i ) = - A 16 - 4 
- 4 1 

0.4706 
1.8824 

Since the projected gradient equals 0, the point x^ is optimum x* 

Problem 5.3.7.3 

Apply the gradient projection method to the problem: 

minimize / (x) — x\-\- X2-{- x\ such that xi + X2 + X3 = 1 

with starting point x^ — [1,0,0]"^. 

Solution 
P = I - A ^ ( A A ^ ) - ^ A . 

Here A = [1 1 1], A A ^ = 3, (AA^)- i = \ and thus 

1 0 0 
0 1 0 
0 0 1 

1 1 1 
1 1 1 
1 1 1 

2 - 1 - 1 
-1 2 - 1 
-1 - 1 2 

Since V / ( x ) = 
2x1 
2X2 

2X3 

it follows that V/ (x") = 

0.0 
0.0 

The projected search direction is therefore given by u^ = —PV/(x^) 
2 

- 1 
- 1 

veniently u 

1 
2 
1 

= 

- 1 • 

- 1 
2 _ 

• - 2 
-1 

1 
1 

r 2 " 
0 

L 0 . 

1 
~ 3 

4 " 
- 2 

_ - 2 

2 
~" 3 

2 ' 
- 1 

_ - 1 _ 
or more con-
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The next point therefore hes along the Une x = x^ + A 

1-2A 
A 
A 

with 

F{\) = /(xo + Au^) = (1 - 2A)2 + Â  + A2. 

The minimum occurs where ^ = —2(1 — 2A)2 + 2A + 2A = 0, giving 
Al = \. 

T h u s x i = [ i , i , i ] \ v / ( x i ) = [ | , | , | ] ^ and 2 2 2^T 

P V / ( x i ) = \ 
2 - 1 - 1 

- 1 2 - 1 
- 1 - 1 2 

2 
3 

' 1 • 

1 
_ 1 _ 

_ 2 
— 9 

• 0 • 

0 
_ 0 _ 

= 0. 

Since the projected gradient is equal to 0, the optimum point is x* = x^. 

5.3.8 Appl icat ion of the augmented Lagrangian m e t h o d 

Problem 5.3.8.1 

Minimize / (x) = 6x^ + 4xiX2 + 8x2 such that /i(x) = xi + X2 — 5 =̂  0, 
by means of the augmented Lagrangian multiplier method. 

Solution 

Here >C(x, A, p) = 6x^ + 4xiX2 + 8x2 + A(xi + X2 — 5) -f p(xi + X2 — 5)^ 
with necessary conditions for a stationary point: 

dC 
9x1 
dC 

9X2 

= 0 =^ xi(12 + 2p) + X2(4 + 2/?) = l O p - A 

=-0 => xi(4 + 2p) + X2(6 + 2yo) - lOp-A. 

With p = I the above become 14xi + 6^2 = 10 — A = 6x1 + 8x2 and it 
follows that 

X2 = 4x1 and xi = ^̂ f̂ -
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The iterations now proceed as follows. 

Iteration 1: Â  = 0 

xi = ^= 0.2632, X2 = 1.0526 

h = xi-{-X2-5 = 0.2632 + 1.0526 - 5 = -3.6842 

and for the next iteration 

Â  - Â  + 2p/i = 0 + (2)(l)(-3.6842) = -7.3684. 

Iteration 2: 
XI ^ i ^ = 10±7|684 ^ Q 4571 

and it follows that X2 = 1.8283 and thus h = 0.4571 + 1.8283 - 5 = 
—2.7146 with the next multiplier value given by 

Â  = Â  + {2){l)h = -7.3684 + 2(-2.7146) = -12.7978. 

Iteration 3: 

Now increase p to 10; then xi = ^^^^ and X2 = 4xi. 

Thus xi = ^Q%\y^'^^ = 0.8812 and X2 = 3.5249 with 

Â  = -12.7978 + 2(10)(-0.5939) = -24.675. 

Iteration 4: 

^1 = ^^^^28^^^ = 0.9740, X2 = 3.8961 with Â  = -27.27. 

Iteration 5: Iteration 5 gives xi = 0.9943, X2 = 3.9772 with Â  -= -27.84 
and rapid convergence is obtained to the solution x* = [1,4]-^. 

5.3.9 Application of the sequential quadratic program­
ming method 

Problem 5.3.9.1 

Minimize / (x) = 2xf -f 2x1 — 2xiX2 — 4xi - 6x2, such that /i(x) = 2xf — 
X2 = 0 by means of the SQP method and starting point x^ = [0,1]-^. 
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Solution 

Here L(x, A) = / (x) + A/i(x) and the necessary conditions for a station­
ary point are 

dL 
dxi 
dL 
dx2 

/i(x) 

4x1 - 2x2 - 4 -f A4xi = 0 

4x2 - 2x1 - 6 - A = 0 

2xt X2 = 0. 

This system of non-hnear equations may be written in vector form as 
c(X) = 0, where X = [a:i,X2, A]"̂ . If an approximate solution (x^, A )̂ 
to this system is available a possible improvement may be obtained by 
solving the linearized system via Newton's method: 

dc 

9x 
X — X*̂  

A-A^ 
= -c (x^A^) , 

where ^ is the Jacobian of the system c. 

In detail this hnear system becomes 

X - x^ 

A - A ^ 

4 - 2 4x1 
- 2 4 - 1 

4 x 1 - 1 0 

ci 
C2 

C3 

and for the approximation x^ = [0,1]-^ and Â  = 0, the system may be 
written as 

4 
- 2 

0 

- 2 
4 

- 1 

0 " 
- 1 

0 

si 

S2 

AA 
= -

• - 6 

- 2 
- 1 

which has the solution 5i = l, 52 = —1 and A A = —8. Thus after the 
first iteration x} = 0 + 1 == 1, x^ = 1 - 1 = 0 and Â  = 0 - 8 = - 8 . 

The above Newton step is equivalent to the solution of the following 
quadratic programming (QP) problem set up at x^ = [0,1]-^ with Â  = 0 
(see Section 3.5.3): 

minimize F(s) ^s^ 
4 - 2 

-2 4 
s + [-6 - 2 ] s - 4 such that 52 + 1 = 0. 
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Setting 52 = —1 gives F{s) — F{si) = 25^ — 45i — 2 with minimum at 
51 = 1. Thus after the first iteration x} = 5i = 1 and 0:2 = 52 + 1 = 0, 
giving x^ = [l̂ O]"̂ ? which corresponds to the Newton step solution. 

Here, in order to simplify the computation, A is not updated. Con­
tinue by setting up the next QP: with /(x^) = - 2 ; V / ( x i ) = [0, - 8 ] ^ ; 
/i(xi) = 2; V/i(xi) = [4, - 1 ] ^ the QP becomes: 

minimize F(s) = - s 
4 - 2 

- 2 4 
s + [0, -8]s - 2 

2s{ - 2siS2 -f 25^ - 8s2 - 2 

with constraint 

Ms) - [4,-1] 51 

S2 
+ 2 - 0 

= 451-52 + 2 = 0. 

Substituting 52 = 45i + 2 in F{s) results in the unconstrained minimiza­
tion of the single variable function: 

F(5i) = 265^-451 - 1 0 . 

Setting ^ = 5251 - 4 = 0, gives 5i = 0.07692 and 52 = 2.30769. Thus 
x2 = [1 -f 51,0 + 52] = [1.07692,2.30769]^. Continuing in this manner 
yields x^ = [1.06854,2.2834]^ and x^ = [1.06914,2.28575]^, which repre­
sents rapid convergence to the exact optimum x* ~ [1.06904,2.28569]"^, 
with /(x*) = —10.1428. Substituting x* into the necessary conditions 
for a stationary point of L, gives the value of A* = 1.00468. 



