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Preface

The material presented in this book was born out of a series of lectures at a
Summer School held at Figueira da Foz (Portugal) in 1987. Since then, the field
of computational physics has seen an enormous growth and stormy development.

Many new applications and application areas have been found. In the 1980s, we
could not foresee this but hoped that the Monte Carlo method would find such wide-
spread acceptance. We were thus very glad to bring the work forward to a second
edition correcting some misprints. Since then and over the years and editions of this
book, many chapters have been added accounting for the development of new meth-
ods and algorithms. However, the basics have remained stable over the years and
still serve as an entry point for researchers who would like to apply the Monte Carlo
method and perhaps want to develop new ideas. Appending these basics with chap-
ters on newly developed methods has evolved this book a bit into the direction of
a textbook giving an introduction and at the same time covering a very broad spec-
trum. The first part of the book explains the theoretical foundations of the Monte
Carlo method as applied to statistical physics. Chapter 3 guides the reader to prac-
tical work by formulating simple exercises and giving hints to solve them. Hence,
it is a kind of “primer” for the beginner, who can learn the technique by work-
ing through these two chapters in a few weeks of intense study. Alternatively, this
material can be used as text for a short course in university teaching covering in
one term. The following chapters describe some more sophisticated and advanced
techniques, e.g., Chap. 4 describes cluster algorithms and reweighting techniques,
Chap. 5 describes the basic aspects of quantum Monte Carlo methods, and Chap. 6
(newly added to the 5th edition) describes recent developments in the last decade,
such as “expanded ensemble” methods to sample the energy density of states, e.g.,
the Wang–Landau algorithm, as well as methods to sample rare events, such as
“transition path sampling”. These chapters then should be useful even for the more
experienced practitioner. However, no attempt is made to cover all existing appli-
cations of Monte Carlo methods to statistical physics in an encyclopedic style –
such an attempt would make this book almost unreadable and unhandy. While the
“classic” applications of Monte Carlo methods in the 1970s and 1980s of the last
century now are simple examples that a student can work out on his laptop as an
exercise, this is not true for the recent developments described in the last chapter,
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vi Preface

of course, which often need heavy investment of computer time. Hence, no attempt
could as yet be made to enrich the last chapters with exercises as well.

We are very grateful for the many comments, suggestions, and the pointing out
of misprints that have been brought to our attention. We would like to thank the
many colleagues with whom we had the pleasure to engage with into discussions
and that in some way or the other have shaped our thinking and thus have indirectly
influenced this work.

Mainz, Heidelberg Kurt Binder
July 2010 Dieter W. Heermann



Preface to the Fourth Edition

At the beginning of the new millennium, computer simulation is a well estab-
lished method of doing physics research. By Monte Carlo study of models that are
intractable by analytical methods one closes important gaps in our understanding of
physical reality. “Computer experiments” can be performed where one switches on
interactions at will (or switches them off), and one can “measure” response func-
tions inaccessible by experiment, one can work in reduced dimensionality (d D 1,
d D 2) or one can explore higher-dimensional worlds. These are just a few examples
out of many, on how one can get insight by going beyond experiments. A valu-
able advantage also is the possibility of recognizing important aspects of a problem
by visualizing degrees of freedom of a complex many-body system in any desired
detail!

These comments should suffice to explain why the simulational approach in
physics becomes still more popular, and the number of research papers alone that
use it certainly is of the same order as research papers containing experimental work
only or current analytical calculations. However, there still is a strange mismatch
between the strong role of simulations in physics research, and the relatively small
part that is devoted to simulation in the teaching of physics. The present book thus
plays a key role, because it contributes significantly to closing this gap. Students
with a little background in statistical thermodynamics can use this book to learn
how to do simulations, guided using program simulations on classical problems
of statistical physics, like the Ising model or other spin models, percolation, the
Lennard–Jones fluid, etc. The combination of coherent chapters presenting all the
essentials of the techniques of both the generation of simulation “data” and their
analysis with a multitude of exercises of widely varying difficulty provides useful
material, indispensable for the beginner, but containing facets also useful for the
expert.

This concept applied also to previous editions, and has proven successful and
useful. Nevertheless, the present edition includes not only significant updates to the
chapters contained in the earlier editions, but contains a rich new chapter where an
introduction to Quantum Monte Carlo methods is provided. This is a topic which
steadily gains more importance, and hence including it should significantly improve
the usefulness of the present book.

vii



viii Preface to the Fourth Edition

Again, it is a great pleasure to thank many colleagues for suggestions, as well as
our own students for their questions – all these interactions have helped to improve
the presentation of material in this book.

Mainz, Heidelberg Kurt Binder
May 2002 Dieter W. Heermann



Preface to the Third Edition

The last ten years have seen an explosive growth in the computer power available
to scientists. Simulations that needed access to big mainframe computers in the past
are now feasible on the workstation or powerful personal computer available on
everybody’s desk. This ease with which physicists (and scientists in neighboring
areas such as chemistry, biology, economic science) can carry out simulations of
their own, has caused a true scientific revolution, and thus simulational approaches
are extremely widespread.

However, teaching simulation methods in physics is still a somewhat neglected
field at many universities. Although there is plenty of literature describing advanced
applications (the old dream of predicting materials properties from known interac-
tions between atoms or molecules is now reality in many cases!), there is still a lack
of textbooks from which the interested student can learn the technique of Monte
Carlo simulations and their proper analysis step by step.

Thus the present book still fulfills a need and continues to be useful for students
who wish to bridge gaps in their university education in a “do-it-yourself” basis
and for university staff who can use it for courses. Also researchers in academia
and industry who have recognized the need to catch up with these important
developments will find this book invaluable.

This third edition differs from the first in two important respects: printing errors
have been eliminated, unclear formulations have been replaced by better ones and
so on. We are most indebted to Professor Kecheng Qin (Physics Department, Univ.
Beijing) who translated the first edition into Chinese and on that occasion very effi-
ciently helped us to track down all these minor inconsistencies. We have also added
an entire new chapter “Some Important Recent Developments of the Monte Carlo
Methodology”, which describes technical breakthroughs such as cluster algorithms
and histogram reweighting, which became established after the first edition was pub-
lished and are now commonly used by many Monte Carlo practitioners. The many
references (far more than 100) in this chapter will make this book useful for the
experienced researcher as well as the new student, who is encouraged to apply these
techniques when working through the exercises in Chap. 3.
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Finally, we wish to thank many colleagues for fruitful interactions, which have
helped to improve this book.

Mainz, Heidelberg Kurt Binder
June 1997 Dieter W. Heermann



Preface to the Earlier Editions

When learning very formal material one comes to a stage where one thinks one has
understood the material. Confronted with a “real life” problem, the passivity of this
understanding sometimes becomes painfully clear. To be able to solve the problem,
ideas, methods, etc., need to be ready at hand. They must be mastered (become
active knowledge) in order to employ them successfully. Starting from this idea, the
leitmotif, or aim, of this book has been to close this gap as much as possible.

How can this be done? The material presented here was born out of a series of
lectures at the Summer School held at Figueira da Foz (Portugal) in 1987. The series
of lectures was split into two concurrent parts. In one part the “formal material” was
presented. Since the background of those attending varied widely, the presentation
of the formal material was kept as pedagogic as possible.

In the formal part the general ideas behind the Monte Carlo method were devel-
oped. The Monte Carlo method has now found widespread application in many
branches of science such as physics, chemistry, and biology. Because of this, the
scope of the lectures had to be narrowed down. We could not give a complete
account and restricted the treatment to the application of the Monte Carlo method
to the physics of phase transitions. Here particular emphasis is placed on finite-size
effects.

The more “informal” part of the lectures concentrated on the practical side. In
a step-by-step fashion, those who attended the lectures were led from “easy” appli-
cations to more advanced algorithms. In this part we truly tried to give life to the
ideas and concepts. We hope that in this book we have captured the spirit of the
Summer School. There, the gap mentioned before narrowed, because many actively
participated in both parts.

From the above it is clear that the material on the Monte Carlo method pre-
sented in this book can be of use to many scientists. It can be used for an advanced
undergraduate or graduate course. In fact, a draft of this book has been used for
a course held at the University of Mainz. Not only do we present the algorithms
in great depth, we also encourage the reader to actively participate by setting many
problems to be worked out by the reader.

Also for researchers and scientists using the Monte Carlo method this book
contains material which may be of importance for their research. We treat, for
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xii Preface to the Earlier Editions

example, the problem of statistical errors of a Monte Carlo estimate of a quantity.
Consideration is also given to the problem of self-averaging.

We would like to thank first of all K. Kremer and D.P. Landau. Without their
continuing collaboration and constructive criticism this book would not have its
present form. Thanks are also due to the students of the condensed matter theory
group at the University of Mainz for their participation and critical reading of the
manuscript. Special thanks go to M. DeMeo for running some of the programs.

Mainz Kurt Binder
May 1988 Dieter W. Heermann
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Chapter 1
Introduction: Purpose and Scope
of This Volume, and Some General Comments

In recent years the method of “computer simulation” has started something like
a revolution of science: the old division of physics (as well as chemistry, biology,
etc.) into “experimental” and “theoretical” branches is no longer really complete.
Rather, “computer simulation” has become a third branch complementary to the
first two traditional approaches.

What, then, is the specific significance of computer simulation or “computer
experiments”? The answer is simply that computer simulation yields exact infor-
mation (apart from statistical errors, but these can be made as small as desired, at
least in principle) on model systems which are precisely characterized. (For prob-
lems in statistical physics this means that parameters describing the Hamiltonian are
known explicitly and exhaustively.)

In contrast, the information provided by analytic theory is exact only in rather
rare cases, while in most other cases uncontrolled approximations are required. For
example, statistical physics problems which are solvable for a three-dimensional
geometry are idealized limiting cases such as ideal gases or ideal solutions, coupled
harmonic oscillators, etc. The statistical mechanics of even very simple models,
such as the three-dimensional Ising model, cannot be solved exactly, and much less
is known about models with realistic potentials between the atomic degrees of free-
dom. Thus computer simulations are often designed to check the accuracy of some
approximation made in the analytical treatment of a model.

Similarly, the information provided by experiment is almost never precisely char-
acterized in the sense that the effective Hamiltonian of a given experimental sample
is precisely known. Sometimes it is even controversial whether some experimen-
tally observed phenomenon is “intrinsic” or due to some unknown impurity effects –
remember that the chemical constitution of an experimental sample is known only
approximately anyway. These are just a few examples from which it is clear that
the comparison between analytic theory and experiment does not always lead to
conclusive answers, and simulations are needed to bridge this gap. Thus, a direct
comparison between a simulation of a model and experiment is not hampered by
inaccurate approximations, as are often inevitable in analytic theory, and hence may
indicate more conclusively whether the model faithfully represents the real system
or not.

K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics,
Graduate Texts in Physics, DOI 10.1007/978-3-642-03163-2 1,
c� Springer-Verlag Berlin Heidelberg 2010
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2 1 Introduction: Purpose, Scope and Some General Comments

Of course, this is by no means the only reason why computer simulations are
attractive. It should be noted that simulations provide information on model systems
which is arbitrarily detailed, and whatever quantity the researcher may consider
useful he may attempt to “sample” from the simulation. For example, scattering
techniques applied to real systems usually yield information on two-particle corre-
lation functions, but it is very difficult to obtain direct experimental information on
triplet correlations or even higher-order correlations. In contrast, simulations can
yield such higher-order correlations readily, at least in principle. And while the
experimenter may change the temperature and pressure of his sample, he cannot
as easily assess the effect of varying the interatomic potential. But arbitrary vari-
ations of interatomic potentials do not constitute a major difficulty for a computer
simulation in any way. It is now quite clear that the method of computer simula-
tion is of interest in its own right; it is a valid scientific approach to understanding
the laws of nature, instructive to its practitioners in a way that is complementary to
theory or experiment.

In this situation, it is no surprise that there is a true explosion of the literature
on the subject. Many researchers who have previously been doing research in the-
oretical physics (or theoretical chemistry, biology, etc.) start doing simulations, as
well as some experimentalists. And, last but not least, many students who do not
have any other research experience are attracted to the field of computer simulation
immediately.

This great interest, however, encounters a serious difficulty: at this point, there is
hardly any teaching of simulation methods at universities, and there is even a lack
of systematic textbooks from which the newcomer to the field could easily learn
to become an experienced practitioner. Although one of the authors (K.B.) of the
present book has edited two books which collect many applications of the Monte
Carlo computer simulation method in statistical physics, these books do not have the
character of textbooks from which one can easily learn a new field. The other author
(D.W.H.) has written a more pedagogic account of computer simulation methods in
general; however, due to its generality it cannot go into very great detail as far as the
Monte Carlo investigation of phase transitions and related problems (percolation,
random walks, polymers, growth phenomena, etc.) is concerned. Similar reserva-
tions apply to other techniques (such as the “molecular dynamics” method) or the
techniques have other limitations. Thus the “art” of Monte Carlo simulation so far is
predominantly being learned and spread in two ways, namely, either by the tedious
comparative study of many original papers dating back over several decades, or by
private communications from experienced practitioners.

The purpose of the present book is to fill this gap, at least partially. Thus from
the outset we restrict the scope of the book to one method of computer simulation,
the Monte Carlo method, rather than trying to cover the whole field. This restriction
in scope has several motivations: first of all, the expertise of the authors is mostly
connected with this field: second, by this restriction it is realistic to use this book
as a textbook for a two hour per week university course on computer simulation
during one university term. Alternatively, it is suitable for use as a text for a two-
week workshop on computer simulation, where the student may practice every day



1 Introduction: Purpose, Scope and Some General Comments 3

during this two-week period, and thus learn the Monte Carlo method in a compact
intensive course. Finally, for a student or researcher who tries to work through this
book just by himself, the task still seems manageable!

Unlike previous literature on Monte Carlo simulation, the present book gives
equal weight to the theoretical foundations of the method (including the analy-
sis of the results) and to practical work with the method. Performing “computer
experiments” must be learned, just as the experimentalist learns to plan and set up
experiments with real systems and evaluate the data gained from them by attending
practical courses. This need for practical work in order to learn to carry out such
computer experiments has been encountered again and again both by the authors
of this book and by many of their colleagues. In fact, preliminary unpublished
notes for the present book have been used rather successfully for a workshop on
computer simulation held at Figueira da Foz, Portugal, in September 1987, and at
various courses held at the University of Mainz. Thus practical experience in teach-
ing Monte Carlo methods to students was a major factor in determining the content
of this book. It has been our experience that background knowledge of a program-
ming language such as PASCAL can always be assumed, as well as some knowledge
of statistical mechanics, including the basic principle of phase transitions. If the
reader is not yet familiar with concepts such as “critical exponents” and the “scal-
ing relations” among them and models such as the Ising model, percolation, etc., he
can easily find various texts where these concepts are described clearly (we refer to
some of these in this book). Thus there is no need to repeat these basic concepts.

However, in using the present book it is crucial to use the theoretical part (Chap. 2
in this book) together with the “guide to practical work” (Chap. 3). These chapters
both deal with the same subjects (simple sampling, random and self-avoiding walks,
percolation, the Ising model, etc.) but from somewhat different points of view. In
the first part, concepts for the numerical treatment of these problems were intro-
duced and justified. In the second part, these concepts are applied to problems, and
active participation by the reader (e.g., by working on these problems on a personal
computer) is required in order to understand the concepts more deeply.

A particularly suitable way of doing so is the form of a “workshop” where this
text is used as the instruction manual. A solution to a problem is presented and
immediately tried out, and the method for solving the problem, the algorithm, is
improved upon. Of course, a workshop works best if there is interaction between the
students and the teacher and among the students. There is a component of feedback,
from which everybody in the workshop benefits. In the form of a written text a work-
shop is somewhat less efficient. Nevertheless, we have structured the text such that
some form of interaction with the text, other than passive reading, is possible and
necessary.

The aim is to present enough material so that one can start to develop algorithms
for other problems based on the concepts presented here. To achieve this goal it is
necessary to work through the entire material. Thus this “workshop” (Chap. 3) is
a single unit. A second goal of Chap. 3 is to present methods of data analysis and
to enable the reader to become familiar with how they are applied. Again, active
participation is requested.



4 1 Introduction: Purpose, Scope and Some General Comments

With the concept used for this book with two chapters which are strongly
correlated with each other, some redundancy is inevitable and even necessary for the
sake of clarity and coherence of presentation. In fact, the scientific background of
all the methods discussed in this book has been presented elsewhere in the literature:
what is new and radically different from previous work is the introductory character
which smoothly leads the student to a lot of practical work and experience with the
method. For this pedagogic goal slight redundancies are even desirable. We have
deliberately selected very simple problems of statistical physics, such as random
and self-avoiding walk, percolation and the Ising model, for which all concepts and
methods can be explained and demonstrated comparatively easily, and do not treat
more complicated problems such as fluids with realistic potentials, spin glasses and
other disordered materials, quantum-mechanical Monte Carlo methods, or problems
in lattice gauge theory, in this part of the book. In our opinion, the reader will be able
to move on to such problems using the other books which exist already on the Monte
Carlo method, after he has worked through the present text. We deal with the char-
acteristic features of thermal averaging for lattice problems with discrete degrees
of freedom (Ising model, Potts model, etc.) as well as continuous ones (Heisenberg
and XY magnets, �4 model, etc.) in some depth, while off-lattice problems such as
simple fluids, are mentioned only briefly. Particular attention is paid to understand-
ing the limitations of the method (effects due to finite size and boundary conditions,
finite observation time effects, the question of self-averaging), and what one does
to overcome these limitations: for example, finite-size effects at second-order phase
transitions as well as at first-order phase transitions can be used as a valuable tool
for studying the bulk properties of the system, if the appropriate finite-size scaling
theory is invoked. The dynamic interpretation of the Monte Carlo importance sam-
pling is discussed as well. It is shown that although on the one hand an unwanted
slowing down of convergence is implied, particularly near critical points (critical
slowing down) or in glassy systems, on the other hand the Monte Carlo method
becomes a unique tool for the study of the kinetics of stochastic models.

When the reader has worked through Chaps. 2 and 3, he is invited to move on
to read Chap. 4 which describes some more recent methodological advances, which
now have become “state of the art”. Chapter 5 gives a first introduction to quantum-
mechanical problems, a field that has become important recently. Finally, chapter 6
describes recent progress obtained to solve one of the great challenges of Monte
Carlo simulations, namely the sampling of free energy landscapes.



Chapter 2
Theoretical Foundations of the Monte Carlo
Method and Its Applications in Statistical
Physics

In this chapter we first introduce the basic concepts of Monte Carlo sampling, give
some details on how Monte Carlo programs need to be organized, and then proceed
to the interpretation and analysis of Monte Carlo results.

2.1 Simple Sampling Versus Importance Sampling

2.1.1 Models

Statistical physics deals with systems with many degrees of freedom. A typical prob-
lem posed by statistical physics is to compute “average” macroscopic observables
of a system for which the Hamiltonian is assumed to be known. For instance, let us
consider magnetic systems: if a ferromagnet has very strong uniaxial anisotropy we
may describe it by the Ising model, where N spins Si interact as

HIsing D �J
X

hi;j i
SiSj �H

X

iD1

Si ; Si D ˙1; (2.1)

where the spin Si at lattice site i can point up or down along the “easy axis”, the
exchange energy J is restricted in (2.1) to nearest neighbors, and H is a magnetic
field (the term �HP

i Si describing the Zeeman energy of the system). Other cases
occur, however, if the ferromagnet has planar anisotropy (the spin being restricted
to lie in the xy plane: XY model) or is fully isotropic (Heisenberg model):

HXY D �J
X

hi;j i
.Sx

i S
x
j C S

y
i S

y
j / �Hx

X

i

Sx
i ; (2.2)

.Sx
i /

2 C .S
y
i /

2 D 1;

HHeisenberg D �J
X

hi;j i
.S i � S j /�Hz

X

i

S z
i; (2.3)

.Sx
i /

2 C .S
y
i /

2 C .S z
i /

2 D 1:

K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics,
Graduate Texts in Physics, DOI 10.1007/978-3-642-03163-2 2,
c� Springer-Verlag Berlin Heidelberg 2010
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6 2 Theoretical Foundations of the Monte Carlo Method

Of course, the large variety of real materials that the experimentalist can prepare
in his laboratory creates interest in many variants of these models: instead of spin
quantum number S D 1

2
, implied in (2.1), or S ! 1, implied in (2.2) and (2.3), we

may wish to consider general spin quantum numbers; instead of exchange between
nearest neighbors only, we may wish to include exchange energies between next
nearest neighbors, third nearest neighbors, etc.; instead of the full isotropy in (2.3),
there may be a need to add a uniaxial or planar anisotropy term to it; instead of
uniform exchange J and uniform field H in (2.1), it may be appropriate to work
with random exchange constants Jij and random fieldsHi , to model some frozen-in
random disorder in the system. Thus, magnetic solids already provide us with an
incredible wealth of model Hamiltonians, for which (2.1)–(2.3) just provide proto-
type examples, and this wealth of models is only a small part of the broad spectrum
of applications provided by condensed matter physics.

One task of statistical physics is to compute from the model Hamiltonian H the
desired average properties, e.g., the average energy E or average magnetization M

per degree of freedom,

E D hHiT =N; M D
�X

i

ESi

�

T

=N: (2.4)

Here the thermal average of any observable A.x/ŒA D H;Pi
ESi , etc., and the

vector x in phase space stands symbolically for the set of variables describing
the considered degree of freedom, e.g., x D .S1; S2; : : : ; SN / for (2.1) x D
. ES1; ES2; : : : ; ESN / for (2.3)] is defined in the canonical ensemble

hA.x/iT D 1

Z

Z
dx exp Œ�H.x/=kBT �A.x/; (2.5)

Z D
Z

dx exp Œ�H.x/=kBT �:

It is appropriate to call these classes of problems “statistical physics” because the
normalized Boltzmann factor

p.x/ D 1

Z
exp Œ�H.x/=kBT � (2.6)

plays the role of a probability density describing the statistical weight with which
the configuration x occurs in thermal equilibrium.

Now although (2.6) gives a formally exact description of the probability dis-
tribution p.x/, we are still in trouble: we are neither interested in such detailed
information (in our examples x stands for a set containing the N spin degrees of
freedom), nor is it possible to carry out the integrations in this high-dimensional
space [(2.4) and (2.5)] in the general case.
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2.1.2 Simple Sampling

The Monte Carlo method in equilibrium statistical mechanics starts from the idea
of approximating the exact equation (2.5), where one integrates over all states fxg
with their proper weights p.x/, by a summation using only a characteristic subset of
phase space points fx1;x2; : : : ;xM g which are used as a statistical sample. Clearly,
if one considers the limit M ! 1, the discrete sum

A.x/ D

MX

lD1

exp Œ�H.xl /=kBT �A.xl /

MX

lD1

exp Œ�H.xl/=kBT �

(2.7)

must approximate (2.5), just as in numerical integration routines integrals are
replaced by sums [for discrete degrees of freedom, such as the Ising problem,R

dx in (2.5) already stands for a discrete summation over all the 2N states
x D .S1; : : : ; SN /, of course, but in (2.7) we then wish to work with a small
subset of these states only,M � 2N ]. But, unlike in standard routines to solve one-
dimensional integrals

R
f .x/dx, where f .x/ is a function of one real variable x

only, instead of a high-dimensional vector x, it makes no sense to choose the points
xl according to a regular grid, rather we have to choose the points xl at random. In
order to appreciate this point in detail, let us consider the XY model defined in (2.2)
as an example. Because .Sx

i /
2 C .S

y
i /

2 D 1 for each site i , it is convenient to write
Sx

i D cos'i , S
y
i D sin 'i and take the angle 'i .0 � 'i < 2�/ as a variable to char-

acterize the degrees of freedom. Then
R

dx simply means
QR 2�

0
d'i . Let us now

introduce a regular grid, defined by '�
i D .�i=p/2� , with �i D 1; 2; : : : ; p, where

p is some integer characterizing the grid. Obviously the total number of points to be
used in this grid is pN , which is very large for largeN , impossible to use in practice
even if p is rather small. Apart from this difficulty, even if we were able to work
with a reasonably large value for p, we would still have the problem that almost all
points were located on the surface of the integration hypercube and almost none in
its interior. Since in any lattice direction of the hypercube there are p points of the
grid, p � 2 being in the cube interior, the total fraction of points in the interior is

Œ.p � 2/=p�N D .1 � 2=p/N

D exp

�
N log

�
1 � 2

p

��
�

p large
exp

�
�2N
p

�
�!

N !1 0:

A much better, i.e., uniform, distribution of grid points is achieved if we choose the
points xl at random, utilizing “pseudo-random numbers” produced by a “random
number generator” built into the computer. This use of random numbers has given
this game its name! In fact, the method described thus far by (2.7) is indeed a variant
of Monte Carlo methods, namely the simple sampling Monte Carlo method.
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2.1.3 Random Walks and Self-Avoiding Walks

As an example of problems for which the simple sampling technique has actu-
ally been and is still used, we mention the study of self-avoiding walks (SAWs)
on lattices, see, e.g., [2.1]. These self-avoiding walks are used for modelling the
large-scale properties of long flexible macromolecules in solution [2.2–2.4]. Since
it is rather instructive to discuss both the advantages and the disadvantages of study-
ing such random-walk-type problems with simple sampling Monte Carlo methods,
we give a brief digression on this subject in the following.

Figure 2.1 shows various types of random walks on the square lattice. There are
four different types of vectors v.k/ connecting a site to its nearest neighbor on the
lattice (the lattice spacing is taken to be unity)

v.1/ D .1; 0/; v.2/ D .0; 1/; v.3/ D .�1; 0/; v.4/ D .0;�1/: (2.8)

An algorithm which generates simple (unrestricted) random walks of N steps now
proceeds as follows:

Algorithm 2.1. Random walks

i) r0 D 0 (origin of coordinate system) and put k D 0

ii) Choose a random integer �k between 1 and 4
iii) Replace k by k C 1 and put rk D rk�1 C v.�k�1/

iv) If k D N put rk D R (end to end distance of the walk); else return to
step (ii). (2.9)

An example of a walk with N D 22 generated by this procedure is shown in
Fig. 2.1a; the generation of random walks will be studied in more detail in
Sect. 3.2.1. At this point we only note that for a lattice of coordination number z
the total numberZN of all such (different) random walks (RWs) is simply

ZRW
N D zN : (2.10)

If the random walk is taken as a model for a polymer chain, ZN is just the polymer
partition function. (In the absence of any interactions all chain configurations have
exactly the same statistical weight.)

While Algorithm 2.1 may be a reasonable model for hopping conduction in
solids or other diffusion processes on ideal lattices, it is not a good model for
polymers in solution, not just because of the unrealistic features of using a lattice
structure to model the conformations of a macromolecule, but in particular because
the excluded volume interaction is ignored. Unlike real polymers, the random walk
in Fig. 2.1a intersects itself and folds back on itself. The latter feature is eliminated
by defining the nonreversal random walk (NRRW) for which immediate reversals
are forbidden. We can define an algorithm for this NRRW by introducing a sort of
“periodic” boundary condition for the vectors v.�k/ by defining
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Fig. 2.1 An unrestricted random walk (RW) of 22 steps on the square lattice (a), a nonreversal
random walk (NRRW) (b), and two self-avoiding walks (SAWs) (c). Sites are numbered in the
order that they are visited. Bonds with arrows are selected consecutively by means of random
numbers. The dots on the lattice sites then represent the monomers of the polymer chain

v.� ˙ 4/ D v.�/ (2.11)

and modifying step (ii) of (2.9) for k > 1 by introducing a one-step memory: (ii0):
Choose a random number out of the triplet

f�k�1 � 1; �k�1; �k�1 C 1g and take it as �k: (2.12)

An alternative realization of the NRRW would proceed as in (2.9) but would
throw �k away if v.�k/ D v.�k�1 C 2/, using (2.11) if necessary, and iterating
step (ii). In this way the same random numbers yielding the RW with N D 22 in
Fig. 2.1a yield a NRRW with N D 19 in Fig. 2.1b. From (2.12) we realize that
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ZNRRW
N D .z � 1/N : (2.13)

At this point, the reader should work through Sect. 3.2.2 to gain insight into the
NRRW from practical work. It is clear that the NRRW algorithm still leads to chain
configurations which may intersect, which is a qualitatively unrealistic feature of
real macromolecule configurations as mentioned above. We can change our algo-
rithm in order to generate self-avoiding walks (SAWs) instead of NRRWs by adding
in (2.9) between step (iii) and step (iv) the further condition:

(iii0) If rk leads to a lattice site which has already been vis-
ited by this walk, stop the construction, return to (i) and start the
construction all over again. (2.14)

It turns out that in this case the number of configurations no longer has the simple
exponential form as in (2.10) or (2.13), instead, a simple form holds only in the
asymptotic limit N ! 1, and even then involves a power-law correction term,

ZSAW
N �!

N !1 N ��1zN
eff; zeff � z � 1: (2.15)

Note that � is a critical exponent, and the effective coordination number zeff in gen-
eral is noninteger (zeff D z � 1 only for z D 2; the one-dimensional lattice). For
three-dimensional lattices neither � nor zeff can be calculated by exact methods ana-
lytically; therefore Monte Carlo methods play an important role in estimating these
quantities characterizing the SAW statistics.

Figure 2.1c shows that the same random numbers drawn for the construction of
the RW or the NRRW example would terminate the SAW already at the fifth step,
and hence according to (2.14) this trial to construct a SAW is unsuccessful, and
another attempt needs to be made. Clearly, for large N most attempts will not be
successful. We can estimate the fraction of successful attempts (i.e., the probability
pN that a NRRW of N steps is self-avoiding) simply by taking the ratio of the
respective partition functions:

pN D ZSAW
N

ZNRRW
N

�!
N !1 N ��1

�
zeff

z � 1

�N

D exp

�
�N ln

z � 1

zeff
C .� � 1/ lnN

�
: (2.16)

Thus, for large N the probability of succeeding in getting SAWs decreases expo-
nentially fast with N ; this inefficiency is called the attrition problem. Therefore,
practical applications of this simple random sampling of SAWs are restricted to
N � 100. See Fig. 2.2 for an example. In this example, a somewhat general-
ized problem is considered: in addition to the excluded volume interaction (that
is, an infinitely high repulsive potential if two different monomers occupy the
same site) an attractive energy (�"; " > 0) is included if two monomers occupy
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Fig. 2.2 (a) Simple-sampling data (with 2� 106 samples for N D 100) for the free-energy differ-
ence lnŒZSAW.T; N /=ZNRRW.T D1; N /� plotted versus 1=N , for various temperatures (measured
in units of "=kB) and the tetrahedral lattice. (b) Log–log plot of hR2i=l2N against N , l being the
bond length (l D p

3) on the tetrahedral lattice. Data are obtained by simple sampling methods;
at T D 2, N D 80 a result of dynamical simulations with motions of three and four bonds is
included. (From [2.1])

nearest-neighbor sites on the lattice. It is then of interest to study the internal energy
hHiT of the chain as well as the chain average linear dimensions (such as

˝
R2
˛
) as

a function of the reduced temperature kBT=", since for N ! 1 there occurs at
T D � the so-called collapse transition of the chain [2.1, 2.3]: for T > � the chain
linear dimension is “swollen” in comparison to a simple random walk, for which
simply ˝

R2
˛RW

T D1 D N: (2.17)
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Instead of (2.17) we have for self-avoiding walks a law involving another critical
exponent (�) ˝

R2
˛SAW

T >�
/ N 2� ; � � 0:59; N ! 1: (2.18)

Due to the attractive energy between the monomers, the chain “collapses” for
T < � , i.e., it takes a rather compact configuration described by

˝
R2
˛SAW

T <�
/ N 2=3; N ! 1; (2.19)

while exactly for T D � the chain configuration is asymptotically similar to that of
an ideal (Gaussian) random walk,

˝
R2
˛SAW

T D�
/ N; N ! 1: (2.20)

Note that (2.17) is easily proven exactly, since from (2.9) we immediately conclude

R D
NX

kD1

v.�k/;

˝
R2
˛RW

T D1 D
NX

kD1

v2.�k/C
X

k;k0

.k¤k0/

hv.�k/ � v.�k0/iT D1 ; (2.21)

noting that v2.�k/ D 1, from (2.8), while hv.�k/ � v.�k0/iT D1 D 0 since there
are no correlations between different steps of the walk. On the other hand, in the
case of (2.18) and (2.19) obviously there must be strong correlations even between
very distant steps of the walk. Thus it is no surprise that it is possible neither to
derive [(2.18) and (2.19)] analytically nor to locate the “theta temperature” kB�=",
where (2.20) holds, analytically, and thus Monte Carlo methods are useful to study
a problem of this kind.

At this point it is useful to briefly discuss the practical implementation of this
simple sampling method for SAWs (for more details, the reader should work through
Sect. 3.2.3). First of all we have to keep track of the previous steps of the walk to
make sure that it does not intersect itself. One could store all vectors rk0 previously
generated in the construction of a walk, 0 � k0 � k � 2, and check whether there
exist a k0 such that rk D rk0 . Of course, such an algorithm would be very time con-
suming, and it is much more efficient to choose a finite lattice (e.g., of dimension
.2N C 1/ � .2N C 1/ if we wish to study SAWs of N steps at the square lattice)
where we introduce occupation variables ci for each lattice site i and initially put
ci D 0 for all i . Now generating a walk we put ci D 1 if it visits site i , and we gener-
ate an array labeling the lattice sites which have ci D 1 in order in which they have
been visited. Now the excluded volume condition is easily satisfied by checking at
each step whether ci D 0 still at the next site to be visited. After the termination
of the construction (and possible analysis of the SAW configuration) we have to go
through the array of sites which have been visited to replace ci D 1 by ci D 0
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again and then we can start the next construction of the walk. Alternatively, one can
increase a label by one and check if the next site to be visited is equal to the label.

Note also that for studying laws such as (2.15), (2.18)–(2.20) one wishes not only
to study one particular value of N but a whole range of values for N . There is no
need to repeat the procedure for different choices ofN ; instead we can putN to the
largest value we wish to analyze and just sample in addition all the walks which are
unsuccessful constructions in the sense of (2.16), i.e., they terminate at some value
N 0 < N since in the .N 0 C 1/th step one would have violated the excluded volume
restriction.

2.1.4 Thermal Averages by the Simple Sampling Method

How does temperature come into the game? By definition of the model, a config-
uration with n nearest-neighbor contacts (other than those along the contour of the
chain itself) will have a Boltzmann weight factor proportional to exp.n"=kBT /.
So we need to keep track of the number n in each configuration and generate the
appropriate distribution function: the thermal averaging at any temperature T that
one wishes to study can then be done afterwards! Specifically, the Monte Carlo
sampling attempts to estimate the distribution pN .n/ D ZSAW

N .n/=ZNRRW
N , i.e., the

(normalized) number of SAW configurations of N steps with n nearest-neighbor
contacts, andpN .n;R/ D ZSAW

N .n;R/=ZNRRW
N , the number of SAW configurations

of N steps with n nearest-neighbor contacts and an end-to-end vector R. Then the
averages of interest can be expressed as follows:

hHiT D
�"
X

n

n exp.n"=kBT /pN .n/

X

n

exp.n"=kBT /pN .n/
; (2.22a)

˝
R2
˛
T

D

X

n;R

R2 exp.n"=kBT /pN .n;R/

X

n

exp.n"=kBT /pN .n/
: (2.22b)

The specific heat C per bond of the chain can be obtained utilizing the fluctuation
relation

C

kB
D 1

N

@.hHiT /

@.kBT /
D
˝H2

˛
T

� hHi2
T

Nk2
BT

2
(2.23)

to find [note that (2.23) is easily verified from (2.22a) and the definition of C , but
holds generally]



14 2 Theoretical Foundations of the Monte Carlo Method

C

kB
D
�

"

kBT

�2

0

@
X

n

n2pN .n/e
n"=kBT �

"
X

n

npN .n/e
n"=kBT

#2
1

A

N
X

n

pN .n/en"=kBT
: (2.24)

Figure 2.2 presents some examples found from a simple-sampling study of self-
avoiding walks on the tetrahedral lattice [2.1].

2.1.5 Advantages and Limitations of Simple Sampling

Simple sampling of self-avoiding walks as described so far has two advantages:
(1) In one simulation run we obtain information on the full range of values for
chain lengthN up to some maximum length, and for a broad range of temperatures,
(2) The individual configurations of the walks are statistically independent of each
other, and therefore standard error analysis applies. Suppose M configurations of
N -step walks have been generated successfully. Then

˝
R2
˛
T D1 (i.e., in the athermal

case) is obtained as follows, applying (2.7):

˝
R2
˛
T D1 � R2 D 1

M

MX

lD1

R2
l ; (2.25)

Rl being the end-to-end distance of the l th configuration of the walk, and its error˝
.ıR2/2

˛
T D1 is estimated as

˝
.ıR2/2

˛
T D1 � .ıR2/2 D 1

M.M � 1/

MX

lD1

h
R4

l � .R2/
2
i
: (2.26)

For the random walk or the nonreversal random walk it is easy to predict the
expected relative error, making use of the Gaussian character of the probability
distribution [2.2, 2.3]:

pN .R/ / exp
��dR2=

	
2
˝
R2
˛
�
; d is the dimensionalityI (2.27)

remember that

pN .R/ D pN .x1/pN .x2/ : : : pN .xd /

/ exp

 
� x2

1

2
˝
x2

1

˛
!

exp

 
� x2

2

2
˝
x2

2

˛
!
: : : exp

 
� x2

d

2
˝
x2

d

˛
!

and

˝
x2

1

˛ D ˝
x2

2

˛
: : :
˝
x2

d

˛ D ˝
R2
˛
=d
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in an isotropic system where R2 D x2
1 C x2

2 C � � � C x2
d

. From (2.27) one obtains

˝
R4
˛
T D1 D

Z 1

0

RdC3 dR exp

�
� dR2

2 hR2i
�

Z 1

0

Rd�1 dR exp

�
� dR2

2 hR2i
�

D
 
2
˝
R2
˛

d

!2
� .d=2C 2/

� .d=2/
D ˝
R2
˛2 d C 2

d
; (2.28)

and hence the relative error is estimated as

.ıR2/2

.R2/2
Š 1

.M � 1/

�˝
R4
˛
T D1 � ˝

R2
˛2
T D1



hR2i2
T D1

D 1

.M � 1/

2

d
: (2.29)

This is a very simple example of lack of self-averaging. One learns in thermodynam-
ics that in the thermodynamic limit N ! 1 fluctuations die out, and the relative
fluctuation of extensive thermodynamic variables A vanishes,

˝
.ıA/2

˛
= hAi2 /

1=N ! 0. In a large system, therefore, one single observationAl of a quantity A in
equilibrium is rather close to the average hAi already: Al will differ from hAi only
by terms of order 1=

p
N . This property is called strong self-averaging [2.5]. This is

obviously not true for the quantities of interest in a random walk problem, such as˝
R2
˛
. The reason that there is no self-averaging for

˝
R2
˛

is that
˝
R2
˛

is itself a fluc-
tuation, in a thermodynamic sense, and the quantity to which the thermodynamic
argument applies is hRi which according to (2.21) can be written

hRi D
NX

kD1

hv.�k/i D N hvi; (2.30)

where hvi � 0, however. If we were to consider a “biased” random walk, however, in
which one particular step orientation is chosen with higher probability than all other
step orientations such that hvi ¤ 0, we would have hRi2 D N 2 hvi2 	 ˝

R2
˛ � hRi2

/ N , and we would have the standard thermodynamic relation
˝
.ıR/2

˛
= hRi2 /

1=N .
For self-avoiding walks the distribution function pN .R/ is not a simple Gaus-

sian, but we have the same property that
˝
R4
˛
T D1 / ˝

R2
˛2

(but there is no longer
a simple argument yielding the proportionality factor). It then again follows that the
relative error is independent of N , i.e., there occurs lack of self-averaging.

Apart from these random-walk-type problems and other nonthermal problems
such as percolation [2.6], which will be discussed in Sect. 2.3.1 in another con-
text, simple random sampling techniques are not so useful for evaluating thermal
averages such as (2.7). Consider for instance the case where in (2.7) A.xl/ is
the Hamiltonian H.xl/ itself. Now (2.23) implies that the relative fluctuation
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	 ˝H2
˛
T

� hHi2
T



= hHi2

T / 1=N , which implies that the probability distribution
p.E/ of the energyE per degree of freedom defined as

p.E/ D 1

Z

Z
dx ı .H.x/ � NE/ exp Œ�H.x/=kBT � (2.31)

is very sharply peaked, since we can also write

hHiT D N

Z C1

�1
Ep.E/dE;

˝H2
˛
T

D N 2

Z C1

�1
E2p.E/dE; (2.32)

and hence p.E/ must have a peak of height
p
N and width 1=

p
N near E D

hHiT =N . In fact, off second- or first-order phase transitions one can show that
p.E/ is actually again Gaussian [2.6]

p.E/ / exp

�
� .E � hHiT =N/

2

2CkBT 2
N

�
: (2.33)

Figure 2.3 shows a schematic sketch of this probability distribution p.E/. Now
a simple sampling in fact means a generation of phase space points fxg with a prob-
ability distribution p.E/ peaked at E D 0 [for models such as (2.1)–(2.3), where
HT D1 D 0], again with a Gaussian distribution of width 1=

p
N . Thus the probabil-

ity of generating states with E near hHi =N is exponentially small, if the states are
generated by the simple random sampling technique. (As a consequence of this fact,
(2.22) and (2.24) are of no practical use at temperatures T < � , apart from very
small values of N .) So what is needed is a more efficient technique that samples

p(
E

)

0< H >T /N E

∝

∝

Fig. 2.3 Probability distribution p.E/ of the normalized energy E . The right curve (peaked at
E D 0) is the probability distribution p.E/ generated by simple sampling of phase space points
fxg. (Note that for spin models such as the Ising model (2.1), states with positiveE and with nega-
tive E are generated with the same probability.) The left curve is the actual probability distribution
p.E/ occurring in the canonical ensemble at a finite temperature T . Note that these two probability
distributions for large N overlap only in their wings
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the configurations xl included in the average (2.7) not completely at random, but
preferentially from that regime of phase space which is important at temperature T .
Suppose we consider a process where the phase space points xl are selected accord-
ing to some probability P.xl/. Choosing this set fxlg now for the estimation of
a thermal average, (2.7) is replaced by

A.x/ D

MX

lD1

exp Œ�H.xl/=kBT � A.xl/=P.xl /

MX

lD1

exp Œ�H.xl/=kBT � =P.xl/

: (2.34)

2.1.6 Importance Sampling

A simple and most natural choice for P.xl / in (2.34) would be P.xl / /
expŒ�H.xl /=kBT �; then the Boltzmann factor cancels out altogether, and (2.34)
reduces to a simple arithmetic average

A.x/ D 1

M

MX

lD1

A.xl/: (2.35)

The problem is, of course, to find a procedure which practically realizes this
so-called importance sampling [2.7]. Metropolis et al. [2.7] advanced the idea not
to choose the successive states fxlg independently of each other, but to construct
a Markov process where each state xlC1 is constructed from a previous state xl via
a suitable transition probabilityW.xl ! xlC1/. They pointed out that it is possible
to choose the transition probability W such that in the limit M ! 1 the distribu-
tion function P.xl/ of the states generated by this Markov process tends towards
the equilibrium distribution

Peq.xl/ D 1

Z
exp

�
�H.xl/

kBT

�
(2.36)

as desired. A sufficient condition to achieve this is to impose the principle of detailed
balance

Peq.xl /W.xl ! xl 0/ D Peq.xl 0/W.xl 0 ! xl/: (2.37)

Equation (2.37) implies that the ratio of transition probabilities for a “move” xl !
xl 0 and the inverse move xl 0 ! xl depend only on the energy change ıH D
H.xl 0/� H.xl/,
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W.xl ! xl 0/

W.xl 0 ! xl/
D exp

�
� ıH
kBT

�
: (2.38)

Equation (2.38) obviously does not specify W.xl ! xl 0/ uniquely, and some
arbitrariness in the explicit choice of W remains. Two frequently used choices
are [2.8, 2.9, 2.9a]

W.xl ! xl 0/ D 1

2	s

�
1 � tanh

�
ıH
2kBT

��

D 1

	s

exp .�ıH=kBT /

Œ1C exp .�ıH=kBT /�
; (2.39a)

or

W.xl ! xl 0/ D

8
ˆ̂<

ˆ̂:

1

	s
exp .�ıH=kBT / if ıH > 0 ;

1

	s
otherwise;

(2.39b)

	s being an arbitrary factor which for the moment may be chosen as unity. (Later
when we interpret the Monte Carlo process dynamically [2.9,2.10] we shall choose
	s as a unit of “Monte Carlo time” and call W a “transition probability per unit
time”.)

