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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide the
engineering, mathematical, and scientific communities with significant developments in
harmonic analysis, ranging from abstract harmonic analysis to basic applications. The
title of the series reflects the importance of applications and numerical implementation,
but richness and relevance of applications and implementation depend fundamentally
on the structure and depth of theoretical underpinnings. Thus, from our point of view,
the interleaving of theory and applications and their creative symbiotic evolution is
axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished, de-
veloped, and deepened over time within many disciplines and by means of creative
cross-fertilization with diverse areas. The intricate and fundamental relationship be-
tween harmonic analysis and fields such as signal processing, partial differential equa-
tions (PDEs), and image processing is reflected in our state-of-the-art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as wavelet
theory, Banach algebras, classical Fourier analysis, time-frequency analysis, and fractal
geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with some
basic problems in digital signal processing, speech and image processing, geophysics,
pattern recognition, biomedical engineering, and turbulence. These areas implement
the latest technology from sampling methods on surfaces to fast algorithms and com-
puter vision methods. The underlying mathematics of wavelet theory depends not only
on classical Fourier analysis, but also on ideas from abstract harmonic analysis, includ-
ing von Neumann algebras and the affine group. This leads to a study of the Heisenberg
group and its relationship to Gabor systems, and of the metaplectic group for a mean-
ingful interaction of signal decomposition methods. The unifying influence of wavelet
theory in the aforementioned topics illustrates the justification for providing a means
for centralizing and disseminating information from the broader, but still focused, area
of harmonic analysis. This will be a key role of ANHA. We intend to publish with the
scope and interaction that such a host of issues demands.

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays a
substantial role:
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viii ANHA Series Preface

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time-frequency and

Numerical partial differential equations time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the development
of mathematics, on the understanding of many engineering and scientific phenomena,
and on the solution of some of the most important problems in mathematics and the
sciences. Historically, Fourier series were developed in the analysis of some of the classical
PDEs of mathematical physics; these series were used to solve such equations. In order
to understand Fourier series and the kinds of solutions they could represent, some of
the most basic notions of analysis were defined, e.g., the concept of “function.” Since
the coefficients of Fourier series are integrals, it is no surprise that Riemann integrals
were conceived to deal with uniqueness properties of trigonometric series. Cantor’s set
theory was also developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena, such as
sound waves, can be described in terms of elementary harmonics. There are two aspects
of this problem: first, to find, or even define properly, the harmonics or spectrum of a
given phenomenon, e.g., the spectroscopy problem in optics; second, to determine which
phenomena can be constructed from given classes of harmonics, as done, for example,
by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineering,
mathematics, and the sciences. For example, Wiener’s Tauberian theorem in Fourier
analysis not only characterizes the behavior of the prime numbers, but also provides the
proper notion of spectrum for phenomena such as white light; this latter process leads
to the Fourier analysis associated with correlation functions in filtering and prediction
problems, and these problems, in turn, deal naturally with Hardy spaces in the theory
of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier integral
operators. Problems in antenna theory are studied in terms of unimodular trigonometric
polynomials. Applications of Fourier analysis abound in signal processing, whether with
the fast Fourier transform (FFT), or filter design, or the adaptive modeling inherent
in time-frequency-scale methods such as wavelet theory. The coherent states of mathe-
matical physics are translated and modulated Fourier transforms, and these are used,
in conjunction with the uncertainty principle, for dealing with signal reconstruction in
communications theory. We are back to the raison d’être of the ANHA series!

John J. Benedetto
Series Editor

University of Maryland
College Park



Preface

Preface to Volume 1

As an undergraduate student at a good engineering school, I had never heard of stochas-
tic processes or Lie groups (even though I double majored in Mathematics). As a faculty
member in engineering I encountered many problems where the recurring themes were
“noise” and “geometry.” When I went to read up on both topics I found fairly little at
this intersection. Now, to be certain, there are many wonderful texts on one of these
subjects or the other. And to be fair, there are several advanced treatments on their
intersection. However, for the engineer or scientists who has the modest goal of mod-
eling a stochastic (i.e., time-evolving and random) mechanical system with equations
with an eye towards numerically simulating the system’s behavior rather than proving
theorems, very few books are out there. This is because mechanical systems (such as
robots, biological macromolecules, spinning tops, satellites, automobiles, etc.) move in
multiple spatial dimensions, and the configuration space that describes allowable mo-
tions of objects made up of rigid components does not fit into the usual framework of
linear systems theory. Rather, the configuration space manifold is usually either a Lie
group or a homogeneous space.1

My mission then became clear: write a book on stochastic modeling of (possibly
complicated) mechanical systems that a well-motivated first-year graduate student or
undergraduate at the senior level in engineering or the physical sciences could pick
up and read cover-to-cover without having to carry around twenty other books. The
key point that I tried to keep in mind when writing this book was that the art of
mathematical modeling is very different than the art of proving theorems. The emphasis
here is on “how to calculate” quantities (mostly analytically by hand and occasionally
numerically by computer) rather than “how to prove.” Therefore, some topics that are
treated at great detail in mathematics books are covered at a superficial level here, and
some concrete analytical calculations that are glossed over in mathematics books are
explained in detail here. In other words the goal here is not to expand the frontiers of
mathematics, but rather to translate known results to a broader audience.

The following quotes from Felix Klein2 in regard to the modern mathematics of his
day came to mind often during the writing process:

1The reader is not expected to know what these concepts mean at this point.
2F. Klein, Development of Mathematics in the 19th Century, translated by M. Ackerman

as part of Lie Groups: History, Frontiers and Applications, Vol. IX, Math Sci Press, 1979.
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x Preface

The exposition, intended for a few specialized colleagues, refrains from indicating
any connection with more general questions. Hence it is barely accessible to
colleagues in neighboring fields and totally inaccessible to a larger circle. . .
In fact, the physicist can use little, and the engineer none at all, of these theories
in his tasks.

The later of these was also referenced in Arnol’d’s classic book3 as an example of how
work that is initially viewed as esoteric can become central to applied fields.

In order to emphasize the point that this book is for practitioners, as I present
results they generally are not in “definition-proof-theorem” format. Rather, results and
derivations are presented in a flowing style. Section headings punctuate results so that
the presentation (hopefully) does not ramble on too much.

Another difference between this book and one on pure mathematics is that while
pathological examples can be viewed as the fundamental motivation for many math-
ematical concepts (e.g, the behavior of sin 1

x as x → 0), in most applications most
functions and the domains on which they are defined do not exhibit pathologies. And
so practitioners can afford to be less precise than pure mathematicians.

A final major difference between this presentation and those written by mathe-
maticians is that rather than the usual “top-down” approach in which examples follow
definitions and theorems, the approach here is “bottom-up” in the sense that examples
are used to motivate concepts throughout this book and the companion volume. Then
after the reader gains familiarity with the concepts, definitions are provided to capture
the essence of the examples.

To help with the issue of motivation and to illustrate the art of mathematical model-
ing, case studies from a variety of different engineering and scientific fields are presented.
In fact, so much material is covered that this book has been split into two volumes. Vol-
ume 1 (which is what you are reading now) focuses on basic stochastic theory and
geometric methods. The usefulness of some of these methods may not be clear until
the second volume. For example, some results pertaining to differential forms and dif-
ferential geometry that are presented in Volume 1 are not applied to stochastic models
until they find applications in Volume 2 in the form of Integral Geometry (also called
Geometric Probability) and in Multivariate Statistical Analysis. Volume 2 serves as an
in-depth (but accessible) treatment of Lie groups, and the extension of statistical and
information-theoretic techniques to that domain.

I have organized Volume 1 into the following 9 chapters and an appendix: Chap-
ter 1 provides an introduction and overview of the kinds of the problems that can be
addressed using the mathematical modeling methods of this book. Chapter 2 reviews
every aspect of the Gaussian distribution, and uses this as the quintessential example of
a probability density function. Chapter 3 discusses probability and information theory
and introduces notation that will be used throughout these volumes. Chapter 4 is an
overview of white noise, stochastic differential equations (SDEs), and Fokker–Planck
equations on the real line and in Euclidean space. The relationship between Itô and
Stratonovich SDEs is explained and examples illustrate the conversions between these
forms on multi-dimensional examples in Cartesian and curvilinear coordinate systems.
Chapter 5 provides an introduction to Geometry including elementary projective, alge-
braic, and differential geometry of curves and surfaces. That chapter begins with some
concrete examples that are described in detail. Chapter 6 introduces differential forms
and the generalized Stokes theorem. Chapter 7 generalizes the treatment of surfaces and

3See Arnol’d, VI, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin,
1978.
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polyhedra to manifolds and polytopes. Geometry is first described using a coordinate-
dependent presentation that some differential geometers may find old fashioned, but it
is nonetheless fully rigorous and general, and far more accessible to the engineer and
scientist than the elegant and powerful (but cryptic) coordinate-free descriptions. Chap-
ter 8 discusses stochastic processes in manifolds and related probability flows. Chapter 9
summarizes the current volume and introduces Volume 2. The appendix provides a com-
prehensive review of concepts from linear algebra, multivariate calculus, and systems of
first-order ordinary differential equations. To the engineering or physical science student
at the senior level or higher, some of this material will be known already. But for those
who have not seen it before, it is presented in a self-contained manner. In addition, ex-
ercises at the end of each chapter in Volume 1 reinforce the main points. There are more
than 150 exercises in Volume 1. Volume 2 also has many exercises. Over time I plan to
build up a full solution set that will be uploaded to the publisher’s webpage, and will
be accessible to instructors. This will provide many more worked examples than space
limits allow within the volumes.

Volume 1 can be used as a textbook in several ways. Chapters 2–4 together with the
appendix can serve as a one-semester course on continuous-time stochastic processes.
Chapters 5–8 can serve as a one-semester course on elementary differential geometry.
Or, if chapters are read sequentially, the whole book can be used for self-study. Each
chapter is meant to be relatively self contained, with its own references to the literature.
Altogether there are approximately 250 references that can be used to facilitate further
study.

The stochastic models addressed here are equations of motion for physical systems
that are forced by noise. The time-evolving statistical properties of these models are
studied extensively. Information theory is concerned with communicating and extracting
content in the presence of noise. Lie groups either can be thought of as continuous sets of
symmetry operations, or as smooth high-dimensional surfaces which have an associated
operator. That is, the same mathematical object can be viewed from either a more
algebraic or more geometric perspective.

Whereas the emphasis of Volume 1 is on basic theory of continuous-time stochas-
tic processes and differential geometric methods, Volume 2 provides an in-depth in-
troduction to matrix Lie groups, stochastic processes that evolve on Lie groups, and
information-theoretic inequalities involving groups. Volume 1 only has a smattering of
information theory and Lie groups. Volume 2 emphasizes information theory and Lie
groups to a much larger degree.

Information theory consists of several branches. The branch originating from Shan-
non’s mathematical theory of communication is covered in numerous engineering text-
books with minor variants on the titles “Information Theory” or “Communications
Theory.” A second branch of information theory, due to Wiener, is concerned with fil-
tering of noisy data and extracting a signal (such as in radar detection of flying objects).
The third branch originated from the field of mathematical statistics in which people
like Fisher, de Bruijn, Cramér, and Rao developed concepts in statistical estimation. It
is primarily this third branch that is addressed in Volume 1, and so very little of the
classical engineering information theory is found here. However, Shannon’s theory is
reviewed in detail in Volume 2, where connections between many aspects of information
and group theory are explored. And Wiener’s filtering ideas (which have a strong con-
nection with Fourier analysis) find natural applications in the context of deconvolving
functions on Lie groups (an advanced topic that is also deferred to Volume 2).

Volume 2 is a more formal and more advanced presentation that builds on the ba-
sics covered in Volume 1. It is composed of three parts. Part 1 begins with a detailed
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treatment of Lie groups including elementary algebraic, differential geometric, and func-
tional analytic properties. Classical variational calculus techniques are reviewed, and
the coordinate-free extension of these concepts to Lie groups (in the form of the Euler–
Poincaré equation) are derived and used in examples. In addition, the basic concepts
of group representation theory are reviewed along with the concepts of convolution of
functions and Fourier expansions on Lie groups. Connections with multivariate statistical
analysis and integral geometry are also explored. Part 2 of Volume 2 is concerned with
the connections between information theory and group theory. An extension of the de
Bruijn inequality to the context of Lie groups is examined. Classical communication-
theory problems are reviewed, and information inequalities that have parallels in group
theory are explained. Geometric and algebraic problems in coding theory are also ex-
amined. A number of connections to problems in engineering and biology are provided.
For example, it is shown how a spherical optical encoder developed by the author and
coworkers4 can be viewed as a decoding problem on the rotation group, SO(3). Also,
the problem of noise in coherent optical communication systems is formulated and the
resulting Fokker–Planck equation is shown to be quite similar to that of the stochastic
Kinematic cart that is described in the introductory chapter of Volume 1. This leads to
Part 3 of Volume 2, which brings the discussion back to issues close to those in Volume 1.
Namely, stochastic differential equations and Fokker–Planck equations are revisited. In
Volume 2 all of these equations evolve on Lie groups (particularly the rotation and
rigid-body-motion groups). The differential geometric techniques that are presented in
Volume 1 are applied heavily in this setting. Several closely related (though not iden-
tical) concepts of “mean” and “covariance” of probability densities on Lie groups are
reviewed, and their propagation under iterated convolutions is studied. As far as the
descriptions of probability densities on Lie groups are concerned, closed-form Gaussian-
like approximations are possible in some contexts, and Fourier-based solutions are more
convenient in others. The coordinate-based tools needed for realizing these expressions
as concrete quantities (which can in principle be implemented numerically) are provided
in Volume 2.

During a lecture I attended while writing this book, an executive from a famous
computer manufacturer said that traditionally technical people have been trained to be
“I-shaped,” meaning an education that is very deep in one area, but not broad. The
executive went on to say that he now hires people who are “T-shaped,” meaning that
they have a broad but generally shallow background that allows them to communicate
with others, but in addition have depth in one area. From this viewpoint, the present
book and its companion volume are “ΠΠ-shaped,” with a broad discussion of geometry
that is used to investigate three areas of knowledge relatively deeply: stochastic models,
information theory, and Lie groups.

It has been a joy to write these books. It has clarified many issues in my own mind.
And I hope that you find them both interesting and useful. And while I have worked hard
to eliminate errors, there will no doubt be some that escaped my attention. Therefore
I welcome any comments/corrections and plan to keep an updated online erratum page
which can be found by searching for my name on the web.

There are so many people without whom this book would not have been completed.
First, I must thank John J. Benedetto for inviting me to contribute to this series that
he is editing, and Tom Grasso at Birkhäuser for making the process flow smoothly.

4Stein, D., Scheinerman, E.R., Chirikjian, G.S., “Mathematical models of binary spherical-
motion encoders,” IEEE-ASME Trans. Mechatron., 8(2), 234-244, 2003.
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A debt of gratitude is owed to a number of people who have worked (and maybe
suffered) through early drafts of this book. These include my students Kevin Wolfe,
Michael Kutzer, and Matt Moses who received very rough drafts, and whose comments
and questions were very useful in improving the presentation and content. I would also
like to thank all of my current and former students and colleagues for providing a
stimulating environment in which to work.

Mathematicians Ernie Kalnins, Peter T. Kim, Willard Miller, Jr., and Julie Mitchell
provided comments that helped significantly in identifying mathematical errors, fine-
tuning definitions, and organizing topics. I am thankful to Tamás Kalmár-Nagy, Jennifer
Losaw, Tilak Ratnanather, and Jon Selig for finding several important typographical
errors. John Oprea went way above and beyond the call of duty to read and provide
detailed comments on two drafts that led to a significant reorganization of the material.
Andrew D. Lewis provided some very useful comments and the picture of a torus that
appears in Chapter 5. Andrew Douglas, Tak Igusa, and Frank C. Park each provided
some useful and/or encouraging comments. Wooram Park helped with some of the
figures.

I would like to thank William N. Sharpe, Jr. for hiring me many years ago straight
out of graduate school (even after knowing me as an undergraduate), and Nick Jones,
the Benjamin T. Rome Dean of the JHU Whiting School of Engineering, for allowing
me to have the sabbatical during the 2008 calendar year that was used to write this
book after my service as department chair finished.

I would also like to thank the faculty and staff of the Institute for Mathematics and
Its Applications (IMA) at the University of Minnesota for the three week-long workshops
that I attended there during part of the time while I was writing this book. Some of the
topics discussed here percolated through my mind during that time.

Last but not least, I would like to thank my family. Writing a single-author book can
be a solitary experience. And so it is important to have surroundings that are “fuuuun.”

Baltimore, Maryland Gregory Chirikjian
May 2009
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Preface to Volume 2

This book, Volume 2, builds on the fundamental results and differential-geometric ter-
minology established in Volume 1. The goal of Volume 2 is to bring together three fields
of study that are usually treated as disjoint subjects: stochastic models, information
theory, and Lie groups.5

Stochastic phenomena appear frequently in engineering and physics. From one per-
spective, stochasticity (i.e., randomness) can be viewed as an inherent characteristic
of the physical world, and developing mathematical models that describe this inherent
stochasticity allows us to understand truly random phenomena. Alternatively, stochastic
modeling can be thought of as a way to sweep the true complexity of the physical world
under the rug by calling a phenomenon random when it is too complicated to model de-
terministically. The benefit of a stochastic model in that case is that the computational
effort can be far less than that required to describe a complex deterministic system.
Stochastic models can be used to generate estimates of the average behavior of very
complicated deterministic systems together with the variance of these estimates. For
example, a rigid model of a macromolecule being subjected to impacts by the surround-
ing solvent molecules could be modeled using a molecular dynamics simulation involving
millions of molecules. However, the details of the interactions can be quite computa-
tionally intensive. In contrast, viewing the macromolecule as being forced by Gaussian
white noise (i.e., increments of a Wiener process) allows for the relatively simple de-
scription of the behavior as a stochastic differential equation (SDE) or the corresponding
Fokker–Planck equation (FPE). The relationship between SDEs and FPEs was explored
in detail in Volume 1, which can be viewed as the “prequel” to the current volume.

In Volume 1 the probabilistic foundations of information theory (e.g., the definitions
of and properties of entropy, mutual information, entropy-power inequality, etc.) were
reviewed, but almost none of Shannon’s mathematical theory of communication (which
is the information theory known to engineers) was described. Shannon’s information
theory is concerned with the passage of data through noisy environments (called chan-
nels) as efficiently as possible. Such channels might be copper wires, fiber optic cables,
the atmosphere (for radio, laser, and microwave transmission), the ocean (for acoustic/
sonar signals), and so forth. This means that the data should be coded in some way so
as not to be corrupted by random noise in the environment. The simplest robust scheme
would be to repeat the message many times, but this would not be efficient. If the noise
characteristics of the channel are known, then the data can be coded (or packaged)
before it is sent so as to reach the receiver with high probability and at a high rate. Of
course, there is a trade-off between the speed of transmission and the probability that
the original message is actually received. One model for the way data is corrupted dur-
ing transmission is by Gaussian noise. The communication channels that subject data
to this kind of noise are called Gaussian channels. From this description it should be
clear that stochastic models of information channels go hand-in-hand with the design of
codes for transmission of data through known channels. And when the physical nature
of the channel (or the action of intelligent agents that transmit, receive, and process
information in the physical world) is of interest, Lie groups enter in several ways.

5This material is based upon work supported by the National Science Foundation under
Grant No. IIS-0915542.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of the National Science Foundation.
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Lie groups have been studied intensively over the past century. These are contin-
uous sets of operations that can be composed and inverted and for which an identity
element exists and the associative law holds. The Lie groups of most interest in engi-
neering applications are the rotation and rigid-body-motion groups in two- and three-
dimensional space. In physics, other Lie groups such as the special unitary groups and
the Galilean group describe invariants/symmetries of systems of interest. For example,
all of the equations of classical mechanics are invariant under Galilean transformations,
and unitary groups describe symmetries in quantum mechanics and particle physics.
Strong connections have existed between Lie groups and stochastic processes for many
decades. For example, in the 1930s, Perrin studied the rotational Brownian motion of
rigid molecules; that is, the orientation of a molecule follows a stochastic path induced
by its environment. In the estimation of the position and orientation of a robot, satellite,
or submarine from noisy and/or incomplete data, measurements corrupted by noise are
used to determine a best guess of the kinematic state of the system. Such topics have
been investigated since the early 1970s and are still being studied today.

Although strong historical connections exist between information theory and stochas-
tic models and between stochastic models and Lie groups, direct connections between
information theory and Lie groups are far less explored. In coding theory, finite groups
arise in several contexts (e.g., as groups of symmetry operations acting on sphere pack-
ings, Abelian groups over finite fields, coset codes, etc.). Although these concepts are
reviewed in this book, they are not the focus. Lie groups (as opposed to finite groups)
are connected to information theory in several ways that have not been explored much
in the literature. Indeed, one of the main contributions of this book is the exploration
of the connection between Lie groups and information theory. In some cases, these con-
nections are through a stochastic model. In other cases, the connections are direct. For
example, Lie groups have associated with them certain algebraic structures such as sub-
groups and coset spaces. Probability density functions (pdfs) over a Lie group can be
marginalized over a subgroup or coset space and concepts of conditional and marginal
entropy and mutual information can be defined. Additionally, the group operation can
be used to define a convolution operation. It is shown in this book that the entropy of
the convolution of two pdfs on a Lie group is no less than the entropy of the individual
pdfs and that a version of the famous data processing inequality holds for Lie groups.

These rather abstract connections between information-theoretic concepts and Lie
groups are supported by certain applications. For example, consider a mobile robot, bac-
terium, or animal that wonders around foraging for resources uses sensory information
to update its position and orientation in space. This “infotaxis” (information-driven
motion) is defined by the processing of sensory information resulting in action in the
physical world and, specifically, the action that results is a trajectory in the Lie group
of rigid-body motions. As a second example, when information is transmitted as pulses
through a fiber optic cable using a certain transmission and reception strategy, the rate
of information transmission is limited by the fact that lasers are imperfect physical
devices and the pulses are not perfectly sharp. This is due to spontaneous (and uncon-
trolled) emission of photons in the laser cavity. The resulting “phase noise” leads to a
blurring of the pulses and a reduction in the rate of reliable information transmission.
As it turns out, the stochastic model that describes this noise leads to SDEs and FPEs
that evolve on the Euclidean group of the plane. Additionally, characteristics of these
pdfs indicate the rate at which information can be reliably transmitted. Other exam-
ples of the connection between Lie groups and information theory arise in biomolecular
applications. DNA is known to carry the genetic information in all known living or-
ganisms. This information is described by the classical discrete information theory, and
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many books on bioinformatics address this. However, there is also information (of the
continuous kind) that describes fluctuations in the shape of biomolecules. For example,
the spatial packing density for genetic information is a function of how DNA molecules
are packaged in chromosomes. It is possible to ask questions about how the sequential
content of DNA impacts its flexibility and how the resulting ensemble of Brownian-
motion-generated conformations differ from each other. This type of question is at the
interface of information theory and statistical mechanics, where concepts of entropy and
the Lie groups describing the motion of molecules come together.

This book is structured as follows:
In Chapter 10 the concept of Lie groups and their relationship to Lie algebras are

defined rigorously and many examples are provided in the concrete setting of matrices.
Chapter 11 discusses functions on Lie groups and how concepts such as the derivative

of functions and Taylor series extend from Rn to this setting.
Chapter 12 discusses integration on Lie groups and Fourier expansions.
Chapter 13 reviews classical variational calculus and its extensions to the case when

the functionals of interest have arguments in a Lie group and Lie algebra.
Chapters 14 is an introduction to statistical mechanics via stochastic differential

equations. The specific emphasis is on physical systems that can be modeled as multiple
rigid bodies and hence have a configuration space that is a Lie group. Also in this
chapter, concepts from ergodic theory are discussed.

In Chapter 15 the concept of entropy from statistical mechanics is modified for the
context of robotic parts handling, and the relationship to the principal kinematic formula
from the field of Integral Geometry is rederived, used, and modified. In particular, that
chapter discusses the problem of automated assembly and how Sanderson’s concept of
parts entropy (which is the Shannon entropy of a random variable on a Euclidean group)
provides a connection between Lie groups and information theory. Since parts occlude
each other, knowing how much volume is available for a part to move in the group of
rigid-body motions without bumping into another part is important in the computation
of parts entropy. That is where the principal kinematic formula comes in.

Chapter 16 examines the relationship among matrix Lie groups, multivariate analy-
sis, and random matrix theory. As it turns out, the covariance matrix for a multi-variate
Gaussian distribution, which is a symmetric positive-definite matrix, can be thought of
as a point in a quotient space of two groups of the form GL+(n, R)/SO(n, R).6 As a
result, if we know how to integrate over the group GL+(n, R) (which consists of all
n × n matrices with real entries and positive determinant) and the rotation group in
n-dimensional space, SO(n, R), then from this knowledge we will know how to inte-
grate over the space of all covariance matrices. This is important because the sample
covariance obtained from any experiment is never exactly the same as the ideal covari-
ance of the pdf describing the physical phenomenon being investigated. The field of
multi-variate statistical analysis studies the distribution of possible covariance matri-
ces; that is, whereas ρ(x;0, Σ) describes a Gaussian distribution on Rn with zero mean
and covariance Σ, in multivariate analysis the distribution of covariances, f(Σ), is a
pdf on the space GL+(n, R)/SO(n, R), called the Wishart distribution. Lie-theoretic
terminology and results are useful in that context. This provides one link between Lie
groups and classical probability and statistics, which are, in turn, linked to information
theory. Connections between multi-variate analysis and the theory of random matrices
are natural, and in recent years, random matrix theory has become a popular tool to
model communication networks. This brings us back to information theory.

6The reader is not expected to know what this means yet.
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Chapter 17 reviews classical information theory (the theory of communication)
including Shannon’s source-coding and channel-coding theorems. Several classical
information-theory results such as the data processing inequality and the Shannon–
Hartley theorem for the capacity of a continuous channel with Gaussian noise are re-
viewed. This chapter also shows how Lie groups enter into communication problems
both as symmetries of equations describing physical channels (e.g., the (linear) telegraph
equation, and (nonlinear) soliton-based communication strategies) as well as serving as
the domain in which signals evolve (laser phase noise).

Chapter 18 discusses algebraic and geometric aspects of coding/decoding prob-
lems. For example, Hamming codes and the relationship to packing of spheres in high-
dimensional Euclidean spaces is reviewed. It is also shown how one can design codes on
Lie groups. For example, in a usual motor, a rotary encoder is used to measure the angle
through which the motor turns. This can be viewed as a coding/decoding problem on
the group SO(2). For a spherical motor, such as the one co-invented by the author, an
encoding strategy is needed in order to control it. This problem can be thought of as
coding theory on the Lie group SO(3). Similar problems exist in the design and use of
fiducial patterns for use in medical imaging.

Chapter 19 introduces the author’s observations about how classical information
theory extends to the case when the random variables under investigation live in a
Lie group rather than in Euclidean space. It discusses how inequalities of classical in-
formation theory (the de Bruijn inequality, the data processing inequality, and the
Cramér–Rao bound) extend to the setting of Lie groups.

Chapter 20 is a return to the sorts of stochastic processes discussed in Volume 1, but
with a focus on Lie groups. Properties of Fokker–Planck equations on Lie groups are
discussed, and the properties and mathematical machinery developed in Chapters 10–12
are used to analyze the properties of solutions of these Fokker–Planck equations. This in-
cludes several concrete physical problems (rotational Brownian motion, conformational
fluctuations of DNA, bacterial chemotaxis).

Chapter 21 applies the properties of the stochastic models from Chapter 20 by in-
troducing the concept of a Gaussian channel on a Lie group and the concept of injecting
noise through fiber bundles (which are a differential geometric structure that was briefly
discussed in Chapter 7 and the description of which is expanded here). The nonholo-
nomic kinematic cart is again used as the prototypical example of a system to which
this methodology can be applied.

Chapter 22 provides a summary of this book and discusses other application ar-
eas that are ripe for future work. These include so-called “infotaxis” (or information-
driven motion), connections between statistical mechanics and conformational aspects
of biomolecular information theory, and medical imaging problems.

According to folklore, when Claude Shannon (the engineer) was pondering what
name to give to the quantity that he was studying, John von Neumann (the mathemati-
cian) advocated the use of the word “entropy” and is purported to have said to him:

No one really knows what entropy is, so in a debate you will always have the advan-
tage.

Regardless of whether or not I understand entropy, I’d like to think that both of
these men (as well as Wiener, Itô, and Stratonovich) would be happy to see the con-
fluence of information-theoretic, geometric, stochastic, and Lie-algebraic ideas that are
summarized here for a wide audience.



xviii Preface

Perhaps the most important issue that needs to be addressed in this preface is a
question that has been asked by some students, which is “Dr. C, why did you make this
two volumes? Now I have two books to buy!” There are several answers to this question:

• Contrary to intuition, the cost of a single large book can be quite prohibitive relative
to the cost of each of these volumes. By cutting the book into two volumes, readers
who are only interested in topics in one of the volumes do not need to pay the extra
price that would have accompanied a single large volume. Students may be more
interested in Volume 1, whereas researchers who already know the definitions and
basic principles in Volume 1 may be more interested Volume 2.

• Each volume is just the right size that it can be slipped into a backpack and read (or
at least skimmed) on an intercontinental airplane trip. For the busy researcher, there
is little time in daily life to sit down and actually read, whereas the quiet undisturbed
time of a trip is ideal for reading. A larger book would not travel as well.

• When reading a large book contained within two hard covers, it can be quite an-
noying when reading p. 826 to be required to access necessary definitions on p. 17.
The process of flipping back and forth a massive number of pages to connect the
necessary concepts can impede the learning process and add wear and tear to the
book. In contrast, if p. 17 is in Volume 1 and the page that would have been p. 826 is
actually p. 399 in Volume 2, then both pages can be viewed simultaneously without
flipping.

Finally, I have many people to thank. The students who took my class for credit
during the Spring 2010 semester worked hard to find errors: Martin Kendal Ackerman,
Graham Beck, Mike Kutzer, Mike Mashner, Matt Moses, Valentina Staneva, Roberto
Tron, Kevin Wolfe, and Yan Yan. Comments by Garrett Jenkinson, Manu Madhav,
Shahin Sefati, John Swensen, and Tom Wedlick were also helpful in modifying the
presentation. Useful comments by Andrea Censi, Ming Liao, and Rolf Schneider have
also improved the presentation and helped to eliminate errors. Any errors that are found
after publication will be posted as a list of errata on my lab’s webpage, together with
an addendum including additional exercises and pointers to the ever-growing literature,
as was done for Volume 1. Last but not least, I have my whole family to thank for their
love and support.

Baltimore, Maryland Gregory Chirikjian
June 2011
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Lie Groups I: Introduction and Examples

The concept of a group was described briefly in Chapter 1. This chapter serves as
an introduction to a special class of groups, the Lie groups, which are named after
Norwegian mathematician Sophus Lie.1 Furthermore, when referring to Lie groups, what
will be meant in the context of this book is matrix Lie groups, where each element of the
group is a square invertible matrix. Other books focusing specifically on matrix groups
include [3, 9, 19].

In a sense, matrix Lie groups are “the most like Rn” of any mathematical struc-
ture other than vector spaces. Indeed, Rn together with the operation of addition is an
example of a Lie group. More generally, each point in a Lie group, G, is locally indis-
tinguishable from a point in Rn (i.e., G is a manifold), and, globally, G is orientable.
Furthermore, G has an operator, ◦, that takes two elements to produce another (i.e.,
g1, g2 ∈ G means that g1 ◦ g2 ∈ G), much like the way that the operation of addition
takes two vectors and produces another. However, Lie groups are generally not com-
mutative (i.e., g1 ◦ g2 �= g2 ◦ g1), and, generally, it is not possible to multiply a group
element by a scalar to produce another element in the same group.

This chapter begins with a more detailed introduction to group theory than that
which was provided in Chapter 1. This is followed by the definition and properties of
matrix Lie groups and their associated Lie algebras. The matrix exponential map is
shown to convert elements of a Lie algebra into elements of a matrix Lie group, and the
matrix logarithm plays the inverse role. A fundamental tool for performing computations
that are described in a local parametrization is the Jacobian matrix for a matrix Lie
group. Examples of matrix Lie groups are provided together with explicit computations
of the exponential map and Jacobian matrices.

The main things to take away from this chapter are as follows:

• Knowledge of the basic definitions of Lie group theory;
• The ability to identify which sets of matrices form Lie groups and which do not;
• Facility with computing the exponential and logarithm maps and Jacobian matrices

for Lie groups.

This chapter is structured as follows. Section 10.1 is a general introduction to group
theory. Section 10.2 focuses on the main kind of group use throughout this book—
the matrix Lie groups—and discusses their relationship to Lie algebras. Section 10.3
describes how structure constants of a matrix Lie algebra change with a change of basis.
Section 10.4 introduces the concept of a Jacobian matrix for a Lie group, which is a

1“Lie” is pronounced as Lee, not lye.
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2 10 Lie Groups I: Introduction and Examples

central tool in describing how to differentiate and integrate functions on Lie groups that
are expressed in coordinates. Section 10.5 introduces the concepts of the adjoint matrices
Ad and ad and the Killing form. Section 10.6 provides numerous examples of concrete
computations associated with Lie groups using coordinates. When one is learning a new
subject and presented with many examples, the tendency is to extrapolate too much and
imagine that everything fits within the newly learned framework. Therefore, Section 10.7
presents examples of mathematical objects of interest that fail in one or more ways to
be a Lie group. That discussion is followed by the chapter summary.

10.1 Introduction to Group Theory

The concept of a group was defined in Chapter 1, but it is worthwhile to define it again
here. First, the concept of a binary operation needs to be defined.

10.1.1 Binary Operations

Given a set G, a (closed) binary operation is a composition law that takes any two
elements of G and returns an element of G (i.e., g1 ◦ g2 ∈ G whenever g1, g2 ∈ G). This
can be viewed alternatively as a mapping b : G × G → G with b(g1, g2)

.= g1 ◦ g2. In
some books, b(·, ·) is referred to as the binary operation, and in others, ◦ is. For the
most part, the notation here will use ◦ as the binary operation, although to connect
with the literature it is useful to understand both notations.

As an example let G = RN×N and as a binary operation, consider the multiplication
of square matrices A,B ∈ RN×N . Then ◦ = matrix multiplication, and b(A,B) = AB.
Now, consider the same set of matrices with ◦ = +, in which case b(A,B) = A + B.
With either of these operations, the result is a square matrix of the same dimension.
As another example, consider the vector cross product, in which a, c ∈ R3 are used
together with the cross product operation to form another vector a×c ∈ R3. Therefore,
b(a, c) = a × c is a binary operation. As a final example, consider two permutations
π1, π2 ∈ Πn, and the operation of composition as defined in Section 6.2. Since π1 ◦ π2 ∈
Πn, it follows that ◦ is a binary operation.

Not every operator that acts on two elements of a set is a binary operation. For
example, given two vectors v,w ∈ Rn, the dot product v · w and the wedge product
v∧w are not binary operations. Although they take in two vectors of the same kind, their
output is a different kind of object. Likewise, the multiplication of matrices A ∈ Rm×n

and B ∈ Rn×p for m �= n �= p would not be a binary operation for two reasons: (a) the
inputs are not objects of the same kind and (b) the output AB ∈ Rm×p is of a different
kind than both of the inputs.

10.1.2 Groups, Groupoids, and Semi-groups

The pair (G, ◦) consisting of the set G and binary operation ◦ form a mathematical
structure that is called a groupoid or a magma. (The word groupoid can also mean
something different in other areas of mathematics, but since there will be no ambiguity
in the context of this text, this is the word that will be used here.)

A group is a special kind of groupoid such that for any elements g, g1, g2, g3 ∈ G, the
following properties hold:

1. g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3.
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2. There exists an element e ∈ G such that e ◦ g = g.
3. For every element g ∈ G, there is an element g−1 ∈ G such that g−1 ◦ g = e.

The first of the above properties is called associativity; the element e is called the identity
of G; and g−1 is called the inverse of g ∈ G. In order to distinguish between the group
and the set, the former is denoted (G, ◦), unless the operation is understood from the
context, in which case G refers to both the set and the group. In the special case when
for every two elements g1, g2 ∈ G, it is true that g1 ◦ g2 = g2 ◦ g1, the group is called
commutative (or Abelian).

A Concrete Example: Symmetry Operations on the Equilateral Triangle

Groups often arise in describing operations that preserve shape. Consider the set of
symmetry operations acting on the equilateral triangle shown in Figure 10.1. Imagine a
triangle made of some solid material. When viewed from above along the normal to the
plane of the triangle, label its vertices clockwise as 1, 2, 3. Additionally, assume that
there is a triangular “slot” in a table into which this triangle can fit. The slot also has ver-
tices labeled 1, 2, 3 that appear clockwise when viewed from above. Assume that initially
the triangle sits in the slot with 1 matched to 1, 2 matched to 2, and 3 matched to 3.

e

23

1

3 2

g1

11

23

2

1 3

g2

g4 g5

1

23

3

2 1

g3

1

23

1

2 3

1

2
2

3

3

1

23

2

3 11

Fig. 10.1. Symmetry Operations for the Equilateral Triangle
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There are six symmetry elements (ways to rotate or flip the triangle and fit it back
in the slot):

g0 = e, which is to to do nothing (and hence it is the identity);
g1, rotate counterclockwise by 2π/3 radians;
g2, rotate counterclockwise by 4π/3 radians;
g3, rotate the triangle by π radians around the axis defined by its center and vertex 1
fixed within it;
g4, rotate the triangle by π radians around the axis defined by its center and vertex 2
fixed within it;
g5, rotate the triangle by π radians around the axis defined by its center and vertex 3
fixed within it.

The set of these operations of the triangle will be denoted here as

GT
.= {e, g1, g2, g3, g4, g5}.

Now, if we define the composition of two such operations gi followed by gj to be gi ◦ gj ,
then the following table results, where gi is taken from the column on the left and gj is
taken from the row on top.

◦ e g1 g2 g3 g4 g5

e e g1 g2 g3 g4 g5
g1 g1 g2 e g4 g5 g3
g2 g2 e g1 g5 g3 g4
g3 g3 g5 g4 e g2 g1
g4 g4 g3 g5 g1 e g2
g5 g5 g4 g3 g2 g1 e

. (10.1)

Working with this this table, it can be verified that all of the properties are satisfied in
order for (GT , ◦) to be a group. Indeed, this group can be identified with the permu-
tations Π3 discussed in Section 6.2 of Volume 1. One way to identify each symmetry
operator with a permutation is to assign each vertex number in the mobile triangle to
the vertex number in the fixed triangular slot to which it moves. For example, g1 can
be viewed as a permutation that moves vertex 1 to location 3, vertex 2 to location 1,
and vertex 3 to location 2. Then the statement g1 ◦ g3 = g4 is equivalent to the product
of permutations (

1 2 3
3 1 2

)(
1 2 3
1 3 2

)
=

(
1 2 3
3 2 1

)
using the convention for multiplying permutations used in Section 6.2.

Abstract Group Theory

In abstract group theory, a number of statements about groups can be proven im-
mediately from the defining properties 1–3 listed at the beginning of Section 10.1.2—
namely (a) the identity element is unique; (b) the identity also satisfies g ◦e = g; (c) the
inverse of any element is unique; (d) the left inverse is equal to the right inverse (i.e.,
g ◦ g−1 = e). Sometimes these immediate consequences are included in the definition
of a group. They follow from the cancellation rule a ◦ x = b =⇒ x = a−1 ◦ b, which is
proved below.
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From the definition, any equation on a group of the form a ◦ x = b can be solved by
applying a−1 on the left and using the associative law:

a ◦ x = b =⇒ a−1 ◦ (a ◦ x) = (a−1 ◦ a) ◦ x = a−1 ◦ b =⇒ e ◦ x = a−1 ◦ b =⇒ x = a−1 ◦ b.

A variation on this theme is that

c ◦ x = c ◦ d =⇒ x = d (10.2)

because c−1 can be multiplied on the left.
Consider the series of equalities [5]

(a−1 ◦ a) ◦ e = e ◦ e = e = a−1 ◦ a.

Applying the associative law and the cancellation rule in (10.2) to this gives

a−1 ◦ (a ◦ e) = a−1 ◦ a =⇒ a ◦ e = a. (10.3)

This proves that the left identity is the right identity. Now, using the cancellation rule
in (10.2) together with the fact that e is both the left and right identity can be used to
prove that the left inverse a−1 is also a right inverse [5]:

a−1 ◦ (a ◦ a−1) = (a−1 ◦ a) ◦ a−1 = e ◦ a−1 = a−1 = a−1 ◦ e =⇒ a ◦ a−1 = e. (10.4)

Other statements about abstract groups are left as exercises.
Of the examples listed in Section 10.1.1, only the permutation example and the

matrix addition examples are groups. The vector cross product is not associative, there is
no identity element, and there is no inverse. So it is “far from” being a group. The matrix
multiplication example is “almost” a group. The problem is that, in general, matrices are
not invertible under the operation of multiplication. In general, a groupoid that satisfies
Properties 1 and 2 but not Property 3 is called a semi-group. In stochastic processes
semi-groups play an important role. For example, if f(x, t1) and f(x, t2) are any solutions
to the heat equation on the line, subject to the initial conditions f(x, 0) = δ(x), then
the convolution operation makes f(x, t1) ∗ f(x, t2) = f(x, t1 + t2) a member of this set
also. The Dirac delta serves as the identity, and convolution is the associative operation
for the semi-group consisting of the set {f(x, t) | t ∈ R>0}. However, since convolution
tends to smear (and increase entropy), there is no solution to the heat equation that
can serve as an inverse.

If a set of N × N matrices with real entries is restricted to only those that can be
inverted, then the result is

GL(N, R) .= {A ∈ RN×N | detA �= 0}. (10.5)

This set together with the operation of matrix multiplication forms a group—the general
linear group “over the real numbers.” More generally, R can be replaced with any field, F,
such as the complex numbers C.2 Then GL(N, F) is called the general linear group over
the field F. The identity element for this group is IN , the N ×N identity matrix.3

If the stronger condition that the determinant be a positive real number is imposed,
then the resulting set

GL+(N, R) .= {A ∈ GL(N, R) | detA > 0} (10.6)

is also a group under the operation of matrix multiplication.
2Properties of fields in general were discussed in Section A.1.1 of Volume 1, and they will

be revisited in Section 18.2.1 in the context of coding theory.
3When the dimension is clear from the context, this will be written as I.
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10.1.3 Subgroups

A subgroup is a subset of a group (H ⊆ G) which is itself a group that is closed under
the group operation of G. This means that h−1 ∈ H whenever h ∈ H. The notation for
this is H ≤ G. If H ≤ G and H �= G, then H is called a proper subgroup of G, which is
denoted as H < G. This notation parallels that of a proper subset. Each group has at
least two improper subgroups: {e} and itself.

For example, within the permutation group Πn, consider only those permutations
that leave the last n − k entries in their original locations. This will be a subgroup of
Πn that is much like Πk. A different subgroup of Πn is the one consisting of cyclic
permutations.

Additionally, since every real number is a special case of a complex number, it follows
that GL(N, R) < GL(N, C). Furthermore, since det(AB) = det(A) det(B),

SL(N, F) .= {A ∈ FN×N | det(A) = +1} ⊂ GL(N, F) (10.7)

forms a subgroup, and so we can write SL(N, F) < GL(N, F).
As another example, the subset of GL(N, C) consisting of unitary matrices forms a

proper subgroup:

U(N) .= {A ∈ CN×N | AA∗ = I} < GL(N, C). (10.8)

This is called the unitary group.
A number of the classically studied groups are obtained as intersections of the groups

listed above. For example, we have the following:
The intersection of the unitary and special linear groups yields the special unitary

group
SU(N) .= U(N) ∩ SL(N, C) < GL(N, C). (10.9)

The intersection of the unitary and real general linear groups yields the orthogonal
group4

O(N, R) .= {A ∈ GL(N, R) | AAT = I} = U(N) ∩GL(N, R). (10.10)

The real special orthogonal group is

SO(N) .= {A ∈ GL(N, R) | AAT = I; detA = +1} = U(N) ∩ SL(N, R). (10.11)

A broad class of subgroups that appears frequently in group theory, called a conjugate
subgroup, is generated by conjugating all of the elements of an arbitrary subgroup with
a fixed element g of the group. This is denoted as

gHg−1 .= {g ◦ h ◦ g−1 | h ∈ H} (10.12)

for a single (fixed) g ∈ G with g /∈ H < G. For example, if G = SO(3) and H ∼= SO(2)
consists of matrices of the form

R3(θ) =

⎛⎝cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠ ,

4Usually when there is no ambiguity, the shorthand O(N) is used for O(N, R).



10.1 Introduction to Group Theory 7

then if gn = [a,b,n] ∈ SO(3), the subgroup Kn
.= gnHg−1

n < SO(3) has the property
that each element of Kn, when premultiplying n ∈ R3, will leave n fixed.

In general, if H1, H2 ≤ G and g H1 g−1 = H2 for a g ∈ G, then H1 and H2 are said
to be conjugate to each other. A subgroup N ≤ G which is conjugate to itself so that
gNg−1 = N for all g ∈ G is called a normal subgroup of G. In this case, the notation
N � G is used, which reflects the possibility that N could equal G. However, if N is
both a normal and a proper subgroup of G, then the notation N 	 G is used.

For example, consider again the group (GT , ◦) of symmetry operations of the triangle.
The proper subgroups can be observed from the table (10.1). They are {e}, H1 =
{e, g1, g2}, H2 = {e, g3}, H3 = {e, g4}, and H4 = {e, g5}.

The subgroups H2, H3, and H4 are conjugate to each other, e.g.,

g1H2g
−1
1 = H4; g1H3g

−1
1 = H2; g1H4g

−1
1 = H3;

H1 is conjugate to itself:
gH1g

−1 = H1

for all g ∈ G. Hence, H1 is a normal subgroup.
In general, given two subgroups of a group, H ≤ G and K ≤ G, then the product

HK
.= {h ◦ k|h ∈ H, k ∈ K}

will be a subset (but not necessarily a subgroup) of G (i.e., HK ⊆ G). For example, in
the case of the group (GT , ◦), H1Hi =HiH1 =G for i= 2, 3, 4, H2H3 = {e, g2, g3, g4}⊂G,
H3H2 = {e, g1, g3, g4} ⊂ G, etc. More generally, if N � G and H ≤ G, then NH = HN ,
but this equality would not hold if one of the subgroups were not normal.

10.1.4 Group Actions and Transformation Groups

A transformation group (G, ◦) is a group that acts on a set S in such a way that g ·x ∈ S
is defined for all x ∈ S and g ∈ G and has the properties

e · x = x and (g1 ◦ g2) · x = g1 · (g2 · x) ∈ S (10.13)

for all x ∈ S and e, g1, g2 ∈ G. The operation · defines the action of G on S.
If any two elements of x1, x2 ∈ S can be related as x2 = g · x1 for some g ∈ G,

then G is said to act transitively on S. An action is called free if whenever g · x = x for
at least one x ∈ X, this means that g must be e.

For example, the permutation group Πn acts transitively and freely on the set of
numbers {1, 2, . . . , n}, the group of rigid-body motions in n-dimensional Euclidean space
acts transitively on Rn. Additionally, the group of symmetry operations of the triangle
acts transitively on the set of all orderings of the vertices of the triangle. In contrast,
the action of the rotation group on Rn is neither transitive nor free since a point at
radius r from the origin cannot be moved to a different radius by rotating about the
origin, and it is possible to rotate a unit vector without changing its direction.5

If S is a set and G is a group that acts on it, the notation S/G (or G\S) is used
to denote the set of equivalence classes of S under the action of G. In other words,
if G does not act transitively on S, then it divides it into disjoint equivalence classes

5In almost all instances of group actions in this book, the group acts from the left as g · x.
It is also possible to define right actions, x · g, that have analogous properties. But these are
only used in Chapter 21 in the context of fiber bundles.
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called orbits. The quintessential example of this is Rn/SO(n) (or SO(n)\Rn) in which
rotations divide Rn into an infinite number of concentric spheres. Although many books
use the notation S/G, the notation G\S is, in a sense, more natural when G acts from
the left as in (10.13).

10.1.5 Cosets

Given a subgroup H ≤ G and any fixed g ∈ G, the left coset gH is defined as

gH
.= {g ◦ h|h ∈ H}.

Similarly, the right coset Hg is defined as

Hg
.= {h ◦ g|h ∈ H}.

In the special case when g ∈ H, the corresponding left and right cosets are equal to H.
More generally, for all g ∈ G, g ∈ gH and g1H = g2H if and only if g−1

2 ◦ g1 ∈ H.
Likewise for right cosets, Hg1 = Hg2 if and only if g1 ◦ g−1

2 ∈ H.
Any group is divided into disjoint left (right) cosets, and the statement “g1 and g2

are in the same left (right) coset” is an equivalence relation on the group G. This can
be written explicitly for the case of right cosets as

g1 ∼ g2 ⇐⇒ g1 ◦ g−1
2 ∈ H. (10.14)

Since H is a subgroup (and hence is itself a group), it is easy to verify that

g ◦ g−1 = e ∈ H, (10.15)

g1 ◦ g−1
2 ∈ H =⇒ (g1 ◦ g−1

2 )−1 ∈ H, (10.16)

and

g1 ◦ g−1
2 ∈ H, g2 ◦ g−1

3 ∈ H =⇒ (g1 ◦ g−1
2 ) ◦ (g2 ◦ g−1

3 ) = g1 ◦ g−1
3 ∈ H. (10.17)

Hence, ∼ satisfies the properties of an equivalence relation as defined in Section 1.4.3
since g ∼ g follows from (10.15), g1 ∼ g2 ⇒ g2 ∼ g1 follows from (10.16), and g1 ∼ g2
and g2 ∼ g3 implies g1 ∼ g3 from (10.17). An analogous argument holds for left cosets
with the equivalence relation defined as

g1 ∼ g2 ⇐⇒ g−1
1 ◦ g2 ∈ H

instead of (10.14). Sometimes instead of the general ∼, the more specialized notation

g1 ≡ g2 modH

is used to denote either of the equivalence relations above when “left” or “right” has
been specified in advance.

Returning to the example of the group of symmetry operations of the equilateral
triangle, the left cosets are

H1 = eH1 = g1H1 = g2H1; {g3, g4, g5} = g3H1 = g4H1 = g5H1.

H2 = eH2 = g3H2; {g1, g4} = g1H2 = g4H2; {g2, g5} = g2H2 = g5H2.

H3 = eH3 = g4H3; {g2, g3} = g2H3 = g3H3; {g1, g5} = g1H3 = g5H3.

H4 = eH4 = g5H4; {g1, g3} = g1H4 = g3H4; {g2, g4} = g2H4 = g4H4.
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The right cosets are

H1 = H1e = H1g1 = H1g2; {g3, g4, g5} = H1g3 = H1g4 = H1g5.

H2 = H2e = H2g3; {g1, g5} = H2g1 = H2g5; {g2, g4} = H2g2 = H2g4.

H3 = H3e = H3g4; {g1, g3} = H3g1 = H3g3; {g2, g5} = H3g2 = H3g5.

H4 = H4e = H4g5; {g1, g4} = H4g1 = H4g4; {g2, g3} = H4g2 = H4g3.

10.1.6 Coset Spaces and Quotient Groups

For the moment, consider a finite group G with subgroup H. An important property
of gH and Hg is that they have the same number of elements as H. Since the group is
divided into disjoint cosets, each with the same number of elements, it follows that the
number of cosets must divide without remainder the number of elements in the group.
The set of all left (or right) cosets is called the left (or right) coset space and is denoted
as G/H (or H\G). The number of cosets is related to the number of elements in the
group and subgroup by the equality

|G/H| = |H\G| = |G|/|H|. (10.18)

This result is called Lagrange’s theorem [5].6

Returning to the example of the symmetry operations of the equilateral triangle, we
have the set of left cosets (or left-coset space)

GT /H1 = {{e, g1, g2}, {g3, g4, g5}},
GT /H2 = {{e, g3}, {g1, g4}, {g2, g5}},
GT /H3 = {{e, g4}, {g2, g3}, {g1, g5}},
GT /H4 = {{e, g5}, {g1, g3}, {g2, g4}}.

The corresponding right-coset spaces H\G are

H1\GT = {{e, g1, g2}, {g3, g4, g5}},
H2\GT = {{e, g3}, {g1, g5}, {g2, g4}},
H3\GT = {{e, g4}, {g1, g3}, {g2, g5}},
H4\GT = {{e, g5}, {g1, g4}, {g2, g3}}.

From this example it is clear that |Hi\GT | = |GT /Hi| = |GT |/|Hi|. Note also that
GT /H1 = H1\GT , which follows from H1 being a normal subgroup.

Other examples of coset spaces include SO(3)/Kn ∼= SO(3)/SO(2) ∼= S2. Addi-
tionally, the polar decomposition from the Appendix of Volume 1, A = SQ, which is
equivalent to AQ−1 = S, can be viewed as defining a coset space GL+(N, R)/SO(N).

In general, it is possible to define an action of a group G on a left-coset space such
that for any g1 ∈ G and g2H ∈ G/H, g1 · (g2H) = (g1 ◦ g2)H. In the case when G acts
transitively on G/H, then G/H is called a homogeneous space; that is, a homogeneous
space is a special kind of coset space. A homogeneous space where H ≤ G, both being
connected Lie groups, is a Riemannian manifold.

6Although Lagrange’s theorem is for finite groups in which it makes sense to count the
number of group elements, the concept of a coset space holds more generally, and for Lie
groups, Lagrange’s theorem holds with | · | being interpreted as volume.
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A special kind of homogeneous space M = G/H for which a set of operations called
involutions (or involutive isometries) exist is called a globally symmetric space if certain
conditions are met. In particular, given points x, p ∈ M , an involution inp : M → M is
defined by the properties inp(p) = p and inp(inp(x)) = x, which, in addition, preserves
the metric. Here, by definition, inp is not allowed to be the identity map. If for each
inp it is the case that p is its only fixed point, then M is a globally symmetric space.
In contrast, a locally symmetric space is one for which each mapping inp need not be
globally defined, but rather is defined on an open ball around p, such that inp : Bp → Bp.
Either way, geodesics that pass through p are mapped into themselves with a reversal of
direction, with preservation of sectional curvature on the domain where inp is defined.
A globally symmetric space is also a locally symmetric space. Examples of globally
symmetric spaces include compact connected Lie groups and spheres in any dimension.
Additionally, it can be shown that any Riemannian manifold that has constant sectional
curvature is automatically a locally symmetric space.

When N is a normal subgroup, then the left- and right-coset spaces are the same:
G/N = N\G. Furthermore, it is possible to endow this coset space with a group oper-
ation as described in the theorem below:

Theorem 10.1 (The Quotient Group). If N � G, then the coset space G/N together
with the binary operation (g1N)(g2N) = (g1◦g2)N is a group (called the quotient group).

See [8] or [12] for a proof.
The quotient G/N of two finite groups N 	 G will always will be smaller than G

in the sense that |G/N | = |G|/|N | from Lagrange’s theorem, and for Lie groups, the
dimension of G/N will be smaller than the dimension of G if dim(N) > 0.

Again returning to the example of the symmetry operations of the equilateral tri-
angle, the coset space GT /H1 (or H1\GT ) is therefore a group. The Cayley table for
GT /H1 is

◦ H1 gH1

H1 H1 gH1
gH1 gH1 H1

10.1.7 Double-Coset Decompositions

Let H < G and K < G. Then for any g ∈ G, the set

HgK
.= {h ◦ g ◦ k|h ∈ H, k ∈ K} (10.19)

is called the double coset of H and K, and any g′ ∈ HgK (including g′ = g) is called a
representative of the double coset. Although a double-coset representative often can be
described with two or more different pairs (h1, k1) and (h2, k2) so that g′ = h1 ◦g ◦k1 =
h2 ◦ g ◦ k2, g′ is counted only once in HgK. Hence, |HgK| ≤ |G|, and, in general,
|HgK| �= |H| · |K|. In general, the set of all double cosets of H and K is denoted
H\G/K. Hence, we have the hierarchy g ∈ HgK ∈ H\G/K. It can be shown that
membership in a double coset is an equivalence relation; that is, G is partitioned into
disjoint double cosets, and for H < G and K < G, either Hg1K ∩ Hg2K = ∅ or
Hg1K = Hg2K.

10.1.8 Mappings Between Groups

Special kinds of mappings that transform elements of one group into elements in another
play important roles in group theory. These are explained in the following subsections.
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Homomorphisms

A homomorphism is a mapping from one group to a subset of another, φ : (G, ◦) →
(H, ◦̂), such that

φ(g1 ◦ g2) = φ(g1) ◦̂φ(g2).

The values φ(g) for all g ∈ G must be contained in a subset of H, but it is possible that
elements of H exist for which there are no counterparts in G.

It follows immediately from this definition that φ(g) = φ(g ◦ e) = φ(g) ◦̂φ(e), and
so φ(e) must be the identity in H. Likewise, φ(e) = φ(g ◦ g−1) = φ(g) ◦̂φ(g−1), and
so (φ(g))−1 = φ(g−1). Thus, a homomorphism φ : G → H maps inverses of elements
in G to the inverses of their counterparts in H, and the identity of G is mapped to the
identity in H.

For example, for any A ∈ G < GL(n, R), the function φ(A) = |det(A)| defines
homomorphism φ : G → (R>0, ·).

In general, a homomorphism will map more elements of G to the identity of H than
just the identity. The set of all g ∈ G for which φ(g) = φ(e) is called the kernel of the
homomorphism and is denoted as Ker(φ):

Ker(φ) .= {g ∈ G | φ(g) = φ(e)}.
It is easy to see from the definition of homomorphism that if g1, g2 ∈ Ker(φ), then so
are their inverses and products. Thus, Ker(φ) is a subgroup of G, and, moreover, it is a
normal subgroup because given any g ∈ Ker(φ) and g1 ∈ G,

φ(g−1
1 ◦ g ◦ g1) = (φ(g1))−1 ◦̂φ(g) ◦̂φ(g1) = (φ(g1))−1 ◦̂φ(g1) = φ(e);

that is, conjugation of g ∈ Ker(φ) by any g1 ∈ G results in another element in Ker(φ),
and so Ker(φ) is a normal subgroup of G, which is written as Ker(φ) � G.

In general, a homomorphism φ : G → H will map all the elements of G to some
subset of H. This subset is called the image of the homomorphism, which is written
as Im(φ) ⊆ H. More specifically, since a homomorphism maps the identity of G to the
identity of H, and inverses in G map to inverses in H, and for any g1, g2 ∈ G, it follows
that φ(g1) ◦̂φ(g2) = φ(g1 ◦ g2) ∈ Im(φ), therefore Im(φ) must be a subgroup of H.
This is written as Im(φ) ≤ H. (Note also that if K ≤ G, then the image of K in H
under the homomorphism φ : G → H, restricted to elements of K, is also a subgroup
of H.)

For example, if G = GL+(N, R) and φ(A) = |det(A)| then Im(φ) = R>0, and if
G = SO(N), then Im(φ) = {1} and both (R>0, ·) and ({1}, ·) are groups, where here ·
denotes scalar multiplication.7

Isomorphisms

A bijective homomorphism from G to H is called an isomorphism. When such an iso-
morphism exists between groups, the groups are called isomorphic to each other. If H
and G are isomorphic, the notation H ∼= G is used. For example, the group of symmetry
operations of the triangle, GT , is isomorphic to the permutation group Π3.

An isomorphism is a kind of equivalence relation. The following three theorems
(written below as one theorem with three parts) are fundamental in group theory.

7The shorthand |A| will be used frequently for |det(A)| when there is no confusion with the
same notation used to denote the the number of elements in a set.
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Theorem 10.2 (The Isomorphism Theorems). Let G and H be groups with S ≤ G,
N � G, K � G, K ≤ N , and φ : G → H be a homomorphism. Then

1. G/Ker(φ) ∼= Im(φ) ≤ H;
2. SN ≤ G, S ∩N � S, and (SN)/N ∼= S/(S ∩N);
3. N/K � G/K and (G/K)/(N/K) ∼= G/N .

See [8] or [12] for a proof.
As an example of part 1, consider the group Zn = Z/nZ consisting of the set of

integers {0, 1, . . . , n− 1} and operation of addition modulo n. Let G = Z3 and H = GT

(the symmetry operations of the triangle). Then a homomorphism φ : Z3 → GT can be
defined as φ(0) = e, φ(1) = g1, and φ(2) = g2. In this case, Ker(φ) = {0}, G/Ker(φ) =
Z3/{0} = Z3 = G, Im(φ) = H1. G and H1 are isomorphic, and the mapping φ is the
isomorphism between Z3 and H1 (i.e., φ(Z3) = H1 and Z3 = φ−1(H1)).

As another example of part 1, let G = Z4, H = Z2, and the homomorphism be
defined as φ(g) = g (mod 2). Then φ(0) = 0 (mod 2), φ(1) = 1 (mod 2), and φ(2) = 2 = 0
(mod 2), and φ(3) = 3 = 1 (mod 2). Then Ker(φ) = {0, 2} and Im(φ) = Z2 = H.
The coset space G/Ker(φ) = {{0, 2}, {1, 3}} can be made into a group with operation
defined by the rule {0, 2} ◦ {0, 2} = {0, 2}, {0, 2} ◦ {1, 3} = {1, 3} ◦ {0, 2} = {1, 3}, and
{1, 3}◦{1, 3} = {0, 2} and is isomorphic to H = Z2 under the correspondence {0, 2} ↔ 0
and {1, 3} ↔ 1.

As a demonstration of the second part, let G = Z8, N = {0, 2, 4, 6} 	 G, K =
{0, 4} < N . Then N ∩K = K and NK = N and (NK)/N = N/N ∼= Z1. On the other
hand, K/(N ∩K) = K/K ∼= Z1, and so the second isomorphism theorem holds for this
example.

To demonstrate the third part, using this same example, observe that K = {0, 4} 	
Z8 = G, N/K ∼= Z2, G/K ∼= Z4, and (G/K)/(N/K) ∼= Z2. Since G/N ∼= Z2, the third
isomorphism theorem is demonstrated

A common kind of isomorphism that is encountered in applications is from a group
onto itself, ch : G → G, where ch denotes conjugation:

ch(g) .= h ◦ g ◦ h−1 (10.20)

for some fixed h ∈ G. This is an isomorphism because it is a homomorphism (i.e.,
ch(g1 ◦ g2) = ch(g1) ◦ ch(g2)) and it is invertible (i.e., g = h−1 ◦ ch(g) ◦ h). There is one
such conjugation mapping for each h ∈ G. Furthermore, it is possible to compose two
conjugation mappings as

ch1(ch2(g)) = h1 ◦ (h2 ◦ g ◦ h−1
2 ) ◦ h−1

1 = (h1 ◦ h2) ◦ g ◦ (h1 ◦ h2)−1 = ch1◦h2(g).

Therefore, the set of conjugation mappings C
.= {ch | h ∈ G} (with operation of

composition) is isomorphic to (G, ◦), which is written as C ∼= G.
In contrast, the bijective maps rh : G → G and lh : G → G defined by

rh(g) .= g ◦ h−1 and lh(g) .= h ◦ g, (10.21)

respectively, are not isomorphisms from G to G for each fixed h. This is because, in
general, rh(g1) ◦ rh(g2) �= rh(g1 ◦ g2), and similarly for lh.

However, the set of all mappings of the form R
.= {rh | h ∈ G} (with operation of

composition) is isomorphic to G because

rh1(rh2(g)) = (g ◦ h−1
2 ) ◦ h−1

1 = g ◦ (h−1
2 ◦ h−1

1 ) = g ◦ (h1 ◦ h2)−1 = rh1◦h2(g)
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defines a homomorphism, G → R, and the mapping rh : G → G is bijective since g can
be uniquely recovered from rh(g) by performing the computation g = rh(g) ◦ h, and so
r−1
h = rh−1 exists for each h ∈ G. Therefore, R ∼= G. A similar calculation holds for lh,

and so L
.= {lh | h ∈ G} ∼= G also.

Automorphisms

An isomorphism of a group G onto itself is called an automorphism. Conjugation of all
elements in a group by one fixed element is an example of an automorphism. The set
of all automorphisms of G onto itself is denoted as Aut(G). The group operation for
Aut(G) is the composition of any two individual automorphisms.

If (H, ◦) and (G, ◦̂) are two arbitrary groups and if there exists a homomorphism
φ : H → Aut(G), and each φ(h) for h ∈ H is a mapping from G to G, which can be
denoted as ϕh.

ϕh1(ϕh2(g)) = ϕh1◦h2(g) = ϕh1(g) ◦̂ϕh2(g) ∈ G. (10.22)

The identity element ϕe ∈ Aut(G) has the property ϕe(g) = g for every g ∈ G.

Generating New Mappings from Old Ones

Given two finite ordered sets X and Y , which contain |X| and |Y | elements, respectively,
each π ∈ Π|X| and σ ∈ Π|Y | define natural maps π : X → X and σ : Y → Y ,
respectively, according to the rule

π(xi) = xπ−1(i) and π(yj) = yσ−1(j),

where X = {x1, x2, . . . , x|X|} and Y = {y1, y2, . . . , y|Y |}. Given a mapping m : X → Y ,
it is possible to compose this with the permutations to produce four new mappings:

X
m ��

σ◦m
���

��
��

��
Y

σ

��
Y

X
π ��

m◦π
���

��
��

��
X

m

��
Y

X
π ��

σ◦m◦π
���

��
��

��
X

σ◦m

��
Y

X
m◦π ��

σ◦m◦π
���

��
��

��
Y

σ

��
Y

(10.23)

These four planar triangular commutative diagrams can be assembled into a single
spatial (tetrahedral) commutative diagram by matching together the edges and vertices
in a consistent way. A projection of this diagram into the plane is

X
m◦π ��

π

��

m

��
��

��

���
��

��
�

Y

σ

��
X σ◦m

��

���������������
Y

where the unlabeled arrow corresponds to the function (σ ◦m ◦ π)(x) .= σ(m(π(x))).
If (H, ◦) and (K, •) are groups and φ : H → K is a homomorphism, then the

above construction can be used to create new groups and homomorphisms because
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for any h ∈ H, σ ∈ Π|K|, π ∈ Π|H|, σ(φ(π(h))) ∈ K, and for any h1, h2 ∈ H and
φ(h1), φ(h2) ∈ K, operations ◦̂ and •̂ can be defined such that

σ(φ(π(h1)))•̂σ(φ(π(h2))) = σ(φ(π(h1)) • φ(π(h2)))
= σ(φ(π(h1)◦̂π(h2))) = σ(φ(π(h1 ◦ h2))).

This is described by the commutative diagram

(H, ◦̂) �� ��

��

��
��

��
�

���
��

��
��

(H, ◦)

φ

��		��
��

��
��

��
��

��
�

(K, •̂) �� �� (K, •)
where unlabeled arrows denote new homomorphisms.

Functions

A function on a group is a mapping from the group into a field F (which can be thought
of in the present context as being either R or C). A field is, by definition, necessarily a
group under the operation of addition: (F,+). Additionally, if the number 0 is removed,
(F − {0}, ·) is a group where · denotes scalar multiplication. A function is denoted as
f : G → F. In special cases, a function can also be a homomorphism between groups.
However, generally this will not be how functions are viewed.

Given a function f : G → F, new functions can be defined either by using permu-
tations in a manner similar to the above or by “shifting” the functions by a particular
group element h ∈ G as

(Lhf)(g) .= f(h−1 ◦ g) and (Rhf)(g) .= f(g ◦ h). (10.24)

These new functions, which have interesting and useful properties, are not to be confused
with the mappings in (10.21).

10.1.9 Products of Groups

Three different kinds of products of groups are defined in this subsection.

Direct Products

The direct product of two groups (K, ◦) and (H, ◦̂) is the group (G,�) .= (K, ◦)×(H, ◦̂)
such that G = K ×H (where here × denotes the Cartesian product), and for any two
elements g1 = (k1, h1), g2 = (k2, h2) ∈ G the group operation is defined as g1 � g2

.=
(k1 ◦ k2, h1 ◦̂h2).

This is not the only kind of product that can be formed between two groups. Two
more examples of products between groups are presented below.

Semi-direct Products

Let the group (H, ◦) be a transformation group that acts on the set N where (N,+) is
itself an Abelian group. Then the semi-direct product of (H, ◦) and (N,+) is the new
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group formed by letting8

(N ×H, ◦̂) .= (N,+) � (H, ◦) .= (H, ◦) � (N,+)

such that for any two elements g1 = (n1, h1), g2 = (n2, h2) ∈ N×H, the group operation
is defined as g1◦̂g2 = (h1 · n1 + n2, h1 ◦ h2) ∈ N ×H, where · denotes the action of H
on N . A shorthand for this in which the group operations are suppressed is N � H.

It can be shown that N always will be a normal subgroup of N � H:

N 	 N � H.

In applications, one of the most important examples of this is the Euclidean motion
group (also called the special Euclidean group):

SE(n) .= (Rn,+) � SO(n).

Much more will be said about this later.
The concept of a semi-direct product can be made even more general. If (H, ◦) and

(N, •) are two arbitrary groups and if a homomorphism ϕ : H → Aut(N) exists, then a
more general kind of semi-direct product can be defined using (10.22) as

(N ×H, ◦̂) .= (N, •) �ϕ (H, ◦), where (n1, h1)◦̂(n2, h2)
.= (n1 • ϕh1(n2), h1 ◦ h2).

(10.25)

A specific example of this would be be when H and N are matrix groups of the same
dimension, and so both • and ◦ reduce to the same operation of matrix multiplication.
In this context, if ϕh(n) .= hnh−1 ∈ N , it can be used to define a semi-direct product.
Examples of this are the special Euclidean and Galilean groups, as illustrated in the
exercises.

Wreath Products

As another kind of product, consider the following. Given a finite group (G, ◦), the
Cartesian product of the set G with itself n times is denoted as

Gn = G× · · · ×G︸ ︷︷ ︸
n times

.

The wreath product of G and Πn is the group G �Πn
.= (Gn×Πn, �), where the product

of two elements in Gn ×Πn is defined as

(h1, . . . , hn;σ) � (g1, . . . , gn;π) .= (h1 ◦ gσ−1(1), . . . , hn ◦ gσ−1(n);σπ). (10.26)

In summary, the concepts of cosets and quotients, homomorphisms and isomor-
phisms, and products of groups play central roles in group theory. Two general obser-
vations related to these concepts are as follows: (1) It can be shown that all Abelian
(commutative) groups are isomorphic to those that are formed by direct products of the
following Abelian groups: cyclic permutations, (R,+), (Z,+), and the group of planar
rotations that acts transitively on the unit circle; (2) every finite group is isomorphic to
a subgroup of a sufficiently large permutation group. A book devoted to the theory of

8Some books use N � H instead of N � H to denote the semi-direct product.
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finite groups would be concerned with the careful proof of such statements. However, the
purpose of this section in the current context is as “cultural background.” In fact, very
little will be done with finite groups in this book. Lie groups are of interest inasmuch
as they are a continuous domain (i.e., locally like Rn) on which stochastic flows can
evolve. The remaining sections of this chapter as well as the following two chapters are
concerned with the analytic and geometric properties of Lie groups.

10.2 Matrix Lie Groups and Lie Algebras

In this section a very important kind of group is examined. These are the matrix Lie
groups. A matrix Lie group (G, ◦) is a group for which the set G is an analytic manifold9

for which each g ∈ G is an N×N matrix, the group operation ◦ is matrix multiplication,
and the mappings a(g1, g2) = g1 ◦g2 and b(g) = g−1 are both analytic.10 The dimension
of a Lie group is the dimension of the associated manifold G, which is different than the
dimension of the matrices g ∈ G ⊂ RN×N . Every matrix Lie group considered in this
book is a subgroup of GL(N, R) or GL(N, C) for some N ∈ {2, 3, . . .}. When referring
to Lie groups throughout this book, what will be meant is matrix Lie groups. Even
more specifically, connected matrix Lie groups will be the ones of most relevance to
applications. For the most part, the scope will be limited to subgroups of the group
GL+(N, R).

Since the condition that distinguishes GL+(N, R) is the positivity of the determinant
of its elements, the determinant-trace formula (A.77) of Volume 1 gives a hint that the
matrix exponential of other N×N matrices, which need not be invertible, will be a way
to produce elements of GL+(N, R).

Given a matrix Lie group, elements sufficiently close to the identity are written as
g(t) = etX for some X ∈ G (the set G is called the (matrix) Lie algebra of G) and
t near 0. Elements of G can be obtained by taking the matrix logarithm of elements
of G. For matrix Lie groups, the corresponding Lie algebra is denoted with lowercase
letters. For example, the Lie algebras of the groups GL(N, R), SO(N), and SE(N) are
respectively denoted as gl(N, R), so(N), and se(N).

10.2.1 A Usable Definition of Matrix Lie Groups

It was stated earlier that a Lie group (G, ◦) is a special kind of group in which the
set G is a manifold and the operations of composition, (g1, g2) → g1 ◦ g2 and inversion
g → g−1 are analytic.11 This somewhat abstract definition can be made very concrete
in the context of the special kind of Lie groups discussed in this book (i.e., matrix Lie
groups). Let g = g(q) = [gij(q)] be a parameterization of the matrix Lie group G, where
q ∈ D ⊂ Rn. Each matrix entry gij(q) for i, j = 1, . . . , N is an analytic real-valued

9The concept of an analytic manifold was defined in Chapter 7.
10This means that viewing g, g1, g2 as N × N matrices, a convergent Taylor series can also

be defined for the functions a : R
N×N × R

N×N → R
N×N and b : R

N×N → R
N×N .

11Recall that an analytic function is one which can, at any point in its domain, be expanded
in a convergent Taylor series. Hence, all of its derivatives exist and an analytic function is
therefore smooth, but the converse is not always true. This highly technical distinction is
often blurred, and the substitution of “smooth” for “analytic” has few, if any, consequences in
applications.
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function.12 The smoothness of the group operation means that given any two elements
g1 = g(q) and g2 = g(q′), then g1 ◦ g2 = g(p(q,q′)) with the vector-valued func-
tion p(q,q′) being smooth (infinitely differentiable) in both q and q′. Similarly, the
smoothness of the inversion operation means that when writing [g(q)]−1 = g(v(q)) the
vector-valued function v(q) is smooth.

Example 1: GL(2, R)
If G = GL(2, R), group elements and their inverses are of the form

A =
(

a11 a12
a21 a22

)
and A−1 =

1
a11a22 − a12a21

(
a22 −a12
−a21 a11

)
.

In this case, the parameter vector is q = [a11, a12, a21, a22]T and D ⊂ R4 is defined by
the condition that a11a22 − a12a21 �= 0. The product of two group elements is simply
matrix multiplication, and so

p(q,q′) =

⎛⎜⎜⎝
a11a

′
11 + a12a

′
21

a11a
′
12 + a12a

′
22

a21a
′
11 + a22a

′
21

a21a
′
12 + a22a

′
22

⎞⎟⎟⎠.

Clearly, this is infinitely differentiable with respect to any aij and any a′
ij . Similarly,

using the classical quotient rule for the derivative, the expression for each entry in A−1,

v(q) =
1

a11a22 − a12a21

⎛⎜⎜⎝
a22

−a12
−a21

a11

⎞⎟⎟⎠ ,

is infinitely differentiable as long as |A| �= 0.

Example 2: SE(2)
As a second example, the group SE(2) with elements of the form

g(x, y, θ) =

⎛⎝cos θ − sin θ x
sin θ cos θ y

0 0 1

⎞⎠
and operation of matrix multiplication of two such group elements g(x, y, θ) and
g(x′, y′, θ′) is a Lie group because the parameter vector q = [x, y, θ]T gives

p(q,q′) =

⎛⎝x′ cos θ − y′ sin θ + x
x′ sin θ + y′ cos θ + y

θ + θ′

⎞⎠
and inversion gives

v(q) =

⎛⎝−x cos θ − y sin θ
x sin θ − y cos θ

−θ

⎞⎠.

Both of these are infinitely differentiable vector-valued functions with respect to their
arguments.

12The extension to the case of complex-valued matrices can be made easily, but the discussion
here is restricted to the real case. This can be done without loss of generality for reasons
discussed in Appendix A.8 in Volume 1.
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10.2.2 Broad Classes of Matrix Lie Groups

A number of (matrix) Lie groups have already been discussed, including GL(N, F),
GL+(N, R), SL(N, F), U(N), and SO(N).

Additional examples of Lie groups which act on RN are as follows:

1. The group SO(p, q) consists of all N × N real matrices (N = p + q) with unit
determinant that preserve the matrix

I(p, q) =
(

Ip Op×q

Oq×p −Iq

)
, (10.27)

where Ip is the p × p identity matrix and Op×q is the p × q zero matrix—that is,
Q ∈ SO(p, q) satisfies

QT I(p, q)Q = I(p, q).

SO(p, q) is an N(N − 1)/2-dimensional Lie group. The corresponding Lie algebra is
denoted so(p, q).

2. The scale-Euclidean (or similitude) group, SIM(N), which consists of all pairs
(eaR,b), where a ∈ R, R ∈ SO(N), and b ∈ RN , has the group operation
g1 ◦ g2 = (ea1+a2R1R2, R1b2 + b1) and acts on RN by translation, rotation, and
dilation as x′ = eaRx + b. It is a (1 + N(N + 1)/2)-dimensional Lie group, with
corresponding Lie algebra sim(N).

3. The group RN � GL+(N, R), which is the set of all pairs g = (eaL,b) for b ∈
RN , a ∈ R, and L ∈ SL(N, R), acts on objects in RN by translation, rotation,
shear, stretch, and dilation. In short, this is the most general type of deformation of
Euclidean space which transforms all parallel lines into parallel lines and preserves
orientation. This group is N(N + 1)-dimensional.

Other examples will be presented in later sections in detail. However, first, the general
important properties shared by all Lie groups are reviewed.

10.2.3 The Exponential and Logarithm Maps

Given a general matrix Lie group, elements sufficiently close to the identity are written
as g = exp(X) for some X ∈ G (the Lie algebra of G) with ‖X‖ � 1. The general
concept of a Lie algebra was defined in the appendix of Volume 1. Here, the matrix
Lie algebra G can be thought of as the set of all matrices {X} (not only ones for which
‖X‖ � 1) such that the exponential of each X results in an element of G. As mentioned
earlier, in the case in which G is a specific matrix Lie group such as GL(N, R), SO(N),
or SE(N), then the corresponding Lie algebra would be denoted as gl(N, R), so(N), or
se(N), respectively.

Explicitly, in the context of matrix Lie groups (which are the only Lie groups con-
sidered here), the exponential map is simply the matrix exponential13

exp(X) =
∞∑

k=0

Xk

k!
. (10.28)

13The symbols X, Y, Z, and X1, X2, . . . , Xn will be used to denote generic elements of the
Lie algebra G, which is a vector space. The notation {Ei} is used to denote a “natural” basis
for this vector space that is “most analogous” to the natural basis {ei} in R

n.
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The matrix logarithm is defined by the Taylor series about the identity matrix:

log(g) = log(I + (g − I)) =
∞∑

k=1

(−1)k+1 (g − I)k

k
. (10.29)

For matrix Lie groups, operations such as g − I and division of g by a scalar are well
defined.

The exponential map takes an element of the Lie algebra and produces an element
of the Lie group. This is written as

exp : G → G.

The logarithm does just the opposite:

log : G → G.

In other words, log(expX) = X and exp(log(g)) = g. Additionally, although it is
possible to exponentiate any element of a Lie algebra, the logarithm is only defined in
a ball around the identity element of G. In some cases, this ball extends over the whole
of G, or up to G minus a set of measure zero, but, in general, caution must be exercised
in the application of the logarithm.

If g, h ∈ G, then g ◦ h ∈ G, and if X,Y ∈ G, then X + Y ∈ G. Since g, h,X, and Y
are all matrices of the same dimension, they can be multiplied in any way. For example,
gX, XY , and XhY are all valid. However, the result usually will not be in G or in G.
However, as it turns out, matrix products such as gXg−1, h−1Xh, and gY g−1 are in G.
In order to be consistent with notation, when multiplying two elements of G, the ◦ will
be kept (even though it is just matrix multiplication). However, ◦ will not be used for
matrix products between Lie algebra basis elements or between group elements and Lie
algebra basis elements.

Every element in the neighborhood of the identity of a connected matrix Lie group
G can be described with the exponential parameterization

g = g(x1, x2, . . . , xn) = exp

(
n∑

i=1

xiEi

)
(10.30)

where n is the dimension of the group and {Ei} is a basis for G which is orthonormal with
respect to a given inner product. For some Lie groups, the exponential parameterization
extends over the whole group.

For example, consider the so-called “ax+ b group,” or affine group of the line, which
can be viewed as the set of all matrices of the form

g(a, b) =
(

a b
0 1

)
, where (a, b) ∈ R>0 × R.

This group acts on the real line as(
x′

1

)
= g(a, b)

(
x
1

)
;

that is, x′ = ax + b (hence the name).
A basis for the Lie algebra of this group is

E1 =
(

1 0
0 0

)
; E2 =

(
0 1
0 0

)
.
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An inner product can be defined in which this basis is orthonormal. The exponential
map for this group is

exp
(

x y
0 0

)
=

⎛⎝ex

(
ex − 1

x

)
y

0 1

⎞⎠.

10.2.4 The ∨ Operator

For any Lie algebra, the “vee” operator, ∨, is defined such that

(
n∑

i=1

xiEi

)∨
.=

⎛⎜⎜⎜⎜⎜⎝
x1
x2
x3
...

xn

⎞⎟⎟⎟⎟⎟⎠. (10.31)

It is defined so that the following diagram commutes:

X,Y ∈ G ∨ ��

(X,Y )


������������ x,y ∈ Rn

x·y
��

R

(10.32)

where (X,Y ) is an inner product for G.
This notation is a generalization of that used in [16] in the context of the group

of rigid-body motions, which has been studied extensively in kinematics and robotics
[1, 6, 14, 18]. In the case of the ax + b group, (xE1 + yE2)∨ = [x, y]T .

The vector x ∈ Rn in (10.31) can be obtained from g ∈ G from the formula

x = (log g)∨. (10.33)

In the case of the ax + b group, this means solving the equations a = ex and
b = (ex − 1)y/x for x and y in terms of a and b.

In general, given any smooth curve g(t) ∈ G, it can be shown that

g−1 dg

dt
∈ G and

dg

dt
g−1 ∈ G. (10.34)

Therefore, (
g−1 dg

dt

)∨
and

(
dg

dt
g−1

)∨
∈ Rn.

This fact will be quite important in all that follows.

10.2.5 The Adjoint Operator Ad(g)

The adjoint operator is defined as

Ad(g1)X
.=

d

dt

(
g1 ◦ etX ◦ g−1

1

)∣∣∣∣
t=0

=
d

dt
exp(tg1Xg−1

1 )
∣∣∣∣
t=0

= g1Xg−1
1 . (10.35)

This gives a homomorphism Ad : G → GL(G) from the group into the set of all invertible
linear transformations of G onto itself. It is a homomorphism because

Ad(g1)Ad(g2)X = g1(g2Xg−1
2 )g−1

1 = (g1 ◦ g2)X(g1 ◦ g2)−1 = Ad(g1 ◦ g2)X.
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It is linear because

Ad(g)(c1X1 + c2X2)= g(c1X1 + c2X2)g−1 = c1gX1g
−1 + c2gX2g

−1

= c1Ad(g)X1 + c2Ad(g)X2.

For example, in the case of the ax + b group,

Ad(g)E1 = gE1g
−1 =

(
a b
0 1

)(
1 0
0 0

)(
1/a −b/a
0 1

)
=

(
1 −b
0 0

)
= E1 − bE2

and

Ad(g)E2 = gE2g
−1 =

(
a b
0 1

)(
0 1
0 0

)(
1/a −b/a
0 1

)
=

(
0 a
0 0

)
= aE2.

10.2.6 The Lie Bracket and ad(X)

In the special case of a 1-parameter subgroup when g = g(t) is an element close to the
identity,14 we can approximate g(t) ≈ I + tX for small t. Then we get Ad(I + tX)Y =
Y + t(XY − Y X). The following definitions of ad(X) and [X,Y ] are useful:

ad(X)Y .=
d

dt

(
Ad(etX)Y

)∣∣∣∣
t=0

(10.36)

and

[X,Y ] .= ad(X)Y = XY − Y X. (10.37)

The term [X,Y ] is called the Lie bracket of the elements X,Y ∈ G. The ad(X) in (10.36)
is also called the adjoint. From this definition, it follows that the two adjoints ad(X)
and Ad(g) are related as

Ad(exp tX) = exp(t · ad(X)). (10.38)

When t = 1, the equality in (10.38) is visualized graphically with the commutative
diagram

G exp ��

ad

��

G

Ad

��
ad(G) exp

�� Ad(G)

It is clear from the definition in (10.37) that the Lie bracket is linear in each entry:

[c1X1 + c2X2, Y ] = c1[X1, Y ] + c2[X2, Y ]

14In the context of matrix Lie groups, one natural way to measure distance is as a matrix
norm of the difference of two group elements.
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and

[X, c1Y1 + c2Y2] = c1[X,Y1] + c2[X,Y2].

Furthermore, the Lie bracket is antisymmetric:

[X,Y ] = −[Y,X], (10.39)

and hence [X,X] = 0. Given a basis {E1, . . . , En} for the matrix Lie algebra G, any
arbitrary element can be written as

X =
n∑

i=1

xiEi.

The Lie bracket of any two elements will result in a linear combination of all basis
elements. This is written as

[Ei, Ej ] =
n∑

k=1

Ck
ijEk. (10.40)

The constants Ck
ij are called the structure constants of the Lie algebra G. Note that

the structure constants are anti-symmetric: Ck
ij = −Ck

ji. Their particular values depend
both on the choice of basis used and the ordering of the basis elements, and so it
would make sense to write Ck

ij = Ck
ij(E1, . . . , En), although this dependence is usually

suppressed once the choice of a basis and the ordering of its elements are fixed.
It can be checked that for any three elements of the Lie algebra, the Jacobi identity

is satisfied:

[X1, [X2, X3]] + [X2, [X3, X1]] + [X3, [X1, X2]] = 0. (10.41)

As a result of the Jacobi identity, ad(X) satisfies

ad([X,Y ]) = ad(X) ad(Y )− ad(Y ) ad(X).

10.2.7 The Baker–Campbell–Hausdorff Formula

Given any two elements of a matrix Lie algebra, X and Y , the Lie bracket was de-
fined earlier as [X,Y ] = XY − Y X. An important relationship called the Baker–
Campbell–Hausdorff formula exists between the Lie bracket and matrix exponential
(see [4, 7, 11])—namely the logarithm of the product of two Lie group elements written
as exponentials of Lie algebra elements can be expressed as

Z(X,Y ) .= log(eXeY ).

By introducing the function

F (x) .=
log x

x− 1
=

∞∑
k=0

(−1)k

k + 1
(x− 1)k

and evaluating it with exponentiated adjoint operators (which are defined by Taylor
series in analogy with the definition of the matrix exponential), it can be shown that [13]

Z(X,Y ) = Y +
∫ 1

0
F (exp(t ad(X)) exp(ad(Y )))Xdt.
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Substituting into the Taylor series for F (x) and integrating term by term then gives

Z(X,Y )=X + Y +
1
2
[X,Y ] +

1
12

([X, [X,Y ]] + [Y, [Y,X]])

+
1
48

([Y, [X, [Y,X]]] + [X, [Y, [Y,X]]]) + · · · . (10.42)

This expression is verified by expanding eX and eY in the Taylor series of the form in
(10.28) and then substituting the result into (10.29) with g = eXeY to obtain Z(X,Y ).

10.3 Change of Basis in a Matrix Lie Algebra

A Lie algebra is a vector space, and as with any vector space, the basis is not unique. This
section addresses how quantities such as Lie brackets and structure constants change
with a change in the choice of basis for the case of a matrix Lie algebra.

10.3.1 General Change of Basis

As is true with any vector space, the choice of basis is not unique. Given a basis for a
matrix Lie algebra, X1, . . . , Xn ∈ G, it is always possible to define new basis elements
Yi =

∑n
j=1 aijXj , where A = [aij ] ∈ GL(n, R). The question then becomes how the

structure constants and various functions of the structure constants are changed under
this change of basis.

Using the notation A−1 = [a−1
ij ], it follows that Xi =

∑n
j=1 a−1

ij Yj . Letting the
structure constants in the basis Y1, . . . , Yn be denoted Ck

ij(A) with Ck
ij(I) = Ck

ij being
those defined with respect to the natural orthonormal basis X1, . . . , Xn, it becomes
immediately clear that, on the one hand,

[Yi, Yj ] =
n∑

k=1

Ck
ij(A)Yk =

n∑
k=1

Ck
ij(A)

n∑
j=1

aijXj

and, on the other hand,

[Yi, Yj ]=

[
n∑

k=1

aikXk,
n∑

l=1

ajlXl

]

=
n∑

k=1

n∑
l=1

aikajl[Xk, Xl]

=
n∑

k=1

n∑
l=1

aikajl

n∑
m=1

Cm
klXm

=
n∑

k=1

n∑
l=1

n∑
m=1

aikajlC
m
kl

n∑
p=1

a−1
mpYp

=
n∑

p=1

(
n∑

k=1

n∑
l=1

n∑
m=1

aikajlC
m
kla

−1
mp

)
Yp.

Thus,

Cp
ij(A) =

n∑
k=1

n∑
l=1

n∑
m=1

aikajlC
m
kla

−1
mp. (10.43)
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This relationship is invertible because interchanging the roles of Ck
ij(A) and Ck

ij(I) and
using A−1 as the transformation matrix from basis {Yi} to basis {Xi} gives

Cp
ij =

n∑
k=1

n∑
l=1

n∑
m=1

a−1
ik a−1

jl Cm
kl (A)amp. (10.44)

The veracity of this expression can be observed by direct substitution of (10.44) into
(10.43), and vice versa.

It follows from (10.43) that

Cp
ji(A)=

n∑
k=1

n∑
l=1

n∑
m=1

ajkailC
m
kla

−1
mp

=
n∑

k=1

n∑
l=1

n∑
m=1

ajlaikC
m
lk a−1

mp

=−
n∑

k=1

n∑
l=1

n∑
m=1

ajlaikC
m
kla

−1
mp

=−
n∑

k=1

n∑
l=1

n∑
m=1

aikajlC
m
kla

−1
mp

=−Cp
ij(A).

The only thing that was used above was a change in the name of dummy variables of
summation and the skew symmetry of the structure constants in the original basis. It
also follows from the invertibility of (10.44) and (10.43) that if Ck

ij = 0 for all i, j, and
k, then Ck

ij(A) = 0 for all i, j, and k, and vice versa. This makes perfect sense, because
this is the necessary and sufficient condition for the Lie group to be Abelian, which is a
property that should not depend on the choice of basis. In fact, other critical functions
of the structure constants will also be invariant under a change of basis. This is explored
more below.

10.3.2 Invariance of Functions of Structure Constants

Now, consider the following vector-valued function of the structure constants:

f(C) =
n∑

i=1

⎛⎝ n∑
j=1

Cj
ij

⎞⎠ei,

where {ei} is the natural basis for Rn. The vector f(C) ∈ Rn has two interesting
properties. First,

‖f(C)‖ = 0 ⇐⇒ ‖f(C(A))‖ = 0 (10.45)

for any A ∈ GL(n, R). Second, if R ∈ SO(n), then

‖f(C(R))‖ = ‖f(C)‖. (10.46)
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These are both verified by evaluating
∑n

j=1 Cj
ij(A) using (10.43):

n∑
j=1

Cj
ij(A)=

n∑
j=1

n∑
k=1

n∑
l=1

n∑
m=1

aikajlC
m
kla

−1
mj

=
n∑

k=1

n∑
l=1

n∑
m=1

aik

⎛⎝ n∑
j=1

a−1
mjajl

⎞⎠Cm
kl

=
n∑

k=1

n∑
l=1

n∑
m=1

aikδmlC
m
kl

=
n∑

k=1

n∑
l=1

aikC
l
kl

=
n∑

k=1

aik

(
n∑

l=1

Cl
kl

)
.

Since the scalar quantities
∑n

l=1 Cl
kl for k = 1, . . . , n are the entries of the vector f(C),

expressions (10.45) and (10.46) follow from

f(C(A)) = Af(C). (10.47)

In terms of components, (10.45) can be written as
n∑

l=1

Cl
kl = 0 ⇐⇒

n∑
l=1

Cl
kl(A) = 0 (10.48)

10.3.3 Changes of Basis Due to Adjoint Action

The change of basis described in the previous subsection is completely general, with no
relationship between the matrix A and the Lie group G resulting from exponentiating
weighted sums of basis elements Xi ∈ G. Furthermore, the fact that each Xi is a matrix
was not used at all. In contrast, for any g ∈ G, the change of basis Xi → gXi g−1 can
be made. In this subsection, the special properties of this change of basis are examined.

Let Yi = gXi g−1 for some fixed g ∈ G. The matrix A = [aij ] relating {Xi} and {Yi}
is then a function of g (i.e., A = A(g) and Ck

ij(A) = Ck
ij(A(g))). The elements of the

matrix A(g) are computed explicitly as aij(g) = (Xi, gXj g−1).
Then, on the one hand,

[Yi, Yj ] =
n∑

k=1

Ck
ij(A(g))Yk =

n∑
k=1

Ck
ij(A(g)) gXk g−1 = g

[
n∑

k=1

Ck
ij(A(g))Xk

]
g−1

and, on the otherhand,

[Yi, Yj ] = [gXi g−1, gXj g−1] = g [Xi, Xj ] g−1 = g

[
n∑

k=1

Ck
ijXk

]
g−1.

This implies that

Ck
ij(A(g)) = Ck

ij(A(e)) = Ck
ij(I) = Ck

ij .

Thus, the change of basis due to adjoint action is very special in that it preserves
the value of each individual structure constant.
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10.4 Inner Products on Matrix Lie Algebras

By equipping a matrix Lie algebra with an appropriate inner product, it becomes possi-
ble to compute many quantities of interest, including Jacobian matrices and components
of vector fields.

10.4.1 Calculating Jacobians

Given a finite-dimensional matrix Lie group, an orthogonal basis for the corresponding
(matrix) Lie algebra can always be found when an appropriate inner product is defined.
Such a basis can be constructed by the Gram–Schmidt orthogonalization procedure
starting with any Lie algebra basis (see Appendix A.1.4 of Volume 1).

An inner product between arbitrary elements of the Lie algebra, Y =
∑

i yiEi and
Z =

∑
j zjEj , can be defined such that

(Y, Z) .=
n∑

i=1

yizi, where (Ei, Ej) = δij . (10.49)

The basis {Ei} is then orthonormal with respect to this inner product. The definition of
the inner product together with the constraint of orthonormality in (10.49) defines a met-
ric tensor for the Lie group according to the procedure described below. If Y, Z ∈ RN×N

and if (Y, Z)W
.= tr(Y WZT ) for some positive definite W = WT ∈ RN×N then this

defines an inner product. If W is fixed, it is always possible to find an orthonormal basis
{Ei}. Alternatively, given any basis {Xi}, the orthogonality condition (Xi, Xj)W ′ = δij

(which amounts to N(N +1)/2 constraints) can be satisfied by choosing the N(N +1)/2
free parameters that define W ′.

Let q = [q1, . . . , qn]T be a column vector of local coordinates. Then g(t) = g̃(q(t))
is a curve in G, where g̃ : Rn → G is the local parameterization of the Lie group G.
Henceforth, the tilde will be dropped since it will be clear from the argument whether
the function g(t) or g(q) is being referred to. The right-Jacobian matrix for an n-
dimensional Lie group parameterized with local coordinates q1, . . . , qn is the matrix
Jr(q) that relates rates of change q̇ to g−1ġ and likewise for Jl(q) and ġg−1, where a
dot denotes d/dt. Specifically,

ġg−1 =
∑

j

ωl
jEj and ωl = Jl(q)q̇

and
g−1ġ =

∑
j

ωr
j Ej and ωr = Jr(q)q̇.

In other words,

(ġg−1, Ek) =

⎛⎝∑
j

ωl
jEj , Ek

⎞⎠ =
∑

j

ωl
j (Ej , Ek) =

∑
j

ωl
jδjk = ωl

k.

The scalars ωl
k can be stacked in an array to form the column vector ωl = [ωl

1,
ωl

2, . . . , ω
l
n]T . Analogous calculations follow for the “r” case. This whole process is ab-

breviated with the “∨” operation as(
ġg−1)∨ = ωl and

(
g−1ġ

)∨
= ωr. (10.50)
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Given an orthogonal basis E1, . . . , En for the Lie algebra, projecting the left and
right tangent operators onto this basis yields elements of the right- and left-Jacobian
matrices15:

(Jr)ij =
(

g−1 ∂g

∂qj
, Ei

)
and (Jl)ij =

(
∂g

∂qj
g−1, Ei

)
. (10.51)

In terms of the ∨ operation this is written as(
g−1 ∂g

∂qj

)∨
= Jr(q) ej and

(
∂g

∂qj
g−1

)∨
= Jl(q) ej .

As another abuse of notation, the distinction between J(q) and J(g(q)) can be blurred
in both the left and right cases. Again, it is clear which is being referred to from the
argument of these matrix-valued functions.

Note that Jr(h◦g) = Jr(g) and Jl(g◦h) = Jl(g). For the groups considered below, the
parameterizations used extend over the whole group with singularities of measure zero.

Left- and right-invariant versions of the metric tensor are expressed as matrices using
the Jacobians in (10.51) as

Gr(q) = JT
r (q) Jr(q) and Gl(q) = JT

l (q) Jl(q). (10.52)

These depend on the basis {Ei} used. Stated in a different way, they depend on the
weighting matrix used to define the inner product on the Lie algebra.

Returning again to the example of the ax + b group, a straightforward calculation
shows that

Jr =
(

1/a 0
0 1/a

)
and Jl =

(
1/a 0
−b/a 1

)
.

Note that
det(Jr) =

1
a2 �= det(Jl) =

1
a
.

10.4.2 Invariant Vector Fields

For an N -dimensional matrix Lie group, we denote two special kinds of vector fields as

Vl(g) =
n∑

i=1

viEig and Vr(g) =
n∑

i=1

vigEi.

The subscripts of V denote on which side the Lie algebra basis element Ei appears. Here,
Eig and gEi are simply matrix products and {vi} are real numbers.16 For a vector field
V (g) on a matrix Lie group (which need not be left or right invariant), the left- and
right-shift operations are defined as

L(h)V (g) = hV (g) and R(h)V (g) = V (g)h,

15The “l” and “r” convention used here for Jacobians and for vector fields is opposite that
used in the mathematics literature. The reason for the choice made here is to emphasize the
location of the “the most informative part” of the expression. In Jacobians, this is the location
of the partial derivatives. In vector fields, this is where the components defining the field appear.

16We restrict the discussion to real vector fields.
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where h ∈ G. Then it is clear that Vr is left invariant and Vl is right invariant in the
sense that

L(h)Vr(g) = Vr(h ◦ g) and R(h)Vl(g) = Vl(g ◦ h).

This means that there are left- and right-invariant ways to extend the inner product
(·, ·) on the Lie algebra over the whole group—namely for all Y, Z ∈ G, we can define
right and left inner products respectively as

(gY, gZ)r
g

.= (Y, Z) and (Y g, Zg)l
g

.= (Y, Z)

for any g ∈ G. In this way, the inner product of two invariant vector fields Yr(g) and
Zr(g) (or Yl(g) and Zl(g)) yields

((Yr(g), Zr(g))r
g = ((Yl(g), Zl(g))l

g = (Y, Z).

10.5 Adjoint Matrices and the Killing Form

This section introduces the concept of the Killing form and its relationship to adjoint
matrices, thereby providing a linear-algebraic way to compute quantities used in the
classification of Lie groups.

10.5.1 The Killing Form

A bilinear form B(X,Y ) for X,Y ∈ G is said to be Ad-invariant if

B(X,Y ) = B(Ad(g)X,Ad(g)Y )

for any g ∈ G. In the case of real matrix Lie groups (and the corresponding Lie algebras),
which are the ones of most interest in engineering applications, a symmetric (B(X,Y ) =
B(Y,X)) and invariant bilinear form, called the Killing form (named after Wilhelm Karl
Joseph Killing), is defined as

B(X,Y ) .= trace(ad(X) ad(Y )). (10.53)

The Killing form is important in the context of harmonic analysis because the Fourier
transform and inversion formula can be defined for large classes of groups that are
defined by the behavior of their Killing form. The classification of Lie groups according
to the properties of the Killing form is based on Cartan’s Criteria (named after Elie
Cartan, who also developed the theory of differential forms) [20]. For example, a Lie
group is called nilpotent if B(X,Y ) = 0 for all X,Y ∈ G. A Lie group is called solvable
if and only if for all X,Y, Z ∈ G, the equality B(X, [Y, Z]) = 0 holds. Semi-simple
Lie groups are those for which B(X,Y ) is nondegenerate (i.e., the determinant of the
n × n matrix with elements B(Ei, Ej) is nonzero, where {E1, . . . , En} (n ≥ 2) is a
basis for G). For example, the Heisenberg groups are nilpotent, the rotation groups are
semi-simple, and the group of rigid-body motions of the plane is solvable (although for
higher dimensions, it is not).
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10.5.2 The Matrices of Ad(g), Ad∗(g), ad(X), and B(X, Y )

The formal coordinate-independent definitions of the adjoints Ad(g) and ad(X) and the
Killing form B(X,Y ) are central to the theory of Lie groups. Although such definitions
are sufficient for mathematicians to prove many fundamental properties, it is useful for
computation to have such concepts illustrated with matrices.

As with all linear operators, Ad(g) and ad(X) are expressed as matrices using an
appropriate inner product and concrete basis for the Lie algebra. In particular, with the
inner product defined earlier for Lie algebras, we have

[Ad(g)]ij
.= (Ei, Ad(g)Ej) = (Ei, gEjg

−1) (10.54)

and
[ad(X)]ij

.= (Ei, ad(X)Ej) = (Ei, [X,Ej ]). (10.55)

Another way to view these is by using the ∨ operator defined previously that converts
Lie algebra basis elements Ei to elements of the natural basis element ei ∈ Rn,

(Ei)∨ = ei.

Then the matrix with elements given in (10.54) will be

[Ad(g)] = [(gE1g
−1)∨, . . . , (gEng−1)∨].

As with the adjoint operator itself, this matrix representation satisfies

[Ad(g1)][Ad(g2)] = [Ad(g1 ◦ g2)]. (10.56)

It is this matrix that relates left and right Jacobians. Using the ∨ notation, we may
write

Jl =

[(
∂g

∂x1
g−1

)∨
, . . . ,

(
∂g

∂xn
g−1

)∨]
and

Jr =

[(
g−1 ∂g

∂x1

)∨
, . . . ,

(
g−1 ∂g

∂xn

)∨]
.

Since (
g

(
g−1 ∂g

∂x1

)
g−1

)∨
=

(
∂g

∂x1
g−1

)∨
,

it follows that

Jl = [Ad(g)]Jr.

Hence, if the Jacobians are known, we can write17

[Ad(g)] = JlJ
−1
r . (10.57)

17When the context is clear, the distinction between Ad(g) and [Ad(g)] can be blurred.
However, here, where the concepts are being explained for the first time, it is important to
understand the difference.
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Another related definition is18

[Ad∗(g1)]
.= [Ad(g1)]−T . (10.58)

This so-called co-adjoint operator matrix has the property

[Ad∗(g1)][Ad∗(g2)] = [Ad∗(g1 ◦ g2)] , (10.59)

which looks similar to (10.56). In a sense, the reason for this is that the reversal of
orders induced by the matrix inverse and the transpose cancel each other.

The matrix with elements given in (10.55) will be

[ad(X)] = [([X,E1])∨, . . . , ([X,En])∨].

This then gives a concrete tool with which to calculate the n×n matrix with entries

[B]ij = B(Ei, Ej) = tr([ad(Ei)][ad(Ej)]). (10.60)

B is then degenerate if and only if

det([B]) = 0.

If det([B]) �= 0, the Lie algebra is called semi-simple. If [B]ij = 0 for all i and j, the Lie
algebra is called nilpotent.

Returning again to the ax + b group as an example, in this case

[Ad(g)] =
(

1 0
−b a

)
.

Similarly, the calculations

[X,E1] =
(

a b
0 0

)(
1 0
0 0

)
−

(
1 0
0 0

)(
a b
0 0

)
=

(
0 −b
0 0

)
and

[X,E2] =
(

a b
0 0

)(
0 1
0 0

)
−

(
0 1
0 0

)(
a b
0 0

)
=

(
0 a
0 0

)
are used together with the orthonormality of the basis to give

[ad(X)] =
(

0 0
−b a

)
and [B] =

(
1 0
0 0

)
,

where the latter is computed from the former using (10.60).
Clearly, this is degenerate, and the ax + b group is not semi-simple.

10.5.3 Relationship Between ad(X) and B(X, Y ),
and the Structure Constants

Recall that the structure constants of a real Lie algebra are defined by

[Ei, Ej ] =
N∑

k=1

Ck
ijEk.

18Given an invertible matrix A, the shorthand A−T denotes (A−1)T = (AT )−1.
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From the anti-symmetry of the Lie bracket (10.39) and the Jacobi identity (10.41),
respectively, we see that

Ck
ij = −Ck

ji (10.61)

and
N∑

j=1

(Cl
ijC

j
km + Cl

mjC
j
ik + Cl

kjC
j
mi) = 0. (10.62)

The matrix entries of [ad(Ek)]ij are related to the structure constants as

[ad(Ek)]ij = (Ei, [Ek, Ej ]) =

(
Ei,

N∑
m=1

Cm
kjEm

)
.

For a real Lie algebra, the inner product

(X,Y ) = trace(XWY T )

is linear in Y , and so

[ad(Ek)]ij =
N∑

m=1

(Ei, Em)Cm
kj = Ci

kj .

Then

B(Ei, Ej)= trace(ad(Ei) ad(Ej))

=
N∑

m=1

N∑
n=1

[ad(Ei)]mn[ad(Ej)]nm

=
N∑

m=1

N∑
n=1

Cm
inCn

jm.

10.5.4 Conditions for Unimodularity

A Lie group for which det[Ad(g)] = 1 for all g ∈ G is called unimodular. Most of the
groups that will arise in applications in this book are unimodular. In Chapter 12, the
condition of unimodularity will be quite convenient when it comes to integration on
certain Lie groups. In this subsection, several equivalent conditions for unimodularity
are reviewed. These conditions can be stated in terms of the left and right Jacobians,
which can be computed in any parameterization that covers the whole group mani-
fold, or in terms of parameter-free descriptions based on properties of the Lie algebras
corresponding to the groups.

Each of the following are necessary and sufficient conditions for a Lie group to be
unimodular:19

detJr = detJl, (10.63)

19Here, the determinant of an operator is defined as the determinant of the matrix of the op-
erator. Henceforth, when it is clear from the context that the adjoint matrix is being discussed,
the notation Ad (and ad) will be used in place of [Ad] (and [ad]).
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det[Ad(g)] = 1, (10.64)

tr[ad(X)] = 0, (10.65)

n∑
k=1

Ck
jk = 0 for j = 1, . . . , n. (10.66)

Conditions (10.63) and (10.64) are equivalent because Jl = [Ad(g)]Jr, and so
det[Ad(g)] = 1 iff detJl = detJr. Conditions (10.64) and (10.65) are equivalent due
to the relationship exp[ad(X)] = [Ad(expX)] and the trace-determinant formula (A.77)
of Volume 1.

Condition (10.66) is the same as (10.48) and results from an argument related to the
invariance of the volume element to an orthogomal change of basis in the Lie algebra.
Indeed, conditions (10.63)–(10.65) are invariant under such a change of basis.

10.6 Examples

When learning an abstract concept, it is important to explore examples to gain a full un-
derstanding. This section presents 10 examples of Lie groups, some described in multiple
different parameterizations, to illustrate the general concepts and definitions presented
so far.

10.6.1 The Heisenberg Nilpotent Group

The Heisenberg group is a famous group in physics. However, the reason for presenting
it first is not because of its importance but rather because of its simplicity.

Definition and Parameterization

The Heisenberg group, H(3), is defined by elements of the form

g(α, β, γ) =

⎛⎝1 α β
0 1 γ
0 0 1

⎞⎠, where α, β, γ ∈ R (10.67)

and the operation of matrix multiplication. Therefore, the group law can be viewed in
terms of parameters as20

g(α1, β1, γ1) ◦ g(α2, β2, γ2) = g(α1 + α2, β1 + β2 + α1γ2, γ1 + γ2).

The identity element is the identity matrix g(0, 0, 0), and the inverse of an arbitrary
element g(α, β, γ) is

g−1(α, β, γ) = g(−α, αγ − β,−γ).

20Here the operation ◦ is written explicitly, but it is common to suppress this for matrix
groups and to denote the product simply by juxtaposing two group elements.
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Lie Algebra and Exponential Map

Basis elements for the Lie algebra are

E1 =

⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠; E2 =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠; E3 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠. (10.68)

The Lie bracket, [Ei, Ej ] = EiEj − EjEi, for these basis elements gives

[E1, E2] = [E2, E3] = 0 and [E1, E3] = E2.

If the inner product for the Lie algebra spanned by these basis elements is defined as
(X,Y ) = tr(XY T ), then this basis is orthonormal: (Ei, Ej) = δij .

The group H(3) is nilpotent because (x1E1 + x2E2 + x3E3)n = 0 for all n ≥ 3. As
a result, the matrix exponential is a polynomial in the coordinates {xi}:

exp

⎛⎝0 x1 x2
0 0 x3
0 0 0

⎞⎠ = g(x1, x2 + 1
2x1x3, x3). (10.69)

The parameterization in (10.67) can be viewed as the following product of exponentials:

g(α, β, γ) = g(0, β, 0)g(0, 0, γ)g(α, 0, 0) = exp(βE2) exp(γE3) exp(αE1).

The logarithm is obtained by solving for each xi as a function of α, β, and γ. By
inspection, this is x1 = α, x3 = γ, and x2 = β − αγ/2. Therefore,

log g(α, β, γ) =

⎛⎝0 α β − αγ/2
0 0 γ
0 0 0

⎞⎠.

Jacobians and Adjoints

The Jacobian matrices for this group can be computed in either parameterization. In
terms of α, β, and γ,

∂g

∂α
= E1;

∂g

∂β
= E2;

∂g

∂γ
= E3.

A straightforward calculation then gives

g−1 ∂g

∂α
= E1; g−1 ∂g

∂β
= E2; g−1 ∂g

∂γ
= E3 − αE2.

Therefore,

Jr(α, β, γ) =

⎛⎝1 0 0
0 1 −α
0 0 1

⎞⎠ and J−1
r (α, β, γ) =

⎛⎝1 0 0
0 1 α
0 0 1

⎞⎠. (10.70)
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A similar calculation shows that

Jl(α, β, γ) =

⎛⎝ 1 0 0
−γ 1 0

0 0 1

⎞⎠ and J−1
l (α, β, γ) =

⎛⎝1 0 0
γ 1 0
0 0 1

⎞⎠. (10.71)

The adjoint matrix, defined by [Ad(g)]x = (gXg−1)∨, is computed by evaluating⎛⎝1 α β
0 1 γ
0 0 1

⎞⎠⎛⎝0 x1 x2
0 0 x3
0 0 0

⎞⎠⎛⎝1 −α αγ − β
0 1 −γ
0 0 1

⎞⎠ =

⎛⎝0 x1 −γx1 + x2 + αx3
0 0 x3
0 0 0

⎞⎠.

Therefore,

(gXg−1)∨ =

⎛⎝ x1
−γx1 + x2 + αx3

x3

⎞⎠ and [Ad(g(α, β, γ))] =

⎛⎝ 1 0 0
−γ 1 α

0 0 1

⎞⎠.

The fact that det[Ad(g)] = 1 for all g ∈ G indicates that this group is unimodular. This
fact is independent of the parameterization. For example,

Jr(x) =

⎛⎝ 1 0 0
x3/2 1 −x1/2

0 0 1

⎞⎠ and Jl(x) =

⎛⎝ 1 0 0
−x3/2 1 x1/2

0 0 1

⎞⎠. (10.72)

Some properties of the matrix exponential parameterization for H(3) are

Jr(x) = J−1
r (−x) = J−1

l (x) = Jl(−x) and Jr(x)x = Jl(x)x = x. (10.73)

It can be shown that

Ad(g(x)) = Jl(x)J−1
r (x) = [Jl(x)]2 = Jl(2x) =

⎛⎝ 1 0 0
−x3 1 x1
0 0 1

⎞⎠. (10.74)

10.6.2 The Group of Rigid-Body Motions of the Euclidean Plane, SE(2)

In the applications that follow in other chapters, the groups of rigid-body motions will
play an important role. Here, the motion group of the plane is studied in detail.

Elements, Operation, and Action

The special Euclidean group SE(2), that acts on the plane, R2, can be viewed as the
set of matrices

g(x1, x2, θ) =

⎛⎝cos θ − sin θ x1
sin θ cos θ x2

0 0 1

⎞⎠ (10.75)

with group operation of matrix multiplication. The action of this group on the plane is
defined as

g · r .=
(

r1 cos θ − r2 sin θ + x1
r1 sin θ + r2 cos θ + x2

)
for any r = [r1, r2]T ∈ R2. The action defined in this way is not simply matrix multipli-
cation of g and r (which dimensionally would not make sense).
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Parameterization and Jacobians in T-R Coordinates

Note that any planar rigid-body motion can be decomposed into the translation–rotation
(T-R) product

g(x1, x2, θ) = exp(x1E1 + x2E2) exp(θE3),

where

E1 =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ ; E2 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠ ; E3 =

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠.

Using the weighting matrix

W =

⎛⎝1 0 0
0 1 0
0 0 2

⎞⎠ ,

the inner product (X,Y ) = 1
2 tr(XWY T ), the basis {Ei} for the Lie algebra se(2) is

orthogonal: (Ei, Ej) = δij . The Lie algebra se(2) corresponds to rigid-body velocities in
the plane.

The Jacobians for this parameterization, basis, and weighting matrix are then of the
form

Jr =
[(

∂g

∂x1
g−1

)∨
,

(
∂g

∂x2
g−1

)∨
,

(
∂g

∂θ
g−1

)∨]
=

⎛⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞⎠
and

Jl =
[(

g−1 ∂g

∂x1

)∨
,

(
g−1 ∂g

∂x2

)∨
,

(
g−1 ∂g

∂θ

)∨]
=

⎛⎝1 0 x2
0 1 −x1
0 0 1

⎞⎠.

Substitution into the definitions yields

[Ad(g)] =

⎛⎝cos θ − sin θ x2
sin θ cos θ −x1

0 0 1

⎞⎠.

Note that
det(Jl) = det(Jr) = det[Ad(g)] = 1.

This parameterization is not unique, although it is probably the most well-known one.

Parameterization and Jacobians in Exponential Coordinates

As an alternative, consider the exponential parameterization

g(v1, v2, α)=exp(v1E1 + v2E2 + αE3) = exp

⎛⎝0 −α v1
α 0 v2
0 0 0

⎞⎠
=

⎛⎝cosα − sinα [v2(−1 + cosα) + v1 sinα]/α
sinα cosα [v1(1− cosα) + v2 sinα]/α

0 0 1

⎞⎠. (10.76)

Comparing this with (10.75), it is clear that α = θ, but xi �= vi.



36 10 Lie Groups I: Introduction and Examples

The corresponding Jacobians in this exponential parametrization are

Jr =

⎛⎝ (sinα)/α (1− cosα)/α (αv1 − v2 + v2 cosα− v1 sinα)/α2

(cosα− 1)/α (sinα)/α (v1 + αv2 − v1 cosα− v2 sinα)/α2

0 0 1

⎞⎠
and

Jl =

⎛⎝ (sinα)/α (cosα− 1)/α (αv1 + v2 − v2 cosα− v1 sinα)/α2

(1− cosα)/α (sinα)/α (−v1 + αv2 + v1 cosα− v2 sinα)/α2

0 0 1

⎞⎠.

Therefore,

det(Jl) = det(Jr) =
2(1− cosα)

α2 .

Additionally, when

X =

⎛⎝0 −α v1
α 0 v2
0 0 0

⎞⎠ ,

it follows that

[ad(X)] =

⎛⎝0 −α v2
α 0 −v1
0 0 0

⎞⎠ and [B] =

⎛⎝0 0 0
0 0 0
0 0 −2

⎞⎠.

This [B] is clearly degenerate, and SE(2) is therefore not semi-simple (neither is SE(3)).

10.6.3 The Group SL(2, R)

The group SL(2, R) consists of all 2 × 2 matrices with real entries with determinant
equal to unity. In other words, for a, b, c, d ∈ R, elements of SL(2, R) are of the form

g =
(

a b
c d

)
, where ad− bc = 1.

A basis for the Lie algebra sl(2, R) is

X1 =
(

0 −1
1 0

)
; X2 =

(
1 0
0 −1

)
; X3 =

(
0 1
1 0

)
.

An alternative basis for the Lie algebra sl(2, R) is

E1 = X1; E2 = X2; E3 =
1
2
(X3 −X1).

The Iwasawa Decomposition

The Iwasawa decomposition allows one to write an arbitrary g ∈ SL(2, R) in the form

g = u1(θ)u2(t)u3(ξ),
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where

u1(θ) = exp(θE1) =
(

cos θ − sin θ
sin θ cos θ

)
,

u2(t) = exp(tE2) =
(

et 0
0 e−t

)
,

u3(ξ) = exp(ξE3) =
(

1 ξ
0 1

)
.

The subgroups defined by the above ui are not the only subgroups of SL(2, R). For
example, exponentiating matrices of the form ζX3 results in a subgroup of matrices of
the form

exp(ζX3) =
(

cosh ζ sinh ζ
sinh ζ cosh ζ

)
.

Jacobians

Using the Iwasawa decomposition (which is defined using the basis {Ei}) to parameterize
SL(2, R) and computing Jacobians in the Lie algebra sl(2, R) using the basis {Ei} gives

Jr(θ, t, ξ) =
1
2

⎛⎝e−2t + e2t(1 + ξ2) −2e2tξ e2t − e−2t(1 + e4tξ2)
−2ξ 2 2ξ
−1 0 1

⎞⎠
and

Jl(θ, t, ξ) =
1
2

⎛⎝ 2 0 0
0 2 cos 2θ 2 sin 2θ

−e2t −e2t sin 2θ e2t cos 2θ

⎞⎠.

More generally, it is possible to compute an exponential parameterization using one
basis for the Lie algebra and then to evaluate the Jacobian using either the same or a
different basis.

It is easy to verify that

det(Jr(θ, t, ξ)) = det(Jl(θ, t, ξ)) =
1
2
e2t.

Hence, SL(2, R) is unimodular (which means the determinants of the left and right
Jacobians are the same).

10.6.4 The Motion Group of the Lobachevsky Plane, L(2)

Consider the set of matrices of the form

g(t, u, v) =

⎛⎝cosh(t) sinh(t) u
sinh(t) cosh(t) v

0 0 1

⎞⎠ =

⎛⎝M(t) x(u, v)

0T 1

⎞⎠, where t, u, v ∈ R. (10.77)

This is a three-dimensional Lie group under the operation of matrix multiplication. It is
called the Lobachevsky motion group and is denoted as L(2). The space on which this
group acts is called the Lobachevsky (or hyperbolic) plane.
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The inverse of g(t, u, v) is of the form

g−1(t, u, v) =
(

M(−t) −M(−t)x(u, v)
0T 1

)
.

Basis elements for the Lie algebra are

E1 =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠; E2 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠; E3 =

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠. (10.78)

The commutation relations are

[E1, E2] = 0; [E1, E3] = −E2; [E2, E3] = −E1.

An inner product for this Lie algebra can be defined as

(X,Y ) =
1
2

tr(XWY T ), where W =

⎛⎝2 0 0
0 2 0
0 0 1

⎞⎠
With this inner product, (Ei, Ej) = δij . Direct calculation verifies that

g−1 ∂g

∂u
= cosh(t)E1− sinh(t)E2; g−1 ∂g

∂v
= − sinh(t)E1 + cosh(t)E2; g−1 ∂g

∂t
= E3;

and so

Jr(t, u, v) =

⎛⎝ cosh(t) − sinh(t) 0
− sinh(t) cosh(t) 0

0 0 1

⎞⎠.

∂g

∂u
g−1 = E1;

∂g

∂v
g−1 = E2;

∂g

∂t
g−1 = E3 − vE1 − uE2;

and so

Jl(t, u, v) =

⎛⎝1 0 −v
0 1 −u
0 0 1

⎞⎠.

Clearly, detJr = detJl = 1, and so this group is unimodular. The adjoint matrix can
be calculated as

[Ad(g)] = Jl J
−1
r =

(
M(t) −x(u, v)
0T 1

)
.

10.6.5 The Lorentz Group, SO(2, 1)

This group consists of elements g such that21

gT I(2, 1)g = I(2, 1), where I(2, 1) =

⎛⎝1 0 0
0 1 0
0 0 −1

⎞⎠
21The higher-dimensional group SO(3, 1) is actually the Lorentz group, which preserves the

space–time quadratic form xT I(3, 1)x, with the fourth dimension representing time, which is
normalized by the speed of light, taken here as c = 1.
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Basis elements for the Lie algebra are

E1 =

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠; E2 =

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠; E3 =

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠. (10.79)

The commutation relations are

[E1, E2] = −E3; [E2, E3] = E1; [E1, E3] = −E2.

The basis {Ei} is orthonormal with respect to the inner product

(X,Y ) =
1
2

tr(XY T ).

The matrix exponential gives

exp(tE1) =

⎛⎝cosh(t) 0 sinh(t)
0 1 0

sinh(t) 0 cosh(t)

⎞⎠, (10.80)

exp(uE2) =

⎛⎝1 0 0
0 cosh(u) sinh(u)
0 sinh(u) cosh(u)

⎞⎠, (10.81)

exp(vE3) =

⎛⎝cos(v) − sin(v) 0
sin(v) cos(v) 0

0 0 1

⎞⎠. (10.82)

The computation of Jacobians and adjoint are left as an exercise.

10.6.6 The Rotation Group, SO(3)

In this subsection, the Jacobian matrices for SO(3) are computed in two different coor-
dinate systems: exponential coordinates and Euler angles.

Parameterization Using Exponential Coordinates

The Lie algebra so(3) consists of skew-symmetric matrices of the form

X =

⎛⎝ 0 −x3 x2
x3 0 −x1
−x2 x1 0

⎞⎠ =
3∑

i=1

xiEi. (10.83)

The skew-symmetric matrices {Ei} form a basis for the set of all such 3 × 3 skew-
symmetric matrices, and the coefficients {xi} are all real. The ∨ operation extracts these
coefficients from a skew-symmetric matrix, X, to form a column vector [x1, x2, x3]T ∈ R3.
Then Xy = x× y for any y ∈ R3, where × is the usual vector cross product.

In this case, the adjoint matrices are

[Ad(R)] = R and [ad(X)] = X.
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Furthermore,

[X,Y ]∨ = x× y.

It is well known (see [8] for derivation and references) that

R(x) = eX = I +
sin ‖x‖
‖x‖ X +

(1− cos ‖x‖)
‖x‖2 X2, (10.84)

where ‖x‖ = (x2
1 + x2

2 + x2
3)

1
2 , and it can be shown that R(x)x = x.

An interesting and useful fact is that except for a set of measure zero, all elements
of SO(3) can be captured with the parameters within the open ball defined by ‖x‖ < π,
and the matrix logarithm of any group element parameterized in this range is also well
defined. It is convenient to know that the angle of the rotation, θ(R), is related to the
exponential parameters as |θ(R)| = ‖x‖. Furthermore,

log(R) =
1
2

θ(R)
sin θ(R)

(R−RT ),

where

θ(R) = cos−1
(

trace(R)− 1
2

)
.

