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Preface

This lecture notes in physics volume mainly focuses on the semi classical and quan-
tum aspects of percolation and breakdown in disordered, composite or granular sys-
tems. The main reason for this undertaking has been the fact that, of late, there
have been a lot of (theoretical) work on quantum percolation, but there is not even a
(single) published review on the topic (and, of course, no book). Also, there are many
theoretical and experimental studies on the nonlinear current-voltage characteristics
both away from, as well as one approaches, an electrical breakdown in composite
materials. Some of the results are quite intriguing and may broadly be explained
utilising a semi classical (if not, fully quantum mechanical) tunnelling between mi-
cron or nano-sized metallic islands dispersed separated by thin insulating layers, or
in other words, between the dangling ends of small percolation clusters. There have
also been several (theoretical) studies of Zener breakdown in Mott or Anderson insu-
lators. Again, there is no review available, connecting them in any coherent fashion.
A compendium volume connecting these experimental and theoretical studies should
be unique and very timely, and hence this volume.

The book is organised as follows. For completeness, we have started with a short
and concise introduction on classical percolation. In the first chapter, D. Stauffer
reviews the scaling theory of classical percolation emphasizing (biased) diffusion,
without any quantum effects.

The next chapter by A.K. Sen deals with the physics between the classical and
the quantum effects. It gives a detailed, pedagogic description of the genesis and
development of a semi classical (or, semi quantum) percolation model as a driven
network, named as a Random Resistor cum Tunnelling-bond Network, or RRTN in
short. The chapter deals with both the semi classical percolation transition and its
breakdown characteristics. On the way, it covers nonlinear dc and ac response, low-
temperature variable range hopping (VRH) conductance and some dynamical aspects
such as two early-stage power-law relaxations, predictability of the breakthrough
(breakdown process starting at one end and crossing to the other) time in terms of a
relaxation time, etc. Each of the topics covered has been introduced with a variety
of observations and the theoretical results have been contrasted with experiments.
It has been emphasized that a large variety of non-electrical phenomena of Nature,
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where the ‘tunnelling’ response may be replaced by some other non-linear response
with threshold (e.g., capillary forces of fluids in porous media, frictional forces in
mechanical systems, viscous drags in some fluids, forces due to random ‘pinning’ of
vortices in sliding charge density wave type of systems, etc.), may be modelled using
the RRTN or its variant.

A. Mookerjee, T. Saha-Dasgupta and I. Dasgupta start out the Chapter 3 with
a concise review of the models and techniques to study quantum percolation and
conclude from numerical studies that it belongs to the same universality class as the
single electron (i.e. no e-e interaction) Anderson (impurity) model. Their numerical
approach, using vector recursion method alongwith finite size scaling analysis, can
not resolve the controversy whether quantum percolation exists in two dimensions,
and seems to indicate that there is not localised to extended states transition (i.e. no
q-percolation) in 2D. More precisely, they did not find any fool-proof answer to the
question of whether, even for a very weak (non-zero) disorder in 2D, all the states
are exponentially localised or some power-law-localised states exist in the vicinity
of the band centre.

The chapter by H. Nakanishi and M.F. Islam describes the subject of quantum
percolation in two dimensions, a topic still controversial with decades of studies re-
garding the nature of localisation and presence or absence of phase transitions in its
transmission behaviour. They show that the results of some recent numerical studies
of the transmission coefficient of a hopping Hamiltonian are most consistent with
an interpretation that (a) there are two different localisation regimes, exponentially
localised and algebraically localised, (b) there is a delocalised regime, and (c) char-
acteristic power-laws in the algebraically localised regime vary with dilution and
energy.

The chapter by G. Schubert and H. Fehske presents a large-scale numerical study
of localisation effects in 2D and 3D quantum site percolation. Combining exact di-
agonalisation, Chebyshev expansion and local distribution approaches, the authors
analyse the mean and typical densities of states, but also dynamical properties such
as the time evolution and recurrence probability of a quantum particle on the span-
ning cluster. The results throw a new light on the existence of a quantum percola-
tion threshold and may have implications for percolative transport scenarios in novel
materials.

The next chapter by C. Sohrmann, J. Oswald and R.A. Römer, addresses the
issue of quantum percolation in the presence of perpendicular electric and magnetic
fields, especially when the system is in its (well-known) integral quantum Hall effect
(IQHE) regime. The authors introduce the topics in a lucid, pedagogical style using
single particle (electronic) wave functions and quantised Landau levels in a magnetic
field. Then they review some of the most prominent network models for the IQHE.
Screening effects due to the e-e exchange interaction are considered at the Hartree-
Fock (HF) level. The IQHE phenomenon is finally described in terms of quantum
transport (or, percolation) across the ensuing effective potentials.

P. Majumdar concisely reviews next the percolative quantum effects due to the
coexistence of competing phases in the manganites. A summary of the key experi-
ments in this area throwing light on spatial clustering and transport is followed by a
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description of the two microscopic models carrying the essence of correlated quan-
tum percolation involving both ‘site’ and ‘bond’ randomness. The distribution func-
tion involves the iterative solution of a Schrodinger equation. The microscopic results
are compared with predictions from phenomenological resistor network theory and
experimental results.

The chapter by D. Samanta, B.K. Chakrabarti and P. Ray reviews first the clas-
sical breakdown properties and their statistics for random fuse-conductor networks
and random dielectric-conductor networks. The results are for both the dilute limit
as well as near the percolation point and in lattice as well as continuum systems. It
discusses next the Zener Breakdown problem in quantum percolation or in Anderson
insulators (in particular in three dimension).

A microscopic quantum theory of nonequilibrium (open q-system) insulator to
metal transition (quantum dielectric breakdown) in the presence of strong e-e in-
teraction (correlation) is discussed in the next chapter by T. Oka and H. Aoki. The
equilibrium version (closed q-system) of this is called the Mott transition. In the open
q-system, the ground state is separated from the first excited state by the Mott gap,
and quantum breakdown occurs through non-adiabatic, Landau-Zener tunnelling
transitions, with concommitant nonlinear transport. In retrospect, it is interesting
to note how some of these important elements had already been incorporated (at a
minimal level) in some phenomenological models, for example, the semi-quantum
RRTN model (see Asok K. Sen, Nonlinear Response, Semi-classical Percolation
and Breakdown in the RRTN Model). Oka and Aoki next discuss the preservation of
quantum coherence at sufficiently low temperatures, giving rise to dynamical locali-
sation that saturates the creation process (of excitation pairs) and eventually leads to
a nonequilibrium stable state.

The last chapter by K. Kieling and J. Eisert on quantum computation and com-
munication is the sole representative of a very important and fast growing field of
research. Here, one encounters a ‘percolative type situation’ originating from the sta-
tistical nature of quantum measurement or quantum state preparation processes. So,
at a mental level, one is dealing with engineered quantum systems and the disorder
is due to probabilistic quantum gates, or to Mott defects arising from the preparation
of a cluster state. As such, the authors point out that the percolative disorder here
is statistically correlated (not fully random). This general theme of correlated per-
colation is also of essence in the topics of two previous chapters: one on the RRTN
model and the other on colossal magneto resistance in manganites. In the present
chapter, methods of renormalisation are useful to overcome the probabilistic aspects
of manipulating various quantum states. As the authors emphasize, one of the most
important issues is to understand how far renormalisation over mixed quantum states
could be of use to develop fault-tolerance, error correcting codes etc. for the use of
quantum computation.

It gives us great pleasure to acknowledge all the contributors for their sincere sup-
port and patience while interacting with us on their individual chapters. Without the
enthusiasm towards keeping their contributions up-to-date, this lecture notes volume
would not be what it is today. We expect that all these combined bits of informa-
tions contained within its pages would have some usefulness to the relevant research
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communities alongwith its overlapping areas, and to the newcomers who would like
to be introduced to the topics covered here. Our efforts would be worthwhile and we
would certainly hope so, if this book gives rise to further research in these and related
areas. Finally, we must acknowledge the editors of Springer for their warm accep-
tance of this book project when it was proposed last year, and very helpful support
throughout the process of publication.

Kolkata Asok K. Sen
Kamal K. Bardhan

Bikas K. Chakrabarti
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Classical Percolation

D. Stauffer

Institute for Theoretical Physics, Cologne University, D-50923 Köln, Euroland

1 Introduction

Percolation theory mostly deals with large lattices where every site is randomly ei-
ther occupied or empty. In particular, it studies the resulting clusters that are sets
of neighbouring occupied sites. It was three decades ago that Stauffer published his
last research on quantum effects; he is, thus, eminently qualified to write this intro-
ductory chapter, where � = 0. Mostly, this review combines in a shortened form
two articles written for the Encyclopedia of Complexity and Systems Science, for the
same publisher.

Paul Flory, who later got the Chemistry Nobel prize, published in 1941 the first
percolation theory [1–6], to describe the vulcanisation of rubber [7]. Others later ap-
plied and generalised it, in particular by dealing with percolation theory on lattices
and by studying it with computers. Most of the theory presented here was known
around 1980, although it was in the case of computer simulation with less accuracy
than today. But on the questions of universality of critical spanning probability and of
the uniqueness of infinite clusters, the 1990s have shown some of our earlier opinions
to be wrong, and biased diffusion also was clarified around the year 2000 only. Even
today it is questioned by some that the critical exponents of percolation theory can be
applied to real polymer gelation, the application which Flory had in mind in 1940s.

On a large lattice, we assume that each site independently and randomly is occu-
pied with probability p and empty with probability 1 − p. Depending on the appli-
cations, other words can also be used instead of occupied and empty, for example.
Republican and Democrat for the majority party in an electoral district of the USA.
A cluster is now defined as a set of occupied neighbouring sites. Percolation theory
deals with the number and structure of these clusters, as a function of their size s, that
is of the number s of occupied sites in the cluster. In particular, it asks whether an
infinite cluster spans from one side of the lattice to the opposite side. Alternatively,
and more naturally if one wants to describe chemical reactions for rubber vulcan-
isation, this site percolation can be replaced by bond percolation, where every site
is occupied but the link between neighbouring sites is either present with probabil-
ity p or absent with probability 1 − p, again independently and randomly for each

Stauffer, D.: Classical Percolation. Lect. Notes Phys. 762, 1–19 (2009)
DOI 10.1007/978-3-540-85428-9 1 c© Springer-Verlag Berlin Heidelberg 2009



2 D. Stauffer

link. A cluster is now a set of neighbouring sites connected by links, and the size
s of the cluster can be counted as the number of links, or as the number of sites,
in that cluster. Because of this ambiguity we discuss here mainly site percolation;
bond percolation is similar in the sense that it belongs to the same universality class
(same critical exponents). One may also combine both choices and study site-bond
percolation, where each site is randomly occupied or empty, and where each bond
between neighbouring occupied sites is randomly present or absent.

Neither temperature nor quantum effects enter this standard percolation model,
which is purely geometrical probability theory. However, to understand why perco-
lation works the way it does, it is helpful to understand thermal phase transitions
such as the vapour-liquid critical point; and for magnetic applications it is useful to
know that some spins (atomic magnetic moments) have only two states, up or down,
according to quantum mechanics. We will explain these physics aspects later, in the
Sect. 2.5.

For small p, most of the occupied sites are isolated, s = 1, coexisting with only
few pairs, s = 2 and triplets, s = 3. For large p, most of the occupied sites form one
‘infinite’ cluster spanning the lattice from left to right, with a few small isolated holes
in it. Thus, there exists one percolation threshold, pc such that for p < pc we have
no spanning cluster and for p > pc we have (at least) one spanning cluster. Inspite
of decades of research on this seemingly simple problem, no exact solution for pc is
proven or guessed for site percolation on the square lattice with nearest-neighbour
bonds; only numerically we know it to be about 0.5927460. For site percolation on
the triangular lattice or bond percolation on the square lattice, pc = 1/2 exactly.
More thresholds are given in the Table 1[1–6]. They are valid in the limit of L → ∞
for lattices with Ld sites in d dimensions. For small L instead of a sharp transition
at pc one has a rounded changeover: with a very low probability one chain of L oc-
cupied sites at p = 1/Ld−1 spans from left to right. In one dimension, a small chain

Table 1. Site and bond percolation thresholds for one dimension, 3 two-dimensional, 4 three-
dimensional and 4 hypercubic lattices in higher dimensions [1–6, 8]

pc Site Bond

d = 1 chain 1 1

Honeycomb .697043 1 − 2 sin(π/18)
Square .592746 1/2
Triangular 1/2 2 sin(π/18)

Diamond .4301 .3893
SC .311608 .248813
BCC .245691 .180287
FCC .199236 .120163

d = 4 Hypercubic .196885 .160131
d = 5 Hypercubic .140797 .118172
d = 6 Hypercubic .109018 .094202
d = 7 Hypercubic .088951 .078675



Classical Percolation 3

can easily be spanned if p is close to 1, but for L → ∞ the threshold approaches
pc = 1 since at smaller p a hole will appear about every 1/(1 − p) sites and prevent
any cluster to span.

2 Methods

This section summarises some of the methods employed to find percolation proper-
ties, first by pencil and paper, and then with the help of computers for which Fortran
programs are published, for example, in [9, 10].

2.1 Mean Field Limit

The Bethe lattice or Cayley tree neglects all cyclic links and allows a solution with
paper and pencil. We start from one central site, and let z bonds emanate from that.
At the end of each bond sits a neighbour. Then from each of these neighbours again
z bonds emanate, one back to the central site and z − 1 to new sites-outward. They
in turn lead again each to z − 1 new sites, and so on. None of the newly added sites
agrees with one of the already existing sites, and so we can travel along the bonds
only outwards or back, but never in a loop. It is quite plausible that an infinite cluster
of bond percolation is formed if each site leads to at least one more outward site
along an existing bond, which means if (z − 1)p > 1. This condition also holds for
site percolation. Thus,

pc = 1/(z − 1) . (1)

In this way, Flory calculated the threshold and other percolation properties. Today we
call this the ‘mean field’ universality class in analogy with thermal phase transitions.
The critical exponents, to be discussed below, are integers or simple fractions. To this
universality class also belong the Erdös-Rényi random graphs, where we connect in
an assembly of N points each pair with a low probability ∝ 1/N . And the same
universality class is reached if we let the dimension d of the hypercubic lattice go to
infinity (or at least take it above 6). A disadvantage of the Bethe lattice is its lack of
realism: If the length of the bonds is constant, then the exponential increase of the
number of sites and bonds with increasing radius leads to an infinite density.

2.2 Small Clusters

The probability of a site to be an isolated s = 1 cluster on the square lattice is
n1 = p(1− p)4 since the site must be occupied and all its four neighbours be empty.
The formula for pairs is n2 = 2p2(1−p)6 since the pair can be oriented horizontally
or vertically, resulting in the factor 2. Similar, only more difficult, is the evaluation
of ns with a maximum s usually 10 to 20; the general formula is

ns =
∑

t

gst p
s (1 − p)t, (2)
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where the perimeter t is the number of empty neighbours and gst is the number of
configurations (or lattice animals, or polyominoes) of size s and perimeter t. The
King’s College group in London published these results decades ago. With tech-
niques borrowed from series expansions near thermal critical phenomena, these poly-
nomials allow to estimate not only pc but also many other quantities (see below),
diverging or vanishing near pc.

2.3 Leath Cluster Growth

In the cluster growth method of Leath (1976), one starts with one occupied site in the
centre of the lattice. Then a cluster is grown by letting each empty neighbour of an
already occupied cluster site decide once and for all, whether it is occupied or empty.
One needs to keep and to update a perimeter list of empty neighbours. If that list
becomes empty, the cluster growth is finished, and no boundary effects of the lattice
influence this cluster. If, on the other hand, the cluster reaches the lattice boundary,
one has to stop the simulation and can regard this cluster as spanning (from the centre
to one of the sides). Repeating many times this growth simulation one can estimate pc

as well as the cluster numbers. More precisely, the cluster statistics obtained in this
way is not ns but nss since the original centre site belongs with higher probability
to a larger than to a smaller cluster.

2.4 Hoshen-Kopelman Labelling

To go regularly through a large lattice, which may even be an experimentally ob-
served structure to be analysed by computer, one could number consecutively each
seemingly new cluster, and if no clusters merge later then one has a clear classifica-
tion: All sites belonging to the first cluster have Label 1, all sites of the second cluster
have Label 2, and so forth. Unfortunately, this does not work. In the later analysis, it
may turn out that two clusters that at first seemed separate actually merge and form
one cluster:

* * * * 1 1 2 2

* * * * 1 3 ? 2

* * * * * 4 ? ? x ? .

Already in the simple structure shown to the left we have several such label conflicts.
The labels to the right come going though the lattice such as a typewriter, from left
to right, and after each line to the lower line. When we come to the right neighbour
of the 3, we see that 3 is really a part of the cluster with Label 2. And at the right
neighbour of 4, we see that 4 belongs to Cluster 1. The stupid method is to go back
and to relabel all 3 into 2, and all 4 into 1. If, then, we come to the site marked with x
we see that the whole structure is really one single cluster, and thus all labels 2 have
to be relabeled into a 1. This is inefficient for large lattices. Instead, Hoshen and
Kopelman (1976) gave to each site label m = 1, 2, 3, . . . another index n(m). This
label n(m) of labels equals its argument, n(m) = m, if it is still a good ‘root label’,
and it equals another number k which is the cluster with initial label m that later
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turned out to be a part of an earlier cluster k. By iterating the command m = n(m)
until finally the new m equals n(m) one finds this root label. For the above we make
the following assignments and re-assignments to n: n(1) = 1, n(2) = 2, n(3) =
3, n(3) = 2, n(4) = 4, n(4) = 1, n(2) = 1. Clusters are now characterised by the
same root label for all their labels.

An advantage of this method is that only one line of the square lattice, or one
hyperplane of the d-dimensional lattice, needs to be stored at any time, besides the
array n(m). And that array can also be reduced in size (following Reynolds and
Nakanishi) by regular recycling no longer used labels n, just as beer bottles can be
recycled. Lattices with more than 1013 sites were simulated, using parallel comput-
ers. However, understanding the details of the algorithms and finding errors in them
can be very frustrating.

Sometimes one wants to determine the cluster numbers for numerous different
p’s from 0 to 1. Instead of starting a new analysis for each different p one may also
fill the lattice with new sites, and make the proper labelling of labels whenever a
new site is added [11]. Similarly, one can determine the properties of various lattice
sizes L by letting L grow one by one and relabelling the cluster after each growth
step [12]. Unfortunately, these two methods came long after most of the percolation
properties were already studied quite well by standard Hoshen-Kopelman analysis.

2.5 Relation to Ising and Potts Models

The relation between percolation and thermal physics was useful for both sides:
Scaling theories for percolation could follow scaling theories for thermal physics
about 10 years earlier, and computer simulations for thermal physics could use the
Leath and Hoshen-Kopelman algorithms of cluster analysis, leading to the Wolff and
Swendsen-Wang methods, respectively, a decade later. A mathematical foundation
is given by the Kasteleyn-Fortuin theorem [13] for the partition function Z of the
Q-state Potts model at temperature T :

Z(Q) = 〈QN 〉 (3)

where N is the total number
∑

s ns of clusters for bond percolation at probabil-
ity 1 = exp(−2J/kBT ), 〈. . . 〉 indicates an average over the configurations at this
probability, kB is Boltzmann’s constant and 2J is the energy needed to break a
bond between neighbouring spins. (Each site i of a Potts lattice carries a variable
Si = 1, 2, . . . Q; the energy of a neighbouring pair is −2J if the two variables agree,
and zero otherwise.)

Q values of 3 and larger are interesting, since for increasing Q a second-order
phase transition with a continuous order parameter changes into a first-order phase
transition with a jumping order parameter, when T increases. The special case Q = 2
is the spin of 1/2 Ising model (the model is pronounced EEsing, not EYEsing since
Ernst Ising was born in Cologne, Germany, and became US citizen Ernest Ising only
after publishing his theory in 1925 and surviving Nazi persecution.) The limit Q → 0
corresponds to some tree structures (no cyclic links, as in Flory’s percolation theory,
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[14]). Percolation, on the other hand, correponds to the limit Q → 1, in the following
way: The ‘free energy’ in units of kBT is in this limit, lnZ = ln〈exp(N lnQ)〉 �
ln〈exp[(Q− 1)N ]〉 � ln〈1 + (Q− 1)N〉 � (Q− 1)N . Thus, for Q near unity this
thermal free energy, divided by Q− 1, is the number of percolation clusters.

In this way, thermal physics and percolation are related, and the cluster num-
bers N correspond to a free energy. In thermal physics, the negative derivative of
the free energy with respect to a conjugate field gives the order parameter (e.g. mag-
netic field and magnetisation), and the field derivative of the order parameter is called
the susceptibility. For liquid-gas equilibria, the order parameter is the volume (or the
density), the field is the pressure (or chemical potential) and the analog of the suscep-
tibility is the compressibility. We should keep in mind this result, not its derivation,
if we now look at the percolation quantities of interest.

Formally, we may define for percolation a free energy F as a generating function
of a ghost field h:

F (h) =
∑

s

ns exp(−hs) . (4)

Then its first h-derivative is −
∑

s nss, and the second one is
∑

s nss
2, sums, which

appear below in the percolation probability P∞ (the order parameter) and the mean
cluster size, S =

∑
s nss

2/
∑

s nss (the susceptibility).

3 Quantities and Exponents

The basic quantity is ns, the number (per site) of clusters containing s sites each, and
often is an average over several realisations for the same occupation probability p in
the same lattice. Several moments

Mk =
∑

s

nss
k (5)

are used to define other quantities of interest; in these sums, the infinite (spanning)
clusters are omitted. The following proportionalities are valid asymptotically in the
limit of large lattice size L and for p → pc:

F = M0 ∝ |p− pc|2−α + . . . ; (6a)

P∞ = p−M1 ∝ (p− pc)β ; (6b)

S = M2/M1 ∝ |p− pc|−γ . (6c)

Here, F is the analogue of the thermal free energy, where the three dots represent
analytic background terms, whose derivatives are all finite. Since every occupied site
must belong either to a finite or to an infinite cluster, P∞ = p −

∑
s nss is the

fraction of sites belonging to the infinite cluster, and gives the probability that from
a randomly selected site we can walk to a lattice boundary along a path of occupied
sites. It is, thus, called the percolation probability but needs to be distinguished from
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the probability p that a single site is occupied and from the probability R, with R(p <
pc) = 0, R(p > pc) = 1, that there is a spanning cluster in the lattice.

The quantity S is usually called the mean cluster size, and we follow this tra-
dition even though it is very bad. There are many ways to define a mean size,
and polymer chemists have the much more precise notation of a number average
M1/M0, a weight average M2/M1 and a z average M3/M2 for the cluster size
(= degree of polymerisation). Physicists arbitrarily call the weight-averaged s the
mean cluster size S. Numerically, the exponent γ is determined more easily from
the ‘susceptibility’ χ = M2 ∝ |p − pc|−γ , since the denominator M1 in Eq. (6c)
approaches very slowly its asymptotic limit of 1.

The radius of a cluster Rs can be defined as the rms distance, ri, i = 1, 2, . . . , s,
of cluster sites from the centre of mass rc of the cluster (radius of gyration):

R2
s = 〈

∑

i

(ri − rc)2/s〉, (6d)

where the 〈. . . 〉 average is over all cluster configurations at probability p. Then the
correlation length ξ is related to the z-average cluster radius through

ξ2 =
∑

s

R2
snss

2/
∑

s

nss
2 ∝ |p− pc|−2ν (6e)

with another critical exponent ν.
Finally, right at p = pc, the cluster numbers decay as

ns ∝ 1/s2+1/δ, (7)

where δ must be positive to allow a finite density,
∑

s nss = p.
These five critical exponents are not independent of each other, but are related in

d dimensions through the scaling laws:

2 − α = γ + 2β = (δ + 1)β = dν (8a)

as known from thermal phase transitions; the last equation involving d is not valid in
mean field theory (large d) but only for d ≤ 6. Table 2 gives the numerical estimates
of the exponents in three dimensions as well as their mean field values for d ≥ 6

Table 2. Critical exponents, Eqs. (6, 9), for percolation clusters. The mean field values are
valid for six and more dimensions and also apply to Flory’s Bethe approximation and to Erdös-
Rényi random graphs. The exponents α, δ, σ, and τ can be derived from the scaling laws,
Eq. (8)

d β γ ν μ

2 5/36 43/18 4/3 1.31
3 0.41 1.796 0.88 2.0
≥ 6 1 1 1/2 3
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and their exact two-dimensional results [15, 16]. Thus, for six and less dimensions,
if you know two exponents you know them all thus far.

These scaling laws (8a) can be derived by assuming

ns = s−τf [(p− pc)sσ] (τ = 2 + 1/δ, 1/σ = βδ), (8b)

which was first postulated for the thermal Ising model, and then successfully applied
to percolation. Here, f is a suitable scaling function, which only in the mean-field
limit approaches a Gaussian.

For both thermal critical phenomena and percolation, ‘universality’ asserts that
these critical exponents are independent of many details and (for the Potts model)
depend only on the dimensionality d and the number Q of possible spin states. Since
percolation corresponds to Q → 1, this means that the exponents depend only on
d. There are exceptions from this universality for thermal-phase transitions, but for
random percolation thus far it worked. However, the numerical value of the perco-
lation threshold pc is not a critical exponent, depends on the lattice structure and is
different for site and bond percolation.

This universality is one of the reasons why the investigation of exponents is
important: They allow to classify models and materials. Similarly, in biology we
have many birds of different colours, and many types of domestic animals. Biol-
ogy became a systematic science only when it was found that all mammals share
certain properties, which birds do not have. Thus, there is the universality class of
mammals.

(The proportionality factors in Eq. (6) are not universal, but some of their combi-
nations are, for example, the ratio of the proportionality factors for S above to below
pc is universal. In some sense also, the probability R(p = pc) of a lattice to contain
one spanning cluster at the threshold is universal: same for bond and site percolation;
however, this probability depends on the boundary conditions and the shape of the
sample, and thus is far less universal that the mentioned ratio for S.)

Unfortunately, there is another exponent that does not follow from the cluster
numbers and radii and for which no scaling law is accepted, which relates it to the
other exponents above. This refers to the electrical conductivity

Σ ∝ (p− pc)μ, (9a)

when each occupied site (or bond) conducts electrical current and each empty site
(or deleted bond) is an insulator. The numerical values were given in Table 2. If
bonds are realised by elastic springs with bending forces, the elastic exponent may
be μ+ 2ν if entropy effects are negligible, or 2− α, if entropy effects are dominant.
Moreover, μ is less universal: the above lattice values do not hold on a continuum
(conducting spheres that may overlap). Similarly, the kinetics of the Ising model
determine a critical exponent, which differs in different variants of the kinetics and
may not be related to the static Ising exponents such as β and γ. Even though μ
seems not to be determined by the static percolation exponents, related quantities
such as the minimum gap between clusters or the first passage time are determined
by at [17, 18].
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Instead of a mixture of conductors (p) and insulators (1− p ) we may also inves-
tigate a mixture of superconductors (p) and conductors (1 − p). Now for all p > pc

the overall conductivity Σ is infinite, while slightly below pc it diverges with the
power law

Σ ∝ (p− pc)−μ′
(9b)

with μ = μ′ only in two dimensions; otherwise one has a new exponent μ′ (� 0.73
for d = 3) not related by scaling laws to the other exponents.

4 Fractal Dimension: Incipient Infinite Cluster

4.1 Fractal Dimension D

Typical objects of geometry classes in school are one-dimensional lines, two-dimen-
sional squares or circles and three-dimensional cubes or spheres. They have a length
(radius), L, and a mass (volume for unit density) M with M ∝ Ld for d dimensions.
In reality, mother nature produces much more complex objects, such as trees, where
the mass varies with the power of the tree height below 3:

M ∝ LD (D < d, L → ∞). (10a)

Where D is the fractal dimension, and such objects are called fractals, particularly if
they also are self-similar in that a small twig looks like a big branch, and so on. An
exactly solved example are random walks (= polymer chains without interaction),
where D = 2 if the length of the walk is identified with the mass M . For self-
avoiding walks (= polymer chains with excluded volume interaction), the Flory ap-
proximation gives D = (d+2)/3 in d ≤ 4 dimensions (D(d ≥ 4) = 2 as for random
walks), which is exact in one, two and four dimensions, and too small by only about
2% in three dimensions.

