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Preface

The book is for readers who want to use model computational files for fast
learning of the basics of optics. In the Second Edition, Matlab, Mathematica and
Maples files have been added to the Mathcad files on the CD of the First Edition.
The applications, given at the end of files to suggest different points of view on
the subject, are extended to home work problems and are also on the CD of the
Second Edition.

While the book is suited well for self learning, it was written over several
years for a one semester course in optics for juniors and seniors in science and
engineering. The applications provide a simulated laboratory where students can
learn by exploration and discovery instead of passive absorption.

The text covers all the standard topics of a traditional optics course, includ-
ing: geometrical optics and aberration, interference and diffraction, coherence,
Maxwell’s equations, wave guides and propagating modes, blackbody radiation,
atomic emission and lasers, optical properties of materials, Fourier transforms
and FT spectroscopy, image formation, and holography. It contains step by step
derivations of all basic formulas in geometrical and wave optics.

The basic text is supplemented by over 170 Mathcad, Matlab, Mathematica
and Maple files, each suggesting programs to solve a particular problem, and each
linked to a topic in or application of optics. The computer files are dynamic,
allowing the reader to see instantly the effects of changing parameters in the
equations. Students are thus encouraged to ask “what . . . if” questions to asses
the physical implications of the formulas. To integrate the files into the text,
applications are listed connecting the formulas and the corresponding computer
file, and problems for all 11 chapters are on the CD.

The availability of the numerical Fourier transform makes possible an intro-
duction to the wave theory of imaging, spatial filtering, holography and Fourier
transform spectroscopy.
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viii PREFACE

The book is written for the study of particular projects but can easily be adapted
to a variation of related studies. The three fold arrangement of text, applications
and files makes the book suitable for “self-learning” by scientists and engineers
who would like to refresh their knowledge of optics. All files are printed out and
are available on a CD, (Mathcad 7) (Mathcad 2000) (Matlab 6.5) (Mathematica
4.1) (Maple 9.5) and may well serve as starting points to find solutions to more
complex problems as experienced by engineers in their applications.

The book can be used in optical laboratories with faculty-student interaction.
The files may be changed and extended to study the assigned projects, and the
student may be required to hand in printouts of all assigned applications and
summarize what he has been learned.

I would like to thank Oren Sternberg and Assaf Sternberg for the translation of
the files into Matlab, Mathematica and Maples, Prof. Ken Chin and Prof. Haim
Grebel of New Jersey Institute of Technology for continuous support, and my
wife for always keeping me in good spirit.

Newark, New Jersey K.D. Möller



Contents

Preface vii

1 Geometrical Optics 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fermat’s Principle and the Law of Refraction . . . . . . . . . . . . . . . 2
1.3 Prisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Angle of Deviation . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Convex Spherical Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Image Formation and Conjugate Points . . . . . . . . . . . . . . 9
1.4.2 Sign Convention . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Object and Image Distance, Object and Image Focus, Real and

Virtual Objects, and Singularities . . . . . . . . . . . . . . . . . 11
1.4.4 Real Objects, Geometrical Constructions,

and Magnification . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.5 Virtual Objects, Geometrical Constructions,

and Magnification . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Concave Spherical Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Thin Lens Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.1 Thin Lens Equation . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6.2 Object Focus and Image Focus . . . . . . . . . . . . . . . . . . 24
1.6.3 Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6.4 Positive Lens, Graph, Calculations of Image Positions, and

Graphical Constructions of Images . . . . . . . . . . . . . . . . 25
1.6.5 Negative Lens, Graph, Calculations of Image Positions, and

Graphical Constructions of Images . . . . . . . . . . . . . . . . 30
1.6.6 Thin Lens and Two Different Media on the Outside . . . . . . . 33

1.7 Optical Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



x CONTENTS

1.7.1 Two Lens System . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.7.2 Magnifier and Object Positions . . . . . . . . . . . . . . . . . . 37
1.7.3 Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.7.4 Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.8 Matrix Formulation for Thick Lenses . . . . . . . . . . . . . . . . . . . 48
1.8.1 Refraction and Translation Matrices . . . . . . . . . . . . . . . 48
1.8.2 Two Spherical Surfaces at Distance d and Prinicipal Planes . . . 51
1.8.3 System of Lenses . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.9 Plane and Spherical Mirrors . . . . . . . . . . . . . . . . . . . . . . . . 67
1.9.1 Plane Mirrors and Virtual Images . . . . . . . . . . . . . . . . . 67
1.9.2 Spherical Mirrors and Mirror Equation . . . . . . . . . . . . . . 67
1.9.3 Sign Convention . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.9.4 Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.9.5 Graphical Method and Graphs of xi Depending on xo . . . . . . 70

1.10 Matrices for a Reflecting Cavity and the Eigenvalue Problem . . . . . . 73

2 Interference 79
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.2 Harmonic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3 Superposition of Harmonic Waves . . . . . . . . . . . . . . . . . . . . 82

2.3.1 Superposition of Two Waves Depending on Space and
Time Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.3.2 Intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.3.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.4 Two-Beam Wavefront Dividing Interferometry . . . . . . . . . . . . . . 89
2.4.1 Model Description for Wavefront Division . . . . . . . . . . . . 89
2.4.2 Young’s Experiment . . . . . . . . . . . . . . . . . . . . . . . . 90

2.5 Two-Beam Amplitude Dividing Interferometry . . . . . . . . . . . . . . 96
2.5.1 Model Description for Amplitude Division . . . . . . . . . . . . 96
2.5.2 Plane Parallel Plate . . . . . . . . . . . . . . . . . . . . . . . . 97
2.5.3 Michelson Interferometer and Heidinger and Fizeau Fringes . . 103

2.6 Multiple Beam Interferometry . . . . . . . . . . . . . . . . . . . . . . . 110
2.6.1 Plane Parallel Plate . . . . . . . . . . . . . . . . . . . . . . . . 110
2.6.2 Fabry–Perot Etalon . . . . . . . . . . . . . . . . . . . . . . . . 115
2.6.3 Fabry–Perot Spectrometer and Resolution . . . . . . . . . . . . 118
2.6.4 Array of Source Points . . . . . . . . . . . . . . . . . . . . . . 121

2.7 Random Arrangement of Source Points . . . . . . . . . . . . . . . . . . 125

3 Diffraction 129
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.2 Kirchhoff–Fresnel Integral . . . . . . . . . . . . . . . . . . . . . . . . 131

3.2.1 The Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.2.2 On Axis Observation for the Circular Opening . . . . . . . . . . 133



CONTENTS xi

3.2.3 On Axis Observation for Circular Stop . . . . . . . . . . . . . . 135
3.3 Fresnel Diffraction, Far Field Approximation, and

Fraunhofer Observation . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.3.1 Small Angle Approximation in Cartesian Coordinates . . . . . . 137
3.3.2 Fresnel, Far Field, and Fraunhofer Diffraction . . . . . . . . . . 138

3.4 Far Field and Fraunhofer Diffraction . . . . . . . . . . . . . . . . . . . 139
3.4.1 Diffraction on a Slit . . . . . . . . . . . . . . . . . . . . . . . . 140
3.4.2 Diffraction on a Slit and Fourier Transformation . . . . . . . . . 144
3.4.3 Rectangular Aperture . . . . . . . . . . . . . . . . . . . . . . . 145
3.4.4 Circular Aperture . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.4.5 Gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.4.6 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

3.5 Babinet’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.6 Apertures in Random Arrangement . . . . . . . . . . . . . . . . . . . . 169
3.7 Fresnel Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

3.7.1 Coordinates for Diffraction on a Slit and
Fresnels Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 172

3.7.2 Fresnel Diffraction on a Slit . . . . . . . . . . . . . . . . . . . . 173
3.7.3 Fresnel Diffraction on an Edge . . . . . . . . . . . . . . . . . . 175
A3.1.1 Step Grating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A3.2.1 Cornu’s Spiral . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A3.2.2 Babinet’s Principle and Cornu’s Spiral . . . . . . . . . . . . . . 182

4 Coherence 185
4.1 Spatial Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.1.2 Two Source Points . . . . . . . . . . . . . . . . . . . . . . . . 185
4.1.3 Coherence Condition . . . . . . . . . . . . . . . . . . . . . . . 189
4.1.4 Extended Source . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.1.5 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.1.6 Michelson Stellar Interferometer . . . . . . . . . . . . . . . . . 197

4.2 Temporal Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.2.1 Wavetrains and Quasimonochromatic Light . . . . . . . . . . . 200
4.2.2 Superposition of Wavetrains . . . . . . . . . . . . . . . . . . . 201
4.2.3 Length of Wavetrains . . . . . . . . . . . . . . . . . . . . . . . 202
A4.1.1 Fourier Tranform Spectometer and Blackbody Radiation . . . . 203

5 Maxwell’s Theory 205
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.2 Harmonic Plane Waves and the Superposition Principle . . . . . . . . . 206

5.2.1 Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.2.2 The Superposition Principle . . . . . . . . . . . . . . . . . . . . 208

5.3 Differentiation Operation . . . . . . . . . . . . . . . . . . . . . . . . . 208



xii CONTENTS

5.3.1 Differentiation “Time” ∂/∂t . . . . . . . . . . . . . . . . . . . 208
5.3.2 Differentiation “Space” ∇ � i∂/∂x + j∂/∂y + k∂/∂z . . . . . . 208

5.4 Poynting Vector in Vacuum . . . . . . . . . . . . . . . . . . . . . . . . 209
5.5 Electromagnetic Waves in an Isotropic Nonconducting Medium . . . . . 210
5.6 Fresnel’s Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.6.1 Electrical Field Vectors in the Plane of Incidence
(Parallel Case) . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.6.2 Electrical Field Vector Perpendicular to the Plane of Incidence
(Perpendicular Case) . . . . . . . . . . . . . . . . . . . . . . . 214

5.6.3 Fresnel’s Formulas Depending on the
Angle of Incidence . . . . . . . . . . . . . . . . . . . . . . . . 215

5.6.4 Light Incident on a Denser Medium, n1 < n2, and the
Brewster Angle . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.6.5 Light Incident on a Less Dense Medium, n1 > n2, Brewster and
Critical Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.6.6 Reflected and Transmitted Intensities . . . . . . . . . . . . . . . 222
5.6.7 Total Reflection and Evanescent Wave . . . . . . . . . . . . . . 228

5.7 Polarized Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
5.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
5.7.2 Ordinary and Extraordinary Indices of Refraction . . . . . . . . 231
5.7.3 Phase Difference Between Waves Moving in the Direction of or

Perpendicular to the Optical Axis . . . . . . . . . . . . . . . . . 232
5.7.4 Half-Wave Plate, Phase Shift of π . . . . . . . . . . . . . . . . 233
5.7.5 Quarter Wave Plate, Phase Shift π/2 . . . . . . . . . . . . . . . 235
5.7.6 Crossed Polarizers . . . . . . . . . . . . . . . . . . . . . . . . . 238
5.7.7 General Phase Shift . . . . . . . . . . . . . . . . . . . . . . . . 240
A5.1.1 Wave Equation Obtained from Maxwell’s Equation . . . . . . . 242
A5.1.2 The Operations ∇ and ∇2 . . . . . . . . . . . . . . . . . . . . . 243
A5.2.1 Rotation of the Coordinate System as a Principal Axis

Transformation and Equivalence to the Solution of the
Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . 243

A5.3.1 Phase Difference Between Internally Reflected Components . . 244
A5.4.1 Jones Vectors and Jones Matrices . . . . . . . . . . . . . . . . . 244
A5.4.2 Jones Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
A5.4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6 Maxwell II. Modes and Mode Propagation 249
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
6.2 Stratified Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

6.2.1 Two Interfaces at Distance d . . . . . . . . . . . . . . . . . . . 253
6.2.2 Plate of Thickness d � (λ/2n2) . . . . . . . . . . . . . . . . . . 255
6.2.3 Plate of Thickness d and Index n2 . . . . . . . . . . . . . . . . 256
6.2.4 Antireflection Coating . . . . . . . . . . . . . . . . . . . . . . . 256



CONTENTS xiii

6.2.5 Multiple Layer Filters with Alternating High and Low
Refractive Index . . . . . . . . . . . . . . . . . . . . . . . . . . 258

6.3 Guided Waves by Total Internal Reflection Through a
Planar Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.3.1 Traveling Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.3.2 Restrictive Conditions for Mode Propagation . . . . . . . . . . 261
6.3.3 Phase Condition for Mode Formation . . . . . . . . . . . . . . . 262
6.3.4 (TE) Modes or s-Polarization . . . . . . . . . . . . . . . . . . . 262
6.3.5 (TM) Modes or p-Polarization . . . . . . . . . . . . . . . . . . 265

6.4 Fiber Optics Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.4.1 Modes in a Dielectric Waveguide . . . . . . . . . . . . . . . . . 266
A6.1.1 Boundary Value Method Applied to TE Modes of Plane

Plate Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . 270

7 Blackbody Radiation, Atomic Emission, and Lasers 273
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
7.2 Blackbody Radiaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

7.2.1 The Rayleigh–Jeans Law . . . . . . . . . . . . . . . . . . . . . 274
7.2.2 Planck’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
7.2.3 Stefan–Boltzmann Law . . . . . . . . . . . . . . . . . . . . . . 277
7.2.4 Wien’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.2.5 Files of Planck’s, Stefan–Boltzmann’s, and Wien’s Laws.

Radiance, Area, and Solid Angle . . . . . . . . . . . . . . . . . 279
7.3 Atomic Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.3.2 Bohr’s Model and the One Electron Atom . . . . . . . . . . . . 282
7.3.3 Many Electron Atoms . . . . . . . . . . . . . . . . . . . . . . . 282

7.4 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
7.4.2 Classical Model, Lorentzian Line Shape, and

Homogeneous Broadening . . . . . . . . . . . . . . . . . . . . 286
7.4.3 Natural Emission Line Width, Quantum Mechanical Model . . . 289
7.4.4 Doppler Broadening (Inhomogeneous) . . . . . . . . . . . . . . 289

7.5 Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
7.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
7.5.2 Population Inversion . . . . . . . . . . . . . . . . . . . . . . . 292
7.5.3 Stimulated Emission, Spontaneous Emission, and the

Amplification Factor . . . . . . . . . . . . . . . . . . . . . . . 293
7.5.4 The Fabry–Perot Cavity, Losses, and Threshold Condition . . . 294
7.5.5 Simplified Example of a Three-Level Laser . . . . . . . . . . . 296

7.6 Confocal Cavity, Gaussian Beam, and Modes . . . . . . . . . . . . . . . 297
7.6.1 Paraxial Wave Equation and Beam Parameters . . . . . . . . . . 297
7.6.2 Fundamental Mode in Confocal Cavity . . . . . . . . . . . . . . 299



xiv CONTENTS

7.6.3 Diffraction Losses and Fresnel Number . . . . . . . . . . . . . 302
7.6.4 Higher Modes in the Confocal Cavity . . . . . . . . . . . . . . 303

8 Optical Constants 315
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
8.2 Optical Constants of Dielectrics . . . . . . . . . . . . . . . . . . . . . . 316

8.2.1 The Wave Equation, Electrical Polarizability, and
Refractive Index . . . . . . . . . . . . . . . . . . . . . . . . . . 316

8.2.2 Oscillator Model and the Wave Equation . . . . . . . . . . . . . 317
8.3 Determination of Optical Constants . . . . . . . . . . . . . . . . . . . . 320

8.3.1 Fresnel’s Formulas and Reflection Coefficients . . . . . . . . . . 320
8.3.2 Ratios of the Amplitude Reflection Coefficients . . . . . . . . . 321
8.3.3 Oscillator Expressions . . . . . . . . . . . . . . . . . . . . . . 322
8.3.4 Sellmeier Formula . . . . . . . . . . . . . . . . . . . . . . . . . 324

8.4 Optical Constants of Metals . . . . . . . . . . . . . . . . . . . . . . . . 326
8.4.1 Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
8.4.2 Low Frequency Region . . . . . . . . . . . . . . . . . . . . . . 327
8.4.3 High Frequency Region . . . . . . . . . . . . . . . . . . . . . . 328
8.4.4 Skin Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
8.4.5 Reflectance at Normal Incidence and Reflection Coefficients

with Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 333
8.4.6 Elliptically Polarized Light . . . . . . . . . . . . . . . . . . . . 334
A8.1.1 Analytical Expressions and Approximations for the

Detemination of n and K . . . . . . . . . . . . . . . . . . . . . 335

9 Fourier Transformation and FT-Spectroscopy 339
9.1 Fourier Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 339

9.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
9.1.2 The Fourier Integrals . . . . . . . . . . . . . . . . . . . . . . . 339
9.1.3 Examples of Fourier Transformations Using

Analytical Functions . . . . . . . . . . . . . . . . . . . . . . . 340
9.1.4 Numerical Fourier Transformation . . . . . . . . . . . . . . . . 341
9.1.5 Fourier Transformation of a Product of Two Functions and the

Convolution Integral . . . . . . . . . . . . . . . . . . . . . . . 350
9.2 Fourier Transform Spectroscopy . . . . . . . . . . . . . . . . . . . . . 352

9.2.1 Interferogram and Fourier Transformation. Superposition of
Cosine Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

9.2.2 Michelson Interferometer and Interferograms . . . . . . . . . . 353
9.2.3 The Fourier Transform Integral . . . . . . . . . . . . . . . . . . 355
9.2.4 Discrete Length and Frequency Coordinates . . . . . . . . . . . 356
9.2.5 Folding of the Fourier Transform Spectrum . . . . . . . . . . . 359
9.2.6 High Resolution Spectroscopy . . . . . . . . . . . . . . . . . . 363
9.2.7 Apodization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366



CONTENTS xv

A9.1.1 Asymmetric Fourier Transform Spectroscopy . . . . . . . . . . 370

10 Imaging Using Wave Theory 375
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
10.2 Spatial Waves and Blackening Curves, Spatial Frequencies, and

Fourier Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 376
10.3 Object, Image, and the Two Fourier Transformations . . . . . . . . . . . 382

10.3.1 Waves from Object and Aperture Plane and Lens . . . . . . . . . 382
10.3.2 Summation Processes . . . . . . . . . . . . . . . . . . . . . . . 383
10.3.3 The Pair of Fourier Transformations . . . . . . . . . . . . . . . 385

10.4 Image Formation Using Incoherent Light . . . . . . . . . . . . . . . . . 386
10.4.1 Spread Function . . . . . . . . . . . . . . . . . . . . . . . . . . 386
10.4.2 The Convolution Integral . . . . . . . . . . . . . . . . . . . . . 387
10.4.3 Impulse Response and the Intensity Pattern . . . . . . . . . . . 387
10.4.4 Examples of Convolution with Spread Function . . . . . . . . . 388
10.4.5 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . 392
10.4.6 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

10.5 Image Formation with Coherent Light . . . . . . . . . . . . . . . . . . 398
10.5.1 Spread Function . . . . . . . . . . . . . . . . . . . . . . . . . . 398
10.5.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
10.5.3 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . 401

10.6 Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
10.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
10.6.2 Recording of the Interferogram . . . . . . . . . . . . . . . . . . 403
10.6.3 Recovery of Image with Same Plane Wave Used

for Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
10.6.4 Recovery Using a Different Plane Wave . . . . . . . . . . . . . 405
10.6.5 Production of Real and Virtual Image Under an Angle . . . . . . 405
10.6.6 Size of Hologram . . . . . . . . . . . . . . . . . . . . . . . . . 406

11 Aberration 415
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
11.2 Spherical Aberration of a Single Refracting Surface . . . . . . . . . . . 415
11.3 Longitudinal and Lateral Spherical Aberration of a Thin Lens . . . . . . 418
11.4 The π–σ Equation and Spherical Aberration . . . . . . . . . . . . . . . 421
11.5 Coma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
11.6 Aplanatic Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
11.7 Astigmatism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

11.7.1 Astigmatism of a Single Spherical Surface . . . . . . . . . . . . 427
11.7.2 Astigmatism of a Thin Lens . . . . . . . . . . . . . . . . . . . . 428

11.8 Chromatic Aberration and the Achromatic Doublet . . . . . . . . . . . . 430
11.9 Chromatic Aberration and the Achromatic Doublet with

Separated Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432



xvi CONTENTS

Appendix A About Graphs and Matrices in Mathcad 435

Appendix B Formulas 439

References 443

Index 445



11C H A P T E R

Geometrical
Optics

1.1 INTRODUCTION

Geometrical optics uses light rays to describe image formation by spherical
surfaces, lenses, mirrors, and optical instruments. Let us consider the real image
of a real object, produced by a positive thin lens. Cones of light are assumed to
diverge from each object point to the lens. There the cones of light are transformed
into converging beams traveling to the corresponding real image points. We
develop a very simple method for a geometrical construction of the image, using
just two rays among the object, the image, and the lens. We decompose the object
into object points and draw a line from each object point through the center of
the lens. A formula is developed to give the distance of the image point, when
the distance of the object point and the focal length of the lens are known. We
assume that the line from object to image point makes only small angles with the
axis of the system. This approximation is called the paraxial theory. Assuming
that the object and image points are in a medium with refractive index 1 and that
the lens has the focal length f, the simple mathematical formula

1

−x0
+ 1

xi
� 1

f
(1.1)

gives the image position xi when the object position x0 and the focal length are
known.

Formulas of this type can be developed for spherical surfaces, thin and thick
lenses, and spherical mirrors, and one may call this approach the thin lens model.

For the description of the imaging process, we use the following laws.

1. Light propagates in straight lines.
2. The law of refraction,

n1 sin θ1 � n2 sin θ2. (1.2)

1
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The light travels through the medium of refractive index n1 and makes the an-
gle θ1 with the normal of the interface.After traversing the interface, the angle
changes to θ2, and the light travels in the medium with refractive index n2.

3. The law of reflection

θ1 � θ2. (1.3)

The law of reflection is the limiting case for the situation where both refraction
indices are the same and one has a reflecting surface. The laws of refraction
and reflection may be derived from Maxwell’s theory of electromagnetic
waves, but may also be derived from a “mechanical model” using Fermat’s
Principle.

The refractive index in a dielectric medium is defined as n � c/v, where v
is the speed of light in the medium and c is the speed of light in a vacuum. The
speed of light is no longer the ratio of the unit length of the length standard over
the unit time of the time standard, but is now defined as 2.99792458 × 108m/s
for vacuum. For practical purposes one uses c � 3 × 108m/s, and assumes that
in air the speed v of light is the same as c. In dielectric materials, the speed v is
smaller than c and therefore, the refractive index is larger than 1.

Image formation by our eye also uses just one lens, but not a thin one of fixed
focal length. The eye lens has a variable focal length and is capable of forming
images of objects at various distances without changing the distance between the
eye lens and the retina. Optical instruments, such as magnifiers, microscopes,
and telescopes, when used with our eye for image formation, can be adjusted
in such a way that we can use a fixed focal length of our eye. Image formation
by our eye has an additional feature. Our brain inverts the image arriving on the
retina, making us think that an inverted image is erect.

1.2 FERMAT’S PRINCIPLE AND THE LAW OF
REFRACTION

In the seventeenth century philosophers contemplated the idea that nature always
acts in an optimum fashion. Let us consider a medium made of different sections,
with each having a different index of refraction. Light will move through each
section with a different velocity and along a straight line. But since the sections
have different refractive indices, the light does not move along a straight line
from the point of incidence to the point of exit.

The mathematician Fermat formulated the calculation of the optimum path as
an integral over the optical path∫ P2

P1

nds. (1.4)
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FIGURE 1.1 Coordinates for the travel of light from point P1 in medium 1 to point P2 in medium
2. The path in length units and the optical plath are listed.

The optical path is defined as the product of the geometrical path and the refractive
index. In Figure 1.1 we show the length of the path from P1 to P2,

r1(y) + r2(y). (1.5)

In comparison, the optical path is defined as

n1r1(y) + n2r2(y), (1.6)

where n1 is the refractive index in medium 1 and n2 is the refractive index in
medium 2.

The optimum value of the integral of Eq. (1.4) describes the shortest optical
path from P1 to P2 through a medium in which it moves with two different
velocities. It is important to compare only passes in the same neighborhood. In
Figure 1.2 we show an example of what should not be compared.

In Figure 1.1, the light ray moves with v1 in the first medium and is incident
on the interface, making the angle θ1 with the normal. After penetrating into the

FIGURE 1.2 Application of Fermat’s Principle to the reflection on a mirror. Only the path with
the reflection on the mirror should be considered.
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medium in which its speed is v2, the angle with respect to the normal changes
from θ1 to θ2.

Let us look at a popular example. A swimmer cries for help and a lifeguard
starts running to help him. He runs on the sand with v1, faster than he can swim
in the water with v2. To get to the swimmer in minimum time, he will not choose
the straight line between his starting point and the swimmer in the water. He will
run a much larger portion on the sand and then get into the water. Although the
total length (in meter’s) of this path is larger than the straight line, the total time
is smaller. The problem is reduced to what the angles θ1 and θ2 are at the normal
of the interface (Figure 1.1). We show that these two angles are determined by
the law of refraction, assuming that the velocities are known.

In Figure 1.1 the light from point P1 travels to point P2 and passes the pointQ
at the boundary of the two media with indices n1 and n2. The velocity for travel
from P1 to Q is v1 � c/n1. The velocity for travel from Q to P2 is v2 � c/n2.
From Eq. (1.4) and Figure 1.1, the optical path is

n1r1(y) + n2r2(y), (1.7)

where we have

r1(y) �
√

{x2
q + y2}

r2(y) �
√

{(xf − xq)2 + (yf − y)2} (1.8)

and with r1(y) � v1t1(y) and r2(y) � v2t2(y) we get for the total time T (y), to
travel from P1 to P2,

T (y) � r1(y)/v1 + r2(y)/v2. (1.9)

Only for the special case that v1 � v2, where the refractive indices are equal,
will the light travel along a straight line. For different velocities, the total travel
time through medium 1 and 2 will be a minimum. In FileFig 1.1 we show a graph
of T (y) and see the minimum for a specific value of y. In FileFig 1.2 we discuss
the case where light is traveling through three media. To determine the optimum
conditions we have to require that

dT (y)/dy � 0. (1.10)

This may be done without a computer. We show it in FileFig 1.3 for two media.
Using the expression for r1(y) and r2(y) of Figure 1.1, we have to differentiate

n1r1(y) + n2r2(y), (1.11)

that is,

dT (y)/dy � d/dy{(c/v1)
√
x2
q + y2 + (c/v2)

√
(xf − xq)2 + (yf − y)2} (1.12)

and set it to zero. From FileFig 1.3 we get

y/(r1(y)v1) + (y − yf )/(r2(y)v2) � 0. (1.13)



1.2. FERMAT’S PRINCIPLE AND THE LAW OF REFRACTION 5

With

sin θ1 � y/r1(y) and sin θ2 � (y − yf )/r2(y) (1.14)

we have

sin θ1/v1 � sin θ2/v2 (1.15)

and after multiplication with c, the Law of Refraction,

n1 sin θ1 � n2 sin θ2. (1.16)

FileFig 1.1 (G1FERMAT)

Graph of the total time for travel fromP1 toP2, through medium 1, with velocities
v1, and medium 2, with v2. For minimum travel time, the light does not travel
along a straight line between P1 and P2. Changing the velocities will change the
length of travel in each medium.

G1FERMAT

Fermat’s Principle

Graph of total travel time: t1 is the time to go from the initial position (0, 0) to
point (xq, y) in medium with velocity v1. t2 is the time to go from point (xq, y)
to the final position (xf, yf ) in medium with velocity v2. There is a y value for
minimum time. v1 and v2 are at the graph.

xq :� 20 xf :� 40 yf ≡ 40

y :� 0, .1 . . . 40.

Time in medium 1 Time in medium 2

t1(y) :� 1

v1
·
√

(xq)2 + y2 t2(y) :� 1

v2
·
√

(xf − xq)2 + (yf − y)2

T (y) :� t1(y) + t2(y).
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v1 ≡ 1 v2 ≡ 2.5.

Changing the parameters v1 and v2 changes the minimum time for total travel.

Application 1.1.

1. Compare the three choices

a. v1 < v2

b. v1 � v2

c. v1 > v2 and how the minimum is changing.

2. To find the travel time t1 in medium 1 and t2 in medium 2 plot it on the graph
and read the values at y for T (y) at minimum.

FileFig 1.2 (G2FERMAT)

Surface and contour graphs of total time for traversal through three media.
Changing the velocities will change the minimum position.

G2FERMAT is only on the CD.

Application 1.2. Change the velocities and observe the relocation of the
minimum.

FileFig 1.3 (G3FERREF)

Demonstration of the derivation of the law of refraction starting from Fermat’s
Principle. Differentiation of the total time of traversal. For optimum time, the
expression is set to zero. Introducing c/n for the velocities.

G3FERREF is only on the CD.
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1.3 PRISMS

A prism is known for the dispersion of light, that is, the decomposition of white
light into its colors. The different colors of the incident light beam are deviated
by different angles for different colors. This is called dispersion, and the angles
depend on the refractive index of the prism material, which depends on the
wavelength. Historically Newton used two prisms to prove his “Theory of Color.”
The first prism dispersed the light into its colors. The second prism, rotated by 90
degrees, was used to show that each color could not be decomposed any further.
Dispersion is discussed in Chapter 8. Here we treat only the angle of deviation
for a particular wavelength, depending on the value of the refractive index n.

1.3.1 Angle of Deviation

We now study the light path through a prism. In Figure 1.3 we show a cross-
section of a prism with apex angle A and refractive index n. The incident ray
makes an angle θ1 with the normal, and the angle of deviation with respect to
the incident light is call δ. We have from Figure 1.3 for the angles

δ � θ1 − θ2 + θ4 − θ3 A � θ2 + θ3 (1.17)

and using the laws of refraction

sin θ1 � n sin θ2 n sin θ3 � sin θ4 (1.18)

we get for the angle of deviation, using asin for sin−1

δ � θ1 + asin {(
√
n2 − sin2(θ1)) sin(A) − sin(θ1) cos(A)} − A. (1.19)

In FileFig 1.4 a graph is shown of δ (depending on the angle of incidence). A
formula may be derived to calculate the minimum deviation δm of the prism,
depending on n and A. From the Eq. (1.17) and (1.18) we have

δ � θ1 − θ2 + θ4 − θ3, A � θ2 + θ3, (1.20)

FIGURE 1.3 Angle of deviation δ of light incident at the angle θ1 with respect to the normal. The
apex angle of the prism is A.
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and

sin θ1 � n sin θ2, n sin θ3 � sin θ4. (1.21)

We can eliminate θ2 and θ4 and get two equations in θ1 and θ3,

sin θ1 � n sin(A− θ3) (1.22)

n sin θ3 � sin(δ + A− θ1). (1.23)

The differentiations with respect to the angle of Eqs. (1.22) and (1.23) may
be done using the “symbolic capabilities” of a computer (see FileFig 1.5). To
calculate the optimum condition, the results of the differentiations have to be
zero:

cos θ1dθ1 + n cos(A− θ3)dθ3 � 0 (1.24)

n cos θ3dθ3 + cos(δ + A− θ1)dθ1 � 0. (1.25)

We consider these equations as two linear homogeneous equations of the un-
known dθ1 and dθ3. In order to have a nontrivial solution of the system of the
two linear equations, the determinant has to vanish. This is done in FileFig 1.5,
and one gets

cos θ1 cos θ3 − cos(A− θ3) cos(δ + A− θ1) � 0.

The minimum deviation δm, which depends only on n and A, may be calculated
from

δm � 2 asin {n sin(A/2)} − A, (1.26)

where we use asin for sin−1. At the angle of minimum deviation, the light tra-
verses the prism in a symmetric way. Equation (1.26) may be used to find the
dependence of prism material on the refractive index n.

FileFig 1.4 (G4PRISM)

Graph of angle of deviation δ1 as function of θ1 for fixed values of apex angle A
and refractive index n. For fixedA and n the angle of deviation δ has a minimum.

G4PRISM

Graph of the Angle of Deviation for Refraction on a Prism Depending on the Angle of
Incidence

θ1 is the angle of incidence with respect to the normal. δ1 is the angle of deviation.
n is the refractive index and A is the apex angle.

θ1 :� 0, .001 . . . 1 n :� 2 A :�
(

2 · π
360

)
· 30
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δ(θ1) :� θ1 + asin
(√
n2 − sin(θ1)2 · sin(A) − sin(θ1) · cos(A)

)
− A.

Application 1.4.

1. Observe changes of the minimum depending on changing A and n.
2. Numerical determination of the angle of minimum deviation. Differentiate
δ(θ1) and set the result to zero. Break the expression into two parts and plot
them on the same graph. Read the value of the intersection point.

FileFig 1.5 (G5PRISMIM)

Derivation of the formula for the refractive index determined by the angle of
minimum deviation and apex angle A of prism.

G5PRISMIM is only on the CD.

1.4 CONVEX SPHERICAL SURFACES

Spherical surfaces may be used for image formation. All rays from an object
point are refracted at the spherical surface and travel to an image point. The
diverging light from the object point may converge or diverge after traversing
the spherical surface. If it converges, we call the image point real; if it diverges
we call the image point virtual.

1.4.1 Image Formation and Conjugate Points

We want to derive a formula to describe the imaging process on a convex spher-
ical refracting surface between two media with refractive indices n1 and n2

(Figure 1.4). The light travels from left to right and a cone of light diverges
from the object point P1 to the convex spherical surface. Each ray of the cone is
refracted at the spherical surface, and the diverging light from P1 is converted to
converging light, traveling to the image point P2. The object point P1 is assumed
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to be in a medium with index n1, the image point P2 in the medium with index
n2. We assume that n2 > n1, and that the convex spherical surface has the radius
of curvature r > 0.

For our derivation we assume that all angles are small; that is, we use the
approximation of the paraxial theory. To find out what is small, one may look at
a table of y1 � sin θ and compare it with y1 � θ . The angle should be in radians
and then one may find angles for which y1 and y2 are equal to a desired accuracy.

We consider a cone of light emerging from pointP1.The outermost ray, making
an angle α1 with the axis of the system, is refracted at the spherical surface, and
makes an angle α2 with the axis at the image pointP2 (Figure 1.4). The refraction
on the spherical surface takes place with the normal being an extension of the
radius of curvature r , which has its center at C. We call the distance from P1 to
the spherical surface the object distance xo, and the distance from the spherical
surface to the image point P2, the image distance xi . In short, we may also use
xo for “object point” and xi for “image point.”

The incident ray with angle α1 has the angle θ1 at the normal, and pene-
trating in medium 2, we have the angle of refraction θ2. Using the small angle
approximation, we have for the law of refraction

θ2 � n1θ1/n2. (1.27)

From Figure 1.4 we have the relations:

α1 + β � θ1 and α2 + θ2 � β. (1.28)

For the ratio of the angles of refraction we obtain

θ1/θ2 � n2/n1 � (α1 + β)/(β − α2). (1.29)

We rewrite the second part of the equation as

n1α1 + n2α2 � (n2 − n1)β. (1.30)

The distance l in Figure 1.4 may be represented in three different ways.

tan α1 � l/xo, tan α2 � l/xi, and tan β � l/r. (1.31)

Using small angle approximation, we substitute Eq. (1.31) into Eq. (1.30) and get

n1l/xo + n2l/xi � (n2 − n1)l/r. (1.32)

FIGURE 1.4 Coordinates for the derivation of the paraxial imaging equation.
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The ls cancel out and we have obtained the image-forming equation for a spher-
ical surface between media with refractive index n1 and n2, for all rays in a cone
of light from P1 to P2:

n1/x0 + n2/xi � (n2 − n1)/r. (1.33)

So far all quantities have been considered to be positive.

1.4.2 Sign Convention

In the following we distinguish between a convex and a concave spherical surface.
The incident light is assumed to travel from left to right, and the object is to the left
of the spherical surface. We place the spherical surface at the origin of a Cartesian
coordinate system. For a convex spherical surface the radius of curvature r is
positive; for a concave spherical surface r is negative. Similarly we have positive
values for object distance x0 and image distance xi , when placed to the right of
the spherical surface, and negative values when placed to the left.

Using this sign convention, we write Eq. (1.33) with a minus sign, and have
the equation of “spherical surface imaging” (observe the minus sign),

− n1

x0
+ n2

xi
� n2 − n1

r
. (1.34)

The pair of object and image points are called conjugate points.
We may define ζo � xo/n1, ζi � xi/n2, and ρ � r/(n2 − n1) and have from

Eq. (1.34)

−1/ζo + 1/ζi � 1/ρ. (1.35)

This simplification will be useful for other derivations of imaging equations.

1.4.3 Object and Image Distance, Object and Image Focus,
Real and Virtual Objects, and Singularities

When the object point is placed to the left of the spherical surface, we call it a
real object point. When it appears to the right of the spherical surface, we call it
a virtual object point. A virtual object point is usually the image point produced
by another system and serves as the object for the following imaging process.
To get an idea, of how the positions of the image point depend on the positions
of the object point, we use the equation of spherical surface imaging

−n1/xo + n2/xi � (n2 − n1)/r (1.36)

or

xi � n2/[(n2 − n1)/r + n1/xo],
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and plot a graph (FileFig 1.6). We choose an object point in air with n1 � 1,
a spherical convex surface of radius of curvature r1 � 10, and refractive index
n2 � 1.5.

We do not add length units to the numbers. It is assumed that one uses the
same length units for all numbers associated with quantities of the equations.
When the object point is assumed to be at negative infinity, we have the image
point at the image focus

xif � n2r/(n2 − n1). (1.37)

Similarly there is the object focus, when the image point is assumed to be at
positive infinity

xof � −n1r/(n2 − n1). (1.38)

We see from the graph of FileFig 1.6 that there is a singularity at the object focus
(at xo � −20). To the left of the object focus all values of xi are positive. To the
right of the object focus the values of xi are first negative, from the object focus
to zero, and then positive to the right to infinity.

When xo � 0 we have in Eq. (1.36) another singularity, and as a result we have
xi � 0. One may get around problems in plotting graphs around singularities t
by using numerical values for xo that never have values of the singular points.

In FileFig 1.7 we have calculated the image point for four specifically chosen
object points, discussed below.

FileFig 1.6 (G6SINGCX)

Graph of image coordinate depending on object coordinate for convex spherical
surface, for r � 10, n1 � 1 and n2 � 1.5. There are three sections. In the first
and third sections, for a positive sign, the image is real. In the middle section,
for a negative sign, the image is virtual.

G6SINGCX

Convex Single Refracting Surface

r is positive, light from left propagating from medium with n1 to medium with
n2. xo on left of surface (negative).

Calculation of Graph for xi as Function of xo over the Total Range of xo

Graph for xi as function of xo over the range of xo to the left of xof . Graph for
xi as function of xo over the range of xo to the right of xof .

r ≡ 10 n1 :� 1 n2 :� 1.5.
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Image focus Object focus

xif :� n2 · r

n2 − n1
xif � 30 xof :� n1 · r

n1 − n2
xof � −20

xo :� −100.001,−99.031 . . . 100 xi(xo) :� n2(
n2−n1
r

) + n1
xo

.

xxo :� −100.001,−99.031 xxi(xxo) :� n2(
n2−n1
r

) + n1
xxo

.
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xxxo :� −15.001,−14.031 . . . 50

xxxi(xxxo) :� n2(
n2−n1
r

) + n1
xxxo

.

Application 1.6.
1. Change the refractive index and look at the separate graphs for the sections

to the left and right of the object focus. To the left of the object focus, xi is
positive. To the right it is first negative until zero, and then positive. What are
the changes?

2. Change the radius of curvature, and follow Application 1.

FileFig 1.7 (G7SINGCX)

Convex spherical surface. Calculation of image and object foci. Calculation of
image coordinate for four specifically chosen object coordinates.

G7SINGCX

Convex Single Refracting Surface

r is positive, light from left is propagating from medium with n1 to medium with
n2. xo is on left of surface (negative).

Calculation for Four Positions for Real and Virtual Objects, to the Left and Right of the
Objects Focus and Image Focus

Calculation of xi from given xo, refractive indices, and radius of curvature.
Calculation of magnification

r ≡ 10 n1 :� 1 n2 :� 1.5.
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Image focus Object focus

xif :� n2 · r

n2 − n1
xif � 30 xof :� n1 · r

n1 − n2
xof � −20.

1. x1o :� −100

x1i :� n2(
n2−n1
r

) + n1
x1o

x1i � 37.5 mm1 :� x1i · n1

x1o · n2
mm1 � −0.25.

2. x2o :� −10

x2i :� n2(
n2−n1
r

) + n1
x2o

x2i � −30 mm2 :� x2i · n1

x2o · n2
mm2 � 2.

3. x3o :� −10

x3i :� n2(
n2−n1
r

) + n1
x3o

x3i � 15 mm3 :� x3i · n1

x3o · n2
mm3 � 0.5.

4. x4o :� 100

x4i :� n2(
n2−n1
r

) + n1
x4o

x4i � 25 mm4 :� x4i · n1

x4o · n2
mm4 � 0.167.

Application 1.7.

1. Calculate Table 1.1 for refractive indices n1 � 1 and n2 � 2.4 (Diamond).
2. Calculate Table 1.1 for refractive indices n1 � 2.4 and n2 � 1.

1.4.4 Real Objects, Geometrical Constructions, and
Magnification

1.4.4.1 Geometrical Construction for Real Objects to the Left of the Object Focus

We consider an extended object consisting of many points. A conjugate point at
the image corresponds to each point. When using a spherical surface for image
formation, a cone of light emerges from each object point and converges to the
conjugate image point. Let us present the object by an arrow, parallel to the
positive y axis. The corresponding image will also appear at the image parallel
to the y axis, but in the opposite direction (Figure 1.5).

The image position and size can then be determined by a simple geometrical
construction. In Figure 1.5a we look at the ray connecting the top of the object
arrow with the center of curvature of the spherical surface. We call the light ray
corresponding to this line the C-ray (from center). A second ray, the PF-ray,
starts at the top of the object arrow and is parallel to the axis along the distance
to the spherical surface. It is refracted and travels to the image focal point Fi on
the right side of the spherical surface (Figure 1.5c). The paraxial approximation
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FIGURE 1.5 (a) The C-ray and conjugate points for extended image and object; (b) for the
calculation of the lateral magnification we show the C-ray, and the ray from the top of y0, refracted
at the center of the spherical surface, connected to the top of yi ; (c) geometrical construction of
image using the C-ray and the FP-ray.

requires that all C-rays and PF-rays have small angles with the axis of the system.
The C-ray and the PF-ray meet at the top of the image arrow.

1.4.4.2 Geometrical Construction for Real Object to the Right of the Object Focus

We place the object arrow between the object focus and the spherical surface.
From FileFig 1.7, with the input data we have used before, we find that the
image position is at −30, when the object position is at −10. The geometrical
construction is shown in Figure 1.7b. The C-ray and the PF-ray diverge in the
forward direction to the right. However, if we trace both rays back they converge
on the left side of the spherical surface. We find the top of an image arrow at
the image position, at −30. We call the image, obtained by tracing the diverging
rays back to a converging point, a virtual image. A virtual image may serve as a
real object for a second imaging process.

We have listed in Table 1.1 the image positions for real object positions
discussed so far and have indicated for images and objects if they are real or
virtual.
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FIGURE 1.6 (a) The C-ray and the PF-ray diverge in the forward direction; (b) they are traced
back to the virtual image.

1.4.4.3 Magnification

If we draw a C-ray from the top of the arrow representing the object, we find the
top of the arrow presenting the image (Figure 1.5). The lateral magnification m
is defined as

m � yi/yo. (1.39)

It is obtained by using the proportionality of corresponding sides of right
triangles, and taking care of the sign convention

−yi/(xi − r) � yo/(−xo + r). (1.40)

For m � yi/yo we have

m � −(xi − r)/(−xo + r). (1.41)

Rewritten, eliminating the radius of curvature, one gets with Eq. (1.36),

m � yi/yo � (xi/xo)(n1/n2). (1.42)

1.4.5 Virtual Objects, Geometrical Constructions, and
Magnification

In Figure 1.7 we have made geometrical constructions of virtual objects to the
left and right of the image focus. The objects are placed before and after the
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FIGURE 1.7 Geometrical construction of images for the convex spherical surface. The images of
real objects are constructed in (a) and (b), for virtual objects in (c) and (d). The light converges to
real images in (a), (c), (d). In (b) the light diverges and a virtual image is obtained by “trace back.”

image focus. The magnification is obtained from Eq. (1.42) and the calculations
are shown in FileFig 1.7.

In FileFig 1.7, we have calculated the four object positions listed in Table 1.1
and shown in Figure 1.7a to d.

1. Real object left of object focus
A real object is positioned to the left of the object focus. The construction
uses the C-ray, PF-ray, and image focus. The rays converge to an image point,
we have a real image.

2. Real object between object focus and spherical surface
We draw the C-ray and the PF-ray and use the image focus. The rays diverge
in a forward direction. We trace both back to a point where they meet. The
image is a virtual image.

3. and 4. Virtual objects.
In Figures 1.7c and 1.7d we consider a virtual object to the right of the
spherical surface, one to the left and another to the right of the image focus.
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TABLE 1.1 Convex Surface. r � 10, xif � 30, xof � −20a

xo xi m Image Object

−100 37.5 −.25 r r

−10 −30 2 vi r

20 15 05 r vi

100 25 .0167 r vi

a Calculations with G7SINGCX.

The C-ray is drawn through C in the “forward direction, but the PF-ray is now
drawn first “backward” to the surface and then “forward” through the image
focus. The C-ray and the PF-ray converge to real images for both positions
of the virtual objects.

In Section 1.4 we discussed the case of Eq. (1.36) where n1 < n2 and r is
positive. The case where n1 > n2 and r is negative will result in a very similar
discussion and is considered as an application.

1.5 CONCAVE SPHERICAL SURFACES

The image-forming equation of a convex spherical surface (Eq. (1.34)), is
changed for application to a concave spherical surface by changing the radius
of curvature to a negative value. We show that this minor change makes image
formation quite different.

Again we assume that the refractive index to the left of the surface is smaller
than the refractive index on the right (n1 < n2). The formation of images of
extended objects, their magnification, and geometrical construction are similar
to the process discussed above for the convex spherical surface.

In FileFig 1.8 we have the graph for the dependence of xi on xo. In FileFig
1.9, we determine for four specific positions of xo, for real and virtual objects,
calculations of image positions and magnifications. Observe the difference in
the position of object and image focus.

FileFig 1.8 (G8SINGCV)

Graph of image coordinate depending on object coordinate for concave spherical
surface, for r � −10, n1 � 1, and n2 � 1.5. There are three sections. In the
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first and third sections, for a negative sign, the image is virtual. In the middle
section, for a positive sign, the image is real.

G8SINGCV is only on the CD.

Application 1.8.
1. Observe the singularity at the object focus, which is on the “other side” in

comparison to the convex case.
2. Change the refractive index and look at the separate graphs for the sections

to the left and right of the object focus. To the left of the object focus, xi is
negative to the left of zero, positive to the right. To the right of the object focus
it is negative. What are the changes?

3. Change the radius of curvature, and follow Application 2.

FileFig 1.9 (G9SINGCV)

Concave spherical surface. Calculation of the image and object foci, and image
coordinate for four specifically chosen object coordinates.

G9SINGCV is only on the CD.

Application 1.9.
1. Calculate Table 1.2 for refractive indices n1 � 1 and n2 � 2.4 (Diamond).
2. Calculate Table 1.2 for refractive indices n1 � 2.4 and n2 � 1 (Diamond).

The results are listed in Table 1.2, together with the labeling of the real and
virtual objects and image.

The geometrical constructions of the four cases calculated in FileFig 1.9 are
shown in Figures 1.8a to 1.8d.

1. and 2. Real objects.
A real object is positioned to the left of the spherical surface. The C-ray and
PF-ray diverge in a forward direction. The PF-ray is traced back through the
image focus (it is on the left). The C-ray and PF-ray meet at an image point.
We have virtual images for both positions of the real object.

TABLE 1.2 Concave Surface. r � −10, xif � −30, xof � 20a

xo xi m Image Object

−100 −25 .167 vi r

−20 −15 .5 vi r

10 30 .2 r vi

100 −37.5 −.25 vi vi

a Calculations with C9SINGCV.
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FIGURE 1.8 Geometrical construction of images for the concave spherical surface. The images
of real objects are constructed in (a) and (b), for virtual objects in (c) and (d). The light converges
to real images in (c). The light diverges in (a), (b), (d), and a virtual image is obtained by “trace
back.”

3. Virtual object between spherical surface and object focus.
We draw the C-ray and have to trace back the PF-ray to the surface and through
the image focus. From there, we extend the ray in a forward direction. The
rays converge in a forward direction and we have a real image.

4. Virtual objects to the right of object focus.
The C-ray is drawn through C in a forward direction. The PF-ray is traced
back to the surface and then drawn backwards through the image focus. In
the backward direction the two rays meet at a virtual image.

Comparing Figures 1.7 and 1.8, one finds that the regions of appearance of
real and virtual images are dependent upon the singularities: one when the object
distance is equal to the focal length, and the other when the object distance is
zero. A virtual image is always found when the C-ray and PF-ray diverge in a
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forward direction. If we could place a screen into the position of a virtual image,
we could not detect it because the rays toward it are diverging.

The case where n1 > n2 and r is positive is very similar and is discussed as
an application in FileFig 1.9.

Applications to Convex and Concave Spherical Surfaces

1. Single convex surface. A rod of material with refractive index n2 � 1.5 has
on the side facing the incident light a convex spherical surface with radius of
curvature r � 50 cm.

a. What is the object distance in order to have the image at +7 cm?

b. What is the object distance in order to have the image at −7 cm?

c. Assume r � 25 cm; make a graph of xi as a function of xo for n1 � 1,
n2 � 1.33, and do the graphical construction of the image (i) for real
objects before and after the object focal point, and (ii) for virtual objects
before and after the image focal point.

2. Rod sticks in water, calculation of image distance. A plastic rod of length 70
cm is stuck vertically in water. An object is positioned on the cross-section
at the top of the rod, which sticks out of the water and faces the sun. On the
other side in the water, the rod has a concave spherical surface, with respect
to the incident light from the sun, with r � −4 cm. The refractive index of
the rod is n1 � 1.5 and of water n2 � 1.33. Calculate the image distance of
the object.

3. Single concave surface. A rod of material with refractive index n2 � 1.5 has
on one side a concave spherical surface with radius of curvature r � −50
cm.

a. What is the object distance in order to have the image at +5 cm?

b. What is the object distance in order to have the image at −5 cm?

c. Assume r � 25 cm; make a graph of xi as a function of xo for n1 � 1,
n2 � 1.33, and do the graphical construction of the image (i) for real
objects before and after the image focal point, and (ii) for virtual objects
before and after the object focal point.

4. Plastic film on water as spherical surface. A plastic film is mounted on a ring
and placed on the surface of water. The film forms a spherical surface filled
with water. The thickness of the film is neglected and therefore we have a
convex surface of water of n2 � 1.33. Sunlight is incident on the surface
and the image is observed 100 cm deep in the water. Calculate the radius of
curvature of the “spherical water surface.”
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1.6 THIN LENS EQUATION

1.6.1 Thin Lens Equation

A thin lens has two spherical surfaces with a short distance between them. The
thin lens equation is a combination of the imaging equations applied to each of
the two surfaces. In the derivation of the final equation, one ignores the distance
between the spherical surfaces. The result is an imaging equation, which has
the same absolute value for object and image focus. A positive lens has the
object focus to the left and the image focus to the right. For the derivation, we
assume that the lens has the refractive index n2, real objects are in a medium with
refractive index n1, and virtual objects are in a medium with refractive index n3.

To obtain the imaging equation of the thin lens we consider a convex and a
concave spherical surface, separated by the distance a. The imaging equation for
the first single spherical surface, as given in Eq. (1.35), is

−1/ζo + 1/ζi � 1/ρ1, (1.43)

where ζo � xo/n1, ζi � xi/n2, ρ1 � r1/(n2−n1), and all distances are measured
from the center of the first surface. The imaging equation for the second spherical
surface is described by

−1/ζ ′
o + 1/ζ ′

i � 1/ρ2, (1.44)

where ζ ′
o � x ′

o/n2, ζ ′
i � x ′

i/n3,ρ2 � r2/(n3−n2), and all distances are measured
from the center of the second surface.

The two surfaces are positioned such that their distance in medium n2 is “a”
(Figure 1.9). To relate this distance to the image distance of the first surface
and the object distance of the second surface, we place both at the same point
(Figure 1.9). Measured from the first spherical surface the image is at +ζi .
Measured from the second spherical surface the object is at −ζ ′

o. Since ζ ′
o and ζi

are distances divided by the refractive index, we have to do the same with “a”.

FIGURE 1.9 Coordinates for the derivation of the thin lens equation.
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To get the absolute value for a/n2 we have

−ζ ′
o + ζi � a/n2. (1.45)

The relation holds for the coordinates of each lens, and substitution into the
equation for Surface 2 results in

−1/(−a/n2 + ζi) + 1/ζ ′
i � 1/ρ2. (1.46)

Adding Eq. (1.46) and the equation for Surface 1, that is, Eq. (1.43), we get

−1/ζo + 1/ζi − 1/(−a/n2 + ζi) + 1/ζ ′
i � 1/ρ2 + 1/ρ1. (1.47)

The thickness a is now set to zero, two terms cancel each other out, and we obtain

−1/ζo + 1/ζ ′
i � 1/ρ1 + 1/ρ2. (1.48)

Rewriting Eq. (1.48) by using ζo � xo/n1, ζ ′
i � x ′

i/n3, ρ1 � r1/(n2 − n1), and
ρ2 � r2/(n3 − n2), and setting x ′

i � xi , we have

−n1/x0 + n3/xi � (n2 − n1)/r1 + (n3 − n2)/r2. (1.49)

The focal length of the thin lens f is defined as

1/f � (n2 − n1)/r1 + (n3 − n2)/r2 (1.50)

and depends on the refractive indices outside and inside the lens, and on the two
radii of curvature. In most cases both sides of the lens have the same refractive
index 1; that is, n3 � n1 � 1. Calling the refractive index of the lens n, we have

1/f � (n− 1)/r + (1 − n)/r ′.

For a symmetric lens in air we obtain

1/f � 2(n− 1)/r.

Using n3 � n1 � 1 and the focal length of Eqs. (1.50), we have from Eq. (1.49)
the thin lens equation,

−1/xo + 1/xi � 1/f. (1.51)

There are positive and negative values for f , associated with positive and
negative lenses. For example, a biconvex lens is a positive lens.

1.6.2 Object Focus and Image Focus

When f is positive, that is, for a positive lens, the object focus is on the left and
has the coordinate xof � −f , and the image focus is at xif � f . When f is
negative, that is, for a negative lens, the object focus is on the right and has the
coordinate xof � |f |, and the image focus is xif � −|f |.
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FIGURE 1.10 Graph of C-ray connecting object and image arrows. The length of the object arrow
y0 and image arrow yi and their distances from the thin lens x0 and xi are also indicated.

1.6.3 Magnification

In Figure 1.10 we consider the case of a real object and real image and draw a
line from the top of the object arrow through the center of the lens to the top
of the arrow on the image arrow. The corresponding light ray is called the chief
ray and is again referred to as the C-ray. It passes the lens at the center and
therefore is not deviated by refraction. From the two “similar” triangles shown
in Figure 1.10 we define the magnification m as

m � yi/yo � xi/xo. (1.52)

1.6.4 Positive Lens, Graph, Calculations of Image Positions,
and Graphical Constructions of Images

In FileFig 1.10 we show a graph of the thin lens equation. The image distance
xi is plotted as a function of xo for positive f . There is a singularity at the object
focus at −f . To the left of the object focus, xi is positive. To the right between
the object focus and lens, xi is negative, and on the right of the lens it is positive.
As a result, we have three sections. In the first and third sections, for a positive
sign, the image is real. In the middle section, for a negative sign, the image is
virtual.

In FileFig 1.11 we have chosen four specific values of object distances and
calculate the corresponding image distances and magnifications.

FileFig 1.10 (G10TINPOS)

Graph of image coordinate xi , depending on the object coordinate xo for the thin
lens equation with f � 10.

G10TINPOS

Positive Lens

Focal length f is positive, light from left propagating from medium with index 1
to lens of refractive index n. xo on left of surface (negative).
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Calculation of Graph for xi as Function of xo over the Total Range of xo

Graph for xi as function of xo over the range of xo to the left of f . Graph for
xi as function of xo over the range of xo to the right of f .

f ≡ 10

Image focus: f Object focus: −f
xo :� −100.001,−99.031 . . . 100

xi(xo) :� 1( 1
f

) + 1
xo

.

xxo :� −50.001,−49.031 . . .− 11

xxi(xxo) :� 1( 1
f

) + 1
xxo

.
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xxxo :� −9.001,−8.031 . . . 50

xxxi(xxxo) :� 1( 1
f

) + 1
xxxo

.

Application 1.10.

1. Observe the singularity at the object focus, which has the same absolute value
as the focal length but with a negative sign. The image focus has a positive
sign. Note that they play different roles in the geometrical construction of the
image.

2. Change the refractive index and describe what happens.

3. Change the focal length and describe what happens.
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FileFig 1.11 (G11TINPOS)

Calculation of image and object foci for f � 10. Calculation of image distances
xi and magnification for four specific values of object distance xo

G11TINPOS

Positive Lens

Focal length f is positive, light from left propagating from medium with index 1
to lens of refractive index n. xo on left of lens (negative).

Calculation for Four Positions for Real and Virtual Objects, to the Left and Right of the
Object Focus and Image Focus

Calculation of xi from given xo and focal length. Calculation of magnification.

f ≡ 10 n1 :� 1 n2 : 1.5

Image focus: f Object focus: −f
1. xo1 :� −30

xi1 :� 1( 1
f

) + 1
xo1

xi1 � 15 mm1 :� xi1

xo1
mm1 � −0.5.

2. xo2 :� −5

xi2 :� 1( 1
f

) + 1
xo2

xi2 � −10 mm2 :� xi2

xo2
mm2 � 2.

3. xo3 :� 5

xi3 :� 1( 1
f

) + 1
xo3

xi3 � 3.333 mm3 :� xi3

xo3
mm3 � 0.667.

4. xo4 :� 30

xi4 :� 1( 1
f

) + 1
xo4

xi4 � 7.5 mm1 :� xi4

xo4
mm4 � 0.25.

Application 1.11. The distance between the chosen object coordinate and the
resulting image coordinate changes with the choice of the object coordinate.

1. Find analytically the condition for the shortest distance between image and
object.

2. Make a graph of y � −xo + xi depending on xo and find the minimum.
3. Make a sketch.
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FIGURE 1.11 Geometrical construction of the images for a converging lens with positive f . Real
objects for (a) and (b) and virtual objects for (c) and (d). The light converges to real images in (a),
(c), (d). The light diverges in (b), and a virtual image is obtained by “trace back.”

The geometrical construction of the images for the values calculated in FileFig
1.11 are shown in Figures 1.11a to d.

1. Real object and real image.
The object is presented by an arrow of length yo, placed at the object point
xo. The image point and the length of the arrow presenting the image can
be geometrically determined. The C-ray is drawn from the top of the object
arrow through the center of the thin lens. The second ray, the PF-ray, is drawn
from the object arrow parallel to the axis to the lens, and from there, through
the image focus. The two rays meet at the position of the image arrow. In
Figure 1.11a, we obtain for a real object a real image.

2. Real object and virtual image.
In Figure 1.11b we place the real object between the object focus and the
lens and draw the C-ray and PF-ray. These rays diverge in a forward direction
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and both are traced back to the left. They meet at the virtual image. A virtual
image is always found when the C-ray and the PF-ray diverge in a forward
direction. If we could place a screen into the position of a virtual image, we
could not see it, because the rays toward the virtual image are diverging.

3. and 4. Virtual object and real images.
In Figures 1.11c and 1.11d we place the object to the right of the lens. We are
considering virtual objects. A virtual object may be produced by the image
formed by another optical imaging system. The virtual objects are placed
between the lens and the image focus and to the right of the image focus. In
both cases we draw the C-ray in a forward direction. The PF-1 ray is drawn
first backward to the lens and then forward through the image focus. The
C-ray and the PF-ray converge to real images for all positions of the virtual
object.

The results of the calculations of the positive thin lens with f � −10 are
listed in Table 1.3.

1.6.5 Negative Lens, Graph, Calculations of Image Positions,
and Graphical Constructions of Images

In FileFig 1.12, we show graphs of the thin lens equation, plotting xi as a function
of xo for negative f . We see the singularity is at the object focus f , which is
now to the right of the lens. To the left of the lens, xi is negative. Between the
lens and the object focus, xi is positive. To the right of the object focus, xi is
negative. As a result, we have three sections. In the first and third sections, for a
negative sign, the image is virtual. In the middle section, for a positive sign, the
image is real.

In FileFig 1.13, we have calculated for four specific values of object distance
the corresponding image distances and the magnification. In Figure 1.12 we have
the geometrical construction of the images for the values calculated in FileFig
1.13.

TABLE 1.3 Positive Lens. f � 10, Image Focus 10, Object Focus −10
xo xi m Image Object

−30 15 −.5 r r

−5 −10 2 vi r

5 3.3 .67 r vi

30 7.5 .25 r vi
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FIGURE 1.12 Geometrical construction of the images for a diverging lens with negative f . Real
objects for (a) and (b) and virtual objects for (c) and (d). The light converges to real images in (c).
The light diverges in (a), (b), (d), and a virtual image is obtained by “trace back.”

FileFig 1.12 (G12TINNEG)

Graph of image coordinate xi , depending on object coordinate xo for the thin
lens equation with f � −10.

G12TINNEG is only on the CD.

Application 1.12.
1. Observe the singularity at object focus, which has the same absolute value

as the focal length but with a positive sign. The image focus has a negative
sign. Note that they play different roles in the geometrical construction of the
image.

2. Change the refractive index and describe what happens.
3. Change the focal length and describe what happens.
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FileFig 1.13 (G13TINNEG)

Calculation of image focus and object focus for negative lens. Calculation of
image distances xi and magnification for four specific values of object distance
xo.

G13TINNEG is only on the CD.

Application 1.13. The distance between the chosen object coordinate and
resulting image coordinate changes with the choice of the object coordinate.

1. Modify the analytical calculation done in Application FF11 for the condition
of the shortest distance between image and object.

2. Make a sketch.

The geometrical construction of the images for the values calculated in FileFig
1.13 are shown in Figures 1.12a to d.

1. and 2. Real object to the left of the lens and virtual image.
The object is presented by an arrow of length yo, placed at the object point xo
to the left of the negative lens. The image point and the length of the arrow
presenting the image can be geometrically determined using the C-ray and
the PF-ray. The C-ray is drawn from the top of the object arrow through the
center of the thin lens. The PF-ray is drawn from the object arrow parallel to
the axis to the lens, and then diverges in a forward direction. It is traced back
to the image focus. The two rays meet at the positions of the image arrow. In
Figures 1.12a and 1.12b, we obtain for a real object a virtual image. A virtual
image is obtained when the C-ray and the PF-ray diverge in a “forward”
direction.

3. Virtual object between lens and object focus.
In Figure 1.12c, we place the virtual object between the object focus and
the lens and draw the C-ray. The PF-ray is first traced back to the lens, then
connected to the image focus, and extended in the forward direction. The two
rays meet in the forward direction at a real image.

4. Virtual object on the right side of the object focus.
In Figure 1.12d, we place the virtual object to the right of the object focus
and draw the C-ray. The PF-ray is first traced back to the lens, then connected
to the image focus and extended further in the backward direction. The two
rays meet in the backward direction for a virtual image.

The results of the calculations of the negative thin lens with f � −10 are
listed in Table 1.4

For the geometrical construction, we note that the size of the lens does not
matter. One uses a plane in the middle of the lens with sufficient extension in the
y direction; see Figure 1.13a.
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TABLE 1.4 Negative Lens. f � −10, Image Focus −10, Object focus 10
xo xi m Image Object

−30 −7.5 .25 vi r

−5 −3.3 .67 r r

5 10 2 vi vi

30 −15 −.5 vi vi

FIGURE 1.13 (a) Image formation of an object larger than the diameter of the lens. The extended
plane of the lens is used; (b) image formation for an object at infinity. The axis B of the system is
the ray from the center of the object through the center of the lens. the PF-ray is assumed to come
from the top of an object at finite distance; the corresponding image is indicated.

If the object is at infinity, one uses for the object distance a finite number so
that the image is not exactly at the focal point, where it would have a length
equal to zero (Figure 1.13b).

1.6.6 Thin Lens and Two Different Media on the Outside

We go back to the thin lens equation and choose different indices of refraction
at the two media on both sides of the lens. We start again from the definitions
ζo � xo/n1, ζ ′

i � xi/n3, ρ1 � r1/(n2 − n1) and ρ2 � r2/(n3 − n2) and have

−n1/x0 + n3/xi � (n2 − n1)/r1 + (n3 − n2)/r2. (1.53)

We call the focal length of the thin lens fn given by

1/fn � (n2 − n1)/r1 + (n3 − n2)/r2 (1.54)

and obtain the thin lens equation

−n1/xo + n3/xi � 1/fn. (1.55)
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This equation is very similar to the spherical surface imaging equation discussed
in Section 1.4a just as we found there, we have different values for the object
focus and image focus.

For the object focus, when the image point is assumed to be at positive infinity,
we have

xof � −n1fn (1.56)

and for the image focus, obtained when the object point is assumed to be at
negative infinity, we have

xif � n3fn. (1.57)

The construction of the images for positive and negative lenses is similar to the
procedure for the spherical surfaces and is not discussed further. The value of
the focal length for different cases of the refractive indices may be calculated
using FileFig 1.14.

FileFig 1.14 (G14TINFOC)

Calculation of the focal length and object and image focus of the thin lens for
different combinations of the refractive indices.

G14TINFOC

Focal Length

1. Calculation of focal length of thin lens of refractive index n2 in medium with
refractive index n1.
First surface: r1 :� −5. Second surface: r2 :� 5. r is positive for convex
surface, negative for concave surface. Refractive index of lens n2: n2 :� 1.
and Refractive index of medium n1: n1 :� 1.5.

2. Graph of focal length of thin lens with index n2 depending on refractive index
of medium n1.
The range on n1 is divided into lower and higher ranges because of sin-
gularity. Refractive index of lens nn2: nn2 :� 1.5. Lower range: nn1 :�
1, 1.1 . . . nn2 − .00001. Upper range: nnn1 :� nn2 + .1, nn2 + .2 . . . 4.

ff (nn1) :� 1
nn2−nn1

r1 + nn1−nn2
r2

fff (nnn1) :� 1
nn2−nnn1

r1 + nnn1−nn2
r2

.
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Application 1.14. Consider the case n2 > n1. What is the result when
interchanging n1 and n2?

Applications for the Sections on Positive and Negative
Lenses

1. Air lens in plastic. A plastic rod is flat on one side and has a spherical surface
on the other side. The spherical surface is concave with respect to the incident
light, which comes from the flat side. An identical second rod is taken and
the two curved ends are put together, forming an air lens by the ends of the
two rods. The cross-section of this lens has its thinnest point in the middle.
Assume that the radii of curvatures of the spherical surfaces are r � −r ′ � 10
cm and the refractive index of the rod is n � 1.5. Sunlight is incident on an
object on the face of the first rod at 20 cm from the air lens. Find the image
distance.

2. Thin lens on water. A lens of refractive index n � 1.5 is put on water, one
surface in air, the other in water. The lens is a symmetric biconvex lens and has
a focal length of f � 10 cm in air. The refractive index of water is n � 1.33.
a. Calculate the radii of curvature of the lens in air and the focal length to be

used in the above position.

b. Sunlight is shining on the lens; calculate the image distance in the water.

1.7 OPTICAL INSTRUMENTS

Optical instruments, such as magnifiers, and microscopes, enlarge tiny objects,
making it possible to observe objects we can barely see with the naked eye. The
magnifier gives us a modest magnification, in most cases less than ten times. The
microscope makes it possible to observe objects of about 1 micron diameter, and
the telescope enables us to see objects at a far distance in more detail. Our eye is
a one lens system and may produce a real image of a real object, like a positive
lens (Figure 1.11a). The real image of a real erect object of a positive lens is
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inverted. However, our brain makes a “correction” (another inversion) and we
“see” the object erect, as it is. In discussing optical instruments, we have to take
this fact into account when making statements about image formation. For a
microscope or astronomical telescope it does not matter much if the final image
is erect or inverted. However, for the telescope of a sharpshooter it is important.

From Figures 1.11 and 1.12, we read a simple rule: If the image appears at
the same side of the lens as an erect object, it is erect. If it appears on the other
side of the lens, it is inverted.

1.7.1 Two Lens System

To obtain the final image distance of a two-lens system, one first applies the
thin lens equation to the first lens and determines the image distance. The object
distance for the second lens is calculated from the distance between the two
lenses and the image distance of the first lens. The thin lens equation is then
applied to the second lens and the final image distance for a two-lens system is
obtained as the distance from the second lens. The formulas for this procedure
are listed in FileFig 1.15.

For graphical constructions one proceeds in the same way. Using C- and PF-
rays, one constructs the image of the first lens. The image is taken as an object
for the second lens, and C- and PF-rays are used to construct the image formed
by the second lens. The existence of the first lens is ignored when going through
the second process.

The magnification of the system is the productm of the magnification of each
of the two lenses. One has m � m1m2 with m1 � xi1/xo1 and m2 � xi2/xo2,
where m1 is calculated with respect to the first lens and m2 with respect to the
second lens.

FileFig 1.15 (G15TINTOW)

Calculation of the final image distance of a two-lens system, for a given object
distance of the first lens, focal length, and separation of the two lenses.

G15TINTOW

Two Thin Lenses, Distance Between Lenses: D

1. First lens, xo1, xi1, f 1

xo1 :� −5 f 1 :� 6

xi1 :� 1( 1
f 1

) + 1
xo1

xi1 � −30.
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2. Second Lens, xo2, xi2, f 2, and Distance D (Positive Number)

D :� 10 f 2 :� 1.85.

The image distance of the first process is given with respect to the first lens.
(Let us assume it is positive.) The object distance must be given with respect
to the second lens, taking the distanceD between the two lenses into account.
(D is negative when counted from the second lens.) Therefore we have

xo2 :� −D + xi1 xo2 � −40

xi2 :� 1( 1
f 2

) + 1
xo2

xi2 � 1.94.

3. Magnification for each lens and product for the magnification of the system

m1 :� xi1

xo1
m1 � 6

m2 :� xi2

xo2
m2 � −0.048

System

m1 ·m2 � −0.291.

Application 1.15.
1. Distance between the lenses is larger than 2f . Calculate the final image

distance for two lenses at distance D � 50. Assume that the object distance
from the first lens is −20. Give the magnification, and make a sketch of object
and image, assuming that the object is erect. Consider the following cases.
a. First lens f1 � 10; second lens f2 � 10.

b. First lens f1 � 10; second lens f2 � −10.

c. First lens f1 � −10; second lens f2 � 10.

d. First lens f1 � −10; second lens f2 � −10.
2. Distance between the lenses is smaller than 2f . Calculate the final image

distance for two lenses at distance D � 6. Assume that the object distance
from the first lens is −20. Give the magnification, and make a sketch of object
and image, assuming that the object is erect. Consider the following cases.
a. First lens f1 � 10; second lens f2 � 10.

b. First lens f1 � 10; second lens f2 � −10.

c. First lens f1 � −10; second lens f2 � 10.

d. First lens f1 � −10; second lens f2 � −10.

1.7.2 Magnifier and Object Positions

The size of an image on the retina increases when placed closer and closer to the
eye. There is a shortest distance at which the object may be placed, called the near
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FIGURE 1.14 Two positive lenses in the magnifier configuration: (a) the virtual image yi of the
object y0 serves as object Yoe for the eye lens. The image yie (see bold dotted lines) appears on the
retina upside down; we see it therefore erect; (b) the object of the eye in the near field configuration;
(c) the object of the eye in the infinity configuration.

point at about 25 cm. For shorter distances the eye can no longer accommodate
production of an image because the eye–retina distance is fixed. To increase the
size of the object one may use a positive lens as a magnifier. In Figure 1.14, we
show the magnifier and the eye as a two-thin-lens system. In FileFig 1.16 we
show the calculation of the image distance for a two lens system. We assume that
the positive lens and the eye are separated by a distance of D � 1 cm. Object
distance and focal lengths of the lenses are both input data.

From Figure 1.14, we see that the first lens produces a virtual erect image of
a real erect object. The second lens (eye) treats the virtual erect image as a real
erect object and produces a real inverted image on the retina. The final image on
the retina is inverted. However, we “see” it upright because our brain does the
conversion. The virtual image of the magnifier lens is the object of the eye lens.
The object producing this virtual image may only be positioned with respect to
the magnifier in such a way that the virtual image is not closer than the near
point, but may have a distance as large as negative infinity. We therefore discuss
the two cases: the virtual image is at the near point; and the virtual image is at
infinity.
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FileFig 1.16 (G16MAG2L)

Calculation of the image distance for a two-lens system consisting of a positive
lens and the eye lens. Magnification for each lens and the system.

G16MAG2L is only on the CD.

Application 1.16. Object distance at xo1 � −5, focal length of first lens f1 � 6,
distanceD between lens and eye isD � 0, focal length of eye f2 � 1.85. Study
different resulting magnifications for changes of xo1 and f1.

1.7.2.1 Virtual Image at Near Point

The virtual image produced by the first lens is the real erect object for the second
lens (eye), and is assumed to be at the near point (−25 cm). In the first step, we
calculate the object distance for the first lens when the image is at −25 cm from
the second lens (eye). In the second step we consider the eye. The calculation is
shown in FileFig 1.17 where the magnification of the magnifier is given as

m1 � xi1/xo1 (1.58)

and of the eye as

m2 � xi2/xo2. (1.59)

Considering only the magnification m1 of the magnifier, one may use the thin lens
equation in order to express m1 in known quantities; that is, f1 and xi1 � −25.
We have

m1 � xi1/xo1 � xi1(1/xo1) � xi1(−1)(1/f − 1/xi1) � (1 − xi1/f1). (1.60)

Neglecting the distance D between magnifier and eye lens, and setting xi1 �
−25, we obtain for the magnification,

m1 � 1 + 25/f1. (1.61)

1.7.2.2 Virtual Image at Infinity

The virtual image produced by the first lens is assumed to be at negative infinity
(−∞). It is the real erect object for the second lens (eye). The calculation is
shown in FileFig 1.18 for f1 � 12, and taking for xi1 the numerical value of
−1010. For the magnification of the magnifier we get, after using the thin-lens
equation, similarly done as in Eq. (1.60),

m1 � xi1/xo1 � 1 − xi1/f1 � 8.333 · 108,

This is a meaningless number. In order to discuss the case where the virtual image
is at infinity, we have to change our approach and consider angular magnification.
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FIGURE 1.15 Angular magnification; (a) object at the near point, seen with the eye lens; object
at the near point, seen with magnifier and eye lens.

1.7.2.3 Angular Magnification or Magnifying Power

To avoid the difficulties we encountered in Section 1.7.2.2, where we calculated
meaningless numbers for the magnification, we take a different approach and
use angular magnification. We compare the angles at the eye by looking at the
object with and without a magnifier (Figure 1.15).

The object is positioned at the near point because that gives the largest mag-
nification without a lens. First the eye looks at the object without a magnifier,
(Figure 1.15a), where angle α is

α � yo1/xo1 � yo1/(−25). (1.62)

Then we introduce the magnifier and have for the angle β, as shown in
Figure 1.15b,

β � yi1/xi1 � yo1/xo1β � yo1(1/xi1 − 1/f1), (1.63)

where xo1β is the object distance when calculating the angle β, and the thin-lens
equation was used to eliminate xo1β .

We define the angular magnification or magnifying power as

MP � β/α � −25(1/xi1 − 1/f1). (1.64)

We now discuss the applications of angular magnification to the cases where the
virtual image is at the near point and at infinity.
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1. Near point.
The object is at the near point, and assumingD � 0 we have xo1 � xi1 � −25
and get

MP � 1 + 25/f1. (1.65)

This is the same expression we obtained in Section 1.7.2.1; for the case of
the Near point, see Eq. (1.61).

FileFig 1.17 (G17MAGNP)

Calculations of the magnifier in the near point configuration. Assume D � 0.
First step: Determination of object point for image point at −25 for first lens with
f1 � 12, result xo1 � −8.108. Second step: Determination of xi2 for xo2 � −25
and eye lens f2 � 1.85, result xi2 � 2. Calculation of magnification.

G17MAGNP is only on the CD.

Application 1.17. Find the resulting magnifications for three choices of f1.

2. Virtual image at infinity.
We consider the virtual image of lens 1 as the real object of lens 2. We have
xi1 � −∞, and have for the angular magnification

MP � −25(1/xi1 − 1/f1) (1.66)

� 25/f1.

This value is marked on magnifiers as MP times x. Example: for f1 � 5 we
would have MP � 5x.
In both cases the object is placed at the near point of the eye without a
magnifier, and the resulting angular magnification depends on the focal length
of the magnifier.

FileFig 1.18 (G18MAGIN)

Calculations of the magnifier for the “virtual image at infinity” configuration.
Assume D � 0. First step: Determination of object point for image point xi1 �
−1010 , that is, at (−∞) for the first lens with f1 � 12, result is xo1 � −12.
Second step: Determination of xi2 for xo2 � (−∞), for the eye lens f2 � 1.85,
result is xi2 � 1.85. Calculation of magnification.

G18MAGIN is only on the CD.

Application 1.18. Study several resulting magnifications for three choices of f1.
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FIGURE 1.16 Microscope as three-lens system of objective, magnifier (ocular), and eye. The
object is close to the focal length of the objective lens L1 and the image is yi1. The magnifier L2
and eye lens act in the magnifier configuration on the image y02 produced by L1. The image yi2 is
the object y0e for the magnifier and the image yie appears on the retina erect; we see it therefore
upside down.

1.7.3 Microscope

1.7.3.1 Microscope as Three-Lens System

In a compound microscope, the first lens L1 (objective lens) has a short focal
length and forms a real inverted image of a real erect object. Then the magnifier
configuration is applied, which is the second lens L2 (ocular lens) plus the eye
lens. See Section 1.7.2 above and Figure 1.16. The final image on the retina is
erect, but we see it upside down.

We ignore the eye lens and calculate the final image of a two lens system,
using for the image distance xi1 the fixed value of tube length 16 cm plus Fi1 (in
cm), see Figure 1.16. The magnification is the product ofm1 of the objective lens,
times m2 of the ocular lens (magnifier). We discuss the following cases where
the magnifier is used in (1) the near point configuration, and (2) the virtual image
at infinity configuration.
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1. Magnification, Near Point Configuration, Magnifying Power

In FileFig 1.19 we calculate the magnification, using f1 � 2, xi1 � 16 + f1,
f2 � 6, and xi2 � −25; we have for the magnification

m � m1m2 � (xi1/xo1)(xi2/xo2) � −41.34. (1.67)

The magnifying power MP for the magnifier in the Near point configuration
was obtained in Eq. (1.66), and was the same as the magnificationm1m2. Using
the thin-lens equation to xo1 and x02 we have

MP � m1m2 � xi1(−1)(1/f1 − 1/xi1)xi2(−1)(1/f2 − 1/xi2)

� (1 − [16 + f1]/f1)(1 + 25/f2) (1.68)

and as the result we get m1m2 � −41.34. Neglecting f1 with respect to 16 we
have

MP ≈ (1 − 16/f1)(1 + 25/f2) � −36.17. (1.69)

The negative magnification indicates that we see the object upside down.

FileFig 1.19 (G19MICNP)

Calculations of the microscope in the near point configuration. The object is
close to the focal point of lens 1. Lens 1: f1 � 2 cm; xi1 � +16 + 2 cm, result
xo1 � −2.25 cm. The magnifier lens L2 is in the near point configuration. Lens
2: f2 � 6 cm, xi2 � −25.008 cm; xo2 � −4.839 cm. The angular magnification
is also calculated.

G19MICNP is only on the CD.

Application 1.19. Go through all the steps and study the resulting magnification
by changing f1 and f2.

2. Magnification, Virtual Image at Infinity, Magnifying Power

We assume that the virtual image is at infinity; that is, x2i � −∞. The calcula-
tions using the direct approach, which is m � (xi1/xo1)(xi2/xo2), are shown in
FileFig 1.20. Using f1 � 2 cm, xi1 � 16 + f1, f2 � 6 cm, and xi2 � −1010

cm, we obtain a meaningless number.
The magnifying power in the near point configuration of the magnifier was

obtained in Eq. (1.68) as MP � (1 − [16 + f1]/f1)(1 + 25/f2). The second
factor changes for the case where the “virtual image is at infinity,” and the result
is

MP � (1 − [16 + f1]/f1)(25/f2) � −33.333. (1.70)

Neglecting f1 with respect to 16 one has

MP � −(16/f1)(25/f2) � −29.167. (1.71)
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One may also disregard the one in the first factor and have MP �
−(16/f1)(25/f2).

FileFig 1.20 (G20MICIN)

Calculations of the microscope in the “virtual image at infinity” configuration.
The virtual image is at infinity; that is, x2i � −∞. Lens 1: f1 � 2 cm; xi1 �
+16+2 cm; result xo1 � −2.25 cm. Lens 2: f2 � 6 cm; xi2 � −1010 cm; result
xo2 � −6 cm. The magnification is also calculated neglecting f1.

G20MICIN is only on the CD.

Application 1.20. Go through all the steps and study the resulting magnification
by changing f1 and f2.

1.7.3.2 Magnification of Commercial Microscopes

Commercial microscopes give the magnification of the objective and eye lens by
a MPx value, similar to the one discussed above for the magnifier. For example,
the magnifier power MP of the microscope was approximately −(16/f1)(25/f2).
Assuming f1 � 2 and f2 � 6, the objective would be marked 8x and the ocular
4x. The magnification of this microscope would be 32 times.

1.7.4 Telescope

1.7.4.1 Kepler Telescope

In a simple telescope, the first lens L1 forms an image of a far away object at a
distance close to the focal point f1 of the objective lens (Figure 1.17). The object
is considered real and erect, and the image is real inverted. The second lens is
the magnifier lens and the eye and magnifier lens are used together in the virtual
image at −∞ configuration. In this setup the image of lens 1, which is the object
of lens 2, is close to the focal point of f2, and forms an inverted virtual image
at infinity. When we look at this virtual image the final image on the retina is
erect, but we see it upside down. The calculations are shown in FileFig 1.21. To
find the approximate magnification of the telescope, we do not need to use the
concept of magnifying power and can use the calculation of the magnification:

m � (xi1/xo1)(xi2/xo2), (1.72)

where m1 � xi1/xo1 is about f1/xo1, because the image of lens 1 is close to
the focal point. For m2 � xi2/xo2 we have approximately −xi2/f2, because
the object for f2 is close to the focal point. Since xo1 and xi2 are both large
numbers of the same order of magnitude, they cancel each other out and for the
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FIGURE 1.17 Optical diagram of a Kepler telescope: (a) the object is far away from the objective
lens L1 and the image is yi1, located close to xi1 � f1; (b) the image yi1 is the object for the
magnifierL2 and eye lens in the magnifier configuration and produces the virtual image yi2 � y0e.
The final image yie appears on the retina erect, we therefore see it upside down. The distance
f1 + f2 is approximately the length of the telescope.

magnification we have

m � m1m2 � −f1/f2. (1.73)

Note that this is a negative number since f1 and f2 are both positive, and the
object is “seen” inverted.

To get a large magnification, we need a large value of f1 and a small one of
f2. The large value of the focal length of the first lens makes powerful telescopes
“large.”