Invariant definitions of directional (Lie) derivatives and integration measure for
SO(3) can be defined. When computing these invariant quantities in coordinates (in-
cluding exponential coordinates), a Jacobian matrix comes into play. It can be shown
that the left- and right-Jacobian matrices for SO(3) are related as

Jl = RJr. (10.85)

Jacobians for Exponential Coordinates

Relatively simple analytical expressions have been derived by Park [17] for the Jacobian
Jl and its inverse when rotations are parameterized as in (10.84). These expressions are

Jl(x) = I +
1− cos ‖x‖

‖x‖2 X +
‖x‖ − sin ‖x‖

‖x‖3 X2 (10.86)

and

J−1
l (x) = I− 1

2
X +

(
1

‖x‖2 −
1 + cos ‖x‖
2‖x‖ sin ‖x‖

)
X2.

The corresponding Jacobian Jr and its inverse are then calculated using (10.85)
as [8]

Jr(x) = I− 1− cos ‖x‖
‖x‖2 X +

‖x‖ − sin ‖x‖
‖x‖3 X2

and

J−1
r (x) = I +

1
2
X +

(
1

‖x‖2 −
1 + cos ‖x‖
2‖x‖ sin ‖x‖

)
X2.
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Note that

Jl = JT
r .

The determinants are

|det(Jl)| = |det(Jr)| = 2(1− cos ‖x‖)
‖x‖2 .

Despite the ‖x‖2 in the denominator, these determinants are well behaved at the iden-
tity, which follows from expanding cos ‖x‖ in a Taylor series.

Euler Angles and Associated Jacobians

Exponential coordinates are not the only way to describe rotations. In fact, they are
not even the most well-known parameterization. The “ZXZ” Euler angles are defined as

RZXZ(α, β, γ) .= R3(α)R1(β)R3(γ), (10.87)

where the fundamental rotations Ri(φ) were defined in (A.42)–(A.44) of Volume 1.
The Jacobian matrices associated with this parametrization are

Jl(α, β, γ) = [e3, R3(α)e1, R3(α)R1(β)e3] =

⎛⎝0 cosα sinα sinβ
0 sinα − cosα sinβ
1 0 cosβ

⎞⎠ (10.88)

and

Jr = RT Jl = [R3(−γ)R1(−β)e3, R3(−γ)e1, e3] =

⎛⎝sinβ sin γ cos γ 0
sinβ cos γ − sin γ 0

cosβ 0 1

⎞⎠. (10.89)

It is easy to see that

J−1
l =

⎛⎝− cotβ sinα cosα cotβ 1
cosα sinα 0

cscβ sinα − cosα cscβ 0

⎞⎠ and J−1
r =

⎛⎝ cscβ sin γ cos γ cscβ 0
cos γ − sin γ 0

− cotβ sin γ − cos γ cotβ 1

⎞⎠.

(10.90)

Note that
|Jl| = |Jr| = sinβ.

The Adjoint and Killing Form for SO(3)

When the inner product is normalized so that (Ei, Ej) = δij ,

[Ad(R)] = Jl J
−1
r = R,

where Jr and Jl are given above in two different parameterizations.
A straightforward calculation shows

[ad(X)] = X and [B] = −2I3.

Hence, SO(3) is semi-simple.
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10.6.7 The Group GL(2, R)

Elements of GL(2, R) are invertible 2× 2 real matrices:

g(x1, x2, x3, x4) =
(

x1 x2
x3 x4

)
.

A basis for the Lie algebra gl(2, R) is

E1 =
(

1 0
0 0

)
; E2 =

(
0 1
0 0

)
; E3 =

(
0 0
1 0

)
; E4 =

(
0 0
0 1

)
.

An inner product can be defined in which this basis is orthonormal.
The Jacobians in this parameterization, basis, and inner product are

Jr =
1

det g

⎛⎜⎜⎝
x4 0 −x2 0
0 x4 0 −x2
−x3 0 x1 0
0 −x3 0 x1

⎞⎟⎟⎠ and Jl =
1

det g

⎛⎜⎜⎝
x4 −x3 0 0
−x2 x1 0 0
0 0 x4 −x3
0 0 −x2 x1

⎞⎟⎟⎠.

The determinants are
det(Jl) = det(Jr) =

1
|det g|2 .

10.6.8 The Scale-Euclidean Group of the Plane

A basis for the Lie algebra of the scale-Euclidean group SIM(2) is

E1 =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ ; E2 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠ ; E3 =

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠ ; E4 =

⎛⎝1 0 0
0 1 0
0 0 0

⎞⎠.

This basis is orthonormal with respect to an appropriate inner product.
The parameterization

g(x1, x2, θ, a)=exp(x1E1 + x2E2) exp(θE3 + aE4)

=

⎛⎝ea cos θ −ea sin θ x1
ea sin θ ea cos θ x2

0 0 1

⎞⎠
extends over the whole group.

The Jacobians are

Jr =

⎛⎜⎜⎝
e−a cos θ e−a sin θ 0 0
−e−a sin θ e−a cos θ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ and Jl =

⎛⎜⎜⎝
1 0 x2 −x1
0 1 −x1 −x2
0 0 1 0
0 0 0 1

⎞⎟⎟⎠.

Note that
det(Jr) = e−2a �= det(Jl) = 1.

As a general rule, subgroups of the affine group with elements of the form

g =
(

A b
0T 1

)
will have left and right Jacobians whose determinants are different unless det(A) = 1.
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10.6.9 SE(3), The Group of Rigid-Body Motions

In this subsection, Jacobians for SE(3) are computed in two different coordinate
systems.

Exponential Coordinates

The Euclidean motion group, SE(3), is the semi-direct product of R3 with the special
orthogonal group, SO(3). We represent elements of SE(3) using 4 × 4 homogeneous
transformation matrices

g =
(

R t
0T 1

)
and identify the group law with matrix multiplication. The inverse of any group element
is written as

g−1 =
(

RT −RT t
0T 1

)
.

The Lie algebra se(3) consists of “screw” matrices of the form

X =

⎛⎜⎜⎝
0 −x3 x2 x4
x3 0 −x1 x5
−x2 x1 0 x6
0 0 0 0

⎞⎟⎟⎠ =
6∑

i=1

xiEi. (10.91)

For small translational (rotational) displacements from the identity along (about)
the ith coordinate axis, the homogeneous transforms representing infinitesimal motions
look like

gi(ε)
.= exp(εEi) ≈ I4 + εEi,

where I4 is the 4× 4 identity matrix and

E1 =

⎛⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ ; E2 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞⎟⎟⎠ ; E3 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ;

E4 =

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ; E5 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ; E6 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠.

These are related to the basis elements for so(3) (which are for the moment denoted
as {Êi} to distinguish them from {Ei}) as

Ei =
(

Êi 0
0T 0

)
(10.92)

when i = 1, 2, 3.
The matrices {Ei} form a basis for the set of all such 4 × 4 screw matrices, and

the coefficients {xi} are all real. The ∨ operation is defined to extract these coefficients
from a screw matrix to form a column vector X∨ = [x1, x2, x3, x4, x5, x6]T ∈ R6. The
double use of ∨ in the so(3) and se(3) cases will not cause confusion, since the object
to which it is applied defines the sense in which it is used.
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It will be convenient to define ω = [x1, x2, x3]T and v = [x4, x5, x6]T so that

X∨ = x =
(

ω
v

)
.

Large motions are also obtained by exponentiating these matrices; for example,

exp(tE3) =

⎛⎜⎜⎝
cos t − sin t 0 0
sin t cos t 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ and exp(tE6) =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 t
0 0 0 1

⎞⎟⎟⎠.

More generally, it can be shown that

g(X∨) = expX =
(

R(ω) Ĵl(ω)v
0T 1

)
. (10.93)

where Ĵl(ω) is the SO(3) Jacobian in (10.86) evaluated at ω. The form of (10.93) follows
from the expression for the matrix exponential given in [8]. From the form of (10.93),
it is clear that if g has rotational part R and translational part t, then the matrix
logarithm can be written in closed form as

X = log(g) =
(

log R Ĵ−1
l ((log R)∨)t

0T 0

)
and X∨ =

(
(log R)∨

Ĵ−1
l ((log R)∨)t

)
. (10.94)

The adjoint matrices for SE(3) are

[Ad(g)] =
(

R O3
TR R

)
∈ R6×6 and [ad(X)] =

(
Ω O3
V Ω

)
∈ R6×6,

where V ∨ = v, Ω∨ = ω, and T∨ = t.

Jacobians in Exponential Coordinates

The Jacobians for SE(3) using exponential parameters are then

Jl(x) =

[(
∂g

∂x1
g−1

)∨
,

(
∂g

∂x2
g−1

)∨
, . . . ,

(
∂g

∂x6
g−1

)∨]

and

Jr(x) =

[(
g−1 ∂g

∂x1

)∨
,

(
g−1 ∂g

∂x2

)∨
, . . . ,

(
g−1 ∂g

∂x6

)∨]
.

The right Jacobian for SE(3) in exponential coordinates can be computed from
(10.93) as

Jr(x) =

(
Ĵr(ω) O3

e−X ∂
∂ωT

(
Ĵl(ω)v

)
Ĵr(ω)

)
, (10.95)

where O3 is the 3× 3 zero matrix. It becomes immediately clear that the determinants
of these SE(3) and SO(3) Jacobians are related as

|Jr(x)| = |Ĵr(ω)|2. (10.96)
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Jacobians in Translation–Rotation Coordinates

When the rotations are parameterized as R = R(q1, q2, q3) and the translations are
parameterized using Cartesian coordinates t(q4, q5, q6) = [q4, q5, q6]T ,

Jr(q) =
(

Ĵr O3
O3 RT

)
and Jl(q) =

(
Ĵl O3

T Ĵl I3

)
, (10.97)

where O3 is the 3× 3 zero matrix, Ĵl and Ĵr are the left and right Jacobians for SO(3)
in the parameterization (q1, q2, q3), and T is the 3 × 3 skew-symmetric matrix such
that Tx = t × x. For example, this could be either of the parameterizations used in
Section 10.6.6. Many other specialized parameterizations of SO(3) and SE(3) exist and
will be discussed in the companion volume to this book.

10.6.10 The Weyl–Heisenberg Group and Its Semidirect Product
with SL(2, R)

In this section the six-dimensional group of symmetries of the heat equation on the real
line first discussed in Chapter 2 is examined.

The Weyl–Heisenberg Group, W (1)

Recall from Chapter 2 of Volume 1 that matrices of the form

B = B(u, v, w) =

⎛⎝1 v 2w + uv/2
0 1 u
0 0 1

⎞⎠, where u, v, w ∈ R, (10.98)

are closed under matrix multiplication

B(u, v, w)B(u′, v′, w′) = B(u + u′, v + v′, w + w′ + (vu′ − uv′)/4). (10.99)

From this it is clear that

[B(u, v, w)]−1 = B(−u,−v,−w).

This group of matrices is called the Weyl–Heisenberg group, which will be denoted here
as W (1).

The basis elements for the Lie algebra of W (1) can be taken as

E1 =

⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠; E2 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠; E3 =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠.

The commutation relations are

[E1, E2] = E3; [E1, E3] = [E2, E3] = 0.
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It follows that

B−1 ∂B

∂u
=

⎛⎝0 0 −v/2
0 0 1
0 0 0

⎞⎠ = E2 − (v/2)E3,

B−1 ∂B

∂v
=

⎛⎝0 1 u/2− v
0 0 0
0 0 0

⎞⎠ = E1 + (u/2− v)E3,

B−1 ∂B

∂w
=

⎛⎝0 0 2
0 0 0
0 0 0

⎞⎠ = 2E3.

With this choice of basis and the inner product,

(Ei, Ej) = tr(EiE
T
j ) = δij .

Similarly,

∂B

∂u
B−1 =

⎛⎝0 0 v/2
0 0 1
0 0 0

⎞⎠ = E2 + (v/2)E3,

∂B

∂v
B−1 =

⎛⎝0 1 −u/2
0 0 0
0 0 0

⎞⎠ = E1 − (u/2)E3,

∂B

∂w
B−1 =

⎛⎝0 0 2
0 0 0
0 0 0

⎞⎠ = 2E3.

Then the coefficients in each of the matrices above can be “plucked off” and used to
form the columns of the Jacobians

Jr =

⎛⎝ 0 1 0
1 0 0

−v/2 (u/2− v) 2

⎞⎠ and Jl =

⎛⎝ 0 1 0
1 0 0

v/2 −u/4 2

⎞⎠.

The Semi-direct Product of W (1) and SL(2, R)

Recall from Volume 1 that the equations (2.79)–(2.81) defined operators (T1(B)f)(x, t)
and (T2(A)f)(x, t) that convert solutions of the heat equation into other solutions
where B ∈ W (1) and A ∈ SL(2, R). Then the fact that (T2(A)(T1(B)f))(x, t) and
(T1(B)(T2(A)f))(x, t) preserve solutions of the heat equation means that there must be
a way to combine W (1) and SL(2, R) to form a larger group of transformations.

The key to obtaining this larger group is the observation that the composite adjoint
operator, when applied to any function, has the property

T2(A−1)T1(B)T2(A) = T1(B′), (10.100)

where B = B(u, v, w), A = A(α, β, γ, δ), and B′ = B(uδ − vβ, vα− uγ,w).
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Define for the set of pairs g = (A,B) ∈ SL(2, R)×W (1):

T (g) = T2(A)T1(B).

Using this construction, the following group operation can be defined:

T (g1)T (g2)= [T2(A1)T1(B1)][T2(A2)T1(B2)]

=T2(A1)[T2(A2)T2(A−1
2 )]T1(B1)T2(A2)T1(B2)

= [T2(A1)T2(A2)][T2(A−1
2 )T1(B1)T2(A2)]T1(B2)

=T2(A1A2){[T2(A−1
2 )T1(B1)T2(A2)]T1(B2)}

=T (g1 ◦ g2). (10.101)

This is discussed in the references provided in Chapter 2.
In terms of parameters, if g = g(α, β, γ, δ;u, v, w) with the constraint that αδ−βγ =

1, then the parameters of g1 ◦ g2 = g′ would be given by the array⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α′

β′

γ′

δ′

u′

v′

w′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1α2 + β1γ2
α1β2 + β1δ2
γ1α2 + δ1γ2
γ1β2 + δ1δ2

u1δ2 − v1β2 + u2
v1α2 − u1γ2 + v2

w1 + w2 + (v1α2 − u1γ2)u2/4− (u1δ2 − v1β2)v2/4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10.102)

The first four rows in the above equation are the same as that for the group product
A1A2 = A′ for SL(2, R). Of course, only three of these rows are independent due to the
constraint that detA = 1. The last three rows illustrate the adjoint action of SL(2, R)
on W (1). All together, (10.102) can be thought of as the definition of a six-dimensional
group.

10.7 Objects That Are Not Quite Groups

When presented with a new definition and numerous examples illustrating the definition,
there is a tendency to believe “well then, doesn’t everything satisfy this definition?”
Therefore, a number of examples of mathematical objects that satisfy some (but not
all) of the group axioms are reviewed. These are therefore not groups.

10.7.1 Case Study 1: Closure Can Fail

First, consider the set of 3× 3 matrices of the form

A(a, b, c, d, e) =

⎛⎝1 a b
0 c d
e 0 1

⎞⎠, where a, b, c, d, e ∈ R.
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This is a parameterized set of matrices that defines a five-dimensional manifold embed-
ded in R3×3 ∼= R9, but it is not a Lie group because closure fails:⎛⎝ 1 a1 b1

0 c1 d1
e1 0 1

⎞⎠⎛⎝ 1 a2 b2
0 c2 d2
e2 0 1

⎞⎠ =

⎛⎝1 + b1e2 a2 + a1c2 b1 + b2 + a1d2
d1e2 c1c2 d1 + c1d2

e1 + e2 e1a2 1 + e1b2

⎞⎠.

From this it is clear that the structure of the 1s and 0s in the matrix are not preserved
under matrix multiplication, and the fundamental property of closure is not satisfied.
Note, however, that if we restrict the form of the matrices such that ei = 0 and define
g(a, b, c, d) = A(a, b, c, d, 0), then closure is satisfied and the product law

g(a1, b1, c1, d1)g(a2, b2, c2, d2) = g(a2 + a1c2, b1 + b2 + a1d2, c1c2, d1 + c1d2)

results. In fact, by restricting ci > 0, an inverse of each element can be defined and this
forms a group called the Mautner group with identity element g(0, 0, 1, 0).

10.7.2 Case Study 2: Even If Closure Holds, Associativity Can Fail

Consider the abstract set {e, a, b, c, d} and operation defined by the table

◦ e a b c d
e e a b c d
a a e d b c
b b c a d e
c c d e a b
d d b c e a

Clearly, closure is satisfied because the table is populated only with the elements of the
set. However, using the table, we see that (a ◦ b) ◦ c = d ◦ c = e. On the other hand,
a ◦ (b ◦ c) = a ◦ d = c. Therefore, (a ◦ b) ◦ c �= a ◦ (b ◦ c).

10.7.3 Case Study 3: Another Example of When Associativity Can Fail

As another example of an object that is not a group, consider continuous rigid-body
motion within an environment with crystallographic symmetry.22 Let rigid-body mo-
tions in Rn be denoted as g = (R, t) ∈ SE(n). Consider a crystal lattice in Rn with unit
cell Γ\Rn defined by some proper crystallographic space group Γ < SE(n). The coset
space Γ\SE(n) is then a set of motions equivalent under Γ such that all σ ∈ Γ\SE(n)
act on all x ∈ Γ\Rn to produce the equivalent σ · x.

This can be thought of in intuitive terms. As the origin of a reference frame at-
tached to a rigid body moves from the “primary” crystallographic unit to any other,
the reference frame can be “brought back” to the primary cell by removing (via modular
arithmetic) the translations that take the frame outside of the primary cell. Let this be
denoted as [g] = ([R], [t]), where [g] ∈ Γ\SE(n). Then for any x ∈ Γ\Rn (the unit cell),
[g] · x ∈ Γ\Rn also. Furthermore, for any g1, g2 ∈ SE(n), [g1] · ([g2] · x) ∈ Γ\Rn. It is
also the case that [g1 ◦ g2] · x ∈ Γ\Rn. However,

[g1 ◦ g2] · x �= [g1] · ([g2] · x) and [g1 ◦ g2] ◦ [g3] �= [g1] ◦ [g2 ◦ g3].
22For more details, see Chirikjian, G.S., “Mathematical Aspects of Molecular Replacement:

I. Algebraic Properties of Motion Spaces,” Acta. Cryst. A A67, pp. 435–446, 2011.
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For example, consider the lattice constructed from translating rectangular tiles in the
plane of dimensions w×h with the primary/reference cell occupying (x, y) ∈ [0, w]×[0, h].
In this case, [R] = R (since I\SO(2) ∼= SO(2)) and [t] = [t1 modw, t2 modh]T .

10.7.4 Case Study 4: Even If Associativity Holds Closure Doesn’t Have to

Given a set of square matrices, {A,B,C, . . .}, the Kronecker product is associative,

A ⊗̂ (B ⊗̂C) = (A ⊗̂B) ⊗̂C,

but it does not produce matrices of the same dimensions as the original matrices and
therefore violates closure.

10.7.5 Case Study 5: An Identity and Inverse Need Not Exist Even
When Associativity and Closure Hold

As a first example of this phenomenon, consider usual matrix multiplication and the set
consisting of all real square matrices of dimension N , RN×N . The identity matrix IN is
in this set and associativity of matrix multiplication holds, but not every square matrix
is invertible.

As a second example, consider the set of functions on any discrete group Γ, f : Γ → C,
such that ∑

γ∈Γ

|f(γ)|2 < ∞.

The set of all such functions is denoted as L2(Γ ). Then it is possible to define a convo-
lution operation for any two such functions, f1, f2 ∈ L2(Γ ), as

(f1 � f2)(γ′) =
∑
γ∈Γ

f1(γ)f2(γ−1 ◦ γ′).

It can be shown that � is associative (f1�f2)�f3 = f1�(f2�f3), but for general functions
fi ∈ L2(Γ ), the convolution operation will not be commutative: f1 � f2 �= f2 � f1.

A Kronecker delta function, δ(γ), can be defined that is equal to unity when γ = e
and zero otherwise. This then has the property that δ � f = f � δ. Therefore, (L2(Γ ), �)
is a set with associative (but noncommutative) operation and an identity element, δ.
However, in general, it is not possible to define f−1 ∈ L2(Γ ) such that f−1 � f = δ.
Thus, this does not form a group.

10.8 Chapter Summary

This chapter presented the basics of the theory of matrix Lie groups. This included a
brief review of general group theory, the definition of a matrix Lie group, the exponential
and logarithm maps, adjoint transformations, and Jacobian matrices. These tools will be
used in the following two chapters to define derivatives and integrals of functions on Lie
groups. These, in turn, will be invaluable in defining properties of stochastic processes
on Lie groups. For other introductions to group theory that emphasize different topics,
see [2, 10, 15].

In the next chapter there will be some discussion of differential forms. It turns out
that the behavior of differential forms on a manifold, in general (and a Lie group in
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particular), is related to its topological properties. This is a subfield of modern math-
ematics referred to as de Rham cohomology theory. We will touch on this in a very
elementary way as a small detour from the main themes of this book.

10.9 Exercises

10.1. Prove that there is one and only one identity element for any group.

10.2. Prove that for any group (G, ◦), for each g ∈ G there is exactly one inverse:
g−1 ∈ G.

10.3. Prove that for any group (G, ◦) and for any a, b ∈ G that (a ◦ b)−1 = b−1 ◦ a−1.

10.4. Prove that for any group (G, ◦) with identity element e and arbitrary g ∈ G that
e−1 = e and (g−1)−1 = g.

10.5. Prove that the definition of the semi-direct product in (10.25) satisfies the definition
of a group. Hint: Show that the identity is (eN , eH), where eN is the identity for N and
eH is the identity for H and (n, h)−1 = (ϕh−1(n−1), h−1).

10.6. Prove that the definition of the wreath product in (10.26) satisfies the definition
of a group. Hint: Show that the identity is (e, e, . . . , e;π0), where π0 is the identity
permutation, and for any g1, . . . , gn ∈ G and π ∈ Πn, the inverse of (g1, . . . , gn;π) ∈
Gn �Πn is (g1, . . . , gn;π)−1 = (g−1

π(1), . . . , g
−1
π(n);π

−1).

10.7. Show that the set of real N × N rotation matrices SO(N, R) (which is usually
written simply as SO(N)) forms a group under the operation of matrix multiplication.
Additionally, show that SO(N) = SU(N) ∩GL(N, R).

10.8. Show that the subgroup of Πn in which there is no change to the last n−k entries
is isomorphic to Πk.

10.9. Let G be a group and F be a field. For any given function f : G → F, show that
(Lhf)(g) and (Rhf)(g) in (10.24) have the properties

(Lh1(Lh2f))(g) = (L(h1 ◦ h2)f)(g),
(Rh1(Rh2f))(g) = (R(h1 ◦ h2)f)(g),

and
(Rh1(Lh2f))(g) = (Lh2(Rh1f))(g).

10.10. Let SE(n) denote the group of “special Euclidean” transformations (rigid-body
motions) in n-dimensional Euclidean space.

(a) Show that pure translations and pure rotations each form subgroups.
(b) Show that the translation subgroup is normal; that is, let H denote the set of pure

rotations and N denote the set of pure translations. Show that pure translations
and rotations described respectively with matrices of the form

(n, eH) .=
(

I r
0T 1

)
∈ SE(n); (eN , h) .=

(
A 0
0T 1

)
∈ SE(n)

each can be used to define groups under the operation of matrix multiplication, and
an arbitrary element of SE(n) can be written as (n, h) = (n, eH)(eN , h).
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(c) Show that

(n1, h1)(n2, h2) = (n1, eH)[(eN , h1)(n2, eH)(eN , h1)−1](eN , h1)(eN , h2).

10.11. Elements of the Galilean group can be thought of as matrices of the form

M(R,v,b, a) .=

⎛⎝ R v b
0T 1 a
0T 0 1

⎞⎠, where R ∈ SO(3), v,b ∈ R3, a ∈ R.

Verify that this is a group under matrix multiplication. What is its identity and what is
the form of its inverse? Show that this can be written as a double semi-direct product.
What is the dimension of this Lie group?

10.12. For the group SO(p, q) defined in Example 1 in Section 10.2.2, compute (a) Lie
algebra basis elements, (b) the structure constants, and (c) the matrix exponential
function.

10.13. For the group SIM(N) defined in Example 2 in Section 10.2.2, compute (a) Lie
algebra basis elements, (b) the structure constants, and (c) the matrix exponential
function.

10.14. For the group RN � GL+(N, R) defined in Example 3 in Section 10.2.2, com-
pute (a) Lie algebra basis elements, (b) the structure constants, and (c) the matrix
exponential function.

10.15. Verify that SO(3) and SE(3) are unimodular.

10.16. Prove that in every parameterization of a Lie group, g = g(q) ∈ G, that

Jl(q) = [Ad(g(q))]Jr(q). (10.103)

10.17. Verify (10.71).

10.18. Verify the left and right Jacobians for H(3) given in (10.72).

10.19. Verify (10.72) and [Ad(g)] for H(3) given in (10.74) in the exponential parame-
terization in (10.69).

10.20. Verify that the one-parameter subgroups stated in (10.80)–(10.82) are in fact
contained in SO(2, 1), and rederive them using the definition of the matrix exponential.

10.21. Using the product-of-exponential parameterization

g(t, u, v) = exp(tE1) exp(uE2) exp(vE3),

compute the Jacobians Jr(t, u, v) and Jl(t, u, v) and adjoint matrix Ad(g(t, u, v)) for the
group SO(2, 1). Is it unimodular?

10.22. Consider 2× 2 matrices of the form

g =
(

eλ x
0 e−λ

)
, λ, x ∈ R.

Verify that this is a Lie group under the operation of matrix multiplication. Construct
an inner product and orthonormal basis elements for the Lie algebra. What are the
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commutation relations? Compute the Jacobians and adjoint matrix. Is this a unimodular
Lie group?

10.23. Consider 2× 2 matrices of the form

g =
(

eλ x
0 eμ

)
, λ, μ, x ∈ R.

Verify that this is a Lie group under the operation of matrix multiplication. Construct
an inner product and orthonormal basis elements for the Lie algebra. What are the
commutation relations? Compute the Jacobians and adjoint matrix. Is this a unimodular
Lie group?

10.24. Verify that the group GL(2, R) consisting of real 2 × 2 invertible matrices is
unimodular. Hint: Use the parameterization

g =
(

a b
c d

)
with ad− bc �= 0.

As a basis for the Lie algebra, use

E1 =
(

1 0
0 0

)
, E2 =

(
0 1
0 0

)
, E3 =

(
0 0
1 0

)
, E4 =

(
0 0
0 1

)
.

What are the commutation relations? Based on what you observe for this case, is it
possible to infer that GL(n, R) is unimodular? Explain.

10.25. Verify that the the affine group of the line, or “ax + b” group, with elements of
the form

g(a, b) =
(

a b
0 1

)
and Lie algebra basis elements

E1 =
(

1 0
0 0

)
, E2 =

(
0 1
0 0

)
is not unimodular.

10.26. (a) Show that the Euler-angle-like product-of-exponential decomposition holds
for W (1):

B(u, v, w) = exp[(2w + uv/2)E3] exp[uE2] exp[vE1].

(b) Compute the matrix exponential parameterization B = exp[aE1 + bE2 + cE3] and
compare.

10.27. Compute the matrix exponential parametrization for SL(2, R).

10.28. Using the definitions in (2.79)–(2.81), show that (10.100) holds.

10.29. The group law for the six-dimensional “heat group” can be thought of abstractly
in terms of (10.101) and concretely in terms of (10.102). It is usually convenient to think
of group elements as matrices. Is it possible in this case to construct matrices, M(g),
with the property that M(g1 ◦ g2) = M(g1)M(g2)?

10.30. Verify the group law in (10.99). Hint: Given B, u = b23, v = b12, and w =
1
2b13 − 1

4b12b23.
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10.31. Prove (10.93). Hint: See the way that the matrix exponential for SE(3) is calcu-
lated in [8].

10.32. Prove that GL(2, R) and SL(2, R) are semi-simple.

10.33. Show that real 3× 3 matrices of the form

g(x, y, z, t) =

⎛⎝1 x z
0 t y
0 0 1

⎞⎠
form a Lie group under multiplication for x, y, x ∈ R and t ∈ R−{0}. This is called the
Mautner group. Calculate the left- and right-Jacobian matrices and their determinants.
Is this a unimodular group?

10.34. Show that since (10.62) holds, so too does

N∑
j=1

(
Cl

ij(A)Cj
km(A) + Cl

mj(A)Cj
ik(A) + Cl

kj(A)Cj
mi(A)

)
= 0.

10.35. In analogy with the “ZXZ” Euler angles in (10.87), the “ZYZ” Euler angles for
SO(3) are defined by

RZY Z(α, β, γ) .= R3(α)R2(β)R3(γ). (10.104)

Show that these two sets of angles are related by the equality

RZY Z(α, β, γ) = RZXZ(α + π/2, β, γ − π/2)

and compute Jl and Jr for the ZYZ case.
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Lie Groups II: Differential-Geometric Properties

This chapter discusses how a natural extension of the concept of directional derivatives
in Rn can be defined for functions on Lie groups.1 This “Lie derivative” is closely
related to the differential geometric properties of the group. Functions on a Lie group
can be expanded in a Taylor series using Lie derivatives.2 Explicit expressions for these
Lie derivatives in a particular parametrization can be easily obtained for Lie groups
using the appropriate concept of a Jacobian matrix as defined in the previous chapter.
Differential forms on Lie groups that are invariant under left or right shifts also are
computed from this Jacobian and satisfy the so-called Maurer–Cartan equations. This
is illustrated for a number of examples. The structure and curvature of Lie groups are
then related to these differential forms and expressed in coordinates using the Jacobian
matrix.

The main points to take away from this chapter are as follows:

• The derivative of a function on a Lie group can be computed in a concrete way using
elementary matrix operations and concepts from multivariable calculus.

• Differential forms for Lie groups satisfy certain conditions (i.e., the Maurer–Cartan
equations) which make them easier to work with than general manifolds.

• The structure and curvature of Lie groups can be described in terms of these dif-
ferential forms and computed explicitly in any parameterization using the Jacobian
matrices from the previous chapter.

This chapter is structured as follows. Section 11.1 defines the concept of direc-
tional derivatives in a Lie group and Section 11.2 explores many of its properties. Sec-
tion 11.3 defines Taylor-series expansions of functions about a point in a Lie group using
these directional (Lie) derivatives and Section 11.4 examines how to compute them in
coordinates using the Jacobian matrices introduced in the previous chapter. Section 11.5
considers a version of the chain rule related to the computation of Lie derivatives. Sec-
tion 11.6 views compact Lie groups as Riemannian symmetric spaces and views vector

1Here and throughout the remainder of this book the term “Lie group” should be read
as “matrix Lie group.” When adding prefixes to describe Lie groups such as “connected,”
“compact,” “semi-simple,” “unimodular,” etc., it will be convenient to eliminate “matrix”
from the list since almost all Lie groups that arise in applications have elements that can be
represented as finite-dimensional matrices. Therefore, the prefix “matrix” will only be used for
emphasis when this feature is particularly important.

2The concept of Lie derivative used here for scalar functions is a degenerate case of a more
general definition applied to vector fields that can be found in other books.
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fields in this light. Sections 11.7 and 11.8 respectively examine differential forms and
curvature in the context of Lie groups and their coset spaces.

11.1 Defining Lie Derivatives

The directional derivative of an analytic function3 f : Rn → R in the direction v is
defined as

(Dvf)(x) =
d

dt
f(x + tv)

∣∣∣∣
t=0

. (11.1)

In the special case when v = ei (the ith unit basis vector in Rn), then

(Deif)(x) =
∂f

∂xi
.

It can be shown that

(Dvf)(x) =
n∑

i=1

vi
∂f

∂xi
. (11.2)

In the following subsections, the generalization of this concept for functions of Lie-
group-valued argument is explained and demonstrated.

11.1.1 Left Versus Right

In the context of Lie groups, there is a very similar concept. Let X ∈ G, the Lie algebra
of the group G, and let f : G → R be an analytic function. This can be guaranteed
by restricting an analytic function f : RN×N → R to arguments g ∈ G ⊂ RN×N . Two
kinds of directional derivatives can be defined:4

(X̃rf)(g) .=
d

dt
f(g ◦ exp(tX))

∣∣∣∣
t=0

and (X̃ lf)(g) .=
d

dt
f(exp(−tX) ◦ g)

∣∣∣∣
t=0

.

(11.3)

These definitions are completely equivalent to

(X̃rf)(g) = lim
t→0

f(g ◦ exp(tX))− f(g)
t

and (X̃ lf)(g) = lim
t→0

f(exp(−tX) ◦ g)− f(g)
t

.

(11.4)

In this text, (X̃rf)(g) will be called the right Lie derivative of f(g) with respect to (or
in the direction of) X, and (X̃ lf)(g) likewise will be called the left Lie derivative. The
reason for the choice of these names used here is that they denote on which side of the
argument of the function the perturbation is made.

3That is, a smooth function for which the Taylor series computed about each point is
convergent in an open neighborhood around that point.

4The “l” and “r” convention used here is opposite that used in much of the mathematics
literature in which “l” and “r” denote which operators commute under left or right shifts.
Here, (X̃rf)(g), which is generated by an infinitesimal shift on the right side, commutes with
arbitrary left shifts and (X̃lf)(g), which is generated by an infinitesimal shift on the left side,
commutes with arbitrary right shifts.
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Note that left Lie derivatives commute with right shifts and right Lie derivatives
commute with left shifts. In other words, if (L(h)f)(g) .= f(h−1 ◦ g) and (R(h)f)(g) =
f(g ◦ h) for h, g ∈ G, then

(X̃rL(h)f)(g) = (L(h)X̃rf)(g) =
d

dt
f(h−1 ◦ g ◦ exp(tX))

∣∣∣∣
t=0

(11.5)

and

(X̃ lR(h)f)(g) = (R(h)X̃ lf)(g) =
d

dt
f(exp(−tX) ◦ g ◦ h)

∣∣∣∣
t=0

. (11.6)

If Ei is a basis for the Lie algebra G, then, for reasons analogous to those behind the
derivation of (11.2), it can be shown that if X =

∑n
i=1 xiEi, then

(X̃rf)(g) =
n∑

i=1

xi(Ẽr
i f)(g) and (X̃ lf)(g) =

n∑
i=1

xi(Ẽl
if)(g).

If {Ei} is an orthonormal basis analogous to the natural basis for Rn, which is denoted
as {ei}, then the associated differential operators will be denoted as Ẽr

i f , and likewise
for the left case.

11.1.2 Derivatives for SO(3)

If R ∈ G = SO(3), and the basis in (10.83) is used, then the derivatives of a function
f(R) can be computed using the definitions presented above. If R = R(α, β, γ) is the
ZXZ parameterization, then

Ẽr
1 =

sin γ

sinβ

∂

∂α
+ cos γ

∂

∂β
− cotβ sin γ

∂

∂γ
,

Ẽr
2 =

cos γ

sinβ

∂

∂α
− sin γ

∂

∂β
− cotβ cos γ

∂

∂γ
,

Ẽr
3 =

∂

∂γ
.

The operators Ẽl
i can be derived in a completely analogous way. Explicitly in terms

of ZXZ Euler angles,

Ẽl
1 = sinα cotβ

∂

∂α
− cosα

∂

∂β
− sinα

sinβ

∂

∂γ
,

Ẽl
2 = − cosα cotβ

∂

∂α
− sinα

∂

∂β
+

cosα

sinβ

∂

∂γ
,

Ẽl
3 = − ∂

∂α
.

In Section 11.4, a trick is revealed for easily computing such expressions for deriva-
tives when Jacobians are known. First, the general properties of these derivatives that
are independent of coordinates are described.

11.2 Important Properties of Lie Derivatives

In classical calculus in Rn, and its applications such as mechanics, the product rule and
chain rule are indispensable tools. In this section it is shown that the Lie derivative
inherits these properties.
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11.2.1 The Product Rule

Let f(g) and h(g) be two functions on a unimodular group G and assume that (X̃rf)(g)
and (X̃rh)(g) exist for all g ∈ G. Let

(f · h)(g) = f(g)h(g).

This is nothing more than the pointwise multiplication of the values of the functions at
any value of their arguments.

It then follows from the definition of X̃r that

(X̃r(f · h))(g)=
d

dt
[f(g ◦ exp(tX))h(g ◦ exp(tX))]

∣∣∣∣
t=0

=
[
d[f(g ◦ exp(tX))]

dt
h(g ◦ exp(tX))

+ f(g ◦ exp(tX))
d[h(g ◦ exp(tX))]

dt

]
t=0

=h(g)(X̃rf)(g) + f(g)(X̃rh)(g).

To summarize,

X̃r(f · h) = h · X̃rf + f · X̃rh (11.7)

(where · is just scalar multiplication of functions).

11.2.2 The Chain Rule (Version 1)

Let h : G → Rn be a vector-valued function of group-valued argument that has contin-
uous Lie derivatives at all values of its argument. Let f : Rn → Rm be a function with
continuous partial derivatives. Let k(g) = f(h(g)). In some situations it will be useful to
compute the Lie derivative of f(h(g)) = (f ◦h)(g) (where ◦ is composition of functions),

X̃rk = [X̃rk1, X̃
rk2, . . . , X̃

rkm]T ,

when the Lie derivatives of h(g) are already known. This can be achieved using the
chain rule:

X̃r[f(h(g))] =
∂f

∂hT
X̃rh , (11.8)

where ∂f/∂hT is an m × n matrix with entries [∂f/∂hT ]ij = ∂fi/∂hj and X̃rh is an
n-dimensional vector.

Instead of a scalar derivative operation applied to a vector-valued function, it is also
possible to define a vector-valued derivative of a scalar-valued function:

(X̃rf)(g) = [(X̃r
1f)(g), . . . , (X̃r

nf)(g)]. (11.9)

Unlike X̃rk described above, this is a row vector, reflecting that it belongs to the dual
(cotangent) space of the Lie group rather than in a shifted copy of the Lie algebra
(tangent space).

A different (and more interesting) form of the chain rule in (11.8) is discussed in
Section 11.5.
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11.3 Taylor Series on Lie Groups

The Taylor series of functions on Rn is a central concept in classical calculus and its
applications. The concept extends naturally to functions of Lie-group-valued arguments.
In Section 11.3.1 a brief review of the classical Taylor series is presented for completeness.
This is followed by the natural extension to the Lie-group setting in Section 11.3.2.

11.3.1 Classical Taylor Series and Polynomial Approximation in Rn

The One-Dimensional Case

Consider the set of functions on a closed interval of the real line [a, b] that can be
described as a weighted sum of the form

fN (x) =
N∑

k=0

akx
k,

where ak ∈ R for all k ∈ {0, 1, 2, . . .}.
Classical calculus is concerned with the convergence properties of such series at each

point x ∈ [a, b] as N →∞. If the limit

f(x) = lim
N→∞

fN (x)

exists for all x ∈ [a, b], then f(x) is called a real analytic function on [a, b].
Furthermore, if f(x) is assumed to be smooth, then, by definition, all of its derivatives

must exist, and using the notation f (k)(x) for dkf/dxk, it is therefore possible to write
the cascade of equations

f(x)=a0 + a1 x + a2 x2 + a3 x3 + a4 x4 + · · ·

f (1)(x)=a1 + 2 · a2 x + 3 · a3 x2 + 4 · a4 x3 + · · ·

f (2)(x)=2 · a2 + 3 · 2 · a3 x + 4 · 3 · a4 x2 + · · ·

f (3)(x)=3 · 2 · a3 + 4 · 3 · a4 x + · · ·
...

f (n)(x)=n! an + · · · .

Evaluating both sides at x = 0 results in

f (k)(0) = k! ak, (11.10)

and so for real-valued analytic functions on the real line,

f(x) = f(0) + f (1)(0)x +
1
2!

f (2)(0)x2 +
1
3!

f (3)(0)x3 + · · · =
∞∑

k=0

1
k!

f (k)(0)xk.

(11.11)
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While in principle it is possible to sum up an infinite number of terms to reproduce the
exact value f(x) analytically, in practice when evaluating numerically on a computer,
the sum always is truncated at a finite value. When truncated at k = N , the result is a
polynomial, fN (x), that locally approximates f(x).

Since the accuracy of the approximation obviously will depend on the distance of
x from the point 0 where the approximation becomes exact, it is useful to shift the
focus to the point of interest. If this point is x = a, then g(x) = f(x + a) will have the
important point at x = 0. Expanding g(x) in a series of the form (11.11) gives

g(x) = f(a) + f (1)(a)x +
1
2!

f (2)(a)x2 +
1
3!

f (3)(a)x3 + · · · .

Then making the change of variables x → x−a gives the expansion of g(x−a) = f(x):

f(x) = f(a) + f (1)(a) (x− a) +
1
2!

f (2)(a) (x− a)2 +
1
3!

f (3)(a) (x− a)3 + · · · . (11.12)

Why can this be done? Because the local “shape” of the graph of a function is completely
determined by its derivatives and if all points on a graph are simultaneously shifted by
the same amount, the shape of the plot does not change—that is, if the derivatives of
a function are computed at x = 0 and then all of this information is shifted to a new
location on the real line, the function constructed using this shifted information will be
the same as if the original function were shifted.

Note that this is not the only way to approximate functions on the interval [a, b] using
the basis {1, x, x2, x3, . . .}. For example, instead of using condition (11.10) to constrain
the values of {ak}, it might be desirable to approximate f(x) with the polynomial

f̃N (x) =
N∑

k=0

ãkx
k such that ãk = arg min

αk

∫ b

a

|f(x)−
N∑

k=0

αkx
k|2w(x) dx

for a chosen weighting function w(x) ≥ 0 for all x ∈ [a, b]. Since the above minimiza-
tion of a quadratic cost function can be carried out in closed form, the mean-squared
approximation f̃N (x) would require solving a system of equations of the form

M ã = b, where Mkl =
∫ b

a

xk+lw(x) dx; bk =
∫ b

a

xkf(x)w(x) dx.

Alternatively, if {pn(x)} is a complete set of polynomials orthonormal with respect to
the weight w(x), then f̃N (x) =

∑N
k=0 ã′

kpk(x) and the coefficients {ã′
k} can be obtained

without matrix inversion.

The Multi-dimensional Case

In the same way that any real analytic function f(x) on an interval can be expanded
in the polynomial basis {1, x, x2, x3, . . .}, any function of two variables f(x, y) on
[a1, b1] × [a2, b2] can be expanded in a basis consisting of products of {1, x, x2, x3, . . .}
and {1, y, y2, y3, . . .}. In other words, a real analytic function on a planar region is one
for which it is possible to write

f(x, y) =
∞∑

m=0

∞∑
n=0

amnxmyn.
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Taking partial derivatives of both sides and evaluating at x = [x, y]T = 0 constrains the
coefficients {amn} as

amn =
1
m!

1
n!

∂m+nf

∂xm∂yn

∣∣∣∣
x=0

.

The extension to higher dimensions follows in a natural way.
Usually, in multi-dimensional Taylor-series expansions, only terms up to quadratic

order in the components of x are retained. This is written for x ∈ Rn as

f(x) = f(0) +
n∑

i=1

∂f

∂xi

∣∣∣∣∣
x=0

· xi +
1
2

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj

∣∣∣∣∣∣
x=0

· xixj + O(‖x‖3). (11.13)

11.3.2 Taylor Series on Lie Groups

In a sense, Lie groups were “built” to allow for Taylor series. This is because Lie groups
are “analytic manifolds” with an “analytic group operation.” This all boils down to
allowing for Taylor series approximation in a small neighborhood around any group
element, as well as the Taylor-series approximation of the product of two group elements
that are both slightly perturbed from their original values.

Two concepts are often confused: analyticity and smoothness. A Lie group is smooth
because through any point g0 ∈ G, a curve can be defined by the smooth functions
g0 → g0 ◦ exp(tX) and g0 → exp(tX) ◦ g0 for arbitrary X ∈ G. The results of these
functions can be called g1(t) and g2(t), respectively. The “velocities” Ωr

i = g−1
i (dgi/dt)

and Ωl
i = (dgi/dt)g−1

i and all of their derivatives, dnΩr
i /dt

n and dnΩl
i/dt

n, exist for all
n = 1, 2, . . . . Analytic functions are smooth functions that have the additional property
that their Taylor series are convergent at any point. Exactly what is meant by a Taylor
series of a function on a Lie group is defined below. With this in hand, the concept
of analytic functions and analytic group operation that appear in the formal defini-
tion of a Lie group can be more easily understood. For a more complete and rigorous
treatment, see [2].

Let f : Rn×n → R be an analytic function. Since Rn×n can be identified with Rn2
,

it is already clear how to define f as an infinite series of polynomials. Now, if G is a
group consisting of n× n real matrices, then G ⊂ Rn×n, and, naturally, f : G → R is
well defined. Since elements of a Lie group in a sufficiently small neighborhood of the
identity can be expanded in the convergent Taylor series

exp(tX) = I +
∞∑

k=1

tk

k!
Xk

and since f is an analytic function and the group operation is analytic, it follows that

f(g ◦ exp(tX)) =
∞∑

n=0

an(g)tn.

This is a one-dimensional Taylor series in t ∈ R. It follows from the one-dimensional
Taylor formula (11.11) that

an(g) =
1
n!

dn

dtn
f(g ◦ exp tX)

∣∣∣∣
t=0
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and so

f(g ◦ exp tX) = f(g) +
d

ds
f(g ◦ exp sX)

∣∣∣∣
s=0

t +
1
2!

d2

ds2 f(g ◦ exp sX)
∣∣∣∣
s=0

t2 + · · · .

(11.14)
However, this can be written in a different form. Consider a2(g) and write

a2(g)=
1
2

d

dt2

[
d

dt1
f(g ◦ exp t1X ◦ exp t2X)

∣∣∣∣
t1=0

]∣∣∣∣∣
t2=0

=
1
2

d

dt2

[
d

dt1
f(g ◦ exp t2X ◦ exp t1X)

∣∣∣∣
t1=0

]∣∣∣∣∣
t2=0

=
1
2

d

dt2

[
(X̃rf)(g ◦ exp t2X)

]∣∣∣∣
t2=0

=
1
2
(X̃rf)2(g), (11.15)

where X̃rf was defined in (11.3), and due to the property that X̃rf =
∑d

k=1 xkẼ
r
kf , the

Taylor series on G can be written about g ∈ G to second order in the “small” coefficients
{xi} as

f(g ◦ exp tX) = f(g) + t

d∑
k=1

(Ẽr
kf)(g)xk +

1
2
t2

d∑
i=1

d∑
j=1

(Ẽr
i Ẽr

j f)(g)xkxl + O(‖x‖3t3).

(11.16)

Everything follows in an analogous way when expanding in a “left” Taylor series:

f(exp(−tX) ◦ g) = f(g) + t
d∑

k=1

(Ẽl
kf)(g)xk +

1
2
t2

d∑
i=1

d∑
j=1

(Ẽl
iẼ

l
jf)(g)xkxl + O(‖x‖3t3).

(11.17)

11.4 Relationship Between the Jacobian and Lie Derivatives

In practice, when computing the Lie derivatives (Ẽr
i f)(g) and (Ẽl

if)(g), the function
f(g) will be expressed in terms of the particular parameterization g = g(q) that is being
used. Therefore, it is convenient to have expressions that allow for the computation of
the Lie derivatives in terms of operations involving q. The way to do this is explained
in this subsection for general X ∈ G rather than for a particular basis element Ei ∈ G.

The explicit forms of the operators (X̃ lf)(g(q)) and (X̃rf)(g(q)) in any n-parameter
description of g ∈ G can be found as follows. Start with (X̃rf)(g(q)). Since f(g) and
the parameterization g(q) are both assumed to be analytic, expanding the composed
mapping f̃(q) = f(g(q)) in a Taylor series is possible and gives

(X̃rf)(g(q)) =
n∑

i=1

∂f̃

∂qi

dqr
i

dt

∣∣∣∣∣
t=0

,

where {qr
i } are the parameters such that g(q) ◦ exp(tX) = g(qr(t)).
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The coefficients dqr
i

dt

∣∣∣
t=0

are determined by observing two different-looking, though

equivalent, ways of writing g(q) ◦ exp(tX) for small values of t:

g + tgX ≈ g ◦ exp(tX) ≈ g + t
n∑

i=1

∂g

∂qi

dqr
i

dt

∣∣∣∣
t=0

.

These approximation signs become exact as t becomes infinitesimally small. We then
have that

X =
n∑

i=1

g−1 ∂g

∂qi

dqr
i

dt

∣∣∣∣∣
t=0

,

or

(X)∨ =
n∑

i=1

(
g−1 ∂g

∂qi

)∨
dqr

i

dt

∣∣∣∣∣
t=0

,

which is written as5

(X)∨ = Jr
dqr

dt

∣∣∣∣
t=0

.

This allows us to solve for
dqr

dt

∣∣∣∣
t=0

= J−1
r (X)∨.

The final result is then

(X̃rf)(g(q)) =
n∑

i=1

∂f̃

∂qi
eT

i J−1
r (X)∨. (11.18)

This can also be written in matrix form as

(X̃rf)(g(q)) =
n∑

j=1

xjeT
j J−T

r

∂f̃

∂q
, (11.19)

where xj = eT
j (X)∨ and X =

∑
j xjEj .

Analogous calculations for the left Lie derivative give

(X̃ lf)(g(q)) = −
n∑

i=1

∂f̃

∂qi
eT

i J−1
l (X)∨. (11.20)

This can also be written in matrix form as

(X̃ lf)(g(q)) = −
n∑

j=1

xjeT
j J−T

l

∂f̃

∂q
. (11.21)

As an example of these equations, refer back to Section 11.1.2 where the derivatives
for SO(3) were given for X = Ej for j = 1, 2, and 3. The “body” Jacobian Jr for
SO(3) has an inverse of the form given in (10.90). Taking the transpose and multiplying
by the gradient vector [∂/∂α, ∂/∂β, ∂/∂γ]T as in (11.19) then gives [Ẽr

1 , Ẽ
r
2 , Ẽ

r
3 ]T . For

the special case of SO(3), the relationship Jl = RJr holds, and so J−1
l = J−1

r RT can
5As usual, Jr = Jr(q), but in the expressions that follow, the dependence on q is suppressed

to avoid clutter.
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be used to easily to compute J−1
l once J−1

r is known. The resulting J−1
l is given in

(10.90). Then (11.21) can be used to easily obtain the derivatives [Ẽl
1, Ẽ

l
2, Ẽ

l
3]

T listed in
Section 11.1.2.

11.5 The Chain Rule for Lie Groups (Version 2)

Given a mapping φ : Rn × R≥0 → Rn and a function F : Rn × R≥0 → R, the classical
chain rule states

∂

∂t
[F (φ(x, t), t)] =

∂F (k, t)
∂kT

∣∣∣∣
k=φ(x,t)

∂φ

∂t
+

∂F (k, t)
∂t

∣∣∣∣
k=φ(x,t)

(11.22)

or, equivalently,

∂

∂t
[F (φ(x, t), t)] =

∂F (k, t)
∂t

∣∣∣∣
k=φ(x,t)

+
n∑

i=1

∂φi

∂t

∂F (k, t)
∂ki

∣∣∣∣∣
k=φ(x,t)

. (11.23)

Given a Lie group G and defining x = (log g)∨, then one instance of the above that
is relevant to the context of Lie groups is when

φ(x, t) = [log(m−1(t) ◦ g)]∨, where m−1(t) .= [m(t)]−1,

g is a fixed element of G, and m(t) is a path in G parameterized by time t. Although
the logarithm map may not be defined for all g ∈ G, for the groups of most interest in
applications, it will be defined for all g ∈ G except possibly a set of measure zero.

A function f : G×R≥0 → R can be expressed as one in exponential coordinates as

F (x, t) = f(g, t), where g = expX and x = X∨. (11.24)

In many applications that will follow in subsequent chapters, f(g, t) will be a time-
evolving family of probability density functions (pdfs) on G, and we will be interested in
the integral of this function over subsets of G. Although the details of how to integrate
over G are left to the next chapter, it is sufficient for the purposes of the current
discussion to know that since G is a manifold, it is possible to integrate on G using
concepts from Chapter 8 of Volume 1.

If for each fixed value of t, the support of f(g, t) in G is confined to a small ball
around m, then when computing integrals over G, only values for which d(m, g) =
‖ log(m−1 ◦ g)‖ � 1 will contribute. Thus, for such “concentrated” pdfs, these are the
only values of g ∈ G that really matter. This means that even though m(t) may not be
small (in the sense of being close to the identity of G), we can focus our attention on
values of g where ‖m−1 ◦ g − I‖ will be small and make the convenient approximation

log(m−1 ◦ g) ≈ m−1 ◦ g − I. (11.25)

Therefore, since the ∨ and ∂/∂t operators are both linear and they commute, when the
above approximation holds,

∂φ

∂t
=

(
dm−1

dt
g

)∨
= −

(
m−1 dm

dt
m−1g

)∨
.
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If m(t) is defined by a system of ordinary differential equations (ODEs) of the form

dm

dt
= mA(t) or

dm

dt
= S(t)m, where m(0) = m0

(as would be the case for a body-fixed or space-fixed description of free rigid-body
motion), then, using (11.25),

∂φ

∂t
= − (

Am−1g
)∨ ≈ − (

A[I + log(m−1 ◦ g)]
)∨

= −a− (
A log(m−1 ◦ g)

)∨
or

∂φ

∂t
=− (

m−1Sg
)∨

= − (
(m−1Sm)(m−1 ◦ g)

)∨ ≈ − (
(m−1Sm)[I + log(m−1 ◦ g)]

)∨
=−Ad(m−1)s− (

(m−1Sm) log(m−1 ◦ g)
)∨

.

However, if ‖ log(m−1 ◦ g)‖ is small, then the second term in each of the above two
equations is insignificant compared to the first, and we can write the (approximate)
equalities

∂φ

∂t
≈ −a and

∂φ

∂t
≈ −Ad(m−1)s. (11.26)

As a special case, if A is constant of the form

A =
n∑

i=1

aiEi and m(t) = exp

(
t

n∑
i=1

aiEi

)
,

then m−1Am = A, and both expressions in (11.26) reduce to the same thing. Further-
more, if both ‖(log g)∨‖ and ‖(log m)∨‖ are small, then

log(m−1 ◦ g) ≈ (log g)∨ − (log m)∨

and
∂φ

∂t
≈ − d

dt
(log m)∨ ≈ −a,

which is consistent with, although not a necessary condition for, (11.26) to hold.
In any case, since (11.26) holds and since near the identity e ∈ G

Ẽr
i f ≈ −Ẽl

if ≈
∂F

∂xi
,

where the relationship between f and F is given in (11.24), it follows that (11.22) can
be adapted to the Lie group setting involving concentrated functions as

∂

∂t

[
f(m−1(t) ◦ g, t)

] ≈ ∂f(k, t)
∂t

∣∣∣∣
k=m−1◦g

−
n∑

i=1

ai · (Ẽr
i f)

∣∣∣∣∣
k=m−1◦g

(11.27)

or

∂

∂t

[
f(m−1(t) ◦ g, t)

] ≈ ∂f(k, t)
∂t

∣∣∣∣
k=m−1◦g

+
n∑

i=1

ai · (Ẽl
if)

∣∣∣∣∣
k=m−1◦g

. (11.28)
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11.6 Compact Connected Lie Groups as Riemannian
Symmetric Spaces

Let M be a connected Riemannian manifold and let γp(t) be a geodesic curve in M that
passes through p ∈ M when t = 0—that is, γp(t) ∈ M for all specified values of t and
γp(0) = p. If X and Y are vector fields on M and Xp and Yp denote vectors evaluated
at p ∈ M , then 〈Xp,Yp〉 and R(Xp,Yp) respectively denote coordinate-free versions of
Riemannian metric and curvature tensors evaluated at p ∈ M . The choice of a metric
is not unique, and it influences the value of the curvature tensor.

A Riemannian symmetric space is a special kind of Riemannian manifold such that
for each point p ∈ M there is an isometry (distance-preserving mapping) Ip : M → M
for which Ip(p) = p and Ip(γ(t)) = γ(−t) [9]. An example of Ip was inp discussed in
Section 10.1.6 in the context of homogeneous spaces. A number of books on differential
geometry and harmonic analysis focus on symmetric spaces, e.g., [10, 11]. The purpose
of this section is to discuss the specific case of compact connected Lie groups. Since these
can always be viewed as a subset G ⊂ RN×N ∼= RN2

, they always admit a Riemannian
metric induced by the ambient space and hence are Riemannian manifolds.

11.6.1 Invariant Vector Fields: The Geometric View

Let G be any compact connected Lie group. If g ∈ G, then left and right shifts by h ∈ G
are defined as lh(g) .= h ◦ g and rh(g) .= g ◦ h. Similarly, if Xg denotes a vector assigned
to g ∈ G, then the collection X = {Xg|g ∈ G} defines a vector field on G where each
Xg can be defined according to how it acts on an arbitrary function f ∈ C∞(G) as

(Xgf)(g) .=
n∑

i=1

xi(g)(Ẽr
i f)(g). (11.29)

Here, each xi(g) is a smooth scalar function on G which serves as the ith component of
the vector in the vector field evaluated at g ∈ G.

This is equivalent to the more general definition of a vector field on a manifold
evaluated at a point p in a neighborhood parameterized locally with coordinates {qi},

(Xpf)(p) =
n∑

i=1

xi(p)
∂f

∂qi

∣∣∣∣
p(q)=p

.

This X should not be confused with an element of the Lie algebra, X ∈ G. However, as
will be seen shortly, a correspondence between elements of a Lie algebra and invariant
vector fields can be made in the case when each xi(g) in (11.29) is independent of g.

The space of all smooth vector fields on G is denoted as X(G), and this space con-
tains X . The push forwards of these vector fields associated with the mappings
rh : G → G and lh : G → G are defined in terms of individual vectors respectively
as (rh)∗(Xg)

.= Xg◦h and (lh)∗(Xg)
.= Xh◦g. To avoid proliferation in the number

of parenthesis, the shorthand for (rh)∗(Xg) and (lh)∗(Xg) is rh,∗(Xg) and lh,∗(Xg),
respectively. These push forwards applied to the whole vector fields are denoted as
rh,∗X = {rh,∗(Xg)|g ∈ G} and lh,∗X = {lh,∗(Xg)|g ∈ G}. A vector field is called left or
right invariant, respectively, if lh,∗X = X or rh,∗X = X . Of course, these equalities are
at the level of a whole vector field, not at the level of individual vectors, the latter of
which are generally not invariant under shifts.

For example, consider the group SO(2) ∼= S1 embedded as the unit circle in the
plane in the usual way. A vector field on the circle can be defined to consist of unit
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tangent vectors assigned to each point and pointing counterclockwise. The position at
an arbitrary planar position assigned to g(θ) ∈ SO(2) will be xg(θ) = [cos θ, sin θ]T , and
xg(θ1)◦g(θ2) = xg(θ1+θ2). The unit tangent vector associated with the group element g(θ)
when written as a vector in R2 will be Xg(θ) = [− sin θ, cos θ]T . Shifting by h = g(θ0) ∈
SO(2) will make g(θ) → g(θ+θ0) and lh,∗(Xg(θ)) = Xg(θ0)◦g(θ) = R(θ0)Xg(θ). Since this is
a commutative group, left and right shifts are the same, and so there is no need to address
rh,∗. Viewed graphically, a circle drawn on a plane with counter-clockwise-pointing unit-
length tangents emanating from each point will look the same if the whole picture is
rotated about the center of the circle by any amount. This is one way to visualize the
invariance of this vector field. That does not mean that each tangent vector remains
where it started; indeed each vector moves together with each group element. However,
the field as a whole is invariant under the rotation. In contrast, if any of the tangent
vectors had a length that was different than the others, rotating the picture would result
in a different picture. In that case, the vector fields would not be invariant.

11.6.2 Bi-invariant Vector Fields and Associated Metrics

In general, the vector fields X need not be left or right invariant. However, every left- or
right-invariant vector field X on G can be identified with a Lie algebra basis element as

X ←→ X (11.30)

by returning to (11.29) and setting

xi(g) = (X,Ei),

where (·, ·) is the inner product for the Lie algebra G. This is the same as setting
xi(g) = xi(e). Because of the above correspondence, when the discussion is restricted
to left-invariant vector fields on Lie groups, it is possible to make the correspondences

lg,∗(Xe) ↔ gX and rg,∗(Xe) ↔ Xg, (11.31)

where X ∈ G corresponds to Xe ∈ TeG.
Suppose that G admits a Riemannian metric 〈Xg,Yg〉 (which need not be in-

variant under left or right shifts in the sense that 〈Xg,Yg〉, 〈lh,∗(Xg), lh,∗(Yg)〉, and
〈rh,∗(Xg), rh,∗(Yg)〉 can all take different values). This metric need not be the one that
results from the fact that G ⊂ RN×N .

It turns out that when G is compact, it is always possible to construct a new bi-
invariant Riemannian metric from this old one. This is achieved by averaging over the
group. The bi-invariant Riemannian metric resulting from averaging is defined as

〈Xg,Yg〉G .=
∫

G

∫
G

〈lh,∗rk,∗Xg, lh,∗rk,∗Yg〉 d(h) d(k). (11.32)

This is because, as we will see in the next chapter, compact Lie groups always admit
bi-invariant integration measures and hence are unimodular.6

6If g ∈ G (an n-dimensional unimodular Lie group), then in the context of integration d(g)
denotes the bi-invariant differential volume element, which is an n-form that we will soon see
how to construct. This is not to be confused with dg in (11.34), which is a 1-form. When the
context is clear, d(g) is often abbreviated as dg. Although generally it is not good to use the
same notation for two very different objects, this should not be a source of confusion since
1-forms and n-forms will rarely be used simultaneously, and the one being discussed will be
clear from the context. This is analogous to how d(x) and dx are used in the context of x ∈ R

n,
as explained in footnote 7 in Section 2.2 of Volume 1, and how the abbreviation of d(x) as dx
does not usually cause difficulties.
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It is left as an exercise to verify that this metric is bi-invariant.

11.6.3 Lie Bracket Versus Jacobi–Lie Bracket

In (6.62) of Volume 1, the Lie bracket of two vector fields, A and B, on a manifold was
defined. In order to distinguish this from the Lie bracket of two Lie algebra elements,
[A,B], let us refer to (6.62) here as the Jacobi–Lie bracket. When writing g = g(q) and
using the shorthand f(q) for f(g(q)), (6.62) can be written in component form for the
case of a Lie group as

[Ag,Bg]f =
n∑

i=1

n∑
j=1

(
aj

∂bi

∂qj
− bj

∂ai

∂qj

)
∂f

∂qi
,

where ai = ai(g(q)) and bi = bi(g(q)) are the coefficient functions that define A and B.
If the vector fields are left invariant, then the Jacobi–Lie bracket of left-invariant

vector fields on a Lie group and the Lie bracket on the Lie algebra are related by the
fact that

([Ag,Bg]f)(g) =
n∑

k=1

([A,B], Ek)(Ẽr
kf)(g). (11.33)

This follows from the definition in (11.29), the inner product (·, ·) on the Lie algebra,
and the fact that the differential operators {Ẽr

kf} commute with left shifts. Note that
(11.33) is equivalent to

[A,B] ↔ [A,B] and 〈[Ag,Bg], Eg,k〉G = ([A,B], Ek)

when the normalization7

〈Eg,k, Eg,k〉G = (Ek, Ek) = 1

is enforced, and the correspondence Ek ↔ Ek is analogous to that in (11.30). Since
([A,B], Ek) is independent of g, it follows that the Jacobi–Lie bracket of left-invariant
vector fields in (11.33) is again left invariant.

If RG(Xg,Yg) is the Riemannian curvature tensor computed with respect to 〈Xg,Yg〉G
at the point g ∈ G, then the following identities involving the (Jacobi)–Lie bracket
[Xg,Yg] hold when Xg, Yg, Zg, and Wg are all left invariant [9]:

〈[Xg,Yg],Zg〉G = 〈Xg, [Yg,Zg]〉G,

RG(Xg,Yg)Zg =
1
4
[[Xg,Yg],Zg],

〈RG(Xg,Yg)Zg,Wg〉G =
1
4
〈[Xg,Yg], [Zg,Wg]〉G.

As a consequence, the sectional curvatures of compact connected Lie groups are always
nonnegative:

〈RG(Xg,Yg)Xg,Yg〉G =
1
4
〈[Xg,Yg], [Xg,Yg]〉G ≥ 0

with equality iff [Xg,Yg] = O.
Interestingly, the geodesics with respect to the bi-invariant Riemannian metric on G

that pass through the identity element are the one-parameter subgroups of G [9].
7Here, the subscript k is an indexing number and should not be confused with the case

when a subscript denotes a specific group element. In Ek, the number k is in {1, . . . , n}; in Ag,
the subscript is g ∈ G; and in Eg,k, the subscripts denote both.
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11.7 Differential Forms and Lie Groups

Differential forms for Lie groups are constructed in a very straightforward way. If g ∈ G
is parameterized with some coordinates q ∈ Rn, then the derivative of g(q) is well
defined as

dg
.=

n∑
i=1

∂g

∂qi
dqi. (11.34)

This is nothing more than the classical chain rule applied to the matrix-valued func-
tion g(q).

It is then straightforward to compute the following 1-forms8:

Ωr(g) .= g−1 dg and Ωl(g) .= dg g−1. (11.35)

Here, Ωr(g) is invariant under left translations of the form g → g0 ◦ g and Ωl(g) is
invariant under right translations of the form g → g ◦ g0.

11.7.1 Properties of Ωr(g) and Ωl(g)

Note that Ωr(g) , Ωl(g) ∈ G and so

Ωr(g) =
n∑

i=1

ω(i)
r (g)Ei and Ωl(g) =

n∑
i=1

ω
(i)
l (g)Ei. (11.36)

The corresponding “vectors” are defined as9

ω r(g) = (Ωr(g))∨ = [ω(1)
r (g), . . . , ω(n)

r (g)]T ∈ Rn

and
ω l(g) = (Ωl(g))∨ = [ω(1)

l (g), . . . , ω(n)
l (g)]T ∈ Rn.

Instead of evaluating (11.35) at g = e◦g = g ◦e, evaluating at g1 = g0 ◦g and g2 = g ◦g0
provides some insight into the special properties of Ωr(g) and Ωl(g). In particular,
substituting g1 = g0 ◦ g in for g yields

Ωr(g0 ◦ g) = g−1
1 dg1 = g−1 ◦ g−1

0 ◦ g0 dg = g−1 dg = Ωr(g) (11.37)

and
Ωl(g0 ◦ g) = dg1 g−1

1 = g0 dg g−1 ◦ g−1
0 = g0 Ωl(g) g−1

0 , (11.38)

and substituting g2 = g ◦ g0 in for g yields

Ωr(g ◦ g0) = g−1
2 dg2 = g−1

0 ◦ g−1dg g0 = g−1
0 Ωr(g) g0 (11.39)

and
Ωl(g ◦ g0) = dg2 g−1

2 = dg g0 ◦ g−1
0 ◦ g−1 = Ωl(g). (11.40)

8The subscripts l and r are opposite to the usual convention in the literature; Here, they
denote on which side (“left” or “right”) the differential appears in the expression.

9This is one of those rare instances in this book when superscripts are used. The reason for
this is so as not to clash with the subscript r and l. The use of parentheses is to avoid confusion
between superscripts and powers.
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It follows from these expressions that

ω r(g0 ◦ g) = ω r(g), ω l(g0 ◦ g) = [Ad(g0)]ω l(g) (11.41)

and

ω r(g ◦ g0) = [Ad(g−1
0 )]ω r(g), ω l(g ◦ g0) = ω l(g); (11.42)

that is, the entries in the vector ω r(g) are invariant under left shifts and the entries in
ω l(g) are invariant under right shifts. In fact, these entries form a basis for the space
of all differential 1-forms on the group G. All other invariant differential forms can be
constructed from these.

Note that these are related to the Jacobian matrices defined in (10.51) as

ω r(g) = Jr(q) dq and ω l(g) = Jl(q) dq

and

ω l(g) = [Ad(g)]ω r(g).

The corresponding differential 1-forms are

ω(i)
r = ω r(g) · ei and ω

(i)
l = ω l(g) · ei. (11.43)

From these 1-forms, the rules established for computing products of forms in Rn are
followed to create left-invariant k-forms:

a(k)
r

.=
∑

i1<i2<···<ik

ai1,...,ik
ω(i1)

r ∧ ω(i2)
r ∧ · · · ∧ ω(ik)

r

and likewise for a
(k)
l . The parenthesis is used to distinguish the superscript that is used

to denote the scalar entry of the vector ω
(i)
r = ω r(g) · ei.

11.7.2 The Maurer–Cartan Equations

The application of exterior derivatives to differential forms on Lie groups has a special
structure that is captured in the Maurer–Cartan equations defined below.

Derivation

From (11.34) and the rules for computing exterior products,10

d(dg)=d

(
n∑

i=1

∂g

∂qi
dqi

)
.=

n∑
i=1

d

(
∂g

∂qi

)
∧ dqi

=
n∑

i=1

⎛⎝ n∑
j=1

∂2g

∂qi∂qj
dqi ∧ dqj

⎞⎠ =
n∑

i=1

n∑
j=1

∂2g

∂qi∂qj
dqi ∧ dqj . (11.44)

10The notation d should not be confused with the usual differential. Whereas its meaning
does coincide with the usual differential when applied to a 0-form (i.e., a scalar function), it
does not follow the same rules as the usual differential when applied to other differential forms.
The rules for the exterior derivative d are defined in Chapter 6 of Volume 1.
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In the absence of singularities, the partial derivatives with respect to qi and qj commute,
and due to the anti-symmetry of the wedge product, the last term is equal to 0, and so

d(dg) = 0. (11.45)

This means that for a Lie group and a parameterization satisfying

dg = g Ωr and dg = Ωl g,

the following equations result:

d(dg) = dg Ωr + gdΩr and d(dg) = dΩl g + Ωl dg.

Multiplying by g−1 on the left of the first equation above and on the right of the second
and using (11.45) yields

dΩr + Ωr ∧Ωr = 0 and dΩl + Ωl ∧Ωl = 0. (11.46)

Dropping the subscripts l and r (since the following equations apply to both cases) and
substituting in (11.36) gives

Ω ∧Ω =

(
n∑

i=1

ω(i)Ei

)
∧

⎛⎝ n∑
j=1

ω(j)Ej

⎞⎠
=

n∑
i=1

n∑
j=1

EiEj ω(i) ∧ ω(j)

=
1
2

n∑
i=1

n∑
j=1

[Ei, Ej ]ω(i) ∧ ω(j)

=
1
2

n∑
k=1

n∑
i=1

n∑
j=1

Ck
ijEk ω(i) ∧ ω(j).

Substituting this result into (11.46) and extracting component gives

dω(k) = −1
2

n∑
i=1

n∑
j=1

Ck
ij ω(i) ∧ ω(j). (11.47)

These are the Maurer–Cartan equations, which hold for both the r and the l case.

Implications for Structure of Jacobians

These equations can be expressed in coordinate-dependent form using the Jacobian
matrix. Recall that ωk =

∑
m Jkmdqm (where here the r and l designations have been

suppressed). Identifying the coordinates with Euclidean space,

dωk = d

(∑
m

Jkmdqm

)
=

∑
m

(∑
r

∂Jkm

∂qr
dqr

)
∧ dqm =

∑
m

∑
r

∂Jkm

∂qr
dqr ∧ dqm.

In addition,

ω(i) ∧ ω(j) =

(∑
r

Jirdqr

)
∧

(∑
m

Jjmdqm

)
=

∑
r

∑
m

JirJjmdqr ∧ dqm.
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Substituting these expressions into (11.47) gives∑
m

∑
r

∂Jkm

∂qr
dqr ∧ dqm = −1

2

∑
i,j

Ck
ij

∑
r

∑
m

JirJjmdqr ∧ dqm.

This means that

∑
m

∑
r

⎧⎨⎩∂Jkm

∂qr
+

1
2

∑
i,j

Ck
ijJirJjm

⎫⎬⎭ dqr ∧ dqm = 0.

If the term in braces is symmetric in r and m, then the above equality will hold for
arbitrary infinitesimals {dqm}. This localizes the above to

∂Jkm

∂qr
+

1
2

∑
i,j

Ck
ijJirJjm =

∂Jkr

∂qm
+

1
2

∑
i,j

Ck
ijJimJjr.

However, by changing the names of dummy variables and using the fact that Ck
ij = −Ck

ji,∑
ij

Ck
ijJimJjr =

∑
ij

Ck
jiJjmJir = −

∑
ij

Ck
ijJimJjr.

Therefore, the long equation above reduces to

∂Jkm

∂qr
− ∂Jkr

∂qm
= −

∑
i,j

Ck
ijJirJjm. (11.48)

Let Jms denote the (m−s)th entry of J−1—that is, J−1 = [Jms] and
∑

m JjmJms =
δjs. Therefore, multiplying both sides of (11.48) by Jms and Jru and summing over m
and r isolates the structure constants as

Ck
us = −

∑
m,r

(
∂Jkm

∂qr
− ∂Jkr

∂qm

)
JmsJru. (11.49)

This means that the structure of the Lie algebra can be determined from the Jacobian
associated with any parameterization at a point where it is nonsingular.

11.7.3 The Exterior Derivative of Forms on a Lie Group

Let a(k) denote a k-form on a Lie group constructed from 1-forms ω(ij) for j = 1, . . . , k
under the usual constraint that 1 ≤ i1 < i2 < · · · < ik ≤ n. All of the ω(ij)s could be
either left or right invariant. For now, the subscripts r and l will be suppressed. The
resulting k-form is written as

a(k) .=
∑

i1,...,ik

ai1,...,ik
(g)ω(i1) ∧ ω(i2) ∧ · · · ∧ ω(ik) (11.50)

=
∑

i1,...,ik

ai1,...,ik
(g(q)) (eT

i1J(q) dq) ∧ · · · ∧ (eT
ik

J(q) dq). (11.51)

If ai1,...,ik
(g) = ai1,...,ik

is a constant for all values of the indices, then a(k) will have
the same invariance as each of the ω(ij)s. The equality in (11.50) can be taken to be
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the coordinate-free definition of the form a(k), whereas (11.51) is how it appears in
coordinates.

The coordinate-free definition of the exterior derivative of a(k) given below can be
expanded in coordinates, where again the r and l subscripts are suppressed:

da(k) .=
∑

i1,...,ik

⎡⎣∑
j

(Ẽj ai1,...,ik
)(g)ω(j)

⎤⎦∧ ω(i1) ∧ ω(i2) ∧ · · · ∧ ω(ik) (11.52)

=
∑

i1,...,ik

⎡⎣∑
j,l

(J−T )jl
∂ai1,...,ik

(g(q))
∂ql

(eT
j J(q) dq)

⎤⎦(eT
i1J(q) dq) ∧ · · · ∧ (eT

ik
J(q) dq)

(11.53)

=
∑

i1,...,ik

[∑
l

∂ai1,...,ik
(g(q))

∂ql
dql

]
(eT

i1J(q) dq) ∧ · · · ∧ (eT
ik

J(q) dq). (11.54)

The reason for the simplification when going from (11.53) to (11.54) is that∑
j J−1

lj Jjm = δlm.
The result in (11.54) is exactly the same result as would have been obtained by

treating (11.51) as a differential form on Rn with Cartesian coordinates {qi} and com-
puting the usual definition of exterior derivative in Rn in these coordinates. In other
words, if all of the parts of Jacobians that appear in the wedge products in (11.51) are
consolidated and combined with ai1,...,ik

, and the result is denoted as

a(k) =
∑

i1,...,ik

ãi1,...,ik
(q) dqi1 ∧ dqi2 ∧ · · · ∧ dqik

,

then when ai1,...,ik
(g) = ai1,...,ik

is constant,

da(k) =
∑

i1,...,ik

[
∂ãi1,...,ik

∂qj
dqj

]
∧ dqi1 ∧ dqi2 ∧ · · · ∧ dqik

. (11.55)

The proof of this fact is left as an exercise.
If G is a unimodular Lie group, the Hodge ∗-operator of a k-form a(k) can be defined

in this context as the (n− k)-form such that

a(k) ∧ ∗a(k) = dg = |Jr(q)| dq1 ∧ · · · ∧ dqn. (11.56)

This is the unique (up to arbitrary scaling) invariant volume element with which to
integrate functions on unimodular Lie groups. Then, for example,

∗ω(1) = ω(2) ∧ · · · ∧ ω(n).

11.7.4 Examples

In this subsection several examples of differential forms on Lie groups that are invariant
under left or right shifts are worked out. In some cases, forms are bi-invariant.
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Differential Forms for the ax + b Group

Referring back to Section 10.4 in which the left and right Jacobians were computed for
the group of affine transformations of the real line, the 1-forms can be read off as

ω
(1)
l = a−1 da and ω

(2)
l = −a−1 b da + db

and
ω(1)

r = a−1 da and ω(2)
r = a−1 db.

The ω
(i)
l are right invariant and the ω

(i)
r are left invariant. Note that ω

(1)
l = ω

(1)
r ,

indicating that this is a bi-invariant 1-form.
The right- and left-invariant 2-forms are obtained by the wedge products of the

1-forms with these invariance properties as

ω
(1)
l ∧ ω

(2)
l = a−1 da ∧ db = detJl(a, b) da ∧ db

and
ω(1)

r ∧ ω(2)
r = a−2 da ∧ db = detJr(a, b) da ∧ db.

Differential Forms for H(3)

Reading the 1-forms off from the Jacobian matrices corresponding to the parameteriza-
tion in (10.67),

ω(1)
r = dα , ω(2)

r = dβ − αdγ , ω(3)
r = dγ

and
ω

(1)
l = dα , ω

(2)
l = dβ − γ dα , ω

(3)
l = dγ.

Therefore, ω
(i)
r = ω

(i)
l is bi-invariant for i = 1 and i = 3. The left-invariant 2-forms are

ω(1)
r ∧ ω(2)

r = dα ∧ dβ − αdα ∧ dγ,

ω(2)
r ∧ ω(3)

r = dβ ∧ dγ,

ω(1)
r ∧ ω(3)

r = dα ∧ dγ.

The right-invariant 2-forms are

ω
(1)
l ∧ ω

(2)
l = dα ∧ dβ,

ω
(2)
l ∧ ω

(3)
l = −γ dα ∧ dγ + dβ ∧ dγ,

ω
(1)
l ∧ ω

(3)
l = dα ∧ dγ.

Therefore, ω
(1)
l ∧ ω

(3)
l = ω

(1)
r ∧ ω

(3)
r is bi-invariant.

Furthermore,

ω
(1)
l ∧ ω

(2)
l ∧ ω

(3)
l = ω(1)

r ∧ ω(2)
r ∧ ω(3)

r = dα ∧ dβ ∧ dγ

is bi-invariant and serves as the natural integration measure for H(3).
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Differential Forms for SE(2)

From the Jacobian matrices in the x1-x2-θ parameterization in Section 10.6.2, the left-
and right-invariant differential 1-forms can be read off as

ω(1)
r = cos θ dx1 + sin θ dx2, ω(2)

r = − sin θ dx1 + cos θ dx2, ω(3)
r = dθ

and
ω

(1)
l = dx1 + x2 dθ, ω

(2)
l = dx2 − x1 dθ, ω

(3)
l = dθ.

From this it is clear that ω
(3)
r = ω

(3)
l is bi-invariant.

The corresponding 2-forms are

ω(1)
r ∧ ω(2)

r = dx1 ∧ dx2,

ω(2)
r ∧ ω(3)

r = cos θ dx1 ∧ dθ + sin θ dx2 ∧ dθ,

ω(1)
r ∧ ω(3)

r = − sin θ dx1 ∧ dθ + cos θ dx2 ∧ dθ

and

ω
(1)
l ∧ ω

(2)
l = dx1 ∧ dx2 − x1 dx1 ∧ dθ − x2 dx2 ∧ dθ,

ω
(2)
l ∧ ω

(3)
l = dx2 ∧ dθ,

ω
(1)
l ∧ ω

(3)
l = dx1 ∧ dθ.

None of these appear to be bi-invariant. However, the 3-form is bi-invariant:

ω
(1)
l ∧ ω

(2)
l ∧ ω

(3)
l = ω(1)

r ∧ ω(2)
r ∧ ω(3)

r = dx1 ∧ dx2 ∧ dθ.

This bi-invariant form serves as the natural integration measure for SE(2).

Differential Forms for GL(2, R)

As with the other examples, the left- and right-invariant 1-forms for GL(2, R) are com-
puted from (11.35) and (11.36), and in this case are respectively

ω(1)
r =

1
detg

(x4dx1 − x2dx3), ω(2)
r =

1
detg

(x4dx2 − x2dx4),

ω(3)
r =

1
detg

(−x3dx1 + x1dx3), ω(4)
r =

1
detg

(−x3dx2 + x1dx4),

and

ω
(1)
l =

1
detg

(x4dx1 − x3dx2), ω
(2)
l =

1
detg

(−x2dx1 + x1dx2),

ω
(3)
l =

1
detg

(x4dx3 − x3dx4), ω
(4)
l =

1
detg

(−x2dx3 + x1dx4).

The bi-invariant 4-form is

ω
(1)
l ∧ ω

(2)
l ∧ ω

(3)
l ∧ ω

(4)
l = ω(1)

r ∧ ω(2)
r ∧ ω(3)

r ∧ ω(4)
r =

1
|detg|2 dx1 ∧ dx2 ∧ dx3 ∧ dx4.

This bi-invariant form serves as the natural integration measure for GL(2, R).
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11.8 Sectional Curvature of Lie Groups

Given an arbitrary basis {Ei} for the Lie algebra G, the definition of an inner product
such that (Ei, Ej) = δij effectively fixes the Riemannian metric that is used. From this
inner product, Jacobian matrices Jr and Jl can be defined in any coordinate system.
A left-invariant metric tensor is then defined as Gr = JT

r Jr, and a right-invariant one is
Gl = JT

l Jl. Generally, Gl �= Gr. Choosing one of them as the Riemannian metric tensor
G = [gij ] the Christoffel symbols and Riemannian and Ricci curvature tensors can be
computed using the general formulas from Chapters 5 and 7 of Volume 1. In particular,
Trofimov [7] reports the following relationship between the Riemannian curvature tensor
and structure constants for a compact n-dimensional Lie group:

Ri
jαβ = −1

4

n∑
k=1

Ci
kjC

k
αβ .

The algebraic structure of Lie groups can be related to their geometry. For example,
Milnor derived formulas that relate the Christoffel symbols and sectional curvatures
(7.45) of a group manifold to the structure constants of the corresponding Lie algebra
when left-invariant metrics are used [4]:

Γ k
ij =

1
2

(
Ck

ij − Ci
jk + Cj

ki

)
(11.57)

and

κ(Ei, Ej) =
∑

k

1
2
Ck

ij(−Ck
ij + Ci

jk + Cj
ki)

− 1
4
(Ck

ij − Ci
jk + Cj

ki)(C
k
ij + Ci

jk − Cj
ki)− Ci

kiC
j
kj . (11.58)

Local geometric properties of G, such as the signs of κ(Ei, Ej) and its average, can
therefore be related to the structure of the Lie algebra G.

11.9 Chapter Summary

This chapter presented a survey of differential-geometric methods developed in previous
chapters, applied here to Lie groups. Differential forms and derivatives of functions on
Lie groups were defined and examples illustrated how they can be computed explicitly.
Since Lie groups have more structure than general manifolds, concrete calculations
in coordinates were performed easily using elementary calculus and matrix operations
without having to go to a higher level of abstraction. Other books that take a similar
approach include [1, 6]. For more general (and therefore abstract) approaches, see [2, 8].

The algebraic and geometric structure of a Lie group were related to equations
satisfied by differential forms. These were computed explicitly in parameterizations using
the Jacobian matrices defined in the previous chapter. These same Jacobians will appear
in the next chapter in the context of integration of functions and differential forms on
Lie groups. In addition, the Lie derivatives defined here will play a central role in the
invariant definition of Fokker–Planck equations on Lie groups in problems involving
stochastic flows in the final two chapters of this volume.

Although the purpose of this chapter was to serve as an introduction to concepts
that will be built on and used in later chapters, it is worth noting that without any
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additional mathematical knowledge, the concepts presented here can be directly applied
to engineering problems. For example, the chain rule for SE(3) finds applications in
steering flexible needles in medical applications [5]. The differential-geometric properties
of the rotation group has applications in the reorientation of microsatellites [3].

11.10 Exercises

11.1. Explain why the factor of 1/2 appears on all terms at second order in (11.13).

11.2. Derive a Taylor formula analogous to (11.16) and (11.17) for the function f(g)
shifted from the left and right: f(exp(−tX) ◦ g ◦ exp(tY )).

11.3. Verify that matrices of the form

g(x, y, z) =

⎛⎝ ex 0 y
xex ex z
0 0 1

⎞⎠
are elements of a Lie group under the operation of matrix multiplication and compute
the left- and right-invariant 1-forms, 2-forms, and 3-forms.

11.4. Substitute (10.44) into (10.43) and vice versa to verify that these expressions are
the inverse of each other.

11.5. Show that the following is a valid group operation:

g(w, z, ω) ◦ g(w′, z′, ω′) = g(w + w′, z + z′, ω + ω′ + 1
2w

′ · z) (11.59)

for w, z ∈ Rn and ω ∈ R. This is called the Weyl group, W (n). What is the faithful real
matrix representation for this group with smallest dimensions?

11.6. (a) Work out the 1-, 2-, and 3-forms for SO(3) in both the exponential and
the ZXZ Euler-angle parameterization described in Section 10.6.6. (b) Work out the
1-, 2-,. . ., 6-forms for SE(3) in the T-R parameterization described in Section 10.6.9.

11.7. In Section 11.7.3 it was stated without proof that (11.54) and (11.55) are equal.
Prove this fact here. Hint: The Jacobians Jr and Jl both have the property that ∂J/∂ql

has certain symmetries that lead to the annihilation under the wedge product of all
terms that might cause (11.54) and (11.55) to appear to be different from each other.

11.8. Show that lk(rh(g)) = rh(lk(g)) and lk,∗(rh,∗(Xg)) = rh,∗(lk,∗(Xg)).

11.9. Show that

〈lh,∗(Xg), lh,∗(Yg)〉G = 〈Xg,Yg〉G = 〈rh,∗(Xg), rh,∗(Yg)〉G.

11.10. Using the Jacobians computed in Exercise 10.35 together with (11.19) and (11.21),
compute Ẽr

i and Ẽl
i for SO(3) in the case of ZYZ Euler angles. Knowing the result for

the ZXZ case and the relationship between these parameterizations, is there a shortcut
to the answer?
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12

Lie Groups III: Integration, Convolution,
and Fourier Analysis

Functions on Lie groups can be integrated almost as easily as functions on Rn. In many
applications, a special kind of Lie group arises. This is the unimodular Lie group. The
integral of functions on unimodular Lie groups has the nice property that it is invariant
under shifts of the argument of the function, both from the left and the right. The
integral on a Lie group can be decomposed into integrals over a subgroup and a coset
space. Other familiar concepts such as integration by parts, convolution, and Fourier
transform also extend in a natural way to Lie groups. All of these topics are covered in
this chapter and illustrated with concrete examples.

The main points to take away from this chapter are as follows:

• Functions on unimodular Lie groups can be integrated with respect to a volume
element that has essentially the same properties as the volume element on Rn. This
integral can be computed in coordinates, and the value will be invariant under the
choice of coordinates.

• Functions on unimodular Lie groups can be convolved and an integration-by-parts
formula holds.

• The integral over a Lie group can be decomposed into an integral over a subgroup
and the resulting coset space, and when the group and subgroup are both unimodu-
lar, the resulting coset space has an integration measure that is invariant under the
action of the group.

• Topological properties of Lie groups and coset spaces can be computed using prop-
erties of differential forms.

• A concept of Fourier transform exists that converts the convolution of functions on a
Lie group into pointwise products of Fourier matrices in the Fourier (or dual) space.

• Generalizations of Parseval’s equality hold that relate the “power” in a function to
the analogous quantity in Fourier space, and a function can be reconstructed from
the set of all of its Fourier matrices (which is called the spectrum of the function).

• Operational properties convert Lie derivatives of functions into the product of Fourier
transforms and an associated operator matrix in Fourier space.

This chapter is organized into the following sections. Sections 12.1, 12.2, and 12.3
are respectively concerned with how to compute integrals on Lie groups, how to in-
tegrate by parts, and the properties of convolution integrals. Sections 12.4, 12.5, and
12.6 are concerned with how integrals over groups decompose into integrals over sub-
groups and corresponding homomegeneous spaces, and how this can be used to compute
topological invariants of these spaces. Sections 12.7 and 12.8 are concerned with gen-
eral statements about representation theory and harmonic analysis on unimodular Lie

© Springer Science+Business Media, LLC 2012
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groups. Sections 12.9 and 12.10 address the important example of SO(3). Sections 12.11
and 12.12 respectively address SE(2) and SE(3).

12.1 How to Integrate on Lie Groups

The Jacobian matrices computed for the evaluation of Lie derivatives in the previous
chapter also play a central role in expressing invariant integration measures on Lie
groups in particular parameterizations. If every element of an n-dimensional Lie group
can be captured with a single parameterization, g(q), then the invariant integral for
that Lie group is computed in that parameterization simply as1∫

G

f(g) dg
.=
∫
q
f(g(q))w(q) dq, (12.1)

where
w(q) = c · |detJ(q)|. (12.2)

Here, J(q) is either Jr(q) or Jl(q), and c is a normalizing constant that can depend on
the choice r or l. Therefore, in general there are two different ways to integrate on a Lie
group. However, in the unimodular case, which is of primary interest here, |detJr(q)| =
|detJl(q)|, and there is a unique “best” way to integrate over G. Note that when using
exponential coordinates, so that q is replaced with x, the weighting function for a
unimodular group is even in the sense that w(x) = w(−x).

In the compact case, the constant c is often chosen such that
∫

G
dg = 1, although

an alternative that can also be convenient (particularly when using exponential coordi-
nates) is c = 1. Either choice is equally valid, although one may be preferred over the
other depending on the particular context.

For the case of a connected Lie group, (12.1) can often be used directly. In the case of
Lie groups that consist of more than one connected component (such as the full orthogo-
nal groups), then integration over the whole group can be broken down into an integral of
the form such as in (12.1) for each of these components and summed over all components.

In this book, only functions with integrals that are finite are considered. In particular,
with the exception of special cases that will be explicitly stated (such as the Dirac delta
function), all functions on G will be assumed to be“nice” in the sense that they belong to

N (G) .= (L1 ∩ L2 ∩ A)(G),

where
f ∈ Lp(G) ⇐⇒

∫
G

|f(g)|pdg < ∞

and A(G) denotes the set of all analytic functions on G, meaning that the Taylor
series defined in Section 11.3 will always be convergent in a neighborhood around the
point where the expansion is made. Additionally, since the iterated application of the
derivatives X̃r and X̃ l to a function in A(G) always results in a function that does
not blow up near the point where a Taylor series is being evaluated, it follows that
A(G) ⊂ C∞(G). Although this limits the scope of the discussion in theory, in practice
we will be interested in probability density functions that either naturally belong to

1Here, as in Chapter 2, dg is shorthand for d(g), the differential volume element, which is
an n-form with sign killed by taking an absolute value.
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N (G) (e.g., solutions to a diffusion equation evaluated at a value of time t > 0 subject
to initial conditions f(g, 0) = δ(g)) or can be approximated well in the L2 sense by
functions in N (G).

If dg is a left-invariant measure, then the right Jacobian, Jr, would be used above,
and if dg is a right-invariant measure, then the left Jacobian, Jl, would be used. If G is
a unimodular group, then dg will be left and right invariant, and using Jl or Jr for J
in (12.1) will produce the same result. If G is compact, it is automatically unimodular.
The volume element dg for a compact Lie group is often normalized by multiplication
by a constant such that

∫
G

f(g) dg = 1.
For an n-dimensional unimodular Lie group, the volume element (or integration

measure) dg can be expressed in terms of differential forms as

dg =
(

g−1 ∂g

∂q1

)∨
∧ · · · ∧

(
g−1 ∂g

∂qn

)∨
dq1 · · · dqn (12.3)

=
(

∂g

∂q1
g−1

)∨
∧ · · · ∧

(
∂g

∂qn
g−1

)∨
dq1 · · · dqn, (12.4)

where the coordinates are ordered such that detJ(q) ≥ 0.
The reason why integration on unimodular Lie groups is invariant is outlined below.

For additional treatment of this issue, see the discussion and references in [11].

12.1.1 Invariance of the Integral on a Unimodular Lie Group

The integral of a real-valued function on the real line for which

I =
∫ ∞

−∞
f(x) dx < ∞

has the property that∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
f(x− a) dx =

∫ ∞

−∞
f(−x) dx (12.5)

regardless of the shape or differentiability of f(x). In other words, the value of the
integral is invariant under shifts and inversions of the argument. A generalization of
(12.5) holds for the case of unimodular Lie groups.

For a unimodular Lie group, the integral defined in (12.1) has the property that∫
G

f(g) dg =
∫

G

f(g0 ◦ g) dg (12.6)

=
∫

G

f(g ◦ g0) dg (12.7)

=
∫

G

f(g−1) dg (12.8)

for any fixed g0 ∈ G.
These facts follow from the way the volume element has been defined. For example,

making the change of coordinates g′ = g0◦g, the right-hand side of (12.6) is rewritten as
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g∈G

f(g0 ◦ g) dg =
∫

g−1
0 ◦g′∈G

f(g′) d(g−1
0 ◦ g′)

=
∫

g′∈g0G

f(g′) d(g−1
0 ◦ g′)

=
∫

g′∈G

f(g′) d(g−1
0 ◦ g′).

Here, the closure of the group has been used in the form g0G
.= {g0 ◦ g | g ∈ G} = G.

Therefore, if d(g−1
0 ◦ g) = d(g), the invariance of the integral under left shifts will

be proven. If Jr(q) is used in (12.1), this will be the case because the columns of Jr(q)
have the property that(

(g0 ◦ g)−1 ∂(g0 ◦ g)
∂qi

)∨
=

(
g−1 ◦ g−1

0 ◦ g0
∂g

∂qi

)∨
=

(
g−1 ∂g

∂qi

)∨
.

An analogous argument holds for right shifts when J is chosen to be Jl. Additionally,
since Jl and Jr are related through multiplication of the adjoint matrix, which has a
unit determinant for unimodular Lie groups, |J | = |Jl| = |Jr| is invariant under both
left and right shifts.

The invariance of the integral under inversion of the argument of a function on a
unimodular Lie group stated in (12.8) also follows from the properties of the Jacobian
matrix. This is because by changing variables as h = g−1,∫

g∈G

f(g−1) dg =
∫

h−1∈G

f(h) d(h−1)

=
∫

h∈G−1
f(h) d(h−1)

=
∫

h∈G

f(h) d(h−1),

where G−1 .= {g−1 | g ∈ G} = G (since every element of a group has a unique inverse).
However, since for a unimodular Lie group d(g) = dl(g) = dr(g) we can choose either
expression (in this case below it is dl) and write

d(g−1) =
(

∂(g−1)
∂q1

(g−1)−1
)∨

dq1 ∧ · · · ∧
(

∂(g−1)
∂qn

(g−1)−1
)∨

dqn,

and since gg−1 = e, the product rule gives

∂(g−1)
∂qk

= −g−1 ∂g

∂qk
g−1.

Substituting this in the above expression gives

d(g−1)=
(
−g−1 ∂g

∂q1
g−1 ◦ g

)∨
dq1 ∧ · · · ∧

(
−g−1 ∂g

∂qn
g−1 ◦ g

)∨
dqn.

=
(
−g−1 ∂g

∂q1

)∨
dq1 ∧ · · · ∧

(
−g−1 ∂g

∂qn

)∨
dqn.

= |−Jr(q)| dq1dq2 · · · dqn

=dr(g) = d(g).
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12.1.2 Example: Integration on the Rotation Group

The proper (invariant) way to integrate a function f : SO(3) → R using exponential
coordinates is ∫

SO(3)
f(R) dR = c ·

∫
‖x‖<π

f(R(x)) |detJ(x)| dx, (12.9)

where dx = dx1 dx2 dx3 and J can denote either Jr or Jl. The constant c can either be
chosen to ensure that

∫
SO(3) 1 dR = 1 or it can be taken as c = 1

In order to be meaningful, the value of the integral must not depend on the particular
parameterization used. For example, if SO(3) is parameterized using Euler angles rather
than exponential parameters, then recalling the Euler-angle Jacobians in Section 10.6.6
and their determinants, the resulting integral is∫

SO(3)
f(R) dR =

1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f(R(α, β, γ)) sinβ dα dβ dγ, (12.10)

where this normalization chosen here is such that
∫

SO(3) 1 dR = 1.

12.1.3 Example: Integration on the Motion Group

Given a function of motion, f(g) ∈ N (SE(3)), the proper (invariant) way to integrate
using exponential coordinates

X =
(

Ω v
0T 0

)
∈ se(3)

is ∫
SE(3)

f(g) dg = c′ ·
∫
v∈R3

∫
‖ω‖<π

f(eX) |det(Jr(ω))|2dω dv, (12.11)

where ω = Ω∨ are exponential coordinates for so(3) and Jr(ω) is the SO(3) Jacobian
for exponential coordinates. The reason why the square of the determinant appears as
a factor is a result of the structure of this group, which is a semi-direct product, which
resulted in (10.96). There are multiple ways to define the normalizing constant c′. One
way to define it is as c′ = 1, which is convenient since the exponential parameterization
is most useful for functions supported close to the identity, and since |det(Jr(0))| = 1,
the above integral then reduces to a usual integral over a region in Euclidean space.

In contrast, if the T-R parametrization in Section 10.6.9 is used, then∫
SE(3)

f(g) dg =
∫

R3

∫
SO(3)

f(t(a) ◦ r(R)) dR da, (12.12)

where da = da1 da2 da3 and the integral over SO(3) can be normalized in either of the
ways described earlier. Interestingly, the volume element for SE(3) is the same as that
for R3 × SO(3). The rotational part can be described with Euler angles or exponential
parameters, or other more exotic parameterizations. When a particular problem dictates
converting between different parameterizations, some care should be taken that the
normalizing constants used are consistent.
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12.2 Integration by Parts

Given two differentiable functions f1(x) and f2(x) defined on an interval [a, b] ⊂ R, the
rule for integration by parts is∫ b

a

df1

dx
f2 dx = f1(x)f2(x)

∣∣∣∣b
a

−
∫ b

a

f1
df2

dx
dx.

In practice, the “surface terms”

f1(x)f2(x)
∣∣∣∣b
a

= f1(b)f2(b)− f1(a)f2(a)

disappear in many (but not all) cases. Two such cases are (1) the interval extends over
the whole real line, and the functions decay to 0 as x → ±∞ and (2) the interval is of
the form [a, b] = [−π, π] and the functions are periodic. Of course, these are not the only
two cases when the surface terms disappear. However, it is interesting to note that these
cases can be identified with the Lie groups (R,+) and SO(2). Is this just coincidence,
or is there something more general going on? This section addresses this question.

12.2.1 Extension to Unimodular Lie Groups

To see that integration by parts holds, in general all that is required is to use the defi-
nition of the Lie derivative and some elementary properties of groups and differentiable
functions. In particular, let G be a unimodular Lie group and denote generic elements
as g, g′ ∈ G. Given functions f1(g) and f2(g) with Lie derivatives that exist, then for
any fixed X ∈ G, by definition∫

G

(X̃rf1)(g) f2(g) dg =
∫

G

d

dt
f1(g ◦ exp(tX))

∣∣∣∣
t=0

f2(g) dg (12.13)

=
d

dt

[∫
G

f1(g ◦ exp(tX)) f2(g) dg

]
t=0

(12.14)

=
d

dt

[∫
G

f1(g′) f2(g′ ◦ exp(−tX)) dg′
]

t=0
(12.15)

=
∫

G

f1(g′)
d

dt
f2(g′ ◦ exp(−tX))

∣∣∣∣
t=0

dg′ (12.16)

=−
∫

G

f1(g′) (X̃rf2)(g′) dg′. (12.17)

At line (12.14) the new variable g′ = g ◦ exp(tX) was defined such that the substitution
g = g′ ◦ exp(−tX) could be made at line (12.15).

The shift invariance of integration on a unimodular group is used at line (12.15).
The negative sign on line (12.17) is nothing more than the classical calculus result that

d

dt
α(−t)

∣∣∣∣
t=0

= − d

dt
α(t)

∣∣∣∣
t=0

.
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12.2.2 Inner Products of Functions on a Unimodular Lie Group

An inner product between “well-behaved” real-valued function on a group can be de-
fined as

(f1, f2) =
∫

G

f1(g) f2(g) dg. (12.18)

An obvious prerequisite to being “well behaved” is that the absolute value and square of
the functions must integrate to a finite value, and the functions should be differentiable
everywhere. This is captured by the concept of the space of nice functions, N (G).

Using this inner product notation, integration by parts is written as

(X̃rf1, f2) = −(f1, X̃
rf2). (12.19)

It follows immediately from (12.19) that if f1 = f2 = f , then (X̃rf, f) = 0 or,
equivalently, ∫

G

f X̃rf dg = 0,

indicating that a well-behaved function on a unimodular Lie group is always orthogonal
to its own Lie derivative.

In a similar way, it is easy to see that if f1 = f and f2 = 1, then∫
G

X̃rf dg = 0. (12.20)

Of course, f2 = 1 is only a well-behaved function on a compact Lie group, because
otherwise its integral will blow up.

The equality (12.20) is true for unimodular groups in general (and not only compact
ones) because ∫

G

X̃rf dg =
d

dt

[∫
G

f(g ◦ exp(tX)) dg

]
t=0

(12.21)

=
d

dt

[∫
G

f(g′) dg′
]

t=0
(12.22)

=0. (12.23)

As a demonstration of the usefulness of (11.7), note that (12.20) could have been
used together with this product rule for Lie derivatives to prove (12.19). Furthermore,

0 =
∫

G

X̃r(fN+1) dg = (N + 1)
∫

G

fN X̃rf dg.

However, there is nothing special about the power N , and so N = n+ p can be used to-
gether with a regrouping of terms to show that orthogonal functions can be constructed
such that

(fn, fpX̃rf) = 0.

12.2.3 The Adjoints of X̃r and X̃l for a Unimodular Lie Group

The discussion of integration by parts in the previous section leads to a natural concept
of the adjoint differential operator as
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(X̃r)∗ .= −X̃r and (X̃ l)∗ .= −X̃ l. (12.24)

Building on the coordinate-dependent presentation of X̃r and X̃ l given previously,
the adjoint operators (X̃r)∗ and (X̃ l)∗ can be derived in terms of coordinates.

The coordinate-dependent description of the inner product of two functions on G is

(f1, f2) =
∫

Rn

f1(q)f2(q)|J(q)| dq,

where again f(q) is shorthand for f(g(q)) that will be used when there is no risk of
confusion, and

|J(q)| = |det Jr(q)| = |detJl(q)|.
These equalities hold, by definition, for unimodular Lie groups in the case when the
parameterization is global. When this is not the case, such as when G has more
than one connected component, the discussion below will be relevant to each local
parameterization.

Using the notation Jji
r = (J−1

r )ji, substituting in the coordinate-dependent descrip-
tion of X̃r, and performing integration by parts gives

(f1, X̃
rf2)=

∫
Rn

f1

n∑
i,j=1

xiJ
ji
r

∂f2

∂qj
|J | dq

=−
∫

Rn

f2

n∑
i,j=1

xi
∂

∂qj

(
Jji

r |J |f1
)

dq

=−
∫

Rn

f2
1
|J |

n∑
i,j=1

xi
∂

∂qj

(
Jji

r |J |f1
) |J | dq.

Therefore,

(X̃rf)∗ = − 1
|J |

n∑
i,j=1

xi
∂

∂qj

(
Jji

r |J |f
)
. (12.25)

However, we know from the coordinate-free formulation that (X̃rf)∗ = −X̃rf , and so
the following must be true independent of f and xi:

1
|J |

n∑
i,j=1

xi
∂

∂qj

(
Jji

r |J |f
)

=
n∑

i,j=1

xiJ
ji
r

∂f

∂qj
.

From this, it can be concluded that the Jacobian for a unimodular Lie group must
satisfy the condition

n∑
j=1

∂

∂qj

(
Jji

r |J |
)

= 0. (12.26)

12.3 Convolution on Unimodular Lie Groups

A special kind of integral over a unimodular Lie group is the convolution of two functions.
Given two functions f1(g) and f2(g), their convolution is defined as
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(f1 ∗ f2)(g) .=
∫

G

f1(h) f2(h−1 ◦ g) dh. (12.27)

A convolution integral of the form in (12.27) can be written in the following equivalent
ways:

(f1 ∗ f2)(g) =
∫

G

f1(z−1) f2(z ◦ g) dz =
∫

G

f1(g ◦ k−1) f2(k) dk, (12.28)

where the substitutions z = h−1 and k = h−1 ◦ g have been made and the invariance
of integration under shifts and inversions is used. This follows from the property of the
volume element,

d(h ◦ g) = d(g ◦ h) = d(g−1) = dg,

which is a consequence of the definition in (12.2) and the properties of Jacobian matrices
for unimodular Lie groups.

Here, as usual in this book, it is assumed that fi ∈ N (G).
Note that unlike the case of the Abelian groups (R,+), the torus (circle group)

T = R/(2πR), and their direct products, for which the convolution product ∗ inher-
its commutativity from the group operation, +, for noncommutative unimodular Lie
groups, the convolution product generally will not be commutative:

(f1 ∗ f2)(g) �= (f2 ∗ f1)(g). (12.29)

Having said this, there are special cases. For example, for fixed h ∈ G, the set

Cl(h) .= {g ◦ h ◦ g−1 | g ∈ G} ⊂ G, (12.30)

is called the conjugacy class of h in G. A function χ(g) that is constant on each conjugacy
class is called a class function and has the property2

χ(h) = χ(g ◦ h ◦ g−1) ⇔ χ(g ◦ h) = χ(h ◦ g) (12.31)

for arbitrary h, g ∈ G; then it is straightforward to show that

(f ∗ χ)(g) = (χ ∗ f)(g)

when these convolution integrals exist (which will be the case when χ, f ∈ N (G)).
For example, it can be shown that on the group SO(3), functions of the form

χ(expX) = χ0(‖X‖)
are class functions. Additionally, on an arbitrary n-dimensional unimodular Lie group,
the Dirac delta function, which can be defined in exponential coordinates as

δ(expX) =
n∏

i=1

δ(xi)

2“Class functions” need not be in the “class of nice functions” N (G). These should not
be confused. Furthermore, χ(g) is not to be confused with the Euler characteristic, which can
be defined for compact Lie groups and is denoted as χ(G). The Euler characteristic has one
value defined for the whole group rather than a value defined on each element g ∈ G.
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(where δ(x) is the usual one-dimensional Dirac delta on the real line, the product of
which evaluated in different variables produces the multi-dimensional Dirac delta), is a
class function although it is not in N (G).

If the class of “nice” functions is expanded to include the Dirac delta, then the set
{N (G) ∪ {δ}} together with the operation of convolution forms a semigroup—namely
δ(g) serves as the identity

δ ∗ f = f ∗ δ = f

and convolution is a binary operation that is associative,

(f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3).

This convolution semi-group has no inverse of a given f1(g) under the operation of
convolution. Thus, a convolution equation of the form (f1 ∗ f2)(g) = f3(g) generally
cannot be solved exactly to find f2(g) for arbitrary given f1(g) and f3(g). However,
functions on a group have the operations of addition and scalar multiplication. Thus,
({N (G) ∪ {δ}}, ∗,+, ·) becomes an algebra called the group algebra.

12.4 Decomposition of Integrals on Lie Groups

In addition to using the group operation to define the convolution of functions on a
group, it is possible to decompose the integral of a function on a group using the natural
decomposition of that group into cosets relative to a particular subgroup. This concept,
and its extension, called a double-coset decomposition, are explained for Lie groups in
the following subsections.

12.4.1 Subgroup-Coset Decompositions

In what follows, it will be convenient to denote a function on G as fG(g), a function
on G/H as fG/H(gH), etc. Let cG/H : G/H → G be a mapping that generates one
representative per coset; that is, cG/H(gH) ∈ gH. Decomposing each g ∈ G as g =
cG/H(gH) ◦ h for some h ∈ H then means that fG(g) = fG(cG/H(gH) ◦ h).3

Separation of Coordinates

Suppose that G is parameterized such that any group element can be written as

g(q1, . . . , qn)= g(0, . . . , 0, qm+1, . . . , qn) ◦ g(q1, . . . , qm, 0, . . . , 0)
.= cG/H(gH(qm+1, . . . , qn)) ◦ h(q1, . . . , qm),

or

g(qH ,qG/H) = g(0,qG/H) ◦ g(qH ,0) = cG/H(gH(qG/H)) ◦ h(qH), (12.32)

where H is an m-dimensional Lie subgroup of G with h ∈ H and gH ∈ G/H.
For any q = [q1, . . . , qn]T resulting in g(q) ∈ G, the notation cG/H(gH(qG/H)) =

3It is not required that G = (G/H) × H for this to be true. For example, the integral over
SO(3) decomposes into one over S2 and one over S1 even though SO(3) �= S2 × S.
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cG/H(gH(qm+1, . . . , qn)) stands for the specific coset representative such that (12.32)
holds. In what follows, cG/H(gH(qm+1, . . . , qn)) is abbreviated as c(qm+1, . . . , qn) or
c(qG/H).

Using this notation, it follows that

∂g

∂qk
=

⎧⎪⎨⎪⎩
c(qm+1, . . . , qn)

∂h

∂qk
(q1, . . . , qm) for k ∈ [1, . . . ,m]

∂c

∂qk
(qm+1, . . . , qn)h(q1, . . . , qm) for k ∈ [m + 1, . . . , n].

Structure of Jacobians and Adjoint Matrices

The associated Jacobian Jr is

Jr =

[(
g−1 ∂g

∂q1

)∨
, . . . ,

(
g−1 ∂g

∂qm

)∨
,

(
g−1 ∂g

∂qm+1

)∨
, . . . ,

(
g−1 ∂g

∂qn

)∨]

=

[(
g−1 ∂g

∂qT
H

)∨
,

(
g−1 ∂g

∂qT
G/H

)∨]

=

[(
h−1 ∂h

∂qT
H

)∨
, [Ad(h−1)]

(
c−1 ∂c

∂qG/H

)∨]
.

In a similar way,

Jl =

[(
∂g

∂q1
g−1

)∨
, . . . ,

(
∂g

∂qm
g−1

)∨
,

(
∂g

∂qm+1
g−1

)∨
, . . . ,

(
∂g

∂qn
g−1

)∨]

=

[
[Ad(c)]

(
∂h

∂qT
H

h−1
)∨

,

(
∂c

∂qG/H
c−1

)∨]
.

Note that the Jacobian Jr (which will be denoted here as JG
r ) has the structure

JG
r =

(
JH

r B1
O B2

)
, where JH

r =

[(
h−1 ∂h

∂q1

)∨
, . . . ,

(
h−1 ∂h

∂qm

)∨]

is the Jacobian for the subgroup H. It can also be shown that

[AdG(g)] =
(

[AdH(h)] A1
O A2

)
,

where [AdG] is the adjoint matrix for the group G and [AdH ] is the adjoint matrix for
the subgroup H. Block-by-block inversion of [AdG(g)] gives

[AdG(g)]−1 =
(

[AdH(h)]−1 −[AdH(h)]−1A1A
−1
2

O A−1
2

)
If G and H are both unimodular, then the condition |[AdG(g)]| = |[AdH(h)]| = 1

forces |A2| = 1.
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Furthermore,

|JG
r | = |[AdG(g)]JG

r | = |[AdH(g)]JH
r | · |JgH

r | = |JH
r | · |JgH

r |,
where JgH

r is JG
r evaluated only on representatives of the coset gH.

This means that if dg
.= |JG

r | dq, dh
.= |JH

r |dqH , and d(gH) .= |JgH
r | dqG/H , then

dg = dh d(gH). (12.33)

The Resulting Decomposition of Integrals

The above discussion leads to the following decomposition of an integral over G:∫
G

fG(g) dg =
∫

G/H

(∫
H

fG(cG/H(gH) ◦ h) dh

)
d(gH), (12.34)

where dh and d(gH) are unique up to normalization. In the special case when fG(g) is a
left-coset function (i.e., a function that is constant on left cosets), fG(cG/H(gH)◦h1) =
fG(cG/H(gH) ◦ h2) = fG/H(gH) for all h1, h2 ∈ H and (12.34) reduces to∫

G

fG(g) dg =
∫

G/H

fG/H(gH) d(gH),

where it is assumed that dh is normalized so that
∫

H
dh = 1. More generally,

fG/H(gH) =
∫

H

fG(cG/H(gH) ◦ h) dh

is the value of the function fG(g) averaging over the subgroup H. Similarly,

fH(h) =
∫

G/H

fG(cG/H(gH) ◦ h) d(gH)

is the average of fG(g) taken over the coset gH.
Returning to (12.34), note that if G is unimodular and if dh is normalized such that∫

H
dh = 1, then the invariance of integration under shifts gives∫

G

fG(g) dg =
(∫

H

dh1

)∫
G

fG(g ◦ h1) dg

=
∫

H

∫
G

fG(g ◦ h1) dg dh1 =
∫

G

∫
H

fG(g ◦ h1) dh1 dg.

Combining this with (12.34) then gives∫
G

fG(g) dg =
∫

G

∫
H

fG(g ◦ h1) dh1 dg

=
∫

G/H

∫
H

(∫
H

fG(cG/H(gH) ◦ h ◦ h1) dh1

)
dh d(gH)

=
∫

G/H

∫
H

(∫
H

fG(cG/H(gH) ◦ h1) dh1

)
dh d(gH)

=
∫

G/H

∫
H

fG(cG/H(gH) ◦ h1) dh1 d(gH).
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In other words, the integration over H need not be with respect to the specific h ∈ H
that satisfies g = cG/H(gH) ◦ h. Then, from the invariance of integration on H under
shifts, h can be reintroduced as∫

G

fG(g) dg =
∫

G/H

∫
H

fG(cG/H(gH) ◦ h ◦ h1) dh1 d(gH),

or ∫
G

fG(g) dg =
∫

G/H

∫
H

fG(g ◦ h1) dh1 d(gH). (12.35)

Of course, h1 in the above expression is a dummy variable of integration, and since there
is no longer any use cG/H(gH) and hence h no longer has special meaning, h1 can be
called h.

12.4.2 Double-Coset Decompositions

With the definition of double coset given in Chapter 10, the decomposition of the integral
of a function on a group can be expressed in terms of two subgroups and a double-coset
space. The details of this decomposition are provided here.

Jacobians and Adjoint Matrices When Coordinates Are Separated

First, it is possible to define a mapping cK\G/H : K\G/H → G such that for any
KgH ∈ K\G/H, cK\G/H(KgH) ∈ KgH. Such a function defines a rule for selecting
one representative per double coset. Equipped with such a function, it becomes possible
to write g = k ◦ cK\G/H(KgH) ◦ h. If coordinates for G are partitioned so that

g = g(qK ,qK\G/H ,qH) = h(qK) ◦ c(qK\G/H) ◦ k(qH), (12.36)

then the Jacobian for G can be written as

J((qK ,qK\G/H ,qH) =

[(
g−1 ∂g

∂qT
K

)∨
,

(
g−1 ∂g

∂qT
K\G/H

)∨
,

(
g−1 ∂g

∂qT
H

)∨]
.

Using (12.36) then causes this Jacobian to take the form

[AdG(h−1)]

[
[AdG(c−1)]

(
h−1 ∂h

∂qT
K

)∨
,

(
c−1 ∂c

∂qT
K\G/H

)∨
, [AdG(h)]

(
h−1 ∂h

∂qT
H

)∨]
.

Then since |det[AdG(h−1)]| = 1 from the unimodularity of G,

|J((qK ,qK\G/H ,qH)| =

∣∣∣∣∣∣∣∣∣∣
[Ad(c−1)]11J

r
K(k) O δH,KJ l

H(h)

[Ad(c−1)]21J
r
K(k) JK\G/H(c) O

[Ad(c−1)]31J
r
K(k) O (1− δH,K)J l

H(h)

∣∣∣∣∣∣∣∣∣∣
.

Here, it is assumed that the basis elements for the Lie algebra of G are ordered so that
those belonging to the Lie algebra of K are first, followed by those that belong neither
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to the Lie algebra of H or K. In the last column of blocks, δH,K = 1 only if H = K (in
which case only the upper term survives), or if H �= K, then δH,K = 0, in which case
only the lowest term survives. In either case,

|detJ((qK ,qK\G/H ,qH)| = |Adk1(c−1)| · |JH(h)| · |JK(k)| · |JK\G/H(c)|,
where k = 1 or 3, depending on whether or not H = K. Note that the r and l su-
perscripts have been dropped since the determinants of these Jacobians are the same
for unimodular Lie groups. By defining dh

.= |JH(h)|dqH , dk
.= |JK(k)|dqK , and

d(KgH) .= |Adk1(c−1)| · |JK\G/H(c)|dqK\G/H , it follows that

dg = dh dk d(KgH). (12.37)

The Resulting Decomposition of Integrals

The above discussion leads to the decomposition∫
G

fG(g) dg =
∫

K\G/H

∫
K

∫
H

fG(k ◦ cK\G/H(KgH) ◦ h) dh dk d(KgH). (12.38)

A particular example of this is the integral over SO(3), which can be written in
terms of Euler angles as∫

SO(3)
f(g) dg

=
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f(R3(α)R1(β)R3(γ)) sinβ dα dβ dγ

=
∫

SO(2)\SO(3)/SO(2)

∫
SO(2)

∫
SO(2)

f(h1(α) ◦ c(HgH) ◦ h2(γ)) dh1 dh2 d(HgH),

where h1(α) = R3(α), h2(γ) = R3(γ) ∈ SO(2) and c(HgH) = R1(β) is the coset-
representative function, and dh1 = dα/2π, dh1 = dγ/2π, and d(HgH) = sinβdβ/2 in
this case.

Returning to (12.38), note that if G is unimodular and if dh and dk are both nor-
malized such that

∫
H

dh =
∫

K
dk = 1, then the invariance of integration under shifts

can be used to evaluate
∫

G
fG(g) dg as(∫

K

dk1

)(∫
H

dh1

)∫
G

fG(k1 ◦ g ◦ h1) dg =
∫

G

∫
K

∫
H

fG(k1 ◦ g ◦ h1) dh1 dk1 dg.

Combining this with (12.38) then gives∫
G

∫
K

∫
H

fG(k1 ◦ g ◦ h1) dh1 dk1 dg

=
∫

K\G/H

∫
K×K

∫
H×H

fG(k1 ◦ k ◦ cK\G/H(KgH) ◦ h ◦ h1) dh1 dh dk1 dk d(KgH)

=
∫

K\G/H

∫
K

∫
H

fG(k1 ◦ cK\G/H(KgH) ◦ h1) dh1 dk1 d(KgH).

Here, both the left invariance of integration on H and right invariance of integration
on K has been used. Then, using the right invariance of integration on H and left
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invariance of integration on K, h and k can be reintroduced resulting in the integrand
fG(k1 ◦ k ◦ cK\G/H(KgH) ◦ h ◦ h1) = fG(k1 ◦ g ◦ h1), and∫

G

fG(g) dg =
∫

K\G/H

∫
K

∫
H

fG(k1 ◦ g ◦ h1) dh1 dk1 dg. (12.39)

As in the case of a single-coset decomposition, the names h1 and k1 can be changed at
this stage to h and k.

12.4.3 The Weyl Integration Formula for Compact Lie Groups

The Weyl integration formula takes on a variety of different forms. In some books, it
is written only for U(n). In others, it is written for more general compact Lie groups.
Sometimes it is written for arbitrary functions, and other times it is written only for
class functions. This subsection begins with a very concrete and specific example of
how the integral of an arbitrary function in L1(SO(3)) can be decomposed. Then it is
shown how a similar decomposition holds for the unitary group U(n) and then, finally,
the most general statement for arbitrary compact Lie groups is given. In all cases, the
functions of interest are general, and it is shown what simplifications happen when these
general functions are replaced by class functions.

The Formula for the Case of SO(3)

Any element of SO(3) can be written as the matrix exponential R = exp(θN), where
‖N∨‖ = 1 and θ ∈ [0, 2π). (Actually, it is possible to restrict N∨ to the upper half-
sphere or θ to the range [0, π). Keeping the above range covers SO(3) twice, but this will
be a useful construction in the discussion below.) Without loss of generality, the unit
vector N∨ = n can be parameterized with spherical coordinates (α, β) ∈ [0, 2π)× [0, π].
Then the normalized integral over SO(3) can be written as4∫

SO(3)
f(R) dR=

1
4π2

∫ 2π

0

∫ π

0

∫ 2π

0
f(θ, α, β) sin2 θ

2
sinβ dα dβ dθ

=
1
2π

∫ 2π

0

[
1
4π

∫ π

0

∫ 2π

0
f(θ, α, β) [2 sin2 θ/2] sinβ dα dβ

]
dθ. (12.40)

The integral over θ in the above expression could have been restricted to [0, π), in which
case the normalizing factor would have been 1/2π2 rather than 1/4π2. The reason for
keeping the range [0, 2π) is that it can be identified with SO(2).

It is well known that the exponential parametrization can be written as

exp(θN) = [a,b,n]R3(θ) [a,b,n]T ,

where a and b are unit vectors such that [a,b,n] ∈ SO(3). In other words, these three
vectors are mutually orthogonal and form a right-handed coordinate system. The vectors
a and b are not unique. This is easy to observe this since making the substitution

4This should not be confused with the Euler-angle parameterization (α, β, γ), which does
not have a sin2 θ/2 factor in the volume element, although both parameterizations have the
α and β in common.
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[a′,b′,n] = [a,b,n]R3(γ)

in place of [a,b,n] in the above formula will result in exactly the same exp(θN). In
other words, [a,b,n] is arbitrary up to membership in the same coset with respect
to the subgroup SO(2) consisting of all rotations around the z axis. Without loss of
generality, we can take [a,b,n] to be R3(α)R1(β).

This means that the right-hand side of (12.40) can be written as∫
SO(2)

∫
SO(3)/SO(2)

f(R3(α)R1(β)R3(θ)R1(β)T RT
3 (α)) d(n(α, β)) [2 sin2 θ/2] d(R3(θ)),

(12.41)
where d(n(α, β)) = (4π)−1 sinβ dα dβ is just the usual volume element for the unit
sphere parameterized by α and β and normalized by 4π, and the integral over SO(2) is
normalized by 2π so that d(R3(θ)) = dθ/2π. Slightly more abstractly, the same expres-
sion for

∫
SO(3) f(R) dR can be written without coordinates as∫

SO(2)

∫
SO(3)/SO(2)

f([R]R3(θ)[R]T ) d(R · SO(2)) [2 sin2 θ/2] d(R3(θ)), (12.42)

where [R] is any representative of the coset R · SO(2) and d(R · SO(2)) is the natural
integration measure for the coset space containing the coset R·SO(2). Expression (12.42)
is one version of the Weyl integration formula for SO(3). Here, SO(2) is a maximal torus
in SO(3)—that is, it is the largest (in terms of volume) Abelian subgroup. One refers
to “a” rather than “the” maximal torus because it is not unique. For example, rather
than using R3(θ), (12.42) could have been written in terms of R1(θ), R2(θ), or rotation
around any fixed axis. In other words, there are an infinite number of maximal tori in
SO(3), all of which are conjugate to each other.