While it is easily checked that (2.39) satisfies (2.37) and (2.38), it remains to
show that a sequence of states xl ! xl 0 ! xl 00 : : : generated with the help of
(2.39) actually has the property that its probability distribution P.xl/ converges
towards the canonic probability Peq.xl /, (2.36). A well-known plausibility argu-
ment to show this is as follows: Suppose we consider a large number of such Markov
chains in parallel, and that at a given step of the process there are Nr systems in
state r , Ns systems in state s, etc., and that H.xr / < H.xs/. Using random num-
bers, one may construct moves xr ! xs , as will be discussed below. Disregarding
the energy change ıH, the transition probability for these moves should be symmet-
ric, i.e., WıHD0.xr ! xs/ D WıHD0.xs ! xr/. With these “a priori transition
probabilities” WıHD0, it is easy to construct transition probabilities which are in
accord with (2.37) and (2.38), namely

W.xr ! xs/ D WıHD0.xr ! xs/ exp.�ıH=kBT /

D WıHD0.xr ! xs/ expf� ŒH.xs/ � H.xr /� =kBT g; (2.40a)

W.xs ! xr/ D WıHD0.xs ! xr / D WıHD0.xr ! xs/: (2.40b)

The total number Nr!s of transitions from xr to xs at this step of the Markov
chains is



2.1 Simple Sampling Versus Importance Sampling 19

Nr!s D NrW.xr ! xs/

D NrWıHD0.xr ! xs/ expf� ŒH.xs/� H.xr/� =kBT g; (2.41a)

while the total number of inverse transitions is

Ns!r D NsW.xs ! xr / D NsWıHD0.xr ! xs/: (2.41b)

Now the net number of transitions
Nr!s becomes


Nr!s D Nr!s �Ns!r

D NrWıHD0.xr ! xs/

�
exp Œ�H.xs/=kBT �

exp Œ�H.xr /=kBT �
� Ns

Nr

�
: (2.42)

Equation (2.42) is the key result of this argument which shows that the Markov
process has the desired property that states occur with probability proportional to
the canonic probability Peq.xl/ as given in (2.36): As long as Ns=Nr is smaller
than the ratio of the canonic probabilities we have 
Nr!s > 0, i.e., the ratio
Ns=Nr increases towards the ratio of canonic probabilities; conversely, if Ns=Nr

is larger than the “canonic ratio”, 
Nr!s < 0 and hence again Ns=Nr decreases
towards the correct canonic ratio. Thus asymptotically for l ! 1 a steady-state dis-
tribution is reached, where Ns=Nr has precisely the value required by the canonic
distribution (2.36). Instead of considering many Markov chains in parallel, we may
equivalently cut one very long Markov chain into (equally long) pieces and apply
the same argument to the subsequent pieces of the chain.

Now we discuss the question: What does the move xl ! xl 0 mean in prac-
tice? In principle, there is enormous freedom in the choice of this move which is
only restricted by the condition that the “a priori probability”WıHD0.xl ! xl 0/ is
symmetric, WıHD0.xl ! xl 0/ D WıHD0.xl 0 ! xl/, and that the resulting tran-
sition probability 	sW.xl ! xl 0/ in the presence of the energy change ıH should
yield values significantly different from zero and one sufficiently often. Therefore
one mostly performs moves where only one (or a few) degree(s) of freedom is (are)
changed, since if we changeN 0 	 1 degrees of freedom simultaneously, we expect
ıH=kBT in (2.39) to be of the order of N 0."=kBT /, where " sets the energy scale
[e.g., " D J for the magnetic Hamiltonians (2.1)–(2.3), and N 0 is equal to some
power of N , i.e., N 0 D N ı . Since the temperatures of interest are such that "=kBT

is of order unity, for nearly every move with N 0 	 1 we would have an extremely
small transition probability if it costs energy, and hence most of the attempted
moves would not be executed at all; the system “sticks” with its respective pre-
vious configuration. This clearly leads to an impractical algorithm in most cases.
However, a route to overcome this problem are combined Monte-Carlo–Langevin
algorithms [2.9a].
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2.1.7 More About Models and Algorithms

Figure 2.4 now shows some of the moves commonly used for a variety of mod-
els under study in statistical mechanics. For the Ising model the most commonly
used algorithms are the single spin-flip algorithm and the spin-exchange algo-
rithm (Fig. 2.4a,b). Note that the single spin-flip algorithm obviously does not leave
the total magnetization of the system invariant, while the spin-exchange algorithm
does. Thus, these algorithms correspond to realizations of different thermodynamic
ensembles: Fig. 2.4a realizes a “grand-canonical” ensemble, where temperature T
and field H are the independently given thermodynamic quantities, and conjugate
thermodynamic quantities (for example, the magnetization hM iT is the quantity
conjugate to the field H ) need to be calculated, while Fig. 2.4b realizes a “canon-
ical” ensemble where temperature T and magnetization M are the independently
given thermodynamic quantities (and now the magnetic field hH iT is the conjugate
dependent variable which we may wish to calculate).

In calling the .T;H/-ensemble of the Ising model “grand canonical” and the
.T;M/-ensemble “canonical” we apply a language appropriate to the lattice gas
interpretation of the Ising model, where the spin variable Si is reinterpreted as
a local density %i .D 0 ; 1/ with %i D .1 � Si /=2. Then hM iT is related to the
average density h%i iT as hM iT D 1 � 2 h%i iT , and H is related to the chemical
potential of the particles which may occupy the lattice sites.

It is known that in the thermodynamic limit N ! 1, different ensembles
in statistical mechanics yield equivalent results. Thus the choice of the statistical
ensemble and hence the associate algorithm may seem a matter of convenience.
However, finite-size effects are quite different in the various ensembles, and also
“rates” at which equilibrium configurations are approached in a simulation may be
quite different, and hence the choice of the appropriate statistical ensemble is some-
times a delicate matter. When we use the word “rate” we have in mind already
the dynamic interpretation [2.9] of the Monte Carlo process: then Fig. 2.4a realizes
the Glauber [2.11] kinetic Ising model, which is a purely relaxational model with-
out any conservation laws, while Fig. 2.4b realizes Kawasaki’s [2.12] kinetic Ising
model which conserves magnetization.

For models with continuous degrees of freedom, such as XY (2.2) or Heisenberg
magnets (2.3), but also for models of fluids (Figs. 2.4c,d), it is often advisable to
choose the new degree(s) of freedom of a particle (e.g., the angle ' 0

i in Fig. 2.4c,
or positions x0

i ; y
0
i in Fig. 2.4d) not completely at random, but rather in an interval

around their previous values. The magnitude of this interval can then be adjusted
such that the average acceptance rate for the trial moves considered in Fig. 2.4 does
not become too small.

It may also be that it is inconvenient (or impossible) to sample the available
phase space for a single degree of freedom uniformly. For example, while there is no
difficulty in sampling angles from the interval Œ0; 2�� in the left part of Fig. 2.4c, we
cannot sample a variable �i from the interval Œ�1;C1� uniformly, see Fig. 2.4e.
Such a problem arises for the simulation of the so-called �4-model on a lattice:
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Fig. 2.4 Examples of moves xl ! x0

l , commonly used in Monte Carlo simulations for some
standard models of statistical mechanics. (a) Single spin-flip Ising model (interpreted dynamically,
this is the Glauber kinetic Ising model), (b) Nearest-neighbor exchange Ising model (interpreted
dynamically, this is the Kawasaki kinetic Ising model). (c) Two variants of algorithms for the
XY-model, using a random number � equally distributed between zero and one: left, the angle '0

i

characterizing the new direction of the spin is chosen completely at random; right, '0

i is drawn from
the interval Œ'i�
'; 'iC
'� around the previous direction 'i . (d) Moves of the coordinates of an
atom in a two-dimensional fluid from its old position .xi ; yi / to a new position equally distributed
in the square of size .2
x/.2
y/ surrounding the old position. (e) Moves of a particle moving in
a given single-site potential V .�/ from an old position �i to a new position �0

i . (f) Moves used
in the simulation of lattice models and off-lattice models of polymers (bonds which are moved
are denoted by wavy lines): left, “slithering snake” (reptation) algorithm on the square lattice;
middle, a dynamic algorithm relating to the Rouse model of polymer dynamics; right, an off-
lattice algorithm for the freely jointed chain (consisting of rigid links of the same length), where
two adjacent links are rotated together by a randomly chosen angle from an interval Œ�
';C
'�
in the plane normal to the dash-dotted axis
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H�4 D C
X

i

�
1
2
A�2

i C 1
4
B�4

i


C
X

hi;j i
1
2
C
	
�i � �j


2
; (2.43)

� 1 < �i < C1;

where A, B , C are constants, and the single-site potential V.�/ D 1
2
A�2

i C 1
4
B�4

i

has the familiar double-minimum shape forA < 0;B > 0. A trivial way of handling
that model would be to cut off the allowed interval for �i at values which exceed the
minimum position .�min

i D ˙p�A=B/ substantially. If the potential is very steep,
however, this method is rather inefficient: most of the time one would attempt to
choose trial configurations �0

i which are rejected because the transition probability
is too small. This problem is avoided if the �i ’s themselves are chosen according
to an importance sampling scheme already, i.e., one constructs an algorithm [2.13]
which generates �i ’s proportional to a probability distribution

p.�i / / exp

�
�V.�i /

kBT

�
:

Finally, Fig. 2.4f shows that also for random walk problems there are importance
sampling alternatives to the simple-sampling techniques discussed so far. Suppose
one SAW configuration of a long chain has been constructed by simple sampling.
Then further configurations are generated by various “dynamic” algorithms. For
example, in the “slithering snake” (reptation) [2.14] algorithm one end bond is
removed from one end of the chain (it is decided at random which end is chosen)
and therefore a bond is added in a random direction at the other end. Of course, this
trial move is executed only if it does not violate the SAW constraints.

An alternative to this algorithm which is more realistic if one wishes to simu-
late polymer dynamics (e.g., the Rouse model describing the relaxation of a chain
in a heat bath [2.15]) rather allows local rearrangements of groups of neighboring
bonds along the chain, which may randomly flip over to new positions on the lattice,
again obeying the excluded volume restrictions (Fig. 2.4f, middle) [2.4,2.16]. Also,
the end bonds may rotate to new positions. Finally, attention is drawn to the fact
that it is always possible to invent continuum (off-lattice) analogs of the models,
e.g., Fig. 2.4f, right [2.17]. Again, the details of the algorithm will depend on the
goals one addresses with the simulation. For example, if one wishes to study the
dynamics of polymer melts [2.17] it is important to take into account the “entangle-
ment restriction”, i.e., during the random motion of the links of a chain the chain
must not intersect itself or any links of other chains in the surroundings. The transi-
tion probability for motions where links would be cut then is put equal to zero, and
such attempted moves are never carried out. On the other hand, if we are mainly
interested in static equilibrium properties of the model, it is advantageous to define
the rules of the Monte Carlo game such that the approach to equilibrium is as fast
as possible. For the present problem this means one should disregard entanglement
restrictions and allow the intersection of chains.

Obviously, it is impossible to exhaustively enumerate all the various possibilities
that the step xl ! xl 0 may mean, and how the transition probability is defined in
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detail. The great variability and flexibility of the Monte Carlo method allows it to be
applied to many problems of very different kinds and this is clearly a major strength
of this method.

2.2 Organization of Monte Carlo Programs, and the Dynamic
Interpretation of Monte Carlo Sampling

2.2.1 First Comments on the Simulation of the Ising Model

Suppose now we wish to realize, as a simple example, the single spin-flip Ising
model simulation of Fig. 2.4a. How is this done?

We first have to specify the type and size of the lattice and the boundary condi-
tions which have to be used. Suppose we take a simple cubic lattice of sizeL�L�L
(i.e., all linear dimensions equal) and periodic boundary conditions. Then we have
to specify an initial spin configuration, e.g., all spins are initially pointing up. Now
one repeats again and again the following six steps:

1. Select one lattice site i at which the spin Si is considered for flipping .Si !
�Si /.

2. Compute the energy change ıH associated with that flip.
3. Calculate the transition probability 	sW for that flip.
4. Draw a random number Z uniformly distributed between zero and unity.
5. If Z < 	sW flip the spin, otherwise do not flip it. In any case, the configuration

of the spins obtained in this way at the end of step (5) is counted as a “new
configuration”.

6. Analyze the resulting configuration as desired, store its properties to calculate the
necessary averages. For example, if we are just interested in the (unnormalized)
magnetizationMtot, we may update it replacingMtot byMtot C 2Si .

More details on how one realizes an algorithm for this procedure are given in
Sect. 3.4.1. It should be clear from this list that it is fairly straightforward to gen-
eralize this kind of algorithm to systems other than Ising models, such as the other
possibilities considered in Fig. 2.4. The words “spin” and “spin flip(ping)” simply
have to be replaced by the appropriate words for that system.

We add some comments on the practical implementation of this algorithm:
(i) By steps (3–5) the spin flip on the average is executed with the probability

	sW ; if 	sW > 1 it is always executed. This occurs, for example, for the choice
(2.39b) if ıH < 0. In this case the steps (3,4) need not be carried out.

(ii) Considerable freedom exists in the order in which subsequent lattice sites
fig are selected when one repeats this process. One may go through the lattice in
a regular (typewriter) fashion or one may select the lattice sites at random; for equi-
librium properties this does not matter. While the random sequence of visited sites
is more realistic if one wishes to obtain dynamic properties (in the spirit of the
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Glauber kinetic Ising model), it is somewhat slower than the regular procedure, and
also needs fairly good (uncorrelated) pseudorandom numbers (with bad numbers
it may happen that certain sites are never visited, and then the program output is
nonsense!). It is also possible to first divide the lattice into several interpenetrating
sublattices, and then go in a regular typewriter fashion first through the spins of
sublattice 1, then to sublattice 2, etc. This “checker-board algorithm” [2.18] has the
merit that it is straightforwardly “vectorizable” and hence can be performed very
efficiently on modern vector computers.

(iii) Since subsequent states differ only by a single spin flip, their physical proper-
ties are very strongly correlated. If step (6), the analysis of configurations, involves
many operations it may be better not to perform it after every (attempted) flip, but
only after much larger “time” intervals. We define one Monte Carlo step (MCS) per
site by carrying out the above (5 or 6) steps once for every lattice site, if the spins
are selected consecutively. If we select them at random, the MCS/site is defined by
requiring that on the average each spin is selected once. It is then advisable to per-
form step 6 (or time-consuming parts thereof) only once every MCS/site or even
only once every 	 th MCS/site, where 	 is some typical correlation time (which
will be considered below). Also, it must be noted that although the distribution of
generated states P.xl / asymptotically (that is, for M ! 1) tends to the canonic
distribution Peq.x/, (2.36) there is no reason to assume that also the states immedi-
ately following the (arbitrary!) initial configuration already have a distribution close
to Peq.x/. On the contrary, it will be necessary to generate a large number of con-
figurations fxl g until the “memory” of the initial state is lost. For example, if we
start our system with its saturation magnetization but wish to simulate a temper-
ature just above the Curie temperature, where the magnetization in equilibrium in
zero magnetic field is zero, it may take a very long “time” until the initial magnetiza-
tion has actually “decayed”. An example of this decay towards equilibrium, as well
as fluctuations in equilibrium, is given in Fig. 2.5. Again it is helpful to discuss this
phenomenon using the dynamic interpretation of the Monte Carlo process, as will be
shown below. In any case, it is useful to exclude from the final analysis states at the
beginning of the simulation run which are not well enough “equilibrated” (unless it
is the approach towards equilibrium that one wishes to study!).

(iv) One can save computer time by storing at the beginning of the calculation
the small number of different values that the transition probability W for spin flips
(or spin exchange, respectively) can have, rather than evaluating the exponential
function again and again. This table method works for all problems with discrete
degrees of freedom, not only for the Ising model.

At very low temperatures in the Ising model, nearly every attempt to flip a spin
is bound to fail. One can construct a more complicated but quicker algorithm by
keeping track of the number of spins with a given transition probabilityWk at each
instant of the simulation. Choosing now a spin from the kth class with a probability
proportional to Wk , one can make every attempted spin flip successful [2.19]. An
extension of this algorithm to the spin-exchange model has also been given [2.20].
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Fig. 2.5 Absolute value of the magnetization of the two-dimensional nearest neighbor Ising square
lattice with ferromagnetic interaction, for lattice size L D 55 and periodic boundary conditions.
Instantaneous values of jmj are shown as a function of observation time t (in units of MCS/site)
for five different temperatures. Negative values of m at J=kBT D 0:40 are indicated by filled
symbols. This shows that even in the paramagnetic region .J=kBTc � 0:4409/ the memory of the
initial starting configuration is lost only rather gradually. Dashed horizontal straight lines indicate
the exact values of the spontaneous magnetization, from the exact solution of Yang. Note that on
approaching Tc from below both the amplitude of the fluctuation ım and the relaxation time get
larger (note the time needed for ım to change sign). Slightly above Tc.J=kBT D 0:43/, the total
running time shown here was not enough to relax the sign of the magnetization, which fluctuates
around zero in a finite system at all nonzero temperatures

2.2.2 Boundary Conditions

The disturbance from the boundaries of the system is usually diminished by employ-
ing periodic boundary conditions. Thus the uppermost and the lowermost planes
in three-dimensional lattice are regarded as neighbors in the energy calculation,
as are the back and front planes, and also the leftmost and rightmost planes of
the lattice. This is shown in Fig. 2.6a for the example of 6 � 6 square lattice. In
the programming example reproduced in Table 2.1, periodic boundary conditions
are explicitly implemented. Note, however, that the choice of appropriate linear
dimensions and boundary conditions has to be done with a little bit of thought. For
example, while for the ferromagnetic Ising model the linear dimension L may be
either odd or even, for the antiferromagnetic Ising model it must be even, because
otherwise the two-sublattice structure of the cubic Ising antiferromagnet would
not fit to the lattice. Clearly, the periodic boundary condition must have disturb-
ing effects in cases where the system wants to develop a long-range order that is
not commensurate with the linear dimension of the box, which necessarily occurs
in models exhibiting commensurate–incommensurate phase transitions, such as the
ANNNI (anisotropic next-nearest neighbor Ising) model [2.22]. In addition, at all
second-order phase transitions the critical divergence of the correlation length is
strongly disturbed by the finite size and the periodicity of the system. These finite-
size and boundary effects on phase transitions have received attention over a long
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Fig. 2.6 (a) Square 6 � 6 lattice with periodic boundary conditions (left) and with skew periodic
boundary conditions (right). For the periodic boundary conditions, each lattice site i is labeled
by its two Cartesian coordinates xi ; yi , which are integers when the lattice spacing is taken to be
unity. For the skew periodic boundary condition, the sites are labeled in the typewriter fashion
as indicated. (b) Square 6 � 6 lattice (lattice sites being denoted by dots, nonvanishing bonds by
straight lines connecting them) with free boundary conditions in all lattice directions (left) or with
free boundary conditions in one lattice direction and periodic boundary conditions in the other
lattice direction (right). This latter choice simulates a thin-film geometry. (c) Boundary conditions
simulating a semi-infinite system. A 6 � 8 square lattice has one boundary (eight spins) free, the
opposite one is exposed to an effective boundary field. The magnitude of this field is adjusted such
that the magnetization in this boundary layer takes on its bulk value [2.21]. In the other lattice
direction, periodic boundary conditions are used
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Table 2.1 Example of a program for a 37 � 37 � 37 Ising model of a simple cubic Ising lattice
at T=Tc D 1:4, calculated for 25 Monte Carlo steps per spin. RANSET initializes the random
number generator RANF. The energy change is calculated as discussed in Sect. 2.2.1, the flipping
probability is taken as exp.�
E=kBT /

DIMENSION IS(37,37,37),EX(13)
DATA IS/50653 * 1/
T=1.40/0.221 655
L=37
CALL RANSET(1)

M=L * L * L
DO 3 I=1,13,2

3 EX(I)=EXP(-2 * (I-7.)/T)
DO 2 ITIME=1,25
DO 1
K1=1,L
K1P1=K1+1
K1M1=K1-1
IF(K1.EQ.1)K1M1=L
IF(K1.EQ.L)K1P1=1
DO 1 K2=1,L
K2P1=K2+1
K2M1=K2-1
IF(K2.EQ.1)K2M1=L
IF(K2.EQ.L)K2P1=1
DO 1 K3=1,L
K3P1=K3+1
K3M1=K3-1
IF(K3.EQ.1)K3M1=L
IF(K3.EQ.L)K3P1=1

IEN=7+IS(K3,K2,K1) *
(IS(K3M1,K2,K1)+IS(K3P1,K2,K1)+IS(K3,K2M1,K1) 1
+IS(K3,K2P1,K1)+IS(K3,K2,K1M1)+IS(K3,K2,K1P1))
IF(EX(IEN).LT.RANF(I)) GOTO 1 IS(K3,K2,K1)=-IS(K3,K2,K1)

M=M+2 * IS(K3,K2,K1)
1 CONTINUE
2 WRITE(6,4)M,ITIME
4 FORMAT(2I9)
STOP
END

period of time [2.23–2.27] and will be treated in Sect. 2.3. A variant of the periodic
boundary condition is often applied if one stores the labels of the lattice sites in
a one-dimensional array going in a typewriter fashion through the (simple cubic)
lattice. Then the nearest neighbors of site i are taken as i ˙ 1; i ˙ L; i ˙ L2,
which implies a skewed periodic boundary condition. This case is also illustrated
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in Fig. 2.6a. However, it is possible to take advantage of the one-dimensional label-
ing (useful particularly in the context of a good “vectorization” of Monte Carlo
programs to be run on vector processors) and retain the strictly periodic boundary
condition with some programming effort [2.28].

Sometimes boundary conditions other than fully periodic boundary conditions
are used, due to the intention to study properties other than bulk properties of the
system. For example, in order to study free surfaces of a system the so-called “free
boundary conditions” are used. Then the “missing spins” next to the free surface are
simply set equal zero. This case is illustrated in Fig. 2.6b. It may then be advisable
to spend more statistical effort in the surface layer (and its adjacent layers) rather
than in layers deep in the bulk. Such an algorithm is called preferential surface
site selection [2.29]. In order to simulate a small superparamagnetic particle one
may use free surfaces in all lattice directions [2.30–2.32] and also rather arbitrary
shapes of these systems can be prescribed [2.33]. In addition, one may wish to apply
boundary fields, particularly if simulations of wetting and layering phenomena are
desired [2.34–2.36]. If one wishes to simulate a thin-film geometry, one uses free
boundary conditions in one lattice direction and periodic boundary conditions in the
remaining ones, see Fig. 2.6b [2.29–2.37]; a semi-infinite geometry is simulated by
choosing one free surface and a self-consistent effective field [2.21] on the opposite
surface, while in the remaining directions again periodic boundary conditions are
used [2.38], see Fig. 2.6c.

2.2.3 The Dynamic Interpretation of the Importance Sampling
Monte Carlo Method

We now turn to a discussion of the correlations between the configurations gen-
erated sequentially one after the other in the Markov chain. Clearly, these corre-
lations strongly affect the accuracy that can be obtained with a given number of
total steps by the Monte Carlo program. These correlations can be understood by
a dynamic interpretation of the Monte Carlo averaging in terms of a master equation
describing a well-defined dynamic model with stochastic kinetics [2.8–2.10, 2.39].
Not only is the interpretation of correlations as time correlations useful to the
understanding of accuracy, it is also the theoretical basis for the application of
Monte Carlo methods to the simulation of dynamic processes [2.40–2.42]. These
dynamic applications include such diverse fields as the Brownian motion of macro-
molecules [2.4, 2.43], relaxation phenomena in spin glasses [2.41] and quadrupolar
glasses [2.44], nucleation phenomena [2.40–2.45] and spinodal decomposition of
mixtures [2.40, 2.45], diffusion-limited aggregation and related irreversible growth
phenomena [2.42, 2.46], and diffusion in alloys and at surfaces [2.40, 2.47]. At this
point, we just associate a “time” t with the scale � of the subsequent configura-
tions. We may normalize the time scale such that N	�1

s single-particle transitions
are performed in unit time [in (2.39) we have already introduced this factor 	�1

s
into the transition probability]. Then the time unit is 1 MCS (Monte Carlo step per
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particle). We consider the probability P.x�/ � P.x; t/ that at time t a configura-
tion x occurs in the Monte Carlo process. This probability satisfies the Markovian
master equation [2.8–2.10, 2.48]

dP.x; t/

dt
D �

X

x0

W.x ! x0/P.x; t/C
X

x0

W.x0 ! x/P.x0; t/: (2.44)

Equation (2.44) describes the balance considered already above (2.40)–(2.42) by
a rate equation, the first sum on the right hand side representing all processes
where one moves away from the considered state x (and hence its probability is
decreased), while the second sum contains all reverse processes (which hence lead
to an increase of the probability of finding x). In thermal equilibrium the detailed
balance condition (2.37) ensures that these two sums always cancel, and hence for
P.x; t/ D Peq.x/ we have dP.x; t/=dt D 0, as is required. In fact, Peq.x/ is the
steady-state distribution of the above master equation. If the potential energy is finite
for arbitrary configurations fxg of the system, we can conclude from the finiteness
of the system that it must be ergodic. However, as soon as we have infinite potentials
(such as in the self-avoiding walk problem, Figs. 2.1c, 2.4f), certain configurations
x are forbidden, and then ergodicity may be a problem. Even in finite systems the
phase space may decompose into several valleys or “pockets” which are mutually
inaccessible. There is no general rule about whether this happens or not, it really
depends on the details of the algorithm. For example, in the case of the dynamic sim-
ulations of SAWs on lattices (Fig. 2.4f) it can be shown (see, e.g., [2.49]) that certain
configurations (see Fig. 2.7 for an example) are inaccessible with the algorithms
shown there, although in practice this is not a problem at all since the statistical
weight of these inaccessible states is negligibly small for the averages of inter-
est [2.50]. But this point certainly warrants some care. In practice one may find
an apparent “breaking of ergodicity” even for systems which are ergodic, if the
“time” over which the averaging is extended is not long enough, i.e., less than some

a

b

Fig. 2.7 Examples of self-avoiding walk configurations on the square lattice which are inaccessi-
ble by dynamic Monte Carlo algorithms. Case (a) is a configuration which is inaccessible by the
“slithering snake” algorithm, and also cannot relax by this algorithm. Case (b) can relax neither by
the slithering snake algorithm nor by the “kink-jump” method
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so-called “ergodic time” 	e [2.51]. This ergodicity breaking is intimately related to
spontaneous symmetry breaking associated with phase transitions in the system. In
a strict sense, these phase transitions can occur only in the thermodynamic limit
N ! 1, and hence 	e also diverges as N ! 1. The finiteness of 	e in the regime
where spontaneous order occurs for N ! 1 is also a finite-size effect. We shall
return to this problem in our next section where finite-size effects of various kinds
will be discussed, and assume for the moment that limP.x; t/ D Peq.x/, i.e., the
ergodicity property, can be verified on practically accessible time scales.

In (2.44) we have written dP.x; t/=dt rather than 
P.x; t/=
t , i.e., we work
with differentials rather than discrete differences. This point is sometimes criti-
cized, e.g., in [2.52], where it is suggested that due to the discrete time increment

t D 	s=N one should rather view the Monte Carlo dynamics as a discrete map,
a problem in “nonlinear dynamics”, predicting hence the possibility of chaotic
motions, limit cycles, etc. However, we feel that this criticism is not relevant. As
pointed out in [2.53], the time increment 
t should not be considered as a con-
stant, but is instead a continuous variable stochastically fluctuating with distribution
.N=	s/ expŒ�
tN=	s� which has a mean value 
t D 	s=N . Since the time scale
on which dynamic correlations decay is of the order of 	s itself or even larger,
these fluctuations of the time variable relative to the “time” proceeding in regu-
lar steps 
t D 	s=N labeling the Monte Carlo microsteps are averaged out when
one calculates time-displaced correlation functions.

Thus the average obtained in (2.35) can simply be interpreted as a time average
along the stochastic trajectory in phase space, controlled by the master equation
(2.44) of the system, i.e., for the variableA considered in (2.5) and (2.35) we now get

A D 1

tM � tM0

Z tM

tM0

A.t/dt; (2.45)

where tM is the “time” elapsed after M configurations have been generated, tM0

the time after M0 < M configurations have been generated (tM D M	s=N , tM0
D

M0	s=N ), and we have anticipated that the first M0 configurations are actually
omitted from the average in (2.35), which therefore actually reads

A D 1

.M �M0/

MX

�DM0C1

A.x�/:

Since x� is the configuration x.t/ appearing at the time t D t� D �	s=N , we can
consider A D A.x.t// simply as a function of system time t itself. Comparing the
time average (2.45) with our starting formula (2.5) which is a canonic ensemble
average, it is obvious that this importance sampling Monte Carlo method leads to
a problem of ergodicity, i.e., the question of whether the time average is identical to
the ensemble average, as anticipated above.

It is now also quite obvious how we can define time-displaced correlation func-
tions hA.t/B.0/iT orA.t/B.0/, whereB stands symbolically for any other physical
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variable:

A.t/B.0/ D 1

tM � t � tM0

Z tM �t

tM0

A.t C t 0/B.t 0/dt 0; tM � t > tM0
:

(2.46)

In practice, (2.45) and (2.46) are used for times tM0
large enough such that the sys-

tem has relaxed towards equilibrium during the time tM0
, and then the states x.t/

included in the sampling from tM0
to time tM are already distributed according to

the equilibrium distribution, P.x; t/ D Peq.x/, independent of time. However, it is
also interesting to study the nonequilibrium relaxation process by which equilibrium
is approached. In this region A.t/ � A is systematically dependent on the observa-
tion time t , and an ensemble average hA.t/iT � hA.1/iT Œlimt!1A D hAiT D
hA.1/iT if the system is ergodic] is nonzero. Hence we define

hA.t/iT D
X

fxg
P.x; t/A.x/ D

X

fxg
P.x; 0/A.x.t//; (2.47)

where in the second step of this equation we have used the fact that the ensemble
average involved is actually an average weighted byP.x; 0/ over an ensemble of ini-
tial states x.t D 0/, which then evolve as described by the master equation (2.44).
In practice, (2.47) means an average over nrun 	 1 statistically independent runs,

ŒA.t/�av D 1

nrun

nrunX

lD1

A.t; l/; (2.48)

where A.t; l/ is the observable A observed at time t in the l th run of this nonequi-
librium Monte Carlo averaging. These runs in practice differ by use of different
random numbers for each realization of the time evolution, and by use of different
initial configurations x.t D 0/. (In special cases, however, such as the study of the
decay of the magnetization of an Ising ferromagnet heated from zero temperature to
a nonzero temperature, the initial configuration is unique and hence common to all
the runs.)

Before going further we now ask the question: Is the “time” t associated with the
label � of subsequent states generated by the Monte Carlo sampling related to the
physical time by which a real system evolves? In general the answer is that this is
not the case. Systems like Heisenberg magnets, classical fluids, etc., do have a time
evolution described by deterministic equations for their variables. For example,
Newton’s laws, not the master equation (2.44), describe the motions of molecules
in a fluid, and the Heisenberg ferromagnet considered in (2.3) evolves according to
the equation

„ d

dt
S z

k
.t/ D i

�
S z

k
;HHeisenberg

� D �2J
X

j.¤k/

h
S

y

k
Sx

j � Sx
k S

y
j

i
; (2.49)
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where 2�„ is Planck’s constant and j is a nearest-neighbor of site k. Although
both the (artificial) stochastic dynamics and the actual physical dynamics lead to
the same thermal equilibrium distribution for N ! 1 (and for finite N as well, if
they correspond to exactly the same statistical ensemble, namely a microcanonical
ensemble where the energy is strictly conserved), there is in general little similarity
between the stochastic dynamics described by (2.44) and the actual dynamics. For
example, for temperatures less than the Curie temperature, (2.49) leads to the well-
known spin wave excitations, while (2.44) can never yield any propagating modes,
but only simple relaxational behavior.

The situation for the Ising Hamiltonian (2.1) is different, of course, since ŒSk ;

HIsing� � 0 : it does not provide any intrinsic time evolution. For the Ising model,
the stochastic kinetics provided by (2.44) can be interpreted physically in terms of
a very weak coupling of the spins to a heat bath (the thermal vibrations of an under-
lying crystal lattice, for instance), which induces random spin flips in the system.
Similarly, in an interstitial alloy the diffusion of the interstitial atoms may be mod-
eled by a stochastic hopping between the available lattice sites [2.40, 2.54, 2.55].
Since the mean time between two successive jumps is orders of magnitude larger
than the time scale of atomic vibrations in the solid, the phonons can again be rea-
sonably well approximated as a heat bath, as far as the diffusion is concerned. Of
course, there are also cases of interstitial alloys where this approximation gets inac-
curate, such as superionic conductors. For the realistic simulation of the dynamics
of such systems, the molecular dynamics method [2.56] where one integrates New-
ton’s laws numerically is an alternative. The molecular dynamics method gets into
trouble, however, if the system contains two sets of degrees of freedom with very
different characteristic times, because the integration time step must be much less
than the characteristic time of the fast degrees of freedom, and it may be inconve-
nient (or even impossible) to extend the time scale of the numerical integration up
to the relaxation time of the slow degrees of freedom. The latter can then often be
modeled much more efficiently by a suitable Monte Carlo algorithm.

2.2.4 Statistical Errors and Time-Displaced
Relaxation Functions

Apart from applications studying the dynamics of suitable model systems, the
dynamic interpretation provided by (2.44)–(2.48) is very useful for understanding
the “statistical errors” of Monte Carlo sampling [2.9]. It is on this point that we now
focus.

Suppose n successive observations A�; � D 1; : : : ; n, of a quantity A have been
stored, with n 	 1. We consider the expectation value of the square of the statistical
error
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˝
.ıA/2

˛ D
*�
1

n

nX

�D1

	
A� � hAi


�2
+

D 1

n2

nX

�D1

D	
A� � hAi
2

E

C 2

n2

nX

�1D1

nX

�2D�1C1

�˝
A�1

A�2

˛ � hAi2

: (2.50)

Changing the summation index �2 to �2 C �, (2.50) can be rewritten as

˝
.ıA/2

˛ D 1

n

2

4˝A2
˛ � hAi2 C 2

nX

�D1

�
1 � �

n

 �˝
A0A�

˛ � hAi2

3

5 : (2.51)

Now we remember that a time t� D ıt�, is associated with the Monte Carlo process,
ıt being the time interval between two successive observations A�; A�C1. [It is
possible to take ıt D 
t D 	s=N , i.e., every Monte Carlo microstep is included
in the calculation of

˝
.ıA/2

˛
, but often it is more efficient to take ıt much larger

than 
t , e.g., ıt D 	s or ıt D 10 	s, etc.] Transforming the summation into a time
integration and dropping the index � from t�, we obtain [2.9]

˝
.ıA/2

˛

D 1

n

�˝
A2
˛ � hAi2 C 2

1

ıt

Z tn

0

�
1 � t

tn

�h
hA.0/A.t/i � hAi2

i
dt

�

D 1

n

�˝
A2
˛ � hAi2

"
1C 2

ıt

Z tn

0

�
1 � t

tn

� hA.0/A.t/i � hAi2

hA2i � hAi2
dt

#
: (2.52)

Next we denote the normalized relaxation function of the quantity A as �A.t/ and
define it as

�A.t/ D hA.0/A.t/i � hAi2

hA2i � hAi2
: (2.53)

Note that �A.0/ D 1 and �A.t/ decays to zero as t ! 1. Let us assume that �A.t/

has actually decayed to zero essentially already on a time-scale 	A, with 	A � tn.
We can give a precise meaning to 	A in terms of the integral

	A D
Z 1

0

�A.t/dt: (2.54)

Since we have assumed that �A.t/ differs from zero appreciably only for times
t � tn, the term t=tn in (2.52) can be neglected in comparison with unity, and the
upper limit of the integration replaced by infinity. This yields

˝
.ıA/2

˛ D 1

n

h˝
A2
˛ � hAi2

i �
1C 2

	A

ıt


: (2.55)



34 2 Theoretical Foundations of the Monte Carlo Method

If ıt 	 	A, then the parenthesis in (2.55) is unity to a very good approximation,
and the statistical error has just the same form as encountered for simple sampling
[cf. (2.26)]. In the inverse case, where ıt � 	A, we find instead (nıt D 	obs is the
time over which the averaging is extended)

˝
.ıA/2

˛ � 2	A

nıt

h˝
A2
˛ � hAi2

i
D 2

	A

	obs

h˝
A2
˛ � hAi2

i
; (2.56)

which shows that then the statistical error is independent of the choice of the time
interval ıt . Although for a given averaging time tn a choice of a smaller value
ıt results in a correspondingly larger value of the number n of observations, it
does not decrease the statistical error; only the ratio between the relaxation time
	A and the observation time 	obs matters. The fact that

˝
.ıA/2

˛
in general is not

given by the simple sampling result
� ˝
A2
˛ � hAi2

�
=n, but is enhanced by some

factor, had been noticed before a proper dynamic interpretation of importance sam-
pling was known and therefore the enhancement factor was called the “statistical
inefficiency” of the method [2.57]. Obviously, this is not a useful notion since the
factor 1 C 2.	A=ıt/ necessarily results from the fact that Markov processes are
described by associated master equations. Conversely, the dynamic view as exposed
here leads to the idea that one may exploit the freedom in the choice of the transi-
tion probability W.x ! x0/ as well as in the microscopic nature of the meaning
of a transition x ! x0 to make 	A as small as possible. This idea is a subject of
much research [2.58], and will not be followed up here. If it can be successfully
implemented, the usefulness of Monte Carlo methods near phase transitions (where
	A diverges in the thermodynamic limit: critical slowing down [2.59]) would be
substantially improved, see Chap. 4.

We conclude this section by defining a nonlinear relaxation function �nl
A .t/ in

terms of the nonequilibrium average (2.47)

�.nl/.t/ D hA.t/iT � hA.1/iT

hA.0/iT � hA.1/iT

(2.57)

and its associate time

	
.nl/
A D

Z 1

0

�
.nl/
A .t/dt: (2.58)

The condition that the system is well equilibrated then simply reads

tM0
	 	

.nl/
A : (2.59)

Note that (2.59) must hold for all quantities A, and hence it is important to focus on
the slowest-relaxing quantity (for which 	 .nl/

A is largest) if one wishes to estimate
the suitable choice of tM0

reliably. Near second-order phase transitions, the slowest-
relaxing quantity is usually the order parameter of the transition, and not the internal
energy. Hence the “rule” published in some Monte Carlo investigations that the
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equilibration of the system is established by monitoring the time evolution of the
internal energy is clearly not a valid procedure.

2.3 Finite-Size Effects

2.3.1 Finite-Size Effects at the Percolation Transition

The simplest phase transition problem in statistical physics is probably the purely
geometric problem of the so-called percolation transition [2.60]. One considers an
infinite lattice where each site is randomly occupied with probability p and empty
with probability 1�p (site percolation problem [2.60]). Neighboring occupied sites
are said to form “clusters” (Fig. 2.8). There exists a critical concentration pc such
that for p < pc there exist only clusters of finite size l on the lattice fl D 1; 2; : : : g,
while for p 
 pc an infinite cluster has formed that “percolates” from one boundary
of the lattice to the opposite one.

For a finite lattice of linear dimension L (to be specific, we take it simple cubic)
it is straightforward to write down an algorithm which generates sample config-
urations of such a partially filled lattice. If we denote the occupation variable of
a lattice site .K1;K2;K3/ byN.K1;K2;K3/ and the Fortran procedureRANF(I)
[I being a dummy variable] supplies random numbers equally distributed between
zero and one, a Monte Carlo program for this problem is as follows:

DO 1 K1 D 1, L
DO 1 K2 D 1, L

DO 1 K3 D 1, L
N(K1, K2, K3) D 0

1 IF(RANF(I).LT.P) N(K1, K2, K3) D 1 .

One “sweep” through the lattice determines the whole system; there is no need to
wait until some “equilibrium” is established, unlike for the importance-sampling
method discussed in the previous section, but we again have a simple-sampling
problem. Of course, to answer questions such as: How many clusters nl .p/ contain-
ing l occupied sites exist in the lattice per lattice site? Does there exist a “spanning
cluster” of occupied sites which reaches from one boundary to the opposite one?
etc., one needs sophisticated programs to analyze the generated configurations,
which are not considered here [2.61, 2.62] but will be discussed in Sect. 3.2.4, as
well as various generalizations and variants of the percolation problem.

For the description of the percolation transition, we not only want to estimate
pc, but also compute quantities like the percolation probability P1.p/ (the prob-
ability that an occupied site is part of the percolating cluster) and the percolation
susceptibility  defined as
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a b

Fig. 2.8 (a) Clusters on the square lattice for the site percolation problem. Sites are occupied with
probability p (dots) or empty with probability 1 � p (circles). Neighboring occupied sites form
clusters. The 8�8 lattice shown here hence contains clusters with l D 2, l D 3 and l D 8 occupied
sites. (b) Clusters on the square lattice for the bond percolation problem. Bonds are occupied with
probability p (thick lines) or empty with probability 1� p (thin lines). Occupied bonds which are
connected to each other form clusters. The lattice shown contains clusters with l D 1, l D 2 and
l D 9 occupied bonds

 D
1X

lD1

0l2nl .p/=p: (2.60)

(The prime means that the largest cluster is omitted from the summation.) These
quantities are expected to show the following critical singularities (in the infinite
lattice) for jp � pcj ! 0 [2.60]:

P1.p/ D OBp

�
p

pc
� 1

�
p̌

; p > pc ŒP1.p/ � 0 for p < pc� ; (2.61a)

.p/ D

8
ˆ̂<

ˆ̂:

O� C
p

�
1 � p

pc

���p

; p < pc;

O� �
p

�
p

pc
� 1

���p

; p > pc:

(2.61b)

In a finite lattice, .p/ cannot diverge but reaches a maximum of finite height only;
the magnitude of this maximum depends on the size of the lattice (Fig. 2.9) [2.63].
Similarly, the percolation probability P1.p/ cannot vanish at any p > 0, but must
attain small nonzero values as soon as p > 0. [Even the probability that all sites
are occupied is nonzero in a finite system as soon as p > 0, namely it is pLd D
exp.Ld lnp/ in a d -dimensional system; percolation occurs with the probability
pL D exp.L lnp/ as p ! 0]. Thus in a finite lattice the singularities [(2.61a)
and (2.61b)] associated with the percolation transition are smoothed out, and this
rounding at the transition is easily understandable geometrically. On a finite lattice
only finite clusters are possible, and both the cluster size distribution nl .p/ and the
percolation probability P1.p/ are smooth (analytic) functions of p. For the infinite
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Fig. 2.9 Percolation probability P .L/
1 .p/ plotted versus p (a), for the bond percolation problem on

the square lattice, using various choices of L and periodic boundary conditions, (b) and (c) show
corresponding results for .L/.p/, including also data with free edges (f.e.). (From [2.63])

lattice, the cluster size distribution behaves as [2.60]

nl .p/ D
l!1

l�� Qn
�
l	
�
1 � p

pc

��
; (2.62a)

	 D 2C 1=ıp;

� D 1=
	

p̌ıp

 D 1=

	
�p C p̌



:
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While on the infinite lattice at pc the cluster size distribution decays according
to a power law, nl .p/ D l�� Qn.0/ as l ! 1, on a finite lattice this power law
holds only for clusters whose radii rl are distinctly smaller than the lattice linear
dimension L. Since

rl D
l!1

Orl1=df ; (2.62b)

where df is the “fractal dimensionality” [2.60] of the percolation clusters, and at
p D pc the probability that a cluster percolates .rl � L/ is unity, we conclude

Ld

Z 1

rl DL

nl .p/dl � Ld Qn.0/
Z 1

.L= Or/df

l�� dl

D Qn.0/LdCdf.1��/
Or �df.1��/=.	 � 1/ D 1; (2.62c)

which implies that the exponent of L vanishes, i.e., df D d=.	 � 1/ D d=.1 C
1=ıp/ D d p̌ıp=. p̌ıp C p̌/ D d. p̌ C �p/=.2 p̌ C �p/ D . p̌ C �p/=�p D
d � p̌=�p, where scaling laws such as the hyperscaling relation involving the
correlation length exponent �p.�p / jp � pcj��p /, d�p D 2 p̌ C �p, is used.
From this expression for df and (2.62b) we conclude that the number of sites in
a “spanning cluster” with rl D L is lL D .L= Or/df / Ld� p̌=�p , and hence the
fraction of occupied sites belonging to such a spanning cluster must be of the order
of P .L/1 .pc/ D L�d lL / L� p̌=�p .

2.3.2 Finite-Size Scaling for the Percolation Problem

Now an expression which interpolates between (2.61a) for L 	 �p and the above

result for P .L/1 .p/ at p D pc is obtained by the finite-size scaling hypothesis [2.23–
2.26] [note that P .L/1 .p/ may also be defined as the fraction of sites in the largest
cluster]

P .L/1 .p/ D L� p̌=�p QP 	L=�p



;

QP .x 	 1/ / x p̌ =�p / Lˇp=�p .p � pc/
p̌ ; (2.63)

which expresses the principle that the effects of the finite size on the percolation
transition are controlled by the ratio of the correlation length and the lattice linear
dimension. Fig. 2.10a shows a test of this relation [2.63]. A similar relation can be
postulated for the susceptibility .L/.p/:

.L/.p/ D L�p=�p Q.L=�p/; Q.x/ /
x!1 x��p=�p : (2.64)

The asymptotic behavior of the scaling functions QP .x/; Q.x/ for large x always
follows from the condition that in the thermodynamic limit all powers of L must
cancel out and the correct power laws as written in (2.61) and (2.62) must result.
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Fig. 2.10 Finite-size scaling plots of the data for the percolation probability P .L/
1 .p/ shown in

Fig. 2.9a and for the percolation susceptibility (Fig. 2.9b,c). Here L p̌=�pP
.L/
1 .p/ is plotted versus
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1=�p (a), while L��p=�p.L/.p/ is plotted versus .p � pc/L

1=�p (b), with the following
choice of exponents: p̌ D 0:139, �p D 4

3
, �p D 2:41. (From [2.63])

Figure 2.10b shows a test of the finite-size scaling relation (2.64) for the percola-
tion susceptibility [2.63].