FileFig 1.21 (G21TELK)

The Kepler telescope is treated as a two-lens system, assuming for xo1 and xi2
the same large negative numerical values. The magnification is calculated from
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m � (xi1/xo1)(xi2/xo2) and results inm � m1m2 � −f1/f2. Lens L1: f1 � 30;
xo1 � −1010; xi2 � 30. Lens L2: f2 � 6; distance a � f1 + f2; xi2 � −1010,
xo2 � −6. Calculation of magnification.

G21TELK is only on the CD.

Application 1.21. Study magnifications of 2 and 4 by changing f1 and f2 and
make a sketch.

1.7.4.2 Galilean Telescope

The Galilean telescope is the combination of a positive lens L1 and a negative
lens L2. The positive lens forms a real inverted image of a far-away real erect
object (Figure 1.18a). The negative lens replaces the magnifier. The image of
lens 1 is the object for lens 2 and is virtual inverted, see Fig. 1.12(d). Lens 2
forms a virtual erect image of it, at negative infinity (Figure 1.18b). The eye looks
at the virtual erect image of lens 2 as a real erect object and forms a real inverted
image on the retina (we see it erect). The calculation is shown in FileFig 1.22.

FIGURE 1.18 Optical diagram of a Galileo telescope: (a) the object is far away from the objective
lens L1 and the image is yi1, located close to xi1 � f1; (b) the image of lens 1 is virtual inverted
object for lens 2, and lens 2 forms a virtual erect image of it. This virtual erect image is the object
of the eye lens and the image yie appears on the retina upside down, therefore we see it erect.
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For the magnification one gets:

m � (xi1/xo1)(xi2/xo2), (1.74)

where m1 � xi1/xo1 is approximately f1/xo1 because the image of lens 1 is
close to the focal point. The magnification of the second lens, m2 � xi2/xo2, is
approximately −xi2/f2, because the object of lens 2 is close to the focal point
and to the right side of the lens, and f2 is negative. Since xo1 and xi2 are both
large numbers, of the same order of magnitude, they cancel each other out and
we have for the magnification

m � m1m2 � −f1/f2. (1.75)

Note that this is a positive number since f2 is a negative lens, and the object
is seen erect. The Galilean telescope is used for many terrestrial applications in
theaters and on ships.

FileFig 1.22 (G22TELG)

The Galilean telescope is treated as a two-lens system with the first lens having
a positive focal length and the second lens a negative focal length. For xo1 and
xi2 the same large negative numerical values are assumed. The magnification
is calculated as m � (xi1/xo1)(xi2/xo2) and results in m � m1m2 � −f1/f2.
(Note that the numerical value is positive.) Lens L1: f1 � 30, xo1 � −1010,
xi1 � 30 Lens L2: f2 � −29.99, xi2 � −9 · 104; xo2 � 30.

G22TELG is only on the CD.

Application 1.22. Go through all the stages and study magnifications by
changing f1 and f2.

Applications to Two- and Three-Lens Systems

1. Magnifier. A magnifier lens of f1 � 12cm is placed 8 cm from the eye.
a. Find the position of xo1 for

i. the near point configuration; and

ii. the infinite configuration.

b. Give the magnification and the angular magnification.
2. Microscope.A microscope has a first lens (objective) with focal length .31 cm,

a magnifier (ocular) lens of 1.79 cm, and the eye lens is assumed to be fe � 2
cm. The focal length of the objective lens has been chosen so that the image
is at about 16 cm. The distance between the lenses is 18 cm and we assume
that the eye is in near point configuration. Calculate the magnification of the
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first and of the second lenses, and compare the product with the magnifying
power, as derived, and its approximation.

3. Microscope (near point). A microscope has a first lens (objective) with focal
length 1.31 cm and a magnifier (ocular) lens of 1.79 cm. We assume that the
image of the first lens is at 16 cm and the eye is in the near point configuration.
a. Find the object distance for the objective lens.

b. Find the distance from the first image and the magnifier lens.

c. Find the distance between the lenses (length of microscope).

d. Find the magnification.
4. Microscope (−∞). A microscope has a first lens (objective) with focal length

1.31 cm and a magnifier (ocular) lens of 1.79 cm. We assume that the image
of the first lens is at 16 cm and the eye is relaxed, looking at −∞.
a. Find the objective distance for the objective lens.

b. Find the distance from the first image and the magnifier lens.

c. Find the distance between the lenses (length of microscope).

d. Find the magnification.
5. Kepler telescope. Make a suggestion for construction of a Kepler telescope

with magnifications of 4 and 10.At what higher number does the construction
become unrealistic? Why?

6. Galilean telescope. A Galilean telescope has for the first lens f1 � 30 cm and
for the negative lens f2 � −9.9 cm. If xo1 is large and the distance a between
the two lenses is 20 cm, calculate xi2, the image distance with respect to
the negative lens. Calculate the magnification and show that for the object at
infinity, one again has M � −f1/f2. The distance between the two lenses is
then f1 + f2.

7. Laser beam expander. A laser beam of diameter of 2 mm should be expanded
to a beam of 20 mm.
a. A biconvex and a biconcave lens should be used. The beam first passes

the biconcave lens of focal length −5 mm. Where should one place the
biconvex lens of diameter of 30 mm and focal length of 50 mm?

b. Two biconvex lenses should be used, one with f � 5 mm, the other with
f � 50 mm. Make a sketch and give approximate values for the diameter
of the lenses.

1.8 MATRIX FORMULATION FOR THICK LENSES

1.8.1 Refraction and Translation Matrices

A thick lens has two spherical surfaces separated by a dielectric material of a
certain thickness. Previously we ignored the distance between the two surfaces
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FIGURE 1.19 Multiple lens system. The lenses may have different radii of curvature and different
refractive indices.

but now take it into account. One may calculate the image formation of the thick
lens by first finding the image produced by the first surface. Then one uses this
image as an object in the second imaging process and finds the image produced
by the second surface. One could also use this procedure for lens systems with
many lenses (Figure 1.19). However, one can develop a mathematical formalism
to describe the image formation of a system of lenses by using the thin-lens
equation. But one now has to measure the object and image distance from newly
determined “principal planes,” and not from the center of the thick lens. To do
this, we first consider the case of refraction on a spherical surface (Figure 1.20).
We want to represent the first surface by an operation which transforms the set of
coordinates of the object into the set of coordinates of the first image. We show
that this operation can be represented by a transformation matrix, which we
call refraction matrix. Then we make a translation to get to the second surface,
accomplished by a translation matrix, and the next operation on the second
surface is again associated with a refraction matrix. This method is applicable to
many different curved surfaces and their separations, having different thickness
and refraction indices. The mathematical operation representing the processes
of refraction at one and translation between two surfaces is a two-by-two matrix.
The matrices are derived by using the paraxial theory, taking as the coordinates
the distance from the axis of the point of the ray at the surface and the angle the
ray makes with the axes (Figure 1.20a).

We now construct matrices to represent the refraction and translation opera-
tions. The matrices act on sets of two coordinates, written in the form of a vector.
The initial coordinates (index1) in the plane of the object are acted on, and the
result is the set of coordinates (index 2) in the plane of the image. We start from
the equation for refraction on a single surface

−n1/xo + n2/xi � (n2 − n1)/r (1.76)

and rewrite it, using α1 and l1 (see Figure 1.20a), as

n1(α1/l1) + n2(−α2/l2) � (n2 − n1)/r. (1.77)

In addition we have for the second coordinate

l1 � l2. (1.78)
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FIGURE 1.20 Coordinates for vector and matrix formulation: (a) the coordinates 11 and α1 are
used to form the vectors I1 � (l1, α1), and the coordinates l2 and α2 are used to form the vectors
I2 � (l2, α2); (b) translation, the dependence of d on α1, l1, and l2.

We define the vectors I1 of object coordinates and I2 of image coordinates using
for I1 the coordinates l1 and α1, and for I2 we using l2 and α2,

I1 �
(
l1

α1

)
I2 �

(
l2

α2

)
. (1.79)

The two equations (1.77) and (1.78) may be written in matrix notation as(
l2

α2

)
�

(
1 0

−(1/r)(n2 − n1)/n2 n1/n2

) (
l1

α1

)
. (1.80)

For a proof, we may multiply the matrix with the vector and arrive back at
Eqs. (1.76) to (1.78). In short notation we may also write

I2 � R12I1.

The matrix R12 is called the refraction matrix of a single spherical surface

R12 �
(

1 0
−(1/r)(n2 − n1)/n2 n1/n2

)
. (1.81)

For a plane surface, that is, for an infinite large radius of curvature, the matrix
of Eq. (1.81) reduces to the refraction matrix of a plane surface

R �
(

1 0
0 n1/n2

)
. (1.82)

We get the translation matrix T , that is, the translation from one vertical plane
to the next over the distance d, by taking into account that l2 � l1 + α1d; see



1.8. MATRIX FORMULATION FOR THICK LENSES 51

Figure 1.20b.

T �
(

1 d

0 1

)
. (1.83)

1.8.2 Two Spherical Surfaces at Distance d and Principal
Planes

1.8.2.1 The Matrix

For a thick lens we use the refraction and translation matrices. We apply the
refraction matrix corresponding to the first spherical surface, the translation
matrix corresponding to the thickness of the lens, and the refraction matrix
corresponding to the second spherical surface. We again assume that the light
comes from the left, and realize that the sequence of the matrices is the sequence
of action on I1. In other words, the first surface is represented by the matrix on
the far right.

First operation: Refraction on first surface: Matrix on the right
Second operation: Translation between the surfaces: Matrix in the middle

Third operation: Refraction on the second surface: Matrix on the left.

For the refraction matrix of a thick lens of thickness d and two different spherical
surfaces, we obtain(

1 0
−(1/r2)(n3 − n2)/n3 n2/n3

)(
1 d

0 1

)(
1 0

−(1/r1)(n2 − n1)/n2 n1/n2

)
.

(1.84)

Multiplication of the three matrices will give us one matrix representing the total
action of the thick lens. To do this we define some abbreviations, called refracting
powers P12, P23, and P , where P is related to the focal length of the thick lens.

P12 � −(1/r1)(n2 − n1)/n2 (1.85)

P23 � −(1/r2)(n3 − n2)/n3, and (1.86)

P � −1/f � P23 + dP12P23 + (n2/n3)P12. (1.87)

(From the 2,1 element P we get the focal length of the system.) We obtain the
thick-lens matrix as(

1 + dP12 d(n1/n2)
P d(n1/n2)P23 + (n1/n3)

)
. (1.88)

FileFig 1.23 (G23SYMB3M)

Symbolic calculation of the product of three matrices corresponding to a thick
lens of refractive index n2 and thickness d. The light is incident from a medium



52 1. GEOMETRICAL OPTICS

with refractive index n1 and transmitted into a medium with refractive index n3.
The case of the thin lens is derived by setting d � 0 and n1 � n3; one obtains
the thin-lens matrix.

G23SYMB3M

Thin-Lens Matrix

Special case of the thin-lens matrix. We start with the symbolic calculation of
two surfaces at distance d

P 12 � (−1/r1)(n2 − n1)/n2 P 23 � (−1/r2)(n3 − n2)/n3⎡
⎣ 1 0

P 23
n2

n3

⎤
⎦ ·

[
1 d

0 1

]
·
⎡
⎣ 1 0

P 12
n1

n2

⎤
⎦

⎡
⎢⎣

1 + d · P 12 d · n1

n2
(P 23 · n3 + P 12 · P 23 · d · n3 + P 12 · n2)

n3

(P 23 · d · n3 + n2)

n3
· n1

n2

⎤
⎥⎦

P � P 23 + dP12P 23 + (n2/n3)P 12.

We go to the thin lens and set d � 0⎡
⎣ 1 0

P 23
n2

n3

⎤
⎦ ·

[
1 0

0 1

]
·
⎡
⎣ 1 0

P 12
n1

n2

⎤
⎦

⎡
⎣ 1 0

(P 23 · n3 + P 12 · n2)

n3

1

n3
· n1

⎤
⎦ .

Since n3 and n1 are set to 1 we have[
1 0

(P 23 + P 12 · n2) 1

]
.

We set

P � (P 23 + P 12 · n2)

and

P � −1

f
; f is the focal length of the lens.

With

P 12 � (−1/r1)(n2 − n1)/n2 P 23 � (−1/r2)(n3 − n2)/n3
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we obtain for 1/f � −((−1/r2)(1 − n2) + (−1/r1)(n2 − 1)) and have finally
for the thin-lens matrix,⎡

⎣ 1 0
−1

f
1

⎤
⎦ .

1.8.2.2 Application to the Thin Lens

We demonstrate more about the meaning and significance of the four matrix
elements when reducing the matrix to the one corresponding to a thin lens. We
use two surfaces close together; that is, we set d � 0 (Figure 1.21). The product
matrix of Eq. (1.88) reduces to(

1 0
P23 + (n2/n1)P12 1

)
. (1.89)

Assuming n1 � n3=1, we have for P23 + (n1/n3)P12 � −(1 − n2)/r2 − (n2 −
1)/r1 � −1/f , where f is the focal length of the thin lens. If we introduce these
expressions into Eq. (1.89) and write the matrix with the coordinate vectors as
in Eq. (1.80), we get(

l2
α2

)
�

(
1 0

−(1/f ) 1

)(
l1
α1

)
. (1.90)

We label the matrix elements M0,0, M0,1, M1,0, and M1,1.
By using the coordinates as done in Eq. (1.77) and (1.78), we want to show

that Eq. (1.90) is equivalent to the thin-lens equation. Multiplication yields

l2 � l1

α2 � −l1/f + α1. (1.91)

From Figure 1.21 we have α2 � −l1/xi , and α1 � −l1/xo, and have

l1/(−xo) + l1/xi � l1/f. (1.92)

FIGURE 1.21 Coordinates for the thin lens.
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We see that if the 0,0 and 1,1 elements are 1 and the 0,1 element is zero, we may
obtain the focal length of the thin lens from the 1,0 element; that is, −1/f �
P23 + (n2/n1)P12.

We have gone through this example of the thin lens to show how the procedure
with the refraction matrix works to get to the object–image relation. We measure
xo and xi from the surface of the thin lens, and apply in the usual way the thin-lens
equation, and take the focal length from the 1,0 element.

1.8.2.3 Thick Lens

For a thick lens, the matrix elements 0,0 and 1,1 of Eq. (1.88) are not 1, and the
0,1 element is not zero. To apply a similar procedure to that discussed for the
thin lens, we introduce a transformation in order to get the 0,0 and 1,1 element
to 1 and the 0,1 element to 0. These three requirements may be obtained by
application of a translation. We first translate by −h the plane of the object and
at the end we go back by a translation of hh. The introduction of these two new
parameters corresponds to the displacements of the points from which we have
to count xo and xi . We apply these two translations to the thick-lens matrix of
Eq. (1.88) and have to calculate(

1 hh

0 1

)(
1 + d P12 d (n1/n2)

P d(n1/n2)P23 + n1/n3

)(
1 −h
0 1

)
. (1.93)

We rewrite the thick-lens matrix, using the following abbreviations,(
1 hh

0 1

)(
M0,0 M0,1

M1,0 M1,1

)(
1 −h
0 1

)
. (1.94)

The multiplication is done in FileFig 1.24, and we get as the result(
M0,0 + hhM1,0 −M0,0h+M0,1 + hh(−M1,0h+M1,1)

M1,0 −M1,0h+M1,1

)
. (1.95)

There are three requirements to be fulfilled, and only two new parameters. We
set M0,0 + hhM1,0 � 1 and −M1,0h + M1,1 � 1, and calculate h and hh. In
order to be successful, the introduction of the calculated values of h and hh from
these two equations must make the 0,1 element zero. It can be shown analytically
that [−M0,0h +M0,1 + hh(−M1,0h +M1,1)] � 0, and numerically as seen in
FileFig 1.24.

We have the same form of the matrix as in Eq. (1.89) and find that the (1,0)
element has not been changed by the transformation. We have P � −1/f �
M1,0. As a result of our transformation we have for the parameters h, hh, and
the focal length

hh � (1 −M0,0)/M1,0 (1.96)

−h � (1 −M11)/M1,0 (1.97)

P � −1/f � M1,0. (1.98)
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FileFig 1.24 (G24SYMBH)

Symbolic calculations of the general transformation for a thick lens. Calculation
of the two-spherical-surface matrix and displacement matrix with parameters
−h and hh. A numerical example is presented for n1 � 1, n2 � 1.5, n3 � 1,
r1 � 10, r2 � −10, and d � 20.

G24SYMBH

Symbolic Calculations of the Product of Three Matrices Corresponding to a General
Thick Lens

1. Symbolic calculation of the matrix for the thick lens⎡
⎣ 1 0

P 23
n2

n3

⎤
⎦ ·

[
1 d

0 1

]
·
⎡
⎣ 1 0

P 12
n1

n2

⎤
⎦

P 12 � (−1/r1)((n2 − n1)/n2)

P 23 � (−1/r2)((n3 − n2)/n3)⎡
⎢⎣

1 + d · P 12 d · n1

n2
(P 23 · n3 + P 12 · P 23 · d · n3 + P 12 · n2)

n3

(P 23 · d · n3 + n2)

n3
· n1

n2

⎤
⎥⎦ .

2. Determination of h and hh. For simpler calculation we define the matrix[
M0,0 M0,1

M1,0 M1,1

]

M0,0 � 1 + d · P 12 M0,1 � d · n1

n2

M1,0 � (P 23 · n3 + P 12 · P 23 · d · n3 + P 12 · n2)

n3
M1,1 � (P 23 · d · n3 + n2)

n3
· n1

n2
and determine h and hh,[

1 hh

0 1

]
·
[
M0,0 M0,1

M1,0 M1,1

]
·
[

1 −h
0 1

]

[
M0,0 + hh ·M1,0 − h ·M0,0 −h · hh ·M1,0 +M0,1 + hh ·M1,1

M1,0 −M1,0 · h+M1,1

]
.

3. The results for h, hh, and f are

hh � 1 −M0,0

M1,0
h � −(1 −M1,1)

M1,0
f � −1

M1,0
.
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4. Numerical calculation

P 12 :� −1

r1
· n2 − n1

n2
P 23 :� 1

r2
· n3 − n2

n3
P 12 � −3.333 · 10−11 P 23 � −0.05

M0,0 :� 1 + d · P 12 M0,1 � d · n1

n2
M0,0 � 1 M0,1 � 6.667

M1,0 :� (P 23 · n3 + P 12 · P 23 · d · n3 + P 12 · n2)

n3

M1,1 :� (P 23 · d · n3 + n2)

n3
· n1

n2
M1,0 � −0.05 M1,1 � 0.667.

5. The result for h, hh, and f

hh :� 1 −M0,0

M1,0
h :� −(1 −M1,1)

M1,0
f :� −1

M1,0

hh � −6.667 · 10−9 h � 6.667 f � 20.

6. The input values are globally defined

n1 ≡ 1 n2 ≡ 1.5 n3 ≡ 1 r1 ≡ 1010 r2 ≡ −10 d ≡ 10.

The transformation using the two matrices(
1 hh

0 1

) (
1 −h
0 1

)
(1.99)

has the effect that we have to count xo from the point on the axis determined
by h, and xi from the point on the axis determined by hh. We do not count from
the vertex of the spherical surfaces. If we call the vertex of the first surface V1

and the vertex of the second surface V2, we have a similar sign convention as we
have used before:

1. if h > 0, the point to start calculating xo is to the right of V1; otherwise to the
left; and

2. if hh > 0, the point to start calculating xi is to the right of V2; otherwise to
the left.

The calculation is shown in FileFig 1.25. The planes perpendicular to the axis ath
andhh are called principal planes.As a check one finds, that in the approximation
of the thin lens, the difference hh− h � 0.

We state the general procedure for using the thin-lens equation with the matrix
method: One calculates hh � (1 −M0,0)/M1,0 and −h � (1 −M11)/M1,0. The
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focal length f is obtained from P � −1/f � M1,0. One measures xo from h

and xi from hh and applies the thin-lens equation.

FileFig 1.25 (G25SYMBGTH)

Calculation of the general transformation for a thin lens. Calculation of the
product of the two-spherical-surface matrix, and the displacement matrix. De-
termination of the parameters −h and hh. Specialization for the case of the
thin lens. Numerical example for n1 � 1, n2 � 1.5, n3 � 1.3, r1 � 120, and
r2 � −10.

G25SYMBGTH is only on the CD.

1.8.2.4 Application to the Hemispherical Thick Lens

We consider a thick lens of hemispherical shape (see Figure 1.22). In FileFig
1.26 we present the calculations and for the choice of parameters: n2 � 1.5,
n1 � n3 � 1, r1 � 20, and r2 � ∞.

If we set n2 � n � 1.5, n1 � n3 � 1, r1 � r � d, and r2 � ∞, we have
the result that P12 � −1/3r , P23 � 0, P � −1/2r; that is, f � 2r , h � 0, and
hh � −2r/3.

FIGURE 1.22 Coordinates for a hemispherical thick lens of index n. The principal planes are
indicated as H and H ′.
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FIGURE 1.23 Coordinates for a spherical thick lens.

FileFig 1.26 (G26HEM)

Calculations of the hemispherical thick lens with curved surface to the left. For
the numerical values we take n2 � 1.5, n1 � n3 � 1, r1 � 10 � d, and r2 � ∞.

G26HEM is only on the CD.

Application 1.26. Repeat the calculations for a hemispherical thick lens with
curved surface to the right.

1.8.2.5 Application to Glass Sphere

We consider a thick lens of spherical shape (Figure 1.23). In FileFig 1.27 we
show the calculations for n2 � 1.5 � n, n1 � n3 � 1, r1 � −r2 � 10, and
d � 2r1 � 20. The result is P12 � −1/3r , P23 � −1/2r , P � −2/3r; that is,
f � 3r/2, h � r , and hh � −r .

From Figure 1.23 we see that the principal planes are at the center, as expected
for a symmetric lens. We have to start at the center to measure xo and xi and apply
the thin lens equation with focal length f � 3r/2. For the numerical calculations
we use r1 � 10 and have h � 10, and hh � −10.

FileFig 1.27 (G27SPH)

Calculation of the spherical thick lens. For the numerical values we have chosen
n2 � 1.5, n1 � n3 � 1, r1 � 10, r2 � −10, and d � 20.
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G27SPH is only on the CD.

Application 1.27. Go over the calculations for two different sets of parameters
n2, n1, n3, r1, d, and r2.

1.8.3 System of Lenses

1.8.3.1 System of Two Thin Lenses in Air

We now study the application of matrices to the calculation of the final image
produced by a system of two lenses. First we consider a system of two thin lenses
of focal length f1 and f2 and at distance a between them(

1 0
−1/f2 1

)(
1 a

0 1

)(
1 0

−1/f1 1

)
. (1.100)

Multiplication yields(
(f1 − a)/f1 a

−(f1 − a + f2)/f1f2 −(a − f2)/f2

)
. (1.101)

Since the (0,0) and (1,1) elements are not zero and the (0,1) element is not 1
we have to apply the transformation to principal planes, as we did for the single
thick lens. We have to evaluate (Figure 1.24)(

1 hh

0 1

)(
(f1 − a)/f1 a

−(f1 − a + f2)/f1f2 −(a − f2)/f2

)(
1 −h
0 1

)
. (1.102)

This is done in FileFig 1.28 and the result is

h � −a/Pf2

hh � a/Pf1

P � (−1/f2)(1 − a/f1) − 1/f1.

FIGURE 1.24 Coordinates for two lenses in air with corresponding matrices.
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For the application to calculate the image from a given object point, focal lengths,
and distance between the lenses, we measure xo from h, xi from hh, and get the
focal length from −1/f � P .

FileFig 1.28 (G28SYST2LTI)

Calculation for a system of two thin lenses. For the numerical values we have
chosen f1 � 10, f2 � 10, and a � 100.

G28SYST2LTI

Symbolic Calculation to Determine the Principal Planes for Two Thin Lenses at
Distance a

The matrix (M) as the product of the two lenses and the displacement between
them

⎡
⎣ 1 0

− 1

f 2
1

⎤
⎦ ·

[
1 a

0 1

]
·
⎡
⎣ 1 0

− 1

f 1
1

⎤
⎦

⎡
⎢⎢⎣

(f 1 − a)

f 1
a

−(f 1 − a + f 2)

(f 2 · f 1)

−(a − f 2)

f 2

⎤
⎥⎥⎦ .

Special case a � 0, two thin lenses in contact

⎡
⎣ 1 0

− 1

f 2
1

⎤
⎦ ·

[
1 0

0 1

]
·
⎡
⎣ 1 0

− 1

f 1
1

⎤
⎦

⎡
⎣ 1 0

−(f 1 + f 2)

(f 2 · f 1)
1

⎤
⎦ .

Principal planes with h and hh, and P � (−1/f 2)(1 − a/f 1) − 1/f 1

[
1 hh

0 1

]
·

⎡
⎢⎢⎣

−(−f 1 + a)

f 1
a

P
−(a − f 2)

f 2

⎤
⎥⎥⎦ ·

[
1 −h
0 1

]
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[ (f 1−a+hh·P ·f 1)
f 1

(−h·f 2·f 1+h·f 2·a−h·f 2·hh·P ·f 1+f 1·a·f 2−f 1·hh·a+f 1·hh·f 2)
(f 1·f 2)

P
−P ·h·f 2+a−f 2)

f 2

]
.

If the (0, 0) and (1, 1) elements are one, we have for hh � a/P · f 1 and
h � a/P · f 2, P is always −1/f

P � (−1/f 2)(1 − a/f 1) − 1/f 1

P :�
(−1

f 2

)
·
(

1 − a

f 1

)
− 1

f 1
hh :� a

P · f 1
h :� −a

P · f 2

M :�
[ (f 1−a+hh·P ·f 1)

f 1
(−h·f 2·f 1+h·f 2·a−h·f 2·hh·P ·f 1+f 1·a·f 2−f 1·hh·a+f 1·hh·f 2)

(f 1·f 2)

P
−(P ·h·f 2+a−f 2)

f 2

]

f 1 ≡ 10 f 2 ≡ 10 a ≡ 100

M �
[

1 0

0.8 1

]
f :� −1

P

hh � 12.5 h � −12.5 f � −1.25.

Application 1.28. Consider the case where a � 0, and compare the resulting
focal length f with 1/(1/f1 + 1/f2).

1.8.3.2 System of Two Thick Lenses

We consider two thick lenses and assume that lens 1 has the refractive index
n lens 2 the index nn. We also assume that the radii of curvature of the four
spherical surfaces are labeled r1 to r4 and that the distance between lens 1 and
lens 2 is a. The matrix for the system is obtained from the sequence of three
matrices (Figure 1.25).

We start on the right with the thick-lens matrix of the first lens, then the
translation matrix, and then to the left the thick-lens matrix of the second lens.
The calculation is shown in FileFig 1.29 and one obtains(

1 + d2P34 d2/nn

P2 d2(P45/nn) + 1

)(
1 a

0 1

)(
1 + d1P12 d1/n

P1 d1(P23/n) + 1

)

(1.103)

with

P12 � −(1/r1)(n− 1)/n

P23 � −(1/r2)(1 − n)

P34 � −(1/r3)(nn− 1)/nn
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FIGURE 1.25 Coordinates for two thick lenses in air with corresponding matrices.

P45 � −(1/r4)(1 − nn)

P1 � P23 + P12P23d1 + P12n

P2 � P45 + P34P45d2 + P34nn.

To determine the principal planes of this system, we callM the product of the
three matrices in Eq. (1.103), and have to calculate (see FileFig 1.29)

(
1 hh

0 1

)
M

(
1 −h
0 1

)
. (1.104)

We have to set in the product matrix the (0,0) and (1,1) elements equal to one,
and it follows that the (0,1) element is 0. The result of the transformation is:

h � −(1 −M1,1)/M1,0

hh � (1 −M0,0)/M1,0

1/f � −M1,0.

To calculate the image distance for a given object distance, we have to measure
xo from h, xi from hh, and apply the thin-lens equation with focal length f
calculated from −1/f � M1,0.

For a specific example of a system of two thick lenses we choose a system of
two hemispherical lenses. Each lens is one-half of a sphere, and we assume that
the distance a is zero. The results are the same as we found in Section 1.8.2.4 for
a sphere.

In Figure 1.26, we show the two hemispherical lenses with their refract-
ing powers P12 and P45, each of thickness d and a refractive index n with the
corresponding matrices. The details of the calculation are shown in FileFig 1.29.
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FIGURE 1.26 Two hemispherical lenses at distance a, and the corresponding matrices. The lenses
have refractive index n, thickness d � r , P12 is the refracting power of the first spherical surface,
and P45 of the last.

FileFig 1.29 (G29SYST2LTC)

Calculation for a system of two thick lenses with refractive indices n and nn at
distance a. The choices of the numerical values are n � 1.5, nn � 1.5, d1 � 10,
d2 � 10, a � 100, r1 � 10, r2 � −10, r3 � 10, and r4 � −10. See also
(G27SPH).

G29SYST2LTC

Symbolic Calculation of the Principal Planes for Two Thick Lenses of Refractive
Indices n and nn in Air.

Distance between lenses is a and the thickness of the first is d1, of the second
d2. Radii of curature are r1 to r4. The matrix of the first lens is on the right.

(
1 0

P 45 nn
1

)
·
(

1 d2

0 1

)
·
(

1 0

P 34 1
nn

)
·
(

1 a

0 1

)

·
[(

1 0

P 23 n
1

)
·
(

1 d1

0 1

)
·
(

1 0

P 12 1
n

)]

P 12 � −(1/r1)(n− 1)/n P 23 � −(1/r2)(n− 1)/n

P 34 � −(1/r3)(nn− 1)/nn P 45 � −(1/r4)(1 − nn)

Matrix for the first lens[(
1 0

P 23 n
1

)
·
(

1 d1

0 1

)
·
(

1 0

P 12 1
n

)]
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[
1 + d1 · P 12 d1

n

P 23 + P 12 · P 23 · d1 + P 12 · n (P 23·d1+n)
n

]

Matrix for the second lens(
1 0

P 45 nn
1

)
·
(

1 d2

0 1

)
·
(

1 0

P 34 1
nn

)

[
1 + d2 · P 34 d2

nn

P 45 + P 34 · P 45 · d2 + P 34 · nn (P 45·d2+nn)
nn

]

For the determination of h and hh[
1 hh

0 1

]

·

⎡
⎢⎣

1 + d2 · P 34
d2

nn

P 45 + P 34 · P 45 · d2 + P 34 · nn (P 45 · d2 + nn)

nn

⎤
⎥⎦ ·

[
1 a

0 1

]

·

⎡
⎢⎣

1 + d1 · P 12
d1

n

P 23 + P 12 · P 23 · d1 + P 12 · n (P 23 · d1 + n)

n

⎤
⎥⎦ ·

[
1 −h
0 1

]

Multiplication results in a very large expression, and we go right away to
numerical calculations.

We have for the powers of refraction

P 12 :� −n− 1

r1 · n P 23 :� −1 − n

r2

P 34 :� −nn− 1

r3 · nn P 45 :� −1 − nn

r4
.

The thick lens matrix is then

M :�

⎡
⎢⎣

1 + d2 · P 34
d2

nn

P 45 + P 34 · P 45 · d2 + P 34 · nn (P 45 · d2 + nn)

nn

⎤
⎥⎦ ·

(
1 a

0 1

)

·

⎡
⎢⎣

1 + d1 · P 12
d1

n

P 23 + P 12 · P 23 · d1 + P 12 · n (P 23 · d1 + n)

n

⎤
⎥⎦ .

The result is[
0.333 13.333

−0.667 0.333

]
.
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We define M as[
M0,0 M0,1

M1,0 M1,1

]
.

For the determination of h and hh we multiply by the two translation matrices[
1 hh

0 1

]
·
[
M0,0 M0,1

M1,0 M1,1

]
·
[

1 −h
0 1

]

[
M0,0 + hh ·M1,0 − h ·M0,0 −h · hh ·M1,0 +M0,1 + hh ·M1,1

M1,0 −M1,0 · h+M1,1

]

hh :� 1 − (M0,0)

M1,0
h :� 1 − (M1,1)

(−M)1,0
f :� − 1

M1,0

hh � −10 h � 10 f � 15.

Input Data

n ≡ 1.5 nn ≡ 1.5 d1 ≡ 10 d2 ≡ 10 a ≡ 0

r1 ≡ 10 r2 ≡ 1010 r3 ≡ 1010 r4 ≡ −10.

Check the form of the final matrix product

MM :�
[

1 hh

0 1

]
·
[
M0,0 M0,1

M1,0 M1,1

]
·
[

1 −h
0 1

]

MM �
[

1 −1.776 · 10−15

−0.667 1

]
.

Applications to Matrix Method

1. An exercise for matrix multiplication. Draw two cartesian coordinate systems
x, y and x ′, y, the second rotated by the angle θ with respect to the first.
Identify the matrix

A �
(

cos θ − sin θ
sin θ cos θ

)

with the rotation of x, y into x ′, y ′.
a. Is this a rotation in the mathematical positive or negative sense?

b. The matrix for rotation in the opposite direction A−1 is obtained by
substituting for θ the negative value −θ .

c. Show that A A−1 is the unit matrix.

d. The transposed matrix AT is obtained from A by interchanging the 2,1
and 1,2 elements. In our case the AT is equal to A−1 and AAT is the unit
matrix.
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e. Show that A A is the same matrix if we substitute into A the angle 2θ .

2. Noncommutation of matrices. In general two matrices A and B may not be
commuted; that is, AB is not equal to BA. We show this in the following
example for a different sequence of the same matrices. We consider two
hemispherical thick lenses where light is coming from the left. The light hits
the first lens L1 at a spherical surface of radius of curvature r , then traverses
the thickness d, and emerges from a plane surface. The second, L2, has the
reverse order; first the plane surface, then thickness d, and then the curved
surface with the same radius of curvature r . The refractive indices of the lenses
are n2 and outside we assume n1 � n3 � 1. Make a sketch. See how the two
lenses are different. The product matrices for lens 1 and lens 2 are different
for the two cases. Compare the position of the principal planes. Compare for
the case where r � ∞.

3. Calculate, using the matrix method, the position of the two principal planes
for a system of two thin lenses, both of focal length f , and a distance f .

4. Consider a convex-concave lens. The first surface has a radius of curvature
r1 � 20 cm, the second, a radius of curvature r2 � −10 cm with thickness
of d � 5 cm.
a. Calculate the principal planes and focal length and find the image of an

object positioned at 5 cm to the left of the first surface.

b. Find the same result by using twice the imaging equation of a single
surface.

5. Thick concentration lens. A thick lens of radius of curvature −r1 � r2 � −5
mm and thickness of 4 mm is used to concentrate incident parallel light on
a detector. Using the matrix method, find the position with respect to the
detector plane.

6. Plane-convex and convex-plane lens. The radii of curvature for the convex
surface is r � 10 cm and for the concave surface r � −10 cm and the
thickness is 4 cm.

a. Compare h, hh, and f for both lenses.

b. An object is placed 100 cm to the left of the first surface. Find the image
point for both lenses.

See also on the CD

PG1. Single convex Surface. (see p. 22)
PG2. Single concave Surface. (see p. 22)
PG3. Rod Sticks in Water, calculation of Image Distance. (see p. 22)
PG4. Plastic Film on Water as Spherical Surface. (see p. 22)
PG5. Air Lens in Plastic. (see p. 35)
PG6. Positive thin Lens on Water. (see p. 35)
PG7. Magnifier. (see p. 47)
PG8. Microscope (Near Point). (see p. 48)
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PG9. Microscope (negative infinity). (see p. 48)
PG10. Kepler Telescope.(see p. 48)
PG11. Galilean Telescope. (see p. 48)
PG12. Laser Beam Expander. (see p. 48)
PG13. An Exercise for matrix Multiplication. (see p. 65)
PG14. Non commutation of Matrices. (see p. 66)
PG15. System with Focal Length f. (see p. 66)
PG16. Convex-concave Lens. (see p. 66)
PG17. Plane-Concave lens.
PG18. Convex-Concave Lens.
PG19. Comparison of Plane-Concave and Convex-Plane Lens. (see p. 66)
PG20. Convex-Concave Lens. (equal xov, xiv)
PG21. Glass Sphere. (see p. 58)
PG22. Short Focal Length Lens.
PG23. Thick Concentration Lens. (see p. 66)
PG24. Surface Corrections of hot Laser Rod.
PG25. Laser burning of Image
PG26. Corner Mirror. (p. 71)
PG27. Reflectivity and Eigenvalues. (see p. 76)

1.9 PLANE AND SPHERICAL MIRRORS

1.9.1 Plane Mirrors and Virtual Images

A two-dimensional object appears in a flat mirror as a virtual and left–right
inverted image. First we look at one reflected ray (Figure 1.27a). We observe the
law of reflection, which says the angle of incidence has the same absolute value
as the angle of reflection.

In Figure 1.27b we show the reflection of a cone of light, emerging from a
point source. The object point appears to us as it is on the “other side” of the
mirror. Now we look at a three-dimensional object, represented by the arrows of
a right-handed coordinate system. The virtual image produced by the flat mirror
appears as a left-handed coordinate system. This may be seen by comparing the
image of our left hand as it appears in a mirror, with our right hand placed before
the mirror. Similarly one finds “Ambulance” written on the front of an ambulance
truck written in letters from left to right. A driver in a car before the truck can
read it “normally” in the rear view mirror.

1.9.2 Spherical Mirrors and Mirror Equation

Spherical concave mirrors of diameters of a few meters are used in astronomical
telescopes, replacing the first lens, as discussed in Section 1.7 on optical instru-
ments. A real inverted image is produced by a real erect object. Spherical convex
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FIGURE 1.27 (a) Coordinates of the law of reflection; (b) virtual image of a real point source
produced by a plane mirror. The image is observed by using a lens, which may be the eye lens.

mirrors with much smaller diameters are used for cosmetic applications, where
an erect virtual image is formed from an erect object. Our eye uses a positive
lens for the image formation on the retina, but “sees” the virtual image erect, as
discussed in Section 1.7.

We derive the image-forming equation for spherical mirrors by looking at the
image-forming equation of a single spherical surface

n1/(−xo) + n2/xi � (n2 − n1)/r. (1.105)

By formally setting n1 � −n2 we get the imaging equation for a spherical mirror

n1/(−xo) + (−n1)/xi � (−n1 − n1)/r (1.106)

n1/(−xo) + (−n1)/xi � (−2n1)/r, (1.107)

where r is the radius of curvature of the spherical surface.
Division by −n1 results in the spherical mirror equation

1

xo
+ 1

xi
� 2

r
. (1.108)
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FIGURE 1.28 Coordinates for the production of a real image from a real object.

FIGURE 1.29 Magnification with respect to real object and real image.

1.9.3 Sign Convention

The light is assumed to be incident from the left. The object points xo are to the
left of the mirror, and x0 is always negative. No positive values are considered.
If xi is negative we have a real image. If xi is positive we have a virtual image
(Figure 1.28).

For a convex spherical mirror, r is positive. For a concave spherical mirror, r
is negative.

1.9.4 Magnification

For the magnification (Figure 1.29, we have

m � yi/yo � −xi/xo. (1.109)

1.9.5 Graphical Method and Graphs of xi Depending on xo
1.9.5.1 Concave Spherical Mirror

Geometrical Construction

1. Choose yo and draw the PF-ray to the mirror and then reflected back through
the focus F , given by r/2.
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FIGURE 1.30 Geometrical construction of images for concave spherical mirror. The object is:
(a) to the left of the focal point; (b) to the right of the focal point.

2. The ray incident through the top of the arrow and then going to the center of
curvature C is reflected back onto itself (Figure 1.30).
Both may be extended to the other side of the mirror when xo is between the
focus and mirror.

Graph of xi as Function of xo
A concave spherical mirror has a negative radius of curvature. In FileFig 1.30
we calculate the image points for given object points and radius of curvature.
The light comes from the left. For xif � −∞, the focus xof � r/2, and since
r is negative for a convex mirror, it is to the left of the mirror. This is the only
focus we have for a concave mirror. The focus is also a singularity. We obtain
real images for xo to the left and virtual images for xo to the right.

FileFig 1.30 (G30MIRCV)

Concave spherical mirror. Calculation of image positions from given object
positions. Graph for image positions depending on object positions for radius
of curvature r � −50, that is, r/2 � −25, and xo from −100 to −0.1.



1.9. PLANE AND SPHERICAL MIRRORS 71

G30MIRCV

Concave Mirror

Raduis of curvature is negative; xo is on left, and is negative. To get around the
singularity at −xo � f one chooses the increments such that the value for the
singularity does not appear.

r :� −50

xo :� −60

xi :� 1( 1
2

) − 1
xo

xi � −42.857

m :� −xi
xo

m � −0.714.

Graph

xxo :� −100,−99.1 . . .− .1

xxi(xxo) :� 1(
1
r
2

)
− 1

xxo

.

1.9.5.2 Convex Spherical Mirror

Geometrical Construction

1. Choose yo and draw the PF-ray to the mirror and trace it forward to the focus
F ′.

2. The ray from the top of the arrow to the center of curvature C is reflected
back onto itself (Figure 1.31).

Graph of xi as Function of xo
A convex spherical mirror has a positive radius of curvature. We show in FileFig
1.31 a graph of the image points as a function of the object points for xo from
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FIGURE 1.31 Geometrical construction of image for convex spherical mirror. The image yi of
object yo is for any object distance to the right of the mirror (always virtual).

−100 to −.1. When the light comes from the left, there is no singularity at
r/2 � xo, and we obtain virtual images for all positions of xo.

FileFig 1.31 (G31MIRCX)

Convex spherical mirror. Calculation of image position from given object posi-
tion. Graph for image position depending on the object position coordinate for
the radius of curvature r � 50, that is, r/2 � 25, and xo from −100 to −0.1.

G31MIRCX is only on the CD.

A summary of the image formation and the dependence on the various
parameters is given in Table 1.5.

Applications to Spherical Mirrors

1. A corner mirror is made of two flat mirrors, joined together at an angle of
90 degrees. Show that the light incident on one mirror is parallel to the light
leaving the other mirror for any angle of incidence.

2. Do the geometrical construction of:

TABLE 1.5

Concave Concave Concave Convex

Object xo Left of f at f Right of f Any

Image xi Negative - Infinity Positive Positive

Magnification Negative Positive Positive

Real Virtual Virtual

Inverted Upright Upright
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a. convex spherical mirrors for (i) object at −∞; (ii) object to the left of
focus; and (iii) object to the right of focus.

b. concave spherical mirror with same focal length, for the three positions
of xo about the same values as in a.

1.10 MATRICES FOR A REFLECTING CAVITY AND
THE EIGENVALUE PROBLEM

The first Ne–He laser used a Fabry–Perot cavity with two flat mirrors at a sepa-
ration of 1 m. It was very difficult to align this cavity, and the first alignment was
done by accident. One of the researchers bumped into the table, causing the flat
mirrors to vibrate, and laser action was observed. Later, spherical mirrors were
used to construct easy to align cavities.

For our discussion of laser cavities, consisting of two reflecting spherical
surfaces, we first look at a periodic lens line, equivalently representing the “round
trips” of the light in a reflecting cavity. One section of the lens line is shown in
Figure 1.32, where the forward and backward traveling light are shown sepa-
rately. The next section has the same configuration and the light enters and leaves
each section in the same way. The first and third lenses are shared by two sec-
tions. Therefore we have drawn them as half-lenses and assigned to them twice
the focal length. The sequence of matrices for the lens line is

(
1 0

−1/2f1 1

)(
1 d

0 1

)(
1 0

−1/f2 1

)(
1 d

0 1

)(
1 0

−1/2f1 1

)
.

(1.110)

FIGURE 1.32 Unit cell of a lens system of periodic appearance. The light enters each cell in the
same way. Such a periodic arrangement may be used to represent the reflection in a mirror cavity.
The first and third lenses are only half-lenses and the focal lengths are twice as large. Rays of a
possible light path are indicated.
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We substitute for the focal length of the lenses one-half of the value of the radius
of curvature of the corresponding mirrors. We use f � r/2 and obtain for the
mirror cavity(

1 0
−1/r1 1

)(
1 d

0 1

)(
1 0

−2/r2 1

)(
1 d

0 1

)(
1 0

−1/r1 1

)
.

(1.111)

The first three matrices describe the travel of the light from the first to the second
mirror. The last two matrices describe the travel from the second mirror back to
the first.

We introduce the resonator parameters g1 and g2,

g1 � 1 − d/r1 and g2 � 1 − d/r2 (1.112)

and calculate the product of the five matrices using FileFig 1.32.

FileFig 1.32 (G32RESGG)

Calculation of the product of the five matrices of the lens line corresponding to
a cavity with two reflecting mirrors. Calculation of the eigenvalues of the cavity
using g1, g2, and d. Graphs of the stability relation.

G32RESGG

Calculation of Resonator Using g1, g2, and d

(
1 0

g1−1
d

1

)
·
(

1 d

0 1

)
·
[

1 0
2·(g2−1)

d
1

]
·
(

1 d

0 1

)
·
(

1 0
g1−1
d

1

)

[ −1 + 2 · g1 · g2 2 · d · g2
2 · g1 · (−1+g1·g2)

d
−1 + 2 · g1 · g2

]

eigenvals

[[ −1 + 2 · g1 · g2 2 · d · g2
2 · g1 · (−1+g1·g2)

d
−1 + 2 · g1 · g2

]]
[
(1, 1, 1) � −1 + 2 · g1 · g2 + 2 ·

√
−g1 · g2 + g12 · g22

(1, 1, 2) � −1 + 2 · g1 · g2 − 2 ·
√

−g1 · g2 + g12 · g22
]

r1 :� 1 r2 :� 1 d :� 2

g1 :� 1 − d

r1
g2 :� 1 − d

r2
λ1 :� −1 + 2 · g1 · g2 + 2

√
−g1 · g2 + g12 · g22
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λ2 :� −1 + 2 · g1 · g2 − 2
√

−g1 · g2 + g12 · g22

λ1 � 1 λ2 � 1.

We set the product g1g2 � x and plot it over the range from −1 to 2.

x :� −1,−9 . . . 2

y(x) :� |(2 · x − 1) +
√

(2 · x − 1)2 − 1| − 1

yy(x) :� |(2 · x − 1) −
√

(2 · x − 1)2 − 1| − 1

We obtain from FileFig 1.32 the matrix product of the matrices of Eq. (1.111),( −1 + 2g1g2 2dg2

2g1(−1 + 2g1g2)/d −1 + 2g1g2

)
. (1.113)

The round trip in the cavity must have the symmetry of the path of the rays at the
beginning and end of a unit cell of the lens line. This corresponds to a mode of
oscillation of the cavity. The eigenvalues of this oscillation are obtained from the
eigenvalues of the product matrix and the calculation is shown in FileFig 1.32.
First the product of the five matrices is calculated using the symbolic method.
Then the eigenvalues are obtained

λ1 � (2g1g2 − 1) + [(2g1g2 − 1)2 − 1]1/2 (1.114)

λ2 � (2g1g2 − 1) − [(2g1g2 − 1)2 − 1]1/2. (1.115)

The coordinates, used for setting up the matrices, may now be transformed into
a new coordinate system. In this coordinate system the matrix describing the
round trip in the cavity is a diagonal matrix. When the diagonal matrix is a unit
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matrix, the light may pass through many round trips and no light will escape.
One calls such a resonator stable, and the condition for stability is where the
magnitudes of the eigenvalues are equal to 1.

|λ1| � |λ2| � 1. (1.116)

We may write for Eq. (1.114),

λ1 � (2g1g2 − 1) + [(2g1g2 − 1)2 − 1]1/2 (1.117)

or

λ1 � (2g1g2 − 1) + i[1 − (2g1g2 − 1)2]1/2. (1.118)

The real and imaginary parts of Eq. (1.118) must be on a circle of radius 1; that is,

|(2g1g2 − 1)| ≤ 1, or 0 ≤ g1g2 ≤ 1. (1.119)

in agreement with the imaginary part and plotted in FileFig 1.32.
In FileFig 1.33 we show a repetition of the calculations, starting from the

five matrices of the cavity in Eq. (1.111), but now in terms of r1, r2, and d. In
Figure 1.33, we show schematics of the Fabry–Perot, a focal, a confocal and a
spherical cavity for values of the parameters r1, r2, and d, and also of g1 and g2.
For both representations one finds that the absolute values of the eigenvalues λ1

and λ2 are always 1.

FileFig 1.33 (G33RESCY)

Calculation of the eigenvalues of the cavity with two reflecting mirrors using r1,
r2, and d. Numerical calculation with r1 � 1, r2 � 1, and d � 2.

G33RESCY is only on the CD.

Application 1.33. Use the values of the parameters r1, r2, and d for the Fabry–
Perot, focal, confocal, and spherical cavities, and find that all are stable cavities.
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FIGURE 1.33 Schematic of light path for four cavities with different values of radii of curvature
and length of cavity. The corresponding values of g1 andg2 are indicated: (a) Fabry–Perot; (b) focal;
(c) confocal; (d) concentric.
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Interference

2.1 INTRODUCTION

In Chapter 1 we described image formation by light, using our model which states
that light propagates along straight lines and utilizes the laws of reflection and
refraction. We now consider the wave nature of light. In the famous experiment
by Thomas Young, one observes on a screen an interference pattern, consisting
of bright and not so bright stripes of light. The interpretation of an interference
pattern was done by using an analogy to water waves. However, the water wave
pattern is observed as an amplitude interference pattern whereas the superpo-
sition of light waves, also generated as an amplitude pattern, is observed as an
intensity pattern. Historically, Newton associated the light beams of geometrical
optics with a stream of particles and some scientists attacked Young in his time,
saying that he was diminishing Newton’s work. Today we know that light is an
electromagnetic wave but, in a complementary way, light is also described by
quantum mechanics as an assembly of particles.

In this chapter we use a model for the description of interference phenomena.
We assume that there is always one incident wave when two- or more beam in-
terferometry is discussed. After one has taken into account what happens in the
experimental setup, the waves leaving the setup appear superimposed. The inter-
ference pattern is produced with finite optical path differences. The calculation
of the optical path difference and the interpretation of the resulting interference
pattern are the main subjects of this chapter. The process of splitting the inci-
dent wave into parts involves diffraction, which we neglect in this chapter as a
secondary effect and discuss in detail in Chapter 3.

In this chapter we use for the incident wave one harmonic wave, a solution of
the scalar wave equation, which is written in Cartesian coordinates as

∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2 � (1/v)2∂2u/∂t2, (2.1)

79
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where v is the phase velocity of light in the medium with refractive index n,
related to the speed of light c in vacuum as v � c/n. The scalar wave equation
follows from Maxwell’s theory. It may also be written in spherical coordinates

∇2u+ k2u � 0, (2.2)

where ∇ is the differential operator in spherical coordinates, k � 2π/λ, and λ
is the wavelength of the light. A simple solution of this equation is a spherical
wave of the type (eikr )/r , where r is the distance from the origin to the ob-
servation point. The spherical wave propagates from its origin in all directions
and its intensity is attenuated by 1/r2. We consider such spherical waves only
conceptually and approximate them at a large distance by plane waves.

The differential equation of the scalar wave equation is linear and superposi-
tion of solutions of the differential equation will again result in a solution. This
is part of the superposition principle. In this chapter we only need the superpo-
sition of a number of monochromatic waves, each of frequency ν, to result in a
monochromatic wave having the same frequency ν.

For our model description we use some results from Maxwell’s theory for
quantitative expressions of the reflection and transmission coefficients of mate-
rials contained in Fresnel’s formulas. In particular, we use the results that waves
pick up a phase jump of π , when reflected at an optically denser medium, and
that they travel in the optically denser medium with wavelength λ/n, where n is
the index of refraction. The intensity is calculated either as the time average of
the square of the amplitude or the square of the absolute value of the complex
representation and may be normalized with an arbitrary constant.

2.2 HARMONIC WAVES

The solution of the scalar wave equation, (Eq. (2.1)), is a function, depending on
the space coordinates x, y, z and the time t . In addition, there may be an arbitrary
phase factor. We consider harmonic waves in vacuum and in an isotropic and
nonconducting medium of index n. However, in most cases, we only need waves
depending on one space coordinate and time. We describe the transverse waves
by vibrating in the u direction and moving in the x direction, having wavelength
λ and time period T .

u � A cos[2π (x/λ− t/T + φ)]. (2.3)

The amplitude u of the wave varies in the x direction, A is the magnitude of
the wave, and φ is a phase constant. The first graph of FileFig 2.1 shows the
amplitude u, depending on the space coordinate x for three time instances t and
three phase constants. The second graph shows the dependence on time for three
points in space and three phase constants. The magnitudes A1 to A3 and B1 to
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λ1 λ2
λ1

FIGURE 2.1 Change of wavelength as the wave enters and leaves a dielectric medium.

B3 have been assumed to have the same value, and the three phase constants
φ1 to φ3 and 1 to 3 are assumed to be different. Comparing the graphs, one
observes equivalence of the dependence of the cosine function on x/λ and t/T .
Changing the range of variable from x to t , the family of curves depending on x
is similar to the one depending on t .

We may modify x/λ and t/T in such a way that they contain phase constants.
Then, in the “net” expression cos[2π (x/λ−t/T +φ)] we can not distinguish if φ
belongs to the space part or the time part. We show below that for our discussions
on interference we do not need the time dependence and it is eliminated.

The product of the frequency ν and wavelength λ/n is equal to the phase
velocity v � ω/k of the wave propagating in the medium of refractive index n.
The angular frequency ω � 2πν, and the wave vector k � 2πn/λ, where λ is
the wavelength in vacuum. We may then write Eq. (2.3) as

u � A cos(kx − ωt) (2.4)

or

u � A cos k(x − (ω/k)t) � A cos k(x − vt).

The phase velocity in vacuum is c, and in an isotropic medium with refractive
index n it is c/n. The wavelength of “free space” λ is reduced in the medium to
λ/n (see Figure 2.1).

FileFig 2.1 (I1COSWS)

Cosine functions depending on space and time coordinate and one additional
phase constant. Graphs are shown for cosine functions depending on the space
coordinates for three time instances. This may be interpreted as graphs of the
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same wave at three consecutive snapshots. Graphs are shown for cosine functions
depending on the time coordinates for three points in space.

I1COSWS is only on the CD.

Application 2.1.

1. One may change the phase φ and the space coordinate and choose both so
there is no resulting change in the graph. Choose φ � 2, 4, 6.

2. One may change the phase φ and the time coordinate and choose both so
there is no resulting change in the graph. Choose φ � 2, 4, 6.

3. Change φ in such a way that there is a shift to smaller values of the position
coordinate.

4. Change φ in such a way that there is a shift to larger values of the time
coordinate.

2.3 SUPERPOSITION OF HARMONIC WAVES

2.3.1 Superposition of Two Waves Depending on Space and
Time Coordinates

We describe the interference of two waves in a simple way, using the superpo-
sition of two harmonic waves u1 and u2. Both waves will propagate in the x
direction and vibrate in the y direction.

u1 � A cos 2π [x/λ− t/T ] u2 � A cos 2π [(x − δ)/λ− t/T ]. (2.5)

We assume that the two waves have an optical path difference δ. At time instance
t � 0, the wave u1 has its first maximum at x � 0, and u2 at x � δ (Figure 2.2).
Adding u1 and u2 we have

u � u1 + u2 � A cos 2π [x/λ− t/T ] + A cos 2π [(x − δ)/λ− t/T ]. (2.6)

Using

cos(α) + cos(β) � 2 cos{(α − β)/2} cos (α + β)/2 (2.7)

we get

u � [2A cos{2π (δ/2)/λ}][cos{2π (x/λ− t/T ) − 2π (δ/2)/λ}]. (2.8)

In FileFig 2.2 we show graphs of the square of Eq. (2.8) for the same time instant
t1 and wavelength λ. We choose a number of optical path differences δ1 � 0,
δ2 � 0.1, δ3 � 0.2, δ4 � 0.3, δ5 � 0.4, δ6 � 0.5, corresponding to the ratios
of the optical path difference to the wavelength between 0 and 1

2 . One observes
that the height of the maxima decreases with increasing δ1 to δ6, and shifts to
larger values of x.
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FIGURE 2.2 Two waves with magnitude A and wavelength λ. We have u1 � A for x � 0 and
u2 � A for x � δ.

We now discuss the two factors of Eq. (2.8).The first factor 2A cos{2π (δ/2)/λ}
depends on δ and λ, but not on x and t . One obtains for δ equal to 0 or a multiple
integer of the wavelength

[2A cos{2π (δ/2)/λ}]2 is 4A2 (2.9)

and for δ equal to a multiple of half a wavelength

[2A cos{2π (δ/2)/λ}]2 is 0. (2.10)

The first factor in Eq. (2.8) may be called the amplitude factor and is used for
characterization of the interference maxima and minima.

One has

maxima for δ � mλ, where m is 0 or an integer (2.11)

minima for δ � mλ, where m is 1
2 plus an integer (2.12)

and m is called the order of interference.
The second factor is a time-dependent cosine wave with a phase constant

depending on δ and λ. For the description of the interference pattern this factor
is averaged over time and results in a constant, which may be factored out and
included in the normalization constant (see below).

In Figure 2.3 we show schematically the interference of two water waves
with a fixed phase relation. When the interference factor is zero one has minima,
indicated by white strips. They do not depend on time. The maxima oscillate and
appear and disappear along the line in the observable direction.

Maxima and minima are shown in FileFig 2.3 as 3-D graphs. The maxima
are shown for δ � λ, and in the second graph, for δ � λ/2, there is just one
minimum. The maxima show the time dependence of the second factor for each
of the space coordinates. One can estimate that a time average will result in half
the maximum value. The minimum is zero. It is zero for all time.
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FIGURE 2.3 Schematic of the interference pattern produced by two sources vibrating in phase. At
the crossing of the lines, the amplitudes of the waves of both sources are the same and adding.Taking
the time dependence into account, the magnitude changes between maximum and minimum.
These are the maxima when considering light. Between the maxima we indicate the two lines
corresponding to the minima. Along these lines the amplitude of the two waves compensate each
other; their sum is zero for all times.

FileFig 2.2 (I2COSSUPS)

Graphs of the superposition of two cosine waves with wavelength λ � 1, for
a number of optical path differences δ1 � 0, δ2 � 0.1, δ3 � 0.2, δ4 � 0.3,
δ5 � 0.4, δ6 � 0.5 corresponding to ratios of the optical path difference to the
wavelength between 0 and 1

2 .

I2COSSUPS is only on the CD.

Application 2.2.

1. Extend the range of the optical path differences of the six graphs from 1
2

wavelength to 1 wavelength, and then from 1 wavelength to 3
2 wavelength

and indicate in a list when there is repetition.
2. Make a graph of y � cos{2π (δ/2)/λ} for fixed λ as function of δ and make a

list of the δ values for minima and maxima. Compare with a list of δ/λ values.

FileFig 2.3 (I3COSGRA)

3-D demonstration of the superposition of two waves for δ/λ � 1 corresponding
to a maximum, and δ/λ � 0.5 corresponding to a minimum. In the graph of the
maximum, the amplitude changes in time for a specific spot in space between
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0 and (2A)2, and one can estimate that the time average will be half of it. The
graph of the minimum is zero for all time and space values.

I3COSGRA

Superposition of Two Cosine Waves

One wave has optical path difference δ with respect to the other. The sum is
squared to result in the intensity. We are looking at them time dependence; the
graphs are plots in space x and time t . Period T , path difference δ, wavelength λ.
1. Graph for optical path difference corresponding to a maximum

λ :� 1 A :� 1

N :� 40 i :� 0 . . . N j :� 0 . . . N

xi :� −.2 + .05 · i t1j :� −.2 + .05 · j
uc(x, t1) :�

[
2 · A · cos

[
2 · π ·

(
δ1

2 · λ
)]

·
[

cos

[
2 · π ·

(
x

λ
− t1

T

)
− 2 · π ·

(
δ1

2 · λ
)]]]2

Mi,j :� uc
(
xi, t1j

)
δ1 ≡ 1 T ≡ 1 t1 ≡ .1.

2. Graph for optical path difference corresponding to a minimum

N :� 40

i :� 0 . . . N j :� 0 . . . N

xxi :� −.2 + .04 · i t1j :� −.2 + .02 · j δ2 ≡ .5
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ud(xx, t1) :�
[

2 · A · cos

[
2 · π ·

(
δ2

2 · λ
)]

·
[

cos

[
2 · π ·

(
xx

λ
− t1

T

)
− 2 · π ·

(
δ2

2 · λ
)]]]2

Mi,j :� ud
(
xxi, t1j

)
t1 ≡ .1 T ≡ 1.

Application 2.3. One may change the wavelength λ such that for δ1/λ one gets
minima, and for δ2/λ one gets maxima.

2.3.2 Intensities

The interference pattern of water waves is an amplitude pattern. We may observe
minima and maxima with respect to the level of the undisturbed water surface.
The interference pattern of light shows intensity minima as dark spots in space
and maxima as bright spots. An amplitude pattern shows negative amplitudes,
but an intensity pattern has only positive or zero values. The amplitude pattern
has to be considered first; it produces interference. Then we have to obtain the
intensity pattern. We compare the intensity pattern to observations.

For the square of the amplitude of equation (2.8) we have

u2 � [2A cos{2π (δ/2)/λ}]2[cos{2π (x/λ− t/T ) − 2π (δ/2)/λ}]2 (2.13)

In Section 2.1 we mentioned that for the intensity we use either the time average
of the square of the amplitude or the square of the absolute value, when using
complex notation. In this section we compare these two calculations.
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2.3.2.1 Use of the Time Average

The time average of the square of a cosine function depending on t , taken over
the interval of one period, that is, from 0 to T , is

(1/T )
∫ T

0

[
cos t]2 dt � 1/2. (2.14)

Using for the cos-function the “second” factor of Eq. (2.8), we get

a2
v � (1/T )

∫ T

0
[cos{2π (x/λ− t/T ) − 2π (δ/2)/λ}]2dt � 1

2 (2.15)

As result, we obtain for the intensity of the wave described in Eq. (2.8),

I � [2A cos{2π (δ/2)/λ}]2(1/2). (2.16)

This is the square of the first factor (Eq. (2.13)) multiplied by 1/2.

2.3.2.2 Complex Notation

Complex notation has its advantages, for example, when adding several har-
monic waves. Then, the intensity is calculated by the product z z∗ and the time
dependence is automatically eliminated.

We rewrite the sum of the two real expressions of Eq. (2.5) in complex notation:

z � z1 + z2 � A exp i(2π (x)/λ− 2πt/T )

+ A exp i(2π (x − δ)/λ− 2πt/T ). (2.17)

Here the real part of z, that is, Re(z), is the amplitude of u of Eq. (2.8). The
superposition of the two waves may be written in complex notation as

z � z1 + z2 � A exp{−i2πt/T + i(2π (x)/λ)}
× {1 + exp(−i2πδ/λ)}. (2.18)

In the second factor of Eq. (2.18) we may factor out exp −i2πδ/2λ and then
have

z � A exp{−i2πt/T + i(2π (x)/λ)} exp(−i2πδ/2λ)

× {exp i2πδ/2λ+ exp −i2πδ/2λ}. (2.19)

Using

{exp i2πδ/2λ+ exp −i2πδ/2λ} � 2 cos 2πδ/2λ (2.20)

one gets

z � A exp{−i2πt/T + i(2π (x)/λ)} exp(−i2πδ/2){2 cos 2πδ/2λ}. (2.21)

For simplicity we collect all phase factors into one term, call

exp{−i2πt/T + i(2π (x)/λ) − i2πδ/2λ} � exp i, (2.22)
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and have

z � [2A cos(2πδ/2λ)] exp i. (2.23)

For the intensity we use the square of the absolute value of z, that is, the product
of z times its complex conjugate z∗,

z z∗ � [2A cos(2πδ/2λ)] exp i[2A cos(2πδ/2λ)] exp −i (2.24)

or

z z∗ � [2A cos(2πδ/2λ)]2. (2.25)

Comparing the intensity in Eq. (2.16) with Eq. (2.25), one sees that they
are different by the factor 1

2 . This factor 1
2 is not significant, since one usually

normalizes the results for the calculation of interference and diffraction pattern.

FileFig 2.4 (I4COSINTS)

Graphs of the real part of the superposition of two waves depending on space and
time, its square, and the time average of the “second factor.” The time-dependent
superposition of two waves is given in complex notation. Its real part and the
square of the real part are plotted. Then the product zz∗ is plotted, depending
on x, and appearing at a constant. The “fringe pattern” is plotted (i.e., zz∗),
depending on the optical path difference.

I4COSINTS is only on the CD.

2.3.3 Normalization

To compare an interference pattern with observation, one may normalize both.
Let us assume we have an interference pattern with a maximum in the center.
The scale of the observation data may be changed in such a way that at the center
one has the intensity equal to 1. The intensity calculated from the formula will
also be changed: one divides by the value calculated at the center, and obtains
also for the intensity 1. For example, let us assume that an interference pattern
is described by f (x) and that for x � 0 we have f (0) � b. Then writing

I (x) � f (x)/f (0) � I0f (x) (2.26)

with I0 � 1/b results in I (x) equals 1 for x � 0.
In FileFig 2.4 we have plotted the real part of u and the time average and

compared it with zz∗, which is independent of time. We also plot what one may
call the “fringe pattern,” that is, zz∗, depending on the optical path difference.



2.4. TWO-BEAM WAVEFRONT DIVIDING INTERFEROMETRY 89

2.4 TWO-BEAM WAVEFRONT DIVIDING
INTERFEROMETRY

2.4.1 Model Description for Wavefront Division

The classical experiments by Young, Fresnel, and Lloyd were performed to
demonstrate the wave theory of light. All three experiments use one incident
wave and divide the light from the source into two waves. The two waves are
superimposed after an optical path difference is introduced and a pattern showing
the maxima and minima is observed. One calls such a pattern, consisting of max-
ima and minima, a fringe pattern. The process of splitting up the incident wave at
two small openings into two new waves involves diffraction, considered in detail
in Chapter 3. The incident wave we consider is monochromatic, propagates in
the x direction, vibrates in the y direction, and has a large lateral extension in the
z direction. The experimental setup produces two waves by wavefront division,
propagating under an angle with respect to each other (see Figure 2.4a). When
we observe the interference pattern at a faraway screen (see Figure 2.4b) the

FIGURE 2.4 Observation of interference pattern generated by two sources. The generated waves
have a constant phase relation: (a) geometry of the experiment with water waves (see also Figure
2.3); (b) Observation at a screen far away from the source; (c) using a lens to reduce the distance
X in (b) to distance X′ in (c). In this case only parallel rays meet at one point in the focal plane of
the lens.
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FIGURE 2.5 Schematic ofYoung’s experiment. Light is emitted by the source S0: (a) according to
Huygen’s principle, the first apertureA1 produces a spherical wave which generates two spherical
waves with fixed phase relation at P1 and P2 and produces a fringe pattern; (b) coordinates for the
calculation of the fringe pattern generated by screen 2 and observed on screen 3. The two openings
on screen 2 are separated by a. The distance from screen 2 to screen 3 is X and the coordinate on
screen 3 is Y .

angles θ and θ ′ are almost equal. We therefore approximate the propagation by
assuming that the two waves move in parallel, and that the optical path difference
δ is the same as it was when moving under an angle. We describe both waves
in the same coordinate system and use for the intensity of their superposition
I � I0[A cos(2πδ/2λ)]2 (see Eq. (2.25). In Figure 2.4c we show the observation
in the focal plane of a lens, giving us the opportunity to have the distance between
the experimental setup and the observation screen significantly shorter.

2.4.2 Young’s Experiment

The setup of Young’s experiment is schematically shown in Figure 2.5a. The
light from a source S0 travels to screen 1, which has a small hole. At the hole, a
spherical wave is created and travels a large distance. The wave arrives at screen
2 as “almost” a plane wave. At two small holes on screen 2, P1 and P2, the
incident plane wave is split into two spherical waves. The two spherical waves
travel a large distance and arrive at screen 3 as “almost” plane waves. Their
wavefronts are tilted by a small angle with respect to each other, resulting in
an optical path difference and superposition results in a fringe pattern. In our
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model calculation, we assume that the two monochromatic waves, leaving the
two openings, travel in parallel in the same direction. They have the angle θ with
respect to the symmetry axis and the optical path difference δ (see Figure 2.5),

δ � a sin θ. (2.27)

In the small angle approximation we have δ � aY/X, and obtain the intensity
of the fringes on the observation screen, using Eq. 2.25

I (Y ) � I0[cos{(πaY )/(Xλ)}]2. (2.28)

Constructive interference is observed for

δ � Ya/X � 0, λ, 2λ, . . . . (2.29)

and destructive interference for

δ � Ya/X � λ/2, 3λ/2, 5λ/2, (2.30)

The graph in FileFig 2.5 shows the intensity for Young’s experiment, depending
on Y , using the coordinate on the observation screen. One observes that there
is a maximum at the center. In Figure 2.6, a photograph shows the interference
pattern of Young’s experiment and an experimental setup for its observation.

FIGURE 2.6 (a) Photograph of interference pattern observed with Young’s experiment (from M.
Cagnet, M. Francon, and J.C. Thrierr, Atlas of Optical Phenomena, Springer-Verlag, Heidelberg,
1962); (b) physical dimensions for the observation of fringes in Young’s experiment, according to
R. Pohl.
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FileFig 2.5 (I5YOUNGS)

The intensity for Young’s experiment (Eq. (2.28)), is plotted for λ � 0.0005 mm,
a � 0.4 mm, and X � 4000 mm. For this choice of parameters, we see that
the separation of the holes on screen 2 (see Figure 2.5), are three orders of
magnitude larger than the wavelength and four orders of magnitude smaller
than the distance between screens 2 and 3.

I5YOUNGS is only on the CD.

Application 2.5.

1. Change the separation of the source points a to 1
2a and 2a.

2. Change the wavelength λ to 1
2λ and 2λ.

3. Compare the changes of the ratio a/λ to 1
2 and 2 times its value.

4. There are no changes if we keep the product (a/λ)(Y/X) constant, where
Y/X is the angle under which we observe the fringes.

2.4.2.1 Lloyd’s Mirror

In the experiment by Lloyd, interference fringes are produced by using one
mirror. Two parts of the incident wave are superimposed. One part travels directly
from the source to the observation screen, while the other part is incident on the
mirror and is reflected under a grazing angle (see Figure 2.7). For the calculation
of the optical path difference δ, we use a virtual source S ′ at distance a/2 from
the plane of the mirror, but on the “other side” of the mirror. Similarly, as in
Young’s experiment, we have for the optical path difference δ � Ya/X, and
consider the two waves traveling parallel to the observation point. One has to take
into account that one of the two superimposed waves has picked up a phase shift

FIGURE 2.7 Optical schematic for Lloyd’s mirror experiment drawn with exaggerated size of the
angles. One wave from the source travels directly to the observation point; the other is reflected
at the mirror. Since the distance of the source from the plane of the mirror is very small the first
fringe is about in the plane of the reflecting surface. It is a minimum because of the phase shift.
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ofπ upon reflection on the mirror. This phase shift appears as π in cos{2π (x/λ−
t/T ) + π}, and after superposition, as π/2 in the amplitude factor used for the
intensity. We therefore have

I (Y ) � I0[cos{π (Ya/Xλ) + π/2}]2. (2.31)

For interference one has

Ya/X + λ/2 � 0, λ, 2λ, . . . or δ � Ya/X � λ/2, 3λ/2, 5λ/2 (2.32)

and for interference

Ya/X + λ/2 � λ/2, 3λ/2, 5λ/2, . . . or δ � Ya/X � 0, λ, 2λ . . . (2.33)

The graph in FileFig 2.6 shows the intensity of Lloyd’s mirror experiment
depending onY, the coordinate on the observation screen. In comparingYoung’s
experiment to Lloyd’s, one has a minimum at the center.

FileFig 2.6 (I6LOYDS)

Intensity of Lloyd’s experiment for λ � 0.0005 mm, a � .4 mm, and X �
4000 mm. The “first” fringe is dark, that is, a minimum for Y � 0, because of
the phase shift upon reflection of one of the two waves. The dependence of the
fringes on a and λ are the same as in Young’s experiment.

I6LOYDS is only on the CD.

2.4.2.2 Fresnel’s Double Mirror Experiment

Fresnel’s mirror experiment was originally performed to prove the wavelike
character of light. Even today it is of some interest since the fringes depend on
the tilting angle of the mirrors and may be applied to wavelengths as short as
Xrays. The wavefront of the spherical wave, emerging from the source, is divided
by two mirrors, which are tilted by a very small angle β (Figure 2.8a). Each part
of the incident wave is reflected, and the two wavefronts are tilted by the angle
β. The superposition produces the fringe pattern. In our model description we
consider the waves at the faraway observation screen as parallel. The optical
path difference is the same as calculated when the two waves travel under the
small angle β. Making these assumptions, the optical path difference is obtained
using the two virtual source points S ′

1 and S ′
2 at distance a (see Figure 2.8a).

It is similarly done as for Young’s experiment (Figure 2.8b). The distance from
the virtual sources to the observation screen is c + f � X, and the optical path
difference δ � a(Y/X) of the light reflected by the two Fresnel mirrors is

δ � (Y2b sin β)/(c + f ). (2.34)
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FIGURE 2.8 (a) and (b) are for Fresnel’s mirror experiment. S is the source, S ′
1 and S ′

2 are virtual
source points. They are separated by a and have a tilting angle β. The coordinate on the observation
screen is Y . The relation a � 2b sin β is obtained by associating “one b” with one mirror and the
“other b” with the other mirror, and remembering that light is reflected by 2β if the mirror is tilted
by β; (c) approximate treatment of Fresnel’s mirror experiment similar to Young’s experiment.

The intensity is

I (Y ) � I0[cos{(πY2b sin β)/[(c + f )λ]}]2, (2.35)

and for constructive interference

δ � Y2b sin β/(c + f ) � 0, λ, 2λ, . . . (2.36)

and destructive interference

δ � Y2b sin β/(c + f ) � λ/2, 3λ/2, 5λ/2, . . . (2.37)

The graph in FileFig 2.7 shows the intensity of Fresnel’s double mirror experi-
ment with a maximum at the center, since both waves are reflected on a mirror
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and pick up a phase shift π . In FileFig 8 we compare the intensities of Young’s,
Lloyd’s, and Fresnel’s double mirror experiments and see the role the phase shift
plays.

FileFig 2.7 (I7FREMIRS)

Intensity of Fresnel’s double mirror experiment, Eq. (2.35) for λ � 0.0005 mm,
b � 1000 mm, f � 5000 mm, and for the angle β � 0.0002.

I7FREMIRS is only on the CD.

Application 2.7.

1. How is the pattern changing when changing λ. How much must λ be changed
to double the separation of the maxima or to make them one half.

2. How is the pattern changing when changing β. How much must β be changed
to double the separation of the maxima or to make them one half.

3. What angle β has to be chosen to have the maxima separated by 500 microns
when using Xrays of 500 Angstrom (1 Å is 10−10 m).

FileFig 2.8 (I8FRYOLOS)

Comparison of experiments by Young, Lloyd, and Fresnel. For the choice of
parameters, we see that the separation of the “sources” are three orders of
magnitude larger than the wavelength, and four orders of magnitude smaller
than the distance X between experimental setup and observation screen.

I8FRYOLOS

Fresnel’s Mirror, Young’s Double Slit, and Lloyd’s Mirror

1. Fresnel’s mirror
Y , c, f , b, and λ in mm, β in rad; c is about b for calculation of X � c+ f .
All lengths in mm.

Con :� 1 λ defined above

graph

b :� 1000 f :� 5000 c :� b cos(β) β ≡ .0002 Y :� −10,−9.99 . . . 10

IF(Y ) :� Con · cos

(
π ·

Y · 2 b
c+f · sin(β)

λ

)2

.
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2. Young’s experiment

a ≡ .4 X ≡ 4000

IY (Y ) :� Con · cos

(
π · Y · a

λ ·X
)2

.

λ ≡ .0005

3. Lloyd’s mirror
Same as Young, phase term is added.

IL(Y ) :� Con · cos

(
π · Y · a

λ ·X + π

2

)2

.

We see that at Y � 0 Young has a maximum, Lloyd a minimum. For Young
and Lloyd: the position of maxima are changed by changing d and λ; X is
considered fixed. For Fresnel, a, b are fixed; position of fringes changes with
β and λ.

2.5 TWO-BEAM AMPLITUDE DIVIDING
INTERFEROMETRY

2.5.1 Model Description for Amplitude Division

We again assume a monochromatic wave incident on the experimental setup,
propagating in the x direction, vibrating in the y direction, and having a large
lateral extension in the z direction.

The incident wave is incident on a beam splitter. One part is reflected and the
other part is transmitted. One or both parts are manipulated in the experimental
setup to pass through a beamsplitter a second time. Fractions of each part are
superimposed and travel parallel to the observation screen.
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The splitting of amplitude division is different from the splitting discussed for
wavefront division. The two waves after wavefront division travel under an angle.
After amplitude division, it can be arranged, that both parts travel in parallel in
the same direction. The difference between wavefront and amplitude division
is related to energy conservation. It is impossible to superimpose two beams in
such a way that all the light travels in one direction.

The interference pattern is observed at a faraway screen, and the intensity of the
interference pattern is given as I � I0[A cos(2πδ/2λ)]2 (see Eq. (2.25)), where
δ is the optical path difference. The observation may be done in the focal plane
of a lens, making the actual distance between the experiment and observation
screen much shorter.

2.5.2 Plane Parallel Plate

The interference on a plane parallel plate is the model for the description of
interference on thin films, used in various technologies such as coating lenses or
mirrors for use with Xrays.

We consider light incident on a plane parallel plate of glass of thickness D
and index of refraction n > 1, and assume n � 1 for the media outside the plate.
The incident light, shown in Figure 2.9 at (a), is split at the first interface into a
reflected and transmitted part (shown at (b)). The transmitted light is reflected
and transmitted at the second interface (shown at (c)) and the reflected light is
again reflected and transmitted at the first interface (shown at (d)). We use for
further consideration only the light reflected from the first interface (shown as
(1)) and the light reflected at the second interface, and then transmitted through
the first interface (shown as (2)).

FIGURE 2.9 Plane parallel plate at thicknessD and refractive index n; (a) incident light; (b) split-
ting at first interface; (c) splitting at second interface, (d) splitting at first interface again; (e) the
two waves, (1) from b and (2) from c superimposed to generate the interference fringes.
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The path difference between the waves (1) and (2) is

δ � 2Dn. (2.38)

Both waves (1) and (2) travel in the same direction, and (1) picks up a phase shift
of π when reflected at the first interface. For the calculation of the optical path
difference we have to multiply 2D by n. In addition, we have to take into account
that the reflection on the denser medium, that is, the glass, for wave (1) results
in a phase shift of π , equivalent to λ/2. The optical path difference is then

δ � 2Dn+ λ/2, (2.39)

where λ is the wavelength outside of the plate. One has for the intensity

I � I0[cos{π (2Dn+ λ/2)/λ}]2 (2.40)

or equivalently

I � I0[cos{π (2Dn)/λ+ π/2}]2. (2.41)

We have for constructive interference

δ � 2Dn+ λ/2 � 0, λ, 2λ, . . . (2.42)

or

2Dn � λ/2, 3/2λ, 5/2λ, . . . (2.43)

and for destructive interference

δ � 2Dn+ λ/2 � λ/2, 3λ/2, 5λ/2, . . . (2.44)

or

2Dn � λ, 2λ, 3λ, . . . . (2.45)

We see that the appearance of maxima and minima depends on the thickness and
the index of refraction of the plane parallel plate. Maxima are obtained for integer
numbers of half a wavelength, minima for integer numbers of a wavelength. One
may observe the interference pattern on a plane parallel plate by looking at a
soap bubble. The film of the bubble is curved, but equally thick over a small
area. The colored light we see is produced by individual interference of different
wavelengths on the thin film of equal thickness.

The first graph in FileFig 2.9 shows the dependence of the fringes on the
thickness of the film for fixed wavelength λ and refractive index n � 1.5. The
second graph shows the dependence on wavelength for fixed thicknessD � 0.05
and n � 1.5. One observes that there is no interference on the thin film when
the wavelength gets too large.
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FileFig 2.9 (I9PLANS)

The intensity of two-beam interference on a plane parallel plate of index n2 in
medium with index n1 � 1. The graphs shown are: (i) Dependence on thickness
for fixed wavelength λ � 0.0005 and n � 1.5; (ii) Dependence on wavelength
for fixed thickness D � 0.05 and n � 1.5.

I9PLANS is only on the CD.

Application 2.9.

1. Modify the formula to I (D) � {cos(2πDn/λ+ λ/2)}2, for the case that the
index of the outside medium is not 1.

2. Consider the following configurations:

a. an air gap between glass media (n � 1.5).

b. a water film (n � 1.33) on glass, and incident light in medium n � 1.

c. a water film on glass and incident light in glass.

Using a graph for fixed D, start counting maxima at any particular maxima
on the graph. Read from the graph the difference inD between, for example,
5 maxima. Recalculate the wavelength using the value of n.

3. When the wavelength exceeds the thickness of the plate, the last fringe is
observed for a value of λ, depending on D and n. Find the formula.

2.5.2.1 Wedge-Shaped Air Gap

We consider two glass plates in air with one on top of the other. With a thin
object, we produce a wedge shaped air gap of small angle α. As we did for the
plane parallel plate, we calculate the optical path difference for the two waves
(1) and (2), on the two interfaces of the air gap (Figure 2.10a (side view)). The
optical path difference is

δ � 2x tan α, (2.46)

where α is the angle of the wedge and x the distance from the point where the
plates are touching. The wave reflected at the lower plate picks up a phase shift
of π , equivalent to λ/2. For the two waves (1) and (2) one has constructive
interference

2x tan α + λ/2 � 0, λ, 2λ, 3λ, . . . , mλ (2.47)

and destructive interference

2x tan α + λ/2 � 1/2λ, 3/2λ, 5/2λ, . . . , (m+ 1/2)λ. (2.48)

The width D′ � x tan α at the mth maximum is

D′ � (m− 1/2)λ/2, (2.49)
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FIGURE 2.10 (a) Optical diagram for a wedge-shaped gap of air between two dielectric glass
plates (microscope slides). The gap angle α is assumed to be small. As x increases, the optical
path difference between waves (1) and (2) also increases, resulting in an interference pattern;
(b) schematic of fringe pattern observed with optical plates flat to a fraction of a wavelength λ;
(c) height b at distance xm � d and tan α � b/d.

where m � 1, 2, 3, . . . , and for destructive interference

D′ � mλ/2, (2.50)

where m � 0, 1, 2, 3, . . . . For the intensity we have

I � I0[cos{(π2x tan α)/λ+ π/2}]2. (2.51)

Interference produced by a wedge-shaped air gap is used to determine the uni-
formity of a polishing job, schematically shown in Figure 2.10b. A flat plate is
used to produce an air gap over a plate, which has been polished. If the maxima
and minima are not straight lines, the width of the air gap varies. Deviations of
a fraction of a wavelength can be detected.

One can make a simple experiment with two microscope slides and a plastic
film. The film is placed at the end of one slide, and a wedge of length approx-
imately 5 cm may be produced with the other microscope slide. Observation
of fringes and their corresponding distances makes it possible to determine the
thickness of the plastic film.
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FileFig 2.10 (I10WEDGES)

The intensity for interference depending on the distance x, of a wedge of α �
0.002 rad and λ � 0.0005 mm. The distance between the maxima is a constant,
given as λ/(2 tan α). We have also plotted the height depending on the length x
for angle α, using a scaling factor a. The first fringe is a minimum, as observed
for Lloyd’s mirror, because the thickness at origin D′ � 0.

I10WEDGES is only on the CD.

Application 2.10.

