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Abstract

This is the third in our series of works which make a systematic study of
degenerations of complex curves, and their splitting deformations. The prin-
cipal aim of the present volume is to develop a new deformation theory of
degenerations of complex curves. The construction of these deformations uses
special subdivisors of singular fibers, which are characterized by some analytic
and combinatorial properties. Intuitively speaking, given a special subdivisor,
we will construct a deformation of the degeneration in such a way that the
subdivisor is ‘barked’ (peeled) off from the singular fiber. The construction
of these “barking deformations” are very geometric and related to deforma-
tions of surface singularities (in particular, cyclic quotient singularities) as
well as the mapping class groups of Riemann surfaces (complex curves) via
monodromies; moreover the positions of the singularities of a singular fiber
appearing in a barking deformation is described in terms of the zeros of a
certain polynomial which is expressed in terms of the Riemann theta function
and its derivative. In addition to the solid foundation of the theory, we pro-
vide several applications, such as (1) a construction of interesting examples
of splitting deformations which leads to the class number problem of splitting
deformations and (2) the complete classification of absolute atoms of genus
from 1 to 5. For genus 1 and 2 cases, this result recovers those of B. Moishezon
and E. Horikawa respectively.



Introduction

Wading through,
And wading through,

Yet green mountains still.
(Santoka “Somokuto1”)

This is the third in our series of works on degenerations of complex curves.
(We here use “complex curve” instead of “Riemann surface”.) The aim of the
present volume is to develop a new deformation theory of degenerations of
complex curves. This theory is very geometric and a particular class of subdi-
visors contained in singular fibers plays a prominent role in the construction
of deformations. It also reveals the close relationship between the monodromy
of a degeneration and existence of deformations of the degeneration. More-
over, via some diagrams, we may visually understand how a singular fiber
is deformed. These deformations are called barking deformations, because in
the process of deformation, some special subdivisor of the singular fiber looks
like “barked” (peeled) off. We point out that barking deformations have a
remarkable cross-disciplinary nature; they are related to algebraic geometry,
low dimensional topology, and singularity theory.

We will further develop our theory: In [Ta,IV], we describe the vanishing
cycles of the nodes of the singular fibers appearing in barking families; we
then apply this result to give the Dehn twist decompositions of some auto-
morphisms of Riemann surfaces. In [Ta,V], we develop the moduli theory of
splitting deformations, which as a special case, includes the theory of bark-
ing deformations over several parameters (in the present volume, we mainly
discuss the one-parameter deformation theory).

Background

We will give a brief survey on history and recent development of degenerations
of complex curves. Our review is not exhaustive but only covers related topics
to our book.
1 Translated by Hisashi Miura and James Green.
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Degenerations of complex curves

A degeneration of complex curves is a one-parameter family of smooth com-
plex curves, which degenerates to a singular complex curve. More precisely,
let π : M → Δ be a proper surjective holomorphic map from a smooth com-
plex surface M to a small disk Δ := {s ∈ C : |s| < δ} such that π−1(0) is
singular and π−1(s) for s �= 0 is a smooth complex curve of genus g (g ≥ 1);
so the origin 0 ∈ Δ is the critical value of π. (In what follows, unless otherwise
mentioned, complex surfaces (curves) are always supposed to be smooth.) We
say that π : M → Δ is a degeneration of complex curves of genus g with the
singular fiber X := π−1(0). For simplicity, we sometimes say “a degeneration
of genus g”.

Let f : S → C be a proper surjective holomorphic map from a compact
complex surface S to a compact complex curve C, and then S is called a
fibered surface (e.g. elliptic surface). We note that a degeneration appears
as a local model of a fibered surface around a singular fiber: Let X be a
singular fiber of f : S → C, and then the restriction of f to a sufficiently
small neighborhood (germ) of X in S is a degeneration. To classify fibered
surfaces, it is important to understand their local structure — degeneration
— around each singular fiber. It is also important to know when the signature
σ(S) (or some other invariant) of the fibered surface concentrates on singular
fibers. Namely, when does the equality σ(S) =

∑
i σloc(Mi) holds?, where Mi

is a germ of a singular fiber Xi in S, and σloc(Mi) denotes the local signature
of Mi, and the summation runs over all singular fibers (see a survey [AK]).
These questions motivate us to study degenerations and their invariants.

Apart from the (local) signature, we have another basic invariant “mon-
odromy” of a degeneration, which also plays an important role in studying
degenerations. Given a degeneration π : M → Δ of complex curves of genus g,
we may associate an element h of the symplectic group Sp(2g : Z) acting on
the homology group H1(Σg : Z), where Σg is a smooth fiber of π : M → Δ.
The element h is defined as follows. We take a circle S1 := { |s| = r } con-
tained in the disk Δ, and then R := π−1(S1) is a real 3-manifold. The map
π : R → S1 is a fibration (all fibers are diffeomorphic); that is, R is a Σg-
bundle over S1, where Σg is a smooth fiber of π : M → Δ. Topologically, R is
obtained from a product space Σg×[0, 1] by the identification of the boundary
Σg × {0} and Σg × {1} via a homeomorphism γ of Σg. We say that γ is the
topological monodromy of the degeneration π : M → Δ. (It measures how the
complex surface M is twisted around the singular fiber X.) Then γ induces
an automorphism h := γ∗ on H1(Σg : Z), which is called the monodromy of
the degeneration. Note that h preserves the intersection form on H1(Σg : Z),
and so h ∈ Sp(2g : Z).

Monodromy already appeared in the early study of degenerations, no-
tably the work of Kodaira [Ko1] on the classification of degenerations of el-
liptic curves (complex curves of genus 1). He showed that there are eight
degenerations and determined their monodromies: The singular fibers of eight
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degenerations are respectively denoted by In, I∗n, II, III, IV, II∗, III∗, IV ∗.
(Apart from the three types II, III, IV , each corresponds to an extended
Dynkin diagram.) Kodaira also gave explicit construction of these eight
degenerations.

Subsequently, Namikawa and Ueno [NU] carried out the classification of
degenerations of complex curves of genus 2: there are about 120 degenera-
tions. Namikawa and Ueno encountered with new phenomena, which did not
occur in the genus 1 case: (1) The topological type of a degeneration is not
necessarily determined by its singular fiber: There are topologically differ-
ent degenerations of complex curves of genus 2 with the same singular fiber.
(2) The monodromy does not determine the topological type of a degenera-
tion. In fact, if g ≥ 2, there are a lot of topologically different degenerations
with the trivial topological monodromy. The reason is as follows: The mapping
class group MCGg of a complex curve of genus g has a natural homomorphism
MCGg → Sp(2g : Z) (homological representation), as γ ∈ MCGg induces an
automorphism γ∗ of H1(Σg : Z). The kernel of this homomorphism is the
Torelli group Tg. (Note: If g = 1, then Tg is trivial (i.e. the above homomor-
phism is injective), whereas if g ≥ 2, then Tg is nontrivial.) In particular, if
g ≥ 2, and the topological monodromy γ of a degeneration belongs to Tg,
then h := γ∗ (monodromy) is the identity.

This fact indicates that monodromy is not powerful enough to classify de-
generations. Moreover, as is suggested by Namikawa and Ueno’s classification
of 120 degenerations of genus 2, there seem a tremendous amount of degenera-
tions of genus g, as g grows higher, and further classifications for genus 3, 4, ...
got stuck. New development came from topology. Observe that in the convert-
ing process from a topological monodromy to a monodromy, some information
may be lost, and hence it is natural to guess that a topological monodromy
carries more information than a monodromy, and this is the starting point of
the work of Matsumoto and Montesinos, which we shall explain. First of all, we
note that the topological monodromy of a degeneration is a very special home-
omorphism; it is either periodic or pseudo-periodic (see [Im], [ES], [ST]). Here,
a homeomorphism γ of a complex curve C is periodic if for some positive inte-
ger m, γm is isotopic to the identity, and pseudo-periodic if for some loops (sim-
ple closed curves) l1, l2, . . . , ln on C, the restriction γ on C \ {l1, l2, . . . , ln} is
periodic. A Dehn twist γ along a loop l on C is an example of a pseudo-periodic
homeomorphism, as the restriction of γ to C \ l is isotopic to the identity.

Remark 1 There is a classical study of pseudo-periodic homeomorphisms
due to Nielsen [Ni1] and [Ni2]; he referred to a pseudo-periodic homeomor-
phism as algebraically finite type.

For a pseudo-periodic homeomorphism γ, let m be the integer as above, i.e.
γm on C \ {l1, l2, . . . , ln} is isotopic to the identity. Then γm is generated by
Dehn twists along l1, l2, . . . , ln. According to the direction of the twist, a Dehn
twist is called right or left. A pseudo-periodic homeomorphism γ is right or left
provided that γm is generated only by right or left Dehn twists. The complex
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structure on a degeneration poses a strong constraint on the property of its
topological monodromy. Using the theory of Teichmüller spaces, Earle–Sipe
[ES] and Shiga–Tanigawa [ST] demonstrated that any topological monodromy
is a right pseudo-periodic homeomorphism — in [MM2], it is called a pseudo-
periodic homeomorphism of negative type. For example, if the singular fiber
is a Lefschetz fiber (a reduced curve with one node), then the topological
monodromy is a right Dehn twist along a loop l on a smooth fiber C. Note
that the singular fiber is obtained from C by pinching l; in other words, l is
the vanishing cycle.

Matsumoto–Montesinos theory

Matsumoto and Montesinos established the converse of the result of Earle–
Sipe and Shiga–Tanigawa. Namely, given a periodic or right pseudo-periodic
homeomorphism γ, they constructed a degeneration with the topological
monodromy γ. Their argument is quite topological, using “open book con-
struction”. In [Ta,II], we gave algebro-geometric construction, clarifying the
relationship between topological monodromies and quotient singularities.

We denote by Pg the set of periodic and right pseudo-periodic homeomor-
phisms of a complex curve of genus g, and denote by P̂g the conjugacy classes
of Pg. Next, we denote by Dg the set of degenerations of complex curves of
genus g, and denote by D̂g its topologically equivalent classes. The main result
of Matsumoto and Montesinos [MM2] is as follows:

Theorem 2 (Matsumoto and Montesinos [MM2]) The elements of P̂g

are in one to one correspondence with the elements of D̂g.

One important consequence of this theorem is that the topological classifica-
tion of degenerations completely reduces to the classification of periodic and
right pseudo-periodic homeomorphisms.

Matsumoto and Montesinos [MM2] also determined the shape (configura-
tion) of the singular fiber of a degeneration in terms of the data of its topolog-
ical monodromy — screw numbers and ramification data. Here, we must take
care when using the word “shape”, because a shape depends on the choice of
model of a degeneration, and it changes under blow up or down. Algebraic
geometers usually work with the relatively minimal model of a degeneration —
a degeneration is relatively minimal if any irreducible component of its singu-
lar fiber is not an exceptional curve (a projective line with the self-intersection
number −1). However, from the viewpoint of topological monodromies, the
relatively minimal model is not so natural. The most natural one is the nor-
mally minimal model, because it reflects the topological monodromy very well
[MM2]. We now review the definition. Express a singular fiber X as a divisor:
X =

∑
i miΘi where Θi is an irreducible component and a positive integer mi

is its multiplicity. Then π : M → Δ is called normally minimal if X satisfies
the following conditions:
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(1) the reduced curve Xred :=
∑

i Θi is normal crossing (i.e. any singularity
of Xred is a node), and

(2) if Θi is an exceptional curve, then Θi intersects other irreducible compo-
nents at at least three points.

We point out that a relatively minimal degeneration, after successive blow
up, becomes a normally minimal one, which is uniquely determined from the
relatively minimal degeneration.

In what follows, unless otherwise mentioned, we assume that a degenera-
tion is normally minimal. According to whether the topological monodromy
is periodic or pseudo-periodic, the singular fiber is stellar (star-shaped) or
constellar (constellation-shaped). Here, a singular fiber X is called stellar2 if
its dual graph is stellar (star-shaped): X has a central irreducible component
(core), and several chains of projective lines emanating from the core (see
Figure 4.2.1, p61). Such a chain of projective lines is called a branch of X.
A constellar singular fiber is obtained by bonding branches of stellar fibers,
and a resulting chain of projective lines after bonding is called a trunk; it is a
bridge joining two stellar singular fibers.

The number of the singular fibers of genus g increases rapidly, as g grows
higher; this is because a constellar singular fiber is constructed from stellar
singular fibers in an inductive way with respect to the genus. For instance,
a constellar singular fiber of genus 2 is bonding of two stellar singular fibers
of genus 1. (Precisely speaking, there is also a constellar singular fiber of
genus 2 obtained from one stellar singular fiber of genus 1 by bonding its two
branches.) A constellar singular fiber of genus 3 is either bonding of three
stellar singular fibers of genus 1, or bonding of two stellar singular fibers of
genus 1 and 2. And as g grows, the partition of the integer g increases rapidly,
and accordingly the number of constellar singular fibers increases rapidly.

Based on the work of Matsumoto and Montesinos, Ashikaga and Ishizaka
[AI] proposed an algorithm to carry out the topological classification of degen-
erations of given genus. Although the practical computation becomes difficult
as genus grows higher, their algorithm settled down the topological classi-
fication problem of degenerations at least theoretically. They applied their
algorithm to achieve the topological classification for the genus 3 case (see
[AI]): The number of degenerations is about 1600, and among them there are
about 50 degenerations with stellar singular fibers. (For any genus, the number
of stellar singular fibers is much less than that of constellar singular fibers.)

Morsification

There are about 8, 120, and 1600 degenerations of genus 1, 2, and 3 respec-
tively, and as the genus grows higher, the number of degenerations increases

2 We have a similar notion in singularity theory, that is, a star-shaped singularity:
A singularity V is star-shaped if the dual graph of the exceptional set in the
resolution space of V is star-shaped, e.g. a singularity with C

×-action. See [OW],
[Pn].
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rapidly. This fact motivates us to consider another kind of classification —
“classification of degenerations modulo deformations”. Before we explain it,
we review related materials from Morse theory, which elucidates the relation-
ship between the shapes of smooth manifolds and smooth functions on them.
One of the key ingredients of Morse theory is the Morse Lemma, asserting that
we may perturb a smooth function f : M → R in such a way that ft : M → R

has only non-degenerate critical points. A non-degenerate critical points is
stable under arbitrary perturbation, and so the Morse lemma ensures that we
may split critical points of f into stable ones under perturbation. Of course,
the Morse lemma is a result in the smooth category, but its spirit is car-
ried over to the complex category, for instance, Morsification of singularities:
When does an isolated singularity V admits a deformation {Vt} such that Vt

for t �= 0 possesses only A1-singularities? (It is known that any hypersurface
isolated singularity admits a Morsification, e.g. see Dimca [Di] p82)

We next explain Morsification of singular fibers, which was advocated by
M. Reid [Re]. First of all, we review splitting deformations.

Splitting deformations of degenerations

Let Δ† := {t ∈ C : |t| < ε} be a sufficiently small disk. Suppose that
M is a complex 3-manifold, and Ψ : M → Δ × Δ† is a proper flat surjective
holomorphic map. We set Mt := Ψ−1(Δ×{t}) and πt := Ψ|Mt

: Mt → Δ×{t}.
(Hereafter, we denote Δ × {t} simply by Δ, so that πt : Mt → Δ.) We say
that Ψ : M → Δ × Δ† is a deformation family of π : M → Δ if π0 : M0 → Δ
coincides with π : M → Δ. In this case, πt : Mt → Δ is referred to as a
deformation of π : M → Δ.

Suppose that πt : Mt → Δ for t �= 0 has at least two singular fibers, say,
X1, X2, . . . , Xn (n ≥ 2). Then we say that Ψ : M → Δ × Δ† is a splitting
family of the degeneration π : M → Δ, and that πt : Mt → Δ is a splitting
deformation of π : M → Δ. In this case, we say that the singular fiber
X = π−1(0) splits into X1, X2, . . . , Xn.

To the contrary, if a singular fiber X admits no splitting deformations
at all, the degeneration π : M → Δ is called atomic. The singular fiber of
the atomic degeneration is called an atomic fiber. (Caution: This terminology
is not completely rigorous, because a singular fiber does not determine the
topological type of a degeneration, so we must use it with care.) A Lefschetz
fiber (i.e. a reduced curve with one node) and a multiple mΘ of a smooth
curve Θ, where m ≥ 2 is an integer, are examples of atomic fibers (see [Ta,I]).

A Morsification of a degeneration π : M → Δ is a splitting family Ψ : M →
Δ × Δ† such that for t �= 0, all singular fibers of πt : Mt → Δ are atomic
fibers. Unfortunately this notion is too restrictive, as many degenerations of
high genus seem to admit no Morsifications. Instead, we work with a weaker
notion “a finite-stage Morsification”, defined as follows. If π : M → Δ is
not atomic, take a splitting family Ψ : M → Δ × Δ†, say, X splits into
X1, X2, . . . , Xn (the first-stage splitting). If all singular fibers X1, X2, . . . , Xn
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are atomic, the first-stage splitting is a Morsification. If some Xi is not atomic,
then take a sufficiently small neighborhood Mi of Xi in Mt, and then consider
the restriction of πt to Mi, which is a degeneration πi : Mi → Δ (called
the fiber germ of Xi in πt : Mt → Δ). Next, take a splitting family Ψi :
Mi → Δ × Δ† of πi : Mi → Δ, say, Xi splits into Xi,1, Xi,2, . . . , Xi,m (the
second-stage splitting). Repeating this process, we finally reach to a set of
atomic fibers, say, X ′

1, X
′
2, . . . , X

′
l : Under the finite-stage Morsification, X

splits into atomic fibers X ′
1, X

′
2, . . . , X

′
l . In this case, we obtain a smooth

4-manifold M ′ together with a locally holomorphic map π′ : M ′ → Δ such
that (1) M ′ is diffeomorphic to M and (2) all singular fibers X ′

1, X
′
2, . . . , X

′
l of

π′ are atomic. Here, “locally holomorphic map” means that M ′ has a complex
structure around X ′

i, and π′ is holomorphic with respect to this complex
structure. A finite-stage Morsification of a degeneration is useful for studying
the topological types of fibered algebraic surfaces.

There is another motivation from algebraic geometry to study Morsifica-
tion, inspired by the following question: How does an invariant of a degen-
eration (e.g. local signature, Horikawa index [AA1]) behave under splitting.
Specifically, let inv(π) be some invariant of a degeneration π : M → Δ. Sup-
pose that πt : Mt → Δ is a splitting deformation, which splits the singular
fiber X into singular fibers X1, X2, . . . , Xn. Then find a formula of the form

inv(π) =
n∑

i=1

inv(πi) + c,

where πi : Mi → Δ is a fiber germ of Xi in Mt, and c is a “correction term”.
For these problems, we refer the reader to excellent surveys [AE], [AK], and
also [Re].

A primary concern of the Morsification problem of degenerations is to clas-
sify all atomic degenerations. The number of atomic degenerations of genus g
must be much less than that of all degenerations of genus g, and so this prob-
lem leads us to a reasonable classification — classification of degenerations
modulo deformations.

When is a degneration atomic? Before we discuss this problem, we explain
several methods to construct splitting families.

Double covering method for hyperelliptic degenerations

A hyperelliptic curve C is a complex curve which admits a double covering
C → P

1 branched over 2g + 2 points on P
1, where g = genus(C). (All com-

plex curves of genus 1 and 2 are hyperelliptic.) A degeneration π : M → Δ
is called hyperelliptic provided that any smooth fiber π−1(s) is a hyperellip-
tic curve. In this case, the total space M is expressed as a double covering
M → P

1 × Δ branched over a complex curve (branch curve) B in P
1 × Δ,

and conversely from this double covering, we may recover the hyperelliptic
degeneration π : M → Δ. (Precisely speaking, instead of M , we need to take
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a (singular) complex surface M ′ which is bimeromorphic to M .) A deforma-
tion Bt (t ∈ Δ†) of the branch curve B induces a deformation Mt → P

1 × Δ
(a family of double coverings branched over Bt) of M → P

1 ×Δ, which yields
a deformation πt : Mt → Δ of the degeneration π : M → Δ. If we choose
a suitable deformation Bt of the branch curve B, then πt : Mt → Δ is a
splitting deformation. This construction is called the double covering method,
originally due to B. Moishezon [Mo] for the genus 1 case; then applied for the
genus 2 case by E. Horikawa [Ho], and finally Ashikaga and Arakawa [AA1]
generalized to hyperelliptic degenerations of arbitrary genus.

Note that all degenerations of genus 1 and 2 are hyperelliptic, and so
the double covering method is powerful for them. However, a complex curve
of genus ≥ 3 is not necessarily hyperelliptic. Accordingly, there are non-
hyperelliptic degenerations of genus ≥ 3, for which the double covering
method cannot be applied.

In this book, we develop a new deformation theory, which is applicable to
any degeneration, irrespective of whether it is hyperelliptic or not. Specifically,
we introduce the concept of barking deformations of degenerations, and then
derive their properties (here “bark” is that of a tree, not that of a dog.)

Barking deformations

The construction of barking deformations is very geometric. In the simplest
case, a barking deformation is — intuitively speaking — obtained by barking
(peeling) a special subdivisor of the singular fiber from the singular fiber. As
applications, we (1) deduce powerful criteria for the splittability of degener-
ations, (2) provide interesting examples of splitting deformations which lead
to the “class number problem” for degenerations, and (3) determine absolute
atoms of genus 3,4, and 5. (Genus 1 and 2 case has already been known.)

Now we shall take a close look at topics of this book.

Construction of barking deformations

To simplify the explanation, for the time being, we only consider stellar sin-
gular fibers. Recall that a stellar singular fiber has a central irreducible com-
ponent (a core), and chains of projective lines (branches) are attached to the
core. We express X = m0Θ0 +

∑N
j=1 Br(j), where Θ0 is the core with the

multiplicity m0 and Br(j) is a branch: Br(j) intersects Θ0 transversely at one
point.

The construction of a barking deformation proceeds as follows. Take a set
of special subdivisors (called crusts) of the singular fiber X: A crust is a sub-
divisor contained in X satisfying certain arithmetic and analytic conditions.
We then associate the set of crusts with an “initial deformation” around the
core. Next, we propagate the initial deformation along all branches of X. Al-
though the propagation is not always possible, if it is possible, we obtain a
barking deformation of the degeneration π : M → Δ.
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In general, a barking deformation is constructed from a set of crusts. When
can we construct a barking deformation from a single crust? For a stellar
singular fiber, we may completely answer this question by characterizing such
a crust in terms of some arithmetic condition. (This is not the case for a
constellar singular fiber, which generally has more deformations.) The answer
is very simple. The subbranches of such a crust must be one of three types Al,
Bl, and Cl, and the converse is also valid. For the definition of types Al, Bl,
and Cl, we refer the reader to Definition 9.1.1, p154.

Moreover, we establish the following result (see p283).

Theorem 3 Let π : M → Δ be a linear degeneration with a stellar singular
fiber X (see Remark below for “linear degeneration”). Suppose that X contains
a subdivisor lY such that Y is a crust and any subbranch of Y is either of type
Al, Bl, or Cl. Then π : M → Δ admits a barking family Ψ : M → Δ × Δ†

which barks lY from X. Conversely if a barking family barks a subdivisor lY
from X, then any subbranch of Y is either of type Al, Bl, or Cl.

Remark 4 Roughly speaking, a degeneration is linear if for any irreducible
component of the singular fiber X, its tubular neighborhood is biholomorphic
to its normal bundle. Essentially, we need this assumption only for irreducible
components of genus ≥ 2. Indeed, for an irreducible component of genus 0
or 1 with the negative self-intersection number, its tubular neighborhood is
always biholomorphic to its normal bundle (Grauert’s Theorem [Gr]).

In Theorem 3, the deformation restricted to the tubular neighborhood of
a branch of X is also said to be of type Al, Bl, or Cl, the type corresponding
to that of the subbranch of Y . These three types of deformations possess very
beautiful geometric patterns. Among all, type Cl has interesting periodicity
(or symmetry). See Figure 12.3.1, p221 for example.

Theorem 3 is generalized to constellar singular fibers as follows (see p332).

Theorem 5 Let π : M → Δ be a linear degeneration with a constellar sin-
gular fiber X. Suppose that X contains a subdivisor lY such that Y is a crust
and any subbranch and subtrunk of Y are either of type Al, Bl or Cl. Then
π : M → Δ admits a barking family Ψ : M → Δ×Δ† which barks lY from X.
(The converse is not true. See §18.4, p320, and in particular Example 18.4.2.)

Based on this theorem, we introduce an important concept. Let lY be
a subdivisor of X such that (1) Y is a crust and (2) any subbranch and
subtrunk of Y are either of type Al, Bl, or Cl. Then we say that Y is a simple
crust and l is the barking multiplicity of Y . Using this terminology, the above
theorem is simply stated as: If a singular fiber contains a simple crust, then
the degeneration admits a barking family. We denote this barking family by
Ψ : M → Δ × Δ†. For a singular fiber Xs,t := Ψ−1(s, t) in πt : Mt → Δ
(t �= 0), we say that Xs,t is the main fiber if s = 0, and a subordinate fiber
if s �= 0: The original singular fiber X splits into one main fiber and several
subordinate fibers. In §16.4, p288, we describe main and subordinate fibers in
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details. It is noteworthy that the main fiber is generally non-reduced (some
irreducible component has multiplicity at least 2); whereas each subordinate
fiber is reduced, and all singularities on it are A-singularities.

Class number problem for degenerations

Assume that a degeneration π : M → Δ has two splitting families Ψ : M →
Δ × Δ† and Ψ′ : M′ → Δ × Δ†. We say that Ψ and Ψ′ are topologically
equivalent if there exist orientation preserving homeomorphisms H : M → M′

and h : Δ×Δ† → Δ×Δ† such that h(0, 0) = (0, 0) and the following diagrams
are commutative:

M
Ψ

��

H �� M′

Ψ′
��

Δ × Δ† h �� Δ × Δ†,

Mt

πt

��

Ht �� M ′
t

π′
t

��
Δ × {t} ht �� Δ × {t},

where Ht := H|Mt
and ht := h|Δ×{t} are restrictions of H and h respectively.

(Note: If Ψ and Ψ′ are topologically equivalent, then for each t, πt : Mt → Δ
and π′

t : M ′
t → Δ are topologically equivalent. But the converse is not true.)

Barking deformations provide interesting examples of topologically different
splitting deformations. For instance, we show (see §20.2, p349)

Theorem 6 Let π : M → Δ be a degeneration of elliptic curves with the
singular fiber II∗ (Kodaira’s notation [Ko1]). Then

(1) there exist splitting families Ψ and Ψ′ that split II∗ into III∗ and I1, but
Ψ and Ψ′ are topologically different, and

(2) there exist splitting families Ψ and Ψ′ that split II∗ into I∗3 and I1, but Ψ
and Ψ′ are topologically different.

Based on this result, we propose the following problem:

Problem 7 (Class number problem for degenerations) Let π : M →
Δ be a degeneration. Assume that Ψ : M → Δ × Δ† is a splitting family of
π : M → Δ, which splits X into X1, X2, . . . , Xn. Then how many topologically
different splitting families that split X into X1, X2, . . . , Xn do there exist?

(The class number of the splitting X �→ X1, X2, . . . , Xn is the number of
topologically different splitting families that yield this splitting. It is named
after the class number of an algebraic number field; roughly, it measures the
deviation from unique factorizations of prime ideals.) We will explore this
problem in some other paper.

Classification of atomic degenerations

We have another important application of barking deformations, namely, to
the classification of atomic degenerations. Recall that a degeneration is atomic
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provided that it does not admit any splitting family at all. If a singular fiber
is either a reduced curve with one node (Lefschetz fiber) or a multiple of a
smooth curve, then the degeneration is atomic (see [Ta,I]). This statement
is valid regardless to genus, whereas the complete classification of atomic
degenerations had been known only for low genus case (genus 1 and 2); the
case of genus 1 was done by B. Moishezon [Mo], and that of genus 2 by
E. Horikawa [Ho] with some result of Arakawa and Ashikaga [AA1]

Remark 8 [Ho] showed that if a singular fiber of genus 2 is not a Lefschetz
fiber, then it splits into singular fibers of type I1 and type 0, where “type I1”
is a reducible Lefschetz fiber, that is, two elliptic curves intersecting at one
point. On the other hand, any singular fiber of type 0 splits into irreducible
Lefschetz fibers by Corollary 4.12 of [AA1].

The list of singular fibers of atomic degenerations of genus 1 and 2 is the
following:

atoms
genus 1
(Moishezon [Mo])

mΘ, where m ≥ 2 and Θ is a smooth elliptic curve,
any reduced curve with one node (Lefschetz fiber)

genus 2
(Horikawa [Ho])

any reduced curve with one node (Lefschetz fiber)

What can we say about genus 3 or higher genus case? In [Re] p5, a conjecture
due to Xiao Gang is stated:

“A singular fiber X is atomic precisely when X has either a single node,
or is a multiple of a smooth curve, or has some other combination of singu-
larities forced by the monodromy, or has a linear system special in the sense
of moduli.”

M. Reid also conjectured that an atomic fiber of genus 3 is either a Lef-
schetz fiber (a reduced curve with one node) or a multiple curve 2Θ where Θ
is a smooth curve of genus 2.

In [Ta,I] (see §1.2, p30 of this book for the summary), we showed that a
degeneration with a constellar singular fiber almost always admits a splitting
family. This result is valid for any genus, and so the classification problem re-
duces to checking the splittability for the ‘remaining case’ (we explain soon).
Before proceeding, we point out that for genus at least 3, there are a lot of de-
generations which are topologically equivalent but analytically inequivalent:
see Remark below. So, there may be two topologically equivalent degenera-
tions such that one is atomic but another is not. This indicates that for genus
at least 3, the notion of atomicness is too strong. We work instead with a
weaker notion: “absolutely atomic”.

Remark 9 If a singular fiber has an irreducible component, say Θ, of genus
at least 2, then the tubular neighborhood of Θ in M is analytically not unique.
To the contrary, for an irreducible component of genus 0 or 1 with the negative
self-intersection number, its tubular neighborhood is always biholomorphic to
its normal bundle by Grauert’s Theorem [Gr].
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A degeneration is called absolutely atomic if any degeneration with the
same topological type is atomic. So, if a degeneration π : M → Δ has a
topologically equivalent degeneration π′ : M ′ → Δ that admits a splitting
family, then π : M → Δ is not absolutely atomic.

We proposed in [Ta,I]:

Conjucture 10 A degeneration is absolutely atomic if and only if its singular
fiber is either a reduced curve with one node, or a multiple of a smooth curve.

Now we explain our idea to classify absolute atoms. We intend to carry
it out by induction on genus. Namely, suppose that Conjecture 10 is valid
for genus ≤ g − 1. According to [Ta,I], under this assumption, to classify
absolutely atomic degenerations of genus g, we only have to investigate the
splittability for degenerations π : M → Δ such that either

(A) X = π−1(0) is stellar, or
(B) X is constellar and (B.1) X has no multiple node and (B.2) if X has an

irreducible component Θ of multiplicity 1, then Θ is a projective line, and
intersects other irreducible components of X only at one point (hence Θ
intersects only one irreducible component).

To these cases, we apply Theorems 3 and 5 and their variants (see criteria
below). Namely, we try to find a simple crust (or its generalization “a crustal
set”) of a singular fiber in (A) or (B): See the list of simple crusts for genus ≤ 5
in p487. As a result, we obtain the complete classification of absolute atomic
degenerations of genus 3, 4, and 5 as follows.

absolute atoms

genus 3
2Θ, where Θ is a smooth curve of genus 2,
any reduced curve with one node (Lefschetz fiber)

genus 4
3Θ, where Θ is a smooth curve of genus 2,
any reduced curve with one node (Lefschetz fiber)

genus 5
4Θ, where Θ is a smooth curve of genus 2,
2Θ, where Θ is a smooth curve of genus 3,
any reduced curve with one node (Lefschetz fiber)

This classification also confirms the validity of Conjecture 10 for genus ≤ 5.
(For the genus 6 case, we also checked the validity of this conjecture for a
large class of degenerations including those with stellar singular fibers.)

We remark that T. Arakawa and T. Ashikaga [AA1], [AA2] classified ab-
solute atoms among degenerations of “hyperelliptic” curves of genus 3; they
used the double covering method.

Main criteria for splittability

Now we state our main criteria for splittability. In what follows, unless oth-
erwise mentioned, we assume that degenerations are linear (see Remark 4).
First of all, for stellar singular fibers, we shall exhibit criteria which are derived
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from Theorem 3. Let π : M → Δ be a degeneration with a stellar singular
fiber X. We denote X by

X = m0Θ0 +
N∑

j=1

Br(j),

where Br(j) = m
(j)
1 Θ(j)

1 + m
(j)
2 Θ(j)

2 + · · · + m
(j)
λj

Θ(j)
λj

is a branch (a chain of
projective lines) emanating from the core (the central component) Θ0. See
p284 for the following criterion.

Criterion 11 Let π : M → Δ be a degeneration with a stellar singular fiber
X = m0Θ0 +

∑N
j=1 Br(j). Then the following statements hold:

(1) Suppose that the core Θ0 is an exceptional curve (i.e. Θ0 is a projective
line such that Θ0 · Θ0 = −1). Then π : M → Δ admits a splitting family.

(2) Suppose that the core Θ0 is not an exceptional curve. If X contains a
simple crust Y , then π : M → Δ admits a splitting family.

(The splitting families in (1) and (2) can be explicitly described.)

See p285 for the following criterion.

Criterion 12 Let π : M → Δ be a degeneration with a stellar singular fiber

X = m0Θ0 +
∑N

j=1 Br(j). Set r = m
(1)
1 + m

(2)
1 + · · · + m(N)

1
m0

. Suppose that the
following conditions (A) and (B) are satisfied:

(A) N0
∼= OΘ0(−p

(1)
1 − p

(2)
1 − · · · − p

(r)
1 ) where N0 is the normal bundle of Θ0

in M and p
(j)
1 ∈ Θ0 is the intersection point of Θ0 and Br(j),

(B) there are r branches among all branches of X, say, Br(1),Br(2), . . . ,Br(r),
satisfying the following conditions:
(B1) for j = 1, 2, . . . , r, there exists an integer ej where 1 ≤ ej ≤ λj such

that m
(1)
e1 = m

(2)
e2 = · · · = m

(r)
er , and

(B2) for j = 1, 2, . . . , r, each irreducible component Θ(j)
i (i = 1, 2, . . . , ej−

1) has the self-intersection number −2 (this condition is vacuous for
j such that ej = 1).

Then π : M → Δ admits a splitting family which is explicitly constructed
from the above data. (Note: (A) is an analytic condition, while (B) is a nu-
merical one.)

When Θ0 is a projective line, the above criterion takes a simpler form (see
p286):

Criterion 13 Let π : M → Δ be a degeneration with a stellar singular fiber

X = m0Θ0 +
∑N

j=1 Br(j). Set r = m
(1)
1 + m

(2)
1 + · · · + m(N)

1
m0

. Assume that Θ0

is a projective line. Suppose that there are r branches among all branches of
X, say, Br(1),Br(2), . . . ,Br(r), satisfying the following conditions:

(B1) for j = 1, 2, . . . , r, there exists an integer ej where 1 ≤ ej ≤ λj such that
m

(1)
e1 = m

(2)
e2 = · · · = m

(r)
er ,
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(B2) for j = 1, 2, . . . , r, each irreducible component Θ(j)
i (i = 1, 2, . . . , ej − 1)

has the self-intersection number −2.

Then π : M → Δ admits a splitting family.

We next exhibit splittability criteria for constellar singular fibers (see
p293).

Criterion 14 (Trivial Extension Criterion) Let X1 (resp. X2) be a stel-
lar singular fiber of π1 : M1 → Δ (resp. π2 : M2 → Δ), and let Br1 (resp.
Br2) be a branch of X1 (resp. X2). Let X be a constellar singular fiber of
π : M → Δ obtained from X1 and X2 by κ-bonding of Br1 and Br2, where κ
(κ ≥ −1) is an integer. (Note: Br1 and Br2 are joined to become a “κ-trunk”
Tk of X. See p293.) Suppose that X1 contains a simple crust Y1 such that in
the case κ = −1,

ρ(br1) + 1 ≤ length(Tk),

where ρ(br1) is the propagation number of the subbranch br1 of Y1 contained
in Br1 (see (16.4.2), p291). Then the barking family of π1 : M1 → Δ associated
with Y1 ‘trivially ’ extends to that of π : M → Δ.
(This criterion is easily generalized to the case where X is obtained by bonding
an arbitrary number of stellar singular fibers.)

From Criterion 14, for a degeneration with a constellar singular fiber, we may
almost always use a simple crust of some stellar singular fiber to construct its
splitting family. Thus the essential part of the classification of absolute
atoms reduces to the stellar case — precisely speaking, there are some
exceptional constellar cases which are not covered by Criterion 14.

We note that stellar singular fibers are much fewer than constellar ones.
For example, in genus 3 there are about 1600 singular fibers and only about
50 stellar ones among them (see [AI]). We also note that by Criterion 11
(1), if the core of a stellar singular fiber is an exceptional curve, then the
singular fiber admits a splitting. Hence we only need to check the splittability
of stellar singular fibers whose cores are not exceptional curves — our criteria
drastically reduce the number of singular fibers whose splittability must be
checked.

Finally we state a very powerful criterion (see p343).

Criterion 15 Let π : M → Δ be a degeneration of genus g with the singular
fiber X. Then π : M → Δ admits a splitting family if either (1), (2), or (3)
below holds:

(1) X contains a simple crust Y such that either
(1a) Y contains no exceptional curve, or
(1b) the barking genus gb(Y ) �= g (hence ≤ g − 1).

(2) X contains an exceptional curve Θ0 such that
(2a) at least one irreducible component of X intersecting Θ0 is a projective

line, say this component Θ1, and
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(2b) any irreducible component of X intersecting Θ0 satisfies the tensor
condition with respect to the subdivisor Y = Θ0 + Θ1.

(3) X contains an exceptional curve Θ0 such that any irreducible component
intersecting Θ0 is a projective line. (Note: If X is stellar, noting that Θ0

must be the core, this condition is always satisfied.)

Organization of this book

This book is organized as follows. In Part I, after introducing basic definitions,
we explain the idea of barking deformations by means of examples without
mentioning much theoretical background. We also give instruction on how
to draw “figures of deformations”, which is extremely useful to understand
geometric nature of barking deformations. We hope that Part I gives the
reader a perspective of what will be going on. Part II is devoted to detail
study of deformations of tubular neighborhoods of branches. Some arithmetic
properties of multiplicities are deeply related to the existence of deformations.
In Part III, based on the results of Part II, we introduce the notion of barking
deformations for degenerations of compact complex curves. Theorems 3 and
5 above are proved there. Furthermore we will derive important splittability
criteria of singular fibers from these theorems.

In Part IV, we describe the subordinate fibers. We show that the singular-
ities of a subordinate fiber are A-singularities. Moreover, we give the formulas
of the number of the singularities on one subordinate fiber as well as the
formula of the number of all subordinate fibers in a barking family.

In Part V, we provide the list of representative crusts for a large class of
singular fibers of genus from 1 to 5, which is enough for the purpose of classi-
fying absolute atoms. As a consequence we obtain the complete classification
of absolute atoms of genus from 1 to 5.

General advice: Most of chapters contain a section which computes the dis-
criminants of deformations — the discriminant of a family Ψ : M → Δ×Δ† is
a plane curve in Δ×Δ†, given by D = {(s, t) ∈ Δ×Δ† : Ψ−1(s, t) is singular}.
This section is slightly technical, and for the first reading, it may be efficient
to skip it.

Without figures, it is hard to comprehend or appreciate barking deforma-
tions, and for this reason, I included representative figures. I intended to make
this book accessible to researchers studying algebraic geometry, low dimen-
sional topology, and singularity theory. I am very happy if I could share my
enthusiasm on this subject with the reader.

Acknowledgment. I am extremely indebted to Professors Tadashi Ashik-
aga, Yukio Matsumoto and Fumio Sakai, to whom I would like to express
my deep gratitude. I would like to sincerely thank Professor Oswald Riemen-
schneider for useful conversations on deformations of singularities. I would
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Toshizumi Fukui, Toru Gocho, Colin Ingalls, Masaharu Ishikawa, Mizuho
Ishizaka, Toshio Ito, Yuichi Yamada, for fruitful discussions and comments.
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sity, Tohoku University, and Tokyo University which were of a great help in
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to thank the Max-Planck-Institut für Mathematik at Bonn, and the Research
Institute for Mathematical Sciences at Kyoto University for hospitality and
financial support. This work was partially supported by a grant from JSPS.



Notation

1. Δ = {s ∈ C : |s| < δ} and Δ† = {t ∈ C : |t| < ε}
2. OM : the sheaf of germs of holomorphic functions on a complex manifold

M
3. fz: the derivative df

dz
of a function f(z)

4. P
1: the projective line (Riemann sphere)

5. For a divisor D =
∑

i miΘi on a smooth complex surface,

D ≥ 0 : D is a nonnegative divisor, i.e. mi ≥ 0 for all i

D > 0 : D is an effective (or positive) divisor, i.e. mi > 0 for all i

D ≥ D′ : D − D′ is a nonnegative divisor

Dred :=
∑

i

Θi : the underlying reduced curve of D

Supp(D) : the support of D, i.e. Dred as a topological space

We say that D is connected if Supp(D) is connected as a topological space,
and that D intersects D′ at a point p if Supp(D) intersects Supp(D′) at
p.

6. X =
∑

i miΘi: a singular fiber where mi is the multiplicity of an irre-
ducible component Θi

Y =
∑

i niΘi: a subdivisor of X, so ni satisfies 0 ≤ ni ≤ mi. Symbolically
this condition is expressed by the notation 0 ≤ Y ≤ X.

7. Xs,t := Ψ−1(s, t): a fiber of a deformation family Ψ : M → Δ × Δ†

8. Θi ·Θi: the self-intersection number of Θi. A projective line with the self-
intersection number −n is called a (−n)-curve; a (−1)-curve is also called
an exceptional curve (of the first kind).

9. (Θi · Θi)Y : the formal self-intersection number of Θi with respect to a
subdivisor Y , p65

10. Br = m1Θ1 + m2Θ2 + · · · + mλΘλ: an unfringed branch,
Br = m0Δ0 + m1Θ1 + m2Θ2 + · · · + mλΘλ: a fringed branch (m0Δ0 is a
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fringe and Δ0 is an open disk), p86. Both unfringed branches and fringed
branches are often simply called branches.

11. br := Br∩ Y : a fringed subbranch p281, contained in a fringed branch Br
of a subdivisor Y

12. X = m0Θ0+
∑N

j=1 Br(j): a stellar (star-shaped) singular fiber where Θ0 is

the central component (the core) of X, and Br(j) = m
(j)
1 Θ(j)

1 +m
(j)
2 Θ(j)

2 +
· · · + m

(j)
λj

Θ(j)
λj

is a branch

13. For a stellar singular fiber X = m0Θ0 +
∑N

j=1 Br(j),

• p
(j)
1 ∈ Θ0: the intersection point of the core Θ0 and a branch Br(j), i.e.

the attachment point of a branch to the core
• N0 (resp. N

(j)
i ): the normal bundle of Θ0 (resp. Θ(j)

i ) in M
• σ: the standard section of X, which is a holomorphic section of

N
⊗(−m0)
0 such that div(σ) =

∑N
j=1 m

(j)
1 p

(j)
1 , i.e. σ has a zero of or-

der m
(j)
1 at each point p

(j)
1 (j = 1, 2, . . . , N)

• Y = n0Θ0 +
∑N

j=1 br(j): a crust of X, where br(j) = n
(j)
1 Θ(j)

1 +

n
(j)
2 Θ(j)

2 + · · · + n
(j)
ej Θ(j)

ej is a subbranch of Br(j)

• τ : a core section of a crust Y , which is a meromorphic section of N⊗n0
0

with a pole of order n
(j)
1 at p

(j)
1 (j = 1, 2, . . . , N)

14. m = (m0,m1, . . . , mλ) for a fringed branch Br = m0Δ0 + m1Θ1 + · · · +
mλΘλ

15. n = (n0, n1, . . . , ne) for a fringed subbranch br = n0Δ0+n1Θ1+· · ·+neΘe

16. DAe : a deformation atlas of length e, p88
17. DAe−1(Y, d) : a deformation atlas of length e− 1 and weight d associated

with a subbranch Y of length e, p90
18. The following continued fraction

r1 −
1

r2 −
1

r3 − . . . − 1
rδ

will be denoted by r1 − 1
r2

− 1
r3

− · · · − 1
rδ .

19. fi := f(wpi−1ηpi) and f̂i := f(zpi+1ζpi), (i = 1, 2, . . . , λ): a sequence of
holomorphic functions associated with a branch Br = m1Θ1 + m2Θ2 +
· · ·+mλΘλ and a holomorphic function f(z) (see p106). Here, nonnegative
integers p0, p1, . . . , pλ+1 are inductively defined by{

p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ,

where ri = −Θi · Θi (that is, −ri is the self-intersection number of Θi).
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20. lCk: the number of choices of k elements from the set of l elements, i.e.(
l

k

)
21. type B�

l : non-proportional type Bl (this notation is used only in tables),
p157

22. �(A) := e1�1 + e2�2 + · · · + en�n: the length of a waving polynomial

A(w, η, t) = wuP e1
1 P e2

2 · · ·P en
n ,

where Pi =
∏�i

j=1(wη + tβ
(i)
j ), p186

23. DAe−1(Y,d): a deformation atlas of weight d = {d1, d2, . . . , dl} associ-
ated with a bunch Y = {Y1, Y2, . . . , Yl}, p258

24. div(τ) =
∑

i aipi −
∑

j bjqj : the divisor defined by a meromorphic section
τ of a line bundle on a complex curve C; τ has a zero of order ai at pi

and a pole of order bj at qj , p266
25. DAe = {W0 , DA

(j)
ej }j=1,2,...,N : a deformation atlas of size e for a stellar

singular fiber X = m0Θ0 +
∑N

j=1 Br(j), where
(i) W0 is a deformation of W0 parameterized by Δ × Δ†, and

(ii)DA
(j)
ej = {H(j)

i , H(j)
i

′
g
(j)
i }i=1,2,...,ej

is a deformation atlas of length
ej for a branch Br(j) such that under a coordinate change (z0, ζ0) =
(η(j)

1 , w
(j)
1 ) around p

(j)
1 , the equation of W0 becomes that of H(j)

1 , p270
26. D1 ∼ D2: two divisors D1 and D2 are linearly equivalent, p272
27. ρ(br(j)): the propagation number of a subbranch br(j) of type Al, Bl, or

Cl, defined by

ρ(br(j)) =

⎧⎪⎨⎪⎩
e + 1 if br(j) is of type Al

e if br(j) is of type Bl

f if br(j) is of type Cl,

where e is the length of br(j), and for f , see the explanation following
(16.4.2), p291

28. gb(Y ): the barking genus of a simple crust Y , p295
29. Tk = m1Θ1 + m2Θ2 + · · · + mλΘλ: an unfringed trunk,

Tk = m0Δ0 + m1Θ1 + m2Θ2 + · · ·+ mλΘλ + mλ+1Δλ+1: a fringed trunk
(m0Δ0 and mλ+1Δλ+1 are fringes, and Δ0 and Δλ+1 are open disks),
p310. Both unfringed trunks and fringed trunks are often simply called
trunks.

30. tk := Tk ∩ Y : a fringed subtrunk p330, contained in a fringed trunk Tk
of a subdivisor Y

31. X → X1 + X2 + · · · + Xn: A singular fiber X splits into singular fibers
X1, X2, . . . , Xn, p351
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Basic Notions and Ideas
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Splitting Deformations of Degenerations

1.1 Definitions

Herein, Δ := {s ∈ C : |s| < 1} stands for the unit disk. Let π : M → Δ
be a proper1 surjective holomorphic map from a smooth complex surface
M to Δ such that (1) π−1(0) is singular and (2) π−1(s) for nonzero s is a
smooth complex curve of genus g. We say that π : M → Δ is a degeneration
of complex curves of genus g with the singular fiber X := π−1(0). Unless
otherwise mentioned, we always assume that g ≥ 1.

Two degenerations π1 : M1 → Δ and π2 : M2 → Δ are called topo-
logically equivalent if there exist orientation preserving homeomorphisms
H : M1 → M2 and h : Δ → Δ such that h(0) = 0 and the following dia-
gram is commutative:

M1
H ��

π1

��

M2

π2

��
Δ

h �� Δ.

Next, we introduce basic terminology concerned with deformations of de-
generations. We take another disk Δ† := {t ∈ C : |t| < ε} where ε is
sufficiently small. Suppose that M is a smooth complex 3-manifold, and
Ψ : M → Δ × Δ† is a proper flat surjective holomorphic map. (Note: Unless
we pose “flatness”, a fiber of Ψ is possibly 2-dimensional, e.g. blow up of M
at one point.) We set Mt := Ψ−1(Δ × {t}) and πt := Ψ|Mt

: Mt → Δ × {t}.
Since M is smooth and dim Δ† = 1, the composite map pr2 ◦ Ψ : M → Δ†

is a submersion, and so Mt is smooth. We say that Ψ : M → Δ × Δ† is
a deformation family of π : M → Δ if π0 : M0 → Δ × {0} coincides with
π : M → Δ. By convention, we often denote Δ×{t} simply by Δ, and we say
that πt : Mt → Δ is a deformation of π : M → Δ.

We introduce a special class of deformation families of a degeneration. At
first, we suppose that π : M → Δ is relatively minimal, i.e. any irreducible

1 “Proper” means that all fibers are compact.
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X1 X2 X3

πt

Mt

Δt

splitting

X M0

Δ0

π0

Fig. 1.1.1.

component of its singular fiber is not an exceptional curve2 (a projective line
with the self-intersection number −1). Then a deformation family Ψ : M →
Δ × Δ† is said to be a splitting family of π : M → Δ provided that for each
t �= 0, πt : Mt → Δ has at least two singular fibers. In this case we say that
πt : Mt → Δ is a splitting deformation of π : M → Δ, and if X1, X2, . . . , Xl

(l ≥ 2) are singular fibers of πt : Mt → Δ, then we say that X splits into
X1, X2, . . . , Xl. See Figure 1.1.1. We remark that for sufficiently small t �= 0,
the number l of the singular fibers is independent of t. In fact, the discriminant
D ⊂ Δ×Δ† (the locus consisting of points (s, t) such that the fiber Ψ−1(s, t)
is singular) of Ψ : M → Δ × Δ† is a plane curve passing through (0, 0),
and for sufficiently small t �= 0, the number of the points in the intersection
D ∩ (Δ × {t}) is constant, equal to the number l.

The above definition of a splitting family is too restrictive because we are
actually mostly interested in the germ of degenerations, and herein we adopt a
weaker definition, which allows ‘shrinking’ of π : M → Δ. Namely, we say that
π : M → Δ admits a splitting family if for some δ (0 < δ < 1) the restriction
π′ : M ′ → Δ′ := {|s| < δ}, where M ′ := π−1(Δ′) and π′ := π|M ′ , admits
a spitting family in the above sense. For simplicity we adopt the convention
to rewrite π′ : M ′ → Δ′ as π : M → Δ. (The “shrinking procedure” for the
actual case is explained in detail in [Ta,I], p133.)

Next we define the notion of a splitting family for a degeneration π : M →
Δ which is not relatively minimal. We first take a sequence of blow down maps

M
f1−→ M1

f2−→ M2
f3−→ · · · fr−→ Mr,

and degenerations πi : Mi → Δ (i = 1, 2, . . . , r) where

(1) fi : Mi−1 → Mi is a blow down of an exceptional curve in Mi−1, and the
map πi : Mi → Δ is naturally induced from πi−1 : Mi−1 → Δ, and

(2) πr : Mr → Δ is relatively minimal.

Now given a deformation family Ψ : M → Δ × Δ† of π : M → Δ, we
shall construct a deformation family Ψr : Mr → Δ × Δ† of the relatively
2 More precisely, an exceptional curve of the first kind — also called a (−1)-curve.
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minimal degeneration πr : Mr → Δ. First, recall Kodaira’s Stability Theo-
rem [Ko2]: Any exceptional curve in a complex surface is preserved under an
arbitrary deformation of that complex surface. By assumption, π : M → Δ
is not relatively minimal, so that M contains an exceptional curve. Thus by
Kodaira’s Stability Theorem, there exists a family of exceptional curves in
M. Further by [FN], we may blow down them simultaneously to obtain a
deformation family Ψ1 : M1 → Δ of π1 : M1 → Δ. Then, again by Kodaira’s
Stability Theorem, there exists a family of exceptional curves in M1, which
we blow down simultaneously to obtain a deformation family Ψ2 : M2 → Δ
of π2 : M2 → Δ. We repeat this process and finally we obtain a deformation
family Ψr : Mr → Δ of πr : Mr → Δ. Namely, given a deformation fam-
ily Ψ : M → Δ × Δ† of π : M → Δ, we constructed a deformation family
Ψr : Mr → Δ × Δ† of the relatively minimal degeneration πr : Mr → Δ.

After the above preparation, we give the definition of a splitting family
for a degeneration π : M → Δ which is not necessarily relatively minimal:
A deformation family Ψ : M → Δ × Δ† is a splitting family of π : M → Δ
provided that Ψr : Mr → Δ×Δ† is a splitting family of the relatively minimal
degeneration πr : Mr → Δ.

We are interested in such degenerations as are ‘stable’ under deformations.
A degeneration is called atomic if it admits no splitting family at all. One of
our goals is to classify all atomic degenerations.

Topological monodromies

We next define the topological monodromy of a degeneration π : M → Δ; see
[MM2], [Ta,II] for details. We take a circle S1 := { |s| = r } in the unit disk
Δ, where the radius r < 1 and we give a counterclockwise orientation on S1.
Consider a real 3-manifold R := π−1(S1). Then the restriction π : R → S1

is a fibration (all fibers are diffeomorphic); that is, R is a Σ-bundle over S1,
where Σ is a smooth fiber of π : M → Δ. Topologically, R is obtained from
a product space Σ × [0, 1] by the identification of the boundary Σ × {0} and
Σ×{1} via a homeomorphism γ of Σ. The isotopy class of γ — it is an element
of the mapping class group of Σ and it does not depend on the radius r of
S1 — is called the topological monodromy of π : M → Δ. (We usually denote
this isotopy class also by γ.) The topological monodromy measures how the
complex surface M is twisted around the singular fiber X.

We may also define the topological monodromy of π : M → Δ geometri-
cally. Since π : R → S1 is a fibration, the differential dπ has maximal rank.
Thus, using a partition of unity we may construct a vector field v on R such
that dπ(v) = r ∂

∂θ
(see, for example, Theorem 4.1 of [MK]). Here (r, θ) is the

polar coordinates of S1 = { |z| = r }, that is, z = reiθ. Integrating the vector
field v, we obtain a flow on R, which defines a one-parameter family of diffeo-
morphisms hθ : Σ0 → Σθ (0 ≤ θ ≤ 2π): see Figure 1.1.2. We set γ := h2π and
then the diffeomorphism γ : Σ0 → Σ2π (= Σ0) is nothing but the topological
monodromy of π : M → Δ.
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x

h2π(x)

Σθ

Σ0π

r
reiθ

S1

hθ(x)

Fig. 1.1.2.

c2

s2

c1

c

c3

s3

s1

Δ
Fig. 1.1.3. c ∼ c1c2c3 (homotopic)

A splitting family induces a decomposition of the topological monodromy
γ. Suppose that Ψ : M → Δ × Δ† is a splitting family of π : M → Δ,
say, πt : Mt → Δ (t �= 0) has singular fibers X1, X2, . . . , Xl where l ≥ 2.
Take loops ci (with a counterclockwise orientation) in Δ circuiting around
the points si := π(Xi) (i = 1, 2, . . . , l) such that possibly after renumbering,
c ∼ c1c2 · · · cl (homotopic) where c = ∂Δ with a counterclockwise orientation:
see Figure 1.1.3.
Let γi be the topological monodromy around the singular fiber Xi in πt :
Mt → Δ along the loop ci. Then the topological monodromy γ of π : M → Δ
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(B)

l

V V

l

(A)

Fig. 1.1.4. Local model of right Dehn twist: As we approach the central loop l (the
vanishing cycle of a node) on the annulus V , we are forced to move to the right
hand side (all points on the boundary of V are fixed). For the left Dehn twist, we
are forced to move to the left hand side.

admits a decomposition: γ = γ1γ2 · · · γl. If Xi is a reduced curve with one
node (Lefschetz fiber), then the topological monodromy γi is a (right) Dehn
twist: see Figure 1.1.4. In particular, if all X1, X2, . . . , Xl are Lefschetz fibers,
then we obtain a decomposition of γ into Dehn twists — this is a motivation
for topologists to study splitting families.

Normally minimal degenerations

We denote the singular fiber X of a degeneration π : M → Δ by the divisor
expression X =

∑
i miΘi, where a (possibly singular) complex curve Θi is an

irreducible component and a positive integer mi is the multiplicity of Θi. We
say that the degeneration π : M → Δ is normally minimal if X satisfies the
following conditions:

(1) the reduced curve Xred :=
∑

i Θi is normal crossing, and
(2) if Θi is an exceptional curve, then Θi intersects other irreducible compo-

nents at at least three points.

In this case, we also say that the singular fiber X is normally minimal.
Herein, instead of relatively minimal degenerations, we mainly treat nor-

mally minimal degenerations, because their singular fibers reflect the topo-
logical type (and also topological monodromies) of the degenerations very
well [MM2], [Ta,II]. For instance, if π : M → Δ is normally minimal, then
the singular fiber X is either stellar (star-shaped) or constellar (constellation-
shaped). A stellar singular fiber has one irreducible component called a core,
and several branches emanate from the core (there may be no branches): a
branch is a chain of projective lines. A constellar singular fiber is obtained
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from stellar ones by ‘bonding’ their branches (Matsumoto–Montesinos bond-
ing). When we later construct deformations of degenerations, we will explain
stellar/constellar singular fibers in details.

We remark that a singular fiber X is stellar precisely when the topological
monodromy γ is periodic (i.e. γn = id for some positive integer n); while X is
constellar precisely when γ is pseudo-periodic (i.e. γn for some positive integer
n is generated by Dehn twists). We also note that

Lemma 1.1.1 Let π : M → Δ be a normally minimal degeneration of com-
plex curves of genus g (g ≥ 1). Then the topological monodromy γ is trivial if
and only if the singular fiber X = π−1(0) is a multiple mΘ of a smooth elliptic
curve Θ, where m is an integer greater than 1 (note: in this case, g = 1).

Proof. We give only the outline of the proof of the “if” part. (See [MM2] or
[Ta,II] for the converse.) First, note that since X is a multiple mΘ of a smooth
elliptic curve Θ, the quotient space of a smooth fiber (a torus S1 ×S1) under
the γ-action is again a torus. Thus γ : S1 × S1 → S1 × S1 is a ‘rotation’ by
2π
m , that is, isotopic to a map of the form:

(z, w) �−→ (e2πi/mz, e2πin/mw)

where n (0 ≤ n < m) is an integer. This map is isotopic to the identity
map via a family of maps (z, w) �→ (e2πit/mz, e2πitn/mw), where 0 ≤ t ≤ 1.
Therefore, γ is isotopic to the identity map. �

The following lemma is useful.

Lemma 1.1.2 Let π : M → Δ be a normally minimal degeneration of com-
plex curves of genus g (g ≥ 1). Suppose that Ψ : M → Δ×Δ† is a deformation
family of π : M → Δ such that πt : Mt → Δ (t �= 0) has at least two nor-
mally minimal singular fibers. Then Ψ : M → Δ × Δ† is a splitting family of
π : M → Δ.

Proof. We give the proof separately for two cases g ≥ 2 and g = 1. We first
show the assertion for g ≥ 2. Let πr : Mr → Δ be the relatively minimal
degeneration obtained from π : M → Δ by blowing down, and let Ψr :
Mr → Δ × Δ† be the deformation family of πr : Mr → Δ obtained from
Ψ : M → Δ × Δ† by blowing down. By assumption, there are (at least) two
normally minimal singular fibers, say X1 and X2, of πt : Mt → Δ. After
blowing down, the image Xi of Xi (i = 1, 2) in Mr,t := Ψ−1

r (Δ × {t}) has a
nontrivial topological monodromy, because (i) the topological monodromy of
πt around Xi is nontrivial by the assumption g ≥ 2 (see Lemma 1.1.1) and
(ii) a topological monodromy does not change after blowing down. Therefore
X1 and X2 are singular fibers of πr,t : Mr,t → Δ (if Xi is smooth, then
its topological monodromy is trivial — a contradiction!). This implies that
Ψr : Mr → Δ × Δ† is indeed a splitting family, and thus by definition,
Ψ : M → Δ×Δ† is a splitting family. Hence the assertion for g ≥ 2 is proved.
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We next show the assertion for g = 1. If neither X1 nor X2 is a multiple of
a smooth elliptic curve, then the topological monodromies of X1 and X2 are
nontrivial (Lemma 1.1.1); so we may apply the argument for g ≥ 2 to confirm
the assertion. We consider the remaining case: X1 or X2 is a multiple of a
smooth elliptic curve. Note that if Xi is a multiple of a smooth elliptic curve,
then it contains no exceptional curve (in fact, it contains no projective line
at all), and so its image Xi in Mr,t coincides with Xi itself; therefore Xi is a
singular fiber of πr,t : Mr,t → Δ. If Xi is not a multiple of a smooth elliptic
curve, then, as we explained for the case g ≥ 2, the image Xi in Mr,t is also
a singular fiber of πr,t : Mr,t → Δ. Hence, irrespective of whether X1 or X2

is a multiple of a smooth elliptic curve, both images X1 and X2 in Mr,t are
singular fibers of πr,t : Mr,t → Δ. So Ψr : Mr → Δ×Δ† is indeed a splitting
family, and accordingly (by definition), Ψ : M → Δ×Δ† is a splitting family.�

Fake singular fibers

We assume that π : M → Δ is not relatively minimal, and let πr : Mr → Δ be
a relatively minimal degeneration obtained from π : M → Δ by blowing down.
Suppose that Ψ : M → Δ×Δ† is a deformation family of π : M → Δ, and let
Ψr : Mr → Δ × Δ† be the deformation family of πr : Mr → Δ induced from
Ψ : M → Δ×Δ† by blowing down. We note that even if πt : Mt → Δ has at
least two singular fibers — seemingly, a splitting family —, it may occur that
after blowing down, πr,t : Mr,t → Δ has only one singular fiber, where we set
Mr,t := Ψ−1

r (Δ×{t}) and πr,t := Ψr|Mr,t
. After blowing down, a singular fiber

Xt of πt : Mt → Δ possibly becomes a smooth fiber in πr,t : Mr,t → Δ. Such
a singular fiber of πt : Mt → Δ is called fake (see §20.1, p349 for example).
We emphasize that a deformation family Ψ : M → Δ × Δ† is a splitting
family of π : M → Δ precisely when πt : M → Δ has at least two “non-fake”
singular fibers. When π : M → Δ is relatively minimal, any singular fiber of
πt : Mt → Δ is not fake.

Topological types of splitting families

We defined topological equivalences of degenerations. We shall define a similar
notion to splitting families. Suppose that a degeneration π : M → Δ has two
splitting families Ψ : M → Δ×Δ† and Ψ′ : M′ → Δ×Δ†. Then Ψ and Ψ′ are
topologically equivalent if there exist orientation preserving homeomorphisms
H : M → M′ and h : Δ × Δ† → Δ × Δ† such that h(0, 0) = (0, 0) and the
following diagrams are respectively commutative:

M
Ψ

��

H �� M′

Ψ′
��

Δ × Δ† h �� Δ × Δ†,

Mt

πt

��

Ht �� M ′
t

π′
t

��
Δ × {t} ht �� Δ × {t},
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where Ht := H|Mt
and ht := h|Δ×{t} are restrictions of H and h respectively.

We also have a weaker notion; two splitting families are weakly topologically
equivalent if for each t �= 0, there exist homeomorphisms Ht : Mt → M ′

t and
ht : Δ → Δ such that

Mt

πt

��

Ht �� M ′
t

π′
t

��
Δ × {t} ht �� Δ × {t}.

Of course, if two splitting families are topologically equivalent, then they are
weakly topologically equivalent. But the converse is not necessarily true.

1.2 Splitting criteria via configuration of singular fibers

For convenience, we summarize the results (splitting criteria) of [Ta,I].

Theorem 1.2.1 Let π : M → Δ be a degeneration of curves such that the
singular fiber X is either (I) a reduced curve with one node, or (II) a multiple
of a smooth curve of multiplicity at least 2. Then π : M → Δ is atomic.

Criterion 1.2.2 Let π : M → Δ be normally minimal such that the singular
fiber X has a multiple node of multiplicity at least 2. Then there exists a
splitting family of π : M → Δ which splits X into X1 and X2, where X1 is
a reduced curve with one node and X2 is obtained from X by replacing the
multiple node by a multiple annulus.

Criterion 1.2.3 (Multiple Criterion) Let π : M → Δ is normally mini-
mal such that the singular fiber X contains a multiple node (of multiplicity
≥ 1). Then π : M → Δ is atomic if and only if X is a reduced curve with one
node.

Criterion 1.2.4 Let π : M → Δ be relatively minimal. Suppose that the
singular fiber X has a point p such that a germ of p in X is either

(1) a multiple of a plane curve singularity3 of multiplicity at least 2, or
(2) a plane curve singularity such that if it is a node, then X \p is not smooth.

Then π : M → Δ admits a splitting family.

Criterion 1.2.5 Let π : M → Δ be normally minimal. Suppose that the
singular fiber X contains an irreducible component Θ0 of multiplicity 1 such
that X \Θ0 is (topologically) disconnected. Denote by Y1, Y2, . . . , Yl (l ≥ 2) all
connected components of X \ Θ0. Then π : M → Δ admits a splitting family
which splits X into X1, X2, . . . , Xl, where Xi (i = 1, 2, . . . , l) is obtained from
X by ‘smoothing ’ Y1, Y2, . . . , Y̌i, . . . , Yl. Here Y̌i is the omission of Yi.
3 Herein, a plane curve singularity always means a reduced one.
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Criterion 1.2.6 Let π : M → Δ be normally minimal such that the singular
fiber X contains an irreducible component Θ0 of multiplicity 1. Let π1 : W1 →
Δ be the restriction of π to a tubular neighborhood W1 of X\Θ0 in M . Suppose
that π1 : W1 → Δ admits a splitting family Ψ1 which splits Y + := W1∩X into
Y +

1 , Y +
2 , . . . , Y +

l . Then π : M → Δ admits a splitting family Ψ which splits X
into X1, X2, . . . , Xl, where Xi is obtained from Y +

i by gluing Θ0 \ (W1 ∩ Θ0)
along the boundary.



2

What is a barking?

This chapter is introductory. Using a local model of a degeneration, we illus-
trate an idea of “barking deformation”.

2.1 Barking, I

Let m and m′ be positive integers (later we will allow m or m′ to be zero).
We define a map π : C

2 → C by π(x, y) = xm′
ym, which is considered to be a

local model of a degeneration. The singular fiber X is π−1(0) = {xm′
ym = 0}:

the union of the x-axis of multiplicity m and the y-axis of multiplicity m′. On
the other hand, π−1(s) for nonzero s is a smooth fiber, which is⎧⎪⎨⎪⎩

gcd(m,m′) copies of C
× := C \ {0} if m > 0 and m′ > 0,

m copies of C if m > 0 and m′ = 0,
m′ copies of C if m = 0 and m′ > 0.

To construct a deformation of a ‘degeneration’ π : C
2 → C, it is convenient

to consider the graph of π:

Graph(π) := {(x, y, s) ∈ C
2 × C | xm′

ym − s = 0},

which is regarded as a family of curves, parameterized by s ∈ C. We take
positive integers n and n′ such that n < m and n′ < m′. Letting t ∈ C be
another parameter, we define three kinds of two-parameter deformations of
X as follows:

Xs,t : xm′−n′
ym−n(xn′

yn + t) − s = 0, (2.1.1)

Xs,t : xm′
ym−n(yn + t) − s = 0 (possibly m′ = 0), (2.1.2)

Xs,t : xm′
ym−n(yn + txa) − s = 0 (possibly m′ = 0). (2.1.3)
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We note that in all cases, X0,0 = X and so Xs,t is a deformation of X. The
deformation Xs,t is referred to as a barking deformation of the degeneration
π : C

2 → C. Here “bark” is used in the context of bark of a tree (not of a
dog), and the name “bark” will be clear from the subsequent description of
these deformations.

Putting s = 0 in (2.1.1), (2.1.2), or (2.1.3), we obtain a deformation from
X to X0,t, which is respectively called a hyperbolic barking, Euclidean barking,
or parabolic barking.

To understand these barkings geometrically, we set Y := {xn′
yn = 0}.

Of course, Y is the union of the x-axis of multiplicity n and the y-axis of
multiplicity n′. Since n < m and n′ < m′, Y is a subdivisor of X (Notation:
Y < X). We now give a geometric description of barkings.

Hyperbolic barking We begin with a hyperbolic barking, which is a de-
formation from X : xm′

ym = 0 to X0,t : xm′−n′
ym−n(xn′

yn + t) = 0. See
Figure 2.1.1.

Note that X0,t for t �= 0 consists of two curves, that is, xm′−n′
ym−n = 0

and xn′
yn + t = 0. We write Z : xm′−n′

ym−n = 0 and Yt : xn′
yn + t = 0, and

express X0,t = Z + Y0,t (a sum of divisors). Of course, Z does not depend
on t, while Y0,t does. We note that Z is a union of the x-axis of multiplicity
m − n and the y-axis of multiplicity m′ − n′, and Z is a subdivisor of X.

1
1
1

1
1
1

deform

gcd(n, n′)︷ ︸︸ ︷

m

Y

n′

n

m− n

m′ m′ − n′

−→

y-axis

x-axis

X X0,t

Fig. 2.1.1. Hyperbolic barking: In X0,t, the barked part Yt (hyperbolas) is described
by gray color, while bold lines are the unbarked part Z.
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We also note that Yt admits a factorization:

Yt :
g∏

k=1

(
xn′/gyn/g + (−t)1/ge2πik/g

)
= 0,

where we set g := gcd(n, n′). Hence Yt is a disjoint union of g ‘hyperbolas’

xn′/gyn/g + (−t)1/ge2πik/g = 0 (k = 1, 2, . . . , g).

Intuitively (look at Figure 2.1.1), in the process of the deformation from
X to X0,t, the subdivisor Y of X is “barked” (peeled) off from X to become
hyperbolas Yt, while the subdivisor Z of X is undeformed. Based on this fact,
Yt is called the barked part of X0,t, whereas Z is called the unbarked part of
X0,t.

Euclidean barking Next we describe a Euclidean barking, which is a de-
formation from X : xm′

ym = 0 to X0,t : xm′
ym−n(yn + t) = 0. In this case,

X0,t consists of two curves Z : xm′
ym−n = 0 and Yt : yn + t = 0. As in the

case of hyperbolic barking, Z (resp. Yt) is called the unbarked (resp. barked)
part of X0,t. Clearly Z is a union of the x-axis of multiplicity m − n and the
y-axis of multiplicity m′. On the other hand, Yt admits a factorization:

Yt :
n∏

k=1

(
y + (−t)1/ne2πik/n

)
= 0.

We note that y + (−t)1/ne2πik/n = 0 (k = 1, 2, . . . , n) is isomorphic to the
(“Euclidean”) line C, and hence Yt is a disjoint union of n lines (The name
“Euclidean” barking comes from this). In the process of the deformation,
Y : yn = 0 is barked off from X to become Yt : yn + t = 0. See Figure 2.1.2.

n

m′
m m− n

︷︸︸︷ 1
1
1

X0,t

m′
X

x-axis

y-axis

Y
n

x-axis

deform
−→

Fig. 2.1.2. Euclidean barking: In X0,t, the barked part Yt is described by gray
colored lines, while bold lines are the unbarked part Z.
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n

X0,t

m

n
Y x-axis

X

︷︸︸︷ 1
1
1

m− n
x-axis

deform
−→

Fig. 2.1.3. Euclidean barking when m′ = 0

x-axis

X

−→
deform

X0,t

1
1
1︷︸︸︷gcd(n, a)

m′ m′

m m− n

y-axis

x-axis
nY

Fig. 2.1.4. Parabolic barking: In X0,t, the barked part Yt (plane curves passing
through the origin) is described by gray color, while bold lines are the unbarked
part Z.

When m′ = 0, X is simply the x-axis of multiplicity m, and a Euclidean
barking is shown in Figure 2.1.3.

Parabolic barking Finally we describe a parabolic barking, which is a
deformation from X : xm′

ym = 0 to X0,t : xm′
ym−n(yn + txa) = 0. In this

case, X0,t consists of two curves; Z : xm′
ym−n = 0 and Yt : yn + txa = 0.

Setting g := gcd(n, a), we have a factorization

Yt :
g∏

k=1

(
yn/g + (−t)1/ge2πik/gxa/g

)
= 0,

and hence Yt is a disjoint union of g plane curves passing through the origin:

yn/g + (−t)1/ge2πik/gxa/g = 0 (k = 1, 2, . . . , g).

In the process of the deformation, Y : yn = 0 is barked off from X to
become Yt : yn + txa = 0. See Figure 2.1.4. We also draw the figure of X0,t

for the special cases (1) a = 1 and (2) a = 2 in Figure 2.1.5 (1) and (2). Note
that in (2), the barked part y + tx2 = 0 is a parabola (the name “parabolic”
barking comes from this).

When m′ = 0, X is the x-axis of multiplicity m, and a parabolic barking
is shown in Figure 2.1.6.
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m′

m − 1 m − 1

(2)(1)
11

0

m′

0

y + tx2 = 0

x-axis

X0,t

y + tx = 0

X0,t

x-axis

Fig. 2.1.5. Two examples of X0,t for parabolic barkings when (1) n = 1 and a = 1
and (2) n = 1 and a = 2 respectively.

x-axis
−→

deform

m− n

1
1
1︷︸︸︷gcd(n, a)

X

x-axisY

m

n X0,t

0

Fig. 2.1.6. Parabolic barking when m′ = 0.

2.2 Barking, II

As in the last section, we take a local model of a degeneration xm′
ym − s = 0

(a family of curves parameterized by s ∈ C). In this section we general-
ize the notions of hyperbolic, Euclidean, and parabolic barkings to multi-
ple case. Namely, taking positive integers n, n′ and l satisfying m − ln > 0
and m′ − ln′ > 0, we define two-parameter deformations as follows.

Xs,t : xm′−ln′
ym−ln(xn′

yn + t)l − s = 0, (2.2.1)

Xs,t : xm′
ym−ln(yn + t)l − s = 0 (possibly m′ = 0), (2.2.2)

Xs,t : xm′
ym−ln(yn + txa)l − s = 0 (possibly m′ = 0). (2.2.3)

Note that in all cases, we have X0,0 = X; so Xs,t is a deformation of X. The
deformation Xs,t is called a multiple barking deformation of the degeneration
π : C

2 → C.
For (2.2.1), (2.2.2), or (2.2.3), the deformation from X to X0,t is respec-

tively called a multiple hyperbolic barking, multiple Euclidean barking, or mul-
tiple parabolic barking. The integer l is called the barking multiplicity. (In the
previous section, we treated the case l = 1.) The description of these defor-
mations is the same as that for the case l = 1, except in one aspect: in the
multiple barking case, the barked part is no longer reduced (where “reduced”
means that the multiplicity is 1), but instead has multiplicity l. To under-
stand multiple barkings geometrically, we set Y := {xn′

yn = 0}, and then
lY = {xln′

yln = 0}. For the hyperbolic barking, X0,t is a union of two curves
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l
l
l

l
l
l

deform

gcd(n, n′)︷ ︸︸ ︷

lY

ln

m′

m

ln′

m′ − ln′

m− ln

−→

y-axis

x-axis

X X0,t

Fig. 2.2.1. Multiple hyperbolic barking: The barked part (xn′
yn + t)l = 0 is a

multiple of hyperbolas of multiplicity l.

m− lnm

n

m′m′

︷︸︸︷ l
l
l

X0,t

deform
−→

X

x-axis

y-axis

lY
ln

x-axis

Fig. 2.2.2. Multiple Euclidean barking: The barked part (yn + t)l = 0 is a multiple
of lines of multiplicity l.
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x-axis

X X0,t

l
l
l︷︸︸︷

m′ m′

x-axis
ln

lY

m m − ln

y-axis

−→
deform gcd(n, a)

Fig. 2.2.3. Multiple parabolic barking: The barked part (yn+txa)l = 0 is a multiple
of plane curves of of multiplicity l.

Z : xm′−ln′
ym−ln = 0 and lYt : (xn′

yn + t)l = 0, where Yt : xn′
yn + t = 0.

We say that Z (resp. lYt) is the unbarked (resp. barked) part of X0,t. In the
process of the deformation from X to X0,t, the subdivisor lY of X is barked
off from X to become lYt. See Figure 2.2.1.

Similarly, the description of Euclidean and parabolic barking is shown in
Figure 2.2.2 and Figure 2.2.3 respectively.
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Semi-Local Barking Deformations:
Ideas and Examples

In this chapter, for a “semi-local” model of a degeneration (to be explained
below in the context), we shall construct barking deformations.

3.1 Semi-local example, I (Reduced barking)

To construct a “semi-local” model of a degeneration, we require some prepa-
ration. Let N be a line bundle on a smooth compact complex curve C. We
take local trivializations Uα × C of N with coordinates (zα, ζα) ∈ Uα × C,
where C =

⋃
α Uα is an open covering. Let {gαβ} be transition functions of

N , and so ζα = gαβζβ .
Assume that k is a positive integer and λ = {λα} is a meromorphic section

of the line bundle N⊗(−k). Then λα = g−k
αβ λβ . Multiplying this equation and

ζk
α = gk

αβζk
β together, we have λαζk

α = λβζk
β which implies that the set {λαζk

α}
determines a meromorphic function on N . Thus we obtain the following.

Lemma 3.1.1 Assume that λ = {λα} is a meromorphic section of the line
bundle N⊗(−k). Then {λαζk

α} defines a meromorphic function on N . Moreover
this function is holomorphic precisely when λ is holomorphic. (Throughout,
we simply denote this function by λζk, or λ(z)ζk.)

Let
∑h

i=1 mipi be an effective divisor on C, where pi ∈ C and mi is a positive
integer. Suppose that m is a positive integer, and N is a line bundle on C
such that

N⊗m ∼= OC(−
h∑

i=1

mipi).

This condition is equivalent to the existence of a holomorphic section σ of
N⊗(−m) satisfying div(σ) =

∑h
i=1 mipi (that is, σ has a zero of order mi at

each point pi). Then by Lemma 3.1.1, we may define a holomorphic function
on N by π(z, ζ) = σ(z)ζm. We say that π : N → Δ is a semi-local model of
a degeneration, where for consistency we denote C by Δ. Let Ci (∼= C) be the
fiber of the line bundle N over the point pi, and then the singular fiber X is
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π−1(0) = mC +
∑h

i=1 miCi. (In a terminology used later, the smooth complex
curve C is the core of the singular fiber X.) On the other hand, π−1(s) (s �= 0)
is a smooth curve. We note that all fibers of π : N → Δ are non-compact.

Now we proceed to construct a deformation of the degeneration π : N →
Δ. For this purpose, it is convenient to express N as the graph of π, which is
a smooth hypersurface M in N × Δ given by

M = {(z, ζ, s) ∈ N × Δ : σ(z)ζm − s = 0}.

Of course, N is canonically isomorphic to M by (z, ζ) �→ (z, ζ, σ(z)ζm). From
now on, instead of N , we rather consider M , and then under the above iso-
morphism, π is given by the natural projection (z, ζ, s) �→ s. Now we shall
construct a deformation of π : M → Δ under the following analytic assump-
tion on the line bundle N :

Assumption 3.1.2 For some integer n satisfying 0 < n < m, the line bundle
N⊗n has a meromorphic section τ which has a pole of order at most mi

— possibly holomorphic — at pi (i = 1, 2, . . . , h), and is holomorphic on
C \ {p1, p2, . . . , ph}.
Since σ (resp. τ) is a section of N⊗(−m) (resp. N⊗n), the product στ is a
section of N⊗(n−m). We note that στ is a holomorphic section. Indeed, στ
is holomorphic outside pi, and since σ has a zero of order mi at pi, and τ
has a pole of order at most mi at pi, the product στ is holomorphic also at
pi. Therefore by Lemma 3.1.1, σ(z)ζm and σ(z)τ(z)ζm−n are holomorphic
functions on N . We then define a holomorphic function f on N × Δ × Δ† by

f(z, ζ, s, t) = σ(z)ζm − s + tσ(z)τ(z)ζm−n,

and define a complex 3-manifold as a smooth hypersurface in N × Δ × Δ†,
given by

M := {(z, ζ, s, t) ∈ N × Δ × Δ† : σ(z)ζm − s + tσ(z)τ(z)ζm−n = 0}.

Letting Ψ : M → Δ × Δ†, (z, ζ, s, t) �→ (s, t) be the natural projection, we
have Ψ−1(Δ × {0}) = M , and π = Ψ|M . Thus Ψ is a deformation family of
π. We say that Ψ : M → Δ × Δ† is a barking deformation family (or barking
family) of π : M → Δ.

Remark 3.1.3 Actually, this is a very special case of barking families intro-
duced in later chapters. In the above Ψ : M → Δ×Δ†, the defining equation
of M contains only a single term in t, and M is embedded in a product space
N×Δ×Δ†. In our later construction, the defining equation of M may contain
higher degree terms in t, and M may be embedded in a more general complex
4-manifold.

We set Xs,t := Ψ−1(s, t), that is, Xs,t is a curve defined by the equation

σ(z)ζm − s + tσ(z)τ(z)ζm−n = 0.
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We shall describe the deformation from X = X0,0 to

X0,t : σ(z)ζm + tσ(z)τ(z)ζm−n = 0.

Let qj ∈ C (j = 1, 2, . . . , k) be the zeros, if any, of τ , and take a small disk Uj

around qj in C, and then we consider factorizations of σζm + tστζm−n into
holomorphic factors:

σζm + tστζm−n =

{
σζm−n(ζn + tτ) z ∈ ⋃

j Uj

στζm−n
(

1
τ ζn + t

)
z ∈ C \ {qj}.

(When τ has no zero, we only consider the second factorization on the whole
C.) Accordingly we may write X0,t as a sum of two effective divisors Zt and
Yt on Mt (∼= N), where Zt and Yt are defined by

Zt =

{
σζm−n = 0, z ∈ ⋃

j Uj

στζm−n = 0, z ∈ C \ {qj}
, Yt =

{
ζn + tτ = 0, z ∈ ⋃

j Uj

1
τ ζn + t = 0, z ∈ C \ {qj}.

In fact, Zt is well-defined; the equations σζm−n = 0 and στζm−n = 0 differ
by τ , which is a non-vanishing holomorphic function on the ‘overlapping’⋃

j(Uj \ qj), and hence these two equations define the same hypersurface on
the overlapping. Likewise, Yt is well-defined.

Although Zt does not depend on the parameter t, so as to emphasize that
Zt is embedded in Mt, we write Zt rather than Z; we note

Zt = (m − n)C +
h∑

i=1

(mi − ni)Ci,

where Ci is the fiber of the line bundle N → C over pi, and ni (0 ≤ ni ≤ mi)
is the order of the pole of τ at pi. In particular, X = mC +

∑h
i=1 miCi is

written as a sum of two effective divisors

Z0 = (m − n)C +
h∑

i=1

(mi − ni)Ci and Y0 = nC +
h∑

i=1

niCi.

In the process of the deformation from X to X0,t, we note that Z0 (= Zt)
remains undeformed. On the other hand, Y0 is barked off from X to become
Yt, which is a ‘smoothing’ of Y0 (precisely speaking, Yt may be singular at a
zero qj of τ). See Figure 3.1.1. We say that Yt (resp. Zt) is the barked (resp.
unbarked) part of X0,t.

The deformation from X to X0,t is locally a hyperbolic, Euclidean, or
parabolic barking (see Figures 3.1.1 and 3.1.2). To see this, we shall describe
the above deformation around pi (a pole of τ) and qj (a zero of τ) in more
detail. If necessary, we take new coordinates to assume that σ = zmi and
τ = 1/zni around pi. Then X0,t is locally defined by

zm−niζm−n(zniζn + t) = 0 around pi,
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n

Y0n1 n2

m1 m2

m
qj qj

m1 − n1 m2 − n2

m− n

X

Yt

hyperbolic barking

1

−→
deform

hyperbolic barking

barking
parabolic

X0,t

Zt is the bold black lines

Fig. 3.1.1. Each number stands for the multiplicity.

m1 m2

m
qj qj

m2 − n2

m− n

m1X

Yt

1

Euclidean barking

−→
deform

n

Y0 n2

hyperbolic barking

barking
parabolic

X0,t

Zt is the bold black lines

Fig. 3.1.2. Y0 is a subdivisor of X such that Y0 does not contain the left vertical
line of X. Then Yt intersects the left vertical line transversely at n points. (The
above figure is for the case n = 1.)

which is a hyperbolic barking if ni > 0 and a Euclidean barking if ni = 0. Note
that X0,t around pi is a disjoint union of zm−niζm−n = 0 (the local equation
of Zt) and zniζn + t = 0 (the local equation of Yt). The latter equation defines
a (non-compact) smooth complex curve which is a smoothing of a non-reduced
curve zniζn = 0.

Next, let aj be the order of the zero of τ at qj . After a suitable coordinate
change, we may assume that σ = 1 and τ = zaj around qj . Then X0,t is
defined by

ζm−n(ζn + tzaj ) = 0 around qj ,

which is a parabolic barking. Note that X0,t around qj is a union of (1)
ζm−n = 0 (the local equation of Zt) and (2) ζn + tzaj = 0 (the local equation
of Yt). See Figure 3.1.1. We also note that for any t, the curve ζn + tzaj = 0
passes through qj = (0, 0); this curve is possibly singular at (0, 0), e.g. when
n = 3 and aj = 2.
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For the description of singular fibers Xs,t = Ψ−1(s, t) such that s, t �= 0,
we refer to Chapter 21, p383.

Example 3.1.4 Consider a polynomial f = (znζn′
)a −s+ t(znζn′

)a−1 where
a, n, n′ (a ≥ 2) are positive integers. Then a curve Xs,t : f = 0 is singular if
and only if s = 0 or s = ba−1ta/a, where we set b := (1− a)/a. In both cases,
Xs,t is non-reduced.

Proof. Clearly, X0,t : (znζn′
)a−1(znζn′

+ t) = 0 is singular and non-reduced.
We consider the case s �= 0. Recall that (z0, ζ0) ∈ Xs,t is a singularity precisely
when⎧⎪⎨⎪⎩

∂f
∂z

(z0, ζ0) = na zna−1
0 ζn′a

0 + t(na − n) zna−n−1
0 ζn′a−n′

0 = 0

∂f
∂ζ

(z0, ζ0) = n′a zna
0 ζn′a−1

0 + t(n′a − n′) zna−n
0 ζn′a−n′−1

0 = 0.

These equations are equivalent to a single equation zn
0 ζn′

0 = 1 − a
a t; substi-

tuting this into the defining equation (znζn′
)a − s + t(znζn′

)a−1 = 0 of Xs,t,
we have (

1 − a

a
t

)a

− s + t

(
1 − a

a
t

)a−1

= 0,

and so

s = ta
(

1 − a

a

)a−1 1
a .

Thus Xs,t (s �= 0) is singular exactly when s = ba−1ta/a, where we set b :=
(1 − a)/a.

We next prove that in this case (s = ba−1ta/a), the curve Xs,t is non-
reduced; equivalently we show that when s = ba−1ta/a, the polynomial f has
a multiple root. The equation f = 0 for the case s = ba−1ta/a is rewritten
equivalently as follows:

(znζn′
)a − ba−1

a
ta + t(znζn′

)a−1 = 0 ⇐⇒
(

znζn′

t

)a

− ba−1

a
+

(
znζn′

t

)a−1

= 0

⇐⇒ xa − ba−1

a
+ xa−1 = 0,

where we set x := znζn′
/t. We claim that a polynomial P (x) := xa − ba−1

a +
xa−1 has a multiple root x = b. In fact, it is easy to check that P (b) = 0 and
also the equation

∂P

∂x
(x) = axa−1 + (a − 1)xa−2 = 0

has a root x = (1 − a)/a = b. Thus P (b) = ∂P
∂x

(b) = 0, so that P (x) has a
multiple root x = b. This implies that f admits a factorization with a multiple
factor (znζn′ − bt)k for some k (k ≥ 2). Therefore Xs,t is non-reduced when
s = ba−1ta/a. �
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For example, if a = 2, we have s = −t2/4, and

f = z2nζ2n′
+

t2

4
+ tznζn′

=
(

znζn′
+

t

2

)2

.

3.2 Semi-local example, II (Multiple barking)

Let π : N → Δ be the semi-local model of a degeneration in the above
section; so π(z, ζ) = σ(z)ζm where σ is a holomorphic section of N⊗(−m)

with a zero of order mi at pi ∈ C (i = 1, 2, . . . , h), and the singular fiber
π−1(0) = mC +

∑h
i=1 miCi where Ci (∼= C) is the fiber of the line bundle

N → C over the point pi; recall that C is a smooth compact complex curve.
For consistency with notation of a degeneration we write M for N , and we
will generalize barking families of π : M → Δ to multiple ones. First, instead
of Assumption 3.1.2, we pose the following assumption:

Assumption 3.2.1 For some positive integers l and n satisfying ln ≤ m, the
line bundle N⊗n has a meromorphic section τ which (1) has a pole of order
ni at pi (i = 1, 2, . . . , h) such that 0 ≤ lni ≤ mi and (2) is holomorphic on
C \ {p1, p2, . . . , ph}.
(When l = 1, this assumption reduces to Assumption 3.1.2, p42.) We define
a complex 3-manifold M which is a hypersurface in N × Δ × Δ†, given by

M : σ(z)ζm − s +
l∑

k=1

lCktkσ(z)τ(z)kζm−kn = 0.

The natural projection Ψ : M → Δ × Δ†, (z, ζ, s, t) �→ (s, t) is a deforma-
tion family of π : M → Δ, called a barking family of π. When l = 1, this
construction reduces to that of the previous section.

We shall describe the deformation from X to X0,t := Ψ−1(0, t). If τ has
zeros, let qj ∈ C (j = 1, 2, . . . , k) be the zeros of τ , and take a small disk
Uj ⊂ C around qj . The defining equation of X0,t admits factorizations into
holomorphic factors:⎧⎨⎩ σζm−ln(ζn + tτ)l = 0, z ∈ ⋃

j Uj

στ lζm−ln
(

1
τ ζn + t

)l

= 0, z ∈ C \ {qj}.

(If τ has no zeros, it suffices to consider the latter factorization on the
whole C.) Accordingly we may express X0,t = Zt + lYt, where Zt and Yt

are effective divisors in Mt := Ψ−1(Δ × {t}) defined by

Zt =

{
σζm−ln = 0, z ∈ ⋃

j Uj

στ lζm−ln = 0, z ∈ C \ {qj}
, Yt =

{
ζn + tτ = 0, z ∈ ⋃

j Uj

1
τ ζn + t = 0, z ∈ C \ {qj}.
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Fig. 3.2.1. lY0 is a subdivisor of X
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Fig. 3.2.2. lY0 is a subdivisor of X

In the deformation from X to X0,t, clearly Z0 (= Zt) remains undeformed,
while lY0 becomes lYt (the l-multiple of a curve Yt). See Figure 3.2.1. We also
note the following expressions as divisors:

Z0 = (m − ln)C +
h∑
i

(mi − lni)Ci and Y0 = nC +
h∑

i=1

niCi.

The deformation from X to X0,t is locally a multiple hyperbolic, multiple
Euclidean, or multiple parabolic barking (see Figures 3.2.1 and 3.2.2). To see
this, we shall take a closer look at this deformation around pi (a pole of τ)
and qj (a zero of τ). First, we take new coordinates so that σ = zmi and
τ = 1/zni around pi. Then X0,t is locally defined by

zm−lniζm−ln(zniζn + t)l = 0 around pi,
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being a multiple hyperbolic barking if ni > 0 and a multiple Euclidean barking
if ni = 0. Notice that Zt and Yt are defined locally around pi by

Zt : ζm−ln = 0 and Yt : zniζn + t = 0.

If ni > 0, then X0,t is locally a disjoint union of two curves around pi, whereas
if ni = 0, then Yt intersects Zt transversely at the point (z, ζ) = (0,−t) ∈ Mt

(see Figure 3.2.2).
Next we take a coordinate change so that σ = 1 and τ = zaj around qj ,

where aj is the order of the zero of τ at qj . Then locally X0,t is given by

ζm−n(ζn + tzaj ) = 0 around qj ,

which is a multiple parabolic barking, and

Zt : ζm−ln = 0 and Yt : ζn + tzaj = 0.

Note that for any t, Yt always intersects Zt at one point qj = (0, 0). From the
above discussion, the following statement is clear.

Lemma 3.2.2 If the meromorphic section τ of N⊗n in Assumption 3.2.1 has
no zeros, then X0,t is normal crossing.

For the description of singular fibers Xs,t = Ψ−1(s, t) such that s, t �= 0, we
refer to Chapter 21, p383.

3.3 Semi-local example, III

We next explain an important example which is essentially different from
examples we gave so far. Let N be a line bundle of degree −2 on the projective
line P

1. Take an open covering P
1 = U ∪V such that w ∈ U and z ∈ V satisfy

z = 1/w. Then N is obtained by patching (w, η) ∈ U ×C with (z, ζ) ∈ V ×C

by z = 1/w, ζ = w2η. We define a map π : N → Δ by⎧⎨⎩ π(w, η) = w3η2 (w, η) ∈ U × C

π(z, ζ) = zζ2 (z, ζ) ∈ V × C,

and then the singular fiber X := π−1(0) is 2P
1 + 3C1 + C2 where we think of

P
1 to be embedded in N as the zero-section, and C1 and C2 are respectively

fibers of the line bundle N over the points w = 0 and z = 0 of P
1.

Now we shall construct a deformation of π : N → Δ such that Y =
2P

1 + 2C1 is barked off from X. At first glance, it seems plausible to define
such a deformation by{ H : w(w2η2 + t) − s = 0

H′ : ζ(ζ2 + t) − s = 0.
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However this fails. Indeed, since the defining equation of H is rewritten as

w

(
1

w2 (w2η)2 + t

)
− s = 0,

the transition function g : z = 1/w, ζ = w2η of N transforms H to

1
z
(z2ζ2 + t) − s = 0,

that is, zζ2 + t
z − s = 0. This is not the defining equation of H′; actually it

cannot define a hypersurface, because this equation contains a fractional term
t
z .

We make some trick to remedy this situation. Instead of the transition
function z = 1/w, ζ = w2η, we take a new map (a deformation of the transi-
tion function)

g : z =
1
w

, ζ = w2η + αtw,

where α ∈ C will be determined in the course of the discussion below. Then
g transforms the defining equation of H to

1
z

[
z2

(
ζ − αt

1
z

)2

+ t

]
− s = 0,

that is, zζ2 − 2αtζ + t + α2t2
z − s = 0; for any value of α ∈ C, the left

hand side necessarily contains a fractional term t + α2t2
z . To remedy this

situation, we modify the degree of the parameter t in H; replacing t by t2,
H : w(w2η2 + t2) − s = 0. Then g transforms H to

zζ2 − 2αtζ +
t2 + α2t2

z
− s,

and taking α =
√−1, we have zζ2−2

√−1tζ−s (the fractional term vanishes).
So we may define a deformation of π : M → Δ by a triple⎧⎪⎪⎨⎪⎪⎩

H : w(w2η2 + t2) − s = 0

H′ : zζ2 − 2
√−1tζ − s = 0

g : z = 1
w, ζ = w2η +

√−1tw.

(3.3.1)

Note that this deformation is realized not in the product space N×Δ×Δ†, but
rather in a complex 4-manifold W , obtained by patching (w, η, s, t) ∈ U ×C×
Δ×Δ† with (z, ζ, s, t) ∈ V ×C×Δ×Δ† by g : z = 1/w, ζ = w2η +

√−1tw.

Remark 3.3.1 Let Nt be the bundle obtained by patching U × C × Δ with
V ×C×Δ by z = 1/w, ζ = w2η +

√−1tw. Then N0 is a line bundle, whereas
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Nt (t �= 0) is merely a C-bundle (a fiber bundle with a fiber C) and not a
line bundle. The zero section P

1 in N0 disappears in Nt; in fact, when t �= 0,
two equations η = 0 and ζ = 0 are not compatible under the gluing map
z = 1/w, ζ = w2η +

√−1tw of Nt.

Next we shall describe the deformation from X to X0,t. First we note factor-
izations

H|s=0 : w(wη +
√−1t)(wη −√−1t) = 0

H′|s=0 : ζ(zζ − 2
√−1t) = 0.

Hence H|s=0 consists of three components w = 0, wη +
√−1t = 0 and wη −√−1t = 0, while H′|s=0 consists of two components ζ = 0 and zζ−2

√−1t = 0.

Claim 3.3.2 The map g : z = 1/w, ζ = w2η +
√−1tw transforms H|s=0 to

H′|s=0 in such a way that

(1) w(wη +
√−1t) = 0 to ζ = 0, and

(2) wη −√−1t = 0 to zζ − 2
√−1t = 0.

(See Figure 3.3.1, or ‘more geometric’ Figure 3.3.2).

Proof. (1): Since w(wη +
√−1t) = w2η +

√−1tw, the map

g : z = 1/w, ζ = w2η +
√−1tw

transforms w(wη +
√−1t) to ζ. This confirms (1). Intuitively this seems to

contradict that w(wη +
√−1t) = 0 consists of two components while ζ = 0

consists of one component. But this is not the case; see Figure 3.3.2 and
observe that when t �= 0, two curves η = 0 and ζ = 0 are not compatible
under g (see also Remark 3.3.1).

Y

2
2

−→

C1 C2 X0,tX

3 1
2

1 1

11
P1

deform

Fig. 3.3.1.
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2

1

deform
2

p1

X

Y

X0,t

2

113 1
p2

p1 p2

l2

l1

Fig. 3.3.2. We drew Figure 3.3.1 more geometrically; throughout, we will draw
this kind of geometric figures to visualize barking deformations. In this figure, any
intersection point is a node (i.e. two components intersect transversely at that point.)
As t → 0, the loops l1 and l2 on X0,t are pinched to the points p1 and p2 on X
respectively. Namely l1 and l2 are vanishing cycles.

(2): Since wη−√−1t = 1
w (w2η)−√−1t, the map g transforms wη−√−1t

to

z

(
ζ −√−1t

1
z

)
−√−1t,

that is, zζ − 2
√−1t = 0. This confirms (2). �

We remark that the infinitesimal deformation of the deformation (3.3.1) is
obtained by taking modulo t2. However in this process, essential information
is lost; the deformation H contains only terms in t2, and so H modulo t2 is
the trivial deformation. This indicates that the usual cohomology theory is
not suitable for describing barking deformations. cf. [Ta,IV].

3.4 Supplement: Numerical condition

Suppose that m (m ≥ 2) is an integer and N is a line bundle on a smooth
compact complex curve C such that N⊗(−m) has a holomorphic section σ
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with a zero of order mi at pi ∈ C (i = 1, 2, . . . , h); equivalently N⊗m ∼=
OC(−∑h

i=1 mipi). The degree of N is given by

degN = −m1 + m2 + · · · + mh

m
. (3.4.1)

We shall investigate the condition for the existence of a meromorphic sec-
tion τ in Assumption 3.1.2, p42; recall that given integers n (0 < n < m)
and ni (0 ≤ ni ≤ mi), then τ is a meromorphic section of N⊗n such that τ
has a pole of order ni at pi and it is holomorphic outside p1, p2, . . . , ph. The
existence of τ is equivalent to the existence of a nonnegative divisor D on C
satisfying N⊗n ∼= OC(−∑h

i=1 nipi + D). In fact, we express D =
∑k

j=1 ajqj

(aj ≥ 0, qj ∈ C), and then N⊗n has a meromorphic section τ with a pole of
order ni at pi and with a zero of order aj at qj . We say that D =

∑k
j=1 ajqj

is an auxiliary divisor and q1, q2, . . . , qk ∈ C are auxiliary points. Then

deg(N) = −n1 + n2 + · · · + nh − deg D

n
,

Since deg D = a1 + a2 + · · · + ak, together with (3.4.1), we obtain

n1 + n2 + · · · + nh − (a1 + a2 + · · · + ak)
n

=
m1 + m2 + · · · + mh

m
.

We thus have the following result.

Lemma 3.4.1 Let N be a line bundle on a smooth compact complex curve
C such that N⊗m ∼= OC(−∑h

i=1 mipi). If N⊗n has a meromorphic section τ
which has a pole of order ni at pi (i = 1, 2, . . . , h) and a zero of order aj at
qj (j = 1, 2, . . . , k), then

n1 + n2 + · · · + nh − (a1 + a2 + · · · + ak)
n

=
m1 + m2 + · · · + mh

m
. (3.4.2)

In particular, n1 + n2 + · · · + nh
n ≥ m1 + m2 + · · · + mh

m , where the equality
holds exactly when τ has no zeros.

Remark 3.4.2 Notice that n1 + n2 + · · · + nh
n is not necessarily an integer,

whereas m1 + m2 + · · · + mh
m = deg N is an integer.

When C is the projective line, the converse of Lemma 3.4.1 is valid.

Proposition 3.4.3 Let N be a line bundle on the projective line P
1 such

that N⊗m ∼= OP1(−∑h
i=1 mipi). Then N⊗n has a meromorphic section τ

which has a pole of order ni (0 ≤ ni ≤ mi) at pi and is holomorphic on
P

1 \ {p1, p2, . . . , ph} if and only if the following inequality holds:

n1 + n2 + · · · + nh

n
≥ m1 + m2 + · · · + mh

m
. (3.4.3)
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Proof. =⇒: By Lemma 3.4.1.
⇐=: For simplicity, we set r := m1 + m2 + · · · + mh

m . Then r is a positive
integer, and from the assumption (3.4.3),

n1 + n2 + · · · + nh − nr ≥ 0.

We separate into two cases according to whether n1 + n2 + · · · + nh − nr is
positive (Case 1) or zero (Case 2).
Case 1: We write the positive integer n1 + n2 + · · ·+ nh − nr as an arbitrary
sum of positive integers:

n1 + n2 + · · · + nh − nr = a1 + a2 + · · · + ak, (aj > 0).

(e.g. a1 = a2 = · · · = ak = 1, where we set k := n1 +n2 + · · ·+nh −nr). Next
we take k distinct points q1, q2, . . . , qk ∈ P

1\{p1, p2, . . . , ph}, and we construct
a meromorphic section τ of N⊗n with a pole of order ni at pi (i = 1, 2, . . . , h)
and with a zero of order aj at qj (j = 1, 2, . . . , k). First, we take a standard
affine covering C = P

1 = U ∪ V with coordinates w ∈ U and z ∈ V such that
z = 1/w on U ∩ V . Then N is obtained by identifying (z, ζ) ∈ V × C with
(w, η) ∈ U × C by

z =
1
w

, ζ = wrη, where r :=
m1 + m2 + · · · + mh

m
.

We define rational functions τU and τV on U and V respectively by

τU :=

∏
j(1 − qjw)aj∏
i(1 − piw)ni

, τV :=

∏
j(z − qj)aj∏
i(z − pi)ni

. (3.4.4)

Then the transition function z = 1/w, ζ = wnrη of N⊗n transforms τU to τV ,
and therefore τU and τV together define a meromorphic section τ of N⊗n.
Case 2: In Case 1, just take τU := 1∏

i(1 − piw)ni and τV := 1∏
i(z − pi)ni .�

Remark 3.4.4 As we “move” q1, q2, . . . , qk, or “collide” some or all of them,
we may produce a new meromorphic section of N⊗n (see §4.3.1, p74 for the
application to the construction of deformations of degenerations).

3.5 Supplement: Example of computation
of discriminant loci

We shall compute the discriminant locus of some family of curves; although
this family is not a barking family, this example is heuristic so as to know how
a discriminant looks like. For positive integers a, l, n and n′ satisfying a > l,
we consider a polynomial

f(z, ζ, s, t) = (znζn′
)a − s +

l∑
k=1

tk ck (znζn′
)a−k, (3.5.1)
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where c1, c2, . . . , cl ∈ C and cl �= 0, and let Xs,t be a curve defined by f = 0
(we think of s, t as parameters). As we will soon see below, in order to study
the values of (s, t) such that Xs,t is singular, the solutions of a polynomial
equation of x:

1 +
l∑

k=1

ck
a − k

a
xk = 0,

plays an important role, which has l solutions; since a > l, the coefficient of the
highest term xl is nonzero, and so there are l solutions, including multiplicities.

Proposition 3.5.1 Let α1, α2, . . . , αl be the solutions of 1+
∑l

k=1 ck
a − k

a xk =
0, and set βi := 1

αa
i

+
∑l

k=1
ck

αa−k
i

. Then

(A)Xs,t is singular if and only if (1) s = 0 or (2) s = βit
a (i = 1, 2, . . . , l).

(B)In both cases (1) and (2), Xs,t is non-reduced, and for the case (2), the
equation of Xs,t has a multiple factor (znζn′ − t/α)d for some d ≥ 2.

Proof. (A): Clearly if s = 0, then X0,t is non-reduced (and so singular),
because

f(z, ζ, 0, t) = (znζn′
)a +

l∑
k=1

tkck(znζn′
)a−k

= (znζn′
)a−l

[
(znζn′

)l +
l∑

k=1

tkck(znζn′
)l−k

]
has a multiple factor (znζn′

)a−l (note a > l by assumption). Next we assume
that s �= 0. Then (z, ζ) ∈ Xs,t satisfies znζn′ �= 0 (otherwise, from the equation
f(z, ζ, s, t) = 0, we deduce s = 0 which gives a contradiction) and so z, ζ �= 0.

Recall that (z0, ζ0) ∈ Xs,t is singular if and only if⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂f
∂z

(z0, ζ0) = an zan−1
0 ζan′

0 +
l∑

k=1

(an − kn) ck tk zan−kn−1
0 ζan′−kn′

0 = 0

∂f
∂ζ

(z0, ζ0) = an′ zan
0 ζan′−1

0 +
l∑

k=1

(an′ − kn′) ck tk zan−kn
0 ζan′−kn′−1

0 = 0.

(3.5.2)
Dividing these equations respectively by nzan−1

0 ζan′
0 and n′zan

0 ζan′−1
0 (note

that if (z, ζ) ∈ Xs,t then z, ζ �= 0 as we saw above), we see that (3.5.2) is
equivalent to a single equation

1 +
l∑

k=1

tkck
a − k

a
· 1

zkn
0 ζkn′

0

= 0.

Set x := t/zn
0 ζn′

0 , and write this equation as 1 +
∑l

k=1 ck
a − k

a xk = 0. For
a solution α of this equation, from α = t/zn

0 ζn′
0 , we have zn

0 ζn′
0 = t/α. We

substitute this into
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f(z0, ζ0, s, t) = (zn
0 ζn′

0 )a − s +
l∑

k=1

cktk(zn
0 ζn′

0 )a−k = 0,

and then we obtain (
t

α

)a

− s +
l∑

k=1

cktk
(

t

α

)a−k

= 0,

that is,

s =
(

t

α

)a

+
l∑

k=1

cktk
(

t

α

)a−k

.

Therefore we have s = βta, where we set

β :=

(
1
αa +

l∑
k=1

ck
1

αa−k

)
.

This shows the validity of (A). Next we show (B). We already proved that
Xs,t is non-reduced when s = 0. Thus we consider the case s = βta, for which
we shall show that the defining equation of Xs,t admits a factorization with a
multiple factor (znζn′ − t/α)d for some d ≥ 2, which implies that Xs,t is non-
reduced. When s = βta where β = 1

αa +
∑l

k=1
ck

αa−k , the defining equation
of Xs,t

(znζn′
)a − s +

l∑
k=1

tkck(znζn′
)a−k = 0

is written as

(znζn′
)a − ta

(
1
αa +

l∑
k=1

ck

αa−k

)
+

l∑
k=1

tkck(znζn′
)a−k = 0,

or

(znζn′
)a +

l∑
k=1

tkck(znζn′
)a−k −

(
t

α

)a

−
l∑

k=1

tkck

(
t

α

)a−k

= 0.

By Lemma 3.5.2 below, the left hand side has a factorization with a multiple
factor of the form (znζn′ − t/α)d for some d ≥ 2. This proves the assertion
(B). �
Lemma 3.5.2 For a complex number α satisfying 1 +

∑l
k=1 ck

a − k
a αk = 0

(note α �= 0) where ck, a, l are as in (3.5.1), consider a polynomial in X:

Q(X) = Xa +
l∑

k=1

tkckXa−k −
(

t

α

)a

−
l∑

k=1

tkck

(
t

α

)a−k

.

Then Q(t/α) = Q′(t/α) = 0. In particular, Q(X) has a multiple root X = t/α.
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Proof. Clearly,

Q

(
t

α

)
=

(
t

α

)a

+
l∑

k=1

tkck

(
t

α

)a−k

−
(

t

α

)a

−
l∑

k=1

tkck

(
t

α

)a−k

= 0.

Next we show that Q′(t/α) = 0. Note that

Q′(X) = aXa−1 +
l∑

k=1

tkck(a − k)Xa−k−1.

Dividing the right hand side by aXa−1, we have

1 +
l∑

k=1

tkck
a − k

a

(
1
X

)k

,

and thus

Q′(X) = 0 ⇐⇒ 1 +
l∑

k=1

ck
a − k

a

(
t

X

)k

= 0.

Since α satisfies 1+
∑l

k=1 ck
a − k

a αk = 0, the equation on the right hand side
has a solution X = t/α, and so Q′(t/α) = 0. This proves the assertion. �



4

Global Barking Deformations:
Ideas and Examples

So far, we defined barking deformations only for local and semi-local models of
degenerations. In this chapter, we shall explain how they may be generalized
to the global case, that is, to degenerations of compact complex curves by
exhibiting typical and illuminating examples, although the full theory will
be postponed to the later chapters. We hope that the reader will grasp the
essential part of the theory by these examples. We also intend the reader
to get familiar with our figures describing deformations, which will be used
throughout this book.

The basic idea is as follows. Given a degeneration π : M → Δ, we identify
M with the graph of π, i.e. {(x, t) ∈ M × Δ : π(x) − s = 0}. We then have
a natural embedding M ⊂ W := M × Δ. Next, we construct a complex
4-manifold W which is a deformation of W , and realize a certain complex
3-manifold M as a hypersurface in W. (The construction of W is a kind
of generalization of deformations of Hirzebruch (ruled) surfaces.) Then M
admits a natural projection Ψ : M → Δ × Δ†, which is a barking family of
π : M → Δ.

4.1 Preparation: Simplification lemmas

This section is devoted to some technical preparation. Given a hypersurface,
it is convenient if we could transform its defining equation into a simpler form
by some coordinate change. We will give several conditions, under which this
transformation is possible.

Assume that f = f(z, ζ) and g = g(z, ζ) are non-vanishing holomorphic
functions around (0, 0). Let m,m′, n, n′ and l be nonnegative integers satisfy-
ing

l ≥ 1, m − ln ≥ 0, m′ − ln′ ≥ 0.

When we construct deformations, we often encounter hypersurfaces of the
form F (z, ζ, s, t) = 0, where F is a holomorphic function around (0, 0, 0, 0),
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given by

F = zmζm′
g − s +

l∑
k=1

cktdkzm−knζm′−kn′
gfk,

where ck ∈ C and dk is a positive integer. Under a coordinate change ζ ′ =
ζg1/m′

where we choose some branch g1/m′
, the function F is written as

F = zm(ζ ′)m′ − s +
l∑

k=1

cktdkzm−kn(ζ ′)m′−kn′
(gn′/m′

f)k.

Rewriting gn′/m′
f by f , we may assume

F = zmζm′ − s +
l∑

k=1

cktdkzm−knζm′−kn′
fk.

We shall further simplify F under some assumption. The following lemma
(and also its variant) is referred to as Simplification Lemma.

Lemma 4.1.1 If mn′ − m′n �= 0, then by a coordinate change

z′ = zfm′/(mn′−m′n)(z, ζ), ζ ′ = ζf−m/(mn′−m′n)(z, ζ),

a function F = zmζm′ − s +
∑l

k=1 cktdkzm−knζm′−kn′
fk is expressed as

(z′)m(ζ ′)m′ − s +
l∑

k=1

cktdk(z′)m−kn(ζ ′)m′−kn′
. (4.1.1)

Proof. Firstly, we shall show that there exist non-vanishing holomorphic func-
tions u = u(z, ζ) and v = v(z, ζ) around (0, 0) such that

umvm′
= 1, (4.1.2)

um−knvm′−kn′
= fk, (k = 1, 2, . . . , l). (4.1.3)

Note that u and v satisfying the following equations gives a solution of (4.1.2)
and (4.1.3):

umvm′
= 1, unvn′

=
1
f

. (4.1.4)

In fact from (4.1.4) we may deduce an equation umvm′

(unvn′
)k

= fk, which is

nothing but (4.1.3); while (4.1.2) is just the equation on the left hand side of
(4.1.4).

Since mn′ −m′n �= 0 by assumption, the equations (4.1.4) have a solution

u(z, ζ) = fm′/(mn′−m′n), v(z, ζ) = f−m/(mn′−m′n),

where we choose some branches. Since u and v, as we saw above, fulfill (4.1.2)
and (4.1.3), it follows that in new coordinates z′ = zu(z, ζ), ζ ′ = ζv(z, ζ), the
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function F is expressed as

(z′)m(ζ ′)m′ − s +
l∑

k=1

cktdk(z′)m−kn(ζ ′)m′−kn′
.

This proves the assertion. �
Remark 4.1.2 Under the same assumption mn′−m′n �= 0, it is also possible
to convert F = zmζm′

g−s+
∑l

k=1 cktdkzm−knζm′−kn′
gfk directly into (4.1.1)

by a coordinate change z′ = zϕ(z, ζ), ζ ′ = ζψ(z, ζ), where

(∗)
{

ϕ(z, ζ) = fm′/(mn′−m′n)gn′/(mn′−m′n),

ψ(z, ζ) = f−m/(mn′−m′n)g−n/(mn′−m′n).

Note that ϕ and ψ satisfy ϕmψm′
= g and ϕnψn′

= 1/f , from which we
have ϕmψm′

= g and ϕm−knψm′−kn′
= gfk (k = 1, 2, . . . , l). This insures the

expression (4.1.1) under the coordinate change (∗).
In Lemma 4.1.1, we consider a special case ck = lCk and dk = k, in which
case F admits a ‘factorization’

F = zm−lnζm′−ln′
(znζn′

+ tf)l − s.

As a consequence of Lemma 4.1.1, we also obtain the following.

Corollary 4.1.3 If mn′ − m′n �= 0, then by a coordinate change

z′ = zfm′/(mn′−m′n)(z, ζ), ζ ′ = ζf−m/(mn′−m′n)(z, ζ),

the function F = zm−lnζm′−ln′
(znζn′

+ tf)l − s is expressed as

(z′)m−ln(ζ ′)m′−ln′(
(z′)n(ζ ′)n′

+ t
)l

− s.

Similarly, we can show

Lemma 4.1.4 Consider a function F = zaζb−s+tkzcζdf , where f = f(z, ζ)
is a non-vanishing holomorphic function around (0, 0) and a, b, c, d are non-
negative integers satisfying ad − bc �= 0. Then by a coordinate change

z′ = zf(z, ζ)−b/ad−bc, ζ ′ = ζf(z, ζ)a/ad−bc,

the function F is expressed as (z′)a(ζ ′)b − s + tk(z′)c(ζ ′)d.

The next lemma is often useful for the case ad − bc = 0.

Lemma 4.1.5 Consider a function F = zaζbfm − s + tkzcζdfn, where f =
f(z, ζ) is a non-vanishing holomorphic function around (0, 0), and a, b, c, d
and m,n are nonnegative integers such that (A) an − cm = 0 and a �= 0, or
(B) bn− dm = 0 and b �= 0. Then after some coordinate change, the function
F is expressed as (z′)a(ζ ′)b − s + tk(z′)c(ζ ′)d.

Proof. For Case (A), take a new coordinate z′ := zfm/a, and then F is ex-
pressed as (z′)aζb−s+tk(z′)cζd. Likewise, for Case (B), take a new coordinate
ζ ′ := ζfm/b, and then F is expressed as za(ζ ′)b − s + tkzc(ζ ′)d. �
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We give an example which are slightly different from the situation in the
above results, but we often encounter similar examples in later construction
of deformations.

Example 4.1.6 Consider a hypersurface

zm0(1 − z)bmζcm − s +
∑

k

ak tdk zm0−n0,k (1 − z)bm−bnk ζcm−cnk = 0,

where m0,m, n0,k, nk, b, c are positive integers such that m0 ≥ n0,k and m ≥
nk. Then under a coordinate change ζ ′ = (1−z)b/cζ, this equation is expressed
as

zm0 (ζ ′)cm − s +
∑

k

ak tdk zm0−n0,k (ζ ′)cm−cnk = 0.

We give some comment on the coordinate change of Lemma 4.1.1:

z′ = zfm′/(mn′−m′n)(z, ζ), ζ ′ = ζf−m/(mn′−m′n)(z, ζ), (4.1.5)

which we used for simplifying a function

F = zmζm′ − s +
l∑

k=1

cktdkzm−knζm′−kn′
fk,

where for brevity, we assume f(0, 0) = 1; if f(0, 0) = a (�= 0), then rewriting
ckak by ck, and f/a by f , we have f(0, 0) = 1.

We consider such a situation as a positive integer d (d ≥ 2) divides both m
and m′. Then taking an arbitrary d-th root of unity μ, we may choose a branch
f−m/(mn′−m′n) so that f−m/(mn′−m′n)(0, 0) = μ. In fact, since f−m(0, 0) = 1
and d divides mn′ − m′n, we can always choose such a branch. Similarly,
we take a branch fm′/(mn′−m′n) so that fm′/(mn′−m′n)(0, 0) = 1. Then the
coordinate change (4.1.5) has the following form:⎧⎪⎨⎪⎩

z′ = z
(
1 + (higher order terms in z and ζ)

)
,

ζ ′ = μζ
(
1 + (higher order terms in z and ζ)

)
.

(4.1.6)

In other words, we can ‘twist’ the coordinate change ζ ′ of ζ by an arbitrary d-
th root of unity. This fact will be used for ‘twisting’ a deformation to produce
a new deformation.

4.2 Typical examples of barking deformations

In this section, unless otherwise mentioned, π : M → Δ is a degeneration
of elliptic curves such that its singular fiber X is shown in Figure 4.2.1; in
Kodaira’s notation [Ko1], X is of type IV ∗. We express X = 3Θ0 + Br(1) +
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p1 p3

Br(3)︷ ︸︸ ︷Br(1)︷ ︸︸ ︷ ︷︸
︸︷

X

Θ0

p2

Br(2)

1 2

1
2

3 2 1

Fig. 4.2.1. Each circle is a projective line, the number stands for its multiplicity,
and each intersection point is a node (i.e. locally two lines intersect transversely at
that point).

Br(2) +Br(3) where a projective line Θ0 is the core of X, and Br(j) is a branch
of X attached to Θ0 at a point pj . A branch is a chain of projective lines, and
we write Br(j) = 2Θ(j)

1 + Θ(j)
2 , where Θ(j)

1 and Θ(j)
2 are projective lines. We

assume that p1 = 1, p2 = 0 and p3 = ∞.
Now we explicitly construct a linear degeneration with the singular fiber

X (see §15.1 and [Ta,II] for more detail). First, take an open covering Θ0 =
U0∪U ′

0 by two complex lines with coordinates w0 ∈ U0 and z0 ∈ U ′
0 such that

z0 = 1/w0 on U0 ∩U ′
0. Similarly, we take an open covering Θ(j)

i = U
(j)
i ∪U

(j)
i

′

by two complex lines with coordinates w
(j)
i ∈ U

(j)
i and z

(j)
i ∈ U

(j)
i

′
such that

z
(j)
i = 1/w

(j)
i on U

(j)
i ∩ U

(j)
i

′
. For brevity, if it is clear from the context, we

often omit sub-/superscripts, such as z = z
(j)
i .

Patching U0 ×C with U ′
0 ×C by z = 1/w, ζ = w2η where (w, η) ∈ U0 ×C

and (z, ζ) ∈ U ′
0 × C, we then obtain a line bundle N0 of degree −2 on Θ0.

Similarly, we patch U
(j)
i × C with U

(j)
i

′ × C by z = 1/w, ζ = w2η, where

(w, η) ∈ U
(j)
i × C and (z, ζ) ∈ U

(j)
i

′ × C. Then we obtain a line bundle N
(j)
i

of degree −2 on Θ(j)
i .

Next, we define complex surfaces H0 and H ′
0 as hypersurfaces in U0 × Δ

and U ′
0 × Δ respectively, given by{

H0 : w2(w − 1)2η3 − s = 0
H ′

0 : z2(1 − z)2ζ3 − s = 0.

Lemma 4.2.1 (1) H0 and H ′
0 are smooth. (2) The transition function z =

1/w, ζ = w2η of the line bundle N0 transforms H0 to H ′
0.

Proof. (1) follows from ∂H0
∂s

= −1 �= 0 and ∂H ′
0

∂s
= −1 �= 0. We next show

(2). Since H0 is rewritten as

1
w4 (w − 1)2(w2η)3 − s = 0,
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the transition function z = 1/w, ζ = w2η transforms H0 to

z4

(
1
z
− 1

)2

ζ3 − s = 0,

that is, to H ′
0 : z2(1 − z)2ζ3 − s = 0. This proves (2). �

Therefore the hypersurfaces H0 and H ′
0 together define a smooth complex

surface M0 in N0 × Δ. Similarly we define a smooth complex surface M
(j)
1 ,

which is a hypersurface in N
(j)
1 × Δ determined by two hypersurfaces⎧⎨⎩ H

(j)
1 : w3η2 − s = 0 in U

(j)
1 × Δ

H
(j)
1

′
: zζ2 − s = 0 in U

(j)
1

′ × Δ.

Also, we define a hypersurface M
(j)
2 in N

(j)
2 × Δ by two hypersurfaces⎧⎨⎩ H

(j)
2 : w2η − s = 0 in U

(j)
2 × Δ

H
(j)
2

′
: ζ − s = 0 in U

(j)
2

′ × Δ.

Now we shall patch complex surfaces M0, M
(j)
1 and M

(j)
2 (j = 1, 2, 3);

we first note that after some coordinate change, H ′
0 is written as z2ζ3 − s =

0 around pj . (e.g. take new coordinates z′ = z(1 − z), ζ ′ = ζ, and then
H ′

0 : z2(1 − z)2ζ3 − s = 0 becomes (z′)2(ζ ′)3 − s = 0.) We then glue M0

with M
(j)
1 by (z, ζ, s) = (η(j)

1 , w
(j)
1 , s). Similarly, we glue M

(j)
1 with M

(j)
2 by

(z(j)
1 , ζ

(j)
1 , s) = (η(j)

2 , w
(j)
2 , s). Then we obtain a smooth complex surface M ,

and the natural projection π : M → Δ is a degeneration with the singular
fiber X in Figure 4.2.1.

Now we shall provide five representative examples of “barking deforma-
tions” of π : M → Δ. Roughly speaking, the construction is carried out in two
steps: (1) Construct a deformation around the core Θ0, and (2) propagate the
deformation in (1) along branches Br(1), Br(2), Br(3).

Example 4.2.2 (Reduced barking 1)

We begin with an example such that a subdivisor Y of X is barked off
from X as shown in Figure 4.2.2 (actually the figure of X0,t is too simplified;
the correct one is shown in Figure 4.2.3).

First, we construct a deformation around the core Θ0. Consider two
smooth hypersurfaces, respectively given by⎧⎪⎨⎪⎩

H0 : w(w − 1)η2
[
w(w − 1)η + t

]
− s = 0 in U0 × Δ × Δ†,

H′
0 : z2(1 − z)ζ2

[
(1 − z)ζ + t

]
− s = 0 in U ′

0 × Δ × Δ†.
(4.2.1)
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Fig. 4.2.2. Y is a subdivisor of X. The singular fiber X0,t := Ψ−1(0, t) is called of
type I∗

1 .

2Yt

1
X0,t

1

1

1 2 2 1

Fig. 4.2.3. A more geometrically precise figure of X0,t in Figure 4.2.2; see also
Remark 4.2.3.

(Note that H0|t=0 = H0 and H′
0|t=0 = H ′

0.) Since the equation of H0 is
written as

1
w2

(
1 − 1

w

)
(w2η)2

[(
1 − 1

w

)
(w2η) + t

]
− s = 0,

the transition function g0 : z = 1/w, ζ = w2η of N0 transforms H0 to H′
0,

and so the hypersurfaces H0 and H′
0 together determine a complex 3-manifold

M0 in N0 ×Δ×Δ†. We think of M0 as a deformation of M0, parameterized
by Δ × Δ†.

Next, we shall ‘propagate’ the deformation M0 to a deformation around
each branch of X; this process is referred to as propagation along branches.
Step 1: Propagation along Br(1) By a coordinate change z′ = z(1−z)−1/2

and ζ ′ = ζ(1− z), the hypersurface H′
0 is written as (z′)2(ζ ′)2(ζ ′ + t)− s = 0

around p1 = 1 ∈ Θ0. (Throughout this section, we often change coordinates
so as to make equations into simpler forms. See §4.1, p57 for the systematic
account of choices of new coordinates.) We define two smooth hypersurfaces,
respectively given by{

H(1)
1 : w2η2(w + t) − s = 0 in U

(1)
1 × Δ × Δ†

H(1)
1

′
: zζ2(1 + tz) − s = 0 in U

(1)
1

′ × Δ × Δ†.
(4.2.2)
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(Note: H(1)
1

′
is the trivial family of H

(1)
1

′
. Indeed, in new coordinates z′ =

z(1 + tz), H(1)
1

′
is z′ζ2 − s = 0, independent of t.) Here H(1)

1 is equal to
w3η2 + tw2η2 − s = 0, and since

w3η2 + tw2η2 − s =
1
w

(w2η)2 + t
1

w2 (w2η)2 − s,

the transition function g
(1)
1 : z = 1/w, ζ = w2 of N

(1)
1 transforms H(1)

1 to

H(1)
1

′
. Thus H(1)

1 and H(1)
1

′
together determine a complex 3-manifold M(1)

1 in
N

(1)
1 ×Δ×Δ†. Similarly, we define a complex 3-manifold M(1)

2 in N
(1)
2 ×Δ×Δ†

by {
H(1)

2 : w2η(1 + tη) − s = 0,

H(1)
2

′
: ζ(1 + tz2ζ) − s = 0.

(Note: H(1)
2 and H(1)

2

′
are respectively the trivial families of H

(1)
2 and H

(1)
2

′
.)

We glue M0 with M(1)
1 by plumbing (z0, ζ0, s, t) = (η(1)

1 , w
(1)
1 , s, t). Likewise,

we glue M(1)
1 with M(1)

2 by plumbing (z(1)
1 , ζ

(1)
1 , s, t) = (η(1)

2 , w
(1)
2 , s, t). We

then obtain a complex 3-manifold resulting from a propagation of the defor-
mation M0 along the branch Br(1).
Step 2: Propagation along Br(2) By Simplification Lemma (Lemma 4.1.1),
after some coordinate change, H0 in (4.2.1) is written as wη2(wη + t)− s = 0
around p2 = 0 ∈ Θ0. Here we slightly change the notation. For consis-
tency with the discussion in Step 1, we write H0 in (z, ζ)-coordinates, i.e.
H0 : zζ2(zζ + t) − s = 0 around p2. We then define a complex 3-manifold
M(2)

1 in N
(2)
1 × Δ × Δ† by{

H(2)
1 : w2η(wη + t) − s = 0,

H(2)
1

′
: ζ(zζ + t) − s = 0.

To propagate this to a deformation around Θ(2)
2 , we first define a deformation

N (2)
2 of the line bundle N

(2)
2 ; it is a complex 3-manifold obtained by patching

U
(2)
2 ×Δ† with U

(2)
2

′ ×Δ† by z = 1/w, ζ = w2η + tw. Then the following two
smooth hypersurfaces together determine a smooth hypersurface in N (2)

2 ×Δ†:{
H(2)

2 : w(wη + t) − s = 0 in U
(2)
2 × Δ†,

H(2)
2

′
: ζ − s = 0 in U

(2)
2

′ × Δ†.

In fact, z = 1/w, ζ = w2η + tw transforms H(2)
2 to H(2)

2

′
, and thus H(2)

2 and

H(2)
2

′
together determine a complex 3-manifold M(2)

2 in N (2)
2 × Δ.

We glue M0 with M(2)
1 by plumbing (z0, ζ0, s, t) = (η(2)

1 , w
(2)
1 , s, t). Like-

wise, we glue M(2)
1 with M(2)

2 by plumbing (z(2)
1 , ζ

(2)
1 , s, t) = (η(2)

2 , w
(2)
2 , s, t),
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yielding a complex 3-manifold which results from a propagation of the defor-
mation M0 along the branch Br(2).
Step 3: Propagation along Br(3) A propagation of M0 along the branch
Br(3) is carried out in the same way as the above propagation along Br(2); we
leave this as an exercise for the reader.

After the above three steps, we obtain a complex 3-manifold M. The
natural projection Ψ : M → Δ × Δ† is a deformation family of π : M → Δ
such that the deformation from X to X0,t := Ψ−1(0, t) is shown in Figure 4.2.2
(see also Remark 4.2.3 below). We say that Ψ : M → Δ × Δ† is a barking
family of π : M → Δ which barks Y from X. The subdivisor Y is called a
crust of X.

We give several comments on the above construction.
(1) The barking family Ψ : M → Δ × Δ† is a splitting family which

splits X into X0,t and a projective line with one node. In fact, suppose that
the singular fiber X (type IV ∗) splits into X1, X2, . . . , Xn where X1 = X0,t

(type I∗1 ). From χ(M) = χ(Mt) where χ(M) stands for the (topological) Euler
characteristic of M , we may deduce χ(X) = χ(X1) + χ(X2) + · · · + χ(Xn)
(Lemma 20.2.1, p350). Since χ(X) = 8 and χ(X1) = 7, we conclude that
n = 2 and χ(X2) = 1; here χ(X2) = 1 implies that X2 is a projective line
with one node.

(2) Let Nt be a fiber bundle on a projective line Θ, obtained by patching
(w, η) ∈ U×Δ with (z, ζ) ∈ V ×Δ by gt : z = 1/w, ζ = wrη+tw. When t = 0,
N0 is a line bundle of degree −r on Θ, and the projective line Θ is embedded
in N0 as the zero-section. On the other hand, Nt for t �= 0 is no longer a
line bundle, and “zero-section” does not make sense because the equations
ζ = 0 and η = 0 are not compatible with the gluing map gt. Geometrically
speaking, under the deformation from N0 to Nt, the zero-section Θ in N0

disappears (Remark 3.3.1).
(3) In Step 2 of the above construction (propagation along Br(2)), the

deformation M(2)
2 is realized not in the trivial product space N

(2)
2 × Δ × Δ†

but in N (2)
2 ×Δ†, where N (2)

2 is a deformation of the line bundle N
(2)
2 . Compare

this with the propagation along Br(1) in which case the deformation is realized
in the trivial product. This difference is explained in terms of a notion of
“formal self-intersection number”. Given an irreducible component Θi of Y , we

set (Θi ·Θi)Y := −
∑

j nj

ni
, where the summation runs over all j such that Θj

intersects Θi. We say that (Θi ·Θi)Y is the formal self-intersection number of

Θi in Y ; the ‘usual’ self-intersection number is given by Θi·Θi = −
∑

j mj

mi
. As

long as (Θi ·Θi)Y ≤ Θi ·Θi, we do not need to deform the line bundle Ni when
we propagate a deformation. However if (Θi ·Θi)Y > Θi ·Θi, we must deform
Ni; in Step 2 of the above construction, (Θ(2)

2 · Θ(2)
2 )Y = −1 > Θ(2)

2 · Θ(2)
2 =

−2, and in order to propagate a deformation, we require to deform the line
bundle N

(2)
2 .
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Remark 4.2.3 We briefly explain how to draw Figure 4.2.3; the fiber X0,t =
Ψ−1(0, t) is described in the following procedure: (1) Put s = 0 in the equa-
tions of H0,H′

0, and H(j)
i , and then (2) draw a figure according to the ‘fac-

torizations’ of the equations in (1). For instance, since⎧⎪⎨⎪⎩
H0|s=0 : w(w − 1)η2

[
w(w − 1)η + t

]
= 0,

H′
0|s=0 : z2(1 − z)ζ2

[
(1 − z)ζ + t

]
= 0,

under this deformation, a singular curve w(w − 1)η = 0 (resp. (1 − z)ζ = 0)
is deformed (barked off) to be a smooth curve w(w − 1)η + t = 0 (resp.
(1 − z)ζ + t = 0). Further, for H(1)

1 |s=0 : w2η2(w + t) = 0 in (4.2.2), a curve
w2η2 = 0 remains undeformed, whereas a curve w = 0 is barked off to become
a curve w + t = 0 which intersects the curve w2η2 = 0 transversely at one
point (w, η) = (−t, 0).

Example 4.2.4 (Reduced barking 2)

In the above example, (Θ0 · Θ0)Y = Θ0 · Θ0 = −2 where Θ0 · Θ0 is the
self-intersection number of Θ0, while (Θ0 · Θ0)Y is the formal one of Θ0 in
Y . Next we provide an example such that (Θ0 · Θ0)Y < Θ0 · Θ0. (cf. the
case (Θ0 · Θ0)Y ≥ Θ0 · Θ0; then we need to deform the line bundle N0 so
as to construct a barking deformation.) Taking Y as in Figure 4.2.4, then
we have (Θ0 · Θ0)Y = −3 and Θ0 · Θ0 = −2, and so (Θ0 · Θ0)Y < Θ0 · Θ0.
Therefore we do not need to deform N0, and the construction of a barking
deformation is almost the same as the above example. However there is one
important difference; as Θ0 · Θ0 �= (Θ0 · Θ0)Y , we are not able to take an
‘obvious’ deformation around Θ0. Here by an ‘obvious’ deformation, we mean
a deformation defined by⎧⎪⎨⎪⎩

H0 : w(w − 1)η2
[
w(w − 1)η + t

]
− s = 0,

H′
0 : z(1 − z)ζ2

[
z(1 − z)ζ + t

]
− s = 0.

1 1

−→Y X

1 3 2

2
11

1 X0,t

2 1

1

Ytq q

0

1
11

1

11
∞

1 2

deform

Fig. 4.2.4. Y is a subdivisor of X. See Figure 4.2.5 for a more geometrically precise
figure of X0,t := Ψ−1(0, t).



4.2 Typical examples of barking deformations 67

Unfortunately, such H0 and H′
0 do not determine a hypersurface in N0 ×Δ×

Δ†, because H0 is not compatible with H′
0 under the transition function of

N0. Indeed, writing the equation of H0 as

1
w2

(
1 − 1

w

)
(w2η)2

[(
1 − 1

w

)
(w2η) + t

]
− s = 0,

we see that the transition function g0 : z = 1/w, ζ = w2η transforms H0 to

z2(1 − z)ζ2
[
(1 − z)ζ + t

]
− s = 0,

which is not H′
0. This phenomenon is due to (Θ0 ·Θ0)Y < Θ0 ·Θ0. To remedy

this situation, we add some additional terms for H0 and H′
0; taking q ∈ C (an

auxiliary point), we set⎧⎪⎨⎪⎩
H0 : w(w − 1)η2

[
w(w − 1)η + t(w − q)

]
− s = 0,

H′
0 : z(1 − z)ζ2

[
z(1 − z)ζ + t(1 − qz)

]
− s = 0.

It is easy to check that the transition function g0 of N0 transforms H0 to H′
0,

and so H0 and H′
0 together determine a complex 3-manifold M0 in N0 ×Δ×

Δ†. The propagation of M0 along each branch of the singular fiber X is carried
out in the same way as Step 2 in Example 4.2.2. We then obtain a barking
family Ψ : M → Δ × Δ† such that in the process of the deformation from
X to X0,t, the subdivisor Y is barked from X to become a smooth projective
line Yt as shown in Figure 4.2.4. We remark that in Example 4.2.2, Yt does
not intersect Θ0, whereas in the present example, Yt intersects Θ0; regardless
of the value of t, H0|s=0 passes through a point (w, η) = (q, 0) on Θ0. (hence
H′

0|s=0 passes through a point (z, ζ) = (1
q , 0) on Θ0.) This difference arises

from (Θ0 ·Θ0)Y = Θ0 ·Θ0 in Example 4.2.2, whereas (Θ0 ·Θ0)Y < Θ0 ·Θ0 in
the present example.

We point out that the barking family of this example is interesting
in that it does not arise from any deformation of the E6-singularity. To
elucidate this, we first note that from the singular fiber X of type IV ∗

(Figure 4.2.2), we delete one irreducible component at the edge of any
branch to obtain an exceptional set of the E6-singularity. Namely, a divi-
sor X ′ := X \ Θ(j)

3 , where j is arbitrary (j = 1, 2 or 3), is the exceptional
set of the E6-singularity. By Riemenschneider’s Theorem [Ri3], any defor-
mation of the resolution space R of the E6-singularity can be simultane-
ously blown down to a deformation of the E6-singularity, and conversely by
Brieskorn’s Theorem [Br1], any deformation of the E6-singularity admits a
simultaneous resolution. Hence there is a correspondence between deforma-
tions of the E6-singularity and deformations of its resolution space. Taking
this fact into account, it seems plausible that from a deformation of the
E6-singularity, we can recover the barking deformation of the above exam-
ple. However this is false; in the above barking deformation, all of three
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Yt

1
X0,t

1
q

1 1 12

1

Fig. 4.2.5. A more geometrically precise figure of X0,t in Figure 4.2.4
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Fig. 4.2.6.

irreducible components Θ(1)
3 ,Θ(2)

3 ,Θ(3)
3 disappear (Figure 4.2.5 and Remark

3.3.1), and so this deformation can not arise from a deformation of the E6-
singularity.

Example 4.2.5 (Multiple barking)

Thus far, we only gave examples of barking families such that a subdivisor
Y of X becomes a reduced irreducible component (i.e. of multiplicity 1) of
X0,t. Next we provide a barking family such that a subdivisor of X becomes
a non-reduced irreducible component (i.e. of multiplicity at least 2) of X0,t

(Figure 4.2.6).
First, we construct a deformation around the core Θ0. Define two smooth

hypersurfaces by⎧⎪⎪⎨⎪⎪⎩
H0 : η

[
w(w − 1)η + t

]2

− s = 0 in U0 × C × Δ × Δ†

H′
0 : z2ζ

[
(1 − z)ζ + t

]2

− s = 0 in U ′
0 × C × Δ × Δ†.
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Since H0 is written as

1
w2 (w2η)

[(
1 − 1

w

)
(w2η) + t

]2

− s = 0,

the transition function g0 : z = 1/w, ζ = w2η of N0 transforms H0 to H′
0,

and thus they together define a complex 3-manifold M0 in N0 × Δ × Δ†.
We then propagate M0 along each branch of the singular fiber X.

Step 1: Propagation along Br(1) By a coordinate change z′ = z(1−z)−1/2

and ζ ′ = ζ(1−z), the hypersurface H′
0 is written as z2ζ(ζ +t)2−s = 0 around

p1 = 1 ∈ Θ0. We then define a complex 3-manifold M(1)
1 in N

(1)
1 ×Δ×Δ† by{

H(1)
1 : wη2(w + t)2 − s = 0,

H(1)
1

′
: zζ2(1 + tz)2 − s = 0.

Note that H(1)
1 |s=0 consists of wη2 = 0 and (w + t)2 = 0, where the curve

(w + t)2 = 0 intersects the curve wη2 = 0 at one point (w, η) = (−t, 0)
transversely; the bold point in the right figure of Figure 4.2.6 is (−t, 0). Also

note that H(1)
1

′
is the trivial family of H

(1)
1 . In fact, take a new coordinate

z′ = z(1 + tz)2, and then H(1)
1

′
is rewritten as z′ζ2 − s = 0, which does not

depend on t.
Now we define a complex 3-manifold M(1)

2 in N
(1)
2 × Δ × Δ† by{

H(1)
2 : w2η(1 + tη)2 − s = 0,

H(1)
2

′
: ζ(1 + tz2ζ)2 − s = 0.

Then M(1)
1 and M(1)

2 together give a propagation of M0 along the branch
Br(1).
Step 2: Propagation along Br(2) By Simplification Lemma (Lemma 4.1.1),
after some coordinate change, H0 is written as η(wη + t)2 − s = 0 around
p2 = 0 ∈ Θ0. For consistency with the discussion in Step 1, we write H0 in
(z, ζ)-coordinates: ζ(zζ + t)2 − s = 0 around p2, and then set

H(2)
1 : w(wη + t)2 − s = 0.

Here we note that the transition function z = 1/w, ζ = w2η, unfortunately,
does not transform H(2)

1 to a hypersurface. Indeed, since H(2)
1 is written as

w

(
1
w

(w2η) + t

)2

− s = 0,

the transition function z = 1/w, ζ = w2η transforms H(2)
1 to 1

z (zζ+t)2−s = 0.
This does not define a hypersurface, because the right hand side contains a
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fractional term. How can we remedy this situation? The answer is to deform
the line bundle N

(2)
1 as well. Set g

(2)
1 : z = 1/w, ζ = w2η + tw, and define{

H(2)
1 : w(wη + t)2 − s = 0,

H(2)
1

′
: zζ2 − s = 0.

(Note: H(1)
2 and H(1)

2

′
are respectively the trivial families of H

(1)
2 and H

(1)
2

′
.)

We claim that g
(2)
1 transforms H(2)

1 to H(2)
1

′
. To see this, write H(2)

1 as

w

(
1
w

(w2η) + t

)2

− s = 0.

On the other hand, from the expression of g
(2)
1 , we have w2η = ζ−tw = ζ−t1z ,

and so g
(2)
1 transforms H(2)

1 to

1
z

[
z

(
ζ − t

1
z

)
+ t

]2

− s = 0,

that is, to 1
z [zζ]2 − s = 0 which equals H(2)

1

′
: zζ2 − s = 0, and hence g

(2)
1

transforms H(2)
1 to H(2)

1

′
. Now we ‘trivially’ propagate this deformation to

that around Θ(2)
2 : {

H(2)
2 : w2η − s = 0,

H(2)
2

′
: ζ − s = 0.

Clearly, the transition function z = 1/w, ζ = w2η of N
(2)
2 transforms H(2)

2 to

H(2)
2

′
, and so we obtain a propagation of M0 along the branch Br(2).

Step 3: Propagation along Br(3) A propagation of M0 along the branch
Br(3) is carried out in the same way as the propagation along Br(2).

The three steps in the above yield a complex 3-manifold M. The natural
projection Ψ : M → Δ × Δ† is a barking family of π : M → Δ such that the
deformation from X to X0,t is shown in Figure 4.2.6.

Example 4.2.6 (Application of multiple barking)

The barking family of Example 4.2.5 has an interesting application; since
its restriction around irreducible components Θ(1)

2 , Θ(2)
2 and Θ(3)

2 is trivial,
it is trivially extensible to a deformation of some degeneration with a con-
stellar (constellation-shaped) singular fiber, which is obtained by ‘bonding’
the singular fiber X with another singular fiber. See Figure 4.2.7 for example
(“Tk” in the figure is a trunk). The detailed account of this construction will
be given later in §16.5, p292.

Example 4.2.7 (Compound barking)

So far, in each construction of barking families, we used only one subdivisor
of the singular fiber X. In the next construction, we use two subdivisors Y1
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Fig. 4.2.7.
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Fig. 4.2.8. Y1 and Y2 are subdivisors of X

and Y2 of X simultaneously, where Y1 and Y2 are shown in Figure 4.2.8. First
of all, we define a complex 3-manifold M0 in N0 × Δ × Δ† by patching the
following smooth hypersurfaces by g0 : z = 1/w, ζ = w2η:⎧⎨⎩ H0 : w2(w − 1)2η3 − s + atw(w − 1)2η2 + btw(w − 1)η2 = 0

H′
0 : z2(1 − z)2ζ3 − s + atz(1 − z)2ζ2 + btz2(1 − z)ζ2 = 0,

(4.2.3)

where a, b ∈ C \ {0}. The term with a (resp. b) ‘corresponds’ to Y1 (resp.
Y2). In fact, if we set a = 0, then (4.2.3) (after propagation along branches)
reduces to a deformation such that Y2 is barked off from X (Example 4.2.2),
while if we set b = 0, then (4.2.3) (after propagation along branches) reduces
to a deformation such that Y1 is barked off from X.

Now we shall propagate M0 along the branches of X. We carry this out
separately for two cases a �= b and a = b; we will see that the resulting
deformations for the two cases are totally different.
Case I a �= b: First, we note the following factorizations of H0 and H′

0:⎧⎨⎩ H0 : w(w − 1)η2
[
w(w − 1)η + t(aw + b − a)

]
− s = 0

H′
0 : z(1 − z)ζ2

[
z(1 − z)ζ + t

(
a + (b − a)z

)]
− s = 0.

(4.2.4)
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For simplicity, we assume a = 1 and b = 2:⎧⎨⎩ H0 : w(w − 1)η2
[
w(w − 1)η + t(w + 1)

]
− s = 0

H′
0 : z(1 − z)ζ2

[
z(1 − z)ζ + t(1 + z)

]
− s = 0.

(4.2.5)

We then construct a propagation of H′
0 along Br(1). In suitable coordinates, H′

0

is written as zζ2(zζ + t)−s = 0 around p1 = 1 ∈ Θ0 by Simplification Lemma
(Lemma 4.1.1). Then a propagation along Br(1) is given by the following
data — in what follows, we simply write a triple (two hypersurfaces and their
gluing map) because the triple completely determines a deformation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

H(1)
1 : w2η(wη + t) − s = 0,

H(1)
1

′
: ζ(zζ + t) − s = 0,

g
(1)
1 : z = 1

w, ζ = w2η,⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(1)

2 : w(wη + t) − s = 0,

H(1)
2

′
: ζ − s = 0,

g
(1)
2 : z = 1

w, ζ = w2η + tw.

We may also perform a propagation along Br(3) in the same way as above.
Along the branch Br(2), we carry out a propagation of H0 as follows. In
suitable coordinates, H0 is written as wη2(wη+t)−s = 0 around p2 = 0 ∈ Θ0

by Simplification Lemma (Lemma 4.1.1). For consistency, we write this in
(z, ζ)-coordinates: H0 : zζ2(zζ + t) − s = 0. Then a propagation along Br(2)

is given by ⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(2)

1 : w2η(wη + t) − s = 0,

H(2)
1

′
: ζ(zζ + t) − s = 0,

g
(2)
1 : z = 1

w, ζ = w2η,⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(2)

2 : w(wη + t) − s = 0,

H(2)
2

′
: ζ − s = 0,

g
(2)
2 : z = 1

w, ζ = w2η + tw.

In this way, we achieve propagations along all branches — surprisingly, the
propagations along Br(1), Br(2) and Br(3) are all the same — and we obtain a
barking family. Note that for each t, H′

0|s=0 in (4.2.5) always passes through
a point (z, ζ) = (−1, 0) ∈ Θ0. See Figure 4.2.8; a more geometrically precise
figure of X0,t is Figure 4.2.5.
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Case II a = b: For simplicity, we assume a = b = 1. Then (4.2.4) is⎧⎪⎨⎪⎩
H0 : w2(w − 1)η2

[
(w − 1)η + t

]
− s = 0

H′
0 : z(1 − z)ζ2

[
z(1 − z)ζ + t

]
− s = 0.

In suitable coordinates, H′
0 is written as zζ2(zζ+t)−s = 0 around p1 = 1 ∈ Θ0

(Lemma 4.1.1). Then a propagation of H′
0 along Br(1) is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(1)

1 : w2η(wη + t) − s = 0,

H(1)
1

′
: ζ(zζ + t) − s = 0,

g
(1)
1 : z = 1

w, ζ = w2η,

(4.2.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(1)

2 : w(wη + t) − s = 0,

H(1)
2

′
: ζ − s = 0,

g
(1)
2 : z = 1

w, ζ = w2η + tw.

(4.2.7)

(Note that this propagation is the same as the propagation along Br(1) in
Case I.) We may carry out a propagation along Br(3) in the same way as the
above (4.2.6), (4.2.7). Finally we construct a propagation of H0 along Br(2).
In suitable coordinates, the hypersurface H0 is written as w2η2(η + t)− s = 0
around p2 = 0 ∈ Θ0 (Lemma 4.1.1). For consistency, write this in (z, ζ)-
coordinates: H0 : z2ζ2(ζ + t) − s = 0 around p2. Then a propagation along
Br(2) is given by ⎧⎪⎪⎪⎨⎪⎪⎪⎩

H(2)
1 : w2η2(w + t) − s = 0,

H(2)
1

′
: zζ2(1 + tz) − s = 0,

g
(2)
1 : z = 1

w, ζ = w2η,⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(2)

2 : w2η(1 + tη) − s = 0,

H(2)
2

′
: ζ(1 + tz2ζ) − s = 0,

g
(2)
2 : z = 1

w, ζ = w2η.

Hence we obtain propagations along all branches; accordingly we establish a
barking family. Note that H(2)

1 |s=0 intersects Θ(2)
1 at one point w = −t (the

bold point in the right figure of Figure 4.2.9). We also note that in contrast
with Case I (Figure 4.2.8), Yt in this case does not intersect Θ0.
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Fig. 4.2.9. See also Figure 4.2.10.
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Fig. 4.2.10. A more geometrically precise figure of X0,t in Figure 4.2.9.

4.3 Supplement: Collision and Symmetry

4.3.1 Collision, I

In the previous section, to one subdivisor Y of a singular fiber, we associated
one barking family, except for the final example where we took two subdivisors
Y1 and Y2. However to one subdivisor, it is sometimes possible to associate
different barking families by collision of points. We explain this by examples.
Consider a degeneration of elliptic curves with the singular fiber X of type I∗0
(Figure 4.3.1).

Given a subdivisor Y in Figure 4.3.1, we shall construct two different
barking families such that Y is barked off from X in different ways. The first
construction is as follows. Taking “auxiliary points” q1, q2 ∈ Θ0 distinct from
the attachment points p1, p2, p3, p4 of the branches, we define a deformation
around the core Θ0 by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H0 : η
[
(w − p1)(w − p2)(w − p3)(w − p4)η + t(w − q1)(w − q2)

]
− s = 0

H′
0 : ζ

[
(1 − p1z)(1 − p2z)(1 − p3z)(1 − p4z)ζ+t(1 − q1z)(1 − q2z)

]
−s = 0

g0 : z = 1
w, ζ = w2η.

(4.3.1)



4.3 Supplement: Collision and Symmetry 75

1 1

1

Y1

1
p1

2

p2
1

p3

I∗
0

p41

1 1

Fig. 4.3.1.

q2

q1

1

I2

−→
1

2

I∗
01

deform

1

1 1

Fig. 4.3.2. See also Figure 4.3.3.

We propagate this along the branch Br(1); for simplicity, we assume p1 = 0.
By Simplification Lemma (Lemma 4.1.1), after some coordinate change, H0 is
of the form η(wη + t)−s = 0 around p1. For consistency with other examples,
we write H0 in (z, ζ)-coordinates: ζ(zζ + t) − s = 0 which, by a coordinate
change (w, η) = (ζ, z), becomes w(wη + t) − s = 0. We then consider⎧⎪⎪⎪⎨⎪⎪⎪⎩

H(1)
1 : w(wη + t) − s = 0,

H(1)
1

′
: ζ − s = 0,

g
(1)
1 : z = 1

w, ζ = w2η + tw.

Evidently, g
(1)
1 transforms H(1)

1 to H(1)
1

′
, and so the above data gives a propa-

gation of H0 along the branch Br(1). Similarly, we can construct propagations
along other branches of X, yielding a barking family. In this family, X = I∗0
is deformed to X0,t = I2. In fact, after some coordinate change, H0|s=0 is
locally η(η + tw) = 0 around qi (i = 1, 2) where we choose coordinates such
that qi = 0. Hence locally X0,t consists of two lines intersecting transversely
at qi (i = 1, 2). See Figure 4.3.2.
Collision The second construction is obtained from the above one by mak-
ing two points q1 and q2 collide to one point q (compare Figure 4.3.2 with
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Fig. 4.3.3. A more geometrically precise figure of I2 in Figure 4.3.2. Observe that
all branches disappear under the deformation.
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Fig. 4.3.4. See Figure 4.3.5 for a more geometrically precise figure.

Figure 4.3.4), meaning that we define a deformation around the core by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H0 : η

[
(w − p1)(w − p2)(w − p3)(w − p4)η + t(w − q)2

]
− s = 0

H′
0 : ζ

[
(1 − p1z)(1 − p2z)(1 − p3z)(1 − p4z)ζ + t(1 − qz)2

]
− s = 0

g0 : z = 1
w, ζ = w2η.

We leave the reader to propagate this along the branches of the singular fiber
X. In the resulting family, X = I∗0 is deformed to X0,t = III. In fact, after
some coordinate change, H0|s=0 is locally given by η(η + tw2) = 0 around
q = 0, and thus locally X0,t consists of two lines η = 0 and η + tw2 = 0
intersecting at the point q with the second order contact, and so X0,t is of
type III.

4.3.2 Collision, II

The above construction is based on the collision of two points q1 and q2 to one
point q, where q is not an attachment point of a branch to the core. Next, we
shall provide a slightly different construction using the collision of q1 and q2 to
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Fig. 4.3.5. A more geometrically precise figure of III in Figure 4.3.4. Observe that
all branches disappear under the deformation.
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Fig. 4.3.6.

the attachment point of some branch. We take a subdivisor Y in Figure 4.3.6;
we assume that pi �= 0 (i = 1, 2, 3, 4) where pi are the attachment points of
branches to the core.

Initially, we construct a barking family which barks Y so that the singular
fiber X = I∗0 is deformed to X0,t = I3, and then by means of collision, we
construct another barking family. First define a deformation around the core
Θ0 by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 : (w − p4)η
[
(w − p1)(w − p2)(w − p3)η + tw

]
− s = 0

H′
0 : (1 − p4z)ζ

[
(1 − p1z)(1 − p2z)(1 − p3z)ζ + t

]
− s = 0

g0 : z = 1
w, ζ = w2η.