The fact that for p near pc we must have .L/.p � pc/ / L�p=�p can be
obtained directly from the definition of  and (2.62a), noting that the sum must be
cut off at cluster sizes of the order of lL:

.L/ Š 1

p

lLX

lD1

l2nl .p/ Š
p near pc

Qn.0/
lLX

lD1

l2��=pc � Qn.0/p�1
c

Z lL

0

dl l2��

D Qn.0/p�1
c l3��

L =.3� 	/ / Ldf.3��/

D Ld.1�1=ıp/=.1C1=ıp/ D L�p=�p : (2.65)

The self-consistency of this geometric interpretation of finite-size scaling at the per-
colation transition is noted from calculating the characteristic length �p from (2.60)
and (2.61) as
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�2
p D

1X

lD1

r2
l l

2nl .p/ Š Or2

Z 1

0

l2=dfC2�� Qn
�
l	
�
1 � p

pc

��
dl

D
�
1 � p

pc

��.3��C2=df/=	

Or2

Z 1

0

x2=dfC2�� Qn .x	 / dx

/
�
1 � p

pc

��2�p��p

; (2.66)

since 1=�df D �p.
When one wishes to use (2.63) and (2.64) to locate pc and determine the expo-

nents p̌=�p, 1=�p (or �p=�p), one can try a simultaneous best-fitting procedure
such that the family of curves P .L/1 .p/ collapses onto a single curve, the scaling
function QP .x/, as well as possible [or that the family of curves .L/.p/ col-
lapses onto a single curve, the scaling function Q.x/, when plotted appropriately].
Figure 2.10 shows examples of this sort of “data collapsing”. However, to obtain
accurate estimates it is important to have rather large values of L, since (2.63) and
(2.64) hold only asymptotically in the limit L ! 1: for finite L, there are sys-
tematic corrections to finite-size scaling which lead to systematic deviations from
perfect data collapsing. Since these correction terms are completely disregarded in
plots such as shown in Fig. 2.10, one can never be sure whether the “best-fit” values
for pc, p̌=�p, 1=�p, �p=�p are systematically offset from their true values. This
problem does not occur when one samples the probability Ps.p/ that a “spanning
cluster” (reaching from one boundary to the opposite one) occurs in the system.
Since for the infinite lattice Ps.p/ D 0 for p < pc and Ps.p/ D 1 for p 
 pc, the
finite-size scaling relation for Ps.p/ simply reads

P .L/
s .p/ D QPs.L=�p/: (2.67)

As a consequence, different curves P .L/
s .p/ for different choices of L should inter-

sect at p D pc in a common intersection point QPs.0/, apart from corrections to
scaling. Extrapolation of these intersection points to the limit L ! 1 hence yields
an estimate for pc which is not biased by the choice of the critical exponents and
should be free from the systematic errors noted above. Figure 2.11 shows an exam-
ple demonstrating that accurate estimates are easily obtained from this intersection
method [2.64]. The reader who works through Exercises 3.18, 3.25 of Sect. 3.2.4
will generate similar Monte Carlo data.
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Fig. 2.11 Fraction of conducting samples in the bond percolation problem on the square lattice
where a bond is conducting with probability p.D x/ and isolating with probability 1� p, plotted
as a function of p.D x/ for various linear dimensions L: (circles) L D 16; (triangles) L D 64;
(squares) L D 200; (diamonds) L D 512. A sample is conducting only if a “spanning cluster”
occurs, and hence this quantity just measures P .L/

s .p/. The percolation threshold pc is obtained as
the common intersection point of these curves. (From [2.64])

2.3.3 Broken Symmetry and Finite-Size Effects at Thermal
Phase Transitions

Effects of finite size on the percolation transition are relatively easy to understand,
firstly, because of their obvious geometric interpretation, secondly, because the sit-
uation is simple due to the lack of any spontaneous symmetry breaking at the
transition. We now discuss ordinary, thermally driven phase transitions, where the
system state changes from a disordered state at high temperatures to a spontaneously
ordered state at temperatures lower than some critical temperature Tc of a second-
order phase transition. The prototype example is again the Ising ferromagnet (2.1),
where this low-temperature phase is a state with nonzero spontaneous magnetization
(˙jMspj for zero applied fieldH ). It is well known, of course, that this spontaneous
symmetry breaking can occur in the thermodynamic limit only. For a finite system,
there is always a nonzero probability that the system may pass from a state near
CjMspj to a state near �jMspj, as well as in the opposite direction, see Fig. 2.12.
Therefore, the magnetizationM at zero field vanishes for all nonzero temperatures,
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Fig. 2.12 Probability distribution P.M/ for a finite system at a temperature T less than the critical
temperature Tc where in the thermodynamic limit a spontaneous magnetization ˙jMspj appears.
While P.M/ has a peak near M D �jMspj, where the finite lattice has a more or less uniformly
negative magnetization (shaded), and a second peak where it has a more or less uniformly positive
magnetization (unshaded), in between P.M/ has a minimum which is nonzero even for M D 0.
This state corresponds to a nonuniform distribution of magnetization in the finite lattice: making
use of the periodic boundary conditions, two domains of opposite magnetization coexist. In a finite
lattice, the system spontaneously makes excursions from states with uniformly negative magneti-
zation through this intermediate mixed-phase state to states with uniformly positive magnetization,
and vice versa

M.T;H D 0/ D 1

N

NX

iD1

hSiiT;HD0 D 0; (2.68)

irrespective of the value of N . In fact, the first-principles definition of the order
parameter Msp considers M.T;H/, first taking the thermodynamic limit N ! 1,
and afterwards letting H tend to zero,

Msp D lim
H!0

lim
N !1M.T;H/: (2.69)

This double limiting procedure is rather inconvenient to use in practical Monte Carlo
work, and hence is applied only in exceptional cases, such as spin glasses, where the
ordering is very hard to understand [2.65]. In Ising ferromagnets below Tc but not
too close to the critical point, one finds that a magnetization CM (or �M , depend-
ing on the initial condition) is sufficiently metastable for long observation times,
and hence estimates with reasonable accuracy can be obtained although one does
not sample the full equilibrium ensemble [2.66]. However, even above Tc a small
magnetization will typically be found, due to fluctuations which in a finite sys-
tem observed over a finite time have not completely averaged out. One will find
a value ˙ıM , where ıM depends on both the size of the system and the observa-
tion time tobs. Similarly, below Tc the magnetization fluctuates in the rangeM˙ıM
or �M � ıM , and one cannot make ıM arbitrarily small by making tobs larger and
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larger. If tobs becomes of the order of the ergodic time te, which is the time needed
to observe transitions from CM to �M or vice versa, one would start averaging
the magnetization to zero. This situation becomes particularly cumbersome near
Tc, where M itself strongly decreases, while ıM increases until the fluctuations
become comparable with the order parameter itself. The reader is urged to work
through Sect. 3.4.1 and to program Exercise 3.36 to verify these remarks.

To avoid these problems, the standard recipe is to record the root mean square
order parameter [2.67]

Mrms D
q

hM 2iT D
* 

NX

iD1

Si=N

!2+1=2

T

D 1

N

0

@
NX

i;j D1

˝
SiSj

˛
T

1

A
1=2

: (2.70)

In particular, (2.70) must be used for isotropic spin systems, (2.2) and (2.3), where
one has a vector order parameter M sp, whose orientation is not even metastable.
One observes a sort of “rotational diffusion” of the unit vector along M sp [2.68]
and hence each component of

˝
M sp

˛
T

steadily decreases with increasing observation
time.

Of course, in a finite system the order parameter Mrms is nonzero at all tem-
peratures. Even at infinite temperatures, where

˝
SiSj

˛ D ıij , one still obtains
Mrms D 1=

p
N [2.67]. At temperatures slightly above Tc, where the correla-

tion function G.r ij / � ˝
SiSj

˛
T

is slowly decaying, Mrms is even much larger.
With periodic boundary conditions G.r ij / is translationally invariant and hence
Mrms D .

PN
iD1

˝
SiSj

˛
T
=N/1=2. Let us now discuss this expression at Tc itself

[2.21]. In an infinite system, the decay of correlations at Tc is described by

G.r ij / �!
jrij j!1

OGjr ij j�.d�2C
/; (2.71)

where OG is a “critical amplitude” and � a critical exponent. We now approximate
G.r ij / in the finite system of size Ld by taking G.r ij / also from (2.71) if jr ij j <
L=2. Then we obtain [2.21]

NX

iD1

˝
SiSj

˛
T

/
Z L=2

0

rd�1
ij drij

˝
SiSj

˛
T

/
Z L=2

0

r
1�

ij drij / L2�
 ; (2.72a)

and henceMrms becomes .N D Ld /
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M T DTc
rms /

�
L2�d�


1=2 / L�ˇ=� ; (2.72b)

where we have used the scaling laws .2 � �/ D �=�, d� D 2ˇ C � [2.69]. Note
the similarity of (2.72b) to the corresponding result for the percolation problem,
P

.L/1 .pc/ / L� p̌=�p .

2.3.4 The Order Parameter Probability Distribution and Its
Use to Justify Finite-Size Scaling and Phenomenological
Renormalization

Equation (2.72b) is already a result characteristic of finite-size scaling theory
[2.23–2.26]. To describe this theory more systematically, we now discuss the prob-
ability distribution of the order parameter s [2.25]. For T > Tc and linear dimen-
sions L exceeding the correlation length � of order parameter fluctuations .� /
jT � Tcj��/, this distribution should be Gaussian as considered in (2.33)

PL.s/ D Ld=2
�
2�kBT

.L/
1=2

exp
h
�s2Ld=

�
2kBT

.L/
i
; (2.73)

T > Tc; H D 0:

The “susceptibility” .L/ defined in (2.73) from the half-width of the distribution
should smoothly tend towards the susceptibility  of the infinite system as L ! 1
(remember  / jT � Tcj�� ). For T < Tc but again L 	 �, the distribution is
peaked at values ˙ML near ˙Msp; near these peaks again a description in terms of
Gaussians applies (while a different behavior occurs near s D 0 [2.25, 2.70])

PL.s/ D Ld=2

	
2�kBT.L/


1=2

"
1

2
exp

 
� .s �ML/

2Ld

2kBT.L/

!

C 1

2
exp

 
� .s CML/

2Ld

2kBT.L/

!#
; T < Tc; H D 0: (2.74)

The small value of PL.s � 0/ / exp.�2Ld�1fint=kBT /, where fint is the inter-
facial tension of the system [2.70], measures the probability that the system moves
away from the region near CML by the spontaneous creation of two interfaces of
size Ld�1 to form a domain of negative magnetization spanning the system. By this
mechanism the system can pass from CML to �ML and vice versa, see Fig. 2.12.
Since the observation time needed to observe these transitions increases with L
as PL.s D ML/=PL.s D 0/, for large L such transitions cannot be seen during
reasonable observation times. Thus one does not sample the full symmetric dis-
tribution (2.74) for which hsiL D R C1

�1 sPL.s/ds D 0, but rather only one half
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Fig. 2.13 Estimates of the spontaneous magnetization of the three-dimensional Ising model with
nearest-neighbor interaction on the simple cubic lattice at a temperature .kBT=J D 4:425/ below
criticality .kBTc=J � 4:51/, where J is the exchange constant, see (2.1), as obtained from extrap-
olating the size dependence of the position of the maximum .smax/ and the moments hs2iL and
hjsjiL towards L�1 ! 0, for subsystems of a system of size 243 . The direct estimate for the
magnetization of the total system .MN / is also included. (From [2.71])

of it:

hsi0
L D

Z 1

0

sPL.s/ds
Z 1

0

PL.s/ds
D hjsjiL : (2.75)

When (2.74) is an accurate description of the actual distributionPL.s/, the restricted
average hsi0

L coincides with the peak position ML, but due to deviations from the
Gaussian distribution in an actual simulation these quantities may differ from each
other. However, when extrapolated to the thermodynamic limit, all these quantities
should yield the spontaneous magnetization

lim
L!1ML D lim

L!1 hjsjiL D lim
L!1

˝
s2
˛1=2

L
D Msp: (2.76)

Of course, these relations are more convenient than using (2.69). Figure 2.13 illus-
trates the use of these relations, where only a single system of size N D 243

was simulated but the order parameter distribution in subsystems of different linear
dimensions L < 24 was recorded, for several values of L simultaneously in
one run [2.25, 2.71]. Similarly, the susceptibility can be estimated both from the
fluctuation-dissipation relation (relating it to magnetization fluctuations), and the
half-widths
s, or the heights PL.0/; PL.ML/ of the peaks:
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lim
L!1

˝
s2
˛
Ld

kBT
D lim

L!1
P�2

L .0/Ld

2�kBT

D lim
L!1

.
s/2Ld

8kBT ln 2
D ; T > Tc; (2.77a)

lim
L!1

˝
s2
˛ � hjsji2

kBT
Ld D lim

L!1
P�2

L .ML/L
d

8�kBT

D lim
L!1

.
s/2Ld

8kBT ln 2
D ; T < Tc: (2.77b)

Equations (2.73) and (2.74) hold for L 	 �. In a practical calculation � is usually
not known, then the Gaussian character of the distribution is conveniently studied by
calculating the fourth-order cumulant UL [2.25] (or the equivalent quantity gL D
�3UL called the renormalized coupling constant [2.72])

UL D 1 �
˝
s4
˛
L

3 hs2i2
L

: (2.78)

For T > Tc and L 	 �, one can show that UL decreases towards zero as UL /
L�d [2.25]. For T < Tc and L 	 �, one can show from (2.74) that UL tends to
U1 D 2=3. For L � �, on the other hand, UL varies only weakly with temperature
and linear dimension, it stays close to the (universal but nontrivial) “fixed-point”
value U �.

This behavior of the cumulant makes it very useful for obtaining estimates of Tc

itself which are not biased by any assumptions about critical exponents [2.25]. One
may plotUL versus T for variousL’s and estimate Tc from the common intersection
point of these curves. As shown below, finite-size scaling implies the existence of
such a common intersection point. Due to corrections to finite-size scaling, there
may be some scatter in the intersection points for different pairs .L;L0/ if one
works with very small linear dimension (Fig. 2.14). Nevertheless, the accuracy of
this “cumulant intersection method” is quite good. It has been applied to a variety
of models [2.13, 2.25, 2.29, 2.71–2.78], including sophisticated examples such as
spin glasses [2.77] and XY models with cubic anisotropy [2.73]. Note also that the
estimate for the critical point of the 3d Ising model obtained by this technique on
the Santa Barbara special purpose computer [2.72], J=kBTc D 0:221650.˙5/, is
competitive in accuracy with the most extensive series expansion and Monte Carlo
renormalization group estimates [2.79] available, although the work in [2.72] is
hampered by some spurious finite-size effects due to pseudorandom numbers of
bad quality, as shown in related work done on different computers [2.80–2.82].

We now turn to the description of the distribution function PL.s/ in the region
where L is not necessarily larger than �. The key idea is that PL.s/, which
is a function of L, s, and � (which expresses the temperature dependence via
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� / j1 � T=Tcj�� , as noted above), does not depend separately on these three
variables, but only on two scaled combinations,L=� and s�ˇ=� [2.25]:

PL.s/ D �ˇ=�P
�
L=�; s�ˇ=�


D Lˇ=� QP

�
L=�; sLˇ=�


: (2.79)

Here the power-law prefactors are needed to ensure the normalization,

Z C1

�1
dsPL.s/ D 1;

and in the last part of (2.79) we have used
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Fig. 2.14 (a) Determination of the critical coupling Q̌c of the �4 model on the square lattice (2.43),
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p�.AC 2dC/=Bj=N i for the same model.

(From [2.13])



48 2 Theoretical Foundations of the Monte Carlo Method

sLˇ=� D
�
s�ˇ=�


.L=�/ˇ=�

instead of s�ˇ=� as our second scaling variable. From (2.79), which should hold
in the limit L ! 1, � ! 1, but L=� finite, it is straightforward to derive the
standard finite-size relations [2.23, 2.24] analogous to (2.63), (2.64), and (2.67) by
taking suitable moments of the distribution,

hjsjiL D L�ˇ=� QM.L=�/; (2.80a)

0.L; T / � Ld
�˝
s2
˛
L

� hjsji2
L


=kBT D L�=� Q.L=�/; (2.80b)

UL D 1 � Q4.L=�/

3 Œ Q2.L=�/�
2
: (2.80c)

Here Q4.L=�/ is related to the 4th moment,
˝
s4
˛
L

� L�4ˇ=� Q4.L=�/, and
Q2.L=�/ to the second,

˝
s2
˛
L

� L�2ˇ=� Q2.L=�/. In (2.80b) we have defined
a function 0.L; T / which for T < Tc tends to the standard susceptibility  in
the thermodynamic limit (where  � limH!0 limL!1 @ hsiL =@H ), as is obvious
from (2.77b), while for T > Tc it does not. In fact, from (2.73) it is straightforward
to show that for T > Tc (remember limL!1 .L/ D )

lim
L!10.L; T / D lim

L!1Ld
�˝
s2
˛
L

� hjsji2
L


=kBT D 

�
1 � 2

�

�
: (2.80d)

Thus 0 diverges with the same exponent as , but the critical amplitude is reduced
by a factor 1� 2=� . This point is often confused in the literature, where sometimes
limL!1 0.L; T / is taken as an estimate for  above Tc, and sometimes the for-
mula  D limL!1Ld

	 ˝
s2
˛
L

� hsi2
L



=kBT is used at all temperatures. This latter

formula, however, in the absence of a symmetry-breaking field makes sense only
for T > Tc, where hsi2

L � 0 can be used, and then this formula reduces to (2.77a).
For T < Tc, on the other hand, in a Monte Carlo simulation for a finite system near
Tc, hsi2

L is not a useful quantity. For observation times which are much smaller
than the ergodic time 	e, hsi2

L � hjsji2
L, which is close to the squared spontaneous

magnetization M 2
sp (2.76), while for observation times which are much larger than

	e, hsi2
L � 0, and for observation times of the order of 	e one may get a rather erratic

behavior where hsi2
L can take any value in between zero and hjsji2

L, when the mag-
netization has jumped back and forth between C hjsjiL and � hjsjiL just a few times.
Now 	e is of order 	max at Tc, see (2.85)–(2.88) below, and much larger than 	max

for T much less than Tc, with 	max being the maximum “intrinsic” relaxation time.
Note that for the magnetization, 	max and the time 	A considered in (2.54)–(2.72)
are of the same order of magnitude. Since we have to work with an observation
time tobs 	 	A � 	max, below Tc we will necessarily encounter a temperature where
tobs � 	e, and hence hsi2

L is meaningless there. Thus it is an inevitable consequence
of symmetry breaking that above Tc and below Tc in finite systems different fluctu-
ation formulae must be used to extract the susceptibility of the infinite system with
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Fig. 2.15 Schematic temperature variation of the normalized susceptibilities kBT.L; T / and
kBT

0.L; T / as defined in (2.80b) and via kBT.L; T / � Ld hs2iL. For T ! 0 there are no
fluctuations, thus hs2i D hjsji2 D 1 and hence kBT

0.L; T ! 0/ ! 0 while kBT.L; T !
0/ ! Ld . Outside the regime of the finite-size rounding, .L; T / tends to the standard suscep-
tibility  for T � Tc, while for T < Tc it is 0.L; T / that tends to . While the divergence of
 is rounded off to a finite peak in the function T0.L; T /, the function T.L; T / is monotoni-
cally increasing for decreasing T due to the onset of the order parameter. The dash-dotted curve
illustrates the standard susceptibility formula Ld .hs2iL � hsi2L/, which, unlike (2.80b), does not
involve any absolute value: for zero field this expression is not well defined for the temperature
region for which the observation time tobs is of the same order as the ergodic time 	e, where erratic
fluctuations therefore occur. For L ! 1, this temperature region shrinks and ultimately coincides
with Tc

the correct prefactor, as written down in (2.77a) and (2.77b). This behavior of the
susceptibilities .L; T / and 0.L; T / is illustrated schematically in Fig. 2.15.

One immediately finds that the order parameter at criticality behaves as hjsjiL /
L�ˇ=� , consistent with our previous result (2.72b). The “fixed point” value of the
cumulant is now interpreted as U � D 1 � Q4.0/=3Œ Q2.0/�

2.
As was the case for (2.63) and (2.64), for the percolation problem, (2.80a)–

(2.80c) form the basis for a study of critical properties of the infinite system,
extracted from the Monte Carlo results for finite lattices. Figure 2.16 shows another
example of data collapsing [2.13, 2.25, 2.27, 2.37, 2.71, 2.76, 2.82, 2.83]. Studying,
for instance, the order parameter ML D hjsjiL for various L’s, we have a family of
curves (Fig. 2.14b). Multiplying ML by a factor Lˇ=� and the reduced temperature
j1 � T=Tcj D j1� Q̌

c= Q̌j by a factor L1=� , the family of curves should collapse
onto the two branches (for T > Tc and T < Tc, respectively) of the scaling function
QM . The figure already demonstrates the disadvantage of this method: one simultane-

ously has to fit three parameters fTc; 1=�; ˇ=�g, but since one often includes Monte
Carlo “data” for which neither L nor � are very large, there are systematic correc-
tions to the asymptotic finite-size scaling expressions, and complete superposition
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Fig. 2.16 Plot of MLL
ˇ=� versus .1 � Q̌c= Q̌/L1=� for the �4 model on the square lattice with

the parameter choice Q̨ D 2:5, ˇc D 0:428 (for the definition of parameters see Fig. 2.14) and
L D 5, 10, 20, and 60. Finite blocks with periodic boundary conditions were used throughout, as
in Fig. 2.14. Upper part, the choice of exponents ˇ D 0:125, � D 0:80. Lower part, the standard
Ising choice (ˇ D 0:125, � D 1:00). (From [2.13])

of the curves is prevented. Moreover, there is not really a unique “fit”, and hence
the actual accuracy of the method is somewhat hard to ascertain. Nevertheless it has
often yielded useful results (e.g., [2.83, 2.84]).

Alternative phenomenological renormalization methods based on (2.80) derive
critical exponents from relations such as (L0 D bL with a scale factor b > 1) [2.25]

1

�
D ln .@UbL=@UL/

ln b

ˇ̌
ˇ̌
U �

;

�

�
D ln Œ.bL; Tc/=.L; Tc/�

ln b
: (2.81)
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One advantage of this method is that Tc and the exponents 1=�, �=� are estimated
independently of each other; another advantage is that one can analyze systematic
errors due to corrections to finite-size scaling. At Tc such corrections are, to leading
order, additive terms with less strongly divergent exponents

.L; Tc/ D L�=� Q.0/.1C corrL�xcorr C � � � /; (2.82)

corr being another amplitude factor and xcorr the leading correction exponent. Now
(2.81) is replaced by

ln Œ.bL; Tc/=.L; Tc/�

ln b
D �

�
� corrL�xcorr

ln b
.1 � b�xcorr/C � � � : (2.83)

Thus, plotting estimates for �=� (or 2ˇ=�, cf. [2.25, 2.71]) versus 1= ln b, one
obtains for each L a different curve, which for .ln b/�1 ! 0 must extrapolate lin-
early to the same value of �=�. The disadvantage, however, of this method is that
extremely good statistical accuracy of the results for .L; Tc/ is required, other-
wise the procedure is not applicable. Landau and Binder [2.75] have applied this
technique to a nontrivial two-dimensional example, the Ising antiferromagnet with
nearest and next-nearest neighbor interactions Jnn, Jnnn (Fig. 2.17), which exhibits
a transition to a layered antiferromagnetic structure for Jnnn=Jnn > 1

2
, belong-

ing to the universality class of the XY model with cubic anisotropy [2.85], with
nonuniversal critical exponents. The exponent estimates which can be obtained
are comparable in accuracy to results obtained from Monte Carlo renormaliza-
tion group (MCRG) [2.86], Monte Carlo data collapsing [2.83], high-temperature
series extrapolations [2.87] and transfer matrix calculations for finite strips [2.88],
see Fig. 2.18. The method is definitely superior to standard real-space renormal-
ization group methods [2.89], but clearly involves a major effort in computing
time. This is also true for the MCRG method, although it seems that there good
results are obtained with somewhat smaller statistical effort, even in three dimen-
sions [2.79]. This phenomenological renormalization method was also tried for the
nearest-neighbor three-dimensional Ising model, using Monte Carlo results obtained
with the Ising special purpose computer [2.72]. It was claimed [2.72] that the asymp-
totic critical regime where finite-size scaling holds is only reached for L > 24,
but it is now clear [2.80–2.82] that this claim is wrong, due to inappropriate pseu-
dorandom numbers used in [2.72], and the approach to the thermodynamic limit
is very smooth also in the three-dimensional Ising model. Still, a highly accurate
phenomenological renormalization study of the three-dimensional Ising model has
not been done before 1991 [2.89a].

A variant of this phenomenological renormalization technique [2.90] avoids the
use of the fourth-order cumulant UL, (2.78) and (2.80d), and works with .L; T /
only. One then forms the ratio considered in (2.83), namely the function 'L;L0.T /

'L;L0.T / � ln Œ.L0; T /=.L; T /�
ln.L0=L/

(2.84)
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Jnn

Jnnn

a

b

c

Fig. 2.17 (a) Square lattice with exchange Jnn between nearest neighbors (full lines) and exchange
Jnnn between next nearest neighbors (broken lines). (b, c) Spin arrangements in the layered
antiferromagnetic structure, where ferromagnetically aligned rows of up spins alternate with fer-
romagnetically aligned rows of down spins. These rows can be oriented in the x direction (b) or in
the y direction (c). These two orderings are always degenerate with each other and hence should
be considered as the two components of a two-component order parameter . x;  y/

for two pairs of sizes, .L;L0/ as well as .L0; L00/. The functions 'L;L0.T / and
'L0;L00.T / should thus intersect at Tc, and the intersection point should yield �=�
if corrections to finite-size scaling can be neglected [2.90]. This method has been
applied successfully to the two-dimensional ANNNI model, where a transition to an
incommensurate floating phase occurs [2.90].

At this stage, it is extremely helpful if the reader turns to Sect. 3.4.1 and works
out Exercises 3.37, 3.38, and 3.41.

2.3.5 Finite-Size Behavior of Relaxation Times

So far, we have considered only static quantities and analyzed the respective finite-
size effects, but also the critical singularity of the “intrinsic” relaxation time 	

	 / �z / j1 � T=Tcj��z (2.85)
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Fig. 2.18 (a) Variation of critical parameters with ln b D ln.L=L0/ for the Ising antiferromag-
net on the square lattice with R � Jnnn=Jnn D 0:65. Data are for L0 D 4 (ı), L0 D 8

(�), and L0 D 12 (4); finite blocks with periodic boundary conditions were used throughout.
(From [2.75]). (b) Variation of the correlation length exponent (upper part) and critical tempera-
ture Tc (lower part) withR. (circles) Results of phenomenological renormalization, as described in
(a); (triangles) Monte Carlo “data collapsing” results of [2.83]; (crosses) MCRG results of [2.86];
(filled circles) series expansion results of [2.87]; (squares) transfer-matrix renormalization [2.88];
(inverted triangles) real-space renormalization group results [2.89]. (From [2.75])

exhibits a finite size rounding, again controlled by the rule that the rounding sets in
when L is comparable to �, and hence the maximum “intrinsic” relaxation time is

	max / Lz .T D Tc/: (2.86)

From (2.56) and (2.86) we now realize why it is so difficult to obtain accurate results
at Tc, where the statistical error of the magnetization takes on its maximum value

˝
.ıM/2

˛
Tc

D 2	max

tobs

�˝
M 2

˛
Tc

� hjM ji2
Tc



D 2	max
0
maxkBTc

tobsLd
/ LzC�=��d

tobs
: (2.87)

Since on a serial computer the CPU time for one Monte Carlo step per site increases
as Ld , the CPU time needed to obtain data for hjM ji at Tc with a given constant
accuracy increases as LzC�=� � L4, independent of d for d � 4. Thus an increase
by a factor of 10 in the linear dimension would require 104 more computing time!
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Thus we see why vector processors and parallel computers, for which there is less
increase in CPU time needed for one Monte Carlo step per site with increasing
linear dimension, are indispensable for the Monte Carlo simulation of very large
lattices at Tc.

For T 
 Tc, the “intrinsic” order parameter relaxation time 	 considered in
(2.85) and (2.86) is in fact the absolutely largest relaxation time in the system. For
T < Tc, this is not true due to the existence of the “ergodic” time 	e. As was men-
tioned after (2.74), this ergodic time is proportional to PL.s D ML/=PL.s D 0/ /
exp.2Ld�1fint=kBT /. Since near Tc, fint=kBT / ��.d�1/, we can write a scaling
law for the ergodic time as follows:

	e / Lz exp
h
const.L=�/d�1

i
; T < Tc: (2.88)

This relation has been verified by Miyashita and Takano [2.91], while (2.86) was
studied in careful work by Wansleben and Landau [2.92].

Below Tc, in addition to the intrinsic relaxation time 	 (2.85), which describes
how a small deviation ıM from the spontaneous magnetization Msp relaxes, and
to the ergodic time 	e, describing the time needed to flip over the sign of the total
magnetization, various nonlinear relaxation times of the magnetization are also of
interest. If we start the system in a fully aligned ferromagnetic state, the relaxation
times 	 .nl/

M ; 	
.nl/
E of the magnetization, energy, etc., needed to relax to their equilib-

rium values can be shown to diverge near Tc according to a power law different from
(2.85) [2.93, 2.94]:

	
.nl/
M / .1 � T=Tc/

�.�z�ˇ/ ; (2.89a)

	
.nl/
E / .1 � T=Tc/

�.�z�1C˛/ ; (2.89b)

where ˛ is the critical exponent of the specific heat [2.69]. On the other hand, if
we start the system in a disordered configuration and no symmetry breaking field
is present, ordered domains form (Fig. 2.19) whose linear dimensions l.t/ grow
according to a power law [2.5, 2.46]

l.t/ D .˝t/x ; ˝ / .1 � T=Tc/
�z��=x: (2.90)

Now with such a “disordered start” in the regime of the ordered phase the times to
reach equilibrium are at least of the order of tL defined by

l.tL/ � L; i.e., tL D ˝�1L1=x / 	.L=�/1=x / �z.L=�/1=x : (2.91)

While the times 	 .nl/
M , 	 .nl/

E are very small if one works at T far below Tc, the time tL
is still rather large since x D 1

2
in the nonconserved kinetic Ising model [2.5, 2.46],

and hence tL / L2. In addition, this time tL is only a lower bound to establish true
equilibrium: it only says that domains with sizes comparable to the system linear
dimension are present. There is no guarantee that the system exists in a monodomain
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a b
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Fig. 2.19 Snapshot pictures of domains at various times after a start in a completely random initial
configuration

state. Often one finds [2.68, 2.95], however, that the system after the time tL is in
a state with a few frozen-in domain walls oriented parallel to a surface of the sys-
tem, such that each wall is connected to itself via the periodic boundary condition.
It then may take an impractically long time for the frozen-in domain walls to dis-
appear from the system, particularly in three-dimensional systems at temperatures
below the interface roughening transition temperature [2.96]. This consideration
shows that for the Monte Carlo study of ordered phases it is advisable to choose
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an appropriate initial condition, such as a fully ordered configuration. In systems
where the detailed nature of the ordering is unknown, such as in spin glasses [2.41],
a study of the low temperature phase is very difficult.

2.3.6 Finite-Size Scaling Without “Hyperscaling”

The finite-size scaling theory described so far, where one scales the linear dimen-
sionL with the correlation length �, rests on the validity of the hyperscaling relation
between critical exponents, d� D � C 2ˇ [2.25, 2.76]. Consequently, finite-size
scaling in its standard form does not hold when hyperscaling is violated, which
happens, for instance, in systems above their marginal dimensionality d� where
mean field predictions for critical exponents become valid (e.g., d� D 4 for Ising
models [2.69], d� D 6 for percolation [2.60]). Then with fully periodic bound-
ary conditions in an Ld geometry a simple modified form of finite-size scaling
holds [2.76], the correlation length � being replaced by a thermal length lT defined
by [2.76]

ldT D kBTM
�2 / j1 � T=Tcj�.�C2ˇ/ D j1 � T=Tcj�2; (2.92)

where in the last equality the mean field exponents � D 2ˇ D 1 were inserted.
Equation (2.92) is understood by noting that (2.74) is true also for d > d�, and the
argument of the exponential function can be written as

.s ˙M/2Ld

2kBT
D .s=M ˙ 1/2

2

Ld

kBTM�2
D .s=M ˙ 1/2

2

�
L

lT

�d

; (2.93)

which shows that L scales with lT. For d < d�, lT / � but for d > d�, � has
a different temperature dependence. The general scaling behavior replacing (2.79) is

PL.s/ D .1 � T=Tc/
�ˇP 0 �L=lT; s.1 � T=Tc/

�ˇ


D Ldˇ=.�C2ˇ/ QP 0
�
L=lT; sL

dˇ=.�C2ˇ/

; (2.94)

i.e., the exponent 1=� in (2.79)–(2.83) is replaced by the exponent d=.� C 2ˇ/,
the inverse of the exponent of the thermal length lT. Equation (2.94) has been ver-
ified for the five-dimensional Ising model [2.76] where 1=� D 2 while d=.� C
2ˇ/ D 5=2.

2.3.7 Finite-Size Scaling for First-Order Phase Transitions

Finally, we turn to finite-size effects at first-order phase transitions [2.97]. In an infi-
nite system, a first-order transition is characterized by a delta function singularity,
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Fig. 2.20 Schematic variation of the specific heat and internal energy with temperature T near
a first-order transition at Tc (left part). The delta function singularity represents the latent heat
EC �E�. Also shown is the variation of the susceptibility and the magnetization as a function of
field (right part). Now the delta function singularity represents the magnetization jump 2Msp (full
curves)

see Fig. 2.20. For example, if the transition is driven by temperature this singularity
is the latent heat; in an Ising magnet, a first-order transition occurs for T < Tc

at H D 0 on variation of the field, and hence we get a delta-function in the
susceptibility. In finite systems, of course, these delta function singularities are again
rounded off [2.98–2.104]. One can understand this behavior most simply by gener-
alizing (2.74) to include the dependence on the magnetic field [2.102]: the weights
of the two peaks are no longer equal

	
1
2



, but rather weighted according to the Zee-

man energy Boltzmann factors exp.˙HMLL
d=kBT /. In addition, one must take

into account that for H ¤ 0 the Gaussian peaks no longer occur at s D ˙ML but
rather at s D ˙ML C .L/H . This yields
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PL.s/ D Ld=2
h
2�kBT

.L/
i�1=2

�
0

@
exp

�
HMLLd

kBT


exp

�
� .s�ML��.L/H/2Ld

2kBT�.L/



exp
�

HMLLd

kBT


C exp

�
� HMLLd

kBT



C
exp

�
� HMLLd

kBT


exp

�
� .sCML��.L/H/2Ld

2kBT�.L/



exp
�

HMLLd

kBT


C exp

�
� HMLLd

kBT



1

A : (2.95)

This approach yields for the magnetization

hsiL D .L/H CML tanh

 
HMLL

d

kBT

!
(2.96)

and the susceptibility

.H; T;L/ D
�
@ hsiL

@H

�

T

D .L/ C M 2
L

	
Ld=kBT




cosh2
	
HMLLd=kBT


 : (2.97)

Equation (2.97) shows that the delta function singularity which occurs for H D 0

in the limit L ! 1, for finite L is smeared out into a peak of height proportional
to Ld and of width 
H proportional to L�d .

It is important to realize, however, that these considerations apply only if one
records the true equilibrium behavior of the system (i.e., applies observation times
exceeding the ergodic time). For too short observation time one would observe
a single-peak structure for PL.s/ rather than the correct double-peak structure
described by (2.95). The ordered state of the Ising ferromagnet then is metastable
even in a weak field of direction opposite to the magnetization. The reader who
has done Exercise 3.43 of Chap. 3 and who has tried to reproduce Fig. 2.21 will
have noticed this already. Thus (2.95)–(2.97) are practically useful only for rather
small systems. Figure 2.21 shows that the present description is in quantitative
agreement with simulation results for the two-dimensional nearest-neighbor Ising
square lattice, when the spontaneous magnetization Msp (ML D Msp is taken
equal to the spontaneous magnetization, independent of L, for L 	 �) is known
exactly [2.105], and no adjustable parameters exist whatsoever.

The field-driven transition in the Ising model is a particularly simple case, since
the model possesses a symmetry .H; T;L/ D .�H;T;L/ even for finite L, and
hence the transition is rounded but not shifted by the finite size of the system; it still
occurs at H D 0. A more general case, which is also more interesting for practical
applications, occurs for first-order transitions driven by temperature from an ordered
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Fig. 2.21 (a) Susceptibility .H; T; L/ of nearest-neighbor Ising square lattices at kBT=J D
2:1 plotted versus magnetic field for various L’s. (b) Same data replotted in scaled form,
.H; T; L/=L2 plotted versus scaled field HL2=J . Arrow indicates the asymptotic value
M2

spJ=kBT calculated from the exact solution [2.105]. Note that kBTc=J D	 2:269 for the Ising
model [2.105]. Broken curve is the scaling function of (2.97), the additive correction term .L/

being omitted. (From [2.102])
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phase at low temperature to a disordered phase at higher temperatures. Obviously,
there is no symmetry between the high temperature and low temperature phases,
and then we also expect a shift of the effective transition temperature Tc.L/ (where
the rounded peak of the specific heat representing the smeared delta function of the
latent heat has its maximumCmax

L ) relative to the true transition temperature Tc.1/,

Tc.L/ � Tc.1/ / L��; Cmax
L / L˛m ; ıT / L�� ; (2.98)

where we have defined three exponents �; am; � for the shift, the height of the peak,
and the temperature interval ıT over which it is rounded. It turns out, however, that
these finite-size effects can again be understood by a simple discussion in terms of
thermodynamic fluctuation theory, similar to (2.95)–(2.97). We just have to extend
(2.33) to the case where we have a superposition of two Gaussians Œ
T D T �
Tc; Tc � Tc.1/� [2.104]

PL.E/ / aCp
CC

exp

 
� .E � EC � CC
T /2Ld

2kBT 2CC

!

C a�p
C�

exp

 
� .E �E� � C�
T /2Ld

2kBT 2C�

!
; (2.99)

where the specific heat in the infinite system near Tc behaves as

lim
T !T �

c

C.T / D C�; lim
T !T

C

c

C.T / D CC;

and the weights aC, a� are expressed in terms of the degeneracies qC, q� of the
two phases and their internal energiesEC, E� as [2.104]

aC D qC exp

 

T .EC � E�/Ld

2kBTTc

!
;

a� D q� exp

 
�
T .EC � E�/Ld

2kBTTc

!
: (2.100)

From (2.99) and (2.100) it is straightforward to obtain the energy hEiL and specific
heat C.T;L/ as

hEiL D aCEC C a�E�
aC C a�

C
T
aCCC C a�C�
aC C a�

; (2.101)
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C.T;L/ D @ hEiL

@T
D aCCC C a�C�

aC C a�

C aCa�Ld

kBT 2

Œ.EC � E�/C .CC � C�/
T �2

.aC C a�/2
: (2.102)

From (2.102) it is obvious that the maximum of the specific heat occurs at

Tc.L/ � Tc

Tc
D kBTc ln Œ.q�=qC/�

EC � E�
1

Ld
(2.103)

and has a height

Cmax
L � .EC � E�/2

4kBT 2
c

Ld C CC C C�
2

: (2.104)

Since the temperature region ıT over which rounding of the delta function peak
occurs is given just by taking the argument of the exponential functions in (2.100)
of order unity, ıT � 2kBT

2
c =Œ.EC � E�/Ld �, we conclude that the exponents �,

am, � defined in (2.98) are all equal to the dimensionality:

� D am D � D d: (2.105)

Thus, since there is no diverging characteristic length to which the linear dimen-
sion L could be compared at a first order transition, it is simply the volume Ld that
controls the size effects [2.98–2.104]. Figure 2.22 shows results obtained [2.104]
for the q-state Potts model [2.106] with q D 10, whose Hamiltonian is

HPotts D �J
X

hi;j i
ıSi Sj

; Si D 1; 2; : : : ; q: (2.106)

For the square lattice EC; E� and CC; C� can be obtained from exact solu-
tions [2.107] and hence a nontrivial test of (2.99)–(2.105) is possible. It is seen
that the phenomenological theory outlined in (2.99)–(2.105) does in fact account
for the behavior of the Monte Carlo results nicely. Again some “homework” by the
reader (Exercise 3.50) is strongly recommended, but at the same time the comment
is given that the accuracy of Fig. 2.22 was in this year 1986 only reached with an
effort of several hundred hours CPU on a supercomputer! Now this is easily done
on a laptop.

This finite-size scaling theory for first-order transitions also leads to a cri-
terion for systematically distinguishing first-order transitions from second-order
transitions. When one computes a quantity VL defined as [2.104]

VL D 1 �
˝
E4
˛
L

3 hE2i2
L

; (2.107)
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one finds that VL takes a minimum value V min
L at the effective transition temperature

Tc.L/. One can show that for a second-order transition limL!1Œ23 � V min
L � D 0,

even at Tc, while at a first-order transition the same limit measures the latent heat
jEC � E�j:

lim
L!1

�
2

3
� V min

L

�
D 1

3

.EC � E�/2.EC C E�/2

.2ECE�/2
: (2.108)

Figure 2.23 shows [2.104] that indeed the behavior of VL for q D 2; 3 (where the
transition is of second order [2.107]) is very different from the behavior of VL for
q D 10, where the transition is distinctly first order.

2.3.8 Finite-Size Behavior of Statistical Errors and the Problem
of Self-Averaging

As a last topic connected with size effects we now consider the finite-size behav-
ior of statistical errors [2.5]. Suppose we observe a quantity A in n statistically
independent observations, and calculate its error from [cf.(2.55)]


.n;L/ D
r�

hA2iL � hAi2
L


=n; n 	 1: (2.109)

We now ask, does this error 
.n;L/ of the quantity A reduce to zero if we make
the simulated system larger and larger, i.e., L ! 1? If this does not happen and

 reaches anL-independent nonzero limit, we sayA exhibits lack of self-averaging.
If the error
 reduces to zero, however, we may ask, will the same error be obtained
if we simply study larger systems but with less statistically independent observa-
tions, such that the total effort in computing time (on a serial computer) is the same.
That is, we compare calculations for two sizes L and L0 D bL, with a scale factor
b > 1, and record n observations for the smaller systems and n0 D b�dn obser-
vations for the larger system. Milchev et al. [2.5] have introduced the notion that
a system is strongly self-averaging if the error satisfies the relation


.n;L/ D 
.n0; L0/ D 
.b�dn; bL/: (2.110)

From (2.109) and (2.110) we see that strong self-averaging holds only if the
fluctuation satisfies the relation

˝
A2
˛
L

� hAi2
L / L�d : (2.111)

If we consider a situation where

˝
A2
˛
L

� hAi2
L / L�x1 ; 0 < x1 < d; (2.112)
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Fig. 2.22 (a) Temperature variation of the specific heat for various lattice sizes, for the ten-
state Potts model on the square lattice. Data for some lattice sizes have been omitted in order
to preserve the clarity of the figure. (b) Scaling of the specific heat data, plotting CL=L2 versus
ŒT � Tc.1/�L2 . In this model q� D q D 10, qC D 1. The solid curve results from (2.102),
where the additive correction ŒaCCC C a�C��=.aC C a�/ is omitted, and CC=C� D 0:7 is
chosen. (From [2.104])
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various choices of L and the cases q D 2 (a), q D 3 (b) and q D 10 (c). Exactly known transition
temperatures and limiting values of VL for L ! 1 are indicated by arrows. (From [2.104])

the quantity A is still self-averaging but not strongly self-averaging [2.5].
Suppose now that the quantityA observed in a simulation is the density of a basic

extensive quantity, e.g., energy per site .E/ or magnetization per site .M/, and
we consider for the moment an equilibrium state away from criticality or phase
coexistence. Then the distribution of ıA D A � hAi for L ! 1 is Gaussian,
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PL.ıA/ D Ld=2.2�CA/
�1=2 exp

h
�.ıA/2Ld=2CA

i
; (2.113)

cf. (2.33) and (2.73), for example. From (2.113) we immediately find that the fluc-
tuation considered in (2.111) is related to the parameter CA controlling the width of
the distribution (if A D M then CA D kBT, if A D E then CA D kBT

2C , etc.):

˝
.ıA/2

˛ D ˝
A2
˛
L

� hAi2
L D L�dCA: (2.114)

Thus if limL!1 CA exists,A is indeed strongly self-averaging. This property hence
holds for quantities such as E , M , etc., for L 	 �.

