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SUL PROBLEMA DELLE AURORE BOREALI
MOTO DI UN CORPUSCOLO ELETTRIZZATO IN PRESENZA DI
UN DIPOLO MAGNETICO
di
C. AGOSTINELLI

(Universitadi Torino)

Introduzione,

1 --- Quei meravigliosi fenomeni celesti che vanno sotto il nome di auro
re boreali, le quali, con una fantasmagoria di luci e di colori appaiono e si
contemplano nelle lunghe notti polari, sono determinati come si sa da scia-
mi di particelle elettrizzate provenienti da regioni cosmiche e principal-
mente dalle macchie solari,

Come & ben noto le macchie del Sole sono immense cavitd formatesi
nella fotosfera dell'altro e dalle profondita di queste voragini vengono lan-
ciati all'esterno getti potentissimi di gas di idrogeno, elio , calcio ecc.,
e insieme ad essi, essendo tali gas altamenti ionizzati per la loro ele-
vata temeratura, vengono lanciati elettroni liberi, cio& corpuscoli elettriz-
zati negativamente, con una velocitd che in condizioni medie si aggira in-
torno ai 1600 km /gec.

Questi corpuscoli possono, con quella velocitd, percorrere in circa
trenta ore il tragitto dal Sole alla Terra, la cui distanza & di circa 150
milioni di Km.

Una volta che detti corpuscoli elettrizzati abbiano raggiunta 1l'atmo-
sfera térrestre avviene la scarica con emissione di luce, e questo costi-
tuisce appunto il fenomeno dell'aurora boreale.

Ora, se la Terra non esercitasse nessuna azione sul movimento di
questi corpuscoli elettrizzati, essi potrebbero colpirla indifferentemente
in tutte le regioni della sua superficie, Ma, essendo la Terra dotata di un
campo magnetico, quando essi giungono in vicinanza del nostro globo so-
no costretti ad abbandonare il loro cammino rettilineo per descrivere del-

le traiettorie a forma di spirale, che ordinariamente convergono verso il
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polo boreale, essendo quei corpuscoli carichi di elettricitd negativa .

Soltanto in casi eccezionali, quando i corpuscoli sono estremamen-
te veloci, cid che avviene quando il Sole & in un periodo di grande atti-
vita, le spirali si allargano e allora la Terra pud essere colpita anche in
latitudini piuttosto basse., Cid spiega perche la grande aurora boreale che
si verificd nella notte del 25 gennaio 1938 fu visibile in molta parte di E-
uropa ed anche qui in Italia,

I periodi di emissione pil intensa dei corpuscoli elettrizzati si susse-
guono a distanza di 11 anni e sono legati ai periodi di maggiore atti-
vitd delle macchie solari, il cui numero e la cui estensione diviene mas-
sima, come si sa, ogni undici anni,

Un fenomeno analogo a quello che determina le aurore boreali ha

luogo per le radiazioni cosmiche,consistenti anch'esse in particelle elet-
P , p

trizzate lanciate con velocitd altissime. Anche queste particelle subisco-
no l'azione del campo magnetico terrestre, sebbene in misura minore,
a causa della loro maggiore velocitd . Le radiazioni cosmiche possono
pertanto osservarsi in ogni luogo della Terra, pur essendo pill intense nel-
le regioni polari.

I primi ad interessarsi di questi fenomeni furono i due astronomi
scandinavi S‘:ormer [IJe Birkeland , che effettuarono una serie di osser-

vazioni e di esperienze molto interessanti,

2.~--Ammesso dunque che i fenomeni di aurore boreali siano determinati da
corpuscoli elettrizzati provenienti da regioni attive del Sole, lo studio ri-
goroso di essi & subordinato alla risoluzione analitica del problema del

moto di un corpuscolo elettrizzato in presenza di un _di_p_ol_o magnetico,

quale & appunto i1 dipolo costituito dalla coppia dei poli.magnetici terre-
stri, & subordinato cio& all'integrazione delle equazioni differenziali che

reggono un tale movimento,
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Queste equazioni si possono integrare completamente nel caso di un
solo polo magnetico [3] , caso che interessa lo studio dei raggi catodi-
ci, e in questo caso le traiettorie sono le geodetiche di un cono di ro-
tazione col vertice nel polo. Ma esso si pud utilizzare anche per lo stu-
dio del moto dei corpuscoli elettrizzati in prossimitd del polo boreale
ad una distanza sufficientemente piccola in confronto della distanza dei
due poli terrestri ['SJ .

Ma l'integrazione completa delle equazioni del moto nel caso del di-
polo si presenta estremamente difficile.

Alla risoluzione numerica di quelle equazioni furono dallo Stbrmer
e dai suoi allievi dedicati molti lavori, e dopo una mole ingente di calcoli,
durati circa 5000 ore, e consumati quintali di carta, egli riusci a costrui-
re alcuni modelli, in filo di ferro, delle curve spirali descritte dai cor-
puscoli elettrizzati lanciati dalle macchie solari.

Ma i calcoli istituiti dallo St8rmer sono fondati perd sulla considera-
zione di un campo magnetico dovuto a un magnete elementare, cio& di lun-
ghezza infinitesima, posto nel centro della Terra, coll'asse coincidente
coll'asse magnetico terrestre, avente un momento magnetico uguale a quel-
lo della Terra, cioe di circa 8,52, 1025 unitd magnetiche, Se questa sem-
plificazione pud portare a risultati sufficientemente approssimati per il
moto dei corpuscoli elettrizzati lanciati dalle macchie solari, quando la
distanza di quei corpuscoli dalla Terra ecceda, come afferma lo stesso
St8rmer, un milione di Km , essa non & pid evidentemente accettabile,
quando si voglia spingere la conoscenza del moto di quei corpuscoli in
prossimita della Terra .

Di qui la necessitd di una indagine basata su una schematizzazione
pid aderente alla realtd, come & quella fornitd dalla considerazione di
un dipolo magnetico di lunghezza finita, quale & appunto il dipolo terre-
stre,

Partendo da questo punto di vista, in seguito alla segnalazione fat-
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fa dal Prof, Armellini su "Scienze e Tecnica" (2] , in occasinne della
grande aurora bpreale del 1938, mi sono occupato anch'io della questione
in diversi lavori [4] , € mi propongo ora di riferire sui risultati piu es-

senziali in essi conseguiti.

Equazioni del moto di un corpuscolo elettrizzato nel campo di un

dipolo magnetico. Integrali primi ed equazioni ridotte.

3. --- Supponendo che i corpuscoli elettrizzati non siano soggetti ad altre for-
ze che a quelle di un campo magnetico , trascurando l'azione del peso e la
loro mutua influenza, l'equazione differenziale vettoriale del moto di uno di

tali corpuscoli P, elettrizzato negativamente, & notoriamente

— — —
v
(1) ‘i’_b— = € 1)’/\]{
dove m @& la massa del corpuscolo, ¥ la velocita ;€
-
1'intensitd della sua carica elettrica ed H 1'intensita del campo magnetico.
Nel caso di un dipolo, indicando con 39

il potenziale magnetico, risulta
== 4
(2) H = dqw,cL‘f , = k %,

essendo k la costante del dipolo ed rl

ry le distanze del corpuscolo dai due po-

1i OI,O

9
La (1) ammette il noto integrale delle forze vive @

(3) v %= VQL (co/}t)

Inoltre, se si indica con bg la funzione che uguagliata a costante for-
nisce nel semipiano P(O1 02) le linee di forza magnetica, cioe le tra-

iettorie ortogonali delle linee equipotenziali 50=cost. , sussistc
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il nuovo integrale primo

2 - wre ¥

(4) 7 w o= C“'{“’ ) G - oy Vi
che ho stabilito per la prima volta in una nota dell'Accademia delle Scien-
ze di Torino del 10 giugno 1938, In esso y & la distanza del punto P
dell'asse polare 0102 , w @& l'angolo che il semipiano mobile P(Oloz)
forma con un semipiano fisso passante per lo stesso asse,/,L & una
costante data da

o 2ek
/ 772

infine c @& la costante d'integrazione. L'integrale (4) esprime la velocita

areolare del corpuscolo intorno all'asse polare in funzione della sua po-

sizione, e pertanto la costante ¢ si pud chiamare costante delle aree.

4,--- Se si assume come origine delle coordinate il punto medio O del
segmento Ol O2 , l'asse polare come asse X, positivo nel verso da O1
ad O2 , e si indica con a la semidistanza polare (raggio terrestre), in

coordinate x,y risulta

- 1 x+ x - F—;’ Y
(5)7’_ E—( - )/b1= xfar) ,

¢4 t:.
in tutto il del moto si h et )i 2
e in tutto il campo moto si ha ’t}&: {I d) +y

© O0&¥s1

In virtd dell'integrale (4) la risoluzione del problema si riduce all'in-

tegrazione delle equazioni differenziali

_p¥ |
,,zx %c(c-f“f’)" dy _1,?__(57"_‘

4
Ty 'XE T 20Y

che sono le equazioni del moto relativo del corpuscolo P nel semipiano
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P(OIO ), ed esprimono che detto moto relativo equivale a quello del mo-
to di un punto, nello stesso semipiano, soggetto a una forza posizionale
e conservativa derivante dal potenziale
e B
U= _ 1lc-t«¥
(8) D o e c———
2 ,J—
Le equazioni (7) ammettono l'integrale delle forze vive
c—pr )
xs _.-—_—-—-( 2 (MC. )
(9) .7 7 vg P
il quale non & altro che l'integrale (3) quando si tenga conto dell‘'integra-
le (4) delle aree.

Dalla (9) risulta che durante il moto & sempre

2
&_{;2‘.25'\)3‘

(10)

e questa, avendo riguarao alla (8), dimostra che le traiettorie relative, cor-
rispondenti a un dato valore della costante ¢, sono contenute in un campo
S, del semipiano P x, descritto dalle linee di livello {5 -_ 2 k2 2 .
con k  parametro costante compreso fra zero ed uno, .
Ne nasce quindi 1'opportunita dello studio dei campi G’C , e delle
linee di livello che 1i limitano, al variare della costante ¢ da -o atw .

Detti campi si presentano con caratteristiche profondamente diverse a se=-
conda che sia
c<o, 0§C\</L, c>/a,.
Le linee limiti di questi campi generano intopno all'asse polare del-
le superficie di rotazione che possono essere toccate dai corpuscoli ma
non attraversate, e che corrispondono, nel caso delle radiazioni cosmiche

alle superficie riflettenti di questi raggi .

5. In virtu® della (6) si ha che per

(11) ,c<o ) e per c>/bL,

¢ in tutto il campo del moto
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(11 c -t o.

In questi casi la (10) dimostra che durante il moto si ha sempre

y>0,

cio® il corpuscolo non taglia mai in alcun punto 1l'asse polare e le equa-
zioni (7) sono regolari in tutto il capo del moto.

In base a questo risultato, nei casi in cui ora ho accennato, se si
considerano nelle equazioni (7) gli elementi incogniti x,y, X,y come fun-
zioni analitiche del tempo t , riguardando questo come variabile com-
plessa, e si costruiscono, prendendo il valore iniziale del tempo come
centro, quelle figure che il Mittag-Leffler chiama stelle , si pud dimo-
strare che l'asse reale dei tempi giace nell'interno di quelle stelle. Per-
tanto si possono ottenere senz'altro , col metodo di Mittag-Leffler, gli
elementi incogniti sviluppati per tutti i valori reali del tempo e cid in infi-
niti modi e colla sola conoscenza delle condizioni iniziali del moto.

Perd per le serie che cosi si ottengono non & assicurata l'unifor-
me convergenza fintantoch® si sappia solo che l'asse reale dei témpi &
contenuto nelle stelle degli elementi incogniti.

Ma in una Memoria dell'Accademia delle Scienze di Torino [4] ho
dimostrato che si pud costruire una striscia di larghezza finita, contenen-
te 1'asse reale dei tempi, limitata da due rette ad esso parallele e tutta
contenuta nelle stelle suddette,

Gli sviluppi del Mittag-Leffler restano percid, nel nostro problema,
molto semplificati, ed ho potuto pertanto assegnare le funzioni incognite
sviluppate in serie di potenze, uniformemente convergenti per tutti i valo~

ri reali del tempo da -wa +w .

6--- Nel caso invece in cui la costante c delle aree & interna allo

intervallo (0,/L) , cio® si abbia

(12) OSCS/L)
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per la (6) pud risultare durante il moto

(12" c -/{9& =o,
e pertanto la (10) non esclude che in qualche istante si abbia y =o .

L.'Analisi riguardante i campi Q‘c in cui si possono svolgere le
traiettorie relative, dimostra appunto che nel caso in cui la costante ¢
& compresa nell'intervallo (12) le traiettorie relative possono tagliare 1'as-
se polare, In tal caso le equazioni (7) del moto risultano irregolari per
y =o, e pertanto non si pud a priori ammettere l'esistenza di una solu-
zione analitica di esse,.

Ma con un'opportuna trasformazione le dette equazioni si possono re-
golarizzare e nel caso in cui o<c¢ </(, , pur estendendosi il campo G’C
in cui si possono svolgere le traiettorie relative fino ai poli 01’02 s
ho mostrato che il corpuscolo non pud colpire nessuno di detti poli.

Nel caso limite di ¢ =4, il campo (;'c , 0 una parte di esso, si
estende fino al seguento O1 O2 che congiunge i due poli. In tal caso ho
dimostrato come sia possibile che delle traiettorie intersechino l'asse po-
lare in un punto del segmento O1 O2

Nel caso infine di ¢ = o0 il campo e’c ¢ limitato da una linea che
ha per asintoto 1'asse polare , e pertanto in tal caso il corpuscolo pud

toccare l'asse polare soltanto nei punti all'infinito di esso .

Linee di livello e campi in cui si svolgono le traiettorie

relative

7.--- Le traiettorie effettive del corpuscolo saranno evidentemente conte-
nute nello spazio di rivoluzione SC , ottenuto dalla rotazione del campo
6; intorno all'asse polare X .

Tutte le traiettorie possibili si potranno quindi distribuire in una se=
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rie infinita di famiglie, ciascuna delle quali corrisponde a un dato valore
della costante ¢ , e le traiettorie di una di queste famiglie non escono
dallo spazio Sc corrispondente . .

I punti di una di queste famiglie di traiettorie , corrispondenti a un

dato valore della costante ¢ , per i quali &

2
-y 2 4 X
an L=l Y, (o5 kisa)
yz
sono situati su una superficie di rotazione intorno all'asse x, che & gene-

rata dalla linea del semipiano Px che ha per equazione la (13), la quale
2
non & altro che la linea di livello corrispondente al valore --;- k vo2 del

potenziale U che compete al moto relativo del corpuscolo.
Le linee di livello (13), corrispondenti a uno stesso valore della co-
stante ¢ , per le quali @ oékzs_l , descrivono evidentemente il campo
G’C innanzi definito.
Cid premesso , chiameremo curve limiti di livello quelle corrispon-

2 2
denti ai valori estremi k2 =0e k =1 del parametro k , e che vengo-

no a limitare il detto campo, nel quale, ripeto, sono contenute le traiet-
torie relative corrispondenti a uno stesso valore della costante ¢

. - . 2 .
La curva limite di livello corrispondente al valore k =1, risulta:

(c-t¥)* _ L2
(13" vz T
e da questa, per l'equazione (9) delle forze vive, si deduce che se una
traiettoria corrispondente a un dato valore della costante ¢ , ha un punto
M a comune con la curva limite di livello (13') , in quel punto @&
X=0, ¥y =o, cio®d esso & un punto nel quale la velocitd relativa & nul-

la, mentre la velocita assoluta del corpuscolo ¢&,nel puonto M, diretta
normalmente al piano Mx , Si ha inoltre che la traiettoria relativa uscen-

te dal punto M & ortogonale in M alla curva limite di livello (13') . In-
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Invero,essendo nel punto M, X =0, )': =0 , la traiettoria relativa & in quel
punto tangente alla linea di forza del moto relativo, e percid ortogonale

alla linea di livello corrispondente,

8,--- Per vedere ora l'andamento delle linee di livello (13), e in particolare

delle curve limiti di livello (13'), nei casi di

(14) cgLo , o<c</»L ) c;/,{,,

poniamo per semplicita

c _ avg
(15) = {‘7 ’ Yo = f

con
w<E<re L 730,

e osserviamo che, avendo le costanti c e'# le stesse dimensioni, ri-

Rl

) =

R} x

sultano e '?O numeri puri, con )/ variabile da -wa+ oo, e ))O>o .

La (13) diventa allora
(16) (X'- Y’}L= k:,%:.72_

che si scinde nelle due equazioni

X—f: kVo7

(7

a V-4 = kve?, oskst, Vodo, 7>’0
e in queste si dovranno considerare separatamente i casi
(14" Yso , o<y<1, o1

E' facile vedere che nel piano (§)z) le due curve (17) e (17') sono

. o . -
curve algebriche del 12  ordine, una simmetrica dell'altra rispetto all'as-

s €.

a) Nel caso in cui @&

(18) y=-¥.<°, (c<o0)
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il ramo (17) della linea di livello (16) non ha punti reali, e resta da consi-

derare soltanto il ramo definito dalla (17'), che ora diventa

(19) Y+ )= kY7, (ox k<)
Questa linea di livello & , nel piano (ﬁz) , simmetrica rispetto all'asse
? , € si riconosce che essa non ha alcun punto comune coll'asse g:
e pertanto le traiettorie del corpuscolo, come ho gid detto, non toccheran-
no l'asse polare,
La stessa linea am-
mette come asintoto la
retta
(20) 7 = .é:-;-—- Y=-05%
k Vo Y, =02

parallela all'asse ”§ .

Le curve limiti di li- Fig, 1
vello sono quelle che si otten-
gono dalla (19) per k=o e k=1 ; per k=o si ha come linea di livello la
retta ’72= o (retta all*infinito del semipiano '7> o) , e per k=1 si ha la
linea di livello
(19" 70.'-{)”' = Yo 7
Il cui asintoto dista dall'asse § di }/1/)% , € si trova che questa linea
& tutta situata al disopra di detto asintoto. Essa ha l'andamento della fig. 1,
che & stata costruita per >/= - )/1 = -0,5; e '90 = 0,2,
6) Se ora supponiamo che sia =0, (c=0), la (17) & soddisfatta soltan-

to per 2h=o0 e ’7Z= o , mentre la (17') diventa
v

21y VY= kv,
Sy
In questo caso le linee di livel- y:=o°
lo sono tutte asintotiche all'asse Y% 94
E. Esse hanno 1'andamento o,
€

della fig. 2, dove, & rappresen-

tata una linea limite di livello .
fig. 2



- 14 -
C. Agostinelli

(k=1), per}/=o e ')f)=0,1 .

Le traiettorie relative del corpuscolo, svolgendosi nella parte del
semipiano "Z}O, esterno alla curva limite 7:{-: 9072, possono avere in
comune coll'asse polare g: soltanto i punti all'infinito di esso .

E' da osservare che la (21) 2 soddisfatta anche per 'y, =oe 7= o,
e pertanto questa curva comprende anche la parte dell'asse polare ester-
na al dipolo, nei cui punti @& l_g};, 1, /7= 0, cioe ’xf >a, y=0.
Questo & dovuto al fatto, come del resto si deduce dalle equazioni del
moto, che per ¢ =0, ( = 0), & possibile il moto del corpuscolo lun-
go l'asse polare, partendo da distanza infinita verso il polo positivo, oppu-

re partendo dal polo negativo e allontanandosi indefinitamente.

9--- Consideriamo ora il caso in cui sia

)/>1 ) (c >/,4-) .
In questo caso il ramo (17') delle linee di livello (16) non ha punti rea-

li, e resta da considerare soltanto il ramo

(17) y=v = k\),7

Le linee di livello che sono rappresentate da questa equazione sono sim-

metriche rispetto all'asse "Z , ed hanno ancora come asintoti le rette

le quali vanno allontanandosi indefinitamente dall'asse § col tendere di
k a =zero.

La linea limite corrispondente al valore zero del parametro k &
la retta all' all'infinito del semipiano ”Z >0 .

La linea limite
(22) J"— Y=V 7

che si ha per k =1, pud presentare andamenti differenti, come mostrano
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7
le figure 3,4,5,6,7, dipendente- Oy pel2

mente dai valori che assumono \/

le costanti Ye \70 , e quindi dai

punti d'intersezione che quella 9, 0, x
-4 P 4

Y= 442

linea pud avere coll'asse fZ
Vor 035

che sono dati dalle radici della
equazione

1 )P‘._ 0
F(P)z Vo] + —=—= —7¢ =
(23 (7) ° 7 1+ 71
In questo caso, essendo il primo

membro della (22) sempre maggio-

re di zero, si ha che nel campo 1
Oy N3

in cui si svolgono le traiettorie
8 sempre "Z> 0, e quindi le tra-

iettorie del corpuscolo non pos- o a

sono toccare in alcun punto l'as-- Y= 4,08
Vo= 0,35
se polare,

E' notevole il caso rappre- Fig. 4
sentato dalla figura 5 in cui la curva
limite di livello (22) ha un ramo
aperto asintotico alla retta?l=')//')g,
e un ramo chiuso posto tra il pre- qrieesass

cedente e 1'asse polare, \//—

Entrambi i rami, simmetrici

rispetto all'asse ? , vengc;no a li- : 63 p % ¥
mitare due campi entro i quali si Y= 406

possono svolgere le traiettorie re- ve© 0,38

lative del corpuscolo. Fig. 5

/
Il primo campo 67 si estende
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all'infinito mentre 1'altro (5’2"/
¢ un campo chiuso finito. A
quest'ultimo campo corrisponde

nello spazio. un campo S;', anula-

re che & di rotazione intorno all'as-

se polare, entro il quale sono realiz-

3V v
zabili dei moti periodici del corpuscolo % K3

elettrizzato, moti messi in evidenza Fig.6

dalle esperienze di Villard.

10, ---Passiamo ora a considerare il

caso in cui si abbia ki v-2vi

0<X< 1, (o<c</,().
In questo caso i due rami (17) e (17') di Y= ¢¥3/ (V3
Vo: 2/(3V3)
una linea di livello, corrispondente ad y
0, 0 0.
-4 4 ¥

L

un dato valore di k compreso fra zero e

uno, sono entrambi reali e tangenti nei
poli 01‘02 alla linea di forza magnetica

'If.= , che passa anch'essa per quei punti Fig. 7

(fig. 8).

Inoltre il ramo (17) ha come asinto-
to la retta di equazione ’)Z= )//k ')3 ), e
in ogni punto di questo ramo & 75[/(;()2) ,

Sy

cio® esso si svolge tutto al disotto dello

asintoto corrispondente.

Il ramo (17') & posto invece interna-

mente alla linea di forza magnetica ‘)f= X

Y= 04
V.z0,
no toccare l'asse polare soltanto nei poli Fig. 8

Le traiettorie in questo caso posso-

Gl' O2 .
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1 nhs

Anche qui si possono presen- ¥
tare diverse conformazioni dei campi \/

in cui si svolgono le traiettorie

relative a seconda dei valori delle
costanti 're )70 . Nelle figure 8,
9 e 10 sono rappresentati i tre 0, ‘/:." FEN. 0

tipi di campi G;che si possono
avere, Y= Qg2
do si present figu-
Quando si presentano configu Fig. 9
razioni della forma delle figure 9

e 10 , si possono realizzare dei 9 y- 2y

moti periodici del corpuscolo le
cui traiettorie possono toccare lo
asse polare nei poli O1 e O2 .
11, --- Consideriamo infine il caso
in cui 'Y=1 , (c =/A) . Se cid avvie-
ne le (17) e (17') per k =1 diventa-

no Fig, 10

(24) 1-9% = 17002
(24") 2%} 1 =9012, (o) . gz

Essendo os’y\< 1, la (24') & sod-
disfatta soltanto per ”}; le ?= o, la

qual cosa sussiste per i punti del .seg- -1 4 E
mento 0102 che congiunge i due poli.
Questa congiungente nel caso di
?/= 1 fa percid parte delle curve limi- .
Fig, 11
ti di livello.



- 18 -
C. Agostinelli

La (24) @ soddisfatta anco-
ra per "éﬁ= le 7= o (segmento O, ﬁ

02) , ma essa rappresenta inoltre

due rami uscenti rispettivamente dai

poli 01,02, ivi tangenti all'asse pola-

re, simmetrici rispetto all'asse ’Z )

e asintotici alla retta 7]= 1/‘70 .

In particolare se '}2 >
> 2/ ( 3)/3) il campo G;,si presen-
ta come nella figura 11, si estende
cioe dall'infinito fino al segmento
0102 dell'asse polare e percid le
traiettorie del corpuscolo, provenien-
ti da distanza infinita possono intersecare l'asse polare nei punti della

congiungente i due poli.

Se invece & ))O <2 /(3 r?_») la linea 6 si pud spezzare in un
ramo aperto @', asintotico alla retta "Z = 1/)2 , al disotto della
quale esso si svolge, e un ramo ﬂ" che termina nei poli O1 O2
ed ivi tangente all'ass2 polare . Il campo G;, si scompone in due
il primo 6’; va dall'infinito fino alla linea /5'; il secondo G’a/,’

¢ finito ed & compreso fra la linea ﬂ/,e il segmento 0102 . Le traiet-
torie relative che si svolgono nel campo G}l/l possono in questo caso
intersecare l'asse polare, I due campi g;" 5 5‘;" risultano separati
da un campo intermedio entro il quale non & possibile il moto re-
lativo del corpuscolo. Detti campi hanno¢ in questo caso una confi-
gurazione analoga a quella della figura 9, colla sola differenza che qui

. incid
la linea q coincide col segmento 01,02 .
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In particolare, per un opportuno valore della costante ')g , le due
linee /5' ,/5" possono avvicinarsi fino a formare una cuspide in un

punto dell'asse 7 , come mostra la fig. 12,

Per quanto concerne l'applicazione alla teoria delle aurore boreali, in
base al valore medio della velocitd dei corpuscoli lanciati dal Sole verso la
Terra e al valore del momento magnetico terrestre, si trovano per le co-

stanti )/e ))Oi valori medi

6<y= 34. 40’"g< 1, 2= 4,5 Ja"iz/(syi).

Applicando allora le considerazioni svolte si ha che nel caso delle
aurore boreali il campo G), , entro il quale si svolgono le traiettorie
relative, ha la forma della fig. 8, dove l'asintoto della linea ﬁ ha per
ordinata ’7 =)//)% = 23,3, e 1l'ordinata del punto d'intersezione della
linea &Y coll'asse '7 risulta uguale a circa 816 . Cioé queste ordinate

risultano rispettivamente uguali a circa 23,3 e 816 volte il raggio terrestre,

Risoluzione analitica del problema, Caso in cui la

costante ¢ delle aree & esterna all'intervallo(0,L)
7

12, --- Nel caso in cui la costante ¢ delle aree & esterna all'inter-

vallo (0,/[4) , se cio& risulta

(25) c< 0, oppure c >/1L s

ricordando che la funzione 774. ¢ in tutto il campo del moto compre-~

sa fra zero e 1, si ha sempre durante il moto

c -/(%‘vf 0.
Allora, dovendo essere per l'equazione delle forze vive —-C—-ﬁ

una quantita finita, la / non potra mai annullarsi, e dalla condizione
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2
&j;ik v2
y

si ricava

(26) y z le-A5]

v
o]

In queste condizioni nella mia Memoria dell'Accademia delle Scienze
d1 Torino ho dimostrato che esiste un numero reale positivo ‘{'O tale
che se nel piano della variabile complessa t si costruisce una stri-
scia di larghezza 2 Z, » limitata da due rette parallele all'asse, reale e
distanti da esso da ambo le parti della quantita 2—0, questa striscia ri-
sulta tutta interna alle stelle di Mittag-Leffler e relativa alle variabili
x,Y, X,y . Queste variabili sono cio& , in questa striscia, delle funzioni
olomorpfe di t senza alcuna singolarita.

II numero 2’0 ¢ dato da g
1

= —
To = % (re k)
dove c B c—-M
h=-% - A=

e k & la radice positiva dell'equazione

3u; %y k(ket)- Jici+ep)=o

Con la trasformazione conforme

n £
e T -1
(27) T"‘ n £
{}f To + 1
la striscia anzidetta si trasforma, nel piano T, in un cerchio di raggio

unitario col centro nell'origine e gli sviluppi delle funzioni x,y risulta-

no della forma

x=ﬂ,+ﬁ1 T+ ZiTAz TJ'.'. “ea

(28)
7: BO+B1 T+ -ZL!- .B& 7-2'+..-
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dove i coefficienti Ai’ Bi , i=0,1,2,... sono determinabili, e per-
cid noti, in base alle condizioni iniziali del moto.

Cosi ad esempio si ha

Ay=(x) =(x) =%, ﬁﬁfﬁg (%f}t e
=0 =0

VR

4y dé
7 ] Bi (=) - —
° a‘t txo dTZ-:

Gli sviluppi (28), tenendo conto della (27), sono uniformemente convergen-
ti per valori reali del tempoda t==-wa t=+oo, e rappresentano,
nel caso considerato, l'integrale generale delle equazioni del moto relativo
del corpuscolo, Determinati x ed y in funzione di t, l'angolo w che il
semipiano mobile P x forma con un semipiano fisso, passante anch'es-
so per l'asse polare, si ottiene infine con una quadratura utilizzando 1'inte-

grale delle aree; si ha cio&

&
w =W, +/ eV gk
o 9*

Il problema del moto di un corpuscolo elettrizzato in presenza di un
dipolo magnetico, nel caso in cui la costante ¢ delle aree soddisfa a una
delle condizioni (25) , & cosi , dal punto di vista analitico completamente

risolto,

Regolarizzazione delle equazioni del moto e risoluzio-

ne del problema nel caso in cui la costante delle aree

& compresa nell'intervallo (0,4).
7/

13.--- Abbiamo visto come nel caso in cui si abbia
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(29) 0L I M

in qualche istante del movimento pud risultare y =0, cio& il corpusco-
lo pud toccare l'asse polare.

Essendo le equazioni del moto relativo singolari per ¥ = 0, o pin
in particolare par r4=0, oppure rz= , non si pud pid senz'altro ammet-
tere l'esistenza di una soluzione analitica del problema, quando la costan-
te ¢ soddisfa alla condizione (29) .

Possiamo perd regolarizzare le dette equazioni introducendo una

nuova variabile indipendente “Z definita dalla relazione differenziale
— L2
(30) dT = dt/y

Cosi facendo si riconosce facilmente che il problema del moto re-

lativo del corpuscolo, definito dalle «equazioni differenziali (7), si trasfor-

ma, mediante la (30), in un altro problema dinamico nelle stesse incogni-

te x,y, nel quale la forza viva Z , € i1 potenziale %, sono rispet-

tivamente espressi dalle relazioni

(x'% 1Y), %= Ly*u’ (C-!*"’)‘}

=1
(31) 2y2

2 yL
dove x'= d_f ’_ dy
o - It

e la costante delle forze vive & nulla,

Ponendo ora

(32) ﬁ’zil fla:y

si ha
2 2
(33) x'= b 47, I'= P2

e la risoluzione del sistema di equazioni differenziali (7) equivale alla

integrazione del seguente sistéma di equazioni differenziali
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X _ 2 dy _ 2
az=H7 o TR
(34) dpr_ v—‘;/ﬂ'_.ﬁ" v
TT S (/E RS S5
d 2
Syl pi g 9 2

Questo sistema & regolare sia per y=0, e sia per r,=0, oppure

r, = 0, come si riconosce osservando che sono regolari i prodotti
yzﬂ ) %2&.
0T oy

Ora, nel caso in cui la costante delle aree ¢ @& compresa fra
zero e /bL , (0 <)/< 1) , estremi esclusi, il campo 6’}, si estende,

come abbiamo gzia visto, fino ai poli O1 O_, senza avere altri punti

in comune coll'asse polare, Allora se si amzmette che vi sia un istante in
cui il corpuscolo vada a colpire per esempio il polo O1 , si dimostra
che in quell'istante la terza delle equazioni (34) non & soddisfatta. Cid
vuol dire che nel caso in cui 0<c< /u, le traiettorie del corpuscolo
non possono passare per nessuno dei poli 01’02 . Si ha cioe il fatto pa-
radossale che in questo caso un corpuscolo pud avvicinarsi quanto si
vuole a uno dei poli, per poi allontanarsene, senza toccare quel polo.

Non & possibile percid determinare in questo caso un limite inferiore
per la y, e quindi non & possibile assegnare una soluzione analitica del
problema analoga a quella che si ha per ¢ <0, oppure per c >/M— .

Perd data la regolaritd dei secondi membri delle equazioni (34) in
tutto il campo del moto, il teorema di Cauchy dell'Analisi assicura

che fissati dei valori reali arbitrari X delle funzioni inco-

o’ Vo’ I;O,on
gnite (tali da soddisfare all'equazione delle forze vive) e corrispondenti a

un valore reale z‘o di Z , facendo variare XY, p1 e p2 rispettiva-
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mente in opportuni intorni di X0 Yoo plO’ p20 , esiste un intornof di
?:o entro il quale quelle funzioni sono sviluppabili in serie di potenze
di - Z-o , convergenti in % .

Osserviamo che nel caso limite di c =/14 s (f= 1), avendo il
campo G//' a comune coll'asse polare il segmento 6:62 , le traiet-
torie relative possono intersecare l'asse polare in un punto intermedio
del segmento che congiunge i due poli Ol’ O2 .

L'istante ti in cui cid avviene corrisponde al valore infinito
del parametro <~ definito dalla (30) , e nell'intorno di T=w le

funzioni X,y sono sviluppabili in serie di potenze della forma
Xz &, + oy + X2
?—

S
J= _gi.... 54-+_,
Kl >3 ‘

mentre il tempo sara dato dalla

/y‘d?

In particolare per i1 corpuscolo pud percorrere il seg-
mento 0102 con velocita costante Vo
E' da rilevare infine che tra le traiettorie del corpuscolo vi & an-

che la parte dell'asse polare esterna al dipolo, dove &

)x!>/a, y =0, 'y-=0.

Cid @& possibile nel caso di ¢ * 0, e in tal caso il corpuscolo
pud muovere sull'asse polare partendo da distanza infinita verso il polo

positivo, oppure partire dal polo negativo e allontanarsi indefinitamente,

si
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INTRODUCTION TO THE THEORY OF EARTH'S MOTION ABOUT ITS
CENTER OF MASS
by
G. COLOMBO

(Universita di Padova)

Introduction

The motion of the earth about its center of mass has become in the
recent past and will become in the near future inore and more complex
with the increasing accuracy of measurement, Besides more and more sophi-
sticated will be the model needed to explain this motion , To begin cor-
rectly we have to define exactly : a) what we inted by earthsystem, b) how
to choose the reference system, c) how to describe the motion of the earth
about its center of mass,

Concerning a) we should first define where we intend to put the exter-
nal closed boundary of the earth : on the sea and solid earth surface? at
an altitude of 200 Km above sea level where the density is almost con-
stant in time and position ? at the boundary (not yet very well defined)
of the magnetoshpere? Suppose we assume the boundary at 200 Km above
seal ievel. The center of mass is a very well defined geometrical point,
independent of the reference system, but its position is not fixed with
respect to any observatory of the earth surface because the earth is not
a rigid body .