(4.3.2)

(Specializing q1 = p4 and q2 = 0 in (??), we obtain (4.3.2).) We leave the
reader to propagate this along the branches of the singular fiber X. The
resulting barking family is described as follows. In a new coordinate η′ =
(w − p1)(w − p2)(w − p3)η, the hypersurface H0|s=0 becomes

(w − p4)
(w − p1)(w − p2)(w − p3)

η′ (η′ + tw) = 0,
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Fig. 4.3.7. See Figure 4.3.8 for a more geometrically precise figure.
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Fig. 4.3.8. A more geometrically precise figure of I3 in Figure 4.3.7. Observe that
except for Br(4), other branches disappear under the deformation.

that is, η′(η′ + tw) = 0 around (w, η′) = (0, 0). Thus H0|s=0 is locally given
by η′(η′ + tw) = 0 around (w, η′) = (0, 0), where the barked part η′ + tw = 0
intersects Θ0 at one point (w, η′) = (0, 0) — a bold point marked by 0 in
Figure 4.3.7 — transversely.
Collision Next we modify the above construction; we collide two points,
say p4 and 0 on the left figure in Figure 4.3.6, and then we obtain a new
deformation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 : wη
[
(w − p1)(w − p2)(w − p3)η + tw

]
− s = 0

H′
0 : ζ

[
(1 − p1z)(1 − p2z)(1 − p3z)ζ + t

]
− s = 0

g0 : z = 1
w, ζ = w2η.

Note that H0|s=0 : wη
[
(w − p1)(w − p2)(w − p3)η + tw

]
= 0, which locally

defines three lines passing through p4 = 0 ∈ Θ0, and hence p4 is the ordinary
triple point (the bold point in the right figure of Figure 4.3.9).

4.3.3 Construction based on symmetry

In §4.3.2, we constructed a barking family which deforms X = I∗0 to X0,t =
III. Using the ‘symmetry’ of I∗0 (see Y1 and Y2 in Figure 4.3.11), we shall
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Fig. 4.3.9. Very hard to write a figure! Actually, the projective line with the gray
color is smooth, and three smooth projective lines intersect at one point p4 which is
the ordinary triple point. See also Figure 4.3.10.
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Fig. 4.3.10. A slightly more precise figure of IV in Figure 4.3.9. (The projective
line with the gray color is actually smooth.) Observe that except for Br(4), other
branches disappear under the deformation.
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give another barking family which also deforms X = I∗0 to X0,t = III. First
define a deformation around the core by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 :
[
(w − p1)(w − p2)η + t

][
(w − p3)(w − p4)η + t

]
− s = 0

H′
0 :

[
(1 − p1z)(1 − p2z)ζ + t

][
(1 − p3z)(1 − p4z)ζ + t

]
− s = 0

g0 : z = 1
w, ζ = w2η.

(4.3.3)

We leave the reader to propagate this along the branches of the singular fiber
X. The resulting barking family is described as follows. Put s = 0 in (4.3.3),
and then H0|s=0 and H′

0|s=0 together give a smoothing of the subdivior Y1

(resp. Y2) to a projective line Y1,t (resp. Y2,t), as illustrated in Figure 4.3.12
(cf. Figure 4.3.4), where Y1,t and Y2,t around the core Θ0 are respectively
given by

Y1,t :

{
(w − p1)(w − p2)η + t = 0
(1 − p1z)(1 − p2z)ζ + t = 0,

(4.3.4)

Y2,t :

{
(w − p3)(w − p4)η + t = 0
(1 − p3z)(1 − p4z)ζ + t = 0.

(4.3.5)

The following lemma confirms that X0,t is of type III.

Lemma 4.3.1 Two projective lines Y1,t and Y2,t (t �= 0) intersect only at one
point with the second order contact.

Proof. Letting (w, η) be an intersection point of Y1,t and Y2,t, then from the
first equation of (4.3.4) and that of (4.3.5), we have

(w − p1)(w − p2)η + t = (w − p3)(w − p4)η + t, (4.3.6)

and hence [
−(p1 + p2)w + p1p2

]
η =

[
−(p3 + p4)w + p3p4

]
η. (4.3.7)

Here notice that η �= 0; indeed if η = 0, then from (w − p1)(w − p2)η + t = 0,
we obtain t = 0, yielding a contradiction to t �= 0. So we may divide (4.3.7)

1

1

−→2

III

1
1 I∗

0

deform
1

1

Fig. 4.3.12.
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by η to deduce
(p1 + p2 − p3 − p4)w = p1p2 − p3p4. (4.3.8)

We claim that p1+p2−p3−p4 �= 0. In fact, if p1+p2−p3−p4 = 0 (equivalently
p1 + p2 = p3 + p4), then from (4.3.8), we have p1p2 − p3p4 = 0. However the
two equations p1+p2 = p3+p4 and p1p2 = p3p4 imply that {p1, p2} = {p3, p4}
(equal as a set), because both of {p1, p2} and {p3, p4} are the solutions of the
same equation x2 − (p1 + p2)x + p1p2 = 0. This contradicts that p1, p2, p3, p4

are distinct (they are the attachment points of the branches of the singular
fiber X to the core), and thus p1 + p2 − p3 − p4 �= 0.

Now by (4.3.8), we have

w =
p1p2 − p3p4

p1 + p2 − p3 − p4
. (4.3.9)

Substitute this into the first equation (4.3.4) of Y1,t, which gives[
p1p2 − p3p4

p1 + p2 − p3 − p4
− p1

] [
p1p2 − p3p4

p1 + p2 − p3 − p4
− p2

]
η + t = 0. (4.3.10)

Here note the following equations:

p1p2 − p3p4

p1 + p2 − p3 − p4
− p1 = − (p1 − p3)(p1 − p4)

p1 + p2 − p3 − p4
,

p1p2 − p3p4

p1 + p2 − p3 − p4
− p2 = − (p2 − p3)(p2 − p4)

p1 + p2 − p3 − p4
.

Thus from (4.3.10), we have

η = − (p1 + p2 − p3 − p4)2t
(p1 − p3)(p1 − p4)(p2 − p3)(p2 − p4)

. (4.3.11)

By (4.3.9) and (4.3.11), we conclude

(w, η) =
(

p1p2 − p3p4

p1 + p2 − p3 − p4
, − (p1 + p2 − p3 − p4)2t

(p1 − p3)(p1 − p4)(p2 − p3)(p2 − p4)

)
.

This point is a unique solution of the equation (4.3.6), and thus the intersec-
tion Y1,t ∩ Y2,t is just one point (w, η). Furthermore since (4.3.6) is quadratic
in w, two projective lines Y1,t and Y2,t have the second order contact at this
point. This completes the proof of the assertion.

Remark 4.3.2 For the deformation (4.3.3), we may include additional para-
meters a, b ∈ C as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 :
[
(w − p1)(w − p2)η + at

][
(w − p3)(w − p4)η + bt

]
− s = 0

H′
0 :

[
(1 − p1z)(1 − p2z)ζ + at

][
(1 − p3z)(1 − p4z)ζ + bt

]
− s = 0

g0 : z = 1
w, ζ = w2η.

When b = 0 (resp. a = 0), this deformation barks Y1 (resp. Y2) in Figure 4.3.11
from X.
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Deformations of Tubular Neighborhoods
of Branches (Preparation)

The construction of barking deformations for degenerations of compact com-
plex curves is outlined as follows: First we construct deformations separately
for ambient spaces (tubular neighborhoods) of branches, trunks, and cores.
Then we glue these deformations together. In this chapter we introduce sev-
eral important notions (multiplicity sequences, tame or wild subbranches),
which will play a prominent role when we construct barking deformations of
tubular neighborhoods of branches.

5.1 Branches

We begin by constructing a degeneration whose singular fiber is a branch.
Suppose that m = (m0,m1, . . . , mλ) is a sequence of positive integers with
λ ≥ 1 such that

(i) m0 > m1 > · · · > mλ > 0,
(ii) ri := mi−1 + mi+1

mi
(i = 1, 2, . . . , λ − 1) and rλ := mλ−1

mλ
are integers

greater than 1.

Note: (m0,m1, . . . , mλ) is an arithmetic progression precisely when r1 = r2 =
· · · = rλ−1 = 2 (rλ may not be 2.) In fact, from (ii), mi+1 = rimi −mi−1, and
putting ri = 2, we deduce mi+1 − mi = mi − mi−1.

We take λ copies Θ1,Θ2, . . . ,Θλ of the projective line P
1. Let Θi = Ui∪U ′

i

be an open covering by two complex lines with coordinates zi ∈ U ′
i and wi ∈ Ui

satisfying zi = 1/wi on Ui ∩ U ′
i . Next, we consider a line bundle Ni on Θi

obtained by gluing (zi, ζi) ∈ U ′
i × C with (wi, ηi) ∈ Ui × C by

zi =
1
wi

, ζi = wri
i ηi.

Note that Ni
∼= OΘi

(−ri). We patch the line bundles N1, N2, . . . , Nλ by
plumbing, that is, we patch Ni with Ni+1 (i = 1, 2, . . . , λ − 1) by (zi, ζi) =
(ηi+1, wi+1). We then obtain a smooth complex surface M .
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Next we shall define a holomorphic function on M . For this purpose, we
first define a holomorphic function πi on the line bundle Ni (i = 1, 2, . . . , λ)
by {

πi(w, η) = wmi−1ηmi on Ui × C

πi(z, ζ) = zmi+1ζmi on U ′
i × C,

where mλ+1 = 0 by convention, and we omit the subscripts i of wi, ηi, zi, ζi

for simplicity. Let us check that πi is well-defined, i.e. the above two functions
on Ui × C and U ′

i × C are compatible with the transition function z = 1/w,
ζ = wriη of Ni. This is confirmed as follows:

wmi−1ηmi = wmi−1−rimi(wriη)mi = zrimi−mi−1ζmi (5.1.1)
= zmi+1ζmi ,

where in the last equality, we used ri = mi−1 + mi+1
mi

.

Since the holomorphic functions πi (i = 1, 2, . . . , λ) are compatible with
the patchings of M , they together determine a holomorphic function π on M ,
and π : M → Δ is a degeneration with a singular fiber (Figure 5.1.1)

π−1(0) = m0Δ0 + m1Θ1 + m2Θ2 + · · · + mλΘλ,

where Δ0
∼= C while Θ1,Θ2, . . . ,Θλ are projective lines such that Θi and

Θi+1 (resp. Δ0 and Θ1) intersect transversely at one point (we will sometimes
shrink M so that Δ0 becomes a small open disk). Note that a smooth fiber is
not necessarily connected; it is a disjoint union of mλ copies of C where we
note mλ = gcd(m0,m1, . . . , mλ).
The singular fiber X := π−1(0) is called a branch (of length λ).

Remark 5.1.1 Precisely speaking, X is a fringed branch (m0Δ0 is its fringe),
while m1Θ1 + · · · + mλΘλ is an unfringed branch. However for the sake of
brevity, we often refer to both unfringed and fringed branches simply as
branches. In later chapters, occasionally we need to distinguish unfringed and
fringed branches, in which case we use notations Br and Br respectively for
them.

For the subsequent discussion, it is convenient to regard M as the graph
of π:

Graph(π) = {(x, s) ∈ M × Δ : π(x) − s = 0}.

mλ = C = P1m1 m2m0 · · ·
Fig. 5.1.1. mi stands for a multiplicity.
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We identify Graph(π) with M via an isomorphism given by (x, s) ∈ Graph(π)
�→ x ∈ M . Under this canonical isomorphism, π is given by the projection
(x, s) ∈ Graph(π) → s ∈ Δ. We remark that it is also possible to construct
Graph(π) by patching complex surfaces as follows. Consider complex surfaces
Hi and H ′

i (i = 1, 2 . . . , λ):

Hi = {(wi, ηi, s) ∈ Ui × C × Δ : w
mi−1
i ηmi

i − s = 0},
H ′

i = {(zi, ζi, s) ∈ U ′
i × C × Δ : z

mi+1
i ζmi

i − s = 0}.

Here mλ+1 = 0 by convention. For each i, Hi and H ′
i together determine a

complex surface Mi in Ni ×Δ. Gluing Ni ×Δ with Ni+1 ×Δ (i = 1, 2, . . . , λ)
by plumbing, that is, by (zi, ζi, s) = (ηi+1, wi+1, s), we obtain a complex 3-
manifold M × Δ, and then M1,M2, . . . , Mλ together determine the complex
surface Graph(π) in M ×Δ. Henceforth, identifying M with Graph(π) via the
canonical isomorphism, we write M for Graph(π).

Remark 5.1.2 The complex surface M is the minimal resolution space of a
cyclic quotient singularity V , and Θ1 +Θ2 + · · ·+Θλ is the exceptional set of
M . More explicitly, let m∗

1 (0 < m∗
1 < m0) be the integer satisfying m1m

∗
1 ≡ 1

mod m0, and then V = C
2/G, where G is a cyclic group action generated by

(x, y) �−→ (e2πi/m0x, e2πim∗
1/m0y).

See [Ta,II] for details. Since any quotient singularity is taut (see [La2]), the
complex structure on M is unique, and so without loss of generality, we may
assume that M is obtained by plumbing as above. (However, there are many
choices of maps π : M → Δ with their singular fiber π−1(0) = m0Δ0+m1Θ1+
· · · + mλΘλ.)

5.2 Deformation atlas

Next, we shall introduce the notion of a deformation atlas which plays an
important role in the construction of deformations of degenerations. First, we
consider a complex 3-manifold Hi, given by a hypersurface in Ui×C×Δ×Δ†:

Hi : wmi−1ηmi − s + ϕi(w, η, t) = 0,

where ϕi is a holomorphic function on Ui ×C×Δ† satisfying ϕi(w, η, 0) = 0.
We say that Hi is a deformation of Hi. Note that Hi is smooth because

∂

∂s

(
w

mi−1
i ηmi

i − s + ϕi(w, η, t)
)

= −1 �= 0.

In the case ϕi ≡ 0, Hi is called the trivial deformation. Similarly, a complex
3-manifold H′

i is called a deformation of H ′
i provided that it is a smooth
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hypersurface in U ′
i × C × Δ × Δ† of the form:

H′
i : zmi+1ζmi − s + ψi(z, ζ, t) = 0

such that ψi is holomorphic with ψi(z, ζ, 0) = 0.
Next, we consider a gluing map gi of Ui×C×Δ×Δ† with U ′

i ×C×Δ×Δ†:

gi : z =
1
w

, ζ = wriη + hi(w, η, t),

where hi is a holomorphic function on (Ui∩U ′
i)×C×Δ† such that hi(w, η, 0) =

0. We say that gi is a deformation of the transition function z = 1/w, ζ = wriη
of Ni. For the case hi ≡ 0, the map gi is called the trivial deformation of the
transition function.

Remark 5.2.1 After a coordinate change, we may assume that gi is of the
“standard form”

z =
1
w

, ζ = wriη + α1(t)w + α2(t)w2 + · · · + αri−1(t)wri−1,

where αk(t) (k = 1, 2, . . . , ri−1) is a holomorphic function in t with αk(0) = 0.
See [Ri3] and §5.5.1, p98.

Letting e be an integer satisfying 1 ≤ e ≤ λ, we consider the following
data: For i = 1, 2, . . . , e,⎧⎪⎪⎪⎨⎪⎪⎪⎩

Hi : a deformation of Hi

H′
i : a deformation of H ′

i

gi : a deformation of the transition function of Ni.

A set DAe := {Hi,H′
i, gi}i=1,2,...,e is referred to as a deformation atlas of

length e if the following two conditions are satisfied:

gi (i = 1, 2, . . . , e) transforms Hi to H′
i, and (5.2.1)

by a coordinate change (zi, ζi, s, t) = (ηi+1, wi+1, s, t), H′
i becomes (5.2.2)

Hi+1 (i = 1, 2, . . . , e − 1).

For any integer e′ (0 < e′ < e), DAe′ := {Hi,H′
i, gi}i=1,2,...,e′ is a defor-

mation atlas of length e′. We say that DAe is an e-th propagation of DAe′ . For
the case e = λ, we say that DAλ is a complete propagation of DAe′ , and DAλ

is a complete deformation atlas. We often simply write DAe = {Hi,H′
i, gi}

instead of DAe = {Hi,H′
i, gi}i=1,2,...,e.

We next give a useful lemma, quoted as the Propagation Lemma.

Lemma 5.2.2 If mλ = 1, then any deformation atlas of length λ − 1 admits
a complete propagation.
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Proof. In fact, the following data gives a complete propagation of DAλ−1:⎧⎪⎨⎪⎩
Hλ : wmλ−1η − s + hλ−1(w, η, t) = 0
H′

λ : ζ − s = 0
gλ : z = 1

w, ζ = wmλ−1η + hλ−1(w, η, t).

(Note: since mλ = 1, we have rλ := mλ−1/mλ = mλ−1.) �
Given a complete deformation atlas DAλ = {Hi,H′

i, gi}i=1,2,...,λ, we may
construct a deformation of π : M → Δ as follows. First, let Ni be a complex
4-manifold obtained by patching Ui × C × Δ × Δ† with U ′

i × C × Δ × Δ† by
gi (i = 1, 2, . . . , λ). Then Hi and H′

i together determine a complex 3-manifold
Mi in Ni. Next, we patch Ni with Ni+1 (i = 1, 2, . . . , λ− 1) by (zi, ζi, s, t) =
(ηi+1, wi+1, s, t), which yields a complex 4-manifold W. By the conditions
(5.2.1) and (5.2.2), the complex 3-manifolds Mi (i = 1, 2, . . . , λ) together
determine a complex 3-manifold M in W. Then the natural projection Ψ :
M → Δ×Δ† is a deformation family of π : M → Δ, because Ψ−1(Δ×{0}) =
M and Ψ|M = π. We say that Ψ : M → Δ × Δ† is a barking family of
π : M → Δ obtained from DAλ.

Note: The natural projection pi : Ni → Δ×Δ† is considered as a deformation
of the line bundle Ni = p−1

i (0, 0), parameterized by Δ×Δ†. Note that p−1
i (0, t)

(t �= 0) is not necessarily a line bundle.

5.3 Subbranches

For a branch X = m0Δ0+m1Θ1+· · ·+mλΘλ, remember that the sequence of
multiplicities m = (m0,m1, . . . , mλ) satisfies m0 > m1 > · · · > mλ > 0, and
ri := mi−1 + mi+1

mi
(i = 1, 2, . . . , λ − 1) and rλ := mλ−1

mλ
are integers with

ri ≥ 2 (i = 1, 2, . . . , λ). Then the self-intersection number Θi · Θi = −ri,
and the condition ri ≥ 2 implies that Θi is not an exceptional curve, i.e.
Θi ·Θi �= −1. Now let Y = n0Δ0+n1Θ1+· · ·+neΘe be a connected subdivisor
of X, so e ≤ λ and 0 < ni ≤ mi. Symbolically we express 0 < Y ≤ X.

Definition 5.3.1 A connected subdivisor Y = n0Δ0 + n1Θ1 + · · · + neΘe

is called a subbranch of X if (1) e = 0 or 1, or (2) e ≥ 2 and the following
equations hold:

ni−1 + ni+1

ni
= ri, i = 1, 2, . . . , e − 1. (5.3.1)

We say that e is the length of the subbranch Y ; unless otherwise mentioned
we assume e ≥ 1, omitting the trivial case Y = n0Δ0 in the subsequent
discussion. Note that for a subbranch Y and a positive integer l, if lY ≤ X,
then lY is a subbranch as well.
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A sequence of positive integers n = (n0, n1, . . . , ne) satisfying (5.3.1) is
called a multiplicity sequence. The condition (5.3.1) is intended for the use of
the following lemma:

Lemma 5.3.2 Let a, b, c and r be positive integers satisfying a + c
b

= r. Then
a map g : z = 1/w, ζ = wrη transforms a monomial waηb to a monomial
zcζb.

Proof. Indeed, waηb = wa−br(wrη)b = zbr−aζb = zcζb, where the last equa-
tion follows from br = a + c. �

To a subbranch Y = n0Δ0 + n1Θ1 + · · · + neΘe, we shall associate a
deformation atlas of length e − 1.

Lemma 5.3.3 Let Y be a subbranch of X and d be an arbitrary positive
integer. Then the following data gives a deformation atlas DAe−1(Y, d) of
length e − 1 : For i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : w
mi−1−ni−1
i ηmi−ni

i (wni−1
i ηni

i + td) − s = 0
H′

i : z
mi+1−ni+1
i ζi

mi−ni(zni+1
i ζni

i + td) − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

Proof. From the definition of branches and subbranches,

mi−1 + mi+1 = rimi, ni−1 + ni+1 = rini. (5.3.2)

Setting

a := mi−1 − ni−1, b := mi − ni, c := mi+1 − ni+1,

then we have

a + c

b
=

(mi−1 − ni−1) + (mi+1 − ni+1)
mi − ni

=
(mi−1 + mi+1) − (ni−1 + ni+1)

mi − ni

=
(rimi) − (rini)

mi − ni
by (5.3.2)

= ri.

Thus by Lemma 5.3.2, gi transforms wmi−1−ni−1ηmi−ni to zmi+1−ni+1ζmi−ni .
Likewise, gi also transforms wni−1ηni to zni+1ζni . Hence gi transforms Hi to
H′

i. On the other hand, H′
i becomes Hi+1 by a coordinate change (wi+1, ηi+1,

s, t) = (ζi, zi, s, t). Thus DAe−1(Y, d) = {Hi,H′
i, gi}i=1,2,...,e−1 is a deforma-

tion atlas of length e − 1. �
When d plays no role, we frequently omit d to write DAe−1(Y ) for

DAe−1(Y, d).
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5.4 Dominant subbranches

To a subbranch Y of length e, we have associated a deformation atlas
DAe−1(Y ) of length e−1. Since we would ideally like to construct a complete
deformation atlas, we are interested in a subbranch with ‘maximal’ length,
and a deformation atlas associated with it. In this section, we will introduce
a class of subbranches called dominant which, in some sense, have maximal
lengths.

We begin with arithmetic preparation. Given two positive integers n0 and
n1 satisfying m0 ≥ n0 and m1 ≥ n1, let us construct a multiplicity sequence
with the maximal length among the multiplicity sequences whose first two
terms are n0 and n1. For this purpose, we first define a sequence n2, n3, . . . , nλ

of integers inductively by

ni = ri−1ni−1 − ni−2, i = 2, 3, . . . , λ. (5.4.1)

Let e (1 ≤ e ≤ λ) be the maximal integer such that 0 < ni ≤ mi, (i =
1, 2, . . . , e). From (5.4.1), we have

ni−1 + ni+1

ni
= ri, i = 1, 2, . . . , e − 1,

and so n = (n0, n1, . . . , ne) is a multiplicity sequence. We say that n is a
dominant sequence with the first two terms n0 and n1; by construction, n is
of maximal length among the multiplicity sequences with first two terms n0

and n1. For the case e = 0, the ‘sequence’ n = (n0) is conventionally regarded
as a dominant sequence. Henceforth unless otherwise stated, we suppose e ≥ 1.
We summarize several properties of dominant sequences.

Lemma 5.4.1 Let n = (n0, n1, . . . , ne) be a dominant sequence. If n0 ≥ n1

and r1 = r2 = · · · = re−1 = 2, then n0 ≥ n1 ≥ n2 ≥ · · · ≥ ne. (Note: in this
case, (m1,m2, . . . , me) is an arithmetic progression.)

Proof. We show ni ≥ ni+1 (i = 0, 1, . . . , e − 1) by induction. First, n0 ≥ n1

by assumption. Next, assuming ni−1 ≥ ni, we show ni ≥ ni+1. Since ri = 2,
we have ni+1 = 2ni − ni−1, and hence

ni − ni+1 = ni − (2ni − ni−1) = ni−1 − ni ≥ 0,

where the last inequality follows from the inductive hypothesis ni−1 ≥ ni.
Therefore ni ≥ ni+1, and this completes the inductive step. �
Remark 5.4.2 By the same argument, if ri = ri+1 = · · · = rj = 2, then
ni−1 ≥ ni ≥ · · · ≥ nj .

We point out that unless r1 = r2 = · · · = rλ = 2, the inequalities

n0 ≥ n1 ≥ n2 ≥ · · · ≥ ne > 0
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is not necessarily correct. For instance,

(a) m = (15, 7, 6, 5, 4, 3, 2, 1) and n = (5, 3, 4, 5)
(b) m = (90, 20, 10) and n = (2, 2, 8).

We next provide a result ‘opposite’ to Lemma 5.4.1.

Lemma 5.4.3 Let n = (n0, n1, . . . , ne) be a multiplicity sequence such that
there exists k (1 ≤ k ≤ e) satisfying nk−1 < nk (resp. nk−1 ≤ nk). Then

nk−1 < nk < nk+1 < · · · < ne (resp. nk−1 ≤ nk ≤ nk+1 ≤ · · · ≤ ne).

(In particular, retaking k := min{i : ni−1 < ni}, we have the following
inequalities:

n0 > n1 > · · · > nk−1 < nk < nk+1 < · · · < ne.

The same is valid for replacing “<” by “≤”.)

Proof. We show this by induction. From the definition of a multiplicity
sequence,

ni+1 = rini − ni−1, (i = 1, 2, . . . , e − 1). (5.4.2)

Suppose that ni > ni−1, and then

ni+1 = rini − ni−1

≥ 2ni − ni−1 by ri ≥ 2
= ni + (ni − ni−1)
> ni,

where the last inequality follows from the inductive hypothesis ni > ni−1.
Hence we have ni+1 > ni, completing the inductive step. �

We now return to subbranches.

Definition 5.4.4 A subbranch Y = n0Δ0 + n1Θ1 + · · · + neΘe is called
dominant if the multiplicity sequence n = (n0, n1, . . . , ne) is dominant.

Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a subbranch. Then for any integer e′

(0 ≤ e′ < e), we say that a subbranch Y ′ = n0Δ0 + n1Θ1 + · · · + ne′Θe′ is
contained in Y .

Proposition 5.4.5 Any subbranch Y is contained in a unique dominant sub-
branch.

Proof. We write Y = n0Δ0 +n1Θ1 + · · ·+nfΘf , and then from the definition
of a subbranch,

ni = ri−1ni−1 − ni−2, (i = 1, 2, . . . , f).

We next define a sequence nf+1, nf+2, . . . , ne inductively by ni = ri−1ni−1 −
ni−2, where e (e ≤ λ) is the maximal integer such that 0 < ni ≤ mi holds
for each i = f + 1, f + 2, . . . , e. Then Z = n0Δ0 + n1Θ1 + · · · + neΘe is a
dominant subbranch containing Y . The uniqueness of Z is immediate from
the uniqueness of a dominant sequence with the first two terms n0 and n1.�
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5.5 Tame and wild subbranches

Let DAe−1(Y, d) be the deformation atlas associated with a dominant
subbranch Y of length e. We would ideally like to construct its complete
propagation. Unfortunately, this is not always possible and depends on some
arithmetic properties (“tame” and “wild” to be defined below) of the multi-
plicities of Y .

Lemma 5.5.1 Let Y = n0Δ0 + n1Θ1 + · · ·+ neΘe be a dominant subbranch.
If e ≤ λ − 1, then precisely one of the following inequalities holds:

ne−1

ne
≥ re (5.5.1)

re >
ne−1 + me+1

ne
. (5.5.2)

(If we formally define mλ+1 as 0, then this lemma is also valid for e = λ.)

Proof. From the definition of dominance, e is the maximal integer such that
0 < ni ≤ mi holds for i = 1, 2, . . . , e. Therefore by the recursive relation
ni = ri−1ni−1 − ni−2, the integer ne+1 (= rene − ne−1) satisfies either (i)
0 ≥ ne+1 or (ii) ne+1 > me+1. Namely

(i) 0 ≥ rene − ne−1 or (ii) rene − ne−1 > me+1.

The assertion follows immediately from these inequalities. �
In the above lemma, the reader may wonder that the converse to the

inequality ne−1
ne

≥ re is given by ne−1
ne

< re. But when Y is dominant, ne−1
ne

<

re implies a stronger inequality ne−1 + me+1
ne

< re.

Remark 5.5.2 In (5.5.1), ne−1/ne is not necessarily an integer, e.g. m =
(6, 2) and n = (3, 2). Also note that for the case e = λ, it may happen that
rλ > nλ−1/nλ. For example,

(i) m = (7, 5, 3, 1) and n = (1, 1, 1, 1)
(ii) m = (6, 2) and n = (2, 1) or (2, 2).

Now we introduce important notions related to the propagatability of de-
formation atlases.

Definition 5.5.3 Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a dominant sub-
branch. Then Y is called (1) tame if ne−1

ne
≥ re, and (2) wild if one of the

following conditions is satisfied:

(W.1) e ≤ λ − 1 and ne−1 + me+1
ne

< re

(W.2) e = λ and nλ−1
nλ

< rλ.

By Lemma 5.5.1, any dominant subbranch is either tame or wild.
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(When Y is not dominant, “tame” and “wild” will be defined in Definition
5.5.5 below.) When a dominant subbranch Y is wild, the irreducible compo-
nent Θe is called wild. According to whether a dominant subbranch Y is tame
or wild, the multiplicity sequence n = (n0, n1, . . . , ne) is called tame or wild.

Tame example: m = (4, 3, 2, 1) and n = (3, 2, 1).

Then n1
n2

= r2 = 2, and so n satisfies (1) of Definition 5.5.3.

Wild example 1: m = (4, 3, 2, 1) and n = (2, 2, 2).

Then r2 = 2 > n1 + m2
n2

= 3
2, and so n satisfies (W.1) of Definition 5.5.3.

Wild example 2: m = (10, 6, 2) and n = (3, 2, 1).

Then r2 = 3 > n1
n2

= 2, and so n satisfies (W.2) of Definition 5.5.3.

Remark 5.5.4 If a dominant sequence n = (n0, n1, . . . , ne) satisfies ne−1 <

ne, then n is wild. In fact, ne−1
ne

< 1 < re, because re ≥ 2. (Recall that ri ≥ 2
for any i = 1, 2, . . . , λ.)

As we will show in Proposition 5.5.11, “wildness” is, in some sense, an ob-
struction for the propagatability of a deformation atlas.

Next, we define “tame” and “wild” for (not necessarily dominant) sub-
branches. Recall that any subbranch is contained in a unique dominant sub-
branch (Proposition 5.4.5).

Definition 5.5.5 A subbranch Y is called tame (resp. wild) if the dominant
subbranch containing Y is tame (resp. wild).

As long as we consider a deformation atlas associated with one subbranch,
it is enough to consider a dominant subbranch. But we will later construct a
deformation atlas associated with a set of subbranches, in which case we need
to consider subbranches which are not necessarily dominant. Until then, we
mainly work with dominant subbranches.

We now introduce a quantity which will play an important role for de-
scribing deformations.

Definition 5.5.6 Suppose that Y = n0Δ0 +n1Θ1 + · · ·+neΘe is a dominant
subbranch. Then an integer q(Y ) := ne−1 − rene is called the slant of Y .

Besides the description of deformations, the slant q(Y ) is also used for char-
acterizing the type (tame or wild) of the dominant subbranch as follows.

Lemma 5.5.7 Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a dominant subbranch
of X. Set q = q(Y ) = ne−1 − rene, and then the following equivalences hold:
(1) if e ≤ λ − 1, then

(1.a) Y is tame ⇐⇒ q ≥ 0,

(1.b) Y is wild ⇐⇒ 0 > me+1 + q.
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(2) if e = λ, then

(2.a) Y is tame ⇐⇒ q ≥ 0,

(2.b) Y is wild ⇐⇒ 0 > q.

(If we formally define mλ+1 as 0, then (2) is a special case of (1).)

Proof. (1.a) and (1.b) respectively restate (1) and (W.1) of Definition 5.5.3,
while (2.a) and (2.b) respectively restate (1) and (W.2) of Definition 5.5.3. �

We turn to discuss deformation atlases associated with subbranches, and
study their propagatability. Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a sub-
branch of a branch X = m0Δ0 + m1Θ1 + · · · + mλΘλ. For the deformation
atlas DAe−1(Y ) associated with Y , we would like to construct an e-th propa-
gation of DAe−1(Y ). We already know that if mλ = 1, then DAλ−1 is always
propagatable to a complete one by Propagation Lemma (Lemma 5.2.2). Thus
we assume that e ≤ λ − 1, or e = λ and mλ ≥ 2.

Lemma 5.5.8 Consider a hypersurface

He : wme−1−ne−1ηme−ne(wne−1ηne + t) − s = 0.

Then the transition function z = 1/w, ζ = wreη of Ne transforms the equation
of He to ⎧⎨⎩ zme+1ζme−ne(ζne + tzq) − s if e ≤ λ − 1

ζmλ−nλ(ζnλ + tzq) − s if e = λ.
(5.5.3)

Proof. Note that (5.5.3) is written as{
zme+1ζme − s + tzme+1+qζme−ne if e ≤ λ − 1

ζmλ − s + tzqζmλ−nλ if e = λ,

where q = ne−1− rene. First we consider the case e ≤ λ−1, in which case the
map z = 1/w, ζ = wreη transforms wme−1−ne−1ηme−ne to zme+1+qζme−ne . In
fact,

wme−1−ne−1ηme−ne = wme−1−ne−1−re(me−ne) (wreη)me−ne

= zre(me−ne)−(me−1−ne−1)ζme−ne

= zme+1+qζme−ne ,

where the last equality is derived from

re(me − ne) − (me−1 − ne−1) = (reme − me−1) + (ne−1 − rene)
= me+1 + q.

This confirms the assertion for e ≤ λ−1. For the case e = λ, just set mλ+1 = 0
in the above computation. �

From Lemma 5.5.8 with (1.a) and (2.a) of Lemma 5.5.7, if Y is tame, then
(5.5.3) are polynomials (i.e. with no fractional terms), and an e-th propagation
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of DAe−1(Y ) is given by

H′
e :

⎧⎨⎩ zme+1ζme−ne(ζne + tzq) − s = 0 if e ≤ λ − 1

ζmλ−nλ(ζnλ + tzq) − s = 0 if e = λ
(5.5.4)

with ge being the transition function of Ne. Furthermore we will show in
Theorem 6.1.1, p99 that DAe−1(Y ) for tame Y always admits a complete
propagation. To the contrary, we have the following result for the wild case.

Corollary 5.5.9 If Y is wild, then the transition function ge of Ne does not
transform He to a hypersurface.

Remark 5.5.10 Instead of a single subbranch Y , we will later use a set of
subbranches for the construction of a deformation atlas. Then the situation
is quite different. See Remark 20.3.1, p368, and also Remark 12.5.1, p230.

Proof. By Lemma 5.5.8, ge transforms He to

H′
e :

⎧⎨⎩ zme+1ζne + tzme+1+qζme−ne − s = 0 if e ≤ λ − 1

ζmλ + tzqζmλ−nλ − s = 0 if e = λ,

where q = ne−1 − rene. However, this is not a hypersurface; since Y is wild,
from (1.b) and (2.b) of Lemma 5.5.7, we have{

me+1 + q < 0 if e ≤ λ − 1
q < 0 if e = λ,

and therefore the exponents of zme+1+q for the case e ≤ λ − 1 and zq for
the case e = λ are negative. This means that H′

e is not well-defined as a
hypersurface. �

We summarize the above results as follows.

Proposition 5.5.11 The following data⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

He : wme−1−ne−1ηme−ne(wne−1ηne + t) − s = 0

H′
e : zme+1ζme−ne(ζne + tzq) − s = 0

(by convention, mλ+1 = 0 if e = λ)

ge : the transition function z = 1/w, ζ = wreη of Ne.

defines an e-th propagation of DAe−1(Y ) if and only if Y is tame.

This statement implies that for the wild case, in order to construct an e-th
propagation of DAe−1(Y ), we must deform the transition function of Ne in
such a way that it maps He to some hypersurface. Unfortunately, this is not
always possible, as is seen from the following example.

Example 5.5.12 Consider a branch

X = 15Δ0 + 7Θ1 + 6Θ2 + 5Θ3 + 4Θ4 + 3Θ5 + 2Θ6 + Θ7,
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and take a dominant subbranch Y = 5Δ0 + 3Θ1 + 4Θ2 + 5Θ3. Notice that Y
is wild, because

n2 + m4

n3
=

4 + 4
5

< r3 = 2.

Let DA2(Y, d) be the deformation atlas associated with Y , and then

H3 : w6η5 − s + ctdw2 = 0, where c ∈ C is nonzero.

We take the “standard form” g3 : z = 1/w, ζ = w2η+α(t)w of a deformation
of the transition function of N3 (see §5.5.1 below). Then g3 transforms H3 to

w6η5 − s + ctdw2

=
1

w4 (w2η)5 − s + ctdw2

= z4

(
ζ − α(t)

1
z

)5

− s + ctd
1
z2

=
(

z4ζ5 − 5α(t)z3ζ4 + 10α(t)2z2ζ3 − 10α(t)3zζ2 + 5α(t)4ζ − α(t)5
1
z

)
− s + ctd

1
z2 .

The last expression contains fractional terms −α(t)5 1
z + ctd 1

z2 (recall c �= 0

while possibly α(t) ≡ 0), and hence it cannot define a hypersurface; hence
DA2(Y, d) does not admit a further propagation.

It is heuristic to check the above statement also for g3 of a non-standard
form, that is, with higher or lower order terms, e.g. g3 :

z =
1
w

+
(

tw2 + t3
1
w

+ t(t + 1)η
)

, ζ = w2η+α(t)w+
(

twη + t
1

w4 + t3η2

)
,

where the terms inside the parentheses are “non-standard” terms; they may
have a pole at w = 0 but is necessarily holomorphic at η = 0, because we
glue (w, η) ∈ (U \ {0}) × C and (z, ζ) ∈ (U ′ \ {0}) × C (or shrinkage of these
spaces) via g3. We claim that g3 does not transform H3 to any hypersurface;
there appear fractional terms after transformation. In fact, note that g−1

3 has
a form:

g−1
3 : w =

1
z

+
∑
i, j

γi,j(t)ziζj , η = z2ζ − α(t)z +
∑
i, j

βi,j(t)ziζj ,

where α(0) = βi,j(0) = γi,j(0) = 0, and so the map g3 transforms H3 to

w6η5 − s + ctdw2

=

(
1
z

+
∑
i, j

γi,j(t)ziζj

)6 (
z2ζ − α(t)z +

∑
i, j

βi,j(t)ziζj

)5

− s + ctd

(
1
z

+
∑
i, j

γi,j(t)ziζj

)2

,

which, after expansion, contains fractional terms.
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5.5.1 Supplement: Riemenschneider’s work

Possibly after a coordinate change, we may assume that a deformation of a
transition function z = 1/w, ζ = wrη is of the form

z =
1
w

, ζ = wriη + α1(t)w + α2(t)w2 + · · · + αri−1(t)wri−1,

where αk(t) (k = 1, 2, . . . , ri − 1) is a holomorphic function in t with αk(0) =
0. This map is related to a versal deformation of the resolution space of a
cyclic quotient singularity. To explain this, we review some terminologies in
deformation theory. Let V be an analytic object, such as a germ of an isolated
singularity, the resolution space of a surface singularity, or a compact complex
manifold. By a deformation of V , we mean a flat holomorphic map f : V → B
where V and B are complex analytic spaces with the base point 0 ∈ B such
that f−1(0) = V . Then V → B is called versal (or semi-universal) if for any
deformation V ′ → B′ of V , there exists a holomorphic map h : B′ → B such
that V ′ → B′ is the pull-back of V → B via h; notice that h with this property
may not be unique. For any deformation V ′ → B′, if we could always take a
unique holomorphic map h with the above property, then we say that V → B
is universal. When V is a local object (e.g. a germ of an isolated singularity) or
non-compact (e.g. the resolution space of a surface singularity), it often occurs
that V admits many automorphisms, so that h is not unique and accordingly
V → B is not universal.

We turn to discuss a tubular neighborhood M of a branch. Let Ni be a line
bundle obtained by patching (w, η) ∈ Ui ×C with (z, ζ) ∈ Vi×C via z = 1/w,
ζ = wriη, and then M is a complex surface obtained by plumbing line bun-
dles N1, N2, . . . , Nλ. Note that M is the resolution space of a cyclic quotient
singularity (Remark 5.1.2, p87), and so by the work of Riemenschneider, we
can construct the versal deformation of M as follows (see [Ri3] for details).
First consider B :=

∏λ
i=1 C

ri−1 with coordinates

λ∏
i=1

(ti, 1, ti, 2, . . . , ti, ri−1) ∈ B.

Then construct a complex manifold Ni by patching Ui×C×B with Vi×C×B
by

gi : z =
1
w

, ζ = wriη + ti,1w + ti,2w
2 + · · · + ti,ri−1w

ri−1.

Next patch Ni and Ni+1 (i = 1, 2, . . . , λ−1) by plumbings, i.e. (z, ζ) = (η, w),
which yields a complex manifold Mver and the natural projection Mver → B
is the versal deformation of M .
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Construction of Deformations
by Tame Subbranches

We have classified subbranches into two types: tame and wild ones. Also, we
showed that any subbranch is contained in a unique dominant subbranch.
In this chapter, from dominant tame subbranches we will construct complete
deformation atlases.

6.1 Construction of deformations by tame subbranches

Suppose that X = m0Δ0 +m1Θ1 + · · ·+mλΘλ is a branch, and Y = n0Δ0 +
n1Θ1 + · · ·+neΘe is a dominant subbranch of X; as before we adopt the con-
vention mλ+1 = 0. Taking an arbitrary positive integer d, let DAe−1(Y, d) be
the deformation atlas associated with Y of weight d, i.e. for i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−ni−1ηmi−ni(wni−1ηni + td) − s = 0
H′

i : zmi+1−ni+1ζmi−ni(zni+1ζni + td) − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

Theorem 6.1.1 If Y is tame, then DAe−1(Y, d) admits a complete
propagation.
(We let Ψ : M → Δ × Δ† be the barking family associated with this com-
plete deformation atlas. In the course of the proof, we will also describe the
deformation from X to X0,t := Ψ−1(0, t).)

Proof. For simplicity, we write DAe−1 = DAe−1(Y, d). We only show the
statement for the case d = 1 (the proof below also works for arbitrary d). First
of all, setting q := ne−1−rene (the slant of Y ), then by Lemma 5.5.7, we have

q ≥ 0. (6.1.1)

We give the proof of the assertion separately for1: Case 1. e = λ and Case 2.
e < λ.
1 For example, Case 1 m = (8, 6, 4, 2), n = (4, 3, 2, 1) Case 2 m =

(9, 7, 5, 3, 1), n = (8, 5, 2).
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Case 1 e = λ: We set⎧⎪⎪⎨⎪⎪⎩
Hλ : wmλ−1−nλ−1ηmλ−nλ(wnλ−1ηnλ + t) − s = 0

H′
λ : ζmλ−nλ(ζnλ + tzq) − s = 0

gλ : the transition function z = 1/w, ζ = wrλη of Nλ,

(6.1.2)

where q = nλ−1−rλnλ. By (6.1.1), the exponent q of zq is nonnegative. More-
over since mλ−1 − nλ−1 ≥ 0, mλ − nλ ≥ 0, nλ−1 > 0 and nλ > 0, all
exponents of the terms in the defining equations of Hλ and H′

λ are nonneg-
ative. Hence Hλ and H′

λ are well-defined as hypersurfaces. Next, by Lemma
5.5.8, gλ transforms Hλ to H′

λ, and so (6.1.2) gives a complete propagation
of DAλ−1. This proves the assertion for the case e = λ.

Let Ψ : M → Δ×Δ† be the barking family associated with this complete
deformation atlas. Then according to whether q = 0 or q ≥ 1, the singular
fiber X is deformed to X0,t := Ψ−1(0, t) as illustrated in Figure 6.1.1 or Figure
6.1.2 respectively. See Remark 4.2.3, p65 for how to draw figures.

Case 2 e < λ: By Proposition 5.5.11, we may define an e-th propagation of
DAe−1 as follows:⎧⎪⎪⎨⎪⎪⎩

He : wme−1−ne−1ηme−ne(wne−1ηne + t) − s = 0

H′
e : zme+1ζme−ne(ζne + tzq) − s = 0

ge : the transition function z = 1/w, ζ = wreη of Ne,

(6.1.3)

where we recall q = ne−1 − rene. We claim that the following data gives an
(e + 1)-st propagation of DAe−1:

X0;t

deformation

X(e = λ, mλ ≥ 2)
(1) q = 0

Case 1

1

m1m0 m2 mλ

m2 − n2m1 − n1m0 − n0 mλ − nλ

Fig. 6.1.1. The above figure is for the case nλ = 1. When nλ ≥ 2, there
are disjoint nλ connected components of multiplicity 1. Note that when q = 0,
H′

λ|s=0 : ζmλ−nλ(ζnλ + t) = 0 is a disjoint union of two curves C1 : ζmλ−nλ = 0
and C2 : ζnλ + t = 0, where C2 for t �= 0 consists of disjoint nλ copies of a line C.
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X0;t

mλ X

m2 − n2m1 − n1m0 − n0

m1 m2m0

deformation

(e = λ, mλ ≥ 2)
(2) q ≥ 1

Case 1

p

1

mλ − nλ

Fig. 6.1.2. This figure is for the case nλ = 1. When nλ ≥ 2, there are nλ connected
components of multiplicity 1, and they intersect at a unique point (zλ, ζλ) = (0, 0),
denoted by p in the figure. For the case q ≥ 1, H′

λ|s=0 : ζmλ−nλ(ζnλ + tzq) = 0.
In particular, if q = 1, then H′

λ|s=0 consists of two curves C1 : ζmλ−nλ = 0 and
C2 : ζnλ + tz = 0, where C2 for t �= 0 is a line intersecting C1 at one point p
transversely, and if furthermore mλ = 2 and nλ = 1, then H′

λ|s=0 : ζ(ζ + tz) = 0
defines an ordinary double point (in this situation, we may apply a splitting criterion
in [Ta,I] to obtain a splitting deformation of X0,t).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
He+1 : wme−neηme+1(wne + t ηq) − s = 0

H′
e+1 : zme+2ζme+1(1 + t z re+1 q + ne ζq) − s = 0

ge+1 : the transition function z = 1/w, ζ = wre+1η of Ne+1.

(6.1.4)

In fact, since q ≥ 0 (6.1.1), the defining equations of He+1 and H′
e+1 do not

contain fractional terms, and so He+1 and H′
e+1 are well-defined as hypersur-

faces. We next show that ge+1 transforms He+1 to H′
e+1. To see this, we shall

rewrite He+1 as

He+1 : wme−ne
1

w re+1 me+1

(
w re+1 η

)me+1

(
wne + t

1
w re+1 q (w re+1η)q

)
− s

= 0.

Since me + me+2
me+1

= re+1, we have re+1me+1 − me = me+2, and so

wme−ne
1

w re+1 me+1
=

1
w re+1me+1 −me + ne

=
1

w me+2 + ne
.

Therefore

He+1 :
1

w me+2 + ne

(
w re+1 η

)me+1

(
wne + t

1
w re+1 q (w re+1η )q

)
− s = 0,
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and hence by ge+1 : z = 1/w, ζ = wre+1η, the hypersurface He+1 is trans-
formed to

z me+2 + ne ζ me+1

(
1

zne
+ t z re+1 q ζq

)
− s = 0,

that is, z me+2 ζ me+1 (1 + t z re+1 q + ne ζq) − s = 0. This is nothing but H′
e+1,

and thus ge+1 transforms He+1 to H′
e+1. Therefore (6.1.4) gives an (e + 1)-st

propagation of DAe−1.
To construct further propagations of DAe−1, we define integers ai (i =

e + 1, e + 2, . . . , λ + 1) inductively by{
ae+1 := q, ae+2 := re+1q + ne and
ai+1 := riai − ai−1 for i = e + 2, e + 3, . . . , λ.

(6.1.5)

Note 1. ai ≥ 0, in fact, aλ+1 > aλ > · · · > ae+1 ≥ 0. This is shown by
induction. Assuming that ai > ai−1, then we have

ai+1 = riai − ai−1

≥ 2ai − ai−1 by ri ≥ 2
= ai + (ai − ai−1)
> ai,

namely ai+1 > ai. This completes the inductive step.

Note 2. The transition function gi : z = 1/w, ζ = wriη of Ni trans-
forms wai−1ηai to zai+1ζai , which is derived from Lemma 5.3.2, because
ai−1 + ai+1

ai
= ri. Now for i = e + 2, e + 3, . . . , λ, we set⎧⎪⎨⎪⎩

Hi : wmi−1 ηmi (1 + t w ai−1 η ai) − s = 0
H′

i : zmi+1 ζmi (1 + t z ai+1 ζ ai) − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni,

(6.1.6)

where mλ+1 = 0 by convention. We assert that (6.1.6) gives a complete propa-
gation of DAe−1. To show this, it suffices to confirm the following two claims:

Claim A Hi and H′
i are well-defined as hypersurfaces, in other words, the

equations of Hi and H′
i do not contain fractional terms,

Claim B gi transforms Hi to H′
i.

Claim A follows from Note 1: ai ≥ 0, while Claim B follows from Note 2: the
transition function gi of Ni transforms wai−1ηai to zai+1ζai . Therefore, (6.1.6)
defines a complete propagation of DAe−1.

Finally, let Ψ : M → Δ × Δ† be the barking family obtained from the
above complete deformation atlas. We set Xs,t := Ψ−1(s, t). According to
whether q = 0 or q ≥ 1, X is deformed to X0,t as illustrated in Figure 6.1.3
or Figure 6.1.4. This completes the proof of Theorem 6.1.1. �
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Case 2
(e < λ)
q = 0

X0;t

Xdeformation

m0 m1 m2 me me+1 mλ−1 mλ

mλmλ−1me+1me − nem2 − n2m1 − n1m0 − n0

1

p

Fig. 6.1.3. The above figure is for ne = 1. When ne ≥ 2, there are disjoint ne

connected components of multiplicity 1, which intersect Θe+1 at ne points (when
ne = 1, at one point p in the figure); each connected component intersects Θe+1 at
one point. In fact, H′

e : zme+1ζme−ne(ζne + t) = 0 (6.1.3) is a union of two curves
C1 : zme+1ζme−ne = 0 and C2 : ζne + t = 0, where C2 for t �= 0 consists of ne copies
of a line C, and C1 and C2 intersect ζ-axis at ne points.

m2 − n2m1 − n1m0 − n0

deformation

mλmλ−1me+1me − ne

X

X0;t

me+1 mλ−1 mλmem1 m2m0

p

1

Case 2
(e < λ)
q ≥ 1

Fig. 6.1.4. The above figure is for ne = 1. When nλ ≥ 2, there are nλ connected
components of multiplicity 1, which intersect at a unique point (ze, ζe) = (0, 0),
denoted by p in the figure. Note that H′

e|s=0 : zme+1ζme−ne(ζne + tzq) = 0 (6.1.3),
and in particular, if ne = 1, then H′

e|s=0 consists of zme+1ζme−ne = 0 and a line
ζ + tzq = 0. If furthermore, me = 2 and me+1 = 1 (so λ = e + 1), then H′

e has an
ordinary triple point (in this situation, we may apply a splitting criterion in [Ta,I]
to obtain a splitting deformation of X0,t).

Remark 6.1.2 When |t| and |wai−1ηai | are sufficiently small, 1 + twai−1ηai

�= 0, and so Hi (i = e+2, e+3, . . . , λ) in (6.1.6) is equivalent to wmi−1ηmi +s =
0 (e.g. by a coordinate change w′ = w, η′ = η(1 + twai−1ηai)1/mi). Similarly,
when |t| and |zai+1ζai | are sufficiently small, 1 + tzai+1ζai �= 0, and so H′

i

is equivalent to zmi+1ζmi + s = 0. Therefore the barking family obtained
from the complete deformation atlas in Case 2 (e < λ) is trivial around Θi

(i = e + 2, e + 3, . . . , λ).
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6.2 Supplement for the proof of Theorem 6.1.1

6.2.1 Alternative construction

We give an alternative construction of a complete propagation of DAe−1 for
Case 2 in the proof of Theorem 6.1.1. Recall that when e ≤ λ− 1, we defined
an (e + 1)-st propagation of DAe−1 as follows (see (6.1.4)):⎧⎪⎨⎪⎩

He+1 : wme−ne ηme+1 (wne + tηq) − s = 0
H′

e+1 : zme+2 ζme+1 (1 + t z re+1 q + ne ζq) − s = 0,
ge+1 : the transition function z = 1/w, ζ = wre+1η of Ne+1.

(6.2.1)

Notice that H′
e+1 is equivalent to the trivial family of H ′

e+1. Indeed, in new
coordinates

(z′e, ζ
′
e) =

(
ze , ζe (1 + t z re q + ne

e+1 ζq
e+1)

1/me+1

)
,

the hypersurface H′
e+1 is written as (z′)me+2(ζ ′)me+1−s = 0, and so we assume

that H′
e+1 is of this form. We then define further propagations ‘trivially’: for

i = e + 2, r + 3, . . . , λ,⎧⎪⎨⎪⎩
Hi wmi−1ηmi − s = 0,
H′

i : zmi+1ζmi − s = 0,
gi : the transition function z = 1/w, ζ = wriη of Ni.

This data clearly defines a complete propagation of DAe−1.

Remark 6.2.1 This construction is much shorter than that we previously
gave in the proof of Theorem 6.1.1. However, for later application the previous
construction is more useful (see the proof of Theorem 14.2.7, p260).

6.2.2 Generalization

So far, we have treated only a deformation atlas of the form: for
i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−ni−1ηmi−ni(wni−1ηni + td) − s = 0
H′

i : zmi+1−ni+1ζmi−ni(zni+1ζni + td) − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

However, for our later application, we have to consider more general deforma-
tion atlases; let f(z) be a non-vanishing holomorphic function on a domain
{z ∈ C : |z| < ε}. (Here ε is possibly ∞, e.g. when f is constant.) Then we
would like to have a deformation atlas such that H1 is given by

w
m1−1−n1−1
1 ηm1−n1

1

(
w

n1−1
1 ηn1

1 + tdf(η1)
)
− s = 0. (6.2.2)
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(Precisely speaking, according to the value of ε, we have to ‘shrink’ π :M →Δ.)
We introduce a sequence of integers p0, p1, . . . , pλ+1, inductively given by⎧⎨⎩ p0 = 0, p1 = 1 and

pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.
(6.2.3)

Then the following inequalities hold.

pλ+1 > pλ > · · · > p1 > p0 = 0. (6.2.4)

This is seen by induction. Suppose that pi > pi−1, and then

pi+1 = ripi − pi−1

≥ 2pi − pi−1 by ri ≥ 2
= pi + (pi − pi−1)
> pi,

where the last inequality follows from the inductive hypothesis pi > pi−1.
Therefore pi+1 > pi, and so we complete the inductive step.

Lemma 6.2.2 The transition function gi : z = 1/w, ζ = wriη of Ni trans-
forms wpi−1ηpi to zpi+1ζpi .

Proof. Recall that if a, b, c are positive integers satisfying
a + c

b
= ri,

then gi : z = 1/w, ζ = wriη transforms waηb to zcζb (Lemma 5.3.2, p90).
From pi+1 + pi−1

pi
= ri (6.2.3), the assertion follows. �

Next, we define domains Ωi = Ωi(ε) and Ω′
i = Ω′

i(ε) (i = 1, 2, . . . , λ) by

Ωi = {(wi, ηi) ∈ Ui × C : |wpi−1
i ηpi

i | < ε},
Ω′

i = {(zi, ζi) ∈ U ′
i × C : |zpi+1

i ζpi

i | < ε}.
(6.2.5)

Note that if the radius of convergence of f is ∞, then Ωi = Ui × C and
Ω′

i = U ′
i × C.

Now letting Y be a subbranch, we shall construct a deformation atlas of
length e − 1 such that H1 is given by

wm0−n0
1 ηm1−n1

1

(
wn0

1 ηn1
1 + tdf(η1)

)
− s = 0. (6.2.6)

First define smooth hypersurfaces in Ωi × Δ × Δ† and Ω′
i × Δ × Δ† (i =

1, 2, . . . , e − 1) by

Hi : w
mi−1−ni−1
i ηmi−ni

i

(
w

ni−1
i ηni

i + tdf(wpi−1
i ηpi

i )
)
− s = 0,

H′
i : z

mi+1−ni+1
i ζi

mi−ni

(
z

ni+1
i ζi

ni + tdf(zpi+1
i ζpi

i )
)
− s = 0.



106 6 Construction of Deformations by Tame Subbranches

(Since pi ≥ 0 (6.2.4), Hi and H′
i are well-defined as hypersurfaces.) Evi-

dently, by a coordinate change (zi, ζi, s, t) = (ηi+1, wi+1, s, t), H′
i becomes

Hi+1. We take gi to be the transition function zi = 1/wi, ζi = wri
i ηi of Ni.

Then by Lemma 6.2.2, gi transforms Hi to H′
i, and therefore DAe−1 :=

{Hi,H′
i, gi}i=1,2,...,e−1 is a deformation atlas of length e − 1 such that H1

coincides with the hypersurface (6.2.6).
Henceforth to simplify notation, we often omit subscripts of coordinates

such as w = wi. Also we set

fi = f(wpi−1ηpi), f̂i = f(zpi+1ζpi). (6.2.7)

Then DAe−1 is expressed as: for i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩
Hi : wmi−1−ni−1ηmi−ni(wni−1ηni + tdfi) − s = 0
H′

i : zmi+1−ni+1ζmi−ni(zni+1ζni + tdf̂i) − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

(6.2.8)

Now Theorem 6.1.1 is generalized as follows:

Theorem 6.2.3 If Y is tame, then DAe−1 given by (6.2.8) admits a complete
propagation.

Proof. The proof goes in the same way as that of Theorem 6.1.1 and we merely
give the data of a complete propagation for the case d = 1. We shall separate
into two cases: Case 1. e = λ and Case 2. e ≤ λ − 1. For Case 1, we set⎧⎪⎨⎪⎩

Hλ : wmλ−1−nλ−1ηmλ−nλ (wnλ−1ηnλ + t fλ) − s = 0
H′

λ : ζmλ−nλ (ζnλ + t zq f̂λ) − s = 0
gλ : the transition function z = 1/w, ζ = wrλη of Nλ,

where q := nλ−1 − rλnλ. This data gives a complete propagation of DAλ−1.
For Case 2, we define an e-th propagation of DAe−1 by⎧⎪⎨⎪⎩

He : wme−1−ne−1ηme−ne (wne−1ηne + t fe) − s = 0
H′

e : zme+1ζme−ne (ζne + t zq f̂e) − s = 0
ge : the transition function z = 1/w, ζ = wreη of Ne.

(6.2.9)

Then we define⎧⎪⎨⎪⎩
He+1 : wme−neηme+1 (wne + t ηq fe+1) − s = 0
H′

e+1 : zme+2ζme+1 (1 + t z re+1 q + ne ζq f̂e+1) − s = 0
ge+1 : the transition function z = 1/w, ζ = wre+1η of Ne+1,

(6.2.10)

and for i = e + 2, e + 3, . . . , λ, we define⎧⎪⎨⎪⎩
Hi : wmi−1ηmi (1 + t w ai−1 η ai fi) − s = 0
H′

i : zmi+1ζmi (1 + t z ai+1 ζ ai f̂i) − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni,

(6.2.11)
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where fi and f̂i are as in (6.2.7) and ai are integers defined by (6.1.5), i.e.{
ae+1 := q, ae+2 := re+1q + ne and
ai+1 := riai − ai−1 for i = e + 2, e + 3, . . . , λ − 1.

(6.2.12)

As noted in the paragraph subsequent to (6.1.5), (1) ai ≥ 0, in fact, aλ >
aλ−1 > · · · > ae+1 ≥ 0 and (2) the transition function gi of Ni transforms
wai−1ηai to zai+1ζai . Thus (6.2.9), (6.2.10), (6.2.11) together give a complete
propagation of DAe−1. �

6.3 Proportional subbranches

In this section, we introduce “proportional subbranches”, which play an im-
portant role in describing singularities associated with subbranches.

Lemma 6.3.1 Let Y = n0Δ0 +n1Θ1 + · · ·+neΘe be a subbranch of a branch
X = m0Δ0+m1Θ1+· · ·+mλΘλ. Then the following conditions are equivalent:

(1) mknk−1 − mk−1nk = 0 for some integer k (1 ≤ k ≤ e).
(2) mini−1 − mi−1ni = 0 for i = 1, 2, . . . , e.
(3) m0

n0
= m1

n1
= · · · = me

ne
. (Clearly this is restated as: There exist positive

integers a and b satisfying (am0, am1, . . . , ame) = (bn0, bn1, . . . , bne)).

Proof. (1) =⇒ (2): Since Y is a subbranch of a branch X,

mk+1 + mk−1

mk
=

nk+1 + nk−1

nk
(= rk). (6.3.1)

By (1), we have mk−1
mk

= nk−1
nk

, and together with (6.3.1) we obtain

mk+1

mk
=

nk+1

nk
.

This implies that mk+1nk − mk+1nk = 0. We repeat this argument for k +
1, k + 2, . . . , e, and we obtain mini−1 − mi−1ni = 0 for k + 1, k + 2, . . . , e.
Similarly, we may show that mini−1−mi−1ni = 0 for k−1, k−2, . . . , 1. Thus
(2) holds.

(2) =⇒ (3): (2) is rewritten as mi
ni

= mi−1
ni−1

for i = 1, 2, . . . , e, and thus
m0
n0

= m1
n1

= · · · = me
ne

.

(3) =⇒ (1): Trivial. Thus we established the statement. �
For a subbranch Y = n0Δ0 +n1Θ1 + · · ·+neΘe of a branch X = m0Δ0 +

m1Θ1 + · · · + mλΘλ, if there exists positive integers a and b satisfying

(am0, am1, . . . , ame) = (bn0, bn1, . . . , bne),
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we say that Y is a proportional subbranch of X. As we have shown in Lemma
6.3.1, the proportionality of Y is equivalent to (1) mknk−1 −mk−1nk = 0 for
some integer k (1 ≤ k ≤ e), or (2) mini−1 − mi−1ni = 0 for i = 1, 2, . . . , e.
For example, X = 12Δ0 +9Θ1 +6Θ2 +3Θ3 and Y = 8Δ0 +6Θ1 +4Θ2 +2Θ3

are proportional; 2X = 3Y . In this example, X and Y have the same length
3. Actually, the following result holds.

Lemma 6.3.2 Let Y = n0Δ0+n1Θ1+· · ·+neΘe be a proportional subbranch
of X = m0Δ0 + m1Θ1 + · · · + mλΘλ.

(1) If Y is dominant, then Y and X have the same length; e = λ.
(2) If Y is not dominant, then the dominant subbranch Z containing Y is also

proportional. (Note: By (1), Z and X have the same length.)

Proof. (1): Supposing that e < λ, we will deduce a contradiction. As Y is
proportional, ne−1

ne
= me−1

me
and thus

ne−1

ne
=

me−1

me
=

me−1 + me+1

me
− me+1

me
= re − me+1

me

< re,

Therefore ne−1
ne

< re. This implies that Y is not tame; so Y is wild (see
Definition 5.5.3, p93 for “tame” and “wild”), i.e.

ne−1 + me+1

ne
< re.

On the other hand, since me−1 + me+1
me

= re, we have ne−1 + me+1
ne

<
me−1 + me+1

me
. Using ne−1

ne
= me−1

me
(the proportionality of Y ), we deduce

me+1
ne

<
me+1
me

and thus me < ne, giving a contradiction. Therefore e = λ.
Next we verify (2). We express Z = n0Δ0+n1Θ1+· · ·+nfΘf where e < f .

By an equivalent condition of proportionality, it suffices to show mknk−1 −
mk−1nk = 0 for “some” k (1 ≤ k ≤ f). But from the proportionality of Y ,
mknk−1 − mk−1nk = 0 holds for k = 1, 2, . . . , e, and hence the assertion is
verified. �

The proportionality of Y is related to other properties of Y .

Corollary 6.3.3 Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a subbranch of a
branch X = m0Δ0 + m1Θ1 + · · · + mλΘλ.

(1) If Y is proportional, then Y is tame.
(2) If Y is wild, then Y is not proportional.

Proof. Since (2) merely restates (1), it is enough to show (1). First we suppose
that Y is dominant. Then by Lemma 6.3.2 (1), Y and X have the same length;
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e = λ, and from mλnλ−1 − mλ−1nλ = 0, we have nλ−1
nλ

= mλ−1
mλ

. The right

hand side is equal to rλ, and so nλ−1
nλ

= rλ. This means that Y is tame
(Definition 5.5.3, p93).

When Y is not dominant, we take the dominant subbranch Z containing
Y . Then by Lemma 6.3.2 (2), Z is also proportional, and we may apply the
above argument to dominant proportional Z, concluding that Z is tame, and
by definition, Y is tame. This proves (1), and consequently (2). �

6.4 Singular fibers

This section is rather technical, and for the first reading, we recommend to
skip. Let m,m′, n, n′ be positive integers such that m−n > 0 and m−n′ > 0.

Lemma 6.4.1 Let Cs,t : zm′−n′
ζm−n(zn′

ζn+t)−s = 0 be a family of curves,
parameterized by s and t. Then Cs,t is singular if and only if⎧⎨⎩ (1) s = 0 if mn′ − m′n �= 0

(2) s = 0 or
(

n − m
n s

)a

=
(

n − m
m t

)b

if mn′ − m′n = 0,

where a and b are the relatively prime positive integers2 satisfying (am, am′) =

(bn, bn′). In (2), for the case
(

n − m
n s

)a

=
(

n − m
m t

)b

, a point (z, ζ) ∈ C
2

is a singularity on Cs,t precisely when

zn′
ζn =

n − m

m
t, zm′

ζm =
n − m

n
s.

Proof. If s = 0, then clearly C0,t : zm′−n′
ζm−n(zn′

ζn + t) = 0 is singu-
lar (normal crossing). We consider the case s �= 0. Setting F (z, ζ, t) :=
zm′−n′

ζm−n(zn′
ζn + t), we express Cs,t : F (z, ζ, t) − s = 0. Then

(z, ζ) ∈ Cs,t is singular ⇐⇒ ∂(F − s)
∂z

(z, ζ) =
∂(F − s)

∂ζ
(z, ζ) = 0 (6.4.1)

⇐⇒ ∂F

∂z
(z, ζ) =

∂F

∂ζ
(z, ζ) = 0

⇐⇒ ∂ log F

∂z
(z, ζ) =

∂ log F

∂ζ
(z, ζ) = 0.

(As we assumed s �= 0, from F (z, ζ, t) − s = 0, we have F (z, ζ, t) �= 0 and
so log F (z, ζ, t) is well-defined. The choice of a branch of log is immaterial,
because in the subsequent discussion, we are interested only in the derivative
of log.) Since

log F = (m′ − n′) log z + (m − n) log ζ + log(zn′
ζn + t),

2 If mn′ − m′n = 0, then there exists such a pair a and b.
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from ∂ log(F )
∂z

(z, ζ) = ∂ log(F )
∂ζ

(z, ζ) = 0 (6.4.1), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ log(F )

∂z
(z, ζ) = m′ − n′

z + n′zn′−1ζn

zn′
ζn + t

= 0

∂ log(F )
∂ζ

(z, ζ) = m − n
ζ

+ nzn′
ζn−1

zn′
ζn + t

= 0,

and hence we deduce

zn′
ζn =

n′ − m′

m′ t, zn′
ζn =

n − m

m
t. (6.4.2)

In particular, n′ − m′
m′ t = n − m

m t, or equivalently

(mn′ − m′n)t = 0. (6.4.3)

We separate into two cases according to whether mn′ − m′n is zero or not.

Case 1 mn′−m′n �= 0: From (6.4.3), we have t = 0, in which case, obviously
Cs,0 : zm′

ζm − s = 0 is singular precisely when s = 0.

Case 2 mn′ − m′n = 0: The equation (6.4.3) is vacuous, and it is easy
to check that two equations (6.4.2) are equivalent. Hence (z, ζ) ∈ C

2 is a
singularity on Cs,t precisely when the following two equations are satisfied:

zn′
ζn =

n − m

m
t (6.4.4)

zm′
ζm + tzm′−n′

ζm−n − s = 0. (6.4.5)

(The second equation is just the defining equation of Cs,t.) Substituting (6.4.4)

into zm′
ζm + t

zm′
ζm

zn′
ζn

− s = 0 (6.4.5), we obtain

zm′
ζm + tzm′

ζm 1
n − m

m
t
− s = 0,

which yields zm′
ζm = n − m

n s. Thus (z, ζ) ∈ C
2 is a singularity on Cs,t

precisely when

zn′
ζn =

n − m

m
t, zm′

ζm =
n − m

n
s. (6.4.6)

It remains to derive the equation satisfied by s and t. Taking powers of (6.4.6),
we have

zbn′
ζbn =

(
n − m

m
t

)b

, zam′
ζam =

(
n − m

n
s

)a

,
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where a and b are the relatively prime positive integers satisfying (am, am′) =

(bn, bn′). Since zbn′
ζbn = zam′

ζam, we have
(

n − m
m t

)b

=
(

n − m
n s

)a

. This
completes the proof of the assertion. �

We proved that for the case
(

n − m
n s

)a

=
(

n − m
m t

)b

in (2) of Lemma

6.4.1, a point (z, ζ) ∈ C
2 is a singularity on Cs,t precisely when zn′

ζn =
n − m

m t and zm′
ζm = n − m

n s. We further show that the singular locus of
Cs,t is one-dimensional (so Cs,t is non-reduced).

Lemma 6.4.2 Suppose that m′n − mn′ = 0. Fix s and t (s, t �= 0) such that(
n − m

n s
)a

=
(

n − m
m t

)b

, where a and b are the relatively prime positive
integers satisfying (am, am′) = (bn, bn′). Then an algebraic set{

(z, ζ) ∈ C
2

∣∣∣ zn′
ζn =

n − m

m
t, zm′

ζm =
n − m

n
s

}
(6.4.7)

is one-dimensional.

Proof. For brevity, we set A = n − m
m t and B = n − m

n s; note that A,B �= 0
because m > n and s, t �= 0, and also note that Ab = Ba by assumption. We
have to verify that the algebraic set which consists of (z, ζ) ∈ C

2 satisfying

(i) zn′
ζn = A, (ii) zm′

ζm = B

is one-dimensional. From (i), we deduce ζ = e2πik/n

(
A
zn′

)1/n

, where k is an

integer such that 1 ≤ k ≤ n. Substituting this into (ii), we have

zm′
e2πimk/n

(
A

zn′

)m/n

= B,

that is, z(m′n−mn′)/n′
e2πimk/nAm/n = B. Since m′n−mn′ = 0 by assumption,

we have e2πimk/nAm/n = B. Using m
n = b

a , we rewrite this equation as

e2πibk/aAb/a = B. (6.4.8)

Note that by the assumption Ab = Ba, we may choose k so that (6.4.8) holds;

then z and ζ = e2πik/n

(
A
zn′

)1/n

(a solution of (i)) also satisfy (ii). Hence for

any nonzero complex number z, the pair z and ζ = e2πik/n

(
A
zn′

)1/n

satisfies

(i) and (ii). Consequently, the algebraic set (6.4.7) is one-dimensional. �
Lemma 6.4.2 implies that any singularity in Lemma 6.4.1 is non-isolated.

Accordingly, we may strengthen the statement of Lemma 6.4.1 as follows.
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Proposition 6.4.3 Let Cs,t : zm′−n′
ζm−n(zn′

ζn + t) − s = 0 be a family of
curves, parameterized by s and t. Then Cs,t is singular if and only if⎧⎨⎩ (1) s = 0 if mn′ − m′n �= 0

(2) s = 0 or
(

n − m
n s

)a

=
(

n − m
m t

)b

if mn′ − m′n = 0,

where a and b are the relatively prime positive integers satisfying (am, am′) =

(bn, bn′). In (2), for the case
(

n − m
n s

)a

=
(

n − m
m t

)b

, a point (z, ζ) ∈ C
2

is a singularity on Cs,t precisely when

zn′
ζn =

n − m

m
t, zm′

ζm =
n − m

n
s,

and moreover any singularity is non-isolated (so Cs,t is non-reduced).

Remark 6.4.4 Using am = bn, we have

n − m

n
=

n − b

a
n

n
=

a − b

a
,

n − m

m
=

a

b
m − m

m
=

a − b

b
,

and so the equation
(

n − m
n s

)a

=
(

n − m
m t

)b

is rewritten as
(

a − b
a s

)a

=(
a − b

b
t
)b

, and likewise zn′
ζn = n − m

m t is rewritten as zn′
ζn = a − b

b
t.

Now we return to the discussion on deformation atlases. Let Y = n0Δ0 +
n1Θ1+· · ·+neΘe be a subbranch of a branch X = m0Δ0+m1Θ1+· · ·+mλΘλ,
and let DAe−1(Y, d) be the deformation atlas of weight d associated with Y :
for i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−ni−1ηmi−ni(wni−1ηni + tkfi) − s = 0
H′

i : zmi+1−ni+1ζmi−ni(zni+1ζni + tkf̂i) − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni,

where holomorphic functions fi(w, η) = f(wpi−1ηpi) and f̂i(z, ζ) = f(zpi+1ζpi)
are as in (6.2.7). For the remainder of this section, we only treat the case where
fi and f̂i are constant, say fi = f̂i = 1; in §7.2, we will treat the nonconstant
case, deducing a totally different result.

We shall construct a complex manifold M[e−1] from DAe−1(Y, d). First
construct complex 3-manifolds Mi (i = 1, 2, . . . , e − 1) by patching Hi and
H′

i via gi. Next patch M1,M2, . . . ,Me−1 by ‘plumbing’

(wi+1, ηi+1, s, t) = (ζi, zi, s, t), i = 1, 2, . . . , e − 2,

which yields a complex 3-manifold M[e−1]. The natural projection Ψ[e−1] :
M[e−1] → Δ × Δ† is called the barking family of length e − 1 obtained from
DAe−1(Y, d).
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The notion of proportionality is related to the description of singularities
of a fiber X

[e−1]
s,t = (Ψ[e−1])−1(s, t). (Recall Y is proportional if m0

n0
= m1

n1
=

· · · = me
ne

.) By Proposition 6.4.3, we have the following result.

Theorem 6.4.5 Let Ψ[e−1] : M[e−1] → Δ×Δ† be the barking family of length
e− 1 obtained from DAe−1(Y, d). Set X

[e−1]
s,t := (Ψ[e−1])−1(s, t), and then the

following statements hold:

(1) If Y is not proportional, then X
[e−1]
s,t is singular if and only if s = 0.

(2) If Y is proportional, and fi and f̂i are constant3, then X
[e−1]
s,t is singular if

and only if s = 0 or
(

n − m
n s

)a

=
(

n − m
m td

)b

, where4 m := m0, n := n0,
and a and b are the relatively prime positive integers satisfying am =

bn. Moreover, for the case
(

n − m
n s

)a

=
(

n − m
m td

)b

, any singularity is

non-isolated, that is, X
[e−1]
s,t is non-reduced; in fact, a point (wi, ηi) (resp.

(zi, ζi)) of X
[e−1]
s,t is a singularity precisely when

w
mi−1
i ηmi

i =
n − m

n
s, w

ni−1
i ηni

i =
n − m

m
td(

resp. z
mi+1
i ζmi

i =
n − m

n
s, z

ni+1
i ζni

i =
n − m

m
td

)
.

Corollary 6.4.6 Let Y = n0Δ0+n1Θ1+· · ·+neΘe be a subbranch of a branch
X, and let DAe−1(Y, d) be the deformation atlas of weight d associated with
Y . Let Ψ[e−1] : M[e−1] → Δ×Δ† be the barking family of length e−1 obtained
from DAe−1(Y, d). Set X

[e−1]
s,t := (Ψ[e−1])−1(s, t). If Y is either (i) wild or (ii)

tame and not proportional, then X
[e−1]
s,t is singular if and only if s = 0.

Proof. When Y is wild, Y is not proportional by Corollary 6.3.3 (2). Thus by
Theorem 6.4.5 (1), X

[e−1]
s,t is singular if and only if s = 0. When Y is tame

and not proportional, the assertion follows from Theorem 6.4.5 (1) again. �

Supplement: Technical results

In Proposition 6.4.3, we showed: Let Cs,t : zm′−n′
ζm−n(zn′

ζn + t) − s = 0 be
a family of curves, parameterized by s and t. Then Cs,t is singular if and only
if ⎧⎨⎩ (1) s = 0 if mn′ − m′n �= 0

(2) s = 0 or
(

n − m
n s

)a

=
(

n − m
m t

)b

if mn′ − m′n = 0,

3 For nonconstant fi and f̂i, the statement totally differs. See Theorem 7.2.4 (1).
4 From the proportionality, instead of m = m0 and n = n0, we may take arbitrary

m = mi and n = ni (0 ≤ i ≤ λ), as the relevant fractions are independent of the
choice of i (Remark 6.4.4).
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where a and b are the relatively prime positive integers satisfying (am, am′) =

(bn, bn′). In (2), for the case
(

n − m
n s

)a

=
(

n − m
m t

)b

, a point (z, ζ) ∈ C
2

is a singularity on Cs,t precisely when

zm′
ζm =

n − m

n
s, zn′

ζn =
n − m

m
t, (6.4.9)

and moreover any singularity is non-isolated, that is, Cs,t is non-reduced.
We shall study a special case a = 1 in the above statement in more detail;

we often encounter this case in our later application. To analyze this case, we
need the subsequent technical lemmas.

Lemma 6.4.7 A polynomial P (X) = Xb−1 +
∑b−1

i=1
ci

1 − b
Xb−1−i, where b

(b ≥ 2) is an integer, admits a factorization:

P (X) =
1

b − 1
(X − c)

[
b−2∑
i=0

(i + 1)cb−2−iXi

]
.

Proof. To show this, we shall rewrite

P (X) = Xb−1 +
c

1 − b
Xb−2 +

c2

1 − b
Xb−3 +

c3

1 − b
Xb−4 + · · · + cb−1

1 − b
.

First of all, we note

Xb−1 +
c

1 − b
Xb−2 +

c2

1 − b
Xb−3 +

c3

1 − b
Xb−4 + · · · + cb−1

1 − b

=
1

b − 1
[
(b − 1)Xb−1 − cXb−2 − c2Xb−3 − c3Xb−4 − · · · − cb−1

]
=

cb−1

b − 1

[
(b − 1)

(
X

c

)b−1

−
(

X

c

)b−2

−
(

X

c

)b−3

−
(

X

c

)b−4

− · · · −
(

X

c

)
− 1

]

=
cb−1

b − 1

[
(b − 1)Y b−1 −

(
Y b−2 + Y b−3 + Y b−4 + · · · + Y + 1

)]
,

where we set Y = X
c . Inside the brackets is rewritten as

(b − 1)Y b−1 − (
Y b−2 + Y b−3 + Y b−4 + · · · + Y + 1

)
=

(
Y b−1 + Y b−1 + · · · + Y b−1︸ ︷︷ ︸

b−1

) − (
Y b−2 + Y b−3 + Y b−4 + · · · + Y + 1

)
= (Y b−1 − Y b−2) + (Y b−1 − Y b−3) + (Y b−1 − Y b−4) + · · ·

+ (Y b−1 − Y ) + (Y b−1 − 1),

and the last expression is further rewritten as follows:
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Y b−2(Y − 1) + Y b−3(Y 2 − 1) + Y b−4(Y 3 − 1) + · · ·
+ Y (Y b−2 − 1) + (Y b−1 − 1)

= (Y − 1)
[
Y b−2 + Y b−3

(
Y + 1

)
+ Y b−4

(
Y 2 + Y + 1

)
+

· · · + Y
(
Y b−3 + Y b−4 + · · · + Y + 1

)
+

(
Y b−2 + Y b−3 + Y b−4 + · · · + Y + 1

)]
= (Y − 1)

[
(b − 1)Y b−2 + (b − 2)Y b−3 + (b − 3)Y b−4 + · · · + 2Y + 1

]
.

Thus we have an expression:

P (X) =
cb−1

b − 1
(Y −1)

[
(b−1)Y b−2 +(b−2)Y b−3 +(b−3)Y b−4 + · · ·+2Y +1

]
.

Recalling that Y = X
c , we may derive the factorization in question as follows:

P (X) =
cb−1

b − 1

(
X

c
− 1

)[
(b − 1)

(
X

c

)b−2

+ (b − 2)
(

X

c

)b−3

+ · · · + 2
(

X

c

)
+ 1

]

=
cb−2

b − 1
(X − c)

[
(b − 1)

(
X

c

)b−2

+ (b − 2)
(

X

c

)b−3

+ · · · + 2
(

X

c

)
+ 1

]

=
1

b − 1
(X − c)

[
(b − 1)Xb−2 + (b − 2)cXb−3 + · · · + 2cb−2X + cb−2

]
.

�
We also need the following.

Lemma 6.4.8 Suppose that b (b ≥ 2) is an integer. Set c := 1 − b
b

t, and then

Xb + tXb−1 − cb

1 − b
= (X − c)

(
Xb−1 +

b−1∑
i=1

ci

1 − b
Xb−1−i

)
.

Proof. The right hand side equals

Xb +
b−1∑
i=1

ci

1 − b
Xb−i − cXb−1 −

b−1∑
i=1

ci+1

1 − b
Xb−1−i

= Xb +
(

c

1 − b
Xb−1 +

b−1∑
i=2

ci

1 − b
Xb−i

)
− cXb−1 −

(
cb

1 − b
+

b−1∑
i=2

ci

1 − b
Xb−i

)
= Xb +

c

1 − b
Xb−1 − cXb−1 − cb

1 − b
.

Since c
1 − b

Xb−1 − cXb−1 = tXb−1 by c = 1 − b
b

t, the last expression is equal
to

Xb + tXb−1 − cb

1 − b
.

This completes the proof. �
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Substituting the factorization shown in Lemma 6.4.7 into the right hand
side of the equation in Lemma 6.4.8, we deduce a lemma useful for later
application.

Lemma 6.4.9 Suppose that b (b ≥ 2) is an integer. Set c := 1 − b
b

t, and then

Xb + tXb−1 − cb

1 − b
=

1
b − 1

(X − c)2
[

b−2∑
i=0

(i + 1)cb−2−iXi

]
.

Now we can show the following statement which is an elaborate form of Propo-
sition 6.4.3 for the case a = 1.

Proposition 6.4.10 Let m, m′, n, n′ be positive integers satisfying (m,m′) =
(bn, bn′) for some integer b ≥ 2. Then a curve

Cs,t : zm′−n′
ζm−n(zn′

ζn + t) − s = 0

is singular if and only if (i) s = 0 or (ii) s = (1 − b)b−1

bb tb. For the case (ii),

set c := 1 − b
b

t, and then the curve Cs,t is written as

1
b − 1

(
zn′

ζn − c
)2

[
b−2∑
i=0

(i + 1) cb−2−i (zn′
ζn)i

]
= 0.

(Note that this curve is non-reduced.)

Proof. By Proposition 6.4.3 (2) applied for a = 1, the curve Cs,t is singular if

and only if (i) s = 0 or (ii) n − m
n s =

(
n − m

m t
)b

. As m = bn by assumption,
(ii) is rewritten as follows.

s =
n(n − m)b−1

mb
tb =

n(n − bn)b−1

(bn)b
tb

=
(1 − b)b−1

bb
tb.

Thus Cs,t is singular if and only if (i) s = 0 or (ii) s = (1 − b)b−1

bb tb. This proves

the first half of the assertion. In the case (ii), we substitute s = (1 − b)b−1

bb tb

into Cs,t : zm′
ζm + tzm′−n′

ζm−n − s = 0, which yields

Cs,t : zm′
ζm + tzm′−n′

ζm−n − (1 − b)b−1

bb
tb = 0.
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Using m = bn and m′ = bn′, this is rewritten as

Cs,t : (zn′
ζn)b + t(zn′

ζn)b−1 − (1 − b)b−1

bb
tb = 0.

We set X := zn′
ζn, and then

Cs,t : Xb + tXb−1 − (1 − b)b−1

bb
tb = 0.

From Lemma 6.4.9, the left hand side Xb + tXb−1 − cb

1 − b
, where we set

c := 1 − b
b

t, admits a factorization:

1
b − 1

(X − c)2
[

b−2∑
i=0

(i + 1)cb−2−iXi

]
,

and hence when s = (1 − b)b−1

bb tb,

Cs,t :
1

b − 1

(
zn′

ζn − c
)2

[
b−2∑
i=0

(i + 1) cb−2−i (zn′
ζn)i

]
= 0.

Therefore, when s = (1 − b)b−1

bb tb, the equation of Cs,t admits the factoriza-
tion described in the assertion. �
Example 6.4.11 Take (m′,m) = (9, 6) and (n′, n) = (3, 2). Then (am′, am) =
(bn′, bn) where a = 1 and b = 3. By Proposition 6.4.10, Cs,t : z6ζ4(z3ζ2 +
t) − s = 0 is singular at (s, t) satisfying s = 4

27 t3, in which case

Cs,t :
(

z3ζ2 +
2
3
t

)2 (
z3ζ2 − 1

3
t

)
= 0,

and so non-reduced.
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Construction of Deformations of type Al

7.1 Deformations of type Al

Assume that X = m0Δ0 + m1Θ1 + · · · + mλΘλ is a branch, so Δ0 = C and
Θi = P

1 for i = 1, 2, . . . , λ. As before, we set

ri :=
mi−1 + mi+1

mi
, (i = 1, 2 . . . , λ − 1), rλ :=

mλ−1

mλ
,

and adopt the convention mλ+1 = 0. Recall that ri (i = 1, 2, . . . , λ) are
positive integers satisfying ri ≥ 2. Now let Y = n0Δ0 + n1Θ1 + · · ·+ neΘe be
a subbranch of X, so

ni−1 + ni+1

ni
= ri, (i = 1, 2, . . . , e − 1),

and let l be a positive integer satisfying lY ≤ X, i.e. lni ≤ mi for i =
0, 1, . . . , e. We note that Y itself is possibly multiple, that is, gcd(n0, n1, . . . , ne)
may not be 1. To a multiple subbranch lY , we shall associate a special defor-
mation atlas. We prepare notation; let d be a positive integer, and let f(z) be
a non-vanishing holomorphic function on a domain {z ∈ C : |z| < ε}. Next
define a sequence of integers p0, p1, . . . , pλ+1 inductively by{

p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ,

where remember (6.2.4):

pλ+1 > pλ > · · · > p1 > p0 = 0.

We then set fi = f(wpi−1ηpi) and f̂i = f(zpi+1ζpi) (see (6.2.7)).

Lemma 7.1.1 The following data gives a deformation atlas of length e − 1:
for i = 1, 2, . . . , e − 1,
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Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tdfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tdf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

(7.1.1)

Proof. Clearly, by a coordinate change (z, ζ) = (η, w), H′
i becomes Hi+1, and

so it is sufficient to show that gi transforms Hi to H′
i. Recall that if a, b, c,

and r are positive integers satisfying

a + c

b
= r,

then g : z = 1/w, ζ = wrη transforms waηb to zcζb (Lemma 5.3.2, p90). To
apply this, we note

(mi−1 − lni−1) + (mi+1 − lni+1)
mi − lni

= ri. (7.1.2)

Indeed,

(mi−1 − lni−1) + (mi+1 − lni+1)
mi − lni

=
(mi−1 + mi+1) − l(ni−1 + ni+1)

mi − lni

=
(rimi) − l(rini)

mi − lni

= ri,

where in the second equality we used

mi−1 + mi+1

mi
= ri and

ni−1 + ni+1

ni
= ri.

Thus by Lemma 5.3.2, the transition function gi : z = 1/w, ζ = wriη of Ni

transforms wmi−1−lni−1ηmi−lni to zmi+1−lni+1ζmi−lni . Similarly, since

ni−1 + ni+1

ni
= ri and

pi−1 + pi+1

pi
= ri,

the map gi transforms wni−1ηni to zni+1ζni , and wpi−1ηpi to zpi+1ζpi respec-
tively. Therefore gi transforms Hi to H′

i. This completes the proof. �
We denote by DAe−1(lY, d) the deformation atlas in the above lemma,

and we refer to the positive integer d as the weight of DAe−1(lY, d). The
arithmetic property of the multiplicity sequence (n0, n1, . . . , ne) of the sub-
branch Y is deeply related to the propagatability of DAe−1(lY, d). To discuss
it, we introduce an important class of subbranches. We say that a subbranch
Y = n0Δ0 + n1Θ1 + · · · + neΘe is of type Al if ne−1/ne ≥ re and lY ≤ X.
The positive integer l is called the barking multiplicity.

Lemma 7.1.2 Suppose that Y is a subbranch of a branch X such that lY ≤
X. Then Y is of type Al if and only if Y is dominant and tame.
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Proof. =⇒: We formally set ne+1 := rene − ne−1. If Y is of type Al, then
ne+1 ≤ 0. This implies that Y is dominant, and from Lemma 5.5.7 (1.a), p94,
Y is tame.

⇐=: If Y is dominant and tame, then by definition, ne−1/ne ≥ re, and so
Y is of type Al. �
Proposition 7.1.3 Let Y be a subbranch of type Al. Then the deformation
atlas DAe−1(lY, d) admits a complete propagation.

Proof. The proof is similar to that of Theorem 6.1.1, p99, and so we merely
give a sketch for the case d = 1. Letting q := ne−1−rene (the slant of Y ), we set⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

He : wme−1−lne−1ηme−lne

(
wne−1ηne + t fe

)l

− s = 0

H′
e : zme+1ζme−lne

(
ζne + t zq f̂e

)l

− s = 0

ge : the transition function z = 1/w, ζ = wreη of Ne.

(7.1.3)

It is easy to check that this data gives an e-th propagation. Next, we set⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
He+1 : wme−lneηme+1

(
wne + t ηq fe+1

)l

− s = 0

H′
e+1 : zme+2ζme+1

(
1 + t z re+1 q + ne ζq f̂e+1

)l

− s = 0

ge+1 : the transition function z = 1/w, ζ = wre+1η of Ne+1.

(7.1.4)

We claim that this data gives an (e + 1)-st propagation. To see that ge+1

transforms He+1 to H′
e+1, we rewrite He+1 as

He+1 : wme−l ne
1

w re+1 me+1

(
w re+1 η

)me+1

×
(

wne + t
1

w re+1 q (w re+1η)q fe+1

)l

− s = 0.

Recall that me + me+2
me+1

= re+1, that is, re+1me+1 − me = me+2. Thus

wme−l ne
1

w re+1 me+1
=

1
w re+1me+1 −me + l ne

=
1

w me+2 + l ne
,

and so

He+1 :
1

w me+2 + l ne

(
w re+1 η

)me+1

(
wne + t

1
w re+1 q (w re+1η )q fe+1

)l

− s

= 0.

Therefore by ge+1 : z = 1/w, ζ = wre+1η, the hypersurface He+1 is trans-
formed to

z me+2 + l ne ζ me+1

(
1

zne
+ t z re+1 q ζq f̂e+1

)l

− s = 0,
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namely z me+2 ζ me+1 (1 + t z re+1 q + ne ζq f̂e+1)l − s = 0. This is nothing but
the equation of H′

e+1, and thus ge+1 transforms He+1 to H′
e+1.

To construct further propagations, we define integers ai (i = e + 1, e +
2, . . . , λ+1) inductively by setting ae+1 := q and ae+2 := re+1q +ne and then
by a recursive formula

ai+1 = riai − ai−1 for i = e + 2, e + 3, . . . , λ

(See the paragraph subsequent to (6.1.5) for the property of this sequence.)
Then for i = e + 2, e + 3, . . . , λ, we set⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Hi : wmi−1ηmi

(
1 + t w ai−1 η ai fi

)l − s = 0

H′
i : zmi+1ζmi

(
1 + t z ai+1 ζ ai f̂i

)l

− s = 0

gi : the transition function z = 1/w, ζ = wriη of Ni,

(7.1.5)

where mλ+1 = 0 by convention. It is easy to check that (7.1.3), (7.1.4), (7.1.5)
together give a complete propagation of DAe−1(lY, d). �

Description of deformation (type Al)

Let Ψ : M → Δ × Δ† be the barking family (specifically called of type Al)
obtained by patching the above complete deformation atlas. According to the
values of q = ne−1 − rene and e, the deformation from X to X0,t := Ψ−1(0, t)
is described in Figures 7.1.1, 7.1.2, 7.1.3, and 7.1.4.

deformation

mλ − lnλ

X0;t

mλ X

l

m0 − ln0

m0 m1 m2

type Al

(e = λ)
q = 0

m2 − ln2m1 − ln1

Fig. 7.1.1. This figure is for the case nλ = 1. When nλ ≥ 2, there are disjoint nλ

connected components of multiplicity l.
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deformation

l

mλ − lnλ

X0;t

mλ X

m0 − ln0

m0 m1 m2

type Al

(e = λ)
q ≥ 1

pm2 − ln2m1 − ln1

Fig. 7.1.2. This figure is for the case nλ = 1. When nλ ≥ 2, there are nλ connected
components of multiplicity l, which intersect at one point (zλ, ζλ) = (0, 0) denoted
by p in the figure.

deformation

m0 m1 m2

type Al

(e < λ)
q = 0

me+1

X0;t

me me+1

X

m0 − ln0

l

m2 − ln2 me − lnem1 − ln1 mλ−1

mλ−1

mλ

mλ

p

Fig. 7.1.3. This figure is for the case ne = 1. When ne ≥ 2, there are disjoint ne

connected components of multiplicity l; each connected component intersects Θe+1

at one point (when ne = 1, at one point p in the figure).

deformation

m2m1m0

l

me+1 mλ−1 mλ

X0;t

mλmλ−1me+1me

X

m0 − ln0

p

m2 − ln2 me − lnem1 − ln1

type Al

(e < λ)
q ≥ 1

Fig. 7.1.4. This figure is for the case ne = 1. When ne ≥ 2, there are ne connected
components of multiplicity l, which intersect at one point (ze, ζe) = (0, 0) denoted
by p in the figure.



124 7 Construction of Deformations of type Al

7.2 Singular fibers

Let Y = n0Δ0 + n1Θ1 + · · ·+ neΘe be a subbranch of a branch X = m0Δ0 +
m1Θ1 + · · · + mλΘλ, and let l be a positive integer satisfying lY ≤ X, i.e.
lni ≤ mi for i = 0, 1, . . . , e. For a non-vanishing holomorphic function f(x)
on a domain {x ∈ C : |x| < ε}, we introduce a sequence of holomorphic
functions; first define a sequence of integers p0, p1, . . . , pλ+1 inductively by{

p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ,

and then set fi = f(wpi−1ηpi) and f̂i = f(zpi+1ζpi). Denote by DAe−1(lY, d)
the deformation atlas of weight d associated with lY and f (Thus far we simply
said “associated with lY ”, but in this section, f also plays an important role,
and to emphasize it, we say “associated with lY and f”): For i = 1, 2, . . . , e−1,⎧⎪⎨⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tdfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tdf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

Next we construct complex 3-manifolds Mi (i = 1, 2, . . . , e − 1) by patching
Hi and H′

i via gi. We then patch M1,M2, . . . ,Me−1 by ‘plumbing’

(wi+1, ηi+1, s, t) = (ζi, zi, s, t), i = 1, 2, . . . , e − 2,

which yields a complex 3-manifold M[e−1]. We say that the natural projection
Ψ[e−1] : M[e−1] → Δ × Δ† is a barking family of length e − 1. We investigate
when a fiber (Ψ[e−1])−1(s, t) is singular. For simplicity we set

m = mi, m′ = mi+1, n = ni, n′ = ni+1,

and then H′
i : zm′−ln′

ζm−ln(zn′
ζn + tdf̂i)l − s = 0. In what follows, we only

consider the case d = 1 (we may apply the same argument for the case d ≥ 2).
We begin with investigation for the case where f̂i is constant (equivalently f

is constant), say, f̂i ≡ 1.

Proposition 7.2.1 Let Cs,t : zm′−ln′
ζm−ln(zn′

ζn + t)l − s = 0 be a family of
curves, parameterized by s and t. Then Cs,t is singular if and only if⎧⎨⎩ (1) s = 0 if mn′ − m′n �= 0

(2) s = 0 or
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

tb if mn′ − m′n = 0,

where a and b are the relatively prime positive integers1 satisfying (am, am′) =

(bn, bn′). In (2), for the case
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

tb, a point (z, ζ) ∈ C
2

1 Since mn′ − m′n = 0, there exists such a pair a and b.
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is a singularity on Cs,t precisely when the following equations are satisfied:

zm′
ζm =

(
ln − m

ln

)l

s, zn′
ζn =

ln − m

m
t.

Moreover, such a singularity is non-isolated; so the curve Cs,t is non-reduced.

Proof. If s = 0, then Cs,t is normal crossing (and non-reduced if l ≥ 2)
and so singular. We consider the case s �= 0. Setting F (z, ζ, t) :=
zm′−ln′

ζm−ln(zn′
ζn + t)l, we write Cs,t : F (z, ζ, t)− s = 0. Then (z, ζ) ∈ Cs,t

is a singularity if and only if ∂F
∂z

(z, ζ) = ∂F
∂ζ

(z, ζ) = 0. As noted in (6.4.1),
this condition is equivalent to

∂ log F

∂z
(z, ζ) =

∂ log F

∂ζ
(z, ζ) = 0.

Since

log F = (m′ − ln′) log z + (m − ln) log ζ + l log(zn′
ζn + t),

we have

∂ log F

∂z
=

m′ − ln′

z
+

ln′zn′−1ζn

zn′
ζn + t

= 0,
∂ log F

∂ζ
=

m − ln

ζ
+

lnzn′
ζn−1

zn′
ζn + t

= 0,

which yield two equations:

zn′
ζn =

ln′ − m′

m′ t, zn′
ζn =

ln − m

m
t. (7.2.1)

In particular, we obtain ln′ − m′
m′ t = ln − m

m t, that is,

(mn′ − m′n)t = 0. (7.2.2)

We separate into two cases according to whether mn′−m′n is nonzero or not.

Case 1 mn′ −m′n �= 0: From (7.2.2), we have t = 0. Clearly Cs,0 : zm′
ζm −

s = 0 is singular precisely when s = 0.

Case 2 mn′−m′n = 0: Then (7.2.2) is vacuous, and it is easy to check that
two equations (7.2.1) are equivalent. So (z, ζ) ∈ C

2 is a singularity on Cs,t if
and only if

zn′
ζn =

ln − m

m
t (7.2.3)

zm′−ln′
ζm−ln(zn′

ζn + t)l − s = 0. (7.2.4)
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(The second equation is just the defining equation of Cs,t.) Substituting (7.2.3)

into zm′
ζm

(zn′
ζn)l

(zn′
ζn + t)l − s = 0 (7.2.4), we obtain

zm′
ζm(

ln − m

m
t

)l

(
ln − m

m
t + t

)l

− s = 0,

and thus zm′
ζm =

(
ln − m

ln

)l

s. Therefore (z, ζ) ∈ C
2 is a singularity on Cs,t

precisely when

zn′
ζn =

ln − m

m
t, zm′

ζm =
(

ln − m

ln

)l

s. (7.2.5)

By the same argument as the proof of Lemma 6.4.2, p111, the algebraic set
in C

2 defined by (7.2.5) is one-dimensional; hence any singularity of Cs,t is
non-isolated.

Finally we deduce the equation satisfied by s and t. From (7.2.5),

zbn′
ζbn =

(
ln − m

m
t

)b

, zam′
ζam =

(
ln − m

ln

)al

sa,

where a and b are the relatively prime positive integers satisfying (am, am′) =

(bn, bn′). Since zbn′
ζbn = zam′

ζam, we have
(

ln − m
m t

)b

=
(

ln − m
ln

)al

sa.

This completes the proof of our assertion. �
Next we treat the general case H′

i : zm′−ln′
ζm−ln(zn′

ζn + tdf̂i)l − s = 0
where f̂i(z, ζ) is not constant; recall that f̂i := f(zpi+1ζpi), and f = f(x) is
a non-vanishing holomorphic function near x = 0. We write this family of
complex curves as

Cs,t : zm′−ln′
ζm−ln(zn′

ζn + th)l − s = 0,

where h = f̂i(z, ζ) = f(zpi+1ζpi). We note that for the case mn′ − m′n �= 0,
after some coordinate change, we may always assume that h ≡ 1 by Simplifica-
tion Lemma (Lemma 4.1.1, p58). In contrast, for the case mn′−m′n = 0, the
singularities of Cs,t (s �= 0) differ according to whether h is constant or not;
we already investigated the constant case in Proposition 7.2.1, and showed
that any singularity is non-isolated. On the other hand, we will show that if
h is not constant, then (i) Cs,t (s �= 0) is smooth if m′ − ln′ > 0 and (ii) Cs,t

(s �= 0) has only isolated singularities if m′ − ln′ = 0.
For simplicity, we set p′ = pi+1 and p = pi (p′ > p). Writing

f(x) = c0 + c1x + c2x
2 + · · · , (c0 �= 0),

then we have h(z, ζ) := f(zp′
ζp) = c0 + c1(zp′

ζp) + c2(zp′
ζp)2 + · · · .
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Lemma 7.2.2 Let Cs,t : zm′−ln′
ζm−ln(zn′

ζn + th)l − s = 0 be a family of
complex curves, parameterized by s and t, such that h(z, ζ) is not constant.
Then Cs,t is singular if and only if s = 0.

The proof of this lemma is rather technical and we postpone it to §7.3 (see
Proposition 7.3.2). Next we consider the case i = λ:

H′
λ : ζmλ−lnλ(ζnλ + tf̂λ)l − s = 0.

As usual, we express this family of complex curves as Cs,t : ζm−ln(ζn + th)l −
s = 0 where h = f̂λ(z, ζ) = f(zpλ+1ζpλ).

Lemma 7.2.3 Let p′ and p (p′ > p) be positive integers. Consider a family
of complex curves Cs,t : ζm−ln(ζn + th)l − s = 0 such that the holomorphic
function h(z, ζ) =

∑
i≥0 ci(zp′

ζp)i, (c0 �= 0) is not constant. Then Cs,t is

singular if and only if s = 0 or
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

(c0t)b. For the
latter pair of s and t, Cs,t has n singularities. In fact, (z, ζ) ∈ Cs,t is a
singularity exactly when z = 0 and ζ satisfies ζn = ln − m

m c0t; moreover such
(z, ζ) is an Akp′−1-singularity.

We will give a proof of this lemma also in §7.3 (see Proposition 7.3.5).
We return to the discussion on deformations of branches; we apply the

above results to them. Let Y = n0Δ0 +n1Θ1 + · · ·+neΘe be a subbranch of a
branch X = m0Δ0+m1Θ1+· · ·+mλΘλ, and let l be a positive integer satisfy-
ing lY ≤ X, i.e. lni ≤ mi for i = 0, 1, . . . , e. For a non-vanishing holomorphic
function f(x) on a domain {x ∈ C : |x| < ε}, we introduce a sequence
of holomorphic functions; first define a sequence of integers p0, p1, . . . , pλ+1

inductively by {
p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ,

and then set fi = f(wpi−1ηpi) and f̂i = f(zpi+1ζpi). Denote by DAe−1(lY, d)
the deformation atlas of weight d associated with lY and f : For i = 1, 2, . . . , e−
1, ⎧⎪⎨⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tdfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tdf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

Next we construct complex 3-manifolds Mi (i = 1, 2, . . . , e − 1) by patching
Hi and H′

i via gi. We then patch M1,M2, . . . ,Me−1 by ‘plumbing’

(wi+1, ηi+1, s, t) = (ζi, zi, s, t), i = 1, 2, . . . , e − 2

to obtain a complex 3-manifold M[e−1]. The projection Ψ[e−1] : M[e−1] →
Δ×Δ† is called the barking family of length e−1 obtained from DAe−1(lY, d).
The next theorem is important. (Remember that Y is proportional if m0

n0
=

m1
n1

= · · · = me
ne

.)
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Theorem 7.2.4 Let Ψ[e−1] : M[e−1] → Δ×Δ† be the barking family obtained
from a deformation atlas DAe−1(lY, d). Set X

[e−1]
s,t := (Ψ[e−1])−1(s, t), and

then the following holds:

(1) If Y is (i) not proportional or (ii) proportional and f is not constant, then
X

[e−1]
s,t is singular if and only if s = 0.

(2) If Y is proportional and f is constant, then X
[e−1]
s,t is singular if and only

if2

s = 0 or
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

(td)b,

where m := m0 and n := n0, and a and b are the relatively prime

positive integers satisfying am = bn. For the case
(

ln − m
ln

)al

sa =(
ln − m

m

)b

(td)b, a point (wi, ηi) (resp. (zi, ζi)) of X
[e−1]
s,t is a singular-

ity precisely when

w
mi−1
i ηmi

i =
(

ln − m

ln

)l

s, w
ni−1
i ηni

i =
ln − m

m
td(

resp. z
mi+1
i ζmi

i =
(

ln − m

ln

)l

s, z
ni+1
i ζni

i =
ln − m

m
td.

)
.

Proof. Case (ii) in (1) is a consequence of Lemma 7.2.2. The remainder of the
statement follows from Proposition 7.2.1. Here notice that instead of m = m0

and n = n0, we may take arbitrary m = mi and n = ni (0 ≤ i ≤ λ); indeed
from the proportionality, we have am = bn, i.e. m = b

an, and so

ln − m

ln
=

ln − b

a
n

ln
=

la − b

la
,

ln − m

m
=

ln − b

a
n

b

a
n

=
la − b

b
.

Observe that ln − m
ln

and ln − m
m are independent of the choice of m = mi

and n = ni (0 ≤ i ≤ λ). �
It is immediate to derive, as in the proof of Corollary 6.4.6, the following

result from the above theorem.

Corollary 7.2.5 Let Y = n0Δ0+n1Θ1+· · ·+neΘe be a subbranch of a branch
X, and let l be a positive integer satisfying lY ≤ X. Denote by DAe−1(lY, d)
the deformation atlas of weight d associated with lY and a non-vanishing
holomorphic function f(x) near x = 0. Let Ψ[e−1] : M[e−1] → Δ × Δ† be the

2 Instead of t, we use td because in the present situation, the weight of the defor-
mation atlas DAe−1(lY, d) is d.
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barking family obtained from DAe−1(lY, d) as in Theorem 7.2.4. If Y is (i)
wild, (ii) tame and not proportional, or (iii) tame, proportional, and f is not
constant, then X

[e−1]
s,t := (Ψ[e−1])−1(s, t) is singular if and only if s = 0.

The above results are concerned with barking families of length e− 1. We
next, when Y is of type Al, give a result concerning with barking families of
full length. From Theorem 7.2.4 and Lemma 7.2.3, we have

Proposition 7.2.6 Let Y = n0Δ0 +n1Θ1 + · · ·+neΘe be a subbranch of type
Al of a branch X = m0Δ0 + m1Θ1 + · · · + mλΘλ. Denote by DAe−1(lY, d)
the deformation atlas of weight d associated with lY and a non-vanishing
holomorphic function f(x) near x = 0. For the barking family Ψ : M →
Δ×Δ† obtained from the complete propagation of DAe−1(lY, d), the following
statements hold:

(1) If Y is not proportional, then Xs,t = Ψ−1(s, t) is singular if and only if
s = 0.

(2) If Y is proportional and f is not constant, then Xs,t is singular if and

only if s = 0 or
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

(c0t
d)b where3 m := m0,

n := n0, c0 = f(0) (�= 0), and a and b are the relatively prime positive
integers satisfying am = bn.
For the latter pair of s and t, Xs,t has only Akpλ+1−1-singularities near
the edge of the branch X, where k is the minimal positive integer such that
ck �= 0 in the expansion f(x) = c0+c1x+c2x

2+· · · . These singularities are
nodes (A1-singularities) exactly when4 λ = 1, Θ1 · Θ1 = −2 (i.e. r1 = 2),
and c1 �= 0.

(3) If Y is proportional and f is constant, then Xs,t is singular if and only if

s = 0 or
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

(td)b.

7.3 Supplement: Singularities of certain curves

This section is devoted to the verification of the technical results stated with-
out proof in the previous section.

Lemma 7.3.1 Let f(x) = c0 + c1x + c2x
2 + · · · , (c0 �= 0) be a non-

vanishing holomorphic function defined near x = 0. Given positive inte-
gers p′ and p (p′ > p), set h(z, ζ) := f(zp′

ζp). If m′n − mn′ = 0, then
Cs,t : zm′−ln′

ζm−ln(zn′
ζn + th)l − s = 0, (s �= 0) is smooth.

3 From the proportionality, we may actually take arbitrary mi and ni instead of
m0 and n0, as noted in the proof of Theorem 7.2.4.

4 This will be proved in Lemma 7.3.7 below. The positive integer p′ in Lemma 7.3.7
corresponds to pλ+1 in the present situation, and we have pλ+1 = 2 exactly when
λ = 1 and r1 = 2.
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Proof. Set F (z, ζ, t) := zm′−ln′
ζm−ln(zn′

ζn +th)l, and write Cs,t : F (z, ζ, t)−
s = 0. Assuming that Cs,t, (s �= 0) has a singularity, we deduce a contradiction.
Since

log F = (m′ − ln′) log z + (m − ln) log ζ + l log(zn′
ζn + th),

a point (z, ζ) ∈ Cs,t (s �= 0) is a singularity if and only if

∂ log F

∂z
=

m′ − ln′

z
+ l

n′zn′−1ζn + thz

zn′
ζn + th

= 0,

∂ log F

∂ζ
=

m − ln

ζ
+ l

nzn′
ζn−1 + thζ

zn′
ζn + th

= 0,

or equivalently

m′zn′
ζn + (m′ − ln′)th + tzhz = 0, mzn′

ζn + (m − ln)th + tζhζ = 0.

Deleting zn′
ζn from the above two equations, we derive

l(m′n − mn′)h + mzhz = m′ζhζ .

Since m′n − mn′ = 0 by assumption, we have

mzhz = m′ζhζ . (7.3.1)

Since

h(z, ζ) = c0 + c1(zp′
ζp) + c2(zp′

ζp)2 + · · · + ci(zp′
ζp)i + · · · ,

the equation mzhz = m′ζhζ (7.3.1) is concretely given by

m
(
p′c1(zp′

ζp) + 2p′c2(zp′
ζp)2 + · · · + ip′ci(zp′

ζp)i + · · ·
)

(7.3.2)

= m′
(
pc1(zp′

ζp) + 2pc2(zp′
ζp)2 + · · · + ipci(zp′

ζp)i + · · ·
)
.

Namely, (mp′ − m′p)
∑

i≥1 ici(zp′
ζp)i = 0. Note mp′ − m′p > 0 by the

assumption m > m′ and p′ > p, and so this equation is equivalent to∑
i≥1 ici(zp′

ζp)i = 0. Thus the equation mzhz = m′ζhζ (7.3.1) is equivalent
to

αf ′(α) = 0, (7.3.3)

where we set α = zp′
ζp, f(x) = c0 + c1x + c2x

2 + · · · , (c0 �= 0), and f ′(x) :=
df/dx. However, the holomorphic function xf ′(x) does not vanish near the
origin unless x = 0. Indeed, let k be the minimal positive integer such that
ck �= 0 (there is such k, because f(x) is not constant by assumption), and
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then f(x) = c0 + ckxk + ck+1x
k+1 + · · · . So

xf ′(x) = x
(
kckxk−1 + (k + 1)ck+1x

k + (k + 2)ck+2x
k+1 + · · ·

)
= xk

(
kck + (k + 1)ck+1x + (k + 2)ck+2x

2 + · · ·
)
,

which, by ck �= 0, does not vanish near the origin unless x = 0. Thus (7.3.3)
holds if and only if α = 0, that is, z = 0 or ζ = 0. However, substituting z = 0
or ζ = 0 in the defining equation Cs,t : zm′−ln′

ζm−ln(zn′
ζn + th)l − s = 0, we

have s = 0. This gives a contradiction. �
Hence we have

Proposition 7.3.2 Let f(x) = c0 + c1x + c2x
2 + · · · , (c0 �= 0) be a non-

vanishing holomorphic function defined near x = 0. Given positive integers
p′ and p (p′ > p), set h(z, ζ) := f(zp′

ζp). Then Cs,t : zm′−ln′
ζm−ln(zn′

ζn +
th)l − s = 0 is singular if and only if s = 0.

Next we study the singularities of a curve Cs,t : ζm−ln(ζn+th)l−s = 0; the
result is quite different from the case Cs,t : zm′−ln′

ζm−ln(zn′
ζn + th)l −s = 0.

Lemma 7.3.3 Let f(x) = c0 + c1x + c2x
2 + · · · , (c0 �= 0) be a non-

vanishing holomorphic function defined near x = 0. Given positive integers
p′ and p (p′ > p), set h(z, ζ) := f(zp′

ζp), and consider a family of curves
Cs,t : ζm−ln(ζn + th)l − s = 0. Then (z0, ζ0) ∈ Cs,t (s, t �= 0) is a singularity
precisely when

z0 = 0, ζn
0 =

ln − m

m
tc0. (7.3.4)

Proof. We set F = ζm−ln(ζn + th)l, and then Cs,t : F (z, ζ, t) − s = 0. Since

log F = (m − ln) log ζ + l log(ζn + th),

a point (z, ζ) ∈ Cs,t (s, t �= 0) is a singularity if and only if

∂ log F

∂z
= l

thz

ζn + th
= 0,

∂ log F

∂ζ
=

m − ln

ζ
+ l

nζn−1 + thζ

ζn + th
= 0,

or equivalently (by t �= 0)

hz = 0, mζn + (m − ln)th + ltζhζ = 0. (7.3.5)

First we demonstrate that the solution of hz(z, ζ) = 0 is z = 0 and ζ = 0.
Since h(z, ζ) =

∑
i≥0 ci(zp′

ζp)i, we have hz(z, ζ) = p′
(∑

i≥0 ici(zip′−1ζip)
)
.

Let k be the smallest positive integer such that ck �= 0, and then

hz(z, ζ) = p′zkp′−1ζkp

×
(
kck + (k + 1)ck+1(zp′

ζp) + (k + 2)ck+2(zp′
ζp)2 + · · ·

)



132 7 Construction of Deformations of type Al

(Here note kp′ − 1 ≥ 1, because p′ ≥ 2 by p′ > p = 1.) As ck �= 0,

kck + (k + 1)ck+1(zp′
ζp) + (k + 2)ck+2(zp′

ζp)2 + · · ·

is nonzero for sufficiently small |zp′
ζp|, and hence hz(z, ζ) = 0 holds exactly

when zkp′−1ζkp = 0, so the solutions of hz(z, ζ) = 0 are just z = 0 and ζ = 0.
However, ζ = 0 fails to be a solution of (7.3.5); when we put ζ = 0, there is
no z satisfying the equation on the right hand side of (7.3.5). To see this, we
set

f(z, ζ, t) = mζn + (m − ln)th + ltζhζ ,

and then f(z, 0, t) = (m − ln) t h(z, 0). Since m − ln > 0, t �= 0, and h(z, ζ)
is non-vanishing by assumption, f(z, 0, t) cannot be zero. This confirms that
ζ = 0 is not a solution of (7.3.5). On the other hand, another solution z = 0 of
hz(z, ζ) = 0 indeed gives a solution of (7.3.5), which is seen as follows. First,
set z = 0 in the equation on the right hand side of (7.3.5):

mζn + (m − ln)th(0, ζ) + ltζhζ(0, ζ) = 0. (7.3.6)

From the expansion h(z, ζ) = c0 + c1(zp′
ζp) + c2(zp′

ζp)2 + · · · , we have

h(0, ζ) = h(0, 0) (�= 0) and hζ(0, ζ) = 0, (7.3.7)

and so (7.3.6) is mζn + (m − ln)th(0, 0) = 0, that is, ζn = ln − m
m th(0, 0).

Thus the solution of (7.3.5) is z = 0 and ζ =
(

ln − m
m th(0, 0)

)1/n

. �

Next for the complex curve Cs,t (in Lemma 7.3.3) with the singularity at

(z0, ζ0) =

(
0,

(
ln − m

m
tc0

)1/n
)

,

we derive the equation fulfilled by s and t. Since (z0, ζ0) satisfies the equation
Cs,t : ζm−ln(ζn + th)l − s = 0, substituting z0 = 0 into it, we have

ζm−ln
0

(
ζn
0 + th(0, ζ0)

)l − s = 0.

By h(0, ζ) = h(0, 0) = c0 (7.3.7), we obtain ζm−ln
0 (ζn

0 + tc0)l − s = 0.
Next, substituting m

ln − m
ζn
0 = tc0 (7.3.4) into this equation, we deduce

ζm
0

(
ln

ln − m

)l

− s = 0, or

ζm
0 =

(
ln − m

ln

)l

s.

Put ζ0 =
(

ln − m
m tc0

)1/n

into this equation, which yields
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ln − m

m
tc0

)m/n

=
(

ln − m

ln

)l

s.

Now write m/n = b/a where a and b be the relatively prime positive inte-

gers, and then
(

ln − m
m tc0

)b/a

=
(

ln − m
ln

)l

s. Therefore
(

ln − m
m tc0

)b

=(
ln − m

ln

)al

sa.

Further we shall show that the singularity (z0, ζ0) ∈ Cs,t in Lemma 7.3.3
is an A-singularity (recall that an Aμ-singularity is a singularity analytically
equivalent to y2 = xμ+1). First we claim that a projection (z, ζ) ∈ Cs,t �→ z ∈
C restricted to a neighborhood of (z0, ζ0) is a double covering with the ramifi-
cation point (z0, ζ0), in other words, F (z0, ζ, t)−s = 0 as a polynomial in ζ has

a double root ζ0. To see this, it suffices to show that ∂F (z, ζ, t) − s
∂ζ

|z=z0 , as a

polynomial in ζ, has only simple zeros. Since ∂F (z, ζ, t) − s
∂ζ

= 0 is explicitly
given by

mζn + (m − ln)th + ltζhζ = 0, (see (7.3.5)),

setting z = z0 (= 0), then from h(0, ζ) = c0 and hζ(0, ζ) = 0, we have

mζn + (m − ln)tc0 = 0, (7.3.8)

which as a polynomial in ζ has only simple roots; hence F (z0, ζ, t) − s = 0
(a polynomial in ζ) has at most double roots. Note that ζ0 is indeed one of
the double roots, because ζ0 satisfies (7.3.8). Therefore the projection (z, ζ) ∈
Cs,t �→ z ∈ C restricted to a neighborhood of (z0, ζ0) is a double covering with
the ramification point (z0, ζ0). Then (z0, ζ0) is shown to be an A-singularity
(by using the Newton polygon of this singularity (see §7.4, p137), or in the
same way as the proofs of Lemma 21.6.1, p406 and Proposition 21.6.3, p408
of §21.6). Thus we have

Lemma 7.3.4 An singularity (z0, ζ0)=
(

0,
(

ln − m
m tc0

)1/n
)

of Cs,t (s, t �=0)

in Lemma 7.3.3 is an A-singularity, and s and t satisfy
(

ln − m
m tc0

)m/n

=(
ln − m

ln

)l

s.

Actually we may completely determine this A-singularity. Using a Newton
polygon, it is not so difficult to check that (z0, ζ0) is an Akp′−1-singularity;
we postpone the proof to §7.4 (Proposition 7.4.4), but immediately after we
summarize the above results as a proposition, for a special case we give a
proof which uses Hesse matrices.

Proposition 7.3.5 Let f(x) = c0 + c1x + c2x
2 + · · · , (c0 �= 0) be a non-

vanishing holomorphic function defined near x = 0. Given positive integers
p′ and p (p′ > p), set h(z, ζ) := f(zp′

ζp), and consider a family of curves
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Cs,t : ζm−ln(ζn + th)l − s = 0. Then Cs,t is singular if and only if s = 0

or
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

(c0t)b, where a and b are the relatively prime
integers such that am = bn.

For the latter pair of s and t, Cs,t has n singularities. In fact, (z0, ζ0) ∈ Cs,t

is a singularity exactly when z0 = 0 and ζn
0 = ln − m

m c0t; moreover such
(z0, ζ0) is an Akp′−1-singularity, where k is the minimal positive integer such
that ck �= 0.

Computation of Hesse matrices

We investigate when the singularity (z0, ζ0) =
(

0,
(

ln − m
m tc0

)1/n
)

in

Lemma 7.3.3 is an A1-singularity (a node). We note that for a singularity
(x, y) = (a, b) of a plane curve G(x, y) = 0, we can determine whether (a, b)
is a node or not, in terms of the quadratic terms of the Taylor expansion

G(x, y) = c00 + c10(x − a) + c01(y − b) + c20(x − a)2

+ 2c11(x − a)(y − b) + c02(y − b)2 + · · · .

(Actually, c10 = c01 = 0 because (a, b) is a singularity.) We shall explain this.
The Hesse matrix of G(x, y) at (a, b) is given by

H(a, b) := 2

(
c20 c11

c11 c02

)
=

⎛⎜⎜⎝
∂2G
∂x2 (a, b) ∂2G

∂x∂y
(a, b)

∂2G
∂y∂x

(a, b) ∂2G
∂y2 (a, b)

⎞⎟⎟⎠ .

We say that the singularity (a, b) is non-degenerate provided that H(a, b) is
invertible, or equivalently det(H(a, b)) �= 0 ([Mil], Chapter 7).

Theorem 7.3.6 (Milnor) The following conditions are equivalent: (1) (a, b)
is a non-degenerate singularity, (2) (a, b) is a node, and (3) μ = 1 where μ is
the Milnor number5 of (a, b).

Proof. (1) ⇐⇒ (3): By Lemma B.1 and Problem 2 in Appendix B of [Mil].
(1) =⇒ (2): Just the Morse Lemma. (2) ⇐= (1): Obvious. �

After the above preparation, we now prove

Lemma 7.3.7 Let f(x) = c0 + c1x + c2x
2 + · · · , (c0 �= 0) be a non-vanishing

holomorphic function defined near x = 0. Given positive integers p′ and p
(p′ > p), set h(z, ζ) := f(zp′

ζp), and consider a family of curves Cs,t :

ζm−ln(ζn +th)l−s = 0. Then the singularity (z0, ζ0) =
(

0,
(

ln − m
m tc0

)1/n
)

in Lemma 7.3.3 is a node if and only if p′ = 2 and c1 �= 0.
5 See [Di], [Mil]. The Aμ-singularity y2 = xμ+1 has the Milnor number μ.
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Proof. Setting G(z, ζ) := ζm−ln
(
ζn + th(z, ζ)

)l − s, we first note that

∂G

∂z
= ζm−ln t hz l

(
ζn + th

)l−1
,

∂G

∂ζ
= ζm−ln−1

(
ζn + th

)l−1
[
mζn + (m − ln)th + ltζhζ

]
.

We now compute entries ∂2G
∂ζ∂z

, ∂2G
∂ζ2 , ∂2G

∂z2 of the Hesse matrix of G at the

singular point (z0, ζ0) =
(

0,
(

ln − m
m tc0

)1/n
)

. First of all,

∂2G

∂ζ∂z
=

(
m − ln

)
ζm−ln−1 t hz l

(
ζn + th

)l−1+ ζm−ln t hzζ l
(
ζn + th

)l−1

+ ζm−ln t hz l
(
l − 1

)(
ζn + th

)l−2(
nζn−1 + thζ

)
.

Since p′ ≥ 2 and h(z, ζ) = c0+c1(zp′
ζp)+c2(zp′

ζp)2+· · · , we have hz(0, ζ) = 0

and hzζ(0, ζ) = 0. So regardless of the value of ζ, we have ∂2G
∂ζ∂z

(0, ζ) = 0.
Next we note

∂2G

∂ζ2 =
(
m − ln − 1

)
ζm−ln−2

(
ζn + t h

)l−1

×
[
mζn + (m − ln) t h + l t ζ hζ

]
+ ζm−ln−1

(
l − 1

)(
ζn + t h

)l−2(
n ζn−1 + t hζ

)
×

[
mζn + (m − ln) t h + l t ζ hζ

]
+ ζm−ln−1

(
ζn + t h

)l−1

×
[
mnζn−1 + (m − ln) t hζ + l t (hζ + ζ hζζ)

]
.

From hζ(0, ζ) = hζζ(0, ζ) = 0 and h(0, 0) = h(0, ζ) = c0, we have

∂2G

∂ζ2 (0, ζ) =
(
m − ln − 1

)
ζm−ln−2

(
ζn + tc0

)l−1
[
mζn + (m − ln)tc0

]
+ ζm−ln−1

(
l − 1

)(
ζn

)l−2(
nζn−1

)[
mζn + (m − ln)tc0

]
+ ζm−ln−1

(
ζn + tc0

)l−1
[
mnζn−1

]
.

Evaluate this at ζ = ζ0, and then since mζn
0 = (ln − m)tc0, the first and

second terms vanish:

∂2G

∂ζ2 (0, ζ0) = ζm−ln−1
0

(
ζn
0 + tc0

)l−1[
mnζn−1

0

]
.
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Again, using ζn
0 = ln − m

m tc0, we obtain

∂2G

∂ζ2 (0, ζ0) = ζm−ln−1
0

(
ln − m

m
tc0 + tc0

)l−1 [
mnζn−1

0

]
= mn

(
tc0

ln

m

)l−1

ζm−ln+n−2
0 ,

which is clearly nonzero. Finally, we compute ∂2G
∂z2 (0, ζ). Note that

∂2G

∂z2 = ζm−ln t l
[
hzz(ζn + th)l−1 + t h2

z (l − 1)(ζn + th)l−2
]
.

By hz(0, ζ) = 0 and h(0, ζ) = c0, we have

∂2G

∂z2 (0, ζ) = ζm−ln t l
[
hzz(0, ζ)

(
ζn + tc0

)l−1
]
.

Here from h(z, ζ) = c0 + c1(zp′
ζp) + c2(zp′

ζp)2 + · · · , it is easy to check

hzz(0, ζ) =

{
0, p′ ≥ 3,

2c1ζ
p, p′ = 2.

(7.3.9)

Thus if p′ ≥ 3, then ∂2G
∂z2 (0, ζ) = 0, while if p′ = 2, then

∂2G

∂z2 (0, ζ) = ζm−ln t l

[
hzz(0, ζ)

(
ζn + t c0

)l−1
]

= ζm−ln t l
[
2 c1 ζp(ζn + t c0)l−1

]
= 2 t l c1 ζm−ln+p (ζn + tc0)l−1.

Therefore if p′ ≥ 3, then by ∂2G
∂z2 (0, ζ0) = 0, the Hesse matrix is

H =

⎛⎜⎜⎝
0 ∂2G

∂z∂ζ
(0, ζ0)

∂2G
∂ζ∂z

(0, ζ0) ∂2G
∂ζ2 (0, ζ0)

⎞⎟⎟⎠ ,

which is clearly not invertible. On the other hand, for the case p′ = 2, the
Hesse matrix is

H =

⎛⎜⎜⎜⎝
∂2G
∂z2

(0, ζ0) ∂2G
∂z∂ζ

(0, ζ0)

∂2G
∂ζ∂z

(0, ζ0) ∂2G
∂ζ2

(0, ζ0)

⎞⎟⎟⎟⎠ =

⎛⎝ 2 t l c1 ζm−ln+p
0 (ζn

0 + tc0)l−1 0

0 d

⎞⎠ ,
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where d := mn
(
tc0

ln
m

)l−1

ζm−ln+n−2
0 . We note that

ζ0 �= 0 and ζn
0 + tc0 �= 0. (7.3.10)

To see this, recall that ζn
0 = ln − m

m tc0. Since c0 �= 0, we have ζ0 �= 0; in

particular d �= 0. Also ζn
0 + tc0 = ln − m

m tc0 + tc0 = ln
mtc0 �= 0, and hence

ζn
0 + tc0 �= 0. Therefore if p′ = 2, then from

det(H) = 2 t l c1 ζm−ln+p
0 (ζn

0 + tc0)l−1 d,

it follows that the Hesse matrix H is invertible exactly when c1 �= 0. We
conclude that the Hesse matrix H is invertible if and only if p′ = 2 and
c1 �= 0; by Theorem 7.3.6, this is precisely the case where the singularity
(z0, ζ0) is non-degenerate, that is, a node. This completes the proof of our
assertion. �

7.4 Newton polygons and singularities

Let f(x) = c0 + c1x + c2x
2 + · · · , (c0 �= 0) be a non-vanishing holomorphic

function defined near x = 0. Given positive integers p′ and p such that p′ > p,
we set h(z, ζ) := f(zp′

ζp) and we consider a family of curves

Cs,t : ζm−ln(ζn + th)l − s = 0.

ByLemma7.3.4, forfixeds, t �= 0satisfying
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

(c0t)b,

the curve Cs,t has an A-singularity (z0, ζ0) =
(

0,
(

ln − m
m tc0

)1/n
)

. In this

section, using a Newton polygon, we determine this singularity to be an Akp′−1-
singularity, where k is the least positive integer such that ck �= 0.

Before we give a proof, we review Newton polygons (see [BK] p376, [Oka2]
for details). Let f(x, y) =

∑
i,j aijx

iyj be a polynomial (more generally, a
convergent power series) in two variables x and y such that f(0, 0) = 0. We
assume that the plane curve f(x, y) = 0 has a singularity at the origin (0, 0).
Then we consider the convex hull Γ+(f) of a set

⋃
i,j

(
(i, j)+R

2
+

)
in R

2, where

(i, j) runs over the exponents of all monomials of f ,
R

2
+ := { (x, y) ∈ R

2 : x ≥ 0, y ≥ 0 }, and
“(i, j) + R

2
+” stands for the translation of R

2
+ by (i, j).

We write the boundary of the convex set Γ+(f) as Hx ∪ K ∪ Hy (see Figure
7.4.1), where (i) Hx (resp. Hy) is a half line parallel to the x-axis (resp. y-axis)
and (ii) K consists of segments of negative slopes. We denote K by Γ (f), and
we call it the Newton polygon (or Newton boundary) of f : We assume that Γ (f)
contains the end points (so Γ (f) is closed). Each edge of the Newton polygon
Γ (f) joins two integral points; they are vertices of Γ (f). Conventionally, an
edge of the Newton polygon Γ (f) is referred to as a face.
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Hx

(3, 6)

(4, 3)

(6, 2)
(0, 0)

Γ+(f)
Hy

K

Fig. 7.4.1. The boundary of Γ+(f) is Hx∪K∪Hy, where f = x3y6 +x4y3 +x6y2 +
x3y7 + x8y3.

The Newton polygon of f does not necessarily determine the topologi-
cal type of the singularity f(x, y) = 0, as the following example indicates:
f(x, y) = x2 + y2 defines a node, whereas g(x, y) = y2 + 2xy + x2 = (x + y)2

defines a double line. However both f and g have the same Newton polygon,
that is, a line segment joining (0, 2) and (2, 0). Motivated by this example,
we introduce the concept of Newton degenerate/nondegenerate (see [Oka2] for
details). For each face I of the Newton polygon Γ (f), we associate a partial
sum of f :

fI =
∑

(i,j)∈I

aijx
iyj ,

which is called a face function. We say that f is Newton nondegenerate if for
each face I of Γ (f), the face function fI does not admit a factorization with
a multiple factor; otherwise f is Newton degenerate. The notion of Newton
degenerate/nondegenerate depends on the choice of coordinates x and y (see
[LeOk]).

The following theorem is due to Mutsuo Oka ([Oka1], Theorem 2.1, p436);
in fact, this theorem holds for arbitrary dimension, but we merely state it for
the two dimensional case.

Theorem 7.4.1 (Oka) Suppose that f(x, y) = 0 has an isolated singularity
at the origin and that f is Newton nondegenerate. Then the Milnor fibration
of this singularity is determined by the Newton polygon Γ (f).

(Note: From the Newton polygon, we can canonically construct an embedded
resolution of the Newton nondegenerate singularity f = 0 [BK]. In particular,
if two Newton nondegenerate singularities f = 0 and g = 0 have the same
Newton polygon, then they admit the same embedded resolution. From this
fact, the topological equivalence of the two singularities f = 0 and g = 0
follows.)

Now we return to discuss the curve Cs,t : ζm−ln(ζn + th)l − s = 0, where

h(z, ζ) = c0 + c1z
p′

ζp + c2z
2p′

ζ2p + · · · , (c0 �= 0).
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We fix s and t (s, t �= 0) such that
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

(c0t)b; then by

Lemma 7.3.4, Cs,t has an A-singularity (z0, ζ0) =
(

0,
(

ln − m
m tc0

)1/n
)

. We

now demonstrate that (z0, ζ0) ∈ Cs,t is an Akp′−1-singularity, where k is the
least positive integer such that ck �= 0. For the convenience of the discussion,
we write pi = ip and p′i = ip′; moreover if k, the least positive integer such that
ck �= 0, is greater than 1, we renumber so that ck, ck+1, ck+2, . . . is replaced
by c1, c2, c3, . . . . Then

h(z, ζ) = c0 + c1z
p′
1ζp1 + c2z

p′
2ζp2 + · · · , (c0 �= 0, c1 �= 0),

and our goal is, in new notation, to verify that the singularity (z0, ζ0) of the
curve Cs,t is an Ap′

1−1-singularity. As z0 = 0 while ζ0 �= 0 (Lemma 7.3.3),
in order to apply the theory of Newton polygons, we need to translate the
function ζm−ln(ζn + th)l − s by ζ �−→ ζ + ζ0 so that (z0, ζ0) is transformed to
the origin (0, 0); the resulting function is

(ζ + ζ0)m−ln
[
(ζ + ζ0)n + th

(
z, ζ + ζ0

)]l

− s.

Lemma 7.4.2 Set f(z, ζ) =
(
ζ+ζ0

)m−ln
[
(ζ+ζ0)n+th

(
z, ζ+ζ0

)]l

−s, where

s and t (s, t �= 0) are fixed and they satisfy
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

(c0t)b.
Then the Newton polygon Γ (f) is the line segment joining (0, 2) and (p′1, 0);
so Γ (f) has only one face.

Proof. Explicitly, f is given by

f(z, ζ) =
(
ζ+ζ0

)m−ln
[(

ζ+ζ0

)n+t
(
c0+c1z

p′
1
(
ζ+ζ0

)p1+c2z
p′
2
(
ζ+ζ0

)p2+· · ·
)]l

− s.

Then f(0, ζ) = aζ2 + (higher terms), where a is a nonzero complex number;
indeed, as we saw in the proof of Lemma 7.3.4 — in the present case, we
translated (z0, ζ0) to the origin —, f(0, ζ) has a double root ζ = 0. Thus the
first term in f(0, ζ) is aζ2. (Note: f(0, 0) = 0, and so f(0, ζ) has no constant
term. Also, as the origin (0, 0) is a singularity, f(0, ζ) has no linear term;
otherwise by the implicit function theorem, f(z, ζ) is smooth at the origin.)
We next investigate the first term in

f(z, 0) =
(
ζ0

)m−ln
[ (

ζ0

)n + t
(
c0 + c1 zp′

1
(
ζ0

)p1 + c2 zp′
2
(
ζ0

)p2 + · · ·
) ]l

− s.

Rewrite this expression as

f(z, 0) = ζm−ln
0

[ (
ζn
0 + tc0

)
+

(
tc1z

p′
1ζp1

0 + tc2z
p′
2ζp2

0 + · · ·
) ]l

− s. (7.4.1)
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Here by assumption, f(0, 0) = ζm−ln
0 (ζn

0 +tc0)l−s = 0, and so s = ζm−ln
0 (ζn

0 +
tc0)l. Substitute this into (7.4.1), which yields:

f(z, 0) = ζm−ln
0

[ (
ζn
0 + tc0

)
+

(
tc1z

p′
1ζp1

0 + tc2z
p′
2ζp2

0 + · · ·
) ]l

− ζm−ln
0 (ζn

0 + tc0)l

= ζm−ln
0

{ [(
ζn
0 + tc0

)
+

(
tc1z

p′
1ζp1

0 + tc2z
p′
2ζp2

0 + · · ·
)]l

− (ζn
0 + tc0)l

}
= ζm−ln

0

{
lCl−1 ζm−ln

0 (ζn
0 + tc0)l−1 t c1 zp′

1ζp1
0 +(higher terms in z)

}
.

Thus the first term in f(z, 0) is

lCl−1 ζm−ln
0 (ζn

0 + tc0)l−1 t c1 zp′
1ζp1

0 .

(Note: The coefficient lCl−1 ζm−ln
0 (ζn

0 + tc0)l−1 t c1 ζp1
0 of zp′

1 is nonzero; be-
cause c0 and c1 are nonzero by assumption, and also ζ0 and ζn

0 + tc0 are
nonzero by (7.3.10).)

We also note that as p′1 < p′2 < p′3 < · · · and p1 < p2 < p3 < · · · , there is
no monomial ziζj in f(z, ζ) such that (i, j) is below the line segment joining
(0, 2) and (p′1, 0). Therefore, the Newton polygon Γ (f) is the line segment
joining two points (0, 2) and (p′1, 0). �

We next prove

Lemma 7.4.3 Set f(z, ζ) =
(
ζ + ζ0

)m−ln
[(

ζ + ζ0

)n + th
(
z, ζ + ζ0

)]l

− s

where s and t (s, t �= 0) satisfy
(

ln − m
ln

)al

sa =
(

ln − m
m

)b

(c0t)b. Then f is
Newton nondegenerate.

Proof. If p′1 is odd, the integral points on the Newton polygon Γ (f) are (0, 2)
and (p′1, 0). On the other hand, if p′1 is even, the integral points on Γ (f)

are (0, 2), (p′1
2 , 1), and (p′1, 0); however since p′1 < p′2 < p′3 < · · · and p1 <

p2 < p3 < · · · , the function f does not contain a monomial zp′
1/2ζ. Therefore

irrespective of whether p′1 is odd or even, the face function for I = Γ (f)
has the form fI = aζ2 + bzp′

1 where a and b are nonzero complex numbers.
Evidently, fI does not admit a factorization with a multiple factor. Therefore
f is Newton nondegenerate. �

Now we can show the main result of this section.

Proposition 7.4.4 Consider a holomorphic function

h(z, ζ) = c0 + c1z
p′
1ζp1 + c2z

p′
2ζp2 + · · · , (c0 �= 0, c1 �= 0),

where p′1 < p′2 < p′3 < · · · and p1 < p2 < p3 < · · · . Let Cs,t : ζm−ln(ζn+th)l−
s = 0 be a complex curve, where s and t (s, t �= 0) satisfy

(
ln − m

ln

)al

sa =
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ln − m

m

)b

(c0t)b. Then the singularity (z0, ζ0) =
(

0,
(

ln − m
m tc0

)1/n
)

of

Cs,t in Lemma 7.3.4 is an Ap′
1−1-singularity.

Proof. We set f(z, ζ) =
(
ζ+ζ0

)m−ln
[(

ζ+ζ0

)n+th
(
z, ζ+ζ0

)]l

−s. By Lemma
7.4.3, f is Newton nondegenerate, and so from Oka’s theorem (Theorem 7.4.1),
the Milnor fiber of f(z, ζ) = 0 is determined by the Newton polygon Γ (f). In
the present case, by Lemma 7.4.2, Γ (f) is the same as the Newton polygon of
an Ap′

1−1-singularity, and consequently the Milnor fiber of f(z, ζ) = 0 is the
same as that of an Ap′

1−1-singularity. But we already know that (z0, ζ0) is an
A-singularity (Lemma 7.3.4), and furthermore, an A-singularity is completely
determined by its Milnor fiber; in fact, the Milnor fiber of an An-singularity
for odd n is a smooth complex curve of genus n − 1

2 with two holes, while
that for even n is a smooth complex curve of genus n

2 with one hole (Lemma
22.2.1, p427). Hence we conclude that the origin of f(z, ζ) = 0 (accordingly
(z0, ζ0) of Cs,t) is an Ap′

1−1-singularity. �
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Construction of Deformations
by Wild Subbranches

In this chapter, we construct barking deformations by using certain wild sub-
branches. We prepare notation: X = m0Δ0 +m1Θ1 + · · ·+mλΘλ is a branch
and we set

ri :=
mi−1 + mi+1

mi
, (i = 1, 2 . . . , λ − 1), rλ :=

mλ−1

mλ
.

Let Y = n0Δ0+n1Θ1+ · · ·+neΘe be a subbranch of X, and let l be a positive
integer such that lY ≤ X. We recall a deformation atlas DAe−1(lY, d). We
first define a sequence of integers p0, p1, . . . , pλ+1 inductively by{

p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ,

where we remember (6.2.4):

pλ+1 > pλ > · · · > p1 > p0 = 0.

Let f(z) be a non-vanishing holomorphic function on a domain {z ∈ C : |z| <

ε}, and we set fi = f(wpi−1ηpi) and f̂i = f(zpi+1ζpi). Then the deformation
atlas DAe−1(lY, d) is given as follows: for i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tdfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tdf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

(8.1)

(See Lemma 7.1.1, p119.)

Proposition 8.1 If Y is either (1) wild or (2) tame and not proportional,
then after coordinate change, fi ≡ 1 and f̂i ≡ 1, i.e. DAe−1(lY, d) has the
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following form: for i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩
Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + td)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + td)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

(8.2)

Proof. By assumption, Y is not proportional (recall that any wild subbranch is
not proportional by Corollary 6.3.3, p108). Thus mini−1−mi−1ni �= 0 for i =
1, 2, . . . , e, and so we may apply Simplification Lemma for the hypersurfaces
Hi in (8.1); after some coordinate change, we may assume fi ≡ 1, that is,

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + td)l − s = 0,

and likewise we may assume f̂i ≡ 1:

H′
i : zmi+1−lni+1ζmi−lni(zni+1ζni + td)l − s = 0.

Therefore after some coordinate change, (8.1) is written as (8.2). �

8.1 Deformations of ripple type

A projective line Θ in a complex surface is called a (−2)-curve if its self-
intersection number is −2; Θ · Θ = −2. For a branch X = m0Δ0 + m1Θ1 +
· · · + mλΘλ, if Θi · Θi = −2 for a ≤ i ≤ b, we say that Θa + Θa+1 + · · · + Θb

is a chain of (−2)-curves. In this section, for branches containing chains of
(−2)-curves, we define a certain class of wild subbranches, from which we will
construct complete deformation atlases. For this purpose, we first introduce
special polynomials called descending polynomials, and then study how they
are transformed under some maps.

Descending polynomials

We say that a polynomial P = P (w, η, t) is a descending polynomial of length
n if it is of the form w

∑n
i=0 tn−iai(wη)i, that is,

P (w, η, t) = w
(
anwnηn + tan−1w

n−1ηn−1 + t2an−2w
n−2ηn−2 + · · · + tna0

)
where ai ∈ C (i = 0, 1, . . . , n) and an �= 0. For simplicity, unless otherwise
mentioned, we assume that an = 1. Then a descending polynomial is rewritten
as

P (w, η, t) = w

n∏
j=1

(wη + tβj),

where −βj (j = 1, 2, . . . , n) are the solutions of an equation

xn + an−1x
n−1 + an−2x

n−2 + · · · + a0 = 0.

Alternatively, we may define a descending polynomial as a polynomial which
admits a factorization of the form w

∏n
j=1(wη + tβj), where βj ∈ C.
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Lemma 8.1.1 Let P = w
∏n

j=1(wη + tβj) be a descending polynomial of
length n. Then a map g : z = 1/w, ζ = w2η + tβnw transforms P to a
polynomial

P ′ = ζ
n−1∏
j=1

[
zζ + t(βj − βn)

]
.

Note: By a coordinate change (z, ζ) = (w, η), the polynomial P ′ becomes

w

n−1∏
j=1

[
wη + t(βj − βn)

]
,

which is a descending polynomial of length n − 1. So the length is reduced
by 1. The name “descending” comes from this property.

Proof. Since P (w, η, t) = w
n∏

j=1

(
1
ww2η + tβj

)
, the map g transforms P to

1
z

n∏
j=1

[
z

(
ζ − tβn

1
z

)
+ tβj

]
=

1
z

n∏
j=1

[
zζ + t(βj − βn)

]

=
1
z

n−1∏
j=1

[
zζ + t(βj − βn)

]
·
[
zζ + t(βn − βn)

]

=
1
z

n−1∏
j=1

[
zζ + t(βj − βn)

]
· zζ

= ζ
n−1∏
j=1

[
zζ + t(βj − βn)

]
.

Hence g transforms P (w, η, t) to P ′(ζ, z, t). �
Remark 8.1.2 The following observation is useful when we later describe
the deformation constructed from this polynomial: if β1, β2, . . . , βn are dis-
tinct, then β1 − βn, β2 − βn, . . . , βn−1 − βn are also distinct. If furthermore
β1, β2, . . . , βn are nonzero, then β1 − βn, β2 − βn, . . . , βn−1 − βn are also
nonzero.

The following lemma will play an essential role for the construction of complete
deformation atlases by means of descending polynomials.

Lemma 8.1.3 Given a descending polynomial P = w
∏n

j=1(wη+βj) of length
n, there exist

(1) a sequence of descending polynomials P1 = P, P2, . . . , Pn+1 such that Pi

has length n + 1 − i (so Pn+1 = w), and
(2) a sequence of maps g1, g2, . . . , gn of the form gi : z = 1/w, ζ = w2η+ tαiw

for some αi ∈ C such that gi transforms Pi(w, η, t) to Pi+1(ζ, z, t).
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Proof. First of all, from the ‘roots’ β1, β2, . . . , βn of P , we define a sequence of
complex numbers; for each i (i = 0, 1, . . . , n + 1), we define n + 1− i complex
numbers

βi, 1, βi, 2, . . . , βi, n+1−i

inductively as follows. For i = 0, we set β0, 1 := β1, β0, 2 := β2, . . . , β0, n+1 :=
βn+1. Assuming that we have already defined βi, 1, βi, 2, . . . , βi, n+1−i, we next
define βi+1, 1, βi+1, 2, . . . , βi+1, n−i recursively by

βi+1, j = βi, j − βi, n+1−i, ( j = 1, 2, . . . , n − i ).

Using the above sequence of complex numbers, we define descending polyno-
mials and maps:

Pi = w

n+1−i∏
j=1

(wη + tβi, j), and gi : z =
1
w

, ζ = w2η + tβi , n+1−iw.

Then the length of Pi is n+1−i, and by Lemma 8.1.1, gi transforms Pi(w, η, t)
to Pi+1(ζ, z, t). Hence our assertion is confirmed. �

We say that the set P1, P2, . . . , Pn+1 and g1, g2, . . . , gn is a descending
sequence associated with P .

Subbranches of ripple type

Next we construct complete deformation atlases by using descending polyno-
mials. Assume that X = m0Δ0 + m1Θ1 + · · · + mλΘλ is a branch such that
for some e (0 < e < λ),

mi = (λ + 1) − i for i = e − 1, e, . . . , λ. (8.1.1)

This condition is equivalent to

(i) mλ = 1 and (ii) re = re+1 = · · · = rλ = 2. (8.1.2)

Note that (ii) implies Θi ·Θi = −2 for i = e, e+1, . . . , λ, namely Θe +Θe+1 +
· · · + Θλ is a chain of (−2)-curves.

A subbranch Y = n0Δ0 + n1Θ1 + · · · + neΘe of X is called of ripple type
if it satisfies

ne−1 = ne = me. (8.1.3)

Lemma 8.1.4 Suppose that Y = n0Δ0 + n1Θ1 + · · · + neΘe is a subbranch
of ripple type. Then ne divides all ni (i = 0, 1, . . . , e). (In particular, when
ne ≥ 2, Y is a multiple subdivisor of X.)

Proof. We demonstrate this by induction on i (i = e − 1, e − 2, . . . , 0). From
the definition of ripple type, ne = ne−1 and so it is trivial that ne divides ne−1.
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Next we show that ne divides ne−2. Since Y is a subbranch,

ni−1 = rini − ni+1, for i = 1, 2, . . . , e − 1. (8.1.4)

In particular ne−2 = re−1ne−1 − ne; since ne divides ne−1, the right hand
side is divisible by ne, so ne divides ne−2. Next, by (8.1.4) for i = e − 2, we
have ne−3 = re−2ne−2−ne−1. Since ne divides both ne−2 and ne−1, it follows
that ne divides ne−3. Repeating this argument, we conclude that ne divides
ni (i = e − 1, e − 2, . . . , 0). �
Lemma 8.1.5 A subbranch Y of ripple type is dominant and wild.

Proof. We write Y = n0Δ0+n1Θ1+· · ·+neΘe, and we set ne+1 := rene−ne−1

formally. Recall that a subbranch is dominant if ne+1 > me or ne+1 ≤ 0. When
Y is of ripple type, we have

ne+1 = 2ne − ne−1 by re = 2 (8.1.2)
= 2me − me by ne = me (8.1.3)
= me

> me+1,

where the last inequality follows from the fact that m0,m1, . . . , mλ strictly
decrease. Thus ne+1 > me+1, and so Y is dominant. Next, recall that a sub-
branch Y is wild provided that (1) e ≤ λ − 1 and ne−1 + me+1

ne
< re or

(2) e = λ and nλ−1
nλ

< rλ (Definition 5.5.3, p93). In the ripple case, if e ≤ λ−1,
then we have

re :=
me−1 + me+1

me

>
me + me+1

ne
by me−1 > me and me = ne

=
ne−1 + me+1

ne
by ne−1 = me (8.1.3).

Thus re >
ne−1 + me+1

ne
. This means that Y is wild. Next if e = λ, then from

the definition of ripple type, nλ−1 = nλ, and so nλ−1
nλ

= 1 < rλ (note rλ = 2
(8.1.2)). Therefore Y is wild, and so the assertion is confirmed. �
Example 8.1.6 If m is an arithmetic progression with difference 1, then
there are many choices of n which is of ripple type. For example, if m =
(6, 5, 4, 3, 2, 1), then all of the following sequences are multiplicity sequences
of ripple type:

(1) n = (1, 1, 1, 1, 1, 1)
(2) n = (2, 2, 2, 2, 2)
(3) n = (3, 3, 3, 3)
(4) n = (4, 4, 4)
(4) n = (5, 5).
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Actually, as seen from the lemma just below, if m is an arithmetic progres-
sion with difference 1, then the sequences n as in the above examples exhaust
all ripple types. (Note: This is not true for general m; in the definition of
ripple type, we merely assumed that (me−1,me, . . . , mλ) is an arithmetic pro-
gression with difference 1, whereas the whole sequence m = (m0,m1, . . . , mλ)
is not necessarily an arithmetic progression.)

Lemma 8.1.7 Let X = m0Δ0 + m1Θ1 + · · · + mλΘλ be a branch such that

mi = λ + 1 − i, (i = 0, 1, . . . , λ). (8.1.5)

Then a subbranch Y = n0Δ0 + n1Θ1 + · · ·+ neΘe is of ripple type if and only
if

n0 = n1 = · · · = ne = me.

Proof. Clearly, “n0 = n1 = · · · = ne = me” implies that Y is of ripple type.
We show the converse. From the assumption (8.1.5), ri = 2 for i = 1, 2, . . . , λ.
Since Y is a subbranch, ni+1 = rini − ni−1, and so ni+1 = 2ni − ni−1. It
follows that we have

ni+1 − ni = ni − ni−1 for i = 1, 2, . . . , e − 1.

This means that n = (n0, n1, . . . , ne) is an arithmetic progression. Its differ-
ence ne − ne−1 is equal to zero by the definition of ripple type. Therefore
n0 = n1 = n2 = · · · = ne. Noting that ne = me by the definition of ripple
type, we complete the proof. �

Complete propagation for ripple type

Suppose that X = m0Δ0 +m1Θ1 + · · ·+mλΘλ is a branch, and Y = n0Δ0 +
n1Θ1 + · · · + neΘe is its subbranch. As before, we set

ri :=
mi−1 + mi+1

mi
, (i = 1, 2 . . . , λ − 1), rλ :=

mλ−1

mλ
.

We recall the deformation atlas DAe−1(Y, d) associated with Y . First we define
a sequence of integers pi (i = 0, 1, . . . , λ + 1) inductively by{

p0 = 0, p1 = 1
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.

Then pλ+1 > pλ > · · · > p1 > p0 = 0 (6.2.4). Let f(z) be a non-vanishing
holomorphic function defined around z = 0, and we set fi = f(wpi−1ηpi) and
f̂i = f(zpi+1ζpi) (see (6.2.7)). Then DAe−1(Y, d) is given by the following
data: for i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−ni−1ηmi−ni(wni−1ηni + tdfi) − s = 0
H′

i : zmi+1−ni+1ζmi−ni(zni+1ζni + tdf̂i) − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

(8.1.6)
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Theorem 8.1.8 Assume that X = m0Δ0 + m1Θ1 + · · · + mλΘλ is a branch
such that for some e (0 < e < λ),

mi = (λ + 1) − i for i = e − 1, e, . . . , λ. (8.1.7)

Let Y = n0Δ0+n1Θ1+ · · ·+neΘe be its subbranch of ripple type. If the weight
d of DAe−1(Y, d) is divisible by me, then DAe−1(Y, d) admits a complete
propagation.

Proof. For simplicity, we first consider the case d = me (obviously me

divides d). Then

He : wme−1−ne−1ηme−ne(wne−1ηne + tmefe) − s = 0.

By the assumption (8.1.7), we have me−1 = me + 1 and so

He : wme+1−ne−1ηme−ne(wne−1ηne + tmefe) − s = 0.

Since Y is of ripple type, ne−1 = ne = me and hence

He : w(wmeηme + tmefe) − s = 0.

By Simplification Lemma, after some coordinate change, we may assume fe ≡
1:

He : w(wmeηme + tme) − s = 0.

Next, we set P = w(wmeηme + tme) and write He : P (w, η, t)− s = 0. Noting
that P is a descending polynomial of length me, we take a descending sequence
Pe, Pe+1, . . . , Pλ+1 and ge, ge+1, . . . , gλ associated with P = Pe. (Note: In the
definition of descending sequences, a descending sequence starts from P1 and
g1, but for the present discussion, we reset the subscripts so that the first
elements are Pe and ge.) Then for i = e, e + 1, . . . , λ, we set⎧⎪⎪⎪⎨⎪⎪⎪⎩

Hi : Pi(w, η, t) − s = 0

H′
i : Pi+1(ζ, z, t) − s = 0

gi : z = 1
w, ζ = w2η − αitw.

From Lemma 8.1.3, this data gives a complete propagation of DAe−1(Y, d).
Next, we consider the general case; d is an arbitrary positive integer di-

visible by me. Then we write d = meq where q is a positive integer. In
the above discussion, replacing t by tq, we obtain a complete propagation
of DAe−1(lY, d). Hence we establish our assertion. �
Remark 8.1.9 In the above construction, the parameter of deformation is
not t but td where d is a positive integer divisible by me. This is related
to simultaneous resolution of cyclic quotient singularities. Let V be a cyclic
quotient singularity. Suppose that V → B is a deformation of V , which is
contained in the Artin component. Then we need a base change of B for the
simultaneous resolution of V (see Brieskorn [Br1] and [BR2]). This base change
corresponds to our choice of the parameter td.
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Fig. 8.1.1. Deformation of ripple type.