Chapter 6 

SOME THEOREMS 

6.1 Characterization of functions and minima 

Theorem 6.1.1 

If / (x ) is a differentiable function over the convex set X C R"- then / (x ) 
is convex over X if and only if 

/ ( x 2 ) > / ( x i ) + V ^ / ( x i ) ( x 2 - x i ) (6.1) 

for all x \ y? £X. 

Proof 

If / (x ) is convex over X then by the definition (1.9), for all x^, y? & X 
and for all A € [0,1] 

/(Ax^ + (1 - A)xi) < A/(x2) + (1 - A)/(xi) (6.2) 

^^-^^^^-^7^^^-^^-^^</(xV/(x-). (6.3) 
Taking the limit as A ^- 0 it follows that 

rf/(xM 
dX 

< / ( x 2 ) - / ( x i ) . (6.4) 
2 _ v l 
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The directional derivative on the left hand side may also, by (1.16) be 
written as 

dX 
V ^ / ( x ) ( x 2 - x i ) . (6.5) 

^ ^^ 

Substituting (6.5) into (6.4) gives /(x^) > /(x^) + V^/ (x i ) (x2 - x^), 
i.e. (6.1) is true. 

Conversely, if (6.1) holds, then for x = Ax^ + (1 - X)x^ G X, A 6 [0,1]: 

/(x^) > / (x) + V ^ / ( x ) ( x 2 - x ) (6.6) 

/ (x i ) > / (x) + V ^ / ( x ) ( x i - x ) . (6.7) 

Multiplying (6.6) by A and (6.7) by (1 — A) and adding gives 

A/(x2) + ( l - A ) / ( x i ) - / ( x ) > V ^ / ( x ) ( A ( x 2 - x ) + ( l - A ) ( x i - x ) ) = 0 

since A(x^ — x) + (1 - A)(x^ - x) = 0 and it follows that 

/ (x ) = /(Ax2 + (1 - A)xi) < A/(x2) + (1 - A)/(xi), 

i.e. / (x) is convex and the theorem is proved. D 

(Clearly if / (x ) is to be strictly convex the strict inequality > applies in 
(6.1).) 

Theorem 6.1.2 

If / (x ) G C^ over an open convex set X C M"-, then / (x ) is convex if 
and only z/H(x) is positive semi-definite for all x G X. 

Proof 

If H(x) is positive semi-definite for all x G X, then for all x^, x^ in X 
it follows by the Taylor expansion (1.21) that 

/(x^) = / ( x i + (x2 - x^)) = / (x i ) + V^/(xi ) (x2 - xi) 

+ i ( x 2 - x l ) ^ H ( x ) ( x 2 - x l ) ^ ' 

where x = x^+ö(x^—x^)), 0 G [0,1]. Since H(x) is positive semi-definite 
it follows directly from (6.8) that /(x^) > /(x^) + V^/ (x i ) (x2 - x^) 
and therefore by Theorem 6.1.1 / (x) is convex. 
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Conversely if / (x ) is convex, then from (6.1) for all x^, x'̂  in X 

/(x2) > / (x i ) + V^/(xi ) (x2 - xi) . (6.9) 

Also the Taylor expansion (6.8) above applies, and comparison of (6.8) 
and (6.9) implies that 

i (x2 - xi)^H(x)(x2 - x^) > 0. (6.10) 

Clearly since (6.10) must apply for all x^, x^ in X and since x is assumed 
to vary continuously with x^, x^, (6.10) must be true for any x in X, i.e. 
H(x) is positive semi-definite for all x G X, which concludes the proof. 
D 

Theorem 6.1.3 

If / (x ) G C^ over an open convex set X C R^, then if the Hessian matrix 
H(x) is positive-definite for all x G X, then / (x) is strictly convex over 
X. 

Proof 

For any x^, x^ in X it follows by the Taylor expansion (1.21) that 

/(x2) = / ( x i + ( x 2 - x i ) ) 

= /(x^) + V^/(xi ) (x2 - x^) + i (x2 - xi)^H(x)(x2 - x^) 

where x = x-̂  + ^(x^ — x^), 0 G [0,1]. Since H(x) is positive-definite it 
follows directly that /(x^) > /(x^) + V^f{x^){x^ - x^) and therefore 
by Theorem 6.1.1 / (x) is strictly convex and the theorem is proved. D 

Theorem 6.1.4 

If / (x ) G C^ over the convex set X C R"" and if / (x) is convex over X, 
then any interior local minimum of / (x) is a global minimum. 

Proof 

If / (x) is convex then by (6.1): 

/ (x2 ) > / ( x l ) + V ^ / ( x l ) ( x 2 - x l ) 
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for all x^, x^ G X. In particular for any point x^ = x and in particular 
x^ = X* an interior local minimum, it follows that 

/ ( x ) > / ( x * ) + V ^ / ( x * ) ( x - x * ) . 

Since the necessary condition V'^/(x*) = 0 applies at x*, the above 
reduces to / (x ) > /(x*) and therefore x* is a global minimum. D 

Theorem 6.1.5 

More generally, let / (x) be strictly convex on the convex set X, but 
/ (x ) not necessarily G C^, then a strict local minimum is the global 
minimum. 

Proof 

Let x^ be the strict local minimum in a ^-neighbourhood and x* the 
global minimum, x^, x* G X and assume that x^ 7̂  x*. Then there 
exists an £:, 0 < e < ^, with / (x) > /(x^) for all x such that ||x—x^|| < e. 

A convex combination of x^ and x* is given by 

X = Ax* -f (1 - A)x^ 

Note that if A -> 0 then x -^ x°. 

As / (x) is strictly convex it follows that 

/ (x ) < A/(x*) + (1 - A)/(xO) < /(xO) for all A £ (0,1). 

In particular this holds for A arbitrarily small and hence for A such that 
||x(A) — x^ll < e. But as x^ is the strict local minimum 

/ (x ) > /(x°) for all X with ||x - x°|| < e. 

This contradicts the fact that 

/ (x ) < /(xO) 

that followed from the convexity and the assumption that x^ 7̂  x*. It 
follows therefore that x^ = x* which completes the proof. D 
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6.2 Equality constrained problem 

Theorem 6.2.1 

In problem (3.5), let / and hj G C^ and assume that the Jacobian matrix 
öh(x*)] 

is of rank r. Then the necessary conditions for a bounded ÖX 

internal local minimum x* of the equality constrained problem (3.5) is 
that X* must coincide with the stationary point (x*, A*) of the Lagrange 
function L, i.e. that there exits a A* such that 

| ^ ( x * , A * ) = 0, i = l , 2 , . . . , n ; | ^ ( x * , A * ) = 0, i = l , 2 , . . . , r . 
axi aXj 

Note: Here the elements of the Jacobian matrix are taken as oh 
ÖX 

dxi' 

Proof 

I.e. 
Oh 

= [V/ii ,V/i2, . . . ,V/i^]. 

Since / and hj e C \ it follows that for a bounded internal local mini­
mum at X = X*, that 

df = V^/(x*)dx = 0 (6.11) 

since df > 0 for dx. and for — (ix, for all perturbations dx which are 
consistent with the constraints, i.e. for all dx such that 

dhj = V^hj{x'')dx = 0, j = 1, 2 , . . . , r. 

Consider the Lagrange function 

(6.12) 

L(x,A) = / (x) + ; ^A, / i , (x ) . 

The differential of L is given by 

dL = df -{- 2_] ^3dhj 
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and it follows from (6.11) and (6.12) that at x* 

dL = -—dxi -f -—dx2 H h T;—dxn = 0 (6.13) 
OXi 0X2 OXn 

for all dx such that h(x) := 0, i.e. h(x* + d:x.) = 0. 