The situation differs drastically, however, if we wish to sample quantities which
are not spatial averages of a simple density (such as E;M; : : :) but quantities which
follow from fluctuation relations (such as C , , : : :), which we obtain from the
sampling of E , M using (2.114). We now consider the error of this procedure,
again using (2.109) but choosing .ıA/2Ld rather than A as the variable under
consideration:


.n;L/ D Ldn�1=2

q
h.ıA/4iL � h.ıA/2i2

L: (2.115)

Since the reduced fourth-order cumulant, defined in analogy to (2.78) as

U
.A/
L � 3

˝
.ıA/2

˛2
L

� ˝
.ıA/4

˛
L

3 h.ıA/2i2
L

(2.116)

vanishes for the Gaussian distribution, we obtain from (2.115)


.n;L/ D Ldn�1=2
˝
.ıA/2

˛
L

p
2 D CA

p
2=n: (2.117)

Consequently, the relative error of CA is independent of L and depends on n
only [2.5],


.n;L/=CA D
p
2=n: (2.118)

Thus, increasing L at fixed n will strongly improve the accuracy of quantities such
as E and M , but nothing is gained with respect to the accuracy of , C , etc. Thus,
it is more economical to choose the smallest size which is still consistent with the
condition L 	 � and to increase n rather than L to improve the accuracy.

This consideration in turn shows that for large systems it may be better to
obtain , C , etc. from numerical differentiation rather than from the sampling of
fluctuations. For completeness, let us consider this point explicitly. We obtain the
susceptibility  from the field dependence of the magnetization:

 Š ŒM.H C
H/ �M.H/� =
H; (2.119)
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where H has to be chosen such that nonlinear effects are negligible. In order to use
(2.119) we must require that the errors of M.H/ and of M.H C 
H/ are much
smaller than the difference 
H :


.n;L/ D
q
kBT=nLd � 
H; i.e. 1 � nLd

�

H

kBT

�2

kBT: (2.120)

The relative error of  now becomes





Š p

2

.n;L/


H
D p

2
kBT


H

1p
kBTnLd

I (2.121)

the factor
p
2 accounts for the fact that the errors of M.H/ and M.H C 
H/

are statistically independent. Since the error is thus proportional to .nLd /�1=2,
the susceptibility determined from a derivative of the magnetization is strongly
self-averaging. A corresponding consideration holds for the specific heat found as
a temperature derivative of the internal energy [2.5].

In the critical region, however,L 	 � does not hold; the distributions of the order
parameter (magnetization M in an Ising ferromagnet) and energy are no longer
Gaussian. Instead descriptions such as (2.79) and (2.80) hold. We now find


M D
q	 hM 2i � hjM ji2



=n D L�ˇ=�n�1=2

p Q.L=�/: (2.122)

At Tc, where the correlation length � (of the infinite system) is infinite, Q.0/ is
a finite constant. Thus, (2.122) is an example of self-averaging of the weak rather
than the strong form (x1 D ˇ=� is much smaller than d ). Using (2.122) to judge
the necessary simulation effort one must take into account, of course, that a time of
order Lz (2.86) must elapse between two states in order that they are statistically
independent, as shown by (2.87). For the error of the susceptibility  sampled from
magnetization fluctuations, one finds from (2.80) and (2.116) that there is again lack
of self-averaging,





D n�1=2

p
2 � 3UL.L=�/: (2.123)

We thus recognize a structure generalizing (2.118), but now the constant
p
2 is

replaced by the smaller quantity
p
2 � 3UL.L=�/.

For the singular part of the energy, ıE � E � E.Tc/, the description similar to
(2.79) reads

PL.ıE/ D L.1�˛/=� QP.E/.ıEL.1�˛/=� ; L=�/; (2.124)

with QP.E/ a suitable scaling function. From (2.124) one obtains the specific heat as

C D Ld
h˝
.ıE/2

˛
L

� hıEi2
L

i
=kBT

2 D L˛=� QC.L=�/=kBT
2: (2.125)
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For the error of the energy one now obtains again a weak form of self-averaging
with x1 D .1 � ˛/=�,


.ıE/ D n�1=2L�.1�˛/=�

q
QC.L=�/; (2.126)

while for the error of the specific heat a formula analogous to (2.123) applies.
As discussed in [2.5], these considerations can be carried over to nonequilibrium
Monte Carlo calculations, such as the study of domain growth kinetics [2.46]. We
also emphasize that the consideration presented in (2.113)–(2.118) for the errors
in importance sampling is essentially the same as that already encountered in our
discussion of the simple sampling errors for random walks (2.25)–(2.29).

2.4 Remarks on the Scope of the Theory Chapter

In this chapter we have summarized the main aspects of both “static” (simple sam-
pling) Monte Carlo methods (where different system configurations are generated
that are statistically independent of each other) and “dynamic” (importance sam-
pling) Monte Carlo methods. The former have been illustrated with applications to
problems such as random and self-avoiding walks, percolation transitions, etc., the
latter have been illustrated with applications to lattice problems, with both discrete
degrees of freedom (Ising models, Potts models, etc.) and continuous degrees of
freedom (XY magnets, the �4 model, etc.). We have tried to indicate how simulation
programs devoted to such applications are organized, and how the resulting Monte
Carlo “data” are analyzed. We have discussed in some detail the limitations of these
methods due to finite-size effects and due to finite observation time effects, and have
discussed the so-called “statistical errors” from various points of view. We have
shown that a detailed analysis of finite-size effects in terms of finite-size scaling
theories provides useful information on both second-order and first-order phase
transitions. We have also mentioned the application of the Monte Carlo method to
studying dynamic phenomena, but have concentrated on static properties here; simi-
larly, the emphasis has been on “bulk properties”, and studies of interfaces, surfaces,
local properties near defects, etc., have been left aside.

With this restriction in the scope of this book, important problems, such as
how one deals with the simulation of quantum-mechanical problems rather than
(quasi-)classical Hamiltonians, how one estimates entropy and free energy from
importance sampling Monte Carlo, etc., or the analysis of critical and multicritical
phenomena with the MCRG method, could not be treated in this chapter and we
refer the interested reader to the “general references” listed at the beginning of the
reference list for more details. Some of these problems will be taken up in later
chapters of this book as well. We do hope, however, that the present chapter pro-
vides a useful guide to the literature for newcomers to the field, enabling them to
get started with a few simulations for their own physics problems, and leaving them
with the impression that Monte Carlo simulation is a very rich method, which makes
interesting contacts with many fundamental aspects of statistical physics, and at the
same time is a very versatile and useful tool.



Chapter 3
Guide to Practical Work with the Monte Carlo
Method

The guide is structured such that we proceed from the “easy” simulation methods
and algorithms to the more sophisticated. For each method the algorithms are pre-
sented by the technique of stepwise refinement. We first present the idea and the
basic outline. From then on we proceed by breaking up the larger logical and algo-
rithmic structures into smaller ones, until we have reached the level of single basic
statements. Sometimes we may elect not to go to such a depth and the reader is
asked to fill in the gaps.

Since this is a guide to computational physics we feel the need for some gen-
eral remarks on programming. The technique of stepwise refinement is also useful
in actual applications. It introduces a thinking and programming discipline which
tends to reduce the number of (logical) errors made. Let us elaborate a little on this.
From our own experience we know that nothing is more catastrophic than an untidy
program. Bugs may be hidden under untidiness. Though, even in tidy programs
there may, unfortunately, be bugs.

Untidy programs may reflect a wild sort of thinking where many little ideas are
simply piled up. It is like building a bridge across a river by throwing stones more
or less at random into the river. Between each pair of stones we put a statement so
that eventually one is able to cross the river. Such a construction is, however, very
vulnerable.

Using stepwise refinement for an algorithm we are forced to invent headings for
parts of the algorithm and headings for the parts within the parts, as guidance. These
are also extremely useful tools for the documentation of the actual program. They
come in handy when the program is turned over to a collaborator. If the program is
properly documented the colleague will not feel the urge to redo the entire program
in order to understand it and trust it.

Interspersed with the text are exercises. These exercises are an integral part of this
guide. Without them the whole idea of learning the simulation methods presented in
Chap. 2 should be discarded.

There are four different kinds of exercises. Exercises which are marked with F,
e.g.,

F Exercise 3.1,
are considered a vital part of the guide. Without doing these exercises an under-
standing of the material can hardly be reached. They are a “must”. Usually they

K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics,
Graduate Texts in Physics, DOI 10.1007/978-3-642-03163-2 3,
c� Springer-Verlag Berlin Heidelberg 2010
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follow immediately after an important step in the development of an argument or an
algorithm which has been presented. The reader should not move on until such an
exercise has been completed. To mark this even more clearly we have put a

STOP
sign after such an exercise.

The second kind of exercises are those marked with !, e.g.,
Š Exercise 3.2.

Such exercises are also considered vital to the guide. In these the material presented
so far is approached from a slightly different angle. Doing them contributes a great
deal to the understanding and the reader is asked to work them out. In most cases
they involve variations of an algorithm worked out before either in the text or in one
of the F exercises. They usually require some changes to an existing program.

Apart from the regular exercises, which are not marked specifically and are
entirely optional, there is a fourth type of exercise marked with a star, e.g.,
? Exercise 3.24.

These exercises present problems which are more of a research type and can be
safely omitted without losing out on the understanding of the material.

In this guide we will exhibit the algorithms in a pseudo-programming language.
This pseudo-programming language is very similar to C, C++, JAVA, etc. Due to
their structure the algorithms which will be discussed present themselves in a more
natural and elegant form in this language than in a programming language like
FORTRAN. The choice of an artifical language rather than a language in common
use also highlights the algorithms themselves: the idea is not buried in a maze of
programming statements.

The language is more or less self-explanatory and should be understood by
anybody who has experience of at least one computer language. To illustrate the
language consider Example 3.1. It simulates throwing a dice. The dice has six faces
and we define an integer-valued vector with six components. It is understood that
initially the components are zero. We throw the dice N times, as indicated by the
“do” loop. For each try we choose at random a number from the set f1; 2; 3; 4; 5; 6g.
In the case that the drawn face is “1” we add a one to the occurrences of face 1,
and similarly for the other faces. After N tries have been made we can analyze how
often any face appeared in the sample. The statement analyze-dice-face stands for
a block of statements similar to what is inside the “begin end” for the “do” loop.

Example 3.1

integer dice-face(1:6);
do i WD 1 to N

begin
id WD random.1; 2; 3; 4; 5; 6/;
dice-face.id/ WD dice-face.id/C 1;

end
analyze-dice-face;
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It is our experience that most students taking a course in computer simulations
know at least the programming language C. It should therefore be no problem to
understand the algorithms and to program them, for example in C. On most personal
computers the language C is quite efficiently implemented. The use of C on personal
computers has been found to be very successful for teaching purposes. All the algo-
rithms have been tested and run on personal computers. Those who undertake to run
the programs on a personal computer will very soon run up against limitations on
speed and storage, but for teaching purposes, and sometimes even for research, we
find them sufficient in their capabilities.

As already mentioned, the algorithms in this guide are given in a pseudo-
programming language. However, we felt that some of the algorithms ought to be
given in a “straight” form because while using this guide people sometimes had
difficulty in converting the algorithmic idea into a “real” programming language.
The conversion is not so trivial at all! It requires a good understanding and working
knowledge of the programming language.

In order to overcome this problem, some of the algorithms presented here are
given in the Appendix in an executable form. At this point a decision had to be made
as to the programming language. As pointed out above, many students start out by
learning C. However, in practice, i.e., when actually doing large scale simulations,
in most cases these days the programming language FORTRAN is used. Therefore
some of the algorithms were programmed in FORTRAN and listings of these are
given in the Appendix. For those who prefer C, C++, or JAVA, etc., it should be no
problem to convert the algorithms given in the text into an executable form.

The algorithms presented here are intended to be used on scalar machines. First,
because the most readily available machines are scalar, such as most mainframes
and personal computers. Second, we think that the basic ideas would be obscured
by rather involved algorithms for pipeline or even parallel machines. Nevertheless,
we have included some exercises for those who have access to such machines and
want to adapt the algorithms. With the advent of the transputer [3.1–3.3] and the
programming language OCCAM [3.4–3.7] it became possible to write and try out
parallel algorithms [3.8–3.10] using a personal computer as a host to the parallel
architecture. Today the emphasis has shifted to graphical processing units (GPU).

3.1 Aims of the Guide

In Chap. 2 we introduced concepts for the numerical treatment of complex physics
problems. In this part we want to fill the abstract concepts with life. We want to
understand the concepts more deeply and apply the concepts to problems.

The problems we have chosen for this guide are very elementary. Elementary
here does not mean trivial! Indeed, the problems presented here are of a very funda-
mental nature and are very important for physics. Not just for physics itself, but also
for computational physics. They represent a cross section of statistical mechanics
problems. Of course, the space in this text is limited and it is impossible to select
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a broad cross section. The main criterion for the selection of a problem was the
didactical value for the application of the numerical concept to the problem.

Basically three approaches to numerically solving a problem in statistical mecha-
nics have been presented:


 Simple sampling

 Biased sampling

 Importance sampling

In a sense, the order in which they are given indicates the increasing complexity of
the concepts. They are by no means the only possible concepts. Many other con-
cepts have been developed, such as umbrella sampling. Those interested in going
beyond the concepts presented here are directed to the general references given at
the beginning of the list of references.

The three concepts mentioned above are, however, by far the most prevalent ones
in use. Not only that, they are also by far the most pedagogical concepts. Also, since
this text is meant as an introduction to Monte Carlo simulation methods, we do not
think that more complicated concepts should be elaborated upon here.

In the simple sampling method a given problem is approached in the most brutal
way. Let us, for the moment, consider an example not from physics. Suppose that
you, as a physicist, have been employed by a TV station. Your job is to carry out
a poll for the ratings of some shows the station is featuring. Not knowing anything
at all about polls you reason that you could hardly ask every viewer who could
potentially see the shows. You had a course in statistical physics and know of the
power of statistical concepts. You decide to take a sample. You are new in town and
the way you go about it is to pick viewers randomly from all over town and question
them about how they liked the shows.

In much the same way we could sample the phase space of a problem in statistical
mechanics. We take a random sample of points of the phase space and perform
averages using the random sample points. Though the concept seems very simple
indeed, it is a very powerful one. The whole concept of statistics is lurking behind
it. For many problems it even seems to be the only workable approach towards
a solution.

In this guide we will treat two fundamental problems in statistical mechanics
with the simple sampling method. The first is the random walk and other problems
of such type. The random walk problem should not be underestimated because of
its apparent simplicity. If the reader has really worked through the section on simple
sampling where the random walk problem is treated he will have acquired enough
experience to master the other methods. The relation of the random walk problem to
physics is rather like that of the fruitfly to genetics. One encounters many difficulties
inherent in numerical approaches to the solution of problems in statistical mechanics
already in the random walk problem. Understanding the numerical treatment of this
problem greatly benefits the general understanding of the working of simulational
physics.
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Using the basic features of a walk we will branch out to study the nonreversal
and the self-avoiding random walks. These examples will clarify the limits of the
simple sampling concept and point the way towards other sampling concepts.

The second problem is that of percolation. The application of the concept of
simple sampling is rather similar to that of the random walk. The emphasis here
is on the analysis. The analysis is twofold. Many problems in physics require the
recognition of patterns. One might be interested in the growth of domains, droplets,
etc. In the percolation problem the patterns are the clusters. How does one determine
the clusters in a given percolation configuration?

The percolation problem will also be used to introduce methods for data analysis.
The data analysis we want to emphasize in this text is the determination of:


 The phase transition point

 Scaling

To determine the phase transition point we will use the cumulant method descri-
bed in Sect. 2.3. This will allow us to determine the phase transition point with very
high accuracy by the intersection of the cumulants for various system sizes. The
finiteness of the system will also be exploited in the scaling analysis in the form of
the finite-size scaling discussed in Sect. 2.3.

An improvement in the level of sophistication is the biased sampling concept.
Now that you have been in your job for some time you have learned that there
are other ways to take a poll. After consulting a street map you found out that there
are neighborhoods. Within a neighborhood the habits of the viewers appear to have a
certain distribution. The distributions are, however, not all the same. Also, the neigh-
borhoods are not homogeneously distributed on the map of the city. You decide to
go along with that and correct for the bias which you have under control.

An example where such a concept can be applied is the sampling of the self-
avoiding walk. Applying the simple sampling concept we will find it extremely
difficult to sample longer walks. The walks almost always terminate at a very early
stage. They terminate because a site to go to next had already been chosen earlier.
There is, nevertheless, a way to continue the walk, at the expense of introducing
a bias.

After being in the job for more than a while you have smartened up. You decide
that even though you have been doing your job well you can reduce the effort you
have put in so far. You have learned that often when you picked a household in
certain areas they did not have a TV set at all. In some other households the number
of hours spent sitting in front of the screen were small. In still others the time spent
in front of the screen was very irregular. By now you know where the important
contributions to your statistics come from.

Importance sampling applied to statistical mechanics problems is very simi-
lar. Though, for most problems, we do not know a priori where the important
contributions come from, we can devise an algorithm which surely leads us there.

There is another fruitfly, and that is the Ising model. On a lattice with N sites
there are 2N states the system can take on. Most of these states do not con-
tribute much and a simple random sample of the states would yield a very poor
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convergence. As a matter of fact, it is rather like looking for needles in a haystack,
the needles being the states contributing the most to the determination of a quantity.

The treatment of the Ising model with importance sampling will be the major
example where the concept is employed. Here we will also pick up again the
discussion of data analysis started in connection with the percolation problem.

3.2 Simple Sampling

We begin the guide with examples where the concept of simple sampling is applied.
Two major examples will be used to exhibit the application of the concept to the
numerical solution of the random walk and the percolation problem. We shall also
branch out to treat the nonreversal random walk and the self-avoiding random walk.

3.2.1 Random Walk

In the first example we want to treat the random walk (RW) problem with the simple
sampling Monte Carlo method. What we will be after, in particular, is to calculate
the average end-to-end distance hRi of a random walk as a function of the number
of steps.

An algorithm to calculate the end-to-end distance and other quantities of the
random walk problem requires several input parameters. First of all one needs, of
course, the step lengthN of the walker. This parameter we want to vary to establish
the relation between the step length and the average end-to-end distance. As a sec-
ond parameter we need to specify how many samples of N -step random walks we
want to generate. We shall denote this by n-of-samples.

In a block notation the Monte Carlo simple sampling of random walks then looks
like Algorithm 3.1.

Algorithm 3.1. Random walk

do sample WD 1 to n-of-samples
begin

do step WD 1 to N
begin

generate-one-step
end

end
accumulate-results

end

This is the basic building block for the simple sampling of the end-to-end
distance. The outer loop controls how many times we want a sample of the end-to-
end-distance of a walk of N steps. The generated result of one trial is accumulated
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and later on an average is taken over the entire sample of size n-of-samples. No pref-
erence is given to any of the trials. All trials of the sample carry exactly the same
weight. The average we take is then the simple arithmetic average. Let ri denote the
end-to-end distance of trial i , then

hRi D 1

n-of-samples

n-of-samplesX

iD1

ri : (3.1)

That the end-to-end distance is calculated by an arithmetic average is not the real
signature of the simple sampling for the end-to-end distance of random walks. The
real signature is the generation of a trial walk.

The innermost loop in Algorithm 3.1 is the loop which actually creates one
realization of a random walk with a step length of N . For definiteness, we study
the random walk in two dimensions on the simple square lattice (Fig. 2.1). Every
random walker will start from the same origin .x; y/ D .0; 0/. This is just for
convenience, because it makes the calculation of the end-to-end distance easier.

The task at hand is to resolve the heading generate-one-step. Remember, the con-
cept of simple sampling implies that on no level is any preference given whatsoever.

At each step a random walker has the choice to go in one of four directions with
a probability of 1=4. Each direction is equally probable. Let us label the directions as

1

2
3

0

We realize this algorithmically by generating a random number which can take
on the values 0; 1; 2 or 3 with equal probability

ir WD random.0; 1; 2; 3/:

Once we have chosen a direction we can advance the random walker to that position,
assuming that he was at position .x; y/ before:

case ir
0 : x WD x C 1:0;
1 : y WD y C 1:0;
2 : x WD x � 1:0;
3 : y WD y � 1:0;

end

We have almost resolved the block labeled generate-one-step, i.e., the generation
of one basic step of the random walker. What is left is the question of how we get
the random numbers. For this we assume for the moment that there is a procedure
which supplies random numbers distributed uniformly between zero and one. We
can get the desired four numbers by using the rounding and truncating features of
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the programming language. If we assign a real number to an integer variable the
real number will be either truncated to the integer part by discarding the fractional
part or rounded to the nearest integer. What we need at the moment is the truncation
so that the number 3:99 : : : is truncated to 3. In our artificial language we assume
that every time a real-valued variable is assigned to an integer-valued variable the
fractional part is lost. Otherwise we have to specify explicitly that the variable is to
be rounded to the nearest integer. Now we can write

ir WD random.iseed/ � 4:

Here iseed is a seed which is needed to start up the random number generator. After
all the discussion the algorithm to perform a simple sampling of end-to-end distance
random walks is Algorithm 3.2.

Algorithm 3.2. Random walk

do sample WD 1 to n-of-samples
begin
x WD 0; y WD 0;

do step WD 1 to N
begin

ir:=random(iseed)�4;
case ir
0: x WD x C 1:0;
1: y WD y C 1:0;
2: x WD x � 1:0;
3: y WD y � 1:0;

end
end

accumulate-results
end

For those who have not yet worked with random number generators, but also for
those who have (!), we shall supply a generator. As an example of a random number
generator we take the function in Algorithm 3.3.

Algorithm 3.3. Modulo random number generator

real function random(ibm)
integer mult, modulo, ibm;
real rmodulo;
begin

mult WD 1277;
modulo WD 2 " 17;
rmodulo WD modulo;
ibm WD ibm �mult;
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ibm WD mod.ibm;modulo/;
random WD ibm=rmoduloI

end

Some comments are due at this point. The reader is asked not to manipulate and
use other values for the parameters mult and modulo. The routine should be started
with an odd-valued seed. The last comment concerns the modulo function mod,
which we assume to exist.

F Exercise 3.1. Program Algorithm 3.3 for the simple sampling of random walks.
Vary the step length and the sample size. Record the average end-to-end distance
in the x and y directions (separately!), the fluctuation of these quantities and the
average execution time of the program as a function of the step length.

STOP

Before continuing the reader is asked to work out the above exercise. We feel
that the exercises marked with F are vital to the understanding of the material
presented in this text. They should not be skipped.

Let us examine the results on the end-to-end distance of random walks generated
with the simple sampling outlined above. The x and y directions of the walker are
equally probable. We should get the same result for the average end-to-end distance
in the x direction as for y direction. Figure 3.1 shows results obtained using the
random number generator given above. The end-to-end distances are almost the
same. We also know that the result must be

˝
R2
˛ / t; (3.2)

but from the numerical treatment we have to conclude a different law.
What went wrong? The concept itself cannot be wrong! At this point we need to

concern ourselves again with the generation of random numbers. The random num-
bers are at the very heart of the Monte Carlo method, whether it be based on simple,
biased or importance sampling. The success, i.e., the correctness of the results, of
a Monte Carlo simulation hinges crucially on the quality of the generated random
numbers.

Let us look at an even more sensitive measure. We know from Sect. 2.3.8 that
the end-to-end distance exhibits a lack of self-averaging. The error in the end-to-
end distance must be independent of the step length. The result on the error of the
end-to-end distances is shown in Fig. 3.2. The error is not constant!

We do not want to go into great detail. There are other texts dealing with
the problem of the generation [3.11–3.15] of random numbers, or more precisely
pseudo-random numbers. Here we just present a brief introduction to the subject.
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Fig. 3.1 Average end-to-end distance for the random walker. Plotted separately are the x and
y directions. The results were obtained using the random number generator of Algorithm 3.3
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Fig. 3.2 Left: The error of the end-to-end distance, which should be constant, as a function of the
step length. Here z stands for either x2 or y2 , respectively. Right: The corresponding average end-
to-end distances. The results were obtained using the random number generator of Algorithm 3.3

The most popular and prevalent generators in use today are the modulo genera-
tors. An example of this type of generator was given above. Even though we have
had a bad experience with this generator we should not despise it altogether.

The modulo generator is attributed to Lehmer [3.16]. Let m, a, c, x0 be integers
with m > x0 and a, c, x0 > 0. The basic idea used to generate a random number is
a folding mechanism. This is very much like the mappings one studies for chaotic
properties. The constructed sequences of numbers appear to be highly unpredictable.

As the name suggests, the key to the folding is the modulo function. The pseudo-
random number xi of the sequence .xi /iD1;::: is obtained from xi�1 by the recursion
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relation
xi D axi�1 C c .modm/:

It can be guessed from our first choice of parametersm, a and c that the statistical
properties of the generated numbers depend crucially on them. A bad choice ruins
the results of a Monte Carlo simulation. Several choices for the parameters have
been proposed [3.11–3.15], and the reader is asked to consult the cited texts.

One remark, though, should be made here. Numerical treatments of problems
often require a great many random numbers. Hence the period after which the
sequence repeats must be quite large. It must be very much larger than the number
of random numbers required in the simulation, otherwise erroneous results appear.
The reader can easily convince himself of that by doing the random walk simulation
with parameters chosen such that the period is small. The data shown in Fig. 3.1
show that we eventually reached the cycle length of the random number generator.

Most computer installations and some programming environments provide a ran-
dom number generator. From the experience above it should be clear that you should
not trust a generator before it has been tested by you! Unfortunately most statistical
tests fail to show correlations which appear later in a bias of the results of simu-
lations of problems in statistical mechanics. Probably the best test is to apply the
generator to a real problem where the results are known or where it can be inferred
that something must be wrong with the generator [3.17].

In our example (Figs. 3.1 and 3.2) we see that the correlations in the random
numbers can sometimes show up in a subtle way. Some quantities may be affected
only very weakly. We see that the average end-to-end distance comes out as expected
for the walks of smaller lengths where no problem with the cycle length existed. The
error in the end-to-end distance tells a different story and is a more sensitive measure
in these circumstances.

There is a quick test which no generator should fail. The quality of a random
number generator can be seen if one tries to completely fill a d -dimensional lat-
tice. We have seen above that we can map the interval .0; 1/ to the discrete set
f0; 1; : : : ; L � 1g of integer numbers. This mapping allows us to construct random
vectors .x1; : : : ; xd / of integers in a d -dimensional hypercube. Each site reached
with a random vector derived from the generator is marked. A good generator must
cover the entire hypercube.

The result of such a test in two dimensions using the modulo generator is shown
in Fig. 3.3. Clearly the generator performs very badly, i.e., shows duplet correla-
tions. Only parts of the lattice are reached. Many sites are not visited at all! In three
dimensions the situation is even more dramatic.

Š Exercise 3.2. Write a program which performs the above test for a random num-
ber generator. How should the number of unvisited sites decay with the number
of attempts to fill the lattice?

It should be noted that the described method is actually used in Monte Carlo
algorithms. Often it is required to go randomly through a lattice of spins. The results
show that when using a bad random number generator certain lattice sites would
never be visited and the results are therefore biased.
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Fig. 3.3 Example of a test of a random number generator. The circles are the sites of a two-
dimensional lattice which were reached by vectors obtained from the random number generator.
The rhs figure shows strong correlations among the (pseudo-)random numbers

Š Exercise 3.3. Verify numerically the Einstein law

˝
R2
˛ / t

by performing the simulation in two, three and four dimensions.

Š Exercise 3.4. Biased random walk. Algorithm 3.1 can easily be modified for the
study of the biased random walk. To make the matter somewhat easier we work
in one dimension. In this problem we choose the C1 steps with a probability p
and the �1 steps with a probability q such that pCq D 1. After having modified
Algorithm 3.1 for this problem, are we still doing a simple sampling?

Exercise 3.5. Use the algorithm given in Example 3.1 to test the random number
generator given in the text. Increase the number of bins and test for uniformity
and skew.

Exercise 3.6. Diffusion limited aggregation. In the diffusion limited aggregation
problem one starts with a seed on a d -dimensional lattice. A random walker
is started from the edge of the lattice. If the random walker gets to one of the
nearest-neighbor sites of the seed it sticks and the two form an aggregate of two
sites. A new random walker is released and sticks to the aggregate if it gets to
one of the nearest-neighbor sites, etc. Write a program to generate a diffusion
limited aggregation structure.
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Exercise 3.7. Construct an algorithm to generate random walks of length N which
does not utilize the “case” statement.

Exercise 3.8. Determine the number of loops a random walk makes as a function
of the step length N .

Exercise 3.9. Invent an algorithm for the random walk problem which runs on
a parallel machine with p processors which you are allowed to connect which-
ever way you like.

3.2.2 Nonreversal Random Walk

Nonreversal walks are not allowed to immediately fold back. Each step has to be
a “forward” step. By “forward” step we mean that the walker is not allowed to make
an immediate reversal. It is, however, allowed to cross its own path or at some later
time retrace some of the steps made earlier (Fig. 2.1).

For the numerical treatment of the nonreversal random walk (NRRW) by sim-
ple sampling we can follow at least two possible routes. Overall the algorithm is
the same as that for the simple sampling of random walks. Only the generation of
a walk, i.e., one try, has to be modified to incorporate the constraint.

One possibility is to ignore at each step that the walker came from somewhere
(except at the origin). If the step that the walker takes goes back to the one it came
from, another try is made until a “forward” step is found. Here we choose at each
step one of the four sites in our two-dimensional problem with probability 1=4:

Suppose that by chance we choose the direction labeled “0”. An immediate rever-
sal to the site visited before follows. As a result, a new trial for a step is made until
a valid direction is picked. Here, in the example, as soon as one of the numbers
f1; 2; 3g appears a valid step is made.

The other possibility is to remember where we came from and choose only from
the three possible neighboring sites. Here the probability is taken to be 1=3 for
each of the three possible directions. There are always three directions even if all
the sites the walker can go to have been visited before at some time. Only the one
visited immediately before the current step is prohibited.

This route requires the identification of the possible nearest-neighbors and the
creation of a list of these. From this list with three entries one member is chosen
with equal probability.
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For now we take the ignorant approach and may knock at closed doors several
times. This approach requires little modification to the basic random walk algorithm
given in the previous section. We could, for example, introduce new variables

xpre; ypre

to keep track of the preceding position and to test whether the chosen new position
is the same as the preceding one. If so, we repeat the generation of the step until the
preceding and new positions are not identical. See Algorithm 3.4.

Algorithm 3.4. Nonreversal random walk

x WD 0; y WD 0;
xpre WD 0; ypre WD 0;
do step WD 1 to N

begin
repeat
xtemp WD x; ytemp WD yI
generate-one-step .x; y/I

until (.xpre ¤ x/ or .ypre ¤ y/);
xpre WD xtempI
ypre WD ytempI

end

F Exercise 3.10. Program Algorithm 3.4 for the sampling of nonreversal random
walks. Vary the step length and the sample size. Record the average end-to-
end distance in the x and y directions (separately!), the fluctuations of these
quantities, and the average execution time of the program as a function of the
step length. Compare your numerical results with the exact answers.

STOP

Š Exercise 3.11. Develop an algorithm for the nonreversal random walk problem
which chooses at each step always one of the 2d � 1 possible nearest-neighbor
sites on a simple d -dimensional lattice.

Exercise 3.12. Compare the performance of Algorithm 3.4 and the algorithm from
Exercise 3.11.

3.2.3 Self-Avoiding Random Walk

The generation of self-avoiding random walks requires a little more algorithmic
complexity than the random or nonreversal random walks. In the random walk prob-
lem no constraint was placed on the possible sites the walker could visit. At each
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Fig. 3.4 Left: An example of a self-avoiding random walk. Right: A random walker carrying
a label of 5 which he leaves at all places he visits

step the walker has completely forgotten where it came from. Each site is consid-
ered an origin from which there are 2d (for a simple d -dimensional lattice) possible
directions to go in. The self-avoiding random walk (SAW) is not allowed to go to all
sites. It is not allowed to cross its own path and the walker is not allowed to make an
immediate reversal. At each site it locally remembers where it came from and has
only a maximum of 2d � 1 allowed choices. One choice of the 2d nearest neigh-
bors is always lost due to the nonreversibility constraint. The local environment may
prohibit some of the other choices due to the condition that the path must not cross
itself. There are situations where there are no choices left at all!

An example of a walk is given in Fig. 3.4 (cf. also Fig. 2.1). Starting from the
origin, the random walker performed 12 steps. If the 13th step were to go to the
right or down then the walker would go to a previously visited site. Both cases are
not allowed. In the second case it would be an immediate reversal. In the first case
the walker would visit a site twice and as a consequence the walk terminates with
a length of 12 steps.

That the walk terminates once a site out of the 2d �1 neighboring sites is chosen
which has been visited before is the key to the simple sampling of self-avoiding
walks. We could also argue that the site was forbidden anyway. So why not choose
out of the ones we can actually go to? We will follow up on this idea in the next
section where we discuss the application of biased sampling to the self-avoiding
walk problem.

In the simulation of random walks we did not take any notice of the actual path or
trace of the walk. For the self-avoiding random walk we have to check at each step
whether it is a valid step. We have to record the trace of the walker on the lattice
(Algorithm 3.5). The generation of the walk itself is the same as for the random
walk problem.

Algorithm 3.5. Self-avoiding random walk

do sample WD 1 to n-of-samples
begin

step WD 0;
repeat
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generate-one-step;
step WD step C 1;

until (step-invalid or step D N );
accumulate-results

end

The only new part which has come in is that we do not generate exactlyN steps,
as for the random walk problem, but an unpredictable number of steps. The walk
can terminate at any step due to the constraints. To provide for an unpredictable
number of steps we have replaced the unconditional loop over N steps with a loop
where after the generation of a step it is checked whether an invalid move has been
made or the maximum number of steps N has been reached. In both cases the walk
terminates. The length of the walk in steps is always less than or equal to N . For the
random walk it was always equal to N .

How do we check that the step made is a valid one? Let us assign to each walker
a unique label. To the first walker we assign the label “1”, to the second, the label
“2”, etc. Such a label comes automatically with the enumeration of the walkers
by the outer loop. As the walker advances it labels the sites it has visited with its
unique label (Fig. 3.4). On advancing to the next site it checks whether the site
carries the same label as its own. If so, then this site has been visited before and the
self-avoiding condition applies with the termination of this particular trial of a walk.

We are here at a branching point. We have to decide how to generate a single step.
The choices we have are the same as for the generation of the nonreversal random
walk. We can either be ignorant and use the algorithm for the generation of a single
step as for the random walk problem or we can a priori choose only out of the 2d�1
potentially valid sites. For the moment let us be ignorant.

The labeling scheme does not yet allow us to distinguish whether the site was
the one previously visited or an older one. If it is the previously visited one then we
have to try again. In the other case the walk terminates.

The labeling scheme does, however, allow us to determine whether the step is
valid or not. We may take advantage again of the uniqueness of the label. Before
advancing to the next site we step up the label of that site by one. Once the walker
has advanced it can check whether it advanced to a site carrying the label of the
present walk (in this case the walk terminates) or the label plus one (in this case it
has reversed its step and another try is made).

One way to implement the labeling scheme for the trace of the walk is to intro-
duce an array. For the other examples we did not require such an array, neither for
the random nor for the nonreversal random walk. What are the dimensions of the
lattice? At most the walker can travel a distanceN . Even though to travel a distance
N is highly unlikely, we have to provide for the extremum. Since the walker can go
in any direction we dimension the lattice as (Algorithm 3.6)

integer lattice.�N W N;�N W N/
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Algorithm 3.6. Self-avoiding random walk

integer lattice.�N W N;�N W N/;
do sample WD 1 to n-of-samples

begin
step WD 0;
x WD 0; y WD 0;
xc WD 0; yc WD 0;
repeat

repeat
generate-one-step.xnew, ynew/;

until lattice.xnew, ynew/ ¤ sample C 1;
if lattice.xnew, ynew/ D sample then

terminate WD trueI
else

begin
lattice.x; y/ WD sample;
x WD xc; y WD yc;
lattice.x; y/ WD sample C 1;
xc WD xnew; yc WD ynew;
step WD step C 1;

end
until (terminate or step D N );
accumulate-results

end

F Exercise 3.13. Program Algorithm 3.6 for the simple sampling of self-avoiding
random walks. Print out the lengths (in number of steps) where the walks ter-
minated. Plot the number of self-avoiding walks as a function of the number of
stepsN . Obtain also the entropy S by the fraction of successful attemptsW.N/
using the relation S � S0 D lnŒW.N /� where S0 is the result for the random
walk.

STOP

We do not know when a walk terminates. Different trials will result in different
lengths of a walk before it terminates. From the above exercise we have gained
some experience of how much the length varies. If we want to obtain results on the
end-to-end distance for a length of N (N large) there are many walks terminating
with a length less than N , see (2.16). For large N it becomes nearly impossible to
compile enough statistics! Instead of discarding trials less than the desired length,
we record them and get results for the end-to-end distance for walks of lengths
between 1 and N . The statistics will, however, be different for the different lengths.
The short lengths will have by far larger sample sizes than the longer lengths. This
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makes the simple sampling of the self-avoiding walk rather impossible for lengths
of, say, 100 and larger.

F Exercise 3.14. Program Algorithm 3.6 for the sampling of self-avoiding random
walks. Instead of printing out the lengths where the walks terminated record
the end-to-end distances in the x and y directions separately. Compute also the
fluctuations of the end-to-end distances and record the execution time necessary
to gain sufficiently good statistics for the largest step length you can manage on
your computer system. Check that the error is under control.

STOP

Š Exercise 3.15. Develop an algorithm for the SAW problem which chooses at each
step always one of the 2d � 1 possible nearest-neighbor sites on a simple
d -dimensional lattice.

Exercise 3.16. Can you think of another way to keep track of the path of the walker.
(Hint: use a stack.)

Variations on a theme

Exercise 3.17. Reptation. The connection between polymers and self-avoiding
walks leads on to another idea for generating self-avoiding walks. Assume we
have a self-avoiding configuration, or conformation in polymer language, of
length N steps. Remove a “link” at one end of the chain. At the other end of
the chain pick a random direction (out of the 2d � 1 potential ones) and try to
paste there the removed link in this direction. If the self-avoiding condition is
violated do not accept this move. Otherwise a new configuration is found and
the procedure is repeated. What sampling concept applies to this algorithm? To
be sure, wait for the answer to this question until the end of the guide.

3.2.4 Percolation

The simple sampling method for the percolation problem appears, on the face of it,
to be an even simpler problem than the random walk problems discussed in the
previous sections. Simple sampling here means the generation of configurations
and the analysis of these with a uniform statistical weight attached to them. Each
configuration is treated on an equal footing.

Let us briefly recall that we are interested in finding the point of the geometri-
cal phase transition pc for the percolation problem (Sect. 2.3.1). Below pc there are
only finite clusters. Above pc there is at least one infinite cluster. This geometrical
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phase transition is the analog to the second-order phase transition at Tc for ther-
mal systems. We shall take the opportunity here and begin with the study of phase
transitions and their analysis apart from the problems specific to percolation theory.

Before addressing the issue of exponents we start with the determination of the
thresholdpc. For the simple sampling we want to generateN realizations of a perco-
lation configuration and average over quantities derived from these configurations.
The basic algorithm for doing so is given as Algorithm 3.7.

Algorithm 3.7. Percolation

do no-of-config WD 1 to N
begin

generate-a-configuration;
analyze-the-configuration;
calculate-quantities;
accumulate-results;

end
perform-averaging;

In the percolation problem, more precisely the site percolation problem, we con-
sider lattices (for convenience we again assume a two-dimensional lattice) filled
with a probability p. One filling is considered a configuration in the simple sam-
pling scheme. To generate one configuration we have to visit each site of the lattice
once and decide whether we fill it or leave it unoccupied. This can be done as follows

Algorithm 3.8. generate-a-configuration

do i WD 1 to L
do j WD 1 to L

if p < random.iseed/ then
lattice.i; j / WD 0

else
lattice.i; j / WD 1;

Here random is a real function which returns a random number in the interval
.0; 1/ and iseed an integer which, upon first calling, initializes the random number
generator.

F Exercise 3.18. Program Algorithm 3.8 for the generation of one configuration of
the site percolation problem. Print out the configurations for various choices of
the probability p with which the lattice was filled and inspect them visually.

STOP

The analysis of a generated configuration is usually done by counting the number
and size of clusters in the configuration. As described earlier, one defines the order
parameter of the phase transition using the clusters.
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Fig. 3.5 Left: A site percolation configuration. Right: The subgraphs of the above configuration

We now need to develop an algorithm to identify a cluster in a generated con-
figuration of sites. Let us recall that a cluster is defined as follows: Two occupied
sites belong to the same cluster if they are nearest neighbors. Hence, a cluster is
a subset of the occupied sites such that for each site belonging to the subset we can
find a nearest-neighbor site belonging to that subset.

We may view the occupied sites of the lattice as a graph. This graph can have
many disjoint subgraphs, as illustrated in Fig. 3.5. There are graphs containing only
a single site, clusters containing two sites, etc. The task at hand is to enumerate all
subgraphs, i.e., how many subgraphs are there with how many sites?

Before attempting to identify and enumerate all the clusters in a given config-
uration we set ourselves a somewhat easier task: identify an infinite cluster. Even
simpler! Not the entire cluster but only a part. In other words, is there a path which
leads us from one side of the lattice to the opposite side. The probability of finding
such a path defines also an order parameter Ps, which can be used to determine the
transition point. Below pc the probability of finding such a path is zero; only finite
clusters exist, which cannot lead, in the thermodynamic limit, to the opposite side.
Above the threshold an infinite cluster exists which allows one to cross from one
side to the opposite side, and the order parameter is one. At pc the order parameter
jumps from zero to one.

F Exercise 3.19. Invent an algorithm which decides whether in a given configura-
tion of the site percolation problem one can cross from one side of the lattice
to the opposite side of the lattice. Such a cluster is called the spanning cluster.
Determine the order parameter Ps for various lattice sizes and probabilities p.

STOP

Those who did Exercise 3.19 will have found that the order parameter has
a smooth behavior for the lattice sizes investigated. There is no jump at a unique
probability p from zero to one. We have encountered for the first time finite-size
effects in a phase transition problem. Let us postpone the discussion of finite-size
effects a little bit and return to the question of the identification of clusters in a given
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configuration. From the experience with the order parameter Ps, we expect to find
a similar feature for the order parameter P1 derived from the largest cluster.

Probably the most natural way to identify all the clusters is a recursion algorithm.
To illustrate the idea we simplify the problem. Instead of working on a square lattice
we work on a binary tree. An example of such a tree is displayed in Fig. 3.6.

For each site there are only two nearest neighbors in the downward direction and
one predecessor in the upward direction. The percolation problem itself remains
defined as above. Each site is visited and is set occupied, with a probability p, or
left unoccupied with a probability 1 � p.

Consider a configuration of occupied and empty sites on the tree. Pick one occu-
pied site. To determine which of the sites belong to the same cluster we traverse
the tree until all possible paths have been explored. Since each site has at most
two occupied nearest neighbors in the downward direction, there are at most two
possible directions to be explored. We shall call these directions “left” and “right”.

The idea used to visit all the sites belonging to a cluster is to first travel along
the cluster as far as possible, i.e., until a leaf of the tree or, in the terminology of the
percolation problem, a dangling end has been found. The strategy for finding such
a dangling end is to go to the left as far as possible. In Fig. 3.7 we show such a path.
Once we have reached a point where we can proceed no further to the left, we go to
the right one step, if possible, and then continue to go left, etc. Eventually we will
reach a site which has neither left nor right neighbor. This site is a dangling end.

Fig. 3.6 A binary tree on
which we study percolation
configurations

Fig. 3.7 One cluster of
a percolation configuration on
a tree. The path to find the
first leaf or dangling end of
the cluster is indicated
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We remove this site, raise the counter for the number of sites in the cluster by one
and go back to the site we came from.

Now we try to go up by going to the right. If this is not possible then the removal
of the dangling end has made the current site a dangling end, which can be removed.
The algorithm proceeds to work upwards on the tree until we are back at the site we
started out from, and hence all sites belonging to the cluster have been visited.

The algorithm produces dangling ends which can be stripped or burned from
the cluster and eventually the entire cluster is burned away. Only those sites remain
which are not connected to the current cluster. A fresh site can be selected and the
procedure of burning sites is repeated. The algorithm stops if there are no sites left
and the whole tree is consumed.

In Algorithm 3.9 we have organized the storage of the tree withN sites in a two-
dimensional array tree (1 W N , 1 W 2). The first index gives the site and the second
index gives the left or right neighbor. The value of the array elements can be either
0 or an integer number out of the set f1; : : : ; N g. If we find a 0 then the site is not
connected, otherwise we have a pointer to the next node or site.

Algorithm 3.9. analyze-the-configuration for a binary tree

burned WD 0;
repeat

select-an-unburned-site.i/I
n WD 1I
go-through-tree.i; n/I
burned WD burned C nI

until occupied-sites D burnedI
procedure go-through-tree.i; n/
begin

if tree.i; 1/ ¤ 0 then go-through-tree.tree.i; 1/; n/;
if tree.i; 2/ ¤ 0 then go-through-tree.tree.i; 2/; n/;
tree.i; 1/ WD 0I
tree.i; 2/ WD 0;
n WD nC 1;

end

F Exercise 3.20. Program Algorithm 3.9 for the identification of clusters of the site
percolation problem on a binary tree.

STOP

That we elected to exhibit the burning algorithm for the percolation problem on
a binary tree was, of course, intentional. On a regular lattice the algorithm becomes
slightly more complicated. The general idea for traversing a cluster remains the
same. The simplifying feature of the tree is that it has no loops! On a regular lattice
we can have loops as shown in Fig. 3.8.
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Fig. 3.8 A cluster and its
graph showing how a loop is
detected

2
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To remove the problem of loops, we again make use of the trace. Each site which
has been visited by the algorithm but was not burned (i.e., set to zero) receives the
value 2. Hence a loop will be detected by testing whether the next site carries the
value two. This site is then left alone and one can burn the previous sites.