Concerning b), for defining exactly a reference system there are evi-
dently no difficulties, In fact we may choose a reference system comple-
tely attached to an observatory of the earth (geographical system) or to
e fixed stars for the orientation of the axes, or we may choose the instan-
taneous center of mass of the earth and the instantaneous central axes of
inertia of the earth (inertial reference system), We meet with almost insu=-
perable difficulties when we have to relate the different systems to each

other and the local geographical system with the inertial reference system,
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The general equation

a3
M "G

holds, S _, being the total angular momentum vector with respect to G
and ﬁg the torque due to all external forces, The reference system has
to be nearing to a Newtonian system. In expressing SG we meet with the
difficulty, predicted in c¢), arising from the relative motion of the different
constituents of the earth as defined above (core, mantle, ocean, atmosphe-
re) . Since we are not dealing with a rigid body it is impossible to defi-
ne the axis of instantaneous rotation of the system earth . It is general-
ly assumed that, apart from the motion of ocean and atmosphere relati-
ve to the solid part, the motion of the solid crust are of low frequency
and small amplitude , Following Jeffreys we may define as the instantaneo=-
us angular velocity vector of the earth the vector w which minimizes

the following expressions
— 2
(2) wx 1-9)° xd G

where T is the vector from G to the mass element d & 2
the density of a& , v its velocity with respect to G, We could
call © the mean instantaneous angular velocity,

Suppose we assume a reference system fixed with respect to an ob-

servatory O and with the fixed stars. We should write the equation

d 2,z = e
—_ + =
(3) T S0 v, X M Ve M0

where S0 is the angular momentum of the earth, with respect to O,
'\;O and VG are the velocity of the O and G with respect to a New-
tonian reference system, M is earth's mass,

Concernin ﬁ(e) M(e) h
g o or ¢ We have to face the problem of choo-
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sing between what is called the "torque approach® or the Ymomentum approach®,
If in the system earth we include (momentum approach) ocean and atmosphe~

—

re (up to 200 Km above sea level} we have complications in computing SG or
§0 , (and _\70 and —JG if we use cquation 3) because the motion of the oceans
and the atmosphere have no negligible components, Beside there are other oompli-
cations arising from the poor knowledge of the core's motion,

The only important external torque is in this case the gravitational torque
because the effect of other external torques of electromagnetic origin, or inte-
raction with interplanetary matter is found to be negligible in the relatively
short tin-e scale (say 102 , 103 years) we are considering here

We would meet other and perhaps more severe difficulties if we confined
the earth to the solid crust boundary (torque approach) since besides the external

gravitational torque we should have to compute the contact forces experienced by the

ocean and atmosphere on the solid earth,

Since we have to begin a theory in some way, we start as usual assu-
ming a reference system Z' centered in the center of mass G, the Xq
axis on an axis reasonably well aligned with the axis of figure, or
with the axis of maximum momentum of inertia, which fortunately is close to
the axis of instantaneous rotation, as defined above, and the x1 axis in the
plane through Xq containing, say, the Greenwich Observatory.

Since it is reasonable to think that the Xg axis is quite far from
Greenwhich the reference system is, in this way, defined, The local geo-
graphical systems, the principal axes of inertia, are all moving with respect
to this conventional reference system which is also moving,

—
We proceed now to give an explicit form to SG . Let us call
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- >
J

a4
i , kK , the unit vectors along the axes of Z , W, W w, the component

) R
. »*
of the angular velocity @ of 2" with respect to a newtonian reference

system , A, B, C, D, E, F the coefficient of the inertia tensor or the

earth, hl’ hz, h3 the components of the angular momentum due to the velo-
city of the earth's components (oceans, atmosphere, core and even mantle)

. -
with respect to 2", Then we have

S =(Awl— Ew

F T +(B F Duw)Jj
G sFwy) T4 B, - Fo -Duyj +

3
(4)

+(C D Ew)Kk+h T+h] +h Kk
(Cug - Du, - Ew,) 1T T gk
) N - 5 —>
Here A,B, ..., wi, hi are functions of time, and naturally i,j,k are

also moving.,
We note that the following assumptions are generally accepted on the
basis of observations and of the choice of the reference system

All the following functions of t

- A - -
o At)-A_ B(t) -B_ C(t)-C, ﬁ _wl h,
Ao Bo Co w3 l‘)3 Co w3

are first order infinitesimal where A , Co are constant values,
o
Since in the equation 1) the first derivative Ett_ is supposed to
be made with respect to a newtonian reference system the eguation 1) has

to be written in the form

dr's

(6) G,=> = >(e)
— S = M
at W X G 1 G

where d! denotes differentiation made with restect to the rotating refe-

rence system, With the usual notation and neglecting second order quanti-

ties, we have the following system
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2
A w +(C-A - Ew_ +Duw,_ = - +w h_ +
o¥1 T (CymAg) wawg = Bug # Dug = - h) +why) + M -,

2
7 A wy (A -C -Du. - Ew° =_h_- +
O oWt o¥1¥g = Dug - Ewg =-hy - wh + M, -,

Cw3 + Cw3 = M3

These are the Liouville equations.We will start from them in order to study

the motion of U with respect to Z* .

2 - The Chandler Wobble

We will consider in this paragrah only short periodic variations of

© . In an interval of time in which secular variation of @ as well of

A, B, C, ...... are negligible we can write , neglecting second order quantities
. 2 .
Aw +(C-A -Ew +D = -
o1 ( o o)w2wo Yo “ hl+wth * Ml
. 2 .
8 Aw +(A =-C w - Dw =E = o - +
®) o 2 ( o o)wl o “o wo h2 “ h1 M2

. 1
Cw +C =M
1o 0(03 3

where Ao s C , W, are the constant mean yalues of A, C, ua and C /C
o

w /w are flrst order infinitesimal functions of time.

If E,D, h ,h ,M_, M in the relatively short interval of time we

2271 2
are considering here can be supposed to depend not on the position of Z but

only on time and on @ and moreover can be supposed to be a linear function of
the component of & with possibly time dependent coefficients, the system
(8) is a linear system and the general solution is the combination of a

free and a forced term,

Actually Ml’ Mz, M3 do deperd on the position of 2™ as the
gravitational torque does, but in a relatively short time interval, since
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the motion of the symmetry axis is slow and it is close to X, We may
-
consider MS) as a function only of time; the same can be generally

said for hl,h which are mostly due to ocean and atmosphere meteoro-

2
logical and tidal motions, to sun and moon tides on the solid crust, and

firally to the problematical motions of the core, That hl’h depend on

2
w,, W, W at least for the contribution of the core's motion, seems to us out

273
olf doubt but the problem expressing this dependence, is so severe that we
are forced to neglect it at least for the moment, though we are not convinced
this has a negligible effect on the motion, even in this first approximation
model ,

It is certainly true that E and D do depend on wl, wz, since the
earth is a deformable body and only a uniform rotational motion about an
axis fixed in Z* . and therefore in space, can lead to a constant confi-
guration of the inertia ellipsoid with respect to Z * . This axis must be a
principal axis of inertia, for the motion to be dynamically possible, when
the external torques are zero. Besides for the rotational motion to be stable the
axis must be an axis of maximum momentum of inertia,in the case of a sym-
metrical body, or in presence of internal dissipation, or both., When the an-
gular velocity changes the centrifugal potential also changes. It is assumed
that the changing in the axis of rotation is so slow, that the earth has time
to reach the static configuration relative to the centrifugal potential at
any instant, before the centrifugal potential significantly changes.

The centrifugal potential, neglecting second order terms, may be
written

1 2 2 2
= = + - +
9) U 5 © (x1 x2) w xs(wlx1 w2 x2) .

The first term leads to a small constant contribution to the earth's

flattening., The second term is the variable term and is the only one we shall

consider in the following.



- 35 -
G, Colombo

The corresponding deformation gives rise to an exterior gravitatio-

nal potential, This, by definition of the Love number k, |is

. R
= - —_— +
(10) v k 5 W x3(wl X, tu, x2)
r
. . 2 2 2 2
where R is the earth's radius and r = xl + x2 + Xq
But the corresponding terms (in xlx3 and XgXg in the expansion

of a gravitational potential departing slightly from spherical symmetry

are. (from Mar Cullagh's formula) ,

3G :
(11) -—-rs (E X x3+Dx2 X,

G being the gravitational constant .

By comparison of (10) with (11) we have

k SCH R5 kw wZR5
(12) E=a— D=-—22%
3G 3G

D and E being the measures of the distortion of the earth in the yx plane
and xz plane respectively, caused by the changing of © inside the body.
Before proceeding with the Chandler Wobble study, an observation
should be made, concerning the Love number k. We assume k to be the
tidal effective Love number. The Love number is in some way a measure
of earth's yielding to a centrifugal potential or to any perturbing poten-
tial like the Sun's or Moon's differential gravity field. From the earth's
tide and from the Chandler Wobble (assuming the present theory is valid)

~

one obtains k = 0,29, The same value is obtained from the free oscil-
lations of the earth as an elastic body . The evaluation by different authors
differ by 1 part in 20, This means a good agreement  which may
be misleading, Apart from the significant contrast between the value

obtained from the figure of earth (k =0,96) and the value k =0.30
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which may be explained in several wayvs (see MunKand Mac Donald pag. 27)

there can be no doubt that the response of the earth to perturbing forces is

not proportional to the amplitude and is not independent of the frequency

of perturbations, as we have assumed , in order to write equation (12).
Now we proceed to substitute expressi(.)n 12) in the system (8) .

In order to find the free component of Wa W, we consider the following

associated homogeneous linear differential system

5 5
k R 2 k R 3
+ T =A + - =
Ay F(CmA )yl F T35 0, v BEG Yo¥ ~°
(13) ) 5
KkR™ 2 k R™ 3
+ -C + + =
Bo g ¥ (A Cww, ¥ 35 wLy Y35 %9 0
Solving the system we have
(14) w1=Acos Qt-2) , w2=Qsin Qi -T) ,
where Q is an arbitrary constant (amplitude and phase of the equatorial

component of B) and 2 has the followins expression

2 5
3G(C -A)-kw R
(¢} ] O

(15) Q= w -
°© 3GA +kuw R
) [0

The component of the constant angular momentum in this free motion are
16 S.=(A w-Fuw)T+@Aw -Dw)i+C v K

= (A w,-Ew )i w, - ) <
(16) G ( o1 o) ( o 2 wo)J o %%

and since E and D =are proportional to wl and w2 the vector é? is
x
complanar to © and ? as it can be immediately shown . C -A
44 o
If we assumc k=0,20, A =8,089x10" (c.g.s.), % =
o

o1

* 3048 ° w = 7,2921x10"5 sec-1 we find as a period of the free wobble

T , the value;
c
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(17) Tc = —zbz = 440 syderal days

The motion is a regular precessional motion with the axis of pre-
cession along S which is constant in the fixed space, In fig. 1) the
N polhode and herpolhode are drawn. The angular
opening of the polhode, which is described by
© in the fixed space is 0,001", It is very
important at this point to compare the two angular
openings because as we shall see later for the
precessional motionforced by the gravitational

torques of the moon and sun we have the opposite-si-

tuation the vector w hardly moves in 2" but
the motion in fixed space is quite large. The
polhode opening is much smaller than the opening of the herpolhodie .

In some sense this is the main reason why the Chandler wobble

can be reasonably well separated from all forced motions,

Before discussing the forced component of the motion of the
earth's axis of rotation with respect to the solid earth and the damping and
excitation mechanism of this motion, it is advisable to recall the main
feature of the motion of this axis in the fixed space, In other words if
the forcing terms Mi , in the equation (8), are put equal to zero the
total angular momentum of the earth is fixed in space, since no
external torques are present. Actually there are significant external

torques more precisely the gravitational torque due to the differential gravi-
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ty field of the moon and sum acting on a non-spherical earth. The angular
momentum vector moves consequently in the fixed space. We are now going
to compute this forced motion and evaluate the component wl, w2 in order
to see how large is the corresponding motion of the earth's axis of ro-
tation in the solid earth,

Considering the earth as a rigid body with an axially symmetric

inertial ellipsoid with axis _l:, the torque exerted by the sun on the obla-

the earth is

- 3G M
18 M= ——2 (C-A9 (yz2, +z x
(18)
,E5 1 2

where MO is the mass of the Sun, E is the earth-sun distance, C, A are

respectively the maximum and the equatorial moment of inertia, x, ¥,z

are the coordinates of the sun with respect ot the reference system cl’ CZ’ k,
where <:1 is oriented in the direction bf the vernal equinox,
If &€ is the obliquity, that he actual inclination of the earth's
axis on the ecliptic, we have.
3GM
— —
M=M_+M -——2(C-4) singcosg © -
s r 3 1
2 E
(19) - sin € cos g cos 2Qt.‘c’1+sin29t.6’2

2 .
Here Qt = —,;zt is the mean longitude of the sun measured from the

vernal equinox, T =1 for the tropical year, € is the mean motion of the

- - '
earth, Ms is the secular part of the torque and Mp is a periodic
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term with a semiannual period,
Other small effects like eccen-
tricity of the earth are neglec-
ted.

It is now easier to consider

the equation

d SG N 3G M0 IR .
(20) =M +M = ——2(C-A) (ken) (kxn) + M_ ;
dt s P 4 g3 P
Here T is the unit vector normal to the ecliptic, plane, If we write
§G =K C w, we have
2 I
>
dk_ 3(C-A)Q o o o
—— +
(21) " 53 (k.n) (kxn) C

The secular part corresponds to a rotation of the vector ? about
n in the clockwise direction, the corresponding displacement of ?1 is
15.92"/ year,

Superimposed to this motion there is a nutation with a semian-
nual period and an amplitude of 0,57,

If we follow the same procedure to find out the effect of the moon's
gravitational torque, neglecting a small periodic part, which corresponds to a

1
nutation with a period of 3 month , we have a secular displacement given

by

2

dk 3 C-A) n > > >
(22) 3~ & )
at 2 Cwo(l-ez)lz



- 40 -
G. Colombo

where n' is the mean motion of the moon, N) is the unit vector normal
to the moon orbital plane.

Since ﬁ) is rotating about ? in 18.6 years, it may be decom-
posed into a fixed component along n  and magnitude cos i where i
is roughly 5° (inclination on the eccliptic of the moon orbital plane) and
a rotating component with a period of 18,6 years.

The angular momentum vector is again rotating about the T axis
in the same sense as for the sun-torque ., The resulting rotation about
the T axis of the vector g:; , on a cone of angular opening brings
the displacement of the vernal equinox -to 50,37% / year (the period
is 25,730 years) ,

Besides there is a nutational motion of §:} with period of 18.6
years on an elliptic cone of semiamplitudé 6.87" in the direction tan-
gent to the secular motion of §é , and 9.21% in the normal direction,

We may now evalutate the equatorial components of the angular ve-
1’ w2 which correspond to this motion.

We observe only that the ratio we/wo = wa + wz v, is of the or-

der of the ratio of the two angular velocities 50" sin 0/ year and w, =

locity w

= 3600/ day , which means that the angular velocity vector forms with the
l—; axis and with the ?Gvector an angle smaller than 0,029 .

The main precessional motion may be obtained by rolling the po-
lhode which is a cone of semiamplitude of roughly 0,02% sec rigidly
connected with the earth and centered in the axis of figure on the
herpolhode which is a cone of roughly 23° semiamplitude, centered in the
pole of the ecliptic.

The rolling period is roughly one day.” The nutations correspond to
a negligible wiggling of the two Poinsot conical surfaces,

For this reason the nutation of the axis or rotation inside the

earth due to the external torque averaged in 1 day is small with
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respect to the motion of the pole due to the Chandler wobble and in any

case it is precisely determined,

cs e eeeee sssee

Considering again equations (8) the first two terms on the right
side of these equations, give, in the model we have considered in 2) ,
the forcing terms due to motion of masses, ocean, atmosphere, with re-
spect to the main body which behaves elastically, The main term is an
annual term due mainly to the annual displacement of air masses,

From reduction of the latitude observations data, (I.L.S.) the
orientation of the instantaneous axis of rotation with respect to the sta-
tions are derived, and consequently with respect to the solid earth,

]

The observed displacement m_ = o m_ = are represented

1 2
o o
for the interval of time 1900 in Fig. 7.4 taken from M.M.D,
Also from M.M.D, is taken the fig. 7.5. showing the power spe-
ctrum of variation of latitude obtained through an analysis of 54.4
year records, From this data the following results are obtained (reported

also from M.M.D. book) .
(1) 98.5 7. of the power is associated with positive (west-to-east motion)

(2) 93 7, of the power is contained in the frequency range 0,74 to 1.14

cycles per years.

(3) 22 /. of the power in this range is in an annual line without recogni-
zable structure (in the analysis it happens to fall between harmonics

54 and 55) .
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(4) 78 %, of the power in this range is contained in the Chandler peak
which is centered near 0,85 c/year and has a noticeable band-struc=
ture,

From observations at Greenwich and Washington the annual term
can be evaluated through different procedures followed by different authors,
using smoothed or unsmoothed values, give different results, It seems qui-
the well established that the annual ellipse has the semimajor axis of
the order 0,092" and it seems to be oriented quite well with the Green-
wich meridian ., Whether this is an observational effect or not it is
questionable, The other semimajor axis has amplitude 0,.075% . If the
term h], hz exciting the annual component c¢ould be found, we would have

a good check of the validity of the model represented by system (8).

Unfortunately this is not the case,

Satisfactory interpretation of the non seasonal residue correspon-
ding to the Chandler wobble has not yet been achieved. The main reason
is apparently due to the lack of good observation for a long period of
time,

The problem is mainly concerned with the mechanism of supplying
the energy to maintain the natural mode (Chandler motion) of 14 months
period in a body which is dissipative in nature.

Two types of model are considered in the literature, The first
one is the "damped model” . The finite spectral width may be associated
with the model of a linear dissipative oscillator excited at random. The
damping is due to imperfections of elasticity or dissipation at the baun-
dary between mantel and core, if the core is viscous . Irregular variation
of the atmosphere is believed to be the most likely cause of the needed
random excitation,

The second model 1is a time-variable model, that is a linear



- 43 - G. Colombo

oscillator with time dependent characteristics. This time dependence of
the parameters characterizing the model implies a time dependence of the
physical parameters (like rigidity, ellipticity, etc) ., Physical considerations
speak against a time variable model.

Accepting the linear damped model excited at random a_problem
arises for the excitation due to irregular atmospheric variations,

An evaluation, from the latitude observation data, of the specific

dissipation function

Q 1 d E
- L 494 E
(23) TREJ a t

gives a value of 62 of the order of 30 to 40, If we consider the case

of a linear damped oscillator

24 ¥+ 2« 5(+C7'2x=0,
(24) .
we have
_ oo
(25) Q——Za ,
1 2 2T

a value of 30 to 40 correspond to a

x o, 2w
relaxation or damping time of 10 to 13 periods roughly. Q is also

and since

related to the amplitude at resonance and to the sharpness or resonan-
ce,

This value of Q requires atmospheric variations somewhat lar-
ger than one would like, Irregular motions of the core although not exclu-
ded seem to be unlikely,

A larger value of Q (between 100 and 200) is obtained from
pole tide observation ; this value would imply a larger relaxation time
and would require a more acceptable value for the irregular atmospheric
variation needed for exciting the Chandler wobble.

On the other hand an analysis of the possible values of Q bring to
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the following conclusions taken also for M.M.D. (pag. 172).
1) If the Q 1is betwenn 100 and 200, as vaguely suggested by the poletide
analysis then solid friction in the mantle can account for the damping.

For a Q of 30 to 50, as indicated by the latitude analysis, the-

re are many possibil_ities :

2) The damping can be in the oceans

3) The lower mantle is a possible energy sink; a model involving a Maxwell
viscosity, is, however, unsupported by laboratory and seismic evidence,

4) Damping by viscosity in the core appears to be ruled out; electromagne-
tic damping is still a possibility (Jeffreys, 1956),

5) Impulses of a non-random kind (originating in the core, oceans or atmo-
sphere) can absorb as well as excite the wobble, The computed Q
is then not due to damping, but associated with the interaction between
these loosely=-coupled components;

I would like to emphasize again the weakness of the damped model
randomly excited in explaining the observed motion of the pole,

Apart from the peak period of the Chandler wobble band in the
power spectrum, neither the damping nor the energy supply is clear.

Even accepting as a first conclusion that the statistical propery-
of the latitude time series, up to now available, are those associated with
a damped oscillator excited at random ‘it seems to me that some other
possibility has to be carefully examined in the near future when better
and more numerous observations will be available, For instance the possi-
bility that a non-linear excitation mechanism is responsible of the energy
transfer from both high and low frequency periodic excitation (from
diurnal to annual) to the Chandler free wobble,

The real model both with regard to the elastic property and the

internal dissipation of energy is certainly not linear. Firction internal forces,
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besides the viscous one , are certainly present, On the other hand excitation
of proper mode of low frequency by an external periodic force with high
frequency is not an exception in non-linear systems, Period and amplitude of
the Chandler wobble seems to be proportional. The correlation coefficient
found by Nicolini is +0,88. The change in period with the amplitude ig
characteristic in non-linear oscillators,

Before a definite conclusion can be drawn more refined observations
for a longer period of time are badly needed. It is quite surprising that
a regular behaviour of the m, component after removal of the annual term,
as shown in the second curve of fig. 7.4, can be only explained as a
randomly excited oscillator of a linear one degree of freedom system,

The interpretation of the curve becomes more surprising after reading
the last sentence of page 3 of the book by Munk and Mc Donald, first para-
graph: "The wobble is generated by random impulses of unknown origin, and
damped 'by some unknown imperfections fron; elasticity or by some other

means, "
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Fig. 7.4. The component, m,, of the unsmoothed ILS observations, before (lnp) lnd after (seoond curve) removal of the scasonal

variation; the component, — m, of the unsmoothed ILS observation after f the ion (third curve) and the corre-

sponding non-scasonal variation in the latitude of Washington, as obtained with the PZT (bottom).
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Fig. 7.5. The spectrum of variation in latitude, according to Rudnick (1956). The
upper figure refers to the positive (west-to-east) motion, the lower figure to the
negative motion of the pole of rotation (see § 6.7). For both motions the harmonics
40 to 62 are shown, with the corresponding frequency scale, in cycles per year,
indicated below. The length of the spectral lines gives the contribution per harmonic
toward the mean square radius arm (in units of (0701)?). The scale for negative motion
is ten times that for positive motion. The curve has been fitted by the method of
maximum likelihood (seec Appendix A.2).
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E. M. Gaposchkin (Cambridge, Mass)

1. INTROD UCTION

This conference has been entitled ""Modern Questions of Celestial
Mechanics.'" Although the emphasis has been on the problems of celestial
mechanics that need to be solved, the orientation of my talk is more toward

the problem to which celestial mechanics will provide an answer.

In general, the celestial-mechanics problem can be characterized by a
statement about the forces acting upon bodies, either planets or earth satel-
lites, and the celestial mechanician attempts to solve the differential equa-
tions of motion. If one is really conscientious, then observations of the
system being studied are taken and the theory is tested against these obser-
vations. Artificial earth satellites have posed the reverse problem, that of

finding the forces acting on the satellite.

For several years now at the Smithsonian Astrophysical Observatory
(SAO), this investigation has been carried on. Needless to say, a for;nal
celestial-mechanics theory has to bé developed in order to determine the
forces. Within the last year, an extensive documentation on the final results
of SAO has been published, and is available. However, I am not going to
discuss that here in any detail. Implied in any set of geodetic parameters
defining the earth as a reference system is that the earth is a rigid body
with a pole, or an equator, and with an arbitrary meridian as a reference
point. This is what we would call a terrestrial, or earth-fixed, system.

If we ignore such questions as continental and crustal motions, the fixed
points on the terrestrial system are constants. The earth is not a rigid body,

however, and undergoes deformation due to the attraction of the sun and the

lThis work was supported by NASA Contract No. 87-60.
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moon. This tidal deformation was studied by Lord Kelvin, George Darwin,
and Harold Jeffreys, among many investigators. The largest tidal effect

is of some 60 cm.

Newtonian mechanics is formulated in a so-called inertial system. The
terrestrial system is not inertial, and the equations of motion have extra
terms to account for this. The sidereal system — that system defined
by the stars or the far-distant galaxies — is the most pleasing definition of
an inertial reference frame. In any case, the earth has a motion with
respect to this special reference frame. It is made up of three kinds of
motion, that of precession and nutation, that of the variation in the length
of the day (in other words, the irregular changes in the rate of rotation of the

earth), and that of the Eulerian nutation or wobble of the earth.

This separation is, to a large extent, natural, since there are essentially
different observations used to measure these quantities. Also, the physics
involved is to some extent different. The precession and nutation, for
instance, are due to the gravitational attraction of the sun and the moon on the
earth's equatorial bulge. The variation in the length of the day has one com-
ponent that is called the secular deceleration. Modern geophysical thinking
describes this as the loss of energy in tidal friction. The motion of the pole
is a free nutation. The currently accepted geophysical thinking on this is
that the period of the free nutation is governed by the elasticity of the earth.

It is this latter subject that I propose to discuss.
2. DESCRIPTION OF THE PHENOMENON

For many years the rotation of the earth was the best clock that the
astronomer had. It became obvious only this century that the earth was not
a good timekeeper. For instance, many problems in lunar theory were
ascribed to the lack of mathematical rigor. People used to talk about the
great empirical term in lunar theory. Only in the past several decades has
it become known that the problems with observations of the longitude of the
moon were not problems in the theory, but problems in the earth's rotation.
Similarly, the free nutation of the earth was a matter of some interest. It

was Euler who showed in 1765 that a rigid body could have a stable rotation
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about the principal axis of inertia. He also s..owed that a rigid body like the
earth could have a free nutation with a period of A/(C-A) sidereal days, where
A and C are the principal moments of inertia. There were many unsuccess-
ful attempts to observe this 10-month period. It was in 1891 that Chandler,

a prosperous merchant in Cambridge, Massachusetts, discovered the motion
that bears his name. The period of this motion is 14 months. Newcomb
immediately showed that the elastic yielding of the earth would lengthen this
period. Chandler's discovery of this motion led to the establishment of the
International Latitude Service, and it is from about 1900 that measurements

of the position of the pole have been made.

The Latitude Service essentially measured the angle between the vertical
and the pole by using known reference stars. The pole, defined by preces-
sion and nutation, is then defined as the instantaneous pole. This pole
becomes the spin axis, which is 0.003 arcsec different from the angular
momentum and is observationally indistinguishable. Now, the crust of the
earth moves with respect to this in a classical Poinsot construction, so that
the latitude of any station will change; hence the name, variation of latitude.
The Latitude Service provides plots of the x and y displacement with respect
to an arbitrary reference. The magnitude of this displacement is some 10 m.
The first slide gives the record for 1958 to the present. We notice immediately,
that there is a roughly irregular motion; the maximum excursion is about
6 arc sec, which is approximately equivalent to 20 m on the pole. Immediately,
we come upon one subject of controversy today: whether the pole has a
secular motion or not. I do not plan to address myself to this problem, but
in the next slide I will show the same data plotted with respect to a mean pole
of the year. We see essentially the same size motion, but the motion is
significantly more regular. The latter data are published by the Bureau
International de 1'Heure in Paris. The former plot is from the International
Polar Motion Service. Some people have tried to use these data to demon-
strate the fact of the secular variation of the pole. Others have stated that
we can attribute this apparent secular motion to the change in latitude of one
station, the candidate being the Japanese station, which is in a geophysically
very active area, having large tectonic activity, earthquakes, and crustal

motions. We just do not know what to make of this situation.
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A few comments on the data are probably appropriate. The number of
latitude stations throughout the whole period has been small, between five
and seven, with only three participating during the entire interval. They
have undergone different administrations. It is also noted that the irregular
changes in the apparent secular motion of the pole are correlated with the
change of star catalogs. Many of the problems in treating the astronomical
data result from these irregularities. This is an area in which I think much

careful work remains to be done.

The accuracy of the data can be estimated as follows: The measurement
of zenith distance can be made accurate to perhaps 0.1 arcsec. If we make
a thousand observations, the reliability reduces to less than a hundredth of
an arcsec. This figure of a hundredth of an arcsec is equivalent to 1 foot at
the pole. The thousand observations are made over a period of 15 to 20 days,
which means that any very short-period variations are averaged out of the
data, and we would detect no correlation with short-lived geophysical events,

such as daily meteorological changes.

The next slide shows the data of the x component from 1900 to 1960. One
of the major questions concerning the Chandler wobble is the phenomenon
that maintains it, which has not yet been discovered. Since the earth is
elastic and has imperfections, it would be dissipative and the free nutation
would have been expected to have died out a long time ago. This is the
Chandler wobble, with a 14-month period. Attempts to explain this in terms
of atmospheric phenomenon have been unsuccessful (Munk and Hassen, 1961),
and as I said, there do not seem to be any suitable candidates for exciting
this 14-month period. The mechanism for maintaining the motion is not

understood at all today.

Going on quickly to some other properties of this motion, we show a
power-spectrum analysis of this latitude variation. We immediately notice
a very narrow spike at 1 year. This leads us to look for driving effects of
a l-year period, and this investigation has been moderately successful.

An early work in this area was by Harold Jeffreys in the fascinating paper
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in 1916. The major effects are the distribution of air masses and the distri-
bution of water in the oceans. You can see a broader peak roughly centered

at 0.85 cycles per year.

The next slide shows the annual variation. It is considerably smaller,
with a maximum excursion of about 10 feet. This is the determination made
by Sir Harold Jeffreys. Another determination by Walker and Young is not
in very good agreement with this, although the sizes are not changed signi-
ficantly. One curious thing about this is the orientation of the semimajor

axis along the Greenwich meridian.

3. THE DEFORMATION OF THE EARTH

As I mentioned in my introduction, the earth is an elastic body. It
therefore undergoes certain deformation. Then, whatever the theory of the
constitution of the earth, provided the physical constants such as density
and incompressibility are functions of r, we can write the effects of a dis-
turbing potential of second degree as follows. The earth surface is lifted by
the amount h(Up/f) and the horizontal displacements will be (£/f) (3U2/9¢)
and [ £ /(f cos ¢) ] (d UZ/B)\), where f is the gravitational constant. If we turn our
attention to the external gravity field, the deformation of the earth produces

the additional external potential:
5
=x(2
au=x(%) u, ,

where a is the radius of the earth. Now the displacements due to rotation
around (£, m,n) are the same as those due to the potential of the second degree;

and to the first order in the direction cosines £, m is

%SZZ (x2+y2) - sz (£x + my)

The first term adds to the oblateness, and does not concern us. The second

term will give rise to the additional external graviational potential



- 54 -

AU = - k22 2(tx + my) (%)5

Now we recall that MacCullagh's formula gives for the gravitational potential

due to a deformed earth

v = f[y_ N (A+B+C)rl - 3(A.x2+By2+sz-2sz-2ze-Zny)]
"l 5
2r

Writing the value of the moment of inertia around the direction to the external
point (x, y, z), and comparing terms, we note that the terms in the

moment of inertia tensor, corresponding to this elastic deformation, are

- kQZma5

F == ,

and

_ —kﬂzla
- 3f

The products of x and y, and x, y, and z can be written in terms of spherical
harmonics of second degree, and the resulting expression for the gravitational

potential due to the deformed earth is

2 -
v=M f) +(® [A—(;_ P,o(cos¢) + 2 P, (cos¢)< S cos A + == sin x)
1 fMa fMa fMa

H N
+ ———= P,,(cos¢) sin x] ,
I’M:«.\2 22 5

where sz is the usual associated Legendre function. If we put in some

approximate values for the radius of the earth, the rotational rate, the gravita-

tional constant, etc., we get a gravity-field harmonic coefficient of the order
-8

of 10 ~:
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2 5
Cay =2 '53' Gz=1'55-m_ﬂzL
Ma 3f Ma

where
-4 -1
Q=0.727% 10 " rad sec ,
£ = component of nutation' = 1 sec = 0.5 X 10-5 radius,
a = earth radius 6.378 X 1078 cm,
M = 3.986 x 1020 cm?® sec”?,
and
-7
C,, =-k0.1x10 .

21
4. DETERMINATION OF THE GRAVITY FIELD OF THE EARTH

For the past decade, SAO has been observing artificial earth satellites
with a camera system and using these observations to determine the earth's
gravitational field. We have adopted as our reference system the instantan-
eous pole for the gravity field, and the terrestrial earth as our reference
system for the station locations. We have utilized the empirically observed
data of the motion of the pole, which I have shown you on a previous slide,
and the empirical data on the rotation of the earth in terms of UTI' We
have translated the site locations into this reference system to do our orbital

dynamics, and we have then solved the problem for the earth's gravity field.

The assumption we have made is that our coordinate system is oriented
along an axis of principal moment of inertia, and that the quantities C21 and
S21 have therefore been zero. We have set them arbitrarily for zero. In
the past year, we have completed an 8th-degree, 8th-order solution with some
higher order terms in the tesseral harmonics, and Dr. Kozai determined the

zonal harmonics up to the 14th degree.

The next slide shows the general form of the gravity field used in the
equations of motion. The previous equation for the moments of inertia of the

earth up to the second degree is given in the same notation.
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Table 1 gives the values of some of the coefficients we have determined
and the computed uncertainty. I estimate that the uncertainties here are accurate
to a factor of 2. The second-degree terms are computed to about 1 part in
108. I give in this table a very high-order term. This term is determined
to about 2 parts in 1010. We are actively improving our procedures,
acquiring new and more accurate data, and will perform a more accurate
solution within the next year. It is conceivable that the accuracies will be
improved by a factor of 5, especially the low-order harmonics. We also

intend to include direct measurements of gravity, in our determination of the

gravity field, and our future work should be a significant improvement.

Table 1. Selected coefficients of the geopotential (from Gaposchkin, 1967)

Cyy= 2.379x 1070 £ 0.13x 1077
S, =-1.351x 108+ 0.13x 1077
22
-6 -7
Cyp = 1.936%107° £0.13x 10
S, = 0.266x10° %+ 0.14x 1077
c =-0.058x10 % +0.17x1078
1513 . .
_ -6 -8
S)5 3 = -0-046 X 107" £0.17 x 10
C = 0.0043x10°%+0.21x107°
1514 - :
_ -6 -9
Sy 14 = -0-0211X 1077 £0.22 X 10

Comparing the size of the uncertainty in the accuracy with which we can
compute the low-order harmonics, we see that it is well within our grasp

to compute the values of C21 and S_  using our current techniques.

21
The next slide shows the development of the perturbations in one of the

elements, the mean anomaly, based on this theory. This perturbation is the

most intricate, but in general is typical of the mathematical form that results.