Let Ψ : M → Δ × Δ† be the barking family obtained by patching the
complete deformation atlas in Theorem 8.1.8. We shall describe the deforma-
tion from X to X0,t := Ψ−1(0, t). For simplicity, we consider the case d = me.
Then

He|s=0 : w

me∏
k=1

(wη + te2πik/me) = 0

is a disjoint union of one disk {w = 0} and me annuli {wη + te2πik/me = 0}
where k = 1, 2, . . . , me. Likewise, He+i|s=0 for i = 0, 1, . . . , λ − e is a disjoint
union of one disk and me − i annuli. From this observation, it is easy to draw
the singular fiber X0,t (Figure 8.1.1).

8.2 Singular fibers

For a descending polynomial P = w
∏n

j=1(wη + tβj) where β1, β2, . . . , βn

are not necessarily distinct, we consider a family of (non-compact) curves,
parameterized by s and t:

Cs,t : P (w, η, t) − s = 0.
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Proposition 8.2.1 The curve Cs,t : P (w, η, t) − s = 0 is singular precisely
when {

(1) (s, t) = (0, 0) if β1, β2, . . . , βn are distinct
(2) s = 0 otherwise.

Proof. First, we show that if s �= 0, then Cs,t is smooth, regardless of whether
β1, β2, . . . , βm are distinct or not. Note that if s �= 0, then P (w, η, t) does not
vanish, because P (w, η, t) = s. Thus when s �= 0, the following equivalence
holds (see (6.4.1)):

(w, η) ∈ Cs,t is a singularity ⇐⇒ ∂ log P

∂w
(w, η) =

∂ log P

∂η
(w, η) = 0.

From log P = log w +
∑n

j=1 log(wη + tβj), we derive

∂ log P

∂w
=

1
w

+
n∑

j=1

η

wη + tβj
,

∂ log P

∂η
=

n∑
j=1

w

wη + tβj
.

Thus (w, η) ∈ Cs,t is a singularity if and only if

1
w

+ η

⎛⎝ n∑
j=1

1
wη + tβj

⎞⎠ = 0, w

⎛⎝ n∑
j=1

1
wη + tβj

⎞⎠ = 0. (8.2.1)

From the second equation, we have either w = 0 or
∑n

j=1
1

wη + tβj
= 0. But

w = 0 does not satisfy the first equation of (8.2.1). On the other hand, if

n∑
j=1

1
wη + tβj

= 0,

then from the first equation of (8.2.1), we have 1/w = 0 — which is absurd!
Thus if s �= 0, then the curve Cs,t is smooth.

Next, we consider the case s = 0; we investigate when C0,t is singular. We
slightly change the expression of the factorization; we write P = w

∏k
j=1(wη+

tγj)aj , where each aj is a positive integer and γ1, γ2, . . . , γk ∈ C are distinct.
Then the curve C0,t : P (w, η, t) = 0 is a disjoint union of w = 0 (a disk) and
(wη+tγj)aj = 0 (a multiple annulus of multiplicity aj). Thus C0,t is smooth if
and only if a1 = a2 = · · · = ak = 1, in other words β1, β2, . . . , βn are distinct.
This proves our assertion. �

We next deduce the following result.

Corollary 8.2.2 Let Y be a subbranch of ripple type, and let Ψ : M →
Δ × Δ† be the barking family obtained by patching the complete propagation
of DAe−1(Y, d) in Theorem 8.1.8. Then Xs,t := Ψ−1(s, t) is singular if and
only if s = 0.
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Proof. We verify the following two claims, which together imply the statement
above:

Claim 1: For i = 1, 2, . . . , e− 1, a curve (Ψ|Hi
)−1(s, t) (resp. (Ψ|Hi

)−1(s, t))
is singular if and only if s = 0.

Claim 2: For i = e, e + 1, . . . , λ, a curve (Ψ|Hi
)−1(s, t) (resp. (Ψ|Hi

)−1(s, t))
is singular if and only if s = t = 0.

We now show these claims. By Lemma 8.1.5, Y is dominant wild, and
applying Corollary 6.4.6, p113, we see that Claim 1 is valid. Next we show
Claim 2. Note that a descending polynomial of the form P = w(wnηn + tn)
factorizes as w

∏n
k=1(wη + te2πik/n) and the roots −e2πik/n (k = 1, 2, . . . , n)

are distinct; thus applying (1) of Proposition 8.2.1, we conclude that Claim 2
is valid. �
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Subbranches of Types Al, Bl, Cl

In this chapter, we introduce important notions “subbranches of types Al,
Bl, and Cl”. In the first section, we summarize their properties often without
proof, and the subsequent sections are devoted to the proofs of these proper-
ties. The proofs are routine and technical in nature. For the first reading, we
recommend the reader to read only the first section (and assuming it) to skip
to the next chapter.

9.1 Subbranches of types Al, Bl, Cl

Let lY be a subbranch of a branch X where l is a positive integer and Y
is a subbranch of X. Here Y itself is possibly multiple. We express X =
m0Δ0 +m1Θ1 + · · ·+mλΘλ and Y = n0Δ0 +n1Θ1 + · · ·+neΘe (e ≤ λ), and
then set

ri :=
mi−1 + mi+1

mi
, (i = 1, 2 . . . , λ − 1), rλ :=

mλ−1

mλ
.

Recall that ri (i = 1, 2, . . . , λ) are positive integers satisfying ri ≥ 2. Next we
recall the deformation atlas DAe−1(lY, k) associated with lY . First we define
a sequence of integers pi (i = 0, 1, . . . , λ + 1) inductively by{

p0 = 0, p1 = 1
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.

Then pλ+1 > pλ > · · · > p1 > p0 = 0 (6.2.4). Let f(z) be a non-vanishing
holomorphic function defined around z = 0, and we set fi = f(wpi−1ηpi) and
f̂i = f(zpi+1ζpi) (see (6.2.7)). Then DAe−1(lY, d) is given by the following
data (see Lemma 7.1.1): for i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tkfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tkf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.
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Then we ask:

Problem When does DAe−1(lY, k) admit a complete propagation?

As we will show later, there are exactly three types of Y for which DAe−1(lY, k)
admits a complete propagation (Theorem 13.1.1). Now we introduce these
three types. Below, the notation lY ≤ X means lni ≤ mi for i = 0, 1, . . . , e.

Definition 9.1.1 Let l be a positive integer and let X be a branch.

Type Al A subbranch Y of X is of type Al if one of the following conditions
holds: (In fact, these conditions are equivalent. See Lemma 9.2.3.)
(A.1) lY ≤ X and ne−1

ne
≥ re.

(A.2) lY ≤ X and lY is dominant tame.
(A.3) lY ≤ X and Y is dominant tame.

Type Bl A subbranch Y of X is of type Bl if lY ≤ X, me = l, and ne = 1
Type Cl A subbranch Y of X is of type Cl if one of the following conditions

holds: (In fact, these conditions are equivalent. See Lemma 9.4.2.)
(C.1) lY ≤ X, ne divides ne−1, and ne−1

ne
< re, and u divides l where

u := (me−1 − lne−1) − (re − 1)(me − lne). (As in (C.3) “Note”,
u > 0.)

(C.2) lY ≤ X, ne = rene − ne−1, and u divides l where u is in (C.1).
(C.3) lY ≤ X, ne = rene − ne−1, and me − me+1 divides l.

(Note: λ ≥ e+1 holds for type Cl. See Corollary 9.4.4. Also note that
by Lemma 9.1.5 below, me − me+1 is equal to u in (C.1); so u > 0.)

We provide respective examples of types Al, Bl, Cl:

Example Al l = 2, m = (12, 9, 6, 3) and n = (3, 2, 1).
Example Bl l = 2, m = (12, 7, 2, 1) and n = (3, 2, 1).
Example Cl l = 5, m = (30, 25, 20, 15, 10, 5) and n = (3, 3, 3, 3).

(In Example Cl, me − lne = 0 and so u = 5.)

Note: Take l = 7, m = (57, 16, 7, 5, 3, 1), and n = (7, 2, 1). Then Y satisfies
the conditions of type Cl except that u divides l. Indeed u = 2, and so u does
not divide l = 7. Consequently Y is not of type Cl.

Recall that a subbranch Y = n0Δ0+n1Θ1+ · · ·+neΘe (e ≤ λ) of a branch
X = m0Δ0 + m1Θ1 + · · · + mλΘλ is proportional if m0

n0
= m1

n1
= · · · = me

ne
.

Lemma 9.1.2 Any subbranch Y of type Cl is “not” proportional.

Proof. In fact, when e = λ, from a condition in (C.1), we have nλ−1
nλ

<

rλ = mλ−1
mλ

and so mλ−1
nλ−1

> mλ
nλ

; this confirms the non-proportionality of
Y . When e < λ, we show the non-proportionality of Y by contradiction; if
Y is proportional, then (me−1,me) = (cne−1, cne) for some rational number
c. By (C.3), ne = rene − ne−1, and hence cne = recne − cne−1, that is,
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me = reme − me−1. Thus we have

me + me−1

me
= re.

However, from the definition of a branch,

me−1 + me+1

me
= re,

and the comparison of the above two equations gives me+1 = me. This is a
contradiction. Therefore any subbranch of type Cl is not proportional. �

On the other hand, types Al and Bl may be proportional. For instance if
X = lY ;

m = (ln0, ln1, . . . , lnλ), n = (n0, n1, . . . , nλ),

then Y is of proportional type Al; for a special case nλ = 1 and mλ = l, this
is of proportional type Bl at the same time. A subbranch both of type Al and
Bl is simply referred to as of type ABl.

Lemma 9.1.3 Suppose that Y is a dominant subbranch of a branch X. Then
Y is of type ABl if and only if Y is of proportional type Bl.

Proof. =⇒: Trivial.
⇐=: By proportionality, m0

n0
= m1

n1
= · · · = me

ne
. Since me = l and ne = 1

(type Bl), these common fractions are equal to l. Namely(
m0,m1, . . . , me

)
= l

(
n0, n1, . . . , ne (= 1)

)
. (9.1.1)

Next we insist that e = λ; assuming e < λ, we derive a contradiction. Note
that (9.1.1) with the equations mi+1 = rimi − mi−1 (i = 1, 2, . . . , λ − 1)
implies that l divides all mi (i = 0, 1, . . . , λ). We “define” ne+1, ne+2, . . . , nλ by
ni := mi

l
(i = e + 1, e + 2, . . . , λ). Then (m0,m1, . . . , mλ) = l(n0, n1, . . . , nλ).

In particular the sequence n = (n0, n1, . . . , ne) is contained in a dominant
sequence n′ = (n0, n1, . . . , nλ), and so Y is not dominant (a contradiction!).
Thus e = λ and (

m0,m1, . . . , mλ

)
= l

(
n0, n1, . . . , nλ (= 1)

)
.

This shows that Y is of type ABl. �
From this lemma, type ABl coincides with proportional type Bl; so the

arithmetic property of the latter is the same as that of type Al — dominant
tame. Thus as long as we are concerned with the arithmetic property of type
Bl, it is enough to investigate that of non-proportional one. We remark that
when we later construct deformations from subbranches of types Al, Bl, and
Cl, a subbranch of proportional type Bl (i.e. type ABl) produces two different
deformations according to the application of the respective constructions for
types Al and Bl.
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We point out that a subbranch Y both of type Bl and Cl also exists;
l = 2, m = (4, 3, 2, 1) and n = (1, 1, 1) is such an example. As we will see
later, a subbranch Y both of type Bl and Cl produces the same deformation
regardless of the application of the respective constructions for type Bl and
Cl, and thus there is no reason to distinguish them; we adopt the following
convention.

Convention 9.1.4 To avoid overlapping of type Cl with type Bl, we exclude
the case me = l and ne = 1 from type Cl.

Now we give several comments on (C.1), (C.2), and (C.3) in the definition
of type Cl.

Lemma 9.1.5 The integer u := (me−1 − lne−1)− (re −1)(me − lne) in (C.1)
is equal to me − me+1 in (C.3). (Note: since me > me+1, we have u = me −
me+1 > 0.)

Proof. In fact, we may write

u = (me−1 − reme) + me + l(rene − ne−1 − ne)
= (me−1 − reme) + me

= me − me+1.

where the second and third equalities respectively follows from ne = rene −
ne−1 (a condition in (C.2)) and me−1 + me+1

me
= re. �

By the above lemma, u = me − me+1 > 0. We remark that “lY ≤ X, ne

divides ne−1, and ne−1
ne

< re” (cf. (C.1)) implies u > 0 (Proposition 9.4.8).

However, if we drop “ne−1
ne

< re”, then u > 0 fails; for example,

l = 1, m = (6, 5, 4, 3, 2, 1) and n = (5, 3, 1). Then ne divides ne−1, but
ne−1
ne

= 3 > re = 2. In this case u = −1. (Actually n is of type A1.)

l = 1, m = (4, 3, 2, 1) and n = (3, 2, 1). Then ne divides ne−1, but ne−1
ne

=
2 = re = 2. In this case u = 0. (Actually n is of type A1.)

Secondly we point out that the condition (C.1) (or all other conditions) of
type Cl implies that

(C′) lY ≤ X, ne divides ne−1, and ne−1
ne

< re, and me − me+1 divides l.

But the converse is not true; namely (C.1) is not equivalent to (C′). In fact,
under the condition (C’), me − me+1 does not necessarily equal u in (C.1).
(cf. Lemma 9.1.5.) For instance, l = 1, m = (13, 4, 3, 2, 1) and n = (2, 1),
which satisfies all conditions of (C’). However me − me+1 = 1, while u = 2.
In particular, me − me+1 divides l, while u does not, and thus this example
is not of type Cl.
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Remark 9.1.6 For type Cl, from the condition that ne divides ne−1 and Y
is a subbranch, it is easy to deduce that ne divides ni (i = 0, 1, . . . , e − 1).
Namely, when ne ≥ 2, a subbranch Y of type Cl itself is multiple. See the
proof of Lemma 8.1.4.

It is worth pointing out the following property (type B�
l means non-proportional

type Bl):
Type Al lY is dominant tame

Type B�
l lY is dominant wild (Proposition 9.3.2)

Type Cl lY is wild (Proposition 9.4.11)

As we explained above, proportional type Bl (i.e. type ABl) is dominant tame.
We also note that type B�

l (non-proportional type Bl) and type Cl are wild,
but in contrast with type B�

l , type Cl is in general not dominant, e.g.

l = 1, m = (6, 5, 4, 3, 2, 1) and n = (1, 1, 1).

This is not dominant; n is contained in a dominant sequence n′ = (1, 1, 1, 1, 1, 1).
(Interesting enough, n′ is not of type Cl but of type Bl where l = 1.) A more
complicated example is the following:

l = 10, m = (40, 26, 12, 10, 8, 6, 4, 2) and n = (3, 2, 1).
(In this case u = 2.)

This example is also of type Cl but not dominant; n is contained in n′ :=
(3, 2, 1, 1) (type Bl where l = 10). Another curious example is: l = 2, m =
(6, 5, 4, 3, 2, 1) and n = (2, 2). Then n is of type Cl contained in n′ = (2, 2, 2),
which is again of type Cl. See also Remark 20.2.4, p357 for this example.

Remark 9.1.7 If ne−1 < ne, then Y is none of types Al, Bl and Cl. (1) Y is
not type Al: In fact, ne−1 < ne implies ne−1

ne
< 1, and so ne−1

ne
< re because

re ≥ 2. Thus Y does not fulfill (A.1). (2) Noting that 1 ≤ ne−1 < ne, we have
1 < ne, and so Y is not of type Bl. (3) As ne−1 < ne, the integer ne does not
divide ne−1, and hence Y is not of type Cl.

Let Y = n0Δ0 + n1Θ1 + · · ·+ neΘe be a subbranch of a branch X = m0Δ0 +
m1Θ1 + · · · + mλΘλ. If Y is of type Cl, then λ ≥ e + 1 by Corollary 9.4.4
below. On the other hand, this is not necessarily true for types Al and Bl. It
may occur that λ = e; for example,

Example Al l = 1, m = (9, 6, 3) and n = (3, 2, 1).
Example Bl l = 3, m = (9, 6, 3) and n = (1, 1, 1).

Now setting

a := me−1 − lne−1, b := me − lne, c := ne−1, d := ne,
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we restate the definitions of types Al, Bl, and Cl as follows:

Type Al A subbranch Y is of type Al if lY ≤ X and c
d
≥ re.

Type Bl A subbranch Y is of type Bl if lY ≤ X, b = 0 and d = 1.
Type Cl A subbranch Y is of type Cl if one of the following conditions

holds:
(C.1) lY ≤ X, d divides c, and c

d
< re, and u divides l where u :=

a − (re − 1)b.
(C.2) lY ≤ X, d = red − c, and u divides l where u := a − (re − 1)b.

We next summarize signs for some quantities concerning with types Al, B�
l

and Cl, where type B�
l means non-proportional type Bl.

Type Al a ≥ 0 b ≥ 0 c > 0 d > 0

Type B�
l a > 0 b = 0 c > 0 d = 1

Type Cl a > 0 b ≥ 0 c > 0 d > 0

Here note that for any type, c = ne−1 > 0 and d = ne > 0, and for type Bl,
d = 1. In general a ≥ 0 and b ≥ 0 hold; the strict inequality a > 0 is valid for
types B�

l and Cl, which will be proved in Proposition 9.3.2 and Proposition
9.4.11 respectively. On the other hand, b > 0 is not true for type Bl because
b = me − lne = l − l = 0. We also remark that for type Al, a = 0 if and only
if b = 0. Moreover a = 0 (equivalently b = 0) occurs precisely when X = lY
and in this case, Y is proportional (Corollary 9.2.8).

Next we provide the table for the signs of quantities a − reb, red − c and
u := a−(re−1)b; this table are useful for our later construction of deformations
associated with subbranches of types Al, Bl, and Cl. In the table, type B�

l

means non-proportional type Bl, and for type Al, if e = λ, then we formally
set me+1 := 0. For a subbranch Y of type Cl such that lY is not dominant,
we formally set ne+1 := rene − ne−1; then me+1 ≥ lne+1 by non-dominance,
and hence lne+1 − me+1 ≤ 0.

Table 9.1.8
Type Al a − reb ≤ −me+1 < 0 red − c ≤ 0 u ≤ b − me+1

Type B�
l a − reb > 0 red − c > 0 u > 0

Type Cl

a − reb > 0 if lY is dominant

a − reb = lne+1 − me+1 ≤ 0
if lY is not dominant

red − c = d > 0 u = me − me+1 > 0

(The inequalities in the above table will be shown in Proposition 9.2.5, Propo-
sition 9.3.2, and Proposition 9.4.11 for types Al, B�

l , and Cl respectively.)
The following table for type Cl, to be proved in Lemma 9.4.10, will be

used later in the construction of deformations.
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Table 9.1.9

Type Cl
u > b if lY is dominant
u ≤ b if lY is not dominant

For a subbranch Y = n0Δ0 +n1Θ1 + · · ·+meΘe of a branch X = m0Δ0 +
m1Θ1 + · · · + mλΘλ, recall that Θi is a (−2)-curve if the self-intersection
number Θi · Θi = −2; a chain of (−2)-curve is a set of (−2)-curves of the
form Θa + Θa+1 + · · · + Θb where a ≤ b. If Y is of type Cl, then in most
cases the complement of Y in X contains a chain of (−2)-curves, where by
the “complement of Y in X”, we mean Θe+1 +Θe+2 + · · ·+Θλ (note λ ≥ e+1
for type Cl by Corollary 9.4.4). To explain this result, we set u := (me−1 −
lne−1)− (re − 1)(me − lne), and then u divides l by the definition of type Cl,
and so we write l = Nu where N is a positive integer. Next we set b := me−lne

and d := ne, and if u ≤ b, considering the division of b by u, we let v be the
integer such that b−vu ≥ 0 and b− (v +1)u < 0. According to whether u > b
or u ≤ b, we have the following information about chains of (−2)-curves in the
complement of Y in X. (Note: ri = 2 is equivalent to Θi being a (−2)-curve.)

Table 9.1.10 (Type Cl) Refer Proposition 9.4.12 for the proof.

b = 0 re+1 = re+2 = · · · = rλ = 2, λ = e + Nd − 1

b ≥ 1, u > b re+1 = re+2 = · · · = rλ−1 = 2, λ = e + Nd

b ≥ 1, u ≤ b,

u does not divide v
re+1 = re+2 = · · · = rλ−1 = 2, λ = e + Nd + v

b ≥ 1, u ≤ b,

u divides v
re+1 = re+2 = · · · = rλ = 2, λ = e + Nd + v − 1

Example 9.1.11 (Exceptional example) In the above table, for the case
b ≥ 1 and u > b, if λ = e + 1, then the complement of Y in X may not
contain a chain of (−2)-curves at all; l = 2, m = (5, 3, 1) and n = (1, 1) is
such an example of type Cl, in which case u = 2 and so N = 1 in l = Nu,
and consequently λ = e + 1 = e + Nd = 2. Then rλ (= 3) �= 2 and hence the
complement Θλ of Y in X is not a (−2)-curve.

The following criterion for Y to be of type C1 is useful.

Lemma 9.1.12 When l = 1, a dominant subbranch Y is of type Cl if and only
if the following conditions are fulfilled: (1) ne divides ne−1, and ne−1

ne
< re,

(2) me−1 − ne−1 = 1, and (3) me = ne.

Proof. =⇒: Suppose that Y is of type C1. Then by definition, (1) is satisfied.
To show (2) and (3), we set u := (me−1 − lne−1) − (re − 1)(me − lne), and
then u divides l by the definition of type Cl. In the present case, l = 1 and so
u = ±1. As u = me − me+1 > 0 for type Cl (Lemma 9.1.5), we have u = 1.
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Now for simplicity, we set a := me−1 − ne−1 and b := me − ne. Of course
b ≥ 0. Since Y (= lY ) is dominant and of type Cl, we have a − reb ≥ 1 by
Table 9.1.8. Thus

b ≥ 0, a − reb ≥ 1. (9.1.2)

Our goal is to show that (2) a = 1 and (3) b = 0. Note that since l = 1,

u = (me−1 − ne−1) − (re − 1)(me − ne) = a − (re − 1)b = (a − reb) + b.

On the other hand, as we saw above, u = 1 and thus (a− reb)+ b = 1. Taking
(9.1.2) into consideration, this equation holds exactly when a − reb = 1 and
b = 0, that is, a = 1 and b = 0. Hence (2) and (3) hold.

⇐=: Taking into account (1), we only have to show that u = a − (re − 1)b
divides l = 1. But a = 1 (2) and b = 0 (3), and so u = 1, which obviously
divides l. Therefore the condition (C.1) of type Cl is satisfied; so Y is of
type Cl. �
Remark 9.1.13 Recall that a subbranch Y is of ripple type if ne−1 = ne =
me (see (8.1.3), p146); then Y is dominant by Lemma 8.1.5. Clearly the three
conditions of the above lemma are fulfilled and thus Y is of type C1. However,
the converse is not true; even if the conditions (1), (2) and (3) of Lemma
9.1.12 are fulfilled, it does not imply that Y is of ripple type. The following
examples are of type C1 but not of ripple type because ne−1 �= ne.

(1) l = 1, m = (15, 11, 7, 3, 2, 1) and n = (12, 9, 6, 3).

(2) l = 1, m = (22, 17, 12, 7, 2, 1) and n = (18, 14, 10, 6, 2).

A recipe to produce subbranches of type Cl

We close this section by giving a recipe to produce examples of subbranches of
type Cl. Given m = (m0,m1, . . . , mλ), take two positive integers ne := 1 and
ne−1 := re − 1 where re = me−1 + me+1

me
. Then clearly ne = rene −ne−1, and

hence the first condition in (C.3) of Definition 9.1.1 is fulfilled. Thus Y is of
type Cl precisely when me−me+1 divides l. For example, (1) me−me+1 = 1 or
(2) me−me+1 = 2 and l is even. If this is the case, we define ne−2, ne−3, . . . , nλ

inductively by ni−1 := rini − ni+1 for i = e − 1, e − 2, . . . , 1. This yields a
sequence n = (n0, n1, . . . , ne) of type Cl.

9.2 Demonstration of properties of type Al

In this section, we demonstrate the properties of type Al. We begin by recalling
the definition of dominance. Let Y = n0Δ0+n1Θ1+· · ·+meΘe be a subbranch
of a branch X = m0Δ0 + m1Θ1 + · · · + mλΘλ. We set ne+1 := rene − ne−1

formally, where re := me−1 + me+1
me

. Then Y is said to be dominant if either
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(i) ne+1 ≤ 0 or (ii) ne+1 > me+1 holds. According to (i) or (ii), Y is called
tame or wild respectively. The condition (i) is rewritten as ne−1

ne
≥ re, and so

we have

Lemma 9.2.1 A subbranch Y is dominant tame if and only if ne−1
ne

≥ re

holds.

We then note

Lemma 9.2.2 Let lY be a subbranch of a branch X = m0Δ0 +m1Θ1 + · · ·+
mλΘλ. Then the following statements hold:

(1) Y is dominant =⇒ lY is dominant.
(2) Y is dominant tame ⇐⇒ lY is dominant tame.

Proof. We write Y = n0Δ0 +n1Θ1 + · · ·+neΘe. First we show (1) by contra-
diction. Suppose that lY is not dominant. Then there exists an integer ke+1

(0 < ke+1 ≤ me+1) satisfying

lne−1 + ke+1

lne
= re. (9.2.1)

Thus lne−1 + ke+1 = lnere. It follows that l divides ke+1. We write ke+1 =
lne+1 where ne+1 is a positive integer, and then (9.2.1) is

lne−1 + lne+1

lne
= re.

Thus ne−1 + ne+1
ne

= re. This implies that Y is not dominant, because the
sequence n = (n0, n1, . . . , ne) is contained in a longer sequence (n0, n1, . . . ,
ne+1). This contradicts that Y is dominant. Hence lY is dominant, and so (1)
is confirmed.

Next we show (2). Remember that a subbranch is dominant tame if and
only if ne−1

ne
≥ re (Lemma 9.2.1). Obviously ne−1

ne
≥ re is equivalent to

lne−1

lne
≥ re, and so we confirm the equivalence in (2). �

We remark that in (1) of the above lemma, the converse is not true in
general. For instance, l = 4, m = (6, 5, 4, 3, 2, 1) and n = (1, 1, 1). Then ln =
(4, 4, 4) is dominant wild, whereas n is not dominant; indeed, n is contained
in a dominant sequence (1, 1, 1, 1, 1, 1).

Next we show the equivalence of conditions of type Al.

Lemma 9.2.3 The following conditions are equivalent:

(A1) lY ≤ X and ne−1
ne

≥ re.
(A2) lY ≤ X and lY is dominant tame.
(A3) lY ≤ X and Y is dominant tame.

Proof. The equivalence of (A1) and (A.2) follows from Lemma 9.2.2, while
that of (A.2) and (A.3) follows from Lemma 9.2.2 (2). �
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Next we derive a formula needed for later use.

Lemma 9.2.4 Let lY be a subbranch (note: Y is not assumed to be of
type Al). Set a := me−1 − lne−1 and b := me − lne. Then

a − reb = −me+1 − l(ne−1 − rene).

In fact,

a − reb = (me−1 − lne−1) − re(me − lne)
= me−1 − reme − lne−1 + relne

= −me+1 − lne−1 + relne,

where the last equality follows from me−1 + me+1
me

= re.

Proposition 9.2.5 Let Y be a subbranch of type Al, and set

a := me−1 − lne−1, b := me − lne, c := ne−1 and d := ne.

Then the following inequalities hold:

(1) a − reb ≤ −me+1 (2) red − c ≤ 0 (3) u ≤ b − me+1, where
u := a − (re − 1)b.

Proof. (1): If Y is of type Al, then ne−1
ne

≥ re, i.e.

ne−1 − rene ≥ 0. (9.2.2)

By Lemma 9.2.4, a − reb = −me+1 − l(ne−1 − rene), and so from (9.2.2), we
derive a − reb ≤ −me+1. This proves (1).
(2): As d = ne and c = ne−1, (2) is nothing but (9.2.2).
(3): By (1), a − reb ≤ −me+1, and hence together with b ≥ 0, we have

u = b + (a − reb) ≤ b − me+1.

This proves (3). �
We gather several basic lemmas for subbranches (not necessarily of type

Al):

Lemma 9.2.6 Let lY be a subbranch with the multiplicities ln = (ln0, ln1, . . . ,
lne). Let Z be the dominant subbranch containing lY , and write its multiplic-
ities as

k = (ln1, ln2, . . . , lne, ke+1, ke+2, . . . , kf ).

Then l divides ki for i = e + 1, e + 2, . . . , f . (In particular, “defining” ni

(i = e+1, e+2, . . . , f) by ni := ki
l

, then Z = lY ′ where Y ′ = n0Δ0 +n1Θ1 +
· · · + nfΘf .)
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Proof. Since Z is a subbranch, we have

lne−1 + ke+1

lne
= re, (9.2.3)

lne + ke+2

ke+1
= re+1, (9.2.4)

ki−1 + ki+1

lki
= ri, i = e + 2, e + 3, . . . , f − 1. (9.2.5)

By (9.2.3), we have ne−1+ ke+1

l
= rene, and hence l divides ke+1. Set ne+1 :=

ke+1

l
, i.e. ke+1 = lne+1 which we substitute into (9.2.4): ne + ke+2

l
= rene+1.

Hence l divides ke+2. Repeating this argument, we see that l divides ki for
i = e + 1, e + 2, . . . , f . �
Lemma 9.2.7 Suppose that X = m0Δ0 + m1Θ1 + · · · + mλΘλ is a branch.
Let lY be a subbranch with the multiplicities ln = (ln0, ln1, . . . , lne), and let
Z be the dominant subbranch containing lY (note: Z = lY ′ for some Y ′ by
Lemma 9.2.6). Set a := me−1 − lne−1 and b := me − lne. Then the following
statements hold:

(I) If a = 0, then Z = X (and so Z is “trivially” dominant tame.)
(II) If Y is dominant tame, then the following equivalences hold:

a = 0 ⇐⇒ b = 0 ⇐⇒ X = lY.

(Note: If lY is dominant but not tame, then (II) is not valid. For example,
l = 4, m = (6, 5, 4, 3, 2, 1) and n = (1, 1, 1). Then a = 0 but b �= 0.)

Proof. (I): By Lemma 9.2.6, we may express Z = lY ′ where Y ′ = n0Δ0 +
n1Θ1 + · · · + nfΘf (e ≤ f). It is enough to show that mi = lni for i =
0, 1, . . . , f ; in fact, once this is shown, we have Z = m0Δ0+m1Θ1+· · ·+mfΘf ,
and Z of this form is dominant precisely when f = λ, i.e. Z = X. Now we show
that mi = lni firstly for i = 0, 1, . . . , e. From the definition of a subbranch,

lne−2 + lne

lne−1
=

me−2 + me

me−1
(= re−1).

In particular if a = 0, i.e. me−1 = lne−1, then

lne−2 + lne = me−2 + me. (9.2.6)

Taking into account lne−2 ≤ me−2 and lne ≤ me, (9.2.6) implies that lne−2 =
me−2 and lne = me. Next, again from the definition of a subbranch,

lne−3 + lne−1

lne−2
=

me−3 + me−1

me−2
(= re−2).
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From lne−2 = me−2 (we showed this just above), we have

lne−3 + lne−1 = me−3 + me−1. (9.2.7)

Taking into account lne−3 ≤ me−3 and lne−1 ≤ me−1, (9.2.7) implies that
lne−3 = me−3 and lne−1 = me−1. Repeating this argument, we deduce mi =
lni for i = 0, 1, . . . , e. Similarly, we can show that mi = lni for i = e + 1, e +
2, . . . , f . Therefore mi = lni holds for i = 0, 1, . . . , f . This proves (I).
(II): The equivalence “a = 0 ⇐⇒ b = 0” is already shown in Lemma 6.3.1,
p107. To show the equivalence “a = 0 ⇐⇒ X = lY ”, we note that if Y is
dominant tame, then lY is also dominant tame by Lemma 9.2.3; thus the
dominant subbranch Z containing lY is lY itself; Z = lY . We now show
“a = 0 ⇐⇒ X = lY ”.

=⇒: If a = 0, then X = Z by the assertion (I). Since Z = lY , we have
X = lY .

⇐=: Trivial. This completes the proof of the assertion (II). �
As a corollary, we have the following result.

Corollary 9.2.8 Let Y be a subbranch of type Al, and set a := me−1− lne−1

and b := me− lne. Then the following equivalences hold: a = 0 ⇐⇒ b = 0 ⇐⇒
X = lY .

Proof. By Lemma 9.2.3, if Y is of type Al, then Y is dominant tame, and so
the assertion follows from the above lemma. �

9.3 Demonstration of properties of type Bl

We begin with the following lemma for subbranches not necessarily of type Bl.

Lemma 9.3.1 Let l be a positive integer and let Y = n0Δ0+n1Θ1+· · ·+neΘe

be a subbranch of a branch X = m0Δ0 + m1Θ1 + · · ·+ mλΘλ such that lY is
a dominant wild subbranch of X. Set a := me−1 − lne−1, b := me − lne, c :=
ne−1, d := ne and u := a − (re − 1)b. Then the following inequalities hold:

(1) a, c, d > 0, (2) b ≥ 0, (3) a− reb > 0, (4) red− c > 0, (5) u > 0.

Proof. We first verify (1) and (2). Since lY is a subbranch of X, we have
me−1 ≥ lne−1 and me ≥ lne, and so a, b ≥ 0. Since Y is a subbranch of X,
we have ne−1, ne > 0, and so c, d > 0. Hence to prove (1) and (2), it remains
to show a > 0, which is carried out by contradiction. Suppose that a = 0,
namely me−1 = lne−1. Then

re >
lne−1 + me+1

lne
because lY is wild

=
me−1 + me+1

lne
by me−1 = lne−1
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≥ me−1 + me+1

me
by me ≥ lne

= re,

and thus re > re, giving a contradiction. This proves a > 0. To show (3), we
first note that

a − reb := (me−1 − lne−1) − re(me − lne)
= (me−1 − reme) − lne + relne,

where me−1 − reme = −me+1 by me−1 + me+1
me

= re, and therefore

a − reb = −me+1 − lne + relne.

Since lY is wild, we have re >
lne−1 + me+1

lne
, and so

a − reb = −me+1 − lne−1 + relne

> −me+1 − lne−1 +
lne−1 + me+1

lne
lne

= 0.

Thus a − reb > 0, and (3) is proved. Similarly, (4) is shown as follows:

red − c = rene − ne−1 >
lne−1 + me+1

lne
ne − ne−1 =

me+1

l
> 0.

Finally, it is immediate to show (5). Indeed, a − reb > 0 by (3) and b ≥ 0 by
(2), and so we have u = a− (re −1)b = (a− reb)+ b > 0. Thus (5) is proved.�

Recall that a subbranch Y = n0Δ0 + n1Θ1 + · · · + neΘe of a branch
X = m0Δ0 + m1Θ1 + · · · + mλΘλ is proportional if m0

n0
= m1

n1
= · · · = me

ne
.

By Lemma 9.1.3, a dominant subbranch Y is both of type Al and of type
Bl (i.e. type ABl) if and only if Y is of proportional type Bl; explicitly this
is the case

m = (ln0, ln1, . . . , lnλ), n = (n0, n1, . . . , nλ), and nλ = 1.

The arithmetic property of proportional type Bl is the same as that of type
Al, namely dominant tame. Next we investigate the arithmetic property of
non-proportional type Bl; remember that a subbranch Y = n0Δ0 + n1Θ1 +
· · · + neΘe is of type Bl provided that me = l and ne = 1.

Proposition 9.3.2 Let X = m0Δ0 + m1Θ1 + · · · + mλΘλ be a branch, and
suppose that Y = n0Δ0+n1Θ1+· · ·+meΘe is a subbranch of non-proportional
type Bl of X. Set a := me−1 − lne−1, b := me − lne, c := ne−1, d := ne (= 1)
and u := a − (re − 1)b. Then

(1) lY is dominant wild, and
(2) a > 0, a − reb > 0, red − c > 0, u > 0.
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Proof. The proof of (1) consists of two steps:
Step 1 We demonstrate that lY is dominant by contradiction. Suppose that
lY is not dominant. Then there exists an integer ke+1 (0 < ke+1 ≤ me+1)
satisfying

lne−1 + ke+1

lne
= re, (9.3.1)

and so
lne−1 + ke+1

lne
=

me−1 + me+1

me
(= re).

Since me = lne (= l) by the definition of type Bl, we have

lne−1 + ke+1 = me−1 + me+1.

As lne−1 ≤ me−1 and ke+1 ≤ me+1, this holds exactly when

lne−1 = me−1, ke+1 = me+1. (9.3.2)

Note that from (9.3.1), we have ne−1 + ke+1

l
= rene. So l divides ke+1, and in

particular, l ≤ ke+1. Namely me ≤ me+1 by me = l (the definition of type Bl)
and me+1 = ke+1 (9.3.2). This yields a contradiction because the sequence
m0,m1, . . . , mλ is strictly decreasing. Therefore lY is dominant.

Step 2 We next show that lY is wild, that is, lne−1 + me+1

lne
< re as follows:

lne−1 + me+1

lne
<

me−1 + me+1

lne
by lne−1 < me−1

=
me−1 + me+1

me
by me = lne (= l)

= re. (9.3.3)

Thus lY is dominant wild, and so (1) is confirmed. The assertion (2) follows
immediately from Lemma 9.3.1 because lY is dominant wild. (Note: In (9.3.3),
“lne−1 < me−1” is not valid for proportional type Bl, as lne−1 = me−1.) �

9.4 Demonstration of properties of type Cl

Let Y = n0Δ0 + n1Θ1 + · · ·+ neΘe be a subbranch of a branch X = m0Δ0 +
m1Θ1 + · · · + mλΘλ, where we set

ri :=
mi−1 + mi+1

mi
, (i = 1, 2 . . . , λ − 1), rλ :=

mλ−1

mλ
.

For a while, we do not assume that Y is of type Cl; Y is an arbitrary subbranch.
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Lemma 9.4.1 Set u := (me−1 − lne−1) − (re − 1)(me − lne). Then

u = me − me+1 + l(rene − ne−1 − ne).

(In particular, if ne = rene − ne−1, then u = me − me+1.)

Proof. In fact,

u = (me−1 − lne−1) − (re − 1)(me − lne)

= me + me−1 − reme + l(rene − ne−1 − ne)

= me − me+1 + l(rene − ne−1 − ne),

where in the last equality we used reme = me−1 + me+1. �
Next we show the equivalence of three conditions of type Cl.

Lemma 9.4.2 The following conditions are equivalent:

(C.1) lY ≤ X, ne divides ne−1, and ne−1
ne

< re, and u divides l where
u := (me−1 − lne−1) − (re − 1)(me − lne).

(C.2) lY ≤ X, ne = rene − ne−1, and u divides l where u is in (C.1).
(C.3) lY ≤ X, ne = rene − ne−1, and me − me+1 divides l, where by

convention, me+1 = 0 if λ = e.

(Note: By Lemma 9.4.1, me − me+1 equals u in (C.1) and (C.2). In (C.3),
actually me+1 = 0 does not occur as we will see in Corollary 9.4.4 below.)

Proof. We first show that (C.2) is equivalent to (C.1).
(C.2) =⇒ (C.1): This is easy. If ne = rene − ne−1, then ne divides ne−1, and
ne−1
ne

= re − 1 < re, hence (C.1) holds.

(C.2) ⇐= (C.1): Under the assumption that ne divides ne−1 and ne−1
ne

< re,

it suffices to prove that ne = rene−ne−1, that is, re− ne−1
ne

= 1 holds; setting

q := re − ne−1
ne

, we show q = 1. We first note that (i) q is an integer because

ne divides ne−1, and (ii) q is positive because ne−1
ne

< re. Therefore q is a
positive integer. We then prove q = 1 by contradiction. Suppose that

q ≥ 2. (9.4.1)

We note

u = (me − me+1) + l(rene − ne−1 − ne) by Lemma 9.4.1

= (me − me+1) + lne

(
re − ne−1

ne
− 1

)
= (me − me+1) + lne(q − 1).
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Here me −me+1 > 0 because the sequence m0,m1, . . . , mλ strictly decreases.
On the other hand, ne ≥ 1 and q − 1 ≥ 1 (9.4.1). Hence

u = (me − me+1) + lne(q − 1) > l.

But u divides l by assumption, and so l ≥ u. This is a contradiction. Therefore
q = 1, and the claim is confirmed.

Finally, we show that (C.2) is equivalent to (C.3). This is evident. Indeed,
u = (me − me+1) + l(rene − ne−1 − ne) by Lemma 9.4.1, and hence if ne =
rene − ne−1, then u = me − me+1. �

Recall that a subbranch Y is of type Cl provided that Y satisfies one of
the equivalent conditions of Lemma 9.4.2.

Corollary 9.4.3 Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a subbranch of a
branch X = m0Δ0 + m1Θ1 + · · ·+ mλΘλ. Set b := me − lne and d := ne, and
then

(1) me = ld + b, and
(2) if furthermore Y is of type Cl, then me+1 = ld + b − u.

Proof. From d = ne and b = me − lne, we have me = ld + b, and so (1) is
confirmed. Next we show (2). If Y is of type Cl, we have u = me − me+1

(Lemma 9.1.5). Substituting (1) me = ld + b into u = me − me+1, we obtain
u = ld + b − me+1. This confirms (2). �

We also note the following.

Corollary 9.4.4 Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a subbranch of a
branch X = m0Δ0 + m1Θ1 + · · · + mλΘλ. If Y is of type Cl, then e + 1 ≤ λ.

Proof. We show this by contradiction. Suppose that me+1(:=reme−me−1)=0.
We first claim that me divides both l and me − lne. In fact, since me −me+1

divides l by the definition (C.3) of type Cl and me+1 = 0 by assumption, we
see that me divides l; clearly this also assures that me divides me − lne. Next
setting b := me − lne, we write l = l′me and b = b′me where l′ (resp. b′) is a
positive (resp. nonnegative) integer. Then

b′ =
b

me
=

me − lne

me
=

me − l′mene

me
= 1 − l′ne.

Namely
b′ = 1 − l′ne. (9.4.2)

From l′ ≥ 1 and ne ≥ 1, we have b′ ≤ 0. Since b′ is nonnegative, we obtain
b′ = 0 (and so b = 0), and then by (9.4.2), l′ = ne = 1. Here note that b = 0
implies that me = lne, and thus together with ne = 1, we have me = l. This
means that Y is not only of type Cl but also of type Bl. But this contradicts
Convention 9.1.4 (we excluded this case from type Cl). �
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We collect several lemmas needed for later discussion.

Lemma 9.4.5 Let lY be a subbranch with the multiplicities ln = (ln0, ln1, . . . ,
lne). Let Z be the dominant subbranch containing lY , and write its multiplic-
ities as

k = (ln1, ln2, . . . , lne, ke+1, ke+2, . . . , kf ).

Then

(I) l divides ki (i = e+1, e+2, . . . , f). (So “defining” ni (i = e+1, e+2, . . . , f)
by ni := ki

l
, then Z = lY ′ and k = ln′ where Y ′ := n0Δ0 + n1Θ1 + · · ·+

nfΘf and n′ := (n0, n1, . . . , nf ).)
(II) if ne divides ne−1, then ne also divides ni (i = e + 1, e + 2, . . . , f), and

moreover ne ≤ ne+1 ≤ ne+2 ≤ · · · ≤ nf .

Proof. (I) is nothing but Lemma 9.2.6. We show (II); we first prove that ne

divides ne+1. Since Z = ln0Δ0 + ln1Θ1 + · · · + lnfΘf is a subbranch, we
have lni+1 = rilni − lni−1, so ni+1 = rini − ni−1 for i = 1, 2, . . . , f . In
particular ne+1 = rene − ne−1. Hence ne divides ne+1 (note: by assumption,
ne divides ne−1), and consequently ne ≤ ne+1. Next since ne divides ne+1,
from ne+2 = re+1ne+1 − ne, it follows that ne also divides ne+2. Furthermore

ne+2 = re+1ne+1 − ne

≥ 2ne+1 − ne by re+1 ≥ 2
= ne+1 + (ne+1 − ne)
≥ ne+1 by ne+1 ≥ ne. (9.4.3)

Namely, ne+1 ≤ ne+2. Then using the fact (as shown above) that ne divides
both ne+1 and ne+2, it follows from ne+3 = re+2ne+2 − ne+1 that ne divides
ne+3. Also we can show ne+2 ≤ ne+3 as in (9.4.3). Repeat this argument, and
then (II) is shown. �
Lemma 9.4.6 Let Y be a subbranch of type Cl. Then Y and lY are (not
necessarily dominant) wild.

Proof. We first verify the wildness of lY . We separate into two cases according
to whether lY is dominant or not.

Case 1 lY is dominant: Since Y is of type Cl,
ne−1
ne

< re and so lne−1

lne
< re,

which means that lY is wild.

Case 2 lY is not dominant: Let Z be the dominant subbranch containing
lY . Then by Lemma 9.4.5 (I), the multiplicities of Z are of the form:

k = (ln1, ln2, . . . , lnf ).

Since Y is of type Cl, ne divides ne−1 and so by Lemma 9.4.5 (II), we have

ne ≤ ne+1 ≤ ne+2 ≤ · · · ≤ nf .
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In particular nf−1
nf

≤ 1. Since rf ≥ 2, we have nf−1
nf

< rf , and so lnf−1

lnf
< rf

This implies that Z is wild, and consequently (by definition) lY is wild. Sim-
ilarly we can show the wildness of Y . �

For subsequent discussion, we need some result on Y not necessarily of
type Cl.

Lemma 9.4.7 Let lY be a subbranch which is not dominant. Set

a := me−1 − lne−1, b := me − lne and u := a − (re − 1)b.

If ne divides ne−1, then

(I) a − reb = lne+1 − me+1 where ne+1 := rene − ne−1. (In particular, from
lne+1 ≤ me+1, we have a − reb ≤ 0).

(II) u > 0 and a > 0.

Proof. The statement (I) is derived as follows:

a − reb = me−1 − lne−1 − re(me − lne)
= (me−1 − reme) − lne−1 + relne

= (−me+1) − lne−1 +
lne−1 + lne+1

lne
lne

= −me+1 + lne+1,

where in the third equality we used me−1 − reme = −me+1 and re =
lne−1 + lne+1

lne
(note that by assumption, lY is not dominant and so 0 <

lne+1 ≤ me+1).
Next we show (II). We first prove u > 0. By assumption, ne divides ne−1

and thus by Lemma 9.4.5, we have

ne+1 ≥ ne. (9.4.4)

Then

u = b + (a − reb)
= (me − lne) + (lne+1 − me+1) by (I)
= (me − me+1) + l(ne+1 − ne)
> 0 by me > me+1 and (9.4.4).

This proves u > 0. Finally, we show a > 0. We divide into two cases according
to whether b = 0 or b > 0.
Case b = 0: In this case we have u = a − (re − 1)b = a. Thus a > 0 because
u > 0 as shown above.
Case b > 0: Noting that a ≥ 0, we assume that a = 0 and deduce a contra-
diction. If a = 0, then we have u = a − (re − 1)b = −(re − 1)b. Since re ≥ 2,
together with b > 0, we obtain u < 0. This contradicts u > 0, and we conclude
that a > 0. �
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Proposition 9.4.8 Let lY be a subbranch such that (i) ne divides ne−1 and
(ii) ne−1

ne
< re. Then u > 0 where u := (me−1 − lne−1) − (re − 1)(me − lne).

Proof. According to whether lY is dominant or not, we separate into two

cases. If lY is dominant, then from the assumption (ii), we have lne−1

lne
< re

which means that lY is (dominant) wild and hence by Lemma 9.3.1, we have
u > 0. (Notice that in this case we do not need the assumption (i).) Next if lY
is not dominant, together with (i), we conclude that u > 0 by Lemma 9.4.7
(II). (Notice that in this case we do not need (ii).) �
Remark 9.4.9 As is clear from the proof, u > 0 holds under a weaker as-
sumption: (1) lY is dominant wild or (2) ne divides ne−1.

The above proposition will be often used later (e.g. for the proofs of Lemma
13.3.5, p242 and Lemma 13.4.5, p247). For u := a − (re − 1)b where a :=
me−1 − lne−1 and b := me − lne, the following inequalities are also valid.

Lemma 9.4.10 Let Y be a subbranch of type Cl. Then{
u > b if lY is dominant
u ≤ b if lY is not dominant.

Proof. If lY is dominant, then (noting that type Cl is wild by Lemma 9.4.6),
we have a − reb > 0 by Lemma 9.3.1, and so u = b + (a − reb) > b.

If lY is not dominant, then a − reb ≤ 0 by Lemma 9.4.7 (I), and thus
u = b + (a − reb) ≤ b. �

We provide examples for the respective cases of the above lemma.

Example (u > b)
l = 1, m = (6, 5, 4, 3, 2, 1) and n = (4, 4, 4).
Then Y is of type Cl and lY is dominant; in this case u = 1 > b = 0.

Example (u ≤ b)
l = 1, m = (6, 5, 4, 3, 2, 1) and n = (1, 1, 1).
Then Y is of type Cl and lY is not dominant; in this case u = 1 < b = 3.

Now we summarize the properties of type Cl obtained thus far.

Proposition 9.4.11 Let Y = n0Δ0 + n1Θ1 + · · ·+ neΘe be a subbranch of a
branch X = m0Δ0 + m1Θ1 + · · · + mλΘλ. Set

a := me−1 − lne−1, b := me − lne, c := ne−1, d := ne and
u := a − (re − 1)b.

Suppose that Y is of type Cl. Then the following statements hold:

(1) Y and lY are (not necessarily dominant) wild (Lemma 9.4.6).
(2) a > 0 (Lemma 9.4.7 (II)).
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(3) a − reb > 0 if lY is dominant (Lemma1 9.3.1), and
a − reb = lne+1 − me+1 ≤ 0 if lY is not dominant (Lemma 9.4.7 (I)).

(4) red − c = d > 0 (the definition (C.2) or (C.3) of type Cl).
(5) u = me − me+1 > 0 (Lemma 9.1.5).
(6) u > b if lY is dominant, and u ≤ b if lY is not dominant (Lemma

9.4.10).
(7) e + 1 ≤ λ (Corollary 9.4.4).

Let Y = n0Δ0 + n1Θ1 + · · · + meΘe be a subbranch of of a branch
X = m0Δ0 + m1Θ1 + · · · + mλΘλ; recall that Θi is a (−2)-curve if the
self-intersection number Θi · Θi = −2, and a chain of (−2)-curve is a set of
(−2)-curves of the form Θa + Θa+1 + · · · + Θb where a ≤ b. (It is valuable
to keep in mind that the existence of a chain of (−2)-curves often implies the
existence of various deformations.)

We shall show that if Y is of type Cl, then in most cases, the complement of
a subbranch Y of X contains a chain of (−2)-curves where the “complement”
is Θe+1 +Θe+2 + · · ·+Θλ (note that e+1 ≤ λ for type Cl as shown in Corol-
lary 9.4.4). cf. Example 9.1.11 for an exceptional case where the complement
contains no (−2)-curves.

Now we give the information on chains of (−2)-curves in the complement
of Y in X. Below we note that ri = 2 is equivalent to Θi being a (−2)-curve.

Proposition 9.4.12 Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a subbranch of
type Cl. Set

a := me−1 − lne−1, b := me − lne, c := ne−1, d := ne and
u := a − (re − 1)b,

and (noting that u divides l by the definition of type Cl), write l = Nu where
N is a positive integer, and if u ≤ b, then (considering the division of b by
u ), let v be the positive integer such that b − vu ≥ 0 and b − (v + 1)u < 0.
Then the following holds:

(I) if b = 0, then λ = e + Nd − 1 and
re+1 = re+2 = · · · = rλ = 2, mλ−1 = 2u, and mλ = 2,

(II) if b ≥ 1 and u > b, then λ = e + Nd and
re+1 = re+2 = · · · = rλ−1 = 2, mλ−1 = b + u, and mλ = b,
(Note: rλ := mλ−1

mλ
= b + u

b
is an integer and so in this case, b divides

u.)
(III) if b ≥ 1, u ≤ b, and u does not divide b, then λ = e + Nd + v and

re+1 = re+2 = · · · = rλ−1 = 2, mλ−1 = b − (v − 1)u, and mλ =
b − vu.

(IV) if b ≥ 1, u ≤ b, and u divides b (so b = vu), then λ = e + Nd + v − 1
and re+1 = re+2 = · · · = rλ = 2, mλ−1 = 2u, and mλ = u.

1 If Y is of type Cl, then lY is wild by (1), and so we can apply Lemma 9.3.1 for
dominant wild Y .
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Remark 9.4.13 Note that u > b if lY is dominant, and u ≤ b otherwise.
See Proposition 9.4.11 (6).

Proof. (I): By Corollary 9.4.3 applied for b = 0, we have

me = ld, me+1 = ld − u, where d := ne. (9.4.5)

Since a sequence (me,me+1, . . . , mλ) is inductively determined from me and
me+1 by the division algorithm, this sequence is uniquely characterized by the
following properties:

(a) me > me+1 > · · · > mλ > 0,
(b) me+i−1 + me+i+1

me+i
, (i = 0, 1, . . . , λ − e − 1) is an integer, and mλ divides

mλ−1.

Therefore (9.4.5) implies that me+i = ld − iu (i = 0, 1, . . . , λ − e − 1), an
arithmetic progression. Note that

me+(Nd) = ld − (Nd)u = ld − ld by l = Nu

= 0,

whereas me+(Nd−1) = u. Thus we conclude that λ = e + (Nd − 1) and

(me,me+1, . . . , mλ) = (ld, ld − u, ld − 2u, . . . , 2u, u),

from which we deduce re+1 = re+2 = · · · = rλ = 2. This proves the assertion
(I).

(II) b ≥ 1 and u > b: The proof is essentially the same as that for (I). By
Corollary 9.4.3, we have

me = ld + b, me+1 = ld + b − u. (9.4.6)

As in (I), this implies that me+i = ld + b − iu, an arithmetic progression.
When i = Nd − 1, we have

me+(Nd−1) = ld + b − (Nd − 1)u
= ld + b − ld + u by l = Nu

= b + u,

and likewise me+(Nd) = b. On the other hand, we have me+(Nd+1) = b−u < 0
(note u > b by assumption), and thus λ = e + Nd. Therefore

me+i =

{
ld + b − iu, i = 0, 1, . . . , Nd − 1
b, i = Nd,

(9.4.7)

and re+1 = re+2 = · · · = rλ−1 = 2.
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(III) b ≥ 1, u ≤ b, and u does not divide b: The proof is similar to that of
(II); by Corollary 9.4.3, we have

me = ld + b, me+1 = ld + b − u, (9.4.8)

which implies that me+i = ld + b − iu, an arithmetic progression. Let v be
the positive integer such that b − vu ≥ 0 and b − (v + 1)u < 0. Then for
i = Nd + v − 1, we have

me+(Nd+v−1) = ld + b − (Nd + v − 1)u
= ld + b − ld − vu + u by l = Nu

= b − vu + u,

and likewise me+(Nd+v) = b − vu. Similarly we obtain me+(Nd+v+1) = b −
(v + 1)u. As we took the positive integer v in such a way that b− vu ≥ 0 and
b − (v + 1)u < 0, we have me+(Nd+v) = b − vu > 0 and me+(Nd+v+1) < 0;
hence λ = e + (Nd + v). We thus conclude that

me+i =

{
ld + b − iu, i = 0, 1, . . . , Nd + v − 1
b − vu, i = Nd + v,

from which we derive re+1 = re+2 = · · · = rλ−1 = 2. This proves the assertion.

(IV) b ≥ 1, u ≤ b, and u divides b (i.e. b = vu): Using the computation
of (III), we have me+(Nd+v) = b − vu = 0 in the present case, and thus
λ = e + (Nd + v − 1), and mλ−1 = 2u and mλ = u. The remaining statement
follows from the same argument as in (III). �

Supplement

In the proof of Proposition 9.4.12, we only used the fact “u divides ld”. The
reader may wonder that in the definition of type Cl, we can replace “u divides
l” by a weaker condition “u divides ld”. Unfortunately this is not true, because
in that case the deformation atlas associated with lY does not necessarily
admit a complete propagation. This is confirmed by the following example,
which illustrates the essential role of the condition “u divides l” in type Cl.

Example 9.4.14 Let X = 32Δ0+24Θ1+16Θ2+8Θ3. We take Y = 2Δ0+2Θ1

and l = 12. Then lY satisfies the condition of type Cl except “u divides l”;
indeed u = 8 and d (:= ne) = 2, hence u does not divide l but divides ld = 24.

We show that the deformation atlas associated with lY does not admit a
complete propagation. First note that

H1 : w8(w2η2 + t2)12 − s = 0.

(The exponent 2 of t2 is necessary for making a first propagation possible.
See the second equality of (9.4.9) below.) We take g1 : z = 1/w, ζ = w2η −
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√−1tw, where we note that there is no other choice of g1 which transforms
H1 to a hypersurface. Since

w8(w2η2 + t2)12 = w8

[
1

w2 (w2η)2 + t2
]12

,

the map g1 transforms the polynomial w8(w2η2 + t2)12 to

1
z8

[
z2

(
ζ + t

√−1
1
z

)2

+ t2

]12

=
1
z8

[ (
z2ζ2 + 2

√−1tzζ − t2
)

+ t2
]12

=
1
z8

[
z2ζ2 + 2

√−1tzζ
]12

= z4[ zζ2 + 2
√−1tζ ]12. (9.4.9)

Thus the following data gives a first propagation.⎧⎪⎨⎪⎩
H1 : w8(w2η2 + t2)12 − s = 0
H′

1 : z4(zζ2 + 2
√−1tζ)12 − s = 0

g1 : z = 1/w, ζ = w2η −√−1tw.

Similarly, we can construct a second propagation as follows: Noting that

H2 : η4 (w2η + 2
√−1tw)12 − s = 0,

we take g2 : z = 1/w, ζ = w2η + 2
√−1tw. (Note: there is no other choice of

g2 which transforms H2 to a hypersurface. See the second equality of (9.4.10)
below.) Since

η4(w2η + 2
√−1tw)12 =

1
w8 (w2η)4

[
(w2η) + 2

√−1tw
]12

,

the map g2 transforms a polynomial η4 (w2η + 2
√−1tw )12 to

z8

(
ζ − 2

√−1t
1
z

)4[(
ζ − 2

√−1t
1
z

)
+2

√−1t
1
z

]12

= z8

(
ζ − 2

√−1t
1
z

)4

ζ12

= z4ζ12(zζ − 2
√−1t)4.

(9.4.10)

Hence the following data gives a second propagation:⎧⎪⎨⎪⎩
H2 : η4(w2η + 2

√−1tw )12 − s = 0
H′

2 : z4ζ12(zζ − 2
√−1t)4 − s = 0

g2 : z = 1/w, ζ = w2η + 2
√−1w.

It remains to construct a third propagation. However this is impossible, which
is seen as follows. Note that H3 : w12η4(wη−2

√−1t)4−s = 0, and a standard
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form of a deformation g3 of z = 1/w, ζ = w2η is given by z = 1/w, ζ =
w2η + f(t)w where f(t) is a holomorphic function in t. For brevity, we only
consider the case f(t) = αtk where α ∈ C and k is a positive integer (the
discussion below is valid for general f(t)). We claim that for any α and k, the
map g3 cannot transform

H3 : w12η4(wη − 2
√−1t)4 − s = 0

to a hypersurface. In fact, since

w12η4(wη − 2
√−1t)4 = w4(w2η)4

(
1
w

(w2η) − 2
√−1t

)4

,

the map g3 transforms H3 to

1
z4

(
ζ − αtk

1
z

)4 (
zζ − αtk − 2

√−1t
)4 − s = 0.

Clearly for any choice of α ∈ C and a positive integer k, the left hand side,
after expansion, contains a fractional term. So a further propagation is im-
possible, and consequently the deformation atlas associated with lY does not
admit a complete propagation. (For a non-standard form of g3 containing
higher or lower order terms, the argument is essentially the same though the
computation becomes complicated. cf. Example 5.5.12, p96.)
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Construction of Deformations of Type Bl

Assume that Y = n0Δ0 + n1Θ1 + · · · + neΘe is a subbranch of a branch
X = m0Δ0 +m1Θ1 + · · ·+mλΘλ, and l is a positive integer satisfying lY ≤ X
(that is, lni ≤ mi for i = 0, 1, . . . , e). As before, we set

ri :=
mi−1 + mi+1

mi
, (i = 1, 2 . . . , λ − 1), rλ :=

mλ−1

mλ
.

Recall that ri (i = 1, 2, . . . , λ) are positive integers satisfying ri ≥ 2.
The deformation atlas DAe−1(lY, k) associated with lY was defined as

follows: First define a sequence of integers pi (i = 0, 1, . . . , λ + 1) inductively
by {

p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.

Then pλ+1 > pλ > · · · > p1 > p0 = 0 (6.2.4). Let f(z) be a non-vanishing
holomorphic function defined around z = 0, and set fi = f(wpi−1ηpi) and
f̂i = f(zpi+1ζpi) (see (6.2.7)). Then the deformation atlas DAe−1(lY, k) is
given as follows: for i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tkfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tkf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

The following remarkable result holds.

Theorem 10.0.15 Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be of type Al, Bl, or
Cl. Assume that k is a positive integer such that if Y is of type Cl, then it is
divisible by ne. Then DAe−1(lY, k) admits a complete propagation.

Remark 10.0.16 If Y has length zero, i.e. Y = n0Δ0, then we regard Y as
type Al; this convention is consistent in that we can construct a complete
propagation of H1 (note that DAe−1(lY, k) in this case consists only of H1)
by applying the construction of complete propagations for type Al.
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We have already shown the statement of Theorem 10.0.15 for type Al

(Proposition 7.1.3, p121). It remains to show this for types Bl and Cl. This
chapter is devoted to verifying this statement for type Bl.

10.1 Deformations of type Bl

Suppose that Y = n0Δ0 + n1Θ1 + · · · + neΘe is of type Bl, that is, me = l
and ne = 1.

Remark 10.1.1 If the sequence of multiplicities of a branch X is an arith-
metic progression with difference 1 and mλ = 1, that is, m = (m0,m0 −
1, . . . , 2, 1), then there are many choices of subbranches of type Bl. Indeed,
for any e (0 < e < λ), a subbranch Y := Δ0 + Θ1 + · · · + Θe is of type Bl

where we take l = e.

Now we shall construct a complete propagation of DAe−1(lY, k). Firstly,
we set ⎧⎪⎪⎪⎨⎪⎪⎪⎩

He : wme−1−lne−1(wne−1η + tkfe)l − s = 0

H′
e : zme+1ζme − s = 0

ge : z = 1
w, ζ = wreη + tkwre−ne−1fe.

Note that by Proposition 9.3.2, me−1 − lne−1 > 0, and so all exponents of the
terms in the defining equation of He are positive. Hence He is well-defined as
a hypersurface. We now show that ge transforms He to H′

e. Since

wme−1−lne−1(wne−1η + tkfe)l = wme−1−lne−1

[
wne−1−re(wreη) + tkfe

]l

,

the map ge transforms He to

zlne−1−me−1

[
zre−ne−1

(
ζ − tk

fe

zre−ne−1

)
+ tkfe

]l

− s

= zlne−1−me−1
[
zre−ne−1ζ

]l − s

= zlre−me−1ζl − s

= zme+1ζme − s,

where in the last equality, we used l = me and mere = me−1+me+1. Therefore
ge transforms He to H′

e. We thus obtain an e-th propagation. We further
propagate this ‘trivially’. Namely for i = e + 1, e + 2, . . . , λ, we set⎧⎪⎨⎪⎩

Hi : wmi−1ηmi − s = 0
H′

i : zmi+1ζmi − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni,
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where mλ+1 = 0 by convention. Evidently gi (i = e+1, e+2, . . . , λ) transforms
Hi to H′

i, and thus we obtain a complete propagation of DAe−1(lY, k). This
completes the proof of Theorem 10.0.15 for type Bl.

Remark 10.1.2 The complete deformation atlas above is trivial around ir-
reducible components Θi (i = e + 1, e + 2, . . . , λ). The same holds for type Al

(Remark 6.1.2, p103).

It may be worth pointing out the following:

Remark 10.1.3 The condition of type Bl is equivalent to lY ≤ X, me = lne

and ne = 1. If we modify this condition to lY ≤ X, me = lne and ne ≥ 2, then
the above construction does not work. In fact, if ne ≥ 2, then the map ge in
the above proof does not transform wme−1−lne−1(wne−1η+tkfe)l to zme+1ζme .

Let Ψ : M → Δ×Δ† be the barking family (specifically called of type Bl)
obtained by patching the complete deformation atlas above. Then it is easy
to describe the deformation from X to X0,t := Ψ(0, t); for instance,

He|s=0 : wme−1−lne−1(wme−1η + tkfe)l = 0

is a disjoint union of{
wme−1−lne−1 = 0 (a multiple disk of multiplicity me−1 − lne−1) and
(wme−1η + tkfe)l = 0 (a multiple annulus of multiplicity l (= me)).

According to e < λ or e = λ, X0,t is illustrated in Figure 10.1.1 or Figure 10.1.2
respectively.

Remark 10.1.4 A subbranch Y of type Bl is possibly of type Al simulta-
neously (i.e. type ABl). This is exactly the case where Y is of proportional
type Bl (Lemma 9.1.3); explicitly e = λ, nλ = 1, and X = lY (i.e. mi = lni

for i = 0, 1, . . . , λ). Then π : M → Δ admits two different barking families
ΨA : MA → Δ × Δ† and ΨB : MB → Δ × Δ†, resulting from the respective

me+1 mλmλ−1mem0 − ln0 m1 − ln1 m2 − ln2

X0;t
l

deformation X

m0 m1 m2 me−1 me me+1 mλ−1 mλ

me−1

−lne−1

Fig. 10.1.1. Deformation of type Bl when e < λ.
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X0;t

deformation

l

m1 m2 mλ−1m0 mλ X

mλ−lnλ−1

mλ−1m2 − ln2m1 − ln1m0 − ln0

Fig. 10.1.2. Deformation of type Bl for e = λ.

constructions for type Al and type Bl. It is curious that the singular fibers
Ψ−1

A (0, t) and Ψ−1
B (0, t) are (topologically) the same; the irreducible compo-

nent marked by “mi − lni” on Figure 7.1.1, p122 and Figure 10.1.2 is vacuous
if mi− lni = 0, and so X0,t in Figure 7.1.1 is the same as X0,t in Figure 10.1.2,
although the ambient spaces MA and MB are different because the gluing
maps around Θλ are different.

10.2 Singular fibers

We state the result on the singular fibers of Ψ : M → Δ × Δ†.

Proposition 10.2.1 Let Ψ : M → Δ × Δ† be a barking family of non-
proportional type Bl. Then Xs,t := Ψ−1(s, t) is singular if and only if s = 0.
(This is not valid for proportional type Bl by Theorem 7.2.4 (2), p128.)

To show this, we shall investigate the restriction of Ψ to Hi and H′
i (i =

1, 2, . . . , λ) separately (notation for restriction: Ψ|Hi
and Ψ|H′

i
); we prove the

following claim which is clearly equivalent to the above proposition.

Claim 10.2.2 (A)i A fiber (Ψ|Hi
)−1(s, t) is singular if and only if s = 0.

(B)i A fiber (Ψ|H′
i
)−1(s, t) is singular if and only if s = 0.

Proof. By construction, the deformations H′
e, Hi and H′

i (i = e+1, e+2, . . . , λ)
are respectively trivial deformations of H ′

e, Hi and H ′
i (i = e+1, e+2, . . . , λ).

Consequently, the claims (B)e, (A)i, and (B)i for i = e + 1, e + 2, . . . , λ are
valid. Note that a subbranch Y of non-proportional type Bl is wild, because
lY is wild by Proposition 9.3.2, p165. Thus we may apply Corollary 7.2.5 (i),
p128 to see that (A)i, and (B)i for i = 1, 2, . . . , e − 1 are also valid.



10.2 Singular fibers 181

To show the remaining claim (A)e, we shall rewrite

He : wme−1−lne−1(wme−1η + tkfe)l − s = 0.

By the condition me = l and ne = 1 of type Bl, we have mene−1 −me−1ne =
lne−1−me−1 < 0, where the inequality is from Proposition 9.3.2 (2), p165 for
non-proportional type Bl. Thus we may apply Simplification Lemma (Lemma
4.1.1); after some coordinate change, we may assume fe ≡ 1 and then setting
m := me−1 and n := ne−1, we have

He : wm−ln(wnη + tk)l − s = 0.

We now show the claim (A)e: “(Ψ|He
)−1(s, t) is singular ⇐⇒ s = 0”.

⇐=: Trivial, because X0,t is singular.
=⇒: It is enough to show that for (s, t) where s �= 0, the fiber (Ψ|He

)−1(s, t)
is smooth. We prove this by contradiction. Suppose that (Ψ|He

)−1(s, t), where
s �= 0, has a singularity (w, η). Setting F = wm−ln(wnη + tk)l where m = me

and n = ne, we note (see (6.4.1), p109)

(w, η) ∈ He is a singularity ⇐⇒ ∂ log F (w, η)
∂w

=
∂ log F (w, η)

∂η
= 0.

Since log F = (m − ln) log w + l log(wnη + tk), we obtain

∂ log F

∂w
=

m − ln

w
+

lnwn−1η

wnη + tk
= 0,

∂ log F

∂η
=

lwn

wnη + tk
= 0,

and hence

(1) mwnη + (m − ln)tk = 0, (2) lwn = 0.

From (2), we have w = 0, and substituting this into (1), we obtain (m − ln)
tk = 0. Since

m − ln = me−1 − lne−1 > 0 (Proposition 9.3.2),

we deduce t = 0. Therefore if (Ψ|He
)−1(s, t) is singular, then t = 0. Next

we investigate the values of s such that (Ψ|He
)−1(s, 0) is singular. Since

(Ψ|He
)−1(s, 0) is defined by wme−1ηme −s = 0, a fiber (Ψ|He

)−1(s, 0) is singu-
lar precisely when s = 0. But we supposed s �= 0, and so this case is excluded.
Thus (Ψ|He

)−1(s, t) is smooth for s �= 0. This completes the proof of our
claim. �
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Construction of Deformations of Type Cl

In this chapter, we shall construct complete propagations of the deformation
atlases for subbranches of type Cl. We point out that when l ≥ 2, a complete
propagation is not unique. cf. Remark 10.1.4, p179; for a subbranch Y of type
ABl, i.e. both of type Al and Bl, the deformation atlas DAe−1(lY, k) admits
two different complete propagations.

11.1 Waving polynomials

We first note the following.

Lemma 11.1.1 Let α, β ∈ C. Then a map g : z = 1/w, ζ = w2η + tαw
transforms a polynomial wη + tβ to zζ + t(β − α).

Proof. Since wη + tβ = 1
w (w2η) + tβ, the map g transforms wη + tβ to

z

(
ζ − tα

1
z

)
+ tβ,

which is equal to zζ + t(β − α). �
Next we introduce a special class of polynomials, which will play a central

role in constructing complete deformation atlases from subbranches of type Cl.
A polynomial A(w, η, t) is called a waving polynomial provided that it has the
form

A(w, η, t) = w u P1(w, η, t) e1 P2(w, η, t) e2 · · · Pn(w, η, t) en

where

(i) u and e1, e2, . . . , en are positive integers,
(ii)Pi(w, η, t) =

∏�i

j=1(wη + tβ
(i)
j ), (β(i)

j ∈ C) is a polynomial such that β
(i)
j

(j = 1, 2, . . . , �i, i = 1, 2, . . . , n) are all distinct.
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In the above definition, the reader may instead prefer to assume that
e1, e2, . . . , en are distinct; if they are not distinct, say, en−1 = en, then setting
P ′

n−1 := Pn−1Pn, we may write A(w, η, t) = w u P1(w, η, t) e1 P2(w, η, t) e2 · · ·
P ′

n−1(w, η, t) en−1 . However, the definition as it is stated turns out to be a
more convenient formulation when we apply it in the proof of lemmas below.

For a waving polynomial A(w, η, t), we say that A(ζ, z, t) is an interchanged
waving polynomial. Later, waving polynomials will be used to construct such
deformations which look like “waving” (see Figure 12.3.1, p221).

Remark 11.1.2 When u = 1, n = 1 and e1 = 1, a waving polynomial
A = wP1(w, η, t) is nothing but a descending polynomial we introduced in
§8.1, p144.

The following property of waving polynomials is very important.

Lemma 11.1.3 Let A(w, η, t) = wu P e1
1 P e2

2 · · · P en
n be a waving polynomial

where Pi =
∏�i

j=1(wη + tβ
(i)
j ). Then the following holds:

(i) There exists a map g of the form z = 1/w, ζ = w2η + tα, (α ∈ C) such
that it transforms A(w, η, t) to some polynomial if and only if ek − u ≥ 0
for some k (1 ≤ k ≤ n).

(ii) In (i), α = β
(k)
j◦ for some j◦, and A(w, η, t) is transformed to an inter-

changed waving polynomial

A′(ζ, z, t) = ζu P ′
1

e′
1 P ′

2
e′
2 · · · P ′

n+1
e′

n+1 , (11.1.1)

where e′i :=

{
ei i = 1, 2, . . . , n

ek − u i = n + 1,
and

P ′
i :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏�i

j=1[zζ + t(β(i)
j − α)] i = 1, 2, . . . , k − 1, k + 1, . . . , n∏�k

j=1[zζ + t(β(k)
j − α)]

zζ
i = k

zζ i = n + 1.

(Actually P ′
k =

∏�k

j=1[zζ + t(β(k)
j − α)]

zζ
is a polynomial, because β

(k)
j◦ − a = 0

for some j◦, and so the numerator factorizes as
∏�k

j=1, j 	=j◦ [zζ + t(β(k)
j − α)] ·

(zζ). Therefore P ′
k =

∏�k

j=1, j 	=j◦ [zζ + t(β(k)
j − α)].)

Remark 11.1.4 If �k = 1 or ek = u, then the factor P ′
k

e′
k or P ′

n+1
e′

n+1 of the
interchanged waving polynomial A′(ζ, z, t) in (11.1.1) is respectively vacuous.

Proof. By Lemma 11.1.1, a map g of the from z = 1/w, ζ = w2η + tαw
transforms A to

A′ :=
1
zu Q e1

1 Q e2
2 · · · Q en

n ,
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where we set Qi :=
∏�i

j=1[zζ + t(β(i)
j − α)]. Note that β

(i)
j are all distinct

by the definition of waving polynomials, and accordingly β
(i)
j − α are also all

distinct. Therefore

A′ is a polynomial ⇐⇒ zu divides Q ek

k for some k (1 ≤ k ≤ n)

⇐⇒ ek ≥ u and β
(k)
j◦ − α = 0 for some j◦.

If this is the case, we may write Qk =
∏�k

j=1, j 	=j◦ [zζ + t(β(k)
j −α)] · (zζ), and

consider polynomials Q′
i (i = 1, 2, . . . , n) defined by

Q′
i :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Qk
zζ

=
∏�k

j=1, j 	=j◦ [zζ + t(β(k)
j − α)] i = k

Qi i = 1, 2, . . . , k − 1,

k + 1, . . . , n.

Then we have

A′ =
1
zu Q e1

1 Q e2
2 · · · Q en

n

=
1
zu Q′

1
e1 Q′

2
e2 · · · Q′

k−1
ek−1

[
Q′

k · (zζ)
]ek

Q′
k+1

ek+1 · · · Q′
n

en

=
1
zu (zζ)ek Q′

1
e1 Q′

2
e2 · · · Q′

n
en

= ζu (zζ)ek−u Q′
1
e1 Q′

2
e2 · · · Q′

n
en .

The last expression is a polynomial precisely when ek − u ≥ 0, and if this is
the case, rewriting

P ′
i :=

⎧⎨⎩ Q′
i i = 1, 2, . . . , n

zζ i = n + 1,
e′i :=

{
ei i = 1, 2, . . . , n

ek − u i = n + 1,

we have A′ = ζu P ′
1

e′
1 P ′

2
e′
2 · · · P ′

n+1
e′

n+1 , completing the proof of the assertion.
�

Let A(w, η, t) = wu P e1
1 P e2

2 · · · P en
n be a waving polynomial. Suppose

that ek − u ≥ 0 for some k (1 ≤ k ≤ n). Then by Lemma 11.1.3 (1), there
exist (i) a map g of the form z = 1/w, ζ = w2η + tαw (α ∈ C) and (ii) an
interchanged waving polynomial A′ such that g transforms A to A′, and A′ is
of the form

A′(ζ, z, t) = ζ u P ′
1

e′
1 P ′

2
e′
2 · · · P ′

n+1
e′

n+1 ,

where

e′i :=

{
ei i = 1, 2, . . . , n

ek − u i = n + 1,
(11.1.2)
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and

P ′
i :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∏�i

j=1[zζ + t(β(i)
j − α)] i = 1, 2, . . . , k − 1, k + 1, . . . , n

∏�k

j=1[zζ + t(β(k)
j − α)]

zζ
i = k

zζ i = n + 1.

(11.1.3)

In this situation, we say that a compression occurs at the k-th factor P ek

k

of A, producing A′; notice that the number of the factors in P ′
k is �k − u,

‘compressed’ by u from the number �k of the factors in Pk.
For a waving polynomial A(w, η, t) = wu P e1

1 P e2
2 · · · P en

n where

Pi =
�i∏

j=1

(wη + tβ
(i)
j ),

we define the length �(A) of A by

�(A) := e1�1 + e2�2 + · · · + en�n. (11.1.4)

For the interchanged waving polynomial A(ζ, z, t), this integer is also called
the length of A(ζ, z, t).

Lemma 11.1.5 Let A(w, η, t) = w u P e1
1 P e2

2 · · · P en
n be a waving polyno-

mial, and let A′ = ζ u P ′
1

e′
1 P ′

2
e′
2 · · · P ′

n+1
e′

n+1 be the interchanged waving poly-
nomial in Lemma 11.1.3. Then �(A′) = �(A) − u.

Proof. By (11.1.2) and (11.1.3),

(e′i, �′i) =

⎧⎪⎨⎪⎩
(ei, �i) i = 1, 2, . . . , k − 1, k + 1, . . . , n
(ek, �k − 1) i = k

(ek − u, 1) i = n + 1,

and hence we have

�(A′) := e′1�
′
1 + e′2�

′
2 + · · · + e′n+1�

′
n+1

=
( ∑

1≤i≤n

i	=k

ei�i

)
+ ek(�k − 1) + (ek − u)

= (e1�1 + e2�2 + · · · + en�n) − u

= �(A) − u.

�
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11.2 Waving sequences

For the application to the construction of complete deformation atlases, we
are interested in particular waving polynomials which are of the form

A(w, η, t) = w u P1(w, η, t) l − a1 u P2(w, η, t) l − a2 u · · · Pn(w, η, t) l − an u Q(w, η, t) b,

where

(1) l and u are positive integers and a1, a2, . . . , an are nonnegative integers
such that l − aiu ≥ 0,

(2) b is a nonnegative integer, and
(3) Q is a polynomial of the form wη + tγ for some γ ∈ C.

Then from A(w, η, t), we will construct a certain sequence of waving polynomi-
als. This sequence will play a prominent role for constructing some complete
deformation atlases. To avoid complicated notation and to clarify the idea,
we consider three cases separately: Case I (b = 0), Case II (b ≥ 1 and u > b),
and Case III (b ≥ 1 and u ≤ b).

Case I: b = 0

Proposition 11.2.1 Let l and u be positive integers such that u divides l.
Let A = w u P l− a1 u

1 P l− a2 u
2 · · · P l− an u

n be a waving polynomial where aj

(j = 1, 2, . . . , n) is a nonnegative integer satisfying l − aju > 0. Then there
exist (1) a sequence of waving polynomials A1 = A,A2, . . . , Af and (2) a
sequence of maps g1, g2, . . . , gf−1 of the form gi : z = 1/w, ζ = w2η + tαiw
(αi ∈ C) such that

(i) gi transforms Ai(w, η, t) to Ai+1(ζ, z, t),
(ii) Af (w, η, t) = wu, and

(iii) f = �(A)
u + 1 where �(A) is the length of A.

Remark 11.2.2 In (iii), �(A)
u +1 is an integer. In fact, set ej := l−aiu, and

then
�(A)

u
=

e1�1 + e2�2 + · · · + en�n

u
.

Since u divides l, u also divides ej (= l−aju) for j = 1, 2, . . . , n. Consequently,
u divides e1�1 + e2�2 + · · · + en�n.

Proof. We shall construct the sequence A1, A2, . . . , Af inductively. Suppose
that we have constructed an i-th waving polynomial of the form

Ai = w u P
l− ai,1 u

i, 1 P
l− ai,2 u

i, 2 · · · P
l− ai,ni

u

i, ni
(11.2.1)

where ai,j is a nonnegative integer satisfying l − ai,ju > 0. Then

Claim 11.2.3 Set ei,j := l − ai,ju (> 0 ), and then ei,j − u ≥ 0.



188 11 Construction of Deformations of Type Cl

To see this, noting that u divides l, we express l = Nu. Accordingly we
rewrite the inequality l − ai,ju > 0 as (N − ai,j)u > 0; hence N > ai,j , that
is, N ≥ ai,j + 1. Then our claim is confirmed as follows:

ei,j − u = l − (ai,j + 1)u = Nu − (ai,j + 1)u > 0 by N ≥ ai,j + 1.

By the above claim, the waving polynomial (11.2.1) satisfies the assump-
tion of Lemma 11.1.3, and thus there exists a map of the form gi : z =
1/w, ζ = w2 + tαiw which transforms Ai(w, η, t) to an interchanged waving
polynomial A′

i(ζ, z, t). Set Ai+1(w, η, t) := A′
i(w, η, t); then Ai+1 is of the form

Ai+1 = w u P
l− ai+1, 1 u

i+1, 1 P
l− ai+1, 2 u

i+1, 2 · · · P
l− ai+1, ni+1 u

i+1, ni+1
.

(The exponents of Ai+1 are necessarily of the above form, because by Lemma
11.1.3, under the transformation of gi, any exponent of Ai either (1) remains
the same, i.e. l − ai,ju or (2) is subtracted by u, i.e. l − (ai,j + 1)u.)

We may repeat the above inductive process until i = f such that Af = wu.
Finally we compute f . Notice that �(Af ) = �(A1)−(f −1)u. Indeed, recursive
application of Lemma 11.1.5 yields a formula �(Ai) = �(A1) − (i − 1)u (for
example, �(A3) = �(A2) − u = �(A1) − 2u, and �(A4) = �(A3) − u = (�(A1) −
2u)− u = �(A1)− 3u). In particular, �(Af ) = �(A1)− (f − 1)u. On the other
hand, �(Af ) = 0 because Af = wu. Thus 0 = �(A1) − (f − 1)u, from which

we deduce f = �(A1)
u + 1. �

Remark 11.2.4 If we omit the condition that u divides l, then we finally
reach to a waving polynomial, which is different from wu. In fact, if u
does not divide l, there exists a unique integer N satisfying l − Nu > 0 and
l − (N + 1)u < 0. Then the above inductive process terminates at a waving
polynomial Ai of the form

w u P l−N u
i, 1 P l−N u

i, 2 · · · P l−N u
i, ni

. (11.2.2)

Since l − (N + 1)u < 0, it follows from Lemma 11.1.3, there exists no map of
the form gi : z = 1/w, ζ = w2η + tαiw which transforms (11.2.2) to some
polynomial.

Case II: b ≥ 1 and u > b

Next we consider the second case and show the following result.

Proposition 11.2.5 Let b, l, and u be positive integers such that u divides
l and u > b. Let A = w u P l− a1 u

1 P l− a2 u
2 · · · P l− an u

n Q b be a waving poly-
nomial where Q = wη + tγ (γ ∈ C) and aj is a nonnegative integer sat-
isfying l − aju > 0. Then there exist (1) a sequence of waving polynomials
A1 = A,A2, . . . , Af and (2) a sequence of maps g1, g2, . . . , gf−1 of the form
gi : z = 1/w, ζ = w2η + tαiw such that

(i) gi transforms Ai(w, η, t) to Ai+1(ζ, z, t),
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(ii) Ai is of the form

Ai = w u P
l− ai,1 u

i, 1 P
l− ai,2 u

i, 2 · · · P
l− ai,ni

u

i, ni
Q b

i

where Qi = wη + tγi (γi ∈ C) and Af (w, η, t) = wuQb
f = wu(wη + tγf )b,

and
(iii)

f =
�(P l− a1 u

1 P l− a2 u
2 · · · P l− an u

n )
u

+ 1 =
�(A) − b

u
+ 1.

(Recall that �(A) stands for the length of A. It is easy to check that f is
an integer. See Remark 11.2.2.)

Proof. We first note

Claim 11.2.6 A map g : z = 1/w, ζ = w2η + tαw transforms a polynomial
(wη + tγ)b to

(
zζ + t(γ − α)

)b.

The proof of this claim is the same as that of Lemma 11.1.1.
Now we construct the desired sequences A1, A2, . . . , Af and g1, g2, . . . , gf−1

inductively. Suppose that we have constructed an i-th waving polynomial of
the form

Ai = w uP
l− ai,1 u

i, 1 P
l− ai,2 u

i, 2 · · · P
l− ai,ni

u

i, ni
Q b

i

where Qi = wη + tγi (γi ∈ C) and ai,j is a nonnegative integer satisfying
l − ai,ju > 0. Then by Lemma 11.1.3, there exists a map gi : z = 1/w, ζ =
w2 + tαiw (αi ∈ C) which transforms Ai to an interchanged waving poly-
nomial A′

i such that a compression occurs at some k (1 ≤ k ≤ ni); since
b−u < 0 by assumption, this compression can not occur at the factor Qb

i . Set
Ai+1(w, η, t) := A′

i(w, η, t); then Ai+1 is of the form

Ai+1 = w u P
l− ai+1,1 u

i+1, 1 P
l− ai+1,2 u

i+1, 2 · · · P
l− ai+1,ni+1 u

i+1, ni+1
Q b

i+1

where by Claim 11.2.6, Qi+1 = wη + tγi+1 for some γi+1 ∈ C. We can repeat
this inductive process until i = f such that nf = 0, that is, Af = wuQb

f =
wu(wη + tγf )b.

Finally we show that f = �(A) − b
u + 1. As in the proof of Proposition

11.2.1,
�(Af ) = �(A) − (f − 1)u. (11.2.3)

Here �(Af ) = b and

�(A) = �(P l− a1 u
1 P l− a2 u

2 · · · P l− an u
n Q b)

= �(P l− a1 u
1 P l− a2 u

2 · · · P l− an u
n ) + b.

Substituting them into (11.2.3), we have

b = �(P l− a1 u
1 P l− a2 u

2 · · · P l− an u
n ) + b − (f − 1)u.

Thus

f =
�(P l− a1 u

1 P l− a2 u
2 · · · P l− an u

n )
u

+ 1 =
�(A) − b

u
+ 1.

This completes the proof of the assertion. �
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Case III: b ≥ 1 and u ≤ b

For the remaining case, the following statement holds.

Proposition 11.2.7 Let b, l, and u be positive integers such that u divides
l and u ≤ b. Let A = w u P l− a1 u

1 P l− a2 u
2 · · · P l− an u

n Q b be a waving poly-
nomial where Q = wη + tγ (γ ∈ C) and aj is a nonnegative integer sat-
isfying l − aju > 0. Then there exist (1) a sequence of waving polynomials
A1 = A,A2, . . . , Af and (2) a sequence of maps g1, g2, . . . , gf−1 of the form
gi : z = 1/w, ζ = w2η + tαiw such that

(i) gi transforms Ai(w, η, t) to Ai+1(ζ, z, t),
(ii) Ai is of the form

Ai = w u P
l− ai,1 u

i, 1 P
l− ai,2 u

i, 2 · · · P
l− ai,ni

u

i, ni
Q b− vi u

i ,

where Qi = wη + tγi (γi ∈ C) and Af (w, η, t) = wuQb−vu
f = wu(wη +

tγf )b−vu where (considering the division of b by u), v = vf is the positive
integer such that b − vu ≥ 0 and b − (v + 1)u < 0, and

(iii)

f =
�(P l− a1 u

1 P l− a2 u
2 · · · P l− an u

n )
u

+ 1 + v =
�(A) − b

u
+ 1 + v.

(It is easy to see that f is an integer by an argument similar to Remark
11.2.2.)

Remark 11.2.8 In (ii), when u divides b (so b = vu), we have Af (w, η, t) =
wu.

Proof. The proof is essentially the same as Case II. (The only difference is
that we may compress Ai at the factor Qi in the process of the inductive
construction of waving polynomials.) Namely, by induction, we can construct
an i-th waving polynomial of the form

Ai = w u P
l− ai,1 u

i, 1 P
l− ai,2 u

i, 2 · · · P
l− ai,ni

u

i, ni
Q b− vi u

i

where Qi = wη + tγi (γi ∈ C), and ai,j and vi are nonnegative integers such
that l− ai,ju > 0 and b− viu > 0. Repeat the inductive process as in Case II,
which in this case, terminates at i = f such that Af is of the form

Af = wuQb−vu
f = wu(wη + tγf )b−vu,

where v is the positive integer satisfying b−vu ≥ 0 and b−(v+1)u < 0. Finally

by the same argument as in Case II, we verify that f = �(A) − b
u + 1 + v. As

in the proof of Proposition 11.2.1, we have

�(Af ) = �(A) − (f − 1)u. (11.2.4)



11.3 Deformations of type Cl 191

Here �(Af ) = b − vu and

�(A) = �(P l− a1 u
1 P l− a2 u

2 · · · P l− an u
n Q b)

= �(P l− a1 u
1 P l− a2 u

2 · · · P l− an u
n ) + b.

Substituting them into (11.2.4), we have

b − vu = �(P l− a1 u
1 P l− a2 u

2 · · · P l− an u
n ) + b − (f − 1)u.

Thus

f =
�(P l− a1 u

1 P l− a2 u
2 · · · P l− an u

n )
u

+ 1 + v =
�(A) − b

u
+ 1 + v.

This completes the proof. �

Waving sequences

In Propositions 11.2.1, 11.2.5 and 11.2.7, given a waving polynomial A, we
have constructed a sequence of waving polynomials A1 = A,A2, . . . , Af to-
gether with a sequence of maps g1, g2, . . . , gf−1. It is called a waving sequence
associated with A. (In general, a waving sequence is not uniquely determined
by A.) As we will see below, waving sequences play a prominent role in con-
structing complete deformation atlases.

11.3 Deformations of type Cl

In this section we shall construct a complete propagation of the deformation
atlas DAe−1(lY, k) for Y of type Cl (we will soon recall terminologies). In
contrast to the constructions for types Al and Bl, the construction for type
Cl is quite involved, and moreover it turns out that when l ≥ 2, in most
cases, a complete propagation of DAe−1(lY, k) is not unique. (cf. Remark
10.1.4, p179; for a subbranch Y of type ABl, i.e. both of type Al and Bl, the
deformation atlas DAe−1(lY, k) admits two different complete propagations.)
Among all complete propagations, there are two distinguished ones in which
cases the deformation from X to X0,t has an interesting ‘periodicity’, which
we will explicitly describe in the next chapter.

Now let X = m0Δ0 + m1Θ1 + · · · + mλΘλ be a branch, and we set

ri :=
mi−1 + mi+1

mi
(i = 1, 2, . . . , λ − 1), rλ :=

mλ−1

mλ
.

Assume that Y = n0Δ0 + n1Θ1 + · · · + neΘe is a subbranch of X and l is a
positive integer such that lY ≤ X, i.e. lni ≤ mi for i = 0, 1, . . . , e. We recall
a deformation atlas DAe−1(lY, k); let f(z) be a non-vanishing holomorphic



192 11 Construction of Deformations of Type Cl

function on a domain {z ∈ C : |z| < ε}. Define a sequence of integers pi

(i = 0, 1, . . . , λ + 1) inductively by{
p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.

Then pλ+1 > pλ > · · · > p1 > p0 = 0 (6.2.4), p105 and set fi = f(wpi−1ηpi)
and f̂i = f(zpi+1ζpi). We define a deformation atlas DAe−1(lY, k): for i =
1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tkfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tkf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

Next recall that a subbranch Y of X is of type Cl (Definition 9.1.1) provided
that lY ≤ X, ne = rene − ne−1, and u divides l where

u = (me−1 − lne−1) − (re − 1)(me − lne).

Theorem 11.3.1 Let Y be a subbranch of type Cl, and let DAe−1(lY, k) be
the deformation atlas associated with lY . If the positive integer k is divisible
by ne, then DAe−1(lY, k) admits a complete propagation.

This theorem completes the proof of Theorem 10.0.15, p177, which insists: If
a subbranch Y is of type Al, Bl, or Cl such that if Y is of type Cl the positive
integer k is divisible by ne, then DAe−1(lY, k) admits a complete propagation.
(We have already proved Theorem 10.0.15 for types Al and Bl.)

Henceforth, we only consider the case fe ≡ 1; since Y of type Cl is wild
by Lemma 9.4.6, p169, after some coordinate change, we may always assume
fe ≡ 1 by Proposition 8.1, p143.

Step 1 (e-th propagation)

In order to construct an e-th propagation of DAe−1(lY, k), we need the fol-
lowing lemma.

Lemma 11.3.2 Let l and r be positive integers, and let a, b, c, d be nonneg-
ative integers such that d = dr − c and l − (a + b − rb) ≥ 0. Take α ∈ C

satisfying αd + 1 = 0. Then a map

g : z =
1
w

, ζ = wrη − tαw

transforms a polynomial P = wa ηb (wcηd + td)l to a polynomial

P ′(z, ζ, t) = zl−(a+b−rb) (zζ + tα)b

(
zd−1ζd +

d−1∑
i=1

dCi ti αi zd−i−1 ζd−i

)l

.
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Proof. Since P = wa ηb (wcηd + td)l = wa−br (wrη)b
[
wc−dr(wrη)d + td

]l, the
map g : z = 1/w, ζ = wrη − tαw transforms P to

zbr−a

(
ζ + tα

1
z

)b
[
zdr−c

(
ζ + tα

1
z

)d

+ td

]l

. (11.3.1)

The inside the brackets is

zdr−c

(
ζ + tα

1
z

)d

+ td = zd

(
ζ + tα

1
z

)d

+ td by d = dr − c

= (zζ + tα)d + td

= (zζ)d + dC1(zζ)d−1(tα) + · · ·
+ dCd−1(zζ)(tα)d−1 + (tα)d + td

= (zζ)d + dC1(zζ)d−1(tα) + · · · + dCd−1(zζ)(tα)d−1,

where in the last equality we used αd + 1 = 0. Thus

zdr−c

(
ζ + tα

1
z

)d

+ td = z

(
d−1∑
i=0

dCi ti αi zd−i−1 ζd−i

)
.

Using this equation, we rewrite (11.3.1) as follows:

zbr−a

(
ζ + tα

1
z

)b
[

zdr−c

(
ζ + tα

1
z

)d

+ td

]l

= zbr−a

(
ζ + tα

1
z

)b [
z

(
d∑

i=0
dCi ti αi zd−i−1 ζd−i

)]l

= zbr−a+l

(
ζ + tα

1
z

)b [
d∑

i=0
dCi ti αi zd−i−1 ζd−i

]l

= zbr−a+l−b (zζ + tα)b

[
d∑

i=0
dCi ti αi zd−i−1 ζd−i

]l

,

where the last expression equals P ′ in the assertion. This completes the proof.
�

Now we return to construct a complete propagation of DAe−1(lY, k), where
for i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tk)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tk)l − s = 0
gi : the transition function of Ni,
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and ne divides k by assumption. We give the construction only for the case
k = ne. (For the general case, we only have to replace t by tk/ne in the
argument below.) To apply Lemma 11.3.2, we set r = re and

a = me−1 − lne−1, b = me − lne, c = ne−1, d = ne.

Then He : waηb(wcηd + td)l −s = 0. From the definition of type Cl, it follows
that (1) d = dr − c and (2) setting u := a − (r − 1)b, then l ≥ u (because
u divides l). Thus all the assumptions of Lemma 11.3.2 are fulfilled. Taking
α ∈ C satisfying αd + 1 = 0, we define an e-th propagation of DAe−1(lY, k)
by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

He : waηb(wcηd + td)l − s = 0

H′
e : zl−u (zζ + tα)b

(
zd−1ζd +

d−1∑
i=1

dCi ti αi zd−i−1 ζd−i

)l

− s = 0

ge : z = 1
w, ζ = wrη − tαw.

(11.3.2)

Step 2 (i-th propagation where i ≥ e + 1)

We proceed to construct an (e + 1)-st propagation with

He+1 : ηl−u (wη + tα)b

(
wdηd−1 +

d−1∑
i=1

dCi ti αi wd−i ηd−i−1

)l

− s = 0.

To avoid complicated notation, we reset the subscript e + 1 as 1; we rewrite
He+1 as H1, and setting

A := ηl−u (wη + tα)b

(
wdηd−1 +

d−1∑
i=1

dCi ti αi wd−i ηd−i−1

)l

,

we express H1 : A(w, η, t) − s = 0. Consider the factorization inside the big
brackets:

wdηd−1 +
d−1∑
i=1

dCi ti αi wd−i ηd−i−1 = w
d−1∏
i=1

(wη + tβi).

We claim that
β1, β2, . . . , βd−1 are all distinct. (11.3.3)

To see this, we note that the roots of a polynomial f(X) = (X + 1)d − 1 are
all distinct. In fact, if α is a multiple root, then f(α) = f ′(α) = 0, and so
(α + 1)d − 1 = 0 and d(α + 1)d−1 = 0. From the second equation, we have
(α + 1)d−1 = 0. Substituting this into the first equation, we have −1 = 0 —
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which is absurd! Thus f(X) has no multiple roots. Using this fact, we can
show (11.3.3) as follows. Note that

(wη + tα)d − (tα)d = wη

d−1∏
i=1

(wη + tβi).

Divide the both sides by (tα)d, which yields:(wη

tα
+ 1

)d

− 1 =
wη

tα

d−1∏
i=1

(
wη

tα
+

βi

α

)
.

Setting X = wη
tα , we then have (X + 1)d − 1 = X

∏d−1
i=1

(
X + βi

α

)
. As shown

above, the left hand side does not have multiple roots, and therefore βi
α (i =

1, 2, . . . , d − 1) are all distinct; consequently β1, β2, . . . , βd−1 are all distinct.
Thus (11.3.3) is confirmed.

We return to the construction of an (e+1)-st propagation of DAe−1(lY, k);
we set

P1 := wη, P2 :=
d−1∏
j=1

(wη + tβj), Q := (wη + tγ).

Then
A = wuP l−u

1 P l
2Q

b, (11.3.4)

and so A is a waving polynomial (the ‘roots’ β1, β2, . . . , βd−1 of P2 are all
distinct by (11.3.3)). For subsequent discussion, it is convenient to divide into
three cases: Case I: b = 0, Case II: b ≥ 1 and u > b, and Case III: b ≥ 1 and
u ≤ b.

Case I: b = 0

In this case A = wuP l−u
1 P l

2, and hence A is a waving polynomial satisfying
the assumption of Proposition 11.2.1. Thus there exists a waving sequence
associated with A: {

A1 = A,A2, . . . , Af = wu

g1, g2, . . . , gf−1.

Using this sequence, we define a complete propagation of H1 as follows (for
consistency with the subscripts of the waving polynomials Ai, we reset the
subscripts of Hi; we rewrite He+i as Hi.): for i = 1, 2, . . . , f − 1,⎧⎪⎨⎪⎩

Hi : Ai(w, η, t) − s = 0
H′

i : Ai+1(ζ, z, t) − s = 0
gi : the map in the waving sequence,

where we note that H′
f−1 : ζu − s = 0, because Af (ζ, z, t) = ζu.
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Remark 11.3.3 Since u divides l by the definition of type Cl, we may write
l = Nu where N is a positive integer. We claim that f = Nd. Indeed, the
length of A (see (11.1.4)) is

�(A) = (l − u) · 1 + l · (d − 1) = ld − u,

and thus by Proposition 11.2.1 (iii), f = �(A)
u + 1 = ld − u

u + 1 = ld
u = Nd.

Case II: b ≥ 1 and u > b

In this case A = wu P l−u
1 P l

2 Qb, and A is a waving polynomial satisfying
all the assumption of Proposition 11.2.5. Thus there exists a waving sequence
associated with A:{

A1 = A,A2, . . . , Af = wu (wη + t γf )b

g1, g2, . . . , gf−1.

Using this sequence, we construct propagations of H1 : A(w, η, t) − s = 0 up
to an (f − 1)-st propagation as follows: for i = 1, 2, . . . , f − 1,⎧⎪⎨⎪⎩

Hi : Ai(w, η, t) − s = 0
H′

i : Ai+1(ζ, z, t) − s = 0
gi : the map in the waving sequence.

Noting that Hf : wu (wη + t γf )b − s = 0, we next define an f -th propagation
by ⎧⎪⎪⎨⎪⎪⎩

Hf : wu (wη + t γf )b − s = 0

H′
f : z (rf−1) b−uζb − s = 0

gf : z = 1
w, ζ = w rf η + t γf w rf−1.

This is well-defined. In fact, gf transforms Hf to H′
f ; since the equation of

Hf is written as

wu

[
1

w rf−1 (w rf η) + t γf

]b

− s,

the map gf transforms Hf to

1
zu

[
z rf−1

(
ζ − t γf

1
z rf−1

)
+ t γf

]b

− s =
1
zu

[
(z rf−1 ζ − t γf ) + t γf

]b

− s

=
1
zu [ z rf−1 ζ ]b − s

= z ( rf−1 ) b−u ζb − s,

which is equal to H′
f . (According to Table 9.1.10, mf = b where f = Nd in

the present case corresponds to e + Nd in the table; recall that we reset the
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subscripts.) Notice that H′
f is the trivial family of H ′

f , and we may ‘trivially’
define further propagations. Namely for i = f + 1, f + 2, . . . , λ,⎧⎪⎨⎪⎩

Hi : wmi−1ηmi − s = 0
H′

i : zmi+1ζmi − s = 0
gi : the transition function of Ni.

This completes the construction of a complete propagation for Case II.

Remark 11.3.4 Writing l = Nu, then we have f = Nd. Indeed, since

�(A) = (l − u) · 1 + l · (d − 1) + b = ld − u + b, (Proposition 11.2.5 (iii)),

we have f = �(A) − b
u + 1 = (ld − u + b) − b

u + 1 = ld
u = Nd.

Case III: b ≥ 1 and u ≤ b

The construction is similar to Case II, and we merely give an outline. Take
a waving sequence associated with A = A1 in Proposition 11.2.7:{

A1 = A,A2, . . . , Af = wu(wη + t γf )b−vu

g1, g2, . . . , gf−1,

where v is the integer satisfying l − vu ≥ 0 and l − (v + 1)u < 0. Using this
waving sequence, we define propagations of H1 : A(w, η, t) − s = 0 up to an
(f − 1)-st propagation: for i = 1, 2, . . . , f − 1,⎧⎪⎨⎪⎩

Hi : Ai(w, η, t) − s = 0
H′

i : Ai+1(ζ, z, t) − s = 0
gi : the map in the waving sequence.

Noting that Hf : wu(wη+tγf )b−vu−s = 0, we next define an f -th propagation
by ⎧⎪⎪⎨⎪⎪⎩

Hf : wu (wη + t γf ) b−vu − s = 0

H′
f : z (rf−1) (b−vu)−u ζ b−vu − s = 0

gf : z = 1
w, ζ = w rf η + t γf w rf−1.

Since H′
f is the trivial family of H ′

f , we may trivially define further propaga-
tions. That is, for i = f + 1, f + 2, . . . , λ,⎧⎪⎨⎪⎩

Hi : wmi−1ηmi − s = 0
H′

i : zmi+1ζmi − s = 0
gi : the transition function of Ni,

where mλ+1 = 0 by convention. This completes the construction of a complete
propagation.
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Remark 11.3.5 Writing l = Nu where N is a positive integer, then we have
f = Nd + v. In fact, since

�(A) = (l − u) · 1 + l · (d − 1) + b = ld − u + b,

together with Proposition 11.2.7 (iii),

f =
�(A) − b

u
+ 1 + v =

(ld − u + b) − b

u
+ 1 + v =

ld

u
+ v = Nd + v.

Propagation of deformations

By patching the complete deformation atlas constructed above, we obtain a
barking family (specifically, called of type Cl). Barking families of type Cl are
quite different from those of types Al and Bl. Namely, a barking family of
type Al or Bl propagates trivially beyond Θe (see Remark 10.1.2, p179), that
is, the deformation around me+1Θe+1 +me+2Θe+2 + · · ·+mλΘλ is the trivial
family of the original degeneration. In contrast, a barking family of type Cl

propagates non-trivially beyond Θe. More precisely, write l = Nu, and in the
case b ≥ 1 and u ≤ b, we let v be the integer such that b − vu ≥ 0 and
b− (v + 1)u < 0. Then the barking family of type Cl propagates non-trivially
beyond Θe until Θf , where

f =

{
e + Nd − 1 (I) b = 0, or (II) b ≥ 1 and u > b

e + Nd + v − 1 (III) b ≥ 1 and u ≤ b.
(11.3.5)

See Figure 12.3.1, p221, Figure 12.3.2, p223, and Figure 12.3.3, p224.

Remark 11.3.6 When l ≥ 2, in most cases, a complete propagation of
DAe−1(lY, k) for a subbranch Y of type Cl is not unique. This is the case
precisely when there are at least two (nonzero) exponents among exponents
l − u, l, and b of the waving polynomial A = wuP l−u

1 P l
2Q

b in (11.3.4). More
explicitly, except for the following three cases, a complete propagation of
DAe−1(lY, k) is not unique: (1) l = u and b = 0, (2) l = u = b ( �= 0),
and (3) l = l − u = b ( �= 0).

11.4 Singular fibers

Let us consider a waving polynomial

A(w, η, t) = wu P e1
1 P e2

2 · · · P en
n ,

where Pi =
∏�i

j=1(wη + tβ
(i)
j ). By definition, β

(i)
j ∈ C (j = 1, 2, . . . , �i, i =

1, 2, . . . , n) are all distinct. We shall investigate the values (s, t) such that a
curve

Cs,t : A(w, η, t) − s = 0
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has a singularity. Clearly for the case s = 0, regardless of the value of t, the
curve C0,t is (1) smooth if u = e1 = e2 = · · · = en = 1, and (2) singular (in
fact, non-reduced) otherwise. We next consider the case s �= 0. Then

(w, η) ∈ Cs,t is a singularity ⇐⇒ ∂(A − s)
∂w

(w, η) =
∂(A − s)

∂η
(w, η) = 0

⇐⇒ ∂A

∂w
(w, η) =

∂A

∂η
(w, η) = 0

⇐⇒ ∂ log A

∂w
(w, η) =

∂ log A

∂η
(w, η) = 0.

(As we assumed s �= 0, it follows from A(w, η, t) − s = 0 that A(w, η, t) �= 0,
and so log A is well-defined.) Since A = wu P e1

1 P e2
2 · · · P en

n where Pi =∏�i

j=1(wη + tβ
(i)
j ), we have

∂ log A

∂w
=

∂ log wu

∂w
+ e1

∂ log P1

∂w
+ e2

∂ log P2

∂w
+ · · · + en

∂ log Pn

∂w

=u
1
w

+η

⎡⎣e1

�1∑
j=1

1

wη + tβ
(1)
j

+e2

�2∑
j=1

1

wη + tβ
(2)
j

+· · · + en

�n∑
j=1

1

wη + tβ
(n)
j

⎤⎦ .

Similarly, we have

∂ log A

∂η
= w

⎡⎣e1

�1∑
j=1

1

wη + tβ
(1)
j

+ e2

�2∑
j=1

1

wη + tβ
(2)
j

+ · · · + en

�n∑
j=1

1

wη + tβ
(n)
j

⎤⎦ .

For brevity, we set

h(w, η, t) := e1

�1∑
j=1

1

wη + tβ
(1)
j

+ e2

�2∑
j=1

1

wη + tβ
(2)
j

+ · · · + en

�n∑
j=1

1

wη + tβ
(n)
j

,

and then
∂ log A

∂w
= u

1
w

+ ηh,
∂ log A

∂η
= wh.

So Cs,t (s �= 0) is singular if and only if (a) u 1
w + ηh = 0 and (b) wh = 0.

The equation (b) implies that w = 0 or h = 0. But by (a), w cannot be zero,
and therefore h = 0. In this case, from (a), we obtain u 1

w = 0, and so u = 0.
However since u ≥ 1, this does not hold. Hence for s �= 0, the curve Cs,t is
smooth. We thus obtain the following result.

Proposition 11.4.1 Let Cs,t be a curve defined by A(w, η, t) − s = 0 where

A(w, η, t) = wuP1(w, η, t)e1P2(w, η, t)e2 · · ·Pn(w, η, t)en ,

is a waving polynomial. Then (1) if u = e1 = e2 = · · · = en = 1, the curve
Cs,t is smooth for any (s, t), and (2) otherwise, Cs,t is singular if and only if
s = 0.
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We then show the following important result.

Proposition 11.4.2 Let Ψ : M → Δ × Δ† be a barking family obtained
from a complete propagation of DAe−1(lY, k) where Y is a subbranch of type
Cl and the positive integer k is divisible by ne (see Theorem 11.3.1). Then
Xs,t := Ψ−1(s, t) is singular if and only if s = 0.

Proof. We regard Hi (and also H′
i) as a family of curves parameterized by s

and t. (In this proof, we again reset the subscripts; Hi in the above discus-
sion corresponds to He+i.) By Proposition 11.4.1, there are two cases about
singularities of Hi and H′

i for i = e, e+1, . . . , f : (1) Hi and H′
i are smooth re-

gardless of the values of s and t, or (2) they are singular precisely when s = 0.
On the other hand, Hi and H′

i for i = 1, 2, . . . , e − 1 are singular precisely
when s = 0 (Corollary 7.2.5, p128). For i = f + 1, f + 2, . . . , λ, Hi and H′

i are
the trivial families of the original Hi and H ′

i respectively (see the paragraph
above (11.3.5)):

Hi : wmi−1ηmi − s = 0, H′
i : zmi+1ζmi − s = 0,

where mλ+1 = 0 by convention, and so Hi and H′
i for i = f + 1, f + 2, . . . , λ

are singular precisely when s = 0. From these observations, we conclude that
Xs,t is singular precisely when s = 0. �

11.5 Supplement: The condition that u divides l

The aim of this section is (i) to clarify the role of the condition “u divides l”
in the definition of type Cl where u = (me−1 − lne−1) − (re − 1)(me − lne),
and (ii) to prove some results which will be used in a later chapter. Consider
a map of the form

g : z =
1
w

, ζ = wrη + α1(t)w + α2(t)w2 + · · · + αr−1(t)wr−1

where (1) r is an integer satisfying r ≥ 2 and (2) αi(t) is holomorphic in t with
αi(0) = 0. Namely, g is a deformation of a transition function z = 1/w, ζ =
wrη.

Lemma 11.5.1 Let A(w, η, t) = w u P e1
1 P e2

2 · · · P en
n Q c be a waving poly-

nomial such that P1 = wη, Q = wη + tγ (γ ∈ C), and e1 = e2 = · · · = en.
Suppose that there exists a map

g : z =
1
w

, ζ = wrη + α1(t)w + α2(t)w2 + · · · + αr−1(t)wr−1

(r ≥ 2, αi(0) = 0) which transforms A(w, η, t) to a polynomial B(z, ζ, t)
satisfying

degz B(z, ζ, 0) < degζ B(z, ζ, 0). (11.5.1)

Then r = 2. (degz B(z, ζ, 0) stands for the degree of B(z, ζ, 0) in the vari-
able z.)
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Remark 11.5.2 The condition (11.5.1) is intended for later application to
deformation atlases; consider a deformation atlas⎧⎪⎨⎪⎩

Hi : A(w, η, t) − s = 0
H′

i : B(z, ζ, t) − s = 0
gi : z = 1/w, ζ = wrη + α1(t)w + α2(t)w2 + · · · + αr−1(t)wr−1.

Since

Hi|t=0 : wmi−1ηmi − s = 0, H′
i|t=0 : zmi+1ζmi − s = 0,

the condition “ degz B(z, ζ, 0) < degζ B(z, ζ, 0) ” is a restatement of mi+1 <
mi where recall that a sequence of multiplicities m0,m1, . . . , mλ is strictly
decreasing.

The proof of Lemma 11.5.1 is rather technical and we leave it later (see §11.5.1,
p203). For a moment, assuming Lemma 11.5.1, we shall deduce several con-
sequences.

Corollary 11.5.3 Let A(w, η, t) = w u P e1
1 P e2

2 · · · P en
n Q c be a waving poly-

nomial such that P1 = wη, Q = wη+tγ (γ ∈ C), and e1 = e2 = · · · = en (= e).
If e − u < 0 and c − u < 0, then there exists no map of the form

g : z =
1
w

, ζ = wrη + α1(t)w + α2(t)w2 + · · · + αr−1(t)wr−1 (11.5.2)

(r ≥ 2, αi(0) = 0) which transforms A(w, η, t) to a polynomial B(z, ζ, t)
satisfying

degz B(z, ζ, 0) < degζ B(z, ζ, 0). (11.5.3)

Proof. We show this by contradiction. Suppose that there exists a map g with
the property in the assertion. Since e1 = e2 = · · · = en, we have r = 2 by
Lemma 11.5.1, and thus g must be of the form z = 1/w, ζ = w2η+α1(t)w (set
r = 2 in (11.5.2)). However since e−u < 0 and c−u < 0, it follows from Lemma
11.1.3, p184 that there exists no map1 of the form z = 1/w, ζ = w2η+α1(t)w
which transforms A(w, η, t) to some polynomial. This is a contradiction. �

In §11.2, under the assumption “u divides l”, we constructed waving
sequences. Also for the case where u does not divide l, we can perform an
analogous construction. Namely, as long as l− (ai,j +1)u > 0 in the i-th step,
we can proceed to an (i + 1)-st step, and when we reach to the step such that
l− (ai,j +1)u ≤ 0, we stop and obtain a ‘waving sequence’ in the wider sense;
below we treat such sequences.

1 We may show this by the argument of the proof of Lemma 11.1.3. (Actually, in
Lemma 11.1.3, we treated the case α1(t) = αt where α ∈ C. In the present case,
we need to consider the Taylor expansion of α1(t).)
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Proposition 11.5.4 Assume that l and u are positive integers such that l ≥ u
and u does not divide l. Let A(w, η, t) = w u P l− a1 u

1 P l− a2 u
2 · · · P l− an u

n Q b

be a waving polynomial such that P1 = wη and Q = wη + tγ (γ ∈ C). If the
waving sequence associated with A(w, η, t) terminates at a step f , then the
following statements hold:

(1) Af is of the form

w u P l−N u
f, 1 P l−N u

f, 2 · · · P l−N u
f, nf

Q b− v u
f ,

where
(i) (considering the division of l by u), N is the nonnegative integer such

that l − Nu > 0 and l − (N + 1)u < 0, and
(ii) v is an integer defined as follows: if u > b, set v = 0, and if u ≤ b, v

is the nonnegative integer such that b − vu ≥ 0 and b − (v + 1)u < 0.
(2) There exists no map of the form

g : z =
1
w

, ζ = wrη + α1(t)w + α2(t)w2 + · · · + αr−1(t)wr−1

(r ≥ 2, αi(0) = 0) which transforms Af to a polynomial Bf satisfying

degz Bf (z, ζ, 0) < degζ Bf (z, ζ, 0).

Proof. (1) is clear from the construction of waving sequences (see §11.2). To
show (2), we set e := l − Nu and c := b − vu, and then

Af = w u P e
f, 1 P e

f, 2 · · · P e
f, nf

Q c
f .

We may assume that Pf, 1 = wη; in fact, in each step of the construction
of the waving sequence, we may assume that Pi, 1 = wη, because the initial
waving polynomial A has a factor P1 = wη (see the proof of Lemma 11.1.3).
Therefore Af fulfills all assumptions of Corollary 11.5.3, and so there exists
no map g satisfying the condition of (2). �

We next deduce the following important result, which clarifies the role of
the condition “u divides l” in the definition of type Cl.

Theorem 11.5.5 Assume that l and u are positive integers and

A(w, η, t) = w u P l− a1 u
1 P l− a2 u

2 · · · P l− an u
n Q b

is a waving polynomial such that P1 = wη and Q = wη + tγ (γ ∈ C). Then

H1 : A(w, η, t) − s = 0

admits a complete propagation if and only if u divides l.

Proof. =⇒: If u does not divide l, then by Proposition 11.5.4 (1), the waving
sequence terminates at a waving polynomial of the form

Af = w u P l−N u
f, 1 P l−N u

f, 2 · · ·P l−N u
f, nf

Q b− v u,

and a further propagation is impossible by Proposition 11.5.4 (2).

⇐=: We already showed this in the proof of Theorem 11.3.1. �
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11.5.1 Proof of Lemma 11.5.1

Now we shall prove a technical lemma (Lemma 11.5.1), which insists:

Let A(w, η, t) = w u P e1
1 P e2

2 · · · P en
n Q c be a waving polynomial such that

P1 = wη, Q = wη + tγ (γ ∈ C ), and e1 = e2 = · · · = en. Suppose that there
exists a map

g : z =
1
w

, ζ = wrη + α1(t)w + α2(t)w2 + · · · + αr−1(t)wr−1

(r ≥ 2, αi(0) = 0) such that g transforms A(w, η, t) to a polynomial B(z, ζ, t)
satisfying

degz B(z, ζ, 0) < degζ B(z, ζ, 0). (11.5.4)

Then r = 2.

We begin with preparation for a proof. By assumption, e1 = e2 = · · · =
en. We denote these common numbers by e, and then A = P e

1 P e
2 · · ·P e

nQc.
Without loss of generality, it is sufficient to show the statement for n = 2 (in
fact, rewrite P2P3 · · ·Pn by P2, and then A = P e

1 P e
2 Qc). To avoid complicated

notation, we first show the statement for the case c = 0. In this case A = P e
1 P e

2 ;
we explicitly write P2 =

∏d
j=1(wη + tβj) while P1 = wη by definition, and so

A = wu(wη)e

[
d∏

j=1

(wη + tβj)

]e

. (11.5.5)

From the definition of waving polynomials, the ‘roots’ of P1 and P2 are distinct
(by a ‘root’ of P2, we indicate βj , and the ‘root’ of P1 is zero). Thus none of
the ‘roots’ of P2 is zero:

βj �= 0. (11.5.6)

We now verify Lemma 11.5.1; supposing that r ≥ 3, we shall deduce a con-
tradiction. First of all, we give a proof for a map g of the form z = 1/w, ζ =
wrη + tαwq where α ∈ C and 1 ≤ q ≤ r − 1. We separate into two cases
according to whether α = 0 or not.

Case 1. α = 0

In this case g : z = 1/w, ζ = wrη. Since (11.5.5) is written as

A = wu

(
1

wr−1 · wrη

)e
[

d∏
j=1

(
1

wr−1 · wrη + tβj

)]e

,

the map g transforms A to

B =
1
zu (zr−1ζ)e

[
d∏

j=1

(zr−1ζ + tβj)

]e

.
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Recall that βj are nonzero (11.5.6), and hence[
d∏

j=1

(zr−1ζ + tβj)

]e

(11.5.7)

has a nonzero constant term; therefore in B, the factor zu can not divide
(11.5.7). Since B is a polynomial, zu must divide (zr−1ζ)e; namely zu must
divide z(r−1)e, and thus

(r − 1)e ≥ u. (11.5.8)

Then B(z, ζ, t) = z(r−1)e−u ζe
[∏d

j=1 (zr−1ζ + tβj)
]e, and we have

B(z, ζ, 0) = z(r−1)e−u ζe
[
(zr−1ζ)(zr−1ζ) · · · (zr−1ζ)︸ ︷︷ ︸

d

]e

= z (r−1) e−u ζe (zr−1 ζ)ed

= z(r − 1)(e + e d)−u ζe + e d.

Since degz B(z, ζ, 0) < degζ B(z, ζ, 0), we have

(r − 1)(e + ed) − u < e + ed,

that is, (r − 2)(e + ed) < u. Combined this with (11.5.8), we derive

(r − 2)(e + ed) < (r − 1)e.

Since e > 0, we have (r − 2)(1 + d) < (r − 1), that is, (r − 2)d < 1. However
since d ≥ 1, if r ≥ 3, then (r−2)d ≥ 1, which yields a contradiction. Therefore
we conclude that r = 2. This proves the assertion for Case 1.

Case 2. α �= 0

Next we consider the case g : z = 1/w, ζ = wrη + tαwq where α �= 0 and
1 ≤ q ≤ r − 1. Since

A = wu

(
1

wr−1 · wrη

)e
[

d∏
j=1

(
1

wr−1 · wrη + tβj

)]e

,

the map g transforms A to

B =
1
zu

(
zr−1 ·

(
ζ − tα

zq

))e
[

d∏
j=1

(
zr−1 ·

(
ζ − tα

zq

)
+ tβj

) ]e

=
1
zu

(
zr−1 ζ − t α zr−1−q

)e

[
d∏

j=1

(
zr−1ζ − t α zr−1−q + t βj

)]e

= z(r−1−q)e−u
(
zqζ − tα

)e

[
d∏

j=1

(
zr−1ζ + t

(
βj − αzr−1−q

)) ]e

. (11.5.9)
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Our goal is to show that unless r = 2, degz B(z, ζ, 0) < degζ B(z, ζ, 0) is not
valid. To show this, we write B = z(r−1−q)e−uf(z, ζ, t) where

f := (zqζ − tα)e

[
d∏

j=1

(
zr−1ζ + t

(
βj − αzr−1−q

)) ]e

.

Note that f has no constant term if and only if a ‘root’ of f is zero (the ‘roots’
of f are −α and βj −αzr−1−q). Since α �= 0 and βj �= 0 (11.5.6), the following
equivalences hold:

f has no constant term ⇐⇒ βj − αzr−1−q = 0
identically for some j (1 ≤ j ≤ d)

⇐⇒ r − 1 = q and βj − α = 0
for some j (1 ≤ j ≤ d). (11.5.10)

With this preparation, we demonstrate that if r ≥ 3, then the inequality

degz B(z, ζ, 0) < degζ B(z, ζ, 0)

fails; the verification of this statement divides into two cases, depending on
whether or not f contains a constant term.

Case 2.1 f has a constant term: As above we write B = z(r−1−q)e−uf(z, ζ, t),
where

f = (zqζ − tα)e

[
d∏

j=1

(
zr−1ζ + t

(
βj − αzr−1−q

))]e

.

Since (i) f has a constant term and (ii) B is a polynomial, the exponent of
the first factor z(r−1−q)e−u of B must be nonngetaive (otherwise B has a
fractional term). Therefore

(r − 1 − q)e − u ≥ 0. (11.5.11)

Next we consider

B(z, ζ, 0) = z(r−1−q)e−u (zqζ)e
[
(zr−1ζ) · · · (zr−1ζ)︸ ︷︷ ︸

d

]e
.

Then

degz B(z, ζ, 0) =
[
(r−1−q)e−u

]
+qe+ed(r−1), degζ B(z, ζ, 0) = e+ed.

Here
[
(r−1−q)e−u

] ≥ 0 (11.5.11), and qe ≥ e by q ≥ 1. Moreover, assuming
that r ≥ 3, then ed(r − 1) ≥ ed, and so degz B(z, ζ, 0) ≥ degζ B(z, ζ, 0). This
is a contradiction, and thus we conclude that r = 2.
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Remark 11.5.6 The proof for Case 1 and Case 2.1 also works under a weaker
assumption e1 ≥ e2 instead of e1 = e2. However the proof for Case 2.2 below
essentially uses the equality e1 = e2, and therefore the condition e1 = e2

cannot be dropped.

Case 2.2 f has no constant term: In this case, as we saw in (11.5.10),
q = r − 1 holds, and B (see (11.5.9)) takes a simple form:

B = z(r−1−q)e−u
(
zqζ − tα

)e

[
d∏

j=1

(
zr−1ζ + t

(
βj − αzr−1−q

)) ]e

=
1
zu

(
zr−1ζ − tα

)e

[
d∏

j=1

(
zr−1ζ + t

(
βj − α

)) ]e

.

For simplicity we set β′
j := βj − α. Then

B =
1
zu

(
zr−1ζ − tα

)e

[
d∏

j=1

(zr−1ζ + tβ′
j)

]e

.

Again by (11.5.10), β′
j = 0 holds for some j (1 ≤ j ≤ d). Without loss of

generality, we assume β′
d = 0. Then

B =
1
zu

(
zr−1ζ − tα

)e

[
d−1∏
j=1

(zr−1ζ + tβ′
j) · (zr−1ζ)

]e

= z(r−1)e−u ζe
(
zr−1ζ − tα

)e

[
d−1∏
j=1

(zr−1ζ + tβ′
j)

]e

. (11.5.12)

We note that β′
j (1 ≤ j ≤ d − 1) are nonzero. In fact βj (1 ≤ j ≤ d) are

distinct, and accordingly β′
j := βj − α (1 ≤ j ≤ d) are also distinct; since

β′
d = 0, the others β′

j (1 ≤ j ≤ d− 1) are nonzero. Therefore in (11.5.12), the
factor (

zr−1ζ − tα
)e

⎡⎣ d−1∏
j=1

(zr−1ζ + tβ′
j)

⎤⎦e

has a nonzero constant term. Since B is a polynomial, this implies that the
exponent of the first factor z(r−1)e−u in (11.5.12) must be nonnegative (oth-
erwise B has a fractional term), and so

(r − 1)e ≥ u. (11.5.13)

Next from (11.5.12),

B(z, ζ, 0) = z (r−1) e−u ζe (zr−1ζ)e
[
(zr−1ζ) · · · (zr−1ζ)︸ ︷︷ ︸

d−1

]e

= z (r−1) e−u ζe (zr−1ζ) e d

= z (r − 1) e−u + (r−1) e d ζ e + e d.
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Since degz B(z, ζ, 0) < degζ B(z, ζ, 0), we have

(r − 1)e − u + (r − 1)ed < e + ed,

that is, (r − 2)(e + ed) < u. Combined this with (11.5.13), we obtain

(r − 2)(e + ed) < (r − 1)e.

Since e > 0, we have (r − 2)(1 + d) < (r − 1), and therefore

(r − 2)d < 1.

However d ≥ 1, and if we assume r ≥ 3, then (r − 2)d ≥ 1, yielding a
contradiction. Hence we conclude that r = 2. This completes the proof of
Lemma 11.5.1 for the case where c = 0 in A = wu P e

1 P e
2 · · · P e

n Qc and the
map g is of the form z = 1/w, ζ = wrη + tαwq.

For a general waving polynomial A = wu P e
1 P e

2 · · · P e
n Qc where P1 = wη

and Q = wη + tγ (γ ∈ C), if g has a form z = 1/w, ζ = wrη + tαwq, then
noting that g transforms Q = wη + γ to zr−1ζ − tαzr−1−k + tγ, a similar
argument to the above case yields the conclusion r = 2. The proof for a
general map

g : z =
1
w

, ζ = wrη + α1(t)w + α2(t)w2 + · · · + αr−1(t)wr−1

is essentially the same; we only have to apply the above argument for the
lowest degree term in z of B(z, ζ, t), and then we deduce r = 2. This completes
the proof of Lemma 11.5.1.
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Recursive Construction of Deformations
of Type Cl

Let DAe−1(lY, k) be the deformation atlas associated with a subbranch Y
of type Cl. In the previous chapter we constructed complete propagations of
DAe−1(lY, k). Recall that if l ≥ 2, then in most cases, a complete propagation
of DAe−1(lY, k) is not unique; see Remark 11.3.6, p198. (The complete propa-
gation of DAe−1(lY, k) for Y of type Al or Bl is unique, unless Y is type ABl,
i.e. both of type Al and Bl. See Remark 10.1.4, p179.) In this chapter we
give two particular constructions of complete propagations of DAe−1(lY, k)
for Y of type Cl. The resulting deformations have distinguished properties;
they possess some interesting “periodicity”.

12.1 Ascending, descending, and stable polynomials

We first introduce three kinds of polynomials: ascending, descending, and
stable polynomials. (Actually we already defined descending polynomials, but
for convenience we also include it here.) They are respectively polynomials of
the following forms:

Ascending polynomial P (w, η, t) = η

n∏
j=1

(wη + tβj), βj ∈ C

Descending polynomial Q(w, η, t) = w

n∏
j=1

(wη + tγj), γj ∈ C

Stable polynomial R(w, η, t) =
n∏

j=1

(wη + tδj), δj ∈ C.

By abuse of terminology, we say that βj (resp. γj , δj) is a ‘root’ of P (resp. Q,
R). The positive integer n is called the length of respective polynomials. We
say that P (ζ, z, t) is an interchanged ascending polynomial. Likewise Q(ζ, z, t)
and R(ζ, z, t) are respectively called interchanged descending polynomial and
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interchanged stable polynomial. These polynomials have the following impor-
tant property.

Lemma 12.1.1 (1) A map g : z = 1/w, ζ = w2η + tαw, where α ∈ C

is arbitrary, transforms P to an interchanged ascending polynomial P ′ of
length n + 1:

P ′(ζ, z, t) = z

n+1∏
j=1

(zζ + tβ′
j),

where we set β′
j = βj − α (j = 1, 2, . . . , n) and β′

n+1 = −α.
(2) A map g : z = 1/w, ζ = w2η + tγnw, where γn is the ‘root’ of the n-th

factor of Q, transforms Q to an interchanged descending polynomial Q′ of
length n − 1:

Q′(ζ, z, t) = ζ
n−1∏
j=1

(zζ + tγ′
j),

where we set γ′
j = γj − γn.

(3) A map g : z = 1/w, ζ = w2η + tαw, where α ∈ C is arbitrary, transforms
R to an interchanged stable polynomial R′ of length n:

R′(ζ, z, t) =
n∏

j=1

(zζ + tδ′j),

where we set δ′j = δj − α (j = 1, 2, . . . , n).

Proof. We already showed (2) in Lemma 8.1.1, p145. We confirm (1) as follows:

P (w, η, t) =
1

w2 w2η

n∏
j=1

(
1
w

w2η + tβj

)

= z2

(
ζ − tα

1
z

) n∏
j=1

[
z

(
ζ − tα

1
z

)
+ tβj

]

= z(zζ − tα)
n∏

j=1

[
zζ + t(βj − α)

]
.

Similarly, we confirm (3):

R(w, η, t) =
n∏

j=1

(
1
w

w2η + tδj

)
=

n∏
j=1

[
z

(
ζ − tα

1
z

)
+ tδj

]

=
n∏

j=1

[
zζ + t(δj − α)

]
.

�
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As a consequence we have the following result.

Lemma 12.1.2 Consider ascending, descending and stable polynomials:

P (w, η, t) = η

n∏
j=1

(wη + tβj), Q(w, η, t) = w

n∏
j=1

(wη + tγj),

R(w, η, t) =
n∏

j=1

(wη + tδj).

Then the following statements hold:

(A) There exist (1) a sequence of descending polynomials Q1 = Q,Q2, . . . , Qn+1

with length (Qi) = n + 1 − i and (2) a sequence of maps g1, g2, . . . , gn of
the form gi : z = 1/w, ζ = w2η + tαiw (αi ∈ C is a ‘root’ of Qi) such that
gi transforms Qi(w, η, t) to Qi+1(ζ, z, t).

(B) Let g1, g2, . . . , gn be a sequence of maps of the form gi : z = 1/w, ζ =
w2η + tαiw, where αi ∈ C is arbitrary. Then

(B.1) there exists a sequence of ascending polynomials P1 = P, P2, . . . , Pn+1

with length (Pi) = n − 1 + i such that gi transforms Pi(w, η, t) to
Pi+1(ζ, z, t), and

(B.2) there exists a sequence of stable polynomials R1 = R,R2, . . . , Rn+1

with length (Ri) = n (independent of i) such that gi transforms
Ri(w, η, t) to Ri+1(ζ, z, t).

Proof. We already showed (A) in Lemma 8.1.3, p145. We shall show (B.1).
By Lemma 12.1.1 (1), g transforms P = P1(w, η, t) to a polynomial P2(ζ, z, t)
such that P2(w, η, t) is an ascending polynomial. Next, again by Lemma 12.1.1
(1), g2 transforms P2(w, η, t) to a polynomial P3(ζ, z, t) such that P3(w, η, t)
is an ascending polynomial. Repeating this process, we obtain a sequence of
ascending polynomials P1, P2, . . . , Pn+1 in (B.1). Similarly, we can show (B.2)
by using Lemma 12.1.1 (3). �

The sequence Q1, Q2, . . . , Qn+1 together with g1, g2, . . . , gn in Lemma
12.1.2 (A) is called a descending sequence associated with the descend-
ing polynomial Q = Q1. Similarly, the sequence P1, P2, . . . , Pn+1 in (B.1)
(resp. R1, R2, . . . , Rn+1 in (B.2)) is called an ascending sequence (resp. stable
sequence) associated with the ascending polynomial P = P1 (resp. stable
polynomial R = R1) and the maps g1, g2, . . . , gn. From these sequences, we
may construct ‘deformation atlases’ DAP,n, DAQ,n and DAR,n of length n as
follows.

(i) DAP,n: for i = 1, 2, . . . , n,⎧⎪⎨⎪⎩
Hi : Pi(w, η, t) − s = 0
Hi : Pi+1(ζ, z, t) − s = 0
gi : the map in the ascending sequence.
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deformation deformation

deformation

X0;t

X

︸
︷︷

︸

n + 1

1 1 1 1

(1)

1

n + 1

X

︷
︸︸

︷

(2)

n 2 1

X0;t

1 1111

1 2 n − 1 n n + 1

X(3)

︸ ︷︷ ︸
n+1

︷
︸︸

︷

X0;t

n

1

1

1

n nn n n

n

n − 1

Fig. 12.1.1. Deformations (1), (2), (3) are respectively obtained from ascending,
descending, stable sequences of length n.
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(ii) DAQ,n: for i = 1, 2, . . . , n,⎧⎪⎨⎪⎩
Hi : Qi(w, η, t) − s = 0
Hi : Qi+1(ζ, z, t) − s = 0
gi : the map in the decending sequence.

(iii) DAR,n: for i = 1, 2, . . . , n,⎧⎪⎨⎪⎩
Hi : Ri(w, η, t) − s = 0
Hi : Ri+1(ζ, z, t) − s = 0
gi : the map in the stable sequence.

Let ΨP : MP → Δ×Δ† be the barking family obtained from the deformation
atlas DAP,n. Then the deformation from X := Ψ−1

P (0, 0) to X0,t := Ψ−1
P (0, t)

is described in Figure 12.1.1 (1). Similarly, let ΨQ : MQ → Δ × Δ† and
ΨR : MR → Δ × Δ† be the barking families obtained from the deformation
atlases DAQ,n and DAR,n respectively. Then the deformation from X :=
Ψ−1

Q (0, 0) to X0,t := Ψ−1
Q (0, t) is described in Figure 12.1.1 (2), and similarly

the deformation from X := Ψ−1
R (0, 0) to X0,t := Ψ−1

R (0, t) is described in
Figure 12.1.1 (3).

12.2 Technical preparation I

In this section, we prove some more results on ascending, descending, and
stable polynomials; we shall construct certain sequence of polynomials A

[k]
i

and maps g
[k]
i which constitute a ‘long sequence’, starting from some particular

polynomial A:

A = A
[1]
1

� g
[1]
1 �� A[1]

2

� g
[1]
2 �� · · · � g[1]

n �� A[1]
n+1

� g
[1]
n+1 �� A[2]

1

� g
[2]
1 �� · · ·

· · ·

· · · � g
[k−1]
n �� A[k−1]

n+1

� g
[k−1]
n+1 �� A[k]

1

� g
[k]
1 �� A[k]

2

� g
[k]
2 �� · · · � g

[k]
n �� A[k]

n+1

� g
[k]
n+1 �� A[k+1]

1

� g
[k+1]
1 �� · · ·

· · ·

· · · � g[N−1]
n �� A[N−1]

n+1
� g

[N−1]
n+1 �� A[N ]

1

� g
[N]
1 �� A[N ]

2

� g
[N]
2 �� · · · � g[N]

n �� A[N ]
n+1 = wu.

Proposition 12.2.1 Let l and u be positive integers such that u divides l,
and write l = Nu. Consider a polynomial A(w, η, t) = P l−u Ql where P = η
and Q = w

∏n
j=1(wη + tγj), γj ∈ C. Then for each k (k = 1, 2, . . . , N),

there exist

(i) a sequence of ascending polynomials P
[k]
1 , P

[k]
2 , . . . , P

[k]
n+1 with P

[1]
1 = P ,

(ii) a sequence of descending polynomials Q
[k]
1 , Q

[k]
2 , . . . , Q

[k]
n+1 with Q

[1]
1 = Q,
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(iii) a sequence of maps g
[k]
1 , g

[k]
2 , . . . , g

[k]
n of the form

g
[k]
i : z = 1

w, ζ = w2η + tα
[k]
i w for some α

[k]
i ∈ C,

and a sequence of maps g
[k]
n+1 : z = 1

w, ζ = w2η (k = 1, 2, . . . , N − 1)

such that setting

A
[k]
i := (P [k]

i )l−ku (Q[k]
i )l−(k−1)u, (k = 1, 2, . . . , N, i = 1, 2, . . . , n + 1),

then

(1) for i = 1, 2, . . . , n, the map g
[k]
i transforms A

[k]
i (w, η, t) to A

[k]
i+1(ζ, z, t),

whereas g
[k]
n+1 transforms A

[k]
n+1(w, η, t) to A

[k+1]
1 (ζ, z, t), and

(2) A
[N]

n+1 = wu.

Proof. We carry out the construction of sequences in (i), (ii), and (iii) induc-
tively. First of all, we construct sequences for k = 1.

Step 1 Take a descending sequence Q1, Q2, . . . , Qn+1 and g1, g2, . . . , gn as-
sociated with Q1 = Q. Next, take an ascending sequence P1, P2, . . . , Pn+1

associated with P1 := P and g1, g2, . . . , gn. Then Pi and Qi are respectively
of the forms

Pi = η

i−1∏
j=1

(wη+tβi, j), Qi = w

n+1−i∏
j=1

(wη+tγi, j) where βi, j , γi, j ∈ C.

Setting Ai := P l−u
i Q l

i , we have

An+1 = P l−u
n+1 Q l

n+1 =

⎡⎣ η

n∏
j=1

(wη + tβn+1, j)

⎤⎦l−u

wl

= wlηl−u

⎡⎣ n∏
j=1

(wη + tβn+1, j)

⎤⎦l−u

. (12.2.1)

We then take a map gn+1 : z = 1/w, ζ = w2η (see Remark 12.2.2 below for
another choice of gn+1). Since

wlηl−u

⎡⎣ n∏
j=1

(wη + tβn+1, j)

⎤⎦l−u

=
1

wl−2u
(w2η)l−u

⎡⎣ n∏
j=1

(
1
w

(w2η) + tβn+1, j

)⎤⎦l−u

,
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the map gn+1 transforms An+1 to zl−2u ζl−u
[ n∏

j=1

(zζ + tβn+1, j)
]l−u

, that is

zl−2u

⎡⎣ ζ
n∏

j=1

(zζ + tβn+1, j)

⎤⎦l−u

. (12.2.2)

Now we slightly change the notation to emphasize k = 1 (Step “1”). Instead
of Pi, Qi and gi, we write P

[1]
i , Q

[1]
i and g

[1]
i respectively. Also Ai is denoted

by A
[1]
i .

Step 2 We set P
[2]
1 := η and Q

[2]
1 := w

∏n
j=1(wη + tβn+1, j), where we note

that P
[2]
1 is an ascending polynomial of length 0 and Q

[2]
1 is a descending

polynomial of length n. Next we set A
[2]
1 := (P [2]

1 )l−2u(Q[2]
1 )l−u, that is

A
[2]
1 (ζ, z, t) = zl−2u

⎡⎣ ζ

n∏
j=1

(zζ + tβn+1, j)

⎤⎦l−u

.

Note that A
[2]
1 coincides with (12.2.2), and hence as we saw in Step 1, the map

g
[1]
n+1 (= gn+1) : z = 1/w, ζ = w2η transforms A

[1]
n+1(w, η, t) to A

[2]
1 (ζ, z, t).

We then repeat the process in Step 1. Namely, first we take the descending
sequence Q

[2]
1 , Q

[2]
2 , . . . , Q

[2]
n+1 and g

[2]
1 , g

[2]
2 , . . . , g

[2]
n associated with Q

[2]
1 , and

then we take the ascending sequence P
[2]
1 , P

[2]
2 , . . . , P

[2]
n+1 associated with P

[2]
1

and g
[2]
1 , g

[2]
2 , . . . , g

[2]
n . Setting

A
[2]
i := (P [2]

i )l−2u (Q[2]
i )l−u,

we have

A
[2]
n+1 = (P [2]

n+1)
l−2u (Q[2]

n+1)
l−u =

⎡⎣ η
n∏

j=1

(wη + tβ
[2]
n+1, j)

⎤⎦l−2u

wl−u

= wl−u ηl−2u

⎡⎣ n∏
j=1

(wη + tβ
[2]
n+1, j)

⎤⎦l−2u

.

Next we take g
[2]
n+1 : z = 1/w, ζ = w2η. Since

wl−u ηl−2u

⎡⎣ n∏
j=1

(wη + tβ
[2]
n+1, j)

⎤⎦l−2u

=
1

wl−3u
(w2η)l−2u

⎡⎣ n∏
j=1

(
1
w

(w2η) + tβ
[2]
n+1, j

) ⎤⎦l−2u

,
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the map g
[2]
n+1 transforms the polynomial A

[2]
n+1 to zl−3u ζl−2u

[ n∏
j=1

(zζ +

tβ
[2]
n+1, j)

]l−2u

, that is

zl−3u

⎡⎣ ζ

n∏
j=1

(zζ + tβ
[2]
n+1, j)

⎤⎦l−2u

. (12.2.3)

For Step 3, we begin with

P
[3]
1 := η, Q

[3]
1 := w

n∏
j=1

(wη+tβ
[2]
n+1, j) and A

[3]
1 := (P [3]

1 )l−3u(Q[3]
1 )l−2u.

Note that (12.2.3) coincides with A
[3]
1 , and as we showed above, g

[2]
n+1 : z =

1/w, ζ = w2η transforms A
[2]
n+1(w, η, t) to A

[3]
1 (ζ, z, t).

Step k Repeating this process, in Step k where k satisfies l−ku ≥ 0, we have
a polynomial:

A
[k]
i := (P [k]

i )l−ku(Q[k]
i )l−(k−1)u, (12.2.4)

where we note that P
[k]
n+1 is an ascending polynomial of length 0 and Q

[k]
n+1 is

a descending polynomial of length n.

Step N (final step) By assumption u divides l, and we write l = Nu.
Substituting i = n + 1, k = N and l = Nu in (12.2.4), we obtain the terminal
polynomial

A
[N]

n+1 = (Q
[N]

n+1)
u = wu.

Thus the sequences constructed above fulfill the desired properties, establish-
ing Proposition 12.2.1. �
Remark 12.2.2 (Another choice of maps) In Step k, we took a map
g
[k]
n+1 : z = 1/w, ζ = w2η. Instead, we may take another map g

[k]′

n+1 : z =
1/w, ζ = w2η + tβ

[k]
n+1, nw to construct a similar sequence to that in Proposi-

tion 12.2.1. We shall explain this for the case k = 1. Since

A
[1]
n+1 = wlηl−u

n∏
j=1

(wη + tβj)l−u

=
1

wl−2u
(w2η)l−u

n∏
j=1

[
1
w

(w2η) + tβj

]l−u

(12.2.1),

(where for brevity, we set βj := β
[1]
n+1, j), the map g

[1]′

n+1 : z = 1/w, ζ =

w2η + tβnw transforms A
[1]
n+1 to
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zl−2u

(
ζ − tβn

1
z

)l−u n∏
j=1

[
z

(
ζ − tβn

1
z

)
+ tβj

]l−u

= zl−2u

(
ζ − tβn

1
z

)l−u n∏
j=1

(zζ − tβn + tβj)l−u

= zl−2u

(
ζ − tβn

1
z

)l−u n−1∏
j=1

(zζ − tβn + tβj)l−u · (zζ)l−u

= zl−2uζl−u (zζ − tβn)l−u
n−1∏
j=1

(
zζ + t(βj − βn)

)l−u

= zl−2u

⎡⎣ ζ(zζ − tβn)
n−1∏
j=1

(
zζ + t(βj − βn)

) ⎤⎦l−u

.

We rewrite the last expression; setting

P
[2]
1

′
:= z and Q

[2]
1

′
:= ζ

n∏
j=1

(zζ + tβ′
j),

where β′
j := βj − βn (j = 1, 2, . . . , n − 1) and β′

n := −βn, then the last

expression is written as (P [2]
1

′
)l−2u(Q[2]

1

′
)l−u. Hence we may repeat the process

Step 2, Step 3,. . . in the proof of Proposition 12.2.1.

Now we slightly generalize Proposition 12.2.1; we start from more general
polynomial A, and we construct certain sequence of polynomials A

[k]
i and

maps g
[k]
i which constitute a ‘long sequence’ terminating at A

[N ]
n+1 = wu (wrη+

tδ
[N ]
n+1)

b, δ
[N ]
n+1 ∈ C:

A = A
[1]
1

� g
[1]
1 �� A[1]

2

� g
[1]
2 �� · · · � g[1]

n �� A[1]
n+1

� g
[1]
n+1 �� A[2]

1

� g
[2]
1 �� · · ·

· · ·
· · · � g

[k−1]
n �� A[k−1]

n+1

� g
[k−1]
n+1 �� A[k]

1

� g
[k]
1 �� A[k]

2

� g
[k]
2 �� · · · � g

[k]
n �� A[k]

n+1

� g
[k]
n+1 �� A[k+1]

1

� g
[k+1]
1 �� · · ·

· · ·
· · · � g

[N−1]
n �� A[N−1]

n+1
� g

[N−1]
n+1 �� A[N]

1
� g

[N]
1 �� A[N]

2
� g

[N]
2 �� · · · � g

[N]
n �� A[N]

n+1 = wu (wrη + tδ
[N]
n+1)

b.

A generalization of Proposition 12.2.1 is given as follows (when b = 0, the
following proposition reduces to Proposition 12.2.1).

Proposition 12.2.3 Let b, l, and u be positive integers such that u divides
l, and write l = Nu. Consider a polynomial A(w, η, t) = P l−uQlRb, where
P = η, Q = w

∏n
j=1(wη + tγj), (γj ∈ C), and R = wη + tδ, (δ ∈ C). Then for

each k (k = 1, 2, . . . , N), there exist
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(i) a sequence of ascending polynomials P
[k]
1 , P

[k]
2 , . . . , P

[k]
n+1 with P

[1]
1 = P ,

(ii) a sequence of descending polynomials Q
[k]
1 , Q

[k]
2 , . . . , Q

[k]
n+1 with Q

[1]
1 = Q,

(iii)a sequence of stable polynomials R
[k]
1 , R

[k]
2 , . . . , R

[k]
n+1 with R

[1]
1 = R,

(iv)a sequence of maps g
[k]
1 , g

[k]
2 , . . . , g

[k]
n of the form

g
[k]
i : z = 1

w, ζ = w2η + tα
[k]
i w for some α

[k]
i ∈ C,

and g
[k]
n+1 : z = 1

w, ζ = w2η (k = 1, 2, . . . , N − 1)

such that setting

A
[k]
i := (P

[k]
i )l−ku (Q

[k]
i )l−(k−1)u (R

[k]
i )b, (k = 1, 2, . . . , N, i = 1, 2, . . . , n + 1),

then

(1) for i = 1, 2, . . . , n, the map g
[k]
i transforms A

[k]
i (w, η, t) to A

[k]
i+1(ζ, z, t),

whereas g
[k]
n+1 transforms A

[k]
n+1(w, η, t) to A

[k+1]
1 (ζ, z, t), and

(2) writing R
[k]
i = wη + tδ

[k]
i where δ

[k]
i ∈ C, then A

[N]

n+1 = wu (wrη + tδ
[N]

n+1)
b.

Proof. First we take the sequences in Proposition 12.2.1: for k = 1, 2, . . . , N ,

• a sequence of ascending polynomials P
[k]
1 , P

[k]
2 , . . . , P

[k]
n+1 with P

[1]
1 = P ,

• a sequence of descending polynomials Q
[k]
1 , Q

[k]
2 , . . . , Q

[k]
n+1 with Q

[1]
1 = Q,

• a sequence of maps g
[k]
1 , g

[k]
2 , . . . , g

[k]
n , and g

[1]
n+1, g

[2]
n+1, . . . , g

[N−1]

n+1 .

Next, let R
[k]
1 , R

[k]
2 , . . . , R

[k]
n+1 be a sequence of stable polynomials (a stable

sequence) associated with R
[1]
1 := R and maps g

[k]
1 , g

[k]
2 , . . . , g

[k]
n+1. Since R

[1]
1 =

R has length 1, the stable polynomial R
[k]
i also has length 1 by Lemma 12.1.1

(3), and so we may write R
[k]
i = wη + tδ

[k]
i for some δ

[k]
i ∈ C. We then set

A
[k]
i = (P [k]

i )l−ku (Q[k]
i )l−(k−1)u (R[k]

i )b, k = 1, 2, . . . , N, i = 1, 2, . . . , n + 1.
(12.2.5)

By construction, A
[k]
i satisfies the property (1) in the assertion. We next show

(2). Substitute i = n + 1, k = N and l = Nd in (12.2.5), which yields

A
[N]

n+1 = (Q
[N]

n+1)
u (R

[N]

n+1)
b.

Since Q
[N]

n+1 = w and R
[N]

n+1 = wη + tδ
[N]

n+1, we have A
[N]

n+1 = wu(wη + tδ
[N]

n+1)
b,

confirming the property (2). �

12.3 Recursive construction I

In this section we apply the result in the previous section to give a ‘recursive’
construction of a complete propagation of DAe−1(lY, k) where Y is of type
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Cl and ne divides k. For the sake of brevity, we assume that k = ne (the
construction below is easily carried over to the general case by replacing the
parameter t with tk/ne). We set

a = me−1 − lne−1, b = me − lne, c = ne−1, d = ne

(hence k = d), and take α ∈ C such that αd + 1 = 0. Also we set u :=
a − (re − 1)b. Then an e-th propagation of DAe−1(lY, k) is given by (11.3.2),
p194, that is,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

He : waηb(wcηd + td)l − s = 0

H′
e : zl−u(zζ + tα)b

(
zd−1ζd +

d−1∑
i=1

dCi ti αizd−i−1ζd−i

)l

− s = 0

ge : z = 1
w, ζ = wreη − tαw.

(12.3.1)
and so

He+1 : ηl−u(wη + tα)b

(
wdηd−1 +

d−1∑
i=1

dCi ti αiwd−iηd−i−1

)l

− s = 0.

For the subsequent discussion, it is essential to express

He+1 : P lQl−uRb − s = 0,

where we set

P := η, R := wη + tα,

Q := wdηd−1 +
d−1∑
i=1

dCi ti wn−iηn−1−i = w
d−1∏
j=1

(wη + tβj),

and −β1,−β2, . . . ,−βd−1 are the solutions of xd−1 +
∑d−1

i=1 dCi xd−1−i = 0.
Note that P , Q, and R are respectively ascending, descending, and stable
polynomials, and all the assumptions of Proposition 12.2.3 are fulfilled.

With the above preparation, we now construct further propagations. To
avoid complicated notation, we first treat the case b = 0, and then the case
b ≥ 1.

Case 1: b = 0

We apply Proposition 12.2.1 to construct a complete propagation of He+1 as
follows. Write l = Nu, and for each k = 1, 2, . . . , N and i = 1, 2, . . . , d, we
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define ⎧⎪⎨⎪⎩
H[k]

i : (P [k]
i )l−ku (Q[k]

i )l−(k−1)u − s = 0

H[k]
i

′
: (P [k]

i+1)
l−ku (Q[k]

i+1)
l−(k−1)u − s = 0

g
[k]
i : the map defined in Proposition 12.2.1,

(12.3.2)

where

(i) for consistency with the notations of ascending and descending sequences,
we write H[1]

1 instead of He+1 etc. (this expression is also useful to grasp
the “periodicity” of the resulting deformation),

(ii) in the definition of H[k]
i , P

[k]
i means P

[k]
i (w, η, t), while in the definition of

H[k]
i

′
, P

[k]
i+1 means P

[k]
i+1(ζ, z, t), and

(iii)note that Q = Q
[1]
1 has length d−1, and the integer n in Proposition 12.2.1

corresponds to d − 1 in the present situation.

By Proposition 12.2.1 (1) and (2), the data (12.3.2) provides a complete prop-

agation of the deformation atlas DAe−1(lY, k) such that H[N ]
d

′
: ζu − s = 0.

Remark 12.3.1 When l = u = 1, this construction is nothing other than the
construction for the ripple type which we gave in §8.1, p144.

Finally, let Ψ : M → Δ × Δ† be the barking family obtained by patching
the complete propagation above, and then the deformation from X to X0,t :=
Ψ−1(0, t) is described in Figure 12.3.1.

Remark 12.3.2 When b = 0 in (12.3.1), we have He|s=0 : wa(wcηd + td)l =
0, a union of multiple curves wa = 0 and (wcηd + td)l = 0. The latter curve
admits a further factorization as follows: From the definition of type Cl, the
integer d (= ne) divides c (= ne−1), and so we may write c = d d′ for some
positive integer d′. Then

(wcηd + td)l =
(
(wd′

η)d + td
)l

=
d∏

j=1

(
wd′

η + te2π
√−1j/d

)l

.

Note that wd′
η+te2π

√−1j/d = 0 (t �= 0) is smooth. Therefore He|s=0 consists
of one irreducible component of multiplicity a and d irreducible components
of multiplicity l. See Figure 12.3.1.