This decomposition of the integral of a function on SO(3) into one over a subgroup
and its corresponding coset space is different than the double-coset decomposition in
Section 12.4.2. Furthermore, since both sides of (12.41) are constants, and introducing
an internal rotation around the z axis by γ does not change anything, it is possible to
perform an additional normalized integration on both sides over SO(2) without changing
anything. This leads to a decompition of

∫
SO(3) f(R) dR of the form∫

SO(2)

∫
SO(3)/SO(2)

∫
SO(2)

f(R(α, β, γ)R3(θ)RT (α, β, γ)) dn(α, β) dγ [2 sin2 θ/2] dθ,

where R(α, β, γ) can be ZXZ or ZYZ. Recognizing that dn(α, β) dγ is the volume element
for SO(3) in Euler angles, the inner two integrals can be written as an integral over
SO(3), and so∫

SO(3)
f(R) dR =

∫
SO(2)

(∫
SO(3)

f(RR3(θ)RT ) dR

)
[2 sin2 θ/2] d(R3(θ)). (12.43)

This is another version of the Weyl integration formula for SO(3). Note that the integrals
over SO(2) and SO(3) can be performed in either order.

The Formula for Case of U(n)

Any element W of the group U(n) consisting of all n×n unitary matrices can be written
in the form W = V eΛV T , where Λ = diag[iθ1, iθ2, . . . , iθn], eΛ = diag[eiθ1 , eiθ2 , . . . , eiθn ],
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and V ∈ U(n). The set of all matrices {eΛ} form an Abelian subgroup of U(n). In fact,
this is a maximal torus for U(n), which is denoted as

T = {eΛ | (θ1, θ2, . . . , θn) ∈ [0, 2π)n}.
If V is replaced with V ′ = V eΛ′ for some arbitrary eΛ′ ∈ T, the resulting W will
be exactly the same. Therefore, choosing any coset representative [V ] ∈ V · T, it is
possible to write W = [V ]eΛ[V ]∗. In principle, we could parameterize the (n2 − n)
homogeneous space U(n)/T (which plays a role analogous to the sphere in the previous
section) and use this together with the n parameters of θ1, . . . , θn to completely param-
eterize U(n). The integral over U(n) then would be computed using the appropriate
Jacobian determinants.

Since V · T ∈ U(n)/T, the integral over U(n) can be written as∫
U(n)

f(W ) dW =
∫

T

∫
U(n)/T

f([V ] eΛ [V ]∗) |Δ(eΛ)|2 d(V · T) d(eΛ), (12.44)

where d(eΛ) = (2π)−ndθ1 · · · dθn, |Δ(eΛ)|2 is a Jacobian factor, and the volume elements
for the coset space, the maximal torus, and U(n) are all normalized so that the integral
unity is unity: ∫

U(n)/T

d(V · T) =
∫

T

d(eΛ) =
∫

U(n)
dW = 1.

It is known that the Jacobian factor can be written explicitly as

Δ(eΛ) =
∏

1≤j<k≤n

(eiθk − eiθj ),

which is the determinant of a Vandermonde matrix V = [vjk] where vjk = ei(k−1)θj .
Equation (12.44) is Weyl’s integration formula for U(n). For class functions,
χ([V ]eΛ[V ]∗) = χ(eΛ) and so this simplifies to∫

U(n)
χ(W ) dW =

∫
T

χ(eΛ) |Δ(eΛ)|2 d(eΛ).

Introducing a transformation of the form [V ] → [V ]eΛ′ , which has no effect on the
right-hand side of (12.44) due to internal cancellation, and integrating both sides of
(12.44) again over T with respect to the normalized volume element d((eΛ′)) then gives∫

U(n)
f(W ) dW =

∫
T

∫
U(n)

f(V eΛV ∗) |Δ(eΛ)|2 dV d(eΛ). (12.45)

This is another version of Weyl’s integration formula for U(n), and the integrals on the
right-hand side can be written in either order.

The Formula for General Compact Lie Groups

In some sense, Weyl’s integration formula for U(n) is already the most general case
since every compact Lie group is a subgroup of U(n) for some value of n. Therefore, by
restricting the choices of f(W ) in the previous section to be those that are nonzero only
on the Lie subgroup of interest would be one way to construct a general Weyl integration
formula. However, there is a more direct way, which is what is reviewed here.
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Suppose G is a compact Lie group and f ∈ L1(G). Define a maximal torus T < G
to be an Abelian subgroup of maximal volume, which is naturally isomorphic to a torus
Rk/Zk for some k ∈ Z>0. (Here, the notation T is intentionally different than the specific
T < U(n) in the previous subsection.) Given any maximal torus T , the normalizer of T
is the subgroup of G defined by

N = {g ∈ G | gTg−1 = T}.

Necessarily, T is a normal subgroup of N , and so N/T is a group. This group, called the
Weyl group,5 is a finite group, and so |N/T | (which is sometimes written as |W (G,T )|)
is finite.

A natural mapping exists between the product space G/T × T and G—namely

ψ : G/T × T → G, where ψ([g], t) = [g] ◦ t ◦ [g]−1

and where g ∈ G, t ∈ T , and [g] ∈ gT ∈ G/T . Since G/T , T , and G are orientable
Riemannian manifolds, the mapping between the above manifolds has an associated
Jacobian determinant when introducing coordinates. Alternatively, Jacobians can be
dispensed with and the coordinate-free description of differential geometry expressed in
terms of differential forms can be used. Either way, the result is a formula of the form∫

G

f(g) dg = |W (G,T )|−1
∫

T

|V (t)|2
∫

G/T

f([g] ◦ t ◦ [g]−1) d(gT ) dt, (12.46)

where [g] ∈ gT and |V (t)|2 for t ∈ T is a Jacobian factor analogous to |Δ(eΛ)|2 when
eΛ ∈ U(n). Equation (12.46) is one version of Weyl’s integration formula for an arbitrary
compact Lie group. V (t) could be derived directly from |Δ(eΛ)|2 by embedding G in
U(n) ⊂ Rn×n and performing some additional computations. Alternative (intrinsic)
approaches for computing V (t) are described in [6].

Recognizing that any g ∈ G can be written as g = [g] ◦ t′ for some t′ ∈ T and since
t′ ◦ t ◦ (t′)−1 = t, making this substitution and integrating over t′ ∈ T gives∫

[g]∈gT∈G/T

∫
t′∈T

f([g] ◦ t′ ◦ t ◦ ([g] ◦ t′)−1) dt′ d(gT ) =
∫

G

f(g ◦ t ◦ g−1) dg.

Therefore, (12.46) can be rewritten as∫
G

f(g) dg = |W (G,T )|−1
∫

T

|V (t)|2
∫

G

f(g ◦ t ◦ g−1) dg dt. (12.47)

The function V (t) in the Weyl integration formula has been computed for broad
classes of compact Lie groups in addition to U(n) [7, 50] including (but are not lim-
ited to)6

5No relationship to the group with the same name in Volume 1 (which is called the Weyl–
Heisenberg group in this volume).

6Here, R(θ) ∈ SO(2) is the usual 2×2 rotation matrix. Z2 �Sn is the wreath product of the
groups Z2 and Sn, which is a new finite group consisting of tuples of the form (b1, b2, . . . , bn; π)
for binary numbers bk ∈ Z2 and permutations π ∈ Sn. The group operation is (a1, . . . , an; σ) �
(b1, . . . , bn; π) = (a1 +2 bσ−1(1), . . . , an +2 bσ−1(n); σπ), where +2 is addition modulo 2. (See [11]
for a more general definition.)
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SO(2n) :

T = {t = R(θ1)⊕R(θ2)⊕ · · · ⊕R(θn) | θk ∈ [0, 2π)},

V (t) = 2n(n−1)
∏

1≤j<k≤n

sin
(

θj − θk

2

)
sin

(
θj + θk

2

)
,

|W (SO(2n + 1), T )| = |Z2 � S+
n | = 2n−1n!

SO(2n + 1) :

T = {t = R(θ1)⊕R(θ2)⊕ · · · ⊕R(θn)⊕ 1 | θk ∈ [0, 2π)},

V (t) = 2n2 ∏
1≤j<k≤n

sin
(

θj − θk

2

)
sin

(
θj + θk

2

) ∏
1≤j≤n

sin
θj

2
,

|W (SO(2n + 1), T )| = |Z2 � Sn| = 2nn!

SU(n) :

T =

{
t = diag(eiθk)

∣∣∣∣∣∑
k

θk = 0

}
,

V (t) = 2n(n−1)/2
∏

1≤j<k≤n

sin
(

θj − θk

2

)
,

|W (SU(n), T )| = |Sn| = n!

For example, using the above information for SO(2n + 1) in the case when n = 1,
the Weyl integration formula is coincident with (12.42), since the product signs vanish,
giving V (t) = 2 sin θ/2, or, equivalently, |V (t)|2 = 4 sin2 θ/2. Additionally, dividing by
|W (SO(3), SO(2))| = 2 gives the 2 sin2 θ/2 in the integrand of (12.42) and (12.43).

12.4.4 Separation of Variables

Other decompositions of integrals on Lie groups with a less group-theoretic flavor are
also possible. Let g(q) be any global parametrization (up to a set of singularities of
measure zero) of the unimodular Lie group G. If the associated Jacobian determinant7

is separable as

|J(q)| = w1(q1) · w2(q2),

where q = [qT
1 ,qT

2 ]T , and if

f(g(q)) =
∑
i,j

cijφi(q1)ψj(q2),

then∫
G

f(g) dg =
∑
i,j

cij

(∫
q1

φi(q1)w1(q1) dq1

)
·
(∫

q2

ψj(q2)w2(q2) dq2

)
. (12.48)

7Recall that for a unimodular Lie group, |Jr(q)| = |Jl(q)| for all values of q, and so the
subscripts l and r need not be specified.
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12.4.5 Integration on Lie Groups with Multiple Components

It can be the case that a Lie group consists of a countable number of disjoint components.
When this number is greater than 1, the components can be given labels in an index set,
I, and the integral over the group can be described as an integral within each component
and a sum over the different components; that is, G = ∪i∈IGi, where Gi ∩Gj = ∅ when
i �= j and ∫

G

f(g) dg =
∑
i∈I

∫
gi∈Gi

f(gi) dgi.

Several very practical examples of this kind arise in applications.
For example, the full orthogonal group, O(n), has two components: one correspond-

ing to SO(n), and the other corresponding to reflections. Given a rotation R ∈ SO(n),
a reflection can be generated by multiplication with a matrix of the form I−

n
.=

(−1)⊕ In−1. Therefore, the integral over O(n) can be written as∫
O(n)

f(O) dO =
∫

SO(n)
f(R) dR +

∫
SO(n)

f(RI−
n ) dR.

As another example, consider the direct product G = SO(2)×Z. Then each element
is a pair of the form g = (θ, n) and∫

G

f(g) dg =
∑
n∈Z

∫
SO(2)

f(θ, n) dθ.

A third example is one that the author and his postdoc investigated in the context
of robotics and image understanding problems [30–32]. This group is the semi-direct
product of (Rd,+) and proper crystallographic point groups describing rotational sym-
metries of Platonic solids in Rd. In higher dimensions, such groups have relatively few
elements, but in the planar case, the group of planar rotational symmetry operations of
the regular n-gon has n elements. As n is allowed to become large, this group approxi-
mates SE(2).

12.5 Invariant Integration on Homogenous Spaces

In many practical applications, the manifolds that arise are either those that are em-
bedded in Euclidean space or they arise as the homogenous space8 of a Lie group with
respect to a subgroup. Often the manifolds of interest are both embedded in Euclidean
space and can be viewed as a homogenous space. The classic example of this is the
usual sphere S2 ⊂ R3. It is embedded in R3 and can be viewed as the coset space
SO(3)/SO(2).

12.5.1 Conditions for Invariant Integration

Since homogenous spaces form such an important class of manifolds with greater struc-
ture than generic Riemannian manifolds, it is worthwhile to examine how to integrate
on them. In particular, since unimodular Lie groups occur often in applications, it is
useful to know that as a consequence of a theorem proven by Weil in [62] (and in the
first edition of that work which appeared in 1938), we have the following theorem.

8Also called the quotient space or coset space.
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Theorem 12.1. If G and H are Lie groups with finite and strictly positive dimensions
and if H < G, then the following are each necessary and sufficient conditions for the
equality ∫

G/H

f(gH) d(gH) =
∫

G/H

f(g0 · (gH)) d(gH)

to hold:

|AdG(h)| = |AdH(h)|, ∀ h ∈ H, (12.49)

where AdG and AdH are the adjoint matrices for G and H, respectively;

n∑
k=m+1

Ck
sk = 0 for s = 1, . . . ,m (12.50)

(where m = dim(H), n −m = dim(G/H), and s and k respectively run over the basis
elements of the Lie algebra of G that span H and G/H); and

d(d(gH)) = 0, where d(gH) .= ωm+1 ∧ · · · ∧ ωn (12.51)

and the outer d(·) denotes the exterior derivative.

See Santaló [49] for the proof. The first condition follows from a theorem by Weil [62],
the second is due to Chern [9], and the third is proved in Santaló [49].

Clearly, if H and G are both unimodular, the conditions of the theorem hold because
then |AdG(h)| = |AdH(h)| = 1. As an example, when G = SO(3) and H = SO(2), it is
clear that the integral of a function on the sphere is invariant under rotation:∫

S2
f(RT u) du =

∫
S2

f(u) du.

Additionally, if G = SE(n) and H = SO(n), then G/H ∼= Rn and∫
Rn

f(g−1 · x) dx =
∫

Rn

f(x) dx

for all g ∈ SE(n).

12.5.2 Convolution on Homogenous Spaces

The convolution of a function f1 : G → R with one of the form f2 : G/H → R is
defined as

(f1 � f2)(g′H) .=
∫

G

f1(g) f2(g−1 · (g′H)) dg. (12.52)

The operation � is different than ∗ in analogy with the difference between the group
action · and the group operation ◦. In analogy with the way the action satisfies the
condition g1 · (g2 · x) = (g1 ◦ g2) · x, if f0 and f1 are functions on G and f2 is a function
on G/H, then

(f0 ∗ f1) � f2 = f0 � (f1 � f2). (12.53)

The topic of convolution of special kinds of functions on homogeneous spaces is
explained in [25]. Fourier expansions on homogeneous spaces are addressed in [60, 64],
and the case when the subgroup H is discrete is addressed in [67].
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12.6 Global Geometry and Topology of Compact Connected
Lie Groups

Equipped with the concept of a bi-invariant integration measure and bi-invariant differ-
ential forms, it becomes possible to compute global geometric and topological invariants
on compact Lie groups. In this section several of the fundamental differential-geometric
properties of Lie groups are addressed together with associated topological invariants.

12.6.1 Stokes’ Theorem for a Compact Lie Group

From Stokes’ theorem for a manifold with boundary, it follows that for an n-dimensional
compact Lie group (which has no boundary) that the integral of the exterior derivative
of an arbitrary (n− 1)-form ω(n−1) must vanish:∫

G

dω(n−1) = 0. (12.54)

This result has been reported in [29].
In contrast, if ω(n−1) is either left or right invariant, then from (11.55) it must be a

closed form, and so ∫
∂M

dω(n−1)
r =

∫
∂M

dω
(n−1)
l = 0 (12.55)

for any smooth orientable manifold ∂M that encloses a finite volume M ⊂ G.

12.6.2 Betti Numbers, Poincaré Polynomials, and Euler Characteristics
for Compact Lie Groups

In Chapter 6 of Volume 1 the matrices Λk(A) were introduced as square matrices of
dimension

(
n
k

)× (
n
k

)
when A has dimensions n× n. It can be verified that the trace of

these matrices show up in the determinant

det(λI + A) = λn + a1λ
n−1 + · · ·+ an−1λ + an

as
ak = tr[Λk(A))].

Computing the same determinant with A = [Ad(g)], where g ∈ G, a compact Lie group,
results in coefficients that depend on the group. If these coefficients are integrated over
the whole group, the result is the Betti numbers

bk(G) .=
∫

G

tr
[
Λk([Ad(g)])

]
dg for k = 1, . . . ,dim(G). (12.56)

The Betti numbers provide topological information about the Lie group.
The Poincaré polynomial for a Lie group is precisely

p(λ;G) = λdim(G) + b1(G)λdim(G)−1 + · · ·+ bdim(G)−1(G)λ + bdim(G)(G),

with b0(G) = 1 serving as the coefficient in front of λdim(G). These polynomials have been
computed for all of the classical compact Lie groups, as reviewed in [16, 22, 26, 43, 63].
For example,
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U(n):

p(λ;U(n)) = (1 + λ3)(1 + λ5) · · · (1 + λ2n−1).

SU(n) (n ≥ 2):

p(λ;SU(n)) =
n−1∏
p=1

(1 + λ2p+1).

SO(2n + 1):

p(λ;SO(2n + 1)) =
n∏

p=1

(1 + λ4p−1).

SO(2n) (n > 2):

p(λ;SO(2n)) = (1 + λ2n−1)
n−1∏
p=1

(1 + λ4p−1).

Tn:
p(λ; Tn) = (1 + λ)n.

In general, for a compact connected Lie group, the Betti numbers are symmetrical in
the sense that bk(G) = bdim(G)−k(G). Furthermore, the Betti numbers of the Cartesian
product of two manifolds (or including Lie groups with manifolds that are Cartesian pro-
ducts) are

p(λ;G1 ×G2) = p(λ;G1) · p(λ;G2).

The Euler–Poincaré characteristic of a compact connected Lie group is obtained
from the Betti numbers as

χ(G) =
dim(G)∑

k=0

(−1)kbk(G). (12.57)

A simple connection between the Euler–Poincaré characteristic and the Poincaré poly-
nomials for a compact Lie group is χ(G) = p(−1;G).

There are a number of ways to compute Betti numbers and the Euler–Poincaré
characteristic. In addition to computing χ(G) as explained above, it could be obtained
by tessellating the compact Lie group into a collection of cells as was done in Chapter 5
of Volume 1 for surfaces and bodies in R2 and R3. Algebraic properties can be given
to these tesselations, leading to the field of homology. Alternatively, the properties of
differential forms on a compact manifold can be used to directly determine its topological
properties. This approach is called de Rham cohomology.9

12.6.3 de Rham Cohomology

Let Ωk(G) denote the set of all k-forms on G. This forms a vector space of dimension( dim(G)
k

)
, and hence (Ωk(G),+) is a group. The exterior derivative can be viewed as a

9Although the discussion that follows is restricted to compact connected Lie groups, the
concepts apply equally well to other compact connected manifolds. For more general discus-
sions, see [17, 40]
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mapping d:Ωk(G) → Ωk+1(G). The set of all closed k-forms on G is denoted as Zk(G) <
Ωk(G), and the set of all exact k-forms on G is denoted as Bk(G) < Zk(G) < Ωk(G).
These subgroups of Ωk(G) can be described as [40]

Zk(G) = Ker(d : Ωk(G) → Ωk+1(G)) and Bk(G) = Im(d : Ωk−1(G) → Ωk(G)).
(12.58)

Since these are Abelian groups, Bk(G) is naturally a normal subgroup of Zk(G); hence,
the quotient

Hk
DR(G) .= Zk(G)/Bk(G)

is also a group, called the kth de Rham cohomology group of G. Interestingly, the kth
Betti number and kth de Rham cohomology group are related as

bk(G) = dim(Hk
DR(G)) = dim(Zk(G))− dim(Bk(G)). (12.59)

Remarkably, there is a correspondence between homology and cohomology in that
they are both paths that lead to the Betti numbers. For a compact Lie group, the Betti
number bk(G) can be viewed as the dimension of the space of harmonic (i.e., bi-invariant)
k-forms. Since methods for computing all left- or right-invariant k-forms was given in
Chapter 11, for low-dimensional compact Lie groups it is easy to count how many har-
monic forms there are. For example, in Exercise 11.7 it was determined that SO(3) has
b0(SO(3)) = b3(SO(3)) = 1 because the number 1 is a bi-invariant 0-form and the vol-
ume element is a bi-invariant 3-form, and these are unique up to scaling. Therefore, using
(12.57), χ(SO(3)) = 0. The same result could be obtained from the Poincaré polynomials
by setting χ(SO(3)) = p(−1;SO(3)). Although it is possible to go through the tedious
coordinate-dependent computations of enumerating all bi-invariant forms for a compact
Lie group, a more subtle and powerful argument can be used, as explained below.

Following Goldberg [22], it can be reasoned that the kth Betti number for a compact
Lie group G can be written as

bk(G) =
(

dim(G)
k

)
− nk − nk−1, (12.60)

where
( dim(G)

k

)
is the total number of linearly independent left-invariant10 k-forms on

G and nk is the number of elements in the subset of left-invariant k-forms on G, no
linear combination of which is a closed form. The procedure for generating a basis for
all left-invariant k-forms on G was given in Chapter 11, and assessing closure is simply
a matter of observing whether or not the exterior derivative vanishes. Since the exterior
derivative of a (k − 1)-form produces a special kind of closed k-form (i.e., an exact
form), this means that applying the exterior derivative to each left-invariant (k − 1)-
form necessarily produces a closed form. However, application of the exterior derivative
does not change a form lacking bi-invariance into one that is bi-invariant. Therefore,
any left-invariant k-form can be decomposed into a linear combination of harmonic (bi-
invariant) forms, left-invariant k-forms that are not closed, and exact forms (which are
closed but not harmonic). This means that the total number of linearly independent left-
invariant forms must be decomposable as

( dim(G)
k

)
= bk(G)+nk +nk−1 or, equivalently,

(12.60). Therefore, combining this with (12.57) gives
10Here and throughout this discussion we could have chosen right-invariant rather than

left-invariant forms.
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χ(G)=
dim(G)∑

k=0

(−1)k

(
dim(G)

k

)
−

dim(G)∑
k=0

(−1)knk −
dim(G)∑

k=0

(−1)knk−1

=(−1)dim(G)+1ndim(G) − n0.

However, we know that to within a constant scalar multiple, the only dim(G)-form for
a compact Lie group is the volume form, which is bi-invariant, and likewise the only
0-form is a constant scalar, which is also bi-invariant, and so that ndim(G) = n0 = 0.
This means that for a compact connected Lie group,

χ(G) = 0. (12.61)

Note that the same result can be observed by evaluating p(−1;G) for all of the compact
Lie groups listed earlier.

12.6.4 Hodge Theory

If dim(G) = n, then the Hodge star operator converts a k-form of a Lie group G,
ω ∈ Ωk(G), into an (n − k)-form. Applying the Hodge star operator twice returns the
original k-form, premultiplied by (−1)k(n−k) as in (6.28). On the other hand, exterior
differentiation of ∗ω gives an (n − k + 1)-form, d(∗ω), and if this is again followed by
another application of the Hodge star operator, this gives an n− (n− k + 1) = (k− 1)-
form, ∗d(∗ω). Due to the sign changes that result from two applications of the Hodge
star operator, it is convenient to define

δω
.= (−1)n(k+1)+1 ∗ d(∗ω).

Then it can be shown that the following commutative diagram holds:

Ωk(G) ∗ ��

δ

��

Ωn−k(G)

d

��
Ωk−1(G)

(−1)k∗
�� Ωn−k+1(G)

(12.62)

The operator δ is the adjoint of d in the sense that 〈dω, α〉 = 〈ω, δα〉, where the
inner product of two k-forms on G is defined as in (6.96), with the domain of integration
being G. This fact can be written as d∗ = δ and δ∗ = d. The Laplacian of a form then
can be defined as Δ : Ωk(G) → Ωk(G), where11

Δω
.= d(δω) + δ(dω) or Δ = dδ + δd.

If Δω = 0, then ω is called a harmonic form.
The Laplacian of general forms, α, β ∈ Ωk(G), for any value of k ∈ [0, n] has the

following properties [40]:

11This definition reduces to that given in coordinates in (5.50) when k = 0.
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∗(Δα) = Δ(∗α) or ∗Δ = Δ∗,
〈Δα, β〉 = 〈α,Δβ〉,

Δω = 0 ⇐⇒ dω = δω = 0.

The space of all harmonic k-forms on G is denoted as Hk(G). In other words,

Hk(G) .= {ω ∈ Ωk(G) |Δω = 0}.
Given a closed-form ω ∈ Ωk(G), it has a corresponding representative [ω] ∈ Hk

DR(G),
called the de Rham cohomology class of ω. The Hodge theorem says that each de Rham
cohomology class can be represented by a unique harmonic form. In other words, there
is an isomorphism [26, 40]

Hk(G) ←→ Hk
DR(G). (12.63)

Thus, if the space of harmonic forms can be characterized, so too can each de Rham
cohomology group, therefore elucidating the topological properties of G.

Although the above statements hold for any compact orientable Riemannian man-
ifold, the additional structure provided by Lie groups allows us to say even more. In
Section 11.7, left/right-invariant forms were discussed. Let Lk(G) and Rk(G) respec-
tively denote these left/right-invariant k-forms. Then

Bk(G) = Lk(G) ∩Rk(G)

denotes those k-forms that are bi-invariant.
For example, in the case of a compact semi-simple Lie group, G, it is known that

the set of harmonic k-forms and the set of all bi-invariant k-forms coincide:

Hk(G) ∼= Bk(G).

12.6.5 The Euler–Poincaré Characteristic for Coset Spaces
of a Compact Lie Group

The Euler–Poincaré characteristic for a coset space of a compact Lie group with respect
to a maximal torus can be obtained more directly as the integral [23]

χ(G/T ) =
∫

T

|V (t)|2 dt, (12.64)

where |V (t)|2 is the same factor that appears in the Weyl integration formula. This
immediately indicates that χ(G/T ) ≥ 0. The Euler–Poincaré characteristic of more
general coset spaces χ(G/H) can be computed using similar integrals [23, 26].

For example, if R ∈ SO(3), then [Ad(R)] = R and

det(λI + R) = λ3 + tr(Λ1(R))λ2 + tr(Λ2(R))λ + 1.

Recall from the definition of Λn(R) in (6.48) that Λ1(R) = R and Λ2(R) is given
in component form in (6.109). Integration over the group using the normalized Haar
measure in (12.10), with each matrix element Rij expressed in terms of Euler angles,
gives an explicit way to compute the Betti numbers

b1(SO(3)) = 0, b2(SO(3)) = 0, b3(SO(3)) = 1.
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The Euler–Poincaré characteristic is then

χ(SO(3)) = 0.

When G = SO(3) and T = SO(2), (12.64) evaluates as

χ(SO(3)/SO(2)) =
1
2π

∫ 2π

0
4 sin2 θ

2
dθ = 2.

This is the Euler characteristic for the sphere S2.

12.7 Fourier Analysis on Unimodular Lie Groups

This section begins with definitions of group representations and then explains the
generalized Fourier analysis that results.

12.7.1 Group Representations

A group representation can be thought of as an element of an indexed set of matrix-
valued functions of a group-valued argument, U(g, λ) ∈ GL(nλ, C), that satisfies the
homomorphism property

U(g1 ◦ g2, λ) = U(g1, λ)U(g2, λ). (12.65)

Here, g ∈ G and λ ∈ Ĝ, which is called the “dual of G.” For example, when G =
(Rn,+), the representation matrices are the 1 × 1-dimensional quantities exp(iωT x)
for x,ω ∈ Rn. In this special case, the dual of Rn is isomorphic (as a vector space)
to Rn. When G = SO(2), representations are of the form ein θ where θ ∈ SO(2) and
n ∈ Z = Ĝ. Therefore, when considering a general group G and thinking about analogies
with classical Fourier analysis, the index λ and dual space Ĝ can be thought of as
generalizations of the frequency parameter and frequency space, respectively.

Irreducibility of a representation U(g, λ) means that for any λ ∈ Ĝ it is not
possible to find a similarity transformation of the form S(λ)U(g, λ)S−1(λ), where
S(λ) ∈ GL(nλ, C), that simultaneously block-diagonalizes U(g, λ) for all values of g ∈ G.
In the case of Abelian groups, all irreducible representations are one dimensional, as in
the examples given above, but this is not so for noncommutative groups.

A famous result (due to Schur) states that every irreducible representation is equiva-
lent to a unitary one. In this context, two representations U(g, λ) and V (g, λ) are said to
be equivalent if they are related by a similarity transform U(g, λ) = S(λ)V (g, λ)S−1(λ)
for some S(λ) ∈ GL(nλ, C) for each λ ∈ Ĝ. When S(λ) ∈ U(nλ), the representations
U(g, λ) and V (g, λ) are called unitarily equivalent and the relationship itself is called
unitary equivalence.12 Most definitions and results in the fields of Harmonic Analysis
and Representation Theory are invariant under changes between unitary equivalent rep-
resentations, which means that there are an infinite number of equally valid ways to
define sets of irreducible unitary representations, or IURs.

12Here, U(g, λ) denotes a particular unitary matrix and U(nλ) is the full unitary group that
contains all such nλ × nλ matrices; that is, {U(g, λ) | g ∈ G} ⊆ U(nλ) with equality rarely
holding.
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Therefore, without loss of generality we can take U(g, λ) to be unitary—that is,
U−1(g, λ) = U∗(g, λ), where ∗ denotes the Hermitian conjugate. It then follows that
since

I = U(e, λ) = U(g−1 ◦ g, λ) = U(g−1, λ)U(g, λ),

then

U(g−1, λ) = (U(g, λ))−1 = U∗(g, λ).

From the above discussion, the concepts of irreducibility and unitarity should be
clear. A third important concept is that of completeness of a set of irreducible repre-
sentations. This means that every possible reducible representation can be decomposed
into a direct sum of the representations in the complete set. In order to understand
completeness, it is useful to first consider IURs for the simplest group, SO(2). The
completeness relation for the classical Fourier basis on the unit circle is

1
2π

∑
n∈Z

ein(θ1−θ2) = δ(θ1 − θ2),

where δ(θ) is the Dirac delta function with the properties∫
SO(2)

δ(θ) dθ = 1 and
∫

SO(2)
f(θ) δ(θ − θ0) dθ = f(θ0).

This is what allows the classical Fourier reconstruction formula to work. In analogy, in
the group context, a set of IURs {U(g, λ) | λ ∈ Ĝ} is complete if for any g0, g1, g2 ∈ G,∑

λ∈Ĝ

U(g−1
1 ◦ g2, λ) = δ(g−1

1 ◦ g2),

where the Dirac delta function has the properties∫
G

δ(g) dg = 1 and
∫

G

f(g) δ(g−1 ◦ g0) dg = f(g0)

for any f ∈ N (G). For some unimodular Lie groups, the completeness relation written
above as a discrete sum can be an integral or a combination of both sums and integrals.

In all examples of interest in this book, the mapping U : G → U(nλ) for each fixed
λ ∈ Ĝ that defines each U(g, λ) is a smooth homomorphism, and so we can differentiate.
A definition that will be used extensively in the following sections is

u(Ei, λ) .=
d

dt
U(exp(tEi), λ)|t=0. (12.66)

Later we develop explicit expressions for U(g, λ) and u(Ei, λ) using the exponential map
and corresponding parameterizations for the groups SO(3), SE(2), and SE(3).

As will be shown shortly, IURs are at the core of a generalized version of Fourier
analysis for functions on unimodular Lie groups. In a number of practical applications,
data is presented on Lie groups such as the rotation group and group of rigid-body
motions. These are noncommutative groups for which the representation theory and
harmonic analysis have been fully worked out (see, e.g., [21, 24, 51, 52, 68]). In particular,
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the method of induced representations [33] was used by Miller for the case of the rigid-
body motion group [39]. Connections between group representations, special functions,
and applications are explored in [38, 53, 56]. Representations of the rotation group play
a central role in Quantum Mechanics [2, 21, 55, 65]. In that application, the Euler angles
are used to parameterize rotations. This corresponds to the double-coset decomposition
used in [34, 35] for fast Fourier transforms (FFTs) developed for the rotation group,
SO(3). Work on FFTs for SO(3) continues to the current day. See, for example, [44].

12.7.2 Harmonic Analysis and the Convolution Theorem

Given functions fi(g) ∈ N (G) for i = 1, 2, the unimodular Lie group (G, ◦), we can
define the convolution product

(f1 ∗ f2)(g) .=
∫

G

f1(h) f2(h−1 ◦ g) dh

and the Fourier transform

F(f)(λ) .=
∫

G

f(g)U(g−1, λ) dg, (12.67)

where U(·, λ) is a unitary matrix function (called an irreducible matrix representation)
for each value of the parameter λ (where the set of all values of λ is called the dual of
the group and is denoted as Ĝ).

The shorthand f̂(λ) .= F(f)(λ) is often convenient. When a complete set of IURS ex-
ists, the Fourier transform defined in this way has corresponding inversion, convolution,
and Parseval theorems:

f(g) =
∫

λ∈Ĝ

trace[f̂(λ)U(g, λ)] d(λ), (12.68)

F(f1 ∗ f2)(λ) = f̂2(λ) f̂1(λ), (12.69)

and ∫
G

|f(g)|2dg =
∫

λ∈Ĝ

||f̂(λ)||2 d(λ). (12.70)

Here, || · || is the Hilbert–Schmidt (Frobenius) norm and d(λ) is the integration measure
on the dual space. For compact Lie groups, this is the Dirac measure weighted by the
dimension of the matrix U(g, λ). In other words, in the compact case,∫

λ∈Ĝ

· d(λ) −→
∑
λ∈Ĝ

·nλ,

where nλ = dimU(g, λ) and “·” denotes the quantity being integrated or summed. Much
of this is classical mathematics (see, e.g., [42]), which has not been fully embraced by
the engineering world until relatively recently [11].
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12.7.3 Separation of Variables and FFTs

The classical (Abelian) fast Fourier transform (FFT) algorithm due to Cooley and
Tukey [14] is one of the most significant algorithmic advances of the 20th century. It
is an efficient way to calculate the discrete Fourier transform (DFT). The DFT can be
thought of as a sampled version of the continuous Fourier series on the circle in which
samples are taken at regular intervals. This reduces the computation to a DFT on the
group of finite rotations of the circle by integer multiples of 2π/N for some positive finite
integer, N , which is the number of sample points. The FFT is a special implementation
of the DFT in which computations are performed in an efficient recursive way. The
roots of the FFT go back to calculations that Gauss did to simplify trigonometric
sums computed by hand, although this was not known until after it was independently
redeveloped in the 1960s [15]. Now, several variations of the FFT exist. Many detailed
treatments of this topic can be found in the literature, including [8, 20, 54, 59].

The generalization of the concept of an FFT to the noncommutative context involves
the sampling of a Fourier series/transform for a continuous group. In some cases, the
sampling pattern might correspond to a finite subgroup, but in most cases, it will not.
The resulting discrete calculation is still called an FFT. These generalized FFTs have
received considerable attention in recent years, both in abstract settings applicable to
wide classes of (mostly finite) groups [1, 12, 18, 34, 35, 45, 46] as well as specific groups
such as SO(3) [28, 34, 35] and the Euclidean groups [11, 30–32].

A key trick to use for FFTs on Lie groups is separation of variables. In other words, if
a global parameterization of a Lie group exists such that g(q) can be be decomposed into
a product of terms of the form g(0, . . . , 0, qi, 0, . . . , 0), then the representation matrices
U(g, p) can be reduced to a product, the ith term of which depends on qi and p. A com-
mon example of this is product-of-exponential parameterizations such as the Euler-angle
decomposition of SO(3).

If in addition the parameterization is such that the Jacobian determinant reduces
to the form |J(q)| = w1(q1)w2(q2) · · ·wn(qn), then the integral in the definition of the
Fourier transform matrix can be written as n nested one-dimensional integrals. This
is significant because (1) using this separation alone provides significant computational
savings and (2) in cases when the resulting one-dimensional integrals involve special
functions defined by recurrence relations, the one-dimensional integrals can be computed
using existing fast transforms, the benefits of which propagate through the whole multi-
dimensional calculation.

The concept of separation of variables has also been used to develop FFTs for finite
groups [36], although this is not the topic of the presentation here.

12.7.4 Operational Properties

By the definition of the group Fourier transform F [·] and operators Er
i reviewed earlier,

one observes that

F [Ẽr
i f ] =

∫
G

d

dt
f(g ◦ exp(tEi))

∣∣∣∣
t=0

U(g−1, λ) dg. (12.71)

By performing the change of variables h = g ◦ exp(tEi) and using the homomorphism
property of the representations U(·, λ), one finds
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F [Ẽr
i f ]=

∫
G

f(h)
d

dt

(
U(exp(tEi) ◦ h−1, λ)

)∣∣∣∣
t=0

dh (12.72)

=
(

d

dt
U(exp(tEi), λ)

∣∣∣∣
t=0

) ∫
G

f(h)U(h−1, λ) dh. (12.73)

Then using the definition in (12.66), we write

F [Ẽr
i f ] = u(Ei, λ) f̂(λ). (12.74)

This is called an operational property because the differential operator is converted into
an algebraic operation in Fourier space. An analogous operational property for Ẽl

i is

F [Ẽl
if ] = −f̂(λ)u(Ei, λ), (12.75)

which is left as an exercise.

12.8 The Exponential Map and Representations

Given an nλ×nλ matrix representation U(g, λ) of G, a representation of the Lie algebra
G, u(X,λ), results from (12.66). This is called a representation of G because it inherits
the Lie bracket from the Lie algebra:

u([X,Y ], λ) = [u(X,λ), u(Y, λ)].

Here, we develop an explicit relationship between u(X,λ) and U(expX,λ). These re-
sults follow from a well-established theorem stated below. This will lead in subsequent
sections to expressions for the groups SO(3) and SE(3) that are useful in numerical
computations.

Theorem 12.2 ([21, 41, 56]). Given a connected unimodular Lie group G, associated
Lie algebra G, and finite-dimensional u(Ei, λ) as defined in (12.66), then

U(exp(tEi), λ) = exp [t u(Ei, λ)], (12.76)

where Ei ∈ G. Furthermore, if the matrix exponential parameterization

g(x1, . . . , xn) = exp

(
n∑

i=1

xiEi

)
(12.77)

is surjective, then when the u(Ei, λ)s are not simultaneously block-diagonalizable,

U(g, λ) = exp

(
n∑

i=1

xi u(Ei, λ)

)
(12.78)

is an irreducible representation for all g ∈ G.

Proof. For the exponential parameterization (12.77), one observes

g(tx1, . . . , txn) ◦ g(τx1, . . . , τxn) = g((t + τ)x1, . . . , (t + τ)xn)
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for all t, τ ∈ R; that is, the set of all g(tx1, . . . , txn) forms a one-dimensional (Abelian)
subgroup of G for fixed values of xi. From the definition of a representation it follows
that

U(g((t + τ)x1, . . . , (t + τ)xn), λ)=U(g(tx1, . . . , txn), λ)U(g(τx1, . . . , τxn), λ)
=U(g(τx1, . . . , τxn), λ)U(g(tx1, . . . , txn), λ).

Then differentiating the above expression with respect to τ , setting τ = 0, and using
the definition

Ũ(x1, . . . , xn;λ) = U(g(x1, . . . , xn), λ)

gives
d

dt
Ũ(tx1, . . . , txn;λ) =

d

dτ
Ũ(τx1, . . . , τxn;λ)

∣∣∣∣
τ=0

Ũ(tx1, . . . , txn;λ).

However, since infinitesimal operations commute, it follows from (12.66) that

d

dτ
Ũ(τx1, . . . , τxn;λ)

∣∣∣∣
τ=0

=
n∑

i=1

xi u(Ei, λ).

We therefore have the matrix differential equation

d

dt
Ũ(tx1, . . . , txn;λ) =

(
n∑

i=1

xi u(Ei, λ)

)
Ũ(tx1, . . . , txn;λ)

subject to the initial conditions

Ũ(0, . . . , 0;λ) = Inλ
.

The solution is therefore

Ũ(tx1, . . . , txn;λ) = exp

(
t

n∑
i=1

xi u(Ei, λ)

)
.

Evaluating at t = 1, we find (12.78), and setting all xj = 0 except xi, we find (12.76).
The irreducibility of these representations follows from the assumed properties of u(Ei).

12.9 Irreducible Unitary Representations for SO(3)

The basis elements for the Lie algebra so(3) are

E1 =

⎛⎝0 0 0
0 0 −1
0 1 0

⎞⎠ , E2 =

⎛⎝ 0 0 1
0 0 0

−1 0 0

⎞⎠ , E3 =

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠ .

Exponentiating any linear combination of these basis elements yields an element of
the rotation group, SO(3). In particular, the ZYZ Euler-angle parameterization is ex-
pressed as

RZY Z(α, β, γ) = exp(αE3) exp(βE2) exp(γE3).
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Additionally, matrix elements of the IURs of SO(3) in this parameterization are
given as13

Umn(RZY Z(α, β, γ), l) = e−imαdl
mn(cosβ)e−inγ . (12.79)

The functions dl
mn(cosβ) can be calculated by the integral14

dl
mn(cosβ) =

im−n

2π

[
(l −m)!(l + m)!
(l − n)!(l + n)!

] 1
2
∫ 2π

0

(
cos

β

2
eiφ/2 + i sin

β

2
e−iφ/2

)l−n

×
(

cos
β

2
e−iφ/2 + i sin

β

2
eiφ/2

)l+n

eimφdφ. (12.80)

Expanding the terms in the integrand in (12.80) using the binomial theorem for
β = ε � 1 and retaining first-order terms after integration,

Umn(R2(ε), l) = δmn +
1
2
cl
−nεδm+1,n − 1

2
cl
nεδm−1,n + O(ε2), (12.81)

where Ri(θ) = exp(θEi) as defined in (A.42)–(A.44) in Volume 1 and

cl
n

.=
√

(l − n)(l + n + 1) for |n| ≤ l (12.82)

and zero otherwise.
Then using the general fact that RZY Z(α, β, γ) = R3(α + π/2)R1(β)R3(γ − π/2)

means that in the specific case when (α, β, γ) = (0, ε, 0),

in−mUmn(R1(ε), l) = Umn(R2(ε), l) or Umn(R1(ε), l) = im−nUmn(R2(ε), l).

Then from (12.81) it follows that

Umn(R1(ε), l) = δmn − i

2
cl
−nεδm+1,n − i

2
cl
nεδm−1,n + O(ε2).

It is easy to see that Umn(R3(ε), l) = e−inεδmn. Differentiating each Umn(Ri(ε), l) with
respect to ε and setting ε = 0 yields

umn(E1, l) = − i

2
cl
−nδm+1,n − i

2
cl
nδm−1,n,

umn(E2, l) = +
1
2
cl
−nδm+1,n − 1

2
cl
nδm−1,n,

umn(E3, l) = −inδm,n .

The matrices U(R, l) and u(Ei, l) both play important roles in Quantum Mechanics
[2, 66]. One reason for this is because of how they are related to the spherical harmonics,

13Here, Umn(R, l) = Dl
mn(R) (the Wigner D-functions) as given in [2, 55] and are related to

U l
mn(R) given in Chapter 9 of [11] as Umn(R, l) = (−1)m−nU l

mn(R), where l = 0, 1, 2, . . . and
dim(U(R, l)) = 2l + 1 as discussed in [21].

14Equally valid definitions for dl
mn(cos β) result when multiplying this expression by arbitrary

powers of in−m, which would result in similarity-transformed versions of the U(R, l) and u(Ei, l)
given here.



112 12 Lie Groups III: Integration, Convolution, and Fourier Analysis

Y m
l (u), where u ∈ S2. For detailed expositions of the definitions and properties of

spherical harmonics and their relationship to IURs of SO(3), see [27, 55].15

In short, one way to define spherical harmonics (normalized according to the Condon
and Shortley convention [13]) relative to IURs of SO(3) is

Y m
l (u(φ, θ)) .=

√
2l + 1

4π
Um0(R3(φ)R2(θ), l), (12.83)

where u(φ, θ) = [cosφ sin θ, sinφ sin θ, cos θ]T . From this definition, it can be shown that
these transform under rotation as

Y n
l (RT u) =

l∑
m=−l

Y m
l (u)Umn(R, l). (12.84)

12.10 Wigner 3j Symbols and Clebsch–Gordon Coefficients

The Wigner 3j symbols appear in Quantum Mechanics as angular momentum coupling

coefficients [19, 37, 47, 66]. They are scalar coefficients denoted as [37]
(

j1 j2 j3
m1 m2 m3

)
,

which should not be confused with matrices or permutations. The 3j symbols are com-
puted in MathematicaTM (see http://mathworld.wolfram.com/Wigner3j-Symbol.html).

Clebsch–Gordan (C-G) coefficients can be defined relative to the 3j symbols with
the formula [55]

Cj,m
j1,m1;j2,m2

= (−1)m+j1−j2
√

2j + 1
(

j1 j2 j
m1 m2 −m

)
. (12.85)

They have been studied extensively [55–57]. In the literature, several alternative nota-
tions are used for the C-G coefficients including 〈j1,m1; j2,m2|j,m〉 and 〈j1j2m1m2|jm〉,
but the notation in (12.85) is used here and throughout this chapter.

In the literature, the function P l
mn(cosΘ) .= (−1)m−ndl

mn(cosΘ) is sometimes used
where dl

mn(cosΘ) is defined in (12.80). The C-G coefficients appear in the expansion of
products of any two functions from the set {P l

mn(cosΘ) | l = 0, 1, 2 . . . ;−l ≤ n,m ≤ l}
in terms of linear combinations of functions from the same set. The functions P l

mn(cosΘ)
are closely related to the IURs of SO(3), Dl

mn(R). From the fact that Dl
mn(R) are IURs

the following relation can be derived [2, 57]:

Dl1
m1,n1

(R)Dl2
m2,n2

(R) =
l1+l2∑

l=|l1−l2|
Cl,m1+m2

l1,m1;l2,m2
Cl,n1+n2

l1,n1;l2,n2
Dl

m1+m2,n1+n2
(R).

Arbitrary Cc,γ
a,α;b;β are nonzero only for arguments a, α, b, β, c, γ that satisfy the fol-

lowing conditions [55]:

1. a, b, c are non-negative integer or half-integer numbers;
15A word of caution: In the literature sometimes Y m

l (u) is written as Y l
m(u) or Ylm(u) or

considered to be an explicit function of angles Y m
l (θ, φ) or Y m

l (φ, θ) rather than a function of
unit vectors that are, in turn, parameterized by angles, Y m

l (u(φ, θ)). To make matters worse,
there are multiple ways to define spherical harmonics that ensure that they are normalized in
the sense that

∫
S2 |Y m

l (u)|2 du = 1.
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2. α, β, γ are integer or half-integer (positive or negative) numbers;
3. |α| < a, |β| < b, |γ| < c;
4. a + α, b + β, c + γ, a + b + c are integer non-negative numbers;
5. |a− b| ≤ c ≤ a + b and α + β = γ.

For some special values of the arguments, there are explicit forms of the C-G coeffi-
cients [55]. In the derivations in this chapter, only the following specific cases are used.

12.10.1 The Case c = a + b

The C-G coefficients for the case c = a + b are

Ca+b,α+β
a,α;b,β =

(
(2a)!(2b)!(a + b + α + β)!(a + b− α− β)!
(2a + 2b)!(a + α)!(a− α)!(b + β)!(b− β)!

)1/2

. (12.86)

Using the above formula,

Cl,m
l−1,m−1;1,1 =

(
(l + m)(l + m− 1)

2l(2l − 1)

)1/2

,

Cl,m
l−1,m;1,0 =

(
l2 −m2

l(2l − 1)

)1/2

,

Cl,m
l−1,m+1;1,−1 =

(
(l −m)(l −m− 1)

2l(2l − 1)

)1/2

.

12.10.2 The Case c = a + b − 1

The C-G coefficients for the case c = a + b− 1 are of the form

Ca+b−1,α+β
a,α;b,β = 2(bα− aβ)×(

(2a + 2b− 1)(2a− 1)!(2b− 1)!(a + b + α + β − 1)!(a + b− α− β − 1)!
(a + α)!(a− α)!(b + β)!(b− β)!(2a + 2b)!

)1/2

.

(12.87)

Using the above formula,

Cl,m
l,m−1;1,1 =−

(
(l + m)(l −m + 1)

2l(l + 1)

)1/2

,

Cl,m
l,m;1,0 =

m√
l(l + 1)

,

Cl,m
l,m+1;1,−1 =

(
(l −m)(l + m + 1)

2l(2l + 1)

)1/2

.

12.10.3 The Case c = a − b (b ≤ a)

The C-G coefficients for the case c = a− b are of the form

Ca−b,α+β
a,α;b,β = (−1)b+β

(
(a + α)!(a− α)!(2b)!(2a− 2b + 1)!

(2a + 1)!(b + β)!(b− β)!(a− b + α + β)!(a− b− α− β)!

)1/2

.

(12.88)
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Using the above formula,

Cl,m
l+1,m−1;1,1 =

(
(l −m + 2)(l −m + 1)

(2l + 3)(2l + 2)

)1/2

,

Cl,m
l+1,m;1,0 =−

(
(l + 1)2 −m2

(l + 1)(2l + 3)

)1/2

,

Cl,m
l+1,m+1;1,−1 =

(
(l + m + 2)(l + m + 1)

(2l + 3)(2l + 2)

)1/2

.

12.11 Irreducible Unitary Representations for SE(2)

Since SE(2) is neither compact nor commutative, the representation matrices will be
infinite dimensional. Therefore, it will be more convenient to show the irreducibility of
the operator U(g, p) rather than the corresponding matrix. To this end, we examine one
parameter subgroups generated by exponentiating linearly independent basis elements
of the Lie algebra se(2). Using the basis

E1 =

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠ , E2 =

⎛⎝0 0 0
0 0 1
0 0 0

⎞⎠ , E3 =

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠ ,

it follows that

exp(tE1) =

⎛⎝1 0 t
0 1 0
0 0 1

⎞⎠, exp(tE2) =

⎛⎝1 0 0
0 1 t
0 0 1

⎞⎠, exp(tE3) =

⎛⎝cos t − sin t 0
sin t cos t 0
0 0 1

⎞⎠.

The IURs for SE(2) were derived many years ago in the physics literature. A detailed
recount of the derivation can be found in [11]. The matrix elements of these IURs for
SE(2) can be stated in terms of the parameters (r, φ, θ) using trigonometric functions
and Bessel functions Jk(·) as16

Umn(g(r, φ, θ), p) = in−me−i[nθ+(m−n)φ]Jn−m(p · r) (12.89)

for 0 ≤ φ, θ ≤ 2π, 0 ≤ r, p ≤ ∞, and m,n ∈ Z, where

g(r, φ, θ) =

⎛⎝cos θ − sin θ r cosφ
sin θ cos θ r sinφ

0 0 1

⎞⎠ .

The matrix elements of U(exp(tE3), p) can be obtained from (12.89) by setting φ = 0,
r = 0, and θ = t:

Umn(exp(tE1), p) = Umn(g(0, 0, t), p) = e−imtδm,n.

The fact that

Jm−n(0) =

{
1 for m− n = 0
0 for m− n �= 0

16Here, Jk(·) is the classical kth-order Bessel function used in polar-coordinate expansions of
functions on the plane and should not be confused with a Jacobian matrix or elements thereof.
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means that Kronecker delta functions will appear in the expressions for u(Ei, p).
Explicitly,

umn(E3, p) =
d

dt
Umn(exp(tE3), p)

∣∣∣∣
t=0

= −imδm,n.

The matrix elements of U(exp(tE1), p) can be obtained from (12.89) by setting r = t,
φ = 0, and θ = 0:

Umn(exp(tE1), p) = Umn(g(t, 0, 0), p) = in−mJn−m(pt).

It is known that

d

dx
Jm(x) =

1
2
[Jm−1(x)− Jm+1(x)].

Hence,

umn(E1, p) =
d

dt
Umn(exp(tE1), p)

∣∣∣∣
t=0

=
ip

2
(δm,n+1 + δm,n−1).

The matrix elements of U(exp(tE2), p) can be obtained from (12.89) by setting r = t,
φ = π/2, and θ = 0:

Umn(exp(tE2), p) = Umn(g(t, π/2, 0), p) = (−1)n−mJn−m(pt);

thus,

umn(E2, p) =
d

dt
Umn(exp(tE2), p)

∣∣∣∣
t=0

=
p

2
(δm,n+1 − δm,n−1).

To summarize the results, we have

umn(E1, p) =
ip

2
(δm,n+1 + δm,n−1), (12.90)

umn(E2, p) =
p

2
(δm,n+1 − δm,n−1), (12.91)

umn(E3, p) = −imδm,n. (12.92)

12.12 Explicit Results for SE(3)

For small translational (rotational) displacements from the identity along (about) the
kth coordinate axis, the homogeneous transforms representing infinitesimal motions
look like

exp(εEk) ≈ I4 + εEk,

where

E1 =

⎛⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ , E2 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞⎟⎟⎠ , E3 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

E4 =

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , E5 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , E6 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ .
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12.12.1 Induced Representations for SE(3)

Let the pair (a, A) denote a translation/position a ∈ R3 and a rotation/orientation
A ∈ SO(3). Two such pairs, when viewed as elements of SE(3), satisfy the group
operation (a1, A1) ◦ (a2, A2) = (A1a2 + a1, A1A2). Operators for the IURs of SE(3)
that act on functions on the sphere can be written in the form

(U(a, A; p, s)ϕ)(u) = e−ipu·a Δs(R−1
u ARA−1u)ϕ(A−1u), (12.93)

where p = pu and u is a unit vector. Here, ϕ(·) is defined on the unit sphere and

Δs : φ → eisφ, 0 ≤ φ ≤ 2π,

for s = 0, ±1, ±2, . . . .
The irreducible representations of the motion group can be built on spaces

ϕ(p) ∈ L2(Sp), with the inner product defined as

(ϕ1, ϕ2) =
∫ π

Θ=0

∫ 2π

Φ=0
ϕ1(p)ϕ2(p) sinΘ dΘ dΦ , (12.94)

where p = (p sinΘ cosΦ, p sinΘ sinΦ, p cosΘ) and p > 0, 0 ≤ Θ ≤ π, and 0 ≤ Φ ≤ 2π.

12.12.2 Matrix Elements of IURs

To obtain the matrix elements of the unitary representations, we use the group
property17

U(a, A; p, s) = U(a, I; p, s) · U(0, A; p, s) (12.95)

The basis functions used for computing matrix elements of the IURs may be ex-
pressed in the form [38, 39]

hl
m s(u(Θ,Φ)) = Ql

s,m(cos Θ) ei(m+s)Φ, (12.96)

where

Ql
−s,m(cos Θ) = (−1)l−s

√
2l + 1

4π
P l

s m(cos Θ), (12.97)

and generalized Legendre polynomials P l
m s(cos Θ) are given as in Vilenkin [56].

Then

Ul′,m′;l,m(a, A; p, s) = (hl′
m′ s, U(g; p, s)hl

m s).

This can be written as

Ul′,m′;l,m(a, A; p, s) =
l∑

j=−l

[l′,m′ | p, s | l, j](a)Uj m(A, l) (12.98)

by using (12.95), where Uj m(A, l) are the matrix elements of IURs for SO(3) given in
(12.79). The translational part of the matrix elements Ul′,m′;l,m(a, A; p, s) can be written
in closed form as [38, 39]18

17The presentation in this section follows that in [11], which, in turn, followed [38, 39].
18Here, jk(·) is the classical kth order spherical Bessel function.
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[l′,m′ | p, s | l,m](a)

= (4π)1/2
l′+l∑

k=| l′−l |
ik

√
(2l′ + 1)(2k + 1)

(2l + 1)
jk(p a)Cl,s

k,0;l′,s

· Cl,m
k,m−m′;l′,m′ Y

m−m′
k (u(φ, θ)), (12.99)

where θ and φ are polar and azimuthal angles of the translation vector a = a·u(φ, θ), re-
spectively, and Cl,m

l′′,m′′;l′,m′ are Clebsch–Gordan coefficients (see Section 12.10 and [27]).
The matrix elements of the transform are given in terms of matrix elements (12.98) as

f̂l′,m′;l,m(p, s) =
∫

SE(3)
f(a, A)Ul,m;l′,m′(a, A; p, s) dAda, (12.100)

where we have used the unitarity property.
The inverse Fourier transform is defined by

f(g) = F−1(f̂) =
1

2π2

∞∑
s=−∞

∫ ∞

0
trace(f̂(p, s)U(g; p, s)) p2 dp . (12.101)

Explicitly,

f(a, A) =
1

2π2

∞∑
s=−∞

∞∑
l′=|s|

∞∑
l=|s|

l′∑
m′=−l′

l∑
m=−l

∫ ∞

0
p2 dp f̂l,m;l′,m′(p, s)Ul′,m′;l,m(a, A; p, s).

(12.102)
Representations (12.93), which can be viewed as infinite-dimensional matrices

denoted as U(g; p, s) with elements (12.98), satisfy the homomorphism properties

U(g1 ◦ g2; p, s) = U(g1; p, s) · U(g2; p, s) ,

where ◦ is the group operation.
The general formulation of operational properties for Lie group Fourier trans-

forms described in Section 12.7.1 are illustrated here concretely. In particular, when
G = SE(3),

u(Ek; p, s) .=
d

dt
(U(exp(tEk); p, s)

∣∣∣∣
t=0

. (12.103)

Explicit expressions for u(Ek; p, s) are computed below following the steps described
in [61].

12.12.3 Explicit Expressions for u(Ek; p, s)

Here, we derive in detail the elements of the matrix u(Ek; p, s). The discussion is divided
into the cases k = 1, 2, 3 (corresponding to the Lie algebra basis elements for infinitesimal
rotation) and k = 4, 5, 6 (corresponding to infinitesimal translations).

Computing Matrix Elements for Pure Rotation

For the case k = 1, 2, 3, the translational vector a = 0. Its IURs are Us(A,0; p, s). From
(12.98), the matrix elements of Us(A,0; p, s) are written as

Ul′,m′;l,m(A,0; p, s) =
l∑

n=−l

[l′,m′ | p, s | l, n](0)Un m(A, l).
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Explicitly, we have

[l′,m′ | p , s | l,m](0)

=
∫ 2π

0
e−i(m′−m)ΦdΦ

∫ π

0
Ql′

s,m′(cosΘ)Ql
s,m(cosΘ) sinΘ dΘ

=2πδm,m′

∫ π

0
Ql′

s,m′(cosΘ)Ql
s,m(cosΘ) sinΘ dΘ

=2πδm,m′

∫ π

0
Ql′

s,m(cosΘ)Ql
s,m(cosΘ) sinΘ dΘ

= δm,m′(−1)l′+l

√
2l′ + 1

√
2l + 1

2

∫ π

0
P l′

−s,m(cosΘ)P l
−s,m(cosΘ) sinΘ dΘ

= δm,m′δl,l′

where the orthogonality property∫ π

0
P l

m,n(cosΘ)P k
m,n(cosΘ) sinΘ dΘ =

2
2l + 1

δl,k (12.104)

is used. With the above results, we can rewrite

Ul′,m′;l,m(A,0; p, s) = Ul′,m′;l,m(exp(X),0; p, s) = δl,l′Um′,m(exp(X), l),

where the relationship between Êk and Ek is that in (10.92). Hence, we obtain

ul′,m′;l,m(Ek; p, s)=
d

dt
Ul′ ,m′ ;l,m(exp(tÊk),0; p, s)

∣∣∣∣
t=0

= δl,l′
d

dt
Um′ ,m(exp(tÊk), l)

∣∣∣∣
t=0

= δl,l′ um′ ,m(Êk, l),

where IURs of SO(3) evaluated at exp(tÊk) are given in Section 12.9.

Computing Matrix Elements for Pure Translation

For the case k = 4, 5, 6, the rotation part is the identity matrix I. Its IURs are
U(I,a; p, s). The matrix elements of U(I,a; p, s) are just the translation matrix elements
given in (12.99); that is,

Ul′,m′;l,m(I,a; p, s) = [l′,m′ | p, s | l,m](a).

From this, we have

ul′,m′;l,m(E4; p, s)

=
d

dt
Us

l′,m′;l,m(I, te1; p)
∣∣∣∣
t=0

=
d

dt
[l′,m′ | p, s | l,m](te1)

∣∣∣∣
t=0

=
d

dt

∫ 2π

0

∫ π

0
Ql′

s,m′(cosΘ)e−i(m′−m)Φ e−itp sin Θ cos Φ Ql
s,m(cosΘ) sinΘ dΘ dΦ

∣∣∣∣
t=0
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= −ip

∫ 2π

0
e−i(m′−m)Φ cosΦdΦ

∫ π

0
Ql′

s,m′(cosΘ)Ql
s,m(cosΘ) sin2 Θ dΘ

= −ipπ(δm′,m+1 + δm′,m−1)
∫ π

0
Ql′

s,m′(cosΘ)Ql
s,m(cosΘ) sin2 Θ dΘ

= − ip

4
(−1)l′+l

√
2l′ + 1

√
2l + 1δm′,m+1

∫ π

0
P l′

−s,m+1(cosΘ)P l
−s,m(cosΘ) sin2 Θ dΘ

− ip

4
(−1)l′+l

√
2l′ + 1

√
2l + 1δm′,m−1

∫ π

0
P l′

−s,m−1(cosΘ)P l
−s,m(cosΘ) sin2 Θ dΘ.

One tricky part to solve the above integrals is to use the relationship [21]

sinΘ =
√

2P 1
0,−1(cosΘ)

to replace one sinΘ in the first integral and

sinΘ = −
√

2P 1
0,1(cosΘ)

to replace one sinΘ in the second integral. Then apply the property [39, 58]

P b1
m1,k1

(cosΘ)P b2
m2,k2

(cosΘ) =
b1+b2∑

b=|b1−b2|
Cb,m1+m2

b1,m1;b2,m2
Cb,k1+k2

b1,k1;b2,k2
P b

m1+m2,k1+k2
(cosΘ)

(12.105)

to combine the product of the functions P l′
−s,m+1(cosΘ) and P 1

0,−1(cosΘ) into the func-
tion P b

−s,m(cosΘ) and the product of the functions P l′
−s,m−1(cosΘ) and P 1

0,1(cosΘ) into
the function P b

−s,m(cosΘ). Here, Cb,m
b1,m1;b2,m2

is a Clebsch–Gordon coefficient [55] (See
Section 12.10 for an explanation.) Now, we can solve the integrals as∫ π

0
P l′

−s,m+1(cosΘ)P l
−s,m(cosΘ) sin2 Θ dΘ

=
√

2
∫ π

0
P l′

−s,m+1(cosΘ)P 1
0,−1(cosΘ)P l

−s,m(cosΘ) sinΘ dΘ

=
∫ π

0

⎛⎝ l′+1∑
b=|l′−1|

Cb,−s
l′,−s;1,0C

b,m
l′,m+1;1,−1P

b
−s,m(cosΘ)

⎞⎠P l
−s,m(cosΘ) sinΘ dΘ

and ∫ π

0
P l′

−s,m−1(cosΘ)P l
−s,m(cosΘ) sin2 Θ dΘ

= −
√

2
∫ π

0
P l′

−s,m−1(cosΘ)P 1
0,1(cosΘ)P l

−s,m(cosΘ) sinΘ dΘ

=
∫ π

0

⎛⎝ l′+1∑
b=|l′−1|

Cb,−s
l′,−s;1,0C

b,m
l′,m−1;1,1P

b
−s,m(cosΘ)

⎞⎠P l
−s,m(cosΘ) sinΘ dΘ.

These Clebsch–Gordon coefficients in the above equations can be calculated explicitly
using the formulaes for special values of the arguments given by [55]. Finally, by em-
ploying the orthogonality property (12.104) to simplify the above equations, we obtain
the explicit expression
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ul′,m′;l,m(E4; p, s)

= − ip

2
γs

l′,−m′δm′,m+1δl′−1,l +
ip

2
λs

l,mδm′,m+1δl′,l +
ip

2
γs

l,mδm′,m+1δl′+1,l

+
ip

2
γs

l′,m′δm′,m−1δl′−1,l +
ip

2
λs

l,−mδm′,m−1δl′,l − ip

2
γs

l,−mδm′,m−1δl′+1,l, (12.106)

where

γs
l,m =

(
(l2 − s2)(l −m)(l −m− 1)

l2(2l − 1)(2l + 1)

)1/2

and

λs
l,m =

s
√

(l −m)(l + m + 1)
l(l + 1)

.

Now, let us calculate ul′,m′;l,m(E5; p, s).

ul′,m′;l,m(E5; p, s)

=
d

dt
Ul′,m′;l,m(I, te2; p, s)

∣∣∣∣
t=0

=
d

dt
[l′,m′ | p, s | l,m](te2)

∣∣∣∣
t=0

=
d

dt

∫ 2π

0

∫ π

0
Ql′

s,m′(cosΘ)e−i(m′−m)Φ e−itp sin Θ sin Φ Ql
s,m(cosΘ) sinΘ dΘ dΦ

∣∣∣∣
t=0

= −ip

∫ 2π

0
e−i(m′−m)Φ sinΦdΦ

∫ π

0
Ql′

s,m′(cosΘ)Ql
s,m(cosΘ) sin2 Θ dΘ

= −pπ(δm′,m+1 − δm′,m−1)
∫ π

0
Ql′

s,m′(cosΘ)Ql
s,m(cosΘ) sin2 Θ dΘ

= −p

4
(−1)l′+l

√
2l′ + 1

√
2l + 1δm′,m+1

∫ π

0
P l′

−s,m+1(cosΘ)P l
−s,m(cosΘ) sin2 Θ dΘ

+
p

4
(−1)l′+l

√
2l′ + 1

√
2l + 1δm′,m−1

∫ π

0
P l′

−s,m−1(cosΘ)P l
−s,m(cosΘ) sin2 Θ dΘ.

Employing the same techniques used for ul′,m′;l,m(E4; p, s) to solve the integrals in the
above equation, we can obtain the explicit expression

ul′,m′;l,m(E5; p, s)

= −p

2
γs

l′,−m′δm′,m+1δl′−1,l +
p

2
λs

l,mδm′,m+1δl′,l +
p

2
γs

l,mδm′,m+1δl′+1,l

− p

2
γs

l′,m′δm′,m−1δl′−1,l − p

2
λs

l,−mδm′,m−1δl′,l +
p

2
γs

l,−mδm′,m−1δl′+1,l. (12.107)

Again, for the case k = 6, we have

ul′,m′;l,m(E6; p, s)

=
d

dt
Ul′,m′;l,m(I, te3; p, s)

∣∣∣∣
t=0

=
d

dt
[l′,m′ | p, s | l,m](te3)

∣∣∣∣
t=0
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=
d

dt

∫ 2π

0

∫ π

0
Ql′

s,m′(cosΘ)e−i(m′−m)Φ e−itp cos Θ Ql
s,m(cosΘ) sinΘ dΘ dΦ

∣∣∣∣
t=0

= −ip

∫ 2π

0
e−i(m′−m)ΦdΦ

∫ π

0
Ql′

s,m′(cosΘ)Ql
s,m(cosΘ) cosΘ sinΘ dΘ

= −ip2πδm′,m

∫ π

0
Ql′

s,m(cosΘ)Ql
s,m(cosΘ) cosΘ sinΘ dΘ

= − ip

2
(−1)l′+l

√
2l′ + 1

√
2l + 1δm′,m

∫ π

0
P l′

−s,m(cosΘ)P l
−s,m(cosΘ) cosΘ sinΘ dΘ.

For the integral in the above equation, we use the relationship [21]

cosΘ = P 1
0,0(cosΘ)

to take the place of the cosΘ. Then we apply property (12.105):∫ π

0
P l′

−s,m(cosΘ)P l
−s,m(cosΘ) cosΘ sinΘ dΘ

=
∫ π

0
P l′

−s,m(cosΘ)P 1
0,0(cosΘ)P l

−s,m(cosΘ) sinΘ dΘ

=
∫ π

0

⎛⎝ l′+1∑
b=|l′−1|

Cb,−s
l′,−s;1,0C

b,m
l′,m;1,0P

b
−s,m(cosΘ)

⎞⎠P l
−s,m(cosΘ) sinΘ dΘ

Calculating these Clebsch–Gordon coefficients explicitly and simplifying them using the
orthogonality property (12.104), we obtain the explicit expression

ul′,m′;l,m(E6; p, s) = ipκs
l′ ,m′ δm′,mδl′−1,l + ip

sm

l(l + 1)
δm′,mδl′,l + ipκs

l,mδm′,mδl′+1,l,

(12.108)
where

κs
l,m =

(
(l2 −m2)(l2 − s2)
l2(2l − 1)(2l + 1)

)1/2

.

Summary of All Matrix Elements

From the above computations, the matrix elements of the Lie algebra representations
u(Ek; p, s) for se(3) can be explicitly written as

ul′,m′;l,m(E1; p, s) = − i

2
cl
−mδl,l′ δm′+1,m − i

2
cl
mδl,l′ δm′−1,m, (12.109)

ul′,m′;l,m(E2; p, s) = +
1
2
cl
−mδl,l′ δm′+1,m − 1

2
cl
mδl,l′ δm′−1,m, (12.110)

ul′,m′;l,m(E3; p, s) = −imδl,l′ δm′,m, (12.111)

ul′,m′;l,m(E4; p, s)

= − ip

2
γs

l′,−m′δm′,m+1δl′−1,l +
ip

2
λs

l,mδm′,m+1δl′,l +
ip

2
γs

l,mδm′,m+1δl′+1,l

+
ip

2
γs

l′,m′δm′,m−1δl′−1,l +
ip

2
λs

l,−mδm′,m−1δl′,l − ip

2
γs

l,−mδm′,m−1δl′+1,l,

(12.112)
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ul′,m′;l,m(E5; p, s)

= −p

2
γs

l′,−m′δm′,m+1δl′−1,l +
p

2
λs

l,mδm′,m+1δl′,l +
p

2
γs

l,mδm′,m+1δl′+1,l

− p

2
γs

l′,m′δm′,m−1δl′−1,l − p

2
λs

l,−mδm′,m−1δl′,l +
p

2
γs

l,−mδm′,m−1δl′+1,l,

(12.113)

ul′,m′;l,m(E6; p, s) = ipκs
l′ ,m′ δm′,mδl′−1,l + ip

sm

l(l + 1)
δm′,mδl′,l + ipκs

l,mδm′,mδl′+1,l,

(12.114)
where

γs
l,m =

(
(l2 − s2)(l −m)(l −m− 1)

l2(2l − 1)(2l + 1)

)1/2

,

λs
l,m =

s
√

(l −m)(l + m + 1)
l(l + 1)

,

and

κs
l,m =

(
(l2 −m2)(l2 − s2)
l2(2l − 1)(2l + 1)

)1/2

,

and cl
n is defined as in (12.82).

12.13 Chapter Summary

The abstract-sounding concept of integration on Lie groups can be made very concrete
by introducing coordinates and using the properties of Jacobian matrices. Lie groups
and their homogenous spaces are examples of orientable manifolds that have an addi-
tional structure that makes them easier to use than arbitrary abstract manifolds. It was
demonstrated how topological properties of Lie groups can be computed. Other classical
approaches to the topology of Lie groups can be found in [3–5, 10, 48].

The class of unimodular Lie groups (which includes, but is not limited to, com-
pact Lie groups) is defined by the existence of bi-invariant integrals. The properties
of integrals on such groups (and homogeneous spaces of a unimodular group with
respect to a unimodular subgroup) are convenient to work with. Concepts such as
integration by parts, convolution, and Fubini’s theorem (which allows for exchanging
the order of nested integrals) all follow in a natural way. Integrals over Lie groups can be
nested as integrals over subgroups and homogeneous spaces, or in some cases if a good
set of coordinates are chosen, the integrals can be separated into multiple integrals over
low-dimensional parametric domains. As with functions on the circle and real line, a
concept of Fourier analysis exists for unimodular Lie groups. In this theory, irreducible
unitary representation matrices (IURs) U(g, λ) take the place of eiωx, with g replacing
x and λ replacing ω. For compact Lie groups, the IURs are all finite dimensional and
are enumerated by a discrete parameter. In contrast, for noncompact Lie groups, the
IURs have a continuous index set, and, in addition, if the group operations are noncom-
mutative, then the IURs become infinite-dimensional matrices. The IURs for the groups
SO(3), SE(2), and SE(3) are provided in this chapter to serve as concrete examples
of the general abstract theory. These groups are also quite important in biological and
engineering applications.
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The discussion of the matrix Lie groups in Chapters 10–12 has been analogous to
that of parametric surfaces and embedded manifolds in Chapters 5 and 7. The resulting
expressions have been concrete and expressible in terms of coordinates. It is worth
mentioning that the extrinsic approach to surfaces discussed in Chapter 5, in which a
surface is defined by its constraints, can be applied also to matrix Lie groups. Since
all such groups studied here are subgroups of GL(N, R) for sufficiently large N , it is
possible to reformulate everything extrinsically. For example, the integral over a Lie
group G < GL(N, R) can be written as∫

G

f(g) dg =
∫

GL(N,R)
f(A) δ(g,A) dA,

where dA is the Haar measure for GL(N, R) and δ(g,A) is a function that encodes the
conditions defining the elements of the subgroup G. Then, in analogy with the way that
the Stokes and divergence theorems in R3 were written extrinsically in Chapter 5, so too
can integrals of interest on Lie groups. This sort of formulation is rare in the literature
and will not be pursued here. The reason for mentioning it is that in some application
contexts, stochastic differential equations on Lie groups are defined extrinsically, as was
illustrated in Chapter 8 and will be revisited in Chapter 20.

12.14 Exercises

12.1. If fi(g) for i = 1, 2 are symmetric functions (i.e., fi(g) = fi(g−1)), then is (f1 ∗
f2)(g) symmetric?

12.2. If f1(g) = f2(g−1), will (f1 ∗ f2)(g) be symmetric?

12.3. Show that a class function (i.e., a function with the property χ(g ◦ h) = χ(h ◦ g)
for all g, h ∈ G) commutes with every function under convolution.

12.4. Let

f(x, y, θ) = e−(x2+y2)/2xy cos θ

and compute the convolution product (f ∗ f)(x, y, θ) under the following conditions:
(a) viewing f as a function on the direct product R2 × SO(2) and (b) viewing f as a
function on SE(2).

12.5. Let

f(α, β, γ) = e−(α2+β2+γ2)/2

be a function on the Heisenberg group, H(3). (a) Calculate the integral of this function.
(b) Calculate the convolution of this function with itself. (c) Convert to the exponential
coordinates x1, x2, and x3 and repeat (a) and (b) in these coordinates.

12.6. Prove the operational property in (12.75).

12.7. Write a computer program to exponentiate the Lie algebra representation matrices
for SO(3) and show that the resulting matrices satisfy the homomorphism property.

12.8. Let A ∈ GL+(2, R) and dA = |A|−2 da11 da12 da21 da22 be its Haar measure. The
QR decomposition of A is A = QR of the form
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a11 a12
a21 a22

)
=

(
cos θ − sin θ
sin θ cos θ

)(
r11 r12
0 r22

)
.

Show that the set of all matrices R with r11 · r22 > 0 forms a group (which will be
referred to here as T+) and compute its left and right Haar measures. Is the group T+

unimodular? Using the fact that⎛⎜⎜⎝
a11
a21
a12
a22

⎞⎟⎟⎠ =

⎛⎜⎜⎝
r11 cos θ
r11 sin θ

r12 cos θ − r22 sin θ
r12 sin θ + r22 cos θ

⎞⎟⎟⎠ .

Show that

da11 da12 da21 da22 = |r11| dr11 dr12 dr22 dθ.

Show that the Haar measure for GL+(2, R) can be decomposed into one over
SO(2) and over the coset space SO(2)\GL+(2, R) ∼= T+. How does the measure for
SO(2)\GL+(2, R) compare to the left- and right-invariant integration measures for T+?

12.9. Let A and dA be as in the previous problem. The polar decomposition A = PQ,
where P = PT > 0 and Q is orthogonal, can be written in this case as(

a11 a12
a21 a22

)
=

(
p11 p12
p12 p22

)(
cos θ − sin θ
sin θ cos θ

)
.

Viewing this as a parameterization of GL+(2, R) ⊂ R2×2, compute the Jacobian de-
terminant and find the weighting functions w1(P ) and w2(P ) such that da11 da12 da21
da22 = w1(P ) dp11 dp12 dp22 dθ and dA = w2(P ) dp11 dp12 dp22 dθ. Viewing the space
of all symmetric positive definite 2 × 2 matrices as GL+(2, R)/SO(2), decompose the
integral over GL+(2, R) into one over this homogeneous space and the subgroup SO(2).
Do the analogous computations with the decomposition A = QP ′.

12.10. The singular-value decomposition A = UΣV ∗ for for the special case when A ∈
GL+(2, R) can be written as(

a11 a12
a21 a22

)
=

(
cosα − sinα
sinα cosα

)(
σ1 0
0 σ2

)(
cosβ sinβ
− sinβ cosβ

)
.

Find w1(σ1, σ2) and w2(σ1, σ2) such that da11 da12 da21 da22 = w1(σ1, σ2) dσ1 dσ2 dα dβ
and dA = w2(σ1, σ2) dσ1 dσ2 dα dβ, where dA is the Haar measure for GL+(2, R). Write
the invariant integral over GL+(2, R) in terms of the subgroup SO(2) and the double
coset SO(2)\GL+(2, R)/SO(2).

12.11. When using exponential coordinates to express the integral over SO(3) in (12.9),
it was mentioned that c = 1 was an acceptable normalization. However, if we seek dR
expressed in exponential coordinates so that

∫
SO(3) dR = 1, how should c be chosen for

this parameterization? Similarly, in the case of SE(3), if instead of choosing c′ = 1, we
desire dg = dR dt, where R is normalized as above, how should c′ be chosen in (12.11)?

12.12 Show that from the definition (12.83) and the homomorphism property

U(R1, l)U(R2, l) = U(R1R2, l)
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that (12.84) holds and, moreover, that

Y l
n((R1R2)T u) =

l∑
m=−l

Y l
m(u)Umn(R1R2, l).

12.13. Using (12.105), show that the Clebsch-Gordon Coefficients and the Wigner D-
functions Dl

mn(R) = Umn(R, l) given in (12.79) are related as∫
SO(3)

Dl
mn(R)Dl1

m1n1
(R)Dl2

m2n2
(R) dR =

1
2l + 1

Clm
l1,m1;l2,m2

Cln
l1,n1;l2,n2

where dR = 1
8π2 sinβdαdβdγ is the normalized Haar measure for SO(3).

References

1. Beth, T., “On the computational complexity of the general discrete Fourier transform,”
Theoret. Computer Sci., 51, pp. 331–339, 1987.

2. Biedenharn, L.C., Louck, J.D., Angular Momentum in Quantum Physics: Theory and
Application, Encyclopedia of Mathematics and Its Applications Vol. 8., Addison-Wesley,
Reading, MA, 1981.

3. Borel, A., “Topology of Lie groups and characteristic classes,” Bull. Am. Math. Soc., 61,
397–432, 1955.

4. Bott, R., “The stable homotopy of the classical groups,” Ann. Math., Second Series, 70(2),
pp. 313–337, 1959.

5. Bott, R., Tu, L.W., Differential Forms in Algebraic Topology, Springer-Verlag, New York,
1982.
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17. de Rham, G., Variétés Différentiables, Hermann, Paris, 1955.
18. Diaconis, P., Rockmore, D., “Efficient computation of the Fourier transform on finite

groups,” J. Am. Math. Soc., 3(2), pp. 297–332, 1990.
19. Edmonds, A. R. Angular Momentum in Quantum Mechanics, 2nd ed., Princeton University

Press, Princeton, NJ, 1968.



126 12 Lie Groups III: Integration, Convolution, and Fourier Analysis

20. Elliott, D.F., Rao, K.R., Fast Transforms: Algorithms, Analyses, Applications, Academic
Press, New York, 1982.

21. Gel’fand, I. M., Minlos, R.A., Shapiro, Z.Ya., Representations of the Rotation and Lorentz
Groups and Their Applications, Macmillan, New York, 1963.

22. Goldberg, S.I., Curvature and Homology, Academic Press, New York, 1962.
23. Greub, W., Halperin, S., Vanstone, R., Connections, Curvature, and Cohomology. Vol. II,

Academic Press, New York, 1972.
24. Gurarie, D., Symmetry and Laplacians: Introduction to Harmonic Analysis, Group Repre-

sentations and Applications, Elsevier Science Publisher, Amsterdam, 1992. (Dover edition
2008.)

25. Helgason, S., Differential Geometry and Symmetric Spaces, Academic Press, New York,
1962.

26. Hodge, W.V.D., The Theory and Applications of Harmonic Integrals, Cambridge University
Press, Cambridge, 1941 (and 1989).

27. Jones, M.N., Spherical Harmonics and Tensors for Classical Field Theory, Research Studies
Press Ltd., London, 1985.

28. Kostelec, P.J., Rockmore, D.N., “FFTs on the Rotation Group,” J. Fourier Anal. Applic.,
14, pp. 145–179, 2008.

29. Koszul, J.L., “Homologie et cohomologie des algèbres de Lie,” Bull. Soc. Math. France, 78,
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13

Variational Calculus on Lie Groups

The calculus of variations is concerned with finding extremal paths of functionals in
analogy with the way that classical calculus seeks to find critical points of functions.
Variational calculus plays a central role in classical mechanics, connecting the “Prin-
ciple of Least Action” and Lagrange’s equations of motion (also called the Euler–
Lagrange equations). In that setting, generalized coordinates are introduced to describe
the geometric configuration of a mechanical system. In this chapter, classical varia-
tional calculus is reviewed and extended to describe systems on Lie groups. Of course,
the introduction of coordinates such as Euler angles to describe the orientation of a
rigid body can be used to formulate classical variational problems at the expense of
introducing singularities. However, it is possible to formulate variational problems on
Lie groups without coordinates. This results in the Euler–Poincaré equations.

The main goals of this chapter are as follows:

• To become familiar with the use of Lie derivatives as a tool for performing numerical
optimization on Lie groups;

• To understand and be able to apply classical variational calculus;
• To be able to use the Euler–Poincaré equation for variational problems on Lie groups.

This chapter begins with the statement of regular (nonvariational) optimization
problems on Lie groups in Section 13.1. Section 13.2 then provides proofs of the clas-
sical necessary conditions for trajectories that extremize cost functionals. These nec-
essary conditions are the Euler–Lagrange equations. These equations are quite general
and can be written in terms of any coordinates. It can be quite hard to prove that the
solutions generated by the Euler–Lagrange equations are globally optimal solutions. Fur-
thermore, coordinate-dependent descriptions come with the drawback that they have
singularities. A number of variational problems can be formulated in terms of trajec-
tories on matrix Lie groups. This is illustrated in a coordinate-dependent setting in
Section 13.3. Section 13.4 takes a detour into a topic rarely addressed in detail in books
on variational calculus: When are the solutions guaranteed to be globally optimal? Sec-
tion 13.5 makes another connection between variational calculus and Lie groups by
examining Lie symmetries in Euler–Lagrange equations and other ODEs. A modifica-
tion of the Euler–Lagrange equations—the Euler–Poincaré equations—is a coordinate-
free variational technique that is discussed in Section 13.6. Section 13.7 illustrates
this in the context of DNA mechanics. Section 13.8 summarizes this chapter and Sec-
tion 13.9 provides exercises in both coordinate-dependent and coordinate-free variational
problems.
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13.1 Optimization on Lie Groups

In many problems of practical interest, the quantity to be optimized is an element of
a Lie group. For example, consider the hand of a robot arm and the goal of reaching
a desired position and orientation. The forward kinematic function for the robot arm
can be thought of as a mapping from the joint variables, q = [q1, q2, . . . , qn]T , to the
group of rigid-body motions, SE(3); that is g : Rn → SE(3). If gdes ∈ SE(3) denotes
the desired position and orientation of the hand of the robot, then the minimization of
measure of distance (or metric) of the form d(g(q), gdes) will result in the values of q
that place the hand as close as possible to the desired position and orientation. If gdes is
within the subset of SE(3) that is reachable by the robot arm, then the minimal value
of d(g(q), gdes) will be 0. However, how can such a minimization be performed?

One way would be to treat SE(N) as a subspace of R(N+1)×(N+1) and simply use the
method of Lagrange multipliers to look for solutions that stay on the constraint manifold,
which is SE(N). Then classical calculus would be all that is required. A drawback of
doing this is that the size of the space will be much larger than needed. Another way
would be to use a parameterization of SE(N) and treat the resulting N(N + 1)/2
parameters as Euclidean space and perform an unconstrained minimization on this
space. However, this has the drawback that all parameterizations have singularities. An
alternative approach that keeps the problem in a low-dimensional setting is to use the
Lie derivatives defined in Chapter 11.

Given a cost function of the form f(g) where g ∈ G (with G being any Lie group),
the necessary conditions that g0 is an extremum of f are

(Ẽr
i f)(g0) = 0 for i = 1, . . . ,dim(G).

In the case when there are additional constraints of the form h(g) = [h1(g), . . . , hm(g)]T

= 0, then a modified cost function can be defined as c(g) = f(g)+λT h(g) and the system
of equations

(Ẽr
i c)(g0) = 0 for i = 1, . . . ,dim(G) and

∂c

∂λj
= 0 for j = 1, . . . ,m (13.1)

provides the necessary conditions for an extremum, g0 ∈ G.

13.2 Derivation of the Euler–Lagrange Equation

Loosely speaking, a variational operator, denoted as δ, finds functions y(x) that yield
extremal values of the integral:

J =
∫ x2

x1

f(y(x), y′(x), x) dx

(where y′ = dy/dx) for a given function f(·) in the same way that the operator d/dy finds
the extremal values of a function f(y). This new problem may be subject to boundary
conditions y(x1) = y1 and y(x2) = y2, or the boundary conditions can be free. Moreover,
Lagrange multipliers can be introduced as in the previous section to enforce constraints
of the form ∫ x2

x1

hj(y(x), y′(x), x) dx = aj
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for given real values {aj} for j = 1, . . . ,m. In order to do so, a cost function

c(y(x), y′(x), x) .= f(y(x), y′(x), x) +
∑

j

λjhj(y(x), y′(x), x)

is defined and the same procedure described below is followed with c(·) in place of f(·).
The extra freedom built in to c(·) is used to satisfy the integral constraints after the
necessary conditions for an optimal solution are obtained. These conditions, which are
derived below, are analogous to setting derivatives to 0 in the previous section.

13.2.1 The Concept of a Variational Operator

If we were to assume that the optimal solution to the problem is y(x), then the following
will not be the optimal value of the integral:

Ĵ(α) =
∫ x2

x1

f(Y, Y ′, x) dx,

where
Y = Y (x, α) = y(x) + α ε(x).

Here, α ∈ R defines an arbitrary “variation” from the original function, where ε(x) is
any continuous function such that

ε(x1) = ε(x2) = 0. (13.2)

The notation Ĵ is introduced to distinguish between the integral J resulting from the
assumed function y(x) and the value of the same integral evaluated with Y (x, α); that
is, J = Ĵ(0) and Y (x, 0) = y(x).

Note that Y (x) satisfies the same boundary conditions as y(x), but by definition it
must be the case that Ĵ(α) ≥ J. We can introduce the concept of a variational operator
as follows:

δĴ =
∂Ĵ

∂α

∣∣∣∣∣
α=0

dα. (13.3)

α is a variable which is introduced into the calculus of variations problem to distinguish
all functions “within the neighborhood” of the desired function and meeting the bound-
ary conditions Y (x1, α) = y1 and Y (x2, α) = y2. Here, δ is nothing more than shorthand
for the operation in (13.3). It is used like a derivative. There are four properties of δ
(which follow naturally from the above equations):

• It commutes with integrals: δ
∫ x2

x1
f(Y, Y ′, x) dx =

∫ x2

x1
δf(Y, Y ′, x) dx. This follows

because δ is basically a derivative, and taking a derivative of an integral when the
variables of integration and differentiation are different can be done in any order
when the bounds of integration are finite.

• It acts like a derivative on Y and Y ′ when it is applied to the function f(Y, Y ′, x)
but treats independent variables such as x like constants: δf = ∂f

∂Y δY + ∂f
∂Y ′ δY

′.
This is because Y depends on α by definition and x does not.

• It commutes with derivatives: δ
(

∂Y
∂x

)
= ∂

∂x (δY ). This follows because δ is basically
a derivative, and derivatives with respect to independent variables commute.

• The variation of Y (x) vanishes at the endpoints : δY (x1) = δY (x2) = 0. This follows
from (13.2).
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13.2.2 Variational Calculus Computations

We can use the properties presented above to generate conditions which will yield the
extremal solution y(x) that we seek—namely

δĴ = δ

∫ x2

x1

f(Y, Y ′, x) dx =
∫ x2

x1

δf(Y, Y ′, x) dx

=
∫ x2

x1

(
∂f

∂Y
δY +

∂f

∂Y ′ δY
′
)

dx

=
∫ x2

x1

(
∂f

∂y
δY +

∂f

∂y′ δY
′
)

dx. (13.4)

The last step is true, just by the chain rule.1

Now, we will use the third property to rewrite the second part of this expression as

∂f

∂y′ δY
′ =

∂f

∂y′
d

dx
(δY ).

Using integration by parts,2 this means∫ x2

x1

∂f

∂y′
d

dx
(δY ) =

∂f

∂y′ δY
∣∣∣∣x2

x1

−
∫ x2

x1

d

dx

(
∂f

∂y′

)
δY dx.

Since δY (x) = ε(x) vanishes at endpoints, the first term is 0, and we get

δĴ =
∫ x2

x1

(
∂f

∂Y
δY − d

dx

(
∂f

∂Y ′

)
δY

)
dx.

This is easily rewritten as

δĴ =
∫ x2

x1

(
∂f

∂y
− d

dx

(
∂f

∂y′

))
ε(x) dx. (13.5)

13.2.3 Obtaining the Euler–Lagrange Equations by Localization

A classical mathematical result (called a localization argument) says that if∫ b

a

M(x)ε(x) dx = 0

for all possible differentiable functions ε(x) for which ε(a) = ε(b) = 0, then the function
M(x) = 0, the integrand in (13.5) is 0, and so

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0. (13.6)

This is called the Euler–Lagrange equation. Note that if the function f does not
depend on y′, the second term vanishes, we no longer are able to accommodate boundary
conditions, and we get the familiar minimization problem from calculus.

1∂/∂y(f(g(y), g′(y′), x)) = (∂f/∂g)(∂g/∂y). In our case, g = Y and ∂Y/∂y = 1. Therefore,
∂f/∂y = ∂f/∂Y. The same is true for ∂f/∂y′ = ∂f/∂Y ′.

2∫ b

a
u dv = uv|ba − ∫ b

a
v du.
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Although we have presented the one-dimensional variational problem, the same
methods are used for a functional dependent on many variables:

J =
∫ b

a

f(y1, . . . , yn, y′
1, . . . , y

′
n, x) dx.

In this case, a set of simultaneous Euler–Lagrange equations are generated:

∂f

∂yi
− d

dx

(
∂f

∂y′
i

)
= 0. (13.7)

Likewise, the treatment of problems in which f(·) depends on higher derivatives of
y is straightforward. The derivation above is simply extended by integrating by parts
once for each derivative of y. See [6, 21] for further reading on the classical calculus of
variations and [28, 35] for the more modern extensions of optimal control and dynamic
optimization.

13.3 Examples of Variational Calculus Problems

In this section a number of problems that can be addressed using the classical coordinate-
dependent version of variational calculus are formulated.

13.3.1 Geodesics on Manifolds

As was explained in Chapters 5 and 7 of Volume 1, the arc length of a curve on a
Riemannian manifold is calculated as

L(T ) =
∫ T

0

(
q̇T (t)G(q(t))q̇(t)

) 1
2 dt,

where q(t) is a path in some coordinates q parameterized by t, and G(q) is the metric
tensor. Given initial and final points in the manifold, q(0) = q0 and q(T ) = qT , the
problem of finding the curve of minimal length, L(T ), that stays completely inside the
manifold and satisfies these end conditions is a geodesic. The equation for a geodesic has
already been given in (5.60). This can be obtained using the Euler–Lagrange equation
when the constraint L(t) = t is imposed.

13.3.2 The Planar Elastica

Euler’s elastica is a classical problem. Given an inextensible, shearless, planar elastic
filament, with potential energy of bending of the form

V =
1
2

∫ L

0
α(s)κ2(s) ds

(where s is the arc length along the filament and α(s) is its bending stiffness, which can
vary along the length), if the two ends are constrained in planar position and orientation,
what will the shape of the filament be?

One of the basic principles of mechanics is that in static situations, passive me-
chanical systems settle down to the state of lowest potential energy. This means that
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minimization of V subject to end constraints on the curve that describes the filament
will provide the answer.

Recalling from Chapter 5 that for a planar curve κ2 = (dθ/ds)2, where θ(s) is the
angle that the tangent vector to the curve makes with respect to the x1 axis. The
position of the point x(L) can be written in a reference frame affixed at s = 0 with
orientation fixed by having the tangent point along the x1 axis, as

x(L) =

⎛⎜⎜⎝
∫ L

0
cos θ(s) ds∫ L

0
sin θ(s) ds

⎞⎟⎟⎠ .

Therefore, the curve that minimizes V subject to the boundary conditions x1(0) =
x2(0) = θ(0) = 0 and x1(L) = xd, x2(L) = yd, and θ(L) = θd will be the one for which

c(θ, θ′) =
1
2
α(s)(θ′)2 + λ1 cos θ + λ2 sin θ

satisfies
d

ds

(
∂c

∂θ′

)
− ∂c

∂θ
= 0,

which is written explicitly as

1
2

d

ds

(
α(s)(θ′)2

)
+ λ1 sin θ − λ2 cos θ = 0

subject to the conditions∫ L

0
cos θ(s) ds = xd,

∫ L

0
sin θ(s) ds = yd, and θ(0) = 0 θ(L) = θd.

One way to approach the numerical solution to this problem is to take initial guesses
for the values of the Lagrange multipliers, numerically integrate the above ordinary
differential equation, and then update the values of the Lagrange multipliers so as to
make the constraints satisfied.

This sort of curve has found applications in robotics, including serving as the back-
bone curves for snakelike, or “hyperredundant,” robot arms [13, 14].

13.3.3 Finding Approximate Solutions to Evolution Equations

Suppose that an evolution equation of the form

∂f

∂t
−

∑
i

ai(q)
∂f

∂qi
+

∑
ij

bij(q)
∂2f

∂qi∂qj
= 0 , or Df = 0 (13.8)

for short, subject to initial conditions f(q, 0) = f0(q), is presented and separation of
variables fails. How can a solution be obtained? One way would be to use finite-element
techniques, in which the original problem is discretized. Another way to discretize the
problem is to choose a basis {φk(q)} for the set of square-integrable functions on the
domain parameterized by q and attempt to find coefficients {ak(t)} such that

f̃(q, t) =
N∑

k=1

ak(t)φk(q)
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can approximately solve (13.8). A natural way to quantify how goodness of an approx-
imation f̃ over the period of time [0, T ] is by calculating the cost

I
.=
∫ T

0

∫
q
|Df̃ |2dq dt + α2

∫
q
|f̃(q, 0)− f0(q)|2dq,

where α2 is a weighting factor that is introduced in the event that the initial conditions
cannot be exactly met and a trade-off between error in the initial conditions and in
satisfying the evolution equation must be made.

After the integration over q is performed, this will be of the form

I =
∫ T

0
c(a, ȧ) dt. (13.9)

Finding the optimal values of a(t) over the range t ∈ [0, T ] is then a variational calculus
problem.

13.3.4 Equations of Motion of Mechanical Systems

In classical mechanics, a system consisting of N particles, the kth of which has a time-
varying position xk(t) ∈ R3, has a total kinetic energy of the form

T =
1
2

N∑
k=1

mkẋk · ẋk.

If every geometric configuration of the systems can be described with n ≤ 3N general-
ized coordinates q = [q1, . . . , qn]T , then using the chain rule, the kinetic energy can be
written as

T (q, q̇) =
1
2
q̇T M(q)q̇, where [M(q)]ij =

N∑
k=1

mk
∂xk

∂qi
· ∂xk

∂qj
.

If the system is subjected to conservative forces, then this can be described using a
potential energy function V (q).

Hamilton’s principle (also called the principle of least3 action) states that the in-
tegral of the Lagrangian,4 L(q, q̇) = T (q, q̇) − V (q), over any period of time should
be extremized. From the Euler–Lagrange equations, this gives Lagrange’s equations of
motion:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (13.10)

13.4 Sufficient Conditions for Optimality

The Euler–Lagrange equations provide necessary conditions for optimality, but there is
usually no guarantee that a solution of the Euler–Lagrange equations will be optimal.
However, in certain situations, the structure of the function f(·) will guarantee that
the solution generated by the Euler–Lagrange equations is a globally optimal solution.
We now examine cases in which global optimality of solutions of the Euler–Lagrange
equations can be guaranteed.

3Whether or not the action is actually minimized is another story.
4The time integral of L(q, q̇) is called the action.
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13.4.1 Global optimality in the One-Dimensional Case

Here, we consider a special functional in the one-dimensional case for which it is possible
to prove that the solution to the Euler–Lagrange equation is a globally minimal solution.
In particular, if

f(y, dy/dx, x) =
1
2
g(y)(dy/dx)2

and y∗(x) denotes the solution obtained by the Euler–Lagrange equations of variational
calculus, then when x ∈ [0, 1], y(0) = 0, and y(1) = 1, the resulting cost is

J(y∗) =
(∫ 1

0
g

1
2 (y∗(x))

dy∗

dx
dx

)2

=
(∫ 1

0
g

1
2 (y∗)dy∗

)2

.

This is because y∗(0) = 0, y∗(1) = 1 and dy∗/dx > 0. Note that this means that the
value of the integral in the above expression for J(y∗) is independent of the path y∗(x).
This does not mean that J(y∗) itself is independent of y∗. Rather, it means that after
the form of the candidate optimal path obtained from the Euler–Lagrange equation is
substituted back into the cost functional, the resulting value can be written as

J(y∗) =
(∫ 1

0
g

1
2 (y) dy

)2

since the name of the variable of integration is irrelevant. Then from here if we sub-
stitute any y(x) with dy/dx > 0 and use the Cauchy–Schwarz inequality with a(x) =
g

1
2 (y(x)) dy/dx and b(x) = 1, it follows that

J(y∗) ≤ J(y) (13.11)

for any possible y(x).

Example 1: Optimal Reparameterization of Curves

Suppose that an arc-length parameterized curve x(s) ∈ Rn is given and that the shape
of this curve is desirable, but the temporal evolution of the position of a particle along
the curve is sought such that the integral of a cost functional f̃(x, ẋ) = 1

2 ẋ
T A(x)ẋ

should be minimized along the curve. From the chain rule, ẋ = dx
ds ṡ, and so f(s, ṡ) .=

f̃(x(s), dx
ds ṡ) = 1

2

(
dx
ds

)T
A(x(s))

(
dx
ds

)
ṡ2 = 1

2g(s)ṡ2. Therefore, the results of the frame-
work above indicate that solving this one-dimensional variational problem will yield a
globally optimal reparameterization.

13.4.2 Global Optimality in the Multi-dimensional Case

In the multi-dimensional case it is generally not possible to equate the solution of the
Euler–Lagrange equation with global optimality. This is because there can be many
possible paths connecting the initial and final values q(0) and q(1), respectively. For
example, if the cost is of the form f(q, q̇, t) = q̇T G(q)q̇, where G(q) is the metric
tensor for a Riemannian manifold, then solutions of the Euler–Lagrange equations give
the geodesic equations. As is clear even in the simple case of the spheres S1 and S2, a
geodesic connecting any two points can be either the shorter or the longer of the two
great arcs connecting the points. Both are solutions to the variational problem, but
only the shorter of the two is a minimal-length path. In the case case of S2, if the two
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endpoints are antipodal, an infinite number of great arcs connect them, illustrating the
possible nonuniqueness of shortest paths.

Thus, the issue of global optimality is closely tied to the statement of the problem
as a boundary value problem. If instead the problem is stated as “find the path starting
at q(0) with specified value of q̇(0) that minimizes the cost functional

∫ 1
0 f(q, q̇, t) dt

with q(1) left unspecified,” then the solutions of the Euler–Lagrange equations will be
globally optimal. In the one-dimensional case with cost of the form g(y)(y′)2 on a do-
main that is an interval, the distinction between the initial value and boundary value
problems is not so important because the paths only have one possible initial direction.
In the case of the circle S1, they have two possible directions. In multi-dimensional
problems, the initial directions have a continuous space from which to be chosen, mean-
ing that, in general, the nonlinear mapping between initial conditions and boundary
conditions potentially can result in multiple globally suboptimal solutions. Addition-
ally, short of enumerating them all and comparing the cost of each, there is no simple
general test to assess global optimality. However, special multi-dimensional cases exist
in which global optimality can be proved. For example, when G(q) = G0 is constant, or
dependent on q but is diagonal, the resulting boundary value problem will be globally
minimized by the Euler–Lagrange equations when q ∈ [0, 1]n. This is verified by solv-
ing the Euler–Lagrange equations to obtain q∗(t) and then evaluating the cost of any
q(t) = q∗(t)+ε(t), where ε(0) = ε(1) = 0. The resulting cost will never be less than that
for q∗(t).

Suppose that, for whatever reason, a globally minimal solution to a variational op-
timization problem with f1(q, q̇, t) = 1

2 q̇
T G(q)q̇ and q(0) and q(1) specified has been

solved via the Euler–Lagrange equations and minimization over all resulting paths that
connect the specified endpoints. This solution then can be used to “bootstrap” a globally
optimal solution to a larger variational problem in which

f2(q,θ, q̇, θ̇, t) =
1
2
q̇T G(q)q̇ +

1
2
‖θ̇−A(q)q̇‖2W , (13.12)

where ‖B‖2W = tr(BT WB) is the weighted Frobenius norm where W = WT > 0.
The Euler–Lagrange equations for the original variational problem are of the form

d

dt

(
∂f1

∂q̇

)
− ∂f1

∂q
= 0

=⇒ G(q)q̈ +
d

dt
[G(q)] q̇− 1

2
∂

∂q
(q̇T G(q)q̇) = 0

=⇒ G(q)q̈ +
1
2

∂

∂q
(q̇T G(q)q̇) = 0. (13.13)

Let the solution to this system of equations subject to boundary conditions be denoted
as q∗(t).

The Euler–Lagrange equations for the new system will be

d

dt

(
∂f2

∂q̇

)
− ∂f2

∂q
= 0

=⇒ G(q)q̈− d

dt

[
AT (q)W (θ̇−A(q)q̇)

]
+

1
2

∂

∂q
(q̇T G(q)q̇) +

∂

∂q

[
q̇T AT (q)

]
W (θ̇−A(q)q̇) = 0 (13.14)
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and

d

dt

(
∂f2

∂θ̇

)
− ∂f2

∂θ
= 0

=⇒ d

dt

{
W

[
θ̇−A(q)q̇

]}
= 0

=⇒ θ̇−A(q)q̇ = a, (13.15)

where a is a constant vector of integration. Substituting the right-hand side of (13.15)
back into (13.14) and using the chain rule,

d

dt
(AT (q)Wa) = q̇T ∂

∂q

[
AT (q)Wa

]
=

∂

∂q

[
q̇T AT (q)

]
Wa,

means that (13.14) reduces to (13.13), and so the optimal solution for the “q part” of
the problem again will be q∗(t). The right-hand side of (13.15) means that the candidate
optimal solution for this new problem is

θ∗(t) = at + b +
∫ t

0
A(q∗(s))q̇∗(s) ds, (13.16)

where a and b are constant vectors that can be matched to boundary values and q∗(t)
is the solution to the original variational problem with cost f1(q, q̇, t). The global opti-
mality of the solution (q∗(t),θ∗(t)) is guaranteed by the assumption that optimal q∗(t)
is obtained a priori, and the global optimality of θ∗(t) in (13.16) can be observed by
substituting any θ(t) = θ∗(t) + ε(t), where ε(0) = ε(1) = 0, into the cost function and
observing that this never improves the cost.

This class of problems can be viewed in a slightly different way by rewriting
(13.12) as

f(q,θ, q̇, θ̇, t) =
1
2

[
q̇
θ̇

]T (
AT (q)WA(q) AT (q)W

WA(q) W

)[
q̇
θ̇

]
. (13.17)

This means that if a quadratic cost can be decomposed in this way, then the solution
to the larger problem will inherit the global optimality from the original problem.

Example 2: Simultaneous Optimal Reparameterization and Roll
Modification

As a concrete application of this class of problems, consider the problem of simultaneous
curve reparameterization and optimal roll distribution. Start with an initially arc-length-
parameterized curve x(s) for s ∈ [0, 1] and frames defined using the Frenet–Serret
apparatus discussed in Chapter 5 of Volume 1. Suppose that in a computer graphics
simulation we seek a set of frames that evolve along the curve as evenly as possible.
If the Frenet frames are [x(s), QFS(s)], then a new set of smoothly evolving reference
frames can be defined as [x(t), Q(t)] = [x(s(t)), QFS(s(t))R1(θ(s(t)))], where R1(θ) is
an added twist, or roll, of the Frenet frames about the tangent. A cost function can be
formulated as

C
.=

1
2

∫ 1

0

{
1
2
r2tr(Q̇Q̇T ) + ẋ · ẋ

}
dt (13.18)

=
1
2

∫ 1

0

{
(r2κ2(s) + 1)ṡ2 + r2(τ(s)ṡ + θ̇)2

}
dt. (13.19)



13.5 Lie Symmetries in Euler–Lagrange Equations and Other ODEs 139

The integrand here is of the form in (13.12) with s taking the place of q and θ taking
the place of θ. Since the curve reparameterization problem (with the second term in the
integral set to 0) is a one-dimensional variational problem with f(s, ṡ, t) = 1

2g(s)(ṡ)2,
global optimality is preserved. Additionally, from the discussion above, this guarantees
the global optimality of the composite problem.

As a result, the sorts of simultaneous curve reparameterization and optimal roll
distribution to satisfy end constraints obtained from variational calculus in [13, 14] in
the context of “hyperredundant” (snakelike) robotic arms are in fact optimal.

13.5 Lie Symmetries in Euler–Lagrange Equations
and Other ODEs

Although the spirit of most of this book is the use of Lie groups and associated homoge-
neous spaces as domains in which deterministic and stochastic trajectories evolve, in the
history of mathematics that is not how these mathematical objects originally came to
be studied. Sophus Lie studied symmetries of ODEs. Here, we return to these origins of
Lie theory because the Euler–Lagrange equations are ODEs. Our path to studying sym-
metry properties of ODEs has been somewhat circuitous, starting with the presentation
in Chapter 2 in which symmetry analysis of partial differential equations (PDEs) was
presented. For more direct and general treatments of symmetries of ODEs and the use
of these symmetries to reduce and/or solve these equations, see books such as [8, 50].

The theory of symmetries of ODEs begins with a single nth-order ODE of the form

y(n) = f(x, y, y′, . . . , y(n−1)), where y(k) =
dky

dxk
.

From this, it is always possible to define a partial differential operator Ã that acts on
functions φ(x, y, y′, . . . , y(n−1)) as

Ãφ
.=
(

∂

∂x
+ y′ ∂

∂y
+ y′′ ∂

∂y′ + · · ·+ f(x, y, y′, . . . , y(n−1) ∂

∂y(n−1)

)
φ.

The punch line of the theory is that given a set of partial differential operators {X̃i}
that also act on functions φ(x, y, y′, . . . , y(n−1)), then these will form a Lie algebra
corresponding to a local Lie group of symmetries if the following equation is satisfied
for some constant scalar λ:

[X̃i, Ã]φ = λÃφ. (13.20)

We now illustrate this in the context of geodesics on the sphere. Recall that
arc-length-parameterized geodesics can be generated by solving the initial value prob-
lem defined in Chapter 5. However, if we seek the geodesic connecting two specified
points, this will be a boundary value problem for which we will not have advanced
knowledge of the arc-length of the geodesic connecting the points. Therefore, non-arc-
length-parameterized curves have value in establishing the curve by solving the bound-
ary value problem resulting form the Euler–Lagrange equation. Then if one desires, the
resulting curve can be reparameterized as discussed in Section 13.4.

If q = [φ, θ]T is the column vector of spherical coordinates, then the metric tensor
for the unit sphere is

G(φ, θ) =
(

sin2 θ 0
0 1

)
.
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If θ = θ(t) and φ = φ(t), where t is an arbitrary curve parameter, then minimization of
the cost functional with

f(φ, θ, φ̇, θ̇) .=
1
2
q̇T G(q)q̇ =

1
2

[
φ̇2 sin2 θ + θ̇2

]
subject to end constraints is equivalent to the geodesic problem. The resulting Euler–
Lagrange equations are

φ̈ + 2φ̇θ̇ cot θ = 0

and
θ̈ − φ̇2 sin θ cos θ = 0,

where ˙ denotes d/dt.
These equations can be combined by eliminating t so that the resulting curve is

described as a graph of θ = Θ(φ). Then denoting ′ = d/dφ, the chain rule gives

θ̇ = Θ′φ̇ and θ̈ = Θ′′φ̇2 + Θ′φ̈.

Using these, the original Euler–Lagrange equations can be written as a single equation
defining the graph θ = Θ(φ) as

Θ′′ = 2(Θ′)2 cotΘ + sinΘ cosΘ. (13.21)

Following [50], it can be shown that the following operators are symmetries of (13.21)
in the sense of (13.20):

X̃1 =
∂

∂φ
,

X̃2 = cotΘ cosφ
∂

∂φ
+ sinφ

∂

∂Θ
+

(
cosφ + Θ′ cotΘ sinφ + (Θ′)2

cosφ

sin2 Θ

)
∂

∂Θ′ ,

X̃3 = − cotΘ sinφ
∂

∂φ
+ cosφ

∂

∂Θ
+

(
− sinφ + Θ′ cotΘ cosφ− (Θ′)2

sinφ

sin2 Θ

)
∂

∂Θ′ .

(13.22)

It should come as no surprise that the Lie group corresponding to these symmetries
is SO(3), since the sphere can be viewed as the homogenous space SO(3)/SO(2) and,
hence, geodesic paths can be moved around by actions of SO(3).

In contrast to the use of Lie theory to characterize the symmetries of equations, as
was done here, the following section focuses on coordinate-free formulations of varia-
tional calculus problems involving trajectories in Lie groups.

13.6 Parameter-Free Variational Calculus on Matrix Lie Groups

13.6.1 Problem Formulation

The variational calculus problem on matrix Lie groups can be formulated in terms of
extremizing functionals of the form

J =
∫ t2

t1

f(g; g−1ġ; t) dt, (13.23)
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where g(t) is an element of a matrix Lie group G and g−1ġ is simply the product of the
matrices g−1 and ġ, the latter of which is not an element of G.

In particular, let g ∈ RN×N with n generators (i.e., it is an element of an
n-dimensional group represented as an N × N matrix). The identity element is the
N×N identity matrix, I, and any small motion around the identity can be expressed as

gsmall = I +
n∑

i=1

γiEi, (13.24)

where |γi| � 1 and Ei is a unit basis element of the Lie algebra G, which is also
represented as an N × N matrix. For small deviations from the identity, g−1

small ≈
I − ∑n

i=1 γiEi. Furthermore, exponentiation of any linear combination of Lie algebra
basis elements results in an element of the Lie group G, and (13.24) can be viewed as
the truncated version of this exponential for small values of γi.

Given a functional of the form (13.23) and constraint equations of the form∫ t2

t1

hk(g) dt = Ck, (13.25)

one can use the structure of the Lie group G and Lie algebra G to find a natural
analogue of the Euler–Lagrange equations. In this context, the concept of addition
(which was used heavily in the previous subsection) is replaced by the group law and
certain operations in the Lie algebra. In particular, the expression analogous to xi →
xi + αiεi for i = 1, . . . , n in the classical variational calculus in the Lie group context is

g(t) → g(t) ◦ exp

(
n∑

i=1

αiεi(t)Ei

)
≈ g(t) ◦

(
I +

n∑
i=1

αiεi(t)Ei

)
.= g(α, t),

where exp(·) is the matrix exponential and g1◦g2 is simply matrix multiplication (which
will be written as g1g2 below). The product rule of elementary calculus then dictates that

ġ(t) → d

dt

(
g(t) (I +

n∑
i=1

αiεi(t)Ei)

)
= ġ(t)

(
I +

n∑
i=1

αiεi(t)Ei

)
+ g(t)

n∑
i=1

αiε̇i(t)Ei.

This can be written as

ġ(α, t) .= ġ(t) +
n∑

i=1

αi{εi(t)ġ(t) + ε̇i(t)g(t)}Ei.

Substituting g(α, t) and ġ(α, t) into the functional (13.23) and incorporating the
constraint (13.25) using Lagrange multipliers, the goal becomes the minimization of

J ′(α; λ) =
∫ t2

t1

f
(
g(α, t); [g(α, t)]−1ġ(α, t); t

)
dt +

m∑
k=1

λk

(∫ t2

t1

hk(g(α, t); t) dt− Ck

)
.

(13.26)
In this expression, the products of g, ġ, and Ei all make sense when interpreted as matrix
multiplication. Additionally, since we will be differentiating with respect to entries of the
vector α and then setting α to 0 afterward, the term [g(α, t)]−1ġ(α, t) can be linearized
in α since those are the only terms that will survive. Then the same steps as in the
derivation of the classical Euler–Lagrange equations follow, as described below.
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13.6.2 Derivation of the Euler–Poincaré Equation

In analogy with classical variational calculus, we compute

∂J ′

∂αi

∣∣∣∣
αi=0

= 0 (13.27)

and
∂J ′

∂λj
= 0 (13.28)

for i = 1, . . . , n and j = 1, . . . ,m. Equation (13.28) is nothing more than (13.25).
By defining f ′ = f +

∑
k λkhk, integrating by parts, and using the localization

argument on (13.27) produces the following ODEs:

Ẽr
i f ′ +

(∇g−1ġf
′, [g−1ġ, Ei]

)− d

dt

(∇g−1ġf
′, Ei

)
= 0 (13.29)

where for any function F ∈ C∞(G),

Ẽr
i F (g) =

d

dt
F (g ◦ exp(tEi))

∣∣∣∣
t=0

(13.30)

is the “right” derivative of F with respect to the ith Lie algebra basis element. [·, ·] is
the Lie bracket (which in this case is the matrix commutator [A,B] = AB −BA). ∇X

is a directional derivative in the Lie algebra in the direction X ∈ G. (·, ·) is the inner
product for the Lie algebra G such that (Ei, Ej) = δij .

By observing that for any Lie group (not only SO(3) or SE(3)), we can define
ξ = (g−1ġ)∨, then

[g−1ġ, Ei] =

⎡⎣ n∑
j=1

ξjEj , Ei

⎤⎦ =
n∑

j=1

ξj [Ej , Ei] =
n∑

j=1

ξj

(
−

n∑
k=1

Ck
ijEk

)
,

(∇g−1ġf,Ei) =

⎛⎝ n∑
j=1

∂f

∂ξj
Ej , Ei

⎞⎠ =
n∑

j=1

∂f

∂ξj
(Ej , Ei) =

∂f

∂ξi
,

and

(∇g−1ġf, [g−1ġ, Ei]
)
=

⎛⎝ n∑
l=1

∂f

∂ξl
El,−

n∑
j,k=1

ξj Ck
ijEk

⎞⎠
=−

n∑
j,k,l=1

∂f

∂ξl
Ck

ij ξj (El, Ek)

=−
n∑

j,k=1

∂f

∂ξk
Ck

ij ξj .

Equation (13.29) can then be written in terms of the functions f and hk as

d

dt

(
∂f

∂ξi

)
+

n∑
j,k=1

∂f

∂ξk
Ck

ij ξj = Ẽr
i

(
f +

m∑
l=1

λlhl

)
. (13.31)
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This is a modified version of the Euler–Poincaré equation [1, 7, 31, 48]. For i = 1, . . . , n,
it forms a system of second-order ordinary differential equations. Generally, these will
be nonlinear equations that can be solved numerically subject to boundary conditions.
Several special cases are examined in the following subsections.

13.6.3 Cases When the Euler–Poincaré Equation Gives Globally
Minimal Solutions

Given a cost function of the form

f(g, ξ, t) =
1
2
ξT Wξ =

1
2

n∑
i,j=1

wijξiξj

with W = WT > 0, the Euler–Poincaré equations are of the form

d

dt

⎛⎝ n∑
j=1

wijξj

⎞⎠ +
n∑

j,k=1

(
n∑

l=1

wklξl

)
Ck

ijξj = 0. (13.32)

Let

Si
lj

.=
n∑

k=1

wklC
k
ij . (13.33)

If Si
lj = −Si

jl, then
∑n

j,l=1 Si
ljξlξj = 0 and (13.32) reduces to

W ξ̇ = 0 =⇒ ξ(t) = ξ(0) =⇒ g(t) = g(0) ◦ etξ̂(0).

This means that when these conditions hold, the shortest path computed from varia-
tional calculus connecting g(0) = g0 and g(1) = g1 is

g(t) = g0 ◦ exp(t · log(g−1
0 ◦ g1)). (13.34)

Furthermore, this path will be globally optimal because of the structure of the cost
function.

However, if Si
lj �= −Si

jl, then (13.32) does not reduce and the path generated by vari-
ational calculus is generally not this geometric one. For example, when G = SO(3) and
the cost is kinetic energy due to rotation, Euler’s equations of motion result. If the inertia
matrix is a multiple of the identity, then the minimal path connecting two rotations is the
geometric path in (13.34). However, in cases when the moment of inertia is not isotropic,
then computing the optimal path between rotations becomes more complicated. Such
problems are relevant in satellite attitude reorientation. See, for example, [34].

In cases when an easy closed-form solution is not available for the optimal path, it
is still possible to bound the length of the minimal path using closed-form solutions.
An upper bound on the cost always can be obtained using (13.34). Additionally, since
matrix Lie groups are naturally embedded in Rn×n, a lower bound on the length of the
minimal path can be obtained by the straight-line distance ‖g1 − g2‖. In cases where
these upper and lower bounds are not very different from each other, this is an indication
that the suboptimal solution obtained from the upper bound can serve as a satisfactory
proxy for the optimal solution.
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13.6.4 Sub-Riemannian Geometry, Carnot–Carathéodory Distance,
and Stochastic Nonholonomic Systems

Throughout the chapter, it has been assumed that the cost function inside of inte-
grals is quadratic with the matrix G(q) being positive definite. This is consistent with
Riemannian geometry, and a wide variety of applications fall within that paradigm.
However, other systems of interest, including the kinematic cart, do not fall into this
framework. If we seek a shortest path for a cart to take between the poses g(x0, y0, θ0)
and g(x1, y1, θ1), we know that such a path will be of the form

ġ(t) = g(t)

(
2∑

k=1

αi(t)Xi

)
, where g(0) = g(x0, y0, θ0).

Here, X1 and X2 are the allowable infinitesimal motions in the body-fixed reference
frame. In particular, for the cart, the allowable motion is a single translation degree of
freedom in the forward/backward direction and a rotation around the z axis. However,
no motion is allowed along the direction of the axis connecting the wheels. The fact
that the cart can reach any pose from any starting position is a consequence of classi-
cal Lie bracket conditions [15]. The shortest path computed under such nonholonomic
constraints will obviously be longer than the path computed if there were no such con-
straints. What is perhaps less obvious is that if the shortest path under such constraints
is computed between every pair of points, this defines a bona fide distance/metric func-
tion on all pairs of elements (g0, g1). The generalization of this concept is the Carnot–
Carathéodory distance—namely given an n-dimensional Lie group G, integrating the
equation

ġ(t) = g(t)

(
m∑

k=1

αi(t)Xi

)
, where g(0) = g0, (13.35)

for known {αi(t)} generates a curve segment in G for t ∈ [0, 1]. If the set {Xi} for
i = 1, . . . ,m < n together with iterated Lie brackets span the whole Lie algebra of G,
then it is guaranteed that at least one {αi(t)} can be found such that g(1) = g1. The
Carnot–Carathéodory distance is the length of the shortest of all such paths [11, 51]:

dcc(g0, g1) = inf
{{αi}|g(0)=g0,g(1)=g1}

∫ 1

0

(
m∑

k=1

α2
i (t)

)2

dt. (13.36)

This satisfies the metric properties (positive definiteness, symmetry, and the triangle
inequality) and is invariant under left shifts. Since the infimum is over all possible {{αi}
satisfying the boundary conditions g(0) = g0 and g(1) = g1, the value of dcc(g0, g1)
depends only on the choice of the subset of basis elements {Xi}.

In addition to obvious applicability to shortest path problems in nonholonomic sys-
tems, the Carnot–Carathéodory distance has been used extensively in the study of
how the geometric and algebraic properties of Lie groups are related [27, 44] and how
rapidly diffusion processes on Lie groups spread out. Such problems go by names such
as “volume growth in Lie groups”—namely if a ball within G centered at the identity is
defined under the condition that every element in the ball, g ∈ B, satisfies the condition
dcc(e, g) ≤ t, then the rate at which the volume VB(t) of this ball grows as t → ∞
says something fundamental about the group. Groups of polynomial growth are those
for which the asymptotic behavior of this volume is a polynomial in t. Since compact
Lie groups have finite volume, they necessarily fall in this category, whereas some kinds
of noncompact Lie groups can exhibit exponential growth. See, for example, [19] for a
more detailed discussion of groups that exhibit polynomial volume growth.
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The Carnot–Carathéodory distance has also been used to characterize the behavior
of diffusion equations on Lie groups. For example, if X̃r

i denotes the Lie derivative
associated with the Lie algebra basis element Xi, then the diffusion

∂h

∂t
=

1
2

m∑
k=1

(X̃r
k)2h, where h(g, 0) = δ(g),

will be nondegenerate if it satisfies Hörmander’s hypoellipticity conditions [32]. Such
equations would result in the example of the cart if it translated forward and backward
and around its z axis by Brownian motion. Of relevance to stochastic nonholonomic
systems are the following inequalities associated with the time-varying pdfs, h(g, t), on
groups G of polynomial growth [52]:∫

dcc(e,g)≥r

h(g, t) dg ≤ Ce−r2/Ct

and
ce−C[dcc(e,g)]2/t ≤ h(g, t) · VB(

√
t) ≤ Ce−c[dcc(e,g)]2/t

for all t > 0 and some positive constants c and C.
Such inequalities are relevant to the sorts of diffusion equations that will be studied

in Chapter 20. However, in applications, it is often equally important to know the values
of the constants c and C, and some degenerate diffusion equations either do not follow
Hörmander’s condition or are on groups of exponential growth. In either case, the above
equations do not apply. For these reasons, we will not be using many of the results of
the field of geometric analysis/volume growth on Lie groups. However, readers with an
interest in this area can find many results in the references above and [9, 10, 38, 45].

13.7 An Application: Continuum Models of DNA Mechanics

The DNA double helix has been modeled at a variety of levels of coarseness. At the finest
level of description, the Cartesian positions of all atomic nuclei are stored. At the next
level up, the positions and orientations of individual bases are treated as rigid bodies
that are paired and stacked with harmonic potentials. The model reviewed here is even
coarser. The stiffness properties of DNA are averaged over several consecutive basepairs
in the double helix. The result is a continuous elastic rod model with a minimal energy
conformation that has a helical twist. A “backbone curve” together with an arc-length-
dependent stiffness matrix then describes the mechanical properties at this course level.
Elastic models of DNA mechanics have a long history, and there is a correspondingly
immense literature. Here, only a sampling of some of the most modeling-oriented works
that are relevant to our current discussion is provided. For more complete lists, including
those that focus on experiments, see [12, 36].

A number of recent studies on chiral and uncoupled end-constrained elastic rod
models of DNA with circular cross section have been presented [3, 4, 16, 26]. These
models use classical elasticity theory of continuum filaments with or without self-contact
constraints to model the stable conformations of DNA in plasmids, in chromosomes, and
during transcription.