Choose Lagrange multipliers Aj, j = 1 , . . . , r such that at x* 

^/^i 
T 

A = 0, j = l , 2 , . . . , r . (6.14) 

The solution of this system provides the vector A*. Here the r variables, 
Xj, j = 1, 2 , . . . ,r, may be any appropriate set of r variables from the 
set x^, i = 1,2,... ,n. A unique solution for A* exists as it is assumed 

"9h(x*)l 
' is of rank r. It follows that (6.13) can now be written as that 

ÖX 

dL = ^ ^ ( x * , A*)dx,+i + •.. + | ^ ( x * , X')dxn = 0. (6.15) 
OTr+l OXn 

Again consider the constraints /ij(x) = 0, '̂ == 1, 2 , . . . , r. If these equa­
tions are considered as a system of r equations in the unknowns xi , 
X2, . . . , Xr^ these dependent unknowns can be solved for in terms of 
Xr-^i, . . . , Xn- Hence the latter n — r variables are the independent 
variables. For any choice of these independent variables, the other 
dependent variables determined by solving h(x) = 
[/ii(x),/z2(x),...,/i7^(x)]-^ = 0. In particular Xr-^i to Xn may by var­
ied one by one at x*, and it follows from (6.15) that 

| ^ ( x * , A * ) - 0 , i = r + l , . . . , n 
dXj 

and, together with (6.14) and the constraints h(x) = 0, it follows that 
the necessary conditions for a bounded internal local minimum can be 
written as 

O 7-

— (x*,A*) = 0, i = l,2,...,n 

~M*,y) = 0, j = l,2,...,r (6.16) 

or 
VxL(x*, A*) = 0 and VAL(X* , A*) = 0. 
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D 

Note that (6.16) provides n -\- r equations in the n -f r unknowns x\^ 
X2, . . . , a;*, AJ, . . . , A*. The solutions of these, in general non-linear, 
equations will be candidate solutions for problem (3.5). 

As a general rule, if possible, it is advantageous to solve explicitly for 
any of the variables in the equality constraints in terms of the others, so 
as to reduce the number of variables and constraints in (3.5). 

Note on the existence of A* 

Up to this point it has been assumed that A* does indeed exist. In 
Theorem 6.2.1 it is assumed that the equations 

apply for a certain appropriate set of r variables from the set Xi, i = 
1, 2 , . . . , n. Thus A may be solved for to find A*, via the linear system 

dxj [ dxj 
A - 0 , j = l , 2 , . . . , r . 

This system can be solved if there exists a r x r submatrix Hr C [|^] , 
evaluated at x*, such that Hr is non-singular. This is the same as 
requiring that [|^] be of rank r at the optimal point x*. This result is 
interesting and illuminating but, for obvious reasons, of little practical 
value. It does, however, emphasise the fact that it may not be assumed 
that multipliers will exist for every problem. 

Theorem 6.2.2 

If it is assumed that: 

(i) / (x) has a bounded local minimum at x* (associated with this 
minimum there exists a A* found by solving (6.16)); and 

(ii) if A is chosen arbitrarily in the neighbourhood of A* then L(x, A) 
has a local minimum x^ with respect to x in the neighbourhood 
ofx*, 
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then for the classical equality constrained minimization problem (3.5), 
the Lagrange function L(x, A) has a saddle point at (x*. A*). Note that 
assumption (ii) implies that 

VxL(xO,A) = 0 

and that a local minimum may indeed be expected if the Hessian matrix 
of L is positive-definite at (x*. A*). 

Proof 

Consider the neighbourhood of (x*. A*). As a consequence of assumption 
(ii), applied with A = A* (x^ — x*), it follows that 

L(x, A*) > L(x*, A*) = /(x*) = L(x*, A). (6.17) 

The equality on the right holds as h(x*) = 0. The relationship (6.17) 
shows that L(x, A) has a degenerate saddle point at (x*. A*); for a regular 
saddle point it holds that 

L(x, A*) > L(x*, A*) > L(x*, A). 

D 

Theorem 6.2.3 

If the above assumptions (i) and (ii) in Theorem 6.2.2 hold, then it 
follows for the bounded minimum x*, that 

/(x*) = max f minL(x, A) j . 

Proof 

From (ii) it is assumed that for a given A the 

minL(x, A) = h(X) (the dual function) 
X 

exists, and in particular for A = A* 

minL(x, A*) = /i(A*) = /(x*) ( from (ii) x° = x*). 
X 

Let X denote the set of points such that h(x) = 0 for all x G X. It 
follows that 

minL(x, A) = min/(x) = /(x*) = /i(A*) (6.18) 
x€X XGX 
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and 

h{\) = minLfx, A) < minLfx, A) = min/ (x) = /(x*) = hiX*). 
X xex xex 

(6.19) 
Hence /i(A*) is the maximum of h{X). Combining (6.18) and (6.19) 
yields that 

/(x*) = /̂ (A*) = max h{X) — max (minL(x, A)) 
A A V X / 

which completes the proof. D 

6.3 Karush-Kuhn-Tucker theory 

Theorem 6.3.1 

In the problem (3.18) let / and gi G C^, and given the existence of 
the Lagrange multipliers A*, then the following conditions have to be 
satisfied at the point x* that corresponds to the solution of the primal 
problem (3.18): 

^i(x*) < 0, i = l ,2, . . . , m 

A*p,(x*) = 0, i = l , 2 , . . . , m (6.20) 

A* > 0, i = l , 2 , . . . , m 

or in more compact notation: 

VxL(x*,A*) - 0 

V A L ( X * , A * ) < 0 

A*^g(x*) = 0 

A* > 0. 

These conditions are known as the Karush-Kuhn- Tucker (KKT) station­
ary conditions. 

Proof 
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First convert the inequality constraints in (3.18) into equality constraints 
by introducing the slack variables si'. 

gi{yi)^Si - 0, i = l , 2 , . . . , m (6.21) 

Si > 0. 

Define the corresponding Lagrange function 

772 

L(x, s, A) = /(x) + Y^ Xi{gi{x) + Si). 
2 = 1 

Assume that the solution to (3.18) with the constraints (6.21) is given 
byx*, s*. 

Now distinguish between the two possibilities: 

(i) Let 5* > 0 for all i. In this case the problem is identical to the usual 
minimization problem with equality constraints which is solved 
using Lagrange multipliers. Here there are m additional variables 
si, 52, . . . , Sm- Hence the necessary conditions for the minimum 
are 

•̂  i= l ^ 

(x*,s*,A*) = A*=::0, i = l , . . . , m . 

As 5* > 0, it also follows that giix.*) < 0 and with the fact that 
A* = 0 this yields 

A*ffi(x*) = 0. 

Consequently all the conditions of the theorem hold for the case 
5* > 0 for all i. 

(ii) Let s* = 0 for i = 1,2,... ,p and 5* > 0 for i = p - f - 1 , . . . , m. 

In this case the solution may be considered to be the solution of 
an equivalent minimization problem with the following equality 
constraints: 

gi{x) = 0, i = l ,2, . . . , p 

gi{x)-]-Si = 0, 2 = p - | - l , . . . , m . 
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Again apply the regular Lagrange theory and it follows that 

dxj 

dL 

i;"'-'»-'̂ -) = ^ M + E^'l;«-*)'». i = i ' 

^^ (x*,s*,A*) - A*=0, i=p+l,...,m. 

As ^i(x*) = 0 for 2 = 1,2,... ,p it follows that 

A*yi(x*) = 0, i = 1,2, . . . , m . 

Obviously 
^i(x*) < 0, i = p 4 - l , . . . , m 

and since gi{^*) = 0 for z = 1, 2 , . . . ,p it follows that 

^ i (x*)<0 , 2 = l , 2 , . . . , m . 

However, no information concerning A*, i = 1 , . . . ,p is available . 
This information is obtain from the following additional argument. 