For percolation, finite-size scaling theory then relates D of the largest (span-
ning?) cluster at, p = pc, to the above percolation exponents through

D = d− β/ν = (γ + β)/ν = 1/(σν) = d/(1 + 1/δ) (10b)

for d ≤ 6. Thus, the typical critical cluster is about 1.9-dimensional in 2 and 2.5-
dimensional in three dimensions, while in the mean field regime for d ≥ 6 we
have D = 4.

Why is this so? Any quantity X which is supposed to vary near p = pc as |p−pc|x
does so only for infinitely large systems. For a finite lattice size L, the transition is
rounded, and neither X nor any of its p-derivatives diverges or becomes exactly zero.
In particular, the typical cluster radius or correlation length ξ ∝ |p − pc|−ν cannot
become infinite but becomes of order L. Then the relation X ∝ ξ−x/ν is replaced by

X(p = pc) ∝ L−x/ν (11a)

them the threshold, and



10 D. Stauffer

X(p � pc) = L−x/νg[(p− pc)L1/ν ] (11b)

near the threshold, with a suitable scaling function g. In particular, the fraction P∞
of sites belonging to the largest cluster at p = pc vanishes as L−β/ν , and the total
number M of sites in this cluster as

M ∝ Ld−β/ν or D = d− β/ν (11c)

as asserted in Eq. (10b) for typical critical clusters.
Figure 1 shows the second moment χ = M2 =

∑
s nss

2 in small (curve) and
large (+) simple cubic lattices, differing only for p � pc. Simulations are shown in
Fig. 2 for the number M of sites in the largest cluster as well as for susceptibility
(related to the mean cluster size), both at p = pc.

In a finite lattice, the probability R(p) of a spanning cluster to exist goes from
nearly zero to nearly unity in a p-interval proportional to 1/L1/ν , according to
Eq. (11a) with x = 0. The derivative dR/dp is the probability that spanning first
occurred at probability p. It is plausible that this probability, peaked around pc, is a
Gaussian, that is, a normal distribution. Unfortunately, Ziff destroyed [10] this beau-
tiful idea: Since for p � pc and ξ ∼ L every part of the lattice is correlated with the
rest of the lattice, the central limit theorem does not hold.

(If for p � pc we let the cluster size s go to infinity, which requires a special
algorithm, we get into the universality class of lattice animals, Sect. (2.2). Most sim-
ply, in the limit p → 0, Eq. (2) simplifies to ns/p

s = gst, which means we look at
the distribution of configurations with s sites and perimeter t, where all configura-
tions of a given s are weighted equally, whatever their perimeter t is. An important
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Fig. 1. “Susceptibility” M2 in simple-cubic lattice. For the smaller size the maximum is
reduced appreciably
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Fig. 2. Number M of sites in largest cluster (+) and susceptibility M2 (x) at p = pc = 1/2
for triangular site percolation. The two straight lines have the exact slopes D = 91/48 and
γ/ν = 43/24 predicted by finite-size scaling. The largest lattice took about 36 hours on a
workstation with 2 gigabytes memory. Tiggemann [12] simulated L = 7× 106, 25024, 1305,
225 for d = 2, 3, 4, 5 on a large parallel computer

result for these animals is that in three dimensions their radius Rs varies as
√
s, that

is, their fractal dimension is exactly 2. In two dimensions, only numerical estimates
exist with D � 1.56. It is highly unusual that a problem has an exact solution in
three but not in two dimensions.)

4.2 Incipient Infinite Cluster

Right at p = pc, the largest cluster spans the lattice with a pseudo-universal probabil-
ity 0 < R(pc) < 1, and then has a density P∞ going to zero for L going to infinity.
It is also called the incipient infinite cluster IIC. Most of the IIC consists of dangling
ends that carry no current, if the cluster is interpreted as a random resistor network
with conductivity Σ, see Eq. (9) above. The remaining current carrying ‘backbone’
has a fractal dimension 1.643 in two dimensions, 1.7 in three and 2 in at least six
dimensions, and mostly consists of blobs where current flows along several parallel
though connected paths. The few ‘articulation’ sites or bonds, the removal of which
cuts the network into two or more parts, are also called ‘red’ since all the current
flows through them; they have a fractal dimension of only 1/ν = 0.75, 1.14 and 2 in
two, three and ≥ six dimensions.

How many infinite clusters do we have? The easy answer is: none below, per-
haps one at and always one above pc in an infinite network. Indeed, this is what was
claimed mathematically in the 1980s [20]: The number of infinite clusters is zero,
one or infinite. Later mathematics excluded the last choice of infinitely many clus-
ters, even though in seven dimensions scaling arguments, confirmed by numerical
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studies [21], indicated the number of IIC to go to infinity for increasing L in seven di-
mensions. Only in 1995 and later Aizenman [22] predicted that in all dimensions one
may have several spanning clusters at p = pc, in agreement with simulations [23]. In
the presence of several spanning clusters their fractality has been questioned [24].

Why were the earlier uniqueness theorems irreproducible at pc and for very elon-
gated rectangles even above pc [25]? A clear definition of ‘infinite’ is missing in
some of the mathematics, although [20] defined a cluster as infinite if its cardinality
(= number of sites in it) is infinite for L → ∞ in a hypercubic lattice of Ld sites.
Clear definitions of infinity are, of course, needed for reliable proofs [26]. Measure
theory as applied in some theorems may be based on some axioms which are not
applicable for a fractal IIC. Very simply, imagine each line of an L×L square lattice
to have one randomly selected site occupied and all others empty. The set of occu-
pied site then has cardinality L which is infinite for infinite lattices, but its density
becomes zero. Does your measure theory agree with this? More relevant for perco-
lation, even for p < pc the largest cluster has a size increasing logarithmically with
lattice size and thus can be described as infinite, invalidating the percolation thresh-
old as the onset of infinite clusters. Thus, infinite might be defined as increasing with
a positive power of L, that is, having a positive fractal dimension. Then, we have in-
finitely many infinite clusters only at p = pc, although in most cases only the largest
of them is a spanning cluster. Using ‘spanning’ as a definition of an infinite cluster
seems to cause the smallest problems.

Thus, one should not regard a question as settled if some mathematical theorem
claims to have answered it. The mathematics may not apply to the same problem
one is interested in, or [27] may apply only for unrealistically large lattices. On the
other hand, computer simulations should also be relied upon only if confirmed in-
dependently. And in the interpretation of simulation results, one should be objective
and not try to agree with prevailing theories. For example, de Arcangelis [21] might
already have seen the multiplicity of infinite clusters in five dimensions, not only in
seven, had she not followed her obviously incompetent postdoctoral mentor.

(On a more positive side, mathematicians [28] solved biased diffusion on per-
colating clusters above pc only a few years after physicists had controversies about
their simulations.)

5 Simple Renormalisation Group

Why are scaling laws and finite-size scaling so simple? Why is universality valid
for the exponents? These questions arose for thermal critical phenomena as well as
for percolation. The main reason is that the correlation length ξ goes to infinity at
the critical point. Thus, all approximations that restrict the correlations to some finite
lengths eventually become wrong, and instead the scaling ideas become correct. They
were explained by Ken Wilson through what he called renormalisation group, around
1970, and he got the physics Nobel prize for it in 1982. Basically, since correlations
extend over long distances, the single atom or lattice point becomes irrelevant and
can be averaged over. In politics, we have a similar effect: Many democracies are



Classical Percolation 13

based on electoral districts, and the candidate winning most votes within this district
represents this district in the national parliament. It is the cooperation of many people
within the electoral district, not the single vote, which is decisive.

Returning to an L × L lattice, we can divide it into many blocks of linear di-
mension b, and treat a block analogously to an electoral district. Thus, in an Ising
model, if the majority of block spins point upward, the whole block is represented
by a superspin pointing up, analogous to the single representative in politics. These
block spins then act like the original spins, one can put b × b superspins into
one superblock, and can have just one super-representative following the majority
opinion of the representatives within the superblock. This process can be contin-
ued: at each stage b × b lower representatives are renormalised into a single higher
representative.

Such a renormalisation by majority rule works fine with Ising spins, but perco-
lation deals with connections, not with up and down spins. Thus, for percolation a
b × b block is renormalised into an occupied supersite if and only if there is a span-
ning cluster within the block; otherwise, the superblock is defined empty. In this way,
whole blocks are renormalised into singe sites via connectedness. And the renormal-
isation is reduced to the standard question which was asked already before Wilson’s
invention: Does a b×b lattice have a spanning cluster? The supersite is thus occupied
if and only if the block spans, which happens with probability Rb(p). If we call p′

the probability of the supersite to be occupied, we thus have

p′ = Rb(p) . (12a)

If we are at p = pc, then the renormalisation should not change anything drastic
since ξ is larger than any b; thus, if the renormalisation would be exact we would have

pc = Rb(pc) . (12b)

Practically we determine a fixed point p = p∗, such that

p∗ = Rb(p∗) . (12c)

and then find pc as the limit of p∗ for b → ∞, which again is similar to what perco-
lation experts did before this renormalisation theory.

A particularly simple example is the triangular site percolation problem with
pc = 1/2, if we do not divide the lattice into large b × b blocks, but into small
triangles of three sites which are nearest neighbours, as shown on the left:

* x x

* * x x x .

The triangle contains a spanning cluster if either all three sites are occupied (x,
central diagram) or two sites are occupied (x) and one site is empty (. , right diagram).
The first choice appears with probability p3, the second with probability p2(1 − p).
However, this second choice has three possible orientations since each of the three
sites can be the single empty site. Thus, the total probability of the triangle to have a
spanning cluster is
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p′ = p3 + 3(1 − p)p2 (13a)

with three fixed points p∗, where p′ = p:

p∗ = 0, p∗ = 1/2, p∗ = 1 . (13b)

The second of these fixed points is the percolation threshold, while the first corre-
sponds to lattice animals (Sect. 2.2 and end of Sect. 4.1) and the third to compact
non-fractal clusters. With somewhat more effort, one can derive also a good approx-
imation for ν.

This agreement of the fixed point p∗ with the true threshold pc = 1/2 is not
valid for other lattices or block choices. Nevertheless, there was a widespread fixed-
point consensus that Rb(pc) = pc for sufficiently large b. Regrettably, Ziff [29]
again destroyed this beauty and found Rb(pc) = 1/2 for square site percolation,
where pc � 0.593. In general, R(pc) is a pseudo-universal quantity depending on
boundary conditions and sample shape, while pc for large samples is independent of
these details but is different for site and bond percolation and depends on the size
of the neighbourhood. Life was much nicer before. Fortunately, if a fixed point is
determined by Eq. (12c) and the block size goes to infinity, then the fixed point still
approaches pc.

6 Diffusion and Percolation

6.1 Unbiased Diffusion

The most thoroughly investigated dynamics for percolation are presumably random
walkers on percolation clusters [30, 31], particularly at p = pc. This research was
started by Brandt [32], but it was the later Nobel laureate, de Gennes [33] who gave
it the catchy name ‘ant in the labyrinth’. The anomalous diffusion [34–36] then made
it famous a few years later and may also have biological applications [37].

We put an ant onto a randomly selected occupied site in the middle of a large
lattice, where each site is permanently occupied (randomly with probability p) or
empty (1− p). At each time step, the ant selects randomly a neighbour direction and
moves one lattice unit in this direction if and only if that neighbour site is occupied.
We measure the mean distance

R(t) = 〈r(t)2〉1/2 or = 〈r(t)〉, (14)

where, r, is the vector from the starting point of the walk and the present position,
and r = |r| its length. The average 〈. . . 〉 goes over many such walking ants and
disordered lattices. These ants are blind, which means they do not see from their old
place whether or not the selected neighbour site is accessible (occupied) or prohibited
(empty). (Also myopic ants were grown, which select randomly always an occupied
neighbour, since they can see over a distance of one lattice unit.) The squared dis-
tance r2 is measured by counting how often the ant moved to the left, to the right, to
the top, to the bottom, to the front, or to the back on a simple cubic lattice.



Classical Percolation 15

The problem is simple enough to be given to students as a programming project.
They then should find out by their simulations that for p < pc the above R remains
finite, while for p > pc it goes to infinity as

√
t, for sufficiently long times t. But

even for p > pc it may happen that for a single ant the distance remains finite: If
the starting point happened to fall on a finite cluster, then R(t → ∞) measures the
radius of that cluster. Right at p = pc, instead of a constant or a square-root law, we
have anomalous diffusion:

R ∝ tk, k = (ν − β/2)/(2ν + μ− β) (15)

for sufficiently long times. This exponent k is close to but not exactly 1/3 in two and
1/5 in three dimensions. β and ν are the already mentioned percolation exponents,
and μ is the exponent for the conductivity if percolation is interpreted as a mixture
of electrically conducting and insulating sites. If we always start the ant walk on
the largest cluster at p = pc instead of on any cluster, the formula for the exponent
k simplifies to ν/(2ν + μ − β). The theory is explained in detail in the standard
books and reviews [1–6, 30, 31]. We see here how the percolative-phase transition
influences the random walk and introduces there a transition between diffusion for
p > pc and finite motion for p < pc, with the intermediate ‘anomalous’ diffusion
(exponent below 1/2) at p = pc. Figure 3 shows this transition on a large cubic
lattice.

1
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0 1 2 3 4 5 6 7 8 9

<
|r

|>

log_10 time

p = pc – 0.01, = pc and = pc + 0.01; 2404 * 2404 * 2404

Fig. 3. Log-log plot for unbiased diffusion at (middle curve), above (upper data) and below
(lower data) the percolation threshold pc. We see the phase transition from limited growth at
pc − 0.01 to diffusion at pc + 0.01, separated by anomalous diffusion at pc. Average over 80
lattices with 10 walks each
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6.2 Biased Diffusion

Another type of transition is seen in biased diffusion, also for p > pc. Instead of
selecting all neighbours randomly, we do that only with probability 1 − B, while
with probability B the ant tries to move in the positive x-direction. One may think
of an electron moving through a disordered lattice in an external electric field. For a
long time, experts discussed whether for p > pc one has a drift behaviour (distance
proportional to time) for small B, and a slower motion for larger B, with a sharp
transition at some p-dependent Bc. In the drift regime one may see log-periodic
oscillations ∝ sin(const log t) in the approach towards the long-time limit, Fig. 4.
Such oscillations have been predicted for stock markets [38], where they could have
made us rich, but for diffusion they hamper the analysis. They come presumably
from sections of occupied sites that allow motion in the biased direction and then
end in prohibited sites [39].

Even in a region without such oscillations, Fig. 5 shows no clear transition from
drift to no drift; this transition could only be seen by a more sophisticated analysis
that showed for the p of Fig. 5 that the reciprocal velocity, plotted versus log(time),
switches from concave to convex shape at Bc � 0.53. Fortunately, only a few years
after these simulations [40], the transition was shown to exist mathematically [28].

These simulations were made for p > pc; at p = pc with a fractal largest clus-
ter, drift seems impossible, and for a fixed B the distance varies logarithmically,
with a stronger increase slightly above pc and a limited distance slightly below pc,
Fig. 6.
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Fig. 4. Log-periodic oscillation in the effective exponent k for biased diffusion; p =
0.725, B = 0.98. The limit k = 1 corresponds to drift; 80 lattices with 10 walks each
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7 Summary

This review summarised the basic theory, particularly when it was not yet contained
in the earlier books [1–6]. Applications were left to the Sahimi book [4]; even for
the very first application [7] there is not yet a complete consensus that the three-
dimensional percolation exponents apply to polymer gelation. More recent applica-
tions are social percolation [41] for marketing by word-of-mouth, and stock market
fluctuations due to herding among traders [42].

Classical percolation theory, similar to Fortran programming or capitalism, was
thought to be finished but seems to be alive and kicking [43]. Nevertheless, I think
the future is more in its applications.
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1 Introduction

In this chapter, we address the issue of nonlinearity of response functions of disor-
dered, granular composite materials and more specifically, an extension of the classi-
cal percolation (a classical insulator to metal phase transition; concisely reviewed by
the author of the first chapter) problem to a situation where the contributions of non-
classical or non-diffusive processes cannot be neglected. In the paradigm of charge
transport in electrical composites, this implies that the charge carriers travel not only
inside metallic phases or grains but also outside of it; e.g., in the microscopic gap
between two such grains using some externally assisted hopping over the barrier
potential due to the gap. The assistance may be due to the phonons (ambient ther-
mal bath), impressed electrical and/or chemical potential differences, etc. As such,
these processes are known to bring forth nonlinearity in the response functions of the
macroscopic system.

Further, if the imminent phase transition as a function of the external driving field
gives rise to a hazardous failure of some sort (usually irreversible), we are faced with
a generalised breakdown phenomenon. In the paradigm of electrical phenomena, if
it is the failure of a dielectric/insulator to stop charges from flowing, one observes
a spark discharge (e.g. lightning in nature) and the phenomenon is called a dielec-
tric breakdown. If, on the other hand, the failure is due to the transformation of a
good metal into an insulator due to a very high current, then it is called a fuse or
simply electrical breakdown. Classical (or, Zener) breakdown has been concisely re-
viewed and a fully microscopic theory of quantum (or, Landau-Zener) breakdown
have been presented in the later two chapters of this book. We discuss some aspects
of reversible, semi-classical breakdown as well, later in this chapter.

1.1 General Scenario of Nonlinear Processes in Nature

Interest in nonlinear response phenomena in many diverse types of systems (mag-
netic, electrical, thermal, mechanical, fluid-dynamical, geological, biological etc.),

Sen, A.K.: Nonlinear Response, Semi-classical Percolation and Breakdown in the RRTN Model. Lect. Notes Phys. 762,
21–82 (2009)
DOI 10.1007/978-3-540-85428-9 2 c© Springer-Verlag Berlin Heidelberg 2009
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has had a history of extensive research, particularly during the last four to five
decades, by physical scientists and engineers. Yet, many experiments on such sys-
tems remain intriguing and mostly unexplained. The generalized susceptibility, being
a measure of the response of a system to an appropriate external perturbation or a
driving field, is typically assumed to be linear under a vanishingly small external
field (perturbation) that does not appreciably change the basic nature of the system
or the modes characterising the response under study.

But in practice, for an appropriately large perturbation (a non-destructive one),
the physical system may acquire newer modes of response and hence the response
characteristic of the system could change with the external field. This is the basic
reason for the response growing faster than linearly beyond some finite, system-
dependent value of the field. If the number of available modes or channels of
response becomes smaller on increasing the external perturbation (e.g. Type-I su-
perconductors in a magnetic field), the response function decays nonlinearly as in
the case of a fuse breakdown. In either case, the nonlinear macroscopic response of
the system is typically reversible if the increment or decrement of the participating
channels takes place reversibly. Percolative picture comes into play if this change
in the number of channels, as a function of the relevant driving field, is due to the
change in the coverage of the physical space of the system with more of one phase
(e.g. conducting) than another (e.g. insulating). Most of our discussions in this review
would focus on this mechanism of nonlinearity. One of the intriguing observations on
many such systems has been that the appropriate generalized response is observable
and nonlinear at relatively small values of the external field. Akin to soft mechani-
cal systems with high compressibility, they evoke a sense of softness even when the
response is non-mechanical. Thus, such driven systems have variously been called
soft-condensed or complex systems.

Another interesting fact has been that many natural systems/phenomena do not
show any measurable response until an appropriate driving force exceeds a measur-
able threshold. For example, a rigid body on a rough surface does not move until
the driving force exceeds a finite frictional force. More intriguingly, there seems to
exist an almost general law of nature that if there is a finite threshold for a non-zero
response in a driven macroscopic system, the response characteristics is nonlinear
[1–4] with a concommitant dynamic criticality at this threshold. In the example of
mechanical systems near the verge of motion, it is well-known that the co-efficient of
static friction is larger than the co-efficient of dynamic friction and is thus indicative
of a clear nonlinearity.

In this context, it may be noted that disorder in many quantum systems such
as charge-density-wave (CDW) systems or flux-vortex lattices of Type-II supercon-
ductors can give rise to ‘pinning’ or inhibition to transport upto a critical or thresh-
old value of the applied field above which a current appears. As an example, we
cite a case of highly disordered granular superconductors [5]. In a quantum two-
dimensional electron gas system made of micron-sized Si-MOSFET’s (Metal Oxide
Semiconductor Field Effect Transistor) [6] at several hundred milli-Kelvins, one ob-
serves a metal insulator transition at a critical electron density, and a strongly nonlin-
ear current-voltage response on both sides of the transition. Among other examples
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of nonlinear electrical response with a low threshold voltage, we just mention one on
electrical transport through single walled carbon nanotube (SWNT) intramolecular
junctions [7] and another through DNA molecules [8].

There exists a wide variety of disordered composite materials with various gen-
eralized nonlinear response properties (besides the electrical ones). Many attempts
have been devoted towards finding out if any unified description exists for these va-
rieties of systems. An obvious case in point would be nonlinear thermal conductivity
if the electrical conductivity is nonlinear (due to the Wiedemann-Franz law). There
is an interesting example of super elastic percolation networks (viscosity of gels)
giving rise to nonlinear elastic response. These networks consist of inclusions of a
perfectly rigid material (with infinite elastic constants) inside an isotropic elastic host
material, e.g., alumina or zirconia powders inside a soft gel [9, 10], and the elastic
constants of such a composite tend to diverge near its percolation threshold.

In some problems of fluid flow, one may use an analogy between laminar flow in
tubes and electrical currents, and use the language of electrical network for conve-
nience. Then the volumetric flow rate q is identified to the current I and the pressure
drop ΔP across a tube or a pore to the voltage difference V across a bond. Thus, e.g.,
the flow of polymers is modelled (see e.g. [11] and references therein) considering
a power law I = GV α for each bond (tube or pore), where G is a generalized sus-
ceptibility (mobility). For a Bingham fluid, there is a critical shear stress, τc, above
which it has a finite viscosity and below which it is so enormously viscous that it
almost ceases to flow. Considering the percolating network model of porous media
one may employ an effective medium approximation (a mean field approximation) or
some numerical method to calculate the rheological properties of a power-law fluid
inside porous media. Next we give an example where surface (or, interface) tension
is important. Foam is a non-Newtonian fluid that is used in the displacement and the
enhancement of oil recovery from the porous rocks. However, to move the foams
through the pores, external pressure has to exceed a certain critical value of capillary
(surface tension mediated) forces.

In the studies of fracture type of failures also, it has been observed that no micro-
crack nucleation process takes place unless the applied shear strain exceeds a system
size-dependent critical value. It may be noted here that in such rupture type of break-
down phenomena, the system crosses over from a higher elastic modulus (implying
a very stable mechanical system) to a lower one where the system cannot hold itself
anymore. The basic physics of such processes has been studied using the analogue
of electrical fuse [12].

1.2 Electrical Systems: Experimental Facts

Nonlinear electrical transport characteristics have been revealed in an early (1964)
work by van Beek and van Pul [13] on carbon-black loaded rubbers and in many
different types of materials [4, 12]. In another series of early experiments on ZnO
[14–16] varistors, very strong nonlinear response had been reported; see Mahan
et al. [17] for a short review, further experiments and a proposed theory. The ob-
served I-V characteristics in the ZnO varistors are often empirically described by a
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power-law: I = kV α. The theory developed by Mahan et al. predicted the nonlin-
earity exponent (α) to be as high as 50 or even 100. The works regarding nonlinear
electrical response, mentioned so far above and in our discussions below, are meant
to be representative and not exhaustive. We point out here some interesting and com-
mon features of composite materials, specially those which are highly structured and
give rise to well-known universal behaviours. As an example we may here refer to
the carbon-black-polyvinylchloride (PVC) composites [18, 19]. Carbon blacks com-
posed of small but complicated shaped particles usually exist in the form of ‘high-
structure’ aggregates, whereas smaller and geometrically simpler particle aggregates
are also possible in the form of ‘intermediate-structure’ and ‘low-structure’ blacks
[18, 19]). Only the high-structure composite (with a conductivity exponent of t = 2)
was found to be in the universality class of ordinary percolation problems. Similarly,
we have the example of camphor sulphonic acid (CSA) treated polyaniline (PANI-
CSA) with percolative characteristics [20]. In fact, the following features pertain to
a wide variety of available disordered electrical composites.

• Very low semi-classical (-quantum) percolation threshold: Usually these com-
posites exhibit an unusually low percolation threshold. For example, in an experi-
ment on carbon-wax system [21], there is a percolation transition at pc = 0.0076.
Very low thresholds are also reported for other systems, e.g., pc = 0.002 for
carbon-black-polymer composites [22, 23] and pc = 0.003 for sulphonated
(doped) polyaniline networks [20]. In the Fig. 1, one may look at the transmis-
sion electron micrographs (TEM) of a percolating and a non-percolating sample
of PANI-CSA to appreciate how ultra-tenuous (thus very difficult to prepare)
such structures are.

• Qualitatively identical nonlinear response, both below and above the clas-
sical threshold: As an example, one may note the experiment on Ag particles

Fig. 1. TEM pictures of (a) a percolating, and (b) a non-percolating sample of PANI-CSA
around sulphur-doping concentrations of p = 0.003, an ultra-low percolation threshold
(adapted from [20])
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in KCl matrix by Chen and Johnson [24], where similar nonlinear transport was
reported both below and above pc = 0.213 (thus, tunnelling/hopping between
disconnected conducting regions seems to be responsible for the nonlinearity).

• Power-law growth of conductance: The nonlinearity in the I-V curves (above a
constant ohmic part) and an associated non-integer power-law behaviour (for low
field), I ∼ (V − Vg)α, Vg being the system’s threshold/breakdown voltage, have
been observed in a variety of experiments (for conductance G, the nonlinearity
exponent, δ = α − 1. Many theoretical works take δ to be an integer equal to
2 (voltage inversion symmetry), but for many complex systems the exponent is
clearly a non-integer. For example, for arrays of normal metal islands connected
by small tunnel junctions , α = 1.36 ± 0.16 in 1D and 1.80 ± 0.16 in 2D [25].
Near breakdown the carbon-wax system in 3D seems to give δ = 1.36 [21], and
ZnO varistors show a very strong nonlinearity α ≥ 50. Further, both the Chen-
Johnson experiment [24] and the experiment on Si-MOSFET [6] near metal-
insulator transition suggest that α = α (p) is a function of dopant concentration,
p or of the carrier electron density.

• Saturation of conductance: For disordered composite systems and for many
other materials, the G-V curve is seen to saturate for an appropriately high
enough voltage below the Joule-heating regime, i.e., it looks like a nonlinear
sigmoidal type function interpolating two linear regimes (see [21, 24]). For mi-
croemulsions of water in oil under an external electric field, a similar curve is
also presented by Aertsens and Naudts [26].

• Crossover current for nonlinearity: The current Ic (voltage Vc), at which the
conductance G differs from the zero-voltage conductance G0 (if non-zero) by
some arbitrarily chosen small fraction ε (∼ 1%), is called the crossover current
(voltage). It is seen to scale as Ic ∝ Gx

0 , where x is called the crossover exponent
for nonlinearity. For 3D carbon-wax composites, x ∼= 1.4 [21, 27], and for dis-
continuous thick gold films, x ∼= 1.5 [4]. One can easily check that this exponent
is related to δ above by δ = 1/(x− 1).

• Frequency-dependent conduction: Experiments on the complex ac conduc-
tance G(ω) in various composite systems, dispersed metals etc., as well as
many disordered/ amorphous systems [27–39], report a non-integer power-law
behaviour of the modulus, |G(ω)| = [(Re G)2 + (Im G)2]1/2. At a fixed volt-
age amplitude and at a moderately low-ω, [|G(ω)| − G(0)] ∝ ωα′

, where the
exponent α′ ∼= 0.7; and for a vast majority of disordered solids, 0.6 ≤ α′ ≤ 1.0
(the case of very low ω’s is different, see Sect. 4).