The interpretation of experimental measurements of DNA stiffness parameters have
been reported in many works, including [39, 53]. DNA elastic properties and experimen-
tal measurements of DNA elastic properties such as twist/stretch coupling have been
reported.
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Discussion of probabilistic aspects of DNA conformational fluctuations is postponed
until Chapter 14. In this section the emphasis is on solving deterministic variational
problems, such finding the shape of DNA loops with end constraints. This requires
having a model for the elastic properties of DNA.

Recent works involve the modeling of DNA as an anisotropic inextensible rod and
also include the effect of electrostatic repulsion for describing the DNA loops bound to
the Lac repressor and so forth [3]. Another recent work includes sequence-dependent
elastic properties of DNA [16]. All of these aforementioned works are based on Kirch-
hoff’s thin elastic rod theory. This theory, as originally formulated, deals with nonchiral
elastic rods with a circular cross section.

Gonzalez and Maddocks devised a method to extract sequence-dependent param-
eters for a rigid base pair DNA model from molecular dynamics simulation [25]. In
their article, they used a force moment balance equation from Kirchhoff’s rod theory to
extract stiffness and inertia parameters. Another recent work includes the application
of Kirchhoffs rod theory to marine cable loop formation and DNA loop formation [26].
Recently, Wiggins et al. developed a theory based on nonlinear elasticity, called the kink-
able wormlike chain model, for describing spontaneous kinking of polymers, including
DNA [53].

In this section the variational formulation in [36] is reviewed in detail. For associated
numerical algorithms and results, the reader is referred to that work.

13.7.1 Elastic Rod Models of DNA

One problem that has been addressed in the literature is that of determining the shape
of a DNA filament subjected to constraints on end positions and orientations. This is
a natural variational calculus problem in which the energy due to deformation of the
filament from its natural double-helical referential conformation can be captured with a
helical rod model. Two kinds of elastic-filament models often are used to describe DNA.
The first is an extensible model in which the DNA filament is allowed to stretch and
shear, as well as to bend and twist. A 6× 6 stiffness matrix describes the resistance to
these motions. The second common model is that of an elastic rod that does not allow
shear or stretching/compression. This model has only three degrees of freedom. These
two models are described below, and it is explained how variational problems on SE(3)
and SO(3) result.

The Extensible Case

A nonuniform extensible elastic filament with unstretched length L has elastic energy
of the form5

E1 =
∫ L

0
F (ξ(s), s) ds, where F (ξ(s), s) =

1
2
[ξ(s)− ξ0]T K(s)[ξ(s)− ξ0]. (13.37)

Here, ξ̂0 ∈ se(3) defines the local shape of the minimal energy conformation at each
value of curve parameter s, and K(s) is the 6 × 6 stiffness matrix that describes re-
sistance to change in each direction of infinitesimal motion. Off-diagonal terms in this
matrix describe couplings that have been observed experimentally. Both ξ̂(s) and ξ̂0

5In order to be consistent with recent literature, vectors X∨, where X ∈ se(3), will be
denoted here as ξ.
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are body-fixed quantities in the sense that ξ̂(s) = g−1dg/ds and ξ̂0 = g−1
0 dg0/ds for

the one-dimensional set of reference frames g(s) and g0(s), respectively. Sometimes it is
convenient to define

k .= Kξ0.

Given ξ0(s), it is possible to integrate the matrix differential equation

dg0

ds
= g0 ξ̂0(s)

subject to the initial condition g(0) = e (the identity element of SE(3) is the identity
matrix e = I4) for s ∈ [0, L] to obtain the minimal energy conformation rooted at the
identity. In the case when ξ0(s) is a constant vector, this will be a helix (with circular
arcs and line segments as special cases).

Note that the independent variable is now a curve parameter s rather than time t.
Here, the curve parameter s is taken to be the curve parameter of the filament in its
undeformed (referential) conformation g0(s).6

As a specific example, if the chain is uniform, inextensible, and shearless, we have
the constant stiffness matrix K of the form

K =

⎛⎜⎜⎜⎜⎜⎜⎝
B11 B12 B13 0 0 0
B12 B22 B23 0 0 0
B13 B23 B33 0 0 0
0 0 0 s1 0 0
0 0 0 0 s2 0
0 0 0 0 0 s3

⎞⎟⎟⎟⎟⎟⎟⎠ , (13.38)

where si are very large numbers. As a result, the diffusion matrix (which when measured
in units of kBT ) is just the inverse of the stiffness matrix

K−1 = D ≈
(

B−1 O
O O

)
(13.39)

and if the minimal energy conformation is an arc-length-parameterized helix, we have
the constant vector

ξT
0 = [ωT

0 , eT
3 ]. (13.40)

As a specific example of (13.38) and (13.40) that has attracted attention in the
recent literature is the Marko–Siggia DNA model [39]

B =

⎛⎝a0 + b2
0/c0 0 b0

0 a0 0
b0 0 c0

⎞⎠ , ω0 =

⎛⎝ 0
0
ω0

⎞⎠ . (13.41)

Sometimes it is convenient to define

b .= Bω0.

This model for twist-bend coupling can be used either with extensible or inextensible
versions of elastic-filament models of DNA.

6In the extensible case, the curve parameter s can be viewed as the arc length in the
referential (undeformed) conformation of the filament, which does not necessarily mean that s
will be the arc length in the pushed forward (deformed) version of the filament. However, in
the inextensible model, s retains its role as the arc length after deformation since deformations
are restricted to bending and twisting in that model.
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The Inextensible Case

Under the assumption that the molecule is inextensible and shearless and all of the
frames of reference are attached to the backbone with their local z axis pointing in the
direction of the next frame, the constraint

a(L) =
∫ L

0
u(s) ds and u(s) = R(s)e3 (13.42)

is observed. This can be viewed as the inextensible filament “growing” along the direc-
tion indicated by the tangent for each value of arc length s up to a total length of L.

In this case, the stiffness matrix is 3 × 3 (e.g., of the form in (13.41)), and since
stretch and shear degrees of freedom have effectively been frozen out, the resulting
problem becomes one of minimizing

I =
1
2

∫ L

0
[ω(s)− ω0]T B[ω(s)− ω0] ds (13.43)

subject to the constraints (13.42). Here, ω = (RT dR/ds)∨ and ω0 = (RT
0 dR0/ds)∨ are

angular velocities as seen in the body-fixed frame, where the arc length s replaces time
as the independent variable.

Unlike the extensible problem, which was an unconstrained variational minimization
problem on SE(3), this is a constrained variational problem on SO(3) and will therefore
involve the use of Lagrange multipliers. The Euler–Poincaré equations for both cases
are worked out in the following subsection.

13.7.2 Minimal Energy Conformations of DNA Loops
with End Constraints

Here, the necessary conditions for coordinate-free variational minimization of the energy
functionals described in the previous section are established. This is a straightforward
application of the Euler–Poincaré equations. In the inextensible and shearless case, the
group G = SO(3), and in the extensible case, the group is G = SE(3). In both cases
there are six free degrees of freedom to specify the end position and orientation of the
elastic filament. In the extensible case, these degrees of freedom correspond to the six
scalar components of the initial conditions ξ(0), whereas in the inextensible case, they
correspond to three scalar initial conditions ω(0) and three scalar Lagrange multipliers
(components of λ) corresponding to the three constraints that define a(L) in (13.42).

Inextensible Case

Considering the case of (13.43) with the kinematic constraint of inextensibility (13.42),
one writes (13.31) with f = U for i = 1, 2, 3 together as the vector equation

Bω̇ + ω× (Bω− b) =

⎛⎝−λT Ae2

λT Ae1
0

⎞⎠ , (13.44)

where a dot represents differentiation with respect to the arc length s, λ ∈ R3 is the
vector of Lagrange multipliers necessary to enforce the vector constraint in (13.42), and
the right-hand side of (13.44) results from the fact that

Er
i (λT Ae3) =

d

dt
λT A(I + tEi)e3

∣∣∣∣
t=0

= λT AEie3 = λT A(ei × e3).
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Equation (13.44) is solved iteratively subject to the initial conditions ω(0) = μ,
which are varied together with the Lagrange multipliers until a(L) and A(L) attain
the desired values. A(s) is computed from ω(s) in (13.44) by integrating the matrix
differential equation

Ȧ = A

(
3∑

i=1

ωi(s)Ei

)
,

and a(L) is then obtained from (13.42). Numerical methods for updating μ and λ so as
to push the position and orientation of the distal end to specified values are described
in [36].

Extensible Rods

From (13.31) and (13.37) one can obtain the following Euler–Lagrange equation for the
extensible case:

Kξ̇ + (Kξ− k) ∧ ξ = 0, (13.45)

where ∧ is the product of infinitesimal rigid-body motions defined by(
ω1
v1

)
∧

(
ω2
v2

)
=

(
ω2 × ω1 + v2 × v1

ω2 × v1

)
.

This wedge operator is related to the ad operator as

ξ1 ∧ ξ2 = −[ad(ξ2)]
T ξ1, (13.46)

where ξi = [ωT
i ,vT

i ]T , i = 1, 2, and the matrix of ad operator is defined as

[ad(ξ)] =
(

ω̂ O
v̂ ω̂

)
.

Equation (13.45) is solved subject to the initial conditions ξ(0) = η ∈ R6. This,
together with the kinematic condition

ġ = g

(
6∑

i=1

ξiEi

)
, (13.47)

is integrated for 0 ≤ s ≤ L to define g(ξ, L). From this point, everything follows in
exactly the same way as for the inextensible case. For any fixed value of L ∈ R+,
(13.45) and (13.47) can together be thought of as defining a mapping from R6 (the initial
conditions η) into SE(3). This mapping can be generated by numerically solving these
ODEs. It is not a one-to-one mapping, and finding all values of initial conditions that
map to a specific end position and orientation of the filament is quite challenging [36].

13.8 Chapter Summary

This chapter served as a brief review of variational calculus. Both the classical coordinate-
dependent (Euler–Lagrange) and coordinate-free (Euler–Poincaré) equations were
derived. Special emphasis was given to the application of these methods to deriving
the necessary conditions for extremal conformations of models of double helical DNA
molecules. Very recently, the same techniques have been applied to obtain the minimal
energy shapes of concentric elastic tubes that have been proposed for use in mini-
mally invasive surgical applications [49]. Variational calculus also provides a tool for



150 13 Variational Calculus on Lie Groups

articulating necessary conditions for generating geodesics (shortest paths) in Rieman-
nian manifolds.

An important connection between Lie theory and variational calculus that was not
discussed here is Noether’s theorem, a recent description of which can be found in [46].
Basically, this theorem considers the case when the functional in a variational problem,
J , is perturbed by the action of elements of a Lie group, g = expX ∈ G, resulting in
J ′ .= g ·J . It states that in the case when ‖X‖ is small, if ΔJ

.= J ′−J depends on powers
of the entries of X that are all higher than linear, then the Euler–Lagrange equations
will have associated conservation laws. A classical example of this is the relationship
between the conservation of angular momentum in physics and the invariance under
changes in reference frame of the integral of rotational kinetic energy over any fixed
time interval. Indeed, the search for symmetries has played a large role in physics in
general over the past century. Symmetries in the Euler–Lagrange and Euler–Poincaré
equations can be analyzed using methods from Lie theory, as was demonstrated for the
case of geodesics on the sphere. This theory has been addressed in much more general
and abstract contexts, as summarized in [30] in the language of jet bundles.

The emphasis of this chapter has been the formulation of variational problems on Lie
groups. A whole other research area is that of accurate numerical solutions of the sorts of
ODEs that result from variational calculus and optimal control problems on Lie groups.
Although the topic of numerical solution methods is not the subject of this chapter, it
nevertheless may be useful to have some pointers to the literature. For example, efforts
that seek to integrate ODEs that evolve on rotation and unitary groups include [18, 20],
and for rigid-body motion include [42, 43]. Closely related is the problem of evolution
on ODEs the Stiefel and Grassmann manifolds [5]. Such problems arise in the study
of neural networks [2, 22, 47]. Algorithms for reliably integrating ODEs on general Lie
groups and other manifolds can be found in [17, 23, 24, 33, 40, 41]. The recent book by
Hairer et al [29] provides a detailed and readable treatment of this subject with many
more pointers to the literature than can be provided here.

As was demonstrated in this chapter, variational methods play an important role
in mechanics. Lagrange’s equations of motion will be encountered again in the next
chapter, in the context of statistical mechanics.

13.9 Exercises

13.1. Following the discussion in Section 13.3.1, use the Euler–Lagrange equations to
find the conditions describing geodesics on the unit sphere using the usual spherical-
coordinate parameterization. Verify that the geodesic curvature is 0 for these curves.
Verify that these curves correspond to segments of great circles (i.e., they lie on the
circles resulting from intersecting a plane passing through the center of the sphere with
the sphere itself).

13.2. Prove that the Euler–Lagrange equations for f1 = 1
2

√
q̇T G(q)q̇ and f2 = (f1)2 =

1
4 q̇

T G(q)q̇ reduce to the same thing. Is this true for other powers of f1?

13.3. How does the Euler–Lagrange equation extend to the case of the extremization of
a functional of the form

I =
∫ b

a

f(q, q̇, q̈, t) dt?

Hint: Integrate by parts twice.
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13.4. Work out the details of the relationship between the function c(a, ȧ) in (13.9) and
the original operator Df in (13.8).

13.5. Chapter 5 discussed, among other things, the differential geometry of arc-length-
parameterized curves x(s). In that discussion, the tangent, normal, and binormal defined
the orientation of a Frenet frame QFS = [u(s),n1(s),n2(s)] ∈ SO(3) attached to an arc-
length-parameterized curve. Consider a unit-length curve segment defined by s ∈ [0, 1].
Suppose that x(0) = 0, QFS(0) = I, and we want to define reference frames relative to
gFS(s) = (QFS(s),x(s)) of the form

g(t) = (QFS(s(t))R3(φ(t)),x(s(t)))

that evolve so as to minimize

I =
∫ 1

0

∥∥∥∥g−1 dg

dt

∥∥∥∥2

dt

subject to the constraints s(0) = 0, s(1) = 1 and φ(0) = 0, φ(1) = φ0. Using classical
variational calculus with coordinates s and φ write the Euler–Lagrange equations. Can
these equations be solved?

13.6. Let R ∈ SO(3) and ωr = (RT Ṙ)∨. The kinetic energy of a rigid body with moment
of inertia I will be T = 1

2ωT
r Iωr. Show that the Euler–Poincaré equations corresponding

to the action integral I =
∫ t1

t0
T dt will give Euler’s equations of motion for the case of

no external moment:
Iω̇ + ω× (Iω) = 0. (13.48)

13.7. Given a rigid body with moment of inertia I, its kinetic energy will be T =
1
2ωT

r Iωr, where ωr = Jr(q)q̇. Let q = [α, β, γ]T , the ZXZ Euler angles. How do La-
grange’s equations in the case when V = 0 compare with Euler’s equations of motion
for the same rigid body (with no external moments applied)?

13.8. In Chapter 10, the logarithm map was used to define a metric (measure of dis-
tance) between points in a Lie group. Another such metric on Lie groups is the Carnot–
Carathéodory distance described in (13.36). Compare and contrast these for the groups
SO(3) and SE(2) and choose your own basis elements and functions {αi(t)}.
13.9. Make it an exercise to show that when metric tensor is diagonal with gii(q), a
function only of qi, or if G(q) = G0 is constant, that the Euler–Lagrange equations will
give globally optimal solutions.

13.10. Show that the optimal roll and reprametrization problem can be solved se-
quentially either by first obtaining the optimal roll for an arc-length-parameterized
curve followed by reprameterization of the curve or the curve can first be reparameter-
ized followed by an adjustment to the roll.

13.11. Show that when sk
ij = −sk

ji, the geometric path (13.34) not only satisfies the
necessary conditions for optimality (i.e., the Euler–Poincaré equation) but is in fact a
path of globally minimal cost. Hint: Mimic the proof of Exercise 13.9.

13.12. A number of different forms of stereographic projection exist. In the version
in which the horizontal plane intersects the unit sphere at its equator, lines passing
through the south pole define a mapping between the open upper hemisphere and the
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open disk in the plane bounded by the equator of the sphere. In this problem, do the
following: (a) Show that this mapping between the unit vector u = [u1, u2, u3]T in the
upper hemisphere and the Cartesian coordinates [y1, y2] in the plane is given by

y1 =
u1

1 + u3
; y2 =

u2

1 + u3
;⇐⇒ u1 =

2y1

1 + y2
1 + y2

2
; u2 =

2y2

1 + y2
1 + y2

2
; u3 =

1− y2
1 − y2

2

1 + y2
1 + y2

2
.

(b) Compute the metric tensor determinant |G(y1, y2)|.
13.13. Verify that the differential operators {X̃i} in (13.22) satisfy the commutation
relations for so(3) and show that the following do as well:

Ỹ1 =x
∂

∂y
− y

∂

∂x
,

Ỹ2 = y
∂

∂z
− z

∂

∂y
,

Ỹ3 =x
∂

∂z
− z

∂

∂x
.

Additionally, show that the conversion of these operators from Cartesian coordinates to
spherical coordinates results in the operators

Ỹ ′
1 =

∂

∂φ
,

Ỹ ′
2 = cot θ cosφ

∂

∂φ
+ sinφ

∂

∂θ
,

Ỹ ′
3 = − sinφ cot θ

∂

∂φ
+ cosφ

∂

∂θ
,

which also satisfy the commutation relations for so(3).
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14

Statistical Mechanics and Ergodic Theory

The purpose of this chapter is to tie together a number of concepts that have been
presented earlier. Stochastic models and information-theoretic quantities such as entropy
are not disjoint concepts. They overlap nicely in the context of statistical mechanics,
where stochastic models describe general classes of equations of motion of physical
systems.

The concept of entropy used in information theory has a form that is reminiscent of
entropy in statistical mechanics. In fact, this is one reason why Shannon used that term.
However, the entropy of statistical mechanics demonstrates an invariance under coor-
dinate transformations that does not generally hold for continuous multi-dimensional
information-theoretic entropy. This results from the special properties of “phase space”
as defined in the Hamiltonian formulation of mechanics.

The main points to take away from this chapter are as follows:

• Equations of motion from classical mechanics, when forced by white noise, lead to
Fokker–Planck equations that have the Maxwell–Boltzmann distribution as their
steady-state solution.

• Entropy in statistical mechanics, unlike the continuous entropy of information theory,
has the special property that it is invariant under coordinate changes. Additionally,
this property results from the special nature of so-called phase space.

• The concept of ergodicity encountered in earlier chapters in purely random contexts
can be modified to include deterministic phenomena, resulting in a field of study
called ergodic theory.

• Information theory and statistical mechanics share more in common than the word
“entropy” defined by similar-looking equations, and although care must be taken not
to confuse these two different (but related) concepts, there are certain problems (in
particular in biology and the thermodynamics of computation and communication)
where both apply.

Section 14.1 reviews the classical mechanics of systems driven by conservative forces.
In Section 14.2 relationships among classical mechanics, stochastic models, and statisti-
cal mechanics are established. Section 14.3 discusses the convergence of Fokker–Planck
equations associated with stochastic mechanical models to the Maxwell–Boltzmann
distribution of statistical mechanics under special conditions. Section 14.4 discusses
a particular problem in the statistical mechanics of rigid molecules forced by Brownian
motion. When such molecules interact according to the molecular theory of solvation,
the concept of convolution on the group of rigid-body motions arises in a natural way.
Section 14.5 uses DNA as an example to demonstrate the general principles articulated
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in previous sections. Both the statistical mechanics of a continuum elastic filament model
and a multi-rigid-body model are discussed. Section 14.6 provides a brief review of er-
godic theory and provides pointers to the literature. Finally, in Sections 14.7 and 14.8
the chapter is summarized and exercises are provided.

14.1 Mechanics of Conservative Systems

Statistical Mechanics builds on Classical Mechanics, which is reviewed here.

14.1.1 Lagrangian Mechanics

The kinetic and potential energies of a classical conservative mechanical system are
respectively of the form

T =
1
2
q̇T M(q)q̇ and V = V (q), (14.1)

where q = [q1, . . . , qn]T is a vector of generalized coordinates and M(q) = MT (q) is the
positive semi-definite mass matrix that is a function of the coordinates. The Lagrangian
is defined as

L(q, q̇) = T (q, q̇)− V (q). (14.2)

Lagrange’s equations of motion for such a system can be written as

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+

∂V

∂qi
= 0 or

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (14.3)

The derivation these equations directly from Newton’s laws can be found in many books
on Classical Mechanics. Alternatively, it can be viewed as a direct application of the
variational methods discussed in the previous chapter via the so-called principle of least
action.

As a simple example, consider a pendulum consisting of s massless rod of length L
with point mass m concentrated at the distal end. The pendulum is assumed to have a
frictionless hingelike fulcrum that only allows planar motion. Denoting the angle that
the rod makes with the vertical as θ, the kinetic energy can be written as T = 1

2mL2θ̇2

and the potential energy is V = mgL(1− cos θ). In this one-degree-of-freedom example,
there is a single Lagrange equation of motion of the form θ̈ +(g/L) sin θ = 0 (which has
been simplified by dividing out the factor of mL2 in both terms in (14.3) for the case
when qi = θ).

14.1.2 Conjugate Momenta and Hamiltonian Mechanics

Corresponding to the generalized coordinates are quantities called conjugate momenta,
which are defined as

pi
.=

∂T

∂q̇i
or p = M(q)q̇. (14.4)
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In particular,

∂T

∂qi
=

1
2

n∑
j,k=1

∂mjk

∂qi
q̇j q̇k =

1
2
q̇T ∂M

∂qi
q̇ (14.5)

=
1
2
pT M−1 ∂M

∂qi
M−1p = −1

2
pT ∂M−1

∂qi
p (14.6)

=−1
2

n∑
j,k=1

∂m−1
jk

∂qi
pjpk. (14.7)

The second equality in (14.6) follows from taking the partial derivative of MM−1 = I
with respect to qi. Here, m−1

jk
.= [M−1]jk denotes the jkth element of the matrix M−1.

This means that the original n second-order scalar differential equations of motion
in the variable q can be replaced by 2n first-order equations in the variables p and q.
In particular, the Hamiltonian is defined as the total system energy written in terms of
the variables p and q:

H(p,q) .= T (q,M−1(q)p) + V (q) =
1
2
pT M−1(q)p + V (q). (14.8)

Note that there is a plus sign in (14.8), whereas there is a minus sign in (14.2).
Combining the definition in (14.8) with (14.7) and (14.4) results in Hamilton’s equa-

tions of motion:
dpi

dt
= −∂H

∂qi
and

dqi

dt
=

∂H

∂pi
. (14.9)

Many interesting properties result from (14.9). For example, the time derivative of a
function f(p,q, t) can be computed using a modified version of the usual chain rule as

df

dt
=

∂f

∂t
+

n∑
i=1

(
∂f

∂qi

dqi

dt
+

∂f

∂pi

dpi

dt

)

=
∂f

∂t
+

n∑
i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
. (14.10)

In general, the Poisson bracket of two functions f1(p,q, t) and f2(p,q, t) is defined as

{f1, f2} .=
n∑

i=1

(
∂f1

∂qi

∂f2

∂pi
− ∂f1

∂pi

∂f2

∂qi

)
= −{f2, f1}. (14.11)

This means that (14.10) can be written as

df

dt
=

∂f

∂t
− {H, f}. (14.12)

The Poisson bracket also satisfies the Jacobi identity

{f1, {f2, f3}}+ {f2, {f3, f1}}+ {f3, {f1, f2}} = 0

and the product rule
{f1, f2f3} = {f1, f2}f3 + f2{f1, f3}



158 14 Statistical Mechanics and Ergodic Theory

(where the operator {f1, ·} takes the place of the derivative being applied to the product
f2f3).

The 2n-dimensional phase space has some interesting properties which make it more
convenient to describe dynamical systems than the 2n-dimensional space consisting of
generalized coordinates and their rates. The properties of phase space are explained in
the following subsections.

14.1.3 Properties of Volume in Phase Space

Suppose that two different sets of generalized coordinates are used to describe the same
mechanical system. Let q and q′ respectively denote the vectors consisting of these
coordinates. The kinetic energy of the system is written as

T =
1
2
q̇′T M ′(q′)q̇′ =

1
2
q̇T M(q)q̇,

which means that
M(q) = JT (q)M ′(q′(q))J(q),

where

J(q) =
∂q′

∂qT

is the Jacobian matrix relating the rates of change of the coordinate vectors:

q̇′ = J(q) q̇.

Since conjugate momentum is defined as p = ∂T/∂q̇, the conjugate momentum in
the two different coordinates are related as

p = M(q) q̇, p′ = M ′(q′) q̇′ = J−T (q)M(q) q̇,

which means that
p′ = J−T (q)p.

Therefore, the volume elements in the two phase spaces are related as

dp′ dq′ =
∣∣∣∣J−T (q) ∂(J−T (q)p)/∂qT

O J(q)

∣∣∣∣ dp dq.

The above determinant is equal to 1 since it is upper triangular, and the determinants
of the diagonal blocks cancel, and so the very special property of invariance of phase
volume with respect to coordinate changes results:

dp′ dq′ = dp dq. (14.13)

14.1.4 Liouville’s Theorem

The emphasis of the previous subsection was that the expression for the volume el-
ement in phase space is invariant under the choice of coordinates used. In contrast,
Liouville’s theorem can be viewed as a statement about how regions in phase space flow
according to Hamilton’s equations of motion. Given an initial ensemble consisting of
an infinite number of noninteracting copies of the same conservative mechanical system
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that initially populate an arbitrary region in phase space, then the evolution of the
shape of this region over time (with each copy of the mechanical system being governed
by Hamilton’s equations of motion) will be such that the volume of the region does not
change.

Let p and q denote the values of conjugate momenta and generalized coordinates
at a particular time t. At an instant later, t′ = t + dt, the corresponding quantities are
obtained from Hamilton’s equations (14.9) as

p′
i = pi − ∂H

∂qi
dt and q′

i = qi +
∂H

∂pi
dt.

The volume elements are related as

dp′
1 · · · dp′

n dq′
1 · · · dq′

n =
∂(p′

1, . . . , p
′
n; q′

1, . . . , q
′
n)

∂(p1, . . . , pn; q1, . . . , qn)
dp1 · · · dpn dq1 · · · dqn. (14.14)

The entries in the Jacobian matrix will be of the form

∂p′
i

∂pj
= δij − ∂2H

∂qi∂pj
dt,

∂q′
i

∂pj
=

∂2H

∂pi∂pj
dt

and
∂p′

i

∂qj
= − ∂2H

∂qi∂qj
dt,

∂q′
i

∂qj
= δij +

∂H

∂pi∂qj
dt.

The Jacobian matrix relating (p′,q′) to (p,q) will then be of the form Jij =
δij +aij dt, where A = [aij ] consists of all terms that are multiplied by dt. The Jacobian
determinant will be of the form |J | = tr(A) dt + O(dt2). From the above equations, it
is clear that tr(A) = 0 and, therefore, (14.14) can be written in the form of (14.13)
for each infinitesimal time step, even though (14.13) is for a change of coordinates at a
particular time and (14.14) is for the evolution of a system between two different times.

Extending this argument by dt over an infinite number of time steps means that
any initial region in phase space will flow and change shape governed by Hamilton’s
equations, but the volume of that initial region will remain the same under this flow.

14.2 Stochastic Mechanics

In the previous section the only forces considered were those that are conservative. In
the case when an ensemble of mechanical systems (such as molecules) are allowed to
interact by either directly bumping into each other, or indirectly through the action of
surrounding solvent, then energy can be transferred between the different copies of the
system. In this context, each individual mechanical system is no longer conservative, but
under certain conditions, the energy in the whole system will be conserved. This section
examines the modification of equations of motion to include viscous and stochastic
forcing in which these two nonconservative forces balance each other and, therefore,
drive any initial ensemble to a stable equilibrium distribution.

14.2.1 Stochastic Equations of Motion

If the conservative systems discussed in Section 14.1 are modified to include viscous
dissipation, then a Rayleigh dissipation function of the form R = 1

2 q̇
T C(q)q̇ can be

defined, where C(q) = CT (q) is a positive semi-definite damping matrix.
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Lagrange’s equations of motion are modified to include viscous dissipation and other
nonconservative forces as

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+

∂V

∂qi
+

∂R

∂q̇i
= τi, (14.15)

where τi is any remaining generalized force (other than conservative and viscous forces)
that acts on the coordinate qi. This generalized force can be thought of as the sum of all
projections of physical forces along the direction of motion described by the coordinate.
Thus, this generalized force could be a force in the usual sense if the coordinates are
Cartesian positions, it could be a torque if the coordinate is an angle defining a rotational
motion, or it could be a more exotic and less easily described quantity. Equation (14.15)
can be thought of as Newton’s equations projected onto an arbitrary coordinate system.

14.2.2 Stochastically Forced Systems

Lagrange’s equations of motion with viscous friction and external forcing as written
in (14.15) can be recast in the Hamiltonian formulation. Suppose that the generalized
forcing corresponds to white noise that is colored by a configuration-dependent matrix,
B(q), so that τi =

∑
j bijnj , where dwi = ni dt. Using the definition of conjugate

momenta and multiplying (14.15) by dt and then moving everything except the first
term to the right side of the equation results in

dpi = −1
2

n∑
j,k=1

∂m−1
jk

∂qi
pjpk dt− ∂V

∂qi
dt−

n∑
j,k=1

cijm
−1
jk pk dt +

n∑
j=1

bij dwj . (14.16)

Multiplying both sides of (14.4) by dt gives

dqi =
n∑

j=1

m−1
ij pj dt. (14.17)

Equations (14.16) and (14.17) represent a system of 2n nonlinear stochastic differential
equations in the generalized coordinates and conjugate momenta.

A natural question to ask is if this is an Itô or Stratonovich stochastic differen-
tial equation. Actually, the answer is that this is one of those special cases where it
does not matter. The reason is that although the stochastic forcing is weighted by the
configuration-dependent matrix B(q), this only appears in the equation defining the evo-
lution of p, and B does not depend on p. Additionally, the equation defining the evolu-
tion of q has no q-dependent stochastic forcing (in fact it has no stochastic forcing at all).

14.3 Fokker–Planck Equations on Phase Space

Equations (14.16) and (14.17) can be written together as(
dq
dp

)
=

(
a(q)(p,q)
a(p)(p,q)

)
dt +

(
O O
O B(q)

)(
dw′

dw

)
(14.18)

(where dw′ could be replaced with any vector rather than unit strength white noises
since it multiplies zeros).
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The entries in the vector-valued function, a(q) and a(p), are respectively

a
(q)
i

.=
n∑

j=1

m−1
ij pj ,

a
(p)
i

.= −1
2

n∑
j,k=1

∂m−1
jk

∂qi
pjpk − ∂V

∂qi
−

n∑
j,k=1

cijm
−1
jk pk.

The Fokker–Planck equation corresponding to (14.18), which together with an initial
distribution f0(q,p) defines the family of time-evolving pdfs f(q,p; t), is

∂f

∂t
+

n∑
i=1

∂

∂qi

(
a
(q)
i f

)
+

n∑
i=1

∂

∂pi

(
a
(p)
i f

)
− 1

2

n∑
k=1

n∑
i,j=1

∂2

∂pi∂pj

(
bikb

T
kjf

)
= 0. (14.19)

14.3.1 The Maxwell–Boltzmann Distribution

A natural question to address is how f(q,p; t), the solution of (14.19), evolves over
time. In particular, does it converge to an equilibrium distribution (i.e., one that does
not depend on time), and if so, what is the rate of convergence?

The answers to these questions require that the random forces that cause an ensemble
of sample paths to diffuse must, in a sense, balance with the conservative forces defined
by the potential energy, which tend to drive the paths toward the regions with lowest
potential energy. When the matrix B(q) satisfies particular conditions, this tug of war
between forces that favor diffusion and those that favor concentration balance exactly.
In this case, a stable limiting distribution

f∞(q,p) .= lim
t→∞ f(q,p; t)

is obtained, which is independent of the initial distribution f0(q,p).
Using arguments that do not involve stochastic differential equations (SDEs), it

is known in the field of statistical mechanics that the equilibrium distribution of an
ensemble of identical mechanical systems subjected to a heat bath is the Maxwell–
Boltzmann distribution:

f∞(q,p) =
1
Z

exp(−βH(p,q)) , (14.20)

where the shorthand β
.= 1/kBT is used, kB is Boltzmann’s constant, and T is temper-

ature measured in degrees Kelvin. The partition function is defined as

Z =
∫
q

∫
p

exp(−β H(p,q)) dp dq. (14.21)

It is worth noting that this integral is really an approximation to a discrete sum over
micro states (as originally formulated by Planck), and the pdf f∞(q,p) is an approxima-
tion to a probability distribution over these microstates. However, when β is sufficiently
small, this continuum approximation can be used without difficulties.

Substituting (14.20) into (14.19) and calculating all of the partial derivatives re-
sults in the following condition that must hold in order for the Maxwell–Boltzmann
distribution to be the equilibrium solution of (14.19):

2 · C = β ·BBT . (14.22)
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One form of the fluctuation-dissipation theorem states that in order for a stochastic
system to attain an equilibrium distribution, the magnitude of the random forcing and
viscous dissipation terms must be related. Indeed, (14.22) is just such a statement.

14.3.2 Averages with Respect to the Maxwell–Boltzmann Distribution

Let the equilibrium average of any function on phase space, a(p,q), be defined as

〈a〉 .=
∫
q

∫
p

a(p,q)f∞(p,q) dp dq. (14.23)

For example, the average of the Hamiltonian is called the energy of the system, E,
and it can be shown that

E
.= 〈H〉 = − ∂(log Z)

∂β
. (14.24)

The reason why this is written as a partial derivative (rather than a full one) with respect
to β is that in thermodynamic applications H, and hence Z, can depend on parameters
imposed from outside the system. For example, the volume in a piston can be changed
or an external potential field can be applied. Writing this as a partial derivative leaves
room for allowing for such variable parameters.

The Helmholtz free energy of a system is defined as [92]

F
.= E − TS = − 1

β
log Z. (14.25)

In contrast, the Gibbs free energy is defined as

G
.= F + pV, (14.26)

where p is the pressure and V is the volume in the container containing the collection
of molecules.

Sometimes it is convenient to write the 2n phase variables as one long vector, x =
(pT ,qT )T = (x1, . . . , x2n)T . The equipartition theorem states that [35, 65]〈

xm
∂H

∂xn

〉
=

1
β

δmn. (14.27)

It is easy to prove this by integration by parts, and this is left as an exercise. This result
is very general.

In the special case when the mass matrix is constant, M(q) = M0, and the po-
tential is quadratic, V (q) = 1

2q
T K0q, the Maxwell–Boltzmann distribution becomes a

Gaussian distribution, and it is possible to use (14.27) to compute

〈H〉 =
n

β
. (14.28)

Furthermore,
〈H〉 = 〈T 〉+ 〈V 〉 and 〈T 〉 = 〈V 〉 . (14.29)

The second equality follows from (14.27) because in the Hamiltonian, H = 1
2x

T (M−1
0 ⊕

K0)x, the mass and stiffness matrices appear as a direct sum. If the system is com-
posed of N particles each with three translational degrees of freedom, then n = 3N . If
M0 is diagonal, T can be separated further into 3n individual contributions of kinetic
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energy: (Ti)x, (Ti)y, and (Ti)z, for i = 1, . . . , N . Since M0 is diagonal, it follows that
(Ti)x = (Tj)y = (Tk)z for i, j, k = 1, . . . , N . If modal coordinates are used (so that K0 is
diagonal), then the energy in each of these coordinates must be equal to each other, and
each of these must also be equal to the kinetic energy associated with each coordinate.
Thus, the kinetic and potential energies can be subdivided into 6N contributions, each
of which is equal to the others. Additionally, if these quantities are grouped together
in larger collections and added in equal numbers, then the energy in each of these col-
lections will be equal. This statement, which includes (14.29), is a somewhat different
statement than (14.28), which is also referred to as the equipartition theorem.

The Gibbs formula for entropy of an ensemble described by f∞(p,q) is1

S = −kB

∫
q

∫
p

f∞(p,q) log f∞(p,q) dp dq. (14.30)

It can be shown (and is left as an exercise) that this entropy can be computed from the
partition function defined in (14.21) by computing partial derivatives as

S = kB log Z +
1

βZ

∂Z

∂T
= kB

[
log Z − β

∂(log Z)
∂β

]
. (14.31)

14.3.3 Ergodic Properties of Some Stochastic Mechanical Systems

An immediate implication of the convergence of the solution of the Fokker–Planck equa-
tion to the Maxwell–Boltzmann distribution when (14.22) holds is that solutions to the
stochastic differential equation (14.18) that are run for a sufficiently long time will have
the same statistics as the Maxwell–Boltzmann distribution; that is, a single trajectory
will meander as if at each step in time a sample is drawn at random from f(p,q; dt). Ac-
cording to the solution of the Fokker–Planck equation, after a sufficiently large number
of steps, this will converge to the Maxwell–Boltzmann distribution. After that point,
the single trajectory can be viewed as a sample of Maxwell–Boltzmann distribution, and
if a sufficiently large number of samples are taken in this regime, then the contributions
due to samples from earlier in the trajectory will be washed out.

In other words, imagine taking a single very long trajectory and dividing it into an
ensemble of shorter (although still very long) trajectories, each starting at a different
initial point in phase space corresponding to where the prior subtrajectory finished. The
collection of initial values can be used to define a histogram that is normalized as a prob-
ability density. This can be considered as an initial distribution f0(p,q). At all future
times, similar histograms can be constructed and viewed as f(p,q; t). It is acceptable
to cut up trajectories in this way because the Fokker–Planck equation has autonomous
coefficients; that is, the time dependence is only indirect through p = p(t) and q = q(t),
not due to any direct functional dependence of coefficients on time.

If each of the trajectories in the resulting ensemble is long enough, then f(p,q; t)
will approximate f∞(p,q); that is, there is no difference between recording the locations
in phase space visited by a single very long trajectory and chopping this trajectory up
into a very large number of shorter (although still very long) trajectories starting from
many different initial conditions, and recording the phase states visited. This argument
holds because of the existence of a stable limiting distribution. This is an example of
ergodicity since the result of multiple sample paths and of a single very long one are
the same.

1Here, and everywhere in statistical mechanics, log = loge is the natural logarithm function.
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The same argument could not be made if, for example, the Fokker–Planck equation
corresponded to a purely diffusive process. This is because, in that case, the solution
continues to evolve as time goes to infinity. However, even for a purely diffusive process,
it is possible to divide a trajectory of length T into N subtrajectories, and if each of
these is shifted so that its initial value is identified with, say, (p,q) = (0,0), then the
histograms formed along each point in the time interval 0 < t < T/N would correspond
to the solution of the Fokker–Planck equation for that value of t.

This section has focused on statistical mechanics from the point of view of classical
mechanical systems subjected to forcing by Wiener process noise. For other introduc-
tions to statistical mechanics (and stochastic mechanics) from several different perspec-
tives, see [10, 20, 22, 28, 33, 41, 43, 52, 57, 60, 70, 86]. The following section will focus on
a particular problem in statistical mechanics relating to rigid-body models of molecules.

14.4 Equilibrium Statistical Mechanics of Rigid-Body Molecules

Although the classical theory of statistical mechanics is build on coordinate-dependent
descriptions of the state of a system using generalized coordinates and momenta, it is
possible to restate statistical mechanics using terminology from the theory of Lie groups
(in analogy with what was done with variational calculus in Chapter 13). This is because
the configuration spaces of molecular systems can be described as Lie groups. This is
equally true for a rigid-body description of a molecule, multi-rigid-body models with
rotational and translational degrees of freedom between rigid components, and mixtures
of multiple kinds of interacting rigid-body macromolecules.

To start, consider a simple fluid consisting of a single kind of rigid-body molecule.
The kinetic energy of a single rigid molecule can be written as

T =
1
2
mṙ · ṙ +

1
2
ωT Iω,

where m is its mass and I is its moment of inertia as seen in a body-fixed frame
attached to the center of mass. Here, r is its position, R is its orientation relative to
the lab frame, and ω = (RT Ṙ)∨ is its angular velocity. Using coordinates φ, such as
Euler angles, the kinetic energy can be written as T = 1

2 [ṙT , φ̇
T
]G(φ)[ṙT , φ̇

T
]T , where

G(φ) = (mI3) ⊕ (JT (φ)IJ(φ)). The conjugate momentum associated with translation
is pr = (m−1I3)ṙ = m−1ṙ, and for rotation, it is pφ

.= ∂T/∂φ̇ = JT (φ)IJ(φ)φ̇. Thus,
the coordinate-dependent version of the Boltzmann distribution is

f(r,φ;pr,pφ;β) =
1

Z(β)
e−β{ 1

2 [pT
r ,pT

φ ][G(φ)]−1[pT
r ,pT

φ ]T +V (r,φ)},

where the shorthand β
.= 1/kBT is used and

Z(β) .=
∫
r

∫
φ

∫
pr

∫
pφ

e−β{ 1
2 [pT

r ,pT
φ ][G(φ)]−1[pT

r ,pT
φ ]T +V (r,φ)} dpφ dpr dφdr

is the full partition function. Note that dependence on the momenta can be integrated
out using knowledge of Gaussian integrals (see Chapter 2), and so the configurational
Boltzmann distribution

fc(r,φ;β) .=
∫
pr

∫
pφ

f(r,φ;pr,pφ) dpφ dpr =
1

Zc(β)
|G(φ)| 12 · e−β V (r,φ)
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results, where the configurational partition function is

Zc(β) .=
∫
r

∫
φ

e−β V (r,φ)|G(φ)| 12 dφdr.

Note that |G(φ)| 12 ∝ |J(φ)|.
With these facts in mind, the coordinate-free version of the equilibrium statistical

mechanics of gases or dilute solutions of rigid molecules can be written completely
independently of coordinates. If g = (r, R(φ)) ∈ SE(3) and ξ = (g−1ġ)∨ ∈ R6 ∼= se(3),
then T = 1

2ξTIξ, where I .= (mI3) ⊕ I, and the coordinate-free version of conjugate
momenta becomes η

.= ∂T/∂ξ = Iξ. Therefore, T = 1
2ηTI−1η, where I−1 = [(mI3) ⊕

I]−1 = (m−1I3)⊕ I−1. The coordinate-free Boltzmann distribution is then

f(g,η;β) =
1

Z(β)
e−β{ 1

2η
T I−1η+V (g)},

where
Z(β) =

∫
g∈SE(3)

∫
η∈R6

e−β{ 1
2η

T I−1η+V (g)} dη dg.

Here, of course, dg is the bi-invariant (Haar) measure for SE(3) (dg = dr dR, where
dR is the normalized Haar measure for SO(3)) and dη is the Lebesgue measure for
R6 ∼= se(3). The coordinate-free configurational Boltzmann distribution is then

fc(g;β) .=
∫
η∈R6

f(g,η;β) dη =
1

Zc(β)
e−β V (g),

where
Zc(β) =

∫
g∈SE(3)

e−β V (g) dg.

Henceforth the subscript c will be dropped when it is clear that the configurational (as
opposed to full) Boltzmann distribution is being discussed.

14.4.1 Translational and Rotational Brownian Motion
of Rigid-Body Molecules

The Euler–Poincaré equations applied to a total energy (kinetic and potential) of the
form E(g, ξ) = ξTIξ + V (g), where g = (r, R) and I .= [(mI3)⊕ I], gives deterministic
equations of motion for a conservative system. These can be decoupled into Newton’s
and Euler’s equations as

ṗ = −∇rV and Iω̇ + ω× (Iω) = −X̃rV,

where p = mṙ is the classical linear momentum of a particle. If damping and white
noise are incorporated and it is assumed that the rotational and translational damping
and noise matrices are decoupled,2 then the resulting system of equations is of the form

ẋ =
1
m

p, (14.32)

ṗ = −∇rV − 1
m

C1p + S1ẇ1, (14.33)

Iω̇ + ω× (Iω) = −X̃rV − C2ω + S2ẇ2, (14.34)

2Even if they are not, the formulation proceeds in a similar way.
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where X̃r is defined in (11.9). Here, by a slight abuse of notation, ẇi = dwi/dt is the
time derivative of a Wiener process, and multiplication through by dt gives a system of
SDEs.3 The matrices Ci and Si are all related. Indeed, from the fluctuation-dissipation
theorem, Ci = SiS

T
i . A similar result would hold if a more detailed model takes into

account coupling between p and ω, in which case C �= C1 ⊕ C2 and S �= S1 ⊕ S2. The
nature of such couplings depend on the geometry of the body, the viscosity, and so forth
and have been studied in [40, 68].

Using the general formalism of Chapters 4 and 8, it is possible to write the Fokker–
Planck equations corresponding to (14.32)–(14.34). Indeed, this was done half a century
ago and is surveyed in [13, 23, 27, 36, 56]. The result is an inertial theory of Brownian
motion, pioneered by Smoluchowski in the translational case at the beginning of the
20th century [80] and in the rotational case by Steele [81]. Applications include fluores-
cence anisotropy microscopy [84, 91]. Note that due to the structure of these equations,
it does not matter if they are interpreted as Itô or Stratonovich. The result is a prob-
ability density f(g, ξ, t) which, when Ci, and Si are all properly balanced, converges to
the Boltzmann distribution Z−1 exp(−βE(g, ξ)) as t → ∞. This serves as a concrete
example of a stochastic flow on the tangent bundle for SE(3).

In the noninertial theory of Brownian motion (which historically preceded the inertial
theory), m and I are assumed to be negligible, and if rotations are parameterized by φ
and V (g) = V1(r) + V2(R(φ)), the result is

C1ẋ=−∇rV1(r) + S1ẇ1, (14.35)

C2J(φ)φ̇=−X̃rV2(R(φ)) + S2ẇ2. (14.36)

Note that these equations are decoupled from each other and that (14.35) can be in-
terpreted as Itô or Stratonovich and it does not matter. However, (14.36) must be
interpreted as a Stratonovich equation because usual calculus was used to replace ω
with J(φ)φ̇. This is equivalent to

φ̇ = −J−1(φ)C−1
2 X̃rV2(R(φ)) + J−1(φ)C−1

2 Sẇ2. (14.37)

If instead Itô’s rule had been used to express ω dt, then the resulting equation would
have been different than (14.36); that is, it would have included an additional drift term.
Then the Itô version of the Fokker–Planck equation corresponding to the Itô SDE and
the Statonovich version of the Fokker–Planck equation corresponding to the Statonovich
SDE would be the same. Using the methods of Chapters 4 and 8, it is not difficult to
write the Fokker–Planck equations, where in this case |G| 12 = |J |.

14.4.2 Molecular Theory of Liquids

Consider a dilute solution confined to a container and consisting of N copies of a large
rigid molecule dissolved in a solvent of many more small molecules. In this situation, the
behavior of each large molecule is expected to act independently of the others and the
configurational Boltzmann distribution for all N copies would be the product of those for
each individual one. However, as the number density per unit volume of these molecules
becomes greater and, in the extreme case, when a pure liquid consisting of these large
molecules is considered, then the behavior of each copy is no longer independent.

3Although a Wiener process is not differentiable, dwi/dt can be interpreted in the sense of
finite differences in computer simulations.
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Let C ⊂ R3 denote the container in which the N molecules are constrained to move
and let D = C × SO(3) be a finite-volume domain within SE(3). In this case, the
configurational Boltzmann distribution will be of the form

f(g1, g2, . . . , gN ;β,D) =
1

Zc(β,N,D)
e−βV (g1,g2,...,gN ),

where each gi ∈ D and

Zc(β,N,D) =
∫

DN ⊂SE(3)N

e−βV (g1,g2,...,gN )dg1 dg2 · · · dgN .

Here, SE(3)N is shorthand for the N -fold product SE(3) × SE(3) × · · · × SE(3) and
similarly for DN , and the integration takes place over this finite-volume domain. Al-
ternatively, the shape of the container could be absorbed into the definitions of f(·) by
using window functions enforced by an appropriate potential, and then the integral can
be extended over all of SE(3)N .

Distribution and Correlation Functions

Since each molecule can exist in each location in this 6N -dimensional configuration
space, it is common to define the generic distribution function [29, 32, 34]

f ′(g1, g2, . . . , gN ;β,D) .= N ! f(g1, g2, . . . , gN ;β),

which reflects that the position and orientation of any molecule can be swapped with
any of the others.

If we are only interested in the generic distribution function for the first m of these
molecules without regard to the others, then

f ′(g1, g2, . . . , gm;β,D) =
1

(N −m)!

∫
DN−m

f ′(g1, g2, . . . , gN ;β,D) dgm+1 dgm+2 · · · dgN .

Marginalizing f(g1, g2, . . . , gm;β,D) over all copies except for the ith one gives
f(gi;β,D), and f ′(gi;β,D) is defined in an analogous way. A quantitative indicator of
how independently the N copies of the rigid molecules behave is the value of the so-called
(generic) correlation function

γ(g1, g2, . . . , gm;β,D) .=
f ′(g1, g2, . . . , gm;β,D)∏m

i=1 f ′(gi;β,D)
= K(N,m)

f(g1, g2, . . . , gm;β,D)∏m
i=1 f(gi;β,D)

.

Here, for m � N ,

K(N,m) .= N−m N !
(N −m)!

≈ 1− m(m− 1)
2N

,

which approaches unity as N →∞ and m is held fixed. The closer γ is to 1 for all values
of the argument, the more independent the behaviors are.
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If each molecule has unit mass, then the mass density per unit volume at a given
temperature can be computed as [29, 32, 34]4

ρ(r;β,D)=
N

Zc(β,N,D)

∫
DN−1

∫
SO(3)

e−βV (g,g2,g3,...,gN ) dR dg2 · · · dgN

=

〈
N∑

i=1

δ(g−1
i ◦ g)

〉
, (14.38)

where g = (r, R) ∈ SE(3), dR is the normalized Haar measure for SO(3), and 〈·〉
denotes the average over the Boltzmann-weighted ensemble.

In the case of an isotropic homogeneous fluid, f ′(gi;β,D) = ρ(β,D)—that is, the
mass density per unit volume is constant at a particular temperature within the con-
tainer. In this special case, the (pair) correlation function is written as [29, 32, 34]

γ(g, g′;β,D)=
N(N − 1)

ρ2(β) · Zc(β,N,D)

∫
DN−2

e−βV (g,g′,g3,...,gN )dg3 · · · dgN

=
1

ρ2(β)

〈∑
i =j

δ(g−1
i ◦ g)δ(g−1

j ◦ g′)

〉
. (14.39)

Relationship to Convolutions on Groups

The so-called total correlation function between two molecules is defined as

h̃(g1, g2;β,D) .= γ(g1, g2;β,D)− 1.

The direct correlation function between two molecules, c̃(g1, g2;β,D), is defined to sat-
isfy the equation

h̃(g1, g2;β,D) = c̃(g1, g2;β,D) + ρ

∫
D⊂SE(3)

c̃(g1, g3;β,D)h̃(g3, g2;β,D) dg3.

Each gi is an absolute motion relative to the lab frame, and all interactions between
molecules are relative. It follows that the above integral can be written differently by
introducing the notation h̃(g1, g2;β,D) = h(g−1

1 ◦ g2) and c̃(g1, g2;β,D) = c(g−1
1 ◦ g2),

where h(·) and c(·) depend only on relative pose, and the dependence on β,D has been
absorbed into how these functions are defined. Moreover, if these functions decay rapidly
and if the molecules are not located at the boundary of the container, then integrals
over D and SE(3) are indistinguishable. Therefore,

h(g−1
1 ◦ g2) = c(g−1

1 ◦ g2) + ρ

∫
SE(3)

c(g−1
1 ◦ g3)h(g−1

3 ◦ g2) dg3.

Letting k = g−1
1 ◦ g3, observing that dk = dg3, and g−1

3 ◦ g2 = k−1 ◦ g−1
1 ◦ g2 means that

the above equation can be written using the concept of convolution on SE(3) as

h(g12) = c(g12) + (c ∗ h)(g12), where g12
.= g−1

1 ◦ g2. (14.40)

4In this field, orientational integrals are usually not normalized, and so an additional mul-
tiplicative factor of Ω

.= 8π2 appears in classical works for molecules without any symmetry.
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This form of the Six-dimensional version of the Ornstein–Zernike equation [63] and
its extensions in the theories of Percus–Yevick [66, 67] and Chandler–Andersen [15] is
not the way it is usually written in the literature [2, 29, 32, 34]. The group-theoretic
notation in (14.40) allows it to be more succinctly stated than the way it is in the
literature. Furthermore, the SE(3) Fourier transform can be used to solve for h in
terms of c (or vice versa) because the convolution theorem gives

ĥ(p) = [I + ĥ(p)]ĉ(p) =⇒ ĉ(p) = [I + ĥ(p)]−1ĥ(p) (14.41)

or, equivalently,

ĉ(p) = ĥ(p)[I− ĉ(p)] =⇒ ĥ(p) = ĉ(p)[I− ĉ(p)]−1 (14.42)

if the inverses exist.
This formulation by itself does not solve the problem, but it provides a constraint

which together with a “closure relation” characterizes the situation. Two popular closure
relations are the Percus–Yevick and hyper-netted-chain approximations.

14.5 Conformational Statistics of DNA

In this section the statistical mechanics of DNA is discussed at two different levels of
detail. First, a model is presented in which base in the DNA is treated as a rigid body
connected to adjacent bases with quadratic potentials described by 6 × 6 stiffness ma-
trices. Then DNA is modeled as a semi-flexible polymer (continuum filament subjected
to Brownian motion).

14.5.1 A Multi-Rigid-Body Model of DNA

DNA is the macromolecule that stores genetic information in the form of paired bases.
There are four kinds: A, C, G, T . Each of these base is essentially rigid. They are con-
nected sequentially with a phosphate-sugar backbone, and two complementary single-
stranded DNA chains merge via hydrogen bonding of the bases. In Watson–Crick base
pairings the following possibilities exist: G− C, C −G, A− T , T −A.

Suppose that a computer simulation is performed in which a DNA molecule is rep-
resented as a ladder of connected rigid bodies, and each base is numbered in the zig-zag
fashion illustrated below:

i + 4 �� i + 5

i + 2 �� i + 3

��									

i �� i + 1

��									

i− 2 �� i− 1

��										

The region of interest is the middle, with the range i to i+3, and the others enumerate
the nearest neighbors.
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Potential Energy of the Rigid-Base Model with Elastic Contacts

Consider a double-helical DNA structure composed of 2N rigid bases, each of which can
be connected to the others to form a double helix N basepairs long. Let gi denote the
position and orientation of the ith such body in a static minimal energy conformation as
measured in a reference frame attached to base 0. The relative transformation between
body i and body j is then g −1

i ◦ gj .
Let the ith rigid body move by the small amount exp(Xi) ≈ I4 + Xi where Xi =∑6

l=1 χi
lEl. Then the relative motion between bodies i and j after the small motion is

[gi(I4 + Xi)]−1 ◦ [gj(I4 + Xj)] = (I4 −Xi)(g −1
i ◦ gj)(I4 + Xj).

Retaining terms to first order in X, the result can be written as

(g −1
i ◦ gj)[I4 + Xj − (g −1

i ◦ g −1
j )Xi(g −1

i ◦ gj)],

and the change in relative pose between body i and j is

Δgij = I4 + Xj − (g −1
i ◦ gj)

−1Xi(g −1
i ◦ gj).

The corresponding 6D vector of small motions is

χij = χj −Aijχi, where Aij
.= [Ad(g −1

j ◦ gi)].

Given a 6× 6 stiffness Kij connecting these two bodies, the corresponding potential
energy is

Vij =
1
2
χT

ijKijχij =
1
2
[χT

i ,χT
j ]

(
AT

ijKijAij −AT
ijKij

−KijAij Kij

)[
χi

χj

]
, (14.43)

and the total potential energy will be

V =
2N−2∑
i=0

2N−1∑
j=i+1

Vij =
1
2
χT Kχ, (14.44)

where χ ∈ R12N−6 is a composite vector of all small rigid-body motions of the bases in
the structure (relative to their equilibrium poses) and K is a composite (12N − 6) ×
(12N − 6) stiffness matrix. The dimension is 12N − 6 rather than 12N because the
global rigid-body degrees of freedom of the structure have been removed by choosing to
measure each gi relative to base 0, rather than relative to an inertial reference frame.

Equation (14.44) shows that the potential energy of the system run at equilibrium is
in quadratic form. This is used to obtain the probability density function of the motion.
For a macromolecule fluctuating about one conformation which globally minimizes its
potential energy, the potential energy function can be expressed as

V (χ) ≈ V0 +
1
2
χT Kχ, (14.45)

where the elements of K are

kij =
∂2V

∂χi∂qχj

∣∣∣∣
χ=0

and χ = 0 is defined to be the value for which V (χ) = V0 is the minimum attainable
potential energy. By appropriate choice of datum, one can take V0 = 0. Since χ(t) never
strays far from 0, it follows that the mass matrix (conformation-dependent inertial
tensor) M(χ) is approximated well as the constant matrix M = M(0).
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Conformational Boltzmann Distribution

Given the potential energy described above, if one integrates over the momenta, the
resulting marginal (or conformational) Boltzmann distribution results:

f(q) =
1
Zc

exp
(
−1

2
βχT Kχ

)
. (14.46)

This is a Gaussian distribution, the covariances of which can be related to the stiff-
ness matrix by computing integrals similar to those in Section 2.2.2. This gives

Σ =
∫
χ∈RN

χχT f(χ) dχ = K−1/β.

The covariance matrix Σ can be observed from molecular dynamics simulations,
from which stiffnesses can be extracted. Or, if stiffnesses are known, then the model
presented here can be used to make predictions about how the DNA moves under
Brownian motion. This can be used to make predictions about the probability of ring
closure and other phenomena.

14.5.2 Continuum Filament Model Subjected to Brownian Motion

Although a model with 12N (or 12N−6) degrees of freedom for a double helix of length
N is substantially coarser than a model that involves the motion of every single atom
in the structure (and the surrounding solvent), for some purposes it is sufficient to use
an even cruder model. One such model—the continuum filament model—was reviewed
in Section 13.7. In that model, DNA is treated as an elastic filament. Whereas the
previous goal was to obtain conditions satisfied by the minimal energy conformations of
that DNA model, the goal here is to assess how this continuum filament model behaves
when subjected to Brownian motion forcing.

Problem Formulation

Consider the equilibrium statistics of a stochastically forced elastic filament. Let the
evolution of the probability density of relative pose of reference frames attached to a
stochastically forced elastic filament at values of curve parameter 0 and s be denoted
as f(g; 0, s). Since it is a probability density, by definition∫

G

f(g; 0, s) dg = 1. (14.47)

Clearly, f(g; s) .= f(g; 0, s) must be related in some way to the equilibrium shape of
the filament, its stiffness, and the strength of the Brownian motion forcing from the
ambient solvent. Additionally, the strength of this noise should be related in some way
to the temperature. In fact, since f(g; 0, s) is the function describing the distribution of
poses for a filament at equilibrium, it can be represented exactly as a path integral [46]
or, equivalently, as a diffusion equation [16]:

∂f

∂s
=

1
2

6∑
k,l=1

Dlk(s) Ẽr
l Ẽr

kf −
6∑

l=1

(ξ0(s) · el) Ẽr
l f (14.48)
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subject to the initial conditions

f(g; 0, 0) = δ(g).

Here, the diffusion matrix is related to the stiffness matrix in (13.37) as D(s) =
(kBT )K−1(s). This equation takes into account anisotropy and inhomogeneity of the
elasticity, as well as arbitrary minimal energy shape, and has essentially the same deriva-
tion as the homogeneous case presented in [16, 96, 97].

Under the extreme condition that T → 0, no diffusion would take place and
f(g; , 0, s) → δ(g−1

0 (s) ◦ g). For the biologically relevant case (T ≈ 300), (14.48) can be
solved using the harmonic analysis approach in [16, 96, 97]. If we make the shorthand
notation fs1,s2(g) = f(g; s1, s2), then it will always be the case for s1 < s < s2 that

fs1,s2(g) = (fs1,s ∗ fs,s2)(g) =
∫

G

fs1,s(h) fs,s2(h
−1 ◦ g) dh. (14.49)

This is the convolution of two pose distributions. Here, h is a dummy variable of in-
tegration and dh is the bi-invariant integration measure for SE(3). Whereas (14.49)
will always hold for semi-flexible phantom chains, for the homogeneous rod there is the
additional convenient properties that

f(g; s1, s2) = f(g; 0, s2 − s1) and f(g; s2, s1) = f(g−1, s1, s2). (14.50)

The first of these says that for a uniform chain, the pose distribution only depends on the
difference of arc length along the chain. The second provides a relationship between the
pose distribution for a uniform chain resulting from taking the frame at s1 to be fixed
at the identity and recording the poses visited by s2, and the distribution of frames that
results when s2 is fixed at the identity. However, neither of these nor (14.49) will hold
when excluded-volume interactions are taken into account.

Solving Diffusion Equations on the Euclidean Group

The true benefit of the group-theoretic approach is realized when one observes that in
coordinate form, (14.48) is expressed as pages of complicated-looking (but essentially
elementary) mathematical expressions. In contrast, it is possible to write out the solution
very simply using results from group theory. One numerical approach that works well
for dilute solutions of DNA of lengths in the range of 1/2–2 persistence lengths (60–300
basepairs at 300 degrees Kelvin) is based on the group Fourier transform for SE(3).
The reason why this approach is most appropriate for this regime is that DNA of this
length is flexible enough for Fourier methods (which work better for more spread out
distributions than for highly focused ones) to be applicable, and it is short enough that
the effects of self-contact can be neglected.

The SE(3) Fourier transform built on the IURs presented in Chapter 12 has opera-
tional properties of the form5

̂̃Er
i f = ui(p)f̂(p, s)

that are directly applicable to solving (14.48), where ui(p) is an operator matrix. In other
words, the group-Fourier transform converts Lie derivatives into matrix operations in

5Here, ui(p) is shorthand for what was written as u(Ei; p, s) in Chapter 12, where the s has
been suppressed to avoid confusion with the arc length s used here.
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Fourier space. This means that (14.48) can be written as

∂f̂(p; s)
∂s

= B(s)f̂(p; s), where B(s) =
1
2

6∑
i,j=1

Dij(s)ui(p)uj(p)−
6∑

k=1

(ξ0(s) · ek)uk(p).

(14.51)

In the case of a referential configuration that is helical and stiffness parameters that are
uniform (and therefore independent of s), then B(s) = B0 is constant and the solution
can be written in Fourier space as f̂(p; s) = exp(sB0) and the inversion formula can be
used to recover f(g; s). The details of this procedure have been discussed in a number of
the author’s papers, together with the use of the convolution theorem for group Fourier
transforms to “stitch together” the statistics of several segments of DNA connected
by joints and/or kinks [96, 97]. In the case when B(s) is not constant, the differential
equation in (14.51), which is an ODE for each fixed value of 0 ≤ p ≤ ∞, can be solved
either as a product of exponentials or by numerical integration.

Note that neither of the models presented in Sections 14.5.1 and 14.5.2 take into
account the effects of excluded volume, which can be ignored for moderate values of
filament length in the case when the DNA is not enclosed in a small compartment.
Excluded volume effects can be modeled as described using Lie group ideas as in [17] as
well as in lattice models as in [78, 79] The discussion of the principal kinematic formula
in Chapter 14 is also motivated by this issue.

14.6 Ergodic Theory

From the discussion in the previous subsection, it should be clear that a single very long
sample path corresponding to an SDE for a stochastic mechanical system satisfying
(14.22) should result in a sampling of the Maxwell–Boltzmann distribution f∞(p,q).
Although this sort of ergodic property is extremely important, it should not be confused
with an area of mathematics that is known as “ergodic theory.”

In ergodic theory, the questions that are addressed are somewhat different than
the concept of ergodicity as it appeared in the context of statistical mechanics. Rather
than chopping up a single long stochastic trajectory into an ensemble of shorter paths
and observing that the statistical properties of each are comparable, in mathematical
ergodic theory the convergence properties of iterated one-parameter groups of transfor-
mations are studied. This concept will be made concrete with examples in the following
subsections.

14.6.1 Ergodic Motions on the Circle and n-Torus: Weyl’s Result

Consider a planar rotation R(α) where 0 < α < 2π is some arbitrary angle. Now,
consider an arbitrary nice function on the unit circle, which, by abuse of notation, can
be written either as f(θ) or f(u(θ)), where 0 ≤ θ < 2π. (Note the subtle difference in
the ranges of α and θ). What happens if we calculate

fN (u0;α) .=
1
N

N−1∑
k=0

f(Rk(α)u0)

for some initial value of u0 = [cos θ0, sin θ0]T ? Ergodic theory says that if the rotation
angle α is an irrational number, then

lim
N→∞

fN =
1
2π

∫ 2π

0
f(φ) dφ. (14.52)
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In other words, the average taken over a deterministic trajectory generated by a suf-
ficiently large number of iterations of a rotation results in the average of the function
over the circle, which is independent of both the starting point θ0 and the increment of
rotation α. This equality was proved by Weyl in [93], who also derived the tube formula
in Rn discussed in Section 5.5.3.

A Fourier-analytic proof of (14.52) follows by representing each sample as a Dirac
delta function, expanded in a Fourier series:

δα(θ) .= δ(θ − α) =
1
2π

∞∑
n=−∞

ein(θ−α).

If f(θ) is any “nice” function on the unit circle, then it can be expanded in a Fourier
series as

f(θ) =
1
2π

∞∑
n=−∞

f̂(n) einθ.

Then

fN (θ0;α) =
1
N

N−1∑
k=0

f(θ0 − k · α) =
1
N

N−1∑
k=0

(f ∗ δk·α)(θ0),

which can be expressed as

fN (θ0;α) =
1

2πN

N−1∑
k=0

∞∑
n=−∞

f̂(n)ein(θ0−k·α) =
1
2π

∞∑
n=−∞

f̂(n)einθ0

(
1
N

N−1∑
k=0

e−inkα

)
by virtue of the convolution theorem. However,

N−1∑
k=0

e−inkα =
e−inNα − 1
e−inα − 1

< ∞ when n �= 0

because this is a geometric series which converges as long as α is irrational (otherwise
the denominator might become 0). This means that

lim
N→∞

1
N

N−1∑
k=0

e−inkα → 0 when n �= 0.

For any value of N (finite or infinite),

1
N

N−1∑
k=0

e−inkα = 1 when n = 0.

Weyl’s result then follows because this means that

lim
N→∞

fN (θ0;α) =
1
2π

f̂(0) =
1
2π

∫ 2π

0
f(φ) dφ.

It is not difficult to show that given an n-tuple of angles defining a point on the
n-torus, (θ1

0, θ
2
0, . . . , θ

n
0 ) ∈ Tn, each of which is an irrational multiple of 2π and none of

which are rational multiples of each other, that a similar proof can be used to show that

lim
N→∞

1
N

N−1∑
k=0

f(θ1
0−k ·α1, . . . , θ

n
0 −k ·αn) =

1
(2π)n

∫ 2π

0
· · ·

∫ 2π

0
f(φ1, . . . , φn) dφ1 · · · dφn.

(14.53)
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Other great mathematicians of the first half of the 20th century also studied ergodic
theory, including Birkhoff, von Neumann, and Wiener [9, 88, 89, 94, 95], and ergodic the-
ory is still an active area of mathematical research today (see, e.g., [76, 77, 98]). The
following subsection addresses more general topics than motions on the unit circle or
torus.

14.6.2 Ergodic Group Actions on Manifolds

From the beginning, strong connections have existed between ergodic theory and group
theory. Some of these connections are reviewed in this subsection.

Let M be a compact manifold on which a group G with elements g acts. Then for
any nice function f ∈ N (M) and x ∈ M , ergodic theory addresses conditions under
which for almost any g ∈ G the limit

L = lim
N→∞

1
N

N−1∑
k=0

f(g−k · x) (14.54)

converges “in some sense.” The notation gk is the k-fold repeated product of g with itself
and g−k = (gk)−1 = (g−1)k. The limit in (14.54) was proven to exist in the mean-squared
sense by von Neumann [88, 89] and in the sense of pointwise convergence by Birkhoff
[9], both for the case when the group is a set of measure-preserving transformations,
meaning that ∫

M

f(g−1 ◦ x) dV (x) =
∫

M

f(x) dV (x) (14.55)

for all x ∈ M and g ∈ G, where dV (x) is the volume element for M .
While it is always true that when (14.55) holds, then

L = f̃(x0) and
∫

M

f(x) dV (x) =
∫

M

f̃(x) dV (x), (14.56)

only in special cases (e.g., the circle and n-torus) is it possible for

f̃(x0) =
1

V (M)

∫
M

f(x) dV (x). (14.57)

Here, V (M) is the total volume of M , which can be taken to be V (M) = 1 by suitable
normalization of dV (x). When (14.57) holds, f̃(x0) will not depend on the starting point
x0, and the result will be that the discrete set of transformations {gk | k ∈ Z+} results
in a uniformly distributed sampling of M . In this case, g ∈ G is said to be ergodic.

The von Neumann ergodic theorem [88] states that if iterated powers of a group ele-
ment g ∈ G acting on any point in a compact measurable space, x ∈ M , results in filling
that space with a density that is uniform with respect to a volume element dV (x), then6

lim
N→∞

∫
M

(
1
N

N−1∑
k=0

f(g−k · x)−
∫

M

f(x) dV (x)

)2

dV (x) = 0. (14.58)

6The compact manifold M can be replaced with more general measurable spaces, but that
greater degree of generality will not be needed here.
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Under the same conditions that lead to the above statement, the Birkhoff ergodic theo-
rem [9] states that

lim
N→∞

1
N

N−1∑
k=0

f(g−k · x) =
∫

M

f(x) dV (x) (14.59)

for almost all x ∈ M (i.e., for all x ∈ M except possibly a set of measure zero). This
comes back to the discussion of the meaning of equality discussed in Chapter 1.

As a first concrete example, consider the case of the group of rotations SO(n) acting
on the sphere Sn−1 in Rn, where it is clear that moving around a function on the surface
of the sphere by pure rotations does not affect the total integral of the function:∫

Sn−1
f(RT u) du =

∫
Sn−1

f(u) du. (14.60)

A second example is the rigid-body motion of a function on Rn, where g = (R, t)
with R ∈ SO(n), t ∈ Rn, the action is defined by g · x = Rx + t (or equivalently
g−1 · x = RT (x− t)), and∫

Rn

f(RT (x− t)) dx =
∫

Rn

f(x) dx. (14.61)

So many other such examples exist that it is tempting to believe that (14.55) always
holds. However, that is not the case. For example, if A ∈ GL(n, R), then∫

Rn

f(A−1x) dx = |detA| ·
∫

Rn

f(x) dx,

where, in general, 0 < |detA| �= 1.
Even though (14.61) is an example of 14.55, Rn is not compact, and hence (14.58)

and (14.59) do not apply. This is intuitively clear since g−k will generate samples along
a helix extending to infinity and hence will not fill space. However, Sn−1 is compact,
which together with (14.60) means that both (14.58) and (14.59) hold.

Henceforth the discussion is limited to the case when (14.55) holds. In this context,
the equality in (14.54) works for “almost any” g ∈ G in the same sense that (14.52) is
true for almost any α ∈ [0, 2π). Clearly, there are cases when (14.54) works (e.g., if the
powers of g form a finite group). However, clearly in that case, (14.57) would not hold.

14.6.3 Mixing and Ergodicity

The transformation g ∈ G is said to satisfy the mixing property if for any two functions
f1, f2 ∈ L2(M),

lim
N→∞

1
N

N−1∑
k=0

∫
M

f1(g−k · x)f2(x) dV (x) =
1

V (M)

(∫
M

f1(x) dV (x)
)(∫

M

f2(x) dV (x)
)

.

(14.62)

If f1(x) = IA(x) is the indicator function for a measurable subset A ⊂ M and analo-
gously f2(x) = IB(x), then since IA(x) · IB(x) = IA∩B(x), (14.62) implies that

lim
N→∞

1
N

N−1∑
k=0

V ((g−kA) ∩B) =
V (A) · V (B)

V (M)
. (14.63)
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In fact, it can be shown that (14.62) and (14.63) must result from ergodicity (i.e., from
(14.57)), and if (14.62) and (14.63) hold for all measurable subsets A,B ⊂ M , then
(14.57) must hold. Thus, ergodicity implies mixing, and vice versa.

When (14.63) holds, the discrete dynamical system {gk|k ∈ Z≥0} is called strongly
mixing. In contrast, if

lim
N→∞

1
N

N−1∑
k=0

∣∣∣∣V ((g−kA) ∩B)− V (A) · V (B)
V (M)

∣∣∣∣p = 0, (14.64)

then the system is called weakly mixing in the Lp sense [4]. Usually p = 1 or 2 is
considered. Note that a system that is strongly mixing is automatically weakly mixing,
but not vice versa [6]. The concept of strong/weak mixing applies equally to continuous-
time systems, in which case the sums normalized by 1/N would be replaced by integrals
from 0 to T , normalized by 1/T . If M is a compact space (e.g., a ball large enough
to contain all possible intersecting configurations of g−kA and B), then the units for
measuring the volumes of A and B can be written in units of V (M). Then V ′(A) .=
V (A)/V (M) < 1 and likewise for V ′(B).

Another important result is that if G is a group of measure-preserving transforma-
tions, i.e., (14.55) holds, then the set {gk|k = 0, 1, ..., N − 1} generated by g ∈ G is
ergodic if and only if for all f ∈ L2(M) for which

∫
M

f(x) dV (x) = 0

lim
N→∞

1
N

N−1∑
k=0

∫
M

f(g−k · x) f(x) dV (x) = 0 (14.65)

where f(x) is the complex conjugate of f(x). The proof of (14.65) can be found in [64].

14.6.4 Ergodic Theory and Dynamical Systems

It is not difficult to imagine a system of differential equations, the solution to which is
a continuous trajectory g(t) that forms a one-parameter subgroup of transformations
satisfying g(s) ◦ g(t) = g(s + t). For such a continuous group of transformations, the
discrete sum in (14.54) can be replaced with an integral:

lim
N→∞

1
N

N−1∑
k=0

f(g−k · x0) =⇒ 1
T

∫ T

0
f([g(t)]−1 · x0) dt.

For example, if the trajectory of a conservative mechanical system (i.e., a determin-
istic system without damping of stochastic forcing) in phase space is allowed to evolve
from an initial point x0 = (p(0),q(0)), then g(t) ·x0 = (p(t),q(t)), and this relationship
can be iterated to define the group operation and the group action. This establishes a
connection between ergodic theory and Hamiltonian mechanics.

On the other hand, if x ∈ M is a point on a compact manifold and we consider a
geodesic curve on M that starts at x with some initial tangent direction, following this
path, parameterized by time, defines a geodesic flow. In some cases, this flow will ergod-
ically “fill up” M . In other cases, the resulting curve will close back on itself, making it
a closed curve. For example, on the sphere, which is a compact space of constant posi-
tive curvature, geodesics are closed (i.e., the great circles). On the topological 2-torus,
which is a space of zero curvature, some geodesics are closed and some are ergodic.
The closed ones are called invariant tori. On spaces of negative curvature, the famous
Hedlund–Hopf theorem states that all geodesic flows are ergodic.
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14.6.5 Measure-Theoretic Information

Concepts used in information theory and statistical mechanics have been modified for
use in the ergodic theory of deterministic dynamical systems. In this subsection, the
concept of measure-theoretic information, as it appears in ergodic theory, is reviewed.

Given any compact space on which a measure can be defined (for the sake of con-
creteness, think of a compact manifold with associated volume element), it is possible
to partition that space into a finite number of disjoint subsets, the union of which is, to
within a set of measure zero, the whole space; that is, given a measurable space (e.g.,
a compact manifold) M , a partition α = {Ai} is defined such that

Ai1 ∩Ai2 = ∅ if i1 �= i2 and
⋃
i∈I

Ai = M.

If α = {Ai} and β = {Bj} with i ∈ I and j ∈ J (I and J being index sets) are two
such partitions, then a new partition can be defined as7

α ∨ β
.= {Ai ∩Bj | i ∈ I, j ∈ J} or α ∨ β = {A ∩B |A ∈ α,B ∈ β}. (14.66)

The above are two slightly different notations defining the same quantity, α ∨ β, which
will be a finer partition than either of the original two; that is,

|α ∨ β| ≥ max{|α|, |β|},

where, as usual, | · | means the number of elements in a finite set.
The set indicator function,

IA(x) .=

{
1 if x ∈ A

0 if x /∈ A
(14.67)

together with the partition α can be used to define measure-theoretic information as

Iα(x) .= −
∑
A∈α

IA(x) log V (A), (14.68)

where V (A) is the volume of A (or, more generally, the measure of A) normalized by the
volume of the whole space, M . Iα(x) reflects the amount of “information” that results
from discovering that x ∈ A. If A is a very large region, then little information is gained
by knowing that x ∈ A. Measure-preserving actions of Lie groups such as rotations and
translations do not affect this quantity. If α is a very fine partition, each subset of which
has roughly the same volume, then more information is obtained from Iα(x) than if the
partition is coarse. Sometimes it is convenient to raise the subscript and write I(α)(x)
in place of Iα(x).

The conditional measure-theoretic information is defined as

I(α |β)(x) .= −
∑
A∈α

IA(x) log V (A|β), (14.69)

7The use of ∨ here is not to be confused with the usage of the same symbol in the context
of Lie algebras. They are unrelated.
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where

V (A|β)(x) .=
∑
B∈β

IB(x)V (A |B) and V (A |B) .=
V (A ∩B)

V (B)
. (14.70)

It is easy to see that ∫
M

V (A|β)(x) dx =
∑
B∈β

V (A ∩B) = V (A).

If α and α′ are two partitions of the same compact space such that each A′
i′ ∈ α′

is contained in some Ai ∈ α, then α′ will necessarily be at least as fine as α. This is
described using the two equivalent notations

α ≤ α′ ⇐⇒ A′
i′ ⊆ Ai

for some i′ ∈ I ′ and i ∈ I. As a result, |I| ≤ |I ′|.
Let α, β, and γ be three arbitrary finite and measurable partitions of M and let α′

be another finite measurable partition such that α ≤ α′. It then can be shown (see [64])
that these definitions of information and conditional information satisfy the following
equalities:

I(α ∨ β | γ)(x) = I(α | γ)(x) + I(β | α ∨ γ)(x), (14.71)
α ≤ α′ =⇒ I(α | β)(x) ≤ I(α′ | β)(x), (14.72)

α ≤ α′ =⇒ I(α ∨ β | α′)(x) = I(β | α′)(x). (14.73)

14.6.6 Measure-Theoretic Entropy

Measure-theoretic entropy of a partition is defined as

H(α) .=
∑
A∈α

z(V (A)), (14.74)

where

z(φ) .=

{
−φ log φ if 0 < φ ≤ 1

0 if φ = 0.
(14.75)

H(α) is related to I(α)(x) through the equality

H(α) =
∫

M

I(α)(x) dx.

Given two partitions, α and β, the conditional measure-theoretic entropy of a parti-
tion is defined in an analogous way as

H(α |β) .=
∫

M

I(α |β)(x) dx (14.76)

=−
∑
A∈α

∑
B∈β

(∫
M

IA(x)IB(x) dx

)
log V (A |B) (14.77)

=
∑
B∈β

V (B)
∑
A∈α

z(V (A |B)). (14.78)
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It can be shown (see [76]) that these definitions of entropy and conditional entropy
obey the following properties:

H(α ∨ β | β) = H(α | β), (14.79)
H(α | β) = 0 if and only if α ≤ β, (14.80)

H(α ∨ β) = H(β) + H(α | β), (14.81)
α ≤ γ =⇒ H(α) ≤ H(γ), (14.82)

α ≤ γ =⇒ H(α | β) ≤ H(γ | β), (14.83)
α ≤ γ =⇒ H(β | γ) ≤ H(β | α), (14.84)

H(α ∨ β | γ) ≤ H(α | γ) + H(β | γ), (14.85)
H(α ∨ γ ∨ β) + H(β) ≤ H(α ∨ β) + H(γ ∨ β), (14.86)

H(α ∨ β | γ) = H(β | γ) + H(α | β ∨ γ). (14.87)

Even more sophisticated concepts of entropy that are used in the description of
dynamical systems have been built on this concept, including the Kolmogorov–Sinai
entropy [47, 75] and the topological entropy of Adler, Konheim, and McAndrew [1].
See, for example, [54] for more details. For further reading on general ergodic theory,
see [3, 8, 14, 30, 31, 54, 59, 62, 64, 69, 73, 87]. For works that emphasize the connection
between ergodic theory and group theory, see [42, 45, 53, 55, 58, 61, 72, 85, 90]

14.7 Chapter Summary

This chapter established connections between stochastic differential equations and the
corresponding Fokker–Planck equations which, when driven to their equilibrium distri-
bution, results in the Maxwell–Boltzmann distribution. Specific examples in the con-
text of DNA statistical mechanics were provided. Both a continuum filament model and
multi-rigid-body models of DNA were discussed. The latter is similar to coarse-grained
models of proteins and complexes formed from multiple rigid molecules [44]. The molec-
ular theory of solvation was also discussed briefly. The Maxwell–Boltzmann distribution
is a probability density on phase space, which for many real systems (including both
models of DNA discussed) is a Lie group. Another outgrowth of Lie groups and statis-
tical mechanics is ergodic theory, which was also reviewed in this chapter. The concepts
of entropy in statistical mechanics, information theory, and ergodic theory all have some
common features.

Although most of the progress in statistical mechanics was made by the classical con-
tributions of Maxwell, Boltzmann, Gibbs, and so forth, more than a century ago, recent
years have witnessed a number of extensions of classical statistical mechanics. These
have primarily been at the interface of nonequilibrium phenomena and computational
modeling of biomolecular systems and include [19, 21, 37, 38, 82, 99]. The molecular
theory of solvation continues to be advanced as well [5, 24] In addition, ergodic theory
remains an active area [11, 18].

On a historical note, connections between statistical mechanics and information the-
ory have been explored for more than half a century. Brillouin made the case that scien-
tific observation is a communication process with the noisy physical world [12]. Jaynes
established connections between information theory and statistical mechanics through
the principle of maximum entropy [39]. For a recent unified view of physical noise and
information, see [71]. The interplay between statistical-mechanical and information-
theoretic entropy have been a source of confusion from the beginning in the form of
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Maxwell’s demon. For collected papers on this topic, see [50, 51]. Frieden poses many
physical phenomena as the extremals of Fisher information [26]. Connections among
statistical mechanics, information theory, and the irreversibility of computing have also
been explored in the literature [7, 25, 48, 49, 83, 100, 101]. Additionally, “information”
has become one of the organizing principles of modern physics, as is epitomized by
John A. Wheeler’s pithy phrase “It from Bit.” Such issues are discussed in a popular
way in [74]. In chapters that follow, stochastic phenomena with a geometric flavor in-
volving entropy and Fisher information will be explored. This begins in the next chapter
with a quantity called “parts entropy,” which is a kind of configurational entropy similar
to that in statistical mechanics. One of its applications is to quantify the capabilities of
robotic assembly systems, which by their very nature both interact with the physical
world and and process information.

14.8 Exercises

14.1. Suppose that a mechanical system is described with two different sets of generalized
coordinates {qi} and {q′

i} and that the coordinate transformations q = q(q′) and q′ =
q′(q) are invertible. (In classical mechanics, changes of variables of this kind are called
point transformations.) Let L = L(q, q̇) and L′ = L′(q′, q̇′), where L = L′. Starting
with Lagrange’s equations (14.3) defined in the generalized coordinates q show that
Lagrange’s equations will hold for L′ in the coordinates {q′

i}.
14.2. In analogy with the above problem, show that Hamilton’s equations of motion are
also invariant under coordinate changes.

14.3. Substituting (14.20) into (14.19), verify that (14.22) is a sufficient condition for
the Maxwell–Boltzmann distribution to be the equilibrium solution.

14.4. Prove (14.27) using integration by parts, assuming that the configuration variables
q exist on direct products of compact manifolds and Euclidean space.

14.5. Verify that (14.31) is equivalent to the Gibbs formula for entropy in (14.30).

14.6. If G = SO(3), the group of rotations in three-dimensional space, and M = S2,
the unit sphere, what will the set {gi · x | x ∈ M, g ∈ G, ∀i ∈ Z} converge to? Hint: It
depends on how x and g are chosen, and so there are several different cases that need
to be considered.

14.7. Two partitions α and β of a compact manifold M are said to be independent if for
all A ∈ α and B ∈ β,

V (A ∩B) = V (A) · V (B)/V (M). (14.88)

Show that if α and β are independent, then

I(α ∨ β)(x) = I(α)(x) + I(β)(x). (14.89)

14.8. Prove (14.71)–(14.73). Hint: When x ∈ A ∩B ∩ C and A ∈ α, B ∈ β, and C ∈ γ,
observe that

I(α ∧ β | γ)(x) = − log
V (A ∩B ∩ C)

V (C)
and I(β | α ∧ γ)(x) = − log

V (B ∩A ∩ C)
V (A ∩ C)

,
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and when x ∈ A ∩ C for A ∈ α and C ∈ γ,

I(α | γ)(x) = − log
V (A ∩ C)

V (C)
.

14.9. Prove (14.79)–(14.81).

14.10. Prove (14.82)–(14.84). Hint: Use Jensen’s inequality in the proof of (14.84).

14.11. Prove (14.85)–(14.87).
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13. Budó, A., Fischer, E., Miyamoto, S., “Einflußder Molekülform auf die dielektrische Re-

laxation,” Physikal. Zeitschr., 40, pp. 337–345, 1939.
14. Bunimovich, L.A., Dani, S.G., Dobrushin, R.L., Jakobson, M.V., Kornfeld, I.P., Maslova,

N.B., Pesin, Ya. B., Sinai, Ya. G., Smillie, J., Sukhov, Yu. M., Vershik, A.M., Dynami-
cal Systems, Ergodic Theory, and Applications, 2nd ed., Encyclopaedia of Mathematical
Sciences Vol. 100, Springer-Verlag Berlin, 2000.

15. Chandler, D., Andersen, H.C., “Optimized cluster expansions for classical fluids. II. The-
ory of molecular liquids,” J. Chem. Phys., 57(5), pp. 1930–1937, 1972.

16. Chirikjian, G.S., Wang, Y.F., “Conformational statistics of stiff macromolecules as solu-
tions to PDEs on the rotation and motion groups,” Phys. Rev. E, 62(1), pp. 880–892,
2000.

17. Chirikjian, G.S., “Group theory and biomolecular conformation, I. Mathematical and
computational models,” J. Phys.: Condens. Matter. 22, 323103, 2010.

18. Choe, G.H., Computational Ergodic Theory, Springer, New York, 2005.
19. Crooks, G.E., “Entropy production fluctuation theorem and the nonequilibrium work

relation for free energy differences,” Phys. Rev. E, 60, pp. 2721–2726, 1999.



References 183

20. Dill, K.A., Bromberg, S., Molecular Driving Forces: Statistical Thermodynamics in Chem-
istry and Biology, Garland Science/Taylor and Francis, New York, 2003.

21. Evans, D.J., Morriss, G., Statistical Mechanics of Nonequilibrium Liquids, 2nd ed., Cam-
bridge University Press, Cambridge, 2008

22. Farquhar, I.E., Ergodic Theory in Statistical Mechanics, Interscience Publishers/John Wi-
ley and Sons, New York, 1964.

23. Favro, L.D., “Theory of the rotational Brownian motion of a free rigid body,” Phys. Rev.,
119(1), pp. 53–62, 1960.

24. Feig, M., ed., Modeling Solvent Environments: Applications to Simulations and Biomole-
cules, Wiley–VCH, Weinheim, 2010.

25. Feynman, R.P., Feynman Lectures on Computation, T. Hey and R.W. Allen, eds., West-
view Press, Boulder, Colorado, 1996.

26. Frieden, B.R., Physics from Fisher Information, Cambridge University Press, Cambridge,
1998.

27. Furry, W.H., “Isotropic rotational Brownian motion,” Phys. Rev., 107(1), pp. 7–13, 1957.
28. Gibbs, J.W., Elementary Principles in Statistical Mechanics: Developed with Especial Ref-

erence to the Rational Foundation of Thermodynamics, 1902 (reissued by Kessinger Pub-
lishing and BiblioBazaar, 2008).

29. Gray, C.G., Gubbins, K.E., Theory of Molecular Fluids, Vol. 1: Fundamentals, Clarendon
Press, Oxford, 1984.

30. Gray, R. M., Davisson, L.D., eds., Ergodic and Information Theory, Benchmark Papers
in Electrical Engineering and Computer Science Vol. 19, Dowden, Hutchinson and Ross,
Stroudsburg, PA, 1977.

31. Halmos, P.R., Lectures on Ergodic Theory, The Mathematical Society of Japan, Tokyo,
1956.

32. Hansen, J.-P., McDonald, I.R., Theory of Simple Liquids, 3rd ed., Academic Press, New
York, 2006.

33. Hill, T.L., An Introduction to Statistical Thermodynamics, Dover Publications, New York,
1960, 1986.

34. Hirata, F., ed., Molecular Theory of Solvation, Kluwer Academic Publishers, Dordrecht,
2003.

35. Huang, K., Statistical Mechanics, 2nd ed., John Wiley and Sons, New York, 1987.
36. Hubbard, P.S., “Angular velocity of a nonspherical body undergoing rotational Brownian

motion,” Phys. Rev. A, 15(1), pp. 329–336, 1977.
37. Hummer, G., Szabo, A., “Free energy reconstruction from nonequilibrium single-molecule

pulling experiments,” PNAS, 98(7), pp. 3658–3661, 2001.
38. Jarzynski C., “Nonequilibrium equality for free energy differences,” Phys. Rev. Lett., 78,

pp. 2690–2693, 1997.
39. Jaynes, E.T., “Information theory and statistical mechanics, I+II,” Phys. Rev., 106(4),

pp. 620–630, 1957; 108(2), pp. 171–190, 1957.
40. Jeffrey, G.B., “The motion of ellipsoidal particles immersed in a viscous fluid,” Proc. R.

Soc. London. Series A, 102(Nov. 1), pp. 161–179, 1922.
41. Kac, M., Some Stochastic Problems in Physics and Mathematics, Colloquium Lectures in

the Pure and Applied Sciences, Magnolia Petroleum Company, 1957.
42. Kaniuth, E., Ergodic and mixing properties of measures on locally compact groups, Lecture

Notes in Mathematics, 1210, pp. 125–129, Springer, Berlin, 1986.
43. Khinchin, A.I., Mathematical Foundations of Statistical Mechanics, Dover Publications,

New York, 1949.
44. Kim, M.K., Jernigan, R.L., Chirikjian, G.S., “Rigid-cluster models of conformational tran-

sitions in macromolecular machines and assemblies,” Biophys. J., 89(1), pp. 43–55, 2005.
45. Kleinbock, D., Shah, N., Starkov, A., “Dynamics of subgroup actions on homogeneous

spaces of Lie groups and applications to number theory,” in Handbook of Dynamical
Systems, Vol. 1A, B. Hasselblatt and A. Katok, eds., Chapter 11, pp. 813–930, Elsevier,
Amsterdam, 2002.



184 14 Statistical Mechanics and Ergodic Theory

46. Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics,
2nd ed., World Scientific, Singapore, 1995.

47. Kolmogorov, A.N., “New metric invariant of transitive automorphisms and flows of
Lebesgue spaces,” Dokl. Acad. Sci. USSR, 119(5), pp. 861–864, 1958.

48. Landauer, R., “Irreversibility and heat generation in the computing process,” IBM J. Res.
Dev., 5, pp. 183–191, 1961.

49. Landauer, R., “Dissipation and noise immunity in computation and communication,”
Nature, 335, pp. 779–784, 1988.

50. Leff, H.S., Rex, A.F., Maxwell’s Demon: Entropy, Information, Computing, Princeton
University Press, Princeton, NJ, 1990.

51. Leff, H.S., Rex, A.F., Maxwell’s Demon 2: Entropy, Classical and Quantum Information,
Computing, Institute of Physics, Bristol, 2003.

52. MacDonald, D.K.C., Introductory Statistical Mechanics for Physicists, Dover Publica-
tions, Mineola, NY, 2006. (originally published by John Wiley and Sones in 1963).

53. Mackey, G. W., “Ergodic Theory and its significance for statistical mechanics and prob-
ability theory,” Adv. Math., 12, pp. 178–268, 1974.
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15

Parts Entropy and the Principal Kinematic Formula

Automated (robotic) assembly systems that are able to function in the presence of
uncertainties in the positions and orientations of feed parts are, by definition, more
robust than those that are not able to do so. This can be quantified with the concept of
“parts entropy,” which is a statistical measure of the ensemble of all possible positions
and orientations of a single part confined to move in a finite domain. In this chapter the
concept of parts entropy is extended to the case of multiple interacting parts. Various
issues associated with computing the entropy of ensembles of configurations of parts with
excluded-volume constraints are explored. The rapid computation of excluded-volume
effects using the “principal kinematic formula” from the field of Integral Geometry
is illustrated as a way to potentially avoid the massive computations associated with
brute-force calculation of parts entropy when many interacting parts are present.

The most important points to take away from this chapter are as follows:

• The difficulty of assembling a machine composed of rigid parts is related to the shape
of the individual parts and how they are brought together to form an assemblage, and
the concept of “parts entropy” can be used to quantify the difficulty of automated
assembly.

• The principal kinematic formula can be used to evaluate, in closed-form, the volume
in SE(3) corresponding to all possible motions that lead to the intersection of two
solid bodies.

• Knowing how bodies occlude each other influences the entropy of an ensemble of
configurations of a collection of bodies.

• These effects can be bounded by combining the principal kinematic formula and
concepts from functional/harmonic analysis on Lie groups.

This chapter is organized as follows. Section 15.1 provides an introduction to the
field of automated assembly planning and motivates the use of an entropy concept that
shares features from both information theory and statistical mechanics, the so-called
“parts entropy.” Section 15.2 formulates the problems mathematically. Section 15.3
explains how the principal kinematic formula from the field of stochastic/integral ge-
ometry can be used to rapidly evaluate quantities of potential importance in assembly
planning. Section 15.4 presents a differential-geometric proof of the principal kinematic
formula using nothing more than the basic differential-geometric tools from Chapter 5
of Volume 1. Section 15.5 provides some simple examples to illustrate these formulas.
Section 15.6 extends these ideas and derives some new inequalities. Section 15.7 re-
views (without proof) generalizations of these formulas to rigid-body motions in higher-
dimensional Euclidean spaces that have been presented in the literature. Section 15.8
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reviews differential-geometric generalizations of the principal kinematic formula where
actions of a unimodular Lie group on subsets of homogeneous spaces replaces motions of
bodies in Rn and integration is performed with respect to the Haar measure. Section 15.9
generalizes the classical formula to include non-Haar probability densities. In such cases,
it is difficult to obtain formulaes, but inequalities are abundant. Section 15.10 provides
bounds on the integral of the square of the Euler characteristic. Sections 15.11, 15.12,
and 15.13 consider various extensions to the case of multiple parts connected by joints
and illustrate how these methods can be applied to computing (or at least bounding)
parts entropy in assembly planning. Finally, Section 15.14 summarizes the chapter and
Section 15.15 presents exercises.

15.1 Introduction

In the field of assembly automation it has long been known that the design of machines
that assemble parts should take advantage of part geometries [14, 15]. Additionally,
robotic systems with minimal sensing can perform assembly operations if information
about the parts and environment is known [29]. Systems that shake or otherwise ran-
domize part positions and orientations (i.e., “poses”) allow a collection of parts to sample
the ensemble of all possible poses. More than 25 years ago, Sanderson quantified the
concept of part disorder by defining the concept of “parts entropy” [60]. In his analysis,
he considered the tractable problem of noninteracting parts, thereby focusing on individ-
ual part entropies. In contrast, in this chapter the concept of parts entropy is extended
to the case of multiple interacting parts. Various issues associated with computing the
entropy of ensembles of configurations of parts with excluded-volume constraints are
explored. The rapid computation of excluded-volume effects using the “principal kine-
matic formula” from the field of Integral Geometry is illustrated. References in the
English language on this topic include [6, 61].

This is all relevant to assembly automation because assembly systems that are able
to function in the presence of uncertainties in feed part positions and orientations are
more robust than those that are not able to do so. Therefore, having a way to compute
the entropy of parts over a statistical ensemble of different feed configurations provides
a measure of the capabilities of an assembly automation system. Such metrics quantify
the relative effectiveness of such systems and open up new possibilities for quantifiable
design principles.

15.2 Problem Formulation

In the first subsection of this section, the concept of the entropy of a single part is re-
viewed and slightly modified in the context of different terminology. Given N parts that
are sparsely scattered in an environment, the total parts entropy can be approximated as
the sum of the individual part entropies. This approximation, although always an upper
bound, is not accurate when the environment is more cluttered due to excluded volume
(noninterpenetration) effects. These issues are addressed in the second subsection.

15.2.1 A Continuous Version of Sanderson’s Parts Entropy

Information-theoretic entropy has been used by Sanderson to characterize parts for use
in assembly operations [60]. The position and orientation of a part is described by a
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group element g ∈ G, where G = SE(3) is the group of rigid-body motions. If the part
can attain poses with a particular frequency of occurrence at a particular time, which
is described by a probability density function f(g; t), then its entropy is defined as

Sf (t) = −
∫

G

f(g; t) log f(g; t) dg, (15.1)

where dg is the bi-invariant integration measure (i.e., volume element) with which to
integrate (see Chapter 12).

How is f(g; t) defined? Imagine that a single part is placed at random in an envi-
ronment. Additionally, imagine that this is repeated over many trials. The result can
be summarized with a probability density function f(g; 0), where 0 indexes the initial
time. From each of the random initial conditions that are collectively defined as f(g; 0),
an assembly task can be attempted. If successful, the assembly task will result in the
part being placed at its desired location g1. Therefore, over the ensemble of trials, the
probability will evolve from f(g; 0) to δ(g−1

1 ◦ g) (a Dirac delta function indicating that
the part is placed in its desired location). The evolution of probability of part pose
over this ensemble of trials can be described as f(g; t), and the associated part entropy
is Sf (t). Clearly, Sf (t) decreases during a successful assembly process. If δ(g−1

1 ◦ g) is
defined to allow for some small but finite part tolerance, then Sδ will be finite, and as
Sf (t) − Sδ approaches 0, it means that the part is being successfully placed. Sf (t) in
(15.1) is essentially Shannon’s entropy.

Sanderson adapted concepts from information theory to consider the entropy of rigid
parts [60]. In this context, the probability density function, f(g), describes the set of
all possible poses of a rigid part (g ∈ SE(3)) as it is randomly placed on a substrate
over an ensemble of experiments. The corresponding entropy is called “parts entropy.”
Sanderson measured parts entropy in bits of information assuming that sensors have a
finite resolution in each generalized coordinate used to parameterize rigid-body motion.
In contrast, continuous motion is addressed here.

15.2.2 Multiple Parts

An assembly process can be thought of as one in which the initial probability densities
for each of the i parts converge to their desired locations {gi}:

fi(g; t) → δ(g−1
i ◦ g) as t → T,

where T is the total time allowed for the assembly to be completed.
Given n parts, the ith of which is free to be placed arbitrarily in an environment

with frequency of occurrence given by fi(gi; t), the entropy will be bounded by S′(t) ≤∑n
i=1 Si(t), where Si is the entropy of the ith part computed independently (i.e., as if

that were the only part). If, however, the environment is very cluttered and there is not
a significant amount of free space, this bound will not be tight and the entropy of the
joint distribution of parts will have to be computed:

S′(t) = −
∫

Gn

f ′ log f ′ dg1 · · · dgn, where
∫

Gn

=
∫

G

· · ·
∫

G

(15.2)

and f ′ = f ′(g1, g2, . . . , gn; t).
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In the independent case,

f(g1, g2, . . . , gn; t) =
n∏

i=1

fi(gi; t), where
∫

G

fi(gi; t) dgi = 1 (15.3)

for each i = 1, . . . , n. In general, this simple form is not realistic and needs to be
augmented to reflect the excluded volume of parts since no two parts can occupy the
same space at the same time.

To begin, let us consider functions ICi(x) that take the value of 1 on part Ci and 0
otherwise.1 For the sake of concreteness, assume that the part is centered on the identity
reference frame with its principal axes of inertia aligned with the coordinate axes. Then
if body Ci is moved by rigid-body motion gi, and likewise for body Cj , we can compute
their overlap as

wCi,Cj
(gi, gj) =

∫
R3

ICi
(g−1

i ◦ x) ICj
(g−1

j ◦ x) dx.

A general property of integration over all of three-dimensional space is that it is invariant
under rigid-body motions. Therefore, if we make the change of variables y = g−1

i ◦ x,
then we find that

wCi,Cj
(gi, gj) = wCi,Cj

(e, g−1
i ◦ gj) = wCi,Cj

(g−1
j ◦ gi, e).

Clearly, when the two bodies do not overlap, wCiCj
= 0, and if they do overlap, then

wCiCj
> 0. This can be “windowed” and made binary. If there is any overlap, let

WCiCj
(g−1

i ◦ gj) = 1, and if there is no overlap, let WCi,Cj
(g−1

i ◦ gj) = 0. In other
words,

WCi,Cj
(g−1

i ◦ gj) = u[wCi,Cj
(gi, gj)], (15.4)

where u[·] is the unit Heaviside step function.
Then the original naive f(g1, g2, . . . , gn; t) in (15.3), which might reflect the allowable

motions of each part constrained by the environment, can be replaced with one of the
form

f ′(g1, g2, . . . , gn; t) = α · f(g1, g2, . . . , gn; t)
n∏

i<j

[1−WCi,Cj (g
−1
i ◦ gj)], (15.5)

which accounts for the fact that pairwise overlaps of bodies is not permitted. Here, α is
the normalization required to make f ′ a probability density function—that is, such that∫

Gn

f ′ dg1 · · · dgn = 1.

Note that the product in (15.5) is not only over sequentially local pairs of bodies, but
rather all pairs of bodies, where the “i < j” simply avoids double counting. Accounting
for all pairwise interactions automatically removes three or more interacting bodies.

In this way we have a tool for assessing the entropy of the unassembled state of
parts in a confined environment. The change in entropy from the random ensemble of

1The notation Ci will be used throughout this chapter to denote the ith rigid body in
a collection of bodies. The letter C comes from the word “corpus.” When C is convex, the
formulation simplifies, although what is stated is true more generally when convexity is not
mentioned.
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part conformations to the fully assembled product, ΔS = Sf ′ −Sδ, is a measure of how
much disorder the assembly process reduces.

One way to assess the quality of the design of a product to be assembled is how much
entropy must be overcome to assemble it from the disassembled ensemble to the final
assembly state. In other words, a design for which ΔS is small is easy to assemble and is
therefore a good design. In contrast, one measure of how good an assembly automation
system is is how large of a ΔS it can handle and still successfully assemble parts.

Naively, the computer-age way to compute probabilities such as f ′ and the associated
entropy Sf ′ would be to uniformly sample all possible positions and orientations of the
moving body and to record the ratio of the number of intersects to the total. Computing
power is sufficiently large these days that this computation could be done for two (or
maybe three) planar bodies. However, for three-dimensional problems, where the space
of motions for a rigid body is six dimensional, sampling each spatial dimension results in
O(N6) motions. For each motion, intersections can be assessed by numerical integration
(to compute a volume of overlap) or sampling in O(N3). Therefore, O(N9) operations
would be used. This is a daunting calculation. Additionally, if there are instead m bodies,
the result becomes O(N6m+3). Fortunately, over the past century, methods have been
developed by a small group of pure mathematicians to compute integrals of interest
analytically in closed form. In particular, a result called the principal kinematic formula
will be used here.

15.3 Principal Kinematic Formulas

The field of Integral Geometry (also called Geometric Probability and Stochastic Geom-
etry) is concerned with properties of random configurations of geometric objects and
properties relating to random motions of these objects. Of particular relevance to the
current discussion is the principal kinematic formula, which is concerned with evaluating
the probability of intersection of two rigid bodies when one body moves uniformly at
random relative to another body that his held fixed. Results from this field that are
applicable to the computation of parts entropy are adapted here.

15.3.1 The Principal Kinematic Formula

Recall that a body, viewed as a subset of Rn, is convex if the line segment connecting
two points in the body is contained in the body for all possible choices of pairs of
points. Another way to say this is that if for any x,y ∈ C ⊂ Rn, then the condition
tx + (1− t)y ∈ C for all t ∈ [0, 1] means that C is convex.

The indicator function on any measurable body C (not necessarily convex and per-
haps not even connected) is defined by

ι(C) .=

{
1 if C �= Ø
0 for C = Ø.

If g ∈ G is an element of a group that acts on C without shrinking it to the empty set,
then ι(gC) = ι(C), where

gC
.= {g · x|x ∈ C}.

For now, let G = SE(n), the group of rigid-body motions in Rn. If g = (A,a) is the
rigid-body motion with rotational part A ∈ SO(n) and translational part a ∈ Rn, then
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recall from Chapter 10 that the action of G on Rn is g · x = Ax + a and, hence, gC is
well defined. The indicator function is one of many functions on a body that is invariant
under rigid-body motion. Others include the volume of the body and the surface area
(or perimeter in the two-dimensional case).

Suppose that we have two convex bodies, C0 and C1. Let C0 be stationary and let
C1 be mobile. The intersection of these two convex bodies is either a convex body or
is empty. Furthermore, the rigid-body motion (or even affine deformation) of a convex
body does not change the fact that it is convex. Therefore, when C0∩gC1 is not empty,
it will be a convex body and

fC0,C1(g) .= ι(C0 ∩ gC1)

will be a compactly supported function on G that takes the value of 1 when C0 and the
moved version of C1 (denoted as gC1) intersect, and it will be 0 otherwise. The function
fC0,C1(g) has some interesting properties—namely if we shift the whole picture by an
amount g0, then this does not change the value of fC0,C1(g). In other words,

ι(g0(C0 ∩ gC1)) = ι(g0C0 ∩ (g0 ◦ g)C1).

This means that if we choose g0 = g−1, then

fC0,C1(g) = ι((g−1C0) ∩ C1) = ι(C1 ∩ g−1C0) = fC1,C0(g
−1).

In the special case when C0 = C1 (i.e., they are two copies of the same body), then
fC0,C0(g) = fC0,C0(g

−1), which is called a symmetric function.
More generally, “counting up” all values of g for which an intersection occurs is then

equivalent to computing the integral

I(C0, C1) =
∫

G

ι(C0 ∩ gC1) dg. (15.6)

Note that I(C0, C1) =
∫

G
WC0,C1(g) dg, where WC0,C1(g) is exactly the quantity of

interest in the previous section.
A somewhat amazing result is that the integral I can be computed exactly using

only elementary geometric properties of the bodies C0 and C1 without actually having
to perform an integration over G. Although the general theory has been developed by
mathematicians for the case of bodies in Rn [20] and in manifolds on which some Lie
group acts (see [61] and references therein), we are concerned only with the cases of
bodies in R2 and R3. Furthermore, integrals similar to (15.6) where the integrand is not
ι(·), but other so-called “mixed volumes” can also be computed in closed form [20, 61].
The following subsections review this formula in the cases of planar and spatial bodies.

15.3.2 The Planar Case

A closed arc-length-parameterized curve of length L in the plane can be described (up
to rigid-body motion) using the equation

x(s) =

⎛⎜⎜⎝
∫ s

0
cos θ(σ) dσ∫ s

0
sin θ(σ) dσ

⎞⎟⎟⎠ ,
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where

θ(s) =
∫ s

0
κ(σ) dσ

is the counterclockwise-measured angle that the tangent to the curve makes with respect
to the x axis and s ∈ [0, L].

The condition that the curve is closed is given by x(L) = 0, and differentiability of
the curve is guaranteed if θ(s) is continuous on s ∈ [0, L] and θ(L) = 0 (which ensures
that the tangent at x(L) matches that at x(0). Continuity of the tangent direction can
be relaxed to handle polygonal objects by allowing κ(s) to be a sum of shifted Dirac
delta functions, which makes θ(s) piecewise constant.

Regardless, for a convex body, the signed curvature κ(s) is always non-negative.
For a simple, convex, closed curve, two global intrinsic quantities can be defined: the
perimeter L and the area enclosed by the curve, A. The normalized integral of total
signed curvature,

χ = θ(L)/2π,

is then equal to 1. If this curve bounds a simply connected region, then χ = 1 is both the
indicator function and the Euler characteristic of that region. However, in more general
cases in which a domain is not connected or not simply connected, then multiple closed
curves define the boundaries of the domain and, in these cases, χ �= 1.

In the planar case, we can write (15.6) explicitly as

I(C0, C1) =
∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
ι(C0 ∩ g(b1, b2, θ)C1) db1 db2 dθ, (15.7)

where g = (R,b) is described by

R =
(

cos θ − sin θ
sin θ cos θ

)
,

the vector b = [b1, b2]T , and g(b1, b2, θ) is defined as in (10.75).

Theorem 15.1 (Blaschke, [11, 12]). Given planar convex bodies C0 and C1, then (15.7)
evaluates as

I(C0, C1) = 2π[A(C0) + A(C1)] + L(C0)L(C1), (15.8)

where A(·) is the area and L(·) is the perimeter of the body.

For the proof, see [11, 12, 61] and Section 15.4.1.
In Integral Geometry, the statement of this theorem is in terms of the Euler char-

acteristic rather than the indicator function. Recall that the Euler characteristic of a
surface bounding a body C, which is denoted as χ(∂C), is a topological invariant of
the surface. The Euler characteristic of the corresponding body is denoted as χ(C).
For a simply connected three-dimensional body, χ(C) = 1, whereas χ(∂C) = 2. In the
planar case, the Euler characteristic of a region is just the integral of signed curvature
normalized by 2π as defined earlier.

In the nonconvex case, we can bound the integral of interest from below and above
by inscribing and circumscribing convex bodies inside and outside of C0 and C1. Then
computing (15.8) with the convex inscribed/circumscribed bodies will give lower and
upper bounds on (15.8) for nonconvex C0 and C1.
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It is clear from (15.8) that the inscribed convex body should have as large of an area
and perimeter as possible in order to obtain a lower bound that is as tight as possible.
However, it is not clear what the trade-off between area and perimeter should be. Like-
wise, for the circumscribed convex body, the tightest upper bound will be obtained by
a body of minimal area and perimeter.

15.3.3 The Spatial Case

It follows that if the spatial body C has a continuous piecewise differentiable surface,
∂C, that we can compute: ∫

∂C

dS = F (C)

(the total surface area). Furthermore, if κ denotes the Gaussian curvature at each point
on the surface, we can compute (via the Gauss–Bonnet theorem):∫

∂C

κ dS = 2π χ(∂C),

where χ(∂C) is the Euler characteristic of the bounding surface. As discussed in Chap-
ter 5, in the case of spatial bodies, χ(∂C) = 2 ·χ(C). Additionally, for simply connected
planar and spatial bodies, χ(C) = ι(C) = 1.

In differential geometry, a second kind of curvature is defined at every point on
a surface. This is the mean curvature, m, as discussed in Chapter 5. The total mean
sectional curvature is defined as

M(C) =
∫

∂C

mdS,

and the volume of C is computed as

V (C) =
∫

R3
IC(x) dx =

∫
C

dx.

If spatial rigid-body motions are parameterized as

g(b1, b2, b3;α, β, γ) =
(

R(α, β, γ) b
0T 1

)
,

where R(α, β, γ) denotes the ZXZ Euler-angle parameterization and b ∈ R3, then the
bi-invariant integration measure is, to within an arbitrary scaling constant,

dg = sinβ dα dβ dγ db1 db2 db3.

Theorem 15.2 (Blaschke, [11, 12]). Given convex bodies C0 and C1 in R3, then

I(C0, C1) = 8π2[V (C0) + V (C1)] + 2π[F (C0)M(C1) + F (C1)M(C0)], (15.9)

where F (·) and M(·) are respectively the area and integral of mean curvature of the
surface enclosing the body and V (·) is the volume of the body.

For the proof, see [11, 12, 61] and Section 15.4.2.
Again, we would really like to be able to compute (15.9) for nonconvex bodies, but

it does not apply in that case, although integrals of the Euler characteristic can be
obtained in that case.
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15.4 Differential-Geometric Derivation of the Principal
Kinematic Formula

In this section the principal kinematic formula of Blaschke and Poincaré is derived in
the plane and in three-dimensional Euclidean space. This formula relates integrals of
geometric quantities such as the volume (or area) inside of a body, its total surface
area (or perimeter), and total mean curvature with the properties of intersections of
bodies as one is rigidly moved over the other. The proofs provided here use the basic
differential geometry of parametric curves and surfaces. Although fully rigorous, this
approach is somewhat cumbersome. More elegant and general formulations from the
field of Integral Geometry/Geometric Probability/Stochastic Geometry are reviewed
in subsequent sections. However, it also will be shown that the parametric approach
presented here generalizes in some useful ways not covered by the more elegant methods.

The issue addressed here is the calculation of the integral

I(C0, C1)=
∫

G

ι(C0 ∩ gC1) dg =
∫

G

ι(g−1C0 ∩ C1) dg

=
∫

G

ι(gC0 ∩ C1) dg =
∫

G

ι(C1 ∩ gC0) dg = I(C1, C0), (15.10)

where Ci are finite bodies in Rn and ι(·) is the set indicator function.
Here, I(C0, C1) denotes that C0 is fixed in space and C1 is “moved around” under

the action of G = SE(n), with gC1 denoting the version of C1 that has been moved
by g ∈ G. The bi-invariance of the integration measure dg yields the symmetry of the
function I in (15.10). It also means that I(C0, C1) = I(hC0, hC1) for any h ∈ G.
Therefore, the way that C0 is fixed in space is irrelevant, as is the choice of which body
is considered to be moving and which one is considered to be fixed.

15.4.1 The Planar Case

In this subsection the principal kinematic formula2 of Blaschke is reviewed. First, some
integrals associated with star-shaped regions in the plane are computed. Then these are
used to prove the theorem.

Integrals for Planar Star-Shaped Regions

A star-shaped region, or body, in the plane is a shape for which any point can be
connected to a special point, referred to here as the center of the region, with a line
segment contained in the region. Therefore, all convex bodies are star-shaped, but star-
shaped regions need not be convex. Figure 15.1 illustrates a star-shaped planar region
together with the coordinates and reference frames used to describe its geometry.

The interior of any smooth star-shaped region in the plane can be parameterized as

x(ρ, φ) =
(

r(ρ, φ) cosφ
r(ρ, φ) sinφ

)
, (15.11)

where r(ρ, φ) is monotonically increasing in ρ ∈ [0, 1] and smooth in both arguments.
Here, x = 0 is the center defined by r(0, φ) = 0. The collection of all such points is

2Also called the fundamental kinematic formula, or simply the kinematic formula



196 15 Parts Entropy and the Principal Kinematic Formula

 r

u

n

Fig. 15.1. A Planar Star-Shaped Region and Associated Quantities

denoted as C, and its boundary, defined by the condition ρ = 1, is parameterized as
x(1, φ) ∈ ∂C.

The Jacobian associated with this parameterization is

J =
[
∂x
∂ρ

∂x
∂φ

]
=

⎡⎢⎢⎣
∂r

∂ρ
cosφ

∂r

∂φ
cosφ− r sinφ

∂r

∂ρ
sinφ

∂r

∂φ
sinφ + r cosφ

⎤⎥⎥⎦ .

Since |J | = r∂r/∂ρ, it follows that

A =
∫ 1

0

∫ 2π

0
r
∂r

∂ρ
dφ dρ. (15.12)

In the case when r(ρ, φ) = ρ · r(1, φ), (15.12) becomes

A =
1
2

∫ 2π

0
[r(1, φ)]2 dφ.

For each fixed value of ρ, the resulting closed curve will be referred to here as a shell.
The monotonicity of the function r(ρ, φ) in the parameter ρ means that C is partitioned
into disjoint shells:

⋃
ρ∈[0,1]

∂C(ρ) = C and ∂C(ρ) ∩ ∂C(ρ′) =

{
∂C(ρ) if ρ = ρ′

Ø otherwise.
(15.13)
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The arc length of each closed curve defined by a fixed value of r will be

L =
∫ 2π

0

∥∥∥∥∂x
∂φ

∥∥∥∥ dφ =
∫ 2π

0

[(
∂r

∂φ

)2

+ r2

] 1
2

dφ. (15.14)

The total curvature of each shell can be calculated by first observing that the unit
tangent to each point on a shell is

u(φ) =
∥∥∥∥∂x
∂φ

∥∥∥∥−1
∂x
∂φ

. (15.15)

Then the curvature at each point in the shell defined by fixed value of ρ is computed as

κ =
∥∥∥∥∂u

∂s

∥∥∥∥ =
∥∥∥∥∂u
∂φ

∂φ

∂s

∥∥∥∥ =
∥∥∥∥∂x
∂φ

∥∥∥∥−1 ∥∥∥∥∂u
∂φ

∥∥∥∥ .

Substituting the definition of x(ρ, φ) in (15.11) into the above two equations results in

κ =
|r2 + 2(r′)2 − rr′′|

[r2 + (r′)2]
3
2

,

where ′ = ∂/∂φ. The signed curvature, k, results from removing the absolute value sign
in the above equation. The total curvature is then

K =
∮

k ds =
∫ 2π

0
k ·

∥∥∥∥∂x
∂φ

∥∥∥∥ dφ =
∫ 2π

0

r2 + 2(r′)2 − rr′′

r2 + (r′)2
dφ = 2π

when r > 0. This follows from the fact that

r2 + 2(r′)2 − rr′′

1 + (r′)2
= 1− (r′r−1)′

1 + (r′r−1)2
= 1− [tan−1(r′r−1)]′,

and since r > 0 for all values of φ ∈ [0, 2π], r(0) = r(2π), and r′(0) = r′(2π), the second
term integrates to 0.

Intersections of Moving Planar Star-Shaped Regions

Suppose that there are two regions (or bodies) C0 and C1 defined by parametric curves
x1 and x2 of the form in (15.11), which are, in turn, defined by r1(ρ1, φ1) and r2(ρ2, φ2).3

If these bodies are convex, their intersection will be as well, and given any fixed point
on the surface of C0, it is possible for any point on the surface of C1 to contact that
fixed point without any other part of C1 intersecting C0. In general, this will not be true
for nonconvex bodies, but there are special cases when it will be. This will be useful in
our proof of the principal kinematic formula.

Figure 15.2(left) illustrates a case in which the surfaces of a star-shaped body, C0,
and a convex body, C1, intersect at a single point. Moreover, if C1 slides so that another
point on its surface comes into contact with C0 at the original point, it will still be
the case that only one point of intersection exists between the bodies. Additionally, if
C1 is decomposed into concentric shells, this will be true for all of these shells as well.

3Note that the planar body Ci is described by the boundary curve xi+1, which is in turn
described by the function ri+1(ρi+1, φi+1).
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Fig. 15.2. Intersection of a Star-Shaped Body and Convex Body: (left) a Case When the
Largest Shell of the Convex Body Can Intersect the Star at Exactly One Point Without Inner
Shells Intersecting; (right) a Case When Intersection of Outer Shell at One Point Causes Inner
Shells to Make Contacts with the Star

In contrast, Figure 15.2(right) shows a very different picture. In this case, the surface
of C1 cannot make contact with every point on the surface of C0 without sometimes
having multiple contacts. When the surface of C1 makes a contact, shells from which C1
is constructed also make contacts. These observations will be useful later in a proof of
the principal kinematic formula that does not require the bodies to be convex but does
require the situation in Figure 15.2(left) while excluding the one in Figure 15.2(right).
The difference between these cases can be described as follows. When the maximal radius
of C1, rmax = maxφ2 ‖x2(1, φ2)‖, is smaller than half the distance between points on
any pair of arms of the star, C0, and if the maximal radius of curvature of C1, 1/κ2,
is smaller than the smallest radius of curvature of the fillets of the star, then the two
bodies can always make contact at a single point, even though one is not convex. Of
course, if both bodies are convex, then these conditions are satisfied trivially since there
are no arms or fillets. However, if these conditions do not hold in the nonconvex case,
then situations such as in Figure 15.2(right) can result.

Computing (15.10) in the planar case, under the assumption that all intersections
are simply connected, can be performed by decomposing all planar rigid-body motions
of C1 into two parts. The first part consists of translating the center of C1 over all points
in C0. This is guaranteed to result in intersections between C0 and C1. Likewise, if C1
is rotated about its center that has been translated to each of the points in C0, the
intersection between C0 and C1 will be nonempty. Therefore, part of the total motions
contributing to (15.10) will be 2πA(C0), where A(C0) is the area of C0 (since C1 is
moved to each point/position in C0) and 2π indicates that all planar rotations of C1
pinned to each of these positions result in an intersection.

Now, suppose that C1 is decomposed into disjoint shells defined by r2(ρ2, φ2) for each
value of ρ2 ∈ [0, 1]. Imagine that each of these shells is brought into contact with the
boundary ∂C0. If all possible contact states are recorded and if all such contacts result
in no intersections between the bodies other than a single point, then this will provide
a means to record all possible intersections without double counting. This condition is
equivalent to the assumption that all nonempty intersections of C0 and gC1 are simply
connected. Deriving a closed-form solution for I(C0, C1) in (15.10) for the planar case
then follows by “rolling and sliding” each shell of C1 over the boundary of C0 and adding
the measure of all of these motions to the measure of all motions of the center of C1
with translations in the interior of C0, which was already reasoned to be 2πA(C0).

Associated with each point on the boundary curve x1(1, φ1) ∈ ∂C0 and each point
on the shell defined by x2(ρ2, φ2) ∈ ∂C1(ρ2) are unit tangent and normal vectors. These
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vectors can be viewed as the columns of 2 × 2 rotation matrices, Ri = [ui,ni], where
u is the unit tangent vector in (15.15) and n = [−u · e2,u · e1]T . Indices on u, n,
and R are used to distinguish between body 1 and body 2. Here, R1 = R1(1, φ1) and
R2 = R2(ρ2, φ2).

In order for the shell ∂C1(ρ2) to be brought into contact with ∂C0 at a single point,
it is necessary to find the rigid-body motion (R,b) ∈ SE(2) such that

x1(φ1) = R · x2(ρ2, φ2) + b and R · [u2,n2] = [u1,n1]rot[e3, π].

The first of the above conditions ensures contact, and the second ensures that locally the
curves x1(φ1) and x2(ρ2, φ2) share common tangent lines (with tangent vectors pointing
in opposite directions).

Solving the above equations gives

R(φ1, ρ2, φ2) = [u1,n1]rot[e3, π][u2,n2]−1 = −R1(1, φ1)RT
2 (ρ2, φ2), (15.16)

where

Ri(ρi, φi) =

⎡⎢⎢⎢⎣
r′
i(ρi, φi) cosφi − ri(ρi, φi) sinφi√

(r′
i(ρi, φi))2 + r2

i (ρi, φi)
−r′

i(ρi, φi) sinφi − ri(ρi, φi) cosφi√
(r′

i(ρi, φi))2 + r2
i (ρi, φi)

r′
i(ρi, φi) sinφi + ri(ρi, φi) cosφi√

(r′
i(ρi, φi))2 + r2

i (ρi, φi)
r′
i(ρi, φi) cosφi − ri(ρi, φi) sinφi√

(r′
i(ρi, φi))2 + r2

i (ρi, φi)

⎤⎥⎥⎥⎦ .

This expression is a bit cumbersome, and calculations that follow can be facilitated by
observing that

Ri(ρi, φi) =
[
αi −βi

βi αi

] [
cosφi − sinφi

sinφi cosφi

]
, (15.17)

where
αi(ρi, φi) = r′

i(ρi, φi)[(r′
i(ρi, φi))2 + r2

i (ρi, φi)]−
1
2

and
βi(ρi, φi) = ri(ρi, φi)[(r′

i(ρi, φi))2 + r2
i (ρi, φi)]−

1
2 .