Case 2: b ≥ 1

In this case, we apply Proposition 12.2.3 to construct a complete propagation
of the deformation atlas DAe−1(lY, k) as follows. Recall that u divides l by
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Step 1 Step 2 Step 3 Step 4 Step 5

l − u

l − u

l − u

l − 2u

l − 3u

l − 3u

l − 3u

l − 4u

l − 4u

l − 2u

l − 2u

l

l

l

︷
︸︸

︷

d

X0;t

a

l − 4u = u

deformation

m0 m5 m6 m7 m8 m9 m10 m12 m13m11m4m3m2m1 m14 m15X

Fig. 12.3.1. Recursive Construction I (b = 0): Deformation from X to X0,t for the
case e = 0, d = 3 and l = 5u. (Recall a = me−1 − lne−1, b = me − lne, d = ne

and u = a + b − reb.) In Step k (k = 1, 2, 3, 4, 5), there are exactly d irreducible
components of multiplicity l − ku in X0,t.

the definition of type Cl, and we write l = Nu. For k = 1, 2, . . . , N and
i = 1, 2, . . . , d, we define (see also the explanation subsequent to (12.3.2))⎧⎪⎪⎪⎨⎪⎪⎪⎩

H[k]
i : (P [k]

i )l−ku (Q[k]
i )l−(k−1)u (R[k]

i )b − s = 0

H[k]
i

′
: (P [k]

i+1)
l−ku (Q[k]

i+1)
l−(k−1)u (R[k]

i+1)
b − s = 0

g
[k]
i : the map defined in Proposition 12.2.3.

(12.3.3)

However (12.3.3) does not yet give a complete propagation; indeed by Propo-
sition 12.2.3 (2),

H[N ]
d : ζu(zζ + tδ)b − s = 0 where δ := δ

[N ]
d ∈ C.

To construct further propagations, we set r := r
[N+1]

1 , and define⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
H[N+1]

1 : wu(wη + δ)b − s = 0

H[N+1]
1

′
: z(r−1)b−uζb − s = 0

g
[N+1]
1 : z = 1

w, ζ = wrη + δwr−1.
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We assert that g
[N+1]
1 transforms H[N+1]

1 to H[N+1]
1

′
. In fact, since

wu(wη + tδ)b = wu

(
1

wr−1 (wrη) + tδ

)b

,

the map g
[N+1]
1 transforms H[N+1]

1 to

1
zu

(
zr−1

(
ζ − tδ

1
zr−1

)
+ tδ

)b

− s =
1
zu (zr−1ζ)b − s

= zb(r−1)−uζb − s,

which is nothing but the equation of H[N+1]
1

′
. (This computation is the same

as that in the construction of a complete propagation of type Bl.) Further

propagations of DAe−1(lY, k) are easy to construct; since H[N+1]
1

′
is the trivial

family of H
[N+1]
1

′
, we may propagate it trivially, and accomplish a complete

propagation of DAe−1(lY, k).

Remark 12.3.3 When b ≥ 1 and u ≤ b, we may compress A
[k]
i at the fac-

tor Q
[k]
i in the construction of waving sequences, which yields a non-recursive

construction of deformations; the resulting deformation does not possess pe-
riodicity.

Finally, let Ψ : M → Δ × Δ† be the barking family obtained by patching
the complete propagation above, and then the deformation from X to X0,t :=
Ψ−1(0, t) is described in Figure 12.3.2 (when b does not divide u) and Figure
12.3.3 (when b divides u; see also Remark 12.3.4 below).

Remark 12.3.4 If b divides u, we write u = b b′. Then we may express
H[N+1]

1 as (wb′+1η + tδwb′)b − s = 0. In fact,

wu(wη + tδ)b = (wb′)b(wη + tδ)b

= (wb′+1η + tδwb′)b.

Therefore ⎧⎪⎪⎪⎨⎪⎪⎪⎩
H[N+1]

1 : (wb′+1η + tδwb′)b − s = 0

H[N+1]
1

′
: ζb − s = 0

g
[N+1]
1 : z = 1

w, ζ = wb′+1η + tδwb′ .

Example 12.3.5 (The simplest example) Let X = m0Δ0 +m1Θ1 + · · ·+
mλΘλ be a branch such that mλ−2 = 2l + 1, mλ−1 = l + 1, and mλ = 1.
In this case, rλ−1 = 2 and rλ = l + 1. Let lY be a subbranch of X such that

Y = n0Δ0 + n1Θ1 + · · · + nλ−1Θλ−1 and nλ−2 = nλ−1 = 1.



12.3 Recursive construction I 223

mλ

mλ

undeformed

bl − u

l − u

l − u

l − 2u

l − 3u

l − 3u

l − 3u

l − 4u

l − 4u

l − 2u

l − 2u

l

b

deformation

m0 m5 m6 m7 m8 m9 m10 m12 m13m11m4m3m2m1 m14 m15 m16

a

l − 4u = u

Step 1 Step 2 Step 3 Step 4 Step 5

m17

m17

X0;t

X

l

l

Fig. 12.3.2. Recursive Construction I (b ≥ 1 and b does not divide u): Deformation
from X to X0,t for the case e = 0, d = 3 and l = 5u. (Recall a = me−1 − lne−1,
b = me − lne, d = ne and u = a + b − reb.) In Step k (k = 1, 2, 3, 4, 5), there are
exactly d irreducible components of multiplicity l − ku in X0,t.

(For instance, X = 5Δ0 +3Θ1 +Θ2, Y = Δ0 +Θ1 and l = 2.) It is easy to
check that Y is of type Cl. A complete propagation of DAλ−2(lY, k) is given
by the following data:⎧⎪⎪⎨⎪⎪⎩

Hλ−1 : wl+1η(wη + tk)l − s = 0

H′
λ−1 : (zζ − tk)ζl − s = 0

gλ−1 : z = 1
w, ζ = w2η + tkw,

⎧⎪⎪⎨⎪⎪⎩
Hλ : (wη − tk)wl − s = 0

H′
λ : ζ − s = 0

gλ : z = 1
w, ζ = wl+1η − tkwl.

(Note: For type Cl, in order to construct a complete propagation, we require
that ne divides k. In the present case, k may be an arbitrary positive integer,
because ne(= nλ−1 = 1) always divides k.) The deformation from X to X0,t

is shown in Figure 12.3.4.
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bl − u

l − u

l − u

l − 2u

l − 3u

l − 3u

l − 3u

l − 4u

l − 4u

l − 2u

l − 2u

l︷
︸︸

︷

d

b

X0;t

deformation

m0 m5 m6 m7 m8 m9 m10 m12 m13m11m4m3m2m1 m14 m15X m16

a

l − 4u = u

Step 1 Step 2 Step 3 Step 4 Step 5

l

l

Fig. 12.3.3. Recursive Construction I (b ≥ 1 and b divides u): Deformation from X
to X0,t for the case e = 0, d = 3 and l = 5u. (Recall a = me−1− lne−1, b = me− lne,
d = ne and u = a + b − reb.) See also Remark 12.3.4. In Step k (k = 1, 2, 3, 4, 5),
there are exactly d irreducible components of multiplicity l − ku in X0,t.

m0 − ln0 m1 − ln1 m2 − ln2
ll + 1 1me−2

−lne−2

l

1

X0;t

deformation

m0 m1 m2 me−2 2l + 1 l + 1 1 X

Fig. 12.3.4. The simplest deformation of type Cl
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12.4 Technical preparation II

In this section we will give another recursive construction of a complete prop-
agation of DAe−1(lY, k) where Y is of type Cl and ne divides k. We will use
two kinds of special polynomials; the first one is a stable polynomial

R(w, η, t) =
n∏

j=1

(wη + tδj), δj ∈ C

and another one is defined as follows. Fix positive integers l and u such that
l ≥ u. For a positive integer i satisfying l − iu ≥ 0, a polynomial Si(w, η) =
wl−(i−1)uηl−iu is called a shrinking polynomial, and we say that Si(ζ, z) is an
interchanged shrinking polynomial.

Lemma 12.4.1 (1) A map g : z = 1/w, ζ = w2η transforms a shrinking
polynomial Si(w, η) = wl−(i−1)uηl−iu to an interchanged shrinking poly-
nomial

Si+1(ζ, z) = zl−(i+1)uζl−iu.

(2) When u divides l, write l = Nu where N is a positive integer. Then
SN−1(w, η) = w2uηu and SN (w, η) = wu.

Proof. First we show (1). Since

wl−(i−1)uηl−iu =
1

w2(l−iu)−l+(i−1)u
(w2η)l−iu,

the map g transforms Si(w, η) = wl−(i−1)uηl−iu to z 2(l−iu)−l+(i−1)uζ l−iu

which is equal to Si+1(ζ, z) = zl−(i+1)uζl−iu. The assertion (2) is clear from
the definition of SN−1 and SN . �

We next construct a long sequence of certain polynomials A
[k]
i together

with certain maps g
[k]
i , starting from a particular polynomial A = A

[1]
1 :

A = A
[1]
1

� g
[1]
1 �� A[1]

2

� g
[1]
2 �� · · · � g

[1]
N−1 �� A[1]

N

� g
[1]
N �� A[2]

1

� g
[2]
1 �� · · ·

· · ·

· · · � g
[k−1]
N−1 �� A[k−1]

N

� g
[k−1]
N �� A[k]

1

� g
[k]
1 �� A[k]

2

� g
[k]
2 �� · · · � g

[k]
N−1 �� A[k]

N

� g
[k]
N �� A[k+1]

1

� g
[k+1]
1 �� · · ·

· · ·

· · · �g
[d−1]
N−1 �� A[d−1]

N

� g
[d−1]
N �� A[d]

1

� g
[d]
1 �� A[d]

2

� g
[d]
2 �� · · · � g

[d]
N−1 �� A[d]

N = wu.
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Proposition 12.4.2 Let l and u be positive integers such that u divides l, and
write l = Nu. Consider a polynomial A(w, η, t) = S T l, where S := wlηl−u

is a shrinking polynomial and T =
∏d

j=1(wη + tβj), (βj ∈ C) is a stable
polynomial. Then there exist

(i) a sequence of shrinking polynomials S1 = S, S2, . . . , SN ,
(ii) a sequence of stable polynomials T [1] = T, T [2], . . . , T [d],
(iii) a sequence of maps g

[k]
1 , g

[k]
2 , . . . , g

[k]
N−1 (k = 1, 2, . . . , d); all of them are

z = 1/w, ζ = w2η, and a sequence of maps g
[k]
N (k = 1, 2, . . . , d − 1)

where g
[k]
N : z = 1/w, ζ = w2η + tα

[k]
N w for some α

[k]
N ∈ C

such that setting A
[k]
i := Si (T [k])l, (k = 1, 2, . . . , d, i = 1, 2, . . . , N), then

(1) for i = 1, 2, . . . , N−1, the map g
[k]
i transforms A

[k]
i (w, η, t) to A

[k]
i+1(ζ, z, t),

whereas g
[k]
N transforms A

[k]
N (w, η, t) to A

[k+1]
1 (ζ, z, t), and

(2) A
[d]
N = wu.

Proof. We set Si = wl−(i−1)uηl−iu, (i = 1, 2, . . . , N) and

T [k] =
d+1−k∏

j=1

(wη + tβ
[k]
j ), (k = 1, 2, . . . , d),

where we define β
[k]
j ∈ C inductively by setting β

[1]
j := βj , and then by a

recursive formula

β
[k+1]
j := β

[k]
j − β

[k]
d+1−k, j = 1, 2, . . . , d − k.

Also we set

g
[k]
i : z = 1/w, ζ = w2η (k = 1, 2 . . . , d, i = 1, 2, . . . , N − 1), and

g
[k]
N : z = 1/w, ζ = w2η + tβ

[k]
d+1−kw (k = 1, 2 . . . , d − 1).

We then consider polynomials A
[k]
i := Si (T [k])l, (k = 1, 2, . . . , d, i = 1, 2, . . . , N),

that is,

A
[k]
i = wl−(i−1)u ηl−iu

⎡⎣ d+1−k∏
j=1

(wη + tβ
[k]
j )

⎤⎦l

.

Since SN = wu (Lemma 12.4.1) and T [d] = 1, we have A
[d]
N = wu, confirming

(2).
We next show (1). Note that g

[k]
i : z = 1/w, ζ = w2η (i = 1, 2, . . . , N − 1)

transforms (a) Si(w, η) to Si+1(ζ, z) by Lemma 12.4.1, and (b) T [k](w, η, t) to
T [k](ζ, z, t) because T [k] is a stable polynomial. Thus g

[k]
i (i = 1, 2, . . . , N − 1)

transforms A
[k]
i (w, η, t) to A

[k]
i+1(ζ, z, t). Finally we show the remaining part of

(1) which insists that the map g
[k]
N : z = 1/w, ζ = w2η + tβ

[k]
d+1−kw transforms
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A
[k]
N (w, η, t) to A

[k+1]
1 (ζ, z, t). For brevity, we show this only for k = 1 (the

other case is shown by a similar computation). Since

A
[1]
N (w, η, t) := SN (T [1])l = wu

d∏
j=1

(wη + tβ
[1]
j )l = wu

d∏
j=1

(
1
w

w2η + tβ
[1]
j

)l

,

the map g
[1]
N : z = 1/w, ζ = w2η + tβ

[1]
d w transforms A

[1]
N to

1
zu

d∏
j=1

[
z

(
ζ − t

β
[1]
d

z

)
+ tβ

[1]
j

]l

=
1
zu

d∏
j=1

[
zζ + t(β[1]

j − β
[1]
d )

]l

=
1
zu

d−1∏
j=1

[
zζ + t(β[1]

j − β
[1]
d )

]l

· (zζ)l

= zl−uζl
d−1∏
j=1

[
zζ + t(β[1]

j − β
[1]
d )

]l

.

We set β
[2]
j := β

[1]
j − β

[1]
d , and then the last expression is written as

zl−uζl
d−1∏
j=1

(zζ + tβ
[2]
j )l,

which equals A
[2]
1 (ζ, z, t) = S1 (T [2])l where

S1(ζ, z) = zl−uζl and T [2](ζ, z, t) =
d−1∏
j=1

(zζ + tβ
[2]
j ).

This confirms that g
[1]
N transforms A

[1]
N to A

[2]
1 , and we establish the proposi-

tion. �
We slightly generalize Proposition 12.4.2; starting from more general poly-

nomial A = A
[1]
1 , we construct a long sequence of certain polynomials A

[k]
i and

certain maps g
[k]
i , which terminates at A

[d]
N = wu(wη + tδ[d])b, δ[d] ∈ C:

A = A
[1]
1

� g
[1]
1 �� A[1]

2

� g
[1]
2 �� · · · � g

[1]
N−1 �� A[1]

N

� g
[1]
N �� A[2]

1

� g
[2]
1 �� · · ·

· · ·

· · · � g
[k−1]
N−1 �� A[k−1]

N

� g
[k−1]
N �� A[k]

1

� g
[k]
1 �� A[k]

2

� g
[k]
2 �� · · · � g

[k]
N−1 �� A[k]

N

� g
[k]
N �� A[k+1]

1

� g
[k+1]
1 �� · · ·

· · ·

· · · �g
[d−1]
N−1 �� A[d−1]

N

� g
[d−1]
N �� A[d]

1

� g
[d]
1 �� A[d]

2

� g
[d]
2 �� · · · �g

[d]
N−1 �� A[d]

N = wu(wη + tδ[d])b.

When b = 0, the following proposition reduces to Proposition 12.4.2.
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Proposition 12.4.3 Let b, l, and u be positive integers such that u di-
vides l. Write l = Nu where N is a positive integer. Consider a polynomial
A(w, η, t) = S T l Rb, where S := wlηl−u, T =

∏d
j=1(wη + tβj), (βj ∈ C), and

R := wη + tδ, (δ ∈ C). Then there exist

(i) a sequence of shrinking polynomials S1 = S, S2, . . . , SN ,
(ii) a sequence of stable polynomials T [1] = T, T [2], . . . , T [d],
(iii) a sequence of stable polynomials R[1] = R,R[2], . . . , R[d],
(iv) a sequence of maps g

[k]
1 , g

[k]
2 , . . . , g

[k]
N−1 (k = 1, 2, . . . , d); all of them are

z = 1/w, ζ = w2η, and a sequence of maps g
[k]
N (k = 1, 2, . . . , d − 1)

where g
[k]
N : z = 1/w, ζ = w2η + tα

[k]
N w for some α

[k]
N ∈ C

such that setting A
[k]
i := Si (T [k])l(R[k])b, (k = 1, 2, . . . , d, i = 1, 2, . . . , N),

then

(1) for i = 1, 2, . . . , N−1, g
[k]
i transforms A

[k]
i (w, η, t) to A

[k]
i+1(ζ, z, t), whereas

g
[k]
N transforms A

[k]
N (w, η, t) to A

[k+1]
1 (ζ, z, t), and

(2) writing R[k] = wη + tδ[k] where δ[k] ∈ C, then A
[d]
N = wu(wη + tδ[d])b.

Proof. First take the sequences in Proposition 12.4.2:

• a sequence of shrinking polynomials S1 = S, S2, . . . , SN ,
• a sequence of stable polynomials T [1] = T, T [2], . . . , T [d],
• a sequence of maps g

[k]
1 , g

[k]
2 , . . . , g

[k]
N−1 (k = 1, 2, . . . , d), and

g
[k]
N (k = 1, 2, . . . , d − 1).

Recall that T [k] =
∏d+1−k

j=1 (wη + tβ
[k]
j ); we defined β

[k]
j ∈ C inductively by

setting β
[1]
j := βj , and then by a recursive formula

β
[k+1]
j := β

[k]
j − β

[k]
d+1−k, j = 1, 2, . . . , d − k.

We next set R[k] := wη + tγ[k], where γ[k] ∈ C is inductively defined by setting
γ[1] := γ, and then by a recursive formula

γ[k+1] := γ[k] − β
[k]
d+1−k, j = 1, 2, . . . , d − k.

Then it is easy to check that polynomials

A
[k]
i := Si (T [k])l(R[k])b (k = 1, 2, . . . , d, i = 1, 2, . . . , N)

satisfy the desired properties. �

12.5 Recursive construction II

We now explain another recursive construction of a complete propagation of
the deformation atlas DAe−1(lY, k) where Y is of type Cl and ne divides k.
For the sake of brevity, we assume k = ne; the construction below is easily
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carried over to the general case by replacing the parameter t by tk/ne . As
before, we set

a = me−1 − lne−1, b = me − lne, c = ne−1, d = ne

(hence k = d), and take α ∈ C such that αd+1 = 0. Also we set u := a+b−reb.
Then as in (11.3.2), p194, an e-th propagation of DAe−1(lY, k) is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

He : waηb(wcηd + td)l − s = 0

H′
e : zl−u(zζ + tα)b

(
zd−1ζd +

d−1∑
i=1

dCi ti αi zd−i−1 ζd−i

)l

− s = 0

ge : z = 1
w, ζ = wreη − tαw.

Thus

He+1 : ηl−u(wη + tα)b

(
wdηd−1 +

d−1∑
i=1

dCi ti αi wd−i ηd−i−1

)l

− s = 0.

In the previous recursive construction, we expressed He+1 : A(w, η, t)−s = 0
where we set A := P l−uQlRb and

P = η, Q = wdηd−1 +
d−1∑
i=1

dCi ti αi wd−i ηd−i−1, R = wη + tα.

They are respectively ascending, descending, and stable polynomials; we note
that Q = w

∏d−1
j=1(wη + tβj) where βj (j = 1, 2, . . . , d− 1) are the solutions of

Xd−1 +
d−1∑
i=1

dCi ti αi Xd−i−1 = 0.

The factorization A = P l−u Ql Rb played an essential role in the previ-
ous recursive construction. For another recursive construction, it is essen-
tial to choose another factorization A = S T lRb where S := wlηl−u and
T :=

∏d
j=1(wη + tβj), while R is the same as above. Note that S and T

are respectively shrinking and stable polynomials, and of course R is a stable
polynomial.

Now we go back to the construction of propagations of DAe−1(lY, k); we
have already constructed its e-th propagation. We give further propagations;
we separate into two cases: b = 0 and b ≥ 1.

Case 1: b = 0

In this case A = S T l, and by Proposition 12.4.2, the following data gives a
complete propagation: for k = 1, 2, . . . , d and i = 1, 2, . . . , N − 1,⎧⎪⎨⎪⎩

H[k]
i : Si(w, η)T [k](w, η, t)l − s = 0

H[k]
i

′
: Si+1(ζ, z)T [k](ζ, z, t)l − s = 0

g
[k]
i : the map in Proposition 12.4.2,
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where for consistency with the notation in Proposition 12.4.2, we write H[1]
1

instead of He+1, and so on (cf. the explanation following (12.3.2)). This ex-
pression is also useful to grasp the “periodicity” of deformations. We note
that in the final step d, by Proposition 12.4.2 (2), we have

H[d]′

N−1 : ζu − s = 0.

Remark 12.5.1 Although Θ[1]
1 is a wild component of lY , g

[1]
1 is just the

transition function (no deformation). This peculiar phenomenon occurs for
the case l ≥ 2, while it does not occur for l = 1.

Let Ψ : M → Δ × Δ† be the barking family obtained from the complete
propagation above: the deformation from X to X0,t := Ψ−1(0, t) is described
in Figure 12.5.1.

Case 2: b ≥ 1

In this case A = S T lRb, and the construction of a complete propagation uses
the sequences in Proposition 12.4.3: for k = 1, 2, . . . , d and i = 1, 2, . . . , N −1,
we set ⎧⎪⎨⎪⎩

H[k]
i : Si(w, η)T [k](w, η, t)l R[k](w, η, t)b − s = 0

H[k]
i

′
: Si+1(ζ, z)T [k](ζ, z, t)l R[k](ζ, z, t)b − s = 0

g
[k]
i : the map in Proposition 12.4.3.

l

l − 4u
= u

l − 4u
= u

l − 4u
= u

deformation

X m0 m5 m6 m7 m8 m9 m10 m12 m13m11m4m3m2m1 m14 m15

Step 1 Step 2 Step 3

l︷
︸︸

︷

d

l − u

l − 2u l − 2u

l − 3u

l − 2u

l − 3u

X0;t

a

l

l

l

l − u l − u

l − 3u

Fig. 12.5.1. Recursive Construction II (b = 0): Deformation from X to X0,t for
the case e = 0, d = 3 and l = 5u. (Recall a = me−1 − lne−1, b = me − lne, d = ne

and u = a + b − reb.) In Step k (k = 1, 2, 3), there are d − k irreducible components
of multiplicity l in X0,t.
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By Proposition 12.4.3 (1) and (2), the map g
[k]
i transforms H[k]

i to H[k]
i

′
,

and

H[d]′

N−1 : ζu(zζ + tδ[d])b − s = 0.

Further propagations are constructed as follows: for simplicity we set r := r
[d]
N ,

and define ⎧⎪⎪⎪⎨⎪⎪⎪⎩
H[d]

N : wu(wη + tδ[d])b − s = 0

H[d]
N

′
: z(r−1)b−uζb − s = 0

g
[d]
N : z = 1

w, ζ = wrη + tδ[d]wr−1.

Since H[d]
N

′
: z(r−1)b−uζb − s = 0 is the trivial family of H

[d]
N

′
, we can trivially

propagate it to achieve a complete propagation. (This is exactly the situation
we encountered in the construction of a complete propagation for type Bl.)

Finally, let Ψ : M → Δ × Δ† be the barking family obtained from the
complete propagation above, and then the deformation from X to X0,t :=
Ψ−1(0, t) is described in Figure 12.5.2 (when b does not divide u) and Figure
12.5.3 (when b divides u; see also Remark 12.5.2 below).

l

l − 4u
= u

l − 4u
= u

l − 4u
= u

m0 m5 m6 m7 m8 m9 m10 m12 m13m11m4m3m2m1 m14 m15 m16

deformation

Step 1 Step 2 Step 3

mλ

mλ

undeformed

l

l − u

l − 2u

l − 3u

l − 2u

l − 3u

l − 2u

l − 3u

b

ba

l

l

l

l − u l − u

m17

m17

Fig. 12.5.2. Recursive Construction II (b ≥ 1 and b does not divide u): Deformation
from X to X0,t for the case e = 0, d = 3 and l = 5u. (Recall a = me−1 − lne−1,
b = me − lne, d = ne and u = a + b − reb.) In Step k (k = 1, 2, 3), there are d − k
irreducible components of multiplicity l in X0,t.
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l

l − 4u
= u

l − 4u
= u

l − 4u
= u

m0 m5 m6 m7 m8 m9 m10 m12 m13m11m4m3m2m1 m14 m15 m16

deformation

Step 1 Step 2 Step 3

l︷
︸︸

︷

d

l − u

l − 2u

l − 3u

l − 2u

l − 3u

l − 2u

l − 3u

b

b

X0;t

X

a

l

l

l

l − u l − u

Fig. 12.5.3. Recursive Construction I (b ≥ 1 and b divides u): Deformation from X
to X0,t for the case e = 0, d = 3 and l = 5u. (Recall a = me−1− lne−1, b = me− lne,
d = ne and u = a + b − reb.) See also Remark 12.5.2. In Step k (k = 1, 2, 3), there
are d − k irreducible components of multiplicity l in X0,t.

Remark 12.5.2 If b divides u, we write u = b b′. Then (see Remark 12.3.4,
p222) ⎧⎪⎪⎪⎨⎪⎪⎪⎩

H[d]
N : (wb′+1η + tδ[d]wb′)b − s = 0

H[d]
N

′
: ζb − s = 0

g
[d]
N : z = 1

w, ζ = wb′+1η + tδ[d]wb′ .

12.6 Examples of non-recursive deformations of type Cl

Let Y be a subbranch of type Cl. We take a complete propagation of the defor-
mation atlas DAe−1(lY, k), obtained by a non-recursive construction (namely,
by the general method in Chapter 11). Let Ψ : M → Δ × Δ† be the barking
family obtained by patching this complete propagation; then the deformation
from X to X0,t := Ψ−1(0, t) does not possess periodicity, as seen from Figure
12.6.1 (b = 0), Figure 12.6.2 (when b does not divide u) and Figure 12.6.3
(when b divides u).
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deformation

m0 m5 m6 m7 m8 m9 m10 m12 m13m11m4m3m2m1 m14 m15X

l − 4u
= u

l − 4u
= u

l − 3u

l − 4u
= u

l − 3u

l − u

l − u

l − u

l − 2u

l︷
︸︸

︷

d

X0;t

a

l − 3u

l − 2u

l − 2u

‘Step 1’ ‘Step 2’ ‘Step 3’ ‘Step 4’ ‘Step 5’

l

l

Fig. 12.6.1. Non-recursive Construction (b = 0): Deformation from X to X0,t for
the case e = 0, d = 3 and l = 5u. (Recall a = me−1 − lne−1, b = me − lne, d = ne

and u = a + b− reb.) ‘Steps 1, 2’ are obtained by the recursive construction I, while
‘Steps 3, 4, 5’ are obtained by the recursive construction II.

l − 4u
= u

l − 4u
= u

l − 3u

l − 4u
= u

mλ

mλ

b

b

deformation

m0 m5 m6 m7 m8 m9 m10 m12 m13m11m4m3m2m1 m14 m15 m16

l − u

l − u

l − u

l − 2u

l

a

‘Step 1’ ‘Step 2’

l − 3u

l − 2u

l − 2u

l − 3u

m17

m17

undeformed‘Step 3’ ‘Step 4’ ‘Step 5’

l

l

Fig. 12.6.2. Non-recursive Construction (b ≥ 1 and b does not divide u): Deforma-
tion from X to X0,t for the case e = 0, d = 3 and l = 5u. (Recall a = me−1 − lne−1,
b = me − lne, d = ne and u = a + b− reb.) ‘Steps 1, 2’ are obtained by the recursive
construction I, while ‘Steps 3, 4, 5’ are obtained by the recursive construction II.
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l − 4u
= u

l − 4u
= u

l − 3u

l − 4u
= u

b

b

deformation

m0 m5 m6 m7 m8 m9 m10 m12 m13m11m4m3m2m1 m14 m15X m16

l − u

l − u

l − u

l − 2u

l︷
︸︸

︷

d

X0;t

a

‘Step 1’ ‘Step 2’

l − 3u

l − 2u

l − 2u

l − 3u

‘Step 3’ ‘Step 4’ ‘Step 5’

l

l

Fig. 12.6.3. Non-recursive Construction (b ≥ 1 and b divides u): Deformation
from X to X0,t for the case e = 0, d = 3 and l = 5u. (Recall a = me−1 − lne−1,
b = me − lne, d = ne and u = a + b− reb.) ‘Steps 1, 2’ are obtained by the recursive
construction I, while ‘Steps 3, 4, 5’ are obtained by the recursive construction II.
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Types Al, Bl, and Cl Exhaust all Cases

13.1 Results

Let X = m0Δ0 +m1Θ1 + · · ·+mλΘλ be a branch. Assume that Y = n0Δ0 +
n1Θ1 + · · · + neΘe is a subbranch of X, and l is a positive integer satisfying
lY ≤ X, i.e. lni ≤ mi for i = 0, 1, . . . , e. We recall a deformation atlas
DAe−1(lY, k). We first define a sequence of integers pi (i = 0, 1, . . . , λ + 1)
inductively by {

p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.

Then pλ+1 > pλ > · · · > p1 > p0 = 0 (6.2.4), p105. Let f(z) be a non-
vanishing holomorphic function on a domain {z ∈ C : |z| < ε}, and we set

fi = f(wpi−1ηpi) and f̂i = f(zpi+1ζpi) (see (6.2.7), p106).
(13.1.1)

With these notations, the deformation atlas DAe−1(lY, k) is given as follows:
for i = 1, 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tkfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tkf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

In Theorem 10.0.15, we showed that if Y is of type Al, Bl, or Cl such that
if Y is of type Cl the positive integer k is divisible by ne, then DAe−1(lY, k)
admits a complete propagation. Remember that Y is of type Al, Bl, or Cl

according to

Type Al lY ≤ X and Y is dominant tame (i.e. ne−1
ne

≥ re),

Type Bl lY ≤ X, me = l and ne = 1, or

Type Cl lY ≤ X, ne = rene − ne−1, and u divides l where

u := (me−1 − lne−1) − (re − 1)(me − lne).
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At first glance, it seems that besides these types, there may be another
type of a subbranch Y such that for some k, DAe−1(lY, k) admits a complete
propagation. However this is false. In fact we will show the following result.

Theorem 13.1.1 Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a subbranch of a
branch X, and let l be a positive integer satisfying lY ≤ X. Then DAe−1(lY, k)
admits a complete propagation if and only if Y is of type Al, Bl, or Cl such
that if Y is of type Cl the positive integer k is divisible by ne.

13.2 Preparation

The remainder of this chapter is devoted to the proof of Theorem 13.1.1. It is
enough to demonstrate that if DAe−1(lY, k) admits a complete propagation,
then Y must be one of types Al, Bl, and Cl such that if Y is of type Cl

the positive integer k is divisible by ne; we already showed the converse in
Theorem 10.0.15. First of all, we investigate when DAe−1(lY, k) admits an
e-th propagation with ge : z = 1/w, ζ = wreη (the transition function of
Ne).

Lemma 13.2.1 Suppose that Y is dominant. If the transition function ge :
z = 1/w, ζ = wreη transforms He to some hypersurface, then Y is of type
Al, and the e-th propagation of DAe−1(lY, k) is given by⎧⎪⎨⎪⎩

He : wme−1−lne−1ηme−lne(wne−1ηne + tkfe)l − s = 0
H′

e : zme+1−lne+1ζme−lne(zne+1ζne + tkf̂e)l − s = 0
ge : the transition function z = 1/w, ζ = wreη of Ne,

(13.2.1)

where fe and f̂e are non-vanishing holomorphic functions defined by (13.1.1).

Proof. The equation He : wme−1−lne−1ηme−lne(wne−1ηne + tkfe)l − s = 0 is
rewritten as

1
w re ( me − l ne )− ( me−1 − l ne−1 )

(
wreη

)me − l ne

×
[

1
w re ne −ne−1

(
w reη

)ne + tkfe

]l

− s = 0.

From me+1 = reme − me−1, we have

re(me − lne) − (me−1 − lne−1) = me+1 + l (ne−1 − rene),

and so

He :
1

w me+1 + l ( ne−1 − re ne)

(
wreη

)me − l ne

×
[

1
w re ne −ne−1

(
w reη

)ne + tkfe

]l

− s = 0.
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Therefore the map ge : z = 1/w, ζ = wre transforms He to

z me+1 + l ( ne−1 − re ne) ζ me − l ne

[
z re ne −ne−1 ζne + tkf̂e

]l

− s = 0. (13.2.2)

We set q := ne−1−rene (the slant of Y ), and then the left hand side of (13.2.2)
is

z me+1 + l q ζ me − l ne

[
1
z q ζne + tk f̂e

]l

− s,

that is,

z me+1 ζ me − l ne

[
ζne + tk zq f̂e

]l

− s. (13.2.3)

When q ≥ 0, this is clearly a polynomial (with no fractional terms). On the
other hand, when me+1+lq < 0, the expansion of (13.2.3) contains a fractional
term

tkl zme+1+lq ζme−lne f̂ l
e

where note that f̂e is non-vanishing. Thus in the case me+1 + lq < 0, (13.2.3)
cannot define a hypersurface, and consequently if DAe−1(lY, k) admits an
e-th propagation with ge : z = 1/w, ζ = wreη, then Y must be tame, where
recall that (see Lemma 5.5.7, p94)

“Y is tame ⇐⇒ q ≥ 0” and “Y is wild ⇐⇒ 0 > me+1 + q”.

Moreover since Y is dominant by assumption, Y is dominant tame, equiva-
lently of type Al. The remainder of the assertion — the e-th propagation is
given by (13.2.1) — is clear. �

Consequently, we obtain the following.

Corollary 13.2.2 Suppose that Y is dominant. If DAe−1(lY, k) admits an
e-th propagation such that ge is the transition function z = 1/w, ζ = wreη of
Ne, then Y is of type Al.

The converse is also valid.

Lemma 13.2.3 If Y is of type Al, then DAe−1(lY, k) does not admit such an
e-th propagation that ge is a nontrivial deformation of the transition function
z = 1/w, ζ = wreη of Ne.

Proof. We show this by contradiction. Suppose that there exists an e-th
propagation of DAe−1(lY, k) such that ge is a nontrivial deformation of
z = 1/w, ζ = wreη. First we consider the case where fe is a constant function,
say fe ≡ 1, and ge is of the standard form:

ge : z =
1
w

, ζ = wreη + α1(t)w + α2(t)w2 + · · · + αre−1(t)wre−1,

where αi(t) is holomorphic in t with αi(0) = 0 (see §5.5.1, p98 for the
“standard form”). By a similar computation to the proof of Lemma 13.2.1,
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ge transforms Fe = wme−1−lne−1ηme−ne(wne−1ηne + tk)l to

Ge = zme+1

(
ζ − α1(t)

1
z
− α2(t)

1
z2 − · · · − αre−1(t)

1
zre−1

)me−lne

×
[(

ζ − α1(t)
1
z
− α2(t)

1
z2 − · · · − αre−1(t)

1
zre−1

)ne

+ tkzq

]l

,

where q := ne−1 − rene (note that q ≥ 0, because Y is of type Al). Then it
is easy to see that Ge, after expansion, contains a fractional term (a contra-
diction!). Similarly, we can deduce a contradiction for the case where fe is
not a constant function and ge is not of the standard form. (The argument is
essentially the same although the computations become messy.) �

In terms of Lemma 13.2.3, when we investigate whether or not DAe−1(lY, k)
admits an e-th propagation such that ge is a nontrivial deformation of
z = 1/w, ζ = wreη, we may assume that Y is not of type Al, in other
words, either (1) Y is wild or (2) Y is tame and not dominant (recall that
type Al is dominant tame).

To simplify the subsequent discussion, we assume that fe ≡ 1; the argu-
ment below works without assuming fe ≡ 1, but the existence of higher terms
in fe causes complication of computation. We remark that when Y is (i) wild
or (ii) tame and not proportional (i.e. mini−1 − mi−1ni �= 0 for 1 ≤ i ≤ e),
it follows from Proposition 8.1, p143 that after coordinate change, we have
fe ≡ 1.

Now we shall investigate when DAe−1(lY, k) admits an e-th propagation
with a nontrivial deformation ge of z = 1/w, ζ = wreη. Setting

a = me−1 − lne−1, b = me − lne, c = ne−1, d = ne,

we express He : waηb(wcηd + tk)l − s = 0. We divide into two cases b = 0
and b ≥ 1.

13.3 Case 1: b = 0

In this case, the following result holds.

Proposition 13.3.1 Suppose that b = 0. If DAe−1(lY, k) admits an e-th
propagation such that ge is a nontrivial deformation of z = 1/w, ζ = wreη,
then it is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

He : wa(wcηd + tk)l − s = 0

H′
e : zql−a

[
ζ

∏d−1
j=1(zqζ + thβj)

]l

− s = 0

ge : z = 1
w, ζ = wreη − thαwq



13.3 Case 1: b = 0 239

where α ∈ C satisfies αd +1 = 0, and −β1, −β2, . . . , −βd−1 are the solutions
of an equation

xd−1 + dC1 α xd−2 + · · · + dCi αi xd−i−1 + · · · + dCd−1 αd−1 = 0,

and q and h are positive integers satisfying 1 ≤ q ≤ re − 1 and

(1) qd = red − c, k = dh, ql − a ≥ 0 and

(2)

{
ql − a < l if d = 1
q = 1 if d ≥ 2.

If furthermore DAe−1 admits a complete propagation, then (i) d = 1 or (ii)
d ≥ 2 and a divides l.

For a moment, assuming this proposition, we derive an important conse-
quence. First recall notation:

a = me−1 − lne−1, b = me − lne, c = ne−1, d = ne,

Then in the above statement, according to whether (i) d = 1 or (ii) d ≥ 2
and a divides l, the subbranch Y is of type Bl or Cl. In fact, when (i) d = 1,
together with b = 0 (the assumption of Case 1), we have ne = 1 and me = l.
So Y is of type Bl. On the other hand, when (ii) d ≥ 2 and a divides l, Y is of
type Cl, which is seen as follows. Since q = 1 by (2) of Proposition 13.3.1, we
have d = red− c by (1) of Proposition 13.3.1. Setting u := a− (re − 1)b, then
from b = 0, we have u = a (that is, a is u in the definition of type Cl). By
assumption, a divides l, and hence u divides l. Therefore all the conditions of
type Cl are fulfilled, and so Y is of type Cl. Finally we note that by k = dh
of (1) of Proposition 13.3.1, the integer ne(= d) divides k.

Together with Corollary 13.2.2, we obtain the following result.

Corollary 13.3.2 Suppose that b = 0. If DAe−1(lY, k) admits a complete
propagation, then Y is of type Al, Bl, or Cl such that if Y is of type Cl the
positive integer k is divisible by ne.

Now we return to Proposition 13.3.1; to prove it, we require some prepa-
ration.

Step 1. When does ge transform Fe to some polynomial?

We need the following technical lemma.

Lemma 13.3.3 Suppose that b = 0. A nontrivial deformation ge of the tran-
sition function z = 1/w, ζ = wreη transforms Fe = wa(wcηd + tk)l to some
polynomial if and only if ge is of the form z = 1/w, ζ = wreη − thαwq such
that α ∈ C satisfies αd + 1 = 0 and positive integers q and h satisfy

qd = red − c, k = dh, ql − a ≥ 0. (13.3.1)
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In this case, ge transforms Fe to a polynomial Ge = z ql−a
[
ζ

∏d−1
j=1

(
zq ζ +

thβj

) ]l
, where −β1,−β2, . . . ,−βd−1 are the solutions of an equation

xd−1 + dC1 α xd−2 + · · · + dCi αi xd−i−1 + · · · + dCd−1 αd−1 = 0.

Proof. For simplicity we set r = re. First we show the assertion for ge of the
standard form:

ge : z =
1
w

, ζ = wrη + α1(t)w + α2(t)w2 + · · · + αr−1(t)wr−1,

where αi(t) is holomorphic in t with αi(0) = 0. Rewriting

Fe = wa(wcηd + tk)l = wa

(
1

wrd−c
(wrη)d + tk

)l

, (13.3.2)

we see that ge transforms Fe to

Ge =
1
za

[
zrd−c

(
ζ − α1(t)

1
z
− α2(t)

1
z
− · · · − αr−1(t)

1
zr−1

)d

+ tk

]l

.

It is easy to check that as a necessary condition that the expansion of Ge is a
polynomial (with no fractional terms), the map ge can contain only one term
of deformation, say, αq(t)wq and moreover the Taylor expansion of αq(t) must
consist of a single term; so ge is of the form z = 1/w, ζ = wrη− thαwq where
α ∈ C. Then ge transforms Fe to

Ge =
1
za

[
zrd−c

(
ζ + αth

1
zq

)d

+ tk

]l

.

Here we note that rd − c = qd must hold (otherwise the expansion of Ge

contains a fractional term tkl/za). When rd − c = qd holds, we have

Ge =
1
za

[
zqd

(
ζ + αth

1
zq

)d

+ tk

]l

.

However the expansion of Ge still contains a fractional term 1
za (tdhαd + tk)l.

This term must vanish, from which we derive a condition that dh = k and
α ∈ C satisfies αd + 1 = 0. If this is the case, we may further rewrite:

Ge =
1
za

[
zqd

(
ζ + αth

1
zq

)d

+ tk

]l

=
1
za

[(
zqdζd + · · · + thiαi

dCiz
q(d−i)ζd−i + · · ·

+th(d−1)αd−1
dCd−1z

qζ + tdhαd
)

+ tk
]l
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=
1
za

[
zqdζd + · · · + thiαi

dCiz
q(d−i)ζd−i + · · ·

+th(d−1)αd−1
dCd−1z

qζ +
(
tdhαd + tk

)]l

=
1
za

[
zqdζd + · · · + thiαi

dCiz
q(d−i)ζd−i + · · · + th(d−1)αd−1

dCd−1z
qζ

]l

= zql−a
[
zq(d−1)ζd+· · ·+thiαi

dCiz
q(d−i−1)ζd−i+· · ·+th(d−1)αd−1

dCd−1ζ
]l

.

(In the fourth equality we used “dh = k and αd +1 = 0”.) Finally we simplify
the last expression. Write

zq(d−1)ζd + · · · + thiαi
dCiz

q(d−i−1)ζd−i + · · · + th(d−1)αd−1
dCd−1ζ

= ζ
d−1∏
j=1

(zqζ + thβj),

where −β1,−β2, . . . ,−βd−1 are the solutions of an equation

xd−1 + dC1 α xd−2 + · · · + dCi αi xd−i−1 + · · · + dCd−1 αd−1 = 0.

Then we have

Ge = zql−a

⎡⎣ζ

d−1∏
j=1

(
zqζ + thβj

)⎤⎦l

,

which is a polynomial precisely when ql−a ≥ 0. Therefore Ge is a polynomial
if and only if (13.3.1) holds:

qd = red − c, k = dh, ql − a ≥ 0.

This proves the assertion. (Similarly we can show the assertion for ge of a
non-standard form; letting ge transform Fe to Ge, investigate the condition
where the fractional terms of Ge vanish). �

From Lemma 13.3.3, if DAe−1(lY, k) admits an e-th propagation such that
ge is a nontrivial deformation of z = 1/w, ζ = wrη, then it must be of the
form ⎧⎪⎨⎪⎩

He : wa(wcηd + tk)l − s = 0
H′

e : Ge(z, ζ, t) − s = 0
ge : z = 1/w, ζ = wrη − thαwq,

(13.3.3)

where Ge = zql−a[ζ
∏d−1

j=1(zqζ + thβj)]l. We point out that (13.3.3) is merely
a “candidate” of an e-th propagation, and does not necessarily give an e-th
propagation. To be sufficient, an inequality degz Ge(z, ζ, 0) < degζ Ge(z, ζ, 0)
must hold because Ge(z, ζ, 0) = zme+1ζme and me+1 < me (recall that the
sequence of multiplicities strictly decreases).
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Step 2. When does degz Ge(z, ζ, 0) < degζ Ge(z, ζ, 0) hold?

For the polynomial Ge = zql−a
[
ζ

∏d−1
j=1 (zq ζ + thβj)

]l, we shall investigate
when degz Ge(z, ζ, 0) < degζ Ge(z, ζ, 0) holds, equivalently when (13.3.3) in-
deed gives an e-th propagation of DAe−1(lY, k). We separate into two cases
d = 1 and d ≥ 2.

Case 1.1 d = 1

In this case, Ge(z, ζ, t) = zql−aζl (no terms in t), so Ge(z, ζ, 0) = zql−aζl.
Thus we have (me+1,me) = (ql − a, l), and the following result holds.

Lemma 13.3.4 Suppose that d = 1. If ql − a < l, then DAe−1(lY, k) admits
an e-th propagation, and it is given by (13.3.3) :⎧⎪⎨⎪⎩

He : waηb(wcη + tk)l − s = 0
H′

e : zql−aζl − s = 0
ge : z = 1/w, ζ = wrη − thαwq.

Case 1.2 d ≥ 2

We further separate into two subcases q = 1 and q ≥ 2.

q = 1: Lemma 13.3.5 In this case, DAe−1(lY, k) admits an e-th propaga-
tion and it is given by (13.3.3):⎧⎪⎨⎪⎩

He : waηb(wcηd + tk)l − s = 0
H′

e : Ge(z, ζ, t) − s = 0
ge : z = 1/w, ζ = wrη − thαw,

where Ge = zl−a
[
ζ

∏d−1
j=1 (z ζ + thβj)

]l. Moreover DAe−1(lY, k) admits
a complete propagation if and only if a divides l.

Proof. Since Ge(z, ζ, 0) = zl−a+l(d−1)ζld = zld−aζld, we have (me+1,me) =
(ld − a , ld). Firstly we shall confirm that me+1 < me, i.e. ld − a < ld.
Note that the condition d = red−c in (13.3.1), where q = 1 in the present
case, implies that (i) c divides d and (ii) c/d < re. Hence by Proposition
9.4.8, p171, we have a > 0. (Note u := a − (re − 1)b in that proposition
is equal to a in the present case by the assumption b = 0.) In particular
ld − a < ld, and so me+1 < me, proving the first half of the statement.
Next we set Fe+1 := waP l−a

1 P l
2, where P1 := wη and P2 :=

∏d−1
j=1(wη +

thβj). Then He+1 : Fe+1(w, η, t) − s = 0. Since Fe+1 is a waving poly-
nomial satisfying the assumption of Theorem 11.5.5, p202, the deforma-
tion atlas DAe−1(lY, k) admits a complete propagation if and only if a
divides l. �
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q ≥ 2: Lemma 13.3.6 In this case, DAe−1(lY, k) does “not” admit an e-th
propagation.

Proof. Supposing that DAe−1(lY, k) admits an e-th propagation, we de-
duce a contradiction. By Lemma 13.3.3, an e-th propagation must be of
the form ⎧⎪⎪⎨⎪⎪⎩

He : waηb(wcηd + tk)l − s = 0

H′
e : Ge(z, ζ, t) − s = 0

ge : z = 1/w, ζ = wrη − thαwq,

where Ge = zql−a
[
ζ

∏d−1
j=1

(
zq ζ + thβj

) ]l. Substituting t = 0 in Ge, we
have

Ge(z, ζ, 0) = zql−a
[
ζ

d−1∏
j=1

(zqζ)
]l

= z ql−a+ql(d−1) ζ ld.

Thus (me+1,me) =
(
ql−a+ ql(d−1) , ld

)
. To deduce a contradiction, we

note

ql(d − 1) ≥ 2l(d − 1) by q ≥ 2

= ld + l(d − 2)

≥ ld by d ≥ 2.

Hence
ql(d − 1) ≥ ld. (13.3.4)

On the other hand, ql − a ≥ 0 by (13.3.1). Combined with (13.3.4), we
have

me+1 = (ql − a) + ql(d − 1) ≥ ld = me.

This contradicts that me+1 < me. Thus DAe−1(lY, k) does not admit an
e-th propagation. �

The lemmas in Case 1.1 and Case 1.2 together confirm Proposition 13.3.1.

13.4 Case 2: b ≥ 1

In this case we show the following result.

Proposition 13.4.1 Suppose that b ≥ 1. According to whether d = 1 or
d ≥ 2, the following statements hold:

• d = 1: DAe−1(lY, k) admits “at most” an e-th propagation, and does
not admit a complete propagation. (As we will see below, if DAe−1(lY, k)
admits an e-th propagation, then λ ≥ e + 1.)



244 13 Types Al, Bl, and Cl Exhaust all Cases

• d ≥ 2: If DAe−1(lY, k) admits an e-th propagation, then it is given by⎧⎪⎪⎨⎪⎪⎩
He : wa ηb (wc ηd + tk)l − s = 0

H′
e : z l−(a+b−reb) (z ζ + thα)b

[
ζ

∏d−1
j=1 (z ζ + thβj)

]l

− s = 0

ge : z = 1/w, ζ = wreη − thαw,

(13.4.1)
where α ∈ C satisfies αd + 1 = 0, and −β1, −β2, . . . , −βd−1 are the
solutions of an equation

xd−1 + dC1 α xd−2 + · · · + dCi αi xd−i−1 + · · · + dCd−1 αd−1 = 0,

and the following relations hold

d = red − c, k = dh, l ≥ a + b − reb. (13.4.2)

If moreover DAe−1(lY, k) admits a complete propagation, then u := a+b−
reb divides l. (Note: In this case, together with d = red− c, the subbranch
Y is of type Cl. Also note that by k = dh of (13.4.2), the integer ne(= d)
divides k.)

Together with Corollary 13.2.2, this proposition yields the following result.

Corollary 13.4.2 Suppose that b ≥ 1. If DAe−1(lY, k) admits a complete
propagation, then Y is of type Al or Cl such that if Y is of type Cl the positive
integer k is divisible by ne (see “Note” in the above proposition).

Step 1. When does ge transform Fe to some polynomial Ge?

To prove Proposition 13.4.1, we need the following lemma.

Lemma 13.4.3 Suppose that b ≥ 1. A nontrivial deformation ge of the
transition function z = 1/w, ζ = wreη transforms a polynomial Fe =
waηb(wcηd + tk)l to some polynomial if and only if ge is of the form z =
1/w, ζ = wreη − thαwq such that α ∈ C satisfies αd + 1 = 0 and the positive
integers q and h satisfy

qd = red − c, k = dh, ql − qb − a + reb ≥ 0. (13.4.3)

If this is the case, ge transforms Fe to a polynomial

Ge = z q l− q b− a + re b (zqζ + thα)b

⎡⎣ ζ
d−1∏
j=1

(zq ζ + thβj)

⎤⎦l

,

where −β1, −β2, . . . , −βd−1 are the solutions of an equation

xd−1 + dC1 α xd−2 + · · · + dCi αi xd−i−1 + · · · + dCd−1 αd−1 = 0.
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Proof. As in the proof of Lemma 13.3.3, if ge transforms Fe to some polyno-
mial, it is necessary that ge has the form z = 1/w, ζ = wreη − thαwq. For
brevity we set r := re. Since

Fe = waηb(wcηd + tk)l = wa−rb(wrη)b

(
1

wrd−c
(wrη)d + tk

)l

,

the map ge : z = 1/w, ζ = wrη − thαwq transforms Fe to

Ge(z, ζ, t) =
1

za−rb

(
ζ + thα

1
zq

)b
[

zrd−c

(
ζ + αth

1
zq

)d

+ tk

]l

.

By the same argument as in the proof of Lemma 13.3.3, a necessary condition
for Ge being a polynomial is given by rd− c = qd, k = dh and αd + 1 = 0.
If this is the case, we have

Ge =
1

za−rb

(
ζ + thα

1
zq

)b
[

zqd

(
ζ + thα

1
zq

)d

+ tk

]l

.

The inside the brackets admits the following expansion:

zqd

(
ζ + thα

1
zq

)d

+ tk

= zqd

{
ζd + · · · + dCi ζd−i

(
thα

1
zq

)i

+ · · · +
(

thα
1
zq

)d
}

+ tk

=
{

zqd ζd + · · · + thi
dCi αizq(d−i) ζd−i + · · ·

+ th(d−1)
dCd−1 αd−1 zq ζ + thd αd

}
+ tk

= zqd ζd + · · · + thi
dCi αi zq(d−i) ζd−i + · · · + th(d−1)

dCd−1 αd−1 zq ζ,

where in the last equality, we used tdhαd + tk = 0 following from k = dh and
αd + 1 = 0. Thus Ge equals

1
za−rb

(
ζ + thα

1
zq

)b

×
[
zqdζd + · · · + thi

dCi αi zq(d−i) ζd−i + · · · + th(d−1)
dCd−1 αd−1 zqζ

]l

=
1

za−rb

(
ζ + thα

1
zq

)b

zql

×
[
zq(d−1)ζd + · · · + thi

dCiα
izq(d−i−1)ζd−i + · · · + th(d−1)

dCd−1α
d−1ζ

]l

= z(ql−qb)−(a−rb) (zqζ + thα)b

×
[
zq(d−1) ζd + · · · + thi

dCiα
i zq(d−i−1)ζd−i + · · ·+ th(d−1)

dCd−1αd−1 ζ
]l

.
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So Ge is a polynomial precisely when (ql − qb) − (a − rb) ≥ 0. Therefore ge

transforms Fe = waηb(wcηd + tk)l to some polynomial Ge if and only if ge has
the form z = 1/w, ζ = wrη − thαwq such that α ∈ C satisfies αd + 1 = 0 and
the positive integers q and h satisfy (13.4.3):

qd = rd − c, k = dh, (ql − qb) − (a − rb) ≥ 0.

Finally, we write

zq(d−1)ζd + · · · + thi
dCi αi zq(d−i−1) ζd−i + · · · + th(d−1)

dCd−1 αd−1 ζ

= ζ

d−1∏
j=1

(zqζ + thβj),

where −β1, −β2, . . . , −βd−1 are the solutions of an equation

xd−1 + dC1 α xd−2 + · · · + dCi αi xd−i−1 + · · · + dCd−1 αd−1 = 0.

Then ge transforms Fe to

Ge = zql−qb−a+rb (zqζ + thα)b

⎡⎣ ζ

d−1∏
j=1

(zq ζ + thβj)

⎤⎦l

.

This completes the proof of our assertion. �

Step 2. When does degz Ge(z, ζ, 0) < degζ Ge(z, ζ, 0) hold?

By Lemma 13.4.3, if DAe−1(lY, k) admits an e-th propagation, then it must
be of the form ⎧⎪⎨⎪⎩

He : waηb(wcηd + tk)l − s = 0
H′

e : Ge(z, ζ, t) − s = 0
ge : z = 1/w, ζ = wreη − thαwq,

where Ge = zql−qb−a+reb (zqζ + thα)b
[
ζ

∏d−1
j=1 (zq ζ + thβj)

]l. However this
does not necessarily gives an e-th propagation. In order that the above data
gives an e-th propagation, noting that Ge(z, ζ, 0) = zme+1ζme , an inequality
degz Ge(z, ζ, 0) < degζ Ge(z, ζ, 0) must hold (recall that the sequence of multi-
plicities strictly decreases). We now investigate when this holds, and moreover
when a complete propagation of DAe−1(lY, k) is possible, separately for two
cases d = 1 and d ≥ 2.

Case 2.1 d = 1

In this case we show that DAe−1(lY, k) does not admit a complete prop-
agation. The proof is quite involved; DAe−1(lY, k) possibly admits an e-th
propagation, however, in which case no (e + 1)-st propagation is possible.
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When d = 1,

Ge = z q l− q b− a + re b (zqζ + thα)b ζl = z q l− q b− a + re bζl (zqζ + thα)b,

where ql − qb − a + reb ≥ 0 (a condition that Ge is a polynomial). Putting
t = 0 in Ge, we have Ge(z, ζ, 0) = zql−a+reb ζl+b. Hence me+1 = ql − a + reb
and me = l + b. Thus if ql−a+ reb < l + b, then DAe−1(lY, k) admits an e-th
propagation, given by⎧⎪⎪⎨⎪⎪⎩

He : waηb (wcηd + tk)l − s = 0

H′
e : z q l− q b−a + re b ζl (zqζ + thα)b − s = 0

ge : z = 1/w, ζ = wreη − thαwq.

(13.4.4)

However we claim (in what follows, λ is the length of the branch X):

Lemma 13.4.4 (1) λ ≥ e + 1 and (2) no (e + 1)-st propagation is possible
(and thus DAe−1(lY, k) does not admit a complete propagation).

The proof of this lemma is rather technical, and we leave it to §13.6, p249.

Case 2.2. d ≥ 2

In this case

Ge = z (ql−qb)−(a−reb) (zqζ + thα)b

⎡⎣ ζ

d−1∏
j=1

(zqζ + thβj)

⎤⎦l

.

We investigate when an inequality degz Ge(z, ζ, 0) < degζ Ge(z, ζ, 0) holds, to
determine when an e-th propagation of DAe−1(lY, k) is possible. We separate
into two cases q = 1 and q ≥ 2.

q = 1: Lemma 13.4.5 In this case, DAe−1(lY, k) admits an e-th propaga-
tion and it is given by⎧⎪⎨⎪⎩

He : waηb(wcηd + tk)l − s = 0
H′

e : Ge(z, ζ, t) − s = 0
ge : z = 1/w, ζ = wreη − thαw,

(13.4.5)

where Ge(z, ζ, t) = z l−(a+b−reb) (zζ + thα)b
[
ζ

∏d−1
j=1 (zζ + thβj)

]l

. Fur-
thermore DAe−1(lY, k) admits a complete propagation if and only if
u := a + b − reb divides l.

Proof. Since

Ge(z, ζ, 0) = z l−(a+b−reb)+b+l(d−1) ζ b+ld = z reb+ld−a ζ b+ld,
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we have me+1 = reb + ld − a and me = b + ld, and thus

me − me+1 = a − reb + b. (13.4.6)

We claim that a−reb+b > 0. In fact, recall that d = red−c (13.4.3), where
q = 1 in the present case; in particular (i) c divides d and (ii) c/d < re.
Hence by Proposition 9.4.8, p171, setting u := a + b− reb, we have u > 0.
Thus the right hand side of (13.4.6) is positive; me > me+1. Therefore
(13.4.5) gives an e-th propagation of DAe−1(lY, k).
Next we write Fe+1 = wuP l−u

1 P l
2Q

b, where P1 = wη, P2 =
∏d−1

j=1(wη +
thβj), and Q = wη+thα. Then He+1 : Fe+1(w, η, t)−s = 0. Since Fe+1 is
a waving polynomial satisfying the assumption of Theorem 11.5.5, p202,
the deformation atlas DAe−1(lY, k) admits a complete propagation if and
only if u divides l. �

q ≥ 2: Lemma 13.4.6 In this case, DAe−1(lY, k) does “not” admit an e-th
propagation.

Proof. We verify this by contradiction. Suppose that DAe−1(lY, k) admits
an e-th propagation. Then by Lemma 13.4.3, it must be of the form⎧⎪⎨⎪⎩

He : waηb(wcηd + tk)l − s = 0
H′

e : Ge(z, ζ, t) − s = 0
ge : z = 1/w, ζ = wreη − thαwq,

where Ge = z (q l− q b)− (a− re b) (zqζ+thα)b
[
ζ

∏d−1
j=1 (zq ζ+thβj)

]l

. Putting
t = 0, we have

Ge(z, ζ, 0) = z q l− q b− (a− re b) (zqζ)b
[
ζ zq(d−1) ζd−1

]l

= z (q l− q b− a + re b) + q b + l q (d− 1) ζ b + l d.

Thus me+1 = (ql− qb−a+ reb)+ qb+ lq(d− 1) and me = b+ ld. We then
claim me+1 > me. To see this, we note

lq(d − 1) ≥ 2l(d − 1) by q ≥ 2
= ld + (ld − 2l)
≥ ld by d ≥ 2.

Hence
lq(d − 1) ≥ ld. (13.4.7)

On the other hand, we have ql − qb − a + reb ≥ 0 (a condition in Lemma
13.4.3 ensuring that Ge is a polynomial) and qb > b (by q ≥ 2). Hence,
with lq(d − 1) ≥ ld (13.4.7), we obtain

me+1 = (ql − qb − a + reb) + qb + lq(d − 1) > b + ld = me,

that is, me+1 > me. This is a contradiction, and therefore for the case
q ≥ 2, DAe−1(lY, k) does not admit an e-th propagation. �

The lemmas in Case 2.1 and Case 2.2 together give Proposition 13.4.1.
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13.5 Conclusion

Corollary 13.3.2, p239 and Corollary 13.4.2, p244 together yield the following
result.

Proposition 13.5.1 If DAe−1(lY, k) admits a complete propagation, then Y
is of type Al, Bl, or Cl such that if Y is of type Cl the positive integer k is
divisible by ne.

We already showed the converse (Theorem 10.0.15, p177), and thus we estab-
lish the main result of this chapter:

Theorem 13.5.2 Let lY be a subbranch of a branch X, and write Y =
n0Δ0 +n1Θ1 + · · ·+neΘe. Then DAe−1(lY, k) admits a complete propagation
if and only if Y is of type Al, Bl, or Cl such that if Y is of type Cl the positive
integer k is divisible by ne.

13.6 Supplement: Proof of Lemma 13.4.4

Let X = m0Δ0 +m1Θ1 + · · ·+mλΘλ be a branch. Assume that Y = n0Δ0 +
n1Θ1 + · · · + neΘe is a subbranch of X, and l is a positive integer satisfying
lY ≤ X, i.e. lni ≤ mi for i = 0, 1, . . . , e. Suppose that the deformation atlas
DAe−1(lY, k) admits an e-th propagation. We set

a = me−1 − lne−1, b = me − lne, c = ne−1, d = ne,

and then the e-th propagation must be of the form (13.4.4):⎧⎪⎨⎪⎩
He : waηb(wcηd + tk)l − s = 0
H′

e : Ge(z, ζ, t) − s = 0
ge : z = 1/w, ζ = wreη − thαwq,

where Ge := z q l− q b− a + re b ζl (zq ζ + th α)b and

ql − qb − a + reb ≥ 0. (13.6.1)

(The last inequality is a condition that Ge is a polynomial.) However, it turns
out that further propagations fail; the aim of this section is to give a proof of
Lemma 13.4.4 which insists: (In what follows, λ is the length of the branch
X.)

Suppose that b ≥ 1 and d = 1. Then (1) λ ≥ e + 1 and (2) an (e + 1)-st
propagation of DAe−1(lY, k) fails (and thus DAe−1(lY, k) does not admit a
complete propagation).

We first show (1). Since Ge(z, ζ, 0) = zql−a+reb ζl+b, we have me+1 = ql −
a + reb. We claim that me+1 > 0. Indeed, from (13.6.1), we have me+1 =
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ql − a + reb ≥ bq > 0. In particular λ ≥ e + 1, proving (1). We next show (2),
which requires some preparation. We set

Fe+1(w, η, t) := Ge(η, w, t) = wl η q l− q b− a + re b (w ηq + thα)b.

For brevity we write b′ := ql − qb − a + reb; then Fe+1 = wlηb′(wηq + thα)b,
and the inequality (13.6.1) is simply written as

b′ ≥ 0. (13.6.2)

We need the following technical lemma.

Lemma 13.6.1 If a (possibly trivial) deformation ge+1 of the transition
function z = 1/w, ζ = wr′

η, where r′ := re+1, transforms Fe+1 =
wlηb′(wηq + thα)b to some polynomial, then ge+1 is of the form z = 1/w, ζ =
wr′

η − α′th
′
wq′

where α′ ∈ C and q′ is an integer satisfying

1 ≤ q′ ≤ r′ − 1, (r′ − q′)b′ − l ≥ 0. (13.6.3)

In this case, ge+1 transforms Fe+1 to

Ge+1 = z(r′−q′)b′−l (zq′
ζ + th

′
α′)b′

[
zq(r′−q′)−1(zq′

ζ + th
′
α′)q + th

′
α

]b

.

Proof. By a similar argument to the proof of Lemma 13.3.3, we see that ge

must be of the form z = 1/w, ζ = wr′
η − α′th

′
wq′

for some positive integer
h′ and q′ (1 ≤ q′ ≤ r′ − 1). Since

Fe+1 =
1

wr′b′−l
(wr′

η)b′
[

1

wqr′−1
(wr′

η)q + thα

]b

,

the map ge+1 : z = 1/w, ζ = wr′
η − α′th

′
wq′

transforms Fe+1 to

Ge+1 = zr′b′−l

(
ζ + th

′
α′ 1

zq′

)b′ [
zqr′−1

(
ζ + th

′
α′ 1

zq′

)q

+ thα

]b

= z(r′−q′)b′−l
(
zq′

ζ + th
′
α′)b′

[
zq(r′−q′)−1

(
zq′

ζ + th
′
α′)q + thα

]b

.

Here we note that the factor
(
zq′

ζ+th
′
α′)b′

[
zq(r′−q′)−1

(
zq′

ζ+th
′
α′)q+thα

]b

,
after expansion, does not contain fractional terms because

q′ ≥ 1, b′ ≥ 0 by (13.6.2)
q(r′ − q′) − 1 by q ≥ 1 and r′ − q′ ≥ 1
b ≥ 1.

Therefore noting that α �= 0,
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Ge+1 = z(r′−q′)b′−l
(
zq′

ζ + th
′
α′)b′

[
zq(r′−q′)−1(zq′

ζ + th
′
α′)q + thα

]b

is a polynomial precisely when the exponent of the first factor is nonnegative,
i.e. (r′− q′)b′− l ≥ 0. Therefore ge transforms Fe+1 to some polynomial Ge+1

if and only if (13.6.3) is satisfied. This proves the assertion. �
Now we can show (2) of Lemma 13.4.4: DAe−1(lY, k) does not admit an

(e+1)-st propagation. By Lemma 13.6.1, if DAe−1(lY, k) admits an (e+1)-st
propagation, then it must be of the form⎧⎪⎨⎪⎩

He+1 : wlηb′(wηq + thα)b − s = 0
H′

e+1 : Ge+1(z, ζ, t) − s = 0
ge+1 : z = 1/w, ζ = wr′

η − th
′
α′wq′

,

(13.6.4)

where Ge+1 = z(r′−q′)b′−l
(
zq′

ζ + th
′
α′)b′

[
zq(r′−q′)−1(zq′

ζ + th
′
α′)q + thα

]b

and
1 ≤ q′ ≤ r′ − 1, (r′ − q′)b′ − l ≥ 0. (13.6.5)

However we claim: The data (13.6.4) does “not” give an (e + 1)-st propaga-
tion of the deformation atlas DAe−1(lY, k). We prove this by contradiction.
Setting Ge+1(z, ζ, 0) = zme+2ζme+1 , we shall show that me+2 ≥ me+1 which
contradicts that the sequence of multiplicities strictly decreases. To see this,
put t = 0 in Ge+1, then we have

me+2 =
[
(r′−q′)b′− l

]
+q′b′ +b

[
q(r′−q′)−1

]
+bqq′, me+1 = b′ +qb.

Hence

me+2 − me+1 =
[
(r′ − q′)b′ − l

]
+ (q′ − 1)b′ + b

[
q(r′ − q′) − 1

]
+ bq(q′ − 1).

Note that me+2−me+1 ≥ 0 because each term in me+2−me+1 is nonnegative:[
(r′ − q′)b′ − l

] ≥ 0 by (13.6.5)

(q′ − 1)b′ ≥ 0 by q′ ≥ 1 and b′ ≥ 0 (13.6.2)

b
[
q(r′ − q′) − 1

] ≥ 0 by b ≥ 1, q ≥ 1, and r′ − q′ ≥ 1 (13.6.3)

bq(q′ − 1) ≥ 0 by b ≥ 1, q ≥ 1, and q′ ≥ 1.

Thus me+2 ≥ me+1. But this contradicts that me+2 < me+1.



14

Construction of Deformations
by Bunches of Subbranches

Thus far, we treated a deformation atlas associated with one subbranch. In this
chapter we consider a deformation atlas associated with a set of subbranches.

14.1 Propagation sequences

Let X = m0Δ0 + m1Θ1 + · · · + mλΘλ be a branch. Recall that the sequence
m := (m0,m1, . . . , mλ) satisfies

(1) m0 > m1 > · · · > mλ > 0, and
(2) ri := mi−1 + mi+1

mi
(i = 1, 2, . . . , λ − 1) and rλ := mλ−1

mλ
are integers

greater than 1.

For a subbranch Y = n0Δ0 +n1Θ1 + · · ·+neΘe, we associated a deformation
atlas DAe−1(Y, d) as follows. We first define a sequence of integers pi (i =
0, 1, . . . , λ + 1) inductively by{

p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.

Then pλ+1 > pλ > · · · > p1 > p0 = 0 (6.2.4), p105. Let f(z) be a non-
vanishing holomorphic function on a domain {z ∈ C : |z| < ε}, and we set

fi = f(wpi−1ηpi) and f̂i = f(zpi+1ζpi) (see (6.2.7), p106).
(14.1.1)

Then the deformation atlas DAe−1(Y, d) is given as follows: for i = 1, 2, . . . ,
e − 1, ⎧⎪⎨⎪⎩

Hi : wmi−1−ni−1ηmi−ni(wni−1ηni + tdfi) − s = 0
H′

i : zmi+1−ni+1ζmi−ni(zni+1ζni + tdf̂i) − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.
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Before proceeding, we recall terminology; the multiplicity sequence n =
(n0, n1, . . . , ne) of Y satisfies

ni−1 + ni+1

ni
= ri (i = 1, 2, . . . , e − 1),

where for e = 0 or 1, this condition is empty. For a subbranch Y ′ =
n0Δ0 + n1Θ1 + · · · + ne′Θe′ , a subbranch Y = n0Δ0 + n1Θ1 + · · · + neΘe

(e < e′) is said to be contained in Y ′. Accordingly, n = (n0, n1, . . . , ne) is said
to be contained in n′ = (n0, n1, . . . , ne′). By a dominant sequence contain-
ing a multiplicity sequence n, we mean a multiplicity sequence which has the
maximal length among all multiplicity sequences containing n. A subbranch
with a dominant (multiplicity) sequence is also called dominant. We classified
dominant subbranches into two classes “tame” and “wild”. As we showed in
Lemma 5.5.7 p94, setting q = ne−1 − rene (the slant of Y ), then we have the
following equivalences:

Y is tame ⇐⇒ q ≥ 0,

Y is wild ⇐⇒ 0 > me+1 + q,

Here if e = λ, we set mλ+1 = 0 by convention. More generally, a (not nec-
essarily dominant) subbranch Y is called tame (resp. wild) if the dominant
subbranch containing Y is tame (resp. wild).

Now we suppose that Y is dominant tame. By Theorem 6.1.1, p99, the
deformation atlas DAe−1(Y, d) of arbitrary weight d admits a complete
propagation, which is explicitly given as follows: The e-th propagation of
DAe−1(Y, d) is⎧⎪⎪⎨⎪⎪⎩

He : wme−1−ne−1ηme−ne (wne−1ηne + td fe) − s = 0

H′
e : zme+1ζme−ne (ζne + td zq f̂e) − s = 0

ge : the transition function z = 1/w, ζ = wreη of Ne,

(14.1.2)

where fe and f̂e are as in (14.1.1). Next the (e + 1)-st propagation is⎧⎪⎪⎨⎪⎪⎩
He+1 : wme−neηme+1 (wne + td ηq fe+1) − s = 0

H′
e+1 : zme+2ζme+1 (1 + td z re+1 q + ne ζq f̂e+1) − s = 0

ge+1 : the transition function z = 1/w, ζ = wre+1η of Ne+1.

(14.1.3)

For i = e + 2, e + 3, . . . , λ, the i-th propagation is given by⎧⎪⎪⎨⎪⎪⎩
Hi : wmi−1ηmi (1 + td w ai−1 η ai fi) − s = 0

H′
i : zmi+1ζmi (1 + td z ai+1 ζ ai f̂i) − s = 0

gi : the transition function z = 1/w, ζ = wriη of Ni,

(14.1.4)
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where mλ+1 = 0 by convention, and ae+1, ae+2, . . . , aλ+1 are nonnegative
integers defined by{

ae+1 := q, ae+2 := re+1q + ne and
ai+1 := riai − ai−1 for i = e + 2, e + 3, . . . , λ.

(14.1.5)

As noted in the paragraph subsequent to (6.1.5), p102, (1) ai ≥ 0, in fact,
aλ+1 > aλ > · · · > ae+1 ≥ 0 and (2) the transition function gi of Ni transforms
wai−1ηai to zai+1ζai . In Theorem 6.1.1, we showed that (14.1.2), (14.1.3),
(14.1.4) together give a complete propagation of DAe−1(Y, d).

For later application, it is convenient to express ‘uniformly’ the deforma-
tion atlas DAe−1(Y, d) and its complete propagation. For this purpose, we
introduce a sequence of nonnegative integers b0, b1, . . . , bλ+1:

bi =

{
mi − ni, i = 0, 1, . . . , e

mi + ai, i = e + 1, e + 2, . . . , λ + 1,

where ae+1, ae+2, . . . , aλ are in (14.1.5), and then the deformation atlas
DAe−1(Y, d) and its complete propagation are uniformly expressed as follows:
for i = 1, 2, . . . , λ,⎧⎪⎨⎪⎩

Hi : wmi−1ηmi − s + tdwbi−1ηbifi = 0,
H′

i : zmi+1ζmi − s + tdzbi+1ζbi f̂i = 0,
gi : the transition function z = 1/w, ζ = wriη of Ni.

(14.1.6)

We say that the sequence b0, b1, . . . , bλ+1 is the propagation sequence for the
dominant tame subbranch Y ; the propagation sequence for a non-dominant
tame subbranch Y ′ is defined as that for the dominant tame subbranch Y
containing Y ′.

14.2 Bunches of subbranches

We take a finite set Y = {Y1, Y2, . . . , Yl} of subbranches, where

Yk = nk,0Δ0 + nk,1Θ1 + · · · + nk,ek
Θek

(k = 1, 2 . . . , l).

For individual Yk, we already defined a deformation atlas DAek−1(Yk, dk): for
i = 1, 2, . . . , ek − 1,⎧⎪⎨⎪⎩

Hi : wmi−1ηmi − s + tdkwmi−1−nk, i−1ηmi−nk, ifk,i = 0
H′

i : zmi+1ζmi − s + tdkzmi+1−nk, i+1ζmi−nk, i f̂k,i = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

(14.2.1)

Next we consider the problem of the association of a deformation atlas to the
finite set Y = {Y1, Y2, . . . , Yl} of subbranches. In contrast to the association
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of a deformation atlas to one subbranch, this is a subtle problem, unless all
Y1, Y2, . . . , Yl have the same length (that is, e1 = e2 = · · · = el). Actually,
if all Y1, Y2, . . . , Yl have the same length, then we may easily construct a
deformation atlas of length e − 1 associated with Y, where e := e1 (= e2 =
· · · = el). Specifically it is given as follows: for i = 1, 2, . . . , e − 1,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Hi : wmi−1ηmi − s +
l∑

k=1

tdkwmi−1−nk, i−1ηmi−nk, ifk,i = 0

H′
i : zmi+1ζmi − s +

l∑
k=1

tdkzmi+1−nk, i+1ζmi−nk, i f̂k,i = 0

gi : the transition function z = 1/w, ζ = wriη of Ni.

(14.2.2)

However if the lengths of Y1, Y2, . . . , Yl are not equal, then (14.2.2) is no
longer well-defined; it is merely defined for i = 1, 2, . . . , emin − 1 where
emin := min{e1, e2, . . . , el}. Nevertheless it is possible to modify (14.2.2) to de-
fine a deformation atlas of length emax−1, where emax := max{e1, e2, . . . , el},
provided that any Yk ∈ Y with ek < emax is tame. We shall explain this pro-
cedure. For convenience, we set e := emax and we say that Yk (k = 1, 2, . . . , l)
is short or long according to whether ek < e or ek = e.

Claim 14.2.1 Let Y = {Y1, Y2, . . . , Yl} be a set of subbranches such that any
short Yk ∈ Y is tame. Then we may associate a deformation atlas of length
e − 1, where e := max{e1, e2, . . . , el}.
To show this, we first note that under the above assumption, for each sub-
branch Yk (k = 1, 2, . . . , l), we may associate a deformation atlas of length
e − 1; according to whether Yk is long or short, it is given as follows:

(1) If Yk is long (i.e. ek = e), the deformation atlas DAe−1(Yk, dk) is the
desired one: for i = 1, 2, . . . , e − 1,⎧⎪⎪⎨⎪⎪⎩

Hi : wmi−1ηmi − s + tdkwmi−1−nk, i−1ηmi−nk, ifk,i = 0

H′
i : zmi+1ζmi − s + tdkzmi+1−nk, i+1ζmi−nk, i f̂k,i = 0

gi : the transition function z = 1/w, ζ = wriη of Ni.

(14.2.3)

(2) If Yk is short (i.e. ek < e), then Yk is tame by assumption, and thus
DAek−1(Yk, dk) admits a complete propagation. (Note: Any tame subbranch
Y is contained in a dominant tame subbranch Y ′, for which the associated
deformation atlas always admits a complete propagation, and consequently
the deformation atlas associated with Y also admits a complete propagation.)
Extract a deformation atlas of length e − 1 from this complete deformation
atlas: for i = 1, 2, . . . , e − 1,⎧⎪⎪⎨⎪⎪⎩

Hi : wmi−1ηmi − s + tdkwbk,i−1ηbk,ifk,i = 0,

H′
i : zmi+1ζmi − s + tdkzbk,i+1ζbk,i f̂k,i = 0,

gi : the transition function z = 1/w, ζ = wriη of Ni,

(14.2.4)
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where bk, 0, bk, 1, . . . , bk, λ+1 is the propagation sequence for Yk. (14.2.4) is the
desired deformation atlas of length e − 1.

Therefore regardless of whether Yk is short or long, we have a deformation
atlas of length e − 1 associated with it. Based upon this observation, we
now construct a deformation atlas of length e − 1 associated with the set
Y = {Y1, Y2, . . . , Yl} of subbranches satisfying a condition: Any short Yk is
tame. Firstly, divide Y into two sets: Y = {Yk}k∈S ∪{Yk}k∈L where {Yk}k∈S

is the set of short subbranches and {Yk}k∈L is the set of long subbranches:
S = {k : ek < e} and L = {k : ek = e}. Then for i = 1, 2, . . . , e − 1, the
following data gives a deformation atlas of length e − 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi : wmi−1ηmi − s +
∑
k∈S

tdkwbk,i−1ηbk,ifk,i

+
∑

k∈L

tdkwmi−1−nk,i−1ηmi−nk,ifk,i = 0,

H′
i : zmi+1ζmi − s +

∑
k∈S

tdkzbk,i+1ζbk,i f̂k,i

+
∑

k∈L

tdkzmi+1−nk,i+1ζmi−nk,i f̂k,i = 0,

gi : the transition function z = 1/w, ζ = wriη of Ni.

In fact, gi transforms

tdkwbk,i−1ηbk,ifk,i to tdkzbk,i+1ζbk,i f̂k,i, and

tdkwmi−1−nk,i−1ηmi−nk,ifk,i to tdkzmi+1−nk,i+1ζmi−nk,i f̂k,i respectively,

and therefore gi transforms Hi to H′
i. Moreover by a coordinate change

(w, η) = (ζ, z), H′
i becomes Hi+1. Hence we obtained a deformation atlas

of length e−1 associated with a finite set of subbranches Y = {Y1, Y2, . . . , Yl}
under the assumption that any short Yk ∈ Y is tame (recall: Yk is short if
ek < e := max{e1, e2, . . . , el}). Motivated by this result, we now introduce the
following concept:

Definition 14.2.2 A finite set Y = {Y1, Y2, . . . , Yl} of subbranches is called
a bunch (of subbranches) provided that any short subbranch Yk of Y is tame.
The positive integer e := max{e1, e2, . . . , el} is called the length of the bunch
Y, where ek is the length of Yk.

Using this terminology, the above result is summarized as follows:

Lemma 14.2.3 Let Y = {Y1, Y2, . . . , Yl} be a bunch of subbranches where
Yk = nk,0Δ0 + nk,1Θ1 + · · · + nk,ek

Θek
(k = 1, 2, . . . , l), and set e =

max{e1, e2, . . . , el}. Divide Y into two sets respectively consisting of short
and long subbranches: Y = {Yk}k∈S ∪ {Yk}k∈L where S = {k : ek < e}
and L = {k : ek = e}. Then for a set of arbitrary positive integers
d = {d1, d2, . . . , dl}, the following data gives a deformation atlas of length
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e − 1: for i = 1, 2, . . . , e − 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi : wmi−1ηmi − s +
∑
k∈S

tdkwbk,i−1ηbk,ifk,i

+
∑

k∈L

tdkwmi−1−nk,i−1ηmi−nk,ifk,i = 0,

H′
i : zmi+1ζmi − s +

∑
k∈S

tdkzbk,i+1ζbk,i f̂k,i

+
∑

k∈L

tdkzmi+1−nk,i+1ζmi−nk,i f̂k,i = 0,

gi : the transition function z = 1/w, ζ = wriη of Ni,

where bk, 0, bk, 1, . . . , bk, λ+1 is the propagation sequence for a short subbranch
Yk (k ∈ S).

We say that the deformation atlas in the above lemma, denoted by DAe−1

(Y,d), is associated with a bunch Y = {Y1, Y2, . . . , Yl} and the set of positive
integers d = {d1, d2, . . . , dl} is called its weight.

Remark 14.2.4 For a subbranch Y of type Al, Bl, or Cl, we associated the
deformation atlas DAe−1(lY, d) (Theorem 10.0.15, p177): For i = 1, 2, . . . , e−
1, ⎧⎪⎨⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tdfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tdf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

After expansion, we have⎧⎪⎨⎪⎩
Hi : wmi−1ηmi − s +

∑l
k=1 lCk tkd wmi−1−kni−1ηmi−knifk

i = 0,
H′

i : zmi+1ζmi − s +
∑l

k=1 lCk tkd zmi+1−kni+1ζmi−kni f̂k
i = 0,

gi : the transition function z = 1/w, ζ = wriη of Ni.

In the terminology of this section, this is nothing other than the defor-
mation atlas of weight d = {d, 2d, . . . , ld} associated with a bunch Y =
{Y, 2Y, . . . , lY }.
Recall that we have introduced important notions “tame” and “wild” for
subbranches, which are related to propagatability of deformation atlases. We
shall generalize these notions to those for a set of subbranches.

Definition 14.2.5 Suppose that Y = {Y1, Y2, . . . , Yl} is a bunch, that is, any
short Yk in Y is tame. Then Y is called (1) tame if all Yk ∈ Y are tame, and
(2) wild if some Yk ∈ Y is wild. (When all Yk (k = 1, 2, . . . , l) have length
zero, i.e. Yk = nk,0Δ0, we consider Y to be tame. cf. Remark 10.0.16, p177.)

Remember that for a subbranch Y ′ = n0Δ0 + n1Θ1 + · · · + ne′Θe′ , a
subbranch Y = n0Δ0 + n1Θ1 + · · · + neΘe (e < e′) is said to be contained
in Y ′. For two bunches Y = {Y1, Y2, . . . , Yl} and Y′ = {Y ′

1 , Y ′
2 , . . . , Y ′

l }, we
say that Y is contained in Y′ if possibly after reordering, Yk (k = 1, 2, . . . , l)
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is contained in Y ′
k. A bunch Y′ is called dominant provided that there is no

bunch containing Y′. Given a bunch Y, there is a unique dominant bunch
Y′ containing Y. The existence of Y′ is seen as follows. For each Yk ∈ Y, we
first take a dominant subbranch Zk containing it, and express Zk = nk, 0Δ0 +
nk, 1Θ1 + · · · + nk, e′

k
Θe′

k
. We then consider a set Z = {Z1, Z2, . . . , Zl} which

in general is not a bunch. Let {Zk}k∈W be the subset of Z consisting of wild
subbranches, and we set e′ := min{e′k}k∈W . For each k (k = 1, 2, . . . , l), we
define a subbranch Y ′

k as follows:

Y ′
k =

{
Zk if e′k < e′

nk, 0Δ0 + nk, 1Θ1 + · · · + nk, e′Θe′ otherwise.
(14.2.5)

We claim that Y′ := {Y ′
1 , Y ′

2 , . . . , Y ′
l } is a unique dominant bunch containing

Y. Firstly, we show that Y′ is a bunch: If e′k < e′, then (i) Y ′
k = Zk by (14.2.5),

and (ii) Zk (and hence Y ′
k) is tame because e′k = length(Zk) < e′ where e′

is the minimum of the lengths of the wild subbranches in Z. From (i) and
(ii), Y′ is a bunch. Further, Y′ is dominant: This is easily seen by the same
argument in Example 14.2.6 below. Thus Y′ is a dominant bunch containing
Y. We leave the reader to check the uniqueness of Y′ with this property.

We note that if Y is tame, i.e. all Yk ∈ Y are tame, then the above
construction reduces to very simple one; for each Yk ∈ Y, take the domi-
nant subbranch Y ′

k containing it, where note that Y ′
k is tame. Then Y′ :=

{Y ′
1 , Y ′

2 , . . . , Y ′
l } is the dominant (tame) bunch containing Y. cf. Example

14.2.6 below.
Finally we remark that letting Y′ be the dominant bunch containing a

bunch Y, then we have the following equivalences:

Y′ is tame ⇐⇒ Y is tame,
Y′ is wild ⇐⇒ Y is wild.

Example 14.2.6 Let X = 6Δ0 + 5Θ1 + 4Θ2 + 3Θ3 + 2Θ4 + Θ5 be a branch,
and take a set Z of dominant wild subbranches Z1, Z2, and Z3:

Z =

⎧⎪⎪⎨⎪⎪⎩
Z1 = Δ0 + Θ1 + Θ2 + Θ3 + Θ4 + Θ5

Z2 = 2Δ0 + 2Θ1 + 2Θ2 + 2Θ3 + 2Θ4

Z3 = 3Δ0 + 3Θ1 + 3Θ2 + 3Θ3

⎫⎪⎪⎬⎪⎪⎭ ,

where we note that Z is not a bunch but merely a set of subbranches. Then
we consider a bunch of length 3:

Y′ =

⎧⎪⎪⎨⎪⎪⎩
Y ′

1 = Δ0 + Θ1 + Θ2 + Θ3

Y ′
2 = 2Δ0 + 2Θ1 + 2Θ2 + 2Θ3

Y ′
3 = 3Δ0 + 3Θ1 + 3Θ2 + 3Θ3

⎫⎪⎪⎬⎪⎪⎭ ,
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where we note that Y ′
1 and Y ′

2 are not dominant while Y ′
3 = Z3 is domi-

nant. We claim that Y′ is a dominant bunch. In fact, if there exists a bunch
Y′′ containing Y′, then Y ′

3 belongs to Y′′ because Y ′
3 is dominant. Since

length (Y′′) > 3, Y ′
3 is a short subbranch of Y′′. However Y ′

3 is wild; this
contradicts that any short subbranch of a bunch is tame. Therefore the bunch
Y′ is dominant (wild).

Next we discuss the propagation problem of deformation atlases associated
with bunches.

Theorem 14.2.7 Assume that DAe−1(Y,d) is the deformation atlas of
weight d = {d1, d2, . . . , dl} associated with a bunch Y = {Y1, Y2, . . . , Yl} (see
Lemma 14.2.3). If Y is tame, then DAe−1(Y,d) admits a complete propaga-
tion.

Proof. Recall that Y is tame if all Yk ∈ Y are tame, and so we may take the
propagation sequence bk, 0, bk, 1, . . . , bk, λ+1 for each Yk ∈ Y. Then a complete
propagation of DAe−1(Y,d) is simply given as follows: For i = 1, 2, . . . , λ,⎧⎪⎨⎪⎩

Hi : wmi−1ηmi − s +
∑l

k=1 tdk wbk,i−1 ηbk,ifk,i = 0,
H′

i : zmi+1ζmi − s +
∑l

k=1 tdk zbk,i+1 ζbk,i f̂k,i = 0,
gi : the transition function z = 1/w, ζ = wriη of Ni,

(14.2.6)

where mλ+1 = 0 by convention. �
For (not necessarily tame) bunches, we have the following result.

Theorem 14.2.8 Let X = m0Δ0 +m1Θ1 + · · ·+mλΘλ be a branch such that
mλ = 1. Assume that Y = {Y1, Y2, . . . , Yl} is a (possibly wild) bunch such that
λ = length(Y), i.e. λ = max{length(Y1), length(Y2), . . . , length(Yl)}. Then
DAλ−1(Y,d) admits a complete propagation.

Proof. Since mλ = 1 and DAλ−1(Y,d) has length λ − 1, it follows from
Propagation Lemma (Lemma 5.2.2) that DAλ−1(Y,d) admits a complete
propagation. �

14.3 Example of a deformation by a wild bunch

In this section we provide an example of a wild bunch such that the associated
deformation atlas admits a complete propagation. (This example will be used
later, when we construct a splitting family of a degeneration of elliptic curves.
See §17.3, p306.) We consider a branch X = 6Δ0 + 4Θ1 + 2Θ2, and let Y =
{Y1, Y2, Y3} be a bunch of subbranches of X, where

Y1 = Δ0 + Θ1 + Θ2, Y2 = 2Δ0 + 2Θ1 + 2Θ2, Y3 = 4Δ0 + 3Θ1 + 2Θ2.
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Then Y is wild; indeed, all of Y1, Y2, and Y3 are wild. Taking d = (1, 2, 4),
we define DA1(Y,d) by⎧⎪⎪⎪⎨⎪⎪⎪⎩

H1 : w6η4 − s + a tw5 η3 (1 − η)1/2 + b t2 w4 η2 + c t4 w2 η = 0

H′
1 : z2ζ4 − s + a t z ζ3 (1 − z2ζ)1/2 + b t2 ζ2 + c t4 ζ = 0

g1 : z = 1
w, ζ = w2η,

where a, b, c ∈ C will be determined in the course of the subsequent construc-
tion. We note that the term with a coefficient a in H1 (resp. H′

1) contains a
factor (1−η)1/2 (resp. (1−z2ζ)1/2), and when we try to construct a complete
propagation of DA1(Y,d), the existence of this term forces us some compu-
tation to check whether or not fractional terms in certain equation vanish. We
shall elucidate this by an explicit computation. First we note

H2 : w4η2 − s + atw3η (1 − wη2)1/2 + bt2w2 + ct4w = 0.

Letting g2 : z = 1/w, ζ = w2η + tαw where α ∈ C, we shall investigate
whether we may find a, b, c so that g2 transforms H2 to some hypersurface.
Since

w4η2 − s + atw3η (1 − wη2)1/2 + bt2w2 + ct4w

= (w2η)2 − s + atw(w2η)
(

1 − 1
w3 (w2η)2

)1/2

+ bt2w2 + ct4w,

the map g2 : z = 1/w, ζ = w2η + tαw transforms the left hand side of H2 to

(
ζ − tα

1
z

)2

− s + at
1
z

(
ζ − tα

1
z

) [
1 − z3

(
ζ − tα

1
z

)2
]1/2

+ bt2
1
z2 + ct4

1
z
.

(14.3.1)
Using the Taylor expansion

(1 − z)1/2 = 1 − 1
2
z − 1

8
z2 − 1

16
z3 − · · · ,

we see that the middle term of (14.3.1)

1
z

(
ζ − tα

1
z

) [
1 − z3

(
ζ − tα

1
z

)2
]1/2

admits an expansion:

1
z

(
ζ − tα

1
z

)
− 1

2
z2

(
ζ − tα

1
z

)3

− 1
8
z5

(
ζ − tα

1
z

)5

− 1
16

z8

(
ζ − tα

1
z

)7

−· · · ,
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which contains just three fractional terms:

ζ

z
− tα

1
z2 +

1
2
t3α3 1

z
.

Therefore the fractional terms contained in the expansion of (14.3.1) are

−2tα
ζ

z
+ t2α2 1

z2 + at

(
ζ

z
− tα

1
z2 +

1
2
t3α3 1

z

)
+ bt2

1
z2 + ct4

1
z
.

Reordering these terms, we have

t
ζ

z
(−2α + a) + t2

1
z2 (α2 − aα + b) + t4

1
z

(
1
2
aα3 + c

)
.

We choose a, b, c ∈ C such that

−2α + a = 0, α2 − aα + b = 0,
1
2
aα3 + c = 0,

that is a = 2α, b = α2, and c = −α4. Then all fractional terms in (14.3.1)
vanish, and g2 : z = 1/w, ζ = w2η + αtw transforms H2 to a hypersurface
H′

2 defined by

(
ζ − tα

1
z

)2

− s + 2αt
1
z

(
ζ − tα

1
z

) [
1 − z3

(
ζ − tα

1
z

)2
]1/2

+ α2t2
1
z2 − α4t4

1
z

= 0,

which, after expansion, becomes a polynomial (without fractional terms).
Therefore the following data gives a complete propagation of DA1(Y,d): (for
simplicity, we take α = 1 and so a = 2, b = 1, and c = −1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H2 : w4η2 − s + 2tw3η(1 − wη2)1/2 + t2w2 − t4w = 0

H′
2 :

(
ζ − t

1
z

)2

− s + 2t1z

(
ζ − t

1
z

) [
1 − z3

(
ζ − t

1
z

)2
]1/2

+ t2
1
z2 − t4

1
z

= 0

g1 : z =
1
w

, ζ = w2η + tw.
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Barking Deformations of Degenerations



15

Construction of Barking Deformations
(Stellar Case)

For the remainder of this book, unless otherwise mentioned, π : M → Δ is a
degeneration of connected compact complex curves.

15.1 Linear degenerations

In this section, after introducing some notation, we review the notion of a
linear degeneration, originally defined in [Ta,II]. For a given degeneration
π : M → Δ, we will express the singular fiber X as a sum of irreducible com-
ponents: X =

∑
i miΘi, where Θi is an irreducible component of multiplicity

mi. We call Xred :=
∑

i Θi the underlying reduced curve of X.
Recall that a node is a singularity that is isomorphic to some neighborhood

of the origin in {(x, y) ∈ C
2 : xy = 0}. We say that Xred has at most normal

crossings if all of the singularities of Xred are nodes. If, furthermore, all the
irreducible components Θi are smooth (that is, not self-intersecting), then we
say that Xred has at most simple normal crossings.

Now suppose that Xred has at most simple normal crossings. For an irre-
ducible component Θi, if Θi ∩ Θj �= ∅, then we write

Θi ∩ Θj = {p(ij)
1 , p

(ij)
2 , . . . , p

(ij)
k },

where k = k(i, j) := #(Θi∩Θj) is the number of points of intersection between
Θi and Θj . Using this notation, we define a divisor P

(i)
j on Θi, by

P
(i)
j := p

(ij)
1 + p

(ij)
2 + · · · + p

(ij)
k , (15.1.1)

and, setting Ni as the normal bundle of Θi in M , we have the following useful
lemma.

Lemma 15.1.1 N⊗mi
i

∼= OΘi
(−∑

j mjP
(i)
j ), where the sum runs over all

subscripts j such that Θi ∩ Θj �= ∅.
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Proof. Since the singular fiber X is linearly equivalent to a smooth fiber Xs :=
π−1(s), we have OM (X) ∼= OM (Xs). The restriction of this isomorphism to
Θi gives

OM (X)|Θi
∼= OM (Xs)|Θi

∼= OΘi
, (15.1.2)

where the last isomorphism follows from Xs ∩ Θi = ∅.
On the other hand, from the adjunction formula OM (Θi)|Θi

= Ni, we have

OM (X)|Θi
∼= OM (miΘi)|Θi

⊗OM (
∑
j 	=i

mjΘj)|Θi

∼= N⊗mi
i ⊗OΘi

(
∑

j

mjP
(i)
j ). (15.1.3)

From (15.1.2) and (15.1.3), we obtain N⊗mi
i

∼= OΘi
(−∑

j mjP
(i)
j ). �

By the above lemma, we have

deg(Ni) = − 1
mi

∑
j

#(Θi ∩ Θj) · mj , (15.1.4)

where deg(Ni) is the degree of the line bundle Ni, and again the sum runs
over all subscripts j such that Θi ∩Θj �= ∅. By definition, deg(Ni) equals the
self-intersection number Θi · Θi of Θi in M .

We next review the concept of a linear degeneration. Initially, we shall
maintain the assumption that Xred =

∑
i Θi, the underlying reduced curve of

the singular fiber X =
∑

i miΘi, has at most simple normal crossings; so any
irreducible component Θi is smooth. For the moment, we fix one irreducible
component Θi, and take an open covering Θi =

⋃
α Uα such that each Uα ×C

is a local trivialization of Ni with coordinates (zα, ζα) ∈ Uα × C, and we let
{gαβ} be the transition functions of Ni (that is, ζα = gαβζβ). From Lemma
15.1.1, there exists a holomorphic section σi of N

⊗(−mi)
i with

div(σi) =
∑

j

mjP
(i)
j ,

where div(σi) stands for the divisor defined by σi. (Note: If τ is a meromorphic
section of a line bundle on a complex curve C, then by div(τ) =

∑
i aipi −∑

j bjqj where ai, bj are positive integers and pi, qj ∈ C, we mean that τ has
a zero of order ai at pi and a pole of order bj at qj .)

Note that σi is uniquely determined up to scalar multiplication. We say
that σi is the standard section of the line bundle N

⊗(−mi)
i on Θi. Setting

σi = {σi,α} as the local expression of σi, we have σi,α = g−mi

αβ σi,β . Next, we
let πi,α : Uα × C → C be a holomorphic function defined by

πi,α(zα, ζα) := σi,α(zα)ζmi
α .

Since σi,αζmi
α = (g−mi

αβ σi,β)(gαβζβ)mi = σi,βζmi

β , we have the following.
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Lemma 15.1.2 The set of holomorphic functions {πi,α} defines a global holo-
morphic function πi on Ni.

Now we introduce an important concept.

Definition 15.1.3 A degeneration π : M → Δ is linear if for each i,

(1) a tubular neighborhood N(Θi) of Θi in M is biholomorphic to a tubular
neighborhood of the zero-section of Ni, and

(2) under the identification of the biholomorphism in (1), the followings hold:
(2.1) π|N(Θi) = πi and (2.2) if p ∈ Θi ∩Θj , then there exist trivializations
of Ni and Nj around p such that

π|N(Θi)(zi, ζi) = z
mj

i ζmi
i , π|N(Θj)(zj , ζj) = zmi

j ζ
mj

j ,

and also that N(Θi) and N(Θj) are glued by (zi, ζi) = (ζj , zj). (These
trivializations are called arranged.)

When the underlying reduced curve Xred of the singular fiber X has at most
normal crossings but not simple normal crossings (so X has self-intersecting ir-
reducible components), we define the notion of a linear degeneration as follows.
First, let M ′ be the complex surface obtained by blowing up M at all the self-
intersection points of Xred. Then we obtain a degeneration π′ : M ′ → Δ such
that X ′

red has at most simple normal crossings. We then say that π : M → Δ
is a linear degeneration provided that π′ : M ′ → Δ is a linear degeneration in
the sense of Definition 15.1.3.

15.2 Deformation atlas

Throughout this section, π : M → Δ is a linear degeneration such that the
singular fiber X is stellar (star-shaped). Namely, X has a central irreducible
component called a core, and branches emanate from the core, where a branch
is a chain of projective lines. See Figure 4.2.1, p61 for example. We express

X = m0Θ0 +
N∑

j=1

Br(j),

where Θ0 is the core and Br(j) = m
(j)
1 Θ(j)

1 + m
(j)
2 Θ(j)

2 + · · · + m
(j)
λj

Θ(j)
λj

is a

branch; note that Θ(j)
i is a projective line, whereas Θ0 is not necessarily a

projective line. Precisely speaking, Br(j) is an unfringed branch — let Δ(j)
0 ⊂

Θ0 be a small open disk around the intersection point of Θ0 and Br(j), and
then

Br
(j)

= m0Δ
(j)
0 + m

(j)
1 Θ(j)

1 + m
(j)
2 Θ(j)

2 + · · · + m
(j)
λj

Θ(j)
λj

is a fringed branch (m0Δ
(j)
0 is its fringe). For brevity we often refer to both

unfringed branches and fringed branches simply as branches.
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The genus of a smooth fiber of π : M → Δ is computable from the
quantities g0 := genus(Θ0), m0, and m

(j)
1 by the genus formula, which we shall

explain. For a branched covering f : Σ → Σ′ between complex curves Σ and
Σ′, recall that v ∈ Σ is a ramification point if f is not a local homeomorphism
around v; then v′ := f(v) ∈ Σ′ is a branch point. In this case we may take
a local coordinate z around v in Σ such that f(z) = zr for some integer r
(r ≥ 2). We say that r is the ramification index of v (and also1 that of v′, if
f : Σ → Σ′ is a Galois covering).

Theorem 15.2.1 Let π : M → Δ be a degeneration of complex curves of
genus g with a stellar singular fiber X = m0Θ0 +

∑N
j=1 Br(j) where Br(j) =

m
(j)
1 Θ(j)

1 + m
(j)
1 Θ(j)

1 + · · ·+ m
(j)
λj

Θ(j)
λj

is a branch. Setting cj := gcd(m0,m
(j)
1 ),

write m0 = cjrj and m
(j)
1 = cjqj, and let aj (0 < aj < rj) be the integer

satisfying ajqj ≡ 1 mod rj. Then

(1) The following “genus formula” holds:

2 − 2g = m0(2 − 2g0) −
N∑

j=1

m0

rj
(rj − 1),

where g0 := genus(Θ0).
(2) Denote by γ the topological monodromy of π : M → Δ. Then the action

of γ on a smooth fiber Σ is such that for each j, γcj is a rotation by
angle 2πaj/rj around each ramification point vj ∈ Σ — in particular,
rj is the ramification index of vj — over a branch point v′

j of the cyclic
covering Σ → Σ/〈γ〉; here Σ/〈γ〉 denotes the quotient space of Σ under
the γ-action.

See [Ta,II] for the proof. (By applying the Riemann–Hurewitz formula, the
assertion (1) easily follows.)

Now we consider a stellar singular fiber X = m0Θ0 +
∑N

j=1 Br(j) where

Θ0 is the core and Br(j) = m
(j)
1 Θ(j)

1 + m
(j)
2 Θ(j)

2 + · · · + m
(j)
λj

Θ(j)
λj

is a branch.
Set ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r0 := m
(1)
1 + m

(2)
1 + · · · + m

(N)

1
m0

r
(j)
i :=

m
(j)
i−1 + m

(j)
i+1

m
(j)
i

(i = 1, 2, . . . , λj − 1), and r
(j)
λj

:=
m

(j)
λj−1

m
(j)
λj

,

and then r0 and r
(j)
i are positive integers, and the self-intersection number

Θ0 · Θ0 = −r0 and Θ(j)
i · Θ(j)

i = −r
(j)
i . We note that r

(j)
i ≥ 2, while it may

occur that r0 = 1.
1 If f : Σ → Σ′ is a Galois covering, then r does not depend on the choice of

v ∈ f−1(v′).



15.2 Deformation atlas 269

We use the following notation:

• p
(j)
1 ∈ Θ0: the intersection point of the core Θ0 and a branch Br(j)

• Θ(j)
i = U

(j)
i ∪ V

(j)
i : the standard open covering of the projective line Θ(j)

i

by two complex lines; so w ∈ U
(j)
i and z ∈ V

(j)
i satisfy z = 1/w

• N0: the normal bundle of Θ0 in M
• N

(j)
i : the normal bundle of Θ(j)

i in M , which is obtained by identifying
(w, η) ∈ U

(j)
i ×C with (z, ζ) ∈ V

(j)
i ×C by z = 1/w, ζ = wr

(j)
i η. (Whenever

we need to emphasize i and j, we write w = w
(j)
i and η = η

(j)
i .)

• W (j): a tubular neighborhood of a branch Br(j), which is obtained by
plumbing normal bundles N

(j)
i (i = 1, 2, . . . , λj), that is, identifying N

(j)
i

with N
(j)
i+1 (i = 1, 2, . . . , λj − 1) by (z(j)

i , ζ
(j)
i ) = (η(j)

i+1, w
(j)
i+1).

(Note: Br(j) is the exceptional set of the minimal resolution of a cyclic
quotient singularity [Ta,II]. Since any cyclic quotient singularity is taut
[La2], the complex structure on W (j) is unique.)

From the definition of a linear degeneration, we may regard N0 (resp. N
(j)
i )

— precisely speaking, a tubular neighborhood of the zero section of N0, but
for simplicity we are sloppy here — as a tubular neighborhood of Θ0 (resp.
Θ(j)

i ) in M , and under this identification,

(i) π|N0(z, ζ) = σ(z)ζm0 where σ is the standard section, that is, a holomor-
phic section of N

⊗(−m0)
0 such that div(σ) =

∑
m

(j)
1 p

(j)
1 ,

(ii)π|
N

(j)
i

(w, η) = wm
(j)
i−1ηm

(j)
i and π|

N
(j)
i

(z, ζ) = zm
(j)
i+1ζm

(j)
i .

For the subsequent construction of deformations of π : M → Δ, it is conve-
nient to think of M as the graph of π:

Graph(π) = {(x, s) ∈ M × Δ |π(x) − s = 0}.
Via the canonical isomorphism Graph(π) ∼= M given by (x, s) �→ x, we
identify M with Graph(π). We also set W0 := Graph(π|N0) and W

(j)
i :=

Graph(π|
N

(j)
i

). Namely, W0 : σ(z)ζm0 − s = 0 and

W
(j)
i =

⎧⎪⎨⎪⎩
wm

(j)
i−1ηm

(j)
i − s = 0, (w, η) ∈ U

(j)
i × C,

zm
(j)
i+1ζm

(j)
i − s = 0, (z, ζ) ∈ V

(j)
i × C.

Deformation atlas

We keep the above notation: λj is the length of the branch Br(j). Let e =
{e1, e2, . . . , eN} be a set of integers satisfying

1 ≤ ej ≤ λj , j = 1, 2, . . . , N.
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Consider a set DAe = {W0 , DA
(j)
ej }j=1,2,...,N where

(i) W0 is a deformation, parameterized by t ∈ Δ†, of a tubular neighborhood
W0 of the core Θ0, and

(ii) DA
(j)
ej = {H(j)

i , H(j)
i

′
g
(j)
i }i=1,2,...,ej

is a deformation atlas of length ej for
the branch Br(j) such that under a coordinate change (z0, ζ0) = (η(j)

1 , w
(j)
1 )

around p
(j)
1 , the equation of W0 becomes that of H(j)

1 .

We say that DAe is a deformation atlas of size e = {e1, e2, . . . , eN} for the
singular fiber X. For the special case where e is λ = {λ1, λ2, . . . , λN}, we call
DAλ a complete deformation atlas, from which we may construct a deforma-
tion family of π : M → Δ as follows:

Step 1: First let W(j)
i be the complex 3-manifold obtained by patching

H(j)
i and H(j)

i

′
via the map g

(j)
i . Secondly for each j = 1, 2, . . . , N , we patch

W(j)
i and W(j)

i+1 (i = 1, 2 . . . , λj − 1) by plumbing (z(j)
i , ζ

(j)
i ) = (η(j)

i+1, w
(j)
i+1);

this yields a complex 3-manifold W(j) which is a deformation of a tubular
neighborhood W (j) of the branch Br(j).

Step 2: Next we patch the complex 3-manifolds W0 and W(j), (j =
1, 2, . . . , N) by plumbing (w(j)

1 , η
(j)
1 ) = (ζ0, z0) around p

(j)
1 . Since W0 is a

deformation of the tubular neighborhood W0 of the core Θ0, and W(j) is a de-
formation of the tubular neighborhood W (j) of the branch Br(j), the resulting
complex 3-manifold M obtained by patching W0 and W(j), (j = 1, 2, . . . , N)
is a deformation of M . The natural projection Ψ : M → Δ × Δ† is a defor-
mation family of π : M → Δ, associated with the complete deformation atlas
DAλ.

In the above construction, if W0 is ‘realized’ as a smooth hypersurface in
N0 × Δ × Δ† (detailed account will be given later in §15.4), then Ψ : M →
Δ × Δ† is referred to as a barking family of π : M → Δ.

We next introduce an order on sets of N nonnegative integers: For two
sets e = {e1, e2, . . . , eN} and e′ = {e′1, e′2, . . . , e′N}, we write e ≥ e′ when

e1 ≥ e′1, e2 ≥ e′2, . . . , eN ≥ e′N .

Now suppose that we are given a deformation atlas DAe={W0,DA
(j)
ej }j=1,2,...,N ,

where
DA(j)

ej
= {H(j)

i ,H(j)
i

′
, g

(j)
i }, i = 1, 2, . . . , ej .

For e′ satisfying e ≥ e′, we may define a ‘smaller’ deformation atlas DAe′ of
size e′ by restriction, that is, {W0, DA

(j)
e′

j
}j=1,2,...,N , where

DA
(j)
e′

j
= {H(j)

i ,H(j)
i

′
, g

(j)
i }, i = 1, 2, . . . , e′j .

In this situation, we say that DAe is an e-th propagation of DAe′ ; for a
particular case where e is λ = {λ1, λ2, . . . , λN}, then DAλ is called a complete
propagation of DAe′ .
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From here and onward, we mainly consider such deformation atlases
DAe = {W0, DA

(j)
ej }j=1,2,...,N as W0 is a smooth hypersurface in N0×Δ×Δ†.

We refer the reader to §20.4, p368 for other cases.

15.3 Crusts

We keep the assumption that X is a stellar singular fiber, and we express
X = m0Θ0 +

∑N
i=1 Br(j) where Br(j) = m

(j)
1 Θ(j)

1 + m
(j)
2 Θ(j)

2 + · · · + m
(j)
λj

Θ(j)
λj

is an (unfringed) branch; as before

Br
(j)

= m0Δ
(j)
0 + m

(j)
1 Θ(j)

1 + m
(j)
2 Θ(j)

2 + · · · + m
(j)
λj

Θ(j)
λj

is a fringed branch, where Δ(j)
0 ⊂ Θ0 is a small open disk around the in-

tersection point p
(j)
1 = Θ0 ∩ Br(j) (for simplicity, we often refer to both un-

fringed branches and fringed branches simply as branches). For a subdivisor
br(j) = n

(j)
1 Θ(j)

1 + n
(j)
2 Θ(j)

2 + · · · + n
(j)
ej Θ(j)

ej of Br(j), we write

br
(j)

= n0Δ
(j)
0 + n

(j)
1 Θ(j)

1 + n
(j)
2 Θ(j)

2 + · · · + n(j)
ej

Θ(j)
ej

,

and if br
(j)

is a subbranch of Br
(j)

(the notion of a “subbranch” is originally
defined for fringed one), we conventionally say that br(j) is a subbranch of

Br(j); this is the case (i) ej = 0 or 1, or (ii) ej ≥ 2 and
n

(j)
i−1 + n

(j)
i+1

n
(j)
i

= r
(j)
i for

i = 1, 2, . . . , ej − 1. (Note: ej = 0 is the case br(j) = ∅ and br
(j)

= n0Δ
(j)
0 )

Definition 15.3.1 Let Y = n0Θ0 +
∑N

j=1 br(j) be a connected subdivisor of

X such that 0 < n0 < m0 and br(j) = n
(j)
1 Θ(j)

1 + · · ·+ n
(j)
ej Θ(j)

ej is a subbranch
of Br(j) where possibly br(j) = ∅ for some j. Then Y is called a crust if the
line bundle N⊗n0

0 on Θ0, where N0 is the normal bundle of Θ0 in M , has a
meromorphic section τ which has a pole of order n

(j)
1 at such points p

(j)
1 as

br(j) �= ∅, and is holomorphic outside them.

We say that τ is a core section of the crust Y . Note that τ is not uniquely
determined by Y ; in general we may vary the positions of the zeros of τ
(possibly collision of some zeros may occur) to produce a new core section of
the crust Y . When τ has zeros, say, of order ai at qi ∈ Θ0 (i = 1, 2, . . . , k),
we may write div(τ) = −∑N

j=1 n
(j)
1 p

(j)
1 +D where D =

∑k
i=1 aiqi is called an

auxiliary divisor and qi are auxiliary points.
A pair (Y, d) of a crust Y and a positive integer d is called a weighted

crust. We often write a set of weighted crusts {(Y1, d1), (Y2, d2), . . . , (Yl, dl)}
as (Y,d).
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A core section gives rise to a deformation around the core Θ0 as follows.

Lemma 15.3.2 Let (Yk, dk) (k = 1, 2, . . . , l) be a set of weighted crusts where
dk is an arbitrary positive number, and denote by τk a core section of Yk. Then
the following equation defines a smooth hypersurface in N0 × Δ × Δ† :

W : σζm0 − s +
l∑

k=1

tdk σ τk ζm0−nk,0 = 0,

where nk,0 is the multiplicity of Θ0 in Yk.

Proof. Take an open covering Θ0 =
⋃

α Uα and let (zα, ζα) ∈ Uα ×C be coor-
dinates of local trivialization of N0. We denote by gαβ the transition functions
of N0; so ζα = gαβζβ holds. Letting σ = {σα} and τk = {τk,α} be local ex-
pressions, since σ and τ are sections of N

⊗(−m0)
0 and N

⊗nk,0
0 respectively, we

have

σα = g−m0
αβ σβ , τα = g

nk,0
αβ τβ .

Using these transformation rules and ζα = gαβζβ , we see that the transition
function gαβ of N0 transforms

Hα : σαζm0
α − s +

l∑
k=1

tdk σα τk,α ζ
m0−nk,0
α = 0

to

Hβ : σβζm0
β − s +

l∑
k=1

tdk σβ τk,β ζ
m0−nk,0
β = 0.

Therefore W is well-defined as a hypersurface in N0 × Δ × Δ†. Further from
∂W
∂s

= −1 �= 0, the hypersurface W is smooth. �
We remark that when Θ0 is a projective line, existence of τ in Definition

15.3.1 is equivalent to the following numerical condition (see Proposition 3.4.3,
p52):

n
(1)
1 + n

(2)
1 + · · · + n

(N)

1

n0
≥ m

(1)
1 + m

(2)
1 + · · · + m

(N)

1

m0
.

For the case genus(Θ0) ≥ 1, the condition of Definition 15.3.1 gives rise to a
certain linear equivalence relation on divisors on Θ0; recall that two divisors
D1 and D2 on a curve C is linearly equivalent (notation: D1 ∼ D2) if there
exists a meromorphic function f on C such that div(f) = D1 − D2.

Lemma 15.3.3 Let Y be a crust with a core section τ such that

div(τ) = −n
(1)
1 p

(1)
1 − n

(2)
1 p

(2)
1 · · · − n

(N)

1 p
(N)

1 + D,

where D is a nonnegative divisor (an auxiliary divisor of τ) on Θ0. Let a and
b be the relatively prime positive integers satisfying am0 = bn0, and then the
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following linear equivalence of divisors on Θ0 holds:

( N∑
j=1

(am
(j)
1 − bn

(j)
1 )p(j)

1 + bD
)
∼ 0.

Proof. Set L = am0 = bn0, and then (i) σa is a holomorphic section of
N

⊗(−am0)
0 = N

⊗(−L)
0 , and (ii) τ b is a meromorphic section of N⊗bn0

0 = N⊗L
0 .

Therefore σaτ b is a meromorphic section of N
⊗(−L)
0 ⊗ N⊗L

0 . From N
⊗(−L)
0 ⊗

N⊗L
0

∼= OΘ0 , it follows that σaτ b is a meromorphic function on Θ0, and so
div(σaτ b) ∼ 0. This linear equivalence, written explicitly by using

div(σ) =
N∑

j=1

m
(j)
1 p

(j)
1 and div(τ) = −

N∑
j=1

n
(j)
1 p

(j)
1 + D,

yields the desired equivalence:
( N∑

j=1

am
(j)
1 p

(j)
1 −

N∑
j=1

bn
(j)
1 p

(j)
1 + bD

)
∼ 0. �

15.4 Deformation atlas associated with one crust

Let Y = n0Θ0 +
∑N

j=1 br(j) be a crust of X, and denote the length of br(j) by
ej (when br(j) = ∅, we set ej = 1). We shall associate Y with a deformation
atlas of size e − 1, where

e − 1 = {e1 − 1, e2 − 1, . . . , eN − 1}.
The construction proceeds as follows.
Step 1. We first give the construction of W0. Let τ be a core section of the
crust Y , that is, τ is a meromorphic section of the line bundle N⊗n0

0 such that

div(τ) = −n
(1)
1 p

(1)
1 − n

(2)
1 p

(2)
1 · · · − n

(N)

1 p
(N)

1 + D,

where D is a nonnegative divisor (an auxiliary divisor of τ) on Θ0. Taking
a positive integer d, we define a smooth hypersurface in N0 × Δ × Δ† as in
Lemma 15.3.2:

W0 : σζm0 − s + tdστζm0−n0 = 0,

where σ is the standard section on the core Θ0, i.e. a holomorphic section of
N

⊗(−m0)
0 satisfying

div(σ) = m
(1)
1 p

(1)
1 + m

(2)
1 p

(2)
1 + · · · + m

(N)

1 p
(N)

1 .

Next we shall explicitly write the equation of W0 around the intersection point
p
(j)
1 of the core Θ0 and a branch Br(j). For simplicity, we fix j and often omit

it, such as m
(j)
i = mi and Θ(j)

i = Θi. Taking local coordinates of Θ0 around p1
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such that p1 is the origin, we express σ = zm1g(z) and τ = h(z)/zn0 around
p1, where g(z) and h(z) are non-vanishing holomorphic functions; then W0 is

zm1ζm0g − s + tdzm1−n1ζm0−n0gh = 0 around p1.

Rewriting ζg1/m0 by ζ ′, we make this equation into a simpler form:

zm1(ζ ′)m0 − s + tdzm1−n1(ζ ′)m0−n0f = 0 around p1, (15.4.1)

where we set
f := gn0/m0h. (15.4.2)

Note that f is a non-vanishing holomorphic function on some domain, say
|z| < ε.

Now to clarify the subsequent discussion, we use notation with subscripts:
z = z0 and ζ ′ = ζ0 etc. Then (15.4.1) is

zm1
0 ζm0

0 − s + tdzm1−n1
0 ζm0−n0

0 f(z0) = 0 around p1.

Under a coordinate change (z0, ζ0) = (η1, w1), this equation becomes

wm0
1 η1

m1 − s + tdwm0−n0
1 η1

m1−n1f(η1) = 0. (15.4.3)

Step 2. Next we construct a deformation atlas DA
(j)
ej−1 for each branch Br(j).

First we define a sequence of integers pi (i = 0, 1, . . . , λj + 1) inductively by{
p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λj .

Then pλj+1 > pλj
> · · · > p1 > p0 = 0 (6.2.4), p105. From the holomorphic

function f in (15.4.2), we construct a sequence of holomorphic functions as
follows:

fi = f(wpi−1ηpi) and f̂i = f(zpi+1ζpi) (see (6.2.7), p106).

Using these holomorphic functions,a deformation atlas DA
(j)
ej−1 = DA

(j)
ej−1

(br(j), d) for the branch Br(j) is defined as follows (see p106): for i =
1, 2, . . . , ej − 1,⎧⎪⎨⎪⎩

Hi : wmi−1−ni−1ηmi−ni(wni−1ηni + tdfi) − s = 0
H′

i : zmi+1−ni+1ζmi−ni(zni−1ζni + tdf̂i) − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni,

and then
DAe−1(Y, d) := {W0, DA

(j)
ej−1}j=1,2,...,N

is a deformation atlas of size e − 1 for the singular fiber X. We say that
DAe−1(Y, d) is the deformation atlas associated with the crust Y . For the
sake of brevity, we often omit the subscript e − 1 to write DA(Y, d), when it
is clear from the context.
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15.5 Reduced barking

Proposition 15.5.1 Let Y be a crust such that any subbranch br(j) (�= ∅)
satisfies either (1) n

(j)
ej−1/n

(j)
ej ≥ r

(j)
ej or (2) length(br(j)) = length(Br(j)) and

m
(j)
λj

= n
(j)
λj

= 1. Then π : M → Δ admits a barking family.

Proof. Let DA(Y, d) = {H0, DA
(j)
ej−1}j=1,2,...,N be the deformation atlas as-

sociated with Y , where the weight d is arbitrary. According to (1) or (2),
br(j) is of type A1 or B1 (Definition 9.1.1, p154), and hence DA

(j)
ej−1 admits a

complete propagation along Br(j) (Theorem 10.0.15, p177) where for j such
that br(j) = ∅, we apply the construction for type A1 (Remark 10.0.16, p177).
Therefore DAe−1(Y, d) admits a complete propagation, which yields a barking
family of π : M → Δ. �

See Figure 15.5.1 for example, where Y has a core section τ such that
div(τ) = −p

(1)
1 − p

(2)
1 + q, where q ∈ Θ0: In the notation of Lemma 15.3.3,

2

Y (pa(Y ) = 1) X (genus 3)

p
(2)
1p

(1)
1

1
1

1

qq

X0,t

21 1

3

1
1

1
q

2

1
1

1
deform−→

Fig. 15.5.1. Two subbranches of Y are of type B1. The topological monodromy of
X is shown in Figure 15.5.2. (Note: pa(Y ) is the arithmetic genus of Y ; see [GH].)

2π
3 rotation

Fig. 15.5.2. The topological monodromy of X in Figure 15.5.1 is periodic of order 3
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deform
X −→

deform
X −→

deform
X −→

X

(2)

(1)

4

(3)

Y , weight 4

Y , weight 3

Y , weight 2

3

1

2 1

1 1

1

2
2

1
2
3

5 4 2 1

1

ripple type︷ ︸︸ ︷

ripple type︷ ︸︸ ︷

ripple type︷ ︸︸ ︷

2

3

1 3 3 3

2 2

X0,t

X0,t

X0,t

2 4 3 12

4

2

1 2 2 2

3

2
4

6

1

1
2

2 4

2

3

21

Fig. 15.5.3. Each crust Y above has exactly one subbranch of ripple type; other
subbranches are tame. In (3), Y is a multiple subdivisor of multiplicity “2”, and
Y becomes “two” projective lines after the barking deformation. For (2), see also
Figure 15.5.4.
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1 1 1

X0;t

1

1

3 2 1

1

2

2

Fig. 15.5.4. A more geometrically precise figure of X0,t in Figure 15.5.3 (2). cf.
Figure 8.1.1, p150.

D = q (the divisor defined by q), and the three points p
(1)
1 , p

(2)
1 , and q satisfy

a linear equivalence 2p(1)
1 + p

(2)
1 ∼ 3q (Lemma 15.3.3).

Before providing another construction of barking families, we recall

Definition 15.5.2 Let Br = m1Θ1 + m2Θ2 + · · · + mλΘλ be a branch such
that for some e (0 < e < λ),

mi = (λ + 1) − i for i = e − 1, e, . . . , λ. (15.5.1)

Then a subbranch br = n1Θ1+n2Θ2+· · ·+neΘe of Br is called of ripple type if
it satisfies ne−1 = ne = me. (Note: (15.5.1) is equivalent to (i) mλ = 1 and (ii)
re = re+1 = · · · = rλ = 2. Here, (ii) implies Θi ·Θi = −2 for i = e, e+1, . . . , λ,
that is, Θe + Θe+1 + · · · + Θλ is a chain of (−2)-curves.)

Now we slightly generalize Proposition 15.5.1.

Proposition 15.5.3 Let Y be a crust such that any subbranch br(j) (�= ∅)
satisfies one of the following conditions:

(1) n
(j)
ej−1/n

(j)
ej ≥ r

(j)
ej ,

(2) length(br(j)) = length(Br(j)) and m
(j)
λj

= n
(j)
λj

= 1,

(3) br(j) is of ripple type.

Then π : M → Δ admits a barking family.

Proof. According to (1), (2) or (3), the subbranch br(j) is of type A1, B1, or
C1 (Definition 9.1.1, p154). Set a := lcm {nej

: br(j) is of ripple type}, and
take such a positive integer d as is divisible by a. Then by Theorem 10.0.15,
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p177, the deformation atlas DAe−1(Y, d) associated with the crust Y admits
a complete propagation, from which we can construct a barking family of
π : M → Δ. �
Remark 15.5.4 Notice that in Proposition 15.5.1, the weight d of DAe−1

is arbitrary, whereas in Proposition 15.5.3, we must choose such d as in the
above proof.

In Proposition 15.5.3, (1) (resp. (2)) is “equivalent” to that br(j) is of type
A1 (resp. B1). In contrast, (3) implies that br(j) is of type C1, but the converse
is not true (Remark 9.1.13, p160).



16

Simple Crusts (Stellar Case)

In this chapter we will establish an important theorem which gives a very
powerful criterion for splittability of singular fibers.

16.1 Deformation atlases associated with multiple crusts

Assume that Y = n0Θ0 +
∑N

j=1 br(j) is a crust of a stellar singular fiber X,
and l is a positive integer such that lY ≤ X. For a pair (lY, d) where d is a
positive integer, we shall associate a deformation atlas

DA(lY, d) = {W0, DA
(j)
ej−1}j=1,2,...,N , (16.1.1)

where ej is the length of the subbranch br(j). (By convention, if br(j) = ∅, we
set ej = 1.) The construction of DA(lY, d) proceeds as follows:

Step 1. Construction of W0

Let τ be a core section of the crust Y : It is a meromorphic section of N⊗n0
0

such that

div(τ) = −n
(1)
1 p

(1)
1 − n

(2)
1 p

(2)
1 − · · · − n

(N)

1 p
(N)

1 + D,

where D is a nonnegative divisor (an auxiliary divisor of τ) on Θ0. We then
define a smooth hypersurface in N0 × Δ × Δ† by

W0 : σζm0 − s +
l∑

k=1

lCktkdστkζm0−kn0 = 0, (see Lemma 15.3.2, p272).

Step 2. Construction of DA
(j)
ej−1

Next we construct a deformation atlas DA
(j)
ej−1 for each branch Br(j). First

of all, we shall explicitly write the equation of W0 around the intersection
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point p
(j)
1 of the core Θ0 and a branch Br(j). We fix j, and we often omit the

superscripts (j). Taking local coordinates of Θ0 around p1 such that p1 is the
origin, we express σ = g(z)zm1 and τ = h(z)/zn1 around p1, where g(z) and
h(z) are non-vanishing holomorphic functions. Then W0 is locally

gzm1ζm0 − s +
l∑

k=1

lCktkdghkzm1−kn1ζm0−kn0 = 0 around p1.

Set ζ ′ = g1/m0ζ, and then this equation is rewritten as

zm1(ζ ′)m0 − s +
l∑

k=1

lCktkd(gn0/m0h)kzm1−kn1(ζ ′)m0−kn0 = 0 around p1.

For simplicity, we set f := gn0/m0h and then

zm1(ζ ′)m0 −s+
l∑

k=1

lCktkdfkzm1−kn1(ζ ′)m0−kn0 = 0 around p1, (16.1.2)

which ‘factorizes’ as

zm1−ln1(ζ ′)m0−ln0

(
zn1(ζ ′)n0 + tdf

)l

− s = 0 around p1.

By a coordinate change (z, ζ ′) = (η, w), this equation becomes

wm0−ln0ηm1−ln1(wn0ηn1 + tdf)l − s = 0 around p1. (16.1.3)

Next for the branch Br(j), we define such a deformation atlas DA
(j)
ej−1

as H(j)
1 is given by (16.1.3). First, we define a sequence of integers pi (i =

0, 1, . . . , λj + 1) inductively by{
p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λj .

Then pλj+1 > pλj
> · · · > p1 > p0 = 0 (6.2.4), p105. For the holomorphic

function f in (16.1.3), we set

fi = f(wpi−1ηpi) and f̂i = f(zpi+1ζpi) (see (6.2.7), p106).

Then we define a deformation atlas DA
(j)
ej−1 for the branch Br(j) as follows:

For i = 1, 2, . . . , ej − 1,⎧⎪⎨⎪⎩
H(j)

i : wmi−1−lni−1ηmi−lni(wni−1ηni + tdfi)l − s = 0

H(j)
i

′
: zmi+1−lni+1ζmi−lni(zni+1ζni + tdf̂i)l − s = 0

gi : the transition function z = 1/w, ζ = wriη of Ni.

(16.1.4)

(Note: If ej = 0 or 1, then DA
(j)
ej−1 consists only of H(j)

1 .)
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16.2 Multiple barking

For a moment, instead of unfringed objects such as Br(j), we consider fringed
objects such as Br

(j)
; if br(j) = n1Θ1 + n2Θ2 + · · · + neΘe is an unfringed

subbranch of Y contained in Br(j), then we set br
(j)

:= n0Δ0+n1Θ1+n2Θ2+
· · ·+neΘe, a fringed subbranch, where Δ0 = Δ(j)

0 is a small open disc (a fringe)
around the intersection point p

(j)
1 = Θ0 ∩ Br(j). Herein for brevity we often

refer to both br(j) and br
(j)

simply as a subbranch. Letting l be a positive
integer, recall that a subbranch br

(j)
of a branch Br

(j)
is called of type Al,

Bl, or Cl (Definition 9.1.1, p154) provided that

Type Al l · br
(j) ≤ Br

(j)
and ne−1

ne
≥ re,

Type Bl l · br
(j) ≤ Br

(j)
, me = l, and ne = 1,

Type Cl l · br
(j) ≤ Br

(j)
, ne divides ne−1,

ne−1
ne

< re and u divides l where
u := (me−1 − lne−1) − (re − 1)(me − lne).

According to the above types of br
(j)

, we also say that br(j) is of type Al,
Bl, or Cl: By convention, if br

(j)
= n0Δ

(j)
0 (so br(j) = ∅) and ln0 ≤ m0, then

br
(j)

is of type Al.
The reader may wonder why we do not directly define the concept “types

Al, Bl, and Cl” for unfringed br(j). This is because in order to define Types
Al and Cl (when e = 1), we require “n0”. Also already in the very definition
of a subbranch, we posed a condition ni−1 + ni+1

ni
(i = 1, 2, . . . , e− 1), which

includes “n0” for i = 1.
We now introduce a very important concept.

Definition 16.2.1 Let Y = n0Θ0 +
∑N

j=1 br(j) be a crust and let l be a
positive integer such that (1) lY ≤ X, i.e. lY is a subdivisor of X and (2) any
subbranch br(j) is either of type Al, Bl, or Cl. Then Y is called a simple crust
and l is called the barking multiplicity of Y . (Note: Y itself may be multiple.
For example, see Figure 15.5.3 (3) where l = 1.)

The importance of simple crusts will be apparent from the following result.

Proposition 16.2.2 Let π : M → Δ be a linear degeneration with a stellar
singular fiber X.

(1) Suppose that X contains a simple crust Y of barking multiplicity l. Then
π : M → Δ admits a barking family Ψ : M → Δ × Δ† such that in the
deformation from X to X0,t = Ψ−1(0, t), the subdivisor lY is barked off
from X.

(2) In (1), if furthermore (i) n
(1)
1 + n

(2)
1 + · · · + n(N)

1
n0

= r0 and (ii) a sub-
branch of type Al in Y , if any, has zero slant (that is, q := ne−1 − rene =
0), then X0,t = Ψ−1(0, t) is normally minimal.
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Proof. We write Y = n0Θ0 +
∑N

j=1 br(j), where

br(j) = n
(j)
1 Θ(j)

1 + n
(j)
2 Θ(j)

2 + · · · + n(j)
ej

Θ(j)
ej

.

For each subbranch br(j), we associate a positive integer a(j) as follows:

a(j) =

{
n

(j)
ej br(j) is of type Cl,

1 otherwise,

and then set d := lcm (a(1), a(2), . . . , a(N)); actually, for the subsequent
discussion it suffices to take such a positive integer d as is divisible by
lcm (a(1), a(2), . . . , a(N)). Now we consider a deformation atlas

DA(lY, d) = {W0, DA
(j)
ej−1}j=1,2,...,N .

By Theorem 10.0.15, p177 — when br(j) = ∅, we apply the construction
for type Al (see Remark 10.0.16 p177) —, each DA

(j)
ej−1 admits a complete

propagation. Consequently, DA(lY, d) admits a complete propagation. Let Ψ :
M → Δ×Δ† be the barking family associated with this complete propagation.
We next assert that in the deformation from X to X0,t, the subdivisor lY is
barked off from X. This immediately follows from the factorizations below:

W0|s=0 :

⎧⎨⎩ στ lζm−ln
(

1
τ ζn + td

)l

= 0, around p
(j)
1 (j = 1, 2, . . . , N)

σζm−ln(ζn + tdτ)l = 0, otherwise,

and for i = 1, 2, . . . , ej − 1,⎧⎨⎩ H(j)
i |s=0 : wmi−1−lni−1ηmi−lni(wni−1ηni + tdfi)l = 0

H(j)
i

′|s=0 : z
mi+1−lni+1
i ζi

mi−lni(zni+1
i ζni

i + tdf̂i)l = 0.

Thus we proved (1). The assertion (2) is derived from

(i) the description of X0,t around the core; see Lemma 3.2.2, p48, and
(ii) the description of X0,t around branches; see Figures 7.1.1, p122 and 7.1.3,

p123 for type Al with zero slant (that is, q := ne−1 − rene = 0), and see
for type Bl, Figures 10.1.1, p179 and 10.1.2, p180, and for type Cl, §11.3,
p191.

This completes the proof. �
Theorem 10.0.15, p177 gives the converse of (1) of Proposition 16.2.2:

Proposition 16.2.3 Let π : M → Δ be a linear degeneration with a stellar
singular fiber X. If π : M → Δ admits a barking family such that a subdivisor
lY is barked off from X in the deformation from X to X0,t, then Y is a simple
crust of barking multiplicity l.
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We summarize Proposition 16.2.2 and Proposition 16.2.3 as follows:

Theorem 16.2.4 Let π : M → Δ be a linear degeneration with a stellar
singular fiber X.

(A) If X contains a simple crust Y of barking multiplicity l, then π : M → Δ
admits a barking family Ψ : M → Δ × Δ† such that lY is barked off
from X in the deformation from X to X0,t. In this case, if furthermore

(i) n
(1)
1 + n

(2)
1 + · · · + n(N)

1
n0

= r0 and (ii) each subbranch of type Al of Y ,
if any, has zero slant (q := ne−1 − rene = 0), then X0,t := Ψ−1(0, t) is
normally minimal.

(B) Conversely, if π : M → Δ admits a barking family such that a subdivisor
lY is barked off from X in the deformation from X to X0,t, then Y is
a simple crust of barking multiplicity l. (Note: As indicated by Example
18.4.2, p322, this is not true for a constellar singular fiber X — we will
later define the notion of a simple crust for a constellar singular fiber,
and construct a barking family associated with it.)

See Figures 16.3.1 and 16.3.2 for examples.
We note that from “one” simple crust, it is sometimes possible to construct

“several” barking families. Indeed,

Proposition 16.2.5 Let Y be a simple crust of barking multiplicity l. Then
a barking family associated with it is generally “not” unique; in fact,

(i) If n
(1)
1 + n

(2)
1 + · · · + n(N)

1
n0

>
m

(1)
1 + m

(2)
1 + · · · + m(N)

1
m0

, then the choice of
a core section τ is generally not unique (Remark 3.4.4, p53, and also §4.3,
p74).

(ii) If l ≥ 2 and some subbranch br(j) of Y is of type Cl, then in most cases,
a complete propagation of DA

(j)
ej−1 along the branch Br(j) is not unique

(Remark 11.3.6, p198, and also Chapter 12, p209).

(For other cases, a barking family associated with Y is unique.)

The reader may conceive that if l ≥ 2 and some subbranch br(j) of Y is
both of type Al and Bl (type ABl):

m = (ln0, ln1, . . . , lnλ), n = (n0, n1, . . . , nλ), and nλ = 1,

then DA
(j)
ej−1 admits two different complete propagations resulting from the

constructions of types Al and Bl (Remark 10.1.4, p179); accordingly we obtain
two different barking families from Y . However this is not the case, because
as we show below in Corollary 16.7.4, any simple crust of a stellar singular
fiber does not have a subbranch of type ABl. (For a constellar singular fiber,
the situation is different; a simple crust may have a subbranch of type ABl.
See Example 19.3.4, p337.)
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Let Ψ : M → Δ×Δ† be a barking family. For fixed t �= 0, a singular fiber
Xs,t = Ψ−1(s, t) is called the main fiber if s = 0, and is called a subordinate
fiber if s �= 0. We may completely describe the main fiber by using the results
of §16.4 (the description of deformations of types Al, Bl, and Cl) and §16.6.
For subordinate fibers, we have the following result.

Proposition 16.2.6 Let π : M → Δ be a degeneration with a stellar singular
fiber X. Suppose that X contains a simple crust Y of barking multiplicity l,
and let Ψ : M → Δ × Δ† be a barking family associated with it. Then any
subordinate fiber of Ψ is a reduced curve only with A-singularities; these singu-
larities are (i) near the core of X and (ii) near the edge of each proportional1

subbranch.

Proof. This result immediately follows by combining the statements about
barking families restricted to the neighborhoods of the core (Proposition
21.6.3, p408) and branches (Proposition 7.2.6 (1), (2), p129; in the present
case, (3) is excluded). �

For a special case where the core Θ0 is the projective line and none of
subbranches of Y is proportional, Ikuko Awata [Aw] described subordinate
fibers.

We close this section by mentioning an interesting phenomenon: As we
change the position of the branches (i.e. we move the attachment points of
the branches to the core), the topological type of subordinate fibers often
changes, while the topological type of the main fiber remains unchanged.

16.3 Criteria for splittability

Next we deduce a powerful criterion for the splittability of a singular fiber.

Criterion 16.3.1 Let π : M → Δ be a degeneration with a stellar singular
fiber X = m0Θ0 +

∑N
j=1 Br(j). Then the following statements hold:

(1) Suppose that the core Θ0 is an exceptional curve (i.e. Θ0 is a projective
line such that Θ0 · Θ0 = −1). Then π : M → Δ admits a splitting family.

(2) Suppose that the core Θ0 is not an exceptional curve. If X contains a
simple crust Y , then π : M → Δ admits a splitting family.

(The splitting families in (1) and (2) can be explicitly constructed.)

Proof. We show (1). Take a subdivisor Y = Θ0 + Θ(1)
1 and set l = m

(1)
1 .

Then Y is a simple crust of barking multiplicity l; indeed, br(1) := Θ(1)
1 is a

subbranch of type Bl, and the existence of a core section τ is clear (Proposition
3.4.3, p52). Therefore by Theorem 16.2.4, there exists a barking family Ψ :

1 If none of subbranches of Y is proportional, then the A-singularities are only near
the core of X. Note that by Lemma 9.1.2, p154, any subbranch of type Cl is not
proportional.
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deform−→

X

genus 5l = 2, pa(Y ) = 1
Y

1

q

B︷︸︸︷ C︷︸︸︷

5

1 1
1

2 3
1

3

1q

1
2

3

2

1

1

X0,t

Fig. 16.3.1. The deformation of the subbranch of type Cl in Y is illustrated in
greater detail in Figure 12.3.4, p224. (Note: pa(Y ) is the arithmetic genus of Y ; see
[GH].)

M → Δ × Δ† associated with Y such that X0,t is normally minimal. In
particular, X0,t has a nontrivial topological monodromy (different from that
of X), and so apart from X0,t, there must be another singular fiber in πt :
Mt → Δ which also has a nontrivial topological monodromy (different from
that of X). Namely, πt : Mt → Δ has (at least) two singular fibers with
nontrivial topological monodromies — they are necessarily non-fake2 singular
fibers. This assures that Ψ : M → Δ × Δ† is a splitting family. (Note: The
above discussion works not only for j = 1 but also for arbitrary j by taking
Y = Θ0 + Θ(j)

1 and l = m
(j)
1 ).

Next we show (2). By assumption, π : M → Δ is relatively minimal, and
so the barking family associated with Y is a splitting family (by definition).�

We derive some more criteria for splittability. In what follows, for simplicity
we often set

r =
m

(1)
1 + m

(2)
1 + · · · + m(N)

1

m0
.

Note that r is a positive integer, because −r = Θ0 · Θ0 (the self-intersection
number of Θ0).

Criterion 16.3.2 Let π : M → Δ be a degeneration with a stellar singular

fiber X = m0Θ0+
∑N

j=1 Br(j), and set r = m
(1)
1 + m

(2)
1 + · · · + m(N)

1
m0

. Suppose
that

(A) N0
∼= OΘ0(−p

(1)
1 − p

(2)
1 − · · · − p

(r)
1 ) where N0 is the normal bundle of Θ0

in M , and
(B) there are r branches among all branches of X, say, Br(1),Br(2), . . . ,Br(r)

satisfying
(B1) for j = 1, 2, . . . , r, there exists an integer ej where 1 ≤ ej ≤ λj such

that m
(1)
e1 = m

(2)
e2 = · · · = m

(r)
er ,

2 A singular fiber is fake if it becomes a smooth fiber after blowing down.
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12
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15 205 10 579
︷

︸︸
︷
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3

1

41 2 3 2

A

A︷ ︸︸ ︷ C︷︸︸︷

3 1

deform−→
1321

X0,tX (genus 6)

4

4
1

4
4
4
4

1

Y (l = 4, pa(Y ) = 1)

Fig. 16.3.2. X0,t contains three projective lines of multiplicity 1, denoted by ellipses,
which were barked off from X.

(B2) Θ(j)
1 +Θ(j)

2 + · · ·+Θ(j)
ej−1 (j = 1, 2, . . . , r) is a chain of (−2)-curves,

i.e. Θ(j)
i (i = 1, 2, . . . , ej − 1) has the self-intersection number −2

(this condition is vacuous for j such that ej = 1).

Then π : M → Δ admits a splitting family which is explicitly constructible
from the above data. (Note: (A) is an analytic condition, while (B) is a nu-
merical one.)

Proof. We consider a subdivisor Y = Θ0 +
∑r

j=1 br(j) of X, where

br(j) := Θ(j)
1 + Θ(j)

2 + · · · + Θ(j)
ej

.

By (A) and (B2), Y is a crust; (A) guarantees the existence of a core section
τ , while (B2) ensures that br(j) is a subbranch. Set l := me1 (= me2 = · · · =
mer

). Then by (B1), any subbranch br(j) is of type Bl, so that Y is a simple
crust of barking multiplicity l. Therefore we can apply Criterion 16.3.1. �

When Θ0 is the projective line, the above criterion takes a simpler form:

Criterion 16.3.3 Let π : M → Δ be a degeneration with a stellar singular
fiber X = m0Θ0 +

∑N
j=1 Br(j) such that the core Θ0 is the projective line; for
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Fig. 16.3.3. Examples of simple crusts and the deformations associated with them
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brevity, set3 r := m
(1)
1 + m

(2)
1 + · · · + m(N)

1
m0

. Suppose that there are r branches

among all branches of X, say, Br(1),Br(2), . . . ,Br(r) satisfying

(B1) for j = 1, 2, . . . , r, there exists an integer ej where 1 ≤ ej ≤ λj such that
m

(1)
e1 = m

(2)
e2 = · · · = m

(r)
er , and

(B2) Θ(j)
1 + Θ(j)

2 + · · · + Θ(j)
ej−1 (j = 1, 2, . . . , r) is a chain of (−2)-curves,

i.e. Θ(j)
i (i = 1, 2, . . . , ej − 1) has the self-intersection number −2 (this

condition is vacuous for j such that ej = 1).

Then π : M → Δ admits a splitting family. (See Figure 16.3.3 for example.)

Proof. We show the assertion by applying Criterion 16.3.2. It is enough to
check that the condition (A) of Criterion 16.3.2 is fulfilled. This is evident;
since degN0 = −r and Θ0 is the projective line, we have

N0
∼= OΘ0(−p

(1)
1 − p

(2)
1 − · · · − p

(r)
1 ).

�

16.4 Singularities of fibers

In this section, we suppose that π : M → Δ is a degeneration with a stellar
singular fiber X = m0Θ0 +

∑N
j=1 Br(j). Given a simple crust Y of barking

multiplicity l of X, we let Ψ : M → Δ × Δ† be a barking family associated
with Y (Proposition 16.2.2), that is, obtained from a complete propagation
of a deformation atlas DA(lY, d). The primary aim of this section is, for the
convenience of later discussion, to summarize the description of a singular
fiber Xs,t := Ψ−1(s, t) around the core and the branches of X.

We first give the description of singularities of Xs,t near the core Θ0 (see
Chapter 21, p383 for details). By construction, the restriction of Xs,t around
the core is given by σ(z)ζm0−ln0

(
ζn0 + tdτ(z)

)l − s = 0. Among the singu-
larities of Xs,t, the description of those near the core Θ0 notably applies the
“plot function”

K(z) := n0
dσ(z)

dz
τ(z) + m0σ(z)

dτ(z)
dz

,

which is defined on Θ0 (we often simply write K(z) = n0σzτ + m0στz). Since
m0 > ln0 (see Lemma 16.7.1, p299), the following result holds by Proposition
21.8.3 (1), p418 — we note that t in that proposition is replaced by td, because
in the present case, d (the weight of the deformation atlas DA(lY, d)) is not
assumed to be 1.

3 Recall that r is a positive integer, because −r = Θ0 · Θ0 (the self-intersection
number of Θ0).
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Lemma 16.4.1 Let Cs,t be the restriction of Xs,t around the core Θ0:

Cs,t : σ(z)ζm0−ln0
(
ζn0 + tdτ(z)

)l − s = 0.

Let K(z) = n0σzτ + m0στz be the plot function on C. Then (α, β) ∈ Cs,t

(s, t �= 0) is a singularity if and only if α and β satisfy

(a) K(α) = 0, σ(α) �= 0, τ(α) �= 0 and (b) βn0 = ln0 − m0
m0

tdτ(α).

Futhermore, s and t satisfy
(

ln0 − m0
ln0

)al

sa =
(

ln0 − m0
m0

)b

(td)bσ(α)aτ(α)b,

where a and b are the relatively prime positive integers such that am0 = bn0;
see (21.2.7), p395.

In particular, if K(z) is identically zero, then (α, β) ∈ Cs,t (s, t �= 0) is a

singularity precisely when σ(α) �= 0, τ(α) �= 0, and βn0 = ln0 − m0
m0

tdτ(α).
Observe that the set of (α, β) satisfying this condition is one-dimensional;
hence Cs,t has only non-isolated singularities. On the other hand, if K(z) is
not identically zero, then the following elaborate result holds: If α has order
r as a zero of K(z), then the singularity (α, β) is an Ar-singularity (Theorem
21.6.7, p410). We remark that if the core Θ0 is the projective line, then K(z)
is not identically zero (Proposition 16.7.6, p301).

Next, we describe Xs,t around a branch Br(j) of the singular fiber X.
We say that the restriction of the barking family Ψ : M → Δ × Δ† to a
neighborhood of Br(j) is a deformation of type Al, Bl, or Cl according to the
type of the subbranch br(j) of Y . In what follows, for simplicity we often
omit (j) of Θ(j)

i , such as Br(j) = m1Θ1 + m2Θ2 + · · · + mλΘλ and br(j) =
n1Θ1 + n2Θ2 + · · · + neΘe.

Deformation of type Al

(1) This deformation is trivial ‘beyond’ Θe+1, that is, trivial around irre-
ducible components Θe+2,Θe+3, . . . ,Θλ (see Figure 6.1.4, p103).
(2) For any i (1 ≤ i ≤ λ), the transition function z = 1/w, ζ = wriη of
Ni is not deformed.
(3) First suppose that br(j) is proportional, i.e. there exist relatively prime
positive integers a and b satisfying (am0, am1, . . . , amλ) = (bn0, bn1, . . . ,
bnλ). Let f(z) be the holomorphic function in the definition of the defor-
mation atlas DA

(j)
ej−1; see (16.1.3), p280. Then a fiber Xs,t is singular near

the branch Br(j) if and only if either Case 1 or Case 2 below holds:

Case 1. f(z) is constant4, and

s = 0 or
(

ln0 − m0
ln0

)al

sa =
(

ln0 − m0
m0

)b

(td)b,

Case 2. f(z) is not constant, and

s = 0 or
(

ln0 − m0
ln0

)al

sa =
(

ln0 − m0
m0

)b

(c0t
d)b, where c0 = f(0).

4 Actually, this does not occur for a branch of a stellar singular fiber, but may
occur for a branch of a constellar one.
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In Case 2, for the pair of s and t satisfying the equation on the right hand
side, Xs,t has only Akpλ+1−1-singularities near the edge of the branch
Br(j) (Proposition 7.2.6, p129), where k is the minimal positive integer
such that ck �= 0 in the expansion f(z) = c0 + c1z + c2z

2 + · · · , and pλ+1

is inductively defined via{
p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.

Next suppose that br(j) is not proportional. Then Xs,t is singular near
the branch Br(j) if and only if s = 0 (Proposition 7.2.6, p129).

Deformation of type Bl

(1) This deformation is trivial beyond Θe, that is, trivial around irre-
ducible components Θe+1,Θe+2, . . . ,Θλ (see Figure 10.1.1, p179).
(2) A deformation of the transition function z = 1/w, ζ = wriη of Ni

occurs only at i = e.
(3) Xs,t is singular near the branch Br(j) if and only if s = 0 (Proposition
10.2.1, p180).

Deformation of type Cl

(1) To be consistent with the notation in §11.3, p191, instead of d, we
use k for the weight of a deformation atlas for type Cl; we assume that
k is divisible by ne. For a subbranch br(j) of type Cl, the construction of
a complete propagation of the deformation atlas DAe−1(l · br(j), k) was
carried out separately for three cases (Cases I, II, III in §11.3, p191); the
resulting deformation for each case is non-trivial around Θe,Θe+1, . . . ,Θf ,
and trivial around Θf+1,Θf+2, . . . ,Θλ where

f =

{
e + Nne − 1 Case I. b = 0 or Case II. b ≥ 1 and u > b

e + Nne + v − 1 Case III. b ≥ 1 and u ≤ b,

(16.4.1)

(see (11.3.5), p198 where we set d := ne). The integers N and v are defined
as follows: First, set

u := (me−1 − lne−1) − (re − 1)(me − lne),

and then u divides l by the definition of type Cl; we set N := l
u . Next we

set b := me − lne, and when b ≥ 1 and u ≤ b, let v be the integer such
that l − vu ≥ 0 and l − (v + 1)u < 0.
We remark that when l ≥ 2, a complete propagation of DAe−1(l·br(j), k) is
not unique (Chapter 12, p209); accordingly we obtain several deformations
from one subbranch of type Cl.
(2) Deformations of transition functions z = 1/w, ζ = wriη occur at
“many” irreducible components between Θe and Θf . The exact number



16.4 Singularities of fibers 291

for “many” depends on the construction of a complete propagation of
DAe−1(l · br(j), k).
(3) Xs,t is singular near the branch Br(j) if and only if s = 0 (Proposition
11.4.2, p200).

Taking into consideration the above property (1) for each type, we intro-
duce the propagation number ρ(br(j)) of a subbranch br(j) of type Al, Bl, or
Cl as follows:

ρ(br(j)) =

⎧⎪⎨⎪⎩
e + 1 if br(j) is of type Al

e if br(j) is of type Bl

f if br(j) is of type Cl,

(16.4.2)

where e is the length of br(j), and f is as in (16.4.1). Then from the above
property (1) for types Al, Bl, and Cl, we have

Lemma 16.4.2 Let π : M → Δ be a degeneration with a stellar singular
fiber X, and let Ψ : M → Δ×Δ† be a barking family associated with a simple
crust Y of X. Take a subbranch br(j) of Y , and denote by ρ = ρ(br(j)) its
propagation number. Then the barking family Ψ : M → Δ × Δ†, restricted
to a neighborhood of a branch Br(j) of X, is trivial beyond an irreducible
component Θρ; in other words, trivial around Θρ+1,Θρ+2, . . . ,Θλ.

The irreducible component Θρ in the above lemma is called semi-rigid, and
Θi (i ≥ ρ + 1) are called rigid.

We give a peculiar example of subbranches.

Example 16.4.3 It may happen that a subbranch of type Cl is ‘contained’
in a subbranch of type Bl. For instance,

(1) type Bl l = 10, m = (40, 26, 12, 10, 8, 6, 4, 2) and n = (3, 2, 1, 1).
(2) type Cl l = 10, m = (40, 26, 12, 10, 8, 6, 4, 2) and n = (3, 2, 1).

(In (2), me > lne and u = 2.)

From these two subbranches, we may construct two distinct deformations of
the branch, which coincide around irreducible components Θ0,Θ1,Θ2, but are
totally different around irreducible components Θ3,Θ4,Θ5,Θ6,Θ7.

We close this section by summarizing as a theorem the above descriptions
of barking families restricted to neighborhoods of the core and branches. To
that end, we first recall some terminology. Let π : M → Δ be a degeneration
of compact complex curves, and let Ψ : M → Δ × Δ† be a baking family
obtained from a simple crust Y of barking multiplicity l. For fixed t (t �= 0),
a singular fiber Xs,t := Ψ−1(s, t) is called the main fiber if s = 0, and it is
called a subordinate fiber if s �= 0: The original singular fiber X := π−1(0)
splits into one main fiber and several subordinate fibers. The main fiber X0,t

is described essentially in terms of the factorization of its defining equation.
For the description of the subordinate fibers, we have the following result.
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Theorem 16.4.4 Let Ψ : M → Δ × Δ† be a barking family obtained from a
simple crust Y of barking multiplicity l. Then the singularities of a subordinate
fiber Xs,t are as follows:

(1) If the plot function K(z) = n0σzτ + m0στz is not identically zero, then
Xs,t has A-singularities near the core Θ0 (Theorem 21.6.7, p410), whereas
if K(z) is identically zero, then Xs,t has non-isolated singularities near
the core (Proposition 21.8.3 (1), p418). For the former case, the following
inequality holds (Corollary 21.4.4, p403):

(the number of the A-singularities near the core)

≤ gcd(m0, n0) ·
[
N − v + k + (2g0 − 2) −

∑
j∈J0

ordpj
(ω)

]
,

where
N is the number of the branches of X,
v is the number of the proportional subbranches of Y ,
k is the number of the zeros of τ ,
g0 is the genus of the core Θ0,
J0 is the set of indices j such that n0m

(j)
1 − m0n

(j)
1 = 0 (there are v

such indices), and
ordpj

(ω) is the order of a meromorphic 1-form ω(z) := d log
(
σn0τm0

)
.

In the generic case5, Xs,t has only nodes (A1-singularities) near the core
Θ0.

(2) If Y has proportional subbranches, then Xs,t has A-singularities near the
edge of each proportional subbranch (Proposition 7.2.6, p129).

Actually, for a subordinate fiber Xs,t, (a) the number of A-singularities of Xs,t

near the core Θ0 and (b) the ‘complexity’ of A-singularities of Xs,t near the
edge of each proportional subbranch of Y are closely related. This is so-called
the seesaw phenomenon of the singularities of a subordinate fiber. See §21.7,
p413 for details.