The essential point is the divisor of the form
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[(£-2p)> + (£-2p+q)m + m@ - 0)'» 2

If the mean motion of a satellite is nearly an integral number of days, and
if we recall that the motion of perigee and the node is small and the sidereal
rate is roughly 1, we get a very small number. This leads to the so-called
resonant harmonics. In the satellites that we used for the Standard Earth,
we had several resonant harmonics, and I presented an example of the

determination of one in Table 1.

Other essential points to note are the kinds of functions involved in the
perturbations. The function G involves the well-known Hanson coefficients.
It is a function that goes as the eccentricity to the absolute value of q.
Therefore, the perturbation is largest for values of q = 0. This means that
p = £/2. The functions F are polynomials in sine and cosine inclination.
For the case of £ and m =2 and 1, and p =1, F is proportional to .
sin I cos2 I. We can then suggest that the most useful satellite for determining
these C21 and S21 would be a satellite with a mean motion of 1 revolution per

day, at an inclination of 35.4°. With such a satellite, the low-order term

should be determined to 1 part in 1010.

Of course, all the degrees from £ = 2 to infinity will have a term with
m =1, and therefore the synchronous satellite will excite perturbations from
all these harmonics. This is why the other terms (£, 1) must be determined
as well as possible, so that they can be treated as known in the determina-
tion. We note that a synchronous satellite of 1 revolution per day is at a
radius of = 6. 6 earth radii. There is a divisor in all the perturbations of
Az +3. This means that for a large L, this divisor will damp out the per-

turbation, if we do not get too close to resonance.
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5. SUMMARY

If we return to slide 1 now, we can see what the procedure will be. We

will take all the orbits and all the observations of the satellites, whether they
are synchronous or not, and group them into periods when the pole is at a

particular position. This is a slowly changing period, and I imagine we can

group the observations into 1-month segments. We would then have essentially
a plot of the moments of inertia, as a function of time. Then returning to our
equation involving the Love number and the observed position of the reference
pole, we could use this relationship and the determinations of F and G to
compute a value for k. Since we postulate that we can determine F and G to
1 part in 1010, since F has a value of 10-8, we should be able to compute

k to three figures. The value of k has been measured from the period of the
Eulerian nutation, from the seismic observation, and from the tides to be
about 0.27 with the uncertainty in about the second digit. Having these data
now, and the time dependence of F and G, we could do other things; however,
if we assume k from the values of seismology, we could then determine the
values of £ and m, the coordinates of the pole. We could then use this as

a method of measuring the motion of the pole. Presumably, data could be
made available quickly enough from electronic systems so that the results

of this analysis could be available perhaps within time measured in weeks

rather than in months and years, as it is now.

On the other hand, if we return to the fundamental definition of F and G
as mass integrals of the earth around this rotation axis, and if we are willing
to accept the density data from seismology, we can then perform this integral
and find out how much of the earth is participating in this motion. This is of
immense interest today, because of the uncertainty in the relation of the core
to the mantle, and because of the dynamics of the possible rotation of the
core. These last few subjects are primarily of geophysical interest, but
they demonstrate the benefit of the space program both in the study of the
solid earth and in the study of the subject of celestial mechanics. It demon-
strates the seemingly endless questions of geodynamics and celestial

mechanics.
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RADAR ASTRONOMY, GENERAL RELATIVITY, AND
CELESTIAL MECHANICS

by

I.I. Shapiro (Camhridge, Mass.)
I. INTRODUGCTION
Radar astronomy is a young science. Yet, like most modern enterprises,
it is already large -- certainly too large to be covered adequately in eight lec-
tures. We will therefore concentrate on those aspects which have the most in-

fluence on general relativity and celestial mechanics.

The extension of radar measurements to interplanetary distances heralded
a major advance in the accuracy achievable in estimating astronomical con-
stants and planetary ephemerides and rotation rates. Nonetheless one is tempted
to ask, for example, why it is of interest to determine the n+l st significant fig-
ures in the descriptions of planetary orbits and constants. The answer is two-
fold: Theoretically, the more accurate the measurements the more stringent
the test of the underlying physical theory; from a ‘'practical' point of view, it
was necessar:, for example, to improve the determination of the astronomical
unit of length in terms of a terrestrial unit in order to direct space probes to

the planets. We shall amplify both points in subsequent lectures.

Perhaps the most startling of the discoveries made with radar concerns the
rotation vectcrs of Mercury and Venus. Mercury's spin appears to be locked to
its orbital motion such that the spin angular velocity is three-halves the orbital
mean motion. Venus' spin is retrograde and, moreover, is apparently locked to
the Earth with Venus rotating on its axis four times, as seen by an Earth ob-
server, between successive inferior conjunctions. We shall discuss in detail
the methods used to determine the rotation rates and the theories developed in

an attempt to explain these unexpected spin-orbit resonances.

II. CHARACTERISTICS OF RADAR

We begin with a brief description of the fundamentals of radar. The word
itself is an acronym (radio Eétection_a_nd ranging) as well as a palindrome. The
mai . advantages offered by radar stem from the control that can be exercised
over the radiation. The experimenter can select (within technologicalconstraints)

the frequency, modulation, polarization, intensity, geometricalorigin, time origin,
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dircction of propagation, etc. More formally, we may denote the electric vector

of the transmitted wave in complex notation by
- . 2 A
E(t) = A(t) exp [i(2w fot + Qﬁo), p() (1)

where A(t) represents the so-called envelope or modulation of the transmitted
wave and is slowly varying with respect to fot; fo denotes the carrier frequency
and @ the initia/g. phase of the wave. The direction of polarization is indicated by
the unit vector p(t). By studying the modifications introduced into the echo, one
can estimate the motion of the target, its size, shape and surface characteristics,
as well as the properties of the intervening medium (e.g., the Earth's and planet's

atmosphere and the solar corona or interplanetary medium).

The ability to detect on Earth the reflection of a radar wave from a target

planet depends first of all on the power of the echo received. This power Pr is

expressed in the radar equation as

Gt Ar
P = P —m ——o0 (2)
r t 4xrR® 4nR®
where
7\2
Ar = 4701' : (3

The various symbols are defined as follows: P, is the transmitted power; G,

and Gr the gains of the transmitting and receiving antennas, respectively; Ar the
effective area of the receiving antenna (roughly half the geometric area); R the
distance to the target; 0its radar cross section; and A the wavelength of the re-
ceived radiation. This expression is valid only if the beamwidth of the transmit-
fing antenna (in radians, approximately }\/D, where D is the antenna diameter) is
larger than the angular size of the targe:. The derivation of the radar equation
follows essentially by inspection. The received power is obviously directly pro-
portional to the transmitted power and to the cross section of the target, suitably
defined. The energy transmitted at each instant spreads in time over the surface
of a sphere of ever increasing radius; hence the energy density will decrease with
the surface area. The power incident on the target will thus be inversely propor-
tional to 41rRZ -- the surface area of the sphere -- but modified by the anisotropy,
or concentration, of the radiated power in the direction of the target. This latter

factor is simply the antenna gain, Gt' which is related to the effective aperture,
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or area, « ~ he transmitting antenna as in Eq. (3). (The ratio of the effective to
the geometric area is called the efficiency of the antenna.) Upon reflection, the
echo signal power again spreads out; the fraction impinging on the receiving an-
tenna will be proportional to Ar/41rR2. The portion of the incident energy on the
target that is backscattered towards the antenna is described by the radar cross
scection 0 which is normalized so that Eq. (2) is valid as written; i.e., so that O
will be the geometric cross section if the target is a smooth, perfectly conduct-

ing sphere.

Ignoring questions of efficiency and assuming that the same antenna is used

both to transmit and to receive, we may recast Eq. (2) as:

4
D o
P~ P -——:' —_— . (4)
r [t 2 (41TR2)2

Except for the fact that 0 may be a function of A, the terms in square brackets
represent quantities determined exclusively by the radar system whereas the
other terms -- 0/(4'rrR2)Z -- are beyond the experimenter's control and depend

only on the properties of the target.

To maximize the received power, the most desirable parameter to adjust is
the antenna diameter whose influence grows with the fourth power. In view of
the A2 dependence, one wants the antenna to operate efficiently at as high a fre-
quency (as small a A) as possible. Of course, to utilize this capability, high-
power transmitters at these frequencies must also be available although, as can
be seen, fhe performance increases least rapidly with increases in transmitted

power.

The quantity 0/(41rR2)2 is usually termed the path loss and is conventionally
described in db/m2 (""dee bee per square meter'). That is, one expresses the
path loss L in units of square meters and calculates 10 log10 L which thus yields
the path loss in db/mz. For instance, L = 10725 ;2 implies L = -250 db/mz.
The path loss is simply a measure of the weakening of the echo due to the dis-

tance and size of the target.

The values of path loss vary greatly for the different objects in the solar sys-

tem. For the Moon, L =~ -247 db/m whereas for Venus at inferior conjunction
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(closest approach to the Earth) L ~ -314 db/mz. Thus the echo from Venus
is roughly 107 times smaller than that from the Moon. For Pluto, L =~

-400 db/rnZ and represents, logarithmically speaking, a slightly bigger step
from Venus at inferior conjunction than was the one from the Moon to Venus
Figure 1 shows path losses and two-way (round-trip) echo delays for the Sun,
planets, and some satellites as well as for the asteroid Icarus which will make

a close approach to the Earth in mid-June 1968.

The second most important factor in determining the detectability of the
echo signal is the system noise temperature which includes external contribu-
tions (e.g., sky background noise)as well as the noise of the receiver, wave-
guide losses, etc. One has herc the classical problem of detecting a weak sig-
nal in the presence of additive, gaussian noise. The feasibility of detecting
the signal depends not only on the received power and system noise tempera-
ture, but also on many other factors such as the bandwidth of the signal, the
integration time, etc. We cannot probe these details here and shall merely
point out qualitatively that to achieve detection the signal power must exceed
that of the fluctuations of the noise which implies, of course, that the experi-
menter strives for as low a system noise temperature as possible. Signals
as weak as 10'21 watts are now routinely detectable with some planetary ra-

dar facilities after several hour's integration.

The overall sensitivity of radar systems has undergone an explosive, but
nonetheless steady, growth since the end of World War II. The ability to over-
come path loss has increased, on average, by 5.5 db each year -- that is, by
almost a factor of four per year -- for the past 20 years. Continued advances
in technology show that this growth rate can be sustained, with ''reasonable"
outlays of capital (a few tens of millions of dollars), for at least another dec-
ade. Whereas the Moon was first observed by radar only in 1946 and Venus
in 1961, Pluto may well be detected by the early to middle 1970's.

At present the major instruments being used for lunar and planetary radar
astronomy are the Haystack facility of the M. I. T. Lincoln Laboratory at Tyngs-
boro, Massachusetts; the giant radar (1000-ft diameter spherical antenna) of
Cornell's Arecibo Ionospheric Observatory in Puerto Rico; and the radar sys-
tems of the C.I. T. Jet Propulsion Laboratory in Goldstone, California, The Jodrell
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‘Bank radar in England and the Crimean radar tracking facility in the U.S. S. R.
have not rccently been active in planctary radar work, presumably because of

a lack of suflficient system sensitivity.

III. TIMIS DELAYS AND DOPPLER SHIIMTS

From the characteristics of the received echo signal, many propertics of
the target may be inferred as mentioned earlier. For the moment we shall con-
centrate simply on the round-trip time delay and on the Doppler shift of the echo,
assuming that the medium between radar site and target is a vacuum. For a point
target, the time delay, by definition, is the elapsed time, as measured at the
radar site, between transmission of a signal and detection of the echo. We may
express this delay in terms of the coordinates of the radar site and target with
respect to the Sun. That is, we assume the existence of a solar ephemeris for
each body in the solar system. (We defer until Section V both a more precise
discussion of spatial and time coordinates consistent with the theory of general
relativity and the influence of the latter on the expression for time delay.) Under
the assumption that light propagates rectilinearly at a constant speed (not valid in

general relativity), the delay Tis given by

Ty = = (|t - T ]+ | Tyt - Tyl (5)

3)
where tl is the time of transmission, ty the time of reflection at the (point) target,
and t3 the time of echo reception. The position vectors f'l(tl), ;Z(tz), and ;3(1:3)
represent, respectively, the position with respect to the Sun of the radar site at ty
of the target at t,, and of the site at t3. The speed of light is denoted by c. This
expression for T looks deceptively simple. In fact, given that an echo signal was
received at t = t3, one cannot obtain a closed form solution for the time t,at which
the signal was reflected by the target -- even for circular orbits. But because
(v/c) << 1, we can use an iterative scheme which yields sufficient accuracy for
present practice after at most two iterations.

The derivation of the Doppler shift expression -- at least when general rela-
tivistic effects are neglected -- is more interesting. We consider first a deriva-
tion consistent with special relativity and employ a 4-vector notation: A“ = (Ao’ X)

with scalar products given by

AP.B“ = A B -A'B (6)
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- -

where A + B is the ordinary 3-vector (spatial) dot product. With the speed of
light sct equal to unity, the velocity 4-vector for a mass point may be written

as

Wos aade DY Dy e=1, . 7
where v is the ordinary velocity 3-vector and v.v = v2. For the propagation
of electromagnetic signals, we note that a wavefront is specified by a surface in

an inertial space-time coordinate frame; its normal, the wave number vector

k , in this frame, describes the direction of propagation and has a magnitude

such that

K, = f(L¢&) (8)
where fs is the frequency of the wave as measured in the inertial frame and e
is the unit vector in the direction of spatial propagation in this same frame.

The frequency of this wave measured by an observer whose velocity is v with

respect to this frame will be

£o= vt s fs(l-vz)'l/z (1-v-3) . 9)

Now let us assume that all times, distances, and velocities are expressed in the
rest frame of the Sun and suppose that a monochromatic wave is transmitted
from Earth at ty reflected from the planet at tys and received back on the Earth

at t3. If the frequency measured at t1 by the Earth observer (4-vector velocity

vlp' is fl, then

B 2-1/2, &~ .2
= £ (1-v 70V e

2 (10)

1

f = kpvl

where ng is the unit vector pointing from the position of the Earth.observer at
t to the position occupied by the (point) target at t,- Similarly the frequency
measured at the target at t, by an observer at rest with respect to the target

(4-vector velocity vzl"') will be given by
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. Z. - - -
£, 0= k vt o= fL(1-v )l/z(l-vz'elz) . (11)

2 nV2 2

Since, as measured by the target observer, the reflected wave has the same fre-

quency both before and after reflection we may also write f2 as

= 1 | - 1 2 '1/2 > .
fZ = kl-L vy, = fS (1 - v, ) (1 - v, e23) , (12)
where
= ' N
ki = £l (Leyy) (13)

represents the wave number 4-vector for the reflected wave with fs' being its fre-
quency as measured in the solar rest frame and eys being a unit vector in the dir-
ection from the spatial position of the target at t, to that of the Earth observer at
ts. Upon reception of the echo, the Earth observer measures

- B 2,-1/2 > 2
5= kvt o= -V (1-¥5" eyy - (14)

We seek, of course, Af = f3 - f1 which is the Doppler shift. From Egs. (l1) and

(12) we obtain

_ - o - o -1
f; = fs(l -V, elz)(l -v, e23) , (15)
which leads through Egs. (10) and (14) to
2\1/2 - o N
1-v l1-v, e l-v,- e
Moo= £ z 2 12 —2 2 ).l
l-v3 l-vl'e12 l-vz-e23
If we assume \71 = \73 and 523 ~ -_'12, we get the approximate relation
- -~ o - - o 2
Of ~ =2f1(v, - V) e, [1- (v, = v])* e, +Olv )] (17)

after simple algebraic manipulation.
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It is instructive to present an alternative form for the Doppler shift whose
derivation is based on only very fundamental principles and is applicable to elec-
tromagnetic propagation in any non-dispersive medium. Let all times and fre-
quencies now be as measured by the Earth observer. Further, let f3(t3) be the
frequency received at tgy and 'r(t3) be the two-way time delay associated with the
wave ''crest' received at ts. The next crest will be received at approximately
ty + f3-l since the time interval between the recept.ion of successive crests is
approximately the reciprocal of the number of oscillations per unit time. (The
expressmn is not necessarily exact because f (t ) is not necessarily equal to

(t + f ), i.e., the frequency f3 may be changmg with time.) These two
crests were, of course, transmitted at time ty - T(t3) and (approximately)at time
t +f3'1 - Tty +f -1

3 3
inverse of the frequency of the transmitted wave. Thus,

). These latter times are separated (approximately) by the

1

f ~ [‘c3 HETT Tty t f3'1)] - [t3 - T(t3)]

O T N TN Sl NP Rl N TR S (18)
where in the last step we replaced T(t + f ) by the first two terms of its Taylor
expansion, the dot superscript denoting d1fferent1at10n with respect to time. Now
the first part of Eq. (18) was approximate only because we treated the (finite) sep-
aration of adjacent crests. If we consider the fact that frequency is simply the
time derivative of phase and deal with infinitesimal increments of phase, this first
part can be made exact. By the same token, the last part involving only the first
two terms of the Taylor expansion will by themselves be exact in the limit when
1€3-1 is replaced by the equivalent infinitesimal phase increment. The combined
result of these two effects proves that the equation

A A (IR (19)
is, in 1act, exact and not approximate. (The only reason infinitesimal phase in-
rements were not introduced ab initio was to make clearer the basic idea behind
the derivation.) Solving Eq. (19) for Af shows that
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Af = f_-f = -fT , (20)

where all times and frequencies are measured by the observer at reception. The
corresponding equation based o time of transmission [e. g., T(t) now will repre-
sent the time delay for a wave transmitted at time t]is easily shown to be

6= -f S (21)

(1-m)

We stress again that these equations [ (20) and (21)] depend only on propagation in
a nondispersive medium so that the phase delay (delay for a particular crest) and
the group delay (T) are equal. In particular the result is independent of the theory

of gravitation assumed -- provided only that it is nondispersive.

How may the form of the Doppler shift given, say, in Eq. (20) be related to
that in Eq. (16)? Or, equivalently, how may T be expressed in terms of the v's
and e's of the solar ephemeris? We shall not attempt an exact derivation but
merely calculate T in terms of the v's and e's accurate to second order in v to
. demonstrate the equivalence betweex% Egs. (20) and (17). For v <<c, we see that

~ ’I'(t3)/2, which, in view of Eq. (5), leads to

~

t3 - tz ~ tZ - tl
Tity) = | Tplty - 3) = Ty(tg) | + | Tyt - 3) - T)(t5 - T (22)

when we again set ¢ = 1. Differentiating Eq. (22) yields

i o= d%t:) ~ (Rl =) - He] (56 - 3) - 7 )2
+. ..
~ 15 - B ITME, - £, - )
A S P A A A LA (23)
since, for example, ‘;'i = x—'; (i =132) and
o Tty - Ty)) = V(g - Tey)) [1- 7] (24)

dt3
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Solving for T and using Eq. (20) we obtain, in agreement with Eq. (16),

Bf = -f T(ty) ~ -2f e, vy -V {l-epy (v vl (25)

where, by definition,

—-
r, -r

=L 2 (26)

1
™~
—

We also assumed in the above derivation that the change in the speed of the ob-
server was negligible between ty and t3 so that the rate of the observer's clock
in this interval would be uniform with respect to that of the clock in the solar
rest frame; under this condition the differences in the times measured in the
two frames do not affect the result: the time derivative with respect to the ob-
server's time of the delay measured by the observer equals the time derivative

with respect to solar-rest-frame time of the solar-rest-frame delay.

Until now, we have considered.only point targets. Obviously, planets do not
fall into this category. The radius of a planet is typically at least six orders of
magnitude greater than the wavelength of the radiation emitted by the radar. How
then can we determine from where on the planet any particular part of the re-
ceived echo signal was reflected? It turns out that we can use time-delay and
Doppler-shift measurements to determine an almost unambiguous map of the tar-
get planet, i.e. an association of parts of the echo with their origins at physical
locations on the planet. This method utilizes the principle of delay-Doppler
mapping which we shall now describe. Assume the planet to be spherical and con-
sider the transmission from the radar and towards the target of a monochromatic,
very narrow pulse of energy. These two requirements on the transmission are
not mutually contradictory from a practical point of view since we choose the pulse
length At to satisfy A << c At << p. The first point on the target encountered by
the pulse -- the subradar point S -- lies on the surface at the intersection of the
line from the radar site to the planet's center. Hence the first part of a received
echo signal must arise from reflections at or near the subradar point. The echo
received slightly later arises from reflections from a ring or annulus on the

planet's surface, suitably displaced from S and lying in a plane perpendicular to
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the line from the radar site to the planet's center. By considering the echo as

a function of delay, we therefore have a one-dimensional mapping of the surface:
From the time of reception we know the ring from which the echo originated. If,
for example, a right-hand circularly polarized pulse is transmitted and left-hand
circularly polarized energy is received, then typically the received echo signal
power falls rapidly as a function of delay. (Recall that upon reflection from a
smooth sphere,- the direction of polarization is reversed.) Thus the reflection
is essentially specular, most of the backscattered power originating from the
first few Fresnel zones around S. Backscattering from other parts of the planet
arises primarily because of the roughness of the surface (undulations, discon-
tinuities, rocks, etc.). The longer the probing wavelength, the smoother the
planet appears (the radiation is, in effect, insensitive to roughness on a scale
much smaller than A) and the more rapidly the received power decreases with
delay. As an example, we point out that the backscattered power in a given de-
lay increment is about three orders of magnitude smaller 10 msec (two-way)
back into Venus from S than at S for A ~ 70 cm. The total two-way depth of
Venus is about 40 msec since its radius is about 6050 km (only one hemisphere,

of course, can contribute to the echo).

Now we consider the other coordinate: Doppler shift. The planet as viewed
from the radar site appears to be rotating. This rotation consists of two compo-
nents: an apparent rotation, due to the relative orbital motion of radar and tar-
get, and the inertial (or sidéreal rotation) of the planet. Thus, even were the
planet not rotating it would seem to rotate to an Earth observer who sees the
planet sweep by in space; at different times different parts of the planet's sur-
face would occupy the subradar point. Because of the rotation, each region on
the surface of the planet will impart a particular Doppler shift to its echo, de-
pending on the component of its relative velocity along the line to the radar site
[see, e. g Eq. (17)]. Since we are concerned now only with associating points
on the surface with particular Doppler shifts, it is convenient to ignore the pro-
jection along the line of sight to the radar of the relative velocity between S and
the radar site. That is, we need consider only the Doppler shifts relative to that
for S. We denote the Doppler shift for a surface point P relative to that forS by
fr(P):

f.(P) = Af(P) - AE(S) . (27)



- 80 -

Now S has the same component of velocity along the line of site to the radar as
does the planet's center of mass. Thus considering only these relative Doppler
shifts is equivalent to neglecting the contribution to the Doppler shift of the
relative translational motion of radar site and center of mass and leaving only
the contribution attributable to the total (apparent plus sidereal) rotation of the
planet about its center of mass. The corresponding total angular velocity ® will
therefore be the vector sum of the apparent u-;a and sidereal uTS contributions. If
E(P) is the radius vector from the planet's center to P, then to lowest order in

w,

£(P) = -ZfIEJ x p(P)] - .?12 = 2f1[8 x p(P)] - %3 . (28)

Referring to Figure 2, in which (ﬁ/R) = 223 ~ --‘12, we see that the relative

velocity ;r(P) can be expressed as

v.P) =8 x 5(P)
Bx (0x e,,) Uxe
= pwsin 9'{55.!1 ! -_‘—__.23— + cos @' — _.23 } (29)
w|Wx e, | W xe,,|
Hence,
:f.r(P) . 323 = - pw sin ¥ sin B' sin !
= pw sin ¥ sin 8 sin® ’ (30)

where the last step follows from the preceding by simple geometric considera-

tions (see Figure 2). Substituting into Eq. (28) yields
fr(P) = Zf1 pwsin { sin 6 sin @ . (31)

Again by simple geometry, we see that the distance of P from the - ;{ plane is

p sin 8 sin @ which implies that all points with the same value of fr lie on planes
parallel to the w- R plane, i.e. lie on rings on the surface whose planes are per-
pendicular to those of the delay rings. The projection of the visible surface onto
a plane normal to 5'23 is shown in Figure 3 where the locus of points of constant
delay appear as rings and the locus of points of constant Doppler as ''strips'. By
analyzing the echo in both delay and Doppler we can therefore construct a map of

the planet's surface. But this map has unusual properties: it is double-valued



(the same delay and Doppler coordinates correspond in general to two points on
the planet's surface as shown by the two small darkened regions in Figure 3) and
the transformation from delay-Doppler to spherical coordinates is singular at
the apparent equator as evidenced by the enlarged common area of the delay ring
and Doppler strip at the point of tangency there.

The mathematical relation between the delay-Doppler and spherical coordi-
nates is easily derived. In addition to £q. (31) we make use of che relation be-
tween the (two-way) delay T to P relative to the delay to S. From Figure 2, we

see that
cos® = 1- (cTr/Z P . (32)

The Jacobian J of the transformation can now be calculated in a straightforward

manner yielding

B('rr,fr) 2 2
J = 3.9 = 4f1wp sin ¥ sin elcoscpl
= 2 g esin P20y i 212 (3

The surface element of area is thus expressible as

2 pd'rl_dfr
p sin§d9de = . (34)
. 2 40 2.1/2
Zf(flw sin §) 'rr(——c - 'rr) - fr ]

It is clear from the above that, for a given T the possible values of fr are bounded
by
- 4p 1/2
Ifrl < flwsm\bf'rr( < -Tr)] ; (35)

that is, any given delay annulus intercepts Doppler strips whose values lie be-
tween the limits shown. Therefore the bandwidth B of the spectrum of the echo

from a given annulus is

B(1) = zflwsinwtfr(%‘!-wr)]l/z ) (36)
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If the backscattered power reflected {rom an annulus is independent of ©, then the

corresponding power spectrum P(fr,'rr) has a characteristic shape:
2

e [(2) e T mee

r
P(fr,Tr) = (37)
0 ; Ifr] > B(7)/2 »

where P(J is indcpendent of frequency. The singularity of J causes P to become in-
finite at fr = #B/2 and is useful for estimating bandwidths as will be described be-

low in connection with the determination of planetary rotation rates.

The above idealized picture of delay-Doppler mapping is, of course, not real-
ized in practice. The finite extent of the transmitted pulses, the necessity to in-
tegrate the echoes from successive pulses with proper account of relative phases,
the filters used in the receiver system, and the backscattering law obeyed by the
planet all combine in influencing the association of points on the planet's surface
with particular parts of the echo signal. These topics, however, are too compli-
cated and too far afield to delve into here. Our main point -- to show that, in
principle at least, accurate measurements could be made of time delays and Dop-
pler shifts of echoes from a particular part of a planetary target -- has nonetheless
been achieved. Our treatment was more detailed than necessary simply to estab-
lish this point because we wished at the same time to lay the groundwork for our
discussion in Section VI of the determination of planetary rotation rates from

radar data.

A theoretical discussion of the accuracy with which measurements can be made
of the time delay and Doppler shift associated with, say, the subradar point is also
beyond our scope. On the other hand, the achieved results are crucial to it. For
the planets Venus and Mercury, measurements made with the Haystack radar have
errors in time delay of only 10 pusec even when these planets are farthest from
Earth (near superior conjunction). When closest, for example, the errors in Earth-
Venus time-delay measurements are no more than about 3 psec. Near opposition
this spring, delays to the subradar point on Mars were measured with comparable
accuracy. The errors in Doppler-shift measurements range from several tenths

of a Hertz to 2 Hz, depending on conditions, Jor the Haystack value of f1 which is
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9

about 8 x 10” Hz. To show clearly the imnlication of these accuracies, we con-

sider the fractional crrors:

st 1077 sec 5% 1077 !
~ —_—— = 3
4 2 x10'sec ;
, (38)
& Af -
82 . gx1077 )

L
F

where for Af we used a radial velocity of 20 km/sec. By contrast the claimed
accuracy for determining the direction of a planet from Earth with respect to the
stellar background is about 2 x 10_6 radians. Although of a different type, the
radar time-delay measurements are thus between two and three orders of mag-
nitude more accurate than conventional optical ones. More important from the
theoretical point of view, the relative errors are no longer large compared to
vz/cz. Hence we can expect relativistic effects to be discernible thereby provid-.
ing the opportunity to subject the basic theory of gravitation -- general relativity --

to additional experimental tests.

IV. GENERAL RELATIVITY - THEORY

Before discussing the experimental tests in detail, we shall give a brief in-
troduction to general relativity. This theory was given its definitive form by
Einstein in 1916 and is unique in having achieved almost universal acceptance
with very few experimental verifications. The reasons are not hard to find. Such
was and is the reputation of Einstein that any theory bearing his imprimatur
would almost automatically be accepted until experimental proof of its deficien-
cies could be given. But experimental tests of general relativity are not easy to
come by: The differences between its predictions and those of the older theory
of gravitation -- Newton's -- are generally minuscule. So small, in fact, are the
differences that, even with modern technology, one most often requires the solar
mass to disclose these -- a far grander scale of experiment than physicists have
become accustomed to requiring. Only in the most sophisticated and sensitive

experiments will the Earth's mass suffice.

We might first enquire why Einstein felt the need to devise a theory to sup-

plant Newton's. The latter's laws of motion and gravity had proven most adequate
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for mowe than two centuries belore Linstein came upon the scene. Even today
the other lecturers at this symposium are using them without any question.  Al-
though by the beginning of the 20th Century there was a well established, albeit
small, discrcpancy between Newton's predictions and observations, Einstein's
motivation characteristically was one of fundamental principle. He objected to
Newton's law of gravity because of its action-at-a-distance feature: The force
exerted on body A at a given (Newtonian) instant by body B depends only on the
position of body B at that instant -- no matter how greatly separated A and B
might be. In other words the speed of propagation of the force was a sumed by
Newton to be infinite. This troubled Einstein because, based on his theory of
special relativity, he expected that 1 o signal (or force) could propagate faster

than the speed of light.

The primary principle used by Einstein to guide his thoughts in creating a
new theory was the so-called principle of equivalence. In its weak form, it
states that the ratio of the gravitational to the inertial mass of a body is inde-
pendent of its composition. In its strong form, the statement is that, locally,

a gravitational force is indistinguishable from an acceleration in inertial space.
That is, the effects of a gravitational field, locally, are completely equivalent

to an acceleration in inertial space. Hence any body (of small enough mass and
physical extent) would follow the same trajectory if give the same ini*’al con-
ditions -- regardless of its composition. The trajectory is not influenced by the
body traversing it, provided the body has a sufficient' y small mass. In this
sense, the trajectory is an inherent property of the space in which the body is
moving. This principle led Einstein to assume that the effect of a gravi ational
field could be adequately described by an appropriate geometry.. After some
study, he chose Riemannian geomectry as being rich enough, with the metric to be

determined by the sources of the gravitational field.

It was clear to Einstein, as well as to others, that a field equation was needed

which would be a generalization of Poisson's equation in Newtonian theory:

vV = 4nd |, (39)

with the generalization somehow incorporating a finite speed of propagation.
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[In Eq. (39), of course, V denotes the gravitational potential and d the mass.
density. A generalization involving the scalar wave equation had been devel-
oped by Nordstrém in 1911, but had failed because of an unfortunate attribute:
the predictions disagreed with cxperiment. (The wrong result was obtained
for the advance of Mercury's perihelion.) Einstein tried a tensor equation,
reasoning approximately as follows: Special relativity showed matter and en-
ergy to be equivalent and one might expect the mass density to be replaced in
the generalized equation by the total energy density from all sources. But
since the scalar theory fails and special relativity also shows energy and
momentum to be connected in a 4-vector, Einstein proposed that the appropri-
ate generalization of mass density would be the (symmetric) energy-momentum

tensor Tl-l\" The generalization of Poisson's equation would therefore look like

Guv (g}w) = K Tp.v , (40)
where the left side depends on the metric tensor gpv -- the analog of the gravi-
tational potential in Poisson's equation -- and K is a constant. (The Greek letter
indices run from 1 to 4.) What should be the form of GHV ? From the principle
of equivalence it follows that locally the effects of a gravitational field can be
transformed away (i.e., they can be nullified with an opposing acceleration in-
troduced by a suitable coordinate transformation), resulting in a locally "flat"
coordinate system. The energy momentum tensor satisfies the well known (spec-
ial relativistic) conservation law: its divergence vanishes. If we assume that
the divergence of T v vanishes identically in one coordinate system, then it
must vanish in all. The left side of Eq. (40) must then also have a vanishing
, divergence. Requiring in addition that GHV be a function only of gp\) and its

derivatives -- no higher than the second (again in analogy to Poisson's equation) --

determines the generalized field equations uniquely:

1

- = - K
Rov-7 8uoBRH2re,, T,y ° (41)

By
where Rp_vand R are, respectively, the doubly and quadruply contracted Rie-
mann curvature tensor. The undetermined constant A, termed the cosmological

constant, is usually set equal to zero; its history is interesting but again beyond
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the intentions .of this brief, heuristic development. The final field equations

are
R -3g R = -KT_ . (42)

Because of symmetry these 16 equations reduce to 10, and because the vanish-
ing of the divergence of each side yields 4 conditions (Bianchi identities), the

number of equations is effectively reduced to 6.

What about the equations of motion? In Newtonian theory we must postu-

late equations of motion separately from the field equations, viz.
mr = -9V(r) . (43)

Einstein at first also proposed separate equations of motion; in particular he
assumed that mass points would follow geodesics in the Riemannian space de-
termined by the metric tensor g’_w found from the solution to the field equa-

tions. These geodesic equations are

ax poax? ax®
2t o ds @ = ©
ds o] s s
po. 1 ps
To = 28 (85,0 " 8s,0 " &, &)
’ (44)
g %85
pC, s 3 xS
Av A
= 38
CH A
with the interval ds being given by
as? = g _axtaxV (45)
[TRY)

which is assume< to vanish (ds2 = 0) for light rays, determining thereby the

null geodesics. (Summation over repeated indices is implied in all equations.)
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In 1927 Einstein discovered an amazing fact: The equations of motion could
be derived directly from the field cquations and,as one no doubt expected, the re-
sults agreed with the previously assumed equations of motion. That the field equa-
tions should themselves determine the equations of motion could only happen with
nonlinear field equations. For linear fidd equations, as in Newtonian theory, the
applicability of the principle of superposition implies that these equations could
not determine equations of motion. The general necessary and sufficient condi-
tions for field equations to determine equations of motion have, however, not

been established.

The solutions to Einstein's equations, as is well known, are notoriously hard
to come by. The N-body problem has been considered only formally by making ex-
pansions in inverse powers of ¢ to obtain ordinary differential equations for each
stage of tﬁe expansion. The constant K is established by correspondence of the
lowest-order solution with the Newtonian result; it is simply related to the gra-
vitational constant. What to.choose for T“vis considered by some to be a moot
question. In particular Einstein remained unhappy with the marriage he brought
about between T“vand GP.\J; his attempts at solutions were always referred to
empty space whfare T v vanishes. Various schools (e.g., Fock's in the U.S. S. R.
and Infeld's in Poland) have developed which carry on bitter polemics in regard
to the proper attack on, for example, the N-body problem. Yet all get the same
result, at least up to the post- Newtonian terms which is as far as anyone has at-
tempted a detailed development. (The post-Newtonian is the approximation which

includes only the next order terms in c"1 after the Newtonian ones.)