• Low-temperature hopping-dominated conduction: Disordered insulators dis-
play a very interesting temperature-dependent conduction properties particularly
in the low-temperature regime where the conduction is mainly due to phonon-
assisted hopping of the electrons between randomly spaced localized states.
One then needs to consider Mott’s variable range hopping (VRH) conductance
[40, 41], or some of its variations, namely G(T ) ∼ exp[−(T0/T )γ ] at low tem-
peratures, T , with an anomalous nature of the VRH-exponent being dependent
upon the concentration p, i.e., γ = γ(p) [20]. Further, the conductance of the
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sample goes through a maximum as the temperature is increased towards a metal-
lic behaviour. Details are discussed in the Sect. 5.

• Early power-law dynamics far-from-equilibrium: This ubiquitous pheno-
menon, as amply described by its name, occurs in many different classes of
systems, not just electrical in nature and indicates the failure of the classical
Boltzmann kinetics (or, Debye relaxation) with exponential relaxation. The sub-
ject is vast in its scope and we give a fascinating but brief description of this
ill-understood arena in the Sect. 6.

• Breakdown as a critical phenomenon: One of the characteristics of a break-
down phenomenon is the breakdown field and its measure close to criticality
in terms of an exponent. Another could be a characteristic time as the system
approaches this singularity, reversibly or irreversibly. In the electrical analogue,
reversible dielectric breakdown (and the related exponent) has been studied by
laboratory simulation [42]. We address them in terms of a reversible, semi-
classical dielectric breakdown in the RRTN in Sects. 7 and 8.

1.3 Some Passing Remarks

Disordered, composite or granular systems, the main objects of our study here, are
composed of many microscopic elements or grains (much larger than atomic dimen-
sions) having different physical properties. In the electrical case, it means that some
of them may be conducting (a metal or superconductor), some insulating and yet
some others semi conducting. For example, a Schottky potential barrier (v) arising
at the interface of a semiconductor in intimate contact with a metal, gives rise to
a tunneling current, i ∝ exp(v/E0), where the energy-scale E0 is some function
of temperature. In the case of a p-n junction heavily doped with Sb donors, the
current seems to go from one linear region to another in steps, or the conductance
smoothly connects two plateaus. Qualitatively similar curves1 are observed for InP
tunnel diode, Au doped Ge tunnel diode, a Zener diode etc. These processes thus
provide extra paths or channels for current flow (thus, increasing the conductance),
and hence one may observe breaks in the i-v curves joining two piece-wise linear
(ohmic) regions. In the conventional circuit analyses to obtain the dc response, one
treats these elements semi-classically in the sense that one does not solve for the wave
function, but takes the quantum mechanical effects indirectly by including only the
tunnelling currents through barriers.2

1 For quite high voltages, other complicated phenomena, e.g., negative differential conduc-
tance) may arise, but we do not address them here.

2 Even in this semi-classical sense, these tunnelling barriers are still fundamentally different
from the Ohmic resistors, since they contribute to the resistance but not to heat dissipation.
It may be noted that heat dissipation due to these barriers does take place, but it requires
non-equilibrium processes which, in an idealised setup, take place in the electrochemical
reservoirs attached to the perfect leads (and, hence outside of the sample).
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2 The Origin of the RRTN Model and Its Percolative Aspects

In many of the works mentioned above, dilution plays an important role. These are
situations where the percolation theory has been the underlying framework and many
of the interesting properties may be related to the cluster statistics and geometric
connectivity. The first thing to note from the facts listed above is the ultra-low perco-
lation threshold even when the included conducting phases are isotropic. This along
with the fact that many of these nonlinear systems carry current at a dilution (p) be-
low the classical percolation threshold (pc) indicates strongly that tunnelling through
disconnected (dispersed) metallic regions must give some extra virtually connected
percolating clusters. From the nonlinear I-V characteristic (e.g., see the experiment
by Chen and Johnson [24]) it is observed that the response behaviour is reversible
with respect to the applied field in the sense that the response curve (current or
voltage) does almost trace back as the field is decreased. This fact also indicates
that reversible tunnelling is responsible for such a behaviour. Also the temperature-
dependent conductance with a maximum at some characteristic temperature (depen-
dent on the amount of disorder present) and the Mott VRH type behaviour at very
low temperatures give further credence to tunnelling assisted percolation. In the fol-
lowing section, we recall our proposal of a semi-classical (or, semi-quantum) model
of percolation [43] which works on the borderline between a classical and a quantum
picture. The semi-classical physics enters our discussion through the possibility of
tunnelling of a charge carrier through a barrier (non-existent in classical electricity).

To mimic charge transport in composite systems or dispersed metals, we assume
the grains (metallic or metal-like) to be much larger than atoms but much smaller
than laboratory-scale macroscopic objects. These grains are randomly placed in the
host material that are insulators. Further, we assume semi-classical tunnelling be-
tween such grains across some potential barriers. Clearly, these barriers would de-
pend on the local geometry of the insulating and the metallic grains. Since in practice,
the tunnelling conductance should fall off exponentially, the tunnelling should have
some length scale designating an upper cut-off (for tunnelling to occur) in the sepa-
ration between two metallic grains. Further, the separation between two grains or the
potential barrier can vary continuously between zero and some upper cut-off.

Thus, our approach would be to solve for an appropriate electrical network based
on a semi-classical (or semi-quantum) percolation model. For simplicity and to cap-
ture the basic physics, we construct a bond (lattice) percolation model for this prob-
lem, such that (i) tunnelling may take place only between two ohmic conductors (or,
o-bonds) separated by a nearest neighbour gap and no further,3 and that (ii) the poten-
tial barrier in such a nearest neighbour insulating gap between two metallic grains is
constant. Thus, one may imagine a virtual bond sitting at each such gap that conducts
current nonlinearly due to tunnelling phenomenon. We call these tunnelling conduc-
tors as tunnelling bonds (or t-bonds). Made of both random resistive and tunnelling

3 It may be noted that if we include tunnelling between next nearest neighbours also, the
effective percolation threshold would go down even further. For simplicity, in this work we
restrict ourselves to nearest neighbour gaps only.
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(a) o-bonds in a p = 0.30, L = 20 RRN sample (b) RRTN based on the RRN beside: o-bond
t-bond

Fig. 2. (a) A typical Random Resistor Network (RRN) configuration embedded on a 2D
20 × 20 square lattice with a randomly placed ohmic bond (solid line) concentration of
p = 0.3. The insulating bonds have been suppressed from view. (b) The realisation of a
2D Random Resistor cum Tunnelling-bond Network (RRTN) in its maximal state (one where
all the possible nearest neighbour tunnelling bonds, shown in dashed lines, are active) built
upon the same RRN sample at p = 0.3. It is clear that while the RRN does not percolate, the
RRTN does. More important, once a RRN configuration is chosen, the maximal RRTN (where
all the perfectly correlated t-bonds are active) is fully determined

elements,4 this network was named by us as a Random Resistor cum Tunnelling-
bond Network (RRTN). An illustration is given in the Fig. 2. Now tunnelling may
take place through the tunnelling bonds in various ways, so that the functional form
of the tunnelling current as a nonlinear function of the potential difference across
them may look quite complicated. For simplicity, we address the aspects of non-
linearity in a macroscopic system which arises due to two piecewise linear regions
of the i-v characteristic of the t-bonds. The piecewise linear response is actually a
highly nonlinear response with a cusp-singularity at the threshold of the nonlinear
regime.

The transport due to tunnelling which is the source of nonlinearity in the experi-
mental systems [24, 27] we focus on, can be well approximated in this way and, thus,
the nonlinearity of the macroscopic systems may be understood at a qualitative (and,
sometimes even at a quantitative) level. In the RRTN model, we work with t-bonds,

4 There exists a similar model in the literature called a dynamic random resistor network
(DRRN) as applied by Gefen et al. [4] to explain the crossover exponent in the experiment
on Au-films reported in the same reference. The difference between these two models lies
in the fact that the tunnelling elements (or the nonlinear conductors) in the DRRN could be
anywhere in the non-metallic domain of the system, whereas in the RRTN these elements
exist only in the proximity gap between two metallic domains (one can imagine that the
charge transfer by tunneling should be most effective only in such gaps). It may also be
noted that traditionally the dielectric breakdown problem has been treated in the DRRN
type models.
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v
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–vg

Fig. 3. The current-voltage (i-v) characteristic of a t-bond with a threshold (vg)

which have zero conductance below a threshold voltage, vg; see Fig. 3. The calcula-
tion of the new percolation threshold (pct) was carried out for the class of maximal
RRTN’s, i.e., for RRTN configurations where all the possible t-bonds are active [e.g.,
see Fig. 2(b)].

The high-field saturation of the macroscopic conductance (upper ohmic regime)
does clearly take place if the microscopic ‘nonlinear’ elements become linear be-
yond some characteristic microscopic voltage. But even if the conductance of these
microscopic elements tend to infinity (e.g. a Schottky barrier) at a high voltage or fre-
quency, the macroscopic circuit still saturates to an upper linear (or, ohmic) region if
the nonlinear elements do not form a continuous system-spanning path.5

We do again point out that the word tunnelling in the naming of the model
(RRTN, [43], 1994) bears only the historical fact that it was initially proposed by us
to study nonlinear electrical response where tunnelling of charges may be of essence.
But, the very simple and basic sense, in which it is introduced, makes it amenable
to many other non-electrical systems with quenched disorder. To reiterate, the word
‘tunnelling’ may be replaced by ‘nonlinearity’ in the form of microscopic thresh-
old/s for response. Thus, while the name continues because of historical reasons, it
remains applicable to very many different classes of systems.

2.1 Effective Medium Approximation (EMA) for d-Dimensional
Maximal RRTN’s

An effective medium approximation gives reasonable result for any p away from the
threshold (here pct). The EMA has been used to calculate accurately the conductivity

5 Actually, one may envisage some configurations in the RRTN where only the t-bonds may
span the system even in 2D (in higher dimensions, such possibilities increase). But, for an
infinite-size system, the probability of such configurations seem to be very small, particu-
larly at low dilution of disorder. So such RRTN samples are atypical and not considered for
dc properties. Their role in the ac properties is discussed in Sect. 4.
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of general binary mixtures except in the vicinity of the critical regions. This approach
is old and had been devised for the transport properties of inhomogeneous materi-
als first by Bruggeman [44] and then independently by Landauer [45]. Its successful
application to the percolation theory by Kirkpatrick [46] has drawn the attention of
many others in this field. It has then been applied for a wide variety of inhomoge-
neous materials. The development has some similarity with the well known coherent
potential approximation (CPA) for treating the electronic properties of the binary
alloy problem.

The composite systems have seen a series of attempts in this direction while deal-
ing with the nonlinearity in the response involved (see [47] and references therein).
Here we follow the method as described in [46]. The method is as follows. Consider
a random electrical network on a hyper cubic lattice of dimension d > 1. The basic
idea is to replace a random network by a homogeneous effective network or an ef-
fective medium where each bond has the same average or effective conductivity Ge.
The value of the unknown Ge is calculated in a self-consistent manner. To accom-
plish this, one bond embedded in the effective medium is assigned the conductivity
distribution of the actual random network. The value of Ge is then determined with
the condition that the voltage fluctuation across the special bond within the effective
medium, when averaged over the proper conductivity distribution, is zero. The volt-
age (v) developed across such a special bond can be calculated [46] for a discrete
lattice of z (= 2d for a hyper cubic lattice) nearest neighbours as

v ∝ (Ge − g)/[g + (d− 1)Ge]. (1)

The requirement is that the average of v be zero when the conductance for the special
bond may take any of the ohmic, the tunnelling or the insulating bond value with
appropriate probabilities for the actual network.

If the probabilities of a bond to be ohmic, tunnelling and purely insulating are po,
pt and pi, respectively, then the probability density for a distribution of these three
types of resistors, is

f(g) = poδ(g − go) + ptδ(g − gt) + piδ(g − gi), (2)

where go, gt and gi are the conductances of ohmic, tunnelling and the insulating
resistors, respectively. The EMA condition stated above, i.e., < v >= 0 now reads

∫
dg f(g)(Ge − g)/[g + (d− 1)Ge] = 0. (3)

Putting Eq. (2) into the above Eq. (3), we get

po(Ge − go)
[go + (d− 1)Ge]

+
pt(Ge − gt)

[gt + (d− 1)Ge]
+

pi(Ge − gi)
[gi + (d− 1)Ge]

= 0. (4)

The above equation reduces to the EMA equation (quadratic in Ge)

AG2
e + BGe + C = 0, (5)
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where A = (d−1)2, B = (d−1)[(1−dpo)go +(1−dpt)gt] and C = −[(d − 1)−
dpi]gogt, considering the conductance of the insulating bonds to be gi = 0. The valid
solution of Eq. (5) is

Ge =
−B + (B2 − 4AC)1/2

2A
. (6)

The other solution with the − sign in front of the square-root is an unphysical one as
one can show that it makes Ge negative. Now one can obtain the linear conductance
of the macroscopic model composite system in 2D and 3D, putting d = 2 and 3,
respectively, given some specific values or functional forms for the conductances of
the elementary components such as the ohmic and the tunnelling bonds.

For calculating the percolative properties, we assume that the conductance of a
tunnelling bond, when it overcomes its voltage threshold, is the same as that of an
ohmic bond. We believe that this equality ansatz does not change the phase transition
characteristics. Thus, putting gt = go = 1 and gi = 0 in the Eq. (6), we obtain

Ge =
d(po + pt) − 1

(d− 1)
. (7)

To calculate the percolation threshold, pct, the effective conductance (Ge) in the
above equation is set to zero. As an example, in the limit when all the possible
t-bonds are active (the maximal RRTN) in a 2D square lattice, we have

po = p, (8)

pt = (p3 + 3p2q + 3pq2)2q, (9)

pi = 1 − po − pt = [1 − (p3 + 3p2q + 3pq2)2]q, (10)

where q = 1 − p. Thus, using d = 2 in the Eq. (7) along with the above expres-
sions for po and pt, one obtains the EMA equation for pct for the square lattice
maximal RRTN:

2(po + pt) = 1. (11)

Solution of this equation gives p = pct
∼= 0.2497. This may be compared with our

numerical result [48] that gives pct
∼= 0.181. The EMA is basically a mean field

calculation that overestimates the percolation threshold value in lower dimensions.
However, for pure/classical bond percolation in 2D, this gives the exact result pc =
1/2. This is so because the square lattice in 2D is self-dual in the case of purely
random bond percolation problem.

We may also find the value of pct for 3D (simple cubic lattice) maximal RRTN,
where the probability of a tunnelling bond is

pt = (p5 + 5p4q + 10p3q2 + 10p2q3 + 5pq4)2q (12)

Using d = 3 in Eq. (7) and the expression for pt, an equation similar to Eq. (11) is
obtained, which when solved gives pct

∼= 0.1252.
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2.2 Small Cell Renormalization Result for 2D Maximal RRTN’s

Just for its effectiveness as a good starting point, we present here a small-cell renor-
malisation calculation for RRTN’s in 2D. The idea here is to add the probabilities of
all the percolating configurations of a few small cells and call it the probability of a
single coarse-grained or renormalized bond [49]. For this purpose, we consider the
recombination of two original cells with all the seven bonds. We use the criterion
that any such combination gives rise to percolation (i.e. a renormalized o-bond ex-
ists) whenever the left and the right edges of the combination are in contact through
two o- and/or t-bonds. The necessity of the two extra vertical bonds at the left and the
right edges become clear by considering, e.g., Fig. 4 (Left). It is obvious that with-
out the leftmost and rightmost vertical bonds, the two horizontal t-bonds cannot be
placed in either of these two diagrams, and hence these configurations will not per-
colate just as in the uncorrelated bond percolation problem. But, these are a couple
of typical diagrams that make this problem different from the RRN bond percolation,
and, thus, their contributions should not be neglected.

Summing the probability (p′) of all such contributions, one obtains [48]

p′ = p7 − 4p6 + 4p5 + 5p4 − 13p3 + 8p2 = R(p). (13)

The fixed point of the equation p∗ = R(p∗) is calculated numerically and we ob-
tain, p∗ ∼= 0.167. This may be considered as the nonlinear percolation threshold
pct for this finite-size system. We may also calculate the correlation length ex-
ponent (ν) defined by ξ ∼ (p − pct)−ν . Derivative of R(p) at the fixed point
is λ = (dp′/dp)|p=p∗ ∼= 1.68. Then the exponent ν may be calculated as [49]
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Fig. 4. Left: Example of two typical graphs contributing to the small cell renormalization
calculation for the smallest cell with size b = 2 (solid bonds are o-bonds). Right: Plot of
pct(L) against L−1/ν for maximal RRTN’s in two dimensions. A choice of ν = 1.35, gives
the best fitted line with the result of pct

∼= 0.181 [48]
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ν = ln b / ln λ ∼= 1.34, which unexpectedly happens to be very close to that from
a much more elaborate calculation removing the effects of finite-size of a system
(described next). It is also close to ν = 4/3, the exponent for uncorrelated bond
percolation.

2.3 Real Space Renormalization and Finite-Size Scaling
for 2D Maximal RRTN’s

To investigate the effect of the finite size of the system on the percolation threshold
and the related critical exponents, we did basically Monte Carlo renormalization,
along the lines of [49] on 2D square lattices of various sizes (L = 20 − 200) and
carried out a Finite-size Scaling Analysis (FSA) for the percolation threshold.

Suppose R(p, L) is the probability of a square lattice of dilution p to perco-
late (note that b ≡ L is implicit in this implicit in this statement). We evaluate the
function R(p, L) for a fixed L and a range of p (0.05–0.2) taking some 10,000 con-
figurations each time. Using the set of data for a given L, numerical solution of the
fixed point equation: p∗ = R(p∗, L) gives the pct(L) as above. This is calculated for
different discrete values of L in the range mentioned above, and then the asysmp-
totically infinite size value pct is obtained from the following finite size scaling
form [50]:

pct = pct(L) + AL−1/ν . (14)

The best-fitted straight line in the plot of pct(L) versus L−1/ν , with the trial value of
ν = 1.35, is shown in the Fig. 4 (Right) and it gives the result of pct = 0.181±0.001.

To calculate the exponent, ν as well as pct, independently, we use the FSA some-
what differently [50]. The average concentration at which a cluster connects the top
and the bottom of the lattice for the first time, i.e., barely percolates, is defined as

< p >=
∫ 1

p=0

p(dR/dp)dp. (15)

To determine < p > from many Monte Carlo runs for the same L, one starts from a
reasonable, p and checks whether the system percolates for a certain configuration.
If it does, then one lowers the value of p by p/2, or else increases it by p/2. In
the next step, one checks again whether the system percolates or not and increases
or decreases accordingly, and so on. After performing a few such steps, one can
get a sufficiently accurate value of the threshold for one’s purpose. Instead, we fix
the accuracy to a value of 10−5 to obtain the threshold for each configuration. This
process is repeated for a large number of configurations (10,000 for each L) and then
calculate < p > as well as < p2 > for a number of system sizes from L = 20 to
300. The finite size scaling relationships for < p > and its mean square deviation
Δ2 ≡< p2 > − < p >2 have the forms pct− < p >∼ L−1/ν and Δ ∼ L−1/ν . We
have plotted ln Δ versus ln L in the Fig. 5 (Left). From the slope of the best fitted
line for this plot, we find that ν = 1.35± 0.06. Further, it is apparent from the above
relations that pct− < p >∼ Δ.
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Fig. 5. Left: Plot of ln Δ against ln L where Δ is as described in the text. The best-fit line
gives ν ∼= 1.35 in 2D [48]. Right: The best-fit line on the plot of < p > against Δ shown
above, for L = 50 to 300, gives the intercept, pct

∼= 0.181 in 2D [48]. The inset shows a plot
of all data from L = 20 to 300

We plot the graph of < p > against Δ in Fig. 5 (Right). The intercept on the
y-axis for the best fit line for L = 50 to 300, gives pct

∼= 0.181, which agrees with
the value obtained by using the previous method. The size, S∞(L) of the spanning
cluster at p = pct(L) has a finite size behaviour S∞ ∼ Ldf , where df is the fractal
dimension of the incipient ‘infinite’ cluster at the threshold, pct. We calculate, S∞(L)
for different system sizes L = 50 to 300, taking 5000 configurations each, and find
from the best fitted line of Fig. 6 (Left) that df

∼= 1.87 [48] which is very close to
91/48, the fractal dimension for 2D random (classical) percolation.

We did also calculate the conductivity exponent t defined through σ(p) ∼ (p −
pct(L))t, for p at the threshold. For a system of size, L, at or above the threshold,
the correlation length ξ is nothing but L, and hence σ(pct) ∼ L−t/ν . From the best
fitted line [see Fig. 6 (Right)] for a plot of ln σ against ln L (averages over 1000
configurations at each pct(L) for L between 4 and 40) gives t/ν ∼= 0.90 [48] for the
RRTN, with a rough estimate of error involved being less than 10%. So it is apparent
that this exponent is also reasonably close to the value of 0.97 in [50] for uncorrelated
random percolation in 2D.

Thus, our computations above on a fully correlated bond percolation (identical to
maximal RRTN’s, if the statistically correlated bridge bonds appear at all the places
where the nonlinear t-bonds could appear), clearly demonstrate that the new percola-
tion threshold pct in 2D is well below the classical percolation threshold pc (even in
the mean field EMA). Further, we find that the values of two independent exponents
near pct (namely, t and ν) as well as the fractal dimension df of the spanning cluster
on a 2D square lattice based correlated percolation, are indeed very close to those of
its uncorrelated version. Consequently, this fully correlated model for bond percola-
tion (in maximal RRTN) seems to belong to the same universality class as that for
uncorrelated bond percolation (RRN).
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3 Nonlinear Steady-State I-V Characteristics

For the work presented below, we make the simplifying assumption that all the tun-
nelling bonds (t-bonds) in our RRTN model have an identical voltage threshold (vg)
below which they are perfect insulators and above which they behave as the ohmic
bonds. One could certainly introduce disorder by making vg random as in [51]. In
our case, disorder is already introduced through random positioning of the bonds,
and we believe that our assumption should not affect the dilution-induced nonlinear-
ity exponents. Indeed, as shown in the sequel, our model gives richer possibilities
(dilution dependence) for the nonlinearity exponent and the VRH exponent (temper-
ature dependence of conductance at very low T ) in a composite system (see Sect. 5).

As the steady (dc) external field is increased beyond some macroscopic thresh-
old, some of the t-bonds overcome their microscopic thresholds and may thus in-
crease the overall conductance of the system, if the process leads to newer parallel
connectivities for the whole macroscopic composite. Our numerical work to study
these effects [57, 112] involves the solution of Kirchhoff’s law of current conserva-
tion at the nodes of the RRTN with the linear and the nonlinear (assumed piecewise
linear) resistors and the standard Gauss-Seidel relaxation. The current response was
averaged over 50 configurations in all the cases mentioned here.6

We obtain current (I) against voltage, V and there from the differential conduc-
tance (G = dI/dV ) for the whole network at a given volume fraction p of the ohmic
bonds. Some numerical solutions for steady state, nonlinear I-V curves for a square
lattice of size L = 40 are plotted in Fig. 7 for p = 0.3 to 0.9. For p > pc, one

6 It may be noted that the experimentalists prefer to work with a current bias and the theorists,
with a voltage bias. But, whatever is the chosen bias, the response functions must behave
identically for them.
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Fig. 7. A set of nonlinear I-V curves for p = 0.3 to 0.9 for the RRTN network of size 40×40.
The current response is averaged over 50 configurations each

may note that the I-V curve is linear up to a certain voltage (Vg), beyond which the
nonlinearity shows up. For p < pc, there is no current (zero conductance) below a
threshold voltage (Vg), beyond which the nonlinear conduction starts. Nonlinearity
is always there in the I-V response for any value of p in the interval, pct < p < 1.
However, for pct < p < pc, there is no system-spanning path with the ohmic bonds
(in an average sense) and the response (average current) is zero for small voltages.
The response in this case starts out nonlinearly from a non-zero average threshold
voltage. On the other hand, for p > pc, the system always has a conducting path
through the ohmic bonds (again on an average), and so up to a certain voltage (Vg)
there is a constant non-zero conductance and the average response is linear. As V is
increased beyond Vg , more and more t-bonds become active, thereby increasing the
current carrying paths and hence the conductance.

We find that the entire nonlinear regime of a I-V curve cannot be fitted by a
simple power-law that in general may be fitted by a polynomial function. Even after
doing that, the exponent of nonlinearity from the fitting of the various I-V curves
remained somewhat ambiguous since the fitting was not very robust. Thus, to have
a better idea, we obtain the differential conductance (G = dI/dV ) by taking the
numerical derivative of the the I-V data. In these derived G-V curves, one can iden-
tify the onset of nonlinearity (hence, the threshold voltage Vg) and the onset of the
asymptotic upper linear or ohmic conductance Gf , much more clearly than in the
I-V curves.

The G-V curves corresponding to p = 0.7 and 0.3 in the Fig. 7 are shown in
the twin plots of Fig. 8. As expected for the two different cases, in the Fig. 8 (Left)
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Fig. 8. Left: The G-V curve of a RRTN based on a percolating RRN (i.e. lower linear con-
ductance G0 > 0) at p = 0.7 of Fig. 7 (p > pc). The low threshold voltage (Vg) and the
asymptotic upper linear conductance (Gf ) of the maximal RRTN are as indicated. Right: A
similar response curve for another RRTN of Fig. 7, based on a non-percolating RRN at p = 0.3
(i.e. p < pc with a conductance G0 = 0). The threshold voltage (Vg) is typically larger with a
qualitatively similar sigmoidal region and a Gf > G0 = 0 trivially

(p > pc) the lower linear conductance has a finite non-zero value (G0 �= 0), while
in the Fig. 8 (Right) (p < pc) the lower linear conductance is zero (G0 = 0). The
general nature of the G-V characteristics is that eventually all of them become flat,
i.e., assume a configuration- and p-dependent constant conductance beyond some
very large voltage Vs. The reason is that for a finite-sized system there is always
a very large but finite voltage Vs at which the conductance of the whole system
saturates to an upper maximum conductance Gf (upper linear regime) since all the
possible t-bonds become activated and no more channel parallel to the backbone
come into play for a further increment of V . Below we concentrate on the analysis
of the nonlinear conductance behaviour of the model system in an effort to first find
a general functional form to describe all these different G-V curves and then to find
the exponent of nonlinearity at different volume fractions.

3.1 Analysis of the Behaviour of Conductance

Guided by the conductance behaviour of a complex system made out of many simple
prototype circuits [43] and by the fact that the initial power-law law type growth of
G beyond G0 finally saturates to Gf , we try to fit the whole region in our numerical
work by a function of the form:

G = G0 (V < Vg) (16)

= Gf −Gd[1 + λΔV μ]−γ , (V ≥ Vg), (17)

where ΔV = V −Vg is the driving voltage measured from the onset (Vg) of nonlinear
response, and Gd = Gf − G0 . For concreteness, we discuss here the fitting of a
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sample data set for L = 40, p = 0.6. For this sample, G0
∼= 0.154, Gf

∼= 0.881.
The parameter for the best fit in this case as obtained by a simplex search procedure
are λ ∼= 3.27 × 10−4, μ ∼= 1.408, and γ = 125. Such large values of γ are obtained
for all the cases studied and yet the approach to Gf was slower than in actual data.
This obviously indicates that the approach to saturation is not a power-law function
and probably an exponential function is involved.