1. From the condition of constructive interference (2x tan α + λ/2 � 0, λ,
2λ, . . . , mλ), show that we have for the difference �xm � xm+1 − xm �
λ/(2 tan α), where xm is the x coordinate at the mth fringe.

2. Since �ym/�xm � tan α, where �ym is the height difference of the plates
between fringes, show that we have �ym � λ/2.

3. Assume we observeM fringes over the length xm � d and want to determine
the height b of the gap at that point (see Fig. 2.10a. Since b/d � tan α �
(λ/2)/xm, show that we have b � (λ/2)M .

4. Recalculation of α: produce a graph with λ � .00054 and α � .0023. Find
the x coordinate at the 23rd fringe and use for the y coordinate y � (λ/2)23.
Calculate α and compare with input data.

5. Modify the determination of the height at some chosen point xm for a water
film (n � 1.33) between glass plates (n � 1.5).

2.5.2.2 Newton’s Rings

A circular interference pattern may be observed if a spherical surface is placed
on a flat surface. The ring pattern is called “Newton’s rings” and may be used
to determine the radius of curvature of the spherical surface. An experimental
setup is shown in Figure 2.11.

A plane convex lens touches a plane parallel plate and an air gap of width D
is formed between the lens and the plate. We call the radius of curvature of the
spherical surface R and the radius of the rings of the pattern r (Figure 2.12). One
has the relation

R2 � r2 + (R −D)2. (2.52)

After solving a quadratic equation, we have for D(r)

D(r) � R −
√

(R2 − r2). (2.53)

The transmitted intensity is

I (r) � I0{cos(π2D(r)/λ)}2. (2.54)
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FIGURE 2.11 Experimental setup for the observation of Newton’s rings. Light is made parallel
by lens 1 and is reflected by the beam splitter to the lens-plate assembly. Reflected light from
surfaces I and II travels to microscope 1 for observation of fringes in reflection. Transmitted light
from surfaces I and II travels to microscope 2 for observation of the tranmission fringes.

FIGURE 2.12 Coordinates for the calculation of the optical path differenceD between rays from
surfaces I and II.

In addition the reflected intensity has the term π/2 because of the reflection on
the plane parallel plate of refractive index larger than 1,

I (r) � I0{cos(π2D(r)/λ+ π/2)}2. (2.55)
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FIGURE 2.13 Newton’s rings observed: (a) using transmitted light; (b) using reflected light
(from M. Cagnet, M. Francon, and J.C. Thrierr, Atlas of Optical Phenomena, Springer-Verlag,
Heidelberg, 1962).

For the reflected intensities, one has for constructive interference

δ � D(r) + λ/2 � 0, λ, 2λ, . . . , (2.56)

and for destructive interference

δ � D(r) + λ/2 � λ/2, 3λ/2, 5λ/2, . . . . (2.57)

For the transmitted intensities one has similar expressions without the λ/2 term.
At the center of the plates, at D � 0, one has from Eq. (2.55) for reflected light
zero intensity; in other words, we should observe a dark spot, shown in Figure
2.13a. For transmitted light, Eq. (2.54) predicts a bright spot, shown in Figure
2.13b.

FileFig 2.11 (I11NEWTONS)

Intensity for Newton’s rings in transmission and reflection depending on the
radius r around the center, for λ � 0.0005 mm and R � 2000 mm.

I11NEWTONS is only on the CD.

Application 2.11. Recalculation of R:

1. Show that we have for the mth ring (fringe) a height in the air gap of mλ/2.
2. Show that we then have to use (mλ/2 − R)2 � R2 − r2

m for the calculation
of R, assuming that we have read rm from the graph.

2.5.3 Michelson Interferometer and Heidinger and Fizeau
Fringes

2.5.3.1 Michelson Interferometer and Normal Incidence

In 1880, Albert Michelson used the interferometer, named after him, for his
famous experiments to show that there is no ether. Today most infrared spec-
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FIGURE 2.14 The Michelson interferometer with arms of unequal lenght x1 and x2 in the same
medium.

trometers use the Michelson interferometer to obtain an interferogram and the
application of the Fourier transform produces the desired spectrum. Chapter 9
discusses Fourier transformation and spectroscopy. In Figure 2.14 we show a
schematic of a Michelson interferometer. The amplitude of the incident beam is
partly reflected under an angle of 90◦ toward mirror M1, and partly transmitted
in the direction to mirror M2. The beam splitter may be a plane parallel plate,
and the reflection and transmission properties of such a plate are discussed be-
low, including all multiple reflections. Here we use an idealized beamsplitter
and assume that 50% of the incident light will be reflected, that 50% will be
transmitted, and no phase shift will be introduced.

The reflected wave travels to mirrorM1, where it is reflected and travels back
to the beam splitter for a “second splitting.” It has traveled the distance 2x1
between mirror and beam splitter. We call the transmitted part (1), and note
that the reflected part travels back to the source. Similarly, the transmitted wave
travels to M2, is there reflected, and travels to the beam splitter for a second
splitting. It has traveled the distance 2x2 and we call the reflected part (2); the
transmitted part travels back to the source. Parts (1) and (2) are superimposed
and travel to the detector. If the distances 2x1 and 2x2 are not the same, we have
an optical path difference between (1) and (2) of

δ � 2D � 2(x2 − x1), (2.58)

where we assume that x1 > x1. Constructive interference is obtained for

δ � mλ (2.59)



2.5. TWO-BEAM AMPLITUDE DIVIDING INTERFEROMETRY 105

and destructive interference for

δ � (
m+ 1

2

)
λ, (2.60)

where m � 0, 1, 2, 3.
The intensity of interference is obtained as

I � 4A2 cos2(π2D/λ). (2.61)

The Michelson interferometer was originally designed to perform exact length
measurements. Some time ago, it was used for a now outdated procedure to
define the length of the meter by using 86Kr emission.

The first graph in FileFig 2.12 shows the fringes depending on thickness D.
The second graph shows the fringes depending on wavelength λ.

FileFig 2.12 (I2MICHDLS)

Intensity of the Michelson interferometer depending on the displacement D of one
mirror for wavelength λ � .0005 mm, and for dependence on λ for D � .003.

I12MICHDLS

Michelson Interferometer

Beam splitter is assumed to be a plane parallel plate. Fringe pattern depending
onD for wavelength λ � .0005, and depending on wavelength λ forD � .003.
The angle θ � 0. All lengths in mm.
1. Dependence on D.

θ :� 0 λ; � .0005

D :� 0.027, .02701 . . . .0325

I1(D) :� cos

(
2 · π ·D · cos(θ )

λ

)2

.
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2. Dependence on λ

λ :� .0004, .000401 . . . .0008

D :� .003

I2(λ) :� cos

(
2 · π ·D · (θ )

λ

)2

.

l

l

Application 2.12.

1. Resolution depending on displacement D. Add to the graph of the intensity
depending onD a graph with a second wavelengthλλ � λ+�λ; for example,
λλ � 0.00052. Observe that the separation of the fringes gets larger for larger
m. For the mth fringe we have the path differences mλλ and mλ. When this
difference is λ/2, we call the two fringes resolved and havemλλ−mλ � λ/2,
m�λ � λ/2, or λ/�λ � 2m. Compare the formula�λ/λ � 2mwith values
read from the graph for choice of λλ.

2. Add to the graph of the intensity depending on λ a second graph with different
D value. The graph shows the change in phase for one wavelength whenD is
changed. ChooseD1 such that maxima change to minima andD2 that mimima
change to the next maxima. Read from the graph the numerical values and
compare with the formula for constructive and destructive interference.

2.5.3.2 Michelson Interferometer, Nonnormal Incidence, Heidinger, and Fizeau
Fringes

If the light from the point source fills a cone with opening angle�θ , the distance
x2 − x1 depends on the angle θ and a ring pattern will result in the plane of
the observation screen. For the mathematical treatment we fold one beam of the
Michelson interferometer over to the other beam as shown in Figure 2.15a. To
calculate the path difference of the two beams (1) and (2), we use Figure 2.15b
and calculate the path difference using Figure 2.15c. We have for the distances
[ab] � [bc] � D/ cos θ , and for the distance [ac] � [(2D/ cos θ )(sin θ )] �
2D tan θ . The optical path difference δ is then

δ � 2[bc] − [ac] sin θ � 2D/(cos θ ) − 2D tan θ sin θ � 2D cos θ. (2.62)
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FIGURE 2.15 (a) Light passing through a Michelson interferometer for a light beam incident
under the angle θ ; (b) light passing through a Michelson interferometer for a light beam incident
under the angle θ and one arm folded onto the other; (c) calculation of path difference for a light
beam incident under the angle θ .

The intensity of the superimposed two beams is obtained as

IM (θ,D) � cos2(π2D(cos θ )/λ). (2.63)

When a fringe is formed by incident light under the same angle of inclination,
one speaks of Heidinger fringes. Heidinger fringes are shown in Figure 2.16. A
cone of light was used with a Michelson interferometer for the observation of the
ring pattern. In FileFig13. we study graphs of the cross-section of the intensity
pattern of Heidinger fringes. They are produced by the Michelson interferometer
for the dependence on the angle θ , for fixed wavelength λ and for fixed thickness
D. We may also produce with the Michelson interferometer fringes of equal
thickness. We fold one beam onto the other beam, as shown in Figure 2.17a, and
then consider a similar positioning as discussed for the plane parallel plate. If one
of the mirrors of the Michelson interferometer is tilted (Figure 2.17b), we have
the same situation as for the wedge-shaped gap (Figure 2.10a). Therefore, the
fringe pattern of the Michelson interferometer with one tilted mirror is similar
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FIGURE 2.16 Heidinger interference fringes observed with a Michelson interferometer. The ring
pattern is observed when using a cone of light (from Cagnet, Francon, Thrierr, Atlas of Optical
Phenomena, Springer-Verlag, Heidelberg, 1962).

FIGURE 2.17 (a) Michelson interferometer with mirror M1 folded onto the other arm;
(b) Michelson interferometer with mirror M1 folded onto the other arm and M2 tilted.

to the wedge-shaped air gap. When a fringe is formed by incident light for the
same thickness D, one speaks of Fizeau fringes.
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FileFig 2.13 (I3MICHANS)

Ring pattern of intensity of the Michelson interferometer depending on angle θ
for two wavelengths λ and λλ for fixed D.

I13MICHANS

Michelson Interferometer, Dependence on θ

Fringe pattern depending on angle θ for two fixed wavelengths λ and λλ and
fixed displacement D. An ideal beamsplitter is assumed. All lengths in mm.

θ :� −301,−300 . . . 3 λ :� .0005 D :� .05 λλ :� 00052

IM1(θ ) :� cos

(
2 · π ·D · cos(θ )

λ

)2

IM2(θ ) :� cos

(
2 · π ·D · cos(θ )

λλ

)2

.

q

q

q

Application 2.13.

1. Observe that the separation of the fringes for wavelengths λ and λλ gets
smaller for larger angles and that at the center, when one wavelength λ has
a maximum, the other has none.

2. Consider one wavelength only and fixed angle θ . To each maximum cor-
responds an integer m determined by 2D cos θ � mπ . Use D/λ � x

for the ratio, and show that the maxima may be numbered by m(θ ) �
2x cos(2πθ/360). Make graphs for m(θ ) for θ from 0 to 90 and determine
the number of rings one has for ratios of x � 1, 2, 3, 4. The larger numberm
belongs to the smallest angle θ . This is different fromYoung’s experiment and
similar ones, where the angle is proportional to the order of interference.
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FIGURE 2.18 (a) Geometry for multiple interference at a plane parallel plate of index n2 and
thickness D. The light is incident at an angle θ1 from a medium with index n � 1. Using Snell’s
law at the first and second surface one may show that the emerging angle is equal to the incident
angle θ1. The reflection angle within the plate is θ2; (b) geometry for the calculation of the optical
path from point a to point c′ and c.

2.6 MULTIPLE BEAM INTERFEROMETRY

2.6.1 Plane Parallel Plate

In Section 5.2 we studied the plane parallel plate and considered only two re-
flected waves (Figure 2.9). We formulated the condition for constructive and
destructive interference, but did not investigate the question, “Where does the
light travel?” when for destructive interference there is no light in the direction
of reflection. Now we want to include in our discussion all internal reflections of
the plate and calculate the resulting reflected and transmitted waves as shown in
Figure 2.18. We show that the reflected and transmitted intensity is equal to the
incident intensity. When we have destructive interference for the reflected light,
all light is transmitted and vice versa.

The incident wave is assumed to have magnitude A and makes the angle
θ1 with the normal. The plate has thickness D and a refractive index n2. The
refractive index on both sides of the plate is assumed to be 1. The magnitudes
of the reflected and transmitted waves are Air and Ait , where i is 1, 2, 3, . . . ,
respectively. The calculation of the optical path difference is done by using
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the wave reflected on the first surface and the wave reflected once on the second
surface. We assume that both waves propagate in the same direction and calculate
the optical path difference, (Figure 2.18b) using the distances [ac] and [bc]. One
has [ab] � [bc] � D/ cos θ2 and [ac] � [(2D/ cos θ2)(sin θ2)]] � 2D tan θ2.
The optical path difference between A1r and A2r is then

δ � 2n2[bc] − [ac] sin θ1 � 2Dn2/ cos θ2 − 2D tan θ2 sin θ1. (2.64)

Using the law of refraction we get

δ � 2Dn2/ cos θ2 − 2D tan θ2n2 sin θ2 � 2Dn2 cos θ2 (2.65)

The same optical path difference is obtained for transmission. We call r12 the
amplitude reflection coefficient for a wave incident from medium 1 and reflected
at medium 2, with the corresponding intensity R12. Similarly, we call r21 for a
wave incident from medium 2 and reflected at medium 1, with the corresponding
intensity R21. The first index indicates the medium in which the wave travels.
The second index indicates the medium at which it is reflected. Similarly, we
use τ12 for the absolute value of the amplitude of a transmitted wave traveling
from medium 1 to 2 and τ21 in the opposite direction. We define τ12 � √

T12

and τ21 � √
T21, where T12 and T21 are transmitted intensities. From energy

conservation we have that R12 + T12 � 1 and R21 + T21 � 1. The phase
difference � is

� � (2π/λ)2Dn2 cos θ2 (2.66)

and a list of the reflected amplitudes

A1r � A r12

A2r � A τ12 r21 τ21 e
i�

A3r � A τ12 r21 r21 r21 τ21 e
i2�

A4r � A τ12 r21 (r21 r21)2 τ21 e
i3�

(2.67)

and transmitted amplitudes

A1t � A τ12 τ21

A2t � A τ12 r21 r21 τ21 e
i�

A3t � A τ12 (r21 r21)2 τ21 e
i2�

A4t � A τ12 (r21 r21)3 τ21 e
i3�

(2.68)

For the summation of the reflected amplitudes one gets

Ar � Ar12 + Aτ12r21τ21e
i�(1 + r21r21e

i� + (r21r21e
i�)2 + · · ·) (2.69)

and for the transmitted amplitudes

At � Aτ12τ21(1 + r21r21e
i� + (r21r21e

i�)2 + . . .). (2.70)
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Using the formula for the summation process

n�N−1∑
n�0

xN � (1 − xn)/(1 − x) (2.71)

we see that the term of the N th power can be neglected, since the reflection
coefficients are all smaller than 1 and N is a large number. We now have for the
reflected amplitude

Ar � Ar12 + Aτ12r21τ21e
i�/(1 − r21r21e

i�) (2.72)

and for the transmitted amplitude

At � Aτ12τ21/(1 − r21r21e
i�). (2.73)

We call r the absolute value of the amplitude reflection coefficients r12 and r21,
and have for n2 > n1, using Fresnel’s formulas (Chapter 5), that r12 � −r and
r21 � r; that is, R12 � R21. As result one has 1 −R12 � T12 � 1 − r2 � T21 �
1 − R21 and we may use τ12τ21 � 1 − r2 and write

Ar � −Ar + Ar(1 − r2)ei�/(1 − r2ei�) (2.74)

At � A(1 − r2)/(1 − r2ei�). (2.75)

The transmitted intensity is obtained by multiplication of At with its complex
conjugate A∗

t

AtA
∗
t � A2(1 − r2)2[1/(1 − r2ei�)(1 − r2e−i�)].

One has (1−r2ei�)(1−r2e−i�) � 1−r2ei�−r2e−i�+r4 � 1+r4−r22 cos�
and gets

AtA
∗
t � A2[(1 − r2)2]/(1 + r4 − 2r2 cos�). (2.76)

And similarly

ArA
∗
r � A2[2r2(1 − cos�)]/(1 + r4 − 2r2 cos�). (2.77)

Introduction of the normalized intensities

Ir � ∣∣ArA∗
r /A

2
∣∣ and It � ∣∣AtA∗

t /A
2
∣∣ (2.78)

results in

Ir � [2r2(1 − cos�)]/(1 + r4 − 2r2 cos�) (2.79)

and

It � [(1 − r2)2]/(1 + r4 − 2r2 cos�). (2.80)

Using the abbreviation

g � 2r/(1 − r2) (2.81)
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and the trigonometric identity

cos� � 1 − 2 sin2(�/2) (2.82)

we obtain

Ir � [g2 sin2(�/2)]/[(1 + g2 sin2(�/2)] (2.83)

and

It � 1/[(1 + g2 sin2(�/2)], (2.84)

where we recall that � � (2π/λ)δ, and δ � 2Dn2 cos θ2, the optical path
difference of adjacent transmitted and reflected waves. Corresponding to the
conservation of energy one has

Ir + It � 1. (2.85)

depending on the thicknessD and the angle of incidence θ1, the incident intensity
is divided between Ir and It . If [sin�/2]2 � 0, we have the condition of,
constructive interference, the reflected light Ir � 0,

δ � 2Dn2 cos θ2 � 0, λ, 2λ, . . . , mλ. (2.86)

If [sin�/2]2 � 1 we have a minimum of light transmitted. The condition is

δ � 2Dn2 cos θ2 � (1/2)λ, (3/2)λ, . . . , (m/2)λ, m odd (2.87)

and one has

It � 1/(1 + g2) and Ir � g2/(1 + g2). (2.88)

In FileFig 2.14 we show graphs of Eqs. 2.88 for transmitted and reflected
intensity, depending on thicknessD for fixed wavelength λ and different refrac-
tive indices outside of the plate. In Figure 2.19 we show photos of interference
fringes for observation in reflection and transmission. The fringes depend on
the angle between the incident light and the normal of the surface. They are

FIGURE 2.19 Interference fringes observed with a plane parallel plate using an extended source:
(a) reflection; (b) transmission (from Cagnet, Francon, Thrierr, Atlas of Optical Phenomena,
Springer-Verlag, Heidelberg, 1962).
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Heidinger fringes. The reflection coefficients, used in the graph of FileFig 2.14,
are calculated from Fresnel’s formulas for a glass plate. For the special case of
normal incidence and reflection on the optical denser medium, one has from
Fresnel’s formulas

r � (n1 − n2)/(n1 + n2). (2.89)

In FileFig 2.15 we show graphs, assuming normal incidence, of the transmitted
and reflected intensity depending on wavelength for fixed thickness D. In Eq.
(2.81) we defined g � 2r/(1 − r2). We mention here that πg/2 is called the
finesse. It is used for the characterization of the quality of the Fabry–Perot,
discussed in the next chapter.

FileFig 2.14 (I14PLANIDS)

Intensity of interference at a plane parallel plate assuming normal incidence.
Graph of the reflection and transmission depending on thickness D for fixed
wavelength and different values of n1, n2, and n3.

I14PLANIDS

Normal Incidence. Plane Parallel Plate: Reflected and Transmitted Intensity Depending
on Thickness for Fixed Wavelength

The reflection coefficients are calculated from Fresnel’s formulas for θ � 0. Re-
fractive indices n1, n2, and n3 may all be different and the reflection coefficients
for both surfaces are calculated. The calculation of the fringe pattern is done
depending on D for fixed λ.

� � (
2π

λ
)2dn2 θ1 :� 1

n1 :� 1 n2 :� 1.5 n3 :� 1

r12 :� n2 − n1

n2 + n1
r23 :� n3 − n2

n3 + n2
� � (2π/λ) 2dn2 cos θ2

r12 � 0.2 r23 � −0.2

λ ≡ .0005 D ≡ .0002, .00021 . . . 002

IT (D) :�
(
1 − r122

) · (1 − r232
)

1 + (r12 · r23)2 − (2 · r12 · r23) · cos
(
4 · π · D

λ
· n2

)
IR(D) :� 1 − IT (D).
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Application 2.14. Consider transmitted and reflected intensity depending on
the thickness of the plate.

1. Try out different combinations such as n1 < n2 < n3, n1 < n2 > n3, and
n1 > n2 < n3, and see the effect of the phase jump of reflection at the denser
medium.

2. Choose arbitrary values for r < 1 and observe how the intensity is changing.

FileFig 2.15 (I15PLANIDS)

Intensity of interference at a plane parallel plate assuming normal incidence.
Graph of the reflection and transmission depending on wavelength λ for fixedD
and different values of n1, n2, and n3.

I15PLANIDS is only on the CD.

Application 2.15. Consider the transmitted and reflected intensity depending
on wavelength.

1. Try out different combinations such as n1 < n2 < n3, n1 < n2 > n3, and
n1 > n2 < n3, and see the effect of the phase jump of reflection at the denser
medium.

2. Find the wavelength for the last fringe, depending on the thickness D of the
plate.

2.6.2 Fabry–Perot Etalon

A plane parallel plate with reflecting surfaces on both sides is called an etalon.
The reflecting layers may be made of metal or a structure of dielectric films.
We show that for a specific wavelength at a specific spacing of two reflecting
surfaces, all incident light will be transmitted while a single reflecting surface
will transmit only a small amount.
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We start from the treatment of the plane parallel plate and assume that one can
replace the two interfaces with idealized reflectors, having the reflectivity r .The
medium between these two reflectors has refractive index 1. Assuming normal
incidence and using the reflectance R � r2 one has from Eq. (2.81),

g2 � 4R/(1 − R)2. (2.90)

For normal incidence, one has for �/2,

�/2 � 2πD/λ. (2.91)

The reflected and transmitted intensities are obtained from Eqs. (2.83) and (2.84):

Ir � g2 sin2(�/2)/(1 + g2 sin2(�/2)) It � 1/(1 + g2 sin2(�/2)). (2.92)

There the mathematical form of It is called the Airy function.
If [sin�/2]2 � 0 we have the condition of constructive interference for

transmitted light, Ir � 0,

δ � 2D � 0, λ, 2λ, . . . , mλ. (2.93)

If [sin�/2]2 � 1 we have a minimum of light transmitted. The condition is

δ � 2D � (1/2)λ, (3/2)λ, . . . , (m+ 1/2)λ, (2.94)

wherem is an integer. The graph in FileFig 2.16 shows three transmission patterns
for three different absolute values of the reflection coefficient. We have chosen
λ � .1 and plotted the transmitted intensity as a function of the spacing D,
for m � 1 and r � .7, .9, and .97, respectively. We see that the width of
the transmitted intensity depends on the absolute value of the reflectance r of
a single plate and becomes narrower when r gets close to 1. For constructive
interference, that is, when 2D � mλ, it follows that sin2�/2 � 0. Therefore
It is 1, independent of the value of r . We may have r so close to 1 that the
transmission of a single plate is almost zero, but the transmission of the pair of
plates at the right distance will be one.At this distance the Fabry–Perot etalon has
a resonance mode. In experimental Fabry–Perot etalons, the peak transmission
will not be exactly one, due to losses such as absorption in the plates. The Fabry–
Perot etalon, using high orders, is applied to investigate with high resolution
details of a spectral line in a narrow spectral range. The dependence of the width
of the spectral line on the reflection coefficient of the etalon is shown in the graph
of FileFig 2.17. The transmittance is plotted depending on the wavelength λ for
three different reflection coefficients r and fixed distance D.
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FileFig 2.16 (I16FABRYS)

Transmission through a Fabry–Perot depending on separation of plates D for
three different reflection coefficients (three different g), m � 1, and wavelength
λ � 0.1.

I16FABRYS

Fabry–Perot Transmission Depending on D

Normal incidence. Parameters: reflection coefficient, wavelength λ, refractive
index. See for global definition. The finesse πg/2 is λ/�λ. All lengths in mm.

� � (2π/λ)2D(n2) cos θ2 D :� 0, .001 . . . 11 n2 :� 1

g1 :� 2 · r1
1 − r12

g2 :� 2 · r2
1 − r22

g3 :� 2 · r3
1 − r32

IT 1(D) :� 1

1 + g12 · sin
(
2 · π

λ
·D · n2

)2

IT 2(D) :� 1

1 + g22 · sin
(
2 · π

λ
·D · n2

)2

IT 3(D) :� 1

1 + g32 · sin
(
2 · π

λ
·D · n2

)2

r1 ≡ .7 r2 ≡ .9 r3 ≡ .97 λ ≡ .1.

Application 2.16.

1. How do the positions of maxima depend on D and λ?
2. Give a formula for the separation of fringes and verify with the data from the

graph.
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3. Condsider dependence on θ for θ equal 0.001 to .7 for constant λ � .001
and D � .02. Make a graph and derive for the fringe number f (θ ) �
(2/y)(Dn2 cos θ ). Plotf (θ ) and observe that the highest number corresponds
to the smallest angle. This is contrary toYoung’s experiment; see also FileFig
2.13.

FileFig 2.17 (I17FABRYLS)

Transmission through a Fabry–Perot depending on wavelength λ for three
different reflection coefficients r (three different g), m � 1, and thickness
D � 0.0025.

I17FABRYLS is only on the CD.

Application 2.17. The bandwidth of a peak is the width at half-height, given by
bw � 2λ/πg. Calculate two bandwidths, bw1 and bw2, with ratio bw1/bw2 �
5 and make a graph. Verify the data by reading the bw values from the graph.

2.6.3 Fabry–Perot Spectrometer and Resolution

A Fabry–Perot etalon may be used as a spectroscopic device when varying the
spacing between the two reflecting surfaces over a small interval. The result is
that the first-order resonance wavelength λ0 � 2D0 is varied around a wave-
length interval and therefore we have for different Di the resonance maximum,
corresponding to λi . ScanningD gives us a maximum depending on λ and we get
the spectral distribution of the incident signal, as one may measure with a grating
spectrometer. Two spectral lines of wavelength difference �λ may be seen sep-
arated or not, depending on the resolution of the Fabry–Perot spectrometer. To
calculate the resolution, that is, the wavelength difference �λ � λ2 − λ1 of the
spectral lines of wavelength λ1 and λ2, we assume λ2 > λ1 (Figure 2.20a). The
two resonance lines are considered resolved when the crossing of the “right” side
of one line with the “left side” of the other line has the value 1

2 . This condition
may be expressed, using Eqs. (2.91) and (2.92), as

{1/(1 + g2 sin2[(2π/λ1)(D − ε)])}
(2.95)

� {1/(1 + g2 sin2[(2π/λ2)(D + ε)])}.
From Eq. (2.95) it follows that

(D + ε)λ1 � (D − ε)λ2. (2.96)

Using λ1 � λ2 −�λ and renaming λ2 as λ, one has λ2ε � (ε +D)�λ or

λ/�λ � (D + ε)/2ε. (2.97)
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FIGURE 2.20 (a) Spectral lines of wavelength λ1 at resonance distanceD−ε and λ2 at resonance
distance D + ε; (b) one spectral line at resonance distance λ � 2D with half-height at D + ε.

To obtain the value of ε (we look at a single line at resonance (Figure 2.20b),
and get D � λ/2. The value of ε is obtained from one line at half-height

1

2
� {1/(1 + g2 sin2[(2π/λ)(D − ε)])}. (2.98)

We use the sum formula for sin(a−b) � sin(a) cos(b)−cos(a) sin(b) and obtain
with sin(2πD/λ) � 0 and cos(2πD/λ) � −1,

1 + g2[sin(2πε/λ)]2 � 2. (2.99)

Since ε is small we may approximate the sine by the angle and have

g2[(2πε/λ)]2 � 1. (2.100)

Combining Eqs. (2.97) and (2.100) and assuming ε � D one gets

λ/�λ � πgD/λ (2.101)

In first order we have for the resonance distance D � λ/2, and obtain for
λ/�λ � πg/2. As mentioned above, πg/2 is called the finesse F . It character-
izes the resolving power of the Fabry–Perot spectrometer. Considering the order
m (integer) for the resonance distance of λ, that is, D � mλ/2, we have more
generally for the resolving power λ/�λ

λ/�λ � mπg/2. (2.102)

It depends only on the reflection coefficient of the single plate. The inverse, �λ
λ

is called the resolution.
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FIGURE 2.21 A Fabry–Perot ring pattern obtained using the green line of the mercury spectrum
(from Cagnet, Francon, and Thrierr, Atlas of Optical Phenomena, Springer-Verlag, Heidelberg,
1962).

In FileFig 2.18 we show a graph of the transmitted intensity of two different
wavelengths λ1 and λ2 for several orders, using the same value of the finesse. One
observes that the resolution may be changed when changing the reflectivity r . In
FileFig 2.19 we have calculated for two wavelengths the transmission through
a Fabry–Perot, depending on very small angles with respect to the normal. In
Figure 2.21 a photo is shown of a ring pattern produced with a Fabry–Perot for
the green Hg-line in the visible spectral region.

FileFig 2.18 (I18FABRYRDS)

Graph of Fabry–Perot resonances of two wavelengths λ1 and λ2 depending on
separation D of the plates.

I18FABRYRDS is only on the CD.

Application 2.18.

1. Make three choices of λ2 and determine the reflection coefficient r to have
them resolved in first-order.

2. Choose λ1 and λ2 and determine the reflection coefficient r2 to have the lines
resolved in second-order, and reflection coefficient r3 for the third-order.

3. Introduce λ2 � λ1 +�λ1 � λ1(1 + 2/mπg) and make changes to r so that
lines are separated for the first-, second-, and third-order.
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FileFig 2.19 (I19FABRYAS)

Transmission through a Fabry–Perot depending on angle with the normal. Wave-
length λ1 � 0.0005, λ1 � 0.0005025, thicknessD � 0.01, reflection coefficient
r � 0.9, and m � 1.

I19FABRYAS is only on the CD.

Application 2.19.

1. Observe that the separation of the fringes changes with m and that the mth
fringe is at the center.

2. The resolution is largest for the fringe with the largestm. The two wavelengths
λ1 � 0.00054 and λ1 � 0.0005025 have a difference of 1%. Read from the
graph the difference in the angle, give a formula to calculate this difference,
and compare.

2.6.4 Array of Source Points

We study the interference pattern produced by a periodic array of N source
points, as we would have it when using a grating. We extendYoung’s experiment
to more than two small openings and assume that the distance a between adjacent
openings is a constant. In our model description, we assume one incident wave
and neglect the diffraction effect in the process of splitting the wave into N
waves. We call the openings source points and have N waves traveling with the
angle θ to the normal of the array (Figure 2.22). The source points all vibrate
coherently. In other words, the amplitudes have maxima and minima at the same
time and the optical path difference between adjacent waves is the same. From
Young’s experiment, we have for superposition of source points 1 and 2,

u � u1 + u2

� A cos(2πx/λ− 2πt/T ) + A cos[2π (x − δ)/λ− 2πt/T ], (2.103)

where δ � a sin θ , or in the small angle approximation δ � aY/X. For N
apertures of distance a we have

u � A cos(2πx/λ− 2πt/T ) + A cos[2π (x − δ)/λ− 2πt/T ] + · · ·
· · · + A cos{2π [x − (N − 1)δ]λ− 2πt/T }, (2.104)

which can be written as

u � A

q�N−1∑
q�0

cos[2π (x − qδ)/λ− 2πt/T ]. (2.105)



122 2. INTERFERENCE

FIGURE 2.22 (a) Waves u1 to uN have their origin at source points 1 to N . The source points are
spaced by a. The waves travel in the x direction and have the angle θ with respect to the axis of
the setup; (b) the optical path difference between adjacent waves is δ � a sin θ , or in the small
angle approximation, aY/X.

Similar to the discussion in the section on intensities, we introduce complex
notation and write

u � A

q�N−1∑
q�0

exp i[2π (x − qδ)/λ− 2πt/T ] (2.106)

or

u � A exp i[2πx/λ− 2πt/T ]
q�N−1∑
q�0

exp i[2π (−qδ/λ)]. (2.107)

Using the formula

n�N−1∑
n�0

xn � (1 − xN )/(1 − x) (2.108)

we get
u � A exp i[2πx/λ− 2πt/T ]

{1 − exp i[2π (−Nδ/λ)]}/{1 − exp i[2π (−δ/λ)]}. (2.109)
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We note that unlike the case of the plane parallel plate, we can not ignore the
N th power in the summation formula. The expression in brackets of Eq. (2.109)
can be rewritten for the numerator as

exp i[2π (−Nδ/2λ)]{exp i[2π (Nδ/2λ)] − exp i[2π (−Nδ/2λ)]}
� exp i[2π (−Nδ/2λ)]{2i sin 2π (Nδ/2λ)} (2.110)

and for the denominator

exp i[2π (−δ/2λ)]{exp i[2π (δ/2λ)] − exp i[2π (−δ/2λ)]}
� exp i[2π (−δ/2λ)]{2i sin 2π (δ/2λ)}. (2.111)

We have for the resulting amplitude

u � [A exp i(2π (x)/λ− 2πt/T )] (2.112)

· {[exp i[2π (−Nδ/2λ)] sin 2π (Nδ/2λ)}/[exp i[2π (−δ/2λ)] sin 2π (δ/2λ)]

or

u � Aei sin[2π (Nδ/2λ)]/[sin 2π (δ/2λ)] (2.113)

where

ei � exp i[2π (x/λ) − 2π (t/T )] exp[i2π (−Nδ/2λ)] exp[i2π (δ/2λ)]. (2.114)

We take for the intensity uu∗ � I , and have

I � A2{sin[2π (Nδ/2λ)]/ sin 2π (δ/2λ)}2. (2.115)

Substituting δ � a sin θ and taking A2 � 1/N2 for normalization, we can write
I as

I � {sin(πNa sin θ/λ)/[N sin(πa sin θ/λ)]}2 (2.116)

or for the small angle approximation with δ � aY/X,

I � {sin(πNaY/Xλ)/N sin(πaY/Xλ)}2. (2.117)

Equations (2.116) and (2.117) have their main maxima when both numerator
and denominator are zero. This is shown in the first graph of FileFig 2.20, where
numerator y(θ ) and denominator y1(θ ) are plotted separately. One observes be-
tween the main maxima N − 2 side maxima and N − 1 side minima. From
the trace of the numerator one sees that two of the side maxima do not appear.
They are at the flank of the main maxima, and one side minima is located at the
main maxima. The main maxima and side maxima and minima are shown in the
second graph of FileFig 2.20. The interference pattern generated by an array of
sources has a wide application. It is used in the discussion of Xray diffraction
and is used in the discussion of the diffraction grating.
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FileFig 2.20 (I20ARRAYS)

Intensity IA of the array, both numerator and denominator are plotted on one
graph depending on angle θ � Y/X, where Y is the coordinate on the obser-
vation screen, and X the distance from the experiment to the screen. N � 5,
wavelength λ � 0.0005, periodicity constant a � 0.1. The main maxima of IA
are obtained for 0/0 of IA. There are N − 2 side maxima, N − 1 side minima.

I20ARRAYS

Interference Pattern of N Sources

Parameters: Opening a, wavelength λ, number or lines N . Graph as function
of θ , because of small angle θ � Y/X. Normalization to 1. For comparison of
maxima, the numerator is plotted separately.

θ :� 0, .001 . . . 5 λ :� .0005 a ≡ .1 N :� 5

IA1(θ ) :�
(

sin
(
π ·N · a

λ
· sin

(
2 · π

360 · θ))
N · sin

(
π ·N · a

λ
· sin

(
2 · π

360 · θ))
)2

y(θ ) :� sin
(
π ·N · a

λ
· sin

(
2 · π

360
· θ))2

y1(θ ) :� sin
(
π · a

λ
· sin

(
2 · π

360
· θ))2

aa ≡ .2 NN :� 5

IA2(θ ) :�
(

sin
(
π ·NN · aa

λ
· sin

(
2 · π

360 · θ))
NN · sin

(
π · aa

λ
· sin

(
2 · π

360 · θ))
)2

q

q

q

q
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q

q

Application 2.20.
1. Observe that the main maxima are at angles when numerator and

denominator are both zero.
2. The N − 1 side minima are at angles when the nominator has minima.
3. There are N side maxima when the nominator has maxima, but only N − 2

appear.
4. What happens when changing the wavelength?
5. What happens when changing the periodicity constant?
6. What happens when changing N?

2.7 RANDOM ARRANGEMENT OF SOURCE POINTS

In Section 2.6 we assumed for the calculation of the interference of N source
points that the optical path differences for all waves are equal. The source points
were arranged periodically, having the periodicity distance a. We saw that the
incident intensity was redistributed into main maxima and side maxima and
minima.

We now study the opposite case where the periodicity constant is no longer a
constant but has a random distribution in an interval to be specified. In Figure 2.23
we have the waves uα propagating in direction θ and the optical path difference
between the (α − 1)th and the αth wave is δα (instead of qδ). All δα are not the
same. From the discussion of the periodic arrangement of N source points we
have for the superposition of these waves

u � A exp i(2πx/λ− 2πt/T )
α�N−1∑
α�0

exp i(2π (−δα/λ). (2.118)

In this expression δα/λ may be larger than 1. One subtracts a wavelength from
δα until δ′α/λ is smaller than 1. The value of the trigonometric functions is the
same, before and after the reduction process. We call γα the reduced value of
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FIGURE 2.23 N source points with random spacing between them. THe optical path differences
between the waves, or of one wave with respect to a reference wave, are random numbers.

δα/λ with values between 0 and 1. Since these γα have a random distribution
in the interval from 0 to 1, we can not use the summation formula as done in
Section 6.4 and furthermore have to consider

u � A exp i(2πx/λ− 2πt/T )
α�N−1∑
α�0

exp i(2π (−γα). (2.119)

The intensity is calculated from uu∗,

I � uu∗ � A2

(
α�N−1∑
α�0

exp i2π (−γα)

)⎛
⎝β�N−1∑

β�0

exp i2π (γα)

⎞
⎠ . (2.120)

The multiplication results for α � β in a sum of N values of 1 and then a sum
over all terms with α �� β of the random phase angles which are now called γγ .
The phase angles γγ are calculated from γβ−γα and if they are larger that 2π one
reduces them until they fall into the interval 0 to 2π . We have with summation
over γ ,

I � [1 + 1 + 1 + 1 + · · ·
(∑

exp i2π (γγ )
)

]A2. (2.121)

For a large number of the randomly distributed values of γγ one can always find
another γ ′

γ so that the exponents of exp i2π (γγ ) and exp i2π (γ ′
γ ) cancel. As a

result the sum in Eq. (2.121) is zero.(∑
exp i2π (γγ )

)
� 0. (2.122)
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The result for the intensity in the case where the array is not periodic is

IR � A2N. (2.123)

We compare this result to Eq. (2.117), that is, for the periodic array. For maxima
we obtained

IA � A2N2. (2.124)

This is an important result for the discussion of phenomena having their origin in
periodic and non periodic appearance. In our case of interference, one has for the
non periodic case an “incoherent” addition of the waves. The result is an average
distribution I ∝ N , and there is no interference pattern. In the periodic case, the
waves add coherently and an interference pattern is observed. The light appears
as maxima and minima. In FileFig 2.21 we show the incoherent addition of the
waves for the non periodic case. The sum of Eq. (2.122) is plotted depending
on the number Nf of randomly positioned openings and approaches zero when
choosing large numbers of Nf .

FileFig 2.21 (I21RANDS)

Incoherent addition of N phase factors.

I21RANDS

Addition of Exponential Functions with Random Angles

The real part of the sum of exp iθ is plotted.

f :� 1 . . . 100 Nf :� f k :� 1, 2, . . . 1000 i :
√−1

θk :� rnd(2 · π ) yf :� 1

Nf
·
Nf∑
k�0

ei·(θk).

Application 2.21. Change f to a small value and then increase it and observe
the changes in the average.
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See also on CD

PI1. Cos-Waves depending on Space and Time (see p. 80).
PI2. Superposition of two cos-waves with fixed Optical path Difference (see

p. 82).
PI3. 3-D Graph of Maxima and Minima (see p. 84).
PI4. Average( see p. 85).
PI5. Fresnel’s Mirrors (see p. 93).
PI6. Young’s and Lloyd Experiment (see p. 93).
PI7. Plane parallel Plate in two Beam Interferometry with different Refractive

Indices (see p. 95).
PI9. Wedge shaped Film (see p. 99).

PI10. Newton’s Rings (see p. 101).
PI11. Ring pattern and Michelson interferometer (see p. 107).
PI12. Plane parallel plate (see p.108-111).
PI13. Interference of white light on a thin film (see p. 113).
PI14. Reflection and Transmission coefficients (p. 111–112).
PI15. Plane parallel plate, graphs depending on wavelength (see p. 113).
PI16. Dependence on angle of the Finesse (p. 117).
PI17. Plane parallel plate with mirror surface.
PI18. Fabry-Perot (see p. 115).
PI19. Interference with an array of source points (see p. 122).
PI20. Summation of random phase angles (see p. 125).



33C H A P T E R

Diffraction

3.1 INTRODUCTION

We know Huygens’ Principle from introductory physics. It tells us that a “new”
wavefront of a traveling wave may be constructed at a later time by the envelope
of many wavelets generated at the “old” wavefront. One assumes that a primary
wave generates fictitious spherical waves at each point of the “old” wavefront.
The fictitious spherical wave is called Huygens’wavelet and the superposition of
all these wavelets results in the “new” wavefront. This is schematically shown in
Figure 3.1. The distance between the generating source points is infinitely small
and therefore, integration has to be applied for their superposition.

We discussed in Chapter 2 the superposition of light waves and the resulting
interference patterns. In the division process of the incident wave into parts, we
neglected the effect of diffraction. In this chapter we take into account interfer-
ence and diffraction of the wave incident on an aperture. Optical path differences,

FIGURE 3.1 Schematic of wavefront construction using Huygens’ Principle.

129
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FIGURE 3.2 Conditions for diffraction on a single slit: (a) d � λ, no appreciable diffraction; (b)
d of the same order of magnitude of λ, diffraction is observed (fringes); (c) d � λ, nonuniformly
illuminated observation screen, but no fringes.

generated between adjacent light waves, are finite for the superposition process
of interference and infinitely small for diffraction.

If we apply this division process to an open aperture, the incident wave gen-
erates new waves in the plane of the aperture, and these newly generated waves
have fixed phase relations with the incident wave and with one another. We as-
sume that all waves generated by the incident wave propagate only in the forward
direction, and not backward to the source of light. Let us consider the diffraction
on a slit (Figure 3.2). The observed pattern depends on the wavelength and the
size of the opening. A slit of a width of several orders of magnitude larger than
the wavelength of the incident light will give us almost the geometrical shadow
(Figure 3.2a). A slit of width of an order or two larger than the wavelength
will bend the light and fringes will occur; see Figure 3.2b. A slit smaller than the
wavelength will show an intensity pattern with no fringes and decreasing intensity
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for larger angles; see Figure 3.2c. All openings will show small deformations of
the wavefront close to the edges of the slit (not shown in Figure 3.2).

The model we are using for the description of diffraction is called scalar wave
diffraction theory and uses the Kirchhoff–Fresnel integral. All the waves we
consider are solutions of the scalar wave equation, as used for the discussion of
the interference phenomena in Chapter 2. Here we use spherical waves of the
type Aeikr/r , where A is the magnitude of the wave, r the distance from the
origin, and k � 2π/λ. These spherical waves are solutions of the scalar wave
equation

∇2u+ k2u � 0. (3.1)

Written in spherical coordinates r , θ , and φ one has

∇2 � (1/r2){∂/∂r(r2∂/∂r)} + (terms in θ and φ), (3.2)

where we have not explicitly given the terms in θ and φ because we only use
spherical symmetric solutions and they do not depend on the angular terms.

There is the question of why we should use a summation process based on
the idea of Huygen’s Principle to describe diffraction theory. Why not solve
Maxwell’s equations with the appropriate boundary conditions? The mathemat-
ical formulation of Huygens’ Principle was performed by Gustav Kirchhoff and
Augustin Jean Fresnel before Maxwell’s theory was developed. It turned out
that the use of the Kirchhoff–Fresnel integral for many applications is so much
easier than solving Maxwell’s equations and applying boundary conditions, that
one just continues to use the scalar wave diffraction theory. The wavelength is
assumed to be smaller than the aperture opening under consideration.

3.2 KIRCHHOFF–FRESNEL INTEGRAL

3.2.1 The Integral

We assume for the summation process of the Huygens’wavelets, that the primary
wave from the source S has amplitude A and travels distance R in the direction
of the aperture (Figure 3.3). We disregard the time factor for all waves consid-
ered in this chapter. We recall that in Chapter 2 the time factor disappeared when
calculating the intensity. At each point of the aperture a Huygens’wavelet is gen-
erated, [(1/ρ) exp(ikρ)], and travels only in the “forward” direction (Figure 3.3).
It has the amplitude of the incident wave, that is, {(A/R) exp(ikR)}. We have for
a newly generated wavelet

[(A/R) exp(ikR)](1/ρ) exp(ikρ) exp(iα), (3.3)

where exp(iα) is a phase factor related to the generation process. However, it is
set to 1.
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FIGURE 3.3 (a) Maxima and minima of incident wave; (b) three newly generated Huygen’s
wavelets are shown at the aperture.

From experiments we know that there is an angular dependence of the in-
tensity in the direction of propagation. Therefore we multiply by cos θ , where
θ is the angle to the normal of the aperture, pointing into the forward direc-
tion. Integration over all points of the aperture results in the Kirchhoff–Fresnel
integral,

∫
(A/R) exp(ikR)(1/ρ) exp(ikρ) cos θdσ, (3.4)

opening of aperture

where dσ is the surface element for integration over the opening of the aperture.
This integral may be derived from the scalar wave equation and Green’s Theorem.
The derivation yields the factor cos θ and shows that the diffracted light is only
traveling in the forward direction. However, there are some problems with the
boundary conditions. A formulation using Green’s function avoids this problem,
but is not necessarily better. For more information, see Goodman, 1988, p. 42.

In the following two sections we apply Eq. (3.4) to a special symmetric ar-
rangement of source and observation points, both at large distances from the
aperture. We calculate the diffracted intensity only at one observation point on
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FIGURE 3.4 Coordinates for the circular opening. The source point and the observation point
have the same distance from the aperture.

the axis of the system for the diffraction on a round aperture and a round stop.
These calculations are taken from Sommerfeld’s book on theoretical physics.1

3.2.2 On Axis Observation for the Circular Opening

The diffraction on a round opening is important since most lenses, spherical
mirrors, and optical instruments have circular symmetry. We consider a round
aperture of radius a with equal distance to the aperture of the source point S and
the observation pointO. In Figure 3.4 we show the coordinates and haveR0 � ρ0,
R � ρ, cos θ � ρ0/ρ, and for the surface element dσ � 2πrdr . The amplitude
at the observation screen is then obtained by the integral over the opening

u � A

∫
{(1/Rρ) exp(ik(R + ρ))}{ρ0/ρ} 2πrdr. (3.5)

opening

The integration limits are from ρ0 to
√

(a2 + ρ2
0 ). We get from r2 + ρ2

0 � ρ2

that rdr � ρdρ and have

u � A2πρ0

∫ √
(a2+ρ2

0 )

ρ0

(1/ρ2) exp(ik2ρ)dρ. (3.6)

Integration by parts with u � 1/ρ2, dv � eik2ρ , and v � (1/2ik)eik2ρ results in

(1/ρ2)(1/2ik)eik2ρ

√
(a2+ρ2

0 )

‖
ρ0

+(1/ik)
∫ √

(a2+ρ2
0 )

ρ0

(1/ρ3)eik2ρdρ.

Since ρ is large, we retain only the first term with the power of 1/ρ2 and have

u � (2πAρ0/2ik)
((
ei2k

√
a2+ρ2

0

)
/(a2 + ρ2

0 ) − (exp{i2kρ0})/ρ2
0

)
. (3.7)

1Vorlesungen uber theoretische Physik, Band IV, by A. Sommerfeld. Dieterich’sche Verlagsbuchhandlung,
Wiesbaden, 1950.
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FIGURE 3.5 Diffraction pattern for a circular aperture at the observation point. The intensity has
a maximum for certain values of the radius a, shown as a white spot on the gray background. For
other values of a the intensity is zero; only the gray background is shown.

Further simplification is obtained by assuming ρ0 � a,√
a2 + ρ2

0 ≈ ρ0(1 + a2/2ρ2
0 ), (3.8)

and obtaining for the amplitude

u � (2πAρ0/2ik)(exp{i2kρ0})(1/ρ2
0 )[exp{ik(a2/ρ0)} − 1]. (3.9)

The intensity uu∗ is obtained after normalization as

I � I0λ
2 sin2(ka2/2ρ0). (3.10)

In Figure 3.5 we show maxima and minima for different radii a of the circular
opening, at the center. Our calculation refers to the center spot only and the radius
of the corresponding maxima or minima may be read from the graph in FileFig
3.1.

FileFig 3.1 (D1CIRS)

In FileFig 3.1 we show a graph of the intensity at the center. We use λ �
0.0005 mm, ρ0 � 4000 mm, and radius a of 0.1 to 5 mm. With increasing
diameter of the aperture, that is, with increasing a, we have at the center a
change from maxima to minima to maxima and so on.

D1CIR is only on the CD.
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FIGURE 3.6 Coordinates for the circular stop. The source point and the observation point have
the same distance from the aperture.

3.2.3 On Axis Observation for Circular Stop

In optics, it is often of interest to study complementary screens or arrays. We
apply the Kirchhoff–Fresnel integral, Eq. (3.4), to a circular stop, as shown in
Figure 3.4. Similar to the “opening,” we must now evaluate

u � A2πρ0

∫ ∞
√

(a2+ρ2)
(1/ρ2) exp(ik2ρ)dρ. (3.11)

Integration by parts yields

(1/ρ2)(1/2ik)eik2ρ
∞
‖√
a2+ρ2

0

+(1/ik)
∫ ∞
√
a2+ρ2

0

(1/ρ3)eik2ρ dρ. (3.12)

Neglecting the last integral we get

u � (2πAρ0/2ik)[−{1/(a2 + ρ2
0 )}]{exp(i2k

√
a2 + ρ2

0 )}. (3.13)

Multiplication of u in Eq. (3.13) by u∗ yields the intensity, and taking for the
normalization I0 � A2ρ2

0/(a
2 + ρ2

0 ), we have

I � I0λ
2/4. (3.14)

The intensity of Eq. (3.14) depends only on the wavelength, not on the diameter
of the aperture or the distance from it. We have the result that at any point in the
shadow of an aperture stop, we will observe a bright spot.

There is the story that Fresnel presented his wave theory of light to the French
Academy of Sciences. The famous Poisson questioned the validity and argued
that there should be a light spot in the shadow of an illuminated sphere, for
example, a steel ball. Another scientist of the Academy, Arago, made the exper-
iment, observed the spot and presented his finding to the Academy in support of
Fresnel’s theory, but the spot remains the “Poisson spot.” A photograph of the
Poisson spot and an experimental setup for observation are shown in Figure 3.7.
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FIGURE 3.7 (a) Photograph of the diffraction pattern produced by a round stop. The Poisson
spot appears in the middle (from Cagnet, Francon, Thrierr, Atlas of Optical Phenomena, Springer-
Verlag, Heidelberg, 1962); (b) parameters for the observation of the Poisson spot (after R. Pohl.
Einführung in die Optic, R.W. Pohl, Springer-Verlag, Heidelberg, 1948).

3.3 FRESNEL DIFFRACTION, FAR FIELD
APPROXIMATION, AND FRAUNHOFER
OBSERVATION

In the first two applications of the Kirchhoff–Fresnel integral, we have assumed
that the source of light and the observation point are at large distances from
the aperture. How large was not specified. When assuming that the distance is
“infinitely large,” so large that we essentially have plane waves incident on the
aperture, we are at the approximation used in Chapter 2. When observing at
a screen similarly far away from the aperture, the waves arriving there are also
considered plane waves and are also parallel for their superposition. This is called
far field approximation. When we use a lens and observe the diffraction pattern in
the focal plane, we have Fraunhofer diffraction. The mathematical presentation
of far field approximation and Fraunhofer diffraction is the same. In contrast,
when the distance from the aperture to the observation screen is large but finite,
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we speak of Fresnel diffraction. We use small angle approximation to show the
differences in these approaches to diffraction.

3.3.1 Small Angle Approximation in Cartesian Coordinates

Since the distance from aperture to observation screen is large, we may use
small angle approximation for the diffraction angle. We consider the integral in
Eq. (3.4), ∫

(A/R) exp(ikR)(1/ρ) exp(ikρ) cos θ dσ (3.15)

opening of aperture

and neglect the cos θ factor. The factor (A/R) exp(ikR) is a constant and can be
taken before the integral. Using only a one-dimensional approach for the Y and
y directions, we have further to consider,

u(Y ) � C

∫
(eikρ)/ρ dy. (3.16)

opening of aperture

The coordinates are shown in Figure 3.8, using X for the distance from the
aperture to the screen. Since the distance X between the observation screen and
the aperture is large, we take ρ in the denominator as a constant, but not in the
exponential. We develop ρ using the coordinates of Figure 3.8 and have

ρ � {
(Y − y)2 +X2}1/2

� X + (1/2X)(Y − y)2. (3.17)

Inserting Eq. (3.17) into (3.16) and including 1/ρ and eikX in a new constant C ′,
we have

u(Y ) � C ′
∫

exp{ik(1/2X)(Y − y)2} dy. (3.18)

opening of aperture

FIGURE 3.8 Coordinates for small angle approximation.
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We write the exponent of Eq. (3.18) as

ik{+(1/2X)(y2) + (1/2X)(Y 2) − (yY )/X}. (3.19)

3.3.2 Fresnel, Far Field, and Fraunhofer Diffraction

3.3.2.1 Fresnel Diffraction

If we do not neglect the quadratic terms in Eq. (3.19), we are back to Eq. (3.18)
and have

u(Y ) � C ′
∫

exp{ik(1/2X)(Y − y)2} dy. (3.20)

opening of aperture

This is called Fresnel diffraction. The integral may be expressed using Fresnel’s
integrals.

3.3.2.2 Far Field Diffraction

In Eq. (3.19) we neglect the quadratic term in y and consider (1/2X)(Y 2) as a
constant and include it in C ′′, we have

u(Y ) � C ′′
∫
e−ik(yY/X) dy. (3.21)

opening of aperture

This is the far field approximation.

3.3.2.3 Fraunhofer Diffraction

Fraunhofer diffracton is also far field approximation, but we do not have to go
so far, because we observe the pattern in the focal plane of a lens. In this case we
have to find the effect on the wavefront when light is focused on the focal plane
of a lens with focal length f . We obtain the result that one has the same integral
for Fraunhofer diffraction as one has for far field approximation.

Small angle approximation was obtained by considering in the integral the
exponent, Eq. (3.19),

ik{+(1/2X)(y2) + (1/2X)(Y 2) − (yY )/X}. (3.22)

For far field approximation we neglected the quadratic term in y and considered
the term in X and Y as a constant.

Now we do not neglect the quadratic term in y and show that this term is
compensated by the effect of the lens (for a detailed discussion see Goodman,
1988, p. 78.) We look at the wavefront passing through the lens. The wavefront
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FIGURE 3.9 Coordinates for the calculation of the change of the wavefront by a lens.

is converging to the focal point of the lens (see Figure 3.9). Over the length y
we have an increasing phase shift γ , which is calculated from

y2 + (f − γ )2 � f 2. (3.23)

Neglecting γ 2 in (f 2 − 2f γ + γ 2), we have for the phase shift

γ � (y2)/2f. (3.24)

This shift must be subtracted as the phase shift in our integral. We get in the
exponent, that is, Eq. (3.22), with X � f ,

ik{+y2/2f + (1/2f )(Y 2) − (yY )/f } − ik(y2)/2f. (3.25)

The new quadratic term in y cancels the old one, which we neglected in the far
field approximation. We then have to consider

u(Y ) � C ′′
∫
e−ik(yY/X) dy. (3.26)

This integral is the same as obtained in the far field approximation.

3.4 FAR FIELD AND FRAUNHOFER DIFFRACTION

The far field diffraction and Fraunhofer diffraction of the Kirchhoff–Fresnel
integral have the same mathematical appearance. The only difference is that in
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far field approximation the diffraction pattern is observed on a faraway screen,
whereas in Fraunhofer diffraction the observation screen is placed at the focal
plane of a lens and that may be closer to the aperture.

We now discuss the diffraction pattern of various geometrical shapes of
apertures. From Eq. (3.4) we have

u(Y ) � C

∫
(eikρ) dσ, (3.27)

where dσ is the surface element of the aperture and 1/ρ has been taken before the
integral, included inC, which contains all constant terms. Note that in Eq. (3.27)
we have not used small angle approximation in the exponent.

3.4.1 Diffraction on a Slit

The diffraction on a slit is important because it is a simple one-dimensional
diffraction problem and appears in the diffraction pattern of all types of gratings
and in other diffraction-related phenomena. The coordinates for the calculation
of the diffraction on a slit are shown in Figure 3.10. We divide the opening into
N intervals �y and sum up all waves traveling in direction θ . In the first step
it is assumed that these waves are generated at the limits of all intervals and all
adjacent waves have the same optical path difference δ. This is similar to the
discussion in Chapter 2 for interference on an array (Eq. (2.107)). The optical
path difference between waves of finite steps is�y sin θ and replacing qδ in the
sum of Eq. (2.107), we have∑

e−ik(�y sin θ ). (3.28)

Making the step �y infinitesimally small, one gets the integral

u(Y ) � C

∫
e−ik(y sin θ ) dy, (3.29)

where C includes all constant terms. The integration is from −d/2 to d/2, and
we have to calculate

u(Y ) � C

∫ y2�d/2

y1�−d/2
e−ik(y sin θ ) dy, (3.30)

or in small angle approximation with sin θ � Y/X,

u(Y ) � C

∫ y2�d/2

y1�−d/2
e−ik(yY/X) dy. (3.31)

The result of the integration of Eq. (3.31) is

u � Cd sin(πd sin θ/λ)/{(πd sin θ )/λ}. (3.32)

The normalized intensity is written

I � Io{sin(πd sin θ/λ)/{(πd sin θ/λ)}2. (3.33)
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FIGURE 3.10 Coordinates for the calculation of the diffraction on a slit: (a) phase difference of
all wavelets with respect to the center one used for the summation process; (b) path difference
between ρα and ρα+1.

Or in small angle approximation,

I � Io[{sin(πdY/Xλ)}/{πdY/Xλ}]2. (3.34)

The diffraction pattern of a slit has a periodic appearance with decreasing
intensity of the maxima. The graph in FileFig 3.2 shows three diffraction patterns.
The wider ones are for the smaller slit openings. In Figure 3.11 we show a
photograph of a diffraction pattern of a slit. In Application FF2 the width of the
diffraction pattern with respect to changes in λ and d is studied.

FIGURE 3.11 Diffraction pattern formed by a single slit (from M. Cagnet, M. Francon, J.C.
Thrierr, Atlas of Optical Phenomena, Springer-Verlag, Heidelberg, 1962).
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The main maxima is at Y � 0. At that point we have sin 0/0, and a similar
discussion to that presented in Chapter 2 results in I � Io. The angle from the
center of the slit to the first minimum of the diffraction pattern is called the
diffraction angle θ � λ/d, and is used when discussing resolution or the Fresnel
number for characterizing the losses of a laser cavity. The side maxima are ap-
proximately at Y/X � (m+1/2)λ/d, which is approximately centered between
the minima. An exact determination is done using FileFig 3.3 and Application
FF3.

FileFig 3.2 (D2FASLITS)

A graph of the intensity of the diffraction pattern on a slit. By changing the
width d, we see that the width of the diffraction pattern is inversely proportional
to the width of the slit. By changing λ the width of the diffraction pattern is
proportional to the wavelength. This is a general property one observes for
diffraction patterns. The minima are at mλ/d.

D2FASLITS

Diffraction on a Slit of Width d at Wavelength λ

X is distance; slit-screen, Y is coordinate on screen. For small angles, Y/X is
proportional to the diffraction angle θ . MCAD notice the singularity at 0. For
the graph we get around it using the range Y � −100.1, −99.1 to 100.1. All
lengths are in mm.

Three slits with different widths d1, d2, and d3:

d1 ≡ .08 d2 ≡ .12 X :� 4000 λ ≡ .0005

I1(θ ) :�
[

sin
(
π · d1

λ
· sin

( 2·π
360 · θ))[

π · d1
λ

· ( 2·π
360 · θ )

]
]2

I2(θ ) :�
[

sin
(
π · d2

λ
· sin

( 2·π
360 · θ))[

π · d2
λ

· ( 2·π
360 · θ )

]
]2

d3 ≡ .16 I3(θ ) :�
[

sin
(
π · d3

λ
· sin

( 2·π
360 · θ))[

π · d3
λ

· ( 2·π
360 · θ )

]
]2

θ ≡ −2,−1.99 . . . 1.
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Application 3.2. The dependence of the width of the diffraction pattern on values
of λ and d may be studied by changing λ to λ/2 and 2λ and d to d/2 and 4d
and considering the ratio of d/λ.

FileFig 3.3 (D3FASLITEXS)

Expanded graph of the intensity of the side maxima and minima for the diffraction
pattern on a slit, Y � 18, 19 . . . 150, X � 4000, and λ � 0.0005. Numerical
determination of the values of the side maxima and minima.

D3FASLITEXS is only on the CD.

Application 3.3.

1. Give the position of the first five minima.
2. Determine the maxima. The values of the secondary maxima are obtained

by differentiation of I � IO[sin{πdY/Xλ}/{πdY/Xλ}]2 with respect to Y
and setting the resulting expression equal to 0. One may perform the differ-
entiation with a symbolic computer calculation program. One obtains the
transcendental equation πyd/λ � tan(πyd/λ), where y � Y/X. The so-
lution of the transcendental equation may be obtained by plotting πyd/λ
and tan(πyd/λ) on the same graph and using the intersections. Determine
the values of the first five intersections, corresponding to the first five side
maxima, and compare with the values read from the graph in FF3 and with
the approximate formula Y/X � (m+ 1/2)λ/d.

3. Calculate the intensity ratio of the first, second, and third maxima to the
zeroth maximum and compare with the theoretical values from the intensity
formula for the diffraction on a slit.
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3.4.2 Diffraction on a Slit and Fourier Transformation

The integral for the calculation of the diffraction on a slit in small angle
approximation (Eq. (3.31)), is

u(Y ) � C

∫ y2�d/2

y1�−d/2
exp −i2π (y/λ)(Y/X) dy, (3.35)

where we used k � 2π/λ.We do the following substitutions

v � (y/λ), x � Y/X, a � d/2λ (3.36)

and have

u(x) � C

∫ a2

z1

exp[−i2π (ν)(x)]dν. (3.37)

To write the integral with integration limits from −∞ to ∞ we define the function
Q(ν) as

Q(v) � 1 for x between − a and a

Q(v) � 0 otherwise. (3.38)

We then have

u(x) � C

∫ ∞

−∞
Q(ν) exp −i2π (ν)(x) dν. (3.39)

The integral u(x) in Eq. (3.39) is the Fourier transform ofQ(ν). We may integrate
and obtain

u(x) � C ′(sin 2πax)/(2πax) (3.40)

similar to that obtained in Eq. (3.40). We have the result that the Fourier transform
of the slit functionQ(v) with opening width a is the function (sin 2πax)/(2πax)
which is sometimes called a sinc-function. When Q(ν) is not the slit function,
but given as a numerical function or a complicated analytical function, one can
not obtain an analytical expression for u(x) but one can calculate the numerical
Fourier transformation. Most computational programs offer Fourier transforma-
tion. In FileFig 3.4 we write a step function for xi with i � 0 to 255, assuming
that xi � 1 for 0 to d and otherwise 0, and plot xi as a function of i/255. Here
we consider only half of the slit and do the Fourier transformation cj , shown
as the graph of cj depending on j/255, plotted from 0 to 0.5. Since we cover
with the input data only half of the slit, we get only half of the diffraction pat-
tern. However, because the Fourier transformation is real, and we have used
the fast Fourier transformation (FFT), the Fourier transformation cj shows only
N � 128 points. The inverse Fourier transformation results again in 256 points.
More details on this subject are given in Chapter 9 on Fourier transformations.
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FileFig 3.4 (D4FASLITFT)

Fourier transformation of a step function. The step function has been defined for a
width of d � 20. The number of points to be used is 2n−1. The real and imaginary
parts of the Fourier transformation are shown. The Fourier transformation of
the Fourier transformation is also calculated and the real part is again a step
function, and the imaginary part is 0.

D4FASLITFT is only on the CD.

Application 3.4. For several widths of the step, read off the value of the first zero
of the transform. A formula for the value of the first zero may be obtained from
Eq. (3.40). Compare with the value of the graph of the Fourier transformation
and with Application FF3.

3.4.3 Rectangular Aperture

The diffraction pattern of the rectangular aperture is easy to calculate as an
extension from one dimension, as used for the slit, to two dimensions. In the
next section we do it in small angle approximation and show that the integral is
useful for the calculation of far field diffraction on a round aperture, important
for all optical devices and instruments with circular symmetry.

For the calculation of the diffraction pattern of a rectangular aperture with
dimensions d in the y direction and a in the z direction, we go back to the
integral of Eq. (3.31).

u(Y ) �
∫ y2�d/2

y1�−d/2
e−ik(yY/X) dy.

Integration over the y direction will be extended to include the z direction; see
Figure 3.12. As a result, the diffraction pattern is described by a product of two
integrals of the type of Eq. (3.31), one over the opening d in the y direction and
the other over the opening a in the z direction.

u(Y,Z) �
∫ y2�d/2

1�−d/2
exp −i2π (y/λ)(Y/X) dy

·
∫ z2�a/2

z1�−a/2
exp −i2π (z/λ)(Z/X) dz. (3.41)

We obtain

u(Y,Z) � C{d sin(πdY/Xλ)/(πdY/Xλ){a sin(πaZ/Xλ)/(πaZ/Xλ)} (3.42)

and we have for the normalized intensity

I � Io[{sin(πdY/λX)}/{πdY/λX}]2[{sin(πaZ/λX)}/{πaZ/λX}]2. (3.43)
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FIGURE 3.12 Coordinates for the calculation of the diffraction pattern of a rectangular aperture.

FIGURE 3.13 Far field diffraction pattern of a rectangular aperture (from M. Cagnet, M. Francon,
and J.C. Thrierr, Atlas of Optical Phenomena, Springer-Verlag, Heidelberg, 1962).

In FileFig 3.5 we have a 3-D graph of the calculated intensity diffraction
pattern with maxima and minima in the y and z directions. The diffraction angle,
that is, the angle from the center of the aperture to the first minimum, is in the y
direction Y/X � λ/d, and in the z direction Z/X � λ/d. A photograph of the
diffraction pattern is shown in Figure 3.13.
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FileFig 3.5 (D5RECTS)

A 3-D chart of the diffraction pattern of a rectangular aperture. By changing
the lower limits of x and y and enlarging N , one may get a more densely lined
pattern. Changing d and a to larger values will result in a narrower pattern. If
d is equal to a, we have a square pattern.

D5FARECTS

Diffraction Pattern of a Rectangular Aperture

The width in the x-direction is d, in the y-direction, a. One may look at the plot
from different angles, change colors, and make a contour plot.

i :� 0 . . . N j :� 0 . . . N

xi :� (−6) + .20001 · i yj :� 6 + .20001 · j
λ ≡ 4

Mi,j :� f (xi, yj )
f (x, y) :�

[
sin

(
2 · π · d · x

2·λ
)

(
2 · π · d · x

2·λ
)

]2

·
[

sin
(
2 · π · a · y

2·λ
)

(
2 · π · a · y

2·λ
)

]2

N ≡ 60 d ≡ 3 a ≡ 2.

Application 3.5.

1. Using a 3-D contour and a 3-D surface plot and making changes in d and a,
one may study the intensity of the diffraction of the rectangular aperture for

a. A square aperture;
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b. A long strip aperture which should have the pattern of a slit on one side.

2. One may change the ratio of d/λ and a/λ and observe a wider or more
narrow diffraction pattern.

3.4.4 Circular Aperture

Diffraction on a circular aperture is present on all optical devices and instruments
with circular symmetry. Although diffraction seems to be a minor effect, the size
of astronomical telescope mirrors is large in order to reduce the limitations of
image quality by diffraction. Even the Mount Palomar telescope mirror with a
diameter of about 5 m reduces the image quality of a star by diffraction.

For the calculation of the diffraction pattern of a circular aperture we look at
the integral for the rectangular aperture (Eq. (3.41)) and integrate over a circular
opening

u(Y,Z) �
∫

circular opening
(e−ik(zZ+yY )/X) dz dy. (3.44)

Since the problem is circular symmetric, one changes the coordinate system
for the mathematical treatment to the coordinate system shown in Figure 3.14.

z � r cosφ Z � R cosψ (3.45)

y � r sin φ Y � R sinψ, (3.46)

where

0 ≤ r ≤ a, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π, (3.47)

FIGURE 3.14 Coordinates for diffraction on a circular aperture.
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and k � 2π/λ. For the integral we obtain

u(r, φ) � uo

∫ +π

−π

∫ a

0
e−i2π (rR/λX) cos(ψ−φ)r dr dφ. (3.48)

This integral can be expressed with the Bessel function of zero order

Jo(q) � 1/2π
∫ +π

−π
eiq cos(ψ−φ) dφ, (3.49)

where q � 2π (rR/λX) and therefore r � (λX/2πR)q, and we get for
Eq. (3.48),

u � uo(λX/2πR)22π
∫ q�2π (aR/λX)

q�0
Jo(q)q dq. (3.50)

Using the relation
∫ q ′

0
Jo(q)q dq � q ′J1(q ′) (3.51)

one has for the intensity

I � I0{J1(2π (aR/λX))/(2π (aR/λX))}2, (3.52)

where I0 is the normalization constant.
The three graphs in FileFig 3.6 show that we have a narrow diffraction pattern

for large diameters and vice versa as we found for the diffraction on a slit. The

FIGURE 3.15 Diffraction pattern of a round aperture (from M. Cagnet, M. Francon, and J.C.
Thrierr, Atlas of Optical Phenomena, Springer-Verlag, Heidelberg, 1962).
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angle from the center of the circular aperture to the first minimum of the diffracted
intensity (Eq. (3.52)), is the diffraction angle, equal to 1.22 λ/2a where 2a is the
diameter of the opening. Comparing to a slit, we obtain λ/d, where d is the width
of the slit. One has for the slit the factor 1, instead of 1.22 for the round aperture.
The determination of the factor 1.22 is done in Application FF8. The factor 1.22
appears in catalogues of optical devices to specify limitations by diffraction. A
photograph of the diffraction pattern of a round aperture (Airy disc) is shown in
Fig. 3.15 and a 3-D graph in FileFig 3.7.

FileFig 3.6 (D6FARONS)

A graph of the intensity of the diffraction pattern of a round aperture. By changing
the radius a of the aperture, we see that the width of the diffraction pattern is
inversely proportional to the diameter of the round opening. This is a general
property one observes for the diffraction pattern, as well as the corresponding
Fourier transformation. The size of the pattern is proportional to the wavelength.

D6FARON is only on the CD.

Application 3.6.
1. Do the normalization of Eq. (3.52) by dividing I (R) by I (R � 0).
2. The dependence of the width of the diffraction pattern on values of (and a

may be studied by changing λ to λ/2 and 2λ and 2a to 2a/2 and 2 times 2a
and considering the ratio of 2a/λ. (The diameter of the round aperture 2a is
used here for comparison with the slit width d.)

FileFig 3.7 (D7FARON3DS)

A 3-D graph of the round aperture.

D7FARON3DS

3-D Diffraction Pattern of a Round Aperture as a Circular Symmetric Plot Using Two
Coordinates

Radius of aperture is a. The coordinate on the observation screen in R. Wave-
length λ, distance from aperture to screen, is X. One may look at the plot from
different angles, change colors, and make a contour plot.

i :� 0 . . . N j � 0 . . . N

xi :� (−40) + 2.0001 · i yj :� −40 + 2.0001 · j λ ≡ .0005

R(x, y) :�
√

(x)2 + (y)2
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N ≡ 60 X :� 4000 a ≡ .05

g(x, y) :�
[
J1

(
2 · π · a · R(x,y)

X·λ
)

(
2 · π · a · R(x,y)

X·λ
)

]2

Mi,j :� g(xi, yj ).

Application 3.7. Change the radius of the aperture and wavelength and make
both twice as large and reduce both to 1

2 . Consider the ratio of 2a/λ and change
it to twice the value and to 1

2 .

FileFig 3.8 (D8RONEXS)

Graph of diffraction pattern of the round aperture for R � 3 to 10, X � 1000,
and λ � 0.01 for the determination of the diffraction angle of a round aperture.
The first minimum is at 1.22λ/2a.

D8RONEX is only on the CD.

Application 3.8.
1. Modify FileFig 3.8 and plot the Bessel function J1(q) depending on q for 0

to 20. Normalize the Bessel function and determine the first zero at around
q � 3.9 to five digits.

2. Make a graph of the diffraction pattern as described in FileFig 3.8 and
determine the first minimum (R/X � (λ/a)(q/2π ) � 0.003).

3. We saw that for a slit the diffraction angle was Y/X � (λ/d) or
(Y/X)/(λ/d) � 1. We want to calculate the diffraction angle for the round
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aperture. Calculate the first zero of I (R) � J1(2πaR/λX)/(2πR/λX) for
λ � 0.01 mm, X � 1000 mm, and a � 1.5 mm, and call it RR. Insert it into
R/X � (RR/2π )(λ/a), but leave (λ/a) symbolically. Use the diameter of
the opening d � 2a and calculate (R/X)/(λ/d) and get the value 1.22.

4. For comparison of the diffraction angle for a slit and a round aperture, plot
on the same graph for the same choice of parameters the diffraction pattern
of a slit and the diffraction pattern of a round aperture. Take the same value
for the width of the slit and the diameter of the aperture; that is, 2a � d.
Compare the values of the first minima and observe that the overall width of
the diffraction pattern of the circular aperture is larger than the one for the
slit. The height for the first minimum of the round aperture is smaller than
that for the slit. Note that the plot for the slit is a linear plot whereas the plot
for the round aperture is a radial plot.

3.4.5 Gratings

Gratings are used in spectrometers from the near-infrared to the X-ray region.
They are usually reflection gratings with a zig-zag profile and called echelette
gratings. Simple transmission gratings may be produced as plastic films as repli-
cas of reflection gratings. We discuss the amplitude transmission grating with
larger or smaller transmitting areas at normal incidence or under an angle. We
also discuss a transmission echelette grating with the incident light at a specific
angle. In the appendix we discuss the step grating because of its potential for use
in Fourier transform spectroscopy.

3.4.5.1 Amplitude Grating

Amplitude gratings are periodic structures with alternating transmissive and
opaque strips. Similar to what we did for single apertures, we now have to
integrate over the open areas of the periodic set of slits (Figure 3.16). The
integration over one slit

u(θ ) �
∫ y2�d/2

y1�−d/2
e−ik(y sin θ )dy (3.53)

is now extended to many slits; that is, we have a summation as

U (θ ) �
∫ d/2

−d/2
e−ik(y1 sin θ )dy1 +

∫ a+d/2

a−d/2
e−ik(y2 sin θ )dy2

+
∫ 2a+d/2

2a−d/2
. . . dy3+, . . . . (3.54)

We substitute into the second integral y1 � y2−a, similarly into the third integral
y1 � y3 − 2a, and so on. Changing the integration variable to y in all integrals
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FIGURE 3.16 Coordinates for the diffraction on an amplitude grating.

we get

{1 + e−ika sin θ + e−ik2a sin θ + e−ik3a sin θ + · · · e−ik(N−1)a sin θ }

·
∫ d/2

−d/2
e−ik(y sin θ )dy. (3.55)

The bracket contains the amplitude array factor or interference factor (Ia)
(Chapter 2.4) multiplied by the amplitude diffraction factor (Da), equal to the
diffraction on a single slit. Symbolically we have

Diffraction amplitude Pa � Interference factor Ia∗Diffraction factor Da (3.56)

or

Pa(θ ) � Ia(θ )Da(θ ). (3.57)
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We sum up the interference factor

Ia(θ ) �
N−1∑
m�0

e−ikma sin θ � (1 − e−ikNa sin θ )/(1 − e−ika sin θ )

and have with Eq. (2.116) for the normalized intensity

� {sin(πNa sin θ/λ)/(N sin(πa sin θ/λ))}. (3.58)

The intensity is obtained as P (θ ) � Pa(θ )Pa(θ )∗,

P (θ ) � {[sin(πd sin θ/λ)]/[πd sin θ/λ)]}2

· {sin(πNa sin θ/λ)/(N sin(πa sin θ/λ))}2, (3.59)

and in the small angle approximation

P (Y ) � {[sin(πdY/Xλ)]/[(πdY/Xλ)]}2

· {sin(πNaY/Xλ)/(N sin(πaY/Xλ))}2. (3.60)

We have normalized the resulting pattern by division with 1/N2. The intensity
P (θ ) of interference and diffraction of the amplitude grating is shown in the
graphs of FileFig 3.9 where we used values such as .001 instead of.000 in the
numerical calculations when approaching 0/0 at θ � 0.

The first graph shows separately the numerator y(θ ) of the interference factor
and on the same graph the intensity I (θ ). The numerator y(θ ) is zero for the main
maxima and all side minima of I (θ ). At the main maximum both the numerator
and the denominator are zero (i.e., one has 0/0), which results in 1, as discussed
for the interference factor in Chapter 2. The second graph of FileFig 3.9 shows the
zeroth order (main maximum) of the interference factor, at θ � 0. There areN -1
side minima and N -2 side maxima between main maxima. Two side maxima
do not appear. The second graph P (θ ) shows the interference and diffraction
factors separately. The interference factor describes the maxima and minima,
and the envelope of the diffraction factor limits the intensity of the peaks of the
interference factor. The graph in FileFig 3.10 shows the corresponding pattern
for a slit opening 10 times smaller than the periodicity constant a.

For integer ratios of a/d, some maxima of the pattern can be seen while others
are suppressed. Taking as an example a/d � 2, the zeroth and first orders of the
pattern are seen, and the second order is suppressed. If a/d has the integral value
nth, more orders may be observed and the resulting pattern becomes wider and
the nth order is suppressed.

A photograph of the diffraction pattern for the case of N � 2, 3, 4, and 5 is
shown in Fig. 3.17. One observes one side maximum forN � 3, two forN � 4,
and three for N � 5.
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FIGURE 3.17 Diffraction pattern of an amplitude grating: (a) N � 2; (b) N � 3; (c) n �
4; (d) N � 5 (from M. Cagnet, M. Francon, and J. C. Thrierr, Atlas of Optical Phenomena,
Springer-Verlag, Heidelberg, 1962).

FileFig 3.9 (D9FAGRAMPS)

A graph for the amplitude grating is plotted using λ � 0.0005, d � 0.001, a �
0.002, andN � 6.We have plotted the intensity of the interference and diffraction
factor separately as well as the product. The numerator of the interference pattern
is shown and, one has 0/0 for all main maxima. The diffraction factor corresponds
to a slit pattern. The X scale has its origin at zero and there we have the zeroth
order (main maxima) of the interference factor. We have normalized the resulting
pattern by division with 1/N2 and fixed the 0/0 problem at X � 0 by using for
θ values such as 0.001 instead of 0.000. There are N -1 side minima and N -2
side maxima between the two main maxima.

D9FAGRAMPS

Diffraction on an Amplitude Grating at Normal Incidence

Width of openings d, center-to-center distance of strips a, wavelength λ, dis-
tance from grating to screen X, and coordinate on screen Y . All distances and
wavelengths are in mm; number of lines N . All parameters are globally defined
above the graph. D(A) is the diffraction factor. I (A) is the interference factor
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normalized to 1. The numerator is plotted separately to show where the main
maxima are located (0, 0). P (A) is the product of interference and diffraction
factor.

θ :� −.5001,−.4999 . . . .5

D(θ ) :�
[

sin
[
π · d

λ
· (sin(θ ))

]
[
π · d

λ
· (sin(θ ))

]
]2

I (θ ) :�
[

sin
[
π · a

λ
· (sin(θ )) ·N]

N · sin
[
π · a

λ
· (sin(θ ))

]
]2

P (θ ) :� D(θ ) · I (θ ) y(θ ) :� sin
[
π · a

λ
· (sin(θ )) ·N]2

d ≡ .001 λ ≡ .0005 a ≡ .002 N ≡ 6.

Application 3.9.

1. Change FileFig 3.9 to small angle approximation. Make a graph and initially
use (all in mm) d � 0.01, λ � 0.0005, a � 0.02, N � 20, X � 4000, and
Y � −200 to 200. Compare the interference factor I (Y ) with the intensity
P (Y ) and observe;

a. that P (Y ) is 1 for I (Y ) at � 0;

b. that the number of the side maxima is N -2 and that the maxima of I (θ )
close to the main maxima do not appear. Show that this is true for other
values of N ;

c. that there are N − 1 side minima.
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2. Use FileFig 3.9 for the amplitude grating with d � 0.0018 mm, λ � 0.0005
mm, a � 0.0036 mm, and θ � −1.401 to 1.4.

a. How is the width of the main maxima dependent on the diffraction angle
θ?

b. What happens to the main maxima if we change d to 0.0009?

c. For blue light use λ � 0.0004 mm and for red light λ � 0.0007 mm. Plot
for both the interference and diffraction factor on one graph and compare
the two intensity patterns for different values of N .

d. Use close values of the two wavelengths, (e.g., 0.0005 and 0.00055) and
determine when two peaks of different wavelengths and at different orders
may be resolved depending on choices of N . (For changes in the angle,
we have that 1 rad is about 5 to 6 degrees.)

3. From the interference factor find the numerical values of sin θ for which the
interference factor is equal to N2 (or 1 in the normalized case). Express the
numerical factor in terms of a, m, and λ; this is the grating equation.

FileFig 3.10 (D10FAGRDSLS)

Graph of the intensity P (Y ) of a double slit for d � 0.02, λ � 0.0005, a � 0.2,
X � 4000, N � 2, and Y � −800, −799.9 to 800. A photograph is shown in
Figure 3.18.

D10FAGRDSLS is only on the CD.

Application 3.10.

1. When d is changed from d � a/2 to d � a, what happens to the diffraction
factorD(Y ) and how is the intensity P (Y ) � D(Y )I (Y ) affected, where I (Y )
is the interference factor?

2. From Figure 3.16 one can obtain (a sin θ ) � mλ with an elementary deriva-
tion. This is the grating equation. This equation may also be obtained from
the formula of the intensity for the main maxima. Using this formula make a

FIGURE 3.18 Diffraction pattern of a double slit where the separation a of the slits is much larger
than the width d. The central part of the diffraction pattern shows an interference pattern similar
to that observed in Young’s experiment (from M. Cagnet, M. Francon, and J. C. Thrieer, Atlas of
Optical Phenomena, Springer-Verlag, Heidelberg, 1962).
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FIGURE 3.19 Coordinates for the amplitude grating. The incident light has angle ψ with the X
direction.

list of the maxima depending on Y , for d � a/10, and compare with P (Y ) of
the graph.

3. Missing order: Use 4d � a and start counting the maxima of P (Y ) from the
center at 0. The fourth maximum of I (Y ) is suppressed by the factor D(Y ).
Use other ratios of a/d.