Consider feasible changes from x*, s* in all the variables xi , . . . , 
Xn, Si, . . . , Sm- Again consider m of these as dependent vari­
ables and the remaining n as independent variables. If p < n then 
5i, S2, . . . , 5p can always be included in the set of independent vari­
ables. (Find A* by putting the partial derivatives of L at x*, s* 
with respect to the dependent variables, equal to zero and solving 
for A*.) 

As dsi > 0 {s* = 0) must apply for feasible changes in the indepen­
dent variables si, S2, . . . , Sp, it follows that in general for changes 
which are consistent with the equality constraints, that 

df > 0, (See Remark 2 below.) 

for changes involving si, . . . , Sp. Thus if these independent vari­
ables are varied one at a time then, since all the partial derivatives 
of L with respect to the dependent variables must be equal to zero, 
that 

df = —-{x*,X*)dsi = \*dsi>0, i = l,2,...,p. 
USi 
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As dsi > 0 it follows that Â  > 0, z = 1,2,... ,p. Thus, since it has 
already been proved that A* = 0, z = p H - l , . . . , m , it follows that 
indeed A* > 0, z = 1,2,... , m. 

This completes the proof of the theorem. D 

Remark 1 Obviously, if an equality constraint /i/c(x) = 0 is also pre­
scribed explicitly, then Sk does not exist and nothing is known of the 

dL 
sign of At as —— does not exist. 

dsk 

Exercise Give a brief outline of how you will obtain the necessary 
conditions if the equality constraints /ij(x) = 0, j = 1, 2 , . . . , r are added 
explicitly and L is defined by L = / + A-̂ g + /i-^h. 

Remark 2 The constraints (6.21) imply that for a feasible change 
dsi > 0 there will be a change dx from x* and hence 

df = V^fdx > 0. 

If the condition dsi > 0 does not apply, then a negative change dsi < 0, 
equal in magnitude to the positive change considered above, would result 
in a corresponding change — dx and hence df = V'^/(—dx) > 0, i.e. 
df — V-^/dx < 0. This is only possible if \^^fdx. = 0, and consequently 
in this case df = 0. 

Remark 3 It can be shown (not proved here) that the KKT stationary 
conditions are indeed necessary and sufficient conditions for a strong 
constrained global minimum at x*, if / (x) and gi{x.) are convex func­
tions. This is not surprising for in the case of convex functions a local 
unconstrained minimum is also the global minimum. 

Remark 4 Also note that if p > n (see possibility (ii) of the proof) 
then it does not necessarily follow that Â  > 0 for z = 1,2,... ,p, i.e. the 
KKT conditions do not necessarily apply. 

6.4 Saddle point conditions 

Two drawbacks of the Kuhn-Tucker stationary conditions are that in 
general they only yield necessary conditions and that they apply only 
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if / (x) and the ö'i(x) are differentiable. These drawbacks can be re­
moved by formulating the Kar ush-Kuhn-Tucker conditions in terms of 
the saddle point properties of L(x, A). This is done in the next two 
theorems. 

Theorem 6.4.1 

A point (x*, A*) with A* > 0 is a saddle point of the Lagrange function 
of the primal problem (3.18) if and only if the following conditions hold: 

1. X* minimizes L(x, A*) over all x; 

2. p^(x*)<0, i = l , 2 , . . . , m ; 

3. A*^i(x*)-0, i = l , 2 , . . . , m . 

Proof 

If (x*, A*) is a saddle point, then L(x*, A) < L(x*, A*) < L(x, A*). First 
prove that if (x*, A*) is a saddle point with A* > 0, then conditions 1. 
to 3. hold. 

The right hand side of the above inequality yields directly that x* min­
imizes I/(x, A*) over all x and the first condition is satisfied. 

By expanding the left hand side: 

m m 

/(x*) + J2 Ai5i(x*) < /(x*) + ^ A|öi(x*) 
i=l i=l 

and hence 
r 

5^(Az - A*)^i(x*) < 0 for all A > 0. 

Assume that gi{x*) > 0. Then a contradiction is obtain for arbitrarily 
large Â , and it follows that the second condition, gi{x*) < 0, holds. 

In particular for A = 0 it follows that 

m m 

Y, -K9i{^*) < 0 or ^ A*9i(x*) > 0. 
i=l i=l 
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But for A* > 0 and ^^(x*) < 0 it follows that 

771 

^ A * 5 i ( x * ) < 0 . 

The only way both inequalities can be satisfied is if 
m 

2 = 1 

and as each individual term is non positive the third condition, A*Ö'Z(X*) = 
0, follows. 

Now proceed to prove the converse, i.e. that if the three conditions of 
the theorem hold, then Z/(x*, A*) has a saddle point at (x*. A*). 

The first condition implies that L(x*, A*) < L(x, A*) which is half of the 
definition of a saddle point. The rest is obtained from the expansion: 

m 

L(x*,A) = /(x*) + ^ A , ^ , ( x * ) . 
2 = 1 

Now as g(x*) < 0 and A > 0 it follows that I/(x*,A) < /(x*) = 
m 

L(x*, A*) since, from the third condition, 2_]K9ii^*) ~ *̂ 
i = l 

This completes the proof of the converse. D 

Theorem 6.4.2 

If the point (x*. A*) is a saddle point. A* > 0, of the Lagrange function 
associated with the primal problem, then x* is the solution of the primal 
problem. 

Proof 

If (x*. A*) is a saddle point the previous theorem holds and the inequality 
constraints are satisfied at x*. All that is required additionally is to show 
that /(x*) < / (x) for all x such that g(x) < 0. From the definition of 
a saddle point it follows that 

m m 

fix*) + Y, A*5i(x*) < /(x) + J2 K9ii^) 
i=l i=l 
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for all X in the neighbourhood of x*. As a consequence of condition 3. 
of the previous theorem, the left hand side is /(x*) and for any x such 

that gi{yi) < 0, it holds that 2__]A*^^(X) < 0 and hence it follows that 
2 = 1 

/(x*) < / (x) for all X such that g(x) < 0, with equality at x == x*. 

This completes the proof. D 

The main advantage of these saddle point theorems is that necessary 
conditions are provided for solving optimization problems which are nei­
ther convex nor differentiable. Any direct search method can be used 
to minimize L(x, A*) over all x. Of course the problem remains that we 
do not have an a priori value for A*. In practice it is possible to obtain 
estimates for A* using iterative techniques, or by solving the so called 
dual problem. 

Theorem 6.4.3 

The dual function h{X) < f{x) for all x that satisfy the constraints 
g(x) < 0 for all A G r>. (Hence the dual function yields a lower bound 
for the function / (x) with g(x) < 0.) 

Proof 

Let X = {x|g(x) < 0}, then 

h(X) = minLfx, A), XeD 
X 

< minLfx, A) 

< f{x) + f^Xigi{x), xeX 
i = l 

D 

< /(x), X G X , XeD. 

The largest lower bound is attained at max/i(A), XeD. 

Theorem 6.4.4 (Duality Theorem) 

The point (x*, A*) with A* > 0 is a saddle point of the Lagrange function 
of the primal problem if and only if 
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1. X* is a solution of the primal problem; 

2. A* is a solution of the dual problem; 

3. /(x*) = h{\*). 

Proof 

First assume that Z/(x, A) has a saddle point at (x*,A*) with A* > 0. 
Then from Theorem 6.4.2 it follows that x* is a solution of the primal 
problem and 1. holds. 

By definition: 
h{X) = minl/(x, A). 

From Theorem 6.4.1 it follows that x* minimizes L(x,A*) over all x, 
thus 

m 

and as A*5fi(x*) = 0 it follows that 

h{X*) = /(x*) 

which is condition 3. 

Also by Theorem 6.4.1 g(x*) < 0, and it has already been shown in 
Theorem 6.4.3 that 

h{X) < / (x) for all x 6 {x|g(x) < 0} 

and thus in particular h{X) < /(x*) = /i(A*). Consequently /i(A*) = 
max/i(A) and condition 2. holds. 
XeD 

Conversely, prove that if conditions 1. to 3. hold, then L(x, A) has a 
saddle point at (x*, A*), with A* > 0, or equivalently that the conditions 
of Theorem 6.4.1 hold. 