The definition of the order parameter for the phase transition based on clusters is
as follows: Take the largest cluster of a given configuration and divide it by the total
number of occupied sites. Of course we have to average over many configurations
to get a precise estimate of the order parameter P1.

Close to the transition point pc we expect (Sect. 2.3)

P1 / jp � pcjˇ

with the exponent ˇ. At this point we are not interested in how to compute ˇ, but
we want to determine pc.

We have tacitly assumed so far that the boundaries are free. The lattice size is
L2 and once i or j is larger than L the boundary is crossed. The actual size of the
lattice was assumed to be .L C 2/2 with the boundary set equal to zero. Here for
the first time we encounter the issue of boundary conditions. There are two possible
choices for the boundary. We can choose the boundary to be:


 Free or

 Periodic

For some problems even more complicated boundary conditions are useful. We
will discuss these in the exercises to the section on importance sampling. Here we
shall only be concerned with the free and periodic boundary conditions.

For the periodic boundary conditions we make the identification:LC 1 D 1 and
0 D L. The result for the two-dimensional lattice is a torus. Do the results depend
on the choice of boundary conditions?

F Exercise 3.21. Program the algorithm for the identification of clusters of the site
percolation problem on the square lattice outlined above. Determine the order
parameter P1 for various lattice sizes and probabilities p. Do this for the free
and the periodic boundary conditions.

STOP
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Here we encounter the finite-size problem again. We expect to find a power law
behavior for the order parameter above the threshold and an identically zero order
parameter below the threshold pc. Instead, we find smooth S-shaped curves for all
system sizes (Fig. 2.9).

In a finite lattice we cannot accommodate a diverging correlation length! The
correlation length � diverges, when the transition point is approached, as

� / jp � pcj�� : (3.3)

The correlation length can be at most � � L. To handle this situation, one applies
a finite-size scaling analysis to the data for the different system sizes (Sect. 2.3.2).
We shall defer such an analysis to the discussion of finite-size effects in the data for
the Ising model. The only point we want to make now is that the simulation results
depend on the choice of the boundary condition. The finite-size effects are different
for free and for periodic boundary conditions!

For practical purposes the algorithm given above is of no use. For the large lat-
tices one wants to study, the recursion goes so deep that the storage capacity will
very soon be exhausted. In practice one uses a different algorithm which we discuss
in the Appendix, where a FORTRAN listing is also given.

Exercise 3.22. Lattice animals. Consider clusters on a regular lattice which have
no loops. Such clusters are called lattice animals. Can you think of a way to use
simple sampling for all lattice animals with N sites?

Exercise 3.23. Anomalous diffusion. Consider an ant parachuting onto a percola-
tion configuration [3.18]. As soon as it has landed it starts a random walk on the
clusters. The ant can only walk on the occupied sites. Compute the mean square
displacement as a function of time and p:

˝
R2
˛
p

/ tx

and obtain the exponent x.

? Exercise 3.24. Can you think of an algorithm for a parallel architecture which
identifies clusters?

Variations on a theme

Exercise 3.25. Bond percolation. In the bond percolation problem one considers
once again a lattice. For the site percolation problem all bonds between the sites
were present. Only the sites mattered. Now, all the sites are occupied and we
occupy a bond with a probability p and leave it empty with probability 1 � p.
Clusters are defined in a similar way as for the site problem. Determine the order
parameter for the two-dimensional bond percolation problem. Do this problem
for the order parameter defined by the spanning cluster Ps and for the order
parameter determined by the mass of the largest cluster P1.
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Exercise 3.26. Site–bond percolation. We can also study bond and site percolation
together. Recall that for the site percolation problem all bonds existed and for the
bond percolation problem all sites existed. In the site–bond percolation problem
sites are present with a probability ps. Bonds can exist only between occupied
sites. If two neighboring sites are occupied the bond is present with a probabil-
ity pb. Study the percolation threshold pbc as a function of ps and pb, in two
dimensions.

Exercise 3.27. Kinetic percolation. For some problems we are interested not so
much in all of the clusters in a given percolation configuration as in just the
largest. For example, right at the percolation threshold pc the largest cluster is
a fractal and we would like to know more about its properties. We can generate
a large percolation cluster by a sort of kinetic growth process from which we
can also learn the growth law, i.e., how the radius of gyration grows with time.
The algorithm is as follows. Start with a single site and make a list of the nearest
neighbors. Occupy each of the sites in this list with probability p. Make a new
nearest-neighbor list (be careful, the ones you visited before but decided not
to occupy are marked as unoccupied). Program the algorithm and calculate the
radius of gyration as a function of p and time.

Exercise 3.28. Continuum percolation. There is also a continuum version of the
percolation problem. Imagine a square. You have disks at your disposal which
you throw randomly onto the square. For this you generate an x coordinate and
a y coordinate using a random number generator. Place the center of the disk at
this coordinate with probability p. If you can cross from one side of the square
to the opposite site via overlapping disks then a spanning cluster is found. Print
out your trials and decide visually if there is a spanning cluster or not.

3.3 Biased Sampling

The treatment of the self-avoiding walk problem emphasized the limits of the simple
sampling method. Though the method is fairly straightforward to apply, for many
problems the usefulness of the concept is restricted. Even for a small number of steps
it is hard to compile enough statistics. The difficulty increases exponentially with
increasing number of steps. The concept of the biased sample helps (at least par-
tially) to overcome this difficulty. To demonstrate how biased sampling can increase
the efficiency, we stay with the self-avoiding walk problem. This also allows the
reader to make an immediate comparison of the performance of simple sampling
with that of the biased sampling method.
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3.3.1 Self-Avoiding Random Walk

To begin to develop an algorithm for the biased sampling of the self-avoiding walk
problem we look again at the basic algorithm we developed in the simple sampling
treatment. This algorithm is Algorithm 3.10.

Algorithm 3.10. Self-avoiding random walk

do sample WD 1 to n-of-samples
begin

step WD 0;
repeat

generate-one-step;
step WD step C 1;

until (step-invalid or step D N )
end
accumulate-results;

end

F Exercise 3.29. If you have missed out any of the exercises dealing with the simple
sampling of self-avoiding random walks you should stop and do them now.

STOP

The real shortcoming of simple sampling was that a walk quickly terminates, i.e.,
the attrition problem. If we happen to choose a site which has been visited before, the
walk terminates even though other sites are unoccupied. Suppose we always produce
a list of the available nearest neighbors. The length of this list is always smaller than
the coordination number of the lattice minus 1, i.e., 2d � 1, on a d -dimensional
hypercubic lattice. Let l be the length of the list of available neighbors. In the biased
sampling we choose only from the list of available neighbors, and each entry has the
same probability of being picked. The probability of each entry is hence 1=l .

The idea of picking only the available sites does not guarantee that the walk
continues untilN steps have been made. The problem that the walk runs into a dead
end before N steps have been made still remains, but the probability that the walk
continues up to N steps is increased.

Algorithm 3.11. Self-avoiding random walk

integer lattice.�N W N;�N W N/;
do sample WD 1 to n-of-samples

begin
step WD 0;
repeat

produce-valid-neighbor-list.x; y/;
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if list D empty then
terminate WD trueI

else
begin

choose-new-site-from-list.xnew; ynew/;
x WD xnew; y WD ynew;
step WD step C 1;

end
until (terminate or step D N );

accumulate-results;
end

F Exercise 3.30. Program Algorithm 3.11 for the biased sampling of self-avoiding
random walks. Print out the number of steps where the walks terminated.

STOP

For this algorithm, as before for simple sampling of the nonreversal and self-
avoiding random walks, labels are a useful tool to keep track of the path and to
generate a list of valid neighbors.

Those who did Exercise 3.30 will have found that the lengths of the walks we
could sample before a walk terminated has increased. The price we pay for this
improvement is that we have introduced a bias. We are favoring certain configu-
rations of a walk. For simple sampling, every walk carried the same weight for
average quantities like the end-to-end distance. For biased sampling every walk of
length N steps carries a weight

W D
NY

iD1

li

.2d � 1/
; (3.4)

and when calculating averages this has to be taken into account.

F Exercise 3.31. Calculate the average end-to-end distance with the biased sam-
pling of self-avoiding random walks. Compare your results with those from
simple sampling.

STOP

Variations on a theme

Š Exercise 3.32. k-tuple SAW. The k-tuple self-avoiding random walk is very simi-
lar to the regular self-avoiding random walk. Whereas in the regular SAW a site
can be visited at most once, the k-tuple walk is allowed to visit a site at most
k-times. Write an algorithm for this problem using the biased sampling concept.
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Exercise 3.33. GSAW. The growing self-avoiding random walk (GSAW) is defined
almost the same as the regular self-avoiding walk. The only difference is that the
transition probability to a site is the inverse of the number of free sites. Write an
algorithm for this problem using the biased sampling concept.

3.4 Importance Sampling

The concept of simple or biased sampling fails to be practical for problems where
contributions to quantities come almost entirely from certain regions in phase space.
A homogeneous sampling of the phase space would require a tremendous effort. The
knowledge of the regions where the important contributions come from can be used
to sample mainly in these regions. A typical example for the application of this idea
is the Ising model.

3.4.1 Ising Model

As with the previous examples we will concentrate on studying the problem in
a two-dimensional space. Consider the Ising model Hamiltonian

H D �J
X

hi;j i
si sj ; (3.5)

where J (the exchange interaction between nearest-neighbor sites) can be either
positive, i.e., the ferromagnetic case, or negative, the antiferromagnetic case. The
variable s denotes a spin of either C1 or �1. We shall restrict ourselves to a simple
square lattice for which the symbol hi; j i means the four neighbors nearest to the
site .i; j /:

Let x denote a configuration of spins.
Recall, from the discussion on the importance sampling concept in Chap. 2 and

at the beginning of this chapter, that we want to generate a Markov chain

x0;x1; : : : ;xn

such that the configuration xiC1 depends only on the immediately preceding con-
figuration xi . The probability of getting to xiC1 from xi is given by a transition
probability
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W.xiC1jxi /:

Why do we need a Markov chain? The idea of importance sampling is to
sample mainly the largest contributions to a quantity, for example, the magneti-
zation. We want to sample configurations of spins where the Boltzmann factor
expŒ�H.x/=kBT � has a peak. A priori we do not know where such regions are!
Suppose we could invent a process by which states are generated where an impor-
tant contribution to the magnetization or any other observable is made. This process
is the Markov process, with an appropriate transition probability leading from one
configuration to another.

The transition probability is chosen such that ultimately the distribution of the
states x0;x1; : : : ;xn is the Boltzmann distribution

P.x/ / exp

�
�H.x/
kBT

�
:

How must we choose the transition probability to guarantee that the states will
be distributed with a Boltzmann law? We have already given a detailed discussion
of this point in Sects. 2.1 and 2.2. Intuitively we can argue as follows. Suppose we
restrict the treatment to attempts to turn over single spins si . Suppose on turning
a spin from si to �si we lose energy. Because we always want to be at or near
the ground state of the model we should accept such a move with probability one.
Hence, in the case where the change in energy 
H is negative, 
H D H.xnew/ �
H.xold/, we have W.xnewjxold/ D 1. However, this way we will certainly get stuck
in a local minimum of the energy. To avoid this we accept moves which raise the
energy. But we allow moves which raise the energy much only very rarely; they
should have a low probability. If, on the other hand, the change in the energy is
small, i.e., the energies of the old and new configurations are close, we accept the
move with a fairly high probability. This way we can climb out of a local energy
minimum.

How should we choose the transition probability in the case where the change in
energy
H is positive? Intuitively it seems reasonable, and it can be shown exactly
(Sects. 2.1 and 2.2), that we can choose

W.xiC1jxi / D min

�
1; exp

�
�
H
kBT

��
; (3.6)

which is called the Metropolis function. This is, however, not the only possible
choice for a transition probability. There are other choices, for example the Glauber
function .1

2
.1 � tanh.
H=2kBT //.

F Exercise 3.34. What are the possible changes in energy 
H for the two-
dimensional nearest-neighbor Ising model on a simple lattice?

STOP
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Above we constructed a single-spin-flip transition probability. Once all spins
have been given a chance to reverse their directions one sweep has been made. One
sweep is also called one Monte Carlo step per spin, abbreviated MCS.

There are several possible ways to implement a sweep through the lattice. Taking
the word sweep literally, we mean going regularly through the lattice. Another pos-
sibility is to draw the site to be visited at random. Once as many attempts as there
are sites in the lattice have been made, one Monte Carlo step has been made. In one
Monte Carlo step some sites may have been considered several times, whereas oth-
ers were completely ignored. On the average, barring any problems with the random
numbers (Sect. 3.2.1), each site is given a chance for a reversal.

Now that we know how to set up the Markov process to sample the important
contributions to an average, how do we compute the magnetization, for example?
Due to the construction (Sect. 2.1) the computation of the magnetization appears as
a simple average. The magnetization of a configuration is given by

Mi D
L2X

j D1

sj (3.7)

and the magnetization per spin is then

mi D Mi=L
2: (3.8)

The average magnetization per spin is the arithmetic average over many configura-
tions

hmi D 1

N

NX

i

mi : (3.9)

We have to start the importance sampling with some initial configuration s0

and from then on the new states are generated. Which initial spin configuration
should we choose? The answer depends on the type of problem we are interested
in. Let us assume that we want to study the equilibrium properties of the model,
such as the magnetization and susceptibility, at certain temperatures. Suppose, fur-
ther, that we do not start from a completely ordered spin configuration but from
a random spin configuration. What will happen? The random spin configuration
corresponds to the infinitely high temperature state T D 1 with zero spontaneous
magnetization. The temperature we are interested in is below the critical tempera-
ture so that there is a nonzero spontaneous magnetization. We now let the system
evolve in time using, for example, the Metropolis function. Essentially, we have
performed a quench from a disordered region into the ordered region in the phase
diagram. It will take an enormously long time until an equilibrium state is estab-
lished. Before equilibrium is established the excess energy has to be removed from
the configuration.
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To avoid this problem we start out with an ordered configuration, and then the
initial transient in the Markov chain, which corresponds to nonequilibrium states,
is much shorter. Away from the transition point the relaxation is exponentially
fast. What happens close to the transition point has been discussed in Sect. 2.3.
For convenience we shall start with a configuration where all spins are down,
i.e., with a magnetization of �1. Alternatively we could always start from the last
configuration generated for some temperature if we go up in temperature.

We are almost ready to write part of the algorithm. What we have to consider is
the sample size. For the moment let us leave this question aside and call the number
of samples we want to take mcsmax.

Algorithm 3.12. Ising model

(* initialize the lattice *)
do i WD 1 to L

do j WD 1 to L
lattice.i; j / WD �1I

(* Monte Carlo part *)
do mcs WD 1 to mcsmax

begin
generate-one-sweep;
if mcs 
 n0 then

do-analysis;
end

In the Algorithm 3.12 n0 is the number of configurations of the transient which
we must discard because they do not correspond to equilibrium configurations for
the desired temperature.

Let us go back again to the transition probabilities. It is clear that the config-
uration xiC1 cannot differ too much from the configuration xi . We have allowed
only single spin flips and not flips of larger patches of spins, which would lead to
a larger stride in phase space. The sequence of the states can be viewed as a tra-
jectory in phase space (see discussion in Sect. 2.2.2 on the dynamic interpretation
of the Monte Carlo algorithm). Viewed from this angle we can see that successive
configurations must be correlated. To obtain an unbiased statistical sample of states
we must discard nı states between two sample points. How many we must dis-
card depends not only on the temperature but also on the conservation laws. See
Algorithm 3.13.

Algorithm 3.13. Ising model

(* initialize the lattice *)
do i WD 1 to L

do j WD 1 to L
lattice.i; j / WD �1I

(* Monte Carlo part *)
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count WD 0;
do mcs WD 1 to mcsmax

begin
generate-one-sweep;
if mcs 
 n0 then

begin
count WD count C 1;
if count D nı then

begin
count WD 0;
do-analysis;

end
end

end

Exercise 3.35. Can you design another solution to select every nı th configuration?

After these preliminaries we come to the central part of the importance sampling
algorithm of the Ising model, i.e., to generate-one-sweep in Algorithm 3.13. The
transition probability was designed such that we always attempt to flip only a single
spin and not larger patches of spins. One sweep through the lattice is to attempt
to flip all spins. This is one Monte Carlo step. After one Monte Carlo step we have
obtained a new configuration from the old. So the first step is Algorithm 3.14, where
L is the linear lattice size.

Recall from the above discussion that we want to accept a spin flip with a prob-
ability W , which we take equal to the Metropolis function. Suppose we have com-
puted the energy difference 
H. We can evaluate the probability W of accepting
the move because it depends only on this differenceW.
H/.
Algorithm 3.14. generate-one-sweep

do i WD 1 to L
do j WD 1 to L

begin
compute-the-energy-difference;
decide-to-flip-or-not;

end

Choose a random number between 0 and 1. If the random number is less than the
computed transition probability we should flip the spin. Otherwise we should leave
the spin orientation as it was (Algorithm 3.15).
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Algorithm 3.15. generate-one-sweep

do i WD 1 to L
do j WD 1 to L

begin
compute-the-energy-difference;
if random.iseed/ < W.
H/ then

flip-the-spin;
end

We realize that there is no need to evaluate the function W every time we want
to flip a spin. There are only 5 possible values for the energy difference (Exer-
cise 3.34). The function can be precomputed and stored in an array for easy look-up.
The energy difference is given by


H D 2si
J

kBT

X

nn.i/

sj ; (3.10)

where the symbol nn.i/ denotes the 4 nearest neighbors of the central spin i .

Algorithm 3.16. look-up-table

real W.�4 W 4/;
do j WD �4 to 4 step 2

begin
W.j / WD 1;
if j > 0 then
W.j / WD exp.�2 � Jkt � j /I

end

There is only one problem left. We have to resolve the last heading where we
compute the energy difference. Here there is a branching point. We are faced with
the same decision as for the percolation problem. We must choose between different
boundary conditions. The bonds of every spin at the edges of the lattice cannot be
left dangling in the air. The spins must interact with nearest neighbors. For now we
elect to use the periodic boundary conditions.

One way to implement the periodic boundary conditions is to use the modulo
function. At the edges of the lattice, i.e., where for the central spin .i; j / either i is
1 or L or j is 1 or L we compute the nearest neighbors by

ip1 D i C 1 .mod L/ (3.11)

im1 D i � 1 .mod L/ (3.12)

jp1 D j C 1 .mod L/ (3.13)

jm1 D j � 1 .mod L/: (3.14)
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This approach is very time consuming. Each evaluation of the modulo function
involves several arithmetic operations. Time is crucial. The innermost loop has to
be constructed so as to minimize the number of arithmetic operations. The solution
here is again to use a table. Actually we will need two tables. One for the “plus”
operation and one for the “minus” operation (Algorithm 3.17).

Algorithm 3.17. look-up-table-for-mod

real ip.1 W L/, im.1 W L/;
do i WD 1 to L

begin
ip.i/ WD i C 1;
im.i/ WD i � 1;

end
ip.L/ WD 1;
tm.1/ WD L;

Now the algorithm to perform an importance sampling for the two-dimensional
Ising model is complete. All major parts have been worked out. For completeness
we give the full algorithm as Algorithm 3.18.

Algorithm 3.18. Ising model

integer lattice.1 W L; 1 W L/;
integer ip.1 W L/, im.1 W L/;
real W.�4 W 4/;

(* look-up-table-for-mod *)
do i WD 1 to L

begin
ip.i/ WD i C 1;
im.i/ WD i � 1;

end
ip.L/ WD 1;
im.1/ WD L;

(* look-up-table *)
do j WD �4 to 4 step 2

begin
W.j / WD 1;
if j > 0 then
W.j / WD exp.�2 � Jkt � j /I

end
(* initialize the lattice *)

do i WD 1 to L
do j WD 1 to L

lattice.i; j / WD �1;
(* Monte Carlo Part *)
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count WD 0;
do mcs WD 1 to msmax

begin
do i WD 1 to L

do j WD 1 to L
begin

ici WD lattice.i; j /;
ien WD lattice.ip.i/; j /C lattice.im.i/; j /C

lattice.i; ip.j //C lattice.i; im.j //;
ien WD ici � ienI
if ranf < W.ien/ then

lattice.i; j / WD �iciI
end

if mcs 
 n0 then
begin

count WD count C 1;
if count D nı then

begin
count WD 0;
do-analysis;

end
end

end

F Exercise 3.36. Program Algorithm 3.18. Choose some values for the parameter
Jkt and print out the evolution of the magnetization as a function of the Monte
Carlo steps.

STOP

Our premier goal is to determine the phase transition point, i.e., J=kBTc, for the two-
dimensional Ising model on the simple lattice. Of course, the analytic result for the
two-dimensional Ising model is known exactly [3.19]. This gives us the opportunity
to see how well the data analysis works.

In the discussion in Sect. 2.3 we learned that the phase transition point is smeared
out for systems of finite size. These finite-size effects depend on the boundary condi-
tions. The results for the order parameter and the susceptibilities for simple sampling
of the percolation problem turned out to be different. The same is true for thermally
driven phase transitions.

How can we determine the phase transition point when the data depend on the
system size as well as on the boundary conditions? The key to the solution of this
question is the scaling feature of the system near the transition point. Close to the
transition point we expect to find the scaling relations
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m.T;L/ D L�ˇ=� Of
h
.T � Tc/L

1=�
i
; (3.15)

.T;L/ D L�=� Og
h
.T � Tc/L

1=�
i
: (3.16)

The scaling functions Of and Og depend on the details, i.e., on the boundary conditions.

F Exercise 3.37. Determine the order parameter and the susceptibility from the
order parameter fluctuations as a function of the temperature T and the linear
system size L. Do the simulations for free and for periodic boundary conditions.
Evaluate also the fourth moment of the magnetization.

STOP

Having obtained the raw data from Exercise 3.37 we can now analyze these using
the ideas of finite-size scaling. An example of such raw data is shown in Fig. 3.9.

Before actually doing the finite-size scaling analysis we should reflect on the
accuracy of the raw data. Were there enough initial configurations discarded?
Recall that close to the transition point the system relaxes into equilibrium with
a characteristic time 	
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Fig. 3.9 Dependence of the magnetization and susceptibility on the linear lattice size L. The data
shown are for the two-dimensional Ising model
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where z is of the order of 2. Also, the configurations are dynamically correlated.
Recall that the dynamic correlation between the configurations reduces the sample
size (Sect. 2.3.8).

Before carrying on, can you answer the following question in the affirmative?

Did you accumulate the absolute value of the magnetization?

If the answer to the question is no you have to repeat all your simulations! But why?
The reason for doing so has been discussed in Sect. 2.3. Due to the finiteness of

the system we find that it is ergodic below the transition point. In an infinite system,
i.e., in the thermodynamic limit, there is no chance for the system to go from one
branch of the spontaneous magnetization to the other. For systems of finite size there
is a characteristic time, which depends on the system size, in which the system can
manage to cross over to the other branch. Those who carefully did the exercises,
in particular Exercise 3.36, should have noticed this phenomenon. Starting out from
the negative side, all spins were down. Then the system relaxed into equilibrium and
fluctuated around the equilibrium. Sometimes the magnetization changed to positive
values for temperatures below the transition point. An example where this happened
is shown in Fig. 3.10.

Simply averaging the magnetization would yield an incorrect value. It depends
on the number of times the system reversed its magnetization. To avoid the problem
the two branches are folded on top of each other by taking the absolute value of the
magnetization.

Fig. 3.10 Evolution of the magnetization as a function of the Monte Carlo steps (MCS). This
figure shows that for small systems the magnetization changes branches quite often
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After this long discussion of the do’s and don’ts we can go ahead and determine
the transition point. For this we use the cumulant

UL D 1�
˝
m4
˛
L

3 hm2i2
L

: (3.17)

There is little extra cost in computing this quantity in the simulations. Here we
have to issue a warning. Quite often the data are such that a variable with single
precision is not sufficient for the accuracy needed. Valuable digits are lost using
a single precision variable which render the results absolutely useless. This point
cannot be emphasized enough.

To determine the transition point we choose pairs of linear system sizes .L;L0/.
The critical point is the fixed point where we have

UL D UL0 : (3.18)

At the transition point the cumulants for two different system sizes must intersect.
To put it differently, if we plot the ratio UL=UL0 versus the temperature, then for
all pairs we should find a unique crossing at one particular temperature. This is the
transition point.

F Exercise 3.38. Carry out the cumulant analysis to determine the critical point
of the two-dimensional Ising model. Compare your answer to the exact value
J=kBTc D 1

2
ln.1C p

2/.

STOP

Figure 3.11 shows an analysis of the cumulants for the two-dimensional Ising
model.

In practice the analysis of the data on the cumulants is not as straightforward as
it seems. To obtain a unique intersection point for all pairs .L;L0/ one has to work
fairly close to the expected critical point. This is usually an iterative process. A first
scan of the temperature range narrows down the interesting region by inspection of
the magnetization and the susceptibility. In the suspected critical region points are
selected for further simulation runs. For these points one needs very good statistics.
With the data a first analysis of the cumulants is made. It often happens that a unique
intersection cannot be found at this stage. More points with even better statistics are
needed.

Now that we have determined the phase transition point for the model we can
go on to the finite-size scaling analysis. All the data on the magnetization for the
different system sizes can be made to collapse onto a single scaling function. The
scaling function depends on the boundary conditions.

The scaling depends also crucially on the exponents and on the transition point. If
the transition point was not determined precisely enough we will find a bad scaling
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Fig. 3.11 Analysis of the cumulants for the two-dimensional Ising model

behavior, if we find scaling at all. If the exponents are not known precisely enough
then this will also show up in the scaling behavior.

Fortunately, for the two-dimensional Ising model we know the exponents exactly.
We also know the transition point exactly. We use this precise knowledge to see how
well the data obtained in Exercise 3.37 scale. If the scaling turns out to be poor, then
this reflects problems with the accuracy of the data.

For the scaling we plot on the x axis the variable

x � .T � Tc/ L
1=�

and on the y axis we plot the variable

y � m.T;L/Lˇ=�:

The data for the different system sizes should, when the correct values for the param-
eters Tc, ˇ and � are chosen, collapse onto a single curve. The converse statement
is also true. If upon varying the parameters Tc, ˇ and � all the data collapse onto
a single curve then we have found the critical point and the critical indices.

F Exercise 3.39. Carry out the finite-size scaling analysis for the magnetization.

STOP

To conclude this section we take up again the discussion on the accuracy of the
data. We learned in Sect. 2.3.8 that certain quantities are not self-averaging. Upon
going to larger system sizes the error in these quantities does not decrease. The error
is independent of the system size.
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One such quantity exhibiting a lack of self-averaging is the susceptibility. We
gain nothing in accuracy by going to larger system sizes, we only have to work
harder.

F Exercise 3.40. Confirm numerically that the susceptibility exhibits a lack of self-
averaging.

STOP

Š Exercise 3.41. Carry out the finite-size scaling analysis for the susceptibility.

Š Exercise 3.42. Glauber function. At the beginning of this section we introduced
the Glauber function as another possible choice of a transition probability
employing a single spin flip. Incorporate the Glauber function into your existing
program for the two-dimensional Ising model. Redo some of the exercises in
this section.

Š Exercise 3.43. The Hamiltonian of the Ising model in a magnetic fieldH is given
by

H D �J
X

hi;j i
si sj �H

X

i

si :

What are the possible changes in the energy 
H for a single spin flip? Redo
Exercise 3.37.

Exercise 3.44. Invent a mapping which maps the two-dimensional simple lattice to
one dimension, such that all neighbors are evenly spaced. Use periodic boundary
conditions.

Exercise 3.45. Implement helical (= skew) boundary conditions.

Exercise 3.46. Checker-board algorithm. To efficiently run a program on a com-
puter with a pipeline architecture the algorithm must be in a vectorizable form.
For the vectorization of an algorithm for the two-dimensional Ising model it is
useful to split the lattice into two sublattices. There are several ways of doing so.
One way is to color the sites black and white like a checker board. The energy
change on reversing, say, a black site depends only on the white sites surround-
ing this site. All black sites can be updated simultaneously! Write an algorithm
for the two-dimensional Ising model which employs the checker board idea.

Exercise 3.47. What problem corresponds to the limit T D 1 in the Ising model?
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Exercise 3.48. Interfaces. So far the boundary conditions we have employed have
been homogeneous. The boundary was either periodic or all sites of the bound-
ary were constrained to one fixed value. Consider a boundary like

Such a boundary produces an interface in the system. Use the program you
developed in this section and set up the boundary as shown above. Print out
the configurations you obtain.

Exercise 3.49. Kawasaki dynamics. The way we have treated the importance sam-
pling of the Ising model has been such that there was no constraint, beside the
chosen temperature, placed on the system. Sometimes we want to introduce
a conservation law. For example, we want the concentration of the C1 and the
�1 spins to be fixed. To realize a fixed concentration we introduce instead of sin-
gle spin flips an exchange between spins. Pick a pair of nearest-neighbor spins
with different orientation and exchange them. Compute the change in the energy
and proceed as for the single spin flip, i.e., if the move is rejected the pair is not
exchanged. What are the possible values for the change
H in the energy?

Variations on a theme

Exercise 3.50. Potts model. The Hamiltonian of the Potts model is given by

HPotts D �
X

hi;j i
Jij ıqi qj

:

Here Jij are exchange couplings which can be all identical. The variable q can
take on the values f1; 2; : : : ; qg. Determine the critical point for the two-state
Potts model.

Exercise 3.51. XY model. The XY model is an example of a model with continuous
degrees of freedom. There are no spins which can take on only discrete values.
One way to write the Hamiltonian for the XY model is

HXY D �
X

hi;j i
Jij cos.�i � �j /�H

X

i

cos�i :

Here Jij are exchange couplings which can be all identical; H is a magnetic
field. Write an algorithm for importance sampling of the XY model.
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Exercise 3.52. Lennard–Jones. All sections have dealt entirely with examples
where a lattice was at least partly involved. This, of course, is not necessary
for the application of the importance sampling idea. Consider N point particles
in a box of volume V . The volume is chosen such that the simulation can be
carried out for a particular density %. The particles interact with each other via
a Lennard–Jones pair potential

˚.rij / D 4"
�
.�=rij /

12 � .�=rij /6
�
:

Here, rij is the distance between particle i and j ; " specifies the unit of energy
and � the unit of length. It is most convenient to work with scaled variables.
An importance sampling for the Lennard–Jones system proceeds as follows.
Choose a particle. Generate a random number r and displace the particle a dis-
tance ı derived from the random number. Calculate the change in the energy. The
acceptance of the displacement is done completely analogously to the accep-
tance discussed in the text. Write an algorithm and program it. Compute the
average internal energy, specific heat and pressure. How do you incorporate the
boundary conditions?

3.4.2 Self-Avoiding Random Walk

To close the guide what could be more appropriate than an exercise:

F Exercise 3.53. Kink-jump. Consider the self-avoiding random walk on a simple
square lattice. We draw on the analogy with polymers and view the self-avoiding
walk as a chain ofN beads and rods (or bonds and sites if you wish). To generate
new configurations pick a bead (or site) at random. If the bead is an end bead it
could, in principle, be moved in three directions. If the bead is not an end bead
a “kink” type motion could be made:

1. Plot a few examples of conformations of a chain and list the possible motions
of the beads.

2. Invent an algorithm for the kink-jump method. What kind of sampling are
you doing?

3. Do you see ergodicity problems?
4. So far we have not considered interactions between the beads. Suppose there

is an interaction " between beads similar to the exchange interaction in the
Ising model. Invent an algorithm for a simulation of this model. What kind
of sampling are you doing?



Chapter 4
Some Important Recent Developments
of the Monte Carlo Methodology

4.1 Introduction

Roughly at the time (1987) when the manuscript for the first three chapters of the
present book was completed, several breakthroughs occurred. They had a profound
influence on the scope of Monte Carlo simulations in statistical physics, particularly
for the study of phase transitions in lattice models.

The first of these remarkable developments is the invention of the “cluster algo-
rithms” [4.1–4.54] that reduce (or eliminate completely) the problem of “critical
slowing down” (divergence of relaxation times near the critical point, see e.g.,
(2.85), (2.86) [4.59]) from which the single spin-flip algorithms suffer, since the
increase of relaxation time means a dramatic increase of statistical errors; see,
e.g., (2.87). The original version [4.1], proposed for the Ising model, is based
on the mapping [4.55] between Potts models [4.106] and percolation [4.60], but
meanwhile extensions exist to a wide variety of models, including also isotropic
magnets [4.7,4.9] and various quantum spin systems [4.54]. In this chapter, only the
original version (for Ising and Potts problems) will be considered, however. Here we
briefly outline the main physical idea: critical slowing down in the kinetic single-
spin-flip Ising model [4.12] can be attributed to the fact that the long-range critical
spin correlations correspond to the occurrence of large clusters of correlated spins.
It takes a very long time until such a cluster disintegrates and finally disappears by
many subsequent single spin flips. However, if the basic move is not a single spin
flip but the overturning of a whole cluster, the cluster pattern changes rapidly and
one thus can move much faster through phase space, even close to the critical point.
Of course, the “art” is to construct the clusters that are considered for flipping such
that at the same time one has a high acceptance rate for such a move, even if the
cluster is very large, and that one destroys physical correlations by the successive
action of the algorithm. There is no general recipe for how one can construct such
an algorithm for a particular model – in some cases, where critical slowing down
is very dramatic, like in spin glasses [4.41], intensive searches for efficient cluster
algorithms have been made but have so far failed.

Another line of research, based on the idea that Monte Carlo updates should
reduce the problem of critical slowing down if they operate on all length scales

K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics,
Graduate Texts in Physics, DOI 10.1007/978-3-642-03163-2 4,
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simultaneously, not only on the length scale of the lattice spacing as the single spin-
flip-type algorithms do, is known as “multigrid Monte Carlo” [4.56–4.61]. However,
often the asymptotic behavior does not change qualitatively: i.e., the dynamic expo-
nent z in the relation between relaxation time 	 and linear dimension L, 	 / Lz

(2.86), remains the same as in the single spin-flip-type algorithm. But the constant
of proportionality in this relation may get markedly smaller (a decrease by a factor
of 10 was often reported [4.60]). Nevertheless, we shall not deal with this approach
here further, noting that it also lacks another advantage that the “cluster algorithms”
have, namely that the latter yield in a very natural way “improved estimators” for
various quantities: expressing quantities like susceptibilities [4.7,4.96], pair correla-
tion functions [4.7, 4.25], fourth-order cumulants [4.62], etc., in terms of “clusters”
rather than using the original formulation in terms of spins, one exploits the fact that
there are no correlations between different clusters, and hence the statistical noise is
reduced.

The second important development that we shall discuss is the reanimation [4.63]
of the old idea [4.64, 4.65] of “reweighting”: from a simulation at a single state
point (characterized in an Ising model by choice of temperature T and magnetic
fieldH ) one does not gain information on properties precisely at that point only, but
also in the neighboring region. Extensions and variations of this concept are indeed
very promising and powerful [4.46, 4.66–4.69]. The simplest approach, the “single
histogram method” [4.63], starts from the observation that the distribution of the
energy P.E; T / at temperature T can be obtained from the distribution P.E; To/ at
a neighboring temperature To by

P.E; T / D P.E; To/ expŒ�.1=T � 1=To/E=kB�=
X

E

P.E; To/

� expŒ�.1=T � 1=To/E=kB�: (4.1)

Of course, in this simple form the method is useful only either for rather small
systems [where P.E; To) is sufficiently broad since the width of the distribution
scales with L�d=2, assuming a d -dimensional cubic box of linear dimension L
as the simulation volume] or at a critical point, as first recognized by Ferrenberg
and Swendsen [4.63]: due to the critical fluctuations, the distribution is broadened
over a width of order L�1=� , where � is the critical exponent of the correlation
length. Since in a finite-size scaling analysis, see (2.79) and (2.80), the region of
interest is of the order of j1 � T=Tcj / L�1=� , the region of interest in finite-size
scaling is of the same order as the region in temperature accessible for reweight-
ing. Of course, there still is a problem in the wings of the distribution, where
due to reweighting statistical errors may get greatly magnified, but this problem
is eased by the combined use of several histograms at suitably chosen neighbor-
ing temperatures (or other control parameters), the so-called “multiple histogram
extrapolation” [4.46, 4.66, 4.70].

Particularly interesting are also reweighting schemes built into the simulation pro-
cedure: again this is an old idea under the name of “umbrella sampling” [4.71–4.73],
but gained full strength in a version of the technique which is called “multicanonical
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Monte Carlo” [4.67, 4.74] or “multimagnetic ensemble” [4.75–4.77] (reweight-
ing with respect to magnetization rather than energy). These techniques have now
become standard tools for the study of asymmetric first-order transitions, interfacial
free energies, etc., when one combines them suitably with finite-size scaling ideas,
as will be discussed below.

A related approach (“simulated tempering” [4.78], “expanded ensemble” [4.79])
considers the temperature just as an additional degree of freedom, specifying prop-
erly transition rules for jumping from one temperature to another one. In this
context, we note also the “broad histogram method” and related methods [4.80]
which focuses on sampling the density of states g.E/ directly.

In this chapter, we cannot attempt to give a full account of all these techniques
(or further variations to this theme [4.81–4.84]). Thus, in Sect. 4.3 we shall describe
a “case study” which nicely illustrates the power of the approach, but also hints to
some of the problems that have to be taken care of. Similarly, Sect. 4.2 describes
another “case study” where the Swendsen–Wang cluster algorithm [4.1] is used in
conjunction with finite-size scaling techniques. Finally, Sect. 4.4 discusses some of
the advances that recently have been made in the application of finite-size scaling
methods themselves, in particular the concept of “field mixing” [4.85–4.94] that has
enabled the study of critical phenomena in asymmetric systems such as liquid–gas
transitions [4.85–4.89], unmixing of polymer solutions [4.90], etc. Also the prob-
lem of “crossover” [4.95] from one “universality class” [4.96] to another will be
mentioned and possible treatments by simulation methods indicated [4.97–4.101].

4.2 Application of the Swendsen–Wang Cluster Algorithm
to the Ising Model

If the reader compares the finite-size scaling description for the Ising model, e.g.,
(2.72) and (2.80), to the corresponding results for the percolation problem, (2.63)
and (2.64), he will note a complete formal analogy (of course, the explicit form
of the scaling functions and the critical exponents of both problems must differ,
since these problems constitute different universality classes [4.96], but the general
structure is the same). This analogy is no surprise at all, since the mapping proved
by Fortuin and Kasteleyn [4.55] implies that bond percolation is equivalent to the
limit q ! 1 of the q-state Potts model [4.106], cf. (2.106) for a definition of this
model (note that the case q D 2 is nothing but the Ising model). As a consequence,
the thermal order–disorder transition of the Ising model (and related spin models)
can be described as a percolation of “physical clusters” [4.102, 4.103].

Of course, it has been known for a long time that any state of the Ising lattice can
be described in terms of “geometrical clusters” of, say “down spins” in a surround-
ing background of “up spins” [4.104,4.105]. However, throughout the paramagnetic
phase we encounter a percolation transition of these “geometrical clusters” when
we vary the magnetic field H from strongly positive to negative valves. The clue
to identify “physical clusters” in contradistinction to “geometrical clusters” is the
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concept of “active bonds” [4.102]. No such bonds can occur between spins of oppo-
site sign, while for a pair of neighboring spins the probability p for a bond to be
active is

p D 1 � exp.�2J=kBT / ; (4.2)

and only spins connected by “active” bonds form a “physical cluster”. Actually (4.2)
can be extended to ferromagnetic interactions of arbitrary range [4.51], not restricted
to nearest neighbors, and very efficient cluster algorithms have been developed for
such long-range Ising models [4.51], but this is out of consideration here.

This interpretation, as stated above, can be rigorously proven by the percolation
representation of the partition function of the Potts model [4.55], i.e.,

ZPotts D Tr
f�ig exp.�HPotts=kBT /

D
X

pNb.1 � q/Nm qNc ; (4.3)

whereNb is the total number of active bonds on the lattice in a configuration,Nm the
total number of missing bonds, andNc the total number of clusters. The sum is over
all configurations of active bonds. Note that in the q-state Potts case every spin of
a cluster must be in the same state of the q possible states, but the different clusters
are completely uncorrelated, so the state of a cluster is independent of the states
of all the other clusters. In (2.106) and (4.3) no symmetry-breaking field singling
out one of the states was included, and hence integrating out the spin states for any
cluster simply gives a factor q in (4.3).

How can one use (4.3) to construct a Monte Carlo algorithm? The recipe pro-
posed by Swendsen and Wang [4.1, 4.46] proceeds in two steps: first, the spin
configuration of the lattice is used to assign to the system a configuration of active
bonds, using (4.2) and attaching a bond if p exceeds the random number � drawn
uniformly from the interval [0,1] and attaching no bond if p < �. As mentioned
above, no bonds are assigned between sites with different spin values. This step
yields a configuration of bonds that form clusters of spins, with all spins in each
cluster having the same value.

The second step consists in choosing at random new values of the spins, with the
constraint that every spin in a cluster must have the same new value. In this way,
a new spin configuration of the lattice will result, and the process is repeated again
and again.

This algorithm is ergodic, since the probability of going from a configuration to
any other configuration in a single “sweep” through the lattice is nonzero, and it
satisfies detailed balance.

We do not discuss the extensions to include magnetic fields, antiferromag-
netic interactions [4.46], isotropic spins or lattice gauge models [4.47], etc., but
rather treat the analysis of results in the framework of simulations utilizing this
algorithm [4.25].

For expressing the variables of interest for an Ising model (q D 2) in terms
of clusters, it is convenient to use two “cluster coordinates” [4.105], the cluster
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magnetization mcl D ˙l for a cluster containing l sites (the sign specifies the ori-
entation of the spins inside the cluster; we label clusters by the index “cl”), and the
number of active bonds in the cluster which we denote as uclp. Defining then the
number of clusters with these properties per lattice site as p.mcl, ucl/, magnetization
and energy per spin for a lattice of coordination number z are given by (remember
that H D 0)

hM i D
X

mcl

mclP.mcl/; P.mcl/ �
X

ucl

p.mcl; ucl/; (4.4)

E D hHIsingi=N D � z

2
J

 
X

mcl

X

ucl

p.mcl; ucl/ � 1
!

D � z

2
J.phNbi=N � 1/; (4.5)

recalling thatNb is the total number of active bonds in a configuration, and N is the
number of lattice sites (N D Ld for a hypercubic lattice of linear dimension L in
d dimensions). In addition, the specific heat and susceptibility can be expressed in
terms of clusters, e.g.,

C D @E=@T D �
1=
	
NkBT

2

� �hH2

Isingi � hHIsingi2


D 1

4
z2J 2=

	
NkBT

2p2

 �hN 2

b i � hNbi2 � .1 � p/hNpi
�
: (4.6)

Splitting off the contribution of the largest cluster in the system, which we denote
as m1

cl , from P.mcl/,

P.mcl/ � P 0.mcl/C .1=N /ımcl ; m
1
cl ; (4.7)

we see that the absolute value of magnetization differs from the percolation proba-
bility hP1i, due to contributions from the smaller clusters

hjM ji D
Dˇ̌
ˇ
m1

cl

N
C
X

mcl

mclP
0.mcl/

ˇ̌
ˇ
E
; hP1i D ˝ˇ̌

m1
cl

ˇ̌˛
=N: (4.8)

Now the susceptibility for T > Tc is just the analog of the percolation susceptibility,
(2.60), namely

kBT D kBT .@hM i=@H/T;HD0 D
X

mcl

m2
clP.mcl/ D

X

l

l2nl (4.9)

since P.mcl/C P.�mcl/ D nl , the number of clusters of size l , apart from a diff-
erent normalization factor .1=p/ used there, and the fact that one removes the largest
cluster from the summation in (2.60) in order to work with the same formula on both
sides of the percolation threshold. In (4.9), the largest cluster should not be omitted
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if one wishes to maintain the fluctuation relation kBT D N hM 2i for T 
 Tc and
H D 0; see (2.77a).

Now for T < Tc one must single out the contribution from the largest cluster
(that becomes the percolation cluster for N ! 1 and then carries the spontaneous
magnetization) to obtain [4.25]

kBT
0 � N

	hM 2i � hjM ji2

 D

X0
l
l2nl CN

	hP 21i � hjM ji2



�
X0

l
l2nl CN

	hP 21i � hP1i2


: (4.10)

The obvious physical interpretation of (4.10) is, of course, that the response function
for T < Tc picks up contributions both from all finite clusters (the term

P0
l l

2nl ,
only considered in the percolation problem) and from the fluctuations in size of the
largest (percolating) cluster.