16.5 Application to a constellar case

In some cases, the construction of barking families for a stellar singular fiber is
generalized to that for a constellar one. Recall that a singular fiber is constellar
(constellation-shaped) if it is obtained by bonding stellar singular fibers. Here
“bonding” is an operation, originally introduced by Matsumoto and Mon-
tesinos (see [MM2] and also [Ta,II]), which produces a new singular fiber from
given stellar singular fibers. Let X1 (resp. X2) be stellar singular fibers of
π1 : M1 → Δ (resp. π2 : M2 → Δ), and Br1 (resp. Br2) be a fringed branch
of X1 (resp. X2), and we express

Br1 = m0Δ0 + m1Θ1 + · · ·+ mλΘλ, Br2 = m′
0Δ

′
0 + m′

1Θ
′
1 + · · ·+ m′

νΘν .

5 The case where any zero α of the plot function K(z) such that σ(α) �= 0 and
τ(α) �= 0 is simple (i.e. of order 1).
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We pose an assumption: mλ = m′
ν , and let κ (κ ≥ −1) be an integer such

that if κ = −1, then the following condition is satisfied: There exists a pair
of integers λ0 and ν0 (0 ≤ λ0 < λ, 0 ≤ ν0 < ν) satisfying mλ0+1 + m′

ν0+1 =
mλ0 = m′

ν0
.

Under this assumption, by bonding the branches Br1 and Br2 of X1 and
X2, we may construct a singular fiber X = X(κ) (a κ-bonding of X1 and
X2) of some degeneration: Two fringed branches Br1 and Br2 are joined to
become a (fringed) κ-trunk Tk of the new singular fiber X. Specifically, we
set m := mλ = m′

ν , and then the trunk Tk is a chain of projective lines, given
as follows (m0Δ0 and m′

0Δ
′
0 are its fringes):

if κ ≥ 0,

Tk = m0Δ0 + m1Θ1 + · · · + mλ−1Θλ−1 + mΘλ + mΘλ+1 + · · · + mΘλ+κ

+ m′
νΘ′

ν + m′
ν−1Θ

′
ν−1 + · · · + m′

0Δ
′
0,

if κ = −1,

Tk = m0Δ0+m1Θ1+· · ·+mλ0Θλ0 +m′
ν0−1Θ

′
ν0−1+m′

ν0−2Θ
′
ν0−2+· · ·+m′

0Δ
′
0.

Now we return to discuss barking families. Let X be the constellar singu-
lar fiber obtained as above by bonding two stellar singular fibers X1 and X2.
Suppose that X1 contains a simple crust Y1, and let br1 be the subbranch
of Y1 contained in the branch Br1 of X1. By Lemma 16.4.2, p291, any bark-
ing family associated with Y1 is, when restricted to a neighborhood of the
branch Br1, trivial beyond an irreducible component Θρ (semi-rigid compo-
nent), where ρ := ρ(br1) is the propagation number (16.4.2) of the subbranch
br1. If ρ(br1) + 1 ≤ length(Tk) (this is always satisfied if κ ≥ 0), we can
trivially propagate this barking family of π1 : M1 → Δ to that of π : M → Δ.
Therefore we obtain the following criterion.

Criterion 16.5.1 (Trivial Propagation Criterion) Let X1 (resp. X2) be
a stellar singular fiber of π1 : M1 → Δ (resp. π2 : M2 → Δ), and let Br1 (resp.
Br2) be a branch of X1 (resp. X2). Suppose that X is a constellar singular
fiber of π : M → Δ, obtained from X1 and X2 by κ-bonding of Br1 and Br2
(recall that κ (κ ≥ −1) is an integer). If X1 contains a simple crust Y1 such
that in the case κ = −1,

ρ(br1) + 1 ≤ length(Tk), (16.5.1)

where ρ(br1) is the propagation number of the subbranch br1 of Y1 contained
in Br1, then any barking family of π1 : M1 → Δ associated with Y1 trivially
propagates to that of π : M → Δ. (See Figure 16.5.1 for an example for
κ = −1.)

This criterion is easily generalized to the case where a constellar singular fiber
X is obtained from the bonding of an arbitrary number of stellar singular
fibers.
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Fig. 16.5.1. genus(X) = 7, barking multiplicity l = 3. This deformation is a ‘gen-
eralization’ of the deformation in Figure 16.3.3 (2), p287.

Criterion 16.5.2 (Exceptional Curve Criterion) Let π : M → Δ be a
normally minimal degeneration with a (stellar or constellar) singular fiber X
which contains an exceptional curve, say, Θ0. If any irreducible component
intersecting Θ0 is a projective line, then π : M → Δ admits a splitting family.



16.6 Barking genus 295

(Note: If X is stellar, then Θ0 must be the core, and this assumption is always
satisfied.)

Proof. If X is stellar, then Θ0 is the core, and the assertion follows from
Criterion 16.3.1, p284. We next consider the case where X is constellar. Let
Θk (k = 1, 2, . . . , N) be the set of irreducible components of X intersecting
Θ0. Then mk < m0, because

Θ0 · Θ0 = −
∑N

k=1mk

m0
= −1.

Now we take one irreducible component, say Θ1, among Θk (k = 1, 2, . . . , N),
and we consider a subdivisor Y = Θ0 + Θ1. We set l := m1 (note that l < m0

by the above argument). Then Y is a simple crust of barking multiplicity
l, where Θ0 is its core and Θ1 is a subbranch of type Bl. From Y , we can
construct a barking family Ψ : M → Δ × Δ† of π : M → Δ such that it is
trivial beyond Θ1,Θ2, . . . ,ΘN (Proposition 16.2.2 (2), p281). Moreover, since
the subbranch of Y is of type Bl, the singular fiber X0,t is normally minimal
(Theorem 16.2.4 (A)), and so Ψ : M → Δ×Δ† is a splitting family by Lemma
1.1.2, p28. �

16.6 Barking genus

Let Y = n0Θ0 +
∑N

j=1 br(j) be a simple crust of barking multiplicity l of a

stellar singular fiber X; so br(j) = n
(j)
1 Θ(j)

1 + n
(j)
2 Θ(j)

2 + · · · + n
(j)
ej Θ(j)

ej is a
subbranch of type Al, Bl, or Cl. We denote by Ψ : M → Δ × Δ† a barking
family associated with Y . In the process of deformation from X to X0,t =
Ψ−1(0, t), the subdivisor lY is barked off from X to become a multiple curve
lYt (being one part of X0,t). Note that Yt is a smoothing of Y away from
several points (the zeros of τ , and such points p as in Figure 7.1.2, p123 and
Figure 7.1.4, p123 if Y has a subbranch of type Al). The genus of the reduced
curve Yt (t �= 0) — the genus of one component of Yt unless Yt is connected
— is called the barking genus of Y , and denoted by gb(Y ); note that if d ≥ 2
where d is the weight of the deformation atlas DA(lY, d) in (16.1.1), then Yt

consists of d isomorphic components. We also note that if Y has a subbranch
of type Cl, then Yt, (t �= 0) has boundary: Each boundary component (a
circle) corresponds to a subbranch of type Cl, and in the process of ‘reverse’
deformation from Yt to Y , each boundary component is pinched to a point on
the irreducible component Θ(j)

ej of the subbranch br(j) of type Cl. For example,
the circle l2 in Figure 3.3.2, p51 is pinched to the point p2 in that figure. For
more complicated examples, see Figure 8.1.1, p150 and Figure 12.3.1, p221.
We remark that if none of subbranches of Y is of type Cl, then Yt (t �= 0) has
no boundary.
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Remark 16.6.1 Let ga(Y ) be the arithmetic genus of the simple crust Y as
a subdivisor in M (see [GH]):

ga(Y ) = 1 +
KM · Y + Y · Y

2
,

where KM is the canonical bundle of M . Since Yt is linearly equivalent to Y
in M, we have genus(Yt) = ga(Y ), so that ga(Y ) equals the barking genus
gb(Y ) of Y .

Next, we ask whether there exists a degeneration whose singular fiber is
the simple crust Y . If the answer is positive, then the barking genus of Y may
be simply defined as the genus of (a connected component of) a smooth fiber
of this degeneration. Unfortunately the answer is negative. In fact, if there
exists a degeneration whose singular fiber is Y , then each subbranch of Y
must have the properties of branches: e.g. the ratio ne−1/ne for a subbranch
br(j) = n1Θ1 + n2Θ2 + · · ·+ neΘe is an integer at least 2. However this is not
always the case: for example,

(1) If br(j) is of type Al, then ne−1/ne ≥ re, and so ne−1/ne ≥ 2. But ne−1/ne

is not necessarily an integer. For instance, m = (9, 6, 3) and n = (8, 5, 2),
and then ne−1/ne = 5/2.

(2) If br(j) is of type Bl or Cl, then ne−1/ne is a positive integer. But
“ne−1/ne ≥ 2” does not necessarily hold. For instance, (i) l = 4,
m = (6, 5, 4, 3, 2, 1), and n = (1, 1, 1) (type B4) and (ii) l = 1, m =
(6, 5, 4, 3, 2, 1), and n = (4, 4, 4) (type C1).

Taking (2) into consideration, for the rest of this section we allow a branch of
a singular fiber to contain an exceptional curve (a projective line with the self-
intersection number −1). Then after we ‘modify’ Y , we are able to realize it
as a singular fiber of some ‘degeneration’ — a degeneration in the above wider
sense. Specifically, instead of Y = n0Θ0 +

∑
j br(j) we consider Ẏ = n0Θ0 +∑

j ḃr
(j)

, where ḃr
(j)

(the enlargement of the subbranch br(j)) is defined as

follows: (1) if br(j) is of type Bl or Cl, we simply take br(j) itself as ḃr
(j)

, and

(2) for type Al, we make br(j) longer to construct ḃr
(j)

in the following way:
Noting that ne−1/ne ≥ re, we first define a sequence of integers

ne+1 > ne+2 > · · · > nf > nf+1 = 0

by the division algorithm; that is, ne−1 = rene − ne+1 (0 ≤ ne+1 < ne)
and then for i = e + 1, e + 2, . . . , f , inductively by ni−1 = r′ini − ni+1 (0 ≤
ni+1 < ni), where r′i is an integer at least 2. Using this sequence, we define

the enlargement ḃr
(j)

of the subbranch br(j) of type Al by

ḃr
(j)

:= br(j) + ne+1Θe+1 + ne+2Θe+2 + · · · + nfΘf .
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Next we construct an ambient space of ḃr
(j)

for a subbranch br(j) of type Al.
(A priori, ḃr

(j)
is not a branch of a singular fiber; it is not yet embedded in

a complex surface.) Noting that

ni−1 + ni+1

ni
= r′i (i = e + 1, e + 2, . . . f − 1) and

nf−1

nf
= r′f , (16.6.1)

we take line bundles Li on Θi (i = 1, 2, . . . , f), obtained by patching (wi, ηi) ∈
Ui × C and (zi, ζi) ∈ Vi × C via⎧⎨⎩ zi = 1

wi
, ζi = wri

i ηi if 1 ≤ i ≤ e (in this case Li = Ni),

zi = 1
wi

, ζi = w
r′

i
i ηi if e + 1 ≤ i ≤ f.

Then we patch Li with Li+1 (i = 1, 2, . . . , f − 1) by plumbing (zi, ζi) =
(ηi+1, wi+1). This yields a smooth complex surface T (j) which is an ambient

space of the enlargement ḃr
(j)

for a subbranch br(j) of type Al.
Next recall that for a subbranch br(j) of type Bl or Cl, we took br(j) itself

as ḃr
(j)

. We then construct an ambient space T (j) of ḃr
(j)

as follows (we note
that T (j) constructed below is generally different from a tubular neighborhood
of br(j) “in M”). First we define a line bundle Li on Θi for i = 1, 2, . . . , e: For
i = 1, 2, . . . , e − 1, we simply take Li := Ni, obtained by gluing U × C with
V × C by z = 1/w, ζ = wriη, while setting r′e := ne−1/ne, we define a line
bundle Le by gluing U ×C with V ×C by z = 1/w, ζ = wr′

eη. Then we plumb
Li and Li+1 (i = 1, 2, . . . , e − 1) to construct a smooth complex surface T (j);

this surface is an ambient space of ḃr
(j)

(= br(j)) for a subbranch br(j) of type
Bl or Cl.

Remark 16.6.2 In general, T (j) for type Bl or Cl does not coincide with a
tubular neighborhood of ḃr

(j)
(= br(j)) “in M”. In fact, the self-intersection

number of Θe in T (j) may be −1 (this occurs precisely when ne−1/ne = 1),
whereas the self-intersection number of Θe “in M” is never −1.

Next, recall that N0 is a tubular neighborhood of the core Θ0 in M . By
plumbing, we glue N0 with each T (j) (the ambient space of the enlargement

ḃr
(j)

) around the intersection point p
(j)
1 of Θ0 and Br(j). We denote the result-

ing smooth complex surface by S. We shall realize Ẏ := n0Θ0 +
∑

j ḃr
(j)

, the
enlargement of the simple crust Y , as a ‘singular fiber’ of a family {Ẏt}t∈Δ†

in S × Δ†. First, we consider the following equations in N0 × Δ × Δ†:

W0 :

{
1
τ ζn0 + td = 0 on z ∈ Θ×

0

ζn0 + tdτ = 0 on z ∈ D
(see Lemma 15.3.2, p272), (16.6.2)

where Θ×
0 = Θ0 \ {the zeros of τ} and D :=

⋃
i Di: Each Di is a small disk

around a zero qi ∈ Θ0 of τ . Next we consider the following equations in



298 16 Simple Crusts (Stellar Case)

T (j) × Δ × Δ†: for i = 1, 2, . . . , length(ḃr
(j)

),⎧⎨⎩ wni−1ηni + tdfi − s = 0

zni+1ζni + tdf̂i − s = 0.
(16.6.3)

The families defined by (16.6.2) and (16.6.3) are patched together to constitute
a global family {Ẏt}t∈Δ† in S × Δ† such that Ẏ0 = Ẏ . Here we have to be
careful; if τ has zeros, this family cannot be the graph of a degeneration. In
fact, if it does, say, it is realized as the graph of a degeneration ρ : S → Δ†,
then ρ−1(t1) ∩ ρ−1(t2) = ∅ must hold for distinct t1 and t2 (any two fibers
must be disjoint!). But this is not the case in the present situation, because
regardless of the value t, the curve Ẏt always passes through the zeros qi ∈ Θ0

of τ ; indeed, the curve ζn0 + tdτ = 0 in (16.6.2) always passes through a point
(z, ζ, t) = (qi, 0, 0).

To remedy this situation, we delete the zeros of τ from the core Θ0; let
N×

0 be the restriction of the line bundle N0 to Θ×
0 = Θ0 \ {the zeros of τ},

and we consider a smooth complex surface S×, obtained by plumbing N×
0

with each T (j) around p
(j)
1 (the intersection point of Θ0 and Br(j)). For the

complex surface S×, we may define a holomorphic map ρ : S× → Δ†: For the
case d = 1 where d is the weight of DA(lY, d), the map ρ is given around the

core by ρ(z, ζ) = − 1
τ(z)ζn0 , and ρ is given around each enlargement ḃr

(j)
by

⎧⎪⎪⎨⎪⎪⎩
ρ(w, η) = −wni−1ηni

fi

ρ(z, ζ) = −zni+1ζni

f̂i

.

For the case d ≥ 2, instead of ρ, we only have to take the d-th power of ρ, that
is, ρd : S× → Δ†; hereafter, we rewrite ρd by ρ. We then obtain a degeneration
ρ : S× → Δ† whose singular fiber ρ−1(0) is Ẏ × = n0Θ×

0 +
∑

j ḃr
(j)

, where Ẏ ×

is obtained from Ẏ by replacing the core Θ0 by Θ×
0 = Θ0\{the zeros of τ}. Of

course if the core section τ has no zeros, then Ẏ × is Ẏ itself. (Note: When τ
has zeros, all fibers of ρ are non-compact, and so ρ : S× → Δ† is not proper.)

We summarize the above discussion.

Proposition 16.6.3 Given a simple crust Y = n0Θ0 +
∑

j br(j), there exists
a degeneration ρ : S× → Δ† whose singular fiber ρ−1(0) is Ẏ × = n0Θ×

0 +∑
j ḃr

(j)
, where Θ×

0 = Θ0 \ {the zeros of τ} and ḃr
(j)

is the enlargement of
br(j).

Note: (a) If the core section τ has no zeros, then Ẏ × is Ẏ itself. (b) By
construction, the genus of a connected component of a smooth fiber of ρ :
S× → Δ coincides with the barking genus gb(Y ) of Y .
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16.7 Constraints on simple crusts

In this section, we will deduce several constraints on simple crusts.

Lemma 16.7.1 Let Y = n0Θ0 +
∑N

j=i br(j) be a simple crust of barking
multiplicity l of a stellar singular fiber X = m0Θ0 +

∑N
j=i Br(j). Then ln0 <

m0.

Proof. We show this by contradiction. Supposing that ln0 = m0, then we have
X = lY (see Claim 16.7.2 below for a proof). Next let τ be a core section of Y ,
that is, a meromorphic section of N⊗n0

0 such that div(τ) = −∑
j n

(j)
1 p

(j)
1 + D

where p
(j)
1 is the intersection point of a branch Br(j) and the core Θ0, and

D is a nonnegative divisor on Θ0. We claim that D = 0. To see this, we
first note that τ l is a section of N

⊗(ln0)
0 ; indeed, since m0 = ln0, we have

N
⊗(ln0)
0 = N⊗m0 . From this with deg N0 =

∑
j m

(j)
1

m0
, we derive an equation

of degrees: ∑
j

ln
(j)
1 + l deg D =

∑
j

m
(j)
1 .

Since ln
(j)
1 = m

(j)
1 (from X = lY ), we have l deg D = 0, and so deg D = 0.

Since D is a nonnegative divisor, this implies that D = 0. Thus we have
div(τ) = −∑

j n
(j)
1 p

(j)
1 , so that

div(τ−l) =
∑

j

ln
(j)
1 p

(j)
1 =

∑
j

m
(j)
1 p

(j)
1 .

Consequently σ := τ−l is the standard section of X (i.e. σ is a holomorphic
section of the line bundle N

⊗(−m0)
0 on Θ0 with a zero of order m

(j)
1 at each

p
(j)
1 ). However, “X = lY (l ≥ 2) and σ = τ−l” implies that any smooth fiber

of π : M → Δ is disconnected. In fact, from σ = τ−l and m0 = ln0, the
equation σζm0 − s = 0 (the defining equation of the original degeneration
around the core) is written as τ−lζln0 − s = 0, which admits a factorization:

l∏
k=1

(
τ−1ζn0 − l

√
se2πik/l

)
= 0.

This shows that any smooth fiber of π : M → Δ, when restricted to a neigh-
borhood of the core Θ0, is a disjoint union of l curves; from which it follows
immediately that any smooth fiber of π : M → Δ consists of l disjoint curves.
This contradicts that any smooth fiber of π : M → Δ is connected. Hence we
conclude that ln0 < m0. �

We now give a proof of the claim used in the proof of the above lemma.
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Claim 16.7.2 Let Y = n0Θ0 +
∑N

j=i br(j) be a simple crust of barking multi-
plicity l of a stellar singular fiber X = m0Θ0 +

∑N
j=i Br(j). If ln0 = m0, then

X = lY .

Proof. Recall the inequality in Lemma 3.4.1, p52:

n
(1)
1 + n

(2)
1 + · · · + n(N)

1

n0
≥ m

(1)
1 + m

(2)
1 + · · · + m(N)

1

m0
(= r0).

So
ln

(1)
1 + ln

(2)
1 + · · · + ln(N)

1

ln0
≥ m

(1)
1 + m

(2)
1 + · · · + m(N)

1

m0
.

If ln0 = m0, then we have

ln
(1)
1 + ln

(2)
1 + · · · + ln(N)

1 ≥ m
(1)
1 + m

(2)
1 + · · · + m(N)

1 . (16.7.1)

On the other hand, ln
(j)
1 ≤ m

(j)
1 holds for j = 1, 2, . . . , N ; because lY is

a subdivisor of X. Hence the inequality of (16.7.1) is actually an equality,
and ln

(j)
1 = m

(j)
1 holds for j = 1, 2, . . . , N . Now for each j, two equations

ln
(j)
1 = m

(j)
1 and ln0 = m0 together with

n
(j)
i−1 + n

(j)
i+1

n
(j)
i

=
m

(j)
i−1 + m

(j)
i+1

m
(j)
i

(= r
(j)
i ), i = 1, 2, . . . , λj − 1

imply that ln
(j)
i = m

(j)
i (j = 1, 2 . . . , λj), and so l · br(j) = Br(j). From this

with the assumption ln0 = m0, we conclude that X = lY . �
Next we note

Lemma 16.7.3 Let Y = n0Θ0 +
∑N

j=i br(j) be a simple crust of barking
multiplicity l of a stellar singular fiber X = m0Θ0 +

∑N
j=i Br(j). Then Y does

not have such a subbranch br(j) as l · br(j) = Br(j).

In fact, from Lemma 16.7.1, we have ln0 < m0, and so l · br(j) �= Br(j).
Next recall that a subbranch br(j) of type ABl satisfies l · br(j) = Br(j).

Thus, as a consequence of the above lemma, we have the following result.

Corollary 16.7.4 Let Y = n0Θ0 +
∑N

j=i br(j) be a simple crust of barking
multiplicity l of a stellar singular fiber X = m0Θ0 +

∑N
j=i Br(j). Then none

of subbranches of Y is of type ABl.

In contrast, if X is constellar, Y may have a subbranch of type ABl. See
Example 19.3.4, p337.

Now let X = m0Θ0+
∑N

j=i Br(j) be a stellar singular fiber, and let σ be the
standard section of X, that is, σ is a holomorphic section of the line bundle
N

⊗(−m0)
0 on the core Θ0 with a zero of order m

(j)
1 at each p

(j)
1 , where p

(j)
1 is
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the intersection point of a branch Br(j) and the core Θ0. Assume that Y =
n0Θ0 +

∑N
j=i br(j) is a simple crust of barking multiplicity l of X, and let τ be

a core section of Y , that is, τ is a meromorphic section of the line bundle N⊗n0
0

on Θ0 with a pole of order n
(j)
1 at each p

(j)
1 . We denote by Ψ : M → Δ×Δ† a

barking family associated with Y . Among the singularities of a singular fiber
Xs,t := Ψ−1(s, t), we will later describe those near the core Θ0 (Chapter 21,

p383); the plot function K(z) := n0
dσ(z)

dz
τ(z)+m0σ(z)dτ(z)

dz
, defined on Θ0,

will play an essential role (we often simply write K(z) = n0σzτ +m0στz). We
now deduce some constraint related to the plot function K(z).

Lemma 16.7.5 Let Y = n0Θ0 +
∑N

j=i br(j) be a simple crust of barking
multiplicity l of a stellar singular fiber X = m0Θ0 +

∑N
j=i Br(j). Let σ be the

standard section of X, and let τ be a core section of Y . If the plot function
K(z) = n0σzτ + m0στz is identically zero, then aX = bY , where a and b are
the relatively prime positive integers satisfying am0 = bn0. (In particular, all
subbranches of Y are proportional.)

Proof. We note that

n0σzτ + m0στz = 0 ⇐⇒ n0
σz

σ
+ m0

τz

τ
= 0 ⇐⇒ d log(σn0τm0)

dz
= 0

⇐⇒ log(σn0τm0) is constant. (16.7.2)

Thus σn0τm0 is constant and clearly nonzero. Let p
(j)
1 be the intersection

point of a branch Br(j) and the core Θ0. Then σn0τm0 is locally of the form

(zm
(j)
1 )n0

(
1

zn
(j)
1

)m0

h, that is, zm
(j)
1 n0−n

(j)
1 m0h around p

(j)
1 , where h = h(z)

is a non-vanishing holomorphic function. Since σn0τm0 is constant, we deduce

that m
(j)
1 n0 − n

(j)
1 m0 = 0 and h is constant. Hence m

(j)
1

n
(j)
1

= m0
n0

for j =

1, 2, . . . , N . Let a and b be the relatively prime positive integers satisfying
m0
n0

= b
a . Then (i) am0 = bn0, and with the above equation m

(j)
1

n
(j)
1

= m0
n0

,

we have (ii) am
(j)
1 = bn

(j)
1 for j = 1, 2, . . . , N . Further, (ii) implies that (iii)

a · Br(j) = b · br(j) for j = 1, 2, . . . , N . From (i) and (iii), we conclude that
aX = bY . �

We also have the following result.

Lemma 16.7.6 Let Y = n0Θ0 +
∑N

j=i br(j) be a simple crust of barking
multiplicity l of a stellar singular fiber X = m0Θ0 +

∑N
j=i Br(j). Let σ be

the standard section of X, and let τ be a core section of Y . If the core Θ0

is the projective line, then the plot function K(z) = n0σzτ + m0στz is never
identically zero. (In general, this statement is not valid for genus(Θ0) ≥ 1.)
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Proof. By contradiction. If K(z) = n0σzτ + m0στz is identically zero, then
by Lemma 16.7.5, we have aX = bY , and so X = b

aY where a and b are
the relatively prime positive integers satisfying am0 = bn0. We separate into
two cases: (1) a = 1 and (2) a ≥ 2. If a = 1, then X = bY (b ≥ 2). But
this implies, as we saw in the proof of Lemma 16.7.1, that any smooth fiber
of π : M → Δ is disconnected (a contradiction!). Next we consider the case
a ≥ 2. Since a and b are relatively prime, from X = b

aY , the positive integer

a must divide all multiplicities of Y . We write n0 = an′
0 and n

(j)
i = an

(j)
i

′
.

Then the isomorphism N⊗n0 ∼= OΘ0(−
∑N

j=1 n
(j)
1 p

(j)
1 ) is rewritten as

(N⊗n′
0)a ∼= OΘ0

(−a
N∑

j=1

n
(j)
1

′
p
(j)
1

)
.

From this, we deduce N⊗n′
0 ∼= OΘ0(−

∑N
j=1 n

(j)
1

′
p
(j)
1 ); because any line bun-

dle on the projective line Θ0 is uniquely determined by its degree. We now
take an a-th root τ1/a of τ : It is a meromorphic section of N⊗n′

0 with a
pole of order n

(j)
1

′
at each p

(j)
1 . Since K(z) = n0σzτ + m0στz is identically

zero by assumption, we have σn0τm0 = c (constant) as in (16.7.2), and so
σ = c1/n0τ−m0/n0 = c1/n0τ−b/a. Thus σ = const ·μb, where we set μ := τ−1/a.
However, again as in the proof of Lemma 16.7.1, this implies that any smooth
fiber of π : M → Δ is disconnected, consisting of b disjoint curves (a contra-
diction!). Therefore, if the core Θ0 is the projective line, then the plot function
K(z) = n0σzτ + m0στz is never identically zero. �

In the above proof, we used the fact that two line bundles L1 and L2 on
Θ0 satisfying L⊗a

1
∼= L⊗a

2 (a is a positive integer) are isomorphic: L1
∼= L2.

Unless Θ0 is the projective line, this is no longer true, and the above lemma
fails; m0στz + n0σzτ may be identically zero. This occurs, for example, when
the core Θ0 is of genus ≥ 1, and

X = 15Θ0 +
∑6

j=1 5Θ(j)
1 , Y = 6Θ0 +

∑6
j=1 2Θ(j)

1 , and l = 1 or 2.

In this case, a = 2, b = 5, and 2X = 5Y .
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Compound barking (Stellar Case)

17.1 Crustal sets

Let π : M → Δ be a degeneration with a stellar singular fiber

X = m0Θ0 +
N∑

j=1

Br(j),

where Θ0 is the core and Br(j) = m
(j)
1 Θ(j)

1 + m
(j)
2 Θ(j)

2 + · · · + m
(j)
λj

Θ(j)
λj

is a
branch. We consider a set of crusts Y = {Y1, Y2, . . . , Yl} of X, where

Yk = nk,0Θ0 +
N∑

j=1

br(j)k for k = 1, 2, . . . , l.

Then Y is called a crustal set if for each j (j = 1, 2, . . . , N), the set br(j) =
{br(j)1 , br(j)2 , . . . ,br(j)l } of subbranches is a bunch — this means that if br(j)k ∈
br(j) satisfies length(br(j)k ) < length(Br(j)k ), then br(j)k is tame (Definition
14.2.2, p257). A crustal set Y is dominant if for each j, the bunch br(j) is
dominant; recall that a bunch is dominant if there is no bunch containing it.

For a moment, we fix j and omit it. Suppose that br = {br1,br2, . . . ,brl}
is a set of dominant subbranches (br is not necessarily a bunch). We shall
introduce an operation, which associates the set br with a bunch. Firstly we
write brk ∈ br as

brk = nk,1Θ1 + nk,2Θ2 + · · · + nk,ek
Θek

,

and put e := min{ek : brk is wild}. Take a shorter subbranch

br′k = nk,1Θ1 + nk,2Θ2 + · · · + nk,eΘe,

and then it is easy to see that a set br′ = {br′1,br′2, . . . ,br′l} is a domi-
nant bunch. This functor, which associates br with br′, is called the cut-off
operation.



304 17 Compound barking (Stellar Case)

In order to generalize this operation to that for a set of crusts, we need
some preparation. Letting Y = n0Θ0 +

∑N
j=1 br(j) be a crust, if all br(j) (�= ∅)

are dominant, we say that Y is a dominant crust.

Lemma 17.1.1 Any crust is contained in a unique dominant crust.

Proof. In fact, for a crust Y = n0Θ0 +
∑N

j=1 br(j), we let br(j)dom be the unique
dominant subbranch containing br(j) (Proposition 5.4.5, p92). Then Ydom :=
n0Θ0 +

∑N
j=1 br(j)dom is a unique dominant crust containing Y . �

Now suppose that Y = {Y1, Y2, . . . , Yl} is a set of dominant crusts,
and we write Yk = nk,0Θk,0 +

∑N
j=1 br(j). By definition, each br(j) :=

{br(j)1 ,br(j)2 , . . . ,br(j)l } is a set of dominant subbranches. We then apply the
cut-off operation to br(j) to obtain a dominant bunch

br(j)′ = {br(j)1

′
,br(j)2

′
, . . . ,br(j)l

′}.

Set Y ′
k := nk,0Θk,0 +

∑N
j=1 br(j)

′
, and then Y′ := {Y ′

1 , Y ′
2 , . . . , Y ′

l } is a domi-
nant crustal set. The functor which associates a set Y of dominant crusts with
a dominant crustal set Y′ is also called a cut-off operation. We summarize the
functors:

a set of crusts
(1)�−→ a set of dominant crusts
(2)�−→ a dominant crustal set,

where (1) is given by Lemma 17.1.1 and (2) is the cut-off operation.

17.2 Deformation atlas associated with a crustal set

Suppose that Y = {Y1, Y2, . . . , Yl} is a crustal set, and d = {d1, d2, . . . , dl} is
a set of arbitrary positive integers. Then we say that

(Y,d) := {(Y1, d1), (Y2, d2), . . . , (Yl, dl)}

is a weighted crustal set and d is its weight. We will associate (Y,d) with a
deformation atlas DAe−1(Y,d) of size e − 1 = (e1 − 1, e2 − 1, . . . , el − 1),
where ej is the length of the bunch br(j);

ej := max{ length(br(j)1 ), length(br(j)2 ), . . . , length(br(j)l ) }.

The construction of DAe−1(Y,d) proceeds as follows:
Step 1. Let τk be a core section of the crust Yk (k = 1, 2, . . . , l), i.e. τk is
a meromorphic section of the line bundle N

⊗nk,0
0 on Θ0 with a pole of order
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nk,1 at p
(j)
1 , and is holomorphic outside {p(j)

1 }. We then define a hypersurface
in N0 × Δ × Δ† by

W0 : σζm0 − s +
l∑

k=1

tdk σ τk ζm0−nk,0 = 0, (Lemma 15.3.2, p272),

(17.2.1)

where σ is the standard section of the singular fiber X — a holomorphic
section of N

⊗(−m0)
0 such that

div(σ) = m
(1)
1 p

(1)
1 + m

(2)
1 p

(2)
1 · · · + m

(N)

1 p
(N)

1 .

Step 2. Next we construct a deformation atlas associated with each bunch
br(j) = {br(j)1 ,br(j)2 , . . . ,br(j)l }. For simplicity, fix j and omit the superscripts
(j). We express

σ = zm1g and τk = hk
znk,1 around p1,

where g and hk are non-vanishing holomorphic functions, and then the equa-
tion of W0 is locally

zm1 ζm0 g − s +
l∑

k=1

tdk zm1−n1 ζm0−nk,0 g hk around p1.

We simplify this equation by a coordinate change; replacing ζg1/m0 with ζ ′,
then

zm1 (ζ ′)m0 − s +
l∑

k=1

tdk zm1−n1 (ζ ′)m0−nk,0 fk, where fk := gnk,0/m0 hk.

To clarify the subsequent discussion, we now put the subscripts, such as z = z0

and ζ ′ = ζ0:

zm1
0 ζm0

0 − s +
l∑

k=1

tdk zm1−n1
0 ζ

m0−nk,0
0 fk(z0).

By a coordinate change (z0, ζ0) = (η1, w1), this equation becomes

wm0
1 ηm1

1 − s +
l∑

k=1

tdk wm0−n0
1 η

m1−nk,1
1 fk(η0). (17.2.2)

Next define a sequence of integers pi (i = 0, 1, . . . , λj + 1) inductively by{
p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λj .
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Then pλj+1 > pλj
> · · · > p1 > p0 = 0 (6.2.4), p105, and for the holomorphic

function fk in (17.2.2), we consider a sequence of holomorphic functions:

fk,i = fk(wpi−1ηpi) and f̂k,i = fk(zpi+1ζpi) (see (6.2.7), p106).

We then define: for i = 1, 2, . . . , ej − 1,⎧⎪⎨⎪⎩
H(j)

i : wmi−1 ηmi − s +
∑l

k=1 tdk wmi−1−nk,i−1 ηmi−nk,i fk,i = 0

H(j)
i

′
: zmi+1 ζmi − s +

∑l
k=1 tdk zmi+1−nk,i+1 ζmi−nk,i f̂k,i = 0

g
(j)
i : the transition function z = 1/w, ζ = wriη of Ni.

(17.2.3)

By Lemma 14.2.3, p257, this data gives a deformation atlas DA
(j)
ej−1 for the

branch Br(j) such that H(j)
1 is given by (17.2.2). Thus W0 and DA

(j)
ej−1 (j =

1, 2 . . . , N) together constitute a deformation atlas DAe−1(Y,d), which is
referred to as a deformation atlas associated with a crustal set Y.

Theorem 17.2.1 Let π : M → Δ be a degeneration with a stellar sin-
gular fiber X, and let DAe−1(Y,d) be the deformation atlas associated
with a crustal set Y = {Y1, Y2, . . . , Yl} of X; the weight d is arbitrary. If
br(j) := {br(j)1 , br(j)2 , . . .br(j)l } satisfies

(1) br(j) is tame (i.e. all br(j)k (k = 1, 2, . . . , l) are tame), or
(2) length(br(j)) = length(Br(j)) and m

(j)
λj

= 1,

then DAe−1(Y,d) admits a complete propagation.

Proof. According to whether (1) or (2) holds, applying Theorem 14.2.7, p260
or Theorem 14.2.8, p260, we see that DA

(j)
ej−1, the deformation atlas given

by (17.2.3), admits a complete propagation along the branch Br(j). Thus
DAe−1(Y,d) admits a complete propagation. �

17.3 Example of a crustal set

We consider a degeneration of elliptic curves with the singular fiber X de-
scribed in Figure 17.3.1 (X is II∗ in Kodaira’s notation), and we take three
points on Θ0: p1 = 1, p2 = 0 and p3 = ∞.

Let us take a weighted crustal set (Y,d) = {(Y1, 1), (Y2, 2), (Y3, 4)} as in
Figure 17.3.2; obviously, Y is dominant. For a, b, c ∈ C, we define a hypersur-
face W0 by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0 : w5(w − 1)3η6 − s + atw4(w − 1)3η5 + bt2w4(w − 1)2η4

+ ct4w2(w − 1)η2 = 0

H′
0 : z4(1 − z)3ζ6 − s + atz3(1 − z)3ζ5 + bt2z2(1 − z)2ζ4

+ ct4z(1 − z)ζ2 = 0

g0 : z = 1
w, ζ = w2η.



17.3 Example of a crustal set 307

2

1

2 21 2 1

X0,t

1
2 13

Br(3)︷ ︸︸ ︷︷︸
︸︷

Br(1)︷︸︸︷
p1 p3

Θ0

p2

Br(2)

5

X
2
4
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deform

Fig. 17.3.1.

Y1, weight 1

2 11

Y2, weight 2

4

3
2

3 22 1

Y3, weight 42
2

1
1

1 1 11 1 1

Fig. 17.3.2.

Notice the following:

(i) A bunch br(1) = {br(1)2 ,br(1)3 } (note br(1)1 = ∅) is tame, and so DA(Y,d)
admits a complete propagation along the branch Br(1) by Theorem 14.2.7,
p260.

(ii) A bunch br(3) = {br(3)1 ,br(3)2 ,br(3)3 } is wild. However m
(3)
5 = 1 and the

length of br(3) is equal to the length of Br(3), and thus from Theorem
14.2.8, p260 it follows that DA(Y,d) admits a complete propagation along
the branch Br(3).

Thus it remains to construct a complete propagation along the branch Br(2).
(Note: br(2) satisfies neither (1) nor (2) of Theorem 17.2.1, and we cannot
apply Theorem 17.2.1.) In a new coordinate ζ = (1− z)−1/2ζ ′ near z = 0, the
hypersurface H′

0 is written as

H′
0 : z4(ζ ′)6 − s + atz3(ζ ′)5(1 − z)1/2 + bt2z2(ζ ′)4 + ct4z(ζ ′)2 = 0,

and by a coordinate change (z, ζ ′) = (η, w), we have

H(2)
1 : w6η4 − s + atw5η3(1 − η)1/2 + bt2w4η2 + ct4w2η = 0.

We take a = 2α, b = α2 and c = −α4, and then H(2)
1 (and so DA(Y,d))

admits a complete propagation along the branch Br(2) (see §14.3, p260).
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Deformations of Tubular
Neighborhoods of Trunks

In this chapter, we introduce a degeneration such that its singular fiber is
a “trunk” and a smooth fiber is a disjoint union of C

× = C \ {0} (hence
non-compact), and then we will construct its various deformations.

18.1 Trunks

Suppose that a sequence of positive integers m = (m0,m1, . . . , mλ+1) satisfies:

ri :=
mi−1 + mi+1

mi
(i = 1, 2, . . . , λ) is an integer greater than 1.

We then construct a degeneration of “non-compact” complex curves. Take λ
copies Θ1,Θ2, . . . ,Θλ of the projective line. Let Θi = Ui ∪U ′

i (i = 1, 2, . . . , λ)
be the standard open covering by two complex lines with coordinates zi ∈ U ′

i

and wi ∈ Ui such that zi = 1/wi on Ui ∩ U ′
i , and we consider a line bundle

Ni = OΘi
(−ri) on Θi, which is obtained by gluing (zi, ζi) ∈ U ′

i × C with
(wi, ηi) ∈ Ui × C by

zi =
1
wi

, ζi = wri
i ηi.

We construct a complex surface M from N1, N2, . . . , Nλ by plumbing, that is,
identify Ni with Ni+1 (i = 1, 2, . . . , λ − 1) by (zi, ζi) = (ηi+1, wi+1). Next we
define a holomorphic map π : M → Δ(= C) as follows: For i = 1, 2, . . . , λ,⎧⎨⎩ π(wi, ηi) = w

mi−1
i ηmi

i

π(zi, ζi) = z
mi+1
i ζmi

i .

It is easy to check that π is well-defined; it is compatible with the patchings
of M . Then a smooth fiber of π : M → Δ consists of k annuli, where k =
gcd(m0,m1, . . . , mλ). On the other hand, the singular fiber is, as shown in
Figure 18.1.1,

X = π−1(0) = m0Δ0 + m1Θ1 + m2Θ2 + · · · + mλΘλ + mλ+1Δλ+1,
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· · ·m0 m1 m2 mλ mλ+1

Fig. 18.1.1. A trunk X

where Δ0 = C and Δλ+1 = C, while Θi (i = 1, 2, . . . , λ) are projective lines
such that Θi and Θi+1 (resp. Δ0 and Θ1, and also Δλ+1 and Θλ) intersect
transversely at one point (in later chapters we will sometimes shrink M so
that Δ0 and Δλ+1 become small open disks.) Note that Δ0 (resp. Δλ+1) is a
fiber of the line bundle N1 (resp. Nλ) over 0 ∈ U1 (resp. 0 ∈ U ′

λ). We say that
X is a trunk.

Remark 18.1.1 More precisely, X is a fringed trunk where m0Δ0 and
mλ+1Δλ+1 are fringes, whereas m1Θ1 + m2Θ2 + · · · + mλΘλ is an unfringed
trunk. However for brevity, if no fear of confusion, an unfringed/fringed trunk
is simply called a trunk. Whenever we need to distinguish unfringed and
fringed trunks, we use the notations Tk and Tk respectively for them. Possi-
bly, λ = 0 in which case Tk = m0Δ0 + m1Δ1 and Tk is just one point (the
intersection of Δ0 and Δ1).

For the remainder of this chapter, π : M → Δ is assumed to be a de-
generation whose singular fiber is a trunk. We shall define the notion of a
complete deformation atlas for the trunk. It consists of the following data:
For i = 1, 2, . . . , λ,⎧⎪⎪⎨⎪⎪⎩

Hi : a deformation of Hi : wmi−1ηmi − s = 0,

H′
i : a deformation of H ′

i : zmi+1ζmi − s = 0, and

gi : a deformation of the transition function z = 1/w, ζ = wriη of Ni

such that (1) gi transforms Hi to H′
i and (2) (possibly after expressing Hi and

H′
i in some coordinates), H′

i becomes Hi+1 by a coordinate change (zi, ζi) =
(ηi+1, wi+1). Given a complete deformation atlas, we can construct a barking
family of π : M → Δ by patching Hi and H′

i by gi for i = 1, 2, . . . , λ and
then by patching H′

i and Hi+1 by plumbing (zi, ζi) = (ηi+1, wi+1) for i =
1, 2, . . . , λ − 1.

Let l be a positive integer such that mi − lni ≥ 0 for i = 0, 1, λ, λ + 1, and
let f = f(z) and h = h(z) be holomorphic functions near the origin. Then
we define smooth hypersurfaces in U1 × C × Δ × Δ† and U ′

λ × C × Δ × Δ†

respectively by

H1(f) : wm0−ln0ηm1−ln1
(
wn0ηn1 + tdf(η)

)l − s = 0 (18.1.1)

H′
λ(h) : zmλ+1−lnλ+1ζmλ−lnλ

(
znλ+1ζnλ + tdh(ζ)

)l − s = 0, (18.1.2)
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where d is a positive integer. We would like to consider an “initial deformation
problem”:

Problem 18.1.2 Given holomorphic functions f and h, when does there ex-
ist a complete deformation atlas {Hi,H′

i, gi}i=1,2,...,λ such that H1 = H1(f)
(18.1.1) and H′

λ = H′
λ(h) (18.1.2) ?

18.2 Subtrunks, I

Let X = m0Δ0 + m1Θ1 + · · · + mλΘλ + mλ+1Δλ+1 be a trunk, so that

ri :=
mi−1 + mi+1

mi
, i = 1, 2, . . . , λ

is an integer greater than 1. We say that the length of X is λ+1. We suppose
that Y = n0Δ0 +n1Θ1 + · · ·+nlΘl (l < λ+1) is a subdivisor of the trunk X;
so 0 < ni ≤ mi holds for each i. Then l is the length of Y ; on the other hand,
when Y = n0Δ0 + n1Θ1 + · · · + nλΘλ + nλ+1Δλ+1, the length of Y is λ + 1.

Using some special subdivisors of the trunk X, we intend to construct
complete deformation atlases for X. In this section, we exclusively con-
sider subdivisors Y of X such that length(Y ) = length(X); another case
length(Y ) < length(X) will be treated in the next section.

Definition 18.2.1 A subdivisor Y = n0Δ0 +n1Θ1 + · · ·+nλΘλ +nλ+1Δλ+1

of a trunk X = m0Δ0 +m1Θ1 + · · ·+mλΘλ +mλ+1Δλ+1 is called a subtrunk
if for some integer e (1 ≤ e ≤ λ),

ni−1 + ni+1

ni
= ri, i = 1, 2, . . . , e − 1, e + 1, . . . , λ.

(Note: It may occur that ne−1 + ne+1
ne

= re.)

Now we introduce a deformation atlas associated with a subtrunk Y =
n0Δ0 +n1Θ1 + · · ·+nλΘλ +nλ+1Δλ+1. First we define a sequence of integers
pi (i = 0, 1, . . . , λ + 1) inductively by{

p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.

Then pλ+1 > pλ > · · · > p1 > p0 = 0 (6.2.4), p105. Letting f = f(z)
and h = h(z) be non-vanishing holomorphic functions defined on a domain
{z ∈ C : |z| < ε}, we then construct a sequence of holomorphic functions:
For i = 1, 2, . . . , λ,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fi(w, η) := f(wpi−1 ηpi ) on Ωi

f̂i(z, ζ) := f( zpi+1 ζpi ) on Ω̂i

hi(w, η) := h(wpλ+2−i ηpλ+1−i ) on Γi

ĥi(z, ζ) := h( zpλ−i ζpλ+1−i ) on Γ̂i,

(18.2.1)
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where domains Ωi, Ω′
i, Γi, and Γ′

i are respectively given by

Ωi := {(w, η) ∈ Ui : |w pi−1η pi | < ε}, Ω̂i := {(z, ζ) ∈ U ′
i : | z pi+1ζ pi | < ε}

Γi := {(w, η) ∈ Ui : |w pλ+2−i η pλ+1−i | < ε},
Γ̂i := {(z, ζ) ∈ U ′

i : | z pλ−i ζ pλ+1−i | < ε}.

Let l be a positive integer such that lY ≤ X, and let k be an arbitrary positive
integer. We define a deformation atlas DA(lY, k) with{

H1 = H1(f) : wm0−ln0ηm1−ln1
(
wn0ηn1 + tkf(η)

)l − s = 0

H′
λ = H′

λ(h) : zmλ+1−lnλ+1ζmλ−lnλ
(
znλ+1ζnλ + tkh(ζ)

)l − s = 0

as follows (in the below, fi, f̂i, hi, ĥi are as in (18.2.1)): For i = 1, 2, . . . , e− 1,⎧⎪⎨⎪⎩
Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tkfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tkf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni,

(18.2.2)

and for i = e + 1, e + 2, . . . , λ,⎧⎪⎨⎪⎩
Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tkhi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tkĥi)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

(18.2.3)

It is easy to check that gi (i = 1, 2, . . . , e−1, e+1, . . . λ) transforms Hi to H′
i,

and so DA(lY, k) is well-defined, however, we note that a priori DA(lY, k) is
not complete; it is not defined for i = e.

Next we introduce important notions “subtrunks of types Al and Bl”, for
which DA(lY, k) admits an e-th (and hence a complete) propagation.

Definition 18.2.2 Let Y = n0Δ0 + n1Θ1 + · · · + nλΘλ + nλ+1Δλ+1 be a
subtrunk of a trunk X, and so for some e (1 ≤ e ≤ λ),

ni−1 + ni+1

ni
= ri, i = 1, 2, . . . , e − 1, e + 1, . . . , λ.

Let l be a positive integer.

Type Al The subtrunk Y is of type Al if lY ≤ X and ne−1 + ne+1
ne

= re

(hence ni−1 + ni+1
ni

= ri for all i = 1, 2, . . . , λ).
Type Bl The subtrunk Y is of type Bl if lY ≤ X, me = l and ne = 1.

For a trunk X = m0Δ0 + m1Δ1 (Δ0 = Δ1 = C) of length 1, we adopt the
convention that a subdivisor Y = n0Δ0 + n1Δ1 is of type Al if lY ≤ X (that
is, ln0 ≤ m0 and ln1 ≤ m1).
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Now we give respective examples of types Al and Bl.

Example (type Al) m = (14, 13, 12, 11, 10). Then n = (2, 2, 2, 2, 2) is of
type Al where l = 2, 3, 4 or 5.

Example (type Bl) m = (6, 5, 4, 3, 2, 3, 4) and n = (1, 1, 1, 1, 1, 1, 1) where
e = 4. Then n is of type B2, because m4 = 2 and n4 = 1.

We note that there is a subtrunk both of type Al and Bl (called of type ABl).

Example (type ABl) l = 2, m = (8, 6, 4, 2, 4, 6) and n = (4, 3, 2, 1, 2, 3),
where e = 3.

A subtrunk Y is of type ABl exactly when X = lY and ne = 1; such Y is of
the form

Y = n0Δ0 + n1Θ1 + · · · + na−1Θa−1 + Θa + Θa+1 + · · · + Θb

+ nb+1Θb+1 + · · · + nλ+1Δλ+1,

where the multiplicity of Θi (a ≤ i ≤ b) is 1, and we may take as e an arbitrary
integer between a and b.

We now return to the construction of complete deformation atlases. We
say that a subtrunk Y of a trunk X is proportional if

m0

n0
=

m1

n1
= · · · =

mλ+1

nλ+1
.

Lemma 18.2.3 Let Y = n0Δ0+n1Θ1+· · ·+nλΘλ+nλ+1Δλ+1 be a subtrunk
of a trunk X = m0Δ0+m1Θ1+· · ·+mλΘλ+mλ+1Δλ+1, and let l be a positive
integer such that lY ≤ X. For non-vanishing holomorphic functions f = f(z)
and h = h(z), define a deformation atlas DA(lY, k) by (18.2.2) and (18.2.3).
If Y is of type Al such that in the proportional case, the following “fringe
condition” on f and h holds:

f̂λ = ĥλ, (18.2.4)

then DA(lY, k) for arbitrary k admits a complete propagation.

Remark 18.2.4 The condition f̂λ = ĥλ is satisfied, for example, if (1) f = h
identically and (2) mi = mλ−i (i = 1, 2, . . . , [λ/2]) where [λ/2] is the greatest
integer not exceeding λ/2. See Figure 19.3.3, p339 for example.

Proof. We note

He : wme−1−lne−1ηme−lne(wne−1ηne + tkfe)l − s = 0

H′
e : wme−1−lne−1ηme−lne(wne−1ηne + tkĥe)l − s = 0.

If Y is not proportional, then we may simplify these equations. In fact, since
me−1ne − mene−1 �= 0 and mene+1 − me+1ne �= 0, we can apply the Sim-
plification Lemma (Lemma 4.1.1, p58); after some coordinate change we may
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assume that fe = ĥe = 1:

He : wme−1−lne−1ηme−lne(wne−1ηne + tk)l − s = 0

H′
e : wme−1−lne−1ηme−lne(wne−1ηne + tk)l − s = 0.

Now take ge to be the transition function z = 1/w, ζ = wreη of Ne. Then
clearly ge transforms He to He, and we obtain a complete propagation of
DA(lY, k).

If Y is proportional, then f̂λ = ĥλ by assumption and the following data
gives a complete deformation atlas: For i = 1, 2, . . . , λ,⎧⎪⎨⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tkhi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tkĥi)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

�
We next consider type Bl.

Lemma 18.2.5 Let Y = n0Δ0+n1Θ1+· · ·+nλΘλ+nλ+1Δλ+1 be a subtrunk
of a trunk X = m0Δ0+m1Θ1+· · ·+mλΘλ+mλ+1Δλ+1, and let l be a positive
integer such that lY ≤ X. For non-vanishing holomorphic functions f = f(z)
and h = h(z), define a deformation atlas DA(lY, k) by (18.2.2) and (18.2.3). If
Y is of type Bl, then DA(lY, k) for arbitrary k admits a complete propagation.

Proof. From the condition of type Bl, we have me − lne = 0, and so

He : wme−1−lne−1(wne−1ηne + tkfe)l − s = 0

H′
e : wme−1−lne−1(wne−1ηne + tkĥe)l − s = 0.

For simplicity, we write r = re and set a = me−1, b = ne−1, c = me+1, and
d = ne+1. Then an equation mere = me−1 + me+1 is written as

lr = a + c, (18.2.5)

where we used me = l (because Y is of type Bl). We also have

He : wa−lb(wbη + tkfe)l − s = 0, H′
e : zc−ld(zdζ + tkĥe)l − s = 0.

We claim that a map1 ge : z = 1/w, ζ = wrη−tk wd ĥe+tk wr−b fe transforms
He to H′

e. To see this, rewrite the left hand side of He as

wa−lb

[
1

wr−b
(wrη) + tkfe

]l

− s,

1 Observe that ge contains ĥe = ĥe(z, ζ), but we can express ge only in variables
w, η and t by the implicit function theorem.
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which is transformed by the map ge to

1
za−lb

[
zr−b

(
ζ + tk

1
zd

ĥe − tk
1

zr−b
fe

)
+ tkfe

]l

− s

=
1

za−lb

[
zr−bζ + tkzr−b−d ĥe

]l

− s

= z l (r−b−d)− (a−l b)
(
zdζ + tk ĥe

)l − s

= zc−ld
(
zdζ + tk ĥe

)l − s,

where in the last equality, we used

l(r − b − d) − (a − lb) = (lr − a) − ld

= c − ld by (18.2.5).

This shows that ge transforms He to H′
e, and we obtain a complete propaga-

tion of DA(lY, k). �
In the above lemma, if Y is of type Bl but not of type Al (so Y is not

of type ABl), then we may slightly simplify the proof. In fact, in this case,
Y is not proportional and we have me−1ne − mene−1 �= 0 and mene+1 −
me+1ne �= 0. Thus we may apply Simplification Lemma (Lemma 4.1.1); after
some coordinate change, we may assume that fe ≡ 1 and ĥe ≡ 1, enabling us
to simplify the computation in the above proof.

We summarize Lemma 18.2.3 and Lemma 18.2.5 as follows.

Proposition 18.2.6 Let Y = n0Δ0 + n1Θ1 + · · · + nλΘλ + nλ+1Δλ+1 be
a subtrunk of a trunk X = m0Δ0 + m1Θ1 + · · · + mλΘλ + mλ+1Δλ+1, and
let l be a positive integer such that lY ≤ X. For non-vanishing holomorphic
functions f = f(z) and h = h(z), define a deformation atlas DA(lY, k) by
(18.2.2) and (18.2.3). Suppose that Y is of type Al or Bl such that in the
case of proportional type Al, the fringe condition f̂λ = ĥλ (18.2.4) is satisfied.
Then DA(lY, k) for arbitrary k admits a complete propagation.

If Y is both of type Al and Bl (type ABl), then we can construct two
different complete propagations of DA(lY, k) by applying the constructions
of types Al and Bl. Accordingly, we obtain two different barking families
ΨA : MA → Δ × Δ† and ΨB : MB → Δ × Δ†. It is curious that the sin-
gular fibers Ψ−1

A (0, t) and Ψ−1
B (0, t) are topologically the same; an irreducible

component marked by “mi − lni” in Figure 18.4.2 (3) and Figure 18.4.3 (2)
is vacuous if mi − lni = 0, and hence X0,t in Figure 18.4.2 (3) is topologi-
cally the same as X0,t in Figure 18.4.3 (2). But the gluing maps of MA and
MB around Θe are different, and so the ambient spaces MA and MB are
different.
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18.3 Subtrunks, II

Let X = m0Δ0 + m1Θ1 + · · · + mλΘλ + mλ+1Δλ+1 be a trunk, so that

ri :=
mi−1 + mi+1

mi
, i = 1, 2, . . . , λ

is an integer greater than 1. In this section, we treat a subdivisor Y of X such
that length(Y ) < length(X).

Definition 18.3.1 A subdivisor Y = n0Δ0 + n1Θ1 + · · · + neΘe (e < λ + 1)
of a trunk X is called a subtrunk provided that

ni−1 + ni+1

ni
= ri, i = 1, 2, . . . , e − 1.

Later we will further consider a “disconnected” subtrunk Y consisting of
two connected components:

Z = m0Δ0+m1Θ1+· · ·+meΘe and Z ′ = mfΘf+mf+1Θf+1+· · ·+mλ+1Δλ+1,

where e < f and the following equations hold:

ni−1 + ni+1

ni
= ri, i = 1, 2, . . . , e − 1, f + 1, f + 2, . . . , λ.

However for the moment, to simplify the discussion, we only consider con-
nected Y .

We now introduce important notions “subtrunks of types Al, Bl, and Cl”,
which are exactly corresponding to subbranches of types Al, Bl, and Cl re-
spectively.

Definition 18.3.2 Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a subtrunk of a
trunk X = m0Δ0 + m1Θ1 + · · · + mλΘλ + mλ+1Δλ+1 (e < λ + 1), so that Y
satisfies

ni−1 + ni+1

ni
= ri, i = 1, 2, . . . , e − 1.

Let l be a positive integer.

Type Al Y is of type Al if lY ≤ X and ne−1
ne

≥ re.
Type Bl Y is of type Bl if lY ≤ X, me = l and ne = 1.
Type Cl Y is of type Cl if lY ≤ X, ne divides ne−1,

ne−1
ne

< re, and u

divides l where u := (me−1 − lne−1) − (re − 1)(me − lne).

Also we adopt the following convention: A subdivisor Y of length zero (Y =
n0Δ0) is of type Al if lY ≤ X (that is, ln0 ≤ m0). In this case DA(lY, k)
consists only of H1.

Next we introduce several quantities related to the above types. First, we
define the propagation number ρ(Y ) of a subtrunk Y of type Al, Bl, or Cl in
the same way as that for a subbranch of type Al, Bl, or Cl (see (16.4.2), p291):
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ρ(Y ) =

⎧⎪⎨⎪⎩
e + 1 if Y is of type Al

e if Y is of type Bl

f if Y is of type Cl.

(18.3.1)

Here the positive integer f is defined as follows (see also (16.4.1), p290). Recall
that for a subbranch Y = n0Δ0 +n1Θ1 + · · ·+neΘe of type Cl, the construc-
tion of a complete propagation of the deformation atlas DAe−1(lY, k), where k
is divisible by ne, was carried out separately for three cases (Cases I, II, III in
§11.3, p191); the resulting deformation is non-trivial around Θe,Θe+1, . . . ,Θf ,
and trivial around Θf+1,Θf+2, . . . ,Θλ where the positive integer f in question
is given by

f =

{
e + Nne − 1 Case I. b = 0 or Case II. b ≥ 1 and u > b

e + Nne + v − 1 Case III. b ≥ 1 and u ≤ b.

(18.3.2)
Here the integers N and v are defined as follows: First, set

u := (me−1 − lne−1) − (re − 1)(me − lne),

and then u divides l by the definition of type Cl, and write l = Nu, so N is
a positive integer. Next we set b := me − lne, and when b ≥ 1 and u ≤ b, let
v be the integer such that l − vu ≥ 0 and l − (v + 1)u < 0.

Another important quantity associated with a subtrunk Y is a slant; when
Y = n0Δ0 + n1Θ1 + · · ·+ neΘe is of type Al, the integer q(Y ) := ne−1 − rene

is referred to as the slant of the subtrunk Y . From the condition ne−1/ne ≥ re

of type Al, we have q(Y ) ≥ 0.
For a moment, let Y = n0Δ0 +n1Θ1 + · · ·+neΘe be an arbitrary subtrunk

(not necessarily of type Al, Bl, or Cl) of a trunk X = m0Δ0 + m1Θ1 + · · · +
mλΘλ+mλ+1Δλ+1. Letting l be a positive integer satisfying lY ≤ X, we shall
introduce a deformation atlas DA(lY, k), where k is an arbitrary positive inte-
ger. First we define a sequence of integers pi (i = 0, 1, . . . , λ+1) inductively by{

p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.

Then pλ+1 > pλ > · · · > p1 > p0 = 0 (6.2.4), p105. Letting f = f(z) be a
non-vanishing holomorphic function defined on a domain {z ∈ C : |z| < ε},
we then construct a sequence of holomorphic functions: for i = 1, 2, . . . , λ,

fi(w, η) := f(wpi−1 ηpi ), f̂i(z, ζ) := f( zpi+1 ζpi ). (18.3.3)

Then the deformation atlas DA(lY, k) is given as follows: for i = 1, 2, . . . , e−1,⎧⎪⎨⎪⎩
Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tkfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tkf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

(18.3.4)
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Proposition 18.3.3 Let Y = n0Δ0 + n1Θ1 + · · · + neΘe be a subtrunk of a
trunk X = m0Δ0 + m1Θ1 + · · · + mλΘλ + mλ+1Δλ+1 (e < λ + 1), and let
l be a positive integer such that lY ≤ X. For a non-vanishing holomorphic
function f = f(z), define a deformation atlas DA(lY, k) by (18.3.4). Then the
following statements hold:

(1) Suppose that Y is of type Al, Bl, or Cl such that (i) ρ(Y ) ≤ length(X)−1
where ρ(Y ) is the propagation number of Y and (ii) if Y is type Cl the
positive integer k is divisible by ne. Then DA(lY, k) admits a complete
propagation with{

H1 = H1(f) : wm0−ln0ηm1−ln1
(
wn0ηn1 + tkf(η)

)l − s = 0

H′
λ : zmλ+1ζmλ − s = 0.

(2) Suppose that Y is of type Al such that length(Y ) = length(X) − 1. Then
DA(lY, k) admits a complete propagation with{

H1 = H1(f) : wm0−ln0ηm1−ln1
(
wn0ηn1 + tkf(η)

)l − s = 0

H′
λ : zmλ+1ζmλ − s +

∑l
i=0 lCi tki zmλ+1+iq ζmλ−inλ = 0,

where q = nλ−1 − rλnλ is the slant of Y . (Note: If q = 0, then H′
λ admits

a ‘factorization’ zmλ+1ζmλ−lnλ(ζnλ + tk)l − s = 0.)

Proof. First we show (1). According to the type (Al, Bl, or Cl) of Y , we apply
the construction of a complete propagation for a subbranch of the correspond-
ing type (Al, Bl, or Cl), and then we obtain a ρ-th propagation of DA(lY, k)
with

H′
ρ : zmρ+1ζmρ − s = 0.

Clearly H′
ρ admits a further propagation in the trivial way, and so we obtain

a complete propagation with the desired property. Next we show (2) (in this
case, the propagation number ρ(Y ) equals length(X)). Firstly we set⎧⎪⎪⎪⎨⎪⎪⎪⎩

Hλ : wmλ−1ηmλ − s +
∑l

i=1 lCi tik wmλ−1−inλ−1 ηmλ−inλ f i
λ = 0

H′
λ : zmλ+1ζmλ − s +

∑l
i=0 lCi tik zmλ+1+iq ζmλ−inλ f̂ i

λ = 0

gλ : the transition function z = 1/w, ζ = wrλη of Nλ.

Since mλ+1nλ − mλ(−q) = mλ+1nλ + mλq > 0 by q ≥ 0, we may apply
Simplification Lemma (Lemma 4.1.1, p58); after some coordinate change, H′

λ

becomes

zmλ+1ζmλ − s +
l∑

i=0

lCi tki zmλ+1+iq ζmλ−inλ = 0,

and therefore {Hi,Hi, gi}i=1,2,...,λ gives a complete deformation atlas with the
desired property. �
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With relation to (1) of Proposition 18.3.3, we introduce some terminolo-
gies. For a subtrunk Y of type Al, Bl, or Cl satisfying the assumption of (1),
letting ρ = ρ(Y ) be the propagation number of Y , we say that the irreducible
component Θρ of the trunk X is semi-rigid and that Θi (i ≥ ρ + 1) is rigid
under the barking deformation, which is constructed from the complete defor-
mation atlas in Proposition 18.3.3 (1). We remark that Lemma 16.4.2, p291
indicates the geometric significance of these terminologies.

From the results we thus far obtained in this chapter, we have already
proved most of the statements in the following theorem (below, Y is connected
except for (3)).

Theorem 18.3.4 Let Y be a subtrunk of a trunk X = m0Δ0 + m1Θ1 +
· · · + mλΘλ + mλ+1Δλ+1, and let l be a positive integer such that lY ≤ X.
Suppose that f = f(z) and h = h(z) are non-vanishing holomorphic functions.
According to the length of Y , the following statements hold:

(1) length(Y ) = length(X) : Suppose that Y is of type Al or Bl such that in
the case of proportional type Al, the fringe condition f̂λ = ĥλ (18.2.4) on
f and h is satisfied. Then DA(lY, k) admits a complete propagation with⎧⎨⎩ H1 = H1(f) : wm0−ln0ηm1−ln1

(
wn0ηn1 + tdf(η)

)l − s = 0

H′
λ = H′

λ(h) : zmλ+1−lnλ+1ζmλ−lnλ
(
znλ+1ζnλ + tdh(ζ)

)l − s = 0.

(2) length(Y ) < length(X) :
(2a) Suppose that Y is of type Al, Bl, or Cl such that (i) ρ(Y ) ≤

length(X)−1 where ρ(Y ) is the propagation number of Y and (ii) if Y
is of type Cl the positive integer k is divisible by ne. Then DA(lY, k)
admits a complete propagation with⎧⎨⎩ H1 = H1(f) : wm0−ln0ηm1−ln1

(
wn0ηn1 + tkf(η)

)l − s = 0

H′
λ : zmλ+1ζmλ − s = 0.

(2b) Suppose that Y is of type Al and length(Y ) = length(X) − 1. Then
DA(lY, k) admits a complete propagation with⎧⎪⎨⎪⎩

H1 = H1(f) : wm0−ln0ηm1−ln1
(
wn0ηn1 + tkf(η)

)l − s = 0

H′
λ : zmλ+1ζmλ − s +

l∑
i=0

lCi tki zmλ+1+iq ζmλ−inλ = 0,

where q = nλ−1 − rλnλ is the slant of Y .
(3) Suppose that Y consists of two connected components Z and Z ′, where

Z = n0Δ0+n1Θ1+· · ·+neΘe, Z ′ = nfΘf +nf+1Θf+1+· · ·+nλ+1Δλ+1,

(e < f) and lZ ≤ X and l′Z ′ ≤ X for positive integers l and l′. If Z (resp.
Z ′) is of type Al, Bl, or Cl (resp. Al′ , Bl′ , or Cl′) and ρ(Z) < ρ(Z ′), then
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the deformation atlas consisting of DA(lZ, k) and DA(l′Z ′, k′) admits a
complete propagation with⎧⎨⎩ H1 = H1(f) : wm0−ln0ηm1−ln1

(
wn0ηn1 + tkf(η)

)l − s = 0

H′
λ = H′

λ(h) : zmλ+1−l′nλ+1ζmλ−l′nλ
(
znλ+1ζnλ + tk

′
h(ζ)

)l′ − s = 0,

where if Z (resp. Z ′) is of type Cl (resp. Cl′), we take such k (resp. k′) as
is divisible by ne (resp. n′

e).

Proof. (1) and (2) are respectively Proposition 18.2.6, p315 and Proposition
18.3.3, p318. We show (3). First, as in the proof of Proposition 18.3.3, we
construct a ρ(Z)-th propagation of DA(lZ, k) such that Hρ (ρ := ρ(Z)) is
trivial. Similarly, we construct a ρ(Z ′)-th propagation of DA(l′Z ′, k′) such
that Hρ′ (ρ′ := ρ(Z ′)) is trivial. Then we propagate these ρ(Z)-th and ρ(Z ′)-th
propagations trivially to achieve a complete deformation atlas. (For examples
of (1) and (2), see Figure 18.4.2, p323, Figure 18.4.3, p324, and Figure 18.4.4,
p325. For an example of (3), see Figure 19.3.5, p341.) �
Remark 18.3.5 In (3), the following extreme case is important: Z = n0Δ0

and Z ′ = nλ+1Δλ+1 (λ ≥ 2) such that lZ ≤ X and l′Z ′ ≤ X; in this case Z
and Z ′ are respectively of type Al and of type Al′ . Note that ρ(Z) = 1 and
ρ(Z ′) = λ, and since λ ≥ 2, the condition ρ(Z) < ρ(Z ′) in (3) is fulfilled.

18.4 Other constructions of deformations

From the viewpoint of deformations, trunks are quite different from branches:
In general, a trunk has much more deformations than a branch. Specifically, let
l be a positive integer and let Y be a subbranch of a branch X satisfying lY ≤
X. Then a deformation atlas DA(lY, k) admits a complete propagation if and
only if Y is of type Al, Bl, or Cl such that if Y is of type Cl the positive integer
k is divisible by ne (Theorem 13.1.1, p236). In contrast, this is not the case
for trunks; they further admit another type of deformations, as we will see in
this section. The difference stems from the fact that the multiplicity sequence
of a trunk has different properties from that of a branch. For a branch X =
m0Δ0 + m1Θ1 + · · ·+ mλΘλ, its multiplicity sequence m = (m0,m1, . . . , mλ)
is determined by the division algorithm, and necessarily m0 > m1 > · · · >
mλ. However, this is not the case for a trunk X = m0Δ0 + m1Θ1 + · · · +
mλΘλ + mλ+1Δλ+1; the multiplicity sequence m = (m0,m1, . . . , mλ+1) is
in general not decreasing. For instance, m = (6, 5, 4, 3, 2, 3, 4). Moreover the
same integers may be adjacent in the multiplicity sequence, such as

m = (6, 5, 4, 3, 2, 2, 2, 2, 3, 4) or (4, 3, 2, 1, 1, 1).

Also the multiplicity sequence of some trunk may be obtained by giving up
the division algorithm “halfway.” For example, m = (32, 24, 16) is contained
in (32, 24, 16, 8), where the latter sequence is obtained by the “full” division
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algorithm, while the former is not. We also note that if m is the multiplic-
ity sequence of a branch, it is also the multiplicity sequence of some trunk.
This means that in some sense the set of trunks is much ‘bigger’ than that of
branches.

Since the construction of deformations of trunks is much affected by the
property of their multiplicity sequences, it is conceivable that a similar state-
ment to Proposition 13.3.1, p238 for branches — if the deformation atlas
DA(lY, k) admits a complete propagation, then the subbranch Y must be of
type Al, Bl, or Cl — does not hold for trunks; because in that proof, inequal-
ities m0 > m1 > · · · > mλ was essentially used.

From the above fact, we expect deformations of trunks, which branches
do not have. Actually, they do exist; before we present them, we recall an
operation (Matsumoto–Montesinos bonding) which yields a trunk from two
branches, and conversely any trunk is obtained in this way. Consider two
(fringed) branches

Br1 = m0Δ0 +m1Θ1 + · · ·+mλΘλ, Br2 = m′
0Δ

′
0 +m′

1Θ
′
1 + · · ·+m′

νΘ′
ν .

Let κ (κ ≥ −1) be an integer. When κ = −1, we assume that the following
condition on the branches Br1 and Br2 is satisfied: There exists a pair of
integers λ0 and ν0 (0 ≤ λ0 < λ, 0 ≤ ν0 < ν) satisfying

mλ0+1 + m′
ν0+1 = mλ0 = m′

ν0
. (18.4.1)

Then the κ-bonding of the two branches Br1 and Br2 yields a trunk X = X(κ)
(in what follows, we set m := mλ = m′

ν):

If κ ≥ 0,

X = m0Δ0 + m1Θ1 + · · · + mλ−1Θλ−1 + mΘλ + mΘλ+1 + · · · + mΘλ+κ

+ m′
ν−1Θ

′
ν−1 + m′

ν−2Θ
′
ν−2 + · · · + m′

0Δ
′
0.

If κ = −1,

X = m0Δ0+m1Θ1+ · · ·+mλ0Θλ0 +m′
ν0−1Θ

′
ν0−1+m′

ν0−2Θ
′
ν0−2+ · · ·+m′

0Δ
′
0.

Observe that if κ ≥ 1, then Θλ+1 + Θλ+2 + · · · + Θλ+κ−1 is a chain of (−2)-
curves2. For κ = 0,−1, we have the following result.

Lemma 18.4.1 Let X be a trunk defined as above for κ = 0 or −1, and set
ri := −Θi ·Θi

(
= mi−1 + mi+1

mi

)
where Θi ·Θi is the self-intersection number

of an irreducible component Θi of X.

(1) If κ = 0, then rλ ≥ 3. (Hence Θλ · Θλ �= −2.)
(2) If κ = −1, then rλ0 ≥ 3. (Hence Θλ0 · Θλ0 �= −2.)

2 A (−2)-curve is a projective line with the self-intersection number −2.
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Proof. We first show (2). Since mλ0−1 > mλ0 and m′
ν0−1 > m′

ν0
= mλ0

(18.4.1), we have

rλ0 :=
mλ0−1 + m′

ν0−1

mλ0

>
mλ0 + mλ0

mλ0

= 2.

Similarly, we can show (1). �
Therefore if κ = 0 (resp. −1), then any chain of (−2)-curves in the trunk

X does not contain the “middle” irreducible component Θλ (resp. Θλ0) of X;
the reason why we care about the existence/position of a chain of (−2)-curves
is that the chain will be used for constructing deformations of the trunk at
the end in this section.

We remark that for the following cases, we can apply the construction of
deformations developed in [Ta,I] to obtain deformations of trunks.

(i) κ ≥ 0 and m = 1: In this case, the trunk X contains an irreducible com-
ponent Θe (λ ≤ e ≤ λ + κ) of multiplicity 1 and Xred \Θe is topologically
disconnected, where Xred is the underlying reduced curve of X.

(ii)κ ≥ 1: In this case, the trunk X contains adjacent irreducible components
Θi and Θi+1 with the same multiplicity (i.e. mλ = m′

ν); so X has a multiple
node — a multiple node (of multiplicity m) is defined by {(x, y) ∈ C

2 :
xmym = 0}.

The next example demonstrates that for a trunk X, the barking families asso-
ciated with subtrunks of types Al, Bl, and Cl do not exhaust such deformations
as some subdivisor lY is barked off from X.

Example 18.4.2 In Example 9.4.14, p174, for a branch X = 32Δ0 +24Θ1 +
16Θ2 + 8Θ3, we showed that no matter how we choose a weight k, the defor-
mation atlas DA(lY, k), where Y = 2Δ0+2Θ1 is a subbranch of X and l = 12,
admits a second propagation but not a third propagation; so it does not admit
a complete propagation. Nevertheless for a trunk X ′ = 32Δ0 + 24Θ1 + 16Δ2,
we can use this example to construct a complete propagation of a deforma-
tion atlas DA(lY ′, k) where Y ′ = 2Δ0 + 2Θ1 is a subtrunk of X ′ and l = 12;
indeed, the second propagation of DA(lY, k) gives a complete propagation of
DA(lY ′, k). Note that the subtrunk Y ′ is none of types Al, Bl, and Cl.

Next, using “unfringed subtrunks” we provide a curious construction of
deformations of a trunk X = X(κ), where κ ≥ 1 and

X = m0Δ0 + m1Θ1 + · · · + mλ−1Θλ−1 + mΘλ + mΘλ+1 + · · · + mΘλ+κ

+ m′
ν−1Θ

′
ν−1 + m′

ν−2Θ
′
ν−2 + · · · + m′

0Δ
′
0. (18.4.2)

First of all, we explain a terminology. A subdivisor Y = Θd +Θd+1 + · · ·+Θe

(λ ≤ d < e ≤ λ + κ) of the trunk X is called an unfringed subtrunk (of
type Bm); we note that Θd,Θd+1, . . . ,Θe are (−2)-curves. The terminology
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Fig. 18.4.1. Deformation associated with an unfringed subtrunk Y of type B2
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Fig. 18.4.2. Deformation of type Al.
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Fig. 18.4.3. Deformation of type Bl.

“type Bm” is derived from the fact that the subsequent construction of a
deformation associated with Y is essentially the same as that associated with
a subbranch of type Bm.

We require the following lemma.

Lemma 18.4.3 Consider a map g : z = 1/w, ζ = wrη + tkwr−1f , where
k and r are integers satisfying k ≥ 1 and r ≥ 2, and f = f(w, η) is a
holomorphic function. Then g transforms a polynomial P = (wη + tkf)m to
a polynomial Q = zm(r−1)ζm.

Proof. Since

P = (wη + tkf)m =
[

1
wr−1 (wrη) + tkf

]m

,
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Fig. 18.4.4. Deformation of type Cl. cf. Figure 12.3.2, p223.

the map g transforms P to[
zr−1

(
ζ − tk

1
zr−1 f

)
+ tkf

]m

,

which is equal to Q = zm(r−1)ζm. �
Now letting Y = Θd + Θd+1 + · · · + Θe be an unfringed subtrunk of type

Bm of the trunk X in (18.4.2), we define a deformation atlas DA(mY, k) as
follows: For i = d + 1, d + 2, . . . , e − 1,⎧⎪⎨⎪⎩

Hi : (wη + tkfi)m − s = 0
H′

i : (zζ + tkf̂i)m − s = 0
gi : the transition function z = 1/w, ζ = w2η of Ni,

(18.4.3)

where holomorphic functions fi and f̂i are as in (18.3.3).

Proposition 18.4.4 Let Y = Θd + Θd+1 + · · · + Θe (d < e) be an unfringed
subtrunk of type Bm of the trunk X in (18.4.2). Then the deformation atlas
given by (18.4.3) admits a complete propagation.
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Proof. By definition, He : (wη + tkfe)m − s = 0, and by Lemma 18.4.3, the
following data gives an e-th propagation of DA(mY, k):⎧⎪⎪⎨⎪⎪⎩

He : (wη + tkfe)m − s = 0

H′
e : zm(re−1)ζm − s = 0

gi : z = 1
w, ζ = wreη + tkwre−1fe.

Since H′
e is the trivial family of H ′

e, we can further propagate it trivially for
i = e + 1, e + 2, . . . , λ + 1. Likewise we can propagate DA(mY, k) trivially for
i = d, d − 1, . . . , 1. Thus we obtain a complete propagation of DA(mY, k). �

Let Ψ : M → Δ × Δ† be the barking family obtained from the complete
deformation atlas in the above proposition. The deformation from X to X0,t =
Ψ−1(0, t) is, for example, shown in Figure 18.4.1.
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Construction of Barking Deformations
(Constellar Case)

The aim of this chapter is to generalize the notions and results for stellar
singular fibers to those for constellar singular fibers.

19.1 Notation

Let π : M → Δ be a normally minimal degeneration of compact complex
curves of genus g (g ≥ 1) with a singular fiber X =

∑
miΘi. Here “nor-

mally minimal” means that (1) any singularity of the underlying reduced
curve Xred =

∑
i Θi of X is a node (namely, Xred has at most normal cross-

ings) and (2) if an irreducible component of X is an exceptional curve (a
projective line with the self-intersection number −1), then it intersects other
irreducible components at at least three points. By Matsumoto–Montesinos’
Theorem [MM2], a degeneration of complex curves becomes normally minimal
possibly after successive blow up or down, and moreover a normally minimal
degeneration is uniquely determined by the original degeneration.

The topological monodromy γ of a degeneration is either periodic (i.e. γn =
id for some positive integer n) or pseudo-periodic (i.e. γn for some positive
integer n is generated by Dehn twists). According to whether γ is periodic
or pseudo-periodic, the singular fiber of a normally minimal degeneration is
stellar (star-shaped) or constellar (constellation-shaped). A constellar singular
fiber is obtained by bonding stellar ones along their branches — this operation
is called Matsumoto–Montesinos bonding: See §16.5, p292 and §18.4, p320. We
refer to [MM2] and [Ta,II] for more details.

When we study the splittability problem of a degeneration, without loss
of generality we may assume that the degeneration is normally minimal, as
noted in §1.1, p23. The advantage to treat a normally minimal degeneration
is that its singular fiber X is ‘inductively’ described; if a normally minimal
singular fiber X is constellar, then X is obtained from stellar singular fibers
of lower genera by means of bonding.
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In [Ta,I], we showed the following result.

Criterion 19.1.1 Let π : M → Δ be a normally minimal degeneration such
that the singular fiber X contains a multiple node, where a multiple node (of
multiplicity m) is defined by xmym = 0. Then π : M → Δ is atomic if and
only if X is a reduced curve with one node (i.e. Lefschetz fiber).

If an irreducible component of X is self-intersecting, then its self-intersection
point is a multiple node, and so by means of the above criterion, X admits
a splitting. For this reason, for our subsequent discussion, we only consider
such singular fibers as all irreducible components Θi are smooth.

We prepare some notation. We denote by Ni the normal bundle of Θi in
M . For an irreducible component Θi of X, if Θi ∩ Θj �= ∅, then we write

Θi ∩ Θj = {p(ij)
1 , p

(ij)
2 , . . . , p

(ij)
k },

where k = k(i, j) := #(Θi∩Θj) is the number of points of intersection between
Θi and Θj . We next define a divisor P

(i)
j on Θi by

P
(i)
j := p

(ij)
1 + p

(ij)
2 + · · · + p

(ij)
k . (19.1.1)

By Lemma 15.1.1, p265, we have N⊗mi
i

∼= OΘi
(−∑

j mjP
(i)
j ), where the sum

runs over all indices j such that Θi∩Θj �= ∅. Thus N
⊗(−mi)
i has a holomorphic

section σi such that div(σi) =
∑

j mjP
(i)
j .

Now we assume that π : M → Δ is a linear degeneration; so a tubular
neighborhood of Θi in M is biholomorphic to that of the zero section in Ni.
Consider a smooth hypersurface Wi := Graph(π|Ni

) in Ni × Δ:

Wi : σiζ
mi − s = 0. (19.1.2)

We note that if Θi intersects Θj , then possibly after some coordinate change,
Wi becomes a simpler equation zmj ζmi −s = 0 around each intersection point
of Θi and Θj . We then patch hypersurfaces {Wi} by plumbings — we glue
Wi with Wj by (zi, ζi) = (ζj , zj) around each intersection point. This yields a
complex 3-manifold:

Graph(π) = {(x, s) ∈ M × Δ : π(x) − s = 0}.

We often identify Graph(π) with M under the projection (x, s) ∈ Graph(π) �→
x ∈ M .

Definition 19.1.2 Let π : M → Δ be a degeneration with a singular fiber
X =

∑
miΘi. A complete deformation atlas of X is a set {Wi}, where Wi

is a deformation of Wi (see (19.1.2)) parameterized by Δ × Δ† such that if
Θi ∩Θj �= ∅, then the equation of Wi becomes that of Wj under a coordinate
change (zi, ζi) = (ζj , zj) around each intersection point of Θi and Θj .
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Given a complete deformation atlas, we may construct a deformation family of
the degeneration π : M → Δ by patching {Wi}: When Θi ∩Θj �= ∅, we patch
Wi and Wj by plumbing (zi, ζi) = (ζj , zj) around each intersection point of Θi

and Θj . We denote by M the resulting complex 3-manifold; then the natural
projection Ψ : M → Δ × Δ† is a deformation family of π : M → Δ.

We recall that the “core” of a stellar singular fiber X is the central irre-
ducible component of X, from which branches emanate. We may also de-
fine cores — in general, there may be many — for a constellar singular
fiber. That is, if a constellar X is obtained by bonding stellar singular fibers
X1, X2, . . . , Xn, then the core of Xi (i = 1, 2, . . . , n) becomes, after bonding,
a core in X (we will give more detailed account in the next section).

We are interested in a deformation family Ψ : M → Δ × Δ† such that
for any core Θi of X, the deformation Wi of Wi is realized as a smooth
hypersurface in Ni × Δ × Δ†. In this case we say that Ψ : M → Δ × Δ† is a
barking family of the degeneration π : M → Δ.

19.2 Tensor condition

For the rest of this chapter, unless otherwise stated, π : M → Δ is a “normally
minimal” degeneration; so the singular fiber X is either stellar or constellar. As
we already constructed barking families for the stellar case, we will construct
those for the constellar case. A constellar singular fiber X is obtained from
stellar singular fibers, say X1, X2, . . . , Xn, by Matsumoto–Montesinos bond-
ing. In the bonding, some pair of branches of Xi and Xj (or two branches
of Xi) is joined to become a trunk of X (see §18.4, p320). A branch of Xi

not used for making a trunk becomes, after bonding, a branch of X. The ir-
reducible component of X corresponding to the core of Xi is referred to as a
core of X.

We denote an unfringed branch and a fringed branch respectively by Br
and Br:

Br = m1Θ1 + m2Θ2 + · · · + mλΘλ,

Br = m0Δ0 + m1Θ1 + m2Θ2 + · · · + mλΘλ,

where m0Δ0 is a fringe; Δ0 is a small open disk (in a core) around the point
at which the branch Br is attached. Likewise an unfringed trunk and a fringed
trunk are respectively denoted by Tk and Tk:

Tk = m1Θ1 + m2Θ2 + · · · + mλΘλ,

Tk = m0Δ0 + m1Θ1 + m2Θ2 + · · · + mλΘλ + mλΔλ+1,

where m0Δ0 and mλ+1Δλ+1 are fringes; Δ0 and Δλ+1 are small open disks in
cores around the points at which the trunk Tk is attached. We conventionally
refer to both unfringed and fringed branches/trunks simply as branches/trunks,
if there is no fear of confusion.
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Now we consider a connected subdivisor Y of a constellar singular fiber X
— “connectedness” is not essential, but to simplify discussion, we assume it —
with the following properties:

(I) At least one irreducible component of Y is a core of X (which is also
called a core of Y ).

(II) For a branch Br of X, the intersection br := Y ∩ Br, if non-empty, is a
subbranch of Br.

(III) For a trunk Tk of X, the intersection tk := Y ∩ Tk, if non-empty, is a
subtrunk of Tk.

Now we express X =
∑

miΘi (0 < mi) and Y =
∑

niΘi (0 ≤ ni ≤ mi).
Suppose that an irreducible component Θi is a core of X but not that of
Y . If Θi intersects Y — this is precisely when Θi intersects a subtrunk tk
of Y at some point —, then we say that Θi is adjacent to Y . (In this case,
length(tk) = length(Tk) − 1 holds.)

We adopt the following notations:

(i) Core(X) = {cores of X}
(ii) Core(Y ) = {cores of Y }
(iii) Adja(Y ) = {Θi ∈ Core(X) \ Core(Y ) such that Θi is adjacent to Y }
(iv) For Θi ∈ Adja(Y ), if tk(j) is a subtrunk intersecting Θi, then we denote

the slant of tk(j) by q
(j)
i (:= ne−1 − rene). See p317.

Recall that for a divisor D =
∑

k akpk on a curve Θ where ak is an integer
and pk ∈ Θ, its support Supp(D) is a point set {pk}.
Definition 19.2.1 Suppose that Θi ∈ Core(Y ) or Adja(Y ). Then we say
that Θi satisfies the tensor condition provided that the following conditions
are fulfilled:

(T1) If Θi ∈ Adja(Y ), then any slant q
(j)
i in (iv) above does not depend on

j. (We then write qi = q
(j)
i ; it is called the slant at Θi ∈ Adja(Y ).)

(T2) There is a nonnegative divisor Di on Θi such that Supp(Di) ⊂ Θi \⋃
j(Θi ∩ Θj), where the union runs over all j satisfying Θj ⊂ Y and

Θi ∩ Θj �= ∅, and

(T2.1) N⊗ni
i

∼= OΘi
(−

∑
j

njP
(i)
j + Di), if Θi ∈ Core(Y )

(T2.2) N
⊗(−qi)
i

∼= OΘi
(−

∑
j

njP
(i)
j + Di), if Θi ∈ Adja(Y ),

where the divisor P
(i)
j is as in (19.1.1). (We call Di an auxiliary divisor.)

Note that (T2.1) (resp. (T2.2)) is equivalent to the existence of a meromorphic
section τi of N⊗ni

i (resp. N
⊗(−qi)
i ) such that div(τi) = −∑

j njP
(i)
j + Di. We

say that τi is a core section on Θi. (If q = 0, then N
⊗(−q)
i

∼= OΘi
, so that τi

is a meromorphic function on Θi.)
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Remark 19.2.2 Suppose that Θi ∈ Adja(Y ) and qi = 0. Then (T2.2) is
restated as “

∑
j njP

(i)
j is linearly equivalent to some nonnegative divisor Di

such that Supp(Di) ⊂ Θi \
⋃

j(Θi ∩Θj)”. Observe that if Θi is the projective
line, this condition is always satisfied.

We say that a subdivisor Y satisfies the tensor condition if any Θi ∈
Core(Y ) or Adja(Y ) satisfies the tensor condition.

Definition 19.2.3 Let Y be a connected subdivisor of a constellar singular
fiber X such that at least one irreducible component of Y is a core of X. Then
Y is called a crust if

(1) Y satisfies the tensor condition,
(2) for a branch Br of X, if br := Y ∩ Br �= ∅, then br is a subbranch of Br,
(3) for a trunk Tk of X, if tk := Y ∩ Tk �= ∅, then tk is a subtrunk of Tk.

Note that (1) is an analytic condition, whereas (2) and (3) are numerical ones.
We need the following technical lemma for our later discussion.

Lemma 19.2.4 Let q be a nonnegative integer. Suppose that τi is a mero-
morphic section of a line bundle N

⊗(−q)
i on Θi such that τi has a pole of

order nj (nj ≥ 0) at each intersection point, if any, of Θi and Θj. Define a
smooth hypersurface in Ni × Δ × Δ† by

Wi : σiζ
mi
i − s +

l∑
k=1

lCk tkd σi τk
i ζmi+kq

i = 0.

Let p
(i)
j ∈ Θi be an intersection point of Θi and Θj, and then

(1) after some coordinate change, Wi is locally given by

zmj ζmi − s +
l∑

k=1
lCk tkd zmj−nj ζmi+kq = 0 around p

(i)
j ,

(2) if moreover nj = 0, then after some coordinate change, Wi is locally given
by

zmj ζmi − s = 0 around p
(i)
j .

Proof. To show (1), we only have to apply the argument in the proof of the
Simplification Lemma (Lemma 4.1.1, p58); since

minj − mj(−q) = minj + mjq > 0,

after some coordinate change, Wi is locally of the form in (1). Next we show
(2). If nj = 0, we may write Wi in (1) as

zmj ζmi

(
1 +

l∑
k=1

lCk tkd ζkq
)
− s = 0.

By a coordinate change (z′, ζ ′) =
(

z , ζ
(
1 +

l∑
k=1

lCk tkd ζkq
)1/mi

)
,

this equa-

tion becomes (z′)mj (ζ ′)mi − s = 0. Thus (2) is proved. �
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19.3 Multiple barking (constellar case)

We introduce a special class of the crusts defined in Definition 19.2.3; this
class generalizes the notion of the simple crust (of a stellar singular fiber) to
that of a constellar singular fiber.

Definition 19.3.1 Let Y be a crust of a constellar singular fiber X and let l
be a positive integer. Then Y is said to be a simple crust of barking multiplicity
l if the following conditions are satisfied:

(1) lY ≤ X, i.e. lY is a subdivisor of X.
(2) any subbranch of Y is of type Al, Bl, or Cl.
(3) any subtrunk of Y is of type Al, Bl, or Cl.
(4) if cores Θi and Θj of Y (possibly Θi = Θj) are joined by a trunk Tk

containing no subtrunk of Y , then length(Tk) ≥ 3 (i.e. the chain of the
projective lines of the trunk Tk has length at least 2).

For the reason to pose the condition (4), we refer to Remark 18.3.5, p320.
To simplify our subsequent discussion, we always assume that a simple

crust Y is connected. (Actually for many cases, we do not need this assump-
tion; moreover, connected components may have distinct barking multiplici-
ties. See Figure 19.3.5, p341, and also Theorem 18.3.4 (3), p319.)

The main result of this chapter is stated as:

Theorem 19.3.2 Let π : M → Δ be a linear degeneration. If the singular
fiber X contains a simple crust Y of barking multiplicity l, then π : M → Δ
admits a barking family Ψ : M → Δ × Δ† such that in the process of the
deformation from X to X0,t, the subdivisor lY is barked off from X. (Note:
The converse is not true. See §18.4, p320, and in particular Example 18.4.2,
p322.)

In order to clarify the argument, we verify Theorem 19.3.2 initially for
the case where X is a bonding of two stellar singular fibers along one pair
of branches, and after that, we will give a proof for the general case: X is a
bonding of an arbitrary number of stellar singular fibers. In either case, the
main steps in the construction of the barking family in question are

Step 1. For each core of X, construct an “initial deformation” around it,
Step 2. Propagate the initial deformations along branches of X,
Step 3. Propagate the initial deformations along trunks of X.

Proof of Theorem 19.3.2 (Special case)

Suppose that X is a bonding of two stellar singular fibers. We express X =
X1 +Tk+X2 where Tk is the trunk connecting X1 and X2. See Figure 19.3.1
for example. We then express

X1 = m0Θ0 +
∑
i

Br(i), X2 = m′
0Θ

′
0 +

∑
j

Br(j)
′
,
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where Θ0 and Θ′
0 are cores, and Br(i) and Br(j)

′
are branches of X1 and X2

respectively. We now carry out the construction of a complete deformation
atlas of X; we separate into two cases according to the number (2 or 1) of the
cores of Y .

Case 1. Y has two cores (see the figure on the left in Figure 19.3.1).
We express Y = Y1 + tk + Y2, where Y1 ≤ X1, Y2 ≤ X2, and tk ≤ Tk. (Here
“A ≤ B” means that A is a subdivisor of B.) We concretely write a subbranch
br(i) of Y1 as

br(i) = n
(i)
1 Θ(i)

1 + n
(i)
2 Θ(i)

2 + · · · + n(i)
ei

Θ(i)
ei

,

and write a subbranch br(j)
′
of Y2 as

br(j)
′
= n

(j)
1

′
Θ(j)

1

′
+ n

(j)
2

′
Θ(j)

2

′
+ · · · + n(j)

ej

′
Θ(j)

ej

′
.

For subbranches br(i) and br(j)
′
, we define positive integers a(br(i)) and

a(br(j)
′
) respectively by

a(br(i)) =

{
nei

, br(i) is of type Cl

1, otherwise
, a(br(j)

′
) =

{
n′

ej
, br(j)

′
is of type Cl

1, otherwise.

We then set d := lcm{a(br(i)), a(br(j)
′}, where br(i) (resp. br(j)

′
) runs over

all subbranches of Y1 (resp. Y2).

tk︷ ︸︸ ︷︷︸
︸︷ ︸︷
︷︸Y

br′
tk︷ ︸︸ ︷
Y

br 1︷︸
︸︷Case 1 Case 2

Y2 Y1

Θ′
0

Θ0 Θ0

Y1

br

X

Tk︷ ︸︸ ︷
3 4 5 6 3

4
2

X1 X2

2 4

3
2
1

2 3

1
1

1 11

1

1 111

1
1

1 1 1

Fig. 19.3.1. genus(X) = 2, and the barking multiplicity l = 3 for Case 1 and l = 2
for Case 2.
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Next we define smooth hypersurfaces (initial deformations) in N0×Δ×Δ†

and N ′
0 × Δ × Δ† respectively by

W0 : σζm0 − s +
l∑

k=1
lCk tkd σ τk ζm0−kn0 = 0,

W ′
0 : σ′ζm0 − s +

l∑
k=1

lCk tkd σ′ (τ ′)k ζm′
0−kn′

0 = 0,

where τ and τ ′ are core sections, that is, meromorphic sections of N⊗n0
0 and

(N ′
0)

⊗n′
0 respectively in the tensor condition (Definition 19.2.1). By Theorem

10.0.15, p177, we can completely propagate W0 (resp. W ′
0) along each branch

of X1 (resp. X2): if Br(i) does not contain a subbranch of Y , we apply the
construction for subbranches of type Al. Next by Theorem 18.3.4 (1), p319,
we can completely propagate W0 and W ′

0 along the trunk Tk. Therefore we
achieve a complete deformation atlas of X.

Case 2. Y has only one core (see the figure on the right in Figure 19.3.1).
The core of Y is either Θ0 or Θ′

0. Without loss of generality, we may assume
that the core of Y is Θ0, and we express Y = Y1 + tk, where Y1 ≤ X1 and
tk ≤ Tk. (Note: length(tk) ≤ length(Tk) − 1.) Now we express

tk = n1Θ1 + n2Θ2 + · · · + neΘe, (e < length(Tk)).

As in Case 1, we define a positive integer a(br(i)) for each subbranch br(i) of
Y1 by

a(br(i)) :=

⎧⎨⎩ nei
, br(i) is of type Cl

1, otherwise,

while we set a(tk) := ne for the subtrunk tk. We then set d := lcm{a(br(i)),
a(tk)} where br(i) runs over all subbranches of Y .

Next we define a smooth hypersurface (an initial deformation) W0 in N0×
Δ × Δ† by

W0 : σζm0 − s +
l∑

k=1
lCk tkd σ τk ζm0−kn0 = 0,

where τ is a core section on Θ0, that is, the meromorphic section of N⊗n0
0 in

the tensor condition. We also define a smooth hypersurface (an initial defor-
mation) W ′

0 in N ′
0 × Δ × Δ† by

W ′
0 :

⎧⎪⎨⎪⎩
σ′ζm′

0−s+
l∑

k=1
lCk tkd σ′ τk ζmi+kq = 0 if length(tk) = length(Tk)−1

σ′ζm′
0−s=0 if length(tk) ≤ length(Tk)−2,
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where q := ne−1 − rene is the slant of tk, and τ ′ is a core section on Θ′
0. By

Theorem 10.0.15, p177, we can completely propagate W0 along each branch
of X1. Further, by applying the construction for subbranches of type Al, we
can also completely propagate W ′

0 along each branch of X2. It remains to
completely propagate W0 and W ′

0 along the trunk Tk. We carry out this as
follows: By Lemma 19.2.4, p331, according to the length of tk, possibly after
some coordinate change, W ′

0 is of the following form around the intersection
point p′ = Tk ∩ Θ′

0:⎧⎪⎨⎪⎩
zmλζm′

0−s+
l∑

k=1
lCk tkd zmλ−nλ ζm′

0+kq = 0 if length(tk) = length(Tk) − 1

zmλζm′
0−s = 0 if length(tk) ≤ length(Tk)−2.

Then we apply Theorem 18.3.4 (2), p319 to achieve a complete propagation of
W0 and W ′

0 along the trunk Tk. This completes the construction of a complete
deformation atlas of X for Case 2.

Proof of Theorem 19.3.2 (General case)

We now give a proof of Theorem 19.3.2, p332 for the general case: a constel-
lar singular fiber X is a bonding of an arbitrary number of stellar singular
fibers. The proof is essentially the same as that in the special case. To avoid
inessential complication of argument, we assume that for any trunk Tk of X,
the intersection Tk ∩ Y is connected — for the disconnected case, we further
need to apply Theorem 18.3.4 (3), p319.

First of all, for a subbranch br(i) = n1Θ1 + n2Θ2 + · · · + nei
Θei

and a
subtrunk tk(j) = n1Θ1 +n2Θ2 + · · ·+nej

Θej
of the simple crust Y , we define

positive integers a(br(i)) and a(tk(j)) respectively by

a(br(i)) =

{
nei

, br(i) is of type Cl,

1, otherwise,
a(tk(j)) =

{
nej

, tk(j) is of type Cl,

1, otherwise.

We then set d := lcm{a(br(i)), a(tk(j))}, where br(i) and tk(j) respectively
run over all subbranches and subtrunks of Y .

Suppose that Θi is a core of X but not that of Y . We recall that if Θi

intersects Y — this is exactly when Θi intersects a subtrunk tk of Y at some
point —, then we say that Θi is adjacent to Y . We use the following notations:

(i) Core(X) = {cores of X}
(ii) Core(Y ) = {cores of Y }
(iii) Adja(Y ) = {Θi ∈ Core(X) \ Core(Y ) such that Θi is adjacent to Y }
(iv) qi: the slant of a subtrunk intersecting Θi ∈ Adja(Y ). (By the tensor con-

dition, qi does not depend on the choice of subtrunks of Y intersecting
Θi.)
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We say that qi in (iv) is the slant at Θi ∈ Adja(Y ).
Now we carry out the construction of a complete deformation atlas of X

in three steps:

Step 1. For each core Θi of X, we define a smooth hypersurface (an initial
deformation) in Ni × Δ × Δ† by

Wi :

⎧⎪⎪⎨⎪⎪⎩
σiζ

mi
i − s +

∑l
k=1 lCktkd σi τk

i ζmi−kni
i = 0, Θi ∈ Core(Y ),

σiζ
mi
i − s +

∑l
k=1 lCktkd σi τk

i ζmi+kqi

i = 0, Θi ∈ Adja(Y ),

σiζ
mi
i − s = 0, otherwise,

where d = lcm{a(br(i)), a(tk(j))}, and the nonnegative integer qi is the slant
at Θi, and τi is a core section in the tensor condition, i.e. a meromorphic
section of (i) N⊗ni

i if Θi ∈ Core(Y ) and of (ii) N
⊗(−qi)
i if Θi ∈ Adja(Y ).

Step 2. We propagate the initial deformations {Wi} along all branches of
X. Let Br(j) be a branch of X. If Br(j) emanates from a core Θi in Core(Y ),
then by Theorem 10.0.15 p177, Wi admits a complete propagation along Br(j).
Similarly if Br(j) emanates from a core in Adja(Y ), then Wi admits a complete
propagation along Br(j) by applying the construction for subbranches of type
Al. The remaining case is easy; if Br(j) emanates from a core Θi neither in
Core(Y ) nor Adja(Y ), then Wi admits a complete propagation along Br(j) in
the trivial way.

Step 3. Finally, we propagate the initial deformations {Wi} along all trunks
of X. Let Tk(j) be a trunk of X connecting two cores Θi and Θk of X (pos-
sibly, Θi = Θk and Tk(j) connects two points of Θi). If at least one of Θi

and Θk is a core of Y , then Wi and Wk admit a complete propagation along
Tk(j) by Theorem 18.3.4, p319. For other cases, Wi and Wk admit a com-
plete propagation along Tk(j) in the trivial way. Thus we obtain a complete
deformation atlas of X, establishing Theorem 19.3.2, p332.

Remark 19.3.3 As is clear from the above construction, we may weaken the
analytic assumption that π : M → Δ is a linear degeneration; we need the
assumption of linearity only around irreducible components of Y .

For examples of Theorem 19.3.2, see Figures 19.3.2, 19.3.3, 19.3.4, and
19.3.5 below. It is straightforward to generalize the notion of the “compound
barking” for a stellar singular fiber (see Chapter 17, p303) to that for a con-
stellar singular fiber. The definition is almost the same as that for the stellar
case, except that we also need to take into account the compatibility along
trunks.

We next give a comment on subbranches of simple crusts. Recall that a
subbranch br = n0Δ0 + n1Θ1 + · · ·+ neΘe of a branch Br = m0Δ0 + m1Θ1 +
· · · + mλΘλ is of type ABl if e = λ, nλ = 1, and l · br = Br. We showed that
any simple crust of a stellar singular fiber does not have a subbranch of type



19.3 Multiple barking (constellar case) 337

ABl (Corollary 16.7.4, p300). In contrast, for a constellar singular fiber X, a
simple crust of X may have a subbranch of type ABl, for instance,

Example 19.3.4 Consider two stellar singular fibers X1 and X2:

X1 = 6Θ0 + Br(1) + Br(2) + Br(3),

where Br(j) = 4Θ(j)
1 + 2Θ(j)

2 for each j = 1, 2, 3, and

X2 = 6Θ′
0 + Br(1)

′
+ Br(2)

′
+ Br(3)

′
,

where Br(1)
′
= 4Θ(1)

1

′
+2Θ(1)

2

′
, Br(2)

′
= 3Θ(2)

1

′
and Br(3)

′
= 5Θ(3)

1

′
+4Θ(3)

2

′
+

3Θ(3)
3

′
+ 2Θ(3)

4

′
+ Θ(3)

5

′
. Note that X1 is the singular fiber of a ‘degeneration’

whose smooth fiber consists of two (disjoint) elliptic curves, while X2 is the
singular fiber of a degeneration whose smooth fiber is an elliptic curve.

Now we construct a constellar singular fiber by bonding X1 and X2 along
the branches Br(1) and Br(1)

′
: The identification of 2Θ(1)

1 of X1 and 2Θ(1)
1

′
of

X2 yields a constellar singular fiber X — the singular fiber of a degeneration
of complex curves of genus 3. (Note: All smooth fibers of this degeneration

are connected, because X contains an irreducible component Θ(3)
5

′
of multi-

plicity 1.) We then take a simple crust Y of X:

Y = 3Θ0 + br(1) + br(2) + br(3),

where br(j) = 2Θ(j)
1 +Θ(j)

2 for each j = 1, 2, 3. Observe that Y is contained in
the “X1-part” of X. Moreover 2Y = X1, and all subbranches of Y are of type
ABl.

We close this section by stating a theorem about singularities of singular
fibers of barking families. To that end, we first recall some terminology. Let
Ψ : M → Δ × Δ† be a baking family obtained from a simple crust Y of
barking multiplicity l. For fixed t (t �= 0), a singular fiber Xs,t is called the
main fiber if s = 0, and it is called a subordinate fiber if s �= 0: The original
singular fiber X splits into one main fiber and several subordinate fibers. The
main fiber X0,t may be described essentially in terms of the factorization of its
defining equation. For the subordinate fibers, we have the following theorem
(we leave the reader to check that singularities do not appear near the trunks
of X) which generalizes Theorem 16.4.4, p292.

Theorem 19.3.5 Let Ψ : M → Δ×Δ† be a barking family associated with a
simple crust Y of barking multiplicity l. Then the singularities of a subordinate
fiber Xs,t are as follows:

(1) For each core Θi of X, if the plot function Ki(z) = ni
dσi
dz

τi + miσi
dτi
dz

on Θi is not identically zero, then Xs,t has A-singularities near the core
Θi (Theorem 21.6.7, p410); whereas if Ki(z) is identically zero, then Xs,t
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has non-isolated singularities near Θi (Proposition 21.8.3 (1), p418). For
the former case, the following inequality holds (Corollary 21.4.4, p403):

(the number of the A-singularities near the core Θi)

≤ gcd(mi, ni) ·
[
Ni − vi + ki + (2gi − 2) −

∑
j∈Ji

ordpj
(ω)

]
,

where
Ni is the number of the intersection points of Θi with other irreducible
components of X,
vi is the number of the intersection points of Θi with the proportional
subbranches/subtrunks of Y ,
ki is the number of the zeros of τi,
gi is the genus of the core Θi,
Ji is the set of the indices j of the intersection points pj of Θi with the
proportional subbranches/subtrunks of Y (there are vi such indices),
and
ordpj

(ωi) is the order of a meromorphic 1-form ωi(z) := d log
(
σni

i τmi
i

)
at pj.

In the generic case1, Xs,t has only nodes (A1-singularities) near the core
Θi.

(2) If Y has proportional subbranches, then Xs,t has A-singularities near the
edge of each proportional subbranch (Proposition 7.2.6, p129).
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Fig. 19.3.2. genus(X) = 5, barking multiplicity l = 2, and baking genus gb(Y ) =
1. The singular fiber X is a (−1)-bonding of two stellar singular fibers X1 (from
the left) and X2 (from the right). Note that X1 and X2 are respectively of genus
3 and 2.

1 The case where any zero α of the plot function Ki(z) such that σi(α) �= 0 and
τi(α) �= 0 is simple (i.e. of order 1).



19.3 Multiple barking (constellar case) 339

51 4 5

1

3

2

︸ ︷︷ ︸
A

7 7 3 1

1

1

2 44

deform

X0,t

︷︸
︸︷

B ︸︷
︷︸Y

︸ ︷︷ ︸
A

B

︸ ︷︷ ︸
A

2

5
1

5 6 3 6

5
1

9 531

3

6

9

2 132 1 2321

14

3

6

1

X

3

Fig. 19.3.3. genus(X) = 6, barking multiplicity l = 1, and baking genus gb(Y ) = 2.
Since Tk = 3 · tk, the subtrunk tk is proportional (Remark 18.2.4, p313). When (1)

s = 0 and (2) s = 4
27 t3, the fiber Xs,t is singular. In the case (2), Xs,t is non-reduced

(see Example 6.4.11, p117).
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Fig. 19.3.4. genus(X) = 5, barking multiplicity l = 2, and barking genus gb(Y ) = 0.
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Fig. 19.3.5. genus(X) = 7, and Y1 (resp. Y2) is a simple crust of barking multiplicity
3 (resp. 2). This deformation barks 3Y1 and 2Y2 simultaneously.
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19.4 Criteria for splittability

We shall give several criteria for the splittability of a singular fiber. Before we
present them, we generalize the notion of the “barking genus” for a simple
crust of a stellar singular fiber to the constellar case. We outline how to define
it, and leave the details to the reader. First, let Y be a simple crust of barking
multiplicity l of a constellar singular fiber X, and let tk

(j)
:= Tk

(j) ∩ Y be a
(fringed) subtrunk of Y . We say that tk

(j)
(also unfringed tk(j)) is long (resp.

short) if

length(tk
(j)

) = length(Tk
(j)

)
(

resp. length(tk
(j)

) < length(Tk
(j)

)
)
.

Now we define the enlargement Ẏ of the simple crust Y in the following
procedure:

(i) Replace a subbranch br(j) of type Al in Y by its enlargement ḃr
(j)

(§16.6,
p295).

(ii) For a short subtrunk tk(j) of type Al in Y , define its enlargement ṫk
(j)

in
a similar way to that for a subbranch of type Al, and then replace tk(j)

in Y by ṫk
(j)

.

The resulting divisor Ẏ is called the enlargement of Y . A similar construction
to the stellar case (Proposition 16.6.3, p298) yields a degeneration with a
singular fiber Ẏ ×, where Ẏ × is obtained from Ẏ by deleting the zeros, if any,
of the core sections:

Ẏ × = Ẏ \
⋃

i
{ the zeros of τi },

where i runs over all indices such that Θi is a core of Y , and τi is the core
section on Θi. In other words, replacing each core Θi of Y by Θ×

i = Θi \
{ the zeros of τi }, we obtain Ẏ ×. Of course, if the core section on any core of
Y has no zeros, then Ẏ × is Ẏ itself. The genus of (a connected component
of) a smooth fiber of the above degeneration (with the singular fiber Ẏ ×) is
called the barking genus of Y ; we denote it by gb(Y ). Clearly gb(Y ) ≤ g where
g is the genus of a smooth fiber of π : M → Δ.

From the descriptions of deformations of types Al, Bl, and Cl together
with those of deformations around the cores (§16.4, p288), the following result
holds.

Proposition 19.4.1 Let π : M → Δ be a linear degeneration with a (stellar
or constellar) singular fiber X. Assume that X contains a simple crust Y of
barking multiplicity l, and let Ψ : M → Δ×Δ† be a barking family associated
with Y (Theorem 19.3.2). Then X0,t = Ψ−1(0, t) has at most normal crossings
if and only if the following conditions are satisfied:

(i) If a subbranch of Y is of type Al, then its slant is zero.
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(ii) If a short subtrunk of Y
(
i.e. length(tk) < length(Tk)

)
is of type Al, then

its slant is zero.
(iii) Let τi be the core section on a core Θi ∈ Core(Y ) or Adja(Y ), and then

(1) the order of any zero of τi is 1, and (2) any such zero is “not” an in-
tersection point of Θi with a branch (resp. trunk) containing no subbranch
(resp. subtrunk) of Y .

Next, recall that a subdivisor Y =
∑

i niΘi of X is called multiple if gcd{ni} =
1. Also recall that a singular fiber is fake if it becomes a smooth fiber after
successive blow up or down.

Lemma 19.4.2 Let π : M → Δ be a linear degeneration of complex curves
of genus g with a (stellar or constellar) singular fiber X. Assume that X
contains a simple crust Y of barking multiplicity l, and let Ψ : M → Δ × Δ†

be a barking family associated with Y (Theorem 19.3.2). Then the following
statements hold:

(1) If the barking genus gb(Y ) = g, then l = 1, Y is not multiple, and
X0,t := Ψ−1(0, t) for t �= 0 is a fake singular fiber. (Figure 20.1.1, p350 for
example.)

(2) If the barking genus gb(Y ) < g, then X0,t is not a fake singular fiber.

Proof. We show (1). Note that the singular fiber X0,t (t �= 0) contains an
irreducible component lY0,t where Y0,t is a deformation of Y . By the assump-
tion gb(Y ) = g (i.e. the genus of Y0,t is g), if l ≥ 2, then a smooth fiber near
X0,t has genus at least lg, which is greater than g (a contradiction!). Hence
l = 1, and for the same reason, Y is not multiple. We then claim that X0,t

is a fake singular fiber; that is, the normally minimal singular fiber X ′
0,t (ob-

tained from X0,t by successive blowing up or down) is a smooth fiber. This is
clear because X ′

0,t contains an irreducible component (corresponding to Y0,t

in X0,t) of genus g, and such a normally minimal fiber is necessarily a smooth
fiber. This proves (1). The assertion (2) follows easily from the description of
the configuration of X0,t and the assumption gb(Y ) < g. �

Now we give a very powerful criterion for the splittability of a singular
fiber.

Criterion 19.4.3 Let π : M → Δ be a linear degeneration of complex curves
of genus g with a (stellar or constellar) singular fiber X. Then π : M → Δ
admits a splitting family, if (1), (2), or (3) below holds:

(1) The singular fiber X contains a simple crust Y such that
(1a) Y contains no exceptional curve (e.g. when X contains no excep-

tional curve), or
(1b) the barking genus gb(Y ) < g.

(2) The singular fiber X contains an exceptional curve Θ0 such that
(2a) at least one irreducible component, say Θ1, of X intersecting Θ0 is

a projective line, and
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(2b) any irreducible component of X intersecting Θ0 satisfies the tensor
condition (Definition 19.2.1) with respect to a subdivisor Y := Θ0 +
Θ1 where Θ1 is in (2a).

(3) The singular fiber X contains an exceptional curve Θ0 such that any ir-
reducible component intersecting Θ0 is a projective line. (Note: If X is
stellar, then Θ0 is its core, and this condition is always satisfied.)

Proof. First of all, under the condition (1), we show the existence of a splitting
family. Let Ψ : M → Δ × Δ† be a barking family of π : M → Δ associated
with Y (Theorem 19.3.2). We claim that the topological monodromy around
the main fiber X0,t := Ψ−1(0, t), (t �= 0) is nontrivial. This is seen as follows: In
case (1a), after blow up if necessary, X0,t becomes a normally minimal singular
fiber. In case (1b), X0,t is not a fake singular fiber by Lemma 19.4.2 (2). In
either case, X0,t has a nontrivial topological monodromy (different from that
around the original singular fiber X = π−1(0)). Therefore Ψ : M → Δ × Δ†

is indeed a splitting family (see the proof of Lemma 1.1.2, p28).
Next, under the condition (2), we show the existence of a splitting family.

By assumption, Y = Θ0 +Θ1 is a simple crust of barking multiplicity l := m1.
Here Θ0 is its core, and Θ1 is a subbranch or a subtrunk (of length 1) which, in
either case, is of type Bl. Let Ψ : M → Δ×Δ† be a barking family associated
with Y (Theorem 19.3.2). Since the subbranch/subtrunk Θ1 is of type Bl, the
main fiber X0,t := Ψ−1(0, t) (t �= 0) is normally minimal by Proposition 16.2.2
(2), p281. In particular, the topological monodromy around X0,t is nontrivial,
and hence X0,t is not a fake singular fiber. Therefore Ψ : M → Δ × Δ† is
indeed a splitting family. Finally for (3), the existence of a splitting family is
nothing but Criterion 16.5.2, p294. �
Remark 19.4.4 If a constellar singular fiber X is a bonding of stellar singular
fibers of “genus 1”, then by a combinatorial argument, we can show that X
satisfies a condition (1), (2), or (3) in the above criterion. Thus X admits a
splitting.

Criterion 19.4.5 Let π : M → Δ be a linear degeneration with a constellar
singular fiber X which is a bonding of two stellar singular fibers X1 and X2.
Denote by m1 (resp. m2) the multiplicity of the core of X1 (resp. X2). Then
the following statements hold:

(1) If both cores of X1 and X2 are exceptional curves, then X admits a split-
ting.

(2) If the core of X1 is an exceptional curve and m1 ≥ m2, then X admits a
splitting.

Proof. In terms of Criterion 19.4.3 (3), it is enough to show that under the
assumption of (1) or (2), at least one of the cores of X is an exceptional curve.
For (1), if m1 �= m2 (we assume m1 > m2), then the core of X1 remains an
exceptional curve after bonding, and if m1 = m2, then both cores of X1 and
X2 remain exceptional curves after bonding; so the claim is confirmed. For
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(2), from the assumption, the core of X1 remains an exceptional curve after
bonding, and so the claim is confirmed. �

19.5 Looped trunks

We bond two branches of “one” stellar singular fiber. Then the resulting trunk
together with the core is called a looped trunk; see Figure 19.5.1. (Unfortu-
nately, this terminology is slightly inconsistent in that a looped trunk is the
union of a trunk and a core.) If a singular fiber possesses such a looped trunk
as contains a chain of (−2)-curves2, then it is often possible to construct a
splitting family. We give such examples. Let X be a singular fiber with a
looped trunk, which is specifically given below, and let Θ0 be the core in the
looped trunk.

Example 1: Consider a looped trunk Tk in Figure 19.5.1 — we did not write
the multiplicities of irreducible components, because they are immaterial for
our subsequent discussion. In the figure, re is a positive integer satisfying
re ≥ 2, and the negative number beside an irreducible component stands for
its self-intersection number, e.g. Θe ·Θe = −re. We then take a simple crust Y ,
as in the figure, of barking multiplicity l := me where me is the multiplicity of
the irreducible component Θe. We note that the looped subtrunk — actually,
Y itself — is of type Bl (the extreme case is shown in Figure 19.5.2). Let
Ψ : M → Δ × Δ† be the barking family associated with Y , and then the
barking genus gb(Y ) = 1, and Y is deformed to a smooth elliptic curve Y0,t in
X0,t = Ψ−1(0, t). See Figure 19.5.3 for a concrete example.

1

−2

−re

−2
−2

−2

−2

1
1

1

1

11

1

Y

Θ0

−2
−2

Tk (looped trunk)

Fig. 19.5.1. Example 1

2 A (−2)-curve is a projective line with the self-intersection number −2.
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1
−2

−r1 1Tk (looped trunk) Y

Fig. 19.5.2. The extreme case of Example 1

4

3 2
32

X

1
11

Y

B

2 2 2 1

X0;t

−→
deform

1

1

Fig. 19.5.3. Concrete example 1: genus(X) = 2, barking multiplicity l = 2, and
barking genus gb(Y ) = 1.

2

−2

−re

−2
−2

−3

−1

1
1

1

1

11

1

Y

Θ0

−2
−3

Tk (looped trunk)

Fig. 19.5.4. Example 2: Each negative integer stands for the self-intersection num-
ber, and −re ≤ −2.

−1
2

−r1 1Tk (looped trunk) Y

Fig. 19.5.5. The extreme case of Example 2
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2
11

Y

B

1 3 1

X0;t

−→
deform

1

1

7

3 2
3

X

21

Fig. 19.5.6. Concrete example 2: genus(X) = 4, barking multiplicity l = 2, and
barking genus gb(Y ) = 1.
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3

B

︸︷︷︸
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︷︸︸︷

Y X

1

23

3

X0;t

2

deform−→2

3 12

2
211

1

Fig. 19.5.7. The singular fiber X in Figure 19.5.3 contains another simple crust Y
above, which has barking multiplicity l = 3 and barking genus gb(Y ) = 0.

Example 2: Consider a looped trunk Tk in Figure 19.5.4, and take a simple
crust Y of barking multiplicity l := me as in that figure; the looped subtrunk
(Y itself) is also of type Bl as in Example 1 (the extreme case is shown in
Figure 19.5.5). See Figure 19.5.6 for a concrete example. We point out a signif-
icant difference between Figure 19.5.3 and Figure 19.5.6: In Figure 19.5.3, the
deformation Y0,t (⊂ X0,t) of Y intersects other irreducible components only at
one point; while Y0,t in Figure 19.5.6 intersects other irreducible components
at two points, because the multiplicity of the core of Y is 2.
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Further Examples

In this chapterwegathermiscellaneousbut importantexamplesandphenomena.

20.1 Fake singular fibers

We give an example of a barking family Ψ : M → Δ × Δ† such that X0,t =
Ψ−1(0, t) is a fake singular fiber (Figure 20.1.1), namely, after blow down,
X0,t becomes a smooth fiber (Figure 20.1.2). We note that the barking genus
gb(Y ) = 2, as explained in Figure 20.1.3.

20.2 Splitting families which give the same splitting

Assume that Ψ : M → Δ×Δ† and Ψ′ : M′ → Δ×Δ† are splitting families of
a degeneration π : M → Δ. We say that Ψ and Ψ′ are topologically equivalent
if there exist orientation preserving homeomorphisms H : M → M′ and
h : Δ × Δ† → Δ × Δ† such that h(0, 0) = (0, 0) and the following diagrams
are commutative:

M
Ψ

��

H �� M′

Ψ′
��

Δ × Δ† h �� Δ × Δ†,

Mt

πt

��

Ht �� M ′
t

π′
t

��
Δ × {t} ht �� Δ × {t},

where Ht := H|Mt
and ht := h|Δ×{t} are restrictions of H and h respectively.

(Note that if Ψ and Ψ′ are topologically equivalent, then for each t, πt : Mt →
Δ and π′

t : M ′
t → Δ are topologically equivalent. However the converse is not

true.)
We are interested in two splitting families with the following properties:

(i) Ψ and Ψ′ are topologically different, nevertheless (ii) they gives the same
splitting of the singular fiber X. In this section, we will give examples of
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X

5

Y

2 2

X0,t

deform−→
1

1 1

4 8 3 1 2 3 11

Fig. 20.1.1. genus(X) = 2, and the core of X is an exceptional curve.

blow down

blow down

blow down

1 1

1
1

3 12

1

12
X0,t

(−1)

(−1)(−1)

Fig. 20.1.2. After successive blow down, X0,t becomes a smooth curve. “(−1)”
below an irreducible component means that the component is an exceptional curve.

1 2

1

5

Ẏ

12

Fig. 20.1.3. Ẏ is the enlargement of Y in Figure 20.1.1, where the dashed circle is an
irreducible component attached to Y . Since Ẏ is the singular fiber of a degeneration
of curves of genus 2, the barking genus of Y is 2. See Proposition 16.6.3, p298.

such splitting families. Before proceeding, we require some preparation. Let
χ(X) denote the (topological) Euler characteristic of the underlying topolog-
ical space of X.

Lemma 20.2.1 Let π : M → Δ be a degeneration of complex curves of genus
g with a singular fiber X. If a splitting family of π : M → Δ splits X into
X1, X2, . . . , Xn, then

χ(X) − 2(1 − g) =
n∑

i=1

(
χ(Xi) − 2(1 − g)

)
.

Proof. Since Mt is diffeomorphic to M , we have χ(M) = χ(Mt). It is easy to
check that χ(M) = χ(X) − 2(1 − g) and χ(Mt) =

∑n
i=1

(
χ(Xi) − 2(1 − g)

)
;

see [BPV] p97. Hence the assertion follows. �
We apply this lemma to the case g = 1.
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Lemma 20.2.2 If g = 1, then the following statements hold:

(1) If X splits into X1, X2, . . . , Xn, then χ(X) =
∑n

i=1 χ(Xi).
(2) If furthermore χ(X) = χ(X1) + 1, then n = 2 and X splits into X1 and

X2 where X2 is a projective line with one node (i.e. a Lefschetz fiber of
genus 1).

Proof. (1) is clear from the above lemma. (2) follows from the fact that if X
is a singular fiber of a degeneration of elliptic curves, then χ(X) ≥ 1 where
the equality holds precisely when X is a projective line with one node. �

From (2) of the above lemma, it is immediate to deduce the following
result.

Proposition 20.2.3 Let π : M → Δ be a degeneration of elliptic curves.
Assume that Ψ : M → Δ × Δ† is its splitting family such that χ(X) =
χ(X0,t) + 1. Then in this family, X splits into X1 and X2, where X1 := X0,t

and X2 is a projective line with one node (i.e. a Lefschetz fiber of genus 1).

Now we provide examples of topologically different splitting families which,
however, give the same splitting of a singular fiber. In what follows, if a sin-
gular fiber X splits into singular fibers X1, X2, . . . , Xn, we use expression
X → X1 + X2 + · · · + Xn.

20.2.1 Example 1

Let us consider four baking families in Figure 15.5.3 (1), p276 and Figure
20.2.1. These families have the same X0,t. Moreover, since χ(X) = 10 and
χ(X0,t) = 9, it follows from Proposition 20.2.3 that in these four examples,
the singular fiber X splits into X1 := X0,t and X2, where X2 is a projective line
with one node. (In Kodaira’s notation, X = II∗, X1 = III∗, and X2 = I1.)
Nonetheless the topological types of these four barking families are different.
We first verify that the barking families Ψ(1) and Ψ(2) in (1) and (2) of
Figure 20.2.1 are topologically different. The proof is done by contradiction.
Assume that Ψ(1) and Ψ(2) are topologically equivalent. Then there exists
a family of homeomorphisms Ht : M

(1)
t → M

(2)
t which make the following

diagram commute:

M
(1)
t

π1,t

��

Ht �� M (2)
t

π2,t

��
Δ × {t} ht �� Δ × {t}.

To avoid confusion, let us write X0,t in Figure 20.2.1 (1) as X
(1)
0,t , and X0,t

in (2) as X
(2)
0,t . Then Ht maps X

(1)
0,t to X

(2)
0,t homeomorphically, and so the



352 20 Further Examples

X −→deform

X −→deform

X −→deform

(2)

(1)

X, genus 1

3

(3)

3
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1

1
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1

1
1

1 1 1

︷︸
︸︷B

︸ ︷︷ ︸
B

B ︷︸︸︷

︸ ︷︷ ︸
B

Y (1), l = 2

︸ ︷︷ ︸
B

Y (2), l = 4

Y (3), l = 3

︸︷︷︸
B

3 1

2
4

32 2 14

X0,t

3 4 3 2 1 2 1

2

X0,t

5 4

1

1 1111

2 1

2

33 23 12

4
2 X0,t

1

Fig. 20.2.1. Topologically different splitting families which give the same splitting
II∗ → III∗ + I1, where X = II∗, X0,t = III∗, and I1 is a projective line with one
node.
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core C
(1)
0,t of X

(1)
0,t is mapped to the core C

(2)
0,t of X

(2)
0,t homeomorphically. Since

C(1) := {C(1)
0,t }t∈Δ′ and C(2) := {C(2)

0,t }t∈Δ′ are closed sets, it follows from the
continuity that in the limit t → 0, the crust Y (1) is homeomorphic to Y (2).
This is absurd, and therefore Ψ(1) and Ψ(2) are topologically different. For the
other cases, topological difference is deduced from the same argument. (This
result may be also obtained by showing that their discriminants (plane curve
singularities in Δ × Δ†) are different.)

20.2.2 Example 2

In Example 1, from four different simple crusts, we constructed four topo-
logically different barking families which, however, give the same splitting
II∗ → III∗ + I1. In this subsection, from one simple crust, we will construct
three topologically different barking families which give the same splitting
II∗ → I∗3 + I1. The construction below is based on the non-uniqueness of a
complete propagation of a deformation atlas of type Cl.

Leaving the explicit construction to the next paragraph, we consider three
barking families which deform X to X0,t as in Figures 20.2.3, 20.2.4, and
20.2.5. Note that they all give the same splitting II∗ → I∗3 + I1, where II∗ =
X, I∗3 = X0,t and I1 is a projective line with one node. In fact, since χ(X) = 10
and χ(X0,t) = 9, from Proposition 20.2.3, X splits into X1 and X2 where
X1 = X0,t = I∗3 and X2 = I1.

Now we give the explicit construction of these three barking families. Tak-
ing a simple crust Y of barking multiplicity l = 2 in Figure 20.2.2, we will
construct a complete propagation of the deformation atlas DA(2Y, k); in what
follows, we take the weight k = 2. We only give the essential part of the
construction, that is, three different complete propagations along the branch

Br(3)︷ ︸︸ ︷︷︸
︸︷

Br(1)︷︸︸︷
p1 p3

Θ0

2

p2

13

3Br(2)

3

X

21 2

Y ′, l = 2

4

6 5

1

1 2 22

1

4

Y , l = 2

Fig. 20.2.2.
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1
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3

2 2 2 2

deform

Fig. 20.2.3. Construction 1 gives a splitting II∗ → I∗
3 + I1, where X = II∗,

X0,t = I∗
3 and I1 is a projective line with one node.
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deform

Fig. 20.2.4. Construction 2 gives a splitting II∗ → I∗
3 + I1, where X = II∗,

X0,t = I∗
3 and I1 is a projective line with one node.
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Fig. 20.2.5. Construction 3 gives a splitting II∗ → I∗
3 + I1, where X = II∗,

X0,t = I∗
3 and I1 is a projective line with one node.
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Br(3); we note that the subbranch br(3) of Y is of type Cl, while br(1) and
br(2) are of type Al, and complete propagations along Br(1) and Br(2) are easy
to construct.

Remark 20.2.4 In Figure 20.2.2, the simple crust Y is contained in another
simple crust Y ′ of the same barking multiplicity 2. Observe that the subbranch
br(3) of Y is of type C2, and the subbranch br(3)

′
of Y ′ is also of type C2.

This example also confirms that a subbranch of type Cl is not necessarily
dominant.

The three different constructions of complete propagation along Br(3) (Con-
structions 1, 2 and 3) are carried out in the following way. Since H1 :
w2η(w2η2 − t2)2 − s = 0 where for brevity we omit superscripts such as
H1 = H(3)

1 etc, Constructions 1 and 2 start from the following first propaga-
tion of DA(2Y, 2): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

H1 : w2η(w2η2 − t2)2 − s = 0

H′
1 : ζ(z2ζ2 − t2)2 − s = 0

g1 : z = 1
w, ζ = w2η.

(20.2.1)

(Note that we may consider this to be the deformation atlas associated with
2Y ′, where Y ′ is in Figure 20.2.2.)

On the other hand, noting that H1 admits a ‘factorization’

w2η(wη + t)2(wη − t)2 − s = 0,

Construction 3 starts from the following first propagation of DA(2Y, 2):⎧⎪⎪⎪⎨⎪⎪⎪⎩
H1 : w2η(wη + t)2(wη − t)2 − s = 0

H′
1 : zζ2(zζ − t)(zζ − 2t)2 − s = 0

g1 : z = 1
w, ζ = w2η + tw.

(20.2.2)

Further propagations of these atlases along the branch Br(3) are explicitly
given in §20.2.3, p357.

20.2.3 Three different complete propagations

We provide three different complete propagations of the deformation atlases
(20.2.1), p357 and (20.2.2), p357 along the branch Br(3) explicitly.

Construction 1. The first construction of a complete propagation of (20.2.1)
is as follows:
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H2 : w(wη + t)2(wη − t)2 − s = 0
H′

2 : zζ2(zζ − 2t)2 − s = 0
g2 : z = 1

w, ζ = w2η + tw.⎧⎪⎨⎪⎩
H3 : w2η(wη − 2t)2 − s = 0
H′

3 : ζ(zζ − 2t)2 − s = 0
g3 : z = 1

w, ζ = w2η.⎧⎪⎨⎪⎩
H4 : w(wη − 2t)2 − s = 0
H′

4 : zζ2 − s = 0
g4 : z = 1

w, ζ = w2η − 2tw.⎧⎪⎨⎪⎩
H5 : w2η − s = 0
H′

5 : ζ − s = 0
g5 : z = 1

w, ζ = w2η.

The deformation from X to X0,t around the branch Br(3) is shown in Figure
20.2.6.

Construction 2. Next we give another construction of a complete propa-
gation of (20.2.1).⎧⎪⎨⎪⎩

H2 : w(wη + t)2(wη − t)2 − s = 0
H′

2 : zζ2(zζ − 2t)2 − s = 0
g2 : z = 1

w, ζ = w2η + tw.

X6 5 4 3 2 1

X0;t

2 1 1 12 2

deform

Fig. 20.2.6. Construction 1 (deformation of Br(3))
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H3 : w2η(wη − 2t)2 − s = 0
H′

3 : zζ2(zζ + 2t) − s = 0
g3 : z = 1

w, ζ = w2η − 2tw.⎧⎪⎨⎪⎩
H4 : w2η(wη + 2t) − s = 0
H′

4 : ζ(zζ + 2t) − s = 0
g4 : z = 1

w, ζ = w2η.⎧⎪⎨⎪⎩
H5 : w(wη + 2t) − s = 0
H′

5 : ζ − s = 0
g5 : z = 1

w, ζ = w2η + 2tw.

The deformation from X to X0,t around the branch Br(3) is shown in Figure
20.2.7.

Construction 3. Finally, we give a complete propagation of (20.2.2), p357.⎧⎪⎨⎪⎩
H2 : w2η(wη − t)(wη − 2t)2 − s = 0
H′

2 : ζ(zζ − t)(zζ − 2t)2 − s = 0
g2 : z = 1

w, ζ = w2η.⎧⎪⎨⎪⎩
H3 : w(wη − t)(wη − 2t)2 − s = 0
H′

3 : ζ(zζ − t)2 − s = 0
g3 : z = 1

w, ζ = w2η − tw.

X6 5 4 3 2 1

X0;t

2 1

2

12 1

deform

Fig. 20.2.7. Construction 2 (deformation of Br(3))
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X6 5 4 3 2 1

deform

X0;t

2

2 1 121

Fig. 20.2.8. Construction 3 (deformation of Br(3))

⎧⎪⎨⎪⎩
H4 : w(wη − t)2 − s = 0
H′

4 : zζ2 − s = 0
g4 : z = 1

w, ζ = w2η − tw.⎧⎪⎨⎪⎩
H5 : w2η − s = 0
H′

5 : ζ − s = 0
g5 : z = 1

w, ζ = w2η.

The deformation from X to X0,t around the branch Br(3) is shown in Figure
20.2.8.

20.3 Example of a practical computation of a compound
barking

In this section we provide an example which is heuristic to know how a prac-
tical computation to find a “barkable” crustal set goes on. Let us consider a
degeneration of curves of genus 4 with the singular fiber X shown in Figure
20.3.1, where for simplicity, we take p1 = 1, p2 = ∞, p3 = 0.

Take a set Y of dominant crusts in the singular fiber X as in Figure 20.3.2,
and let Y′ be the crustal set obtained from Y by the cut-off operation (see
p304). We then consider a deformation atlas associated with Y.

DA(Y′,d) = {W0, DA
(1)
0 , DA

(2)
3 , DA

(3)
5 }, (the weight d is as in Figure 20.3.2),
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Br(3)︷ ︸︸ ︷︷
︸︸

︷
Br(1)︷︸︸︷

p1 p3

Θ0

7

Br(2)

−2 −2 −2 −2 −2

3
−2 −3

−2

−2

−2
X

p2
−2

15
−3

12

6
3

13 11 9 5 15

9

−2

Fig. 20.3.1. genus(X) = 4. The negative integer near an irreducible component
stands for the self-intersection number of that component.

where

(i) DA
(j)
i stands for a deformation atlas of length i for the branch Br(j),

(ii)W0 is a hypersurface in N0 × Δ × Δ† obtained by patching the following
two hypersurfaces H0 and H′

0 by a map g0 : z = 1/w, ζ = w2η:

H0 : w13(w − 1)5η15 − s + c1tw
12(w − 1)5η14 + c2t

2w11(w − 1)5η13

+ c3t
3w10(w − 1)5η12 + c4t

3w11(w − 1)4η12 + c5t
3w10(w − 1)4η12

+ c6t
6w8(w − 1)3η9 + c7t

7w7(w − 1)3η8 + c8t
9w5(w − 1)2η6 = 0,

and

H′
0 : z12(1 − z)5ζ15 − s + c1tz

11(1 − z)5ζ14 + c2t
2z10(1 − z)5ζ13

+ c3t
3z9(1 − z)5ζ12 + c4t

3z9(1 − z)4ζ12 + c5t
3z10(1 − z)4ζ12

+ c6t
6z7(1 − z)3ζ9 + c7t

7z6(1 − z)3ζ8 + c8t
9z5(1 − z)2ζ6 = 0.

We claim that DA(Y′,d) admits a complete propagation; since the set br(1) =
{br(1)1 ,br(1)2 , . . . ,br(1)8 } is tame, DA

(1)
0 admits a complete propagation along

the branch Br(1) by Theorem 14.2.7, p260. Thus it suffices to show that DA
(2)
3

and DA
(3)
5 admit complete propagations along the branches Br(2) and Br(3)

respectively.

Complete propagation along the branch Br(2)

We construct a complete propagation of the deformation atlas DA
(2)
3 (the sub-

script means “length 3”) along the branch Br(2). We first change coordinates
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Y3, weight 3

Y5, weight 3

Y7, weight 7

4 3 1

Y1, weight 1

2 6 5 4
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7
5

6 5 4

3
1

Y8, weight 9

3

Y4, weight 3

Y2, weight 2

2
2
2
2

6

4
5
6

3

1
1
1
1

1 1 1 1 1 1 1 1

3
3
3
3

3 3 33333

1

1
2

3 3 3

2

1 3

3

3
3

2 1

572

3

3

22222 22

333

Fig. 20.3.2. A set of weighted dominant crusts for X in Figure 20.3.1. Each bold
circle is a wild irreducible component.
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around p2; rewriting (1 − z)1/3ζ by ζ, we have

H′
0 : z12ζ15 − s + c1tz

11ζ14(1 − z)1/3 + c2t
2z10ζ13(1 − z)2/3

+ c3t
3z9ζ12(1 − z) + c4t

3z9ζ12 + c5t
3z10ζ12

+ c6t
6z7ζ9 + c7t

7z6ζ8(1 − z)1/3 + c8t
9z5ζ6 = 0.

Under a coordinate change (w, η) = (ζ, z), we obtain

H(2)
1 : w15η12 − s + c1tw

14η11(1 − η)1/3 + c2t
2w13η10(1 − η)2/3

+ c3t
3w12η9(1 − η) + c4t

3w12η9 + c5t
3w12η10

+ c6t
6w9η7 + c7t

7w8η6(1 − η)1/3 + c8t
9w6η5 = 0.

Note that the deformation atlas DA
(2)
3 consists of the first, second, and third

propagations of H(2)
1 along the branch Br(2) such that gi (i = 1, 2, 3) is the

transition function of Ni. We next construct a fourth propagation; since Θ(2)
4

is the wild component of the set {br(2)1 ,br(2)2 , . . . ,br(2)8 } (see Figure 20.3.3),
we require careful consideration to construct it. Note that

H(2)
4 : w6η3 − s + c1tw

5η2(1 − w3η4)1/3 + c2t
2w4η(1 − w3η4)2/3

+ c3t
3w3(1 − w3η4) + c4t

3w3 + c5t
3w6η4

+ c6t
6w3η + c7t

7w2(1 − w3η4)1/3 + c8t
9w3η2 = 0.

Set g
(2)
4 : z = 1/w, ζ = w2η + tαw, which transforms H(2)

4 to

H(2)
4

′
:
(

ζ − tα

z

)3

− s + c1
t

z

(
ζ − tα

z

)2
[
1 − z5

(
ζ − tα

z

)4
]1/3

+ c2
t2

z2

(
ζ− tα

z

) [
1−z5

(
ζ− tα

z

)4
]2/3

+ c3
t3

z3

[
1−z5

(
ζ− tα

z

)4
]

+ c4
t3

z3 + c5t
3z2

(
ζ − tα

z

)4

+ c6
t6

z

(
ζ − tα

z

)

+ c7
t7

z2

[
1 − z5

(
ζ − tα

z

)4
]1/3

+ c8t
9z

(
ζ − tα

z

)2

= 0.

The expansion of this expression has no fractional terms exactly when the

coefficients of the following terms in the expansion are zero: tζ2

z , t2ζ
z2 , t3

z3 ,

t6ζ
z , t7

z2 , t11
z . This condition is given by the following equations:
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1 , weight 1
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3 , weight 3
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4 , weight 3
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8 , weight 9
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Fig. 20.3.3. The branch Br(2) and the set of subbranches br(2). A bold circle is a
wild irreducible component.



20.3 Example of a practical computation of a compound barking 365

− 3α + c1 = 0 (E1)

3α2 − 2c1α + c2 = 0 (E2)

− α3 + c1α
2 − c2α + c3 + c4 = 0 (E3)

2
3
c1α

5 +
4
3
c1α

5 − 2
3
c2α

4 + 4c3α
3 − 4c5α

3 + c6 = 0 (E4)

− 1
3
c1α

6 +
2
3
c2α

5 − c3α
4 + c5α

4 − c6α + c7 = 0 (E5)

− 1
9
c1α

10 +
1
9
c2α

9 − c7

3
α4 + c8α

2 = 0. (E6)

From (E1), (E2), ... ,(E6), using α, c3, c5 we can express other indeterminants:⎧⎨⎩ c1 = 3α, c2 = 3α2, c4 = α3 − c3, c6 = −4c3α
3 + 4c5α

3 − 4α6

c7 = −3c3α
4 + 3c5α

4 − 5α7, c8 = −c3α
6 + c5α

6 − 5
3
α9.

(20.3.1)

Complete propagation along the branch Br(3)

Next we construct a complete propagation of the deformation atlas DA
(3)
5 (the

subscript means “length 5”) along the branch Br(3). First, we slightly change
notation; for consistency with the above discussion, in H0 we will write (z, ζ)
instead of (w, η), and divide the equation by −1:

H0 : z13(1 − z)5ζ15 + s + c1tz
12(1 − z)5ζ14 + c2t

2z11(1 − z)5ζ13

+ c3t
3z10(1 − z)5ζ12 − c4t

3z11(1 − z)4ζ12 − c5t
3z10(1 − z)4ζ12

+ c6t
6z8(1 − z)3ζ9 + c7t

7z7(1 − z)3ζ8 − c8t
9z5(1 − z)2ζ6 = 0.

Then rewriting (1 − z)1/3ζ by ζ, we have

H′
0 : z13ζ15 + s + c1tz

12ζ14(1 − z)1/3 + c2t
2z11ζ13(1 − z)2/3

+ c3t
3z10ζ12(1 − z) − c4t

3z11ζ12 − c5t
3z10ζ12

+ c6t
6z8ζ9 + c7t

7z7ζ8(1 − z)1/3 − c8t
9z5ζ6 = 0.

After a coordinate change (w, η) = (ζ, z), we obtain

H(3)
1 : w15η13 + s + c1tw

14η12(1 − η)1/3 + c2t
2w13η11(1 − η)2/3

+ c3t
3w12η10(1 − η) − c4t

3w12η11 − c5t
3w12η10

+ c6t
6w9η8 + c7t

7w8η7(1 − η)1/3 − c8t
9w6η5 = 0.

Note that the deformation atlas DA
(3)
5 consists of propagations from the first

to the fifth, of H(3)
1 along the branch Br(3) such that gi (i = 1, 2, 3, 4, 5) is

the transition function of Ni. We proceed to construct a sixth propagation;
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Fig. 20.3.4. The branch Br(3) and the set of subbranches br(3). A bold circle is a
wild irreducible component.
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since Θ(3)
6 is the wild component of the set {br(3)1 ,br(3)2 , . . . ,br(3)8 } (see Figure

20.3.4), we need careful consideration in order to construct it. Note that

H(3)
6 : w5η3 − s + c1tw

4η2(1 − w5η6)1/3 + c2t
2w3η(1 − w5η6)2/3

+ c3t
3w2(1 − w5η6) − c4t

3w7η6 − c5t
3w2

+ c6t
6w4η3 + c7t

7w3η2(1 − w5η6)1/3 − c8t
9w = 0.

Set g
(3)
6 : z = 1/w, ζ = w2η + tβw, which transforms H(3)

6 to

H(3)
6

′
: z

(
ζ − tβ

z

)3

+ s + c1t

(
ζ − tβ

z

)2
[
1 − z7

(
ζ − tβ

z

)6
]1/3

+ c2
t2

z

(
ζ− tβ

z

)[
1−z7

(
ζ− tβ

z

)6
]2/3

+ c3
t3

z2

[
1−z7

(
ζ − tβ

z

)6
]

− c4t
3z5

(
ζ − tβ

z

)6

− c5
t3

z2 + c6t
6z2

(
ζ − tβ

z

)3

+ c7t
7z

(
ζ − tβ

z

)2
[
1 − z7

(
ζ − tβ

z

)6
]1/3

− c8
t9

z
= 0.

The expansion of this expression contains no fractional terms precisely when

the coefficients of the following terms in the expansion are zero: t2ζ
z , t3

z2 , t9
z .

This condition is given by the following equations:

3β2 − 2c1β + c2 = 0 (E7)

− β3 + c1β
2 − c2β + c3 − c5 = 0 (E8)

− 1
3
c1β

8 +
2
3
c2β

7 − c3β
6 − c4β

6 − c6β
3 − c7β

2 − c8 = 0. (E9)

Recall that c1 = 3α and c2 = 3α2 by (20.3.1). Putting them into the equation
(E7), we have 3β2 − 6αβ + 3α2 = 0. So β = α, and we substitute α for β.
From (E8) together with c1 = 3α and c2 = 3α2 in (20.3.1), we have

−α3 + c3 − c5 = 0, (∗)
and likewise from (E9) together with equations in (20.3.1), we obtain

4
3
α3 + c3 − c5 = 0. (∗∗)

Note that (∗) and (∗∗) imply −α3 = 4
3α3 and consequently α = 0 (so β = 0).

Then from (E8), c3 = c5, and from (E9), c8 = 0. Putting them into (20.3.1),
we finally obtain

c1 = 0, c2 = 0, c3 = −c4 = c5, c6 = 0, c7 = 0, c8 = 0.

Hence it suffices to take α = β = 0 and c3 �= 0, and let c4 = −c3 and
c5 = c3. As a result, for the construction of a complete deformation atlas in
question, we only need three weighted crusts (Y3, 3), (Y4, 3), (Y5, 3) among the
eight weighted crusts in Figure 20.3.2.
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Remark 20.3.1 In the above construction, although Θ(2)
4 and Θ(3)

6 are wild,
we did not deform their transition functions.

20.4 Wild cores

Let Θ0 be a core of the singular fiber X of a degeneration π : M → Δ, and
let W0 be a tubular neighborhood of Θ0 in M . Assume that Ψ : M → Δ×Δ†

is a barking family of the degeneration π : M → Δ. Then recall that W0 is
a deformation of W0 in M. From the definition of a barking family, W0 is a
smooth hypersurface in the trivial deformation N0 ×Δ×Δ† of N0, where N0

is the normal bundle of Θ0 in M . More generally, it is sometimes possible to
construct such a deformation W0 as is a smooth hypersurface in a non-trival
defromation N0 of N0 (in this case, it is generally complicated to propagate
W0 along each branch/trunk). The resulting family is not a barking family
but is a more general family. We shall exhibit such an example.

Let us consider a degeneration of elliptic curves with the singular fiber
X in Figure 20.4.1. We express X = 3Θ0 + Br(1) + Br(2) + Br(3) where Θ0

is the core and Br(j) = 2Θ(j)
1 + Θ(j)

2 is a branch. For simplicity, we take the
intersection points of Θ0 and Br(j) (j = 1, 2, 3) as 0, 1, ∞.

We take an open covering Θ0 = U ∪ V by two complex lines with coor-
dinates w ∈ U and z ∈ V such that z = 1/w on U ∩ V ; the normal bundle
N0 of Θ0 in M is obtained by patching (w, η) ∈ U × C and (z, ζ) ∈ V × C by
z = 1/w, ζ = w2η. We next take nonzero a, α ∈ C satisfying α3 + a = 0, and
define a deformation atlas around the core Θ0 by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H0 : w2(w − 1)2η3 − s + at3w = 0

H′
0 : z2(1−z)2ζ3 − s + 3tαz(1−z)2ζ2

+ 3t2α2(1 − z)2ζ + t3α3(z − 2) = 0

g0 : z = 1
w, ζ = w2η − tαw.

︷
︸︸

︷

Br(2)

Br(1)︷ ︸︸ ︷ −→
1 13

2

1

∞0
22 1 1

1X X0,t

Br(3)︷ ︸︸ ︷ deform1

Fig. 20.4.1. X0,t consists of three projective lines intersecting at one point which is
an ordinary triple point. In Kodaira’s notation, X and X0,t are respectively denoted
by IV ∗ and IV .
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Using the condition α3 = a, it is easy to check that g0 transforms H0 to H′
0.

The deformation defined by {H0,H′
0, g0} is realized not in N0 × Δ × Δ†, but

in a nontrivial deformation N0 of N0 obtained by patching U × C × Δ × Δ†

and V × C × Δ × Δ† by g0.
Now we set ζ ′ = (1 − z)2/3ζ, and then H′

0 is written as

z2(ζ ′)3 − s + 3tαz(ζ ′)2(1 − z)2/3 + 3t2α2ζ ′(1 − z)4/3 + t3α3(z − 2) = 0.

By a coordinate change (w, η) = (ζ ′, z), this becomes

H(3)
1 : w3η2 − s + 3t α w2η(1 − η)2/3 + 3t2α2w(1 − η)4/3 + t3α3(η − 2) = 0.

We propagate H(3)
1 along the branch Br(3) of X. Set g

(3)
1 : z = 1

w, ζ =
w2η − tβw where β ∈ C, and then g

(3)
1 transforms H(3)

1 to

z

(
ζ + tβ

1
z

)2

− s + 3tα
(

ζ + tβ
1
z

) {
1 − z2

(
ζ + tβ

1
z

)}2/3

+ 3t2α2 1
z

{
1 − z2

(
ζ + tβ

1
z

)}4/3

+ t3α3

{
z2

(
ζ + tβ

1
z

)
− 2

}
= 0.

The expansion of the left hand side has the fractional terms:

t2β2 1
z

+ 3t2αβ
1
z

+ 3t2α2 1
z
.

Take β such that β2 + 3αβ + 3α2 = 0, and then g
(3)
1 transforms H(3)

1 to

a hypersurface H(3)
1

′
, and {H(3)

1 ,H(3)
1

′
, g

(3)
1 } gives a first propagation. This

admits a complete propagation, because the multiplicity of Θ(3)
2 is 1 and so

we may apply Propagation Lemma 5.2.2, p88.
We next consider propagations of H0 along the branch Br(1), where

H0 : w2(w − 1)2η3 − s + at3w = 0

For consistency with the discussion above, we use (z, ζ)-coordinates instead
of (w, η):

H0 : z2(z − 1)2ζ3 − s + at3z = 0

We simplify this equation; by a coordinate change z′ = z and ζ ′ = (z− 1)2/3ζ
around z = 0, the hypersurface H0 is locally given by

H0 : (z′)2(ζ ′)3 − s + at3z′ = 0 around z′ = 0.

We make a further coordinate change (z′, ζ ′) = (η, w), under which this equa-
tion becomes w3η2 − s + at3η = 0, being a hypersurface H(1)

1 . Then it is easy
to check that the following data gives a first propagation of H(1)

1 along the
branch Br(1).
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H(1)

1 : w3η2 − s + at3η = 0

H(1)
1

′
: zζ2 − s + at3z2ζ = 0

g
(1)
1 : z = 1

w, ζ = w2η.

Since the multiplicity of Θ(1)
2 is 1, Propagation Lemma (Lemma 5.2.2, p88)

ensures its complete propagation.
Similarly, we propagate H0 : z2(z− 1)2ζ3 − s+at3z = 0 along the branch

Br(2), where for consistency we use (z, ζ)-coordinates instead of (w, η). By a
coordinate change z′ = z − 1 and then ζ ′ = (z′ + 1)2/3ζ around z = 1, the
hypersurface H0 is given by

(z′)2(ζ ′)3 − s + at3(z′ + 1) = 0

which, under a coordinate change (z′, ζ ′) = (η, w), becomes

H(2)
1 : w3η2 − s + at3(η + 1).

We set ⎧⎪⎪⎪⎨⎪⎪⎪⎩
H(2)

1 : w3η2 − s + at3(η + 1) = 0

H(2)
1

′
: zζ2 − s + at3(z2ζ + 1) = 0

g
(2)
1 : z = 1

w, ζ = w2η.

This data gives a first propagation of H0 along Br(2). Since the multiplicity
of Θ(2)

2 is 1, Propagation Lemma (Lemma 5.2.2) again ensures its complete
propagation. Consequently we obtain a complete deformation atlas of X, from
which we can construct a splitting family: the deformation is illustrated in
Figure 20.4.1.

20.5 Replacement and grafting

In this section, for singular fibers obtained by particular bondings (replace-
ment and grafting), we construct their barking families. The construction is
easy, but is useful for application.

Replacement

We consider a degeneration π : M → Δ (with non-compact fibers) such
that its singular fiber X = m0Δ0 + m1Θ1 + · · · + mλΘλ is shown in Figure
20.5.1, where Δ0 = C, and Θi (i = 1, 2, . . . , λ − 1) is a projective line, and
genus(Θλ) ≥ 1. As illustrated in Figure 20.5.1, the singular fiber X is obtained
by bonding X1 and X2. For this particular bonding, we say that X is a
replacement of the end component of X1 by X2. Note that X contains a
trunk.



20.5 Replacement and grafting 371

mλ

mλ

m1 m2m0 · · ·

m1 m2m0 · · ·
X1

mλ−1 X

mλ−1

X2bonding

mλ

trunk

replacement

Fig. 20.5.1. X is a bonding ofX1 and X2.

mλ

n0Y · · ·n2 nen1

m1 m2m0 · · ·X
p

mλ−1

Fig. 20.5.2. Case 1: e ≤ λ − 1

Let Y be the subtrunk of X shown in Figure 20.5.2 and let l be a pos-
itive integer such that lY ≤ X. We then construct a deformation atlas
DAe−1(lY, k). Firstly, we define a sequence of integers pi (i = 0, 1, . . . , λ)
inductively by {

p0 = 0, p1 = 1 and
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ − 1.

Then pλ > pλ−1 > · · · > p1 > p0 = 0 (6.2.4), p105. Taking a non-vanishing
holomorphic function f = f(z), we set

fi = f(wpi−1ηpi), f̂i = f(zpi+1ζpi),

and we define DAe−1(lY, k) as follows: For i = 1, 2, . . . , e − 1⎧⎪⎨⎪⎩
Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tkfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tkf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.

(20.5.1)

We shall investigate when the deformation atlas DAe−1(lY, k) admits a com-
plete propagation. We divide into two cases according to the length e of Y .

Case 1 e ≤ λ−1: From Proposition 18.3.3 (1), p318, it is easy to deduce the
following.
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mλ

n0 · · ·Y n1 n2 nλ−1

m1 m2m0 · · ·X mλ−1

p

Fig. 20.5.3. Special Case 1: e = λ − 1

Criterion 20.5.1 Suppose that the subtrunk Y is of type Al, Bl, or Cl such
that (i) ρ(Y ) ≤ length(X)−1 where ρ(Y ) is the propagation number of Y (see
(16.4.2), p291) and (ii) if Y is of type Cl the positive integer k is divisible by
ne. Then DAe−1(lY, k) admits a complete propagation.