For this we refer to the Fig. 9 (Left), where we have shown a G-V curve for
p = 0.8 and L = 40 for which the conductance (G) seems to saturate (to the naked
eye) at a voltage above V = 20 and one can see a practically flat regime in between
V = 20 to 40. However, by zooming in on the y-axis in the inset of the same figure
we have demonstrated that the actual saturation is yet to come and that the con-
ductance (G) in this regime increases very slowly with V . The reason is that there
are some tunnelling bonds (typically in the transverse direction to the electric field)
that do not become active even with the application of a very large voltage implying
that the conductance for the whole system is yet to reach the complete saturation.
This pathology supports the fact that the final saturation occurs at an extremely large
voltage, and that the approach to the saturation is indeed very slow.

We tried the following four plausible functions involving exponentials for the
entire nonlinear regime replacing the above Eq. (17).

G = G0 + Gd exp(−λ/ΔV ) (18)

= G0 + Gd tanh(λΔV α) (19)

= Gf −Gd exp[1 − exp(λΔV α)] (20)

= G0 + Gd[1 − exp(−λΔV μ)]γ (21)
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Fig. 9. Left: A typical G-V curve for L = 40 and p = 0.8 with an apparent onset of the
saturation regime beyond V ≈ 20. The inset shows that the G does not yet saturate in the true
sense and instead ever increases in the regime 20 < V < 40. Right: The demonstration of the
fitting of a G-V curve by the proposed function, Eq. (22), shown for L = 40 and p = 0.8.
The fitting is better with γ �= 1 (shown in dashed line) for the entire data set than that with
γ = 1 (shown in full line)
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Out of all the optimally fitted functions as described above, the last Eq. (21) is the
best in the sense that it gives the least mean square deviation (MSD) in fitting the
G-V data. It may be noted that a special case of Eq. (21) with γ = 1 was the form of
nonlinearity used by Chen and Johnson [24] in fitting their experimental conductance
against voltage data for a composite system of Ag-KCl. But for all p and L’s con-
sidered by us, γ = 1 was found inadequate for fitting the typical sigmoidal curves.
For example, we have shown in the Fig. 9 (Right), the fitting with the function in
Eq. (21) for p = 0.8, L = 40: the restricted case of γ = 1 shown by full line, and
an unrestricted, optimally fit γ �= 1 by dashed line. Clearly, the unrestricted case fits
the data extremely well and gives an MSD which is much smaller than that of the
restricted case as mentioned above.

3.2 The Nonlinearity Exponent

The conductance (G) for metal-insulator composite systems starts growing nonlin-
early with the applied voltage V from a lower bound (G0) and finally saturates to an
upper linear value Gf (as indicated in the two cases of Fig. 8). As such, G0 is the
conductance when none of the t-bonds is active and this happens in the traditional
percolation model without tunnelling (i.e., a RRN). Likewise, Gf is the conductance
of a maximal RRTN where all the so-called tunnelling bonds (t-bonds) are actually
taking part in the conduction. There are three distinct regimes that, in general, can be
more precisely located from the G-V characteristics than from the I-V characteris-
tics:

• (i) Upto some voltage Vg the initial conductance (G0) of the system is either zero
or a fixed finite value depending on whether the system has initially conducting
path through the ohmic (or metallic) bonds or not (see Fig. 8).

• (ii) Beyond Vg , the nonlinearity starts showing up. The conductance, (G) is non-
linear in the regime Vg < V < Vs.

• (iii) Beyond the voltage Vs, G saturates to a voltage Gf (see Fig. 8).

The data obtained through our model system in 2D were fitted through the following
general formula as discussed above:

G = G0 + Gd[1 − exp(−λΔV μ)]γ , (22)

Clearly, irrespective of the value of Vg, G0 is the conductance in the limit ΔV → 0.
Experimentally, Gf may be obtained by applying a large enough voltage such that
the Joule heating is negligible or dispersed out with a thermostat. In our numerical
works on finite sized systems, we find Vs to be a large but finite voltage (in arbitrary
units). For example, for squares with L = 40, Vs is found to be typically of the order
of 104–106.

In an experiment by Chen and Johnson [24] on Ag-KCl composite (silver parti-
cles in KCl matrix), very similar G-V curves were obtained and the non-ohmic effect
was postulated to arise from a localized reversible dielectric breakdown between nar-
rowly separated metal clusters in the metal-insulator composite. The intercluster or
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interparticle spacing may have some distribution that is related to the fractal dimen-
sion df of the network at the threshold. Chen and Johnson [24] used the following
conductance behaviour for their data:

G = G0 + (Gf −G0)[1 − exp(−V/Vg)n(df )], (23)

which is a special form of the function (22) we propose. We find Eq. (23) to be
inadequate for the representation of our experimental data (see above). The exponent
n(df ) is in fact the same as δ and is, hence, related to the nonlinearity exponent
α (see Sect. 1.2) by α = n(df ) + 1. It has been further shown in the above work
that n(df ) increases as the silver volume fraction is decreased and it shows a sharp
change at the threshold. We shall discuss in this section how our model captures this
dilution-dependent nonlinearity exponent.

For a meaningful comparison of all the G-V data with different G0, Gf , Vg etc.,
we look at the scaled conductance G̃ = (G − G0)/Gd against the scaled voltage
Ṽ = (V − Vg)/Vg . To see if the G-V data for various values of p both below and
above pc scale, we first looked within the range 0.48 ≤ p ≤ 0.52 (i.e., very close to
pc), and found that all the data do reasonably collapse. In the Fig. 10 (Left), we show
such a plot for a 20 × 20 system. This suggests the following general form for the
functional behaviour;

G̃ = f(Ṽ ), (24)

where f(x) is a function such that f(0) = 0, and f(∞) = 1 and is, otherwise, quite
general as long as it represents the behaviour of G̃ very well. Clearly, the scaled
function in Eq. (22) satisfy these properties very well.

Here we point out that the threshold voltage Vg is the only relevant variable that
enters into the scaling function. The other voltage scale Vs which is the onset volt-
age for saturation, is seen to have no role in the above scaling Eq. (24). For small

0 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

L = 40

p =
 0.

3
  0

.4
 0

.5
 0

.6

p = 0.
9

0.
7

  0
.8

G

V
0 2 4 6 8 10 12 14 16 18 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L = 20
p = 0.48
p = 0.49
 p = 0.50
 p = 0.51
 p = 0.52

Sc
al

ed
 G

Scaled V

5

Fig. 10. Left: The plot of scaled conductance against scaled voltage for various p around pc.
Right: The family of G-V curves corresponding to the Fig. 7



Semi-classical Percolation and Breakdown 41

ΔV = V − Vg , i.e., near the onset of nonlinearity, the excess conductance ΔG =
G − G0 varies with the voltage difference (ΔV ) as a power-law as one may easily
check by expanding Eq. (22) in the limit (ΔV → 0):

ΔG ∼ ΔV μγ = ΔV δ. (25)

Thus, the nonlinearity exponent, δ is related to the fitting parameters, μ and γ, by
δ = μγ. In our earlier work [43], with our preliminary observations we had reported
the nonlinearity exponent δ to be close to 1 and to be independent of p near the ge-
ometrical percolation point pc = 0.5. Indeed, in most of the experiments an average
value of the above exponent is reported for the data for samples close to pc.

Further careful analysis of the results at widely different volume fractions indi-
cate that the nonlinearity exponent δ increases significantly, as we go sufficiently
away from the percolation threshold (both below and above). This becomes apparent
from the shape of the G-V curves for different volume fractions in a wide range of
p (from 0.3 to 0.9) in the Fig. 10 (Right) corresponding to the I-V curves shown
in Fig. 7. In the Fig. 11 (Left), we plot the scaled conductance (G̃) against scaled
voltage (Ṽ ) corresponding to all the G-V curves in the Fig. 10 (Right). The scaled
data for all the curves now do not fall on top of each other indicating that all of
them cannot be described by the same fitting parameters μ and γ, even though the
form of the best-fitting function f(x) remains the same. Hence, the nonlinearity ex-
ponent in the power-law regime (ΔV → 0+) for these curves of different p are not
identical. These are like corrections to scaling away from a critical point (pc).

The fitting of the individual G-V curves for squares of sizes L = 20 and 40
and some data for L = 60 and 80 for different p in the range of p = 0.2 to 0.9
were done by using Eq. (22). The Fig. 11 (Right) demonstrates that the exponent δ
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and above pc) corresponding to the curves in Fig. 10. The data do not collapse at all, indicating
different exponents for different p’s. Right: The variation of nonlinearity exponent (δ) for the
G-V curves with p for a system of size 40 × 40
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for L = 40 increases from a value close to 1 at p = pc to values close to 3 and
above on either side (0.3 ≤ p ≤ 0.9). We found that the value of δ at pc lies in the
range 0.97 to 1.04 for system sizes L = 10 to 60. There is no systematic variation
with L and this indicates the absence of any finite size dependence for the above
exponent at pc. Thus, within our numerical accuracy we find that δ(pc) ∼= 1.0. It is,
thus, clear from the Fig. 11 (Right) that δ(pc) is the minimum of the p-dependent
exponent δ(p). Note that the nonlinearity exponent α for the I-V curves would be
just α = δ + 1 ∼= 2.0 (in this case), where I ∼ (V − Vg)α, and for p sufficiently
far from pc, α would also show the same concentration dependence. In comparison,
we observe that in an experiment on 2D arrays of normal metal islands connected
by small tunnel junctions, Rimberg et al. [25] found the nonlinearity exponent α to
be 1.80 ± 0.16. It may also be noted that Roux and Herrmann [51] had also found
from their numerical work that the nonlinearity exponent α = 2 in their model 2D
network with resistors having random thresholds (no positional disorder). Clearly,
thus, our bond-diluted RRTN model is richer than the random threshold model at
least as far as the nonlinearity exponent is concerned.

3.3 The Crossover Exponent

Now we discuss the crossover exponent that is an alternative way of accounting for
the strength of nonlinearity. The crossover exponent (x) is defined from the power-
law relationship Ic ∼ Gx

0 , where Ic is the crossover current at which the conductance
of the system has increased from a non-zero initial value G0 by a small but arbitrarily
fixed fraction ε. The relation between the nonlinearity exponent δ and the crossover
exponent x is simple to derive. The crossover voltage Vc is related to the initial non-
zero conductance G0 by Vc ∼ Gx−1

0 . But from Eq. (25) we know that the excess
conductance ΔG(V ) ∼= ΔV δ for small, ΔV . If one chooses ΔG ∼= εG0 for an
arbitrary but small ε and if one is close to the percolation threshold, one has Vc ∼
G

1/δ
0 , which implies that δ = 1/(x− 1). Clearly, x is defined only above pc.

The value of x was calculated by Gefen et al. [4] from the experimental nonlin-
ear response data of discontinuous thick gold films near and above the percolation
threshold (in 3D). Their experimental measurement gives x = 1.47± 0.10, and they
argue through a model of dynamical random resistor network (DRRN) that the value
of x should be 3/2 (in 3D). The argument is based on the assumption of a power law
dependence of conductance (G), which interpolates between its initial value G0 (at
V = Vg) and the saturation value Gf (V = Vs). Note that the crossover exponent for
the carbon-wax experiment in 3D is also close to this value. Gefen et al. [4] found that
near the threshold δ = t/ν. Thus, one expects that close to pc, δ = 1.3/1.33 ∼= 0.97
and the nonlinearity exponent for I-V characteristic is thus α = δ+1 ∼= 1.97 in 2D.
It will be noted that close to pc, the nonlinearity exponent for our model in 2D is very
close to it. Further, since the exponent δ lies between about 3 and 1 for p between
0.3 and 0.9, the crossover exponent in our model can vary between 1.3 and 2 in the
same dilution range in 2D.
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3.4 Non-self-averaging Behaviour at Low Dilution or Field

We have seen that the nonlinearity exponent, α (= δ + 1) varies significantly with
the volume fraction (p) of the conducting component, the minimum value of the
exponent being around 2.0 at p = pc. Chen and Johnson, in their experiment on
Ag-KCl [24], found the above nonlinearity exponent to vary with p. In particular,
they found that for a sample very close to percolation threshold, the nonlinearity
exponent is as large as 20. It was also noted in the experiments on ZnO varistors that
the nonlinearity exponent (α) could have any value between 50 and 100 (such a high
value of α tends to indicate an exponential relationship rather than a power-law)!

Intrigued by these results we ran some test for a square lattice with (L = 20 and
40) p = 0.2, very close to our pct. We obtained in our preliminary analysis by fitting
G with voltage V that α > 20 for L = 20 and α � 1 (diverging for ever) for L = 40.
This was very suspicious and by zooming into the fitting close to the threshold (Vg),
we found the fitting to be extremely bad. The other functions listed before (including
the double exponential) did not give any better fitting either. But this is the region
that gives the initial power-law exponent. To get the fit better in this region, we fitted
the logarithmic conductance (ln ΔG), keeping our fitting function the same Eq. (22)
as before. Then we found the exponent δ to be of the order of 3 (the exponents in the
Fig. 11 (Right) were calculated by taking care of this fitting problem). Thus, power-
law description still seems to hold but there seems to be a different problem close to
pct. Since the fitting was still not as good as at higher p ≥ 0.4, we wanted to check if
the averaging process itself is at flaw at very low-volume fractions. Hence, we look
at the distribution of the current (I) for different realizations of the sample of size
L = 20 and p = 0.2 for two different voltages.

In the Fig. 12 (Left), the histogram is shown for V = 5, and in the Fig. 12
(Right), the same is shown for V = 10. The distribution for V = 10 is reasonably
well behaved, but the one for V = 5 has an isolated delta-function-like peak at zero
conductance apart from two other broader peaks at higher conductances. We did also
look at the relative value of the variance (relative to the mean squared) defined as

var =
(< I2 > − < I >2)

< I >2
(26)

If this value is less than 1, averaging is alright, but if it is much larger than 1, the
self-averaging property of the distribution does not work. We have tested that var is
about 3.3 for the set of data for V = 5 and it is about 0.3 for V = 10. Thus, the low
p samples are non-self-averaging at low voltages but tend to be more self-averaging
at higher voltages. This property was also reported for quantum systems by Lenstra
and Smokers [52], and, thus, our semi-classical model of percolation indeed seems
to capture the quantum, non-self-averaging behaviour at low p (and low field) as
expected.

3.5 Further Comments on the RRTN and the DC Response

So far, we have been concerned with the semi-classical percolation threshold and the
nonlinear dc response characteristics in composites and granular metallic systems
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Fig. 12. Left: The distribution of current (I) in the 2D square network of size L = 20 for
p = 0.2 and an applied voltage, V = 5.0. This distribution is non-self-averaging. 6×104 con-
figurations were used for this purpose. Right: The distribution of current (I) in the 2D square
network of size, L = 20 for p = 0.2 and an applied voltage, V = 10.0. This distribution is
self-averaging. 2×104 configurations were used for this purpose

where transport due to charge ‘tunnelling’ (any other nonlinear effect with a thresh-
old) plays an important role. The existence of a well-defined voltage threshold (Vg)
close to which a power-law regime appears, indicates that this threshold (break-
down) voltage is a critical point. Similar threshold behaviour has been observed in
pinned charge-density-wave (CDW) conductors, superconductors with pinned vor-
tices (Type-II), etc. Indeed, it has been demonstrated long ago that wherever there
exists some sort of threshold of force for motion to occur, the threshold actually
corresponds to a dynamic critical point [1–4] for the driven dynamical system. Dis-
order in such systems is known to give rise to ‘pinning’ or inhibition to transport
upto a critical value of the force. Clearly, in our percolation model, the threshold Vg

acts as a dynamical critical point for the systems with volume fractions in the range
pct < p < pc. For such systems the field corresponding to the threshold voltage Vg

may be called the breakdown field and is pretty well studied in the DRRN type mod-
els. We have focussed on the threshold as a dynamical critical point and calculated
the relevant breakdown exponent in the RRTN model (in 2D) in the Sect. 7 [53].

As we pointed out above (see also [43, 57]), the mechanism of nonlinearity is
essentially the same both below and above the system threshold. Below the system
threshold, there is no system-spanning cluster. So the transport is identified as inter-
cluster tunnelling or hopping across dangling bonds or gaps. Above the threshold
there are both intercluster and intracluster tunnelling. But intracluster tunnelling
mechanism certainly dominates. The nearest neighbour gaps are everywhere: both
inside the smaller isolated clusters as well as in the system spanning cluster. So
the tunnelling mechanism is operative both below and above pc (in the interval
pct < p < 1), giving rise to nonlinear regime in the response. As we would see
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in the discussions of Sect. 6.1, these two types of cluster mechanisms have important
roles in the early dynamics towards a steady state.

Next, we would like to emphasize that characterization of the nonlinear response
by fitting of a derived G-V data (if available, on a wide range) is always more de-
pendable than that of the I-V data. From our analysis of current-voltage (I-V ) data
we understand that one does not do justice by fitting only the I-V curve and finding
out the nonlinearity exponent there from, since that fitting is not robust. One may
easily be tempted to fit the nonlinear regime of a I-V curve in general through an
n-th degree polynomial function. For example, a reasonable choice [47] for many
experimental systems, would be to fit with a series expansion: I = G1V + G2V

3,
assuming that the leading (dominant) nonlinear term is cubic (and, ignoring other
higher order terms). On the contrary, a typical I-V curve, for the kind of systems we
address, may in general be fitted by a simple power-law: I ∼ (V − Vg)α, at least
close to the threshold voltage, Vg . One may note that if the response approaches a
diffusive (linear, or ohmic in the electrical case) or any non-power law behaviour in
the large field limit, then the exponent for such power-law fittings change continu-
ously as the applied voltage, V is increased from Vg . Arbitrary selection of sections
of I-V data, particularly the upper cut-off voltage, for this purpose and the fitting
of that could lead to unreasonable values of the pre-factors or the exponents. This
type of fitting had been at the root of some confusing results found in the literature.
Instead, our prescription of fitting of the G-V data for the (almost) entire nonlinear
regime, is found to be very satisfactory because the approach to linearity is better
detected in this derived data. From such a fitting of the G-V data using Eq. (22), one
can obtain the desired power-law and find the exponent. The G-V curves for the type
of composites we focus our attention on, may all be generically fitted by a function
such as G(V ) = G0 + Gdf(ΔV ), where f(ΔV ) is a function that behaves as ΔV δ

for small ΔV , where ΔV = V − Vg . f(ΔV ) → 0 as ΔV → 0 and f(ΔV ) → 1 as
ΔV → ∞ (or an appropriately large value for a given finite system).

As the value of nonlinearity exponent is dependent on p, the crossover expo-
nent (x) should also be dependent on p. The values of the crossover exponent, x, so
far reported in the literature are for the experimental data for the samples close to
but above the threshold. But we may conclude that this exponent should also show
change with p if p is away from pc. In fact, such an example may be mentioned here.
The crossover exponent was found to be widely different in measurements7 on a set
of samples. The reason for this is not clear. But if the samples taken for measure-
ments have widely different volume fractions (p) of conducting components, then
the nonlinearity exponent and, thus, the crossover exponents for them could be very
different.

Finally, it may be noted that if δ > 1 or in other words μγ > 1 in the Eq. (22), the
first derivative of G with respect to V , i.e., dG/dV would attain a maximum value
at the inflexion point (at some voltage in the nonlinear regime). We fitted a set of
G-V and the corresponding dG/dV -V data [57, 112], taken from the experimental
observations on a carbon-wax composite system [21] to show the appearance of a

7 U.N. Nandy and K.K. Bardhan, private communication.
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peak in the dG/dV -V curve. To indicate how good or bad our fitting equation is, we
fit the above data set for G-V characteristics by the Eq. (22). The fitted line is seen
to match the experimental data very well with the above function. As a further test
of the fitting, we took the parameters of the G-V -fit, and used them (the functional
form) to obtain dG/dV as a function of V . The agreement with the experimental
values for dG/dV should be considered rather good given that G and dG/dV are in-
dependent measurements and that higher the harmonic more error-prone is its value.
Incidentally, the nonlinearity exponent δ for this 3D experimental data fitted by our
method comes out to be 1.74 [54], where the crossover exponent measurement on
the same sample would give a δ-value of about 2.

4 Periodic Driving and AC-Response in the RRTN/CRC Model

The results and the discussions of this section are basically taken from [55]. In the
presence of an alternating field of frequency f = ω/(2π) across a random binary
composite (modelled as a RRN), the elementary conductances g1 and g2 (= 0, for
insulators) do in general become complex admittances (inverse of impedances), be-
cause of the presence of inductances and/or capacitances in some parts of the circuit.
In this section, we are concerned with the modelling of the generic ac response of a
whole variety of experimental systems within the RRTN framework In the traditional
RC network models used to study the ac response of composites, the conducting
bonds are pure (real) resistors and all the insulating bonds may behave as capacitors
in the presence of an ac-field. A fairly complete review and references (from the per-
colative aspect) on the linear response may be found in [28]. Two more relatively
recent reviews are found in [31, 35].

If one applies an sinusoidal electric field across our RRTN model, a t-bond be-
tween two nearby metallic bonds are expected to behave as a capacitor. Note that
perfect capacitors at all the t-bonds correspond to a situation where all the t-bonds
have zero dc conductance at low voltages, and hence the RRTN is in its lower linear
dc (or, ohmic) regime. Similarly, leaky capacitors with a very low constant conduc-
tance for all the t-bonds, implies that the RRTN is in its upper linear dc regime. To
obtain the nonlinear ac response in the truly nonlinear dc regime, one has to let the
t-bonds be active or passive according to the voltage differences across them. In this
work, we study the nonlinear ac response in either the upper or the lower linear dc
regimes only. Further, we make a simplifying assumption that all the capacitances
across insulators farther than the nearest neighbour distance are zero. Based on the
RRTN model, this model for studying ac response may, thus, be called a correlated
RC (or, CRC) model. We believe that the simplicity of our model is physically ap-
pealing and realistic enough. Since the capacitors placed in this way create relatively
few configurations where the capacitors percolate by themselves, the |G(ω)| of al-
most all the samples is expected to connect nonlinearly between its own lower and
upper ac saturation regimes of ω → 0+ and ω → ∞, respectively. Even if one gets
a configuration, where the capacitors make a connecting path, the high-frequency
response may still be flat because of the inability of the system to respond within
a cycle.
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In this respect, we note that in most of the early experiments, the steady frequency
required to approach the upper ac saturation regime were probably too high to be
accessible. Further, we find at least one experiment on Li-doped NiO sample [56],
where the upper saturation is clearly observed. We do also show a typical numerical
result for the real part of the ac conductance for p = 0.52 in a 20×20 size sample
with leaky capacitors, in the Fig. 13 (Left).

As a pedagogical example, one may calculate the complex G(ω) for two elemen-
tary circuits using the capacitive conductance gt = jωc where c is the microscopic
capacitance and j =

√
−1. For the elementary conducting circuit (a) of Fig. 13:

G(ω) =
(r1 + r2 + ω2r1r

2
2c

2) + jωr2
2c

(r1 + r2)2 + ω2r2
1r

2
2c

2
. (27)

On the other hand, for the case of the elementary insulating circuit (b) of Fig. 13:

G(ω) =
ω[ω(r1 + r2)c2 + jc]
1 + ω2(r1 + r2)2c2

. (28)

It may be noted that the dc conductance G(ω = 0) of the circuit (a) is 1/(r1+r2) > 0
(thus, it is a conductor), whereas the dc conductance of the circuit (b) is zero (an
insulator). The extremely low frequency (ω → 0+) behaviours for both the circuits
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Fig. 13. Left: Real part of the complex G(ω) for a typical 20×20 sample of our correlated RC
(CRC) network at p = 0.52, with leaky capacitors placed at the tunnel junctions. An equa-
tion akin to the Eq. (29) gives the best-fitting solid line. Right: Two prototypical elementary
circuits each with two ohmic resistors and one capacitor. Note that the circuit (a) corresponds
to a metal-like zero-frequency behaviour (i.e. Ge(ω = 0) > 0), whereas the circuit (b) corre-
sponds to an insulator (i.e. Ge(ω = 0) = 0). Another elementary circuit with two t-bonds is
possible, but the probability of such bonds connecting to give a percolative backbone of only
t-bonds in a macroscopic (L → ∞) RRTN seems negligible
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is [Re G(ω) − G(ω = 0)] ∝ ω2 and Im G(ω) ∝ ω. Thus, Re G(ω) or Im G(ω)
at very low, ω, cannot distinguish between the two types of circuits. But in the same
limit, [|G(ω)|−G(ω = 0)] ∝ ω2 for the elementary conducting circuit (a) of Fig. 13,
while |G(ω)| ∝ ω for the elementary insulating circuit (b) of Fig. 13. As ω → ∞,
the upper ac saturation value for the circuit (a) is 1/r1 and that for the circuit (b) it
is 1/(r1 + r2), both of which are finite because one or more capacitors, c, do not
geometrically extend from one electrode to the other.

Note that on adding together many such elementary circuits (i.e. on increasing
L), the rational algebraic function type behaviour of Re G(ω) obtained from Eq. (27)
and Eq. (28) changes over to a sigmoidal type function as shown in the Fig. 13
(Left) and looks qualitatively very similar to the nonlinear dc conductance as a func-
tion of V [43, 57]. Here, Im G(ω) is zero for both ω = 0 and ∞, with a broad
peak in-between. In case, a percolative backbone of only t-bonds (purely capacitive,
finite-sized RRTN) exists, then the G(ω) of such a sample should have an extra term
proportional to ω to accommodate the ω → ∞ behaviour. But, the probability of
such a macroscopic (L → ∞) RRTN sample seems to be very small, and patently
atypical. Further, for very large ω (> 1/τ , τ being an asymptotic relaxation time),
the system fails to respond physically to the ac field. Hence, we do not consider such
linear terms in the response. An identical fitting function as the one for G(V ) [57],
fits (solid line) the numerical results very well, as shown in this figure for six decades
[55]. In the same spirit, |G(ω)| in the ac case is written as:

|G(ω)| = G(ω = 0) + Gd(p)[1 − exp(−λωμ)]γ . (29)

To obtain the power-law behaviour, one linearizes the exponential function in Eq. (29)
for small ω (much below the upper ac saturation regime) and one gets: [G|(ω)| −
G(0)] ∝ ωα′

, where α′ = μγ. Now, for considering the ac response in our CRC
model, we have virtually a three-component mixture of the ohmic bonds (conduc-
tance go = g), the t-bonds (in general leaky with a complex gt = gc + jωc), and
the insulating bonds (gi = 0). A sinusoidal voltage V = V0 exp(jωt), such that
V0 < Vg , is applied across the network. We set V0 = 1, c = 1 and go = 1 for conve-
nience, thereby setting the scales for the voltage, the frequency and the conductance,
respectively. We focus on either the Re G and Im G, or the |G| as a function of ω. We
do also study the phase-angle of the complex G relative to the phase of the voltage
source at any time t, and compare the numerical results with the EMA (for the CRC)
and some basic experimental results.

4.1 The EMA Result for the CRC Model

For studying the ac conductance of the correlated RC model within the EMA, we
assume for simplicity that the t-bonds behave as perfect capacitors with gt = jωc.
Since all the microscopic elements are now linear, the whole system is linear/ohmic
at any dc, V . But, the ac effective conductance Ge, as given by the EMA Eq. (6), is
now complex and so are the terms B and C appearing in the solution. So, we show
again that only the + sign in front of the square root in the Eq. (6) is the physical
one. Separating the real and the imaginary parts of Ge(ω), one gets
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Re Ge(ω) =
(2po − 1)

2
+

1
2
√

2

[
X + (X2 + Y 2)1/2

]1/2

, (30)

and,

Im Ge(ω) =
ω(2pt − 1)

2
+

1
2
√

2

[
−X + (X2 + Y 2)1/2

]1/2

, (31)

where X = (2po−1)2−ω2(2pt−1)2 and Y = 2ω[(2po−1)(2pt−1)−2(2pi−1)].
It may be noted here that pt(p) has a single broad peak structure with a maximum
value of about 0.3840 at a p = 0.4800. Thus, the quantity ω(2pt − 1) is always neg-
ative. Further, X is also negative for ω > |(2po − 1)/(2pt − 1)| and approaches −∞
quadratically as ω → ∞. We will take only the absolute value of the square-rooted
expression for two reasons; (i) Re Ge(ω) in Fig. 14 (Left) achieves the necessary
upper ac saturation since the built-in square-root function in the computer uses ex-
actly that, and (ii) this procedure keeps Im Ge(ω) > 0 for all ω > 0 (needed since
Im gt > 0).