It turns out that estimating ; 0 from these relations in terms of clusters is
advantageous in comparison with the standard magnetization fluctuation relations:
Equations (4.9) and (4.10) already exploit the fact that there are no correlations
between different clusters, thus the statistical noise is reduced. The right-hand
sides of these equations hence are examples for the use of “improved estimators”.
Figure 4.1 shows an example for the d D 2 Ising square lattice. It is clearly seen that
for finite systems the percolation probability hP1i is always smaller than hjM ji, as
expected from (4.8), although in the limit N ! 1 both quantities converge to
the spontaneous magnetization. Note, however, that even for N ! 1 the term
N.hP 21i � hP1i2/ must not be neglected in kBT

0 in comparison to
P0

l l
2nl for

T < Tc, although it is negligible for T > Tc. This observation corroborates our con-
clusion; cf. (2.80d) and Fig. 2.15, that due to spontaneous symmetry breaking one
needs to use different fluctuation formula above and below Tc, unlike the percolation
case where only

P0
l l

2nl applies on both sides of the percolation threshold.
As an example of application for which the use of a cluster algorithm was indis-

pensable, we mention the study of shape effects on finite-size scaling [4.106]. Let
us consider anisotropic subsystems of shape L?=Lk with the linear dimensionsLk,
L? in the x; y directions different from each other, for a two-dimensional Ising sys-
tem (the total system size L � L ! 1). At Tc from the exact results on the critical
correlations .g.r/ / r�
 , � D 1

4
/, one can deduce that [4.106]

kBTc.Tc/ D .LkL?/1�
=2 Q.Lk=L?/; Q.�/ D Q
�
1

�

�
/ ��
=2: (4.11)

This structure can also be deduced from conformal invariance [4.107]. Since [4.104]
�=� D 2 � �, extracting a factor .Lk=L?/1�
=2 from the scaling function Q, (4.11)

can be rewritten in the form kBTc.Tc/ D L
�=�

k
�
.Lk=L?/, with

�
 another scaling

function. This behavior is tested in Fig. 4.2, using subsystems in the range 4 � Lk,
L? � 128, for L D 1;024 (Fig. 4.2). Of course, L 	 Lk, L? is indispensable
for (4.11) to be valid. Since with a standard single spin-flip algorithm the relaxation
time scales as 	 / Lz with z � 2:14˙ 0:05 [4.108], it would be extremely hard to
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Fig. 4.1 (a) Magnetization (solid curves) and percolation probability (broken curves) for the dD2

nearest-neighbor Ising ferromagnet plotted versus reduced temperature for the three system sizes
indicated. Periodic boundary conditions were used throughout, and all data were generated with the
algorithm of Swendsen and Wang [4.1]. (From [4.25]). (b) Normalized fluctuation of the largest
cluster, N.hP 2

1
i � hP1i2/ (solid curves) and second moment of the cluster size distribution,P

0

l2nl (broken curves) plotted versus T=Tc, for the same model as in (a). (From [4.25])

generate many uncorrelated configurations of a lattice of this size L D 1;024 at Tc.
Thus the present problem can only be treated with the help of a cluster algorithm.

One caveat, however, must be mentioned: cluster algorithms seem to be much
more sensitive to correlations among the pseudorandom numbers than the single
spin-flip type algorithms [4.109]. For this reason it is often advisable to ran-
domly mix in single spin-flip sweeps through the lattice, in addition to the “cluster
moves” [4.109].
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Swendsen–Wang algorithm [4.1]. The curve is an approximate calculation of the scaling function.
(From [4.106])

4.3 Reweighting Methods in the Study of Phase Diagrams,
First-Order Phase Transitions, and Interfacial Tensions

In this section, we return to the use of “histogram reweighting techniques” already
alluded to in (4.1). We first treat the single histogram method and consider over
which region 
ˇ of the inverse temperature ˇ around the reference state at ˇo

a reweighting is possible [4.63–4.65]. First we note that the energy distribution
P.E; To/ has a peak of width, cf. (2.33)

ˇoıE D
h
C.ˇo/kBL

�d
i1=2

; T ¤ Tc; (4.12)

C.ˇ/ being the specific heat at inverse temperature ˇ. Also the shift of the position
of the maximum of P.E; T / relative to the maximum of P.E; To/ is controlled by
the specific heat, 
E D C.ˇo/.T � To/ � C.ˇo/.ˇo � ˇ/=ˇ2

o . The maximum

ˇ D ˇo � ˇ that gives reliable results occurs when 
E / ıE , so that
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.
ˇ/max=ˇo /
h
C.ˇo/L

d=kB

i�1=2

; T ¤ Tc; (4.13)

i.e., the range of 
ˇ over which reweighting is possible decreases like the square
root of the simulation volume. If we work at the critical point, however, and consider
a system whose specific heat diverges like C / .T � Tc/

�˛ , we must take into
account finite-size rounding of this divergence to use C.ˇo/ / L˛=� if ˇo D 1=Tc.
In this case .
ˇ/max=ˇo / L�.dC˛=�/=2 / L�1=� , where in the last step the hyper-
scaling relation d� D 2�˛ [4.96] was used. However, the region
ˇL1=� D const is
exactly the region of interest for finite-size scaling (see Chap. 2). As a consequence,
a single histogram is enough to cover a finite fraction of the region needed to study
the finite-size scaling behavior, and a finite number of neighboring histograms thus
suffices to explore the full region of interest for finite size scaling.

Another obvious extension is that one may wish to carry out a reweighting not
only with respect to temperature but also with respect to other thermodynamic
variables. For example, consider a symmetrical polymer mixture [4.110–4.113]:
We consider a lattice containing two types of polymers (A,B) with chain lengths
NA D NB D N , the numbers of chains being nA, nB, with the total number n D
nA C nB being held fixed so the total polymer density is constant. The polymer
chains may be modelled either as self-avoiding walks [4.113] (Sect. 2.1.3) or by the
so-called bond-fluctuation model [4.114], where each effective monomer takes all
8 sites at the corners of an elementary cube of the simple cubic lattice. In any case,
one assumes short-range pairwise interactions "AA D "BB, "AB between the effective
monomers, which may lead to phase separation if " D "AB � ."AA C "BB/=2 > 0.
The order-parameter of such an unmixing transition can then be defined as m D
.nA � nB/=.nA C nB/. In this problem it is clearly advantageous not to work
in the canonical ensemble of the mixture (all particle numbers nAN , nBN being
fixed, and hence also m D const) but in the semi-grand canonical ensemble of
the mixture, where T and the chemical potential difference 
� of the mixture
are the given independent thermodynamic variables. Note that if we considered
a mixture of monomers (N D 1) in the framework of the Ising model, 
� simply
corresponds to the magnetic fieldH , andm to the magnetization [4.115]. The semi-
grandcanonical partition function ZSG.T;
�/ then can be related to the density of
states � .E;m/ as

ZSG.T;
�/ D
Z C1

�1

dm
Z

dE exp.�E=kBT / expŒN
�mn=.2kBT /�

� � .E;m/ : (4.14)

Note that chemical potentials �A, �B of the two species were normalized per
monomer, so the Boltzmann factor expŒ.�AnAN C�BnBN/=kBT � D expŒN.�A C
�B/n=.2kBT /� expŒN
�mn=.2kBT /�, and the first factor expŒN.�A C �B/n=

.2kBT /� is omitted since n is constant, and this factor hence cancels out from all
averages. The Monte Carlo sampling yields a number N of configurations that are
distributed proportional to PT;�.E;m/,
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PT;�.E;m/ D 1

ZSG.T;
�/
exp.�E=kBT / expŒN
�mn=.2kBT /�� .E;m/:

(4.15)
We record a “histogram” HT;�.E;m/ in a simulation by just counting how often
one observes the possible values of E andm (for very large lattice sizes, and gener-
ally for continuous degrees of freedom, some binning in suitable intervals ıE , ım
may be required, but this is not discussed further here). This histogram is now used
for a whole range of neighboring values T 0, 
�0 around T , 
� by reweighting

PT 0;�0.E;m/ � ZSG.T;
�/

ZSG.T 0; 
�0/
exp

�

�0mNn

2kBT 0 � 
�mNn

2kBT

�

� exp

�
E

kBT
� E

kBT 0

� HT;�.E;m/

N : (4.16)

Figure 4.3 shows that this “single histogram extrapolation” is indeed of practi-
cal usefulness for the Monte Carlo study of the critical region of polymer mix-
tures [4.112]. Note that phase coexistence for a symmetric mixture occurs for

� D 0 as studied there, and thus P.m/ is symmetric around m D 0, with two
peaks for T < Tc (the peak form < 0 corresponds to the B-rich phase, the peak for
m > 0 corresponds to the A-rich phase) which merge into a single peak as the tem-
perature is raised above Tc. Of course, Fig. 4.3 is just an illustration of the behavior
postulated in (2.73) and (2.74).

As mentioned above, it is often desirable to combine histograms from several
simulation runs to get extrapolations over a wider parameter range and to increase
the accuracy [4.66]. If k simulations are performed at parameters Œ.Ti ; 
�i /, i D
1; : : : ; k�, the generalization of (4.14)–(4.16) reads [Ni is now the number of states

0.10
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P
(m
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260 – 0.5
0
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k
B  T/ε

Fig. 4.3 Distribution function P.m/ D R
dEPT;
�.E;m/ of the order-parameter m of a polymer

mixture plotted for 
� D 0 over a range of temperatures for N D 128, �"AA D �"BB D
"AB D "=2, and a density � D 0:5 of occupied lattice sites, and a lattice size L D 80 lattice
spacings. Using the bond-fluctuation model on the simple cubic lattice, N D 16;800 statistically
independent samples at kBT=" D 266:4 were used to generate P.m/ over a range of temperatures
from single-histogram extrapolation. (From [4.112])
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recorded in simulation i for the histogramHTi ;�i
.E;m/],

� .E;m/ D
kX

iD1

wi .E;m/
1

Ni

ZSG.Ti ; 
�i / expŒ�N
�i mn=.2kBT /�

� exp.E=kBTi /HTi ;�i
.E;m/: (4.17)

The weight wi with which the histogram of the i th simulation enters is determined
by minimizing the statistical error of � .E;m/ and is found as [4.46, 4.66, 4.111]

wi .E;m/ D w0
i .E;m/=

kX

j D1

w0
j .E;m/; (4.18)

where

w0
i .E;m/ D .1C 2	i /

�1Ni Z
�1
SG .Ti ; 
�i / expŒN
�i mN=.2kBTi /�

� exp.�E=kBTi /; (4.19)

	i being the correlation time (measured in Monte Carlo steps per monomer if every
step is used for the recording of the histograms, while 	i D 0 if enough steps are
omitted between subsequent recordings such that all Ni configurations that are used
are statistically independent). Note that only the product wiZSG.Ti ; 
�i / enters
(4.17) and from (4.19) we see that no knowledge of the absolute free energy is
required. Figure 4.4 gives an example where this technique was used to obtain
moments hjmji, hm2i over a broad temperature range for three lattice sizes [4.112].
Obviously, such techniques are a great advantage for a precise estimation of the crit-
ical point: while in the traditional method (as described in Chap. 2, e.g., Fig. 2.14a)
the data are generated point by point and curves drawn to guide the eye always are
somewhat subjective, from the density of states based on several histograms, (4.15),
the smooth curves in Fig. 4.4 result in a well-defined way, and many application
examples meanwhile testify for the success and accuracy of these methods.

The full power of these histogram extrapolation techniques becomes apparent,
however, when we consider asymmetric mixtures. In a lattice model containing
A,B, and vacancies, the simplest type of asymmetry occurs if "AA ¤ "BB: then
the symmetry of the problem against interchange of A and B is broken, and
phase coexistence (including criticality) no longer occurs for 
� D 0 but along
a nontrivial curve 
�coex.T / in the .
�; T / space. And for finding the critical
point 
�c D 
�coex.Tc/ it is obvious that a search in the two-dimensional space
point by point would be very cumbersome, while histogram extrapolations still are
convenient [4.116, 4.117].

In this case one proceeds again by the “equal weight rule”, which we have
already encountered in Sect. 2.3.7 as a criterion to locate a first-order phase tran-
sition: there we have considered the Ising model for T < Tc as a function of the
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Fig. 4.4 Order-parameter hjmji (a) and ratio of moments hm2i=hjmji2 (b) plotted versus tem-
perature, for the same model, as described in Fig. 4.3, but using three lattice sizes and multiple
histogram extrapolation. The open symbols in part (a) (triangles, diamonds, and circles) show the
data directly observed at those temperatures where actual simulations were made, while the dash-
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Tc D 277:7"=kB was extracted from the intersection of the curves. Using this estimate for Tc

in a finite-size scaling analysis of the data in part (a), the estimate for the order-parameter (solid
curve, labelled as “binodal”) is obtained. The dotted curve with asterisks (marked “spinodal”)
illustrates the result of a mean-field concept, namely the inverse “susceptibility” �1.T;m/ is
extrapolated and the spinodal curve is the locus of the points where this extrapolation vanishes,
�1.T;m D msp.T // D 0. (From [4.112])

magnetic field H , and found that the two Gaussian peaks centered at positive and
negative magnetization change their weights according to the Boltzmann factors
exp.˙mHLd=kBT /. In this case symmetry requires the weights to be equal for
H D 0, while in the present caseH corresponds to �0 � Œ
��
�coex.T /�=", and
finding the state of equal weight .�0 D 0/ is nontrivial. We can define these weights
for the A-rich and B-rich phases as

PA�rich D
Z 1

m?

P.m/dm; PB�rich D
Z m?

�1

P.m/dm; (4.20)
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wherem? is the location of the minimum between the two peaks of P.m/ fnote that
m? D 0 in the symmetric case, see Fig. 4.3; in the asymmetric case, estimates for
m? can conveniently be extracted from the maximum of hm2i�hmi2 or the reduced
connected fourth order cumulant hm4iconn=Œ3hm2i2�, as shown by Deutsch [4.117]g.
Figure 4.5 demonstrates that indeed very good accuracy can be obtained. The fact
that from Monte Carlo runs just at a few state points fTi ,
�i g one is able to obtain
all thermodynamic functions of interest in a broad region of the (T;
�) plane
is absolutely crucial for this analysis. The conclusions about this phase diagram
(Fig. 4.5c) are corroborated by the finite-size scaling analysis of the first-order phase
transition as well: Figure 4.6 gives a three-dimensional counterpart to Fig. 2.21b,
demonstrating that the concepts developed in Chap. 2 for the simple Ising model do
straightforwardly carry over to much more complex systems, such as asymmetric
polymer mixtures.

Finally, we mention that sampling of the minimum of distributions as shown in
Fig. 4.3 yields information on the interfacial tension [4.70, 4.70–4.75].

4.4 Some Comments on Advances with Finite-Size Scaling
Analyses

The extension of finite-size scaling techniques to the case of mixtures with energy
asymmetry [4.116, 4.117] is rather straightforward, since in the .
�; T / plane
the coexistence curve �coex.T / still has a (nearly) vanishing slope at criticality,
r D .Tc="/d�coex.T /=dT jTc � 0 (Fig. 4.5c). The situation is no longer so sim-
ple, when r is appreciably different from zero, as happens for polymer mixtures
with asymmetry in the chain lengths [4.118], polymer solutions [4.90] and ordinary
Lennard–Jones fluids [4.85–4.88, 4.93, 4.94]. Then, the scaling fields and scaling
operators are no longer t D "=kBTc � "=kBT (temperature-like variable), �0 D
.
��
�crit/=kBTc (field-like variable), % (concentration or density, respectively),
u (energy density), but linear combinations thereof [4.119]

	 D t C s�0; h D �0 C rt; (4.21)

and thermodynamically conjugate to these fields (	; h) are the order-parameter M
and energy-like density E ,

M D .% � su/=.1� sr/; E D .u � r%/=.1� sr/: (4.22)

The geometric meaning of the other field-mixing parameter s is given as s D tan 
where  is the angle between h and the ordinate at criticality. In an Ising ferro-
magnet, of course, this problem is completely absent, because the order-parameter
(magnetization) is odd in the spin variables, the exchange energy is even in the spin
variables, and already this symmetry implies that there cannot be any field mixing.
Already for the liquid gas transition the situation is completely different, of course,
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Fig. 4.5 (a) The fluctuation of the order-parameter m, n.hm2i � hjmji2/ for the bond-fluctuation
model of a polymer mixture with NA D NB D N D 32 but energetic asymmetry ("AA D �"BB

with � D 5, while "AB D �"BB � "). For a lattice linear dimension L D 56 the system contained
n D nA C nB D 343 polymer chains. From a few state points for which actual simulations
were performed, the fluctuation is obtained in a broad region of the (T;
�) plane by histogram
reweighting. The maximum of the ridge yields a rough first estimate of the critical temperature, Tc.
The order-parameter hmi along the ridge can be identified with m? in (4.18). (b) The ratio R of
the weights PA�rich, PB�rich plotted in the same region of the (T , 
�) plane as part (a). Here R
is defined as the minimum value of PA�rich=PB�rich and its inverse, so it can only vary between
zero and one, and the location of the maximum in the (T , 
�) plane then yields the coexistence
curve
� D 
�coex.T /, see part (c). (c) Phase diagrams of the asymmetric polymer mixture in the
(T , 
�) plane plotted for four values of  (for � D 1 the mixture is symmetric, then 
�coex � 0

by symmetry, while in all other cases a nontrivial offset occurs). The critical points (marked by
circles) are found by studying the ratio hm2i=hjmji2 versus T along the curve �coex.T / for the
three lattice sizes L D 32, 40 or 56, respectively. (From [4.117])
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same model as in Fig. 4.4, 4.5, and five different temperatures. The highest temperature (stars) is
the critical temperature, where scaling / L�=� with �=� D 1:96 is confirmed. (From [4.117])
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since there is no simple symmetry relating liquid and gas, and therefore the density
% is not the optimal choice for the order-parameter field. Subtracting off the scaling
operators at criticality,

ıM � M � hMicrit; ıE � E � hEicrit; (4.23)

the joint distribution pL.M; E/ then acquires a simple finite size scaling form
[4.93, 4.94]

PL.M; E/ � .aMaE /�1LdCˇ=��1=� Qp	a�1
MLˇ=�ıM; a�1

E Ld�1=�ıE ;
aMLd�ˇ=�h; aEL1=�	



; (4.24)

where ˇ and � are critical exponents of the order-parameter and the correlation
length as usual, aM, aE are two (non-universal, i.e., system-dependent) scale fac-
tors, while the scaling function Qp then is universal. From (4.22)–(4.24) we recognize
that integrating out E the scaling of PL.M/ D R

dEpL.M; E/ is exactly the same
as the scaling of the order-parameter distribution pL.s/ considered in (2.79). In con-
trast, if we consider the simple distribution pL.�; u/ rather than pL.M; E/, which
can be found by using (4.22) in (4.24), we see that scaling powersLd�1=�.%�%crit/

and Lˇ=�.u � ucrit/ would also result. As a consequence, the scaling behavior of
% and u is not simple, and some well-known recipes (like extracting the specific
heat exponent ˛ from the energy fluctuations, which works in an Ising model as
C

Ising
HD0 D Ld .hu2i � hui2/=kBT

2 / L˛=� are no longer true: energy density
fluctuations in asymmetric systems also scale with the susceptibility exponent �

Ld
	hu2i � hui2



=kBT

2 / L�=� ; (4.25)

while the specific heat exponent ˛ shows up in the fluctuation of the energy-like
variable [4.93, 4.94]

Ld
	hE2i � hEi2



=kBT

2 / L˛=� : (4.26)

Another consequence of (4.24) is that the scaling function QP of PL.M/ is identical
to the scaling function of the Ising model, considered in (2.79). The latter can be
recorded with fairly good accuracy, however, and hence Wilding [4.93, 4.94] sug-
gested the use of this information for the analysis of the asymmetric systems, by
adjusting the critical parameters f"=kBTc, �=kBTcg such that an optimal fit of QP
onto the Ising model scaling function is achieved. In this way one can avoid the oth-
erwise necessary variation of L over a wide range, and explore the critical region
of asymmetric systems with manageable effort. While far below Tc phase coex-
istence of asymmetric off-lattice models of fluids can be conveniently studied with
the so-called “Gibbs ensemble” [4.120–4.123], near the critical point the “field mix-
ing” analysis techniques as developed by Wilding and coworkers [4.85–4.94] is the
method of choice.
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We conclude this section by drawing attention to the problems that finite-
size scaling methods still encounter due to crossover [4.95] from one “universal-
ity class” [4.96] to another [4.92, 4.97–4.101]. There are many examples where
this occurs for physical systems. (1) Heisenberg ferromagnets with weak uniax-
ial anisotropy show a crossover from the Heisenberg class to the Ising class as
Tc is reached [4.95, 4.124]. (2) Ferromagnets weakly diluted with a non-magnetic
material exhibit a crossover to a new class of critical behavior typical for randomly
quenched disorder (see, e.g., [4.125] for a review). Another crossover is expected
for systems in random fields [4.126]. Monte Carlo studies of systems with quenched
disorder would be very valuable, since other techniques are not so conclusive about
the properties of these systems, but the analysis of the simulations is manifestly
hampered by crossover problems [4.127–4.131]. (3) Systems close to a multicritical
point, e.g., a tricritical point [4.92, 4.132] cross over from multicritical behavior to
“ordinary” critical behavior. (4) Systems with a large but finite range of interaction
cross over from Landau-like critical behavior towards a nontrivial critical behavior
close to Tc [4.99,4.100,4.133].Analogous crossover to Landau behavior also occurs
in symmetrical polymer mixtures, when the chain lengthN ! 1 [4.97,4.98,4.134]
and in Ising films with competing walls when their thicknessD ! 1 [4.101].

All such cases can be schematically described, as shown in Fig. 4.7: varying
a parameter p the critical line Tc.p/ in the .T; p/ plane reaches a special point

T t

Tm

Tc(p): tc=g1/φ/y
tcross=g1/φ/ycross

g

Pm P

Fig. 4.7 Schematic phase diagram of a system exhibiting crossover between “ordinary” critical
phenomena along the line Tc.p/, p < pm and the special point p D pm, Tm D Tc.pm/, which
may be a multicritical point, for instance. Considering the approach to the critical line along an
axis parallel to the t -axis, one will observe critical behavior associated with the special point, as
long as one stays above the dash-dotted curve describing the centre of the crossover region. Only
in between this dash-dotted line and the critical line (solid curve) the correct asymptotic behavior
for p < pm can be seen. (From [4.97])
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Tc.p D pm/ D Tm characterized by a unique critical behavior, which is distinct
from the behavior along Tc.p < pm/. For all p < pm, the same type of critical
behavior occurs but the region where it actually can be observed shrinks to zero
smoothly as p ! pm. Introducing scaling variables g [tangential to Tc.p/ in
the point Tm, pm] and t [normal to Tc.p/ at p D pm], both the critical line
and the centre of the crossover region can be expressed in terms of the crossover
exponent � [4.95],

tc D g1=�=yc; tcross D g1=�=ycross; (4.27)

yc, ycross being constants. More precisely, the singular part of the free energy
F sing.T;H; p/ becomes (H is the field conjugate to the order-parameterm)

F sing.T;H; p/ D t2�˛m QF .Ht�.ˇmC�m/; g1=�=t/; (4.28)

˛m, ˇm, �m being the standard critical exponents [4.96] in the point Tm, pm, and
QF .x; y/ is a scaling function. This function has at y D yc a singularity described

by critical exponents ˛, ˇ, � characteristic of the universality class at the critical
line, e.g.,

QF .0; y/ / .y � yc/
2�˛; (4.29)

while for y � ycross D g1=�=tcross the y-dependence of QF .x; y/ can be neglected,
Fsing / t2�˛m for t 	 tcross.

When we wish to study a problem such as described above by finite-size scaling,
it is crucial to include the variable g1=�=t in the finite-size scaling description, since
it matters whether for t ! 0 first the crossover (Fig. 4.7) or first the finite-size
rounding (described by the variable L1=�m t , for instance) sets in (here we have
assumed that L scales with the correlation length �m / t��m at the special point).
Then, the generalization of the finite-size scaling assumption for the order-parameter
distribution, (2.79), is [4.97]

P.t;H;m; g;L/ DLˇm=�m QP.L1=�m t; L.ˇmC�m/=�mH;

Lˇm=�mm;L�=�mg/: (4.30)

ForH D 0 and t D tc one finds that moments and cumulants still exhibit a nontrivial
behavior [4.97]

hjmjki D L�kˇ=�g.k�m=�/Œ.ˇm=�m/�.ˇ=�/� Qmk.L
�=�mg/; (4.31)

UL D 1 � hm4i=Œ3hm2i2� D QU .L�=�mg/: (4.32)

Only if L exceeds by far a crossover length �cross / g��m=� , L 	 �cross, do we
see the simple finite-size scaling behavior, with QU .1/ D U ? being the “cumulant
crossing point” discussed in Sect. 2.3, and the moments are simple power laws,
hjmjki / L�kˇ=� .
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Fig. 4.8 (a) Ratio QL.Kc/ � hm2i2L=hm4iL for the two-dimensional Ising model where
every spin interacts with all the z D 436 neighbors inside a maximum range of interaction
Rm D p

140 lattice spacings plotted at the critical coupling Kc D J=kBTc D 0:0023464

versus the system size (discrete points). For large L, QL.Kc/ approaches the Ising limit
QI D 0:856216 [4.135], while for decreasing L, QL.Kc/ approaches the mean-field
limit QMF D 8�2=Œ� .1=4/�4 � 0:456947 [4.136], until the system size becomes smaller
than the range Rm, and other finite-size effects come into play. To illustrate that the
system is indeed mean-field like for these system sizes, Q is also plotted for finite sys-
tems in which all spins interact equally strong (dashed curve). The points for R2m D 140

indeed approach this curve for small L. (b) Critical amplitude of the magnetization at
Kc.R/; hjmjiKc D do.R/L

�1=8, plotted versus R2 on a log–log plot, where R2 D P
j¤i jr i �

rj j2=z with jr i � rj j � Rm. Dotted line shows the slope predicted in (4.37).
(From [4.100])
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The above treatment is only valid if both sets of exponents (˛m, ˇm, �m, �m) and
(˛, ˇ, � , �) satisfy hyperscaling relations [4.96], however,

d D .2 � ˛m/=�m D .2ˇm C �m/=�m D .2 � ˛/=� D .2ˇ C �/=�: (4.33)

The important case where for d D 2 or d D 3 dimensions crossover to Landau-
like mean-field behavior occurs, needs separate discussion, as can be anticipated
from Sect. 2.3.6. When the range of interaction R tends to infinity, we may choose
g D 1=Rd , since then the variation of Tc with g near g D 0 is linear (apart from
possible logarithmic corrections [4.100]), compatible with Fig. 4.7. As discussed
in Sect. 2.3.6, for hypercubic geometry a simple extension of finite-size scaling is
possible if the correlation length (�m / t��m D t�1=2) is replaced by the “thermo-
dynamic length” [4.76] lT / t�.�mC2ˇm/=d D t�2=d , cf. (2.92). Now (4.30)–(4.32)
are replaced by (2ˇm D �m D 1) [4.97].

P.t;H;m;R�d ; L/ D Ld=4 QP .Ld=2t; L3d=4H;Ld=4m;

L.4�d/d=4R�d /; (4.34)

hjmjki D L�dk=4 Qmk.L
.4�d/d=4R�d /; (4.35)

UL D QU .L.4�d/d=4R�d /: (4.36)

Here the crossover exponent � D .4 � d/=2 was invoked [4.97] from the Ginzburg
criterion [4.133], but a more rigorous derivation using renormalization-group meth-
ods has recently been presented [4.100]. Equation (4.34) shows that L now has to
be compared with a crossover length lcross / R4=.4�d/ (D R2 in d D 2 dimen-
sions). Note also the singular R-dependence of the asymptotic critical amplitude at
tc, namely

hjmji / L�ˇ=�R�.d�4ˇ=�/=.4�d/ D L�1=8R�3=4.d D 2/: (4.37)

Figure 4.8 shows that these considerations indeed describe the actual behavior cor-
rectly, UL interpolates between the theoretically expected limits [4.135, 4.136].
Note that for this study it was necessary to go to sizes L 	 lcross in order to be able
to find the critical couplings Kc.R/ reliably: Thus lattice sizes up to 800 � 800

had to be used [4.100] which for these long-range interaction models was pos-
sible only through the availability of an efficient cluster algorithm [4.50]. Thus,
this study [4.100] is a good example to demonstrate that both sophisticated new
algorithms [4.50] and refinements in the finite-size scaling analysis [4.99, 4.100]
are crucial for making progress. Similarly, combination of a new cluster algo-
rithm [4.137] for the Blume–Emery–Griffiths model [4.138] with finite-size scaling
promises to be useful for studying first-order transitions.



Chapter 5
Quantum Monte Carlo Simulations:
An Introduction

5.1 Quantum Statistical Mechanics Versus Classical
Statistical Mechanics

To be specific, let us consider for the moment the problem of N atoms in a vol-
ume V at temperature T , and we wish to calculate the average of some observableA
which in quantum mechanics is described by an operator OA. Then the answer to this
problem given by quantum statistical mechanics is

h OAi D Z�1 Tr exp
�
� OH=kBT

 OA D Z�1
X

n

hnj exp
�
� OH=kBT

 OAjni; (5.1)

where OH is the Hamiltonian of the system, and the trace is written here symboli-
cally as the sum over a discrete set of states fjnig which we assume orthonormal
.hnjmi D ınm/ and complete (

P
n jnihnj D O1 where O1 is the identity operator).

Correspondingly, the partition functionZ is

Z D Tr exp
�
� OH=kBT


D
X

n

hnj exp
�
� OH=kBT


jni: (5.2)

The Hamiltonian OH can be written, assuming a situation where relativistic effects as
well as explicit consideration of the spins of the particles can be neglected, and so
the simple description in terms of the Schrödinger equation applies,

OH D
NX

j D1

Op2
j

2m
C
X

i<j

OV 	 Or i � Orj


 D
NX

j D1

OEkin
j C

X

i<j

OVij ; (5.3)

where Opi is the momentum operator of the i th atom (all atoms are assumed to
have the mass m, and Or i is the position operator, and we have assumed pairwise
interactions between the particles described by the potential V ).

Now the basic reason why quantum statistical mechanics differs for this problem
from classical statistical mechanics, as was assumed in the first chapter of this book,

K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics,
Graduate Texts in Physics, DOI 10.1007/978-3-642-03163-2 5,
c� Springer-Verlag Berlin Heidelberg 2010
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is that momentum and position operators of a particle do not commute,

� Orj ; Opj

� D i„; (5.4)

and hence also the commutator of kinetic and potential energy of a particle is non-

vanishing,
h OEkin

j ; OVij

i
¤ 0. As a corollary of this statement, it can be easily seen –

and this is worked out in most standard textbooks on statistical mechanics – that
neglect of (5.4) for the evaluation of averages reduces the problem to classical statis-
tical mechanics. Indeed, one can then write, using for jni eigenstates of the position
operators Oxi so

P
n becomes

R
dx1

R
dx2 � � � R dxN ,

Z D
Z

dx1 � � �
Z

dxN (5.5)

� hx1 : : :xN j exp

0

@�
NX

j D1

� OEkin
j =kBT


1

A exp
�
� OV =kBT


jx1 : : :xN i ;

where we have used the result

e
OAC OB D e

OAe OB (5.6)

for operators OA; OB that commute with each other – which is true, of course, only in
the limit „ ! 0, which is precisely the limit in which quantum mechanics reduces
to classical mechanics. If (5.5) were true, one could furthermore use

exp

0

@�
NX

j D1

OEkin
j =kBT

1

A D
NY

j D1

exp
�
� OEkin

j =kBT


D
NY

j D1

exp
�
� Op2

j =2mkBT

;

and introducing then suitably complete sets in momentum representation
R

dpj jpj i
hpj j D O1 the kinetic energy terms can simply be evaluated and in the end cancel
out from the average in (5.1) if we consider a quantity that depends on the posi-
tions of the particles only, since the same expression results from the kinetic energy
contributions both in the numerator and in the denominator of (5.1).

As we have emphasized above, details of this reasoning can be found in standard
text books on statistical mechanics, and there is no need to dwell on it here. But let
us recall what are the physical consequences when we indeed ignore (5.4) and eval-
uate all averages according to classical rather than quantum statistical mechanics.
First of all, we miss spectacular effects which result from the indistinguishability
of quantum particles and the resulting possibility of quantum-mechanical exchange,
such as superfluidity and Bose condensation (remember that here we talk about
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neutral atoms, their electrons being bound to the nuclei – metals with quasi-free
electrons and resulting phenomena such as superconductivity and the problem of
Anderson localization etc., will not be considered here). But even in cases when we
consider relatively heavy atoms (e.g., considering noble gases we exclude helium
but wish to deal with neon, argon, xenon), where at low temperatures the fluid–
solid transition precludes the occurrence of a suprafluid phase, classical statistical
mechanics at low temperatures is severely in error. “Low temperature” means here
temperatures comparable to or lower than the Debye temperature�, as a treatment
of the statistical mechanics of the crystal in terms of phonons shows. Some con-
sequences of quantum mechanics on the low-temperature properties of crystals are
sketched qualitatively in Fig. 5.1: while the specific heat per atom of a (harmonic)
solid would simply follow the Dulong–Petit law CV D 3kB (in d D 3 dimensions),
it actually vanishes for T ! 0 as required by the third law of thermodynamics,
and follows the Debye law CV / T 3 (in d D 3 dimensions) for T � �; the lat-
tice parameter according to classical statistical mechanics at low T varies linearly
with T , which would mean the thermal expansion coefficient would become con-
stant, while in reality the thermal expansion coefficient also vanishes for T ! 0,
and the same holds for temperature derivatives of elastic constants.

Is there a need at all to study such low-temperature properties with simula-
tions? Isn’t it good enough to work out the statistical mechanics based on the lattice
dynamical phonon treatment? At this point, it must be emphasized that the simple
harmonic approximation for crystals yields the Debye law but it does not yield any
temperature dependence of the lattice parameters and the elastic constants at all.
In order to account for these temperature dependencies, one has to use at least the

3
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T

classical

classical

CvµT3

Θ

T
Θ

α

classical

Clm

T
Θ

Fig. 5.1 Qualitative sketch of the specific heat Cv (upper left part), the lattice constant a (lower
part) and an elastic constant C`m (upper right part) plotted versus temperature T . The corre-
sponding behavior given by classical statistical mechanics are the broken straight lines. Significant
differences between classical and quantum statistical mechanics occur for temperatures T below
the Debye temperature �
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self-consistent quasi-harmonic theory. The latter relies on the fact that at nonzero
temperature in the NVT ensemble it is not the internal energy minimum which
yields the thermal equilibrium but the free energy is a minimum, and at nonzero
temperature in a crystal internal energy E and free energy F differ by the entropic
contribution (F D E � TS) due to the disorder caused by the displacements of
the atoms associated with the phonon vibrations. However, we emphasize that this
quasi-harmonic theory is not exact due to the neglect of anharmonic terms. While,
according to classical statistical mechanics, the harmonic approximation does get
exact as T ! 0, this is not true if quantum effects are taken into account, due
to zero-temperature motions the anharmonicity of the potential always plays some
role. These zero-temperature motions are a direct consequence of (5.4) of the result-
ing Heisenberg uncertainty principle: a particle in a gas would be “spread out” over
a linear dimension given by the thermal de Broglie wavelength,

�T D h=
p
2�mkBT ; (5.7)

the delocalization of particles around the lattice sites of a crystal (in the potential
from their neighbors) may be smaller (see Fig. 5.2 and [5.1]), but it also increases
at low temperatures proportional to T �1=2, as the thermal de Broglie wavelength
does (5.7). On the other hand, Fig. 5.2 demonstrates that for atoms such as Si or O
the delocalization of atoms due to zero-point motion at the temperatures of inter-
est is only of the order of 0:1 Å or even smaller, i.e., much less than all interatomic
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Fig. 5.2 Radii of “ring polymers” representing quantum-mechanically treated silicon and oxygen
atoms in two crystalline structures of SiO2, ˇ-cristobalite and ˇ-quartz, plotted as a function of
temperature, using a Trotter number P D 30. For comparison, the thermal de Broglie wavelengths
for free oxygen and silicon atoms are also shown. (From [5.1])
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spacings: therefore the neglect of quantum statistics and its consequences (exchange
due to direct overlap of wave functions of particles at neighboring sites) is not
a problem in practice.

The precise estimation of lattice parameters, elastic constants and other proper-
ties of crystals is of interest in materials science [5.2]. As an example, Fig. 5.3 [5.3]
shows the lattice parameter of orthorhombic polyethylene versus temperature, and
the fluctuation of the bond angle between three successive carbon atoms. One
sees that this lattice parameter does show a behavior as anticipated qualitatively
in Fig. 5.1, but even at room temperature the classical and the quantum-mechanical
calculations do not yet coincide (note that polyethylene melts at about Tm D 413K).
Quantum effects are particularly strong in solid polymers, since H and C are such
light atoms, and although the bond-angle potential along the C � C chain is rather
stiff, there does occur an appreciable zero-point fluctuation in the bond angle. These
results [5.3], demonstrating the importance of quantum effects in ordinary polymers
such as polyethylene, have come somewhat as a surprise, since polyethylene melts
already at Tm D 413K, and usually one expects quantum effects to be strong only
far below the melting temperature. However, in the case of CnH2nC2 one must take
into account the particular anisotropy of the crystal, the covalent forces along the
backbone of the chain molecules are very much stronger than the weak van der
Waals-type forces between neighboring chain molecules, and the latter forces are
only responsible for melting.

Of course, many more problems of the type shown in Figs. 5.1–5.3 exist in
the physics of condensed matter. Particularly interesting are again phase-transition
phenomena, and indeed we encounter many transitions in solids from one crys-
tal structure to another driven either by varying the temperature or by varying the
pressure. At such structural phase transitions, the local potential experienced by
atoms sometimes is of the double-well type: this allows for quantum phenomena
which have no classical counterpart at all, such as tunnelling. We also emphasize
that interesting quantum effects in condensed-matter physics not only arise from
the non-commutativity of the position and momentum operators (5.4), but similar
considerations can be made for operators associated with other physical observ-
ables as well, e.g., (orbital) angular momentum and spin. Consider the problem of
monolayers of adsorbed molecules such as N2 on graphite [5.4]: In the

p
3 � p

3

commensurate superstructure, one may ignore both the translational degrees of free-
dom and the out-of-plane rotation, and the only degree of freedom that one must
consider is the angle 'i describing the orientation of molecule i in the xy-plane
parallel to the substrate. Then the Hamiltonian is (I is the moment of inertia of the
molecules, and OV the intermolecular potential)

OH D
NX

j D1

OL2
j z

2I
C
X

i<j

OV 	 O'i ; O'j



: (5.8)
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Fig. 5.3 (a) Temperature dependence of the lattice constant a for orthorhombic polyethylene
(CnH2nC2). Results of a path-integral Monte Carlo calculation are compared with the values for
a classical system and from experiments. After Martonak et al. [5.3]. (b) Temperature dependence
of the average fluctuation h.ı˚CCC/

2i1=2 of the C � C � C bond angle in polyethylene, according
to the classical Monte Carlo simulation (full dots), yielding h.ı˚CCC/

2i1=2 / T 1=2 at low T , and
according to path integral Monte Carlo simulations (open symbols). Two choices of chain length n
are used, n D 12 and n D 24, respectively. (After [5.3])
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For this problem the commutation relation analogous to (5.4) reads
h OLj z; O'k

i
D �i„ıjk; (5.9)

and the resulting zero-point vibrations of the angles O'k cause an appreciable reduc-
tion of the orientational order parameter in comparison with its classical value at low
temperature [5.5]. Finally, considering the classical Heisenberg model of Chap. 1
again,

H D �J
X

i<j

OS i � OSj � �BH

NX

iD1

OS z
j ; (5.10)

but now rather than unit vectors the OS i are spin operators, satisfying the commuta-
tion relation h OS˛

i ;
OSˇ
j

i
D i„"˛ˇ�

OS�
j : (5.11)

Since the total magnetization OM D �B
PN

iD1
OS z
i commutes with the Hamilto-

nian, quantum effects do not lead to a reduction of the magnetization relative to its
classical ground state value. But, as spin wave theory shows, the temperature depen-
dence of internal energy and magnetization are very different in the quantum case
from the classical case,

E.T / D h OHi D E0 C constT 5=2; quantum case; (5.12)

M0 �M.T / / T 3=2; quantum case; (5.13)

while
E.T / �E0 / T; M0 �M.T / / T; classical case: (5.14)

Again one sees that in the classical case a nonzero specific heat results for T ! 0,
analogous to the Dulong–Petit result for crystals. And just as the phonon theory
of crystals is difficult if one wishes to include anharmonic terms, such terms exist
for spin waves (magnons) too and again cannot be accounted for completely by
exact analytical methods. Quantum Monte Carlo methods, however, can be applied
without such restrictions.

5.2 The Path Integral Quantum Monte Carlo Method

The basic idea of the path integral representation of the partition function [5.6] can
already be explained for the simple problem of a single quantum particle in one
dimension x in an external potential OV .x/, where (5.3) and (5.2) reduce to

OH D OEkin C OV D � „2

2m

d 2

dx2
C OV .x/; (5.15)

Z D
Z

dxhxj exp.� OH=kBT /jxi D
Z

dxhxj exp.�. OEkin C OV /=kBT /jxi: (5.16)
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The path integral representation of (5.16) can be most easily derived if one recalls
the Trotter–Suzuki formula [5.7, 5.8]

exp. OAC OB/ D lim
P !1Œexp. OA=P/ exp. OB=P/�P ; (5.17)

which holds for two non-commuting operators OA; OB , which satisfy another operator
identity

exp. OAC OB/ D exp. OA/ exp. OB/ exp

�
�1
2
Œ OA; OB�

�
; (5.18)

when the commutator of the operators OA; OB is a complex number c, i.e., Œ OA; OB� D c.
Equation (5.18) can be easily derived from systematic Taylor expansions of the
exponential function and should be familiar to the reader from elementary text books
on quantum mechanics. If we now apply (5.18) to the operator exp. OA0 C OB 0/ where
OA0 D OA=P , OB 0 D OB=P , we recognize that the term Œ OA0; OB 0� that appears on the

right-hand side in the last exponential is of order P�2,

Œ OA0; OB 0� D c=P 2; (5.19)

and thus it is plausible that in the limitP ! 1 this correction can be neglected, and
hence (5.17) results. In our case of the particle in the external potential we hence use

exp
h
�. OEkin C OV /=kBT

i

D lim
P !1

h
exp.� OEkin=kBTP/ exp

�
� OV =kBTP

iP

: (5.20)

Using (5.20), the partition function (5.16) becomes

Z D lim
P !1

Z
dx1

Z
dx2 � � �

�
Z

dxP hx1j exp.�Ekin=kBTP/ exp.� OV =kBTP/jx2i

� hx2j exp.� OEkin=kBTP/ exp.� OV =kBTP/jx3ihx3j � � � jxP i
� hxP j exp.� OEkin=kBTP/ exp.� OV =kBTP/jx1i: (5.21)

The matrix elements appearing in (5.21) can be worked out, this is just an
exercise in elementary quantum mechanics, and the result is

hxj exp.� OEkin=kBTP/ exp.� OV =kBTP/jx0i

D
�
mkBTP

2�„2

�1=2

exp

�
�mkBTP

2„2
.x � x0/2

�
exp

�
�V.x/C V.x0/

2kBTP

�
: (5.22)
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Thus the partition function becomes

Z D lim
P !1ZP ;

ZP D
�
mkBTP

2�„2

�P=2 Z
dx1

Z
dx2 � � �

�
Z

dxp exp

(
� 1

kBT

"
�

2

PX

sD1

.xs � xsC1/
2 C 1

P

PX

sD1

V.xs/

#)
; (5.23)

where the boundary condition xP C1 D x1 is implied, and as an abbreviation an
effective spring constant � was introduced,

� D mP.kBT=„/2: (5.24)

From (5.23) one immediately recognizes that ZP can be considered as the par-
tition function of a problem in classical statistical mechanics with P degrees of
freedom, namely a harmonic chain in an external potential V.xs/=P . In this way
we have a problem of quantum statistical mechanics (5.16) to which standard Monte
Carlo methods, as described in the first chapter of this book, are readily applied. Of
course, in practice we will work with several choices of large but finite P , in order
to carry out the extrapolation P ! 1 numerically.

This approach can be generalized straightforwardly to N particles interacting
with each other according to the potential OV . Or i � Orj / in three dimensions (5.1)–
(5.3) if we disregard the indistinguishability and statistics of the particles (later on
this restriction will be removed of course). Using steps analogous to those which
lead from (5.21) to (5.23), use of (5.20) now yields for (5.3) the result

ZP D
�
mkBTP

2�„2

�3NP=2

�
Z

dr
.1/
1 � � �

Z
dr

.P /
1

Z
dr

.1/
2 � � � dr

.P /
2 � � �

Z
dr

.1/
N � � �

Z
dr

.P /
N

� exp

(
� 1

kBT

"
�

2

NX

iD1

PX

sD1

�
r

.s/
i � r

.sC1/
i

2

C 1

P

X

i<j

PX

sD1

V
�
jr.s/

i � r
.s/
j j
#)

: (5.25)

Equation (5.25) can be interpreted as a melt of cyclic chains (“ring polymers”)
with harmonic springs connecting neighboring beads along the chains, but the inter-
actions among the beads are rather uncommon: while in a physical melt of ring
polymers in principle every bead can interact with every other bead in the system,
here only beads with the same Trotter index S are interacting (the coordinate along
the Trotter index S plays the role of imaginary time 	 D s
	 [5.6] and hence there
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Fig. 5.4 Schematic representation of two interacting quantum particles i , j in two dimensions:
each particle (i ) is represented by a “ring polymer” composed of P D 10 effective monomers at
positions r

.s/
i , with s D 1; 2; : : : ; P . Harmonic springs (of strength �) only connect “monomers”

of the same “polymer” while interatomic forces join different monomers with the same Trotter
index s, Indicated by the thin straight lines. In the absence of such interactions, the size of such
a ring polymer would be of the order of the thermal de Broglie wavelength �T D h=

p
2�mkBT ,

where h is Planck’s constant

is only an interaction between particles that belong to the same “timeslice” 
	).
This situation is sketched in Fig. 5.4 for two interacting particles.