For a special case e = λ − 1, if Y is of type Bl, then by Criterion 20.5.1,
DAλ−2(lY, k) admits a complete propagation. On the other hand, if Y is not
of type Bl, we have the following result.

Criterion 20.5.2 Suppose that l = 1, nλ−2
nλ−1

= rλ−1, and there exists an
effective divisor D on Θλ such that (i) the support of D does not contain
the intersection point p of Θλ−1 and Θλ, and (ii) D is linearly equivalent to
nλ−1p. Then DAλ−2(Y, k) admits a complete propagation.

Proof. Since nλ−2/nλ−1 = rλ−1, the subtrunk Y is dominant tame, and so
we may construct a (λ − 1)-st propagation DAλ−1(Y, k) of DAλ−2(Y, k) as
follows:⎧⎪⎨⎪⎩

Hλ−1 : wmλ−2ηmλ−1 − s + tkwmλ−2−lnλ−1ηmλ−1−lnλ−1fλ−1 = 0
H′

λ−1 : zmλζmλ−1 − s + tkzmλ−lnλζmλ−1−lnλ−1 f̂λ−1 = 0
gλ−1 : the transition function z = 1/w, ζ = wrλ−1η of Nλ−1.

By the assumption nλ = 0, we have

mλnλ−1 − mλ−1nλ = mλnλ−1 �= 0. (20.5.2)

Thus we may apply Simplification Lemma (Lemma 4.1.1, p58); after some
coordinate change, H′

λ−1 is of the form

wmληmλ−1 − s + tkwmληmλ−1−nλ−1 = 0 around p. (20.5.3)

To achieve a complete propagation, it remains to propagate H′
λ−1 to a defor-

mation atlas around Θλ. Note that the equation (the graph) of the degener-
ation π : M → Δ restricted to a neighborhood of Θλ is given by

Wλ : σζmλ − s = 0,
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where σ is the standard section on Θλ (that is, a holomorphic section of
N

⊗(−mλ)
λ with div(σ) = mλ−1p, where the point p is the intersection of Θλ−1

and Θλ). By the assumption (ii), there exists a meromorphic function τ on
Θλ such that div(τ) = −nλ−1p + D. We then define a smooth hypersurface
Wλ (a deformation of Wλ) in Nλ × Δ × Δ† by

Wλ : σηmλ − s + ctdστηmλ = 0.

Again applying Simplification Lemma (Lemma 4.1.1), after some coordinate
change, we may assume that Wλ has the form

zmλ−1ζmλ − s + tdzmλ−1−nλ−1ζmλ = 0 around p.

By a coordinate change (z, ζ) = (η, w), this equation becomes the equation
(20.5.3) of H′

λ−1, and therefore DAλ−1(lY, k) and Wλ together constitute a
complete propagation of DAλ−2(Y, k). �

We next derive several consequences of Criterion 20.5.2.

Corollary 20.5.3 Suppose that l = 1, nλ−2
nλ−1

= rλ−1, and Θλ is an elliptic
curve. If nλ−1 ≥ 2, then DAλ−2(Y, k) admits a complete propagation.

Proof. Since Θλ is an elliptic curve and nλ−1 ≥ 2, there exists an effective
divisor D on Θλ such that (i) the support of D does not contain the inter-
section point p of Θλ−1 and Θλ, and (ii) D is linearly equivalent to nλ−1p.
For instance, take D = nλ−1q where q ∈ Θλ is chosen so that q − p is an
nλ-torsion in Pic(Θλ), that is, nλ(q−p) ∼ 0 (linearly equivalent). Then apply
Criterion 20.5.2. �
Corollary 20.5.4 Suppose that l = 1, nλ−2

nλ−1
= rλ−1, and Θλ is a hyperelliptic

curve. If nλ−1 is even, and the intersection point p of Θλ−1 and Θλ is a
Weierstrass point of Θλ, then DAλ−2(Y, k) admits a complete propagation.

Proof. We write nλ−1 = 2a where a is a positive integer. Since p is a Weier-
strass point, there are two points q1 and q2 on Θλ such that q1 + q2 ∼ 2p (lin-
early equivalent). In particular, aq1+aq2 ∼ 2ap = nλ−1p. Thus D := aq1+aq2

is an effective divisor on Θλ satisfying the assumption of Criterion 20.5.2, and
hence the assertion follows. �

Next we discuss another case.

Case 2 e = λ:
In this case we have

Criterion 20.5.5 Consider a singular fiber X and its subdivisor Y described
in Figure 20.5.4, and let DAλ−1 be a deformation atlas given as follows1: For

1 cf. (20.5.1). In the present case, we assume fi = f̂i = 1.
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mλ

nλ

n0 · · ·Y n1 n2 nλ−1

m1 m2m0 · · ·X
p

mλ−1

Fig. 20.5.4. Case 2: e = λ

i = 1, 2, . . . , λ − 1,⎧⎪⎪⎨⎪⎪⎩
Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tk)l − s = 0

H′
i : zmi+1−lni+1ζmi−lni(zni+1ζni + tk)l − s = 0

gi : the transition function z = 1/w, ζ = wriη of Ni.

If (i) (m0,m1, . . . , mλ) = l(n0, n1, . . . , nλ) and (ii) N⊗nλ

λ
∼= OΘλ

(−nλ−1p)
where p is the intersection point of Θλ−1 and Θλ, then DAλ−1 admits a
complete propagation.

Proof. By (ii), there exists a meromorphic section τ of N⊗nλ

λ such that

div(τ) = −nλ−1p, where p := Θλ−1 ∩ Θλ. (20.5.4)

From mλ = lnλ, it follows that σ := 1/τ l is a holomorphic section of N
⊗(−mλ)
λ

such that div(σ) = mλ−1p (that is, σ is the standard section on Θλ). We then
define a smooth hypersurface in Nλ × Δ × Δ† by

Wλ : σζmλ − s + tkστζmλ−nλ = 0,

which is a deformation of Wλ : σζmλ − s = 0. Using σ = 1/τ l, we rewrite this
as

Wλ :
1
τ l

ζmλ − s + tk
1

τ l−1
ζmλ−nλ = 0.

Since mλ−nλ = (l−1)nλ by mλ = lnλ, the above equation is further rewritten
as

Wλ :
1
τ l

ζlnλ − s + ctk
1

τ l−1
ζ(l−1)nλ . (20.5.5)

Next we express τ = h(z)/znλ−1 around p, where h is a non-vanishing holo-
morphic function, and then (20.5.5) is locally given by

zlnλ−1ζlnλhl − s + tkz(l−1)nλ−1ζ(l−1)nλhl−1 around p.
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n0 1nλ−1· · ·Y n1

m0 · · ·X ′ mλ
mλ−1m1

Fig. 20.5.5.

By a coordinate change2 (z′, ζ ′) = (z, ζh1/nλ) or (z′, ζ ′) = (zh1/nλ , ζ), this
equation becomes

(z′)lnλ−1(ζ ′)lnλ − s + tk(z′)(l−1)nλ−1(ζ ′)(l−1)nλ = 0.

Using lnλ−1 = mλ−1 and lnλ = mλ, we have

(z′)mλ−1(ζ ′)mλ − s + tk(z′)mλ−1−nλ−1(ζ ′)mλ−nλ . (20.5.6)

Thus Wλ is locally given by (20.5.6) around p. On the other hand,

H′
λ−1 : wmληmλ−1 − s + tkwmλ−nληmλ−1−nλ−1 = 0,

and hence H′
λ−1 becomes Wλ under a coordinate change (w, η) = (ζ, z).

Therefore DAλ−1 and Wλ together give a complete deformation atlas of X.�

Grafting

We consider a branch X ′ and its subbranch Y described in Figure 20.5.5; we
assume that mλ ≥ 2 and nλ−1 = r′λ + 1, where −r′λ is the self-intersection
number of Θλ in the “ambient complex surface” (tubular neighborhood) M ′

of X ′.
Next, from X ′, we construct a singular fiber X in Figure 20.5.6 by bonding

two singular fibers, as illustrated in Figure 20.5.7 (while we keep Y as above).
This particular bonding is called grafting. We note that the self-intersection
number −r′λ of Θλ in M ′ is different from the self-intersection number −rλ of
Θλ in M (the tubular neighborhood of X). In fact,

rλ =
mλ−1 + 1 + (mλ − 1)

mλ
=

mλ−1

mλ
+ 1,

and so rλ = r′λ + 1.

2 Since mλ = lnλ and mλ−1 = lnλ−1, we have mλ−1nλ − mλnλ−1 = 0, and so we
cannot apply Simplification Lemma (but Lemma 4.1.5, p59 may be applicable).
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n0 1nλ−1· · ·Y n1

m0

1

mλ − 1

· · ·X
p

q1

q2

mλ
mλ−1m1

horn 2

horn 1

Fig. 20.5.6. X is obtained by grafting, as illustrated in Figure 20.5.7.

m1

aν

bδ

aν

bδ

bonding

m0 · · ·m1

X1

mλ

· · ·m0

a1

· · ·

mλ

b1

X

· · ·

a1

X2

· · ·

mλ

b1

· · ·

grafting

Fig. 20.5.7. X is a bonding of a branch X1 and a singular fiber X2 — specifically, X2

is the singular fiber of a degeneration of projective lines such that its monodromy is
a rotation of the projective line with two fixed points; the rotation angle is 2πa1/mλ

around one fixed point and 2πb1/mλ around another (we note that a1 + b1 = mλ

holds). For this particular bonding, X is called a grafting at the end component of
X1 by X2.
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Lemma 20.5.6 Consider a singular fiber X and its subbranch Y described
in Figure 20.5.6. Then DAλ−1(Y, k) admits a complete propagation.

Proof. Taking three intersection points p, q1, q2 as in Figure 20.5.6, we define
a deformation atlas around Θλ as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hλ : (w − q1)(w − q2)mλ−1(w − p)mλ−1−nλ−1ηmλ−1

×
[
(w − p)nλ−1η + tk

]
− s = 0

H′
λ : (1 − q1z)(1 − q2z)mλ−1(1 − pz)mλ−1−nλ−1ζmλ−1

×
[
(1 − pz)nλ−1ζ + tk

]
− s = 0

gλ : the transition function z = 1/w, ζ = wrλη of Nλ.

By assumption, we have nλ−1 = r′λ + 1, nλ = 1, and mλ−1 = rλmλ. So

mλnλ−1 − mλ−1nλ = mλ(r′λ + 1) − r′λmλ = mλ �= 0.

Thus we may apply Simplification Lemma (Lemma 4.1.1, p58) to Hλ; under
some coordinate change, we have

Hλ : wmλ−1ηmλ − s + tkwmλ−1−nλ−1ηmλ−1 = 0 around p.

Likewise under some coordinate change, we have

H′
λ : zmλζmλ−1 − s + tkzmλ−1ζmλ−1−nλ−1 = 0 around p.

By a coordinate change (w, η) = (ζ, z), H′
λ becomes Hλ; so we obtain a λ-th

propagation of DAλ−1(Y, k). Further propagations along two “horns” (horn 1
and horn 2 in Figure 20.5.6) are easily carried out; along horn 1 by Propagation
Lemma (Lemma 5.2.2, p88), and along horn 2 by applying the construction
for subbranches of type Al. We thus accomplish the construction of a complete
deformation atlas of X. �

20.6 Increasing multiplicities of simple crusts

In the barking family associated with a simple crust Y of barking multiplicity
l, the subdivisor lY is barked off from X. We point out that the simple crust
Y itself may be multiple (the multiplicity of a subdivisor Y =

∑
i niΘi is

gcd{ni}, and if this number is greater than 1, then Y is called multiple).
In some interesting cases, we can ‘increase’ the multiplicity of Y . See four
examples of Y in Figure 20.6.1, where the barking multiplicity l is 1 for all
cases, and as we increase the multiplicity of Y , the number of the connected
components of barked parts Y0,t (gray projective lines in the figure) in X0,t

also increases, as described in Figure 20.6.2. Note that the multiplicity of Y
equals the number of the connected components of the barked parts Y0,t.
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Fig. 20.6.2. The figures of X0,t for the barking families associated with the simple
crusts in Figure 20.6.2 where in each case, Y0,t is expressed by gray projective lines.



Part IV

Singularities of Subordinate Fibers near Cores



21

Singularities of Fibers around Cores

In this chapter, we complete the description of the singularities of subordinate
fibers of barking families (recall that a singular fiber Xs,t is called a subordinate
fiber if s, t �= 0). For any barking family, we already described such singularities
of a subordinate fiber as appear near the branches/trunks of the original
singular fiber X; so it remains to describe the singularities appearing near
each core of X. Unless otherwise mentioned, throughout this chapter, Ψ :
M → Δ × Δ† denotes the “restriction” of a barking family around a core C.

Let l,m, n,mj (j = 1, 2, . . . , h) be positive integers, and let nj (j =
1, 2, . . . , h) be a nonnegative integer such that m > ln and mj ≥ lnj (in-
stead of m0 and n0, we simply write m and n). Assume that N is a line
bundle on C such that

(i) N⊗(−m) has a holomorphic section σ with a zero of order mj at pj (j =
1, 2, . . . , h), and

(ii) N⊗n has a meromorphic section τ with a pole of order nj at pj (j =
1, 2, . . . , h) and with a zero of order ai at qi (i = 1, 2, . . . , k).

Then we consider a barking family such that a fiber Xs,t := Ψ−1(s, t) is given
by

Xs,t : σ(z)ζm−ln
(
ζn + tτ(z)

)l − s = 0.

In this chapter, we derive a formula of the number of the subordinate fibers
in πt : Mt → Δ. We also give a formula of the number of the singularities of
each subordinate fiber. Further, we demonstrate that all the singularities of a
subordinate fiber Xs,t (s, t �= 0) are A-singularities (whereas X0,t is generally
non-reduced, so that it has non-isolated singularities). To deduce these results,
the plot function

K(z) := n
dσ(z)

dz
τ(z) + mσ(z)

dτ(z)
dz

on the core C (actually, K(z) is a meromorphic section of some line bundle on
C) plays a crucial role. By Lemma 21.2.1 below, a point (z, ζ) = (α, β) ∈ Xs,t,



384 21 Singularities of Fibers around Cores

(s, t �= 0) is a singularity precisely when α and β satisfy (a) K(α) = 0,
σ(α) �= 0, τ(α) �= 0 and (b) βn = ln − m

m tτ(α). As indicated by this, the zeros
of K(z) play an important role in describing the singularities of a subordinate
fiber. For instance, if α is a zero of order r of K(z), then (α, β) is an Ar-
singularity of Xs,t.

Main results of this chapter

(i) A point (z, ζ) = (α, β) of a subordinate fiber Xs,t (s, t �= 0) is a sin-
gularity exactly when (a) K(α) = 0, σ(α) �= 0, τ(α) �= 0 and (b)
βn = ln − m

m tτ(α). In this case, (α, β) is an A-singularity. More pre-
cisely, if α has order r as a zero of K(z), then the singularity (α, β) is an
Ar-singularity. See Theorem 21.6.7, p410.

(ii) Let {α1, α2, . . . , αν} be the set of zeros α of K(z) such that σ(α) �= 0
and τ(α) �= 0. Setting μ(z) := σ(z)n′

τ(z)m′
where m′ := m/gcd(m,n)

and n′ := n/gcd(m,n), consider a set

S = {μ(α1), μ(α2), . . . , μ(αν) }.

Let b be the number of the distinct elements in this set. Then the number
of the subordinate fibers of πt : Mt → Δ (t �= 0 is fixed) is bn′. See
Theorem 21.4.3, p403.

(iii) In (ii), the distinct elements are in one to one correspondence with “tas-
sels” (a tassel is a disjoint union of certain n′ subordinate fibers). Suppose
that a subordinate fiber Xs,t belongs to a tassel corresponding to an ele-
ment, say λ (= λ(Xs,t)). Among zeros α1, α2, . . . , αν of K(z), if there are
c (= c(Xs,t)) zeros of K(z) which attain the value λ:

λ = μ(αi1) = μ(αi2) = · · · = μ(αic
),

then the number of the singularities of Xs,t is dc, where d := gcd(m,n).
See Theorem 21.4.3, p403.

To state more results, we use the following notation:

h (resp. k): the number of the zeros of σ (resp. τ),
v: the number1 of indices j such that nmj − mnj = 0,
g: the genus of the core C, and
ordpj

(ω): the order of the zero or pole of ω(z) at pj , where ω(z) :=
d log

(
σnτm

)
is a meromorphic 1-form on C.

We then set
u := h − v + k + (2g − 2) −

∑
j∈J0

ordpj
(ω),

1 In other words, h is the number of the branches and v is the number of the
proportional subbranches.
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where J0 is the set of indices j such that nmj − mnj = 0. (Actually, ω is
holomorphic at pj (j ∈ J0) by Lemma 21.3.3 (2), p396.) By Corollary 21.4.4,
p403, in πt : Mt → Δ where t �= 0 is fixed,(

the number of the subordinate fibers
)
≤ n′u,(

the number of the singularities of a subordinate fiber
)
≤ du,

where n′ := n/d and d := gcd(m,n). Also by Proposition 21.3.6, p400,(
the number of the singularities of all subordinate fibers

)
≤ nu,

where the equality holds precisely when any zero α of K(z) satisfying σ(α) �= 0
and τ(α) �= 0 is of order 1. In this case, all singularities are nodes by (i) above.

21.1 Branched coverings and ramification points

First of all, we explain the relationship between singularities and branched
coverings. Consider a plane curve V in C

2 defined by a polynomial equation
F (x, y) = 0. We let pr : V → C be a projection given by (x, y) �→ y. It is a
branched covering, and a point p = (x0, y0) ∈ C

2 is a ramification point of
pr : V → C precisely when

F (x0, y0) = 0,
∂F

∂x
(x0, y0) = 0.

Algebraically these two equations mean that F (x, y0), regarded as a polyno-
mial in a single variable x, has a multiple root x0.

Next, a point p = (x0, y0) ∈ C
2 is a singularity on V precisely when

F (x0, y0) = 0,
∂F

∂x
(x0, y0) = 0,

∂F

∂y
(x0, y0) = 0.

In particular, a singularity p = (x0, y0) is necessarily a ramification point of
the branched covering pr : V → C. Note that two equations F (x0, y0) = 0 and
∂F
∂x

(x0, y0) = 0 do not imply that p = (x0, y0) is a singularity: If ∂F
∂y

(x0, y0) �=
0, then by the implicit function theorem, V : F (x, y) = 0 is smooth at p.

We summarize the above explanation:

Let V : F (x, y) = 0 be a plane curve. Suppose that a point (x0, y0) satisfies
F (x0, y0) = 0 and ∂F

∂x
(x0, y0) = 0. Then (x0, y0) is a ramification point

of the branched covering pr : (x, y) ∈ V �→ y ∈ C. Moreover, according to
∂F
∂y

(x0, y0) �= 0 or = 0, the point (x0, y0) is a smooth point or a singularity
of V .



386 21 Singularities of Fibers around Cores

In this chapter, we often regard a singularity as a ramification point of a
branched covering, and then we deduce important results.

Remark 21.1.1 In the above, we assumed that F (x, y) is a polynomial. Ac-
tually, also for an analytic function F (x, y), as long as we focus our attention
on a sufficiently small neighborhood (germ) of p = (x0, y0), we may assume
that it is defined by a polynomial. In fact, if p is an isolated singularity of V ,
then by Artin’s Approximation Theorem [Art2], the germ of p in V is isomor-
phic to an algebraic singularity — a singularity defined by a polynomial.

Now we turn to the discussion of barking families around a core. Through-
out this chapter, by a barking family, we mean its restriction to a neighborhood
of a core. Unless otherwise mentioned, Ψ : M → Δ×Δ† stands for a barking
family restricted to a neighborhood of a core C. We prepare notations. Let
l,m, n,mj be positive integers (j = 1, 2, . . . , h), and let nj (j = 1, 2, . . . , h) be
a nonnegative integer such that2 m > ln and mj ≥ lnj . Assume that N is a
line bundle on C such that

(i) N⊗(−m) has a holomorphic section σ with a zero of order mj at pj (j =
1, 2, . . . , h), and

(ii) N⊗n has a meromorphic section τ with a pole of order nj at pj (j =
1, 2, . . . , h) and with a zero of order ai at qi (i = 1, 2, . . . , k).

Then we consider a barking family such that a fiber Xs,t := Ψ−1(s, t) is given by

Xs,t : σ(z)ζm−ln
(
ζn + tτ(z)

)l − s = 0.

For the time being, let Xs,t (s, t �= 0) be an arbitrary fiber (singular or
smooth).

Lemma 21.1.2 Let (z, ζ) = (α, β) be a point of Xs,t. Then s �= 0 if and only
if σ(α) �= 0, β �= 0, and βn + tτ(α) �= 0.

Proof. This follows immediately from s �= 0 and σ(α)βm−ln
(
βn + tτ(α)

)l −
s = 0. �

Now we consider a branched covering pr : Xs,t → C given by (z, ζ) �→ z.
We inspect its ramification/branch points. (Recall that for a branched covering
φ : M̃ → M , a point p ∈ M̃ is a ramification point if φ is not one to one around
it, and φ(p) ∈ M is a branch point.) Setting

Fs,t(z, ζ) = σ(z)ζm−ln
(
ζn + tτ(z)

)l − s,

we write Xs,t : Fs,t(z, ζ) = 0. A point (z, ζ) is a ramification point of the
branched covering pr : Xs,t → C precisely when z and ζ satisfy

2 Although we may also define Ψ : M → Δ × Δ† for m = ln, here we only treat
the case m > ln. The case m = ln, dealt with in §21.8 Supplement p417, is
not important for the application to degenerations of compact complex curves
(Lemma 16.7.1, p299).
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Fs,t(z, ζ) = 0,
∂Fs,t

∂ζ
(z, ζ) = 0.

Algebraically, these two equations imply that Fs,t(z, ζ), as a polynomial in ζ,
has multiple roots, and so the discriminant of the polynomial Fs,t(z, ζ) in ζ
vanishes.

Lemma 21.1.3 Suppose that s �= 0. For (α, β) ∈ Xs,t, the following equiva-
lence holds:

∂Fs,t

∂ζ
(α, β) = 0 ⇐⇒ βn =

ln − m

m
tτ(α).

Proof. Since

∂Fs,t

∂ζ
(z, ζ)

= σ(z)(m − ln)ζm−ln−1
(
ζn + tτ(z)

)l

+ σ(z)ζm−lnl
(
ζn + tτ(z)

)l−1

nζn−1

= σ(z)ζm−ln−1
(

ζn + tτ(z)
)l−1(

mζn + (m − ln)tτ(z)
)
,

the condition ∂Fs,t

∂ζ
(α, β) = 0 is explicitly given by

σ(α)βm−ln−1
(

βn + tτ(α)
)l−1(

mβn + (m − ln)tτ(α)
)

= 0.

By the assumption s �= 0, we have σ(α) �= 0, β �= 0, and βn + tτ(α) �= 0
(see Lemma 21.1.2). Thus the above equation is equivalent to mβn + (m −
ln)tτ(α) = 0, that is, βn = ln − m

m tτ(α). �
Next we show

Lemma 21.1.4 A point (α, β) ∈ Xs,t (s, t �= 0) is a ramification point of
the branched covering pr : Xs,t → C, (z, ζ) �→ z if and only if α and β

satisfy βn = ln − m
m tτ(α). Moreover in this case, s is written by α and β:

s =
(

ln
ln − m

)l

σ(α)βm.

Proof. Since s �= 0, the equation ∂Fs,t

∂ζ
(α, β) = 0 is equivalent to βn =

ln − m
m tτ(α) by Lemma 21.1.3. Thus (α, β) ∈ Xs,t is a ramification point

of pr : Xs,t → C if and only if βn = ln − m
m tτ(α).

Next from βn = ln − m
m tτ(α), we have tτ(α) = m

ln − m
βn. Substituting

this into the defining equation of Xs,t:

Fs,t(α, β) = σ(α)βm−ln
(
βn + tτ(α)

)l

− s = 0,

we then obtain
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σ(α)βm−ln
(
βn +

m

ln − m
βn

)l

− s = 0,

and so s =
(

ln
ln − m

)l

σ(α)βm. This completes the proof of our assertion. �

An important restatement of this lemma is

Proposition 21.1.5 Fix t �= 0. Then (z, ζ) = (α, β) ∈ N is a ramification
point of pr : Xs,t → C for “some” s if and only if α and β satisfy βn =
ln − m

m tτ(α). Moreover, this fiber Xs,t is determined by α and β as s =(
ln

ln − m

)l

σ(α)βm.

Proof. =⇒: If (α, β) is a ramification point of pr : Xs,t → C, then by Lemma

21.1.4, βn = ln − m
m tτ(α) and s =

(
ln

ln − m

)l

σ(α)βm.

⇐=: Setting s =
(

ln
ln − m

)l

σ(α)βm, we claim that (α, β) lies on Xs,t. In
fact,

Fs,t(α, β) = σ(α)βm−ln
(
βn + tτ(α)

)l

− s

= σ(α)βm−ln

(
βn+

m

ln−m
βn

)l

−s by βn =
ln − m

m
tτ(α)

=
(

m

ln − m

)l

σ(α)βm − s

= 0 by s=
(

ln

ln − m

)l

σ(α)βm.

Moreover, since α and β satisfy βn = ln − m
m tτ(α), we have ∂Fs,t

∂ζ
(α, β) = 0

by Lemma 21.1.3. So, (z, ζ) = (α, β) ∈ N is a ramification point of
pr : Xs,t → C. �

Supposing that (α, β) ∈ Xs,t (s, t �= 0) is a ramification point of
pr : Xs,t → C, we shall deduce an equation fulfilled by α. As we showed in
Lemma 21.1.4,

βn =
ln − m

m
tτ(α) and s =

(
ln

ln − m

)l

σ(α)βm.

Eliminating β from these equations, we may derive an equation satisfied by α
as follows. Let m′ and n′ be the relatively prime positive integers satisfying
m
n = m′

n′ , that is, m′ = m/gcd(m,n) and n′ = n/gcd(m,n). We then consider
powers of the above equations:

βm′n =
(

ln − m

m

)m′

tm
′
τ(α)m′

and sn′
=

(
ln

ln − m

)n′l

σ(α)n′
βn′m.
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Since m′n = n′m, we have βm′n = βn′m, and so the comparison of the above
two equations yields(

ln − m

m

)m′

tm
′
τ(α)m′

=
(

ln − m

ln

)n′l
sn′

σ(α)n′ ,

or

σ(α)n′
τ(α)m′ −

(
ln − m

ln

)n′l (
m

ln − m

)m′
sn′

tm
′ = 0. (21.1.1)

Therefore a branch point α ∈ C is a zero of the following function on C:

Ds,t(z) := σ(z)n′
τ(z)m′ − λs,t, (21.1.2)

where m′ = m/gcd(m,n), n′ = n/gcd(m,n), and λs,t =
(

ln − m
ln

)n′l
×(

m
ln − m

)m′
sn′

tm
′ . We say that Ds,t(z) is a discriminant function on the core C.

In terms of Ds,t(z), the above result on ramification points is summarized as
follows:

Proposition 21.1.6 If (α, β) ∈ N is a ramification point of pr : Xs,t → C,
then

(a) Ds,t(α) = 0 and (b) βn = ln − m
m tτ(α).

(Note: When s �= 0, the condition Ds,t(α) = 0 (that is, σ(α)n′
τ(α)m′ −

λs,t = 0) implies that σ(α) �= 0 and τ(α) �= 0.)
Note that (α, β) ∈ N is a singularity of Xs,t precisely when

Fs,t(α, β) = 0,
∂Fs,t

∂z
(α, β) = 0,

∂Fs,t

∂ζ
(α, β) = 0.

Among these three equations, the two equations Fs,t(α, β) = 0 and ∂Fs,t

∂ζ
(α, β)

= 0 imply that (α, β) is a ramification point of pr : Xs,t → C, (z, ζ) �→ z.
Thus, as a corollary of the above proposition, we have

Corollary 21.1.7 If (α, β) ∈ N is a singularity of Xs,t, then

(a) Ds,t(α) = 0 and (b) βn = ln − m
m tτ(α).

Before proceeding, we note the following properties of the discriminant
function Ds,t(z).

Lemma 21.1.8 (1) Ds,t(z) is a meromorphic function on the core C.
(2) Assume that s, t �= 0. If Ds,t(α) = 0 and σ(α) �= 0, then τ(α) �= 0.
(3) Assume that s, t �= 0. Then (i) Ds,t(z) has a pole of order −(n′mj −m′nj)

at pj for j such that n′mj − m′nj < 0, and is holomorphic outside them,
and (ii) Ds,t(z) has no zeros at pj and qi for j such that n′mj −m′nj > 0
and for arbitrary i. (Note: Ds,t(z) may have a zero at pj for j such that
n′mj − m′nj = 0. See Remark 21.1.9 below.)
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Proof. First of all, note that σn′
τm′

is a meromorphic function on C,
because σn′

τm′
is a section of (N⊗−m)n′⊗(N⊗n)m′ ∼= OC (the trivial bundle).

Also note that for fixed s, t �= 0, λs,t is a constant function on C. Therefore
Ds,t(z) = σn′

τm′ −λs,t is a meromorphic function on C. This verifies (1). The
assertion (2) is easy. When s, t �= 0, we have λs,t �= 0. On the other hand, if
α is a zero of Ds,t(z), then σ(α)n′

τ(α)m′
= λs,t. Hence if σ(α) �= 0, then we

have τ(α) �= 0. Finally we show (3). Recall that σ(z) has a zero of order mj

at pj ; while τ(z) has a pole of order nj at pj and has a zero of order ai at qi.
Thus σn′

τm′
has a pole of order −(n′mj − m′nj) at pj if n′mj − m′nj < 0.

Since the poles of Ds,t(z) = σn′
τm′ − λs,t coincide with the poles of σn′

τm′
,

the assertion (i) of (3) follows. Next, we note that σn′
τm′

has a zero of order
n′mj − m′nj at pj if n′mj − m′nj > 0, and has a zero of order m′ai at each
qi. However, since λs,t is a nonzero constant, the zeros of σn′

τm′
are not zeros

of Ds,t(z) = σn′
τm′ − λs,t. This proves (ii) of (3). �

Remark 21.1.9 For j such that nmj−mnj = 0, the point pj may be a zero of
Ds,t(z). To see this, write σ(z) = (z−pj)mj gj(z) and τ(z) = 1

(z − pj)nj hj(z)

around pj , where gj(z) and hj(z) are non-vanishing holomorphic functions.
Then

σ(z)n′
τ(z)m′

= (z − pj)n′mj gj(z)n′ · 1

(z − pj)m′nj
hj(z)m′

= gj(z)n′
hj(z)m′

around pj .

So Ds,t(pj) = gj(pj)n′
hj(pj)m′ − λs,t, which may be zero.

The converse of Proposition 21.1.6 is not valid: Even if α and β satisfy

(a) Ds,t(α) = 0 and (b) βn = ln − m
m tτ(α),

it does not imply that (α, β) lies on Xs,t. In fact, from the two equations (a)
and (b), what we can deduce is an equation

sn′
=

(
ln

ln − m

)n′l

σ(α)n′
βn′m. (21.1.3)

But in general, s �=
(

ln
ln − m

)l

σ(α)βm; in this case by Lemma 21.1.4,
(α, β) does not lie on Xs,t. Actually, (α, β) lies on Xs′,t where we set

s′ :=
(

ln
ln − m

)l

σ(α)βm, and (α, β) is a ramification point of pr : Xs′,t → C.
For our subsequent discussion, it is convenient to introduce the notion of

a tassel.

Definition 21.1.10 Let m′ := m/gcd(m,n) and n′ := n/gcd(m,n). Fix s �=
0, and set sj := e2πijm′/n′

s for each j = 1, 2, . . . , n′. Then a disjoint union of
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n′ fibers
T = Xs1,t � Xs2,t � · · · � Xsn′ ,t

is referred to as a tassel. (When n′ = 1, a tassel consists of a single fiber Xs,t.)

We note that if α is a zero of Ds,t(z), then from (21.1.1), we have

sn′
= tm

′
(

ln − m

m

)m′ (
ln

ln − m

)n′l

σ(α)n′
τ(α)m′

.

For the subsequent discussion, we choose the following n′-th root:

s = tm
′/n′

(
ln − m

m

)m′/n′ (
ln

ln − m

)l

σ(α)τ(α)m′/n′
. (21.1.4)

Now let T = Xs1,t � Xs2,t � · · · � Xsn′ ,t be a tassel, and we consider the
discriminant function Dsj ,t(z) for each Xsj ,t (j = 1, 2, . . . , n′). Since sn′

j = sn′

and

λsj ,t =
(

ln − m

ln

)n′l (
m

ln − m

)m′
sn′

j

tm
′ ,

it follows that λs1,t = λs2,t = · · · = λsn′ ,t (= λs,t). Hence the discriminant
functions for the fibers Xs1,t, Xs2,t, . . . , Xsn′ ,t coincide:

Ds1,t(z) = Ds2,t(z) = · · · = Dsn′ ,t(z).

This common function is called the discriminant function associated with the
tassel T , and we write it as DT (z). The significance of tassels is manifest in
the following theorem.

Theorem 21.1.11 Fix s �= 0, and set sj := e2πijm′/n′
s (j = 1, 2, . . . , n′).

Consider a tassel

T = Xs1,t � Xs2,t � · · · � Xsn′ ,t

and a projection pr : T → C, (z, ζ) �→ z. Then a point (α, β) ∈ N is a
ramification point of pr : T → C if and only if α and β satisfy

(a) DT (α) = 0 and (b) βn = ln − m
m tτ(α).

Proof. =⇒: By Proposition 21.1.6.

⇐=: Suppose that α and β satisfy (a) and (b). Set s′ :=
(

ln
ln − m

)l

σ(α)βm,
and then by Proposition 21.1.6, (α, β) lies on Xs′,t, and it is a ramifica-
tion point of pr : Xs′,t → C. The comparison of s′ with (21.1.3) yields
(s′)n′

= sn′
, and hence s′ is equal to sj for some j; so (α, β) is a ramifi-

cation point of pr : Xsj ,t → C. Consequently, (α, β) is a ramification point of
pr : T → C. �
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Using this theorem, we may determine the number of the ramification
points of pr : Xs,t → C. First, note that given a zero α of Ds,t(z), there are
n solutions β1, β2, . . . , βn of βn = ln − m

m tτ(α):

βk := e2πik/n

(
ln − m

m
tτ(α)

)1/n

, k = 1, 2, . . . , n.

Thus pr : T → C has n ramification points with the z-coordinate α:

(α, β1), (α, β2), . . . , (α, βn). (21.1.5)

By Proposition 21.1.5, (α, βk) lies on a fiber Xsj ,t (where sj := e2πijm′/n′
s)

precisely when

sj =
(

ln

ln − m

)l

σ(α)βm
k .

Here we may rewrite the right hand side as follows:(
ln

ln − m

)l

σ(α)βm
k =

(
ln

ln−m

)l

σ(α)e2πikm/n

(
ln−m

m
tτ(α)

)m/n

= e2πikm/ntm/n

(
ln − m

m

)m/n(
ln

ln−m

)l

σ(α)τ(α)m/n

= e2πikm′/n′
tm

′/n′
(

ln−m

m

)m′/n′(
ln

ln−m

)l

σ(α)τ(α)m′/n′

= e2πikm′/n′
s by (21.1.4).

Thus a ramification point (α, βk) lies on a fiber Xsj ,t precisely when sj =
e2πikm′/n′

s, that is, k ≡ j mod n′. Therefore, among the n ramification points
(21.1.5), only d points (where d := gcd(m,n))

(α, βj), (α, βj+n′), . . . , (α, βj+(d−1)n′)

lie on one fiber Xsj ,t. Thus we obtain

Proposition 21.1.12 Let m′ := m/gcd(m,n) and n′ := n/gcd(m,n). Fix
s �= 0, and set sj := e2πijm′/n′

s (j = 1, 2, . . . , n′). For a tassel

T = Xs1,t � Xs2,t � · · · � Xsn′ ,t,

consider the discriminant function DT (z) = σ(z)n′
τ(z)m′−λT associated with

T , where λT =
(

ln − m
ln

)n′l (
m

ln − m

)m′
sn′

tm
′ , and let z = α1, α2, . . . , αν be

the zeros of DT (z). Then the following holds:

(i) For each α = αi (i = 1, 2, . . . , ν), the tassel T has n ramification points
with the z-coordinate α:

(α, β1), (α, β2), . . . , (α, βn),

where βk := e2πik/n
(

ln − m
m tτ(α)

)1/n

. (So T has nν ramification points.)
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(ii) Among the n ramification points in (i), d of them (where d := gcd(m,n))
lie on one fiber. Specifically,

(α, βj), (α, βj+n′), . . . , (α, βj+(d−1)n′)

lie on Xsj , t for each j = 1, 2, . . . , n′. (Hence pr : Xsj ,t → C has dν
ramification points.)

21.2 Singularities of fibers

We shall investigate the singularities of a fiber Xs,t = Ψ−1(s, t) of a barking
family Ψ : M → Δ × Δ†. Recall that

Xs,t : σ(z)ζm−ln
(
ζn + tτ(z)

)l − s = 0,

where

σ is a holomorphic section of a line bundle N⊗(−m) on the compact curve
(the core) C with a zero of order mj at pj (j = 1, 2, . . . , h), and
τ is a meromorphic section of a line bundle N⊗n on C with a pole of order
nj at pj (j = 1, 2, . . . , h) and with a zero of order ai at qi (i = 1, 2, . . . , k).

For fixed t �= 0, we say that a singular fiber Xs,t is a subordinate fiber
if s �= 0, while X0,t is the main fiber. In a previous chapter, we already
described the main fiber; see §16.4, p288. We shall describe subordinate fibers.
For simplicity, setting Fs,t(z, ζ) = σ(z)ζm−ln

(
ζn + tτ(z)

)l − s, we express
Xs,t : Fs,t(z, ζ) = 0. By definition, (α, β) ∈ Xs,t is a singularity precisely
when

∂Fs,t

∂z
(α, β) =

∂Fs,t

∂ζ
(α, β) = 0,

Explicitly, these equations are respectively given by

βm−ln
(
βn + tτ(α)

)l−1
[
σz(α)βn + t

(
σz(α)τ(α) + lσ(α)τz(α)

) ]
= 0,

(21.2.1)

σ(α)βm−ln−1
(
βn + tτ(α)

)l−1
[
mβn + (m − ln)tτ(α)

]
= 0, (21.2.2)

where we set σz := dσ
dz

and τz := dτ
dz

.

Lemma 21.2.1 A point (α, β) ∈ Xs,t (s, t �= 0) is a singularity if and only if
σ(α) �= 0, τ(α) �= 0, and α and β satisfy

nσz(α)τ(α) + mσ(α)τz(α) = 0 (21.2.3)

βn =
ln − m

m
tτ(α), (21.2.4)

where σz := dσ
dz

and τz := dτ
dz

. (Note: β depends on t, while α does not; the
equation (21.2.3) does not contain t.)
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Proof. =⇒: Assume that (α, β) is a singularity of Xs,t (s, t �= 0). By Lemma
21.1.2, σ(α) �= 0, β �= 0, and βn + tτ(α) �= 0. So the equations (21.2.1) and
(21.2.2) are respectively equivalent to

σz(α)βn = −t
[
σz(α)τ(α) + lσ(α)τz(α)

]
, (21.2.5)

βn =
ln − m

m
tτ(α). (21.2.6)

(Note: (21.2.6) ensures that τ(α) �= 0. In fact, if τ(α) = 0, then (21.2.6)
implies that β = 0, but then by Lemma 21.1.2, s = 0; this contradicts our
assumption.) We now verify that (21.2.5) is equivalent to (21.2.3). First, we
show that (21.2.5) implies (21.2.3). Multiplying (21.2.6) by σz(α), we have

σz(α)βn =
ln − m

m
tσz(α)τ(α).

This equation with (21.2.5) yields

ln − m

m
tσz(α)τ(α) = −t

[
σz(α)τ(α) + lσ(α)τz(α)

]
.

Since t �= 0 by assumption, we deduce mσ(α)τz(α) + nσz(α)τ(α) = 0. Hence
we obtain the equivalence of (21.2.5) and (21.2.3). Therefore if (α, β) is a
singularity of Xs,t (s, t �= 0), then σ(α) �= 0, τ(α) �= 0, and

nσz(α)τ(α) + mσ(α)τz(α) = 0, βn =
ln − m

m
tτ(α).

⇐=: We can easily show this by reversing the above argument. �
Moreover we have the following result.

Lemma 21.2.2 In Lemma 21.2.1, s is determined by α and β:

s =
(

ln

ln − m

)l

σ(α)βm.

Proof. The defining equation of Xs,t evaluated at (α, β) is

σ(α)βm−ln
(
βn + tτ(α)

)l − s = 0.

Substituting tτ(α) = m
ln − m

βn (21.2.4) into this equation, we obtain

σ(α)βm−ln

(
βn +

m

ln − m
βn

)l

− s = 0,

and so s =
(

ln
ln − m

)l

σ(α)βm. �
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We set K(z) := n
dσ(z)

dz
τ(z) + mσ

dτ(z)
dz

(z), where z ∈ C. We say that
K(z) is the plot function (on the complex curve C); we often write K(z) =
nσzτ + mστz.

Now we give an important restatement of Lemma 21.2.1 and Lemma
21.2.2.

Theorem 21.2.3 Fix t �= 0. Then a point (z, ζ) = (α, β) ∈ N is a singularity
of “some” subordinate fiber if and only if α and β satisfy

(a) K(α) = 0, σ(α) �= 0, and τ(α) �= 0 and (b) βn = ln − m
m tτ(α).

In this case, this subordinate fiber is Xs,t where s is given by s :=
(

ln
ln − m

)l

×
σ(α)βm.

Proof. By Lemma 21.2.1, if (α, β) is a singularity of some subordinate fiber,
then α and β satisfy (a) and (b). We show the converse. Suppose that α and

β satisfy (a) and (b). Setting s :=
(

ln
ln − m

)l

σ(α)βm, then (α, β) is a point
on the subordinate fiber Xs,t. In fact,

Fs,t(α, β) = σ(α)βm−ln
(
βn + tτ(α)

)l − s

= σ(α)βm−ln

(
βn +

m

ln − m
βn

)l

− s by (b)

=
(

m

ln − m

)l

σ(α)βm − s

= 0 by s=
(

ln

ln−m

)l

σ(α)βm.

Thus (α, β) is a point on Xs,t. By assumption, α and β satisfy (a) and (b),
and hence by Lemma 21.2.1, (α, β) is a singularity of Xs,t. This completes the
proof of our assertion. �

For the subordinate fiber Xs,t in Theorem 21.2.3, we further derive the
equation fulfilled by s and t. In the equations of Theorem 21.2.3, substituting

β =
(

ln − m
m tτ(α)

)1/n

into s =
(

ln
ln − m

)l

σ(α)βm, we obtain

s =
(

ln

ln − m

)l

σ(α)
(

ln − m

m
tτ(α)

)m/n

.

Let m′ and n′ be the relatively prime positive integers such that m
n = m′

n′ ,
that is, m′ = m/gcd(m,n) and n′ = n/gcd(m,n). Then

s =
(

ln

ln − m

)l

σ(α)
(

ln − m

m
tτ(α)

)m′/n′

.

Thus s and t satisfy

sn′
= tm

′
(

ln

ln − m

)n′l (
ln − m

m

)m′

σ(α)n′
τ(α)m′

. (21.2.7)
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21.3 Zeros of the plot function

Let K(z) = nσzτ + mστz be the plot function on the core C. In this section,
we study the zeros of K(z).

Lemma 21.3.1 (1) The plot function K(z) = nσzτ+mστz is a meromorphic
section of a line bundle N⊗(n−m) ⊗ Ω1

C on C, where Ω1
C is the cotangent

bundle of C. (Note: If deg(N) = −r, then deg(N⊗(n−m) ⊗ Ω1
C) = r(m −

n) + (2g − 2).)
(2) The number of the zeros of K(z) is finite.

Proof. (1): We write K(z) = στ
d log(σnτm)

dz
. Setting f := σnτm, then f is a

section of (N⊗(−m))⊗n⊗(N⊗n)⊗m ∼= OC (the trivial bundle on C). Hence f is
a meromorphic “function” on C, and accordingly its derivative f ′ (or precisely
f ′(z)dz) is a meromorphic section of the cotangent bundle Ω1

C . Therefore the

ratio f ′
f

(
= d log(f)

dz

)
is a meromorphic section of Ω1

C . On the other hand,

στ is a meromorphic section of N⊗(n−m). Thus K(z) = στ
d log(σnτm)

dz
is a

meromorphic section of N⊗(n−m) ⊗ Ω1
C . (2): By (1), K(z) is a meromorphic

section of a line bundle on the compact complex curve C, and hence the
number of the zeros of K(z) is finite. �

Remark 21.3.2 K(z) is not necessarily holomorphic. For instance, m = 2,
n = 1, and

σ is a holomorphic section of N⊗(−2) with zeros of order 1 at p1 and p2,
and
τ is a meromorphic section of N with poles of order 1 at p1 and p2 and
with a zero of order 1 at q1.

In this case, K(z) = σzτ + 2στz has poles of order 1 at p1 and p2.

Next we express K(z) = στω, where we set ω(z) :=
d log

(
σnτm

)
dz

.

Lemma 21.3.3 For ω(z) :=
d log

(
σnτm

)
dz

, the following holds:

(1) ω(z) is a meromorphic section of the cotangent bundle Ω1
C (i.e. ω(z) is a

meromorphic 1-form3 on the core C).
(2) ω(z) has a simple pole at pj for such j as satisfies nmj−mnj �= 0, whereas

ω(z) is holomorphic at pj for such j as satisfies nmj − mnj = 0.
(3) ω(z) has a simple pole at qi for all i = 1, 2, . . . , k.

3 Actually, it is standard to write ω =
(d log

(
σnτm

)
dz

)
dz or d log

(
σnτm

)
.
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Proof. The assertion (1) is clear from the proof of Lemma 21.3.1 (1). We
show (2). We write σ = (z − pj)mj gj(z) and τ = 1

(z − pj)nj hj(z) around

z = pj , where gj(z) and hj(z) are non-vanishing holomorphic functions. Then
σnτm = (z−pj)nmj−mnj fj(z) around pj , where we set fj(z) := gj(z)nhj(z)m.
So

d log
(
σnτm

)
dz

=
nmj − mnj

z − pj
+ (higher terms) around z = pj .

Therefore, if nmj − mnj �= 0, then ω(z) :=
d log

(
σnτm

)
dz

has a simple pole
at z = pj , whereas if nmj − mnj = 0, then ω(z) is holomorphic at z = pj .
Finally we show (3). As in the proof of (2), we may express

ω(z) =
mai

z − qi
+ (higher terms) around z = qi.

Thus ω(z) has a simple pole at z = qi. �
We let J0 be the set of indices j such that nmj − mnj = 0. By the above

lemma, pj (j /∈ J0) and qi (i = 1, 2, . . . , k) are poles of ω, whereas pj (j ∈ J0)
may be a zero of ω. This fact, with the expression K(z) = στω, implies

Lemma 21.3.4 For α ∈ C, the following equivalence holds:

K(α) = 0, σ(α) �= 0 and τ(α) �= 0 ⇐⇒ ω(α) = 0 and α �= pj (j ∈ J0).

Further, the order of α in K(z) coincides with that of α in ω(z).

Now we can show

Lemma 21.3.5 Let h (resp. k) be the number of the zeros of σ (resp. τ), and
let v be the number of indices j such that nmj − njm = 0, and let g be the

genus of the core C. Set ω :=
d log

(
σnτm

)
dz

, and then the following equation
holds:(

the sum of the orders of zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0
)

=
(

h − v + k + (2g − 2) −
∑
j∈J0

ordpj
(ω)

)
,

where J0 is the set of indices j such that nmj − mnj = 0, and ordpj
(ω)

stands for the order of the zero of ω at pj. (Note: By Lemma 21.3.3 (2), ω is
holomorphic at pj (j ∈ J0).)

Proof. In terms of Lemma 21.3.4, it suffices to show that(
the sum of the orders of zeros α of ω(z) such that α �= pj (j ∈ J0)

)
=

(
h − v + k + (2g − 2) −

∑
j∈J0

ordpj
(ω)

)
.
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First of all, we note that the degree of the cotangent bundle Ω1
C of the complex

curve C of genus g is 2g − 2. Since ω(z) is a section of Ω1
C , we have deg(ω) =

2g − 2, and thus

2g − 2 =
(
the sum of the orders of the zeros of ω

)
−

(
the sum of the orders of the poles of ω

)
. (21.3.1)

Here by Lemma 21.3.3, ω(z) has a simple pole at qi for each i = 1, 2, . . . , k,
and at pj for j such that nmj − mnj �= 0 (there are h − v such indices j).
Thus (

the sum of the orders of the poles of ω
)

= (h − v) + k.

On the other hand, ω(z) may have a zero at pj for j such that nmj −mnj = 0
(Lemma 21.3.3). Hence(

the sum of the orders of the zeros of ω
)

=
(
the sum of the orders of zeros α of ω such that α �= pj (j ∈ J0)

)
+

∑
j∈J0

ordpj
(ω),

where J0 is the set of indices j such that nmj − mnj = 0. The above two
equations with (21.3.1) yields the equation in the assertion. �

When C is the projective line P
1, it may be heuristic to give the explicit

form of ω (and that of the plot function K(z)). First we take the standard
open covering P

1 = U ∪ V by two complex lines U and V , where z ∈ U is
identified with w ∈ V via z = 1/w. Let N be a line bundle on P

1 obtained by
patching (z, ζ) ∈ U ×C with (w, η) ∈ V ×C via z = 1/w and ζ = wrη, where

r :=
m1 + m2 + · · · + mh

m
.

We then take σ (a holomorphic section of N⊗(−m)) and τ (a meromorphic
section of N⊗n) as follows:

σ =

⎧⎨⎩ (z − p1)m1(z − p2)m2 . . . (z − ph)mh on U

(1 − p1w)m1(1 − p2w)m2 . . . (1 − phw)mh on V ,

and

τ =

⎧⎪⎪⎨⎪⎪⎩
(z − q1)a1(z − q2)a2 · · · (z − qk)ak

(z − p1)n1(z − p2)n2 · · · (z − ph)nh
on U

(1 − q1w)a1(1 − q2w)a2 · · · (1 − qkw)ak

(1 − p1w)n1(1 − p2w)n2 · · · (1 − phw)nh
on V .
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Since

log(σnτm) = log

⎡⎣ h∏
j=1

(z − pj)nmj−mnj ·
k∏

i=1

(z − qi)mai

⎤⎦
=

h∑
j=1

(nmj − mnj) log(z − pj) +
k∑

i=1

mai log(z − qi),

we have

ω =
d log(σnτm)

dz
=

h∑
j=1

nmj − mnj

z − pj
+

k∑
i=1

mai

z − qi
,

or (from nmj − mnj = 0 for j ∈ J0)

ω =
∑
j /∈J0

nmj − mnj

z − pj
+

k∑
i=1

mai

z − qi
.

Thus ω vanishes at pj0 (j0 ∈ J0) precisely when

∑
j /∈J0

nmj − mnj

pj0 − pj
+

k∑
i=1

mai

pj0 − qi
= 0.

Next we explicitly express the plot function K(z) = στ
d log

(
σnτm

)
dz

(= στω) on the projective line P
1:

K(z) = (z − p1)m1−n1(z − p2)m2−n2 · · · (z − ph)mh−nh

×(z − q1)a1(z − q2)a2 · · · (z − qk)ak

( ∑
j /∈J0

nmj − mnj

z − pj
+

k∑
i=1

mai

z − qi

)
,

which, after expansion, becomes a polynomial.
Now we return to the discussion on the plot function K(z) for a complex

curve C of arbitrary genus. We consider an obvious inequality(
the number of the zeros of K(z)

)
≤ (

the sum of the orders of the zeros of K(z)
)
.

In particular,(
the number of zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0

)
≤ (

the sum of the orders of zeros α of K(z) such that

σ(α) �= 0 and τ(α) �= 0
)
.
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By Lemma 21.3.5, the right hand side equals h − v + k + (2g − 2) −∑
j∈J0

ordpj
(ω), and hence(

the number of zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0
)

≤
(

h − v + k + (2g − 2) −
∑
j∈J0

ordpj
(ω)

)
. (21.3.2)

The equality holds precisely when all zeros α of K(z) such that σ(α) �= 0
and τ(α) �= 0 have order 1. We may apply this inequality to deduce a sharp
upper bound of the number of the singularities of all subordinate fibers in
πt : Mt → Δ. By Theorem 21.2.3, a point (α, β) ∈ Xs,t (s, t �= 0) is a
singularity of “some” subordinate fiber if and only if α and β satisfy

(a) K(α) = 0, σ(α) �= 0, τ(α) �= 0 and (b) βn =
ln − m

m
tτ(α).

(21.3.3)

For each zero α of K(z) satisfying σ(α) �= 0 and τ(α) �= 0, there are n solutions
β of the equation βn = ln − m

m tτ(α). Therefore with (21.3.2), we obtain

Proposition 21.3.6 In πt : Mt → Δ where t �= 0 is fixed,(
the number of the singularities of all subordinate fibers

)
≤ n

(
h − v + k + (2g − 2) −

∑
j∈J0

ordpj
(ω)

)
,

where J0 is the set of indices j such that nmj − mnj = 0. The equality holds
precisely when all zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0 have
order 1.

21.4 The number of subordinate fibers and singularities

We may further determine the number of the subordinate fibers in πt : Mt →
Δ, and moreover for each subordinate fiber, we may determine the number of
all singularities on it. For each α satisfying (a) in (21.3.3), the equation (b)
has n solutions:

βk = e2πik/n

(
ln − m

m
tτ(α)

)1/n

, k = 1, 2, . . . , n, (21.4.1)

and hence there exist n singularities with the z-coordinate α:

(α, β1), (α, β2), . . . , (α, βn). (21.4.2)
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However, these singularities are generally not on the same subordinate fiber.
Indeed, by Theorem 21.2.3, (α, βk) lies on the subordinate fiber Xsk,t, where

sk =
(

ln

ln − m

)l

σ(α)βm
k =

(
ln

ln − m

)l

σ(α)e2πikm/n

(
ln − m

m
tτ(α)

)m/n

= e2πikm/ntm/n

(
ln − m

m

)m/n (
ln

ln − m

)l

σ(α)τ(α)m/n.

Or, set m′ := m/gcd(m,n) and n′ := n/gcd(m,n), and then a singularity
(α, βk) lies on the subordinate fiber Xsk,t where

sk =e2πikm′/n′
tm

′/n′
(

ln−m

m

)m′/n′(
ln

ln−m

)l

σ(α)τ(α)m′/n′
,

k=1, 2, . . . , n.

Note that for k = 1, 2, . . . , n, we have only n′ distinct values of sk. In fact,
sk = sk′ if and only if k ≡ k′ mod n′.

To clarify the subsequent argument, we use a subscript j = 1, 2, . . . , n′;
that is,

sj = e2πijm′/n′
tm

′/n′
(

ln − m

m

)m′/n′ (
ln

ln − m

)l

σ(α)τ(α)m′/n′
,

j = 1, 2, . . . , n′.
(21.4.3)

Then a singularity (α, βk) lies on a subordinate fiber Xsj ,t precisely when k ≡
j mod n′. Therefore, among the n singularities (21.4.2), only d singularities
(d := gcd(m,n))

(α, βj), (α, βj+n′), . . . , (α, βj+(d−1)n′)

lie on one subordinate fiber Xsj ,t. Thus we obtain

Proposition 21.4.1 Let α be a zero of the plot function K(z) such that
σ(α) �= 0 and τ(α) �= 0. Then

(i) There are n singularities with the z-coordinate α: (α, β1), (α, β2), . . . ,

(α, βn), where βk = e2πik/n
(

ln − m
m tτ(α)

)1/n

, k = 1, 2, . . . , n.
(ii) The n singularities in (i) lie on n′ subordinate fibers Xs1, t, Xs2, t, . . . ,

Xsn′ , t, where

sj =e2πijm′/n′
tm

′/n′
(

ln−m

m

)m′/n′(
ln

ln−m

)l

σ(α)τ(α)m′/n′
,

j =1, 2, . . . , n′.
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Among these n singularities, d of them (where d := gcd(m,n)) lie on one
subordinate fiber. Specifically, (α, βj), (α, βj+n′), . . . , (α, βj+(d−1)n′) lie
on Xsj , t for each j = 1, 2, . . . , n′.

We say that a zero α of K(z) is essential if σ(α) �= 0 and τ(α) �= 0. Given an
essential zero α of K(z), the disjoint union of n′ subordinate fibers in (ii):

T = Xs1,t � Xs2,t � · · · � Xsn′ ,t

is nothing but a tassel, which we previously defined in Definition 21.1.10. We
say that a tassel is smooth (resp. singular) if all fibers in the tassel are smooth
(resp. singular). All fibers in the above tassel T are singular, and so T is a
singular tassel. (Actually, if one fiber in a tassel is smooth (resp. singular), then
all fibers in the tassel are necessarily smooth (resp. singular). See Proposition
21.4.1 (ii).)

We point out that two essential zeros α and α′ of K(z) may determine
the same tassel. To explain this clearly, for sj in Proposition 21.4.1 (ii), we
write sj(α) for α, and sj(α′) for α′. Then α and α′ determine the same tassel
precisely when

{ s1(α), s2(α), . . . , sn′(α) } = { s1(α′), s2(α′), . . . , sn′(α′) } as a set.

Equivalently, sj(α) =
(
an n′-th root of the unity

) · sj(α′) holds for some j
(1 ≤ j ≤ n′). In terms of (21.4.3), this condition is given by

σ(α)τ(α)m′/n′
=

(
an n′-th root of the unity

) · σ(α′)τ(α′)m′/n′
.

Taking the n′-th power, we may rewrite this as

σ(α)n′
τ(α)m′

= σ(α′)n′
τ(α′)m′

.

We thus verified

Lemma 21.4.2 Two essential zeros α and α′ of K(z) determine the same
tassel if and only if σ(α)n′

τ(α)m′
= σ(α′)n′

τ(α′)m′
.

Let α1, α2, . . . , αν be the essential zeros of K(z); so none of them is a zero
of σ(z) or τ(z). (Note: By Lemma 21.3.1 (2), K(z) has at most a finite number
of zeros.) Setting μ(z) := σ(z)n′

τ(z)m′
, we consider a set

S = {μ(α1), μ(α2), . . . , μ(αν) }.
By Lemma 21.4.2, the number of the distinct elements in this set is equal to
the number of the tassels. Taking this fact into account, we use a new notation
λ(i) (i = 1, 2, . . . , b) to denote the distinct elements in S, and accordingly we
write α

(i)
1 , α

(i)
2 , . . . , α

(i)

c(i) for the essential zeros of K(z) which attain the value
λ(i):

λ(i) = μ(α(i)
1 ) = μ(α(i)

2 ) = · · · = μ(α(i)

c(i)).

Then α
(i)
1 , α

(i)
2 , . . . , α

(i)

c(i) determine the same tassel (the “λ(i)-tassel”).
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Theorem 21.4.3 (1) Let {α1, α2, . . . , αν} be the set of the essential zeros
of K(z) (i.e. none of them is a zero of σ(z) or τ(z)). Set μ(z) :=
σ(z)n′

τ(z)m′
, where m′ := m/gcd(m,n) and n′ := n/gcd(m,n), and let b

be the number of the distinct elements in the set {μ(α1), μ(α2), . . . , μ(αν) }.
Then the number of the subordinate fibers in πt : Mt → Δ (where t �= 0 is
fixed) is bn′.

(2) If a subordinate fiber Xs,t belongs to a λ(i)-tassel, then the number of the
singularities of Xs,t is c(i)d, where d = gcd(m,n) and c(i) is the number
of the essential zeros of K(z) which attain the value λ(i):

λ(i) = μ(α(i)
1 ) = μ(α(i)

2 ) = · · · = μ(α(i)

c(i)).

Proof. (1): From Lemma 21.4.2, πt : Mt → Δ has b tassels. Each tassel
consists of n′ subordinate fibers, and thus πt : Mt → Δ has n′b subordinate
fibers. The assertion (2) is clear, because for each α

(i)
j (j = 1, 2, . . . , c(i)), there

correspond d singularities on Xs,t (Proposition 21.4.1 (ii)). �
We recall the notation: (i) h (resp. k) is the number of the zeros of σ (resp.

τ), and (ii) v is the number of indices j such that nmj −mnj = 0, and (iii) g
is the genus of the core C. Also we recall (21.3.2):(

the number of the essential zeros of K(z)
)

≤
(

h − v + k + (2g − 2) −
∑
j∈J0

ordpj
(ω)

)
,

where ω := d log(σnτm)
dz

is a meromorphic 1-form on C, and J0 stands for the
set of indices j such that nmj − mnj = 0. The equality holds precisely when
all essential zeros α1, α2, . . . , αν have order 1. Consequently, with Theorem
21.4.3, we have

Corollary 21.4.4 Let h, k, v, g be as above, and set ω(z) := d log(σnτm)
dz

.
Then

(1) In πt : Mt → Δ (where t �= 0 is fixed),(
the number of the subordinate fibers

)
≤ n′

(
h − v + k + (2g − 2) −

∑
j∈J0

ordpj
(ω)

)
,

where n′ := n/gcd(m,n) and J0 is the set of indices j such that nmj −
mnj = 0. The equality holds precisely when4 (A) all essential zeros
α1, α2, . . . , αν of K(z) have order 1 and (B) μ(α1), μ(α2), . . . , μ(αν) are
all distinct, where μ(z) := σ(z)n′

τ(z)m′
.

4 (B) means that πt : Mt → Δ has ν tassels, while (A) with Theorem 21.6.7, p410
implies that each subordinate fiber is a complex curve with only one node, i.e. a
Lefschetz fiber.
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(2) Moreover the following inequality holds:(
the number of the singularities of a subordinate fiber

)
≤ d

(
h − v + k + (2g − 2) −

∑
j∈J0

ordpj
(ω)

)
,

where d := gcd(m,n). The equality holds precisely when5 (C) all essential
zeros α1, α2, . . . , αν of K(z) have order 1 and (D) μ(α1) = μ(α2) = · · · =
μ(αν).

Comment on the exponent of the parameter t

We close this section by giving a comment on the effect of a change of the
exponent of t. So far we have treated a barking family:

Xs,t : σ(z)ζm−ln
(
ζn + tτ(z)

)l

− s = 0.

If we replace t by tb:

Xs,t : σ(z)ζm−ln
(
ζn + tbτ(z)

)l

− s = 0,

then the reader may wonder that the number of the singularities of a subordi-
nate fiber Xs,t (and also the number of the subordinate fibers in πt : Mt → Δ)
increases. But this is not the case. In fact, by Lemma 21.2.1, a point
(α, β) ∈ Xs,t is a singularity if and only if (a) K(α) = 0, σ(α) �= 0, τ(α) �= 0
and (b) βn = ln − m

m tbτ(α). Notice that for each zero α of K(z), regardless
of the value of the exponent b of tb, the number of the solutions β satisfying
βn = ln − m

m tbτ(α) is always n.

21.5 Discriminant functions and tassels

In the previous section, we gave a formula of the number of the subordinate
fibers as well as a formula of the number of the singularities of a subordinate
fiber. We may express these formulas in terms of the discriminant function.
First of all, we recall Theorem 21.4.3 (1):

Let {α1, α2, . . . , αν} be the set of the essential zeros of K(z) (i.e. none
of them is a zero of σ or τ). Set μ(z) := σ(z)n′

τ(z)m′
, and let b be the

number of the distinct elements in the set

S = {μ(α1), μ(α2), . . . , μ(αν) }.
Then the number of the subordinate fibers in πt : Mt → Δ is bn′.

5 (D) means that πt : Mt → Δ has only one tassel, while (C) with Theorem 21.6.7,
p410 implies that each subordinate fiber is a complex curve only with nodes.
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The distinct elements in S, which we denote by λ(i) (i = 1, 2, . . . , b), are in one
to one correspondence with singular tassels. Recall that a singular tassel is a
disjoint union of n′ subordinate fibers; the tassel corresponding to an element
λ(i) is called the λ(i)-tassel T (i):

λ(i)-tassel T (i) = X
s
(i)
1 ,t

� X
s
(i)
2 ,t

� · · · � X
s
(i)
n′ ,t

where for j = 1, 2, . . . , n′,

s
(i)
j := e2πijm′/n′

tm
′/n′

(
ln − m

m

)m′/n′ (
ln

ln − m

)l

σ(α)τ(α)m′/n′
.

Next we recall Theorem 21.4.3 (2):

If a subordinate fiber Xs,t belongs to a λ(i)-tassel T (i), then the number
of the singularities on Xs,t is c(i)d, where d = gcd(m,n) and c(i) is the
number of the essential zeros of K(z) which attain the value λ(i):

λ(i) = μ(α(i)
1 ) = μ(α(i)

2 ) = · · · = μ(α(i)

c(i)), where μ(z) := σ(z)n′
τ(z)m′

.
(∗)

In terms of the discriminant function DT (i)(z) = σ(z)n′
τ(z)m′−λ(i) associated

with the tassel T (i), the condition (∗) is restated as follows: α
(i)
1 , α

(i)
2 , . . . , α

(i)

c(i)

are zeros of DT (i)(z). Therefore we obtain

Theorem 21.5.1 (1) Let b be the number of the singular tassels in πt : Mt →
Δ (where t �= 0 is fixed). Then the number of the subordinate fibers in
πt : Mt → Δ is bn′, where n′ := n/gcd(m,n).

(2) Denote by T (1), T (2), . . . , T (b) the singular tassels in πt : Mt → Δ. Suppose
that a subordinate fiber Xs,t (s, t �= 0) belongs to a λ(i)-tassel T (i). Let c(i)

be the number of such essential zeros of K(z) as are also zeros of the
discriminant function

DT (i)(z) = σ(z)n′
τ(z)m′ − λ(i).

Then the number of the singularities of Xs,t is c(i)d, where d = gcd(m,n).

21.6 Determination of the singularities

As before, Xs,t := Ψ−1(s, t) is a fiber of a barking family Ψ : M → Δ × Δ†;
that is, Xs,t : Fs,t(z, ζ) = 0 where

Fs,t(z, ζ) := σ(z)ζm−ln
(
ζn + tτ(z)

)l − s.

For the time being, we let Xs,t (s, t �= 0) be an arbitrary fiber (singular
or smooth). We shall demonstrate that the branched covering pr : Xs,t →
C, (z, ζ) �→ z restricted to a neighborhood of each ramification point is a dou-
ble covering. This fact plays an essential role in showing that any singularity
of a subordinate fiber is an A-singularity.
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Lemma 21.6.1 Suppose that s, t �= 0. For α ∈ C such that σ(α) �= 0 and
τ(α) �= 0, any root ζ = β of the polynomial Fs,t(α, ζ) in ζ is of multiplicity
either 1 or 2.

Proof. It is enough to show that any multiple root ζ = β of the polynomial
Fs,t(α, ζ) in ζ is a double root (a root of multiplicity 2). First of all, we
note that Fs,t(α, ζ) has a root ζ = β of multiplicity k (k ≥ 2) precisely

when ∂Fs,t

∂ζ
(α, ζ) has a root β of multiplicity k − 1. So we only have to show

that ∂Fs,t

∂ζ
(α, ζ) has only simple roots (that is, roots of multiplicity 1). Since

Fs,t(z, ζ) = σ(z)ζm−ln
(
ζn + tτ(z)

)l − s, we have

∂Fs,t

∂ζ
(z, ζ) = σ(z)(m − ln)ζm−ln−1

(
ζn + tτ(z)

)l

+ σ(z)ζm−lnl
(
ζn + tτ(z)

)l−1

nζn−1

= σ(z)ζm−ln−1
(
ζn + tτ(z)

)l−1[
mζn +

(
m − ln

)
tτ(z)

]
.

Hence

∂Fs,t

∂ζ
(α, ζ) = σ(α)ζm−ln−1

(
ζn + tτ(α)

)l−1[
mζn +

(
m − ln

)
tτ(α)

]
.

Noting the assumption σ(α) �= 0 and τ(α) �= 0, the solutions of ∂Fs,t

∂ζ
(α, ζ) = 0

are (1) ζ = 0 (a root of multiplicity m− ln− 1), (2) n
√−τ(α)t (roots of mul-

tiplicity l− 1), and (3) n

√
ln − m

m τ(α)t (simple roots). However the condition
s �= 0 excludes the multiple roots ζ = 0, n

√−τ(α)t. Indeed, setting ζ = 0 or
n
√−τ(α)t in the equation Fs,t(α, ζ) = 0, we have −s = 0. Hence any root

ζ = β of ∂Fs,t

∂ζ
(α, ζ) is a simple root, and so any multiple root of Fs,t(α, ζ)

has multiplicity 2. �
We keep the above notations: For a barking family Xs,t : Fs,t(z, ζ) = 0

where
Fs,t(z, ζ) := σ(z)ζm−ln

(
ζn + tτ(z)

)l − s,

let Ds,t(z) = σ(z)n′
τ(z)m′ − λs,t be the discriminant function (21.1.2) on

C, where m′ := m/gcd(m,n), n′ := n/gcd(m,n), and λs,t :=
(

ln − m
ln

)n′l

×
(

m
ln − m

)m′
sn′

tm
′ .

Corollary 21.6.2 Suppose that s, t �= 0. Let z = α be a zero of Ds,t(z) and
take a root ζ = β of Fs,t(α, ζ). Then
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(1) The multiplicity of the root β is 1 or 2. (Geometrically, depending on
whether the multiplicity of β is 1 or 2, the branched covering pr : Xs,t →
C, (z, ζ) �→ z is locally a homeomorphism or a double covering around
(α, β) ∈ Xs,t.)

(2) If (α, β) ∈ Xs,t is a singularity, then the multiplicity of the root β is 2.
(Geometrically, pr : Xs,t → C is a double covering around (α, β).)

Proof. We show (1). From Fs,t(α, β) = 0, we have σ(α)βm−ln
(
βn + tτ(α)

)l −
s = 0. Since s �= 0, we deduce σ(α) �= 0. On the other hand, Ds,t(α) = 0 by
assumption. So we may apply Lemma 21.1.8 (2), p389 to obtain τ(α) �= 0.
Thus the assumption σ(α) �= 0 and τ(α) �= 0 of Lemma 21.6.1 is fulfilled,
and so the multiplicity of β is either 1 or 2. We show (2). If (α, β) ∈ Xs,t

is a singularity, then pr : Xs,t → C cannot be a homeomorphism around
(α, β); otherwise (α, β) is a smooth point of Xs,t. Then by (1), pr : Xs,t →
C is a double covering around (α, β), and the root ζ = β of Fs,t(α, ζ) has
multiplicity 2. �

We shall determine the singularities of a subordinate fiber Xs,t (s, t �= 0).
Let (α, β) ∈ Xs,t be a singularity. Then from Corollary 21.6.2 (2), pr : Xs,t →
C, (z, ζ) �→ z is a double covering around (α, β), so that the singularity (α, β)
may be defined by a pseudo-polynomial of degree 2:

as,t(z)ζ2 + bs,t(z)ζ + cs,t(z) = 0. (21.6.1)

In what follows, for brevity we omit s, t to write a(z) etc. Notice that a(z) is
non-vanishing near z = α. Indeed, if a(α) = 0, then the equation (21.6.1) for
z = α reduces to an equation of degree 1: b(α)ζ + c(α) = 0. This has only one

root β = −c(α)
b(α) (of multiplicity 1). But since (α, β) ∈ Xs,t is a singularity,

this contradicts that β is a double root (Corollary 21.6.2 (2)). So a(z) is non-
vanishing near z = α. Dividing the both sides of (21.6.1) by a(z), we may
assume that a(z) = 1, so that the left hand side of (21.6.1) is a Weierstrass
polynomial f(z, ζ) = ζ2 + b(z)ζ + c(z). Now we set

ζ ′ = ζ +
b(z)
2

, d(z) =
b(z)2

4
− c(z).

(Note: d(z) is the discriminant of f(z, ζ) viewed as a polynomial in ζ.) We
then write ζ2 + b(z)ζ + c(z) = 0 simply as (ζ ′)2 = d(z). Here note that
d(z) is not identically zero. Otherwise (ζ ′)2 = 0, which defines a non-isolated
singularity — this is a contradiction; see Proposition 21.4.1. Now we express
d(z) = (z − α)re(z) where e(z) is a non-vanishing holomorphic function near

z = α, and we set ζ ′′ = ζ ′

e(z)1/2 . Then (ζ ′)2 = d(z) is rewritten as (ζ ′′)2 =

(z − α)r, which defines an Ar−1-singularity (0, α) where ζ ′′ = 0 corresponds
to ζ = β. Therefore (α, β) ∈ Xs,t is an Ar−1-singularity. We summarize the
above discussion as follows.
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Proposition 21.6.3 Assume that (α, β) is a singularity of a subordinate fiber
Xs,t (s, t �= 0). Let ζ2 +bs,t(z)ζ +cs,t(z) = 0 be a local equation of Xs,t around

(α, β), and denote its discriminant by ds,t(z)
(
= bs,t(z)2

4 − cs,t(z)
)
. Let r be

the order of a zero6 α of ds,t(z). Then the singularity (α, β) ∈ Xs,t is an
Ar−1-singularity (that is, analytically equivalent to y2 = xr).

We next derive a relationship between the plot function K(z) = nσzτ +
mστz and the discriminant function Ds,t(z) = σ(z)n′

τ(z)m′−λs,t, where m′ :=

m/gcd(m,n), n′ := n/gcd(m,n), and λs,t :=
(

ln − m
ln

)n′l (
m

ln − m

)m′
sn′

tm
′ .

We note that

dDs,t(z)
dz

= n′σzσ
n′−1τm′

+ m′σn′
τzτ

m′−1 = σn′−1τm′−1
(
n′σzτ + m′στz

)
=

σn′−1τm′−1

d
K(z),

where d := gcd(m,n). Thus we obtain a formula

dDs,t(z)
dz

=
σn′−1τm′−1

d
K(z). (21.6.2)

We recall that given a singularity (α, β) ∈ Xs,t (s, t �= 0), we have
Ds,t(α) = 0 (Corollary 21.1.7) and K(α) = 0 (Lemma 21.2.1). Moreover,
the following is valid.

Lemma 21.6.4 Let K(z) be the plot function and let Ds,t(z) be the discrim-
inant function on the core C. For a singularity (α, β) of a subordinate fiber
Xs,t (s, t �= 0), the following holds:

(1) The order of α as a zero of Ds,t(z) is k (k ≥ 2) if and only if the order
of α as a zero of K(z) is k − 1.

(2) Any zero of order 1 of Ds,t(z) is not a zero of K(z).

Proof. =⇒ of (1): Suppose that α has order k as a zero of Ds,t(z); we write
Ds,t(z) = (z − α)kg(z) where g(α) �= 0. Then

dDs,t(z)
dz

= k(z − α)k−1g(z) + (z − α)kg′(z)

= (z − α)k−1
(
kg(z) + (z − α)g′(z)

)
.

By (21.6.2), K(z) = d
σn′−1τm′−1

· dDs,t(z)
dz

where d := gcd(m,n), and so we

have
K(z) = (z − α)k−1 · d

σn′−1τm′−1
·
(
kg(z) + (z − α)g′(z)

)
.

6 Since ζ2 + bs,t(α)ζ + cs,t(α) = 0 has a multiple (double) root ζ = β, we have
ds,t(α) = 0.
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Noting that d
σn′−1τm′−1

·
(
kg(z) + (z − α)g′(z)

)
does not vanish at z = α,

we conclude that α has order k − 1 as a zero of K(z).
⇐= of (1): Suppose that α has order k − 1 (k ≥ 2) as a zero of K(z).

Denote by l the order of α as a zero of Ds,t(z). Then we may write Ds,t(z) =
(z − α)lh(z) where h(α) �= 0. Applying the argument of “=⇒”, we see that
α, as a zero of K(z), has order l − 1. By assumption, α has order k − 1 as a
zero of K(z), and so l − 1 = k − 1, that is, l = k. Therefore α has order k as
a zero of Ds,t(z), and hence the assertion is confirmed.

The assertion (2) is clear by applying the argument of (1) for k = 1. �
Now we can show an important lemma.

Lemma 21.6.5 Let (α, β) be a singularity of a subordinate fiber Xs,t (s, t �=
0). Let ζ2 + bs,t(z)ζ + cs,t(z) = 0 be a local equation of Xs,t around (α, β)

(see Proposition 21.6.3), and denote its discriminant by ds,t(z)
(
= bs,t(z)2

4 −
cs,t(z)

)
. Then the order of α as a zero of ds,t(z) is equal to the order of α as

a zero of the discriminant function Ds,t(z).

Proof. Suppose that the order of α in Ds,t(z) (resp. ds,t(z)) is R (resp. r);
then we may write Ds,t(z) = (z − α)RHs,t(z) and ds,t(z) = (z − α)rhs,t(z),
where Hs,t(α) �= 0 and hs,t(α) �= 0. Now let Xs′,t be a smooth fiber near Xs,t

(i.e. s′ is near s). Then the zero α of Ds,t(z) decomposes into R simple zeros
(zeros of order 1) of Ds′,t(z):

Ds′,t(z) = (z − α1)(z − α2) · · · (z − αR)Hs′,t(z)

In fact, Ds′,t(z) does not have a multiple zero. If Ds′,t(z) has a multiple
zero, say α′, then by Lemma 21.6.4, α′ is a zero of K(z). But this contra-
dicts that Xs′,t is a smooth fiber (see Lemma 21.2.1). So α decomposes into
R simple zeros of Ds′,t(z). Accordingly, the singularity (α, β) splits into R
smooth points on the (smooth) fiber Xs′,t: By Lemma 21.2.1, we may write

β =
(

ln − m
m tτ(α)

)1/n

, and so (α, β) ∈ Xs,t splits into R smooth points

(α1, β1), (α2, β2), . . . , (αR, βR) ∈ Xs′,t,

where βi :=
(

ln − m
m tτ(αi)

)1/n

.
On the other hand, as we showed in Proposition 21.6.3, (α, β) ∈ Xs,t is an

Ar−1-singularity. Under a generic deformation, an Ar−1-singularity splits into
r smooth points (see Remark 21.6.6 below). Hence we conclude that r = R.�
Remark 21.6.6 Let V : y2 = xr be an Ar−1-singularity. Then the versal
deformation family of V is given by y2 = xr + ar−1x

r−1 + ar−2x
r−2 + · · · +

a0, parameterized by (ar−1, ar−2, . . . , a0) ∈ C
r. See [AGV], p80. For generic

(ar−1, ar−2, . . . , a0), the right hand side of the above equation has no multiple
roots. Geometrically, this means that under a generic deformation, the Ar−1-
singularity V splits into r smooth points.
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Let Xs,t : Fs,t(z, ζ) = 0 be a barking family, where

Fs,t(z, ζ) := σ(z)ζm−ln
(
ζn + tτ(z)

)l − s.

For a singularity (α, β) ∈ Xs,t, we consider a local equation fs,t(z, ζ) = 0 of
Xs,t around (α, β); then we have a local factorization

Fs,t(z, ζ) = fs,t(z, ζ) gs,t(z, ζ) for (z, ζ) near (α, β),

where gs,t(α, β) �= 0. We denote by Δs,t(z) (resp. ds,t) the discriminant of
Fs,t(z, ζ) (resp. fs,t(z, ζ)) viewed as a polynomial in ζ. Then the order of
z = α in Δs,t(z) is generally different from the order of z = α in ds,t(z); see
Lemma 21.6.9 below. Moreover, this fact with Lemma 21.6.5 implies that the
order of z = α in Δs,t(z) is generally different from the order of z = α in the
discriminant function Ds,t(z).

Now we return to the discussion on the singularities of a subordinate fiber.

Theorem 21.6.7 Let (α, β) be a singularity of a subordinate fiber Xs,t (s, t �=
0), and let Ds,t(z) = σ(z)n′

τ(z)m′ −λs,t be the discriminant function (21.1.2)
on C. Then

(1) Ds,t(α) = 0 and βn = ln − m
m tτ(α).

(2) Denote by r the order of α in Ds,t(z) (equivalently, the order of α in K(z)
is r − 1; see Lemma 21.6.4). Then r ≥ 2, and (α, β) ∈ Xs,t is an Ar−1-
singularity. (Note: If r = 1, then (α, β) ∈ Xs,t is a smooth ramification
point of the branched covering pr : Xs,t → C, (z, ζ) �→ z.)

Proof. We previously showed (1) in Corollary 21.1.7, p389. The assertion (2)
follows from Proposition 21.6.3 with Lemma 21.6.5. �

We give an important consequence.

Theorem 21.6.8 Suppose that Xs,t (s, t �= 0) is a subordinate fiber. Let
α1, α2, . . . , αμ be the zeros of Ds,t(z), and denote by ri the order of αi. Then
the following holds.

(1) Set m′ := m/gcd(m,n) and n′ := n/gcd(m,n), and then

r1 + r2 + · · · + rμ = −
∑

j∈J−

(n′mj − m′nj),

where J− is the set of indices j such that n′mj − m′nj < 0.
(2) For αi, if ri ≥ 2, then Xs,t has d singularities with the z-coordinate αi

where d := gcd(m,n), and they are Ari−1-singularities. If ri = 1, then Xs,t

has d smooth points with the z-coordinate αi, and they are ramification
points of pr : Xs,t → C.

(3) The number of the singularities of Xs,t are dκ, where κ is the number
of the zeros of order ≥ 2 of Ds,t(z). Specifically, the singularities of Xs,t

consists of d-tuples of Ari−1-singularities for i such that ri ≥ 2.
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Proof. Recall that σ(z) has a zero of order mj at pj , and τ(z) has a pole
of order nj at pj . Thus the function σ(z)n′

τ(z)m′
is locally of the form

zn′mj−m′nj hj(z) around pj , where hj(z) is a non-vanishing holomorphic func-
tion. So Ds,t(z) = σ(z)n′

τ(z)m′ − λs,t is locally

zn′mj−m′nj hj(z) − λs,t around pj .

In particular, Ds,t(z) has a pole of order −(n′mj −m′nj) at each pj such that
n′mj − mnj < 0. Therefore we have(

the sum of the orders of the poles of Ds,t(z)
)

= −
∑

j∈J−

(n′mj − m′nj).

Since Ds,t(z) is a meromorphic function on C, the left hand side is equal to
the sum of the orders of the zeros of Ds,t(z). Thus(

the sum of the orders of the zeros of Ds,t(z)
)

= −
∑

j∈J−

(n′mj − m′nj).

This proves (1). Next we show (2). If ri ≥ 2, then by Proposition 21.4.1,
p401, Xs,t has d singularities with the z-coordinate αi, where d = gcd(m,n):
By Theorem 21.6.7, they are Ari−1-singularities. On the other hand, if ri =
1, then by Proposition 21.1.12, p392, Xs,t has d smooth points with the z-
coordinate αi, and they are ramification points of pr : Xs,t → C. This verifies
(2). The assertion (3) is apparent from (2). �

To clarify the discussion up to this point in this chapter, we briefly summa-
rize the essential roles of the plot function K(z) and the discriminant function
Ds,t(z). Firstly, by Theorem 21.2.3, p395,

(z, ζ) = (α, β) is a singularity of “some” subordinate fiber in πt : Mt → Δ
if and only if K(α) = 0 and βn = ln − m

m tτ(α).

Fix s �= 0, and set sj := e2πijm′/n′
s for each j = 1, 2, . . . , n′. Then a disjoint

union of n′ fibers

T = Xs1,t � Xs2,t � · · · � Xsn′ ,t

is called a tassel. By Theorem 21.1.11, p391,

(z, ζ) = (α, β) is a ramification point of pr : T → C, (z, ζ) �→ z if and only
if Ds,t(α) = 0 and βn = ln − m

m tτ(α).

Moreover, if this is the case, the following statement holds:

Let r be the order of α in Ds,t(z) (equivalently, the order of α in K(z)
is r − 1; see Lemma 21.6.4). Then if r ≥ 2, the point (α, β) is an Ar−1-
singularity of the tassel T , whereas if r = 1, then (α, β) is a smooth point
of T . See Theorem 21.6.8.
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Supplement: Relationship between discriminants

Consider two polynomials in ζ whose coefficients ai(z) and bj(z) are holomor-
phic functions in z:

f(z, ζ) = ζm + am−1(z)ζm−1 + · · · + a0(z),
g(z, ζ) = ζn + bn−1(z)ζn−1 + · · · + b0(z).

We denote by Δf (z) (resp. Δg(z)) the discriminant of f (resp. g) viewed
as a polynomial in ζ. Also, Δfg(z) denotes the discriminant of the product
fg viewed as a polynomial in ζ. Let α1(z), α2(z), . . . , αm(z) be the roots of
f as a polynomial in ζ, and let β1(z), β2(z), . . . , βn(z) be the roots of g as a
polynomial in ζ. By definition,

Δfg(z) =
∏
i<j

(
αi(z) − αj(z)

)2 ·
∏
k<l

(
βk(z) − βl(z)

)2 ·
∏
i, k

(
αi(z) − βk(z)

)2
.

Since Δf (z) =
∏

i<j

(
αi(z) − αj(z)

)2 and Δg(z) =
∏

k<l

(
βk(z) − βl(z)

)2, we
may write

Δfg(z) = Δf (z)Δg(z)E(z),

where E(z) :=
∏

i,k

(
αi(z)− βk(z)

)2. We claim that E(z) is holomorphic in z
(note: in general, αi = αi(z) and βk = βk(z) are not holomorphic). To see this,
we note that from g(z, ζ) =

∏n
k=1(ζ −βk), we have g(z, αi) =

∏n
k=1(αi −βk),

and hence
E(z) = g(z, α1)2g(z, α2)2 · · · g(z, αm)2. (21.6.3)

Clearly the right hand side is a symmetric polynomial in α1, α2, . . . , αn. Since
any symmetric polynomial is expressible in terms of elementary symmetric
polynomials, from the relationship between the roots and the coefficients of
the polynomial f , it follows that E(z) is expressible in terms of the coefficients
a0(z), a1(z), . . . , am−1(z) of f . Thus E(z) is holomorphic in z, and our claim
is confirmed.

Now we consider the case where f is such that f(0, ζ) = ζm. Then ζ = 0
is a multiple root of f(0, ζ), so that z = 0 is a root of the discriminant Δf (z).
Moreover, the following result holds.

Lemma 21.6.9 Consider two polynomials:

f(z, ζ) = ζm + am−1(z)ζm−1 + · · · + a0(z),
g(z, ζ) = ζn + bn−1(z)ζn−1 + · · · + b0(z)

such that f(0, ζ) = ζm and g(0, 0) �= 0. Denote by rf (resp. rg and rfg) the
multiplicity of a factor z in Δf (z) (resp. Δg(z) and Δfg(z)). Then rf + rg =
rfg holds. (Hence rf ≤ rfg, and the equality holds if and only if rg = 0, that
is, g(0, ζ) has no multiple roots.)

Proof. Let α1(z), α2(z), . . . , αm(z) be the roots of f(z, ζ) as a polynomial in
ζ. By the assumption f(0, ζ) = ζm, we have αi(0) = 0 for i = 1, 2, . . . ,m. On
the other hand, letting β1(z), β2(z), . . . , βn(z) be the roots of the polynomial
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g(z, ζ) in ζ, then by the assumption g(0, 0) �= 0, we have βi(0) �= 0 for i =
1, 2, . . . , n. Setting z = 0 in E(z) (21.6.3), we obtain

E(0) =
∏
i,k

(
αi(0) − βk(0)

)2 =
∏
i,k

(−βk(0)
)2 �= 0.

Next we write Δf = zrf hf (z) and Δg = zrghg(z), where hf (0) �= 0 and
hg(0) �= 0. Then the equation Δfg(z) = Δf (z)Δg(z)E(z) is written as

Δfg(z) = zrf+rg hf (z)hg(z)E(z).

Since hf (0) �= 0, hg(0) �= 0, and E(0) �= 0, we have hf (0)hg(0)E(0) �= 0. Thus
rf + rg equals the multiplicity rfg of the factor z in Δfg(z); so rf + rg = rfg.
�

21.7 Seesaw phenomenon

We consider a barking family Xs,t : σ(z)ζm−ln
(
ζn + tτ(z)

)l − s = 0. We set

ω := d log(σnτm)
dz

. In Proposition 21.3.6, p400, we showed: In πt : Mt → Δ,(
the number of the singularities of all subordinate fibers

)
(21.7.1)

≤ n
(
h − v + k + (2g − 2) −

∑
j∈J0

ordpj
(ω)

)
,

where J0 is the set of indices j such that nmj − mnj = 0. The equality holds
precisely when all zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0 have
order 1.

We shall compute
∑

j∈J0
ordpj

(ω) explicitly. First of all, we locally write

σ(z) = (z − pj)mj gj(z) and τ(z) =
1

(z − pj)nj
hj(z) around pj ,

where gj(z) and hj(z) are non-vanishing holomorphic functions. Taking a new
coordinate ζ ′ = gj(z)1/mζ, and setting fj(z) := gj(z)n/mhj(z), we may simply
write

σ(z) = (z − pj)mj and τ(z) =
1

(z − pj)nj
fj(z) around pj .

(This rewriting is the same as that in (16.1.2), p280.) Then locally

ω =
d log

(
σnτm

)
dz

=
d log

(
(z − pj)nmj−mnj fj(z)m

)
dz

=
nmj − mnj

z − pj
+ m

f ′
j(z)

fj(z)
around pj .
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Now we assume that j ∈ J0 (so, nmj − mnj = 0 holds). Then we have

ω = m
f ′

j(z)
fj(z) around pj . For brevity, we take such a coordinate as pj is the

origin, and we expand fj(z) around pj :

fj(z) = c0 + c1z + c2z
2 + · · · , (c0 �= 0).

Let e be the smallest “positive” integer such that ce �= 0; so

fj(z) = c0 + cez
e + ce+1z

e+1 + · · · . (21.7.2)

Then

m
f ′

j(z)
fj(z)

= m
ceez

e−1 + ce+1(e + 1)ze + · · ·
c0 + cez

e + ce+1z
e+1 + · · ·

= mze−1 cee + ce+1(e + 1)z + · · ·
c0 + cez

e + ce+1z
e+1 + · · · ,

and hence m
f ′

j(z)
fj(z) has a zero of order e − 1 at pj . (As e depends on j, we

hereafter write ej .) Since ω = m
f ′

j(z)
fj(z) , we obtain ordpj

(ω) = ej −1. Therefore

(21.7.1) is7(
the number of the singularities of all subordinate fibers

)
≤ n

(
h − v + k + (2g − 2) −

∑
j∈J0

(
ej − 1

))
, (21.7.3)

where ej is the smallest positive integer such that cej
�= 0 in the expansion

of fj(z) (see (21.7.2)). Observe that as ej becomes larger, the number of the
singularities near the core decreases. (Note: “Barking family” in this chapter
is the restriction of a global barking family to a neighborhood of a core, and
so (21.7.3) is actually an inequality concerning the number of the
singularities near the core.)

Let us turn to the global situation; that is, π : M → Δ is a degeneration
of “compact” complex curves. For simplicity, we assume that its singular fiber
X := π−1(0) is stellar. We write X = m0C +

∑h
j=1 Br(j), where C is the

core and Br(j) = m
(j)
1 Θ(j)

1 + m
(j)
2 Θ(j)

2 + · · · + m
(j)
λj

Θ(j)
λj

is a branch. Now let

Y = n0C +
∑h

j=1 br(j) be a simple crust of barking multiplicity l of X, where

br(j) = n
(j)
1 Θ(j)

1 + n
(j)
2 Θ(j)

2 + · · · + n
(j)
aj Θ(j)

aj is a subbranch — in the notation

7 The right hand side below is also written as n
(
h + k + (2g − 2) − ∑

j∈J0

ej

)
.
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used in this chapter, m = m0, n = n0, mj = m
(j)
1 , and nj = n

(j)
1 . Let

Ψ : M → Δ × Δ† be a barking family associated with Y . Setting

u := h − v + k + (2g − 2) −
∑
j∈J0

(
ej − 1

)
,

we say that u is the core invariant — it is a nonnegative integer (see the
equation in Lemma 21.3.5, p397) — of the barking family Ψ : M → Δ × Δ†.
As we noted above, (21.7.3) is actually an inequality concerning the number
of the singularities near the core. Namely,(
the number of the singularities near the core C of all subordinate fibers

) ≤ nu.

(21.7.4)

In particular, if u = 0, then any subordinate fiber has no singularities near
the core C.

Now we recall that a singularity of a subordinate fiber is either (1) near
the core or (2) near the edge of such a branch Br(j) as contains a proportional
subbranch of the simple crust Y . We review case (2). First, we note that j ∈ J0

(that is, n0m
(j)
1 − m0n

(j)
1 = 0 holds) precisely when br(j) is a proportional

subbranch. Assuming that Y has at least one proportional subbranch, we
concentrate our attention on one proportional subbranch, say br(j); note that
the length aj of the proportional subbranch br(j) equals the length λj of
the branch Br(j). By Proposition 7.3.5, p133, each subordinate fiber has n

(j)
λj

Aejuj−1-singularities near the edge of Br(j). Here the positive integer uj is
defined as follows: First, define a sequence of nonnegative integers bλj+1 >
bλj

> · · · > b1 > b0 = 0 inductively via⎧⎨⎩ b0 = 0, b1 = 1 and

bi+1 = ribi − bi−1 for i = 1, 2, . . . , λj ,

where ri := −Θi · Θi, that is, −ri is the self-intersection number of an irre-
ducible component Θi of the branch Br(j). We then set uj := bλj+1.

From the above discussion, we see that the singularities of a subordinate
fiber have the following property: Let br(j) be a proportional subbranch. Then
as ej becomes larger, the number of the singularities near the core decreases8;
whereas each Aejuj−1-singularity near the edge of the branch Br(j) becomes
complicated. This phenomenon is called the seesaw phenomenon.

We shall consider a special case where the singular fiber X has three
branches, and the core C is the projective line P

1; so h = 3 and g = 0.
Suppose that Y is a simple crust (of barking multiplicity l) of X such that Y
has at least one proportional subbranch (i.e. v ≥ 1), and the core section τ

8 Also note that as ej becomes larger, the function fj(z) (21.7.2) approaches a
constant function F (z) = c0.
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has no zeros (i.e. k = 0). Then (21.7.4) reads(
the number of the singularities near C of all subordinate fibers

)
≤ n

(
1 − v −

∑
j∈J0

(
ej − 1

))
. (21.7.5)

Since 1 − v − ∑
j∈J0

(ej − 1) ≥ 0 (see the equation in Lemma 21.3.5, p397),
we have v = 1 and ej = 1; thus the simple crust Y has only one proportional
subbranch, say br(j0). In this case, the right hand side of the inequality (21.7.5)
is 0, and so any subordinate fiber has no singularities near the core C. On
the other hand, (noting that ej0 = 1) each subordinate fiber has n

(j0)
λj0

Auj0−1-

singularities near the edge of the branch Br(j0).

Remark 21.7.1 If furthermore the length λj0 of the branch Br(j0) is 1, and
r1 = 2, then uj0 = 2, so that each subordinate fiber has n

(j0)
λj0

A1-singularities

(nodes) near the edge of the branch Br(j0).

The next result immediately follows from the above discussion.

Proposition 21.7.2 Let π : M → Δ be a degeneration with a stellar singular
fiber X such that X has three branches, and the core C is the projective line
P

1. Suppose that Y is a simple crust (of barking multiplicity l) of X such that
Y has at least one proportional subbranch and the core section τ has no zeros.
Let Ψ : M → Δ × Δ† be a barking family associated with the simple crust Y .
Then the following holds:

(1) Y has only one proportional subbranch (say, br(j0)).
(2) Each subordinate fiber has no singularities near the core C, but has n

(j0)
λj0

Auj0−1-singularities near the edge of the branch Br(j0).

(3) Set m := m
(j0)
λj0

and n := n
(j0)
λj0

, and write m
n = m′

n′ , where m′ and n′

are relatively prime positive integers. Then πt : M → Δ (t �= 0) has n′

subordinate fibers. (Note: If n divides m, then n′ = 1, and πt : Mt → Δ
has only one subordinate fiber; that is, X splits into two singular fibers,
one main fiber and one subordinate fiber.)

Proof. We already showed (1) and (2) in the above discussion. We show (3).
Fixing t �= 0, we set

s =
(

ln

ln − m

)l (
ln − m

m
tc0

)m′/n′

,

where c0 := fj0(0) (see (21.7.2)) and we fix an n′-th root of
(

ln − m
m tc0

)m′

.
Then by Lemma 7.3.4, p133, the subordinate fibers in πt : Mt → Δ are

Xs1, t, Xs2, t, . . . , Xsn′ , t,
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where sk = e2πik/n′
s, (k = 1, 2, . . . , n′). Hence, πt : Mt → Δ has n′ subordi-

nate fibers. �
Example 21.7.3 Consider a stellar singular fiber of genus 1 with three
branches:

X = 6C + Br(1) + Br(2) + Br(3),

where Br(1) = 3Θ(1)
1 , Br(2) = 4Θ(2)

1 + 2Θ(2)
2 , and Br(3) = 5Θ(3)

1 + 4Θ(3)
2 +

3Θ(3)
3 +2Θ(3)

4 +Θ(3)
5 are branches. (Note: X is II∗ in Kodaira’s notation.) We

take a simple crust (of barking multiplicity 1) of X:

Y = 2C + br(1) + br(2) + br(3),

where br(1) = Θ(1)
1 , br(2) = Θ(2)

1 , and br(3) = 2Θ(3)
1 + 2Θ(3)

2 + 2Θ(3)
3 + 2Θ(3)

4

are subbranches: br(1) and br(2) are of type A1, and br(3) is of type C1. Note
that Y has only one proportional subbranch br(1). Also, note that the core
section τ has no zeros. Indeed, let N be the normal bundle of the core C in
M , and then τ is a meromorphic section of N⊗2 with poles of order 1, 1, and
2 respectively at points p1, p2, and p3, where pj := C ∩ Br(j). Since the line
bundle N⊗2 has degree −4 (and −4 = (−1) + (−1) + (−2)), the core section
τ has no zeros.

21.8 Supplement: The case m = ln

We consider a barking family around the core C:

Xs,t : σ(z)ζm−ln
(
ζn + tτ(z)

)l − s = 0,

where

(i) σ is a holomorphic section of the line bundle N⊗(−m) on the complex
curve (the core) C with a zero of order mj at pj (j = 1, 2, . . . , h), and

(ii) τ is a meromorphic section of the line bundle N⊗n on C with a pole of
order nj at pj (j = 1, 2, . . . , h) and with a zero of order ai at qi (i =
1, 2, . . . , k).

So far in this chapter, we have described the singularities of subordinate fibers
for the case m > ln. In this section, we give several results on subordinate
fibers for the case m = ln, and compare these with those for the case m > ln.
We first note

Lemma 21.8.1 m = ln if and only if mj = lnj for all j = 1, 2, . . . , h. Further
if this is the case, then X = lY , and τ has no zeros.

Proof. As we saw in Lemma 3.4.1, p52, n1+n2+· · ·+nh
n ≥ m1+m2+· · ·+mh

m ,
and thus

ln1 + ln2 + · · · + lnh

ln
≥ m1 + m2 + · · · + mh

m
. (21.8.1)
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Since m = ln, we have ln1 + ln2 + · · · + lnh ≥ m1 + m2 + · · · + mh. However
since mj ≥ lnj (j = 1, 2, . . . , h), the above inequality is actually an equality,
and consequently the equalities mj = lnj (j = 1, 2, . . . , h) hold. Again by
Lemma 3.4.1, the equality of (21.8.1) implies that τ has no zeros. Finally, the
assertion X = lY easily follows from m = ln and mj = lnj (j = 1, 2, . . . , h).�

We also note

Lemma 21.8.2 Let (α, β) be a point of Xs,t : σ(z)ζm−ln
(
ζn+tτ(z)

)l−s = 0.

(1) Suppose that m > ln. Then s �= 0 if and only if σ(α) �= 0, β �= 0, and
βn + tτ(α) �= 0.

(2) Suppose that m = ln. Then s �= 0 if and only if σ(α) �= 0 and βn+tτ(α) �=
0.

Proof. This follows immediately from σ(α)βm−ln
(
βn + tτ(α)

)l − s = 0. �
Now we discuss the singularities of a subordinate fiber Xs,t (s, t �= 0) from

the viewpoint of the plot function K(z) = nσzτ + mστz.

(1) Case m > ln: Remember that by Lemma 21.2.1, (α, β) ∈ Xs,t (s, t �= 0) is
a singularity if and only if α and β satisfy

(a) K(α) = 0, σ(α) �= 0, τ(α) �= 0 and (b) βn = ln − m
m tτ(α).

If K(z) is not identically zero, there are at most a finite number of α sat-
isfying K(α) = 0 (see Lemma 21.3.1). For each α, there are n solutions β

satisfying βn = ln − m
m tτ(α). Hence Xs,t has a finite number of singularities;

in particular, Xs,t has only isolated singularities. On the other hand, if K(z)
is identically zero, the condition for (α, β) being a singularity is simply given
by σ(α) �= 0, τ(α) �= 0, and βn = ln − m

m tτ(α). For each α satisfying σ(α) �= 0
and τ(α) �= 0 (such α form a one-dimensional set), there are n solutions β

satisfying βn = ln − m
m tτ(α). Thus the singular locus is one-dimensional, so

that (α, β) is a non-isolated singularity and Xs,t (s, t �= 0) is non-reduced.

(2) Case m = ln: The same statement as Lemma 21.2.1 holds. But in this
case, the condition (b): βn = ln − m

m tτ(α) is simply given by βn = 0 (so
β = 0). Thus a point (α, β) ∈ Xs,t (s, t �= 0) is a singularity if and only if α
and β satisfy (a) K(α) = 0, σ(α) �= 0, τ(α) �= 0, and (b) β = 0. Therefore, if
K(z) is not identically zero, then Xs,t has only isolated singularities, whereas
if K(z) is identically zero, then any singularity of Xs,t is non-isolated.

We summarize the above discussion.

Proposition 21.8.3 (1) Suppose that m > ln. Then (α, β) ∈ Xs,t (s, t �= 0)
is a singularity if and only if K(α) = 0, σ(α) �= 0, τ(α) �= 0, and βn =
ln − m

m tτ(α), where K(z) = nσzτ + mστz. Furthermore, if K(z) is not
identically zero, then Xs,t has only isolated singularities. Otherwise, any
singularity of Xs,t is non-isolated; so Xs,t is non-reduced.
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(2) Suppose that m = ln. Then (α, β) ∈ Xs,t (s, t �= 0) is a singularity if and
only if K(α) = 0, σ(α) �= 0, τ(α) �= 0, and β = 0. Furthermore, if K(z) is
not identically zero, then Xs,t has only isolated singularities. Otherwise,
any singularity of Xs,t is non-isolated; so Xs,t is non-reduced.

Finally we inspect when K(z) = nσzτ + mστz is identically zero. Note that

nσzτ + mστz = 0 ⇐⇒ n
σz

σ
+ m

τz

τ
= 0 ⇐⇒ d log(σnτm)

dz
= 0

⇐⇒ log(σnτm) is constant.

Thus σnτm is constant, and clearly nonzero. We also note that σnτm is locally
of the form (zmj )n

(
1

znj

)m

hj(z), that is, znmj−mnj hj(z) around pj where
hj(z) is a non-vanishing holomorphic function. Since σnτm is constant, its
local expression znmj−mnj hj(z) is also constant, and so we have nmj −mnj =
0, that is mj

nj
= m

n (j = 1, 2, . . . , h). Now let a and b be the relatively prime

positive integers satisfying b
a = m

n

(
= mj

nj

)
, and then am = bn and amj =

bnj (j = 1, 2, . . . , h). Thus aX = bY , and we obtain the following.

Lemma 21.8.4 If K(z) = nσzτ + mστz is identically zero, then aX = bY
holds, where a and b are the relatively prime positive integers satisfying am =
bn.
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Arrangement Functions and Singularities, I

We retain the notation of the previous chapter. Let l,m, n,mj be positive
integers (j = 1, 2, . . . , h), and let nj (j = 1, 2, . . . , h) be a nonnegative integer
such that m > ln and mj ≥ lnj . Then we consider a barking family (restricted
to a neighborhood of a core C), that is, Xs,t : σ(z)ζm−ln

(
ζn +tτ(z)

)l−s = 0,
where

(i) σ is a holomorphic section of a line bundle N⊗(−m) on the complex curve
(the core) C with a zero of order mj at pj (j = 1, 2, . . . , h), and

(ii) τ is a meromorphic section of a line bundle N⊗n on C with a pole of order
nj at pj (j = 1, 2, . . . , h) and with a zero of order ai at qi (i = 1, 2, . . . , k).

In this and next chapter, we introduce the “arrangement function” J(z) de-
fined on the complex curve (the core) C. Roughly speaking, J(z) is obtained
from the plot function K(z) = nσzτ + mστz by deleting such zeros as are
unnecessary from the viewpoint of the description of the singularities of sub-
ordinate fibers. In a sense, J(z) is the most concise function whose zeros have
enough information to describe the singularities (near the core C) of subordi-
nate fibers.

In this chapter we introduce the arrangement function J(z) for the case
C = P

1 (the projective line), and in §23.2 of the next chapter for genus (C) =
1, and in §23.4 for genus (C) ≥ 2. When C = P

1, the arrangement function
is that which was originally introduced by Awata [Aw] (see also [AhAw]),
although we define it here in a slightly different way. The arrangement function
J(z) for genus (C) ≥ 1 is a certain polynomial expressed in terms of the
(Riemann) theta function — when C = P

1, instead of the theta function,
we simply take a polynomial of the form z − a. As such, when genus (C) ≥
1, it is generally hard to compute the zeros of J(z) explicitly. However we
demonstrate that J(z) is a holomorphic section of some line bundle L on C
(Lemma 23.4.2, p458). Consequently we may determine the sum of the orders
of the zeros of J(z), as it is equal to the degree of L. Using this result, we
reprove some important results obtained in the previous chapter, such as the
sharp upper bound for the number of the singularities of a subordinate fiber.



422 22 Arrangement Functions and Singularities, I

22.1 Arrangement polynomials

For the remainder of this chapter, we suppose that C = P
1 (the projective

line). Take the standard open covering P
1 = U ∪ V by two complex lines U

and V , where z ∈ U is identified with w ∈ V via z = 1/w, and let N be a line
bundle on P

1 obtained by patching (z, ζ) ∈ U × C with (w, η) ∈ V × C via
z = 1/w and ζ = wrη, where

r :=
m1 + m2 + · · · + mh

m
.

In what follows, we assume that h ≥ 3. This is the case we often encounter;
note that if the core of a stellar singular fiber X (of a degeneration of compact
complex curves) is the projective line P

1, then X has at least three branches.
For brevity, we take ph = ∞, and then take σ (a holomorphic section of

N⊗(−m)) and τ (a meromorphic section of N⊗n) as follows:

σ =

⎧⎨⎩ (z − p1)m1(z − p2)m2 · · · (z − ph−1)mh−1 on U

(1 − p1w)m1(1 − p2w)m2 · · · (1 − ph−1w)mh−1wmh on V ,

and

τ =

⎧⎪⎪⎨⎪⎪⎩
(z − q1)a1(z − q2)a2 · · · (z − qk)ak

(z − p1)n1(z − p2)n2 · · · (z − ph−1)nh−1 on U

(1 − q1w)a1(1 − q2w)a2 · · · (1 − qkw)ak

(1 − p1w)n1(1 − p2w)n2 · · · (1 − ph−1w)nh−1wnh
on V .

Hereafter we carry out the computation only on U , as that on V is the same.

Remark 22.1.1 We may choose p1, p2, . . . , ph such that none of them is ∞.
Unfortunately, such a choice may result in the appearance of a singularity
(α, β) ∈ Xs,t with α = ∞. However, by taking ph = ∞, we may insure
this does not occur; as we showed in Lemma 21.2.1, α, the z-coordinate of a
singularity, is not equal to pj (j = 1, 2, . . . , h).

Modifying the plot function K(z) = d log(σnτm)
dz

, we shall introduce an
arrangement polynomial. We first note

log(σnτm) = log

⎡⎣ h−1∏
j=1

(z − pj)nmj−mnj ·
k∏

i=1

(z − qi)mai

⎤⎦
=

h−1∑
j=1

(nmj − mnj) log(z − pj) +
k∑

i=1

mai log(z − qi). (22.1.1)

(The reader may wonder about which branch of log we choose, however
this is immaterial since we are only interested in the logarithmic derivative
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d log(f)
dz

= f ′
f

.) Then

d log(σnτm)
dz

=
h−1∑
j=1

nmj − mnj

z − pj
+

k∑
i=1

mai

z − qi
. (22.1.2)

At first we assume that nmj−mnj �= 0 for all j = 1, 2, . . . , h, and we introduce
an arrangement polynomial. We set P (z) := (z−p1)(z−p2) · · · (z−ph−1) and

Pj(z) :=
P (z)
z − pj

= (z − p1)(z − p2) · · · (z − pj−1)(z − pj+1) · · · (z − ph−1).

Likewise, we set Q(z) := (z − q1)(z − q2) · · · (z − qk) and

Qi(z) :=
Q(z)
z − qi

= (z − q1)(z − q2) · · · (z − qi−1)(z − qi+1) · · · (z − qk).

We then define an arrangement polynomial J(z) by

J(z) := PQ
d log(σnτm)

dz
(22.1.3)

= Q
h−1∑
j=1

(nmj − mnj)Pj + P
k∑

i=1

maiQi.

Remark 22.1.2 Since arbitrary three points on P
1 are transformed to 0, 1,∞

by some automorphism of P
1, it is convenient for the practical computation

of J(z) to choose ph−2 = 0, ph−1 = 1, and ph = ∞. However, in our later
discussion, we vary the points p1, p2, . . . , ph−1 so that J(z) has only one root.
For this reason, we do not fix three points in the present context.

We next define J(z), when nmj −mnj = 0 for some j, say, nmj −mnj = 0
for j = h − v, h − v + 1, . . . , h − 1. In this case we note (cf. (22.1.1))

log(σnτm) =
h−v−1∑

j=1

(nmj − mnj) log(z − pj) +
k∑

i=1

mai log(z − qi).

Accordingly instead of P (z) and Pj(z), we consider polynomials

P̂ (z) := (z − p1)(z − p2) · · · (z − ph−v−1),

P̂j(z) := (z − p1)(z − p2) · · · (z − pj−1)(z − pj+1) · · · (z − ph−v−1).

Then we define an arrangement polynomial by

J(z) := P̂ (z)Q(z)
d log(σnτm)

dz
(22.1.4)

= Q

h−1−v∑
j=1

(nmj − mnj)P̂j + P̂

k∑
i=1

maiQi.

Note that if nmj − mnj �= 0 for all j = 1, 2, . . . , h, then J(z) coincides with
that in (22.1.3).
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Next we need

Lemma 22.1.3 Let K(z) = nσzτ + mστz be the plot function. Then for a
complex number α, the following equivalence holds:

K(α) = 0, σ(α) �= 0, and τ(α) �= 0 ⇐⇒ J(α) = 0 and α �= pj

(j ∈ J0),

where J0 is the set of indices j such that nmj − mnj = 0. Moreover, the
multiplicity of α in K(z) is equal to that of α in J(z).

(Note that “σ(α) �= 0 and τ(α) �= 0” is equivalent to “α is none of p1, p2, . . . , ph

and q1, q2, . . . , qk”.)

Proof. We first prove this for the case where nmj − mnj �= 0 for all j. It
suffices to show the following equivalence:

K(α) = 0 and α �= p1, p2, . . . , ph, q1, q2, . . . , qk ⇐⇒ J(α) = 0.

From the expressions:

J(z) = P (z)Q(z)
d log(σnτm)

dz
=

h∏
j=1

(z − pj)
k∏

i=1

(z − qi)
d log(σnτm)

dz

K(z) = στ
d log(σnτm)

dz
=

h∏
j=1

(z − pj)mj−nj

k∏
i=1

(z − qi)mai
d log(σnτm)

dz
,

we derive an equation

K(z) =
h∏

j=1

(z − pj)mj−nj−1
k∏

i=1

(z − qi)mai−1 · J(z).

Thus the roots of K(z) (excluding p1, p2, . . . , ph, q1, q2, . . . , qk) are in one to
one correspondence with the zeros of J(z), and moreover the corresponding
roots have the same multiplicity.

For the general case, the proof is almost the same as above. The only
difference is that J(z) may have a zero at pj0 for j0 ∈ J0, because the right
hand side of

J(pj0) = Q(pj0)

(
h−v∑
j=1

(nmj − mnj)P̂j(pj0)

)
+ P̂ (pj0)

(
k∑

i=1

maiQi(pj0)
)

is possibly zero. We leave the details to the reader. �
Now we recall Lemma 21.2.1, p393: A point (α, β) ∈ Xs,t (s, t �= 0) is a

singularity if and only if α and β satisfy

(a) K(α) = 0, σ(α) �= 0, τ(α) �= 0 and (b) βn = ln − m
m tτ(α),
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where K(z) = nσzτ + mστz is the plot function on C. In terms of the equiv-
alence of Lemma 22.1.3, we may restate this as

Proposition 22.1.4 A point (α, β) ∈ Xs,t (s, t �= 0) is a singularity if and
only if α and β satisfy

(a) J(α) = 0, α �= pj (j ∈ J0) and (b) βn = ln − m
m tτ(α),

where J0 is the set of indices j such that nmj − mnj = 0.

Next we note

Lemma 22.1.5 Let v be the number of indices j such that nmj − mnj = 0.
Then the degree of the arrangement polynomial J(z) is h − v + k − 2.

Proof. Without loss of generality, we may assume that nmj − mnj = 0 for
j = h − v, h − v + 1, . . . , h − 1. We set

cj =

{
nmj − mnj , j = 1, 2, . . . , h − v − 1,

maj−h+v+1, j = h − v, h − v + 1, . . . , h − v + k − 1,
(22.1.5)

and then the coefficient of the highest degree term zh−v+k−2 in J(z) is c1 +
c2 + · · · + ch−v+k−1, which, we have to verify, is nonzero. Letting ai be the
order of the zero of τ at qi, then as we saw in (3.4.2), p52,

m1 + m2 + · · · + mh

m
=

n1 + n2 + · · · + nh − (a1 + a2 + · · · + ak)
n

,

and so
h∑

j=1

(nmj − mnj) +
k∑

i=1

mai = 0.

Using (22.1.5), we obtain

c1+c2+· · ·+ch−v+k−1 =
h−v−1∑

j=1

(nmj−mnj)+
k∑

i=1

mai = mnh−nmh. (22.1.6)

Recall that we assumed that nmj−mnj = 0 for j = h−v, h−v+1, . . . , h−1.
In particular, nmh − nhm �= 0 and therefore (22.1.6) assures that c1 + c2 +
· · ·+ ch−v+k−1 �= 0. This confirms that the coefficient of zh−v+k−2 is nonzero.
�

Since the degree of J(z) is h− v +k−2, the sum of the orders of the zeros
of J(z) is equal to h − v + k − 2. In particular,(

the sum of the orders of zeros α of J(z) such that α �= pj (j ∈ J0)
)

=
(

h − v + k − 2 −
∑
j∈J0

ordpj

(
J(z)

))
,



426 22 Arrangement Functions and Singularities, I

where J0 is the set of indices j such that nmj − mnj = 0, and ordpj

(
J(z)

)
denotes the order of the zero of J(z) at pj (j ∈ J0). Now setting ω :=
d log

(
σnτm

)
(a meromorphic 1-form on C), we write J(z) = P̂ (z)Q(z)ω.

Note that the polynomial P̂ (z)Q(z) does not vanish at pj (j ∈ J0), and thus
ordpj

(
J(z)

)
= ordpj

(ω) holds. Hence the above equation is rewritten as(
the sum of the orders of zeros α of J(z) such that α �= pj (j ∈ J0)

)
=

(
h − v + k − 2 −

∑
j∈J0

ordpj
(ω)

)
.

By the equivalence in Lemma 22.1.3, we may rewrite this as(
the sum of the orders of zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0

)
=

(
h − v + k − 2 −

∑
j∈J0

ordpj
(ω)

)
.

Therefore we derive(
the number of zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0

)
≤

(
h − v + k − 2 −

∑
j∈J0

ordpj
(ω)

)
.

Once we obtain this inequality, it is straightforward to recover the inequalities
in Proposition 21.3.6, p400 and Corollary 21.4.4, p403 (concerning the number
of the subordinate fibers in πt : Mt → Δ and the number of the singularities
of a subordinate fiber).

Finally, we remark that the number of the roots of the arrangement poly-
nomial

J(z) = J(z, p1, p2, . . . , ph−v−1, q1, q2, . . . , qk)

varies as p1, p2, . . . , ph−v−1 and q1, q2, . . . , qk vary (here we ignore the multi-
plicity of a root). Accordingly the number of the singularities of a singular
fiber Xs,t (s, t �= 0) varies. We say that p1, p2, . . . , ph−v−1 and q1, q2, . . . , qk

are in J-generic position if the discriminant of the arrangement polynomial
J(z) is nonzero:

D(p1, p2, . . . , ph−v−1, q1, q2, . . . , qk) �= 0.

In the generic case, the number of the roots of J(z) is h− v +k−2, and these
roots are simple.

For a special case v = 0 (i.e. all nmj − mnj �= 0) and k = 0 (τ has no
zeros), “generic position” essentially describes the situation for h ≥ 4; when
h = 3, three points p1, p2, p3 are always in generic position because J(z) in
this case is of degree 1 (a linear polynomial).
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Remark 22.1.6 The reader may wonder that the discriminant of an arrange-
ment polynomial J(z) may be identically zero regardless of the positions of
pj and qi, in which case generic position does not make sense. Fortunately
this is not the case; the discriminant of an arrangement polynomial is never
identically zero as we will show in Corollary 22.3.3, p432.

22.2 Vanishing cycles

The Milnor fiber of an AN -singularity V : y2 = xN+1 is a smooth fiber Vt near
V = V0 in a smoothing family {Vt} of V ; see [Di]. For instance, y2 = xN+1 + t
for each t �= 0 is a Milnor fiber. Note that the map (x, y) ∈ Milnor fiber �→ x ∈
C realizes the Milnor fiber as a double covering D̃N of a disk D branched over
N + 1 points x = α1, α2, . . . , αN+1 (the roots of xN+1 + t). More precisely,

Lemma 22.2.1 (1) If N = 2n + 1, then D̃N is a smooth complex curve of
genus n with two holes (Figure 22.2.3). (2) If N = 2n, then D̃N is a smooth
complex curve of genus n with one hole (Figure 22.2.4).

Proof. (1) N = 2n+1: Consider a hyperelliptic covering p : H → P
1 branched

over N +1 points α1, α2, . . . , αN+1 ∈ P
1, where the hyperelliptic curve H has

genus (N + 1) − 2
2 = n. For a small disk E ⊂ P

1 \ {α1, α2, . . . , αN+1}, the

inverse image p−1(E) consists of two disjoint disks. Hence D̃N = H \ p−1(E)
is a complex curve of genus n with two holes (see Figure 22.2.1).

(2) N = 2n: Setting N ′ := N + 1 = 2n + 1, we apply the argument
in the odd case (1). Namely, consider a hyperelliptic covering p : H → P

1

branched over N ′ + 1 points α1, α2, . . . , αN ′+1 ∈ P
1; then H is a hyperelliptic

Glue along cut-off lines

l2l1

l̃1

l̃2

double covering

l2l1

Fig. 22.2.1. N = 3: Even (four) number of branched points
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Glue along cut-off lines l̃1

Delete a disk

l1

l̃2

double covering

disk (= P1 \ disk)

l2

l1 l2

Fig. 22.2.2. N = 2: Odd (three) number of branched points

curve of genus n. Take a small disk E around αN ′+1 such that E does
not contain α1, α2, . . . , αN ′ . We consider the complements D = P

1 \ E and
D̃N = H \ p−1(E). Then p−1(E) is connected (indeed, a disk) because E

contains a branch point αN ′+1. Thus D̃N is a complex curve of genus n with
one hole (see Figure 22.2.2), and p : D̃N → D is a double covering. This
verifies (2). �

For example, if N = 1, then D̃N is a projective line with two holes — an
annulus. In this case, D̃N is the Milnor fiber of a node (A1-singularity). If
N = 2, then D̃N is a complex curve of genus 1 with one hole. In this case,
D̃N is the Milnor fiber of a cusp (A2-singularity).

In what follows, by a loop, we mean a simple closed “real” curve. Recall
that a vanishing cycle is a loop on the Milnor fiber Vt such that it is pinched
to the singularity in the limit t → 0. See Figure 22.2.3 and Figure 22.2.4.

We now return to discuss a barking family Xs,t : σ(z)ζm−ln
(
ζn+tτ(z)

)l−
s = 0. We consider the plot function K(z) = nσzτ + mστz and the arrange-
ment polynomial J(z). As we saw in Lemma 22.1.3, for α ∈ C, the following
equivalence holds:

K(α) = 0, σ(α) �= 0 and τ(α) �= 0 ⇐⇒ J(α) = 0 and α �= pj (j ∈ J0),

where J0 is the set of indices j such that nmj − mnj = 0. Further, the order
of α in K(z) coincides with that of α in J(z). Thus in terms of J(z), Theorem
21.6.8 implies: Let (α, β) be a singularity of a subordinate fiber Xs,t, (s, t �= 0).
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Milnor fiber (odd case)
Fig. 22.2.3. Vanishing cycles (bold loops) on the Milnor fiber of the AN -singularity
for odd N (the figure for N = 7). The Milnor fiber has two boundary components.

Milnor fiber (even case)
Fig. 22.2.4. Vanishing cycles (bold loops) on the Milnor fiber of the AN -singularity
for even N (the figure for N = 6). The Milnor fiber has one boundary component.

Then (1) α is a zero of J(z), and (2) denote by q the order of α as a zero of
J(z), and then (α, β) ∈ Xs,t is an Aq-singularity. In particular, for J-generic
case, i.e. when J(z) has only simple roots (then there are h− v + k− 2 simple
roots), any subordinate fiber Xs,t (s, t �= 0) has only nodes. In contrast, if
J(z) has only one root (of multiplicity h − v + k − 2), then any subordinate
fiber Xs,t (s, t �= 0) has only AN -singularities, where we set N := h−v+k−2.

As described in Figure 22.2.3 and Figure 22.2.4, the configuration of the
vanishing cycles of an AN -singularity is a chain of loops. In particular, if
N ≥ 2, each vanishing cycle is non-separating. (A loop l on a smooth complex
curve S is called non-separating if S \ l is connected as a topological space).
As a consequence, we have

Theorem 22.2.2 Suppose that a node of a subordinate fiber Xs,t (s, t �= 0)
arises via the Morsification of some AN -singularity (N ≥ 2). Then the van-
ishing cycle of that node is non-separating.
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This confirms the validity of a special case of Ahara’s conjecture: Ahara con-
jectured that the vanishing cycle of any node of a subordinate fiber is non-
separating.

22.3 Discriminants of arrangement polynomials

The reader may wonder that the discriminant D of an arrangement polynomial
J(z) may be identically zero, regardless of the positions of p1, p2, . . . , ph−v−1

and q1, q2, . . . , qk, in which case “generic position” does not make sense. For-
tunately this is not the case; the discriminant of an arrangement polynomial
is never identically zero. We demonstrate this for more general polynomi-
als — polynomials of arrangement type. We fix nonzero complex numbers
c1, c2, . . . , cn (n ≥ 3) such that c1 + c2 + · · · + cn �= 0. Next let λ1, λ2, . . . , λn

be distinct complex numbers, and set

Bj(z) = (z − λ1)(z − λ2) · · · (z − λj−1)(z − λj+1) · · · (z − λn).

Then we define a polynomial of arrangement type as follows:

A(z) =
n∑

j=1

cjBj(z).

(By the assumption c1 + c2 + · · · + cn �= 0, the degree of A(z) is n − 1.)
The discriminant D of A(z) is a polynomial in λ1, λ2, . . . , λn. We assert that
for generic values of λ1, λ2, . . . , λn, the discriminant D = D(λ1, λ2, . . . , λn) is
nonzero. To show this, we require some preparation. In the subsequent discus-
sion, we regard A(z) as a polynomial in variables z and λ = (λ1, λ2, . . . , λn),
and we write A(z,λ) instead of A(z).

Lemma 22.3.1 Consider an algebraic variety

V = { (z,λ) ∈ C × (Cn \ Δ) : A(z,λ) = 0 },
where Δ := {λ ∈ C

n :
∏

i<j(λj −λi) = 0} (that is, Δ is the locus where some
of λ1, λ2, . . . , λn coincide). Then V is smooth.

Proof. We show this only for n = 4; the argument below works for arbitrary
n ≥ 3. For brevity we set λ = (α, β, γ, δ), that is, α = λ1, β = λ2, γ = λ3,
δ = λ4. Also we set a = c1, b = c2, c = c3, d = c4. Then

A(z,λ) = a(z − β)(z − γ)(z − δ) + b(z − α)(z − γ)(z − δ)
+ c(z − α)(z − β)(z − δ) + d(z − α)(z − β)(z − γ).

Supposing that V has a singularity, we shall deduce a contradiction. Let
(z0,λ0) ∈ V be a singularity. Then

∂A

∂z
(z0,λ0) =

∂A

∂α
(z0,λ0) =

∂A

∂β
(z0,λ0) =

∂A

∂γ
(z0,λ0) =

∂A

∂δ
(z0,λ0) = 0.
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Since

∂A

∂α
= −b(z − γ)(z − δ) − c(z − β)(z − δ) − d(z − β)(z − γ),

a condition ∂A
∂α

(z0,λ0) = 0 is explicitly given by

−b(z0 − γ0)(z0 − δ0)− c(z0 − β0)(z0 − δ0)− d(z0 − β0)(z0 − γ0) = 0. (22.3.1)

On the other hand, the equation of V evaluated at (z0,λ0) is

a(z0 − β0)(z0 − γ0)(z0 − δ0) + b(z0 − α0)(z0 − γ0)(z0 − δ0)
+ c(z0 − α0)(z0 − β0)(z − δ0) + d(z0 − α0)(z0 − β0)(z0 − γ0) = 0.

(22.3.2)

Substituting (22.3.1) into this equation, we obtain a(z0−β0)(z0−γ0)(z0−δ0) =
0. Since a �= 0 by assumption, we have z0 = β0, γ0, or δ0. But this generates
a contradiction. For instance, if z0 = β0, then by (22.3.2),

b(β0 − α0)(β0 − γ0)(β0 − δ0) = 0.

However as α0, β0, γ0, δ0 are distinct and b �= 0 by assumption, the left hand
side cannot be zero (a contradiction!). Therefore V is smooth. �

Now it is straightforward to see that the discriminant D(λ) of A(z,λ) is
nonzero for generic λ = (λ1, λ2, . . . , λn). Consider a projection f : V → C

n

given by
f(z, λ1, λ2, . . . , λn) = (λ1, λ2, . . . , λn).

Then f is a proper surjective holomorphic map. Next note the following equiv-
alences on the complex manifold1 V = {(z,λ) ∈ C × C

n : A(z,λ) = 0}:

(z,λ) is a critical point of f ⇐⇒ ∂A

∂z
(z,λ) = 0

⇐⇒ A(z,λ), as a polynomial in z, hasmultiple roots
⇐⇒ the discriminant of A(z,λ) vanishes: D(λ)=0.

Therefore λ ∈ crit(f) (i.e. λ is a critical value of f) if and only if D(λ) = 0;
so

crit(f) = {λ ∈ C
n : D(λ) = 0}. (22.3.3)

On the other hand, since V is smooth (Lemma 22.3.1), the critical locus crit(f)
is a Zariski closed subset2 of C

n. Hence the set (22.3.3) is also a Zariski closed
subset of C

n; this means that D(λ) is nonzero for generic λ. Thus we obtain

1 By Lemma 22.3.1, V is a complex manifold.
2 See Corollary 10.7 “generic smoothness” of [Hart], p272; actually for our purpose

it is enough to know that crit(f) ⊂ C
n is a set with measure zero — which follows

from Sard Lemma.
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Lemma 22.3.2 Fix nonzero complex numbers c1, c2, . . . , cn satisfying c1 +
c2 + · · · + cn �= 0, and consider a polynomial A(z) =

∑n
j=1 cjBj(z), where

Bj(z) = (z − λ1)(z − λ2) · · · (z − λj−1)(z − λj+1) · · · (z − λn)

and λ1, λ2, . . . , λn ∈ C are all distinct. Then the discriminant D(λ) of A(z,λ),
viewed as a polynomial in z, is not identically zero. (Hence for a generic value
of λ = (λ1, λ2, . . . , λn), the roots of A(z,λ) are all distinct.)

We apply this result to the arrangement polynomial J(z). For brevity, we
only consider the case where all nmj −mnj (j = 1, 2, . . . , h) are nonzero. Also
we take ph = ∞. Then

J(z) = Q(z)
h−1∑
j=1

(nmj − mnj)Pj(z) + P (z)
k∑

i=1

maiQi(z),

where P (z) = (z − p1)(z − p2) · · · (z − ph−1) and Q(z) = (z − q1)(z − q2) · · ·
(z − qk), and

Pj(z) = (z − p1)(z − p2) · · · (z − pj−1)(z − pj+1) · · · (z − ph−1)

Qi(z) = (z − q1)(z − q2) · · · (z − qi−1)(z − qi+1) · · · (z − qk).

We set n = h + k − 1, and we define c1, c2, . . . , cn and λ1, λ2, . . . , λn by

cj =

{
nmj − mnj ,

maj−h+1,
λj =

{
pj , j = 1, 2, . . . , h − 1,

qj−h+1, j = h, h + 1, . . . , h + k − 1.

Then we may express J(z) =
∑n

j=1 cjBj(z), where

Bj(z) = (z − λ1)(z − λ2) · · · (z − λj−1)(z − λj+1) · · · (z − λn).

So J(z) is a polynomial of arrangement type. Now we check that c1, c2, . . . , cn

fulfill the conditions of Lemma 22.3.2: cj �= 0 (j = 1, 2, . . . , n) and c1 + c2 +
· · · + cn �= 0. The latter was already shown in the proof of Lemma 22.1.5.
On the other hand, by assumption, nmj − mnj �= 0 (j = 1, 2, . . . , h − 1) and
mai > 0 (i = 1, 2, . . . , k), and thus cj �= 0 (j = 1, 2, . . . , n). Therefore we may
apply Lemma 22.3.2, and we conclude

Corollary 22.3.3 The discriminant D of an arrangement polynomial J(z)
is not identically zero.

22.4 The coefficients of arrangement polynomials take
arbitrary values

Given two polynomials

f(z) = a0z
m +a1z

m−1 + · · ·+am and g(z) = b0z
n + b1z

n−1 + · · ·+ bn,
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the resultant R(f, g) of f(z) and g(z) is the determinant of an (m+n)×(m+n)-
matrix formed by their coefficients:

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · am

a0 a1 · · · am 0
. . . . . . . . .

0 a0 a1 · · · am

b0 b1 · · · bn

b0 b1 · · · bn 0
. . . . . . . . .

0 b0 b1 · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

As is well known, f(z) and g(z) have a common root if and only if R(f, g) = 0
(see [CLO], [vdW]).

Now we return to discuss polynomials of arrangement type. Fix nonzero
complex numbers c1, c2, . . . , cn (n ≥ 2) such that c1+c2+ · · ·+cn �= 0. Setting

Bj(z) = (z − λ1)(z − λ2) · · · (z − λj−1)(z − λj+1) · · · (z − λn),

where λ1, λ2, . . . , λn ∈ C, we consider a polynomial of arrangement type:

A(z) =
n∑

j=1

cjBj(z).

(Note that deg A(z) = n − 1.) Hereafter instead of A(z) and Bj(z), we use
notations A(z,λ) and Bj(z,λ) to emphasize λ = (λ1, λ2, . . . , λn).

We set c := c1+c2+· · ·+cn (�= 0). The aim of this section is to demonstrate
that any polynomial P (z) of degree n−1 with the highest degree term czn−1 is
‘expressed’ by A(z,λ); that is, P (z) = A(z,λ) for some λ. Moreover we show
that we may take such λ = (λ1, λ2, . . . , λn) as λ1, λ2, . . . , λn are distinct. To
be explicit, we write

P (z) = czn−1 + an−2z
n−2 + · · · + a0,

and let ed(x1, x2, . . . , xn−1) be the elementary symmetric polynomial of degree
d (d = 1, 2, . . . , n − 1) in x1, x2, . . . , xn−1. Then “the equation of the coeffi-
cients” P (z) = A(z,λ) is, by the comparison of the coefficients, equivalent to
a system of n − 1 equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E1 : an−2 =
∑n

j=1 cj e1(λ1, λ2, . . . , λj−1, λj+1, . . . , λn),

E2 : an−3 =
∑n

j=1 cj e2(λ1, λ2, . . . , λj−1, λj+1, . . . , λn),
...

En−1 : a0 =
∑n

j=1 cj en−1(λ1, λ2, . . . , λj−1, λj+1, . . . , λn).

(22.4.1)
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Note that we have n−1 equations with n indeterminants λ1, λ2, . . . , λn. From
elimination theory [CLO], [vdW], this system of equations has a common so-
lution if and only if the resultant R of this system is either identically zero or
is a nonconstant polynomial. We explain the actual procedure of elimination
for n = 4; in the course of the explanation, we will also introduce the resul-
tant R of the system of equations. For simplicity we write λ1 = α, λ2 = β,
λ3 = γ, and λ4 = δ. The elimination procedure to find a common solution of
the equations E1, E2, E3, E4 is as follows. First, note that E1 and E2 have a
common solution if and only if R12(α, β, γ) = 0, where R12 is the resultant of
E1(α, β, γ, δ) and E2(α, β, γ, δ) regarded as equations in δ. Likewise, E1 and
E3 have a common solution if and only if R13(α, β, γ) = 0, where R13 is the
resultant of E1(α, β, γ, δ) and E3(α, β, γ, δ) regarded as equations in δ. Sec-
ondly, R12(α, β, γ) = 0 and R13(α, β, γ) = 0 have a common solution if and
only if R123(α, β) = 0, where R123(α, β) is the resultant of R12(α, β, γ) and
R13(α, β, γ) regarded as polynomials in γ. Therefore there exist α, β, γ, δ sat-
isfying E1, E2, E3, E4 if and only if there exist α, β satisfying R123(α, β) = 0.
We say that R = R123(α, β) is the resultant of the equations E1, E2, E3, E4.

For general n, we can similarly define the resultant R = R(λ1, λ2) of the
equations E1, E2, . . . , En in (22.4.1). Then these equations have a common
solution if and only if R(λ1, λ2) is either identically zero or is a nonconstant
polynomial.

Proposition 22.4.1 Fix nonzero complex numbers c1, c2, . . . , cn such that
c := c1 + c2 + · · · + cn �= 0. Given a polynomial P (z) = czn−1 + an−2z

n−2 +
· · ·+ a0, where a0, a1, . . . , an−2 ∈ C are arbitrary, there exist distinct complex
numbers λ1, λ2, . . . , λn such that P (z) is expressed as

P (z) =
n∑

j=1

cjBj(z,λ), (22.4.2)

where Bj(z,λ) := (z − λ1)(z − λ2) · · · (z − λj−1)(z − λj+1) · · · (z − λn).

Proof. We set A(z,λ) :=
∑n

j=1 cjBj(z,λ). To a polynomial P (z) = czn−1 +
an−2z

n−2 + · · · + a0, we associate an algebraic set

W = {λ ∈ C
n : P (z) = A(z,λ)}.

(“P (z) = A(z,λ)” is the equation of the coefficients of zi for i = 0, 1, 2, . . . , n−
2.) Then W is the space of (not necessarily distinct) λ1, λ2, . . . , λn ∈ C sat-
isfying (22.4.2). Note that W is non-empty; in fact, dimCW = 1 by Lemma
22.4.2 (1) below — technical lemmas used in the proof are presented below.
Next we set

Δ = {λ ∈ C
n :

∏
i<j

(λj − λi) = 0}.

Geometrically, Δ consists of such points λ1, λ2, . . . , λn as are “not” distinct.
Hence W \ (W ∩ Δ) is the space of λ = (λ1, λ2, . . . , λn) satisfying (22.4.2)
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such that λ1, λ2, . . . , λn are distinct. We note that W \ (W ∩Δ) is non-empty
— actually, one-dimensional —, because dimCW = 1 (Lemma 22.4.2 (1)) and
W∩Δ is a discrete set (Lemma 22.4.3). An arbitrary point λ = (λ1, λ2, . . . , λn)
of W \ (W ∩ Δ) satisfies the condition: λ1, λ2, . . . , λn are distinct and they
fulfill (22.4.2). Therefore our assertion is confirmed. �

We remark that given a polynomial P (z) = czn−1+an−2z
n−2+ · · ·+a0, as

long as we seek for “not necessarily distinct” λ1, λ2, . . . , λn such that P (z) =
A(z,λ), we generally need not to pose the conditions: c := c1+c2+· · ·+cn �= 0
and c1, c2, . . . , cn are nonzero. However if we would like to find “distinct”
λ1, λ2, . . . , λn, then we require these conditions. We explain this by examples.

(I) When n = 2, if c1 + c2 = 0, then A(z,λ) := c1(z − λ1) + c2(z − λ2) =
c1(λ1 − λ2). Clearly, a polynomial P (z) = 0 · z + 0 is “not” expressed by such
A(z,λ) as λ1 �= λ2.

(II) When some of c1, c2, . . . , cn are zero, in general we may not find “dis-
tinct” λ1, λ2, . . . , λn satisfying P (z) = A(z,λ). For instance, if c1 �= 0 and c2 =
c3 = · · · = cn = 0, then A(z,λ) := c1B1(λ) = c1(z − λ2)(z − λ2) · · · (z − λn).
In this case, any polynomial P (z) = c1z

n−1 + an−2z
n−2 + · · · + a0, (ai ∈ C)

is expressible as A(z,λ) for some λ = (λ1, λ2, . . . , λn) (actually, λ1 is arbi-
trary). However, in general we cannot find “distinct” λ1, λ2, . . . , λn satisfying
P (z) = A(z,λ). For instance, if P (z) = c1(z−α)n, then P (z) = A(z,λ) holds
precisely when λ2 = λ3 = · · · = λn (not distinct!).

We also remark that if we fix two elements among λ1, λ2, . . . , λn, say
λn−1 = 0 and λn = 1, then a polynomial P (z) = c(z − α)n−1 is express-
ible as A(z,λ) only for not distinct λ1, λ2, . . . , λn. For example, n = 3,
c1 = −1, c2 = 1, c3 = 1, and

A(z,λ) := −(z − λ2)(z − λ3) + (z − λ1)(z − λ2) + (z − λ1)(z − λ2).

In this case, if we fix λ2 = 0 and λ3 = 1 (while λ1 is arbitrary), then A(z,λ) =
z2 − 2λ1z + λ1, and its discriminant is D = 4(λ2

1 − λ1). So A(z,λ) is of the
form (z − α)2 precisely when λ1 = 0 or 1. In either case, λ1, λ2, and λ3 are
not distinct.

Technical Lemmas

We now verify technical lemmas used in the proof of Proposition 22.4.1. We
fix nonzero complex numbers c1, c2, . . . , cn such that c := c1+c2+· · ·+cn �= 0.
For λ = (λ1, λ2, . . . , λn) ∈ C

n, we define a polynomial of arrangement type:

A(z) =
n∑

j=1

cjBj(z),

where Bj(z,λ) := (z − λ1)(z − λ2) · · · (z − λj−1)(z − λj+1) · · · (z − λn).

Lemma 22.4.2 Given a polynomial P (z) of degree n−1 with the highest de-
gree term czn−1, consider an algebraic set3 W = {λ ∈ C

n : P (z) = A(z,λ)}.
3 “P (z) = A(z, λ)” is the equation of the coefficients of zi for i = 0, 1, 2, . . . , n− 2.
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Then (1) dimCW = 1 and (2) fixing one of λ1, λ2, . . . , λn, say λk = u
(constant), then Wk,c = {λ ∈ W : λk = u} is a finite set of points.

Proof. We show this by induction on n (n ≥ 2). The statement is trivial
for n = 2. Assuming the validity of the statement for n − 1, we show the
statement for n. To avoid complicated notation, we verify this only for n = 4;
the argument below works for arbitrary n ≥ 3.

For brevity we set λ = (α, β, γ, δ), that is, α = λ1, β = λ2, γ = λ3, δ = λ4.
Also we set a = c1, b = c2, c = c3, d = c4. So

A(z,λ) := a(z − β)(z − γ)(z − δ) + b(z − α)(z − γ)(z − δ)
+ c(z − α)(z − β)(z − δ) + d(z − α)(z − β)(z − γ).

We then consider a polynomial of arrangement type for n = 3:

Ã(z, λ̃) := a(z − β)(z − γ) + b(z − α)(z − γ) + c′(z − α)(z − β),

where we set c′ := c + d and λ̃ := (α, β, γ). Next, taking a root ρ of P (z), we

consider a polynomial P̃ (z) := P (z)
z − ρ .

Now we apply the inductive hypothesis on n = 3 for the equation P̃ (z) =
Ã(z, λ̃); then the statements (1) and (2) hold. In particular, by (2), when γ = ρ

(constant), the equation P̃ (z) = Ã(z, λ̃) has a finite number of solutions. We
take one solution, say λ̃0 = (α0, β0, ρ). Multiplying both sides of P̃ (z) =
Ã(z, λ̃0) by z − ρ, we have

(z − ρ)P̃ (z) = (z − ρ)Ã(z, λ̃0).

Here note that (z − ρ)P̃ (z) = P (z) and

(z − ρ)Ã(z, λ̃0) = a(z − β0)(z − ρ)(z − ρ) + b(z − α0)(z − ρ)(z − ρ)
+ c′(z − α0)(z − β0)(z − ρ).

Since c′ = c + d, the equation (z − ρ)P̃ (z) = (z − ρ)Ã(z, λ̃0) is rewritten as

P (z) = a(z − β0)(z − ρ)(z − ρ) + b(z − α0)(z − ρ)(z − ρ)
+ c(z − α0)(z − β0)(z − ρ) + d(z − α0)(z − β0)(z − ρ).

That is, P (z) = A(z, α0, β0, ρ, ρ). Thus P (z) = A(z,λ) (or the equations
E1, E2, E3 of the coefficients of zi for i = 0, 1, 2) has a solution λ =
(α0, β0, ρ, ρ). In particular, the resultant R(α, β) of the equations E1, E2, E3

is either identically zero or is a nonconstant polynomial; otherwise E1, E2, E3

has no common solution. It is easy to check that R(α, β) is not identically
zero. Therefore the algebraic set R(α, β) = 0 is one-dimensional, and conse-
quently the algebraic set W is one-dimensional. This proves (1). The assertion
(2) is clear; we set β = u (constant), and then there are a finite number of
complex numbers α which satisfy R(α, u) = 0. �
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We retain the above notations: c1, c2, . . . , cn are nonzero complex numbers
such that c := c1 + c2 + · · · + cn �= 0. Taking λ = (λ1, λ2, . . . , λn) ∈ C

n, we
define a polynomial of arrangement type:

A(z) =
n∑

j=1

cjBj(z),

where Bj(z,λ) := (z − λ1)(z − λ2) · · · (z − λj−1)(z − λj+1) · · · (z − λn).

Lemma 22.4.3 Given a polynomial P (z) of degree n − 1 with the highest
degree term czn−1, consider an algebraic set4 W = {λ ∈ C

n : P (z) =
A(z,λ)}. Then the intersection W ∩ Δ is a finite set of points, where
Δ := {λ ∈ C

n :
∏

i<j(λj − λi) = 0} (that is, Δ is the locus where some
of λ1, λ2, . . . , λn coincide).

Proof. We show this only for n = 4; the argument below works for arbitrary
n ≥ 3. For brevity we set λ = (α, β, γ, δ), that is, α = λ1, β = λ2, γ = λ3,
δ = λ4. Also we set a = c1, b = c2, c = c3, d = c4. Then

A(z,λ) := a(z − β)(z − γ)(z − δ) + b(z − α)(z − γ)(z − δ)
+ c(z − α)(z − β)(z − δ) + d(z − α)(z − β)(z − γ).

It suffices to show that the intersection of W with each irreducible component
of Δ is a finite set of points. We first show this for an irreducible component

Δγ=δ :=
{

(α, β, γ, δ) ∈ C
4 : γ = δ

}
.

(Note: Δ has six irreducible components Δα=β , Δβ=γ , Δγ=δ, Δα=γ , Δα=δ,

Δβ=δ.) We note that W ∩Δγ=δ =
{

(α, β, γ) ∈ C
3 : P (z) = A(z, α, β, γ, γ)

}
.

Here

A(z, α, β, γ, γ) = a(z − β)(z − γ)2 + b(z − α)(z − γ)2

+ c(z − α)(z − β)(z − γ) + d(z − α)(z − β)(z − γ),

and so z = γ is a root of A(z, α, β, γ, γ). Substituting z = γ into the equation

P (z) = A(z, α, β, γ, γ), (22.4.3)

we have P (γ) = 0, and thus γ is also a root of P (z). So P̃ (z) := P (z)
z − γ is a

polynomial (of degree n− 2). Dividing the both sides of (22.4.3) by z − γ, we
deduce an equation P̃ (z) = Ã(z, λ̃), where we set λ̃ := (α, β, γ) and

Ã(z, λ̃) := a(z−β)(z−γ)+ b(z−α)(z−γ)+c(z−α)(z−β)+d(z−α)(z−β).

4 “P (z) = A(z, λ)” is the equation of the coefficients of zi for i = 0, 1, . . . , n − 2.
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Further we set c′ = c + d, and then

Ã(z, λ̃) = a(z − β)(z − γ) + b(z − α)(z − γ) + c′(z − α)(z − β).

Now applying Lemma 22.4.2 (2) to the equation P̃ (z) = Ã(z,λ), we see that
for fixed γ, the set of λ̃ = (α, β, γ) satisfying P̃ (z) = Ã(z,λ) is a finite set of
points. Consequently, the intersection of W with the irreducible component
Δγ=δ of Δ is a finite set of points. Similarly, we can show this for any other
irreducible component of Δ. Thus our assertion is confirmed. �
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Arrangement Functions and Singularities, II

Subsequent to the previous chapter, in this chapter we introduce an “arrange-
ment function” for the remaining case, that is, the case genus (C) ≥ 1. The
(Riemann) theta function plays an essential role in defining the arrangement
function.

23.1 Theta function

Let C be an elliptic curve (a complex curve of genus 1). We express C = C/Γ
where Γ = {a+ bβ : a, b ∈ Z} is a lattice and β = u+iv is a complex number
such that u > 0 and v > 0. We recall a theta function ϑ(z) on C (traditionally,
this function is often denoted by ϑ3(z)):

ϑ(z) =
∞∑

n=−∞
eπin2β+2πinz. (23.1.1)

It is a quasi doubly-periodic holomorphic function on C. Namely,

ϑ(z + 1) = ϑ(z), ϑ(z + β) = e−πi−2πizϑ(z). (23.1.2)

The invariance of ϑ(z) under z �→ z +1 guarantees that ϑ(z) admits a Fourier
expansion, which is nothing other than (23.1.1). As is well-known, ϑ(z) has
a simple zero at each point of the lattice Γ = {a + bβ : a, b ∈ Z}, and no
other zeros. In fact, ϑ(z) admits an infinite product expression, which gives
the information on the position of the zeros. We set q = e2πiβ , and then for
|q| < 1,

ϑ(z) = c
∞∏

m=1

(
1 + q2m−1e2πiz

)(
1 + q2m−1e−2πiz

)
,

where c :=
∏∞

m=1(1 − q2m). See [Gros], p100 and [McMo], p135.
Geometrically, the theta function ϑ(z) is considered as a holomorphic sec-

tion of a line bundle as follows. First, define a Γ-action on C
2 generated by

(z, ζ) �−→ (z + 1, ζ) and (z, ζ) �−→ (z + β, e−πi−2πizζ),
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and then the quotient space L := (C × C)/Γ is a line bundle of degree 1 on
C. By (23.1.2), the theta function ϑ(z) descends to a holomorphic section of
L, with a simple zero at one point (the image of the points of the lattice Γ
in C = C/Γ). The holomorphic section of L determined by ϑ(z) is essentially
a unique holomorphic section of L. To see this, we apply the Riemann-Roch
Theorem:

dim H0(C,L) − dim H1(C,L) = deg(L) + (1 − g),

where in the present case, the genus g of C is 1 and deg(L) = 1. By the
Serre duality, H1(C,L) ∼= H0(C,L−1 ⊗ Ω1

C) where Ω1
C is the cotangent bun-

dle of C. Since the cotangent bundle of the elliptic curve is trivial, we have
H0(C,L−1⊗Ω1

C) = H0(C,L−1). On the other hand, H0(C,L−1) = 0 because
deg(L−1) = −1 < 0. Thus by the Serre duality, H1(C,L) = 0. Therefore the
Riemann–Roch Theorem implies that dim H0(C,L) = 1. This implies that
a holomorphic section of L is unique up to scalar multiplication, and so the
holomorphic section determined by ϑ(z) is essentially unique.

Next we set ϑp := ϑ(z − p), a translated theta function which has simple
zeros at the points p + a + bβ ∈ C where a, b ∈ Z. The transformation rule of
ϑp(z) is given by⎧⎨⎩ ϑp(z + 1) := ϑ(z − p + 1) = ϑ(z − p) = ϑp(z)

ϑp(z + β) := ϑ(z − p + β) = e−πi−2πi(z−p)ϑ(z − p) = e−πi−2πi(z−p)ϑp(z).

Namely

ϑp(z + 1) = ϑp(z), ϑp(z + β) = e−πi−2πi(z−p)ϑp(z). (23.1.3)

Let Lp be the line bundle on C with the transition functions “1” (for the gluing
map z �→ z + 1 of C) and “e−πi−2πi(z−p)” (for the gluing map z �→ z + β of
C). Then the theta function ϑp(z) descends to a holomorphic section of Lp

with one simple zero at the image of p in C = C/Γ; hence the degree of Lp is
1. Hereafter, whenever there is no fear of confusion, the holomorphic section
of Lp determined by ϑp is also denoted by ϑp, and the image of p ∈ C in
C = C/Γ is also denoted by p. For the subsequent discussion, it is useful to
keep in mind the following correspondence on functions on C and the elliptic
curve C:

z − p ←→ ϑp(z).

Next we review some basic definitions concerning divisors. Two divisors∑h
j=1 ajpj and

∑k
i=1 biqi on C are linearly equivalent if there exists a mero-

morphic function f on C with a zero of order aj at each pj and with a pole of
order bi at each qi; then we write div(f) =

∑h
j=1 ajpj −

∑k
i=1 biqi. By Abel’s

Theorem (Theorem 24.1.5, p467), the linear equivalence on an elliptic curve
is simply expressed as an equality with respect to the standard addition on
the elliptic curve:

∑h
j=1 ajpj =

∑k
i=1 biqi. Given a divisor

∑h
j=1 ajpj on the
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elliptic curve C, its 1/m-division point, where m is a positive integer, is such
a point q ∈ C as mq =

∑h
j=1 ajpj ; we express q = (

∑h
j=1 ajpj)/m. Note that

q is not unique; indeed there are m2 such points.
For a point p of the elliptic curve C, if there is no fear of confusion, a lift of

p to the universal covering C is also denoted by p; accordingly we treat relevant
equations on C as “equations on C mod Γ”, such as

∑h
j=1 ajpj ≡ ∑k

i=1 biqi

mod Γ.
Let m,n,mj (j = 1, 2, . . . , h) be positive integers and let nj (j =

1, 2, . . . , h) and ai (i = 1, 2, . . . , k) be nonnegative integers. Suppose that N
is a line bundle on C such that

(i) N⊗(−m) has a holomorphic section σ with a zero of order mj at a point
pj (j = 1, 2, . . . , h), and

(ii) N⊗n has a meromorphic section τ with a pole of order nj at a point pj

(j = 1, 2, . . . , h) and with a zero of order ai at a point qi (i = 1, 2, . . . , k).

Lemma 23.1.1 The following equations hold:

(1)
∑h

j=1 mj

m =
∑h

j=1 nj −
∑k

i=1 ai

n and this number is a positive integer.
(2) Denote by r the positive integer in (1). Then there exist integers c and d

such that∑h
j=1 mjpj

rm
=

∑h
j=1 njpj −

∑k
i=1 aiqi

rn
+

c

rmn
+

d

rmn
β.

(Recall that 1 and β is a basis of Γ = {a + bβ : a, b ∈ Z} and C = C/Γ.)

Proof. (1) is clear, because the both sides of the equation are equal to
−deg(N). We show (2). Note that σnτm is a meromorphic function on the el-
liptic curve C; indeed, it is a section of the trivial bundle (N⊗(−m))⊗n(N⊗n)⊗m

∼= OC . Since div(σnτm) =
∑h

j=1(nmj −mnj)pj +
∑k

i=1 maiqi, it follows from
Abel’s Theorem that

h∑
j=1

(nmj − mnj)pj +
k∑

i=1

maiqi ≡ 0 mod Γ.

That is,

n
h∑

j=1

mjpj ≡ m

⎛⎝ h∑
j=1

njpj −
k∑

i=1

aiqi

⎞⎠ mod Γ.

Or

n

h∑
j=1

mjpj = m

⎛⎝ h∑
j=1

njpj −
k∑

i=1

aiqi

⎞⎠ + c + dβ, where c, d ∈ Z.
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Dividing the both sides by rmn, we have∑h
j=1 mjpj

rm
=

∑h
j=1 njpj −

∑k
i=1 aiqi

rn
+

c

rmn
+

d

rmn
β.