4. Continue (3) on missing order. Change the wavelength to twice its value and
to 1/2 and see what happens to the pattern.

3.4.5.2 Amplitude Grating with Incidence Light at an Angle

An experimental setup may require that the incident light enter the grating not
in the direction of the normal but under an angle ψ with respect to the grating
surface (Figure 3.19). The only difference now is that the optical path difference
(i.e., a(sin θ ) of the two parallel beams; see Eq. (3.54) is enlarged by the term
a(sin θ ). One obtains for the intensity

I (θ ) � {[sin(πd(sin θ + sinψ)/λ)]/[πd(sin θ + sinψ)/λ)]}2

· {sin[πNa(sin θ + sinψ)/λ]/N sin[πa(sin θ + sinψ)/λ]}2. (3.61)

The interference diffraction pattern is similar to the pattern of the amplitude grat-
ing used at normal incidence. The difference is that the main maximum is not at
θ � 0. The normalized interference factor is equal to 1 for the main maximum,
that is, for (sin θ + sinψ) � 0, or at sin θ � −sinψ . The zeroth order is shifted
from θ � 0 to θ � −ψ . This is shown in the graph of FileFig 3.11.

FileFig 3.11 (D11FAGRANGS)

A graph is shown of the diffraction pattern of an amplitude grating with the
incident light under an angle ψ to the normal.
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D11FAGRANG is only on the CD.

Application 3.11. Find the numerical values of (sin θ + sinψ) for which the
normalized interference factor is equal to N1. Express the numerical factor in
terms of a, m, and λ and compare with the grating equation.

3.4.5.3 Echelette Grating (Phase Grating)

A transmission grating with periodic differences in thickness is called a phase
grating. When the grating has steps with angle ε, as shown in Figure 3.20, it
is called an echelette grating. It may be produced from materials of refractive
index n or with a metal surface such as a reflection grating. To calculate the
interference diffraction pattern of the echelette grating, we have to determine
the optical path difference between equivalent wavelets from neighboring steps
and integrate over all the steps. The result is an interference factor, depending
on the periodicity constant a of the steps and a diffraction factor, depending on

−θ

θ

− θ − ε) = θ + ε) 

ε

−ε

FIGURE 3.20 Coordinates for an echelette grating: (a) refracted and diffracted light and interfer-
ence; (b) coordinates for the diffraction on one facet. Integration of the diffraction factor over the
facet uses the optical path difference yi sin(θ + ε). The maximum is at θ � −ε. We set d ′ � d.
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the shape of the step. To make the calculation of the diffraction factor easy, we
assume that the periodicity constant is equal to the width of the steps d and we
choose the angle of incidence such that the transmitted light is refracted in a
direction perpendicular to the plane of the step (Figure 3.20a). The angle ε is
then the angle between the normal of the facet and the normal of the plane of
periodicity. The intensity is again given as the product of the interference and
diffraction factor. The interference factor is the same as the one obtained for the
amplitude grating, but the diffraction factor is calculated with the optical path
difference yi sin(θ + ε); see Figure 3.20. The intensity is then

I (θ ) � {[sin(πd sin{θ + ε}/λ)]/[πd sin{θ + ε}/λ]}2 (3.62)

· {[sin(πNa sin θ/λ)]/N sin(πa sin θ )/λ]}2.

The three graphs in FileFig 3.12 demonstrate the dependence on the step angle
ε. When ε � −.25 we see that the maximum of the diffraction factor is lined
up with the first-order maximum of the interference factor. The zeroth order of
the interference factor is at the first minimum of the diffraction factor and is
suppressed. For the particular wavelength the grating is said to be blazed. For
slightly different wavelengths, the first order would be displaced within the enve-
lope of the diffraction factor. Considering a source emitting many wavelengths,
the first order of a range of wavelengths is distributed over the range determined
by the diffraction factor.

When changing the step angle ε, one has for ε � .25 that the zeroth order of
the diffraction factor is shifted to the −1 order of the interference factor (see the
second graph of FileFig 3.12). For ε � −.52, the zeroth order of the diffraction
factor is at the +2 order of the interference factor (third graph of FileFig 3.12).
For other values of (between these values, one finds that the maxima of the
interference factor are not lined up with the maxima of the diffraction factor.

FileFig 3.12 (D12FAELGRS)

Graphs of the intensity of diffraction on an echelette grating. Three graphs are
shown for three values of ε. There is only one interference factor and three
diffraction factors. We see that the diffraction factor is lined up with the first
maximum of the interference factor for ε � −0.25. The zero order of the inter-
ference factor is at the first minimum of the diffraction factor and is suppressed.
If one applies a source emitting many wavelengths, the first-order of a narrow
band of different wavelengths is “filling” the area of the diffraction factor. For the
wavelength for which both maxima coincide, the grating is said to be “blazed.”
When choosing ε � 0.25 the zeroth order of the diffraction factor is shifted to
the −1 order of the interference factor. For ε � −0.52 we have the zeroth order
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of the diffraction factor at the +2 order of the interference factor. We may choose
other values of ε and find a misalignment.

D12FAELGRS

Diffraction on an Echelette Grating

The graphs for the three different values of ε. D(θ ) is the diffraction factor,
I (θ ) the interference factor, and P (θ ) the product. The angle in radians of the
echelette is ε. Diffraction angle θ in radians, wavelength λ, width of openings
d, and separation of openings a in mm.N is the number of lines. All parameters
are defined globally above the graph.

θ :� −.301,−1.299 . . . 1.3

D1(θ ) :�
[

sin
[
π · d

λ
· (sin(θ + ε1))

]
(
π · d

λ
· sin(θ + ε1)

)
]2

I (θ ) :�
[

sin
[
π · a · (sin(θ )) · N

λ

]
N · sin

[
π · a · (sin(θ ))

λ

]
]2

D2(θ ) :�
[

sin
(
π · d

λ
· sin(θ + ε2)

)
[
π · d

λ
· sin(θ + ε2))

]
]2

D3(θ ) :�
[

sin
[
π · d

λ
· (sin(θ + ε3))

]
(
π · d

λ
· sin(θ + ε3)

)
]2

P 1(θ ) :� D1(θ ) · I (θ ) P 2(θ ) :� D2(θ ) · I (θ ) P 3(θ ) :� D3(θ ) · I (θ )

ε1 ≡ −0.25 d ≡ 37 λ ≡ 10 a ≡ 40 N ≡ 20.

q

q

q

q

ε2 ≡ 0.25.

q

q

q

q
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ε3 ≡ 0.52.

q

q

q

q

Application 3.12. Use FileFig 3.12 with d � 0.04, a � 0.04, λ � 0.01, and
N � 20.
1. Start from ε � 0 and use for ε positive numbers until the negative first-order

of I (θ ) is at the peak ofD(θ ). Make another graph using a negative value for
ε until the positive first-order of I (θ ) is at the peak of D(θ ).

2. Make three graphs with nine plots, starting with P 1(θ ),D1(θ ), and I1(θ ) for
λ1 � 0.015, thenP 2(θ ),D2(θ ), and I2(θ ) for λ2 � 0.01, andP 3(θ ),D3(θ ),
and λ3(θ ) for λ3 � 0.007. Find a value of ε such that the interference peak
of the positive first order of λ2 is at the maximum of the diffraction factor. The
grating is now “blazed” for the wavelength λ2 � 0.01. Make an extra plot
only of P 1(θ ) to P 3(θ ) and see that for the wavelengths λ1 and λ3 more than
one peak appears. These wavelengths do not have maximum intensity and
two orders would be observed. The echelette grating would be less efficient.

3.4.6 Resolution

Gratings are used in spectrometers to obtain the spectrum of the incident light. Let
us consider incident light containing a spectrum of just two different wavelengths
λ1 and λ2. As an example let us consider the sodium D lines at 5890 and 5896
A◦ in the yellow part of the visible spectrum, emitted when the Sodium atom
is at a high temperature. One may observe these lines when salt falls into a gas
flame and one sees yellow light. The wavelength difference of the two lines is
just 6◦ and we now discuss the question of what has to be required of a grating to
observe the two separated lines. We consider two lines of wavelength difference
�λ � λ2 − λ1. The diffraction angles in the first order will have maxima at
sin θ1 � λ1/a and sin θ2 � λ2/a (Figure 3.21a). Assuming λ1 < λ2 we have
to determine how large �λ � λ2 − λ1 must be in order to recognize the two
spectral lines separately. If�λ is large enough, we can recognize these two lines
(Figure 3.21b on the left) and if �λ is too small, we would have just one peak
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FIGURE 3.21 (a) Closely positioned main maxima of the diffraction patterns produced by the
wavelengths λ1 and λ2 with �λ � λ2 − λ1; (b) (left) images of two point sources sufficiently
separated; (right) image of two point sources at the limit of resolution. (From M. Cagnet, M.
Francon, and J.C. Thrieer, Atlas of Optical Phenomena, Springer-Verlag, Heidelberg, 1962.)

FIGURE 3.22 Main maximum and side maxima of the diffraction pattern obtained with a grating
having N lines and using the wavelength λ1.

(Figure 3.21b on the right). To get a quantitative value for the case where the two
lines are just separated, we use the Rayleigh criterion. Which states that the two
maxima of a diffraction pattern are considered separated when the maximum of
one is at the position of the minimum of the other.

From Figure 3.22 we have for the distance from maximum to minimum of
the diffraction pattern of a grating for any order(

N + 1

N
− N

N

)
λ1

a
� �λ

a
(3.63)
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and obtain

�λ � λ1/N. (3.64)

Calling λ2 just λ and considering the mth diffraction order, we have

λ/�λ � mN. (3.65)

Since λν � velocity of the light in the medium, where ν is the frequency, one
also has

ν/�ν � mN. (3.66)

The ratio λ/�λ or ν/�ν is called the resolving powers of the grating.
The graph in FileFig 3.13 shows two diffracted waves of wavelength λ1 and

λ2 on a grating. The separation of their maxima depends on N and one may
change N to find the separation in agreement with the Rayleigh criterion. Also
seen is the dependence of the resolution on the diffraction order. The first graph
in FileFig 3.14 shows the diffraction pattern of two round openings of radius a.
One is at zero and the other at distance b. One can determine b using the Rayleigh
criterion. The second graph shows the two spectral lines in three dimensions.

For our example of the sodium D lines we have from Eq. (3.66) about 1000
for mN . In other words, in first order we need 1000 lines of the grating. If the
grating has a periodicity constant of about 1 micron, the width of the grating
would be one millimeter. If one could use a larger grating of 10 cm then the
number of lines would be 100,000 and in first order, for a wavelength of 5000Å,
�λ would be 0.02Å.

FileFig 3.13 (D13FAGRRES)

Graph of the diffraction on an amplitude grating for two wavelengths λ1 �
0.0005, λ2 � 0.0006, openings d � 0.0001, periodicity constant a � 0.002,
and number of lines N � 6.

D13FAGRRES is only on the CD.

Application 3.13.

1. Make three choices of λ2 and determine the N value so that the maximum of
λ2 is on the minimum of λ1.

2. Choose λ1 and λ2 and determine the N value necessary to resolve the two
maxima.

3. Consider higher orders m. Choose a pair of lines so close together that they
are not resolved in first-order. Determine the order for resolution.
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FileFig 3.14 (D14FARES3DS)

Determination of Rayleigh distance and graph of the 3-D-diffraction pattern of
two round apertures of radius a and distance b.

D14FARES3DS

Determination of the Wavelength difference for Two Peaks, Resolved According to the
Rayleigh Criterion

We call the distance between the maxima b, radius of apertures a, distance
between the apertures d, coordinate on the observation screen R, wavelength λ,
and distance from aperture to screen X.
1. Determination of Rayleigh distance

a ≡ .05 X ≡ 4000 R :� 0, .1 . . . 50

g1(R) :�
[
J1

(
2 · π · a · R

X·λ
)

(
2 · π · a · R

X·λ
)

]2

gg1(R) :�
[
J1

(
2 · π · a · R−b

X·λ
)

(
2 · π · a · R−b

X·λ
)

]2

.

Distance b is assumed to be b ≡ 24.5.
2. 3-D Graph of pattern of two round apertures at distance b

i :� 0 . . . N j :� 0 . . . N

xi :� (−40) + 2.0001 · i yj :� (−40) + 2.0001 · j λ ≡ .0005

RR(x, y) :�
√

(x)2 + (y)2 N ≡ 60 X :� 4000

g2(x, y) :�
[
J1

(
2 · π · a · RR(x,y)

X·λ
)

(
2 · π · a · RR(x,y)

X·λ
)

]2
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gg2(x, y) :�
[
J1

(
2 · π · a · RR(x,y−b)

X·λ
)

(
2 · π · a · RR(x,y−b

X·λ
)

]2

.

Mi,j :� g2(xi, yj ) + gg2(xi, yj ).

3. Calculation of wavelength difference corresponding to b
The diffraction angle is calculated from b/X � �θ . The grating is made of
round apertures of diameter a and spaced at distance d. From the grating
formula we have for the wavelength difference�λ � d�θ or�λ � (d/X)b.
For d :� .1, �λ :� d · b

X
, �λ � 6.125 × 10−4.

Application 3.14.

1. Convert to a surface plot and make b such that the maximum of one of the
peaks is on the minimum of the other. Then go back to the contour plot.

2. We have used the same wavelength for both peaks. After determining the
wavelength resolution, introduce the corresponding wavelengths into the two
expressions of the Bessel function and estimate the change.

3. Assume that the angle difference for resolution is given for order m and find
the wavelength difference.

3.5 BABINET’S THEOREM

Babinet’s Theorem tells us that two complementary screens will give us the
same diffraction pattern at the observation screen. Complementary screens are
two screens, one of which is transparent at areas where the other is opaque
(Figure 3.23). If the two complementary screens are placed together in the same
plane, no aperture will exist.
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FIGURE 3.23 Examples of complementary screens.

The general appearance of the diffraction pattern on the observation screen is
the same, regardless of one screen having larger openings than the other.

Let us consider two gratings, both having periodicity constant a. One has
a width of opening d1 and the other of d2. These gratings are complementary
screens when d1+d2 � a. To get the diffraction pattern, we apply the Kirchhoff–
Fresnel integral to the openings of each screen. The two integrals must add up to
zero since there are no openings to integrate. We assume there is a single wave
incident on all openings and use far field approximation,

ϕ1(Y ) � C

∫
φ(y)(eik(yY )/X)dy and ϕII (Y ) � C

∫
φ(y)(eik(yY )/X)dy

openings of screen I openings of screen II (3.67)

and have for the amplitudes

ϕI (Y ) + ϕII (Y ) � 0 or ϕI (Y ) � −ϕII (Y ), (3.68)

and for the intensities

[ϕI (Y )]2 � [ϕII (Y )]2. (3.69)

The diffraction pattern of the two screens has the same overall appearance. The
first equation tells us that the two diffraction patterns are “out of phase” by 180
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FIGURE 3.24 Diffraction patterns of complementary screens show the same intensity pattern.

degrees and the second one tells us that the diffraction patterns of the two screens
are similar.

In Figure 3.24 we show schematically the diffraction pattern of two comple-
mentary screens. One screen is made of open squares and the other of black
squares. In FileFig 3.15 we consider two amplitude gratings with complementary
open areas as complementary screens. The appearance of the diffraction pattern
is the same, but the heights of the peaks are different. We assumed that d1 is
different from d2 and therefore the open areas are different.

FileFig 3.15 (D15FABAGRS)

Two complementary screens are considered. Both are amplitude gratings of pe-
riodicity constant a. One has the width d1 of open strips, the other the width
d2, and since we assume that a � d1 + d2 the screens are complementary. The
diffraction patterns are shown as P1 for the grid with d1 and P2 for the grid
with d2. One observes that the diffraction patterns are similar. Both patterns
have peaks at the same location. However, they have different intensities. The
different intensities result from the different d1 and d2 values and consequently
different areas of integration.

D15FABAGRS

Babinet’s Theorem

Diffraction on two amplitude gratings, one with width of openings d1, the other
with width of opening d2, and both having center-to-center distance of strips
a � d1 + d2. Wavelength λ, distance from gratings to screenX, and coordinate
on screen Y . All distances and wavelengths area in mm; both have number
of lines N . Normal incidence. D1 and D2 are the diffraction factors, I is the
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interference factor, normalized to 1. P (A) is the product of interference and
diffraction factor. Diffraction pattern of the two complementary screens: one is
a grating of width of opening d1, the other of d2, and the periodicity constant
is a � d1 + d2.

θ :� −.5001,−.4999 . . . .5

D1(θ ) :�
[

sin
(
π · d1

λ
· sin(θ )

)
(
π · d1

λ
· sin(θ )

)
]2

I (θ ) :�
[

sin
(
π · a

λ
· sin(θ ) ·N)

N · sin
(
π · a

λ
· sin(θ )

)
]2

λ ≡ .0005 N ≡ 6 P 1(θ ) :� D1(θ ) · I (θ )

D2(θ ) :�
[

sin
(
π · d2

λ
· sin(θ )

)
(
π · d2

λ
· sin(θ )

)
]2

I (θ ) :�
[

sin
(
π · a

λ
· sin(θ ) ·N)

N · sin
(
π · a

λ
· sin(θ )

)
]2

d2 ≡ .001 d1 ≡ .002 a ≡ d1 + d2 P 2(θ ) :� D2(θ ) · I (θ ).

We see that the intensity of the diffraction peaks is different for the two com-
plementary patterns, but the position of the peaks is the same, and that is what
Babinet’s Principle tells us.

Application 3.15.
1. Keep a � d1+d2 constant and change the width d1 to a much smaller value

than d2. Check how the intensities of the two patterns are affected.
2. For comparison, make d1 and d2 about equal.
3. Change the constant “a” to see how the pattern is changing.

3.6 APERTURES IN RANDOM ARRANGEMENT

In Chapter 2 we studied the interference pattern of an array and found that the
pattern disappears when the array is changed to a random arrangement. We now
study the question of what happens to an interference diffraction pattern if we
assume a random arrangement.

We consider an amplitude grating and want to describe the changes of the
interference diffraction pattern when we change the periodic array into a random
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arrangement. The diffraction pattern is described by the product of the diffraction
and interference factors

Pperiodic � {[sin(πd sin θ/λ)]/[(πd sin θ/λ)]}2

· {[sin(πNa sin θ/λ)]/[(N sin(πa sin θ/λ)]}2. (3.70)

As discussed in the chapter on interference, the interference factor will average
to a constant when the change to the random array of apertures is done and we
are left only with the diffraction factor

Prandom � {[sin(πd sin θ/λ)]/[(πd sin θ/λ)]}2. (3.71)

The random array of many openings of width d will give us the diffraction pattern
of a slit at the observation screen.

In FileFig 3.16 we have a one-dimensional calculation. The first graph shows
the interference diffraction pattern of a grating, and the second graph shows what
is left if the interference factor disappears. In FileFig 3.17 we show the diffraction
pattern of a 2-D grating as a 2-D contour plot. The first graph shows the diffraction
pattern of the periodic arrangement and the second graph shows the diffraction
pattern of the random arrangement.This is schematically shown in Figure 3.25 for
periodic and random arrangements of square apertures. The periodic arrangement
shows the interference diffraction pattern, and the random arrangement appears
as the superposition of the intensity diffraction pattern of squares.

FileFig 3.16 (D16FAGRRANS)

The product P 1 of a diffraction and interference factor for a one-dimensional
grating is shown. When changing the periodic arrangement of the apertures to
a random arrangement, the interference factor is a constant and P 2 shows the
remaining diffraction pattern.
D16FAGRRANS is only on the CD.

FIGURE 3.25 (a) Diffraction pattern of a periodic array of rectangles; (b) diffration pattern of a
random array of rectangles. The resulting pattern is the superposition of the intensity diffraction
pattern of rectangles.
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FileFig 3.17 (D17ARAYRA3DS)

The product f (x, y) of intensity of diffraction and interference factor for a two-
dimensional grating is shown. Three-dimensional plots are shown for regular
and random arrays.

D17ARAYRA3DS

3-D Graph of Diffraction Pattern

Periodic array of rectangular apertures compared to the diffraction pattern of
rectangular apertures in a random array.

1. Periodic array

i :� 0 . . . N j :� 0 . . . N

λ ≡ 4 xi :� (−3) + .20001 · i yj :� (−4) + .20001 · j p :� 6

f (x, y) :�
[

sin
(
2 · π · d · x

2·λ
)

(
2 · π · d · x

2·λ
)

]2

·
[

sin
(
2 · π · d1 · y

2·λ
)

(
2 · π · d1 · y

2·λ
)

]2

·
⎡
⎣
[

sin
(
2 · π · a · x·p2·λ

)
p · sin

(
2 · π · a · x

2·λ
)
]2

·
[

sin
(
2 · π · a1 · y·p2·λ

)
p · sin

(
2 · π · a1 · y

2·λ
)
]2

⎤
⎦

Mi,j :� f
(
xi, yj

)
d ≡ 2 d1 ≡ 2 a1 ≡ 4 a ≡ 4

N ≡ 40.



172 3. DIFFRACTION

2. Random array

f 1(x, y) :�
[

sin
(
2 · π · d · x

2·λ
)

(
2 · π · d · x

2·λ
)

]2

·
[

sin
(
2 · π · a · y

2·λ
)

(
2 · π · a · y

2·λ
)

]2

MMi,j :� f 1
(
xi, yj

)
.

3.7 FRESNEL DIFFRACTION

At the beginning of this chapter we used Fresnel diffraction for the calculation
of the Poisson spot. The Kirchhoff–Fresnel integral was applied to a round stop
and we found a constant illumination in the shadow of the round aperture on
the axis of the system. We are now interested in discussing the diffraction on
an edge, which was done by Fresnel using the integrals named after him. The
first steps are to study the Fresnel diffraction on a slit and give the definitions of
Fresnel’s integrals.

3.7.1 Coordinates for Diffraction on a Slit and Fresnels
Integrals

We consider the Kirchhoff–Fresnel diffraction integral in small angle approxi-
mation; see Eq. (3.20).

G(Y ) � C

∫ y2�d/2

y1�−d/2
exp[ik(1/2X)(Y − y)2]dy (3.72)
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and set the constant C equal to 1. To get to the definition of Fresnel’s integrals,
we change coordinates

(y − Y )2 � η2(λX/2) (3.73)

and have

η � (Y − y)
√

2/λX (3.74)

and for the limits of integration η1 and η2,

η1 � (Y + d/2)
√

2/λX and η2 � (Y − d/2)
√

2/λX. (3.75)

Substituting Eqs. (3.74) and (3.75) into the integral, Eq. (3.72) results in

G(η) �
∫ η2

η1

ei(π/2)η2
dη. (3.76)

We may write∫ η2

η1

ei(π/2)η2
dη �

∫ η2

η1

cos[(π/2)η2]dη + i

∫ η2

η1

sin[(π/2)η2]dη (3.77)

and have for the right side of Eq. 3.77
∫ η2

0
cos[(π/2)η2]dη −

∫ η1

0
cos[(π/2)η2]dη

+ i{
∫ η2

0
sin[(π/2)η2]dη −

∫ n1

0
sin[(π/2)η2]dη}. (3.78)

The Fresnel integrals are defined as:

C(η′) �
∫ η′

0
cos[(π/2)η2]dη, S(η′) �

∫ η′

0
sin[(π/2)η2]dη. (3.79)

In FileFig 3.18 we show graphs of Fresnel’s integrals.

FileFig 3.18 (D18FEFNCS)

The integrals C(η′) and S(η′) are plotted as C(Y ) and S(Y ) for Y � 0 to 5.

D18FEFNCS is only on the CD.

3.7.2 Fresnel Diffraction on a Slit

Fresnel diffraction on a slit is calculated using the coordinates of a slit of width
d as shown in Fig. 3.26. From Eq. (3.73) and (3.76) we have for the amplitude
at the observation point

G(Y ) � C[η2(Y )] − C[η1(Y )] + i{S[η2(Y )] − S[η1(Y )]}, (3.80)
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FIGURE 3.26 Coordinates for the calculation of the Fresnel diffraction pattern of a single slit of
width d .

where the dependence on Y is

η1 � (Y + d/2)
√

(2/λX) and η2 � (Y − d/2)
√

(2/λX). (3.81)

The intensity is

I (Y ) � {C[η2(Y )] − C[η1(Y )]}2 + {S[η1(Y )] − S[η1(Y )]}2. (3.82)

The graph in FileFig 3.19 shows Fresnel diffraction on a slit. One observes
that for the parameters used, the first minimum of the pattern is not zero. By
changing d to a smaller value orX to a larger value, one may get to a zero value
for the first minimum.

FileFig 3.19 (D19FESLITS)

Fresnel diffraction I (Y ) is plotted for a slit of width d at distanceX � 4000 mm
for λ � 0.0005 mm. These are the same values as used in FileFig 3.3 for far
field approximation. For a small slit width, there is no difference. For a larger
slit width, the Fresnel diffraction is not zero for the first minimum.

D19FESLITS

Fresnel’s Integrals for Calculation of Diffraction on a Slit

All units are in mm, global definition of parameters.
We call η1

Y :� 0, .1 . . . 10.

q(Y ) :�
(
Y + d

2

)
·
√

2

λ ·X
We call η2

p(Y ) :�
(
Y − d

2

)
·
√

2

λ ·X
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Cq(Y ) :�
∫ q(Y )

0
cos

(π
2

· η2)dη Cp(Y ) :�
∫ p(Y )

0
cos

(π
2

· η2)dη

Sq(Y ) :�
∫ q(Y )

0
sin

(π
2

· η2)dη Sp(Y ) :�
∫ p(Y )

0
sin

(π
2

· η2)dη
I (Y ) :� (Cp(Y ) − Cq(Y ))2 + (Sp(Y ) − Sq(Y ))2.

√
2

λ ·X � 1

TOL ≡ .1

λ ≡ 5 · 10−4 X ≡ 4000

d ≡ 1.5.

Application 3.19.

1. Normalize the pattern of the diffraction on a slit using Fresnel diffraction.
Make it 1 at the center, and extend the Y range to negative and positive values.

2. Add to the graph the diffraction on a slit using far field approximation. Use
the same slit width, wavelength, and distance from aperture to observation
screen.

3. For what values of d do we have close agreement?

3.7.3 Fresnel Diffraction on an Edge

Fresnel diffraction on an edge is treated as the diffraction on a large slit with
one edge at y � 0 and the other at y � ∞ (Figure 3.27). For the slit we had the
limits for −d/2 to d/2. Note the negative sign in Eq. (3.74)

η1 � (Y + d/2)
√

2/λX, η2 � (Y − d/2)
√

2/λX. (3.83)
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FIGURE 3.27 Coordinates for the calculation of the Fesnel diffraction pattern of an edge treated
as a large slit, position of slit from y � 0 to y � (∞). For the value of the integral from 0 to −∞
we use the value −.5. The dependence on Y is now only contained in η1.

The integration limits are now

η1 � (Y )
√

2/λX η2 � −∞. (3.84)

For the edge presented by a slit with one side at y � 0 and the other side at
y � ∞, we have

u(Y ) �
∫ −∞

η1

e−i(π/2)η2
dη � C(η) + iS(η)|−∞

η1
. (3.85)

The integrals C(η) and S(η) have to be taken from η1 to −∞. At −∞, both are
−.5, and we get for the intensity (not normalized)

I (Y ) � {−.5 − C(η1)}2 + {−.5 − S(η1)}2. (3.86)

The first graph in FileFig 3.20 shows the intensity diffraction pattern
(Eq. (3.86)) and Figure 3.28 shows a photograph of the diffraction on an edge.
The second graph in FileFig 3.20 shows how the diffraction on an edge is derived
from the diffraction on a large slit.

FIGURE 3.28 Photograph of the Diffraction on an edge. (From M. Cagnet, M. Francon, and J.C.
Thrieer, Atlas of Optical Phenomena, Springer-Verlag, Heidelberg, 1962.)
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FileFig 3.20 (D20FEEDGES)

The intensity I (Y ) for the diffraction on an edge is shown for the range from
Y � −5 mm to Y � +15 mm. To show that this is one side of a large slit, the
diffraction pattern of a large slit is shown as II (Y ).

D20FEEDGES

Fresnel’s Integrals for Calculation of Diffraction on an Edge

All units are in mm, global definition of the parameters.

Y :� −4,−3.95 . . . 15 TOL ≡ .001

√
2

λ ·X � 1

We treat the diffraction at an edge as diffraction on a large slit. One side is set
at d � 0, the other at d � −∞. This translates into

For p(Y ) � −infinte; we have Cp(Y ) � Sp(Y ) � −.5

q(Y ) :� (Y ) ·
√

2

λ ·X.

We take q(Y ) equal Y , square root is for scaling q(Y ) :� Y .

Cq(Y ) :�
∫ q(Y )

0
cos

(π
2

· η2)dη Sq(Y ) :�
∫ q(Y )

0
sin

(π
2

· η2)dη
I (Y ) :� (Cq(Y ) − (−.5))2 + (Sq(Y ) − (−.5))2

X ≡ 4000

λ ≡ 5 · 10−4.
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To see that we actually derived this from a large slit, we treat a large slit with
positions at 0 and 10.

p(Y ) : (Y − (10))

Cp(Y ) :�
∫ p(Y )

0
cos

(π
2

· η2)dη Sp(Y ) :�
∫ p(Y )

0
sin

(π
2

· η2)dη
II (Y ) :� (Cq(Y ) − Cp(Y ))2 + (Sq(Y ) − Sp(Y ))2.

Application 3.20. Vary the width of the slit by choosing values other than 10 in
P (Y ) � Y − 10 and compare the diffraction pattern of the slit with the pattern
of the edge.

APPENDIX 3.1

A3.1.1 Step Grating

A grating with a rectangular reflecting surface is called a step grating. The grating
has the periodicity constant a, and the reflecting surfaces of length a/2 are
positioned in two planes. Such a grating may be produced by using two sets
of interpenetrating gratings, shown schematically in Figure A3.29. The distance
H between planes I and II may be varied, and the corresponding interference
diffraction pattern, depending on the height of H, is called an interferogram. As-
suming that the incident light contains many wavelengths, the application of a
Fourier transformation to the interferogram results in a spectrum.

We discuss here the step grating as shown in Figure A3.29b for a fixed step
height H. The incident light is reflected at planes I and II and travels in direction
θ . At a faraway screen, one observes an interference diffraction pattern. We
calculate the diffraction pattern on the array of N steps, having width d, step
height H, and periodicity constant a.

Each of the two interpenetrating gratings produces the pattern of an amplitude
grating and, in addition, we have the interference of the light from planes I
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FIGURE A3.29 (a) Schematic of a step grating; (b) coordinates for the calculation of the diffraction
on a step grating. Only the emerging diffracted light is shown for the calculation of the path
difference. The two gratings in planes I and II interfere with each other in the X direction.

and II in the direction of the observation screen. The optical path difference
is δ � d sin θ + H and in order to get the intensity of the interference (see
Chapter 2, Eq. (2.8)), we have to insert this path difference δ into [cos(πδ/λ)]2.
The intensity P � uu∗ of the diffraction and interference of each grating and
the interference of the two gratings with each other is then the product of the
diffraction factor

D(θ ) � {[sin(πd sin θ/λ)]/[(πd sin θ/λ)]}2, (A3.1)

the interference factor

I (θ ) � {[sin(πNa sin θ/λ)]/[N sin(πa sin θ/λ)]}2, (A3.2)

and the step factor

ST (θ ) � [cos{(π/λ)(d sin θ +H )}]2. (A3.3)
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The diffracted intensity is

P (θ ) � {[sin(πd sin θ/λ)]/[(d sin θ/λ)]}2{(sin πNa sin θ/λ)/N sin(πa sin θ/λ)}2

· [cos{(π/λ)(d sin θ + h)}]2. (A3.4)

The diffraction pattern depends not only on d and a, but also on H. The graph of
FileFig A3.21 shows P (θ ) for several values ofH and also the diffraction factor
D(θ ). The diffraction factor supplies the envelope and the interference factor
supplies the lines. The zeroth order is at the center and the first order is within
the envelope. Since we necessarily have 1:2 for the ratio d/a, the second order
is suppressed by the zeros of the diffraction factor. Variation of H will redis-
tribute the intensity between the zeroth and first order. This may be understood
from energy conservation. We assume that the third and higher orders may be
neglected. Then for H � 0, the incident light is reflected into the zeroth order,
that is, in the direction of reflection on the mirror surface. When H � λ/4, no
light can travel in the direction of the zeroth order. In other words, no light may
be reflected on the surface of the grating facets and all light travels into the first
order. For H � λ/2 we have again reflection on the grating facets.

ForH being a multiple of the wavelength, all light is diffracted into the zeroth
order and for H being a multiple of half a wavelength, all light is diffracted into
the first order. The graph in FileFig A3.21 shows the intensity pattern P (θ ) for
two different wavelengths. One observes only one peak for the zeroth order, but
two peaks for the first order. The zeroth order changes its intensity depending
on H . Recording the intensity depending on H will reveal the interferogram.

FileFig A3.21 (DA1FAGSTEP1S)

There are four intensity patterns P 1 to P 4, each for a different value of H .
The values of H are presented as H � nλ. When n is an integer, we have all
light in the zeroth order. For noninteger values of n, we subtract from λ all full
wavelengths and look at the remaining fraction n′. For example, if n � 10.5,
we look at n′ � 0.5. The optical path difference is now half a wavelength and
all the light is diffracted in the first orders. For values such as 0.125, 0.25, and
0.375 there is light partly diffracted into the zeroth and the first order.

DA1FAGSTEP1S is only on the CD.

Application A3.21.

1. Find the values of n for which the patterns of constructive and destructive
interference are repeating for values of n from 0 to 2. Observe that the path
difference between constructive and destructive interference is λ/2, and the
successive constructive or destructive interference pattern is λ. These length
differences correspond to the length differences produced by H .
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2. A lamellar grating is an interferometer with adjustable length H . It pro-
duces the optical path difference by increasingH in small steps. It is usually
operated in reflection and then the length is only 1/2 the length needed to pro-
duce the same optical path difference compared to the case of transmission,
discussed in (1).

FileFig A3.22 (DA2FAGRSTEP2S)

There are four intensity patterns P 1 to P 4, each for a different value of H1
to H4. Each two are written for the same wavelength. The values of H1 and
H2 have been chosen such that P 1 and P 2 show the constructive interference
pattern for λ1 and λ2, and H3 and H4 that P3 and P4 show the destructive
interference pattern for λ1 and λ2.

DA2FAGSTEP2S is only on the CD.

Application A3.22.
1. Get FileFig 3.A2 on the screen and save it. Then modify P 1 to P 4 such that

allH have the same height. Now we can simulate the lamellar grating inter-
ferogram for two wavelengths λ1 � 0.0005 and λ2 � 0.0007 by changing
from H � 0.00005 in steps of 0.00005 and see how the constructive and
destructive interference patterns change on the observation screen for the
two wavelengths. An interferogram can be obtained by observing the center
and recording the sum of the intensities for the two wavelengths.

2. We go back to FileFig 3.A2.The four patterns show constructed and destructed
interference for different settings of the lamellar grating. In other words, all
four patterns usingH1 toH4 are different. For the two wavelengths, we have
the constructed interference at the center. Destructive interference appears
at different length Y from the center on the observation screen. Since the
detector should only observe the zero order, one has to choose the size such
that the first orders are not detected.

3. What is the diameter of the detector area when the smallest wavelength is
λ1 � 0.001 and the largest wavelength λ2 � 0.004?

4. What are the changes of the detector area, when changing a to 2a or 1
2a?

5. What happens when changing N .

APPENDIX 3.2

A3.2.1 Cornu’s Spiral

A graph of the Fresnel integrals S versus C is called a Cornu spiral (FileFig
3.A3). One can graphically obtain a diffraction pattern from Cornu’s spiral. As
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an example we discuss the diffraction on a slit. The intensity is given by

I (Y ) � {C[η2(Y )] − C[η1(Y )]}2 + {S[η2(Y )] − S[η1(Y )]}2 (A3.5)

and depends on the points η1(Y ) and η2(Y ), assuming that d, λ, andX are given.
I (Y ) is the square of the geometrical distance on the Cornu spiral between the
points η1 and η2. The diffraction pattern is obtained by plotting (distance)2 as
a function of Y for η1 and η2. By the division of all values by (distance)2 for
Y � 0 one can obtain a normalized pattern.

FileFig A3.23 (DA3FECOR)

Graph of S(Y ) as function of C(Y ). This graph is called Cornu’s spiral.

DA3FECOR is only on the CD.

A3.2.2 Babinet’s Principle and Cornu’s Spiral

We consider two complementary screens, I and II. Screen I may just have a hole
and screen II has a stop of the same size as the hole. If added together, no light may
pass. Babinet’s principle tells us that complementary screens generate similar
diffraction patterns. In FileFig 3.A3 we have plotted one-half of the Cornu spiral
for η from 0 to ∞. Let us consider a slit and the complementary screen, a stop of
the same width. The diffraction pattern of screen I for one point Y is obtained by
measuring the length between the corresponding points η1 and η2 (as discussed

FIGURE A3.30 Cornu’s spiral. The line(b) corresponds to the diffraction pattern of a slit and (a)
and (c) of a stop.
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above) which we call length (b) (see Figure A3.30). The diffraction pattern of
screen II may be obtained by using the distances (a) from −∞ to η1 and (c)
from η2 to ∞. If we want to get the diffraction pattern on a different point Y , the
points η1 and η2 are displaced in correspondence with the choice of the Y -value
and will affect the diffraction pattern for both screens in the same way.

The distances (a) and (c) and the distance (b) from η1 to η2 represent the
diffraction pattern for the addition of the two complementary screens for which
no diffraction pattern can be observed.

See also on CD

PD1. Diffraction on a Slit and Width of Diffraction Pattern (see p.1 40).
PD2. Diffraction on a Slit and the first Maxima (see p. 141).
PD3. Rectangular Aperture (see p. 145).
PD4. Circular Aperture, first Minimum (see p. 149).
PD5. Circular Aperture, Comparison with Slit (see p. 149).
PD6. Double Slit (see p. 153).
PD7. Grating at Normal Incidence (see p. 153).
PD8. Amplitude Grating (see p. 156).
PD9. Echelette Grating (see p. 158).

PD10. Resolution depending on N and d/a ratio (see p. 162).
PD11. Grating Resolution (see p. 163).
PD12. Babinet’s Principle (see p. 166).
PD13. Fresnel and Far Field Diffraction of a Slit and round Aperture (see p.

173).
PD14. Fresnel Diffraction on an Edge (see p. 175).
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Coherence

4.1 SPATIAL COHERENCE

4.1.1 Introduction

In the chapter on interference, we always considered only one incident wave
and assumed that it was emitted by a distant point source. Recalling Young’s
experiment, the incident wave generated two new waves at the two openings at
distance a of a double slit screen. The two new waves had a fixed phase relation
and their superposition generated the interference pattern. The two waves were
called coherent waves. In our model description we used two monochromatic
waves with a fixed phase relation. The superposition generated the amplitude
interference pattern, and the corresponding intensity pattern could be related to
observations.

In this chapter we study waves emitted independently from several distant
sources and assume that there is no fixed phase relation among them. Using for
the analysis the double slit aperture of Young’s experiment, one may observe an
intensity interference pattern for specific distances of the source points between
them. However, one may also choose other specific distances, and one will not
find an intensity interference pattern. It is common to call the light of the same
sources “spatially coherent" when an intensity interference pattern is observed
and “spatially incoherent" when the intensity interference pattern disappears.

4.1.2 Two Source Points

Let us look at a double star, where each star emits its light independently of
the other. The waves of both are incident on a screen of two slits of width d
and separation a of Young’s experiment. In Figure 4.1, this is shown (without
diffraction) for one source point S1 positioned on the axis and for a second source
point S2 at distance s from the first.

185
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FIGURE 4.1 (a) Superposition of two of Young’s experiments using separate sources S1 and S2.
The distance between the sources is s and both “use” the same separation a of the double slit. The
distance from the sources to the aperture is Z, and to the observation screen is X; (b) light from
S2 has the angle ψ with the axis and is diffracted into the angle θ .

For each source point we have an intensity diffraction pattern and for the two
source points we look at the superposition of two intensity patterns. We assume
in our model calculation that each source point generates a monochromatic wave
of wavelength λ and both are incident on the double slit aperture. The light from
source point S1 produces on the observation screen the intensity

I (θ, 0) � I0{sin[(πd/λ) sin θ ]/[(πd/λ) sin θ ]}2{cos[(πa/λ) sin θ ]}2, (4.1)

where θ is the diffraction angle and Io is the normalized intensity. Equation
(4.1) is obtained from the discussion of the double slit (Chapter 3, FileFig 3.10).
For source point S2, the axis of the double slit experiment is rotated by the
angleψ around the point at the center between the two openings. As a result, the
diffraction angle is counted from the new axis and we have to use d(sin θ−sinψ)
and a(sin θ − sinψ) in the diffraction and interference factors of Equation (4.1),
respectively. For the intensity of the light from point S2 we have

I (θ, ψ) � I0{sin[(πd/λ)(sin θ − sinψ)]/[(πd/λ)(sin θ − sinψ)]}2

· {cos[(πa/λ)(sin θ − sinψ)]}2. (4.2)
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The calculation of the optical path difference is similar to the calculation of the
optical path difference for a grating, illuminated under an angle to the normal
(see Chapter 3, Eq. (3.61)). In this model of spatial coherence, monochromatic
light from each point source uses the same double slit aperture and generates an
intensity fringe pattern. The waves from each source point have no fixed phase
relation between each other and each produces an intensity fringe pattern of
its own. The intensities of these two fringe patterns are superimposed. Whether
fringes can be observed depends not only on the separation s (and consequently
on ψ) and the wavelength, but also on the separation a of the two slits in the
double slit arrangement. However, this separation “a” is assumed to be constant.

In FileFig 4.1 we calculate the superposition of the intensity pattern depending
on the separation of the two source points. The separation s is taken in “common
length units” as discussed in Chapter 1. The first graph shows the intensity
interference pattern for both source points at the same spot, that is, for s � 0.
The second graph shows the reduced interference pattern for the distance between
the two source points of s � 1.5. The third graph shows the disappearance of
the intensity pattern at the distance of s � 2.25 and the fourth graph shows the
reappearance at s � 2.6. We see that the superposition of the intensity pattern,
produced by the two sources with incoherent light, cancel for the specific distance
between the two source points of s � 2.25.

When fringes are observed of the superposition of the two intensity fringe
patterns, one calls the light producing the fringe pattern spatially coherent. When
no fringes are observed, the light is called spatially incoherent.

FileFig 4.1 (C1COH2S)

Graphs are shown for the superposition of the intensities I (θ, 0) and I (θ, ψ) for
two point sources at variable distances s as a function of the angle θ . Parameters
used are the separation of the two openings a � 1 mm, opening of the slits
d � 0.05mm, wavelength λ � 0.0005 mm, distance from source to double slit
Z � 9000 mm, and distance from aperture to observation screenX � 4000 mm.
Four distances are used, s � 0, s � 1.5mm, s � 2.25mm, and s � 2.6mm, of
separation s � Zψ of the two source points, corresponding to four values of
ψ . Fringe patterns are observed for separations s smaller than 2.25 mm. For
a ·ψ � λ/2, that is for s � 2.25 mm, we have for the first time disappearance of
fringes; that is, the maxima of I (θ, ψ) are at the minima of I (θ, 0). For s larger
than 2.25 mm the fringe pattern reappears.
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C1COH2S

Intensity of Two Sources Separated by s

Superposition of two double slit patterns. The slits have width d and separation
a; one pattern is untilted with ψ � 0, the other tilted by ψ � x/Z, and distance
from sources to slit is Z. Distance from slit to screen is X, coordinate on screen
is Y , Y/X � θ . By enlarging ψ , starting from 0, one finds the first fringe
disappearance. Ifψ is further enlarged, the fringes reappear, but now the minima
are not zero. Another point of view: fringes may disappear for constant s and
changing a.

θ ≡ −.006, −.00599.. .006 d ≡ .05 a :� 1 Z ≡ 9000 λ :� .0005

I1(θ ) :� sin
[
(π ) · d

λ
· sin(θ )

]2

[
π · d

λ
· (sin(θ ))
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π · a
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]2
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[
π · d

λ
· (sin(θ ))

]2
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λ
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λ
· (sin(θ ) + sin(ψ1))

]2
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II2(θ ) :� sin
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II4(θ ) :� sin
[
π · d

λ
· (sin(θ ))

]2

[
π · d

λ
· (sin(θ ))

]2 · cos
[
π · a

λ
· (sin(θ ) + sin(ψ4))

]2
s4 ≡ 2.6

ψ4 :� s4

Z
.

Application 4.1.

1. Change d to 0.1 and determine the s value for disappearance of fringes. Save
the changed values for future comparisons.

2. Change λ to 0.0006 and determine the s value for disappearance of fringes.
Save the changed values for future comparisons.

3. Change a to 1.2 and determine the s values for disappearance of fringes.
Save the changed values for future comparisons.

4.1.3 Coherence Condition

We have seen that the two source points produce superimposed intensity patterns
for certain distances s between them. In our case we found fringes for distance
s � 0, and for a larger distance s � 2.25mm, the fringes disappeared. For a
small separation s of the two source points, one would observe fringes similar to
the pattern produced by one source point. The coherence condition tells us how
large one can make the separation s and still have a fringe pattern similar to the
one produced by one source point only. For the discussion, we assume that the
openings of the two slits are very small and therefore we may omit diffraction.
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ψ ψ λ

ψ  ω

ω ω λ

FIGURE 4.2 The condition a sinψ � a(s/Z) � λ/2 is equivalent to sa/Z � s sinω � λ/2
and tells us that the product of the distance between the source times the opening angle must be
similar to that of a pointlike source.

We then have for the pattern generated by sources S1 and S2,

I1(θ, 0) � I0{cos[(πa/λ) sin θ ]}2 (4.3)

I2(θ, ψ) � I0{cos[(πa/λ)(sin θ − sinψ)]}2. (4.4)

The center of the pattern of I1 is at (a sin θ ) � 0 and the first minimum is at
(a sin θ ) � λ/2. We want to find the magnitude of the angleψ for which we will
see only one fringe pattern. If the center of the pattern of I2 is at the minimum of
I1 (i.e., for (a sinψ) � λ/2), the angle ψ is too large and we are at the position
where fringes disappear for the first time. Therefore, in order to observe just one
fringe pattern of the superposition of I1 and I2 we have to require that

(a sinψ) � λ/2. (4.5)

Equation (4.5) may also be written in good approximation as s ·a/Z, where a/Z
is the opening angle ω from the source points (Figure 4.2) and one has

s · a/Z � s · ω � λ/2. (4.6)

The opening angle ω seen from the middle of the two source points is given as
a/Z and the product of this angle times the separation s of the source points
must be small compared to half of the wavelength. We state this as

(source size) times (opening angle ω) must be � λ/2. (4.7)

This is called the coherence condition.

4.1.4 Extended Source

The discussion of the double star was the first step in investigating the question
of how far away a source has to be to qualify as a point source, even if it has a
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finite diameter. To discuss an extended source we look at a line source made of a
sequence of point sources. The distance between the source points is considered
infinitesimally small, but there is no fixed phase relation between the light of one
source point with respect to any other. We apply to the line source what we have
done for two source points, and now have to integrate I (θ, ψ) over the angle ψ
from 0 to ψs � s/Z

I0 �
∫ s/Z

0
{sin[(πd/λ)(sin θ − sinψ)]/[(πd/λ)(sin θ − sinψ)]}2

· {cos[πa/λ)(sin θ − sinψ)]}2dψ. (4.8)

The integration may be interpreted as the superposition of the intensity fringe
pattern, produced by all source points between S1 and S2. The upper integration
limit, that is, the angle s/Z, is taken as such a numerical value that we can
compare the angles with calculations of the fringes for the two point sources.
The first graph in FileFig 4.2 shows the intensity interference pattern for a line
source of length s � 1 mm. The second graph for the length of s � 1.5 mm again
shows a fringe pattern. The third graph shows the disappearance of the intensity
pattern at a length of s � 4.5, and the fourth graph shows the reappearance at
s � 5. We see that the integrated intensity pattern is produced by an extended
source of length s � 4.5 mm. All fringes cancel for s � 4.5 mm. This value is
twice as large as s � 2.25 mm, the value we found for the two source points.

We may associate the length of a line source with the diameter of a circular
source. The disappearance of the interference pattern occurs when the diameter
of the circular source is twice the distance of the two source points. In Figure 4.3
we show an experimental setup to observe a fringe pattern of an extended source.

The coherence condition (Eq. (4.7)) may be applied to the extended source
as well. One has that the area s times the solid angle a/Z of the source must

FIGURE 4.3 Laboratory setup for the observation of fringes from an extended source. Experi-
mental values: B � 20 m, X � 1 m, width of S1 and S2 � .4 mm, b � 6 mm, λ � .00057 mm.
At 2a � 2 mm, the fringes disappear for the first time, and the upper limit of the experiment is
2a � 4 mm. (Adapted from Einführung in die Optic, R.W. Pohl, Springer-Verlag, Heidelberg,
1948.)
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be small compared to (1/2)λ. This condition must be obeyed when setting up
Young’s experiment. The source point is the illuminated hole of the first screen
and must be so small and far away that the wave at the next two holes has a fixed
phase relation. The size of the hole must be determined by the opening angle a/Z
of the experimental setup. On the other hand, a star may be very large, but if the
star is so far away that the product s times the opening angle ω (see Figure 4.2)
is small compared to λ/2, the coherence condition is met. As the result, the light
from the star is like parallel light when entering the double slit. Fringes may be
observed and the light of the “large star" is called spatially coherent.

FileFig 4.2 (C2COHEX)

Graphs are shown for the superposition of the integrated intensities I (θ, ψ0)
depending on the upper limit of the integration valuesψ0 of the angleψ0 � s/Z.
Four values ofψ0 are used, corresponding to s � 1 mm, s � 1.5 mm, s � 4.5 mm,
and s � 5 mm. Parameters used are the separation of the two openingsa � 1 mm,
opening of the slits d � 0.05 mm, wavelength λ � 0.0005 mm, distance from
source to the double slitZ � 9000 mm, and distance from aperture to observation
screen X � 4000 mm. By choosing the same values for a and λ as used in
FileFig 4.1, we find fringes disappear for the first time for the size of the source
of s � 4.5 mm, that is, twice as large as found for the distance between the
two point sources. Fringe patterns are observed for separations s smaller than
4.5 mm. For s � 4.5 mm we have disappearance of fringes for the first time. For
s larger than 4.5 mm the fringe pattern reappears.

C2COHEX

Intensity of an Extended Source

Width is s and interference diffraction is on a double slit. Slit openings are d and
separation a, distance from source to slit Z, from slit to screen X, coodinare on
screen is Y , and small angle approximation Y/X � θ .

a :� 1 d ≡ .05

0 ≤ ψ ≤ 2 k ≡ 0. .200 θk ≡ .01 − k · .0001 λ :� .0005 Z � 9000
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q
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q
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Application 4.2.
1. Change d to 0.1 and determine the s value for disappearance of fringes.

Compare to FileFig 4.1.
2. Change λ to 0.0006 and determine the s value for disappearance of fringes.

Compare to FileFig 4.1.
3. Change a to 1.2 and determine the s values for disappearance of fringes.

Compare to FileFig 4.1.

4.1.5 Visibility

4.1.5.1 Visibility for Two Point Sources

We have discussed appearance and disappearance of fringe patterns for two point
sources at variable distances, and for extended sources of variable diameters. To
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measure how well the fringes may be seen, Michelson has defined the visibility
of fringes as the absolute value of

V �
∣∣∣∣Itot,max − Itot,min

Itot,max + Itot,min

∣∣∣∣ . (4.9)

The intensities are taken in the nominator and denominator of one fringe. For the
pattern shown in the first graph of FileFig 4.2, one has Imax � 1 and Imin � 0
and obtains for the visibility, V � 1. When considering the superposition of two
intensity patterns, one has to determine Imax and Imin depending on the angle
ψ . We saw that the angle ψ is small because Z is large and applied the small
angle approximation (i.e., sin θ � Y/X and sinψ � Y ′/X). From Eqs. (4.3)
and (4.4), disregarding the diffraction factors, we have for the total intensity Itot

(i.e., the sum of Eqs. (4.3) and (4.4)),

Itot (Y ) � {cos[(πa/λX)(Y )]}2 + {cos[(πa/λX)(Y − Y ′)]}2. (4.10)

Using 2 cos2 α/2 � 1 + cosα, we get

Itot (Y ) � 1 + 1/2{cos[(2πa/λX)(Y )]} + 1/2{cos[(2πa/λX)(Y − Y ′)]}, (4.11)

and with cosα + cosβ � 2 cos{(α + β)/2} cos{(α − β)/2} one has

Itot (Y ) � 1 + {cos[(2πa/λX)(Y ′/2)]}{cos[(2πa/λX)(Y − Y ′/2)]}. (4.12)

The minimum and maximum values of Itot depend only on Y , since Y ′ is fixed
by the angle ψ for which we want to determine the visibility. The maximum
value of {cos(2πa/λX)(Y − Y ′/2)} is 1 because that is the maximum of the
cos-function and similarly the minimum value is −1. We have therefore

Itot,max � 1 + {cos[(2πa/λX)(Y ′/2)]}
Itot,min � 1 − {cos[(2πa/λX)(Y ′/2)]} (4.13)

and using the definition of Eq. (4.9) one obtains for the visibility

V � | cos(πa/λX)(Y ′)|. (4.14)

For small values of ψ � Y ′/X � s/Z we have a maximum. The first zero of
the visibility is for πaY ′/λX � π/2; that is, Y ′/X � s/Z � λ/2a.

In FileFig 4.3 we have plotted Eq. (4.14), using similar values to those in
FileFig 4.1. We observe that the visibility is first zero for s � 2.25 mm, the value
we determined in FileFig 4.1 for the first disappearance of the fringes. For larger
values of s we found reappearance of fringes (see the fourth graph of FileFig
4.1).

The interval from s � 0 to the value of s for which the visibility is first zero
is called the coherence interval.
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FileFig 4.3 (C3VIS2S)

Graph of the visibility for two point sources.

C3VIS2S is only on the CD.

Application 4.3.

1. Change λ to 0.0006 and determine the s value for V � 0. Compare to FileFig
4.1.

2. Change a to 1.2 and determine the s value for V � 0. Compare to FileFig
4.1.

4.1.5.2 Visibility for an Extended Source (Line Source)

The visibility for an extended source is obtained by determination of Itot,max and
Itot,min of the total integrated intensity. Again, disregarding the diffraction factor,
one has

Itot (Y ) � I0

∫ s/Z

0
{cos[(πa/λ)(sin θ − sinψ)]}2dψ. (4.15)

We calculate in small angle approximation the integral

Itot (Y ) � I0

∫ Y ′/X

0
{cos[(πa/λ)(Y/X − Y ′′/X)]}2d(Y ′′/X). (4.16)

First one has to go through the steps of Eqs. (4.10) to (4.12) and determine the
maxima and minima. The second step is the integration of Eq. (4.14) and the
result is

V � |{sin(πa/λX)(Y ′)}/(πa/λX)(Y ′)|, (4.17)

where Y ′/X � s/Z. The first minimum of the visibility is obtained at
(πa/λX)Y ′ � π , (that is for Y ′/X � λ/a). This is twice the value we found for
the two point sources at distance s. In FileFig 4.4 we have plotted, for similar
values to those used in FileFig 4.2, Eq. (4.17) as a function of the length s of the
extended source. One finds the first disappearance of the fringes at s � 4.5, the
same value determined in FileFig 4.2.

FileFig 4.4 (C4VISEX)

Graph of the visibility for an extended source.

C4VISEX is only on the CD.
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Application 4.4.

1. Change λ to 0.0006 and determine the s value for V � 0. Compare to FileFig
4.2.

2. Change a to 1.2 and determine the s value for V � 0. Compare to FileFig
4.2.

4.1.6 Michelson Stellar Interferometer

In the discussion of the intensity pattern produced byYoung’s experiment for the
two source points and the extended source, we assumed a fixed separation a of
the two openings. We studied the change in the intensity pattern depending on
the separation s of the source points and the diameter s of the extended source.
Michelson was interested in the measurement of the diameter of a star. In the
Young’s experiment we discussed above, the separation a of the two slits was
fixed and the distance between the two source points s was varied. Application
of this experiment to the measurement of the diameter of a star is very difficult
because both parameters s and a are fixed. Michelson wanted to modifyYoung’s
experiment by making the separation a variable. However, since the diameter
he wanted to measure was so small, the setup of Young’s experiment had to be
modified.

We start with Young’s experiment for two source points. The fringe pattern of
the superposition of the two patterns on the observation screen depends on the
distance of the two source points. This is shown in Fig. 4.4a. The intensities of
the two source points are for small angles

uI � A2{cos(πaθ/λ)}2 (4.18)

uII � A2{cos(πa(θ − φ)/λ)}2. (4.19)

The angle φ is what we wish to determine. In the setup of Figure 4.4a the
displacement of the intensity pattern of source I with respect to source II is
limited by the size of the distance a between the two slits. The modification is
shown in Figure 4.4b. A new parameter h of the large distance between the first
two mirrors is introduced. Changing the length h produces a change of the fringe
pattern. From the variation of the fringes for two values of h one can determine
the angle φ. In Figure 4.4b we show the modified setup and the two intensity
patterns are now given as

uI � A2{cos(πaθ/λ)}2 (4.20)

uII � A2{cos[π (aθ − hφ)/λ]}2. (4.21)

The superposition uI + uII will show maxima and minima depending on h for
fixed φ and a. We may calculate the angle φ from the observed h values for a
resulting maximum and the following minimum. For a resulting maximum we
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FIGURE 4.4 Michelson stellar interferometer: (a) light waves from two stars, I and II, forming
an angle φ when they arrive at a double slit of width a. The waves from each star produce a fringe
pattern on a screen at distance X, described by the coordinate YI and YII ; (b) four mirrors are
added, M1 to M4, to produce a new optical path difference hφ for the incident light, where h is
adjustable. The angle θ is the diffraction angle.

have

[π (aθ − h1φ)/λ] � (π/2)(2m) (4.22)

and for the following minimum

[π (aθ − h2φ)/λ] � (π/2)(2m+ 1). (4.23)

The difference for h2 − h1 � λ/2φ and φ is obtained since h2 − h1 can be mea-
sured. This type of modified interferometer was applied to measure the angular
diameter of Betelgeuse in the Orion constellation. At the Mt. Wilson observatory
an interferometer was used with a distance h of the two mirrors of 302 cm (121
in.). The angle was determined to be 22.6 × 10−8 rad. The distance to the star
was known from parallax measurement and the diameter was determined to be
about 300 times that of the sun. A simulation with a numerical example is given
in FileFig 4.5. The graph shows a plot of the interference pattern for assumed
values of h and φ. We determine the two values of h for observance and disap-
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pearance of fringes. Application of h2 − h1 � λ/2φ results in the angle and that
must be the angle we had to assume for the simulation.

FileFig 4.5 (C5MICHSTS)

Graphs are shown of the resulting intensity interference pattern of uI and uII ,
depending on values of h over the range Y � −20 to 20. The distance from
source to interferometer is X � 4000, wavelength λ � 0.0005, separation in
the interferometer a � 0.5. For the simulation we have to use a value for the
angle we actually want to determine and choose φ � 0.00005. We then can
determine the h values of the minima and maxima and they must satisfy the
relation h2 − h1 � λ/2φ.

C5MICHSTS

Michelson’s Stellar Interferometer

Diffraction angle is Y/X, wavelength λ, and angle to be determined is �. In-
terferometer distance of mirrors M1 and M4 is h. In the real setup we change
h to go from fringe pattern to no fringe pattern. From the difference of these
two values we calculate the angle �. In this simulation we choose an angle �
and show that the fringe pattern changes for the two values of h we determine.
Example h equals 100 and 95.

Y :� −30, −29.9.. 30 � ≡ .00005 X :� 4000 λ :� .0005 d ≡ .5

uI (Y ) :� cos

[
π · d ·

(
Y

X · λ
)]2

uII (Y ) :� cos

(
π ·

Y
X

· d − h ·�
λ

)2

.

h ≡ 95

This is an indication of the presence or absence of fringes.

+
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Application 4.5. Change the wavelength to 0.00055 and find φ from observed
values of h2 − h1.

4.2 TEMPORAL COHERENCE

4.2.1 Wavetrains and Quasimonochromatic Light

We have studied in Chapter 2 the superposition of monochromatic waves and
their amplitude and intensity pattern. In this section we examine finite wave-
trains and their superposition. Monochromatic waves are infinitely long. The
sum of a number of monochromatic waves with wavelengths in a certain wave-
length interval results in a periodic wave. However, when integrating over the
wavelength interval, one obtains a finite wavetrain, (see Figure 4.5). The wave-
train appears with decreasing amplitude for large distances. The length of the
wavetrain �x � lc is proportional 1/�ν, where �ν is the frequency interval
corresponding to the wavelength interval�λ of the wavetrain. The average wave-
length of the wavetrain is called λm. The reciprocity of �x and �ν comes from
Fourier transformation theory. The “window” in the space domain is lc and�ν is
the “window” in the frequency domain. The product�x and�ν is a constant and
appears in modified form in quantum mechanics as the “uncertainty relation.”
Wavetrains which satisfy the condition

�λ/λm � 1 (4.24)

are called quasimonochromatic light.
To get an idea of how the waveform appears for quasimonochromatic light,

we show in the first graph of FileFig 4.6 the superposition of four waves having
wavelength λ � 1.85, 1.95, 2.05, and 2.15 for medium wavelength λm � 2.
In the second graph we show the waveform for the integration over the same
wavelength interval.

u(Y ) �
∫ λ2

λ1

{cos(2πx/λ)}dλ. (4.25)

FIGURE 4.5 Schematic of a wavetrain of finite length lc. One refers to lc as the coherence length.
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FileFig 4.6 (C6SUPERS)

First graph: Sum of four waves with wavelength λ � 1.85, 1.95, 2.05, and 2.15
for medium wavelength λm � 2. Second graph: Integration over the wavelength
range from λ � 1.85 to 2.15.

C6SUPERS is only on the CD.

Application 4.6.

1. Extend the x coordinate to larger ranges to see more of the periodicity for
the “summation" case and the decrease for the integration case.

2. Study the waveform for different wavelength intervals for both cases.
3. Extend the sum of four to a larger sum of different wavelengths, but keep the

wavelength interval constant. Compare with the integration case.

4.2.2 Superposition of Wavetrains

In Chapter 2 we studied interference fringes produced by monochromatic light.
For the magnitude of the superposition of two monochromatic waves with optical
path difference δ, we have used cos(πδ/λ).

Interference fringes may be observed for quasimonochromatic light of narrow
width of wavelength �λ. In FileFig 4.7 we show the amplitude pattern of the
superposition of two wavetrains. The interval of integration is λ � 1.85 to 2.15
and three optical path differences are considered, δ � 0, 1

2λm, and λm.

I (Y ) �
∫ λ2

λ1

[{cos(2π (x − δ)/λ)} + {cos(2π (x)/λ)}]dλ. (4.26)

The optical path difference of δ � 0 corresponds to constructive interference for
δ � (1/2)λm to destructive interference and for δ � λm again to constructive
interference. The resulting amplitude of the case of destructive interference is
not zero, but much smaller than for constructive interference. We see that the
interference pattern decreases for larger and larger values of x. In FileFig 4.8 we
have calculated the intensity pattern, corresponding to the cases of constructive
interference, δ � 0, and δ � λm, and destructive interference, δ � 1

2λm.

FileFig 4.7 (C7COHTEMS)

Amplitude pattern of superposition of two wavetrains. Graphs 1 to 3: Integration
of waves over wavelength range from λ � 1.85 to 2.15, having optical path
differences of λ � 0, 1

2λm, and λm, respectively.
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C7COHTEMS is only on the CD.

Application 4.7. Change the wavelength interval to smaller values and
approach

in 1: the corresponding case of the monochromatic wave;
in 2: the corresponding monochromatic case for destructive interference;
in 3: the corresponding monochromatic case for constructive interference.

FileFig 4.8 (C8COHINTS)

Intensity pattern of superposition of two wavetrains. Graphs 1 to 3: Integration
of waves over wavelength range from λ � 1.85 to 2.15, having optical path
differences of δ � 0, 1

2λm, and λm, respectively.

C8COHINTS is only on the CD.

Application 4.8. Change the wavelength interval to smaller values and
approach

in 1: the corresponding case of the monochromatic wave;
in 2: the corresponding monochromatic case for destructive interference;
in 3: the corresponding monochromatic case for constructive interference.

4.2.3 Length of Wavetrains

The length of finite wavetrains (see Fig. 4.5) may be determined with a Michelson
interferometer. The incident light is divided at the beam splitter into two parts
traveling to M1 and M2, respectively (see Fig. 4.6a). Each part is reflected by
a mirror and travels back to the beamsplitter (Fig. 4.6b). At the beam splitter,
the reflected part of the light from M1 and the transmitted part of the light from
M2 are superimposed and travel to the detector (Fig. 4.6c). When the mirror
in the Michelson interferometer is displaced, the light traveling to the detector
shows a superposition pattern of two wavetrains of finite length. First, the well-
known pattern of the superposition of two monochromatic waves appears. At a
certain large distance this pattern disappears. The wavetrain from one arm of the
Michelson interferometer will “miss” the other wavetrain because of the finite
length of the wavetrains (see Fig. 4.6d). As an example we may look at the
emission of light from 86Kr at 6056.16 Å. Since the wavetrain has a length of
about 1 m and displaces the one mirror by 1/2 meter because of reflection, the
interference is not observable. For this reason one calls the length of the wavetrain
the coherence length. For most atomic emission processes the coherence length
is much smaller whereas resonance in laser cavities may produce a much longer
coherence length of the order of 105 m.
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FIGURE 4.6 Splitting of the incident light in a Michelson interferometer: (a) incident light;
(b) reflected light traveling to beam splitter; (c) two waves traveling to the detector; (d) for large
displacements of M1, a finite wavetrain “misses” recombination with its “counterpart.”

APPENDIX 4.1

A4.1.1 Fourier Transform Spectrometer and Blackbody
Radiation

Blackbody radiation contains a large band of wavelengths and has a coherence
length with respect to the medium wavelength λm, of only a few wavelength’s. If
we consider a series of filters with smaller and smaller band width, the coherence
length of the light passing these filters has increasingly larger and larger values.
Michelson’s interferometer may be used for Fourier transform spectroscopy, as
discussed in Chapter 9. When using blackbody radiation, the total bandwidth of
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the incident light has to be limited to the interval from 0 to a highest frequency,
determined by the sampling theorem. The Fourier transform process analyzes
the light and determines the intensity of the resolution width�ν, which is equal
to 1/2 L where L is the length of the interferogram in meters. This length L may
be increased to larger values and consequently �ν is decreased. Therefore the
length of the corresponding wavetrain lc is increasing. This process comes to a
halt when the signatures of the interferogram are obscured by noise.

In comparison, the size of the coherence length of the atomic emission of
86Kr has its limitation in a time-limited emission process whereas when using
blackbody radiation in Fourier transform spectroscopy, the coherence length is
limited by the available signal-to-noise level.

See also on CD

PC1. Two Source Points (see p. 185).
PC2. Extended Sourc.(see p. 190).
PC3. Visibility (see p. 194).
PC4. Caparison of Visibilities (see p. 194).
PC5. Calculation of the Visibility for Fresnel’s Mirror Interferometer (see p.

193 and 93).
PC6. Michelson Stellar Interferometer (see p. 195).
PC7. Quasimonochromatic Light (see p. 198).
PC8. Quasimonochromatic Light and Interferogram (see p. 199).
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Maxwell’s
Theory

5.1 INTRODUCTION

In Chapter 2, we discussed the wave theory of light, developed a model to su-
perimpose waves, and described the resulting interference pattern in terms of
intensity depending on wavelength. The model was based on the scalar wave
equation, but in addition we made reference to electromagnetic theory.We needed
to take into account that a light wave changes its wavelength when traveling
through a medium of refractive index n and also used Fresnel’s formulas. Elec-
tromagnetic theory is described by Maxwell’s equations. The first hint that light
is electromagnetic radiation came from electromagnetic experiments not involv-
ing visible light. In the analysis of the experiment a constant appeared which had
the value of the speed of light. From relativity theory we know that the speed c of
light is a fundamental constant and the ultimate limit of speed. We derive from
Maxwell’s theory and the laws of reflection and refraction, as we assumed in the
chapter on geometrical optics, that light travels in straight lines. We also may
derive from Maxell’s equations what we used in the chapters on interference and
diffraction and obtained from the scalar wave equation.

In this chapter we describe light by electrical and magnetic field vectors and
discuss the polarization of light. At each point in space there are two field vec-
tors vibrating in the perpendicular direction: taking boundary conditions into
account we derive Fresnel’s formulas. Electromagnetic theory is the basis for
the description of all optical phenomena as long as quantum effects are not
involved.

Maxwell’s equations are a mathematical formulation of the electromagnetic
laws of Faraday, Ampere, and Gauss. Maxwell analyzed the mathematical
structure of these experiments, added some terms suggested by similarities in
appearance of the electric and magnetic fields, and formulated the four equations

205
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bearing his name. Today we write Maxwell’s equations in vector notation and
call B the magnetic field vector. This point is well explained by Feynman in his
Lecture Notes, Volume II, pp. 32–34.

The four Maxwell’s equations may be written as

∇ × E � −∂B/∂t
c2∇ × B � j/ε0 + ∂E/∂t (5.1)

∇ · E � ρ/ε

∇ · B � 0,

where E is the electrical field vector, B the magnetic field vector, j the current
density vector, ρ the charge density, and ε0 � 8.854×10−12 F/m the permittivity
of vacuum. The mathematical form of the differential vector operator ∇ and its
scalar “square" ∇2 is given in Appendix 5.1.

For light propagating in a vacuum, we have j � 0 and ρ � 0 and Maxwell’s
equations are reduced to

∇ × E � −∂B/∂t
c2∇ × B � +∂E/∂t (5.2)

∇ · E � 0

∇ · B � 0.

From this set of equations we arrive at the wave equations for the vectors E and
B as shown in Appendix 5.1.

∂2E/∂x2 + ∂2E/∂y2 + ∂2/E/∂z2 � (1/c2)∂2E/∂t2 (5.3)

∂2B/∂x2 + ∂2B/∂y2 + ∂2/B/∂z2 � (1/c2)∂2B/∂t2. (5.4)

5.2 HARMONIC PLANE WAVES AND THE
SUPERPOSITION PRINCIPLE

5.2.1 Plane Waves

We consider a nondispersive medium.A plane wave solution of the wave equation
for the electrical field components vibrating in the y direction and propagating
in x direction may be written as

Ey � Eyo cos{2π (x/λ− t/T )}, (5.5)

where Eyo is the magnitude of the electrical field, λ the wavelength, t the time,
and T the period of vibration. Equation (5.5) may be rewritten, introducing the
wave vector k � 2π/λ, and the angular velocity ω � 2π/T . Using exponential
notation we have

Ey � Eyo exp i(kx − ωt). (5.6)
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q

f

FIGURE 5.1 Coordinate system for a wave with wave vector kn � 2π/λn, traveling in x, y, z
space. Using k here must be distinguished from k, the unit vector in the z direction. The vector r
points from 0 to a point in space with the coordinates (x, y, z).

Introduction of Equation (5.6) into the wave equation results in

ω/k � v (here v � c), (5.7)

where ω/k is the phase velocity.
To extend the propagation to any direction in x, y, z space we use vector

notation. For the description of the plane waves we choose in the x, y, z space
the coordinate axes xi, yj, and zk, where i, j, k are unit vectors and a point in x,
y, z space is given as r � xi + yj + zk. (Note that k is used for the wave vector
and for the unit vector in z direction.) When solving Eq. (5.4) by “separation
of variables" one obtains for the wave vector in the direction of propagation
kn � kx i + kyj + kzk, where n is a unit vector and k � 2π/λ (Figure 5.1). We
need to find the components kx , ky , and kz for a wave moving in x, y, z space in
direction n. To do this we evaluate the dot product k(n · i), k(n · j), and k(n · k)
and obtain for kx , ky , and kz (Figure 5.1),

kx � (2π/λ) · sin φ cos θ

ky � (2π/λ) · sin φ sin θ (5.8)

kz � (2π/λ) · cosφ.

For the special case of the Ey component moving in the x direction we have
θ � 0◦ and φ � 90◦, and get (Chapter 2),

Ey � Eyo exp i{2πx/λ− 2πt/T }. (5.9)

For the case of Ey moving in the x-z plane, one has θ � 0◦,

kn � kx i + kzk � (2π/λ)(sin φi + cosφk) (5.10)
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and obtain

Ey � Eyo exp i{kx sin φ + kz cosφ − 2πt/T } (5.11)

For the general case of E and B propagating in three dimensions one gets

E � E0 exp i{k(nxx + nyy + nzz) − ωt} (5.12)

and

B � B0 exp i{k(nxx + nyy + nzz) − ωt}.

5.2.2 The Superposition Principle

The superposition principle is an important principle in physics. Adding n

solutions of the wave equations we may write

E(x, y, z, t) �
n∑
i

Ei(x, y, z, t). (5.13)

Since the wave equation is a linear second-order differential equation and the
Ei(x, y, z, t) are solutions to it, it follows that E(x, y, z, t) is also a solution.

5.3 DIFFERENTIATION OPERATION

Inserting E and B into Maxwell’s equations, one finds, the following as a result
of differentiation with respect to time and space coordinates.

5.3.1 Differentiation “Time" ∂/∂t

One obtains for operating (∂/∂t) on the function exp i{k(nxx+nyy+nzz)−ωt}:
−iω exp i{k(nxx + nyy + nzz) − ωt}, (5.14)

that is, multiplication by −iω of the exponential function.

5.3.2 Differentiation “Space" ∇ � i∂/∂x + j∂/∂y + k∂/∂z

Differentiation with respect to x, that is, (∂/∂x) on the function exp i{k(nxx +
nyy + nzz) − ωt}, results in

iknx exp i{k(nxx + nyy + nzz) − ωt} (5.15)

and operating with ∇ on the function exp i{k(nxx + nyy + nzz) − ωt} one gets

ikn exp i{k(nxx + nyy + nzz) − ωt}, (5.16)

that is, multiplication by ikn of the exponential function.



5.4. POYNTING VECTOR IN VACUUM 209

The results of differentiation under Sections 5.3.1 and 5.3.2 may be stated as:
the differentiations of plane wave solutions of E and B with respect to time or
space coordinates are equivalent to multiplications by

Time coordinate: (∂/∂t) → −iω
Space coordinate: ∇ → ikn.

Substitution of these operations into the set of Maxwell’s equations for a vacuum
results in

kn × E � iωB (5.17a)

c2kn × B � −iωE (5.17b)

kn · E � 0 (5.17c)

kn · B � 0. (5.17d)

From Eq. (5.17a) and (5.17b) one sees that the vectors n, E, and B form a mutual
orthogonal triad. Since n points into the direction of propagation, E and B are
perpendicular to n and vibrate perpendicular to each other and to the direction of
propagation. The field vectors E and B are both transverse waves (see Eqs. (5.17c)
and (5.17d)) and have no component in the direction of propagation. For the phase
velocity ω/k, we obtain c for the wave traveling in a vacuum. The components
of E and B are related by

|B| � (1/c)|E|. (5.18)

5.4 POYNTING VECTOR IN VACUUM

The Poynting vector S is defined as the time rate of flow of electromagnetic
energy per unit area

S � ε0c
2E × B � (1/µ0)E × B. (5.19)

We have in MKS units: watts per square meter. The direction of the Poynting
vector is parallel to the wave vector kn. If one takes E in the x direction and B
in the y direction, the vector product of Eq. (5.19) is in the z direction

S � k(1/µ0)E0B0 cos2{k(nxx + nyy + nzz) − ωt}, (5.20)

where we used

E � iE0 cos{k(nxx + nyy + nzz) − ωt}
and

B � jB0 cos{k(nxx + nyy + nzz) − ωt}.
In the case of vacuum one has B0 � (1/c)E0 and gets

S � k(1/cµ0)E0E0 cos2{k(nxx + nyy + nzz) − ωt}.
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Since detectors cannot follow a time variation of optical frequencies, the time
average of the cos2 function must be used. The integral over one periodT , divided
by T , results in 1/2 (see Chapter 2). Therefore, one has for the time average of
the Poynting vector

〈S〉 � (1/2)(1/cµ0)E2
0 . (5.21)

One observes that the flow of energy is proportional to the square of the amplitude
of the electrical field vector. Using complex notation, one may write

S � k(1/cµ0)E0E0 exp i{k(nxx + nyy + nzz) − ωt}.
The absolute value of S is calculated from the square root of SS∗. As a result the
exponential factor is eliminated and one has

|S| � (1/cµ0)E2
0 . (5.22)

Equation (5.21) for the time average carries the factor 1/2, but that factor is
not present when taking the absolute value. However, the flow of energy is still
proportional to the square of the amplitude of the electrical field vector. Compare
the factor 1/2 with what has been discussed in Chapter 2 on complex notation
and intensities.

5.5 ELECTROMAGNETIC WAVES IN AN ISOTROPIC
NONCONDUCTING MEDIUM

In the following we consider isotropic materials which do not have an optic axis.
In contrast, in Section 5.7 we discuss birefringent materials which have an optic
axis.

A harmonic wave vibrating in the y direction and propagating in the x direction
may be represented as

Ey � Eyo cos(2π{x/λ− t/T }). (5.23)

Using k � 2π/λ and ω � 2πν, where ν is the frequency ν � 1/T , we have
for the product λν � c, and for the phase velocity ω/k � c. One may write
Eq. (5.23) as

Ey � Eyo cos(kx − ωt). (5.24)

In an isotropic, nonconductive medium, the phase velocity ω/k is the same in
all directions and is called v. The index of refraction n is defined as n � c/v.
We call the wavelength in the medium λn and have λnν � v. One may write for
the wave in the medium

Ey � Eyo cos(2πx/λn − ωt). (5.25)
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Since the frequency is the same in vacuum or in the medium, one has ν � c/λn �
v/λn, or the wavelength in the medium λn � λ(v/c) � λ/n. Therefore we may
also write

Ey � Eyo cos(2πxn/λ− ωt). (5.26)

As the refractive index n is always larger than one, the wavelength λ in vacuum
is reduced to λm � λ/n in the medium. (Also see “optical path difference" in
Chapters 2 and 3.) For harmonic waves, the proportionality of B and E changes
from Eq. (5.18) for a vacuum to

|B| � (1/v)|E| � (n/c)|E|. (5.27)

Consequently the Poynting vector S has for this case the average value

〈S〉 � (1/2)(n/cµ0)E2
0 (5.28)

and the absolute value is

|S| � (n/cµ0)E2
0 . (5.29)

5.6 FRESNEL’S FORMULAS

5.6.1 Electrical Field Vectors in the Plane of Incidence
(Parallel Case)

We consider an interface in the X–Z plane of two nonconducting isotropic media
with refractive indices n1 and n2. A wave is incident on the interface and we
assume that its electrical field vector E vibrates in the plane of incidence,

E‖ � E‖o exp i(k(n · r) − ωt), (5.30)

and its magnetic field vector is perpendicular to the plane of incidence,

B⊥ � B⊥o exp i(k(n · r) − ωt). (5.31)

The propagation vector kn is in the plane of incidence and in our coordinate
system, B⊥ is in the Z direction. The sign is determined with the right-hand rule
for the triad of n, E, and B. To determine the analytical expression of the exponent
in Eqs. (5.30) and (5.31), the unit vectors ni, nr, and nt, pointing in the direction
of propagation of the incident, reflected, and transmitted light (Figure 5.2), are
calculated as

ni � (ni · i) i + (ni · j) j (5.32)

nr � (nr · i) i + (nr · j) j (5.33)

nt � (nt · i) i + (nt · j) j (5.34)
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FIGURE 5.2 Coordinates for the derivation of Fresnel’s formulas for the case where the electrical
field vectors are parallel to the plane of incidence.All magnetic field vectors point in theZ direction.
The choice of the direction of the E vectors is such that for normal incidence Ei and Er point in
the opposite direction (Born and Wolf convention).

and for the dot products one gets

(ni · i) � sin θi (nr · i) � sin θr (nt · i) � sin θt (5.35)

(ni · j) � − cos θi (nr · j) � cos θr (nt · j) � − cos θt . (5.36)

The incident wave, using ni(Xi + Y j) may be written as

Ei � Eio exp i[k1(sin θi i − cos θij) · (Xi + Y j) − ωt]. (5.37)

After calculating the dot products and proceeding similarly for the reflected and
transmitted components of the electrical field Er and Et , we list all components
as

Ei � Eio exp i{k1(sin θiX − cos θiY ) − ωt} incident (5.38)

Er � Ero exp i{k1(sin θrX + cos θrY ) − ωt} reflected (5.39)

Et � Eto exp i{k2(sin θtX − cos θtY ) − ωt} transmitted, (5.40)

where k1 � 2πn1/λ and k2 � 2πn2/λ. The refractive index n1 is the refractive
index of the medium of the incident and reflected waves, and n2 the refractive
index of the medium of the transmitted wave. Note that both are refraction indices
and not components of the vector n.

The boundary condition of electromagnetic theory for a dielectric interface
requires that the tangential component of the field vectors E and B are continuous.
We have to take the amplitudes of the incident and reflected wave and set it equal
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to the amplitude of the transmitted wave. (This should not be confused with
energy conservation, which is when the intensity of the incident wave is equal to
the intensity of the reflected plus transmitted wave.) The field components Ei ,
Er , and Et are not parallel to the X-axis and their directions have been chosen
similar to those by Born and Wolf (II Ed. 1964, p.38–41). To apply the boundary
conditions, one has to use the projections on the X-axis (see Figure 5.2), and has
for Y � 0, using Eqs. (5.38) to (5.40),

cos θiEio exp i[k1(sin θiX) − ωt] − cos θrEro exp i[k1(sin θrX) − ωt]

� cos θtEto exp i[k2(sin θtX) − ωt]. (5.41)

This has to be true for all times; that is,

k1 sin θi � k1 sin θr � k2 sin θt . (5.42)

As a result one has the law of reflection,

θi � θr, (5.43)

and with k1 � 2πn1/λ and k2 � 2πn2/λ, the law of refraction,

n1 sin θi � n2 sin θt . (5.44)

We therefore have to consider

cos θiEio − cos θrEro � cos θtEto. (5.45)

Since Eor and Eot are unknowns, we need a second equation to determine their
values. This can be obtained from the applications of the boundary conditions
to the magnetic field vectors B⊥. The three vectors perpendicular to the plane
of incidence Bi , Br , Bt , which correspond to Ei , Er , and Et , all point in the Z
direction (Figure 5.2). The phase of the three B vectors is the same as it was for
the three E vectors. The application of the boundary condition results in

Bi + Br � Bt (5.46)

From Eq. (5.27), one has B � (1/v)E. For a medium with refractive index
v � c/n one has B � (n/c)E. Insertion into Eq. (5.46) results in

n1Eio + n1Ero � n2Eto. (5.47)

Dividing Eqs. (5.45) and (5.47) by Eio, which normalizes by the magnitude of
the incident wave, and calling the reflected amplitude r‖ � Ero/Eio, and the
transmitted amplitude t‖ � Eto/Eio, one has two equations for r‖ and t‖:

cos θrr‖ + cos θt t‖ � + cos θi (5.48)

and

n1r‖ − n2t‖ � −n1. (5.49)
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FIGURE 5.3 Coordinates for the derivation of Fresnel’s formulas for the case where the electrical
field vectors are perpendicular to the plane of incidence. All electrical field vectors point in the
Z direction. The choice of direction of the B vectors is such that for normal incidence Bi and Br
point in the opposite direction (but Ei and Er are parallel; Born and Wolf convention).