By (5.25), the problem of evaluating the partition function, (5.2), within the
framework of quantum statistical mechanics has indeed been reduced to an equiv-
alent problem in classical statistical mechanics, although one must be careful since
the effective Hamiltonian Hp of the N � P particles in ZP

ZP D
�
mkBTP

2�„2

�3NP=2 Z
dr

.1/
1 � � �

Z
dr

.P /
N exp

�
� 1

kBT
HP

�
(5.26)

depends explicitly on temperature (via the spring constant �, see (5.24)) [5.6, 5.9–
5.12]. Thus Monte Carlo simulations can be applied rather straightforwardly to
estimate corresponding averages [5.9–5.12]

hAiP D Z�1
P

Z
dr

.1/
1 � � �

Z
dr

.P /
N exp

�
� 1

kBT
HP

�
A: (5.27)

Let us now briefly discuss the physical interpretation of these results. If the poten-
tial in (5.25) could be neglected completely, we could infer from the equipartition
theorem of classical statistical mechanics that the energy carried by each spring is
(in d dimensions)

�

2

��
r

.s/
i � r

.sC1/
i

2
�

D d

2
kBT: (5.28)

Using (5.24) and (5.28), we conclude that the average mean square distance
between neighboring particles in a ring polymer is
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`2 �
��

r
.s/
i � r

.sC1/
i

2
�

D dkBT=� D „2d=.mkBTP/: (5.29)

Of course, this result does not depend on s, all particles in a ring polymer are
equivalent. Now the gyration radius of a ring polymer containing P monomers for
large P scales is

˝
R2

g

˛ D `2P=12 D .d=12/.„2=.mkBT //: (5.30)

As could have been expected, this is of the same order as the square of the thermal
de Broglie wavelength, �2

T D h2=.2�mkBT /, and the “Trotter number”P has can-
celled out from this result. As is well known from the quantum statistical mechanics
of an ideal, noninteracting gas, integrating out the momenta the Heisenberg uncer-
tainty principle .
p/2.
x/2 � h2 requires that the delocalization of a particle in
space is h.
x/2i � h2=h.
p/2i � „2=.mkBT /, omitting prefactors of order
unity here. Equation (5.30) thus again illustrates that quantum effects become more
important the lower the temperature and the lighter the particle (i.e., the smaller the
mass m). Of course, (5.29) no longer is accurate when interactions among the par-
ticles occur, but qualitatively it still predicts correctly the order of magnitude of the
quantum mechanical delocalization due to zero-point motions at low temperatures;
Fig. 5.2 gives an explicit example for the case of SiO2 [5.1].

Now it is clear that in order to take into account quantum effects correctly one
has to perform the extrapolation towardsP ! 1 (see (5.23)). From (5.17) to (5.20)
one can infer that the quantum corrections of physical observables scale as P�2 (see
(5.19)). This result implies that one should compute observables for several values
of P and try an extrapolation of the results as a function of P�2. Of course, in gen-
eral it is a nontrivial question to judge how large P must be chosen in order to reach
the asymptotic scaling limit. From (5.5) it is clear that the distance between effec-
tive monomers in the ring polymer scales as ` / „=pmkBTP. We need to keep this
distance fixed at a value that is small in comparison to the length scale on which the
potential acting on the particles changes appreciably. In order to keep ` fixed it thus
obviously is necessary to keep the product mkBTP fixed – the lower the tempera-
ture, the larger P must be chosen. In practice, there does not exist a simple recipe
that tells us how largeP has to be in a specific case; rather one has to find the appro-
priate range of P values by trial and error. Figure 5.5 shows that in favorable cases
rather small values of P suffice to reach the asymptotic limit [5.13] where the scal-
ing of data linearly with P�2 actually is observed. This figure also demonstrates
that PIMC is able to identify typical quantum-mechanical effects such as “isotope
effects”: the two isotopes 20Ne and 22Ne of the Lennard–Jones system differ only
by their mass – in classical statistical mechanics there would be no difference in
static properties whatsoever. However, Fig. 5.5 shows there is a clear distinction
between the lattice constants of the two isotopes, and the difference observed in the
simulation in fact is rather close to the value found in experiments [5.14]. However,
other examples exist when even Trotter numbers as large as P D 100 are not large
enough to ensure that the asymptotic limit of the P�2 scaling has been reached.
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Fig. 5.5 Trotter scaling plot
for the lattice parameter a of
solid neon. The upper curve
corresponds to 20Ne at
T D 16K, the lower curve to
22Ne at T D 16K.
(From [5.13])
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As mentioned above, the treatment so far has completely neglected the effects of
quantum statistics. This approximation is ok for crystals, ensuring furthermore that
the typical inter-particle distance is large in comparison with the linear dimension
of the ring polymers. As expected, this approximation breaks down when the linear

dimension of the ring polymer describing a particle
�q

hR2
gi


becomes comparable

to inter-particle distances: then the wave functions show appreciable overlap and the
effects of quantum statistics need to be properly taken into account. This problem
needs to be handled when one wishes to treat quantum crystals such as solid 3He or
solid 4He, as well as the corresponding quantum fluids [5.11, 5.12]. Here we shall
only discuss Bose systems (such as 4He). Only totally symmetric eigenfunctions
contribute to the density matrix, and hence we introduce a permutation operator OP
such that OPR is a permutation of particle labels if we use the shortened notation
R � .r1; r2; : : : ; rN / for the set of particle coordinates. Then we have for any
eigenfunction˚˛. OR/

OP˚˛.R/ D 1

N Š

X

P

˚. OPR/; (5.31)

and the partition function for a Bose system therefore takes the form

ZBose D
�
mkBTP

2�„2

�dNP=2
1

N Š

Z
dr

.1/
1 � � �

Z
dr

.P /
N exp.�HP =kBT /: (5.32)

Now the boundary condition is not r
.P C1/
i D Or .1/

i as it was in (5.25) and (5.26),
but one has to obey only the condition that

OPR.P C1/ D R.1/: (5.33)

This means that paths are allowed to close on any permutation of their starting
positions, and contributions from all N ! closures are summed over in the partition
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function. At high temperatures the contribution from the identity permutation will
dominate, while at zero temperature all permutations contribute equally. In the clas-
sical isomorphic polymer system, this means that “cross-links” can form between
chains and open up again; of course, this has nothing to do with the chemical kinet-
ics of cross-linking and polymerization in real polymers. Thus, a two-atom system
with P effective monomers per ring polymer can be in two possible permutation
states: either two separate ring polymers, each with P springs (this is the situation
described in Fig. 5.4) or one larger ring polymer with 2P springs.

It is illuminating to ask what superfluidity means in this formalism [5.15], since
this actually occurs in 4He: A macroscopic polymer is formed which involves of
the order of N atoms and stretches over the entire system. From Fig. 5.4, it is
clear that this “cross-linking” among ring polymers can set in only when the linear
dimension of a ring polymer becomes of the same order as the “ring polymer spac-
ing”; from this argument one can get a rough estimate of the superfluid transition
temperature, by putting the thermal de Broglie wavelength �T D h=

p
2�mkBT

equal to the classical inter-particle spacing, %�1=d in d dimensions, % being the
density. The “degeneracy temperature” TD found from �T D %�1=d is TD D
%2=dh2=.2�kBm/, and this sets the temperature scale on which important quantum
effects occur.

In practice, use of (5.25) and (5.30) would not work for the study of superfluidity
in 4He: although the formalism in principle is exact, too large values of P would
be required in order to obtain reasonable results. In order to make progress one
must not use the so-called “primitive action” defined in (5.25) but must use the so-
called “improved actions” for HP . We refer the reader to the original literature for
details [5.11].

5.3 Quantum Monte Carlo for Lattice Models

One follows again the strategy to decompose the Hamiltonian of the considered
model H into two parts, OH D OH1 C OH2, that can be diagonalized separately so that
the use of the Trotter–Suzuki formula [5.7, 5.8] is helpful, see (5.17),

expŒ�. OH1 C OH2/=kBT � D lim
P !1Œexp.� OH1=kBTP/ exp.� OH2=kBTP/�P : (5.34)

Unfortunately, there is no general recipe how this splitting of the Hamiltonian
into parts is best done in practice – what is best depends very much on the model
that is considered. Therefore many different variants of this approach can be found
in the literature [5.16–5.18]; we hence cannot attempt to explain all these various
methods, but only attempt to convey the spirit of the general approach here. At this
point, we also mention that it is possible to consider higher-order decompositions of
OH, where application of the Trotter formula with a finite Trotter number P does not

imply a scaling of the error as P�2 but according to a higher power of 1=P [5.19].
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As a first example, we treat the one-dimensional Ising model in a transverse field
of strengthH?, taking [5.20]

OH1 D �J
NX

iD1

O� z
i O� z

iC1;
OH2 D �H?

NX

iD1

O�x
i ; (5.35)

where O�˛
i .˛ D x; y; z/ denote the Pauli spin matrices at lattice site i . Periodic

boundary conditions O�˛
N C1 D O�˛

1 are assumed as usual. As a state representation let
us use eigenstates of O�z and label them by Ising spin variables, s D ˙1, i.e.,

O� zjsi D sjsi: (5.36)

Of course, OH1 is diagonal in this representation, while OH2 is not. Now the P th
approximantZP to the partition function can be written as

ZP D Tr
n
exp.� OH1=kBTP/ exp.� OH2=kBTP/

oP

D
X
n
S

.s/

i

o

PY

sD1

NY

iD1

exp

�
J

kBTP
S

.s/
i S

.s/
iC1

� ˝
S

.s/
i

ˇ̌
exp

�
H? O�x

i

kBTP

� ˇ̌
S

.sC1/
i

˛
: (5.37)

In this trace we have to take periodic boundary conditions in the imaginary time
direction as well, S .P C1/

i D S
.1/
i . Using the results for the Pauli spin operators, one

easily obtains the following result for the matrix element in (5.38)

hsj exp.a O�x/js0i D
�
1

2
sinh 2a

�1=2

exp

�
1

2
log cotha

�
ss0; (5.38)

where a is an abbreviation for H?=.kBTP/. Using (5.38) in ZP one obtains an
expression that is formally equivalent to the partition function of an anisotropic
two-dimensional Ising model in the absence of any fields, namely

ZP D
�
1

2
sinh.2H?=kBTP/

�PN=2

�
X
n
S

.k/

i

o
exp

"
PX

kD1

NX

iD1

�
KPS

.k/
i S

.kC1/
i C J

kBTP
S

.k/
i S

.k/
iC1

�#
; (5.39)

with a coupling constant KP in the “Trotter direction” that depends both on the
temperature T and the linear dimension P in this direction,

KP D 1

2
logfcoth.H?=kBTP/g: (5.40)
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Equation (5.40) is analogous to the coupling with the spring constant � in (5.24).
Again it turns out necessary to choose P such that one works in the limit of large
KP , i.e., one must have kBTP=H? 	 1, the lower the temperature the larger the
Trotter dimensionP must be. As in the off-lattice case, the original interaction (here
the exchange interaction J ), acts only between spins with the same Trotter index
(Denoted as k here).

The partition function of the two-dimensional Ising square lattice can be solved
exactly also for anisotropic exchange couplings, and hence there is no need to deal
with this problem by Monte Carlo methods. However, the same method as shown
in (5.35)–(5.40) straightforwardly applies to higher-dimensional Ising models with
transverse fields as well – always the quantum effects lead to the occurrence of this
extra dimension, and the linear dimension P in this direction needs to be extrapo-
lated to infinity in order to render this method as an exact one. In practice, the recipe
is to carry out a series of simulations for finite values of P , and extrapolate physical
properties as functions of P�2 towards P ! 1.

As a second and physically more interesting example, where the Trotter formal-
ism is applied to a spin problem on a lattice, we have the anisotropic Heisenberg
chain with spin quantum number s D 1=2. The Hamiltonian of this model is given
by (periodic boundary conditions again being implied)

H D
NX

iD1

.Jx
OSx
i

OSx
iC1 C Jy

OSy
i

OSy
iC1 C Jz OS z

i
OS z
iC1/: (5.41)

There have been several distinct ways in which the quantum Hamiltonian can be
split into parts such that the Trotter formula (5.17) can be applied in a useful way.
We describe here only the procedure first suggested by Suzuki and by Barma and
Shastry [5.21, 5.22],

OH D OH0 C OHA C OHB ; (5.42)

where

OH0 D �
NX

iD1

Jz OS z
i

OS z
iC1;

OHA D
X

i odd

OHi ; OHB D
X

i even

OHi ; (5.43)

where OHi is the local transverse part of the Hamiltonian,

OHi D �
�
Jx

OSx
i

OSx
iC1 C Jy

OSy
i

OSy
iC1


: (5.44)

We apply the Trotter formula to obtain the P th approximantZP of the partition
function in the following form,

ZP D Tr
�
e� OH0=2kBTPe� OHA=kBTPe� OH0=2kBTP e� OHB =kBTP

P

: (5.45)
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As in the previous case, we use eigenstates of OS z and hence of the Hamiltonian
OH0, the Ising-like part. We now insert into the above trace operation altogether 2P

complete sets of such states in such a way that there is just one complete set between
each term e� OHA=kBTP, e� OHB =kBTP.

ZP D Tr
fS

.k/

i
g
exp

(
� 1

2kBTP

2PX

kD1

H.k/
0 � 1

kBT

X

i2A

2PX

kD1

h.i; k/

� 1

kBT

X

i2B

2PX

kD1

h.i; k/

)
; (5.46)

with

exp Œ�h.i; k/=kBT � D ˝
S

.k/
i S

.k/
iC1

ˇ̌
exp.�Hi=kBTP/

ˇ̌
S

.k;i/
i S

.k/
iC1

˛
: (5.47)

Also the spins S .k/
i have values S .k/

i D ˙1=2. Equation (5.46) can be interpreted
as the partition function of a lattice of size N � 2P with periodic boundary condi-
tions in both directions and a very anisotropic interaction: these are just the two-spin
couplings described by H.k/

0 D �PN
iD1 JzS

.k/
i S

.k/
iC1 in the real space direction,

and temperature-dependent four-spin couplings on alternating elementary plaque-
ttes, which couple neighboring sites in both real space and the Trotter direction. This
one can recognize from (5.47), which defines the four-spin couplings implicitly.

For more details on this problem defined by (5.41) and results obtained in numer-
ical studies of (5.46) by Monte Carlo methods we refer to the literature [5.20,5.23].
Here we turn to a very brief discussion of other models that have been intensively
studied, that involve fermionic degrees of freedom explicitly. The simplest case is
spinless fermions in one dimension [5.20, 5.23], with the Hamiltonian

OH D �t
NX

iD1

. OcC
i OciC1 C OcC

iC1 Oci /C V

NX

iD1

Oni OniC1: (5.48)

As is well known, the fermion operators OcC
i , Oci create (or annihilate) a particle at

lattice site i , and satisfy the anticommutation relation

Œ OcC
i ; Ocj �C D OcC

i Ocj C Ocj OcC
i D ıij : (5.49)

The particle number operator

Oni � OcC
i Oci (5.50)

has only the two eigenvalues ni D 0 or ni D 1,

Oni j1i D 1j1i; Oni j0i D 0j0i D o; (5.51)
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expressing the Pauli principle that never can two fermions be in the same state. The
total number of particles in the system is then related to the operator

ON D
NX

iD1

Oni ; (5.52)

and the particle density is defined as

O% D ON=N: (5.53)

In (5.48) one can choose the hopping energy t as unity, leaving V as the only
nontrivial energy scale in the model. Since OcC

i jni i D j1i if ni D 0, OciC1jniC1i D
j0i if niC1 D 1, the term OcC

i ciC1 in (5.48) yields a non-vanishing contribution if
a particle is destroyed at site i C 1 and simultaneously a particle is created at site i ,
which physically may be interpreted as a hopping process of the particle from site
i C 1 to site i .

It turns out that the present model, (5.48), can be essentially mapped to the pre-
vious model, (5.41), by a clever transformation: this approach is one of the standard
tricks to deal with quantum problems, by which one tries to make the problem more
tractable! Thus, one first defines spin-raising . O�C

`
/ and spin-lowering . O��

`
/ operators

in terms of the Pauli matrices O�˛
`
.˛ D x; y; z/,

O�C
`

D . O�x
` C i O�y

`
/=2; O��

` D . O�x
` � i O�y

`
/=2: (5.54)

Now the fermion operators can be expressed in terms of the operators O�C
`

, O��
`

,
O� z

`
by the so-called Jordan–Wigner transformation,

OcC
`

D O�C
`

exp

2

4 i�
2

`�1X

pD1

	
1C O� z
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3

5 ; Oc�
` D O��

` exp

2

4� i�
2

`�1X

pD1

	
1C O� z

p



3

5 :

(5.55)

While this nonlocal transformation looks fairly complicated, the resulting Hamil-
tonian becomes rather simple, if we neglect boundary terms, which are unimportant
for N ! 1,

OH D � t
2

NX

iD1

	 O�x
i O�x

iC1 C O�y
i O�y

iC1


 � V

2

NX

iD1

	 O� z
i O� z

iC1 C 2 O� z
i C 1



: (5.56)

This problem can be solved by the method described for (5.41) in (5.42)–(5.51),
or a similar decomposition [5.20, 5.24]. Here we do not discuss further the method-
ological aspects of this problem, but rather show results [5.24] for the structure
factor

ST .q/ D
NX

j D1

	h Oni OniCj i � h Oni ih OniCj i
 cos.jqa/; (5.57)
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Fig. 5.6 (a) Points showing Monte Carlo data for the structure factor S.q/ versus q, for the case
of N D 40 and 20 non-interacting electrons (t D 1, V D 0) at a low temperature, kBT D 1=4.
Solid line is the analytical solution, which can trivially be found for this non-interacting system.
(b) Monte Carlo results for the structure factor S.q/ versus q, for the case of N D 40 but 20
interacting electrons (t D 1, V D 2, kBT D 1=4). Note the difference in scale between parts (a)
and (b). (c) Maximum structure factor for the half-filled case .h O%i D 1=2/; S.q� /, plotted versus
the logarithm of the lattice size for t D 1, V D 2, kBT D 1=4. (From [5.24])

where a is the lattice spacing and q the wave number (Fig. 5.6). One can see that for
such fermion models even in d D 1 dimensions nontrivial results are obtained. But
even in this case statistical errors at low temperatures become appreciable already
for moderately large N (the largest N included in Fig. 5.6 is N D 100), and the
finite-size behavior needs to be carefully analyzed (note the logarithmic scaling
with N ).

One of the most famous models for interacting electrons on a lattice is the single-
band Hubbard model [5.25]

OH D �t
X

hi;j i
. OcC

j;	 Oci;	 C OcC
i;	 Ocj;	 /C U

X

i

Oni# Oni"; (5.58)
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where now OcC
i;	 . Oci;	/ denotes a creation (annihilation) operator for a fermion spin �

at lattice site i , with � D" or � D# denoting the two orientations of the electron
spin. Comparing (5.58) with (5.48), we note that we have made two generalizations:
from one dimension to general dimension, but the hopping is still restricted to near-
est neighbor pairs hi; j i; and the fermions are treated as spin 1

2
particles, as they

should be, rather than ignoring the spin, as done in (5.48). Electrons are negatively
charged, of course, and so in principle we should have a Coulomb interaction: as
a crude approximation, all interactions are neglected apart from the on-site inter-
action between two electrons with opposite spin on the same site in (5.48); for the
case of “spinless fermions”, at most one particle per site is possible, and hence the
simplest choice of interaction is a nearest-neighbor interaction. Although the model
(5.58) is not a realistic description of any physical system, it still captures some
essential features of the physics of strongly correlated electrons. Originally the Hub-
bard model was studied intending applications to the metal–insulator transition, and
to the problem of itinerant magnetism in narrow bands in metallic crystals. During
the last 15 years it has become a very popular starting point (in its two-dimensional
version) to describe the electrons in the Cu2O-planes of high-temperature super-
conducting materials. Although it has been studied very intensively with a variety
of methods, important aspects of its properties are still incompletely understood,
and thus the model (5.58) still is an active area of research.

For higher-dimensional systems, the transformation of (5.55) does not help, and
thus a different approach for dealing with the fermion operators is needed. One
strategy is to integrate out the fermionic degrees of freedom by introducing auxiliary
bosonic fields.For this purpose one uses the identity

Z C1

�1
exp.�a�2 � b�/d� D p

�=a exp.b2=4a/; (5.59)

where a; b are real numbers, and a > 0 is required. Suppose now we wish to calcu-
late the grand-canonical partition functionZgc with the Trotter–Suzuki formula,

Zgc D Tr exp

�
� 1

kBT

� OH � � ON
�

D lim
P !1ZP

gc ;

ZP
gc D Tr

(�
exp

�
� 1

kBTP

� OEkin � � ON
�

exp

�
� 1

kBTP
OV
��P

)
; (5.60)

� being the chemical potential, and we have made use of the Trotter formula to
disentangle terms which are quadratic in the fermion operators . OEkin � � ON / from
quartic terms ( OV thus contains the terms U Oni" Oni# D U OcC

i" Oci" OcC
i# Oci#). Now one can

express exp.� OV =kBTP/ as an exponent of a quadratic form, if one uses (5.59) as
follows .U > 0/
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exp
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� U

kBTP

NX

iD1

Oni" Oni#

#

/
NY

iD1

Z C1

�1
d�i exp

�
�kBTP�2

i

2U
� �i . Oni" � Oni#/ � U. Oni" C Oni#/

2kBTP

�
: (5.61)

Symbolically, the P th approximant ZP
gc to the grand-canonical partition function

can be written as follows, involving a quadratic form of the fermion operators in the
exponential,

ZP
gc D

NY

iD1

Z C1

�1
d�i Tr

n
exp

h
OcC
i	A

.1/
ij Ocj	

i
� � � exp

h
OcC
i	A

.2P /
ij Ocj	

io
; (5.62)

where the A.k/
ij (which depend on the �i and � , of course) are elements of N �N -

matrices A.k/. However, for quadratic forms in the fermion operators as appear
in (5.62) the trace over the fermionic degrees of freedom can be carried out
analytically, to yield [5.18]

Tr
n
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h
OcC
i

OA.1/
ij Ocj

i
� � � exp

h
OcC
i

OA.P /
ij Ocj

io
D det

n
1C exp

�
A.1/


� � � exp

�
A.P /

o
:

(5.63)

As a result, the partition function becomes [5.18]

Z.P /
gc /

Y

i;s

Z
d�.s/ exp
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64�
kBTP
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.s/
i
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75 (5.64)
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i


exp.�eK=kBTP/

� � � exp.�eK=kBTP/ exp
�
�eV

�
��.P /

i

 �
: (5.65)

Here eK is an abbreviation for eK D Ekin � .� � V=2/N , the kinetic energy matrix
for a single-particle matrix on a lattice, and eV .�`/ is a diagonal matrix depending
on the � j̀ which we do not write out in detail here.

By eliminating the fermionic degrees in favor of Gaussian fields �.s/
i (or in favor

of Ising spin variables, which is an even more useful alternative for the Hubbard
model [5.26]), one has managed to express the partition function entirely in terms
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of real numbers, so it looks suitable for a Monte Carlo evaluation. However, in order
to be able to interpret the result in terms of an effective classical Hamiltonian, i.e.,

Z.P /
gc /

Y

i;s

Z
d�.s/

i exp
h
�H.P /

eff

�
�

.s/
i


=kBT

i
; (5.66)

it is mandatory that the integrand in (5.66) is always non-negative, and this is not the
case! This problem – which is quite typical for quantum Monte Carlo simulations
of fermionic systems – is called the “minus-sign problem” [5.27]. So when we want
to calculate an average of a quantity A.x/ with a measure %.x/,

hAi D
Z
A.x/%.x/dx

�Z
%.x/dx; (5.67)

we can no longer interpret %.x/ as probability density, if %.x/ is not positive semi-
definite, and so the basis for Metropolis importance sampling is no longer valid.
Of course, this difficulty can be circumvented formally by the trick of using the
probability densitye% D j'.x/j= R j%.x/jdx and absorbing the sign of %.x/ in the
quantity that one wishes to estimate,

hAi D
R
A.x/sign.%.x//e%.x/dxR

sign.%.x//e%.x/dx
D hAOsi

hOsi ; (5.68)

where Os is the sign operator. But it is unlikely that this importance sampling based
on j%.x/j will really sample the important regions of phase space whenN gets large.
Indeed, for the Hubbard Hamiltonian one estimates that [5.18]

hOsi / exp.��NU=kBT /; (5.69)

where � is a constant of order unity. Thus it is clear that for low temperatures and
large N the denominator hOsi in (5.68) gets extremely small, and hence it becomes
impossible to sample hAi using (5.68) with meaningful accuracy.

While many schemes have been devised to alleviate this problem, a fully satis-
factory solution to this “minus sign problem” is unknown to the authors of this book
at the time of writing. In view of these difficulties, we have confined ourselves to
a rather sketchy description of the quantum Monte Carlo approach to fermions on
lattices, since this is still an active area of research. Also the treatment of quantum
spin models still is under development: in particular, substantial improvement has
been obtained by combining cluster algorithms with PIMC Monte Carlo methods
for quantum spin systems [5.28].
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5.4 Concluding Remarks

Quantum Monte Carlo simulation is a particularly rich field, and many aspects
are still under development. In this chapter, we have emphasized the path inte-
gral quantum Monte Carlo technique and even for this method only the flavor of
the approach could be given, and typical applications were sketched. There are
also important Monte Carlo methods addressing the problem of solving the many-
body Schrödinger equation, in order to find ground-state energy and associated
wave functions [5.18]. We refer the interested reader to the literature where he can
find very concise accounts of “variational Monte Carlo (VMC)”, “Green’s function
Monte Carlo (GFMC)”, “Projector Quantum Monte Carlo (PQMC)”, etc., [5.18].
Path integral simulations of “rotors” (rotating rigid molecules) have been reviewed
in [5.29].



Chapter 6
Monte Carlo Methods for the Sampling
of Free Energy Landscapes

6.1 Introduction and Overview

In this chapter, we return to classical statistical mechanics, where in the canoni-
cal ensemble averages of an observable A.Ex/, where Ex stands symbolically for the
“microstate” coordinate in the configurational part of the phase space of the system,
are given by (cf. Sect. 2.1.1)

hA.Ex/iT D 1

Z

Z
dEx exp

��H.Ex/=kBT
�
A.Ex/; (6.1)

where H.Ex/ is the Hamiltonian of the considered many-particle system, kB Boltz-
mann’s constant, T absolute temperature, andZ being the partition function, which
is related to the free energy F ,

Z D
Z

dEx expŒ�H.Ex/=kBT �; F D �kBT lnZ: (6.2)

By simple sampling Monte Carlo (Sects. 2.1.2.–2.1.5), the integrals over the
(very high-dimensional!) space

R
dEx. . . in (6.1), (6.2) are replaced by sums over a

sample of M randomly chosen points fEx1; Ex2; : : : ; ExM g, but we have seen that sim-
ple sampling works only if the number N of the particles (or degrees of freedom,
such as Ising or Heisenberg spins, cf. Sect. 2.1.1) is extremely small. Therefore, we
have introduced the Importance Sampling Monte Carlo method (Sect. 2.1.6), where
the points fEx�g no longer are chosen completely at random, but preferentially from
the important region of configuration space. Namely, choosing a state Ex� with a
probability proportional to the Boltzmann factor exp.�H.Ex�/=kBT /, the average in
(6.1) is simply replaced by an arithmetic average over the M states generated, cf.
(2.35):

hA.ExiT � A.Ex/ D 1

M

MX

iD1

A.Exi /: (6.3)

In the previous chapters of this book, we have seen that the Importance Sam-
pling Monte Carlo method is very powerful; it allows a very large number of useful
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applications. However, when we compare (6.1) and (6.3), we see that some impor-
tant information has been lost: (6.3) has as a normalizing denominator no longer
the partition function Z (6.2), but rather simply the total number M of generated
configurations. In fact, doing Importance Sampling Monte Carlo, the knowledge of
Z and hence F , as well as of the entropy S (remember F D E � TS, where the
internal energy E is accessible as a thermal average of the Hamiltonian, of course,
E D hH.ExiT / has been lost.

This lack of knowledge on F is particularly disadvantageous when one deals
with first-order phase transitions, of course, since there several “macrostates” com-
pete, which at the transition all have the same free energy. Consider, for example, the
thermally driven phase transition of the q-state Potts ferromagnet, that was already
considered in Sect. 2.3.7 in a finite size scaling context. When we study (in the ther-
modynamic limit, N ! 1) the free energy per spin F=N of the Potts ferromagnet
as a function of temperature (in zero field H ), we observe that for temperatures T
less than the transition temperature Tc the free energy of the (q-fold degenerate)
ordered phase is lower than that of the (metastable) continuation of the free energy
branch of the (nondegenerate) disordered phase, while for T > Tc the disordered
branch has the lower free energy. At Tc, the two branches Ford.T /; Fdis.T / are pre-
cisely equal, but the two branches meet there under different angles. Since we know
from elementary thermodynamics that .ˇ � 1=kBT /

E D .@F=@̌ /H D �kBT
2

�
@F

@T

�

H

; (6.4)

the slopes @Ford=@T jTc
; @Fdis=@T jTc

simply are related to the energies E�; EC in
Fig. 2.20,EC�E� being the latent heat at the first-order transition. Since it turns out
that the phases that coexist at the first-order transition are separated by a free energy
barrier (that is huge ifN is sufficiently large), the finite size scaling analysis of first-
order phase transitions (described in Sect. 2.3.7) is often difficult to apply, when
one relies on straightforward importance sampling. So, one would like to know
the free energies of the ordered and disordered phases Ford.T /; Fdis.T / explicitly,
since then the transition simply could be located from the condition Ford.Tc/ D
Fdis.Tc/. The “poor man’s recipe” to achieve this has been based on a method called
“thermodynamic integration” [6.1, 6.2]. From (6.4), we readily recognize that free
energy differences can be computed from


F � F2 � F1 D
Z ˇ2

ˇ1

E.ˇ/dˇ D
Z ˇ2

ˇ1

hHiˇ dˇ: (6.5)

To carry out the integral in (6.5) numerically with sufficient accuracy, one needs
to compute hHiˇ at a large number of inverse temperatures ˇ intermediate between
ˇ1 and ˇ2 (and this need may be cumbersome: that is why we call this approach
a “poor man’s recipe”). To get an absolute free energy, one needs to know the
free energy F1 of a reference state. For the Potts ferromagnet in the disordered
phase, a convenient reference state is the completely random state at ˇ1 D 0, where
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E.0/ D 0 and S.ˇ D 0/ D NkB ln q is trivially known. For the ordered phase,
a similarly simple reference state would be ˇ2 ! 1, where the system is fully
ordered, E coincides with the ground state energy, and S D kB ln q (without a
factor N : we just have a q-fold degenerate ground state). In practice, it suffices to
choose a large but finite ˇ2 as a reference state, for which the deviation of E.ˇ2/

from the ground state energy is negligibly small.
Although we have called this thermodynamic integration approach a “poor man’s

recipe”, one should not be misled: There are cases where this simple-minded
approach actually is the method of choice, superior in accuracy to both finite size
scaling approaches and the sampling techniques that we shall describe in this chap-
ter; examples for the high accuracy that one can achieve in the location of transition
temperatures of lattice models can be found in [6.3–6.5]. Some of these examples
concern surface effects at first-order phase transitions (“surface-induced ordering”,
“surface-induced disordering” [6.6]), and in such context one needs to locate the
transition temperature of a very large model system in the bulk with extremely high
accuracy to allow for meaningful conclusions.

Even though thermodynamic integration can (at least in favorable cases) yield
information on the free energies of the two phases that coexist at the transition, it
does not yield any information on the barrier between these phases in configuration
space. This free energy barrier is responsible for the hysteresis that very often is
observed in simulations and also in experiments!) near first-order transitions, cf.
Fig. 2.20. In many contexts, it is of great interest to gain information on a suitable
path in a (suitably coarse-grained) “free energy landscape” that connects the free
energy minima that correspond to the coexisting phases with each other.

When one discusses H.Ex/ as a function of the configuration space coordinate
Ex one may speak of a “potential energy landscape”, but clearly the considered
space is extremely high-dimensional, and the landscape in this space is presum-
ably extremely “rugged”. As always in statistical physics, one is more interested
in a reduced description, referred to as “coarse-graining” above. The most famil-
iar concept of coarse-graining uses the idea of an “order parameter” as introduced
by Landau [6.1]. In simple cases, like Ising ferromagnets or fluids that undergo a
vapor–liquid phase transition, this order parameter is a scalar quantity (the magneti-
zation hmiT;H per spin in the case of a ferromagnet, or the density � D hN iT =V in
the case of a fluid occupying a volume V ). Rather than discussing the full canonic
or grand-canonic probability distribution

pcan.Ex/ D .1=Z/ expŒ�H.Ex/=kBT �

or
pg;c.Ex/ D .1=Y / expŒ.�N � H.Ex//=kBT �; (6.6)

where Y.T; V; �/ D P
N

exp.�N=kBT /ZN .T; V / is the grand-canonical parti-

tion function and � the chemical potential, one focusses attention to a reduced
description, for example, in terms of the distribution p.�/ of the density only,
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p.�/ D .1=Y /
X

N

Z
dEx expŒ.�N � H.Ex//=kBT �ı.� �N=V /: (6.7)

Note that p.�/ can be interpreted in terms of a free energy f .�/ per unit volume as

p.�/ D .1=Y / expŒ�Vf .�/=kBT �: (6.8)

Figure 6.1 presents a plot of f .�/ versus � for a Lennard–Jones model of a fluid
at a temperature T D 0:68Tc and choosing the chemical potential � such that in
the bulk (volume V D L3 ! 1/ coexistence between vapor and liquid occurs,
� D �coex.T / [6.7, 6.8]. These data have been obtained by the technique of “suc-
cessive umbrella sampling” [6.9], which will be described in the following section.
Related data can be found in [6.10–6.12] for fluids and in [6.13–6.15] for Ising
(lattice gas) models. One can see that the graph of f .�/ versus � exhibits several
(rounded) kinks; this behavior (which leads to true singularities in the thermody-
namic limit, L ! 1) is more clearly visible when one considers the variation of
ˇ O� with �, where � D .@f=@�/T and O� D � � �coex.T /, see Fig. 6.2 [6.7, 6.8].
The small snapshot pictures underneath this curve illustrate the different states
of the system: For � < �hom=sph the vapor phase is homogeneous, while near
� D �hom=sph a transition takes place to an inhomogeneous state of the system, where
a spherical droplet coexists with surrounding (supersaturated) vapor. The so-called
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Fig. 6.1 Free energy per unit volume f .�/ plotted versus density �, for a Lennard–Jones model of
a fluid (the potential being truncated at rc D 2:21=6� , with the Lennard–Jones parameter � being
the unit of length, and shifted to zero there). The data refer to three choices of cubic L � L � L

simulation boxes, with periodic boundary conditions, a temperature T D 0:68Tc, and the chemical
potential being chosen at two-phase coexistence, � D �coex, so the two minima are equally deep.
Insert shows a blow-up of the region near the bulk gas density at coexistence, �g
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Fig. 6.2 Plot of the reduced chemical potential difference ˇ O� versus �, for the system with
L D 15:8� from Fig. 6.1. Typical snapshot pictures of system configurations illustrate the
evolution of the system from homogeneous vapor to homogeneous liquid via a sequence of inho-
mogeneous states when one crosses the free energy barrier of Fig. 6.1 when � is increased. For
further explanations cf. text

“droplet evaporation–condensation transition” has received a lot of attention both
by simulations [6.7, 6.8, 6.10–6.14] and by theory [6.16–6.19].

From an analysis of the free energy barrier in Fig. 6.1 in the region �hom=sph <

� < �sph=cyl, one can extract valuable information on the surface free energy of
nanoscopic droplets [6.7,6.8,6.10,6.13,6.16,6.20]. Then, for �sph=cyl < � < �cyl=slab

a regime occurs, where the periodic boundary conditions stabilize a cylindrical liq-
uid droplet rather than a spherical one, before for �cyl=slab < � < �slab=cyl the periodic
boundary conditions stabilize a liquid slab. Varying the density does not change the
total surface area (which is 2L2) in this region, only the amount of liquid phase
changes. Since the two liquid–vapor interfaces occurring then in the system do not
have any curvature on average, one has O� D 0 in this region, P.�/ is a flat function
(independent of �, if mutual interactions between the two interfaces are negligible).
The free energy difference 
f between this state and the homogeneous states at
two-phase coexistence thus simply is �
f D 2L2fint, where fint is the interfa-
cial tension. Hence, measurement of 
f has been proposed [6.21] as a method to
estimate fint via

fint D lim
L!1.1=2L

2/v
f: (6.9)

Indeed this technique has found widespread and successful use (e.g., [6.14, 6.15,
6.22–6.27]).

For �slab=cyl < � < �cyl=bub, one has again a cylindrical inhomogeneity stabi-
lized by the periodic boundary condition, but now the role of vapor and liquid are
interchanged, we find a cylinder of vapor surrounded by liquid and, for �cyl=bub <

� < �bub=hom, a spherical vapor bubble surrounded by liquid. Again, an analysis
of the free energy f .�/ in this region yields interesting information on the surface
free energy of bubbles and free energy barriers for bubble nucleation. Thus, the path
over the free energy “mountain” that one has to take when one moves from homo-
geneous vapor to homogeneous liquid by increasing the density at fixed volume of
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the system contains a lot of physically relevant information, elucidating interfacial
phenomena and the kinetics of transitions from one stable phase to another.

Of course, we observe only a free energy “mountain” since in the step from (6.6)
to (6.7) we have drastically reduced the problem by integrating over all degrees of
freedom apart from a single scalar variable, the density � is this case, considering
then f .�/. When we consider a coarse grained free energy as a function of sev-
eral variables (which we formally combine into a vector E�/, these minima are not
close-by located with respect to each other, multiple trajectories may need consid-
eration, in particular if the free energy “landscape” is a rugged landscape of hills
and valleys (Fig. 6.3) [6.28]. Such “rugged free energy landscapes” [6.29] occur
in such diverse systems as domain patterns in random ferromagnets, diluted mag-
nets with competing interactions (“spin glasses” [6.30], undercooled fluids near the
glass transition [6.31], and polymers (in particular proteins) under bad solvent con-
ditions [6.32–6.40]. In all these systems, the step analogous to the step from (6.6)
to (6.8) for the simple fluid, where one focuses on a reduced description in terms of
a simple “order parameter”, is not at all straightforward. In models for spin glasses,
this problem has been circumvented by studying two “real replica”, copies of the
same system with a specific choice of random exchange interactions, and defining
an order parameter q as the (normalized) projection of the spin configurations in the
replicas (1) and (2) onto each other, q D .1=N /

PN
iD1 S

.1/
i S

.2/
i (in the case of Ising

spins, S .˛/
i D ˙1) [6.30, 6.31]. The sampling of the distribution P.q/, analogous

to the distribution P.�/ in (6.7) and (6.8), nevertheless is a challenging compu-
tational problem, since in addition to the thermal averaging (with the Boltzmann
factor, cf. (6.7)) there is the need to carry out an average Œ� � � �av over the quenched
disorder: that is, the distribution PfJij g.q/ obtained for one particular choice fJij g
of the random bonds needs to be averaged over (typically) several hundred realiza-
tions of such random bond configurations [6.30, 6.41–6.46]. For the structural glass
transition of undercooled fluids and for protein folding, on the other hand, even an
understanding what order parameters one should use to describe these problems is

Fig. 6.3 Schematic picture of a “rugged free energy landscape”, plotted as a function of two order
parameter coordinates  x ,  y . The two white lines indicate two possible trajectories from the
region of one deep minimum to another one. From Dellago et al. [6.28]
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lacking [6.31, 6.34]. Despite the great interest in these “grand challenge problems”
of physics, we shall not emphasize them in this chapter.

However, in all these problems with rugged free energy landscapes, a useful first
step involves the consideration of the energy density of states g.E/. This quantity
is introduced rewriting the partition function in (6.2) as

Z D
Z

dEx expŒ�H.Ex/=kBT � D
Z

dEg.E/ exp.�E=kBT /: (6.10)

In full analogy with (6.7), it can be defined as

g.E/ D 1

Z

Z
dEx expŒ�H.Ex/=kBT �ıŒE � H.Ex/�: (6.11)

Sometimes, it is useful to generalize (6.11) to make it a function of several vari-
ables: For example, when one considers the problem of adsorption of an end-grafted
flexible macromolecule (a so-called “polymer mushroom”) on an attractive sub-
strate surface under bad solvent conditions [6.39], it is useful to consider instead
of g.E/ the function g.Es, Eint), where E D Es C Eint, Es being the energy
of adsorption won by the monomers at the attractive surface, while Eint is the
interaction energy between monomers. Such distributions g.E/ or generalizations
therefore can be sampled by various extensions of “umbrella sampling” [6.47,6.48]
such as “multicanonical Monte Carlo” [6.49–6.55] (Sect. 6.3) or the Wang–Landau
method [6.56–6.63] (Sect. 6.4), for instance.

The implementation of these “extended ensemble methods” [6.64, 6.65] and
related methods [6.65–6.74] has been a very active area of research during the last
two decades, and hence we give here only a simple introduction to some of the con-
cepts that have found the most widespread use. As an example for the usefulness
of such methods, Fig. 6.4 shows the “phase portrait” of a tethered polymer chain
described by the bond-fluctuation model on the simple cubic lattice [6.75, 6.76], a
system [6.39] already mentioned above, where Es D P

i

"sns, ns being the num-

ber of monomers that are in contact with the substrate surface and win an energy
"s each, ˇs D "s=kBT , and Eint D P

hi;j i
"bnij , nij being the number of bead–bead

pairs that win an interaction energy "b each, and the sums over i; j run over all
the monomers, ˇb D "b=kBT . Due to the competition between the two energy
scales and the constraints (connectivity of the chain, anchoring at the surface), this
macromolecule model exists in many different conformations (note that the lay-
ered states are, at least in part, crystalline states), and without the Wang–Landau
algorithm [6.56–6.58] it would have required an enormous effort to map out the
behavior of the model in the .ˇb, ˇs/ plane (Fig. 6.4) in detail.

Of course, a “phase portrait” as shown in Fig. 6.4 tells us only which states
dominate for a given point .ˇs, ˇb) in the parameter space; it does not tell us any-
thing about the path that the system takes when we start in a state distinct from
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Fig. 6.4 Phase portrait for a tethered polymer chain of length N D 64 in the space of the surface
coupling .ˇs/ and bead–bead coupling .ˇb/. The solid lines represent maxima of surface energy
and bead–bead contact energy fluctuations, and separate different states of the “polymer mush-
room”: Desorbed expanded (DE), adsorbed expanded (AE), desorbed collapsed (DC), adsorbed
collapsed (AC) and layered structures (LS). The dashed line is an estimate for the location of the
coil–globule transition, while the dotted lines represent shallow maxima of the surface energy fluc-
tuation. In the shaded area the free energy landscape could not be resolved well enough to identify
states that are well separated from each other

equilibrium, in order to approach equilibrium as a function of “time” (recall the
dynamic interpretation of Monte Carlo sampling, see Chap. 2).

Given a rugged free energy landscape as schematically shown in Fig. 6.3, it
is a nontrivial question which path the system will take to reach equilibrium. To
describe the kinetics of such thermally activated processes in complex free energy
landscapes, a Monte Carlo sampling over an ensemble of trajectories of such pro-
cesses is desirable, and this can be achieved by the “transition path sampling”
technique [6.28, 6.77–6.83] and its variants to sample rare events (“string method”,
“metadynamics”, etc.) [6.84–6.90]. As Bolhuis et al. [6.80] put it, transition path
sampling can be viewed as “throwing ropes over mountain passes in the dark”.