What problems can be solved in closed form? The g}w appropriate for a
single mass point can be determined. Demanding that, outside the mass point,
the metric tensor be spherically symmetric, static (i.e., independent of time),
and "flat' at spatial infinity, one is led to the celebrated Schwarzschild exterior

solution which can be written as
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where the Latin indices run from 1 to 3. Here,Xi(i =1-3) are cartesian coor-

ds = (1-

(46)

0]

dinates and r, = (GM/cZ) is the gravitational radius of the mass point. For
the Sun
r = 1.5 km . (47)
o .

Requiring that the metric be flat (i.e., Minkowskian as in special relativity) at
spatial infinity was Einstein's method of incorporating Mach's principle which

states that (somehow) the distant matter in the universe is responsible for the

inertia of "laboratory" masses. Speaking approximately, one can say that far
from the mass point being studied (''spatial infinity')the behavior of test parti-
cles should be the same as in the inertial system postulated in special relativ-
ity, this behavior being assured by the distant matter which is really distant -~
much further than the ''spatial infinity' at which the boundary conditions are

being applied.

We may use the Schwarzschild solution in particular to study the trajector-
ies of test particles and light rays outside the Sun which represents the mass
point. But the planets are not test particles; their masses are appreciable.
How is the solution to the equations of general relativity affected by their pres-
ence ? DeSitter showed that because of the relatively slight mass of the planets,
all problems with moving bodies in the solar system could for all practical pur-

oses be treated by the ad hoc addition of the strictly Newtonian perturbations
P y y P

caused by the planets and other masses to the effect of the Schwarzschild solu-

tion for the Sun.

V. GENERAL RELATIVITY - EXPERIMENTAL TESTS

A. Equivalence of Gravitational and Inertial Mass

Except for null experiments, all tests of general relativity to date refer

strictly to predictions based on the Schwarzschild metric. The most famous
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null experiment is probably the test o the equivalence of gravitational and in-
ertial mass. Early in the 20th Century, Eotvos in essence balanced the gravi-
tational attraction of the Earth and the centrifugal force due to its rotation to

show that the ratio of gravitational to inertial mass was independent of compo-
sition to about 1 part in 108. (Incidentally, Newton himself had used a simple
pendulum apparatus to establish this result to 1 part in 103.) More recently,

Roll, Krotkov, and Dicke devised a more sensitive experiment utilizing the or-
‘bital motion of the Earth and deduced that the equivalence held to a few parts in
1011. These results imply, for example, that the gravitational and inertial
properties of electrons, neutrons, protons, and binding energies are all equivalent.

B. Classical Tests

The three ''classical' tests of general relativity -- alloriginally discussed
by Einstein -- are: (1) the red shift of the frequency of light; (2) tae deflec-
tion of the path of light rays by matter; and (3) the advance of orbital perihelia.
The first experiment concerns the predicted effect of the gravitational i)otential
on the measured frequency of a light wave. When the light wave passes from a
region of high gravitational potential (say, from near the Sun) to a region of low
potential (say, near the Earth) its measured frequency should appear red-shifted.
Of course, a violet shift is predicted for the reversed path. Since the original
proposal concerned comparing the frequency of the emission from a transition
between two given energy levels of an atom in the Sun's atmosphere, as meas-
ured on Earth, with the freque-ncy of the corresponding emission from an Earth-
based atom, this test is traditionally known as the red-shift test. Unfortunately
measurements of emissions from the Sun proved hard to deal with because of
the difficulty in accounting for the ordinary Doppler shift due to the motion of the
atoms undergoing the transitions. Use of more massive stars, in which the
Doppler shift will be relatively less important, is not a panacea because of the
difficulty in accurately estimating its mass and radius, In fact, the most accu-
rate red-shift experiment so far performed was done completely in a terrestrial
laboratory using the difference in the Earth's gravitational potential cver a 25m
path. Needless to say, extraordinarily accurate frequency measurements were
required to detelcst any effect at all, the fractional predicted change in frequency

being about 10~ By utilizing the Mdssbauer effect, which narrows the line

width of y-ray emission from an Fe 57 crystal, Pound and Rebka were able to.
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dotecey tne gravitational frequency shill and, ultimately, Pound and Snider were
able to verily the prediciions to within a 1% estimated error. Even with the aid
of the Mosshauer cilect this accomplishment was by no means trivial: the frac-
tional line-wicin of the natural emission was 10” 12. Yet with very clever and
painstaxing experimentation, it proved possible to measure frequencies to 1 part
in 10‘7 or to ! part in 10° of the natural line-widih. Despite the impressive ex-
perimental tour-de-force, the theorctical significance of this '"red-shift' result
is often minimized since the same result can be deduced directly from the (weak)
principle of equivalence and conservation of energy. The formal structure of
general relativity is not required. On the other hand, perhaps one should view
this experiment as establishing the principle o. equivalence for photons -- at
least to a 1% accuracy. About an order of magnitude higher accuracy is antici-
pated within the next few years by means of a somewhat different experiment --
the comparison of the frequency of (or, more precisely, the time kept by) an or-
biting hydrogen maser with an identical device on the ground. This experiment,

suggesied by many, is actively being developed by Ramsey and Kleppner.

The second experiment involves the prediction that the path of starlight is
defiected towards the Sun. The total change in angle a for a ray emanating far

from the Sun, passing by it, and receding to infinity is given by

(48)

where b is the impact parameter of the ray or, to a sufficient accuracy, the
distance of closest approach of the ray path to the center of the Sun. Knowing

Ty [ Eq. (47)] and the solar radius (ps ~ 7x 105 km), one easily calculates

that the maximum value of @ -- for a ray just yrazing the solar limb -- is about
1.'75. The bending is clearly not a large effect; moreover, the effect decreases
inversely with the distance of closest approach so that, for example, at only 1°
from the Sun's center, the total bending will be less than 0.'5. Attempts to ob-
serve this deflection began during the total solar eclipse of 1919 when expeditions
were sent to several parts of the world that were in the eclipse's path. Only dur-
ing a total eclipse was it felt possible to detect the deflection because, during or-
dinary daytime conditions, the glare from the scattered light in the atmosphere

prevented the detection of stars whose light rays passed near the Sun. But, even
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during a total eclipse, how could the ceflection be observed? The classical
procedure was to take photographs of the star field in the vicinity of the Sun

and measure the radial distance of each from the position corresponding to the
center of the Sun. These distances on the photographic plates are, of course,
directly related to the angular separation of the rays as they arrive at Earth.
By comparing such plate measuremeats with corresponding ones made on
photographs taken, say, six months earlier or later when the same star field

is visible near midnight on Earth, one can check to see whether the differences
in radial separation distances on the two sets of plates gre in accord with the
predicted deflections. Although straightforward in principle, this procedure
encounters a number of experimental difficulties. The results are affected sig-
nificantly by slight misalighments of plates with respect to the telescope axis,
by radial distortions of the plates, and, to a lesser extent, by the quite different,
turbulent atmospheric conditions prevailing during a total eclipse as compared
to the relatively quiescent ridnight atmosphere. Because of the infrequent oc-
currence and short duration of suitable eclipses the total observing time since
1919 has only mounted to about 90 minutes! The results have not been very
definitive. Different observers measuring the same plates and the same ob-
servers measuring different plates have all come up with different results.
More often than not, the differences are substantiallf greater than the com-
bined, quoted probable errors accompanying the results. One might reasonably
enffuire how different observers using the very same plates could obtain such
different results. The answer lies mostly in the necessity to make somewhat
subjective plate corrections to account for radial distortions. Although no star
has been observed closer than two solar radii from the Sun's-center (maximum
deflection about 0.'9), the resﬁlts are always quoted as the equivalent deflection
at the limb of the Sun, with the scaling being based on the assumption that the
deflection varies inve rsely with b as predicted by general relativity. Numeric-
ally, values ranging from 1!'6 to 2!'4 have been reported with most probable er-
rors being in the range of a few tenths of an arc-second. It is therefore usually
considered that the predictions of general relativity for this phenomenon have

been verified only semi-quantitatively, i.e. to about *25%.

Could the predicted gravitational deflection of electromagnetic waves be de-

tected with radar, say by measuring the direction of arrival of the echoes received
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from cboervaticas of a planet passing behind the Sun? One obvious advantage of
using the radio part of the spectrum would be that waiting for eclipse conditions
is not necessary. The atmospheric constituents, being small compared to the
radio waveicngths, don't cause appreciable scattering; likewise the icnosphere
is littic cause for concern at wavelengths sufficiently short compared to the criti-
cal valuc for reflection. But, examining the effective angular resolution of the
antenna (given approximately from diffraction theory by A/D), we find that the best
availzble in planetary radars is about 4' of arc or about 150 times larger than the
maximum predicted bending. It would therefore seem impossible to detect the
deflection by radar -- even if a suitable target were available. However some
months ago it occurred to me that by using a pair of separated radar receivers
(but only a single transmitter) in an interferometric arrangement, far greater
angular resolution becomes feasible. In effect, one can achieve the same angu-
lar resolution as with a giant antenna whose diameter equalled the distance be-
tween the pair forming the interferometer. Naturally, the received echo will be
weaker in the latter case; in addition there are ambiguities inherent in the inter-
ferometer configuration which are fortunately resolvable through a series of ob-
servations. The angular direction of the target is determined by a comparison of
the phases of the echo signal recorded at the two sites which of cours;aomust be

connected by a phase-stable link. With a 10-km baseline and fl ~ 107" Hz, the

angular resolution achievable in principle is on the order of 0!'01.

We may next enquire about the theoretical expression for the deflection in the
radar-planet case. A relatively simple, but somewhat cumbersome, derivation
shows that the differencem between the angles of arrival at the observer of a ray
travelling along a straight path and of one travelling along the curved path pre-

dicted by general relativity is given by

2r P r
n = TO tan<—2)+o(r—°)] , (49)
e e

where T, is the Sun-Earth observer distance and 6 is the angle between the line
from the Sun to the planet and the line from the Sun to the Earth observer. This
result for 7 is really quite surprising: it is independent of rp, the Sun-planet dis-

tance. That is, the difference in angle of arrival between rays propagating
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rectilinearly and rays following the curved, relativistic path is the same regard-
lesz of the position on a given radial line from which the electromagnetic signal
emanates. How may we understand this result? The further out on a given radius
that the planet lies, the further away from the Sun will be the point of closest ap-
proach of the ray path to the observer; hence the less will be the maximum rate of
deflection. But the further the planet lies from the origin, the longer will be the
total ray path and, consequently, the greater will be the time over which the rate
of deflection will be integrated. These two opposing tendencies just compensate.

If we take the limiting form of Eq. (49), appropriate for ray paths passing close

to the solar limb, we find

4ro T ) rerpsine
A~ =21 —P_ 3. b= <<r,r
b re+rp r%+r%-2rz cose'_ll/2 € P
e p e P

(50)
The maximum value of 1 is about 0.'75 for Venus the target planet. If we con-
sider the limit of Eq. (50) in which r_— @, we obtain agreement with Eq. (48).
However, if we let T, and r_ both approach infinity, with r,=r_, we find that
a=2n. That such a result should hold follows from the different definitions of
a and . The former represents the total deflection of a ray (i.e., the angle be-
tween the final and initial directions of propagation), whereas the latter is the
difference in angle at the receiver between the final directims of propagation of
the rays following rectilinear and curved paths, respectively. A simple draw-
ing suffices to show that a = 27Min all cases for r, = rp because of the symmetry
of the paths about the bisector of the lines that connect the Sun and planet (source)

and the Sun and Earth (observer).

One might logically wonder how the predicted deflection in the radar-planet
case could be determined operationally. After all, with radar, we do not observe
the apparent positions of the planet against the stellar background. How would
we know, for example, which angle of arrival supported the predictions of general
relativity? From other optical and radar observations‘ of the planets, all made
when the paths of the relevant electromagnetic waves never pass near the Sun, the
orbits can (and have) been determined very accurately. Hence one then knows
theoretically what angle of arrival to expect from the echo of radar signals trans-
mitted towards the planet when near superior conjunction (i.e., when the ray path
passes near the Sun). In this manner the predictions of general relativity concern-

ing deflection can be tested. Of course, the orbit calculations perforce required
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some theoretical basis and, so, what is really involved is a complicated iest of
self-consisicncy of the theory and all of the data.

Aside from problems of interpretaiion, would it be feasible in practice to
measure angles of arrival with errors substantially less than the predicted angle
T, at least near superior conjunction? An 2 priori answer to this question must
be based on a careful analysis of a number of factors, viz. the minimum possible
b considering the "blinding" effects of the Sun through the antenna sidclobes, the

effects of the Earth's atmoschere ana the solar corona, the problems of maintain-

.

ng absolute phase stability between widely separaied receivers, the angular size

of the target planet, the required radar-system sensitivity, the precise determi-
nation of receiver locations, etc. After examining all of these possible impediments
to a successful experiment, I concluded that it was most likely feasible at radar
irequencies in the vicinity of 1010 Hz. The main uncertainty concerns the proper-
ties of the Earth's atmosphere. A preliminary estimate for the accuracy achiev-

able gives a result between 10 and 15% of the predicted relativistic deflection.

With the development of highly precise atomic clocks, it will soon be feasible
to maintain phase stability between widely separated radio receivers for usefully
long periods without recalibration. That is, each site would be slaved to its own
atomic-clock standard which periodically would be recalibrated with the others to
prevent excessive phase drift. It should prove possible to perform the calibration
without the necessity of a direct radio link between the separate sites. To de-

scribe the techniques in detail would again take us too far afield.

In addition to the radar-planet possibility for measuring the gravitational
bending of the path of electromagnetic waves, passive radio interferometry might
be used for the same purpose: If point sources.in the sky are found that are
(1) periodically occulted or nearly occulted by the Sun, and (2) strong emitters of

0 Hz) radio waves, then their apparent direction in the sky

high frequency (~ 101
could be monitored in the vicinity of solar occultation to measure the gravitational
deflection of the path of the radio waves. The accuracy achievable might be on the
order of 1% of the predicted bending. The improvement over the anticipated accu-
racy from radar-planet measurements is primarily due to the point source nature
of the postulated target for the radio experiment. As in the radar proposal, the

high frequency is desirable to minimize the effects of the solar corona which have
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a frequency dependence varying as the inverse square. In principle, the coronal
effects could be measured simultancously by employing two frequencies. How-
ever if these werc chosen from regions of the spectrum much below 1010 Hz, say
by a factor of 5 or 10, then turbulence in the corona might well prove an insuper-
able barrier to precise measurements. With the use of atomic clocks, it might
eventually prove feasible to utilize interc.ntinental separations of the radio re-

ceivers.

Although not strictly relevant to our main discussion, I shall mention several
other interesting measurements that might be made with long-baseline radar or
radio interferometers. The Earth's rotation (length of the day and polaf wander-
ing) could be monitored with perhaps an order of magnitude greater precisio‘n, and
the separation of any two points on the Earth's surface could be determined with
an error of maybe only a few centimeters! This latter possibility implies that the
tidal motions of the Earth's crust could-be measured and that intercontinental
drifts of the order of a few centimeters per year would be detectable after several
years. These possible applications must of course be considered speculative at

the moment, but I strongly suspect they will be realities within a decade.

Why can't such techniques be used at optical wavelengths? The basic ob-
stacle is the Earth's atmosphere which, at optical wavelengths, produces such a
large number of rotations of the phase vector that it has,at least until now, proved
infeasible in practice to use long-baseline interferometers to improve the accu-
racy with which the angular distance between two separated point sources (stars)
could be measured. To put the matter quantitatively, the effective increase in the
optical path attributable to the atmosphere is about 10m which corresponds at
A = 5000 Ato2x 107 wavelengths, or phase vector rotations. Even if the uncer-
tainty in the optical path through the atmosphere were as low as 0. 1%, there
would still remain an ambiguous range of 2 x 104 phase rotations caused by the
atmosphere. Use of a sufficiently wide bandwidth and _ong enough integration time
to resolve the ambiguity would probably be prevented both by uncertainty in the
wavelength dependence of the atmospheric index of refraction and rapidly varying,
small-scale turbulence. One might immediately think of performing a satellite
interferometer experiment outside the effects of the Earth's atmosphere where,
in addition, one eliminates the problem of scattered sunlight. However, carry-
ing out such an experiment in orbit is immensely difficult. The pointing require-
ments have not yet been achieved, let alone the orbital precision. So far as I

know, there are no groups actively working on a design for this type of expcriment
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A different, ground-based approach is, however, actively being devecloped by

Hill and Zanoni. hey have constructed a very sophisticated optical system
where uncompensated differential refraction, multiple scattering, flexure, and
temperature effects are about an order of magnitude smaller than herctofore
achieved. By adding photoelectric scanning techniques, coherent detection elec-
tronic circuitry, and a laser interferometer, they hope to measure with high ac-
curacy the apparent position of stars near the Sun under normal daylight condi-
tions. The Sun's diameter will provide the basic unit of length. First, of course,
they raust measure the extent of the visual deviations from circular symmetry of
the Sun. Results of measuring the gravitational deflection with errors of only 1

to 2% of the predicted effect are expected to be obtained within the next few years.
It remains to be seen whether any unanticipated effects will appreciably degrade

the expected accuracy.

The third classical test of general relativity involves the prediction that the
angular position of the perihelion of the orbit of Mercury will advance about 43"
of heliocentric arc per century more than is predicted by Newtonian theory. Such
a discrepancy between observations and predictions based on Newtonian precepfs
was actually noticed decades before Einstein's birth. Leverrier in the 1850's
made a detailed study of the accumulated observations of Mercury's transits
across the solar disc. Mercury's orbit is inclined to the Earth's by about 7%
thus only when both Mercury and Earth simultaneously lie on or near the same
"'side'" of the line of intersection_of their orbital plane.s can Mercury be seen from
Earth as a silhouette against the Sun. These transits can take place in either
May or November, when Earth passes the line of intersection of the two orbits,
and actually occur about 13times each century. Observations of a transit are
traditionally concerned solely with the determination of the times of occurrence
of four events: the instant of apparent tangency of the discs of Mercury and the
Sun with Mercury '"outside' the solar disc (''first external contact"); the instant
of apparent tangency with Mercury "inside' the solar disc (''first internal con-
tact"); and the two corresponding instants as Mercury passes through the other
side of the solar limb. Such data have been obtained by astronomers at every
transit since 1677. There are two difficulties with the results. Firstly, the

clock used, until the last decade or so, was based on the Earth's rotation which
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was assumed to be uniform. We row kaow this assumption to be false and ics
effect on the data is substantial; a rclicble estimate of the errors so introduced
into the data is difficult to make, even it other observations such as of those of
the Moorn are considered. Secondli, and more importantly, the visual event to
be associated with the well-defined mathematical concept of apparent tangency
is by no mecans obvious.  Through the yeuars aitempts ‘were made by observers
of the transit phenomenon to develop unambiguous verbal descriptioas that would
lead to uniformity in the data of different observers of the same transit and of
different transits. Nonetheless, Newcomb at the end of the 19th century found
no particular a posteriori correlation between the verbal descriptions and the
data. It appeared as if the verbal references to the different visual stages did
not, in fact, serve to identify a physical stage. Thus, Newcomb estimated the
interval of ambiguity surrounding a contact to be at least 10 sec, irrespective
of any detailed descriptions of the observed phenomena. (There is also the pos-
sibility that secular drifts away from data uniformity might result from improve-
ments in equipment with time. Such changes, however, would be expected to

cancel on average for the symmetrically placed contacts.)

Leverrier had access to most of the transit data gathered from 1677 to
1848. What could be done with it? Leverrier's original purpose was to study
the long-term secular perturbations of Mercury's orbit and, for example, to
estimate the massof Venus. Of course, all of the elements of the orbits of
Mercury and Earth and their secular variations could by no means be deter-
mined from the transit data. All of the observations are made at just two dif-
ferent points of the orbits. Therefore, only certain linear combinations of the .
secular variations were well determined by the data. When Leverrier found a
relatively large discrepancy here between theory and observation, he felt the
necessity to assign it to one particular element. His reasoning, which was
mostly logical and yet to a certain extent fortuitous, led to the conclusion that
Mercury's perihelion position was moving at a rate of 36' per century greater
than expected. The expected advance was approximately 5500'" per century. .
Somewhat over 5000" are due simply to the precession of the Earth's axis of
rotation, primarily under the action of the iunar and solar gravitational torques
exerted on the Earth's equatoriai bulge. Sincc the coordinate systems conven-
tionally used by astronomers involve the intersection of the Earth's orbital
plane with its equatorial piane, these 5000 plus seconds of arc are convention-

ally attributed to the motion of planetary perihelia whereas they are perhaps
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morc properly considered as paxrt ol the motion of the astronomical coordinate
systera with respect to the "fixed” stars. The remainder of the expected secu-
lar aavance, slightly under 500" pexr century, are attributable to planetary per-
turbations, the largest being 267”/ce.1tury due to Venus and 130" /century due
to Jupiter. Except for Venus, whose mass was quite uncertain, the other plan-
etary contributions were known with more than sufficient accuracy. The pre-
cessiocn was considered reliable to within a few seconds of arc per century, and
despite the uncertainty in Venus' mass, the "observed" advance (or the equiva-
leni combination of secular changes) seemed beyond question to represent a
bona fide discrepancy with theory.. Leverrier was unable to find a satisfactory
explanation. Contemporary physicists for the most part did not concern them-
selves with the problem. The matter lay dormant for about three decades until
Newcomb reanalyzed all of the transit data through 1881. He confirmed
Leverrier's result, but found an even larger discrepancy: 42!'95 per century in
the perihelion motion. The agreement with the then unknown relativistic calcu-
lation is remarkable but not of great significance; it is clear from Newcomb's
work that the uncertainty in this result is at least of the order of 10%. Nonethe-
less, the effect was real and had to be dealt with. It was further confirmed by
Newcomb's monumental analysis in the 1890's of the meridian-circle observa-
tions of the four inner planets which disclosed about a 40' per century discrep-

ancy for the perihelion advance of Mercury.

What explanations were put forward to resolve the discrepancy? A number
were tried -- a gross error in the then accepted mass of Venus, an as yet un-
discovered planet inside the orbit of Mercury, the zodiacal dust cloud, anda far
larger than expected solar oblateness -- but all proved to have 'side effects'
which rendered them inconsistent with other astronomical data. Some people
even suggested that the inverse square law of gravitational interaction was not
quite exact and several ad hoc modifications were proposed. With the 1916 pub-
lication of general relativity the matter seemed elegantly resolved. Of course,
new impetus was thereby given to checking the observational facts and a number
of astronomers tried to reproduce Newcomb's results. Because of misintérpre-

tations and errors of various sorts, the conclusions reached for the "anomalous"
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edvaince of the perinelion varied from woouc 308" to 30" per century. The last,

and most comprehensive, treatment cisce Nawcomb's was carried out by
Clemerce who in 1943 concluded that che diilcrence beiween observation and
Newtonian tacory was 43!'0/100 yr. He judged the probable error in the result
to be 1"/100 yr, with the major contributor being the effect of the uncertainty
in Venu:z' mizss on the Newtonian predictioa of the advance. Subszcuent work by
Duncorze in the 1950's on Venus' nmiotion and, more recently, the results of the

Mariner-Venus flydy, have essentially eliminated this source of uncertainty,

additiozal advance.

The story does not end here. A few years ago Dicke revived the solar oblate-
ness idea with a slight twist. He reasoned that although the entire 43''/100 yr .
non-Newtonianadvance could not be satisfactorily explained by a solar gravitational
oblateness, 10 to 15% could be so explained without introducing any concomitant
disagreements with other orbital data. But the known mass, size, and rotation rate
of the Sun are apparently inconsistent with such a relatively large oblateness (dif-
ference between equatorial and polar moments of inertia of about 1 part in 105).

To circumvent this obstacle, Dicke proposed that all is not what it seems and that
the exterior of the Sun is effectively decoupled rotationally from the interior which
is rotating.far more rapidly with a period of between 1 and 2 days. (Such an hypo-
thesis, if valid, has the rather pleasing implication that the apparent great dispar-
ity between the distributions of angular momentum among planets and Sun is not
really sc great!) What led Dicke to make this proposal? He, and others before
him, felt that general relativity did not incorporate Mach's principle in a funda-
mental enough manner and proposed a modification in which a scalar field was
added to the tensor gravitational field, the former providing a direct coupling with
the "distant' matter. This theory, developed by Brans and Dicke, is quite simi-
lar to an earlier one of Jordan and contains an arbitrary parameter s that repre-
sents, in essence, the fraction of the total gravitational field to be ascribed to the
scalar interaction. From other arguments of a cosmological nature, Dicke con-
cluded that s would be of the order of 5 to 10%. Since the Brans-Dicke theory pre-
dicts a non-Newtonian perihelion advance differing from that of general relativity
by a factor of (1 - % s), and since the observations seemed in agreement with gen-

eral relativity, Dicke proposed that (4/3)s of the advance might really be due to an
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unexpectedly large soiar graviwdion:l quidrupole moment. Clearly an inde-
pendent measure of ihis quaatity was necced. A4s implied above, the available
orbital data werc not precise enough ic Ccrermine the solar quadrupoie mom-
ent. Although its sccular effects fall off with the inverse seven-halves power
of the orbital major axis and the gencral relativistic contribution with the in-
verse five-halves power, the in{luences on the other planets are in either case
too smzll to be reliably detected, no less distinguished. On the other hand,
the visual oblateness of the Sun might be accurately measurable. If, further,
conditions were such that the visible surface was essentially in hydrostatic
cquilibrium, then the visible surface would coincide with an equipotential sur-
face. By separating out the centrifugal contribution, a simple relation would
be obtained between the gravitational and visual oblateness. (This argument,

resurrected by Dicke, goes back at least as far as Newcomb.)

Dicke and Goldenberg, with essential design help from Hill, recently car-
ried out a very sophisticated measurement of the visual oblateness. An opti-
cal system was carefully developed to create an image of the Sun free from
systematic distortion of its shape. Then, between the image and a photodetector,
they placed a spinning opague disc with diameter slightly larger than that of
the solar image. The disc contained two ''notches' at opposite ends of a diam-
eter with the angular extent of the two notches being different but their radial
depth (inner diameter) the same.. The purpose of the inequality in angular ex-
tent was to detect any offset of the center of the disc from the center of the Sun.
A feedback loop from the photodetector, which recorded the solar light passing
through both notches, served to change the disc position to eliminate the first
harmonic of the signal (i.e., to eliminate the center offset). Since the orienta-
tion of the rapidly spinning disc was known accurately as a function of time, the
difference in the photocurrent for any two selected orientations could be moni-
tored. Two pairs were actually used: the 45° diagonals and the horizontal-
vertical directions. From such measurements both the orientation and the ob-
lateness of the (assumed) elliptical cross section of the solar image can be de-
termined. To distinguish different brightnesses from g difference in shape,
different magnifications of the solar image relative to the notched disc were
employed.' (The assumption here is that the radial spacing of contours of equal
brightness will, at least near the surface, be independec:t of the orientation of
the radial line.) A crucial test of the validity of the results is to determine
whether the measured orientation with respect to the local vertical, of, say, the
minor axis of the visual solar disc, rotates with time in the same manner as

the georactry of the situation dictates for the Sun's polar axis. The Princeton
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data passed this test and vielded a difference of cquatorial and polar diam-
ctore of 01090 + 00013, Given the assuanption of hydrostatic equilibrinm, this
difference translates into a gravitational ablafeness sufficient {o accomnt for

abont 8% of the non-Newtonian advance of NMercury's perihelion.

We are thus faced with a startling possibility: If the Princefon Measire-
ments are correct. if the inferpretation in terms of a gravitational oblatensss
of the Sun is sound, and if, finally, the defermination of the non-Newtonian
perihelion advance of Mercury is as accurate as advertised, then general rela-
fivity is not an acceptable theory of gravitation. There are no arbitrary par-
ameters in general relativity and hence none that could be allered to save the
theory. One would be forced to conclude that the 1916 prediction for the ad-
vance was right for the wrong reasons. Let us examine ecach of the "ifs" in

turn.

Although this measurement of the visual oblateness of the Sun was carried
out with extreme care, it should be realized that the observations extended
over only a few months and were all made through only one filter (red). Fur-
ther, the results obtained from the horizontal-vertical directions were affected
by systematic errors whichare not yet fully understood. (These data were eli-
minated from the final reduction.) The presence of unsuspected syste-
matic errors in the diagonal component data cannot be considered beyond doubt.
The extreme delicacy of the experiment, coupled with the relatively limited ex-
perience gained so far with this technique, imply that further measurements

certainly should be made to verify the Princeton results.

One might well enquire at this point about previous measurements of the
Sun's visual oblateness. Were these consistent with a 0.'l difference between
equatorial and polar diameters? As far as I am aware, no earlier measure-
ments yielded a significant difference.  The highest claimed accuracy
accompanied a sustained series of observations carried out in Germany by Schur
and Ambronn at the end of the last century. From heliometer measurements ex-
fending over about an 11 year solar cycle, their independent results for the equa-
torial minus polar diameter were: 0'007£0:'015(Schur)and-0:'002 £01'009 (Am-
bronn). The basis of this type of measurement is an objective, separated into

two equal parts with each producing its own image. The two halves can be moved
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so as to bring the two images into tangency, thus allowing a given diameter to
be measurced accurately. Again, all.'héugh the German observers werc very

meticulous and had long experience ‘with their instrument, the observations de-
pended directly on personal judgement and the possibility of there being syste-

matic errors substantially larger than the quoted ones is difficult to climinate.

The interpretation of the visual obiateness in terms of an oblatencss in the
gravitational potential is not nearly so simple as might at first be thought. Very
litile is really known about the physical characteristics of the photosphere and
interpretations may be strongly model dependent. Several incompatible explana-
tions have already been published concerning this conversion of a 0!'l visual ob-
lateness into a gravitational one. Moreover, the Dicke interpretation seems to
require the Sun to possess a rapidly rotating inner part. That the outer part
could be effectively decoupled is by no means clear. Of course, even less is
firmly known about the interior of the Sun than about its surface and so proposed
models are not too greatly restrained b&r observations. A number of possibilities
have been examined by fluid dynamicists who conclude that a large differential
rotation between the outer and inner parts of the Sun could not be maintained.
Although no support has yet emerged for Dicke's proposal, all agree that the case
against his two-part model can by no means be considered beyond doubt. Most
agree, as well, that without the rapidly spinning inner part, the sun's gravita-
tional oblateness could not contribute appreciably to the advance of Mercury's

perihelion.

Finally, we return to the question of the reliability of the determination of
the non-Newtonian perihelion advance. The generally accepted value, as men-
tioned,is 43.'0 +0!'4 per century. But a difference of 0!'4 in the position of peri-
helion corresponds to a maximum difference in Mercury's position (given the
same orbital period) of only about 0!'08 since its orbital eccentricity is approxi-
mately 0.2. In other words, if one were to consider two planetsinitiallylying in a
straight line with the Sun and travelling along identical orbits, exceptfora differ-
ence of 0!'4 in their arguments of perihelion, the maximum difference in heliocen-
tricangular position of the two planets would be onlyabout 0!'08 for e = 0.2. For
Mercury, viewed from the Earth, the maximum angular difference would be reduced
.from 0:'08to at most 0!'06in virtue of the Earth-Mercury separationatinferior
conjunction being four-thirds the average distance of Mercury from the Sun. (Of coursl

except for transits, Mercury is never observed optically near inferior conjunction. )
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On the otier hand, individual serics of meridian-circle observations of Mcrcury
show :prcads in residuals of between = 17 and # 2" of arc and observations of in-
dividual transits of Mercury yield contact times usually varying over more than
30 seconds (cquivalent to a spread grcater than about 4" in geocentric arc). I
fiad it quite conceivable that the systematic errors present in these observations,
or in their reductions, are large cnough to prevent meaningful deductions from being
made about centennial variations in observed angular positions of the order of
0!'06. TFor example, the Ncwcomb constant of general precession -- a key ele-
ment in the comparison of the advance of Mercury's perihelion with predictions --
is widely recognized to be in error by about 1" of arc, which is alone two and a
half times the accepted error in the perihelion motion comparison. Because of
these ?_md other doubts about the limits of reliability of the optical observations,
my colleagues Ash and Smith and I have undertaken a re-analysis of these data.
The project is a tedious one involving, for example, the conversion to machine-
readable form of over 100, 000 optical observations of the planets. We hope to

obtain at least preliminary results within a year.

Having completed our discussion of the logical chain attached to the Princeton
measurements, we may enquire how radar can be used to help resolve the con-
troversy. Ideally, we wish to distinguish between the effects on planetary orbits
that might be attributable to general relativity and those that would be caused by
a solar gravitational quadrupole moment. The secular motion of the perihelion
induced by the former varies as the inverse five-halves power of the planet's
semimajor axis whereas the corresponding motion induced by the latter decreases
with the inverse seven-halves power of a. The difficulty in basing a discrimina-
tion on this difference is clear: Although the fractional predicted differences are
large when comparing results for planet's with widely differing a's, the absolute
effect decreases very rapidly with increasing a in both cases. Nevertheless, if
radar measurements of Earth-Mercury, Earth-Venus, and Earth-Mars time-
delays are continued for about a decade with each having an uncertainty no greater
than 10 psec, it should be possible either to determine the Sun's gravitational
quadrupole moment or to place a useful upper bound on it. Preliminary calcula-
tions indicate that a solar quadrupole moment sufficient to cause a 2''/100 yr ad-
vance in Mercury's perihelion could be detected with these measurements. The

effects on Inclination and ascending node (measured with respect to the ecliptic)
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of the quadrupole moment are very difficult to detect with time-delay measure-
ments since first-order changes in those elements introduce only sccond-order
changes in the delays: the correspoading changes in orbital position occur in a

direction normal to the line-of-sight.

Artificial planets with radio transhonders could conceivably allow far
greater precision to be obtained in estimating the quadrupole moment. Aside
from the economic and political difficulties of such an enterprise, one must be
careful to insure that the desired results are not vitiated by substantial and un-
predictable effects of gas leakage from attached rocket motors and of sunlight
pressure. The latter will introduce complications to the extent that the solar
constant changes and that the orientation and reflection properties of the artifi-
cial planet are unknown. In principle these difficulties can be eliminated by en-
closing an inert ''planet' with a shield that senses the position of the planet elec-
tromagnetically and, by means of rockets, adjusts its motion to follow the purely
gravitational behavior of its partner. The pressure of the sensing radiation can
obviously be reduced to negligible proportions. In the end, the limit on accuracy
may be set by the ''noise' introduced via the gravitational perturbations of the
myriad of uncharted asteroids. In,any event, the engineering realization of a

shielded artificial planet belongs to the distant future.