As X* is a solution of the primal problem, the necessary conditions 

g(x*) < 0 

hold, which is condition 2. of Theorem 6.4.1. 
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Also, as A* is a solution of the dual problem, A* > 0. It is now shown 
that X* minimizes L(x, A*). 

Make the contradictory assumption, i.e. that there exists a minimizer 
X ^ X* such that 

L(x,A*) <L(x*,A*). 

By definition: 

MA*) = L(x,A*) = /(x) + X]A*5i(x) 
Z = l 

m 

i= l 

but from condition 3.: h{\*) = /(x*) and consequently 
m 

2 = 1 

which contradicts the fact that A* > 0 and g(x*) < 0; hence x = x* 
and X* minimizes L(x, A*) and condition 1. of Theorem 6.4.1 holds. 

Also, as 

m 

i= l 

and /i(A*) = /(x*) by condition 3., it follows that: 
771 

^ A * 5 i ( x * ) = 0 . 

As each individual term is non positive the third condition of Theorem 
6.4.1 holds: A*^i(x*) = 0. 

As the three conditions of Theorem 6.4.1 are satisfied it is concluded 
that (x*, A*) is a saddle point of L(x, A) and the converse is proved. D 

6.5 Conjugate gradient methods 

Let u and v be two non-zero vectors in R^. Then they are mutually 
orthogonal if u-^v = (u, v) = 0. Let A be an n x n symmetric positive-
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definite matrix. Then u and v are mutually conjugate with respect to 
A if u and Av are mutually orthogonal, i.e. 

u^Av = (u,Av) = 0. (6.22) 

Let A be a square matrix. A has an eigenvalue A and an associated 
eigenvector x if for x 7̂  0, Ax = Ax. It can be shown that if A is 
positive-definite and symmetric and x and y are distinct eigenvectors, 
then they are mutually orthogonal, i.e. 

( x , y ) - 0 - ( y , x ) . 

Since (y,Ax) = (y, Ax) = A(y,x) = 0, it follows that the eigenvectors 
of a positive-definite matrix A are mutually conjugate with respect to 
A. Hence, given any positive-definite matrix A then there exists at least 
one pair of mutually conjugate directions with respect to this matrix. 
It is now shown that a set of mutually conjugate vectors in R^ forms a 
basis and thus spans R'̂ . 

Theorem 6.5.1 

Let u% i = 1,2, . . . , n be a set of vectors in R"" which are mutually 
conjugate with respect to a given symmetric positive-definite matrix A. 
Then for each x G R"" it holds that 

x = y] Xiu' where Â  = ; \ / 

Proof 

Consider the linear combination Y17=i Q̂ iU* = 0. Then 

Since the vectors u^ are mutually conjugate with respect to A it follows 
that 

(u^ A(Er=i «iu'))="fe(u^ AU^)=0 . 
Since A is positive-definite and u^ 7̂  0 it follows that (u^, Au^) ^ 0, 
and thus a/̂  = 0, /c = 1, 2 , . . . , n. The set u^ i = 1,2,.. . , n thus forms 
a linear independent set of vectors in R"̂  which may be used as a basis. 
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Thus for any x in R'̂  there exists a unique set Â , i = 1,2,.. . , n such 
that 

n 
x = ^ A i u \ (6.23) 

i=l 
Now since the u* are mutually conjugate with respect to A it follows 
that (u^ Ax) = (A^u^ Au*) giving 

^ (uNAx) 

(u%Au^) ^ ^ 

which completes the proof. D 

The following lemma is required in order to show that the Fletcher-
Reeves directions given by u^ = —ĝ  and formulae (2.12) and (2.13) are 
mutually conjugate. Here the notation g^ = V/(x^) is also used. 

Lemma 6.5.2 

Let u^, u^, . . . , u"̂  be mutually conjugate directions with respect to A 
along an optimal descent path applied to / (x) given by (2.7). Then 

(u^,g^)-0 , / c - l , 2 , . . . , 2 ; l < z < n . 

Proof 

For optimal decrease at step k it is required that 

(u^V/(x '=)) = 0, fc = l , 2 , . . . , i 

Also 

V/(x*) = Ax^ + b 

= Ax'^ + A ^ XjU^ + b 
\ j=fc+i / 

= V/(x'=)+ J2 ^ (̂Aû ) 
j=k+l 

and thus 

(u^v/(x')) = (u^ v/cx*»)) + x^ A,•(u^AU^) := o 
j=k+l 
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which completes the proof. D 

Theorem 6.5.3 

The directions u \ z = 1, 2 , . . . , n of the Fletcher-Reeves algorithm given 
in Section 2.3.2.4 are mutually conjugate with respect to A of / (x ) given 
by (2.7). 

Proof 

The proof is by induction. 

First, u^ and u'̂  are mutually conjugate: 

{n\Av}) = - ( ( g i + / 3 i g O ) , A ( x i - x O ) ^ ) 

- -i(l|g^f-AI|g1P) 
- 0. 

Now assume that u^, u^, . . . , u* are mutually conjugate, i.e. 

( u ^ A u ^ • ) - 0 , / c ^ j , kj<i. 

It is now required to prove that (u^, Au*"^^) = 0 for A: = 1, 2 , . . . , i. 

First consider —(g^, g )̂ for /c ^̂  1, 2 , . . . , i — 1: 

- (g^ , g') = ( -g^ + Äu^, g') from Lemma 6.5.2 

= (u^"^\ g') = 0 also from Lemma 6.5.2. 

Hence 
(g ' ,g ' ) = 0, k = 1,2,...,1-1. (6.25) 

Now consider (u* ,̂ Au'+^) for fc = 1,2,.. . , i - 1: 

(u^Au»+l) = -(u^Ag*-ftAu') 
= —(u'^jAg*) from the induction assumption 

= -(gNAu'^) 

= -fg^A^''-^'" 
Afc 

i ( g ' , g ' = - g ^ - i ) = 0 from (6.25). 
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Hence 
( U \ A U ^ + 1 ) = 0, A: = l , 2 , . . . , i - 1 . (6.26) 

All that remains is to prove that (u^Au^"^^) = 0 which implies a ßi 
such that 

(u ' ,A(-g*+/? iU^))=0, 

i.e. 
-(u^Ag^)+A(u^Au^) = o 

or 

Now 

(u% Au ) 

and 

(u\Au^) - ^ ( u % A ( x ^ - x ^ - i ) ) 

= -^(u%g*~^) from Lemma 6.5.2 

= -iT(-g'-^ + ft-iu^-\g^-^) 

iigiP Thus from (6.27)it is required that ßi — -—._-, ^ which agrees with the 
||gZ i | | 2 

value prescribed by the Fletcher-Reeves algorithm. Consequently 

( u \ A u ^ + ^ ) - 0 . 

Combining this result with (6.26) completes the proof. D 

6.6 DFP method 

The following two theorems are concerned with the DFP algorithm. The 
first theorem shows that it is a descent method. 
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Theorem 6.6.1 

If Gi is positive-definite and G^+i is calculated using (2.16) then G^+i 
is also positive-definite. 

Proof 

If Gi is positive-definite and symmetric then there exists a matrix F^ 
such that FjFi = G^, and 

(x,G,+ix) = (x, G,x) + ^ ^ ^ - i ^ ; . ^ ^ ' ] ' , j - i + 1 
(y^v^) (y^G^y^) 

(p^pO(q^qO-(P^qO'_^(v^x)2 

where p^ = F^x and q̂  = F^y-̂ . 

If X 7̂^ 6y^ for some scalar 6, it follows from the Schwartz inequality that 
the first term is strictly positive. 