Note that since the matrices in (15.17) are all planar rotations, they commute. Further-
more, αi and βi satisfy the following equalities:

α2
i + β2

i = 1, αiα̇i + βiβ̇i = 0, αiα
′
i + βiβ

′
i = 0

and

riαi − r′
iβi = 0 , r′

iαi + riβi =
√

(r′
i)2 + r2

i ,

(15.18)

−riα
′
i + r′

iβ
′
i =

(r′
i)

2 − rr′′√
(r′

i)2 + r2
i

, αiβ
′
i − βiα

′
i =

(r′
i)

2 − rr′′

(r′
i)2 + r2

i

,

where · = ∂/∂ρi and ′ = ∂/∂φi. From (15.18) and the above discussion, it is clear that∫ 2π

0
(r′

iαi + riβi) dφi = Li(ρi) and
∫ 2π

0
(αiβ

′
i − βiα

′
i) dφi = 0. (15.19)

and

b(φ1, ρ2, φ2)=x1(φ1)−R(φ1, ρ2, φ2)x2(ρ2, φ2)

=
[
r1(1, φ1) cosφ1
r1(1, φ1) sinφ1

]
+ R1(1, φ1)

[
r2(ρ2, φ2)α2(ρ2, φ2)
−r2(ρ2, φ2)β2(ρ2, φ2)

]
. (15.20)
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Computing the Volume in SE(2) Corresponding to Bodies in Collision

If g is described as the 3× 3 matrix

g(R,b) =
[
R b
0T 1

]
,

then

Jr(φ1, ρ2, φ2) =

[(
g−1 ∂g

∂φ1

)∨
,

(
g−1 ∂g

∂ρ2

)∨
,

(
g−1 ∂g

∂φ2

)∨]
and

I(C0, C1) = 2πA(C0) +
∫ 1

0

∫ 2π

0

∫ 2π

0
|Jr(φ1, ρ2, φ2)| dφ1 dφ2 dρ2. (15.21)

Writing out Jr(φ1, ρ2, φ2) in terms of its rotational and translational parts separately,
and taking a closer look at the determinant |Jr(φ1, ρ2, φ2)| using (15.16) reveals that:

|Jr(φ1, ρ2, φ2)|=

∣∣∣∣∣∣∣∣
(

RT ∂R

∂φ1

)∨ (
RT ∂R

∂ρ2

)∨ (
RT ∂R

∂φ2

)∨
RT ∂b

∂φ1
RT ∂b

∂ρ2
RT ∂b

∂φ2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(

RT
1

∂R1

∂φ1

)∨
−

(
∂R2

∂ρ2
RT

2

)∨
−

(
∂R2

∂φ2
RT

2

)∨
RT

1
∂b
∂φ1

RT
1

∂b
∂ρ2

RT
1

∂b
∂φ2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
ωφ1 ωρ2 ωφ2

v1 w1 x1
v2 w2 x2

∣∣∣∣∣∣ . (15.22)

The replacement of RT with RT
1 in the lower rows of the above determinant is valid

because multiplication by those rows by any rotation matrix (in this particular case,
RT

2 ) will not affect the determinant. As for the upper row,

ωφ1 =
(

RT ∂R

∂φ1

)∨
=

(
R2R

T
1

∂R1

∂φ1
RT

2

)∨
=

(
RT

1
∂R1

∂φ1

)∨
and

ωφ2 =
(

RT ∂R

∂φ2

)∨
=

(
R2R

T
1 R1

∂RT
1

∂φ2

)∨
=

(
R2

∂RT
2

∂φ2

)∨
=

([
∂R2

∂φ2
RT

2

]T
)∨

= −
(

∂R2

∂φ2
RT

2

)∨
.

An exactly analogous argument holds for ωρ2 .
Explicitly, the following can be observed after some tedious calculations:

ωφ1 = 1− α′
1β1 + α1β

′
1, ωρ2 = β̇2α2 − α̇2β2, ωφ2 = 1− α′

2β2 + α2β
′
2,

v1 = α1r
′
1 + β1r1 + β2r2 + (α1β

′
1 − β1α

′
1)β2r2,

v2 = −β1r
′
1 + α1r1 + α2r2 + (α1β

′
1 − β1α

′
1)α2r2,

w1 = α̇2r2 + α2ṙ2, w2 = −β̇2r2 − β2ṙ2,

x1 = α′
2r2 + α2r

′
2, x2 = −β′

2r2 − β2r
′
2.
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From integration by parts and the continuity of the function ri in the φi argument,∫ 2π

0

∂ri

∂φi
cosφi dφi = ri(φi) cosφi

∣∣∣∣2π

0
+

∫ 2π

0
ri sinφi dφi =

∫ 2π

0
ri sinφi dφi.

A similar argument holds if sinφi replaces cosφi on the left-hand side of the above
equations. Therefore,∫ 2π

0

(
∂ri

∂φi
cosφi − ri sinφi

)
dφi = 0 and

∫ 2π

0

(
∂ri

∂φi
sinφi + ri cosφi

)
dφi = 0.

(15.23)

Using this together with integrating (15.22) and substituting into (15.21) leads to
the principal kinematic formula∫

G

ι(C0 ∩ gC1) dg = 2π[A(C0) + A(C1)] + L(C0) · L(C1). (15.24)

Note that this has the symmetry in (15.10). In the case when the situation is as in
Figure 15.2(right), equality no longer holds. In this case, there is double counting since
two shells of gC1 of different radii can both intersect C0 with the same g ∈ G, and
the right-hand side of (15.24) becomes an upper bound on the left side. A simple lower
bound can be computed even when for some or all g ∈ G, it is the case that C0 ∩ gC1
is not simply connected. This bound is obtained by evaluating 2π max{A(C0), A(C1)},
which is the volume in G corresponding to the center of one body moving through all
points in the interior of the other and visiting all possible orientations. Of course, we
choose the greater of these two in order to get the better lower bound. Other lower and
upper bounds are explored in Section 15.9.

15.4.2 Spatial Case

In this subsection a sketch of the derivation of the principal kinematic formula in the
spatial case is given.

Parameterizing Star-Shaped Bodies

Any star-shaped region in R3 centered at the origin can be parameterized as

x(ρ, φ, θ) = r(ρ, φ, θ) ·
⎛⎝cosφ sin θ

sinφ sin θ
cos θ

⎞⎠ = r · u, where (ρ, φ, θ) ∈ [0, 1]× [0, 2π]× [0, π].

(15.25)
The partial derivatives of the vector u(φ, θ) are

∂u
∂φ

=

⎛⎝− sinφ sin θ
cosφ sin θ

0

⎞⎠ and
∂u
∂θ

=

⎛⎝cosφ cos θ
sinφ cos θ
− sin θ

⎞⎠ .

A simple calculation shows that

u · ∂u
∂φ

= u · ∂u
∂θ

=
∂u
∂φ

· ∂u
∂θ

= 0,

u · u =
∂u
∂θ

· ∂u
∂θ

= 1,
∂u
∂φ

· ∂u
∂φ

= sin2 θ,
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and
u× ∂u

∂φ
= − sin θ

∂u
∂θ

, u× ∂u
∂θ

=
1

sin θ

∂u
∂φ

,
∂u
∂φ

× ∂u
∂θ

= − sin θ u.

The Jacobian matrix for the parameterization and the absolute value of its determi-
nant are respectively

J =
[
∂x
∂ρ

,
∂x
∂φ

,
∂x
∂θ

]
=

[
∂r

∂ρ
u,

∂r

∂φ
u + r

∂u
∂φ

,
∂r

∂θ
u + r

∂u
∂θ

]
and

|J | = r2 ∂r

∂ρ

∣∣∣∣u · (∂u
∂φ

× ∂u
∂θ

)∣∣∣∣ = r2 ∂r

∂ρ
sin θ.

This means that the volume of the region will be

V =
∫ 1

0

∫ π

0

∫ 2π

0
r2 ∂r

∂ρ
sin θ dφ dθ dρ. (15.26)

From the fact that

∂x
∂φ

=
∂r

∂φ
u + r

∂u
∂φ

and
∂x
∂θ

=
∂r

∂θ
u + r

∂u
∂θ

it follows that

∂x
∂φ

× ∂x
∂θ

= r
∂r

∂φ
u× ∂u

∂θ
− r

∂r

∂θ
u× ∂u

∂φ
+ r2 ∂u

∂φ
× ∂u

∂θ

=
r

sin θ

∂r

∂φ

∂u
∂φ

+ r
∂r

∂θ
sin θ

∂u
∂θ

− r2 sin θ u. (15.27)

Therefore, the surface area for any shell defined by a fixed value of ρ will be

F =
∫ π

0

∫ 2π

0

∥∥∥∥∂x
∂φ

× ∂x
∂θ

∥∥∥∥ dφ dθ

=
∫ π

0

∫ 2π

0

[
r2

(
∂r

∂φ

)2

+ r2 sin2 θ

(
∂r

∂θ

)2

+ r4 sin2 θ

] 1
2

dφ dθ. (15.28)

The metric tensor for each shell is

G =
[
gφφ gφθ

gφθ gθθ

]
=

⎡⎢⎢⎣
∂x
∂φ

· ∂x
∂φ

∂x
∂φ

· ∂x
∂θ

∂x
∂φ

· ∂x
∂θ

∂x
∂θ

· ∂x
∂θ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
(

∂r

∂φ

)2

+ r2 sin2 θ
∂r

∂φ

∂r

∂θ
∂r

∂φ

∂r

∂θ

(
∂r

∂θ

)2

+ r2

⎤⎥⎥⎦ .

(15.29)
A unit normal can be defined on each point of each shell as

n = |G|− 1
2

(
∂x
∂φ

× ∂x
∂θ

)
.

From this and the second partial derivatives of x with respect to φ and θ, the matrix
of the second fundamental form for each shell can be computed.
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Explicitly,

∂2x
∂φ2 =

∂2r

∂φ2 u + 2
∂r

∂φ

∂u
∂φ

+ r
∂2u
∂φ2 ,

∂2x
∂θ2 =

∂2r

∂θ2 u + 2
∂r

∂θ

∂u
∂θ

+ r
∂2u
∂θ2 ,

and
∂2x
∂φ∂θ

=
∂2r

∂φ∂θ
u +

∂r

∂φ

∂u
∂θ

+
∂r

∂θ

∂u
∂φ

+ r
∂2u
∂φ∂θ

.

Since
∂2u
∂φ2 =

⎛⎝− cosφ sin θ
− sinφ sin θ

0

⎞⎠ ,
∂2u
∂θ2 = −u,

∂2u
∂φ∂θ

= cot θ
∂u
∂φ

,

it follows that

∂2u
∂φ2 ·

∂u
∂φ

= 0, u · ∂2u
∂θ2 = −1,

∂u
∂θ

· ∂2u
∂φ2 = − cos θ,

∂u
∂φ

· ∂2u
∂θ2 =

∂u
∂θ

· ∂2u
∂θ2 =

∂u
∂θ

· ∂2u
∂φ∂θ

= u · ∂2u
∂φ∂θ

= 0,

and

u · ∂2u
∂θ2 = −1,

∂u
∂φ

· ∂2u
∂φ∂θ

= sin θ cos θ.

Relationship to First and Second Fundamental Forms

Recall from Chapter 5 that the matrices G and L played an important role in coordinate-
dependent differential geometry of surfaces. The equalities presented in the previous
section can be used together with the expression in (15.27) to compute

L =
[
lφφ lφθ

lφθ lθθ

]
=

⎡⎢⎢⎢⎣
n · ∂2x

∂φ2 n · ∂2x
∂φ∂θ

n · ∂2x
∂φ∂θ

n · ∂2x
∂θ2

⎤⎥⎥⎥⎦ .

Explicitly,

lφφ = |G|− 1
2

[
2r

(
∂r

∂φ

)2

sin θ − r2 ∂r

∂θ
sin2 θ cos θ − r2 sin θ

∂2r

∂φ2 + r3 sin θ

]
,

lφθ = |G|− 1
2

[
−r2 sin θ

∂2r

∂φ∂θ
+ 2r

∂r

∂φ

∂r

∂θ
sin θ + r2 ∂r

∂φ
cos θ

]
,

lθθ = |G|− 1
2

[
2r

(
∂r

∂θ

)2

sin θ − r2 sin θ
∂2r

∂θ2 + r3 sin θ

]
.

Additionally, from (15.29) it follows that

G−1 = |G|−1 ·

⎡⎢⎢⎢⎣
(

∂r

∂θ

)2

+ r2 − ∂r

∂φ

∂r

∂θ

− ∂r

∂φ

∂r

∂θ

(
∂r

∂φ

)2

+ r2 sin2 θ

⎤⎥⎥⎥⎦ ,
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and the mean curvature is calculated at each point as

m =
1
2
tr(G−1L).

Integrating over the shell defined by the value ρ then gives the total mean curvature, M .
By performing calculations that are analogous to the planar case in the previous

section (although much more tedious), it is possible to decompose one body into shells
and roll another body over each in such a way that the moving body maintains a single
point contact with a shell as it is moved over it. If it can be reasoned that during
this process the intersection of the two original bodies is always a simply connected
region (a sufficient though not necessary condition for which is when the two bodies are
convex), then integrating over all motions produces the spatial version of the principal
kinematic formula.

15.5 Examples

In this section the application of the principal kinematic formula to computing the
entropy of two parts in a bounded environment is illustrated. One part is taken to
be fixed at the origin of a coordinate system and another part is placed uniformly at
random with its center of mass constrained to be within a sphere of radius R from the
origin of the first part. This means that in the absence of the first part, the second has
a volume of possible motions in SE(n) given by

V = Rn ·Vol(Bn) ·Vol(SO(n)),

where Vol(Bn) is the volume of the ball defined by the interior of a sphere of unit radius
in n-dimensional space (which is π in R2 and 4π/3 in R3) and Vol(SO(n)) is the volume
of the rotation group in n-dimensional space (which is 2π for SO(2) and 8π2 for SO(3)).

Therefore, the positional and orientational distribution of part #2 computed in the
absence of part #1 would be

f(g) =
1
V

for g = (A,a) ∈ SE(n) with ‖a‖ < R, and f(g) = 0 otherwise.
The entropy of a single isolated part under these conditions is then

Sf = log V.

In contrast, the total volume in SE(n) that is available for part #2 to move if
part #1 is fixed in the environment, thereby limiting the range of possible motions of
part #2, will be

V ′ = V −
∫

SE(n)
ι(C0 ∩ gC1) dg

as long as R is larger than half of the sum of the maximal dimensions of the two parts.
Otherwise, the effects of part #1 on limiting the motion may be even greater. With
that caveat,

Sf ′ = log V ′. (15.30)

Therefore, in this case we can completely avoid the computational complexity associated
with computing (15.2) and (15.5) by using the principal kinematic formula from Integral
Geometry.
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15.5.1 Example 1: The Planar Case: Circular Disks in Planar Motion

Let part #1 be a circular disk of radius r1 fixed at the origin and let part #2 be a
circular disk of radius r2. If part #2 were completely free to rotate and free to translate
such that its center stays anywhere in the large circle defined by radius R, then the part
entropy would be

S = log(2π2R2).

In contrast, if all conditions are the same except that the constraint of no interpenetra-
tion is imposed, then

S′ = log(2π2[R2 − (r1 + r2)2]),

which just removes the disallowed translations defined by the distance of the center of
part #2 from the origin in the range [0, r1 + r2]. This is a simple example that does not
require any numerical computation of integrals of motion or even the evaluation of the
principal kinematic formula. However, it serves to verify the methodology, since in this
case

2π[A(C0) + A(C1)] + L(C0)L(C1) = 2π[πr2
1 + πr2

2] + (2πr1)(2πr2) = 2π2(r1 + r2)2,

which means that the adjustment to the computation of parts entropy from the principal
kinematic formula (15.8) will be exactly the same as expected.

15.5.2 Example 2: Spheres and Spatial Motion

As another example, consider the case of two spherical parts: Part #1 has radius r1
and part #2 has radius r2. If part #1 is fixed at the origin and part #2 is free to move
as long as its center does not go further than a distance R from the origin, then the
volume of allowable motion of part #2 in SE(3) will be

(8π2)(4π/3)[R3 − (r1 + r2)3].

However, (15.30) gives the amount of excluded volume in SE(3) to be

8π2[V (C0) + V (C1)] + 2π[A(C0)M(C1) + A(C1)M(C1)]

= 8π2[4πr3
1/3 + 4πr3

2/3] + 2π[(4πr2
1)(4πr2) + (4πr2

2)(4πr1)]

= (32π3/3)(r3
1 + r3

2 + 3r2
1r2 + 3r1r

2
2) = (32π3/3)(r1 + r2)3.

This too matches the direct analytical calculation for this simple example.

15.6 Extensions and Limitations

The principal kinematic formula has been used to compute integrals of the form

I(C0, C1) =
∫

G

ι(C0 ∩ gC1) dg

that arise when calculating the entropy of convex parts that can be placed uniformly at
random. In Integral Geometry, generalized integrals of the form

Iμ(C0, C1)
.=
∫

G

μ(C0 ∩ gC1) dg
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can be computed in closed form for bodies that are not convex, where μ can be the
volume, Euler characteristic, surface area, mean curvature, or Gaussian curvature. This
is not directly applicable to the current discussion, although it does open up intriguing
possibilities.

15.7 Integral Geometry in Rn

Recall from Chapter 8 that Steiner’s formula relates the volume of a convex body,
C ⊂ Rd, to the volume within the surface offset from ∂C (along its externally pointing
normal) by a distance r. Explicitly, the formula is [8]

μd(C + rBd) =
d∑

m=0

rd−mOd−m

d−m
μm(C). (15.31)

Here, C + rBd is the Minkowski sum of C with a ball in Rd of radius r, μm(C) is the
mth intrinsic volume, and Od is the volume of the unit sphere in Rd, which bounds
the unit ball of volume Od/d (see the discussion in Section 2.3). In what follows, it is
convenient to use the notation

(C)r
.= C + rBd.

If IC(x) = I(x;C) is the set indicator function4 for a convex body C, then the
indicator function for the unions and intersections of two convex bodies, C0 and C1, are
related as

I(x; (C0 ∪ C1)r) + I(x; (C0 ∩ C1)r) = I(x; (C0)r) + I(x; (C1)r).

Integrating over Rd then gives

μd((C0 ∪ C1)r) + μd((C0 ∩ C1)r) = μd((C0)r) + μd((C1)r). (15.32)

This property (called additivity) makes the d-dimensional volume in Rd an example of
a valuation in the sense defined in Chapter 1. Evaluating each term in (15.32) using
(15.31) for different values of r then means that each μm(C) is additive.

According to Hadwiger’s characterization theorem, every continuous SE(d)-invariant
valuation, ϕ(C), can be expressed as

ϕ(C) =
d∑

m=0

αmμm(C)

for some set of constants {α0, . . . , αd}.
It can be shown that the principal kinematic formula that was derived previously

using parametric geometry for μ0(C) = χ(C) = ι(C) for convex bodies in the case of
d = 2 and d = 3 in Sections 15.4.1 and 15.4.2 generalizes to arbitrary dimensions and
arbitrary mixed volumes of intersections of a body C0 with a rigidly moved version of
body C1 as [64, 65]∫

SE(d)
μj(C0 ∩ gC1) dg =

d∑
k=j

ck,d−k+j
j,d μk(C0)μd−k+j(C1) (15.33)

4This function evaluates whether or not x is in C and should not be confused with ι(C),
which specifies whether or not C is the empty set.
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and iterating this formula gives [8, 65]∫
SE(d)k

μj(C0 ∩ g1C1 ∩ · · · ∩ gkCk) dg1 · · · dgk

=
d∑

m0,...,mk=j

m0+···+mk=kd+j

cd,m0,...,mk

j,d,...,d μm0(C0) · · ·μmk
(Ck), (15.34)

where in both formulas

cr1,...,rn
s1,...,sn

=
n∏

i=1

(ri − 1)!Ori

(si − 1)!Osi

.

Here, the normalization of the Haar measure dg corresponding to g = (R,b) ∈ SE(d)
is defined as

dg = dR db, where
∫

SO(d)
dR = 1

and db = db1 db2 · · · dbd is the usual Lebesgue measure (without any special normaliza-
tion). One way to generate dR would be to parameterize SO(d) with d(d− 1)/2 Euler
angles, φ, and compute ∫

φ

|J(φ)| dφ = Vol(SO(d)) =
d∏

k=2

Ok.

For example, Vol(SO(3)) = (4π) · (2π) is the product of volumes of the surface area of
the unit sphere and the unit circle. Then

dR =

(
d∏

k=2

Ok

)−1

|J(φ)| dφ. (15.35)

Note that in the statement of Theorems 15.1 and 15.2, the unnormalized Haar measures
for SE(2) and SE(3) were used.

The results of this section can be related to ergodic theory since μd(C) = V (C) and
cd,d
d,d = 1, and so in the special case when j = d, (15.34) becomes∫

SE(d)
V (C0 ∩ gC1) dg = V (C0)V (C1).

This is like the mixing equation from ergodic theory, with the difference that the space
is not finite here and there is no normalization by the volume of the space.

15.8 Differential-Geometric Generalizations
of Kinematic Formulas

The concept of tubes circumscribed around curves and surfaces in R3 was discussed
in Chapter 5 and Weyl’s tube theorem was demonstrated. The more general version of
that theorem asserts that given a smooth closed hyper-surface, ∂C, that encloses a body
C ∈ Rn, the volume enclosed by the tubular hyper-surface with offset distance r exterior
to ∂C (denoted here as ∂Cr with r smaller than the smallest radius of curvature of ∂C)



208 15 Parts Entropy and the Principal Kinematic Formula

will be given by

V ((C)r) = V (C) +
n−1∑
k=0

rk+1

k + 1

∫
∂C

Ik(G−1L) dV∂C , (15.36)

where G is the metric tensor written as an (n− 1)× (n− 1) matrix in coordinates and
L is the matrix defining the second fundamental form of ∂C, I0(A) = 1, and Ik(A) for
k = 1, . . . , n− 1 is the kth scalar invariant of an (n− 1)× (n− 1) matrix A, as defined
in Exercise A.5 in Volume 1 for the n× n case.

Equation (15.36) can be obtained by starting with a parameterization of the hyper-
surface ∂C of the form x(q), computing an outward-pointing normal to it at each point,
n(q), and defining the offset surface (or tube), y(q) = x(q) + rn(q). Then using the
divergence theorem for manifolds, the volume inside of this tube can be computed as
the sum of the volume of the original body and the surrounding skin of depth r as

V ((C)r) = V (C) +
∫ r

0

∫
∂C

det(I + tG−1L) dV∂C dt,

where t is a scalar variable of integration. Expanding the determinant, using the fact
that Ik(tA) = tkIk(A), and integrating each term over t ∈ [0, r] then gives (15.36).

The volume element for ∂C is written in coordinates as dV∂C = |G(q)| 12 dq. It is
sometimes convenient to define5

Mk(∂C) .=
(

n− 1
k

)−1 ∫
∂C

Ik(G−1L) dV∂C , (15.37)

which is akin to the total mean curvature. In fact, when n = 3 and k = 2, this is
exactly the total mean curvature defined in (5.68). Steiner’s formula for the volume of
the Minkowski sum of a body and a ball in Rn was discussed in Chapter 7. For a body,
C ⊂ Rn, bounded by a smooth hyper-surface, ∂C, the kth quermassintegral, Wk(C),
was defined and related to the intrinsic volume μn−k(C) in (7.9). By matching (15.36)
term-by-term with Steiner’s formula (7.8), it becomes clear that the quermassintegrals
of smooth bodies and the total mean curvature of the surfaces that envelop them are
related as [61]

Mk(∂C) = nWk+1(C). (15.38)

With this terminology, (15.33) can be written differently in terms of intersecting
hyper-surfaces (rather than the intersecting bodies that they enclose). Observing that,
in general,

∂(C0 ∩ C1) = (∂C0 ∩ C1) ∪ (C0 ∩ ∂C1) ∪ (∂C0 ∩ ∂C1),

the fact that the Euler characteristic of a body, C, and the manifold that bounds it,
∂D, are related as6

2 · χ(C) = χ(∂C) if dim(∂C) = 0 mod 2,

and the Gauss–Bonnet–Chern theorem gives

Mn−1(∂C) =
1
2
Onχ(∂C),

5The matrix invariants Ik(G−1L) should not be confused with the indicator function IA(x).
They are unrelated.

6Otherwise, odd-dimensional hyper-surfaces have χ(∂C) = 0.
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which means that for bodies in Rn,

χ(C0 ∩ gC1) =
1
On

Mn−1(∂(C0 ∩ gC1)). (15.39)

Using these facts, Santaló [61] gives∫
SE(n)

Mn−1(∂(C0 ∩ gC1)) dg = On[Mn−1(∂C0)V (C1) + Mn−1(∂C1)V (C0)]

+
1
n

n−2∑
k=0

(
n

k + 1

)
Mk(∂C0)Mn−2−k(∂C1). (15.40)

It can also be reasoned that integrals of the other total curvatures Mq−1 for q =
1, . . . , n− 1 can be computed as [61]7∫

SE(n)
Mq−1(∂(C0 ∩ gC1)) dg

= Mq−1(∂C0)V (C1) + Mq−1(∂C1)V (C0)

+
(n− q)Oq

On−qOn

n−2∑
k=n−q

Ok+1O2n−k−q+1

(k + 1)On−k+1Ok+q−n+1

(
q − 1

q + k − n

)
Mk+q−n(∂C0)

×Mn−2−k(∂C1). (15.41)

Equations (15.40) and (15.41) together are equivalent to (15.33) but written in terms
of different quantities. In the sequel, (15.33) will be used.

15.8.1 Non-Euclidean Principal Kinematic Formulae

Spaces of constant curvature (i.e., Rn and Tn which have zero curvature, the sphere Sn−1

which has unit positive curvature, and the hyperbolic space Hn which has unit negative
curvature) are all domains on which principal kinematic formulas can be written. All of
these manifolds, M , can be described as homogeneous spaces of Lie groups as M = G/H.
For example, Sn−1 = SO(n)/SO(n − 1), Rn = SE(n)/SO(n), and so forth. Both the
sphere (or ellipsoid of revolution) and the hyperboloid of one sheet can be embedded in
Rn+1 as

n−1∑
k=0

x2
k + εx2

n = ε/K,

where K > 0 is a curvature parameter. For example, for a sphere of radius r, K = 1/r2.
For a space of positive constant curvature, ε = +1, and for a space of negative constant
curvature, ε = −1.

In spaces of constant curvature, it is possible to define bodies in an analogous way
as in Rn. Furthermore, it makes sense to ask whether formulas of the form I(C0, C1) =∫

G
χ(C0 ∩ gC1) dg can be computed where C0, C1 ⊂ M have the same dimension as M ,

dim(M) = n. Indeed they can. Santaló [61] devoted some effort to review this and display

7Note that to be consistent with [20, 52], On is used in place of Santaló’s On−1 and the
same normalization of the Haar measure in (15.33) is used here, whereas in [61], the version
without normalization is used. When q = 1, the summation term vanishes.
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the results separately when M is even dimensional and when it is odd dimensional. Those
results can be summarized here for general dimensions by defining n = 2m or n = 2m−1
and writing8∫

G

χ(C0 ∩ gC1) dg

= − 2
On+1

(εK)n/2V (C0)V (C1)[(n− 1) mod2]

+ V (C1)χ(C0) + V (C0)χ(C1) +
1

nOn

n−2∑
k=0

(
n

k + 1

)
Mk(∂C0)Mn−2−k(∂C1)

+
1
On

⎡⎣m−2∑
i=0

n−2∑
k=2(m−i−1)

(
n− 1

k

)(
k

2(m− i− 1)

)
c(n,m, k, i)a(n,m, k, i)

⎤⎦ ,

where

c(n,m, k, i) .=
4(m− i− 1)Ok+1On+2m−k−2i−1

(k + 1)On−k+1O2m−2i−2O2m−2i−1O2i+k−2m+3

and
a(n,m, k, i) .= Mn−2−k(∂C1)Mk+2i+2−2m(∂C0)(εK)m−1−i.

Note that when n = 2, this reduces to [61]∫
G

χ(C0∩gC1) dg = − ε

2π
KA(C0)A(C1)+A(C1)χ(C0)+A(C0)χ(C1)+

1
2π

L(C0)L(C1),

and when n = 3, the right-hand side reduces to exactly the principal kinematic for-
mula in R3 (of course, with volumes, surface areas, and so forth, computed within the
3-manifold, and with a normalization of 8π2). Thus, the curvature has an indirect in-
fluence; in that case, it does not appear explicitly in the formula as it does in the case
when n = 2.

Other kinematic formulas are also possible in which the integrand is not the Euler
characteristic but rather some other intrinsic volume. For example, when the integrand
is the volume of intersecting bodies in M = G/H [61],∫

G

V (C0 ∩ gC1) dg = V (C0) · V (C1). (15.42)

This begs the question of how general can the kinematic formula be written. Indeed, it
is also possible to compute kinematic formulas for integrals of the form

I(Mq,Mp) =
∫

G

χ(Mq ∩ gMp) dg,

where Mq and Mp are closed submanifolds of M = G/H. Such issues are discussed
in [17, 43, 52]. This sort of formula is fundamentally different than (15.40) because
∂(C0 ∩ gC1) �= ∂C0 ∩ g∂C1.

8The appearance of this formula is substantially different than in Santaló [61] because
(1) here, the odd- and even-dimensional cases are combined into one equation and (2) regardless
of whether ε = −1 or +1, the groups SO(n + 1) and SO(n, 1) both have SO(n) as a subgroup
(as does SE(n)), and so the integration measure dg can be normalized as in (15.35) with d = n.
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15.8.2 Integral Geometry of Squared Curvature

Most integral-geometric formulas involve integrals of total curvature (or, equivalently,
quermassintegrals or mixed volumes). These are quantities that show up in Hadwiger’s
characterization theorem. However, these are not the only geometric quantities that can
be integrated over a body or surface of intersection.

Other formulas that are not a special case of these were derived by Chen [19] and
are stated as follows. Let κ(s) be the (signed) curvature of a closed space curve c(s) as
defined in Chapter 5 and let

K2(c) .=
∮

c

κ2(s) ds

denote the integral of the squared curvature over the whole closed curve c(s). This is
called the total square curvature of the curve. Given two closed orientable surfaces, ∂C0
and ∂C1, which can be thought of as the boundaries of solid bodies, C0 and C1, one of
which is moving and the other of which is stationary, the intersection ∂C0 ∩ g∂C1 will
either be empty or result in one or more closed curve. This should not be confused with
C0∩gC1, which would result in a volume rather than a curve. Chen’s formula states that∫

G

K2(∂C0 ∩ g∂C1) dg = 2π3[3H0 −K0]F1 + 2π3[3H1 −K1]F0, (15.43)

where Hi, Fi, and Ki are respectively the total square of mean curvature, total surface
area, and total Gaussian curvature, of surface i. Here, dg is the unnormalized Haar
measure for G = SE(3).

15.9 Kinematic Inequalities

The principal kinematic formula can be generalized in several ways. First, the domain
in which the bodies are defined need not be Rn. It could be a homogeneous space
G/H (e.g., the sphere S2 with G = SO(3). Second, in some applications it may not be
the Haar measure) but rather a different measure that one seeks to use. This section
examines these generalizations and establishes approximations and inequalities in this
more generalized setting where exact formulas are difficult to come by.

In particular, a quantity that is not directly addressed in Integral Geometry but
which is relevant to parts entropy is

Iw(C0, C1) =
∫

G

ι(C0 ∩ gC1)w(g) dg, (15.44)

where w(g) is a positive weighting function. For example, w(g) could be a probability
density function on G or when w(g) = 1, I1(C0, C1) = I(C0, C1). Being able to compute
Iw(C0, C1) would be useful for parts entropy calculations. For this reason, these sorts
of formulas are investigated here in the context of individual parts of rigid parts. We
will return to collections of parts later.

15.9.1 Kinematic Formulas for Nonconvex Bodies and Non-Haar Measure

The principal kinematic formula can be viewed as an evaluation of the integral in (15.44)
for the case when w(g) = 1 and each Ci is convex (so that ι(C0 ∩ gC1) = χ(C0 ∩ gC1)).
As a practical matter, it may be desirable to compute (or approximate, or bound)
Iρ(C0, C1) in (15.44) for the case when w(g) �= 1 and/or each Ci is not convex. For
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example, in the statistical mechanics of polymers, a probability density in pose of in-
dividual monomers in a phantom chain (i.e., one that does not impose constraints on
self-penetration) can be computed easily. However, a real polymer has non-negligible
girth, and computing the effects of self-intersection become important. So too is the
case for parts entropy of nonconvex parts.

15.9.2 Bounds Based on Hölder’s Inequality

A result that appears not to be known in the literature relates to inequalities with the
same flavor as those above for the case of nonconvex bodies.

From Hölder’s inequality, we have that for integers 1 ≤ p, q ≤ ∞,

Iρ(C0, C1) ≤
(∫

G

[i(C0 ∩ gC1)]pdg
) 1

p
(∫

G

[ρ(g)]qdg
) 1

q

, where
1
p

+
1
q

= 1.

Since ι(·) takes a value of 1 or 0, [i(C)]p = [i(C)], and so Hölder’s inequality effec-
tively separates the effects of ρ(g) and ι(C0 ∩ gC1). This bound can be tightened by
minimizing over p. Alternatively, in the special case when p = q = 2, this reduces to
the Cauchy–Schwarz inequality. This may be useful in some contexts, because then the
Parseval/Plancherel equality can be used to compute

∫
G

ρ2(g) dg in Fourier space.
If C0 and C1 are convex, then

∫
G

ι(C0 ∩ gC1) dg can be computed directly from
the principal kinematic formula. However, convexity of C0 and C1 is not a necessary
condition for that formula to work. As long as whenever C0 ∩ gC1 �= Ø the resulting
body of intersection is simply connected so that ι(C0 ∩ gC1) = χ(C0 ∩ gC1), then the
formula will work. For example, if C0 is a large body with boundary that has sufficiently
small absolute curvature at each point and if C1 is convex, then the intersections will
be simply connected. In the event that C1 and C2 are not convex, upper bounds on∫

G
ι(C0 ∩ gC1)]dg can be computed in a number of ways. For example, if the bodies

are simply connected, then their intersection will have one or more simply connected
components, and so ∫

G

ι(C0 ∩ gC1) dg ≤
∫

G

χ(C0 ∩ gC1) dg,

which can be evaluated using the principal kinematic formula.
Alternatively, if C0 is decomposed as C0 = ∪i∈IC

i
0 into convex components such

that Ci
0 ∩ Cj

0 = Ø when i �= j, and likewise for C1, then∫
G

ι(C0 ∩ gC1) dg ≤
∑
i,j

∫
G

ι(Ci
0 ∩ gCj

1) dg,

where each of the integrals in the sum on the right-hand side can be evaluated using the
principal kinematic formula since ι(·) = χ(·) when applied to convex bodies. Putting
this all together gives

∫
G

ι(C0 ∩ gC1) dg ≤ min

⎧⎨⎩
∫

G

χ(C0 ∩ gC1) dg ,
∑
i,j

∫
G

ι(Ci
0 ∩ gCj

1) dg

⎫⎬⎭. (15.45)

On the other hand, if C̆i and Ĉi are respectively the largest convex body contained
inside of Ci, and the smallest convex body containing Ci, then
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G

ι(C̆0 ∩ gC̆1) dg ≤
∫

G

ι(C0 ∩ gC1) dg ≤
∫

G

ι(Ĉ0 ∩ gĈ1) dg. (15.46)

Of course, these bounds will still be valid if each C̆i is replaced with a smaller convex
body and each Ĉi is replaced with a larger one. In principle, the upper bound in (15.46)
can be merged with that in (15.45). However, in practice, (15.46) is better than (15.45).

As an example, let C0 = C1 be a shape that is defined by starting with a 5×5 square
and removing a vertical notch of dimensions 1 × 4 so that the resulting shape can be
viewed as the union of rectangles C1

0 , C2
0 , and C3

0 of dimensions 3× 5, 1× 1, and 1× 5,
respectively. The perimeter of this shape is L(C0) = 28 and the area is A(C0) = 21. A
straightforward application of the principal kinematic formula gives∫

G

χ(C0 ∩ gC0) dg = 2π(42) + (28)2 ≈ 1148.

This will be an upper bound for I(C0, C0). An alternative upper bound is∫
G

ι(C1
0 ∩ gC1

0 ) dg +
∫

G

ι(C2
0 ∩ gC2

0 ) dg +
∫

G

ι(C3
0 ∩ gC3

0 ) dg

+ 2
∫

G

ι(C1
0 ∩ gC2

0 ) dg + 2
∫

G

ι(C1
0 ∩ gC3

0 ) dg + 2
∫

G

ι(C2
0 ∩ gC3

0 ) dg ≈ 1721.

Alternatively, taking Ĉ0 to be a 5×5 square gives I(C0, C0) < 557.2 and taking C̆0 = C1
0

(the 5× 3 rectangular component of C0) gives I(C0, C0) > 350.1.
Therefore, (15.46) provides relatively good bounds. As a general rule, convex poly-

hedra can be constructed that either fit in, or surround, two- and three-dimensional
bodies. Additionally, their area and volume can be computed efficiently. It is possible to
compute integrals of mean curvature for polyhedral bodies using the methods of convex
geometry discussed in Chapter 7. Alternatively, the closed-form formulas for prolate
and oblate ellipsoids of revolution are known in closed form, as given in Section 5.4.4.

Other bounds can also be obtained using the same sorts of mathematical tools that
are used in information theory. This is examined in the following subsections.

15.9.3 An Upper Bound Based on Jensen’s Inequality

An upper bound for (15.44) can be obtained from Jensen’s inequality when w(g) = ρ(g)
is a pdf. Recognizing that the unit Heaviside step function, u[x], is a (discontinuous)
concave function on R≥0 (and therefore its negative is convex),

Iρ(C0, C1)=
∫

G

ι(C0 ∩ gC1)ρ(g) dg

=
∫

G

u

[∫
Rn

IC0(x)IC1(g
−1 · x) dx

]
ρ(g) dg (15.47)

=
∫

G

u [V (C0 ∩ gC1)] ρ(g) dg

≤u

[∫
G

V (C0 ∩ gC1)ρ(g) dg

]
≤1. (15.48)

This upper bound is not very informative since it is the same regardless of the size or
geometry of the bodies. Furthermore this does not hold when attempting to compute
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Iw(C0, C1) where w(g) is not a pdf. In some cases, if w(g) is not a pdf, it can be
normalized and the bound applies. However, in other cases, such as w(g) = 1,

∫
G

w(g) dg
will be infinite since the group of rigid-body motions, G, is not compact. Thus, defining
ρ(g) = w(g)/

∫
G

w(g) dg as a pdf is not useful.

15.9.4 A Lower Bound Inspired by Jensen’s Inequality

Rather than applying Jensen’s inequality to the integral over G and pulling u[·] outside
of that integral, Jensen’s inequality can be applied by bringing u[·] inside the integral
over Rn, resulting in a lower bound. Then

u

[∫
Rn

IC0(x)IC1(g
−1 · x) dx

]
= u

[∫
Rn

IC0(x)
V (C0)

· V (C0)IC1(g
−1 · x) dx

]
.

Here, IC0(x)/V (C0) is a pdf on Rn and V (C0)IC1(g
−1 · x) is some other function.

Therefore, from Jensen’s inequality and the concavity of u[·],

u

[∫
Rn

IC0(x)
V (C0)

· V (C0)IC1(g
−1 · x) dx

]
≥

∫
Rn

IC0(x)
V (C0)

· u[V (C0)IC1(g
−1 · x)]dx.

However,
u[V (C0)IC1(g

−1 · x)] = u[IC1(g
−1 · x)] = IC1(g

−1 · x).

Therefore,

u

[∫
Rn

IC0(x)IC1(g
−1 · x) dx

]
≥ 1

V (C0)

∫
Rn

IC0(x)IC1(g
−1 · x) dx =

V (C0 ∩ gC1)
V (C0)

.

The same could have been done if IC1(g
−1 ◦ x)/V (C1) were used as the pdf instead of

IC0(x)/V (C0). The above result also can be obtained with a simple geometric argument.
If the smaller body is completely contained in the larger for pose g ∈ G, then V (C0 ∩
gC1) = V (C1). Otherwise, V (C0∩gC1) < V (C1) with the extreme case of V (C0∩gC1) =
0 when C0 ∩ gC1 = Ø. Therefore,

u[V (C0 ∩ gC1)] ≥ V (C0 ∩ gC1)
min{V (C0), V (C1)} . (15.49)

Returning to (15.47) and substituting (15.49) in then gives

Iw(C0, C1) ≥ 1
min{V (C0), V (C1)}

∫
G

V (C0 ∩ gC1)w(g) dg. (15.50)

When w(g) = 1, the volume formula (15.42) can be used to give

I(C0, C1) ≥ V (C0) · V (C1)
min{V (C0), V (C1)} . (15.51)

15.9.5 A Geometric Version of the Cauchy–Schwarz Inequality

If μ(·) denotes any of the quermassintegrals (e.g., χ(·), V (·), etc.), then by the Cauchy–
Schwarz inequality,
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G

μ(C0 ∩ gC1) dg =
∫

G

μ(C0 ∩ gC1) · ι(C0 ∩ gC1) dg

≤
(∫

G

[μ(C0 ∩ gC1)]2dg
) 1

2
(∫

G

[ι(C0 ∩ gC1)]2dg
) 1

2

.

Since [ι(·)]2 = ι(·), it follows that(∫
G

μ(C0 ∩ gC1) dg
)2∫

G
[μ(C0 ∩ gC1)]2dg

≤ I(C0, C1). (15.52)

This means that any upper bound developed for I(C0, C1) can be used to develop lower
bounds for

∫
G

[μ(C0 ∩ gC1)]2 dg.
Alternatively, in the special case when μ(·) = V (·), ∫

G
[V (C0 ∩ gC1)]2 dg can be

bounded from above in closed form using geometric arguments, and this upper bound
can then be substituted into (15.52). Specifically, if each of the bodies Ck can be covered
with overlapping Gaussian distributions so that

ICk
(x) ≤

∑
i

αk
i ρ(x; μk

i , Σ
k
i ),

then when g = (R, t) ∈ SE(n),

V (C0 ∩ gC1)=
∫

Rn

IC0(x)IC1(g
−1 · x) dx

≤
∑
i,j

α0
jα

1
j

∫
Rn

ρ(x; μ0
i , Σ

0
i )ρ(RT (x− t);μ1

j , Σ
1
j ) dx

=
∑
i,j

α0
i α

1
j

∫
Rn

ρ(x; μ0
i , Σ

0
i )ρ(x;Rμ1

j + t, RΣ1
j RT ) dx

=
∑
i,j

α0
i α

1
jρ(t; μ0

i + Rμ1
j , Σ

0
i + RΣ1

j RT ). (15.53)

This closed-form/series upper bound for V (C0∩gC1) can then be squared and integrated
over t ∈ Rn in closed form using the Gaussian integrals from Chapter 2. The integral
over SO(n) can also be computed in closed form using the methods in the following
chapter.

Connections between
∫

G
[V (C0 ∩ gC1)]2 dg and noncommutative harmonic analysis

can also be established. Viewing ICk
(x) as a function ĨCk

(x, Q) = ICk
(x) that is constant

on all Q ∈ SO(n), then ĨCk
(h) can be viewed as a function on (x, Q) ∈ SE(n). Then if

dh = dx dQ is the Haar measure for SE(n) normalized so that
∫

SO(n) dQ = 1,

V (C0 ∩ gC1) =
∫

G

ĨC0(h)ĨC1(g
−1 ◦ h) dh.

This is not quite a convolution on SE(n), but by defining Ĩ∗
C1

(g) .= ĨC1(g
−1) gives

V (C0 ∩ gC1) = (ĨC0 ∗ Ĩ∗
C1

)(g). (15.54)

Actually, this is an easy way to see that the volume formula
∫

G
V (C0 ∩ gC1) dg =

V (C0)V (C1) holds, since, in general, the integral of a convolution is the product of the
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integrals of the two functions. However, since our goal is to exactly compute or bound∫
G

[V (C0 ∩ gC1)]2 dg form above, the convolution theorem and the Parseval/Plancherel
equality can be used in the form∫

G

[V (C0 ∩ gC1)]2dg =
∫

G

[(ĨC0 ∗ Ĩ∗
C1

)(g)]2 dg (15.55)

=
∫

Ĝ

| ˆ̃IC0(p)
ˆ̃I∗
C1

(p)|2 d(p) (15.56)

≤
∫

Ĝ

| ˆ̃IC0(p)|2 · | ˆ̃I∗
C1

(p)|2 d(p) (15.57)

≤
(∫

Ĝ

| ˆ̃IC0(p)|4 d(p)
) 1

2
(∫

Ĝ

| ˆ̃IC1(p)|4 d(p)
) 1

2

. (15.58)

The last inequality results from the submultiplicative property of the Frobenius norm
(see the Appendix in Volume 1) and the Cauchy–Schwarz inequality. The ∗ disappears
because the group-Fourier transform of a real-valued function f∗(g) = f(g−1) is the
Hermitian conjugate of the Fourier transform of f(g). Additionally, the Frobenius norm
is invariant under conjugation. The integration measure for ŜE(n) is of the form d(p) =
cnpn−1 dp, where cn is a normalizing constant.

15.9.6 Bounds Based on Approximations of u[·]
Substituting in place of u[x] any function φ(x) such that φ(x) ≤ u[x] for all x ∈ R≥0
will provide a lower bound for Iw(C0, C1).

For example, the following can be used:

φ1(x) =
x√

1 + x2
,

the hyperbolic tangent,

φ2(x) = tanhx =
e2x − 1
e2x + 1

,

the error function,

φ3(x) = erf(x) =
2√
π

∫ x

0
e−t2dt,

and the arctangent/inverse tangent,

φ4(x) =
2
π

arctanx.

Scaled versions of these functions of the form φk(ax) can be made arbitrarily close to
u[x] by increasing a ∈ R>0.

In addition, other functions that have the property φk(x) ≤ u[x] in the range
0 ≤ x ≤ v, where

v
.= min{V (C0), V (C1)} (15.59)

can be defined and used to generate lower bounds. In other words, since V (C0 ∩ gV1)
never exceeds v, it does not matter how φk(x) behaves when x > v. Imposing the
additional condition 0 ≤ φk(x) ensures that the bound does not become negative. For
example,
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φ5(x) = 1− 1
v2 (x− v)2

is a parabola that observes the conditions

φ(0) = 0, min
0≤x≤v

φ(x) ≥ 0 and max
0≤x≤v

φ(x) = 1. (15.60)

Similarly, the functions

φ6(x) = sinp
(
π

x

v

)
, ∀n ∈ R>0,

φ7(x) = −e ·
(x

v

)
loge

(x

v

)
,

and

φ8(x) =
(x

v

) 1
n

, ∀n ∈ Z>0

observe (15.60).
All of these functions satisfy

Iw(C0, C1) ≥
∫

G

φ(V (C0 ∩ gC1))w(g) dg.

For example, if w(g) = 1 and the case when φ5(x) is used, then

I(C0, C1) ≥ 2
v

∫
G

V (C0 ∩ gC1) dg − 1
v2

∫
G

[V (C0 ∩ gC1)]2 dg. (15.61)

Substituting an upper bound for
∫

G
[V (C0 ∩ gC1)]2 dg then provides a lower bound

for I(C0, C1). One such bound is (15.59). Another is obtained by observing that the
lower bound for I(C0, C1) in (15.61) is of the form f(v) = 2av−1 − bv−2. Additionally,
maximizing f(v) subject to v gives v = a2/b, indicating that when μ = V , (15.61) is
never better than (15.52).

15.9.7 Bounds Based on Noncommutative Harmonic Analysis

The integral for Iρ(C0, C1) in (15.44) can be viewed from the perspective of noncom-
mutative harmonic analysis when ρ(g) is a pdf. Let f(g) = ι(C0 ∩ gC1). Then

Iρ(C0, C1) = (f ∗ ρ)(e)

is the convolution of f and ρ over G, evaluated at the identity element e ∈ G. Then by
the convolution theorem and Fourier reconstruction formula,

Iρ(C0, C1) =
∫

Ĝ

tr[ρ̂(λ)f̂(λ)] dλ.

Various lower and upper bounds on tr[ρ̂(λ)f̂(λ)] can then be employed from matrix
theory. For example, when A = A∗ > 0 and B = B∗ > 0, tr(AB) ≤ tr(A) · tr(B).
Additionally, the Fourier matrices of pdfs that are symmetric functions, f(g) = f(g−1),
satisfy this condition.

Alternatively, the eigenvalues of ρ̂(λ) and f̂(λ) can be computed, ordered from small-
est to largest, and sums of products of eigenvalues so arranged can be used to provide
an upper bound, whereas summing products in reverse order provides a lower bound.
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Another sort of problem that can be tackled by noncommutative harmonic and
functional analysis is one of the form

I(C0, C1, C2) =
∫

G

∫
G

ι(C0 ∩ g1C1)ι(g1C1 ∩ g2C2) dg1 dg2.

By letting w1(g) = ι(C0 ∩ gC1) and w2(g) = ι(C1 ∩ gC2) and observing that ι(g1C1 ∩
g2C2) = ι(C1 ∩ (g−1

1 ◦ g2)C2), the above integral can be written as

I(C0, C1, C2) =
∫

G

(w1 ∗ w2)(g2) dg2 =
(∫

G

w1(g1) dg1

)(∫
G

w2(g2) dg2

)
. (15.62)

Now, in general, Young inequality for a unimodular Lie group states that [31, 34, 81]

‖w2 ∗ w1‖p′ ≤ cG(p′, q, r) · ‖w1‖q · ‖w2‖r, where 1 +
1
p′ =

1
q

+
1
r
, p′, q, r ≥ 1, (15.63)

where cG(p′, q, r) is a constant bounded from above by unity that depends on the group
and

‖wi‖q =
(∫

G

[wi(g)]q dg

) 1
q

.

Setting p′ = 1 would give exactly what is required to compute an upper bound for
I(C0, C1, C2) although there is no need to do so, since (15.62) is an exact equality.
When p′ = ∞ and p = q = 2, an upper bound on the value of (w1 ∗ w2)(g) is obtained
and the Parseval/Plancherel equality can be used to compute the integrals needed in
this bound.

15.9.8 Multi-Gaussian Approximations

Suppose that rather than exact formulae or inequalities, one is interested in approxi-
mating the volume of motion corresponding to all intersections of bodies. This can be
achieved by approximating the set indicator function of a body, IC(x), with a weighted
sum of Gaussian distributions, pC(x). This is not limited to the case of convex bodies.
However, rather than obtaining a clear “yes” or “no” answer for each intersection, as
would be the case in evaluating9

ι(C0 ∩ gC1) = u

[∫
Rn

IC0(x) IC1(g
−1 · x) dx

]
,

in this approximation one obtains a number between 0 and 1 by evaluating the
correlation

ι(C0 ∩ gC1) ≈ ι′(C0 ∩ gC1)
.=

∫
Rn pC0(x)pC1(g

−1 · x) dx(∫
Rn [pC0(x)]2 dx

) 1
2
(∫

Rn [pC1(x)]2 dx
) 1

2
. (15.64)

The fact that 0 ≤ ι′(C0 ∩ gC1) ≤ 1 follows from the Cauchy–Schwarz inequality, and
g is removed from the C1 term in the denominator due to the invariance of integration
over Rn under rigid-body motion. Each of the integrals in (15.64) can be computed in
closed form. Additionally, the resulting dependence of ι′(C0∩gC1) on g ∈ G then allows
for a closed-form expression for

I ′(C0, C1)
.=
∫

G

ι′(C0 ∩ gC1) dg. (15.65)

9Here, u[·] is the unit Heaviside step function.
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15.10 Bounds on Integrals of Powers of the Euler Characteristic

Though not directly relevant to parts entropy, it is interesting to note in passing that
integral-geometric inequalities involving powers of the Euler characteristic can be de-
rived easily. Here the same definitions of X (C0, C1) and I(C0, C1) as in the previous
section are used.

The reverse Cauchy-Schwarz inequality states that for nonnegative sets of numbers
{ai}, {bi}, {wi},

p ≥ ai

bi
≥ q ∀i =⇒

(∑
i

wia
2
i

)1
2
(∑

i

wib
2
i

)1
2

≤ p + q

2
√

pq

∑
i

wiaibi. (15.66)

Making the substitutions ai → ι(C0 ∩ gC1), bi → χ(C0 ∩ gC1), wi → dg, and
∑

i →
∫

G
then gives

X (C0, C1) ≥ 2 (maxg∈G χ(C0 ∩ gC1))
1
2

1 + maxg∈G χ(C0 ∩ gC1)
·[I(C0, C1)]

1
2 ·
(∫

G

[χ(C0 ∩ gC1)]2dg
)1

2

. (15.67)

Given the formula for X (C0, C1), a lower bound for I(C0, C1), and an upper bound for
maxg∈G χ(C0∩gC1), an upper bound for the integral of [χ(C0∩gC1)]2 can be obtained.
On the other hand, a lower bound can be obtained as a special case of (15.52) when an
upper bound for I(C0, C1) is known.

15.11 Kinematic Formulas for Articulated Bodies

Consider now the case where C0 is fixed and C1 is not a single rigid body but rather two
rigid bodies connected by a joint or some other constraint; that is, C1(g′) = C

(1)
1 ∪g′C(2)

1 ,
where g′ ∈ G can be thought of as being sampled from a probability density f(g′) that
describes the allowable motions between the two components of C1. Then the problem
addressed earlier in this chapter is modified as the computation

Iw,f

(
C0, C

(1)
1 , C

(2)
1

)
.=
∫

g′∈G

[∫
g∈G

ι
(
C0 ∩ g

[
C

(1)
1 ∪ g′C(2)

1

])
w(g) dg

]
f(g′) dg′

=
∫

G

∫
G

ι
(
C0 ∩

[
gC

(1)
1 ∪ (g ◦ g′)C(2)

1

])
w(g)f(g′) dg dg′.

We now seek to simplify the evaluation of this integral.
Recall from (1.23) of Chapter 1 that the indicator function has the properties

IA∪B(x) = IA(x) + IB(x)− IA∩B(x) and IA∩B(x) = IA(x) IB(x). (15.68)

Applying (15.68) and using the fact that V (A) =
∫

Rn IA(x) dx and ι(A) = u[V (A)]
(where in our case, A = C0, B = gC

(1)
1 , and C = (g ◦ g′)C(2)

1 ) gives

V (A ∩ [B ∪ C]) = V (A ∩B) + V (A ∩ C)− V (A ∩B ∩ C). (15.69)

Then ι(A∩[B∪C]) = u[V (A∩[B∪C])]. If u[·] is replaced with any of the φk(·) discussed
in Section 15.9.6, then a lower bound on Iw,f

(
C0, C

(1)
1 , C

(2)
1

)
can be obtained. However,
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with the exception of φ5(·) and φ8(·) (with n = 1), these lower bounds may be difficult
to compute. Note that the latter of these is equivalent to (15.49). Starting with this,

ι(A ∩ [B ∪ C]) ≥ V (A ∩ [B ∪ C])
min{V (A), V (B ∪ C)} ≥

V (A ∩ [B ∪ C])
min{V (A), V (B) + V (C)} .

Since each term in the denominator is independent of how the bodies move, we can
focus on the numerator and use (15.69) to write

Iw,f

(
C0, C

(1)
1 , C

(2)
1

)
·min{V (A), V (B) + V (C)} ≥ V1 + V2 − V3,

where

V1 =
∫

G

∫
G

V
(
C0 ∩ gC

(1)
1

)
w(g)f(g′) dg dg′ =

∫
G

V
(
C0 ∩ gC

(1)
1

)
w(g) dg,

V2 =
∫

G

∫
G

V
(
C0 ∩ (g ◦ g′)C(2)

1

)
w(g)f(g′) dg dg′

=
∫

G

∫
G

V
(
C0 ∩ g1C

(2)
1

)
w(g)f(g−1 ◦ g1) dg dg1

=
∫

G

V
(
C0 ∩ g1C

(2)
1

)
(w ∗ f)(g1) dg1,

and

V3 =
∫

G

∫
G

V
(
C0 ∩ gC

(1)
1 ∩ (g ◦ g′)C(2)

1

)
w(g)f(g′) dg dg′

=
∫

G

∫
G

V
(
C0 ∩ gC

(1)
1 ∩ g1C

(2)
1

)
w(g)f(g−1 ◦ g1) dg dg1

≥
(

max
(g,g1)∈G×G

w(g)f(g−1 ◦ g1)
)
·
∫

G

∫
G

V
(
C0 ∩ gC

(1)
1 ∩ g1C

(2)
1

)
dg dg1.

The last line is simply Hölder’s inequality with p = 1 and q = ∞. The term in the
integral on that line can be computed as a special case of (15.34).

15.12 Parts Entropy

Imagine that a rigid component (i.e., a part) can be placed at random in a bounded
planar or spatial environment. If the environment is empty and there are no potential
energies causing the part to move to a minimum, then the part can visit each position
and orientation defined by the boundaries with equal probability. If obstacles or other
parts limit the allowable motion, then this will change the degree of disorder in the
environment, because the number of possible locations that the part can occupy will
decrease.

Let G = SE(n) for n = 2 or 3 denote the group of rigid-body motions in the plane or
in space and let g denote an arbitrary rigid-body motion in G. Let f(g) be a probability
density function on G; that is, ∫

G

f(g) dg = 1,

where dg is the natural (bi-invariant) integration measure for G.
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The entropy of one isolated part was defined by Sanderson [60] as ([60])

S = −
∫

G

f(g) log f(g) dg.

It need not be the case that f(g) is uniform and it need not be the case that it is even
smooth. For example, we may want to study the entropy of a polyhedral object (which
is spatial, and the motions of which are described as elements of SE(3)) in terms of all
possible ways that it can sit stably on a table. In this case, the distribution f(g) may
be singular in the sense that it is only nonzero on a thin set of values along the z axis.

If there are two parts in an environment, then the combinations of all possible ways
that they can be simultaneously positioned and oriented without overlap is denoted here
as f ′(g1, g2) It is a probability normalized such that∫

G

∫
G

f ′(g1, g2) dg1 dg2 = 1

and the corresponding parts entropy is

S12 = −
∫

G

∫
G

f ′(g1, g2) log f ′(g1, g2) dg1 dg2.

Although the discussion here will be limited to one and two parts, the extension to
multiple parts follows in a natural way.

Generally speaking, the entropy of a pdf is bounded from above by the sum of
entropies of corresponding marginal densities. For example,

S12 ≤ −
2∑

i=1

∫
G

f ′
i(gi) log f ′

i(gi) dgi, (15.70)

where
f ′
1(g1) =

∫
G

f ′(g1, g2) dg2 and f ′
2(g2) =

∫
G

f ′(g1, g2) dg1.

Equality in (15.70) holds if and only if f ′(g1, g2) = f1(g1)f2(g2). Therefore, treating
the distributions of two parts separately without regard to their interaction will always
overestimate the total parts entropy.

15.13 Entropy of Loosely Connected Parts

Suppose that two rigid parts are connected with a joint or are in some other way coupled
but are allowed to exhibit some degree of motion relative to each other. How can the
entropy of this articulated part be described? Let the first part have a distribution of
allowable motions f0,1(g) defined relative to a frame fixed in space and let the second
part have a distribution of allowable motions relative to the first part, f1,2(g). This
means that f0,1(g) has built into it any effects due to boundaries and obstacles in the
environment and that f1,2(g) does not consider this at all. Now, the convolution of these
two functions,

f0,2(g) = (f0,1 ∗ f1,2)(g) =
∫

G

f0,1(h)f1,2(h−1 ◦ g) dh, (15.71)
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will provide an overestimate of the allowable motion of body 2 in space because it
does not restrict body two from interpenetrating with obstacles (although by the way
f1,2(g) is defined, it would automatically exclude any nonphysical interactions between
body 1 and body 2). The way to “fix” f0,2(g) so as to take into account environmental
boundaries is to zero it over all values of g that cause an intersection of body 2 with
the environment and then rescale the nonzero density that remains so that it is a pdf.
Let us call this f̃0,2(g). It follows that

−
∫

G

f̃0,2(g) log f̃0,2(g) dg ≤ −
∫

G

f0,2(g) log f0,2(g) dg

because imposing constraints that concentrate probability density will decrease entropy
(disorder).

Furthermore, since f0,2(g2) is the marginal of f ′(g1, g2) (which is the true joint
density taking into account all constraints on the allowable motion of both bodies)
over g1, it follows from the previous subsection that the sum of the entropy of f0,1(g1)
and f̃0,2(g2) will be an upper bound on the entropy of f ′(g1, g2). Additionally, a looser
(but easier to compute) bound on the entropy of f ′(g1, g2) will just be the sum of the
entropies of f0,1(g1) and f0,2(g2). Therefore, we can bound f ′(g1, g2) from above by
computing and summing the entropies of f0,1(g1) and f0,2(g2).

On the other hand, the operation of convolution of two pdfs makes each one more
spread out than the original. Therefore, the entropy of f0,2(g2) is bounded from below
by the entropy of f0,1(g) and of f1,2(g). The greater of these entropies can be chosen so
as to have the tighter of the two lower bounds.

Due to the special role that convolution plays in probability theory and in the calcu-
lation of entropy of articulated parts, the following section addresses some details about
convolution on SE(3).

A convolution integral of the form in (15.71) can be written in the following
equivalent ways:

(f0,1 ∗ f1,2)(g) =
∫

G

f0,1(z−1)f1,2(z ◦ g) dz =
∫

G

f0,1(g ◦ k−1)f1,2(k) dk, (15.72)

where the substitutions z = h−1 and k = h−1 ◦ g have been made, and the invariance
of integration under shifts and inversions is used.

It is often convenient to use exponential parameters, x, to describe rigid-body mo-
tions (see Section 10.2.3). One can define a Gaussian distribution on the six-dimensional
Lie group SE(3) much in the same way as is done on R6 provided that (1) the covariances
are small and (2) the mean is located at the identity. The reason for these conditions is
because near the identity, SE(3) resembles R6, which means that dg ≈ dx1 · · · dx6, and
we can define the Gaussian in the exponential parameters as

f(g(x)) =
1

(2π)3|Σ| 12 exp
(
−1

2
xT Σ−1x

)
. (15.73)

Given two such distributions that are shifted as fi,i+1(g−1
i,i+1 ◦ g), each with 6 × 6

covariance Σi,i+1, then it can be shown that the mean and covariance of the convolution
f0,1(g−1

0,1 ◦ g) ∗ f1,2(g−1
1,2 ◦ g) respectively will be of the form g0,2 = g0,1 ◦ g1,2 and [24, 76]

Σ0,2 = [Ad(g1,2)]−1Σ0,1[Ad(g1,2)]−T + Σ1,2. (15.74)
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This provides a method for computing covariances of two concatenated bodies, and this
formula can be iterated to compute covariances of chains without having to compute
convolutions directly.

It is well known that the information-theoretic entropy of an n-dimensional Gaussian
distribution,

f(x, Σ) =
1

(2π)n/2|Σ| 12 exp
(
−1

2
xT Σ−1x

)
,

is
S = log{(2πe)n/2|Σ| 12 }, (15.75)

where log = loge.
This means that in the absence of any interactions between parts, the entropy of an

articulated body can be obtained by using (15.74) and (15.75).

15.14 Chapter Summary

The difficulty of an assembly task can be quantified using the concept of parts entropy.
Sanderson’s original formulation of this concept was for an individual isolated part.
Issues that arise in the context of multiple parts are articulated in this chapter. Methods
of integral geometry are adapted in this chapter and shown to be useful as a tool for
computing the parts entropy of multiple parts. Although this beautiful theory extends to
higher-dimensional Euclidean spaces and to manifolds, the applications discussed here
only require the case of bodies in R2 and R3. Open issues include how to adapt techniques
from integral geometry to cases in which the parts are not distributed uniformly at
random but rather have some prior probability densities. In addition, the issue of part
entropies for articulated parts, rather than individual rigid parts, remains a challenging
problem. For example, formulas or approximations for the following integrals would be
desirable in the analysis of parts entropy:

Iw(C0, C1)
.=
∫

G

ι(C0 ∩ gC1)w(g) dg

and
I(C0, C0, C1)

.=
∫

G

∫
G

ι(C0 ∩ g1C0) ι(g1C0 ∩ g2C1) dg1 dg2.

Here, w(g) is an arbitrary pdf on G and C0, C0, and C1 are bodies which may or
may not be convex. Whereas bounds for these were derived, it would be useful to have
either exact formulas or accurate approximations. At the current time, formulas for
these quantities, as well as their generalizations to multiple bodies, are unknown to the
author.

The author’s interest in integral geometry arose from problems in robotics [22, 23]
as it relates to assembly planning [28, 29, 49, 79] and has grown to include modeling
excluded volume effects in characterizing allowable motions in protein loops [24].

Classical works on convex and integral geometry include [13, 18, 21, 25–27, 30,
32, 40–42, 45, 54, 55]. Comprehensive monographs on this topic include [55, 61, 64],
and other related books are [58, 70, 71]. Relatively recent expositions of these topics
include [46, 47, 50] and the case where Euclidean space is replaced with a space of
constant curvature,10 such as a sphere [74]. Extensions of the principal kinematic formula

10As defined in [80].
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where translations replace full rigid-body motions include [33, 35–39, 51, 56, 57, 59, 62,
63, 77, 78]. Related to this are studies of when one body can be completely enclosed in
another [44, 82–85]

Generalizations of the concepts presented here and other aspects of stochastic/
integral geometry beyond the principal kinematic formula can be found in [1–3, 5, 7, 9,
10, 16, 48, 53, 66–68, 72–75]. Stochastic geometry in a different sense than that used
here has been applied to communication networks [4]

15.15 Exercises

15.1. Derive the principal kinematic formula for convex bodies in the planar case using
Cartesian coordinates rather than polar.

15.2. Fill in the details of the derivation of the principal kinematic formula for convex
bodies in three-dimensional Euclidean space.

15.3. The concept of convex bodies can be extended to spaces other than Rn. For
example, a convex body on the unit sphere S2 can be defined as one for which the
shortest geodesic arc connecting every two pair of points in the body stays in the body.
Given two such convex bodies, derive a version of the principal kinematic formula for
the sphere where the group acting on the bodies is SO(3) using the same sort of rolling
argument used to derive the planar case. In the limit as the bodies become small in
comparison to the radius of the sphere, show that your formula reduces to the principal
kinematic formula for the Euclidean plane.

15.4. In Chapter 5, closed-form formulas for the volume, surface area, and integral of
mean curvature were given for oblate and prolate ellipsoids. As an approximation to
an ellipsoid of the form xT Ax = 1, one can use a Gaussian-like function of the form
fi(x) = exp(− 1

2cxT Ax). Pick several uniaxial parameters for pairs of ellipsoids and
compare the result of the principal kinematic formula with the closed-form expression
that you find for the Gaussian integral

I
.=
∫

SE(3)
f1(x)f2(g−1 · x) dx.

Tune the constant c so as to get the closest possible match between this Gaussian
approximation and the principal kinematic formula over the range of ellipsoids that
you test.

15.5. The result in the previous exercise will necessarily never be exact because whatever
choice of c is made in exp(− 1

2bix
2) will be a poor proxy for the unit pulse function; that

is, the function that takes a value of 1 on the range x ∈ [0, 1] and 0 otherwise. However,
if we could approximate a pulse well as a sum of Gaussian-like functions, then various
extensions of the principal kinematic formula could be approximated well. Therefore,
find constants {ai, bi} such that

f(x;a,b) =
n∑

k=1

ai exp
(
−1

2
bix

2
)

best approximates a unit pulse. Do this by (a) fitting of the parameters {ai, bi} to
given the minimal L2 error between f(x;a,b) and the unit pulse function and (b) by
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matching the moments of this function, mk =
∫ ∞
0 xkf(x;a,b) dx, with those for the

pulse function and doing a nonlinear least-squares fit.

15.6. Consider two convex bodies in the plane, C0 and C1, with Vol(C0) � Vol(C1),
the maximal diameter of C0 smaller than the minimal diameter of C1, and the maximal
curvature of C1 smaller than the minimal curvature of C0. Rather than computing
the volume in SE(2) corresponding to when two planar bodies intersect, compute the
volume in SE(2) corresponding to all possible motions of C0 contained in C1. The
method of proof is very similar to that for the principal kinematic formula.

15.7. Do the same as in Exercise 15.6 but for bodies on the sphere using the same
procedures as in Exercise 15.3.

15.8. Develop a volume of motion for containment formula analogous to that in Exercise
15.6 for the three-dimensional case.

15.9. Numerically verify the principal kinematic formula by selecting several convex
bodies such as ellipses and rectangles and evaluating the integral

∫
SE(2) ι(C0 ∩ gC1) dg

by discretizing it.

15.10. Do the same as in the previous exercise, but now explore what happens when C0
and C1 are not convex, as well as when the integral is computed relative to a non-Haar
measure:

∫
SE(2) ι(C0 ∩ gC1)w(g) dg. How do your numerical results compare with the

analytical inequalities presented in the chapter?
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42. Harding, E.F., Kendall, D.G., Stochastic Geometry: A Tribute to the Memory of Rollo

Davidson, John Wiley and Sons, London, 1974.



References 227

43. Howard, R., “The kinematic formula in Riemannian homogeneous spaces,” Mem. Am.
Math. Soc., 106(509), pp. 1–69, 1993.

44. Karnik, M., Gupta, S.K., Magrab, E.B., “Geometric algorithms for containment analysis
of rotational parts,” Computer-Aided Design, 37(2), pp. 213–230, 2005.

45. Kendall, M.G., Moran, P.A.P., Geometrical Probability, Griffin’s Statistical Monographs,
London, 1963.

46. Klain, D.A., Rota, G.-C., Introduction to Geometric Probability, Cambridge University
Press, Cambridge, 1997.

47. Langevin, R., Integral Geometry from Buffon to Geometers of Today, Internet notes, 2009,
http://math.u-bourgogne.fr/IMB/langevin/09 03 introdintegral.pdf.

48. Langevin, R., Shifrin, T., “Polar varieties and integral geometry,” Am. J. Math., 104(3),
pp. 553–605, 1982.

49. Liu, Y., Popplestone, R.J., “Symmetry Groups in Analysis of Assembly Kinematics,” ICRA
1991, pp. 572–577, Sacramento, CA, April 1991.

50. Mani-Levitska, P., “A simple proof of the kinematic formula,” Monatsch. Math., 105,
pp. 279–285, 1988.

51. Miles, R. E. “The fundamental formula of Blaschke in integral geometry and geometrical
probability, and its iteration, for domains with fixed orientations,” Austral. J. Statist., 16,
pp. 111–118, 1974.

52. Nijenhuis, A., “On Chern’s kinematic formula in integral geometry,” J. Diff. Geom., 9,
pp. 475–482, 1974.

53. Ohmoto, T., “An elementary remark on the integral with respect to Euler characteristics
of projective hyperplane sections,” Rep. Fac. Sci. Kagoshima Univ., 36, pp. 37–41, 2003.
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16

Multivariate Statistical Analysis and Random
Matrix Theory

This chapter is concerned with a number of issues in statistics that have a group-
theoretic flavor. Large books can be found that are dedicated to each of the topics that
are discussed briefly in the sections that follow. Although the coverage here is meant
to be broad and introductory for the most part, effort is taken to elucidate connections
between statistics and the theory of Lie groups, perhaps at the expense of complete-
ness. The main topics covered are numerical sampling techniques, multivariate statistical
analysis, and theory/numerical procedures associated with random orthogonal, positive
definite, unitary, and Hermitian matrices. Integration on Lie groups and their homo-
geneous spaces ties these topics together. Pointers to classical applications in particle
physics as well as more recent applications in complicated wireless communication net-
works are provided.

Multivariate analysis is concerned in large part with quantifying how close the mean
and covariance computed from a set of sampled vectors in Rn is to the corresponding
properties of a Gaussian distribution from which the samples are assumed to have been
drawn. Since a covariance matrix is symmetric and positive definite, it can be viewed as
an element of the homogeneous space GL+(n, R)/SO(n). Techniques and terminology
from the theory of Lie groups can therefore be used to describe the distribution of
sample covariance matrices drawn from a given Gaussian distribution as a function of
the number of sample points. Integration of this distribution is relative to the measure
defined by the ratio of Haar measures for GL+(n, R) and SO(n). Therefore, methods
for integration, coset decompositions, and so forth that were discussed earlier become
immediately relevant.

The main points to take away from this chapter are as follows:

• Samples drawn from a multivariate Gaussian distribution can be used to compute
a sample mean and sample covariance which, as the number of samples increases to
infinity, converges to the mean and covariance of the underlying distribution.

• In the case of a finite number of samples, the distribution of means that will be
obtained under a large number of trial draws, each with the same number of samples,
will be approximately Gaussian with a covariance proportional to the covariance of
the underlying distribution and inversely proportional to the number of samples.

• The distribution of sample covariance matrices is a probability density on the ho-
mogeneous space GL+(n, R)/SO(n) and is called the Wishart distribution.

• Group theory plays additional roles in multivariate analysis when additional sym-
metries are imposed on problems.

© Springer Science+Business Media, LLC 2012

, 
, Applied and Numerica

G . Chirikjian Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods  
and Modern Applications l Harmonic Analysis, DOI 10.1007/978-0-8176-4944-9_ ,

229.S
7



230 16 Multivariate Statistical Analysis and Random Matrix Theory

• Several different concepts of random matrices exist such as symmetric matrices sam-
pled at random from a Wishart distribution, special orthogonal matrices drawn at
random from the uniform distribution of orientations, matrices filled with random
entries each sampled from a uniform distribution on a real interval, and so forth.

• Large Hermitian matrices that are filled by sampling from a Gaussian distribution
have eigenvalues that approach being distributed according to a specific probability
density function, called Wigner’s semi-circle distribution, as the size of the matrices
goes to infinity.

• Closed-form integrals over the unitary group, U(n), and special unitary group,
SU(n), play important roles in characterizing the statistical properties of random
Hermitian matrices. Such matrices arise in particle physics and in large wireless
communication networks.

This chapter is structured as follows. Section 16.1 begins this chapter by connecting
the basic concepts from probability theory discussed in Chapters 2 and 3 of Volume 1
to statistics via numerical generation of sampled data. Section 16.2 reviews the basics
of sample statistics in Rn. Section 16.3 discusses resampling techniques such as the
jacknife and bootstrap. Section 16.4 discusses the concept of maximum likelihood esti-
mation in the context of Gaussian distributions. Section 16.5 connects multivariate sta-
tistical analysis and geometry through the concept of integration on matrix Lie groups
and their homogeneous spaces. Section 16.6 is a Lie-theoretic treatment of multivariate
analysis and the Wishart distribution. Sections 16.7 focuses on invariant integration
over the set of symmetric positive-definite matrices and the group of orthogonal ma-
trices. Section 16.8 discusses how the Wishart distribution is applied in multivariate
statistical analysis. Whereas most of the chapter has an emphasis on Gaussian statis-
tics, Section 16.9 discusses a class of non-Gaussian distributions, the multi-dimensional
t-distributions. Section 16.10 provides a brief introduction to random matrix theory,
which is concerned with distributions of eigenvalues of large Hermitian matrices. A
complex version of the Wishart distribution appears in this setting, as do a number of
closed-form integrals over unitary groups. Section 16.11 summarizes this chapter and
Section 16.12 provides exercises.

16.1 Numerical Methods for Sampling from a Given Density

An important capability to have when numerically simulating statistical phenomena is
that of generating random samples drawn from any desired pdf. As a starting point,
assume that built in to your favorite scientific programming software are two kinds of
random number generators that sample uniformly from1 (1) the uniform distribution on
the interval [0, 1] and (2) the Gaussian with zero mean and unit variance. (In fact, it is
possible to generate (2) from (1) using the methods described below, but since both are
built in to most scientific computing packages, there is no loss of generality in assuming
both as a starting point.)

From these two kinds of random number generators we will be able to generate ran-
dom samples from a wide variety of distributions on closed intervals: the real line,
the half-infinite line, and their product spaces. Three basic methods are (a) inver-
sion of the cumulative distribution function (CDF) (b) transformation of samples and

1In actuality, a deterministic computer cannot generate truly random samples, but for all
reasonable intents and purposes, such samples can be considered random.
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(c) imposition of acceptance/rejection criteria. All three of these methods will be demon-
strated here. Additionally, as will be shown, they are not mutually exclusive and can
be used in combination as may be required by a particular problem. For more detailed
discussions of numerical sampling methods, see [25, 40, 56]

16.1.1 The Inverse-CDF Transform Method (ITM)

Given a pdf on some connected subset of the real line, either finite or infinite, it is
possible to define a CDF over that subset. For the sake of argument, consider the closed
interval [a, b]. If the probability density on this interval is f(x), then the corresponding
CDF will be

F (x) .=
∫ x

a

f(ξ) dξ.

This is the probability that a value between a and x will be experienced when sampling
from f(x). This probability can be written as F (x) = P (a ≤ X ≤ x).

In order to use the ITM method presented below, the function F (x) must be invert-
ible. This is a rather mild condition to impose since any pdf can be regularized to make
this condition hold at the expense of small distortions to the original pdf. For example,
if the pdf is a Dirac delta function located somewhere in (a, b), then F (x) will be a step
function, which is not invertible. However, if in place of a Dirac delta we were to use
a Gaussian distribution with very small variance, clipped outside of [a, b], and rescaled
as discussed in Chapter 2, then the CDF corresponding to the resulting regularized pdf
will be invertible.

The procedure to generate samples using the inverse transform method (ITM) is
then quite simple: First, sample values of s at random from the uniform distribution
u(s) = 1 on the unit interval [0, 1] (using routines built in to scientific programming
software). This produces samples {S1, S2, . . . , SN}. Next, evaluate Xi = F−1(Si) for
i = 1, . . . , N . That is, all! The resulting set {X1, . . . , XN} will be the desired samples.2

The reason why the method works follows from the fact that the probability of a
sample, X, being in the subinterval [x1, x2] ⊂ [a, b] is governed by the pdf f(x), and
likewise u(s) = 1 governs the probability of a sample, S, being in [s1, s2] ⊂ [0, 1]. The
mapping F : [a, b] → [0, 1] relates the frequencies of occurrence of x ∈ [a, b] and s ∈ [0, 1]
through the fact that∫ x2

x1

f(x) dx = F (x2)− F (x1) = s2 − s1 =
∫ s2

s1

u(s) ds.

This can be written as

P (x1 ≤ X ≤ x2) = P (s1 ≤ Fu(S) ≤ s2).

Since F (xi) = si, it follows that P (x1 ≤ X ≤ x2) = P (F (x1) ≤ S ≤ F (x2)), which, in
turn, implies from the monotonically increasing nature of F (x) that

P (x1 ≤ X ≤ x2) = P (x1 ≤ F−1(S) ≤ x2).

This is where the Xi = F−1(Si) comes from. Figure 16.1 illustrates the method graph-
ically. Samples are drawn uniformly at random from the interval [0, 1], horizontal lines

2The set {X1, . . . , XN} has elements that are scalars and has nothing to do with Lie alge-
bras, despite the use of the same symbols. There should be no confusion since the contexts are
so different.
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Fig. 16.1. A Graphical Description of the Inverse-CDF Method

are drawn from these sample values until they intersect the CDF, and then vertical
lines are drawn down to generate sample values from an arbitrary univariate pdf. The
examples below demonstrate the method.

Example 16.1.1.a: Given samples drawn from the uniform distribution u(s) = 1 on
[0, 1], we can obtain samples drawn from f(θ) = 1

2 sin θ on [0, π] by observing that

s = F (θ) =
1
2

∫ θ

0
sinαdα =

1
2
(1− cos θ)

and so
θ = F−1(s) = cos−1(1− 2s) (16.1)

(where, of course, the branch of cos−1 that returns values in the range [0, π] is used).
Therefore, samples Θ1, Θ2,. . . , ΘN drawn from f(θ) = 1

2 sin θ are obtained by substi-
tuting the samples S1,. . . , SN drawn from u(s) into (16.1).

Example 16.1.1.b: Given samples drawn from the uniform distribution u(s) = 1 on
[0, 1], we can obtain samples drawn from f(x) = 1√

2π
e−x2/2 (the Gaussian on the real

line with zero mean and unit variance) by observing that

s = F (x) =
1√
2π

∫ x

−∞
e−t2/2dt =

1
2

[
1 + erf

(
x√
2

)]
,

where erf(·) is the standard error function defined in (2.39). Thus,

x = F−1(s) =
√

2 erf−1(2s− 1) (16.2)

and Gaussian samples X1, X2,. . . , XN are obtained from samples S1, . . . , SN drawn from
u(s) by evaluating Xi = F−1(Si) in (16.2). As this example shows, it is not necessary
to have an independent method for generating Gaussian samples, because they can be
obtained from uniformly random samples. However, this does require the evaluation of
the error function (and its inverse), which are typically built-in functions in scientific
programming packages.

In cases where degrees of freedom can be decoupled (i.e., when random variables X
and Y are independent), then f(x, y) = f1(x)f2(y) and the ITM method can be used on
each coordinate of a multivariate distribution independently. However, for more general
multivariate pdfs, the computation and inversion of multivariate versions of CDFs can
be problematic, and the methods in the following subsections become applicable.
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16.1.2 The Geometric Transformation Method

Given a multivariate pdf f(y) on a simply connected domain B ⊂ Rn, we know from
the classical inverse function theorem (1.38) that if y = ψ(x) is a diffeomorphism from
Rn onto itself, then ψ−1(B) exists and∫

B

f(y) d(y) =
∫
ψ−1(B)

f(ψ(x))
∣∣∣∣ ∂ψ

∂xT

∣∣∣∣ d(x). (16.3)

If φ = ψ−1, then this can be written as∫
B

f(y) d(y) =
∫
φ(B)

f
(
φ−1(x)

) ∣∣∣∣ ∂φ

∂xT

∣∣∣∣−1

d(x).

It is interesting to note in passing that (16.3) can be written in more modern terms by
recognizing that functions f : Rn → R can be viewed as 0-forms (i.e., ω0 = f), and
application of the concepts of the Hodge star operator and pull-back as∫

B

∗ω0 =
∫
ψ−1(B)

∗(ψ∗ω0). (16.4)

Whereas modern notation hides Jacobians from plain sight in exchange for appropri-
ately placed asterisks, it is actually the Jacobian determinant that plays the key role in
the geometric sampling method. The fact that (16.3) introduces a Jacobian determinant
means that data sampled uniformly in B will not be uniformly distributed in ψ−1(B),
and vice versa. This provides an opportunity to choose diffeomorphisms ψ(x) so as to
distort an original sampling to obtain a desired one.

The general geometric transformation method can be stated rather simply in light
of (16.3): Suppose that f(y) is a pdf on a domain B for which an existing sampling
method exists (e.g., f(y) could be the uniform distribution u(y) = 1/Vol(B)). If we can
find a diffeomorphism y = ψ(x) such that D = ψ−1(B) is the domain of interest and

f̃(x) = f(ψ(x))
∣∣∣∣ ∂ψ

∂xT

∣∣∣∣
is the pdf of interest on that domain, then Y1, Y2,. . . , YN sampled from f(y) and
mapped to D as Xi = ψ−1(Yi) for i = 1, . . . , N will sample the desired distribution
f̃(x). This method is illustrated below through examples, which can be stated in terms
of either ψ or φ.

Example 16.1.2.a: Starting with samples independently drawn from the univariate
Gaussian ρ(y; 0, 1), it is easy to construct samples in Rn drawn from ρ(y;0, In). Call
these vector samples Y1, Y2,. . . , YN . Now, consider that the affine transformation
x = φ(y) = Ay + b, which can be used to generate new vector samples Xi = AYi + b
for i = 1, . . . , N . How will X1, X2, . . . ,XN be distributed? Since y = φ−1(x) = ψ(x) =
A−1(x− b), it follows that |∂ψ/∂xT | = |A−1| and so

ρ(x;0, In) −→ |A|−1ρ(A−1(y − b);0, In) = ρ(y;b, AAT ).

Example 16.1.2.b: The Box–Muller transformation [14] is a geometric alternative to
the method presented in Example 16.1.1.b for generating Gaussian samples from a set
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of random samples uniformly distributed in [0, 1]. Let x and y be Cartesian coordinates
in the plane. Consider the new coordinates 0 ≤ s, t ≤ 1 defined by(

x
y

)
=

( √−2 ln s cos(2πt)
√−2 ln s sin(2πt)

)
.= ψ−1

(
s
t

)
and (

s
t

)
=

⎛⎝ e−(x2+y2)/2

1
2π

tan−1(y/x)

⎞⎠ = ψ

(
x
y

)
.

It follows that if s and t are sampled uniformly at random from [0, 1] resulting in
sample pairs (Si, Ti) for i = 1, . . . , N , then since

ds dt =

∣∣∣∣∣∣∣∣
∂s

∂x

∂s

∂y

∂t

∂x

∂t

∂y

∣∣∣∣∣∣∣∣ dx dy =
1
2π

e−(x2+y2)/2 dx dy,

Xi = ψ−1([Si, Ti]T ) will be distributed according to ρ(x;0, I2). Since the behaviors of
x and y are independent, this can be used to generate samples from ρ(x; 0, 1) without
using the error function.

A similar phenomenon is observed when using the coordinates (u, v) defined as
[25, 65]

x=u ·
(−2 ln(u2 + v2)

u2 + v2

) 1
2

,

y = v ·
(−2 ln(u2 + v2)

u2 + v2

) 1
2

.

The benefit here is that no trigonometric functions are required.

Example 16.1.2.c: Suppose that we want to sample uniformly on the sphere with
respect to the usual integration measure (1/4π) sin θ dφ dθ. From Example 16.1.1.a we
know how to sample from the distribution (1/2) sin θ on [0, π], and sampling φ from the
uniform distribution 1/2π on the range [0, 2π] is easy. Combining them provides a way
to sample on [0, 2π] × [0, π] in a way that reflects the appropriate weighting from the
metric tensor determinant. Call these samples (Φi, Θi) for i = 1, . . . , N . Then these can
be mapped to the unit sphere via (5.69) (with R = 1) to define samples Xi = x(Φi, Θi)
that are distributed uniformly at random.

This example begs the question of how to sample on other compact orientable
Riemannian manifolds, M . Given an atlas, let us partition M into p nonoverlapping
domains, D1, . . . , Dp, each with volume V1, . . . , Vp (computed with respect to the Rie-
mannian metric). Assume that coordinate chart φk completely covers Dk. Then to
sample uniformly at random on M , we first must pick one of the Dk at random, the
probability of which should be chosen in proportion to its volume. Suppose that Dk is
the one that has been chosen. Let q denote the coordinates for this chosen domain.
Then samples should be drawn from a density

fk(q) =
1
Vk
|G(q)| 12 , where Vk =

∫
Dk

|G(q)| 12 dq.

The geometric transformation method in Rn can be used to generate samples from
fk(q). These samples, Q1, Q2, . . . ,QN , then map to points in the manifold as φ−1

k (Qi)
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for i = 1, . . . , n; or, if the manifold is embedded, the samples would map to points x(Qi)
in Euclidean space, as in the sphere example.

16.1.3 The Acceptance/Rejection/Modification Method

Since uniform sampling on [0, 1] and from Gaussian distributions with zero mean and
unit variance are build in to software programs, it is possible to start with these and
then either modify or throw away samples in order to obtain samples from a desired
distribution. For example, if samples from a clipped Gaussian are desired, it is possible
to use the built-in Gaussian sampler, and then throw away those outside of the range
defined by the clipping. Or, if sampling from the Gaussian wrapped around the circle is
desired, then samples from the build-in Gaussian can be shifted if they lie outside the
range [−π, π] by addition/subtraction of integer multiples of 2π until they fall in the
right range. By combining with the methods described previously, this sort of rejection
or modification of samples can be applied to any initially supplied distribution, i.e.,
it is not limited to uniform distributions on unit intervals or unit-variance-zero-mean
Gaussians on the line.

Example 16.1.3.a: Consider again the generation of random samples on the unit
sphere. Begin by sampling the uniform distribution on [−1, 1]3. If these samples obey
the constraint x2

1 + x2
2 + x2

3 ≤ 1, then keep them. Otherwise throw them away. Then
take each remaining sample vector and normalize it. This will project the result onto
the unit sphere. The result will be a uniformly random distribution for the sphere. If the
samples that lie outside the sphere had not been rejected, they would “pile up” around
the directions corresponding to the corners of the bounding cube when projected on
the sphere. If the surviving samples are converted to spherical coordinates, then this
method can be used indirectly to generate samples for the pdf 1

2 sin θ on the interval
[0, π] simply by picking off the θ coordinate from each pair of coordinates (φi, θi). Similar
constructs can be imagined with other surfaces that bound closed bodies in Rn. Knowing
the analytical form of the Jacobian determinants for various hyper-surfaces allows for
the appropriate choice.

The drawback of this method is that as the dimensions of the sample space increases,
the volume of the sphere (or any other curved body) becomes smaller and smaller
compared to the volume of the bounding box. Indeed, in the limit as n goes to infinity,
the ratio of the volume of the ball bounded by the unit sphere in Rn compared to
the volume of the cube [−1, 1]n goes to 0. Thus, the efficiency of sample generation
becomes 0 since most samples are thrown away.

By combining several of the sampling methods, the weaknesses of each can be
avoided. This is illustrated in the following example.

Example 16.1.3.b: If instead of sampling within a box in Rn and throwing away sam-
ples that lie outside the sphere, independent samples drawn from the univariate Gaussian
ρ(x; 0, 1) (which can either be generated as in Example 16.1.1.b or Example 16.1.2.a
or can be taken as a primitive function) are used to construct vector samples from
ρ(x;0, In) in a similar way as was done at the start of Example 16.1.2.a, then the trans-
formation x → x/‖x‖ = u can be used to convert the Gaussian samples X1, X2, . . . ,XN

into unit vectors U1, U2, . . . ,UN distributed uniformly on the sphere Sn−1. These vec-
tors are uniformly distributed because ρ(RT x;0, In) = ρ(RT x;0, RRT ) = ρ(x;0, In) for
any R ∈ SO(n) is a spherically symmetric distribution with the mean at the center of
the sphere.
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16.1.4 Sampling Using SDEs

In some contexts it is desired to sample from a pdf that solves a Fokker–Planck equation
at some value of time, t = T . Let f(x, T ) denote such a pdf. Suppose that none of the
sampling methods described above provides an adequate method to sample from this
pdf. What can be done?

Quite simply, we already know from Chapters 4 and 8 the relationship between SDEs
and Fokker–Planck equations in Rn and on manifolds, respectively. If the pdf that we
seek to sample solves a Fokker–Planck equation, then the coefficient functions in the
drift and diffusion terms can be picked off and used to define an SDE. This SDE can
then be numerically integrated to generate sample paths from t = 0 until t = T . Each
such sample path will then generate a single sample from f(x, T ).

This method can be rather intensive from a computational perspective since a whole
stochastic trajectory from t = 0 to t = T must be computed in order to record a single
point. On the other hand, if the goal is to sample from a family of pdfs f(x, t) for
t ∈ [0, T ], then this method is not wasteful, since calculations that are performed at
each time increment result in samples for a specific member of the family.

16.2 Sample Statistics in Euclidean Space

Often it is the case that the pdf associated with a random process is not known a priori.
What is known is a set of N measurements {X1,X2, . . . ,XN} that are assumed to be
drawn from an unknown pdf on Rn. These samples are assumed to be iid (independent
and identically distributed), meaning that there is no relationship between the samples
other than the fact that they are drawn completely at random from the underlying
distribution.

One goal is to recover an estimate of the unknown pdf from these sample measure-
ments without any assumption about the form of the pdf. This is known as nonpara-
metric pdf estimation. A more modest (and tractable) goal is to assume that the data
is drawn from a distribution of known type (such as a Gaussian), and then the sam-
ple mean and covariance can be used to estimate the corresponding properties of the
underlying distribution, thereby defining it completely. This is the parametric estimation
problem.

In the subsections that follow, statistical properties of the sample mean and sample
covariance are reviewed in the general (nonparametric) case and then the interpretation
of these quantities when they are assumed to be drawn from a Gaussian distribution
are addressed.

16.2.1 Properties of the Sample Mean

In this subsection the properties of the sample mean are reviewed. This material can
be found in any book on multivariate statistical analysis. In particular, we follow the
presentations in [2, 56].

Expected Value of the Sample Mean

Given samples X1,X2, . . . ,XN ∈ Rn, the sample mean is defined as

X .=
1
N

N∑
i=1

Xi. (16.5)
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The expected value of this sample mean is

〈X〉 =

〈
1
N

N∑
i=1

Xi

〉
=

1
N

N∑
i=1

〈Xi〉.

However, since the set of samples {Xi} is generated by an iid process, 〈Xi〉 = μ, which
is the actual mean of the unknown pdf from which the samples are assumed to have
been drawn. Therefore, summing up N copies of μ and dividing by N results in the
expression

〈X〉 = μ. (16.6)

This is very important and allows for the estimation of the mean of the underlying pdf
by taking the average of the samples. However, a natural question to ask is, “How close
can we expect the sample mean to be to the actual?” This is addressed in the following
subsection.

Distribution of the Sample Mean

Note that

X− μ =
1
N

N∑
i=1

Xi − μ =
1
N

N∑
i=1

(Xi − μ), (16.7)

which is true again because if we add N copies of μ to itself and divide by N , the result
is equal to μ.

The covariance matrix of the random variable X is defined as

Cov(X) = 〈(X− μ)(X− μ)T 〉.

This is a measure of the dispersion of X around 〈X〉 = μ. From (16.7), this covariance
matrix for the mean can be computed as

Cov(X)=

〈(
1
N

N∑
i=1

(Xi − μ)

)⎛⎝ 1
N

N∑
j=1

(Xj − μ)

⎞⎠T〉

=
1

N2

N∑
i=1

N∑
j=1

〈
[(Xi − μ)(Xj − μ)T

〉
. (16.8)

However, since the sampled are assumed to be independent of each other and since
this means that each component of one vector is independent of every component of
the other vector [56], then when i �= j, the expectation inside the sums will be 0. In
particular, 〈

(Xi − μ)(Xj − μ)T
〉

= δijΣ

since 〈(Xi − μ)(Xi − μ)T 〉 = Σ for every sample, which is assumed to be identically
distributed. This kills one sum in (16.8) and gives Cov(X) = N−2 ∑N

i=1 Σ, which
simplifies to

Cov(X) =
1
N

Σ. (16.9)

This states that the distribution of the sample mean gets tighter as the number of sam-
ples increases, and it depends linearly on the covariance of the underlying distribution.
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This is a nonparametric result; that is, no assumption about the form of the pdf had
to be made. In the case when the samples are drawn from a Gaussian distribution, not
only will the sample mean and covariance behave as described above but also the sample
mean will be Gaussian distributed with mean μ and covariance 1

N Σ. In other words, as
the number of trials, each drawing N samples, tends to infinity, the distribution of the
mean will be Gaussian.

16.2.2 Properties of the Sample Covariance

As we will see in the following subsections, the assumption that the data is drawn from a
Gaussian distribution will be helpful when addressing the distribution of the covariance
matrix obtained from sampled data. However, first the unbiased nonparametric estimate
of covariance is considered.

The naive (or biased) sample covariance is defined as

SN =
1
N

N∑
i=1

(Xi −X)(Xi −X)T . (16.10)

This is not the same as Σ, the covariance of the underlying pdf, but it is natural to
assume that as N →∞, SN → Σ. Below, it is shown why this assumption is justified.

Using the fact that
∑N

i=1(Xi −X) = 0, (16.10) can be rewritten as

SN =
1
N

N∑
i=1

(Xi −X)XT
i +

1
N

N∑
i=1

(Xi −X)(−X)T

=
1
N

N∑
i=1

XiXT
i −X

(
1
N

N∑
i=1

Xi

)T

−
(

1
N

N∑
i=1

Xi

)
X

T
+ XX

T

=
1
N

N∑
i=1

XiXT
i −XX

T
.

The expected value of the naive sample covariance is then

〈SN 〉=
〈

1
N

N∑
i=1

XiXT
i −XX

T

〉

=
1
N

N∑
i=1

〈XiXT
i 〉 − 〈XX

T 〉.

Now, since 〈(Xi − μ)(Xi − μ)T 〉 = Σ, it follows from elementary calculations that

〈XiXT
i 〉 = Σ + μμT .

Similarly, the fact that 〈(X− μ)(X− μ)T 〉 = 1
N Σ means that

〈XX
T 〉 =

1
N

Σ + μμT .

Therefore,

〈SN 〉 = Σ + μμT −
(

1
N

Σ + μμT

)
,
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which simplifies to

〈SN 〉 =
N − 1

N
Σ. (16.11)

This implies that a better (unbiased) estimate of the actual covariance matrix is

ŜN
.=

N

N − 1
SN =

1
N − 1

N∑
i=1

(Xi −X)(Xi −X)T . (16.12)

In this way, 〈ŜN 〉 = Σ.
Whereas it was clear that the probability density for the sample mean corresponding

to many trials, each drawing N samples, will be a Gaussian with mean μ and covariance
Σ/N , describing the “covariance of sample covariances” and the corresponding proba-
bility density of sample covariances is somewhat more difficult. In part this is because
unlike the space of mean vectors, the space of covariance matrices is a non-Euclidean
space. This will require several sections to explain. However, first, a discussion of modern
resampling methods is presented.

16.3 Resampling Methods

When obtaining an estimate of the mean, covariance, or some other quantity from
sampled data, a natural question to ask is how sensitive the answer is to the removal of
random samples. One way to assess this sensitivity (or variability of the answer) is to
perform jackknife and bootstrap calculations. Many good books exist on this subject.
In our review, we follow the presentation in [81].

16.3.1 Jackknife

The jackknife method was introduced by Quenouille in 1949 [78] to estimate the bias of
an estimator by sequentially deleting one point from the original data set and recom-
puting the estimate for the N−1 depleted data sets. The basic idea, as explained in [81],
begins with a scalar function t(x), the average value of which would be computed as

τ =
∫

Rn

t(x)f(x) dx

if the underlying pdf f(x) were known. However, since f(x) is generally not known, τ is
estimated by a series of sampled measurements by an estimator TN (X1, . . . , XN ), where
{Xi} are the sample observations. The bias in the original estimate is then bias(TN ) =
〈TN 〉 − τ . In contrast, the jackknife estimate is defined as

TJACK
.= N · TN − N − 1

N

N∑
i=1

TN−1,i, (16.13)

where TN−1,i = TN−1(X1,X2, . . . ,Xi−1,Xi+1, . . . ,XN ) is the estimate obtained by
removal of sample i. Assuming that the bias in the original estimate decays in an
asymptotic series of the form

bias(TN ) =
a

N
+

b

N2 + O

(
1

N3

)
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and that the depleted data sets follow the same form, and so

bias(TN−1,i) =
a

N − 1
+

b

(N − 1)2
+ O

(
1

(N − 1)3

)
,

then the associated bias in the bootstrap is

bias(TJACK )=N · bias(TN )− N − 1
N

N∑
i=1

bias(TN−1,i) (16.14)

=− b

N(N − 1)
+ O

(
1

(N − 1)3

)
. (16.15)

In other words, under certain modest assumptions, the bias in the jacknife is smaller
than that of the bias in the original estimator that used all of the sample data.

In 1958, Tukey extended the jackknife concept to the estimation of variances [94],
where improvements in the estimate of variance can be proven using similar assumptions
and arguments as those used above.

16.3.2 Bootstrap Methods

The bootstrap method resamples much more extensively than the jacknife. Although
this method was developed by Efron in 1979 [33], elements of the theory were presented
prior to that (see Hartigan’s work [48]). Recall that given a set with N elements, there are

CN,k =
(

N
k

)
=

N !
k!(N − k)!

ways of removing k entries to result in CN,k sets of sets with N − k entries. Since

N∑
k=0

CN,k = 2N ,

there are 2N−1 nonempty subsets of the original set with which to recompute estimates.
Clearly, then, given sufficient computing capabilities, one could compute an estimate of
a covariance matrix based on not only the full set of data but also all subsets.

Since, in practice, this becomes prohibitive, a method that is sometimes used is to
first obtain the original estimate of the covariance matrix, use that to define a multivari-
ate Gaussian distribution and then randomly sample from this Gaussian distribution.
If the distribution in covariances of the samples is consistent with the distribution of
covariances obtained from extensive resampling, then greater confidence in the estimate
is obtained. Sensitivity to outliers can be reduced by performing jackknifelike compu-
tations. More on these methods can be found in [22, 34].

16.4 Maximum Likelihood Estimation with Gaussian
Distributions

Chapter 2 was devoted to the multivariate Gaussian distribution

ρ(x; μ, Σ) .=
1

(2π)n/2|Σ| 12 exp
{
−1

2
(x− μ)T Σ−1(x− μ)

}
. (16.16)

In Chapter 3, general parameterized distributions of the form f(x; θ) were discussed
along with the concept of Fisher information, estimators, and the Cramér–Rao bound.
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The goal in later chapters is to extend these concepts to Lie groups as f(g; θ) for g ∈ G,
where, for example, θ may be a combination of drift and diffusion parameters, in the
context of the present.

The Gaussian distribution in (16.16) is often written in statistical works as ρ(x |
μ, Σ). In other words, it is possible to write it as a conditional probability density that
is conditioned on knowledge of the mean and covariance. More generally, f(x; θ) can be
written as f(x | θ), but this begs the question of what density on the parameter space
should be used to describe the prior3 f(θ) in order to obtain the joint density

f(x,θ) = f(x | θ)f(θ) = f(θ | x)f(x).

For if such a prior exists, then

f(x) =
∫
θ′∈Θ

f(x | θ′)f(θ′) dθ′

and

f(θ | x) =
f(x | θ)f(θ)∫

θ′∈Θ
f(x | θ′)f(θ′) dθ′ . (16.17)

This means that based on observed data, {X1, . . . ,XN}, a Bayesian estimate of θ,
denoted here as θ̂, would be obtained from (16.17) as the value θ̂ ∈ Θ such that (16.17)
holds as closely as possible for all x ∈ {X1, . . . ,XN} when f(θ) is known. Below argu-
ments for obtaining f(θ) are given based on the concept of the likelihood function.

The likelihood function (which is not normalized to be a pdf) can be defined as

L(θ | X1, . . . ,XN ) .=
N∏

i=1

f(Xi | θ). (16.18)

A maximum likelihood estimate is one that seeks the value of θ defined by

θ̃
.= arg max

θ
L(θ | X1, . . . ,XN ). (16.19)

This is particularly convenient for the Gaussian distribution, since the product of ex-
ponentials results in the exponential of the sum of exponents. The Gaussian likelihood
function is

L(μ, Σ | X1, . . . ,XN )=
N∏

i=1

ρ(Xi | μ, Σ) (16.20)

=
1

(2π)Nn/2|Σ|N
2

N∏
i=1

exp
{
−1

2
(Xi − μ)T Σ−1(Xi − μ)

}

=
1

(2π)Nn/2|Σ|N
2

N∏
i=1

e− 1
2 tr{Σ−1(Xi−μ)(Xi−μ)T}

=
1

(2π)Nn/2|Σ|N
2

e− 1
2 tr{Σ−1[∑N

i=1(Xi−μ)(Xi−μ)T ]}. (16.21)

Now, using the definition in (16.5),

Xi − μ = (Xi −X) + (X− μ)
3A priori density (or prior) refers to the fact that this distribution is independent of

information obtained from observations.
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and so the term inside the trace in (16.21) becomes

N∑
i=1

(Xi − μ)(Xi − μ)T = N · SN + N · (X− μ)(X− μ)T .

From the convexity and strictly decreasing nature of the function φ(x) = e−x/2 on R≥0,
it follows that minimization of x will maximize φ(x). It can then be reasoned that the
maximum likelihood estimate of (μ, Σ) is computed as

(μ̃, Σ̃) = (X, SN ), (16.22)

where SN is defined in (16.10). Note that this is not the unbiased estimator ŜN in
(16.12). However, as N →∞, the difference between SN and ŜN becomes negligible. It
is common to define

S
.= N · SN = (N − 1) · ŜN .

Although S depends on N through the summation (as does X), this dependence is
suppressed for notational convenience in the presentation that follows.

16.5 Integration and Probability Densities on Spaces
of Matrices

In order to make sense of the concept of distributions on the set of all covariance
matrices, it is first necessary to understand how to integrate on such a space. This
provides a connection to the discussion of differential forms in Chapter 6 and to the
Jacobian matrices for Lie groups in Chapter 10.

Differential forms can be used to define a concept of integration over spaces of
matrices that may or may not have special structure. In this context, a specialized
notation

n∧
i=1

dxi
.= dx1 ∧ dx2 ∧ · · · ∧ dxn

is introduced as shorthand to reduce the number of symbols that need to be written dur-
ing derivations, following [71]. Using this notation, the (unoriented) Lebesgue measure
on Rm×n corresponding to the (oriented) volume form is4

d ′X .=

∣∣∣∣∣∣
m∧

i=1

n∧
j=1

dxij

∣∣∣∣∣∣ =
m∏

i=1

n∏
j=1

dxij , where X ∈ Rm×n. (16.23)

Here, the absolute value symbol is used to kill the sign of the form. In contrast, when
the same symbol is applied to a matrix, it means the determinant.

Using the properties of the wedge product, it can be shown that if Y = AXB, where
X,Y ∈ Rm×n, and A ∈ Rm×m and B ∈ Rn×n are fixed, then

d ′Y = |A|n|B|md ′X, (16.24)

where, as usual, |A| denotes the determinant of A.
4The prime inserted in d ′X distinguishes it from dX because when m = n and X ∈

GL(n, R), the plain dX is used to denote the Haar measure for GL(n, R).
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16.5.1 d ′X Versus dX When X ∈ GL(n, R)

In contrast to d ′X as defined in (16.23) in the case when m = n, the Haar measure for
X ∈ GL(n, R) can be written as

dX = |X|−n d ′X, (16.25)

and so for fixed A,B ∈ GL(n, R),

d(AXB) = |AXB|−n d ′(AXB) = |X|−n d ′X = dX. (16.26)

This invariance of dX is the rationale for making it the “natural” way to integrate over
GL(n, R) and, hence, the use of the simplest notation for this quantity (even though
the formula for it is more complicated than that for d ′X in (16.23)).

16.5.2 Integration on the Space of n × n Symmetric Matrices

If S = ST ∈ Rn×n, then a natural definition for the integration measure for the space
of all such matrices, Sn, is

d ′S .=

∣∣∣∣∣∣
n∧

j=1

j∧
i=1

dsij

∣∣∣∣∣∣ =
∏

1≤i≤j≤n

dsij . (16.27)

It can be shown that when |S| �= 0, this measure has the property [71]

d ′(S−1) = |S|−(n+1)d ′S, (16.28)

and that if P = ASAT for any A ∈ GL(n, R),

d ′P = |A|n+1d ′S. (16.29)

The subset of Sn consisting of all symmetric positive definite n × n matrices is
denoted as

S+
n

.= {S ∈ Rn×n | S = ST , λi(S) > 0, ∀ i = 1, . . . , n}. (16.30)

The integral of a function on this space with respect to the measure d ′S can be defined as

I ′(f) =
∫

S
+
n

f(S) d ′S.

From (16.29), it follows that for any A ∈ GL(n, R), the action (A·f)(S) .= f(A−1SA−T )
has the property that

I ′(A · f) =
∫

S
+
n

f(ASAT ) d ′S =
∫

S
+
n

f(P ) d ′(APAT ) = |A|n+1I ′(f).

In group-theoretic terminology, d ′S is called a relatively invariant integration measure
on S+

n with respect to the action of GL(n, R). More abstractly, the concept of relative
invariance of an integration measure on some measurable space X acted on by a group
G is the property5

5The space X and function χ(g) should not be confused. Additionally, the dot in g−1 · x is
a group action, whereas the dot between χ(g) and the integral is simply scalar multiplication.
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X

f(g−1 · x) dx = χ(g) ·
∫

X
f(x) dx, (16.31)

where x ∈ X and g ∈ G.
It is no coincidence that the symbol χ(g) is used as the scale factor, since repeating

the above expression gives that χ(g) must have the property χ(g1 ◦g2) = χ(g1) ·χ(g2) =
χ(g2) ·χ(g1) = χ(g2 ◦ g1). In other words, χ : G → R≥0 is a homomorphism from (G, ◦)
into the commutative group (R≥0, ·), and therefore it must be a class function. A special
case of relative invariance is when the definition of dx forces χ(g) = 1 for all g ∈ G.
In this case, dx is truly invariant under G. In general, it is not possible for arbitrary
G and X to construct an invariant measure dx (although there are some special cases),
but it is always possible to construct a relatively invariant measure. The case when
G = GL(n, R) and X = S+

n is one in which both a relatively invariant measure, d ′S,
and an invariant measure, dS (to be defined shortly), are both possible and useful.

The multivariate gamma function is defined as the following specific integral over S+
n :

Γn(a) .=
∫

S
+
n

e−tr(S)|S|(2a−n−1)/2 d ′S, where n ∈ Z>0 and (n + 1)/2 < a ∈ R. (16.32)

This can be related to the usual gamma function in (2.34) of Chapter 2 as in (16.81).
The above definition can extend to a ∈ C under the constraint that Re(a) > (n+1)/2,

but we will not need this generalization here. It can be shown that [71]

1
2n·aΓn(a)

∫
S
+
n

e− 1
2 tr(Σ−1S)|S|(2a−n−1)/2 d ′S = |Σ|a. (16.33)

16.5.3 Integration on the Space of n × n Skew-Symmetric Matrices

In analogy with the way that an integration measure can be defined for the n(n+ 1)/2-
dimensional space of symmetric matrices, for the n(n−1)/2-dimensional space consisting
of skew-symmetric matrices Ω = −ΩT ∈ Rn×n,

d ′Ω .=
∏

1≤i<j≤n

dωij .

This has the property that for any A ∈ GL(n, R),

d ′(AΩAT ) = |A|n−1 d ′Ω. (16.34)

Unlike the symmetric case, it is not possible to normalize by a determinant when n is
odd, since |Ω| = 0 in that case.

16.5.4 Integration on Orthogonal Groups and Stiefel Manifolds

Let O = [o1,o2, . . . ,on] ∈ O(n) (the full group orthogonal n × n matrices); that is,
oi ∈ Rn and oi · oj = δij for all i, j ∈ {1, . . . , n}. A set of nonsquare matrices of the
form V = [o1,o2, . . . ,om] for some fixed integer m in the range 1 ≤ m ≤ n can also
be defined. This will have the property V T V = Im, and the set of all such matrices for
fixed m and n is denoted as Vm,n. This set has the properties of an mn−m(m + 1)/2-
dimensional manifold embedded in Rn×m ∼= Rnm. It is called the Stiefel manifold. As
special cases, V1,n = Sn, and Vn,n = O(n).
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The natural volume form with which to integrate on Vm,n is [71]

ωm,n
.=

n−m∧
j=1

m∧
i=1

oT
m+j doi

∧
1≤i<j≤m

oT
j doi. (16.35)

It can be shown that ∫
Vm,n

ωm,n =
2mπmn/2

Γm(n/2)
.= Vol(Vm,n). (16.36)

As special cases, ∫
Sn−1

ω1,n =
2πn/2

Γ (n/2)
= Vol(Sn−1)

and ∫
O(n)

ωn,n =
2nπn2/2

Γn(n/2)
= Vol(O(n)) = 2 ·Vol(SO(n)).

This provides the normalization factors required for the normalized integral over the
full orthogonal group—namely

dO
.=

Γn(n/2)
2nπn2/2 |ωn,n| =⇒

∫
O(n)

dO = 1. (16.37)

In particular, from (16.81),

Γ2(1) = π
1
2

2∏
i=1

Γ [1− (i− 1)/2] = π
1
2 Γ [1] · Γ [1/2] = π,

and so it follows that
2nπn2/2

Γn(n/2)

∣∣∣∣∣
n=2

=
4π2

Γ2(1)
= 4π.

Similarly, since

Γ3(3/2) = π3/2
3∏

i=1

Γ [3/2− (i− 1)/2] = π3/2Γ [3/2] · Γ [1] · Γ [1/2] =
π5/2

2
,

it follows that
2nπn2/2

Γn(n/2)

∣∣∣∣∣
n=3

=
8π9/2

Γ3(3/2)
= 16π2.

This makes sense since these numbers are twice the volumes calculated in Chapter 10
for SO(2) and SO(3), respectively. This is as it should be given that for every rotation
in SO(n), there is the corresponding rotation and a reflection in O(n), making it twice
the volume.

Similarly, the normalized integration measure for the Stiefel manifold Vm,n is

dV
.=

Γm(n/2)
2mπmn/2 |ωm,n| =⇒

∫
Vm,n

dV = 1. (16.38)
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A few examples help illustrate that this makes sense. First, when m = n, Vn,n = O(n)
and this reduces to the normalization factor for O(n), as it should. Second, consider the
case V1,d = Sd−1. Observe from (16.81) that Γ1(d/2) = Γ (d/2) gives

2mπmn/2

Γm(n/2)

∣∣∣∣
(m,n)=(1,d)

=
2πd/2

Γ1(d/2)
=

2πd/2

Γ (d/2)
,

which is the same as Vol(Sd−1) given in (2.35). As a final example, consider V2,3, which
consists of the 3 × 2 matrix with two orthonormal column vectors. These can be pa-
rameterized by Euler angles, and in fact we can write any element as V = [o1,o2] =
[R(α, β, γ)e1, R(α, β, γ)e2], where R ∈ SO(3). Then (16.35) becomes

ω2,3 =
2∧

i=1

oT
3 doi

∧
1≤i<j≤2

oT
j doi

=(oT
3 do1) ∧ (oT

3 do2) ∧ (oT
2 do1)

= (eT
3 RT dR e1) ∧ (eT

3 RT dR e2) ∧ (eT
2 RT dR e1).

Then substituting

dR =
∂R

∂α
dα +

∂R

∂β
dβ +

∂R

∂γ
dγ

and performing some laborious computations gives

ω2,3 = sinβ dα ∧ dβ ∧ dγ.

Since this is exactly the same integration measure as for SO(3) with exactly the same
range of angles, it follows that its integral should give the volume of SO(3), which is
8π2. On the other hand, from (16.36), the volume of V2,3 should be

2mπmn/2

Γm(n/2)

∣∣∣∣
(m,n)=(2,3)

=
4π3

Γ2(3/2)
= 8π2.

16.6 The Wishart Distribution: A Probabilistic View
and Geometric Derivation

The Wishart distribution [107, 108] is a pdf on the space of symmetric positive-definite
matrices. It arises in answer to the question of how sample covariance matrices are
distributed when the covariance matrices describe vector samples that are drawn from
a multivariate Gaussian distribution with zero mean. Two related distributions are
the inverse Wishart distribution [2], which describes how the set of inverse covariance
matrices are distributed, and the noncentral Wishart distribution [4, 53], which describes
the case when samples are drawn from a Gaussian with nonzero mean.

16.6.1 Relationship to Gaussian Likelihood Computations

Suppose that xi ∈ Rn for i = 1, . . . ,m. Given the pdf ρ(xi; μi, Σi), the composite vector

x = [xT
1 ,xT

2 , . . . ,xT
m]T ∈ Rn·m will have a density ρ(x;

m⊕
i=1

μi,
m⊕

i=1
Σi), where
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m⊕
i=1

μ
.= [μT

1 ,μT
2 , . . . ,μT

m]T and
m⊕

i=1
Σi

.=
m∑

i=1

⊕
Σi.

The matrix variable X = [x1,x2, . . . ,xm] ∈ Rn×m is completely equivalent to x through
the ∨ operation—X∨ = x—and the integration measure dX = dx1 dx2 · · · dxm, where
each dxi is the Lebesgue measure for a copy of Rn containing xi. Below, the case when
Σ1 = Σ2 = · · · = Σm = Σ is considered.

In terms of X, we can write

ρ

(
x;

m⊕
i=1

μi,
m⊕

i=1
Σ

)
=

m∏
i=1

ρ(xi; μi, Σ)

=
1

(2π)mn/2|Σ|m
2

e− 1
2 tr{Σ−1[∑m

i=1(xi−μi)(xi−μi)T ]}

=
1

(2π)mn/2|Σ|m
2

e− 1
2 tr{Σ−1(X−M)(X−M)T} (16.39)

.= f ′(X;M,Σ,m), (16.40)

where M
.= [μ1,μ2, . . . ,μm]. For fixed M,Σ, and m, the function f ′(X;M,Σ,m) is a

pdf on Rn×m with respect to Lebesgue measure d ′X; that is,∫
Rn×m

f ′(X;M,Σ,m) d ′X =
∫

Rn×m

f ′(X −M ; O, Σ,m) d ′X = 1.

Define a mapping Φ1 : Rn×m → Rn×n as

S = Φ1(X) .= (X −M)(X −M)T . (16.41)

How will S be distributed? Half of this question is answered by the form of (16.39),
since we must have a distribution for S of the form ρ′(S;Σ,m) .= f ′(X −M ; O, Σ,m)
that looks like

ρ′(S;Σ,m) =
1

(2π)mn/2|Σ|m
2

e− 1
2 tr{Σ−1S}. (16.42)

However, this is a pdf relative to the measure d ′X. The other half of the problem boils
down to finding an appropriate measure of the form w(S) d ′S, where w(S) is a weighting
function that can be computed from the mapping Φ1(X) using differential geometric
methods.

Eaton [29] computes∫
S
+
n

|S|(m−n−1)/2 exp
[
−1

2
trS

]
d ′S = 2mn/2 · Γn(m/2),

indicating that when Σ = In,

w(S) =
|S|(m−n−1)/2

Γn(m/2)

will suffice.
More generally, from (16.33) with a = m/2,∫

S
+
n

|S|(m−n−1)/2 exp
[
−1

2
tr(Σ−1S)

]
d ′S = 2mn/2 · Γn(m/2) · |Σ|m/2.
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Thus, ∫
S
+
n

ρ′(S)w(S) d ′S = 1. (16.43)

Since constants and powers of |S| can be regrouped, the weighting function w(S) can
be absorbed into appropriate definitions of ρ(S) and dS such that∫

S
+
n

ρ(S) dS = 1.

There are an infinite number of ways to do this since part of w(S) can be absorbed
into ρ(S) and the remaining part can be absorbed into dS. In the literature, two of
the standard choices are described below. The first choice sets w(s) = 1 and keeps the
integration measure as the Lebesgue measure d ′S. The second choice uses the invari-
ant integration measure for S+

n viewed as the homogeneous space GL(n, R)/O(n). This
amounts to splitting up w(S) into two parts—one that gets incorporated into ρ and
the other into dS. We take the latter approach and define dS

.= |S|(n−1)/2d ′S. The
remaining part of w(S) is absorbed into the definition of the pdf.

16.6.2 Description When Using Lebesgue Versus Invariant
Integration Measure

From the discussion above, it becomes possible to write the following pdf on S+
n with

respect to the measure d ′S:

W ′
n(S;Σ,m) =

1
2n·m/2|Σ|m/2Γn(m/2)

e− 1
2 tr(Σ−1S)|S|(m−n−1)/2. (16.44)

W ′
n(S;Σ,m) is called the Wishart distribution (relative to measure d ′S). Note that

W ′
n(S;Σ,m) = ρ′(Σ−1S)w(S) from the previous section.
In the same way that a Gaussian distribution can be written with mean and covari-

ance as subscripts or as parameters after the semicolon, we can write

W ′
n(S;Σ,m) = W ′(S;Σ,m, n) = W ′

Σ,m,n(S),

moving quantities of interest back and forth between subscripts and locations after the
semicolon, depending on which is most convenient.

The significance of this distribution will be explored shortly. However, first we ex-
amine the equivalent distribution W (S;Σ,m) with respect to the measure dS obtained
from group theory. The details of the derivation are given in the following sections.

The result is that the “natural” measure on S+
n is

dS = |S|−(n+1)/2 d ′S. (16.45)

This measure has the nice properties that for well-behaved functions f : S+
n → R and

any A ∈ GL(n, R), ∫
S
+
n

f(S−1) dS =
∫

S
+
n

f(S) dS,

which follows from (16.28), and∫
S
+
n

f(S) dS =
∫

S
+
n

f(ASAT ) dS,

which follows from (16.29). See [29] for details and proof.
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The Wishart distribution Wn(S;Σ,m) defined relative to this measure is the one
that describes exactly the same probability as that in (16.44), which means that

Wn(S;Σ,m) dS = W ′
n(S;Σ,m) d ′S,

or

Wn(S;Σ,m) =
1

2n·m/2|Σ|m/2Γn(m/2)
e− 1

2 tr(Σ−1S)|S|m/2 = Wn(Σ− 1
2 SΣ− 1

2 ; In,m).

(16.46)

In the following section the derivation of dS (or equivalently, w(S) = |S|−(n+1)/2) is
given. There are two cases—m = n and m > n, each of which is discussed separately
below.

16.7 Invariant Integration on S+
n

This section fills in some of the details regarding properties that were stated and used
in the previous section. First, a general theorem is stated and then it is illustrated in
the context of differential forms.

Theorem 16.1 (Wishart). Let X ∈ Rn×m with m ≥ n and let f : S+
n → R≥0. If

f(XXT ) is a pdf with respect to the measure dX
.= |XXT |−m/2d ′X and S = XXT,

then 2−n ·Vol(Vn,m) · f(S) is a pdf with respect to the measure dS
.= |S|−(n+1)/2d ′S. In

other words, ∫
Rn×m

f(XXT ) dX = 2−n ·Vol(Vn,m) ·
∫

S
+
n

f(S) dS = 1, (16.47)

or, equivalently, if f ′(S) .= f(S)|S|−m/2, then∫
Rn×m

f ′(XXT ) d ′X = 2−n ·Vol(Vn,m) ·
∫

S
+
n

f ′(S)|S|(m−n−1)/2 d ′S = 1. (16.48)

For the proof, see [29, pp. 220–224], combined with (16.36).
From a Lie-group perspective, the measure dX = |XXT |−m/2 d ′X is invariant under

actions of the direct product group GL(n, R)×O(m) of the form (A,O) ·X = AXOT,
where (A,O) is a typical element of GL(n, R) × O(m). That this is a valid action is
verified as follows:

((A1, O1) ◦ (A2, O2)) ·X =(A1A2, O1O2) ·X = (A1A2)X(O1O2)T

=A1(A2XOT
2 )OT

1 = (A1, O1) · ((A2, O2) ·X).

Using (16.24), the invariance of this measure is observed as

|(AXO)(AXO)T |−m/2 d ′(AXO)= |AXOOT XT AT |−m/2|A|m|O|n d ′X
= |AAT |−m/2|XXT |−m/2|A|m|O|n d ′X
= |XXT |−m/2 d ′X.

In the subsections that follow, the equivalence of the measures dX and 2−n ·
Vol(Vn,m) · dS are viewed from the perspective of differential forms, demonstrated with
low-dimensional examples.
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16.7.1 Jacobians for Matrix Decompositions Related to S+
n

A connection between multivariate analysis and the theory of integration on Lie
groups and homogeneous spaces in Chapter 12 is that SO(n)\GL+(n, R) ∼= S+

n
∼=

GL+(n, R)/SO(n). Thus, integration on S+
n can be viewed as integration on a homoge-

neous space. However, it is not necessarily the case that the Haar measure for GL+(n, R)
will decompose into a product of the Haar measure for SO(n) and the GL+(n, R)-
invariant measure for S+

n . Additionally, there are many measures on S+
n that are SO(n)

invariant. This point will be illustrated with examples in this section, together with the
mechanics of computing Jacobian trasformations related to S+

n , such as the Cholesky
and spectral (eigenvector–eigenvalue) decompositions.

As a first example, consider the two-dimensional polar decomposition. Let

X =
(

x11 x12
x21 x22

)
, P =

(
p11 p12
p12 p22

)
, S =

(
s11 s12
s12 s22

)
, O =

(
cos θ − sin θ
sin θ cos θ

)
be related as follows:

X = PO and S = P 2.