Renaming θ , both the angle of incidence θi and the angle of reflection θr , and
calling the angle of refraction θt � θ ′′, we solve Eqs. (5.48) and (5.49) for r‖
and t‖ (FileFig 5.1):

r‖ � (n2 cos θ − n1 cos θ ′′)/(n2 cos θ + n1 cos θ ′′) (5.50)

t‖ � (2n1 cos θ )/(n2 cos θ + n1 cos θ ′′). (5.51)

These are Fresnel’s formulas for the case where the E vector of the incident light
is in the plane of incident, called the parallel case, the TM-case, orp-polarization.

5.6.2 Electrical Field Vector Perpendicular to the Plane of
Incidence (Perpendicular Case)

In Figure 5.3, we show Ei , Er , and Et pointing out of the plane of incidence,
parallel to the Z-axis. The corresponding magnetic field vectorsBi ,Br , andBt are
also indicated. They are in the plane of incidence and need to be projected onto
the X-axes. Similar to the discussion above, after application of the boundary
conditions, we have for the magnetic field vectors,

− cos θiBio + cos θrBro � − cos θtBto, (5.52)

or, rewritten using the electrical field vector,

−n1 cos θiEio + n1 cos θrEro � −n2 cos θtEto. (5.53)

A second relation is obtained for the electrical field vectors

Eio + Ero � Eto. (5.54)
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We divide Eqs. (5.53) and (5.54) byEio and callEro/Eio the reflected amplitude
r⊥, andEto/Eio the transmitted amplitude t⊥.After rearranging the two equations
for r⊥ and t⊥ we have

n1 cos θrr⊥ + n2 cos θt t⊥ � +n1 cos θi (5.55)

r⊥ − t⊥ � −1. (5.56)

After solving for r⊥ and r⊥ one obtains

r⊥ � (n1 cos θ − n2 cos θ ′′)/(n1 cos θ + n2 cos θ ′′) (5.57)

t⊥ � (2n1 cos θ )/(n1 cos θ + n2 cos θ ′′). (5.58)

These are Fresnel’s formulas for the case where the E vector of the incident
light is pointing out of the plane of incidence, called the perpendicular case, the
TE-case, or s-polarization.

FileFig 5.1 (M1FRFOR)

We may use the symbolic operations of a computer program to solve for Fresnel’s
formulas for the p-case (parallel) and s-case (perpendicular).

M1FRFOR is only on the CD.

5.6.3 Fresnel’s Formulas Depending on the Angle of
Incidence

Using the law of refraction, we can eliminate θ ′′ and express Fresnel’s formulas
depending on the angle of incidence. Application of

cosθ ′′ �
√

1 − (sin θ ′′)2 �
√

(1 − [(n1/n2) sin θ ]2

results in rp and tp for the parallel (p) case

rp � (n2 cos −n1

√
1 − [(n1/n2) sin θ ]2)

(n2 cos θ + n1

√
1 − [(n1/n2) sin θ ]2)

(5.59)

tp � (2n1 cos θ )

(n2 cos θ + n1

√
1 − [(n1/n2) sin θ ]2)

, (5.60)

and rs and ts for the perpendicular (s) case

rs � (n1 cos θ − n2

√
1 − [(n1/n2) sin θ ]2)

(n1 cos θ + n2

√
1 − [(n1/n2) sin θ ]2)

(5.61)

ts � (2n1 cos θ )

(n1 cos θ + n2
√

(1 − [(n1/n2) sin θ2)
. (5.62)
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5.6.4 Light Incident on a Denser Medium, n1 < n2, and the
Brewster Angle

5.6.4.1 Phase Shifts

We mentioned in Section 6.1 that we have chosen the sign of the reflected electri-
cal vectors at the boundary in the same way as done by Born and Wolf (1964). At
normal incidence, this sign convention results in a negative sign for the reflection
coefficient of the p-case. For the s-case there is a positive sign. Since there is no
distinction between the p-case and s-cases for normal incidence, how can this
be explained?

A light wave reflected at a denser medium picks up a phase shift of π , and
we may write for the reflection coefficients: absolute value times the complex
phase factor; that is, for the p- and s-cases, rp � |rp|eiφp and rs � |rs |eiφs ,
respectively. In the book by Born and Wolf (1964) the phase factor for the p-
case is included in rp; that is, for normal incidence φp � π , eiφp � −1, and rp
is −|rp|. In the s-case the phase factor is not included; that is φs � 0, eiφs � 1,
and rs is |rs |. Graphs of |rp|, |rs |, φp, and φs are shown in FileFig 5.2 for light
incident from a less dense medium to a more dense medium. Note that φp is the
argument of rp, and φs of rs .

5.6.4.2 Brewster’s Angle

In FileFig 5.2 one observes from graphs of rp and rs , depending on the angle of
incidence θ , that for a specific angle, called the Brewster angle, rp is zero and
rs is not. From Eq. (5.59) we have for the Brewster angle

(n2 cos θB − n1

√
1 − [(n1/n2) sin θB]2) � 0. (5.63)

We abbreviate a � n2/n1 and square Eq. (5.63):

a2 cos2 θB � 1 − (sin2 θB/a
2) � cos2 θB + sin2 θB − (sin2 θB/a

2) (5.64)

or

(a2 − 1) cos2 θB � (1 − a−2)(sin2 θB) � [(a2 − 1)/a2] sin2 θB.

Since a2 > 1 we can cancel (a2 − 1) and obtain

tan θB � n2/n1. (5.65)

This is the tangent of the Brewster angle.

FileFig 5.2 (M2FRN2L)

Fresnel’s formulas for n1 < n2. Graphs are shown of the absolute value and
the argument of rp, rs , and tp, ts , depending on the angle of incidence θ . The



5.6. FRESNEL’S FORMULAS 217

choice of n1 � 1 and n2 � 1.5 presents the case for light incident on a material
like glass. At the Brewster angle, one sees that the phase angle changes for
the parallel case from 0 to 180 degrees. For the perpendicular case there is no
Brewster angle and no change. The transmission coefficients are not undergoing
any phase shifts.

M2FRN2L

Amplitudes

Fresnel’s formulas as function of angle of incidence for first medium 1, second
medium 2, and n1 < n2.
1. Reflection coefficients

Absolute value and imaginary parts for p-case (parallel) and s-case
(perpendicular).

rp(θ ) :�
(
n2
n1

) · cos
(
2 · π

360 · θ) −
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

(
n2
n1

) · cos
(
2 · π

360 · θ) +
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

rs(θ ) :�
cos

(
2 · π

360 · θ) − (
n2
n1

) ·
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

cos
(
2 · π

360 · θ) + (
n2
n1

) ·
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

θ ≡ .1, .2.. 90 n1 ≡ 1 n2 ≡ 1.5.

q

q

q

q
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q

q q

q

2. Transmission coefficient
Absolute value and imaginary part for p-case and s-case.

tp(θ ) :� 2 · cos
(
2 · π

360 · θ)
(
n2
n1

) · cos
(
2 · π

360 · θ) +
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

ts(θ ) :� 2 · cos
(
2 · π

360 · θ)

cos
(
2 · π

360 · θ) + (
n2
n1

) ·
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

q q

qq

q

q

q

q
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Application 5.2.

1. Study, for a large angle, the changes of the Brewster angle and the slope of
the reflection coefficient. Choose n1 from a value close to n2 to values much
smaller than n2. Save the case n1 smaller than n2 for FileFig 5.4.

2. Make graphs for n1 � 1 and n2 for two different refractive indices. Study
the changes of the argument, the Brewster angle, and the slope of the reflec-
tion coefficient at large angles, that is, at grazing angle incidence. Make the
difference of n2 and n′

2 larger and smaller.
3. Look at the transmission coefficients for the p- and s-cases and plot them on

one graph. Study the difference of the two for different refractive indices n2.

5.6.5 Light Incident on a Less Dense Medium, n1 > n2,
Brewster and Critical Angle

5.6.5.1 Brewster Angle

In FileFig 5.3 we have plotted the reflection and transmission coefficients for
light incident on a less dense medium. One sees that the general shape of the
reflection and transmission coefficients are the same as found for the casen1 < n2

discussed in Section 5.6.4, and the Brewster angle is present for the parallel case.

5.6.5.2 Critical Angle and Phase Shifts

At a larger angle than the Brewster angle, called the critical angle θc, the curves
for the absolute value of rp and rs approach 1, while the transmission coefficients
decrease to 0. All arguments of rp and rs , and tp and ts decrease after the critical
angle. We apply the law of refraction to this case and find that the refraction
angle becomes imaginary when the angle of incidence exceeds the critical angle
given by

sin θc � n2/n1, (5.66)

where n1 is the medium with the larger index of refraction, from which the light
is incident on the interface. The question of real and imaginary refraction angles
is studied in FileFig 5.4.

FileFig 5.3 (M3FRN2S)

Fresnel’s formulas for the case n1 > n2. Graphs are shown of the absolute value
and the argument of rp, rs , and tp, ts , depending on the angle of incidence θ .
The choice of n1 � 1 and n2 � 1.5 presents the case for light incident on a
glasslike material. The Brewster angle appears again for rp and for both rp and
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rs the critical angle appears. The absolute value of the transmission coefficients
increases before the critical angle and decreases thereafter.

M3FRN2S

Amplitudes

Fresnel’s formulas as function of angle of incidence for first medium 1, second
medium 2, and n1 > n2.

1. Reflection coefficients
Absolute value and imaginary parts for p-case (parallel) and s-case
(perpendicular).

rp(θ ) :�
(
n2
n1

) · cos
(
2 · π

360 · θ) −
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

(
n2
n1

) · cos
(
2 · π

360 · θ) +
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

rs(θ ) :�
cos

(
2 · π

360 · θ) − (
n2
n1

) ·
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

cos
(
2 · π

360 · θ) + (
n2
n1

) ·
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

θ ≡ .1, .2.. 90 n1 ≡ 1.5 n2 ≡ 1.

q

q

q

q
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q
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q
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2. Transmission coefficient
Absolute value and imaginary part for p- and s-cases.

tp(θ ) :� 2 · cos
(
2 · π

360 · θ)
(
n2
n1

) · cos
(
2 · π

360 · θ) +
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

ts(θ ) :� 2 · cos
(
2 · π

360 · θ)

cos
(
2 · π

360 · θ) + (
n2
n1

) ·
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

q

q

q

q
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q

q

q

q

Application 5.3.
1. Study reflection and transmission coefficients by changing from n1 > n2 to
n1 ≈ n2 and n1 < n2 and compare with FileFig 5.2. Observe the different
shape of ts and tp as they appear in FileFigs.3 and 4. This is an indication
that t2s and t2p are not to be confused with the transmitted intensity.

2. Plot on the same graph, for n � 1.5 and two different indices of refraction,
the reflection coefficients and look at the differences of the curves for larger
and smaller differences of the two indices.

3. Change the indices of refraction and observe how the critical angle is
changing.

FileFig 5.4 (M4SNELL)

The law of refraction n1 sin θ1 � n2 sin θ2 is plotted as θ2(θ1) � asin
[
n1 sin(θ1)

n2

]
:

(1) a graph of θ2(θ1) for n1 < n2; (2) a graph of θ2(θ1) for n1 > n2. The
graph ends at the critical angle; and (3) real and imaginary parts, separately
for n1 > n2. One extends from zero to the critical angle, the other from the
critical angle to 90◦.

M4SNELL is only on the CD.

5.6.6 Reflected and Transmitted Intensities

In contrast to what was done in the application of the boundary conditions, we
now calculate the energy flow. At the boundary, we equated the sum of the fields
of incident and reflected amplitude on one side with the transmitted amplitude
on the other side. Now we want to find out how much of the incident energy is
reflected and transmitted. From Eq. (5.19) we have for the Poynting vector S for
a vacuum

S � ε0c
2E × B � (1/µ0)E × B. (5.67)
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FIGURE 5.4 Areas q, q ′, and q ′′ are cross-sections of the power flow of incident, reflected, and
refracted light. Q is the common area at the interface.

For a medium with refractive index nwe have with Eq. (5.22) the absolute value
of S,

S � (1/µ0)E0(n/c)E0 (5.68)

and obtain the time average, similar to Eq. (5.21),

〈S〉 � (1/2)(n/cµ0)E2
0 . (5.69)

Let us call the incident energy per area Si , the reflected Sr , and the refracted
St . In Figure 5.4 we have indicated the areas through which the energy flows.
The area q corresponds to the incident energy and q ′ and q ′′ to the reflected and
refracted energy, respectively. At the interface we have to use the same area Q
for incident, reflected, and refracted energy and have to multiply Si , Sr , and St
by a cosine factor corresponding to the projections of q, q ′, q ′′ onto the X–Z
plane. We then have

(1/2)(n1/µ0c)E
2
io cos θ

� 1/2(n1/µ0c)E
2
ro cos θ + 1/2(n2/µ0c)E

2
to cos θ ′′. (5.70)

5.6.6.1 The Case n1 < n2

We call the reflectance R � E2
ro/E

2
io � r2, where r stands for both the parallel

and perpendicular cases. Using conservation of energy,

R + T � 1, (5.71)

we obtain from Eq. (5.70) for the transmittance T ,

T � 1 − r2 � (n2 cos θ ′′/n1 cos θ )t2, (5.72)

where E2
to/E

2
io and t stands again for both cases.
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We call (n2 cos θ ′′/n1 cos θ ) � α and have, writing the parallel and
perpendicular cases separately,

R‖ � r2
‖ and T‖ � αt2‖ (5.73)

R⊥ � r2
⊥ and T⊥ � αt2⊥. (5.74)

Energy conservation holds for both cases and by using

T � 1 − R (5.75)

one can avoid using the factor α. One can calculate R‖ and R⊥ from Fresnel’s
formulas, using the amplitude reflection coefficients, and then use 1−R to obtain
T . In FileFig 5.5 we have plotted Rp, Rs , Tp � 1 −Rp and Ts � 1 −Rs for the
case where n1 < n2, from 0 to 90◦.

FileFig 5.5 (M5FRINTN2L)

Graphs of Rp, Rs , Tp � 1 − Rp, and Ts � 1 − Rs depending on the angle of
incidence for the case where n1 < n2.

M5FRINTN2L

Intensities

Fresnel’s formulas as function of angle of incidence for n1 < n2 for Rp � rp2,
Rs � rs2, and Tp � 1 − Rp, T s � 1 − Rs.

1. Amplitude reflection coefficients

rp(θ ) :�
(
n2
n1

) · cos
(
2 · π

360 · θ) −
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

(
n2
n1

) · cos
(
2 · π

360 · θ) +
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

rs(θ ) :�
cos

(
2 · π

360 · θ) − (
n2
n1

) ·
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

cos
(
2 · π

360 · θ) + (
n2
n1

) ·
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

n1 ≡ 1 n2 ≡ 1.5 θ ≡ 0, .4..90.

2. Reflection: intensities

Rp(θ ) :� rp(θ )2 Rs(θ ) :� rs(θ )2.
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q

q

q

q

3. Transmission: intensities

Tp(θ ) :� 1 − Rp(θ ) T s(θ ) :� 1 − Rs(θ ).

q

q

q

q

Application 5.5.

1. Make graphs of r2
p, r2

s , t2p and t2s for the case where n1 < n2. Find which
quantities, just squared, are useful for calculation of corresponding intensi-
ties, and which are not. Compare the graphs of the intensities and find out if
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Rp or Rs are equal to r2
p or r2

s , and similarly if Tp or Ts are equal to t2p or t2s ,
respectively.

2. Make a graph of the factor α � (n2 cos θ ′′/n1 cos θ ) for n1 < n2 and n1 > n2

and compare. To do this one has to use the law of refraction to substitute for
cos θ ′′.

5.6.6.2 n1 > n2, Critical Angle and Total Reflection

From Eqs. (5.59) to (5.62) one sees that the square root in all expressions may
become negative when θ is beyond the critical angle.We may rewrite the formulas
by taking out of the square root the factor

√−1 � i and have all reflection and
transmission coefficients be complex functions. Let us look, as an example, at
the perpendicular case where we have for r ,

rs � cos θ − (n2/n1)i
√

[(n1/n2) sin θ ]2 − 1)

cos θ + (n2/n1)i
√

[(n1/n2) sin θ ]2 − 1)
(5.76)

which we may write with the abbreviations a � cos θ and
b � n2/n1

√
[(n1/n2) sin θ ]2 − 1 as

r⊥ � (a − ib)/(a + ib). (5.77)

The complex conjugate is

r∗⊥ � (a + ib)/(a − ib). (5.78)

To get the reflectanceR, one has to take rr∗, where r∗ is the complex conjugate of
r andR � r⊥r∗⊥ � 1, and it follows that T � 0. For all angles of incidence equal
to or larger than the critical angle we have total reflection; that is, R‖ � R⊥ � 1
andT‖ � T⊥ � 0. In FileFig 5.6 we have plottedR‖,R⊥,T‖, andT⊥ forn1 � 1.5,
n2 � 1 and θ from 0 to 90◦.

FileFig 5.6 (M6FRINTN2S)

Graphs of Rp, Rs , Tp � 1 − Rp, and Ts � 1 − Rs depending on the angle of
incidence for the case where n1 > n2.

M6FRINTN2S

Intensities

Fresnel’s formulas as function of angle of incidence for n1 > n2 for Rp � rp2,
Rs � rs2, and Tp � 1 − Rp, T s � 1 − Rs.
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1. Amplitude reflection coefficients

rp(θ ) :�
(
n2
n1

) · cos
(
2 · π

360 · θ) −
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

(
n2
n1

) · cos
(
2 · π

360 · θ) +
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

rs(θ ) :�
cos

(
2 · π

360 · θ) − (
n2
n1

) ·
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

cos
(
2 · π

360 · θ) + (
n2
n1

) ·
√

1 − [(
n1
n2

) · sin
(
2 · π

360 · θ)]2

n1 ≡ 1.5 n2 ≡ 1 θ ≡ 0, .01.. 90.

2. Reflection: intensities

Rp(θ ) :� rp(θ )·rp(θ ) Rs(θ ) :� rs(θ )·rs(θ ).

q

q

q

q

3. Transmission: intensities

Tp(θ ) :� 1 − Rp(θ ) T s(θ ) :� 1 − Rs(θ ).
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q

q

q

q

Application 5.6.
1. Make graphs of r2

p, r2
s , t2p and t2s for the case where n1 < n2, compare to

the graphs of the intensities, and find out which quantities, just squared, are
useful for calculation of corresponding intensities and which are not.

2. Make a graph of the factor α � (n2 cos θ ′′)/(n1 cos θ ) for n1 < n2 and
n1 > n2, compare to FileFig 5.5.

5.6.7 Total Reflection and Evanescent Wave

We look at the transmitted amplitude for the case where the angle of incidence
is larger than the critical angle. We have from (5.40)

Et � Eto exp i{k2(sin θtX − cos θtY )} exp(−iωt), (5.79)

whereEto may be calculated from Fresnel’s formulas. Using the law of refraction
as k1 sin θi � k2 sin θt we may rewrite Et depending on the angle of incidence:

Et � Eto exp i{k1 sin θiX − k2Y
√

1 − (k1 sin θi/k2)2} exp(−iωt). (5.80)

The square root may be written as

i
{√
n1 sin θi/n2)2 − 1

}
(5.81)

and one gets

Et � Eto exp i
{
k1 sin θiX − k2Y i

{√
n1 sin θi/n2)2 − 1

}}
exp(−iωt). (5.82)
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This wave is called the evanescent wave, traveling in the medium with the lower
index of refraction in the −Y direction. It is composed of a traveling wave and
an attenuation factor. The attenuation factor is

y � A exp(Yk2

√
{(n1/n2)2(sin θi)2 − 1}, (5.83)

where k2 � (2π/λ)n2.
In FileFig 5.7 we show graphs of the attenuation factor depending on different

angles of incidence. One observes the rapid decrease of the magnitude depending
on penetration depth −Yt .

FileFig 5.7 (M7FREVA)

Graph of the attenuation factor of the amplitude of the evanescent wave for

(a)n1 � 1.5, n2 � 1, and critical angle θc � 41.81, and θ1 � θc + 2;

(b) nn1 � 3.4, nn2 � 1, and critical angle θc � 17.105 and θ2 � θc + 2 and
λ � 0.0005mm, depending on coordinate −Y .

M7FREVA

Penetration into the Less Dense Medium at Total Reflection

Exponential factor for decrease of amplitude into the less dense medium with
−Y for two different refractive indices n1 and nn1 and n2 � nn2. θc is the
critical angle. The value a is used to “be off” the critical angle. First we set

a ≡ 2 n1 ≡ 1.5 n2 ≡ 1 λ :� .0005 nn1 ≡ 3.4 nn2 ≡ 1.

z :� asin

(
n2

n1

)
zz :� asin

(
nn2

nn1

)
Y :� −0.00005,−.0001..− .001

θ1c :� z · 360

2 · π θ2c :� zz · 360

2 · π
θ1c � 41.81 θ2c � 17.105

θ1 :� θ1c + a θ2 :� θ2c + a

k2 :� 2 · π
λ

· n2 A :� 1 kk2 :� 2 · π
λ

· nn2

y1(Y ) :� A · e
Y ·k2·

√(
n1· sin( 2·π

360 ·θ1)
n2

)2

−1
y2(Y ) :� A · e

Y ·kk2·
√(

nn1· sin( 2·π
360 ·θ2)
nn2

)2

−1
.
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To study different angles, make refractive indices the same for both and change
a to values larger than 2.

Application 5.7.
1. Study the attenuation factor for a fixed angle of incidence. Make a graph for

three indices of refraction.
2. Study the attenuation factor depending on the angle of incidence. Make a

graph for three angles of incidence for a large and a small difference of the
refractive indices n1 and n2.

5.7 POLARIZED LIGHT

5.7.1 Introduction

In contrast to solutions of the scalar wave equation the solutions of Maxwell’s
equations are vector waves. In the discussion of Fresnel’s formulas, we consid-
ered the two components of the electrical field vector, parallel and perpendicular
to the plane of incidence. The two electrical field vectors vibrate in directions per-
pendicular to each other and each vector presents linear polarized light.Linearly
polarized light may be produced by reflection under the Brewster angle at the
surface of a dielectric material or when light is reflected on wire gratings with a
wavelength larger than the periodicity constant.

The superposition of two linear polarized light vectors will result in linearly
polarized light, but only if there is no phase difference between the two vibrations.
A phase difference may be produced by using total internal reflection and will
result in elliptically or circularly polarized light. The incident light is reflected at a
denser medium and the two components, thep-component and the s-component,
have a fixed phase angle between them, which is assumed to be zero. After
reflection, each of the two reflected components “picks up" a different phase
angle and the superposition results in a phase angle between the two components.

There are dielectric materials with different refractive indices in different
directions of the material. Plastic films, produced by stretching, may transmit
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partially polarized light. Some of the large molecules of the material are oriented
in the direction of the stress, and the refractive index is different in the parallel
and perpendicular directions.

Uniaxial crystals have different orientations of molecules with respect to the
axis and in perpendicular layers; see below.

5.7.2 Ordinary and Extraordinary Indices of Refraction

Optical materials may have a different refractive index in one direction than in
another direction. These materials are called birefringent. Examples are quartz
and calcite, both uniaxial crystals. These crystals are composed of layers of
atoms, which are arranged in planes, and the planes are stacked in a pile. The
atoms are symmetrically positioned in each plane and the normal of the planes
is the symmetry axis (Figure 5.5). We use an X, Y , Z coordinate system. The
symmetry axis is Z and the X and Y axes are in the plane and perpendicular to
each other.

The refractive index along the Z-axis is different from the index along the
X- and Y -axes. The refractive index along the Z-axis is called the extraordinary
index ne and along the X and Y -axes ordinary index n0.

FIGURE 5.5 Propagation with respect to the optic axis (Z), shown by black arrows: (a) wave
propagating parallel to the Z-axis. Possible directions of the oscillating electric fields are along
theX- and Y -axes; (b) wave propagating perpendicular to the Z-axis, for example in the direction
of the X-axis. Possible directions of the oscillating electric fields are along the Y - and Z- axes.
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For quartz we have ne � 1.553 and n0 � 1.544 (positive crystal);
For calcite we have ne � 1.486 and n0 � 1.658 (negative crystal).
The velocity of light in the medium is calculated from v � c/n. For quartz the
velocity along theZ-axis is smaller than along theX- and Y -axes andZ is called
the slow axis. Crystals where the optical axis is the slow axis are called positive
crystals. For calcite the velocity along the Z-axis is faster than along theX- and
Y -axes and Z is called the fast axis. Crystals where the optical axis is the fast
axis are called negative crystals.

5.7.3 Phase Difference Between Waves Moving in the
Direction of or Perpendicular to the Optical Axis

The refractive index is related to the polarization of the atoms in the direction of
the oscillating E-vector. As a result, the velocity of propagation is determined
by the direction of vibration of the E-vector that is perpendicular to the direction
of propagation. In Figure 5.6a we show waves propagating in the Z direction,
but vibrating in the X and Y directions, which are in the plane of the layers
perpendicular to the Z direction. The ordinary index determines the velocity of
propagation, which is the same for both. In Figure 5.6b we show two waves
propagating in the X direction, but one oscillates in the Y direction and the
other in the Z direction. The velocity of the wave vibrating in the Y direction is
determined by the ordinary index n0, whereas the velocity of the wave vibrating
in the Z direction is determined by the extraordinary index ne. These two waves
propagate with different velocities in the X direction and therefore will develop
a phase difference.

FIGURE 5.6 (a) Propagation parallel to the optical axis, vibrations perpendicular to the optical
axis; (b) propagation perpendicular to the optical axis inX direction, vibrations perpendicular and
parallel to the optical axis.
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FIGURE 5.7 Waves with electrical vectors EY and EZ propagating in the X direction.

For two waves, traveling in the X direction and having the same refractive
index in the Y and Z directions (Figure 5.7) we have

EY � jAei(k1X−ωt) (5.84)

EZ � kAei(k1X−ωt), (5.85)

taking equal amplitudes of the electrical field vectors.
Assuming that the material has a refractive index n1 for the wave vibrating

in the Y direction and index n2 for the wave vibrating in the Z direction with
corresponding wave vectors k1 and k2, we write

EY � jAei(k1X−ωt) (5.86)

EZ � kAei(k2X−ωt). (5.87)

Using

φX � (k2 − k1)X (5.88)

we have

EY � jA exp i(k1X − ωt) (5.89)

EZ � kA exp i(k1X − ωt + φX). (5.90)

In Figure 5.8 we show an example of two waves with a phase difference of φ.

5.7.4 Half-Wave Plate, Phase Shift of π

We consider the case where φx � π and have from Eq. (5.88) for the corre-
sponding distance X � π/(k2 − k1). At this distance there is a phase difference
of π between the EY and the EZ components, compared to the EY and the EZ
components atX � 0 (Figure 5.9). We apply this to the case of quartz usingne for
the Z component and n0 for the Y component and k1 � 2πn0/λ, k2 � 2πne/λ
and have

X � π/(2πne/λ− 2πn0/λ) � (λ/2)/(ne − n0). (5.91)
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FIGURE 5.8 Waves vibrating in theEY andEZ directions with a phase difference of φ. The waves
are drawn at a time instant where eiωt � 1.

FIGURE 5.9 Two comonents of linearly polarized light passing throug a half-wave plate: (a)
incident, (b) emerging.
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This distanceX is very small, but any odd integer ofX will have the same effect.
Therefore one may use a plate of thickness

Lh � (λ/2)(1 + 2m)/(ne − n0), (5.92)

wherem is an integer. Since ne is larger than n0 we have a positive value for Lh,
and therefore quartz has been marked above as a positive crystal.

The case of calcite is reversed. We have ne smaller than n0 so Lh is a negative
value. Consequently calcite is called a negative crystal.

In FileFigs.8 we first look at the plane X � 0. In the first graph the Y and
Z components are plotted as functions of X and in the second graph the Z
component is plotted against the Y component. The third and fourth graphs
show what happens in the plane X � Lh, after a phase shift of π . In the third
graph the Y and Z components are plotted as functions of X and the phase
change of the Z component is shown. In the fourth graph the Z component is
plotted against the Y component. The direction of the resulting vibration of the
two waves is shifted by 90◦ from the second to the fourth graph (and not by π
(or 180◦).

FileFig 5.8 (M8POLIN)

Graphs of the superposition of the EY and EZ components before entering the
plate, where the phase angle φX � 0, and at the plate X � L with phase angle
φX � π .

M8POLIN is only on the CD.

Application 5.8. Make graphs for φX � −π (−180) and compare with φX � 0
and φX � (180) and with Figure 5.9.

5.7.5 Quarter Wave Plate, Phase Shift π/2

We now consider the case where φX � π/2 and have the distance X �
(π/2)/(k2 − k1). There is a phase difference of π/2 between the EY and EZ
components at this distance, compared to the EY and EZ components at X � 0
(Figure 5.10). We apply this to the case of quartz using ne for the Z component,
and n0 for the Y component, and k1 � 2πn0/λ, k2 � 2πne/λ, and have

X � (π/2)/(2πne/λ− 2πn0/λ) � (λ/4)/(ne − n0). (5.93)

This distance is very small, but any odd integer of X will have the same effect.
Therefore one may use

Lq � (λ/4)(1 + 4m)/(ne − n0), (5.94)
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FIGURE 5.10 Phase relation of the two components of polarized light: (a) before entering; and
(b) emerging from a quarter-wave plate.

wherem is an integer. Since ne is larger than n0 we have a positive value for Lq ,
and therefore quartz has been marked above as a positive crystal, and calcite is
called a negative crystal.

For the quarter-wave plate we have, with Eqs. (5.89) and (5.90),

EY � jA exp i(k1Lq − ωt) (5.95)

EZ � kA exp i(k1Lq − ωt + π/2). (5.96)

To make a graph of the superposition of the EY and EZ components, we take
the real parts of the fields as the values at the Y - and Z- axis of Eqs. (5.95) and
(5.96)

EY � cos(k1Lq − ωt) (5.97)

EZ � cos(k1Lq − ωt + π/2). (5.98)
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Or converting Eq. (5.98),

EY � cos(k1Lq − ωt) (5.99)

EZ � − sin(k1Lq − ωt). (5.100)

We may write Eqs. (5.99) and (5.100), for a certain time interval, as EY �
cos(−2πx1/360) and EZ � cos(−2πx1/360 + π/2). The time interval corre-
sponds to a certain distance in the direction of propagation and to a certain angle
interval x1/360. In FileFig 5.9 we show four graphs, corresponding to intervals
of angles from 1◦ to 90◦, 1◦ to 160◦, 1◦ to 235◦, and 1◦ to 315◦. Looking onto the
paper, in the direction of the source, we see that the resulting vibration describes
a circle. The circle develops for positive φX � +π/2 in a counterclockwise di-
rection and the light is called left polarized. ConsideringEY � cos(−2πx1/360)
andEZ � cos(−2πx1/360−π/2), for negative φX � −π/2, the circle develops
in the clockwise direction and the light is called right polarized.

FileFig 5.9 (M9POELIP)

Graphs of the superposition of the EY and EZ components with positive and
negative phase angle φX. Four graphs for four different time spans are shown.

M9POELIP

Circular and Elliptically Polarized Light

Graphs for circular and elliptically polarized light turning “left or right.” Four
graphs are shown, extending from 0 to 90, 0 to 160, 0 to 235, and 0 to 315 degrees.
The angle ranges (x) correspond to chosen time ranges. Left and right polarized
light is described by positive or negative � � π/2 in one component: Positive
�: we have y � Ey � A cos(−x), yy � Ez � A cos(−x+�) � −A sin(−x);
negative �: we have y � Ey � A cos(−x), yy � Ez � A cos(−x − �) �
A sin(−x). We write for Ez � bA sin(x). When looking in the direction of the
incoming light, b � −1 is for “left” polarized light (counterclockwise), b � 1
for “right” polarized light (clockwise).

x1 :� 1, 2 . . . 90 x2 :� 1, 2 . . . 160

x3 :� 1, 2 . . . 235 b ≡ −1 x4 :� 1, 2 . . . 315

y1(x1) :� cos

(
−2 · π · x1

360

)
y2(x2) :� cos

(
−2 · π · x2

360

)

y3(x3) :� cos

(
−2 · π · x3

360

)
y4(x4) :� cos

(
−2 · π · x4

360

)
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yy1(x1) :� b · sin

(
−2 · π · x1

360

)
yy2(x2) :� b · sin

(
−2 · π · x2

360

)

yy3(x3) :� b · sin

(
−2 · π · x3

360

)
yy4(x4) :� b · sin

(
−2 · π · x4

360

)
.

Application 5.9. Modify the four graphs to plot left and right polarized light on
the same graph.

5.7.6 Crossed Polarizers

The experimental setup of crossed polarizers is a sequence of a horizontal (X
direction) and a vertical (Y direction) polarizer. Any light passin the first polar-
izer will not pass the second. Therefore no light passes the crossed polarizers
configuration.

5.7.6.1 Half Wave Plate Between Crossed Polarizers

We next discuss the case where a half-wave plate is placed between the polarizer
and analyzer of the crossed polarizers configuration. We assume that the half
wave plate is oriented with its optical axis (Z) at 45◦ degrees to the horizontal
direction of the polarizer (Figure 5.11). The incident light is first horizontally
polarized by the polarizer and then incident on the half wave plate. The horizontal
polarized light is split up in a Z component along the axis of the half-wave plate
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FIGURE 5.11 Half-wave plate between crossed polarizers. The horizontal polarized light is rep-
resented by the two perpendicular vectors EY and EZ . The half-wave plate turns EZ into −EZ .
The resultant of EY and −EZ is polarized in the vertical direction and may pass the analyzer.

and a Y component perpendicular to it. The Z component leaves the plate with a
phase shift of π , oscillating in the Z direction, while the Y component remains
oscillating in the Y direction. The resultant of the two components leaving the
half-wave plate is polarized in the vertical direction, and will pass the vertical
polarizer. In this setup all the light passing the horizontal polarizer will also pass
the vertical polarizer, sometimes called the analyzer.

5.7.6.2 Quarter-Wave Plate Between Crossed Polarizers

A quarter-wave plate is placed between crossed polarizers with its axis at 45◦
(Figure 5.12). The light passing the first polarizer, incident on the quarter-wave
plate, is decomposed into two components. One oscillates parallel and the other
perpendicular to the axis of the quarter wave plate. The resultant, leaving the
quarter-wave plate, is not stationary. It rotates around the direction of propagation
X and light passes the second polarizer, also called the analyzer. Rotation of the
quarter wave plate around a range of angles will not affect this. However, the
axis of the quarter-wave plate should not be parallel to the linear polarizers.

FIGURE 5.12 A quarter-wave plate between polarizers.
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5.7.7 General Phase Shift

5.7.7.1 Half- and Quarter-Wave Plates

We have discussed the generation of phase differences of π and π/2 by a half-
wave plate and a quarter-wave plate. Another way to produce a phase difference
between the two components of the electrical field vector is by internal total
reflection. In the case of n1 > n2, we have complex reflection coefficients in the
region of total reflection. The range of the phase shifts is between plus or minus
π , different for the p- and s-cases. We also have a change in the magnitude of
reflection. If we superimpose the vectors of the total internal reflected light for
the p- and s-cases, we would, in general, obtain elliptical polarized light.

5.7.7.2 Linear, Circular, and Elliptical Polarized Light

We now examine elliptically polarized light. We consider the plane X � L and
the corresponding phase difference of φX, for angles between 0 and 360◦. We
refer to Eqs. (5.89) and (5.90):

EY � jA exp i(k1L− ωt) (5.89)

EZ � kA exp i(k1L− ωt + φX). (5.90)

By only using the real part of the Y and Z components and substituting α �
(k1L− ωt), we have

EY � A cosα (5.101)

EZ � A cos(α + φ) � A[cosα cosφ − sin α sin φ]. (5.102)

Eliminating α, the equation of an ellipse is obtained:

E2
Z − 2EYEZ cosφ + E2

Y � A2 sin φ2. (5.103)

In FileFig 5.10 we show that one may write Eq. (5.103) in matrix form and that
we have for φ � 0, linearly polarized light,

EY � EZ, (5.104)

for φ � π/4, elliptically polarized light, and have the equation of an ellipse,

E2
Z/(1 − 1/

√
2) + E2

Y /(1 + 1/
√

2) � 1, (5.105)

and for φ � π/2, circular polarized light, and have the equation of a circle,

E2
Z + E2

Y � 1. (5.106)

FileFig 5.10 (M10POELIPSES)

The general equation of the ellipse is shown in vector-matrix notation, using
the eigenvalue method. The equations are obtained for φ � 0 (linear polarized
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light) forφ � π/4, (elliptically polarized light), andφ � π/2 (circular polarized
light).

M10POELIPSES is only on the CD.

Application 5.10. Derive the equations for φ � 3π/4, φ � 5π/2, π � 3π/2,
and φ � 7π/4 and compare with results of FileFig 5.11.

In Appendix A5.2 we show that the rotation of the coordinate system may be
equivalent to a transformation to principal axes. In FileFig 5.11 we show graphs
of one component plotted against the other for

φ � 0, φ � π/4, φ � π/2, φ � 3π/4,

φ � π, φ � 5π/4, φ � 3π/2, φ � 7π/4,

φ � 2π

. (5.107)

One sees that the two components of linearly polarized light, vibrating along
perpendicular directions, result in linear polarized light when the phase difference
is φX � 0, π , and 2π . The resulting vibration takes place along a line tilted by
45◦ for φX � 0, 2π , and tilted by 135◦ for φX � π . For φX � π/2 we have left
circular polarized light and for φX � 3π/2, equivalent to −π/2, right circular
polarized light. The ellipse is left turning, when the φX values are first larger and
then smaller than φX � π/2, and “right turning" for φX values first larger and
then smaller than φX � 3π/2. The large axis of the ellipse is always oriented in
the same direction as the axis of the “closest" linear polarized light.

FileFig 5.11 (M11POELIPLIS)

Graphs are shown of the equation of the ellipse, that is, Eq. (5.103) for φ � 0,
φ � π/4, φ � π/2, φ � 3π/4, φ � π , φ � 5π/4, φ � 3π/2, φ � 7π/4, and
φ � 2π .

M11POELIPLIS

Elliptical Polarized Light

Similarly to that discussed in FileFig 5.9 we plot cos(−2πx/360) on the z-axis
and cos(−2πx/360 +�) on the y-axis.

x ≡ 1, 2.. 360 φ1 :� 0

y1(x) :� cos
(
−2 · π · x

360

)
yy1(x) :� cos

(
−2 · π · x

360
+ φ1

)

φ2 :� π

4
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y2(x) :� cos
(
−2 · π · x

360

)
yy2(x) :� cos

(
−2 · π · x

360
+ φ2

)

φ3 :� π

2

y3(x) :� cos
(
−2 · π · x

360

)
yy3(x) :� cos

(
−2 · π · x

360
+ φ3

)

φ4 :� 3 · π
4

y4(x) :� cos
(
−2 · π · x

360

)
yy4(x) :� cos

(
−2 · π · x

360
+ φ4

)

φ5 :� π

y5(x) :� cos
(
−2 · π · x

360

)
yy5(x) :� cos

(
−2 · π · x

360
+ φ5

)

φ6 :� 5 · π
4

y6(x) :� cos
(
−2 · π · x

360

)
yy6(x) :� cos

(
−2 · π · x

360
+ φ6

)

φ7 :� 3 · π
2

y7(x) :� cos
(
−2 · π · x

360

)
yy7(x) :� cos

(
−2 · π · x

360
+ φ7

)

φ8 :� 7 · π
4

y8(x) :� cos
(
−2 · π · x

360

)
yy8(x) :� cos

(
−2 · π · x

360
+ φ8

)

APPENDIX 5.1

A5.1.1 Wave Equation Obtained from Maxwell’s Equation

∇ × E � −∂B/∂t

c2∇ × B � +∂E/∂t (A5.1)

∇ · E � 0

∇ · B � 0.

From the first equation of A5.1 we have by taking the cross product with ∇
∇ × ∇E � −∂/∂t∇ × B (A5.2)

and using the identity

∇ × ∇ × E � ∇(∇ · E) − ∇2E (A5.3)

we get

∇(∇ · E) − ∇2E � −∂/∂t∇ × B. (A5.4)
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Inserting the second equation of Eq. (A5.1), we obtain

∇(∇ · E) − ∇2E � −(1/c2)∂/∂t(∂E/∂t). (A5.5)

With ∇ · E � 0 of the third equation of (A5.1) we have the vector wave equation
for the electrical field vector E,

∂2E/∂x2 + ∂2E/∂y2 + ∂2E/∂z2 � (1/c2)∂2E/∂t2. (5.3)

Using a similar formalism we derive the vector wave equation for the magnetic
field vector B,

∂2B/∂x2 + ∂2B/∂y2 + ∂2B/∂z2 � (1/c2)∂2B/∂t2. (5.4)

A5.1.2 The Operations ∇ and ∇2

Cartesian coordinates (x, y, z)

∇ � i∂/∂x + j∂/∂y + k∂/∂z

∇2 � ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

Spherical coordinates (r, θ, φ)

∇ � i∂/∂r + j(1/r)∂/∂θ + k(1/r sin φ)∂/∂φ

∇2 � (1/r2)∂/∂r(r2∂/∂r)

+ [1/(r2 sin θ )]∂/∂θ (sin θ∂/∂θ ) + [1/(r2 sin2 θ )]∂2∂φ2

APPENDIX 5.2

A5.2.1 Rotation of the Coordinate System as a Principal
Axis Transformation and Equivalence to the Solution
of the Eigenvalue Problem

FileFig A5.12 (MA2ROTMAS)

1. Rotation matrices and their multiplication.
2. Demonstrated that the equation of the ellipse is obtained without cross terms

when introducing φ � π/4.

a. Introduction of φ � π/4 into the general equation of the ellipse

b. Introduction of φ � π/4 as rotation angle

If the value of φ � π/4 is not known, it may be determined from the
transformation making the matrix of the general equation of the ellipse
diagonal.

MA2ROTMAS is only on the CD.
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APPENDIX 5.3

A5.3.1 Phase Difference Between Internally Reflected
Components

We have mentioned above that elliptically polarized light may be produced by
total internal reflection. The incident light is reflected at a denser medium and
the two components, the p and s components, have a fixed phase angle between
them which is assumed to be zero. The reflected light is the superposition of
the two reflected components, each “picking up" a different phase angle upon
reflection. The difference between the two “new" phase angles after reflection is
the phase angle between the two components and may be calculated as

tan�/2 � (sin θ )2/[cos θ
√

((sin θ )2 − (n2/n1)2)]. (A5.6)

We can get a graph of the angle � from the complex reflection coefficients rp
and rs . We just have to take the argument of rp/rs . This is done in FileFigA3.

FileFig A5.13 (MA3DIFINTRO)

A graph is shown of the difference between the arguments of the reflection
coefficients for internal total reflection.

MA3DIFINTRO is only on the CD.

Application A5.13. Observe the change of the difference angle depending on
the refractive index.

APPENDIX 5.4

A5.4.1 Jones Vectors and Jones Matrices

We have presented the two mutually perpendicular components propagating in
the X direction of the electrical field vectors. The phase angle φ between them
is

EY � jA exp i(k1X − ωt) (A5.7)

EZ � kA exp i(k1X − ωt + φ). (A5.8)

One may want to write this in vector notation as(
EY
EZ

)
� A exp i(k1X − ωt)

(
1
eiφ

)
. (A5.9)
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Disregarding the common factorA exp i(k1X−ωt) we may describe polarized
light by such vectors and have(

1
0

)
horizontal

(
0
1

)
vertical (A5.10)

1/
√

2

(
1
0

)
+45 degrees 1/

√
2

(
0
1

)
-45 degrees (A5.11)

1/
√

2

(
1
−i

)
right circular 1/

√
2

(
0
i

)
left circular (A5.12)

All Jones vectors are listed in FileFig 5.14.

A5.4.2 Jones Matrices

We have discussed above the transformation between coordinate systems using
the rotation matrix and found, for example, that the rotation of 45◦ degrees is
expressed as

EEY � EY − EZ (A5.13)

EEZ � EY + EZ. (A5.14)

In matrix formulation we have(
EEY
EEZ

)
�

(
1 −1
1 1

)(
EY
EZ

)
(A5.15)

In a similar martix representation we can obtain other operations on the two
components of the electrical field vectors (FileFig 5.14).

A5.4.3 Applications

We discuss two applications of the Jones vectors and Jones matrices.

Half-Wave Plate Between Crossed Polarizers

We start off with linear polarized light and apply the half-wave plate with 45◦
orientation, disregarding the normalization factor. Then we do the multiplication(

1 1
1 1

)(
1
0

)
�

(
1
1

)
. (A5.16)

The result is 45◦ polarized light. Then we apply the vertical linear polarizer and
obtain vertically polarized light.(

0 0
0 1

)(
1
1

)
�

(
0
1

)
. (A5.17)
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Quarter-Wave Plate Between Crossed Polarizers

We start off with linear polarized light and apply the quarter-wave plate as the
right circular polarizer, disregarding the normalization factor.(

1 i

−i 1

)(
1
0

)
�

(
1
−i

)
. (A5.18)

The result is circular polarized light. Then we apply the vertical polarizer(
0 0
0 1

)(
1
−i

)
�

(
0
−i

)
(A5.19)

and obtain right circular polarized light, passing the vertical polarizer.

FileFig A5.14 (MA4JONES)

Vector formulation of Jones vectors for linear and circular polarized light. Matrix
formulation of Jones matrices for linear polarizer, circular polarizer, and half-
wave and quarter-wave plates.

MA4JONES is only on the CD.

Application A5.14.

1. Derive Jones vectors for linear (−45◦), left circular, and right circular
polarized light.

2. Derive Jones matrices for the half-wave and quarter-wave plates.
3. Apply Jones matrices to Jones vectors for:

a. Matrices of horizontal and vertical polarizers, and the half-wave plate to
each horizontal, vertical, and 45◦ Jones vector. Comment on the results.

b. Let light first be polarized horizontally, then pass a 45◦ polarizer, and a
−45◦ polarizer. Comment on the results.

c. What is the resulting matrix of a quarter-wave plate and then a half-wave
plate? What is the resulting operation?

d. What is the resulting matrix of a half-wave plate and then a quarter-wave
plate? What is the resulting operation?

e. What is the resulting matrix of a half-wave plate, then a quarter-wave
plate, and then another half-wave plate? What is the resulting operation?

See also on the CD

PM1. Time Averages (see p. 208).
PM2. Fresnel’s Formulas with the second Medium of higher Refractive Index

(see p. 214).
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PM3. Fresnel’s Formulas with the second Medium of lower Refractive Index
(see p. 217).

PM4. Phase Angle Calculation for Total Reflection (see p. 217 and 242).
PM5. Transmission through two Interfaces (see p. 218).
PM6. Law of Refraction (see p. 220).
PM7. Reflection and Transmission Coefficients and Intensities (see p. 222).
PM8. Attenuation (at Total Reflection) in the less dense medium (see p. 22.)
PM9. Half Wave Plate, Quarter Wave Plate (see p. 231).

PM10. Quarter Wave Plate (see p. 235).
PM11. Elliptically polarized Light (see p. 23.)
PM12. Elliptically polarized Ligh (see p. 239).



66C H A P T E R

Maxwell II.
Modes and Mode
Propagation

6.1 INTRODUCTION

In the chapter on interference we discussed the resonance mode of a Fabry–
Perot. We found that all light was transmitted for a specific wavelength λ and
separation D of the Fabry–Perot plates. The condition for generation of the modes
was D � mλ/2, where m was an integer.

The modes may be considered as a standing wave. A standing wave can be
described by the superposition of two traveling waves moving in opposite di-
rections. The standing waves are characterized by m + 1 nonmoving nodes,
including both nodes on the Fabry–Perot plates. Between the nodes, the ampli-
tudes oscillate from maximum to minimum. A rectangular box of dimensions a,
b, c with reflecting walls (Figure 6.1) has three pairs of parallel plates in the x,
y, and z directions. Each pair may be considered as a Fabry–Perot. The walls
are assumed to be perfectly reflecting, and the boundary conditions for the mode
formation are required to have nodes at the walls. Using plane wave solutions,
the modes are represented by sine functions. For the x direction, we have at
length a of the box that sin(2πa/λx) � 0 or 2πa/λx � π . A similar result is
found for the y and z directions and we have three standing wave conditions

a � n1λx/2, b � n2λy/2, c � n3λz/2. (6.1)

Since the nis are integers, and a, b, c are constants, the possible values of the
wavelengths are restricted. Using wave vectors, Eqs. (6.1) may be written as

kx � πn1/a ky � πn2/b kz � πn3/c. (6.2)

These are the wave vectors for the three components of a general mode of the
box. The corresponding wave vector is obtained by vector addition of the three

249
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FIGURE 6.1 Coordinates for the discussion of the modes of a box with reflecting walls and
dimensions a, b, c.

components of Eq. (6.2). For the square of the scalar value one gets

k2 � π2{(n1/a)2 + (n2/b)2 + (n3/c)
2}. (6.3)

The corresponding wave is a product of three standing waves in the three direc-
tions x, y, and z. The standing waves have fixed nodes, and the number of nodes
is related to the values of ni as (1 + ni) for i � 1, 2, 3. Therefore, the number of
nodes may be used for the characterization of the modes. In FileFig 6.1 the first
two graphs show the one-dimension standing waves for the x and y directions
for the case of nx � 2 and ny � 2. The third and fourth graphs are the contour,
and surface plots of the amplitude for Mi,k with i � 2 and k � 2 and the fifth
and sixth graph, show the intensity. In the third through sixth graphs we see six
node lines.

FileFig 6.1 (N1RECBOX)

Graphs of sine functions in one and two dimensions with nodes depending on
the integers n1, n2. The modes are numbered by Mik, where i gives the number
of nodes in the x direction and k in the y direction. Note that the node lines are
the same for the graphs of amplitude and intensity.
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N1RECBOX

Modes of the Rectangular Box in Two Dimensions

Standing sine waves in x and y directions. Mode number constants. x direction
n1 and a; y direction n2 and b. The wave in each direction is shown as well as
contour and surface plots. The square is also shown as surface plot.

i :� 0 . . . N j :� 0 . . . N

xi :� (−40) + 2.001 · i yj :� (−40) + 2.0001 · j
λ1 :� 2 · a

n1
λ2 :� 2 · b

n2

y1(x) :� sin
(

2 · π · x
λ1

)
y2(y) :� sin

(
2 · π · y

λ2

)
.

1. One dimension

2. Amplitude, 2 D

M11i,j :� y1(xi) · y2(yj ) n1 ≡ 2 a ≡ 40 n2 ≡ 2 b ≡ 40 N ≡ 20.
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3. Intensity, 2D

MM11i,j :� (y1(xi) · y2(yj ))
2.

Application 6.1.

1. Print out M00, M01, M10, M11, and M22.
2. Make graphs of M00, M01, M10, and M11, using a cosine function for x. The

corresponding boundary condition would be an “open end" of the box.
3. Make graphs of M00, M01, M10, and M11, using cosine functions for x and
y.

6.2 STRATIFIED MEDIA

In the chapter on geometrical optics we discussed image formation with spherical
mirrors. We also discussed astronomical telescopes composed of an objective
lens and magnifiers. Lenses always reflect some of the incident light, according
to Fresnel’s formulas. To reduce the reflection, an antireflection coating was
developed. A thin film of a specific material was vacuum-deposited on the lens
surface, preventing most of the incident light of a specific wavelength from being
reflected. In the same chapter we also discussed laser cavities. The mirrors of a
laser cavity need to have high reflectivity only for a limited wavelength range,
but the reflectivity should be close to one in order to obtain a high gain.

In this section we show that stacks of dielectric layers may have very high
reflectance or transmittance. Applications are antireflection coatings of lenses
and mirrors for laser cavities with extremely high reflectivity. We study the
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FIGURE 6.2 Three media of index of refraction n1 � 1, n2, and n3. In each medium we consider
a forward and a backward traveling wave.

reflection and transmission of light incident on stacks of dielectric layers. All
layers have the thickness d � (1/4)(λ/n) � n/4λ, but some may have different
refractive indices from others.

6.2.1 Two Interfaces at Distance d

When calculating Fresnel’s formulas, we equated the fields on both sides of
a boundary and obtained a set of linear equations for the amplitudes of the
reflection and the transmission coefficients. This method is called the boundary
value method and is now applied to two interfaces at distance d. In the chapter
on interference we studied the plane parallel plate and summed up all reflected
and transmitted waves. This method is called the summation method and is less
rigorous than the boundary value method. We consider three media and assume
normal incident light. In each medium we assume forward and backward trav-
eling waves (Figure 6.2). We do not show the time dependence of the waves,
giving us these equations for incident, reflected, and transmitted waves at the
two interfaces:
1. before the first interface

Ei � A1 exp ik1(+Y ) incident (6.4)

Er � A′
1 exp ik1(−Y ) reflected, (6.5)

2. after the first interface

Et � A2 exp ik2(+Y ) transmitted after 1 (6.6)

E′
r � A′

2 exp ik2(−Y ) reflected back to 1, (6.7)

3. after the second interface

Et � A3 exp ik3(+Y ) transmitted after 2 (6.8)

E′′
r � A′

3 exp ik3(−Y ) reflected back to 2. (6.9)

We take the electrical field vector perpendicular to the plane of incidence,
which is the case of perpendicular polarization discussed in Chapter 5. We first
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take into account the electrical field vectors at boundary 1, where Y � 0. The
sum of Eqs. (6.4) and (6.5) is equal to the sum of Eqs. (6.6) and (6.7). At the
boundary for Y � d the sum of Eqs. (6.6) and (6.7) is equal to the sum of
Eqs. (6.8) and (6.9). We obtain the following equations

A1 + A′
1 � A2 + A′

2 (6.10)

A2e
ikd + A′

2e
−ikd � A3e

ik′d + A′
3e

−ik′d, (6.11)

where k � 2πn2/λ, k′ � 2πn3/λ, and d is the distance between the two
interfaces. In a similar manner we obtain a second set of two equations for the
B-fields. This is similar to the calculations of Fresnel’s formulas in Chapter 5,
applying the corresponding boundary conditions for the B-field at Y � 0 and
Y � d.

−A1 + A′
1 � −n2A2 + n2A

′
2 (6.12)

−n2A2e
ikd + n2A

′
2e

−ikd � −n3A3e
ik′d + n3A

′
3e

−ik′d . (6.13)

In order to derive a vector-matrix formulation, we abbreviate the sum of the
amplitudes before the first boundary (Eq. (6.10)), by E1,d�0. Since Eq. (6.11)
was derived using the magnetic field vector we call the amplitude B1,d�0. In a
similar way we use E2,d�0 and B2,d�0 for the sum of the amplitudes after the
first boundary. For the amplitudes before and after the second boundary, we use
E2,d�d and B2,d�d , and E3,d�d and B3,d�d , respectively. We may now write

E1,d�0 � A1 + A′
1 � A2 + A′

2 � E2,d�0 (6.14)

B1,d�0 � −A1 + A′
1 � −n2A2 + n2A

′
2 � B2,d�0 (6.15)

E2,d�d � A2e
ikd + A′

2e
−ikd � A3e

ik′d + A′
3e

−ik′d � E3,d�d (6.16)

B2,d�d � −n2A2e
ikd + n2A

′
2e

−ikd

� −n3A3e
ik′d + n3A

′
3e

−ik′d � B3,d�d . (6.17)

Equations (6.14) and (6.15) may be written in matrix notation as

Field1,d�0 �
(
E1,d�0

B1,d�0

)
�

(
1 1

−1 1

)(
A1

A′
1

)
� M1,0A1 (6.14) and (6.15)

Field2,d�0 �
(
E2,d�0

B2,d�0

)
�

(
1 1

−n2 +n2

)(
A2

A′
2

)
� M2,0A2 (6.14) and (6.15)

and have

M2,0A2 � M1,0A1 or

A2 � M−1
2,0M1,0A1 � M−1

2,0Field1,d�0. (6.18)

Equations (6.16) and (6.17) may be written in matrix notation as

Field2,d�d �
(

eikd e−ikd
−n2e

ikd +n2e
−ikd

)(
A2

A′
2

)
� M2,dA2 (6.16) and (6.17)
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Field3,d�d �
(

eik
′d e−ik′d

−n3e
ik′d n3e

−ik′d

)(
A3

A′
3

)
� M3,dA3 (6.16) and (6.17)

and we have

Field3,d�d � M3,dA3 � M2,dA2. (6.19)

We want to express the vector Field3,d�d as the product of matrices times the
vector Field1,d�0, and have

Field3,d�d � M2,dA2 � M2,dM−1
2,0Field1,d�0. (6.20)

The manipulation of the matrices is shown in FileFig 6.2.

FileFig 6.2 (N2SYMATR)

Demonstration of the matrix manipulations and multiplication ofM2,dM
−1
2,0 and

the resulting matrix M2.

M2 �
(

cos(kd) −i sin(kd)/n2

−n2i sin(kd) cos(kd)

)
. (6.21)

N2SYMATR is only on the CD.

The final result is(
E3,d�d
B3,d�d

)
�

(
cos(kd) −i sin(kd)/n2

−n2i sin(kd) cos(kd)

)(
E1,d�0

B1,d�0

)
. (6.22)

Using this matrix approach, we discuss some applications.

6.2.2 Plate of Thickness d � (λ/2n2)

We apply Eq. (6.22) to a plate of thickness d � (λ/2n2)q, where q is an integer.
The thickness of the plate is a multiple of half a wavelength divided by the
refractive index n2 of the material of the plate. Using k � 2πn2/λ and d �
(λ/2n2)q we have for the product kd � qπ . At the boundary we have for the
exponentials e−ik′d � e−ikd . Both are 1 for even q. Equation (6.22) is now(

E3,d�d
B3,d�d

)
�

(
1 0
0 1

)(
E1,d�0

B1,d�0

)
. (6.23)

The matrix M is the unit matrix and the result is that the medium of thickness
d has no effect on the transmitted fields. The same result is obtained when q is
odd. A similar result has been obtained in Chapter 2 for the plane parallel plate.
All incident power of the particular wavelength λ will be transmitted when the
plate has the thickness d � (λ/2n2)q.
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6.2.3 Plate of Thickness d and Index n2

We apply Eq. (6.22) to a plate of thickness d with refractive index n2. We also
assume that there is no backwards traveling wave in medium 3 and that the
refractive indices of the first and third media are assumed to be 1. We then have(

A3e
ik′d

−A3e
ik′d

)
�

(
cos(kd) −i sin(kd)/n2

−n2i sin(kd) cos(kd)

)(
A1 + A′

1
−A1 + A′

1

)
. (6.24)

In FileFig 6.3 we calculate the transmitted intensity of a plane parallel plate.
Calling x � A′

1/A1 and y � A3/A1 and observing that eik
′d � 1, we have

R � xx∗ for the reflected intensity and T � yy∗ for the transmitted intensity.
Equation (6.24) is a system of two linear equations in x and y and is solved for
x and y. The result for T is

T � 1/[1 + {(n2 − 1)2/4n2}(sin(kd)2]. (6.25)

Here we can use T for the transmitted intensity because we have assumed that
the refractive index in the first medium is n1 � 1. This is the same result one
obtains with the summation method for the case of normal incidence, discussed
in Chapter 2.

FileFig 6.3 (N3SYMATPL)

Calculation of the transmitted intenstiy T of a plane parallel plate of thickness
d with indices outside the plate equal to 1. We use x � A′

1/A1 and y � A3/A1

and have T � yy∗ for the transmitted intensity and R � xx∗ for the reflected
intensity.

N3SYMATPL is only on the CD.

Application 6.3.

1. Calculate the reflected intensity R.
2. Make graphs for T and R in the wavelength range from 1 to 20 microns. Use

for d values equal to kd � qπ , one for q even and one for q odd.
3. Make graphs for T for two different refractive indices between 1.1 and 4 in

the wavelength range from 1 to 20 microns. Use for the thickness d values
not equal to kd � qπ , q even or odd.

6.2.4 Antireflection Coating

Antireflection coating may be found on camera lenses. A thin dielectric film
of refractive index n2 is vacuum-deposited on the surface of a lens of refractive
index n3. We assume for the film a thickness λ/(4n2). The light is incident from a
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medium with index n1 and the product kd in Eq. (6.22) is [(2πn2/λ)(λ/4n2)] �
π/2. One gets(

A3e
ik′d

−n3A3e
ik′d

)
�

(
0 −i/n2

−n2i 0

)(
A1 + A′

1
−n1A1 + n1A

′
1

)
. (6.26)

Because eik
′d � i one has

iA3 � (−i/n2)(−n1A1 + n1A
′
1) (6.27)

−n3iA3 � (−in2)(A1 + A′
1). (6.28)

To get to the condition for no reflection, we set the ratio A′
1/A1 � 0 and have

A3/A1 � n1/n2 � n2/n3 (6.29)

or

n1n3 � n2
2. (6.30)

We have the result: the antireflection film of a thickness of a quarter-wavelength
must have a refractive index equal to the square root of the product of the re-
fractive index on both sides. Let us consider a glass lens of index n3 � 1.5. The
incident light travels in the medium with n1 � 1 and n3 � 1.5 being the index
of the lens. The square root of the product is 1.22. A material with exactly that
refractive index is hard to find, but material with approximately that value is used
for antireflection coating.

In FileFig 6.4 we calculate from Eqs. (6.27) and (6.28) the reflection coefficient
r � A′

1/A1 and the transmission coefficient t � A3/A1 and investigate the
reflected and transmitted intensities. Using rr∗ � R and t t∗, the sum R + t t∗ is
not 1. However, if we use the correct expression for T (see Chapter 5), we show
that (n3/n1)t t∗ is equal to T and that one has R + T � 1. The graph in FileFig
6.4 shows a plot of the antireflection coating depending on the refractive index
n2.

FileFig 6.4a (N4SYMULANTa)

Antireflection coating. The reflected amplitude r � A′
1/A1 and the transmitted

amplitude t � A3/A1 as solutions of Eq. (6.26). The products rr∗ and t t∗ are
also calculated.

FileFig 6.4b (N4SYMULANTb)

Numerical calculations.
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1. Special case of zero thickness for demonstration of reflected and transmitted
intensities.

2. Antireflection coating. Graph of reflected intensity depending on the refractive
index of the coating.

N4SYMULANTa and N4SYMULANTb are only on the CD.

Application 6.5.

1. Using the correct expression for T (see chapter 5), derive formulas for the
transmitted and reflected intensities for one interface with refractive indices
n1 and n2 �� 1. Show that T + R � 1.

2. Find the refractive index for an antireflection coating material for silicon
(n � 3.4).

3. Use polyethylene (n � 1.5) as a coating of silicon and calculate the
percentage of reflected amplitude and intensity.

6.2.5 Multiple Layer Filters with Alternating High and Low
Refractive Index

High-reflecting dielectric mirrors are composed of a large number of dielectric
layers with alternating high and low refractive indices. We extend Eq. (6.22) to
f − 1 layers of equal thickness and obtain(

Ef,d�d
Bf,d�d

)
� Mf−1Mf−2, . . . ,

(
E1,d�0

B1,d�0

)
. (6.31)

For a rigorous derivation see Born and Wolf (1964; p.66).
We apply Eq. (6.31) to a sequence of double layers, consisting of a high and

a low refractive index, assuming that the refractive index outside is 1. Assuming
N double layers the sequence of the refractive indices is then

(n � 1)(nHnL), . . . , (nHnL)(n � 1). (6.32)

The product of the matrices is

(MHML), . . . , (MHML). (6.33)

The thickness of one layer is assumed to be one-quarter of a wavelength and
we have the product kd � [(2πn2/λ)(λ/4n2)], resulting in sin(kd) � 1 and
cos(kd) � 0. For one double layer we get for the product of MH times ML(−nL/nH 0

0 −nH/nL
)

(6.34)

and for N double layers(
(−nL/nH )N 0

0 (−nH/nL)N

)
. (6.35)
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In FileFig 6.5a we calculate the reflected intensity R symbolically and in
FileFig 6.5b we calculate it numerically. One finds values close to 1 forN � 10,
20, 40 or more. Such multiple layer mirrors, consisting of a large number of thin
films of alternating high and low refractive indices, are used in laser cavities to
reduce losses.

FileFig 6.5a (N5STRASYMa)

Symbolic calculation of the reflected intensity for multilayer reflection coatings.

FileFig 6.5b (N5STRANUMb)

Numerical calculation for nH � 2.5, nL � 1.5, and N � 20.

N5STRASYMa and N5STRASYMb are only on the CD.

Application 6.7. Calculate the reflected intensity (R) and transmitted intensity
(T � 1 − R) for N � 10, 20, 40, 100 for chosen values of nL and nH .

6.3 GUIDED WAVES BY TOTAL INTERNAL
REFLECTION THROUGH A PLANAR WAVEGUIDE

6.3.1 Traveling Waves

When laser light was applied to telecommunication, one looked at the possi-
bilities of light traveling through some type of guide. Travel through the open
air resulted in too many losses. Long wavelength electromagnetic waves travel
through metal cables, but microwaves may travel inside a rectangular waveguide.
These waveguides have parallel reflecting metal surfaces, and the wavelength of
a traveling mode is characterized by the dimensions of the rectangular cross-
section. As the first step for propagation of modes of laser light one considered a
dielectric film of refractive index n1 with refractive indices n2 and n3 equal to 1
on the outside. Later, dielectric fibers were used for guiding the light, discussed
in the next section.

In Chapter 2 we discussed the modes of a Fabry–Perot. The incident light wave
was traveling perpendicular to the planes, and a relation between the wavelength
and the distance between the planes characterized the modes. We now look at
very similar modes, formed inside a plane parallel dielectric film but traveling
parallel to the boundaries of the plate.
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FIGURE 6.3 Thin film of refractive index n1 larger than the indices n2 and n3 of the outside media.
Propagation is in the X direction and mode formation in the Y direction. There are exponential
decreasing solutions in the outside medial of indices n2 and n3.

We consider three layers of dielectric materials extending in theX to Z direc-
tion and stacked up in the Y direction. We assume that the layer in the middle has
thickness d and refractive index n1. Above and below are two other dielectric
materials with refractive indices n2 and n3, both smaller than n1 (Figure 6.3). A
wave in the layer with refractive index n1 is totally reflected on the two interfaces,
above and below, and travels effectively in the X direction.

When treating the plane parallel plate (see Chapter 2) we summed up all
the light reflected and transmitted at the different interfaces and found resonance
conditions corresponding to modes. Summing up all the reflected and transmitted
light is called the summation method in contrast to the boundary value method,
used in Section 6.2 to describe the modes for multilayer dielectric material. To
treat the problem of waves traveling with internal total reflection in a dielectric
layer, we apply another method, the traveling wave method. For comparison, the
boundary value method is given in the appendix.

We assume a wave is traveling in the X direction in medium (1) between the
two media 2 and 3. We assume that the angle to the normal θ is larger than the
critical angle, in order to have total reflection. A ray is launched from a point
inside the plate and after reflection on each interface, the pattern repeats. If the
component of the wave traveling in the Y direction has the same wave vector
after one period of travel in the X direction, we have a traveling mode. This is
only possible for discrete values of the angle θ , the angle corresponding to the
direction of the k vector and the normal (Figure 6.3). We use complex notation
for presenting the wave traveling between internal reflections in the X, Y plane

u1 � ei(2πXn1/λ)ei(2πYn1/λ)e−iωt , (6.36)

where λ is the wavelength in free space, ω the frequency, t the time, and n1 the
refractive index in medium (1). Equation (6.36) is a function of X and Y and
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satisfies the scalar wave equation depending onX,Y , and t . We rewrite Eq. (6.36)
using the wave vector notation

u1 � ei(k1XX)ei(k1Y Y )e−iωt , (6.37)

and have for the components of the wave vectors (k1X)2 + (k1Y )2 � k2
1, with

k1 � n1k and k � 2π/λ.
As we know from our discussion of total internal reflection, there is an ex-

tension of the internally reflected wave into the optically denser medium, called
the evanescent wave. To describe these waves for the two media with refractive
indices n2 and n3, we write for the wave in (1), similarly to what we wrote for
the wave in medium (2),

u2 � ei(k2XX)ei(k2Y Y )e−iωt , (6.38)

with (k2X)2 + (k2Y )2 � k2
2, k2 � n2k, and k � 2π/λ, and similarly for medium

(3)

u3 � ei(k3XX)ei(k3Y Y )e−iωt (6.39)

with (k3X)2 + (k3Y )2 � k2
3, k3 � n3k, and k � 2π/λ.

6.3.2 Restrictive Conditions for Mode Propagation

We recall that we derived a restriction on certain parameters when discussing
the modes in the Fabry–Perot. For the traveling mode in a waveguide we have a
similar, but more complicated situation. The k vectors of the three waves have a
real value for the Y component in medium (1) and an imaginary value in media
(2) and (3) because of total reflection. We have for the k vectors:
1. Components of the k vector in the Y direction,

k1Y real, and k̃2Y and k̃3Y imaginary; and (6.40)

2. Components of the k vector in the X direction
For the three waves traveling in the X direction, the X component of the k
vector has the same real value. We use the notation

k1X � k2X � k3X � β. (6.41)

The value of β is restricted to k1 ≥ β ≥ k2 and k1 ≥ β ≥ k3, which follows
from the relations

k2
2 − β2 � k2

2Y , but since k̃2Y is imaginary, β must be larger than k2

k2
1 − β2 � k2

1Y , but since k1Y is real, β must be smaller than k1

k2
3 − β2 � k2

3Y , but since k̃3Y is imaginary,β must be larger than k3.
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6.3.3 Phase Condition for Mode Formation

We define the phase change upon reflection on medium 2, (1 → 2), as �1,2 and
for reflection on medium 3, (1 → 3), as �1,3. Considering a round trip in the
Y direction, we have for the phase shift: on medium 2: (2πd/λ1)�1,2, and on
medium 3: 2πd/λ1 +�1,3. The sum must have values of 2πm which is written

2πm � 2[2πd/λ1] +�1,2 +�1,3 with m � 0, 1, 2, 3. (6.42)

This is the resonance condition for the mode, involving the k values in the Y
direction. The phase values are calculated from Fresnel’s formulas depending
on the Y components of k. The resonance conditions are different for the s-
polarization (TE) modes and the p-polarization (TM) modes, and are discussed
separately in Sections 6.3.4 and 6.3.5.

6.3.4 (TE) Modes or s-Polarization

The reflection coefficient on the interfaces 1,2 and 1,3 are obtained from Fresnel’s
formulas (see Chapter 5),

rs � n1 cos θ − n2 cos θ ′′

n1 cos θ + n2 cos θ ′′ . (6.43)

We multiply by 2π/λ and introduce the definitions of the k vectors. Since the
values of k in media 1 and media 3 are imaginary, we write k̃2Y and k̃3Y and get
complex numbers for the two reflection coefficients

r̃s1,2 � (k1Y − k̃2Y )/(k1Y + k̃2Y ) (6.44)

r̃s1,3 � (k1Y − k̃3Y )/(k1Y + k̃3Y ). (6.45)

For the phase angle we have

�s1,2 � tan−1(−k̃2Y /k1Y ) − tan−1(k̃2Y /k1Y ) � −2 tan−1(k̃2Y /k1Y ) (6.46)

�s1,3 � −2 tan−1(k̃3Y /k1Y ). (6.47)

The resonance condition (Eq. (6.42)) may now be written as

2k1Y d � −2 tan−1(k̃2Y /k1Y ) − 2 tan−1(k̃3Y /k1Y ) + πm, (6.48)

or using the formula tan−1A + tan−1 B � tan−1(A + B)/(1 − AB) we may
write

tan k1Y d � [k1Y (k̃2Y + k̃3Y )]/(k2
1Y − k̃2Y k̃3Y ). (6.49)

For the numerical calculation we prefer to write the condition of Eq. (6.49) as

2πn1 cos θd/λ � − atan

(√
[n2

1 sin2 θ − n2
2]/(n1 cos θ )

)
(6.50)

− atan

(√
[n2

1 sin2 θ − n2
3]/(n1 cos θ )

)
+mπ,m � 1, 2, 3.
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In FileFig 6.6 we calculate the condition of Eq. (6.50) using

ys(θ ) � ys2(θ ) − ys3(θ ) +mπ for m � 1

yys(θ ) � ys2(θ ) − ys3(θ ) +mπ for m � 2

yyys(θ ) � ys2(θ ) − ys3(θ ) +mπ for m � 3

and at the crossover point of the graph the resonance condition is fulfilled. The
crossover point indicates the angle θ for the mode with mode number m. The
characterization of the mode depends on the refractive indices, thickness d, and
wavelength λ.

FileFig 6.6 (N6PLSPS)

Resonance condition for s-polarization (TE). The crossover point indicates the
angle θ of the mode with mode number m depending on the refraction indices,
thickness d, and wavelength λ. The lowest number of the mode corresponds to
the lowest curve.

N6PLSPS

Wave Traveling with Total Internal Reflection Through a Planar Waveguide

Resonance condition of s-polarization. Global definition of n1, n2, n3, d, and λ
above the graph.

θ :� 0, 1 . . . 90

y(θ ) :� 2 · π · n1 · d
λ

· cos

(
2 · π θ

360

)

ys1(θ ) :� −atan(zs1(θ )) zs1(θ ) :�

(√
n12 · sin

(
2 · π θ

360

)2 − n22

)

n1 · cos
(
2 · π θ

360

)

ys3(θ ) :� −atan(zs3(θ )) zs3(θ ) :�

(√
n12 · sin

(
2 · π θ

360

)2 − n32

)

n1 · cos
(
2 · π θ

360

) .

ys is for m � 1, yys for m � 2, and yyys for m � 3. For these parameters the
angle θ of the first three possible modes is determined:

ys(θ ) :� −ys1(θ ) − ys3(θ ) + π

yys(θ ) :� −ys1(θ ) − ys3(θ ) + π · 2

yyys(θ ) :� −ys1(θ ) − ys3(θ ) + π · 3.
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θc :� asin

(
n2

n1

)
θθc :� 360 · θc

2 · π θθc � 41.81

Global definition

n1 ≡ 1.5 n2 ≡ 1 n3 ≡ 1 d ≡ 18 λ ≡ 2.

θ

θ

θ

θ

θ

At the crossover point of y with ys, yys, or yyys, respectively, the resonance
condition is fulfilled. The functions ys, yys, and yyys are complex in the region
from horizontal appearance to zero. This is shown in the next graph where the ar-
gument is plotted. The complex region has to be disregarded for the determination
of the crossover point.

q

q

q

q

Application 6.6.

1. Change the refractive index and choose d and λ such that all three modes are
possible.

2. Change the thickness d and choose n1 and λ such that all three modes are
possible.

3. Change the wavelength λ and choose the refractive index n1 and the thickness
d such that all three modes are possible.
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6.3.5 (TM) Modes or p-Polarization

The coefficients of reflection on media 1 and 3 are obtained from Fresnel’s
formulas. First multiply by 2π/λ and then introduce the definition of k. One
can observe that the k value in the medium above and below is imaginary. One
obtains complex numbers for the two reflection coefficients similarly as for the
s-case

r̃p1,2 � (n2
2k1Y − n2

1k̃2Y )/(n2
2k1Y + n2

1k̃2Y ) (6.51)

r̃p1,3 � (n2
3k1Y − n2

1k̃3Y )/(n2
3k1Y + n2

1k̃3Y ) (6.52)

and also for the phase changes

�s1,2 � tan−1(−n2
1k̃2Y /n

2
2k1Y ) − tan−1(n2

1k̃2Y /n
2
2k1Y )

� −2 tan−1(n2
1k̃2Y /n

2
2k1Y ) (6.53)

and

�s1,3 � −2 tan−1(n2
1k̃3Y /n

2
3k1Y ). (6.54)

The resonance condition, similar to Eq. (6.42), may now be written as

2k1Y d � −2 tan−1(n2
1k̃2Y /n

2
2k1Y ) − 2 tan−1(n2

1k̃3Y /n
2
3k1Y ) + πm (6.55)

or

tan k1Y d � (n2
1k1Y (n2

2k̃2Y + n2
3k̃3Y ))/(n2

2n
2
3k

2
1Y − n4

1k̃2Y k̃3Y ). (6.56)

For the numerical calculation we prefer to write the condition as

2πn1 cos θd/λ � − atan

(
n2

1

√
[n2

1 sin2 θ − n2
2]/(n2

2n1 cos θ )

)
(6.57)

− atan

(
n2

1

√
n2

1 sin2 θ − n2
3)/(n2

3n1 cos θ )

)
+ πm,m � 1, 2, 3.

In FileFig 6.7 we calculate the resonance condition of Eq. (6.57) using

yp(θ ) � yp2(θ ) − yp3(θ ) +mπ for m � 1

yyp(θ ) � yp2(θ ) − yp3(θ ) +mπ for m � 2

yyyp(θ ) � yp2(θ ) − yp3(θ ) +mπ for m � 3

and at the crossover point of the graph the resonance condition is fulfilled. The
crossover point indicates the angle θ for the mode with mode numberm, depend-
ing on the refraction indices, thickness d, and wavelength λ. Given m, d, and λ,
the k vector for the traveling mode is given and if real, the mode is possible.
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FileFig 6.7 (N7PLPPS)

Resonance condition for p-polarization (TM). The crossover point indicates the
angle θ of the mode with mode number m, depending on the refraction indices,
the thickness d, and wavelength λ. The lowest number of the mode corresponds
to the lowest curve.

N7PLPPS is only on the CD.

Application 6.7.

1. Change the refractive index and choose d and λ such that all three modes are
possible.

2. Change the thickness d and choose n1 and λ such that all three modes are
possible.

3. Change the wavelength λ and choose the refractive index n1 and the thickness
d such that all three modes are possible

4. Give an example for λ � 0.00025 mm, d � 0.0005 mm and show that we
have for m � 1 a cosine mode, and for m � 2 a sine mode.

6.4 FIBER OPTICS WAVEGUIDES

6.4.1 Modes in a Dielectric Waveguide

In Section 6.3 we discussed mode propagation in a dielectric film of thickness of
several wavelengths and refractive indexn2. The modes were guided by two outer
dielectric media of refractive indices smaller than n1. The mode propagation was
in the X direction. The media were stacked in the Y direction and extended in
the Z direction without limits. A constant refractive index was assumed.

We now consider a dielectric fiber of radius a and homogeneous refractive
index n1 in a surrounding medium of refractive index no (Figure 6.4). Following
in general second Jackson (1975, p.364), we choose the direction of propagation
in the z direction, but use refractive indices instead of dielectric constants. We
start with the general wave equations

∂2E/∂x2 + ∂2E/∂y2 + ∂2E/∂z2 � (1/c2)∂2E/∂t2 (6.58)

∂2B/∂x2 + ∂2B/∂y2 + ∂2B/∂z2 � (1/c2)∂2B/∂t2 (6.59)

and call the differentiation with respect to the variables perpendicular to the
direction of propagation the transverse Laplacian ∇t − ∂2/∂z2.

Assuming periodic exponential solutions for the time dependence and the field
in the z direction, one has the two constants (n1ω/c)2 and k2 after application of
the second derivative. The ratio ω/c is equal to k1 in the dielectric and k is the
wave vector for the wave traveling in theZ direction. For “inside” and “outside”
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FIGURE 6.4 Coordinates for mode propagation in a fiber of radius a. The tranverse coordinates
are ρ and φ and the modes propagate in the z-direction.

we have

[∇2
t + ((n1ω/c)

2 − k2)]E � 0 “inside” (6.60)

[∇2
t + ((n1ω/c)

2 − k2)]B � 0 “inside” (6.61)

[∇2
t + ((n0ω/c)

2 − k2)]E � 0 “outside” (6.62)

[∇2
t + ((n0ω/c)

2 − k2)]B � 0 “outside”. (6.63)

“Inside” we may use the positive constant γ 2 � ((n1ω/c)2−k2). “Outside” we
expect an exponential decrease of the solutions and define β2 � (k2 − (noω/c)2

with β real. We use cylindrical coordinates ρ and φ, and assume that we have
no azimuthal variation, which means there is no dependence on φ. We have two
differential equations for the two transversal components Et and Bt , which have
Bessel functions as solutions

d2/dρ2 + (1/ρ)d/dρ + γ 2)Et � 0 “inside” (6.64)

d2/dρ2 + (1/ρ)d/dρ + γ 2)Bt � 0 “inside” (6.65)

and

d2/dρ2 + (1/ρ)d/dρ − β2)Et � 0 “outside” (6.66)

d2/dρ2 + (1/ρ)d/dρ − β2)Bt � 0 “outside”. (6.67)

We have Jo(γρ) as solutions for Et and Bt “inside,” and Ko(βρ) for Et and
Bt “outside.” From Maxwell’s equations we obtain relations between the field
components depending on the “transverse” coordinates ρ and φ and the com-
ponents depending on z. The relations are divided into two groups, βρ and Eφ
depending on Bz, and Bφ and Eρ depending on Ez.

These relations are for “inside”:

Bρ � (ik/γ 2)dBz/dρ Bφ � (in2
1ω/cγ

2)dEz/dρ (6.68)

Eφ � (−ω/ck)Bρ Eρ � (ck/n2
1ω)Eφ. (6.69)

For “outside” one has a similar set of equations.
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Here we treat only the TE modes, that is for a nonvanishing Bz component.
One has explicitly

Bz � Jo(γρ)

Bφ � (−ik/γ )J1(γρ) “inside” (6.70)

and

Eφ � (iω/cγ )J1(γρ)

Bz � AKo(βρ)

Bφ � (ikA/β)K1(βρ) “outside,” (6.71)

and

Eφ � −(iωA/cβ)K1(βρ)

where A is a constant. Only the first two equations of Eqs. (6.70) and (6.71)
are independent, and application of the boundary conditions at ρ � a yields the
equations:

AKo(βa) � Jo(γ a) (6.72)

(−A/β)K1(βa) � (1/γ )J1(γ a). (6.73)

Elimination of A results in the characteristic equation for the determination of
k2, written in γ and β with both depending on k,

(J1(γ a)/(γ Jo(γ a)) � −(K1(βa)/(βKo(βa)). (6.74)

Since γ and β are both functions of k, we plot the right and the left sides of
Eq. (6.74) on the same graph, with both depending on k. At the crossing of the
curves we get the resulting value of k. This is shown in the second graph of FileFig
6.8. The “cutoff” frequency is obtained for Jo(γ a) � 0, which is γ a � 2.405

and the corresponding wavelength is λc � {[
√

(n2
1 − n2

o)a2π ]/2.405}. At that

wavelength β2 is 0 and k is equal to the free space value.

FileFig 6.8 (N8CWGK)

Determination of k for dielectric circular waveguide.

N8CWGK

Dielectric Circular Waveguide, Determination of k

Check for positive values of argument for J0, J1 and K0, K1. Since x �
(γ a)2 and y � (βa)2, we have for the square of the arguments of the Bessel
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functions

xx(k) :� a2 ·
(
n12 · 4 · π2

λ2
− k2

)
yy(k) :� a2 ·

(
k2 − no2 · 4 · π2

λ2

)

and for the arguments

x(k) :�
√
xx(k) y(k) :�

√
yy(k).

We try the interval k :� 2.65, 2.66 . . . 3.8 and make a graph.

Input data: radius, wavelength, and refractive indices:

a ≡ 3 λ ≡ 2.39 n1 ≡ 1.5 no ≡ 1.

From graph: first intersection

kk :� 2.66

λλ :� 2 · π
kk

λλ � 2.362.
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Side calculation. If λλλ :� 8, we get

kkk :� 2 · π

λλλ
and kkk � 0.785.