For the second term it holds for the denominator that 

= Ai-j-i(g*, Gig^) > 0 (A^+i > 0 and G^ positive-definite) 

and hence if x 7̂  6y^ the second term is non-negative and the right hand 
side is strictly positive. 

Else, if X = öy-̂ , the first term is zero and we only have to consider the 
second term: 

(y^v i ) (yJ>J) 

= ö ' (y^v^) 

This completes the proof. D 

The theorem above is important as it guarantees descent. 
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For any search direction u'̂ ''"^: 

dX 

For the DFP method, u^+^ = -G/cg^ and hence at x^(A = 0): 

Consequently, if G^ is positive-definite, descent is guaranteed at x^, for 

Theorem 6.6.2 

If the DFP method is applied to a quadratic function of the form given 
by (2.7), then the following holds: 

(i) (v \ Av^) = 0, 1 < i < i < A;, A; = 2 , 3 , . . . , n 

(ii) GfcAv^ = v^ 1 < i < A:, A: = 1,2,.. . , n 

where the vectors that occur in the DFP algorithm (see Section 2.4.2.1) 
are defined by: 

x^+i = x^ + A^+iu^+\ 2 - 0 , 1 , 2 , . . . 

u^+i := -G,g^ 

y m =. g ^ + i - g \ 

Proof 

The proof is by induction. The most important part of the proof, the 
induction step, is presented. (Prove the initial step yourself. Property 
(ii) will hold for A: = 1 if GiAv^ = v^. Show this by direct substitution. 
The first case ( v \ Av^) = 0 in (i) corresponds to A: = 2 and follows from 
the fact that (ii) holds for A; = 1. That (ii) also holds for A; = 2, follows 
from the second part of the induction proof given below.) 

Assume that (i) and (ii) hold for A:. Then it is required to show that 
they also hold for fc -[-1. 
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First part: proof that (i) is true for /c + 1. For the quadratic function: 

k 

ĝ  = b + Ax^ - b + Ax̂  + A Y^ v̂ '. 

Now consider: 

k 

The first term on the right is zero from the optimal descent property 
and the second term as a consequence of the induction assumption that 
(i) holds for k. 

Consequently, with v "̂̂ ^ = A^+iu^"^^ — — A^-^iG/cg^ it follows that 

(v \ Av^+i) = -A^+l(v^ AG^^g^) = -A^+i(G^Av\g^) , A^+i > 0. 

Hence 
(v\Av'=+i) = -Afc+i(v\g'=) = 0 

as a consequence of the induction assumption (ii) and the result above. 

Hence with (v^ Av^"^^) = 0, property (i) holds for /c -f 1. 

Second part proof that (ii) holds for k + 1. Furthermore 

(7^"^^ GfcAv') = (y^'^\ v^) for i < A: from assumption (ii) 

= ( g ^ + i - g \ v ^ ) 

= (A(x^+i-x'^),v^) 

= {v\ Av^+^) = 0 from the first part. 

Using the update formula, it follows that 

_ . ^ ^fc+i(^fe+i)TAvi (G,yfe+i)(Gfcyfe+i)^Av' 

= G/cAv' (because (v\Av' '+^) = 0, (y'=+\GfcAv*) = 0) 

= v ' for i < k from assumption (ii). 
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It is still required to show that Gj^+iAv^'^^ = v^"^ .̂ This can be done, 
as for the initial step where it was shown that GiAv^ = v-̂ , by direct 
substitution. D 

Thus it was shown that v^, k = 1 , . . . ,n are mutually conjugate with 
respect to A and therefore they are linearly independent and form a basis 
for W^. Consequently the DFP method is quadratically terminating with 
g"" = 0. Property (ii) also implies that Ĝ ^ = A~^. 

A final interesting result is the following theorem. 

Theorem 6.6.3 

If the DFP method is applied to / (x) given by (2.7), then 

A-^=X:A.. 
i=l 

Proof 

In the previous proof it was shown that the v^ vectors , i = 1, 2 , . . . ,n, 
are mutually conjugate with respect to A. They therefore form a basis 
in W. Also 

A , = 
v*v* v^v^ v^v^ 

Let 

Then 

^iTyi V ^ ^ ( g ^ - g ^ - l ) V^^A\ 

n n A A>Y 
V V 

B = E A . = E ; 

UAT "^ ^riT 
BAx = > -— r Ax = > —; 

Ax 

as a consequence of Theorem 6.5.1. 

This result holds for arbitrary x G M^ and hence BA = I where I is the 
identity matrix, and it follows that 

B = 5^A, = A-

D 



Appendix A 

THE SIMPLEX METHOD 
FOR LINEAR 
PROGRAMMING 
PROBLEMS 

A.l Introduction 

This introduction to the simplex method is along the lines given by 
Chvatel (1983). 

Here consider the maximization problem: 

maximize Z = c-^x 

such that Ax < b, A an m x n matrix (A.l) 

3:̂2 > 0, i = 1 ,2 , . . . , n . 

Note that Ax < b is equivalent to ^1^=1 ^ji^i ^ ĵ? j = 1, 2,..., m. 

Introduce slack variables Xn-^i,Xn-^2^ "",Xn-j-m > 0 to transform the in-
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equality constraints to equality constraints: 

or 

a i iXi + . . . + ainXn + Xn+l = ^1 

a2lXi + . . . + a2nXn + Xn-\-2 = h 

[A;I]x = b 

(A.2) 

where x = [a;i,a;2, . . . ,Xn+m]^,b = [^i, 62, . . . ,öm]^, and x i , 0:2,..., Xn > 0 
are the original decision variables and Xn-\-i^Xn-\-2^ "">^n-\-m ^ 0 the slack 
variables. 

Now assume tha t bi > 0 for all i, To start the process an initial feasible 
solution is then given by: 

Xn+l = bi 

Xn+2 = b2 

with xi = X2 = " ' = Xn = 0. 

In this case we have a feasible origin. 

We now write system (A.2) in the so called s tandard tableau format: 

Xn-^l = 61 - anXi - . . . - ainXn > 0 

(A.3) 

Z = CiXi + C2X2 + . . . + Cn^n 

The left side contains the basic variables^ in general 7̂  0, and the right 
side the nonbasic variables^ all = 0. The last line Z denotes the objective 
function (in terms of nonbasic variables). 
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In a more general form the tableau can be written as 

XB2 = b2- a2lXNl - . . . - a2nXNn > 0 

(A.4) 

XBm = bm- amlXNl " . . . - amn^Nn > 0 

Z = CNlXNl + CN2XN2 + • . . + CjsfnXNn 

The > at the right serves to remind us that Xßj > 0 is a necessary 
condition, even when the values of Xjvi change from their zero values. 

Xß = vector of basic variables and x^v = vector of nonbasic variables 
represent a basic feasible solution. 

A.2 Pivoting for increase in objective function 

Clearly if any ĉ vp > 0, then Z increases if we increase x^p^ with the 
other xjsfi = 0,2 / p . Assume further that cjsfp > 0 and cjsfp > cjsn^i = 
1, 2,..., n, then we decide to increase xjsfp. But xjsfp can not be increased 
indefinitely because of the constraint x^ > 0 in tableau (A.4). Every 
entry i in the tableau, with aip > 0, yields a constraint on XNp of the 
form: 

0 < xj^p <—^ = di, i = l ,2, ...,m. (A.5) 

Assume now that i = k yields the strictest constraint, then let Xßk = 0 
and xjsfp — d^. Now XBk{= 0) is the outgoing variable (out of the base), 
and xjsfp = dk{^ 0) the incoming variable. The k-th. entry in tableau 
(A.4) changes to 

XNp = dk- 22'^kiXNi - äkkXBk (A.6) 
iy^k 

w i t h äki = Clki/(^kpi Ö^kk = ^/(^kp' 

Replace XNp by (A.6) in each of the remaining m — 1 entries in tableau 
(A.4) as well as in the objective function Z. With (A.6) as the first 
entry this gives the new tableau in terms of the new basic variables: 

XBi, XB2,. • •, XNp,..., XBm (left side) 7̂  0 
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and nonbasic variables: 

^ivi, ^iV2,. •., XBk,. •., XNn (right side) = 0. 