Of course, the sampling of trajectories of processes requiring thermal activation
such as crossing barriers in nucleation events via Monte Carlo methods has its sound
theoretical basis in the dynamic interpretation of Monte Carlo sampling [6.91]. In
fact, the first Monte Carlo simulation studies of nucleation processes in the nearest-
neighbor kinetic Ising model were performed decades ago [6.92, 6.93]. However,
this naive (i.e., unbiased) sampling of trajectories over free energy barriers is effi-
cient only if these barriers are not higher than a few kBT . Via transition path
sampling, one creates trajectories that are biased such that higher free energy barri-
ers (of the order of 20–100 kBT ) are crossed, and thus very valuable insight into the
kinetics of nucleation processes (e.g., [6.94]) can be gained. In Sect. 6.5, we shall
give the flavor of this transition path sampling method (more details can be found in
recent reviews [6.28, 6.80, 6.83]).
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6.2 Umbrella Sampling

We now return to the problem of calculating free energy differences between two
states 1 and 2, but we now assume these systems have different HamiltoniansH1.Ex/,
H2.Ex/. From (6.2), we can immediately derive that


F D F2�F1 D �kBT ln.Z2=Z1/ D �kBT ln

�R
dEx expŒ�ˇH2.Ex/�R
dEx expŒ�ˇH1.Ex/�

�
: (6.12)

Following the very pedagogic account given by Frenkel and Smit [6.95], we first
use (6.12) to justify the “overlapping distribution method” [6.96]. Suppose that we
carry out an importance sampling study of system 2. For every configuration space
point Ex that is generated in the resulting Markov chain, we can compute also the
potential energy H1.Ex/ of system 1. (We focus here on the case that both systems
have exactly the same volume V and same particle numberN .) We then can obtain
the probability of 
E D H2.Ex/� H1.Ex/ as

p2.
E/ D .1=Z2/

Z
dEx expŒ�ˇH2.Ex/�ıŒH2.Ex/ � H1.Ex/ �
E�: (6.13)

Due to the delta function, (6.13) can be rewritten as

p2.
E/ D .1=Z2/ exp.�ˇ
E/
Z

dEx expŒ�ˇH1.Ex/�ıŒH2.Ex/� H1.Ex/�
E�

D .Z1=Z2/ exp.�ˇ
E/p1.
E/ (6.14)

In full analogy to (6.13), p1.
E/ is the probability density of finding a potential
energy density 
E between systems 1 and 2, when one samples the states of the
system 1. Using (6.12), we obtain

lnp2.
E/ D ˇ.
F �
E/C lnp1.
E/: (6.15)

From (6.15), we see that the two functions lnp2.
E/ and lnp1.
E/�ˇ
E should
be identical, apart from a constant offset ˇ
F . Thus, if there exists a range of 
E
where the two distributions lnp2.
E/ and lnp1.
E/�ˇ
E have sufficient over-
lap, one can obtain ˇ
F from a best fit. Of course, in practice, this method can
work only if the two systems differ only very little (e.g., two Ising systems at slightly
different values of the magnetic field H ).

Another consequence of (6.14) is seen when one integrates this equation over

E from �1 to C1. Since p2 is normalized to unity, this yields

1 D exp.ˇ
F /
Z C1

�1
d
E exp.�ˇ
E/p1.
E/ D exp.ˇ
F /hexp.�ˇ
E/i1;
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that is

exp.�ˇ
F / D hexpf�ˇ.H2.Ex/� H1.Ex//gi1: (6.16)

Here h� � � i1 means that averages are taken in a sampling with system 1. Again (6.16)
is practically useful if the two systems 1 and 2 differ only very little.

The idea of “umbrella sampling” [6.47, 6.48] now is to enhance the overlap
between the distributions p1.
E/ exp.�ˇ
E/ and p2.
E/ by carrying out a
biased sampling with a suitable chosen weight function ˘.Ex/. Biased sampling is
derived by rewriting (6.1) as follows

hA.Ex/i0 D
Z

dEx˘.Ex/ expŒ�ˇH0.Ex/�A.Ex/=˘.Ex/

=

Z
dEx˘.Ex/ expŒ�ˇH0.Ex/�= ˘.Ex/

D hA.Ex/=˘.x/i0;˘=h1=˘.Ex/i0;˘ ; (6.17)

where the index ˘ at h� � � i0;˘ is a reminder that the weight contains an additional
factor ˘.Ex/ in the statistical weight for the states Ex, in addition to the Boltzmann
factor.

We use this to rewrite (6.16) as follows

hexpf�ˇŒH2.Ex/� H1.Ex/�gi1

D
R

dEx˘.Ex/ expŒ�ˇH2.Ex/�=˘.Ex/R
dEx˘.Ex/ expŒ�ˇH1.Ex/�=˘.Ex/

D hexpŒ�ˇH2.Ex/�=˘.Ex/i˘=hexpŒ�ˇH1.Ex/�=˘.Ex/�i˘ : (6.18)

Here, (6.17) is used for the special case H0.Ex/ D 0. In order to be able to sam-
ple both the numerator and the denominator with acceptable accuracy, the “bridging
distribution” ˘.Ex/ must have sufficient overlap with both the important regions
of configuration space of systems 1 and 2. This bridging property of ˘.Ex/ is
responsible for the name umbrella sampling.

In practice, it is often advantageous to work not only with a single bridging distri-
bution ˘.Ex/, but with many distributions intermediate between 1

Z1
expŒ�ˇH1.Ex/�

and 1
Z2

expŒ�ˇH2.Ex/�. Suppose, there exists a parameter 
 that distinguishes
between H2 and H1. Then, it often is useful to divide the interval 
 in n steps

 =n. The optimum choice of n, however, in the general case is a subtle mat-
ter [6.95]. Another important drawback is that the function ˘.Ex/ is not known a
priori, it must be guessed, using the knowledge on the Boltzmann weights of the
systems 1 and 2. As Frenkel and Smith [6.95] put it, “constructing a good sampling
distribution used to require skill and patience”, and therefore initially this method
did not find widespread use. However, there are situations where the implementation
of the method is rather straightforward. One such scheme is the technique of Virnau
and Müller [6.9] termed “successive umbrella sampling”, to which we turn now.
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This method has the advantage that by extrapolation of results from one “window”
to the next (adjacent) window one can estimate the weight function rather simply,
and one also can obtain rather reliable error estimates for this procedure. This algo-
rithm has been used for the study of liquid–vapor transitions [6.25, 6.27] and of
liquid–liquid phase separation [6.26,6.97]. For simplicity, we follow [6.9] using the
language appropriate for a liquid–vapor transition, and simply take the number of
particles N as the order parameter. We are interested in the distribution P.N/ for
a given choice of variables V; T and � in the grand-canonical ensemble, at temper-
atures T distinctly lower than the critical temperature. Then, P.N/ has two peaks:
one for particle numbers close to Nv D V�v and another close to N` D V�`, where
�v, �` are the densities of coexisting vapor and liquid in the thermodynamic limit,
provided� is close to�coex, and in betweenNv,N` there occurs a region with a deep
minimum (precisely at �coex we know that P.N/ / expŒ�Vf .�/=kBT �, with f .�/
shown in Fig. 6.1, for example). However, to sample the distribution efficiently, it is
better to sample the reweighted distribution Psim.N /

Psim.N / D P.N/ expŒ�w.N /�; (6.19)

where in the optimum case w.N / D lnP.N/, because then Psim.N / would be per-
fectly flat. We note that this is the same idea as used in multicanonical sampling
(see Sect. 6.3.) and Wang–Landau sampling (see Sect. 6.4), of course. However,
P.N/ initially is completely unknown.

The strategy [6.9] now is to divide the region of all particle numbers fromN D 0

to some N D Nmax into m overlapping windows of width !, and investigate one
small window after the other. A histogramHK.N /monitors how often each stateN
is visited in the window Œk!; .kC 1/!�, We denote the values of the k-th histogram
at its left and right boundary byHk` � Hk.k!/, Hkr � Hk Œ.k C 1/!�, and define
the ratio rk as

rk D Hkr=Hk`: (6.20)

After a predetermined number of Monte Carlo steps per window, the (unnormal-
ized) probability distribution is estimated recursively

P.N/=P.0/ D .H0r=H0`/.H1r=H1`/ � � � .Hk.N /=Hk`/

D ˘k�1
iD1 ri .Hk.N /=Hk`/ (6.21)

with N 2 Œk!; .k C 1/!�. Probability ratios in this equation correspond to free
energy differences. Care is needed at the boundaries of a window to fulfill detailed
balance: If a move attempts to leave the window, it is rejected, and the previous state
is counted once more for the histogram. The number of Monte Carlo steps (count
of insertion or deletion trials) is not increased, however, as these moves neither
contribute to the statistics.

As one samples one window after the other, a weighted simulation amounts to
replace Hk.N / by Hk.N / expŒ.wk.N /�, and the weight function wk.N / is esti-
mated by extrapolation: After P.N/ has been estimated, w.N / is extrapolated
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quadratically into the next window. The first window is usually unweighted. Virnau
and Müller [6.9] also give evidence (supported by phenomenological arguments)
that the statistical errors are basically independent of window size, and carefully
discuss the propagation of systematic errors. An application of this technique was
already shown in Figs. 6.1 and 6.2.

6.3 Multicanonical Sampling and Other “Extended Ensemble”
Methods

Let us consider the problem of thermally driven first-order transitions, as they occur
for instance in the case of the well-known q-state Potts model [6.98]. As discussed
already in Chap. 2, the probability distribution PL.E/ of the internal energy in a
simulation using lattices of size L � L.d D 2) or L � L � L (d D 3 dimensions)
in the transition region has two rather sharp peaks, separated by a deep minimum
in between (cf. also the Ansatz equation (2.99)). When the peaks have equal weight
[6.99,6.100] (“equal weight rule”), the transition from the ordered phase (stable for
T < Tc) to the disordered phase (stable for T > Tc) occurs, giving rise to a rather
sharp peak in the specific heat, which develops into a delta function (representing
the latent heat of the transition) as L ! 1.

It was rather obvious from the data presented in Chap. 2 that it is very difficult
to obtain accurate date on this specific heat peak by naive Monte Carlo sampling,
because for large L the transitions between the two peaks of P.E/ occur very
rarely, but it is necessary to sample many such transitions to estimate the rela-
tive weights for these peaks. In Chap. 4, it was described that by single histogram
reweighting [6.101] and multiple histogram reweighting [6.102] the accuracy can
be significantly improved, since Monte Carlo data yielding a distribution PL.E/

for one inverse temperature ˇ can be reweighted to neighboring temperatures in an
interval 
ˇ / 1=

p
N (where N D Ld here). Nevertheless, if the sampled distri-

bution has a double-peak structure, the problem of estimating correctly the relative
weights of the peaks remains.

The multicanonical Monte Carlo method [6.49–6.54] addresses this problem
noting from (6.10) that

PL.E/ D gL.E/ exp.�ˇE/ (6.22)

and suggesting to choose a reweighting with the weight function

wmuca.E/ / 1=gL.E/ for Emin � E � Emax; (6.23)

where the interval ŒEmin; Emax� is the range of energies of interest for the consid-
ered transition. Of course, if gL.E/ were known, the problem would be solved,
the specific heat could be calculated from gL.E/ analytically, and no Monte Carlo
sampling would be required. But gL.E/ is not known, one can only try to find a
“working approximation” [6.103] of the weight function wmuca.E/. After such a
function has been constructed, one performs an actual Monte Carlo simulation with
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this function, to obtain a final estimate of gL.E/. Then, one can use (6.22) to obtain
averages at the desired values ˇ of interest.

The drawback of multicanonical Monte Carlo is that finding a suitable approx-
imate weight function is not straightforward. (Note that the problem is essentially
the same as in standard umbrella sampling: This is no surprise at all, since mul-
ticanonical Monte Carlo can be viewed as a reformulation of umbrella sampling
[6.64, 6.95, 6.103].) In the case of the Potts model, it turned out useful to sample
PL.E/ for a small lattice (where the minimum in between the coexisting phases
is not yet very deep), and obtain gL.E/ accurately for small L, using then finite
size scaling concepts (cf. Chap. 2) to predict an approximation for gL.E/ at a large
value of L. After having then found a good estimate for the actual gL.E/ at this
value of L, one can go on to still larger lattices. We refer the reader to the original
papers for details [6.49–6.54]. This method can also be generalized to other vari-
ables (e.g., studying the first-order phase transition of an Ising model varying the
magnetic field [6.14], or varying the chemical potential difference in the case of
phase-separating polymer solutions [6.12, 6.24]).

For systems with rugged free energy landscapes, finite size scaling methods for
estimating weight factors wmuca.E/ often do not work; for example, for biomolecules
one particular size is only of interest, or for spin glasses, the weights change too
much when the system size is increased. If one does not want to rely on “ad hoc
per hand estimates” [6.103], one must try to use a systematic recursive method
[6.103–6.105]. Writing the weight of state ˛ as

w.˛/ D expŒ�b.E˛/E˛ C a.E˛/� � expŒ�S.E˛/�; (6.24)

where S can be interpreted as the associated entropy and assuming that the energy
spectrum is discrete (step size "), one can derive a recursion [6.54]

bnC1.E/ D bn.E/C Ogn.E/ŒlnHn.E C "/� lnHn.E/�="; (6.25)

Ogn.E/ D gn.E/=Œhn.E/C gn.E/�; (6.26)

gn.E/ D Hn.E C "/Hn.E/=ŒHn.E C "/CHn.E/�; (6.27)

hnC1.E/ D hn.E/C gn.E/; h0.E/ D 0; (6.28)

Hn.E/ being the histogram entry at the n-th step of the recursion. See the mono-
graph by Berg [6.54] for a justification of (6.25)–(6.28). We emphasize, however,
that a much more straightforward construction of weights for a multicanonical sim-
ulation is achieved by the use of Wang–Landau sampling [6.56–6.58], see next
section.

We mention at the end of this section a much more straightforward sampling
strategy to create an extended ensemble, which is known as “parallel tempering” or
“replica exchange Monte Carlo” [6.65, 6.66, 6.68]. One performs a set of m canon-
ical Monte Carlo simulations at different values ˇi , where i D 0; : : : ; m � 1, with
ˇ0 < ˇ1 < � � � < ˇm�2 < ˇm�1.
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For these runs standard Boltzmann weight factors expŒ�ˇiH.Ex/� are used. From
time to time, one attempts to exchange neighboring ˇ values,

ˇi ! ˇi�1; ˇi�1 ! ˇi ; i D 1; : : : ; n � 1 (6.29)

at fixed configuration of the systems, just treating the exchange in (6.29) as an addi-
tional type of Monte Carlo move, which is subjected to the standard importance
sampling acceptance criterion. Of course, the set of values fˇig has to be chosen
such that a reasonably large acceptance rate results. Obviously, this requires that
the distributions PL.E/ for ˇi and ˇi�1 have a strong overlap. Thus, the number
m of neighboring temperatures must scale like m / p

N as N ! 1, but nev-
ertheless the method is useful, particularly for systems such as glasses and spin
glasses [6.29, 6.31, 6.41–6.46].

6.4 Wang–Landau Sampling

The Wang–Landau algorithm [6.56–6.63] is an elegant iteration method to construct
directly the energy density of states, g.E/, in (6.10). This method has the merit of
great simplicity and therefore finds widespread applications [6.61]. The idea is to
perform a random walk in energy space with a flat histogram. One can also gener-
alize this method to other variables (e.g., sample for an Ising ferromagnet g.E;M/

whereM is the magnetization), but such generalizations will not be considered here.
Unlike histogram methods where one extracts estimates of g.E/ from probability
distributions generated by standard Monte Carlo simulations, temperature plays no
role in this algorithm at all! Transitions between microstates (e.g., spin flips in an
Ising model) are carried out according to probability

p.E ! E 0/ D minfg.E/=g.E 0/; 1g (6.30)

If g.E/ where known in before hand, a Markov process based on (6.30) would
generate a flat histogram. Since g.E/ is not known in before hand, an iteration
process needs to be performed to construct g.E/, starting from a simple initial
guess. In the absence of any a priori knowledge on g.E/, it is natural to choose
as an initial density of states simply g.E/ D 1, for all E . For simplicity, we
restrict here attention to a case where the energy spectrum is discrete and bounded
.Emin � E � Emax/, as it is the case for an Ising model or a lattice model for a
polymer chain, but we emphasize at the outset that such a restriction is not nec-
essary, and many successful applications of Wang–Landau sampling to off-lattice
models (like fluids or polymer chains with Lennard–Jones interactions) have been
given [6.61].

Since the actual g.E/ is very different from g.E/ � 1, it is necessary to have
a procedure that leads quickly away from this initial condition. This is achieved by
replacing g.E/ by g.E/ times f , where the initial guess of the modification factor
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f1 is f1 D e1, whenever a state with energy E is visited. During this random walk
in energy space controlled by (6.30), one accumulates a histogram H.E/; that is,
starting out with H.E/ D 0 for all E , one replaces H.E/ by H.E/C 1 whenever
E is visited. The moves that are carried out to realize (6.30) are just the standard
moves that one also would use in a standard Monte Carlo simulation that attempts
to sample the Boltzmann distribution (e.g., spin flips of an Ising model, random
displacements of an effective monomer to a new position in a model for a polymer
chain). This sampling process of the histogram is continued, until the histogram
H.E/ is “reasonably flat”. In practice, it has turned out that a useful criterion for
this “flatness” is to require that the minimum entry in the histogram is not smaller
than 80% of its mean value [6.56–6.58].

When this flatness has been achieved in the first iteration step, one resets all
histogram entries H.E/ to zero and performs a sampling with a modification fac-
tor f2 D p

f1 (and in the i -th step, one chooses fi D p
fi�1). Otherwise, the

procedure is identical to the procedure followed in the first step. This procedure is
iterated until fi reaches a minimum value, which in practice is chosen to be of order
fmin � exp.10�8/. While the detailed balance principle clearly is violated in the
early stages of the iteration, this is no problem in the final run.

The final density of states g.E/ then is used to calculate averages, for example,
the specific heat

C.T / D .hE2iT � hEi2
T /=.kBT

2/; (6.31)

where moments hEki are straightforwardly computed from g.E/ as

hEki D
X

E

Ekg.E/ exp.�ˇE/=
X

E

g.E/ exp.�ˇE/: (6.32)

Of course, it is possible to use the run with the final choice fmin to obtain more
detailed information. For example, in the study of Ising models, one would like to
estimate moments of the magnetization distribution hmkiT . Sampling of the full
(two-dimensional) joint density of states g.E;m/ would solve this problem, but
for large systems this would require a huge computational effort. Typically, it is
sufficient (and much easier) to only take “microcanonical” averages, hjmjkiE , from
which then the desired canonical averages follow,

hjmjkiT D
X

E

hjmjkiE g.E/ exp.�ˇE/=
X

E

g.E/ exp.�ˇE/; k D 1; 2; 3; : : : :

(6.33)
As an example, we recall a recent study of first-order interface localization–

delocalization transitions in thin Ising films with competing boundary fields [6.106].
Here, one considers the Ising Hamiltonian on a simple cubic lattice in a L�L�D
geometry, with periodic boundary conditions in x and y directions only. In the
z-direction, one has a free boundary condition, and in addition surface magnetic
fieldsH1 andHD D �H1 act on the first and last layer of the film, in the z-direction.
In these surface planes n D 1 and n D D, one also chooses exchange interactions
Js different from the exchange J in the bulk. Thus, the Hamiltonian is (Si D ˙1/
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H D �J
X

hi;j ibulk

SiSj � Js

X

hi;j isurfaces

SiSj �H1

X

i2nD1

Si �HD

X

i2nDD

Si : (6.34)

Studying this system for temperatures below the critical temperature Tcb of the
bulk Ising models, there occurs a regime of temperatures Tc.D/ < T < Tcb where
the total magnetization of the thin film is zero, because two domains of equal size
but opposite magnetization occur, stabilized by the surface magnetic fields of the
same sign and separated by an interface in the center of the film. However, for
T < Tc.D/, the interface gets bound to either the left or the right wall, and hence
one has a nonzero magnetization when the interface is localized near one of the
walls, since then one of the domains is much larger than the other. When Js=J

exceeds a critical value, the transition is of first order, and then a study by finite size
scaling methods is very difficult [6.107].

Schulz et al. [6.106] applied the Wang–Landau algorithm for the choiceH1=J D
0:25 and Js=J D 1:5, using thicknesses D D 6; 8 and 12 lattice spacings, while
the lateral linear dimension was varied up to L D 128. Figure 6.5 shows typical
data for the fourth-order cumulant U4 D 1 � hm4i=3hm2i2 plotted versus inverse
temperature. At a first-order transition, this quantity is predicted [6.108] to diverge
towards minus infinity proportional to �L2 at the first-order transition, and indeed a
deep and very sharp minimum develops (Fig. 6.5). Unfortunately, it was found that
already forD D 12 (andL D 128) the convergence of the Wang–Landau algorithm
turned out to be problematic, due to “entropic barriers” in the phase space [6.106].
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Fig. 6.5 Reduced fourth-order cumulant U4 of a thin Ising film of thickness D D 8 plotted versus
inverse temperature for different linear dimensions L (note that for L D 32 a full histogram g.M/

of the magnetization was employed). For L D 48 and L D 64multiple iterations were performed,
allowing to obtain error estimates, as indicated. The arrow indicates the estimate of the extrapolated
critical temperature, J=kBTc.D/
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Such entropic barriers were first pointed out and carefully analyzed by Neuhaus
and Hager [6.109] for the case of the two-dimensional Ising model. They showed
that both the multicanonical Monte Carlo method and the Wang–Landau Algorithm
suffer from this problem in a similar way; if entropic barriers are too high, the con-
figuration space of the system is insufficiently sampled, and this lack of ergodicity
leads to results that are systematically wrong. In the case of the d D 2 Ising model
transition from positive to negative magnetization, the entropic barriers occur in the
two-phase coexistence region, for example, when a transition from a droplet-type
configuration to a slab-like domain configuration should take place (analogous to
the transition discussed in Figs. 6.1 and 6.2). The “transition state” that amounts to
the barrier has a lens-type shape of a very elongated droplet (with a linear dimension
L in its long directions) [6.109], and it is very unlikely to reach such a state with the
standard Monte Carlo moves, which do not involve any bias towards such a state.

Entropic barriers have the effect that the time to sample the full equilibrium den-
sity of states grows exponentially with the linear dimensionL of the system [6.109].
For both the multicanonical and the Wang–Landau algorithm even without entropic
barriers, there is already a large effort required, since the energy space to be sam-
pled increases proportional to the particle number, Emax � Emin / N , and hence
performing a simple random walk type motion one would predict that the relaxation
time scales like N 2. Practical experience shows, however, that some correlation
effects do occur in this diffusion process, so the actual relaxation time increases
even faster [6.60, 6.74]. In practice, it is advantageous to divide the energy inter-
val Emax � Emin into many subintervals, in which Wang–Landau sampling can be
carried out in parallel (but care must be taken to deal with the boundaries of these
intervals correctly [6.59]).

Thus, the judgement of accuracy for the Wang–Landau algorithm (and similarly,
for the multicanonical method) is somewhat subtle. It is always advantageous to
carry out multiple independent runs and try to estimate the errors from these. How-
ever, there are cases where lack of ergodicity really is a problem, such as problems
involving very dense configurations of polymer chains (see, e.g., Fig. 6.4). Good
results are only obtained if the set of Monte Carlo moves is large enough so the
system does not get trapped in such configurations.

In view of all these problems, it is not surprising that in spite of these extended
sampling methods problems such as spin glasses, structural glass transition, pro-
tein folding, are still heavily debated, although interesting progress clearly has been
obtained [6.29].

6.5 Transition Path Sampling

Here we return to the problem already alluded to in Fig. 6.3. Suppose the system
is stable or metastable in the basin near the starting points (white dots) of the two
trajectories, that is, typically it will stay there for a very long time. Only very rarely
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it will follow a path over high saddle points in a complex free energy landscape to
make a transition into another deep basin (arrows).

The aim of transition path sampling then is to gain information on all probable
path ways, in order to analyze the transition mechanism. For example, in the context
of chemical reactions, one would like to identify the “reaction coordinate” [6.77];
in the case of crystal nucleation from the melt, one wants to get information on
the crystal, structure size, and shape of the nucleus that forms [6.110]; etc. This
“reaction coordinate” need not be a scalar, but may contain several variables: For
example, in nucleation from an unmixing binary fluid mixture one expects that both
the size of the droplet and its composition change during the growth of the droplet
from subcritical to supercritical.

Since the pathways collected with transition path sampling are trajectories con-
sistent with the markovian master equation description of Monte Carlo sampling, the
full information on the kinetics of the transition can be extracted [6.83]. In fact, this
technique and its ramifications [6.84–6.90] has taken an impressive development
since its invention, and we can give here only the flavor of the approach, and refer to
the quoted literature for details of its implementation. We also emphasize that transi-
tion path sampling can be adapted to cases where the underlying dynamic simulation
method is not Monte Carlo but Molecular Dynamics or Brownian Dynamics [6.83].
However, also in these cases the weight of the trajectories in the “transition path
ensemble” is obtained by Monte Carlo methods. The idea is to carry out a ran-
dom walk in the space of trajectories rather than in configuration space. The basic
step generates a new path fEx.n/.ftg/g from an old one fEx.0/.ftg/g. The underlying
dynamics of the system that is simulated defines a “path ensemble” PABfEx.f.t/gg,
where we denote the initial state as A and the final state as B. The initial condition
is prepared by placing the system in a heat bath at temperature T , and hence the
distribution of initial conditions is just the standard canonical distribution, but some
variable is constrained so that the state point falls in the region of one minimum in
the free energy landscape (Fig. 6.3) where all trajectories start.

In order that all trajectories are compatible with the path ensemble, one intro-
duces a transition probability pŒfEx.0/.t/g ! fEx.n/.t/g� that satisfies the detailed
balance condition with PABfEx.f.t/g/g,

PAB

n
Ex.0/.ftg/

o
p
hn

Ex.0/.t/
o

!
n

Ex.n/.t/
oi

D PAB

n
Ex.n/.ftg/

o
p
hn

Ex.n/.t/
o

!
n

Ex.0/.t/
oi
: (6.35)

The transition between individual states (at one time t of the Markov process,
Ex.0/.t/ ! Ex.n/.t/) hence is replaced by a transition between two full trajectories,
such as shown in Fig. 6.3.

This probability p then can again be written as a product of a “generation
probability” of a new path and an “acceptance probability”, and from (6.35) one
then readily can postulate a Metropolis importance sampling rule. Of course, the
subtle problem is the generation of new paths with a reasonably high acceptance
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probability. To solve this problem, one mostly relies on the so-called “shooting
algorithm” [6.28]. For this purpose, the path is divided into many small time slices.
From the randomly selected time slice t 0, one carries out a move to a new state,
Ex.t 0/ ! Ex0.t 0/ according to the rules of the underlying dynamics. From the new
state Ex0.t 0/, forward trajectories (that end up in B) and backward trajectories (that
end up in A) are generated, so that one can glue one forward and one backward
trajectory together to get a new full trajectory going from A to B. This new trajec-
tory eventually is accepted (or rejected), depending on the Metropolis test based on
(6.35). Of course, in order to be able to start such a sampling, an initial trajectory
must be available. Just as in ordinary Monte Carlo sampling, where the initial state
does not need to be similar to the states characteristic for the final thermal equilib-
rium, for example, one can start the simulation of an Ising ferromagnet always from
a perfectly ordered spin configuration irrespective of the temperature of the simu-
lation, one can start transition path sampling from a completely atypical trajectory,
and then try to relax the system to converge towards the dominating trajectories.
Of course, it depends on the model chosen whether such an approach is practically
feasible or not (and also the task of finding an initial trajectory is a nontrivial task!).

Before proceeding, we discuss a simple example, nucleation in the three-
dimensional Ising model with nearest-neighbor exchange [6.94]. Pan and Chan-
dler [6.94] chose a temperature T D 0:6Tc, a lattice of linear dimension L D 32,
and the magnetic field chosen H D �0:55, but the initial state was chosen to have
positive magnetization, constraining the system such that the maximum size of the
clusters of overturned spins was NA D 26. Since classical nucleation theory (using
the known interfacial free energy of the Ising model) yields critical cluster size
N � D 200, the “reactant” state which should contain a supercritical cluster was
chosen to have NB D 260 overturned spins in the largest cluster (the actual critical
cluster size was found to be near N � D 115, so NB was chosen large enough). An
initial trajectory was obtained by generating large overturned clusters with umbrella
sampling, and running Monte Carlo trajectories from such states, until a path con-
necting A to B could be built. Even if this initial path were uncharacteristic for the
transition path ensemble, equilibration was no problem, since this trajectory was
relaxed with 25,000 moves before the sampling was started, and then 1,000 inde-
pendent trajectories were generated (one every 100 moves). From these trajectories,
one can also construct the so-called “transition state ensemble” [6.28]: This is the
ensemble of states fExg from which 50% of the trajectories lead back to A, while
50% lead forward to B. Figure 6.6 shows histograms of the cluster size N � and
surface area S� in this transition state ensemble [6.94], and hence illustrates that
the concept of a well-defined size of a critical droplet (made by classical nucleation
theory [6.111]) clearly is a severe simplification, as expected [6.93].

A useful concept in transition path sampling is the “committor distribution”. It is
defined as the fraction of trajectories started in A and going via a state Er to reach the
state B after a time t [6.83]

PB.Er; t/ �
R DEx.t 0/P.fEx.t 0/g/ı.Er0 � Er/hB.Ex.t//R DEx.t 0/P.fEx.t 0/g/ı.Er0 � Er/ : (6.36)
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Fig. 6.6 Distribution of
cluster size (a) and surface
areas (b) in the transition
state ensemble, obtained from
transition path
sampling [6.94], for a nearest
neighbor simple cubic Ising
ferromagnet at 60% of its
critical temperature and a
field H=J D �0:55
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Here, hB.Ex/ D 1 if x 2 B and zero else, paths that start at time t D 0 at Er D Er0 but
do not end up at time t in the region B are not included in the numerator, while they
are included in the denominator. Thus, the committor distribution is a statistical
measure for “how committed is a given configuration to reach the ‘product state’
B” [6.83]. In a practical simulation, only a finite sample of N trajectories started at
t D 0 at a point Er in configuration space is available, and then (6.36) can be written
simply as

pB.Er; t/ � 1

N
NX

iD1

hB.Exi .t//: (6.37)

Analogously one can define pA.Er; t/, and a formal definition of the “transition
state ensemble” then becomes [6.28, 6.77–6.83]

pA.Er/ D pB.Er/; (6.38)

where we also have invoked a time-independent form of the committor (counting all
events that first reach A or first reach B, irrespective how long it has taken).

While transition path sampling is rather straightforward to implement in the
example of nucleation in the kinetic Ising model (Fig. 6.6), where one has a qual-
itative insight into the kinetics of the process and the nature of transition states
a priori, there are problems where no such knowledge is available, for example,
in the folding process of complex off-lattice models for proteins [6.34]. In such
cases, it is useful to combine then the transition path sampling with complementary
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sampling strategies to obtain information on the free energy landscape, for example,
the replica exchange method, that has been mentioned in Sect. 6.3 [6.34]. Since at
the time of writing “for large proteins the computational effort due to both system
size and long time scales becomes prohibitive” [6.34], this subject will remain an
area of further research.

6.6 Concluding Remarks

In this chapter, methodic advances in Monte Carlo sampling have been described
that overcome, to some extent, the limitation of the standard importance sampling
algorithm that no information on the partition function and hence the free energy is
available. This limitation has hampered the study of cases where several thermody-
namic states of the system (corresponding to valleys or basins of attraction in the free
energy landscape of the system) compete with each other and are separated by large
barriers. The standard example of this situation are first-order phase transitions, but
other cases where the free energy landscape is “rugged” and the order parameters
distinguishing the various basins are not well understood (spin glasses, proteins,
etc.) may be even more interesting. The methods that yield information on the rela-
tive weights of these states described by the basins often yield also information on
the height and nature of the free energy barriers between them, a question which is
interesting in its own right. In fact, transition path sampling then addresses also the
question of the kinetics of the pathways along which such barriers are crossed.

Many of the techniques described here start out from the old [6.112] and
well-known (e.g., Fig. 8 of [6.91]) fact that Monte Carlo sampling gives not only
information on averages such as written in (6.1) and (6.3), but also distribution
functions are obtained which contain valuable information. While the use of dis-
tribution functions to justify the finite scaling analysis of first- and second-order
phase transitions (see Chaps. 2–4 of this book) now is standard practice, includ-
ing histogram reweighting methods [6.101,6.102], only since about 1991 [6.49] the
problem of free energy barriers (that may contain, among other things, information
on interfacial free energies [6.21]) has become the focus of methodic development of
sampling strategies. The old idea of umbrella sampling [6.47] has been rediscovered,
and further developed, in many different variants (e.g., [6.9, 6.49–6.55, 6.66–6.73],
and much interesting insight into various problems of statistical thermodynamics
of condensed matter has been gained. A particularly simple but efficient approach
to sample the energy density of states, Wang–Landau sampling, has been proposed
10 years later, in 2001 [6.56, 6.57], nevertheless is already the most widely used
method in many different contexts, from the accurate estimation of complex phase
diagrams of magnetic systems [6.113] to membrane proteins [6.114]. In view of the
rapid development of methods during the last two decades, it is likely that further
improvements of methodology will occur in the near future, but now the methods
described here should allow a wealth of further useful applications.
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Of course, other methodic aspects outside the scope of this chapter (e.g., cluster
algorithms for spin models with long range interaction [6.115] and for off-lattice
fluids [6.116], finite size scaling for asymmetric fluid criticality [6.117] and – last
but not least – Quantum Monte Carlo methods, which even have started to compete
with quantum chemistry methods [6.118–6.121]) have also seen major progress.
Thus, Monte Carlo simulation in statistical physics continues to gain importance.



Appendix

Throughout the guide we have encountered a number of algorithms. It was intended
that everyone who actively participated in the guide would be able to try out the
presented algorithms. All the algorithms given in the text were given in the pseudo-
programming language. We realize that at the moment not everybody is familiar
with an algorithmic language. A guide, however, is of no use when the participants
cannot sit down and do the simulations by themselves.

To help to ease the conversion from the algorithmic language into FORTRAN
we include in this appendix FORTRAN versions of two of the basic algorithms. The
participant will by now have a feeling for how some of the problems are attacked and
will find no difficulty in adapting the given FORTRAN programs to other algorithms
given in the text.

A.1 Algorithm for the Random Walk Problem

The first listing is a program for the simple sampling of random walks.

c-------------------------------------------------------------c
c Algorithm c
c c
c Simple Sampling for the Random Walk Problem c
c c
c Dieter W. Heermann c
c Oct. 1987 c
c-------------------------------------------------------------c

integer nwalk,n,iseed,ip
real r,edx,edy,edxs,edys,xsqr,ysqr

c
c

write(*,*) ’step length of walk’
read(*,*) n

c
write(*,*) ’how many walks’
read(*,*) nwalk

c

175
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write(*,*) ’seed ’
read(*,*) iseed

c
edx = 0.0
edy = 0.0

c
edxs = 0.0
edys = 0.0

c
do 10 i=1,nwalk

x = 0.0
y = 0.0

c
do 20 j=1,n

c
c generate one step

r = random(iseed)

ip = r * 4
if ( ip .eq. 0 ) x = x + 1.0
if ( ip .eq. l ) y = y + 1.0
if ( ip .eq. 2 ) x = x - 1.0
if ( ip .eq. 3 ) y = y - 1.0

20 continue
c
c accumulate the result

xsqr = x * x
ysqr = y * y

c
edx = edx + xsqr
edy = edy + ysqr

c
edxs = edxs + xsqr * xsqr
edys = edys + ysqr * ysqr

c
10 continue

c
c perform the averaging

edx = edx / float(nwalk)
edy = edy / float(nwalk)

c
write (*,*) edx, edy, edxs, edys

c
stop
end

A.2 Algorithm for Cluster Identification

The algorithm to identify all clusters in a given percolation configuration is based
on an idea first proposed by Hoshen and Kopelman [A.1]. This idea was further
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developed by Kertesz (J. Kertesz, Private communication) and the algorithm descri-
bed below makes extensive use of his development.

The algorithm uses labels which we also found useful for other algorithms given
in the text. Suppose we scan the lattice from the upper left corner to the upper right
corner and continue with the next row starting from the first site of the left edge:

etc.

This is rather like a typewriter working its way across the paper. We start by labeling
the first occupied site with a “1”. If the next site is occupied we carry the label “1”
to this site. If we find another occupied site which is not connected with the cluster
labeled “1”, we label it with a “2”, etc. Assume we are somewhere in the lattice. All
the sites above and to left have been worked on. Assume further that the current site
is occupied. We check whether the site above the current site is occupied. If so we
read the label of this site. Next we check whether the site to the left is occupied. If
so, we read the label of this site. What label should be assigned? The labels of the
site above and the site to the left might not be the same. The two sites can belong to
two, until now, unconnected clusters. The current site is a link between them. Both
clusters have different labels. We need a means of identifying different labels with
each other.

The idea used to equate different labels is to use a sort of permutation vector. If
the cluster labeled, say, “10” becomes a part of the cluster labeled “7” we make an
entry in element number “10” that we should really look for label “7”.

That two clusters have to be recognized as one cluster can, of course, occur more
than once. The cluster labeled “7” may be connected to cluster “5”. How do we
identify the root label?

Each time two clusters are identified with each other the number of sites in the
cluster increases by more than one unit. From where do we get the information on
the number of sites in a cluster?

The two questions raised in the preceding paragraphs can be answered together.
We introduce two kinds of pointers. Positive integer numbers signify the number
of sites in the cluster. Negative integer numbers are the pointers to the next label.
Going through the permutation vector we continue until a positive number is found.

A listing of a program where the idea outlined above is realized is given below.

c-------------------------------------------------------------c
c Algorithm c
c c
c Simple Sampling of the 2D percolation Problem. c
c c
c Analysis of the droplet distribution. c
c c
c Oct. 1987 c
c Dieter W. Heermann c
c-------------------------------------------------------------c
c

dimension lattice(20,20)
c

dimension lptr(1OOO)
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dimension row(0:40)
dimension vecl(1OOO)

c
integer lptr,row
integer up,left,cl

c
c
c set the simulation parameters
c -----------------------------
c

write(*,*) ’linear lattice dim = ’
read(*,*) 1
write(**) ’give p=’
read(**) p
write(*,*) ’give iseed = ’
read(*,*) iseed
write(*,*) ’give mcsmax = ’
read(*,*) mcsmax

c
write(9,*) ’simulation parameters are as follows’
write(9,*) ’====================================’
write(9,*)
write(9,*) ’perc 2d: linear size = ’,l
write(9,*) ’iseed is ’,iseed
write(9,*) ’mcsmax is ’,mcsmax

c
c set up the random number generator
c ----------------------------------
c

iseed = iseed * 4 + 1
c
c

maxi = 99999
nsm = 1000

c
c-------------------------------------------------------------c
c c
c monte carlo part c
c c
c-------------------------------------------------------------c
c

do 200 mcs=1,mcsmax
do 100 i=1,l
do 100 j=1,l
lattice(i,j) = 0
if ( p .gt. ranf(iseed) ) lattice(i,j) = 1

100 continue
c
c-------------------------------------------------------------c
c c
c D r o p l e t A n a l y s i s c
c c
c Dieter W. Heermann c
c October 1984 c
c c
c-------------------------------------------------------------c
c

cl = 0
do 600 irow=0,l

row( irow ) = maxi
600 continue
c

do 605 irow=1,l
c

do 800 icol=1,l
c

if (lattice(irow,icol) .eq. 1) goto 805
row(icol) = maxi
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goto 800
c
c see if the spin is connected
c ----------------------------
c
805 up = row( icol )

left = row( icol - 1)
c

if ( up .eq. maxi ) goto 815
if ( lptr( up ) .gt. 0 ) goto 815
ms = lptr( up )

810 la = - ms
ms = lptr ( la )
if( ms .lt. 0) goto 810

lptr( up ) = -la
up = la

c
815 if ( left .eq. maxi ) goto 825

if ( lptr( left ) .gt. 0 ) goto 825
ms = lptr( left )

820 la = -ms
ms = lptr( la )
if ( ms .lt. 0 ) goto 820

lptr( left ) = -la
left = la

c
825 mini = minO( up, left )

if ( mini. ne. maxi ) goto 830
c
c spin is not connected. assign new label
c ---------------------------------------
c

cl = cl + 1
row( icol ) = cl
if ( cl .gt. nsm ) stop2
lptr( cl ) = 1
goto 800

c
c spin is connected. find minimum label
c -------------------------------------
c
830 nofs = 1

if ( up .eq. left ) goto 831
if ( up .ne. maxi ) then

nofs = nofs + lptr( up )
lptr( up ) = -mini
end if

831 if ( left .ne. maxi ) then
nofs = nofs + lptr(left)
lptr( left )= -mini
end if

row( icol ) = mini
lptr( mini ) = nofs

c
800 continue
605 continue
c
200

continue
c

end
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[2.100] H.W.J. Blöte, M.P. Nightingale: Physica A 112, 405 (1982);
J.L. Cardy, M.P. Nightingale: Phys. Rev. B 27, 4256 (1983);
P. Kleban, C.-K. Hu: Bull. Am. Phys. Soc. 27, 92(A) (1982)

[2.101] V. Privman, M.E. Fisher: J. Stat. Phys. 33, 385 (1983)
[2.102] K. Binder, D.P. Landau: Phys. Rev. B 30, 1477 (1984)
[2.103] M.E. Fisher, V. Privman: Phys. Rev. B 32, 447 (1985)
[2.104] M.S.S. Challa, D.P. Landau, K. Binder: Phys. Rev. B 34, 1841 (1986)

An error of [2.104] concerning the weights a
˙

was corrected by C. Borgs, R. Kotecky:
J. Stat. Phys. 61, 79 (1990)

[2.105] C.N. Yang: Phys. Rev. 85, 808 (1951)
[2.106] R.B. Potts: Proc. Cambridge Philos. Soc. 48, 106 (1952);

for a review see F.Y. Wu: Rev. Mod. Phys. 54, 235 (1982)
[2.107] T. Kihara, Y. Midzuno, T. Shizume: J. Phys. Soc. Jpn. 9, 681 (1954);

R.J. Baxter: J. Phys. C 6, L445 (1973)



References 185

Chapter 3

[3.1] Transputer Reference Manual (Inmos Ltd., Bristol, 1986)
[3.2] Transputer Development System (Inmos Ltd., Bristol, 1986)
[3.3] K. Bowler, A.D. Bruce, R.D. Kenway, G.S. Pawley, D.J. Wallace: Phys. Today 10, 40 (1987)
[3.4] Occam Programming Language (Prentice-Hall, Englewood Cliffs, NJ, 1984)
[3.5] R. Steinmetz: Occam 2 (Hüthig Verlag, Heidelberg, 1987)
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[5.2] P. Nielaba: In Annual Reviews of Computational Physics V, ed. by D. Stauffer (World

Scientific, Singapore, 1997) p. 137



References 189

[5.3] R. Martonak, W. Paul, K. Binder: Phys. Rev. E 57, 2425 (1998)
[5.4] D. Marx, H. Wiechert: Adv. Chem. Phys. 95, 213 (1996)
[5.5] D. Marx, O. Opitz, P. Nielaba, K. Binder: Phys. Rev. Lett. 79, 2908 (1993)
[5.6] R.P. Feynman, A.R. Hibbs: Quantum Mechanics and Path Integrals (McGraw-Hill, New

York, 1965)
[5.7] H.F. Trotter: Proc. Am. Math. Soc. 10, 545 (1959)
[5.8] M. Suzuki: Progr. Theor. Phys. 46, 1337 (1971)
[5.9] B.J. Berne, D. Thirumalai: Ann. Rev. Phys. Chem. 37, 401 (1986)

[5.10] J.D. Doll, J.E. Gubernatis (eds.): Quantum Simulations (World Scientific, Singapore, 1990)
[5.11] D.M. Ceperley: Rev. Mod. Phys. 67, 279 (1995)
[5.12] D.M. Ceperley: In Monte Carlo and Molecular Dynamics of Condensed Matter Systems,
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Replica exchange Monte Carlo, 165, 173
Reptation, 21, 22, 86
Reweighting, 112, 118–124
Ring polymer, 139, 140, 142, 143
Rotational diffusion, 43
Rotors, 152
Roughening transition, 55
Rouse, 22

Sampling
biased, 72, 93
importance, 5, 17, 28, 35, 72, 96
simple, 5, 7, 11, 13, 34, 72, 74

Scaling
function, 38, 49, 104, 125, 126
laws, 38

Schrödinger equation, 131, 152
Self-average, 62, 64, 107

lack of, 15, 62
strong, 15, 62
weak, 66

Self-avoiding random walk, see Random walk
k-tuple, 95
growing, 96

Semi-infinite system, 26
Shooting algorithm, 171
Silicon, 134
SiO2, 134, 141
Slithering snake, see Reptation
Specific heat, 54, 63, 115, 118, 126, 133, 137
Spin glass, 28, 42, 46, 56, 111, 158, 165, 166,

169
Spin operators, 137, 144
Spin wave theory, 137
Spin-flip

exchange, 20, 24
single, 20, 23, 98, 108, 117

Spinodal decomposition, 28
Statistical

error, 32, 53, 121, 164
inefficiency, 34
weight, 6, 8, 29

Structure factor, 147, 148
Subsystems, 45, 116, 118
Superfluidity, 132, 143
Suprafluid, 133
Surface free energy, 157
Surface-induced disordering (ordering), 155
Susceptibility, 35, 44, 65, 115

Sweep, 98
Symmetry breaking, 48, 116

field, 48

Table method, 24
Thermal de Broglie wavelength, 134, 140, 141,

143
Thermal expansion coefficient, 133
Thermal length, 56
Thermodynamic integration, 154
Thermodynamic length, 130
Thermodynamic limit, 41, 45, 154
Thin-film, 26
Transfer matrix, 51
Transition path sampling, 160, 169–173
Transition point, 105
Transition probability, 17, 18, 22, 96, 170
Transverse field, 144, 145
Tree, 89
Trotter dimension, 145
Trotter formula, 143, 145, 149
Trotter index, 140, 145
Trotter number, 134, 141, 143
Trotter–Suzuki formula, 138, 143, 149
Tunnelling, 135

Umbrella sampling, 159–162, 165, 171, 173
successive, 156, 162

Vapor-Liquid transition, 153, 163
Vibrations, 137

Walks
biased, 80
random, 8, 9, 74
self-avoiding, 10, 29, 119

Wang–Landau method, 159, 163–166, 173
Wave functions, 135, 142, 152

Xenon, 133
XY -model, 5, 7, 21, 46, 51, 109

Zero-point motion, 134
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