�
Taking into account (2) of Lemma 23.1.1, hereafter instead of C = C/Γ,

we consider an elliptic curve C/ 1
rmnΓ; we rewrite this curve as C, and also

we rewrite 1
rmnΓ as Γ. Then from (2) of Lemma 23.1.1,∑h
j=1 mjpj

rm
≡

∑h
j=1 njpj −

∑k
i=1 aiqi

rn
mod Γ, (23.1.4)

where by (1) of Lemma 23.1.1,

r =

∑h
j=1 mj

m
=

∑h
j=1 nj −

∑k
i=1 ai

n
is a positive integer. (23.1.5)

Conversely, suppose that positive integers m,n,mj , and nonnegative integers
nj , ai, and complex numbers pj , qi satisfy (23.1.4) and (23.1.5). Then we shall
show that there exists a line bundle N on C such that

(i) N⊗(−m) has a holomorphic section σ with a zero of order mj at a point pj

(j = 1, 2, . . . , h) — by convention, the corresponding point on C = C/Γ
to pj ∈ C (resp. qi ∈ C) is also denoted by pj (resp. qi) —, and

(ii) N⊗n has a meromorphic section τ with a pole of order nj at a point pj

(j = 1, 2, . . . , h) and with a zero of order ai at a point qi (i = 1, 2, . . . , k).

First, let p be the point on C = C/Γ defined by the fractions in (23.1.4).
We set N := OC(−rp); this is a line bundle of degree −r on C where r is
a positive integer in (23.1.5). We claim that N satisfies (i) and (ii). To show
this, let Lp be the line bundle with the transition functions “1” (for the gluing
z �→ z + 1 of C) and “gp(z)” (for the gluing z �→ z + β of C), where we set
gp(z) := e−πi−2πi(z−p). Then Lp has a holomorphic section ϑp(z), because
the transformation rule (23.1.3) of ϑp(z) is compatible with the transition
functions of Lp. Since ϑp(z) has a zero of order 1 at p, and ϑp(z) does not
vanish outside p, we have Lp

∼= OC(p). As N := OC(−rp), we obtain N ∼=
L
⊗(−r)
p . Now we fix a trivialization of N such that the transition functions are

“1” (for the gluing z �→ z + 1 of C) and “1/gp(z)r” (for the gluing z �→ z + β
of C). Accordingly the transition functions of N⊗(−m) are “1” and “gp(z)rm”,
while the transition functions of N⊗n are “1” and “1/gp(z)rn”.

We claim that

N⊗(−m) = OC

( h∑
j=1

mjpj

)
, N⊗n = OC

(
−

h∑
j=1

njpj +
k∑

i=1

aiqi

)
.

(23.1.6)
First we show the validity of the equation on the left. By definition, p =∑h

j=1 mjpj

rm , and so rmp =
∑h

j=1 mjpj . Since N = OC(−rp), we have

N⊗(−m) = OC(mrp) = OC(
∑h

j=1 mjpj). This confirms the validity of the



23.1 Theta function 443

equation on the left. Similarly, we may show the validity of the equation on
the right.

From (23.1.6), the existence of σ and τ in (i) and (ii) above is clear. We
may explicitly give them as follows:

σ(z) =
h∏

j=1

ϑpj
(z)mj , τ(z) =

1
e2πirnbz

·

k∏
i=1

ϑqi
(z)ai

h∏
j=1

ϑpj
(z)nj

. (23.1.7)

In fact, the knowledge of the location of the zeros of the theta function shows
that σ has a zero of order mj at pj , while τ has a pole of order nj at pj and
a zero of order ai at qi. Next we check that σ and τ are indeed sections of
N⊗(−m) and N⊗n respectively. Firstly,

σ(z + β) :=
h∏

j=1

ϑpj
(z + β)mj =

h∏
j=1

gpj
(z)mj ϑpj

(z)mj

=
h∏

j=1

gpj
(z)mj ·

h∏
j=1

ϑpj
(z)mj

=
h∏

j=1

gpj
(z)mj · σ(z) by (23.1.7).

Thus by (1) of Lemma 23.1.2 below, we have σ(z+β) = gp(z)rm ·σ(z). On the
other hand, clearly σ(z + 1) = σ(z). So σ is a section of N⊗(−m). Similarly,

τ(z+β) :=
1

e2πirnb(z+β)
·

k∏
i=1

ϑqi
(z+β)ai

h∏
j=1

ϑpj
(z+β)nj

=
1

e2πirnbz e2πirnbβ
·

k∏
i=1

gqi
(z)aiϑqi

(z)ai

h∏
j=1

gpj
(z)nj ϑpj

(z)nj

=
1

e2πirnbβ
·

k∏
i=1

gqi
(z)ai

h∏
j=1

gpj
(z)nj

· 1
e2πirnbz

k∏
i=1

ϑqi
(z)ai

h∏
j=1

ϑpj
(z)nj

=
1

e2πirnbβ
·

k∏
i=1

gqi
(z)ai

h∏
j=1

gpj
(z)nj

· τ(z).

By (2) of Lemma 23.1.2 below, we have τ(z+β) = 1
gp(z)rn τ(z). On the other

hand, clearly τ(z + 1) = τ(z). This confirms that τ is a section of N⊗n.
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Finally we give the proof of the technical lemma used in the above
discussion.

Lemma 23.1.2 Write the congruence (23.1.4) as an actual equation

p =

∑h
j=1 mjpj

rm
=

∑h
j=1 njpj −

∑k
i=1 aiqi

rn
+ a + bβ, (23.1.8)

where a and b are integers. Set gp(z) = e2πip e−πi−2πiz and gpj
(z) = e2πipj ×

e−πi−2πiz, and then

(1) gp(z)rm =
h∏

j=1

gpj
(z)mj and (2) gp(z)rn = e2πi r n b β ·

h∏
j=1

gpj
(z)nj

k∏
i=1

gqi
(z)ai

.

Proof. For brevity, we set h(z) = e−πi−2πiz; then

gp(z) = e2πiph(z) and gpj
(z) = e2πipj h(z). (23.1.9)

Using (23.1.8), we have gp(z) = e2πip ·h(z) = exp
(
2πi

∑h
j=1 mjpj

rm

)
·h(z), and

so

gp(z)rm = exp
(
2πi

h∑
j=1

mjpj

)
· h(z)rm

=
h∏

j=1

(
exp(2πipj) · h(z)

)mj

by (23.1.5)

=
h∏

j=1

gpj
(z)mj by (23.1.9).

This verifies (1). Next we show (2). Using (23.1.8),

gp(z) = exp

[
2πi

(∑h
j=1 njpj −

∑k
i=1 aiqi

rn
+ a + bβ

)]
· h(z),

and hence

gp(z)rn = exp
[
2πi

((∑h
j=1 njpj −

∑k
i=1 aiqi

)
+ rn(a + bβ)

)]
· h(z)rn

= exp
[
2πirn(a + bβ)

]
·

h∏
j=1

(
exp(2πipj) · h(z)

)nj

k∏
i=1

(
exp(2πiqi) · h(z)

)ai

= exp
[
2πirn(a + bβ)

]
·

h∏
j=1

gpj
(z)nj

k∏
i=1

gqi
(z)ai

by (23.1.9),

where in the second equality we used rn =
∑h

j=1 nj − ∑k
i=1 ai (23.1.5);

so h(z)rn =
∏h

j=1 h(z)nj /
∏k

i=1 h(z)ai . Since r, n, a are integers, we have
exp

[
2πirn(a + bβ)

]
= exp(2πirnbβ) and hence (2) is confirmed. �
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23.2 Genus 1: Arrangement functions

We consider the plot function K(z) = nσzτ +mστz, where σ is a holomorphic
section of a line bundle N⊗(−m) on C with a zero of order mj at pj (j =
1, 2, . . . , h), while τ is a meromorphic section of a line bundle N⊗n on C
with a pole of order nj at pj (j = 1, 2, . . . , h) and a zero of order ai at qi

(i = 1, 2, . . . , k). Recall that K(z) was used for describing the singularities of
a singular fiber Xs,t (s, t �= 0) where

Xs,t : σ(z)ζm−ln
(
ζn + tτ(z)

)l − s = 0.

The z-coordinate of a singularity of a singular fiber Xs,t (s, t �= 0) is necessarily
a zero of K(z) (Proposition 21.8.3 (1), p418). However, K(z) also has zeros pj

and qi, none of which is the z-coordinate of a singularity of a singular fiber Xs,t

(s, t �= 0); see Lemma 21.2.1. Taking this fact into consideration, as we done
when C is the projective line, it is economical to consider an “arrangement
function” J(z) (to be given soon) instead of K(z). First from (23.1.7), we have

log(σnτm) = n
( h∑

j=1

mj log ϑpj
(z)

)

+ m
( k∑

i=1

ai log ϑqi
(z) −

h∑
j=1

nj log ϑpj
(z)

)
− 2πirmnbz.

Here we are indifferent to the choice of a branch of log(f) (where f := σnτm),

since we are only interested in the logarithmic derivative d log(f)
dz

= f ′
f

.

Remark 23.2.1 Note that f = σnτm is a meromorphic function, because it
is a section of the trivial bundle (N⊗(−m))⊗n⊗(N⊗n)⊗m ∼= OC . In particular,
f ′ (or precisely f ′(z)dz) is a meromorphic section of the cotangent bundle Ω1

C ,

and therefore the ratio f ′
f

is a meromorphic section of Ω1
C ; in the present case

(the genus of C is one), we have Ω1
C

∼= OC , and thus f ′
f

(
= d log(f)

dz

)
is a

meromorphic function.

We point out that under different choices p′i of pi and q′i of qi such that
p′i ≡ pi and q′i ≡ qi mod Γ, we may make the last term “2πirmnbz” in the
above expression of log(σnτm) vanish. In fact, choose pi and qi such that∑h

j=1 mjpj

m
=

∑h
j=1 njpj −

∑k
i=1 aiqi

n
,

then

p =

∑h
j=1 mjpj

rm
=

∑h
j=1 njpj −

∑k
i=1 aiqi

rn
,
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and we have

log(σnτm) = n
( h∑

j=1

mj log ϑpj
(z)

)
+ m

( k∑
i=1

ai log ϑqi
(z) −

h∑
j=1

nj log ϑpj
(z)

)
.

Differentiating this equation yields

d log(σnτm)
dz

= n

⎛⎝ h∑
j=1

mj

ϑ′
pj

(z)
ϑpj

(z)

⎞⎠ + m

⎛⎝ k∑
i=1

ai

ϑ′
qi

(z)
ϑqi

(z)
−

h∑
j=1

nj

ϑ′
pj

(z)
ϑpj

(z)

⎞⎠ ,

(23.2.1)

where ϑ′
pj

(z) stands for the derivative
dϑpj

(z)
dz

. To simplify the subsequent
discussion, for the time being, we assume that nmj − mnj �= 0 for all j =
1, 2, . . . , h. We set P (z) =

∏h
j=1 ϑpj

(z) and Q(z) =
∏k

i=1 ϑqi
(z), and also we

set

Pj(z) = ϑp1(z)ϑp2(z) · · ·ϑ′
pj

(z) · · ·ϑph
(z),

Qi(z) = ϑq1(z)ϑq2(z) · · ·ϑ′
qi

(z) · · ·ϑqk
(z),

where ϑ′
p(z) = dϑp(z)

dz
. Then J(z) := P (z)Q(z)d log(σnτm)

dz
is called an

arrangement function on C. (cf. the plot function K(z) = στ
d log(σnτm)

dz
.)

Multiplying P (z)Q(z) with the right hand side of (23.2.1), we may explicitly
write it:

J(z) = nQ(z)
( h∑

j=1

mjPj(z)
)

+ mP (z)
( k∑

i=1

aiQi(z)
)
− mQ(z)

( h∑
j=1

njPj(z)
)

= Q(z)
( h∑

j=1

(nmj − mnj)Pj(z)
)

+ P (z)
( k∑

i=1

maiQi(z)
)
. (23.2.2)

Lemma 23.2.2 Suppose that nmj − mnj �= 0 for all j. Then for α ∈ C, the
following equivalence holds:

K(α) = 0, σ(α) �= 0, and τ(α) �= 0 ⇐⇒ J(α) = 0.

Moreover, the order of α in K(z) is equal to that of α in J(z).

Proof. As “σ(α) �= 0 and τ(α) �= 0” is equivalent to “α is none of p1, p2, . . . , ph

and q1, q2, . . . , qk”, we have to show the following equivalence:

K(α) = 0 and α �= p1, p2, . . . , ph, q1, q2, . . . , qk ⇐⇒ J(α) = 0.

We first demonstrate that J(pj) �= 0 and J(qi) �= 0. To see this, we set Rj(z) =
ϑp1(z)ϑp2(z) · · ·ϑpj−1(z)ϑpj+1(z) · · ·ϑph

(z) and write Pj(z) = Rj(z)ϑ′
pj

(z).
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Then
J(pj) = Q(pj) · (nmj − mnj)Rj(pj)ϑ′

pj
(pj). (23.2.3)

Clearly Q(pj) �= 0 and Rj(pj) �= 0. Further, ϑ′
pj

(pj) �= 0. In fact, since pj is a
simple zero of ϑpj

, we may write ϑpj
(z) = (z−pj)h(z) where h(pj) �= 0. Then

ϑ′
pj

(z) = h(z) + (z − pj)h′(z), and thus ϑ′
pj

(pj) = h(pj) �= 0. Since Q(pj) �= 0,
Rj(pj) �= 0, and ϑ′

pj
(pj) �= 0, we conclude from (23.2.3) that J(pj) �= 0.

Similarly, we can show J(qi) �= 0.

On the other hand, from the expressions J(z) = PQ
d log(σnτm)

dz
and

K(z) = στ
d log(σnτm)

dz
, we have K(z) = στ

PQ J(z). The equivalence in ques-

tion immediately follows from this equation, because (i) the zeros of στ
PQ are

pj (j = 1, 2, . . . , h) and qi (i = 1, 2, . . . , k) and (ii) J(pj) �= 0 and J(qi) �= 0.�
Next we consider the case where there are indices j such that nmj−mnj =

0; say, for v indices j = h − v + 1, h − v + 2, . . . , h, we have nmj − mnj = 0.
Then instead of P (z) and Pj(z) (while we keep Q(z) and Qi(z)), we introduce
P̂ (z) and P̂j(z) (j = 1, 2, . . . , h − v) as follows:

P̂ (z) =
h−v∏
j=1

ϑpj
(z), P̂j(z) = ϑp1(z)ϑp2(z) · · ·ϑ′

pj
(z) · · ·ϑph−v

(z),

where ϑ′
p(z) = dϑp(z)

dz
. Multiplying P̂ (z)Q(z) with the right hand side of

(23.2.1), we define an arrangement function by

J(z) = Q(z)

(
h−v∑
j=1

(nmj − mnj)P̂j(z)

)
+ P̂ (z)

(
k∑

i=1

maiQi(z)
)

. (23.2.4)

We let J0 be the set of indices j such that nmj −mnj = 0; in the present
case, J0 = {h − v + 1, h − v + 2, . . . , h }. Then J(z) may have a zero at pj0

for j0 ∈ J0; indeed, the right hand side of

J(pj0) = Q(pj0)

(
h−v∑
j=1

(nmj − mnj)P̂j(pj0)

)
+ P̂ (pj0)

(
k∑

i=1

maiQi(pj0)
)

is possibly zero. Noting this, we may generalize Lemma 23.2.2 as follows:

Lemma 23.2.3 For α ∈ C, the following equivalence holds:

K(α) = 0, σ(α) �= 0, and τ(α) �= 0 ⇐⇒ J(α) = 0 and α �= pj

(j ∈ J0),

where J0 is a set of indices j such that nmj − mnj = 0. (If J0 = ∅, the
condition “α �= pj (j ∈ J0)” is vacuous.) Moreover, the order of α in K(z) is
equal to that of α in J(z).
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Next we recall Lemma 21.2.1, p393: A point (α, β) ∈ Xs,t (s, t �= 0) is a
singularity if and only if α and β satisfy

(a) K(α) = 0, σ(α) �= 0, and τ(α) �= 0 and

(b) βn =
ln − m

m
tτ(α),

where K(z) = nσzτ + mστz is the plot function on C. In terms of the equiv-
alence in Lemma 23.2.3, we can restate this as follows:

Proposition 23.2.4 A point (α, β) ∈ Xs,t (s, t �= 0) is a singularity if and
only if α and β satisfy

(a) J(α) = 0, α �= pj (j ∈ J0) and (b) βn = ln − m
m tτ(α),

where J0 is the set of indices j such that nmj − mnj = 0.

Now for a point p ∈ C, recall that Lp is the line bundle on C with
the transition functions “1” (for the gluing map z �→ z + 1 of C) and
“e−πi−2πi(z−p)” (for the gluing map z �→ z + β of C). The translated theta
function ϑp(z) := ϑ(z − p) descends to a holomorphic section of Lp with one
simple zero at the image of p in C = C/Γ; hence the degree of Lp is 1. The
following lemma is important.

Lemma 23.2.5 Suppose that nmj −mnj �= 0 for each j = 1, 2, . . . , h−v, and
nmj −mnj = 0 for each j = h− v + 1, h− v + 2, . . . , h (possibly v = 0). Then
(1) the arrangement function J(z) is a holomorphic section of a line bundle
L :=

⊗h−v
j=1 Lpj

⊗ ⊗k
i=1 Lqi

on C, and (2) the degree of L is h − v + k.

Proof. Note that P̂Q is a section of a line bundle L =
⊗h−v

j=1 Lpj
⊗⊗k

i=1 Lqi
,

while d log(σnτm)
dz

is a meromorphic function (a section of the trivial bundle)

by Remark 23.2.1. Therefore J(z) = P̂Q
d log(σnτm)

dz
is a section of L. The

rest of the statement is clear. From the second expression of J(z) in (23.2.2),
J(z) is holomorphic. Since the line bundles Lpj

and Lqi
have degree 1, the

degree of L is h − v + k. �
Remark 23.2.6 Since C is an elliptic curve, the cotangent bundle Ω1

C is
trivial. Thus by Lemma 21.3.1, p396, the plot function K(z) is a meromorphic
section of a line bundle N⊗(n−m) (its degree is r(m−n) where deg N = −r <
0). Note that K(z) is meromorphic, whereas J(z) is holomorphic.

From Lemma 23.2.5, the sum of the orders of zeros of J(z) is equal to
h − v + k. We are interested in a ‘special case’, that is,(

the sum of the orders of zeros α of J(z) such that α �= pj (j ∈ J0)
)

= (h − v + k) −
∑
j∈J0

ordpj

(
J(z)

)
,
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where J0 is the set of indices j such that nmj − mnj = 0, and ordpj

(
J(z)

)
stands for the order of the zero of J(z) at pj (j ∈ J0). Now setting ω :=
d log

(
σnτm

)
(a meromorphic 1-form on C), we write J(z) = P̂ (z)Q(z)ω. Since

P̂ (z)Q(z) does not vanish at pj (j ∈ J0), we have ordpj
(J(z)) = ordpj

(ω).
Hence the above equation is rewritten as(

the sum of the orders of zeros α of J(z) such that α �= pj (j ∈ J0)
)

= (h − v + k) −
∑
j∈J0

ordpj
(ω).

Using the equivalence in Lemma 23.2.2, we may further rewrite this equa-
tion as(
the sum of the orders of zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0

)
= (h − v + k) −

∑
j∈J0

ordpj
(ω).

In particular,(
the number of zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0

)
≤ (h − v + k) −

∑
j∈J0

ordpj
(ω).

Once we obtain this inequality, it is straightforward to recover the inequalities
in Proposition 21.3.6, p400 and Corollary 21.4.4, p403 (concerning the number
of the subordinate fibers in πt : Mt → Δ and the number of the singularities
of a subordinate fiber).

23.3 Riemann theta functions and Riemann factorization

When the complex curve (the core) C has genus ≥ 2, the “arrangement func-
tion” is defined in terms of the Riemann theta function composed with the
Abel–Jacobi map — in the subsequent discussion, we often quote results from
Supplement (§24.1, p461), where we summarized the results on the Riemann
theta function and related topics.

Let a1, b1, a2, b2, . . . , ag, bg be loops (simple closed curves) on C which form
the standard generators of the fundamental group of C:

π1(C) = 〈 a1, b1, a2, b2, . . . , ag, bg : [a1, b1] [a2, b2] · · · [ag, bg] = 1 〉,

where [ai, bi] := aibia
−1
i b−1

i . We take holomorphic 1-forms ω1, ω2, . . . , ωg on
C which form a “normalized” basis of H0(C,Ω1

C), that is,
∫

ai
ωj = δij where

δij = 0 for i �= j and 1 for i = j. We consider a lattice Λ in C
g generated by
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2g vectors ei and βi (i = 1, 2, . . . , g):

ei =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
ai

ω1∫
ai

ω2

...∫
ai

ωg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

1
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, βi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
bi

ω1∫
bi

ω2

...∫
bi

ωg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where “1” is in i-th place. Namely,

Λ = Ze1 + Ze2 + · · · + Zeg + Zβ1 + Zβ2 + · · · + Zβg. (23.3.1)

A g-dimensional complex torus Jac(C) := C
g/Λ (the quotient of C

g by Λ) is
called the Jacobian variety of C.

The Riemann theta function ϑ(x) is a holomorphic function on C
g, given

by

ϑ(x) =
∑
n∈Zg

exp
[
2πi

(
1
2
〈n, Bn〉 + 〈n,x〉

)]
,

where n and x are column vectors, 〈x,y〉 = x1y1 + x2y2 + · · · + xgyg, and
B = (

∫
bi

ωj ) is a g × g matrix. (Note that ϑ(x) is a higher dimensional
generalization of the “one-dimensional” theta function (23.1.1).) It possesses
quasi doubly-periodicity:

ϑ(x + ei) = ϑ(x), ϑ(x + βi) = e−2πi(xi+
1
2 βii) · ϑ(x),

where xi and βii are respectively the i-th coordinate of x and βi (so βii =∫
bi

ωi). Now we consider a Λ-action on C
g × C generated by

(x, ξ) �−→ (x + ei , ξ), (x, ξ) �−→ (x + βi , e−2πi(xi+
1
2 βii) · ξ)

for i = 1, 2, . . . , g. Then the quotient

L := (Cg × C)/Λ (23.3.2)

is a line bundle on the Jacobian variety Jac(C), and the Riemann theta func-
tion ϑ(x) descends to a holomorphic section of L, which we often denote also
by ϑ. The complex variety Zero(ϑ) = {ϑ(x) = 0 } in Jac(C) is called the theta
divisor.

Next let u : C → Jac(C) be the Abel–Jacobi map: fix a base point z0 ∈ C,
and then it is given by
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u(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ z

z0
ω1∫ z

z0
ω2

...∫ z

z0
ωg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
mod Λ.

As is well-known, if genus (C) ≥ 1, the Abel–Jacobi map u is an embedding
[ACGH]. Taking d ∈ Jac(C), we define a translation map of Jac(C) by x �→
x + d. Then we consider the following line bundle on Jac(C):

Ld: the pull-back of L under the translation x �→ x + d. (23.3.3)

Note that ϑ
(
x − d

)
is a holomorphic section of Ld.

Using the Riemann theta function, we may explicitly express meromor-
phic functions on the complex curve C. To explain this, we prepare some
notation. Fix c ∈ Jac(C) such that ϑ(c) = 0. Also fixing p ∈ C, we consider
a holomorphic section ϑp(z) := ϑ

(
u(z) − u(p) − c

)
of a line bundle Lp on

C, where Lp is the pull-back of the line bundle Lu(p)+c (see (23.3.3)) by the
Abel–Jacobi map u : C → Jac(C). We note that ϑp(z) may be identically
zero. This occurs exactly when u(z) − u(p) − c ∈ Zero(ϑ) for all z ∈ C, that
is, c ∈ −Zero(ϑ) + u(C) − u(p), where “−Zero(ϑ) + u(C) − u(p)” stands for
the translation of the set −Zero(ϑ) by u(C) − u(p) in Jac(C). Thus ϑp(z) is
identically zero precisely when

c ∈ Zero(ϑ) ∩
(
−Zero(ϑ) + u(C) − u(p)

)
.

Henceforth, we always take c ∈ Zero(ϑ) such that ϑp(z) is not identically
zero. Then by Lemma 24.1.7, p471, the sum of the orders of the zeros of ϑp(z)
equals g, so that ϑp(z) has g zeros “including multiplicities”; in other words,
these g zeros are not necessarily distinct1. One of the g zeros is p. Indeed,
since ϑ(x) is an even function, ϑp(p) = ϑ(−c) = ϑ(c) = 0. The remaining
zeros, denoted by o1, o2, . . . , og−1 ∈ C, are called the surplus zeros of ϑp(z).
See §24.1 Supplement, Theorem 24.1.16, p478 for the position of surplus zeros
(see also [Na3], p102, or [Si] II, Theorem 1, p175).

Now let f(z) be a meromorphic function on the complex curve C (of genus
g ≥ 1), and we express its divisor as div(f) =

∑n
i=1 pi −

∑n
i=1 qi where the

points p1, p2, . . . , pn ∈ C (resp. q1, q2, . . . , qn ∈ C) are not necessarily distinct.

Claim 23.3.1 There exists c ∈ Zero(ϑ) such that (1) the surplus zeros
o1, o2, . . . , og−1 of ϑp(z) := ϑ

(
u(z) − u(p) − c

)
are independent of the choice

of p ∈ C and (2) none of o1, o2, . . . , og−1 is pi or qi (i = 1, 2, . . . , n).

1 If we take ‘generic’ c ∈ Zero(ϑ), these zeros are distinct. See Remark 23.3.2 below.
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Proof. We denote by Symi(C) the i-th symmetric product of the curve C,
that is,

Symi(C) = C × C × · · · × C︸ ︷︷ ︸
i

/Si,

where the symmetric group Si acts on C × C × · · · × C by

(z1, z2, . . . , zi) �−→ (zσ(1), zσ(2), . . . , zσ(i)), σ ∈ Si.

We extend the Abel–Jacobi map u : C → Jac(C) to the map u : Symi(C) →
Jac(C) by

(p1, p2, . . . , pi) �−→ u(p1) + u(p2) + · · · + u(pi).

Now let D be the critical set of u : Symg−1(C) → Jac(C), and we set
D′ := u−1(D); so the restriction u : Symg−1(C) \ D′ → Wg−1 \ D is bi-
holomoprhic. Next we take (o1, o2, . . . , og−1) ∈ Symg−1(C) \ D′ such that
none of o1, o2, . . . , og−1 is pi or qi (i = 1, 2, . . . , n), and we set

c := u(o1) + u(o2) + · · · + u(og−1) − κ. (23.3.4)

Then by Theorem 24.1.16 (2), p478, c ∈ Zero(ϑ), that is, ϑ(c) = 0. In par-
ticular, the ‘even function’ ϑp(z) = ϑ

(
u(z) − u(p) − c

)
has a zero p. Further

by Theorem 24.1.16 (4), p478, o1, o2, . . . , og−1 are the surplus zeros of ϑp(z).
Note that none of the surplus zeros o1, o2, . . . , og−1 of ϑp(z) is pi or qi; because
we chose (o1, o2, . . . , og−1) ∈ Symg−1(C) \ D′ such that none of them is pi or
qi. Also since c+κ ∈ Wg−1 \D, the surplus zeros o1, o2, . . . , og−1 of ϑp(z) are
independent of the choice of p ∈ C (Theorem 24.1.16 (3)). This completes the
proof of our claim. �
Remark 23.3.2 We may find c ∈ Zero(ϑ) such that ϑp(z) := ϑ(u(z)−u(p)−
c) has g “distinct” zeros. In fact, take (o1, o2, . . . , og−1) ∈ Symg−1(C) \ D′ in
the above proof such that p, o1, o2, . . . , og−1 are distinct. Then for the c defined
by (23.3.4), ϑp(z) has g distinct zeros p, o1, o2, . . . , og−1. Actually, ϑp(z) for
generic c ∈ Zero(ϑ) has g distinct zeros, as we may vary o1, o2, . . . , og−1.

Now we consider a meromorphic function f(z) on the complex curve C;
we express div(f) =

∑n
i=1 pi −

∑n
i=1 qi, where the points p1, p2, . . . , pn ∈ C

(resp. q1, q2, . . . , qn ∈ C) are not necessarily distinct. Choosing c ∈ Zero(ϑ) as
in Claim 23.3.1, we set

ϑpi
(z) := ϑ

(
u(z) − u(pi) − c

)
, ϑqi

(z) := ϑ
(
u(z) − u(qi) − c

)
.

Then the following factorization (Riemann Factorization Theorem; see [Si] II,
p176, [Mu2] I, p158) holds:

f(z) = a

n∏
i=1

ϑpi
(z)

n∏
i=1

ϑqi
(z)

, (23.3.5)
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where a is some complex number. Notice that all the surplus zeros o1, o2, . . . ,
og−1 in the numerator and denominator cancel. Also note a correspondence
between functions on C and C:

z − p ←→ ϑp(z).

We remark that precisely speaking, in the expression of the Riemann fac-
torization, we need to choose branches of ϑpi

and ϑqi
, as they are multi-valued

(they are sections of line bundles). Working on the universal covering space C̃
of C, we may clarify this procedure. Specifically, instead of the Abel–Jacobi
map u : C → Jac(C), we consider its lift ũ : C̃ → C

g. Accordingly, we use
the notation ϑ̃ for the Riemann theta function on C

g while ϑ stands for the
holomorphic section of the line bundle L (see (23.3.2)) on Jac(C), determined
by ϑ̃.

Fix c̃ ∈ C
g such that ϑ̃(c̃) = 0. Taking p̃ ∈ C̃, we consider a holomorphic

function ϑ̃p̃(z) := ϑ
(
ũ(z) − ũ(p̃) − c̃

)
on C̃. Now let f(z) be a meromorphic

function on C, and we express

div(f) =
n∑

i=1

pi −
n∑

i=1

qi, (divisor expression),

where the points p1, p2, . . . , pn ∈ C (resp. q1, q2, . . . , qn ∈ C) are not necessar-
ily distinct. Fixing lifts p̃i ∈ C̃ of pi ∈ C and q̃i ∈ C̃ of qi ∈ C, we define a
meromorphic function f̃ on C̃:

f̃(z̃) := a

n∏
i=1

ϑ̃p̃i
(z̃)

n∏
i=1

ϑ̃q̃i
(z̃)

, (23.3.6)

where a is a complex number. We denote by Γ the covering transformation
group of the universal covering C̃ → C. Then by Lemma 23.3.3 (2) below,
f̃(z̃) is Γ-invariant. Hence f̃(z̃) descends to the meromorphic function f(z) on
C = C̃/Γ, and (23.3.6) corresponds to the Riemann factorization (23.3.5).

Lemma 23.3.3 Let a1, b1, a2, b2, . . . , ag, bg be loops on C which form the
standard generators of the fundamental group of C:

π1(C) = 〈 a1, b1, a2, b2, . . . , ag, bg : [a1, b1] [a2, b2] · · · [ag, bg] = 1 〉,
where [ai, bi] := aibia

−1
i b−1

i . Denote by Ak and Bk (k = 1, 2, . . . , g) the cover-
ing transformations of the universal covering C̃ → C respectively correspond-
ing to the loops ak and bk. Then

(1) f̃(Ak · z̃) = f̃(z̃) and f̃(Bk · z̃) = e2πiλk · f̃(z̃), where λk :=
n∑

i=1

ũk(p̃i) −
n∑

i=1

ũk(q̃i).
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(2) There exist lifts p̃j of pj and q̃j of qj such that λk = 0. (Accordingly,
f̃(Ak · z̃) = f̃(z̃) and f̃(Bk · z̃) = f̃(z̃), and so f̃ is Γ-invariant.)

Proof. (1): Recall the transformation rule of the Riemann theta function:

ϑ̃p̃ (Ak · z̃) = ϑ̃p̃ (z̃), ϑ̃p̃ (Bk · z̃) = exp
[
−2πi

(
ũ(p̃) +

1
2
β

)]
· ϑ̃p̃ (z̃).

(23.3.7)

Thus from (23.3.6), clearly f̃(Ak · z̃) = f̃(z̃). On the other hand,

f̃(Bk · z̃) =

n∏
i=1

ϑ̃p̃i
(Bk · z̃)

n∏
i=1

ϑ̃q̃i
(Bk · z̃)

=

n∏
i=1

exp
[
−2πi

(
ũ(p̃i) +

1
2
β
)]

· ϑ̃p̃i
(z̃)

n∏
i=1

exp
[
−2πi

(
ũ(q̃i) +

1
2
β
)]

· ϑ̃q̃i
(z̃)

= exp

[
2πi

( n∑
i=1

ũk(p̃i) −
n∑

i=1

ũk(q̃i)
)]

· f̃(z̃)

= exp(2πiλk) · f̃(z̃).

(2): We show this only for g = 1 (the argument below works for g ≥ 2).
For simplicity we omit the subscript 1(= g); we denote λ1 by λ etc. By Abel’s
Theorem p467,

λ :=
n∑

i=1

ũ(p̃i) −
n∑

i=1

ũ(q̃i) ≡ 0 mod Λ,

where Λ is the lattice (23.3.1). So we may write λ = me+nβ where m, n ∈ Z,
and e and β is the basis of Λ. Now we take a new lift of p1. Instead of the
original p̃1, we take p̃1−me−nβ as p̃1. Then λ =

∑n
i=1 ũ(p̃i)−

∑n
i=1 ũ(q̃i) = 0,

and so the assertion is confirmed. �

Supplement: Another form of the Riemann factorization

We shall slightly modify the Riemann factorization. Let f(z) be a meromor-
phic function on C. By Lemma 23.3.3 (1), f̃(Ak · z̃) = f̃(z̃) and f̃(Bk · z̃) =
e2πiλk · f̃(z̃). We take a holomorphic 1-form ω on C such that∫

ak

ω = 1,
∫

bk

ω = λk.

(As in the proof of Abel’s Theorem p467, we may take such ω.) We fix a base
point z0 ∈ C. Then the integration μ(z) :=

∫ z

z0
ω (a multi-valued function on

C) lifts to a single-valued holomorphic function μ̃(z̃) on the universal covering
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space C̃ such that

μ̃(Ak · z̃) = μ̃(z̃), μ̃(Bk · z̃) = μ̃(z̃) + λk.

Now we set g(z̃) = e−2πiμ̃(z̃)f̃(z̃), and then g(z̃) is a Γ-invariant function on
C̃. So g(z̃) descends to the meromorphic function f(z) on C. Moreover, g(z̃)
induces the following factorization of f(z):

f(z) = exp
(
−2πi

∫ z

z0

ω

)
·

n∏
i=1

ϑpi
(z)

n∏
i=1

ϑqi
(z)

.

This is the expression in Theorem 5, p103 of [Na3].

23.4 Genus ≥ 2: Arrangement functions

In this section, we introduce an arrangement function for the case genus (C) ≥
2. Consider the restriction of a barking family around the core C:

Xs,t : σ(z)ζm − s +
l∑

k=1

lCktkσ(z)τ(z)kζm−kn = 0,

where σ is a holomorphic section of a line bundle N⊗(−m) on the complex
curve C with a zero of order mj at each pj (j = 1, 2, . . . , h), while τ is a
meromorphic section of a line bundle N⊗n on C with a pole of order nj at
each pj (j = 1, 2, . . . , h) and with a zero of order ai at each qi (i = 1, 2, . . . , k).

We recall two functions, which were used for describing the singularities
of a subordinate fiber (a singular fiber Xs,t such that s, t �= 0):

(i) the plot function K(z) = nσzτ + mστz: The z-coordinate of a singularity
of a subordinate fiber is necessarily a zero of K(z) (Theorem 21.2.3, p395).

(ii) the discriminant function Ds,t(z) = σ(z)n′
τ(z)m′ − λs,t where

λs,t :=
(

ln − m

ln

)n′l (
m

ln − m

)m′
sn′

tm
′ ,

and m′ := m/gcd(m,n) and n′ := n/gcd(m,n); see (21.1.2). Let Xs,t

(s, t �= 0) be a (smooth or singular) fiber, and then the zeros of Ds,t(z)
are the branched points of the branched covering (z, ζ) ∈ Xs,t �−→ z ∈ C.

We shall express Ds,t(z) in terms of the Riemann theta function. Note that
σn′

τm′
(where m′ := m/gcd(m,n) and n′ := n/gcd(m,n)) is a meromorphic

function on C, because σn′
τm′

is a section of (N⊗−m)n′ ⊗ (N⊗n)m′ ∼= OC

(the trivial bundle). Thus we may apply the Riemann Factorization Theorem
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to express

σn′
τm′

= γ

k∏
i=1

ϑqi
(z)m′ai

h∏
j=1

ϑpj
(z)m′nj−n′mj

, (γ: a complex number), (23.4.1)

where we take c ∈ Jac(C) as in Claim 23.3.1 and we set ϑp(z) := ϑ
(
u(z) −

u(p) − c
)
.

Remark 23.4.1 For the case g ≥ 2 (where g := genus(C)), σ and τ are
not expressible in terms of the Riemann theta function. In contrast, they are
expressible for g = 1. cf. (23.1.7). This difference is due to the fact that ϑp(z)
has g zeros, and so if g ≥ 2, then ϑp(z) has g − 1 surplus zeros.

Using (23.4.1), we may express the discriminant function Ds,t(z) = σ(z)n′ ×
τ(z)m′ − λs,t as follows:

Ds,t(z) = γ

∏k
i=1 ϑqi

(z)m′ai∏h
j=1 ϑpj

(z)m′nj−n′mj
− λs,t. (23.4.2)

Next recall that the plot function K(z) = στ
d log(σnτm)

dz
is a meromorphic

section of a line bundle N⊗(n−m) ⊗ Ω1
C of degree r(m − n) + (2g − 2) on the

curve C, where r := −deg(N). Also recall the role of K(z): A point (α, β) of a
singular fiber Xs,t (s, t �= 0) is a singularity if and only if (i) α is not a zero of
σ or τ and (ii) K(α) = 0 and βn = ln − m

m tτ(β) (see Lemma 21.2.1, p393).
From the viewpoint of the description of the singularities of Xs,t, the plot
function K(z) has pj (j = 1, 2, . . . , h) and qi (i = 1, 2, . . . , k) as unnecessary
zeros. For this reason, as in the case g = 0, 1 (g := genus(C)), we introduce
an arrangement function.

We set d = gcd(m,n). Taking the d-th powers of (23.4.1), we have

σnτm = γd

∏k
i=1 ϑqi

(z)mai∏h
j=1 ϑpj

(z)mnj−nmj
, (23.4.3)

and so

log(σnτm) = log(γd) +
k∑

i=1

mai log ϑqi
(z) −

h∑
j=1

(mnj − nmj) log ϑpj
(z).

(23.4.4)

Now we introduce an arrangement function. At first, we assume that nmj −
mnj �= 0 for all j = 1, 2, . . . , h. We set P (z) =

∏h
j=1 ϑpj

(z) and Q(z) =∏k
i=1 ϑqi

(z), and also we set
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Pj(z) = ϑp1(z)ϑp2(z) · · ·ϑ′

pj
(z) · · ·ϑph

(z),

Qi(z) = ϑq1(z)ϑq2(z) · · ·ϑ′
qi

(z) · · ·ϑqk
(z),

(23.4.5)

where ϑ′
p(z) = dϑp(z)

dz
. Then we define an arrangement function J(z) by

J(z) := P (z)Q(z)
d log(σnτm)

dz

= P (z)Q(z)

⎛⎝ k∑
i=1

mai

ϑ′
qi

(z)
ϑqi

(z)
−

h∑
j=1

(mnj − nmj)
ϑ′

pj
(z)

ϑpj
(z)

⎞⎠
= Q(z)

( h∑
j=1

(nmj − mnj)Pj(z)
)

+ P (z)
( k∑

i=1

maiQi(z)
)
, (23.4.6)

where in the second equality we used (23.4.4). From the third expression,
clearly J(z) is holomorphic (whereas K(z) is in general meromorphic by
Lemma 21.3.1, p396). Before proceeding, we note that ϑp(z) := ϑ

(
u(z) −

u(p) − c
)

is a holomorphic section of a line bundle Lp on C, where Lp is the
pull-back of the line bundle Lu(p)+c (see (23.3.3)) by the Abel–Jacobi map
u : C → Jac(C); by Lemma 24.1.7, p471, Lp has degree g.

Since d log(σnτm)
dz

is a meromorphic section of the cotangent bundle Ω1
C

(Remark 23.2.1) and PQ is a holomorphic section of a line bundle L :=⊗h
j=1 Lpj

⊗⊗k
i=1 Lqi

, it follows that J(z) = PQ
d log(σnτm)

dz
is a holomorphic

section of L⊗Ω1
C ; as Lpj

and Lqi
have the degree g, we have deg(L⊗Ω1

C) =
g(h + k) + (2g − 2).

Observe that conversion from K(z) to J(z) amounts to the exclusion of
the unnecessary zeros p1, p2, . . . , ph, q1, q2, . . . , qk; see Lemma 23.2.2. How-
ever, in the present case (the genus g ≥ 2), J(z) still possesses another
type of unnecessary zeros, which K(z) does not have. Indeed, since ϑpj

(z)
and ϑqi

(z) have the surplus zeros o1, o2, . . . , og−1, the factor P (z)Q(z) in

J(z) = P (z)Q(z)d log σnτm

dz
causes J(z) to have zeros o1, o2, . . . , og−1. Note

that o1, o2, . . . , og−1 are not zeros of d log σnτm

dz
, because in the Riemann

factorization (23.4.3), the surplus zeros in the numerator and denominator
cancel.

Next, we note that since J(z) is a holomorphic section of the line bundle
L ⊗ Ω1

C , we have(
the sum of the orders of the zeros of J(z)

)
= g(h + k) + (2g − 2),

where the right hand side is the degree of L ⊗ Ω1
C . We claim that

(the sum of the orders of zeros of J(z) which are
distinct from o1, o2, . . . , og−1)

= (h + k) + (2g − 2). (23.4.7)
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To see this, first note that the sum of the orders of the surplus zeros
o1, o2, . . . , og−1 in P (z)Q(z) is (g−1)(h+k) (whereas, as we mentioned above,

o1, o2, . . . , og−1 are not zeros of d log σnτm

dz
). Subtracting (g − 1)(h + k) from

g(h + k) + (2g − 2), we see that the right hand side of (23.4.7) is equal to
(h + k) + (2g − 2), confirming (23.4.7).

Next we introduce J(z), when there are indices j such that nmj−mnj = 0;
say, for v indices j = h−v+1, h−v+2, . . . , h, we have nmj −mnj = 0. In this
case, instead of P (z) and Pj(z), we take P̂ (z) and P̂j(z) (j = 1, 2, . . . , h− v):

P̂ (z) =
h−v∏
j=1

ϑpj
(z), P̂j(z) = ϑp1(z)ϑp2(z) · · ·ϑ′

pj
(z) · · ·ϑph−v

(z),

and we define an arrangement function:

J(z) := P̂ (z)Q(z)
d log(σnτm)

dz

= Q(z)
( h−v∑

j=1

(nmj − mnj)P̂j(z)
)

+ P̂ (z)
( k∑

i=1

maiQi(z)
)
.

Then J(z) is a holomorphic section of a line bundle L ⊗ Ω1
C on the complex

curve C, where L :=
⊗h−v

j=1 Lpj
⊗⊗k

i=1 Lqi
. (Recall that Lp is the pull-back of

the line bundle Lu(p)+c (see (23.3.3)) by the Abel–Jacobi map u : C → Jac(C),
and Lp has a holomorphic section ϑp.) By Lemma 24.1.7, p471, the degrees
of both Lpj

and Lqi
are g, and so the degree of L is g(h − v + k). Thus we

obtain

Lemma 23.4.2 Suppose that nmj −mnj �= 0 for j = 1, 2, . . . , h−v (possibly,
v = 0), and nmj − mnj = 0 for j = h − v + 1, h − v + 2, . . . , h. Then (1)
J(z) is a holomorphic section of a line bundle L⊗Ω1

C on C, where Ω1
C is the

cotangent bundle of C and L :=
⊗h−v

j=1 Lpj
⊗ ⊗k

i=1 Lqi
, and (2) the degree of

L ⊗ Ω1
C is g(h − v + k) + (2g − 2).

By a similar argument to the proof of Lemma 23.2.2, it is immediate to
show

Lemma 23.4.3 Let K(z) = nσzτ + mστz be the plot function on C. Let
o1, o2, . . . , og−1 be the surplus zeros of ϑpj

(z) (and also those of ϑqi
(z)). Then

for α ∈ C, the following equivalence holds:

K(α) = 0, σ(α) �= 0, and τ(α) �= 0
⇐⇒ J(α) = 0, α �= pj (j ∈ J0), and α is none of o1, o2, . . . , og−1,

where J0 is the set of indices j such that nmj −mnj = 0. Moreover, the order
of α in K(z) is equal to that of α in J(z).

Next recall Lemma 21.2.1, p393: A point (α, β) ∈ Xs,t (s, t �= 0) is a
singularity if and only if α and β satisfy

(a) K(α) = 0, σ(α) �= 0, τ(α) �= 0 and (b) βn = ln − m
m tτ(α).

In terms of the equivalence in Lemma 23.4.3, we can restate this as follows:
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Lemma 23.4.4 Denote by J0 the set of indices j such that nmj − mnj = 0.
Let o1, o2, . . . , og−1 be the surplus zeros of ϑpj

(z) (and also those of ϑqi
(z)).

Then a point (α, β) ∈ Xs,t (s, t �= 0) is a singularity if and only if α and β
satisfy

(a) J(α) = 0, α �= pj (j ∈ J0), and α is none of o1, o2, . . . , og−1 and
(b) βn = ln − m

m tτ(α).

Now from Lemma 23.4.2 (see also the proof of (23.4.7)), we can deduce(
the sum of the orders of zeros of J(z) which are distinct

from o1, o2, . . . , og−1

)
= (h − v + k) + (2g − 2).

In particular, we have(
the sum of the orders of zeros of J(z) which are distinct

from o1, o2, . . . , og−1 and pj (j ∈ J0)
)

= (h − v + k) + (2g − 2) −
∑
j∈J0

ordpj

(
J(z)

)
, (23.4.8)

where J0 is the set of indices j such that nmj − mnj = 0, and ordpj

(
J(z)

)
stands for the order of the zero of J(z) at pj (j ∈ J0). Now setting ω :=
d log

(
σnτm

)
(a meromorphic 1-form on C), we write J(z) = P̂ (z)Q(z)ω. Since

P̂ (z)Q(z) does not vanish at pj (j ∈ J0), we have ordpj
(J(z)) = ordpj

(ω).
Using this equation with the equivalence in Lemma 23.4.3, we may rewrite
(23.4.8) as(
the sum of the orders of zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0

)
= (h − v + k) + (2g − 2) −

∑
j∈J0

ordpj
(ω).

In particular,(
the number of zeros α of K(z) such that σ(α) �= 0 and τ(α) �= 0

)
≤ (h − v + k) + (2g − 2) −

∑
j∈J0

ordpj
(ω).

Once we obtain this inequality, it is straightforward to recover the inequalities
in Proposition 21.3.6, p400 and Corollary 21.4.4, p403 (concerning the number
of the subordinate fibers in πt : Mt → Δ and the number of the singularities
of a subordinate fiber).
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This chapter is a brief introduction to the Riemann theta function and related
topics, which we require for our discussion.

24.1 Riemann theta function and related topics

The residue theorem is a key ingredient to deduce various formulas explained
in this section. Let f(z) be a meromorphic function defined on a domain
D in C. We denote the zeros of f by p1, p2, . . . , pλ, where pi has order mi,
and denote the poles of f by q1, q2, . . . , qν , where qj has order nj . Given a
holomorphic function h(z) on the domain D, the residue theorem gives the
‘weighted sum’ of the values of h(z) at p1, p2, . . . , pλ and q1, q2, . . . , qν . Namely,

1
2πi

∫
Γ

h · d log f =
1

2πi

∫
Γ

h · f ′

f
=

λ∑
i=1

mih(pi) −
ν∑

j=1

mjh(qj),

where the contour Γ ⊂ D surrounds p1, p2, . . . , pλ and q1, q2, . . . , qν . Choosing
various h(z), we later derive many important formulas from the above formula.

Now let C be a complex curve — Riemann surface — of genus g ≥ 1. We
take 2g loops (simple closed “real” curves) a1, b1, a2, b2, . . . , ag, bg on C such
that they are the standard generators of the fundamental group of C:

π1(C) = 〈 a1, b1, a2, b2, . . . , ag, bg : [a1, b1] [a2, b2] · · · [ag, bg] = 1 〉, (24.1.1)

where [ai, bi] := aibia
−1
i b−1

i . Cutting C along these loops, we obtain 4g-gon
P ; the oriented edges of the boundary ∂P are “somewhat informally” denoted
by

a1, b1, a−1
1 , b−1

1 , a2, b2, a−1
2 , b−1

2 , . . . , ag, bg, a−1
g , b−1

g .

See Figure 24.1.1. When g = 1, we often omit the subscripts to write
a, b, a−1, b−1.



462 24 Supplement

b1

a−1
1

P

b−1
2

a2b−1
1

a1

a−1
2

b2

Fig. 24.1.1. The 4g-gon P for g = 2

Lemma 24.1.1 Let f(z) be a meromorphic function on a complex curve C,
and let div(f) =

∑λ
i=1 mipi −

∑ν
j=1 njqj be the divisor of f . Then

∑λ
i=1 mi −∑ν

j=1 nj = 0. (Namely, the divisor defined by a meromorphic function has
degree 0.)

Proof. By the residue theorem,

1
2πi

∫
∂P

d log f =
λ∑

i=1

mi −
ν∑

j=1

nj . (24.1.2)

We shall compute the left hand side explicitly. First of all, we consider the
case g = 1; then ∂P consists of a, b, a−1, b−1, and∫

∂P

d log f =
∫

a

d log f +
∫

b

d log f +
∫

a−1
d log f +

∫
b−1

d log f

=
∫

a

(
d log f(p+) − d log f(p−)

)
+

∫
b

(
d log f(q+) − d log f(q−)

)
,

where p+ and p− (resp. q+ and q−) are respectively corresponding points on
the edges a and a−1 (resp. b and b−1). Since d log f(p+) = d log f(p−) and
d log f(q+) = d log f(q−), we have∫

ai

(
d log f(p+) − d log f(p−)

)
= 0,

∫
bi

(
d log f(q+) − d log f(q−)

)
= 0.

Hence
∫

∂P
d log f = 0, and by (24.1.2),

∑λ
i=1 mi −

∑ν
j=1 nj = 0. This proves

the assertion for the case g = 1. For general g, we note∫
∂P

d log f =
g∑

i=1

[ ∫
ai

d log f +
∫

bi

d log f +
∫

a−1
i

d log f +
∫

b−1
i

d log f

]
.
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By the same computation as that for g = 1, the inside the brackets is 0, and
therefore

∫
∂P

d log f = 0. With (24.1.2), we deduce
∑λ

i=1 mi −
∑ν

j=1 nj = 0.�

We take a normalized basis ω1, ω2, . . . , ωg of the space H0(C,Ω1
C) of holo-

morphic 1-forms, so that
∫

ai
ωj = δij holds. We consider 2g vectors in C

g: for
i = 1, 2, . . . , g,

ei =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
ai

ω1∫
ai

ω2

...∫
ai

ωg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

1
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, βi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
bi

ω1∫
bi

ω2

...∫
bi

ωg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (24.1.3)

where “1” in ei is in i-th place; we denote the j-th coordinate of βi by βij

(that is, βij =
∫

bi
ωj). We next define a lattice Λ generated by the above 2g

vectors:

Λ = Ze1 + Ze2 + · · · + Zeg + Zβ1 + Zβ2 + · · · + Zβg.

Then a g-dimensional complex torus Jac(C) := C
g/Λ (the quotient of C

g

by Λ) is called the Jacobian variety of C. Now fixing a base point z0 ∈ C, we
define a holomorphic map u : C → C

g by

u(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ z

z0
ω1∫ z

z0
ω2

...∫ z

z0
ωg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (24.1.4)

Actually, u is multi-valued; the value u(z) depends on the choice of the path
of integration from z0 to z. However, u : C → C

g descends to a single-valued
holomorphic map — we denote it also by u, that is, u : C → Jac(C). This
map is called the Abel–Jacobi map.

A theta function of order m (m ≥ 0) is a holomorphic function θ on C
g

satisfying

θ(x + ei) = θ(x), θ(x + βi) = e−2πmi (xi+
1
2 βii)θ(x), i = 1, 2, . . . , g,

where xi and βii are respectively the i-th coordinate of x and βi (so βii =∫
bi

ωi). Among theta functions, the most important one is the Riemann theta
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function:

ϑ(x) =
∑
n∈Zg

exp
[
2πi

(
1
2
〈n, Bn〉 + 〈n,x〉

)]
,

where n and x are column vectors, 〈x,y〉 = x1y1 + x2y2 + · · · + xgyg, and
B = (

∫
bi

ωj ) is a g × g matrix. The Riemann theta function possesses quasi
doubly-periodicity:

ϑ(x + ei) = ϑ(x), ϑ(x + βi) = e−2πi(xi+
1
2 βii) · ϑ(x). (24.1.5)

Now we consider a Λ-action on C
g × C generated by

(x, ξ) �−→ (x + ei , ξ), (x, ξ) �−→ (x + βi , e−2πi(xi+
1
2 βii) · ξ)

for i = 1, 2, . . . , g (recall: xi and βii are respectively the i-th coordinate of
x and βi (so βii =

∫
bi

ωi)). Then the quotient L := (Cg × C)/Λ is a line
bundle on the Jacobian variety Jac(C), and the theta function ϑ determines
a holomorphic section of L. Henceforth we also denote by ϑ the holomorphic
section of L determined by ϑ.

We remark that most formulas given below are deduced as follows: For
each formula to be shown, we choose a suitable contour integral and then
compute it in two different ways. The first method applies the residue theorem
and the second computes it using explicit parameterizations, using the fact
that the contour is a 4g-gon — the cancellation along each set of four edges
ai, bi, a

−1
i , b−1

i is crucial.

Lemma 24.1.2 (Riemann bilinear relation) Suppose that ω is a holo-
morphic 1-form and θ is a meromorphic 1-form on a complex curve C
of genus g ≥ 1. Let P be the 4g-gon obtained by cutting C along the
loops a1, b1, a2, b2, . . . , ag, bg, and define a holomorphic function f on P by
f(z) =

∫ z

z0
ω where z0 ∈ C is a base point. Then the following equation holds:

∫
∂P

f · θ =
g∑

i=1

( ∫
ai

ω

∫
bi

θ −
∫

bi

ω

∫
ai

θ

)
.

Proof. We first give the proof for the case g = 1; in this case ∂P = aba−1b−1,
and ∫

∂P

f · θ =
∫

a

f · θ +
∫

b

f · θ +
∫

a−1
f · θ +

∫
b−1

f · θ

=
(∫

a

f · θ +
∫

a−1
f · θ

)
+

(∫
b

f · θ +
∫

b−1
f · θ

)
(24.1.6)

We shall rewrite the integrals in the last expression. We denote corresponding
points on the edges a and a−1 by p+ and p−. Then
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q+

b

p−

b−1

a−1

P

p+

q−

a

Fig. 24.1.2.

∫
a

f · θ +
∫

a−1
f · θ =

∫
a

(
f(p+) − f(p−)

)
· θ =

∫
a

(∫
b−1

ω

)
θ =

∫
b−1

ω

∫
a

θ

= −
∫

b

ω

∫
a

θ,

where the second equality follows from the fact that the path from p− to p+ is
isotopic to the edge b−1 (see Figure 24.1.2). Likewise, we denote corresponding
points on the edges b and b−1 by q+ and q−. Then∫

b

f · θ +
∫

b−1
f · θ =

∫
b

(
f(q+) − f(q−)

)
θ =

∫
b

(∫
a

ω

)
θ

=
∫

a

ω

∫
b

θ,

where the second equality follows from the fact that the path from q− to q+ is
isotopic to the edge a (see Figure 24.1.2). With (24.1.6), we obtain the bilinear
relation: ∫

∂P

f · θ = −
∫

a

θ

∫
b

ω +
∫

a

ω

∫
b

θ.

For general g, the boundary ∂P is a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga
−1
g b−1

g , and
so ∫

∂P

f · θ =
g∑

i=1

(∫
ai

f · θ +
∫

bi

f · θ +
∫

a−1
i

f · θ +
∫

b−1
i

f · θ
)

. (24.1.7)

For each i = 1, 2, . . . , g, by the same computation as for the case g = 1, we
deduce∫

ai

f · θ +
∫

bi

f · θ +
∫

a−1
i

f · θ +
∫

b−1
i

f · θ =
∫

ai

ω

∫
bi

θ −
∫

bi

ω

∫
ai

θ.

This with (24.1.7) gives the bilinear relation. �
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Remark 24.1.3 In the above proof, the computation of the integral
∫

∂P
f ·θ

essentially used the fact that the 4g-gon P obtained by cutting the complex
curve C has a boundary consisting of g quadruples of edges: ai, bi, a

−1
i , b−1

i

(for i = 1, 2, . . . , g). In contrast, the application of the residue theorem does
not require a domain to have any particular boundary.

Next we derive the “reciprocity law”, which will be effectively used for our
later computations.

Lemma 24.1.4 (Reciprocity law) Suppose that ω1, ω2, . . . , ωg is a nor-
malized basis of H0(C,Ω1

C), so that
∫

ai
ωj = 0 for i �= j and 1 for i = j.

Let ωp,q be an abelian differential of the third kind1 such that

(i) ωp,q has simple poles at p and q with the residue +1 at p and the residue
−1 at q, and ωp,q is holomorphic outside p and q, and

(ii)
∫

aj
ωp,q = 0 for j = 1, 2, . . . , g.

Then
∫

bj
ωp,q = 2πi

∫ p

q
ωj holds.

Proof. We take loops a1, b1, a2, b2, . . . , ag, bg on C that are the standard gen-
erators of the fundamental group of C (see (24.1.1)) — we choose these loops
such that p and q do not lie on them. We denote by P the 4g-gon obtained
by cutting C along these loops. Fix a base point z0 ∈ C, and for each ωj

(j = 1, 2, . . . , g), we define a holomorphic function hj(z) :=
∫ z

z0
ωj on P . Since

the residue of hj ωp,q at p (resp. q) is hj(p) (resp. hj(q)), the residue theorem
yields

1
2πi

∫
∂P

hj ωp,q = hj(p) − hj(q) =
∫ p

q

ωj . (24.1.8)

On the other hand, by Riemann’s bilinear relation,∫
∂P

hj ωp,q =
g∑

i=1

( ∫
ai

ωj

∫
bi

ωp,q −
∫

bi

ωj

∫
ai

ωp,q

)
.

Since
∫

ai
ωj = δij and

∫
ai

ωp,q = 0, it follows that
∫

∂P
hj ωp,q =

∫
bj

ωp,q, where
by (24.1.8), the left hand side equals 2πi

∫ p

q
ωj . This shows the reciprocity law:

2πi
∫ p

q
ωj =

∫
bj

ωp,q. �
Next for a meromorphic function f on a complex curve C, we express its

divisor as follows:

div(f) :=
n∑

i=1

pi −
n∑

i=1

qi,

where p1, p2, . . . , pn (resp. q1, q2, . . . , qn) need not to be distinct. We claim
that

n∑
i=1

u(pi) −
n∑

i=1

u(qi) ≡ 0 mod Λ, (24.1.9)

1 A meromorphic 1-form whose poles are simple (i.e. of order 1)
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where u : C → C
g is the ‘Abel–Jacobi map’ — instead of the usual Abel–

Jacobi map u : C → Jac(C) (= C
g/Λ), we here intend its lift, that is, a

(multi-valued) holomorphic map C → C
g; see (24.1.4).

To avoid complicated notation, we show (24.1.9) only for g = 2. In this
case, the Abel–Jacobi map is

u(z) =

⎛⎝ u1

u2

⎞⎠ ,

where u1 =
∫ z

z0
ω1 and u2 =

∫ z

z0
ω2. We shall compute an integral

∫
∂P

u ·
d log(f) in two different ways to verify (24.1.9). First, by the residue theorem,

1
2πi

∫
∂P

u · d log(f) =
n∑

i=1

u(pi) −
n∑

i=1

u(qi). (24.1.10)

Secondly, by Riemann’s bilinear relation (Lemma 24.1.2), we have for each
j = 1, 2,∫

∂P

uj · d log(f) =
[ ∫

a1

ωj

∫
b1

d log(f) −
∫

b1

ωj

∫
a1

d log(f)
]

+
[ ∫

a2

ωj

∫
b2

d log(f) −
∫

b2

ωj

∫
a2

d log(f)
]

.

Since a contour integral of the logarithmic function takes a value in 2πiZ, we
may write ∫

ai

d log(f) = 2πimi,

∫
bi

d log(f) = 2πim′
i,

where mi,m
′
i ∈ Z. Recall that ωi is normalized:

∫
ai

ωj = δij . Therefore setting
βij :=

∫
bi

ωj , we have

1
2πi

∫
∂P

u · d log(f)=

⎡⎣m′
1

⎛⎝ 1

0

⎞⎠ − m′
2

⎛⎝ 0

1

⎞⎠⎤⎦+

⎡⎣m1

⎛⎝ β11

β12

⎞⎠−m2

⎛⎝ β21

β22

⎞⎠⎤⎦
= m′

1e1 − m′
2e2 + m1β1 − m2β2.

The comparison with (24.1.10) yields
n∑

i=1

u(pi) −
n∑

i=1

u(qi) = m′
1e1 − m′

2e2 + m1β1 − m2β2,

and so
∑n

i=1 u(pi)−
∑n

i=1 u(qi) ∈ Λ. This verified the “only if” part of Abel’s
Theorem:

Theorem 24.1.5 (Abel’s Theorem) Let D be a divisor of degree 0 on a
complex curve C of genus g ≥ 1, and write D =

∑n
i=1 pi −

∑n
i=1 qi where
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p1, p2, . . . , pn (resp. q1, q2, . . . , qn) need “not” to be distinct. Then there ex-
ists a meromorphic function f on C satisfying D = div(f) if and only if∑n

i=1 u(pi) −
∑n

i=1 u(pi) ≡ 0 mod Λ.

(Note: Abel’s Theorem implies that (i) the Abel–Jacobi map u : C → Jac(C)
is an embedding and (ii) when we extend u to a homomorphism u : Div(C) →
Jac(C) where Div(C) denotes the group of the divisors on C, the kernel of u
consists of the divisors of the meromorphic functions on C.)

Proof. We already proved the “only if” part. We now show the “if” part.
At first, we assume that p1, p2, . . . , pn (resp. q1, q2, . . . , qn) are distinct. Let
ω1, ω2, . . . , ωg be a normalized basis of H0(C,Ω1

C), so that
∫

ai
ωj = δij . For a

pair of points p, q ∈ C, we denote by ωp,q the meromorphic 1-form on C such
that

(1) ωp,q has simple poles at p and q with the residue +1 at p and the residue
−1 at q, and ωp,q is holomorphic outside p and q, and

(2)
∫

ai
ωp,q = 0 for i = 1, 2, . . . , g.

Fixing a base point z0 ∈ C, we define a meromorphic 1-form θ on C by

θ := c1 ω1 + c2 ω2 + · · · + cg ωg +
n∑

i=1

ωpi, z0 −
n∑

i=1

ωqi, z0 ,

where the complex numbers ci will be determined below. We note that θ has
a simple pole at pi (resp. qi) with the residue +1 (resp. −1); whereas θ has
no pole at z0, because a pole z0 of ωpi, z0 (with the residue −1) and a pole z0

of −ωqi, z0 (with the residue +1) cancel.
Now we shall determine ci ∈ C in such a way that

∫
bj

θ ∈ 2πiZ. First,
since

∫
ai

ωp,q = 0, we have ∫
ai

θ = ci. (24.1.11)

On the other hand, since
∫

bj
ωi = βji (by definition; see (24.1.3)), we have

∫
bj

θ = c1βj1 + c2βj2 + · · ·+ cgβjg +
n∑

i=1

∫
bj

ωpi, z0 −
n∑

i=1

∫
bj

ωqi, z0 . (24.1.12)

By the reciprocity law (Lemma 24.1.4),∫
bj

ωpi,z0 = 2πi
∫ pi

z0

ωj ,

∫
bj

ωqi,z0 = 2πi
∫ qi

z0

ωj ,

and so (24.1.12) is written as∫
bj

θ = c1βj1 + c2βj2 + · · · + cgβjg + 2πi
( n∑

i=1

uj(pi) −
n∑

i=1

uj(qi)
)
.
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By assumption,
∑n

i=1 u(pi) −
∑n

i=1 u(qi) ∈ Λ, and therefore we may choose
such c1, c2, . . . , cg ∈ 2πiZ as

∫
bj

θ ∈ 2πiZ holds; by (24.1.11),
∫

ai
θ ∈ 2πiZ also

holds.
Next we define a meromorphic function g(z) := exp

(
− ∫ z

z0
θ
)

on the 4g-

gon P , where P is obtained by cutting C along the loops2 a1, b1, a2, b2, . . . , ag, bg

(we choose these loops such that p1, p2, . . . , pn and q1, q2, . . . , qn do not lie on
them). Since

∫
ai

θ ∈ 2πiZ and
∫

bj
θ ∈ 2πiZ for i, j = 1, 2, . . . , g, the function

g(z) determines a meromorphic function f(z) on C. We claim that div(f) =∑n
i=1 pi −

∑n
i=1 qi, that is, f has a simple zero at pi and a simple pole at qi.

In fact, since θ = 1
z dz around pi, we have f(z) = exp (− log(1/z)) = z around

pi; while since θ = −1
z dz around qi, we have f(z) = exp (log(1/z)) = 1/z

around qi. For the case where p1, p2, . . . , pn (resp. p1, p2, . . . , pn) are not dis-
tinct, we also have div(f) =

∑n
i=1 pi −

∑n
i=1 qi. For instance, if p1 = p2 = p3,

then we have f(z) = exp (−3 log(1/z)) = z3 around p1, so that f has
a zero of order 3 at p1. Also for instance, if q1 = q2 = q3 = q4, then
f(z) = exp (4 log(1/z)) = 1/z4 around q1, so that f has a pole of order 4
at q1. Thus f is our desired function. This completes the proof of Abel’s
Theorem. �

Next we recall the Λ-action on C
g × C, generated by

(x, ξ) �−→ (x + ei , ξ), (x, ξ) �−→ (x + βi , e−2πi(xi+
1
2 βii) · ξ)

for i = 1, 2, . . . , g, where xi and βii are respectively the i-th coordinate of x
and βi (so βii =

∫
bi

ωi); see (24.1.3) for ei and βi. Then the quotient

L := (Cg × C)/Λ (24.1.13)

is a line bundle on the Jacobian variety Jac(C), and the Riemann theta func-
tion ϑ determines a holomorphic section of L, which we also denote by ϑ.
Taking d ∈ Jac(C), we define a translation in Jac(C) by x �→ x+d. Then we
consider the following line bundle on Jac(C):

Ld: the pull-back of L under the translation x �→ x + d. (24.1.14)

Note that ϑ
(
x − d

)
is a holomorphic section of Ld.

Now we take loops a1, b1, a2, b2, . . . , ag, bg on C which are the standard
generators of the fundamental group of C:

π1(C) = 〈 a1, b1, a2, b2, . . . , ag, bg : [a1, b1] [a2, b2] · · · [ag, bg] = 1 〉. (24.1.15)

Cutting C along these loops, we obtain a 4g-gon P ; the oriented edges of the
boundary ∂P are “somewhat informally” denoted by

a1, b1, a−1
1 , b−1

1 , a2, b2, a−1
2 , b−1

2 , . . . , ag, bg, a−1
g , b−1

g .

When g = 1, we often omit the subscript: a, b, a−1, b−1.
2 The standard generators of π1(C); see (24.1.1).
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The following lemma is useful for our later discussion. (For (2) below, we
choose the loops a1, b1, a2, b2, . . . , ag, bg such that none of the zeros of h(z) lies
on them.)

Lemma 24.1.6 Denote by pi,+ and pi,− (resp. qi,+ and qi,−) corresponding
points on the edges ai and a−1

i (resp. bi and b−1
i ) of the 4g-gon P . Then

(1) The Abel–Jacobi map u has the following transformation rule:

u(pi,+) = u(pi,−) − βi, u(qi,+) = u(qi,−) + ei,

where βi, ei ∈ C
g are in (24.1.3).

(2) Fixing a point d of the Jacobian variety Jac(C), define a holomorphic
section h(z) := ϑ

(
u(z) − d

)
of a line bundle3 u∗Ld on C. Then

h(pi,+) = exp
[
2πi

(
ui(pi,−)−di

)
+πiβii

]
·h(pi,−), h(qi,+) = h(qi,−),

where ui (resp. di and βii) is the i-th coordinate of u (resp. d and βi).

Proof. (1): We show this only for g = 1, as the proof is essentially the same
for g ≥ 2. For brevity we omit the subscript i (= 1). We note that

u(p+) − u(p−) =
∫ p+

z0

ω −
∫ p−

z0

ω =
∫ p+

p−
ω =

∫
b−1

ω = −
∫

b

ω,

where the third equality follows from the fact that the path from p− to p+ is
isotopic to the edge b−1 (see Figure 24.1.2, p465). By definition

∫
b
ω = β, and

so we obtain u(p+) − u(p−) = −β. Similarly,

u(q+) − u(q−) =
∫ q+

z0

ω −
∫ q−

z0

ω =
∫ q+

q−
ω =

∫
a

ω,

where the last equality follows from the fact that the path from q− to q+

is isotopic to the edge a (see Figure 24.1.2). By definition
∫

a
ω = e (= 1),

and so we obtain u(q+) − u(q−) = e. This proves (1). The assertion (2)
follows immediately from (1) with the transformation rule of the Riemann
theta function:

ϑ(x + ei) = ϑ(x), ϑ(x + βi) = exp
(−2πixi − πiβii

) · ϑ(x).

�
We next study the zeros of the holomorphic section h(z) := ϑ

(
u(z) − d

)
in the above lemma.

3 The pull-back of the line bundle Ld (24.1.14) by the Abel–Jacobi map u : C →
Jac(C)
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Lemma 24.1.7 Let C be a complex curve of genus g ≥ 1. Fixing a point d of
the Jacobian variety Jac(C), define a holomorphic section h(z) := ϑ

(
u(z)−d

)
of the line bundle u∗Ld on C. Then the sum of the orders of the zeros of h(z)
is g (so the line bundle u∗Ld has degree g).

Remark 24.1.8 (1) Precisely speaking, we must exclude the case where h(z)
is identically zero; this is exactly when u(z)− d ∈ Zero(ϑ) for all z ∈ C, that
is,

d ∈ −Zero(ϑ) − u(C),

where Zero(ϑ) := {x ∈ Jac(C) : ϑ(x) = 0 } and “−Zero(ϑ) − u(C)” stands
for the translation of the set −Zero(ϑ) by −u(C) in Jac(C). (2) For generic
d ∈ Jac(C), h(z) has g distinct zeros. See Remark 23.3.2, p452.

Proof. Let P be the 4g-gon obtained by cutting C along the loops a1, b1, a2,
b2, . . . , ag, bg (the standard generators of π1(C); see (24.1.15)), where we
choose these loops such that none of the zeros of h(z) lies on them. By the
residue theorem, 1

2πi
∫

∂P
d log h equals the sum of the orders of the zeros of

h(z). Thus it is enough show

1
2πi

∫
∂P

d log h = g.

We explicitly compute the contour integral on the left hand side, first for
g = 1. As ∂P = aba−1b−1, we have∫

∂P

d log h =
∫

a

d log h +
∫

b

d log h +
∫

a−1
d log h +

∫
b−1

d log h

=
(∫

a

d log h +
∫

a−1
d log h

)
+

(∫
b

d log h +
∫

b−1
d log h

)

=
∫

a

(
d log h(p+) − d log h(p−)

)
+

∫
b

(
d log h(q+) − d log h(q−)

)
,

where p+ and p− (resp. q+ and q−) denote corresponding points on the edges
a and a−1 (resp. b and b−1). Thus∫

∂P

d log h =
∫

a

d log
(

h(p+)
h(p−)

)
+

∫
b

d log
(

h(q+)
h(q−)

)
. (24.1.16)

We shall compute the integrals on the right hand side. By Lemma 24.1.6,

h(p+) = e2πi
(
u(p−)−d

)
+πiβh(p−),

where we set β :=
∫

b
ω. (Note: In the present case g = 1, u(p−) and d are

actually scalars, and this expression coincides with that in Lemma 24.1.6.)
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Therefore log
(

h(p+)
h(p−)

)
= 2πi

(
u(p−) − d

)
+ πiβ and hence

d log
(

h(p+)
h(p−)

)
= 2πiω. (24.1.17)

On the other hand, by Lemma 24.1.6, we have h(q+) = h(q−) and so

d log
(

h(q+)
h(q−)

)
= 0. (24.1.18)

Substituting (24.1.17) and (24.1.18) into (24.1.16), we obtain

1
2πi

∫
∂P

d log h =
1

2πi

[ ∫
a

2πiω +
∫

b

0
]

= 1.

Therefore by the residue theorem, the assertion for g = 1 is confirmed. Next
we consider the case g ≥ 2. In this case,

1
2πi

∫
∂P

d log h

=
1

2πi

g∑
i=1

[ ∫
ai

d log h +
∫

bi

d log h +
∫

a−1
i

d log h +
∫

b−1
i

d log h

]
.

By the same computation as that for g = 1, the inside the brackets equals
2πi, and so

1
2πi

∫
∂P

d log h = g.

Thus by the residue theorem, the sum of the orders of the zeros of h(z)
is g. �

We further investigate the relationship between the zeros of the holomor-
phic section h(z) := ϑ

(
u(z) − d

)
in the above lemma. For this purpose, we

prepare several lemmas. In what follows, u∗Ld denotes the pull-back of the
line bundle Ld (24.1.14) via the Abel–Jacobi map u : C → Jac(C).

Lemma 24.1.9 For the holomorphic section h(z) := ϑ
(
u(z) − d

)
of the line

bundle u∗Ld on the complex curve C, the following integral Ai (i = 1, 2, . . . , g)
is independent of d ∈ Jac(C):

Ai :=
∫

ai

u · d log h +
∫

a−1
i

u · d log h. (24.1.19)

(Caution: Here, ai and a−1
i are “not” loops on C but edges of ∂P .)

Proof. We note that Ai is explicitly given by∫
ai

[
u(pi,+) · d log h(pi,+) − u(pi,−) · d log h(pi,−)

]
,

where pi,+ and pi,− are corresponding points on the edges ai and a−1
i .
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Now we show the assertion. We give the proof only for g = 1, as the proof
is essentially the same for g ≥ 2. For brevity we omit the subscript i (= 1).

By Lemma 24.1.6, we have h(p+) = e2πi
(
u(p−)−d

)
+πiβh(p−) where β :=

∫
b
ω

(note that as g = 1, u(p−) and d are actually scalars), and so

log h(p+) = log h(p−) + 2πi
(
u(p−) − d

)
+ πiβ.

Hence (A): d log h(p+) = d log h(p−) + 2πiω(p−). By Lemma 24.1.6, we also
have (B): u(p+) = u(p−) − β. Using (A) and (B), we rewrite

A =
∫

a

[
u(p+) · d log h(p+) − u(p−) · d log h(p−)

]
=

∫
a

[ (
u(p−) − β

)(
d log h(p−) + 2πiω(p−)

)
− u(p−) · d log h(p−)

]
=

∫
a

[
−β · d log h(p−) + 2πiu(p−)ω(p−) − 2πiβ ω(p−)

]
= −

∫
a

β · d log h(p−) +
∫

a

[
2πiu(p−)ω(p−) − 2πiβ ω(p−)

]
. (24.1.20)

In (24.1.20), the integral
∫

a

[
2πiu(p−)ω(p−) − 2πiβ ω(p−)

]
is a constant

independent of d, because 2πiu(p−)ω(p−) − 2πiβ ω(p−) does not contain d.

The integral
∫

a

β · d log h(p−) in (24.1.20) is also independent of d. To see

this, first note that ∫
a

β · d log h(p−) = β log
h(r)
h(r′)

,

where r and r′ are the ordered end points of the edge a. Here by Lemma

24.1.6, h(r) = h(r′) and so we have β log h(r)
h(r′)

∈ 2πiβ Z. Therefore∫
a

β · d log h(p−) ∈ 2πiβ Z.

We note that (i) the integral
∫

a
β · d log h(p−) is continuous with respect

to d and (ii) as we saw above, the value
∫

a
β · d log h(p−) lies in the dis-

crete set 2πiβZ. Hence the integral
∫

a
β · d log h(p−) must be a constant

independent of d. We thus conclude that the integral A is a constant
independent of d. �

Next we show

Lemma 24.1.10 For the holomorphic section h(z) := ϑ
(
u(z)−d

)
of the line

bundle u∗Ld on the complex curve C, the following equation holds:∫
bi

u · d log h +
∫

b−1
i

u · d log h = 2πi diei + Bi, (i = 1, 2, . . . , g),

(24.1.21)
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where

di is the i-th coordinate of the vector d ∈ C
g,

e1, e2, . . . , eg is the standard basis of C
g; see (24.1.3), and

Bi ∈ C
g is a constant vector independent of d.

Proof. First we note that the left hand side of (24.1.21) is explicitly given by∫
bi

[
u(qi,+) · d log h(qi,+) − u(qi,−) · d log h(qi,−)

]
,

where qi,+ and qi,− are corresponding points on the edges bi and b−1
i .

Now we show the assertion. We give the proof only for g = 1, as the proof
is essentially the same for g ≥ 2. For simplicity we omit the subscript i (= 1).
By Lemma 24.1.6, u(q+) = u(q−) + 1 and h(q+) = h(q−). Therefore∫

b

u · d log h+
∫

b−1
u·d log h

=
∫

b

[
u(q+)·d log h(q+)−u(q−)·d log h(q−)

]
=

∫
b

[(
u(q−)+1

)
d log h(q−)−u(q−)·d log h(q−)

]
=

∫
b

d log h(q−)

= log
h(s)
h(s′)

,

where s and s′ are the ordered end points of the edge b. Here by Lemma

24.1.6, h(s) = e−2πi
(
u(s′)−d

)
+πiβh(s′); note that as g = 1, u(p−) and d are

actually scalars. Thus log h(s)
h(s′)

= −2πi
(
u(s′) − d

)
+ πiβ, and hence we have∫

b

u · d log h +
∫

b−1
u · d log h = −2πi

(
u(s′) − d

)
+ πiβ.

We may write the right hand side as 2πid + B, where B := −2πiu(s′) + πiβ
is a constant independent of d. This completes the proof. �

Taking d ∈ Jac(C), we set h(z) := ϑ
(
u(z) − d

)
and then we consider

integrals Ai and Bi respectively in (24.1.19) and (24.1.21). We define the
Riemann constant κ (a point of Jac(C) := C

g/Λ) by

κ =
1

2πi

g∑
i=1

(Ai + Bi) mod Λ. (24.1.22)

Since Ai and Bi do not depend on the choice of d (Lemma 24.1.9 and
Lemma 24.1.10), the Riemann constant κ is uniquely determined by the com-
plex curve C.

The significance of κ is manifest in the following additive formula.
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Lemma 24.1.11 Let C be a complex curve of genus g ≥ 1. Fixing a point d of
the Jacobian variety Jac(C), define a holomorphic section h(z) := ϑ

(
u(z)−d

)
of the line bundle4 u∗Ld on C. Let p1, p2, . . . , pg ∈ C be the zeros5 of h(z).
Then

u(p1) + u(p2) + · · · + u(pg) = d + κ, (24.1.23)

where κ is the Riemann constant (24.1.22).

Proof. Let P be the 4g-gon obtained by cutting C along the loops a1, b1, a2,
b2, . . . , ag, bg (the standard generators of π1(C), see (24.1.15)), where we
choose these loops such that none of the zeros of h(z) lies on them. By the
residue theorem, we have

1
2πi

∫
∂P

u(z) · d log h = u(p1) + u(p2) + · · · + u(pg). (24.1.24)

We rewrite
∫

∂P
u(z) · d log h as follows:∫

∂P

u·d log h

=
g∑

i=1

(∫
ai

u·d log h+
∫

bi

u·d log h+
∫

a−1
i

u·d log h+
∫

b−1
i

u·d log h

)

=
g∑

i=1

(∫
ai

u·d log h+
∫

a−1
i

u·d log h

)
+

g∑
i=1

(∫
bi

u·d log h+
∫

b−1
i

u·d log h

)

=
g∑

i=1

Ai+
g∑

i=1

(2πi diei + Bi),

where in the last equality we used Lemmas 24.1.9 and 24.1.10. Since
∑g

i=1 diei

= d, we have
∫

∂P
u · d log h =

∑g
i=1 Ai + (2πid +

∑g
i=1 Bi). Thus

1
2πi

∫
∂P

u · d log h = d + κ,

where κ
(
= 1

2πi
g∑

i=1

(Ai + Bi)
)

is the Riemann constant. With (24.1.24), we

obtain
u(p1) + u(p2) + · · · + u(pg) = d + κ. �

We summarize Lemma 24.1.7 and Lemma 24.1.11 as follows:

Theorem 24.1.12 Fixing a point d of Jac(C), define a holomorphic section
h(z) := ϑ

(
u(z)−d

)
of the line bundle u∗Ld on C (where Ld is the line bundle

4 The pull-back of the line bundle Ld (24.1.14) via the Abel–Jacobi map u : C →
Jac(C)

5 By convention, p1, p2, . . . , pg are not necessarily distinct. See Lemma 24.1.7.
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(24.1.14)). Then (1) h(z) has g zeros6; so the degree of the line bundle u∗Ld

is g, and (2) let p1, p2, . . . , pg ∈ C be the zeros of h(z), and then

u(p1) + u(p2) + · · · + u(pg) = d + κ, (24.1.25)

where κ ∈ Jac(C) is the Riemann constant (24.1.22).

Now we fix a point c ∈ Zero(ϑ), i.e. ϑ(c) = 0, and also fix a point p ∈ C. Let
Lp be the line bundle on C that is the pull-back of the line bundle Lu(p)+c

(24.1.14) by the Abel–Jacobi map u : C → Jac(C). Then we consider a
holomorphic section ϑp(z) := ϑ

(
u(z) − u(p) − c

)
of Lp. Note that ϑp(z) may

be identically zero — this happens precisely when u(z) − u(p) − c ∈ Zero(ϑ)
holds for all z ∈ C, that is,

c ∈ −Zero(ϑ) + u(C) − u(p),

where “−Zero(ϑ)+u(C)−u(p)” stands for the translation of the set −Zero(ϑ)
by u(C) − u(p) in Jac(C). Thus ϑp(z) is identically zero precisely when

c ∈ Zero(ϑ) ∩
(
−Zero(ϑ) + u(C) − u(p)

)
.

Henceforth, we always take c ∈ Zero(ϑ) such that ϑp(z) is not identically zero.
Then by applying Theorem 24.1.12 for d := u(p) + c, we see that ϑp(z) has
g zeros — by convention, these zeros are not necessarily distinct. Clearly, p is
one of the zeros (since ϑ(c) = 0 by assumption and ϑ(x) is an even function,
we have ϑp(p) = ϑ(−c) = ϑ(c) = 0); while the remaining zeros, denoted by
o1, o2, . . . , og−1 ∈ C, are called the surplus zeros of ϑp(z). So the zeros of ϑp(z)
are p, o1, o2, . . . , og−1. From the additive formula (24.1.25), we obtain

u(p) + u(o1) + u(o2) + · · · + u(og−1) = u(p) + c + κ,

and thus u(o1) + u(o2) + · · · + u(og−1) = c + κ. This proves

Corollary 24.1.13 For the holomorphic section ϑp(z) := ϑ
(
u(z)−u(p)− c

)
of the line bundle Lp (= u∗Lu(p)+c) on the complex curve C, the followings
hold: (1) ϑp(z) has g zeros (one zero p and g−1 surplus zeros o1, o2, . . . , og−1)
and (2) the surplus zeros o1, o2, . . . , og−1 satisfy

u(o1) + u(o2) + · · · + u(og−1) = c + κ. (24.1.26)

We denote by Symi(C) the i-th symmetric product of the curve C, that
is,

Symi(C) = C × C × · · · × C︸ ︷︷ ︸
i

/Si,

6 By convention, they are not necessarily distinct.
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where the symmetric group Si acts on C × C × · · · × C by

(z1, z2, . . . , zi) �−→ (zσ(1), zσ(2), . . . , zσ(i)), σ ∈ Si.

We extend the Abel–Jacobi map u : C → Jac(C) to the map u : Symi(C) →
Jac(C) by

(p1, p2, . . . , pi) �−→ u(p1) + u(p2) + · · · + u(pi).

Lemma 24.1.14 Given (p1, p2, . . . , pg−1) ∈ Symg−1(C), set

c := u(p1) + u(p2) + · · · + u(pg−1) − κ, (κ : the Riemann constant).

Then ϑ(c) = 0 holds.

Proof. First note that u : Symg(C) → Jac(C) is birational ([Na3], Theorem
1, p87); hence there are analytic subsets E′ and E of dim < g such that the
restriction u : Symg(C) \ E′ → Jac(C) \ E is biholomorphic. We say that
p1, p2, . . . , pg−1 ∈ C are in a generic position if we may take pg ∈ C such that
(p1, p2, . . . , pg) ∈ Symg(C) \ E′.

We now show the assertion. It suffices to show it for p1, p2, . . . , pg−1 ∈ C
in a generic position; indeed, once this is shown, by a continuity argument,
for any p1, p2, . . . , pg−1 ∈ C, we have

ϑ
(
u(p1) + u(p2) + · · · + u(pg−1) − κ

)
= 0.

Now suppose that p1, p2, . . . , pg−1 ∈ C are in a generic position in the above
sense, and we set

d := u(p1) + u(p2) + · · · + u(pg) − κ.

Then we claim that p1, p2, . . . , pg are the zeros of h(z) := ϑ
(
u(z) − d

)
. In

fact, if q1, q2, . . . , qg ∈ C are the zeros of h(z), then by the additive formula
(24.1.25) we have

d = u(q1) + u(q2) + · · · + u(qg) − κ.

Hence

u(p1) + u(p2) + · · · + u(pg) = u(q1) + u(q2) + · · · + u(qg).

Since we chose (p1, p2, . . . , pg) ∈ Symg(C) \ E′ such that u is biholomorphic
(thus, one to one) around it, we have

{p1, p2, . . . , pg} = {q1, q2, . . . , qg}.

Namely, p1, p2, . . . , pg are the zeros of h(z). In particular, pg is a zero of h(z);
so

h(pg) = ϑ
(
u(pg) − d

)
= 0. (24.1.27)
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Finally, since c = d − u(pg), we have

ϑ(c) = ϑ
(
d − u(pg)

)
= ϑ

(
u(pg) − d

)
because ϑ is an even function

= 0 by (24.1.27).

This completes the proof of our assertion. �
Next we show

Proposition 24.1.15 Consider two sets in the Jacobian variety Jac(C):

Wg−1 := u(Symg−1(C)) and Zero(ϑ) := {x ∈ Jac(C) : ϑ(x) = 0 }.
Then Wg−1 = Zero(ϑ)+κ holds (that is, Wg−1 is the translation of Zero(ϑ) by
the Riemann constant κ). In particular, Zero(ϑ) and Wg−1 are biholomorphic.

Proof. We first show that if c ∈ Zero(ϑ), then c + κ ∈ Wg−1. Letting p ∈
C, we set ϑp(z) := ϑ

(
u(z) − u(p) − c

)
, and we denote its surplus zeros by

o1, o2, . . . , og−1. By the additive formula (24.1.26),

u(o1) + u(o2) + · · · + u(og−1) = c + κ.

Hence c + κ ∈ Wg−1. Conversely, if w ∈ Wg−1, then by Lemma 24.1.14, we
have w − κ ∈ Zero(ϑ). This implies that Wg−1 = Zero(ϑ) + κ. �

We summarize the above results.

Theorem 24.1.16 Let D′ ⊂ Symg−1(C) and D ⊂ Wg−1 be the critical sets
of u, so that the restriction u : Symg−1(C)\D′ → Wg−1 \D is biholomoprhic.
Then the following holds.

(1) Fix c ∈ Zero(ϑ). For any p ∈ C, the surplus zeros of o1, o2, . . . , og−1 of
ϑp(z) := ϑ

(
u(z)−u(p)− c

)
satisfy u(o1)+u(o2)+ · · ·+u(og−1) = c+κ.

(2) Wg−1 = Zero(ϑ) + κ where κ ∈ Jac(C) is the Riemann constant. (So if
c ∈ Zero(ϑ), then c + κ ∈ Wg−1.)

(3) For c ∈ Zero(ϑ) such that c + κ ∈ Wg−1 \D, the surplus zeros o1, o2, . . . ,
og−1 of ϑp(z) are independent of the choice of p ∈ C. (Hence for generic
c ∈ Zero(ϑ), the surplus zeros of ϑp(z) are independent of p ∈ C.)

(4) Given o1, o2, . . . , og−1 ∈ C, set c := u(o1) + u(o2) + · · · + u(og−1) − κ. If
c + κ ∈ Wg−1 \ D, then the surplus zeros of ϑp(z) := ϑ

(
u(z) − u(p) − c

)
are o1, o2, . . . , og−1.

Proof. The assertions (1) and (2) are respectively Corollary 24.1.13 and
Proposition 24.1.15. We show (3). We fix p ∈ C, and we demonstrate that
for arbitrary point p′ ∈ C, the surplus zeros of ϑp(z) and ϑp′(z) coincide. Let
o1, o2, . . . , og−1 be the surplus zeros of ϑp(z). Then by (1),

u(o1) + u(o2) + · · · + u(og−1) = c + κ. (24.1.28)
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Similarly, the surplus zeros o′1, o
′
2, . . . , o

′
g−1 of ϑp′(z) satisfy

u(o′1) + u(o′2) + · · · + u(o′g−1) = c + κ.

Thus

u(o1) + u(o2) + · · · + u(og−1) = u(o′1) + u(o′2) + · · · + u(o′g−1). (24.1.29)

Note that (24.1.28) with the assumption c + κ ∈ Wg−1 \ D implies that

(o1, o2, . . . , og−1) ∈ Symg−1(C) \ D′.

In particular, u is biholomorphic around (o1, o2, . . . , og−1), and so from
(24.1.29) we deduce

{o1, o2, . . . , og−1} = {o′1, o′2, . . . , o′g−1}.

Therefore the surplus zeros of ϑp(z) and ϑp′(z) coincide; so (3) is confirmed.
The assertion (4) is clear from the proof of (3). �
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Classification of Atoms of Genus ≤ 5
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Classification Theorem

Let π : M → Δ be a degeneration of (compact) complex curves of genus g (g ≥
1); in the subsequent discussion, for simplicity we often say “a degeneration of
genus g”. Without loss of generality — if necessary, by blowing M up or down
—, we may assume that its singular fiber X = π−1(0) is normally minimal.
So X is either stellar (star-shaped) or constellar (constellation-shaped). Note
that X is stellar precisely when the topological monodromy γ is periodic (i.e.
γn = id for some positive integer n); while X is constellar precisely when γ
is pseudo-periodic (i.e. γn for some positive integer n is generated by Dehn
twists).

We say that a degeneration π : M → Δ is atomic if it does not admit any
splitting family. Moreover, π : M → Δ is absolutely atomic if any degener-
ation, which is topologically equivalent to π : M → Δ, does not admit any
splitting family.

Next recall that a barking deformation is constructed from a weighted
crustal set — a finite set of weighted crusts satisfying a certain condition. In
the end of this book, we provide a list of weighted crustal sets for a large class
of singular fibers of genus from 1 to 5, including all stellar singular fibers. This
list is not exhaustive, but enough to determine absolute atoms up to genus 5.

The classification of absolute atoms is based on induction on genus, which
we shall explain. First of all, we recall the following conjecture we proposed
in [Ta,I]:

Conjucture 25.1 A degeneration is absolutely atomic if and only if its sin-
gular fiber is either a reduced curve with one node (i.e. Lefschetz fiber) or a
multiple of a smooth curve.

(“If” is valid. See [Ta,I].) Supposing that Conjecture 25.1 is valid for genus ≤
g−1, then by [Ta,I], to classify atomic degenerations of genus g, we only have
to investigate the splittability for degenerations π : M → Δ such that either

(A) X = π−1(0) is stellar, or
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(B) X is constellar and (B.1) X has no multiple node and (B.2) if X has an
irreducible component Θ0 of multiplicity 1, then Θ0 is a projective line,
and intersects other irreducible components of X only at one point (hence
Θ0 intersects only one irreducible component).

To these cases, we apply the results of this book, mainly Criterion 19.4.3,
p343: If a singular fiber X contains a simple crust and X satisfies some mild
condition, then the degeneration admits a splitting — so we only have to find
a simple crust (or more generally, a weighted crustal set) of the singular fiber
X. Here, we note the following:

(i) If all irreducible components of X are projective lines — for example,
this is the case when X is stellar with its core being a projective line —,
then we can easily check the existence of a simple crust numerically.

(ii) Using the existence of simple crusts of some stellar singular fibers, it
is immediate to see that most singular fibers in (B) admit splittings
by Criterion 16.5.1, p293. Essentially we only need to investigate
the splittability of stellar singular fibers and some exceptional
constellar singular fibers. Furthermore by Criterion 16.3.1 (1),
p284, among stellar singular fibers, we only need to investigate
the case where the core is not an exceptional curve. According
to Ashikaga and Ishizaka [AI], the number of degenerations of genus 3 is
about 1600, and among them there are only about 50 degenerations with
stellar singular fibers (and if the core is not an exceptional curve, there
are much fewer than 50). Therefore the above criteria drastically reduce
the number of the cases to be checked.

(iii) In (B), if X contains an exceptional curve, then in most cases the splitta-
bility follows immediately from Criterion 19.4.3 (3), p343 and Criterion
19.4.5, p344.

We now state our result on the classification of atomic fibers.

Theorem 25.2 A degeneration of genus ≤ 5 is absolutely atomic if and only
if its singular fiber is either a reduced curve with one node (i.e. Lefschetz fiber)
or a multiple of a smooth curve.

Proof. By [Ta,I], a reduced curve with one node, and a multiple of a smooth
curve are atomic. Hence we must show that any other singular fiber splits.
As mentioned above, it is enough to show that the singular fibers in (A) and
(B) split. For genus ≤ 5, any singular fiber in (A) and (B) splits, because
it contains a simple crust (or a weighted crustal set which admits complete
propagation). See our list of weighted crustal sets for genus ≤ 5 in the next
chapter. �
Remark 25.3 When we try to apply the above proof to the case genus ≥ 6,
we encounter with technical difficulty; as the genus g grows, the number of
the singular fibers of genus g in types (A) and (B) rapidly increases (though
it is much less than the total number of all singular fibers of genus g), and
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it is labour-intensive to list such singular fibers and to find weighted crustal
sets for them. Probably computer-aided research is promising.

Explicitly the list of the singular fibers of the absolutely atomic degenerations
of genus ≤ 5 is as follows:

absolute atoms

genus 1
mΘ, where Θ is a smooth curve of genus 1,
any reduced curve with one node (Lefschetz fiber)

genus 2 any reduced curve with one node (Lefschetz fiber)

genus 3
2Θ, where Θ is a smooth curve of genus 2,
any reduced curve with one node (Lefschetz fiber)

genus 4
3Θ, where Θ is a smooth curve of genus 2,
any reduced curve with one node (Lefschetz fiber)

genus 5
4Θ, where Θ is a smooth curve of genus 2,
2Θ, where Θ is a smooth curve of genus 3,
any reduced curve with one node (Lefschetz fiber)

Supplement: Adjacency diagram

When a singular fiber X splits into singular fibers X1, X2, . . . , Xn in a splitting
family, we say that Xi is adjacent to X (notation: X → Xi). Using barking
families (and result from [Ta,I]), we may describe the adjacencies among sin-
gular fibers of genus 1 (see also the list of simple crusts in §26.1, p492):

I1 I2 I3 I4 I5 I6 I7 I8 I9 · · ·

II III IV I
∗
0 I

∗
1 I

∗
2 I

∗
3 I

∗
4 · · ·

IV
∗

III
∗

II
∗

A similar diagram is known for simple singularities (or, A-D-E-singularities,
Du Val singularities). See V. I. Arnold (ed.) [Ar2] p30:

A1 A2 A3 A4 A5 A6 A7 A8 · · ·

D4 D5 D6 D7 D8 · · ·

E6 E7 E8
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List of Weighted Crustal Sets for Singular
Fibers of Genus ≤ 5

In what follows, we explain the convention and notation used in the list, such
as notation for singular fibers and crusts, arrangement of the list, and names of
splittability criteria. For each genus g (g = 1, 2, 3, 4, 5), the list of crustal sets
consists of the list for stellar singular fibers and that for constellar singular
fibers, where stellar singular fibers are arranged according to the orders of
their topological monodromies. (Note that the order of a periodic topological
monodromy equals the multiplicity of the core.) We refer to genus formula
p268 for how to compute the genus of a smooth fiber in terms of the data of
the stellar singular fiber.

Notation for stellar singular fibers

• We express a stellar singular fiber X, for example as follows:

(−2), X = 6A + 3B1 + 4C1 + 2C2 + 5D1 + 4D2 + 3D3 + 2D4 + D5

where (−2) means that the self-intersection number1 of the core A of X is
−2, and 3B1, 4C1 + 2C2 and 5D1 + 4D2 + 3D3 + 2D4 + D5 are branches
emanating from A. These branches are respectively called a B-branch, a
C-branch, and a D-branch.

• When the core A has genus ≥ 1, we give information on the normal bundle
NA of A:

X = 3A + B1 + 2C1 + C2, N⊗3
A = O(−b1 − 2c1)

where b1 and c1 are respectively the intersection points of B-branch and
C-branch with A.

• X → X ′: This means that X is deformed to X ′ := X0,t.
• p ∼ q: Two points p and q on the core A are linearly equivalent.
1 We denote this only for the case where A is a projective line, because in this case

the definition of crusts is numerical.



488 26 List of Weighted Crustal Sets for Singular Fibers of Genus ≤ 5

Notation for weighted crustal sets (WCSs)

A barking deformation is constructed from a finite set of weighted crusts
satisfying a certain condition, that is, a weighted crustal set.

• WCS stands2 for a weighted crustal set for X, and we write

WCS = (Y1, d1) + (Y2, d2) + · · · + (Yl, dl),

where Yi is a crust and di is a weight. For consistency, for a simple crust
Y of barking multiplicity l, we write WCS =

∑l
i=1(iY, id), where d is a

weight.
• X = . . .

(i) WCS = . . . , semi-rigid: B1, C1, D4

This means that B1, C1 and D4 are semi-rigid irreducible components
(e.g. [2] 10.3 type in the list). For genus 1, 2, and 3 cases, the WCSs
numbered (i), (ii), (iii), . . . are equipped with information about semi-rigid
irreducible components (while for the WCSs numbered (1), (2), (3), . . . ,
such information is not provided). This information is useful for applying
Criterion 16.5.1, p293 to constellar singular fibers.

Arrangement of the list for genus 1

For singular fibers of genus 1, we adopt Kodaira’s notation In, II, III, IV ,
I∗n, II∗, III∗, IV ∗ (see [Ko1] or the appendix of [Ta,II]), and we arrange
them according to the order of their topological monodromies. For instance,
the topological monodromies of II and II∗ have the same order 6, and we
put them in order as follows: (Below [1] stands for genus 1.)

Order 6

[1] II type, (−1) (the self-intersection number of the core is −1.)
X = . . .

WCS = (Y, 1) (this weighted crustal set consists of only one crust Y with
weight 1. Two cases (1) and (2) below for the choices of Y .)

(1) : II → I1 (this means that X = II is deformed to X0,t = I1 in the
barking family associated with the weighted crustal set where Y is just below.)

Y = . . .
(2) : II → I1

Y = . . .

[1] II∗ type, (−2)
X = . . .

· · ·
2 In some cases, instead we write a weighted set of dominant crusts, from which we

can easily obtain a weighted crustal set by the cut-off operation (see p304).
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Arrangement of the list for genus ≥ 2

Let π : M → Δ be a degeneration of complex curves of genus g whose singular
fiber X is stellar. The periodic topological monodromy γ acts on a smooth
fiber Σ := π−1(s), (s �= 0) as a homeomorphism of finite order. We then have
a cyclic covering Σ → Σ/〈γ〉 with a covering transformation γ, where Σ/〈γ〉
denotes the quotient space of Σ under the γ-action. If there are k branch
points in Σ/〈γ〉, say, with ramification indices r1, r2, . . . , rk respectively, then
r = (r1, r2, . . . , rk) is called the ramification data of γ. Stellar singular fibers
of genus g (g ≥ 2) with a ramification data r are put in order as follows:
(Below [g] stands for genus g)

Order m r = (r1, r2, . . . , rk)

[g] m.1 type
[g] m.2 type
[g] m.3 type

· · ·
If some stellar singular fibers of genus g have topological monodromies of the
same order m but with the different ramification data, say r and r′, then they
are put in order as follows:

Order m r = (r1, r2, . . . , rk)

[g] m.1.1 type
[g] m.1.2 type
[g] m.1.3 type

· · ·
Order m r′ = (r′1, r

′
2, . . . , r

′
l)

[g] m.2.1 type
[g] m.2.2 type
[g] m.2.3 type

· · ·

Expression of constellar singular fibers: Welding and Connecting

A constellar singular fiber is obtained from stellar ones of lower genera by
bonding their branches (Matsumoto–Montesinos bonding). Let X1 and X2 be
stellar singular fibers, and let Br1 (resp. Br2) be a branch of X1 (resp. X2):

Br1 = m0Θ0 + m1Θ1 + · · · + mλΘλ, Br2 = m′
0Θ

′
0 + m′

1Θ
′
1 + · · · + m′

νΘ′
ν .

Then gcd(m0,m1, . . . , mλ) is the multiplicity of Br1; actually, it is equal to
mλ. If mλ ≥ 2, the branch Br1 is called multiple. Now suppose that Br1 has
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the same multiplicity as Br2 (hence mλ = m′
ν). Given an integer κ (κ ≥ −1),

we can define κ-bonding of X1 and X2 by connecting Br1 and Br2 (see §16.5,
p292); after bonding, Br1 and Br2 are joined to become a “κ-trunk” Tk of
a constellar singular fiber X = X(κ). Set m := mλ = m′

ν (the common
multiplicity of Br1 and Br2), and then the κ-trunk is a chain of projective
lines given as follows:

if κ ≥ 0,

Tk = m0D0 + m1Θ1 + · · · + mλ−1Θλ−1 + mΘλ + mΘλ+1 + · · · + mΘλ+κ

+ m′
νΘ′

ν + m′
ν−1Θ

′
ν−1 + · · · + m′

0D
′
0.

if κ = −1,

Tk = m0D0+m1Θ1+· · ·+mλ0Θλ0 +m′
ν0−1Θ

′
ν0−1+m′

ν0−2Θ
′
ν0−2+· · ·+m′

0D
′
0.

It is easy to generalize bonding of two stellar singular fibers to that of an
arbitrary number of stellar singular fibers.

For the splitting problem of singular fibers, we are only concerned with
κ-bonding such that (1) κ = −1 or (2) κ = 0 and m ≥ 2 where m := mλ = m′

ν ,
because for any other bonding, by Criterion 1.2.5, p30 or Criterion 1.2.6, p31,
the singular fiber X always admits a splitting.

For simplicity, we call (−1)-bonding a welding and express it as X =
wd(X1 + X2). For the case where X is obtained by (−1)-bonding of two
branches of one singular fiber X1, i.e. self-bonding, we call X a self-welding of
X1 and write X = sw(X1). We call 0-bonding a connecting and we write X =
cn(X1 + X2). (As mentioned above, we are concerned with such connecting
as m ≥ 2.) For the self-bonding case, we call X a self-connecting of X1 and
write X = sc(X1). For instance,

• sw(III∗) type
X = 4A + 2B1 + 3C1 + 2C2 + 3D1 + 2D2, C2 = D2

X is a self-welding of3 III∗ obtained by identifying 2C1 and 2D1 of 4A +
2B1 + 3C1 + 2C2 + 3D1 + 2D2 (the cut-off of C3 and D3 from III∗ =
4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3).

• sc(III∗) type
X = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3, C3 = D3

X is a self-connecting of III∗ obtained by identifying C3 and D3 of III∗.
• wd(IV ∗ + III∗) type

X = X1 + X2, B1(X1) = C2(X2)
X1 = 3A + 2B1 + 2C1 + C2 + 2D1 + D2

X2 = 4A + 2B1 + 3C1 + 2C2 + 3D1 + 2D2 + D3.

3 III∗ is Kodaira’s notation for a singular fiber of genus 1. See [Ko1] or the appendix
of [Ta,II].
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X is a welding of IV ∗ and III∗ obtained by identifying4 2B1 of X1 with
2C2 of X2. Here IV ∗ = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2. Then X1

is the cut-off of B2 from IV ∗, and X2 is the cut-off of C3 from III∗.
If Y is a subdivisor of X, then we write Y = Y (X1)+Y (X2) where
Y (X1) := Y ∩ X1 and Y (X2) := Y ∩ X2.

• cn(IV ∗ + III∗) type
X = X1 + X2, B2(X1) = C3(X2)
X1 = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

X2 = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3.
X is a connecting of IV ∗ and III∗ obtained by identifying B2 of X1 = IV ∗

with C3 of X2 = III∗.

Names of splitting criteria

• Exceptional Curve Criterion: Criterion 16.5.2, p294.
• “Use a deformation of a plane curve singularity”:

If the relatively minimal model Xmin of X has a reduced plane curve
singularity, then apply Criterion 1.2.4, p30.

• Multiple Criterion: Criterion 1.2.2, p30.
• Trivial Propagation Criterion: Criterion 16.5.1, p293.
• SR technique: Assume that X contains a set S = {Θk} of irreducible

components of multiplicity 1 such that X ′ = X \ S is the exceptional set
of a rational singularity V . Let M ′ be a tubular neighborhood of X ′ in M .
Then the contraction of M ′ at X ′ yields V , and π|M ′ : M ′ → Δ descends
to a map π′ : V → Δ. We take a deformation f : V → Δ† of V which
admits a simultaneous resolution r : M′ → V; see Remark below. Then
by Riemenschneider’s Theorem [Ri1], the map π′ : V → Δ extends to a
map Π′ : V → Δ. Hence we obtain a map Ψ′ := (Π, r ◦ f) : V → Δ × Δ†.
By assumption, the multiplicity of any irreducible component Θk in the
set S is 1, and so by Criterion 1.2.6, p31 ([Ta,I] for more details), the
composite map r ◦Ψ′ : M′ → Δ×Δ† extends to a deformation Ψ : M →
Δ × Δ†. This construction is called the simultaneous resolution technique
(SR technique). (Actually, we may generalize this construction to the case
where a connected component of X ′ is the exceptional set of a rational
singularity.)

Remark on simultaneous resolution

The base space (i.e. the parameter space) of the versal family of a rational
surface singularity V is generally not reducible, and there exists a unique irre-
ducible component which admits a simultaneous resolution. This irreducible
component is called the Artin component, which is known to be smooth.
4 To distinguish B1 of X1 from B1 of X2 etc, we often write the former one as

B1(X1) and the latter one as B1(X2) etc.
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For example, see [BR2] p33. A simultaneous resolution of a deformation of
the singularity V is a “fiberwise” resolution possibly after base change. Pre-
cisely speaking, a simultaneous resolution of a deformation f : V → Δ† is a
surjective map r : M′ → V, together with a pair of maps f ′ and p, such that
the following diagram commutes:

M′

f ′
��

r �� V
f

��
Δ† p �� Δ†,

where (1) f ′ : M′ → Δ† is a deformation of M ′, (2) for each t ∈ Δ† the
restriction r : (f ′)−1(t) → f−1(t) is a resolution of singularities, and (3) p is
a base change, i.e. p(z) = zn for some positive integer n.

We remark that the total space M′ of the simultaneous resolution f ′ :
M′ → Δ† is smooth; this is a consequence of the following result. Let g :
W → T be a flat family of complex manifolds over a complex analytic space T .
If the base space T is smooth and each fiber g−1(t) (t ∈ T ) is smooth, then
the total space W itself is smooth; in fact, a local parameter of T together
with a local parameter of a fiber g−1(t) constitutes a local parameter of W.
(See [Hart], III Theorem 10.2). This statement was ring-theoretically proved
in EGA IV, Proposition (6.5.1):

Proposition 26.1 Let h : (A,m) → (B, n) be a flat homomorphism between
local rings of finite type, where m (resp. n) is the maximal ideal of A (resp. B).
If both (A,m) and

(
B/mB, (n+mB)/mB

)
are regular local rings, then (B, n)

is a regular local ring.

This is geometrically restated as: for the flat morphism g : Spec(B) → Spec(A)
induced from the homomorphism h, if the base space Spec(A) is smooth and
the fiber Spec(B/mB) over a point Spec(A/nA) is also smooth, then the total
space Spec(B) is smooth.

Although EGA treats the algebraic case, “smoothness” for the analytic
case is the regularity of an analytic local ring, and hence the proof for the
algebraic case may be carried over to the analytic case.

26.1 Genus 1

26.1.1 Stellar singular fibers, A = P
1

Order 6

[1] II type, (−1) (the self-intersection number of the core is −1.)
X = 6A + B1 + 2C1 + 3D1
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WCS = (Y, 1) (this weighted bunch of crusts consists of only one crust Y
with weight 1. Two cases (1) and (2) for the choices of Y .)

(1) : II → I1 (this means that X = II is deformed to X0,t = I1 in the
barking family associated with the weighted bunch of crusts where Y is just
below.)

Y = A + B1

(2) : II → I1

Y = 2A + B1 + D1

Or apply SR technique for a cyclic quotient singularity after contracting A.
(See “Names of splitting criteria” p491 for the splitting criteria used in this
list.)

Or use deformation of a plane curve singularity (cusp singularity) for the
relatively minimal model.

[1] II∗ type, (−2)
X = 6A + 3B1 + 4C1 + 2C2 + 5D1 + 4D2 + 3D3 + 2D4 + D5

WCS = (Y, 2)
(1) : II∗ → III∗

Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4

WCS = (Y, 3)
(2) : II∗ → IV ∗

Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3

WCS = (Y, 4)
(3) : II∗ → I∗2
Y = 4A + 2B1 + 2C1 + 4D1 + 4D2

WCS = (Y, 5)
(4) : II∗ → I5

Y = 5A + 2B1 + 3C1 + C2 + 5D1

WCS = (Y, 2) + (2Y, 4)
(5) : II∗ → I∗3
Y = 2A + B1 + C1 + 2D1 + 2D2

WCS = (Y1, 1) + (Y2, 2) + (Y3, 4)
(6) : II∗ → I∗3
Y1 = A + C1 + C2 + D1 + D2 + D3 + D4 + D5,
Y2 = 2A + B1 + 2C1 + 2C2 + D1,
Y3 = 4A + 2B1 + 3C1 + 2C2 + 3D1 + 2D2 + D3

WCS = (Y1, 1) + (Y2, 2) + (Y3, 3) + (Y4, 3) + (Y5, 4) + (Y6, 5)
(7) : II∗ → I8

Y1 = A + B1 + D1 + D2 + D3 + D4 + D5,
Y2 = 2A + 2B1 + C1 + D1,
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Y3 = 3A + 3B1 + C1 + 2D1 + D2,
Y4 = 3A + 3B1 + 2C1 + C2 + D1,
Y5 = 4A + 3B1 + 2C1 + 3D1 + 2D2 + D3,
Y6 = 5A + 3B1 + 3C1 + C2 + 4D1 + 3D2 + 2D3 + D4

WCS = (Y, 1) + (2Y, 2) + (3Y, 3), semi-rigid: B1, C2, D3

(8) : II∗ → III∗

Y = A + B1 + D1 + D2 + D3

WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4), semi-rigid: B1, C2, D2

(9) : II∗ → III∗

Y = A + C1 + C2 + D1 + D2

Or apply SR technique for the E8-singularity.

Order 4

[1] III type, (−1)
X = 4A + B1 + C1 + 2D1

WCS = (Y, 1)
(1) : III → I2

Y = A + B1

(2) : III → I1

Y = 2A + B1 + C1

(3) : III → I2

Y = 2A + B1 + D1

Or apply SR technique for A1-singularity.

Or use deformation of a plane curve singularity for the relatively minimal
model.

[1] III∗ type, (−2)
X = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

WCS = (Y, 1)
(1) : III∗ → IV ∗

Y = A + C1 + C2 + C3 + D1 + D2 + D3

WCS = (Y, 2)
(2) : III∗ → I∗1
Y = 2A + 2C1 + 2C2 + 2D1 + 2D2

(3) : III∗ → I∗2
Y = 2A + B1 + C1 + 2D1 + 2D2

WCS = (Y, 3)
(4) : III∗ → I∗0
Y = 3A + 3C1 + 3D1

(5) : III∗ → I6

Y = 3A + B1 + 2C1 + C2 + 3D1



26.1 Genus 1 495

WCS = (Y, 1) + (2Y, 2)
(6) : III∗ → I∗2
Y = A + C1 + C2 + D1 + D2,

WCS = (Y, 1) + (Y2, 2) + (Y3, 2) + (Y4, 3)
(7) : III∗ → I7

Y1 = A + B1 + C1 + C2 + C3,
Y2 = 2A + B1 + C1 + 2D1 + 2D2,
Y3 = 2A + 2B1 + 2D1 + 2D2,
Y4 = 3A + 2B1 + 2C1 + C2 + 2D1 + D2,

WCS = (Y1, 1) + (Y2, 1) + (Y3, 2) + (Y4, 3)
(8) : III∗ → I6

Y1 = A + B1 + C1 + C2 + C3,
Y2 = A + B1 + D1 + D2 + D3,
Y3 = 2A + 2B1 + C1 + D1,
Y4 = 3A + 2B1 + 2C1 + C2 + 2D1 + D2,

WCS = (Y, 1) + (2Y, 2) + (3Y, 3), semi-rigid: B1, C2, D2

(9) : III∗ → IV ∗

Y = A + C1 + D1

Or apply SR technique for E7-singularity.

Order 3

[1] IV type, (−1)
X = 3A + B1 + C1 + D1

WCS = (Y, 1)
(1) : IV → I3

Y = A + B1

(2) : IV → I2

Y = 2A + B1 + C1

(3) : IV → III
Y = A + B1 + C1

(4) : IV → II
Y = A + B1 + C1 + D1

Or use deformation of a plane curve singularity (ordinary triple point) for
the relatively minimal model.

[1] IV ∗ type, (−2)
X = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

WCS = (Y, 1)
(1) : IV ∗ → I∗1
Y = A + B1 + B2 + C1 + C2
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WCS = (Y, 2)
(2) : IV ∗ → I∗0
Y = 2A + 2B1 + 2C1

(3) : IV ∗ → I6

Y = 2A + B1 + C1 + 2D1

WCS = (Y, 1) + (2Y, 2), semi-rigid: B1, C1, D1

(4) : IV ∗ → I∗1
Y = A + B1 + C1

Or apply SR technique for E6-singularity.

Order 2

[1] I∗0 type, (−2)
X = 2A + B1 + C1 + D1 + E1

WCS = (Y, 1)
(1) : I∗0 → I4

Y = A + B1 + C1

(2) : I∗0 → IV
Y = A + B1 + C1 + D1

Or apply SR technique for a cyclic quotient singularity.

26.1.2 I∗
n

[1] I∗n type
X = B1 + C1 + 2A0 + 2A1 + · · · + 2An−1 + 2An + D1 + E1, n ≥ 1
where A0 ∩ B1 = b0, A0 ∩ C1 = c0, An ∩ D1 = d0 and An ∩ E1 = e0, and
Ai ∩ Ai+1 = ai.

WCS = (Y, 1)
(1) : I∗n → I∗n−1

Y = A0 + B1 + C1

Or apply multiple criterion.
(2) : I∗n → In+4

Y = B1 + A0 + A1 + · · · + An−1 + An + D1

26.1.3 mIn

[1] mIn type
X = mIn, m ≥ 2, n ≥ 1
(1) : mIn → mIn−1

Apply multiple criterion.

X = mI0 atom
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26.2 Genus 2

26.2.1 Stellar singular fibers, A = P
1

Order 10 r = (2, 5, 10)

[2] 10.1 type, (−1)
X = 10A + 5B1 + C1 + 4D1 + 2D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + C1

(2) Y = 2A + B1 + C1

(3) Y = 3A + B1 + C1 + D1

(4) Y = 4A + 2B1 + C1 + D1

(5) Y = 6A + 3B1 + C1 + 2D1

Or apply SR technique for a cyclic quotient singularity after contracting A.

[2] 10.2 type, (−1)
X = 10A + 5B1 + 2C1 + 3D1 + 2D2 + D3

Apply exceptional curve criterion.

WCS = (Y, 1)
Y = 6A + 3B1 + C1 + 2D1 + 2D2

[2] 10.3 type, (−2)
X = 10A + 5B1 + 6C1 + 2C2 + 9D1 + 8D2 + 7D3 + 6D4 + 5D5 + 4D6

+ 3D7 + 2D8 + D9

(i) WCS =
∑6

i=1(iY, i), semi-rigid5: B1, C1, D4

Y = A + C1 + D1 + D2 + D3 + D4

WCS = (Y, 2)
(1) Y = 2A+B1 +C1 +2D1 +2D2 +2D3 +2D4 +2D5 +2D6 +2D7 +2D8

WCS = (Y, 4)
(2) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5 + 4D6

WCS = (Y, 5)
(3) Y = 5A + 2B1 + 3C1 + C2 + 5D1 + 5D2 + 5D3 + 5D4 + 5D5

5 This means that B1, C1 and D4 are semi-rigid irreducible components. For genus
1, 2 and 3 case, the WCSs numbered by (i), (ii), (iii),... are equipped with in-
formation on semi-rigid irreducible components. (Otherwise we number them by
(1), (2), (3),...) These WCSs have semi-rigid components “close” to the core, and
this information is useful for applying Criterion 16.5.1, p293 to constellar singular
fibers.
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WCS = (Y, 6)
(4) Y = 6A + 3B1 + 3C1 + 6D1 + 6D2 + 6D3 + 6D4

WCS = (Y, 7)
(5) Y = 7A + 3B1 + 4C1 + C2 + 7D1 + 7D2 + 7D3

WCS = (Y, 8)
(6) Y = 8A + 4B1 + 4C1 + 8D1 + 8D2

WCS = (Y, 9)
(7) Y = 9A + 4B1 + 5C1 + C2 + 9D1

[2] 10.4 type, (−2)
X = 10A + 5B1 + 7C1 + 4C2 + C3 + 8D1 + 6D2 + 4D3 + 2D4

(i) WCS =
∑4

i=1(iY, i), semi-rigid: B1, C2, D3

Y = A + C1 + C2 + D1 + D2 + D3

WCS = (Y, 1)
(1) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

WCS = (Y1, 1) + (Y2, 2)
(1) Y1 = A + B1 + B2 + B3 + D1 + D2 + D3 + D4

Y2 = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4

WCS = (Y1, 1) + (Y2, 2) + (2Y1, 3)
(2) Y1 = 2A + B1 + 2C1 + 2C2 + D1,
Y2 = 3A + B1 + 3C1 + 3C2 + 2D1 + D2

Or apply SR technique for E8-singularity.

Order 8 r = (2, 8, 8)

[2] 8.1 type, (−1)
X = 8A + 4B1 + C1 + 3D1 + D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + C1

(2) Y = 2A + C1 + D1

(3) Y = 2A + B1 + D1 + D2

(4) Y = 2A + B1 + C1

(5) Y = 3A + B1 + C1 + D1

(6) Y = 4A + 2B1 + C1 + D1

(7) Y = 6A + B1 + C1 + 4D1 + 2D2

[2] 8.2 type, (−2)
X = 8A+4B1+5C1+2C2+C3+7D1+6D2+5D3+4D4+3D5+2D6+D7

(i) WCS =
∑5

i=1(iY, i), semi-rigid: B1, C1, D3

Y = A + C1 + D1 + D2 + D3
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WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6

WCS = (Y, 3)
(2) Y = 3A + B1 + 2C1 + C2 + C3 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5

WCS = (Y, 4)
(3) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4D3 + 4D4

WCS = (Y, 5)
(4) Y = 5A + 2B1 + 3C1 + C2 + 5D1 + 5D2 + 5D3

WCS = (Y, 6)
(5) Y = 6A + 3B1 + 3C1 + 6D1 + 6D2

WCS = (Y, 7)
(6) Y = 7A + 3B1 + 4C1 + C2 + 7D1

Order 6 r = (3, 6, 6)

[2] 6.1.1 type, (−1)
X = 6A + B1 + C1 + 4D1 + 2D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 2A + B1 + D1

(4) Y = 3A + B1 + 2D1 + D2

(5) Y = 4A + B1 + C1 + 2D1

[2] 6.1.2 type, (−2)
X = 6A+2B1+5C1+4C2+3C3+2C4+C5+5D1+4D2+3D3+2D4+D5

(i) WCS =
∑5

i=1(iY, i), semi-rigid: B1, C1, D1

Y = A + C1 + D1

WCS = (Y, 1)
(1) Y = C1 + C2 + C3 + C4 + C5 + D1 + D2 + D3 + D4 + D5

WCS = (Y, 2)
(2) Y = 2A + 2C1 + 2C2 + 2C3 + 2C4 + 2D1 + 2D2 + 2D3 + 2D4

WCS = (Y, 3)
(3) Y = 3A + 3C1 + 3C2 + 3C3 + 3D1 + 3D2 + 3D3

(4) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3

WCS = (Y, 4)
(5) Y = 4A + 4C1 + 4C2 + 4D1 + 4D2

(6) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4D2
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WCS = (Y, 5)
(7) Y = 5A + 5C1 + 5D1

(8) Y = 5A + B1 + 4C1 + 3C2 + 2C3 + C4 + 5D1

Order 6 r = (2, 2, 3, 3)

[2] 6.2.1 type, (−2)
X = 6A + 2B1 + 3C1 + 3D1 + 4E1 + 2E2

(i) WCS =
∑3

i=1(iY, i), semi-rigid: B1, C1, D1, E1

Y = A + C1 + D1

WCS = (Y, 1) + (2Y, 2)
(1) Y = 2A + B1 + C1 + D1 + E1

Order 5 r = (5, 5, 5)

[2] 5.1 type, (−1)
X = 5A + B1 + C1 + 3D1 + D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = A + D1 + D2

(3) Y = 2A + B1 + C1

(4) Y = 2A + B1 + D1

(5) Y = 3A + B1 + C1 + D1

(6) Y = 4A + B1 + C1 + 2D1

Or apply SR technique for A1-singularity after contracting A.

[2] 5.2 type, (−1)
X = 5A + B1 + 2C1 + C2 + 2D1 + D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1 + C2

(3) Y = 2A + C1 + C2 + D1 + D2

(4) Y = 3A + B1 + C1 + D1

WCS = (Y, 2)
(5) Y = 4A + 2C1 + 2D1

(6) Y = 4A + B1 + C1 + 2D1

Or apply SR technique for a cyclic quotient singularity after contracting A.
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[2] 5.3 type, (−2)
X = 5A + 2B1 + B2 + 4C1 + 3C2 + 2C3 + C4 + 4D1 + 3D2 + 2D3 + D4

(i) WCS =
∑4

i=1(iY, i), semi-rigid: B1, C1, D1

Y = A + C1 + D1

WCS = (Y, 1)
(1) Y = A + C1 + C2 + C3 + C4 + D1 + D2 + D3 + D4

WCS = (Y, 2)
(2) Y = 2A + 2C1 + 2C2 + 2C3 + 2D1 + 2D2 + 2D3

(3) Y = 2A + B1 + B2 + C1 + 2D1 + 2D2 + 2D3

WCS = (Y, 3)
(4) Y = 3A + 3C1 + 3C2 + 3D1 + 3D2

(5) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2

WCS = (Y, 4)
(6) Y = 4A + 4C1 + 4D1

(7) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1

[2] 5.4 type, (−2)
X = 5A + 3B1 + B2 + 3C1 + C2 + 4D1 + 3D2 + 2D3 + D4

(i) WCS =
∑3

i=1(iY, i), semi-rigid: B1, C1, D1

Y = A + B1 + C1

WCS = (Y, 1)
(1) Y = A + B1 + B2 + C1 + C2

(2) Y = A + C1 + C2 + D1 + D2 + D3 + D4

(3) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

WCS = (Y, 2)
(4) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3

WCS = (Y, 3)
(5) Y = 3A + 2B1 + B2 + C1 + 3D1 + 3D2

WCS = (Y, 4)
(6) Y = 4A + 2B1 + 2C1 + 4D1

Or apply SR technique for D6-singularity.

Order 4 r = (2, 2, 4, 4)

[2] 4.1 type, (−2)
X = 4A + B1 + 2C1 + 2D1 + 3E1 + 2E2 + E3

(i) WCS =
∑2

i=1(iY, i), semi-rigid: B1, C1, D1, E1

Y = A + C1 + D1
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(ii) WCS =
∑2

i=1(iY, i), semi-rigid: B1, C1, D1, E2

Y = A + D1 + E1 + E2

WCS = (Y, 1)
(1) Y = A + B1 + E1 + E2 + E3

(2) Y = 2A + B1 + C1 + D1 + E1

WCS = (Y, 2)
(3) Y = 2A + B1 + C1 + 2E1 + 2E2

(4) Y = 2A + C1 + D1 + 2E1 + 2E2

WCS = (Y, 3)
(5) Y = 3A + B1 + C1 + D1 + 3E1

Or apply SR technique for D5-singularity.

Order 3 r = (3, 3, 3, 3)

[2] 3.1 type, (−2)
X = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2

(i) WCS =
∑2

i=1(iY, i), semi-rigid: B1, C1, D1, E1

Y = A + D1 + E1

WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = A + B1 + D1 + D2

(3) Y = A + D1 + D2 + E1 + E2

(4) Y = 2A + B1 + C1 + D1 + E1

WCS = (Y, 2)
(5) Y = 2A + B1 + C1 + 2D1

(6) Y = 2A + B1 + D1 + 2E1

(7) Y = 2A + 2D1 + 2E1

Or apply SR technique for A3-singularity.

Order 2 r = (2, 2, 2, 2, 2, 2)

[2] 2.1 type, (−3)
X = 2A + B1 + C1 + D1 + E1 + F1 + G1

WCS = (Y, 1)
(1) Y = A + B1 + C1 + D1

Or apply SR technique for a cyclic quotient singularity.

26.2.2 Stellar singular fibers, genus(A) = 1

[2] A1.1 type, (−1)
X = 2A + B1 + C1, N⊗2

A = O(−b1 − c1)
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WCS = (Y, 1)
(1) Y = A + B1 + C1, NA = O(−b1 − c1 + q),
where b1 + c1 ∼ 2q (linearly equivalent), i.e. q is a Weierstrass point of A.

26.2.3 Self-welding of stellar singular fibers of genus 1

[2] sw(III∗) type
X = 4A + 2B1 + 3C1 + 2C2 + 3D1 + 2D2, C2 = D2

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + C1 + C2 + D1 + D2

[2] sw(IV ∗) type
X = 3A + 2B1 + 2C1 + 2D1 + D2, B1 = C1

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + 2D1

WCS = (Y, 1) + (2Y, 2)
(2) Y = A + B1 + C1

26.3 Genus 3

26.3.1 Stellar singular fibers, A = P
1

Order 14 r = (2, 7, 14)

[3] 14.1 type, (−1)
X = 14A + 7B1 + C1 + 6D1 + 4D2 + 2D3

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + C1

(2) Y = 2A + B1 + C1

(3) Y = 3A + B1 + C1 + D1

(4) Y = 4A + 2B1 + C1 + D1

(5) Y = 5A + 2B1 + C1 + 2D1 + D2

(6) Y = 6A + 3B1 + C1 + 2D1

Or apply SR technique for a cyclic quotient singularity after contracting A.

[3] 14.2 type, (−1)
X = 14A + 7B1 + 2C1 + 5D1 + D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1 + D1 + D2

(2) Y = 8A + 4B1 + C1 + 3D1 + D2
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[3] 14.3 type,(−1)
X = 14A + 7B1 + 3C1 + C2 + 4D1 + 2D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = 4A + 2B1 + C1 + C2 + D1

[3] 14.4 type, (−2)
X = 14A + 7B1 + 8C1 + 2C2 + 13D1 + 12D2 + 11D3 + 10D4 + 9D5 + 8D6

+ 7D7 + 6D8 + 5D9 + 4D10 + 3D11 + 2D12 + D13

(i) WCS =
∑8

i=1(iY, i), semi-rigid: B1, C1, D6

Y = A + C1 + D1 + D2 + D3 + D4 + D5 + D6

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6 + 2D7

+ 2D8 + 2D9 + 2D10 + 2D11 + 2D12

WCS = (Y, 4)
(2) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5 + 4D6 + 4D7

+ 4D8 + 4D9 + 4D10

WCS = (Y, 6)
(3) Y = 6A+3B1+3C1+6D1+6D2+6D3+6D4+6D5+6D6+6D7+6D8

WCS = (Y, 8)
(4) Y = 8A + 4B1 + 4C1 + 8D1 + 8D2 + 8D3 + 8D4 + 8D5 + 8D6

WCS = (Y, 10)
(5) Y = 10A + 5B1 + 5C1 + 10D1 + 10D2 + 10D3 + 10D4

WCS = (Y, 12)
(6) Y = 12A + 6B1 + 6C1 + 12D1 + 12D2

WCS = (Y, 7)
(7) Y = 7A+3B1 +4C1 +C2 +7D1 +7D2 +7D3 +7D4 +7D5 +7D6 +7D7

WCS = (Y, 9)
(8) Y = 9A + 4B1 + 5C1 + C2 + 9D1 + 9D2 + 9D3 + 9D4 + 9D5

WCS = (Y, 11)
(9) Y = 11A + 5B1 + 6C1 + C2 + 11D1 + 11D2 + 11D3

WCS = (Y, 13)
(10) Y = 13A + 6B1 + 7C1 + C2 + 13D1

[3] 14.5 type, (−2)
X = 14A + 7B1 + 9C1 + 4C2 + 3C3 + 2C4 + C5 + 12D1 + 10D2 + 8D3

+ 6D4 + 4D5 + 2D6



26.3 Genus 3 505

(i) WCS =
∑4

i=1(iY, i), semi-rigid: B1, C2, D5

Y = A + C1 + C2 + D1 + D2 + D3 + D4 + D5

WCS = (Y, 2)
(1) Y = 6A+3B1 +4C1 +2C2 +2C3 +2C4 +5D1 +4D3 +3D4 +2D5 +D6

WCS = (Y, 4)
(2) Y = 12A + 6B1 + 8C1 + 4C2 + 10D1 + 8D2 + 6D3 + 4D4 + 2D5

[3] 14.6 type, (−2)
X = 14A + 7B1 + 10C1 + 6C2 + 2C3 + 11D1 + 8D2 + 5D3 + 2D4 + D5

(i) WCS = (Y, 1) + (2Y, 2), semi-rigid: B1, C3, D4

Y = A + C1 + C2 + C3 + D1 + D2 + D3 + D4

WCS = (Y, 1) + (2Y, 2)
(1) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

Order 12 r = (6, 12, 12)

[3] 12.1 type, (−1)
X = 12A + B1 + 3C1 + 8D1 + 4D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + D1

(3) Y = 4A + B1 + C1 + 2D1

(4) Y = 5A + B1 + C1 + 3D1 + D2

(5) Y = 6A + B1 + C1 + 4D1 + 2D2

Or apply SR technique for a cyclic quotient singularity after contracting A.

[3] 12.2 type, (−1)
X = 12A + B1 + 6C1 + 5D1 + 3D2 + D3

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 2A + B1 + D1 + D2 + D3

(4) Y = 2A + C1 + D1 + D2 + D3

(5) Y = 3A + B1 + C1 + D1

(6) Y = 4A + B1 + 2C1 + D1

(7) Y = 6A + B1 + 3C1 + 2D1

Or apply SR technique for a cyclic quotient singularity after contracting A.
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[3] 12.3 type, (−1)
X = 12A + 3B1 + 4C1 + 5D1 + 3D2 + D3

Apply exceptional curve criterion.

WCS = (Y, 1) + (2Y, 2) + (3Y, 3)
(1) Y = 3A + B1 + C1 + D1

[3] 12.4 type, (−2)
X = 12A + 6B1 + 7C1 + 2C2 + C3 + 11D1 + 10D2 + 9D3 + 8D4 + 7D5

+ 6D6 + 5D7 + 4D8 + 3D9 + 2D10 + D11

(i) WCS =
∑7

i=1(iY, i), semi-rigid: B1, C1, D5

Y = A + C1 + D1 + D2 + D3 + D4 + D5

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6 + 2D7

+ 2D8 + 2D9 + 2D10

WCS = (Y, 4)
(2) Y = 4A+2B1+2C1+4D1+4D2+4D3+4D4+4D5+4D6+4D7+4D8

WCS = (Y, 6)
(3) Y = 6A + 3B1 + 3C1 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5 + 6D6

WCS = (Y, 8)
(4) Y = 8A + 4B1 + 4C1 + 8D1 + 8D2 + 8D3 + 8D4

WCS = (Y, 10)
(5) Y = 10A + 5B1 + 5C1 + 10D1 + 10D2

WCS = (Y, 5)
(6) Y = 5A+2B1+3C1+C2+C3+5D1+5D2+5D3+5D4+5D5+5D6+5D7

WCS = (Y, 7)
(7) Y = 7A + 3B1 + 4C1 + C2 + 7D1 + 7D2 + 7D3 + 7D4 + 7D5

WCS = (Y, 9)
(8) Y = 9A + 4B1 + 5C1 + C2 + 9D1 + 9D2 + 9D3

WCS = (Y, 11)
(9) Y = 11A + 5B1 + 6C1 + C2 + 11D1

[3] 12.5 type, (−2)
X = 12A + 4B1 + 9C1 + 6C2 + 3C3 + 11D1 + 10D2 + 9D3 + 8D4 + 7D5

+ 6D6 + 5D7 + 4D8 + 3D9 + 2D10 + D11

(i) WCS =
∑9

i=1(iY, i), semi-rigid: B1, C1, D3

Y = A + C1 + D1 + D2 + D3



26.3 Genus 3 507

WCS = (Y, 3)
(1) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5 + 3D6

+ 3D7 + 3D8 + 3D9

WCS = (Y, 6)
(2) Y = 6A + 2B1 + 4C1 + 2C2 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5 + 6D6

WCS = (Y, 9)
(3) Y = 9A + 3B1 + 6C1 + 3C2 + 9D1 + 9D2 + 9D3

WCS = (Y, 4)
(4) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5

+ 4D6 + 4D7 + 4D8

WCS = (Y, 7)
(5) Y = 7A + 2B1 + 5C1 + 3C2 + C3 + 7D1 + 7D2 + 7D3 + 7D4 + 7D5

[3] 12.6 type, (−2)
X = 12A + 8B1 + 4B2 + 7C1 + 2C2 + C3 + 9D1 + 6D2 + 3D3

(i) WCS = (Y, 1) + (2Y, 2), semi-rigid: C2, D3

Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

Order 9 r = (3, 9, 9)

[3] 9.1 type, (−1)
X = 9A + B1 + 3C1 + 5D1 + D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + D1

(3) Y = 3A + B1 + C1 + D1

(4) Y = 4A + B1 + C1 + 2D1

(5) Y = 5A + B1 + C1 + 3D1 + D2

(6) Y = 6A + B1 + 2C1 + 3D1

Or apply SR technique for a cyclic quotient singularity after contracting A.

[3] 9.2 type, (−1)
X = 9A + B1 + 2C1 + C2 + 6D1 + 3D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + D1
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(3) Y = 4A + B1 + C1 + C2 + 2D1

(4) Y = 5A + B1 + C1 + 3D1 + D2

(5) Y = 6A + B1 + C1 + 4D1 + 2D2

Or apply SR technique for a cyclic quotient singularity after contracting A.

[3] 9.3 type, (−1)
X = 9A + 3B1 + 2C1 + C2 + 4D1 + 3D2 + 2D3 + D4

Apply exceptional curve criterion.

WCS = (Y, 2)
(1) Y = 4A + B1 + C1 + C2 + 2D1 + 2D2 + 2D3

WCS = (Y, 3)
(2) Y = 6A + 2B1 + C1 + 3D1 + 3D2

[3] 9.4 type, (−2)
X = 9A + 3B1 + 7C1 + 5C2 + 3C3 + C4 + 8D1 + 7D2 + 6D3 + 5D4 + 4D5

+ 3D6 + 2D7 + D8

(i) WCS =
∑7

i=1(iY, i), semi-rigid: B1, C1, D2

Y = A + C1 + D1 + D2

WCS = (Y, 1)
(1) Y = A+C1 +C2 +C3 +C4 +D1 +D2 +D3 +D4 +D5 +D6 +D7 +D8

WCS = (Y, 3)
(2) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5 + 3D6

WCS = (Y, 4)
(3) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5

WCS = (Y, 5)
(4) Y = 5A + B1 + 4C1 + 3C2 + 2C3 + C4 + 5D1 + 5D2 + 5D3 + 5D4

WCS = (Y, 6)
(5) Y = 6A + 2B1 + 4C1 + 2C2 + 6D1 + 6D2 + 6D3

WCS = (Y, 7)
(6) Y = 7A + 2B1 + 5C1 + 3C2 + C3 + 7D1 + 7D2

WCS = (Y, 8)
(7) Y = 8A + 2B1 + 6C1 + 4C2 + 2C3 + 8D1

[3] 9.5 type, (−2)
X = 9A + 6B1 + 3B2 + 4C1 + 3C2 + 2C3 + C4 + 8D1 + 7D2 + 6D3 + 5D4

+ 4D5 + 3D6 + 2D7 + D8

(i) WCS =
∑6

i=1(iY, i), semi-rigid: B1, C1, D3

Y = A + B1 + D1 + D2 + D3

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + C2 + C3 + C4 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5

+ 2D6 + 2D7
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WCS = (Y, 3)
(2) Y = 3A + 2B1 + B2 + C1 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5 + 3D6

WCS = (Y, 5)
(3) Y = 5A + 3B1 + B2 + 2C1 + C2 + 5D1 + 5D2 + 5D3 + 5D4

WCS = (Y, 6)
(4) Y = 6A + 4B1 + 2B2 + 2C1 + 6D1 + 6D2 + 6D3

WCS = (Y, 7)
(5) Y = 7A + 4B1 + B2 + 3C1 + 2C2 + C3 + 7D1 + 7D2

[3] 9.6 type, (−2)
X = 9A + 5B1 + B2 + 6C1 + 3C2 + 7D1 + 5D2 + 3D3 + D4

(i) WCS =
∑5

i=1(iY, i), semi-rigid: B1, C1, D2

Y = A + B1 + D1 + D2

WCS = (Y, 1)
(1) Y = A + B1 + D1 + D2 + D3 + D4

(2) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

(3) Y = 5A + 3B1 + B2 + 3C1 + C2 + 4D1 + 3D2 + 2D3 + D4

Or apply SR technique for E7-singularity.

Order 8 r = (4, 8, 8)

[3] 8.1 type, (−1)
X = 8A + B1 + C1 + 6D1 + 4D2 + 2D3

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 2A + B1 + D1

(4) Y = 3A + B1 + C1 + D1

(5) Y = 4A + B1 + C1 + 2D1

(6) Y = 5A + B1 + C1 + 3D1 + D2

(7) Y = 6A + B1 + C1 + 4D1 + 2D2

Or apply SR technique for a cyclic quotient singularity after contracting A.

[3] 8.2 type, (−1)
X = 8A + B1 + 2C1 + 5D1 + 2D2 + D3

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + D1

(3) Y = 3A + B1 + 2D1 + D2 + D3

(4) Y = 4A + B1 + C1 + 2D1

(5) Y = 5A + B1 + C1 + 3D1 + D2
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WCS = (Y, 2)
(6) Y = 6A + B1 + C1 + 4D1 + 2D2

Or apply SR technique for a cyclic quotient singularity after contracting A.

[3] 8.3 type, (−1)
X = 8A + 2B1 + 3C1 + C2 + 3D1 + D2

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = 2A + C1 + C2 + D1 + D2

(2) Y = 5A + B1 + 2C1 + C2 + 2D1 + D2

WCS = (Y1, 2) + (Y2, 3)
(3) Y1 = 4A + B1 + C1 + 2D1,
Y2 = 6A + B1 + 2C1 + 3D1

[3] 8.4 type, (−2)
X = 8A + 2B1 + 7C1 + 6C2 + 5C3 + 4C4 + 3C5 + 2C6 + C7 + 7D1 + 6D2

+ 5D3 + 4D4 + 3D5 + 2D6 + D7

(i) WCS =
∑7

i=1(iY, i), semi-rigid: B1, C1, D1

Y = A + C1 + D1

WCS = (Y, 1)
(1) Y = 2A + C1 + C2 + C3 + C4 + C5 + C6 + C7 + D1 + D2 + D3 + D4

+ D5 + D6 + D7

WCS = (Y, 2)
(2) Y = 2A + 2C1 + 2C2 + 2C3 + 2C4 + 2C5 + 2C6 + 2D1 + 2D2 + 2D3

+ 2D4 + 2D5 + 2D6

WCS = (Y, 3)
(3) Y = 3A+3C1 +3C2 +3C3 +3C4 +3C5 +3D1 +3D2 +3D3 +3D4 +3D5

WCS = (Y, 4)
(4) Y = 4A + 4C1 + 4C2 + 4C3 + 4C4 + 4D1 + 4D2 + 4D3 + 4D4

WCS = (Y, 5)
(5) Y = 5A + 5C1 + 5C2 + 5C3 + 5D1 + 5D2 + 5D3

WCS = (Y, 6)
(6) Y = 6A + 6C1 + 6C2 + 6D1 + 6D2

WCS = (Y, 7)
(7) Y = 7A + 7C1 + 7D1

WCS = (Y, 4)
(8) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4D2 + 4D3 + 4D4
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WCS = (Y, 5)
(9) Y = 5A + B1 + 4C1 + 3C2 + 2C3 + C4 + 5D1 + 5D2 + 5D3

WCS = (Y, 6)
(10) Y = 6A + B1 + 5C1 + 4C2 + 3D3 + 2D4 + D5 + 6D1 + 6D2

WCS = (Y, 7)
(11) Y = 7A + B1 + 6C1 + 5C2 + 4C3 + 3C4 + 2C5 + C6 + 7D1

[3] 8.5 type, (−2)
X = 8A + 3B1 + B2 + 6C1 + 4C2 + 2C3 + 7D1 + 6D2 + 5D3 + 4D4

+ 3D5 + 2D6 + D7

(i) WCS =
∑6

i=1(iY, i), semi-rigid: B1, C1, D2

Y = A + C1 + D1 + D2

WCS = (Y, 2)
(1) Y = 2A + B1 + B2 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6

WCS = (Y, 3)
(2) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5

WCS = (Y, 4)
(3) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4D2 + 4D3 + 4D4

WCS = (Y, 5)
(4) Y = 5A + 2B1 + B2 + 3C1 + C2 + 5D1 + 5D2 + 5D3

WCS = (Y, 6)
(5) Y = 6A + 2B1 + 4C1 + 2C2 + 6D1 + 6D2

[3] 8.6 type, (−2)
X = 8A + 5B1 + 2B2 + B3 + 5C1 + 2C2 + C3 + 6D1 + 4D2 + 2D3

(i) WCS =
∑5

i=1(iY, i), semi-rigid: B1, C1, D1

Y = A + B1 + C1

WCS = (Y, 1)
(1) Y = 3A + 2B1 + B2 + B3 + 2C1 + C2 + C3 + 2D1 + D2

WCS = (Y, 2)
(2) Y = 6A + 4B1 + 2B2 + 4C1 + 2C2 + 4D1 + 2D2

Order 7 r = (7, 7, 7)

[3] 7.1 type, (−1)
X = 7A + B1 + C1 + 5D1 + 3D2 + D3

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1
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(3) Y = 2A + B1 + D1

(4) Y = 3A + B1 + C1 + D1

(5) Y = 4A + B1 + C1 + 2D1

(6) Y = 5A + B1 + C1 + 3D1 + D2

(7) Y = 6A + B1 + C1 + 4D1 + 2D2

Or apply SR technique for A2-singularity after contracting A.

[3] 7.2 type, (−1)
X = 7A + B1 + 2C1 + C2 + 4D2 + D3

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + D1

(3) Y = 3A + B1 + C1 + C2 + D1

(4) Y = 4A + B1 + C1 + 2D1

(5) Y = 5A + B1 + C1 + 3D1 + D2

Or apply SR technique for a cyclic quotient singularity after contracting A.

[3] 7.3 type, (−1)
X = 7A + B1 + 3C1 + 2C2 + C3 + 3D2 + 2D2 + D3

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1 + C2 + C3

(3) Y = 2A + C1 + C2 + C3 + D1 + D2 + D3

(4) Y = 3A + B1 + C1 + D1

(5) Y = 5A + B1 + 2C1 + C2 + 2D1 + D2

WCS = (Y, 2)
(6) Y = 4A + 2C1 + 2C2 + 2D1 + 2D2

(7) Y = 4A + B1 + C1 + 2D1 + 2D2

WCS = (Y, 3)
(8) Y = 6A + 3C1 + 3D1

(9) Y = 6A + B1 + 2C1 + 3D1

Or apply SR technique for a cyclic quotient singularity after contracting A.

[3] 7.4 type, (−1)
X = 7A + 2B1 + B2 + 2C1 + C2 + 3D1 + 2D2 + D3

Apply exceptional curve criterion.

WCS = (Y, 1)
(1) Y = 3A + B1 + B2 + C1 + C2 + D1
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WCS = (Y, 2)
(2) Y = 4A + B1 + C1 + 2D1 + 2D2

(3) Y = 6A + 2B1 + 2C1 + 2D1

[3] 7.5 type, (−2)
X = 7A + 2B1 + B2 + 6C1 + 5C2 + 4C3 + 3C4 + 2C5 + C6 + 6D1 + 5D2

+ 4D3 + 3D4 + 2D5 + D6

(i) WCS =
∑6

i=1(iY, i), semi-rigid: B1, C1, D1

Y = A + C1 + D1

WCS = (Y, 1)
(1) Y = A+C1 +C2 +C3 +C4 +C5 +C6 +D1 +D2 +D3 +D4 +D5 +D6

WCS = (Y, 2)
(2) Y = 2A+2C1 +2C2 +2C3 +2C4 +2C5 +2D1 +2D2 +2D3 +2D4 +2D5

WCS = (Y, 3)
(3) Y = 3A + 3C1 + 3C2 + 3C3 + 3C4 + 3D1 + 3D2 + 3D3 + 3D4

WCS = (Y, 4)
(4) Y = 4A + 4C1 + 4C2 + 4C3 + 4D1 + 4D2 + 4D3

WCS = (Y, 5)
(5) Y = 5A + 5C1 + 5C2 + 5D1 + 5D2

WCS = (Y, 6)
(6) Y = 6A + 6C1 + 6D1

WCS = (Y, 3)
(7) Y = 3A + B1 + B2 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4

WCS = (Y, 4)
(8) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4D2 + 4D3

WCS = (Y, 5)
(9) Y = 5A + B1 + 4C1 + 3C2 + 2C3 + C4 + 5D1 + 5D2

WCS = (Y, 6)
(10) Y = 6A + B1 + 5C1 + 4C2 + 3D3 + 2D4 + D5 + 6D1

[3] 7.6 type, (−2)
X = 7A+3B1+2B2+B3+5C1+3C2+C3+6D1+5D2+4D3+3D4+2D5+D6

(i) WCS =
∑5

i=1(iY, i), semi-rigid: B1, C1, D2

Y = A + C1 + D1 + D2

(ii) WCS =
∑3

i=1(iY, i), semi-rigid: B1, C2, D1

Y = A + B1 + C1 + C2

WCS = (Y, 1)
(1) Y = 2A + C1 + C2 + C3 + D1 + D2 + D3 + D4 + D5 + D6
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WCS = (Y, 2)
(2) Y = 2A + B1 + B2 + B3 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5

(3) Y = 4A + 2B1 + 2B2 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

WCS = (Y, 3)
(4) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4

(5) Y = 6A + 3B1 + 4C1 + 2C2 + 5D1 + 4D2 + 3D3 + 2D4 + D5

WCS = (Y, 4)
(6) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4D2 + 4D3

WCS = (Y, 5)
(7) Y = 5A + 2B1 + B2 + 3C1 + C2 + 5D1 + 5D2

WCS = (Y, 6)
(8) Y = 6A + 2B1 + 4C1 + 2C2 + 6D1

[3] 7.7 type, (−2)
X = 7A + 4B1 + B2 + 4C1 + C2 + 6D1 + 5D2 + 4D3 + 3D4 + 2D5 + D6

(i) WCS =
∑4

i=1(iY, i), semi-rigid: B1, C1, D1

Y = A + B1 + C1

WCS = (Y, 1)
(1) Y = A + B1 + B2 + C1 + C2

(2) Y = A + B1 + B2 + D1 + D2 + D3 + D4 + D5 + D6

(3) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

(4) Y = 5A + 3B1 + B2 + 3C1 + C2 + 4D1 + 3D2 + 2D3 + D4

WCS = (Y, 2)
(5) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5

WCS = (Y, 3)
(6) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4

WCS = (Y, 4)
(7) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4D3

WCS = (Y, 5)
(8) Y = 5A + 2B1 + 3C1 + C2 + 5D1 + 5D2

WCS = (Y, 6)
(9) Y = 6A + 3B1 + 3C1 + 6D1

Or apply SR technique for D8-singularity.

[3] 7.8 type, (−2)
X = 7A + 4B1 + B2 + 5C1 + 3C2 + C3 + 5D1 + 3D2 + D3

(i) WCS =
∑5

i=1(iY, i), semi-rigid: B1, C1, D1

Y = A + C1 + D1
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WCS = (Y, 1)
(1) Y = A + B1 + B2 + C1 + C2 + C3

(2) Y = A + C1 + C2 + C3 + D1 + D2 + D3

(3) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

(4) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

Or apply SR technique for E6-singularity.

Order 6 r = (2, 2, 6, 6)

[3] 6.1.1 type, (−2)
X = 6A + B1 + 3C1 + 3D1 + 5E1 + 4E2 + 3E3 + 2E4 + E5

(i) WCS =
∑3

i=1(iY, i), semi-rigid: B1, C1, D1, E1

Y = A + C1 + D1

WCS = (Y, 1)
(1) Y = A + B1 + E1 + E2 + E3 + E4 + E5

(2) Y = 2A + B1 + C1 + D1 + E1

(3) Y = 4A + B1 + 2C1 + 2D1 + 3E1 + 2E2 + E3

WCS = (Y, 2)
(4) Y = 2A + B1 + C1 + 2E1 + 2E2 + 2E3 + 2E4

(5) Y = 2A + C1 + D1 + 2E1 + 2E2 + 2E3 + 2E4

WCS = (Y, 3)
(6) Y = 3A + B1 + C1 + D1 + 3E1 + 3E2 + 3E3

WCS = (Y, 4)
(7) Y = 4A + B1 + C1 + 2D1 + 4E1 + 4E2

Order 6 r = (2, 3, 3, 6)

[3] 6.2.1 type, (−2)
X = 6A + 2B1 + 2C1 + 3D1 + 5E1 + 4E2 + 3E3 + 2E4 + E5

(i) WCS =
∑3

i=1(iY, i), semi-rigid: B1, C1, D1, E3

Y = A + D1 + E1 + E2 + E3

(ii) WCS =
∑2

i=1(iY, i), semi-rigid: B1, C1, D1, E1

Y = A + B1 + C1

WCS = (Y, 3)
(1) Y = 3A + B1 + C1 + D1 + 3E1 + 3E2 + 3E3

WCS = (Y, 4)
(2) Y = 4A + B1 + C1 + 2D1 + 4E1 + 4E2

WCS = (Y, 1) + (2Y, 2)
(3) Y = 2A1 + B1 + C1 + D1 + E1
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[3] 6.2.2 type, (−2)
X = 6A + B1 + 3C1 + 4D1 + 2D2 + 4E1 + 2E2

(i) WCS =
∑4

i=1(iY, i), semi-rigid: B1, C1, D1, E1

Y = A + D1 + E1

WCS = (Y, 1)
(1) Y = 2A + B1 + C1 + D1 + E1

(2) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2

Or apply SR technique for E6-singularity.

Order 4 r = (4, 4, 4, 4)

[3] 4.1.1 type, (−1)
X = 4A + B1 + C1 + D1 + E1

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 3A + B1 + C1 + D1

Or use deformation of a plane curve singularity after blow down of A.

[3] 4.1.2 type, (−2)
X = 4A + B1 + C1 + 3D1 + 2D2 + D3 + 3E1 + 2E2 + E3

(i) WCS =
∑3

i=1(iY, i), semi-rigid: B1, C1, D1, E1

Y = A + D1 + E1

WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = A + B1 + D1 + D2 + D3

(3) Y = A + D1 + D2 + D3 + E1 + E2 + E3

(4) Y = 2A + B1 + C1 + D1 + E1

(5) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2

WCS = (Y, 2)
(6) Y = 2A + B1 + C1 + 2D1 + 2D2

(7) Y = 2A + B1 + D1 + 2E1 + 2E2

(8) Y = 2A + 2D1 + 2D2 + 2E1 + 2E2

WCS = (Y, 3)
(9) Y = 3A + B1 + C1 + D1 + 3E1

(10) Y = 3A + 3D1 + 3E1

Or apply SR technique for A5-singularity.

[3] 4.1.3 type, (−3)
X = 4A+3B1+2B2+B3+3C1+2C2+C3+3D1+2D2+D3+3E1+2E2+E3
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(i) WCS =
∑3

i=1(iY, i), semi-rigid: B1, C1, D1, E1

Y = A + B1 + C1 + D1

WCS = (Y, 1)
(1) Y = A + B1 + B2 + B3 + C1 + C2 + C3 + D1 + D2 + D3

WCS = (Y, 2)
(2) Y = 2A + 2B1 + 2B2 + 2C1 + 2C2 + 2D1 + 2D2

(3) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2E1 + 2E2

WCS = (Y, 3)
(4) Y = 3A + 3B1 + 3C1 + 3D1

(5) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3E1

(6) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2 + 3E1

Order 4 r = (2, 2, 2, 4, 4)

[3] 4.2.1 type, (−2)
X = 4A + B1 + C1 + 2D1 + 2E1 + 2F1

(i) WCS =
∑2

i=1(iY, i), semi-rigid: B1, C1, D1, E1, F1

Y = A + D1 + E1

WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = 2A + B1 + C1 + D1 + E1

(3) Y = 2A + B1 + D1 + E1 + F1

Or apply SR technique for D4-singularity.