The thoughtful reader might at this point begin to mull over a simple ques-
tion: Since interplanetary radio and radar observations make no reference to
the 'fixed'" stars, how can a change in perihelion position be detected? The cor-
respondingly simple answer (although not complete) is that the perihelion motion
of each observed planet can be determined with respect to the orbital position of
Earth. We have, in essence, a closed dynamical system and through interplan-
etary time-delay measurements we. can monitor the relative spin and orbital mo-
tions of each of the components. The overall orientation of the system with re-
spect to the '"fixed" stars is indeterminate and irrelevant. It is true, of course,
that at present by no means all of the planets are accessible to radar observa-

tions. But the future looks bright.

To summarize, we reiterate that radar and radio observations offer the pro-
mise -- with fulfillment expected within a decade -- of a- resolution to an accepta-
ble accuracy of the controversy raised by the specter of a possibly large solar

gravitational oblateness.
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C. Iacrease iv v Delays

s

Scveral years age it became evident that another experimental test of
general relativity was technically Zcasible. The experiment, which I suggested,
was desigred to verify the prediction that the speed of propagation of a light ray
cecrcascs as the ray passes through 2 rcgion of increasing gravitational poten-
tial. The test could be performed, for example, by measuring the round-trip
time celays oi radar signals reflected by Venus or Mercury as either passes
on the other side of the Sun from the Zarth -- the superior conjunction align-
ment. The slowing down of the propagation speed by solar gravity wolld be
manifested by an increase in the round-trip delay as the ray paths pass closer
to the solar limb. Thése increascs, of course, would be superposed on the ex-
pected delay attributable to the separation between the Earth and the target
planct. IHow may we estimate this delay effect quantitatively? For the present
illustrative purpose we may consider the two planets to remain stationary dur-

. . . . . -4
ing the round-trip travel time of the radar signal [(v/c) ~ 107"). Of course,
making such an approximation in an actual experiment would be disastrous.

Under this approximation, the round-trip coordinate-time delay is given by

P
d Ejth (51)
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where ;.e and r_ are the positions of the Earth and target planet, respectively;
and where v is the speed of propagation of the light or radar signal. The inte-
gration is to be carried out over the actual (curved) spatial path as shown in
Figure 4. We can, however, replace this path by a rectilinear one without in-
troducing any substantial error. This replacement has two effects: (1) the path
length is decreased, and (2) the gravitationzl potential is greater along the new
path. Both consecuences are easily shown to be of second order in T, and so are
negligible. For example, we note from Figure 4 that the difference in path
lengths is proportional to l1-cos mn, i.e. to nz, where mitself (the deflection) is
proportional to o Application of Fermat's principle establishes the same re-

sult. To first order in r,» We may then replace Eq. (51) by
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t:gfi{-, (52)
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Eq. (53} follows directly from Figure 4 and Eq. (46) since for light rays

d32 =0. Herec (previously set equal to unity) represents the speed of light

o

propagation far from the Sun. No loss of generality is involved by taking the

x-axis parallel to the rectilinear path between the Earth and the planet.

Integrating Eq. (52) yields
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c e P c x +tr r T
P P e P

What we seek, though, is not the coordinate-time delay but rather the expres-
sion for the proper-time delay T which is the time measured by the Earth ob-
server using, for example, an atomic clock. The interval of proper time is

given by

where 5y is the (four-dimensional) position of the Earth at transmission and s,
is the corresponding position at echo reception. For the Earth ds'2 is given by
Eq. (45) and since we assumed that the Earth remains stationary in space be-

tween transmission and reception of the radar signal, we find to first order in
r :
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where A7 represents the "excess'' delay attributable to the slowing down of
the propagation speed by solar gravity. Near superior conjunction. where'the

izupact parameter b of the ray (see¢ izure 4) is small, we find

AY ~
4z r ,/ ~’l~re T 3x vz
AT o~ =2 [ o4 = - —5T P b << T, T (57)
\ o° ‘e P
whereas near inferior conjunction
AN
4r Yoa
LT o —2 L iy b<< r,r . (58)
c ; e’ 'p

The numerical behavior of AT as a function of the Sun-Earth-planet ungle is
shown in Figures 5 and 6 for Mercury and Venus, respectively. Wc see that
the maximum "excess'' delay is about 200 usec out of a total round-trip time
2
oi nearly 2 x 10°sec--a maximum fractional increment of less than 1 part in
107. -a effect, this predicted extra delay would appear as a '"bump'' or local-
ized zweliing in the orbit of the target planet (or in the Earth's!) each time
superior conjunction is passed.

What difficulties can be expected in performing this experiment? First of
all, we must know what to expect in the absence of the extra delay; in other
vords we must know the planetary orbits. Alithough, to be sure, centuries of
optical observations have enabled these orbits to be determined to n significant

igures of accuracy, for our purposes n is not big enough. Even if it were,

,

we would still be faced with an important question: What coordinates of general
relativity correspond to the Newtonian coordinates? The numerical positions

of the planets were obtained by reducing the observations in accord with New-
tonian theory. In general relativity, there exists a rich choice of coordinate
systems (standard Schwarzschiid, isotropic, harmonic, etc.) for which the co-
ordinate values of a given observable would in general be different. Into which
of these different systems should we take over the Newtonian coordinate values ?
The answer is simply that the question is the wrong one to ask. Coordinate
values themselves have no operational significance in general relativity. The
only philosophically defensible procedure is simply to take over the observa-

tions and reprocess thom consistently in terms of the theoreticz. Zramework
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being tested which in this case is general relativity. In other words, the orbital
elements and the other unknown parameiers of the dynamical system are theory-
dependent as well as measurement-dependent numbers. This tirhe-delay test of
general relativity can therefore be viewed as a gigantic exercise in the statistical
theory of parameter estimation or hypothesis testing. We may take all of the
relevant observations and firom them determine the maximum likelihood estim-
ates of the unknown parameters. If the subsequent comparison of the observations
with the corresponding theoretical predictions (bused on the previously determined
parameter estimates) shows agreement to within the measurement errors, we

can conclude that these data are consistent with the theory. Otherwise the theory
may have to be discarded, at least in part. Clearly the data must redundantly
span the parameter space or the test will be manifestly shallow. Instead of mak-
ing such a massive self-consistency check, practical considerations allow us to
effectively separate out a test of the predicted "excess'' time delays. The param-
eters associated with the orbital motions can be determined solely from observa-
tions made far from superior conjunctions. The time-delay observations near
superior conjunction can then be compared directly against the theoretical predic-
tions. Of course, ''mear' and 'far' are relative terms and therein lies the arbi-

trariness of this procedure.

What other problems interfere with the simple-minded performance of this
experiment? A moment's reflection reveals that the plasma constituting the
solar corona will also slow the propagation of radio waves. How can this effect
on the time delays be distinguished? There seem to be at least three options open
to the experimenter. All stem from the fact that AT o’ the delay increment attri-
butable to plasma, varies with the inverse square of the frequency of the elec-
tromagnetic radiation employed:

r
ATPI ~ —f-z-' (59)

First, since general relativity is a dispersionless theory -- all radiation is pre-
dicted to have the same speed of propagation regardless of its frequency -- one
can at least in principle separate out the plasma effect by measuring simultane-
ously both the group and the phase delay of the radar signals. Second, measure-
ments of group delay simultaneously at two frequencies suffice to determine the
plasma induced delay increment. Third, use of a single, sufficiently high fre-

quency radar signal can ensure that ATp.! remains smaller than the measurement
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this last approach is the one being

o<
-

used. By employing a {-equency of 10 7 Hz, for example, the plasma incrernent
to tixe delay can be expected to remain less than 1% of the predicted gravi-

tational increment for impact parameters greater than about 3 solar radii.

In relation to the second method mentioned for circumventing plasma prob-
lems, we note that the rate of change of phase delay (i.e., the Doppl.r shift)
will have a coniribution from the gencral relativistic effect on time delay. Since
this dclay increment changes with tinte .be'cause of the relative motion of plancts
and Sun, there will be a corrcsponding increment Af . to the Doppier shift

{see Eq. (20)). Near superior conjunction, this increment can be approximated

by
8r f l r Vv -r_ v
0f o~ F 2! &P P (60)
gr c | (r_+r )b
where dar
| |
Ve,p e | . (61)

The upper sign holds Before superior conjunction when the delay increment is in-
creasing; the lower signal applies after the conjunction when the increment is de-
creasing. The magnitude of Af r decreases rapidly with an increase in impact
parameter so that for b equal to three solar radii, Af . is only about 4 Hz for
Mercury and 1 Ez for Venus at f ~ 10lo Hz. These egffects are too small to be

reliably detected at present.

Finally, we come to the important question: What are the experimental re-
sults irom the time-delay test? Unfortunately, none of significance yet. But con-
siderable progress has zlready been made in refining the necéssary estimates of
the orbits of the inner planets and associated parameters, such as planetary
masses and radii. We will describe triefly the theoretical procedures used and
then the results so far obtained by Ash, Shapiro, and Smith. Our choice of units
is for the most part in accordance with standard astronomical practice. We set
the maz s of the Sun equal to unity and take the day as the unit of time where 1
day, by our definition, equals 86, 400 seconds of atornic time. This second, in
turn, iz defined by a large, specified number of oscillations of the electromag-

netic radiation emitted by the Cesium atom in making a particular transition
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under specified conditions. In particulas our time mcasurements are synchro-
nized with the atomic time mainrtaincd at the U.S. Naval Observatory. The unit
of length, by definition one astronomical unit (2.u.), is determined by giving

the gaussian constant k its standard value: 0.01720209895.

The parameters characterizing the rotation of the Earth (precession and
nutation matnrices) are taken from standard astronomical sources with universal
ti-ne, which measures the angular orientation of the Earth, being obtained from
U.S. Naval Observatory bulletins. The theoretical positions and velocities of
the observed planets, in the chosen harmonic coordinates, are obtained by nu-
merical integration with the concomitant errors kept below 1 part in 1010 over
the intervals of interest. A variable step size, predictor-corrector algorithm
is used with initial estimates, obtained from prior work, for the initial condi-
tions and necessary parameters. The theoretical values for the radar (time-
dzalay and Doppler-shift) and optical (meridian-circie) observations are then cal-
culated and compared with the observations. New, maximum likelihood estim-
ates are obtained for all the parameters in the usual iterative manner. The es-
timated standard errors and the correlation, or moment, matrix of the param-
eter estimates are also calculated. All computations are, of course, carried

out with a high-speed digital computer.

Using U.S. Naval Observatory optical data of the Sun, Mercury, and Venus,
spanning the period from 1950 to 1965, and all of the planetary radar data ob-
tained at Lincoln Laboratory and at the Arecibo Ionospheric Observatory, through
mid-1966, we have obtained the results illustrated in Figures 7 through 12 and
Tables 1 through 4. The first of these figures shows the time dependencé of the .
osculating elements of Mercury's orbit and illustrates the perturbations attribu-
table to the other planets. One can see, for example, that the fluctuations in the
osculating semi-major axis are as great as 2 x 10_5 a.u. or about 3000 km which
is some 100 times larger than the maximum predicted effective increase in path
due to the general relativistic decrease in speed of propagation of the radar siv-
nals. Figures 8 to 10 exhibit samples of the pos:-fit residuals obtained for thc
optical data. The spread is seen to be generally on the order of 1" of arc. In
the Venus residuals a systematic error is clearly in evidence. From the corre-
lation of the sign of the residual with the illuminated part of the planet, we may

infer that the corrections made for planetary phase were probably inaccurate.
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Figures 11 and 12 show sampies of the time-delay residuals for Earth-
Mercury and Earth-Venus observations, respectively. For the Earth-Mercury
measurcments, the observed minus computed (O-C) residuals are shown for
three scis of calculations. Ia the first, the computations were based on the
epremcrides produced at the Jet Propulsion Laboratory to match Newcomb's
orbizs f{or the inne> plancts. (The values for the planetary radii and a.u. were,

however, taken fzom the soiutions based on radar data.) The residuals have

4

ides up to 4 msec. The lower two sets

large sysiematic oscillations with am
cf residuals show tihe comparisons when the orbits are fitted to the optical and
radaxr data. The two sets differ in that the calculations leading to the upper
residuals were carried out in conformity with the theory of general relativity
wicreas the 1ower residuals were based on solely -Newtonian calcuiations. The
superiority of the former is especially apparent near perihelion axd is presum-
ably attributable to the additional advance of the perihelion predicted by general

ivity. Irom Tigure 12, one can sce that for the Earth-Venus measure-

r

mcaes, the orbits fitted to the radar data yielded a solution far superior to that

obtained irom Newcomb's orbits. (For the Earth and Venus, relativistic effects

are oo small to be observable and the Newtonian and general relativity fits are

virtually indistinguishable.)

A total oI 26 parameters were adjusted in making these weighted-least-
squares fits to the radar and optical data: 18 initial conditions for the orbits of
Mercury, Venus, and the Earth-Moon barycenter; the masses of Mercury,
Verus, the Earth, the Moon, and Mars; the equatorial radii of Mercury and
Venus (assumed independent of longitude); and the a.u. In Table 1 the osculat-
ing orbital elements are given for both fits with the concomitant formal stand-
ard errors being shown in Table 2. The values for the planetary masses and
for the planetary radii and astronomical unit are contained, respectively, in
Tables 3 and 4. The radius of Venus that we obtained is seen to be substantially
smaller t:an previous estimates; the other parameter determinatios are in
rcasonable agreement with the results of other analyses. In regard to the orbital
initial conditions, the power of the radar data is shown dramatically in Table 2.
Although the time span of the radar data is several fold less than that of the op-

tical observations used, the results obtainable from the radar data for eccentricity,



-112 -

semi-major axis, and initial mean ancmaly are at least an order of magnitude
more precise. Of course, the radar cata are relatively insensitive to changes
normal to the line-of-sight; hence the valucs found for i and Q are far less pre-
cise than those deduced from the optical mcasurements alone. Combination of
both types of data yields a significant reduction in the uncertainty of the estim-

4 £
are i w.

Having determined the parameters for a given theory from the observations,
e may of course predict the results of future observations. In addition, we may
estimate the expected accuracy of these predictions in a straightforward manner
irom the formal errors in the parameter estimates. (The basic measurement
errors were assumed to be independent and gaussianly distributed with zero
means.) We applied this technique to radar data taken after mid-1966 and found
the actual prediction errors to be quasi-periodic with an amplitude approximately
five times greater than expected. Presumably the cause of these discrepancies
lies in as yet undiscovered systematic errors -- either-in the measurements, the
physical model, or the computer program! For this reason especially one should
only be surprised if future analyses do not yield any parameter estimates differ-

ing from ours by more than the standard errors.

We return now to the discussion .I the time-delay test proper. The radar
data analyzed above represented observations through the fall of 1966. We have
not been idle since. The first attempt at performing the test was made as Venus
passed through superior conjunction in November 1966. No superior conjunction
observations had been made earlier because the radar system at Haystack had to
be improved in order for useful data to be obtained at superior conjunction. The
transmitter power was increased from 100 kw to about 250 kw (the designed im-
provement envisioned a 500 kw klystron transmitter system but that figure has not
yet been achieved). The receiver system was also redesigned to yield an overall
system noise temperature of about 55°K zs opposed to the earlier value of 140°K:
The maserAreceiver (a helium-cooled ruby enclosed by a 4500-gauss supercon-
ducting magnet) contributes 8°K; the hardware losses from the internal flange of
the maser to the horn of the antenna contribute 20°K, the horn itself 7°K, and the
radome and atmosphere about ZOOK. (Heavy clouds in summer can contribute an-
other 10 to 20°K and, when the radome is wet, the system noise temgerature can
rise to about 100°K.)
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Only a few, inconclusive data points were obtained from the Venus observa-
tions in November. The next opportunity, the superior conjunction of Mcrcuzry
in January 1967, was less favorable since Mercury was low in the sky (thus cur-
tailing the daily observing time) and did hot pass closer to the Sun than two dec-
grees. Again the results were somewhat on the meager side. A massive effort,
however, was mounted for the favorable May 1967 superior conjunction of Mci-
cury. (The planet actually passed behind the Sun on the 11th.) The crew of en-
ginecers operating Haystack during this period started preparations each morning
at 4:30 a. m. and continued with the observations and data reduction until 7 p.m.
each evening. This schedule was maintained almost every day from 1 May to
23 May. The most important contributions in designing the radar system and
directing its operation were made by Pettengill, Stone, Price, Ingalls, and
Brockelman of Lincoln Laboratory. We expect to be able to publish the results
of these observations in the near future. Because of the rapid variation with time
of the predicted "excess' delays, this test should not be seriously affected by the
possible presence of (slowly-varying) systematic errors such as might be respon-

sible for the prediction errors described earlier.

Before leaving the subject of experimental general relativity, I wish to de-
scribe briefly one more of our results.and another experimental test of general

relativity that is actively being developed at Stanford University.

D. DPossible Change in Gravitational Constant

In addition to estimating the planetary orbital elements, masses, and
radii from the radar and optical data, we also introduced another parameter to
represent a possible secular change of the gravitational constant. There have
been a number of theoretical speculations since Dirac's first such conjecture in
1937 that the gravitational constant G might in fact be decreasing with time.

But even apart from theoretical arguments, it is of interest to test for a possi-
ble time dependence of G since such a dependence could have extremely impor-
tant consequences for the history of the Earth, the evolution of stars, and for
cosmological models in general. We therefore introduced an ad hoc parameter-

ized form for G:

G = G, -G(t-t ) (62)
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and cstimated the constant Go' as well as its uncertainty, from the data. Our
precliminary results indicate that ('io is less than 10—9(]0 per year. “']‘l‘u'lt is, iI
G is time dependent, it does not change by more than one part in 10/})01‘ year.
With the accumulation of three more years of Earth-Venus and Earth-Mercury
radar data at the currently achievable level of precision, we should be able to
detect reliably any change in G larger than about 5 parts in 1011 per year.
Since the main consequence of Go is to produce a change in the relative longi-
tudes of the planets, the effect will increase approximately with the squarc of

the observing interval.

E. Gyroscope Precession

The so-called gyroscope test of general relativity involves the pre-
dicted behavior of an angular momentum vector in a gravitational field. Ac-
cording to Newtonian theory, a perfectly spherical spinning gyroscope freely
falling in a gravitational field will continue to point in the same direction in
inertial space, i.e. with respect to the 'fixed'" stars. But, according to gen-
eral relativity, a freely falling angular momentum vector (gyroscope) can pre-
cess with respect to the fixed stars. This consequence of relativity theory
was recognized in 1916 by de Sitter who calculated the rate of precession of
the Earth's spin axis caused by its being in orbit about the Sun. This effect,
known as the geodesic precession, amounts to slightly less than 2'" of arc per
century for the Earth. Somewhat later, in 1918, Lense and Thirring calculated
the additional effect due to the spinning of the Sun. These theoretical results
have remained unverified for 50 years. But the outlook for an experimental
test is no longer so dim. Soon after the launching of the first artificial satel-
lite, Schiff suggested that these two predicted effects on the orientation of an
angular momentum vector might be detectable using a gyroscope in orbit about
the Earth. The calculations show that if the angular momentum vector lies in
the orbital plane, this vector will precess in the plane at a rate of about 7" /yr
when in an 800-km altitude orbit. The contribution to the gyroscope's preces-
sion from the Earth's spin is about two orders of magnitude smaller. To sep-
arate the two effects, a polar orbit can be used. With the gyroscope's spin
axis normal to the orbital plane, the precession will be due solely to the Earth's
rotation and is predicted to be about 0!'05/yr. Thus, with two gyroscopes in-

side a polar orbiting satellite -- one with its spin axis in the orbital plane, the
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other with the axis perpendicular to the plane -- the two effects can be sepac-

ated and studied simultaneously.

Ilow can such small precessions be detected reliably in the presence of
the presumably far larger effects of the ordinary torques acting on an orbiting
gyroscope ? Obviously this is not an easy experimental task. However, the
Stanford experimenters, principally FFairbank and Everitt, are undaunted and
arc developing a very sophisticated apparatus with which they hone o meas -
ure these relativistic precessions with an error of only 0. 001" /yr. The ¢s-
scnce of their approach involves the use of a superconducting thin film to coat
a nearly perfect (quartz) sphere. The prablem of determining the direction of
the angular momentum vector of a perfectly spherical gyroscope is non-trivial:
Suppose we were to create such a gyroscope and put a small scratch on it from
which Lo determine the direction of the spin axis. This scratch, to be visible,
would likely create sufficient asymmetry for the resultant gravitational torque
to cause a precession larger than the relati\;istic effect being sought! Calcula-
tions show that the gyroscope must be spherical to about 1 part in 106 and
homogeneous in density to 1 part in 105 to insure that (4 I/I) < 10”7 5, where l
is the moment of inertia and Al the maximum difference in the principal mom-

ents.

The ingenious use of superconductors, suggested by Fairbank, to sur-
mount this problem of the observer influencing the observed, can be described
briefly as follows: a spherical quartz ball is coated uniformly with a thin su-
perconducting film, spun up by gas jets, and electrostatically suspended by
three mutually perpendicular electrostatic fields, the whole apparatus being
maintained at liquid helium temperatures. A magnetic moment will be created
in the spinning superconducting film (London moment) caused in essence by the
drift of electrons with respect to the lattice ions in'the superconductor. This
magnetic moment is very precisely aligned with the angular momentum vector;
even if the body axis drifts with respect to the spin axis by one radian, no harm
is done. Measuring accurately the direction of the London moment is also non-
trivial. Superconducting circuitry and parametric amplifiers have been spec-

ially invented for this purpose.

The maintenance of superconducting temperatures around an orbiting gyro-

scope for periods of the order of one year requires that enormous amounts of
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boiled-off liquid helium must be disposcd of during the course of time. In
fact, the amount turns out to be far greater than that needed for the satellite's
attitude control system. One is thus confronted with a problem opposite to the
conventional difficulty in designing attitude control systems: How can large
amounts of gas be emitted in a controlled manner? This problem is still under

study.

The comparison of the orientation of the gyroscope with the "fixed' stars
presents a further problem. The proposed solution envisions a rigid connec-
tion between a telescope and the gyroscope mount with its read-out system.
The telescope optics and associated electronics are designed to take maximum
advantage of the good seeing conditions by ''splitting' the diffraction patterns

of the reference stars.

Although there are many other problems connected with the gyroscope test,
all are being studied and it is hoped by the experimenters that some of the com-
ponents might be tested in orbit by 1970. Actual experimental results are not

expected before the early to middle '70's.

Let us summarize the main assumptions involved in the gyroscope experi-
ment: (i) The angular momentum vector is defined by the London moment;
(ii) The reference stars used in the experiment are, with respect to their
transverse motions, 'fixed' in an inertial frame; and (iii) general relativity
gives a correct description of the precession of angular momentum vectors.
If the observations agree with predictions, one has established the self-consis-
tency of the assumptions. If results disagree, there are various possible con-
clusions. For example, the reference stars may not correspond to an inertial
frame. How could we test this possibility? We could put two or more sets of
gyroscopes in orbit simultaneously at different altitudes and observe their pre-
cession with respect to the same set of stars. In this way, we could compare
the precessional motion of one set of gyroscopes with respect to another inde-
pendently of whether or not the stars form an'inertial system. In other words,
the precession predicted by general relativity is function of the orbital altitude;
hence we can test the predictions simply by comparing relative precessions of
two or more sets of gyroscopes. The stars form a convenient intermediary
reference, but since the comparison of each gyroscope set with these stars is
made at the same time, any transverse motion of the stars will not "ruin' the

results. If the results are consistent with general relativity, then we would
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have a method for finding or forming a stellar reference system that nas the
desired inertial property. Or, put in a slightly different manner, we would
have a method (albeit very expensive!) for determining the proper motions of
stars. If, as the experimenters hope, the gyroscope pointing can be moni-
tored with a precision of 0!'001 for periods of more than a year, then this
method for the determination of an inertial stellar reference system might

eventually prove useful.

The last possible conclusion -- that general relativity is wrong -- would
only be reached after an exhaustive study had ruled out all other causes of any

observed discrepancies.

VI. AXIAL ROTATIONS OF MERCURY AND VENUS

The final topic to be discussed is the rotational motion of the planets
Mercury and Venus. We will first describe the radar techniques that have
been used to measure the rotation, or spin, vectors of these planets and then
the present status of the theories propounded to explain these anomalous axial

rotations.

A. Radar Determination of Planetary Spins

In our analysis of delay-Doppler mapping, we derived for a homo-
geneous planet the expression for power vs. frequency for the energy returned
from a particular ring on the planet [Eq. (37)]. This equation and its prede-

cessors show that the frequency extent of this spectrum, the bandwidth, is

given by
B(t) = 2f |8x e, |[7_ (287 )1/2 (62)
r 1 12 r'c r ’
where N N
w =w + w ,
a s

with ma being the apparent angular velocity attributable to the relative orbital
motion of the radar site and target planet, and with w representing the intrin-
sic or sidereal angular velocity of the planet. Our object is to determine Wy
from measurements of B(Tr)' Since the power density reaches a maximum

at each limb of the spectrum [see Eq. (37)], the signal-to-noise ratio at these
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two points is in general higher than elsewhere. Thus the bandwidth, which is
siiiply the difference of the limb frequencies, can be determined easily and
accurately from the observed spectrum corresponding to echoes from a given
ring. This fact, of course, governed our selection of the bandwidth data as the
basis for estimating ;i;s'

Since B(Tr) is proportional to the projection of ® on the plane perpendicu-

lar to o (unit vector along the line-of-sight from radar to target), we will

12 . N
have, as time goes on, different vectors w(as wa changes) projected on diffcr-

i
ent planes (as e changes). Therefore from a time series of measurements

of B( Tr), for onelzor a set of values of'rr, all three scalar parameters specify-
ing _ can be estimated in a weighted-least-squares sense. The accuracy
achievable by this method is limited essentially by the accuracy with which B
can be determined. Continuation of these measurements over an arbitrarily
long time interval will not yield arbitrarily accurate results for the average
rotation rate w- On the other hand if we could recognize and follow a feature
in the radar ''picture' of the planet, then by continued observation of the move-
ment of the feature, the average w could be estimated with an ever increasing
accuracy. Planets, like the Earth, are not homogeneous and have anomalous
scattering regions. These latter form the basis of this feature method of de-
termining planetary spin vectors. As an example, we show in Figure 13 a typi-
cal spectrum of the total radar echo from Venus obtained at Haystack. Several
features are clearly discernible. By following the position of the feature in the
spectrum, one can estimate i;s . Of course, for a given feature there are now
five unknowns: the three scalars characterizing w plus the two describing the
planetary latitude and longitude of the feature. In principle, the longer the fea-
ture is followed the more accurate will be the resultant estimate of wg. In prac-
tice, a difficulty arises. It is not always obvious that a given distortion in the
spectrum on one day corresponds to that on the spectrum for another day: The
appearance on a radar map of a given physical feature may depend importantly
on the orientation from which it is viewed. Nonetheless this method has been
used very successfully on Venus, partly because of special circumstances. At
every close approach between Earth and Venus, the latter presents essentially
the same aspect to the radar and hence features have the same appearance at

these times when the signal-to-noise ratios inthe spectra are highest.
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The reader might wonder why only the spectiral location of a feature has
been discussed. The reason is mostly historical; the first applications of the
feature method employed only spectral data. One could equally well [ollow
the positions of features in delay; in fact, with sufficiently high signai-to-noise
ratios, one can use delay-Doppler maps and follow the two-dimensional posi-
tions of features. For each additional feature, we add only two unknowns: the

o
‘three associated with ws are common to all.

What results have been obtained? We discuss Mercury first and begin with
the very interesting history of prior optical determinations of its rotation rate.
Mercury has always been notoriously difficult to observe telescopically because
of its small size and proximity to the Sun. No distinguishing features were scen
until the early 1800's when Schrdter, a German astronomer, thought he observed
mountains about 60 km high. From a series of Schréter's observations of such
features, Bessel deduced a rotation period very close to 24 hours. Some were
delighted with this result: Mercury and its fellow inner planets Earth and Maxrs
had ncarly identical sidereal spin periods. Many were skeptical. In the 1880's,
the famous Italian astronomer, Schiaparelli, maintained a long and close watch
on Mercury. He concluded that Mercury was rotating slowly and, in fact, that
its spin period was 88 days -- exactly equal to it;«s orbital period. Many were
aesthetically delighted: Mercury like the Moon always presented the same face
to its primary. Some remained skeptical. Nonetheless, every observer after
Schiaparelli -- without exception -- supported his conclusion. Less than a dec-
ade ago, a leading specialist in planetary observations claimed that the accu-
mulated series of drawings and photographs of Mercury allowed one to conclude
that the spin and orbital periods matched to better than 1 part in 104. Only
when it became possible to apply the completely objective radar bandwidth
method to determine the spin vector was this myth finally exploded. From a
series of bandwidth measurements made at Arecibo during two successive in-
ferior conjunctions in 1965 (see Figures 14 and 15), Dyce, Pettengill and I
were able to show that Mercury's sidereal spir period was only 59 * 3 days
with an axis inclined by less tharn 259 to its orbital plane. This represented
only a slight improvement over the original determination of 59 + 5 days made
by Pettengill and Dyce on the basis of data from the first conjunction only.

Since the direction of Mercury's spin is prograde, one can easily show that
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the average 'day" on Mercury is not eternally long, but rather 176 * 9 days.
Because of the large orbital eccentricity the day is rather peculiar: the direc-
tion of motion of the Sun across the sky as seen from Mercury goes through a

double reversal near perihelion.

The myths about Venus' rotation were not nearly so widely held. Because
of its thick cloud cover, which is essentially opaque to visible radiation, few
observers claimed to have seen the presumed solid surface. However, obser-
vations of Doppler shifts in the spectral lines of atmospheric components
(mainly COZ)’ led to the general belief that the rotation was slow, perhaps syn-
chronous like the Moon and, as was thought, Mercury. There were nonetheless
recent claims by Kuiper that the rotation was direct with a period of about 15
days. The first radar observations of Venus at Lincoln Laboratory and at JPL
in 1961 established that the rotation was slow with a period of about 200 days.
The direction of the rotation was not definitely established although Carpenter
and Smith independently pointed out the possibility of retrograde rotation. In
1962, with greater available radar system sensitivity, the rotation direction
was definitely established by Carpenter and Goldstein as being backwards with
the rotation period being about 250 * 40 days. Thus, on Venus the Sun rises in
the West and sets in the East. In the past few years the spin vector has been
further refined. A value of 244 =2 days was obtained from an analysis of the
1964 Arecibo bandwidth data and is illustrated in Figure 16. The curve of band-
width vs. time is seen to be a minimum at inferior conjunction. Why? Since
a).a [ see Eq. (63)]is approxirf:ately inversely proportional to the interplanetary
distance, the contribution of w, tow is a maximum at the close approach of the
two planets. But, because of the retrograde sidereal rotation, G)‘a opposes as

at inferior conjunction which leads to the minimum in bandwidth.

The most recent solution I have obtained by combining bandwidth and fea-
ture data shows the period to be 243.09 + 0. 18 days and the axis direction to
be within a few degrees of normal to Venus' plane. The solar day on Venus is
therefore 117 terrestrial days, i.e. less than its sidereal period because of the
retrograde direction of rotation. The significance of the sidereal value will be-

come obvious later.
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B. Theoretical Analysis of Spin-Orbit Resonances

The reader may have wondered how it was possible for so many ob-
servers of Mercury to have failed throughout 85 years to notice the difference
between an 88-day period and a 59-day period. Since, as Colombo was the
first to realize, 59 is almost exactly 2/3 of 88, it occurred to us that perhaps
all optical observations of features on Mercury were made at approximately
even multiples of 88 days and hence at integral multiples of 59 days. This
possibility can be ruled out rather quickly. However, if the rotation rate had
always been determined from series of observations that, in tatal, spanned
only about a decade and if each set of such observations was made at about the
same time of year (more precisely, at the favorable elongation that occurs
every third synodic period), then the 88-day result would be understandable;
The synodic period is 116 days and hence 3 synodic periods is nearly equal
to 4 orbital periods which, in turn, is nearly equal to 6 spin periods of 59 days
each. A close examination of all available data on Mercury's features showed
that not all of the rotation determinations could be explained by this numerical
relationship between the synodic and orbital periods. There were definitely
some misidentifications of features -- as well as the glaring and universal er-
ror of failing to realize that an essentially diophantine equation may have more

than one solution.

How can this ''new' 59-day rotation period of Mercury be explained? Is it
to be interpreted as a final, stable spin state or as an intermediate, transient
state? The first proposal, put forward by Peale and Gold, argued that the
present rotation state was stable. The authors reached this conclusion by
studying the effect on the spin of the tidal torque exerted by the Sun. The mag-
nitude of the tidal bulge raised by the Sun is inversely proportional to the cube
of its distance from Mercury. Similarly, the torque exerted on the bulge var-
ies with the inverse cube of the distance leading to the well-known result that
the tidal torque varies with the inverse sixth power of the Mercury-Sun dis-
tance. Of course, we must realize that if the axis of symmetry of the tidal
bulge coincided with the Mercury-Sun line, then the tidal torque would vanish.
But the cyclically varying relative attraction of the Sun on the various parts of
Mercury, due to the differences in spin and orbital angular velocities, causes

oscillations in the planet which are dissipative. These energy losses cause



the tidal bulge axis to lag behind the motion of the Sun-Mercury line and are
respounsible for a net tidal torque which opposes the spin of Mercury as seen
from the Sun. If Mercury were initially spinning rapidly and if its orbit were
circular, then given sufficient time the solar torque would slow down Mercury's
spin until its rotation and orbital periods were equal: eventually Mercury
would be locked with the same face always pointing towards the Sun. But Mer-
cury's orbit is decidedly noncircular (e ~ 0.2). What will happen with such a
large eccentricity? The orbital angular velocity of Mercury will be a maxi-
mum at perihelion, corresponding to an instantaneous period of about 56 days,
and a minimum at aphelion, corresponding to an instantaneous period of about
132 days. As soon as Mercury's spin slows sufficiently for its rotation period
to exceed 56 days, the qualitative picture changes. Near perihelion, where the
orbital angular velocity will exceed the spin angular velocity, Mercury will ap-
pear to a solar observer to reverse its direction of rotation. As a consequence,
the lagging tidal bulge will now lie on the other side of the Sun-Mercury line.
The direction of the tidal torque will therefore be reversed near perihelion.
Since the tidal interaction is most intense there, it is easy to see that the spin
period would not have to increase much above the 56-day value before the solar
tidal torque vanished when averaged over an orbital period. In other words, for
this model of the tidal torque, the sign of the torque will reverse twice during
an orbital period when the spin period lies between 56 and 132 days. Because of
the larger torque magnitude near perihelion, the average torque will be zero for
a spin period not much in excess of 56 days. Thus, Peale and Gold concluded
that the 59-day period was probably stable against further tidal evolution. In
this analysis the actual stable period could not be predicted since it was pre-

sumably dependent on the precise details of the tidal energy losses.