Here, X ∈ GL+(2, R), O ∈ SO(2), and P, S ∈ S+
2 . If X had been taken to be in

GL(2, R), then O would be taken to be in O(2).
A straightforward calculation then gives

ds11 ∧ ds12 ∧ ds22 = 4 |P | tr(P ) dp11 ∧ dp12 ∧ dp22 =⇒ d ′S = 4 |P | tr(P ) d ′P

and

dx11∧dx12∧dx21∧dx22 = tr(P ) dθ ∧dp11∧dp12∧dp22 =⇒ d ′X = tr(P ) dθ d ′P. (16.49)

Using the fact that S = P 2, and therefore |P | = |S| 12 , these can be combined to give

d ′X =
1

4|S| 12 dθ d ′S =
4π
22 |S|−

1
2 dO d ′S, (16.50)

where 4π is the volume of O(2) and dO = dθ/4π is its normalized Haar measure. The
reason for writing (16.50) without canceling the factor of 4 will be explained in Section
16.7.2.

This same result could have been obtained without using differential forms by com-
puting the product S = PO and stacking the nonredundant entries in these matrices
as ⎛⎝s11

s12
s22

⎞⎠ =

⎛⎝ p2
11 + p2

12
p11p12 + p12p22

p2
12 + p2

22

⎞⎠
and then

d ′S = |J | d ′P,

where

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂s11

∂p11

∂s11

∂p12

∂s11

∂p22

∂s12

∂p11

∂s12

∂p12

∂s12

∂p22

∂s22

∂p11

∂s22

∂p12

∂s22

∂p22

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 4 ·

∣∣∣∣∣∣
p11 p12 0
p12 p11 + p22 p12
0 p12 p22

∣∣∣∣∣∣ = 4 · |P | · tr(P ).
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It is interesting to note in passing that in the three-dimensional case when P, S ∈ S+
3 , the

computation is much more formidable and the result becomes d ′S = 8 · |P | · |tr(P )I3 −
P | d ′P

Returning to (16.49) and dividing both sides by |X|2 = |P |2 gives

dX = |X|−2 d ′X = 4 tr(P )|P |−2 dθ d ′P = 4 tr(P )|P |− 1
2 dθ dP (16.51)

since dP = |P |− 3
2 d ′P . Note that the factor tr(P )|P |− 1

2 is a function of the matrix
invariants of P , and hence invariant under the action of SO(2) on S+

2 of the form
P → OPOT . What (16.51) shows is that the Haar measure for GL+(2, R) does not
neatly decompose into a product of the Haar measure for SO(2) < GL+(2, R) and the
homogeneous space S+

2
∼= GL+(2, R)/SO(2).

However, as (16.50) illustrates, when X = S
1
2 O, and so X2 = S,

dX = |X|−2 d ′X =
4π
22 |S|−

3
2 dO d ′S =

4π
22 dO dS; (16.52)

thus, in this parameterization it is possible to decompose the Haar measure for GL+(2, R)
into the product of Haar measure for SO(2) and the GL+(2, R)-invariant measure for
S+

2 . The lesson learned is that parameterizations matter. For this reason, Jacobians
for some of the most important parametrizations of S+

n are discussed below and are
illustrated in the 2× 2 case.

Jacobian for the Cholesky Decomposition

Recall from the Appendix of Volume 1 that the Cholesky decomposition of a symmetric
positive-definite matrix, S ∈ S+

n , is of the form S = TT T , where T is an upper triangular
n×n matrix with positive entries on the diagonal.6 For example, in the case when n = 2,(

s11 s12
s12 s22

)
=

(
t11 0
t12 t22

)(
t11 t12
0 t22

)
.

Arranging the nonredundant entries on each side into the form of a vector gives⎛⎝s11
s12
s22

⎞⎠ =

⎛⎝ t211
t11t12

t212 + t222

⎞⎠ .

Computing the Jacobian determinant is then straightforward and

d ′S = ds11 ds12 ds22 = 4 t211 t22 dt11 dt12 dt22 = 4 t211 t22 d ′T.

The GL+(2, R)-invariant measure for S+
2 in this parameterization is then

dS =
4t211t22
t311t

3
22

d ′T =
4

t11t222
d ′T.

These generalize in the n-dimensional case as [31, 47]

d ′S = 2n
n∏

k=1

(tkk)n+1−k d ′T and dS = 2n
n∏

k=1

(tkk)−k d ′T. (16.53)

6These upper triangular matrices form a Lie group under the operation of matrix multipli-
cation, but this fact will not be used here.
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Jacobian for the Spectral Decomposition

Recall from Volume 1 that the spectral decomposition of a symmetric positive-definite
matrix S ∈ S+

n is of the form S = QΛQT , where Q is the orthogonal matrix consisting
of the normalized eigenvectors of S and Λ is the diagonal matrix with the eigenvalues
of S (which are all real) ordered on the diagonal. It does not matter if this ordering is
from least to greatest or vice versa.

For example, in the case when n = 2,(
s11 s12
s12 s22

)
=

(
cos θ − sin θ
sin θ cos θ

)(
λ1 0
0 λ2

)(
cos θ sin θ
− sin θ cos θ

)
.

Then ⎛⎝s11
s12
s22

⎞⎠ =

⎛⎝λ1 cos2 θ + λ2 sin2 θ
(λ1 − λ2) cos θ sin θ
λ1 sin2 θ + λ2 cos2 θ

⎞⎠
and

d ′S = |λ1 − λ2| dλ1 dλ2 dθ =⇒ dS =
|λ1 − λ2|
(λ1λ2)

3
2

dλ1 dλ2 dθ.

The absolute value sign is introduced to kill any sign dependence due to the ordering
chosen for the eigenvalues along the diagonal of Λ.

The above formula generalizes to the n-dimensional case as [31, 68, 101]

d ′S = Vol(SO(n)) ·
∏
i<j

|λi − λj | d ′ΛdQ and

dS = Vol(SO(n)) ·
∏

i<j |λi − λj |∏n
k=1 λ

n+1
2

k

d ′ΛdQ, (16.54)

where dQ is the normalized Haar measure for SO(n) and d ′Λ .=
∏n

k=1 dλk = dλ.

Decompositions Similar to the Weyl Integration Formula

Using the results referenced previously, integrals over spaces of n × n symmetric real
matrices Sn and Hermitian matrices Hn can be decomposed in a manner analogous to
the Weyl integration formula, which was discussed in Section 12.4.3 in the context of
integrals over compact Lie groups. In particular, Faraut [35] gave∫

Sn

f(S) d ′S =
πn(n+1)/4

n!
∏n

k=1 Γ (k/2)

∫
Q∈O(n)

⎡⎣∫
λ∈Rn

f(QΛQT )
∏
i<j

|λi − λj | dλ

⎤⎦ dQ,

where
∫

O(n) dQ = 1, and

∫
Hn

f(H) d ′H =
πn(n−1)/2∏n

k=1 k!
·
∫

U(n)

⎡⎣∫
Rn

f(V ΛV ∗) ·
∏
i<j

(λi − λj)2 dλ

⎤⎦ dV,

where
∫

U(n) dV = 1 and

d ′H =
n∏

i=1

dhii

∏
i<j

d(Re(hij)) d(Im(hij)).
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Note that although these integrals are similar to the Weyl integration formula for
compact Lie groups, the spaces Sn and Hn are neither compact nor are they Lie groups.
Such integrals appear in random matrix theory in the analysis of distributions of eigen-
values as n becomes large.

The following subsections address a decomposition that is of particular importance
in multivariate statistical analysis.

16.7.2 The Polar Decomposition When m = n

Given the pdf f(X;Σ, O,m) with respect to the measure dX, we would like to obtain
the pdf for S with respect to an appropriate measure dS.

Since we are starting with S = Φ1(X) in (16.41) and a pdf in X and we seek
the corresponding pdf in S, an inverse transformation of the form X = Ψ1(S) would
be convenient. However, since S has n(n + 1)/2 independent parameters and X has
n2 independent parameters, the mapping Φ1 is necessarily many-to-one and, hence,
not invertible. However, if we view Φ1 as only half of a larger picture in which X is
parameterized by S and an orthogonal matrix, A, via the polar decomposition X =
S

1
2 O, then a complementary mapping O = Φ2(X) = (XXT )− 1

2 X, where O ∈ O(n),
can be defined. Therefore, a combined mapping Φ = (Φ1, Φ2) can be defined where
Φ : Rn×n → S+

n × O(n) and (Φ1, Φ2)(X) = ((XXT )
1
2 , (XXT )− 1

2 X). This is bijective,
and the inverse mapping is Ψ = (Ψ1, Ψ2)(S,O) = S

1
2 O = X.

Viewing d ′X as an n2-form (with sign killed) and letting dO be the normalized
Haar measure in (16.37) (viewed as an n(n − 1)/2-form with sign killed) on O(n), the
corresponding pull-back form of the map Ψ is

d ′X = d ′(S
1
2 O) = |ωn,n| d ′(S

1
2 ) =

Vol(O(n))
2n

|S|− 1
2 dO d ′S. (16.55)

The factor of Vol(O(n)) comes from the relationship between the unnormalized volume
form ωn,n and the normalized dO in (16.37), and the factor of 2n comes from the fact
that S is n× n and it appears as a half-power in the polar decomposition of X.

The result in (16.55) can be written in terms of invariant forms as

dX = |XXT |−n/2 d ′X =
Vol(O(n))

2n
|S|−(n+1)/2 dO d ′S =

Vol(O(n))
2n

dO dS. (16.56)

Note that this generalizes (16.51).
Given any function f : S+

n → R (f need not be a pdf) measurable with respect to
|S|− 1

2 d ′S,∫
Rn×n

f ′(XXT ) d ′X =
∫

(S,A)∈S
+
n ×O(n)

f ′(S) d ′(S
1
2 O)

=2−n ·Vol(O(n)) ·
∫

S
+
n

∫
O(n)

f ′(S) |S|− 1
2 dO d ′S

=2−n ·Vol(O(n)) ·
∫

S
+
n

f ′(S) |S|− 1
2 d ′S.

In the case when f(S) .= f ′(S)|S|n/2 is a pdf with respect to dS, then Wishart’s
theorem can then be stated in the m = n case as∫

Rn×n

f(XXT ) dX = 2−n ·Vol(O(n)) ·
∫

S
+
n

f(S) dS = 1. (16.57)
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16.7.3 The Polar Decomposition When m > n

The same sort of derivation that was used in the case when m = n can be used with
minor adjustments when X ∈ Rn×m with m > n. In particular, the polar decomposition
X = (XXT )

1
2 ·(XXT )− 1

2 X (here, · is just matrix multiplication) can still be performed.
Since m > n, XXT is nonsingular and so (XXT )− 1

2 is meaningful. The difference
between this case and the n = m case is that whereas (XXT )

1
2

.= S ∈ S+
n , (XXT )− 1

2 X
.=

V T ∈ Rn×m is no longer an orthogonal matrix, since it is not square. However, V T V =
In, indicating that V ∈ Vn,m. Note that here the roles of n and m are reversed relative
to how they were used in Section 16.5.4.

Counting dimensions, there are n ·m degrees of freedom in X. There are n(n + 1)/2
degrees of freedom in S and there are m·n−n(n+1)/2 degrees of freedom in V . Therefore,
the degrees of freedom in S and in V add up to those in X, and the decomposition
X = S

1
2 V T can be used in analogy with the way the decomposition S

1
2 A was used

when n = m.
In parallel with the discussion in Section 16.7.2, viewing d ′X as an (n ·m)-form with

sign killed,

d ′X = d ′(S
1
2 V T ) = |ωn,m| d ′(S

1
2 ) = 2−nVol(Vn,m)|S|(m−n−1)/2 dV d ′S,

or

dX = |XXT |−m/2 d ′X = 2−nVol(Vn,m)|S|−(n+1)/2 dV d ′S = 2−nVol(Vn,m) dV dS.

Given any function f ′ : S+
n → R measurable with respect to |S|(m−n−1)/2 d ′S, it

follows that∫
Rn×m

f ′(XXT ) d ′X =
∫

(S,V )∈S
+
n ×Vn,m

f ′(S) d ′(S
1
2 V T )

=2−n ·Vol(Vn,m) ·
∫

S
+
n

∫
Vn,m

f ′(S) |S|(m−n−1)/2 dV d ′S

=2−n ·Vol(Vn,m) ·
∫

S
+
n

f ′(S) |S|(m−n−1)/2 d ′S.

Here, dV is the normalized integration measure for the Stiefel manifold in (16.38) with
the roles of m and n reversed.

As a sanity check, consider the case when n = 1 and m = 2 and

X = [x, y] = r · [cos θ, sin θ] = PO.

Then s = r2, and so 2r dr = ds. Therefore

dx ∧ dy = r dr ∧ dθ = r
ds

2r
∧ dθ =

1
2

ds ∧ dθ

can be written with sign killed as

d ′X = dx dy =
1
2

dθ ds =
4π
2

dO d ′S.

Integrating over O(2) then removes dθ and replaces it with 4π, giving the measure 2π ds.
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16.8 Wishart Distributions: Applications in Multivariate
Statistics

The previous section treated the Wishart distribution from the perspectives of prob-
ability and geometry. This section examines applications of the Wishart distribution
in multivariate statistical analysis. In doing so, two related probability densities on
S+

n arise: the noncentral Wishart distribution and the inverse (or inverted) Wishart
distribution.

16.8.1 The Wishart Distribution

Although the main purpose of the discussion of the Wishart distribution in the previous
chapter was to illustrate how geometric and group-theoretic ideas can related to prob-
lems in probability, as a practical matter the Wishart distribution is used extensively
by applied statisticians.

Given a set of samples X1,X2, . . . ,Xm ∈ Rn with m ≥ n, it was discussed in
Section 16.2 how the sample mean and sample covariance are computed. Furthermore,
if the samples are drawn from a Gaussian distribution, the expected value of the sample
mean will be the mean of the Gaussian and the covariance of the sample mean will be
proportional to the covariance of the Gaussian from which the samples are drawn and
will be inversely proportional to the number of samples. Additionally, we also know that
the sample covariance will approximate the covariance of the underlying Gaussian well
when there is a large number of samples. However, what about the “covariance of the
sample covariance”? In other words, what amount of dispersion or deviation should we
expect around this covariance value if we perform many draws?

Actually, the answer is that S =
∑

i(Xi − μ)(Xi − μ)T is distributed according to
the Wishart distribution. Unlike results pertaining to the sample mean, the distribution
of the sample covariance is a parametric result; that is, it depends on the samples being
drawn from a Gaussian. This should not be too surprising since the Wishart distribution
originated by manipulating a Gaussian in (16.40).

It is common in the multivariate statistics literature to write W ′
n(S;Σ,m) from

(16.44) in the form

W ′(S;Σ,m, n) =
1

c(Σ,n, p)
· |S| 12 (m−n−1) exp

(
−1

2
trΣ−1S

)
, (16.58)

where

c(Σ,m, n) = 2mn/2πn(n−1)/4|Σ|m/2
n∏

i=1

Γ [(m + 1− i)/2)].

Here, the classical Gamma function is used instead of the multivariate Gamma function
using the result from (16.81).

16.8.2 The Noncentral Wishart Distribution

Given X = [x1, . . . ,xm] ∈ Rn×m, each column of which is a Gaussian governed by
the pdf ρ(xi; μi, Σ), the noncentral Wishart distribution characterizes the variable Z =
XXT ∈ S+

n rather than S = (X − M)(X − M)T ∈ S+
n , where M = [μ1,μ2, . . . ,μm].

In other words, Z describes the distribution from the origin, O ∈ Rn×n, which is a
perspective offset from the mean, or “center,” M . The noncentral Wishart distribution
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is derived starting from the same point as the regular Wishart distribution. If we let
X = Z

1
2 V , where V ∈ Vn,m, then

tr
[
Σ−1(X −M)(X −M)T

]
=tr

[
Σ−1(Z

1
2 V −M)(Z

1
2 V −M)T

]
=tr

[
Σ−1(Z − Z

1
2 V MT −MT V T Z

1
2 + MMT )

]
=tr

[
Σ−1(Z + MMT )

]− 2 tr
[
Σ−1(Z

1
2 V MT )

]
.

Since this trace originated from inside of an exponential, it should come as no surprise
that returning to that exponential and integrating out the dependence on V gives

W ′
nc(Z;Σ,M,m, n)

= c′(Σ,M,m, n) exp
{
−1

2
tr
[
Σ−1(Z + MMT )

]} ·
∫

Vn,m

e
tr

[
Σ−1(Z

1
2 V MT )

]
dV.

(16.59)

The noncentral Wishart distribution has a long history in multivariate statistics. See,
for example, James [52] and Anderson [4] (see discussion in [36] for more references).
We will not be concerned with computing the constant c′(Σ,M,m, n). However, view
(16.59) as an application of integrals over groups and coset spaces. In particular, the
integral over the Stiefel manifold can be viewed as one over the orthogonal group O(m),
using the result of Exercise 16.13 as∫

Vn,m

e
tr

[
Σ−1(Z

1
2 V MT )

]
d ′V =

2nπmn/2

Γn(m/2)

∫
O(m)

e
tr

[
Σ−1(Z

1
2 V (O)MT )

]
d ′O,

where d ′V = ωn,m and d ′O = ωm,m are unnormalized measures and V (O) =
[o1, . . . ,on] ∈ Vn,m.

16.8.3 The Inverse Wishart Distribution

If S ∈ S+
p is distributed according to the pdf W ′

n(S;Σ,m) with respect to measure d ′S,
then B = S−1 is distributed as [2]

W ′−1
n (B;Ψ,m) =

|Ψ |m/2 e− 1
2 tr(ΨB−1)

2mn/2Γn(m/2)|B|(m+n+1)/2 (16.60)

with respect to measure d ′B, where Ψ = Σ−1 is called the precision matrix. If Σ is
thought of in terms of how spread out a distribution is, then Ψ describes how concen-
trated a distribution is. The so-called inverse Wishart distribution W ′−1

n (·) in (16.60)
is obtained from W ′

n(·) and the Jacobian for the mapping inv : S+
n → S+

n defined by
inv(S) = S−1.

When written in terms of the measure dB, this becomes

W−1
n (B;Ψ,m) =

|Ψ |m/2 e− 1
2 tr(ΨB−1)

2mn/2Γn(m/2)|B|m/2 . (16.61)

This can be useful because in some applications, it is the inverse of the covariance
matrix that arises rather than the covariance matrix itself. For example, in the analysis
of biomolecular stiffness matrices in Chapter 14, the stiffness matrices were the inverse
of the covariance matrices.
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16.9 Non-Gaussian Multivariate Statistics

Although the emphasis of this chapter has been on multivariate Gaussian statistics,
obviously not all multivariate problems fall within this framework. As an example of a
non-Gaussian multivariate distribution’s the generalized Student t-distribution is dis-
cussed briefly here. See [47, 63] for more details.

Given any function f : R≥0 → R≥0, a pdf on Rp can be defined as ρf (x;0, I) .=
f(xT x)/

∫
Rp f(xT x) dx, where the normalization ensures that

∫
Rp ρf (x) dx = 1. The

normalization can be incorporated into the definition of f(·), and so without loss of
generality, it can be assumed that

∫
Rp f(xT x) dx = 1.

The distribution ρf (x;0, I) will be spherically symmetric about the origin. The ap-
plication of an affine transformation together with appropriate scaling will give rise to
a new pdf of the form

ρf (x;m, C) .= |C|− 1
2 f((x−m)T C−1(x−m)). (16.62)

The contours of equal probability density will be hyper-ellipsoids. As a concrete exam-
ple, if f(y) = (2π)−n/2e−y/2, then ρf (x; μ, Σ) will be the usual multivariate Gaussian
distribution, ρ(x; μ, Σ). However, for other choices of f(·), Σ need not be equal to C
and ρf (·) need not be Gaussian.

As another example, when

fm,n(y) = t(y;m,n) .=
Γ ((m + n)/2)

(πm)n/2Γ (m/2)

(
1 +

y

m

)−(m+n)/2
,

then

t(x; μ, Σ,m, n) .= t((x− μ)T C−1(x− μ);m,n) (16.63)

is called the multivariate Student’s t-distribution with m degrees of freedom on Rn.
Given x ∈ Rn and the parameters μ ∈ Rn, R ∈ Sn

+, and k ∈ Z>0 (called the degree
of freedom), the multivariate t-distribution is defined as

t(x;μ,R, k) .=
Γ ((k + n)/2)

(πk)n/2Γ (k/2)|R| 12
[
1 +

1
k

(x− μ)T R−1(x− μ)
]−(k+n)/2

. (16.64)

Here, the correlation matrix, R = [rij ], is related to the covariance matrix, Σ = [σij ],
by the definition7

rij =
σij

(σiiσjj)
1
2
. (16.65)

Given N such variables xi ∈ Rn for i = 1, . . . , N that are each independently
distributed, the resulting joint pdf on the matrix X = [x1,x2, . . . ,xN ] ∈ Rn×N will
be distributed as T (X;μ,R, k) .=

∏N
i=1 t(xi;μ,R, k). A distribution related to (but not

identical with) this is the multivariate t model [54]

7Often in the literature the notation Corr(Xi, Xj) is used for the matrix entries Rij and
Cov(Xi, Xj) is used for σij , where Xi is the random variable corresponding to the coordinate xi.
The difficulty with using that notation here is that it would become confusing when discussing
statistics on Lie groups where Xi is standard terminology
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T ′(X;μ,R, k)

.=
Γ ((k + n)/2)

(πNk)n/2Γ (k/2)|R|N
2

[
1 +

1
k

N∑
i=1

(xi − μ)T R−1(xi − μ)

]−(k+n·N)/2

=
Γ ((k + n)/2)

(πNk)n/2Γ (k/2)|R|N
2

[
1 +

1
k

tr

(
R−1

N∑
i=1

(xi − μ)(xi − μ)T

)]−(k+n·N)/2

=
Γ ((k + n)/2)

(πNk)n/2Γ (k/2)|R|N
2

[
1 +

1
k

tr
(
R−1(X −M)(X −M)T

)]−(k+n·N)/2

,

where M = [μ,μ, . . . ,μ].
This model can be written as a continuous Gaussian mixture model as [55]

T ′(X;μ,R, k)

= (2π)−nN/2
∫ ∞

0
|τ2R|−N/2 exp

[
−1

2
tr
(
(τ2R)−1(X −M)(X −M)T

)]
h(τ) dτ,

where

h(τ) =
2τ−(1+k)

(2/k)k/2Γ (k/2)
exp(−k/2τ2)

is the so-called inverted Gamma distribution.
Corresponding to this distribution of X is a distribution of S = (X−M)(X−M)T ∈

Sn
+, which serves as an analog of the Wishart distribution. This distribution has the

form [63]

M ′(S;R, k) =
Γ ((k + n)/2)

kn/2Γ (k/2)Γn(N/2)
[k + tr(R−1S)]−(k+n(N−1))/2

|R|(N−1)/2|S|(N−n−2)/2 .

It follows from the representation of T ′(X;μ,R, k) as a Gaussian mixture model that
the above distribution of S will be a mixture of Wishart distributions.

From this example it should be clear that all of the geometry that went into defining
integration measures on Stiefel manifolds, Sn

+, and GL(n, R) are useful regardless of
whether the statistical problem is Gaussian or not. Additionally, knowledge of Gaussians
and Wishart distributions can be used as a starting point for discussions of a wide variety
of other multivariate distributions.

16.10 Random Facts About Random Matrices

A rich theory has developed over the past century that makes connections between in-
variant integration on the unitary group U(n), the distribution of eigenvalues of random
n×n Hermitian matrices, and the classical Gaussian distribution. In this section some of
these relationships are summarized, and pointers to the literature are provided. Recent
books on random matrix theory and applications include [1, 7, 8, 97].

Three very different kinds of problems associated with random matrices are reviewed
here: (1) defining matrices by filling their entries with random samples drawn from a
specified distribution (such as a univariate Gaussian on the real line or bi-variate Gaus-
sian on the complex plane) and examining the asymptotic behavior of these matrices
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as their dimensions become infinite; (2) considering whole matrices as samples drawn
from pdfs on spaces of matrices (e.g, random symmetric matrices drawn from a Wishart
distribution, or unitary matrices drawn from the Haar measure for a compact matrix
Lie group); and (3) the behavior of products of random matrices, and the relationship
between such problems and random walks and convolutions on groups. Although this
list is not complete and does not address the physical significance of these problems,
sufficient pointers to the literature are given in order that the reader will be able to
begin navigating this immense literature. The three subsections that follow flesh out
each of the three broad areas listed above.

16.10.1 Random Matrices Defined at the Component Level

In this subsection random matrices are defined by filling real matrix entries by sampling
randomly from a fixed univariate distribution, and the resulting properties of such ma-
trices are discussed. The complex case follows in a similar way, with entries drawn at
random from an isotropic bivariate distribution centered at the origin in the complex
plane. A topic not discussed here is that of random matrices with correlations between
adjacent entries, as can be the case when noisy image data is obtained from experimental
techniques such as electron microscopy [74].

Simple Limiting Behaviors as Dimensions Become Infinite

To begin, let Mn = [mkl] denote an n × n matrix with real entries and let M(N) .=
{M (1)

n ,M
(2)
n , . . . ,M

(N)
n } denote a set of such matrices. Can anything special be said

about the structure of Mn if each mkl is defined by independently sampling each of
these entries from a univariate Gaussian distribution with zero mean and unit variance?
Can anything special be said about the ensemble behavior of the collection M(N)?

Let us address this second question first. Let F : Rn×n → Rn×n be some matrix
function, and for fixed n and N , define

〈F (Mn)〉M(N)
.=

1
N

N∑
k=1

F (M (k)
n ). (16.66)

Clearly, in the case when F1(Mn) = Mn and F2(Mn) = (Mn)2, (16.66) becomes

lim
N→∞

〈Mn〉M(N) = On and lim
N→∞

〈(Mn)2〉M(N) = In, (16.67)

respectively.
The first limit follows from the fact that each entry has zero mean, and the second

follows from the independence of the entries (which is why nondiagonal entries go to 0)
and the unit variance of the distribution from which entries are drawn (which gives
values of unity on the diagonal). Note that the equalities in (16.67) do not depend on
the entries being Gaussian, but only on the fact that they are zero mean, unit variance,
and independent and identically distributed (iid).

Two other limiting behaviors can also be reasoned quite easily:

lim
N→∞

〈
1
n

MnMT
n

〉
M(N)

= In and lim
n→∞

1
n

MnMT
n = In. (16.68)

The first of these is a statement about averages taken over an infinite ensemble consisting
of matrices with fixed finite dimension n, and the second is a statement about the
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behavior of individual matrices with iid entries drawn from a univariate zero-meanunit-
variance distribution in the case when the dimensions of the matrix become infinite. In
particular, the second equality says that 1√

n
Mn becomes orthogonal as n →∞.

If instead of sampling from a univariate distribution, the entries mkl are defined to
be complex numbers drawn from a bivariate distribution of the form F (x, y) = f(x)f(y)
on the complex x − y plane with μf = 0 and σ2

f = 1/2, then statements analogous to
(16.67) and (16.68) can be made with the transpose being replaced by the Hermitian
conjugate and orthogonality being replaced by unitarity.

Wigner’s Semi-circle Law

In the above discussion, no structure was given to the matrices other than the way that
individual entries were sampled at random. One simple way to add additional structure
is the following. Construct a large Hermitian matrix Wn with entries wkl = xkl + iykl

with k ≤ l, where xkl and ykl are drawn independently and at random from a univariate
distribution with zero mean and variance σ2. Then fill in the remaining values as wlk =
wkl. Alternatively, one could start with a complex random matrix Mn with no structure
such as those discussed above and define Wn = 1

2 (Mn + M∗
n).

How will the eigenvalues of the matrix 1
nWn be distributed as n → ∞? This is a

problem proposed by Wigner. In the real case (ykl = 0), the resulting distribution of
eigenvalues is of the form

p(λ) = fW (λ; 2σ), where fW (x;R) .=
2

πR2

√
R2 − x2. (16.69)

The distribution fW (x;R) is called Wigner’s semi-circle distribution, which is a pdf
in the variable x for any x ∈ [−R,R]. The fact that p(λ) in (16.69) follows Wigner’s
semi-circle distribution is called Wigner’s semi-circle law. This law is considered by
many to be the starting point of the field of random matrices. Such matrices have
applications in physics and in the theory of communications. Classic references include
the works of Wigner [101–103], Dyson [27, 28], and Mehta [67, 68] from physics and
a number of mathematicians [15, 38, 66]. Connections between random matrix theory
and communications/information theory include [9, 64, 95].

In the following subsection, concepts of random matrices in which whole matrices are
considered as samples from a distribution of matrices are reviewed. This is a very dif-
ferent way to construct random matrices than the component-based approach discussed
above and ties in to the discussion of multivariate statistical analysis from earlier in this
chapter.

16.10.2 Random Matrices Defined by Sampling from Distributions
on Lie Groups and Their Homogeneous Spaces

Previously in this section, random Hermitian and unitary matrices defined at the com-
ponent level were discussed. Another kind of random Hermitian matrices would be those
that are drawn at random from a complex version of the Wishart distribution. In that
context, since Hermitian matrices are always unitarily diagonalizable, it makes sense to
expect that relationships for the eigenvalues that result can be obtained by marginaliz-
ing over U(n) the distributions from which the matrices are drawn. Other questions can
be asked about the ensemble behavior and covariances of distributions of eigenvalues of



16.10 Random Facts About Random Matrices 261

unitary or orthogonal matrices drawn from pdfs on compact matrix Lie groups such as
U(n), SU(n), or SO(n). In particular, if the pdfs from which such matrices are drawn
at random are class functions, then statements about eigenvalues are obtained easily
from the Weyl integration formula.

Random Versus Deterministic Sampling of Orthogonal Matrices

In many practical applications such as robot motion planning or protein–protein dock-
ing, it is important to sample the rotation group. This sampling can be deterministic
or random, but the desire is that the histogram of the resulting samples gets “close
to” the uniform distribution as the number of samples is increased. Moreover, it is
desirable for the speed of convergence to the uniform distribution to be fast so that,
practically speaking, the number of samples can be smaller than would be the case
otherwise. Deterministic almost-uniform sampling on SO(n) [70] (and SO(3) in par-
ticular [109]) have been developed recently. Generating random orthogonal matrices is
discussed in [3, 49, 89, 105] and in [29, 30]. Random sampling from general compact
Lie groups is discussed in [69]. Given a parametrization of a Lie group and a pdf f(g),
it is always possible possible to sample randomly as discussed at the beginning of this
chapter. This is not restricted to the compact case.

Closed-Form Integrals over the Full Orthogonal Group

Recall that the full orthogonal group O(n) can be described as two components and
therefore is equivalent as a manifold to {−1,+1} × SO(n). Integration over O(n) is
therefore equivalent to integration over both components, each of which is like SO(n).
When n is odd, the mapping O → −O takes O from one component to the other,
whereas in the even-dimensional case, multiplication by −1⊕ In−1 will serve. Therefore,
integration over O(n) can be thought of as integration over two copies of SO(n).

Using the fact that integration over the n×n orthogonal matrices can be computed
as [41] ∫

O(n)
OijOlk dO =

1
n

δilδjk, where
∫

O(n)
dO = 1, (16.70)

Giri [41] lists the following:∫
O(n)

tr(AOBOT ) dO =
(trA)(trB)

n
, (16.71)∫

O(n)
[tr(AOBOT )]2 dO =

(trA2)(trB2)
n(n + 1)

, (16.72)∫
O(n)

tr(AO) tr(BO) dO =
tr(ABT )

n
. (16.73)

These integrals, as well as ones over GL(n, R), arise in some problems in multivariate
statistical hypothesis testing

Properties of Random Positive-Definite Matrices

If S ∈ S+
n , f(S) is a pdf on S+

n with respect to the measure dS, S = OΛOT , where
O ∈ O(n), and

Λ = diag[λ1, λ2, . . . , λn] and λ1 > λ2 > · · · > λn > 0,
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then the function [71]

ρf (λ1, λ2, . . . , λn) .=
πn2/2

Γn(n/2)

∏
1≤i<j≤n

(λi − λj)
∫

O(n)
f(OΛOT ) dO (16.74)

is a pdf on (R>0)n with respect to dλ1 ∧ dλ2 ∧ · · · ∧ dλn. Additionally, in the special
case when f(S) = W (S;m,σ2In) with m ≥ n, then

ρW (m,σ2In)(λ1, λ2, . . . , λn)

=
πn2/2

(2σ2)mn/2Γn(n/2)Γn(m/2)
exp

(
− 1

2σ2

n∑
i=1

λi

)
n∏

k=1

λ
(m−n−1)/2
k

∏
1≤i<j≤n

(λi − λj).

This is illustrates one of many possible connections between integration on Lie groups
and random matrix theory which results from being able to perform integrals of the form

I =
∫

O(n)
f(OΛOT ) dO

in closed form.

Closed-Form Integrals on U(n)

Let C denote the complex plane and let z = x+ iy denote an arbitrary complex number
where x, y ∈ R. Any function φ : C → C can be integrated with respect to the Gaussian
distribution according to the definition∫

C

φ(z) dμ(z) .=
1
π

∫
R2

φ(x + iy) e−(x2+y2)dx ∧ dy.

As it turns out, this same value can be obtained by integrating on U(n); that is [16],∫
U(n)

φ(tr(W )) dW =
∫

C

φ(z) dμ(z), (16.75)

where φ(z) is any polynomial in z and z of degree less than or equal to 2n. Specifically,∫
U(n)

[tr(W )]k [tr(W )]l dW = ck,nδkl, where ck,n ≤ k!

for k ≤ n and cn,n = n!. In addition [16],∫
U(n)

r∏
p=1

|tr(W p)|2kp dW =
r∏

p=1

pkpkp!, where
r∑

p=1

pkp = n, (16.76)

and the above statement will also be true if both equal signs are replaced with inequal-
ities, <. The equality in (16.76) follows in part from the fact that [16, 26]∫

R2r

r∏
p=1

π

p
|xp + iyp|2kpe−π(x2

p+y2
p)/p dxp ∧ dyp =

r∏
p=1

pkpkp!.

The full proof involves the representation theory of the symmetric group and is beyond
the scope of the current presentation.
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16.10.3 Relationships Among Random Matrices, Random Walks,
and Convolutions on Groups

Let G be a unimodular matrix group. It can be either a finite or countably infinite
discrete group, a compact Lie group, or even a noncompact unimodular Lie group such
as SE(n), GL(n), or H(n). Since G is a matrix group, elements gi ∈ G drawn at
random from some probability distribution f(g) can be considered as random matrices
with structure defined by the fact that they belong to a group. Unlike the discussion in
Section 16.10.1 in which the matrices had no specific structure and could therefore be
added, the operation of addition of two group elements usually does not make sense.
However, adding or averaging IURs U(gi, λ) is perfectly acceptable as long as we do not
expect the result to be unitary. For example, if gi are drawn independently at random
from a well-behaved pdf f(g), then

lim
N→∞

1
N

N∑
k=1

U∗(gk, λ)= lim
N→∞

∫
G

(
1
N

N∑
k=1

δ(g−1
k ◦ g)

)
U(g−1, λ) dg (16.77)

=
∫

G

f(g)U(g−1, λ) dg = f̂(λ). (16.78)

In the particular case when f(g) = 1 is uniform with respect to the normalized Haar mea-
sure of a compact Lie group, f̂(λ) = Od(λ) (a zero matrix of appropriate size d(λ) > 1)
for all values of λ ∈ Ĝ except the first one, λ0 for which d(λ0) = 1, U(g, λ0) = 1, and
f̂(λ0) = 1.

Constructing products of group elements of the form g1◦g2◦· · ·◦gN defines a discrete-
time random walk on G. If many such walks are constructed, one would expect the dis-
tribution of this product to be captured by the n-fold convolution (f ∗ f ∗ · · · ∗ f)(g).
Even more than that, with an appropriate concept of mean and covariance, one would
expect that this distribution converges to some kind of analogue of the Gaussian distri-
bution. Indeed, this is the topic of Chapter 20.

16.11 Chapter Summary

This chapter has provided a brief introduction to multivariate statistical analysis from
the point of view of the theory of Lie groups. It began with an introduction to sam-
pling and resampling methods. In recent years, particle filtering/sequential Monte Carlo
sampling has become quite popular. Unfortunately, space limitations prevent a detailed
discussion of these, and excellent treatments already exist.

The space of all sample covariance matrices can be identified with the homogeneous
space S+

n = GL+(n, R)/SO(n), and therefore computing the probability that a sample
matrix is close to the covariance of an assumed underlying Gaussian distribution is per-
formed using integration measures derived from Lie theory. Integrals over orthogonal
groups enter naturally in this field. Similarly, in the statistical analysis of the distri-
bution of eigenvalues in a random Hermitian matrix, integrals over unitary groups are
computed. Therefore, even for data in Euclidean space, geometric and Lie-theoretic ideas
are applicable. In the chapters that follow, it will be shown how various applications fit
within the framework of probability and statistics on group manifolds.

Although we jumped right in to multivariate statistics and bypassed discussions
of univariate statistics, it can be useful to realize that the Wishart distribution can
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be viewed as the multi-dimensional generalization of the χ2-distribution (pronounced
chi square or chi squared where chi = “kai”), and likewise the noncentral Wishart
distribution is a generalization of the noncentral χ2-distribution. Many excellent books
exist on univariate statistics. The emphasis here has been on the multivariate case
because that is where geometric and Lie-theoretic issues arise.

In the limited space available to survey the extensive literature on multivariate
analysis and random matrix theory it was not possible to go into depth. The presenta-
tion provided here is most similar to those in [29, 30, 71]. For other treatments dedi-
cated to differential-geometric and group-theoretic treatments of multivariate statistics,
see [10, 11, 18, 36, 45, 47, 51, 104]. For the standard references in the field, which is now
almost 100 years old, see [2, 56, 77, 106]. For detailed Jacobian computations associ-
ated with transformation groups see [19, 23, 73]. Random matrix theory, which is now
50 years old, has attracted substantial recent interest. These new developments were
for the most part not integrated into this presentation. The interested reader can con-
sult [12, 44, 50]. Classic references include the works of Wigner [100–103], Dyson [27, 28],
and Mehta [67, 68] from the physics community, and a number of contributions from
mathematicians [15, 38, 66]. Connections between random matrix theory and commu-
nications/information theory include [9, 64, 95].

The rate of convergence to the semi-circle law as the number of samples increases has
been studied extensively [5, 6, 44] as has other ensembles of random matrices [15, 24].
Random matrices have been connected to problems in information theory for many
years [9], and most recently connections between random matrices and communication in
wireless networks has become a topic of interest [7, 64, 95]. Investigations of distributions
of eigenvalues and invariants of ensembles of random matrices include [26, 31, 39, 42,
66, 75, 76, 80, 82–88, 90–93, 110]. Various properties of products of random matrices
have been studied in [20, 38, 96–99, 111] Applications of random matrices in nuclear
and particle physics have been investigated [27, 28, 67, 68]. For other aspects and recent
work on random matrix theory, see [12, 17, 21, 24, 32, 37, 43, 46, 50, 57–62, 79, 80,
112].

The next chapter reviews the basics of Shannon’s theory of communication and
makes connections between problems in communication and the theory of Lie groups,
which we have already seen is related to random matrix theory. In subsequent chapters
the connection between pdfs on Lie groups, sampling methods using stochastic differen-
tial equations, and information-theoretic identities will be tied together in the context
of applications.

16.12 Exercises

16.1. Generate random samples for the pdf 1
2 sin θ on the interval [0, π] using the meth-

ods in Section 16.1: (a) the ITM method, (b) the transformation method, and (c) by
sampling inside the box [0, 1]3 in R3, accepting those samples that lie inside the unit
sphere, projecting them onto the unit sphere, converting to spherical coordinates, and
marginalizing over φ.

16.2. Use the classical inverse function theorem (16.3) together with the definitions of
Hodge star operator and pull-back from Chapter 6 to prove (16.4).

16.3. Fill in the details that lead to (16.39) from the preceding line; that is, given
x1, . . . ,xm where xi =

∑n
j=1 xjiej , show that
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m∑
i=1

xT
i Axi = tr(AXXT ), (16.79)

where X = [xij ].

16.4. Calculate the mean and covariance of pdfs of the form in (16.62). Does the corre-
lation matrix defined in (16.65) depend on f(·)?
16.5. For the case when p = 2 and p = 3, verify (16.70) and (16.71)–(16.73).

16.6. Verify (16.24) using (a) the properties of differential forms and (b) the Kronecker
product and conversion of the matrix equation Y = AXB to a vector equation y =
(BT ⊗̂A)x.

16.7. Show that in Rn, the volume n-form
n∧

i=1
dxi is expressed in spherical coordinates

x1 = r sin θ1 sin θ2 · · · sin θn−2 sin θn−1,

x2 = r sin θ1 sin θ2 · · · sin θn−2 cos θn−1,

x3 = r sin θ1 sin θ2 · · · cos θn−2,

...
...

xn−2 = r sin θ1 sin θ2 cos θ3,

xn−1 = r sin θ1 cos θ2,

xn = r cos θ1

as [71]
n∧

i=1

dxi = rn−1 ·
(

n−2∏
k=1

sinn−k−1 θk

)
·
(

n−1∧
i=1

dθi

)
∧ dr (16.80)

and verify that

|G(r,θ)| 12 = rn−1 sinn−2 θ1 sinn−3 θ2 · · · sin θn−2 = rn−1
n−2∏
k=1

sinn−k−1 θk.

16.8. Let S ∈ S+
n and use the Cholesky decomposition S = TT T . Prove (16.53) where

T is an upper triangular matrix and d ′T is computed in the same way for T as d ′S is
for symmetric S.

16.9. Show that the multivariate Gamma function defined in (16.32) is related to the
usual one as

Γn(a) = πn(n−1)/4
n∏

i=1

Γ [a− (i− 1)/2], where a− (i− 1)/2 ∈ R>0. (16.81)

Hint: Use the result of the Exercise 16.8.

16.10. Prove that the Stiefel manifold Vm,n can be identified with a subset of the sphere of
radius

√
m in mn-dimensional space, Smn−1√

m
, by stacking columns and for each V ∈ Vm,n

to define V ∨ ∈ Rn·m.
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16.11. If G is a compact Lie group, U(g, λ) is an IUR of G, and H = H∗ is a constant
Hermitian matrix, what will be the relationship between H and

M = lim
N→∞

1
N

N∑
k=1

U∗(gk, λ)HU(gk, λ)

if gk are independent random samples drawn from the Haar measure of G?

16.12. Which of the following binary operations (if any) convert Sn
+ into a Lie group?

(Σ1, Σ2) −→ 1
2

(Σ1Σ2 + Σ2Σ1) ,

(Σ1, Σ2) −→ 1
4

(
Σ

1
2
1 Σ

1
2
2 + Σ

1
2
2 Σ

1
2
1

)2
,

(Σ1, Σ2) −→ Σ
1
2
1 Σ2Σ

1
2
1 ,

(Σ1, Σ2) −→ (Σ1Σ
2
2Σ1)

1
2 .

16.13. The Stiefel manifold Vm,n can be viewed as the coset space O(n)/O(n − m).
Therefore, when using the unnormalized Haar measures for O(n) and O(n −m), how
should Vol(Vm,n) in (16.36) be related to Vol(O(n)) and Vol(O(n−m))?

Hint: What is the Lie-group version of Lagrange’s theorem?

16.14. The Group O(m) acts on Vm,n from the right as V → V O, where O ∈ O(m) and
V ∈ Vm,n. The resulting quotient space Vm,n/O(m) is called the Grassmann manifold
and is denoted as Gm,n−m. What are Vol(Gm,n−m) and dim(Gm,n−m)?
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Information, Communication, and Group Theory

Information theory, as it is known today, resulted from the confluence of two very dif-
ferent roots that had their origins in the first half of the 20th century. On the one hand,
information theory originated from electrical engineers such as Hartley, Nyquist, and
Shannon [49, 86, 104], who worked on the analysis of systems and strategies to commu-
nicate messages from one location to another. On the other hand, mathematicians such
as de Bruijn, Cramér, Fisher, Kullbach, and Rao were inventing ideas in probability
and statistics that have direct relevance to the study of information transmission. In
this chapter the “communications” aspect of information theory is emphasized, whereas
in Chapter 3 the “probability and statistics” side was reviewed. In recent years, the
theory of finite groups has been connected with equalities in information theory. Lie
groups enter as symmetry operations associated with continuous physical models of
information transmission such as the linear telegraph equation and nonlinear soliton
equations. Lie groups also appear as a domain in which stochastic trajectories evolve in
the analysis of noise in optical communication systems that transmit information over
fiber optic cables. In addition, some of the basic concepts and definitions in the theory
of communication have interesting properties that are enriched by merging them with
concepts from group theory. Some of this recent work will be explored here.

The important points to take away from this chapter are as follows:

• Quantitative measures of the information content in a message exist, and these
measures can be used together with characteristics of the medium over which a
message is to be sent to assess the rate at which the message can be sent.

• Information to be sent over a noisy channel can be coded so as to make reconstruction
of the message on the receiving end possible even if parts of the message are corrupted
by noise.

• Group theory (as it applies to both finite and Lie groups) can play several roles in
this field, including defining new information inequalities and analyzing the charac-
teristics of physical communication systems;

In Section 17.1 a review of the basic ideas in the mathematical theory of communi-
cation are addressed, including the definition of the information content in a message,
channel capacity, and Shannon entropy. Section 17.1 also reviews alternative measures
of information, including Rényi entropy, f -divergence, and Tsallis entropy. Section 17.2
provides concrete examples of channels and codes including brief reviews of Morse code,
ASCII, and so forth and reviews Shannon’s theorems for discrete channels. Section 17.3
examines areas of overlap between the information theory of discrete channels and the
theory of finite groups. Section 17.4 provides a detailed treatment of the linear telegraph
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equation, and shows how Lie group analysis is applicable to describe the symmetries
of this equation. Section 17.5 reviews work in which the the problem of transmission
of information through noisy media has been modeled as random walks in the hyper-
bolic plane. Section 17.6 reviews how some problems in optical communications can
be formulated using methods from the theory of Lie groups. Section 17.7 provides an
introduction to nonlinear traveling wave problems (i.e., solitons) that arise in modes of
communication ranging from smoke signals to fiber optic systems. These sections are
not intended to exhaustively cover the vast literature on information theory, but rather
to illustrate connections between selected topics in information theory and group the-
ory. The chapter concludes with discussions of more connections between information
theory, Lie groups, and random matrix theory, and exercises are provided.

17.1 What Is Communication?

Communication is the transmission of information from one point to another. “Informa-
tion” can be thought of as a continuous or discrete pattern that is articulated at a source
point.1 The intent of communication is to reproduce this pattern at the receiver/sink.
Discrete patterns include sequences of dots and dashes in Morse code, sentences in a
natural language, digital images or image sequences, and the DNA sequence of a liv-
ing being. Continuous patterns include AM/FM radio waves, the chirps of crickets, the
vocalization of spoken human language, and the dance of a ballerina.

Examples of communication include when Alexander Graham Bell spoke into the
first telephone and Thomas A. Watson heard through the receiver in the room where
he was waiting “Mr Watson − Come here − I want to see you.” Communication could
be the transmission of dots, dashes, and spaces using Morse code and a telegraph or the
transmission of a television program through the airwaves. It could be ground control
sending radio signals to a space probe or one person winking at another across a smoke-
filled room. Communication need not be the transmission of information from one place
to another. Other examples of communication include experimental observation of phys-
ical phenomena (as mentioned in Chapter 14, Brillouin was a proponent of this view) and
a robot sensing its environment. Communication also can be the transmission of informa-
tion from one time to another (i.e., the process of storing a message (such as the text of
this book, or a song or video on a digital storage medium)). Retrieving a stored message
(such as a person reading a book 100 years after it is written) is also communication.

Continuous patterns can either be communicated directly (e.g., the image of the
ballerina stimulates the retinas of viewers in a live audience) or they can be discretized
(e.g., the motion of the ballerina is recorded with a digital image capture device). As
such, two versions of information theory exist: continuous (also called “differential”) and
discrete. It should come as no surprise that Lie groups, being continuous objects, are
more applicable to problems involving the transmission of information in the contin-
uous mode. However, the distinction between discrete and continuous can be blurred.
Phenomena in the macroscopic world can often be described from the continuum per-
spective (as reviewed in Chapter 1). However, at a more detailed level one can view
the physical world as being composed of the discrete nuclei and electons of atoms with

1The word “data” can be used in place of “pattern,” but the former has connotations of
being discrete and organized in that it specifies the values of variables, whereas the latter is
perhaps more general. Likewise, the words “arrangement” and “formation” could be used in
place of “pattern,” but they too have connotations that detract from the concept of information.
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specific positions and velocities, in which case the world is viewed in a discrete way.
Then in the quantum mechanical and statistical mechanical views, the world becomes
continuous again, with probabilities replacing discrete locations, but these have discrete
properties (the quantum states). The point is that in practice any continuous system
can be discretized and any discrete system can be smoothed when viewed from the
proper perspective.

Inherent in communication between humans is the goal of conveying meaning, un-
derstanding, and, in some cases, wisdom. The mathematical theory of communication is
not focused on any of these things. Rather, the focus is on the reliable reproduction of
data that has an origin or “source” at another point called the “sink.” This is depicted
in Figure 17.1, where, on a coarse scale, there is the message to be sent, the channel
over which it is to be sent, and the message to be received. Complicating matters is that
noise is injected in the channel. For example, lightning strikes or solar flares can add
noise to telephone communications, a rain storm can affect digital satellite broadcasts,
and background noise can interfere with a conversation. Noise both has the potential to
corrupt messages that are sent and to slow the transfer of information.

At a finer scale, the channel, sender, and receiver can be broken down into finer
elements. The actual hardware that is used to transmit and receive coded messages can
be considered to be part of the “information channel” that also includes the physical
channel, or medium, through which the coded message travels. One reason for group-
ing things this way is that hardware devices used to transmit and receive information
can themselves be subject to noise. The actual coding and decoding of messages (e.g.,
turning music into a sequence of binary numbers and vice versa) is considered here to
be a very reliable process, and so it is grouped together with the source/sink of the
message.

This model is the basic one initiated by Shannon in his seminal work, first reported in
1948 and repeated in [104]. A number of important variations can be built on this basic
model. For example, if the noise has known characteristics, then analytical models can
be built and the message on the receiving end can be “cleaned up” as best as possible
using this knowledge of the noise. This is important both in communication and sensing
and is often referred to as “filtering.” Norbert Wiener, whose work has been referred
to throughout these two books, is credited with making major contributions to filtering
theory.

Another variation on the basic model is whether the system has memory or not.
Consider the sentence consisting of 22 letters and 4 spaces grouped into 5 words sep-
arated by 4 spaces, where 9 out of the 22 + 4 of the received symbols are corrupted
by noise: “T - e q- - - n vacu - m - d t - - r - g.” With no prior knowledge (i.e., no memory)
of the English language, it would be impossible to fill in the missing blanks. However,

noise

Source encoder

Sent message

trans-
mitter

physical
channel receiver decoder sink

received messageinformation channel

Fig. 17.1. Layout of a Generic Communications System
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equipped with the knowledge that the word “the” is one of the most common words
and that whenever a “q” starts a word that “u” is very likely to follow, then some of
the missing information is replaced as “The qu - - n vacu - m - d the r - g.” From here,
searching through a dictionary for possible fits and evaluating the rules of grammar and
searching for possible meanings, it should be possible to fill in the remainder as “The
queen vacuumed the rug.”

The following subsections address the basics of Shannon’s mathematical theory of
communication, including the concept of entropy for discrete and continuous channels
both with and without noise and the concept of mutual information. This requires some
basic knowledge of concepts from probability theory, which are also reviewed.

17.1.1 Message Probabilities

For now, consider a message to be a collection of discrete symbols/characters arranged
as a linear sequence called a string. Each character is drawn from a finite alphabet.
For example, in the English languages, there are 26 letters in the alphabet plus spaces
between words, punctuation, and Arabic numerals. Our discussion here will illustrate
the basics of information theory with the simplified case of 27 symbols: the 26 letters
in the alphabet plus spaces. This is not too bad, since, in principle, the name of any
numeral or punctuation mark could be expressed in longhand using these 27 symbols,
or we could simply choose to ignore them.

If one were to pour over a major dictionary or encyclopedia written in the English
language and count how many times each symbol appears in relation to the total number
of symbols, then each symbol would have a frequency of occurrence that more or less
reflects the number of times that a given symbol should appear in any message as
a fraction of the total number of symbols. Let p(A), p(B), . . . , p(Z), p( ) denote these
relative frequencies of occurrence. If #(text), denotes all of the symbols in the dictionary
(or other large body of text), then, for example, p(A) = #(A)/#(text), where #(A) is
the number of times the letter A appears.

These are probabilities, and so, by definition, their sum must be equal to 1. Let A =
{A,B, . . . , Z, } be the whole alphabet (including the empty space symbol) and let a
generic symbol be denoted as α ∈ A. In other words, α could be A, B, or any of the
27 symbols. Sometimes it is convenient to rename the symbols so that they are indexed
by numbers. In this case, α1 = A, α2 = B, . . . , α26 = Z, α27 = . Using these notations,∑

α∈A
p(α) =

1
#(text)

∑
α∈A

#(α) = 1. (17.1)

This sum could also be written using indices as
∑27

i=1 p(αi) = 1. The notation in (17.1)
has the benefit of being general (and therefore applicable to any alphabet), whereas the
index notation has the benefit of being concrete. Note that 0 ≤ p(α) ≤ 1. In both cases,
the symbol α is a dummy variable; it can be replaced with any other character that has
no special meaning. For consistency here, other lowercase Greek characters will be used.

Suppose that we construct a two-symbol string (which need not be a real English
word) by randomly sampling a symbol from the alphabet, placing it in the first place,
and then randomly sampling another symbol independently of the first and placing it
in the second place. There are 27 × 27 possible outcomes in this random experiment
corresponding to any possible symbol in the first place, and likewise for the second
place. Let E1 be the event that the letter A is sampled for the first place and let E2
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be the event that the letter M appears in the second place.2 The events E1 and E2
are subsets of the set of all possible outcomes with E1 = {AA,AB, . . . , AZ,A } and
E2 = {AM,BM, . . . , ZM, M}. The probability of E1 is defined to be the sum of
probabilities of all elements of E1, and so p(E1) =

∑
α∈A p(A)p(α) = p(A) and p(E2) =∑

β∈A p(β)p(M) = p(M). Here, (17.1) has been used.

Probabilities of Intersections and Unions of Events

In the previous example, the probability of the string AM actually occurring from this
random process can then be thought of as3

p(E1 ∩ E2) = p(E1) · p(E2). (17.2)

This is the probability that E1 and E2 both happen. Stated another way, p(E1 ∩ E2)
is the probability that E1 happens and E2 happens. This assumes that if a symbol is
picked for the first place, then it is still available to be picked again for the second spot.
Such “sampling with replacement” has different statistical properties than sampling
without replacement, such as in drawing straws, games like Bingo, or lotteries, where
the selection of a symbol for use in one slot precludes its use in another. The probability
p(E1 ∩ E2) in this example would be the product p(A) · p(M) if these symbols were
chosen at random based on their frequencies in the dictionary.

The probability p(E1 ∪ E2) also can be computed. This is the probability that E1
happens or E2 happens, or both happen. In this particular example,

p(E1 ∪ E2) = p(A) + p(M)− p(A) · p(M).

The reason for this is that the two-letter word “AM” appears both in E1 and in E2, and
to not subtract off its probability would mean that its effect would be double counted.
This argument holds in very general contexts as

p(E1 ∪ E2) = p(E1) + p(E2)− p(E1 ∩ E2). (17.3)

This is the same equality as the definition of a valuation (additive measure) discussed
in Chapters 1 and 15. Since each probability is a non-negative quantity, this means that

p(E1 ∪ E2) ≤ p(E1) + p(E2).

This inequality can be iterated so that p(E1 ∪ E2 ∪ · · · ∪ En) ≤ p(E1) + p(E2) +
· · ·+ p(En).

Now, consider a different scenario. Suppose that the two symbols in the string might
not be selected independently and suppose that one of them has already been specified.
This leads to the concept of a conditional probability. The notation for this is p(E1 | E2),
which is the probability that event E1 will happen given that the event E2 has already
happened. If the events E1 and E2 are not independent (e.g., because placing an M in
the second place severely restricts the number of possible symbols that can go in the
first place to form part of a valid English word), then (17.2) no longer holds.

2Here, Ei has absolutely nothing to do with basis elements of Lie algebras!
3The notation p(E1 ∩ E2) can be thought of as the joint distribution p(E1, E2) on the

Cartesian product of the space of events with itself. Here, the use of set-theoretic notation
following [65] will afford the compact expression of other statements such as p(E1 ∪ E2) that
are more difficult to express otherwise.
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The Role of Conditional Probabilities

Suppose that in addition to recording the frequency of occurrence of all individual sym-
bols in a large text, all two-symbol strings in a dictionary are also recorded. Therefore,
p(E1), p(E2), and p(E1 ∩ E2) would all be known. In principle, p(E1 | E2) could also
be calculated by running over all two-symbol sequences ending in M and computing
the ratio of the number of such sequences that have an “A” in the first place, #(AM),
compared to the total number,

∑
α∈A #(αM). By rearranging terms, it becomes clear

that

p(E1 | E2)
.=

#(AM)∑
α∈A #(αM)

=
#(AM)

#(all pairs)
· #(all pairs)∑

α∈A #(αM)
= p(E1 ∩ E2) · 1

p(E2)
.

which leads to

p(E1 | E2) =
p(E1 ∩ E2)

p(E2)
. (17.4)

In the evaluation of #(all pairs) above, if it is assumed that a window that selects two
adjacent symbols at a time runs over the whole text, wrapping back around to the
beginning, then this number will be equal to the total number of characters in the text.
However, if it does not wrap around, then #(all pairs) will be less than the total number
of symbols by 1.

Equipped with this concept of conditional probability, a conditional version of (17.3)
can be derived. Following [65] and respectively substituting E1 ∩E3 and E2 ∩E3 for E1
and E2 in (17.3) gives

p((E1 ∩ E3) ∪ (E2 ∩ E3)) = p(E1 ∩ E3) + p(E2 ∩ E3)− p(E1 ∩ E3 ∩ E2 ∩ E3).

However, in set theory, (E1 ∩E3)∪ (E2 ∩E3) = (E1 ∪E2)∩E3 and E1 ∩E3 ∩E1 ∩E3 =
E1 ∩ E2 ∩ E3. (No parentheses are needed for that last expression.) Substituting these
facts in the above equation and dividing by p(E3) gives

p(E1 ∪ E2 ∩ E3)
p(E3)

=
p(E1 ∩ E3)

p(E3)
+

p(E2 ∩ E3)
p(E3)

− p(E1 ∩ E2 ∩ E3)
p(E3)

.

However, this is exactly

p(E1 ∪ E2 | E3) = p(E1 | E3) + p(E2 | E3)− p(E1 ∩ E2 | E3). (17.5)

Stated in words, this says that conditioning does not affect the equality in (17.3). De-
pending on which conditional probabilities are available, p(E1 ∩E2 | E3) = p(E1 ∩E2 ∩
E3)/p(E3) can be computed in several different ways. For example, using the definition
in (17.4) twice, it follows that [65]

p(E1 | E2 ∪ E3) =
p(E1 ∩ E2 ∩ E3)

p(E2 ∩ E3)
=

p(E1 ∩ E2 ∩ E3)
p(E2 | E3)p(E3)

,

which can be rewritten as

p(E1 ∩ E2 ∩ E3) = p(E1 | E2 ∩ E3)p(E2 | E3)p(E3). (17.6)
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17.1.2 Entropy, Information, and Discrete Alphabets

Let C = {E1, E2, . . . , En} be a finite collection of events in which pi
.= p(Ei) ≥ 0 and∑n

i=1 pi = 1. The self-information of the event Ei is defined as

I(Ei)
.= − log p(Ei). (17.7)

If the base of the logarithm is 2, then I(Ei) is said to be measured in “bits,” whereas if
the base of the logarithm is e or 10, then I(Ei) is said to be measured in “nats”
or “decs,” respectively. This concept of information goes back to Hartley [49] and no
doubt motivated the definition of measure-theoretic information in ergodic theory that
was discussed in Chapter 14. I(Ei) reflects the fact that if a binary message is sent
over m parallel wires, then specifying the binary values on each wire produces N = 2m

possible outcomes at each instant in discrete time. Therefore, the probability of selecting
any particular message will be p = 1/2m and so I = − log2 p = m reflects the amount
of freedom to choose a particular message from all of the possibilities.

Entropy and Conditional Entropy

The entropy of the collection C is defined to be the average self-information of all events4

in C,

H(C) .=
n∑

i=1

p(Ei) I(Ei) = −
n∑

i=1

p(Ei) log p(Ei). (17.8)

Given two systems of events C1 = {E1, . . . , En} and C2 = {E′
1, . . . , E

′
m} with associated

probabilities 0 ≤ p(Ei) ≤ 1, 0 ≤ p(E′
j) ≤ 1, and 0 ≤ p(Ei ∩ E′

j) ≤ 1 for (i, j) ∈
{1, . . . , n} × {1, . . . ,m}, the following constraints apply:

n∑
i=1

p(Ei) =
m∑

j=1

p(E′
j) =

n∑
i=1

m∑
j=1

p(Ei ∩ E′
j) = 1

and
n∑

i=1

p(Ei ∩ E′
j) = p(E′

j) and
m∑

j=1

p(Ei ∩ E′
j) = p(Ei).

The conditional self-information of Ei given E′
j is defined as

I(Ei | E′
j)

.= − log p(Ei | E′
j) = − log

p(Ei ∩ E′
j)

p(E′
j)

. (17.9)

The conditional entropy is defined as5

H(C1 | C2)
.=

n∑
i=1

m∑
j=1

p(Ei ∩ E′
j) I(Ei | E′

j) = −
n∑

i=1

m∑
j=1

p(Ei ∩ E′
j) log

p(Ei ∩ E′
j)

p(E′
j)

.

(17.10)
4In some contexts (such as in Chapters 3 and 19), it is more convenient to define the entropy

as a functional of the probability function, S(p) where p : C → R≥0 returns the value p(Ei) for
each Ei ∈ C, rather than as a function on the collection of events, H(C). Thus either one of
the interchangeable notations S(p) and H(C) can be used based on which is more convenient
in a given context.

5In the notation of Chapter 3, this would be written in terms of probabilities as
S

(
p(Ei ∩ E′

j)/p(E′
j) ; p(Ei ∩ E′

j)
)
.
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If p(Ei ∩ E′
j) = 0 for any pair (i, j), then this is omitted from the sum. Additionally,

since by the constraints listed above, p(E′
j) = 0 implies that p(Ei ∩ E′

j) = 0, division
by 0 cannot occur in the sum.

Mutual Information

The mutual information between two events is defined as

I(Ei, E
′
j)

.= log
p(Ei ∩ E′

j)
p(Ei) p(E′

j)
. (17.11)

In contrast, the mutual information between two collections of events is defined as6

I(C1;C2)
.=

n∑
i=1

m∑
j=1

p(Ei ∩E′
j) I(Ei, E

′
j) =

n∑
i=1

m∑
j=1

p(Ei ∩E′
j) log

p(Ei ∩ E′
j)

p(Ei) p(E′
j)

. (17.12)

Finally, the joint entropy of two collections of events is defined as

H(C1 ∩ C2)
.= −

n∑
i=1

m∑
j=1

p(Ei ∩ E′
j) log p(Ei ∩ E′

j). (17.13)

Note that H(C1∩C2) = H(C2∩C1), I(C1;C2) = I(C2;C1), and I(Ei, E
′
j) = I(E′

j , Ei).
However, in general, I(Ei | E′

j) �= I(E′
j | Ei), I(C1 |C2) �= I(C2 |C1) and H(C1 |C2) �=

H(C2 |C1).
From the above definitions and properties of the logarithm function, it follows that

I(Ei, E
′
j) = I(Ei)− I(Ei | E′

j); H(C1 ∩ C2) = H(C1 |C2) + H(C2);
(17.14)

I(C1;C2) = H(C2)−H(C2 |C1); I(C1;C2) = H(C1) + H(C2)−H(C1 ∩ C2).

Since H(C1 ∩ C2) ≥ 0, it follows from the last of these equalities that

I(C1;C2) ≤ H(C1) + H(C2),

with equality holding when C1 ∩ C2 = ∅.
Using the above definitions and inequalities, together with the fact that log x ≤ x−1,

it can be shown that

H(C1 | C2) ≤ H(C1) and I(C1;C2) ≥ 0. (17.15)

This is important because it says that conditioning cannot increase entropy. Equality
in (17.15) results only if C1 and C2 are independent.

Given three collections of events C1 = {E1, . . . , En}, C2 = {E′
1, . . . , E

′
m}, and C3 =

{E′′
1 , . . . , E′′

l } with 0 ≤ p(Ei ∩ E′
j ∩ E′′

k ) ≤ 1 and

n∑
i=1

m∑
j=1

l∑
k=1

p(Ei ∩ E′
j ∩ E′′

k ) = 1,

6The similar symbols I(· , ·) and I(· ; ·) are used for the mutual information between indi-
vidual events and systems of events, respectively. These are two very different functions, and
there should be no confusion about which is being discussed since they are specified by their
arguments. In the notation of Chapter 3, I(C1; C2) would be written in terms of probabilities
as I(p(Ei), p(E′

j); p(Ei ∩ E′
j)).
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all of the probabilities discussed earlier can be obtained by appropriate marginalizations.
Additionally, other information-theoretic definitions can be made. For example,

I(Ei ∩ E′
j , E

′′
k ) .= log

p(Ei ∩ E′
j ∩ E′′

k )
p(Ei ∩ E′

j)p(E
′′
k )

and

I(C1 ∩ C2;C3)
.=

n∑
i=1

m∑
j=1

l∑
k=1

p(Ei ∩ E′
j ∩ E′′

k )I(Ei ∩ E′
j , E

′′
k )

=
n∑

i=1

m∑
j=1

l∑
k=1

p(Ei ∩ E′
j ∩ E′′

k ) log
p(Ei ∩ E′

j ∩ E′′
k )

p(Ei ∩ E′
j)p(E

′′
k )

.

The mutual information between Ei and E′
j conditioned on E′′

k is defined as

I(Ei, E
′
j | E′′

k ) .= log
p(Ei ∩ E′

j | E′′
k )

p(Ei | E′′
k )p(E′

j | E′′
k )

and mutual information between C1 and C2 conditioned on C3 is defined as

I(C1;C2 | C3)
.=

n∑
i=1

m∑
j=1

l∑
k=1

p(Ei ∩ E′
j ∩ E′′

k )I(Ei, E
′
j | E′′

k )

=
n∑

i=1

m∑
j=1

l∑
k=1

p(Ei ∩ E′
j ∩ E′′

k ) log
p(Ei ∩ E′

j | E′′
k )

p(Ei | E′′
k )p(E′

j | E′′
k )

.

Note that I(C1;C2 | C3) = I(C2;C1 | C3) and that

I(C1;C2) = I(C1;C3) + I(C1;C2 | C3)− I(C1;C3 | C2). (17.16)

It can be shown that
I(C1;C2 | C3) ≥ 0, (17.17)

with equality holding only when the condition p(Ei ∩ E′
j | E′′

k ) = p(Ei | E′′
k )p(E′

j | E′′
k )

is observed. If this holds for all i, j, and k for which p(E′′
k ) �= 0, then C1 and C2 are

referred to as being statistical independent when conditioned on C3. Several inequalities
are associated with the concept of statistical independence. For example, if C1 and C2
are statistical independent when conditioned on C3, then

I(C1;C2) ≤ min{I(C1;C3), I(C2;C3)} and I(C1;C3) ≥ I(C1;C3 |C2). (17.18)

The first of these is a version of the data processing inequality, and the second is called
the convexity theorem [65].

Another inequality that is sometimes called the information processing inequality is
stated as

DKL(p ‖ q) ≥ DKL(Q(p) ‖Q(q)), where Q(p)i =
∑

j

Qij pj , (17.19)
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where Qij is a stochastic matrix (i.e., the set of numbers Qij for i = 1, . . . , n forms a
partition of unity for each fixed value of j).7

A special case of this in the context of finite groups in which pj = p(gj), qj = q(gj),
and Qij = f(gi◦g−1

j ), where f(g), p(g), and q(g) are all probability distribution functions
on a finite group Γ , is

DKL(p ‖ q) ≥ DKL(f ∗ p ‖ f ∗ q), (17.20)

where ∗ denotes convolution of functions on Γ . Generalizations of (17.20) in the context
of convolution on Lie groups are discussed in Chapter 19. In this context, Qij is doubly
stochastic. If Γ is commutative, this will become a circulant matrix.

17.1.3 Alternative Measures of Information

Although the Boltzmann–Shannon form of entropy and associated information measures
are the standard, it is worth mentioning that there are several alternative concepts that
have been proposed in the literature over the past half-century. This is the topic of a
recent review [77]. In the discussion that follows, definitions are given in the discrete case.

Rényi Entropy

The Rényi entropy is defined as [97]

SR(p; s) .= (1− s)−1 log

(
n∑

i=1

ps
i

)
.

As s → 1, SR(p; s) → S(p). The case when s = 2 is another popular choice. The relative
Rényi entropy of two discrete probability distributions {p1, . . . , pn} and {q1, . . . , qn} is
defined as

DR(p ‖ q; s) .= (s− 1)−1 log

(
n∑

i=1

ps
i q1−s

i

)
.

In the limit as s → 1, DR(p ‖ q; s) → DKL(p ‖ q). The relative Rényi entropy is also
related to the Kullback–Leibler divergence in that

∂

∂s
[(s− 1)DR(p ‖ q; s)]

∣∣∣∣
s=0

= −DKL(q ‖ p)

and
∂

∂s
[(s− 1)DR(p ‖ q; s)]

∣∣∣∣
s=1

= DKL(p ‖ q).

The f-Divergence

In the mid-1960s, Ali and Silvey [2] and Csiszár [23] independently introduced another
way to compare probability distributions. It is commonly referred to as the f -divergence

7Conventions vary in different books. Sometimes the entries of Q are denoted as Qj
i and

sometimes instead of the Qp notation, the pT Q notation is used, in which case the roles of
rows and columns in the stochastic matrix will be reversed.
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and is defined relative to any convex function, f(x), as

Df (p‖q) .=
n∑

i=1

pif

(
qi

pi

)
.

Other conventions exist, but in the one chosen here, Df (p‖q) becomes DKL(p‖q) when
f(x) = − log x. Additionally, it becomes the Hellinger distance when f(x) = 1−√

x.
Some authors refer to Df (p‖q) as the f -relative entropy. It can be shown (using

Jensen’s inequality) that it has the same information processing property as in (17.19)
and (17.20) [54].

Tsallis Entropy

A relatively new entropy measure (introduced by Tsallis in 1988) is defined as [115]

ST (p; s) .= (s− 1)−1

(
1−

n∑
i=1

ps
i

)

in the discrete case and in an analogous way in the continuous case.

Other Concepts of Divergence and Information

Other concepts of divergence exist. For example, the symmetrized (or Jeffreys) diver-
gence [21] of two discrete probability distributions p = {p1, . . . , pn} and q =
{q1, . . . , qn} is

DJ(p‖q) .= DKL(p‖q) + DKL(q‖p). (17.21)

The Jensen–Shannon divergence is defined using the Kullback–Leibler divergence as8

DJS(p‖q) .=
1
2

[DKL(p‖(p + q)/2) + DKL(q‖(p + q)/2)] , (17.22)

where p + q = {p1 + q1, . . . , pn + qn}. Clearly, this is symmetric, and although it is
not a metric (since it does not satisfy the triangle inequality), it has been proven that√

DJS(p‖q) is a metric [27, 89]. The following inequalities also have been proven [21]:

DJS(p‖q) ≤ log

[
2

1 + exp
(− 1

2DJ(p‖q))
]
≤ 1

4
DJ(p‖q). (17.23)

Finally, Chernoff information is defined as

C(p, q) .= − min
0≤λ≤1

log

⎛⎝ n∑
j=1

pλ
j q1−λ

j

⎞⎠ ,

and the Bhattacharyya distance is defined by setting λ = 1/2 rather than performing
the above minimization.

8The fact that DJS(p‖q) is defined here with a factor of 1/2 and DJ(p‖q) is not is for
consistency with the literature, even though it makes them inconsistent with each other.
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17.1.4 Applications in Imaging and Sensor Networks

Without knowing anything about information theory other than the measures presented
in the previous section and the properties that result from the discussions in Chapter 3, it
nevertheless is possible to discuss some applications. In particular, if pi(x) is the discrete
probability distribution describing an image that has been normalized appropriately and
if Xi is the corresponding random variable, then [125]

ρ(X1, X2, . . . , Xm) .=
m∑

i=1

H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xm)

can be used as a cost function to align the images under some Lie group, G, such as
the group of translations, rigid-body motions, or affine deformations. Explicitly, what
is sought is (g∗

1 , g
∗
2 , . . . , g

∗
m−1) ∈ G×G× · · · ×G such that

(g∗
1 , g

∗
2 , . . . , g

∗
m−1) = arg min

(g1,g2,...,gm−1)
ρ(X1, g1 ·X2, . . . , gm−1 ·Xm).

Similar pairwise matchings can be done both for images using other information met-
rics [28].

Another area in which information measures are used is in distributed sensor net-
works. A fundamental problem in that field is how to spread out sensors in an optimal
way under the constraint of limited information. Additionally, if the sensors are attached
to mobile robots, how should the robots move relative to each other so as to maximize
coverage without global knowledge and with limited and possibly noisy communication
among local neighbors? This is an emerging area of research that naturally combines
Lie theory and information gathering, as described in [96, 114]. The concept of Chernoff
information discussed in the previous section was used in [29] in the context of scalable
optimization of sensor networks.

17.2 Channels and Codes

In the classical discrete models of communications theory, a stream of individual
characters/symbols/letters is organized into larger words/messages/text. It is assumed
that the distribution of these characters in a large text is stationary and ergodic. In other
words, the discrete probability, pi, obtained by recording the frequency of occurrence
of letters for any large section of text is the same as that of any other large section of
text. The section of text can be taken as a sequential string or cut out as an arbitrary
large rectangle from random places in the text, and the statistics should be the same.
The first two columns of Table 17.1 respectively list the Roman letters (and the empty
space used to break up words) and their frequency of occurrence in English text. The
frequency of the empty space is approximately 1/6, meaning that, on average, words
have five letters followed by one space. The third column renormalizes the frequency of
occurrence of the letters only, without spaces. If word denotes the average length of a
word, then p( ) = (word+1)−1. The other columns provide the representations of these
characters in Morse code and in even-parity ASCII.

Morse code is a collection of dots, dashes, and empty spaces. It was used heavily by
telegraph operators to transmit information over long distances by wire before the ad-
vent of the telephone. In the event that radio communication is not possible, Morse code
still can be used at sea or between aircraft to communicate optically by flashing lights in
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Table 17.1. Roman Letters, Their Frequency of Occurrence in English, and Representation
in Morse Code and Even-Parity ASCII (with the First Bit Serving as the Parity Bit)

Symbol pi p′
i Morse Code Binary Morse Length (li) EP ASCII

A 0.0642 0.08167 · − 101110 6 + 3 01000001
B 0.0127 0.01492 − · · · 1110101010 10 + 3 01000010
C 0.0218 0.02782 − · − · 111010111010 12 + 3 11000011
D 0.0317 0.04253 − · · 11101010 8 + 3 01000100
E 0.1031 0.12702 · 10 2 + 3 11000101
F 0.0208 0.02228 · · − · 1010111010 10 + 3 11000110
G 0.0152 0.02015 − − · 1110111010 10 + 3 01000111
H 0.0467 0.06094 · · · · 10101010 8 + 3 01001000
I 0.0575 0.06966 · · 1010 4 + 3 11001001
J 0.0008 0.00153 · − − − 10111011101110 14 + 3 11001010
K 0.0049 0.00772 − · − 1110101110 10 + 3 01001011
L 0.0321 0.04025 · − · · 1011101010 10 + 3 11001100
M 0.0198 0.02406 − − 11101110 8 + 3 01001101
N 0.0574 0.06749 − · 111010 6 + 3 01001110
O 0.0632 0.07507 − − − 111011101110 12 + 3 11001111
P 0.0152 0.01929 · − − · 101110111010 12 + 3 01010000
Q 0.0008 0.00095 − − · − 11101110101110 14 + 3 11010001
R 0.0484 0.05987 · − · 10111010 8 + 3 11010010
S 0.0514 0.06327 · · · 101010 6 + 3 01010011
T 0.0796 0.09056 − 1110 4 + 3 11010100
U 0.0228 0.02758 · · − 10101110 8 + 3 01010101
V 0.0083 0.00978 · · · − 1010101110 10 + 3 01010110
W 0.0175 0.02360 · − − 1011101110 10 + 3 11010111
X 0.0013 0.00150 − · · − 111010101110 12 + 3 11011000
Y 0.0164 0.01974 − · − − 11101011101110 14 + 3 01011001
Z 0.0005 0.00074 − − · · 111011101010 12 + 3 01011010

0.1859 N/A 000000 3 + 3 01011111

short and long pulses separated by pauses. Regardless of the physical implementation,
a “dot” is implemented by a short pulse, followed by an empty space for the same period
of time. A “dash” is implemented as a pulse with three times the duration of a dot, fol-
lowed by an empty space of one time period. In Table 17.1, the code for each individual
letter is given. Morse code has additional rules regarding how to put letters together
into words and how to put words together into a larger message. In particular, whenever
two letters are juxtaposed, a letter space consisting of an additional pause of three time
units is added. In addition, the end of a word is marked by two such letter spaces (i.e.,
a pause of six time units). Therefore, when the Morse codes for the Roman characters
and space symbol in the table are used in a message, their length increases by three
units to “glue” them together into a message. The number li in Table 17.1 reflects this.

Something that has been added to the table is a “Binary Morse” code in which each
pulse is represented as a “1” and each empty space is represented as a “0.” For example,
sending the message “SOS ” would be implemented as

· · · − − − · · ·
which in the binary representation can be written as

101010000111011101110000101010000000.
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Based on the numbers reported in Table 17.1, the entropy of this alphabet and
average length (measured in terms of the number of bits) for each symbol are respectively

H
.= −

27∑
i=1

pi log2 pi = 4.03 bits/symbol and L
.=

27∑
i=1

pili = 9.296 bits/symbol.

Here, H is the source entropy (i.e., the entropy of the set of symbols used to construct
any long English message). li is the number of bits used to encode each symbol in a
long message (including the space between each letter).

Suppose that we want to send a message down a noiseless channel and that channel
can accept a rate of b bits/second. Then the rate (on average) that symbols can be
transmitted in Morse code will be b/L, which is measured in symbols/second. Further-
more, if the transmitter is sending symbols according to the statistics of large messages,
then we can say that it has an entropy rate (measured in bits per second) of 9

Ḣ
.= H · b/L .

This concept will be used later in the statement of Shannon’s theorem for noisy channels.
First, the noisless case is considered.

17.2.1 Shannon’s Theorem for Discrete Noiseless Channels

The concept of the bit rate, b, at which that the channel allows information to flow
from transmitter to receiver can be generalized. This generalized concept is called the
channel capacity and is defined as

C
.= lim

T→∞
log2 M(T )

T
, (17.24)

where M(T ) is the number of all possible messages of duration T that can be transmitted
in the channel. So, for example, if b bits/second can be transmitted over a channel for
a duration of T seconds, then any one of the 2bT possible messages can be sent during
that time interval and

C = lim
T→∞

log2 2bT

T
= lim

T→∞
bT

T
= b. (17.25)

The reason for defining the channel capacity as in (17.24) rather than simply saying
that it is b is that C is a more general concept that extends to the case when the set of
messages has structure (such as in the case when they are drawn from a known language
which has pre-defined grammar and spelling rules) and to continuous signals as well.

Note that H < L for both Morse code and ASCII. The reason for this will be revis-
ited in Chapter 18. Shannon’s theorem for discrete memoryless channels without noise
generalizes this result to all possible codes and all possible alphabets and languages.
This is an idealization that is useful in understanding the central role that information-
theoretic entropy plays in the theory of communications. Clearly, the addition of noise to
a channel, which is addressed later, will not make the rate of transmission of information
increase.

9This is Shannon’s “entropy per second” [104], not the “entropy rate of a stochastic process”
discussed in Chapter 4 of Cover and Thomas [20]. Moreover, Ḣ is not the time derivative of H.
This notation is used here to emphasize that it is entropy “per time” instead of “per symbol”.
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Theorem 17.1 (Shannon’s FundamentalTheorem forDiscreteNoiselessChannels [104]).
Given an ergodic message source with entropy H (measured in bits per symbol), then the
average rate, R, at which information can be transmitted (measured in symbols/second)
over a discrete noiseless channel is bounded from above as R < C/H (where C is mea-
sured in bits per second), and it is possible to encode the output of the source in such a
way that R comes arbitrarily close to C/H.

Suppose that the message being sent through an information channel is a 0 or a 1.
It is possible that in the process of sending a 0 that an error of the form 0 → 1 occurs.
Likewise, when attempting to send a 1, an error of the form 1 → 0 can occur. Let ε0→1
and ε1→0 denote the probabilities of these two events. If

ε0→1 = ε1→0 = e,

then the information channel is called symmetric. Here, 0 < e < 1 describes how likely it
is for a binary digit to be flipped during the communication process. If there is no prior
knowledge about the contents or special structure10 in the message, then the channel is
called memoryless.

A memoryless binary channel is a simple, yet very instructive, model. The channel
capacity for this model is

C(e) = 1 + e log2 e + (1− e) log2(1− e).

It is a measure of the effect of noise on the speed with which information can be trans-
mitted through the channel. If e = 0.5, then no information at all can be transmitted
because the received message would be completely random. In other words, regardless
of whether a 0 or 1 was transmitted, the expected result would be the same as flipping a
coin with the numbers 0 and 1 painted on either side. In all other cases, some amount of
information is transmitted. If e = 0, a pristine copy of the original message is received.
If e = 1, an exactly inverted message is received with all bit values flipped. Running this
message through an inverter then recovers the original message easily. In all other cases,
some degree of degradation of the message occurs. This can be overcome in a variety of
ways. For example, two-way communication back and forth between sender and receiver
can be performed to verify that the intended message was received; or the sender could
send the message many times, and if e is small, then, with high probability, errors in
random locations would not likely occur a large fraction of the time. Or, embedded in
the message can be checks that alert the receiver that an error has occurred and possibly
even identify its location.

17.2.2 Shannon’s Theorem for Discrete Noisy Channels

Regardless of the strategy used to overcome errors in communication, one thing is cer-
tain: When there is noise in the information channel (and in a real channel, there always
is!), the rate at which information can be transmitted becomes slower than if there were
no noise. Additionally, as the probability of flipping a binary digit approaches 50%, the
rate at which information can be transmitted approaches 0.

If a message x is sent through the channel, it may or may not reach the other end in its
original form. Call the received message y. If the properties of the channel are completely
characterized, then for all possible sent and received messages, the probabilities p(x),

10Such special structure would exist if statistical correlations among characters and between
words were precomputed and the rules of proper spelling and grammar in a given language
were invoked on both the sending and receiving ends.
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p(y), and p(x, y) will be known. In the language of Section 17.1.1, an “event” is a
particular message, x, and a “collection” is the set of all possible messages, X. Therefore,
p(x | y) can be computed, and the discrete entropies H(X), H(Y ), H(X,Y ), and
H(X | Y ) can be computed from these probabilities. Shannon referred to the conditional
entropy H(X | Y ) as the equivocation. This is a good name because if the intended
message is actually received, p(x | y) = δx,y and H(X | Y ) = 0, meaning that there is
no ambiguity/confusion as to the relationship between the received and sent messages.
On the other hand, if p(x | y) is more spread out over the set of symbols than this
Kronecker delta, then it is not possible to say unequivocally that the received message
is the intended one.

The capacity of a noisy channel, C, is defined to be the supremum (which for a finite
set is the same as the maximum) over all possible information sources of the mutual
information of the source and sink:

C
.= sup

p(x)
I(X;Y ).

If the channel is noiseless, the equivocation is 0, H(X | Y ) = 0, and I(X;Y ) = H(X).
In this case, the p(x) that maximizes H(X) is the uniform distribution, and so if there
are N = 2b possible symbols transmitted per second, this reduces to

C = sup
p(x)

N∑
i=1

(1/N) log2 N = b
bits

second
,

which is the same as in (17.25).
Since real channels have noise, the following theorem, which indicates that it is pos-

sible to drive this level of confusion down at the expense of a reduced rate of information
transmission, is very useful in practice.

Theorem 17.2 (Shannon’s Fundamental Theorem for Discrete Noisy Channels [104]).
For a discrete noisy channel with a capacity of C and a source entropy rate of Ḣ(X),
there exists a coding system such that when Ḣ(X) ≤ C, the output of the source can
be transmitted over the channel in such a way that H(X | Y ) approaches (but never
reaches) zero by use of an appropriate coding method. And when Ḣ(X) > C the best
possible code will have an error that approaches (but never reaches) Ḣ(X)− C.

The implication of this theorem is that when information is transmitted at a rate
less than the capacity of a noisy channel, it can be done so almost always without
error by using an “appropriate coding technique.” Moreover, if an attempt is made to
send more information through the channel than its capacity allows, then errors will
undoubtedly result, although the frequency of these errors can be reduced by packaging
(encoding) the message by taking into account knowledge of the channel. The theorem
does not provide a means for constructing an “appropriate coding technique.” Rather,
it establishes bounds on what is possible and what is not.

Classical coding theory (as discussed in the next chapter) generally does not produce
rates that approach this bound [1], but more modern coding methods do come quite
close [6] at the expense of more computations on the encoding and decoding ends of the
communication process. However, as computers become ever faster and less expensive,
greater levels of computation become acceptable.

17.2.3 Continuous Channels with Gaussian Noise

In continuous channels, where messages are transmitted as continuous functions of time,
s(t) (called signals, rather than sequences of symbols), analogous theorems relating the
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rate of information transmission to the amount of noise in the channel are known.
In particular, the Shannon–Hartley theorem relates the capacity of a channel to carry
continuous information to the ratio of the power (or amplitude) of the signal and that of
additive Gaussian white noise that corrupts the signal. Wiener filtering is a method for
the recovery of signals corrupted by noise. The concepts of continuous entropy reviewed
in Chapter 3 play a role in the analysis of continuous information transmission, and the
channel can be modeled using the sorts of SDEs discussed in Chapter 4. The topic of
continuous channels with Gaussian noise is treated in detail in [49, 105]. Our discussions
of this topic and classical “rate-distortion theory” is postponed until Chapter 21, where
this theory is generalized to the context of Lie groups and associated principal (fiber)
bundles.

The remainder of this chapter explores various connections between information
theory and group theory.

17.3 Groups and Information

Finite-group theory and information theory interacted in the context of the design of
error-correcting codes. There are several other ways that properties of finite groups and
information can be combined. Some of these are discussed in the subsections of this
section. In contrast, the next section illustrates a connection between Lie groups and a
problem in communications.

17.3.1 Convexity and Convolution

Recall from Chapter 3 that a convex function Φ : R → R is one which satisfies the
property

Φ(βx + (1− β)y) ≤ βΦ(x) + (1− β)Φ(y).

For example, a function with a positive derivative and second derivative will satisfy this
property, but these are not necessary conditions for convexity. Differentiability (or even
continuity) are not required for a function to be convex. Two important examples of
convex functions are Φ(x) = − log x and Φ(x) = +x log x. The negative of a convex
function is called a concave function.

Convexity is unaffected by “external” affine transformations of the form Φ(x) →
E(a,b)(Φ(x)) .= a · Φ(x) + b, where a ∈ R+ and b ∈ R. Convexity is also unaffected
by “internal” affine transformations of the form Φ(x) → I(a,b)(Φ(x)) .= Φ((x − b)/a).
Successive internal or external affine transformations add up according to the group law
for the affine group:

I(a1,b1)(I(a2,b2)(Φ(x))) = I(a1,b1)◦(a2,b2)(Φ(x))

and
E(a1,b1)(E(a2,b2)(Φ(x))) = E(a1,b1)◦(a2,b2)(Φ(x)),

where
(a1, b1) ◦ (a2, b2) = (a1a2, a1b2 + b1).

This operation can be thought of as the matrix multiplication(
a1 b1
0 1

)(
a2 b2
0 1

)
=

(
a1a2 a1b2 + b1

0 1

)
.
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Given probabilities {p1, . . . , pn} (defined by a probability function p(xi) = pi) that
sum to 1 and any positive numbers {α1, . . . , αn}, it follows from the definition of a
convex function that

Φ

(∑n
i=1 αipi∑n
i=1 αi

)
≤

∑n
i=1 αiΦ(pi)∑n

i=1 αi
.

If entropy is viewed as a functional of the probability function p,

S(p) = −
n∑

i=1

p(xi) log p(xi),

then the fact that −p log p is a concave function leads to the inequality

S

(∑n
i=1 αipi∑n
i=1 αi

)
≥

∑n
i=1 αiS(pi)∑n

i=1 αi
. (17.26)

Given a group G that acts on a set X = {x1, . . . , xn), a kind of convolution can be
defined as

(α ∗ p)(xi) =
∑
g∈G

α(g)p(g−1 · xi), where
∑
g∈G

α(g) = 1 and
n∑

i=1

p(xi) = 1.

For example, G might cyclically shift or otherwise permutate a set of characters, X.
Although the sum here is over G rather than the elements of X, essentially the same
reasoning as that behind (17.26) results in

S(α ∗ p) ≥ S(p). (17.27)

In other words, entropy never decreases as a result of convolution. This is related to
(17.20). The next subsection addresses the case when the set X and G are the same set
(denoted as Γ ) and iterated convolutions are performed.

17.3.2 Groups and Information Inequalities

Earlier in this chapter a number of inequalities were presented. Information theory is full
of inequalities that relate mutual information, entropy, marginalization, and so forth.
In recent work, a number of researchers in information theory have observed a parallel
between inequalities in information theory and inequalities in group theory. Part of this
work is reviewed here.

To begin, let H and K be subgroups of a finite group G that has operation ◦. It can
be shown (see the exercises and [59, 80]) that H ∩K will always be a subgroup of G and

HK
.= {h ◦ k | h ∈ H, k ∈ K}

always will be a subset of G. It will be a subgroup of G if and only if HK = KH. One
way in which this identity will hold is if G is commutative. Regardless of whether or
not this condition holds, it can be shown that the number of entries in the set HK will
be [59, p. 45]:

|HK| = |H| · |K|
|H ∩K| ≤ |G|. (17.28)

This equality will be useful in the sequel.
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Counting Formulas

Chan and Yeung [17, 18] have used this fact in the context of a family of subgroups of
G to obtain information-theoretic inequalities. Let {G1, G2, . . . , Gn} denote a family of
subgroups of G and let Gij

.= Gi ∩Gj and, by extension, Gi1,i2,...,im

.= Gi1 ∩Gi2 ∩ · · · ∩
Gim

, which must all be a subgroups of G. Then using (17.28), it follows that

|GijGjk| = |Gij | · |Gjk|
|Gij ∩Gjk| =

|Gij | · |Gjk|
|Gijk| .

Without loss of generality, let i = 1, j = 3, and k = 2.
As is pointed out in [17], it follows from (17.28) that |G13| · |G23|/|G123| ≤ |G3|.

Dividing both sides by |G13| · |G23| · |G3| and multiplying by |G| gives

|G|
|G123| · |G3| ≤

|G|
|G13| · |G23| .

Taking the logarithm of both sides gives

log
|G|
|G13| + log

|G|
|G23| ≥ log

|G|
|G3| + log

|G|
|G123| .

Due to the analogy between group theory and information theory established in [17],
this equality can be viewed as a derivation of the inequality

H(C1 ∩ C2) + H(C2 ∩ C3) ≥ H(C3) + H(C1 ∩ C2 ∩ C3) or I(C1, C2|C3) ≥ 0,

which was stated without reference to group theory in (17.17).
These analogies go both ways. For example, as pointed out in [17], the information

inequality by Zhang and Yueng [128],

H(C1) + H(C2) + 2H(C1 ∩ C2) + 4H(C3) + 4H(C4) + 5H(C1 ∩ C3 ∩ C4)
+ 5H(C2 ∩ C3 ∩ C4)
≤ 6H(C3 ∩ C4) + 4H(C1 ∩ C3) + 4H(C1 ∩ C4) + 4H(C2 ∩ C3) + 4H(C2 ∩ C4),

can be used to write the corresponding group inequality

log
|G|
|G1| + log

|G|
|G2| + 2 log

|G|
|G12| + 4 log

|G|
|G3| + 4 log

|G|
|G4| + 5 log

|G|
|G134| + 5 log

|G|
|G234|

≤ 6 log
|G|
|G34| + 4 log

|G|
|G13| + 4 log

|G|
|G14| + 4 log

|G|
|G23| + 4 log

|G|
|G24| .

Exponentiation of both sides and some rearrangement of terms gives the group inequality

|G34|6 · |G13|4 · |G14|4 · |G23|4 · |G24|4 ≤ |G1| · |G2| · |G3|4 · |G4|4 · |G12|2 · |G134|5 · |G234|5.

Ingleton Inequality and Homomorphisms

In very recent work, Li and Chong [75, 76] and Chan [18] have addressed the relation-
ship between group homomorphisms and information inequalities using the Ingleton
inequality [62]. This work is reviewed here in notation consistent with the rest of this
chapter, which is somewhat different than their notation.
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Let G be a finite group with elements gi ∈ G with i = 1, . . . , |G|. Let φ1, φ2, φ3,
and φ4 be homomorphisms from G into other groups, G′

1, G′
2, G′

3, and G′
4; that is,

φj : G → G′
j . Let p : G → R be any pdf on G. A probability density on G′

j can
be defined by combining p(·) and φj(gi) in an appropriate way. In particular, for any
g′ ∈ G′

j ,

p′
j(g

′) .=

{∑
g∈φ−1

j (G′j)
p(g) if g′ ∈ φj(G)

0 if g′ /∈ φj(G).
(17.29)

Let p0(gi) = 1/|G| for all i = 1, . . . , |G| denote the uniform probability distribution
on G. Now, if G and G′

j are isomorphic to each other, the uniformity of p0(·) will be
preserved by the isomorphism. In contrast, if the homomorphism is injective (one-to-
one) but not surjective, then the value 1/|G| can be assigned to all elements in φi(G) and
a value of 0 can be assigned to all remaining elements, G′

i−φi(G). If the homomorphism
is not injective, then multiple elements of G will be mapped to each element of φi(G).
The number of elements from G that are mapped to each element in φi(G) will be
exactly the same as the number of elements from G that map to the identity element
of φi(G), and so ∑

g∈φ−1
j (G′j)

p0(g) =
|Kerφj |
|G| .

In other words, the uniformity of the probability on G will be preserved on φi(G),
although its magnitude will be scaled.

Entropies and mutual information can be defined on finite groups in the same way
as on any finite set. Whereas it is common in classical probability and information
theory to denote a deterministic variable as a lowercase letter and a random variable
as the corresponding uppercase letter (e.g., x and X), when addressing information
theory on groups this would lead to a notational problem because g and G already have
well-established meanings. Therefore, g will be used to describe both deterministic and
stochastic group elements, and the context will specify which is being considered at any
particular instance.

Given homomorphisms from G into the direct products of the form G′
i × G′

j con-
structed simply as (φi, φj) : G → (φi(G), φj(G)), it is possible to define probability
distributions on G′

i ×G′
j from p(g) using a construction similar to that in (17.29). This

can be extended to a many-fold product. It then makes sense to discuss joint entropy,
mutual information, conditional mutual information, and so forth. Using this construc-
tion, Li and Chong [75] computed

H(φ1(G), φ2(G)) = log |G| − log |Kerφ1 ∩Kerφ2|,

I(φ1(G);φ2(G)) = log |G| − log
|Kerφ1| · |Kerφ2|
|Kerφ1 ∩Kerφ2| ,

I(φ1(G);φ2(G)|φ3(G)) = log
|Kerφ1 ∩Kerφ2 ∩Kerφ3| · |Kerφ3|
|Kerφ1 ∩Kerφ3| · |Kerφ2 ∩Kerφ3| .

They then used rules of group theory and information inequalities from [47] to prove
Ingleton’s inequality in this context:

I(φ1(G);φ2(G)|φ3(G)) + I(φ1(G);φ2(G)|φ4(G)) + I(φ3(G);φ4(G))
≥ I(φ1(G);φ2(G)). (17.30)
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The discussion in this section has focused on the relationship between finite groups
and discrete information inequalities. In contrast, Lie groups enter into the theory of
communication in several ways, as is explained in the following section.

17.4 The Telegraph Equation

The physical transmission of information can take place in many different ways. One
of the first modes of communication in the modern era was the telegraph. The way
that the amplitude of a signal in, for example, Morse code gets distorted as it traverses
a telegraph line is governed by the so-called telegraph equation. This equation is of
the form

∂2u

∂t2
+ (α + β)

∂u

∂t
+ αβu− c2 ∂2u

∂x2 = 0, (17.31)

where c2 = 1/LC, α = G/C, and β = R/L, where L is the inductance, R is the
resistance, C is the capacitance, and G is the conductance of the cable. u(x, t) is the
voltage in the cable at position x and time t.

Given initial conditions, it is possible to solve for u(x, t) using classical Fourier anal-
ysis, as reviewed in [19]. The goal in this section is not to solve (17.31) but rather to
examine Lie symmetries of the equation itself. This can serve as a paradigm for the
Lie-theoretic analysis of other equations governing the physical transmission of infor-
mation. These include acoustic transmission in three dimensions. Here, (17.31) is used
to demonstrate the simplest example (not because of any expected resurgence in the
use of telegraphic information transmission!).

17.4.1 Standard Form

To begin, it will be convenient to convert (17.31) into a standard form. Suppose that
we introduce three real parameters: T > 0, a time scale, X > 0, a length scale, and
λ > 0, a decay constant. Let x = Xξ and t = Tτ . Then it is possible to substitute
u(x, t) = e−λτv(Xξ, Tτ) into (17.31). Since

∂u

∂t
= e−λτ ∂v

∂τ

∂τ

∂t
− λe−λτ ∂τ

∂t
v =

e−λτ

T

(
∂v

∂τ
− λv

)
and

∂u

∂x
= e−λτ ∂v

∂ξ

∂ξ

∂x
=

e−λτ

X

∂v

∂ξ
,

it follows that repeated application of these rules gives

∂2u

∂t2
=

e−λτ

T 2

[
∂2v

∂τ2 − 2λ
∂v

∂τ
+ λ2v

]
and

∂2u

∂x2 =
e−λτ

X2

∂2v

∂ξ2 .

Therefore, substitution in (17.31) and division by e−λτ gives the “standard form”

∂2v

∂τ2 + v − ∂2v

∂ξ2
.= Qv = 0 (17.32)
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for the choice
T = 1± α− β

α + β
, λ =

1
2
(α + β)T, X = cT.

It is not necessary to convert from (17.31) to (17.32) in order to perform a symme-
try analysis, but the removal of parameters and elimination of the single derivative
term reduces the complexity of the calculations somewhat. Hence, the remainder of this
discussion is restricted to (17.32).

17.4.2 Symmetry Operators

Following the same procedure as with the heat equation in Chapter 2, we seek a first-
order linear operator of the form11

L = T (ξ, τ)
∂

∂τ
+ X(ξ, τ)

∂

∂ξ
+ Z(ξ, τ)

such that
[L,Q]v = RQv

for some R(ξ, τ). A direct calculation similar to that for the heat equation in Chapter 2
then yields the conditions

∂2Z

∂τ2 −
∂2Z

∂ξ2 = −R, (17.33)

∂2T

∂τ2 −
∂2T

∂ξ2 + 2
∂Z

∂τ
= 0, (17.34)

2
∂T

∂τ
= −R, (17.35)

∂2X

∂τ2 − ∂2X

∂ξ2 − 2
∂Z

∂ξ
= 0, (17.36)

∂X

∂τ
− ∂T

∂ξ
= 0, (17.37)

2
∂X

∂ξ
= −R. (17.38)

Combining (17.35) and (17.38) gives

∂X

∂ξ
=

∂T

∂τ
, (17.39)

which together with (17.37) leads to

∂2X

∂ξ2 =
∂2X

∂τ2 and
∂2T

∂ξ2 =
∂2T

∂τ2 .

Substituting this into (17.34) and (17.36) gives

∂Z

∂ξ
=

∂Z

∂τ
= 0 =⇒ Z = const.

11T (ξ, τ) and X(ξ, τ) are unrelated to the length scales T and X used above, which will not
appear in the rest of this analysis.
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This, in turn, implies from (17.33) that R = 0, which together with (17.38) gives that
X = X(τ) and (17.35) gives T = T (ξ). From (17.39), the condition X ′(τ) = T ′(ξ)
follows, and revisiting (17.34) and (17.36) gives X ′′(τ) = T ′′(ξ) = 0. Putting all of this
together,

L = (l3ξ + l1)
∂

∂τ
+ (l3τ + l2)

∂

∂ξ
+ l0,

where l0, . . . , l3 are free constants. Neglecting l0 by setting it equal to 0 (since it cor-
responds to the trivial identity operator), the resulting operator is spanned by basis
elements of the form

L1 =
∂

∂τ
, L2 =

∂

∂ξ
, L3 = ξ

∂

∂τ
+ τ

∂

∂ξ
. (17.40)

These operators form a Lie algebra with commutation relations

[L1, L2] = 0, [L1, L3] = L2, [L2, L3] = L1.

Note that these commutation relations are the same as those for the Lie algebra of the
motion group of the Lobachevsky plane in Section 10.6.4 with L1 ↔ −X1, L2 ↔ X2,
and L3 ↔ X3.

Of course, in the modern era, the value of understanding the telegraph equation
is not in order to improve communication via telegraphy. Rather, this equation is a
model for various communication problems, including the transmission of nerve impulses
in biological systems and dispersive wave phenomena more generally. Moreover, the
continuous symmetries of equations governing the transmission of information via the
telegraph equation are but one application of Lie theory. Treatments of Lie symmetries
of other equations describing wave propagation can be found in numerous papers and
books, including [13–15, 31, 64, 73, 84, 88, 92, 102].

17.5 Communications and Random Walks
in the Hyperbolic Plane

The hyperbolic plane (also called the Lobachevsky plane) is a mathematical object that
was linked to the theory of communication half a century ago [43, 44, 66, 117, 118]. In
those modeling and analysis efforts, it was shown how noise due to random inhomo-
geneities in waveguides can be related to how a communication signal gets corrupted
and how this is related to stochastic processes in the hyperbolic plane. After those ef-
forts, a number of famous theorems about the properties of random walks on groups
and homogenous spaces, including those due to Furstenberg [39, 40], were published.
Interest in these topics has continued to the present day [3, 4, 46, 61, 85, 110].

In this section the mathematical modeling tools necessary to derive SDEs and the
corresponding Fokker–Planck equation on the hyperbolic plane are developed. Two mod-
els of the hyperbolic plane are common: the Poincaré disk model and the Poincaré half-
plane model. These two models are related by a conformal mapping, as is explained
below. Since different groups of transformations act on the disk and on the half-plane
models, the conformal mapping between the models defines mappings between the
groups acting on these models.

What is presented here in two dimensions extends naturally to higher dimensions
with the open ball in Rn replacing the open disk and the open half-space Rn−1 × R>0
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replacing the open half-plane. Although these objects, together with their metrics, are
model examples of spaces of negative curvature, the emphasis here is only the two-
dimensional case.

17.5.1 The Group SU(1, 1) and the Poincaré Disk Model

The group SU(1, 1) consists of all 2× 2 complex matrices of the form

A =
(

α β

β α

)
, where αα− ββ = 1 and α, β ∈ C, (17.41)

such that the quadratic form

A∗J2A = J2, where J2 =
(

1 0
0 −1

)
, (17.42)

is preserved. An action of this group on the open unit disk in the complex plane,
D

.= {w ∈ C | |w| < 1}, can be defined as [56]

A · w .=
αw + β

βw + α
.

By observing that

SO(2) ∼= {A(θ) | θ ∈ [0, 2π)} < SU(1, 1), where A(θ) =
(

eiθ 0
0 e−iθ

)
,

D itself can be viewed as the homogeneous space

D = SU(1, 1)/SO(2).

If w = x1 + ix2 are the coordinates for D, then its metric tensor can be expressed
as [56]

gij =
δij

(1− x2
1 − x2

2)2
. (17.43)

The unit open disk, D, in the complex plane together with this metric is called the
hyperbolic plane.

With the above information, we have everything we need to simulate random walks
and Fokker–Planck equations in the hyperbolic plane. In particular, the volume element
and Laplace–Beltrami operator are

dz =
dx1dx2

(1− x2
1 − x2

2)2
and ∇2 = (1− x2

1 − x2
2)

2
(

∂2

∂x2
1

+
∂2

∂x2
2

)
. (17.44)

There is a very intuitive geometric way to view the above equations. As explained
in [74], a mapping can be defined between D and one sheet of a hyperboloid of two
sheets. Recall from high school geometry that a hyperboloid of two sheets embedded in
R3 is of the form

z2

c2 −
x2

a2 −
y2

b2 = 1 =⇒ z = ±c

√
1 +

x2

a2 +
y2

b2 . (17.45)
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The + branch in the above equation corresponds to the “upper” sheet. We are interested
in the case when a = b, so that it is symmetric around the z axis. The two points on
the two sheets that are closest to each other are (0, 0,±c), and as x2 + y2 increases,
the hyperboloid asymptotes to a cone. An invertible mapping between a disk in the
x− y plane centered at the origin and the upper sheet can be defined by stereographic
projection from (0, 0,−c) through the disk and intersecting the upper sheet. By adjusting
the values of a and c, it can be ensured that this is a unit disk. It is left as an exercise to
compare the metric in (17.43) with the metric for the hyperboloid of one sheet induced
from its embedding in R3.

17.5.2 The Groups SL(2, R) and PSL(2, R) and the Poincaré
Half-Plane Model

The group SL(2, R) was reviewed earlier. It consists of all 2×2 matrices with real entries
and determinant of +1. Note that since this is an even-dimensional matrix, both I2 and
−I2 have a determinant of +1. The two matrices I2 and −I2 form a finite subgroup
of SL(2, R) with two elements. This subgroup {I2,−I2} ∼= Z2. The group PSL(2, R)
is defined as the quotient SL(2, R)/{I2,−I2}. In other words, there is a two-to-one
mapping from SL(2, R) onto PSL(2, R).

An action of PSL(2, R) on the upper half of the complex plane H
.= {z ∈ C |Im(z) >

0}, PSL(2, R) : H → H, can be defined as

A · z .=
az + b

cz + d
= −A · z, where A =

(
a b
c d

)
∈ SL(2, R).

This is an example of a Möbius transformation (also called a linear fractional trans-
formation). This sort of transformation received considerable attention on “Youtube”
recently [6]

The set H, together with the metric in (17.43), which is called the Poincaré half-plane
model, can be thought of as the homogeneous space

H = PSL(2, R)/SO(2).

The disk and the half-plane models are related by any conformal mapping of the
form [82, 108]

w = eiθ0

(
z − z0

z − z0

)
, (17.46)

where z0 = r0e
iθ0 ∈ H is arbitrary; that is, each choice of z0 defines a different mapping

from H to D. For the applications of these concepts to the analysis of waveguides with
random inhomogeneities, see [43, 44, 66, 90, 117, 118], and for more reading about the
hyperbolic plane, see [109].

17.6 Optical Communications and Lie Groups

Optical communication is an important subject in any discussion of communications.
Two kinds of optical communication systems exist: direct detection systems and coherent
detection systems. In direct detection systems, the optical signal is converted directly
into a demodulated electrical output. In coherent detection systems, light is added to
the modulated signal as part of the detection process. Coherent detection systems have
several advantages over direct detection systems, including increased sensitivity and



296 17 Information, Communication, and Group Theory

increased frequency selectivity. However, this comes at the cost of increased complexity,
and a problem called laser phase noise is a large barrier preventing their applications.
It is therefore important to analyze the effects of phase noise on the performance of
various coherent receivers.

17.6.1 Coherent Optical Systems

In optical communications, the work “coherent” describes any receiver that adds a lo-
cal oscillator (LO) lightwave to the incoming wave, even if subsequent processing and
demodulation ignore the phase and frequency, as is the case of envelope detectors [67].
This is because adding the LO to the weak conventional intensity modulation increases
sensitivity of the system. This is what is called a “weakly coherent system.” This con-
trasts with the meaning of coherent systems in the classical communications literature,
which requires the recovery and use of the phase and frequency of the carrier to perform
the demodulation and detection.

The basic coherent optical system works as follows. Laser light possessing a suffi-
ciently stable frequency (quasi-monochromatic signal) is used as the carrier wave and
modulated (in amplitude, frequency, phase, or polarization) by the information signal.
At the receiver site, a LO lightwave is added to the received signal, and the combined
lightwave is directed toward a photodetector. The resulting photocurrent is bandpass
filtered to select the modulated intermediate frequency (IF) carrier. The IF is equal to
the difference between the LO and carrier frequencies, usually in the microwave (GHz)
range. If the LO and the carrier have the same frequency, the electrical currents at the
output of the photodiodes are at baseband, and the receiver is called homodyne. On the
other hand, if they do not have the same frequency, the electrical currents are frequency
translated at IF. In this case, the receiver is called heterodyne.

Coherent optical systems have two major advantages. The first is the high sensitivity
which results in an expansion of the repeater spacing. The second is the high-frequency
selectivity which results in a contraction of the frequency spacing between multiplexed
channels. In contrast to direct detection systems, coherent detection systems have the
capability to detect the phase, frequency, amplitude, and polarization of the incident
light signal. Therefore, information can be transmitted via phase, frequency, amplitude,
or polarization modulation. By applying FDM (frequency division multiplexing) of a
large number of densely spaced channels in the transmitter, the bandwidth inherent in
conventional single-mode fibers can be effectively exploited [25], and each receiver is
able to select one of the FDM channels carried by the fiber by simply tuning its own
local oscillator.

Of all the obstacles preventing coherent techniques from making a smooth transition
into the optical domain, laser phase noise is one of the largest, and therein lies an
application of the theory of Lie groups.

17.6.2 Laser Phase Noise

The phase of the light emitted from a semiconductor laser exhibits random fluctuations
due to spontaneous emissions in the laser cavity [58]. This phenomenon is commonly
referred to as phase noise. Because there are only about 104 photons in the active
region of a semiconductor laser, the phase of the light is significantly perturbed by just
one spontaneous photon [78]. If there is no spontaneous emission, the output light
spectrum consists of delta functions (each delta function δ(ω−ωi) corresponding to one
longitudinal mode at frequency ωi). When there are random spontaneous emissions, the
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spectrum is no longer a sum of delta functions. Instead, the spectrum is broadened and
has a finite nonzero linewidth around each ωi. The amount of phase noise is directly
related to its so-called linewidth—the 3-dB linewidth of its power spectrum density.
The spectral width of a modern microwave oscillator is less than 1 Hz and that of a
distributed feedback (DFB) laser is 1 MHz. The best of today’s GaAsInp DFB lasers
based on superstructure, hand-selected from bulk production, have a linewidth less than
1 kHz [112, 126].

Phase noise has two important adverse effects on the performance of coherent optical
communications. One effect is the broadening of the linewidth of a light source output. It
results in inefficient use of the available bandwidth and causes interchannel interference
and thus necessitates wider channel spacing. This is especially dominant at low data
rates where channels occupy a small bandwidth. Additionally, a large linewidth results
in a larger propagating dispersion in optical fibers. The second effect is that phase
noise directly corrupts the phase or frequency of a modulated carrier. It makes the
correct retrieval of the transmitted data bits more difficult for the receiver. The system
sensitivity is degraded, as measured by the BER (bit error rate) [12]. For a fixed BER,
this necessitates an increase in received signal power compared to the ideal situation
(power penalty). In some cases, the presence of phase noise creates a lower limit on the
probability of a bit error (BER floor) below which the system cannot operate.

Some methods to alleviate the influence of phase noise have been proposed in [8, 34].
They involve receiver structures and signaling mechanisms that are relatively insen-
sitive to phase uncertainty (e.g. amplitude shift keying and frequency shift keying).
Envelope detector structures with widened filter bandwidths are used in conjunction
with these modulation formats to reduce the performance degradation. Reference trans-
mission schemes that provide a reference signal at the receiver that has the same phase
structure as the received signal may cancel phase noise.

The Three-Dimensional Phase–Noise Fokker–Planck Equation

As was pointed out in [35, 42, 120], to evaluate the phase noise effects on coherent optical
systems, the main issue is to find the statistical characterization of the output of the IF
filter. Unfortunately, this is a difficult problem even in the simple but significant case
in which a finite-time integrator (integrate-and-dump filter) is used. Analytical models
that describe the relationship between phase noise and the filtered signal are found in
[16, 35, 36, 42]. In particular, the Fokker–Planck approach represents the most rigorous
description of phase noise effects [41, 42, 127]. To better apply this approach to system
design and optimization, an efficient and powerful computational tool is necessary. In
this chapter, we introduce one such tool for use in lightwave communications.

The Fokker–Planck approach has been described in [16, 35, 127] in which the deriva-
tion for a specific IF filter, the finite-time integrator, is outlined. Here, we derive it for
any IF filter with a bounded impulse response.

In the field of fiber optic communication systems, a limitation on the amount of
information that can be transmitted when using particular architectural paradigms is
imposed by laser phase noise. This noise results when random photons in the laser cavity
are spontaneously emitted. The resulting noise in the phase of transmitted laser pulses,
φ(t), is usually modeled as a Brownian motion process [67] as

φ(t) .=
√

D

∫ t

0
dw or dφ =

√
Ddw. (17.47)

The parameter D is related to the laser linewidth Δv by D = 2πΔv.
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Using the equivalent baseband representation and normalizing it to unit amplitude,
the corresponding random part of a signal being sent by the laser can be written as [42]12

s(t) .= ejφ(t).

If h(t) is the impulse response of the IF filter, then the (complex) random variable z(t)
(the output of the IF filter) describes how the filter and noise interact:

z(t) .= (h ∗ s)(t) =
∫ t

0
h(τ) ejφ(t−τ)dτ. (17.48)

Here, s(t) is the input signal to the IF filter which is corrupted by phase noise.
Since phase noise φ(t) is a stationary random process, the reversal of the time

direction in φ(t) does not affect the statistics of z(t). Moreover, φ(t− τ) can be replaced
by φ(τ). Then (17.48) can be rewritten as

z(t) =
∫ t

0
h(τ) ejφ(τ)dτ. (17.49)

Equation (17.49) is not a Markov process. There are two ways to construct Markov pro-
cesses with the same statistical characteristics as (17.49). One way is to adopt a vector
process which is Markov. This will give a three-dimensional Fokker–Planck equation.
The other way is to use an auxiliary variable by a slight modification of (17.49). This way
will give a two-dimensional Fokker–Planck equation. In the following, we will derive the
corresponding stochastic differential equations first. Then we show their Fokker–Planck
equations.

Let us expand z(t) into its real and imaginary parts as

z(t) = x(t) + jy(t) = r(t)ejθt.

From (17.49), we can easily get

x(t) =
∫ t

0
h(τ) cosφ(τ) dτ, (17.50)

y(t) =
∫ t

0
h(τ) sinφ(τ) dτ. (17.51)

Although z(t), x(t), and y(t) are not Markov processes, the three-component vec-
tor process [φ(t), x(t), y(t)]T and [φ(t), r(t), θ(t)]T are Markov vector processes. From
(17.47), (17.50), and (17.51), we can derive the stochastic differential equations as⎡⎣dφ(t)

dx(t)
dy(t)

⎤⎦ =

⎡⎣ 0
h(t) cosφ(t)
h(t) sinφ(t)

⎤⎦ dt +

⎡⎣√D
0
0

⎤⎦ dw(t) (17.52)

with initial conditions φ(0) = 0, x(0) = 0, and y(0) = 0. Since D is a constant, it does
not matter if (17.52) us viewed as being Itô or Stratonovich.

Comparing (17.52) with a standard SDE, we see that the drift vector and diffusion
matrix are respectively

a =

⎡⎣ 0
h(t) cosφ(t)
h(t) sinφ(t)

⎤⎦ and H =

⎡⎣√D
0
0

⎤⎦ .

12In electrical engineering, it is common to use j =
√−1 rather than i, and so to be consistent

with the literature, we use j in this section.
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Using the methods of Chapter 4, we can derive the three-dimensional Fokker–Planck
equation for (17.52) as

∂f

∂t
= −h(t) cosφ

∂f

∂x
− h(t) sinφ

∂f

∂y
+

D

2
∂2f

∂φ2 (17.53)

with initial condition f(x, y, φ; 0) = δ(x)δ(y)δ(φ), δ being the Dirac delta function. When
the IF filter is a finite-time integrator, the three-dimensional Fokker–Planck equation
can be simplified as

∂f

∂t
= − cosφ

∂f

∂x
− sinφ

∂f

∂y
+

D

2
∂2f

∂φ2 . (17.54)

This equation is similar to the equation describing the evolution of the stochastic robot
in Chapter 1. It is evolving on the group of rigid-body motions of the plane, SE(2),
with elements of the form g(x, y, φ).

The Two-Dimensional Phase Noise Equation

Corresponding to the three-dimensional Fokker–Planck equation defined earlier is a
two-dimensional equation that describes the evolution of marginal densities. This two-
dimensional equation is derived here.

Since increments of Wiener processes are invariant under shifts, the following sub-
stitutions can be made:

φ(t− τ) ⇐⇒ φ(t)− φ(τ) and φ(t) ⇐⇒ −φ(t). (17.55)

Using the first of these,

z(t) .= (h ∗ s)(t) = ejφ(t) ·
∫ t

0
h(τ) e−jφ(τ)dτ. (17.56)

Since this is a physical process, this integral should be interpreted in the Stratonovich
sense when computing increments. This means that the usual calculus can be used to
obtain

dz(t) = ejφ(t) · (h(τ) e−jφ(τ))
∣∣∣
τ=t

dt + j dφ(t) � ejφ(t) ·
∫ t

0
h(τ) e−jφ(τ) dτ, (17.57)

which can be written as

dz(t) = h(t) dt + j
√

D z(t) � dw(t). (17.58)

If we use the second expression in (17.55), then the plus sign will become a minus. This
sign is irrelevant. The � crept in because we used the usual calculus on a stochastic
system, which is consistent with the Stratonovich interpretation.

If instead of using the Stratonovich calculus, we can apply Itô’s rule to evaluate dz.
Itô’s product rule is d(x(t)y(t)) = x(t) dy(t) + y(t) dx(t) + dx(t) dy(t). Applying this to
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(17.56) gives

dz(t) = dejφ(t) ·
∫ t

0
h(τ) e−jφ(τ)dτ + ejφ(t)

· d
∫ t

0
h(τ) e−jφ(τ)dτ + dejφ(t) · d

∫ t

0
h(τ) e−jφ(τ)dτ. (17.59)

Here,

dejφ(t) = ejφ(t)
[
j dφ(t)− 1

2
(dφ(t))2

]
= ejφ(t)

[
j
√

D dw − 1
2
D dt

]
.

The first equality can be obtained by expanding out using Euler’s formula, eiφ = cosφ+
j sinφ, and using Itô’s rule for the real and imaginary parts and recombining. This result
has been used in, for example, [33]. The second equality is because dφ(t) =

√
D dw and

so (dφ(t))2 = D(dw(t))2 = Dt.
Recognizing that, in general, dz(t) = z(t + dt) − z(t), the increment of the integral

term becomes

d

∫ t

0
h(τ) e−jφ(τ)dτ =

∫ t+dt

0
h(τ) e−jφ(τ)dτ −

∫ t

0
h(τ) e−jφ(τ)dτ = h(t) e−jφ(t)dt.

Therefore, the last term in (17.59) vanishes, since it is of higher order (i.e., smaller)
than dt.

Making all of the above substitutions into (17.59), the following Itô SDE results:

dz(t) =
[
h(t)− 1

2
Dz(t)

]
dt + j

√
Dz(t) dw(t). (17.60)

If z(t) = x(t) + jy(t), then this becomes

dx = (h−Dx/2) dt−
√

Dy dw and dy = (−Dy/2) dt +
√

Dxdw. (17.61)

In the Stratonovich case, Jacobsen [63] wrote that

dx = h(t) dt +
√

D y � dw and dy = −
√

D x� dw. (17.62)

If x = x1 and y = x2, then the corresponding Fokker–Planck equation is

∂f

∂t
= −

d∑
i=1

∂

∂xi
(hs

if) +
1
2

d∑
i,j=1

∂

∂xi

[
m∑

k=1

Hs
ik

∂

∂xj
(Hs

jkf)

]
, (17.63)

where

hs =
(

h
0

)
and

Hs =
(

Hs
11

Hs
12

)
=

(−√Dx2√
Dx1

)
.



17.6 Optical Communications and Lie Groups 301

As in Chapter 4, the relationship between the Itô and Stratonovich forms can be
equated by observing that

Hij = Hs
ij and hi = hs

i +
1
2

d∑
k=1

m∑
j=1

∂Hij

∂xk
Hkj . (17.64)

Therefore, we can drop the superscript s on Hij (but not on hs
i !).

Both can only be true simultaneously if (17.64) reduces to hs = h, which can happen
in some special cases but does not usually. Is that the case here? In this case, m = 1,
and from (17.64),

1
2

d∑
k=1

m∑
j=1

∂Hij

∂xk
Hkj =

1
2

2∑
k=1

∂Hi1

∂xk
Hk1

=
1
2

∂Hi1

∂x1
H11 +

1
2

∂Hi1

∂x2
H21.

Thus,

1
2

∂H11

∂x1
H11 +

1
2

∂H11

∂x2
H21 =

1
2
· 0 +

1
2
(−
√

D)
√

Dx1 = −1
2
Dx1.

1
2

∂H21

∂x1
H11 +

1
2

∂H21

∂x2
H21 =

1
2

√
D(−

√
Dx2) +

1
2
· 0 = −1

2
Dx2.

What this means is that the Itô SDEs that correspond to our Stratonovich SDEs
(17.62) are

dx1 = (h−D x1/2) dt−
√

D x2 dw and dx2 = (−D x2/2) dt+
√

D x1 dw. (17.65)

The Itô and Stratonovich SDEs are not the same in Cartesian coordinates, and one
would not expect them to be the same in polar coordinates either. Below we investigate
the polar coordinate version.

Stratonovich SDEs transform easily under changes of coordinates. In particular, if
we want to represent (17.62) in polar coordinates, then we can simply differentiate the
expressions x = r cos θ and y = r sin θ and substitute into (17.62) to give

dr cos θ − r dθ sin θ = h dt−
√

D x2 � dw, (17.66)

dr sin θ + r dθ cos θ =
√

D x1 � dw. (17.67)

Isolating dr and dθ then gives the SDE[
dr
dθ

]
=

[
h cos θ

−h sin θ

r

]
dt−

[
0√
D

]
� dw. (17.68)

Note that if the negative sign in front of the noise term is flipped to a positive sign, then
the Fokker–Planck equation will be exactly the same. Additionally, note that since in
polar coordinates, the factor multiplying the noise is independent of r and θ and that
|G| 12 = r is not a function of θ (and therefore in the Fokker–Planck equation, r only
multiplies terms inside of ∂2/∂φ2), the Itô and Stratonovich forms of the Fokker–Planck
equation will be exactly the same in polar coordinates.
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Substituting this into the general Stratonovich form of the Fokker–Planck equation
with |G| = r gives

∂f̃

∂t
= −h(t) cosφ

∂f̃

∂r
+ h(t)

sinφ

r

∂f̃

∂φ
+

D

2
∂2f̃

∂φ2 . (17.69)

Alternatively, substituting (17.62) into the Stratonovich form of the Fokker–Planck
equation in (17.63) (or equivalently, (17.65) into the Itô form of the Fokker–Planck equa-
tion) gives

∂f

∂t
= −h(t)

∂f

∂x
+

D

2

[
x2

2
∂2f

∂x2
1

+ x2
1
∂2f

∂x2
2
− x2

∂

∂x1

(
x1

∂f

∂x2

)
− x1

∂

∂x2

(
x2

∂f

∂x1

)]
.