Let us first check the ω → ∞ limit. The dissipative part of the complex conduc-
tance, Re Ge(ω), should be positive, finite and greater than Ge(ω = 0) in this limit.
Further, the reactive part Im Ge(ω) of the CRC network must become zero (i.e.,
show no response) when the driving field oscillates much faster than the network’s
relaxation time (or, the time-constant). Now, in this limit,

Re Ge(ω) =
(2po − 1)

2
+

1
2

∣∣∣∣
2(2pi − 1)
(2pt − 1)

− (2po − 1)
∣∣∣∣ , (32)
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Fig. 14. Left: Real part of the effective conductance Re Ge(ω) against ω for a set of values of
p; the EMA results on 2D square lattice for the CRC model. Right: The numerical results in
2D for the CRC model with leaky capacitors with a finite real conductance, gc = 0.001go: the
average | < G(ω) > | against ω for a set of values of p. For each p and ω, the average over
20 different configurations were taken
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and,

Im Ge(ω) =
ω(2pt − 1)

2
+

1
2

|ω(2pt − 1)| , (33)

and, thus, for all p > pct, Ge(0) < Re Ge(ω = ∞) < ∞. Also, clearly, Im Ge(ω)
in this limit is zero. Thus, both the conditions hold in the ω → ∞ limit.

Next, we check the asymptotic expansion as ω → 0+. In this limit, [Re Ge(ω)−
Ge(0)] ∼ ω2 and Im Ge(ω) ∼ ω. We find that this extremely low-ω behaviour of
the complex Ge in the EMA is generic for all pct < p < 1 (except at p = pc, see
below), and [|Ge(ω)| −Ge(ω = 0)] ∼ ω2. Hence, the EMA cannot recognise a non-
percolating configuration from a percolating one (as anticipated) from their low-ω
behaviour.

Now, in the special case when p = pc (= 1/2 for a square lattice), we find that in
the limit ω → 0+, both the Re Ge(ω) and Im Ge(ω) varies as ωα′

, where α′ = 0.5.
Obviously, |Ge(ω)| ∼ ω0.5 in this limit. In passing, we would like to quote the
extremely low-frequency EMA exponent in the case of 3D. By looking at the EMA
expressions for Ge(ω), which are the analogues of Eq. (30) and Eq. (31) for a simple
cubic lattice at its EMA percolation threshold (pc = 1/3 in 3D), one finds again that
α′ = 0.5 (in 3D).

We show in Fig. 14 (Left) a log-log plot of Re Ge(ω) against ω in 2D [Eq. (30)].
In conformity with the asymptotic expansions obtained above, analytically for very
small ω’s, the EMA results shown in this figure give α′(p) = 2.0 for all pct <
p < 1.0 except for the special case of p = pc. We have α′(pc) = 0.5 both in the
very low and in the moderately low-ω regimes much below the upper saturation of
Re Ge(ω = ∞). Further, for each fixed p �= pc, there is a characteristic ω0(p) around
which α′(p) starts crossing over from 2.0 to the moderately low-ω exponent of about
0.5. The jump of α′(p) at an extremely low-ω from 2.0 to 0.5 is the hallmark of
the inadequacy of EMA. One does also note that for a fixed p �= pc , this crossover
region becomes smaller for smaller p’s. Indeed, the crossover region finally tends to
vanish as p → pct (� 0.18 in 2D square lattice). Thus, we observe that there are no
low to moderate, ω, crossovers for p = pc with α′ = 0.5 and, similarly, for p = pct

where α′ = 2.0.
We do also calculate the EMA results with leaky capacitors at each t-bond (gt =

gc + jωc), i.e., in the upper linear dc regime. The only change here compared to the
case of perfect capacitors above is that even at p = pc, |Ge(ω)| = Ge(ω = 0)+ kω2

(k = constant) for very low-ω. Also for all p > pct, Ge(ω = 0) > 0, as expected.

4.2 Numerical Results for the Conductance in the CRC Model

We now solve Kirchoff’s laws (equation of continuity) in our 2D complex network
at each node of our correlated RC model. We obtain the complex conductance of the
macroscopic samples, their real and imaginary parts, the modulus values and the
phase-angle through iterative numerical solution using the Gauss-Seidel relaxation
method. In the Fig. 14 (Right), we have plotted the modulus of the average com-
plex conductance, | < G(ω) > | against ω for 0.3 ≤ p ≤ 0.7 and for an external
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sinusoidal voltage V = cos(ωt). We let the t-bonds be leaky capacitors with a con-
ductance gc = 0.001go and averaged over the same 20 configurations for each ω.
So, we are virtually in the upper dc saturation regime. For clarity, we have shown the
graphs in the Fig. 14 (Right) from zero to a moderately low ω (= 0.1) much below
the upper ac saturation regime.

Now, it is quite well-known that since the actual experimental data become flat
only at very large ω’s, the computed power-law exponent α′ (for small values of
ω) may depend crucially on the arbitrarily chosen (may also be dictated by exper-
imental data) upper cut-off in ω for fitting purposes. Consequently, the possibility
of an unique function should be explored (as we do here) that fits all the way from
the lower to the upper saturation range (if sufficient data are available), and then the
power-law behaviour in the moderately low-ω range should be extracted from that
function. We find that for p � pc , the respective graphs in the Fig. 13 (Left) and the
Fig. 14 (Right) are fitted very well with the Eq. (29) such that α′ = μγ � 0.7. Thus,
in the moderately low-ω regime, α obtained experimentally in varieties of systems
[27, 35–39, 58] and in an Extended Pair Approximation (EPA) theory [59] is close
to what we obtain here (i.e. 0.7). We remark here that for a 2D system exactly at pc ,
α′ = 0.5 both in the simple RC model (see e.g., [28]) and the EMA of our CRC
model. Indeed, both of them fall short of the realistic value of α′ not only at p = pc,
but also at any p �= pc.

As mentioned before, there are experiments, e.g., [38, 39, 56], where the upper
saturation of the Re Ge(ω) may be clearly observed.We discuss here the one by
Pollak et al. [56] on Li-doped NiO single crystals at sufficiently low temperatures.
The frequency range used in that work is from about 107 Hz to about 1010 Hz. We
did not try to fit them by our method since no data below 107 Hz was available.
In any case, we note that the upper saturation is also consistent with the fact that
the measured relaxation time for this sample is about 2.2 × 10−10 s. In passing, we
do also note that in this system the concentration of the Li-dopant is extremely low
as well: from about 13 × 10−6 to about 136 × 10−6, and that the pristine NiO is
an insulator. We observe that the upper saturation value of the conductivity for this
experiment [56] is about 0.1 S/m, and that the data for all the three concentrations
used for Li, fall closely enough to their fitting function in the high-frequency range,
but not so well in the low-/moderate-frequency range. The power-law exponent α′

(around 107Hz) seems to be close to 2.0.
Next, we would like to emphasize that the apparently excellent fitting shown in

the Fig. 13 (Left) with Eq. (29) may be misleading to the eye in the very low-ω
regime. A careful analysis of the data in a more revealing log-log plot show that for
very low ω, the fittings may be actually quite bad. We observed that for the two el-
ementary circuits [Fig. 13 (a) and (b)] for very low ω, |G(ω)| ∼ ω2 or ω depending
upon whether the circuit is conducting or insulating. Similarly, we anticipate that
for extremely low ω and in the lower dc regime, the CRC network would also show
such simple behaviours (instead of a more complicated percolative behaviour in the
moderately low-ω regime as described above). Further this simple behaviour is ex-
pected to persist (as seen in our EMA results) generically for each p up to some
scaled crossover frequency, ω0 depending on p, go, gc and c. For ω > ω0, we expect
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macroscopic percolative effects to gain control and instead of Eq. (29), |G(ω)| should
follow a more general equation closer in form to that used for the dc-conductance,
Eq. (22),

|G(ω)| = G(ω0) + Gd(p)[1 − exp(−λ[ω − ω0]μ)]γ . (34)

A typical fit by the above equation is shown in Fig. 15 for a system size, L = 20 and
p = 0.3 for about seven decades in ω using leaky capacitors. In the inset of Fig. 15,
we show the log-log plot for the modulus value of G and observe a very convincing
quadratic behaviour with | < G(ω) > | = 0.01219 + 55ω2 for ω0 ≤ 0.01. This
observation is totally matching with our analyses for the elementary circuit (a) of
Fig. 13. For ω > ω0, we get a very good fit for the intermediate frequency range with
the general Eq. (34) where α′ = μγ � 3.0 (which is much larger than 0.7). Similarly
large second power-law exponent, has also been observed in some experiments, e.g.,
in a very recent one on impedance spectroscopy in multiferroic thin films [109].

Next in the Fig. 16, we show another fit for a single configuration (at p = 0.45 <
pc) with perfect capacitors at the t-bonds (gc = 0, non-percolating) of the CRC
network with L = 20. In this case, one can easily observe that in the very low-ω
range up to a crossover frequency ω0 � 0.01, |G(ω)| � 6ω. This behaviour is akin
to that of the elementary insulating circuit (b) of Fig. 13. Further, beyond ω0, we
do again have an excellent fit with the Eq. (34) with α′ = μγ � 0.5. So we have
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Fig. 15. The | < G(ω) > | for p = 0.3 and a square lattice of size L = 20. Just as in right
Fig. 14, each t-bond represented a leaky capacitor and an average over 20 configurations were
taken. The inset shows an ω2-dependence upto a crossover frequency of ω0 � 0.01. Above
ω0, the Eq. (34) gives a very good fit as shown
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Fig. 16. Another example of |G(ω)| against ω for p = 0.45 and for a typical configuration on
a square lattice of size L = 20. The very low-ω part shows a purely linear behaviour. But for
ω > ω0 � 0.01, Eq. (34) gives the optimum fit

two things to note here for non-percolating configurations (with perfect capacitors,
i.e. in the lower dc regime): (i) the very low-ω behaviour is linear in ω, and (ii)
the intermediate frequency behaviour seems to give a lower value for the exponent
compared to that for percolating configurations (e.g., as in the upper dc regimes of
the Fig. 13 (Left) and the Fig. 15 where δ = 0.7 near pc). Note that for the non-
percolating configurations (only at pc) in the lower linear dc regime, α′ = 0.5 in the
case of EMA as well.

For many practical situations, this intermediate frequency range (away from both
the lower and the upper ac saturation regimes) is of prime interest. For t-bonds with
leaky capacitors at any p > pct (i.e., in the upper dc regime), we find that α′ has a
minimum value of about 0.7 near pc, and increases on both sides of it with a value of
about 3.0 at p = 0.3 (as shown above) and of about 1.35 (not explicitly shown here)
at p = 0.7. Clearly, this result has a qualitative similarity with the dc nonlinearity
exponent δ(p) as a function of p as shown in the Fig. 11 (Right) [57]. Finally, we
reiterate that a couple of power-law behaviours in the low and intermediate range
of ω’s (as observed in the RRTN model and supported, for example, by a recent
experimental study [109]) seem to be generic.

4.3 Phase Angle of the AC Response Versus the Driving Frequency

We do now describe the behaviour of phase-angle of the complex conductance,
Ge(ω) with respect to the frequency (ω). The phase-angle (φ) is defined through
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tanφ =
Im Ge(ω)
Re Ge(ω)

. (35)

In the Fig. 17 (Left), we plot the phase-angle (φ) of the complex conductance
against frequency (ω) for the EMA. As expected, this angle is zero [just like the
Im Ge(ω)] both at very small and at very large ω’s. Further the phase has a peak
value φ = φm which increases as p is decreased and the ω at which the peak occurs
is p-dependent. We find from this figure that the positions of the peaks tend towards
zero and that φm becomes progressively larger as p approaches pc from higher val-
ues. It may be noted that we cannot calculate the phase angle, φ for p < pc in the
EMA with confidence because the quantity Ge(ω = 0) = 2po − 1 takes on un-
physical negative values. Hence, we have not shown any curve for p < pc in the
Fig. 17 (Left).

The variation of the phase-angle (φ) with frequency (ω) obtained by numerical
(Kirchoff’s laws) solution of our CRC network has been shown in the Fig. 17 (Right)
for 0.3 ≤ p ≤0.7. One can easily observe from this figure that in the CRC model, for
configurations with p around pc for a 2D square lattice, the peak value of the phase,
φm

∼= 0.7 (radian). This is close to the universal phase-angle value of π/4 radian
obtained in the simple RC model in 2D at pc as predicted by Clerc et al. [28]. As
noted before, the EMA calculations (i.e. mean-field approach) of the phase φ(ω) for
our CRC model also obtains φm

∼= 0.7 rad when p ∼= pc. The main problem with
the EMA, in this case, is that the peak occurs at an ω of about 0.1 rad/s (instead of at
around 0.2 rad/s as for the CRC in the Fig. 17 (Right)) and that it is too broad. Further,
as shown in this figure, φm increases as p decreases: from a value of φm � 1.1 rad
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for p = 0.3 to a value of φm � 0.4 rad for p = 0.7. Everything considered, the
results and the arguments above indicate that exact solutions of the CRC network
is much more effective than its mean-field theory (EMA) or the uncorrelated RC
network, for modelling the ac response of real systems.

5 VRH and Low Temperature Conduction in the RRTN

In this section, we discuss some results of our studies on temperature dependent
conduction based mostly on our short report in [60]. The low-temperature dc elec-
trical conductance G(T ) is being studied for many decades now, in the regime where
the thermal energy kBT (kB = Boltzmann constant) is of the order of or smaller
than the disorder or the Coulomb interaction energy between the charge carrying
fermions. During 1960s, Mott [40, 41] had put forward an analytical expression for
the phonon-assisted hopping conduction of spinless fermions, taking only the lat-
tice disorder effect into account and his Variable Range Hopping (VRH) formula is
written as,

G(T ) = G0 exp
[
−
(
T0

T

)γ]
, (36)

where G0 is a material parameter, γ = 1/(d + 1) for a d-dimensional sample (e.g.,
γ = 1/4 in 3D), and T0 is a sample-specific temperature scale, below which quan-
tum mechanical tunnelling between nearby fermionic states (electron or hole), lo-
calized around a finite number of lattice sites, starts contributing significantly to the
G(T ) with the help of hopping due to phonons. Classically, these regions behave as
finite-size clusters. For a quantum insulator, as T tends to T0, the coherent tunnelling
process (or, hopping conduction) keeps increasing, while the incoherent scattering
due to the phonons (or, the ohmic resistance) keeps decreasing. After Mott’s seminal
work, Efros and Shklovskii [61] considered the localization due only to the repul-
sive Coulomb interaction between the charge carriers in a pure system, and achieved
the complementary result that γ = 1/2 for an insulating sample in any d. Musing
over both the types of VRH, one may take kBT0 as the energy-scale that determines
the domain above which incoherent (dephasing) scattering among the localized elec-
tron/hole states completely takes over, and transforms an Anderson or a Mott insu-
lator into an Ohmic (diffusive) metal. Thus, for a complete description, the VRH
formula should take the following general form:

G(T ) = G0

(
T0

T

)s

exp
[
−
(
T0

T

)γ]
, (37)

as argued by Aharony et al. [62].
But, relatively recently, there have been a few theoretical works (e.g. [63]) and

some experiments (e.g. [20, 22, 64]), which do not seem to fall into any of the above
schemes, in the sense that the exponent γ is different from the above predictions.
While the theory of [63] predicts γ > 1/4 in 3D disordered systems on fractal media
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(due to hopping between superlocalized states), the experiment of [22] on carbon
black-PVC composites seem to confirm such hoppings in the presence of both dis-
order and interaction. Here, superlocalized states are those whose wave-functions
decay with the distance R as exp [−(R/ξ)ζ ], with ζ > 1; ξ being the localiza-
tion length. If hopping takes place between superlocalized states, then the Mott
VRH was shown to modify the exponent γ in Eq. (36) to γ = df/(df + ζ), where
df is the fractal dimension of the medium [63]. Experimental [22] evidence of the
above has been reported in carbon-black-polymer composites, where it is claimed
that ζ = 1.94 ± 0.06. However, doubt has been cast by Aharony et al. [62] whether
the superlocalization was really observed in such composites.

As a matter of fact, several experiments (e.g. [20, 64]) in the past, reported qual-
itative deviations from the above-mentioned results. Indeed, the more serious devia-
tion has been the continuous variation of the exponent γ with the dopant (or, disorder)
concentration, p, in some granular or composite materials.

5.1 A Temperature-Dependent RRTN Model

To capture the basic physics of this intriguing behaviour, we undertook a thorough
study of the low-temperature conductance in our semi-classical percolative RRTN
model. But the temperature T does not appear explicitly in any percolation model.
Hence, to study the VRH phenomenon in the RRTN (in a 2D square lattice), we use
some empirical parameters for the T -dependence of the microscopic conductance of
the various types of bonds. For simplicity, we use, go = a/T (i.e. a pure metallic
bond) and gt = u exp(−b/T ), where a, u and b are phenomenological constants.
Here, a behaves like the temperature coefficient of resistance for the pure o-bonds
(disorder effect comes through their random positions), b is a measure of the thresh-
old potential vg of a t-bond due to the gap between the valence and the conduction
bands of a semi-conductor or due to the Coulomb blockade in an interacting system.

First, we describe the mean field results using the EMA. Putting the above forms
of go and gt in the Eq. (6), one obtains for d = 2 square lattice based maximal
RRTN’s (i.e. in the upper ohmic regime):

Ge =
1
2

[
−B ±

√
B2 − 4C

]
, (38)

where

(1 − 2p)
a

T
+ (1 − 2pt)u exp

(
− b

T

)
(39)

and

C =
au(2pi − 1)

T
exp
(
− b

T

)
. (40)

In the Fig. 18 (Left), we present graphically the T -dependence of the effective con-
ductance Ge(T ) for five different p > pEMA

ct
∼= 0.25 (square lattice), as given by

the EMA Eq. (38) above. For this purpose, we have considered the parameter values
as a = 100, b = 100 and u = 10, and plotted the T -dependent curves for five o-
bond concentrations in the range, p = 0.30 − 0.70. All the graphs have a non-trivial
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Fig. 18. A simple basic temperature T -dependent RRTN with material parameters a =
100, b = 100 and u = 10. Left: Effective mean field (EMA) conductances, Ge versus T
given by Eq. (38), for various p’s in the dc upper linear regime (ULR). Right: Beyond mean
field, numerically exact conductance G(T ) vs. T in six 20 × 20 RRTN square-lattice config-
urations of various p’s in the ULR

conductance maximum (resistance minimum) as in a disordered quantum system.
Further, for the graphs p > pc = 0.5, there is a sharp rise in Ge(T ) at very low
T ’s with an infinite peak at T = 0 (see also [65]) since the dominating ohmic bonds
(droplet type regions in a real sample) are pure metallic and diverge as 1/T in the
model T -dependence considered here. The case where the metallic phases/bonds are
also dirty (i.e. disordered with a zero-T residual resistance) is considered elsewhere.

As T → 0, we find that Ge(T ) behaves as T−1/2exp(−b/T ). Hence, the EMA
values for the exponents shown in the Eq. (37) come out to be s = 1/2 and γ = 1,
when the macroscopic sample is a maximal RRTN, or it is in its upper ohmic regime
(ULR). For T → ∞ (indeed for T >> b), one can make an asymptotic expansion
exp(−b/T ) � (1 − b/T ). Then, one finds from Eq. (38) that the macroscopic EMA
Ge(T ) � 1/T , i.e., the ohmic metal-like behaviour dominates for T >> T0 = b
(a material parameter dependent scaled temperature). So, from the mean-field level
EMA calculations, there is p-dependence and a temperature maximum (as expected)
in Ge(T ), but no p-dependence in the VRH exponent γ (or, s).

To go beyond the EMA, i.e., to study the effects of both the thermal and the
(semi)-quantum fluctuations, we do again take recourse to an exact numerical so-
lution of the local current conservation equations in the RRTN iteratively until a
steady state at a temperature T is reached. To get the results in the ULR (maximal
RRTN), we use the trick of applying a very high voltage (106 V or more). In the
Fig. 18 (Right), we present the T -dependence of the numerical results for differen-
tial conductance G(T ) = (dI/dV )T in finite-sized (L = 20) RRTN samples for six
different p’s (p > pct = 0.18 for square lattices). Qualitatively, these G(T )’s and the
Ge(T )’s in the EMA [see Fig. 18 (Left)] look very similar. In a classically percolating
situation, where the ohmic backbone is already percolating, we find a non-monotonic
sharp rise in the conductance as T → 0. As T is increased slowly, one first notes a
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conductance minimum followed by a relatively slower increase to a conductance
maximum Gm at T = Tm (due to a competition between the decoherent diffusive
processes in the randomly positioned o-bonds and the coherent tunnelling processes
across the positionally correlated t-bonds). These findings have, at least a qualitative
matching, with some experimental results on composite/granular materials, as well
as some theoretical works on fully quantum disordered systems (e.g. see [65]).

To treat both the percolating and the non-percolating RRTN samples on the
same footing (for studying the VRH phenomenon), we work with the excess RRTN
conductance over the RRN conductance at the same temperature: G(T,RRTN) −
G(T,RRN). The Fig. 19 (Left) shows this excess differential conductance for the
same samples as in the Fig. 18 (Right). Clearly, now the samples for all p’s look
very similar. We calculated the VRH-exponents first by using the finite-size scaling
analysis. In our previous study [60] in this regime, the finite-size effects had seemed
vanishing. More precise analyses with four ranges of T ’s (for T < Tm) indicate that
γ has a fine size dependence in the asymptotic upper linear regime (ULR). In the
Fig. 19 (Right), we show some finite-size corrected VRH exponents [γ(p, T )’s] for
the 2D RRTN square lattices in the ULR. We observed from our numerical analy-
ses that the VRH exponent γ depends quite sensitively on p, but s is quite robust
(2.0 < s < 3.0) as T → 0. In passing, we would like to mention that this size-effect
is stronger in the strongly nonlinear sigmoidal regime of the dc current-voltage re-
sponse. The details are discussed elsewhere.

Thus, we find that our RRTN model is quite successful for describing the VRH
and that the generalised VRH formula, Eq. (37), works better than the restricted
one, i.e., Eq. (36). As such, the exponents vary continuously with the concentration
p of the o-bonds, as shown in the Table 1. So, it is capable of reproducing, at least
qualitatively, the intriguing results of some recent experiments on (Carbon-black)-
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Fig. 19. Left: Excess G(T ) for the same RRTN samples as in the Fig. 18 (Right). The word
excess means that the ohmic (RRN) part of the G(T ) for the RRTN samples at each T is
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Table 1. Numerical study of the VRH-exponent γ(p) in a square lattice RRTN at different p’s

o-bond conc. p VRH-exponent γ(p)

0.25 0.91
0.35 0.82
0.40 0.80

(PVC) mixtures [22], sulfonated polyaniline (called PANI-CSA) composites [20],
some doped Langmuir-Blodgett films [64] etc.

6 Slow Power-law Dynamics Far-from-Equilibrium

Slow relaxation phenomena in random composite materials made of components
having widely different generalized susceptibilities (e.g. permeability, dielectric con-
stant, electrical/ thermal conductivity, viscosity, elastic module etc.), continue to re-
main intriguing and hence a topic of intense research. In studying the dynamical
behaviour of a material, one usually measures its appropriate response property, say,
φ(t), as a function of time t, from a non-equilibrium to an equilibrium (for a closed
system) or to a steady (for an open system) state. In general, this relaxation may be
classified into two groups.

(i) A purely Debye type where the response function relaxes exponentially, i.e.,
φ(t) = exp(−t/τ), τ being the only characteristic time-scale, called the relax-
ation time. This Debye relaxation[66], also called Boltzmann’s relaxation time
approximation[67], takes place typically when the deviations from the equilib-
rium statistics due to perturbing external forces are rather small and the temporal
rate of change of response towards a steady/equilibrium state, is proportional to
the response itself; i.e., dφ(t)/dt ∝ ±φ(t).

(ii) A non-Debye type where φ(t) could be a sub-exponential function (as in some
glassy systems), or a linear superposition of exponential functions, etc. with mul-
tiple relaxation times. If the distribution of τ ’s may be expressed in terms of a
probability density function or, an weighting function, w(τ ), then the weighted
response may be expressed as

φ(t) =
∫

exp(−t/τ)w(τ)dτ. (41)

The response function may thus be considered as the Laplace transform of the
weighting function of relaxation times w(τ) from the τ -space to the space of
real times, t. Obviously, in the limit of large observation times, the response is
dominated by the smallest one of the set of relaxation times.

In the rather intriguing cases of complex systems or a system very far from any
steady state (if there exists any), this non-Debye relaxation may behave as a power-
law or a logarithmic function or one with τ → ∞. Clearly, in all such cases, either
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a time scale (even in the very large time limit) does not exist or it is ill-defined.
The appearence of such a scale-free, slow dynamics with one or more power-laws in
the early stages of evolution, is what concerns us here because of the fundamental
issue of the failure of Boltzmann’s relaxation time approximation in driven systems
far-from-equilibrium (actually, from a steady state).

6.1 Experiments and Some Related Models

In a lucidly written review, Scher et al. [68, 69] focus on experimental observations
(1970s onwards) and the origin of two power-law kinetics. For a few examples, we
cite some transient photocurrent measurements [70, 71] on a-Si:H, a-As2Se3 etc. and
a couple of whole transport [72, 73] data on PVK and Si-MOS devices, where two
consecutive power-law decays, of the forms t−α and t−β (α, β > 0), covering one or
more decades in time each (with a crossover in-between) were observed. Based on
the continuous time random walk with a long-tailed power-law probability density
function for the random waiting times (release time of trapped carriers by tunnelling),
Scher et al.[68, 69] formulated a theory regarding the above results. The latter long-
tailed power-law function violates the Central Limit Theorem[74], since all of its
moments including the first (mean waiting-time) diverge. The unifying feature of the
above random walk is the scale-invariance of the shape of the relaxation current I(t),
if one rescales the time by a transit time, tr, which is a sample dependent parameter.
This stochastic theory by Scher et al. [68, 69] explains the results of many early
experiments, following the relation α + β = 2.

But, there is a huge variety of relatively recent, more intriguing experiments on
soft-condensed or complex systems, where the couple of exponents α and β do not
seem to follow any simple algebraic relation. We start off with the relaxation in a
metal-insulator composite, the main object of our study. Weron and Jurlewicz noted
that the dielectric relaxation in a system of dipoles [75] involves the crossover be-
tween different forms of self-similarity. They argue that [76] a couple of power-law
decays appear due to the coupling of micro-clusters of dipoles with a distribution
of τ ’s (i.e. multiple time-scales). Next, an experiment on the intermittency (i.e. the
blinking characteristics) in the visible spectrum fluorescence of single CdSe quantum
dots [77], reported that the distribution of the on and off times of the blinking kinet-
ics follows a single power-law.8 In a biological system of photo-dissociated heme-
proteins, the rebinding of the ligands of iron (i.e. the CO and the O2 molecules) is
observed to follow an inverse power-law dynamics [78, 79]. In a theoretical study of
the same work, Tsallis et al. [80] claim two inverse power-law regimes and demon-
strated its possible connection with non-extensive thermo-statistics (entropy). Naudts
and Czachor [81, 82] analyzed the data of many experiments including those above
[75, 77–79], and maintain that these two power-law decays result from some choice
of parameters of their probability density function w(τ). All of the above theories
lead to the result that α < β, if two power-law relaxations exist. In another biolog-
ical system, the dynamics of Ca2+ channels in living cells [83], the distribution of
8 Our analysis suggests that two inverse power-law kinetics are present in this experiment

[77], as well.
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the survival-times of the channels has been studied. A stochastic dynamical model,
with one dimensional (1D) geometry, was proposed to explain specifically the latter
(second) power-law[84] dynamics.9 In this case, one finds that the system relaxes
faster in the first power-law regime than in the second, i.e., α > β.