As xjsfp has increased with dj^, the objective function has also increased 
by cj^pdk' The objective function (last) entry is thus of the form 

Z = CNpdk + CNlXjSfl + CN2XN2 H "̂ CNm^Nm 

where the Xjvi now denotes the new nonbasic variables and cj^i the new 
associated coefficients. This completes the first pivoting iteration. 

Repeat the procedure above until a tableau is obtain such that 

Z = Z* + CNIXNI H h CNmXNm with CNi < 0, i = 1, 2, ..., m. 

The optimal value of the objective function is then Z — Z"" (no further 
increase is possible). 

A. 3 Example 

maximize Z = 5xi -{- 4x2 + ^^s such that 

2x1 + 3x2 + X3 < 5 
4x1 H-^2 4-2x3 < 11 
3x1 -f 4x2 4- 2x3 < 8 
3^1,2:2,3:3 > 0. 

This problem has a> feasible origin. Introduce slack variables X4,X5 and 
XQ and then the first tableau is given by: 

I: 

XI < 5/2(5) 
xi < 11/4 
xi < 8/3 

Here 5 > 0 and 5 > 4 > 3. Choose thus xi as incoming variable. To find 
the outgoing variable, calculate the constraints on xi for all the entries 

X4 

X5 
xe 
Z 

= 
— 
— 

= 

5 -
11 -

8 -

- 2x1 
- 4xi 

- 3x1 
5x1 

-

-
-

T~ 

3X2 

X2 

4X2 

4X2 

-

-
-

~T~ 

X3 

2X3 

2X3 

3X3 

>o 
>o 
>o 
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(see right side). The strictest {s) constraint is given by the first entry, 
and thus the outgoing variable is 0:4. The first entry in the next tableau 
is 

1, 
Xi = \ - \ X 2 - ^X3 )x^. 

Replace this expression for xi in all other entries to find the next tableau: 

5 3 1 1 

dj\ — 2 5 2 9*^3 9 4 

X5 = II - A{\ - 1x2 - \X2, 
XQ = 8 - 3 ( f - | X 2 - ^ X 3 -

5(1 2^3 

>0 
- \X4) — X2 — 2X3 ^ 0 
4x4) — x4x2 — 2x3 > 0 

^ X 4 ) 4- 4X2 + 3X3 "pr 
After simplification we obtain the second tableau in standard format: 

I I : 

X l 

^ 5 

X6 

z 

— 
= 
= 
= 

5 
2 
1 
1 

25 
5 

-

+ 
+ 
-

1X2 
5X2 

| X 2 

2 ^ 2 

-

-

+ 

^xs 

hs 
2 ^ 3 

-

+ 
H-
-

2X4 

2X4 

2X4 

2X4 

>o 
>o 
>o 

X3 < 5 

no bound 
X3 < 1 ( 5 ) 

This completes the first iteration. For the next step it is clear that X3 
is the incoming variable and consequently the outgoing variable is XQ. 
The first entry for the next tableau is thus X3 = 1 + X2 + 3x4 ~ 2x6 (3-rd 
entry in previous tableau). 

Replace this expression for X3 in all the remaining entries of tableau II. 
After simplification we obtain the third tableau: 

III: 

^ 3 

X l 

X5 

= 
= 
z= 

1 
2 
1 

+ X2 -f- 3x4 — 2x6 ^ 0 
— 2X2 — 2X4 + ^ 6 ^ 0 
+ 5X2 + 2X4 > 0 

Z - 13 3X2 X4 X6 

In the last entry all the coefficients of the nonbasic variables are negative. 
Consequently it is not possible to obtain a further increase in Z by 
increasing one of the nonbasic variables. The optimal value of Z is thus 
Z* = 13 with 

x\ = 2 ; X2 = 0 ; X3 = 1. 
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Assignment A . l 

Solve by using the simplex method: 

maximize z = 3xi + 2x2 + 4x3 such that 

2x1 4- 3x3 < 5 
2x1 + X2 + 3x3 < 7 
3:i ,X2,X3 > 0. 

A-4 The auxiliary problem for problem with in-
feasible origin 

In the previous example it is possible to find the solution using the 
simplex method only because hi > 0 for all i and an initial solution 
x̂  = 0 , i = 1, 2, ...n with Xn-{-j = ^ j , j — 1, 2,..., m was thus feasible, 
that is, the origin is a feasible initial solution. 

If the LP problem does not have a feasible origin we first solve the so 
called auxiliary problem: 

Phase 1: 

maximize W = —XQ 

such that X^̂ ,=i cijiXi — XQ < hj, j = 1, 2,..., m (A-.7) 

Xi >0^ 2 = 0,1,2, ...n 

where XQ is called the new artificial variable. By setting Xi = 0 for 
i = 1, 2, ...n and choosing XQ large enough, we can always find a feasible 
solution. 

The original problem clearly has a feasible solution if and only if the 
auxiliary problem has a feasible solution with XQ = 0 or, in other words, 
the original problem has a feasible solution if and only if the optimal 
value of the auxiliary problem is zero. The original problem is now 
solved using the simplex method, as described in the previous sections. 
This solution is called Phase 2. 
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A.5 Example of auxiliary problem solution 

Consider the LP: 

maximize Z •= xi — X2 + x^, such tha t 

2x1 - X2 + 0:3 < 4 

2xi — 3x2 -f 3:3 < - 5 

-xi -\- X2- 2x3 < - 1 

Xi,X2,X2, > 0. 

Clearly this problem does not have a feasible origin. 

We first perform Phase 1: 

Consider the auxiliary problem: 

maximize W = —XQ such tha t 

2x1 - X2-{- 2x3 - â o < 4 

2xi — 3x2 4- X3 — xo < —5 

- x i + X2 - 2x3 - ^0 < - 1 
Xo,Xi,X2,X3 > 0. 

Introduce the slack variables X4, X5 and xe, which gives the tableau (not 
yet in s tandard form): 

X4 

X5 

XQ 

w 

= 
= 
= 
= 

4 
-5 
-1 

-

-

+ 

2x1 

2x1 

__Xl_ 

+ 
+ 
-

X2 

3X2 

^2 

-

-

-f-

2X3 

X3 

2X3 

+ 
+ 
+ 
-

Xo 

xo 
_Xo_ 

xo 

> 

> 

> 

0 
0 
0 

Xo > - 4 

Xo > 5(5) 

Xo > 1 

This is not in s tandard form as XQ on the right is not zero. Wi th x i = 

0:2 = X3 = 0 then X4, X5, X6 > 0 if Xo > max{—4; 5; 1}. 