As we mentioned earlier, 59 days (or, more accurately, 58.65 days) is two-
thirds of Mercury's orbital period. Is this relationship merely a coincidence or
might there be more to the spin problem than is contained inthe tidai-torque model ?
Colombo suggested that perhaps Mercury's spin period is exactly two-thirds the
orbital value with the resonance lock being made possible by a permanent axial
asymmetry of the planet's moment of inertia ellipsoid -- independent of the chang-
ing asymmetry caused by the solar tidal forces. If Mercury possessed such a
deviation from axial symmetry then, even if its rotation axis were normal it its

orbital plane, the Sun would exert a torque on this permanent deformation which
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would also affect Mercury's spin. A successful model of the spin evolution

must therefore consider the actions both of this torque and of the tidal torque.

Colombo and I developed a theoretical model to study the general proper-
ties of these spin-orbit resonances, particularly the stability conditions in the
presence of tidal torques. Before describing the model in detail, we must ex-
amine a simple question: Can the torque exerted by the Sun on a permanent
deformation exceed that exerted on the tidal bulge? If the answer is negative
then the permanent deformation will not play a substantial role in the evolu-
tion of the spin state. Now, of course, we don't know either the deformation
or the tidal characteristics of Mercury and so we cannot calculate either torque.
But we can make reasonable assumptions. If the energy lost in a tidal oscilla-
tion is about 1% of the maximum stored elastic energy due to the tidal deforma-
tion (i. e., if the Q of Mercury is about 100 which is the approximate value for
the Earth) and if Mercury's permanent equatorial asymmetry is like the Moon's
(i.e., if the fractional difference in principal equatorial moments of inertia is

equal to 2 x 10-4), then a simple computation shows that

T 5
T‘E ~ 10° , (64)
t

where T_ denotes a typical value of the solar torque exerted on the permanent
deformation and Tt a typical value of the tidal torque. We therefore cannot ig-
nore Tp: It is very unlikely that our Earth-Moon analogy could be in error by

more than one or two orders of magnitude.

Although the radar data have so far shown only that the axis of rotation of
Mercury is inclined by less than 25° to the orbit normal, we shall consider
only a two-dimensional model in which the spin axis remains normal to the or-
bital plane. (It is easily shown from Euler's equations that small deviations
from perpendicularity will not alter our conclusions.) We shall assume also
that Mercury's orbit is a Keplerian ellipse -- the implications of this restric-
tion will be pointed out later. Letting 9 be the angle between the orbital semi-
major axis and Mercury's principal axis of minimum moment of inertia, we
may write the equation of motion for the spin as

co = i*'pw'r’ (65)

t?
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where C denotes the largest principal moment of inertia, assumed to be about
the polar axis. (The dot notation signifies differentiation with respect to time.)

The torque Tp has the well-known form

- 3 sin 2(8 - 1)
I - -—Z—GM@(B-A)—rB—————Q, (66)

where M9 is the solar mass, A <B are Mercury's principal equatorial mom-
ents of inertia, f is the true anomaly of Mercury's orbit, r the Sun-Mercury
distance, and & a unit vector normal to the orbital plane and positive in a nor-
therly direction. The expression for the tidal torque is less certain. We as-
sumed the lag angle of the axis of symmetry of the tidal bulge to be constant in
magnitude with its sign depending only on the relative values of the spin and or-
bital angular velocities. Remembering the inverse sixth power radial depend-

ence, we then obtain

. . A
= —T]gsign(e-i)k, (67)

r

S

where Mis a constant proportional to the lag angle and inversely proportional to

Q for small lag angles (high Q). The equation of motion can be rewritten as

§ = - B'sin2(8-f) _a sign6(9 - f) , (68)

T T

where @' is proportional to Q.1 and B' to (B-A)/C. How can one solve this
second-order highly nonlinear differential equation? Obviously no closed-form
solution exists and one must resort to approximation methods. All must take
advantage of the fact that the disturbing torques are small: the spin state is not
changed appreciably during an orbital revolution. We will limit ourselves here
to the examination of only one approach. First, we introduce new variables,

taking the mean anomaly
M = nt (69)

as the independent variable (n denotes the mean motion). Then using

2
r = 2l-e]) (70)

l+ecos f '
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where a is the orbital semimajor axis and e the eccentricity, and choosing

units in which both a and the orbital period Po are unity, we find

2 3 6
8 l1+ecosf l+ecosf

2 = '5('—"‘2‘—) sin 2(e-f)-a(——)o

sz l-e l-eZ
coign (35 - 55 ) )

where

a = 2 ; B = —B—Iz . (72) .

4 41

Since both aand B are very small, we shall solve Eq. (71) only to first order

in & and in B. We write the solution in the form
6 = 9:_)+ w")M + aela(M) + BelB(M) -fw, (73)

where the integer £ is inserted to restrict 8 to the interval (- % <8 s -121) since
dynamically we cannot distinguish a rotation of 180° when only second mom-
ents are being considered. (That is, the inertia ellipsoid is symmetrical with
respect to reflection through a plane determined by any two principal moments. )

We impose the obvious boundary conditions

T _1 4o
80) = 8 qm = % (‘zn at |, ) ' (74)
=0
and
de
_ la, B = - '
Gla,B(o) = aM IM:O wla,B(O) 0 ' |75)

Since there is no closed form expression for f(M), we use a Fourier serie: to

obtain the formal first order solution. In particular, we make use of

©
3
_ 1l +ecosf sin 2(8' +w' M-f) = E P.(e) sin([J-Zu)' M-20")
1-e o o j:-m J ° °
6 @®
1+ f . d j
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where only the positive values of j are required in the second series since the
left side is symmetric with respect to the transformation M =+ -M. The explicit
expressions for T. and P. for arbitrary j are quite complicated. Of the Tj's,
only To will be of interest to us: it is proportional to the tidal torque averaged

over an arbital period:

—gle; w < (1-e)/2/(1 + )2

-972
Tft ~ To = (1 - 02‘ h(e); (l-e)l/z/(l+e)3/2<w<(1+e)1/2/(1—e)3/2
pl
gle); w > (1+e) /% f(1-0)%/2
where K
gle) = 1+ 3e2 ’r%e4 , (78)
hie) = s [2(m-2f) - lbe sin £ 1 be’(m-2f - sin 2f )
2T c i c ’ o c
- -l3£ e3(3 sin fc - sin3 fc)
+Le? (6(m - 2f) - 8 sin2f - sin 4f }] (79)
8 c c c '
and
3/4
cosf_=e! (1-e8) W21} 05t <. (80)

[

The true anomaly fc denotes the orbital position at which the tidal torque re-
verses sign. qu W corresponding to spin periods Ps greater than 132 days or
less than 56 days, To will have a constant magnitude but a positive or negative
sign, respectively. No reversal of the sign of the tidal torque occurs during

an orbital period in either of these latter cases. As samples of the Pj values,

we write
-
u e? + 0eh ; je4
-Z—e + 0(e3) i j=3
Pj = { 1- 171e2+ 0(e4) ; j=2 (81)
—% e + 0(e3) ;=1
0 i j=0
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After onc orbital revolution the solution given formally in Eq. (73) is:

2
610.(2") = 2w To
wla(Zv) = 2w To
i 2w cos 298 sin (26(’) + 4n'u)o') - sin 29(;
8.q(2m) = P.(e) | = ;
18 = (G- zw') G - Zw(;)z
0'2 cos (2 90' + 4w w‘;) - cos 26(;
w o(2w) = - P.(e) - (82)
18 it j G - ch;)
The essential point to notice is the appearance of resonances at u)(; = (j/2);
j=...-1,0,1,2,... The strength of the resonance depends on P (e). As can

be seen from Eq. (81), except for accidental degeneracies, the lowest power
of e present in the expression for Pj(e\ increases linearly as j deviates more
(in either direction) from j = 2, the synchronous value. For e = 0.2, the reso-
nance is very strong for j = 3 which corresponds to Ps = %PO. (The orbital
period Po should not be confused with Pj(e) for j = 0.)

To study theé resonances we look for periodic first-order solutions to
Eq. (71). That is, we seek solutions for which

6 (2 = B(0) =8
(2m) (0) o
w (2m) = w(0) = wp . (83)
For an investigation near the kth resonance, we assume that
|w$-2k|<<1 , (84)

and retain only first-order terms in the difference. To this accuracy we then
find that the conditions for a periodic solution are satisfied for
AT (e, 5)
sin 26p = '——m—)— ’ (85)
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and
o, -% = - BQle) cos 26, (86)
where ©
P.(e)
= A
Q (e) j}im R . (87)

ik

For given values of k and e, there are two real solutions for Bp provided that
(0/B) is small enough. In fact, the right side of Eq. (85) is essentially

the ratio of the average tidal torque to the average torque exerted on the perman-
ent deformation and, from the discussion following Eq. (64), we expect this

ratio to be very small indeed. Of these two periodic solutions, the one with

]epl < m/4 has the principal axis of minimum moment of inertia inclined at

perihelion by less than 45° to the radius vector from the Sun.

One might wonder why W_is not exactly equal to k/2 for the resonance
solution. The answer is simply that although the average spin angular veloc-
ity exactly equals k/2 for the resonance solution, the instantaneous spin angu-

lar velocity at perihelion deviates from k/2 by the amount given in Eq. (86).

The important remaining question about these solutions concerns their
stability. This can be investigated in the usual manner by examining the be-
havior of the system in the neighborhood of the periodic solution. For
a,B<<1, it is relatively easy to show that one of the two periodic solutions is

unstable and the other asymptotically stable if and only if

BTO (e, w)

2 < 0, (88)

N F

w=

i.e., if and only if Tt (w) has a negative slope at w= k/Z.

Having developed these general characteristics of the solution to Eq. (71),
let us return to a specific examination of the implications for Mercury. Its
present rotation rate puts Mercury near (or at) the k = 3 resonance. The stable
solution here corresponds to ep ~ 0: the '"long'" equatorial axis, the one cor-
responding to the minimum moment of inertia, is inclined only slightly to the
Mercury-Sun line at perhelion. In Figure 17 we show several different orien-

tations of Mercury as it orbits the Sun under the assumption that the planet is
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locked in the k = 3 resonance. (The small value of ep at perihelion appears

to vanish because of the scale of the figure.) At successive passages through
perihelion, points a and b alternate pointing towards the Sun. These two are
the only points on Mercury's surface which, on the basis of this model, ever
have the Sun directly overhead at perihelion. We also see from the figure
that Mercury's spin angular velocity matches the orbital angular velocity very
closely for a wide arc around perihelion which accounts for the strength of
this resonance: - The slight inclination of the principal axis of minimum mom-
ent of inertia to the Sun-Mercury line is maintained approximately throughout
this region and so the corresponding contributions to the average torque are

all of the same sign.

For contrast, we show in Figure 18 the orientation of Mercury at several
orbital positions on the assumption that it is in the k = 2 (synchronous) reso-
nance. There is no close match of spin and orbital angular velocities at peri-
helion; hence, for comparable orientations at perihelion, the average torque
due to the permanent deformation, is greater for the k = 3 resonance. Fur-
thermore, for k = 3 Inequality (88) is satisfied showing that there is an asymp-

totically stable spin state for this resonance (see Figure 19).

One crucial question has yet to be answered: What is the likelihood, or
probability, that Mercury would actually be captured into the k = 3 spin-orbit
resonance state during the course of its evolution? To unde;'stand better a
discussion of this question, it is useful to describe first the behavior of the
spin state in the phase plane. Since there is only one degree of freedom --

6 -- the phase plane is two-dimensional. Without loss of generality, we may
restrict the discussion to the phase strip [ -(7/2) < 8 < (r/2)] since for our
model the dynamical system is invariant under a 180° rotation of the planet.

It is also convenient to consider only a stroboscopic view of the spin state.
Since the change in spin angular velocity W during one orbit is very small and
the change in 6 almost uniform, it is unnecessary to follow the continuous evo-
lution of the spin state. We merely indicate its value at the time of each peri-
helion passage. With this procedure, the evolution of the spin state can be
characterized by a set of points in the phase plane. Since these points will in
general be quite close together, we shall draw continuous lines through them

for the sake of simplicity.
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In Figures 20 to 22, we illustrate for several different physical conditions
the possible evolutionary behavior of the spin state in the phase plane near a
resonance. For Figure 20, the tidal torque was assumed to vanish. The stable
periodic solution is at 6 = 0 (point CZ) and the unstable one is at 6 = w/2
(point Cl). In the absence of a tidal torque the spin does not slow down secu-
larly and we do not have asymptotic stability. Each trajectory is traced and
retraced with time. For a given set of initial conditions, of course, only one
trajectory will be followed. The shape of each trajectory shown in the figure
is determined in essence by the conversion between kinetic and potential spin
energy, with the angular velocity considered relative to the resonance value.
For O near zero at perihelion, the potential energy is a minimum and the mag-
nitude of the difference between the spin angular velocity and its resonance
value is a maximum. With a constant tidal torque present tending to slow down
the spin, we have the phase-plane motion illustrated in Figure 21. Note the
gradual decrease in spin angular velocity along a trajectory relative to the be-
havior along the corresponding trajectory in Figure 20. In view of Eqs. (84)
and (85), the positions in the phase plane of the stable and unstable periodic
solutions move to the left and right, respectively, by equal amounts. Since
the tidal torque is constant in this case, the trajectories starting from, and
arriving at, Cl intersect the 8 axis (drawn at the resonance value of the spin
angular velocity) at the same point I. Here the condition (88) for asymptotic
stability is not satisfied: If the spin state initially lies outside of the trajector-
ies connecting Cl and I, subsequent evolution will not take it inside and, in
particular, the spin state will never reach the periodic solution CZ. For a non-
constant tidal torque satisfying (88) in the vicinity of the resonance spin state,
we have a situation like that shown in Figure 22. Because the tidal torque is
weaker below the 8-axis than above it, the point I separates into two as shown,
i.e. the differential tidal torque drives I to the left of I,. Any initial spin
state lying in the shaded zones will evolve so as to eventually '"lock into' the
stable periodic solution at C,. However, for an initial spin state between the
shaded zones, the subsequent evolution will not lead to the stable periodic solu-
tion; the planet will not be captured at C2 despite the existence of this asymp-
totically stable resonance state. Whether or not capture occurs will depend in
this example on the initial conditions. There exists a set for which eventual
capture is ensured and a complementary set for which the resonance 'barrier"

will be penetrated.
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A clearer understanding of the behavior of this type of dynamical system
in the vicinity of a resonance can be obtained by considering the analogy with
a pendulum suspended from a friction bearing. This analogous dynamical system,
pointed out by Counselman, illustrates the major aspects of the capture pro-
cess and we shali des<zribe it in some detail. Ignoring the fricticn in the bear-
ing upon which the pendulum swings, we obtain the well-known equation of mo-

tion

2 .
-wosme , - (89)

where

w? = £ (90)
with g being the acceleration of gravity and £ the length of the pendulum whose
attachment rod we assume to be rigid but massless. Suppose now that the rod
is attached rigidly to a circular bearing which, in turn, is in frictional contact
with a rotating shaft. (Such a pendulum device can be constructed easily by
connecting a rod to the shaft of an ordinary table fan, as' was done by Counsel-
man.) What torque will the rotating shaft exert on the pendulum rod? For sim-
plicity we assume the torque Ts to be proportional to the difference between
the angular velocity ws' of the rotating shaft and the angular velocity 8 of the pen-
dulum. That the torque should depend on the difference is reasonable: Were
the two angular velocities equal, there would be no relative motion and, hence,
we would expect no frictional torque. For this model, the equation of motion
becomes .

6 = -wlty -8 91

where y is simply a coupling constant, and where the positive direction of rota-
tion of the pendulum is opposite to direction of rotation of the shaft fi.e., u)s' in
Eq. (91) is negative]. Replacing u)s' by its absolute value w yields

.o

-— 2 T A
= -wo sme-'y(ws+9) , (92)

and shows that the torque exerted by the shaft is greatest when pendulum and

shaft rotate in opposite directions. To make the model similar to the planetary
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situation, we assume ywg << woz which is the analog of @ << B, We also as-
sume that g is constant, the shaft's motion being primarily controlled by a
powerful external agency (say, the fan's motor).

If the pendulum is moving in the direction of increasing 6 with sufficient
angular velocity, it will go "over the top', i.e. the pendulum will rotate. The
shaft's torque will then oppose the rotation and tend to slow it down. Suppose
that, after a time, the pendulum has slowed sufficiently so that it just manages
to go over the top, i.e. so that at the top the angular speed is essentially zero.

The total energy E at this position will then be solely potential:
_ 2 _ 2
E(0=m) ~ -w cosm = uw (93)

where the value for E follows from the firat integral of Eq. (92) with the last
term ignored. On the next swing, with the torque due to the shaft still oppos-
ing the motion, the pendulum will not return all the way to the top but will stop

and reverse direction at an orientation
6 = w-A8 , (94)

where A8 is small and represents the energy lost by the pendulum due to the

frictional contact with the shaft:

. }2
E(6=m)~ E(6 =w-48) =~ wi(l - cos 48) ~ wi Aze

m-AB w-48
~ J. T_do=vy | (2m-88)w_+ f bas|.
or 8 8 >
(95)

To evaluate the integral we invoke our assumption that the friction torque does
not affect the motion appreciably during any given orbit and we replace 8 by its

value for y = 0:

6 =‘w°[2(1+c059)]1/2 ) (96)
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Hence, we easily find the desired expression for 48 in terms of v, ws, and LUO:

1/2
2( ylmw_ + Zwo)]

48 =~ m . (97)
(<)

Now suppose that the pendulum slowed down until, when at the top of its swing,

its kinetic energy was 6 E. Then, provided that
T
5E<[fTsd6| ) (98)
1

the pendulum during the ensuing swing will stop and reverse its direction of mo-

tion at an angle 6 = 7 - (A0 - 88) where

6 E
2w0[ y(mw, - Zwo)]l/z

80 ~ (99)

When Inequality (98) is an equality, the pendulum just makes the return to the
top (i.e., 68 =A0). We have therefore established that friction causes the ini-
tially rotating pendulum to reverse direction for the first time at an angle 6
satisfying w - 48 < 8 < w. What happens next? With the direction of swing
reversed, the torque T, now acts in the same direction in which the pendulum
is moving and feeds energy to the pendulum. There will be some critical
angle 66c such that if the pendulum first stops at 8 = v - 69c, then T will feed
in just enough energy to allow the pendulum to again reach the top of its swing
but this time while travelling in the opposite direction. Using the same energy
arguments as before we find

20y (vu, - Zu)o)ll/z

éec =~ m , (100)
o

which is identical with the expression for A8 except that Zu)o is replaced by -2 o
in the numerator. This crucial difference occurs because the -yé part of Ts al-
ways opposes the motion of the pendulum whereas the YW, part either opposes or

aids depending on the direction of pendulum motion.
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The following conclusions should now be apparent: If the pendulum first
stops at a value of 6 satisfying ™ <8 s = - éec, then in its reverse swing T_
will add enough energy for the pendulum to go "over the top". The pendulum
will then continue to receive energy from Ts and will rotate faster and faster
in a direction opposite to the original one. This condition is the analog to the
penetration of the resonance 'barrier'. If, on the other hand, the pendulum
first stops at a value of 8 satisfying 7 - Bec <8 < w- A8, then Ts cannot add
enough energy on the reverse swing for the pendulum to reach the top. Instead,
the pendulum will again stop, but at a value of 8 satisfying -m <8 < -(w-A6 + 69(.)'
The motion will again reverse with the maximum value of6 achievable being
smaller than for the previous oscillation. We have, therefore, the conditions
for damped oscillations and the pendulum will eventwlly come to rest at a
(negative) value of 8 where the gravity torque is just balanced by Ts' This final

configuration is the analog of capture into the spin-orbit resonance.

Let us re-emphasize the reason for there being damped oscillations. On
the clockwise part of the swing, the pendulum gains energy proportional to
2y (1'ruJ8 - Zu)o) but on the counterclockwise return trip, it loses energy propor-
tional to -Zy(wws + Zwo), where the proportionality constant is essentially the
same for both parts of a given oscillation. The Z-y'rrws contributions cancel:
the constant part of T$ does not contribute to the damping. The 4‘yw° losses
however, always accumulate causing the damping and representing that part

of Ts which allows the analog to Inequality (88) to be satisfied.

The question of whether capture or penetration will occur rests with the
initial conditions. We may speak of the probability of capture if we assign
a priori probabilities to the possible initial conditions. For example, if we
assume all values of 5 E[see Eq. (98)]to be equally probable, then the capture
probability for our model will be

6ec Zwo
b, = l-gf o~ =2 (101)
¢ 8 w <<n g

and the penetration probability pp will be
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68 TW - 2W 1/2
= 1. S = S °
Py 55 T, 70,
2w
~ - % (102)

Having completed our discussion of the pendulum analogy, we return to
our discussion of Mercury's axial rotation. From Figure 19, we see that
Inequaltiy (88) is satisfied in the vicinity of the k = 3 resonance. Hence, for
our model of the tidal torque and with the given orbital conditions, the capture
of Mercury into the three-halves spin-orbit resonance state is possible. For
the higher-order resonances, there is no possibility of capture under these
assumptions because Inequality (88) is not satisfied for k > 3. The first cal-
culations of the probability of Mercury's being captured into a resonance spin
state were carried out by Goldreich and Peale. They assumed an a priori
distribution of initial conditions that corresponded in essence to the assump-
tion that all values of SE [see Eq. (98) and accompanying discussion] were
equally probable. Using reasonable values for the Q of Mercury and several
different models for the tidal torque, Goldreich and Peale showed that for
e = 0.2 a substantial probability of capture into the k = 3 resonance exists
only for [(B-A)/C] ~ 10-4. In other words, a fairly substantial axial asym-
metry of the inertia ellipsoid is required for the probability of capture to be
appreciable under these circumstances. These calculations were all based
on the assumption that Mercury's orbit remains constant during the capture
process. But the eccentricity -- the most important element -- is known to
undergo oscillations caused by the perturbations of the other planets. The
period of these oscillations seems to be neither very long nor very short rela-
tive to the time for capture to take place, given that the spin state is already
in the vicinity of the resonance. To obtain more reliable results, these ec-

centricity variations must be considered.

In summary, we can say that considerable theoretical progress has been
made in understanding the process of Mercury's capture into a spin-orbit
resonance -- if indeed it is so captured -- but that some aspects remain to be

investigated. To connect this discussion with the earlier ones, we remark
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that the spin-orbit resonance coupling also contributes to the advance of
Mercury's perihelion. When planetary observations become capable of dis-
tinguishing advances as small as 0!'01 per century, this coupling effect must
be considered in testing general relativity to this level of accuracy. Convers-
ely, given that general relativity is correct, such measurements provide an-
other means for the estimation of the differences in Mercury's principal mom-

ents of inertia.

The spin of Venus is even more interesting than Mercury's. The sidereal
period of the retrograde rotation of Venus, as was pointed out earlier, is very
nearly 243.1 days. This period is remarkable because it implies that Venus
presents essentially the same face to the Earth at every inferior conjunction.
Put more starkly, the Earth -- not the Sun -- appears to control the spin of
Venus. The resonance between Venus' spin and the relative orbital motions
of the Earth and Venus is precise for a period of 243.16; the measured value
is in agreement to about 1 part in 103 which seems too close to be simply a
coincidence. How can we explain Venus' capture into such a resonance spin
state? We may develop a simple model as for Mercury but with the addition
of the torque T (E) exerted by the Earth on the permar;ent axial asymmetry
of Venus. There are, of course, other torques; for example, the torque ex-
erted by the Earth on the tidal bulge raised by the Sun. However, simple
order-of-magnitude estimates suffice to show that each of these tidal-torque
combinations is negligible except for the Sun's torque on the solar-induced

bulge.

Unfortunately, there is not sufficient time remaining to develop the mathe-
matical analysis of the evolution of Venus' spin state. Only a brief, qualita-
tive discussion is possible. First we note that for Venus' spin to be held in a
resonance 'lock'' by the Earth, the average T (E) must exceed the solar tidal
torque. Otherwise, the Earth's torque could not possibly prevent penetration
of the resonance. If we assume that Venus' primordial spin rate was rapid
(period = 1 day) and that the solar tidal torque has remained approximately

constant over Venus' lifetime (~5 x 109 yr), then for T (E) to exceed the tidal
torque the fractional difference in Venus' equatorial moments of inertia would
have to be about 10“3 -- a very large and difficult to understand value. By as-

suming either that Venus did not have a rapid primordial spin or that the tidal
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torque was much larger in the past, we can relax this requirement to
[(B-a)/C] 2 107%,
to be ''unreasonably' high. One might also wonder whether the solar torque

Any smaller value would require the present Q of Venus

exerted on this permanent asymmetry would not overwhelm the Earth's torque
since, on an instantaneous basis, the former is at least 10~ times larger. In
the close vicinity of an Earth resonance, however, the average solar torque
vanishes, whereas the average Earth torque does not. A further problem
arises when we consider the question of capture probabilities and asymptotic
stability. For the tidal torque model considered in the Mercury analysis, the
average value will be independent of W for retrograde orbits. Hence, Inequal-
ity (88) cannot be satisfied and capture is not possible. To circumvent this dif-
ficulty, ‘Bellomo, Colombo, and I introduced a generalized viscous tidal torque
model for which Inequality (88) would be satisfied. More recently, Goldreich
and Peale have.proposed that Venus might have a core. By considering a two-
degree of freedom problem (one orientation variable each for core and mantle)
with a simple form for the coupling between the two parts, they calculated proba-
bilities for capture into Earth-controlled spin resonance states. If the coupling
is such that the response time of the core to changes in the motion of the mantle
is about 3 x 104 years, then the maximum capture probabilities are obtained.

These are still quite small -- less than 0.1, but certainly not negligible.

The final, and perhaps most important, question to be answered is: How
did Venus' spin state evolve to the neighborhood of the 243-day-period resonance
value? If Venus had a primordial, direct rotation like almost all the other plan-
ets, then, because of its small orbital eccentricity, Venus should have been cap-
tured into the k = 2 (synchronous) resonance with the Sun. It is hard to imagine
any continuously-acting torque that would have prevented capture into this reso-
nance and yet allowed capture into the Earth resonance. One could, however,
invoke an 'impulsive torque by imagining that after Venus evolved to the synchro-
nous resonance it collided with about a 200-km-diameter asteroid which produced
a retrograde spin of magnitude close to the Earth resonance value. Such a cata-
clysmic event has the additional pleasing featurg of providing a possible explana-
tion for the ratl}er high value of (B-A)/C required for Venus' spin to be controlled
by the Earth.
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Since we know so little about the formation of the planets, we can also pos-
tulate that Venus' spin was originally retrograde. Although the core-mantle
model developed by Goldreich and Peale leads to a relatively small probability
of capture into any given Earth resonance, the probability that Venus' spin will
be captured into some Earth resonance state as its rotation slows becomes
more substantial. (Because Venus' orbital eccentricity seems to remain very
low, the likelihood of permanent capture into, say, the k = -2 Sun resonance is
small.) Despite this substantial progress, further study -- both theoretical and
experimental -- is required before the spin of Venus can be considered well un-

derstood.

Since radar astronomy has revivified the study of the spin and orbital mo-
tions of the planets, we can expect in the next few years to obtain a deeper un-
derstanding of the evolution of planetary spins as well as more definitive tests

of the underlying theory of gravitation.
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FIGURE CAPTIONS

Figure 1: Radar path losses for solar-system targets as a function of echo
delay. Minimum values associated with most and least favorable
dates are shown for Mars and Mercury. Dotted bars and brackets
indicate targets whose radar cross sections are unknown or highly
variable; the values plotted were obtained under the assumption of
10% reflectivity and are given for reference only. The point for the
minor planet refers to the close approach to earth on the date shogm’,
For comparison, note that the path loss for the moon is 247 db/m*,

Figure 2: Spherical-coordinate systems relating an arbitrary point P on the
surface of the planet to the direction R of the radar site and that of
the apparent angular velocity vector w.

Figure 3: Illustration of the principle of delay-Doppler mapping with the visi-
ble hemisphere of the planet projected on a plane normal to the
radar-planet line.

Figure 4: Geometric path of a radar pulse travelling between the Earth and a
planet.

Figure 5: Effect of general relativity on Earth-Mercury time delays.
Figure 6: Effect of general relativity on Earth-Venus time delays.

Figure 7: Time dependence of the deviation from initial values of the general
relativistic osculating orbital elements of Mercury. (The values of
semimajor axis and eccentricity are not zero at the initial time
solely due to a slight translation error in placing the horizontal
scale.) -

Figure 8: Sample of the residuals (cbserved minus computed:O-C) of the
Earth-Sun optical observations obtained from a solution consistent
with general relativity. (Note that time increases from right to
left.)

Figure 9: Same as Figure 8, except that the data refer to Earth-Venus obser-
vations. Note the systematic errors in the right-ascension resid-
uals which indicate that the limb-to-center corrections for Venus
need modification.

Figure 10: Same as Figure 8, except that the data refer to Earth-Mercury op-
tical observations.

Figure 11: Residuals (O-C) of Earth-Mercury time-delay measurements ob-
tained by comparison with (1) the JPL ephemerides; (2)a solution
consistent with general relativity; and (3) a solution consistent with
Newtonian theory. The JPL ephemerides are essentially Newcomb's
orbits.

Figure 12: Same as Figure 11, except that the residuals refer to Earth-Venus
time-delay measurements. The Newtonian solution, being not ap-
preciably different from the relativistic one, has been omitted.



Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Figure 21:

Figure 22:
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Spectrum of 7750 MHz radar waves reflected from Venus and
received at Haystack., Features correspond to those observed
at other frequencies.

Spectra of radar echoes from Mercury as a function of delay
relative to the subradar point. Amplitudes have been scaled in-
versely by the factors listed in the right-hand column. The
transmitted pulses were 100 psec long; thus the spectra are es-
sentially independent of each other. Error bars representing
plus and minus one standard deviation of the measurement noise
are shown near the left edge of each spectrum. The arrows in-
dicate the expected positions of the edges of the spectra assum-
ing a sidereal rotation period of 59 days with the rotation axis
directed normal to Mercury's plane. These spectra were ob-
tained at 430 MHz by the Arecibo Ionospheric Observatory.

Determination of the rotation period of Mercury from observa-
tions taken at the Arecibo Ionospheric Observatory. Radar data
similar to those shown in Fig. 14 were used to infer the band-
widths corresponding to reflections from the edges of the appar-
ent disc. In the least-squares solution (upper dashed curves) the
rotation axis was constrained to lie perpendicular to Mercury's
orbital plane because of the limited accuracy of the available data.
Removing this constraint changes the estimated rotation period
by less than the quoted error of + 3 days,

Same as Figure 15, except that (1) the data refer to observations _
of Venus made during 1964, and (2) the rotation axis and the rota-
tion period were determined simultaneously from the least-mean-
square fit to the data.

Expected orientation of Mercury's axis of minimum moment of
inertia as a function of orbital position for the k = 3 resonance
spin state [Ps = (2/3)p0 ~ 58.65 days].

Same as Figure 17, except that the orientations shown refer to
the k = 2 (synchronous) resonance.

Curves of the average values of Tt and T_ vs. w(Ee/n) for e = 0.2,
Two curves are shown for T, one wit 60 = 459 and the other
with 8, = -45°. The ordinate scale is arbitrary and, in particular,
the ordinates of T, and T are not drawn to the same scale. The
width of the resonances shown for T _are meant only to be sug-
gestive. P

Ilustration of the phase-plane behavior of the spin state at suc-
cessive perihelion passages in the absence of a tidal torque. For
convenience, continuous curves are shown instead of points.

Same as Figure 20, except that here a constant tidal torque is as-
sumed to be present. :

Same as Figure 21, except that here the average tidal torque is
assumed to have a negative derivative with respect to the spin an-
gular velocity.
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ORIENTATION OF MERCURY'S AXIS OF MINIMUM
MOMENT OF INERTIA
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APPLICATIONS OF THE RESTRICTED PROBLEM OF THREE BODIES
IN SPACE RESEARCH
by
V.Szebehely (University-Yale)

1. Statement of the problem

The problem under discussion is the restricted circular planar pro-
blem of three bodies (probléme restreint) , Two bodies (assumed to be point
masses and called primaries) revolve around their center of mass in circu-
lar orbits under the influence of their mutual gravitational attraction. A
third body (attracted by the previous two but not influencing their motion)
moves in the plane defined by the two revolving bodies . The problem is to

determine the motion of this third body .

The literature often refers to the restricted problem when the prima-
ries move on conic sections and in order to further specify their motion
we speak of the circularrestricted problem. Conventions, however, are not
well established since some authors exclude all noncircular motion of the

primaries when speaking about the restricted problem.

If the initial position vector and velocity vector of the third body is
in the plane of the motion of the primaries, there will be no force direc-
ted out of this plane and the motion of the third body will take place in
this plane. It is generally accepted that the term "restricted problem" refer-
to the three degrees of freedom (i.e. three dimensional motion)case, so the

further specification, "planar" is necessary .

2. Equations of motion

Let the masses of the two primary bodies be m1 and m2 , their

angular velocity n, and their distance Z (see figurel) . Then

(1) KEM=n® £
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where M = m, + m, and k is the Gaussian constant of gravitation .

The center of mass of the system is located on the line connecting

m_. and m_, and its distance from m2 and m1 , is respectively
2 a-ml[ b=m2£ /=a+b
(2) T = .

Taking the origin of a fixed inertial coordinate system (X, Y) at the
¥
center of mass, and using t for time, the equations of motion referred to

this system will be
a?x _OF sz _JF
a#  OX T gE o

3)

where F is Poincaré's™orce function" or the negative potential energy and it

is given by

2 m1 m2>
4 F =k — + —_—
@ (sq e,

with Pl’ and g) being the distances between the primaries and the third body.

2
Y| P
”

nt

my a © —=X

Figure 1 ., Planar Circular Restricted Problem in Fixed (X, Y)
and Rotating (g, '2 ) €oordinate Systems



- 173 -
V.Szebehely

Introducing a uniformly rotating coordinate system ( Y s }2 ) with ori-

gin at the mass center so that m, and m2 are located on the § axis

with coordinates (b, o) and (-a, 0), the equations of motion become

o, a1 _2F
(5) ap? i 9%

2

N L, 9F Ot

délz dt* 9'7

1 2 2, 2
(6) where F"‘=F+-2- n® (¥ )

2 2 2 2 2 2

= - = + q

(7) and @ (F-»° +q°% ¢, (f+2)7 + "
The introduction of nondimensional quantities simplifies the equations .

Let
x= /0y =L, & =g/, r,=0/0 .

(8) m
_ L 4 _ 2
t=nt ,and/b——ﬁ.

The equations of motion in nondimensional form are:

dt dt 0 X
(9) —
dy L, dx _ 0@
5 s
dt dt y
- 1 2 2 A 1-AL F¥
where Q = - (x +y )+ + = (10)
2 r, r 2 n2

2
(11) andrf =(x-/a,) +y2, rg =(x+l-/1.4,)2 + y2

Equations 9 , 10 and 11 represent the problem in conventional non-
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dimensional quantities. The corresponding physical picture is as follows
(see Figure 2): the two primary bodies are located on the x axis which
rotates with a uniform angular velocity. The coordinates of the primaries
are Pl(,u, o) and P2 (M-1,0). The masses are 1- A and M with
0 é/» < 1. The distance between the primaries, their total mass, their an-

gular velocity and the gravitational constant are unity.