In a computer-experiment on the growth of large single DLA (diffusion lim-
ited aggregation) clusters of upto 108 particles, two power-laws seem to dictate the
growth as a function [86] of a time-like entity. A similar theme has been reflected
in various methods of synthesis of synthesizing nanomaterials [85]. For example,
depending on the size (micron, sub-micron, nano-sized etc.) and shape of the micro-
scopic primary particles or powders to be compacted, one may use chemical forces
as in a sol-gel/polymerization process, hydrostatic (capillary) forces between nearby
nano-clusters with large curvature, or mechanical and thermal forces as in sintering
or compaction without external forces. Two power-law growths are also claimed to
have been found, using atomic force microscopy (AFM), in the early dynamics of
sputtered Ag particles on Si(0 0 1) substrate [87]. These authors relate the two dif-
ferent growth-dynamics to two competing structural rearrangements at two different
length-scales. In all these processes, the approach to a steady/equilibrium state in-
volves a local relaxation by forming or restructuring many local clusters by crossing
the local barriers due to a caging effect (typical of liquid-like, amorphous or dense
granular materials). This is followed by (or, may be co-existent with) another slow
relaxation of global restructuring of the local clusters themselves. In the dynamics
of nano-cluster formation, one finds the average grain size (diameter) growth as a
power-law in timcluster formation, one finds the average grain size (diameter) to
grow as a power-law in time. A schematic picture of a pair of underlying scales of
restructuring (due to appropriate unbalanced internal forces) is shown in the Fig. 20.

local
cluster

single
particle

global agglomerate

e
e

Fig. 20. Schematic diagram of a ‘stable’ cluster with two different length scales (adapted
from [85]) as the origin of two different domains of restructuring times

9 Two inverse power-law kinetics are clearly present in their Fig. 2 [84], a typical result of
this 1D model.
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Finally, we cite one of the most spectacular occurrences of this early, far-from-
equlibrium, two-power law dynamics in one of the most highly devastating of natural
phenomena called earthquake [88, 89]. Data collected over a long time and from var-
ious regions of the earth have been condensed by geophysicists in the form of Omori
law, which says that the intensity of small localized quakes, called the aftershocks
which are the aftermath of a much more extensive main event, follow a power-law
in time. Interestingly, more recent and accurate data analyses, as discussed in an
advanced textbook on the nonlinear dynamics of the lithosphere [88, 89], indicate
that the intensity of the cooperative build-up prior to the main event, called the fore-
shocks, also follow a power law in time. The reason for the late revelation of the
power-law dynamics of foreshocks is that reasonably well-identified data on them
are available only for rather large quakes. As far as a simple theoretical modelling of
quake dynamics is concerned, a relatively recent study of a cellular automata model
of earthquakes[90], indicate that one power-law dynamics seems to result under cer-
tain choice of parameters.

Thus, even though, time enters in an implicit fashion in some of the above stud-
ies, an explicit characterization of the relaxation dynamics in the RRTN model in
the perspective of various experiments and models (as described above) was consid-
ered to be worthwhile. It may be mentioned here that this phenomenological, micro-
scopic model (RRTN with no temperature, or at T = 0) has a minimal number of
adjustable parameters for nonlinear, steady state properties; and none at all for the
non-equilibrium dynamics, e.g., no assumption of multiple relaxation times or any
power-law type probability density function thereof, or any underlying stochastic
fractal/multi-fractal geometry (p is not constrained to be close to pc or pct), etc.

6.2 Far-from-Equilibrium Slow Dynamics in the RRTN

We review here the current relaxation dynamics towards a steady state in the RRTN
model. Away from equilibrium, a t-bond with a microscopic v < vg behaves like a
dielectric material between two metals (o-bonds), and the resulting charging effect
gives rise to a displacement current (cdv(t)

dt , where c is the capacitance). Thus, a t-
bond gives rise to a displacement current if v(t) < vg, and an ‘ohmic’ current if
v(t) ≥ vg [91, 108]. For our calculations, we use the values of the microscopic
conductance go = 1.0 (o-bonds), gt = 10−2 (t-bonds), vg = 0.5 and c = 10−5 for
the t-bonds (in some arbitrary units).

In our numerical study, we apply an uniform electric field across RRTN’s of dif-
ferent system sizes (L) and ohmic bond concentrations (p). We study the evolution
of the current in a RRTN starting from the switching-on-state until it approaches
its asymptotic steady state. To do this, we follow basically the current conserva-
tion (Kirchhoff’s laws) locally at each node of the lattice. The aim is to study the
achievement of a global current conservation as an outcome of the local current
conservation (hence, the dynamics). A discrete, scaled time unit has been chosen
as one complete scan through each site of the lattice. The local conservation or the
equation of continuity reads as.
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∑
inn(t) = 0, ∀t. (42)

Here, the sum has been taken over currents inn(t) through various types of nearest
neighbour (nn) microscopic bonds around any node/site of the lattice. For the case
of a square lattice, one considers the four nn’s around a node inside the bulk (three
and two nn’s, respectively, at any boundary or a corner). If Eq. (42) were true simul-
taneously for each site of the lattice, then the global conservation (the steady state)
for the entire network would automatically be achieved. As we need to start with an
initial (arbitrary) microscopic voltage distribution, the Eq. (42) would not hold for
all the sites of the lattice. Some correction term would be required at each site and
this requirement leads to the following time evolution algorithm, which we call as
the lattice Kirchhoff’s dynamics [108]:

v(j, k, t + 1) = v(j, k, t) +
∑

inn(t)∑
gnn

, (43)

where gnn are the various microscopic conductances of the nn bonds around the
node (j, k). Then, we numerically solve a set of coupled difference equations on the
lattice. The move towards a macroscopic steady state implies that the difference of
currents through the first and the last layers tends to zero as a function of time. In
practice, the system is considered to have reached its steady state when this difference
decreases to a pre-assigned smallness.

As shown in the Figs. 21(a,b), we observe [108] a non-Debye type current re-
laxation with two consecutive initial power-laws (and a crossover in-between), each
of them spanning at least a decade. This asymptotic steady-state current (whether
insulating or conducting) for any randomly chosen RRTN is found to be very robust
against any initially chosen voltage distribution on the lattice. To analyse the current
evolution of an insulating or a conducting sample on the same footing, we subtract
the corresponding steady current, I(t → ∞), from the evolving current I(t) at
the time t. Our observation on the transient current response, indicates clearly the
existence of a couple of initial power-laws, whose exponents differ significantly for
systems with different configurations, p, L and external voltage, V . So, we choose to
work with one sample at a time and analyze its results within our numerical accuracy.

For example, in the Fig. 21(a), we show the dynamics for a sample with L = 60,
p = 0.55, V = 2.0 and in the Fig. 21(b) another with L = 80, p = 0.35, V = 20.0.
The first figure [i.e., Fig. 21(a)] represents the class of relaxation, where the second
exponent (0.72) is larger than the first (0.44) (the only class reported in our pre-
vious work at a particular p > pc [91]). There are quite a few theoretical works
[68, 69, 76, 80] in this regard. Some other experiments [83, 84, 87] find a second
exponent smaller than the first. Since our earlier report [91], we have been able to
reproduce this other class of relaxation [e.g., Fig. 21(b) with the exponents 0.78 and
0.57, respectively], as well, within the context of our RRTN [108]. In special cases,
we do find only one power-law relaxation, which may be considered to be the bor-
derline between the above two, or as the merging of the two power-law exponents.
Further, we do not find any particular relation between the exponents. Next, the ex-
istence or the lack of any asymptotic exponential kinetics is not explicitly stated in
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Fig. 21. (a) Non-equilibrium dynamics in terms of a scaled time shows two initial power-
law decays (with intermediate crossover) in the current relaxation for (a) one RRTN sample
(p = 0.55, L = 60) with the exponents of 0.44 and 0.72; and (b) another sample (p =
0.35, L = 80) where the exponents are 0.78 and 0.57, respectively. The dynamics in the
RRTN is always followed by an exponentially decaying tail (not shown in the figures here)
towards its steady state

most of them. Indeed, in some of the theoretical studies (e.g. in [68, 69, 76, 86]),
the second power-law persists upto asymptotically infinite times. This trend cannot
describe the possibility for these systems to reach an appropriate steady state. In con-
trast, beyond the power-law relaxations (whether one or two), our model acquires a
relaxation time, τ and the system evolves with a fast exponential dynamics to a final
steady state (diffusive/ ohmic). The power-law relaxations at times, t < τ , imply a
strong deviation from the Boltzmann’s relaxation time approximation, i.e., a strongly
non-Debye relaxation.

As far as the origin of the two power-law dynamics are concerned, we have al-
ready outlined the main content of some of them [68, 69, 76, 80–82, 84, 90] in the
section on experiments. In most of them, they occur due to local structural rearrange-
ments preceding the final global structural rearrangements. In our case, the basic
structure in a particular sample is created once for all, and it is the fields across the
bonds that keep changing in such a fashion that the local conservation (Kirchhoff’s
laws at each node) dominates the first power-law regime and the global current con-
servation dominates the latter power-law regime (of course, there are the required
structural rearrangements of the active t-bonds). So, it is interesting that these two
very different mechanisms give rise to a qualitatively identical outcome. Another
origin could be that the free energy of such athermal systems depend on the random
internal voltage fluctuations, partly correlated due to a scale-invariant (determinis-
tic) placement of the t-bonds. This may give rise to non-extensive entropic energy
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[92, 93] and failure of the standard fluctuation-dissipation theorem (regular diffusive
motion). Further, since the power-law dynamics occurs even for p’s away from pc

or pct, it clearly demonstrates that they are not organized by any type of criticality.
Finally, as discussed above, while most of the other theoretical works, are destined
to get only one class of two-power-law relaxation behaviour (namely, α < β), the
RRTN dynamics has the ability to capture both of the classes for different sets of
parameters.

7 Aspects of Reversible Breakdown in the RRTN Model

Material breakdown is an ubiquitous phenomenon of Nature observed in widely dif-
ferent varieties of driven systems, starting from failures of mechanical systems (such
as fractures of materials, avalanches, earthquakes etc.) to biological systems (like
denatured proteins etc.). In electrical systems, this run-away phenomenon relates to
the abrupt change of the electrical properties from one kind to another. Electrical
breakdown itself can be of two different types. One is the fuse-type breakdown due
to the Joule heating through the ohmic conductors, and, hence, it is an irreversible
phenomenon. The other is a dielectric breakdown. If an insulating material (made
of microscopic disordered metallic and dielectric, i.e. insulating, phases) is placed
between two electrodes and a voltage V is applied across them, such that the elec-
tric field E = V/L (L being the length of the sample in the direction of the field)
has a low value, no current flows through the solid. The islands of conducting phase
without the external force cannot provide for a continuous path for a current to flow
through the macroscopic sample. However, if the field is higher than some sample-
dependent critical value Ec = Vc/L, then some dielectric regions may break un-
der their local field (electrical stress) thereby making extra pathways for current to
flow through, and the solid becomes a conductor. If E is brought below Ec from
higher values, the solid becomes insulating again. Hence, this type of breakdown is
reversible. At a low enough temperature and in the presence of disorder (or, other
scattering mechanisms, not considered here), quantum mechanical tunnelling (or
hopping) between the sites or bonds, may become important, and thus contribute
to a breakdown (dielectric) of the system.

To understand the dynamics of a reversible dielectric breakdown or fracture, we
use a bond percolation model. As is customary in a statistical physics approach of
studying breakdown, it is believed that some of our results may have some relevance
for varieties of generalized breakdown/fracture processes, and in particular, for an
(earth)-quake, where mechanical fracture is involved. A preliminary report of our
present study has already appeared in [94]. If a field above Ec is applied to a macro-
scopically insulating sample, which is a composite made of microscopic insulating
and conducting domains, the breakdown of some dielectric/insulating regions into
conducting zones in such a system, propagates in time through the sample until the
whole sample acquires a geometrical connectivity of conducting regions, and starts
conducting. In other words, the dynamics of the system leading to such a phase tran-
sition, is extremely important to understand.
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Statistical physics of the breakdown of an insulating dielectric into a conduct-
ing state (or of a conductor into a fused insulating state) has been the subject of
intense research [95, 110, 111] for more than a decade now. The general discus-
sions and the numerical results described below closely follow our work [53, 94] on
this topic. Suppose one considers a random binary, two-phase mixture of metallic
and non-metallic components. If the volume fraction of the metallic phase is large
enough, the metal phase forms at least one [96] sample-spanning cluster in which
the non-metallic phase is dispersed in the form of isolated islands. In this regime, the
electrical conductivity of the sample is large. The system is metallic. On the other
hand, for a small volume fraction of the metallic components, the non-metallic phase
forms at least one [96] sample-spanning cluster in the presence of small and isolated
metallic islands. The system is then in the dielectric or insulating regime. The elec-
trical conductivity of the sample in this regime is ideally zero and extremely small
in practice. Now, if one increases the electric field across the sample in this regime,
the voltage across the non-metallic bonds keeps increasing and it is not unlikely that
some of them may give in to let some current through them or turn metallic. Clearly,
in this case the breakdown problem is set up with an underlying percolation model.

In the usual dielectric breakdown model [97–99] of a random mixture of con-
ductors and insulators, it is assumed that each insulating bond can withstand a fixed
potential difference across it and becomes a conductor if the local potential differ-
ence exceeds its threshold. Therefore, the whole lattice is subjected to breakdown
at any volume fraction (p < pc) of conducting components when an appropriately
large external voltage, called the dielectric breakdown voltage, VB , is applied. Its
value depends on the specific configuration of the sample, and usually one talks
about the configuration-averaged value of VB at any particular p. For p = 0, i.e.,
when all the bonds are insulators, the breakdown voltage (VB) scales as the linear
size (L) of the lattice: VB/L = vg , where vg is the voltage threshold for an individ-
ual tunnelling bond. For p ≥ pc, such a lattice is conducting for any small-applied
voltage and the question of dielectric breakdown does not apply: VB/L = 0. To re-
move the trivial system size (L) dependence, we talk about the external breakdown
field (EB = VB/L) instead of the breakdown voltage from now on. The interesting
thing happens as one approaches p → pc from below. One obtains a criticality and a
power law

EB ∼ (pc − p)tB , (44)

where tB is called the breakdown exponent. A similar scaling is also known for the
mechanical fracture process [95, 100, 101]: σmin ∼ (p − pc)b, where σmin is the
minimum stress needed to break the system apart.

In general, in a breakdown process, one defines two critical voltages: one is the
breakdown initiation voltage VI at which the nucleation of the breakdown process
(akin to an avalanche) is initiated and the other is the final breakdown voltage VF

which is the minimum voltage at which the system as a whole breaks apart. In some
cases VI is no different from VF [97–99]. In other cases, the system needs some more
voltage beyond VI to reach the final breakdown state. It is commented in some earlier
works [102, 103] that VI and VF are essentially the same. So the authors of many



Semi-classical Percolation and Breakdown 67

previous works had actually treated the average value of VI as the average breakdown
voltage (VB). The statistics of VI and VF are also claimed to be the same, i.e., they
are described by the same critical exponent near the threshold (pc). There has been
a number of works (e.g., see the references [95, 97–103]) in the literature for esti-
mating the breakdown exponent. A closely related quantity of interest is the mimium
gap path, g(p), of a non-percolating lattice configuration. It is the minimum number
of insulating bonds that are to overcome their thresholds to give a connecting path
between two opposite sides of a lattice across which the external voltage is applied.
The breakdown voltage (VB) and the minimum gap (g) are actually two different
quantities [102] except at p = 0 and at p = pc, although both the quantities near pc

seem to behave in the same way and the numerical results [102] claim that their scal-
ing exponents are the same near pc. It was claimed through an analytical calculation
on a hierarchical lattice and through a numerical study on a square lattice [104, 105]
that the breakdown voltage (VB(p)) behaves like g(p) in a random lattice. The aver-
age of g(p) is supposed to vary as (pc − p)tg , where tg (the minimum gap exponent)
is identified with the breakdown exponent tB . Later, it was rigorously established
by Chayes et al. [106] in an invasion (or, under an external force) percolation type
situation, that tg = ν in 2D, where ν is correlation length exponent. This indicates
that tB = tg = ν. However, in such RRN models without any threshold, there is a
finite size logarithmic term involved in the scaling relationship of breakdown field

(EB) near the percolation threshold (pc), and EB ∼ (pc−p)ζ

lnL [103].

7.1 Semi-classical Breakdown in the RRTN Model

Here we discuss on our study of a semi-classical (or, semi-quantum) model of di-
electric breakdown [43], i.e., one which works on the borderline between a classical
and a quantum picture. As before, our approach involves the semi-classical RRTN
model. Semi-classical nature enters our discussion only through the possibility of
a charge carrier breaking or tunnelling through a barrier. Disorder in such systems
gives rise to inhibition to transport upto a critical (or, threshold, Sect. 3) value of the
applied field, above which a charge can pass through. As discussed in Sect. 2, on-
set of nonlinear response and dielectric breakdown has been discussed on a similar
dynamic random resistor network (DRRN) (Gefen et al. [4]), where the tunnelling
elements (or the imperfect insulators) could be anywhere in the non-metallic domain
of the system. In the RRTN, such charge transfers may be possible only in the prox-
imity gap between two metallic domains, and one can imagine that breakthrough by
the charge carriers (reversible tunnelling) should be most effective in the vicinity of
such gaps. This also highlights the fact that the macroscopic breakdown discussed
below is reversible.

Our percolative RRTN is not just a random mixture of two phases. As we have
seen before, in the presence of an external field, the dynamics of this model mimics
an effectively three-phase (driven) system. For our convenience, we take a square lat-
tice in 2D. The basic physics should remain the same if we go over to 3D. Since the
nonlinear bonds (t-bonds) are allowed only across the nearest-neighbour (nn) gaps
of two conducting bonds (and no further), the RRTN acts as a perfectly (statistically)
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correlated bond percolation model. Our interest is to examine this correlated percola-
tion model in the spirit of dielectric breakdown phenomenon. The mechanism oper-
ating here is clearly not traditional dielectric breakdown because the piecewise linear
response considered here in the tunnelling bonds is reversible in the sense that if the
local voltage difference is lowered below the threshold, a tunnelling bond becomes
insulating again. This is an important point because if we would assume the pro-
cess to be irreversible, then the irreversible conversion of one insulating element to
a conducting one may trigger a sharp/runaway macroscopic avalanche effect. Since
a local current redistribution takes place in the reversible RRTN model also when-
ever an inactive t-bond turns metallic, avalanches may take place in this model as
well. But, they may be more restricted in the RRTN than in the traditional reversible
models.

Similarly in the random fuse network [12], one has the irreversibility with re-
spect to conductor → insulator transition with the increase of applied field. Breaking
(fusing) of one bond in a certain path permanently (because of too much stress) may
lead to an increase of current density in the other paths and, thus, it may trigger an
‘reverse’ avalanche effect, i.e., a macroscopic destruction of conductors in the net-
work. In practice the ‘reversibility’ situation is achieved when the charge transport
by tunnelling gives the most important contribution to the breakdown process than
the irreversible thermal (fuse) breakdown of the microscopic conductors/insulators
inside the system. One example of reversible breakdown is the experiment on dielec-
tric breakdown by Benguigui and Ron [42], using a network of tunnelling diodes.
This network and many other real systems (nonlinear composites), where the macro-
scopic response characteristic is reversible (no appreciable static hysteresis effect,
e.g., in carbon-wax mixture [21] etc.), demonstrate this reversibility of dielectric
breakdown.

Next we comment on the procedure for obtaining the breakdown voltage (VB)
for the usual dielectric breakdown problem as understood from the references above.
The usual procedure to obtain the electrostatic voltage distribution at the nodes of
the networks in the non-percolating situation is to solve for the Laplace’s equation
(∇2V = 0). This procedure, when discretised on a square lattice and in the situation
where the dielectric constant for all the bonds are assumed to be the same (pure
dielectric), reduces to v0 =

∑
vi/4, where v0 is the voltage at any node and vi’s are

the voltages at the four nearest-neighbour (nn) nodes on a square lattice.
In our case, we approach the breakdown point from the conducting side and apply

Kirchhoff’s law for our problem that takes the form: v0 =
∑

vigi/
∑

gi, where gi’s
are the conductances of the nn bonds. Clearly, this may be reduced to the discrete
Laplace’s equation above, had the gi’s for all the bonds been essentially the same.
Further, in the usual models, as soon as the voltage difference (vi − v0) across an
insulating bond exceeds its threshold value vg, this bond is turned into a ‘perfect’
conductor for all later time (iterations) to come, and vi is made equal to v0. On the
other hand, in our model, even when a t-bond has been broken (turned metallic),
neither does it become a perfect conductor (unable to sustain any voltage difference
across it) nor does it carry any current if the voltage difference across it becomes less
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than vg, at any later time (iteration). We believe that this is a crucial difference and
should be more akin to reality.

As far as our model is concerned, we assume that the tunnelling bonds (the
bonds which break) may be placed only in the nn gaps of two conducting bonds and
nowhere else. It may be noted that because of the reversible nature of the t-bonds and
their finite thresholds vg , rarely would VI be equal to VF in our model. Indeed we
do not work with VI and actually identify VB as the average of the final breakdown
voltages, VF . Hence, a typical breakdown path in the RRTN model consists of an
actual number of the so-called ‘broken’ bonds and does not quite, correspond to the
minimum gap path except when p is very close to pc. If there are n number of active
tunnelling (or broken) bonds in the minimum gap path having a threshold voltage
vg for each of them, the overall breakdown voltage VB = nvg . It may be noted that
this is also the case with the dielectric breakdown experiment by Benguigui and Ron
[42] on an artificially constructed electrical network of resistors and light emitting
diodes (LED). The initial breakdown voltage VI (at which just one tunnelling bond
breaks) is just vg. Very rarely (except for p near pc) one has n = 1, and VB = VI

in our model or in the above-mentioned experiment by Benguigui and Ron. As a
demonstration, we show in the Fig. 22 (Left), a typical configuration of the lattice of
size L = 10 at a volume fraction p = 0.30, where just one breakdown path has been
formed. Indicated by the dotted lines are the number of broken t-bonds. The path is
explicitly seen to not be the minimum gap path.

One may notice another difference of our model from the usual models of dielec-
tric breakdown problems so far studied (where the dielectric bonds can break at any
place in the network) from the above demonstration. There may be a series of broken
bonds at more than nn gaps of two conducting bonds in the breakdown path in the
usual model (see, e.g. the figures in [103]) but not in ours. It is worth commenting
here that the breakdown paths generated by Benguigui and Ron [42] are more akin
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Fig. 22. Left: A typical configuration of the lattice for a square of size 10 × 10 with p =
0.3 (below pc). The breakdown path is indicated by ‘abcd’ with n = 4, which is seen to
be different from the minimum gap path ‘aef’ of an usual dielectric breakdown model with
g(p) = 3. Right: A typical distribution (histogram) of the breakdown voltage VB for various
samples of fixed L = 40, p = 0.45 and vg = 0.5
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to our model than the usual model. This is because even though many more than one
LED’s seem to be broken in series, in practice two consecutive LED’s are connected
by metallic wires and hence do not correspond to breakdown over two or more near
neighbour distances (or lattice constants). The breakdown exponent (tB) in this ex-
periment was reported to be ∼= 1.1, which is smaller than expected (i.e., 4/3, the exact
value of ν in 2D), and the difference was attributed to the finite-size effect since a
system of size 20×20 was used in the experiment.

7.2 Calculation of the Breakdown Exponent in the RRTN

Here, we examine the dielectric breakdown phenomenon in our model as the onset
of nonlinear conduction against applied field for p ≤ pc. Below the percolation
threshold (pc) there exists a number of metallic clusters, isolated from each other,
but closely spaced. The conductivity is a sensitive function of the configuration and
the applied electric field [43] as new conducting paths are created when the electric
field increases above the dielectric breakdown field (EB = VB/L) of the insulator. In
the Fig. 22 (Right), a typical distribution (quite asymmetric) of breakdown voltages
is shown for a system size L = 40 and p = 0.45. Clearly, for the RRTN’s with
p < pct, there is no infinite size percolating cluster of combined o- and all possible
t-bonds (maximal RRTN), and hence, there is no conduction (on an average) at any
finite electric field, according to the criteria set for the model.

Thus, three types of configurations arise in the regime pct < p < pc:

• Some configurations that are already percolating with the ohmic bonds only: they
have zero voltage threshold macroscopically,

• Some configurations that do not percolate with the ohmic bonds but only do so
in conjunction with the tunnelling bonds: they have a finite voltage threshold,

• Some other configurations are there that never percolate even with the assistance
of all the available tunnelling bonds: they do not take part in the breakdown
process.

This third possibility does not arise in the usual class of breakdown problems where
any insulating bond may break, given enough voltage, and hence, eventually renders
the system conducting.

Clearly, to find the average breakdown voltage (VB) we have to disregard those
configurations that do not take part in the breakdown phenomenon. Below we talk
only about configuration averaged fields by averaging over distributions such as the
one shown in the Fig. 22 (Right). A typical phase diagram (finite size) is shown in
the Fig. 23 (Left) as the average of breakdown field (EB) plotted against the volume
fraction (p) of conducting bonds. This typical figure is shown for a system of size
L = 30 and average is taken over 500 configurations. Our interest would be to know
how does the average breakdown field (EB = VB/L) scale against (pc − p) as in
Eq. (44). One usually plots the quantity VB or EB for a finite-sized system against
(pc −p) around pc in log-log scale and find out the breakdown exponent tB(L) from
the least square fit.



Semi-classical Percolation and Breakdown 71

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0.32 0.36 0.40 0.44

P L

E
P

B
(L

)

5

0.105

0.100

0.095

0.090

0.085

0.080

0.075

0.070

0.065

0.060
10 15 20 25 30 35 40

Insulator

Metal Fitted line

L = 30 p = 0.4

V
B

0.48

Fig. 23. Left: The phase diagram for dielectric breakdown in 30×30 RRTN; configuration-
averaged VB as a function of p. Right: The finite-size scaling of breakdown field EB for
p = 0.4

To remove the finite-size effects, however, we follow a slightly different way of
finding the above exponent. We first obtain the finite size scaling of the breakdown
field, EB . One such scaling plot is shown in the Fig. 23 (Right) for p = 0.4. In this
way, we obtain the asymptotic values EB(L = ∞) of the breakdown field for all p
ranging from 0.3 to 0.5 through finite-size scaling, which seems to follow

Ep
B(L) = Ep

B(∞) + a(p)L−μ(p), (45)

where μ(pc) � 1; but μ(p) is quite different (0.4–0.75) at other p < pc. Further,
Epc

B (∞) has a very small but positive value, which for the accuracy of our calcu-
lation implies that Epc

B (∞) = 0. But as p becomes smaller and smaller than pc,
Ep

B(∞) increases systematically as the graph in Fig. 24 (Left) indicates. We point
out that forcing Ep

B(∞) = 0 at p < pc gives significantly worse fitting. Equa-
tion (45) strongly demonstrates the fact that the breakdown model we are consider-
ing is somewhat different in nature from the usual models available in the literature
where one observes a 1/lnL scaling of Ep

B demonstrated clearly in the work of Beale
and Duxbury [103]. This scaling, which makes the Ep

B’s vanish irrespective of the
p in a truly infinite size system, is non-existent in our model. Since the breakdown
field in the previous models vanishes to zero irrespective of any p (p < pc), it is
worth noting that the above 1/lnL scaling and the consequent vanishing of Ep

B is
also non-existent in another model that has no dilution but has reversible tunnelling
conductors with random thresholds at each and every bond in the lattice. In such a
network, Roux and Herrmann [51] found that VB = (0.22 ± 0.02)L.