(17.70)

This can be simplified as

∂f

∂t
= −h(t)

∂f

∂x
+

D

2

(
y

∂

∂x
− x

∂

∂y

)2

f. (17.71)

If we want to convert to polar coordinates x = r cosφ and y = r sinφ, f(x, y; t) =
f̃(r, φ; t), then

∂f

∂x
= cosφ

∂f̃

∂r
− sinφ

r

∂f̃

∂φ
and

∂f

∂y
= sinφ

∂f̃

∂r
+

cosφ

r

∂f̃

∂φ
.

Therefore, (
y

∂

∂x
− x

∂

∂y

)
f = −∂f̃

∂φ
and

(
y

∂

∂x
− x

∂

∂y

)2

f =
∂2f̃

∂φ2 .

We conclude that (17.71) can be written as (17.69). In [121], the author and collab-
orators presented a group-Fourier-transform method for solving (17.53), (17.69), and
(17.71) numerically. This is because these equations can be written in an invariant way
in terms of the differential operators Ẽr

i for SE(2), and the corresponding operational
properties can be applied. The equations derived here will be revisited in Chapter 20 in
the context of more general stochastic flows on Lie groups.

The next section addresses a very different set of problems in the transmission of
information via wave motion that also draw on the theory of Lie groups.

17.7 Soliton Geometry and the Mechanics of Communication

Given a function f ∈ N (R), traveling waves are of the form f(x−ct), where c ∈ R is the
wave speed. These traveling waves can be viewed as solutions to linear wave equations
(which are similar to the telegraph equation without diffusion/attenuation terms). In
contrast, solitons are self-reinforcing traveling waves that are governed by nonlinear
PDEs. Examples include waves that propagate in shallow water and smoke rings. The
soliton phenomenon was first described by a naval engineer named John Scott Russell,
who observed such waves in the Union Canal in Scotland in 1834. The name “soliton”
was introduced by Zabusky and Kruskal in the context of plasmas in 1965 [129].
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Unlike solutions to the (linear) telegraph equation, in which an initial pulse attenu-
ates, solitons can exhibit persistence in wave shape and constancy of wave speed over
significant distances and times. Perhaps this is why smoke signals were used from an-
cient times until the 1800s to visually relay information over long distances. In modern
times, the use of solitons implemented as pulses of light traveling in fiber optic commu-
nication systems have been investigated. This technology, although not currently in use
in commercial systems, may have applications in the future.

This section begins with a brief review of the most common nonlinear equations
that give rise to solitons. Then the relationship between Lie groups and the sorts of soli-
tons observed in optical fibers is explored. A connection between differential geometry
of curves in R3 and vortex filaments (such as smoke rings) that are governed by the
same nonlinear pde as solitons in fiber optic cables is then reviewed. Finally, additional
connections between solitons and the differential geometry of surfaces are reviewed.

17.7.1 Traveling Wave Solutions of Some Nonlinear PDEs

A famous nonlinear PDE that admits traveling wave solutions (soliton) is the Korteweg–
deVries (or KdV) equation13

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3 = 0. (17.72)

It has solutions of the form14

u(x, t) =
c

2
sech2

[√
c

2
(x− ct)

]
, where sech z =

2
ez + e−z

.

The graph of the hyperbolic secant function, sech z = (cosh z)−1, looks somewhat like
a Gaussian distribution. The KdV equation can be derived from first principles of fluid
mechanics, as is done in [72].

Another famous equation is the sine–Gordon equation.15 In the literature, this is
written in two equivalent forms:

∂2u

∂x2 −
∂2u

∂t2
= sinu and

∂2u′

∂x′∂t′
= sinu′ (17.73)

where u(x, t) = u′(x′, t′) and

x′ =
1
2
(x + t) and t′ =

1
2
(x− t). (17.74)

Solitons of the form

u(x, t) = 4 tan−1
[
a exp

(
x− ct√
1− c2

)]
exist for appropriate choices of a and c [72].

13Replacing the number 6 with the number 1 in this equation changes c/2 to 3c in the
solution that is given here.

14It is left as an exercise to check what values of c ∈ R>0 will work.
15The name “Sine-Gordon” is a play on words resulting from the fact that this equation

has a similar appearance to the (linear) “Klein–Gordon” equation in which the right-hand side
would be u rather than sin u.
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17.7.2 Lie-Group Invariance and Optical Solitons

Solitons in optical fibers are governed by the nonlinear Schrödinger equation [50, 81]

−i
∂u

∂x
=

1
2

∂2u

∂t2
+ |u|2u. (17.75)

This equation can be derived from Maxwell’s laws as in [50].16 A fundamental solution
to this equation is of the form [81]

uf (x, t) = eix/2 sech t.

Starting with this fundamental solution, it becomes clear immediately that given con-
stants κ, σ, η, and t0, each of the following four transformations also produces a solution:

(T1(t0)uf )(x, t) = uf (x, t− t0),

(T2(σ)uf )(x, t) = uf (x− 2σ, t) = e−iσuf (x, t),

(T3(κ)uf )(x, t) = uf ([1− κ2]x− 2κt, t + κx) = exp
[
−i(κt +

1
2
κ2x)

]
uf (x, t + κx),

(T4(η)uf )(x, t) = η uf (η2x, ηt).

Each transformation above can be iterated to yield (Ti(α)Ti(α′)uf )(x, t) = (Ti(α◦α′)uf )
(x, t), and so each forms a one-dimensional (and hence Abelian) group. These groups
are respectively G1 = (R,+), G2 = SO(2), G3 = (R,+), and G4 = (R>0, ·). Combining
these transformations results in a four-parameter family of new solutions of (17.75) of
the form [50]

(T (κ, σ, η, t0)uf )(x, t) .= η uf ([η2 − κ2]x− 2[κt + σ], η[t + κx− t0])

= η exp
[
−iκt +

i

2
(η2 − κ2)x− iσ

]
sech [η(t + κx− t0)]. (17.76)

Clearly, T1(t0) = T (0, 0, 1, t0), T2(σ) = T (0, σ, 1, 0), T3(t0) = T (κ, 0, 1, 0), and T4(t0) =
T (0, 0, η, 0). Moreover, concatenating T (κ, σ, η, t0) and T (κ′, σ′, η′, t′0) defines a binary
operation for this four-parameter set of transformations. Due to the separability of
uf (x, t) and the fact that the x dependence is unimodular, this means that |(T (κ, σ, η, t0)
uf )(x, t)| has the form of a traveling wave.

17.7.3 Vortex Filaments and the Nonlinear Schrödinger equation

The nonlinear Schrödinger equation that appeared above in the context of solitons
in optical fiber communications also appears in the study of vortex filaments in fluid
mechanics. Indeed, the fluids scenario in which these equations arise came first (see, e.g.,
[24]). A vortex filament is a curve around which fluid circulates, such as the centerline
of a tornado or the moving circle around which a smoke ring rolls). In addition to
moving rigidly, this curve can change shape over time. This shape change results from
self-induced changes in vorticity (i.e., if the filament is curved, the circulations around
the tangents at two different values of arc length will interact). This is governed by the
law of Biot-Savart [72].

16The appearance of this equation is somewhat similar to the (linear) Schrödinger equation
of quantum mechanics, although (17.75) has purely classical origins.



17.7 Soliton Geometry and the Mechanics of Communication 305

If x(s, t) denotes this time-evolving arc-length-parameterized curve describing a
time-evolving vortex filament, certain kinematic conditions apply and can be described
using the Frenet–Serret apparatus discussed in Chapter 5—namely it can be shown
that [99]

∂x
∂s

= u and
∂x
∂t

= κn2,

∂κ

∂t
= −2τ

∂κ

∂s
− κ

∂τ

∂s
,

∂τ

∂t
=

∂

∂s

(
−τ2 +

1
κ

∂2κ

∂s2 +
1
2
κ2

)
.

The above equations were derived and used by Hasimoto [51] together with the trans-
formations

q(s, t) = κ(s, t) exp
[
i

∫ s

s0

τ(s′, t) ds′
]

and

u(s, t′) = q(s, t′) exp

[
i

∫ t′

0

(
−τ2 +

1
κ

∂2κ

∂s2 +
1
2
κ2

)∣∣∣∣∣
s=s0

dt

]
to yield a version of (17.75) with rescaled arguments. When ∂τ

∂t

∣∣
s=s0

= 0, u(s, t) = q(s, t).
Since curvature and torsion completely specify the shape of a space curve and since these
can be recovered from q(s, t) as

κ(s, t) = |q(s, t)| and τ(s, t) =
∂

∂s
[Atan2(Re(q(s, t)), Im(q(s, t))],

it follows that the time-evolving shape of a vortex filament can be determined by solv-
ing (17.75). The explicit form of the resulting x(s, t) is given in [99] together with plots
under different conditions.

17.7.4 Bäcklund Transformations

As seen previously in this section, differential-geometric tools play an important role in
the analysis of the nonlinear PDEs that admit solitons as solutions. A number of works
employ Bäcklund (also called Lie–Bäcklund) transformations to study such equations.
A Bäcklund transformation is a change of coordinates of a parametric surface that pro-
duces a new surface with some conserved geometric quantity (such as mean or Gaussian
curvature). For example, the change of coordinates in (17.74) in the context of the sine–
Gordon equation is a kind of Bäcklund transformation that makes it easier to identify
solitions. The study of transformations of surfaces (and, more recently, transformations
of manifolds) has roots that are more than a century old, with mathematicians such as
Bianchi and Darboux having made seminal contributions. Since books such as [5, 99]
discuss Bäcklund transformations and their applications to solitons in detail and other
books such as [60] use properties of exterior algebras (wedge products, etc.) to study
these nonlinear pdes, there is no need to do so here. However, it is worth mentioning that
the relevance of these geometric tools to communication lies in the properties of solitions
to persist in shape and speed in contexts where linear modes of information transfer
may have difficulties. For example, it has been hypothesized that crickets chirping is a
form of vortex-ring communication [55].

The topics discussed in this section are only a few of the many possible connections
between soliton geometry and the mechanics of communication. Classic references on
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solitons include [26, 71, 111], and these may provide insights into future research at the
interface of geometry, transformation groups, and information theory.

17.8 Chapter Summary

This chapter has served as an introduction to the engineering side of information theory
(i.e., the mathematical theory of communication and coding). The concept of discrete
entropy and its relationship to Shannon’s theorems on the rate of information that can be
transmitted through a noisy channel were reviewed. Recent work on connections between
information inequalities and the structure of finite groups was reviewed. Natural connec-
tions between the theory of communication and SDEs exist [93]. Moreover, references to
classical continuous channels with Gaussian noise and the associated rate-distortion the-
ory were provided, but a detailed discussion is postponed until Chapter 21, where this
theory is generalized to the geometric setting of Lie groups and principal bundles. This
chapter also illustrated Lie groups enter in some applications (e.g., the telegraph and
soliton equations) as symmetry operators that define the physical properties of continu-
ous communication channels. Lie groups also can serve as the continuous domains over
which the the communicated signal and noise propagate (e.g., the case of laser phase
noise). Laser phase noise and solitons are examples of information theory interacting
with the geometric/physical world. Additionally, Lie groups arise in these contexts in
very natural ways. This chapter also provided pointers to the literature such as [43, 66],
in which the transmission of messages through waveguides with random inhomogeneities
is related to Brownian motion in the Lobachevsky plane, which is a homogeneous space.

Therefore, this chapter can be viewed as a bridge between the stochastic processes
in continuous space studied in Volume 1 (which had very little to do with group theory)
and the discrete-group-theoretic problems that arise in classical coding and communi-
cations theory. The sorts of problems that will be addressed later in this volume, which
are almost exclusively focused on physical/geometric problems involving continuous in-
formation theory and Lie groups, will draw heavily on this chapter.

A popular area of modern information theory is concerned with issues in wireless
communications. References to this literature include [1, 37, 40, 94]. And random matrix
theory has been shown to be a useful tool in the context of wireless communication
networks in [38, 52, 53, 95, 103, 106, 119].

For further reading on various aspects of classical and modern information theory,
see [7, 10, 30, 32, 45, 48, 68–70, 79, 87, 91, 98, 101, 116, 122].

For connections between information theory (including quantum information theory)
and geometry see [9, 11, 57, 83, 100, 107]. Other topics that bring together methods
from group theory, geometry, and information theory include different aspects of modern
imaging [123, 124].

17.9 Exercises

17.1. Given sets E1, E2, and E3, which of the following are true?

(E1 ∩ E2) ∪ (E2 ∩ E3) = (E1 ∪ E2) ∩ E3,

E1 ∪ (E2 ∪ E3) = (E1 ∪ E2) ∪ E3,

E1 ∩ (E2 ∩ E3) = (E1 ∩ E2) ∩ E3,

E1 ∪ (E2 ∩ E3) = (E1 ∪ E2) ∩ E3,

(E1 ∩ E2) ∪ (E2 ∩ E3) = E1 ∩ (E2 ∪ E3) ∩ E3.
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17.2. Use the same reasoning as in the derivation of (17.6) to prove that

p(E1 ∩ E2 ∩ E3 ∩ E4) = p(E1 | E2 ∩ E3 ∩ E4) p(E2 | E3 ∩ E4) p(E3 | E4) p(E4).

17.3. Prove the inequalities in (17.14).

17.4. Prove the equality in (17.16).

17.5. Prove the inequality in (17.17).

17.6. Prove the inequalities in (17.18).

17.7. If Φi : R → R for i = 1, 2 are convex functions, will the composed function Φ1 ◦Φ2
be convex also?

17.8. If H and K are subgroups of G, prove that H ∩K is also a subgroup of G.

17.9. If H and K are subgroups of G, prove that HK is a subgroup of G if and only if
HK = KH.

17.10. Is the mapping defined in (17.46) invertible?

17.11. Show that DJS(p‖q) defined in (17.22) can be computed as

DJS(p‖q) = S((p + q)/2)− 1
2
S(p)− 1

2
S(q),

where S(p) is the Shannon entropy of p = {p1, . . . , pn}.
17.12. (a) Show that the function ψ(x) .= log[2/(1 + e−x/2)] is concave and ψ(x) ≤ x/4.
(b) Using these facts, prove (17.23) (as in [21]). (c) Split the Jensen–Shannon divergence
into two parts as was done in [113] and prove that [21]

DKL(p‖(p + q)/2) ≤ log
[

2
1 + exp(−DKL(p‖q))

]
.

17.13. Is
d(X,Y ) .= H(X|Y ) + H(Y |X)

a metric?
Hint: See [22].

17.14. Verify (17.42).

17.15. Parameterize the group SU(1, 1) with elements defined in (17.41) and compute
Jacobian matrices and the volume element. Is this a unimodular Lie group?

17.16. Work out the details of the stereographic projection that maps the upper sheet
of the hyperboloid of two sheets in (17.45) to the unit disk. Using the methods of
Chapter 5, compute the metric tensor for the hyperboloid of two sheet embedded in
R3 defined in (17.45) using the coordinates (x, y). How does this compare with (17.43)?
How are (x, y) and (x1, x2) related?
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Algebraic and Geometric Coding Theory

Coding theory is concerned with methods for “packaging” and “unpackaging” messages
in order that the most information can be reliably send over a communication channel.
In this chapter, a greater emphasis is given to the roles of geometry and group theory
in communication problems than is usually the case in presentations of this subject.
Geometry and group theory enter in problems of communication in a surprising number
of different ways. These include the use of finite groups and sphere packings in high-
dimensional spaces for the design of error-correcting codes (such as those due to Golay
and Hamming). These codes facilitate the efficient and robust transmission of informa-
tion. Additionally, Lie groups enter in certain decoding problems related to determining
the state of various motion sensors.

The important points to take away from this chapter are as follows:

• Geometry and group theory play important roles in the design of codes and in
decoding algorithms.

• Understanding the geometry and symmetry of sphere packing in high-dimensional
Euclidean spaces leads to efficient codes.

• Problems in Robotics and Computer-Integrated Surgical Systems can be viewed
from the perspective of encoding/decoding problems over the groups SO(3), SE(2),
and SE(3).

• Algebraic structures other than groups, such as rings and fields, are important in
coding theory.

The remainder of this chapter is structured as follows. Section 18.1 provides a general
introduction to classical coding theory. Section 18.2 reviews how algebra and coding
are related. Section 18.3 addresses the associated geometric and group-theoretic issues.
Section 18.4 describes the interplay between information theory and the measurement
of rotational motion in the context of rotary and spherical encoder design. Section 18.5
continues along this theme by examining motion coding problems in medical image
registration.

18.1 Classical Coding Theory

In this section two fundamental results of coding theory for discrete alphabets are
reviewed: (1) the Kraft–McMillan inequality and (2) the source coding theorem. The
brief presentation here is necessarily truncated given the overall goals of this book.
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For comprehensive introductions to coding theory, see the information theory references
from Chapter 17 and [17, 20, 29, 31, 32], and references therein.

18.1.1 The Kraft–McMillan Inequality

Let A = {αi} be an alphabet consisting of |A| symbols and let D = {Wi} be a dictionary
consisting of |D| words. Each of these words is constructed from symbols drawn from A.
The number of symbols used to construct Wi is denoted as |Wi| and is called the
length of the word. Some caution is necessary when interpreting this terminology. If the
symbols αi in the alphabet A are the fundamental elements of the code, such as 0s and
1s in a binary code like ASCII or dots and dashes in Morse code, then the “words”
in the dictionary actually would be letters in, say, the Roman alphabet rather than
actual words in the sense of a human language. This is consistent with the discussion
in Section 17.3.

A fundamental result in coding theory is the Kraft–McMillan inequality, which was
originally derived by Kraft for instantaneous/tree codes (such as Morse code)1 and
extended by McMillan to any uniquely decodable code (which includes ASCII).2 This
inequality places a constraint on the lengths of the words for given sizes of the alphabet
and dictionary as follows:

|D|∑
i=1

|A|−|Wi| ≤ 1 . (18.1)

A proof of this theorem can be found in books on classical information theory.

18.1.2 The Source Coding Theorem

Starting with the same terminology and conditions as in the previous subsection, let pi

denote the probability of Wi occurring in a typical message. Denote the average word
length as L =

∑|D|
i=1 pi |Wi|. Then the source coding theorem states that3

H(D) ≤ L · log |A|, where H(D) .= −
|D|∑
i=1

pi log pi . (18.2)

This theorem is easy to prove using the Kraft–McMillan inequality. Let li = |Wi|,
n = |D|, and r = |A|, and for the moment let us fix the base of the logarithm as e.
Then the terms in (18.2) can be written as

He(D)− L · loge r = −
n∑

i=1

{pi loge pi + pi li loge r} =
n∑

i=1

pi loge

(
1

pi rli

)
.

1In such codes, no codeword appears at the beginning part (or prefix) of another codeword;
hence, these are also called prefix codes. Words in such codes can be viewed as the leaves on a
decision tree rooted on the first symbol in the word.

2The terminology “uniquely decodable” is highly technical and is defined precisely in books
in classical information theory, but, in essence, it means that words in an encoded message can
be parsed without any ambiguity.

3This inequality holds regardless of the base of the logarithm, which appears on both sides
of the equation. It is a restatement of Shannon’s theorem for noiseless channels.
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Then since for any x ∈ R>0 the inequality loge x ≤ x− 1 holds,

He(D)− L · loge r ≤
n∑

i=1

pi

(
1

pi rli
− 1

)
=

(
n∑

i=1

r−li

)
− 1 ≤ 0,

where the last inequality is the Kraft–McMillan inequality.
The results presented in this section are generic and establish bounds on the perfor-

mance of any uniquely decodable code. However, they are not constructive in providing
guidelines as to how to design a code. This is where algebra and geometry come in
to play.

18.2 Algebraic Coding Theory

This section focuses on elementary algebraic, rather than geometric, aspects of coding
theory. First, a review of the algebraic structures known as rings and fields is provided.
Fields are a kind of number system that can be used as the values of functions as well
as the entries of vectors and matrices. Thus, it makes sense, for example, to talk about
functions that take their values in a field (R and C are fields, but, more generally,
a function can be defined on a set S as f : S → F, where F is some general field). When
vectors and sets of invertible matrices have entries that take their values in a field, the
result is a “vector space over a field” or a “matrix group over a field.”

18.2.1 Rings and Fields

In modern algebra, the fundamental objects of study are groups, rings, fields, vector
spaces, and algebras. The formal definition of vector spaces is given in Appendix A.1 of
Volume 1 and is well known to engineers and physical scientists. A working definition of
a group was given in Chapter 1 and was formalized in Chapter 10. Rings and fields are
mathematical objects that have more structure (i.e., more defining rules) than groups
but less than vector spaces. Fields have more structure than rings, and algebras have
the most structure. As with the definition of a group and a vector space, the definitions
of a ring and a field can be found in books on modern algebra. Basically, a field is a set,
F, together with two binary operations, + (called addition) and · (called multiplication).
The pair (F,+) is a commutative group and the identity element is denoted as 0. Let
F× .= F−0 (which should be read as F with 0 excluded). By definition, the pair (F×, ·) is
also a commutative group with the identity element denoted as 1. The usual distributive
laws a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a for any a, b, c ∈ F completes the
defining properties of the field (F,+, ·). As in the case of groups, F is sometimes used as
shorthand for (F,+, ·) when it is understood from the context. A ring can be thought
of as a weakened version of a field in the sense that the existence of a multiplicative
inverse for each nonzero element (and all of the group rules that involve a multiplicative
inverse) is not required.

As a concrete example of a field, consider the set {0, 1} with addition and multipli-
cation “modulo 2.” In modular arithmetic, 1 + 1 .= 0 rather than 1 + 1 = 2, which gives
closure to ({0, 1},+). In modular arithmetic, the result of the sum or product of two
numbers from the set {0, 1, 2, . . . , p − 1} can be evaluated “mod p” by first computing
it in the usual arithmetic and then adding or subtracting p until the result falls back in
the set {0, 1, 2, . . . , p− 1}.
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In the particular case of ({0, 1},+, ·), the multiplication in modular arithmetic is the
same as in usual arithmetic. The rules for this field can be summarized in the following
tables:

+ 0 1
0 0 1
1 1 0

and
· 0 1
0 0 0
1 0 1

(18.3)

This field is denoted as F2. The “+” and “·” operations can be thought of as the logical
“exclusive or” and “and” operations, respectively.

Given any prime number p, modular arithmetic operations can be used to define a
field Fp = ({0, 1, 2, . . . , p− 1},+, ·). For example, F5 is defined by

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

and

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

(18.4)

Note that (F5,+) is a commutative group,4 but (F5, ·) is not. The corresponding table
defining multiplication for the commutative group (F×

5 , ·) is

· 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

(18.5)

As a counterexample, the set of quaternions H is not a field since it is not commu-
tative under multiplication. It is called a skew field or division algebra.

Note that unlike a vector space which requires two sorts of objects (scalars and
vectors), there is only one kind of object involved in a field (scalars). In the definition of
a vector space, the scalars are drawn from a field. In the discussion of vector spaces in
Appendix A.1.1 of Volume 1, the scalars were taken from the fields of real, (R,+, ·), and
complex, (C,+, ·), numbers. However, a vector space can be defined “over” any field.

18.2.2 Groups over Fields

In the same way that a vector space can be defined over a field, groups with elements
that are matrices can be defined over any field by populating the entries of those matrices
with scalars drawn from a field. In general, given a field F, the “general linear group
over F” is

GL(n, F) .= {A ∈ Fn×n | detA �= 0}.
In other words, GL(n, F) consists of n × n matrices with entries drawn from the field
F under the constraint that the matrices are invertible. The group operation is matrix
multiplication.5

4Actually, (Fp, +) for any p ∈ Z>0 is isomorphic to Z/pZ.
5Although the quaternions are not a field, it is still possible to refer to a matrix group over

the quaternions such as GL(n, H).
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For example, it can be shown that the group GL(n, F2) consists of the following six
matrices [2]:

e =
(

1 0
0 1

)
; g1 =

(
1 1
0 1

)
; g2 =

(
1 0
1 1

)
;

g3 =
(

0 1
1 1

)
; g4 =

(
0 1
1 0

)
; g5 =

(
1 1
1 0

)
(where all of the arithmetic operations involved in the multiplication of matrices is
interpreted as mod 2). The corresponding group multiplication table with i, jth entry
corresponding to gi ◦ gj is

◦ e g1 g2 g3 g4 g5

e e g1 g2 g3 g4 g5
g1 g1 e g3 g2 g5 g4
g2 g2 g5 e g4 g3 g1
g3 g3 g4 g1 g5 g2 e
g4 g4 g3 g5 g1 e g2
g5 g5 g2 g4 e g1 g3

(18.6)

Note that this is a noncommutative group, as can be observed by the lack of symmetry
about the major diagonal of this table.

In contrast to the finite group GL(n, F2), it is possible to define GL(2, Z) .= {A ∈
Z2×2 | detA ∈ {1,−1}}. This is a discrete group consisting of an infinite number of
elements. (Note: Z is a ring but not a field.) GL(2, R) is a four-dimensional Lie group.
(The restriction on the determinant ensures the existence of a multiplicative inverse for
each matrix in GL(2, R). Each of the four entries in the matrix is free except for the
condition detA �= 0, which does not affect the dimensionality.) Similarly, GL(2, C) is an
eight-dimensional Lie group because each complex entry is defined by two real numbers.
So the specification of the field over which a group is defined makes a huge difference.

In the next section the concept of a field is demonstrated in the context of coding
theory.

18.2.3 The Hamming (7, 4) Code

A binary code of length n consisting of r message bits and n − r check bits is called
an (n, r) code. For example, sending the same message s times is an (r · s, r) code. If
the error probability, e, is small and s is large, then this is a reliable way to encode
a message (since on the receiving end, the average of each corresponding bit can be
computed and rounded to the nearest value), but this method can be slow.

The basic goal is to code information in such a way that optimizes the trade-off
between robustness (i.e., to maximize the ability to recover the original message from
a version corrupted by noise/random bit errors) and efficiency (i.e., to minimize the
ration r/n). Actually, if all of the message bits are equally likely, the probability of any
particular message being sent is 1/2r, and so

− log2(1/2
r)/n = r/n

is the “information rate” of the code. This is a measure of how much message gets
through given the checking machinery that is carried along with it.
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A bound established by Hamming for perfect codes is reviewed here. It is important
as a guideline in designing error-correcting codes. Given the goal of designing an (n, r)
code that is robust to single errors during transmission of the message, the goal is to
minimize n for given r. However, in this scenario, the number of check bits, n− r, must
be able to encode the n possible locations of a single error and also account for the
possibility of no error. Therefore, n− r must be large enough that 2n−r ≥ n + 1, or

2n

n + 1
≥ 2r. (18.7)

By exhaustive enumeration of the possibilities, Hamming provided the following table
of values that satisfy (18.7):

n r n− r r/n
1 0 1 0.000
2 0 2 0.000
3 1 2 0.333
4 1 3 0.250
5 2 3 0.400
6 3 3 0.500
7 4 3 0.571
8 4 4 0.500
9 5 4 0.555
10 6 4 0.600

The list goes on. Note, however, that the assumption that at most a single error occurs
is the basis for (18.7). If the goal was to develop an error-correcting code that is robust
up to two errors, then an inequality of the form 2n−r ≥ n(n−1)/2+n+1 would need to
be satisfied. As a sequence becomes longer, switching to such an equation would become
important, and that would change the numbers in the table, decreasing the ratio r/n
as n increases. Examining the small values of n, it becomes clear that the (7, 4) case
has a better ratio than its neighbors and therefore deserves greater attention. That is,
a (7, 4) code is equally effective in error-correction ability while carrying less baggage
(i.e., it has a higher information rate) than its neighbors in the above table.

Hamming developed such a code in 1948, which was patented by Bell Labs. The
intuition behind the development of this code is quite interesting and is described in [17].
Here, only the “nuts and bolts” of how it works are described. Suppose a 4-bit error-
correcting message of the form m1m2m3m4 is to be transmitted, where mi ∈ F2. Let
m = [m1,m2,m3,m4]T ∈ F4

2 (the four-dimensional vector space over the field F2). Let

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ F4×7

2 and c = Gm ∈ F7
2. (18.8)

The coded message c1c2c3c4c5c6c7 is then sent through the channel. Let v1v2v3v4v5v6v7
denote the received message and v = [v1, v2, v3, v4, v5, v6, v7]T be the corresponding
vector. It could be that v = c, or ‖v − c‖ = 1.
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On the receiving side, two matrices are applied. First,

b = Hv, where H =

⎛⎝1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞⎠ .

The matrix H is actually the null-space projector matrix for G, meaning that

HG = O3×4. (18.9)

Therefore, if v = c, then b = 0, and this serves as verification that no error exists in
the received message.

If an error does exist in v, then computing b = Hv gives the column of H corre-
sponding to the location of the error. For example, if the message m1m2m3m4 = 1010
is sent, then

c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly,

Hc =

⎛⎝1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎝0
0
0

⎞⎠ .

Remember that both of these matrix–vector multiplications are performed in modulo 2
arithmetic. If a single error is introduced during transmission, then the result might be
something like

c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In this case,

Hv =

⎛⎝1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎝1
0
1

⎞⎠ .
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However, this is the third column of H, indicating that the error has occurred in the
third bit of the encoded message. Knowing were the error occurs is 99.999% of the
problem, since correction just requires flipping the value of the bit at that location.

Once a correct (or corrected) coded message has been received, then it can be de-
coded by multiplying by another matrix to recover m. Specifically, from (18.8) it is
clear that

c = [m1,m1 + m2,m2 + m3,m1 + m3 + m4,m2 + m4,m3,m4]T ,

and so,

m = Kc, where K =

⎛⎜⎜⎝
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞⎟⎟⎠
is one such matrix that will work since the first, third, and fourth rows pick off m1,
m3 and m4, respectively, and in modulo 2 arithmetic, m1 + m1 + m2 = m2, so the
second row picks off m2. Other valid K matrices would result if the second row were
replaced with 0000101 (because m2 + m4 + m4 = m2) or 0010010 (because m2 + m3 +
m3 = m2). Since all of the operations involved can be implemented as matrix–vector
operations, this is said to be linear code. Note, however, that this is not the best way
to implement encoding/decoding in hardware since the arithmetic operations involved
in these matrix–vector multiplications involve many multiplications and addition by 0
that are unnecessary.

Additionally, the choice of G and H are not unique. For example, if

G′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
1 1 0 0
0 0 1 0
1 0 0 0
0 1 1 0
1 0 1 1
0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, H ′ =

⎛⎝0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞⎠ , K ′ =

⎛⎜⎜⎝
0 0 0 1 0 0 0
0 1 0 1 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0

⎞⎟⎟⎠ ,

this defines another (7, 4) Hamming code. In this one, since the columns of H ′ are
arranged in the order of the binary number from 1 to 7, the binary location of the
position of the error can simply be read off of H ′v′. Here, the two versions of Hamming
(7, 4) codes presented are related to each other by a permutation of columns of H; that
is, H ′ = Hπ, where

π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Π7. (18.10)

Imposing the condition (18.9) on both codes means that G′ can be defined as a permu-
tation of rows of G by π−1 since

H ′G′ = (Hπ)(π−1G) = HG.

If KGm = m, then K ′G′m = m if K ′G′ = (Kπ)(π−1G), so K ′ = Kπ.
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From this construction, it is clear that there are |Π7| = 7! equivalent Hamming (7, 4)
codes with different G and H matrices. In addition, for each one, multiple K matrices
exist. Thus, rather than referring to “the Hamming (7, 4) code,” it makes sense to either
refer to “a Hamming (7, 4) code” or “the equivalence class of Hamming (7, 4) codes.”

Note also that any two messages encoded with the same Hamming (7, 4) code can be
added as c(1)+c(2). It follows from linearity that H(c(1)+c(2)) = 0, and so, c(1)+c(2) is
also a Hamming-(7, 4)-coded message. In other words, the set of all coded messages pro-
duced by the same Hamming (7, 4) code form a commutative group under the operation
of addition modulo 2. This makes them an example of a group code.

18.3 Codes and Geometry

When sending a message over a noisy channel, a natural question to ask is whether or
not it is possible to know if the intended message was received. Of course, one way to
do this would be to send the same message back and forth several times and match
the message that was originally intended with its replicas. However, this would be quite
time-consuming and would decrease the amount of possible information that can flow
over a given channel. In contrast, a more efficient way of doing things is to prepackage
the message in order to maximize its success of reaching the receiving end intact and,
if the original message is not received, to be able to detect (and possibly even repair)
any corruption of the original message. The trick is to do this without having to send
the message back to the sender.

The problem with any verification scheme is that exactness in communication is
never possible. For example, one can imagine a scenario in which a sequence of characters
in an original message is sent and that one of the characters on the receiving end gets
changed in the process. Even in the brute-force approach in which the received message
is sent back to the sender for verification, it is possible (however, unlikely) that the
character that was changed gets changed back to the original. Therefore, the sender
would believe that the correct message was received when in fact it was not. Although
this scenario illustrates that it is never possible to know if a sent message has been
received without any corruption, it is possible to make probabilistic comments about
how likely it is that the intended message has been received. Within this probabilistic
framework, the theory of error detection and correction in received messages is based
on the assumption that the error rate is low enough that multiple errors will not occur
in a message of a given size. In this context, various codes exist to prepackage a message
in a form that is robust to disturbances introduced by the noisy channel.

The following subsections address this kind of channel coding problem; that is, how
to bundle up a message with additional information so as to maximize the probability
that it can be recovered on the receiving end, given the model of noise described above:
random bit inversions. It should be noted, however, that other sorts of errors can occur.
For example, the omission or insertion of extraneous bits or the swapping of sequences of
bits might be possible. Such things certainly happen in biology (e.g., DNA transcription
errors or infection of a host cell’s genome with retroviruses). In the old days when an
analog Morse code signal was sent over long wires, the dots and dashes could end up
spreading out and overlapping each other due to signal attenuation (described by the
telegraph equation, as discussed in Chapter 17), which would also be a different kind
of error. However, if the discussion is limited to communications engineering and the
transfer of data inside or between computers, the model of individual bit flipping appears
to be a reasonable model.



322 18 Algebraic and Geometric Coding Theory

18.3.1 Error Detection Versus Error Correction

The theory of error detection and error-correcting codes has both geometric and alge-
braic aspects. In error detection, the goal is to determine (with high probability) whether
or not errors exist between the received and sent messages. If the probability of an error
occurring in any particular location in a message is very small and that probability is
uniform over all locations, then a parity check over a small sequence is an effective way
to detect an error. For example, if the probability of an error occurring in a message
consisting of four binary numbers is 1 out of 1000 in each digit, then the probability of
some kind of error occurring in the message is 4×0.001. The probability of a single error
occurring is 4× (0.999)3× (0.001) because the probability of any three digits being right
is (0.999)3, the probability of one being wrong is 0.001, and the error can be in one of
four places. The probability of two errors occurring is 6 × (0.999)2 × (0.001)2 because
each independent error has a probability of 0.001, and two such errors can occur in any
of the six digits (1,2), (1,3), (1,4), (2,3), (2,4), (3,4). The factor of (0.999)2 is required
because this is the probability that the other bits were transmitted correctly. Three
errors of this kind have a probability of 4× (0.999)× (0.001)3 because they can occur at
the four locations (1,2,3), (1,2,4), (1,3,4), (2,3,4) and the probability of the remaining
bit being correct is 0.999.

More generally, if the probability that any individual bit in a message will have an
error is p, then the probability that no error occurs in a message of length n is (1− p)n.
The probability that one and only one error occurs is np(1− p)n−1, and the probability
that exactly two errors occur is n(n − 1)p2(1 − p)n−2/2. Indeed, the probability that
exactly k errors occur in a message of length n will be given by the binomial theorem as

P (k) .=
(

n
k

)
pk(1− p)n−k.

The probability that some kind of error will occur is n× p. The probability that either
no error or a single error will occur is (1− p)n + np(1− p)n−1. The probability that k
or more errors will occur is

∑n
j=k P (j).

When p is very small and n is not very large, it can be reasoned that the probability
of either no errors or a single error will be greater than the probability of two or more
errors. In this scenario, the addition of a parity bit to a binary message can be an effective
way to detect an error. For example, consider the message 001010111. Summing up the
bits gives 5. In modulo 2 arithmetic, 5 ∼= 1 mod 2. Therefore, appending a 1 to the
message and modifying it as 0010101111 means that if 1 out of these 10 digits in this
message is corrupted on the receiving end, it will be clear that the intended message
was not received. For example, 0000101111 does not make sense because adding up
the message bits gives 4 ∼= 0 mod 2, and 0 �= 1. If it happens to be that the parity
bit is corrupted, 0000101110 would not make sense either. Of course, the assumption
here is that the probability of errors is so low that multiple errors have not occurred,
since any even number of errors will preserve the parity. Error detection in the presence
of greater error probabilities (or longer message lengths) is possible by the inclusion
of more parity bits. This is equivalent to chopping the message up into smaller parts,
which is what is done in practice. For example, each character in the even-parity ASCII
code used to represent alphabetical and numerical symbols has a parity bit built in, so
any alphanumeric message is filled with parity bits.

It is important to have a sense of how noisy the information channel is a priori before
selecting a strategy for robust communication because, on the one hand, the inclusion
of too many parity bits reduces the rate at which information can be sent and, on the
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other hand, if the channel is noisier than expected, the inclusion of too few parity bits
means that received messages will be corrupted too frequently without any way to trust
their contents.

Once an error has been detected, a request from the receiver to the sender can be
made to resend the message. This requires two-way communication. In some cases, this
is not desirable. For example, communicating with a deep-space probe has significant
time delays, and sending a message, sending back a request to resend, and then resending
triples the amount of delay. Thus, it is desirable to develop codes that are robust to
noise in the sense that when a message is received, not only can an assessment be made
as to whether an error has occurred or not but also the location of the error can be
pinpointed and therefore fixed (since in binary knowing that an error has occurred at a
specific location means that the bit in that location should be flipped).

Geometric problems arise in the design of binary code words that are robust to single
or multiple errors because some measure of distance is required to design codewords that
are well separated from each other; that is, a received message that is corrupted by noise
can be restored (or corrected) to the original sent message with high probability.

For example, in a two-letter alphabet {A,B} if the letter “A” is encoded as the binary
number 00000 and the letter “B” is encoded as 11111 and if the message “A B A” is sent
but 01000 11101 00001 is received, it can be reasoned with high confidence that “A B A”
was intended, and one bit error has occurred in each code word. This is because counting
up the bit differences between the word for “A” and for “B” results in the number 5.
However, 01000 and 00001 have a distance of 1 from “A” and 4 from “B.”

Introducing concepts of distance between messages leads to geometry. The geometric
aspects of code design has a long and rich history that will be reviewed in the following
subsections.

18.3.2 Arrangement of Message Blocks as Spatial Arrays

In the previous subsection, an example was given of a message 000010111 | 1, where
| 1 is the parity bit, which is written here as being separated from the rest, but in an
actual transmitted message, there would be no such separation (and no empty spaces
between the bits either). If we are not satisfied with single-bit error detection, but also
want to correct single-bit errors without envoking two-way communication, there are
several geometric ways to approach the problem. Imagine that we arrange the contents
of the message (forget about the parity bit for now) as a 3× 3 array of binary numbers.
Then the parity bits of each row and each column can be computed and embedded as
part of a message. Suppose that this message is sent and a bit is corrupted (as indicated
below by the arrow and box, respectively).

0 0 0 0
0 1 0 1
1 1 1 1
1 0 1

= 000001011111101 −→ 00000 0 011111101 =

0 0 0 0
0 0 0 1
1 1 1 1
1 0 1

.

Then on the receiving end it will be clear that something went wrong because the parity
does not work in the row and column containing 0 . This not only detects the error but
also provides Cartesian array coordinates indicating its location!

There is no reason to limit this to the two-dimensional case. A message with a length
that can be factored into the product of three integers can be visualized as a three-
dimensional array. Additionally, parity bits can be thought of as occupying locations on
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the edges of this three-dimensional box, much like coordinate axes in three-dimensional
Cartesian coordinates. In this way, correction of single-bit errors in long messages can
be attained with relatively fewer check bits because as the number of dimensions of the
object increases, the volume grows exponentially and the number of axes grows linearly.

18.3.3 Hamming Spheres and Perfect Codes

Hamming introduced the concept of viewing a codeword of length n as a vertex on the
unit hyper-cube in Rn. For example, in R2, the 22 possible vertices of the unit square
in the first quadrant are (0, 0), (0, 1), (1, 0), and (1, 1). In R3, the coordinates of the 23

possible vertices of the unit cube in the first octant are (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1, 1). A natural metric to use in this context is the
l1-norm of the difference of any two sets of coordinates on the same hyper-cube viewed
as a vector. This is equivalent to the length of the shortest path connecting vertices
in the graph formed from the edges and vertices of the hyper-cube. This is called the
Hamming distance and is denoted here as D(·, ·). It satisfies the properties of a metric,
or distance, function. For example,

D(00, 11) = |0− 1|+ |0− 1| = 1 + 1 = 2

and
D(010, 110) = |0− 1|+ |1− 1|+ |0− 0| = 1 + 0 + 0 = 1.

If r ∈ Z+, a Hamming sphere centered on a vertex v is the set of all vertices such that

S(v, r) .= D(v, r) ≤ r. (18.11)

Actually, from a strict mathematical perspective, this should not be called a sphere
but rather a ball. However, since the name “Hamming sphere” is so well ingrained in
the literature, that name will be used here as well rather than attempting to call it a
“Hamming ball.” All points within a Hamming sphere of radius r around a message of
length n (Hamming space of dimension n) correspond to alterations of the message in
up to r of its bits. If a code is designed such that any two messages that would ever be
sent are each at the center of nonintersecting Hamming spheres or radius r, then if at
most r errors occur, the received messages will remain inside of their Hamming spheres
on the receiving end. Additionally, since by design the spheres do not intersect, there
will never be any ambiguity about what message was intended. However, if a code is
designed satisfying this property but has a lot of empty vertices that do not belong to
any Hamming sphere, then this means that the code is too conservative. Therefore, the
following two properties are important:

S(v1, r) ∩ S(v2, r) = ∅ and
⋃
i∈I

S(vi, r) = Bn, (18.12)

where I is the index set that enumerates all possible messages in a code and Bn is the
whole n-dimensional unit hyper-cube. If s(v) is the version of the message v that is
received and if it is known a priori that the communication channel will not introduce
any more than r errors, then D(v, s(v)) ≤ r. From the first condition in (18.12) and the
triangle inequality, it follows that for any other message w �= v, D(v, w) > 2r, and so
D(v, s(v)) + D(s(v), w) ≥ D(v, w) or

D(s(v), w) ≥ D(v, w)−D(v, s(v)) > r.
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This means that under the assumed noise properties of the channel, there is no way to
mistake s(v) for any message, w, other than the intended message, v.

Any code that satisfies the conditions in (18.12) is called a perfect code because it
affords the desired degree of error correction and is as efficient as possible in the sense
of not leaving any wasted vertices.

18.3.4 Coding Theory, Sphere Packing, and Symmetry Groups

Given that a perfect error-correcting code can be defined geometrically as the packing
of disjoint Hamming spheres that cover the full Hamming cube, there is a natural
connection between coding theory and geometry. This led to a confluence of interests
of mathematicians motivated by coding problems and those interested in the packing
of congruent (equal-sized) spheres in Rn [41]. Of course, the difference is that spheres
in Rn are defined by the Euclidean metric rather than the Hamming distance.

The packing of congruent circles in the plane so as to attain the highest density
has a long history. Gauss proved that hexagonally close packing of congruent circles in
a honeycomb lattice in which every circle has six neighbors contacting it provides the
highest density of any regular packing. Elementary geometry can be used to show that
this density is π/

√
12. However, it was not until 1940 that the Hungarian mathematician

László Fejes Tóth proved that this density could not be exceeded by using an irregular
packing.

Kepler conjectured in the early 1600s that the highest-density packing of congruent
spheres in R3 is π/

√
18. The face-centered-cubic lattice, in which each central sphere is

surrounded by other spheres of the same size placed at the corners and faces of a cube,
attains this bound. Additionally, if a layer of spheres is placed in a plane and hexagonally
close packed and then if two such planes are stacked in an offset way so as to pack as
closely as possible, then this also attains this bound. Using these constructions, every
sphere has 12 neighbors in contact. As with the case of regular planar packings, there is
a relatively small number of regular spatial packings of congruent spheres, and it can be
checked that the π/

√
18 bound holds for all of these regular packings. However, it was

not proved that this bound also holds for irregular packings until 1998, when Thomas
Hales proved it by exhaustive enumeration by computer.

In higher dimensions, the proof of the exact highest-density sphere packing becomes
even harder, since the number of possible packings grows very rapidly with the dimen-
sion. Even enumerating the regular packings becomes very difficult. However, a relatively
simple upper bound on the packing density in Rn can be obtained from the packing
density of n + 1 unit spheres with centers placed on a regular simplex6 with sides of
length 2. This bound, due to Rogers [33] is [34, 41]

r(n) =
(n + 1)

1
2 (n!)2πn/2

23n/2Γ (n/2 + 1)
fn(n), where fn(x) = Fn(arcsec(x)/2),

and
Fn+1(α) =

2
π

∫ α

arcsec(n)/2
Fn−1(β) dθ, where sec 2β = sec 2θ − 2,

is a recursive definition of Fn(α) starting with F1(α) = F0(α) = 1.
It is an upper bound because in general Rn cannot be filled by close-packing copies

of a simplex. Nevertheless, having such an upper bound gives a way to assess “how bad”
6A simplex is the multi-dimensional generalization of a triangle or tetrahedron.
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a proposed backing is. Since there is no guarantee that this bound can be attained, even
coming close means that the packing is pretty good.

An interesting connection between coding theory and geometry is that a (23, 12)
error-correcting code introduced by Golay [14] can be related to study regular pack-
ing of spheres in R24. In particular, Leech found a packing in R24 with a particularly
high density [28]. This packing has a density of π12/12! ≈ 0.0019296, which is a high
percentage of the Rogers bound in this case, which is approximately 0.002455. Leech’s
packing is regular and has an associated group of symmetry operations which were
studied extensively.

Related areas of discrete geometry include the packing of noncongruent circles in
irregular packings [39] and the optimal packing of congruent or noncongruent circles
on the surface of the sphere [7, 8]. There are a very small number of regular packings
of circles on the sphere; these correspond to the Platonic solids. Therefore, most work
in this area has been on the optimal irregular packing of equal-sized circles. However,
in the context of an application related to the design of a spherical motor, the author
and his student explored the problem of regular circle packings on the sphere using
circles of different sizes. Basically, the goal was to come up with two packings of circles
on the sphere, each with a different symmetry group, and both of which had circles of
approximately equal size [4]. The reason for these constraints was that the rotor (the
ball that moves) and the stator (the cavity that houses the ball) each had to have poles
(magnets/electromagnets) that could interact in a way that would induce motion. This
is not the only kind of spherical motor design, but it is one that relates to the theme of
circle/sphere packing. Nature also comes up with ways to approximate packings on the
surface of the sphere in the context of spherical virus capsids, which are the protein shells
that protect and encapsulate the genetic material of a spherical virus. This geometric
problem is not unrelated to coding theory, because a virus must encode the geometry of
the parts that form its capsid in its genetic material. For simplicity it is desirable that
this genetic material encode as few different kinds of parts as possible.

The following section discusses how rotary and spherical motion can be encoded
and decoded and explores one of the relationships between Lie groups and information
theory.

18.4 Rotary and Spherical Encoders

An optical rotary encoder is a device used to detect the angle through which a shaft
turns. They are often packaged together with a motor (e.g., in a robot arm) to provide
feedback about the angular state of a shaft, such as the axis of the motor. The central
part of a rotary encoder is a circular disk, usually made of transparent material, that
is divided into n concentric annuli and 2n sectors. An array of n light-emitting diodes
(LEDs) are lined up on one side of the disk—one for each annulus. Corresponding to
each LED is a sensor on the opposite side of the disk. The n · 2n annular sections of the
disk resulting from the intersections of sectors and annuli are either painted to block
light or left transparent. Based on the bit pattern that is received by the light sensors
(e.g., a “1” corresponding to sensed light and a “0” corresponding to no light), the angle
of the shaft is resolved to within a discretization of shaft motions of one part out of 2n.

One kind of code that is commonly used in the encoding of rotational motion around
a fixed axis is a Gray code (named after Frank Gray [15], and not the color gray). Gray
codes have the interesting property that as the shaft rotates, the bit pattern changes
one bit at a time, all the way around the circle. This is explained more in the following
subsection.
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18.4.1 Gray Codes: Definition and Recursive Generation

Given the modest goal of resolving the orientation of a shaft to within a 180◦ rotation,
we could simply paint one-half of the disk black and leave the other half clear. The
resulting LED–sensor pair then provides one bit of information. In this case, the Gray
code is simply

0
1.

Actually, it does not matter if the “0” is given the meaning of the painted half and “1”
the clear half of the disk, or vice versa. However, for the sake of argument let us take
“1” to be painted and “0” clear. When this assignment is made, the bits received by
the sensor will be inverted, since nothing will be received when the black paint stands
between the LED and the sensor, and light will pass through the clear annular sections.

Now, suppose that we need to resolve the orientation to within 90◦ rather than 180◦.
Dividing the disk into four sectors and two annuli, the resulting sections can be painted
according to the rule

00
01
11
10

=

0 0
0 1
1 1
1 0

Note that while it was trivial in the single-bit case to have the code “wrap around the
circle” in a way in which one bit changes per change in sector, here the pattern of single
bit changes is less trivial. Now, suppose that we want a resolution of 45◦. A Gray code
that does this is

000
001
011
010
110
111
101
100

=

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

Again, this wraps around so that there is a single bit change between the first entry, 000,
and the last, 100. This three-bit (or n = 3) Gray code corresponds to the encoder disk
painted as in Figure 18.1(a), where the list starts at the positive x axis and traverses
the disk counterclockwise.

Optical encoders can have very high resolution. If n = 8, then 28 = 256 sectors
means a resolution of approximately 1.4◦. Some commercially available encoders list a
value of n = 12, which provides a resolution of less than one-tenth of a degree (i.e.,
360/4096). The above codes listed for the cases of n = 1, 2, and 3 can be extended to
any value of n. There is a recursive procedure to do this. Starting with the Gray code
for n, the Gray code for n + 1 is obtained using four simple steps. First, list the code of
length n. Second, append to this list the code of length n listed in reverse order. Third,
append a column of n zeros to the left side of the upper half of this list. Fourth, append
a column of n ones to the left side of the lower half of this list.

18.4.2 Symmetries in Gray Codes

Clearly, by the construction described in the previous section, Gray codes have symme-
tries built in. Furthermore, if their only important feature is that one bit changes per
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Fig. 18.1. A Gray Code: (a) Standard Case; (b) Flipped by 180◦ Around the Vertical Line

rotation from one sector into an adjacent one, then the codes listed cannot be unique.
One way in which the code can be changed and still preserve this property is that the
disk can be flipped 180◦ along the vertical before being inserting it into the encoder
housing. Figure 18.1(a) shows an encoder painted in the standard way. Any planar
rotation of this constitutes an equivalent painting. Figure 18.1(b) shows an encoder
pattern that results from flipping it out of plane around the vertical line by 180◦. Since
these two patterns cannot be related to each other through an in-plane rotation, they
represent two different Gray codes. It corresponds to a transformation of the form

000
001
011
010
110
111
101
100

=⇒

010
011
001
000
100
101
111
110

(18.13)

Another way to construct new Gray codes from existing ones is to invert the colors;
that is, replace the annular sections that are painted with clear ones and vice versa. For
the three-bit case, this is equivalent to making the following change:

000
001
011
010
110
111
101
100

=⇒

111
110
100
101
001
000
010
011

(18.14)

These two sequences are not cyclically reordered versions of each other. This transfor-
mation results in the Gray code in Figure 18.2(a). Applying both the 180◦ flipping and
color inversion results in the encoder in Figure 18.2(b).

How else might an existing Gray code be modified while preserving the property that
they change one bit per incremental rotation? It is not difficult to imagine that reflecting
the painting through the center point or about any of the lines separating sectors. It
would seem a priori that such operations could be used as a way to change a given Gray
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Fig. 18.2. Inverted Gray Code: (a) Inverted from Standard Case; (b) Inverted and Flipped by
180◦ Around the Vertical Line

code into another one that preserves the essential property of one bit per incremental
rotation. However, it is easy to verify in the three-bit case that this produces, to within
a planar rotation, exactly the same paintings as one of the four shown in Figures 18.1
and 18.2.

Another operation that can be performed on an existing Gray code that preserves
this property is reversing the order of the paintings from the inner most annulus. This
would be equivalent to making

000
001
011
010
110
111
101
100

=⇒

000
100
110
010
011
111
101
001

(18.15)

Although this is a valid code mathematically, it is not as desirable as the others phys-
ically for use in optical disk encoders because the innermost bit must change more
frequently than in the other codes. This means that on the encoder disk, there would
be more opportunity for misreading the inner bit, since it would change state more
frequently than with other codes. For this reason, it will be put aside for now.

Let the “flipping” transformation in (18.13) be labeled as “a” and the “color-
inversion” transformation in ((18.14) is labeled as “b”). Then it makes sense to compose
these operations and it can be verified that “flipping then inverting color” gives the same
result as “inverting color followed by flipping.” In other words, a ◦ b = b ◦ a. Let this
result be called “c,” and let the “do nothing” operation on a code be denoted as “e.”
Then the following group multiplication table can be constructed:

◦ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

(18.16)

If the characters {e, a, b, c} are identified with the numbers {0, 1, 2, 3} and the compo-
sition operation ◦ is identified with addition modulo 4, then the group tables match up
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also. This is an example of a group isomorphism. In other words, if φ : {e, a, b, c} →
{0, 1, 2, 3} with φ(e) = 0, φ(a) = 1, φ(b) = 2, and φ(c) = 3, then this is an invertible
function with the properties

φ(a ◦ b) = φ(a) + φ(b) mod 4 and φ−1(0) = e, φ−1(1) = a, etc. (18.17)

18.4.3 de Bruijn Sequences

The same Gray codes used in optical disk encoders could be implemented in a very
different way physically. Specifically, instead of having sensor and LED on each side
of a disk, it is possible to use two kinds of paint: one reflective (e.g., high-gloss white)
and one absorbing (e.g., flat black) and having both the LED and sensor on the same
side of the disk. Furthermore, encoding the orientation of a shaft by painting a disk
that moves in the plane normal to the shaft is not the only strategy. By painting the
sequence for each bit in reflective or absorbing colors at different heights on a cylinder
and having the sensor and LED situated at the appropriate heights along the cylinder
and pointing toward the inward normal of this cylinder, it is possible to implement a
Gray-code-based encoder without any disk in the normal plane. This has the advantage
that all of the bits have the same visibility from the perspective of the sensor, and so
the code defined in (18.15) becomes equally viable as the other Gray codes.

If painting on the shaft (or a cylinder concentric with the shaft) is used as an
alternative to an optical disk encoder, then other possible encoding schemes open up as
well. One such scheme is the use of de Bruijn sequences painted on the shaft rather than
Gray codes. An n-bit de Bruijn sequence in the characters “0” and “1” is a sequence
of 2n in which every possible sequence of length n is contained. For example, three-
bit and four-bit de Bruijn sequences are respectively 00010111 and 0000111101100101.
Recursive schemes for generating longer sequences exist. Note that unlike the Gray code
painted on a cylinder, the sensors in the case of a de Bruijn code are spaced around one
circle rather than parallel to the cylinder’s axis.

The history of the de Bruijn sequence in two characters, attributed to the general
paper [11] which holds for such sequences in many characters, was actually worked out
long before. Even today, there is research into new methods for rotary encoding. See,
for example, [13].

18.4.4 A Binary Spherical-Motion Encoder

In a number of applications, it is desirable to have a ball-like motor that can rotate
in any direction while keeping its center fixed. For such motors, the problem of en-
coding spherical motion becomes important. One solution to this problem is addressed
in [35, 38]. Basically, LED–sensor pairs can be distributed within the socket in which
the ball rotates. The distribution itself is not critical, as long as they are not closely
clumped together. The ball is painted in flat black and glossy white regions. The shape
of these regions is also not critical, but the painting should not possess rotational sym-
metry, otherwise ambiguities about the orientational state will result. Figure 18.3 shows
the pattern of black and white triangles painted on the two hemispheres of the spherical
encoder developed in the authors lab. The LED–sensor pairs were arranged to sit uni-
formly on circular rings (Figure 18.4(b)) that are inserted around each electromagnet
in the stator assembly (Figure 18.4(a)) that forms the socket in which the ball rotates.
A ring of ball bearings at the top of the hemisphere and ball bearings situated on posts
around the stator cavity support the ball.
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Fig. 18.3. The Rotor/Ball of a Spherical Encoder [35, 38]

Fig. 18.4. (a) The Stator/Socket of a Spherical Motor; (b) Photosensor Ring Placed Around
Each Stator Electromagnet [35, 38]

The orientational decoding problem then becomes one of determining what the orien-
tation of the ball is, given a sequence of binary (black or white) measurements observed
by the sensors. Mathematically, since the painting of the ball, π : S2 → {0, 1}, and
positions of the sensors, {ci | i = 1, . . . , n}, are both known and since the corresponding
sensor measurements {si | i = 1, . . . , n} are provided by the hardware, the decoding
problem becomes that of finding the rotation matrix, R ∈ SO(3), such that

fp(R) =

(
n∑

i=1

|π(RT ci)− si|p
) 1

p

(18.18)

is minimized. Here, p = 1 or p = 2 would be the most common choices. Or, by normal-
izing as

s′
i =

si∑n
j=1 sj

and π′(RT ci) =
π(RT ci)∑n
j=1 π(RT cj

,
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an information-based divergence can be used as the cost function [5]:

fKL(R) =
n∑

i=1

′
s′

i log
(

s′
i

π′(RT ci)

)
,

where the sum is taken over all values of s′
i and π′(RT ci) that are nonzero.

In any case, for any such cost function, f(R), if the painting and sensor placements
are both chosen so as to be compatible, then when f(R) = 0, the resulting R ∈ SO(3)
will be the orientation of the ball (to within the resolution of the spherical encoder).
Thus, the problem of decoding spherical motion becomes one of minimization over the
rotation group. Several approaches to solving this spherical decoding problem have been
explored by the author and collaborators [38]. Similar problems can be formulated in
relation to planting factory floors for the positional localization of mobile robots [36].

From a mechanical perspective, the design of the spherical motor is concerned with
how the magnets/electromagnets should be placed in the rotor and stator so as to
achieve good performance [4]. This is related to the topic of spherical codes, which is
concerned with placing a finite set of points on the sphere as evenly as possible [12].
The related concept of spherical designs addresses sampling points on the sphere so as
to develop quadrature rules to compute integrals of certain classes of functions on the
sphere (e.g., bandlimited in terms of spherical harmonics) exactly as finite sums at the
points in the design. These concepts relate to the design of efficient strategies in classical
coding theory.

Related concepts are relevant to problems in quantum information theory in which
it is desirable to replace computations of integrals over unitary groups with finite sums
evaluated at special points. See, for example, [16] and references therein.

18.5 The Design of Medical Fiducials and the Language
of Surgical Operations

In Section 5.2, a prototypical medical imaging problem (the three-dimensional–to–two-
dimensional conical projection of a circle with arbitrary spatial position and orientation)
was formulated using methods from parametric and implicit geometry. This can be
viewed from the perspective of information theory, where the “sent message” is the
position and orientation (modulo symmetry) of the circle, the “channel” is the X-ray
projection process, and the “received message” is the resulting projection onto sensors
embedded in a table. The goal is to recover the sent message as best as possible from
the received one. Here, the “noise” is due to a combination of limited resolution of
the photosensors in the table, the background clutter resulting from the projection
of skeletal and other anatomical features,7 and inhomogeneity of the X-ray source.
This channel has memory, in the sense that we know what we are looking for in the
projection.

In contrast to the problem of hip replacement discussed in Section 5.2 in which the
size and shape of the circle is fixed in advance by mechanical performance constraints, we
can ask similar questions related to the design of small three-dimensional patterns that
can be attached to surgical instruments. Such patterns are called fiducial markers. They
are used so that the three-dimensional position and orientation of these instruments can

7In the context of medical diagnosis problems such as reading a chest X-ray, this “clutter”
actually is the message.
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be tracked from their projections in X-ray images. An ideal design would be the one
that is most robust under the ensemble of all possible poses of the tool (which can be
described in terms of probability densities on SE(3) based on the frequency of occurrence
of poses recorded from prior medical procedures).

Let D denote the space of all feasible designs constructed from an “alphabet” of
primitives, each “letter” of which is easy to manufacture (such as line segments, circles,
and small solid spheres). These letters can be assembled into a more complex pattern.
The resulting “word” in a sent message is then this pattern at a specific position and
orientation in space. Since it is impractical to redesign a pattern for use at each different
pose, the goal is to design the single pattern that is most robust given the distribution
ρ(g) of poses experienced in typical surgical procedures. In other words, we seek the
specific fiducial pattern design d∗ ∈ D such that

C(d) = max
g∼ρ(g)

I(X(g ∈ G, d ∈ D);Y (m)), (18.19)

where X is the sent message (that depends on both the pose g and the design d) and
Y is the received message, which depends on the the method, m, of feature extraction
in the projection image. The geometric design of such fiducials has been investigated
in [21, 27] without using information-theoretic concepts.

A related problem, arises in the treatment of prostate cancer. One treatment method
(called brachytherapy) involves the insertion of radioactive pellets (called seeds) into the
prostate for direct ablation of the cancer and surrounding tissue. In brachytherapy,
a cloud of on the order of 100 seeds is formed that is consistent with a surgical plan
based on preoperative anatomical information.This plan is executed so as to deliver a
desired dose profile. However, after the seeds are inserted, the prostate swells, and the
seeds migrate. Therefore, the desired dose is not actually achieved. Follow-up involves
taking X-ray projections from two or three different directions. From these projections,
one can attempt to recover the full three-dimensional distribution of seeds [22]. This
can be formulated as a communication/coding problem similar to the fiducial problem
discussed earlier. Here, the intended seed cloud is the original message. The channel
consists of the whole process of seed insertion and reconstruction of the seed cloud from
projection information. Distortion arises because no insertion process is perfect, the
effects of swelling cannot be modeled perfectly in advance, and seeds can occlude other
seeds, making it impossible to uniquely recover the original distribution always.

All of the problems reviewed here have both a geometric and information-theoretic
flavor that have not yet been fully exploited.

18.6 Chapter Summary

This chapter provided a concrete introduction to algebraic structures such as rings and
fields and has demonstrated their relationship to certain kinds of groups and applications
in error-correcting codes. Several connections among information theory, geometry and
group theory have been illustrated. Many other such connections exist. For example,
Golay developed a (23, 11) code that has the ability to correct up to three errors. The
relationship between this code and the densest known packing of congruent spheres
in R24 (called the Leech lattice), and the symmetry group of this lattice, have been
established. Another topic relating to group theory is that of error correction within
digital devices, which has also been addressed using concepts from harmonic analysis
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on finite groups [25, 26]. For reading on further connections between lattices, codes,
spherical designs, and geometry, see [31].

Very different from this sort of discrete geometry problem are the continuous infor-
mation theory problems that result from encoding motion and transmitting information
with physical devices in continuous space. Rotary/spherical encoders and the design of
fiducial patterns for surgical applications are examples of coding theory interacting with
the geometric/physical world. Lie groups arise in these contexts in very natural ways.
Therefore, this chapter can be viewed as a bridge between the stochastic processes in
continuous space studied earlier in this book (which had very little to do with group
theory) and the discrete-group-theoretic problems that arise in classical coding and
communications theory.

In recent years, information-theoretic problems involving the Grassmann and Stiefel
manifolds discussed in Chapter 16 have arisen in the context of coding [9–11, 18, 42]. Uni-
tary matrices have arisen in modulation problems [19]. Recent works use the symplectic
group Sp(2) [23] and the special unitary group SU(3) [24] for coding in MIMO systems.
Other connections between multi-antenna communications, geometry, and statistics are
discussed in the references of Chapter 16 in the context of random matrix theory.

A major goal in coding theory is to construct and analyze codes that come as close as
possible to the limits established by Shannon for classical communication problems [1, 6],
as well as to establish codes for modern distributed communication problems, [40].
Keeping with the general theme of this book, this chapter has reviewed only those
aspects of coding theory that have a group-theoretic or geometric flavor. Further reading
on these topics can be found in [3, 20, 37, 41].

18.7 Exercises

18.1. Use the same reasoning as in the derivation of (17.6) to prove that

p(E1 ∩ E2 ∩ E3 ∩ E4) = p(E1 | E2 ∩ E3 ∩ E4) p(E2 | E3 ∩ E4) p(E3 | E4) p(E4).

18.2. Prove the inequalities in (17.14).

18.3. Prove the equality in (17.16).

18.4. Prove the equality in (17.17)

18.5. Prove the equality in (17.18)

18.6. If Φi : R → R for i = 1 and 2 are convex functions, will the composed function
Φ1 ◦ Φ2 be convex also?

18.7. Since permutation matrices have zeros and ones and have determinants of ±1,
it is clear that Πn ⊆ GL(n, F2). In the case of n = 2, we have seen that Π2 has two
elements and GL(2, F2) has six. (a) Try to find an element of GL(7, F2) that is not a
permutation; (b) If in Subsection 18.2.3 the permutation π in (18.10) is replaced with
the element of GL(7, F2) that you have obtained, will the resulting G′, H ′K ′ be valid
(7, 4) error-correcting codes? Explain.

18.8. If H and K are subgroups of G, prove that H ∩K is also a subgroup of G.

18.9. If H and K are subgroups of G, prove that HK is a subgroup of G if and only if
HK = KH.
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18.10. The quaternions are a number system where each element is of the form q =
q0 + iq1 + jq2 +kq3. They can be viewed as an extension of the field of complex numbers
where instead of the sole rule i2 = −1, the rules i2 = j2 = k2 = ijk = −1 apply.
(a) Show that from these properties it follows that ij = k = −ji, jk = i = −kj, and
ki = j = −ik. The set of quaternions is often denoted as H (after their inventor, Sir
Hamilton). The set of all quaternions together with the two operations of scalar addition
and multiplication do not quite form a field (because multiplication is not commutative).
They are sometimes called a skew field or division algebra. The subset of quaternions
defined by the constraint q2

0 + q2
1 + q2

2 + q2
3 = 1 form a group under multiplication, and

this group is useful for describing rotations in R3. (b) Is GL(2, H) a valid definition of
a group? Explain.
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19

Information Theory on Lie Groups

Classical inequalities used in information theory such as those of de Bruijn, Fisher,
Cramér, Rao, and Kullback carry over in a natural way from Euclidean space to uni-
modular Lie groups. The extension of core information-theoretic inequalities defined in
the setting of Euclidean space to this broad class of Lie groups is potentially relevant
to a number of problems relating to information-gathering in mobile robotics, satellite
attitude control, tomographic image reconstruction, biomolecular structure determina-
tion, and quantum information theory. In this chapter, several definitions are extended
from the Euclidean setting to that of Lie groups (including entropy and the Fisher infor-
mation matrix), and inequalities analogous to those in classical information theory are
derived and stated in the form of more than a dozen theorems. In all such inequalities,
addition of random variables is replaced with the group product, and the appropriate
generalization of convolution of probability densities is employed.

This chapter has several goals:

• To extend the inequalities of classical continuous (differential) information theory to
the setting of probabilities on Lie groups;

• To illustrate how splitting integrals over groups such as subgroup-coset decom-
position can lead to conditional probabilities and associated information-theoretic
inequalities;

• To understand how the bi-invariance of the integration measure on unimodular Lie
groups and the properties of Lie derivatives lead to interesting definitions and prop-
erties of Fisher information matrices.

This chapter consists of several sections. Section 19.1 reviews the related literature.
Section 19.2 defines entropy and relative entropy for unimodular groups (both finite-
dimensional Lie groups and discrete groups) and proves some of their properties under
convolution and marginalization over subgroups and coset spaces. The concept of the
Fisher information matrix for probability densities on unimodular Lie groups is de-
fined in Section 19.3 and several elementary properties are proven regarding how these
quantities behave under convolution of pdfs. This generalized concept of Fisher infor-
mation is used in Section 19.4 to establish the de Bruijn inequality for unimodular Lie
groups. These definitions and properties are combined with recent results by others on
log-Sobolev inequalities in Section 19.5. Section 19.6 derives a version of the Cramér-
Rao bound for concentrated pdfs on Lie groups. Section 19.7 discusses entropy powers.
Section 19.8 summarizes the chapter and Section 19.9 provides exercises.
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19.1 Introduction and Literature Review

Shannon’s brand of information theory is now more than six decades old, and some
of the statistical methods developed by Fisher, Kullback, and so forth are even older.
Similarly, the study of Lie groups is now more than a century old. Despite their relatively
long and roughly parallel history, surprisingly few connections appear to have been made
between these two vast fields. The only attempts to do so known to the author include
those of Johnson and Suhov [22, 23] from an information-theoretic perspective and
Maksimov [28] and Roy [30] from a probability perspective.

The goal of this chapter is therefore to present analytical foundations for “informa-
tion theory on Lie groups.” Unlike extensions of information theory to manifolds, the
added structure inherent in Lie groups allow us to draw much stronger parallels with
inequalities of classical information theory, such as those presented in [12, 15].

Johnson and Suhov [22, 23] use the concept and properties of information-theoretic
entropy and the Kullback–Leibler divergence between pdfs on compact Lie groups to
study the convergence to uniformity under iterated convolutions, in analogy with what
was done by Linnik [27] and Barron [4] in the commutative case. The goal of the present
chapter is complementary: Using some of the same tools, many of the main quantities
and inequalities of (differential) information theory are extended from Rn to the context
of unimodular Lie groups, which form a broader class of Lie groups than compact ones.

Several other research areas that would initially appear to be related to the present
work have received intensive interest. Decades ago, Amari and Csiszár developed the
concept of information geometry [1, 13] in which the Fisher information matrix is used
to define a Riemannian metric tensor on spaces of probability distributions, thereby
allowing those spaces to be viewed as Riemannian manifolds. This provides a connec-
tion between information theory and differential geometry. However, in information
geometry, the probability distributions themselves (such as Gaussian distributions) are
defined on a Euclidean space rather than on a Lie group. The presentation provided
here opens up the possibility of defining information geometries on spaces of functions
on Lie groups.

This chapter attempts to address this deficit with a two-pronged approach: (1) by
collecting some known results from the functional analysis literature and reinterpreting
them in information-theoretic terms (e.g. Gross’ log-Sobolev inequality on Lie groups)
and (2) by defining information-theoretic quantities such as entropy and Fisher infor-
mation matrix and deriving inequalities involving these quantities that parallels those
in classical information theory.

19.2 Properties of Entropy and Relative Entropy on Groups

The entropy of a pdf on a unimodular Lie group is defined as

S(f) = −
∫

G

f(g) log f(g) dg.

For example, the entropy of a Gaussian distribution on (G, ◦) = (Rn,+) with covari-
ance Σ is

S(ρ(g; t)) = log{(2πe)n/2|Σ(t)| 12 }, (19.1)

where log = loge.
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The Kullback–Leibler divergence between the pdfs f1(g) and f2(g) on a Lie group
G naturally generalizes from its form in Rn as

DKL(f1(g)‖f2(g)) =
∫

G

f1(g) log
(

f1(g)
f2(g)

)
dg. (19.2)

As with the case of pdfs in Rn, DKL(f1‖f2) ≥ 0. Equality holds in this expression if (but
not only if) f1 = f2. More precisely, if DKL(f1‖f2) = 0, then f1(g) = f2(g) at “almost
all” values of g ∈ G (or, in probability terminology, “f1(g) = f2(g) almost surely”);
that is, they must be the same up to a set of measure zero.

If the set G can be decomposed into a product space G = D1 ×D2 (such as if G is
a direct or semi-direct product or if integrals over G can be decomposed into separate
integrals over G/H and H when H < G), then if g = (h1, h2) ∈ D1 ×D2, we can write

DKL(f1(g)‖f2(g)) = DKL(f1(h1, h2)‖f2(h1, h2)).

Furthermore, if fi(h1|h2)
.= fi(h1, h2)/fi(h2) is a conditional density (which is a pdf in

the first argument), then the fact that

DKL(f1(h1|h2)‖f2(h1|h2)) =
∫

D1

f1(h1|h2) log
(

f1(h1|h2)
f2(h1|h2)

)
dh1 ≥ 0

immediately gives

DKL(f1(g)‖f2(g)) ≥ DKL(f1(h2)‖f2(h2)). (19.3)

This inequality will be used extensively later.
Something that is not true in Rn that holds for a compact Lie group is that the

maximum-entropy distribution is constant that is equal to unity relative to the nor-
malized Haar measure. Such a distribution can be considered the limiting distribution
of the diffusion process in (20.14) as time goes to infinity. If f2(g) = 1 is this sort of
limiting distribution, then DKL(f1‖1) = −S(f1).

19.2.1 Entropy Inequalities from Jensen’s Inequality

Jensen’s inequality is a fundamental tool that is often used in deriving information-
theoretic inequalities as well as inequalities in the field of convex geometry. In the
context of unimodular Lie groups, Jensen’s inequality can be written as

Φ

(∫
G

φ(g)ρ(g) dg

)
≤

∫
G

Φ(φ(g))ρ(g) dg, (19.4)

where Φ : R≥0 → R is a convex function on the half infinite line, ρ(g) is a pdf, and φ(g)
is another non-negative measurable function on G.

Two important examples of Φ(x) are Φ1(x) = − log x and Φ2(x) = +x log x. Using
Jensen’s inequality with Φ2 gives the following result.

Theorem 19.1. Given pdfs f1(g) and f2(g) on the unimodular Lie group G,

S(f1 ∗ f2) ≥ max{S(f1), S(f2)} (19.5)
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and

DKL(f1 ‖ f2) ≥ max {DKL(f1 ∗ φ ‖ f2 ∗ φ), DKL(φ ∗ f1 ‖φ ∗ f2)} . (19.6)

Proof.

−S(f1 ∗ f2)=
∫

G

Φ2((f1 ∗ f2)(g)) dg =
∫

G

Φ2

(∫
G

f2(h−1 ◦ g)f1(h) dh

)
dg

≤
∫

G

∫
G

Φ2(f2(h−1 ◦ g))f1(h) dh dg =
∫

G

(∫
G

Φ2(f2(h−1 ◦ g)) dg

)
f1(h) dh

=
∫

G

(∫
G

Φ2(f2(g)) dg

)
f1(h) dh =

(∫
G

Φ2(f2(g)) dg

)(∫
G

f1(h) dh

)
=−S(f2).

If, on the other hand, we were to use the version of convolution in the second equality
in (12.28) and analogous manipulations as above, we would get −S(f1 ∗ f2) ≤ −S(f1),
which completes the proof of (19.5).

The proof of (19.6) (which is the Lie-group version of the data processing inequality)
follows from (19.3). Replace G with the direct product G×G, and D1 = D2 = G. Then
if fi(g) and φ(g) are pdfs on G, f ′

i(h, g) .= fi(h)φ(h−1 ◦ g) will be a pdf on G×G. The
marginal of f ′

i(h, g) over g is simply fi(h). The marginal of f ′
i(h, g) over h is (fi ∗φ)(g).

Therefore, from (19.3),

DKL(f1 ∗φ‖f2 ∗φ) ≤
∫

G

∫
G

f1(h)φ(h−1 ◦g) log
(

f1(h)φ(h−1 ◦ g)
f2(h)φ(h−1 ◦ g)

)
dh dg = DKL(f1‖f2).

A similar inequality results by performing convolutions in the reverse order.

If G is compact, any constant function on G is measurable. Letting φ(g) = 1 and
Φ(x) = Φ2(x) then gives 0 ≤ −S(f) for a pdf f(g). In contrast, for any unimodular Lie
group, letting ρ(g) = f(g), φ(g) = [f(g)]α and Φ(x) = Φ1(x) gives

− log
(∫

G

[f(g)]1+αdg

)
≤ αS(f). (19.7)

This leads to the following theorem.

Theorem 19.2. Let ‖f̂(λ)‖ denote the Frobenius norm and let ‖f̂(λ)‖2 denote the in-
duced 2-norm of the Fourier transform of f(g) and define

D2(f) .= −
∫

Ĝ

log ‖f̂(λ)‖22 d(λ);

D(f) .= −
∫

Ĝ

log ‖f̂(λ)‖2 d(λ);

D̃(f) .= − log
∫

Ĝ

‖f̂(λ)‖2 d(λ). (19.8)

Then

S(f) ≥ D̃(f) and D(f) ≤ D2(f) (19.9)
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and

D2(f1 ∗ f2) ≥ D2(f1) + D2(f2),

D(f1 ∗ f2) ≥ D(f1) + D(f2). (19.10)

Furthermore, denote the unit Heaviside step function on the real line as u(x) and let

B =
∫

Ĝ

u
(
‖f̂(λ)‖

)
d(λ).

Then
D̃(f) + log B ≤ D(f)/B. (19.11)

Proof. Substituting α = 1 into (19.7) and using the Plancherel formula (12.70) yields

S(f) ≥ − log
(∫

G

[f(g)]2dg
)

= − log
(∫

Ĝ

‖f̂(λ)‖2d(λ)
)

= D̃(f).

The fact that − log x is a decreasing function and ‖A‖2 ≤ ‖A‖ for all A ∈ Cn×n gives
the second inequality in (19.9).

The convolution theorem together with the facts that both norms are submultiplica-
tive, − log(x) is a decreasing function, and the log of the product is the sum of the logs
gives

D(f1 ∗ f2)=−
∫

Ĝ

log ‖f̂1 ∗ f2(λ)‖2d(λ) = −
∫

Ĝ

log ‖f̂1(λ)f̂2(λ)‖2d(λ)

≥D(f1) + D(f2).

An identical calculation follows for D2. The statement in (19.11) follows from the
Plancherel formula (12.70) and using Jensen’s inequality (19.4) in the dual space Ĝ
rather than on G:

Φ

(∫
Ĝ

‖φ̂(λ)‖ρ(λ) d(λ)
)
≤

∫
Ĝ

Φ(‖φ̂(λ)‖)ρ(λ) d(λ), (19.12)

where ∫
Ĝ

ρ(λ) d(λ) = 1 and ρ(λ) ≥ 0.

Recognizing that when B is finite ρ(λ) = u(‖f̂(λ)‖)/B becomes a probability measure
on this dual space, it follows that

D̃(f)=− log
(∫

Ĝ

‖f̂(λ)‖2d(λ)
)

= − log
(

B

∫
Ĝ

‖f̂(λ)‖2ρ(λ) d(λ)
)

≤− log B −
∫

Ĝ

log
(
‖f̂(λ)‖2

)
ρ(λ) d(λ) = − log B + D(f)/B.

This completes the proof.

By definition, bandlimited expansions have B finite in these expressions. Properties
of dispersion measures similar to D(f) and D2(f) were studied in [18], but no connec-
tions to entropy were provided.
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19.2.2 Entropy and Decompositions

Aside from the ability to sustain the concept of convolution, one of the fundamental
ways that groups resemble Euclidean space is the way in which they can be decomposed.
In analogy with the way that an integral over a vector-valued function with argument
x ∈ Rn can be decomposed into integrals over each coordinate, integrals over Lie groups
can also be decomposed in natural ways. This has implications with regard to inequalities
involving the entropy of pdfs on Lie groups. Analogous expressions hold for finite groups,
with volume replaced by the number of group elements.

Theorem 19.3. The entropy of a pdf on a unimodular Lie group is no greater than the
sum of the marginal entropies on a subgroup and the corresponding coset space:

S(fG) ≤ S(fG/H) + S(fH). (19.13)

Proof. This inequality follows immediately from the non-negativity of the Kullback–
Leibler divergence

DKL(fG ‖ fG/H · fH) ≥ 0.

For example, if G = SE(n) is a Euclidean motion group and H = SO(n) is the
subgroup of pure rotations in n-dimensional Euclidean space, then G/H ∼= Rn, and an
arbitrary element of SE(n) is written as a pair (R, t) ∈ SO(n)×Rn, then we can write∫

SE(n)
f(g) d(g) =

∫
Rn

∫
SO(n)

f(R, t) dR dt

=
∫

SE(n)/SO(n)

(∫
SO(n)

f((I, t) ◦ (R,0)) dR

)
dt,

and the marginal entropies on the right-hand side of (19.13) are those computed for
pure rotations and pure translations.

Theorem 19.4. The entropy of a pdf on a group is no greater than the sum of marginal
entropies over any two subgroups and the corresponding double-coset space:

S(fG) ≤ S(fK) + S(fK\G/H) + S(fH). (19.14)

Proof. Let

fK(k) =
∫

K\G/H

∫
H

fG(k ◦ cK\G/H(KgH) ◦ h) dh d(KgH),

fH(h) =
∫

K\G/H

∫
K

fG(k ◦ cK\G/H(KgH) ◦ h) dk d(KgH),

and
fK\G/H(KgH) =

∫
K

∫
H

fG(k ◦ cK\G/H(KgH) ◦ h) dh dk;

then again using the non-negativity of the Kullback–Leibler divergence

DKL(fG ‖ fK · fK\G/H · fH) ≥ 0

gives (19.14).
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Theorem 19.5. The entropy of a pdf is no greater than the sum of entropies of its
marginals over coset spaces defined by nested subgroups H < K < G:

S(fG) ≤ S(fG/K) + S(fK/H) + S(fH). (19.15)

Proof. Given a subgroup K of H, which is itself a subgroup of G (i.e., H < K < G),
apply (19.13) twice. Then S(fG) ≤ S(fG/K) + S(fK) and S(fK) ≤ S(fK/H) + S(fH),
resulting in (19.15). Explicitly, g = cG/K(gK) ◦ cK/H(kH) ◦ h, and so, fG(g) =
fG(cG/K(gK) ◦ cK/H(kH) ◦ h). Therefore,

fG/K(gK) =
∫

K/H

∫
H

fG(cG/K(gK) ◦ cK/H(kH) ◦ h) dh d(kH),

fK/H(kH) =
∫

G/K

∫
H

fG(cG/K(gK) ◦ cK/H(kH) ◦ h) dh d(gK),

and
fH(h) =

∫
G/K

∫
K/H

fG(cG/K(gK) ◦ cK/H(kH) ◦ h) d(kH) d(gK).

19.2.3 When Inequivalent Convolutions Produce Equal Entropy

In general, (ρ1 ∗ ρ2)(g) �= (ρ2 ∗ ρ1)(g). Even so, it can be the case that S(ρ1 ∗ ρ2)(g) =
S(ρ2 ∗ ρ1)(g). This section addresses several special cases when this equality holds.

Let G denote a unimodular Lie group, and for arbitrary g, g1 ∈ G, define ρ#(g) =
ρ(g−1), Lg1ρ(g) = ρ(g−1

1 ◦ g), Rg1ρ(g) = ρ(g ◦ g1), and Cg1ρ(g) = ρ(g−1
1 ◦ g ◦ g1). Then

if ρ(g) is a pdf, it follows immediately that ρ#(g), Lg1ρ(g), Rg1ρ(g), and Cg1ρ(g) are
all pdfs. A function for which ρ#(g) = ρ(g) is called symmetric, whereas a function for
which Cg1ρ(g) = ρ(g) for all gi ∈ G is a class function (i.e., it is constant on conjugacy
classes).

Theorem 19.6. For arbitrary pdfs on a unimodular Lie group G and arbitrary g1,
g2 ∈ G,

ρ1 ∗ ρ2 �= ρ#
2 ∗ ρ#

1 �= Lg1ρ1 ∗Rg2ρ2 �= Cg1ρ1 ∗ Cg1ρ2;

however, entropy satisfies the equalities

S(ρ1 ∗ ρ2) = S(ρ#
2 ∗ ρ#

1 ) = S(Lg1ρ1 ∗Rg2ρ2) = S(Cg1ρ1 ∗ Cg1ρ2). (19.16)

Proof. Each equality is proven by changing variables and using the unimodularity of
the group.

(ρ#
2 ∗ ρ#

1 )(g)=
∫

G

ρ#
2 (h)ρ#

1 (h−1 ◦ g) dh =
∫

G

ρ2(h−1)ρ1(g−1 ◦ h) dh

=
∫

G

ρ1(g−1 ◦ k−1)ρ2(k) dk = (ρ1 ∗ ρ2)(g−1) = (ρ1 ∗ ρ2)#(g).

Let F [ρ] = −ρ log ρ. Then the integral over G of F [ρ(g−1)] must be the same as F [ρ(g)],
proving the first equality in (19.16). The second equality follows from the fact that
(Lg1ρ1 ∗ Rg2ρ2)(g) = (ρ1 ∗ ρ2)(g1 ◦ g ◦ g2) and the integral of F [ρ(g1 ◦ g ◦ g2)] must
be the same as F [ρ(g)]. The final equality follows in a similar way from the fact that
(Cg1ρ1 ∗ Cg1ρ2)(g) = (ρ1 ∗ ρ2)(g−1

1 ◦ g ◦ g1).
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Note that the equalities in (19.16) can be combined. For example,

S(ρ1 ∗ ρ2) = S(Lg1ρ
#
2 ∗Rg2ρ

#
1 ) = S(Cg1ρ

#
2 ∗ Cg1ρ

#
1 ).

Theorem 19.7. The equality S(ρ1 ∗ ρ2) = S(ρ2 ∗ ρ1) holds for pdfs ρ1(g) and ρ2(g) on
a unimodular Lie group G in the following cases: (a) ρi(g) for i = 1 or i = 2 is a class
function and (b) ρi(g) for i = 1, 2 are both symmetric functions.

Proof. Statement (a) follows from the fact that if either ρ1 or ρ2 is a class function,
then convolutions commute. Statement (b) follows from the first equality in (19.16) and
the definition of a symmetric function.

Theorem 19.8. Given class functions χ1(g) and χ2(g) that are pdfs, then for general
g1, g2 ∈ G,

(χ1 ∗ χ2)(g) �= (Lg1χ1 ∗ Lg2χ2)(g) �= (Rg1χ1 ∗Rg2χ2)(g) �= (Rg1χ1 ∗ Lg2χ2)(g)

and yet

S(χ1 ∗ χ2) = S(Lg1χ1 ∗ Lg2χ2) = S(Rg1χ1 ∗Rg2χ2) = S(Rg1χ1 ∗ Lg2χ2). (19.17)

Proof. Here, the first and final equalities will be proven. The middle one follows in the
same way.

(Lg1χ1 ∗ Lg2χ2)(g)=
∫

G

(Lg1χ1)(h) ∗ (Lg2χ2)(h−1 ◦ g) dh

=
∫

G

χ1(g−1
1 ◦ h)χ2(g−1

2 ◦ h−1 ◦ g) dh

=
∫

G

χ1(k)χ2(g−1
2 ◦ k−1 ◦ g−1

1 ◦ g) dk

=
∫

G

χ1(k)χ2(k−1 ◦ g−1
1 ◦ g ◦ g−1

2 ) dk

=(χ1 ∗ χ2)(g−1
1 ◦ g ◦ g−1

2 ).

Similarly,

(Rg1χ1 ∗ Lg2χ2)(g)=
∫

G

(Rg1χ1)(h) ∗ (Lg2χ2)(h−1 ◦ g) dh

=
∫

G

χ1(h ◦ g1)χ2(g−1
2 ◦ h−1 ◦ g) dh

=
∫

G

χ1(k) ∗ χ2(g−1
2 ◦ g1 ◦ k−1 ◦ g) dk

=
∫

G

χ1(k) ∗ χ2(k−1 ◦ g ◦ g−1
2 ◦ g1) dk

=(χ1 ∗ χ2)(g ◦ g−1
2 ◦ g1).

Then since the entropy integral on a unimodular Lie group is invariant under shifts, the
equalities in (19.17) follow.
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19.3 Fisher Information and Diffusions on Lie Groups

Let {Xi} be an arbitrary orthonormal basis for the Lie algebra G corresponding to the
Lie group G. The natural extension of the Fisher information matrix for the case when
f(g; θ ) is a parametric distribution on a Lie group is

Fij(f,θ ) =
∫

G

1
f

∂f

∂θi

∂f

∂θj
dg. (19.18)

In the case when θ parameterizes G as g(θ ) = exp(
∑

i θiXi) and f(g,θ ) = f(g ◦
exp(

∑
i θiXi)), then

∂f

∂θi

∣∣∣∣
θ=0

= X̃r
i f

and Fij(f,0) becomes

F r
ij(f) =

∫
G

1
f

(X̃r
i f)(X̃r

j f) dg. (19.19)

In a similar way, we can define

F l
ij(f) =

∫
G

1
f

(X̃ l
if)(X̃ l

jf) dg. (19.20)

Theorem 19.9. The matrices with elements defined in (19.19) and (19.20) have the
properties

F r
ij(L(h)f) = F r

ij(f) and F l
ij(R(h)f) = F l

ij(f) (19.21)

and
F r

ij(I(f)) = F l
ij(f) and F l

ij(I(f)) = F r
ij(f), (19.22)

where (L(h)f)(g) = f(h−1 ◦ g), (R(h)f)(g) = f(g ◦ h), and I(f)(g) = f(g−1).

Proof. The operators X̃ l
i and R(h) commute, and likewise X̃r

i and L(h) commute. This
together with the invariance of integration under shifts proves (19.21). From the defini-
tions of X̃ l

i and X̃r
i in Chapter 11, it follows that

X̃r
i (I(f))(g)=

(
d

dt
f([g ◦ exp(tXi)]−1)

)∣∣∣∣
t=0

=
(

d

dt
f(exp(−tXi) ◦ g−1)

)∣∣∣∣
t=0

=(X̃ l
if)(g−1).

Using the invariance of integration under shifts then gives (19.22).

As a special case, when f(g) is a symmetric function, the left and right Fisher
information matrices will be the same.

Note that the entries of Fisher matrices F r
ij(f) and F l

ij(f) implicitly depend on the
choice of orthonormal Lie algebra basis {Xi}, and so it would be more descriptive to use
the notation F r

ij(f,X) and F l
ij(f,X). Henceforth, a Fisher information matrix without

a basis explicitly specified is one for which the natural basis {Ei} is used.
If a different orthonormal basis {Yi} is used, such that Xi =

∑
k aikYk, then the

orthonormality of both {Xi} and {Yi} forces A = [aij ] to be an orthogonal matrix.
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Furthermore, the linearity of the Lie derivative,

X̃rf =
∑

i

xiX̃
r
i f, where X =

∑
i

xiXi,

means that

F r
ij(f,X) =

∫
G

1
f

(∑
k

aikỸ
r
k f

)(∑
l

ajlỸ
r
l f

)
dg =

∑
k,l

aikajlF
r
kl(f, Y ).

The same holds for F l
ij . Summarizing these results in matrix form,

F r(f,X) = AF r(f, Y )AT and F l(f,X) = AF l(f, Y )AT . (19.23)

This means that the eigenvalues of the Fisher information matrix (and therefore its
trace) are invariant under change of orthonormal basis. Henceforth the orthonormal
basis {Ei} will be used.

Note that it follows immediately from (19.22) that the left and right Fisher infor-
mation matrices are equal for class functions (i.e., functions satisfying the condition
f(g ◦ h) = f(h ◦ g) for all h, g ∈ G) and for symmetric functions (i.e., functions satisfy-
ing the condition f(g) = f(g−1) for all g ∈ G). However, in general, the left and right
Fisher information matrices are not equal. Even the traces of the left and right Fisher
information matrices for arbitrary pdfs on a unimodular Lie group will be different from
each other in the general case.

19.3.1 Fisher Information and Convolution on Groups

The decrease of Fisher information as a result of convolution can be studied in much
the same way as for pdfs on Euclidean space. Two approaches are taken here. First,
a straightforward application of the Cauchy–Bunyakovsky-Schwarz (CBS) inequality is
used together with the bi-invariance of the integral over a unimodular Lie group to
produce a bound on the Fisher information of the convolution of two probability densi-
ties. Then a tighter bound is obtained using the concept of conditional expectation in
the special case when the pdfs commute under convolution. Other information/entropy
inequalities involving finite groups can be found in [2].

Theorem 19.10. The following inequalities hold for the diagonal entries of the left and
right Fisher information matrices:

F r
ii(f1∗f2) ≤ min{F r

ii(f1), F r
ii(f2)} and F l

ii(f1∗f2) ≤ min{F l
ii(f1), F l

ii(f2)}. (19.24)

Proof. The CBS inequality holds for groups:(∫
G

a(g)b(g) dg

)2

≤
∫

G

a2(g) dg

∫
G

b2(g) dg.

If a(g) ≥ 0 for all values of g, then it is possible to define j(g) = [a(g)]
1
2 and k(g) =

[a(g)]
1
2 b(g), and since j(g)k(g) = a(g)b(g),(∫

G

a(g)b(g) dg

)2

≤
(∫

G

j2(g) dg

)(∫
G

k2(t) dg

)
=

(∫
G

a(g) dg

)(∫
G

a(g)[b(g)]2 dg

)
.

(19.25)
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Using this version of the CBS inequality and letting b(g) = Ẽr
i f2(h−1 ◦ g)/[f2(h−1 ◦ g)]

and a(g) = f1(h)f2(h−1 ◦ g), essentially the same manipulations as in [8] can be used,
with the roles of f1 and f2 interchanged due to the fact that, in general, for convolution
on a Lie group (f1 ∗ f2)(g) �= (f2 ∗ f1)(g):

F r
ii(f1 ∗ f2)

=
∫

G

(∫
G

[Ẽr
i f2(h−1 ◦ g)/f2(h−1 ◦ g)] · [f2(h−1 ◦ g)f1(h)] dh

)2

(f1 ∗ f2)(g)
dg

≤
∫

G

(∫
G

[Ẽr
i f2(h−1 ◦ g)/f2(h−1 ◦ g)]2[f2(h−1 ◦ g)f1(h)]dh

) (∫
G

f2(h−1 ◦ g)f1(h) dh
)

(f1 ∗ f2)(g)
dg

=
∫

G

(∫
G

{[Ẽr
i f2(h−1 ◦ g)]2/f2(h−1 ◦ g)}f1(h) dh

)
dg

=
∫

G

(∫
G

{[Ẽr
i f2(h−1 ◦ g)]2/f2(h−1 ◦ g)} dg

)
f1(h) dh

= F r
ii(f2)

∫
G

f1(h) dh

= F r
ii(f2).

Since for a unimodular Lie group it is possible to perform changes of variables and
inversion of the variable of integration without affecting the value of an integral, the
convolution can be written in the following equivalent ways:

(f1 ∗ f2)(g)=
∫

G

f1(h)f2(h−1 ◦ g) dh (19.26)

=
∫

G

f1(g ◦ h−1)f2(h) dh (19.27)

=
∫

G

f1(g ◦ h)f2(h−1) dh (19.28)

=
∫

G

f1(h−1)f2(h ◦ g) dh. (19.29)

It then follows that using (19.27) and the bi-invariance of integration (19.24) holds.

Note that inequalities similar to (19.24) have been derived for (Zn,+) in [17] and for
more general finite groups in [16], where essentially finite differences are used in place
of left or right derivatives.

19.3.2 Bounds Using Conditional Expectation and Commuting pdfs

In this subsection a better inequality is derived.

Theorem 19.11. The following inequality holds for the right and left Fisher informa-
tion matrices:

tr[F r(ρ1 ∗ ρ2)P ] ≤ tr[F r(ρ2)P ] and tr[F l(ρ1 ∗ ρ2)P ] ≤ tr[F l(ρ1)P ], (19.30)

where i = 1, 2 and P is an arbitrary symmetric positive definite matrix with the same
dimensions as F .
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Proof. Let
f12(h, g) = ρ1(h) ρ2(h−1 ◦ g).

Then f12(h, g) is a pdf on G×G with marginal densities

f1(h) =
∫

G

f12(h, g) dg = ρ1(h) and f2(g) =
∫

G

f12(h, g) dh = (ρ1 ∗ ρ2)(g).

It follows that
(Ẽr

i f2)(g) =
∫

G

ρ1(h)Ẽr
i ρ2(h−1 ◦ g) dh.

Then by the change of variables k = h−1 ◦ g,

(Ẽr
i f2)(g) =

∫
G

ρ1(g ◦ k−1) Ẽr
i ρ2(k) dk.

This means that

(Ẽr
i f2)(g)
f2(g)

=
∫

G

(Ẽr
i ρ2)(k)
ρ2(k)

ρ1(g ◦ k−1)ρ2(k)
f2(g)

dk =

〈
(Ẽr

i ρ2)(k)
ρ2(k)

∣∣∣∣∣ g
〉

, (19.31)

where 〈·|g〉 denotes conditional expectation. This notation, which is standard in the
literature, includes the functional dependence of whatever is in the place of “·” even
though this is integrated out and no longer exists [10, 23].

Therefore, using this notation,

F r
ii(f2)=

〈(
(Ẽr

i ρ2)(g)
f2(g)

)2〉
=

〈〈
(Ẽr

i ρ2)(k)
ρ2(k)

∣∣∣∣∣ g
〉2〉

≤
〈〈(

(Ẽr
i ρ2)(k)
ρ2(k)

)2
∣∣∣∣∣∣ g

〉〉
=

〈(
(Ẽr

i ρ2)(k)
ρ2(k)

)2〉

=F r
ii(ρ2).

An analogous argument using f12(h, g) = ρ1(g ◦ h−1)ρ2(h) and f2(g) = (ρ1 ∗ ρ2)(g)
shows that

(Ẽl
if2)(g)
f2(g)

=

〈
(Ẽl

iρ1)(k)
ρ1(k)

∣∣∣∣∣ g
〉

(19.32)

and
F l

ii(f2) ≤ F l
ii(ρ1).

The above results can be written concisely by introducing an arbitrary positive-
definite diagonal matrix Λ as follows:

tr[F r(ρ1 ∗ ρ2)Λ] ≤ tr[F r(ρ2)Λ] and tr[F l(ρ1 ∗ ρ2)Λ] ≤ tr[F l(ρ1)Λ].

If this is true in one basis, then using (19.23), the more general statement in (19.30)
must follow in another basis where P = PT > 0. Since the initial choice of basis is
arbitrary, (19.30) must hold in every basis for an arbitrary positive definite matrix P .
This completes the proof.
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In some instances, even though the group is not commutative, the functions ρ1 and
ρ2 will commute. For example, if ρ(g ◦ h) = ρ(h ◦ g) for all h, g ∈ G, then (ρ ∗ ρi)(g) =
(ρi ∗ ρ)(g) for any reasonable choice of ρi(g). Or if ρ2 = ρ1 ∗ ρ1 ∗ · · · ρ1, it will clearly be
the case that ρ1 ∗ ρ2 = ρ2 ∗ ρ1. If, for whatever reason, ρ1 ∗ ρ2 = ρ2 ∗ ρ1, then (19.30)
can be rewritten in the following form:

tr[F r(ρ1 ∗ ρ2)P ] ≤ min{tr[F r(ρ1)P ], tr[F r(ρ2)P ]}
and (19.33)

tr[F l(ρ1 ∗ ρ2)P ] ≤ min{tr[F l(ρ1)P ], tr[F l(ρ2)P ]}.
Theorem 19.12. When ρ1 ∗ ρ2 = ρ2 ∗ ρ1, the following equality holds:

2
tr[F r(ρ1 ∗ ρ2)P ]

≥ 1
tr[F r(ρ1)P ]

+
1

tr[F r(ρ2)P ]
for any P = PT > 0, (19.34)

and likewise for F l.

Proof. Returning to (19.31) and (19.32), in the case when ρ1 ∗ρ2 = ρ2 ∗ρ1, it is possible
to write

(Ẽr
i f2)(g)
f2(g)

=

〈
(Ẽr

i ρ2)(k)
ρ2(k)

∣∣∣∣∣ g
〉

=

〈
(Ẽr

i ρ1)(k)
ρ1(k)

∣∣∣∣∣ g
〉

(19.35)

and
(Ẽl

if2)(g)
f2(g)

=

〈
(Ẽl

iρ1)(k)
ρ1(k)

∣∣∣∣∣ g
〉

=

〈
(Ẽl

iρ2)(k′)
ρ2(k′)

∣∣∣∣∣ g
〉

.

Since the following calculation works the same way for both the “l” and “r” cases,
consider only the “r” case for now. Multiplying the first equality in (19.35) by 1−β and
the second by β and adding together gives1

(Ẽr
i f2)(g)
f2(g)

= β

〈
(Ẽr

i ρ1)(k)
ρ1(k)

∣∣∣∣∣ g
〉

+ (1− β)

〈
(Ẽr

i ρ2)(k′)
ρ2(k′)

∣∣∣∣∣ g
〉

for arbitrary value of β.
Now, squaring both sides gives[

(Ẽr
i f2)(g)
f2(g)

]2

=

[
β

〈
(Ẽr

i ρ1)(k)
ρ1(k)

∣∣∣∣∣ g
〉

+ (1− β)

〈
(Ẽr

i ρ2)(k′)
ρ2(k′)

∣∣∣∣∣ g
〉]2

.

Taking the (unconditional) expectation and using Jensen’s inequality yields〈(
(Ẽr

i f2)(g)
f2(g)

)2
〉

=

〈[
β

〈
(Ẽr

i ρ1)(k)
ρ1(k)

∣∣∣∣ g

〉
+ (1 − β)

〈
(Ẽr

i ρ2)(k′)
ρ2(k′)

∣∣∣∣ g

〉]2
〉

≤ β2

〈(
(Ẽr

i ρ1)(k)
ρ1(k)

)2
〉

+ (1 − β)2
〈(

(Ẽr
i ρ2)(k′)
ρ2(k′)

)2
〉

(19.36)

+ 2β(1 − β)
〈〈

(Ẽr
i ρ1)(k)
ρ1(k)

∣∣∣∣ g

〉
·
〈

(Ẽr
i ρ2)(k′)
ρ2(k′)

∣∣∣∣ g

〉〉
.

1The names of the dummy variables k and k′ are unimportant. However, at this stage it is
important that the names be different in order to emphasize their statistical independence.



350 19 Information Theory on Lie Groups

However, observing (19.35), moving the rightmost term to the left, and writing
1− 2β(1− β) as (1− β)2 + β2 reduces (19.36) to

[(1− β)2 + β2]F r
ii(ρ1 ∗ ρ2) ≤ β2 F r

ii(ρ1) + (1− β)2 F r
ii(ρ2). (19.37)

Dividing both sides by [(1−β)2 +β2], multiplying by λi ≥ 0, and summing over i gives

tr[ΛF r(ρ1 ∗ ρ2)] ≤ β2

[(1− β)2 + β2]
tr[ΛF r(ρ1)] +

(1− β)2

[(1− β)2 + β2]
tr[ΛF r(ρ2)], (19.38)

where Λ = diag(λ1, . . . , λn).
Clearly,

0 ≤ β2

[(1− β)2 + β2]
,

(1− β)2

[(1− β)2 + β2]
≤ 1.

Choosing
β2

[(1− β)2 + β2]
=

tr[ΛF r(ρ2)]
tr[ΛF r(ρ1)] + tr[ΛF r(ρ2)]

and
(1− β)2

[(1− β)2 + β2]
=

tr[ΛF r(ρ1)]
tr[ΛF r(ρ1)] + tr[ΛF r(ρ2)]

then gives

tr[ΛF r(ρ1 ∗ ρ2)] ≤ 2tr[ΛF r(ρ1)]tr[ΛF r(ρ2)]
tr[ΛF r(ρ1)] + tr[ΛF r(ρ2)]

.

This can be written as

1
tr[ΛF r(ρ1)]

+
1

tr[ΛF r(ρ2)]
≤ 2

tr[ΛF r(ρ1 ∗ ρ2)]
. (19.39)

Again, since the basis is arbitrary, Λ can be replaced with P , resulting in (19.34).

Note that in the classical (Abelian) version of this equality, it is possible to get the
stronger condition without the factor of 2 in (19.34).

19.3.3 A Special Case: SO(3)

Consider the group of 3 × 3 orthogonal matrices with determinant +1. Let {Ei} be
the standard orthonormal basis used in (10.82) and define Ẽr .= [Ẽr

1 , Ẽ
r
2 , Ẽ

r
3 ]T and

Ẽl .= [Ẽl
1, Ẽ

l
2, Ẽ

l
3]

T , where Ẽr
i and Ẽl

i are defined in Section 11.1.2. These two gradient
vectors are related to each other by an adjoint matrix, which for this group is a rotation
matrix. Therefore, in the case when G = SO(3),

‖Ẽrf‖2 = ‖Ẽlf‖2 =⇒ tr[F r(f)] = tr[F l(f)].

Therefore, the inequalities in (19.33) will hold for pdfs on SO(3) regardless of whether
or not the functions commute under convolution, but restricted to the condition P = I.
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19.4 Generalizing the de Bruijn Identity to Lie Groups

This section generalizes the de Bruijn identity, in which entropy rates are related to
Fisher information.

Theorem 19.13. Let fD,h,t(g) = f(g, t;D,h) denote the solution of the diffusion equa-
tion (19.41) with constant h subject to the initial condition f(g, 0;D,h) = δ(g). Then
for any well-behaved pdf α(g),

d

dt
S(α ∗ fD,h,t) =

1
2
tr[DF r(α ∗ fD,h,t)]. (19.40)

Proof. It is easy to see that the solution of the diffusion equation

∂ρ

∂t
=

1
2

n∑
i,j=1

DijẼ
r
i Ẽr

j ρ−
n∑

k=1

hkẼ
r
kρ (19.41)

subject to the initial conditions ρ(g, 0) = α(g) is simply ρ(g, t) = (α ∗ fD,h,t)(g). This
follows because all derivatives “pass through” the convolution integral for ρ(g, t) and
act on fD,h,t(g).

Taking the time derivative of S(ρ(g, t)), we get

d

dt
S(ρ) = − d

dt

∫
G

ρ(g, t) log ρ(g, t) dg = −
∫

G

{
∂ρ

∂t
log ρ +

∂ρ

∂t

}
dg. (19.42)

Using (19.41), the partial with respect to time can be replaced with Lie derivatives.
However, ∫

G

Ẽr
kρ dg =

∫
G

Ẽr
i Ẽr

j ρ dg = 0,

so the second term on the right-hand side of (19.42) completely disappears. Using the
integration-by-parts formula2∫

G

f1 Ẽr
kf2 dg = −

∫
G

f2 Ẽr
kf1 dg,

with f1 = log ρ and f2 = ρ, then gives

d

dt
S(α ∗ fD,h,t)=

1
2

n∑
i,j=1

Dij

∫
G

1
α ∗ fD,h,t

Ẽr
j (α ∗ fD,h,t)Ẽr

i (α ∗ fD,h,t) dg

=
1
2

n∑
i,j=1

DijF
r
ij(α ∗ fD,h,t) =

1
2
tr [D F r(α ∗ fD,h,t)] .

The implication of this is that

S(α ∗ fD,h,t2)− S(α ∗ fD,h,t1) =
1
2

∫ t2

t1

tr [DF r(α ∗ fD,h,t)] dt.

2There are no surface terms because, like the circle and real line, each coordinate in the
integral either wraps around or goes to infinity.
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19.5 Information-Theoretic Inequalities from
log-Sobolev Inequalities

In this section, information-theoretic identities are derived from log-Sobolev inequalities.
Section 19.5.1 provides a brief review of log-Sobolev inequalities. Section 19.5.2 then uses
these to write information-theoretic inequalities.

19.5.1 Log-Sobolev Inequalities in Rn and on Lie Groups

The log-Sobolev inequality can be stated as [5, 6, 26]∫
Rn

|ψ(x)|2 log |ψ(x)|2 dx ≤ n

2
log

[
2

πen

∫
Rn

‖∇ψ‖2 dx
]
, (19.43)

where

∇ψ =
[

∂ψ

∂x1
, . . . ,

∂ψ

∂xn

]T

and
∫

Rn

|ψ(x)|2 dx = 1.

Here, log = loge. Actually, there is a whole family of log-Sobolev inequalities, and
(19.43) represents the tightest of these. The original form of the log-Sobolev inequality
as introduced by Gross [19] is

1
2

∫
Rn

|φ(x)|2 log |φ(x)|2ρ(x) dx ≤
∫

Rn

‖∇φ(x)‖2ρ(x) dx + ‖φ‖2L2(Rn,ρ) log ‖φ‖2L2(Rn,ρ),

(19.44)
where

‖φ‖2L2(Rn,ρ) =
∫

Rn

|φ(x)|2ρ(x) dx,

Here, ρ(x) = ρ(x, 0) = (2π)−n/2 exp(−‖x‖2/2) is the solution of the heat equation
on Rn evaluated at t = 1.

Several different variations exist. For example, by rescaling, it is possible to rewrite
(19.44) with ρ(x, t) in place of ρ(x) by introducing a multiplicative factor of t in the
first term on the right-hand side of the equation. Or, by letting φ(x) = ρ− 1

2 (x)ψ(x/a)
for some scaling factor a > 0, substituting into (19.44), and integrating by parts then
gives [26]∫

Rn

|ψ(x)|2 log
|ψ(x)|2
‖ψ‖22

dx + n(1 + log a)‖ψ‖22 ≤
a2

π

∫
Rn

‖∇ψ(x)‖2 dx,

where

‖ψ‖22 =
∫

Rn

|ψ(x)|2 dx and ‖∇ψ(x)‖2 = ∇ψ(x) · ∇ψ(x).

This, together with an optimization over a, gives (19.43).
Gross [20] subsequently extended (19.44) to Lie groups as

1
2

∫
G

{|φ(g)|2 log |φ(g)|2} ρ(g, t) dg ≤ cG(t)
∫

G

‖(Ẽrφ)(g)‖2ρ(g, t) dg

+ ‖φ‖2L2(G,ρt) log ‖φ‖2L2(G,ρt), (19.45)



19.5 Information-Theoretic Inequalities from log-Sobolev Inequalities 353

where ρ(g, t) is the solution of the diffusion equation in (19.41) with hi = 0, Dij = δij ,
initial condition ρ(g, 0) = δ(g), and

Ẽrφ = [Ẽr
1φ, . . . , Ẽr

nφ]T and ‖φ‖2L2(G,ρt) =
∫

G

|φ(g)|2ρ(g, t) dg.

In (19.45) the scalar function cG(t) depends on the particular group. For G = (Rn,+),
we have cRn(t) = t, and likewise cSO(n)(t) = t.

In analogy with the way that (19.43) evolved from (19.44), a descendent of (19.45)
for noncompact unimodular Lie groups is [3, 5, 6]3∫

G

|ψ(g)|2 log |ψ(g)|2 dg ≤ n

2
log

[
2CG

πen

∫
G

‖Ẽψ‖2 dg

]
. (19.46)

The only difference is that, to the author’s knowledge, the sharp factor CG in this
expression is not known for most Lie groups. The information-theoretic interpretation
of these inequalities is provided in the following subsection.

19.5.2 Information-Theoretic Inequalities

For our purposes, (19.43) and (19.46) will be most useful. It is interesting to note
in passing that Beckner has extended this inequality to the case where the domain,
rather than being Rn, is the hyperbolic space H2 ∼= SL(2, R)/SO(2) and the Heisenberg
groups H(n), including H(1) [5, 6]. Our goal here is to provide an information-theoretic
interpretation of the inequalities from the previous section.

Theorem 19.14. Entropy powers and Fisher information are related as

[N(f)]−1 ≤ 1
n

tr(F ), where N(f) =
CG

2πe
exp

[
2
n

S(f)
]
. (19.47)

Proof. We begin by proving (19.47) for G = (Rn,+). Making the simple substitution
f(x) = |ψ(x)|2 into (19.43) and requiring that f(x) be a pdf gives∫

Rn

f(x) log f(x) dx ≤ n

2
log

[
1

2πen

∫
Rn

1
f
‖∇f‖2 dx

]
,

or

−S(f) ≤ n

2
log

tr(F )
2πen

=⇒ exp
[
− 2

n
S(f)

]
≤ tr(F )

2πen
=⇒ [N(f)]−1 ≤ 1

n
tr(F ).

(19.48)

Here, S(f) is the Boltzmann–Shannon entropy of f and F is the Fisher information
matrix. As is customary in information theory, the entropy power can be defined as
N(f) in (19.47) with CG = 1. Then the log-Sobolev inequality in the form in (19.48) is
written as (19.47).

For the more general case, starting with (19.46) and letting f(g) = |ψ(g)|2 gives∫
G

f(g) log f(g) dg ≤ n

2
log

[
CG

2πen

∫
G

1
f
‖Ẽf‖2

]
dg =⇒ −S ≤ n

2
log

[
CG

2πen
tr(F )

]
.

(19.49)
The rest is the same as for the case of Rn.

3Here Ẽ is written without a superscript r or l because either the norm ‖ · ‖ can be chosen
to be Ad∗-invariant, or, if not, different constants CG can be defined in the l and r cases.
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Starting with Gross’ original form of log-Sobolev inequalities involving the heat
kernel, the following information-theoretic inequality results.

Theorem 19.15. The Kullback–Leibler divergence and Fisher information distance of
any arbitrary pdf and the heat kernel are related as

DKL(f ‖ ρt) ≤ cG(t)
2

DFI (f ‖ ρt), (19.50)

where, in general, given f1(g) and f2(g),

DFI (f1 ‖ f2)
.=
∫

G

∥∥∥∥ 1
f1

Ẽf1 − 1
f2

Ẽf2

∥∥∥∥2

f1 dg. (19.51)

Proof. Starting with (19.45), let φ(g, t) = [ρ(g, t)]−
1
2 [f(g)]

1
2 , where f(g) is a pdf. Then∫

G

|φ(g, t)|2ρ(g, t) dg =
∫

G

f(g) dg = 1,

and so, log ‖φ‖2L2(G,ρt) = 0, and we have

1
2

∫
G

f(g) log
f(g)

ρ(g, t)
dg ≤ cG(t)

∫
G

‖Ẽ([ρ(g, t)]−
1
2 [f(g)]

1
2 )‖2ρ(g, t) dg.

By using the chain rule and product rule for differentiation,

ρ
1
2
t · Ẽ(ρ− 1

2
t f

1
2 ) =

1
2
f− 1

2 Ẽf − 1
2
f

1
2 ρ−1

t Ẽρt,

where ρt = ρ(g, t) and f = f(g). Substitution into the right-hand side of (19.45) then
gives (19.50).

In the functional analysis community, several connections between log-Sobolev in-
equalities on Rn and information theory have emerged. For example, Carlen [9] ad-
dressed Theorem 19.13 for the case of G = Rn. Ledoux [24, 25], Dembo [14], Talagrand
[33], and Otto and Villani [29] addressed the connection between entropy and gradients
of pdfs in the context of so-called “concentration of measure” phenomena related to
logarithmic Sobolev inequalities. However, these studies are not usually concerned with
the Lie-group setting. Moreover, the author has not found analogs of (19.48) in the
context of Lie groups in the literature.

19.6 Covariance, the Weak Cramér–Rao Bound,
and Maximum-Entropy Distributions
on Unimodular Lie Groups

Given a pdf f ∈ N (G) that is in addition unimodal and decays rapidly from its mode
(in the precise sense described in [32]), its mean is defined here as the point μ ∈ G such
that [34] ∫

G

(log g)∨f(μ ◦ g) dg = 0. (19.52)
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Unlike in Rn, in which a mean can be computed for any pdf, in the Lie-group setting it
is important to restrict the class of pdfs for the concept of mean to make sense. If not
for such restrictions, the usefulness of the concept of the mean would diminish. For
example, for the uniform distribution on SO(3), every point could be called a mean.

The covariance of a concentrated probability density centered around μ can be
defined as [34]

Σ =
∫

G

(log g)∨[(log g)∨]T f(μ ◦ g) dg. (19.53)

This matrix will have finite values when f(g) is rapidly decreasing. Note that this
concept of covariance differs from those presented in [18, 21], which are more akin to
the dispersion defined in Theorem 19.2. The definitions in (19.52) and (19.53) are used
in the following theorem.

19.6.1 The Weak Cramér–Rao Bound

The following theorem is referred to here as the “weak” Cramér–Rao bound for uni-
modular Lie groups, because unlike the classical Cramér–Rao bound in Rn, the proof
only holds when the Lie-theoretic covariance is small. Indeed, even the very concept of
this covariance breaks down for distributions that become too spread out.

Theorem 19.16. Let ρ(g) ∈ N (G) be a pdf with the additional symmetry condition
ρ(g) = ρ(g−1) and set f(g;μ) = ρ(μ−1 ◦ g). Given an unbiased estimator of μ, then the
Cramér–Rao bound

Σ ≥ F−1 (19.54)

holds for sufficiently small ‖Σ‖, where Σ and F are defined in (19.53) and (19.18)
and the above matrix inequality is interpreted as each eigenvalue of Σ − F−1 being
non-negative.

Proof. For a symmetric pdf ρ(g) = ρ(g−1), the mean is at the identity, and so,∫
G

(log g)∨ρ(g) dg = 0. (19.55)

The invariance of integration under shifts then gives

φ(μ) =
∫

G

(log(μ−1 ◦ g))∨ρ(μ−1 ◦ g) dg = 0. (19.56)

Applying the derivatives Ẽr
i to φ(μ) gives an expression for Ẽr

i φ(μ) = 0 that can be
expanded under the integral using the product rule Ẽr

i (a · b) = (Ẽr
i a) · b + a · (Ẽr

i b),
where in the present case, a = (log(μ−1 ◦ g))∨ and b = ρ(μ−1 ◦ g). Note that when ρ(·)
is highly concentrated, the only values of g that significantly contribute to the integral
are those for which μ−1 ◦ g ≈ e. By definition,

Ẽr
i (log(μ−1 ◦ g))∨ =

d

dt
(log((μ ◦ etEi)−1 ◦ g))∨

∣∣∣∣
t=0

=
d

dt
[log(e−tEi ◦ μ−1 ◦ g)]∨

∣∣∣∣
t=0

.

Using the Baker–Campbell–Hausdorff formula

log(eXeY ) ≈ X + Y +
1
2
[X,Y ]
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with X = −tEi and Y = log(μ−1 ◦g) together with the fact that μ−1 ◦g ≈ e then gives∫
G

[Ẽr
i (log(μ−1 ◦ g))∨]ρ(μ−1 ◦ g) dg ≈ −ei. (19.57)

The second term in the expansion of Ẽr
i φ(μ) is∫

G

[log(μ−1 ◦ g)]∨ρ(e−tEi ◦ μ−1 ◦ g) dg

∣∣∣∣
t=0

=
∫

G

[log h]∨ρ(e−tEi ◦ h) dh

∣∣∣∣
t=0

,

where the change of variables h = μ−1 ◦ g has been made. Using the symmetry of ρ
gives ρ(e−tEi ◦ h) = ρ(h−1 ◦ etEi), and making the change of variables h → k−1

then reduces this term to
∫

(log k−1)∨(Ẽr
i ρ)(k) dk. Recombining all of the parts means

that Ẽr
i φ(μ) = 0 can be written in the form

∫
G

ai(k)bj(k) dk = δij , where ai(k) =
[ρ(k)]

1
2 (log k−1)∨ ·ei and bj(k) = [ρ(k)]

1
2 Ẽr

j [log ρ(k)]. Then, as in the proof of the classi-
cal Cramér–Rao bound, using the Cauchy–Schwarz inequality gives the result in (19.54).

19.6.2 Maximum-Entropy Distributions

Recall that the Gaussian distribution on Rn has a number of remarkable properties,
including the following: (1) It is closed under the operation of convolution; (2) it solves
a linear diffusion equation with constant coefficients; and (3) it is the maximum-entropy
distributution subject to constraints on the mean and covariance. A natural question
to ask is whether such a distribution exists on unimodular Lie groups. With regard to
(1) and (2), the answer is certainly yes, and this kind of Gaussian distribution appeared
as the solution of (20.14) subject to Dirac delta initial conditions. However, this is not
necessarily the maximum-entropy distribution subject to covariance constraints.

Equipped with a concept of mean and covariance, the concept of a maximum-entropy
distribution on a unimodular Lie group subject to constraints on the mean and covari-
ance can be defined and computed in the usual way using Lagrange multipliers, and the
result is of the form

ρ(g;μ,Σ) =
1

c(μ, Σ)
exp

(
−1

2
[log(μ−1 ◦ g)]∨ ·Σ−1[log(μ−1 ◦ g)]∨

)
, (19.58)

where

c(μ, Σ) =
∫

G

exp
(
−1

2
[log(μ−1 ◦ g)]∨ ·Σ−1[log(μ−1 ◦ g)]∨

)
dg.

Such distributions have been studied in the context of how the covariance of con-
volved Gaussians can be obtained from the covariances of those being convolved. As
‖Σ‖ becomes small, ρ(g; e,Σ) converges to the solution of a driftless diffusion with
Dirac delta initial conditions at the identity, and Σ = tD. In this case, exponential
coordinates g = expX become Cartesian coordinates near the identity and dg ≈ dx
(the Lebesgue measure) by identifying the Lie algebra with Rn. In this limit, the usual
Gaussian on Rn results, c(μ, Σ) = (2π)n/2|Σ|1/2 and S(ρ) = log

[
(2πe)n/2 |Σ|1/2

]
.

However, as ‖Σ‖ (or tD) becomes larger, then the concepts of Gaussians on Lie
groups as solutions to diffusion equations and as maximum-entropy distributions become
inconsistent with each other. Each of these concepts of Gaussian distribution has its
advantages in different scenarios.
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19.7 Entropy Powers and Lie Groups

19.7.1 The Entropy-Power Inequality Does Not Hold on Compact
Lie Groups

On a compact Lie group, the Haar measure can be normalized such that
∫

G
dg = 1.

When using such a measure, ρ(g) .= 1 is a pdf. This is the limiting pdf of any nonde-
generate diffusion as t → ∞. Therefore, (ρ ∗ ρ)(g) = ρ(g). Since log 1 = 0, the entropy
is computed as S(ρ) = 0, and the (unnormalized) entropy power4 is N ′(ρ) = e0 = 1.
Therefore,

N ′(ρ ∗ ρ) = 1 and N ′(ρ) = 1 =⇒ N ′(ρ ∗ ρ) < N ′(ρ) + N ′(ρ).

In other words, the entropy power inequality (which has a ≥ in place of the < in the
above equation) fails. This is a general result that depends on the topology of compact
Lie groups.

19.7.2 A Weak Entropy-Power Inequality for Unimodular Lie Groups

For pdfs that are highly concentrated (in the sense of having covariance matrices with
small entries), the tails decay before the topological properties are “felt.” In this special
case, convolution depends only on local geometry. For example, if ρi(g) for i = 1, 2
are Gaussians on a unimodular Lie group in exponential coordinates with means and
covariances (μi, Σi), then (ρ1 ∗ ρ2)(g) will be a Gaussian with mean and covariance
(μ1◦μ2, Ad(μ−1

2 )Σ1AdT (μ−1
2 )+Σ2). Recall that for a unimodular Lie group, |Ad(g)| = 1.

Does the entropy-power inequality (EPI) hold here?
The EPI for Rn when applied to Gaussians with covariances Σ′

1 and Σ′
2 is equivalent

to the matrix inequality

|Σ′
1 + Σ′

2|1/n ≥ |Σ′
1|1/n + |Σ′

2|1/n,

which is a form of Minkowski’s inequality. Now, working in reverse and letting Σ′
1 =

Ad(μ−1
2 )Σ1AdT (μ−1

2 ) and Σ′
2 = Σ2, it follows from |Σ′

1| = |Σ1| that

N(ρ1 ∗ ρ2) ≥ N(ρ1) + N(ρ2).