The Jacobi integral is obtained by multiplying the first of equations

(9) by. 2 dx/dt, the second by 2 dy/dt and adding :
2 2
dx dy ) - =
= + [ == = -
(12) ,(dt) (dt 22-cC ,
wrere C 1is the constant of integration.

y P

—-.—_’x

) (p-1,0)
MASS:u

Figure 2. Planar Circular Restricted Problem in Nondimensional Rotating
System
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We note that accordi‘ng to equations (9) the partial derivatives of Q
completely determine the problem, therefore by adding a constant to the
expression for Q - as given equation (10) - will not change equations
(9) , but it will influence the value of C in equation (12) . A symmetrical

form of 2 is obtained by adding the constant quantity :

1
3 AL -

= — 1
to Qand let Q= Q+ -2-/“(1-/&),01‘

1 2 2 1-
Qz'z'[(l'/‘) 1 +/"‘2] +—r£+’r& ’

(13) ) 9

The new Jacobi constant C 1is related to the previous one by
C=C+ M (-4 .

The final set of equations, subject to the investigation, with the

notations 9
2 Q Q e dx
Qx-ax , Qy——g—;, X—E, etc.
becomes :
(14) x-2y=Qx, y + 2x =Qy
.2 .2
(15) xy *+@ =29-C,

where  is given by equation (13) .

It is remarked that Levi-Civita gave the above equations in canonical

form by introducing the canonical variables :

q =x -/L, Pl=5( -y,

94 = Y. pz=5'+><-/~.

The equations of motion are
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._DF.._ Jr 19
G T, P T T g 7LD

1

1 2 1 2
. + + = - -
where F =< (p1 q2) 5 (p2 q.) 2 (q, .q2) .

1
The F = constant equation, of course, will correspond to the Jaco-

bi integral .

3. Reductions

3.1 Reduction to the third order

The fourth order system of equations (14) can be reduced to a third
order system by making use of the Jacobi integral, (equation 15), One way
to accomplish this is by introducing the angle (z) between the tangent
of the orbit and the positive x axis as a new dependent variable :

dy
dx

(16) z = arc tg

We will show that the equations of motion become :

X = A (x,y) cos z
(17 y = Ay sin 2
-2 -Ax sin z + Ay cos z,

z
(18) where A =,!2 Q-C .

The proof of the first two equations of (17) is as follows. If s de-

notes the arc length,

2{- =cos z d—) =sin z and so
ds ’ ds ’

. dx .

X =E$=/\cos z,y =Asinz,

since the absolute value of the velocity vector (S§) is obtained from the
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Jacobi integral as
ds 2 2 2 2
(—d—t-) =X +(y) =20-Cc=A" .

The proof of the third equation of (17) requires the evaluation of 2

from equation (16) :
= —
(8)
Using equations (14) to eliminate X and ¥ , and the first two equa-

tions of (17) to eliminate X and y, we obtain the desired result .

We note that an alternate approach would be to use the first two

of equations (17) as definitions of a transformation without reference to

equation (16) . In this way we have X = Acos z,y = A sin z and
. .

consequently X =/\cos z- %Asin z and ¥ =Asin z + z2Acos z,

from which A Z can be obtained ; Az =y cos z- X sin z. By

the same elimination process as before we can obtain the third equa-
tion of (17).

Equations (17) represent the third order version of the problem in
form of three first order differential equations with x,y, z as de-
pendent and t as the independent variable. The significant fact is no-

ted that these equations can be written as

x = ¢(X,y,2),
(19) vy = Yy,
z = Y=y, 2),

that is, the right hand members do not contain the time. This fact allows
a physical interpretation of the equations by an analogy and also assures

further reduction of the order by elimination of the time,
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3.2 Flow analogy

Consider a flow field with velocity v = v(r,t), where T is the
position vector and t is the time, This velocity vector gives a descri-
ption of the flow field since at every point T in the field, at any time
t, the velocity can be evaluated - excepting singular points. A flow is cal-
led steady if

ki
2t °
i.e. if none of the velocity components depend explicitly on the time. The

velocity components defined by equations (19) can be interpreted therefore

as the description of a steady flow field.

The continuity equation of hydrodynamics is

%—f:-+ div. (pv) = o

where P is the fluid density. For an incompressible fluid P = constant

and the continuity equation becomes

. hend
div v = o,

or using the notation of equations (19)

ﬁx*' '\Fy*' XZ =o0.

Since the ¢ , '\P R X velocity components as " given by equations
(17) satisfy this equation, the dynamical problem is analogous to the

three dimensional steady flow of an incompressible fluid.

It is remarked that the flow is not a potential flow since

curl V# o
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as computation of six partial derivatives ( ¢y’ (;z s ’\Px, YJZ, X‘x' X.y)
will convince the reader .

The function A contains C, therefore equations (17) will determi=-
ne a flow field for a givev C value. By changing the constant of integra-
tion (C), the streamline picture will change., For a given C equations
(17) will determine the totality of motions of the dynamical system and

also the corresponding streamlines , provided that the inequality .,

is satisfied.

The streamline representation is singular when /\ = o0 or when
N —> o . The first case corresponds to zero velocity , the second

to collisions at P1 or P2

Poincare's original flow analogy being similar to but not identical

in details with the previous one should be mentioned also. Let x =x

1’
Y =X, X = Xq and ¥y = Xy Then the equations of motion can be written
as
X, = xg
X, = x, ,
Q
X =2x, + (xl'xz)
3 4 P X,
Q
x, =-2x_+ ? (xllxz)
4 3 2 Xy

or k, = Fi(xl' x2, x3,x4), i=1,...4.

It can be seen that div v =o , i.e.
F‘
1

- o,
1 axi

NA

i
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so we are dealing with the four dimensional steady stream line flow of
an incompressible fluid. The actual motion of the particle corresponds to
those streamlines which lie on the

2 2
+ - + =
Xq X ZQ(xl,x) C=o

three dimensional hypersurface.

We note that both Poincaré and Birkhoff contributed to the develop-
ment of the above discussed streamline flow analogy which, however,
has not resulted in any significant new information as yet. Some suggestions
regarding further developments and possible uses are given in the last cha-

pter.

3.3 Reduction to the second order,

Equations (19) can be written as

dx _ gz

dy
(20) 4, = 7
X >
from which
dz

(21) ax =

ol

On the other hand equation (16) gives

"
(22) e e wy s —L
1 +(y")
dy
1 = -
where y x "

Substituting for X and ¢ in equation (21) their expressions as
given by equations (17), eliminating =z by equation (16) and lequating
equations (21) and (22) results in a second order differential equation
describing the dynamical system (excepting at points where the transforma-
tions are singular):

2
' 2
(23) yh—ll;\‘y (A, -Ay' - 21+ 0% )
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It is noted that elimination of time and use of the Jacobi integral
can be combined and the above second order differential equation can be
obtained in a single step directly from the original fourth order system.
The general solution of (23) will contain the following three
constants of integration : C which is included in A and the two constants
which enter when (23) is integrated. The complete solution of the original
fourth order system requires the determination of the time dependence of
the variables. This process will result in the fourth integration constant,

To establish the time dependence, we write the Jacobi integral as
R 2 2
(x)[l +(y')] =N
where the y =X y' relation was used . The time is evaluated from the

- Jl + (")
A

Here y'and A(x,y) are functions of x only since y(x) has been

last equation as

t dx+C4,

obtained from equation (23) .

4 Regions of Motion

The second important application of the Jacobian integral is to esta-
blish regions of motion or to find the so-called "forbidden areas" of the pla-

ne x,y. The Jacobian integral may be written as

v2=29(x,y)-C.

At a given point (xo,y ) along an orbit, let the speed relative to the
o
synodic coordinate system be v - Then the value of the Jacobian constant

along this orbit may be computed from
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2
=2 ) -
co Q(xo yo) Yo
Since this value must be constant for any point (x,y) on the orbit, we
have

2
=2 -
c =2axy) - v,

where v is the speed at the point X,y . Solving the.above equation

2
for v , we have

v2 = 2Q(x,y) - Co .

If now have the point x,y is selected such that 2Q(x,y) is larger
than the precomputed value of C0 then v2 >0 and motion is possible at

such a point . If , on the other hand
<
292(x,y) C0

2
then v <0 and motion cannot take place at the point x,y.
The regions of possible motion are, therefore, separated from the

forbidden regions by curves which are given by the equation
2 =
Qx,y) = C_

Along these curves the speed is zero and for this reason these cuves

are called curves of zero velocity of Hill's curves.

To establish the forbidden regions the curves € = constant must be
constructed. In what follows these "equipotential” or niveau curves and the

Q(x,y) function will be analysed in some detail.

According to the value of C there are six distinctly different ca-

ses representing basically different problems as well physical situations.
To review these cases we start with C —> o and decrease its value to
C = 3. For a detailed discussion the reader is referred to, for instance,

C.L. Charlier's book (see bibliography) .
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Case [

As seen from

1 2 2 1- [
== - + +
(24) @ 2[(1 /()rl+/gr2] r r
1 2
and from the definition of the zero velocity curves (22 - C = 0) , large
values of C imply large £ values ., This occurs if one of the following
conditions is approached :

r —» 0, I' —» 0, I' —>»00, OI' I' ==y 0,
1 P2 1 ’ 2

Let rl = £, rzgl, in order to investigate the first possibility .

For this case

~ 3 1-
a= g £

and the velocity square from the Jacobi integral becomes :

2. 2(1 -
(25) V_J_ZA)_+3/“_C.

So the zero velocity line is approximately a circle around P1 with

radius

This oval shrinks as C increases, so if a zero velocity oval
corresponding to a given C1 value is constructed around P1 , ano-
ther zero velocity oval with C = C2 will be inside of the first one if
C2 > C1 . If a particle has given velocity and position vector , i.e.
its state of motion is defined giving for its Jacobi constant a value equal

to C1 then it can move only inside of the C1 oval, This follows if

we consider that on the C1 oval
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2
Vo= 2 Qx,y) - C1 =0
and inside of this oval there are 2 Q(x,y) - C2 = o curves for various C2
values with C2 > (.‘1. Now if the particle has C1 as its Jacobi constant

and it is located on a 2 Qx, V) = C2 curve, then the square of its veloci-
ty must be larger than zero on this curve, since C2 > C1 . The particle
with C1 can not go outside the C1 =2 Q oval since it woud (:’ncoumur points
for which the zero velocity oval is associated with C3 < C1 which would re-
quire a decrease in the particle's \’2 from zevo, i.e. it would require

imaginary velocity .

In fact it is generally true that motion always takes place on that
side of the zero velocity surface where the constant § lines have posi-

tive gradients, i.e, where C is increasing.

A formal computation gives the same result for the case under discus-
sion. From equation (26) the zero velocity surface has the equation
2(1-
(27 o _2a-p) + 3/» - C.
r
10
The square of the velocity at a point Q which is at a distance

rl from Pl is :

(28) \12 =E(1_r'ﬁ + 3/_‘9 -C
1

according to equation (25).

Subtracting (27) from (28) we obtain

r

2 1 1 )
v =2(1-/A-)('; ——— ), from which
1 10

it can be observed that if

2 .
rl <r‘10 then V >o and if
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2
rl >r10 then V7 <o, i.e. inthe f.ust case the point Q is inside

) s 2
the zero velocity surface (for C) and the positive V' value assures
the possibility of motion, while in the second case Q is outside and

motion is not possible.

It is noted that for large C a zero velocity oval can also be
established around 1’2 which is approximated by a circle of radius
2
(29) Yoo MM
C-3(1- )

Comparing (26) and (29) we see that

1o oo it o< M<i1/2,

r >r if </“‘§_1, and

1
20 10 2

r it A=1/2.

10 " T20

In other words the larger one of the two principal masses is sur-
rounded by a larger zero velocity oval. The two ovals around I’l and
> identical f .y
12 are identical tfor /4” 1/2 .

Figure 3 shows cas¢ I.

3y

MASS: u

C|< Co

MASS: I-u

]

C|<C2

Figure 3. Zero Velocity Surfaces in Case I, for Large (‘,/‘L<—;- .
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Since a particle moving within the zero velocity oval associated with
either m, or m2 will never leave this oval, case I is often referred to
as the satellite case and hence the statement "once a satellite always a

satellite, "

Case 1I.

Returning to equation (24) we observe that the r, o (and consequen-

tly r2—> «) condition also results in large € and so in large C va-

Let rl: rZ: r for this case., Then

Q= _r2_ and the velocity becomes

(30) Vi =r® - C.

These circles expand as C increases, therefore motion is possible
outside the zero velocity line. If a particle moves outside such a zero velo-
city oval , it will never cross it, i.e. the particle will never change its pla-
netoid or comet characteristics and it will never become a satellite. Hence,

"once a comet, always a comet",

Case III .,

As C is decreased, the two ovals described under Case I will increase
in size and will touch at R2. At the same time the large outside oval of
Case II shrinks. This is shown on Figure 4, where because of symmetry with

respect to the x axis, only the upper half is drawn.
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\ll[[/ ’//

/A

X 1
Figure 4 . Case III for /lL<-2— , C1 > C2 .

As C is decreased further the two inside ovals unite (see the C2
curve on Figure 4) permitting motion inside of the curve. In this case the-
refore satellite exchange might take place since particles are allowed to
wander from-the neighborhood of P1 to the neighborhood of P2' The prac-
tical significance of this case in connection with earth-lunar trajectories

is apparent. It is noted, nevertheless, that an interchange of particles bet-
ween the inside region of the C2 curve enclosing P1 and P2 and the outsi-

de region of the large oval (corresponding to the same CZ) is still not

permissible. The ghaded areas show the regions of possible motions for Cl'

Case IV,

Further decrease of C will cause the large outside oval and the insi-
de figure (see the C curve on Figure 4 ) to become in contact at R3 or at
R depending on the value of /“‘ The contact point is established on
the side of the smaller mass, i.e. for /“- >— at R3 and for/u‘ <— at
R1 .

Figure 5 shows the permitted regions of motion and the zero ve-

locity curves. Since the zero velocity curves are always symmetric to the
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x axis, only the upper half is shown,

R P

-

Figure 5 . Case IV for A< 1/2 -

Case V,

As C is decreased further the figure opens wup at R1 (or at
R3) allowing a communication between the external and internal areas for
the first time (see Figure 6, Curve Cl)' The next step is when the cen-
tral portion (A B) of the horseshoe like forbidden area narrows and its

width becomes zero (Curve C_ on Figure 6) intersecting the x axis at

2
R3 (Rl) . Figure 6 shows the opening (Cl) and the narrowing processes

(C2) . In the shaded area motion is possible,
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L4 -
S
PZ P| B R A
Figure 6 . Case V for A<1/2, C1 > C2 .

Case VI,

As C is further decreased, the C2 curve of Figure 6 separates
at R1 and the two areas (one above and the other one below the x axis)
start shrinking toward R4 and R5 . When C reaches its minimum value
(C = 3) the fobidden areas shrink to zero. Figure 7 shows this process,

When C =3, motion is possible everywhere.

/
c,3 A > ”((//4/ C2

7

. Case VIfor M <1/2, C1>C2>C3=3,

G

{

- m"”

Figure
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A summary of the regions of motion is shown on Figure 8 for various
C values. The figure which is correct only in a topological sense was con-

structed for A <1/2 .

=3

Figure 8 . Summary of the Hill Curves for};<1/2, CyCy>.. Cy
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5 Regularization

5.1 General results,

The purpose of regularization is to eliminate the singularities
which occur at the collision between the third body and either primary.
One of the essential differences between the problems of celestial mecha-
nics and problems of space dynamics is the collision and the close appro-
ach problem .

Bodies participating in planetary and lunar theories of classical ce-
lestial mechanics do not experience collisions, whereas trajectories connec-
ting the vicinities of celestial bodies are of vital interest in space dynamics.
It is to be emphasized that close approaches are just as important and at
the same time just as complicated to handle as are actual collisions
between bodleé. From a "practical” point of view, regularization is of im-
portance since Earth-Moon trajectories connect two singularities, someti-
mes from the analytical, and sometimes from the numerical points of
view. Finally, as we will see later, regularization will allow us to establish
orbits near singularities ; an important advantage when studying the existen-

ce of periodic motions.

In order to eliminate the singularities mentioned above

we consider complex transformations given by

(31) z = f(w)

where z =x+1i y and w =u +i vand we find the equations of mo-
tion in the w plane . Transformation of the dependent (x,y) variables will
be combined with the transformation of the independent variable (t) and re-
lations will be established between the original variables describing the mo-
tion (x,y,t) in the z plane and the new variable (u, v,'f) which describe

the motion in the w plane.
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The equations of motion (14) and the Jacobi integral (15) can be
written as

(32) z + 21z = gr‘adZ §)

(33) and | &,[2 =20,

where U=Q - C/ 2 and the gradz operator is defined by
3 yrad U =U_ +1i .

(37) gra ’ U Jx i Uy

The dot denotes time derivative with respect to the previously introdu-
ced nondimensional time (t), so for instance
i ;
dx . dy

z = —

dt  © dt
When the differential equation (32) representing the motion in the z
plane is transferred to the w plane we consider the =z = z(t) solution in the

2z plane transferred to the w =w (_t) solution in the w plane.

According to this 2z (t) = Z{WF (t;p; and so

, - dz dw dt
dw dt dt

or simply
(35) z o= f'w' t

which also derines the notation

The second derivative becomes :

. = =2 2 =2
(36) z = frw't £ wht) " (wh) ()

The right hand member of equation (32) is transformed to :

: v = i ]
(37) _L,r‘adz U g1 adw u,

fl
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where bar denotes conjugate .
Equation (37) is proved as foliows :

ad U=Ux +Uy +i(C x +U_ y).
(38) gra w X(u )"\u l( x)\V N }\')

The Cauchy-Riemann relations transform the imaginary part into

-U yv +U0 x
X u y u

’

which allows a rearrangement of terms in equation (38)

U = -1 U +iU .e.d.
gradw (xu 1yu)( L y), q.e

Substituting %z from (35) , Z from (36) and .grad U from (37) into
z

(32) we obtain the equation of motion in the w plane :

o - 2 grad U
H 1 n
(39) wh o w! t+2it _ (w )f'f + _2__“_/_2_ ,
() 2 e by

The Jacobi integral (33) takes the form :

2 2 U
(o hort? =
lel® (&)
Equation (39) can be written in a slightly different form by using equa-
tion (40) . We note that
2
I

2 2
! = U ' +|f! .
(41) gradw (U It y=U gradw |t | It gradw U

Here the first term on the right side can be written as

bl 2 1) @t o

since
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u-3 bwe 12 4012 ()2

from the Jacobi integral, and since
2 -
grad |f'| =2 f"

This latter equation is proved as follows:

Leg g(w) an analytic function. Then

Jdg (1 - .98, __1-
gu_dw_isvancl gu—(dw)__i gv
Furthermore,

2 -
gradw lgl = gradw (g g) or

=g gradw g+g gradw g-

Here
. dg dg
= + =5 .5 =

gradwg gu ! gv dw dw °

and o _ —dg _
= +ig=2-2) = [

grad g=g *ig=2(32) = 2¢g

So

2 -
d = '
grad (gl =2¢g¢
and writing f' for g we have
2 -
gradw‘f'[ = 2fr f" q.e.d.
Solving (34) for grady, U and substituting this result into (39) we obtain

. . 2

y I - 1

w2it ol P8R, wle%
o 1 2 -

(? : (ol Lol 2

\

.

(42) wh+w'

If now we select the ;(t) function. so that
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S dt 1

(43) to=om = ——
&

t=____=__l_lE(flfnw|+fv fn"’,vv)’

and the equation of motion (42) becomes :
. 2 2
(44) wh+2iw || = grad (Ul %y .
The Jacobi integral is

(45) lw'l2 - 2irt? v,

It is remarked that in the z plane according to the Jacobi integral
2 - . .
the square of the velocity (v ) goes to infinity as U, which in turn goes
to infinity as r,or rz——;o . On the other hand for instance equation
| 2

(42) suggests that \f' should be selected so that U |f'| 2—» finite as r,

or rz--vo . This means that Y Sf’)-—»finite as r1 or r2 -0 .,

The Jacobi integral in the w plane (40) can be written as
02 . 2_ulrl 2
Wil = ——ar
(\f'l t
and so if [f'lz is selected so that U{f'|” —> finite at' the singula-

rities, it is also required to have

2 =
|f'l t —» finite and nonzero.

This requirement is clearly satisfied if (43) holds,. in fact
lf'l2 t—>1.

It is of further interest that equation (42) is nonlinear in w',

which nonlinearity disappears .. hen equation (43) is satisfied.

Summarizing we state :



- 196 -
V. Szebehely

The equations of motion in complex form can be written as

o+ 21 ¢ = grady 6]
and the Jacobi integral as
f21% = zu .
Applying the transformations
2 -
z=f(w) and dt ={f'| dt

>

the equations of motion and the .Jacobi integral become :

2
(44) v 2l v grad (U1 2))
dt dt
2
dw 2
— = R ril
) |9) - aulel 2,
The real and imaginary parts are
d2 2 d
“2 N U I Ay o
dt dt u
(46) )
d;’ 2|2 ot
dt dt v
and
2 2 £
@)%+ &% 20
dt
where
2 2
(48) Q' = ulrl® = (a2-c/2)lrl”,

In the following three short chapters we introduce three specific tran-
sformation function§ as important examples. The reader will not find it too

difficult to construct additional regularizing transformations of interest.
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The significance of the Levi-Civita transformation is in its simpli-
city. In spite of its disadvantage - regularization of only one of the two
singularities - it will be extremely useful in studying the motion near
one of the singularities, The Hill model of the Earth moon system furni-
shes an excellent example for the usefulness of this transformation.

The second and third transformation functiongregularize both sin-
gularities, The Birkhoff transformation accomplishes this by a rational
fraction function, while the Thiele transformation uses a trigonometric
function, The complications caused by the many valuedness of the Thiele
transformation are compensated by the fact that the functions used are well
tabulated . For analytical investigations the double valued Birkhoff transfor-
mation is recommended, while for detailed hand calculations the Thiele

transformation seems to be better suited.

5.2 The Levi-Civita transformation

Let
2
(49) z =f(w) = pt+w
or
2
x-/b=u2-v and y=2uv.
The new time variable is related to the old by
- 2 2
dt = 4dt (u + v),
since

lf'lz = 4|w| 2

The equations of motion become
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2 . 2.d c. 2 2
5 - 8 (u +v)d—$=4 [(Q--z—)(u +v)]u

(50)
d2 v

d C 2
+B(u2+v2)—]:-=4[(9-—)(u +v2)‘1
- 2 dt 2 v
dt
and the Jacobi integral is

du\2 dv \ 2 C 2 2
. =\ -8(a -3 .
(51) (d_t) +(dt_) ( =) +v)

The term on the right side becomes :

3 2
(52) (Q-%) (u2 + v2) =% (u2 + V2) +4&2— (u2 + v2) +/4,(u4 - v4) +

2 2
C 2 2 (u” +v") .
+1-p-7 (u+v )+ \
2 [(u2+v2)2 +1 +2(u2 - VZ)]/?.

The geometry of the transformation is summarized as follows (see

Figure 9 ):

1. The point P1 located at (M, o) in the z plane is transformed to

the origin of the w plane (o,o0).

2. The point P2 located at (/~-1,o) in the z plane goes into w1 2=
=+ i,

3. The origin of the =z plane {o0,0) goes over to w1 2 =+ iJF.
4, The upper z plane (y>0) goes into the first quarter of the w plane.
5. The z plane goes into the upper half of the w plane (v>o0).

6. The lower half of the w plane (v<o) corresponds to the second leaf

of the z plane,

7. The transformation takes the one leaf of the w plane into the two lea-

ves of the z plane,
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[+
y %, (1,00
0 (Vi,0)
S ° x P (0,0
o -
Py (-1, 0) P, (u,0) 0 (V,0)
P2 (=1,0)

Figure 9. The Levi-Civita Transformation.

The significance of the transformation is that it eliminates the singu-

larity at Pl' Since w = o corresponds to P1 we find from (52) that at this

point
C
(2-3) (uer V2) =1-k

and so the velocity at w = o (according 51) will be finite, 2\ 2(1-pm) .

2 2
The derivatives of (2 - C/2) (u” + v') with respect to u and v are

also finite at this point, in fact according to (50) at P1

dt dt
It is noted that the Levi-Civita transformation eliminates only the sin-

gularity at Plj at P2 we still have a singularity, since

(Q-%) (u2+v2)-—->oo

as  wopt i, .
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5.3 The Birkhoff transformation

Let 2
(53) z = f(w) = v _tad-p)
2w+ 1 - 2w
and so
(54) ‘f‘(w)‘ = Pl Fz , where
2 3

(55) f2=|w+1-/¢‘=)(u+1-—/4)2+v2

g, - %\2w+1-2/~l = (u+-%--/u,)2+v2

The equations of motion are

a®u 1 Sipezav o
at? 2 g2 dt “
a®y L1 5P 2aw | .
2 2T 3 " v
d
di 5 ;
where Py 2
o - (a-c/p BF2)
2 ¢
or
R R R FYY S
9’3

The geometry of the transformation is summarized as follows :

1. P_and P2 are invariant points of the transformation.
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2. The =z plane's origin becomes + i '/A(l—/d-) in the w plane.

1 .
3. The w = 4 -3 point corresponds to Z —m 0 .
4, The w—po«c point corresponds to Z—poo .

At Pl in the w plane Fl = o, Pz =1, FB =—;- and @ = 4(11-,4A-) , and
s; the velocity is 2 m) . At P, fl =1, PZ = o,— j’3-=1§ and_

Q = 4/«; and so the velocity is 2§ 2m. At P3, -fl = FZ =5 P3-0

and Q—>w and so the velocity is not finite. The same statements apply
to Qu and Qv and so we find that the Birkhoff transformation eliminates
both singularities in the w plane . The only finite singularity (introduced by
the transformation) in the w plane is the w = A -% point, which however
corresponds to 2z —> o« . The only other singularity in the w plane is

W —s 0, which also corresponds to z —>» o . So we conclude that the

equations of motion in the w plane are regular as long as the point is not

rejected to infinity in the z plane.

y [ v |
P P
2 n Py A
X u
Ry (g1, 0) R (w0) By (u-1,0) Ryu-§,0) R (w0)

Figure 10. The Birkhoff Transformation

5.4 The Thiele transformation

Let
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(58) .
or z=,u--2-(1+cos w) .

1
We observe that for =5 Z =—;— cos w, the simplicity of which
might explain partly why the Copenhagen school in their /u =—;— under-
takings favored this transformation.

The real and imaginary parts of (58) are

X=./(L-

1 1
332 (cos u) (ch v)
y = %(sin u) (shv)

which equations show two advantages of this transformation. Firstly the
(x y) net is transformed into confocal ellipses and hyperbolas and secon-
dly the functions occuring are well tabulated and well suited for hand cal-

culat-ons.
The principal values of the transformation give P1 (71, 0) and

Pz(o,o) in the w plane and observing that

‘f’ (w)| 2 =r, I‘Z

we see that both singularities are eliminated , since

*

Q = roT, (2 -C/2).

5.5 Numerical results for lunar trajectories .

We now use Birkhoff's transformation and show results of numerical
integration of equations (56). These solution cannot be obtained by inte-
grating the original equations of motion (see equation 14) because all

solutions ¢o through the singularities located at the primaries.
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Fig.11 . A typical fast earth-to-moon trajectory with
consecutive collisions. Solid curves are
referred to the fixed and rotating physical
(x,y) systems, dotted curves to the regularized
(u,v) system. @ = 1/82.u5.
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Fig. 12 A typical low energy earth-to-moon trajectory
with consecutive collisions. Solid curves
are referred to the fixed and rotating physical
(x,y) systems, dotted curves to the regularized
(u,v) system. M = 1/82.u5.
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©:180°
¥,20°,¥,7180°
C 2143020205
p=1367d

. F-20

Fig, 13 A typical lofted earth-to-moon trajectory with
consecutive collisions. Solid curves are referred to the fixed and
rotating physical (x,y) systems, dotted curves to the regularized
(u, v) system, M= 1/82.45 .

The selection of a particular value of C (less than a critical value

given by the Jacobian integral) allows a trajectory to be constructed, which
conrects P_ and P2 in the w plane. The totality of such trajectories, for
all possible values of C, form the family of orbits with consecutive colli-
sions. We define a group as a subset of the family in the following way.

Consider a trajectory connecting Pl and P_ which is obtained using a va-

lue of the Jacobian constant C1 . Changing2 Cl to C2 = Cl + AC results
in another trajectory also connecting P1 and P2 . If, as AC~—> 0, the
second trajectory approaches the first one, i.e., if the members of the
set can be generated by analytic continuation, then we speak about a group

of orbits with consecutive collisions.

A convenient dependent parameter is the pseudofiring angle (denoted
V/ , on Figs. 11-13) that determines the direction of the w'1 complex ve-
locity vector at P1 . For a given value of C, this angle can be found
by solving a two-point boundary value problem in the w plane., using an
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)

iteration procedure thai begins with a two-body approximation.
Consider, for instance, a very large negative value of C which corresponds
to a trajectory with a high relative energy. This follows from the Jaco-

bian integral, which at a fixed point in the physical plane gives
2
(velocity) = 2Q-C =cons -C

and therefore the velocity squared and the relative energy are very large
when C is large and negative . If the fixed point is not a singular point,

then the velocity becomes infinite as C —» -«

Consider now a rectilinear traje-
ctory witi consecutive collisions in the synodic, physical plane, This orbit
is possible only when C = - o and the velocity is infinite along the entire
trajectory from one primary to the other. This orbit is just that part of the
x axis which lies between P1 (M, 0) and Pz(/‘v-l,O) . Increasing C from
- generates the group of consecutive collision trajectories that are descri-

bed in the next section.

The points of the curve of Fig. 14 represent the trajectories belonging
to the group mentioned previously. The insert shows the synodic coordinate
system (x,y) and the firing angle 6, in the synodic system , which is used
to present the results. The mass ratio is that for the earth-moon system,
M= 1/82.45. The C = C(6) curve is asymptotic to the C axis, i.e., 6 -0,
C —> - as ‘'mentioned before. The orbits corresponding to the maximum
point of the curve (Co = 2, 90 ;:.600) seem to represent a change in the
basic characteristics of the members of the family, since for 6 < 60,
muring all angles ‘counterclockwise from the line P P_, a trajectory in

the physical plane with a firing angle 6 at P_ is mapped intoc two trajecto-
ries in the regularized plane with pseudofiring ‘angles of 0/2 + 90° .
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the maximum distance of the space probe from the earth is the same as
the earth-moon distance. When 6 > 90, the maximum distance of the pro-

be from the earth becomes larger than the earth-moon distance.

At 6 = 360° , the physical situation is identical to the 6 = 0 case;
nevertheless, Fig. 14 indicates another value of C, i.e. C(0) # C(27T) .

The explanation of ,this lies in
+2f

JACOBUN
CONSTANT

-

L
* 60° 120° 180° 240 300° 360° ©

ASYMPTOTIC TO - X
©:0ATCe-0

Fig. 14 . The Jacobian constants and firing angles for a group of
simple , consecutive collision earth-to-moon trajectories in
the framework of the restricted problem of three bodies.

M=1/82.45,

the definition of a "group" of trajectories. By analytic continuation, the
curve was produced that is shown on Fig, 14 . At 6 = 2X + A6, ( 46>0),
another member of our group, can be obtained close to C =1, but of course it
is also true that trajectories with very large negative values of C are also

available,

It is of considerable practical and historical interest to mention that
one of the points on the C(6) curve of Fig. 14 can be (and as a matter of
fact is) obtained by modifying a proposed circumlunar Apollo mission trajec-
tory . The coordinates of this point are C =1,805 and 6 = 570.97.

After establishing this orbit, whose transit time is 79 hr as compared to

the original orbit's transit time of 76 hs, the curve can be completed by va-



- 207 - V. Szebehely

rying one of the parameters, C or 6, and differentially correcting the
other. Cowell integrations of the regularized differential equations (56) of
motion were performed, using the Gauss-Jackson method of numerical in-
tegration with seventh differences and variable integration step sizes, Com-
putation of most of the orbits started at the center of the earth, but it
makes no difference at which primary the trajectories are started if the
moon moves in a retrograde direction around the earth when the orbits a-

re started at the moon.

Although the trajectories are computed in a rotating coordinate system,
as is the usual procedure for the restricted problem so that the Jacobian
integral can be used for a check on the computations, it is easier to see
the motion of the space probe in a fixed frame . This is because 1) as it
will be shown in the next section, our trajectories are slightly perturbed
conic. sections in a fixed frame, 2) it is customary to study lunar trajecto
ries in a fixed, geocentric frame, and 3) for several of the orbits, espe-
cially those with long transit times, the path of the probe in the rotating
system is due essentially to the motion of the moon (i.e. , of the system)
and it is very difficult to separ;ate the effects of the trivial geometry from

that of the dynamics,

Figure 11 shows a typical fast trajectory with C = -2,98, The probe
reaches the moon in about 36 hrs, during which time the moon has tra-
veled 20° . The four lines of Fig. 12 represent the same orbit in three dif-
ferent coordinate systems.

. The straight line with a slight curvature at its left end refers the
motion to a fixed, geocentric system where the moon initially is at
(-1.0,0.0). The solid curve, connecting the points E and M shows the tra-
jectory in the rotating system. This is the way the orbit looks to an observer

moving with the earth-moon system. The dots represent the two branches of
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the trajectory in the rotating, regularized (w) system. Midcourse times are
denoted in hours along all four curves to give an idea of how the points are

transformed in the coordinate systems.

As the energy is further decreased by increasing C, the space probe
takes longer to reach the lunar distance, and so the trajectory must point
in a direction farther ahead of the moon. This way the curve is continued
up to where an orbit is obtained corresponding to a point in the vicinity
of C = 2, 0= 600 . Near the top of the curve of Fig, 14 are such orbits,
one of which is illustrated in Fig, 12 . This low-energy orbit has just enough
energy to travel out far enough so that the moon's attraction can pull the
probe into a collision, For C much larger than 2, the probe cannot suffi-
ciently overcome the attraction of the earth, so it falls back toward it

without reaching the center of the moon.