[3] 4.2.2 type, (−3)
X = 4A + 2B1 + 2C1 + 2D1 + 3E1 + 2E2 + E3 + 3F1 + 2F2 + F3

(i) WCS =
∑2

i=1(iY, i), semi-rigid: B1, C1, D1, E1, F1

Y = A + B1 + C1 + D1

(ii) WCS =
∑3

i=1(iY, i), semi-rigid: B1, C1, D1, E2, F2

Y = A + B1 + E1 + E2 + F1 + F2

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + D1 + E1 + 2F1 + 2F2

(2) Y = 2A + B1 + C1 + 2E1 + 2E2 + 2F1 + 2F2

WCS = (Y, 3)
(3) Y = 3A + B1 + C1 + D1 + 3E1 + 3F1

Order 3 r = (3, 3, 3, 3, 3)

[3] 3.1 type, (−2)
X = 3A + B1 + C1 + D1 + E1 + 2F1 + F2
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WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = A + B1 + F1 + F2

(3) Y = 2A + B1 + C1 + D1 + E1

WCS = (Y, 2)
(4) Y = 2A + B1 + C1 + 2F1

Or apply SR technique for A2-singularity.

[3] 3.2 type, (−3)
X = 3A + B1 + 2C1 + C2 + 2D1 + D2 + 2E1 + E2 + 2F1 + F2

(i) WCS =
∑2

i=1(iY, i), semi-rigid: B1, C1, D1, E1, F1

Y = A + C1 + D1 + E1

WCS = (Y, 1)
(1) Y = A + C1 + C2 + D1 + D2 + E1 + E2

(2) Y = A + B1 + C1 + C2 + D1 + D2

WCS = (Y, 2)
(3) Y = 2A + 2C1 + 2D1 + 2E1

(4) Y = 2A + B1 + C1 + 2D1 + 2E1

(5) Y = 2A + C1 + D1 + 2E1 + 2F1

(6) Y = 2A + B1 + C1 + D1 + E1 + 2F1

Order 2 r = (2, 2, 2, 2, 2, 2, 2, 2)

[3] 2.1 type, (−4)
X = 2A + B1 + C1 + D1 + E1 + F1 + G1 + H1 + I1

WCS = (Y, 1)
(1) Y = A + B1 + C1 + D1 + E1

Or apply SR technique for a cyclic quotient singularity.

26.3.2 Stellar singular fibers, genus(A) = 1, 2

genus(A) = 1

[3] A1.1 type
X = 4A + 2B1 + 2C1, N⊗4

A = O(−2b1 − 2c1)

Take b1, c1 so that b1 − c1 is torsion of order 2 in Pic(A).
WCS = (Y, 1) + (2Y, 2)
(1) Y = A + B1, NA = O(−b1),

[3] A1.2 type
X = 3A + B1 + 2C1 + C2, N⊗3

A = O(−b1 − 2c1)
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WCS = (Y, 1)
(1) Y = A + B1 + C1 + C2, NA = O(−b1 − c1 + q),
where 2b1 + c1 ∼ 3q (linearly equivalent).

[3] A1.3 type
X = 2A + B1 + C1 + D1 + E1, N⊗2

A = O(−b1 − c1 − d1 − e1)

WCS = (Y, 1)
(1) Y = A + B1 + C1, NA = O(−b1 − c1),
where b1 + c1 ∼ d1 + e1.

genus(A) = 2

[3] A2.1 type
X = 2A atom

26.3.3 Self-welding of stellar singular fibers of genus 2

[3] sw([2]8.2) type
X = 8A+4B1+5C1+2C2+7D1+6D2+5D3+4D4+3D5+2D6, C2 = D6

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + C1 + C2 + D1 + D2 + D3 + D4 + D5 + D6

[3] sw([2]6.1.2) type
X = 6A+2B1+5C1+4C2+3C3+2C4+5D1+4D2+3D3+2D4, C4 = D4

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + C1 + C2 + C3 + C4 + D1 + D2 + D3 + D4

[3] sw([2]5.2) type
X = 5A + B1 + 2C1 + 2D1, C1 = D1

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 3A + B1 + C1 + D1

WCS = (Y, 1) + (2Y, 2)
(3) Y = 2A + C1 + D1

[3] sw([2]5.3(1)) type
X = 5A + 2B1 + 4C1 + 3C2 + 2C3 + 4D1 + 3D2 + 2D3 + D4, B1 = C3

WCS = (Y, 4)
(1) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1

WCS = (Y, 1) + (2Y, 2)
(2) Y = A + B1 + C1 + C2 + C3
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[3] sw([2]5.3(2)) type
X = 5A + 2B1 + B2 + 4C1 + 3C2 + 2C3 + 4D1 + 3D2 + 2D3, C3 = D3

WCS = (Y, 2)
(1) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

WCS = (Y, 1) + (2Y, 2)
(2) Y = A + C1 + C2 + C3 + D1 + D2 + D3

[3] sw([2]5.4) type
X = 5A + 3B1 + B2 + 3C1 + 4D1 + 3D2, C1 = D2

WCS = (Y, 1) + (2Y, 2) + (3Y, 3)
(1) Y = A + C1 + D1 + D2

[3] sw([2]3.1) type
X = 3A + B1 + C1 + 2D1 + 2E1, D1 = E1

WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = 2A + B1 + C1 + D1 + E1

WCS = (Y, 1) + (2Y, 2)
(3) Y = A + D1 + E1

26.3.4 Welding of stellar singular fibers of genus 2 and genus 1

[3] wd([2]8.2(2)+II) type
X = X1 + X2, D2(X1) = A(X2)
X1 = 8A + 4B1 + 5C1 + 2C2 + C3 + 7D1 + 6D2

X2 = 6A + 2C1 + 3D1

WCS = (Y, 1) + (2Y, 2), Y = Y (X1) + Y (X2)
(1) Y (X1) = A + C1 + C2 + D1 + D2

Y (X2) = A + C1

(2) Y (X1) = 2A + B1 + C1 + 2D1 + 2D2

Y (X2) = 2A + C1 + D1

[3] wd([2]5.1(1)+II∗) type
X = X1 + X2, A(X1) = D1(X2)
X1 = 5A + C1 + 3D1 + D2

X2 = 6A + 3B1 + 4C1 + 2C2 + 5D1

WCS = (Y, 1), Y = Y (X1) + Y (X2)
(1) Y (X1) = A + C1 + D1 + D2

Y (X2) = 0
(2) Y (X1) = 2A + C1 + D1

Y (X2) = 2A + B1 + C1 + 2D1
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[3] wd([2]5.2(1)+II∗) type
X = X1 + X2, A(X1) = D1(X2)
X1 = 5A + 2C1 + C2 + 2D1 + D2

X2 = 6A + 3B1 + 4C1 + 2C2 + 5D1

WCS = (Y, 1) + (2Y, 2), Y = Y (X1)
(1) Y = 2A + C1 + D1

26.4 Genus 4

26.4.1 Stellar singular fibers, A = P
1

Order 18 r = (2, 9, 18)

[4] 18.1 type, (−1)
X = 18A + 9B1 + 2C1 + 7D1 + 3D2 + 2D3 + D4

WCS = (Y, 2)
(1) Y = 10A + 5B1 + C1 + 4D1 + 2D2 + 2D3

WCS = (Y, 1) + (2Y, 2)
(2) Y = 8A + 4B1 + C1 + 3D1 + D2

[4] 18.2 type, (−1)
X = 18A + 9B1 + 4C1 + 2C2 + 5D1 + 2D2 + D3

WCS = (Y, 2)
(1) Y = 14A + 7B1 + 3C1 + C2 + 4D1 + 2D2

WCS = (Y, 1) + (2Y, 2)
(2) Y = 4A + 2B1 + C1 + C2 + D1

[4] 18.3 type, (−1)
X = 18A + 9B1 + C1 + 8D1 + 6D2 + 4D3 + 2D4

WCS = (Y, 1)
(1) Y = A + C1

(2) Y = 2A + B1 + C1

(3) Y = 3A + B1 + C1 + D1

(4) Y = 5A + 2B1 + C1 + 2D1 + D2

(5) Y = 6A + 3B1 + C1 + 2D1

(6) Y = 8A + 4B1 + C1 + 3D1 + D2

(7) Y = 10A + 5B1 + C1 + 4D1 + 2D2

WCS = (Y, 1) + (2Y, 2)
(8) Y = 2A + B1 + D1 + D2 + D3 + D4

Or apply SR technique for a cyclic quotient singularity after contracting A.
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[4] 18.4 type, (−2)
X = 18A + 9B1 + 10C1 + 2C2 + 17D1 + 16D2 + 15D3 + 14D4 + 13D5

+ 12D6 + 11D7 + 10D8 + 9D9 + 8D10 + 7D11 + 6D12 + 5D13 + 4D14

+ 3D15 + 2D16 + D17

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6 + 2D7

+2D8 +2D9 +2D10 +2D11 +2D12 +2D13 +2D14 +2D15 +2D16

WCS = (Y, 4)
(2) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5 + 4D6 + 4D7

+ 4D8 + 4D9 + 4D10 + 4D11 + 4D12 + 4D13 + 4D14

WCS = (Y, 6)
(3) Y = 6A + 3B1 + 3C1 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5 + 6D6 + 6D7

+ 6D8 + 6D9 + 6D10 + 6D11 + 6D12

WCS = (Y, 8)
(4) Y = 8A + 4B1 + 4C1 + 8D1 + 8D2 + 8D3 + 8D4 + 8D5 + 8D6 + 8D7

+ 8D8 + 8D9 + 8D10

WCS = (Y, 10)
(5) Y = 10A + 5B1 + 5C1 + 10D1 + 10D2 + 10D3 + 10D4 + 10D5 + 10D6

+ 10D7 + 10D8

WCS = (Y, 12)
(6) Y = 12A + 6B1 + 6C1 + 12D1 + 12D2 + 12D3 + 12D4 + 12D5 + 12D6

WCS = (Y, 14)
(7) Y = 14A + 7B1 + 7C1 + 14D1 + 14D2 + 14D3 + 14D4

WCS = (Y, 16)
(8) Y = 16A + 8B1 + 8C1 + 16D1 + 16D2

WCS = (Y, 9)
(9) Y = 9A + 4B1 + 5C1 + C2 + 9D1 + 9D2 + 9D3 + 9D4 + 9D5 + 9D6

+ 9D7 + 9D8 + 9D9

WCS = (Y, 11)
(10) Y = 11A + 5B1 + 6C1 + C2 + 11D1 + 11D2 + 11D3 + 11D4 + 11D5

+ 11D6 + 11D7

WCS = (Y, 13)
(11) Y = 13A + 6B1 + 7C1 + C2 + 13D1 + 13D2 + 13D3 + 13D4 + 13D5

WCS = (Y, 15)
(12) Y = 15A + 7B1 + 8C1 + C2 + 15D1 + 15D2 + 15D3

[4] 18.5 type, (−2)
X = 18A + 9B1 + 13C1 + 8C2 + 3C3 + C4 + 14D1 + 10D2 + 6D3 + 2D4

WCS = (Y, 1)
(1) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + C4 + 3D1 + 2D2 + D3
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[4] 18.6 type, (−2)
X = 18A + 9B1 + 11C1 + 4C2 + C3 + 16D1 + 14D2 + 12D3 + 10D4 + 8D5

+ 6D6 + 4D7 + 2D8

WCS = (Y, 1)
(1) Y = 8A+4B1+5C1+2C2+C3+7D1+6D2+5D3+4D4+3D5+2D6+D7

Order 16 r = (2, 16, 16)

[4] 16.1 type, (−1)
X = 16A + 8B1 + C1 + 7D1 + 5D2 + 3D3 + D4

WCS = (Y, 1)
(1) Y = A + C1

(2) Y = 2A + B1 + C1

(3) Y = 2A + C1 + D1 + D2 + D3 + D4

(4) Y = 2A + B1 + D1 + D2 + D3 + D4

(5) Y = 3A + B1 + C1 + D1

(6) Y = 4A + 2B1 + C1 + D1

(7) Y = 5A + 2B1 + C1 + 2D1 + D2

(8) Y = 6A + 3B1 + C1 + 2D1

(9) Y = 7A + 3B1 + C1 + 3D1 + 2D2 + D3

(10) Y = 8A + 4B1 + C1 + 3D1 + D2

(11) Y = 10A + 5B1 + C1 + 4D1 + 2D2

(12) Y = 12A + 6B1 + C1 + 5D1 + 3D2 + D3

(13) Y = 14A + 7B1 + C1 + 6D1 + 4D2 + 2D3

Or apply SR technique for a cyclic quotient singularity.

[4] 16.2 type, (−1)
X = 16A + 8B1 + 3C1 + 2C2 + C3 + 5D1 + 4D2 + 3D3 + 2D4 + D5

WCS = (Y, 2)
(1) Y = 6A + 3B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4

(2) Y = 10A + 5B1 + 2C1 + 2C2 + 3D1 + 2D2 + D3

[4] 16.3 type, (−2)
X = 16A + 8B1 + 9C1 + 2C2 + C3 + 15D1 + 14D2 + 13D3 + 12D4 + 11D5

+10D6 +9D7 +8D8 +7D9 +6D10 +5D11 +4D12 +3D13 +2D14 +D15

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6 + 2D7

+ 2D8 + 2D9 + 2D10 + 2D11 + 2D12 + 2D13 + 2D14

WCS = (Y, 4)
(2) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5 + 4D6 + 4D7

+ 4D8 + 4D9 + 4D10 + 4D11 + 4D12
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WCS = (Y, 6)
(3) Y = 6A + 3B1 + 3C1 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5 + 6D6 + 6D7

+ 6D8 + 6D9 + 6D10

WCS = (Y, 8)
(4) Y = 8A+4B1+4C1+8D1+8D2+8D3+8D4+8D5+8D6+8D7+8D8

WCS = (Y, 10)
(5) Y = 10A + 5B1 + 5C1 + 10D1 + 10D2 + 10D3 + 10D4 + 10D5 + 10D6

WCS = (Y, 12)
(6) Y = 12A + 6B1 + 6C1 + 12D1 + 12D2 + 12D3 + 12D4

WCS = (Y, 14)
(7) Y = 14A + 7B1 + 7C1 + 14D1 + 14D2

WCS = (Y, 7)
(8) Y = 7A + 3B1 + 4C1 + C2 + C3 + 7D1 + 7D2 + 7D3 + 7D4 + 7D5

+ 7D6 + 7D7 + 7D8 + 7D9

WCS = (Y, 9)
(9) Y = 9A+4B1 +5C1 +C2 +9D1 +9D2 +9D3 +9D4 +9D5 +9D6 +9D7

WCS = (Y, 11)
(10) Y = 11A + 5B1 + 6C1 + C2 + 11D1 + 11D2 + 11D3 + 11D4 + 11D5

WCS = (Y, 13)
(11) Y = 13A + 5B1 + 6C1 + C2 + 13D1 + 13D2 + 13D3

WCS = (Y, 15)
(12) Y = 15A + 7B1 + 8C1 + C2 + 15D1

[4] 16.4 type, (−2)
X = 16A + 8B1 + 11C1 + 6C2 + C3 + 13D1 + 10D2 + 7D3 + 4D4 + D5

WCS = (Y, 1)
(1) Y = A + C1 + D1 + D2 + D3 + D4 + D5

(2) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

(3) Y = 6A + 3B1 + 4C1 + 2C2 + 5D1 + 4D2 + 3D3 + 2D4 + D5

Or apply SR technique for the E8-singularity.

Order 15 r = (3, 5, 15)

[4] 15.1 type, (−1)
X = 15A + 5B1 + 3C1 + 7D1 + 6D2 + 5D3 + 4D4 + 3D5 + 2D6 + D7

WCS = (Y, 3)
(1) Y = 6A + 2B1 + C1 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5

WCS = (Y, 5)
(2) Y = 10A + 3B1 + 2C1 + 5D1 + 5D2 + 5D3
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WCS = (Y, 6)
(3) Y = 12A + 4B1 + 2C1 + 6D1 + 6D2

[4] 15.2 type, (−1)
X = 15A + 5B1 + 6C1 + 3C2 + 4D1 + D2

WCS = (Y, 1)
(1) Y = 3A + B1 + C1 + D1 + D2

[4] 15.3 type, (−1)
X = 15A + 5B1 + 6C1 + 3C2 + 4D1 + D2

WCS = (Y, 1)
(1) Y = A + D1

(2) Y = 2A + C1 + D1

(3) Y = 3A + B1 + C1 + D1

(4) Y = 4A + B1 + 2C1 + D1

(5) Y = 5A + B1 + 3C1 + C2 + D1

(6) Y = 6A + 2B1 + 3C1 + D1

(7) Y = 7A + 2B1 + 4C1 + C2 + D1

(8) Y = 9A + 3B1 + 5C1 + C2 + D1

[4] 15.4 type, (−1)

X = 15A + 3B1 + 10C1 + 5C2 + 2D1 + D2

WCS = (Y, 1) + (2Y, 2)
(1) Y = 6A + B1 + 4C1 + 2C2 + D1 + D2

[4] 15.5 type, (−2)
X = 15A + 5B1 + 12C1 + 9C2 + 6C3 + 3C4 + 13D1 + 11D2 + 9D3 + 7D4

+ 5D5 + 3D6 + D7

WCS = (Y1, 1)+(Y2, 2)+(Y3, 3)+(Y4, 3)+(Y5, 3)+(Y6, 6)+(Y7, 7)+(Y8, 9)
(1) Y1 = A + C1 + C2 + C3 + C4 + D1 + D2 + D3 + D4 + D5 + D6 + D7,
Y2 = 2A+2C1 +2C2 +2C3 +2C4 +2D1 +2D2 +2D3 +2D4 +2D5 +2D6,
Y3 = 3A+3C1 +3C2 +3C3 +3C4 +3D1 +3D2 +3D3 +3D4 +3D5 +3D6,
Y4 = 3A + B1 + 3C1 + 3C2 + 3C3 + 3C4 + 2D1 + D2,
Y5 = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5 + 3D6,
Y6 = 6A + 2B1 + 5C1 + 4C2 + 3C3 + 2C4 + 5D1 + 4D2 + 3D3 + 2D4 + D5,
Y7 = 7A+2B1+6C1+5C2+4C3+3C4+6D1+5D2+4D3+3D4+2D5+D6,
Y8 = 9A+3B1+7C1+5C2+3C3+C4+8D1+7D2+6D3+5D4+4D5+3D6

WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4) + (5Y, 5),
semi-rigid: 5B1, 12C1, 5D5

(2) Y = A + B1 + D1 + D2 + D3 + D4 + D5

WCS =
∑9

i=1(iY, i), semi-rigid: 5B1, 9C2, 9D3

(3) Y = A + C1 + C2 + D1 + D2 + D3
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[4] 15.6 type, (−2)
X = 15A + 6B1 + 3B2 + 10C1 + 5C2 + 14D1 + 13D2 + 12D3 + 11D4

+10D5 +9D6 +8D7 +7D8 +6D9 +5D10 +4D11 +3D12 +2D13 +D14

WCS = (Y, 3)
(1) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5 + 3D6

+ 3D7 + 3D8 + 3D9 + 3D10 + 3D11 + 3D12

WCS = (Y, 6)
(2) Y = 6A + 2B1 + 4C1 + 2C2 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5 + 6D6

+ 6D7 + 6D8 + 6D9

WCS = (Y, 9)
(3) Y = 9A + 3B1 + 6C1 + 3C2 + 9D1 + 9D2 + 9D3 + 9D4 + 9D5 + 9D6

WCS = (Y, 12)
(4) Y = 12A + 4B1 + 8C1 + 4C2 + 12D1 + 12D2 + 12D3

WCS = (Y, 5)
(5) Y = 5A + 2B1 + B2 + 3C1 + C2 + 5D1 + 5D2 + 5D3 + 5D4 + 5D5

+ 5D6 + 5D7 + 5D8 + 5D9 + 5D10

WCS = (Y, 8)
(6) Y = 8A + 3B1 + B2 + 5C1 + 2C2 + 8D1 + 8D2 + 8D3 + 8D4 + 8D5

+ 8D6 + 8D7

[4] 15.7 type, (−2)
X = 15A + 9B1 + 3B2 + 10C1 + 5C2 + 11D1 + 7D2 + 3D3 + 2D4 + D5

WCS = (Y, 3)
(1) Y = 12A + 7B1 + 2B2 + 8C1 + 4C2 + 9D1 + 6D2 + 3D3

[4] 15.8 type, (−2)
X = 15A + 8B1 + B2 + 10C1 + 5C2 + 12D1 + 9D2 + 6D3 + 3D4

WCS = (Y, 1)
(1) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

(2) Y = 5A + 3B1 + B2 + 3C1 + C2 + 4D1 + 3D2 + 2D3 + D4

Or apply SR technique for E8-singularity.

Order 12 r = (4, 6, 12)

[4] 12.1.1 type, (−1)
X = 12A + 2B1 + 3C1 + 7D1 + 2D2 + D3

WCS = (Y1, 1) + (Y2, 2)
(1) Y1 = 4A + B1 + C1 + 2D1,
Y2 = 8A + 2B1 + 2C1 + 4D1
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[4] 12.1.2 type, (−1)
X = 12A + 2B1 + C1 + 9D1 + 6D2 + 3D3

WCS = (Y, 1)
(1) Y = A + C1

(2) Y = 2A + C1 + D1

(3) Y = 3A + C1 + 2D1 + D2

(4) Y = 4A + C1 + 3D1 + 2D2 + D3

(5) Y = 6A + B1 + C1 + 4D1 + 2D2

(6) Y = 7A + B1 + C1 + 5D1 + 3D2 + D3

(7) Y = 8A + B1 + C1 + 6D1 + 4D2 + 2D3

Or apply SR technique for a cyclic quotient singularity after contracting A.

[4] 12.1.3 type, (−2)
X = 12A + 3B1 + 10C1 + 8C2 + 6C3 + 4C4 + 2C5 + 11D1 + 10D2 + 9D3

+ 8D4 + 7D5 + 6D6 + 5D7 + 4D8 + 3D9 + 2D10 + D11

WCS = (Y, 4)
(1) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5

+ 4D6 + 4D7 + 4D8

WCS = (Y, 5)
(2) Y = 5A + B1 + 4C1 + 3C2 + 2C3 + C4 + 5D1 + 5D2 + 5D3 + 5D4

+ 5D5 + 5D6 + 5D7

WCS = (Y, 6)
(3) Y = 6A + B1 + 5C1 + 4C2 + 3C3 + 2C4 + C5 + 6D1 + 6D2 + 6D3

+ 6D4 + 6D5 + 6D6

WCS = (Y, 8)
(4) Y = 8A + 2B1 + 6C1 + 4C2 + 2C3 + 8D1 + 8D2 + 8D3 + 8D4

WCS = (Y, 9)
(5) Y = 9A + 2B1 + 7C1 + 5C2 + 3C3 + C4 + 9D1 + 9D2 + 9D3

WCS = (Y, 10)
(6) Y = 10A + 2B1 + 8C1 + 6C2 + 4C3 + 2C4 + 10D1 + 10D2

WCS = (Y, 11)
(7) Y = 11A + 2B1 + 9C1 + 7C2 + 5C3 + 3C4 + C5 + 11D1

[4] 12.1.4 type, (−2)
X = 12A+5B1+3B2+B3+9C1+6C2+3C3+10D1+8D2+6D3+4D4+2D5

WCS = (Y1, 2) + (Y2, 3)
(1) Y1 = 4A + 2B1 + 2B2 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3,

Y2 = 6A + 3B1 + 3B2 + 4C1 + 2C2 + 5D1 + 4D2 + 3D3 + 2D4 + D5
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WCS = (Y1, 4) + (Y2, 2) + (Y3, 5)
(2) Y1 = 4A + 2B1 + 2B2 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3,

Y2 = 8A + 4B1 + 6C1 + 4C2 + 2C3 + 6D1 + 4D2 + 2D3,
Y3 = 10A + 5B1 + 7C1 + 4C2 + C3 + 8D1 + 6D2 + 4D3 + 2D4

Order 12 r = (3, 12, 12)

[4] 12.2.1 type, (−1)
X = 12A + 4B1 + C1 + 7D1 + 2D2 + D3

WCS = (Y, 1)
(1) Y = A + C1

(2) Y = 2A + C1 + D1

(3) Y = 3A + B1 + C1 + D1

(4) Y = 4A + B1 + C1 + 2D1

(5) Y = 5A + B1 + C1 + 3D1 + D2 + D3

(6) Y = 6A + 2B1 + C1 + 3D1

Or apply SR technique for a cyclic quotient singularity after contracting A.

[4] 12.2.2 type, (−2)
X = 12A + 5B1 + 3B2 + B3 + 8C1 + 4C2 + 11D1 + 10D2 + 9D3 + 8D4

+ 7D5 + 6D6 + 5D7 + 4D8 + 3D9 + 2D10 + D11

WCS = (Y, 2)
(1) Y = 2A + B1 + B2 + B3 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6

+ 2D7 + 2D8 + 2D9 + 2D10

WCS = (Y, 3)
(2) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5 + 3D6

+ 3D7 + 3D8 + 3D9

WCS = (Y, 5)
(3) Y = 5A+2B1+B2+3C1+C2+5D1+5D2+5D3+5D4+5D5+5D6+5D7

WCS = (Y, 6)
(4) Y = 6A + 2B1 + 4C1 + 2C2 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5 + 6D6

WCS = (Y, 9)
(5) Y = 9A + 3B1 + 6C1 + 3C2 + 9D1 + 9D2 + 9D3

WCS = (Y, 10)
(6) Y = 10A + 4B1 + 2B2 + 6C1 + 2C2 + 10D1 + 10D2

Order 10 r = (2, 2, 5, 5)

[4] 10.1.1 type, (−2)
X = 10A + 5B1 + 5C1 + 4D1 + 2D2 + 6E1 + 2E2

WCS = (Y, 1) + (2Y, 2)
(1) Y = 2A + B1 + C1 + D1 + D2 + E1
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Order 10 r = (5, 10, 10)

[4] 10.2.1 type, (−1)
X = 10A + B1 + 2C1 + 7D1 + 4D2 + D3

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + D1

(3) Y = 5A + B1 + C1 + 3D1 + D2

Or apply SR technique for a cyclic quotient singularity after contracting A.

[4] 10.2.2 type, (−1)
X = 10A + 4B1 + 2B2 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

WCS = (Y, 1)
(1) Y = 3A + B1 + C1 + C2 + C3 + D1 + D2 + D3

[4] 10.2.3 type, (−1)
X = 10A + B1 + 3C1 + 2C2 + C3 + 6D1 + 2D2

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + D1

(3) Y = 3A + B1 + C1 + C2 + C3 + D1

(4) Y = 4A + B1 + C1 + 2D1

Or apply SR technique for a cyclic quotient singularity after contracting A.

[4] 10.2.4 type, (−1)
X = 10A + B1 + C1 + 8D1 + 6D2 + 4D3 + 2D4

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 2A + B1 + D1

(4) Y = 3A + B1 + C1 + D1

(5) Y = 3A + B1 + 2D1 + D2

(6) Y = 4A + B1 + C1 + 2D1

(7) Y = 4A + B1 + 3D1 + 2D2 + D3

(8) Y = 5A + B1 + C1 + 3D1 + D2

(9) Y = 5A + B1 + 4D1 + 3D2 + 2D3 + D4

(10) Y = 6A + B1 + C1 + 4D1 + 2D2

(11) Y = 7A + B1 + C1 + 5D1 + 3D2 + D3

(12) Y = 8A + B1 + C1 + 6D1 + 4D2 + 2D3

(13) Y = 9A + B1 + C1 + 7D1 + 5D2 + 3D3 + D4

Or apply SR technique for A4-singularity after contracting A.
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[4] 10.2.5 type, (−2)
X = 10A + 4B1 + 2B2 + 7C1 + 4C2 + C3 + 9D1 + 8D2 + 7D3 + 6D4 + 5D5

+ 4D6 + 3D7 + 2D8 + D9

WCS = (Y, 3)
(1) Y = 3A+B1 +2C1 +C2 +3D1 +3D2 +3D3 +3D4 +3D5 +3D6 +3D7

WCS = (Y, 4)
(2) Y = 4A+B1 +3C1 +2C2 +C3 +4D1 +4D2 +4D3 +4D4 +4D5 +4D6

WCS = (Y, 5)
(3) Y = 5A + 2B1 + B2 + 3C1 + C2 + 5D1 + 5D2 + 5D3 + 5D4 + 5D5

WCS = (Y, 6)
(4) Y = 6A + 2B1 + 4C1 + 2C2 + 6D1 + 6D2 + 6D3 + 6D4

WCS = (Y, 7)
(5) Y = 7A + 2B1 + 5C1 + 3C2 + C3 + 7D1 + 7D2 + 7D3

WCS = (Y, 9)
(6) Y = 9A + 3B1 + 6C1 + 3C2 + 9D1

[4] 10.2.6 type, (−2)
X = 10A + 6B1 + 2B2 + 7C1 + 4C2 + C3 + 7D1 + 4D2 + D3

WCS = (Y, 1)
(1) Y = A + C1 + C2 + C3 + D1 + D2 + D3

(2) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

(3) Y = 7A + 4B1 + B2 + 5C1 + 3C2 + C3 + 5D1 + 3D2 + D3

[4] 10.2.7 type, (−2)
X = 10A + 3B1 + 2B2 + B3 + 8C1 + 6C2 + 4C3 + 2C4 + 9D1 + 8D2 + 7D3

+ 6D4 + 5D5 + 4D6 + 3D7 + 2D8 + D9

WCS = (Y, 3)
(1) Y = 3A + B1 + B2 + B3 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5

+ 3D6 + 3D7

WCS = (Y, 4)
(2) Y = 4A+B1 +3C1 +2C2 +C3 +4D1 +4D2 +4D3 +4D4 +4D5 +4D6

WCS = (Y, 5)
(3) Y = 5A + B1 + 5C1 + 3C2 + C3 + 5D1 + 5D2 + 5D3 + 5D4 + 5D5

WCS = (Y, 7)
(4) Y = 7A + 2B1 + B2 + 5C1 + 3C2 + C3 + 7D1 + 7D2 + 7D3

WCS = (Y, 8)
(5) Y = 8A + 2B1 + 6C1 + 4C2 + 2C3 + 8D1 + 8D2



26.4 Genus 4 531

[4] 10.2.8 type, (−2)
X = 10A + 2B1 + 9C1 + 8C2 + 7C3 + 6C4 + 5C5 + 4C6 + 3C7 + 2C8 + C9

+ 9D1 + 8D2 + 7D3 + 6D4 + 5D5 + 4D6 + 3D7 + 2D8 + D9

WCS = (Y, 1)
(1) Y = A + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + D1 + D2

+ D3 + D4 + D5 + D6 + D7 + D8 + D9

WCS = (Y, 2)
(2) Y = 2A + 2C1 + 2C2 + 2C3 + 2C4 + 2C5 + 2C6 + 2C7 + 2C8 + 2D1

+ 2D2 + 2D3 + 2D4 + 2D5 + 2D6 + 2D7 + 2D8

WCS = (Y, 3)
(3) Y = 3A + 3C1 + 3C2 + 3C3 + 3C4 + 3C5 + 3C6 + 3C7 + 3D1 + 3D2

+ 3D3 + 3D4 + 3D5 + 3D6 + 3D7

WCS = (Y, 4)
(4) Y = 4A + 4C1 + 4C2 + 4C3 + 4C4 + 4C5 + 4C6 + 4D1 + 4D2 + 4D3

+ 4D4 + 4D5 + 4D6

WCS = (Y, 5)
(5) Y = 5A+5C1 +5C2 +5C3 +5C4 +5C5 +5D1 +5D2 +5D3 +5D4 +5D5

WCS = (Y, 6)
(6) Y = 6A + 6C1 + 6C2 + 6C3 + 6C4 + 6D1 + 6D2 + 6D3 + 6D4

WCS = (Y, 7)
(7) Y = 7A + 7C1 + 7C2 + 7C3 + 7D1 + 7D2 + 7D3

WCS = (Y, 8)
(8) Y = 8A + 8C1 + 8C2 + 8D1 + 8D2

WCS = (Y, 9)
(9) Y = 9A + 9C1 + 9D1

WCS = (Y, 5)
(10) Y = 5A+B1 +4C1 +3C2 +2C3 +C4 +5D1 +5D2 +5D3 +5D4 +5D5

WCS = (Y, 6)
(11) Y = 6A+B1 +5C1 +4C2 +3C3 +2C4 +C5 +6D1 +6D2 +6D3 +6D4

WCS = (Y, 7)
(12) Y = 7A+B1 +6C1 +5C2 +4C3 +3C4 +2C5 +C6 +7D1 +7D2 +7D3

WCS = (Y, 8)
(13) Y = 8A+B1 +7C1 +6C2 +5C3 +4C4 +3C5 +2C6 +C7 +8D1 +8D2

WCS = (Y, 9)
(14) Y = 9A+B1 +8C1 +7C2 +6C3 +5C4 +4C5 +3C6 +2C7 +C8 +9D1
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Order 9 r = (9, 9, 9)

[4] 9.1 type, (−1)
X = 9A + B1 + 4C1 + 3C2 + 2C3 + C4 + 4D1 + 3D2 + 2D3 + D4

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1 + C2 + C3 + C4

(3) Y = 2A + C1 + C2 + C3 + C4 + D1 + D2 + D3 + D4

(4) Y = 3A + B1 + C1 + D1

(5) Y = 5A + B1 + 2C1 + C2 + 2D1 + D2

WCS = (Y, 2)
(6) Y = 4A + 2C1 + 2C2 + 2C3 + 2D1 + 2D2 + 2D3

WCS = (Y, 3)
(7) Y = 6A + 3C1 + 3C2 + 3D1 + 3D2

WCS = (Y, 4)
(8) Y = 8A + 4C1 + 4D1

Or apply SR technique for a cyclic quotient singularity after contracting A.

[4] 9.2 type, (−1)
X = 9A + B1 + C1 + 7D1 + 5D2 + 3D3 + D4

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 2A + C1 + D1

(4) Y = 3A + B1 + C1 + D1

(5) Y = 3A + B1 + 2D1 + D2

(6) Y = 4A + B1 + C1 + 2D1

(7) Y = 4A + B1 + C1 + 2D1

(8) Y = 5A + B1 + C1 + 3D1 + D2

(9) Y = 5A + B1 + 4D1 + 3D2 + 2D3 + D4

(10) Y = 6A + B1 + C1 + 4D1 + 2D2

(11) Y = 7A + B1 + C1 + 5D1 + 3D2 + D3

(12) Y = 8A + B1 + C1 + 6D1 + 4D2 + 2D3

Or apply SR technique for a cyclic quotient singularity after contracting A.

[4] 9.3 type, (−1)
X = 9A + 2B1 + B2 + 2C1 + C2 + 5D1 + D2

WCS = (Y, 1)
(1) Y = A + D1 + D2 + D3

(2) Y = 4A + B1 + B2 + C1 + C2 + 2D1

(3) Y = 5A + B1 + C1 + 3D1 + D2
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[4] 9.4 type, (−2)
X = 9A + 2B1 + B2 + 8C1 + 7C2 + 6C3 + 5C4 + 4C5 + 3C6 + 2C7 + C8

+ 8D1 + 7D2 + 6D3 + 5D4 + 4D5 + 3D6 + 2D7 + D8

WCS = (Y, 1)
(1) Y = 2A + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + D1 + D2 + D3

+ D4 + D5 + D6 + D7 + D8

WCS = (Y, 2)
(2) Y = 2A + 2C1 + 2C2 + 2C3 + 2C4 + 2C5 + 2C6 + 2C7 + 2D1 + 2D2

+ 2D3 + 2D4 + 2D5 + 2D6 + 2D7

WCS = (Y, 3)
(3) Y = 3A + 3C1 + 3C2 + 3C3 + 3C4 + 3C5 + 3C6 + 3D1 + 3D2 + 3D3

+ 3D4 + 3D5 + 3D6

WCS = (Y, 4)
(4) Y = 4A+4C1 +4C2 +4C3 +4C4 +4C5 +4D1 +4D2 +4D3 +4D4 +4D5

WCS = (Y, 5)
(5) Y = 5A + 5C1 + 5C2 + 5C3 + 5C4 + 5D1 + 5D2 + 5D3 + 5D4

WCS = (Y, 6)
(6) Y = 6A + 6C1 + 6C2 + 6C3 + 6D1 + 6D2 + 6D3

WCS = (Y, 7)
(7) Y = 7A + 7C1 + 7C2 + 7D1 + 7D2

WCS = (Y, 8)
(8) Y = 8A + 8C1 + 8D1

WCS = (Y, 4)
(9) Y = 4A + B1 + B2 + 3C1 + 2C2 + C3 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5

WCS = (Y, 5)
(10) Y = 5A + B1 + 4C1 + 3C2 + 2C3 + C4 + 5D1 + 5D2 + 5D3 + 5D4

WCS = (Y, 6)
(11) Y = 6A + B1 + 5C1 + 4C2 + 3C3 + 2C4 + C5 + 6D1 + 6D2 + 6D3

WCS = (Y, 7)
(12) Y = 7A + B1 + 6C1 + 5C2 + 4C3 + 3C4 + 2C5 + C6 + 7D1 + 7D2

WCS = (Y, 8)
(13) Y = 8A + B1 + 7C1 + 6C2 + 5C3 + 4C4 + 3C5 + 2C6 + C7 + 8D1

[4] 9.5 type, (−2)
X = 9A + 5B1 + B2 + 5C1 + C2 + 8D1 + 7D2 + 6D3 + 5D4 + 4D5 + 3D6

+ 2D7 + D8
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WCS = (Y, 1)
(1) Y = A + B1 + B2 + C1 + C2

(2) Y = A + B1 + B2 + D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8

(3) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

(4) Y = 5A + 3B1 + B2 + 3C1 + C2 + 4D1 + 3D2 + 2D3 + D4

(5) Y = 7A + 4B1 + B2 + 4C1 + C2 + 6D1 + 5D2 + 4D3 + 3D4 + 2D5 + D6

WCS = (Y, 2)
(6) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6 + 2D7

WCS = (Y, 3)
(7) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5 + 3D6

WCS = (Y, 4)
(8) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5

WCS = (Y, 5)
(9) Y = 5A + 3B1 + B2 + 2C1 + 5D1 + 5D2 + 5D3 + 5D4

WCS = (Y, 6)
(10) Y = 6A + 3B1 + 3C1 + 6D1 + 6D2 + 6D3

WCS = (Y, 7)
(11) Y = 7A + 4B1 + B2 + 3C1 + 7D1 + 7D2

WCS = (Y, 8)
(12) Y = 8A + 4B1 + 4C1 + 8D1

Or apply SR technique for D10-singularity.

Order 8 r = (2, 2, 8, 8)

[4] 8.1 type, (−2)
X = 8A + 4B1 + 4C1 + D1 + 7E1 + 6E2 + 5E3 + 4E4 + 3E5 + 2E6 + E7

WCS = (Y, 1)
(1) Y = A + D1 + E1 + E2 + E3 + E4 + E5 + E6 + E7

(2) Y = 2A + B1 + C1 + D1 + E1

WCS = (Y, 2)
(3) Y = 2A + B1 + C1 + 2E1 + 2E2 + 2E3 + 2E4 + 2E5 + 2E6

(4) Y = 2A + B1 + D1 + 2E1 + 2E2 + 2E3 + 2E4 + 2E5 + 2E6

WCS = (Y, 3)
(5) Y = 3A + B1 + C1 + D1 + 3E1 + 3E2 + 3E3 + 3E4 + 3E5

WCS = (Y, 4)
(6) Y = 4A + 2B1 + 2C1 + 4E1 + 4E2 + 4E3 + 4E4

(7) Y = 4A + B1 + 2C1 + D1 + 4E1 + 4E2 + 4E3 + 4E4

WCS = (Y, 5)
(8) Y = 5A + 2B1 + 2C1 + D1 + 5E1 + 5E2 + 5E3
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WCS = (Y, 6)
(9) Y = 6A + 3B1 + 3C1 + 6E1 + 6E2

(10) Y = 6A + 2B1 + 3C1 + D1 + 6E1 + 6E2

WCS = (Y, 7)
(11) Y = 7A + 3B1 + 3C1 + D1 + 7E1

Or apply SR technique for D9-singularity.

[4] 8.2 type, (−2)
X = 8A + 4B1 + 4C1 + 3D1 + D2 + 5E1 + 2E2 + E3

WCS = (Y, 1)
(1) Y = 2A + B1 + C1 + D1 + D2 + E1

WCS = (Y, 2)
(2) Y = 6A + 3B1 + 3C1 + 2D1 + 4E1 + 2E2

Order 6 r = (2, 2, 2, 3, 6)

[4] 6.1.1 type, (−2)
X = 6A + B1 + 2C1 + 3D1 + 3E1 + 3F1

WCS = (Y, 1)
(1) Y = 2A + B1 + D1 + E1 + F1

(2) Y = 4A + B1 + C1 + 2D1 + 2E1 + 2F1

[4] 6.1.2 type, (−3)
X = 6A + 3B1 + 3C1 + 3D1 + 4E1 + 2E2 + 5F1 + 4F2 + 3F3 + 2F4 + F5

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + D1 + E1 + 2F1 + 2F2 + 2F3 + 2F4

WCS = (Y, 4)
(2) Y = 4A + 2B1 + 2C1 + 2D1 + 2E1 + 4F1 + 4F2

Order 6 r = (3, 3, 6, 6)

[4] 6.2.1 type, (−1)
X = 6A + B1 + C1 + 2D1 + 2E1

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 3A + B1 + C1 + D1

(4) Y = 3A + C1 + D1 + E1

Or apply SR technique for a cyclic quotient singularity after contracting A.

[4] 6.2.2 type, (−2)
X = 6A + B1 + 2C1 + 4D1 + 2D2 + 5E1 + 4E2 + 3E3 + 2E4 + E5
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WCS = (Y, 1)
(1) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2

WCS = (Y, 2)
(2) Y = 2A + B1 + D1 + 2E1 + 2E2 + 2E3 + 2E4

WCS = (Y, 3)
(3) Y = 3A + B1 + 2D1 + D2 + 3E1 + 3E2 + 3E3

(4) Y = 3A + C1 + 2D1 + D2 + 3E1 + 3E2 + 3E3

(5) Y = 3A + B1 + C1 + D1 + 3E1 + 3E2 + 3E3

WCS = (Y, 4)
(6) Y = 4A + B1 + C1 + 2D1 + 4E1 + 4E2

WCS = (Y, 5)
(7) Y = 5A + B1 + C1 + 3D1 + D2 + 5E1

[4] 6.2.3 type, (−3)
X = 6A + 4B1 + 2B2 + 4C1 + 2C2 + 5D1 + 4D2 + 3D3 + 2D4 + D5 + 5E1

+ 4E2 + 3E3 + 2E4 + E5

WCS = (Y, 2)
(1) Y = 2A+B1 +C1 +2D1 +2D2 +2D3 +2D4 +2E1 +2E2 +2E3 +2E4

WCS = (Y, 3)
(2) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3E1 + 3E2 + 3E3

(3) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2 + 3E1 + 3E2 + 3E3

WCS = (Y, 4)
(4) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4E1 + 4E2

WCS = (Y, 5)
(5) Y = 5A + 2B1 + 3C1 + C2 + 5D1 + 5E1

(6) Y = 5A + 3B1 + B2 + 3C1 + C2 + 4D1 + 3D2 + 2D3 + D4 + 5E1

Order 6 r = (2, 6, 6, 6)

[4] 6.3.1 type, (−1)
X = 6A + B1 + C1 + D1 + 3E1

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 2A + C1 + D1

(4) Y = 3A + B1 + C1 + D1

(5) Y = 3A + C1 + D1 + E1

(6) Y = 4A + C1 + D1 + 2E1

Or apply SR technique for A1-singularity after contracting A.
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[4] 6.3.2 type, (−3)
X = 6A + 3B1 + 5C1 + 4C2 + 3C3 + 2C4 + C5 + 5D1 + 4D2 + 3D3 + 2D4

+ D5 + 5E1 + 4E2 + 3E3 + 2E4 + E5

WCS = (Y, 1)
(1) Y = A + C1 + C2 + C3 + C4 + C5 + D1 + D2 + D3 + D4 + D5 + E1

+ E2 + E3 + E4 + E5

WCS = (Y, 2)
(2) Y = 2A + 2C1 + 2C2 + 2C3 + 2C4 + 2D1 + 2D2 + 2D3 + 2D4 + 2E1

+ 2E2 + 2E3 + 2E4

(3) Y = 2A+B1 +C1 +2D1 +2D2 +2D3 +2D4 +2E1 +2E2 +2E3 +2E4

WCS = (Y, 3)
(4) Y = 3A + 3C1 + 3C2 + 3C3 + 3D1 + 3D2 + 3D3 + 3E1 + 3E2 + 3E3

(5) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3E1 + 3E2 + 3E3

WCS = (Y, 4)
(6) Y = 4A + 4C1 + 4C2 + 4D1 + 4D2 + 4E1 + 4E2

(7) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4E1 + 4E2

(8) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4D2 + 4E1 + 4E2

WCS = (Y, 5)
(9) Y = 5A + 5C1 + 5D1 + 5E1

(10) Y = 5A + B1 + 4C1 + 3C2 + 2C3 + C4 + 5D1 + 5E1

Order 6 r = (2, 2, 3, 3, 3)

[4] 6.4.1 type, (−2)
X = 6A + 2B1 + 2C1 + 2D1 + 3E1 + 3F1

WCS = (Y, 1) + (2Y, 2)
(1) Y = 2A1 + B1 + C1 + D1 + E1

[4] 6.4.2 type, (−3)
X = 6A + 3B1 + 3C1 + 4D1 + 2D2 + 4E1 + 2E2 + 4F1 + 2F2

WCS = (Y1, 2) + (Y2, 3)
(1) Y1 = 2A + B1 + C1 + D1 + E1 + 2F1 + 2F2,
Y2 = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2 + 3F1

Order 5 r = (5, 5, 5, 5)

[4] 5.1 type, (−1)
X = 5A + B1 + C1 + D1 + 2E1 + E2

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 2A + D1 + E1 + E2
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(4) Y = 3A + C1 + D1 + E1

(5) Y = 4A + B1 + C1 + D1 + E1

WCS = (Y, 2)
(6) Y = 4A + C1 + D1 + 2E1 + E2

Or apply SR technique for a cyclic quotient singularity after contracting A.

[4] 5.2 type, (−2)
X = 5A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2 + 4E1 + 3E2 + 2E3 + E4

WCS = (Y, 1)
Y = 2A + B1 + B2 + C1 + C2 + D1 + D2 + E1

WCS = (Y, 2)
(2) Y = 2A + B1 + B2 + C1 + C2 + 2E1 + 2E2 + 2E3

(3) Y = 4A + 2B1 + 2C1 + 2D1 + 2E1

(4) Y = 4A + B1 + 2C1 + 2D1 + 3E1 + 2E2 + E3

WCS = (Y, 3)
(5) Y = 3A + B1 + C1 + D1 + 3E1 + 3E2

[4] 5.3 type, (−2)
X = 5A + B1 + 3C1 + C2 + 3D1 + D2 + 3E1 + E2

WCS = (Y, 1)
(1) Y = A + B1 + C1 + C2

(2) Y = A + C1 + C2 + D1 + D2

(3) Y = 2A + B1 + C1 + D1 + E1

(4) Y = 3A + 2C1 + C2 + 2D1 + D2 + 2E1 + E2

[4] 5.4 type, (−2)
X = 5A + 2B1 + B2 + 2C1 + C2 + 3D1 + D2 + 3E1 + E2

WCS = (Y, 1)
(1) Y = 2A + B1 + B2 + C1 + C2 + D1 + E1

(2) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2

WCS = (Y, 2)
(3) Y = 4A + 2B1 + 2C1 + 2D1 + 2E1

WCS = (Y, 1) + (2Y, 2)
(4) Y = A + B1 + D1

[4] 5.5 type, (−2)
X = 5A + B1 + C1 + 4D1 + 3D2 + 2D3 + D4 + 4E1 + 3E2 + 2E3 + E4

WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = A + B1 + E1 + E2 + E3 + E4
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(3) Y = A + D1 + D2 + D3 + D4 + E1 + E2 + E3 + E4

(4) Y = 2A + B1 + C1 + D1 + E1

(5) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2

(6) Y = 4A + B1 + C1 + 3D1 + 2D2 + D3 + 3E1 + 2E2 + E3

WCS = (Y, 2)
(7) Y = 2A + 2D1 + 2D2 + 2D3 + 2E1 + 2E2 + 2E3

(8) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3

(9) Y = 2A + C1 + D1 + 2E1 + 2E2 + 2E3

WCS = (Y, 3)
(10) Y = 3A + 3D1 + 3D2 + 3E1 + 3E2

(11) Y = 3A + B1 + C1 + D1 + 3E1 + 3E2

WCS = (Y, 4)
(12) Y = 4A + 4D1 + 4E1

[4] 5.6 type, (−3)
X = 5A + 3B1 + B2 + 4C1 + 3C2 + 2C3 + C4 + 4D1 + 3D2 + 2D3 + D4

+ 4E1 + 3E2 + 2E3 + E4

WCS = (Y, 1)
(1) Y = A + B1 + B2 + C1 + C2 + C3 + C4 + D1 + D2 + D3 + D4

(2) Y = A+C1 +C2 +C3 +C4 +D1 +D2 +D3 +D4 +E1 +E2 +E3 +E4

WCS = (Y, 2)
(3) Y = 2A + 2C1 + 2C2 + 2C3 + 2D1 + 2D2 + 2D3 + 2E1 + 2E2 + 2E3

(4) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2E1 + 2E2 + 2E3

WCS = (Y, 3)
(5) Y = 3A + 3C1 + 3C2 + 3D1 + 3D2 + 3E1 + 3E2

(6) Y = 3A + B1 + 2C1 + 3C2 + 3D1 + 3D2 + 3E1 + 3E2

(7) Y = 3A + 2B1 + B2 + C1 + 3D1 + 3D2 + 3E1 + 3E2

WCS = (Y, 4)
(8) Y = 4A + 4C1 + 4D1 + 4E1

(9) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4E1

(10) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3 + 4E1

Order 4 r = (2, 2, 2, 2, 4, 4)

[4] 4.1.1 type, (−3)
X = 4A + B1 + 2C1 + 2D1 + 2E1 + 2F1 + 3G1 + 2G2 + G3

WCS = (Y, 1)
(1) Y = 2A + B1 + C1 + D1 + E1 + F1 + G1

WCS = (Y, 2)
(2) Y = 2A + B1 + C1 + D1 + E1 + 2G1 + 2G2

(3) Y = 2A + C1 + D1 + E1 + F1 + 2G1 + 2G2
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Order 4 r = (2, 4, 4, 4, 4)

[4] 4.2.1 type, (−2)
X = 4A + B1 + C1 + D1 + 2E1 + 3F1 + 2F2 + F3

WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = A + B1 + F1 + F2 + F3

(3) Y = 2A + B1 + C1 + D1 + E1

(4) Y = 2A + B1 + C1 + D1 + F1

(5) Y = 2A + B1 + C1 + E1 + F1

(6) Y = 3A + B1 + C1 + D1 + E1 + 2F1 + F2

WCS = (Y, 2)
(7) Y = 2A + B1 + C1 + 2F1 + 2F2

(8) Y = 2A + B1 + E1 + 2F1 + 2F2

WCS = (Y, 3)
(9) Y = 3A + B1 + C1 + D1 + 3F1

(10) Y = 3A + B1 + C1 + E1 + 3F1

Or apply SR technique for A4-singularity.

[4] 4.2.2 type, (−3)
X = 4A+B1 +2C1 +3D1 +2D2 +D3 +3E1 +2E2 +E3 +3F1 +2F2 +F3

WCS = (Y, 1)
(1) Y = A + B1 + D1 + D2 + D3 + E1 + E2 + E3

(2) Y = A + D1 + D2 + D3 + E1 + E2 + E3 + F1 + F2 + F3

WCS = (Y, 2)
(3) Y = 2A + B1 + C1 + D1 + E1 + 2F1 + 2F2

(4) Y = 2A + 2D1 + 2D2 + 2E1 + 2E2 + 2F1 + 2F2

(5) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2E1 + 2E2

(6) Y = 2A + B1 + D1 + 2E1 + 2E2 + 2F1 + 2F2

(7) Y = 2A + C1 + D1 + 2E1 + 2E2 + 2F1 + 2F2

WCS = (Y, 3)
(8) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2 + 3F1

(9) Y = 3A + 3D1 + 3E1 + 3F1

(10) Y = 3A + B1 + C1 + D1 + 3E1 + 3F1

Order 3 r = (3, 3, 3, 3, 3, 3)

[4] 3.1 type, (−1)
X = 3A + B1 + C1 + D1 + E1 + F1 + G1

WCS = (Y, 1)
(1) Y = A + B1

Or apply SR technique for A1-singularity.
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[4] 3.2 type, (−3)
X = 3A + B1 + C1 + D1 + 2E1 + E2 + 2F1 + F2 + 2G1 + G2

WCS = (Y, 1)
(1) Y = A + B1 + C1 + D1

(2) Y = A + B1 + C1 + E1 + E2

(3) Y = A + B1 + E1 + E2 + F1 + F2

(4) Y = A + E1 + E2 + F1 + F2 + G1 + G2

(5) Y = 2A + B1 + C1 + D1 + E1 + F1 + G1

WCS = (Y, 2)
(6) Y = 2A + B1 + C1 + D1 + E1 + 2F1

(7) Y = 2A + B1 + C1 + 2E1 + 2F1

(8) Y = 2A + 2E1 + 2F1 + 2G1

Or apply SR technique for a quotient singularity.

[4] 3.3 type, (−4)
X = 3A+2B1+B2+2C1+C2+2D1+D2+2E1+E2+2F1+F2+2G1+G2

WCS = (Y, 1)
(1) Y = A + B1 + B2 + C1 + C2 + D1 + D2 + E1 + E2

WCS = (Y, 2)
(2) Y = 2A + 2B1 + 2C1 + 2D1 + 2E1

(3) Y = 2A + B1 + C1 + 2D1 + 2E1 + 2F1

(4) Y = 2A + B1 + D1 + 2E1 + 2F1 + 2G1

Order 2 r = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[4] 2.1 type, (−5)
X = 2A + B1 + C1 + D1 + E1 + F1 + G1 + H1 + I1 + J1 + K1

WCS = (Y, 1)
(1) Y = A + B1 + C1 + D1 + E1 + F1

Or apply SR technique for a cyclic quotient singularity.

26.4.2 Stellar singular fibers, genus(A) = 1, 2

genus(A) = 1

[4] A1.1 type
X = 6A + 3B1 + 3C1, N⊗6

A = O(−3b1 − 3c1)

Take b1, c1 so that b1 − c1 is torsion of order 3 in Pic(A).
WCS = (Y, 1) + (2Y, 2) + (Y, 3Y )
(1) Y = A + B1, NA = O(−b1),
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[4] A1.2 type
X = 4A + B1 + 3C1 + 2C2 + C3, N⊗4

A = O(−b1 − 3c1)

WCS = (Y, 1)
(1) Y = A + B1 + C1 + C2 + C3, NA = O(−b1 − c1 + q),
where 3b1 + c1 ∼ 4q.

[4] A1.3 type
X = 3A + B1 + C1 + D1, N⊗3

A = O(−b1 − c1 − d1)

WCS = (Y, 1)
(1) Y = A + B1, NA = O(−b1),
where c1 + d1 ∼ 2b1, i.e. b1 is a Weierstrass point on A.
(2) Y = 2A + B1 + C1, N⊗2

A = O(−b1 − c1),
where b1 + c1 ∼ 2d1, i.e. d1 is a Weierstrass point on A.

[4] A1.4 type
X = 3A+2B1 +B2 +2C1 +C2 +2D1 +D2, N⊗3

A = O(−2b1−2c1−2d1)

WCS = (Y, 1)
(1) Y = A + B1 + B2 + C1 + C2, NA = O(−b1 − c1),
where b1 + c1 ∼ 2d1, i.e. d1 is a Weierstrass point on A.

WCS = (Y, 2)
(2) Y = 2A + B1 + B2 + C1 + C2 + 2D1, N⊗2

A = O(−b1 − c1 − 2d1),
where b1 + c1 ∼ 2d1, i.e. d1 is a Weierstrass point on A.
(3) Y = 2A + 2B1 + 2C1, N⊗2

A = O(−2b1 − 2c1),
where 2b1 + 2c1 ∼ 4d1, e.g. d1 is a Weierstrass point on A.

[4] A1.5 type
X = 2A+B1+C1+D1+E1+F1+G1, N⊗2

A = O(−b1−c1−d1−e1−f1−g1)

WCS = (Y, 1)
(1) Y = A + B1 + C1 + D1, NA = O(−b1 − c1 − d1),
where b1 + c1 + d1 ∼ e1 + f1 + g1

genus(A) = 2

[4] A2.1 type
X = 3A atom

[4] A2.2 type
Suppose A is a hyperelliptic curve.
X = 2A + B1 + C1, N⊗2

A = O(−b1 − c1)

WCS = (Y, 1)
(1) Y = A + B1 + C1, NA = O(−b1 − c1 + q),
where b1 + c1 ∼ 2q (linearly equivalent), i.e. q is a Weierstrass point on A.
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26.4.3 Self-welding and self-connecting of genus 3 or 2

[4] sw3.1 type sw([3] 12.4)
X = 12A + 6B1 + 7C1 + 2C2 + 11D1 + 10D2 + 9D3 + 8D4 + 7D5 + 6D6

+ 5D7 + 4D8 + 3D9 + 2D10, C2 = D10

WCS = (Y, 1) + (2Y, 2)
(1) Y = A+B1+C1+C2+D1+D2+D3+D4+D5+D6+D7+D8+D9+D10

WCS = (Y, 2) + (2Y, 4) + (3Y, 6) + (4Y, 8) + (5Y, 10),
semi-rigid: C2(= D10), D7

(2) Y = 2A + B1 + C1 + D1 + D2

WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4) + (5Y, 5) + (6Y, 6)
(3) Y = A + B1 + D1 + D2 + D3 + D4 + D5 + D6,

WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4) + (5Y, 5) + (6Y, 6) + (7Y, 7)
(4) Y = A + C1 + D1 + D2 + D3 + D4 + D5

[4] sw3.2 type sw([3] 9.3)
X = 9A + 3B1 + 2C1 + 4D1 + 3D2 + 2D3, C1 = D3

WCS = (Y, 1) + (2Y, 2)
(1) Y = 2A + C1 + D1 + D2

[4] sw3.3 type sw([3] 9.4)
X = 9A + 3B1 + 7C1 + 5C2 + 3C3 + 8D1 + 7D2 + 6D3 + 5D4

+ 4D5 + 3D6, C3 = D6

WCS = (Y, 1) + (2Y, 2) + (3Y, 3)
(1) Y = A + C1 + C2 + C3 + D1 + D2 + D3 + D4 + D5 + D6

[4] sw3.4 type sw([3] 9.5)
X = 9A + 6B1 + 3B2 + 4C1 + 3C2 + 2C3 + 8D1 + 7D2 + 6D3 + 5D4 + 4D5

+ 3D6 + 2D7, C3 = D7

WCS = (Y, 3) + (2Y, 6)
(1) Y = 3A + 2B1 + B2 + C1 + 3D1 + 3D2 + 3D3

[4] sw3.5 type sw([3] 8.4)
X = 8A + 2B1 + 7C1 + 6C2 + 5C3 + 4C4 + 3C5 + 2C6 + 7D1 + 6D2 + 5D3

+ 4D4 + 3D5 + 2D6, C6 = D6

WCS = (Y, 1) + (2Y, 2), semi-rigid: B1

(1) Y = A+C1 +C2 +C3 +C4 +C5 +C6 +D1 +D2 +D3 +D4 +D5 +D6

[4] sw3.6 type sw([3] 8.5)
X = 8A+3B1+6C1+4C2+2C3+7D1+6D2+5D3+4D4+3D5, B1 = D5

WCS = (Y, 1) + (2Y, 2) + (3Y, 3), semi-rigid: C1

(1) Y = A + B1 + D1 + D2 + D3 + D4 + D5
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[4] sw3.7 type sw([3] 8.6)
X = 8A + 5B1 + 2B2 + 5C1 + 2C2 + 6D1 + 4D2 + 2D3, B2 = C2

WCS = (Y, 1) + (2Y, 2), semi-rigid: D1

(1) Y = A + B1 + B2 + C1 + C2

[4] sw3.8 type sw([3] 7.3)
X = 7A + B1 + 3C1 + 2C2 + 3D1 + 2D2, C2 = D2

WCS = (Y, 1) + (2Y, 2)
(1) Y = 2A + C1 + C2 + D1 + D2

[4] sw3.9 type sw([3] 7.4) case 1
X = 7A + 2B1 + 2C1 + 3D1 + 2D2 + D3, B1 = C1

WCS = (Y, 2)
(1) Y = 4A + B1 + C1 + 2D1 + 2D2

WCS = (Y, 1) + (2Y, 2), semi-rigid: D1

(2) Y = 2A + B1 + C1

[4] sw3.10 type sw([3] 7.4) case 2
X = 7A + 2B1 + B2 + 2C1 + 3D1 + 2D2, C1 = D2

WCS = (Y, 1) + (2Y, 2), semi-rigid: B1

(1) Y = 2A + C1 + D1 + D2

[4] sw3.11 type sw([3] 7.5) case 1
X = 7A + 2B1 + 6C1 + 5C2 + 4C3 + 3C4 + 2C5 + 6D1 + 5D2 + 4D3 + 3D4

+ 2D5 + D6, B1 = C5

WCS = (Y, 4)
(1) Y = 4A + B1 + 3C1 + 2C2 + C3 + C4 + C5 + 4D1 + 4D2 + 4D3

WCS = (Y, 5)
(2) Y = 5A + B1 + 4C1 + 3C2 + 2C3 + C4 + C5 + 5D1 + 5D2

WCS = (Y, 6)
(3) Y = 6A + B1 + 5C1 + 4C2 + 3C3 + 2C4 + C5 + 6D1

WCS = (Y, 1) + (2Y, 2), semi-rigid: D1

(4) Y = A + B1 + C1 + C2 + C3 + C4 + C5

[4] sw3.12 type sw([3] 7.5) case 2
X = 7A + 2B1 + B2 + 6C1 + 5C2 + 4C3 + 3C4 + 2C5 + 6D1 + 5D2 + 4D3

+ 3D4 + 2D5, C5 = D5

WCS = (Y, 1) + (2Y, 2), semi-rigid: B1

(1) Y = A + C1 + C2 + C3 + C4 + C5 + D1 + D2 + D3 + D4 + D5
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[4] sw3.13 type sw([3] 7.6) case 1
X = 7A+3B1+5C1+3C2+6D1+5D2+4D3+3D4+2D5+D6, B1 = C2

WCS = (Y, 3)
(1) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4

WCS = (Y, 1) + (2Y, 2) + (3Y, 3), semi-rigid: D1

(2) Y = A + B1 + C1 + C2

[4] sw3.14 type sw([3] 7.6) case 2
X = 7A + 3B1 + 2B2 + 5C1 + 3C2 + C3 + 6D1 + 5D2 + 4D3 + 3D4 + 2D5,

B2 = D5

WCS = (Y, 1) + (2Y, 2) + (3Y, 3), semi-rigid: C1

(1) Y = A + B1 + D1 + D2 + D3 + D4

[4] sw3.15 type sw([3] 7.6) case 3
X = 7A+3B1+2B2+B3+5C1+3C2+6D1+5D2+4D3+3D4, C2 = D4

WCS = (Y, 1) + (2Y, 2) + (3Y, 3), semi-rigid: B1

(1) Y = A + C1 + C2 + D1 + D2 + D3 + D4

[4] sw3.16 type sw([3] 7.7)
X = 7A + 4B1 + B2 + 4C1 + 6D1 + 5D2 + 4D3, C1 = D3

WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4), semi-rigid: B1

(1) Y = A + C1 + D1 + D2 + D3

[4] sw3.17 type sw([3] 4.1.2)
X = 4A + B1 + C1 + 3D1 + 2D2 + 3E1 + 2E2, D2 = E2

WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = 2A + B1 + C1 + D1 + E1

WCS = (Y, 1) + (2Y, 2)
(3) Y = A + D1 + D2 + E1 + E2

WCS = (Y, 1) + (2Y, 2) + (3Y, 3)
(4) Y = A + D1 + E1

[4] sw3.18 type sw([3] 4.1.3)
X = 4A + 3B1 + 2B2 + 3C1 + 2C2 + 3D1 + 2D2 + D3 + 3E1 + 2E2 + E3,

B2 = C2

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2E1 + 2E2

WCS = (Y, 3)
(2) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2 + 3E1
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WCS = (Y, 1) + (2Y, 2)
(3) Y = A + B1 + B2 + C1 + C2 + D1 + D2

WCS = (Y, 1) + (2Y, 2) + (3Y, 3), semi-rigid: E1

(4) Y = A + B1 + C1 + D1

[4] sw3.19 type sw([3] 4.2.2)
X = 4A + 2B1 + 2C1 + 2D1 + 3E1 + 2E2 + 3F1 + 2F2, E2 = F2

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + B1 + E1 + E2 + F1 + F2

(2) Y = A + B1 + C1 + D1

[4] sw3.20 type sw([3] 3.2)
X = 3A + B1 + 2C1 + 2D1 + 2E1 + E2 + 2F1 + F2, C1 = D1

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + D1 + E1 + E2 + 2F1

(2) Y = 2A + C1 + D1 + 2E1 + 2F1

WCS = (Y, 1) + (2Y, 2)
(3) Y = A + C1 + D1 + E1

[4] sc2.1 type sc([2] 4.1)
X = 4A + B1 + 2C1 + 2D1 + 3E1 + 2E2 + E3, C1 = D1

WCS = (Y, 1)
(1) Y = A + B1 + E1 + E2 + E3

WCS = (Y, 1) + (2Y, 2)
(2) Y = A + C1 + D1

26.4.4 Welding of stellar singular fibers of genus 3 and genus 1

If X is a welding of a stellar singular fiber X1 of genus 3 and a stellar
singular fiber X2 of genus 1, then the splittability of X follows from (1)
exceptional curve criterion or (2) trivial extension criterion by using a simple
crust of X1 or X2.

26.4.5 Welding of stellar singular fibers of genus 2 and genus 2

[4] wd([2]10.3+[2]8.1) type
X = X1 + X2, D2(X1) = A(X2)
X1 = 10A + 5B1 + 6C1 + 2C2 + 9D1 + 8D2

X2 = 8A + 4B1 + 3D1 + D2

WCS = (Y, 1), Y = Y (X1) + Y (X2)
Y (X1) = 2A + B1 + C1 + 2D1 + 2D2

Y (X2) = 2A + C1 + D1 + D2
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[4] wd([2]8.2+[2]6.1.1) type
X = X1 + X2, D2(X1) = A(X2)
X1 = 8A + 4B1 + 5C1 + 2C2 + C3 + 7D1 + 6D2

X2 = 6A + C1 + 4D1 + 2D2

WCS = (Y, 1), Y = Y (X1) + Y (X2)
Y (X1) = 2A + B1 + C1 + 2D1 + 2D2

Y (X2) = 2A + C1 + D1

26.4.6 Welding of stellar singular fibers of genus 2, 1, and 1

[4] wd([2]5.1+II∗+II∗) type
X = X1 + X2 + X3, A(X1) = D1(X2) = D1(X3)
X1 = 5A + 3D1 + D2

X2 = 6A + 3B1 + 4C1 + 2C2 + 5D1

X3 = 6A + 3B1 + 4C1 + 2C2 + 5D1

WCS = (Y, 1) + (2Y, 2) + (3Y, 3), Y = Y (X1) + Y (X2) + Y (X3)
Y (X1) = A + D1

Y (X2) = A + B1 + D1

Y (X3) = A + B1 + D1

26.5 Genus 5

26.5.1 Stellar singular fibers, A = P
1

Order 22 r = (2, 11, 22)

[5] 22.1 type, (−1)
X = 22A + 11B1 + 2C1 + 9D1 + 5D2 + D3

WCS = (Y, 1)
(1) Y = 2A + B1 + D1 + D2 + D3

[5] 22.2 type, (−1)
X = 22A+11B1 +4C1 +2C2 +7D1 +6D2 +5D3 +4D4 +3D5 +2D6 +D7

WCS = (Y, 2)
(1) Y = 6A + 3B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6

[5] 22.3 type, (−1)
X = 22A + 11B1 + 6C1 + 2C2 + 5D1 + 3D2 + D3

WCS = (Y, 1)
(1) Y = 4A + 2B1 + C1 + D1 + D2 + D3

[5] 22.4 type, (−1)
X = 22A + 11B1 + 8C1 + 2C2 + 3D1 + 2D2 + D3
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WCS = (Y, 1) + (2Y, 2)
(1) Y = 8A + 4B1 + 3C1 + C2 + D1

[5] 22.5 type, (−1)
X = 22A + 11B1 + C1 + 10D1 + 8D2 + 6D3 + 4D4 + 2D5

WCS = (Y, 1)
(1) Y = A + C1

(2) Y = 2A + B1 + C1

(3) Y = 3A + B1 + C1 + D1

(4) Y = 4A + 2B1 + C1 + D1

(5) Y = 6A + 3B1 + C1 + 2D1

WCS = (Y, 1) + (2Y, 2)
(6) Y = 2A + B1 + D1 + D2 + D3 + D4 + D5

Or apply SR technique for a cyclic quotient singularity after contracting A.

[5] 22.6 type, (−2)
X = 22A + 11B1 + 12C1 + 2C2 + 21D1 + 20D2 + 19D3 + 18D4 + 17D5

+ 16D6 + 15D7 + 14D8 + 13D9 + 12D10 + 11D11 + 10D12 + 9D13

+ 8D14 + 7D15 + 6D16 + 5D17 + 4D18 + 3D19 + 2D20 + D21

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6 + 2D7

+2D8 +2D9 +2D10 +2D11 +2D12 +2D13 +2D14 +2D15 +2D16

+ 2D17 + 2D18 + 2D19 + 2D20

WCS = (Y, 4)
(2) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5 + 4D6 + 4D7

+4D8 +4D9 +4D10 +4D11 +4D12 +4D13 +4D14 +4D15 +4D16

+ 4D17 + 4D18

WCS = (Y, 6)
(3) Y = 6A + 3B1 + 3C1 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5 + 6D6 + 6D7

+6D8 +6D9 +6D10 +6D11 +6D12 +6D13 +6D14 +6D15 +6D16

WCS = (Y, 8)
(4) Y = 8A + 4B1 + 4C1 + 8D1 + 8D2 + 8D3 + 8D4 + 8D5 + 8D6 + 8D7

+ 8D8 + 8D9 + 8D10 + 8D11 + 8D12 + 8D13 + 8D14

WCS = (Y, 10)
(5) Y = 10A + 5B1 + 5C1 + 10D1 + 10D2 + 10D3 + 10D4 + 10D5 + 10D6

+ 10D7 + 10D8 + 10D9 + 10D10 + 10D11 + 10D12

WCS = (Y, 12)
(6) Y = 12A + 6B1 + 6C1 + 12D1 + 12D2 + 12D3 + 12D4 + 12D5 + 12D6

+ 12D7 + 12D8 + 12D9 + 12D10

WCS = (Y, 14)
(7) Y = 14A + 7B1 + 7C1 + 14D1 + 14D2 + 14D3 + 14D4 + 14D5 + 14D6

+ 14D7 + 14D8
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WCS = (Y, 16)
(8) Y = 16A + 8B1 + 8C1 + 16D1 + 16D2 + 16D3 + 16D4 + 16D5 + 16D6

WCS = (Y, 18)
(9) Y = 18A + 9B1 + 9C1 + 18D1 + 18D2 + 18D3 + 18D4

WCS = (Y, 20)
(10) Y = 20A + 10B1 + 10C1 + 20D1 + 20D2

WCS = (Y, 11)
(11) Y = 11A + 5B1 + 6C1 + C2 + 11D1 + 11D2 + 11D3 + 11D4 + 11D5

+ 11D6 + 11D7 + 11D8 + 11D9 + 11D10 + 11D11

[5] 22.7 type, (−2)
X = 22A + 11B1 + 14C1 + 6C2 + 4C3 + 2C4 + 19D1 + 16D2 + 13D3

+ 10D4 + 7D5 + 4D6 + D7

WCS = (Y, 1)
(1) Y = 8A+4B1+5C1+2C2+C3+7D1+6D2+5D3+4D4+3D5+2D6+D7

WCS = (Y, 2) + (2Y, 4)
(2) Y = 6A + 3B1 + 4C1 + 2C2 + 2C3 + 5D1 + 4D2 + 3D3 + 2D4 + D5

[5] 22.8 type, (−2)
X = 22A+11B1+16C1+10C2+4C3+2C4+17D1+12D2+7D3+2D4+D5

WCS = (Y, 2)
(1) Y = 18A+9B1+13C1+8C2+3C3+C4+14D1+10D2+6D3+2D4+D5

WCS = (Y, 1) + (2Y, 2)
(2) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + C4 + 3D1 + 2D2 + D3

[5] 22.9 type, (−2)
X = 22A + 11B1 + 15C1 + 8C2 + C3 + 18D1 + 14D2 + 10D3 + 6D4 + 2D5

WCS = (Y, 1)
(1) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

WCS = (Y, 1) + (2Y, 2)
(2) Y = 6A + 3B1 + 4C1 + 2C2 + 5D1 + 4D2 + 3D3 + 2D4 + D5

[5] 22.10 type, (−2)
X = 22A + 11B1 + 13C1 + 4C2 + 3C3 + 2C4 + C5 + 20D1 + 18D2 + 16D3

+ 14D4 + 12D5 + 10D6 + 8D7 + 6D8 + 4D9 + 2D10

WCS = (Y, 2)
(1) Y = 10A + 5B1 + 6C1 + 2C2 + 2C3 + 2C4 + 9D1 + 8D2 + 7D3 + 6D4

+ 5D5 + 4D6 + 3D7 + 2D8 + D9

WCS = (Y, 4)
(2) Y = 20A + 10B1 + 12C1 + 4C2 + 18D1 + 16D2 + 14D3 + 12D4 + 10D5

+ 8D6 + 6D7 + 4D8 + 2D9
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Order 20 r = (2, 20, 20)

[5] 20.1 type, (−1)
X = 20A + 10B1 + C1 + 9D1 + 7D2 + 5D3 + 3D4 + D5

WCS = (Y, 1)
(1) Y = A + C1

(2) Y = 2A + B1 + C1

(3) Y = 2A + C1 + D1 + D2 + D3 + D4 + D5

(4) Y = 2A + B1 + D1 + D2 + D3 + D4 + D5

(5) Y = 3A + B1 + C1 + D1

(6) Y = 4A + 2B1 + C1 + D1

(7) Y = 6A + 3B1 + C1 + 2D1

Or apply SR technique for a cyclic quotient singularity after contracting A.

[5] 20.2 type, (−1)
X = 20A + 10B1 + 3C1 + C2 + 7D1 + D2

WCS = (Y, 1)
(1) Y = 2A + B1 + D1 + D2

(2) Y = 6A + 3B1 + C1 + C2 + 2D1

[5] 20.3 type, (−2)
X = 20A + 10B1 + 11C1 + 2C2 + C3 + 19D1 + 18D2 + 17D3 + 16D4

+15D5 +14D6 +13D7 +12D8 +11D9 +10D10 +9D11 +8D12 +7D13

+ 6D14 + 5D15 + 4D16 + 3D17 + 2D18 + D19

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6 + 2D7

+2D8 +2D9 +2D10 +2D11 +2D12 +2D13 +2D14 +2D15 +2D16

+ 2D17 + 2D18

WCS = (Y, 4)
(2) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5 + 4D6 + 4D7

+4D8 +4D9 +4D10 +4D11 +4D12 +4D13 +4D14 +4D15 +4D16

WCS = (Y, 6)
(3) Y = 6A + 3B1 + 3C1 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5 + 6D6 + 6D7

+ 6D8 + 6D9 + 6D10 + 6D11 + 6D12 + 6D13 + 6D14

WCS = (Y, 8)
(4) Y = 8A + 4B1 + 4C1 + 8D1 + 8D2 + 8D3 + 8D4 + 8D5 + 8D6 + 8D7

+ 8D8 + 8D9 + 8D10 + 8D11 + 8D12

WCS = (Y, 10)
(5) Y = 10A + 5B1 + 5C1 + 10D1 + 10D2 + 10D3 + 10D4 + 10D5 + 10D6

+ 10D7 + 10D8 + 10D9 + 10D10

WCS = (Y, 12)
(6) Y = 12A + 6B1 + 6C1 + 12D1 + 12D2 + 12D3 + 12D4 + 12D5 + 12D6

+ 12D7 + 12D8
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WCS = (Y, 14)
(7) Y = 14A + 7B1 + 7C1 + 14D1 + 14D2 + 14D3 + 14D4 + 14D5 + 14D6

WCS = (Y, 16)
(8) Y = 16A + 8B1 + 8C1 + 16D1 + 16D2 + 16D3 + 16D4

WCS = (Y, 18)
(9) Y = 18A + 9B1 + 9C1 + 18D1 + 18D2

WCS = (Y, 9)
(10) Y = 9A + 4B1 + 5C1 + C2 + C3 + 9D1 + 9D2 + 9D3 + 9D4 + 9D5

+ 9D6 + 9D7 + 9D8 + 9D9 + 9D10 + 9D11

WCS = (Y, 11)
(11) Y = 11A + 5B1 + 6C1 + C2 + 11D1 + 11D2 + 11D3 + 11D4 + 11D5

+ 11D6 + 11D7 + 11D8 + 11D9

[5] 20.4 type, (−2)
X = 20A + 10B1 + 13C1 + 6C2 + 5C3 + 4C4 + 3C5 + 2C6 + C7 + 17D1

+ 14D2 + 11D3 + 8D4 + 5D5 + 2D6 + D7

WCS = (Y, 2)
(1) Y = 6A + 3B1 + 4C1 + 2C2 + 2C3 + 2C4 + 2C5 + 2C6 + 5D1 + 4D2

+ 3D3 + 2D4 + D5

WCS = (Y, 4)
(2) Y = 12A+6B1+8C1+4C2+4C3+4C4+10D1+8D2+6D3+4D4+2D5

WCS = (Y, 6)
(3) Y = 18A + 9B1 + 12C1 + 6C2 + 15D1 + 12D2 + 9D3 + 6D4 + 3D5

Order 15 r = (3, 15, 15)

[5] 15.1 type, (−1)
X = 15A + 5B1 + 2C1 + C2 + 8D1 + D2

WCS = (Y, 1)
(1) Y = A + D1 + D2

(2) Y = 3A + B1 + 2D1 + D2

(3) Y = 7A + 2B1 + C1 + C2 + 4D1 + D2

(4) Y = 9A + 3B1 + C1 + 5D1 + D2

[5] 15.2 type, (−1)
X = 15A + B1 + 10C1 + 5C2 + 4D1 + D2

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 3A + B1 + 2C1 + C2

(3) Y = 3A + 2C1 + C2 + D1 + D2

(4) Y = 4A + B1 + 2C1 + D1

(5) Y = 7A + B1 + 4C1 + C2 + 2D1 + D2

Or apply SR technique for a cyclic quotient singularity after contracting A.
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[5] 15.3 type, (−2)
X = 15A+5B1+11C1+7C2+3C3+2C4+C5+14D1+13D2+12D3+11D4

+10D5 +9D6 +8D7 +7D8 +6D9 +5D10 +4D11 +3D12 +2D13 +D14

WCS = (Y, 3)
(1) Y = 3A + B1 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5 + 3D6

+ 3D7 + 3D8 + 3D9 + 3D10 + 3D11 + 3D12

WCS = (Y, 6)
(2) Y = 6A + 2B1 + 4C1 + 2C2 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5 + 6D6

+ 6D7 + 6D8 + 6D9

WCS = (Y, 9)
(3) Y = 9A + 3B1 + 6C1 + 3C2 + 9D1 + 9D2 + 9D3 + 9D4 + 9D5 + 9D6

WCS = (Y, 12)
(4) Y = 12A + 4B1 + 8C1 + 4C2 + 12D1 + 12D2 + 12D3

WCS = (Y, 4)
(5) Y = 4A+B1+3C1+2C2+C3+C4+C5+4D1+4D2+4D3+4D4+4D5

+ 4D6 + 4D7 + 4D8 + 4D9 + 4D10 + 4D11

WCS = (Y, 7)
(6) Y = 7A + 2B1 + 5C1 + 3C2 + C3 + 7D1 + 7D2 + 7D3 + 7D4 + 7D5

+ 7D6 + 7D7 + 7D8

[5] 15.4 type, (−2)
X = 15A + 10B1 + 5B2 + 7C1 + 6C2 + 5C3 + 4C4 + 3C5 + 2C6 + C7

+ 13D1 + 11D2 + 9D3 + 7D4 + 5D5 + 3D6 + D7

WCS = (Y, 3)
(1) Y = 6A + 4B1 + 2B2 + 3C1 + 3C2 + 3C3 + 3C4 + 3C5 + 5D1 + 4D2

+ 3D3 + 2D4 + D5

WCS = (Y, 6)
(2) Y = 12A + 8B1 + 4B2 + 6C1 + 6C2 + 10D1 + 8D2 + 6D3 + 4D4 + 2D5

Order 12 r = (6, 12, 12)

[5] 12.1 type, (−1)
X = 12A + 2B1 + 5C1 + 3C2 + C3 + 5D1 + 3D2 + D3

WCS = (Y, 1)
(1) Y = 2A + C1 + C2 + C3 + D1 + D2 + D3

[5] 12.2 type, (−1)
X = 12A + B1 + C1 + 10D1 + 8D2 + 6D3 + 4D4 + 2D5

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1



26.5 Genus 5 553

(3) Y = 3A + B1 + 2D1 + D2

(4) Y = 3A + B1 + C1 + D1

(5) Y = 4A + B1 + C1 + 2D1

(6) Y = 4A + B1 + 3D1 + 2D2 + D3

(7) Y = 5A + B1 + C1 + 3D1 + D2

(8) Y = 5A + B1 + 4D1 + 3D2 + 2D3 + D4

(9) Y = 6A + B1 + 5D1 + 4D2 + 3D3 + 2D4 + D5

Or apply SR technique for the A5-singularity after contracting A.

[5] 12.3 type, (−2)
X = 12A + 2B1 + 11C1 + 10C2 + 9C3 + 8C4 + 7C5 + 6C6 + 5C7 + 4C8

+ 3C9 + 2C10 + C11 + 11D1 + 10D2 + 9D3 + 8D4 + 7D5 + 6D6 + 5D7

+ 4D8 + 3D9 + 2D10 + D11

WCS = (Y, 1)
(1) Y = A + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10 + C11

+ D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + D10 + D11

WCS = (Y, 2)
(2) Y = 2A+2C1 +2C2 +2C3 +2C4 +2C5 +2C6 +2C7 +2C8 +2C9 +2C10

+2D1 +2D2 +2D3 +2D4 +2D5 +2D6 +2D7 +2D8 +2D9 +2D10

WCS = (Y, 3)
(3) Y = 3A + 3C1 + 3C2 + 3C3 + 3C4 + 3C5 + 3C6 + 3C7 + 3C8 + 3C9

+ 3D1 + 3D2 + 3D3 + 3D4 + 3D5 + 3D6 + 3D7 + 3D8 + 3D9

WCS = (Y, 4)
(4) Y = 4A + 4C1 + 4C2 + 4C3 + 4C4 + 4C5 + 4C6 + 4C7 + 4C8 + 4D1

+ 4D2 + 4D3 + 4D4 + 4D5 + 4D6 + 4D7 + 4D8

WCS = (Y, 5)
(5) Y = 5A + 5C1 + 5C2 + 5C3 + 5C4 + 5C5 + 5C6 + 5C7 + 5D1 + 5D2

+ 5D3 + 5D4 + 5D5 + 5D6 + 5D7

WCS = (Y, 6)
(6) Y = 6A + 6C1 + 6C2 + 6C3 + 6C4 + 6C5 + 6C6 + 6D1 + 6D2 + 6D3

+ 6D4 + 6D5 + 6D6

WCS = (Y, 7)
(7) Y = 7A+7C1 +7C2 +7C3 +7C4 +7C5 +7D1 +7D2 +7D3 +7D4 +7D5

WCS = (Y, 8)
(8) Y = 8A + 8C1 + 8C2 + 8C3 + 8C4 + 8D1 + 8D2 + 8D3 + 8D4

WCS = (Y, 9)
(9) Y = 9A + 9C1 + 9C2 + 9C3 + 9D1 + 9D2 + 9D3

WCS = (Y, 10)
(10) Y = 10A + 10C1 + 10C2 + 10D1 + 10D2
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WCS = (Y, 11)
(11) Y = 11A + 11C1 + 11D1

WCS = (Y, 6)
(12) Y = 6A + B1 + 5C1 + 4C2 + 3C3 + 2C4 + C5 + 6D1 + 6D2 + 6D3

+ 6D4 + 6D5 + 6D6

[5] 12.4 type, (−2)
X = 12A+7B1+2B2+B3+7C1+2C2+C3+10D1+8D2+6D3+4D4+2D5

WCS = (Y, 1)
(1) Y = 5A + 3B1 + B2 + B3 + 3C1 + C2 + C3 + 4D1 + 3D2 + 2D3 + D4

WCS = (Y, 2)
(2) Y = 10A + 6B1 + 2B2 + 6C1 + 2C2 + 8D1 + 6D2 + 4D3 + 2D4

Order 11 r = (11, 11, 11)

[5] 11.1 type, (−1)
X = 11A + B1 + C1 + 9D1 + 7D2 + 5D3 + 3D4 + D5

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 2A + B1 + D1

(4) Y = 3A + B1 + C1 + D1

(5) Y = 3A + B1 + 2D1 + D2

(6) Y = 4A + B1 + C1 + 2D1

(7) Y = 4A + B1 + 3D1 + 2D2 + D3

(8) Y = 5A + B1 + C1 + 3D1 + D2

(9) Y = 5A + B1 + 4D1 + 3D2 + 2D3 + D4

(10) Y = 6A + B1 + C1 + 4D1 + 2D2

(11) Y = 6A + B1 + 5D1 + 4D2 + 3D3 + 2D4 + D5

(12) Y = 7A + B1 + C1 + 5D1 + 3D2 + D3

(13) Y = 8A + B1 + C1 + 6D1 + 4D2 + 2D3

(14) Y = 9A + B1 + C1 + 7D1 + 5D2 + 3D3 + D4

(15) Y = 10A + B1 + C1 + 8D1 + 6D2 + 4D3 + 2D4

Or apply SR technique for the A4-singularity after contracting A.

[5] 11.2 type, (−1)
X = 11A + B1 + 2C1 + C2 + 8D1 + 5D2 + 2D3 + D4

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + D1

(3) Y = 5A + B1 + C1 + C2 + 3D1 + D2

(4) Y = 6A + B1 + C1 + 4D1 + 2D2

(5) Y = 7A + B1 + C1 + 5D1 + 3D2 + D3



26.5 Genus 5 555

WCS = (Y, 2)
(6) Y = 8A + B1 + C1 + 6D1 + 4D2 + 2D3

Or apply SR technique for a cyclic quotient singularity after contracting A.

[5] 11.3 type, (−1)
X = 11A + B1 + 3C1 + C2 + 7D1 + 3D2 + 2D3 + D4

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + D1

(3) Y = 3A + B1 + C1 + C2 + D1

(4) Y = 4A + B1 + C1 + 2D1

(5) Y = 5A + B1 + C1 + 3D1 + D2

(6) Y = 7A + B1 + 2C1 + C2 + 4D1 + D2

(7) Y = 8A + B1 + 2C1 + 5D1 + 2D2 + D3

Or apply SR technique for a cyclic quotient singularity after contracting A.

[5] 11.4 type, (−1)
X = 11A + B1 + 4C1 + C2 + 6D1 + D2

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + D1

(3) Y = 2A + B1 + C1 + C2

(4) Y = 2A + C1 + C2 + D1

(5) Y = 3A + B1 + C1 + D1

(6) Y = 3A + C1 + 2D1 + D2

(7) Y = 4A + B1 + C1 + 2D1

(8) Y = 5A + B1 + 2C1 + C2 + 2D1

(9) Y = 5A + 2C1 + C2 + 3D1 + D2

(10) Y = 6A + B1 + 2C1 + 3D1

(11) Y = 7A + B1 + 2C1 + 4D1 + D2

(12) Y = 8A + B1 + 3C1 + C2 + 4D1

(13) Y = 9A + B1 + 3C1 + 5D1 + D2

Or apply SR technique for a cyclic quotient singularity after contracting A.

[5] 11.5 type, (−1)
X = 11A+B1+5C1+4C2+3C3+2C4+C5+5D1+4D2+3D3+2D4+D5

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1 + C2 + C3 + C4 + C5

(3) Y = 2A + C1 + C2 + C3 + C4 + C5 + D1 + D2 + D3 + D4 + D5

(4) Y = 3A + B1 + C1 + D1
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(5) Y = 5A + B1 + 2C1 + C2 + 2D1 + D2

(6) Y = 7A + B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

Or apply SR technique for a cyclic quotient singularity after contracting A.

[5] 11.6 type, (−1)
X = 11A + 2B1 + B2 + 2C1 + C2 + 7D1 + 3D2 + 2D3 + D4

WCS = (Y, 1)
(1) Y = 5A + B1 + B2 + C1 + C2 + 3D1 + D2

WCS = (Y, 2)
(2) Y = 6A + B1 + C1 + 4D1 + 2D2 + 2D3

[5] 11.7 type, (−1)
X = 11A + 2B1 + B2 + 2C1 + C2 + 7D1 + 3D2 + 2D3 + D4

WCS = (Y, 1)
(1) Y = A + D1 + D2 + D3

(2) Y = 3A + C1 + C2 + 2D1 + D2

(3) Y = 7A + B1 + 2C1 + C2 + 4D1 + D2

[5] 11.8 type, (−1)
X = 11A + 2B1 + B2 + 4C1 + C2 + 5D1 + 4D2 + 3D3 + 2D4 + D5

WCS = (Y, 1)
(1) Y = 2A + C1 + C2 + D1 + D2 + D3 + D4 + D5

(2) Y = 5A + B1 + B2 + 2C1 + C2 + 2D1 + D2

WCS = (Y, 3)
(3) Y = 6A + B1 + 2C1 + 3D1 + 3D2 + 3D3

WCS = (Y, 4)
(4) Y = 8A + B1 + 3C1 + C2 + 4D1 + 4D2

[5] 11.9 type, (−1)
X = 11A + 3B1 + B2 + 3C1 + C2 + 5D1 + 4D2 + 3D3 + 2D4 + D5

WCS = (Y, 1)
(1) Y = 3A + B1 + B2 + C1 + C2 + D1

(2) Y = 7A + 2B1 + B2 + 2C1 + C2 + 3D1 + 2D2 + D3

WCS = (Y, 2)
(3) Y = 4A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4

WCS = (Y, 4)
(4) Y = 8A + 2B1 + 2C1 + 4D1 + 4D2

[5] 11.10 type, (−1)
X = 11A + 3B1 + B2 + 4C1 + C2 + 4D1 + D2
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WCS = (Y, 1)
(1) Y = 2A + C1 + C2 + D1 + D2

(2) Y = 3A + B1 + B2 + C1 + D1

(3) Y = 5A + B1 + 2C1 + C2 + 2D1 + D2

(4) Y = 8A + B1 + 3C1 + C2 + 3D1 + D2

[5] 11.11 type, (−2)
X = 11A+2B1+B2+10C1+9C2+8C3+7C4+6C5+5C6+4C7+3C8+2C9

+C10+10D1+9D2+8D3+7D4+6D5+5D6+4D7+3D8+2D9+D10

WCS = (Y, 1)
(1) Y = A + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10 + D1

+ D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + D10

WCS = (Y, 2)
(2) Y = 2A + 2C1 + 2C2 + 2C3 + 2C4 + 2C5 + 2C6 + 2C7 + 2C8 + 2C9

+ 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6 + 2D7 + 2D8 + 2D9

WCS = (Y, 3)
(3) Y = 3A + 3C1 + 3C2 + 3C3 + 3C4 + 3C5 + 3C6 + 3C7 + 3C8 + 3D1

+ 3D2 + 3D3 + 3D4 + 3D5 + 3D6 + 3D7 + 3D8

WCS = (Y, 4)
(4) Y = 4A + 4C1 + 4C2 + 4C3 + 4C4 + 4C5 + 4C6 + 4C7 + 4D1 + 4D2

+ 4D3 + 4D4 + 4D5 + 4D6 + 4D7

WCS = (Y, 5)
(5) Y = 5A + 5C1 + 5C2 + 5C3 + 5C4 + 5C5 + 5C6 + 5D1 + 5D2 + 5D3

+ 5D4 + 5D5 + 5D6

WCS = (Y, 6)
(6) Y = 6A+6C1 +6C2 +6C3 +6C4 +6C5 +6D1 +6D2 +6D3 +6D4 +6D5

WCS = (Y, 7)
(7) Y = 7A + 7C1 + 7C2 + 7C3 + 7C4 + 7D1 + 7D2 + 7D3 + 7D4

WCS = (Y, 8)
(8) Y = 8A + 8C1 + 8C2 + 8C3 + 8D1 + 8D2 + 8D3

WCS = (Y, 9)
(9) Y = 9A + 9C1 + 9C2 + 9D1 + 9D2

WCS = (Y, 10)
(10) Y = 10A + 10C1 + 10D1

WCS = (Y, 5)
(11) Y = 5A + B1 + B2 + 4C1 + 3C2 + 2C3 + C4 + 5D1 + 5D2 + 5D3

+ 5D4 + 5D5 + 5D6

WCS = (Y, 6)
(12) Y = 6A+B1+5C1+4C2+3C3+2C4+C5+6D1+6D2+6D3+6D4+6D5
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WCS = (Y, 7)
(13) Y = 7A+B1+6C1+5C2+4C3+3C4+2C5+C6+7D1+7D2+7D3+7D4

WCS = (Y, 8)
(14) Y = 8A+B1+7C1+6C2+5C3+4C4+3C5+2C6+C7+8D1+8D2+8D3

WCS = (Y, 9)
(15) Y = 9A+B1+8C1+7C2+6C3+5C4+4C5+3C6+2C7+C8+9D1+9D2

WCS = (Y, 10)
(16) Y = 10A + B1 + 9C1 + 8C2 + 7C3 + 6C4 + 5C5 + 4C6 + 3C7 + 2C8

+ C9 + 10D1

[5] 11.12 type, (−2)
X = 11A + 3B1 + B2 + 9C1 + 7C2 + 5C3 + 3C4 + C5 + 10D1 + 9D2 + 8D3

+ 7D4 + 6D5 + 5D6 + 4D7 + 3D8 + 2D9 + D10

WCS = (Y, 1)
(1) Y = A + C1 + C2 + C3 + C4 + C5 + D1 + D2 + D3 + D4 + D5 + D6

+ D7 + D8 + D9 + D10

WCS = (Y, 3)
(2) Y = 3A + B1 + B2 + 2C1 + C2 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5

+ 3D6 + 3D7 + 3D8

WCS = (Y, 4)
(3) Y = 4A + B1 + 3C1 + 2C2 + C3 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5

+ 4D6 + 4D7 + 4D8 + 4D9 + 4D10

WCS = (Y, 5)
(4) Y = 5A + B1 + 4C1 + 3C2 + 2C3 + C4 + 5D1 + 5D2 + 5D3 + 5D4

+ 5D5 + 5D6 + 5D7 + 5D8 + 5D9 + 5D10

WCS = (Y, 6)
(5) Y = 6A+B1+5C1+4C2+3C3+2C4+C5+6D1+6D2+6D3+6D4+6D5

WCS = (Y, 7)
(6) Y = 7A + 2B1 + B2 + 5C1 + 3C2 + C3 + 7D1 + 7D2 + 7D3 + 7D4

WCS = (Y, 8)
(7) Y = 8A + 2B1 + 6C1 + 4C2 + 2C3 + 8D1 + 8D2 + 8D3

WCS = (Y, 9)
(8) Y = 9A + 2B1 + 7C1 + 5C2 + 3C3 + C4 + 9D1 + 9D2

WCS = (Y, 10)
(9) Y = 10A + 2B1 + 8C1 + 6C2 + 4C3 + 2C4 + 10D1

[5] 11.13 type, (−2)
X = 11A + 4B1 + B2 + 8C1 + 5C2 + 2C3 + C4 + 10D1 + 9D2 + 8D3 + 7D4

+ 6D5 + 5D6 + 4D7 + 3D8 + 2D9 + D10
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WCS = (Y, 2)
(1) Y = 2A + B1 + B2 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6

+ 2D7 + 2D8 + 2D9

WCS = (Y, 3)
(2) Y = 3A+B1+2C1+C2+3D1+3D2+3D3+3D4+3D5+3D6+3D7+3D8

WCS = (Y, 4)
(3) Y = 4A + B1 + 3C1 + 2C2 + C3 + C4 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5

+ 4D6 + 4D7

WCS = (Y, 5)
(4) Y = 5A+2B1 +B2 +3C1 +C2 +5D1 +5D2 +5D3 +5D4 +5D5 +5D6

WCS = (Y, 6)
(5) Y = 6A + 2B1 + 4C1 + 2C2 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5

WCS = (Y, 7)
(6) Y = 7A + 2B1 + 5C1 + 3C2 + C3 + 7D1 + 7D2 + 7D3 + 7D4

WCS = (Y, 8)
(7) Y = 8A + 3B1 + B2 + 5C1 + 2C2 + 8D1 + 8D2 + 8D3

WCS = (Y, 9)
(8) Y = 9A + 3B1 + 6C1 + 3C2 + 9D1 + 9D2

[5] 11.14 type, (−2)
X = 11A + 4B1 + B2 + 9C1 + 7C2 + 5C3 + 3C4 + C5 + 9D1 + 7D2 + 5D3

+ 3D4 + D5

WCS = (Y, 1)
(1) Y = A + C1 + C2 + C3 + C4 + C5 + D1 + D2 + D3 + D4 + D5

(2) Y = 5A + 2B1 + B2 + 4C1 + 3C2 + 2C3 + C4 + 4D1 + 3D2 + 2D3 + D4

(3) Y = 6A+2B1+5C1+4C2+3C3+2C4+C5+5D1+4D2+3D3+2D4+D5

[5] 11.15 type, (−2)
X = 11A + 7B1 + 3B2 + 2B3 + B4 + 5C1 + 4C2 + 3C3 + 2C4 + C5 + 10D1

+ 9D2 + 8D3 + 7D4 + 6D5 + 5D6 + 4D7 + 3D8 + 2D9 + D10

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + C2 + C3 + C4 + C5 + 2D1 + 2D2 + 2D3 + 2D4

+ 2D5 + 2D6 + 2D7 + 2D8 + 2D9

WCS = (Y, 3)
(2) Y = 3A + 2B1 + B2 + B3 + B4 + C1 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5

+ 3D6 + 3D7 + 3D8

WCS = (Y, 5)
(3) Y = 5A+3B1 +B2 +2C1 +C2 +5D1 +5D2 +5D3 +5D4 +5D5 +5D6
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WCS = (Y, 8)
(4) Y = 8A + 5B1 + 2B2 + B3 + 3C1 + C2 + 8D1 + 8D2 + 8D3

WCS = (Y, 9)
(5) Y = 9A + 5B1 + B2 + 4C1 + 3C2 + 2C3 + C4 + 9D1 + 9D2

WCS = (Y, 10)
(6) Y = 10A + 6B1 + 2B2 + 4C1 + 2C2 + 10D1

[5] 11.16 type, (−2)
X = 11A + 8B1 + 5B2 + 2B3 + B4 + 5C1 + 4C2 + 3C3 + 2C4 + C5 + 9D1

+ 7D2 + 5D3 + 3D4 + D5

WCS = (Y, 2)
(1) Y = 4A+3B1 +2B2 +B3 +2C1 +2C2 +2C3 +2C4 +3D1 +2D2 +D3

WCS = (Y, 3)
(2) Y = 6A+4B1 +2B2 +3C1 +3C2 +3C3 +5D1 +4D2 +3D3 +2D4 +D5

[5] 11.17 type, (−2)
X = 11A + 6B1 + B2 + 6C1 + C2 + 10D1 + 9D2 + 8D3 + 7D4 + 6D5

+ 5D6 + 4D7 + 3D8 + 2D9 + D10

WCS = (Y, 1)
(1) Y = A + B1 + B2 + C1 + C2

(2) Y = A+B1 +B2 +D1 +D2 +D3 +D4 +D5 +D6 +D7 +D8 +D9 +D10

(3) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

(4) Y = 5A + 3B1 + B2 + 3C1 + C2 + 4D1 + 3D2 + 2D3 + D4

(5) Y = 7A + 4B1 + B2 + 4C1 + C2 + 6D1 + 5D2 + 4D3 + 3D4 + 2D5 + D6

(6) Y = 9A + 5B1 + B2 + 5C1 + C2 + 8D1 + 7D2 + 6D3 + 5D4 + 4D5

+ 3D6 + 2D7 + D8

WCS = (Y, 2)
(7) Y = 2A+B1+C1+2D1+2D2+2D3+2D4+2D5+2D6+2D7+2D8+2D9

WCS = (Y, 4)
(8) Y = 4A + 2B1 + 2C1 + 4D1 + 4D2 + 4D3 + 4D4 + 4D5 + 4D6 + 4D7

+ 4D8 + 4D9 + 4D10

WCS = (Y, 6)
(9) Y = 6A + 3B1 + 3C1 + 6D1 + 6D2 + 6D3 + 6D4 + 6D5

WCS = (Y, 8)
(10) Y = 8A + 4B1 + 4C1 + 8D1 + 8D2 + 8D3

WCS = (Y, 10)
(11) Y = 10A + 5B1 + 5C1 + 10D1

Or apply SR technique for D12-singularity.
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[5] 11.18 type, (−2)
X = 11A+6B1+B2+7C1+3C2+2C3+C4+9D1+7D2+5D3+3D4+D5

WCS = (Y, 1)
(1) Y = A + B1 + B2 + D1 + D2 + D3 + D4 + D5

(2) Y = 3A + 2B1 + B2 + 2C1 + C2 + C3 + C4 + 2D1 + D2

[5] 11.19 type, (−2)
X = 11A + 6B1 + B2 + 8C1 + 5C2 + 2C3 + C4 + 8D1 + 5D2 + 2D3 + D4

WCS = (Y, 1)
(1) Y = 3A + 2B1 + B2 + 2C1 + C2 + 2D1 + D2

(2) Y = 4A + 2B1 + 3C1 + 2C2 + C3 + C4 + 3D1 + 2D2 + D3 + D4

WCS = (Y, 2)
(3) Y = 8A + 4B1 + 6C1 + 4C2 + 2C3 + 6D1 + 4D2 + 2D3

[5] 11.20 type, (−2)
X = 11A + 7B1 + 3B2 + 2B3 + B4 + 7C1 + 3C2 + 2C3 + C4 + 8D1 + 5D2

+ 2D3 + D4

WCS = (Y, 1)
(1) Y = 3A + 2B1 + B2 + B3 + B4 + 2C1 + C2 + 2D1 + D2

WCS = (Y, 2)
(2) Y = 6A + 4B1 + 2B2 + 2B3 + 4C1 + 2C2 + 2C3 + 4D1 + 2D2

(3) Y = 8A + 5B1 + 2B2 + B3 + 5C1 + 2C2 + 2C3 + 6D1 + 4D2 + 2D3

WCS = (Y, 3)
(4) Y = 9A + 6B1 + 3B2 + 6C1 + 3C2 + 6D1 + 3D2

Order 10 r = (2, 2, 10, 10)

[5] 10.1 type, (−2)
X = 10A + 5B1 + 5C1 + D1 + 9E1 + 8E2 + 7E3 + 6E4 + 5E5 + 4E6 + 3E7

+ 2E8 + E9

WCS = (Y, 1)
(1) Y = A + D1 + E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9

(2) Y = 2A + B1 + C1 + D1 + E1

(3) Y = 6A + 3B1 + 3C1 + D1 + 5E1 + 4E2 + 3E3 + 2E4 + E5

(4) Y = 8A + 4B1 + 4C1 + D1 + 7E1 + 6E2 + 5E3 + 4E4 + 3E5 + 2E6 + E7

WCS = (Y, 2)
(5) Y = 2A + B1 + C1 + 2E1 + 2E2 + 2E3 + 2E4 + 2E5 + 2E6 + 2E7 + 2E8

(6) Y = 2A + B1 + D1 + 2E1 + 2E2 + 2E3 + 2E4 + 2E5 + 2E6 + 2E7 + 2E8

WCS = (Y, 3)
(7) Y = 3A + B1 + C1 + D1 + 3E1 + 3E2 + 3E3 + 3E4 + 3E5 + 3E6 + 3E7
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WCS = (Y, 4)
(8) Y = 4A + 2B1 + 2C1 + 4E1 + 4E2 + 4E3 + 4E4 + 4E5 + 4E6

(9) Y = 4A + B1 + 2C1 + D1 + 4E1 + 4E2 + 4E3 + 4E4 + 4E5 + 4E6

WCS = (Y, 5)
(10) Y = 5A + 2B1 + 2C1 + D1 + 5E1 + 5E2 + 5E3 + 5E4 + 5E5

WCS = (Y, 6)
(11) Y = 6A + 3B1 + 3C1 + 6E1 + 6E2 + 6E3 + 6E4

(12) Y = 6A + 2B1 + 3C1 + D1 + 6E1 + 6E2 + 6E3 + 6E4

WCS = (Y, 7)
(13) Y = 7A + 3B1 + 3C1 + D1 + 7E1 + 7E2 + 7E3

WCS = (Y, 8)
(14) Y = 8A + 4B1 + 4C1 + 8E1 + 8E2

(15) Y = 8A + 3B1 + 4C1 + D1 + 8E1 + 8E2

WCS = (Y, 9)
(16) Y = 9A + 4B1 + 4C1 + D1 + 9E1

Or apply SR technique for E11-singularity.

[5] 10.2 type, (−2)
X = 10A + 5B1 + 5C1 + 3D1 + 2D2 + D3 + 7E1 + 4E2 + E3

WCS = (Y, 1)
(1) Y = 4A + 2B1 + 2C1 + D1 + 3E1 + 2E2 + E3

WCS = (Y, 2)
(2) Y = 6A + 3B1 + 3C1 + 2D1 + 2D2 + D3 + 4E1 + 2E2

Order 8 r = (2, 4, 8, 8)

[5] 8.1 type, (−1)
X = 8A + B1 + C1 + 2D1 + 4E1

WCS = (Y, 1)
(1) Y = A + B1

(2) Y = 2A + B1 + C1

(3) Y = 2A + B1 + E1

(4) Y = 3A + B1 + C1 + E1

(5) Y = 4A + B1 + C1 + 2E1

(6) Y = 4A + B1 + D1 + 2E1

(7) Y = 6A + B1 + C1 + D1 + 3E1

[5] 8.2 type, (−2)
X = 8A + 4B1 + C1 + 5D1 + 2D2 + D3 + 6E1 + 4E2 + 2E3
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WCS = (Y, 1)
(1) Y = 2A + B1 + C1 + D1 + E1

(2) Y = 3A + B1 + C1 + 2D1 + D2 + D3 + 2E1 + E2

(3) Y = 4A + 2B1 + C1 + 2D1 + 3E1 + 2E2 + E3

WCS = (Y, 2)
(4) Y = 6A + 3B1 + C1 + 4D1 + 2D2 + 4E1 + 2E2

[5] 8.3 type, (−2)
X = 8A + 4B1 + 3C1 + C2 + 3D1 + D2 + 6E1 + 4E2 + 2E3

WCS = (Y, 1)
(1) Y = 2A + B1 + C1 + C2 + D1 + D2 + E1

WCS = (Y1, 2) + (Y2, 3)
(2) Y1 = 4A + 2B1 + 2C1 + 2D1 + 2E1,

Y2 = 6A + 3B1 + 3C1 + 3D1 + 3E1

[5] 8.4 type, (−2)
X = 8A + 4B1 + 2C1 + 5D1 + 2D2 + D3 + 5E1 + 2E2 + E3

WCS = (Y, 2)
(1) Y = 6A + 3B1 + C1 + 4D1 + 2D2 + 4E1 + 2E2

[5] 8.5 type, (−2)
X = 8A+4B1 +2C1 +3D1 +D2 +7E1 +6E2 +5E3 +4E4 +3E5 +2E6 +E7

WCS = (Y, 2)
(1) Y = 2A + B1 + D1 + D2 + 2E1 + 2E2 + 2E3 + 2E4 + 2E5 + 2E6 + E7

WCS = (Y, 4)
(2) Y = 4A + 2B1 + C1 + D1 + 4E1 + 4E2 + 4E3 + 4E4

WCS = (Y, 5)
(3) Y = 5A + 2B1 + C1 + 2D1 + D2 + 5E1 + 5E2 + 5E3

WCS = (Y, 6)
(4) Y = 6A + 3B1 + C1 + 2D1 + 6E1 + 6E2

[5] 8.6 type, (−3)
X = 8A + 4B1 + 6C1 + 4C2 + 2C3 + 7D1 + 6D2 + 5D3 + 4D4 + 3D5

+ 2D6 + D7 + 7E1 + 6E2 + 5E3 + 4E4 + 3E5 + 2E6 + E7

WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4 + 2D5 + 2D6 + 2E1

+ 2E2 + 2E3 + 2E4 + 2E5 + 2E6

WCS = (Y, 3)
(2) Y = 3A + B1 + C1 + 3D1 + 3D2 + 3D3 + 3D4 + 3D5 + 3E1 + 3E2

+ 3E3 + 3E4 + 3E5
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WCS = (Y, 4)
(3) Y = 4A+2B1 +2C1 +4D1 +4D2 +4D3 +4D4 +4E1 +4E2 +4E3 +4E4

(4) Y = 4A+2B1+3C1+2C2+C3+3D1+2D2+D3+4E1+4E2+4E3+4E4

WCS = (Y, 5)
(5) Y = 5A + 2B1 + 3C1 + C2 + 5D1 + 5D2 + 5D3 + 5E1 + 5E2 + 5E3

WCS = (Y, 6)
(6) Y = 6A + 3B1 + 3C1 + 6D1 + 6D2 + 6E1 + 6E2

(7) Y = 6A+3B1 +4C1 +2C2 +5D1 +4D2 +3D3 +2D4 +D5 +6E1 +6E2

WCS = (Y, 7)
(8) Y = 7A + 2B1 + 5C1 + 3C2 + C3 + 7D1 + 7E1

Order 6 r = (6, 6, 6, 6)

[5] 6.1.1 type, (−2)
X = 6A+B1+C1+5D1+4D2+3D3+2D4+D5+5E1+4E2+3E3+2E4+E5

WCS = (Y, 1)
(1) Y = A + D1 + D2 + D3 + D4 + D5 + E1 + E2 + E3 + E4 + E5

(2) Y = A + B1 + C1

(3) Y = A + B1 + D1 + D2 + D3 + D4 + D5

(4) Y = 2A + B1 + C1 + D1 + E1

(5) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2

(6) Y = 5A + B1 + C1 + 4D1 + 3D2 + 2D3 + D4 + 4E1 + 3E2 + 2E3 + E4

WCS = (Y, 2)
(7) Y = 2A + 2D1 + 2D2 + 2D3 + 2D4 + 2E1 + 2E2 + 2E3 + 2E4

WCS = (Y, 3)
(8) Y = 3A + 3D1 + 3D2 + 3D3 + 3E1 + 3E2 + 3E3

(9) Y = 3A + B1 + C1 + C3 + 3E1 + 3E2 + 3E3

WCS = (Y, 4)
(10) Y = 4A + 4D1 + 4D2 + 4E1 + 4E2

(11) Y = 4A + B1 + C1 + 2D1 + 4E1 + 4E2

WCS = (Y, 5)
(12) Y = 5A + 5D1 + 5E1

(13) Y = 5A + B1 + C1 + 3D1 + D2 + 5E1

Or apply SR technique for A9-singularity.

Order 6 r = (2, 3, 3, 3, 6)

[5] 6.2.1 type, (−2)
X = 6A + B1 + 2C1 + 2D1 + 3E1 + 4F1 + 2F2

WCS = (Y, 1)
(1) Y = 3A + B1 + C1 + D1 + E1 + 2F1 + F2
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[5] 6.2.2 type, (−3)
X = 6A+2B1 +3C1 +4D1 +2D2 +4E1 +2E2 +5F1 +4F2 +3F3 +2F4 +F5

WCS = (Y, 3)
(1) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2 + 3F1 + 3F2 + 3F3

Order 6 r = (2, 2, 3, 6, 6)

[5] 6.3.1 type, (−2)
X = 6A + B1 + C1 + 3D1 + 3E1 + 4F1 + 2F2

WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = 2A + B1 + C1 + D1 + E1

(3) Y = 2A + B1 + C1 + D1 + F1

(4) Y = 3A + B1 + C1 + D1 + E1 + 2F1 + F2

(5) Y = 4A + B1 + C1 + 2D1 + 2E1 + 2F1

Or apply SR technique for D5-singularity.

[5] 6.3.2 type, (−3)
X = 6A + 2B1 + 3C1 + 3D1 + 5E1 + 4E2 + 3E3 + 2E4 + E5 + 5F1 + 4F2

+ 3F3 + 2F4 + F5

WCS = (Y, 2)
(1) Y = 2A+B1+C1+D1+2E1+2E2+2E3+2E4+2F1+2F2+2F3+2F4

WCS = (Y, 3)
(2) Y = 3A + B1 + C1 + D1 + 3E1 + 3E2 + 3E3 + 3F1 + 3F2 + 3F3

WCS = (Y, 4)
(3) Y = 4A + 2C1 + 2D1 + 4E1 + 4E2 + 4F1 + 4F2

Order 6 r = (2, 2, 2, 2, 3, 3)

[5] 6.4.1 type, (−3)
X = 6A + 2B1 + 3C1 + 3D1 + 3E1 + 3F1 + 4G1 + 2G2

WCS = (Y, 2) + (2Y, 4)
(1) Y = 2A + B1 + C1 + D1 + E1 + F1 + G1

Order 4 r = (2, 2, 4, 4, 4, 4)

[5] 4.1.1 type, (−2)
X = 4A + B1 + C1 + D1 + E1 + 2F1 + 2G1

WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = 2A + B1 + C1 + D1 + E1

(3) Y = 2A + B1 + C1 + D1 + F1
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(4) Y = 2A + B1 + C1 + G1 + F1

(5) Y = 3A + B1 + C1 + D1 + E1 + F1 + G1

Or apply SR technique for A3-singularity.

[5] 4.1.2 type, (−3)
X = 4A + B1 + C1 + 2D1 + 2E1 + 3F1 + 2F2 + F3 + 3G1 + 2G2 + G3

WCS = (Y, 1)
(1) Y = A + B1 + F1 + F2 + F3 + G1 + G2 + G3

(2) Y = 2A + B1 + C1 + D1 + E1 + F1 + G1

WCS = (Y, 2)
(3) Y = 2A + B1 + C1 + 2F1 + 2F2 + 2G1 + 2G2

(4) Y = 2A + B1 + D1 + 2F1 + 2F2 + 2G1 + 2G2

(5) Y = 2A + B1 + C1 + D1 + E1 + 2F1 + 2F2

WCS = (Y, 3)
(6) Y = 3A + B1 + C1 + D1 + 3F1 + 3G1

(7) Y = 3A + B1 + D1 + E1 + 3F1 + 3G1

[5] 4.1.3 type, (−4)
X = 4A + 2B1 + 2C1 + 3D1 + 2D2 + D3 + 3E1 + 2E2 + E3 + 3F1 + 2F2

+ F3 + 3G1 + 2G2 + G3

WCS = (Y, 1)
(1) Y = A+D1 +D2 +D3 +E1 +E2 +E3 +F1 +F2 +F3 +G1 +G2 +G3

WCS = (Y, 2)
(2) Y = 2A + 2D1 + 2D2 + 2E1 + 2E2 + 2F1 + 2F2 + 2G1 + 2G2

(3) Y = 2A + B1 + C1 + 2D1 + 2D2 + 2E1 + 2E2 + 2F1 + 2F2

(4) Y = 2A + B1 + D1 + 2E1 + 2E2 + 2F1 + 2F2 + 2G1 + 2G2

(5) Y = 2A + B1 + C1 + D1 + E1 + 2F1 + 2F2 + 2G1 + 2G2

WCS = (Y, 3)
(6) Y = 3A + 3D1 + 3E1 + 3F1 + 3G1

(7) Y = 3A + B1 + C1 + D1 + 3E1 + 3F1 + 3G1

Order 4 r = (2, 2, 2, 2, 2, 4, 4)

[5] 4.2.1 type, (−3)
X = 4A + B1 + C1 + 2D1 + 2E1 + 2F1 + 2G1 + 2H1

WCS = (Y, 1)
(1) Y = 2A + B1 + C1 + D1 + E1 + F1 + G1

(2) Y = 2A + B1 + D1 + E1 + F1 + G1 + H1

[5] 4.2.2 type, (−4)
X = 4A+2B1+2C1+2D1+2E1+2F1+3G1+2G2+G3+3H1+2H2+H3
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WCS = (Y, 2)
(1) Y = 2A + B1 + C1 + D1 + E1 + 2G1 + 2G2 + 2H1 + 2H2

(2) Y = 2A + B1 + C1 + D1 + E1 + F1 + G1 + 2H1 + 2H2

Order 3 r = (3, 3, 3, 3, 3, 3, 3)

[5] 3.1 type, (−3)
X = 3A + B1 + C1 + D1 + E1 + F1 + 2G1 + G2 + 2H1 + H2

[5] 3.2 type, (−4)
X = 3A+B1+C1+2D1+D2+2E1+E2+2F1+F2+2G1+G2+2H1+H2

WCS = (Y, 1)
(1) Y = A + D1 + D2 + E1 + E2 + F1 + F2 + G1 + G2

(2) Y = A + B1 + D1 + D2 + E1 + E2 + F1 + F2

(3) Y = A + B1 + C1 + D1 + D2 + E1 + E2

WCS = (Y, 2)
(4) Y = 2A + 2D1 + 2E1 + 2F1 + 2G1

(5) Y = 2A + B1 + C1 + 2D1 + 2E1 + 2F1

(6) Y = 2A + B1 + D1 + 2E1 + 2F1 + 2G1

(7) Y = 2A + B1 + C1 + D1 + E1 + 2F1 + 2G1

(8) Y = 2A + B1 + C1 + D1 + E1 + F1 + G1 + 2H1

Order 2 r = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

[5] 2.1 type, (−6)
X = 2A + B1 + C1 + D1 + E1 + F1 + G1 + H1 + I1 + J1 + K1 + L1 + M1

WCS = (Y, 1)
(1) Y = A + B1 + C1 + D1 + E1 + F1 + G1

Or apply SR technique for a cyclic quotient singularity.

26.5.2 Stellar singular fibers, genus(A) = 1, 2, 3

genus(A) = 1

[5] A1.1 type
X = 8A + 4B1 + 4C1, N⊗8

A = O(−4b1 − 4c1)

Take b1, c1 so that b1 − c1 is torsion of order 4 in Pic(A).
WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4)
(1) Y = A + B1, NA = O(−b1),

[5] A1.2 type
X = 6A + 2B1 + 4C1 + 2C2, N⊗6

A = O(−2b1 − 4c1)
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Take b1, c1 so that b1 − c1 is torsion of order 4 in Pic(A).
WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4)
(1) Y = A + C1, NA = O(−c1),

[5] A1.3 type
X = 5A + B1 + 4C1 + 3C2 + 2C3 + C4, N⊗5

A = O(−b1 − 4c1)

WCS = (Y, 1)
(1) Y = A + B1 + C1 + C2 + C3 + C4, NA = O(−b1 − c1 + q),
where 4b1 + c1 ∼ 5q.

[5] A1.4 type
X = 5A + 2B1 + B2 + 3C1 + C2, N⊗5

A = O(−2b1 − 3c1)

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + B1 + C1, NA = O(−b1 − c1 + q),
where 3b1 + 2c1 ∼ 5q.

[5] A1.5 type
X = 4A + B1 + C1 + 2D1, N⊗4

A = O(−b1 − c1 − 2d1)

WCS = (Y, 1)
(1) Y = A + B1, NA = O(−b1),
where c1 + 2d1 ∼ 3b1.
(2) Y = 2A + B1 + C1, N⊗2

A = O(−b1 − c1),
where b1 + c1 ∼ 2d1, i.e. d1 is a Weierstrass point on A.
(3) Y = 3A + B1 + C1 + D1, N⊗3

A = O(−b1 − c1 − d1),
where b1 + c1 ∼ 2d1, i.e. d1 is a Weierstrass point on A.

[5] A1.6 type
X = 4A + 2B1 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3,
N⊗4

A = O(−2b1 − 3c1 − 3d1)
(1) Y = A + C1 + C2 + C3 + D1 + D2 + D3, NA = O(−c1 − d1),
where c1 + d1 ∼ 2b1, i.e. b1 is a Weierstrass point on A.

WCS = (Y, 2)
(2) Y = 2A + 2C1 + 2C2 + 2D1 + 2D2, N⊗2

A = O(−2c1 − 2d1),
where c1 + d1 ∼ 2b1, i.e. b1 is a Weierstrass point on A.

WCS = (Y, 3)
(3) Y = 3A + 3C1 + 3D1, N⊗3

A = O(−3c1 − 3d1),
where 3c1 + 3d1 ∼ 6b1, e.g. b1 is a Weierstrass point on A.
(4) Y = 3A + B1 + 2C1 + C2 + 3D1, N⊗3

A = O(−b1 − 2c1 − 3d1),
where 2b1 + c1 ∼ 3d1.

[5] A1.7 type
X = 4A + 2B1 + 2C1 + 2D1 + 2E1, N⊗4

A = O(−2b1 − 2c1 − 2d1 − 2e1)
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Take b1, c1, d1 and e1 so that b1 + c1 − d1 − e1 is torsion of order 2 in
Pic(A).

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + B1 + C1, NA = O(−b1 − c1),

[5] A1.8 type
X = 3A+B1+C1+2D1+D2+2E1+E2, N⊗3

A = O(−b1−c1−2d1−2e1)

WCS = (Y, 1)
(1) Y = A + B1 + C1, NA = O(−b1 − c1),
where 2b1 + 2c1 ∼ 2d1 + 2e1.
(2) Y = A + B1 + D1 + D2, NA = O(−b1 − d1),
where 2b1 + d1 ∼ c1 + 2e1.
(3) Y = A + D1 + D2 + E1 + E2, NA = O(−d1 − e1),
where b1 + c1 ∼ d1 + e1.
(4) Y = 2A + B1 + C1 + D1 + E1, N⊗2

A = O(−b1 − c1 − d1 − e1),
where b1 + c1 ∼ d1 + e1.

WCS = (Y, 2)
(5) Y = 2A + B1 + C1 + 2D1, N⊗2

A = O(−b1 − c1 − 2d1),
where b1 + c1 + 2d1 ∼ 4e1.
(6) Y = 2A + B1 + C1 + 2D1, N⊗2

A = O(−b1 − d1 − 2e1),
where b1 + 2e1 ∼ 2c1 + d1.
(7) Y = 2A + 2D1 + 2E1, N⊗2

A = O(−2d1 − 2e1),
where 2b1 + 2c1 ∼ 2d1 + 2e1.

[5] A1.9 type
X = 2A + B1 + C1 + D1 + E1 + F1 + G1 + H1 + I1,
N⊗2

A = O(−b1 − c1 − d1 − e1 − f1 − g1 − h1 − i1)

WCS = (Y, 1)
(1) Y = A + B1 + C1 + D1 + E1, NA = O(−b1 − c1 − d1 − e1),
where b1 + c1 + d1 + e1 ∼ f1 + g1 + h1 + i1

genus(A) = 2

[5] A2.1 type
X = 4A atom

[5] A2.2 type
Suppose A is a hyperelliptic curve.
X = 2A + B1 + C1 + D1 + E1, N⊗2

A = O(−b1 − c1 − d1 − e1)

WCS = (Y, 1)
(1) Y = A + B1 + C1, NA = O(−b1 − c1),
where b1 + c1 ∼ d1 + e1
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genus(A) = 3

[5] A3.1 type
X = 2A atom

26.5.3 Self-welding and self-connecting of genus 4 or 3

[5] sw4.1 type sw([4] 16.2)
X = 16A + 8B1 + 3C1 + 2C2 + 5D1 + 4D2 + 3D3 + 2D4, C2 = D4

WCS =
∑8

i=1(iY, i)
(1) Y = A + B1

[5] sw4.2 type sw([4] 16.3)
X = 16A + 8B1 + 9C1 + 2C2 + 15D1 + 14D2 + 13D3 + 12D4 + 11D5

+ 10D6 + 9D7 + 8D8 + 7D9 + 6D10 + 5D11 + 4D12 + 3D13 + 2D14,
C2 = D14

WCS =
∑8

i=1(iY, i)
(1) Y = A + B1 + D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8

[5] sw4.3 type sw([4] 10.2.2)
X = 10A + 4B1 + 2B2 + 3C1 + 2C2 + 3D1 + 2D2, C2 = D2

WCS = (Y, 1) + (2Y, 2)
(1) Y = 3A + B1 + C1 + C2 + D1 + D2

Note: A multiple curve of genus 2 is barked off.

[5] sw4.4 type sw([4] 10.2.5)
X = 10A + 4B1 + 2B2 + 7C1 + 4C2 + 9D1 + 8D2 + 7D3 + 6D4 + 5D5

+ 4D6, C2 = D6

WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4)
(1) Y = A + C1 + C2 + D1 + D2 + D3 + D4 + D5 + D6

[5] sw4.5 type sw([4] 10.2.7)
X = 10A + 3B1 + 2B2 + B3 + 8C1 + 6C2 + 4C3 + 2C4 + 9D1 + 8D2 + 7D3

+ 6D4 + 5D5 + 4D6 + 3D7 + 2D8, C4 = D8

WCS =
∑8

i=1(iY, i)
(1) Y = A + C1 + D1 + D2

[5] sw4.6 type sw([4] 10.2.8)
X = 10A + 2B1 + 9C1 + 8C2 + 7C3 + 6C4 + 5C5 + 4C6 + 3C7 + 2C8 + 9D1

+ 8D2 + 7D3 + 6D4 + 5D5 + 4D6 + 3D7 + 2D8, C8 = D8

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + D1 + D2 + D3

+ D4 + D5 + D6 + D7 + D8
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[5] sw4.7 type sw([4] 9.1)
X = 9A + B1 + 4C1 + 3C2 + 2C3 + 4D1 + 3D2 + 2D3, C3 = D3

WCS = (Y, 1) + (2Y, 2)
(1) Y = 2A + C1 + C2 + C3 + D1 + D2 + D3

[5] sw4.8 type sw([4] 9.3)
X = 9A + 2B1 + 2C1 + 5D1 + D2, B1 = C1

WCS = (Y, 1) + (2Y, 2)
(1) Y = 2A + B1 + C1

[5] sw4.9 type sw([4] 9.4) case 1
X = 9A + 2B1 + 8C1 + 7C2 + 6C3 + 5C4 + 4C5 + 3C6 + 2C7 + 8D1 + 7D2

+ 6D3 + 5D4 + 4D5 + 3D6 + 2D7 + D8, B1 = C7

WCS = (Y, 5)
(1) Y = 5A + B1 + 4C1 + 3C2 + 2C3 + C4 + C5 + C6 + C7 + 5D1 + 5D2

+ 5D3 + 5D4

WCS = (Y, 6)
(2) Y = 6A+B1+5C1+4C2+3C3+2C4+C5+C6+C7+6D1+6D2+6D3

WCS = (Y, 7)
(3) Y = 7A + B1 + 6C1 + 5C2 + 4C3 + 3C4 + 2C5 + C6 + C7 + 7D1 + 7D2

WCS = (Y, 8)
(4) Y = 8A + B1 + 7C1 + 6C2 + 5C3 + 4C4 + 3C5 + 2C6 + C7 + 8D1

WCS = (Y, 1) + (2Y, 2)
(5) Y = A + B1 + C1 + C2 + C3 + C4 + C5 + C6 + C7

[5] sw4.10 type sw([4] 9.4) case 2
X = 9A + 2B1 + B2 + 8C1 + 7C2 + 6C3 + 5C4 + 4C5 + 3C6 + 2C7 + 8D1

+ 7D2 + 6D3 + 5D4 + 4D5 + 3D6 + 2D7, C7 = D7

WCS = (Y, 2)
(1) Y = 8A + 2B1 + 7C1 + 6C2 + 5C3 + 4C4 + 3C5 + 2C6 + C7 + 7D1

+ 6D2 + 5D3 + 4D4 + 3D5 + 2D6 + D7

WCS = (Y, 1) + (2Y, 2)
(2) Y = A + B1 + C1 + C2 + C3 + C4 + C5 + C6 + C7 + D1 + D2 + D3

+ D4 + D5 + D6 + D7

[5] sw4.11 type sw([4] 9.5)
X = 9A + 5B1 + B2 + 5C1 + 8D1 + 7D2 + 6D3 + 5D4, C1 = D4

WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4) + (5Y, 5)
(1) Y = A + C1 + D1 + D2 + D3 + D4
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[5] sw4.12 type sw([4] 6.2.3)
X = 6A + 4B1 + 2B2 + 4C1 + 2C2 + 5D1 + 4D2 + 3D3 + 2D4 + 5E1 + 4E2

+ 3E3 + 2E4, D4 = E4

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + B1 + B2 + D1 + D2 + D3 + D4 + E1 + E2 + E3 + E4

[5] sw4.13 type sw([4] 6.3.2)
X = 6A + 3B1 + 5C1 + 4C2 + 3C3 + 2C4 + 5D1 + 4D2 + 3D3 + 2D4 + 5E1

+ 4E2 + 3E3 + 2E4 + E5, C4 = D4

WCS = (Y, 5)
(1) Y = 5A+2B1 +4C1 +3C2 +2C3 +C4 +4D1 +3D2 +2D3 +D4 +5E1

WCS = (Y, 1) + (2Y, 2)
(2) Y = A+C1 +C2 +C3 +C4 +D1 +D2 +D3 +D4 +E1 +E2 +E3 +E4

[5] sw4.14 type sw([4] 5.2) case 1
X = 5A + 2B1 + 2C1 + 2D1 + D2 + 4E1 + 3E2 + 2E3 + E4, B1 = C1

WCS = (Y, 3)
(1) Y = 3A + B1 + C1 + D1 + 3E1 + 3E2

WCS = (Y, 1) + (2Y, 2)
(2) Y = A + B1 + C1

[5] sw4.15 type sw([4] 5.2) case 2
X = 5A + 2B1 + B2 + 2C1 + C2 + 2D1 + 4E1 + 3E2 + 2E3, D1 = E3

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + D1 + E1 + E2 + E3

[5] sw4.16 type sw([4] 5.4)
X = 5A + 2B1 + 2C1 + 3D1 + D2 + 3E1 + E2, B1 = C1

WCS = (Y, 1)
(1) Y = A + D1 + D2 + E1 + E2

(2) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2

WCS = (Y, 1) + (2Y, 2)
(3) Y = A + B1 + C1

[5] sw4.17 type sw([4] 5.5)
X = 5A + B1 + C1 + 4D1 + 3D2 + 2D3 + 4E1 + 3E2 + 2E3, D3 = E3

WCS = (Y, 1)
(1) Y = A + B1 + C1

(2) Y = 4A + B1 + C1 + 3D1 + 2D2 + D3 + 3E1 + 2E2 + E3
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WCS = (Y, 1) + (2Y, 2)
(3) Y = A + D1 + D2 + D3 + E1 + E2 + E3

[5] sw4.18 type sw([4] 5.6) case 1
X = 5A + 3B1 + 4C1 + 3C2 + 4D1 + 3D2 + 2D3 + D4 + 4E1

+ 3E2 + 2E3 + E4, B1 = C2

WCS = (Y, 1) + (2Y, 2) + (3Y, 3)
(1) Y = A + B1 + C1 + C2 + D1 + D2

[5] sw4.19 type sw([4] 5.6) case 2
X = 5A + 3B1 + B2 + 4C1 + 3C2 + 2C3 + 4D1 + 3D2 + 2D3 + 4E1

+ 3E2 + 2E3 + E4, C3 = D3

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + C1 + C2 + C3 + D1 + D2 + D3 + E1 + E2 + E3

[5] sw4.20 type sw([4] 4.2.2)
X = 4A+B1 +2C1 +3D1 +2D2 +3E1 +2E2 +3F1 +2F2 +F3, D2 = E2

WCS = (Y, 3)
(1) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2 + 3F1

WCS = (Y, 1) + (2Y, 2)
(2) Y = A + C1 + D1 + D2 + E1 + E2

(3) Y = A + D1 + D2 + E1 + E2 + F1 + F2

[5] sw4.21 type sw([4] 3.2)
X = 3A + B1 + C1 + D1 + 2E1 + 2F1 + 2G1 + G2, E1 = F1

WCS = (Y, 1)
(1) Y = A + B1 + C1 + D1

(2) Y = A + B1 + G1 + G2

(3) Y = 2A + B1 + C1 + D1 + E1 + F1 + G1

WCS = (Y, 1) + (2Y, 2)
(4) Y = A + E1 + F1 + G1

[5] sw4.22 type sw([4] 3.3)
X = 3A+2B1+2C1+2D1+D2+2E1+E2+2F1+F2+2G1+G2, B1 = C1

WCS = (Y, 1)
(1) Y = A + D1 + D2 + E1 + E2 + F1 + F2 + G1 + G2

WCS = (Y, 2)
(2) Y = 2A + B1 + C1 + D1 + E1 + 2F1 + 2G1

(3) Y = 2A + B1 + C1 + 2D1 + 2E1 + 2F1
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WCS = (Y, 1) + (2Y, 2)
(4) Y = A + B1 + C1 + D1 + E1

[5] sw4.23 type sw([4] A1.4)
A: an elliptic curve
X = 3A+2B1 +2C1 +2D1 +D2, B1 = C1 N⊗3

A = O(−2b1−2c1−2d1)

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + B1 + C1, NA = O(−b1 − c1),
where b1 + c1 ∼ 2d1, i.e. d1 is a Weierstrass point on A.

[5] sw3.1 type sw([3] 6.2.2)
X = 6A + B1 + 3C1 + 4D1 + 4E1, D1 = E1

WCS = (Y, 1)
(1) Y = 2A + B1 + C1 + D1 + E1

WCS = (Y, 1) + (2Y, 2)
(2) Y = A + D1 + E1

[5] sc3.1 type sc([3] 6.2.2)
X = 6A + B1 + 3C1 + 4D1 + 2D2 + 4E1 + 2E2, D2 = E2

WCS = (Y, 1)
(1) Y = 2A + B1 + C1 + D1 + E1

(2) Y = 3A + B1 + C1 + 2D1 + D2 + 2E1 + E2

WCS = (Y, 1) + (2Y, 2)
(3) Y = A + D1 + D2 + E1 + E2

[5] sw3.2 type sw([3] 4.1.3)
X = 4A + 3B1 + 2B2 + 3C1 + 2C2 + 3D1 + 2D2 + 3E1 + 2E2,

B2 = C2, D2 = E2

WCS = (Y, 1) + (2Y, 2)
(1) Y = A + B1 + B2 + C1 + C2 + D1 + D2 + E1 + E2

26.5.4 Welding of stellar singular fibers of genus 4 and genus 1

[5] wd([4]16.4(1)+III∗) type
X = X1 + X2, D4(X1) = A(X2)
X1 = 16A + 8B1 + 11C1 + 6C2 + C3 + 13D1 + 10D2 + 7D3 + 4D4

X2 = 4A + 2B1 + 3D1 + 2D2 + D3

WCS = (Y, 1), Y = Y (X1) + Y (X2)
Y (X1) = 10A + 5B1 + 7C1 + 4C2 + C3 + 8D1 + 6D2 + 4D3 + 2D4

Y (X2) = 2A + B1 + D1
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[5] wd([4]16.4(2)+II∗) type
X = X1 + X2, C2(X1) = A(X2)
X1 = 16A + 8B1 + 11C1 + 6C2 + 13D1 + 10D2 + 7D3 + 4D4 + D5

X2 = 6A + 3B1 + 4C1 + 2C2

WCS = (Y, 1), Y = Y (X1) + Y (X2)
Y (X1) = 6A + 3B1 + 4C1 + 2C2 + 5D1 + 4D2 + 3D3 + 2D4 + D5

Y (X2) = 2A + B1 + C1

[5] wd([4]12.1.4+IV ∗) type
X = X1 + X2, C3(X1) = A(X2)
X1 = 12A+5B1 +3B2 +9C1 +6C2 +3C3 +10D1 +8D2 +6D3 +4D4 +2D5

X2 = 3A + 2C1 + C2 + 2D1 + D2

WCS = (Y, 2), Y = Y (X1) + Y (X2)
Y (X1) = 4A + 2B1 + 2B2 + 3C1 + 2C2 + C3 + 3D1 + 2D2 + D3

Y (X2) = 2A + 2C1 + 2D1

[5] wd([4]5.1+II∗) type
X = X1 + X2, A(X1) = D1(X2)
X1 = 5A + C1 + D1 + 2E1 + E2

X2 = 6A + 3B1 + 4C1 + 2C2 + 5D1

WCS = (Y, 1), Y = Y (X1) + Y (X2)
Y (X1) = 2A + C1 + D1

Y (X2) = 2A + B1 + C1 + 2D1

WCS = (Y, 1), Y = Y (X1) + Y (X2)
Y (X1) = 2A + D1 + E1 + E2

Y (X2) = 2A + B1 + C1 + 2D1

WCS = (Y, 1) + (2Y, 2), Y = Y (X1) + Y (X2)
Y (X1) = 2A + E1

Y (X2) = A + C1 + C2 + D1

26.5.5 Welding of stellar singular fibers of genus 3 and genus 2

[5] wd([3]14.4+[2]10.1) type
X = X1 + X2, D4(X1) = A(X2)
X1 = 14A + 7B1 + 8C1 + 2C2 + 13D1 + 12D2 + 11D3 + 10D4

X2 = 10A + 5B1 + 4D1 + 2D2

WCS = (Y, 1) + (2Y, 2), Y = Y (X1) + Y (X2)
Y (X1) = 2A + B1 + C1 + 2D1 + 2D2 + 2D3 + 2D4

Y (X2) = 2A + B1 + C1 + C2



576 26 List of Weighted Crustal Sets for Singular Fibers of Genus ≤ 5

[5] wd([3]14.6+[2]8.1) type
X = X1 + X2, D2(X1) = A(X2)
X1 = 14A + 7B1 + 10C1 + 6C2 + 2C3 + 11D1 + 8D2

X2 = 8A + 4B1 + C1

WCS = (Y, 1), Y = Y (X1) + Y (X2)
Y (X1) = 2A + B1 + C1 + 2D1 + 2D2

Y (X2) = 2A + B1 + C1

[5] wd([3]14.6 + [2]5.1) type
X = X1 + X2, D3(X1) = A(X2)
X1 = 14A + 7B1 + 10C1 + 6C2 + 2C3 + 11D1 + 8D2 + 5D3

X2 = 5A + B1 + C1

WCS = (Y, 1), Y = Y (X2)
Y (X2) = A + B1 + C1

[5] wd([3]14.6 + [2]5.4) type
X = X1 + X2, D3(X1) = A(X2)
X1 = 14A + 7B1 + 10C1 + 6C2 + 2C3 + 11D1 + 8D2 + 5D3

X2 = 5A + 3C1 + C2 + 4D1 + 3D2 + 2D3 + D4

WCS = (Y, 1) + (2Y, 2), Y = Y (X1) + Y (X2)
Y (X1) = A + C1 + C2 + C3 + D1 + D2 + D3

Y (X2) = A + C1 + D1 + D2 + D3

[5] wd([3]12.4 + [2]10.1) type
X = X1 + X2, D2(X1) = A(X2)
X1 = 2A + 6B1 + 7C1 + 2C2 + C3 + 11D1 + 10D2

X2 = 10A + 5B1 + 4D1 + 2D2

WCS = (Y, 1) + (2Y, 2), Y = Y (X1) + Y (X2)
Y (X1) = 2A + B1 + C1 + 2D1 + 2D2

Y (X2) = 2A + B1 + D1 + D2

[5] wd([3]12.4 + [2]8.1) type
X = X1 + X2, D4(X1) = A(X2)
X1 = 2A + 6B1 + 7C1 + 2C2 + C3 + 11D1 + 10D2 + 9D3 + 8D4

X2 = 8A + 4B1 + 3D1 + D2

WCS = (Y, 2), Y = Y (X1) + Y (X2)
Y (X1) = 10A + 5B1 + 6C1 + 2C2 + 9D1 + 8D2 + 7D3 + 6D4

Y (X2) = 6A + 3B1 + 2D1

[5] wd([3]12.5 + [2]10.1) type
X = X1 + X2, D2(X1) = A(X2)
X1 = 12A + 4B1 + 9C1 + 6C2 + 3C3 + 11D1 + 10D2

X2 = 10A + 5B1 + 4D1 + 2D2
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WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4), Y = Y (X1) + Y (X2)
Y (X1) = A + B1 + D1 + D2

Y (X2) = A + D1

[5] wd([3]9.1 + [2]10.3) type
X = X1 + X2, A(X1) = D1(X2)
X1 = 9A + 3C1 + 5D1 + D2

X2 = 10A + 5B1 + 6C1 + 2C2 + 9D1

WCS = (Y, 1)+(2Y, 2)+(3Y, 3)+(4Y, 4)+(5Y, 5), Y = Y (X1)+Y (X2)
Y (X1) = A + D1

Y (X2) = A + B1 + D1

[5] wd([3]9.2 + [2]10.3) type
X = X1 + X2, A(X1) = D1(X2)
X1 = 9A + 2C1 + C2 + 6D1 + 3D2

X2 = 10A + 5B1 + 6C1 + 2C2 + 9D1

(i) WCS = (Y, 1) + (2Y, 2), Y = Y (X1) + Y (X2)
Y (X1) = A + C1

Y (X2) = A + C1 + C2 + D1

(ii) WCS =
∑6

i=1(iY, i), Y = Y (X1) + Y (X2)
Y (X1) = A + D1

Y (X2) = A + C1 + D1

[5] wd([3]9.5 + [2]8.1) type
X = X1 + X2, D1(X1) = A(X2)
X1 = 9A + 6B1 + 3B2 + 4C1 + 3C2 + 2C3 + C4 + 8D1

X2 = 8A + 4B1 + 3D1 + D2

(i) WCS = (Y, 1) + (2Y, 2) + (3Y, 3), Y = Y (X1) + Y (X2)
Y (X1) = A + B1 + B2 + D1

Y (X2) = A + D1

(ii) WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4), Y = Y (X1) + Y (X2)
Y (X1) = A + C1 + D1

Y (X2) = A + B1

[5] wd([3]8.1 + [2]10.3) type
X = X1 + X2, A(X1) = D2(X2)
X1 = 8A + C1 + 6D1 + 4D2 + 2D3

X2 = 10A + 5B1 + 6C1 + 2C2 + 9D1 + 8D2

(i) WCS = (Y, 1), Y = Y (X1) + Y (X2)
Y (X1) = 2A + C1 + D1

Y (X2) = 2A + B1 + C1 + 2D1 + 2D2
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(ii) WCS = (Y, 1) + (2Y, 2), Y = Y (X1) + Y (X2)
Y (X1) = A + D1 + D2 + D3

Y (X2) = A + C1 + C2 + D1 + D2

[5] wd([3]8.2 + [2]10.3) type
X = X1 + X2, A(X1) = D2(X2)
X1 = 8A + 2C1 + 5D1 + 2D2 + D3

X2 = 10A + 5B1 + 6C1 + 2C2 + 9D1 + 8D2

WCS = (Y, 1) + (2Y, 2), Y = Y (X1)
Y (X1) = A + C1 + D1 + D2

[5] wd([3]7.1 + [2]10.3) type
X = X1 + X2, A(X1) = D3(X2)
X1 = 7A + C1 + 5D1 + 3D2 + D3

X2 = 10A + 5B1 + 6C1 + 2C2 + 9D1 + 8D2 + 7D3

WCS = (Y, 1), Y = Y (X1)
Y (X1) = A + C1 + D1 + D2 + D3

[5] wd([3]7.1 + [2]8.2) type
X = X1 + X2, A(X1) = D1(X2)
X1 = 7A + C1 + 5D1 + 3D2 + D3

X2 = 8A + 4B1 + 5C1 + 2C2 + C3 + 7D1

WCS = (Y, 1), Y = Y (X1)
Y (X1) = A + C1 + D1 + D2 + D3

[5] wd([3]7.2 + [2]10.3) type
X = X1 + X2, A(X1) = D3(X2)
X1 = 7A + 2C1 + C2 + 4D2 + D3

X2 = 10A + 5B1 + 6C1 + 2C2 + 9D1 + 8D2 + 7D3

WCS = (Y, 1) + (2Y, 2), Y = Y (X1) + Y (X2)
Y (X1) = A + C1

Y (X2) = A + C1 + C2 + D1 + D2 + D3

[5] wd([3]7.2 + [2]8.2) type
X = X1 + X2, A(X1) = D1(X2)
X1 = 7A + 2C1 + C2 + 4D2 + D3

X2 = 8A + 4B1 + 5C1 + 2C2 + C3 + 7D1

(i) WCS = (Y, 1) + (2Y, 2), Y = Y (X1) + Y (X2)
Y (X1) = A + C1

Y (X2) = A + C1 + C2 + D1
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(ii) WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4), Y = Y (X1) + Y (X2)
Y (X1) = A + D1

Y (X2) = A + B1 + D1

[5] wd([3]7.3 + [2]10.4) type
X = X1 + X2, A(X1) = C1(X2)
X1 = 7A + B1 + 3D1 + 2D2 + D3

X2 = 10A + 5B1 + 7C1 + 8D1 + 6D2 + 4D3 + 2D4

WCS = (Y, 1), Y = Y (X1) + Y (X2)
Y (X1) = 2A + B1 + C1 + D1 + D2 + D3

Y (X2) = 2A + B1 + 2C1 + D1

[5] wd([3]7.6 + [2]10.4) type
X = X1 + X2, A(X1) = C1(X2)
X1 = 7A + 5C1 + 3C2 + C3 + 6D1 + 5D2 + 4D3 + 3D4 + 2D5 + D6

X2 = 10A + 5B1 + 7C1 + 8D1 + 6D2 + 4D3 + 2D4

WCS = (Y, 1)+(2Y, 2)+(3Y, 3)+(4Y, 4)+(5Y, 5), Y = Y (X1)+Y (X2)
Y (X1) = A + C1 + D1 + D2

Y (X2) = A + B1 + C1

[5] wd([3]6.1.1 + [2]8.2) type
X = X1 + X2, A(X1) = D2(X2)
X1 = 6A + 3C1 + 3D1 + 5E1 + 4E2 + 3E3 + 2E4 + E5

X2 = 8A + 4B1 + 5C1 + 2C2 + C3 + 7D1 + 6D2

WCS = (Y, 1) + (2Y, 2) + (3Y, 3), Y = Y (X1)
Y (X1) = A + C1 + D1 + E1 + E2 + E3

[5] wd([3]6.2.2 + [2]8.2) type
X = X1 + X2, A(X1) = D2(X2)
X1 = 6A + 3C1 + 4D1 + 2D2 + 4E1 + 2E2

X2 = 8A + 4B1 + 5C1 + 2C2 + C3 + 7D1 + 6D2

WCS = (Y, 1) + (2Y, 2) + (3Y, 3) + (4Y, 4), Y = Y (X1) + Y (X2)
Y (X1) = A + D1 + E1

Y (X2) = A + D1 + D2 + B1

[5] wd([3]A1.2 + [2]A1.1) type
X = X1 + X2, C1(X1) = A(X2)

• N⊗3
A(X1)

= O(−p1 − 2p2)
• N⊗2

A(X2)
= O(−3p2 − p3)
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• p1 = A(X1) ∩ B1(X1), p2 = A(X1) ∩ C1(X1),
• p3 = A(X2) ∩ C1(X2).

X1 = 3A + B1 + 2C1

X2 = 2A + C1

WCS = (Y, 1), Y = Y (X1)
Y (X1) = A + B1

Hence NA(X1) = O(−p1), and 2p1 ∼ 2p2. Moreover, we choose p2, p3 so
that there exists q ∈ A(X2) satisfying q �= p2, p3, p2 + p3 ∼ 2q.

Note: 2p1 ∼ 2p2 does not imply p1 ∼ p2.



Bibliography

[A’C] N. A’Campo, Le groupe de monodromie du déploiement des singularités
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function, 446, 447, 458
polynomial, 423

Artin component, 149, 491
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polynomial, 209
sequence, 211
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a degeneration is, 25, 483
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barking deformation, 34
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of a branch, 89
of a trunk, 310
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barking genus
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(stellar case), 295

barking multiplicity, 37, 120
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collision of points, 74
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deformation atlas, 88

deformation atlas (general case), 328
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of a constellar singular fiber, 329
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core invariant, 415
core section

of a crust, 271, 330
crust

(constellar case), 331
(star-shaped case), 65
(stellar case), 271

crustal set, 303
cut-off operation, 360

for crusts, 304
for subbranches, 303

DA (deformation atlas), 88
deformation

of a degeneration, 23
deformation atlas, 88

associated with a bunch, 258
associated with a crust, 274
associated with a crustal set, 306
of a stellar singular fiber, 270

deformation family, 23
Dehn twist, 27
descending

polynomial, 144, 209
sequence, 146, 211

disappearance of a zero section, 49
discriminant, 15
discriminant function, 389

associated with a tassel, 391
divisor, 266
dominant, 254

bunch, 259
crust, 304
crustal set, 303
sequence, 91
subbranch, 92

effective (or positive) divisor, 17
enlargement

of a simple crust (constellar case),
342

of a simple crust (stellar case), 297,
350

of a subbranch, 296
essential zero, 402

Euclidean barking, 34
Euler characteristic χ(X), 350
exceptional curve ((−1)-curve), 24
Exceptional Curve Criterion, 294, 491
exceptional set

of a singularity, 67

face
function, 138
of a Newton polygon, 137

fake singular fiber, 29, 285, 343, 349
fiber germ, 7
fibered surface, 2
formal self-intersection number, 65
fringe, 281

of a branch, 86, 267
of a trunk, 310

fringed
branch, 86, 267
trunk, 310

genus formula, 268
grafting, 375, 376

Hesse matrix, 134
Hirzebruch (ruled) surface, 57
hyperbolic barking, 34

initial deformation, 334
problem, 311

interchanged
ascending polynomial, 209
descending polynomial, 209
shrinking polynomial, 225
stable polynomial, 210
waving polynomial, 184

Jacobian variety, 450, 463

Lefschetz fiber, 27, 483
length

of a branch, 86
of a bunch, 257
of a set of subbranches, 257
of a subbranch, 89
of a subtrunk, 311
of a trunk, 311
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long
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subtrunk, 342

looped trunk, 345

main fiber, 9, 284, 291, 337, 393
Matsumoto–Montesinos bonding, 321,

329, 489
Milnor number, 134
monodromy, 2
Morsification, 6
multiple

barking deformation, 37
branch, 489
Euclidean barking, 37
hyperbolic barking, 37
node, 322
parabolic barking, 37
subdivisor, 343, 377

Multiple Criterion, 30, 491
multiplicity

of a branch, 489
of a subdivisor, 377
sequence, 90

Newton
boundary, 137
degenerate, 138
nondegenerate, 138
polygon, 137

node, 265
non-degenerate singularity, 134
non-negative divisor, 17
non-separating, 429
normal crossing, 265

simple, 265
normally minimal

a degeneration is, 4, 27, 327

parabolic barking, 34
plot function, 288, 301, 395
plumbing, 85
positive (or effective) divisor, 17
propagation

along a branch, 63
lemma, 88
number, 14

number of a subbranch, 291
number of a subtrunk, 316
of a deformation, 198
of deformation atlas, 88, 270
sequence, 255

proportional
subbranch, 108
subtrunk, 313

ramification
data, 489
index, 268, 489
point, 268, 386

reduced, 37
relatively minimal, 23
replacement, 370
resultant, 433
Riemann

constant, 474
Factorization Theorem, 452
theta function, 450, 464

rigid irreducible component
of a branch, 291
of a trunk, 319

ripple type, 146, 277
root, 209
ruled (Hirzebruch) surface, 57

seesaw phenomenon, 292, 415
self-connecting, 490
self-welding, 490
semi-local model of a degeneration, 41
semi-rigid irreducible component

of a branch, 291, 293
of a trunk, 319

semi-universal deformation, 98
short

subbranch, 256
subtrunk, 342

shrinking polynomial, 225
simple crust

(constellar case), 332
(stellar case), 281

simple normal crossing, 265
Simplification Lemma, 58
simultaneous resolution, 149, 492

technique, 491
size of a deformation atlas, 270
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slant
at a core, 330, 336
of a subbranch, 94
of a subtrunk, 317, 330

splitting
deformation, 24
family, 24

SR (simultaneous resolution) technique,
491

stable
polynomial, 209
sequence, 211

standard form of a deformation, 88
standard section, 266
stellar (star-shaped), 267
subbranch, 89

contained in another subbranch, 92
subordinate fiber, 9, 284, 291, 337, 383,

393
subtrunk, 311, 316

of type ABl, 313
support (Supp), 17, 330
surplus zero, 451, 476

tame
a set of subbranches is, 306
bunch, 258
subbranch, 93

tassel, 391, 402
singular, 402
smooth, 402

taut singularity, 87
theta divisor, 450
theta function, 439, 463

Riemann, 450, 464
topological monodromy, 25
topologically equivalent

two splitting families are, 10, 29, 349
Torelli group, 3
Trivial Extension Criterion, 14
trivial family, 64

Trivial Propagation Criterion, 293, 491
trunk, 310

of a constellar singular fiber, 329
type Al, Bl, or Cl

subbranch of, 154
subtrunk of, 316

type ABl

subbranch of, 155, 300, 336
subtrunk of, 312, 315

type B�
l (non-proportional type Bl), 157

unbarked part, 35
underlying reduced curve

of a singular fiber, 265, 327
unfringed

branch, 86, 267
subtrunk of type Bm, 322
trunk, 310

universal deformation, 98

vanishing cycle, 51, 428
versal deformation, 98

waving
polynomial, 183
sequence, 191

WCS (weighted crustal set), 488
weakly topologically equivalent

two splitting families are, 30
weight

of a deformation atlas (branch), 120
of a deformation atlas (bunch), 258
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weighted
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wild
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