The scaling of the asymptotic breakdown field Ep
B(∞) can be written as

Ep
B(∞) ∼ (pc − p)tB . (46)
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The double logarithmic plot of Eq. (46) is shown in Fig. 24 (Right) and the least
square fit of the data is also shown. We find from this fitting that the breakdown
exponent tB ∼= 1.42 for the RRTN model.

7.3 Comments on the Reversible Breakdown

It seems that the above exponent tB is not very different from that of the usual break-
down exponent tB = ν = 1.33 as discussed above. But it is not unlikely either that
we do indeed have a different result in our hands. If different, it could be because of
the nature of the electric field in increasing the effective volume fraction of the con-
ductors. As may be understood, the electric field adds on new bridge bonds (active
t-bonds) at well-determined positions (according to the deterministic laws of elec-
trodynamics). The statistically correlated bridge bonds increase the connectivity of
the o-bonds, and increase the effective volume fraction (p′ >p) of the o-bonds. One
may create some other configuration with the same effective volume fraction p′ by
adding on bridge bonds following electrostatic, i.e., Laplace’s equation (Sect. 7.1).
Intuitively, the correlations obtained by these two different means should be qual-
itatively similar (being both anisotropic), but quantitatively quite different. Indeed,
as seen in the experiment of [42] and in numerical studies [48, 103] [also Fig. 22
(Left)], an electric field tends to make somewhat elongated clusters directed towards
the direction of the external field.

But, our results in [107] do also show that while the anisotropy of the clusters
increases with an increasing field upto a maximum, it does finally start to decay (i.e.
grows more and more isotropic) at still larger fields and the RRTN at an infinite field,
which becomes our fully correlated bond percolation model [48], does not fall in the
category of directed percolation (rather it falls in the same universality class as the
ordinary random bond percolation). Thus, at a small but finite field, we may observe
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the percolation statistics to be directed only a little bit. Now, it is well known from
the results on directed percolation that the correlation length exponent in a direction
parallel to the electric field is ν‖ ∼= 1.7. So, it is not unlikely that the correlation
length exponent near the breakdown field (which is quite small) takes some value
between 1.3 and 1.7. If true, this may very well explain why our tB = 1.42. In
this respect, it may be noted that Beale and Duxbury [103] also found the average
tB = 1.46. Thus, the exponent tB = 1.42 for our model may actually be a result
different from the standard quoted result of 4/3 for this exponent.

8 Dynamical Characteristics of Breakdown

As one can envisage, not a single t-bond would ‘fire’ (i.e. become active), if the
external potential V < vg. Now, if the RRN is insulating (i.e. non-percolating),
then it may require some minimum number of t-bonds to fire, to make the corre-
sponding RRTN conducting (or to make the breakdown occur). Clearly, this gives
rise to a macroscopic threshold voltage (Vg), or equivalently, a breakdown voltage
(VB = Vg) for that particular RRTN configuration. Thus, the RRTN shows a re-
versible breakdown if the underlying RRN is an insulator and if the external electric
field E > EB = VB/L [53], the breakdown field. For example, with p = 0.4,
L = 20, we find from the Fig. 23 (Right) that EB is around 0.068 on average [53]. In
2D square lattices, we found that EB ∼ (pc − p)tB , where the breakdown exponent
tB = 1.42 [53], not very different from the value of tB = 1.33 for the RRN.
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Fig. 25. A typical growth of response (current) as a possible measure of the growth of break-
down (dielectric here) with time in a 20×20 square lattice RRTN at a fixed driving voltage

8.1 Finite-size Statistics of Two Time-Scales

Here, we present the results on the dynamics of breakdown in square lattice RRTN’s
of p = 0.35 (pct < p < pc), vg = 0.5 and a E = 2.0 (above EB). The Fig. 25
shows the growth dynamics of current I(t) for a typical RRTN sample. In contrast
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with our earlier studies (e.g., in [108]), we start from a qualitatively different initial
condition, as dictated by the definition of the present problem [94]. In earlier studies,
the initial voltages at all the nodes of the lattice were taken to be non-zero (typically,
totally random) within the bounds of the external voltage. In the present study, the
initial voltages, at all the layers except the first one, are taken to be zero. The initial
voltages at all the nodes of the first layer, which is in contact with the external source,
are kept at the full external voltage V . Clearly, with such a choice, the breakdown
time is equivalent to the first passage time of the moving charges through the bulk
system. So, we look for the first passage of an observable non-zero current through
the last layer of the system which is always kept grounded (neutral).

For numerical calculations, the conductance of the inactive t-bonds is chosen to
be zero (and capacitance c = 10−5), for v < vg and to be the fixed non-zero value
gt = 10−2 mho, for v > vg. The initial condition is chosen as discussed above. To
be able to observe the progress of the dielectric breakdown, analogous to the ductile
failure phenomenon in the RRTN, the voltage at each node is updated using the
time evolution algorithm, we called the lattice Kirchhoff’s dynamics, as described
by Eq. (43). The time taken to update the voltages of all the nodes once, is taken as
unity. This scaled unit of time clearly varies as the size of the sample increases [108].
After each unit time, the current through the last layer (kept grounded) is computed.

8.2 Time-Scale for Reversible Breakdown

Obviously, a typical dynamics, under an external electric potential in the first layer,
shows no current through the last layer for quite some time, if the sample (underly-
ing RRN) is insulating. We demonstrate through the snapshots of Fig. 26 how and
where a charge carrier breaks open some crucial insulating bonds (or, activates some
inactive t-bonds) with the help of the external field, in an effort to spread through the
insulating sample. Thus, more and more disconnected, active t-bonds in the form of
dashed lines, start appearing (analogous to ductile failure lines/regions building up)
reversibly with time in the form of ever larger local clusters all across the sample.
Thus, the ‘fracture front’, as if, cracks through further layers away from the first as
shown in the Fig. 26(a–d), but no complete breakthrough has as yet taken place, and
one does not observe any current through the whole system. Finally as shown in the
Fig. 26(e), with the help of only a few t-bonds at some critical positions, several big
clusters connect to span the whole system. This corresponds to the breakthrough of
the charge carrier by opening up a system-spanning cluster for the first time, and the
system has suffered a dielectric breakdown. We denote this time by τB , and call it the
breakthrough time or the first passage time. Now, the system has barely succumbed
to the flow of charge through it and with further passage of time, some of the other
local clusters continue to grow either to join the main cluster that spans the system or
to form separate paths for percolation. A few clusters may still remain local and can-
not grow to contribute to the path of percolation under the given field. If one looks
at the evolution of the current through the first layer, one finds that it decays/relaxes
during t < τB , with two inverse power-law functions in time [108].
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(a)

(c)

(e) (f)

(d)
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Fig. 26. A sequence of snapshots of an electrically ‘fracturing’ 20×20 square lattice at times
(a) t = 50, (b) t = 100, (c) t = 500, (d) t = 1000, (e) t = 1134, and (f) the time to reach
the steady state with a given accuracy. Here the time is already scaled in units of one updating
scan through all the nodes of the lattice. The dielectric breakdown or the macroscopic system
spanning ‘fracture’ of t-bonds appears for the first time at t = 1134 units. So, the breakthrough
time, τB = 1134, for this sample
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Once all the possible paths of percolation at that voltage have formed (no more
t-bond breaks down), the system approaches an asymptotic steady state (complete
breakdown/fully grown fracture for the given external field) following exponential
(Debye) relaxation, with the relaxation time τ for the upper linear (ohmic) regime of
a fully reversible dielectric breakdown. To achieve the steady state, we monitor the
relative difference of currents through the first and the last layers and check out when
it goes below a pre-decided tolerance factor (here, less than 10−8) as a function of
time. The time scale τ is computed from the exponential regime of the dynamics for
t >> τB . The values of τB and τ vary from sample to sample with the same p. Both
of them however increase with the size of the system. The values of τB and τ were
found for many samples of each different sizes L : 20 − 120. The dispersion of the
ratio of the two times scales, that is, κ = τ/τB is plotted in the form of a histogram.
The Fig. 27 (Left) shows such a histogram for L = 40, as a normalized probability
density, and Fig. 27 (Right) shows the same for L = 80.

One observes that there is a rapid decrease of the width, a concomitant increase
of the peak value (becoming δ-function-like), and a slow but steady decrease in the
position (median) of the peak of the distribution of κ, as L increases. We need to
compute these quantities for a large number of configurations (of each L), to get a
good statistic for the process. Our current study gives a strong hint that the width
of the distribution vanishes. The times τB and τ are two important time-scales in
any breakdown process. In the RRTN model, the ratio κ = τ/τB approaches a near-
constant value of about 1.6 (see Fig. 28) for a given disorder (p = 0.35) and an ex-
ternal field (E = 2.0). This trend prompts us to conclude that only one independent
time-scale exists, in the class of ductile failure-like phenomena (akin to the appear-
ance of broken or activated nonlinear t-bonds, scattered across the whole system,
under force).
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Fig. 27. Left: The histogram of the ratio of two time scales, κ = τ/τB , for an external field of
E = 2.0, p = 0.35 and square lattice RRTN’s of L = 40; and Right: the same for L = 80
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9 Summary and Further Works

We have presented above the details of the genesis and development of a semi-
classical percolation (insulator-metal) transition model as a driven system. We stress
that though we had named it as the Random Resistor cum Tunnelling-bond Network
(RRTN) model for historical reasons, the word tunnelling is not restrictive as far as its
application to various natural systems are concerned. The ‘tunnelling’ elements are
simplified here basically as two-level systems with a threshold force for the appear-
ance of an appropriate response (or, its absence), electrical or otherwise, of some of
its microscopic constituents. Just like Zener diodes in electrical composites or gran-
ular systems, frictional surfaces in rigid mechanical systems, viscous forces in high
viscosity fluid systems, or capillary forces in non-viscous fluid flow through (micro-
scopic) porous media may serve as examples. Clearly, the microscopic threshold of
activity is at the heart of a macroscopic threshold or, breakdown field, if it exists, for
the whole system from one phase into another. If the threshold response pattern of
the microscopic constituents is reversible, then the macroscopic system also has an
onset threshold field for (reversible) breakdown or of nonlinear response.

The origin of ultra-low percolation threshold in semi-classical electrical compos-
ites has been studied using the maximal RRTN network with only nearest neighbour
hopping. We have also studied the nonlinear response characteristics and some as-
pects of the statics and the dynamics of (reversible) breakdown phenomenon in the
RRTN model. Further, the fully statistically correlated (i.e. deterministic) position-
ing of the nonlinear t-bonds in an underlying random resistor network (RRN) gives
rise to quantum coherence type effects in the RRTN at low concentration or at low
external fields (electrical or thermal). We observe the failure of self-averaging of
conductance at low electric fields (zero temperature), or anomalous variable range
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hopping (VRH) conductance at low temperatures as the manifestations of this coher-
ence. For the same reason, the system shows very strong memory effects. They give
rise to the ubiquitous two initial (inverse) power-law relaxations, as observed in many
natural phenomena, driven far-away from equilibrium or steady state and allowed to
relax. Such a strong memory and recognition of quite random configurations could
be very useful in the field of cognitive processes and fault-tolerant coding [113]. Ob-
viously, this effect should be visible in the dynamical hysteresis phenomenon as well
in the RRTN, under the action of an external alternating field with a time-period less
than the relaxation time of the system. Indeed, some intriguing (unconventional) dy-
namic hysteresis loops have been observed in the RRTN and further studies continue
[114].
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1 Introduction

In one electron picture, the electronic states in a crystalline solid are extended Bloch
states. This is a direct consequence of the Bloch-Floquet’s theorem. These quantum
states are labelled by the wave-vector, k, and the band index, n. For Bloch states
these are good quantum numbers. In a disordered solid, on the other hand, with the
breakdown of long-ranged order, the wave-vector, k, is no longer a good quantum
number. Of course, the states may still be extended, but cannot be characterized by k.
The seminal paper by Anderson [1] stated that if the disorder is strong enough, all the
electronic states become localized and at T = 0o leads to a metal-insulator transition.
He considered a tight-binding Hamiltonian with only on-site disorder characterized
by a probability density of width W and a crystalline band-width of, B. Anderson
showed that when the dimensionless parameter W/B is greater than a critical value
(W/B)c all states in the band of the electron in the disordered lattice are localized.

The presence of these localized states manifests itself in transport properties lead-
ing to a vanishing d.c.-conductivity at T = 0o. When disorder is not strong enough
the scattering due to disorder fluctuations is weak and in this limit one expects
Boltzmann transport. Calculations in the framework of Boltzmann transport has the
important assumption that disorder creates phase incoherence characterized by a
mean-free path, �e (or relaxation time τe), while the amplitude of the eigenstates are
relatively unaffected. This assumption seems to break down when disorder scatter-
ing becomes strong. Now quantum interference effects dominate transport properties
and affects both the phase and the amplitude of the wave-functions, eventually, lead-
ing to localization. Classically, it is easy to see that disorder on a macroscopic scale
can lead to localization by providing enclosed regions with barriers too high for the
electrons to surmount. However, quantum mechanical tunnelling should enable the
electrons to tunnel through barriers on an atomic scale. This Anderson localization
is thought to arise not from failure to cross particular barriers, but rather from the
interference of electronic waves scattered by many barriers. This superposition of
random phases leads, at some energies, to localized wave-functions. The amplitudes
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of these wave-functions are large on just a few atoms and negligible on atoms away
from the localization centre. This notion of localization was later extended by Mott
[2] and others. They argued that when the parameter W/B < (W/B)c the states at
the tails of the bands are localized. The sharp energy dividing the localized from the
extended states was called the mobility edge and when changes in pressure, degree
of disorder or applied electric field push the Fermi level across these mobility edges,
we have a metal-insulator transition.

Disorder leads to scattering, so a disordered metal has a non-zero residual re-
sistivity, ρ0 at T = 0o and with increasing disorder ρ0 also increases. An obvious
question is whether ρ0 increases without limit as the system parameters tend towards
the critical disorder (Anderson transition) or whether there is an upper limit (i.e. a
minimum metallic conductivity, σmin). Ioffe and Regel [3] and Mott [4] argued that
there should indeed be a minimum metallic conductivity when the mean-free path
becomes of the order of the lattice spacing or less. In this case, the residual conduc-
tivity vanishes discontinuously as some physical parameter attains a critical value.
From the localized side however, the localization length is expected to diverge con-
tinuously so that the inverse static dielectric constant goes smoothly to zero. Thus,
the Anderson transition seems rather strange. Discontinuous when we go from the
extended to the localized side, but continuous when we go in the reverse direction.

The one parameter scaling theory of localization [5] questions this idea of a mini-
mum metallic conductivity. This theory argues that near, σmin, quantum interference
effects such as coherent back-scattering, produces a negative correction to the diffu-
sion coefficient. This results in depressing σmin to zero and making the transition
continuous. The one-parameter scaling theory provides a detailed picture of local-
ization based on the ideas of universal scale dependent conductance in a disordered
system and singular back-scattering as a basic mechanism for localization.

2 One Parameter Scaling Theory of Localization

The scaling theory of localization was based on an idea proposed by Thouless [6],
regarding the sensitivity of the electronic spectrum in a disordered sample on the
boundary conditions on its free surfaces. If δE be the average energy separation be-
tween the eigenstates and ΔE the average shift in the energy levels as a result of
changing the boundary conditions from periodic to anti-periodic, then the Thouless
ratio T = δE/ΔE can be shown to be the dimensionless conductance of the disor-
dered sample.

T =
π�

e2
G = g (1)

Here G is the conductance and g the dimensionless conductance. In an attempt to
define a suitable scaling function, Abrahams et al. [5] tried to relate the energy level
sensitivity or the Thouless ratio of a disordered sample of size [L(1+b)]d to a smaller
system with size Ld. Here L(1 + b) or L are the lengths of the sides of hyper cube
sample in dimension, d and (1 + b) is the scaling ratio. They assumed that T (L{1 +
b}) = F [T (L)]. Finally using the association of this ratio with the dimensionless
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conductance: g(T [L{1 + b}]) = g[T (L)]. Expressing this in terms of logarithmic
derivatives:

β(g) = − dln(g)
dln(L)

(2)

The basic assumption is that the relevant scaling function β(g) is a function of
conductance g alone.

The form of the scaling function indicates that if β > 0, then as L → ∞, g →
∞. In other words, the problem of the infinite system is one in which the average
difference between energy eigenvalues δE → 0. The spectrum is then absolutely
continuous and, therefore, consists of extended states.

On the the hand, if β < 0, then g → 0 as L → ∞. For such infinite systems, the
sensitivity of the spectrum to boundary perturbations measured by ΔE → 0. This
is characteristic of localized states. The relationships between the various criteria for
localization have been discussed by Chaudhry and Mookerjee [7].

Assuming that the scaling function is a smooth and monotonic function, together
with its known asymptotic behaviour as the main preconditions, the prediction of the
scaling theory may be summarized as follows:

(i) For d ≤ 2 all eigenstates are localized no matter how weak the disorder is.
(ii) For d > 2 in, weak disorder the spectrum consists of regions of extended and

localized states sharply separated by mobility edges. As the strength of disorder
increases the mobility edges merge and the entire spectrum becomes localized
leading to the Anderson transition.

(iii) Then d = 2 is a critical dimension of the problem, below which there is no
transition across mobility edges.

The one-parameter scaling hypothesis for the continuous metal-insulator tran-
sition across mobility edges seems to be consistent with experiments on the tem-
perature, frequency and magnetic field dependent resistances of disordered systems.
Further, the scaling theory was also supported by numerical experiments [8, 9]. How-
ever, the microscopic basis of the one-parameter scaling theory and critical behaviour
is a matter of continuing debate. The experimental results are complicated by the
fact that electron-electron correlation effects are difficult to disentangle from dis-
order driven localization aspects. However, it is universally accepted that in one-
dimensional disordered systems, provided that the hopping term in the Hamiltonian
is sufficiently short-ranged, no matter how weak the disorder, all states are exponen-
tially localized. This has been formally proved by Borland in an early work [10]. In
three dimensional system, the Mott-CFO picture with extended states near the band
centre and localized band tails is generally accepted. The situation at the critical
dimensionality of two is not settled to everyone’s satisfaction.

3 Transport Mechanisms in Disordered Media

Transport by localized states in disordered systems is dominated by two possible
mechanisms:
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(i) Thermally assisted tunnelling from one localized state to another by a mecha-
nism known as variable range hopping.

(ii) Resonant tunnelling through localized states [11, 12].

Variable range hopping manifests itself in the temperature variation of the con-
ductivity at low temperatures:

g(T ) = exp{−(T0/T )α}

Hopping is characterized by the exponent, α. For Anderson localized states, Mott
showed that α = 1/(d + 1). Such behaviour was observed in amorphous Si. How-
ever, if the sample length L is smaller than the most probable hopping length R0, then
the contribution from variable range hopping becomes negligible and transport is
dominated by resonant tunnelling through localized states. Such resonant tunnelling
has been confirmed by experiments [13, 14].

Theoretical interpretation of resonant tunnelling was first put forward by
Azbel [11]. He argued that in the strongly localized regime the wave-functions decay
exponentially a way from the region of localization. The overlap of such states with
the metallic contacts at the two ends of the sample, having length L, are exp(−R/ξ)
and exp(−(L−R)/ξ, where R is the centre of localization and ξ is the localization
length. It is now easy to see that unless the localization centre R is near the centre of
the sample, one or the other of these overlaps is small. If R is near the centre of the
sample, then the two overlaps are almost the same and since transmittance is the ratio
of the wave amplitude at the two contacts, it is almost 1 in this case and a resonance
sets in.

Pendry [12] suggested a different mechanism by which resonances can take
place. He argued that in an otherwise localized regime there may be some proba-
bilistically exceptional necklace states with more than one local maxima spanning
the material. These necklace states are made out of linear combinations of almost
degenerate localized states, but localized in different regions of the sample. These
system-spanning states may result in transparent resonances. Pendry has explicitly
shown that the line width of the necklace states are much larger than those of Azbel
resonances and have argued that they are easier to locate in the spectrum.

Conductivity measurements by Popovich et al. [15] at very low temperatures
(T ≤ 0.1oK) on rectangular metal-oxide field effect transistors show decrease
of resistance with length in the resonant tunneling regime (i.e. when the sample
length is less than the most probable hopping range). This effect can only be un-
derstood on ideas based on Pendry’s conjecture about necklace states. Similar reso-
nant states were numerically observed by Basu et al. in one- and Dasgupta et al. in
two-dimensional systems.

Although the predictions of the one parameter scaling theory of localization ex-
plains the gross features of quantum transport in disordered media, there are several
finer points that are not taken into account by the configuration averaging inher-
ent in that theory. There are indications that although the one-parameter hypothesis
seems to be correct, the analytic approximations used for the scaling functions have
been questioned. Kumar [16] has raised questions regarding the correct choice of the
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scaling variable. Analytic work in one-dimension based on the invariant imbedding
method by Kumar and Jayannavar [17] and random matrix theory by Muttalib et al.
[18] predicted new features arising out of the non-self-averaging aspect of conduc-
tance. This is obviously not captured by the one-parameter scaling theory.

The scenario in two and three dimensions is more interesting. Since in these
higher dimensions analytic work becomes increasingly difficult, one has to rely on
numerical methods. Most of the analysis of existing numerical methods either suffer
from the fact that explicit assumptions are made regarding the nature of electronic
states or the methods suffer from numerical instabilities. Over the years several nu-
merical investigations have thrown up indications of a transition in d = 2 in contra-
diction to the one-parameter scaling theory. One of the most reliable of these are the
work of Haydock and co-workers [19, 20] which indicate a transition from exponen-
tially localized states to algebraically decaying ones. This transition from strongly to
weakly localized states is across a pseudo-mobility edge. The work of Kirkpatrick
and Eggarter [21] on the Quantum Percolation model, which is a variant of the An-
derson model where disorder arises because of the geometry of the lattice, has re-
ceived much attention. Several recent works have suggested evidence of a transition,
which heralds the breakdown of exponential localization.

In d = 3, the physics at and close to the mobility edge Ec appears to be inter-
esting. The narrowness of the critical regime and the presence of electron–electron
interaction make the comparison with experiment not clear cut. It has been antici-
pated by Tit and co-workers [22] that as E → Ec coherent back-scattering develops
into a new kind of states, resonances, before fully developed localized states appear
below the mobility edge.

Here we shall review some numerical works to investigate the above probabili-
ties.

4 Some Models of Disordered Systems

4.1 The Anderson Model

The simplest model of a disordered system is the one-band tight-binding model with
diagonal disorder. This is the Anderson model introduced in [1]. The Hamiltonian is
given by:

H =
∑

i

εi a
†
i ai +

∑

i

∑

j

tij a†i aj . (3)

Here, tij = t if the sites labelled by i and j are nearest neighbours and 0 otherwise.
t is not random, but the probability density of the diagonal terms is given by:

P (εi) =

{
1/W −W/2 ≤ εi ≤ W/2
0 otherwise.

The simple model incorporates the essential competition between the transfer or
hopping term, t and the energy mismatch characterized by W .
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4.2 Anderson Model in the Presence of a Magnetic Field

In the presence of an external magnetic field described by a vector potential A,
Peierls substitution [23] leads to the hopping term gaining a position-dependent
phase:

H =
∑

i

εia
†
iai +

∑

i

∑

j

tij exp
(
−2πi

φ0

∫ j

i

A · ds
)
a†iaj . (4)

Although the matrix elements of the Hamiltonian are complex, the Hamiltonian
is still Hermitian and eigenvalues real.

4.3 The Quantum Percolation Model

In order to study quantum transmittance in a percolating network, one has to set up
a Hamiltonian incorporating all the features of a dilute lattice. Let us first consider
where both the diagonal and the hopping terms of an Anderson model have binary
distributions:

P (εi) = (1 − q)δ(εi − εA) + qδ(εi − εB)
P (tij) = (1 − q)δ(tij − tA) + qδ(tij − tB)

The probability distributions are characterized by two parameters: the site (or
bond) occupation probabilities q and the disorder strength |εA − εB |/B or |tA −
tB|/B, where B is the band width in the absence of disorder. The special cases with
either εA → ∞ or tA → 0 correspond to the site or bond percolation models. In the
case of site percolation, an electron that starts off at a B site can percolate through the
lattice by hopping only to other B sites. Similarly, for the bond percolation model,
an electron starting from any site can percolate through the lattice hopping across tB
bonds alone. The model was first proposed by Kirkpatrick and Eggarter [21] to study
quantum transmittance through percolating networks.

The quantum percolation model differs from the standard Anderson model in a
number of ways. In the latter, disorder is incorporated by assuming that the diagonal
terms of the Hamiltonian have a continuous distribution with a finite variance. The
former model, on the other hand, has binary type of disorder, which essentially re-
moves the A sites or A bonds effectively from the lattice as far as percolation goes.
The disorder then manifests itself in both the geometrical and the quantum aspects of
the model. One expects an interplay between classical percolation and the Anderson
transition.

The density of states for the quantum percolation model consists of split bands,
with a central spike and a dip around it, where the states are localized [21]. The
Anderson transition can only occur through the merging of at least two pairs of mo-
bility edges, as distinct from the standard Anderson model. Pimental and Queiroz
[24] have argued that for the site percolation model, all moments of order ≥ 1 of
P (εi) diverge. For the bond percolation model, all moments of ln(t) diverge. Now,
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there is a theorem which suggests that if moments of the distributions of the Hamil-
tonian matrix elements diverge then all states are localized in any dimension. This
contradicts the conclusion of the one-parameter scaling theory and suggests that the
quantum percolation model may belong to a different universality class. On the other
hand, numerical work on the model in d = 3 indicates transition from extended
to localized states. In d = 2, there is still controversy about the type of states in
the quantum percolation model. This provides a motivation of further study of the
quantum percolation model.

In the following section, we shall describe some of the earlier works on the two-
dimensional quantum percolation model and discuss the origin of the controversy.

5 Some Earlier Studies on the Quantum Percolation Model

5.1 Real Space Renormalization

The real space renormalization method has been used to study the classical per-
colation problem extensively. The idea was extended to the quantum problem by
Odagaki and Chang [25] and Root et al. [26]. The method of renormalization is
based on the fact that near the critical point only the long-ranged fluctuations are
important and one can coarse-grain the system by summing up the degrees of free-
dom in the partition function over small length scales until one reaches the length
scale of the correlation length ξ. In this process of coarse graining, the parameters
of the Hamiltonian get renormalized and they are related to the old parameters by a
transformation R. At the critical point, the system becomes self-similar under renor-
malization, and R acting on the Hamiltonian leaves the parameters unchanged. In a
classical percolation problem H there is no underlying Hamiltonian. Summing up,
the degrees of freedom is obtained by applying the decimation procedure directly
on the site or bond probabilities on a rescaled lattice, consistent with classical per-
colation. Finally, assuming the same singular structure for the connectedness length
ξ in the renormalized lattice, one can extract the percolation threshold (qc) and the
relevant critical exponents.

For the corresponding quantum problem, the relevant length scale is the localiza-
tion length. Here the electron percolates when an extended state is formed and the
transition is then characterized by the divergence of he localization length. Odagaki
and Chang [25] modified the classical transformation rule, relating the renormalized
site or bond occupation probability with that of a new concept, namely the wetting
probability, which is defined as the probability of the state starting at a site i evolves
onto a site j quantum mechanically. Using the above methodology they obtained a
percolation threshold qc = 0.133 or a site diluted square lattice and 0.235 for the
bond diluted square lattice.

Odagaki and Chang’s calculations assumed the independent call approximation.
They assumed that we start from site and bond occupations probabilities to be in-
dependent, even after renormalization, the renormalized sites and bonds are still
occupied randomly. This is certainly not true, as correlations tend to build up on
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renormalization. The results also suffered from small-cell renormalization. Later the
same authors [27] employed large-cell Monte-Carlo renormalization and the perco-
lation probability went down to 0.06. These results were dominated by large fluc-
tuations. This approach could not really establish the existence of a transition in
two-dimensions.