Choose Xo = 5, as prescribed by the second (strictest) entry. This gives 

X5 = 0, X4 = 9 and XQ = 4. Thus xo is a basic variable (f̂  0) and X5 a 

nonbasic variable. The first standard tableau can now be write as 

I: 
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Xo 
0:4 

x^ 
W 

— 
— 
— 

= 

5 
9 
4 

- 5 

+ 

+ 
-

2x1 

3x1 
2x1 

- 3X2 

- 2x2 
- 4x2 
+ 3X2 

+ 
-

+ 
-

^z 
^ 3 

3X3 

â 3 

+ 
+ 
+ 
-

^ 5 

2:5 

^ 5 

X5 

> 
> 
> 

0 
0 
0 

X 2 < | 

X 2 < 1 
X2 < 1 ( 5 ) 

Now apply the simplex method. From the last entry it is clear that W 
increases as X2 increases. Thus X2 is the incoming variable. With the 
strictest bound X2 < 1 as prescribed by the third entry the outgoing 
variable is XQ. The second tableau is given by: 

I I : 

X2 = 

Xo = 
X4 = 

1 + 
2 -

7 -

0.75x1+ 
0 . 2 5 x 1 -

1.5x1 — 

0.75x3+ 
1.25x3+ 

2.5x3+ 

0 .25x5-
0 .25x5-

0.5X5+ 

0.25x6> 
0.75x6> 

0.5x6> 

0 
0 
0 

no bound 

W = - 2 + 0.25x1+ 1.25x3- 0.25x5- 0.75x6 

The new incoming variable is X3 and the outgoing variable XQ. Perform 
the necessary pivoting and simplify. The next tableau is then given by: 

I I I : 

X3 = 

X2 = 

X4 -

= 1.6 - 0.2x1 
- 2.2 + 0.6x1 

3 - XI 

+ 0.2x5 
+ 0.4x5 

+ 0.6x6 
+ 0.2x6 
- XQ 

- 0.8x0 
— 0.6x0 

+ 2x0 

> 
> 
> 

0 
0 
0 

w = Xo 

As the coefficients of XQ in the last entry is negative, no further increase 
in W is possible. Also, as xo = 0, the solution 

xi = 0; X2 = 2,2; X3 = l , 6 ; X4 = 3; X5 = 0; X6 = 0 

corresponds to a feasible solution of the original problem. This means 
that the first phase has been completed. 

The initial tableau for Phase 2 is simply the above tableau III without 



X2, = 

X2 = 
X4 = 

1.6 - 0.2x1 

2.2 -\- 0.6x1 

3 - XI 

+ 0.2x5 

+ 0.4x5 

-f 
-f 
-

0.6x6 

0.2x6 

XQ 

> 
> 
> 

0 
0 
0 
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the xo terms and with the objective function given by: 

Z = Xi - X2 4- X3 

- xi - (2.2 + 0.6x1 + 0.4x5 + 0.2x6) + (1.6 - 0.2xi + 0.2x5 + 0.6x6) 

= -0.6 + 0.2x1 - 0.2x5 + 0.4x6 

in terms of nonbasic variables. 

Thus the initial tableau for the original problem is: 

no bound 
no bound 

X6 < 3 ( s ) 

Z = -0 .6 4- 0.2x1 - 0.2x5 + 0.4x6 

Perform the remaining iterations to find the final solution (the next 
incoming variable is X6 with outgoing variable X4). 

Assignment A.2 

Solve the following problem using the two phase simplex method: 

maximize Z = 3xi + X2 such that 

Xi — X2 < —1 

—xi — X2 < —3 

2x1 -f X2 < 4 

3^1,3:2 > 0. 

A. 6 Degeneracy 

A further complication that may occur is degeneracy. It is possible 
that there is more than one candidate outgoing variable. Consider, for 
example, the following tableau: 
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X4 = 1 - 2X3 > 0 
X5 = 3 — 2x1 + 4x2 — 62:3 > 0 
X6 = 2 + Xi — 3X2 — 4X3 ^ 0 

2x1 - X2 + 8x3 

^3 < \{s) 
xz < | ( s ) 
^3 < 2('^) 

With X3 the incoming variable there are three candidates, X4, X5 and xe, 
for outgoing variable. Choose arbitrarily X4 as the outgoing variable. 
Then the tableau is: 

X3 

^5 
X6 

z 

= 0.5 
— 
= 

= 4 

-

+ 

2x1 

Xl 

2x1 

+ 4X2 

- 3x2 

X2 

-

+ 
+ 
-

0.5x4 

3X4 

2X4 

4X4 

> 

> 

> 

0 
0 
0 

no bound on xi 
Xl < 0(s) 
Xl < 0(5) 

This tableau differs from the previous tableaus in one important way: 
two basic variables have the value zero. A basic feasible solution for 
which one or more or the basic variables are zero, is called a degenerate 
solution. This may have bothersome consequences. For example, for the 
next iteration in our example, with xi as the incoming variable and X5 
the outgoing variable there is no increase in the objective function. Such 
an iteration is called a degenerate iteration. Test the further application 
of the simplex method to the example for yourself. Usually the stalemate 
is resolved after a few degenerate iterations and the method proceeds to 
the optimal solution. 

In some, very exotic, cases it may happen that the stalemate is not re­
solved and the method gets stuck in an infinite loop without any progress 
towards a solution. So called cycling then occurs. More information on 
this phenomenon can be obtained in the book by Chvatel (1983). 

A.7 The revised simplex method 

The revised simplex method (RSM) is equivalent to the ordinary simplex 
method in terms of tableaus except that matrix algebra is used for the 
calculations and that the method is, in general, faster for large and 
sparse systems. For these reasons modern computer programs for LP 
problems always use the RSM. 
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We introduce the necessary terminology and then give the algorithm for 
an iteration of the RSM. From an analysis of the RSM it is clear that the 
algorithm corresponds in essence with the tableau simplex method. The 
only differences occur in the way in which the calculations are performed 
to obtain the incoming and outgoing variables, and the new basic feasible 
solution. In the RSM two linear systems are solved in each iteration. In 
practice special factorizations are applied to find these solutions in an 
economic way. Again see Chvatel (1983). 

Consider the LP problem: 

maximize Z = c"^x (A.8) 

such that Ax < b, A m x n and x > 0. 

After introducing the slack variables the constraints can be written as: 

Ax = b , X > 0 (A.9) 

where x includes the slack variables. 

Assume that a basic feasible solution is available. Then, if x^ denotes 
the m basic variables, and x^v the n nonbasic variables, (A.9) can be 
written as: 

Ax = [A^Aiv] 
XiV 

- b 

or 
AßXB + AjvXAT = b (A.10) 

where AB is an m X m and Ajv an m x n matrix. 

The objective function Z can be written as 

Z = C%XB + cJjXN (A. 11) 

where Cß and C]v are respectively the basic and nonbasic coefficients. 

It can be shown that Aß is always non-singular. It thus follows that 

Xß - A^^b - A5I AivXTv. (A.12) 

Expression (A.12) clearly corresponds, in matrix form, to the first m 
entries of the ordinary simplex tableau, while the objective function 
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entry is given by 

Z = C^XB + cJjXjSf 

= eg (A^^b - A~^ Aivxiv) + ĉ XAT 

= c^A^^b -f- (c^ - c^A^^Aiv) Xiv. 

Denote the basis matrix A^ by B. The complete tableau is then given 
by 

X B - B - ^ b - B - ^ A i v X i v > 0 

Z - c^B-^b + (c^ - c g B - i A ^ ) Xiv 
z* 

We now give the RSM in terms of the matrix notation introduced above. 
A careful study of the algorithm will show that this corresponds exactly 
to the tableau method which we developed by way of introduction. 

A.8 An iteration of the RSM 

(Chvatal, 1983) 

Step 1: Solve the following system: 

y^B = c^. This gives y^ = c ^ ß - ^ 

Step 2: Choose an incoming column. This is any column a of A AT such 
that y-^a is less than the corresponding component of Cjv-

(See (A.13): Z - Z* + (c^ - y^Ajv)x;v) 

If no such column exists, the current solution is optimal. 

Step 3: Solve the following system: 

Bd = a. This gives d = B '^a . 

(From (A.13) it follows that XB = ^% — dt > 0, where t is the value of 
the incoming variable). 

Step 4: Find the largest value of t such that 

Xß-td> 0. 
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If no such t exists, then the problem is unbounded; otherwise at least 
one component of x^ — td will equal zero and the corresponding variable 
is the outgoing variable. 

Step 5: Set the incoming variable, (the new basic variable), equal to t 
and the other remaining basis variables 

and exchange the outgoing column in B with the incoming column a in 
Aiv. 
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