Therefore, in this limited setting, a weak version of the EPI holds. Extensions of this
are left as an exercise.

19.8 Conclusions

By collecting and reinterpreting results relating to the study of diffusion processes,
harmonic analysis, and log-Sobolev inequalities on Lie groups and merging these re-
sults with definitions of Fisher information matrix and covariance, many inequalities
of information theory were extended here to the context of probability densities on
unimodular Lie groups. In addition, the natural decomposition of groups into cosets,
double cosets, and the nesting of subgroups provides some inequalities that result from

4Unnormalized entropy powers can be defined as N ′(ρ) = e2S(ρ)/n, where n = dim(G),
whereas the normalized one is N(ρ) = N ′(ρ)/2πe.
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the Kullback–Leibler divergence of probability densities on Lie groups. Some special in-
equalities related to finite groups (which are also unimodular) were also provided. The
results presented in this chapter were first derived in [11]. One open issue is determining
the conditions under which the entropy power inequality [7, 31] will hold for Lie groups.

19.9 Exercises

19.1. If in Section 19.7.1, an unnormalized Haar measure such that
∫

G
dg = Vol(G) �= 1

is used instead of the normalized one, will this affect the fact that the EPI does not
hold?

19.2. Following up on Section 19.7.2, suppose that ρ′
i(g) = (1 + εi(g))ρi(g) where

|εi(g)| � 1 is a small perturbation that leaves the first few moments of a concen-
trated Gaussian on a unimodular Lie group unchanged:

∫
G

ρ′
i(g) dg = 1, μi′ = μi, and

Σi′ = Σi. Will the EPI hold for ρ′
1(g) and ρ′

2(g)?

19.3. Does the EPI hold for the Heisenberg group?
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Stochastic Processes on Lie Groups

As has been discussed in earlier chapters, it is possible to define probability densities
on Lie groups and to compute convolutions. Since Lie groups are by definition also
analytic manifolds, the methodology from Chapter 8 of Volume 1 can be used to de-
fine SDEs and Fokker–Planck equations. However, the added structure provided by Lie
groups means that these equations can be derived in completely Lie-theoretic terms
without ever referring to coordinates or charts. In addition, the natural embedding of
Lie groups into matrices means that SDEs can be written extrinsically as well. These
topics are discussed here, along with related topics from the field of probability and
statistics on Lie groups. These include answering the questions: “How can the concepts
of mean and covariance of a pdf on a Lie group be defined?” “If I only care how the
mean and covariance behave as a function of time, can I obtain these without solving
the Fokker–Planck equation?”

The main ideas to take away from this chapter are as follows:

• It is possible to describe SDEs and corresponding Fokker–Planck equations on Lie
groups in much the same way as was done in Chapter 4 for the case of Rn. Moreover,
the formulation here also can be viewed as a special case of the framework explained
in Chapter 8 for more general manifolds.

• Concepts of mean and covariance of probability densities on Lie groups that have de-
sirable properties under convolution can be defined and used to study what happens
as the number of convolutions grows. In the compact connected case, this leads to
a convergence to uniformity, and in the case of noncompact connected unimodular
Lie groups, this results in a central limit theorem.

• Diffusion processes on Lie groups described in this chapter are precisely the kind that
arise in applications such as DNA statistical mechanics, steering of flexible needles,
and nonholonomic kinematic systems such as wheeled vehicles that are subject to
rolling constraints.

This chapter is organized as follows. Section 20.1 discusses McKean–Gangolli injec-
tion, which is a way to take a stochastic trajectory defined in the tangent space of a
Lie group and use the exponential map to create a stochastic trajectory in a Lie group.
Section 20.2 derives the Fokker–Planck equation for the resulting McKean–Gangolli in-
jection and shows that the result is the same as if the coordinate-dependent approach
to stochastic calculus on manifolds from Chapter 8 is used. Sections 20.3 and 20.4 re-
spectively discuss Stratonovich and Itô SDEs on Lie groups. The former is natural for
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intrinsic approaches, as transitions between coordinate charts are handled gracefully,
whereas the latter is well suited to the extrinsic approach in which a Lie group is de-
fined as a set of matrices with constraint equations. Section 20.5 discusses the limiting
distribution for gradient flows on Lie groups. Section 20.6 reviews various dispersion
measures presented in the literature. Section 20.7 addresses changes of Lie algebra basis
and diagonalization of diffusion matrices. Section 20.8 relates these to the concept of
central limit theorems for iterated convolutions on Lie groups. Section 20.9 describes
the properties of the resulting limiting distributions.

20.1 McKean–Gangolli Injection

Stochastic processes on Lie groups can be generated in several ways. One way is to
“inject” a stochastic process from the Lie algebra into the group using the exponential
map and product integral formula, as introduced by McKean [48]. A second way is to
restrict a stochastic process defined in an ambient Euclidean space so as to “stay on” a
group manifold rather than meandering off into the larger space. A third way is through
SDEs defined in some set of coordinates that are natural to a specific physical problem.
All three of these are discussed in this chapter, with injection being the focus of this
section.

Consider the linear SDE with constant or time-varying coefficients

dx = h(t) dt + H(t) dw . (20.1)

This describes stochastic sample paths that evolve in Rn, and due to the fact that H(t)
does not depend on x, (20.1) can be viewed either as an Itô or Stratonovich equation.
If we identify this Euclidean space with an n-dimensional Lie algebra, G, then through
the exponential map, it is possible to transfer (or “inject”) this sample path into the
corresponding Lie group via the exponential map. However, as the exponentiated path
meanders away from the identity element of the group, nonlinearities creep in. There-
fore, the McKean–Gangolli injection process “resets” things at the identity at each
step. So, at time t = 0, g(0) = e. At t = dt, g(dt) = g(0) ◦ exp(

∑
i dxiEi), where

dxi is evaluated at time dt. At the next step, g(2dt) = g(dt) ◦ exp(
∑

i dxiEi),
where dxi is evaluated at time 2dt and so forth. Then the path g(t) ∈ G is defined
recursively as

g(t + dt) = g(t) ◦ exp

(∑
i

dxi Ei

)
, where g(0) = e, (20.2)

where {Ei} is a basis for G. The path g(t) generated in this way is written as the product
integral

g(t) =
⋂

0≤τ≤t

exp

(∑
i

dxi(τ)Ei

)
. (20.3)

For our purposes this is nothing more than shorthand for the infinite product of
exponentials that results from (20.2) with infinitesimal dt. The next sections derive
Fokker–Planck equations corresponding to this sort of stochastic process, both from
coordinate-free and coordinate-dependent perspectives.
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20.2 Fokker–Planck Equations on Unimodular Lie Groups

Let ρ(g, t) denote a time-parameterized pdf on a unimodular Lie group1 (e.g., the rota-
tion or motion groups); that is,

ρ(g, t) ≥ 0 and
∫

G

ρ(g, t) dg = 1

for all values of t ∈ R+, and assume that

ρ(g, 0) = δ(g).

As usual, the partial derivative with respect to time is defined as

∂ρ

∂t
= lim

Δt→0

1
Δt

[ρ(g, t + Δt)− ρ(g, t)] .

However, for a homogeneous process that evolves on a Lie group, it should be the
case that

ρ(g, t + Δt)=ρ(g, t) ∗ ρ(g,Δt) =
∫

G

ρ(h, t)ρ(h−1 ◦ g,Δt) dh (20.4)

=ρ(g,Δt) ∗ ρ(g, t) =
∫

G

ρ(h,Δt)ρ(h−1 ◦ g, t) dh. (20.5)

In fact, this can be taken as the definition of a homogeneous process.
As in the proof of the classical Fokker–Planck equation, this convolution integral is

substituted into the definition of partial derivative,∫
G

∂ρ

∂t
f(g) dg = lim

Δt→0

1
Δt

∫
G

[ρ(g, t + Δt)− ρ(g, t)] f(g) dg.

Either (20.4) or (20.5) can be chosen. In order to make things concrete, choose (20.5).
Then∫

G

ρ(g, t + Δt)f(g) dg

=
∫

G

[ρ(g,Δt) ∗ ρ(g, t)]f(g) dg −
∫

G

[∫
G

ρ(h,Δt)ρ(h−1 ◦ g, t) dh

]
f(g) dg. (20.6)

Here, f(g) is an arbitrary function.
Since Δt is small, ρ(h,Δt) = 0 when h is “far from the identity.” In other words,

for a small value of Δt, the function ρ(h,Δt) must not be too different from ρ(h, 0) =
δ(h). Distance from the identity can be measured using any reasonable metric d(h, e).
Therefore, the only values of h that contribute to the integral are those when h = expX
for X =

∑
i xi(h)Ei with |xi(h)| � 1.

Then by making the change of coordinates,

k = h−1 ◦ g ⇐⇒ g = h ◦ k,

1Recall from Chapter 10 that a unimodular Lie group is one for which the integration
measure is bi-invariant (i.e., d(h ◦ g) = d(g ◦ h)). This is a less restrictive condition than the
existence of a bi-invariant metric.
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and switching the order of integration using Fubini’s theorem, (20.6) is written as∫
G

ρ(g, t + Δt)f(g) dg =
∫

G

∫
G

ρ(h,Δt)ρ(k, t)f(h ◦ k) dk dh. (20.7)

Expanding f(h ◦ k) in a “left” Taylor series for small h and integrating each term in
the resulting sum leads to simplifications. First, the zeroth-order term becomes∫

G

ρ(h,Δt)f(k) dh = f(k) ·
∫

G

ρ(h,Δt) dh = f(k).

The first-order terms in xi(h) becomes∫
G

∫
G

ρ(h,Δt)ρ(k, t)

(∑
i

xi(h)Ẽl
if(k)

)
dk dh

=
∑

i

∫
G

(∫
G

xi(h)ρ(h,Δt) dh

)
ρ(k, t)Ẽl

if(k) dk,

and the second-order term becomes∫
G

∫
G

ρ(h,Δt)ρ(k, t)

⎛⎝1
2

∑
i,j

xi(h)xj(h)Ẽl
iẼ

l
jf(k)

⎞⎠ dk dh

=
1
2

∑
i,j

∫
G

(∫
G

xi(h)xj(h)ρ(h,Δt) dh

)
ρ(k, t)Ẽl

iẼ
l
jf(k) dk.

Note that near the identity, xi serve as Cartesian coordinates and the integral over
the group can be replaced by an integral over a small box containing the identity:∫

G

xi(h)ρ(h,Δt) dh =
∫ dx1/2

−dx1/2
· · ·

∫ dxn/2

−dxn/2
yi ρ(h(y), Δt) dyn dyn−1 · · · dy1 = 〈dxi〉

and ∫
G

xi(h)xj(h)ρ(h,Δt) dh

=
∫ dx1/2

−dx1/2
· · ·

∫ dxn/2

−dxn/2
yiyj ρ(h(y), Δt) dyn dyn−1 · · · dy1 = 〈dxi dxj〉.

The variables yi here are dummy variables of integration.
It follows that if (20.1) holds, then

〈xi〉 = hi(t) dt and 〈xixj〉 = dt
∑

k

HikH
T
kj . (20.8)

This follows for exactly the same reasons as in the derivation in the Euclidean case.
However, something that is different is that (20.1) is not a SDE valid over the whole
group but rather only near the identity. This issue will be revisited momentarily.

First, the invariant derivation of the Fokker–Planck equation on a Lie group is com-
pleted by using integration by parts, resulting in the localization of the form∫

G

Af(g) dg = 0 =⇒ A = 0,
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where the expression A = 0 is the Fokker–Planck equation2

∂ρ(g, t)
∂t

+
d∑

i=1

Ẽl
i(hi(t)ρ(g, t))− 1

2

d∑
i,j=1

Ẽl
iẼ

l
j

(
m∑

k=1

Hik(t)HT
kj(t)ρ(g, t)

)
= 0. (20.9)

Instead of substituting (20.4) in (20.6) it is possible to use (20.5) with all other steps
being the same. This results in

∂ρ(g, t)
∂t

+
d∑

i=1

Ẽr
i (hi(t)ρ(g, t))− 1

2

d∑
i,j=1

Ẽr
i Ẽr

j

(
m∑

k=1

Hik(t)HT
kj(t)ρ(g, t)

)
= 0. (20.10)

The local behavior near the identity captured by (20.1) can be extended over the
whole group in the following two ways.

Method 1: The stochastic process can be extended to the whole group by defining
g(x) to satisfy the Stratonovich SDEs:

g−1 dg = dx or dg g−1 = dx (20.11)

subject to the initial conditions x(0) = 0. This reduces to

dx = J−1
r (x) [h(t) dt + H(t) dw] . (20.12)

This defines a stochastic trajectory x(t) where g(x(t) ∈ G.
Method 2: Compute directly

g(t + dt) = g(t) ◦ exp[h(t) dt + H(t) dw] . (20.13)

Both methods are consistent with (20.11).
Examples of (20.10) have been demonstrated in the context of gyroscopes, kinematic

carts, and flexible needle steering, as will be discussed in the next chapter. Focusing on
the “r” case, when h and H are constant, we can write

∂ρ(g, t)
∂t

+
d∑

i=1

hi Ẽr
i ρ(g, t))− 1

2

d∑
i,j=1

DijẼ
r
i Ẽr

j ρ(g, t) = 0, (20.14)

where

Dij =
m∑

k=1

HikH
T
kj .

When considering SDEs and the corresponding Fokker–Planck equations, it is usually
important to specify whether the Itô or Stratonovich form is used. Without getting into
too much detail, it suffices to say that the Itô form has been assumed in the derivation
of both of the above Fokker–Planck equations. However, if the coupling matrices H are
independent of the coordinates used (or do not depend explicitly on the group elements),
then the Itô and Stratonovich forms of the Fokker–Planck equation will be identical. In
the examples that we will consider, the Itô and Stratonovich forms of the Fokker–Planck
equation are all the same unless otherwise specified.

2It is important when reading the mathematics literature to recall that our Ẽl
i is often

written as their −Ẽr
i and our Ẽr

i is often written as their Ẽl
i.
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20.3 Extracting Stratonovich SDEs from Fokker–Planck
Equations on Unimodular Lie Groups

In the previous section it was shown how to go from an SDE defined in exponential
coordinates on a unimodular Lie group to the corresponding Fokker–Planck equation.
Sometimes in applications, a Fokker–Planck equation is given and we wish to express
the SDE in other coordinates. Here, some coordinate-dependent calculations are demon-
strated for the case of Stratonovich SDEs.

Near the identity, the Jacobian in exponential coordinates is close to being the
identity. Therefore, very close to the identity, the Itô and Stratonovich SDEs with H =
J−1 will be the same. Is this “zeroth-order” statement true to first order or higher? This
question can be answered by expanding out the Jacobian for the exponential coordinate
parameterization and doing the calculations.

On a unimodular Lie group, we encounter diffusion operators with drift of the form

Δ∗ =
1
2

d∑
i,j=1

DijẼiẼjf −
d∑

i=1

diẼi,

where Δ∗ is the adjoint of the operator Δ, and these differ from each other only in the
sign of the drift term.

A natural question to address is, What SDEs have a Fokker–Planck equation of
the form

∂f

∂t
= Δ∗f ?

In terms of coordinates,

d∑
i,j=1

DijẼiẼjf =
d∑

i,j=1

Dij

d∑
l=1

J−1
li

∂

∂ql

(
d∑

k=1

J−1
kj

∂f

∂qk

)
.

If D = BBT , so that Dij =
∑d

m=1 BimBjm, then the summation signs above can be
rearranged to yield

d∑
i,j=1

DijẼiẼjf =
d∑

m,l,k=1

(
d∑

i=1

J−1
li Bim

)
∂

∂ql

⎛⎝ d∑
j=1

J−1
kj Bjm

∂f

∂qk

⎞⎠ .

If the matrix H is defined by
H = J−1B, (20.15)

then
d∑

i,j=1

DijẼiẼjf =
d∑

m,l,k=1

Hlm
∂

∂ql

(
Hkm

∂f

∂qk

)
.

In a similar way,
d∑

i=1

diẼif =
d∑

i=1

d∑
k=1

diJ
−1
ki

∂f

∂qk
=

d∑
k=1

hk
∂f

∂qk
,

where

hk =
d∑

i=1

diJ
−1
ki . (20.16)
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From the conditions imposed on Jacobians that result from the discussion in Sec-
tion 12.2.3, it follows that the coordinate-dependent Stratonovich SDE corresponding
to the diffusion operator D is

dq = h(q) dt + H(q) dw,

where the components of h and H are given in (20.16) and (20.15), respectively.

20.4 Conditions for an Itô Equation to Evolve on Certain
Matrix Lie Groups

Many matrix Lie groups are defined by conditions of the form

gT Qg = Q, (20.17)

where Q = QT is a matrix such as I(p, q).
Let the set of all g ∈ RN×N satisfying this condition be called G. (Elsewhere in

this text, group elements are denoted as g in the context of more abstract settings,
but here they are denoted as g to emphasize that these group elements are matrices.)
Then it is easy to see that closure holds under matrix multiplication of elements of
G because if g1, g2 ∈ G, then, by definition, gT

1 Qg1 = Q and gT
2 Qg2 = Q and

gT
2 gT

1 Qg1g2 = gT
2 Qg2 = Q, indicating that g1 ◦ g2 ∈ G (where ◦ denotes matrix mul-

tiplication). Then multiplying (20.17) on the left by (gT )−1 = (g−1)T and on the right
by g−1 gives (g−1)T Qg−1 = Q, indicating closure under the inversion of g. The identity
element e ∈ G is simply the identity matrix IN , the associative law holds from matrix
multiplication, and since det(gT Qg) = detQ implies (det g)2 = 1, it must be the case
that each g ∈ G has an inverse.

More specifically, the groups O(p, q), where p + q = N , consist of group elements g
that satisfy the condition

gT I(p, q) g = I(p, q), (20.18)

where I(p, q) = Ip ⊕ (−Iq). In other words, I(p, q) is the diagonal matrix consisting of
blocks that are either the identity or the negative of the identity.

The group SO(p, q) consists of the part of O(p, q) where det g = +1.
Conditions for an Itô stochastic process X(t) to evolve on the group defined by

(20.17) are

d(gT Qg) = (dg)T Qg + gT Qdg + (dg)T Qdg = O. (20.19)

In particular, if the discussion is restricted to matrix SDEs of the form

dg = A(g) dt +
m∑

i=1

Bi(g) dwi

where A(g) and Bi(g) are both matrix-valued functions of matrix-valued argument, then
substitution into (20.19) results in the conditions

[A(g)]T Qg + gT QA(g) +
m∑

i=1

[Bi(g)]T QBi(g) = O
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and

QBj(g) + [Bj(g)]T Q = 0 for j = 1, . . . ,m.

In the special case when Bi(g) = gYi, where each Yi ∈ G, then it can be shown that the
following SDE satisfies (20.19) and hence evolves on the group defined by (20.17):

dg = g

m∑
i=1

(
−1

2
Q−1 Y T

i QEi dt + Yi dwi

)
with QYj + Y T

j Q = O for j = 1, . . . ,m.

(20.20)
Consider the case where

g =
(

x1 x2
x3 x4

)
satisfies the following matrix Itô SDE from [9]:(

dx1 dx2
dx3 dx4

)
=

(
α β
γ −α

)(
x1 x2
x3 x4

)
dt +

(
x1 x2
x3 x4

)(
dw1 dw2
dw3 −dw1

)
. (20.21)

As will be observed, this equation describes a stochastic process on the group SL(2, R).
In other words, detX(t) = +1 if detX(0) = +1.

The matrix equation (20.21) can be written in the vector form

dx = Ax dt +
m∑

i=1

dwi Bi x, (20.22)

where x = [x1, x2, x3, x4]T ,

A =

⎛⎜⎜⎝
α 0 β 0
0 α 0 β
γ 0 −α 0
0 γ 0 −α

⎞⎟⎟⎠ ,

and if Yi = Ei, then

B1 =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ , B2 =

⎛⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎠ , B3 =

⎛⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ .

The condition detX = x1x4 − x2x3 = 1 can be written in the form 1
2x

T Qx = 1, where

Q′ =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠ .

It is easy to verify that

BT
i Q′ + Q′Bi = O and AT Q′ + Q′A = O,

indicating that the quadratic form 1
2x

T Q′x = 1 is preserved by sample paths of the
SDE (or, equivalently, detX(t) = 1).
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20.5 Gradient Flows

In RN , the stochastic differential equation (Stratonovitch or Itô )

dx = −1
2
∇φdt + dw

has a corresponding Fokker–Planck equation

∂f

∂t
=

1
2
∇ · (f ∇φ) +

1
2
∇2f.

If this equation is solved subject to the initial conditions f(x, 0) = δ(x) (which corre-
sponds to the SDE having initial conditions x(0) = 0), then in the steady state this
equation has the solution

f∞(x) = lim
t→∞ f(x, t) =

1
Z

e−φ(x),

where
Z =

∫
RN

e−φ(x) dx.

Now, let G be an n-dimensional unimodular Lie group and consider the Stratonovich
SDE

(g−1 dg)∨ = −1
2

grad(φ) dt + dw. (20.23)

Recall that grad(φ) = [Ẽr
1φ, . . . , Ẽr

nφ]T . Writing (20.23) in coordinates,

Jr(q) dq = −1
2
[Jr(q)]−T∇qφ + dw.

Multiplying both sides by the inverse of Jr(q) and recalling that the matrix tensor is
Gr = JT

r Jr, the following SDE results:

dq = −1
2
[Gr(q)]−1∇qφ + [Jr(q)]−1dw.

The corresponding Fokker–Planck equation is

∂f

∂t
=

1
2
|J |−1

n∑
i,j=1

∂

∂qi

(
|J |gij ∂φ

∂qj
f

)
+

1
2
|J |−1

n∑
i,j,k=1

∂

∂qi

(
J ik ∂

∂qj
(|J |Jjkf)

)
, (20.24)

where |J | = |det Jr|. Using the properties of Lie derivatives of functions on unimodular
groups, it can be shown that the steady-state solution to (20.24) is [10]

f∞(g) =
1
Z

e−φ(g).

20.6 Measures of Dispersion

For a pdf in Rn, it is possible to compute covariance, which gives a sense of “how spread
out” the distribution is. In this section, several extensions of the concept of covariance
to the setting of pdfs on groups are reviewed. First, the central limit theorem for the real
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line in reviewed in Section 20.6.1. Various ways of defining the distance between a pdf on
a noncommutative group and its limiting distribution are reviewed in Section 20.6.1. In
Section 20.6.2 concepts of covariance that are algebraic in nature are reviewed. These
preserve properties such as the covariance of the convolution of two functions is the
sum of the covariances. In Section 20.6.4, very different concepts of covariance that
use some measure of distance between group elements are reviewed. The concepts in
Sections 20.6.2 and 20.6.4 can, in fact, be applied to all kinds of groups: Lie groups, finite
groups, discrete groups with an infinite number of elements, products of any of the above,
and so forth. In contrast, in Section 20.6.5 a concept of covariance developed specifically
for Lie groups is presented. This uses the logarithm operator. In principle, this concept
can be applied not only to Lie groups but also to any subgroup of a Lie group, whether
it be a Lie group itself, a finite group, and so forth. Whereas covariance concepts are
defined to measure dispersion relative to the most concentrated distribution (i.e., the
Dirac delta function), where they take a value of 0, it is possible to view the problem
from an opposite perspective—namely how far is a pdf from its limiting distribution?

20.6.1 Measures of Distance from the Limiting Distribution

For homogeneous diffusion processes with drift on Rn, the distribution f(x, t) subject
to the initial conditions f(x, 0) = δ(g) is self-similar; that is, a uniform rescaling of the
spatial variable and renormalization of the function so as to remain a pdf will have the
property

f(x, t;D,d) = c(t)f(x, 1; tD, td). (20.25)

In contrast, diffusion processes on noncommutative Lie groups will generally not not
have this property. Rather, the “shape” of the distribution will evolve over time.

For diffusion processes on compact Lie groups, the time-evolving pdf f(g, t) will have
the property that

flim(g) = lim
t→∞ f(g, t) = 1

as long as the volume element is normalized such that∫
G

1 dg = 1.

It then follows that for any pdf φ(g),

(flim ∗ φ)(g) =
∫

G

1 · φ(h−1 ◦ g) dh =
∫

G

φ(g−1 ◦ h) dh =
∫

G

φ(h) dh = 1 = flim(g).

Stated in words, the convolution of the limiting distribution with any other pdf on
a compact Lie group returns the limiting distribution. Thus, in the compact case the
limiting distribution is very special, and it makes sense to ask how close any distribution
is to the limiting distribution. This closeness of a given distribution, φ(g), to the limiting
one can be defined in a number of ways, such as

dp(φ, flim) =
(∫

G

|φ(g)− flim(g)|p dg

) 1
p

(20.26)

or
DKL(φ ‖ flim) =

∫
G

φ(g) log[φ(g)/flim(g)] dg. (20.27)
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The rates of convergence to uniformity under iterated convolution has been studied
in a number of works, including [14].

In the case of noncompact and noncommutative groups, the concept of limiting
distribution of a diffusion process needs to be modified, because although the shape of
the pdf evolves, it does not converge to the uniform distribution. Put simply, it is not
possible to be a pdf and to be uniform on a space of infinite extent. In this case, the
limiting distributions have been studied far less than the compact case, but in cases
when they have been obtained, (20.26) and (20.27) can still be used.

20.6.2 Algebraic Covariance

Referring back to the way covariance matrices are defined for pdfs on Rn, one might
conclude that the “essential” property of covariances is that Σf1∗f2 = Σf1 + Σf2 and
that the concept of covariance should be extended to more abstract domains in a way
that preserves this property. In fact, this is the approach taken in [28, 30]. This concept
uses ideas of group representation theory and harmonic analysis to define covariances.
Part of the attractiveness of this approach is that it generalizes to wide classes of groups.
However, for the purposes of illustration, only compact Lie groups will be discussed here.

Because the spectrum of an n-dimensional compact Lie group is discrete, it is pos-
sible to “pick any n” of the inequivalent irreducible unitary representations from the
countably infinite number of them that are available. Let these chosen IURs be labeled
as Ui(g) for i = 1, . . . , n. The corresponding Fourier transforms of the pdf f(g) be
computed as

f̂i =
∫

G

f(g)Ui(g−1) dg.

Denote the dimension of f̂i (which is obviously the same as the dimension of Ui(g))
as di.

Now, let

Vk(f) =
n∏

i=1

|det f̂i|ki ,

where k = [k1, k2, . . . , kn]T ∈ (R+)n. It follows that evaluating this definition at f(g) =
δ(g) (the Dirac delta function), then δ̂i = Idi

and Vk(δ) = 1 for any valid choice of k.
Likewise, if f(g) = flim(g) = 1, then for all values of i for which di > 1, the orthogonality
of IURs forces f̂i = 0, and so, Vk(1) = 0.

Using the convolution theorem and the property that det(AB) = detAdetB, it
follows that

Vk(f1 ∗ f2) = Vk(f1)Vk(f2).

Since it is natural to think of a covariance as something that should be 0 for a delta
function, take a large value for the limiting distribution, add under convolution, and
be an n × n-dimensional symmetric matrix for a pdf on an n-dimensional space, the
following definition is used [28, 30]:

σij(f) = − log Vei+ej
(f) for i, j = 1, . . . , n. (20.28)

In the case when i = j, σii(f) = − log V2ei
(f) = −2 log Vei

(f). An algebraic covariance
matrix is then defined as Σf = [σij(f)].
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Now, consider how this definition behaves under left shifts of the pdf:

F(f(h−1 ◦ g))=
∫

G

f(a−1 ◦ g)U(g−1, λ) dg

=
∫

G

f(h)U(h−1 ◦ a−1, λ) dh

=
[∫

G

f(h)U(h−1λ) dh

]
U(a−1, λ)

= f̂(λ)U∗(a, λ).

Since U(a, λ) is special unitary, detU(a, λ) = 1, and so,

σij(f(h−1 ◦ g)) = σij(f(g)).

Let fD,d(g, t) denote the solution to the diffusion equation in (14.48) subject to the
initial conditions fD,d(g, t) = δ(g). The Fourier space solution is

f̂D,d(λ, t) = exp t

⎡⎣1
2

n∑
i,j=1

Dijui(λ)uj(λ)−
n∑

k=1

dkuk(λ)

⎤⎦ .

Since det(expA) = etr(A) and since tr(uk(λ)) = 0, it follows that

det f̂D,d(λ, t) = exp t

⎡⎣1
2

n∑
i,j=1

Dijtr {ui(λ)uj(λ)}
⎤⎦ = det f̂D,0(λ, t),

and so, σij(fD,d(g, t)) = σij(fD,0(g, t)). In other words, the algebraic concept of covari-
ance depends only on the diffusion constants, not the drifts.

To summarize, the algebraic covariance matrix Σ = [σij ] with entries defined in
(20.28) has the following properties:

Σδ = O, (20.29)
(σij)flim

= ∞, (20.30)
Σf1∗f2 = Σf1 + Σf2 , (20.31)

ΣL(h)f = ΣR(h)f = Σf , (20.32)
ΣfD,d = ΣfD,0 . (20.33)

Whereas this concept seems to be the most widely articulated definition of covari-
ance in the mathematical probability literature, the geometric/Lie-theoretic ideas in the
following subsections arise more naturally in the context of the applications that follow
in later chapters.

20.6.3 Dual-Space Covariance

Grenander [28] discussed a measure of dispersion of the form

d(f) = −
∫

Ĝ

α(λ) log ‖|f̂(λ)‖|dλ, where α(λ) ≥ 0, ∀ λ ∈ Ĝ, (20.34)
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where G is a unimodular group and ‖| · ‖| is a matrix norm that is assumed to have
the properties of being submultiplicative and ‖|U‖| = 1 for U ∈ SU(n). With these
properties it is easy to see that

‖|f̂(λ)‖|=
∥∥∥∥∣∣∣∣∫

G

f(g)U(g−1, λ) dg

∥∥∥∥∣∣∣∣
≤

∫
G

f(g)‖|U(g−1, λ)‖| dg

=
∫

G

f(g) dg

=1,

and so,

‖|f̂(λ)‖| ≤ 1, (20.35)

In particular, if ‖|A‖| = √
λmax(AA∗), then the useful properties ‖|AU‖| = ‖|UA‖| =

‖|A‖| also hold and

‖|F(f(a−1 ◦ g))‖| = ‖|f̂‖|.
This invariance is true for right shifts also.

With such a norm, equality in (20.35) will hold when f(g) = δ(a−1 ◦ g) for some
a ∈ G or if U(g, λ) = 1 (which can be true for a single value of λ in the case of a compact
Lie group).

Furthermore,

‖|f̂1 ∗ f2‖| = ‖|f̂2f̂1‖| ≤ ‖|f̂1‖| · ‖|f̂2‖| ≤ 1.

Substituting this into (20.34) means that d(f1 ∗ f2) ≤ d(f1) + d(f2). From this it is also
clear that as a pdf is convolved many times with itself (or with other pdfs), the norm
‖|·‖| of the Fourier matrices that result will tend toward the zero matrix and (20.34) will
therefore tend to infinity. To summarize, this measure of dispersion has the properties

0 ≤ d(f) ≤ ∞, d(f1 ∗ f2) ≤ d(f1) + d(f2), d(L(a)f) = d(R(a)f) = d(f). (20.36)

A simple extension of this concept that the author has not seen in the literature
would be to define a dual-space covariance as

σij(f) = −
∫

Ĝ

[αi(λ) + αj(λ)] log ‖|f̂(λ)‖|dλ, (20.37)

where
αi(λ) ≥ 0, ∀ λ ∈ Ĝ, and i ∈ {1, 2, . . . ,dim(G)}.

20.6.4 Geometric Covariance

In a sense, the core ideas of geometry all revolve around measuring distances and angles.
By defining a metric (or distance) function on a Lie group, then a geometric concept of
mean and covariance can be defined. There is more than one way to measure distances
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between group elements. In order to be a valid distance function, the following properties
are required for all g1, g2, g3 ∈ G:

d(g1, g2) = d(g2, g1), (20.38)
d(g1, g2) ≥ 0, where d(g1, g1) = 0, and (20.39)

d(g1, g2) = 0 =⇒ g1 = g2, (20.40)
d(g1, g3) ≤ d(g1, g2) + d(g2, g3). (20.41)

For example, the conceptually simplest metric for matrix Lie groups is

dF (g1, g2) = ‖g1 − g2‖,

where ‖ · ‖ is a matrix norm, such as the Frobenius norm.
Additionally, if U(g, λ) ∈ SU(dλ) is a finite-dimensional irreducible unitary repre-

sentation of G, then
dλ(g1, g2) = ‖U(g1, λ)− U(g2, λ)‖

satisfies these definitions.
The following are also valid metrics for all but a set of measure zero on the groups

of interest in most applications:

dl(g1, g2) = ‖ [log(g−1
1 ◦ g2)]∨ ‖

and
dr(g1, g2) = ‖ [log(g2 ◦ g−1

1 )]∨ ‖.
In general, dλ(g1, g2) can be defined for compact Lie groups. It has the property of

being bi-invariant:

dλ(h ◦ g1, h ◦ g2) = dλ(g1, g2) = dλ(g1 ◦ h, g2 ◦ h).

For the noncompact case, IURs are infinite dimensional and dλ(g1, g2) cannot be defined.
However, in both compact and noncompact cases, the distance functions dl(·, ·) and
dr(·, ·) can be defined for all pairs for which the logarithm map is defined.

Additionally, although bi-invariance is generally not preserved,

dl(h ◦ g1, h ◦ g2) = dl(g1, g2)

and
dr(g1 ◦ h, g2 ◦ h) = dr(g1, g2).

Armed with a variety of metrics from which to choose, the geometric mean of a pdf
on a Lie group is defined as [14, 28]

μd(f) = arg min
g1∈G

∫
G

d2(g1, g2)f(g2) dg2. (20.42)

The corresponding geometric variance about the geometric mean is

σ2
d(f) =

∫
G

d2(μ, g2)f(g2) dg2, (20.43)

where d can be any metric.
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Similarly, the geometric median and geometric spread about the median can be
defined as

md(f) = arg min
g1∈G

∫
G

d(g1, g2)f(g2) dg2 (20.44)

and

sd(f) =
∫

G

d(md(f), g2)f(g2) dg2. (20.45)

Now, given functions f1(g) and f2(g), consider the values of σ2
d(fi) and sd(fi) as-

suming that μd(fi) = md(fi) = e. This is not a severe constraint since if d(·, ·) is left
invariant, the mean or median can be moved to any desired group element by shifting the
function. However, computing the geometric mean or median of the convolution of two
pdfs is not trivial. Therefore, the more restrictive constraint μd(f1∗f2) = md(f1∗f2) = e
will also be assumed.

Due to the metric property and the above assumptions,

sd(f1 ∗ f2)=
∫

G

d(e, g2)(f1 ∗ f2)(g2) dg2

=
∫

G

∫
G

d(e, g2)f1(h)f2(h−1 ◦ g2) dg2 dh

=
∫

G

∫
G

d(e, h ◦ k)f1(h)f2(k) dk dh (20.46)

=
∫

G

∫
G

d(h−1, k)f1(h)f2(k) dk dh

≤
∫

G

∫
G

{d(h−1, e) + d(e, k)}f1(h)f2(k) dk dh

=
∫

G

d(e, h)f1(h) dh +
∫

G

d(e, k)f2(k) dk

= sd(f1) + sd(f2). (20.47)

In (20.46) the substitution k = h−1 ◦ g2 means that g2 = h ◦ k. In the equality
prior to that, the order of integration over h and g2 was switched when the definition
of convolution was substituted.

A similar calculation shows

σ2
d(f1 ∗ f2)=

∫
G

d2(e, g2)(f1 ∗ f2)(g2) dg2

=
∫

G

∫
G

d2(h−1, k)f1(h)f2(k) dk dh

≤
∫

G

∫
G

{d(h−1, e) + d(e, k)}2f1(h)f2(k) dk dh

=σ2
d(f1) + σ2

d(f2) + 2sd(f1) · sd(f2), (20.48)

where the details analogous to steps (20.46)–(20.47) have been abbreviated.
Using an alternative logical route starting at equality (20.46), the definition of the

median implies that

sd(f2) ≤
∫

G

d(e, h ◦ k)f2(k) dk and sd(f1) ≤
∫

G

d(e, h ◦ k)f1(h) dh.
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Therefore,

max{sd(f1), sd(f2)} ≤ sd(f1 ∗ f2).

The same logic follows for the variance.
In summary, when the geometric mean and median of the original and convolved

probability density functions are all located at the identity,

max{sd(f1), sd(f2)} ≤ sd(f1 ∗ f2) ≤ sd(f1) + sd(f2), (20.49)

max{σ2
d(f1), σ2

d(f2)} ≤ σ2
d(f1 ∗ f2)≤σ2

d(f1) + σ2
d(f2) + 2sd(f1) · sd(f2). (20.50)

20.6.5 Lie-theoretic Covariance

For any Lie group G, it is possible to map a region around the identity element to the
Lie algebra using the logarithm map. This means that if f(g) is a pdf on G supported
on this region around the identity, then the covariance of f ,

Σf =
∫

G

(log g)∨[(log g)∨]T f(g) dg, (20.51)

is well defined.3 In fact, for the groups of interest in many applications (which typically
are connected), the exponential and logarithm maps are well defined “almost every-
where”; that is, if a set of measure zero in the group is excluded (which corresponds
to singularities in the exponential map), then the mapping between the remaining part
of the group and the corresponding region in the Lie algebra can be made bijective.
Additionally, since the removal of sets of measure zero for well-behaved probability den-
sities does not affect the computation of integrals, the condition that f(g) is compactly
supported can be relaxed.

For a unimodular Lie group, a transformation of coordinates of the form g → h ◦ g ◦
h−1 leaves integrals invariant. Therefore,

Σf =
∫

G

(log h ◦ g ◦ h−1)∨[(log h ◦ g ◦ h−1)∨]T f(h ◦ g ◦ h−1) dg (20.52)

=
∫

G

[Ad(h)](log g)∨[(log g)∨]T [Ad(h)]T f(h ◦ g ◦ h−1) dg (20.53)

= [Ad(h)]ΣAd(h−1)f [Ad(h)]T , (20.54)

where Ad(h−1)f(g) = f(h ◦ g ◦ h−1). This definition of Ad(·) acting on a function is
opposite that for the definition of Ad(g) acting on a Lie algebra element, in the same
way that a left shift (L(h)f)(g) = f(h−1 ◦ g), whereas the left shift of a group element
itself would be g → h ◦ g.

By a change of coordinates, (20.54) is rewritten as

ΣAd(h)f = [Ad(h)]Σf [Ad(h)]T . (20.55)

In the special case when f(g) is a class function, it follows that [Ad(h)]Σf [Ad(h)]T = Σf .
This fact is used in [67] to obtain a formula for computing the Lie-theoretic (or “kine-
matic”) covariance of the convolution product (f1 ∗ f2)(g) when each fi(g) is relatively
concentrated.

3Usually when there is no question about which pdf is being used, the subscript f is omitted.
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20.6.6 Other Measures of Dispersion

The concepts of covariance discussed in the previous sections are not the only ways to de-
scribe how spread out or concentrated a pdf is. Here, some other measures are discussed.

The Square of a Probability Density Function

Given a time-evolving pdf f(g, t), the quantity

−1
2
‖f‖22 = −1

2

∫
G

|f(g, t)|2 dg (20.56)

can also be used as a measure of dispersion since it will be more negative for values of t
when f(g, t) is concentrated and will approach its minimal value as f(g, t) spreads out.

For solutions of the diffusion equation with drift,

−1
2

d‖f‖22
dt

=−
∫

G

f
∂f

∂t
dg = −

∫
G

fΔ∗f dg

=
∫

G

⎧⎨⎩
3∑

i,j=1

Dij(Ẽr
i f)(Ẽr

j f)

⎫⎬⎭ dg

≥0.

In the above, integration by parts has been used (resulting in the change in sign on the
third line above). The reason why the drift terms disappear is that for any differentiable
function φ(g), ∫

G

φ (Ẽr
i φ) dg = 0.

The final inequality is a result of the fact that the quantity in braces is a quadratic form
and D is a positive semi-definite matrix.

The measure of dispersion − 1
2‖f‖22 is also convenient from a Fourier perspective

since from the Plancherel equality,

d‖f‖22
dt

= −1
2

d

dt

∫
Ĝ

‖f̂(λ, t)‖2dλ ≥ 0 =⇒ d

dt
‖f̂(λ, t)‖2 ≤ 0, ∀ λ ∈ Ĝ. (20.57)

The Entropy of a Probability Density Function

The entropy of a pdf on a Lie group is defined as

Sφ = −
∫

G

φ(g) log φ(g) dg. (20.58)

If f(g, t) is a pdf that satisfies a diffusion equation (regardless of the details of
the initial conditions), then some interesting properties of Sf (t) can be studied. In
particular, if Ṡf = dSf/dt, then differentiating under the integral sign gives

Ṡf =−
∫

G

{
∂f

∂t
log f +

∂f

∂t

}
dg.
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However, from the properties of a diffusion equation,∫
G

∂f

∂t
dg =

d

dt

∫
G

f(g, t) dg = 0,

and so, the second term in the above braces integrates to 0.
Substitution of

∂f

∂t
=

1
2

n∑
i,j=1

DijẼ
r
i Ẽr

j f −
n∑

k=1

dkẼ
r
kf

into the integral for Ṡf gives

Ṡf =−
∫

G

⎧⎨⎩1
2

n∑
i,j=1

DijẼ
r
i Ẽr

j f −
n∑

k=1

dkẼ
r
kf

⎫⎬⎭ log f dg

=−1
2

n∑
i,j=1

Dij

∫
G

(Ẽr
i Ẽr

j f) log f dg −
n∑

k=1

dk

∫
G

(Ẽr
kf) log f dg

=
1
2

n∑
i,j=1

Dij

∫
G

(Ẽr
j f)(Ẽr

i log f) dg +
n∑

k=1

dk

∫
G

f (Ẽr
k log f) dg

=
1
2

n∑
i,j=1

Dij

∫
G

1
f

(Ẽr
j f)(Ẽr

i f) dg +
n∑

k=1

dk

∫
G

Ẽr
kf dg

=
1
2

n∑
i,j=1

Dij

∫
G

1
f

(Ẽr
j f)(Ẽr

i f) dg

=
1
2

∫
G

1
f

(∇rf)T D (∇rf) dg

≥0.

This result parallels the one developed for manifolds in Volume 1.

20.7 Changes of Coordinates to Diagonalize
a Diffusion Operator

Diffusion equations with drift discussed previously can be solved using methods of non-
commutative harmonic analysis. As a computation matter, these solutions can be ob-
tained with fewer numerical operations in some cases if the matrix D in the expression

Δ =
1
2

∑
ij

DijẼ
r
i Ẽr

j +
∑

k

dkẼ
r
k

is diagonal. Therefore, this section explores the cases when D can be diagonalized. In
order to accomplish this, some preliminary results regarding the interactions of shifts,
derivatives, and group Fourier transforms are presented.

20.7.1 Left Shifts and Right Derivatives Commute

Recall that left-shift operators of the form (L(g0)f)(g) = f(g−1
0 ◦ g) commute with the

operators (Ẽr
i f)(g). This is easy to see because
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(L(g0)Ẽr
i f)(g)= L(g0)

d

dt
f(g ◦ exp(tEi))

∣∣∣∣
t=0

=
d

dt
f(g−1

0 ◦ g ◦ exp(tEi))
∣∣∣∣
t=0

=(Ẽr
i f)(g−1

0 ◦ g)

= (Ẽr
i L(g0)f)(g). (20.59)

A similar expression holds for left derivatives and right shifts (20.59). In contrast, in gen-
eral, (R(g0)Ẽr

i f)(g) �= (Ẽr
i R(g0)f)(g) and likewise for left shifts and left Lie derivatives.

The adjoint operator applied to a function is defined as

(Ad(g0)f)(g) = (R(g0)L(g0)f)(g) = (L(g0)R(g0)f)(g) = f(g−1
0 ◦ g ◦ g0). (20.60)

Now, consider what happens when the right Lie derivative of (Ad(g0)f)(g) is computed:

(Ẽr
i Ad(g0)f)(g)= Ẽr

i [f(g−1
0 ◦ g ◦ g0)]

=
d

dt
f(g−1

0 ◦ (g ◦ exp(tEi)) ◦ g0)
∣∣∣∣
t=0

=
d

dt
f((g−1

0 ◦ g) ◦ (exp(tEi) ◦ g0))
∣∣∣∣
t=0

=
d

dt
f((g−1

0 ◦ g) ◦ (g0 ◦ g−1
0 ) ◦ (exp(tEi) ◦ g0))

∣∣∣∣
t=0

=
d

dt
f((g−1

0 ◦ g ◦ g0) ◦ (g−1
0 ◦ exp(tEi) ◦ g0))

∣∣∣∣
t=0

=
d

dt
f((g−1

0 ◦ g ◦ g0) ◦ exp(t g−1
0 Eig0))

∣∣∣∣
t=0

=(Ad(g0) ˜[Ad(g−1
0 )Ei]rf)(g). (20.61)

In other words, the adjoint applied to a scalar function does not commute with the Lie
derivative, but there is a Lie derivative in a different direction defined by the adjoint
that can be applied in reverse order to obtain the same result.

20.7.2 Using Harmonic Analysis to Elucidate Interactions
Between Shifts and Derivatives

The evaluations of multiple shifts and derivatives such as those in Section 20.7 can be
quite confusing, and it is easy to make an error in the order in which operations are
applied. Fortunately, notation from harmonic analysis can be used as a convenient check
on these calculations.

The Fourier reconstruction formula for a well-behaved function on a unimodular Lie
group is given by

f(g) =
∫

Ĝ

tr
[
f̂(λ)U(g, λ)

]
dλ, (20.62)
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where U(g, λ) is an IUR with the property U(g1 ◦ g2, λ) = U(g1, λ)U(g2, λ) and
U(g−1, λ) = U∗(g, λ).

Evaluating the right Lie derivative then means

(Ẽr
i f)(g)=

d

dt

[∫
Ĝ

tr
[
f̂(λ)U(g ◦ et Ei , λ)

]
dλ

]
t=0

=
∫

Ĝ

tr
[
f̂(λ)U(g, λ)

d

dt
U(et Ei , λ)

]
t=0

dλ

=
∫

Ĝ

tr
[
f̂(λ)U(g, λ)u(Ei, λ)

]
dλ =

∫
Ĝ

tr
[
u(Ei, λ)f̂(λ)U(g, λ)

]
dλ,

where

u(Ei, λ) =
d

dt
U(et Ei , λ)

∣∣∣∣
t=0

.

Note that this “little u” matrix has the property that

U(g, λ)u(Ei, λ)U(g−1, λ) = u(g Ei g−1, λ). (20.63)

Below, (20.59) is reexamined within this context. From the equations above, it fol-
lows that

(L(g0)Ẽr
i f)(g)=L(g0)

∫
Ĝ

tr
[
u(Ei, λ)f̂(λ)U(g, λ)

]
dλ

=
∫

Ĝ

tr
[
u(Ei, λ)f̂(λ)U(g−1

0 ◦ g, λ)
]
dλ

=
∫

Ĝ

tr
[
u(Ei, λ)f̂(λ)U∗(g0, λ)U(g, λ)

]
dλ.

On the other hand,

(Ẽr
i L(g0)f)(g)= Ẽr

i

∫
Ĝ

tr
[
f̂(λ)U(g−1

0 ◦ g, λ)
]
dλ

=
d

dt

[∫
Ĝ

tr
[
f̂(λ)U(g−1

0 ◦ g ◦ et Ei , λ)
]
dλ

]
t=0

=
∫

Ĝ

tr
[
f̂(λ)U∗(g0, λ)U(g, λ)u(Ei, λ)

]
dλ

=
∫

Ĝ

tr
[
u(Ei, λ)f̂(λ)U∗(g0, λ)U(g, λ)

]
dλ.

From this, it is clear that (20.59) is verified.
Now, consider (20.61) in the light of the harmonic-analysis expansion:

(Ẽr
i Ad(g0)f)(g)= Ẽr

i

∫
Ĝ

tr
[
f̂(λ)U(g−1

0 ◦ g ◦ g0, λ)
]
dλ

= Ẽr
i

∫
Ĝ

tr
[
f̂(λ)U(g−1

0 , λ)U(g, λ)U(g0, λ)
]
dλ

=
∫

Ĝ

tr
[
f̂(λ)U(g−1

0 , λ)U(g, λ)u(Ei, λ)U(g0, λ)
]
dλ.
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On the other hand,

(Ad(g0)[Ad(g−1
0 )Ẽi]rf)(g)

= Ad(g0)
∫

Ĝ

tr
[
f̂(λ)U(g, λ)u(g−1

0 Eig0, λ)
]
dλ

=
∫

Ĝ

tr
[
f̂(λ)U(g−1

0 ◦ g ◦ g0, λ)u(g−1
0 Eig0, λ)

]
dλ

=
∫

Ĝ

tr
[
f̂(λ)

(
U(g−1

0 , λ)U(g, λ)U(g0, λ)
) (

U(g−1
0 , λ)u(Ei, λ)U(g0, λ)

)]
dλ

=
∫

Ĝ

tr
[
f̂(λ)U(g−1

0 , λ)U(g, λ)u(Ei, λ)U(g0, λ)
]
dλ

The fact that these are the same verifies (20.61).
It is also easy to see that for general functions, f(g), right derivatives do not commute

with right shifts, and similarly for the left case.

20.8 The Central Limit Theorem for Unimodular Lie Groups

For probability densities that are highly concentrated around their mean, the Lie-
theoretic definition of mean and covariance makes the most sense, because a
d-dimensional unimodular Lie group “looks like” Rd locally.

To be more precise, if d(g1, g2) = ‖(log g−1
1 ◦g2)∨‖ and if there exists μ ∈ G such that∫

d(μ,g)<ε

ρ(g) dg ≈ 1, where ε � 1,

then ρ(g) will be called highly concentrated. This happens, for example, when ρ(g) has
compact support on the ε-ball centered on the mean, in which case ≈ becomes =. For
highly concentrated distributions, the mean will be μ and the Lie-theoretic covariance
will be

Σ =
∫

Rd

xxT ρ(μ ◦ expX) dx.

Suppose that n such functions ρ1(g), ρ2(g), . . . , ρn(g) are given and they all have
means and covariances defined by

(log μi)∨ =
1
n
d and Σi =

1
n

D.

Then the central limit theorem for Lie groups states that [28]

lim
n→∞(ρ1 ∗ ρ2 ∗ · · · ∗ ρn)(x) = f(g, 1, D,d), (20.64)

where f(g, 1, D,d) is the solution to the Fokker–Planck equation with t = 1.
The proof of this follows in much the same way as for the case on the real line. The

case when ρi = ρ for all i = 1, . . . , n is considered below to reduce the number of indices,
which would clutter the picture without adding much conceptually.
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Basically, the Fourier transform matrices for such distributions will be

ρ̂(λ)=
∫

G

ρ(g)U(g−1, λ) dg

=
∫

d(μ,g)<ε

ρ(g)U(g−1, λ) dg

=
∫

‖x‖<ε

ρ(μ ◦ expX)U([μ ◦ expX]−1, λ) dx

=
∫

‖x‖<ε

ρ(μ ◦ expX)U(exp−X,λ)U(μ−1, λ) dx.

Since ‖x‖ � 1, the second-order Taylor series approximation

U(exp−X,λ) = exp

[
n∑

i=1

−xiu(Ei, λ)

]

≈ I −
d∑

i=1

xiu(Ei, λ) +
1
2

d∑
i=1

d∑
i=1

xixju(Ei, λ)u(Ej , λ)

is appropriate. Integrating term by term the product of the above series approximation
with ρ(μ ◦ expX) over the ball ‖x‖ < ε then gives

ρ̂(λ)U(μ, λ) ≈ I +
1
2n

d∑
i=1

d∑
i=1

Dij u(Ei, λ)u(Ej , λ).

The first-order terms drop out because the ball is centered on the mean.
U(μ−1, λ) can be expanded in a similar way as

U(μ−1, λ) ≈ I − 1
n

d∑
i=1

diu(Ei, λ) +
1

2n2

d∑
i=1

d∑
i=1

didj u(Ei, λ)u(Ej , λ).

However, since n → ∞, the second-order terms in this last expression can be ignored.
Therefore, multiplying ρ̂(λ)U(μ, λ) and U(μ−1, λ) and keeping terms to O(1/n),

ρ̂(λ) ≈ I − 1
n

d∑
i=1

diu(Ei, λ) +
1
2n

d∑
i=1

d∑
i=1

Dij u(Ei, λ)u(Ej , λ).

Therefore, using the convolution theorem, F (limn→∞(ρ1 ∗ ρ2 ∗ · · · ∗ ρn)(x)) can be
written as

lim
n→∞ (ρ̂(λ))n = lim

n→∞

[
I − 1

n

d∑
i=1

diu(Ei, λ) +
1
2n

d∑
i=1

d∑
i=1

Dij u(Ei, λ)u(Ej , λ)

]n

=exp

[
−

d∑
i=1

diu(Ei, λ) +
1
2

d∑
i=1

d∑
i=1

Dij u(Ei, λ)u(Ej , λ)

]
= f̂(λ; t,D,d).

Application of the inverse Fourier transform completes the proof.



20.9 Limiting Distributions of Evolution Equations on Groups 383

While, in principle, information-theoretic proofs of this result could follow in a similar
way as the Abelian case, the author is not aware of any such proofs. One difficulty not
encountered in the case of Lie groups that is not encountered in Euclidean space is
that the definition of covariance breaks down for distributions that are very spread
out. This means that the “maximum-entropy distribution” on a Lie group cannot be
defined by simply maximizing the entropy subject to a constraint on covariance, since
the covariance concept itself becomes questionable. This issue with the information-
theoretic formulation disappears if the problem of convergence to the stable distribution
is considered.

20.9 Limiting Distributions of Evolution Equations on Groups

The sorts of evolution equations examined in this book include degenerate and non-
degenerate diffusions (with and without drifts) as well as processes that converge to
a nontrivial limiting distribution (e.g., Ornstein–Uhlenbeck processes). In all of these
cases, two natural questions arise: (1) What does the solution f(g, t) look like as t →∞?
(2) Given some initial distribution, how fast does the solution converge to this limiting
distribution?

These questions are addressed naturally using methods of noncommutative harmonic
analysis, because linear diffusion equations on noncommutative groups are solved in
Fourier space in a transparent way. This is analogous to the way that Fourier analysis
is used to arrive at the central limit theorem in Rn.

Let G be a unimodular Lie group and let the diffusion operator be Δ(λ). Observing
the behavior of the solution as time increases, it is easy to see from the Plancherel
equality that

d

dt

∫
G

|f(g, t)|2 dg ≤ 0 =⇒ d

dt

∫
Ĝ

‖f̂(λ, t)‖2dλ ≤ 0 =⇒ d

dt
‖f̂(λ, t)‖2 ≤ 0.

Moreover, it follows from the definition of f̂(λ, t) and the fact that f(g, t) is a pdf for
each fixed value of t that the entries of f̂(λ, t) must be bounded for all values of t, since
U(g, λ) is unitary and hence the modulus of each of its entries is bounded from above
by unity. This means that when writing

f̂(λ, t) = etΔ̂∗(λ),

all of the eigenvalues of Δ̂(λ) must have nonpositive real parts. Otherwise, some matrix
element of f̂(λ, t) would grow without bound as t →∞, which would be a contradiction.

In the case of compact Lie groups, all Fourier matrices of nondegenerate diffu-
sions without drift will have negative eigenvalues, except for the “lowest-frequency”
(scalar) one, corresponding to the scalar IUR that is nothing more than unity. The
speed with which the limiting distribution is approached depends on the eigenvalue of
the Fourier diffusion matrix (other than the zero eigenvalue) that has smallest absolute
value.

The noncompact case behaves somewhat differently. As with the classical central
limit theorem, the limiting distributions for diffusion processes on noncompact Lie
groups (commutative or noncommutative) will not be a single static function analogous
to a uniform distribution. Rather, the limiting distribution itself will retain dependence
on time. Thus, if T denotes an adequate amount of time for an initial distribution to de-
cay to within some small deviation from this form, it makes sense to determine how T
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depends on the structure of the group. Such problems are studied in the references
provided at the end of this chapter.

20.10 Chapter Summary

This chapter has presented properties of diffusion processes that are described as SDEs
or probability flows on Lie groups. The principles described here build on concrete
applications from previous chapters in which such equations arise. In particular, the
McKean–Gangolli injection process and corresponding Fokker–Planck equations were
discussed, and concepts of mean and covariance were reviewed, the central limit theorem
for diffusions on Lie groups was explained. Of course, the brief treatment presented here
is necessarily incomplete and should be augmented by further reading, as described
below.

The McKean–Gangolli injection process is described in [24, 48], and studies of its
properties and generalizations can be found in [29, 39].

For further reading on the topic of diffusions on Lie groups and manifolds, see [1, 5, 8,
16–18, 20, 21, 28, 35–37, 42, 47]. For approaches involving martingales, see [3, 32, 34, 41].

A large subarea of study relating to diffusion processes and Lie groups has been
hypoelliptic diffusion equations for which the diffusion matrix is singular [33, 57]. Indeed,
this is relevant to the diffusion processes describing DNA in Chapter 14 and laser phase
noise in Chapter 17, as well as those described in [52], many of which are degenerate.

Although the emphasis here has been stochastic processes forced by Wiener process
noise, the topic of Lévy processes (i.e., Wiener process noise punctuated by occasional
random jumps) has been the subject of a growing body of recent work [2, 45].

Random walks on groups and manifolds are studied in [23, 56]. Connections between
diffusion processes on Lie groups and control theory are explored in [10, 15]. Applications
of covariance propagation in robotics are explored in [61, 67].

Works focusing on the rotation group [26, 43, 44, 50, 53, 70] and Euclidean mo-
tion group [27, 63] are also relevant to applications. For physical phenomena involving
diffusions on Lie groups, see [11, 13, 19, 40].

The behavior of Brownian motion can be related to the local and global geometric
and topological properties of the manifolds/Lie groups on which the trajectories evolve,
leading to results beyond the scope of this book that can be found in [4, 7, 25, 49, 55, 62].
Roughly speaking, short-time behavior provides some information about local curvature,
and long-time behavior says something about topological structure. For more on limiting
behavior as time (or the number of convolutions) becomes large, see [6, 46, 58, 59, 65, 69].

Other important works involving probabilities on Lie groups include [12, 14, 22, 30,
31, 38, 51, 54, 60, 64, 66, 68].

Some of the concepts discussed in this chapter will be used in the next chapter when
formulating noise models that arise in locomotion (such as robots and microorganisms),
and perception/sensing.

20.11 Exercises

20.1. Defining ykl = gkl(X) =
∑

j,k xikqijxjl, where Q = [qij ], use Itô ’s rule (see Vol. 1)
with gkl in place of gk and the entries in the matrix X = [xij ] as the variables in place
of the vector components to verify (20.19) by setting dykl = 0.



References 385

20.2. Address the above question where in place of class functions, one considers sym-
metric functions (i.e., fi(g) = fi(g−1)). What happens if (f1 ∗ f2)(g) and (f2 ∗ f1)(g)
are also symmetric?

20.3. Can Cauchy–Schwartz equality for L2(G) and/or L2(Ĝ) be used to bound the
temporal behavior of ‖f‖22 defined in (20.56)?

20.4. Show that, in analogy with (20.59), if

(El
if)(g) =

d

dt
f(exp(−tEi) ◦ g)

∣∣∣∣
t=0

and (R(g0)f)(g) = f(g ◦ g0),

then
(R(g0)El

if)(g) = (El
iR(g0)f)(g). (20.65)

20.5. Show that left shifts, right shifts, and the adjoint transformation of a function
have the properties

(L(g1 ◦ g2)f)(g) = (L(g1)L(g2)f)(g) and (R(g1 ◦ g2)f)(g) = (R(g1)R(g2)f)(g),
(20.66)

(Ad(g1 ◦ g2)f)(g) = (Ad(g1)Ad(g2)f)(g) and (R(g1)L(g2)f)(g) = (L(g2)R(g1)f)(g).
(20.67)

20.6. Using the expansion in (20.62), verify that (20.60) holds.

20.7. Let f(g, t) be a solution to the (forward) evolution equation

∂f

∂t
= Δ∗f, where f(g, 0) = δ(g).

Using the Fourier form of the solution f(g, t), show that f(g−1, t) satisfies the backward
equation (i.e., the evolution equation with Δ∗ replaced by Δ).

20.8. If Δ is self-adjoint, show that f(g, t) = f(g−1, t). What limitations does being
self-adjoint place on the parameters {D,d} that define Δ for a unimodular Lie group?

20.9. Determine the symmetry operations for the heat equation on SO(3).
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21

Locomotion and Perception as Communication
over Principal Fiber Bundles

This chapter can be viewed as a demonstration of applications of the Lie-theoretic
methods presented in Chapters 10–12, the inequalities in Chapter 19, and the stochas-
tic processes on Lie groups in Chapter 20. As in Chapter 1, the simple system used to
illustrate these concepts is the nonholonomic kinematic cart. When any trajectory of
the cart is discretized into smaller segments which are drawn from a set of intended
maneuvers, then this set serves as an alphabet of basic moves. As the cart moves and
noise is added to these intended moves, it will not move exactly as planned. This cor-
ruption of the resulting output position and orientation can be viewed as an injection
of noise through the combined space of pose and wheel angles. This space is an example
of the differential geometric structure called a principal fiber bundle.1 An external ob-
server (which might be a human or another robot) watching the motion of the robot can
then attempt to infer the robot’s intent and functionality. The combination of stochas-
tic models, information theory, and Lie groups is helpful in studying such scenarios.
Therefore, this chapter has several goals:

• To provide a detailed treatment of the geometry of fiber bundles that augments the
discussion in Chapter 7;

• To explain how a natural rate-distortion theory extends from the classical information-
theory context to more geometric settings;

• To discuss problems in locomotion and perception that require multiple concepts
and methodologies developed in earlier chapters and are brought together in the
context of fiber bundle structures.

This chapter is organized as follows. Section 21.1 revisits the kinematic cart that
was introduced in Chapter 1 from the perspective of the methods developed in the
chapters of Volume 2. In addition, this is a simple system that evolves on a (principal)
fiber bundle and therefore serves as an important example in illustrating the definitions
that will follow. Section 21.2 provides detailed definitions and examples of principal fiber
bundles. Section 21.3 generalizes the classical theory of the communication channel with
Gaussian noise (called the “Gaussian channel”) to the geometric context in which the
“message” is generated and received in a copy of the base space of the bundle and
the channel is the fiber space. Scenarios in which this formulation may be useful are
demonstrated in Section 21.4 in the context of robotics problems. Section 21.5 then
provides a pointer to the literature on mathematical vision, perception, and psychology

1This has nothing to do with fiber optic communications or the transmission of interconti-
nental information via undersea cables. In that sense, the title of this chapter is a bit of a pun.
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in which fiber bundle structures and corresponding stochastic differential equations have
been studied.

21.1 The Kinematic Cart (Revisited)

Consider the kinematic cart in Figure 21.1 that was initially introduced in Chapter 1.
Recall that the two wheels each have radii r and let the wheelbase be denoted as L; the
nonholonomic equations of motion are

⎛⎝ẋ
ẏ

θ̇

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎝
r

2
cos θ

r

2
cos θ

r

2
sin θ

r

2
sin θ

r

L
− r

L

⎞⎟⎟⎟⎟⎟⎠
(

φ̇1

φ̇2

)
. (21.1)

This can be written in coordinate-free notation as(
g−1 dg

dt

)∨
= A φ̇, where A =

r

2

⎛⎝ 1 1
0 0

2/L −2/L

⎞⎠ , (21.2)

where g = g(x, y, θ) ∈ SE(2) is of the same form as in (10.75).
In the case of a single stochastic trajectory for g(t) that evolves when the robot

intends to go straight but is influenced by wheel slippage and other noise, a SDEs of
the form in Chapter 1 and [80] results from the substitution of

dφ1 = ω dt +
√

D dw1 and dφ2 = ω dt +
√

D dw2 (21.3)

into either of the above equations after multiplication on both sides by dt, where dwi

each represent uncorrelated unit-strength white noise and D scales the strength of the
noise. Here the constant rate of rotation of both wheels would be ω if there were no

g(t)

Fig. 21.1. A Kinematic Cart with an Uncertain Future Position and Orientation
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noise, in which case the robot would move straight forward and godo = g(ωT, 0, 0), which
is what would result from integrating odometry measurements.

Usually to be precise it is important to specify whether an SDE is of Itô or
Stratonovich type. In this example, both interpretations yield the same equation and
this distinction is unimportant because the matrix on the right-hand side in (21.2) is
constant. However, for the sake of definiteness, consider the combination of (21.2) and
(21.3) to be an Itô equation.

If such an equation is simulated many times, each time starting from the same initial
conditions (say, x = y = θ = 0), then a function f(x, y, θ; t) that records the distribution
of positions and orientations of the cart at the same value of time, t, in each trajectory
can be defined. (This pdf also depends on r, L, ω, and D, but the dependence on these
constants is suppressed.)

As explained in detail in [80] and in Volume 1, a well-developed theory for linking
SDEs such as (21.1) to functions such as f(x, y, θ; t) exists. This theory produces a
Fokker–Planck equation for f(x, y, θ; t). In the present context, this equation is of the
form [80]

∂f

∂t
= −rω cos θ

∂f

∂x
− rω sin θ

∂f

∂y

+
D

2

(
r2

2
cos2 θ

∂2f

∂x2 +
r2

2
sin 2θ

∂2f

∂x∂y
+

r2

2
sin2 θ

∂2f

∂y2 +
2r2

L2

∂2f

∂θ2

)
,

which is subject to the initial conditions f(x, y, θ; 0) = δ(x − 0)δ(y − 0)δ(θ − 0). The
coordinate-free version of the above Fokker–Planck equation can be written compactly
in terms of these Lie derivatives as [80]

∂f

∂t
= −rωẼr

1f +
r2D

4
(Ẽr

1)2f +
r2D

L2 (Ẽr
3)2f (21.4)

with initial conditions f(g; 0) = δ(g). The resulting time-evolving pdf is denoted as
f(g; t), or with the shorthand ft(g). Additionally, the operational poperties of the SE(2)
Fourier transform discussed in Chapter 12 can be used to solve this equation, as was
done in [58].

Although efficient techniques for solving this sort of equation exist for both the long-
time and short-time cases (see, e.g., [80] and references therein), the emphasis here is
not solution techniques but rather to serve as a test case for the various definitions and
concepts that follow.

It is interesting to note that models similar to this have been used to characterize
the motion of biological organisms [59, 60], and the steering of flexible needles in three
dimensions [76]. As we will see later in this chapter, the configuration space of this
cart has the geometric structure of a fiber bundle (in particular, a trivial principal fiber
bundle), and ensembles of stochastic trajectories evolving on this space have Fokker–
Planck equations that have a more specialized structure than typical diffusion processes
on generic Riemannian manifolds. However, first, in the next section fiber bundles are
described in more detail than in Chapter 7, where they were mentioned in passing.

21.2 Principal Fiber Bundles and Lie Groups

The concept of a fiber bundle was discussed qualitatively in Chapter 7. A particular
kind of fiber bundle, called a principal fiber bundle, is reviewed here since it has strong
ties to the theory of Lie groups. The presentation here follows those in [35, 36, 64].
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21.2.1 General Facts About Fiber Bundles

First, recall that, in general, a fiber bundle consists of the objects (E,B, π, F ), where E,
B, and F are spaces (called the entire space, base space, and fiber space, respectively)
and π is a surjective mapping, π : E → B.

In the present context, let E, B, and F denote manifolds with dimensions that satisfy
the constraint

dimE = dimB + dimF.

Let {Uα}α∈I be an open cover of B, where I is an index set. Let ϕα : Uα × F → E be
injective. Then {ϕα(Uα×F )}α∈I is an open cover of E. For each α ∈ I, let φα : ϕα(Uα×
F ) → Rdim E so that (ϕα(Uα×F ), φα) is a coordinate chart, and {(ϕα(Uα×F ), φα)}α∈I

is the corresponding atlas for E. Although ϕα : Uα × F → E is usually only injective,
ϕα : Uα × F → ϕα(Uα × F ) is obviously bijective.

The standard constraint that defines a fiber bundle is that the diagram

Uα × F
ϕα ��

proj
��










 π−1(Uα)

π

��
Uα

(21.5)

commutes, where for any (x, y) ∈ Uα ×F , the projection operation “proj” is defined by
proj(x, y) .= x. For any x ∈ Uα ⊂ B, the “fiber over x” is the preimage of the projection
π; that is, π−1(x) is an individual fiber in the space of all such fibers, F . The above
diagram is equivalent to the equation

π(ϕα(x, y)) = x, ∀ (x, y) ∈ Uα × F and α ∈ I. (21.6)

A convenient property to enforce is that each ϕα is a homeomorphism, so

Uα × F ∼= π−1(Uα).

A map s : B −→ E is called a cross section if for each x ∈ Uα ⊂ B,

s(x) ∈ ϕα(Uα × F ) = π−1(Uα) and π(s(x)) = x. (21.7)

Now, suppose that there are two open sets Uα, Uβ ⊂ B such that Uα ∩ Uβ �= ∅.
Then inverse maps ϕ−1

α and ϕ−1
β exist, each of which can be used to map π−1(Uα ∩Uβ)

into (Uα ∩Uβ)× F . Therefore, the composition of maps ϕαβ
.= ϕ−1

α ◦ ϕβ is a map from
(Uα ∩ Uβ)× F into itself (and likewise for ϕβα).

As with charts on any manifold, certain compatibility conditions must hold. These
are described by having the diagram

(Uα ∩ Uβ)× F
ϕα ��

proj



����������������������
π−1(Uα ∩ Uβ) ��

ϕβ

π

��

(Uα ∩ Uβ)× F

proj

����������������������

Uα ∩ Uβ

(21.8)
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commute. Each loop of this diagram produces an equation, and altogether there are
four equations:

π(ϕα(x, y)) = π(ϕβ(x, y)) = proj((ϕ−1
β ◦ϕα)(x, y)) = proj((ϕ−1

α ◦ϕβ)(x, y)) = x. (21.9)

Given three overlapping open sets, Uα, Uβ , Uγ ⊂ B, and Uα ∩ Uβ ∩ Uγ �= ∅, then the
following diagram commutes:

(21.10)

Reading off equations from the loops gives

ϕγβ ◦ ϕβα = (ϕ−1
γ ◦ ϕβ) ◦ (ϕ−1

β ◦ ϕα) = ϕ−1
γ ◦ ϕα = ϕγα.

Hence, (ϕαβ)−1 = ϕβα, and ϕαα is the identity map.2

It is possible to define mappings from one bundle into another, (E′, B′, π′, F ′) →
(E,B, π, F ), by introducing two maps, m1 : E′ → E and m2 : B′ → B such that the
diagram

E′ m1 ��

π′

��

E

π

��
B′

m2
�� B

(21.11)

commutes. This works when a homeomorphism exists between each fiber (π′)−1(x′) ∈ F ′

and π−1(m2(x′)) ∈ F for every x′ ∈ B′. If B = B′ so that there is no need for m2, then
(E′, B, π′, F ′) and (E,B, π, F ) are called equivalent if m1 is a homeomorphism and the
diagram

E′ m1 ��

π′ ���
��

��
��

E

π

��
B

(21.12)

commutes.

2The set of all such mappings together with the composition operation ◦ forms a group
called the structure group. In some books, the definition of principal fiber bundles includes this
group as one of the constituent parts, along with (E, B, π, F ).
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21.2.2 Relationships to Lie Groups

Lie groups and fiber bundles interact at several levels. For example, in applications,
an open cover does not simply present itself; it must be constructed. If U ⊂ B is a
suitable open set (such as an open ball defined relative to some metric), then one way
to construct an open cover of B is by the action of a group. In particular, if G is a Lie
group that acts transitively on B, then B can be covered by translated copies of U ; that
is, g · U or U · g can take the place of Uα in the previous section. The index set is then
some subset I ⊂ G, which is typically discrete.

Even deeper connections between Lie groups and fiber bundles result when E, F , B,
or any combination thereof are Lie groups as described in the following definition.

Definition 21.1: A (right) principal fiber bundle or principal bundle for short3 is a
special kind of fiber bundle where the following three conditions hold:

1. The manifold F is homeomorphic to a Lie group G (i.e., F ∼= G), but in general F
does not have a group operation, identity element, or any of the algebraic properties
of (G, ◦). For principal bundles, P is used to denote the entire space (instead of E).
G acts freely on P from the right so that p · g ∈ P for all g ∈ G and p ∈ P , and
p · g = p =⇒ g = e.

2. B = P/G, the set of equivalence classes generated by the action described above.
A projection map can be defined using this action, and so, π : P → P/G.

3. Every point x ∈ P/G has a neighborhood Ux such that x ∈ Ux ⊂ P/G and π−1(Ux)
is isomorphic with Ux×G; that is, for every v ∈ π−1(Ux), there is a diffeomorphism
ψ : π−1(Ux) → Ux ×G, where ϑ : π−1(Ux) → G such that for a given right action •
of G on itself,

ψ(v) = (π(v), ϑ(v)) and ϑ(v · g) = ϑ(v) • g.

The resulting (P, P/G, π,G) (with ϑ and the two actions · and • implicit) is a principal
fiber bundle, and it can be shown that G is isomorphic with the structure group. In
the special case when P ∼= P/G × G and the action of G on P has the property
(x, a) · g = (x, a • g) for all g ∈ G and (x, a) ∈ P then is called a trivial principal fiber
bundle [55].

Two common examples of principal fiber bundles are discussed below, following
[35, 36].

Example 21.2.1: If H is a proper Lie subgroup of a Lie group G, then a natu-
ral projection map p : G −→ G/H is defined by p(g) .= gH, resulting in a bundle
(E,B, π, F ) = (G,G/H, p,H). In general, mappings from G/H × H onto G are not
one-to-one (a fact that is important in the proof of Weyl’s integration formula in Chap-
ter 12). Therefore, there cannot be a diffeomorphism G/H × H ←→ G, and so there
will not be smooth cross sections for bundles of this type.

Example 21.2.2: Since a Lie group, G, has a manifold structure, associated with each
element g ∈ G is a tangent space TgG. A vector in this tangent space is Xg ∈ TgG.

3In the classical mathematics literature these are the principal fiber bundles that are primar-
ily studied, and therefore the prefix “right” does not appear. In contrast, in modern applications
in geometric mechanics the action of G on P is often from the left, resulting in a switching of
the order of the terms. Hence it is sometimes useful to distinguish between right and left prin-
cipal bundles. When G is specified and the left/right aspect is clear, the terminology “principal
G-bundle” is often used.
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The collection of all such tangent spaces is called the tangent bundle and is denoted
as TG. A vector field is an element of this tangent bundle, X ∈ TG, which can be
identified with the set of all possible vector fields on G. The set of all smooth vector
fields can then be viewed as the subset X(G) ⊂ TG. A projection map associated with
the tangent bundle is π′ : TG −→ G defined as π′(Xg) = g. Therefore, in this case,
(E,B, π, F ) = (TG,G, π′, TgG ∼= G), where G is the Lie algebra associated with G and
(G,+) is a commutative Lie group (not to be confused with (G, ◦)).

The configuration space of the kinematic cart is an example of a trivial principal fiber
bundle, in that E = T2×SE(2), B = T2, and F = SE(2). This example will be impor-
tant in the next section to illustrate how an important result from information theory
(i.e., rate-distortion theory for Gaussian channels) generalizes to the geometric setting.

More widely, there has been interest in using differential-geometric and Lie-theoretic
methods to study locomotion, controls, and computer vision [3, 5, 8, 12, 13, 20, 37, 40,
41, 45–47, 52, 61, 67, 79], including the author’s own work [43, 57]. Stochastic processes
on fiber bundles offers a unifying theme to many problems in action and perception in
the physical world.

21.3 Gaussian Channels and Principal Bundles

This section gives some highlights of the classical rate-distortion theory and the
Shannon–Hartley theorem for classical Gaussian channels and then shows how these
concepts naturally extend to Lie groups and principal G-bundles.

21.3.1 Classical Rate-Distortion Theory

Given a set of source symbols, U , and a set of sink symbols, V , a distortion measure
d : U × V → R≥0 assigns values d(u, v) that are high when two symbols u ∈ U and
v ∈ V are far from being in proper correspondence and assigns a value of 0 when they
correspond exactly. Often U ⊂ V , and d(·, ·) can be taken to be a metric (or the square
of a metric) for V , but this is not required. U and V could both be continuous or
discrete. For example, U and V could both be the Roman alphabet (plus empty space)
in which case a 27 × 27 table of values {d(u, v) | u ∈ U, v ∈ V } could be defined as
d(u, v) = 1−δu,v, and so, the table would have zeros on the diagonal. Or, if the symbols
are two real numbers, we could define d(u, v) = |u − v|2. In general, given an injective
mapping m : U → V , if m(u) = v then u and v are said to be in proper correspondence,
in which case d(m(u), v) = 0 when d(·, ·) is a metric for V .

Given two discrete sequences u(n) .= {u1, . . . , un} and v(n) .= {v1, . . . , vn}, the dis-
tortion between them is defined as

d(u(n), v(n)) .=
1
n

n∑
i=1

d(ui, vi).

Similarly, given continuous signals u[0,T ] and v[0,T ] defined by continuous functions u(t)
and v(t) over the time interval [0, T ], we could take

d(u[0,T ], v[0,T ])
.=

1
T

∫ T

0
d(u(t), v(t)) dt.

In the absence of noise, a mapping between corresponding symbols m : U → V exists
and applies to sequences of symbols in a term-by-term fashion so that m({u1, . . . , un} ∈
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Un) = {m(u1), . . . ,m(un)} ∈ V n. Given the frequency of occurrence of sequences of
symbols in U described as a probability distribution (or density in the continuous case),
p(u(n)), the average rate of distortion over the set of sequences/messages of length n
will be

D(R) .=
∑
u(n)

p(u(n)) d
(
u(n),mn

R(u(n))
)

, (21.13)

where R and mn
R are defined as follows. The mapping mn

R can be broken up into two
maps that are composed. The first, fn

R : Un → {1, 2, . . . , 2nR}, converts the source
message into a standard alphabet (such as binary), and the second converts the message
represented in the standard alphabet into v(n) (i.e., gn

R : {1, 2, . . . , 2nR} → V n). Then
mn

R(u(n)) = gn
R(fn

R(u(n)), or, equivalently, mn
R = gn

R ◦ fn
R. These implicitly define R.

The pair (R,D′) is called an achievable rate-distortion pair if D(R) ≤ D′ as n → ∞.
The rate-distortion function, R(D′), is defined as the infimum of values of R over all
achievable rate-distortion pairs (R,D′).

Since a channel has noise, there is always some probability (rather than certainty)
that the intended message will be communicated, which is described using the mutual
information I(U ;V ) and the probability distribution p(u, v). When noise is present, the
the average distortion can be computed in the discrete case as

D
.=

∑
u∈U

∑
v∈V

p(u, v) d(u, v),

with sums being replaced by integrals in the continuous case. The famous rate-distortion
theorem then states that

R(D) = min
p(v|u)|D≤D

I(U ;V ). (21.14)

The continuous version of this would replace probability distributions with densities.
In the context of the mobile robot discussed in Section 21.1, the set of sym-

bols/signals in U is the allowable basic maneuvers defined by the wheel angle trajecto-
ries (φ1(t), φ2(t)), or equivalently the wheel speeds (φ̇1(t), φ̇2(t)), over a short duration
of time, and the message is the full intended wheel trajectory. The wheel speeds are
converted into poses of the robot by the nonholonomic kinematics in (21.1), which to-
gether with numerical integration, defines the mapping m in this case. In this problem
V = SE(2), and the original message can be transmitted via an overhead camera that
observes the resulting trajectory. The rate distortion then can be computed using a
metric d(·, ·) for SE(2). Noise is injected into the channel both through wheel slippage
and observation error due to limited camera resolution.

21.3.2 The Shannon–Hartley Theorem

The subjects of stochastic modeling and information theory intersect when studying
noisy channels. A typical noise model for a channel is the same sort of Gaussian (Wiener
process) noise studied in Chapters 3 and 4. If one seeks to send a message over a noisy
channel, a natural question to ask is what the trade-off between the signal amplitude
(which is related to the power of the signal) is and the probability that the message will
be successfully delivered. Clearly, increasing the power can be used to overcome fixed-
amplitude background noise. However, given finite bounds on the amount of power
that a signal can have and given fixed noise characteristics of the channel, there is a
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natural trade-off in how much information can be sent. In the case of a Gaussian channel,
this trade-off is described by the Shannon–Hartley theorem, the derivation of which is
briefly reviewed here. The reason for including this classical result here rather than
earlier is to more directly draw parallels to the case of information flow in principal
G-bundles subject to noise.

If the source has Gaussian statistics N (0, σ2) and the rate distortion of function is
the squared error of the source and sink signals, it can be shown that when σ2 ≥ D,

R(D) ≥ 1
2

log
σ2

D
.

For a discrete memoryless channel with Gaussian noise with power constraint on the
signal

1
n

n∑
i=1

x2
i ≤ P

and noise intensity σ2 = N , the capacity (measured in bits/transmission) will be

C =
1
2

log
(

1 +
P

N

)
. (21.15)

Moreover, for a continous channel with power of the input signal bounded by P , infor-
mation measured in bits, and the bandwidth of the channel B, then then the Shannon–
Hartley theorem states that the capacity of the channel (when measured in bits per
second) will be

C = B log2

(
1 +

S

N

)
, (21.16)

where C is the capacity of the channel, B is its bandwidth (in Hertz), S = P/B is the
total (integrated) received signal power divided by the bandwidth, and N is the total
noise. S/N is the signal-to-noise ratio, and log2(·) is measured in units of bits.

The proofs of (21.14)–(21.16) can be found in the references on information theory
provided in Chapter 17. Examples of why it is worthwhile to consider generalizations of
this theory to the context of principal bundles are given in the following section.

21.3.3 Rate-Distortion Theory for Principal Bundles
and Noisy Locomotion

Recall from Chapter 7 and the discussion in Section 21.1 that a fiber bundle consists of
an entire space E, base space B, fiber space F , and a projection map π that satisfies
certain properties. Roughly speaking, E locally “looks like” the Cartesian product of B
and F . A principal bundle is one where the fiber space is homeomorphic to a Lie group.
For example, the configuration space of the kinematic cart consists of the space of wheel
angles (φ1, φ2) ∈ T2 and its pose g ∈ SE(2). In this case, E = T2×SE(2), and this is a
trivial principal bundle. This situation generalizes to many scenarios in which mechan-
ical systems demonstrate locomotion. Indeed, the locomotion of mechanical systems
generally can be written in the form [10, 55, 56](

g−1 ġ
)∨

= A(φ) φ̇ + [I(φ)]−1 p, (21.17)

where A(φ) is called the “mechanical connection,” [I(φ)] is called the “locked inertia,”
p is the generalized momentum, and φ are the “internal coordinates.” Kinematic sys-
tems, such as the cart, are characterized by p = 0. Although (21.17) is usually studied
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in the context of deterministic motion, in order to obtain planning and control laws for
a mechanical system to execute a desired pattern of motion (see, e.g., [26, 50] in which
Stokes’ theorem is used to select locomotion strategies or [16, 38] in which the fiber bun-
dle structure is exploited to provide simplified feedback control), the problem discussed
here is somewhat different. Suppose that we consider kinematic systems subjected to
noise. Then (21.17) might become an SDE of the form

(g−1 dg)∨ = A(φ) [dφ0 + H dw], (21.18)

where dφ = dφ0 + H dw is an SDE in shape space that “injects” noise and results
in a stochastic trajectory in the G-bundle.4 Indeed, the kinematic cart equations in
Chapter 1 are exactly of this form where in that case the connection A(φ) is a constant
matrix that describes the nonholonomic constraint.

A “message” in this context is the intended trajectory (φ1(t), φ2(t)) ∈ T2. The pose
g ∈ SE(2) of the robot can then be observed by an overhead camera. The wheels may
slip, the camera has discretization effects, and so forth, so the pose that is observed will
not be the ideal one that would be obtained by integrating the nonholonomic equations
of motion of the cart. Nevertheless, from the trajectory g(t) observed by the camera,
it is possible to “decode” the intended message with knowledge of the nonholonomic
kinematics, to back out a “received message” (φ̃1(t), φ̃2(t)) ∈ T2. This is an example of
“communication over fiber bundles.” This word usage is a bit of a pun since the term
“fiber bundle” means something entirely different to the communications engineer. Here,
the fibers are copies of SE(2).

In the current context, Figure 17.1 applies where noise can be added in several
places. It can be added at the arrow from transmitter to physical channel (which in
the current context would be noise added at the level of wheel angles); or noise can be
added in the physical channel (which would be, e.g., due to wheel slippage or surface
roughness, which are not explicitly modeled here); or it can be added in the arrow from
the physical channel to the receiver (which would be, e.g., discretization or other noise
in an external camera that observes the motion of the cart). Treating the fiber space in
a fiber bundle as a model of the physical channel allows for analytical modeling of how
noise is injected in a variety of ways.

In general, for a G-bundle, the channel consists of fibers that are copies of the Lie
group G, which serves as the medium through which communication takes place. In the
simple example above, the Lie group is simply SE(2) since the camera is assumed to
be far enough away that it captures the scene as a parallel projection. However, if the
camera were closer, then the affine group would enter, or if it were very close, then
true projective transformations would become relevant. Regardless, with the tools of
harmonic analysis on Lie groups discussed in Chapter 12, it is possible to define a
concept of bandlimited signals and to define an analog of B in (21.16) that captures
practical limitations on the physical movements of the robot. Moreover, the Gaussian
statistics of the channel in the classical information-theory version of the rate-distortion
theorem is replaced by the statistical properties of Fokker–Planck equations such as
those in Chapters 1, 14, and 20, which characterize the extent to which noise in the
kinematic system corrupts the intended motion.

This sort of view of the relationship between intended and actual motion can be
used in the diagnose of systems, as in [39]. Some amount of wheel slippage or other
noise is expected. By simulating a system under many different fault conditions (e.g.,

4The injection here reduces to the McKean–Gangolli injection described in Chapter 20 when
A is constant and dφ0 = 0.
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if a wheel fails and its angle locks), the relationship between its intended and actual
behavior, as observed in the solution to the corresponding Fokker–Planck equation, will
be radically different when the pdfs for both scenarios are compared. Such comparisons
can be made in the the sense of L2 error or KL divergence. A decision as to the most
likely system state (resulting in a diagnosis of either a fault state or the nominal fault-
free state) can be obtained from the computed probability densities evaluated on the
observed trajectories, providing likelihood information.

Several kinds of coding problems for this sort of robotics problem can be imagined.
For example, we can ask “what constitutes a basic set of moves that can serve as a
sufficiently rich alphabet to construct any desired trajectory to within an acceptable
discretization error?” And since (φ1(t), φ2(t)) defines both the shape of a trajectory and
its parameterization, it is possible to separate this into two different parts and ask “For
fixed shape of a trajectory how can we optimally reparameterize so as to reject noise?”
For example, a parameterization that speeds up as the robot makes a sharp turn would
be bad from the perspective of transmitting intention to the observer for two reasons.
First, the wheels would be more likely to slip. And second, as a result of limitations on
the camera sample rate, a very abrupt event may be missed. In contrast, if a trajectory
of given shape is parameterized to evolve in time as smoothly as possible, the intended
message is more likely to get through. The development of a quantitative theory of
source and channel coding over principal bundles in the context of robotics is yet to
be formulated. But the variational tools of Chapter 13 and notions from information
theory and coding from Chapters 17 and 18 appear to be promising in this regard.

21.4 Sensor Fusion in Mobile Robotics

Assume that the nonholonomic kinematic cart robot with two independently actuated
wheels moves in a square room of known size. Relative to a frame of reference fixed
in the room, the velocity of a frame of reference fixed in the robot is a function of
the wheel speeds. The equations for this system are well known. See, for example, [10,
53, 80]. The reference frame that results from numerically integrating these nonholo-
nomic governing equations can be thought of as the time-dependent rigid-body motion
g(t) = g(x(t), y(t), θ(t)) ∈ SE(2). If the robot’s motion could be observed with infinite
precision, then g(t) would be known for all times t ≥ 0. However, of course, infinitely
precise observations are not possible. The question then becomes one of estimating g(t)
given whatever sensory data is available. Such problems have become popular over the
past decade, as reviewed in [49, 71].

In the present example, it is assumed that two noisy sensing modalities are present
on the robot: (1) The wheel speeds can be measured (or calculated from wheel angle
measurements) with sensors co-located with the motors resulting; (2) two range sensors
fixed on the robot (one in front and one in back) point directly forward and behind the
robot along its symmetry axis and measure the distance to the walls ahead of and behind
the robot.5 The scenario is that the robot starts at the center of the room with known
initial heading, θ = 0, estimates g(t) from odometry for t ∈ [0, T ], and then switches on

5Although real-world range sensors spin and provide panoramic information about the
proximity of neighboring objects, the range sensors alluded to in this section are far less capable.
These are taken to be fixed in orientation relative to the robot and only provide distance
information along a single line of sight that depends on the robot’s orientation relative to the
environment.
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its range sensors at time T . Given models for the noise in both sensing modalities, how
should these measurements be pooled to obtain the best estimate of the robot’s current
pose? Additionally, how can the quality of this estimate be compared with the estimates
obtained from each individual sensing modality? Several of the theorems derived earlier
in this chapter can be used to address these problems.

This is the question of fusing odometric (or “dead-reckoning”) data with range
data. In odometry, the nonholonomic kinematic equations of motion are numerically
integrated given knowledge of the wheel speeds as a function of time. However, such
measurements are noisy, and so the path that the robot actually takes diverges from
the predicted one as time increases. The result is a conditional probability density
f(gact | godo) ∈ N (SE(2)×SE(2)), where gact denotes the actual pose of the robot and
godo denotes the pose predicted by odometry.

The function f(g;T ) generated by solving (21.4) is in fact f(gact | godo) because the
dead-reckoning path for a robot with fixed L, r, and D is completely defined by ω and
T , which, in turn, define the shape of f(g;T ). It is interesting to note in passing that if
the robot continues to move for an additional amount of time, t2, then the distribution
will be updated as a convolution over SE(2) of the form

ft1+t2(g) = (ft1 ∗ ft2)(g); (21.19)

that is, solutions to (21.4), or more generally (20.14), subject to Dirac delta initial
conditions form a commutative semigroup under the operation of group convolution.

If the actual pose of the robot (which is unknown to the robot) is gact and the
distance/range range sensors take measurements from that pose, they will generate
noisy distance measurements that can be used together with elementary geometry and
trigonometry to develop a discrete set (or cloud) of reference frames. If the sensors
are accurate, this cloud will be tightly clustered around gact. The resulting histogram
normalized to be a pdf in its first argument for any fixed value of gact ∈ SE(2) will be
f(gdis | gact), where gdis is the pose of the robot predicted from distance measurements.
The peak value of gdis need not coincide exactly with gact. Any discrepancy between
the peak value of gdis for a given gact represents bias in the range sensors. Models for
f(gact | godo) and f(gdis | gact) are developed in the following subsections and then fused
to obtain f(gact | godo, gdis), the estimate of the actual robot position and orientation
given measurements from both odometry and distance sensors.

21.4.1 A Maximum Entropy Model for Range-Finder Measurements

In the scenario described at the beginning of this section, the robot is equipped with two
range sensors arranged with their beams pointing in diametrically opposed directions
on the x axis passing through the center of the robot in Figure 21.1. If the range sensors
could measure the distance to the walls exactly and if the robot behaved exactly as
the nonholonomic kinematic cart, then the robot could spin around its z axis through
180◦, generate an exact map of the environment, and exactly know its location modulo
symmetries. It is these symmetries that make the discussions of discrete groups, cosets,
and double cosets in Sections 5.2 and 5.3 relevant to this application. For a robot
that has 180◦ rotational symmetry around its z axis, there is no distinction in the
observation of gact = g(x, y, θ) and g(x, y, θ + π) = gact ◦ g(0, 0, π). This means that no
matter what shape room the robot is in, it will localize in a bounded subset of the coset
space SE(2)/C2 (where Cn is the cyclic group, isomorphic to the group of rotational
symmetry operations of the regular n-gon, and the boundaries result from the walls
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of the room). Similarly, for a robot in a square room with no landmarks, there is no
distinction between range sensor data when the robot is at the pose gact and when it is
at g(0, 0, kπ/2) ◦ gact for any k ∈ {0, 1, 2, 3}. This is true regardless of how the sensors
are arranged on the robot. Therefore, the localization problem for a robot in a square
room is one of finding a point in the coset space C4\SE(2). Now, if the robot and its
range finders have C2 symmetry and the room is square, then the localization problem
becomes one in a bounded subset of the double coset space C4\SE(2)/C2.

Suppose that the robot is placed at the pose gact where it remains while its front
and back range sensors take a stream of synchronized distance measurements. A natural
estimator for the pairs of distances of the front and back of the robot to the walls that
the two beams hit results from simply computing the sample mean and covariance
of pairs of distances. A roboticist might then define a bivariate Gaussian distribution
with mean and variance given by the sample mean and sample variance of these two
sets of measured distances. This is akin to the maximum entropy principle under the
assumption that distances can be mapped to poses and the mean and covariance are
sufficient statistics; that is, with all other things being unknown, choose the maximum-
entropy distribution with specified mean and covariance, which is the Gaussian. The
result is f(gdis | gact), a distribution of measured distances (which can be converted to
a distribution of reference frames) when gact is specified (although not known to the
robot).

Taking a stream of measurements when the robot is at a fixed pose certainly does not
offer as much information as when it does a full sweep. However, since it is implicit in this
scenario that the geometry of the robot and the room are both known in advance, the
above situation can be turned around. If we assume that gact is not known, then we can
ask for each pair of measured front/back distances what all possible poses of the robot
can be in order for such distance measurements to be replicated, under the constraint
that the robot fits in the room without penetrating any walls. From this, a maximum-
entropy distribution f(gact | dfront, dback) can be constructed, where dfront and dback

are respectively the measured distances to walls in front and behind the robot.
In summary, an error model for distance measurements is presented that takes into

account known symmetries of the robot and the room. Even if range finders could
measure distance perfectly, due to symmetries they would not be sufficient to localize in
the room, but only to within a bounded region in the double coset described above. The
odometry data, as imperfect as it is, provides a means to resolve the ambiguity in the
range measurements. Additionally, information theory on groups provides a language in
which to address questions such as How much information is being provided by the range
sensors versus odometry? How much improvement is there in estimates of gact when data
is pooled versus using each sensor modality independently? These questions can only
be answered using the theorems presented previously in this chapter after a strategy for
pooling the measurements is articulated. One such strategy is the Baysian filter (see [71]
and references therein), a version of which is described in the following subsection.

21.4.2 Sensor Fusion

One form of Bayes’ rule, which holds for probabilities and pdfs alike, is

p(A | B,C) =
p(B | A,C) p(A | C)

p(B | C)
.

Taking A = gact, B = gdis, and C = godo and using the pdfs generated in the previous
sections gives
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f(gact | gdis, godo) =
f(gdis | gact, godo)f(gact | godo)

f(gdis | godo)
.

If gact is known, then knowledge of godo adds nothing. Therefore, in this application,
f(gdis | gact, godo) = f(gdis | gact). This is analogous to how conditioning on states at all
prior times reduces to conditioning on the immediate predecessor for a Markov process.
Therefore, the sensor fusion equation becomes

f(gact | gdis, godo) =
f(gdis | gact)f(gact | godo)

f(gdis | godo)
. (21.20)

Each term on the right-hand side of this equation can be evaluated using the individual
sensor models presented in the previous two subsections.

If nothing were known other than the speed of the robot, ω, and the duration of
travel, T , and if rωT is less than the distance to the nearest wall, then the robot position
will be constrained to be within a circular disk of radius rωT . If its orientation is com-
pletely unknown, then an upper bound on the entropy of f(gact) (without conditioning
on any odometry data) can be computed from the maximum-entropy distribution on
SE(2) that is independent of θ, constant on this circular disk in the x-y plane and 0
for

√
x2 + y2 > rωT . The entropy associated with this distribution must necessarily be

greater than that obtained when sensor measurements are obtained:

S(fmax ent(gact)) ≥ S(f(gact | godo)) ≥ S(f(gact | gdis, godo)).

This follows from the general information-theoretic property that conditioning reduces
entropy and does not use any Lie-group properties. In contrast, inequalities that directly
use the results of the theorems presented earlier in this chapter are reviewed in the
following subsection.

21.4.3 Application of Information-Theoretic Inequalities on Groups

The theorems presented in Chapter 19 describe relationships between several measures
of dispersion for pdfs on Lie groups, including entropy, covariance, and the (inverse)
Fisher information matrix. The reason for performing the sensor fusion described above
is to reduce the dispersion of the resulting pdf in the variable gact ∈ SE(2) compared to
the pdfs obtained from individual sensor modalities. This is now verified using (21.20),
where gdis and godo are fixed values and gact is the unknown to be estimated. Below,
examples of the applicability of the theorems presented earlier are given.

Example 12.4.1: Since the dead-reckoning distribution f(gact|godo) = f(gact; t) is the
solution of (21.4), it satisfies (21.19). From Theorem 19.1 we know that the entropy
of a pdf increases under convolution, and from Theorem 19.10, the Fisher information
decreases under convolution. These indicate that an estimate of the pose of the robot
obtained by selecting the value of g that maximizes ft(g) will become more and more
unreliable as an estimator of the actual pose as t increases, and the amount of this
unreliability is quantifiable.

Example 12.4.2: Due to the symmetry of the room and of the range sensors, the
entropy of the range only sensing modality can be bounded using the result of The-
orem 19.4, which holds both when the subgroups K and H are Lie groups and when
they are finite. If both elements of C2 and all four elements of C4 are equally likely,
computation of the entropies S(fC2) and S(fC4) becomes trivial, and S(fC4\SE(2)/C2)
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is computed by focusing on a single asymmetrical region of the configuration space.
Theorem 19.4 then allows for the bounding of the actual entropy as the sum of these in-
dividual quantities, each of which is easier to compute than a mixture model of the form

f(gact | dfront, dback) =
1
8

3∑
i=0

1∑
j=0

fC4\SE(2)/C2(g(0, 0, iπ/2) ◦ gact ◦ g(0, 0, jπ)).

This mixture model reflects maximal uncertainty induced by the symmetries but does
not lend itself to closed-form entropy evaluations, which is one reason why the result of
Theorem 19.4 is useful.

Example 12.4.3: Since f(gact | godo) = f(gact, t) in (21.4), which is a specific example
of (20.14), the de Bruijn inequality in Section 19.4 (with α set to the Dirac delta function
on SE(2)) gives the rate of entropy increase of the odometry model in terms of the Fisher
information matrix corresponding to the solution of the Fokker-Planck equation for the
robot’s SDE.

Example 12.4.4: Using nothing more than the product rule for the Lie derivatives,
the Fisher information matrix for f(gact | gdis, godo) in (21.20) can be computed from
models of f(gdis | gact) and f(gact | godo), and through the CR-bound in Theorem 19.16,
this can be used to bound the covariance of f(gact | gdis, godo).

Example 12.4.5: The Fourier-space solution for dead-reckoning models are described
in [80], the SE(2) and SE(3) group-Fourier transforms, their properties, and appli-
cations are described in detail in Chapter 12, and f̂(λ) is completely characterized for
equations such as the odometry model in (21.4). Therefore, the bounds in Theorem 19.2
can be applied.

Example 12.4.6: Theorems 19.6 and 19.7(b) are applicable to symmetric functions,
including Gaussians on SE(2) with μ = e. The solution of the odometry equation
(21.4) is not a symmetric function. However, ft(g) ∗ ft(g−1) is symmetric. Therefore, if
a robot does an initial sensor sweep in a room without symmetry, which results in an
SE(2) Gaussian, then the robot moves under the open-loop odometry model for time t,
and then it tries to return to its starting location, the resulting pose distribution will
be the convolution of the SE(2) Gaussian constructed from range-finder data and the
symmetric function ft(g) ∗ ft(g−1). Theorems 19.6 and 19.7(b) allow for the isentropic
reordering of some of these convolutions, even though convolution on noncommutative
groups is generally order dependent.

Example 12.4.7: The bounds on entropy powers and relative information in (19.47)
and (19.50) resulting from log-Sobolev inequalities provides a means to respectively eval-
uate and compare additional informational quantities associated with f(gact | gdis, godo)
and f(gact | godo).

In summary, the efficacy of 9 out of the 15 theorems presented have been illustrated
in the context of a single example in robotics. By establishing the language and prin-
ciples with which to articulate information theory on Lie groups, other applications
that utilize all of these theorems will be explored in the future. For example, Theo-
rems 19.7(a) and 19.8 pertaining to convolution and class functions are not relevant
to robot localization in SE(2) because there are no pdfs that are class functions in
N (SE(2)). However, solutions to the heat equation on SO(3) are both symmetric and
class functions, and so these theorems become immediately applicable to spacecraft and
submarine orientational estimation problems.
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21.4.4 Relationship to Information-Driven Motion

A topic that has become popular in the robotics community in the past few years
has been endowing robots with “information-foraging” capabilities; that is, how should
a mobile robot move so as to increase the amount of information that it collects in
an optimal way. Such information may be in regard to a chemical plume or radioactive
source, about the structure of its a priori unknown environment, or about its position in a
known environment. Works in this area include [19, 63, 66, 75]. One such method involves
the use of the Cramér–Rao bound (or CRB) [11, 72–74]. In the classical CRB, the Fisher
information figures prominently. However, the author is unaware of any statement of
the concept of Fisher information for Lie groups prior to the present work.6 Having such
a concept would be critical for the extension of the CRB to the Lie-group setting. An
application of this is described below.

Previous works treat a robot as holonomic point-particle vehicles and they treat the
problem as one of pure translation in the plane. One reason for this may be because
information theory on R2 is well developed and information theory on noncommutative
Lie groups is not. However, since information gathering and locomotion capabilities are
really body-fixed phenomena, vehicles are essentially rigid bodies that observe nonholo-
nomic locomotion constraints, “SE(2) versions” of all of the methods mentioned above
should become possible with the assistance of the derivations provided in this chapter.
In particular, if a robot wants to analyze the intensity of radiation in an area, it might
deploy detectors on antipodal points of a long boom. Any measurements would then
become measurements in SE(2) as the robot moves, rather than point measurements
in the plane. Then the methods developed in the works cited above would extend in a
natural way to include orientation using the definitions and properties described in the
theorems presented here. In short, the methods developed here provide a link among
information theory, the geometric approach to robotics expressed in [10, 53], and work
on localization such as [49, 71]. Work in the area of computer vision such as [70] in which
actionable information is extracted from visual images is also relevant to the overall goal
of information-driven motion.

21.5 Stochastic Models in Vision

Three intertwined areas of research pertaining to the study of vision involve stochastic
models, information theory, and Lie groups. They are (1) the structure and function of
the visual cortex in mammals, (2) the mathematics of perception and visual hallucina-
tion, and (3) algorithms for the processing of occluded visual scenes in computer vision
systems. A brief review of this literature is provided here. Equipped with the math-
ematical tools explained in these volumes, this literature can be understood without
difficulty.

The idea that visual perception is a kind of communication channel that can be
addressed using methods of information theory is almost as old as information theory
itself (see, e.g., [2]). Remarkably, researchers in the field of mathematical psychology have
been interested in tools from geometry and topology for almost as long as physicists
have (and for longer than these tools have been used by engineers) [9, 44, 54].

6As is the case in the field of information geometry, Smith [69] addresses the issue of the
intrinsic CRB for pdfs of the form f(x | θ) where x ∈ R

n and θ is in a manifold, but the issue
of when x is replaced by g ∈ G was not the concern of that work.
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The work by Hubel and Wiesel on the mammalian visual cortex [32–34] that started
half a century ago and was recognized with the 1981 Nobel Prize in Physiology or
Medicine (shared with Sperry) has led to mathematical modeling work in the field of
mammalian vision that is related to the topic of this book. In particular, the topic
of visual perception has been studied from a Lie-group/fiber bundle perspective for
decades [28–31, 65].

Occlusion is a big problem in vision—namely based on a two-dimensional image
of the three-dimensional world, how can one make reasonable guesses as to what ob-
jects are in front of others (i.e., closer to the eye or camera taking the image) in the
three-dimensional world? In order to address this problem, work on stochastic comple-
tion fields propagates probabilities on the special Euclidean group SE(2) to make an
informed guesses as to where hidden edges of a partially occluded object are likely to
intersect. This has been an active area of work spanning a number of years [51, 77, 78, 81]
and remains of interest today [27]. In these works, the same sort of diffusion equations
that describe the stochastic kinematic cart or DNA conformational statistics discussed
earlier arise.

The mathematics of visual hallucination and its connection to the structure of the
visual cortex in the mammalian brain have been studied using differential geometric
tools in [7, 14, 62].

Such tools have become popular in the analysis and understanding of images [17,
18, 23, 24].

21.6 Conclusions

Although the emphasis of this chapter was on the discovery of fundamental inequalities,
the motivation for this study originated with applications in robotics and other areas.
Indeed, it was the problem of quantifying the difficulty of robotic assembly [42] and
self-repair [39] tasks using the concept of “parts entropy” discussed in Chapter 15 that
led the author to link group theory and information theory. A detailed example in
mobile robot localization was provided here to illustrate the efficacy of the presented
theorems.

Eye movements (in particular, saccades) are studied from the perspective of Lie
groups and differential geometry in [25]. Fax and Murray applied tools from graph theory
and the topology of the communication network of multiple vehicles that coordinate to
move in formation [22]. The stability of the formation depends on the communication
capabilities and the control law used. This is a perfect example of how information,
geometry of motion, and topology can come together in the context of an application,
although in a different way than emphasized in this book.

As another example, the idea that a robot or animal should move (in SE(2)) so
as to maximize the rate at which its sensors gain information is attracting attention
[1, 4, 6, 11, 15, 21, 48, 63, 66, 68, 72–75]. Analogous problems can be formulated in
medical imaging in which only X-rays in directions that maximize the generation of
new information need be taken rather than exposing a patient to the radiation of a
whole CT scan. Related to this problem is that of biomolecular structure determination
from disparate data sets such as cryo-electron microscopy, NMR, X-ray crystallography,
and so forth. Each is related to the structure of molecules, their ensemble motion, and/or
their quantum state—all of which are described in terms of probability densities on Lie
groups. A first step toward information fusion of data on Lie groups is the version of
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information theory developed here and demonstrated on an example in the context of
a mobile robot.
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Summary

This chapter summarizes Volume 2 of this two-volume set. Whereas the emphasis of
Volume 1 was on establishing terminology and review of fundamental definitions from
information theory, geometry, and probability theory on Euclidiean space, Volume 2 has
focused on analogous concepts in the setting of Lie groups. A survey of problems that
simultaneously involve Lie groups and information theory was provided, including the
encoding/decoding of spatial pose (position and orientation). The physics that govern
different kinds of communication systems gives rise to SDEs and their corresponding
Fokker–Planck equations. In some instances, such as laser phase noise, these can be
viewed as a probability flows on a group manifold. In other instances, such as the
telegraph equation, Lie groups describe the symmetries of a PDE on Euclidean space.
Stochastic models of phenomena such as the conformational fluctuations of DNA and
the motions of robotic systems were examined. These lead to probability densities on the
group of rigid-body motions, and properties of the corresponding conformational and
parts entropy were studied. Numerical tools for solving Fokker–Planck equations on Lie
groups such as the rotation group and group of rigid-body motions were reviewed.

The goals of the remaining sections in this chapter are to (1) return to Problems 1–5
listed at the beginning of Volume 1 and to sketch their solutions using the methods of
both books and (2) enumerate possible future research directions for which the methods
in these volumes may be applicable.

22.1 Return to the Problems Stated in Volume 1

At the beginning of Volume 1, five problems were stated to motive the development
of the methods presented in both volumes. Here, these problems are restated together
with pointers to methods enclosed in these volumes that address their solution.

Problem 1: A random walker on a sphere starts at the North Pole. After some period
of time, what will the probability be that the walker is at a particular location? How
long will it take before the walker’s location on the sphere is completely randomized
(i.e., how long will it be before the initial location of the walker becomes irrelevant)?

Solution: We know from Chapters 4, 5, and 8 how to write an SDE for isotropic Brow-
nian motion on the sphere. The most natural way to do this using spherical coordinates
is to write a Stratonovich equation as was done in Section 8.5.2. Or, an Itô process
on the sphere can be defined extrinsically using Cartesian coordinates as was done in
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Section 8.5.3. Either way, a corresponding Fokker–Planck equation can be written. This
is a linear PDE that can be solved by separation of variables. Alternatively, the op-
erational properties of spherical harmonics that follow from their definition relative to
IURs of SO(3) in Chapter 12 can be used to write a solution. Knowing explicitly the
form of the probability density f(u, t) that solves the Fokker–Planck equation subject to
initial condition that f(u, 0) is concentrated at the North Pole, we can evaluate proba-
bilities at any location and time. Additionally, we can compare f(u, t) with the uniform
distribution on the sphere using L2 or KL measures and observe how these changes as
a function of time to assess how rapidly the effects of initial conditions decay.

Problem 2: A cartlike robot moves around in the plane by turning each of its two
wheels. Relative to a frame of reference fixed in the plane, the frame of reference fixed
in the robot moves as a function of the torque inputs imparted by the motors to the
wheels. Given models describing these uncertainties, what will the most likely position
and orientation of the robot be at a given future time?

Solution: Models for this sort of problem were described in Chapter 20 and references
to the literature were given that solve this problem for the kinematic cart, the nonholo-
nomic car model, and so forth. The process involves first writing an SDE that defines
sample paths on the group SE(2), converts them to Fokker–Planck equations, and then
solves them using the operational properties of the SE(2) Fourier transform. The origi-
nal SDEs could be generated either in coordinates or in coordinate-free form. The SDEs
and corresponding Fokker–Planck equations for this problem are closely related to those
presented in Chapter 17 in the context of laser phase noise in optical communications
and also to the equations used in the study of stochastic completion fields discussed in
Chapter 20.

Problem 3: A long and slender semi-flexible biological macromolecule, such as double-
helical DNA composed of 300 stacked basepairs, is subjected to random Brownian mo-
tion bombardment by the surrounding solvent molecules. If reference frames are attached
to both ends of the DNA, what will the distributions of rigid-body motions between
these reference frames look like as a function of temperature and the stiffness of the
molecule?

Solution: This problem was addressed in detail in Chapter 14 using two models. One
was the rigid-base model in which spatially proximal bases were connected by six-
dimensional springs that store energy under infinitesimal rigid-body motions, and a
Gaussian on the space SE(3) × · · · × SE(3) resulted where the number of copies of
SE(3) is the number of bases in the DNA. The other model was the continuum fila-
ment model in which the backbone of the DNA was a continuous curve perturbed by
Brownian motion forcing, resulting in a diffusion equation describing the evolution of a
pdf f(g, s) on one copy of SE(3) indexed by arc length along the filament, s.

Problem 4: An isolated E. coli bacterium swims in a medium and, based on sensory
information, randomly reorients. For a given starting position, nutrient environment
and temperature, what will the probability be that it reaches a particular position at a
particular time?

Solution: This is a variant of the kinematic cart problem in three dimensions. It is
also very similar to the problem of kinematic needle steering that was discussed in
the context of Taylor series on Lie groups in Chapter 11, where the goal is to steer
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the needle in order for the tip to hit a target. The two minor differences are that arc
length of the needle is replaced by time traveled and the baseline path in the present
case is not differentiable due to the tumbling phase. The “straight” sections of its mo-
tion are not perfectly straight and can be described by the same mathematics as in
the DNA statistical mechanics problem discussed in Chapter 14. These parts of the
path are connected by distributions that describe tumbling, which are essentially a
product of delta functions in position and distributions over SO(3) which have been
modeled as uniform in the literature but could be any distribution informed by exper-
iment. Let g = (x, R) ∈ SE(3). Then the iterated convolution on SE(3) of the form
f1,n(g) .= (s1 ∗ t1 ∗ s2 ∗ t2 ∗ · · · tn−1 ∗ sn)(g), where sk(g) describes the distribution for
the kth straight path and tk(g) describes the distribution for the kth tumbling phase,
produces the joint distribution in position and orientation up to the nth time. A maxi-
mum likelihood foraging strategy would put the mode of the marginal of this probability
density integrated over orientation,

f1,n(x) =
∫

SO(3)
f1,n(x, R) dR,

over the location of the food.

Problem 5: (a) One rigid body is set at a fixed pose (or position and orientation) in a
box, and a second rigid body is allowed to move uniformly at random in the box under
the constraint that it cannot intersect the first body. How much free space is there for
the second body to move? (b) If the opposing faces of the box are identified with each
other (by “gluing them together”), then the boundaries are removed, but the volume in
this toroidal world will be the same as that of the original box. How much free space is
there for the second body to move in this scenario?

Solution: In both of these problems, if the amount (i.e., volume) of allowable motion
in SE(3) can be obtained first in the case when there is no obstacle and then the effects
of interactions between obstacle and moving body are taken into account to reduce this
volume, then we can solve the problem. When the obstacle and moving object are both
small enough that the moving object never gets “jammed,” then in both cases we can
simply compute the volume of allowable motion without the obstacle. This is actually
easier in the toroidal world because this volume is equal to the product of the volume of
the unit cell that describes the range of allowable translations and the volume of SO(3),
which is 8π2 when computed using the unnormalized Haar measure. Again, this assumes
that the body is small enough that it does not self-occlude as it undergoes rotational
motion in a toroidal world. The allowable motion of a convex body moving in a convex
box, the latter of which has minimum radius of curvature and diameter that are always
larger than the maximal radius of curvature and diameter of the moving body, can be
computed from a variant of the principal kinematic formula from Chapter 15. Even
when these conditions do not hold, good approximations of the allowable motion in the
obstacle-free case can still be obtained. When accounting for the effects of the obstacle,
in the case when both bodies are convex we can use the principal kinematic formula to
compute the volume of motions corresponding to all possible collisions and then subtract
this from the former quantity. If the bodies are not convex, then the bounds computed
in Chapter 15 can be used to provide estimates. In more difficult cases where the bodies
occupy a relative large fraction of the volume of the box or unit cell containing them,
the situation is not so easy and becomes more computational than analytical. This is
the subject of current research [18, 19].
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22.2 Future Directions

Usually the fields of stochastic modeling, information theory, and Lie groups are con-
sidered to be disjoint from each other. Perhaps this is because experts in one of these
fields may not know about either of the other two. These two volumes have sought to
illustrate connections between these three fields both from a theoretical perspective (us-
ing methods of differential geometry and analysis techniques) and from the perspective
of motivating applications (robotics, DNA statistical mechanics, laser communications,
etc.). In a sense, the applications discussed may be the tip of an iceberg. With these few
examples serving to illustrate connections, the door opens to many other possibilities.
For example, information theory could be used as a tool to link the information pro-
cessing and stochastic motion in living systems such as in chemotaxis or in cell signal
transduction between motile cells.

One result of this book has been the observation that a number of inequalities from
classical information theory can be extended to the context of group-valued probability
density functions. A natural question to ask is how these inequalities might be used in
applications. Here short descriptions of potential applications and how they relate to
the derived inequalities are provided. Several different application areas are described
below.

Before getting to these examples, it is worth repeating what was stated in the preface:
The webpage of the author’s lab will post an evolving bibliography pointing toward the
growing body of literature on applications at the intersection of the fields of stochastic
models, information theory, and Lie groups. Therefore, the examples described below are
only a few of the many possible future directions. Readers who contribute to this area
are welcome to contact the author for possible inclusion of their work in that web-based
bibliography.

22.2.1 Limited Tomographic Reconstruction

Computed tomography (CT) scans are used regularly in hospitals to obtain three-
dimensional information about the internal structure of patients. They are very use-
ful and have many benefits. However, since they require rotating scanners around a
patient and taking X-rays in finely spaced angular increments, the result can be a
radiation dose of approximately 500 times that of a normal chest X-ray—or the approx-
imate equivalent of what someone standing 2.5 km from ground zero of the Hiroshima
bomb experienced (http://www.newscientist.com/article/dn11827-ct-scan-radiation-
can-equal-nuclear-bomb-exposure.html).

Although it has been estimated that each CT scan only increases the risk of cancer
by a small fraction of a percent, CT has become a means of follow-up that is used
more routinely than perhaps is desirable. This is because sometimes patients are given
multiple CT scans over relatively short time scales.

One way that multiple CT scans can be used effectively and simultaneously reduce
the radiation exposure of patients is to take slices at coarser (perhaps irregular) angles
during scans subsequent to the first one and compare the results to a prior baseline scan.
In principle, with the design of new machinery, such projections could be taken from any
orientation rather than around a fixed axis. If the goal is to minimize radiation exposure
while obtaining the most useful information, the issue then becomes one of how to select
the slices. The relationship to information theory is that this can be done so as to increase
the expected amount of information gain. A strategy to optimally select angles drawn
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from SO(2) (or in the case of new equipment paradigms, S2), would be to assess the
information content in each slice of a prior CT reconstruction (perhaps sliced in different
planes than those used to form the original CT scan). The information in each of these
slices (which can be equated to the classical discrete entropy of the pixelized images in
each of these planes) will be a non-negative function of the orientation of the slice taken
and a point on the plane and, hence, will be of SO(3)×R2-valued argument (or at least
S2×R2-valued argument). If the discrete entropy of the image in each of these planes is
computed and the results are normalized, then this actually defines a pdf on the space
of all slices. From this, a first best guess as to what single new CT slice to take would
be the one that maximizes this probability. Additional slices would need to be chosen to
maximize the amount of information gain in this non-Euclidean product group, taking
into account the cumulative information obtained up to the current point. Having a
language for quantities such as entropy and Fisher information on groups provides a
starting point to articulate such problems.

22.2.2 Information Fusion in Biomolecular Structure Determination

Many experimental modalities exist to provide insight into the structure of biologi-
cal macromolecules. These include X-ray crystallography, nuclear magnetic resonance
(NMR), and cryo-electron microscopy (cry-EM), among others. Each of these modali-
ties provide partial information about a biomolecular structure of interest. Each involves
the spatial position and orientation of molecules given with some probability. Stochas-
tic modeling opportunities exist in the context of each individual method. For example,
geometric packing models that involve stochastic searches over SE(3)N for fitting artic-
ulated multi-rigid-body models of proteins to X-ray crystallography data benefit from
the methods and terminology presented in this book [18, 19]. In addition, information
theory provides a framework for merging or “fusing” information from these various
sources.

As an example of opportunities within a particular modality, cryo-EM is described
here. The objective in cryo-EM is the reconstruction of three-dimensional object den-
sities from two-dimensional projections. The “object” is usually a large biomolecular
structure such as a viral capsid, ion channel, or rhibosome. The added difficulty in
cryo-EM is that the method of data collection does not usually couple the direction
from which a projection is taken to the projection data itself. Therefore, the added
difficulty of simultaneously obtaining projection directions and reconstruction exists.
This is a problem of not only reconstructing a density in R3 but also assigning and
refining probabilities on SO(3) that describe the projection directions and how the pro-
jections are rotated in the image plane relative to the body-fixed coordinates of the
three-dimensional density. The density of the object that is being reconstructed as well
as the experimental projections can be taken as pdfs on R3 and marginals on copies
of R2, respectively. An initial pdf on SO(3) may be used to assign projection directions
to the obtained projections. Ultimately, this pdf should converge to one consisting of
peaks corresponding to the actual projection directions that gave rise to the images.
This convergence could be information-driven, in the sense that the mutual information
between pairs of images can be computed under optimal alignment (superposition un-
der rigid-body motion in the plane so as to maximize mutual information). Then the
relative relationship between projection directions (i.e., determining if they are close
or far from each other) can be assessed using the mutual information between the
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optimally superimposed images. Stochastic issues in cryo-EM are addressed in [11, 14]
and references therein.

22.2.3 Evaluation of Human Motor Skills

Another area in which the methods of this book may find applications is in evaluation
of human motor skills when performing tele-operation procedures. Such could be in
the context of remote operations in space, such as the robotic repair of satellites under
human control [21], or in robotic surgery, which is the emphasis here. In particular, a
new area of growing interest is the “language of surgery” [8, 16]. In this research area,
expert surgeons perform operations using a medical robotic system, which records every
movement and the forces and torques experienced. Though not currently articulated in
Lie-theoretic terminology, the above problem is a perfect example of how the methods
in this book might be applied in the future.

Let the normalized time interval [0, 1] parameterize the surgical task from the begin-
ning to the end. From an ensemble of such paths that are recorded in the space consist-
ing of all tool poses, g, and wrenches, w (six-dimensional vector of forces and torques),
SE(3)× se∗(3), it is possible to generate an indexed set of probabilities f(g, w; t) that
describe the range of expert performance in a surgical task with t ∈ [0, 1] denoting a
particular value of normalized time.1 Then as a medical student or resident trains to
perform the procedure, an individual trajectory that they generate, (gs(t), ws(t)), can
be evaluated as

P
.=
∫ 1

0
f(gs(t), ws(t); t) dt

to assess overall performance. The higher the value of P , the closer their single perfor-
mance is the mode behavior of the expert. Or, if an ensemble of student trajectories are
performed resulting in fs(g, w; t), then costs such as

c1(t)
.=
∫

SE(3)×se∗(3)
|fs(g, w; t)− f(g, w; t)|2 dg dw

or

c2(t)
.=
∫

SE(3)×se∗(3)
fs(g, w; t) log

fs(g, w; t)
f(g, w; t)

dg dw

or any of the generalized information measures discussed in Chapter 17 can be used to
evaluate ensemble performance.

22.2.4 Deconvolution over Lie Groups

A number of problems that arise in applications require solving the convolution equation

(k ∗ f)(g) = h(g)

for f(g) where g ∈ G, a Lie group, where k(g) and h(g) are given functions. The author
initially studied this problem in the context of designing robot arms for the case when

1The space se∗(3) is the dual space of se(3), both of which can be identified with R
6 by an

appropriate ∨ operation.
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G = SE(2) [1], and others have made more recent advances [6, 20] that have appeared
in the information theory literature. In general, exact solutions are not possible, and
some form of regularization is required.

Another variation of this problem is the solution of the nonlinear convolution
equation

(f ∗ f)(g) = h(g)

which was studied in [7] in the context of robot arms where G = SE(3). The use of
methods from harmonic analysis on groups and the convolution theorem play central
roles in addressing both problems.

22.2.5 Quantum Information, Computing, Estimation, and Control

The topics of quantum information theory, quantum computing, and estimating and
control of quantum systems have received considerable attention in the literature over
the past decade. Indeed, so many works have been published that it would be impossible
to provide a complete survey without devoting a whole book to these topics. Several
recent books that provide comprehensive overviews of the problems in these fields in-
clude [9, 10, 12]. Classical works that address quantum estimation and measurement
include [2–4]. Quantum control is addressed in many works, including [5, 13, 15, 17]. In
these topics, the concepts of Brownian motion, integration, and probability densities on
unitary groups have a role, and hence the tools discussed in Chapters 12, 16, 19, and
20 may find applications.
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Kolář, I., 54
Kolmogorov, A.N., 184, 310
Konheim, A.G., 182
Koo, J.-Y., 417
Koo, J.Y., 335
Kornfeld, I.P., 182
Kornreich, P., 310
Kostelec, P.J., 126
Koszul, J.L., 126
Kotz, S., 268
Kraft inequality, 314
Kree, P., 387
Krishnaiah, P.R., 270
Krishnaprasad, P.S., 152
Kruskal, M.D., 312
Kunita, H., 385, 387
Kus, M., 270
Kutzer, M.D.M., 407
Kwon, J., 407
Kyatkin, A.B., 53, 125, 126, 267, 308, 417
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