Application 6.8.

1. Change the refractive index on the outside to 1.1, 1.2, 1.3.
2. Change the radius to 2 times the wavelength and 4 times the wavelength.

APPENDIX 6.1

A6.1.1 Boundary Condition Method Applied to TE Modes of
Plane Plate Waveguide

The wave travels in the X direction, but it is sufficient for mode formation to
consider only the Y direction. For the fields E and B one assumes wavelike
solutions in (1) and exponential decreasing solutions in (2) and (3). Application
of the boundary conditions matches the fields. The objective is to calculate the
characteristic equation for k1Y depending on k̂2Y and k̂3Y .

We have for the solutions of the wave equation in the media:

Medium (2)

E2Y � Ae−ik̂2Y Y (A6.1)

B2Z � k̂2YAe
−ik̂2Y Y ; (A6.2)

Medium (1)

E1Y � BB cos k1Y Y − C sin k1Y Y (A6.3)

B1Z � k1YBB sin k1Y Y − k1YC cos k1Y Y ; (A6.4)

Medium (3)

E3Y � De−ik̂3Y Y (A6.5)

B3Z � −k̂2YDe
−ik̂3Y Y . (A6.6)

Matching at the boundary at Y � 0:

A � BB (A6.7)

k̂2YA � −k1YC. (A6.8)

Matching at the boundary at Y � −d:

BB cos k1Y d − C sin k1Y d � De−ik̂3Y d (A6.9)

− k1YB sin k1Y d − k1YC cos k1Y d � −k̂3YDe
−ik̂3Y d . (A6.10)
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We have four linear homogeneous equations for the coefficientsA, B, C, D and
therefore the determinant of the system of the four equations must be zero. The
solutions of the resulting equation determine the values of θ for which modes
are possible.

Coefficients of the characteristic determinant (A.11)

A BB C D
1 -1 0 0
k̂2Y 0 k1Y 0
0 cos k1Y d − sin k1Y d −e−ik̂3Y d

0 −k1Y sin k1Y d −k1Y cos k1Y d k̂3Y e
−ik̂3Y d

The exponential factors cancel out, and the determinant may be developed with
respect to the first row into a sum of two 3 × 3 determinants

( 0 k1Y 0
cos k1Y d − sin k1Y d −1

−k1Y sin k1Y d −k1Y cos k1Y d k̂3Y

)
(−1)(−1)times. (A6.12)

(
k̂2Y k1Y 0
0 − sin k1Y d −1
0 −k1Y cos k1Y d k̂3Y

)
� 0. (A6.13)

Calculation of the determinants results in

tan k1Y d � k1Y (k̂3Y + k̂2Y )/(k2
1Y − k̂2Y k̂3Y ), (A6.14)

which is the condition for the TE modes (see Eq. (6.49)). Similarly one has for
the TM modes

tan k1Y d � n2
1k1Y (n2

2k̂3Y + n2
3k̂2Y )/(n2

2n
2
3k

2
1Y − n4

1k̂2Y k̂3Y ). (A6.15)

The boundary value method gives us the same result with less effort. One only
has to assume that the k values in the media (2) and (3) are imaginary and apply
the boundary conditions to the solutions in the three sections.

FileFig A6.9 (NA1PLTE)

Calculation of the mode conditions for the TE case, which is Eq. (6.49) for the
planar waveguide.

NA1PLTE is only on the CD.

Application A6.9. Derive in a similar way the condition for the TM case, which
is the p-polarization.
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See also on the CD

PN1. Rectangular Box (see p. 246).
PN2. Mirror and Fringes (see p. 250).
PN3. Plane parallel Plate (see p. 252).
PN4. Calculation of the transmitted Intensity (see p. 252).
PN5. Anti Reflection Coating (see p. 253).
PN6. Multi-Layer Reflection Coatings.
PN7. Simple Photonic Crystal.
PN8. Resonance Condition for s-Polarization (TE) of the planar Waveguide

(see p. 259).
PN9. Resonance condition for p-Polarization (TM) of the planar Waveguide

(see p. 262).
PN10. Modes in Fibers (see p. 264).



77C H A P T E R

Blackbody Radiation,
Atomic Emission,
and Lasers

7.1 INTRODUCTION

At the end of the nineteenth century electromagnetic theory and thermodynamics
were well developed and there was the question of reunification of these theories.
Blackbody radiation is the emission of electromagnetic radiation from a closed
cavity at temperature T through a small hole (Figure 7.1). It was found that the
frequency distribution of the emitted radiation was dependent upon the temper-
ature T . M. Planck formulated the famous blackbody radiation law in 1900. He
used electromagnetic theory and thermodynamics, but needed an assumption that
marked the beginning of quantum theory. Planck’s law involved a fundamental
physical constant, now called Planck’s constant. The emission of light from the
blackbody was interpreted as quantum emission of light. In the first half of the
last century, the quantum emission of atoms and molecules was studiedand in

FIGURE 7.1 Schematic of a blackbody radiator. The body is surrounded by the heat bath of
temperature T . Electromagnetic radiation is emitted and the frequency distribution depends on
temperature T .

273
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the second half of the century the laser was developed. (“Laser" stands for light
amplification by stimulated emission of radiation).

7.2 BLACKBODY RADIATON

7.2.1 The Rayleigh–Jeans Law

An example of blackbody radiation is a wire heated by electricity. First it gets
red and when the temperature increases it becomes white. Increasing the temper-
ature, one finds that the maximum of the frequency distribution of the emitted
electromagnetic radiation shifts to a shorter wavelength. In Figure 7.1 we show
a schematic of a blackbody. Radiation is emitted at thermal equilibrium and the
energy is drawn from the heat bath at temperature T . The first, but insufficient,
analysis of blackbody radiation was done by Rayleigh and Jeans, analyzing the
modes of a rectangular box in a heat bath (Figure 7.2). Oscillators were assumed
to be at the walls of the box, emitting and absorbing light. The modes of the
box are standing waves and in Figure 7.3 we show one standing wave in one
direction as we have in a Fabry–Perot. The number of standing waves in three
dimensions was analyzed and the number of modes determined with respect to
the same energy which is the same frequency or wavelength. It was assumed
that in thermal equilibrium, each mode carried the energy kT , where k is Boltz-
mann’s constant. The energy density per frequency interval du/dν was equal to
the energy dE per volume V and frequency interval dν. The energy density per
frequency interval du/dν was then calculated to be

du/dν � (1/V )dE/dν � 8πkT ν2/c3. (7.1)

FIGURE 7.2 A box as cavity in the heat bath of temperature T ; see Figure 7.1.

FIGURE 7.3 Standing wave pattern in one dimension. The length is lx , the magnitude of the wave
is A, and the wavelength λ.
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This was the Rayleigh–Jeans law and turned out to be valid for the long wave-
length region only. In the short wavelength region, the energy density increased
by ν2 and led to very high and unrealistic large energy densities, the so-called
“violet catastrophe."

The graph in FileFig 7.1 shows the Rayleigh–Jeans radiation law in the visible
spectral region, where one can observe the increase of the radiation density to
shorter wavelengths.

FileFig 7.1 (L1RAJEANS)

Graph of the Raleigh–Jean law using units of energy density per frequency
interval.

L1RAJEANS is only on the CD.

7.2.2 Planck’s Law

The radiation law of blackbody radiation was discovered by Max Planck and is
valid in both the short and the long wavelength regions. Planck’s radiation law
agreed with the Rayleigh-Jeans law for the long wavelength region. Many years
later Einstein derived Planck’s radiation law using the concept of transition prob-
abilities. One assumes fictitious oscillators to be on the walls of the blackbody
cavity. These oscillators are in contact with the heat bath at temperature T . When
radiating, they get the energy from the heat bath and transform it into radiation
energy. Einstein defined the processes of induced absorption, induced emission,
and spontaneous emission for the emission and absorption of radiation by the
oscillators (Figure 7.4). The probability of a transition of induced absorption
between the levels numbered 1 and 2 is called W12 and is proportional to the

FIGURE 7.4 Schematic of induced absorption and induced and spontaneous emission.
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energy density du/dν,

W12 � B12du/dν. (7.2a)

Similarly the probability of a transition of induced emission from level 2 to level
1 is called W21,

W21 � B21du/dν. (7.2b)

The probability of spontaneous emission is not proportional to du/dν and is
called

Wa21 � A21. (7.3)

B12, B21, and A21 are called the Einstein probability coefficients. In thermal
equilibrium, there are as many transitions up as down, and for the “down" we
have in addition spontaneous emission. One has

N1(B12du/dν) � N2(B21du/dν + A21). (7.4)

The numbersN1 andN2 are the occupation numbers of the two states of energyE1

andE2. In thermal equilibriumN1 andN2 follow from the Boltzmann distribution

N1 � N0 exp −(E1/kT ) and N2 � N0 exp −(E2/kT ), (7.5)

where N0 is a constant. In thermal equilibrium one has N2 < N1,which means
the occupation number for the lower energy states is always higher.

From Eqs. (7.4) and (7.5) one gets for the energy density per frequency interval

du/dν � A21/{B12 exp[(E2 − E1)/kT ] − B21}. (7.6)

The constants A21, B12, and B21 are determined by considering two limiting
cases. When T → ∞, one has du/dν → ∞ and it follows that B12 � B21. We
may write for Eq. (7.6),

du/dν � A21/{B12(exp[(hν)/kT ] − 1)}, (7.7)

whereE2−E1 � hν and h is Planck’s constant. To consider the long wavelength
region, we develop the exponential. In, the limit of long wavelengths, where
ν → 0, the energy density per frequency interval (right-hand side of Eq. (7.7))
is

du/dν � A21/{B12(hν/kT )}. (7.8)

This must be equal to the Rayleigh–Jeans Law, du/dν � 8πkT ν2/c3 (see
Eq. (7.1)) and one obtains

(A21/B12) � 8πhν3/c3. (7.9)

Introduction of Eq. (7.9) into Eq. (7.7) gives us Planck’s formula for the energy
density per frequency interval

du/dν � (8πhν3/c3){1/[exp(hν/kT ) − 1]}. (7.10)
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Graphs of Planck’s formula, depending on wavelength and frequency, are given
in FileFigs.2 and 3, respectively.

7.2.3 Stefan–Boltzmann Law

The Stefan–Boltzmann law gives the integrated energy over all wavelengths or
frequencies depending on the temperature T . Integration of Eq. (7.10) over the
frequency results in the energy density u:

u � (8/15)π5(kT )4/(hc)3. (7.11)

This is the energy density equal to the energy per unit volume in the cavity of
the blackbody. To calculate the energy emitted from the hole of the blackbody,
we introduce the radiance LB (or brightness) of the blackbody. The power dW
leaving the blackbody is calculated by the product

dW � LBda cos θd�, (7.12)

where da is the area from which the power is emitted, d� the solid angle into
which it travels, and � the angle between the normal of the area and the center
line of the solid angle (Figure 7.5). The radiance LB is measured by placing a
power meter before the opening of the blackbody, taking into account the area

FIGURE 7.5 (a) Power emitted from the surface elementda traverses the volume elementdV � ql

in time l/c; (b) the solid angle seen from dV .
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and solid angle. This can be written

dW/(da cos θd�) � LB. (7.13)

The radiation is emitted into a hemisphere and when integrating over the solid
angle of the hemisphere we have

W � LBdaπ. (7.14)

The radiance LB is related to the energy density u of the blackbody and we want
to find the relation between these quantities. We consider a small volume dV � l

times q (Figure 7.5a). The power dW , transmitted in the time interval dt from
the area da of the blackbody into the solid angle d�, is then

dWdt � LBda cos d�dt. (7.15)

Using from Figure 7.5 d� � q/r2 and dt � l/c and observing that dWdt �
dudV one obtains

dudV � (LBda cos θdV )/(r2c). (7.16)

Integration over the area times the solid angle, seen from dV (Figure 7.5b),
results in

u � (LB/c)[∫ da(cos θ/r2)] � (LB/c) ∫ d�V . (7.17)

The integral is over the surrounding sphere and is 4π . Using Eqs. (7.11) and
(7.14) one has

LB · π � 2c

15

(πkT )4

(hc)3
. (7.18)

This is the Stefan–Boltzmann law telling us that the “total emission" is
proportional to T 4. The constant σ � (2c/15)(πk)4/(hc)3 has the value
5.670310−8W/(m2K4).

In FileFig 7.4 graphs shown of the Stefan–Boltzmann law in units of
power/area.

7.2.4 Wien’s Law

The wavelength at maximum emission of the blackbody may be calculated by
rewriting Eq. (7.10) as a function of the wavelength and setting it to zero. One
gets

λmT � 2.8910−3mK. (7.19)

This is called Wien’s displacement law.
Graphs of Wien’s displacement law are shown in FileFig 7.5.
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7.2.5 Files of Planck’s, Stefan–Boltzmann’s, and Wien’s
Laws. Radiance, Area, and Solid Angle

Using the radiance LB as discussed in Section 7.2.3, we can rewrite Planck’s
law in terms of the radiance per wavelength or per frequency interval as

dLB/dλ � (C1/λ
5)/(exp(C2/λT )) − 1)[W/{m3sr}] (7.20)

dLB/dν � (C3ν
3)/(exp(C4ν/T )) − 1)[W/{(1/s)m2sr}], (7.21)

where

C1 � 2hc2 � 1.17610−16Wm2

C2 � hc/k � 1.43210−2mK (7.22)

C3 � 2h/c2 � 1.4710−50Ws4/m2

C4 � h/k � 4.7810−11sK.

FileFig 7.2 (L2BBLS)

Graph of blackbody radiation depending on wavelength. The calculation of the
radiance of a particular wavelength range and calculation of the corresponding
radiant energy by multiplication with area times solid angle.

L2BBLS

1. Blackbody radiation. Graph of dL/dλ

c2 :� 1.43 · 10−2 c1 :� 1.18 · 10−16 T :� 1000.

Planck’s law depending on wavelength is

x : � 3 · 10−5, 2.99 · 10−5 . . . 10−7

f (x) : � c1

x5
[
e
(
c2
x·T

)
− 1

]

x in meters.
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2. Integration over the wavelength range from 3·10−6 to 3·10−5 meters to obtain
the radiance

R :�
∫ 3·10−5

3·10−6
f (x)dx.

Radiance

R � 1.316 · 104.

3. Multiplication with area times solid angle to obtain the radiant energy
Area A, Solid angle SA: A :� 1, SA :� 4; radiant energy RR: RR :� A ·
SA ·R;RR � 5.263 ·103 watts.RR has the same value as the corresponding
value when integrating over the frequency.

Application 7.2.

1. Calculate the radiance for different wavelength intervals.

2. Calculate the radiant energy and choose an area of 5mm2 and a solid angle
of π4.

3. Consider the wavelength range from 1 mm to 100 mm for comparison with
the Rayleigh–Jeans law. Calculate the corresponding frequencies and de-
rive from Planck’s law the corresponding energy density for this frequency
interval. Do the same calculation for the Rayleigh–Jeans law and give the
difference in the numerical values.
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FileFig 7.3 (L3BBFS)

Graph of blackbody radiation depending on the frequency. The calculation of the
radiance of a particular frequency range and calculation of the corresponding
radiant energy by multiplication with area times solid angle.

L3BBFS is only on the CD.

Application 7.3.

1. Calculate the radiance for different frequency intervals.
2. Calculate the radiant energy, and choose the area times solid angle such that

the radiant energy is the same as you calculated in Application FF2.
3. Numerical calculation of the Stefan–Boltzmann law. Calculate, using the

same units, the integrated radiation from Planck’s law for a chosen
temperature T and compare with the Stefan–Boltzmann law (FileFig 7.2).

FileFig 7.4 (L4STEFS)

The Stefan–Boltzmann law is plotted using linear and logarithmic scales.

L4STEFS is only on the CD.

FileFig 7.5 (L5WIENS)

Wien’s law is plotted for two ranges of the temperature.

L5WIENS is only on the CD.

7.3 ATOMIC EMISSION

7.3.1 Introduction

The operation of a laser needs an “active medium” between the two mirrors
of the laser cavity. Energy is “pumped” from the outside of the cavity into this
medium and produces atoms or molecules in excited states. Here we discuss only
excited energy states of atoms in the gas phase and consider the hydrogen atom
and atoms with hydrogenlike spectra. The energy states are labeled by letters
with subscripts and superscripts and some of the notations have their origin
in the “old days” of spectroscopy. At that time, for example, one used for the
characterization of some spectral lines: s for “sharp,” and d for “diffuse.” The
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letters s and d are still in use for the characterization of the angular momentum.
There is some truth to these notations, since we know that the s-state has less
degeneracy than the d-state.

7.3.2 Bohr’s Model and the One Electron Atom

In Bohr’s model, an electron with a negative charge circulates around the positive
charge in the center of its orbits, determined by the principal quantum number
n. The energy of such an orbit is given by

E � (−2π2K2e4m)/(n2h2), (7.23)

whereK is the constant of Coulombs’ law, e the electron charge,m the electron
mass, and h Planck’s constant. The principal quantum number n has integer
numbers 1, 2.3 . . .. Radiation is emitted when the electron changes its orbits and
the energy of the emitted photon is given as

νni,nf h � [2π2K2e4m)/(h2)][1/n2
i − 1/n2

f ], (7.24)

where ni is the quantum number of the initial orbit and nf is the quantum num-
ber of the final orbit. In Figure 7.6 we show the series of lines originating from
the state nf � 1, called the Lyman series, from the state nf � 2, called the
Balmer series, and from the state nf � 3, called the Paschen series. The signif-
icant achievement of Bohr’s derivation was that he used fundamental physical
constants and could reproduce exactly the empirical constant of the expression
of the Balmer series.

7.3.3 Many Electron Atoms

7.3.3.1 Principal Quantum and Angular Momentum Quantum Numbers

The Schroedinger equation and the Pauli principle are needed to understand the
atomic energy schematics and transitions. As an example we look at an atom
withZ electrons and a nucleus with a positive charge ofZe. A list of some lower
energy states is shown in Figure 7.7. For such an atom, we have energy levels
labeled by the principal quantum number n and the angular momentum quantum
number l. The Schroedinger equation tells us that for each n there are n − 1
different possible states of the angular momentum.

7.3.3.2 Magnetic Quantum Number and Degeneracy

To each state labeled by the angular quantum number l, there are 2l+1 substrates.
They only have different energy values if the atom is in a magnetic field. The
corresponding quantum number is called the magnetic quantum number m. If
the magnetic field is zero, all states have the same energy, and therefore the state
is m fold degenerate.
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FIGURE 7.6 Diagram of energy levels and transitions of Bohr’s model. The electrons change
from the state labeled ni to nf and emit light: Lyman series: nf � 1, ni � 2, 3, 4 . . . .; Balmer
series: nf � 2, ni � 3, 4, 5 . . . .; Paschen series: nf � 3, ni � 4, 5, 6. The energy difference
between n � 1 and n � ∞ is the dissociation energy.

7.3.3.3 Spin States

Each electron has an angular momentum with respect to its own axis called the
spin, described by the spin quantum number s. In a magnetic field, the projection
has the values 1/2 and −1/2.

7.3.3.4 Pauli Principle and Occupation Rule

Each nondegenerate state of the atom has a different set of quantum numbers n,
l, m, s. For each n there are n− 1 values of l. For each l there are 2l + 1 values
of m and for each m there are two values of s (Figure 7.7).

7.3.3.5 Buildup Principle of Atoms and Labels for Energy Levels

The energy schematic of an atom with Z electrons may be obtained, in first
approximation, by using the “buildup principle.” There are special notations for
the principal and angular quantum numbers.

The principal quantum number n � 1, 2, 3 . . . is labeled K , L, M ,. . . .
The angular quantum number l � 0, 1, 2, 3 . . . is labeled s, p, d, f .

Following the buildup principle, the electrons first occupy the lowest n, then the
next, and so on. For each n, electrons fill all possible states labeled by l,m, and s.
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FIGURE 7.7 Energy levels and quantum numbers for a few states of the hydrogenlike atom. The
states are shown for each n and labeled by s, p, d, f . Spin states are also indicated.

In Figure 7.8 the number of electrons occupying different states is listed for
the elements from Z � 1 to Z � 25. There are irregularities, explained by
quantum mechanics. An example isZ � 19, where the 4s state has lower energy
than the 3d state.

7.3.3.6 Transitions Between Energy States

Photons may be emitted when the atom changes from a higher energy state to a
lower one. In an atom like the sodium atom, there is just one “outer” electron.
All other electrons are in “closed” shells. This outer most electron is an “s”
electron (Figure 7.9), and therefore the spectrum has a similarity to the spectrum
of the hydrogen atom. The columns in Figure 7.9 are labeled with capital letters,
referring to compound states of all electrons. Since theK andL shells are closed,
they do not contribute and the angular momentum of all electrons is the same as
the single electron in the M shell.

There are selection rules restricting the energy levels between which transi-
tions are possible. The general rule is that the angular momentum has to change
by plus or minus 1. Transitions are only allowed between the levels of the columns
labeled by s, p, and d (Figure 7.9).
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FIGURE 7.8 Electronic states in atoms. Electrons having the same n value in “shells,” namedK ,
L, M . For each n we have n− 1 substates of angular momentum with quantum number l, named
s, p, d , f . There are 2l + 1 possible values of m, and two spin states. Therefore the maximum
occupations ofK andL areK : n � 1, 2[(2 ·0+1)] � 2;L : n � 2, 2[(2·0+1)]+2(2 ·1+1)] � 8
(the M shell is more complicated).

7.4 BANDWIDTH

7.4.1 Introduction

The atom emits light when an electron makes a transition from a higher energy
state to a lower one. The emitted light is not monochromatic, since the emission
process last only for a short time. Therefore we have a wavetrain of limited
length. Such wavetrains are described by the superposition of a large number of
monochromatic waves having a certain frequency distribution (see Chapter 4).
The frequency spectrum shows a maximum at the transition frequency and the
bandwidth of the frequency distribution is related to the time of the emission
process.

We follow the book Lasers by F. K. Kneub’́uhl and M. W. Sigrist, B. G.
Teubner, Stuttgart, 1988, and use some of their numerical values in the examples.
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FIGURE 7.9 Energy schematic for sodium. The energy level of 3s, that is, the ground state of the
outermost electron, has been chosen as 0. The two well-known “Sodium D” lines are indicated.

7.4.2 Classical Model, Lorentzian Line Shape, and
Homogeneous Broadening

Light is emitted from an atom when an electron leaves an excited state E2 and
occupies a state with lower energy E1. One has for the energy of the process

E2 − E1 � hν. (7.25)

Before the electron can make the transition, it has to be placed into the upper
state. This process is called population inversion (see Section 5.2). The electron
remains in the upper state for a limited time. On average the life-time of an
excited state is 10−8 sec. However, longer lifetimes corresponding to metastable
states play an important role in laser action. The emitted light is described by
a wavetrain with decreasing amplitude (Figure 7.10), and may be described in
first approximation as

A � A0e
−iω0t e−t/τ . (7.26)

The lifetime τ is defined as the time in which the initial amplitude A0 drops to
a value of A0/e � A0/2.718. The frequency distribution of the wavetrain now
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FIGURE 7.10 Wavetrain decreasing over the time τ to the value A/e � A/2.71.

discussed by application of a time-dependent Fourier transformation,

y(ω) � (A0/
√

2π )
∞
∫
0
eiω0t e−t/2τ e−iωtdt. (7.27)

The integral may be calculated analytically and one gets

y(ω) � (A0/
√

2π )[−1/{i(ω0 − ω) − 1/2τ }]. (7.28)

The intensity is obtained as

I (ω) � y(ω)y(ω)∗ � 0[1/{(ω0 − ω)2 + (1/2τ )2}]. (7.29)

The constant ψ0 is the total intensity and depends on the lifetime τ . From
Eq. (7.29) one defines the profile of the line or the Lorentzian line shape as

gl(ω) � 2[(1/2τ )/{(ω0 − ω)2 + (1/2τ )2}]. (7.30)

A graph of gl(ω) is shown in in Figure 7.11 withω0 at its center and a fixed value
of τ . The bandwidth �ω � (ω − ω0) at half-height is obtained from

(1/2)gl(ω � ω0) � gl(ω � ω0 +�ω/2 (7.31)

∆ω

ωο

FIGURE 7.11 Graph of the Lorentzian line shape gl(ω). The width at half-height �ω is equal to
1/τ .
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and one gets

�ω � 1/τ. (7.32)

Therefore, the bandwidth is related to the lifetime of the atomic emission pro-
cess, assuming that one has a waveform as given in Eq. (7.26). Introduction of
Eq. (7.32) into Eq. (7.30) results in

gl(ω) � 2[(�ω/2)/{(ω − ω0)2 + (�ω/2)2}]. (7.33)

For an oscillator the quality factor is Q � ω0/�ω. This expression is similar to
the resolving power discussed for the Fabry–Perot in Chapter 2 and the grating
in Chapter 3. In FileFig 7.6 we show an example of the band shape of Eq. (7.33),
where the lifetime is chosen to be τ � 1000 in order to show a graph in the
chosen frequency region.

FileFig 7.6 (L6BANDS)

Lorentzian line shape spectrum with angular resonance frequencyω0 and lifetime
τ .

L6BANDS

Lorentzian Line Shape

Frequency interval m :� 11.

ω0 :� 49

(2m − 1)
ω :� 1

1

(2m − 1)
,

2

(2m − 1)
· · · 1.

To make a graph the lifetime is chosen such that the Lorentzian line shape can
be demonstrated.

τ :� 1000

gl(ω) :� 2
1

(2·τ )
1

(2·τ )2 + (ω − ω0)2
Q :� τ · ω0

Q :� 23.937.
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w

(w)

Application 7.6.

1. For the Lorentzian line shape, change the lifetime τ to more realistic values
in the range of 10−3 to 10−8 and find a corresponding frequency range.

2. Change the lifetime and find the bandwidth. Calculate Q as ω0/�ω and
compare with the data from a graph.

7.4.3 Natural Emission Line Width, Quantum Mechanical
Model

In Section 7.4.2 we saw how the width of the Lorentzian line shape depends
on the lifetime τ of the electron in the upper state. The uncertainty principle of
quantum mechanics relates the lifetime τ to the width�E of the corresponding
energy state, in which the electron is placed. The uncertainty principle may be
expressed as

�Eτ � h/2π. (7.34)

In Figure 7.12 we indicate three possible transitions from the higher to the lower
state. One corresponds to the transition from center-to-center of the two bands,
and the others to the transition between two different energies of the bands,
corresponding to lower and higher frequencies. Quantum mechanics shows that
the center-to-center transition has a higher transition probability than the other
possible transitions. The shape of the emission line shows these differences.
The Einstein coefficient of spontaneous emission A21 describes a transition
probability, and is related to the lifetime of the emission process as

A21 � 1/τ. (7.35)

7.4.4 Doppler Broadening (Inhomogeneous)

The classical Doppler effect may be observed when a train passes with a blowing
horn. The signal seems to have a higher frequency when the train is traveling
towards us and a lower frequency when traveling away from us. The atoms in a
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FIGURE 7.12 The upper energy level has the width �E2, the lower �E1. Transitions of higher
and lower frequencies are indicated, with respect to the peak frequency of the Lorentzian line
shape.

gas also move while emitting light. The frequency shift, related to their particular
velocity v, is given as

ν − ν0 � ν0(v/c). (7.36)

The distribution of the velocities depends on the temperature and follows
Maxwell’s velocity distribution law. One gets

I (ν) � Iνo exp(−Ek/kT ) � Iνo exp(−mv2/2kT )

� Iνo exp{(−mc2/2kT )((ν − ν0)2/(ν0)2)}, (7.37)

where I0 is a constant, m the mass of the oscillator, c the speed of light, k the
Boltzmann constant, and T the absolute temperature. As we did in Section 7.4.2
for the Lorentzian line shape, we define the Doppler line shape as I (ν) � I0gd(ν)
and get

gd(ν) � [(
√
π (ln 2)(2/π�ν)] exp{−(ν − ν0)2(ln 2)/(�ν/2)2}. (7.38)

The line shape of Eq. (7.38) has a Gaussian profile which is different from the
Lorentzian, schematically shown in Figure 7.13a.

The halfwidth at half height is calculated to be

�ν � 2ν0

√
[(2kT /mc2)(ln 2)]. (7.39)

The Gaussian line shape may be looked at as the envelope of a large number
of Lorentzian line shapes. Each oscillator moves with a different velocity in a
different direction and the peak frequencies of the emitted light have a Gauss
distribution, (shown in schematically Figure 7.13b). When discussing an exam-
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∆ν

FIGURE 7.13 (a) Comparison of Lorentzian and Gaussian line shapes of approximately same
line width at half height; (b) Gaussian line shape is the envelope of Lorentzian line shapes emitted
statistically at different velocities in different directions.

ple of the Ne–He laser below, we give numerical values for the halfwidth of
Eq. (7.39).

7.5 LASERS

7.5.1 Introduction

We discussed blackbody radiation in Section 7.2, atomic emission in Section 7.3,
the Fabry–Perot in Chapter 2, and modes in Chapter 6. We now discuss the
following simplified model for a two-level laser. We consider a Fabry–Perot
filled with an active medium of atomic oscillators. First we need population
inversion. The oscillators will be excited into the upper state 2 by using the light
of frequency νP from the outside. We need the excited states to remain excited for
sometime, for example, 10−3sec. Then we need stimulated emission to transfer
the energy of the excited oscillators to the modes of the Fabry–Perot. To have
laser light emitted from the Fabry–Perot, one must couple out part of the light
of the modes. This is done by making one of the mirrors of the Fabry–Perot not
totally reflective, such as when there is a small hole in the mirror.
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FIGURE 7.14 Schematic of a three-level laser. S23 is the probability of a radiationless transition,
Wik and Wki are probabilities of induced absorption and emission, and Aik is the probability of
spontaneous emission.

7.5.2 Population Inversion

7.5.2.1 Two-Level System with Stimulated and Spontaneous Transitions

When discussing the blackbody radiation law, we used for the occupation of
the different energy levels in thermal equilibrium the Boltzmann distribution
Ne−E/kT , where k is Boltzmann’s constant. This distribution law tells us that,
at temperature T , the lower states are more occupied than the higher states. For
laser action we need just the reverse, which is more electrons in a higher energy
state. This is called population inversion and is in contrast to the population of
the electrons in thermal equilibrium.

We assume that we have to deal with oscillators having just two levels, as
shown in Figure 7.14. We call the upper level E2 and the lower level E1. The
change in time of the number of photons N1 of E1 and N2 of E2, the rate
equations, is

dN1/dt � −N1B12u(ν) +N2B21u(ν) +N2A21 (7.40)

dN2/dt � +N1B12u(ν) −N2B21u(ν) −N2A21, (7.41)

where u(ν) is the radiation density. The coefficient B12 is the Einstein coeffi-
cient of stimulated absorption. The coefficient B21 is the Einstein coefficient of
stimulated emission andA21 is the coefficient of spontaneous emission. We have
used these coefficients when deriving Planck’s radiation law, (see Section 7.2),
and used the relation

A21/B12 � 8πh(ν/c)3 (7.42)

as well as B12 � B21. This relation has to be slightly changed for atomic os-
cillators. We have to take into account that the atomic energy levels may be
degenerate, which means there are several energy levels having the same energy.
For example, if there is a threefold degeneracy, we have to use the weight g � 3



7.5. LASERS 293

for the transition. Therefore we have to use

g1B12 � g2B21. (7.43)

7.5.2.2 Changes in the Upper Level Considering Stimulated Transitions

A necessary condition for laser action is population inversion which as stated
before, means there must be more photons in the upper state than in the lower
state. Using only the stimulated emission and absorption processes, we have for
the number of photons in the upperstate.

N1B12u(ν), (7.44)

and the number in the lowerstate

N2B21u(ν). (7.45)

The change in the number of photons in time is then

dnp/dt � N2B21u(ν) −N1B12u(ν). (7.46)

With Eq. (7.43) we write

dnp/dt � [N2 −N1(g2/g1)]B21u(ν). (7.47)

To have laser action one needs

N2 −N1
g2

g1
> 0 (7.48)

and one has the condition for laser action, N2/g2 > N1/g1.

7.5.3 Stimulated Emission, Spontaneous Emission, and the
Amplification Factor

To have the condition N2/g2 > N1/g1 fulfilled, one has to make the stimulated
emission larger than the spontaneous emission. The stimulated emission transfers
the photons from the upper energy state E2 into the modes of the Fabry–Perot.
The bandwidth for the emission process was discussed above and we assume
that we have a Lorentzian line shape. The modes of the Fabry–Perot are much
narrower and close to delta functions (see Figure 7.15). The probability of stim-
ulated emissions per unit time is calculated by considering Eq. (7.46), written
for a number of n photons as

dn/dt � [N2 − (g2/g1)N1]B21u(ν). (7.49)

The radiation density is u(ν) � hνn. Taking into account the line shape of
the emission process, (see Eq. (7.30)), we have to multiply the coefficient of
stimulated emission B21 by u(ν)gl(ν), that is, B21u(ν)gl(ν), and get

du(ν)/dt � [N2 − (g2/g1)N1]hνgl(ν)B21u(ν). (7.50)
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ν0 ν1ν−1

FIGURE 7.15 The width of the modes of the cavity at frequencies ν−1, ν0, and ν1 are almost delta
functions compared to the bandwidth of the Lorentzian-shaped emission line.

We can express the change of u(ν) with respect to the time dt by considering
the length dz in which the light travels in the time dt This gives us dt � dz/c′.
Here we use the speed of light c′, modified in the medium of the laser cavity.
The change of the radiation density over the interval dz is then

du(ν)/dz � [N2 − (g2/g1)N1](hν/c′)gl(ν)B21u(ν, z). (7.51)

Using A21 � 1/τ , and A21/B21 � 8πh(ν/c′)3, we have

du(ν)/dz � {(c′2/8πν2τ )[N2 − (g2/g1)N1]gl(ν)}u(ν, z). (7.52)

The expression in the curly braces is called the amplification factor ε(ν):

ε(ν) � {(c′2/8πν2τ )[N2 − (g2/g1)N1]gl(ν)}. (7.53)

The gain of the beam ε(ν) is “per length” and an example for the Ruby laser is
calculated in FileFig 7.7.

FileFig 7.7 (L7RUBYS)

Gain calculation for the example of the Ruby laser. (See also Kneub’́uhl and
Sigmst, 1988.)

L7RUBYS is only on the CD.

7.5.4 The Fabry–Perot Cavity, Losses, and Threshold
Condition

The Fabry–Perot cavity has two plane parallel mirrors with reflectivities R1 and
R2, and the modes are standing waves. These standing waves may be considered
as two traveling waves, moving in opposite directions. If R1 and R2 have high
reflectivity, the traveling waves will pass forward and backward through the
volume filled with the oscillators in the excited stateE2. By stimulated emission,
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energy will be picked up and the intensity of each mode will increase. This
process will come to an end when the increase in energy is set off by the losses.
Large distances between the two mirrors of the Fabry–Perot correspond to a high
order of longitudinal modes and these high-order modes correspond to a very
narrow bandwidth, schematically shown in Figure 7.15. The intensity depending
on the length z of the light traveling in the active medium of the Fabry–Perot is
related to the radiation density as I (z) � c′u(ν, z). From Eq. (7.50) and (7.51)
we have

dI (z)/dz � ε(ν)I (ν, z). (7.54)

Integration gives us

I (z) � I (0)eε(ν)z. (7.55)

We see the exponential increase of the light traversing the active medium; energy
is transferred to the modes of the Fabry–Perot.

In order to use some of the energy one has to couple it out of the cavity. This
may be achieved by using a mirror with a small hole for one of the two mirrors
of the Fabry–Perot. The length of one round trip is z � 2L and the losses are
taken into account by the factor (α(ν)) in the exponent of Eq. (7.55). We multiply
Eq. (7.55) with the reflectivities R1R2 to account for the reflection losses of one
round trip and get

I (2z) � I (0)e[ε(ν)−α(ν)]2L(R1R2). (7.56)

The thereshold condition is then obtained from Eq. (7.56) when

e[ε(ν)−α(ν)]2LR1R2 � 1 (7.57)

or [ε(ν) − α(ν)] � (1/2L)ln(1/R1R2). The threshold gain is

εT (ν) � α(ν) + (1/2L)ln(1/R1R2) (7.58)

We rewrite Eq. (7.58) by calling σ � [N2 − N1(g2/g1)] and insert εT (ν) in
Eq. (7.53) and get

σT � [α(ν) + (1/2L)ln(1/R1R2)](8πν2τ/c
′2)(1/gl(ν)). (7.59)

This is the famous threshold condition by Schawlow and Townes (Kneub’́uhl
and Sigrist, 1988, p.38). In FileFig 7.8 we present a calculation with numerical
values for the He–Ne laser.

FileFig 7.8 (L8HENES)

Gain calculations for the example of the Ne–He laser. We have used for m in
mc2 the mass of the proton times 20 for Ne. The Lorentzian line width has been
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replaced by the Doppler line width. The line shape gd(ν) is approximately 1
divided by (2ν0

√
(2kT /mc2) ln 2) (see Eq. (7.39).)

L8HENES is only on the CD.

7.5.5 Simplified Example of a Three-Level Laser

We consider an energy schematic of the oscillators shown in Figure 7.14 with an
upper state 3, a lower state 2, and the ground state 1. We have for transitions be-
tween 3 and 1 induced absorption, induced emission, and spontaneous emission,
as discussed in Section 7.5.2. The transition probabilities are called W31, W13,
and A31, respectively. A similar description holds for the transitions from 2 to
1. The transitions from 3 to 2 are now special. They are radiationless transitions
and their probability is called S32. The occupation number of the oscillators in
the states 1, 2, and 3 are called N1, N2, N3 and the total number N0 is assumed
to be a constant.

N0 � N1 +N2 +N3. (7.60)

The change in time of the number of oscillators in state 3 is

dN3/dt � W13N1 − (W31 + A31 + S32)N3 (7.61)

and in state 2

dN2/dt � W12N1 − (W21 + A21)N2 + S32N3. (7.62)

For the steady state, the time derivatives are zero. We assume that A31 � W31,
which gives us for the ratio N2/N1 of the oscillators

N2/N1 � {(W13S32)/(W13 + S32) +W12}/(A21 +W21). (7.63)

From the discussion of blackbody radiation, W13 � W31 and W12 � W21, and
we assume that the radiationless transition probability S32 is much larger than
the transition probability W13 (the probability to empty, state 3). We then have
from Eq. (7.63)

N2/N1 � {(W13 +W12)/(A21 +W12)}. (7.64)

Using Eqs. (7.60) as N0/N1 and (7.61) to (7.63) we may get after some
calculations

(N2 −N1)/N0 � {(W13 − A21)/(W13 + A21 + 2W12)}. (7.65)

The threshold condition for operation is obtained when, in the steady state, there
are as many oscillators in state 1 as in state 2, N1 � N2. From Eq. (7.65)
one has W13 � A21. The minimum power for operation is calculated from the
condition that the power corresponding to induced absorption of level 3 is equal
to the power corresponding to the spontaneous emission of state 2. In FileFig
7.9 we calculate P � NA21hν for a process involving a metastable state and
spontaneous emission.
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FileFig 7.9 (L9MINPOWS)

Model calculation of minimum power for operation of a laser, P � NA21hν:

1. for a metastable state, and
2. for spontaneous emission.

L9MINPOWS is only on the CD.

Application 7.9. How would the numbers change if S32 must be taken into
account?

Take S32 � 10W13 or S32 � 1000W13.

7.6 CONFOCAL CAVITY, GAUSSIAN BEAM, AND
MODES

7.6.1 Paraxial Wave Equation and Beam Parameters

Laser light travels forwards and backwards between the two mirrors of a res-
onance cavity. The first Ne–He laser used a Fabry–Perot cavity of a length of
one meter between the two plane parallel mirrors and was extremely difficult to
align. Later it was found that the confocal cavity was much easier to align, and
was also very efficient from the point of view of diffraction losses. In Chapter
1, we discussed several types of resonators from the perspective of geometrical
optics, and in Chapter 2 the Fabry–Perot as a resonance interferometer.

In this section we discuss the confocal cavity with radii of curvature Rm � d,
where d is the distance between the two mirrors placed at z � ±d/2. Here the
origin of the coordinate system is at z � 0 in the middle between the mirrors. The
laser beam in the cavity is approximated by a wave traveling in the z direction
and having a bell-shaped profile in the transversal (x, y) direction (Fig-
ure 7.16). For the mathematical presentation of these propagating modes, we
use Cartesian coordinates and rectangular mirrors. We follow H. Kogelnick and

FIGURE 7.16 Waist of a Gaussian beam in a confocal cavity depending on the z coordinate.
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FIGURE 7.17 (a) Coordinates for discussion of the radius of curvature of the wavefront of a mode
in a confocal cavity; (b) radius of curvature of the wavefront is indicated for different values of
the z coordinate.

T. Li and start with the scalar wave equation

δ2u/δx2 + δ2u/δy2 + δ2u/δz2 + k2u � 0, (7.66)

where k � 2π/λ and try to find a solution of the wave equation of the form

u � ψ(x, y, z) exp(−ikz). (7.67)

Inserting Eq. (7.67) into Eq. (7.66) and assuming for the calculation that the
second derivative δ2ψ/δz2 may be neglected, we further consider the paraxial
wave equation

δ2ψ/δx2 + δ2ψ/δy2 − 2ikδψ/δz � 0. (7.68)

Solutions of Eq. (7.68) describe a Gaussian beam profile in the transverse
direction, depending on the distance r from the axis, where r2 � x2 + y2

(Figure 7.17). A solution of Eq. (7.68) is

ψ � exp{−i[P (z) + k(x2 + y2)/2q(z)]} (7.69)

with

δq(z)/δz � 1 (7.70)

and

δP (z)/δz � −i/q(z), (7.71)

where the two functions q(z) and P (z) are not independent of each other. We are
mainly interested in the solution for q(z) and can solve for P (z) if we need it,
which is a phase factor.

We write the solution of Eq. (7.70) as

q(z) � izR + z, (7.72)
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where zR is a constant. We express the function q(z) as a combination of the
radius of curvature of the wavefront R(z) and the beam waist w(z)2 as

1/q(z) � 1/(izR + z) � 1/R(z) − iλ/(πw(z)2) (7.73)

and determine R(z) and w(z)2 from Eq. (7.72) and (7.73), after separation of
real and imaginary parts, we have

w(z)2 � (λ/π ){zR + z2/zR} (7.74)

and

R(z) � z+ z2
R/z. (7.75)

The functionw(z)2 is the beam waist, which is the width of the beam depending
on z (Figure 7.16). R(z) is the curvature of the wavefront of the beam depending
on z (Figure 7.17).

7.6.2 Fundamental Mode in Confocal Cavity

The confocal cavity was discussed in the chapter on geometrical optics. It is a
stable cavity with radii of curvature of the mirrors equal to the length d of the
cavity. The fundamental mode of the solution of the paraxial wave equation (see
Eq. (7.68)), is the same for rectangular mirrors of a cavity for which Cartesian
coordinates are used and for circular mirrors for which cylindrical coordinates
are used.

We show that the radius of curvature of the wavefront of the Gaussian beam
in the confocal cavity matches the curvature of the mirrors at distance z � d/2
and −d/2, counting z from the middle at 0.

7.6.2.1 Beam Waist

The beam waist is indicated in Figure 7.16. Inserting Eq. (7.73), into Eq (7.69)
and taking the real part one has (exp −kr2λ/2πw(z)2). With q � kλ/2π and
setting q � 1 for simplicity we get (exp −r2/w(z)2). This factor decreases in
the transversal direction and is 1 for r � 0 and 1/e for r � w(z). The beam is
attenuated from its value at r � 0 at the axis to 1/e at distance r from the axis.

7.6.2.2 Wavefront of Beam at Center and at Mirror

Wavefront at Center

The wavefront is plain when R(z) � ∞. If we choose this value at z � 0, one
gets from Eq. (7.73)

1/q(0) � −iλ/(πw(0)2) (7.76)

From Eq (7.74) we have for the total waist in the middlew2
0 � w(0)2 � (λ/π )zR.
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Wavefront at Mirrors

For z � zR we have

R(z � zR) � 2zR and w(z � zR)2 � (λ/π )2zR � 2w2
0. (7.77)

We choose 2zR � d equal to the distance d between the two mirrors, which is
also the radius of curvature of the spherical mirrors in the confocal cavity. The
radius of curvature of the wavefront at z � d/2 matches the radius of curvature
of the mirrors.

Confocal Cavity

For the confocal cavity the radius of curvature of the wavefront, when approach-
ing the mirror, is equal to the radius of curvature of the mirror (see Figure 7.17).
The beam waist is 2w2

0 at the point z � d/2, which is twice as large as at its
minimum at z � 0. In FileFig 7.10 we have plottedw(z) andR(z) over the range
z � −100 to 100, which is the distance between the mirrors equal to the length
d � 2zR � 200. One observes the beam waist at z � 0 and one obtains for the
radius of the wavefront at z � 100, that is,R(100), the value 200, corresponding
to the radius of curvature of the mirror Rm � d.

The half angle of the opening of the beam in the far field approximation is the
angle θap of the asymptote of w(z), which passes through z � 0. It is obtained
as

lim
z→∞w(z)/z � w0/zR � λ/πw0. (7.78)

The asymptote y � zw0/zR is also indicated in FileFig 7.10.

FileFig 7.10 (L10WRS)

Graphs are shown for the radius of the wavefront R(z), beam waist w(z), and
the asymptote y(z).

L10WRS

Radius of Curvature and Beam Waist

1. Radius of curvature
Beam waist is normalized to 1; that is, we plot (w(z) � w0SQR(1+(z/zR)2)
and set w0 � .1 in cm, and zR � π (ω0)2/λ − .01π/λ, λ in cm. Radius of
curvature R(z) � z+ (zR)2/z

R(z) :�
∣∣∣∣z+ zR2

z

∣∣∣∣ zR :� 100

z :� −100,−99.99 . . . 100.
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Rm � 2zR. At z � 1/2 of distance of mirrors, that is, for distance 200 at
100, the radius of curvature must be equal to the distance of the mirrors.

2. Beam waist
Plots of two branches of the beam waist and the asymptote to w(z); that is,
y � z/zR.
If z is in cm, we have set for w0 � .1, λ � 3.14∗0.01/zR in cm (about 3
microns for zR � 100).

w(z) :� .1 ·
√

1 + (
z

zR
)2

and for the asymptote yy(z) :� −y(z),

ww(z) :� −.1 ·
√

1 +
(
z

zR

)2

.
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Application 7.10.

1. Repeat the calculations for λ � 10 microns, zR � 100 cm.
2. Repeat the calculations for λ � 3 microns, zR � 160 cm.
3. Repeat the calculations for λ � 10 microns, zR � 160 cm.

7.6.3 Diffraction Losses and Fresnel Number

The diffraction losses of a mirror of diameter 2a at distance d are characterized
by the Fresnel number F . We assume parallel light incident on an obstacle of
diameter 2a and have for the diffraction angle θ � λ/2a (see Figure 7.18). The
geometrical shadow AG at distance d is 4a2π and the total area AT, enlarged by
diffraction, is 4(a + θd)2π . The Fresnel number is defined as F � AG/(AT −
AG), which is

F � 4a2π/{(4a2 + 8ad(λ/2a) + . . .)π − 4a2π}
� 4a2π/(8adλπ/2a) � a2/dλ, (7.79)

where a term in θ2 was neglected in the denominator.

FIGURE 7.18 Diffraction angle for mirror. The geometrical shadow has the area AG. The total
area of the light is AT . The Fresnel number is defined as F � (AG)/(AT − AG).
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FIGURE 7.19 Fresnel numbers for circular plain reflectors and confocal reflectors. The confocal
cavity is about two orders of magnitude better than a Fabry–Perot cavity.

A confocal resonator has considerably fewer losses for Fresnel numbers larger
than 1 compared to Fabry–Perot resonators. For example, at F � 1 the confocal
resonator does more than 300 times better than the Fabry–Perot (Figure 7.19).

7.6.4 Higher Modes in the Confocal Cavity

We have discussed in Section 7.2 the fundamental mode in a confocal cavity. The
fundamental mode is the same for a cavity using rectangular mirrors or spherical
mirrors. The higher modes need for their description Cartesian coordinates for
rectangular mirrors and cylindical coordinates for round mirrors. In both cases
we have TEM modes characterized by three mode numbers, the first two for the
transversal modes and the last for the longitudinal modes.

7.6.4.1 Confocal Cavity and Rectangular-Shaped Mirrors (Cartesian Coordinates)

For the higher modes of cavities with rectangular-shaped mirrors, using Cartesian
coordinates (x, y, z), the solution of the paraxial wave equation (see Eq. (7.68)),
is

ψ � Hm(
√

2x/w) ·Hn(
√

2y/w) · exp{−i(P (z) + k(x2 + y2)/2q(z))}, (7.80)

whereHm(
√

2x/w) andHn(
√

2y/w) are Hermitian polynomials, each a solution
of a differential equation written in the variable u as

d2Hm/δu
2 − 2u · dHm/du+ 2mHm � 0. (7.81)

The indices m and n are the transverse mode numbers. The Hermitian
polynomials for m equals 0 to 3 are

H0(u) � 1

H1(u) � u (7.82)
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FIGURE 7.20 Schematic of modes for a cavity with rectangular mirrors.

H2(u) � 4u2 − 2

H3(u) � 8u3 − 12u.

The fundamental mode, discussed above, has the indices m � 0 and n � 0.
The higher modes are labeled by TEMmnq, where n andm refer to the Hermi-

tian polynomials (Eqs. (7.81) and (7.82)). They are transversal mode numbers
and correspond to the number of vertical or horizontal zero-intensity lines in the
transversal pattern. A schematic representation is given in Figure 7.20. The lon-
gitudinal mode is characterized by the large number q. Since the phase has to be
the same after one round trip, one obtains the following resonance condition,

2L/λnmq � 1/2(m+ n+ 1) + q. (7.83)

There are degenerate modes if m + n + 2q � m∗ + n∗ + 2q∗. For the mode
separation one has v00 q+1 − ν00q � c′/2L, where c′ is the phase velocity in the
medium of the cavity and is independent of the Fresnel number.

In FileFig 7.11 we show surface graphs of the higher-order modes in the
transversal direction from (0,0) to (2,2).

FileFig 7.11 (L11MOCONFCS)

Modes for confocal cavity and rectangular mirrors. Surface plots of Hermitian
polynomials with exponential factor for indices 0, 1, and 2, and scaling factors
X and Y .

L11MOCONFCS

Cartesian Coordinates for Rectangular Mirrors in the Confocal Resonator

Field distribution as contour plot. The mode numbers m and n are for hermi-
tian polynomials. The constant in the exponential is simulated by X. Small X
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corresponds to small waist width.

N :� 40 i :� 0 . . . N j :� 0 . . . N

xi :� (−20) + 1.00 · i yj :� (−20) + 1.00 · j

H0(x) :� 1 H0(y) :� 1 H1(x) :� x ·
√

2

Y
H1(y) :� y ·

√
2

Y

H2(y) :� 4 ·
(√

2

Y
· y

)2

− 2 H2(x) :� 4 ·
(√

2

Y
· x

)2

− 2

H00(x, y) :� H0(x) ·H0(y)

H20(x, y) :� H2(x) ·H0(y)

H02(x, y) :� H0(x) ·H2(y)

H01(x, y) :� H0(x) ·H1(y)

H11(x, y) :� H1(x) ·H1(y)

H10(x, y) :� H1(x) ·H0(y)

H21(x, y) :� H2(x) ·H1(y)

H12(x, y) :� H1(x) ·H2(y)

R(x, y) :� (x)2 + ((y))2.

Constant X:

X ≡ 100 Y ≡ 100 g(x, y) :�
(
e

−R(x,y)
X

)
.

M00i,j :� (
g(xi, yj ) ·H00(xi, yj )

)2
M10i,j :� (

g(xi, yj ) ·H10(xi, yj )
)2
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M01i,j :� (
g(xi, yj ) ·H01(xi, yj )

)2
M11i,j :� (

g(xi, yj ) ·H11(xi, yj )
)2

M20i,j :� (
g(xi, yj ) ·H20(xi, yj )

)2
M21i,j :� (

g(xi, yj ) ·H21(xi, yj )
)2
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M02i,j :� (
g(xi, yj ) ·H02(xi, yj )

)2
M12i,j :� (

g(xi, yj ) ·H12(xi, yj )
)2

M22i,j :� (
g(xi, yj ) ·H22(xi, yj )

)2

Application 7.11.
1. Compare with Figure 7.20 and the number of zero-intensity lines with the

mode numbers.
2. Extend the modes using H3(x) and H3(y) and complete all graphs up to

indices 0, 1, 2, and 3.
3. Convert surface to contour plots.
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7.6.4.2 Confocal Cavity and Circular Mirrors (Cylindrical Coordinates)

For circular mirrors, one uses cylindrical coordinates (r, φ, z). After rewriting
the wave equation in these coordinates, one has the solutions

ψ � (
√

2r/w)l · Llp(2r2/w2) · exp{−i(P (z) + kr2/2q(z))}, (7.84)

where Lpl(2r2/w2) is a generalized Laguerre polynomial. The Llp(2r2/w2) are
solutions of the differential equation written in the variable u,

ud2Llp/du
2 + (l + 1 − u)dLlp/du+ pLlp � 0. (7.85)

The index p is the radial mode number and l the angular mode number. For
p � 0 to 2 we have for the polynomials

Ll0(u) � 1 (7.86)

Ll1(u) � l + 1 − u

Ll2(u) � (1/2)(l + 1)(l + 2) − (l + 2)u+ (1/2)(u2). (7.87)

The fundamental mode has the numbers l � 0 and p � 0. The modes in
confocal cavities with round mirrors are labeled by TEMlpq , where l is the
angular mode number corresponding to the number of angular zero-intensity
lines in the transversal pattern (see the schematic presentation in Fig-
ure 7.21). The radial mode number correspond to the number of zero-intensity
rings. The longitudinal mode is characterized by the large number q. The reso-
nance condition, which is the condition that the phase is the same after one round
trip, is

2L/(λlpq � (1/2)(l + 2p + 1) + q. (7.88)

There are degenerate modes if l+2p+2q � l∗+2p∗+2q∗. The mode separation
is again independent of the Fresnel number and one has again ν00 q+1 − ν00q �
c′/2L.

FIGURE 7.21 Schematic of modes for a cavity with round mirrors.
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In FileFig 7.12a we show graphs of the first four modes from (0,0) to (1,1). In
FileFig 7.12b we show graphs of the next five modes from (1,2) to (2,2). Contour
plots were chosen for better reference to Figure 7.21, and identification of the
zero-intensity lines and mode numbers.

FileFig 7.12 (L12MOCY1to4S)(L12MOCY5to9S)

Modes for confocal cavity and circular mirrors. Contour plots of generalized
Laguerre polynomial for indices l and p equal 0, 1, and 2. Scaling factor is X.

L12MOCY1to4S

Cylindrical Coordinates for Circular Mirrors in Confocal Resonator

Field distribution as contour plot for graph 00, 10, 01, and 11. The L(l, p)
functions are written out for 00 to 22. The constant in the exponential is X:

i :� 0 . . . N j :� 0 . . . N N � 40

xi :� (−2) + .10001 · i yj :� (−2) + .10001 · j

R(x, y) :� (x)2 + (y)2 β(x, y) :�
(
a tan

(
x

y

))2

q(x, y) :�
[
e

−(R(x,y))
x

]
.

Constant X : X ≡ 3. The L’s are given below.

u(x, y) :� 4 · R(x, y)

X
g(x, y) :� cos(0 · β(x, y))

L00(x, y) :� 1 L01(x, y) :� 1 − u(x, y)

L10(x, y) :� 1 L11(x, y) :� 2 − u(x, y)

M00i,j :� (cos(0 · β(xi, yj )) · q(xi, yj ) · L00(xi, yj ))
2

M10i,j :� (cos(0 · β(xi, yj )) · q(xi, yj ) · L01(xi, yj ))
2.
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M01i,j :� (cos(1 · β(xi, yj )) · q(xi, yj ) · L10(xi, yj ))
2

M11i,j :� (cos(1 · β(xi, yj )) · q(xi, yj ) · L11(xi, yj ))
2.

L12MOCY5to9S

Cylindrical Coordinates for Circular Mirrors in Confocal Resonator

Field distribution as contour plot for graph 02 to 20. The L(l, p) functions are
written out for 00 to 22. The constant in the exponential is X:

i :� 0 . . . N j :� 0 . . . N N � 40
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xi :� (−2) + .10001 · i yj :� (−2) + .10001 · j
R(x, y) :� (x)2 + (y)2

β(x, y) :�
(
a tan

(
x

y

))2

q(x, y) :�
[
e

−(R(x,y))
x

] .

Constant X : X ≡ 2. There h stands for l and p runs from 0 to 2.

Lh2(x, y) :� [1/2(h+ 1)(h+ 2) − (h+ 2)u(x, y)] + (1/2)u(x, y)2

u(x, Y ) :� 4 · R(x, y)

X
g(x, y) :� cos(0 · β(x, y))

L02(x, y) :� 1 − 2 · u(x, y) + 1

2
· u(x, y)2

L22(x, y) :� 6 − 4 · u(x, y) + 1

2
· u(x, y)2

L12(x, y) :� 3 − 3 · u(x, y) + 1

2
· u(x, y)2

L21(x, y) :� 3 − u(x, y)

L20(x, y) :� 1.

M02i,j :� (cos(2 · β(xi, yj )) · q(xi, yj ) · L20(xi, yj ))
2

M20i,j :� (cos(0 · β(xi, yj )) · q(xi, yj ) · L02(xi, yj ))
2.
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M12i,j :� (cos(2 · β(xi, yj )) · q(xi, yj ) · L21(xi, yj ))
2

M21i,j :� (cos(1 · β(xi, yj )) · q(xi, yj ) · L12(xi, yj ))
2.

M22i,j :� (cos(2 · β(xi, yj )) · q(xi, yj ) · L22(xi, yj ))
2.

Application 7.12.

1. Compare with Figure 7.21 and the number of zero intensity lines with the
mode numbers.

2. Convert surface to contour plots and try to identify the modes.



7.6. CONFOCAL CAVITY, GAUSSIAN BEAM, AND MODES 313

PL1. Rayleigh-Jeans Law and Planck’s Law (see p. 271).
PL2. Graph of Black Body Radiation depending on Wavelength and Fre-

quency.(see p. 275–277).
PL3. Lorentzian Line Shape with angular Resonance frequency ωo and

Lifetime τ (see p. 284).
PL4. Calculation of (N2 −N1)/No (see p. 292).
PL5. Paraxial Wave Equation (see p. 294).
PL6. Calculation of w2(z) and R(z) for Confocal Cavity (see p. 296).
PL7. Modes for Confocal Cavity and rectangular Mirrors (see p. 300).
PL8. Modes for Confocal Cavity and circular Mirrors (see p. 305).



88C H A P T E R

Optical
Constants

8.1 INTRODUCTION

In the chapters on geometrical optics, interference, and electromagnetic theory
we have sometimes used the refractive index n � c/v. When light enters a
dielectric medium, it interacts with the atoms and changes its speed from c in
vacuum to v in the medium. The medium is called isotropic when the speed of
light is the same in all directions. The refractive index may be obtained from
the real part of the dielectric constant in Maxwell’s equations. In the case where
there are losses in the medium, light will be absorbed, and one uses the complex
dielectric constant in Maxwell’s equations.

In this chapter we first look at the dielectric constants in Maxwell’s equations
and then use a simple model for the analytical representation. As a result we
get the index of refraction depending on the frequency of the light and model
parameters. The model we use is a damped forced oscillator. The incident light
drives these oscillators, representing the material, and loses some of its intensity.
The losses of the electromagnetic wave are described by a complex refractive
index (n− iK). In books on solid state physics the complex refractive index is
often called n + iκ (and not n − iK). We have to relate n and K or κ , called
optical constants, to the parameters of our model.

315
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8.2 OPTICAL CONSTANTS OF DIELECTRICS

8.2.1 The Wave Equation, Electrical Polarizability, and
Refractive Index

We write Maxwell’s equations for an isotropic and nonmagnetic material without
free charges, which means we assume ∇ · P � 0 and ρ � 0 and have

∇ × E � −∂B/∂t

c2∇ × B � ∂E/∂t + j/ε0 (8.1)

∇ · E � 0

∇ · B � 0,

where E is the electrical field vector, B the magnetic field vector, j the current
density vector ρ the charge density, and ε0 � 8.854×10−12 F/m, the permittivity
of vacuum. We now study the effect of an outside electrical field on the bound
charges in an isotropic material. The outside electrical field is assumed to be a
harmonic wave and will act on the bound charges and make them vibrate. For
the current density N of such vibrating charges we have

j � Nev, (8.2)

where N is the number of charges per unit volume, e the charge of the electron,
and v the velocity vector. Since we assume an isotropic medium, we only have to
take into account one direction of vibration, which we call y, and one direction
of motion, which we call x. With v � dx/dt we have

jy � Ne dx/dt. (8.3)

The induced dipoles are ex, and P � N (ex) is called the polarization. The
current density is then

jy � dPy/dt. (8.4)

The wave equation for vibration in the y direction and propagation in the x
direction is

∂2Ey/∂x
2 − (1/c2)∂2Ey/∂t

2 � [1/(ε0c
2)]∂2Py/∂t

2, (8.5)

where the right side of Eq. (8.5) is called the source term.
In the first approximation, we set Py proportional to the incident electrical

field and write

Py � ε0NαEy, (8.6)

where α is the atomic polarizability, a constant characteristic for the material.
We introduce into the wave equation a trial solution Ey � A cos(kx − ωt), and
get

−k2Ey + (1/c2)ω2Ey � (1/ε0c
2)(−ω2αEy) (8.7)
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or

k2 � (ω2/c2)(1 +Nα). (8.8)

We associate the velocity v with the the phase velocity ω/k in the medium and
obtain for n

n2 � c2/v2 � c2k2/ω2 � (1 +Nα). (8.9)

We have obtained a relation between the optical constant n and the material
constant α, the atomic polarizability.

8.2.2 Oscillator Model and the Wave Equation

8.2.2.1 Less Dense Medium

To study the dependence of the refractive index on frequencies and losses, we
relate the refractive index to the parameters of an oscillator model.

The polarization vectorP of the medium is defined as the number of electrical
dipoles per unit volume. The induced electrical dipole moment is eEy , which
we now call (eu), where u is the displacement of an electron in an atom. The
number of dipoles per unit volume isN and we consider only one component of
vibration y and have

P � Neu. (8.10)

We describe the displacement u of the charges by the vibrations of a damped
oscillator,

md2u/dt2 +mγdu/dt +mω2
0u � 0, (8.11)

where u is the displacement of the charge from its equilibrium position, m is
the mass, f the force, and γ the damping constant. The frequency without the
damping term is ω12

0 � f/m, and the resonance frequency for the damped oscil-
lator is ω0 �� ω′

0. The electromagnetic wave of the light drives these oscillators.
The forced damped oscillator equation is

md2u/dt2 +mγdu/dt +mω2
0u � eEoe

−iωt . (8.12)

We introduce the trial solution Ae−iωt and obtain

u(t) � [eE(t)/m]/[(ω2
0 − ω2) − iγ ω], (8.13)

whereE(t) � E0e
−iωt . The driving electromagnetic wave produces polarization

P (t) � Neu(t) � [Ne2εoE(t)]/[mεo(ω
2
0 − ω2 − iγ ω)] � χ∗ε0E(t), (8.14)

where ε0 is the permittivity of free space. As a result of the imaginary damping
term in u(t) one has a complex susceptibility χ , indicated by a star. In Eq. (8.14)
we have related the polarization P (t) and the electrical susceptibility χ to the
parameters of our model and the electrical field E(t) of the light.



318 8. OPTICAL CONSTANTS

From the wave equation, we have another expression of P (t) (see Eq. (8.6))
and introducing P (t) � ε0NαE(t) into Eq. (8.14) we get

α � (1/N )ω2
p/(ω

2
0 − ω2 − iγ ω), (8.15)

where α is the atomic polarizability and ω2
p � Ne2/mε0 the plasma frequency.

One should not confuse this with ω2
0, the square of the angular frequency of the

oscillator model, representing the dielectric. We have obtained a relation between
the material constant of the atomic polarizability α and the parameters of our
oscillator model. For the square of the refractive index, (see eq. (8.9)) we get

(n∗)2 � 1 + ω2
p/(ω

2
0 − ω2 − iγ ω). (8.16)

Since (n∗)2 is a complex number, we marked it with a star. It is customary to call
the real part of the complex refractive index n, and the imaginary part K . The
imaginary partK may be called the extinction index. We have n∗ � n− iK and
(n∗)2 is

(n− iK)2 � 1 + ω2
p/((ω

2
0 − ω2) − iγ ω). (8.17)

For the real and imaginary parts we obtain

n2 −K2 � ε′ � 1 + ω2
p(ω2

0 − ω2)/((ω2
0 − ω2)2 + (γω)2) (8.18)

and

−2nK � ε′′ � ω2
pγω/((ω

2
0 − ω2)2 + (γω)2), (8.19)

where ε′ is the real part of the dielectric constant and ε′′ is the imaginary part.
For optically thin media, such as gases, one has n close to 1 and K is small and
has the approximation

n � 1 + (ω2
p/2)(ω2

0 − ω2)/((ω2
0 − ω2)2 + (γω)2) (8.20)

and

K � −(ω2
p/2)γω/((ω2

0 − ω2)2 + (γω)2). (8.21)

The damping term of the damped oscillator equation appears in the imaginary
part of n∗, indicating the losses present in the description of our model. When
the damping term is zero we get

n2 � 1 + (ω2
p)/(ω2

0 − ω2) (8.22)

or

n(ω) �
√

(1 + [(ω2
p)/(ω2

0 − ω2)], (8.23)

where ω0 is the resonance frequency of the case without losses. The refractive
index depends on the frequency and the model parameters. In Figure 8.1a the
dependence of n on the frequency is shown schematically. When γ � 0 we
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FIGURE 8.1 (a) Dependence of n on frequency. For no damping we have a singularity; (b) normal
and anomalous dispersion; (c) dependence of K on frequency. The maximum is not at infinity if
γ �� 0.

have singularities at the resonance frequency, and for γ �� 0 these singularities
are avoided. On the left side of Figure 8.1a the refractive index increases with
higher frequencies. This region is called normal dispersion, shown on a prism
on the left in Figure 8.1b. The reverse case is on the right side of Figure 8.1a,
called anomalous dispersion and shown on a prism on the right in Figure 8.1b.
In Figure 8.1c we show an absorption curve, which is the dependence of K on
the frequency.

8.2.2.2 Dense Medium

So far, in the preceding discussion, it was assumed that the local field E0 at
the site of the oscillators is the same as the applied field. This is only true if the
density of the oscillators in the medium is low, as it would be for a gas. For a dense
distribution of the oscillators in a solid, the surrounding area is also electrically
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polarized and has an effect on the oscillator under consideration. The local field
at the oscillator must be corrected. This is called the Lorentz correction and the
effective field at the site of the charges is

E + (1/3ε0)P. (8.24)

Using P � ε0NαE we have

Py � ε0Nα{Ey + (Py/3ε0)}. (8.25)

Similar to the low density case, using Eq. (8.9), the square of the refractive index
for the denser medium is

n2 � 1 +Nα/(1 − (Nα/3)). (8.26)

This equation may also be written as

3(n2 − 1)/(n2 + 2) � Nα (8.27)

and is called the Clausius–Mossotti equation, or with the parameters of our
model,

n2 � 1 + 3ε0ω
2
p/{3(ω2

0 − ω2 − iγ ω) − ω2
p}. (8.28)

We have in a solid that the interaction between the oscillators becomes very
strong. The oscillation frequencies are modified and the damping constants
become large. In addition, in crystals the periodicity must be taken into account.

8.3 DETERMINATION OF OPTICAL CONSTANTS

8.3.1 Fresnel’s Formulas and Reflection Coefficients

The determination of the two parts n andK of the complex refractive index may
be accomplished by using reflection measurements. In Chapter 5 we found that
Fresnel’s formulas relate the reflection coefficients of the p- and s-polarization
cases to the real index of refraction. In a similar way to that of Chapter 5, one can
show that the complex reflection coefficients are related to complex refractive
indices through Fresnel’s formulas. Replacing n2 by n∗

2 � n2 − iK2 we have for
the reflection coefficients

r∗‖ � (n2 − iK2) cos θ − n1 cos θ ′′

(n2 − iK2) cos θ + n1 cos θ ′′ (8.29)

r∗⊥ � n1 cos θ − (n2 − iK2) cos θ ′′

n1 cos θ + (n2 − iK2) cos θ ′′ . (8.30)

In order to represent r‖ and r⊥ depending on the angle of incidence. We need the
law of refraction in complex terms (see FileFig 8.4 (M4SNELL) of Chapter 5).
The law of refraction is

n1 sin θ � (n2 − iK2) sin θ ′′. (8.31)
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The angle θ ′′ must be a complex quantity since the left side of Eq. (8.31) is real.
Introduction of Eq. (8.31) into Eqs. (8.29) and (8.30) gives us

r∗‖ � (n2 − iK2) cos θ − n1

√
1 − {(n1 sin θ )/(n2 − iK2)}2

(n2 − iK2) cos θ + n1

√
1 − {(n1 sin θ )/(n2 − iK2)}2

(8.32)

r∗⊥ � n1 cos θ − (n2 − iK2)
√

1 − {(n1 sin θ )/(n2 − iK2)}2

n1 cos θ + (n2 − iK2)
√

1 − {(n1 sin θ )/(n2 − iK2)}2
. (8.33)

In FileFig 8.1 we have graphs of the absolute value and the argument for re-
flected amplitudes of the parallel (zrp) and perpendicular (zrs) cases depending
on n and K . For K �� 0 we see from the first graph that for the parallel case
the minimum corresponding to the Brewster angle is not zero. The angle at the
minimum is called the principal angle. The second graph shows the phase jump
at the Brewster angle, which is now a smooth transition. In the application of
FileFig 8.1, Section 3, we plot the parallel (zrp) and perpendicular (zrs) cases
for several different values of n and K on the same graph.

FileFig 8.1 (O1FRNKPSS)

Graphs are shown for reflected amplitudes of the parallel (zrp) and perpendic-
ular (zrs) cases depending on n and K for n1 � 1. For both cases the absolute
value of the reflected amplitudes and the phase angle are plotted for n1 � 1,
n2 � 1.5, and K � 2.

O1FRNKPSS is only on the CD.

Application 8.1.

1. Make a graph and find the values of the principal angle for one value of n
and three values of K .

2. Make a graph and find the values of the principal angle for one value of K
and three values of n.

3. Observe that the curve of arg(zrp(θ )) is not continuously approaching the
curve of arg(zrs(θ )) whenK is going from 0.01 to zero.What is the remaining
phase difference?

8.3.2 Ratios of the Amplitude Reflection Coefficients

Equations (8.32) and (8.33) give the dependence of the reflection coefficients
on n and K . We have the general problem that we cannot represent n and K as
functions of rs and rp. This is only possible for approximations, (see Appendix
8.1), and other methods have to be considered.
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One method is to apply reflection measurements at several angles of incidence
to determine the absolute values of the ratio rs/rp. The ratio rs/rp is calculated
similarly to that done by Born and Wolf (1964, p.617).

From Chapter 5 the ratio r⊥/r‖ from Fresnel’s formulas is

r⊥/r‖ � [(n1 cos θ − n2 cos θ ′′)/(n1 cos θ + n2 cos θ ′′)]/ (8.34)

[(n2 cos θ − n1 cos θ ′′)/(n2 cos θ + n1 cos θ ′′)]. (8.35)

Using the law of refraction and the trigonometric formula for the sum of angles

cos(a ± b) � cos a cos b ± sin a sin b (8.36)

we get

| rs/rp |�| cos(θ − θ ′′)/ cos(θ + θ ′′) | . (8.37)

In FileFig 8.2 we show graphs of the real parts of rp and rs for various values
of n and K . The third graph shows the ratio rp/rs and the fourth rs/rp. From
these two graphs it appears that the ratio rp/rs is much more useful for the
determination of optical constants than the ratios rs/rp, because they are smooth
and do not show a resonance, related to the appearance of the Brewster angle.
The optical constants may be obtained by measuring values of |rp/rs | for two
different angles of θ , and solving the two equations for the unknowns n and K .

FileFig 8.2 (O2FRSOPS)

Graphs are shown for the real part of the ratios rs/rp and rp/rs , calculated with
the expressions used in FileFig 8.1, for n1 � 1, n2 � 1.5, nn2 � 1.5, K � 0.1,
and K � 0.01, KK � 0.5, KKK � 2.

O2FRSOPS is only on the CD.

8.3.3 Oscillator Expressions

8.3.3.1 One Oscillator

To fit experimental data of a narrow frequency range, in which we have a reso-
nance feature, one may use for n+ iK a similar expression derived in Eq. (8.23)
but extended to four parameters,

n+ iK �
√
A+ S/[1 − (ν/ν0)2 − γ (ν/ν0)], (8.38)

whereA is a general constant, S the oscillator strength, γ the damping constant,
and ν0 � ω0/2π the resonance frequency. An example is shown in Figure 8.2
and a calculation given in FileFig 8.3.
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FIGURE 8.2 Optical constants of bone charcoal powder. Resonance of vibrations of Ca, P , and
O atoms against each other. (From Tomasecli et al., infrared optical constants of black powders
determined from measurements, Applied Optics, 1981, 20, 3961–3967.)

FileFig 8.3 (O3OSTINS)

Graphs are shown of Eq. (8.37) for A � 20, S1 � 0.09, γ 1 � 0.002, and
v01 � 1050 cm−1. An analytical approximation for n close to 1 and small K is
also presented.

O3OSTINS is only on the CD.

Application 8.3.

1. Change γ and observe the change in resonance wavenumber and the height
of the imaginary part.

2. Change S and observe the change in resonance wavenumber and the height
of the imaginary part.

3. Modify the graphs by plotting in addition a graph using S2 � 0.19, γ 2 �
0.03, and ν02 � 1150 cm−1. Change parameters and study the effect on n
and K .

4. Modify the graphs of the thin medium by also plotting a graph using different
values of a2 and c2. Change a1, a2 and c1 and cc and compare the effect on
n and K .

8.3.3.2 Many Oscillator Terms

The dependence of the electrical polarization on the frequency over a large
range suggests that one uses more than one oscillator term in the formula for the
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FIGURE 8.3 The dependence of the polarizability on frequency for the microwave, infrared, and
ultraviolet regions.

representation of n andK (schematically shown in Figure 8.3). Having measured
n andK over a large range of frequencies, the experimental data are fit to formulas
such as

n2 −K2 � 1 +
∑
j

fjω
2
p(ω2

oj − ω2)/((ω2
oj − ω2)2 + (γjω)2) (8.39)

2nK �
∑
j

ω2
pfjγjω/((ω

2
oj − ω2)2 + (γjω)2), (8.40)

where fj , γj , andωoj are empirical constants. The constants in these expressions
are determined by a “best fit" calculation over a large range of frequencies with
respect to the measured values of n and K

8.3.4 Sellmeier Formula

Similarly to what has been discussed for the oscillator expression, one may fit
experimental data to represent the dependence of n andK on the wavelength by
using a polynomial approach of the type

n2 � c1 + c2λ
4/(λ2 − c3) +

j�N∑
j�1

ajλ
2/(λ2 − bj ). (8.41)
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This is called a Sellmeier-type equation and has been used, for example, to fit the
data for potassium bromide in the spectral region from .2 to 42 microns using
11 empirical constants.1 An example is given in FileFig 8.4.

When fitting experimental data one has to keep in mind that n and K are not
independent. They are related by the Kramer–Kroning model.2 In some spec-
tral regions, for example in the x-ray region, one obtains the K value from
absorption measurements and calculates the corresponding n value with the
Kramer–Kroning model.

FileFig 8.4 (O4SELMRS)

A graph of a Sellmeier expression n(λ) for fused quartz is shown for the range
of λ from 4000 to 8000 Angstrom using parameters ci with i � 1 to 3.

O4SELMRS

Graph for Demonstration of the Sellmeier Presentation of the Refractive Index

For fused quartz we have

c1 :� 1.448 c2 :� 3.3 · 105 c3 :� 1.23 · 1011

λ :� 4000, 4001 . . . 8000

n(λ) :� c1 + c2

λ2
+ c3

λ4
.

l

l

Application 8.4. Determination (backward) of the constants c1, c2, and c3.
Read from the graph three values of λi and the corresponding value of n(λi).
Consider c1 to c3 as unknown and formulate a system of linear equations. One

1E. D. Palik, Handbook of Optical Constants of Solids II, Academic Press, New York, 1991.
2Charles Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York, 1967.
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would be n(λi) � c1+c2/λ2
i +c3/λ4

i . Solve the system of these inhomogeneous
linear equations with one of the available computer programs. Make an estimate
of the error.

8.4 OPTICAL CONSTANTS OF METALS

8.4.1 Drude Model

In Section 8.2 we discussed the optical constants of dielectrics and in Section 8.3
their determination. We now discuss metals and how their optical constants are
also described by a complex refractive index. The determination of the n and
K values for metals is similar to what has been discussed before, but the model
representing the material is different.

Metals show high reflectivity in the visible and infrared spectral regions and
their attenuation increases with lower frequencies. The values of real and imag-
inary parts of the refractive index of metals are in the lower frequency region
which is much higher than one usually finds for dielectrics.

The interaction of the electromagnetic wave with the metal is described by
the Drude model. The electrons are assumed to move almost freely in the metal
and there is no restoring force to make the electrons vibrate, as discussed for
the dielectric. For an isotropic medium with free conducting charges we write
Maxwell’s equations as

∇ × E � −∂B/∂t

c2∇ × B � ∂E/∂t + j/ε0 (8.42)

∇ · E � 0

∇ · B � 0.

This is similar to Eq. (8.1). For the current density vector j we take

j � Nevj , (8.43)

where vj is called the drift velocity. The electrical field of the light and the
current density in the material are related by the wave equation. We assume E
and j are vibrating in the y direction and propagating in the x direction and from
Eq. (8.41) we get for the wave equation

∂2Ey/∂x
2 − (1/c2)∂2Ey/∂t

2 � [1/(c2ε0)]∂jy/∂t. (8.44)

As in Section 8.2, we now find an expression for jy in terms of the parameters of
the damped oscillator model and the vibrating electrical fieldE0. The differential
equation of the model is now without the force term,

md2u/dt2 +mγdu/dt � eE0e
−iωt . (8.45)
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The general solution of Eq. (8.44) is the sum of the solutions of the homogeneous
and inhomogeneous equations. For the homogeneous equation,

md2u/dt2 +mγdu/dt � 0. (8.46)

Using the trial solution u � u0e
−t/τ , we get for γ � τ−1. Typically one has a

value of 10−13 for τ and we neglect this solution.
The inhomogeneous equation may be rewritten, using v � du/dt , as

mdv/dt +mγv � eE0e
−iωt , (8.47)

Using the trial solution v � v0e
−iωt one obtains

v0 � E0(e/m)/(γ − iω). (8.48)

The current density j0 � Nev0 can be expressed as

j0 � (τE0)(Ne2/m)/(1 − iωτ ) � (σE0)/(1 − iωτ ), (8.49)

where we used j0 � Nev0, γ � τ−1, and the static conductivity

σ � τNe2/m. (8.50)

Equation (8.48) relates the current density j0 of our model to the electrical field
E0 of the light, vibrating with angular frequency ω.

We now turn to the wave equation, (see Eq. (8.43)), using the trial solutions

Ey � E0e
i(kx−ωt) and jy � j0e

i(kx−ωt) (8.51)

and introducing j0 from our model, Eq. (8.48), we obtain for the complex wave
vector k∗

(k∗)2 � 1/c2{ω2 + (iσω/ε0)/(1 − iωτ )} (8.52)

and the complex refractive index n∗ � k∗c2/ω2,

(n∗)2 � 1 + iσ/{ωε0(1 − iωτ )} � 1 − σ/{ωε0(i + ωτ )}. (8.53)

Equation (8.52) relates the refractive index to the static conductivity of the metal
σ , the frequency of light ω and the relaxation time τ , which is a parameter of
our model and is related to the metal. In FileFig 8.5 we show graphs over a large
frequency region of the real and imaginary parts of Eq. (8.52).

8.4.2 Low Frequency Region

For low frequencies, that is, when ωτ � 1, we may neglect ωτ with respect to
i (see Eq. (8.52)), and get

(n∗)2 � 1 + iσ/ωε0. (8.54)

Since ω is small, which means iσ/ωε0 is large compared to 1, we write

n− iK � (
√
i)(

√
σ/ωε0). (8.55)
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Using the identity
√
i � (1 + i)/

√
2 one has

| n |�| K |� (
√
σ/2ωε0); (8.56)

that is, n and K have the same value and the wave is strongly attenuated in
the medium. To find the frequency limit of Eq. (8.55), we have from ωτ � 1,
that ω << 1/τ , with τ � mσ/Ne2. For copper we have σ � 5.76 107 (ohm
meter)−1,N � 8.5 1028 meter−3, e � 1.6 10−19 coulomb,m � 9.11 10−31 kgm,
and obtain for 1/τ � 4.1 1013 1/sec. Therefore this approximation is valid for
angular frequencies smaller than 1011 − 1012 Hz, which are lower frequencies
than the far infrared. This approximation is plotted in FileFig 8.5 as the last graph.
The light is strongly attenuated when entering metals in this spectral region and
is therefore highly reflected (see also FileFig 8.7).

8.4.3 High Frequency Region

For high frequencies we have ωτ � 1, and from Eq. (8.52) one has

n2 � 1 − σ/ω2τε0. (8.57)

Using Eq. (8.49) and the plasma frequency ωp � Ne2/mε0 we have

n2 � 1 − ω2
p/ω

2. (8.58)

The plasma frequency ωp � Ne2/mε0 has the value 1.6 1016 1/sec when using
N � 8.5 1028 meter−3, e � 1.6 10−19 coulomb, ε0 � 8.85 10−12 farad-meter−1,
and m � 9.11 10−31 kg. Therefore the approximation of Eq. (8.57) is valid for
angular frequencies larger than 1018, corresponding to the x ray region. This is
also plotted in FileFig 8.5 on the third graph. In this region the refractive index n
is real and less than 1 and light is penetrating the metal without being attenuated.

We see that the plasma frequency divides the frequency range into two parts.
One for high frequencies when n is smaller than 1 and one for low frequencies
when n is complex (see Eq. (8.53)).

FileFig 8.5 (O5METALS)

Graphs of the real and imaginary part of n∗ � n+ iK of copper, for the general
case and for the high and low frequency approximations.

O5METALS

Calculation of n and k for Copper Using the Drude Model

Calculation of real and imaginary parts. Expression for low and high frequencies
depending on angular frequency.
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1. General Expression

c :� 3 · 108m/s σ :� 6 · 107 (OHMm)−1 εo :� 8.85 · 10−12 C2/Nm

τ :� 1

4.1 · 1011
sec i :� √−1

ω :� 1011, (2 · 10)11 . . . 1018.

Angular frequency for 1 mm wavelength is 2π∗300∗10∧9; see below. The
general expression for n− ik � zm(ω)

zm(ω) :�
√

1 +
(
i · σ
εo · ω

)
· 1

1 − i · ω · τ .

. . . . . . . .
.

.

.

.

.

ω

ω

. . . . . . . .

.

.

.

.

.

.

ω

ω



330 8. OPTICAL CONSTANTS

2. High frequency limit

nh(ω) :� 1 − σ

εo · ω2 · τ .