It must be pointed out that this does not mean that a probe with
C >2 cannot go from the center of the earth to the center of the moon;
rather, it means that such an orbit is not contained in our group of
trajectories, In fact, an analysis of the zero velocity curves for .&4= 1/82,45
shows that if C < 3.2 orbits connecting the earth and the moon do exist,
However, as Egorov points out, the probe may have to make several hun-
dred revolutions around the earth, in a highly eccentric ellipse with its
apogee distance very slowly increased by the moon's perturbations, before

reaching the moon,

The rest of the curve of Fig, 14 (600 <6< 3600) represents trajectories
on which the space probe, still traveling essentially on geocentric, rectili-
near ellipses, reaches the lunar radius before the moon has traveled 60 .
Since C <2 , the probe reaches an apogee greater than 1.0, and it collides

with the moon as it falls back toward the earth. Figure 13 is a typical trajec-
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tory of this kind, With C = 1.43, the probe leaves the earth in a direc-
tion just opposite to that of the moon (6 = 1800) , passes the moon's di-
stance in about three days, and reaches apogee (r = 1,431) in about eight
days. After this, it falls back toward the earth and reaches the center of
the moon half a sidereal month after leaving the earth. Also, this figure
shows, for the sophisticated reader who compares the two dotted trajecto-
ries in the regularized system, that since the Birkhoff transformation maps
the region of infinity to the region midway between the two primaries

(/Q, - %, 0) , one of the dotted curves goes near this point. For the other
regularized trajectory, the region of infinity is unchanged by the transforma-

tion.

To the right of the point corresponding to the Fig. 13, trajectories
on the C (6) curve are higher energy orbits with lower values of C. These
have greater apogee distances and must therefore start in a direction still
farther in front of the moon. At the end of this group is the trajectory that
starts the probe heading right for the moon, but by the time it gets to
the lunar distance, the moon has moved on about 25o so the probe reaches
apogee (r = 2,1) and then falls back to hit the moon about one month after

leaving the earth,

The trajectories discussed are by no means the only ones that pass
through the centers of both the primaries,and they are only a small per-
centage of the entire family. Wheun the curve of Fig. 14 is continued to the
right (6>27 ), it branches, and the trajectories for the approximate ran-
ge 3600 <6 < 420O encounter strong perturbations from the moon as they
pass it on the way out to apogee, If these trajectories are allowed to
collide with the moon on the way out, the curve shown on Fig. 14 is, of
course, just repeated. For 6 >>2 J~ there exist orbits that are associa-
ted with several revulutions of the moon around the earth before collision

and also orbits that are characterized by several close encounters of the
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of the probe with the moon or the earth before collision,

When new numerical methods are introduced an important question
of considerable practical importance must often be investigated. This is
the question related to the speed and the associated economy of the new
procedure, In the examples mentioned in this section , this question comes
up quite naturally since before the numerical integration is performed, one
must transform to the new variables and after completion of the integra-
tion one must revert to the original (physical) variables, We also shuld
note that the transformed differential equations of motion using the new va-
riables are of more complicated forms than the original equations. The eli-
mination of the singularities simplifies the equations from a mathematical
point of view but the algebraic representations become more complicated, Is
it then practical to become involved with a more complicated system and
with transformations or is it more economical to integrale the equations in
their original form ? If we deal with collision trajectories, the answer
must be on the side of regularization, since without this collision orbits
can not be computed. In these experiments one computes orbits with and
without regularization and one compares the results regarding speed, econo-
my and accuracy .

Such comparisons are shown in the following two tables., As the title
indicates we first study a 72 hour trajectory connecting the surface of the
earth with the surface of the Moon. The numerical integration required
1260 steps using the original variables and only 340 steps in the regulari-
zed system. The step-size used is variable in this method of numerical
integration and the program automatically determines the largest allova-
ble step-size for a given local accuracy. Only two such step- size changes
are required in the regularized system and 15 when the original varia-
bles are used as shown in the second line of the first table. The total
computational times also favor the regularized method as shown

on the third line . The last four lines in the tables show the errors
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obtained when the reversibility condition is checked . We integrate from
the Earth to the Moon and then we reverse the integration and record
the differences between the initial positions and velocities on one hand and.
the final return positions and velocities on the other hand. As seen in the
tables, the regularized system exhibits consistently smaller errors than
the original system,

The second table gives the results for a slightly different trajectory

utilizing a parking orbit around the Earth,
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6. Additional Numerical results

The behavior of a dynamical system may be characterized in a varie-
ty of ways. If the dynamical system is non-integrable an immediate appro-
ach is to attempt to find the totality of certain special orbits, We must
restrict the search to periodic, almost - periodic or asymptotic orbits sin-
ce orbits of more general characteristics can not be established on a com-
puter. The greatest popularity is enjoyed by periodic orbits and certain
higly specialized orbits of engineering interest.We may look at the numeri-
cal as an experimental approach and it must complement the theoreti-

cal considerations.

This experimental approach consists of the computation of a large
number of trajectories, preferably with systematically varied initial con-
ditions. One of the pioneers of this approach was G. DARWIN (1897) ‘who,
without the aid of digital computers and using a 1: 10 mass ratio for
the primaries, computed and analysed several classes of orbits, Similar
remarks apply to. E. STROMGREN (1935) usign 1: 1 mass ratio and giving
an even more complete set of orbits. The unfortunate aspect of these lar-
ge undertakings is that since at the mass ratio 1:27 the character of cer-
tain orbits change, extension of DARWIN's and of STROMGREN'S results
to cases of importance in dynamical astronomy or in space dynamics can-
not be made readily since the mass ratios of interest are considerably
smaller than 1:27 . The study of periodic orbits made by MOULTON (1920)
resulted in highly specialized orbits. None of these studies covered the
entire four dimensional manifold and even in their respective ranges of

investigations many questions remained unresolved.

Recent work along the line of experimental establishment of the tota-
lity of orbits in the restricted problem fall in two categories. The first

group of activities is oriented along the lines of celestial mechanics and
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concerns itself with the study of sets of special orbits applicable to problems
of celestial mechanics, MESSAGE (1959) and RABE (1961, 1962) are outstan-
ding examples, the first finding periodic orbits for the planetary (exterior)
case and using the Sun-Jupiter system as the model, the second establishing
periodic orbits numerically around the equilateral libration points

This latter work is of special interest since THURING (1951) offered a
proof of analytica® . -~ture for the non-existence of periodic orbits around
the libration points, « 2xistence question of periodic orbits around these
points is still open since neither THI‘J‘RING'S analytical nor RABE's nume-
rical "proofs" are entirely acceptable. LAGRANGE (1772)“' has shown the
existence of stationary solutions (in the rotating frame) for the restricted
problem - in fact for the general problem of three b'odies these solutions
also exist in a more general form - namely the so-called collinear and
equilateral configurations. The standard, linearized treatment of these so-
lutions (cf. e.g. MOULTON, 1914) reveals instability for the latter provi-
ded the mass ratio of the primaries is less than 1: 27 . Periodic solutions
can be found for the linearized equilateral case without difficulty, therefore,
the above mentioned RABE—THL-I'RING controversy is a question of non-linear
effects, The astronomical and cosmogonical implications of this problem a-
re numerous, The well established Trojan group of asteroids at the equi-
lateral point of the Sun-Jupiter system and the conditionally established
Kordylewski clouds for the Earth-Moon system are examples.

Just as those whose prime interest is in the astronomical applications
concern themselves with the satellite and planetary orbits, workers in
space dynamics study orbits which connect the vicinity of one primary with the

neighborhood of the other. These studies are of very limited extent in spi-

* The .higtorically oriented reader will not fail to observe that the above
date comcxdes.wuh EULER's publication of his second lunar theory and the-
refore also with the beginning of the history of the restricted problem
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te of the ease with which high speed digital computers furnish trajectories.
This phenomenon is explained by the "practical" orientation of the investiga-

tors, who are, by necessity, limiting themself to the goal of obtaining an

acceptable trajectory for the specific mission on hand. The result is a for-
midable mosaic of points in the four dimensional manifold of the initial con-
ditions, with high density in certain isolated regions where trajectories we-
re needed for specific purposes and with large, completely unexplored re-
gions. To attempt to undertake a systematic investigation regarding the
totality of possible orbits of the restricted problem has not only theoreti-
cal significance but it has great practical ramifications . Without comprehen-
sive information on all possible trajectories, the orbit selection process
cannot be elevated from its present state of trials and errors method.
Since free trajectories can be, and in practical cases are combined by
orbit modification techniques, it cannot be expected that out of the very
large number of possible combinations a purely experimental process with
all its presently existing limitations can select the most desirable orbit.

It is inconceivable to refer to all the papers at this point which
report on experimentally established trajectories, for two reasons. Firstly,
these publications seldom are included in the recognized open literature and
secondly they offer such small ranges of the initial conditions that no gene-
ral and systematic conclusions can be drawn from them. HUANG,R.
NEWTON, Arenstorf, Broucke, etc. present a special set of periodic orbits
which enclose and approach the vicinity of both primaries . The range of
initial conditions is limited; nevertheless, this work is of definite interest
for space mechanics.

The Iabove—mentioned Liagrangian or libration points have also space
mechanics applications. Besides the use of space probes at the Earth-Moon e-
quilateral points as solar flare observational stations or for other possible

scientific or space purposes, an interesting mathematical relation might be
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mentioned between the linearized equations of motion of such probes and one
type of the rendez-vous problem. The category of rendez-vous problems in
modern space mechanics encompasses a very large area since orbits with
with predetermined end conditions can always be looked upon as rendez-vous.
When the meeting of two, gravitationally non-interacting space probes is
analyzed and their relative motion in a central force field is studied, the
pertinent differential equations, from a mathematical point of view, become
identical with the linearized equations of motion in the vicinity of the equi-
lateral libtration points. This special rendez-vous problem, therefore, is so-
lidly embedded in classical celestial mechanics, The other large group of
rendez-vous problems might be referred to as two-point boundary value pro-
blems in which the initial conditions are to be established so that certain
mission requirements be satisfied by the orbit.

The above-review of the experimental approach to orbit classification
is concluded by observing that a thorough restudy of the classical results
obtained by DARWIN and STRE).MGREN, combined with studies of smaller
than 1: 27 mass ratios and inciuding astronomically significant cases as
well as well as types of orbits of interest in space explorations is long
overdue, This undertaking, of course, will have to be combined with theo-

retical guiding principles, possible along topological lines,
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Summary

The practical aspects of a general procedure for the analysis of
positional observations of satellites (or other astronomical bodies) are
discussed and illustrated by reference to experience gained during an analysis

for the satellites of Mars.
1. Introduction

The principal purpose of this paper is to discuss the practical aspects
of a general procedure for the analysis of observations of the positions of
satellites (or other astronomical bodies) and to illustrate the use of such a
proéedure by reference to a current analysis for the satellites of Mars. The
paper differs in emphasis from the original two lectures in that the discussion
of the procedure has been extended while the discussion of the results has been

shortened since they have already been given elsewhere (Wilkins, 1967).

There are two main reasons for analysing observations of the apparent
positions of the satellites of a planet. Firstly, from the characteristics
of the orbits we can deduce information about the gravitational field of the
planet, and hence about the total mass of the planet and its departures from
spherical symmetry, i.e. we can deduce the ‘dynamical shape’ and principal axis
of the planet for comparison with the apparent shape and axis of rotation.
Secondly, we can compare the observations with the predictions given by a
theoretical model of the satellite system and so determine whether the model
provides an adequate representation; if it does not then we can look for other
perturbing effects that may not have been properly taken into account, e.g.,

resonance effects caused by mutual perturbations of the satellites. Once an
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adequate model has been developed we can investigate the stability of the system
and speculate on its origin and future, e.g., whether any of the satellites have

been recently captured or will eventually escape.

The details of the method of analysis will naturally vary according to the
complexity of the model that is required to represent the observations. The
procedure described here should be of fairly general application in a wider field
than that of the study of satellite orbits, although much more sophisticated
methods that demand very powerful computing systems would be appropriate for

some applications.

The satellites of Mars form a comparatively simple system and the main
difficulty arises from the lack of suitable observations. The initial reason for
making a new analysis was to investigate the existence, or otherwise, of secular
accelerations, such as could be caused by drag or tidal reactions, in the motions
of the satellites. The results have, however, proved to be of interest in

connection with the properties of Mars itself.

2. A general procedure for the analysis of observations

We may divide the task of analysing observations into a number of stages as
indicated in the flow-chart in Figure 1. For simplicity the chart has been drawn
to suggest that the various stages are carried out in sequence, but in practice

we may carry out some of the stages (for example, 2 and 3) concurrently.
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Figure 1. Flow-chart of general procedure for analysis of observations
Stage 1 la. Define aims of analysis

Preliminaries
1b. Plan job as a whole

lc. Compare likely costs and
value of results

Stage 2 2a. Collect past observations
. ——>
Observations

2b. Make new observations

2c. Reduce observations to
standard forms

Stage 3 3a. Choose orbital model
Theoretical
development 3b. Write programs

3c. Test prJﬁrams

b—_—
Stage 4 4a. Choose initial values of parameters

Differential
correction 4b. Make least-squares solution
for corrections to parameters

4c. Examine solution

-
Stage 5 S5a. Analyse final elements

Conclusions
S5b. Interpret results

Sc. Publish results/Attend Conference

Next job
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Stage 1. Preliminaries. The successful execution of a job may be largely

determined by the amount and quality of the effort put into the preliminary
planning of the work. First of all we must define as precisely as possible the
aims of the job in order to make certain that the following stages can be
designed in such a way that these aims can be realised. The aims should not

be restricted too closely, but should allow for the possible investigation at
some later time of aspects that are subsidiary to the principal aim - after

all it is unexpected effects that often prove to be of the greatest interest

and value.

Once the aims have been defined our next step is to plan the execution in
sufficient detail from beginning to end to ensure that no fundamental difficulties
are overlooked and that the output of each stage is likely to be adequate in
both extent and quality for use as input to the succeeding stages. It is, in
fact, often useful to consider the stages in the reverse order to that in which
they will be executed. It is almost invariably wasteful to embark on the
execution of the early stages until the job has been studied in fair detail right

up to the final stage.

Once this planning stage is completed we should be able to make reasonable
estimates of the resourées (of men and equipment) that will be required to
complete the job. This is the time at which the decision to go ahead, or to
redefine the aims, or to abandon the project, should be taken. In most cases
the decision to go ahead will depend on the approval of a higher authority for
the required expenditure, but even if such approval is not necessary, or has
been given at an earlier stage, a conscious decision should always be made at

this time.

Stage 2. Observations. In celestial mechanics it is rarely possible for one

person or group to make all the necessary observations and to analyse them as
well, and so the next step is to collect together all the suitable observations
that have been made. The preliminary studies should have indicated the period

over which observations are needed and the type and quality of observations to
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be used; they may even have shown that new observations must be made if the aims

of the analysis are to be achieved.

The collection of observations will normally involve a literature search
in order to find out where the observations have been published. The volumes of
the Astronomischer Jahresbericht provide an invaluable guide for the years 1899
onwards, and a systematic search covering theoretical as well as observational
papers will usually serve to draw attention to most available observations.
Observatories often publish routine observations only in special series of

volumes and these must normally be examined separately.

Even when the observations have been traced a considerable amount of
detective work may still be required in order that the precise basis of the
printed values may be determined. For example, even the time scale or coordinate
system may be ambiguous, and quite frequently observers fail to state what
corrections have been applied to the measures. If such information cannot be
determined from other evidence the observations must be rejected, or at best
used with low weight. When an observational value is transcribed from the
published form to that to be u;ed in the analysis it should be accompanied by
auxiliary indications that define precisely the significance of the value. It
is, of course, necessary to checit,farefully that any errors made in the transcrip-

tion process are corrected.

The next step is to ‘reduce’ each of the observations to one of a number
of possible standard forms that are acceptable to the main stage of the solution.
These standard forms should be chosen so as to keep this reduction stage as short
as is consistent with avoiding the necessity for a long or complex input stage
in the main program. Again great care is necessary to ensure that no errors are
made in the reduction to standard form, especially if the corrections are
calculated or applied by hand. Herrick (1960) has given a useful review of the
separation between the functions of the observer and the orbit analyst in the
reduction of observations; he also discusses the choice of reference systems for

the analysis.
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Stage 3. Theoretical development. The first step in the theoretical development

involves the choice of a suitable model for the system to be analysed. The form
of the model largely depends on what perturbations are considered to be signi-
ficant in relation to the accuracy of the observations. This choice involves
also the selection of a suitable set of parameters, or elements, whose values are
to be determined more precisely by a differential-correction procedure. These
parameters specify not only the initial conditions for the orbit being analysed
but also other relevant characteristics of the system (e.g., the masses of the
perturbing bodies). The model is defined by a set of equations, or procedures
(e.g. numerical integration), by which we can compute for any instant of time
(t) a predicted value of each observational quantity (a) given adopted values of
the parameters (p,, P,, --- P,). This means that for each type of observation

we have a functional relationship of the form

a = o (Pys Py -+ Ppi t) (1)
and for each observation «; (i = 1, 2, ... N) we can compute the residual
do; = (ai)obs = o; (Pys Pgy -+ Ppi t;) (2)

These residuals can be considered to be due partly to observational error and

partly to the differences between the adopted and true values of the parameters.

If the chosen model does not adequately represent the actual physical system

there will also be a contribution to each'%xtidual from this cause. However,

if we ignore this possibility and assume that the observational errors are

randomly distributed, we can adopt the principle of least squares and find values

of the parameters that make the sum of the squares of the residuals Aa; a minimum.
Let Pj' =p;* Apj.

and let

A'(x‘- = (ai)obs - (py's P’y - p,'i t;).

Then, if each Apj is sufficiently small, we have N equations of condition of the

form

’ z .
Aoy = Ba; - ap;, (i =1, 2, ... N). (3)



Thus the problem is reduced to one of solving in the least-squares sense a system

of N linear equations in n unknowns. This can be done by standard techniques by
forming from the conditional equations a set of n normal equations which can then

be solved directly. It will be noticed that in addition to computing the predicted
values of *; it is necessary to compute the n partial derivatives ?*i/jpj for each
observation. This can be done either by first analytically differentiating the
fundamental equations (1) of by direct numerical differentiation, i.e., by re-
evaluating the equations (1) after introducing small increments to each of the para-
meters in turn. The choice will depend on the complexity of the system of equations
that represent the model and on the characteristics of the computer that is to be
used for the job. Except for comparatively simple systems direct numerical
differentiation, which involves much less programming effort, is now normally used.
It should be noticed, however, that the increments must be sufficiently small that
second-order terms are negligible, but sufficiently large that the changes in %

due to differences in the propagation of rounding-errors in the computation are

much smaller than those due directly to the changes in the parameters.

When the necessary analytical formulae have been developed the corresponding
computer program must be written and tested to make certain that it does correspond
precisely to the specification of the model. If analytical formulae have been
developed for the partial derivatives, they should be tested by direct numerical
differentiation. Particular care should be taken over units since it is unlikely
that the observations, the theoretical formulae and the computer routines will all

use the same system.

Stage 4. Differential corrections. The initial values for the parameters will

normally correspond as closely as possible to the results of previous investigations.
The least-squares solution will then give differential corrections and their
standard errors as indicated by the internal evidence of the observations.

The corrected set of parameters must be checked by using them as a new set of

initial parameters and then verifying that the resultant further differential

corrections are not significant in comparison with the standard errors. Several
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such iterations may be required if the assumption that the second-order terms
are negligible is not valid for the initial choice of elements. The convergence
(or otherwise) of the successive solutions gives a good guide to the validity

of the final solution. The final residuals should always be examined since
departures from a random distribution will indicate the presence of deficiencies
in the model or systematic errors in the observations - but the converse is not

true!

If the solution fails to converge satisfactorily, or if some of the standard
errors of the differential corrections are very high, it may be desirable to
modify the model or the selection of parameters. For example, if the inclination
of an orbit is small the longitude of the node and the argument of pericentre
(méasured from the node) will be poorly determined, but their sum, the longitude
of the pericentre, may be well determined. The presence of other less obvious
correlations is indicated by the presence of large off-diagonal elements in the
inverse of the matrix of the normal equations. It may even be found that one
or more of the aims of the investigation must be abandoned until new observations
have been made. The main point to be emphasised is that, except in routine
cases, reliance should not be placed on any standard computer routine that
automatically iterates to a least-squares solution, especially if the number of

unknowns is large.

Stage 5. Conclusion. If the preliminary planning has been done well, the analysis

of the final elements should be straightforward, i.e., given the set of parameters
that best represent the observational data, and their standard errors, it should
then be possible to compute the corresponding values of other relatec parameters.
The interpretation of the results may, of course, give rise to a completely new and
interesting set of problems and may itself show where further investigation is

required.

3. The analysis for the satellites of Mars

The general procedure for the analysis of observations that has been
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described in section 2 may be illustrated by the methods used and the results so
far obtained in the current analysis of the observations of Phobos and Deimos.
We first discuss the background to the analysis and then consider each of the

stages of the analysis in turn.

Background. The two satellites of Mars were discovered in August 1877 by Hall
(1878), who used the new 26-inch refractor at the U.S. Naval Observatory, and

who named them Phobos and Deimos (after Fear and Terror, the companions of the
God of War). They move in nearly circular orbits which lie close to the
equatorial plane of Mars. They are difficult to observe except at favourable
oppositions, since they are faint, fast-moving, and always lie comparatively
close to the planet. The radii of the orbits of Phobos and Deimos are only 2.7
and 6.9 times the radius of Mars. Their periods of r8v61uti0n are 7" 39™ and

30" 18™, while the period of rotation of Mars is 24D 37™ - as viewed from the
planet, Phobos would therefore rise in the west and set in the east. Oppositions
of Mars occur at intervals of about 2 years and 2 months, and favourable .
oppositions, when the geocentric distance of Mars may be as small as 0.38 a.u.,
occur at intervals of 15 or 17 years, the next being in August 1971. The
apparent magnitudes of the satellites at opposition are about 11 and 12, compared
with a magnitude of, say, -2 for Mars itself; at such times the angular radius

of Mars is only about 10". Attempts to find a third satellite have so far proved

unsuccessful.

The bulk of the observations of the positions of the satellites are of the
apparent coordinates of each satellite with respect to the centre of Mars, and
have been made visually with filar micrometers. The measurements may have been
made directiy in terms of position angle and distance or indirectly by measuring
in rectangular coordinates the distances from the tangents to the limbs of the
planet. There are a much smaller number of observations of the positions of one
satellite relative to the other; such observations are easier to make, particularly
by photography, and should be less liable to systematic errors. Since the
equatorial plane of Mars is inclined at about 24° to the ecliptic the apparent

orbits of the satellites do not always intersect the apparent disc of the planet.
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At some oppositions, however, the phenomena of occultation, transit, and eclipse
occur, but as yet, owing to the difficulties of observation, there are no

published series of such observations.

The satellites were observed fairly regularly during favourable oppositions
up to 1909 and definitive sets of orbital elements were determined by Struve
(1911). Further observations were made at the U.S. Naval Observatory during the
1920’s, and were used by Burton (1929) to obtain corrections to Struve's elements.

The predictions in The Astronomical Ephemeris are, however, still based on

Struve's elements since they have proved to be adequate for finding purposes up
to 1956 when the last-known series of observations was made. Both Struve and
Burton determined independent sets of elements for each satellite, but Woolard
(1944) drew attention to the inconsistencies between the elements for the two
satellites. Shortly afterward Sharpless (1945) claimed to have shown that Phobos
has a definite secular acceleration and that Deimos might have a small secular
deceleration. Since no satisfactory explanation of such accelerations could be
found Dr. G. M. Clemence suggested in 1957 that I should make a new analysis

of the observations to see if Sharpless’ suggestion could be confirmed and if

the inconsistencies between the sets of elements could be reduced.

It is of interest to note that Hall, Burton, Woolard, Sharpless and Clemence
were all on the staff of the U.S. Naval Observatory, and that I started the
analysis while on a short tour of duty at the Observatory in Washington. I made.
a preliminary, hurried solution using the IBM 650 computer at the Yale University
Observatory early in 1958, but the results were inconclusive. Other work and
the lack of a suitable computer at Herstmonceux resulted in the job being left
unfinished for a number of years. Provisional results were obtained in 1964
and 1966 by using an IBM 7090 computer in London. The programs were written
in Fortran IV and have recently been adapted to run on the ICT 1909 computer at

Herstmonceux.

Stage 1. The analysis was started with the principal aim of confirming, or

otherwise, Sharpless’ suggestion that the satellites had secular accelerations.
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In all previous studies the observational data were treated in a piecemeal
fashion. The observations made at each opposition by each observer, or group

of observers, were analysed separately to determine the set of elements for an
elliptic orbit that best represented those observations. These sets of elements
were then combined in order to determine the secular motions of the elements.
Sharpless found that when this was done it was not possible to fit new observa-
tions made in 1939 and 1941 by using a simple linear expression for the mean

longitude, but that a quadratic term was required.

This procedure is obviously open to the objection that the final elements
were only indirectly fitted to the original observations and so the inconsistencies
obtained might be due to the differing methods used to reduce and analyse the
observations. It was therefore decided to collect together all the available
observations for each satellite and to fit them by simple, independent models in
which some of the elliptic elements, including the mean motion in longitude,
were assumed to have secular changes. This would give new estimates of the
secular accelerations for comparison with Sharpless’ values and the other para-

meters could be tested for consistency.

It is now clear that such an approach is unsatisfactory for a number of
reasons, Firstly, it introduces more parameters to be determined than there are
independent parameters in the system. This means that the apparent fit to the
observations may be improved at the expense of introducing possible inconsistencies
between the parameters. Secondly, the parameters which are now of prime interest
(i.e., the constants defining the gravitational field of Mars) are not explicitly
determined, but have to be obtained indirectly from the inconsistent values of
the orbital parameters. Thirdly, it is not possible to include directly in the
solutions the observations of the positions of one satellite relative to the other,
even though they are probably more accurate than the observations relative to
Mars. Fourthly, the form of the solution assumes that any changes in the mean
motion are regular (and can be adequately represented by a quadratic term), whereas

it is possible that an irregular variation is present.
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It is, of course, easy to make such criticisms in retrospect but the point
to be emphasised is that some, if not all of them, could have been avoided if
more consideration had been given to the procedure to be used in stage 5 before

stages 2 and 3 were planned and executed.

Stage 2. The only real difficulty in the second stage arose from the fact that
some observers failed to indicate the precise significance of the results that
were published (e.g., whether corrections for the phase of the planet had been
applied). The details of some 2800 measures were punched on to cards. In order
to simplify the input stage of the main program the times of observation were
reduced to the Ephemeris Time scale (by adopting a standard table of values of
E.T. - U.T.), allowance was made for light-time, and the apparent coordinates

of Mars were associated with each observation.

The accuracy with which secular motions can be determined is, of course,
improved as the time-span of the observations increases. It was at first
thought that the observations made from 1877 - 1956 would be adequate for the
job in hand, but it_is now clear that additional observations would be useful
both in order to put closer limits on any irregularities in the mean motions and
so that the gravitational field parameters for Mars can be determined more

accurately for use in space-probe missions and other studies.

Stage 3. The orbital model that was used in the analysis was based on the
assumption that each satellite can be considered to be moving in an ellipse whose
elements are subject only to secular (i.e. cumulative) changes. The periodic
perturbations due to the Sun and to the non-sphericity of Mars were neglected,

as were also the perturbations of the other planets and the mutual perturbations

of the two satellites.

For each orbit the principal secular perturbation is due to the oblateness
Sf Mars and causes a retrograde motion of the normal to the orbital plane about
the principal axis of the planet; the principal perturbation due to the Sun is a
similar motion about the normal to the plane of the orbit of Mars around the

Sun. The net result is that the normal to the orbital plane precesses about an



- 235 -

axis lying between the principal axis of the planet and the normal to the orbit

of Mars. This axis is close to the principal axis of the planet since the
perturbations due to the oblateness are very much greater than those due to the
Sun. The precession is such that the orbital plane maintains a constant
inclination to the so-called Laplacian plane, and the line of intersection of

the two planes (i.e., the line of nodes) regresses (i.e., moves in the opposite
sense to the motion of the satellites) at a constant rate. In addition the line
of apsides in the orbital plane advances at nearly the same rate. The precessions

of the Laplacian planes for the two satellites have been ignored.

The orbital model for each satellite was specified by 12 elements since the
position of the Laplacian plane and the secular rates were treated as independent
parameters. The fundamental orbital elements were referred to the reference
system defined by the equator and equinox of 1950.0, but for each observation
it was necessary to reduce the elements to the equator of date before calculating
the apparent position of the satellite. In view of the simplicity of the model
it was possible to evaluate the partial derivatives of the observed quantities
with respect to the parameters directly from analytical expressions. The normal

equations were solved by the use of a standard matrix inversion subroutine.

The experience gained in testing and using the program indicated the need
for a number of modifications to the initial simple least-squares solution
that was planned. For example, since we are looking for secular effects we are

‘endeavouring to find the coefficients in expressions of the form
x(tj) = a, + b, (ti - to) + cy (ti - to)?, 4)

where t, is some arbitrary date (e.g., near 1950.0). When, as in this case, the
majority of observations are at one end of the range the normal equatiuns are
found to be very badly conditioned, i.e., they are difficult to solve correctly
and the standard errors of the solutions are high. The ill-conditioning can,

however, be overcome by re-expressing equation (4) in the form

x(t;) = a, + b, (t; - tn) + o, (t; - t)?, (5)
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where t is the (weighted) mean date of the observations. This mean date is not
known in advance but an adequate value can be obtained after one or two iterations.

C

It was, therefore, necessary to introduce extra program steps to compute a_, b_, n

from a,, b,, ¢, and vice-versa.

The initial program was also modified so that a solution could be made for
any weighted selection of the full set of 12 parameters. The weighting factors
are useful in improving the conditioning of the normal equations since it is
desirable that the elements on the principal diagonal are of the same order of
magnitude. Since the inclination (i) of the orbital plane to the Laplacian plane
and the eccentricity (e) of each orbit are small an automatic weighting was
introduced by solving for sin i dV and edP where dN and dP are the required

corrections to the longitudes of the node and pericentre.

Stage 4. So far some six solutions using all the observations up to 1928 have
been made; some of them were simple iterations, but in others the effects of
eliminating some of the unknowns, or changing the limits for the rejection of
observations, were tried. The adopted solution is given in Table 1. The errors
that are quoted are based on a consideration of both the formal standard errors
given by the least-squares solutions and the self-consistency of the various

solutions.

It was found that no significant improvement in fit to the observations was
obtained when a secular acceleration term was included, even though the formal
solution for Phobos indicated a non-zero value. The reason for this ambiguous
result is almost certainly that the bulk of the observations were made before
1909 and the remainder were made in the 1920's. In an attempt to resolve the
difficulty the program was adapted so that the later observations made in 1941 and
1956 could be used and so that some indication of the residual errors in orbital

longitude over the whole period could be obtained.

The few observations available for 1941 and 1951 were entirely in the form
of positions of Phobos relative to Deimos, and the assumption was made that both

sets of orbital elements were correct except that the mean longitude of Phobos
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might be subject to fluctuation. The program was used to find for each
observation the value of the zero of longitude that would give the minimum
residual; there was a considerable scatter but the general trend was plain for

each group of observations.

The earlier observations fall naturally into groups, corresponding to
measures of one coordinate (e.g. position angle), by one observer, for one
opposition. By assuming that all the other elements were correct it was
possible to estimate directly the value of the zero of mean longitude that
would give the best fit in the least-squares sense to each group of observations.
The differences between these estimates and the original value could show the
presence of a steady rate of change of the mean motion or a fluctuation in rate
such as would occur if air drag were significant but varied greatly with solar
activity. No such effect was found; the scatter (see Wilkins, 1967) was greater
than that given by Sharpless, but this may be merely due to the larger number of
groups of observations that were used. The 1956 observations gave a much smaller
residual (2°) than the value (6°) that would be given by an acceleration of the

magnitude suggested by Sharpless.

As far as is known there have been no direct observations of the satellites
since 1956; attempts to see and photograph them at Herstmonceux have failed.
Rakos (1965), however, attempted to observe a series of partial eclipses of Phobos
early in 1965; a preliminary analysis suggests that the mean longitude must be
altered by about 30° if the present model is to be reconciled with the observations.
The reality of such a large effect must be in doubt until it has been confirmed
by further observations or the observational data and the subsequent analysis have

been subjected to close and independent scrutiny.

Stage 5. The final set of parameters are substantially the same as those obtained
by Struve and Burton. They can be analysed to determine the mass (m) of Mars

and the quantity jqkeq, where J, is the coefficient of the second-harmonic in the
expression for the gravitational potential of Mars and R, is the equatorial radius

of Mars. Adoption of a value of R, (which is not well determined by visual
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observations) leads to a value of J, and hence to the ‘dynamical flattening’

(f) and mean density of the planet. (See Wilkins, 1967, for the derivation and
discussion of the results.) The value for the mass of Mars is consistent with

the more accurate value that has recently been obtained (Gaugler, 1967) from an
analysis of the orbit of the space-probe Mariner IV. The value of the flattening
is only half that obtained by direct visual observations of the planet (Dollfus,
1967); the reason for this discrepancy is not known. (For example, see 6pik, 1962,

and Runcorn, 1967).°

Conclusions. In spite of the elapsed time since its inception, this analysis of
the observations of the satellites of Mars cannot be regarded as definitive and
so an improved analysis is being made. The principal change will be the use of
a much more sophisticated model of the system in which the positions of the
Laplacian planes and the secular motions of the motions of the node and pericentre
will be computed theoretically in terms of the parameters J, and higher-order
coefficients, and in which the principal periodic perturbations will also be
included. It is thereby hoped to reduce the root-mean-square residual for the
visual observations from 055 to a value of, say, 073 such as is obtained if a
group of observations for a single opposition are fitted by a simple elliptic
orbit. Correspondingly the standard errors of the derived parameters and the
scatter in the residuals in orbital longitude should be reduced, and it should
be possible to remove the present uncertainty about the secular motions of these

elusive satellites.
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Table 1

Orbital parameters for satellites of Mars (from analysis made in 1964)

Elements for equator and equinox of 1950.0
Epoch

Longitude of node of fixed plane
Inclination of fixed plane to equator
Argument of node of orbital plane at epoch
Daily motion of node of orbital plane
Inclination of orbital plane to fixed plane
Mean longitude at epoch

Daily mean motion in longitude

Secular acceleration in longitude
Longitude of pericentre at epoch

Daily motion of pericentre

Apparent semi-major axis at unit distance
Eccentricity of orbit

Mean epoch of observations

Number of observations (1877 - 1928)

Standard error of observations of unit weight

Phobos
J.D. 2414600.5
46°9 t 0°1
37257 + 0°07
80° t 5°
-0°438 + 0°001
0°9 + 0°1
227°1 + 0°1

112898443
+ 0°0001

211° + 3°
+0°436 + 0°001
12791 £ 0701
0.018 + 0.001

1899.0

1440

0752

Deimos
J.D. 2414800.5
46°40 + 0.05
3664 + 0.03
358°3 + 029
-0°0180 + 0°0003
1°80 + 0°02
333°87 + 0°03

285°16192
1+ 0°00001

(300° + 20°)*

(+0°016 + 0°003)*

32’36 t 0’01

0.0 + 0.0003

1898.7
1300
0755

* Formal values only; the final value of the eccentricity of the orbit of Deimos

was much less than the standard error and so the orbit may be assumed to be

circular.
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