. . . . .

ω

ω

ω

3. Low frequency limit

nl(ω) :�
√

σ

2 · εo · ω.

. . . .

ω

ω

ω

frequency

3 · 1011 is 1 mm
3 · 1014 is 1 micron
3 · 1017 is 1 mm is 10 Å

frequency

1 · 1011 is 3 mm
1 · 1014 is 3 micron
1 · 1017 is 3 mm is 30 Å

angular frequency

1 · 1011 is 3/(2 · π ) mm
1 · 1014 is 0.477 micron
1 · 1017 is 0.477 mm is 40 Å

Application 8.5.

1. Check your computer program manual and get familiar with physical unit
systems, MKS, and cgs.

2. Modify the calculations for gold, 4.5 · 107 [1/Ohm m].
3. Modify the calculations for silver, 6.3 · 107 [1/Ohm m].
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4. Modify the calculations for nickel, 1.5 · 107 [1/Ohm m].

5. Modify the calculations for lead, 0.5 · 107 [1/Ohm m].

6. Compare the graphs for the long wavelength region. At what frequency have
the absolute values of n andK about the same value? At what frequency have
the optical constants of all metals about the same value?

8.4.4 Skin Depth

In the low frequency region, where the light is strongly attenuated in the metal,
the light may only penetrate into the metal a small distance, called the skin depth.

An incident wave u0 exp −i(ωt + kX) may be written with complex k∗ as

u � u0 exp −iωt exp −i{(n− iK)ωX/c}. (8.59)

We write Eq. (8.58) in real and complex factors as

u � u0 exp −(ωKX/c) exp −iω{t − nX/c}. (8.60)

One defines the penetration depth as the length at which the wave is attenuated
to 1/e, that is,

Xl � l � c/ωK �
√

[(2c2ε0)/(ωσ )]. (8.61)

In most cases one is interested in the intensity and has

Xl �
√

[c2ε0/2ωσ ] (8.62)

or with a good conductor such as copper, with σ � 5.76 107 (ohm meter)−1 one
gets with ω in sec−1,

Xl � .17{
√

[(1sec−1/ω)]} meter . (8.63)

In FileFig 8.6 the first graph shows the penetration depth for the intensity
of frequencies in the range of 1014, the visible and near infrared. The second
graph shows the penetration depth for the intensity of frequencies in the long
wavelength range.

FileFig 8.6 (O6SKINS)

Graph of the skin depth of the intensity for copper in the wavelength range from
10−3 to 10−7.
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O6SKINS

Skin Depth

1. Skin depth (in meters) for intensity depending on frequency

εo :� 8.85 · 10−12C2/Nm c :� 3 · 108m/s

σ :� 6 · 107(Am)−1

ω :� 1010, (10)11 . . . 1014 i :� √−1

l(ω): �
√
εo · c2

2 · ω · σ in meters.

. . . . .

.

.

.

.

ω

ω
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2. Skin depth (in meters) for intensity depending on wavelength
(For checking: for 1 mm wavelength angular frequency is 2π · 3 · 10′′.)

l(λ) :�
√
εo · c · λ
4π · σ .

. . . . .

.

.

λ

λ

1 · 109 meter is 1 nm � .001 microns � 10Å.

Application 8.6.

1. Derive the penetration depth for the intensity, Eq. (8.61).
2. Check your Mathcad manually and get familiar with physical unit systems,

MKS, and cgs.
3. Modify the calculations for gold, 4.5 · 107 [1/Ohm m].
4. Modify the calculations for silver, 6.3 · 107 [1/Ohm m].
5. Modify the calculations for nickel, 1.5 · 107 [1/Ohm m].
6. Modify the calculations for lead, 0.5 · 107 [1/Ohm m].

8.4.5 Reflectance at Normal Incidence and Reflection
Coefficients with Absorption

We have seen in Section 8.3 that the r‖ component is not zero at the principal
angle, which means the angle corresponding to the Brewster’s angle for the case
of the lossless dielectric. The reflectanceR is equal to the square of the reflection
coefficients of Fresnel’s formulas, (Eq. (8.32) and (8.33)) and is valid for both
dielectric and metals if the corresponding values of n andK are used. For normal
incidence, when the parallel and perpendicular components are the same we have
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for the reflectance R,

R � (1 − n)2 +K2/[(1 + n)2 +K2]. (8.64)

In FileFig 8.7 we show for normal incidence the dependence of the reflectance
R on K . When K � 0 we go back to Fresnels formulas, depending only on the
real part of the refractive index, as discussed in Chapter 5 for lossless dielectrics.
When K is large, we have high reflectance R as observed for metals.

FileFig 8.7 (O7REFNKS)

Graph of the reflectance at normal incidence depending on K .

O7REFNKS is only on the CD.

8.4.6 Elliptically Polarized Light

We mentioned in Chapter 5 that elliptically polarized light may be produced
when light is totally internally reflected in a dielectric medium. Reflection on
metal surfaces shows a similar phenomenon. The reflection coefficients rp and rs
may have arguments depending on the angle of incidence. Since each component
picks up a different change in the argument, the difference of the arguments of
the reflected components is not the same and corresponds to the angle φ of
elliptically polarized light, as discussed in Chapter 5.

In FileFig 8.8 we have plotted the difference of the phase angles after
reflection, depending on the angle of incidence.

FileFig 8.8 (O8ARDELS)

Graph of the difference� of the arguments of zrp and rzs depending on specific
values of n and K .

O8ARDELS is only on the CD.

Application 8.8.

1. Change the optical constants and plot a graph of� depending on a range of
values n for fixed K and three values of θ , for example, 35◦, 45◦, 55◦.

2. Change the optical constants and plot a graph of� depending on a range of
K for fixed value of n and three values of θ , for example, 35◦, 45◦, 55◦.
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APPENDIX 8.1

A8.1.1 Analytical Expressions and Approximations for the
Determinaton of n and K

As discussed in Section 3.2 there are approximate methods to represent n and
K analytically. We show that an approximation is used to get formulas for n
and K depending on the ratio of rs to rp, the phase difference � of rs and rp
after reflection, and the angle of incidence θ . This method is called ellipsometry
because one measures the absolute value of the ratio rs to rp and the phase
difference� of rs and rp; see Section 8.4.6. Using the law of refraction one may
rewrite Fresnel’s formulas for ratios rs and rp as

rs � (−1) sin(θ − θ ′′)/sin(θ + θ ′′) (A8.1)

rp � tan(θ − θ ′′)/ tan(θ + θ ′′), (A8.2)

and obtain for rs/rp

rs/rp � −{cos(θ − θ ′′)/ cos(θ + θ ′′)}. (A8.3)

The ratio rs/rp may be complex, and therefore we call P the absolute value of
the ratio rs/rp, and � the argument.

Pe−i� � rs/rp � − cos(θ − θ ′′)/ cos(θ + θ ′′). (A8.4)

Using the formula for the sum and difference of angles in a cosine function one
may write

(1 − Pe−i�)/(1 + Pe−i�) � −(cos θ cos θ ′′)/(sin θ sin θ ′′) (A8.5)

and with the complex law of refraction

(1 − Pe−i�)/(1 + Pe−i�) � (−1)
√

{n′∗2 − (sin θ )2}/(sin θ )(tan θ ). (A8.6)

By using P � tanψ one can write for the left side of Eq. (A8.6),

(1 − tanψe−i�)/(1 + tanψe−i�)

� (cos 2ψ + i sin� sin 2ψ)/(1 + cos� sin 2ψ) (A8.7)

and one has for Eq. (A8.7)√
{n′∗2 − (sin θ )2}

� −(sin θ )(tan θ )(cos 2ψ + i sin� sin 2ψ)/(1 + cos� sin 2ψ). (A8.8)

We obtain for n′ and K ′ the complex expression

n′ + iK ′

�
√

[(sin θ )2 + {(sin θ )(tanθ )(cos 2ψ + i sin� sin 2ψ)/(1 + cos� sin 2ψ)}2].

(A8.9)
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In order to get to n′ andK ′ we have to determine the real and imaginary parts of
the right side of Eq. (A8.9). As done in Born and Wolf (1964, p. 619), one can
make an approximation by neglecting in the square root of Eq. (A8.8) the term
(sin θ )2 with respect to n

′∗2, and obtain explicit expressions for n′ and K ′:

n′ � {(sin θ )(tan θ )(cos 2ψ)}/{1 + cos� sin 2ψ} (A8.10)

K ′ � {(sin θ )(tan θ )(sin�)(sin 2ψ)}/{1 + cos� sin 2ψ}. (A8.11)

We show in FileFig 8.9, graphs of P , �, and ψ depending on the angle of
incidence θ . These graphs are for specific values of n and K . A comparison of
the exact and approximate calculation, again for specific values of n and K , is
shown in FileFig 8.10. In praxis one often uses iteration for the determination
of n′ and K ′ and uses more than two input data for a best fit calculation.

FileFig A8.9 (OA1DELTAFfS)

For zp � rp exp(iδp) and zs � rs exp(iδs), graphs are shown forP � tanψ with
P � rs/rp, � (difference of the arguments of rs and rp), and of atan(zs/zp).

OA1DELTAFfS is only on the CD.

Application A8.9.

1. Change the optical constants and plot a graph of P depending on a range of
values n for fixed K and three values of θ , for example, 35◦, 45◦, 55◦.

2. Change the optical constants and plot a graph of atan(zs/zp) depending
values of on a range of K for fixed value of n and three values of θ , for
example, 35◦, 45◦, 55◦.

FileFig A8.10 (OA2METPDS)

Graphs are shown for z � n + iK depending on ψ because one has P �
tanψ,P � rs/rp and � is the difference of the arguments of rs and rp. Curves
of the exact expressions are compared with the approximations.

OA2METPDS is only on the CD.

Application A8.10.

1. Study the approximation for different values of P and fixed value of �.
2. Study the approximation for different values of � and fixed value of P .
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See also on the CD

PO1. Principal Angle. (see p. 315)
PO2. Oscillator. (see p. 317)
PO3. Sellmeir Expression. (see p. 319)
PO4. Drude Model. (see p. 322)
PO5. Skin Depth. (see p. 325)
PO6. Reflected Intensities. (see p. 328)
PO7. Phase Angle. (see p. 328)
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Fourier
Transformation and
FT-Spectroscopy

9.1 FOURIER TRANSFORMATION

9.1.1 Introduction

In this chapter we present some basic properties of Fourier transformation and
applications of Fourier transform spectroscopy. A simple example of an applica-
tion of Fourier transformation is the determination of the frequencies one needs
to compose a function f (x), presenting a rectangular pulse. Such a pulse may be
generated by superposition of many monochromatic waves with many different
wavelengths and amplitudes. The input data to Fourier transformation are the
space coordinates of f (x). The result of Fourier transformation is the frequency
spectrum corresponding to the different wavelengths used to compose f (x). A
more complicated application is the analysis of the interferogram obtained from
incident light traversing an absorbing material. The Fourier transformation of
the interferogram will calculate the absorption spectrum of the material.

The discussion uses a considerable number of examples and not much of the
mathematical theory of Fourier transformations. Most important is numerical
Fourier transformation, available in most computational computer programs and
applied in Fourier transform spectroscopy.

9.1.2 The Fourier Integrals

The integrals we used in the far field approximation of the Kirchhoff–Fresnel
diffraction theory are Fourier integrals. The integral transforms the “input func-
tion" (in our case the aperture function), into the “output function" (in our case
the diffraction pattern). For the example of the diffraction at a slit, the aper-
ture function is the “(double) step function" S(y) and is transformed into the

339
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diffraction pattern G(ν). The step function is defined as

S(y) �

⎧⎪⎨
⎪⎩

0 for ∞ to d/2

1 for d/2 to − d/2

0 for − d/2 to − ∞,

(9.1)

and the Fourier integral transforms S(y) into the Fourier transform G(ν).
Using slightly different coordinates from those in Chapter 3, we have that the

Fourier transform of S(y) is G(ν).

G(ν) �
∞
∫

−∞
S(y)e−i2πνydy. (9.2)

From Fourier transform theory we find that the inverse relationship is also true
and we have the Fourier transform of (note the plus sign in the exponent)

S(y) �
∞
∫

−∞
G(ν)ei2πνydν. (9.3)

Both variables ν and y have continuous values from −∞ to +∞. The variable y is
the variable in the space domain and the variable ν is the variable in the frequency
domain and has the dimension of 1/space coordinate. (In infrared spectroscopy
one uses as the unit cm−1). BothG(ν) and S(y) are not normalized. WhenG(ν)
is symmetric with respect to zero, the integral may be written as

S(y) � 2
∞
∫
0
G(ν) cos(2πνy)dν. (9.4)

We now discuss some analytical Fourier transformations.

9.1.3 Examples of Fourier Transformations Using Analytical
Functions

We present two examples to calculate the Fourier transformation, and the Fourier
transformation of the Fourier transformation. We show that the latter is indeed
the original function.

9.1.3.1 Gauss Function

We consider

S(y) � exp(−a2y2/2). (9.5)

We insert it into the integral of Eq. (9.2) and use the integral formula
∞
∫
0

exp(−c2x2) cos(bx)dx � (
√
π/2c) exp(−b2/4c2) (9.6)

and obtain

G(ν) � (
√

2π/a) exp(−2π2ν2/a2). (9.7)
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If we take the function G(ν) � (
√

2π/a) exp(−2π2ν2/a2) and insert it into
Eq. (9.3) and use the same integral formula, we get back the original function
S(y):

S(y) � exp(−a2y2/2). (9.8)

This example shows that the Fourier transformation of the Fourier transformation
reproduces the original function.

9.1.3.2 The Functions 1/(1 + x2) and πe−2πν

If we use

S(y) � 1/(1 + y2) (9.9)

and apply the integral formula

∞
∫
0
{(cos ax)/(1 + x2)}dx � (π/2)e−a, (9.10)

we obtain

G(ν) � πe−2πν, (9.11)

and for the Fourier transform of G(ν) we find the original function by using the
integral formula

∞
∫
0
e−ax cosmxdx � a/(a2 +m2). (9.12)

As result we find that the Fourier transform of 1/(1 + y2) is πe−2πν , and the
Fourier transform of πe−2πν is 1/(1 + y2):

e−2πν ↔ 1/(1 + y2). (9.13)

These two examples are exceptions to the point of view that one may calculate
analytically the Fourier transformation and that one can get analytically the
inverse Fourier transformation. A simple example when this is not the case is
the Fourier transformation of the step function S(y) of Eq. (9.1). The Fourier
transformation is a function of the type (sin aν)/aν, and its Fourier transform may
not be calculated analytically because the result of the Fourier transformation of
(sin aν)/aν is a discontinuous function. However, using numerical methods, one
may perform the Fourier Transformation and the inverse Fourier transformation.

9.1.4 Numerical Fourier Transformation

9.1.4.1 Fast Fourier Transformation

For numerical calculations of Fourier transformations we use the fast Fourier
transformation program, available in most computational computer programs.
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Real Fourier Transformation (ff t)

This program (ff t) is used for real input data and works with 2n input and 2n−1

output points. For a real Fourier transformation we have, from Eq. (9.4),

S(y) � 2
∞
∫
0
G(ν) cos(2πνy)dν. (9.14)

This integral may be written as

0
∫

−∞
G(ν) cos(2πνy)dν +

∞
∫
0
G(ν) cos(2πνy)dν. (9.15)

The first term over the negative part of ν is the “mirror" image around 0 of the
second term over the positive part. Negative frequencies are a formality in Fourier
transformations. They may be eliminated in order to correlate to observable
results.

The input data of the Fast Fourier transformation is arranged in such a way
that the negative part of the Fourier transformation follows the positive part. Let
us assume we have a total of 128 points. The positive part is from point 1 to 64,
and the negative part follows as a “mirror image" from 65 to 128. The frequency
content of the negative part is the same as that of the positive part. The fast
Fourier transformation therefore considers only one part, analyzes it, and plots
the determined frequencies for only 1/2 of the total points (in our example for
64 points). The inverse transformation (iff t) works backward. It has 64 input
points, but takes care of the imaginary part and again ends up with 128 output
points. The Fourier transform program of Mathcad numbers 26 � 64 points from
0 to 63, and 27 � 128 points from 0 to 127.

We demonstrate in FileFig 9.1 the real Fourier transformation of a single-sided
step function with 256 points. For comparison in FileFig 9.2, we demonstrate the
real Fourier transformation of a double-sided step function with 256 points. Both
show the same transformation with 128 points, and the inverse transformation
for both is the original function.

FileFig 9.1 (F1FTSTEPS)

Real:The original function is a one-sided step function, 256 points.The transform
is a single-sided sin z/z function shown for 128 points. The inverse transforma-
tion reproduces the original function with 128 points. The imaginary part is
zero for the original, appears in the transform, and is zero again for the inverse
transformation.
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F1FTSTEPS

Fourier Transform of a Single-Sided Step Function of Width 0 to d

The real FT is used. Orginal function

i :� 0 . . . 255

xi :� (�(i) −�(i − d)).

Global definition of d:

d ≡ 20.

Fourier transform

c :� ff t(x)

N :� last(c) N � 128

j :� 0 . . . N.

The first zero of FT is at 1/2d.

Fourier transform (inverse) of Fourier transform

y :� iff t(c)

N :� last(c) N � 128



344 9. FOURIER TRANSFORMATION AND FT-SPECTROSCOPY

j :� 0 . . . N.
1

2 · d � 0.025.

FileFig 9.2 (F2FTSTEPDS)

Real Fourier transformation: The Original Function is a double-sided step func-
tion, 256 points. The Fourier transform is a single-sided sin z/z function shown
for 128 points. The inverse transformation reproduces the original function. The
imaginary part is zero for the original, appears in the transform, and is zero
again for the inverse transformation.

F2FTSTEPDS

Fourier Transform of a Double-Sided Step Function of Width 0 to d

The real FT is used. Orginal function

i :� 0 . . . 255

xi :� [�(i) −�(i − d)] +�(i − 255 + d).
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Fourier transform

c :� ff t(x)

N :� last(c) N � 128

j :� 0 . . . N.

Global definition of d: d ≡ 20. The first zero of FT is at 1/2d.

Fourier transform (inverse) of Fourier transform

y :� iff t(c)

N :� last(z) N2 � 255

k :� 0 . . . N2
1

2 · d � 0.025.

Complex Fourier Transformation (cff t)

We saw in FileFigs 9.1 and 9.2 that the real Fourier transformation of the step
function, which is real, has a nonzero imaginary part. The imaginary part of the
transformations is different for the original single- and double-sided step func-
tions. To learn more about real and complex Fourier transformations, we apply



346 9. FOURIER TRANSFORMATION AND FT-SPECTROSCOPY

the complex Fourier transform in FileFig 9.3 to the single-sided step function
and in FileFig 9.4 to the double-sided step function.

The complex Fourier transformation program (cff t) works with 2n input
and 2n output points. The inverse transformation (icff t) works backwards with
2n input points and 2n output points. The imaginary part of the transformation
is again different for the single- and double-sided original step functions. The
inverse transformation reproduces the original function.

FileFig 9.3 (F3FTSTEPC1S)

Complex Fourier transformation: the original function is a one-sided step func-
tion, 256 points. The complex transformation is a double-sided sin z/z function
shown for all 256 points. The second part is a mirror image of the first part. The
inverse transformation reproduces the original function. The imaginary part is
zero for the original, appears in the transform, and is zero again for the inverse
transform.

F3FTSTEPC1S

Fourier Transform of a Single-Sided Step Function of Width 0 to d

The complex FT is used. Orginal function

i :� 0 . . . 255

xi :� [�(i) −�(i − d)].

Global definition of d: d ≡ 20.

Fourier transform

c :� cff t(x) N :� last(c)

N � 255 j :� 0 . . . N.
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Fourier transform (inverse) of Fourier transform

y :� ff t(c) N :� last(z)

N2 � 255 k :� 0 . . . N2.

FileFig 9.4 (F4FTSTEPOSS)

Complex Fourier transformation; the original function is a double-sided step
function, 256 points. The complex transformation is a double-sided sin x/x func-
tion shown for all 256 points. The second part is a mirror image of the first part.
The inverse transformation reproduces the original function. The imaginary part
is zero for the original, appears in the transform, and is zero again for the inverse
transform.

F4FTSTEPOSS

Fourier Transform of a Double-Sided Step Function of Width 0 to d

The complex FT is used. Original function

i :� 0 . . . 255

xi :� [�(i) −�(i − d)] +�(i − 255 + d).
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Global definition of d: d ≡ 20.

Fourier transform

c :� cff t(x) N :� last(c)

N � 255 j :� 0 . . . N.

Fourier transform (inverse) of Fourier transform

z :� icff t(c) N2 :� last(z)

N2 � 255 k :� 0 . . . N2.
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In FileFigs.5 and 6 we compare real and complex Fourier transformations
for the sin x/x function, and observe the difference in the second graphs of the
FileFigs.5 and 6.

FileFig 9.5 (F5FTSINCRS

Real Fourier transformation: the original function is a one sided sin x/x function,
256 points. The real transformation is a single-sided step function shown for
128 points. The real inverse transformation reproduces the original function.
The imaginary part is zero for the original, appears in the transform, and is zero
again for the inverse transform.

F5FTSINCRS is only on the CD.

FileFig 9.6 (F6FTSINCCS)

Complex Fourier transformation: the original function is a one-sided sin x/x
function, 256 points. The complex transform is a double-sided step function
shown for 256 points. The complex inverse transformation reproduces the origi-
nal function. The imaginary part is zero for the original, appears in the transform,
and is zero again for the inverse transform.

F6FTSINCCS is only on the CD.

9.1.4.2 General Fourier Transformation

The fast Fourier transformation needs 2n input points. In the case where we
have a different number of input points we have to use the complex Fourier
transformation and its inverse. In FileFig 9.7 we show the complex Fourier
transformation for the step function using 184 points, and in FileFig 9.8 for the
sin z/z function.

FileFig 9.7 (F7FTSTEP183S)

The original function is a step function. The number of points is 184. The complex
Fourier transformation results in a double-sided sin z/z function. The inverse
complex transformation reproduces the original function. The imaginary part is
zero for the original, appears in the transform, and is zero again for the inverse
transform.

F7FTSTEP183S is only on the CD.
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FileFig 9.8 (F8FTSINC183S)

The original function is a sin z/z function. The number of points is 184. The
complex Fourier transformation results in a double-sided step function. The
inverse complex transformation reproduces the original function. The imaginary
part is zero for the original, appears in the transform, and is zero again for the
inverse transform.

F8FTSINC183S is only on the CD.

A comparison of the fast Fourier transformation with the general Fourier
transformation is given in FileFigs.9 and 10. The complex Fourier transformation
of a Gauss functions with different a values is given in FileFig 9.9 for 256 points,
and in FileFig 9.10 for 326 points.

FileFig 9.9 (F9FTGAUSS)

The original function is the Gauss function with values of 50 and 100 for a. The
number of points is 256. The complex Fourier transformation again results in
a Gauss function, however, with a narrower shape. The inverse transformation
reproduces the original function. The imaginary part is zero for the original,
appears in the transform, and is zero again for the inverse transform.

F9FTGAUSS is only on the CD.

FileFig 9.10 (F10FTGAUSGS)

The original function is the Gauss function with values of 50 and 100 for a. The
number of points is 326. The complex Fourier transformation again results in
a Gauss function, however, with a narrower shape. The inverse transformation
reproduces the original function. The imaginary part is zero for the original,
appears in the transform, and is zero again for the inverse transform.

F10FTGAUSGS is only on the CD.

9.1.5 Fourier Transformation of a Product of Two Functions
and the Convolution Integral

The Fourier transformation S(y) of the function G(ν) is

S(y) �
+∞
∫

−∞
G(ν) exp i2πνydν. (9.16)



9.1. FOURIER TRANSFORMATION 351

We now discuss the case where G(ν) is the product of two functions g1(ν) and
g2(ν),

G(ν) � g1(ν)g2(ν). (9.17)

In the cases where one wants to keep the two functions separate, one can represent
the Fourier transformation of G(ν) by a convolution integral. The convolution
integral theorem tells us that we may write the Fourier transform of the product
g1(ν)g2(ν) as the convolution integral of the Fourier transformations of g1(ν)
and g2(ν). The Fourier transformation of g1(ν) is

s1(y) �
+∞
∫

−∞
g1(ν) exp i2πνydν (9.18)

and of g2(ν)

s2(y) �
+∞
∫

−∞
g2(ν) exp i2πνydν. (9.19)

The Fourier transform S(y) of the productG(ν) � g1(ν)g2(ν) is calculated from
the convolution integral

S(y) �
∞
∫

−∞
s1(τ )s2(y − τ )dτ, (9.20)

where s1(y) and s2(y) are the Fourier transforms of g1(ν) and g2(ν) (see
Eqs. (9.18) and (9.19)).

A simple example can be discussed by splitting the Gauss function

G(ν) � exp −(a2ν2)/2 (9.21)

into two, as

exp − (3/4)(a2ν2)/2 (9.22)

exp − (1/4)(a2ν2)/2. (9.23)

We calculate the Fourier transform of Eqs. (9.22) and (9.23) as

s1(y) �
∞
∫

−∞
{exp −(3/4)(a2ν2)/2} cos 2πνydν (9.24)

and

s2(y) �
∞
∫

−∞
{exp −(1/4)(a2ν2)/2} cos 2πνydν (9.25)

and using the formula of Eq. (9.6), one gets

s1(y) � (
√

2π/a
√

3) exp −(8π2y2)/(3a2) (9.26)

s2(y) � (
√

2π/a) exp −(8π2y2)/(a2). (9.27)
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The Fourier transform ofG(ν) (i.e., S(y)) is now obtained from the convolution
integral

S(y) �
∞
∫

−∞
s1(τ )s2(y − τ )dτ (9.28)

or

S(y) � 8π/(
√

3)(a2)
∞
∫

−∞
exp{−(8π2τ 2)/(3a2) − (8π2/a2)(y − τ )2}dτ. (9.29)

Using the integral formula
∞
∫

−∞
exp(−t2)dt � {√π} (9.30)

and introducing a complementary term +(3y/2)2 − (3y/2)2 in the exponent of
the integral, one may write [2τ − (3y/2)]2 and obtain for Eq. (9.29),

S(y) � ({
√

2π}/a) exp(−2π2y2/a2). (9.31)

If we had calculated the Fourier transformation of G(ν) � exp −(a2ν2)/2, we
would have obtained the same result:

S(y) � (
√

2π/a) exp(−2π2y2/a2). (9.32)

In FileFig 9.11 we show the convolution integral for the case where the two
factors are a step and a sin cx function.

FileFig 9.11 (F11CONVOS)

Convolution integral of the step function and the sin x/x function.

F11CONVOS is only on the CD.

Application 9.11. Calculate analytically the integral and show the effect of the
convolution process of the step function on the sin x/x function.

9.2 FOURIER TRANSFORM SPECTROSCOPY

9.2.1 Interferogram and Fourier Transformation.
Superposition of Cosine Waves

We next discuss the superposition of plane waves in order to understand the
formulas of Fourier transform spectroscopy. We consider a plane wave solution
of the scalar wave equation

u(x, t) � A cos 2π (x/λ− t/T + φ). (9.33)
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In Chapter 2 we discussed the dependence on x and t and on the phase factor φ.
We write the two cosine waves with path difference x2 � x1 − δ as

u1(x, t) � A cos 2π (x1/λ− t/T ) (9.34)

u2(x, t) � A cos 2π [(x1 − δ)/λ− t/T ]. (9.35)

Using the formula

cosα + cosβ � 2[cos(α + β)/2][cos(α − β)/2], (9.36)

we may write for the superposition u � u1 + u2,

u � u1 + u2

� 2A[cos(2π (δ/2)/λ)]{cos[2π (x1/λ− t/T ) − 2π (δ/2)/λ]} (9.37)

and obtain for the intensity

I � {2A[cos(2π (δ/2)/λ)]}2.{cos[2π (x1/λ− t/T ) − 2π (δ/2)/λ]}2. (9.38)

Only the second factor depends on the time. Since it oscillates very quickly;
we can assume that only the average value is detected and results in a constant.
Therefore we have

I � {2A cos(2π (δ/2)/λ)}2 (times a constant). (9.39)

We see that the intensity of the superposition of the two harmonic waves depends
only on the optical path difference δ.

9.2.2 Michelson Interferometer and Interferograms

The Michelson interferometer (see Figure 9.1) has been discussed in Chapter 2,
and we assume that an ideal beam splitter reflects and transmits 50% of the
incident light. The incident beam is divided at the beam splitter and each beam
is reflected at one of the two mirrorsM1 andM2. Part of the reflected beam from
M1 is transmitted, and part of the beam coming fromM2 is reflected. These two
parts are superimposed and travel to the detector.

The optical path difference is introduced by the displacement of the mirror
M2. If the mirror is displaced by nδ/2, the optical path difference is nδ for each
wavelength component of the incident beam. The center position is at δ � 0.
There we have constructed interference for all wavelengths. For constructed
interference in the direction of the detector, for a specific wavelength no light
travels back to the source. For destructive interference in the direction of the
detector, the light travels back to the source.

Since only the space dependence of the harmonic wave is of importance we
write the amplitude of the input wave as

u1(x) � A cos 2π (x1/λ). (9.40)
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FIGURE 9.1 Schematic of Michelson interfometer. The optical path difference x2 − x1 � δ/2 is
produced by displacement of mirror M2.

The superposition of the two waves emerging from the beam splitter is (see
Eq. (9.38))

u(δ) � B cos(2π (δ/2)/λ), (9.41)

where B is a constant. For the intensity we obtain

I (δ) � {B cos(2π (δ/2)/λ)}2, (9.42)

where B2 represents the effective intensity at the detector for δ � 0.(Note the
factor 1

2 in the argument which comes from δ/2 in Eq. (9.39)).
So far we have assumed for the input wave (Eq. (9.40)) only one wavelength

or one frequency. The case of interest for Fourier transform spectroscopy is the
determination of the frequency spectrum when the incident wave contains many
frequencies. We assume that we have p waves of amplitude Ai and (discrete)
wavelength λi which as frequencies we write as νi � 1/λi in cm−1. The input
of the sum of waves (amplitudes) is

u �
p∑
i�1

Ai cos(2πνix1) (9.43)

and for the intensity of the output at the detector one has

I (y) �
p∑
i�1

{Bi cos(2πνiy/2)}2, (9.44)

where y is the optical path difference produced by the two mirrors. Each of the
incident waves in the sum of Eq. (9.43) will separately produce a superposition
pattern and all intensity patterns will be superimposed (see Eq. (9.44)). We apply
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to each term the formula

cos2 α � (1/2)(1 + cos 2α) (9.45)

and obtain

I (y) �
p∑
j�1

2C2
j {1 + cos(2πνjy)}. (9.46)

Note that the factor 1/2 in the argument of Eq. (9.44) has now disappeared.
Although we need a discontinuous representation for the realistic case of Fourier
transform spectroscopy, we use integral presentation for the manipulations to
obtain the interferogram function.

9.2.3 The Fourier Transform Integral

In Fourier transform spectroscopy we observe the intensity pattern at the detector,
depending on a “length" coordinate, and calculate the frequency pattern using
Fourier transformation.

We now consider a continuous frequency distribution from ν � 0 to ν � ∞
and write Eq. (9.46) as an integral over dν,

J (y) � 2
∫ ∞

0
G(ν){1 + cos(2πνy)}dν, (9.47)

where we have replaced C2
j by the continuous function G(ν) and the sum by an

integral. For the specific case of y � 0 we get

J (0) � 4
∞
∫
0
G(ν)dν. (9.48)

Fourier integrals need for ν and y the range from −∞ to ∞. We therefore
formally extend the frequency range by assuming thatG(ν) is symmetric around
ν � 0 and therefore that G(−ν) � G(ν). For Eq. (9.48) we then may write

J (0) � 2
∞
∫

−∞
G(ν)dν (9.49)

and write for the cos-function in Eq. (9.47) the corresponding exponential,
including negative frequencies, and get

J (y) �
∞
∫

−∞
G(ν){1 + ei(2πνy)}dν. (9.50)

Introduction of Eq. (9.49) into Eq. (9.50) gives us

J (y) � (1/2)J (0) +
∞
∫

−∞
G(ν){ei(2πνy)}dν. (9.51)

The function J (y) contains the observed data.
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We define the interferogram function S(y) as

S(y) � J (y) − (1/2)J (0) �
∞
∫

−∞
G(ν){ei(2πνy)}dν. (9.52)

The subtraction of 1/2 J (0) from J (y) produces negative values for S(y) and
makes it a Fourier integral of the type we have discussed above. If a double-
sided interferogram is obtained, y runs from negative to positive values related
to the position of the mirror M2 of the Michelson interferometer. Using the
fast Fourier transformation, we can only consider 2n points. The input function
starts with the positive part of S(y) and the negative part follows as a mirror
image. Therefore, the information we are interested in is only contained in the
single-sided interferogram.

The integral S(y) is one of the pair of Fourier transform integrals

S(y) �
∞
∫

−∞
G(ν){ei(2πνy)}dν. (9.53)

The other is

G(ν) �
∞
∫

−∞
(S(y){e−i(2πνy)}dy. (9.54)

(Note the negative sign in the exponent.) The integral of Eq. (9.54) is the one
we need to calculate the frequency spectrum of the observed data, presented by
S(y).

We have assumed that both variables ν and y have continuous values from
−∞ to +∞. When G(ν) and S(y) are symmetrical with respect to zero, the
imaginary part disappears and one has to deal only with one side of the integral.
The Fourier transformation pairs are then

S(y) � 2
∞
∫
0
G(ν){cos(2πνy)}dν (9.55)

G(ν) � 2
∞
∫
0

(S(y){cos(2πνy)}dy. (9.56)

9.2.4 Discrete Length and Frequency Coordinates

9.2.4.1 Discrete Length Coordinates

The Fourier integral of Eq. (9.56) is the Fourier transformation of the
interferogram function. For numerical calculations it is written as

G(νi) �
n∑
k�1

S(yk) cos(2πνiyk). (9.57)

Since the coordinates νi and yk each have n discrete values, the Fourier
transformation is equivalent to the solution of a system of n linear equations.
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The input data of the interferogram function S(yk) are the measured data. The
mirror M2 of the Michelson interferometer (Figure 9.1) is moved at equal steps
from one position to the next, and the values of the interferogram are recorded at
the detector. The zero path length position is the location of the central maximum.
The input values of the interferogram functionS(yk) are calculated by subtraction
of half the value of the central maximum (Eq. (9.52)).

In the cosine functions of Eq. (9.57) we have a set of values of yk and as a
consequence we have a repetition of possible values of νi . Let us choose for the
length interval yk � k, which means we have 128 points from k � 1 to 128, and
consider

cos[2π (νik)]. (9.58)

When k is 128, and νi is 1/128 we have νik � 1, which means all values of the
cosine are in one cycle for k � 1 to 128 and νi � 1/128. When the product (νik)
is larger than 1, we have repetition. Let us assume the value νi � 133/128 �
1 + 5/128,

cos[2π (133/128)k] � cos[2π (1 + 5/128)k] (9.59)

� cos[2π (5/128)k].

Because of the periodicity of the cos-function, the frequency νi � 133/128
is equivalent to νi � 5/128. When using k � 1 to 128 points in the space
coordinate domain, after application of the Fourier transformation, all that we
can get are 128 frequencies in the frequency domain. The repetition at 2π is
shown in FileFig 9.12. In addition, the cos-functions of Eq. (9.57) have “mirror"
symmetry at the center of the interval (at i � 64), and at both ends (shown in
FileFig 9.13). In FileFig 9.14 graphs are shown of amplitudes and intensities
of the superposition of cosine waves. These superpositions are simulations of
interferograms depending on the optical path difference.

FileFig 9.12 (F12FTDISC1S)

Graphs are shown of cos(2πνik) for the space coordinate from 1 to 128
and frequencies 1/128, 2/128, 3/128, 64/128, 127/128, 128/128, 129/128, and
130/128.

F12FTDISC1S is only on the CD.

Application 9.12. Consider a total of n � 32 points in the space domain and
show on a graph the first five frequencies. Then find the functions that have the
same appearance around frequency numbers 32 and 64.
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FileFig 9.13 (F13FTDISC2S)

Graphs are shown of cos(2πνik) for the space coordinate from 1 to 128 and
frequencies 1/128, 2/128, 63/128, 64/128, 65/128. A section of k � 20 to 80 of
cos(2πνik) for 63/128, 64/128, and 65/128 shows that the frequency of 63/128
appears similar to 65/128 and both have a larger cycle than 64/128.

F13FTDISC2S is only on the CD.

Application 9.13. Make graphs of cos(2πνik) for higher and lower frequencies
than 64/128 and show that they appear similar to graphs of lower and higher
frequency numbers.

FileFig 9.14 (F14MICHOPS)

Simulations of interferograms for the Michelson interferometer. Graphs of
amplitudes and intensities of cosine functions depending on optical path
difference.

F14MICHOPS is only on the CD.

9.2.4.2 Sampling

We have seen in FileFig 9.13 that the cos-function of Eq. (9.57) has a symmetrical
appearance around the frequency position 64/128, when using 128 points in
space and having exactly two space points per cycle. For this special example
two points per cycle have been used for the characterization of the frequencies.
In general, we have from information theory the sampling theorem.

Theorem 9.1. Two points per cycle are needed for sampling a continuous
periodic function in order not to lose information.

In our example, the continuous functions are cos-functions. The cos-function
with the highest frequency is sampled by using two points per cycle. For exam-
ple, one is at the maximum and one is at the minimum. Lower frequencies are
also correctly sampled, but higher frequencies present a problem. They appear
as lower frequencies and need to be removed by a filter. When talking about
wavelengths instead of frequencies, we similarly have that the sampling inter-
val is equal to one-half of the wavelength of the shortest wavelength (highest
frequency). Calling the sampling interval l, we have

l � 1/(2νM ), (9.60)

where νM is the highest frequency of the spectrum under consideration. In Fourier
transform spectroscopy it is assumed that all higher frequencies are removed.
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9.2.5 Folding of the Fourier Transform Spectrum

What happens when the choice of the sampling interval is done incorrectly? How
is the spectrum affected? We show that higher frequencies are folded around the
highest frequency, corresponding to the correct sampling interval, and appear
as lower frequencies in the spectrum. We use for the space domain the coor-
dinate points 1/256, 2/256, . . . , 1 and consider the sum of cos-functions with
frequencies 65, 85, and 105.
1. The sampling interval is 1/256. We have

y1i � cos[2π · 65(i/256)] + cos[2π · 85(i/256)]

+ cos[2π105(i/256)], (9.61)

where i runs from 1 to 256.
2. The sampling interval is 2/256. We consider

y2i � cos[2π · 65(2i/256)] + cos[2π · 85(2i/256)]

+ cos[2π105(2i/256)], (9.62)

where i runs from 1 to 256.
3. The sampling interval is 4/256. We have

y4i � cos[2π · 65(4i/256)] + cos[2π · 85(4i/256)]

+ cos[2π · 105(4i/256)], (9.63)

where i runs from 1 to 256.
In FileFig 9.15 we compare the appearance of the spectrum for these three

sampling intervals 1/256, 2/256 and 4/256.

FileFig 9.15 (F15FOLDS)

Folding of the spectrum:
1. Sampling interval 1/256 for the function y1. The three frequencies to be

investigated are 65, 85, and 105. The highest frequency is 128. All frequencies
appear at the right place in the Fourier transformation spectrum.

2. Sampling interval 2/256 for function y2. We now use a sampling interval
twice as large. Consequently the highest frequency is now 64 and the three
frequencies 65, 85, and 105 are all higher than 64. The spectrum appears
folded. In the Fourier transformation the three frequencies appear at 45, 85,
and 125. Since the frequency spectrum is shown over 128 points, we may look
at the function y2 as it would have frequencies 2 · 65, 2 · 85 and 2 · 105 and
is sampled with the sampling interval 1/256 (as we did under (1), where the
highest frequency is 128.) We then have to look for the frequencies 130, 170,
and 210, which all exceed the frequency interval from 1 to 128. We saw in
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FileFigs 9.12 and 13 that higher frequencies are folded back into the spectrum
around the highest frequency (which is 128 because we sample y2 now like
y1). We have to subtract from 130, 170, and 210 the highest frequency 128
and find 2, 42, and 82. These values have to be traced back from 128 because
of the folding. We get 126, 86, and 46, which are the frequencies we should
find in the graph of the Fourier transformation. However, we find 125, 85,
45 because we have not taken into account that the Fourier transformation
program starts at 0 and not at 1.

3. Sampling interval 4/256 for function y4. We now use a sampling interval
4/256 to sample the same function with 4/256. The highest frequency is now
32. In the Fourier transformation the three frequencies appear at 5, 85, and
90. Since the frequency spectrum is shown over 128 points, we look at y4 as
it would have frequencies 4 · 65, 4 · 85, and 4 · 105. It is sampled with the
sampling interval 1/256, as y1 was. We have to look for the frequencies 260,
340, and 420, which all exceed the frequency interval from 1 to 128. We saw in
FileFigs.12 and 13 that higher frequencies are folded back into the spectrum
around the highest frequency (which is 128 because we sample y4 now like
y1). We have to subtract from 260, 340, and 420 the highest frequency 128,
and get 132, 212, and 293. Then we have to trace back from 128, because
they all exceed 128 and get 4, 84, and 165 and have to fold again at 0 into
forward (i.e., 4, 84, and 165). The first two are now in the right position, but
165 exceeds 128. We have to subtract 128 from 165 which is 37 and trace it
back from 128, that is, we get to 91. We finally get for the position of the three
frequencies 4, 84, and 91, and those are the frequencies we should find in the
graph of the Fourier transformation. However, we find 5, 85, and 90. The first
two are folded twice, the last three times. We have not taken into account that
the Fourier transformation program starts at 0 and not at 1.

F15FOLDS

Folding of the Spectrum

For the sampling interval 1/255, hightest frequency is 128; the frequencies are
at 65, and 105, all below 127.

1. Sample interval i/255

i :� 0 . . . 255

y1i :� cos

(
2 · π · 65 · i

255

)
+ cos

(
2 · π · 85 · i

255

)
+ cos

(
2 · π · 105 · i

255

)
.
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c :� ff t(y1)

N :� last(c) N � 128

j :� 0 . . . 128

Frequency peaks are at 65, 85, 105.
2. Sample interval 2i/255

For the sampling interval 2/255, highest frequency is 64: the original
frequencies are at 65, 85, 105: they are all larger 64 and appear folded.

y2i :� cos

(
2 · π · 65

2 · i
255

)
+ cos

(
2 · π · 85 · 2 · i

255

)
+ cos

(
2 · π · 105

2 · i
255

)
.

c :� ff t(y2)

N :� last(cc) N � 128
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j :� 0 . . . 128

Frequency peaks appear at 45, 85, 125.

3. Sample interval 4i/255
For the sampling interval 4/255, highest frequency 32, the frequencies are
higher than 1 times 32 and 2 times 32.

y4i :� cos

(
2 · π · 65

4 · i
255

)
+ cos

(
2 · π · 85 · 4 · i

255

)
+ cos

(
2 · π · 105

4 · i
255

)
.

ccc :� ff t(y4)

N :� last(ccc) N � 128

j :� 1 . . . 128
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Freguency peaks appear

65 at → 125

85 at → 185

105 at → 45.

Application 9.15. Use the three frequencies 15, 34, and 97. Determine the ap-
pearance in the Fourier transformation as discussed for the original set (65, 85,
105) of frequencies.

9.2.6 High Resolution Spectroscopy

In high resolution spectroscopy one is often interested in investigating a nar-
row bandwidth of frequencies for high resolution. The sampling interval l in
the length domain is related to the highest frequency νM in the 1/length domain.
When increasing the number of pointsN in the length domain, one also increases
the number N of points in the frequency domain. Since the sampling interval
determines the frequency interval from 0 to νM , a higher number of points in the
length domain results in a higher number of points in the frequency domain. One
gets higher resolution in the interval from 0 to νM . The resolution is inverse pro-
portional to the total lengthL of the interferogram. The length may be expressed
as L � N l, and one has

Nl � L � 1/(2(νM/N )) (9.64)

and obtains for νM/N

νM/N � �ν � 1/2L. (9.65)

A high resolution interferometer uses a large optical path differenceL in order to
make�ν small. If we take, for example, L � 50 cm, we have for�ν � (1/100)
cm−1 and for the resolving power R � νM/�ν at 100 microns (equal to 100
cm−1)

R � νM/�ν � 100/(1/100) � 10, 000. (9.66)

The number of points in length space is equal to the number of frequency intervals
in frequency space, which is

N � 100/(1/100) � 10, 000 (9.67)

and is also equal to R. To record 10,000 points, assuming about 3 sec for each
point, would take 9 hours. The information we obtain in this way is a spectrum
from 1 to 100 cm−1 with resolution of 1/100 cm−1.

In the case where one is only interested in the study of a section of the spectrum
one may use folding of the spectrum. Let us assume that we are interested in
the section from 2/3 of 100 cm−1 to 100 cm−1. In that case we use a bandpass
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FIGURE 9.2 We assume that a bandpass filter eliminates the spectrum from 1 to 66 cm−1. The
spectrum is folded by using a sampling interval of 3 times l, where l is the sampling interval,
corresponding to the highest frequency 100 cm−1; that is, 1 � 1/2 · 100 cm−1 � 0.005 cm � 50
microns. The frequency scale for the sections changes the direction to the highest value for even
or odd factors of folding.

filter and eliminate all other frequencies, and fold the spectrum three times by
choosing a sample interval three times larger (see Figure 9.2). This is similar to
what we discussed above in FileFig 9.15, where we studied the folding of a sum
of cos-functions sampled with intervals 1/256, 2/256, and 4/256.

We have νM/3 for the width of the spectral sections to be studied with the
length L of the interferogram. Consequently, the sampling interval has the value
3 l � L/3333, instead of l � L/(10, 000). The total number of points is reduced
from 10,000 to 3333, but the length of the interferogram remains the same.
Therefore we obtain the same high resolution in a smaller spectral region with
one-third of the points. A very important fact is that we have to use the bandpass
filter we assumed to apply. The spectra of the two sections of 1 to 33 cm−1 and 33
cm−1 to 66 cm−1 are folded onto the spectrum of 66 cm−1 to 100 cm−1. If they
contain spectral information, the spectrum will be “messed up," like the Fourier
transforms in FileFig 9.15. We obtain the same high resolution for a smaller part
of the spectrum, using a larger sampling interval and fewer points. In our case
the spectrum is obtained in one-third of the time.

In Figure 9.3 we show the background spectrum, taken with a Michelson inter-
ferometer and a bandpass filter. The bandpass has to have a width of νM /integer.
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FIGURE 9.3 The background spectrum taken with a Michelson interferometer and a bandpass
filter. (From J. Kachmarsky et al., Far-infrared high-resolution Fourier transform spectrometer:
applications to H2O, NH3, and NO2 lines. Applied Optics, 15, 1976, p 708–713.)

FIGURE 9.4 High-resolution spectrum of water in the 104 to 107 cm−1 region obtained by folding
the spectrum six times. (From J. Kachmarsky et al., Far-infrared high-resolution Fourtier transform
spectrometer: applications to H2O, NH3, and NO2 lines. Applied Optics, 15, 1976, p 708–713.)

In Figure 9.4 we show a high-resolution spectrum of water in the 104 to 107
cm−1 region, obtained with a sampling interval six times larger and in a time
span six times shorter. We state the procedure in more general terms as follows.A
filter is used to eliminate all parts of the spectrum with frequencies higher than
νM and lower than νm, where m stands for minimum. The value of νm has to be
chosen in such a way that q � νM/(νM − νm) is an integer. We then obtain with
N sample intervals, each calculated by using

l � 1/{2(νM − νm)}, (9.68)
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a spectrum of width νM/q and a resolution of �ν � 1/(2L), where L � Nl.
The scale has its highest value νM/q and runs forward for q odd and backward
for q even (Figure 9.2).

9.2.7 Apodization

The Fourier integrals, as shown in Eq. (9.55) and (9.56),

S(y) � 2
∞
∫
0
G(ν){cos(2πνy)}dν (9.69)

G(ν) � 2
∞
∫
0
S(y){cos(2πνy)}dy (9.70)

have a range of integration from 0 to ∞. The discrete Fourier transform, as shown
in Eq. (9.57),

G(νj ) �
n∑
k�1

S(yk){cos(2πνjyk)}, (9.71)

has a finite summation range, instead of the infinite large integration range. In
the section on Fourier transformation, we reduced the integration range for the
Fourier transformation of the slit from −∞ to ∞ to a range from −a to a. We
did this because the width of the slit is 2a, and outside the interval from −a to a
there is no information. We may multiply the interferogram function S(y) in the
integral of Eq. (9.70) with a step function p(y), which is 1 in the interval from
−a to a and otherwise zero. We introduce into Eq. (9.70) the step function p(y),

G(ν) �
∞
∫

−∞
p(y)S(y) exp(−i2πνy)dy (9.72)

and reduce the infinite range of integration to a finite range −a to a, which we
may write as

G(ν) �
a

∫
−a
S(y) exp(−i2πνy)dy. (9.73)

From the point of view of calculating a Fourier transformation over a limited
range of space, Eq. (9.73) is similar to the discrete Fourier transformation of
Eq. (9.71). In FileFig 9.17 we discuss an example of the Fourier transfor-
mation of a cos-function integrated over a finite range. We use the function
yk � cos(2πf k/255), with frequency f � 31, plotted over a range of k � 0 to
400 and do the multiplication with a step function pk of width 256 points. The
result of the real Fourier transformation is that we obtain a peak at f � 31, not
infinitely narrow and with a loop extending to negative values. Since negative
intensities do not appear in spectroscopy, it is desirable to find a procedure to
avoid this artifact. The situation can be corrected by using in place of pk, which
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is a step function, the function qk, which is a triangular function, defined as

qk � 1 − k/255. (9.74)

The multiplication of yk by qk and their Fourier transformation is shown in
FileFig 9.16. The function yk decreases to 0, and remains 0 in the range of
integration, which was set to zero when changing from the infinite range of
integration to the finite range. Application of the Fourier transformation shows
that the negative values of the frequency spectrum have disappeared. This is
called apodization. A drawback to this process is that the resolution is reduced
by a factor of about 2.

FileFig 9.16 (F16APODIS)

Fourier transformation, sin-function, and apodization:

1. the infinite range of integration is reduced to a finite range by the use of a
step function. As a result, the Fourier transformation shows negative intensity
values;

2. the use of the triangular function qk � 1 − k/255 eliminates the negative
values but reduces the resolution by a factor of 2.

F16APODIS

Fourier Transformation of Sine Function and Apodization

1. Original function

k :� 0 . . . 255 yk :�
(

cos

(
2 · π · f · k

255

))
f ≡ 31.

2. Step function: i :� 0 . . . 400

pi :� (�(i) −�(i − (d)) d ≡ 255



368 9. FOURIER TRANSFORMATION AND FT-SPECTROSCOPY

ypi :�
(

cos

(
2 · π · f · i

255

))
· pi.

3. Fourier transformation of y × p: we have to use 255 points

xk :� (cos(2 · π · f · k

255
)) · (�(k) −�(k − (d)) k :� 0 . . . 255

c :� ff t(x)

N :� last (c) N � 128

j :� 0 . . . N.
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4. Triangle function

ayk :� qk · yk qk :� 1 − k

255
.

5. Fourier transformation of y × p; we have to use 255 points

N � 128

j :� 0 . . . N

c :� ff t(ay)

N :� last (c).
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Application 9.16.

1. Use the apodization function qqk � (1−k/255)2 and calculate the apodized
function and the Fourier transform. Compare with the use of pk and qk.

2. Study the impact of the reduction of resolution. Repeat the procedure for a
sum of five cosine functions of five different frequencies, such as 30, 35, 40, 45,
and 50. Study the resolution using the apodization functions pk, qk, and qqk.

APPENDIX 9.1

A9.1.1 Asymmetric Fourier Transform Spectroscopy

We have discussed the use of the Michelson interferometer for spectroscopy. The
sample was assumed to be positioned either before the light was divided at the
beam splitter or after the light was recombined. The reflection and transmission
properties of the two arms of the interferometer were assumed to be equal and
the only asymmetry was the difference in the path. To calculate the spectrum we
could use the “real" Fourier transformation.

We now assume that the sample is at the surface of one of the mirrors of
the Michelson interferometer. The reflection properties of the two arms of the
interferometer are then different and the complex Fourier transformation must
be applied. As a result of using the complex Fourier transformation one has
more information available (complex numbers instead of real numbers). We
may calculate not only the intensity (square of amplitude) but also obtain phase
information. If in the case of reflection for a certain frequency range, the reflected
amplitude and the phase change at reflection are known, the optical constants n
and K may be calculated. We start with Eqs. (9.34) and (9.35), describing the
two beams reflected from the two mirrors in the Michelson interferometer. We
assume that the light is reflected in the fixed arm by a mirror producing the same
magnitude of the amplitude and a phase shift of π . Using complex notation we
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have

u1 � A(exp iπ ) exp i{2π (x1/λ− t/T )}. (A9.1)

The sample is assumed to be on the mirror in the movable arm of the interfer-
ometer, and we assume an amplitude reflection coefficient r and a phase change
ϕ. We call y the displacement from the equal path length position and have

u2 � A(r exp iϕ) exp i{2π ({x1 + y}/λ− t/T )}. (A9.2)

Superposition of the two waves gives us

u � u1 + u2

� A{r exp iϕ + exp i{2πy/λ+ (π )} exp i{2π (x1/λ− t/T )} (A9.3)

and for uu∗ we calculate

uu∗ � A2{1 + r2 + 2r cos(ϕ − π − 2πy/λ)}. (A9.4)

Introduction of R for r2 and for the frequency ν � 1/λ, one has for the intensity
I ,

I (y) � A2{1 + R + 2r cos(ϕ − π − 2πyν)}. (A9.5)

If we have a continuous spectrum of frequencies ν, from 0 to ∞ we have

I (y) �
∞
∫
0
A2{1 + R + 2r cos(ϕ − π − 2πyν)}dν. (A9.6)

For very large values of y the cosine term oscillates so fast that the average will
be zero. We call

I (∞) �
∞
∫
0
A2{1 + R}dν (A9.7)

and get for Eq. (A9.6)

I (y) − I (∞) �
∞
∫
0
A2{2r cos(ϕ − π − 2πyν)}dν. (A9.8)

Introduction of 2 cos x � exp(ix) + exp(−ix) results in

I (y) − I (∞)

�
∞
∫
0
A2r{exp i(ϕ − π − 2πyν) + exp −i(ϕ − π − 2πyν)}dν. (A9.9)

The difference in phase change for reflection on the sample (π − ϕ) may also
be written as (ϕ − π ). The sign is of no importance. We can then factor out
exp i(ϕ − π ) and extend the frequency range formally to negative frequencies
(as done above in Section 2.3).

I (y) − I (∞) �
∞
∫

−∞
{A2r exp i(ϕ − π )}{exp i(2πyν)}dν. (A9.10)
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This is the Fourier transform integral in the frequency domain for the func-
tion {A2r(ν) exp i(ϕ − π )}, and the corresponding Fourier transform integral in
coordinate space is

{A2r(ν) exp i(ϕ − π )} �
∞
∫

−∞
{I (y) − I (∞)} exp −i(2πyν)dν. (A9.11)

Equation (A9.11) is the Fourier transformation of the data {I (y) − I (∞)}. Per-
forming the Fourier transformation, we obtain for the integral in Eq. (A9.11) a
function of complex numbers depending on ν, and call this functionP (ν)−iQ(ν),

∞
∫

−∞
{I (y) − I (∞)} exp −i(2πyν)dν � P (ν) − iQ(ν). (A9.12)

The background interferogram is obtained with a mirror in each arm of the
Michelson interferometer, and one has for the transformation

{A2r exp i(−π )}
�

∞
∫

−∞
{IB(y) − IB(∞)} exp −i(2πν)dν � PB(ν) − iQB(ν), (A9.13)

where r is assumed to be set to 1 because of the background. Dividing the
transformations of the sample and background interferogram we have

r(ν) expϕ(ν) � {P (ν) − iQ(ν)}/{PB(ν) − iQB(ν)}. (A9.14)

For the intensity reflection coefficient r2 we then get

r2 � {P (ν)2 +Q(ν)2}/{PB(ν)2 +QB(ν)2}. (A9.15)

Since the background spectrum is real, one may write

P (ν) − iQ(ν) � (Realnumber) exp iϕ(ν) (A9.16)

and

tan ϕ � Q(ν)/P (ν), (A9.17)

where the sign of ϕ, that is, its relation to 2π , has to be chosen.
The optical constants are obtained by using Fresnel’s formulas for normal

incidence and complex refractive index

r2 � {(1 − n)2 +K2}/{(1 + n)2 +K2} (A9.18)

and

tan ϕ � (2K)/(n2 +K2 − 1). (A9.19)

Explicit calculation of n and K results in

n � (1 − r2)/(1 + 2r cosϕ + r2) (A9.20)

K � (−2r sin ϕ)/(1 + 2r cosϕ + r2), (A9.21)

where the sign of ϕ is important in Eq. (A9.21).
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We have obtained from the Fourier transformation the complex numbers P (ν)
and Q(ν) and could use them to calculate r and ϕ. From Fresnel’s formulas we
calculate n and K .

See also on the CD

PF1. Fourier Transformation of the Gauss-Function. (see p. 332–333)
PF2. Fourier Transformation of the Functions 1/(1 + x2). (see p. 333)
PF3. Numerical Fourier Transformation. (see p. 334)
PF4. Step Functions.(see p.335)
PF6. Example of a Convolution Integral. (see p. 342)
PF7. Interferogram of Michelson interferometer. (see p. 350)
PF8. Folding of the Spectrum. (see p. 351)
PF9. Apodization. (see p. 359)



1010C H A P T E R

Imaging
Using Wave Theory

10.1 INTRODUCTION

In geometrical optics we used the thin lens equation to find the image point of
an object point when using a thin lens of focal length f . Using wave theory we
assume that Huygens’ wavelets emerge from each point of the object and travel
to the lens. The lens produces the diffraction pattern of the object in its focal
plane, which may be seen as the Fourier transformation of the object pattern.
The lens also produces the image of the object by refraction. A second Fourier
transformation performed on the diffraction pattern results in a pattern having
the shape of the object. Since the light travels forward, we associate it with the
image. This is schematically shown in Figure 10.1.

The model we use for the description of image formation by a lens is, that
one Fourier transformation is applied to the object pattern to obtain the diffrac-
tion pattern of the object and a second Fourier transformation is applied to the
diffraction pattern to obtain the image pattern. Since we found that the Fourier
transform of a Fourier transform is the original, but know that experimentally
the image is not exactly the same as the object, we may ask the question, “Where
is the perturbation entering the process?” It has been one of the great discoveries
of optics (E. Abbe in Born and Wolf, 1964, xxi) that any perturbation of the
diffraction pattern modifies the image. In Figure 10.2 we show how changes in
the diffraction pattern, such as blocking off certain parts, change the image. We
may also introduce phase shifts at some spots and not at others and obtain an
image with much stronger contrast (F. Zernicke in Born and Wolf, 1964, xxi).

375
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FIGURE 10.1 (a) The geometrical optical imaging process; (b) imaging process using wave theory.
The Huygens’ wavelets of the object generate the diffraction pattern, and the Huygens’ wavelets
of the diffraction pattern generate the image.

10.2 SPATIAL WAVES AND BLACKENING CURVES,
SPATIAL FREQUENCIES, AND FOURIER
TRANSFORMATION

Using scalar diffraction theory, the Kirchhoff–Fresnel integral uses monochro-
matic light to describe the diffraction pattern of the light emerging from the
object. A lens is used in Fraunhofer diffraction to have the diffraction pattern
observed in the focal plane of the lens. This same integral may be written as a
Fourier transform integral, as done in Chapter 3 for the diffraction on a slit. The
coordinates of the object, the slit, are length coordinates in the length domain.
The coordinates of the Fourier transformation, the diffraction pattern of the slit,
are coordinates in the spatial frequency domain and have 1/length dimensions.
We note that we deal with an amplitude diffraction pattern in the frequency do-
main, which contains phase information, even if we started with a real function
in the object plane. After one applies a second Fourier transformation on the
diffraction pattern (in the spatial frequency domain), the result is a geometrical
image pattern similar to the original object and appearing in the space domain.

In our model description we use the first Fourier transformation from the geo-
metrical space domain into the spatial frequency domain. The object is described
by geometrical spatial waves and the Fourier transformation describes the fre-
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FIGURE 10.2 (a) Schematic of image formation by geometrical optics, the focal plane is indicated;
(b) the object is a grid, the diffraction pattern is shown, and the image is again a grid. When masks
1 and 2 are placed at the focal plane of the lens, certain parts of the diffraction pattern are blocked
off. The resulting images are shown on the right.

quency spectrum of these spatial waves. The object function h(y) is interpreted
as a superposition of spatial waves and the result of the superposition is recorded
as the blackening of a photographic plate. The maxima of a spatial wave corre-
sponds to black, the minima corresponds to white, and the gray level indicates
zero. By doing so, we attribute phase information to these waves. Superposition
of a black maxima (+A) and a white minima (−A) results in gray (0). In the
section on holography, we present more details on the presentation of phase in-
formation with the black, white, and gray of the photographic plate. In FileFig
10.1 we show this concept in mathematical terms, considering the Fourier series

g(x) �
N∑
n�0

{[4/((2n+ 1)π )](sin 2π (fnx))} (10.1)

with frequencies fn � (2n + 1)/2a, where a is a certain length constant in the
spatial domain.

The spatial waves with wavelengths �0 � 2a, �1 � 2a/3, �2 � 2a/5
correspond to spatial frequencies f0, f1, f2 and are shown in FileFig 10.1. The
superposition of these three waves is also shown and one observes that the su-
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perposition of a large number of such spatial waves results in a rectangular
shape.

FileFig 10.1 (W1FTSERIS)

Fourier series of cosine functions for the composition of a rectangular-shaped
object. Different numbers of elements of the sum are plotted separately and as a
sum for comparison.

W1FTSERIS

Fourier Series of Spatial Wavelength λ for Interval from −1 to 1 (Shown to 2)

For N � 0 the only term is a sine wave from −1 to 1, of wavelength λ � 2. For
N � 1 a sine term with 1/3 of λ and smaller amplitude is added. For N � 2 a
term with 1/5 of λ and smaller amplitude is added, and so on. IfN is large, we see
a perfect step function. For smallerN (in the 20th), we see Gibb’s phenomenon,
the corners are not round, and there is overshooting. For large N it disappears.

x :� −1,−.99.. 1.9 � :� 1 n :� 0, 1.. 200 N ≡ 100

g(x) :�
N∑
n�0

[
4 · sin[2 · π · x · (fn)]

(2 · n+ 1) · π
]

fn :� 2 · n+ 1

2 ·� .

For larger and largerN one can see how more and more waves with shorter and
shorter wavelengths are used to build the step function.

g0(x) :� 4 · sin
(
π · x · 1

�

)
π

g1(x) :� 4 · sin
(
π · x · 2·1+1

�

)
(2 · 1 + 1) · π

g2(x) :� 4 · sin
(
π · x · 2·2+1

�

)
(2 · 1 + 1) · π .
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Application 10.1.

1. Use different values for N and NN and compare the resulting rectangular
pulse shape.

2. The deviation feature on the edges is called Gibb’s phenomenon. Observe the
appearance and disappearance of Gibb’s phenomena depending on N .

3. Change the sine functions to cosine functions and discuss the result.

In FileFig 10.2 we show schematically the calculation of the spatial frequency
spectrum, and the second Fourier transformation for image formation. We also
discuss the options for the second Fourier transformation. Could one use the
complex Fourier transformation again, or as we should, use the inverse Fourier
transformation?

FileFig 10.2 (W2FTCFT)

Object is a composition of step functions. The complex Fourier transformation
and the inverse complex Fourier transformation are shown. The complex Fourier
transformation may be applied twice, but the image is interchanged left to right.
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W2FTCFTS

Example of Real fft and Complex cfft on a Real Object Function

1. The real FT fft
The Object: i :� 0, 1 . . . 255

A1 :� 33 A3 :� 80 A4 :� 50 A5 :� 20 A6 :� 99 A7 :� 160 A8 :� 200

yi :�
3∑
n�1

(−�(An − i)) +
8∑
n�4

[�(An − i) · (−1)n].

The real Fourier transformation

c :� ff t(y) Nc :� last(c) Nc � 128

j :� 0 . . . Nc − 1.

The inverse Fourier transformation

x :� iff t((c))

Nx :� last(x)

Nx � 255

k :� 0 . . . Nx − 1.
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We cannot use x � ff t(c); we get the “Error message”; c must be real

2. The complex Fourier transformation
The Object: i :� 0, 1 . . . 255

A1 :� 33 A2 :� 80 A3 :� 80 A4 :� 50 A5 :� 20

A6 :� 99 A7 :� 160 A8 :� 200

yi :�
3∑
n�1

(−�(An − i)) +
8∑
n�4

[�(An − i) · (−1)n].

The complex Fourier transformation

cc :� cff t(y)

Ncc :� last(cc) Ncc � 255

k :� 0 . . . Ncc − 1.
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The inverse Fourier transformation

xx :� icff t(cc) Nxx :� last(xx)

Nxx � 255 k :� 0 . . . Nxx − 1.

3. Application of cfft the second time, instead of the inverse icfft results in an
image with the left-right interchanged.

xxx :� cff t(cc)

Nxxx :� last(xxx) Nxxx � 255

f :� 0 . . . Nxxx − 1.

10.3 OBJECT, IMAGE, AND THE TWO FOURIER
TRANSFORMATIONS

10.3.1 Waves from Object and Aperture Plane and Lens

In geometrical optics, we employed the thin lens equation to find the image point
xi of an object point x0, when using a thin lens of focal length f . The image
of an extended object was obtained by imaging each point of the object to its
conjugate point at the image.

The application of wave theory to the image forming process is also done in
a point-by-point procedure. The image points are in the y, z plane, and at the
distance x a lens is positioned; the finite aperture of the lens is described in the
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FIGURE 10.3 Coordinate system for object plane, aperture plane, and image plane.

η, ζ plane. At distance X from the lens is the image plane and the image is
described in that plane by Y , Z coordinates (see Figure 10.3).1

We assume monochromatic light and consider two summation processes and
the action of the lens. The action of the lens was discussed in Chapter 3 for the
case of Fraunhofer observation. The aperture of the lens is described by α(η, ζ ),
and the changes of the incident wavefront to the wavefront leaving the lens is
given by exp(−ik(η2 +ζ 2)/2f ). The lens bends the wavefront in such a way that
it converges to the focal point. The phase factor may be written as eikρ where ρ is
in the direction of propagation. We obtain ρ � η2/2f and as a result eikρ is equal
to exp(ikη2/2f ). For simplicity, without losing essential points of importance,
we restrict our discussions to a one-dimensional extension of object, lens, and
image.

10.3.2 Summation Processes

10.3.2.1 The First Summation Process

The magnitude of the object points is described by h(y, z) and from each point a
spherical wave emerges, described by h(y, z)eikr/r . All the waves are summed
up for each point η, ζ in the plane of the lens. In the following we restrict the
considerations to one dimension.

We call h(y) the magnitude of each object point and calculate r in eikr/r in
terms of x, y, and η (see Figure 10.4)

r2 � (η − y)2 + x2 � η2 − 2ηy + y2 + x2 � R2 + η2 − 2ηy (10.2)

� R2(1 + (η2 − 2ηy)/R2),

where we call y2 + x2 � R2 and we consider R2 as a constant because y � x.
Developing the square root of [R2(1 + (η2 − 2ηy)/R2)] yields

r ≈ R{1 + (η2 − 2ηy)/2R2} ≈ R − ηy/R + η2/2R. (10.3)

1See Physical Optics Notebook by G. P. Parrent and B. J. Thompson, Society of Photo-Optical Engineers,
Redondo Beach, California, 1969.
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FIGURE 10.4 Coordinates for small angle approximation.

For the first summation process we integrate over all y and have∫
h(y) exp{ik(R − ηy/R + η2/2R)}dy. (10.4)

10.3.2.2 Action Lens

The aperture is presented by α(η) and from the chapter on diffraction we know
that the wavefront is changed by a phase factor of exp(−ikη2/2f ).

10.3.2.3 Second Summation Process

From each point in the plane η, ζ emerges a spherical wave α(η, ζ )eiks/s. These
amplitudes, including the phase factor introduced by the lens, are summed up
for all final image points X, Y .

In a similar way as discussed in Section 10.3.2.1 we may write approximately
(Figure 10.4) s ≈ R′ − ηY/R′ + η2/2R′, with R

′2 � X2 + Y 2 considered as
a constant. The amplitude at the image point is called g(Y ) for both summation
processes

g(Y ) �
∫ [∫

h(y)(1/R){exp ik(R − ηy/R + η2/2R)}dy
]
α(η)

{exp(−ikη2/2f )(1/R′)}
{exp ik(R′ − ηY/R′ + η2/2R′)}dη, (10.5)

where one has approximately 1/R for 1/r and 1/R′ for 1/s. All the constants
are taken before the integral and one gets

g(Y ) � (1/RR′) exp ik(R + R′)
∫ [∫

h(y) exp{−ikηy/R}dy
]

α(η){exp ik(η2/2R − η2/2f + η2/2R′)} exp ik(−ηY/R′)dη. (10.6)

Since we are treating an imaging process, we introduceR ≈ x0 andR′ ≈ xi into
exp{ik �� η2/2R − η2/2f + η2/R′)}, and make the factor 1 by using the thin



10.3. OBJECT, IMAGE, AND THE TWO FOURIER TRANSFORMATIONS 385

lens equation

(ikη2/2)(1/x0 − 1/f + 1/xi) � 0. (10.7)

Calling the factor before the integral C, we have further to consider

g(Y ) � C

∫ [∫
h(y) exp{−ikηy/x0}dy

]
α(η) exp{−ikηY/xi}dη. (10.8)

10.3.3 The Pair of Fourier Transformations

10.3.3.1 Aperture Function α(η) of the Lens Is a Constant

When α(η) is independent of η we can include it in the constant before the
integral and have

g(Y ) � C

∫ [∫
h(y) exp{−ikηy/x0}dy

]
exp{−ikηY/xi}dη. (10.9)

The integration over y produces a function ofη and we call the integral in brackets
ω(η)

ω(η) �
∫
h(y) exp{−ikηy/x0}dy (10.10)

and write

g(Y ) � C

∫
ω(η) exp{−ikηY/xi}dη. (10.11)

The result is: The image amplitude function g(Y ) is the Fourier transform of
the Fourier transform of the object amplitude function h(y).

Since the Fourier transform of the Fourier transform is the original function,
except for a scaling factor, for this idealized case the result is that the function
representing the image is the same as the function representing the object, except
for a scaling factor and phase factor.

10.3.3.2 Aperture Function α(η) of the Lens Is Not a Constant

When α(η) is not a constant, we may write, using ω(η),

g(Y ) � C

∫
ω(η)α(η) exp{−ikηY/xi}dη. (10.12)

We have as the result: The Fourier transform of the modified Fourier transform
of the object function is the image function. The function α(η) is in most cases
an aperture function such as a step function or in two dimensions a function
representing a round hole. In that case only the magnitude in the η direction
(in two dimensions, the η, ζ plane) is altered. However, α(η) may also contain
a phase factor representing phase differences between certain points (η) in the
plane (η, ζ ).
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10.4 IMAGE FORMATION USING INCOHERENT
LIGHT

10.4.1 Spread Function

We have assumed in the preceding chapters that monochromatic light was used
for image formation. We now want to use nonmonochromatic light, (e.g., light
from the sun) for image formation. To do this we will assume that there is
no fixed phase relation between the light emitted from a pair of object points.
Since we want to use only one medium wavelength, the light we assume using
is called quasimonochromatic light (see Chapter 4). The case where one uses
monochromatic light is discussed in Section 10.5. As in geometrical optics, we
consider the object made of points and apply a point-by-point process to obtain
the image. The detector used for recording the image will be sensitive to the
intensity at each image point, which we assume to be proportional to the square
of the amplitude.

When considering one point, we have to replace h(y) (see Section 10.4.2) by
a delta function and have from Eq. (10.8),

s(Y ) � C

∫
[
∫
δ(y) exp{−ikηy/x0}dy]α(η) exp{−ikηY/xi}dη. (10.13)

Since∫
δ(y) exp{−ikηy/x0}dy � 1 (10.14)

we get

s(Y ) � C

∫
α(η) exp{−ikηY/xi}dη. (10.15)

If α(η) is a constant and s(Y ) is a delta function equal to the object function h(y)
we have a point-to-point imaging process. In general, if α(η) is not a constant we
go back to the first summation process and find for the two-dimensional process
thatα(η, ζ ) describes the amplitude distribution of the light from the point source
in the plane of the lens. Therefore s(Y ) describes the deviation from a point we
would have obtained as the image point.

For the image one needs the intensity and has to square Eq. (10.15) and obtain

S(Y ) � |C
∫
α(η) exp{−ikηY/xi}dη|2. (10.16)

We call S(Y ) the spread function. This is the spread of the object point in the
image plane as produced by the lens.
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10.4.2 The Convolution Integral

The integral in Eq. eq10.15 may be rewritten using the convolution theorem of
Fourier transformations.This theorem tells us that we may write the Fourier trans-
form of a product of two functions, here ω(η)α(η), as the convolution integral
of the Fourier transformation of ω(η) and of α(η).

We consider the integral in Eq. (10.12),

g(Y ) � C

∫
ω(η)α(η) exp{−ikηY/xi}dη. (10.17)

From Eq. (10.10) we have

ω(η) �
∫
h(y) exp{−ikηy/x0}dy. (10.18)

The Fourier transform is the original object function

h(Y ) � C

∫
ω(η) exp{−ikηY/xi}dη. (10.19)

From Eq. (10.15) we have

s(Y ) � C

∫
α(η) exp{−ikηY/xi}dη (10.20)

and may replace g(Y ) in Eq. (10.17) by the convolution integral

g(Y ) � C

∫
h(Y )s(τ − Y )dτ. (10.21)

The effect of the aperture functionα(η) is that the final image function is obtained
by convolving the original object function h(Y ) with the Fourier transform of
the aperture function α(η), which is s(Y ) (using image coordinates).

The result is that only the coordinates of the image plane are involved.

10.4.3 Impulse Response and the Intensity Pattern

If the object is described by Iob(Y ), a point of the object on the object screen can
be represented by the product Iob(Y ) times a δ function

Iob(Y )δ(Y − Y ′), (10.22)

which will have the value Iob(Y ′) for Y � Y ′.
For a very large aperture, nothing would happen to the δ function and we

would have on the observation screen a point. The image point is similar to the
object point but we may have to introduce a scaling factor. For a small aperture,
the point would spread to a certain pattern and we would have to replace δ(Y−Y ′)
by the spread function S(Y − Y ′). The spread function describes the change of
the object as it appears on the observation screen. The distortion is produced by
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the lens.

Iob(Y )δ(Y − Y ′) −→ Iob(Y )S(Y − Y ′). (10.23)

If the object is only one point we call this the impulse response. For incoherent
light, the spread function is the image of one point on the object screen. If a
second point is added on the object screen, it has to be treated similarly and
independently and the result has to be added to the image plane. For n points we
have for the impulse response

Iim(Y ) �
∑

Iob(Yn)S(Y − Yn) (10.24)

and for a continuous distribution of points we obtain

Iim(Y ) �
∫
Iob(Y

′)S(Y − Y ′)dY ′. (10.25)

With Eq. (10.25) one is able to calculate the image from an object when the
spread function is known. This is demonstrated in the following for a few simple
examples.

10.4.4 Examples of Convolution with Spread Function

10.4.4.1 One Bar as an Object and Application of a Cylindrical Lens

We assume that the object is made of just one bar, represented by h(y) as a
rectangular pulse of height 1 and width from y � b1 to y � b2. The lens is a
cylindrical lens represented as a pulse by the function α(η) of height 1 and width
from η � −a to η � +a (see FileFig 10.3). We call the focal length of the lens
f and its diameter 2a. One calls f/2a the f # of the lens.

The spread, which is produced by the lens, is presented by the spread function
S(Y ) (Eq. (10.16)) where we have set X � f , with f being the focal length of
the lens

S(Y ) � |
∫

{e−ikYη/f }dη|2. (10.26)

For a cylindrical lens we have to integrate over −a to a and get

S(Y ) � 4a2{(sin kaY/f )/(kaY/f )}2. (10.27)

The image is then obtained from the convolution integral

Iim(Y ) � 4a2
∫ Y ′�b2

Y ′�b1
Iob(Y

′)S(Y − Y ′)dY ′, (10.28)

where we used Y ′ � YY in FileFig 10.3. There we show the object and image,
with γ � 0.0005 mm, diameter of the lens 2a, and choice of f # � 10. The width
of the object bar has been assumed to be from b1 � −0.002 to b2 � 0.002.



10.4. IMAGE FORMATION USING INCOHERENT LIGHT 389

FileFig 10.3 (W3IMONES)

The object is one bar. The image is obtained by convolution of the object function
with the spread function. The spread function is the Fourier transformation of
the pulse, representing the cylindrical lens.

W3IMONEBS is only on the CD.

Application 10.3.

1. Change the values of b1, b2, and a so that b2 − b1 is larger than a.
2. Change the values of b1, b2, and a so that b2 − b1 is smaller than a.

10.4.4.2 Two Bars

Two bars are considered in FileFig 10.4, each of width 0.003, and center-to-center
distance of bb � 0.013. The lens has width 2a, and we use for the wavelength
λ � 0.0005 mm and for the f # � 10. The image of each bar is calculated
separately with the integral of Eq. (10.28). Because of the linearity of the system
the final image is the superposition of the result of imaging of each bar separately.

FileFig 10.4 (W4IMTWOB)

The object is made of two bars. The image is obtained by convolution of each
object function with the spread function. The spread function is the Fourier
transformation of the pulse, representing the cylindrical lens.

W4IMTWOB is only on the CD.

Application 10.4.

1. Change the distance between the two object bars and study the resolution. If
the distance is too small, the image is just one peak.

2. Change the calculation and apply the spread function to the total image over
a large range of integration. The image is now more similar to the object.

10.4.4.3 One Round Object and a Circular Lens

In far field diffraction of the round aperture, one finds that the two-dimensional
problem is reduced to a one-dimensional circular symmetric problem, solved by
using the Bessel function. We may similarly proceed for imaging. The object
is a round aperture of diameter 2b � 0.004 (FileFig 10.5). The round lens
has the diameter 2a. For the calculation of the integral, corresponding to the
integral of Eq. (10.28), we extend the definition of the radius as it appears in the
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Bessel function to negative values. The spread function is calculated using the
nonnormalized Bessel function

s2(R) � 4a2{J1(2πaR/λf )/(2πaR/λf )}2. (10.29)

One has to simply replace the sin y/y function by the J1(y ′)/y ′ function. We use
for R again Y and for R′ the integration variable Y ′. For the integral we then
have

Iim(Y ) � 4a2
∫ Y ′�b2

Y ′�b1
Iob(Y

′)
[
J1(2πa(Y − Y ′)/λf )

(2πa(Y − Y ′)/λf )

]2

dY ′. (10.30)

The calculation is shown in FileFig 10.5.

FileFig 10.5 (W5IMONEROS)

One round object and a circular lens. The image is obtained by convolution of
the object function with the spread function. The spread function is the Fourier
transformation of the pulse, representing the lens.

W5IMONEROS is only on the CD.

Application 10.5.

1. Change the diameter a of the lens to a smaller value than 25. What happens?

2. Change the diameter a of the lens to larger values than 25. At what value one
gets a good agreement with the object?

10.4.4.4 Two Round Objects and a Circular Lens

Two round objects of diameter 2b � 0.004 and center-to-center distance bb �
0.014, are treated in FileFig 10.6.

Since the system is linear, we have to calculate two integrals of the type
considered in Section 10.4.4.3 at the given distance.

Iim(Y ) � 4a2
∫ Y ′�b2

Y ′b1
Iob(Y

′)S(Y − Y ′)dY ′

+ 4a2
∫ Y ′�b4

Y ′�b3
Iob(Y

′)S(Y − Y ′)dY ′. (10.31)

The calculation is shown in FileFig 10.6.
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FileFig 10.6 (W6IMTWOROS)

Two round objects and a circular lens. The image is obtained by convolution of
each object function with the spread function. The spread function is the Fourier
transformation of the pulse, representing the lens.

W6IMTWOROS

Imaging: Two Round Apertures and Round Lens (R′ is X)

Y :� −.1,−.099.. 6 b1 ≡ −.002 b2 ≡ .002 λ :� .0005

Tol :� .1 f/10 � f/2a

f :� 500 a :� 25 b3 ≡ .012 b4 ≡ .016 k :� 2 · π
λ
.

Object
Io1(Y ) :� (�(b2 − Y ) −�(b1 − Y )) Io2(Y ) :� (�(b4 − Y ) −�(b3 − Y ))

lo(Y ) :� Io1(Y ) + Io2(Y ).

Image

lim(Y ) :�
∫ b2

b1
4 · a2 ·

⎡
⎣J1

[
k·a(Y−YY )

f

]

k · a (Y−YY )
f

⎤
⎦

2

dYY

+
∫ b4

b3
4 · a2 ·

⎡
⎣J1

[
k·a·(Y−YY )

f

]

k · a · (Y−YY )
f

⎤
⎦ dYY.
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Unnormalized

Application 10.6.

1. Change the distance between the two object bars and study the resolution. If
the distance is too small, the image is just one peak.

2. Change the calculation and apply the spread function to the total image over
a large range of integration. The image is now closer to the object.

10.4.5 Transfer Function

10.4.5.1 Transfer Function and Fourier Transformation

The spread function is used in the coordinate space of the image to calculate
how the object appears on the observation screen (image coordinates). If the
lens did not alter the object we would observe a perfect image of the object. The
image was obtained by convolution of the object function Iob(Y ′) with the spread
function S(Y − Y ′), both using image space coordinates

Iim(Y ) �
∫
Iob(Y

′)S(Y − Y ′)dY ′. (10.32)

From the convolution theorem we know that the integral in Eq. (10.32) expresses
the Fourier transform of the product of the Fourier transform of Iob(Y ) and the
Fourier transform of S(Y ). If we call these Fourier transforms

ω(µ) �
∫
Iob(Y

′)e−i2πµY
′
dY ′ (10.33)

and

τ (µ) �
∫
S(Y ′)e−i2πµY

′
dY ′, (10.34)

one may write Eq. (10.32) as

Iim(Y ) � C

∫
ω(µ)τ (µ)ei2πµY dµ, (10.35)
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where C contains all constants.
The Fourier transform of S(Y ′), which is τ (µ), is called the (unnormalized)

transfer function. Equation (10.35) tells us that the Fourier transform of Iim(Y ),
which we callφim(µ), is equal to the product of the Fourier transformsω(µ)τ (µ),
which is

φim � ω(µ)τ (µ). (10.36)

For the coordinates we have 1/Y � µ, whereµmay be interpreted as the spatial
frequency in the frequency domain. The transfer function operates in the spatial
frequency domain.

In FileFig 10.7 we calculate the Fourier transform of an object, which is a
rectangular pulse, and the Fourier transform of a spread function for a cylindrical
lens (transfer function). Then we multiply the Fourier transform of the object
with the transfer function and perform the Fourier transformation of the product.
The resulting image should look like a rectangular pulse.

FileFig 10.7 (W7PUTRAS)

Demonstration of the use of a transfer function. Object is a pulse and calcula-
tion of its Fourier transformation. Spread function and calculation of its Fourier
transformation. Product of both Fourier transformations and their Fourier trans-
formation (inverse). The resulting image of these operations looks like the
object.

W7PUTRAS is only on the CD.

10.4.5.2 Examples

Fourier Transform of (sin x/x)2 as Transfer Function

We take as an object a grid presented as a series of square pulses (FileFig 10.8) and
calculate and perform the Fourier transformation ωob(µ). The spread function
for a cylindrical lens is (Eq. (10.27)),

S(X) � 4a2{sin(πX/λf #)/(πX/λf #)}2, (10.37)

where we use f # � f/2a, for X (the space coordinate) i/255, and i is the
running number of the Fourier transformation from 1 to 256 (0-255). We have to
use here i/255 in the frequency domain since we used i in the space domain. The
Fourier transform of S(X) is τ (µ). The product of φ(µ) � ωob(µ)τ (µ) is shown
in FileFig 10.8, and the Fourier transform (inverse) of φ(µ) is the final image. In
FileFig 10.8 we have used the complex Fourier transform of 256 points for the
object and its mirror image. We should remember that the longest wavelength
of the spatial waves is 128, and the corresponding smallest frequency 1/128. We
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also use the scale 1/256 in the transfer function and have the smallest frequency at
1/128. The wavelength is 0.0005 mm and the f # � f/2a which is 10. Changing
the f # in FileFig 10.8 will change the triangle corresponding to τi and will admit
more or fewer spatial frequencies for image formation.

FileFig 10.8 (W8TRASIS)

Demonstration of the use of a transfer function. Object is a grid and calculation
of it’s Fourier transformation. Spread function (sin y/y)2 and calculation of
its Fourier transformation. Product of both Fourier transformations and their
Fourier transformation (inverse). The resulting image of these operations looks
more or less like the object.

W8TRASIS is only on the CD.

Application 10.8. Change the f # and observe through the changing triangle
that more or fewer frequencies are used for image formation.

Fourier Transformation of the Bessel Function as Transfer Function

We may use as the transfer function (J1(y)/y)2 corresponding to a circular
lens instead of (sin y/y)2, which corresponds to a cylindrical lens. Keeping the
argument of the transfer function the same but taking R instead of X we use

J1(πR/λfn)/(πR/λfn), (10.38)

where f n is the f -number. The variable R is replaced by i/255 and i is the
running number of the Fourier transformation, from 1 to 256 (0–255). We have
to use here i/255 in the frequency domain, since we used i in the space domain. In
FileFig 10.9 the object is a grid presented as a series of square pulses in the space
domain, but the spread function is now (J1(y)/y)2, and its Fourier transformation
is the transfer function τ (µ). The product ofωob(µ)τ (µ) is calculated and shown
in FileFig 10.9. The Fourier transform (inverse) of φ(µ) � ω(ob)(µ)τ (µ) is the
final image.

Changing the f # in FileFig 10.9 will change τk as shown and will admit more
or fewer spatial frequencies for image formation.

FileFig 10.9 (W9TRAJ1S)

Demonstration of the use of a transfer function. Object is a grid and calculation
of its Fourier transformation. Spread function (J1(y)/y)2 and calculation of
its Fourier transformation. Product of both Fouriers transformations and their
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Fourier transformation (inverse). The resulting image of these operations looks
more or less like the object.

W9TRAJ1S is only on the CD.

Application 10.9. Change the f # and observe through the changing transfer
function that more or fewer frequencies are used for image formation.

10.4.6 Resolution

The Rayleigh criterion of resolution states that two image peaks are considered
resolved if the maximum of the diffraction pattern of one is at the position of the
first minimum of the other. This is demonstrated in FileFig 10.10. We consider
two round objects and a round lens, and apply the Rayleigh criterion. The object
is made of two “rectangles" of width b1 - b2 and b3 - b4 (FileFig 10.11). The
aperture of the lens of diameter 2a forms a diffraction pattern of each point on
the image screen.

The argument of the Bessel function 2πaR/λf is again written as

πR/λ(f/2a) � πR/λ(f #), (10.39)

where f # � f/2a, and we use Y for R in FileFig 10.11. The first zero of the
Bessel function J1(πR′/λf #) is at πR′/λf # � 3.83. Therefore if the maximum
of one peak is at the minimum of the other, the distance 2b′ is (3.83/π )λf # �
1.22λf #. In our example in FileFig 10.11 we have used the diameter 0.0005 mm
for the round objects, which is the same as the wavelength. The f # is equal to
10 and the product λf # has a value 0.005. The center-to-center distance of the
two objects is 0.0061. In FileFig 10.11 we show the image of the two objects at
the minimum distance corresponding to the resolution according to the Rayleigh
criterion.

FileFig 10.10 (W10BES3DS)

Demonstration of Resolution. Two Bessel functions in 3-D presentation of radius
a � 0.05, center-to-center distance of d � 24.5, wavelength λ � 0.0005, and
distance to screen X � 4000.

W10BES3DS

Rayleigh Distance and 3-D Graph for Two Round Apertures at Distance D

Radius of apertures is a, coordinate on the observation screen R, wavelength λ,
and distance from aperture to screen is X.
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1. Determination of Rayleigh distance for two round apertures

a ≡ .05 X ≡ 4000 R :� 0, 1 . . . 50

g1(R) :�
[
J1

(
2 · π · a · R

X·λ
)

(
2 · π · a · R

X·λ
)
]2

gg1(R) :�
[
J1

(
2 · π · a · R−d

X·λ
)

(
2 · π · a · R−d

X·λ
)
]2

2. 3-D Graph of pattern of two round apertures at distance d

i :� 0 . . . N j :� 0 . . . N

xi :� (−40) + 2.000 · i yj :� (−40) + 20001 · j λ ≡ .0005

RR(x, y) :�
√

(x)2 + (y)2 N ≡ 60 X :� 4000

g2(x, y) :�
⎡
⎣J1

(
2 · π · a · RR(x,y)

X·λ
)

(
2 · π · a · RR(x,y)

X·λ
)
⎤
⎦

2

gg2(x, y) :�
⎡
⎣J1

(
2 · π · a · RR(x,y−d)

X·λ
)

(
2 · π · a · RR(x,y−d)

X·λ
)
⎤
⎦

2
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Mi,j :� g2(xi, yj ) + gg2(xi, yj ) d ≡ 24.5.

FileFig 10.11 (W11TWOROJ1S)

Resolution. Two round objects at diameter 0.0005 and center-to-center distance
of 0.0061. The convolution with the spread function (J1(y)/y)2 results in a
resolved image.

W11TWOROJ1S

Imaging: Two Round Apertures as Objects

At Rayleigh distance, round lens, and Y used for R.
Object

Y :� −.01,−.0099 . . . 02 λ :� .0005 for choice of f# � f/2a

T ol :� .1 k :� 2 · π
λ

f :� 500 a :� 25

Io1(Y ) :� (�(b2 − Y ) −�(b1 − Y )) Io2(Y ) :� (�(b4 − Y ) −�(b3 − Y ))

Io(Y ) :� Io1(Y )I o2(Y ).



398 10. IMAGING USING WAVE THEORY

Image

lim(Y ) :�
∫ b2

b1
4 · a2 ·

⎡
⎣J1

[
k·a·(Y−YY )

f

]

k · a · (Y−YY )
f

⎤
⎦

2

dYY

+
∫ b4

b3
4 · a2 ·

⎡
⎣J1

[
k·a·(Y−YY )

f

]

k · a · (Y−YY )
f

⎤
⎦

2

dY.

Limits of integration

b1 ≡ −.00025 b2 ≡ +.00025 b3 ≡ +.00585 b4 ≡ +.00635.

Application 10.11.

1. Read the distance of the peaks of the image from the graph.
2. Change the distance between the objects so that the two are barely not

resolved.
3. Change the distance between the objects so that the two are barely separated.
4. Increase the size of the objects until they are no longer resolved.

10.5 IMAGE FORMATION WITH COHERENT LIGHT

10.5.1 Spread Function

We assumed in Section 10.4 that incoherent light is used for image formation.
We now discuss the image formation process using coherent light and show
that the spread function must be changed. The general process is the same as
in Section 10.4. Coherent radiation is now assumed to emerge from an object.
Using Huygens’ principle in the first process, the wavelets emerging from the
object are summed and travel to the lens. In the second process, the wavelets
emerging from the lens are summed. Taking the action of the lens into account
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we found from Eq. (10.8) for the final image,

g(Y ) � C

∫ [∫
h(y) exp{−ikηy/x0}dy

]
α(η) exp{−ikηY/xi}dη, (10.40)

where the constant C before the integral takes care of all constant factors. Simi-
larly to the way we proceeded for the incoherent case, we use a δ function for a
point in the object plane. Substituting for h(y) a delta function into Eq. (10.40)
one obtains for the first Fourier transformation∫

δ(y) exp{−ikηy/x0}dy � 1 (10.41)

and then has for the remaining part of the integral of Eq. (10.8),

s(Y ) � C

∫
α(η) exp{−ikηY/xi}dη. (10.42)

Equation (10.42) is the spread function s(Y ) for the case of coherent light. For the
image formation we again use a convolution integral, similar to the incoherent
case (see Eq. (10.21)) where h(Y ) describes the object. But unlike Eq. (10.21),
we use the spread function s(Y ), containing phase information. The convolution
integral∫

h(Y ′)s(Y − Y ′)dY ′ (10.43)

has to be squared for the description of the image

Iim(Y ) � |C
∫
h(Y ′)s(Y − Y ′)dY ′|2. (10.44)

In contrast to the incoherent case, we have to use s(Y ) for the spread function
instead of S(Y ), which is s(Y )2. The spread function is first convolved with all
points of the object and then we have to square the integral to get the image.

10.5.2 Resolution

As an example we discuss the problem of resolution. We consider two round ob-
jects of diameter 0.0005 mm, as we did for the incoherent case, and a wavelength
of 0.0005 mm and a f # � 10. The distance to be determined should be such
that the final image looks similar to the image of the two objects as we found
for the incoherent case, when applying the Rayleigh criterion. The calculation
is presented in FileFig 10.12.

The image is calculated from the convolution integrals, where we call h(Y )
here iob(Y ) and omit the constants before the integral,

Iim(Y ) �
(∫ Y ′�b2

Y ′�b1
iob(Y ′)s(Y − Y ′)dX′ +

∫ Y ′�b4

Y ′�b3
iob(Y ′)s(Y − Y ′)dY ′

)2

.

(10.45)
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We use for s(Y ) the Bessel function similar to Eq. (10.38). The intensity of the
image is obtained by squaring the result of the integration (note that s(Y − Y ′)
contains phase information).

The distance of the two peaks in the final image of the two objects for the
coherent case is at a center-to-center distance of 0.0082. This is larger than for
the incoherent case. The final image is shown for the same distance as used for
the incoherent case, and one observes that the two peaks are not resolved. Since
the distance used in the coherent case is larger than the one for the incoherent
case, for a comparable set of parameters, we have the result: Better resolution is
obtained by using incoherent light.

FileFig 10.12 (W12TWOROCOHS)

Two round objects of diameter 0.0005 and center-to-center distance of 0.0061,
as used for the incoherent case. The convolution with the spread function,
(J1(y)/y), results in an image of one peak, not resolved. For larger center-
to-center distance, 0.0082, the peaks are resolved.

W12TWOROCOHS

Imaging with Coherent Light

Two round apertures at Rayleigh distance, round lens, and Y used for R′.

Y :� −.01,−.0099 . . . 02 λ :� .0005 f/10 � f/2a

T o1 :� .1 k :� 2 · π
λ

f :� 500 a :� 25.

Object Amplitudes

iob(1) :� (�(b2 − Y ) −�(b1 − Y )) iob2(Y ) :� (�(b4 − Y ) −�(b3 − Y ))

iob(Y ) :� iob1(Y ) + iob2(Y ).

Image

lim(Y ) :�
⎡
⎣
∫ b2

b1
4 · a2 ·

⎡
⎣J1

[
k·a·(Y−YY )

f

]

k · a (Y−YY )
f

⎤
⎦ dYY

+
∫ b4

b3
4 · a2 ·

⎡
⎣J1

[
k·a·(Y−YY )

f

]

k · a · (Y−YY )
f

⎤
⎦ dYY

⎤
⎦

2

.

Integration limits

b1 ≡ −.00025 b2 ≡ +.00025 b3 ≡ +.00585 b4 ≡ +.00635.
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b4 − b3

2
+ b3 � 6.1 · 10−3.

Resolution is obtained for b3 � .00795, b4 � .00845.

Application 10.12. Introduce the center-to-center distance of 0.0082 between
the two objects, b3 � 0.00795 and b4 � 0.00845 and show that the two objects
appear resolved.

10.5.3 Transfer Function

We proceed much as we did in the incoherent case and call

ω(µ) �
∫
iob(Y ′)e−i2πµY

′
dY ′ (10.46)

and

τ̃ (µ) �
∫
s(Y ′)e−i2πµY

′
dY ′, (10.47)

where τ̃ (µ) is the transfer function in the coherent case. The difference in
Eq. (10.47) with respect to Eq. (10.34) is that s(Y ′) is an amplitude function
that carries phase information. The image is obtained by a Fourier transforma-
tion, similar to Eq. (10.35) for the incoherent case. To obtain the description of the
intensity of the image, the result has to be squared. We have for the coherent case

Iim(Y ) � |C
∫
ω(µ)τ̃ (µ)ei2πµY dµ|2. (10.48)

We call φim(µ) the Fourier transformation of Iim(Y ) and get

Iim(Y ) � {FT of the product of the FT of Iob and FT ofs}2. (10.49)

In the frequency domain we have, similar to Eq. (10.36),

φim(µ) � {ω(µ)τ̃ (µ)}. (10.50)

Comparing (10.50) with (10.36) one sees that a symmetric blocking function
that does not carry phase information has the same effect of eliminating certain
spatial frequencies for the incoherent and coherent cases.
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As examples we consider the imaging of a periodic structure using the spread
functions (sin y/y) and (J1(y)/y). For the coherent case we use in FileFig 10.13
the spread function (sin y/y) in comparison to the incoherent case of FileFig 10.8
where we used (sin y/y)2. In FileFig 10.14 the spread function (J1(y)/y) is used
in comparison to FileFig 10.9 where we used (J1(y)/y)2. For the coherent case
the spread functions are not squared. The final image has to be the square of
the last Fourier transformation (see Eq. (10.48)). In comparison one sees that
the transfer function (i.e., τ ) eliminates in the incoherent case higher spatial
frequencies in a linear way and in the coherent case in a steplike fashion.

The transfer function τ in FileFig 10.13 is a pulse function and may be inter-
preted as a blocking function, eliminating parts of the diffraction pattern of the
object. Similar action was taken in Figure 10.2 on the diffraction pattern in order
to change the image.

FileFig 10.13 (W13TRANCOHSIS)

Coherent case. Transfer function for (sin x/x). Object is a grid and calcula-
tion of its Fourier transformation. Spread function (sin x/x) and calculation of
its Fourier transformation. Product of both Fourier transformations and their
Fourier transformation (inverse). The image as a result of these operations looks
more or less like the object.

W13TRANCOHSIS is only on the CD.

Application 10.13.

1. Change the f #; that is, change the width of the spread function and observe
that more or fewer frequencies are used for image formation.

2. Compare the incoherent and coherent cases for the same f #. Choose one
larger and one smaller f #.

FileFig 10.14 (W14TRANJ1S)

Coherent case. Transfer function for (Bess/arg). Calculation of the trans-
fer function for the coherent case. Object is a grid and calculation of its
Fourier transformation. Spread function (Bess/arg) and calculation of its Fourier
transformation. Product of both Fourier transformations and their Fourier trans-
formation (inverse). The image as a result of these operations looks more or less
like the object.

W14TRANJ1S is only on the CD.
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Application 10.14.
1. Change the f #; that is change the width of the spread function and observe

that more or fewer frequencies are used for image formation.
2. Compare the incoherent and coherent cases for the same f #. Choose one

larger and one smaller f #.

10.6 HOLOGRAPHY

10.6.1 Introduction

When discussing the imaging process for coherent light, the first Fourier trans-
formation produced the diffraction pattern of the object. The result of the first
Fourier transformation contained phase information, regardless of whether the
object was a real or complex function. The second Fourier transformation needed
this phase information to produce the image of the object. To fix the phase infor-
mation on a photographic plate we follow closely the discussion in Goodmann,
1988, p.198.

10.6.2 Recording of the Interferogram

In holography one uses a photographic film to record the amplitude and phase
information necessary for the reconstruction of the image of an object. This
is done by interference of the coherent light, scattered from the object with a
coherent reference beam (Figure 10.5).

The light scattered by the object is described by the complex amplitude func-
tion a � a0e

−iφ , where a0 is a function of y, z and φ a function of x, y, z. The
reference wave is described by the complex amplitude function A � A0e

−iψ ,

FIGURE 10.5 Production of a hologram. The interference pattern, produced by the waves of the
scattered light a of the object and the light of a reference beam A, is recorded on a photographic
film, called the hologram.



404 10. IMAGING USING WAVE THEORY

where A0 is a constant and ψ contains the coordinates describing the direction
of incidence and propagation with respect to the photographic film.

The intensity pattern of the interference of A and a is

|A + a|2 � A2
0 + a2

0 + A0a0e
−iφei + A0a0e

iφe−iψ

� A2
0 + a2

0 + 2A0a0 cos(φ − ψ). (10.51)

The interference pattern is recorded on the photographic film and after develop-
ment the phase information is contained in the profile of the density of blackening.
The relation between the intensity of the light incident on a spot of the film and
the resulting blackening is logarithmic. A detailed discussion of the resulting
transmission t of the film, which is called a hologram, is presented in Goodmans
(1988). Under certain circumstances one can describe the transmission curve in
a linear way and have

tfilm � cA2
0 + β ′a2

0 + β ′A0a0e
−iφeiψ + β ′A0a0e

iφe−iψ (10.52)

where c and β ′ are constants. The third and fourth terms are each complex.
However, together they are real and therefore tfilm remains real.

10.6.3 Recovery of Image with Same Plane Wave Used for
Recording

10.6.3.1 Virtual Image

We illuminate the hologram with a plane wave equal to the one used for the
recording of the hologram. We use in Eq. (10.53) A0e

−iψ and in Eq. (10.54) the
conjugate A0e

i and have

A0e
−iψ tfilm �A0e

−iψ (cA2
0+β ′a2

0 +β ′A0a0e
−iφeiψ+β ′A0a0e

+iφe−iψ ) (10.53)

A0e
iψ tfilm �A0e

iψ (cA2
0+β ′a2

0 +β ′A0a0e
−iφeiψ+β ′A0a0e

+iφe−iψ ). (10.54)

The first term in Eqs. (10.53) and (10.54) is a constant term; the second may be
neglected if we assume that a0 is small compared toA. The third term in (10.53)
is

A0e
−iψβ ′A0a0e

−iφeiψ � (β ′A2
0)a0e

−iφ. (10.55)

This is the important term for the virtual image. It is the doublet of the wavefront
of the original and diverges. In Figure 10.6a. we show the recovery of the image
using the beam A. As we know from geometrical optics, the diverging light is
traced back to a virtual image of the object.

10.6.3.2 Real Image

Similarly in Eq. (10.54) the fourth term is

A0e
iψβ ′A0a0e

iφe−iψ � (β ′A2
0)a0e

iφ (10.56)
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FIGURE 10.6 Recovery of the image: (a) reference beam A illuminates the hologram; wavefront
of image diverges. It is traced back to the virtual image (reversed operation of production of
hologram); (b) reference beam A∗ illuminates the hologram; wavefront of image converges to the
real image.

and is the duplication of the conjugate of the wavefront of the original. In Fig-
ure 10.6b we show the illumination by the beam A∗ and the convergence to the
real image, which is in the opposite direction to the virtual image we discussed
in Section 10.6.3.1.

10.6.4 Recovery Using a Different Plane Wave

If we produce the hologram with a plane wave of amplitude A and illuminate
the hologram with a plane wave of amplitude B, all in the same (horizontal)
direction, we get

B0tfilm � cB0A
2
0 + dB0a

2
0 + β ′B0A0a0e

−iφ + β ′B0A0a0e
iφ. (10.57)

The real and virtual image now both appear in the horizontal direction (see
Figure 10.7).

10.6.5 Production of Real and Virtual Image Under an Angle

To see the virtual image separately from the real image, one has to use a reference
wave under an angle with respect to the normal of the object, around which the
scattered light emerges. To do this, we use for A the wave A0e

−i2π sin θ (x/λ) and
have for the transparency of the film

tfilm � cA2
0 + β ′a2

0 + β ′A0a0e
−iφei2π sin θ (x/λ)

+ β ′A0a0e
iφe−i2π sin θ (x/λ). (10.58)
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FIGURE 10.7 Real and virtual image appear in one direction, the direction of view.

For recovery we illuminate with a plane wave of amplitude B. Going through
the same discussion as presented above, we get for the third (Eq. (10.59)) and
fourth terms (Eq. (10.59)a)

(β ′A2
0)a0e

−iφe+i2π sin θ (x/λ) (10.59a)

and

(β ′A2
0)a0e

iφe−i2π sin θ (x/λ). (10.59b)

The virtual image Eq. (10.59a) is now (after tracing backwards) in the direction
of θ . The real image is in the direction of −θ and that is different from the
direction we seek for the virtual image. This is shown in Figure 10.8, where
virtual and real images are separated.

10.6.6 Size of Hologram

In the discussion of imaging we found that for a special case using coherent
light the image can be calculated from the Fourier transform of the Fourier
transform of the object. The hologram may be compared, in a simplified way,

FIGURE 10.8 The incident light is from the left and directly transmitted light continues to the
right. The direction of view is at the angle θ , and the virtual image is traced back in that direction.
The real image appears on the right at the angle − θ .
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with the diffraction pattern of the object. It contains the spatial frequency spec-
trum including phase information. We may then substitute for the hologram the
Fourier transform of the object and obtain the image is by a second Fourier
transformation.

Using this simple model we can easily demonstrate that the object can be
reconstructed using different sizes of the hologram. Smaller physical sizes will
give us more deteriorated images of the object. By cutting a large hologram into
small ones, we lose spatial frequency information. For simplicity we consider an
object with the first Fourier transformation in such a way that the smallest fre-
quencies are in the center and the largest frequencies at increased distances from
the center. To demonstrate the effect of the removal of frequencies we consider
the example of a grid as an object. Removing certain sections of the frequency
pattern, which is accomplished with the first Fourier transformation, will change
the image. In FileFig 10.15 we use a blocking function for a low frequency
portion, in FileFig 10.16 a blocking function for an intermediate section, and in
FileFig 10.17 a blocking function of a grid. In FileFig 10.18 we simulate cutting
down the hologram by a blocking function, which symmetrically cuts down the
lowest frequencies.

FileFig 10.15 (W15HOGRBLHIS)

The object is a grid. The transfer function removes certain higher frequencies of
the first Fourier transformation. The extent of the blocking function depends on
a. The modified image is compared with the original object.

W15HOGRBLHIS is only on the CD.

Application 10.15. Observe the changes of the final image by modification of
the blocking function, that is, changing a.

FileFig 10.16 (W16HOGRBLLOS)

The object is a grid. The transfer function is a blocking function passing only
one portion of the frequencies of the first Fourier transformation. The extent of
the blocking function depends on n and a. The modified image is compared to
the original object.

W16HOGRBLLOS is only on the CD.

Application 10.16. Observe the changes of the final image by modification of
the blocking function, that is, changing n and a.
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FileFig 10.17 (W17HOGRPERS)

The object is a grid. The transfer function is a grid-type blocking function block-
ing periodic parts of the first Fourier transformation. The width of the peaks and
the extent of the blocking function depend on q and a. The modified image is
compared to the original object.

W17HOGRPERS

Object Is a Periodic Structure

The FT of the object is multiplied by a blocking function. A blocking function
has been chosen blocking certain frequencies such that there are twice as many
peaks in the image. The Ft (inverse) of (Ft of object) · (blocking function) is the
“new” image. The “new” image is compared to the original, that is, the FT of
(FT of object). The blocking function removes certain high frequencies of the FT.

Object
i :� 1, 2 . . . 127 b :� 2 q :� 7

yi :�
[

q∑
n�0

(�(i − (4 · (2 · n+ 1) + 2) · b) −�(i − (4 · (2 · n+ 1) + 4) · b))

]
.

FT of object
ω :� cff t(y) N :� last(ω)

N � 127.

w
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Blocking function

τi :�
[

q∑
n�0

(�(i − (4 · n+ 2) · a) −�(i − (4 · n+ 4) · a))

]

q ≡ 5 a ≡ 5.

t

Product: FT (inverse) of object and blocking function

φi :� ωi · τi
yy :� icff t(φ)

N2 :� last(φ)

k :� 0 . . . N2.

For comparison: original object



410 10. IMAGING USING WAVE THEORY

Application 10.17. Observe the changes of the final image by modification of
the blocking function, that is, changing q and a.

FileFig 10.18 (W18HOSTEPS)

The object is a step function composition. The transfer function passes the lowest
frequencies on both parts of the diffraction pattern, that is, the first Fourier
transformation. The number of passing lowest frequencies is monitored by a
and b. The hologram is larger when more frequencies are passing. The modified
image is compared to the original object.

W18HOSTEPS

Object y

The object y has a complicated shape. Its FT is the hologram c. It may be
produced in the focal plane of a lens, using parallel light. The illumination of the
hologram with parallel light will reproduce the object, that is, the FT (inverse) of
the FT, called here cc. We study the reproduced object when the information in
the hologram is only partly used; that is, we multiply cc with a filder f . We show
separately f and the FT of the product of f and cc. The width of the filter f may
be changed by using various values for a and b, corresponding to changing the
size of the hologram.

The object i :� 0, 1 . . . 255.

A1 :� 33 A2 :� 80 A3 :� 80 A4 :� 50

A5 :� 20 A6 :� 99 A7 :� 160 A8 :� 200

yi :�
[

3∑
n�1

(−�(An − i))

]
+

[
8∑
n�4

[�(An − i) · (−1)n]

]
.

The hologram

c :� cff t(y)N :� last(c) N � 255
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k :� 0 . . . 255 j ≡ 0 . . . 255

The inverse FT of the FT (hologram)

cck :� ckyy :� icff t(cc)

N :� last(cc) N � 255 j :� 0 . . . 255

The filter

fj :� �(a − j ) +�(j − 255 + b)

a ≡ 60

b ≡ 60.



412 10. IMAGING USING WAVE THEORY

The product: hologram × filter

The FT (inverse) of the changed hologram (hologram × filter), similar to the
object

ccck :� ck · fk x :� icff t(ccc) N :� last(ccc) N � 255

k :� 0 . . . 255.

For comparison: the object

Application 10.18. Observe the changes of the size of the hologram when mak-
ing the range of passing low frequencies larger or smaller. The blocking function
and the final image may be modified by changing a and b.
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See also on the CD

PW1. Fourier Series. (see p. 370)
PW2. Two Bars. (see p.381)
PW3. Two round Objects. (see p. 383)
PW4. Demonstration of the use of Spread Function (siny/y)2 as a Transfer

Function. (see p. 386)
PW5. Demonstration of the use of Spread Function (J1(y)/y)2 as a Transfer

Function. (see p. 386)
PW6. Rayleigh Distance and Resolution with incoherent Light. (see p. 389)
PW7. Rayleigh Distance and Resolution with coherent Light. (see p. 392)
PW8. Transfer Function for (sinx/x) of the Coherent Case. (see p. 394)
PW9. Transfer Function for (Bess/arg) of the Coherent Case. (see p. 394)

PW10. Blocking Function for removing high Frequencies. (see p. 399)
PW11. Blocking Function passing a band of Frequencies. (see p. 399)
PW12. Blocking Function passing periodic portion of all Frequencies. (see p.

400)
PW13. Size of Hologram and Quality of Image. (see p. 402)
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Aberration

11.1 INTRODUCTION

In Chapter 1 on Geometrical Optics we discussed geometrical image formation
by using paraxial theory. The essential assumption of paraxial theory is that
the angles between an emerging ray from the object and the axis of the system
are small. In general small means that one could replace sin α by the angle α
(in radians). When this assumption can not be made, one obtains a distorted
image. There are elaborate computational programs available for lens design,
including systematic corrections for the various types of aberrations. To give
an introduction to the most commonly known monochromatic aberrations, we
discuss spherical aberration of a single refracting surface and a thin lens, and
coma, and astigmatism of a spherical surface and a thin lens. At the end we also
discuss chromatic aberration.

11.2 SPHERICAL ABERRATION OF A SINGLE
REFRACTING SURFACE

In Figure 11.1, two rays are shown from the object point P1 to the spherical
surface. After refraction one ray is connected to the image point P2, the other to
P ′

2. When paraxial theory can not be used, the ray with the larger angle α2 has
the image point P ′

2 closer to the refracting surface. The difference between the
pointsP2 andP ′

2 is called the longitudinal spherical aberration. For its derivation,
we look at Figure 11.2 and derive the relations for image formation at one
spherical surface

(s1 + r)/(sin(180 − θ1) � ζ1/ sin β (11.1)

415
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ρ
ζζ

αα ε

FIGURE 11.1 Spherical aberration of a single surface. The image point P2 is formed by the paraxial ray
P1QP2. The marginal ray P1Q

′P ′
2 forms the image at P ′

2, a position closer to the lens.

β
ρ

θ

θ ζζ

FIGURE 11.2 Coordinates for the treatment of spherical aberration of a single surface.

and

(s2 − r)/ sin θ2 � ζ2/ sin(180 − β). (11.2)

Equations (11.1) and (11.2) may be combined to form

(s1 + r)/(s2 − r) � nζ1/ζ2, (11.3)

where n is the refractive index of the refracting medium. To get expressions for
ζ1 and ζ2, we look at the triangle P1QP2 (Figure 11.2) and have

ζ 2
1 � r2 + (s1 + r)2 − 2r(s1 + r) cosβ. (11.4)

Expanding cosβ � 1 − β2/2 and setting β � ρ/r one gets

ζ 2
1 � r2 + (s1 + r)2 − 2r(s1 + r)(1 − [ρ2/2r2]), (11.5)
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which results in

ζ 2
1 � s2

1 + (s1 + r)[ρ2/r]. (11.6)

Similarly one obtains

ζ 2
2 � s2

s − (s2 − r)[ρ2/r]. (11.7)

Expanding the root one has

ζ1 � s1 + (1/s1 + 1/r)[ρ2/2] (11.8)

ζ2 � s2 + (1/s2 − 1/r)[ρ2/2]. (11.9)

Introduction of Eqs. (11.8) and (11.9) into (11.3) results in

(s1 + r)/(s2 − r)

� n{s1 + (1/s1 + 1/r)[ρ2/2]}/{s2 + (1/s2 − 1/r)[ρ2/2]}. (11.10)

This equation may be rewritten as

1/s1 + n/s2 + (1 − n)/r

� (1/r + 1/s1)(1/r − 1/s2)(n/s1 + 1/s2)[ρ2/2]. (11.11)

Introduction of s1 � −x0 and s2 � xi results in

− 1/x0 + n/xi + (1 − n)/r

� (1/r − 1/x0)(1/r − 1/xi)(1/xi − n/x0)[ρ2/2]. (11.12)

In the limit of ρ → 0 we must get back to the imaging equation of paraxial
theory,

−1/x0 + n/xi1 + (1 − n)/r � 0, (11.13)

where we have written xi1 for the image distance for the paraxial case. The
coefficient of correction on the right side of Eq. (11.12) depends on x0 and xi .
To have it depending only on x0, we use Eq. (11.13), eliminating xi and get

n/xi1sal � 1/x0

+ (n− 1)/r + ((n− 1)/n2)(1/r − 1/x0)2(1/r − (n+ 1)/x0))[ρ2/2],

(11.14)

where we have written xi1sal to indicate the image distance for the longitudinal
spherical aberration of a surface of radius of curvature ρ.

The longitudinal spherical aberration (LSA) is defined as xi1 −xi1sal , which is
the difference of the image positions calculated for the paraxial and the spherical
aberration cases. In FileFig 11.1, we study the LSA for an object distance, which
corresponds to a real image, and two different refractive indices. In FileFig 11.2,
we study the dependence of LSA on object distances, which corresponds to real
images, and on the refractive index and the radius of curvature. For real images
spherical aberration may not be eliminated.
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FileFig 11.1 (A1SPHASS)

Calculation of LSA � xi1 − xi1sal for a single spherical surface and negative
object distance for two different refractive indices.

A1SPHASS is only on the CD.

Application 11.1.

1. Consider positive and negative object distances and choose one refractive
index. Show that one can get positive and negative values for the LSA.

2. Decide how small you want to make the LSA and determine the corresponding
value of n.

FileFig 11.2 (A2SPASSS)

Calculations for a single spherical surface to demonstrate the dependence of
LSA � xi1 − xi1sal on the object position, the refractive index, and the radius of
curvature. Note that for the choice of parameters used, there is no value of the
refractive index for which the LSA is zero.

A2SPASSS is only on the CD.

11.3 LONGITUDINAL AND LATERAL SPHERICAL
ABERRATION OF A THIN LENS

In Figure 11.3 spherical aberrations are shown for a positive and a negative thin
lens. To calculate the LSA � xi1 − xsph for a thin lens we use twice the result
obtained for a single spherical surface, as discussed in Section 11.2. There we
calculated for a spherical surface with refractive index n, the position xi1sal (see
Eq. (11.14)). The light entered from the medium of index 1 and traveled into the
medium of index n. We obtained

− 1/x0 + n/xi (11.15)

� (n− 1)/r1 + ((n− 1)/n2)(1/r1 − 1/x0)2(1/r1 − (n+ 1)/x0)[ρ2/2].

This result may be used to get a similar expression for light incident on the second
surface traveling from the medium with index n into the medium of index 1. We
substitute x0 with → xii and xi with → x00 and obtain

− n/x00 + 1/xii (11.16)

� −(n− 1)/r2 − ((n− 1)/n2)(1/r2 − 1/xii)
2(1/r2 − (n+ 1)/xii)[ρ

2/2],
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FIGURE 11.3 (a) Spherical aberration for a positive lens, real image points; (b) spherical aberration
for a negative lens, virtual image points.

where xi and x00 are the same points when considering the case of a thin lens.
Addition of Eqs. (11.15) and (11.16) will eliminate the terms n/xi and −n/x00,
and results in

− 1/x0 + 1/xii (11.17)

� (n− 1)/r1 + ((n− 1)/n2)(1/r1 − 1/x0)2(1/r1 − (n+ 1)/x0)[ρ2/2]

− (n− 1)/r2 − ((n− 1)/n2)(1/r2 − 1/xii)
2(1/r2 − (n+ 1)/xii)[ρ

2/2].

To calculate xii one uses the paraxial equation of the thin lens

1/xii � 1/x0 + (n− 1)(1/r1 − 1/r2), (11.18)

where

1/f � (n− 1)(1/r1 − 1/r2) (11.19)

and finally we have

− 1/x0 + 1/xiisph (11.20)

� (n− 1)(1/r1 − 1/r2) + ((n− 1)/n2)[(1/r1 − 1/x0)2(1/r1 − (n+ 1)/x0)

− (1/x0 + (n− 1)/r1 − n/r2)2(n2/r2 − (n+ 1)/x0 − (n2 − 1)/r1)][ρ2/2].

The longitudinal spherical aberration of a thin lens is defined as LSA � xii −
xiisph. We call the right side of Eq. (11.20) the reciprocal focal length for the
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spherical aberration case, 1/ff (x0), where ff (x0) is the focal length of the case
of spherical aberration. The result is

−1/x0 + 1/xiisph � 1/ff (x0) (11.21)

with

ff (x0) � 1/{1/f + {(n− 1)/n2}[ρ2/2]{a(x0) − b(x0)c(x0)}} (11.22)

and the abbreviations

a(x0) � [(1/r1 − 1/x0)2(1/r1 − (n+ 1)/x0)],

b(x0) � [1/x0 + (n− 1)/r1 − n/r2]2 (11.23)

c(x0) � [n2/r2 − (n+ 1)/x0 − (n2 − 1)/r1].

In Figure 11.4 we define the lateral spherical aberration as LAT � LSA times
ρ/xiisph. In FileFig 11.3 we study the question of elimination of spherical aber-
ration and calculate numerical values of LSA and LAT for a choice of parameters
of n, r1, r2, ρ, and object distance x0. The elimination of spherical aberration is
further discussed in the next section using the π–σ equation.

FileFig 11.3 (A3SPHTINS)

Calculations of the spherical aberration of a thin lens. Longitudinal spherical
aberration and lateral spherical aberration.

A3SPHTINS is only on the CD.

FIGURE 11.4 Longitudinal spherical aberration (LSA). The lateral spherical aberration (LAT) is
calculated using tan α.
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Application 11.3.

1. Use different values of n and observe that spherical aberration may not be
eliminated for real objects and images.

2. Assume x0 values for virtual images and find positive and negative values for
the LSA. Therefore, for this case, spherical aberration may be eliminated.

11.4 THE π–σ EQUATION AND SPHERICAL
ABERRATION

We now study whether spherical aberration can be removed when using a special
choice of parameters. We introduce the parameters π (position factor) and σ
(shape factor),

π � (xii + x0)/(xii − x0) and σ � (r2 + r1)/(r2 − r1). (11.24)

Using Eqs. (11.18) and (11.19) we may write

1/x0 � −(π + 1)/2f and 1/xi � (1 − π )/2f (11.25)

1/r1 � (σ + 1)/{2f (n− 1)} and 1/r2 � (σ − 1)/{2f (n− 1)}. (11.26)

Introducing the expressions of Eqs. (11.24) to (11.26) into Eq. (1.17) we get

− 1/x0 + 1/xiisph

� (n− 1)(1/r1 − 1/r2) + [ρ2/f 3]{Aσ 2 + Bσπ + Cπ2 +D}, (11.27)

where we abbreviated

A � (n+ 2)/{8n(n− 1)2} B � (n+ 1)/{2n(n− 1)} (11.28)

C � (3n+ 2)/(8n) D � n2/{8(n− 1)2}. (11.29)

We may look at Eq. (11.27) as the thin lens equation plus a correction term. To
study whether spherical aberration can be removed we look at the correction
term

Y � [ρ2/f 3]{Aσ 2 + Bσπ + Cπ2 +D}. (11.30)

When Y is equal to zero, spherical aberration is eliminated.
In FileFig 11.4 a graph is shown for f � 10, n � 1.5, ρ � 4, and x0 � 4.

There are Y values smaller than zero and, using these parameters, spherical
aberration may be eliminated. In FileFig 11.4 one may study an example for
positive and negative values of x0 and ρ between 1 and 4. When Y shows negative
values, spherical aberration may be eliminated.
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FileFig 11.4 (A4SPHLSIPIS)

The π–σ equation and spherical aberration for the thin lens. The graph shown is
for ρ � 1 and x0 � −11, and one only has positive values of Y (σ ). This means
spherical aberration is not eliminated.

A4SPHLSIPIS

Spherical Aberration and the π − σ Equation

We assume n � 1.5 and compare the cases of real and virtual images.

1. Image for f � 10, and xo to the left of focal point, LSA may not be eliminated

f :� 1

(n− 1) · ( 1
r1

− 1
r2

)
r1 ≡ 10 r2 ≡ −10 n ≡ 1.5

ro ≡ 4 xo ≡ 4

f � 10 xi :� 1( 1
f

+ 1
xo

) xi � 2.857.

2. Definitions

σ � (r2 + r1)/(r2 − r1) σ :� −10,−9.9 . . . 10

π :� xi + xo

(xi − xo)
π � −6.

3. π–σ Equation

A(n) :� n+ 2

8 · n · (n− 1)2
B(n) :� n+ 1

2 · n · (n− 1)

C(n) :� 3 · n+ 2

8 · n D(n) :� n2

8 · (n− 1)2

Y (σ ) :� (ro)2

f 3
· (A(n) · σ 2 + B(n)σπ + C(n)π2 +D(n)).
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4. Minimum value of Y (σ ) The value of Y (σ ) at the minimum is obtained by
differentiation and setting equal to 0. The result is

σ min :� −B(n) · π

2 · A(n)
σ min � 4.286.

Calculation of the corresponding value of Y (σ min)

Y (σ min) � −0.013.

For our choice of parameters, Y (σ min) is positive and LSA may not be
eliminated.

Application 11.4.
1. Study the π–σ equation and give two examples for elimination of spherical

aberration, for a positive and a negative value of x0.
2. Consider a set of lenses all having f � 10cm, n � 1.5, and radii of curvature
r1 and r2 such that the shape factor σ is between −2 and 2. Plot f s −
f depending on σ , where f s is the corrected focal length for spherical
aberration. Make sketches of the radii of curvature for values of σ � −2,
−1, 0, 1, 2 and compare with Jenkins and White (1976, p. 145).

11.5 COMA

So far we have discussed spherical aberration produced by the size of the lens for
on-axis points. When the object point is slightly off axis, the resulting aberration
is called coma. A new axis appears from the object point through the center of
the lens to the center of the image (Figure 11.5). The zones of the lens, indicated
by points in Figure 11.5, produce circles instead of image points. Only the
center zone produces a point image on the new axis. Larger zones produce
circles with larger radii depending on the distance from the new axis. The rings,
corresponding to the zones, are arranged like the tail of a comet.

We assume for this discussion of coma that spherical aberration has been
eliminated and follow Jenkins and White (1976, p.163). We assume that parallel
light is incident on the lens, and the sagittal coma CS is

CS � [(ρ2/f 2) tan β][Wσ +Gπ ], (11.31)

where ρ is the radius of the largest zone considered, π and σ are defined in the
same way as in Eq. (11.24) and β is the angle between the axis of the system
and the new axis (Figure 11.6a). For W and G one has

W � 3(n+ 1)/{4n(n− 1)} and G � 3(2n+ 1)/4n. (11.32)

The tangential comaCT is shown in Figure 11.6b and is calculated to be 3CS . The
condition for elimination of coma is obtained from Eq. (11.31), when [Wσ+Gπ ]
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FIGURE 11.5 Circles of coma of increasing radius corresponding to increasing diameters of the
zones of the lens: (a) negative coma; (b) positive coma; (c) zones.

is equal to zero or

σ � −{(2n+ 1)(n− 1)π}/(n+ 1). (11.33)

In FileFig 11.5, a graph is shown of CT (ρ), calculated depending on the radii
of the zones ρ. There are positive and negative values for CT (ρ) depending on
the choice of the refractive index and one may choose parameters such that coma
is eliminated.
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FIGURE 11.6 Coordinates for calculation of coma assuming incident parallel light: (a) Relation
of zones of the lens to centers of circles of images. Q0 is on the new axis. The angle between the
system axis and the new axis is β. The point Q4 is the center of the circle of the largest zone of
the lens; (b) tangential coma CT and sagittal coma CS .

FileFig 11.5 (A5COMAS)

Calculation of coma of the thin lens. It is assumed that spherical aberration is
eliminated. Tangential coma is calculated depending on the zone radius.

A5COMAS is only on the CD.

Application 11.5.
1. Choose values of the refractive index n to obtain positive and negative coma.
2. Find an example of a set of parameters for “no coma.”

11.6 APLANATIC LENS

One may design a special lens, called an aplanatic lens, which has no coma and
no spherical aberration. We choose

σ � −(2n+ 1) and π � (n+ 1)/(n− 1). (11.34)
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FIGURE 11.7 Aplanatic lens. Light from the point x0 � r1 is not refracted on the first surface of
the lens, but on the second. This is shown in (a) for a lens and in (b) for a sphere.

According to Eq. (11.33) there will be no coma, and no spherical aberration
because Y � 0 (Eq. (11.30)). An example is shown in Figure 11.7. Introduction
of σ and π from Eq. (11.34) into the four expressions of Eqs. (11.24) and (11.25)
results in

r1 � {r2(n+ 1)}/n f � {r2(n+ 1)}/(1 − n) (11.35)

x0 � {r2(n+ 1)}/n xi � r2(n+ 1). (11.36)

The focal length of the aplanatic lens depends only on n and r2:

1/f � (1 − n)/{r2(n+ 1)}. (11.37)

To use it as an aplanatic lens, in addition to the thin lens equation, one has to
satisfy the relation between xi and x0:

xi � nx0. (11.38)

We see from Figure 11.7a that the emerging rays from x0 are not refracted
at the surface of radius r1, but only when arriving at the surface of radius r2.
Therefore, we may consider x0 at P as the object point in a medium of refractive
index n and spherical surface of radius r2. This is called an aplanatic sphere,
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shown in Figure 11.7b. The virtual image point P ′ is obtained by tracing back
the ray refracted at the second surface because the image is virtual.

In FileFig 11.6 we show that coma is eliminated for the aplanatic lens.

FileFig 11.6 (A6COMPLANS)

Calculation of coma for the aplanatic lens. The result is that coma is zero.

A6COMPLANS is only on the CD.

Application 11.6.
1. Make a graph of ss(nn) and find back the value for σ at nn � 1.5.
2. Get Y from FileFig 9.4 (A4SPHLSIPIS) and using the values from FF6 show

that Y � 0.
3. Consider a farsighted eye and assume that the focal length is f � 2.2 cm

and the distance from eye to retina d � 2 cm. Design an applanatic lens for
correction, that is, bringing the focal point of the eye to the retina.

11.7 ASTIGMATISM

We have discussed in Sections 11.3 and 11.5 spherical aberration and coma. For
spherical aberration the object points were assumed to be on axis, and for coma
slightly off axis. When the object point is farther away from the axis, the image
points are no longer in one perpendicular plane with respect to the new axis, as
we found for coma. The points appear one behind the other on a new axis from
the object point through the center of the lens. There are two planes defined with
respect to the new axis, called sagittal (horizontal) and meridional (vertical)
planes (see Figures 11.8 and 11.9). Each produces its own image point and
between these two points is the circle of least confusion.

The difference of the sagittal and meridional image points on the new axis is
called the astigmatic difference, ASD � xiH − xiV . Again we follow Jenkins
and White (1976, p. 167).

11.7.1 Astigmatism of a Single Spherical Surface

We first calculate xiH and xiV for a single refracting surface, using the
corresponding imaging equations. For the horizontal image points one has

−1/x0 + n/xiH � (n cosφ′ − cosφ)/r (11.39)

and for the vertical image point

−(cosφ)2/x0 + n(cosφ′)/xiV � (n cosφ′ − cosφ)/r, (11.40)
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φ
φ

φ
φ

FIGURE 11.8 Astigmatism of a single surface. Rays in the meridional (vertical) plane from the
primary focus QV , and rays in the sagittal (horizontal) plane form the secondary focus QH . The
circle of least confusion is between them.

where r is the radius of curvature of the spherical surface. The anglesφ andφ′ are
shown in Figures 11.8a and b for the horizontal and vertical plane, respectively.

In FileFig 11.7 the astigmatic difference ASD is calculated depending on the
angle φ. The angle φ′ may be eliminated using the law of refraction.

11.7.2 Astigmatism of a Thin Lens

For the calculation of the ASD for a thin lens, one has for the sagittal and
meridional case each a thin lens equation with a corrected focal length. This is
similar to the above discussions of other aberrations. For the sagittal plane one
gets

−1/x0 + 1/xiH � (cosφ)[(cosφ′/ cosφ) − 1](1/r1 − 1/r2) (11.41)

and for the meriodinal plane

−1/x0 + 1/xiV � {1/ cosφ}[(cosφ′/ cosφ) − 1](1/r1 − 1/r2) (11.42)

In FileFig 11.8, we consider a lens with radii of curvature of r1 � 10,
r2 � −12, and n � 1.3. The first graph shows the calculation of the astig-
matic difference ASD depending on the angle φ. The second graph shows for
the same lens the dependence on the refractive index n for φ � 10 degrees.
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FIGURE 11.9 Astigmatism of a thin lens, Meridional plane: All rays from Q meet at primary
focus QV . Sagittal plane: All rays from Q meet at point secondary focus QH . The circle of least
confusion is indicated by B.

FileFig 11.7 (A7ASTSINS)

Astigmatism of a single surface. Calculation of astigmatic difference ASD
depending on angle φ for a single refracting surface with radius of curvature r .

A7ASTSINS is only on the CD.

Application 11.7.
1. Modify the file for dependence on n for fixed angle φ.
2. Study the ASD for small and large values of r .

FileFig 11.8 (A8ASTISMS)

Astigmatism of a thin lens. Calculation of astigmatic difference ASD for a thin
lens of radii of curvature r1 and r2, depending on angle φ or on n.

A8ASTISMS is only on the CD.

Application 11.8.
1. Compare the ASD for lenses with small and large focal lengths.
2. Compare the ASD for a lense with a corresponding lens having one plane

surface.
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FIGURE 11.10 Chromatic aberration: all rays from P1 with shorter wavelength (blue light)
converge to point Pblue; all rays with longer wavelength (red light) converge to Pred.

11.8 CHROMATIC ABERRATION AND THE
ACHROMATIC DOUBLET

The aberrations discussed so far, spherical aberration, coma, and astigmatism,
are called monochromatic aberrations. One assumes that monochromatic light
is incident on the lens and therefore the refractive index of the law of refraction
is a constant. If the incident light is not monochromatic and the constant of the
law of refraction is different for different wavelengths, one speaks of chromatic
aberrations.

In Figure 11.10 positive chromatic aberration is shown. This means the image
point of the shorter wavelength light (blue) is closer to the lens than the image
point of the longer wavelength light. The reverse case is called negative chromatic
aberration. Chromatic aberration can be compensated by using two lenses. One
has positive and the other negative chromatic aberration. Such a double lens is
called an achromatic doublet.

An achromatic doublet is made of two lenses in contact. In Chapter 1 we found
that the focal length of a compound lens is

1/f � 1/f1 + 1/f2 (11.43)

� (n1 − 1)(1/r1 − 1/r2) + (n2 − 1)(1/r ′1 − 1/r ′2),

where r1 and r2 are the radii of curvature of the lens with refractive index n1, and
r ′1 and r ′2 are the radii of curvature of the lens with n2. Using the abbreviations

k1 � (1/r1 − 1/r2) and k2 � (1/r ′1 − 1/r ′2) (11.44)

we may write for 1/f ,

1/f � (n1 − 1)k1 + (n2 − 1)k2. (11.45)

The condition to have the focal length independent of the refractive index in the
wavelength range λb to λr is

d/dλ(1/f ) � d/dλ[(n1 − 1)k1 + (n2 − 1)k2] � 0, (11.46)
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which translates into a condition for the wavelength dependence of the refractive
index

(dn1/dλ)k1 + (dn2/dλ)k2 � 0. (11.47)

We simplify Eq. (11.47) by writing dn1 � n1b − n1r and dn2 � n2b � n2r ,
where nb stands for the short wavelength limit of the light (blue) and nr for the
long wavelength limit of the light (red). One then gets

k1/k2 � −(n2b − n2r )/(n1b − n1r ). (11.48)

For k1 and k2 we may write, using Eqs. (11.43) and (11.44),

k1 � 1/{f1(n1 − 1)} and k2 � 1/{f2(n2 − 1)}. (11.49)

Introducing the average refractive indices n1 � n1D and n2 � n2D, where n1D

and n2D are the values of n1 and n2 in the middle between nb and nr , we define

V1 � (n1b − n1r )/(n1D − 1) and V2 � (n2b − n2r )/(n2D − 1). (11.50)

As a result we have

f2/f1 � −V2/V1. (11.51)

An example is given in FileFig 11.9 for the calculation of the final focal length
f , when the refractive indices and the radii of curvature for calculation of the
focal length f1 are given.

FileFig 11.9 (A9ACHROMS)

Calculation of chromatic aberration. Calculation of elimination of chromatic
aberration. The focal length of an achromatic doublet with t � 0 is calculated.

A9ACHROMS is only on the CD.

Application 11.9.

1. Do the calculation for a chosen value of f , which means determine the
corresponding r1 and r2 for f1.

2. A doublet of two lenses should have flat surfaces in the middle. The doublet
should have the final focal length f � 50 cm. Use V1 and V2 of FF9 and
calculate r1 and r4.

3. Do the calculation for a chosen wavelength range in the visible and for
f � 15cm. Use two different materials. The corresponding refractive indices
may be obtained from handbooks or Jenkins and White (1976, p. 177, find
f1).
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11.9 CHROMATIC ABERRATION AND THE
ACHROMATIC DOUBLET WITH SEPARATED
LENSES

Chromatic aberration may also be eliminated when using two lenses at distance
t . From Chapter 1, Section 1.3, we have for the focal length of such a system

1/f � 1/f1 + 1/f2 − t(1/f1f2). (11.52)

We want to determine t for given focal lengths f1 and f2 and choose refractive
indices with their wavelength dependence.

For one lens one has

1/fi � (ni − 1)(1/r1 − 1/r2). (11.53)

Here i is 1 or 2. Differentiation with respect to ni yields

�(1/fi) � �ni(1/r1 − 1/r2) � �ni/{fi(ni − 1)}. (11.54)

From V1 � (n1b − n1r )/(n1D − 1) of Eq. (11.50), which may now be written for
i equal to 1 or 2

Vi � �ni/(ni − 1), (11.55)

and we have

�(1/fi) � Vi/fi, (11.56)

one obtains

�(1/f ) � V1/f1 + V2/f2 − t{(1/f1)�(1/f2) + (1/f2)�(1/f1)}
� V1/f1 + V2/f2 − t{V1/f1f2 + V2/f2f1}. (11.57)

The condition to have no chromatic aberration is obtained from�(1/f ) � 0 and
one gets

t � (V1f2 + V2f1)/(V1 + V2). (11.58)

For two lenses of equal material this reduces to

t � (f1 + f2)/2. (11.59)

An example is given in FileFig 11.10 for the calculation of the distance of the
two lenses. To calculate Vi we have used the same values as in FileFig 11.9. The
two lenses are assumed to have different radii of curvature and the distance t for
no chromatic aberration is calculated.
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FileFig 11.10 (A10ACHRTWOS)

Calculation of the distance of separation for two lenses with different radii of
curvature in an achromatic doublet.

A10ACHRTWOS is only on the CD.

Application 11.10.

1. Choose other values of n1 and n2 and give the distance of the two lenses for
no chromatic aberration.

2. Assume two lenses of different focal length and different materials and find
the separation for a chosen focal length of the achromatic system.

See also on the CD

PA1. Calculation of LSA = xi1 −xi1sal for a single Spherical Surface and fixed
Value of the object Distance. (see p. 408)

PA2. Calculation of LSA = xi1- xi1sal for a single spherical Surface for a Range
of object Distances. (see p. 408)

PA3. Spherical Aberration of a thin Lens. (see p. 412)
PA4. Spherical Aberration and Coma depending on the Shape Factor. (see p.

412)
PA5. Coma of a thin Lens. (see p. 415)
PA6. Calculation of Coma for the aplanatic Lens. (see p. 417)
PA7. Astigmatism of a thin Lens. (see p. 419)
PA8. The achromatic Doublet. Determination of Radii of Curvature and Focal

Length. (see p. 421)
PA9. The achromatic Doublet. Determination of Materials and Focal Length.

(see p. 422)
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About
Graphs and Matrices
in Mathcad

CHANGING NUMBERS IN A FILE AND PLOTTING A
GRAPH

x :� 1, 2 . . . 10 a :� 3 b :� 4 f (x) :� a · x + b

2D GRAPH

λ :� 0.5 A :� 1 T ≡ 1 δ1 ≡ 1 t1 ≡ 0.1

Specification of the number of x and t1 values

N :� 15 i :� 0 . . . N j :� 0 . . . N

Specification of the range

xi :� −.4 + .025 · i t1j :� −.4+, 025 · j

435



436 APPENDIX A. ABOUT GRAPHS AND MATRICES IN MATHCAD

In the specification of the function only x and t1 are used

uc(x, t1)

:�
[

2 · A · cos

[
2 · π

(
δ1

2 · λ
)]

·
[

cos

[
2 · π ·

(
x

λ
− t1

T

)
− 2 · π

(
δ1

2 · λ
)]]]2

.

In the plotting function one needs the i and j notation

Mi,j :� uc(xi, t1j ).

Call on “Surface plot” and type at the place holder just M and push “F9.”

Go with the mouse on the graph and change the angle of the “point of view.”
Click twice on the graph and get “3D-Plot Format” for “graph options.” Switch
to contour plot.

MATRICES

Go to “Insert” and “Matrix” and select 2 by 2( )

Type M �
Indicate the matrix and insert

M :� to get M :�
( )
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The manipulation of matrices can easily be seen from files containing matrices.
Here we give an example of a matrix composed of functions and how to access
the matrix elements after a multiplication has been done.

Fill in functions of x directly and call M now M(x) x :� 0, .1 . . . 5

M(x) :�
(

cos(x) − sin(x)
+ sin(x) cos(x)

)

One can access the matrix elements separately. Note that in Mathcad one starts
with 0. For the 0, 1 and 1, 1 elements one has

M(x)0,1 � M(x)1,1 �
0 1

-0.1 0.995
-0.199 0.98
-0.296 0.955
-0.389 0.921
-0.479 0.878

Consider the matrix productM1(x) � M(x)3.After multiplication one can again
access the matrix elements

M1(x) :� M(x)3 one gets for the 0, 1 element

M1(x)0,1 �
0

-0.296
-0.565
-0.783
-0.932
-0.997
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Formulas

CONSTANTS

100µm ⇒ 3000 GHz

100µm ⇒ 100 cm−1

10µm ⇒ 1000 cm−1

1 meV � 103 eV � 1.6 × 10−16joule ⇒ 8.07 cm−1

100 nm � 1000 Å

10000 Å � 1µ

1 Å � 10−8 cm � 10−10 m

FORMULAS

√−1 � i i2 � −1

z � a + ib � r(cosφ + i sin φ) � reiφ

cos x � eix+eix

2
sin x � eix − eix

2i

ex � 1 + x + x2

2!
+ x3

3!
+ · · · , sin x � x − x3

3!
+ · · · , cos x � 1 − x2

2!
+ · · ·

sn � a + aq + aq2 + · · · · · · + aqn−1 � a
qn − 1

q − 1

if |q| < 1, N → ∞ s∞ � a

1 − q

439
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x2 + ax + b � 0 x1,2 � −a
2

±
√(a

2

)2
− b

(1 ± x)n ∼� 1 ± nx |x| << 1(
a1 b1

a2 b2

)
×

(
c1 d1

c2 d2

)
�

(
a1c1 + b1c2 a1d1 + b1d2

a2c1 + b2c2 a2d1 + b2d2

)
∣∣∣∣∣∣∣
a1b1c1

a2b2c2

a3b3c3

∣∣∣∣∣∣∣
� a1

∣∣∣∣ b2c2

b3c3

∣∣∣∣ − a2

∣∣∣∣ b1c1

b3c3

∣∣∣∣ + a3

∣∣∣∣ b1c1

b2c2

∣∣∣∣
∣∣∣∣ b1c1

b2c2

∣∣∣∣ � b1c2 − b2c1

TRIGONOMETRIC FORMULAS

0 30◦ 45◦ 60◦ 90◦ 180◦ 270◦ 360◦

sin 0 1
2

1
2

√
2 1

2

√
3 1 0 −1 0

cos 1 1
2

√
3 1

2

√
2 1

2 0 −1 0 1

tan 0 1
3

√
3 1

√
3 ∞ 0 ∞ 0

cot ∞ √
3 1 1

3

√
3 0 ∞ 0 ∞

sin2 α + cos2 α � 1
sin α

cosα
� tan α

cosα

sin α
� cot α

tan α � 1

cosα

1

cos2 α
� 1 + tan2 α sin α � tan α√

1 + tan2 α

cosα � 1√
1 + tan2 α

sin(90◦ ± α) � + cosα sin(180◦ ± α) � ∓ sin α

cos(90◦ ± α) � ∓ sin α cos(180◦ ± α) � − cosα

tan(90◦ ± α) � ∓ cot α tan(180◦ ± α) � ± tan α

cot(90◦ ± α) � ∓ tan α cot(180◦ ± α) � ± cot α

sin(−α) � − sin α sin(α ± β) � sin α cosβ ± cosα sin β

cos(−α) � + cosα cos(α ± β) � cosα cosβ ∓ sin α sin β

tan(−α) � − tan α tan(+α ± β) � tan α ± tan β

1 ∓ tan α · tan β

cot(−α) � − cot α cot(α ± β) � cot α · β ∓ 1

cot β ± cot α
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sin 2α � 2 sin α cosα

cos 2α � cos2 α − sin2 α � 1 − 2 sin2 α � 2 cos2 α − 1

sin 2α � 2 tan α

1 + tan2 α
cos 2α � 1 − tan2 α

1 + tan2 α

tan2 α � 2 tan α

1 − tan2 α
� 2

cot α − tan α
, cot 2α � cot2 α − 1

2 cot α
� 1

2
(cot α − tan α)

1 + cosα � 2 cos2 α

2
, 1 − cosα � 2 sin2 α

2

tan α �
√

1 − cos 2α

1 + cos 2α
� sin 2

1 + cos 2α
� 1 − cos 2α

sin 2α
� 2 tan α

2

1 − tan2 α
2

sin α + sin β � 2 sin
α + β

2
· cos

α − β

2

sin α + sin β

cosα + cosβ
� tan

α + β

2

sin α − sin β � 2 cos
α + β

2
· sin

α − β

2

cosα + cosβ � 2 cos
α + β

2
· cos

α − β

2

sin α − sin β

cosα + cosβ
� tan

a − β

2

cosα − cosβ � −2 sin
α + β

2
· sin

α − β

2

tan α + tan β

cot α + cot β
� tan α · tan β

tan α + tan β � sin(α ± β)

cosα cosβ

1 + tan α

1 − tan α
� (tan 45◦ + α)

cot α ± cot β � ± sin(α ± β)

sin α sin β

cot α + 1

cot α − 1
� cot(45◦ − α)

cosα + sin α �
√

2 sin(45◦ + α) �
√

2 cos(45◦ − α)

cosα − sin α �
√

2 cos(45◦ + α �
√

2 sin(45◦ − α)

cot α + tan α � 2

sin 2α
cot α − tan α � 2 cot 2α
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DIFFERENTIATION

(u · ν)′ � uν ′ + u′ν
(u
ν

)′ � u′ν − ν ′u
ν2

(sin x)′ � cos x (ex)′ � ex

(cos x)′ � − sin x (ln x)′ � 1

x

(tan x)′ � 1

cos2 x
(arcsin x)′ � 1√

1 − x2

(cot x)′ � −1

sin2 x
(arccos x)′ � − 1√

1 − x2

INTEGRATION

∫
udν � uν −

∫
ν du

∫
dx � x

∫
x ′′dx � xn+1

n+ 1
(n �� −1)

∫
dx

x
� ln x

∫
sin xdx � − cos x

∫
cos xdx � sin x

∫
cot xdx � ln sin x

∫
dx

sin2 x
� − cot x

∫
dx

cos2 x
� tan x

∫
dx

1 − x2
� ln

√
1 + x

1 − x∫
dx√

1 − x2
� arcsin x

∫
dx

1 + x2
� + arctan x

∫
exdx � ex

∫
axdx � ax

ln a

∫
dx

x ± a
� ln(x ± a)
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Index
Aberration, 415

achromatic doublet, 432
aplanatic lens, 425
astigmatism of single surface, 428
astigmatism of a thin lens, 429
chromatic aberration, 430
coma, 423
π -6 equation, 420
spherical of single surface, 415
spherical of thin lens, 418

absorption, 319
achromatic doublet, 430
achromatic doublet with separated lenses,

432
active medium, 295
Airy disc, 149
Airy function, 116
alternating high and low refractive indices,

258
amplitude division, 96
amplitude grating, 152, 158, 170
amplitude reflection coefficients, 321
angle of deviation, 7
angular magnification, 40
angular momentum quantum number, 282,

283
angular quantum number, 283
antireflection coating, 252, 256
aperture function α(η), 385
aperture plane, 382
aperture in random arrangement, 169
aplanatic lens, 425, 427

apodization, 366, 367
Arago, 135
array of source points, 121

nonperiodic, 126
periodic, 121

astigmatic difference ASD, 427, 428, 429
astigmatism of a single spherical surface,

427
astigmatism of a single surface, 429
astigmatism of a thin lens, 428, 429
asymmetric Fourier transform, 370
atomic emission, 273
atomic energy states, 284

exited states, 286
occupation rule, 283

atomic polarizability, 317, 318

Babinet’s theorem, 166, 168
background spectrum, 372
bandpass filter, 364
bandwidth, 285, 288

doppler, 291
homogeneous, 288
Lorentzian, 293
mechanical, 291
natural, 291
quantum, 291

beamsplitter, 104
Bessel function, 149, 165, 166, 389, 390
Bessel function J1(q), 151
Bessel function as transfer function, 394
birefringent, 231
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Blackbody radiation, 203, 273, 274
Boltzmann’s, Wien’s law, 281
depending on frequency, 279
depending on wavelength, 279
Radiance, Area, solid angle, 281

blackening curves, 376, 377
blocking function, 402
Bohr’s model, 282
buildup principle, 283

K-shell, 284
L-shell, 284
M-shell, 284

boundary conditions, 254
Brewster angle, 216, 321, 322

C-ray, 15, 36
calcite, 232, 236
cavity

concentric, 77
condition for stability, 76
confocal, 77, 297, 299, 300, 303, 307
matrix for eigenvalue problem, 73
rectangular shaped mirrors, 303
stability relation, 74
with round mirrors, 307

changing numbers, 435
charge density, 206, 316
chromatic aberrations, 430, 431, 432

negative, 430
circular aperture, 148
circular mirrors, 308, 309
circular polarized light, 237, 240
Clausius–Mossotti equation, 320
coherence, 185

condition, 189
extended source, 191
intensity fringe pattern, 187
interval, 195
length, 204
two source points, 185
visibility, 194
Young’s experiment, 186

coherent light, 398
coma

negative coma, 424
positive coma, 424

commercial microscopes, 44
complementary screens, 166, 168
complex cfft, 380

complex dielectric constant, 315
complex Fourier transformation, 345, 346,

349, 370
complex notation, 87
complex refractive index, 315, 321, 326,

327
concave mirror, 71
concave spherical mirror, 70
condition for laser action, 293
confocal cavity, 297

beam parameters, 297
beam waist, 299–301
wavelength at center, 299
wavefront at mirror, 300
wavefront of beam and mirror, 299

confocal resonator, 304, 309
conjugate points, 9
constructive interference, 91, 93, 94, 98,

99, 104, 113, 116
convex single refracting surface, 12, 14
convex spherical mirror, 72
convex spherical surfaces, 9, 14, 19
convex-plane lens, 67
convolution

integral 350, 387
product of two functions, 350
spread function, 397

convolution with the spread function, 397
coordinates for the derivation of Fresnel’s

formulas, 212
Cornu’s spiral, 182
critical angle

phase shift, 219
reflected and transmitted intensity, 223
total reflection, 227

crossed polarizers, 238, 239, 245, 246
current density, 326, 327
current density vector, 206, 316
curvature of the wavefront, 299
cylindrical coordinates, 311
cylindrical lens, 388

Damping term, 318
denominator, 123
dense medium, 216, 219, 319
density of the oscillators, 319
dependence on θ , 109
destructive interference, 91, 93, 94,

98–100, 105
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dielectric circular waveguide, 268
dielectric constant, 318
dielectrics, 316
differentiation, 442
differentiation “space”, 208
differentiation “time” ∂/∂t , 208
differentiation operation, 208
diffraction

amplitude grating, 155
circular aperture, 148
circular opening, 133
circular stop, 135
echelette grating, 159
on an edge, 176
factor, 153
far field, 138
Fraunhofer, 138
generated wavelets, 131
grating, 152
incident light under an angle, 158
Kirchhoff-Fresnel Integral, 131
losses, 302
on slit, 140–142, 144, 172, 174
3-D graph of rectangular aperture, 147
3-D graph of round aperture, 151

discrete Fourier transform, 366
discrete length coordinates, 356
dispersion of light, 7
Doppler broading, 393

line shape, 290
line width, 296

double slit, 157
double-sided step function, 344, 346, 347
drift velocity, 326
Drude model, 326

Echelette grating, 159, 161
eigenvalue problem, 73
Einstein coefficient, 289

coefficient of stimulated absorption,
292

probability coefficient, 276
electrical field vector, 206, 316
electrical polarizability, 316
electromagnetic theory, 205
ellipsometry, 335
elliptically polarized light, 237, 240, 241,

334
emission of light from 86Kr, 202

energy density per frequency, 274
energy levels, 284
energy state, 284

transitions between states, 286
evanescent wave 228, 229

attenuation factor, 229
penetration depth, 229, 331
and index of refraction, 232

excited state, 286
extended source, 191, 196
extinction index, 318
extraordinary indices of refraction, 231
eye, 2

Fabry–Perot, 77, 115–117, 249
cavity, 294
etalon, 115
plates, 249
spectrometer and resolution, 118
transmission depending on D, 117

far field approximation, 136
Fast Fourier transformation, 341, 342
Fermat’s principle, 2, 5

law of refraction, 5
optimum path, 3
optimum time, 6
velocity for travel, 4

Fiber optics waveguide, 266
Bessel function solution, 267
determination of k, 268
periodic exponential solution, 266

Fizeau fringes, 106
focal length, 34
folding of the Fourier transform spectrum,

359
folding of the spectrum, 360
formula for summation, 122
formula for the summation process, 112
formulas, 439
Fourier integrals, 339
Fourier series, 378
Fourier transform integral, 372
Fourier transform spectrometer, 203
Fourier transform spectroscopy, 339, 354,

355
apodization, 368
folded spectrums, 364
high resolution, 365
large optical path difference, 363
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Fourier transform spectroscopy (cont.)
Michelson interferometer, 355

Fourier transformation, 144, 339, 350,
376, 392

asymmetric, 370
discrete length and frequency

coordinates, 358
fast, 343
functions 1/(1 + x2) and πe−2πν , 341
gauss function, 340
general, 351
numerical, 341
real, 352, 349, 366
sample interval, 358, 365
two transformations, 382

Fourier transformation using analytical
functions, 340

Fraunhofer diffraction, 138, 139
Fraunhofer observation, 136
frequency coordinates, 356
frequency domain, 401
frequency spectrum, 367
Fresnel, 95, 138
Fresnel diffraction 136, 172

on an edge, 175
integrals, 174
on a slit, 173

Fresnel number, 302
Fresnel’s double mirror experiment, 93
Fresnel’s formulas, 80, 211, 320

as function of angle, 215, 217
parallel case 211, 321
perpendicular case, 214
transmission coefficient, 218

Fresnel’s mirror, 95
fringe pattern, 89
fundamental mode, 299, 308
fused quartz, 325

Gain of the beam, 294
Galilean telescope, 46, 48
Gauss function, 340, 350, 351
Gaussian beam, 297
Gaussian line shape, 290
generated wavelet, 131
Geometrical construction, 18
geometrical construction, 15, 17, 18, 29,

31, 70, 72
geometrical optics, 1

graphical constructions, 25, 30, 36
graphical method, 70
graphs and matrices in Mathcad, 435
grating, 152

number of lines N, 155
openings d, 155
periodicity constant, 159
resolution, 154
side maxima, 154
side minima, 152, 156

Green’s function, 132
guided waves, 259

Half-wave plate, 233, 238, 245
phase shift φ, 233

harmonic waves
phase factor, 80
superposition, 82, 206
two depending on space and time

coordinates, 82
Heidinger interference fringes, 103, 106,

107, 108
high frequency region, 328
high resolution spectroscopy, 363
Holography, 403

different waves, 405
hologram, 404
product of real image, 405
real image, 404
recovery, 404, 405
size of hologram, 406
transmission curve, 404
under an angle, 405
virtual image, 404, 405

homogeneous equation, 327
Huygens’ principle, 129, 131
Huygens’ wavelets, 129, 375

Image of
one bar, 388
one round object, 389
two round objects, 390, 397
two bars, 388

Image formation using wave theory, 375
amplitude function, 385
aperture function, 385
circular lens, 389–391
convolution, 387
image formation, 386, 398
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image forming process, 382
impulse response, 387
one bar, two bars as object, 389
one round, two round as object, 389,

390
pair of Fourier transformations, 385
resolution, 399
spread function, 386
summation process, 383, 384
transfer function, 401

imaginary part, 318
imaging with coherent light, 400
impulse response, 387
incident intensity, 113
incident light under an angle ψ , 158
incoherent light, 386
induced absorption, 275
induced dipoles, 316
induced emission, 275
inhomogeneous equation, 327
intensity, 87, 126

complex notation, 87
normalization, 88
time average, 87

intensity fringe patterns, 187
intensity pattern, 387
interference, 78 (minima)

air gaps, 100, 101
factor, 153
fringes, 113
maxima, minima, 83
pattern generated by two sources, 83
pattern of N sources, 124

interferogram function S(y), 356
interferograms, 353
interferometry, 89

amplitude dividing, 96
Fresnel double mirror, 93
Lloyd, 92
Michelson, 103
model, 89
Newton’s Rings, 101
plane parallel plate, 99
wavefront dividing, 89
wedge shaped, 99
Young, 90

internally reflected components, 244
inverse transformation, 342, 344, 346, 347
inverted image, 2

isotropic medium, 81
isotropic nonconducting medium, 210

Jones matrices, 244, 245
Jones vectors, 244

Kepler telescope, 45, 46, 48
Kirchhoff–Fresnel integral, 131, 132, 139,

376
Kramer–Kroning model, 325

Labels for energy levels, 283
laser beam expander, 48
lasers, 273

active medium, 295
amplification factor, 293, 294
gain of the beam, 294
spontaneous transition, 292
stimulated emission, 291, 292, 293
stimulated transition, 293
two-level systems, 292

lateral magnification, 17
lateral spherical aberration, 418, 420
law of reflection, 2
law of refraction, 1, 2, 5, 222, 320
left polarized light, 237
length of wavetrains, 202
length units, 12
Lens

negative f , 31
plane-convex, 67

lenses, 1
less dense medium, 229, 317
life-time, 286
lifetime τ , 286, 288
linear polarized light, 240
Lloyd’s mirror, 92, 95, 96
longitudinal modes, 295
longitudinal spherical aberration, 415,

417, 419
Lorentz correction, 320
Lorentzian line shape, 286, 288, 290
Lorentzian line width, 295
lossless dielectrics, 336
low frequency region, 327

Magnetic field vector, 206, 316
magnetic quantum number and

degeneracy, 282
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magnification, 17, 18, 25, 36, 37, 43, 44,
46, 69

magnifier, 37, 47
angular magnification, 40
magnifying power, 40
virtual image at infinity, 39, 41
virtual image nearpoint, 39

magnifying power, 40, 43
many electron atoms, 282
Mathcad

plotting a graph, 435
matrices, 436
matrix elements, 53
matrix method, 49

application to two-and three-lens
systems, 47

glass sphere, 58
hemispherical lens, 58
principal planes, 51
refraction matrix, 49
thick lens, 55
translation matrix, 49
two lenses in air, 59
two thick lenses, 62

maxima, but only N − 2, 125
Maxwell’s equations, 205, 315, 326
meridional (vertical) plane, 428
Michelson interferometer, 106

dependence on θ , 109
nonnormal incidence, 106
nonnormal incident light, 106
normal incident light, 103
superposition of two cosine waves, 352

Michelson’s stellar interferometer, 197,
198, 199

two patterns, 197
microscope, 42, 47, 48

magnification 43
magnifying power, 43
near point configuration 41–43
slides, 100
virtual image at infinity, 43

minimum deviation, 8
mirror equation, 68
mirrors, 1
mirrors for laser cavities, 252
mode

in a dielectric waveguide, 266
formation, 262

number of nodes, 250
propagation, 249, 261
rectangular box, 251
restrictive conditions, 261
(TE) modes or s-polarization, 215, 262,

265
(TM) modes or p-polarization, 214, 262

modes in a dielectric waveguide, 266
modes of the rectangular box, 251
monochromatic light, 200
M Wilson observatory, 198
multiple layer filters, 258
multiple lens system, 49
mutual orthogonal triad, 209

Natural emission line width, 289
negative chromatic aberration, 430
negative coma, 424
negative crystal, 232, 236
negative lens, 33
Newton, 7
Newton’s rings, 101, 102
Newton’s work, 79
node lines, 250
noncommutation of matrices, 65
nonconductive medium, 210
normal and anomalous dispersion, 319
number of nodes, 250

Object amplitude function h(y), 385
object focus, 12, 16, 24, 32
object point, 10
object positions, 37
occupation rule, 283
one electron atom, 282
one oscillator, 322
one round object, 389
optical axis, 232
optical axis is the fast axis, 232
optical constants, 315, 316, 326, 338, 372
optical constants of metals, 328

high frequency region, 330
low frequency region, 329
skin depth, 332

optical constants n and K , 370
optical instruments, 1, 35
optical materials, 231
optical path difference

Fresnel’s double mirror, 94
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Lloyd’s mirror, 93
Newton’s rings, 103
Michelson interferometer, 104
plane parallel plate, 98
wedge, 99
Young’s experiment, 91

optically denser medium, 80
order of interference, 83
ordinary index n0, 232
oscillator expressions, 322
oscillator model, 317, 318

damping term, 317

Pair of Fourier transform integrals, 356
pair of Fourier transformation, 385
paraxial approximation, 15
paraxial theory, 1, 10
paraxial wave equation, 297
Pauli principle, 283
periodic arrangement, 74
periodic array, 126, 171
periodic set of slits, 152
permittivity, 206, 316, 317
perpendicular case, 214
PF-ray, 15, 36
phase difference �, 111
phase factor, 80
phase jump, 80
phase velocity, 210
phase velocity in vacuum, 81
planar waveguide, 259, 263
Planck, 273
Planck’s radiation law, 275, 280, 292
plane mirror, 67

virtual image, 67
plane parallel plate, 97, 110, 113, 114

normal incidence, 114
phase difference, δ, 111
summation of the reflected amplitude,

111
transmission, 113
transmitted amplitudes, 111
transmitted intensity, 114, 116

plane plate waveguide, 270
characteristic determinant, 271
traveling waves, 259

plane wave, 206
depending on space and time

coordinates, 82

plasma frequency, 318, 328
Poisson spot, 135
polarization, 316
polarized light, 230

linear circular elliptical, 240
population inversion, 291, 292
positive chromatic aberration, 430
positive coma, 424
positive crystal, 232, 234, 236
positive lens, 25, 28, 30
Poynting vector S, 222
Poynting vector in vacuum, 209
principal angle, 321
principal axis transformation, 243
principal planes, 56, 60, 62, 63, 67
principal quantum number, 282, 283
prism, 7

angle of deviation, 7

Quality factor, 288
quantum emission, 273
quantum mechanical model, 289
quarter-wave plate, 239, 246
quartz, 232, 234, 236
quasimonochromatic light, 200

Radius of curvature, 69, 71, 300, 417
radius of curvature ρ, 417
Raleigh–Jean law, 275
random arrangement, 169
random arrangement of source points

array, 125
grating, 169

random array, 170, 172
random phase angles, 126
randomly distributed, 126
rate equations, 292
ratio rs/rp , 322, 335
Rayleigh criterion, 164, 395
Rayleigh distance, 165, 395
Rayleigh–Jeans law, 274, 276, 280
Real Fourier transformation, 349
real image, 29, 404
real object, 16, 29, 32
real object function, 380
real object point, 11
real objects, 15, 20
recording of the interferogram, 403
recovery of image, 404
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rectangular aperture, 145, 147
rectangular-shaped mirrors, 303
references, 443
reflectance R, 226
reflected intensity, 114, 116
reflecting cavity, 73
reflection, 113

amplitude, 111
intensity, 114, 116, 224, 227
power, 51
reflected and transmitted, 274

reflection coefficients, 217, 220, 320
reflection coefficients with absorption, 333
reflection in a mirror cavity, 74
reflection measurements, 322
refracting powers, 51
refraction, 49
refraction matrix, 50
refractive index, 2, 4, 316
relaxation time τ , 327
resolution

coherent light, 399
grating, 162
incoherent light„ 394

resolving power, 119, 164
resonance

condition, 304, 308
mode, 116
wave numbers, 323

resonance of vibrations, 323
resonator parameters, 74
restricting, 284
right polarized light, 237
rotation, 65
rotation of the coordinate system, 243
round aperture, 149
round object, 390
round objects, 391

Sagittal (horizontal) plane, 428
sagittal coma CS , 423, 425
sampling interval, 359
scalar wave equation, 79, 131
Schawlow and Townes, 295
selection rules, 284
Sellmeier formula, 324
shape factor, 421
sign convention, 11, 69
simulations of interferograms, 358

sine function and apodization, 367
single refracting surface, 415
single surface, 416
single-sided step function, 343, 346
size of hologram, 406
skin depth, 331, 333
slow axis, 232
small angle approximation, 10, 16, 137,

154
solution of the eigenvalue problem, 243
spatial coherence, 185

frequencies, 376
wavelength, 378
waves, 376

spherical aberration, 415, 416, 418, 421,
422

spherical mirrors, 68
concave spherical mirror, 70
convex spherical mirror, 72
graphical method, 70
magnification, 69
virtual image, 73

spherical surfaces, 1, 9, 11, 15
conjugate points, 9
geometrical construction, 16
image focus, 12
image forming equation, 11
image point, 10
magnification, 16, 18
real object, 16
sign convention, 11
virtual image, 16, 18, 19
virtual object, 17, 18, 19

spherical thick lens, 58
spherical wave, 80, 131
spin states, 283
spontaneous emission A21, 275, 289, 293
spread function, 386, 392, 398
standing wave conditions, 249
static conductivity, 327

gold, 330
lead, 330
nickel, 330
silver, 330

Stefan–Boltzmann law, 277, 278
step function, 340
step grating, 178
stratified media, 252

antireflection coating, 258
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plate of thickness d � λ/2n2, 257
two interfaces at distance d , 253

superposition
of two cosine waves, 84
of two double slit patterns, 188
of wavetrains, 201
principle, 80, 208

susceptibility χ , 317

Tangential coma CT , 424, 425
TE modes, 262, 270
telescope, 44

Galilean, 46
Kepler’s, 44

temporal coherence, 200
length of wavetrains, 202
quasimonochromatic light, 200
superposition, 200
wavetrains, 200

Theory of Color, 7
thick lens, 51, 54

concentration lens, 67
focal length, 54
matrix, 51
two hemispherical 62, 63
two thick lenses, 61, 63
virtual image, 67

thin lens, 24, 33, 53, 54, 418, 422
different media, 34
equation, 23, 30
image focus, 24
magnification, 25
matrix, 52
model, 1
negative lens, 31
object focus, 24
positive lens, 26
transformation to principal planes, 54
two different media, 33
two thin lenses, 36
two thin lenses in air, 59
virtual image, 29, 32
virtual object, 29, 32

three lens system, 42
three-level laser, 296
threshold condition, 294–296
time average, 87
time-dependent, 88
TM modes, 265
total internal reflection, 259, 263
total reflection, 226, 228, 229
transmission coefficient, 221
transfer function, 392, 401

function for (Bess/arg), 402
function for (sin x/x), 402

translation matrices, 49, 51
transmission intensity, 225, 227
transmittance T , 223
transposed matrix, 65
trigonometric formulas, 440
two lens system, 36
two lenses in air, 59
two round apertures, 391, 395
two-level system, 292

Uniaxial crystals, 231
unit matrix, 65

Velocity for travel, 4
vertex of the spherical surfaces, 56
violet catastrophe, 275
virtual image, 16, 29, 32, 68, 404, 405
virtual object, 30, 32
visibility, 194–196
visibility for two point sources, 194

Water waves, 83
wave equation, 242, 317
wavefront division, 89
wavelength, 279, λ, 142
wavetrains, 200, 287
wedge shaped air gap, 99
Wien’s displacement law, 278

Young’s experiment, 90, 91, 96
Young, Thomas, 79
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