5.2 The Scalar Recursion Method

The standard recursion or Lancos tri-diagonalization method has been used by
Stein and Krey [28] to study the localization phenomenon. It was later adopted by
Raghavan and Mattis [29] for the quantum percolation model. They concluded that
in a two-dimensional lattice all states are localized. Later, Raghavan [30] looked at
the statistical distribution of the recursion coefficients and concluded that qc ≤ 0.05.

5.3 The Thouless-Edwards-Licciardello Criterion

The idea of sensitivity to boundary perturbation, which was first introduced by
Edwards and Thouless [31] and Licciardello and Thouless [32], has been used by
Koslowski and von Neissen [33] for studying the two- and three-dimensional disor-
dered lattices. In the quantum percolation model, in two-dimensions they concluded
that there is a signature of weakly (algebraic) localized to strongly (exponential) lo-
calized states at qc = 0.3.

5.4 The Slice Recursion Method

McKinnon and Kramer [8, 9] has used the slice recursion method that partitions
the system into slices and connects the first to the n-th slice recursively, to study
the quantum percolation model. The idea is very similar to vector recursion, the
difference is in the partitioning of the system. Here, the lattice is partitioned into
slices perpendicular to the direction of the flow of the current. The method then
evaluates the Lyapunov exponent and all conclusions about localization or otherwise
is drawn from the behaviour of its scaling function.

In practice, the localization length λ(M, q) is calculated for a strip of cross-
section M and, in analogy to critical phenomena, we assume a scaling form:

λ(M, q)
M

= fd

(
λ(∞, q)

q

)
.

This λ(∞, q) is the characteristic length of a lattice with infinite cross-section,
which can be identified with the localization length.

Further calculations by Taylor and MacKinnon [34] confirmed the predictions
of the scaling theory of localization. Soukoulis and Grest [35] obtained a form of
this scaling function and found this to be in agreement with that of the scaling
theory.
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The great advantage of this technique is that λ(M, q) can be efficiently with
arbitrary accuracy. The statistical error can be controlled much better than the direct
calculation of conductance. The numerical process is stable and does not require any
detailed information of the wave-function to be stored.

However, if we carefully analyze the basic assumptions underlying the slice re-
cursion, we come across several pints that require further discussion. First of all, in
order that the relationship between the Green function and the localization length
to hold, the lengths of the slices have to be very large. The extrapolation to larger
widths was done assuming that the localization length obeys a specific scaling law.
However, even the widest slices have narrow strip geometry (256 by 104). The possi-
bility of an in-built one-dimensional geometry imposed cannot be ruled out. A more
careful analysis by Pastawsky et al. [36] has shown that although on the average all
states appear to be exponentially localized in two-dimensions, as we go to larger and
larger widths, the proportion of states that decay algebraically also increases. Until
more extensive and careful work is done with a full two-dimensional geometry, there
will always be room for doubt about the existence of a weak to strong localization
transition in two-dimensions.

A second point has been raised by Godin and Haydock [19]. Within the slice re-
cursion the Green function or transfer matrices contain ratios of polynomials, whose
orders are comparable to the number of basis sets. A slice recursion for an isolated,
but, large slice is a sensitive function of energy with zeroes and poles close to the
real-energy axis. Since in the slice recursion very many numbers of greatly differing
magnitude are added together, the errors accumulate rapidly as the width of he slices
increase.

5.5 The Series Analysis Method

The series analysis method of Harris, Aharony and co-workers [37–39] was based
on the fact that the transition between localized and extended states in a percolat-
ing cluster is signalled by the divergence of some physical quantities as a func-
tion of the occupation probability q. The point of divergence and the exponents
related to it were obtained by Padé analysis [40]. Meir et al. [39] obtained what
they called the ‘quantum mechanical transmittance’ Tij(E, q) between two sites, i
and j, connected by bonds on a lattice. They ingeniously obtained transmittances of
various shapes and sizes of clusters through a recurrence relation between that of
a given cluster and those of smaller sizes. They eventually expressed the quantity,
T (E, q) =

∑
ij Tij(E, q) as a series in q. If the states are exponentially localized,

then they argued that

T (E, q) ∼
∫ ∞

a

dr rx exp(−r/ξ) ∼ ξx+1(E, q),

where a is the lattice constant. They carried out a Padé analysis of the series for
T (E, q) and concluded that around qc = 0.4–0.2 for the square lattice, this factor
diverges.
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However, we first notice that T (E, q) is certainly not the transmittance, which
by definition is the proportion of information (energy or charge) that is transmitted
by a scattering object. It has to satisfy 0 ≤ T (E, q) ≤ 1 for all, q and E. For a
exponentially localized state, it is a measure of the localization length. For power
law localized states behaving like r−α

T (E, q) ∼
∫ ∞

a

dr r1−α → ∞ if α < 2.

Thus the divergence of T (E, q) could just as well herald the breakdown of expo-
nentially decaying states or even that of states decaying faster than r−2.

5.6 Comments

We have shown that although in one and three-dimensions there is no controversy,
the body of earlier numerical works cannot completely determine if two is indeed the
critical dimensionality with absence of any transition. Some works suggest that all
states in two-dimensions are localized, as proposed by the single parameter scaling
theory of localization. Others indicate some sort of transition may be from exponen-
tially to algebraically localized states. Conclusive evidence is still missing.

The Table 1 summarizes the main results.

Table 1. Earlier estimates of qc for the two-dimensional quantum percolation model

Authors Method qc

Odagaki & Chang (1984) [25] Real space renormalization 0.13
Chang & Odagaki (1987) [27] Real space renormalization ≤ 0.06
Raghavan (1984) [30] Scalar recursion 0.0–0.3
Koslowski & von Neissen (1990) [33] Thouless-Edwards 0.3
Taylor & McKinnon (1989) [34] Slice recursion 0.0
Soukoulis & Grest (1991) [35] Slice recursion 0.0
Pastawski et al. (1983) [36] Slice recursion < 0.9

This encourages further study, perhaps using different techniques. One such
study will be the subject of the following section.

6 The Vector Recursion Method and Its Applications

6.1 The Method

The vector recursion method was introduced by Godin and Haydock [19], although
a version of this had been briefly described by Haydock earlier [41]. The system
under study consists of a two- or three-dimensional lattice with 2N sites on which a
quantum percolation Hamiltonian is described. We attach 2M perfectly conducting
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leads to two opposing ends of the system. The system is then arranged in a circuit so
that M of the leads act as incoming leads for electronic current and M of them act
as outgoing leads. The quantum circuit is shown in Fig. 1.

If the basis {|m〉} spans the sample, and {|m′} spans the leads, then:

Hsample =
2N∑

m=1

εm|m〉〈m| +
∑

<m,n>

tS |m〉〈n|

Hleads =
∑

<m′,n′>

tL|m′〉〈n′|.

Here, < m,n > refer to nearest neighbour sites only. If we substitute the form,
ΨL =

∑
m′ A exp(±imφ) into the Schrödinger equation for the leads we get (after

a simple manipulation):

2tL cosφ = E ⇒ φ = cos−1

(
E

2tL

)
.

Incoming Outgoing

Incoming Outgoing

Quantum Circuit

Sample
Leads

A1 AνB1 B2

Leads

Bν

Sample

Equivalent circuit
Semi-infinite linear chain

Fig. 1. Top: The quantum circuit with 2N sites and M -incoming and M -outgoing leads;
Bottom: the equivalent circuit after vector recursion
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Thus, φ will be real or there will be propagating waves in the leads, if −2tL < E <
2tL. Similarly, for the site percolation model, these states will propagate through
the sample and reach the other lead only if εmin − 2tS < E < εmax + 2tS . The
parameter tL in the leads is so chosen that we have propagating waves both in the
leads and in the sample. Note that the diagonal terms in the leads are taken to be zero,
thus setting the zero of the energy scale. We may set the hopping element tS of the
sample to be 1, thus setting the scale of energy. For the bond percolation model there
will be propagating waves if: ε− 2(tS)max < E < ε+ (tS)max. Here we cannot set
tS to be 1.

When the electronic wave enters through the incoming leads and travels through
the sample, it is scattered by its random potentials. Part of it is reflected back into
the incoming leads and part of it gets transmitted away into the outgoing leads. Let
us denote the reflection coefficient of the wave entering through the n-th incoming
lead and reflected into the m-th incoming lead by rnm(E), and the transmission
coefficient of the wave entering through the n-th incoming lead and transmitted into
the m-th outgoing lead by tnm(E).

The first step is to change to a new basis of representation in which the Hamil-
tonian is block tri-diagonal. Representations in the old basis are column vectors of
length 2N . In the new basis, representations are matrices of size 2N × 2M and the
Hamiltonian becomes a ν × ν array of 2M × 2M matrices. Here ν = 2N/2M . The
new basis is constructed as follows:

To start with we fix:

|Φ1} = (|i1〉, |i2〉, . . . |iM 〉, |o1〉, |o2〉 . . . |oM 〉)

where |k〉 and |ok〉 are the positions at which the M -incoming and M -outgoing leads
are attached to the sample. The representation of each of these kets is a column vector
of length 2N .

The subsequent basis members are generated recursively as:

|Φ2} = |Φ1}(H − A1)

and for n > 1

|Φn+1}Bn+1 = |Φn}(H − An) − |Φn−1}B†
n.

The matrix inner product is a 2M × 2M matrix defined as:

{Ψ |Φ}nm =
2M∑

i=1

Ψ∗
miΦni

and orthonormality as {Ψ |Φ} = I . It can easily be shown that if we, demand or-
thonormality of the new basis we get: An = {Φn|H|Φn}. Bn+1 and |Φn+1} are
disentangled by using Gram-Schmidt procedure to make sure that the column vec-
tors of the matrix |Φn+1}Bn+1 are themselves orthonormal to one another.
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In this new basis, the matrix representation of the Hamiltonian H is block tri-
diagonal. The An are the diagonal blocks, while Bn and B†

n are the sub- and super-
diagonal blocks, each of dimension 2M ×2M . All other elements are zero matrices.
We may block tri-diagonalize the leads as well, with the the same starting state |Φ1}.
The two block matrices may now be joined at the starting state to form the equivalent
circuit, which has the same transmittance as the original circuit (see Fig. 1).

In this new basis, we may expand the wave-function within the sample:

|Ψ} =
∑

n

Ψn |Φn},

where Ψn = {Ψ |Φn} is the projection of the wave-function onto the basis |Φn}.
The boundary conditions on the wave-function at the junctions, where the leads meet
the sample are:

Ψ0 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 + r11 + r21 + . . . + rM1

1 + r12 + r22 + . . . + rM2

. . . . . .
tM+1,1 + tM+2,1 + . . . + t2M,1

. . . . . .
tM+1,2M + tM+2,2M + . . . + t2M,2M

⎞

⎟⎟⎟⎟⎟⎟⎠

Ψ1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

e−iφ + e−iφr11 + e−iφr21 + . . . + e−iφrM1

1 + e−iφr12 + e−iφr22 + . . . + e−iφrM2

. . . . . .
e−iφtM+1,1 + e−iφtM+2,1 + . . . + e−iφt2M,1

. . . . . .
e−iφtM+1,2M + e−iφtM+2,2M + . . . + e−iφt2M,2M

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5)

Let us now generate a sequence of matrices {Xn} and {Yn} that are the two
linearly independent solutions of the second order difference equation:

Zn+1Bn+1 = Zn(H − An) − Zn−1 (6)

with independent boundary conditions:

X0 = I and X1 = 0

Y0 = 0 and Y1 = I.

This new basis terminates after ν steps, where ν = 2N/2M since the rank of
the space spanned by the two bases remains unchanged. In the absence of disorder,
symmetry of the starting state may indeed restrict the new basis to a subspace of the
original vector space spanned by {|i〉}. So, ν may be ≤ 2N/2M . However, in the
presence of disorder such symmetry is usually violated. This gives another boundary
condition:

XνΨ0 + YνΨ1 = 0. (7)
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We now carry out the same analysis interchanging the incoming and outgoing
leads. We get another set of reflection and transmission coefficients r′nm(E) and
t′nm(E). We club them together into an scattering S- matrix:

S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

r11 r21 . . . rM1 t′1,2M . . . t′M,2M
...

...
...

...
...

r1M r2M . . . rM,M t′1,M+1 . . . t′M,M+1

t1,M+1 t2,M+1 . . . tM,M+1 r′1,M . . . r′M,M
...

...
...

...
...

t1,2M t2,2M . . . tM,2M r′11 . . . r′M,1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This scattering matrix is given by:

S =
(
Xν+1 + Yν+1e−iφ

)−1 (
Xν+1 + Yν+1eiφ

)
. (8)

The reflectance and transmittance, which measure the proportion of charges that
are reflected and transmitted because of scattering by the sample, are given by:

R(E) =
1
M

∑

n∈I

∑

m∈I

|rnm(E)|2

T (E) =
1
M

∑

n∈I

∑

m∈O

|tnm(E)|2, (9)

I and O are the set of incoming and outgoing leads. We should note that if we
calculate reflection and transmission coefficients for the case when the incoming and
outgoing leads are interchanged, they differ from the original case only by phases.
This means that the reflectance and transmittances remain the same. Moreover, be-
cause the scattering is elastic we have the sum rule:

R(E) + T (E) = 1.

The stability of the recursion method has been described in some detail by
Haydock and coworkers [42]. The gradual loss of orthogonality as recursion pro-
ceeds can be compensated by orthogonalizing at intermediate steps. This slows down
the programme considerably. Haydock has suggested that we may just as well work
with non-orthogonal bases, where loss of orthogonality is not a problem. Gradual
loss of weight onto groups of basis functions is another problem. This has been tack-
led by the so called dynamic recursion by Haydock [43, 44]. In summary, the vector
recursion technique is a fast and accurate numerical technique to obtain transmit-
tance with great numerical precision.

6.2 Finite Size Scaling Studies

Finite size scaling attempts to answer the question of how various physical quantities
of interest behave near the percolation threshold in a large but finite lattice. In classi-
cal percolation, for example, we study the way in which the probability R(q, L) that
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a lattice of linear dimensions L percolates at a concentration q. Classically, a lattice
percolates if there is a connected cluster connecting two surface points. In an infinite
lattice, R changes from 0 to 1 across the percolation concentration qc. Aharony and
Stauffer [45] suggested an ansatz for a suitable scaling function Φ such that:

R(q, L) = Φ
(
(q − qc)L1/ν

)

for large L and q close to qc. This function is a step function for the infinite system
and for a finite system it increases from 0 to 1 asymptotically. Similarly,

dR

dq
= L1/νΦ′

(
(q − qc)L1/ν

)
.

This function becomes a delta function at qc as the size of the system becomes infi-
nite. Figure 2 shows these functions as functions of q.

The average concentration, qav at which, for the first time, a percolating cluster
connects two surface sites of the lattice is defined as:

qav =
∫ 1

0

dq q
dR

dq
.

It is easy to see from the above that with the substitution z = (q − qc)L1/ν that
the effective threshold qav for a system of size L approaches the asymptotic qc as:

qav − qc ∝ L−1/ν .

This suggests that the variation of qav with system size L is one method of de-
termining the critical exponent ν. We plot qav vs L−1/ν for various trial values of ν
and select that value of ν, which gives the best straight line fit for large L.

qq
c

R
dR/dq

Fig. 2. Variation of the connectedness probability R(q, L) and its derivative with respect to q.
The width of the derivative varies as L−1/ν [45]
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The width of the transition function is given by:

Δ2 =
∫ 1

0

dq (q − qav)2
dR

dq

It is easy to note that Δ ∝ L−1/ν and finally we note that Δ ∝ (qav − qc), so
that the intercept of the plot of Δ vs qav gives qc.

The existence of a system-spanning cluster is a necessary and sufficient condi-
tion for classical percolation. On the contrary, simple classical connectivity does not
assure non-zero quantum transmittance. An infinite system-spanning cluster is char-
acterized by backbone and dangling bonds with dead ends. Classical transport can
take place only in the backbone and the dangling bonds play no role in the percola-
tion process. For quantum transport, however, both the backbone and the dangling
bonds are equally important. Whenever a particle percolating through the backbone
enters a dangling bond and meets a dead end, it suffers scattering. An important fall-
out of this disorder induced scattering is the phenomenon of coherent back-scattering
[46]. As long as the scatterings are elastic and time-reversal invariant, the scattered
waves in the backward direction are coherent in time and constructively interfere.
For large enough scattering strengths, this back-scattering corrections may reduce
the diffusion constant to zero in an infinite lattice. It is not difficult to anticipate that
the quantum threshold qQ

c may be different from the classical one qc. For a quantum
system, the criterion for percolation is not the existence of a system-spanning clus-
ter but a finite quantum transmittance across the sample. All the arguments of finite
size scaling discussed earlier have to be translated in terms of quantum transmittance
T (E, q, L) rather than R(q, L).

We shall calculate the quantum transmittance using the vector recursion method
described in the preceding section. We shall attach semi-infinite, perfectly conduct-
ing leads on either side of the sample, described by the Hamiltonian of a quantum
percolation model. Our systems will be square blocks of the size L2 and we shall
restrict ourselves to square geometry alone, avoiding any strip geometry. We shall
consider the system to be percolating if we register a finite transmittance within our
error bars.

Figure 3 (Top) shows the configuration averaged transmittance as a function of
bond dilution q for three different size 3 × 3, 5 × 5 and 9 × 9 squares. We choose an
energy for the incoming electrons suitably such that progressive waves travel through
the perfect leads (E = 0.5). We vary q from 1 to 0 in small steps 0.01 until we obtain
the first q(L) at which the transmittance T (E, q, L) > a tolerance level (chosen by
us to be 10−3 consistent with our accuracy limits). We repeat this for at least 100
random configurations and calculate the averaged qQ

av(L) and the deviation ΔqQ for
each size.

We note that for a finite size (L) the transmittance T (E,L)> 0 whenever the
characteristic length ξ � L. Assuming the ξ � (q − qc)ν we get an effec-
tive percolation threshold qQ

av(L) when ξ = L. Invoking the finite size scaling
ansatz:
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Fig. 3. Top: Averaged transmittance T (E, q, L) vs q for three different sizes characterized by
L and for the energy of the incoming electron E = 0.5 (in units of the hopping t). Bottom:
Variation of the quantum threshold qQ

c as a function of size L

L = A(E)
[
qQ
av(L,E) − qQ

c

]−ν

lim
L→∞

qQ
av(L) = qQ

c

ΔqQ = B(E)L−1/ν .

So we eliminate L from the above and obtain qQ
c as the y-intercept of the plot of

qQ
av vs ΔqQ. This is shown in Fig. 4. The intercept should have been at 0.4 had the
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Fig. 4. The plot of qQ
av vs ΔqQ
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estimates of Meir et al. [38] been correct and heralded a true delocalization transi-
tion. Our estimate of the quantum percolation threshold, consistent with our accuracy
threshold is 0, consistent with the one parameter scaling predictions.

In all cases, the transmittance increases as bond dilution probability decreases
and becomes almost 1 at zero bond dilution. It is not exactly 1 since even in this case
there is some scattering at the junction of the perfect leads and the lattice. For large
sizes T (E, q, L) → T0δ(q), which is the asymptotic limit, indicating that probability
qc = 0 for this model.

The Fig. 5 shows the log-log plot of qQ
av(L) vs L.The least square fit line yields

an index ν ∼ 0.48.To get a more accurate estimate, we plot qQ
av vs L−1/ν for varying

ν until the intercept passes through the origin. This gives an index ν = 0.5. We have
carried out similar calculations for a series of different incoming energies, E =
0, 0.75, 1 and 1.5. Our results are qualitatively the same. The percolation threshold
remains at qQ

c = 0 and the index ν ∼ 0.5.
The conclusion from the finite size scaling indicates that d = 2 is indeed the

critical dimensionality. Even the smallest of disorders completely localizes the en-
tire spectrum for the quantum percolation model in this dimension. Our conclusion
is that the quantum percolation model belongs to the same universality class as the
Anderson model and the predictions of the one parameter scaling theory seems to
hold good for this model as well. A look at the percolating cluster near the classical
percolation threshold shows that in addition to the backbone there are also a large
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Fig. 5. Top: The log-log plot of qQ
av(L) vs L. The line is a least square fit. Bottom: Plot of

qQ
av vs L−1/ν
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number of dangling site chains with dead ends. These side chains scatter a wave
propagating through the backbone and the consequent coherent back-scattering lo-
calizes the wave.

6.3 Block Renormalization of Transmittance in Quantum Percolation Model

Let us introduce ideas of scaling very similar to the Kadanoff block spin formalism.
We shall divide up the lattice into rectangular blocks of size M1 × M2. An isolated
block is shown in the lower line of Fig. 6. The bonds attaching this isolated block
to the lattice now act as input and output leads into and out of the block. This is
shown in the top line of Fig. 6. The input leads bring in an electronic wave from the
rest of the lattice into the block, which then scatters it. The output leads take away
the transmitted wave into the rest of the lattice. We shall use the vector recursion
technique to calculate the scattering S-matrix of this block. Our output will be the
transmittance and reflectance of the scattering block. The next crucial step is to ob-
tain a single scatterer that will yield the same transmittance and reflectance as the
block. This is shown schematically in the bottom line of Fig. 6. Since we are in-
terested only in the scattering characteristics of the system and not in the detailed
wave-function characteristics of the lattice, the replacement of the block by a single
equivalent scatterer is justified. Both the block and the single scatterer yield the same
transmittance and reflectance. This single scatterer is characterized by a Hamiltonian
ε̂a†IaI and attached to the leads with Hamiltonian

∑
J t a†IaJ . Note that the idea is

very similar to Kadanoff block spin scaling. There we replace a block of spins by a
single spin in such a way that the free energy remains unchanged. Here, we replace
a block of scatterers by a single scatterer in such a way that the transmittance or
reflectance remains unchanged.

To obtain ε̂, we carry out vector recursion on the system shown at the right-hand
end of the top line of Fig. 6. This can be done by hand:

Block of sites Single scatterer Lattice of scatterers

Block Renormalization

Fig. 6. Block scaling applied to a square lattice
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A1 =
(
ε̂ t
t 0

)
B1 =

(
t 0
0 t

)

B†
2X2 =

(
−t 0
0 −t

)
B†

2Y2 =
(
E − ε̂ −t
−t E

)
.

The S-matrix is given by:

S = −
[
B†

2X2 + B†
2Y2 exp(−iθ)

]−1 [
B†

2X2 + B†
2Y2 exp(iθ)

]
.

Thus, the reflection and transmission coefficients are given by:

r(E) = S11 =
(E − ε̂ + tE) exp(−iθ) − (E − ε̂)E

Δ

t(E) = S12 =
2it2 sin(θ)

Δ

Δ = det
[
B†

2X2 + B†
2Y2 exp(−iθ)

]
.

Finally we get,
ε̂I =

√
ρ(4t2 − E2),

where ρ = r(E)/t(E) calculated from the vector recursion of the M1 ×M2 block.
Since the different blocks involve different and interdependently random Hamil-

tonian matrix elements, these effective ε̂ are also random and independent. We now
connect them back by leads into a self-similar square lattice as shown in the right-
most figure on the bottom row of Fig. 6. We go on repeating the procedure. At each
stage of this renormalization the vector recursion simply involves a square scatter of
the size M1 × M2, but will give information about the scattering characteristics of
increasingly larger systems of sizes (M1 ×M2)n.

The Fig. 7 shows how the distribution of scattering elements evolves under renor-
malization. The distribution is obtained by running the vector recursion for up to 500
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Fig. 7. Distribution of the single scattering elements after the first three renormalization steps
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configurations of the block and then obtaining the histograms. In the next step of
renormalization this distribution is used to generate the next set of scatterers {ε̂I} for
the renormalized Hamiltonians. Several features of the distributions may be com-
mented upon. First, even if we start with binary like discrete distribution as in the
quantum percolation model, with renormalization the distribution becomes smooth.
Second, as the renormalization proceeds a hole appears around the origin of the dis-
tribution. The existence of this hole in the distribution has been commented upon,
specially in the related problem of spin-glasses. The mean of the distribution di-
verges as the renormalization proceeds. Simultaneously, the width of the distribution
also increases. The asymptotic distribution is long tailed. Such long-tailed distribu-
tions usually have divergent moments. Kumar and Jayannavar [17] had commented
upon these long-tailed distributions of scattering matrix elements earlier. It is a sig-
nature of non-self-averaging and non-ohmic behaviour of the resistance. We have
used the basic blocks of sizes 48, 120 and 224. Very small blocks are not used since
the effect of quantum coherence in them may not be effectively demonstrated. On
the other hand, too large blocks have resistances too large for numerical stability.

The strength of disorder is measured by the quantity δ = W/B, where B is
the band width of the ordered case and W is the width of the distribution. We first
study a moderate disorder δ = 0.5. Since the resistance ρ = r(EF )/t(EF ) is not
self-averaging, we average the logarithm of the resistance. Figure 8 shows the graph
of 〈ln(ρ)〉 versus ln(size) for EF = 0.5, that is, not far from the band centre. The
data are for sizes 48, 482, 484, 112, 1122, 224 and 2242. The line shown is the least
square fit.

If we define ln(ρ̃) = 〈ln(ρ)〉, then the Fig. 8 indicates a scaling behaviour of
the form:

ρ̃ � ρ0 Nα,

N being the size of the system. We have carried out a similar set of calculations for
varying disorders: δ = 6.25×10−4, 0.25, 5.0 and 12.5; all for EF = 0.5. The results
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Fig. 8. The average of the logarithm of resistance versus logarithm of size for the case δ = 0.5
and EF = 0.5
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Fig. 9. The average of the logarithm of resistance versus logarithm of size for the cases δ = (a)
6.25×10−4, (b) 0.25, (c) 5.0, (d) 12.5

are shown in Fig. 9. We note that the index α is dependent on the disorder strength,
δ and increases with disorder strength. The best-fit curve for this behavior is

ln(δ) = −3.889 + 0.579 ln(α).

The extrapolation of this function for weak disorders is shown in the Fig. 10.
The Fig. 11 shows that for extremely weak disorder, the states near the band cen-

tre show logarithmic scaling consistent with the power-law behaviour index α → 0.
Whereas, for states near the band edges, there is a deviation from logarithmic scal-
ing. The above study indicates that for states near the centre of the band, the nature
of localization appears to be of a power law type that extrapolating to a logarithmic
scaling consistent with the power (index) α → 0. This is because it is numerically
impossible to distinguish between power law scaling with very low power and loga-
rithmic scaling.
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Fig. 10. Variation of the disorder strength, δ with the index α
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Fig. 11. Variation of ρ̃ vs ln(Size) for (top) very weak disorder δ = 5 × 10−4 and (bottom)
moderate disorder δ = 0.03

The above study indicates that in two-dimensional lattices, for states near the
centre of the band, the nature of localization appears to be of the the power law type,
which extrapolates to logarithmic behaviour at ultra-weak-disorders. Such a power
law behaviour is not in conformity with the single parameter scaling theory. Analytic
works [42, 47] based on perturbative calculations on the scalar recursion method
suggest different regimes of exponential and power law localization. This indicates a
transition from weakly to strongly insulating states. Recent numerical work of Godin
and Haydock [19] also reports weakly localized states near the band centre of the
disordered square lattice and exponentially localized states near the band edges. This
agrees with the earlier work of Picard and Sharma [48] and Pastawski et al. [36].

7 Conclusions

We have reviewed the models set up to study the phenomenon of quantum perco-
lation and theoretical and numerical techniques used to analyze the models. Our
general conclusion is that the quantum percolation model belongs to the same uni-
versality class as the Anderson model. Whether the single parameter scaling theory
of localization describes all aspects of localization is still a matter of debate. We
could not resolve the controversy of the behaviour in the critical dimensionality of
two. While from our numerical approaches it is clear there seems to be no local-
ization to extended states transition in two dimensions, our numerical studies using
different methods do not give an unambiguous answer to the question of whether all
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states in two-dimensions are exponentially localized, or there exists weakly power
law localized states in the centre of the band. We have to leave the answer for future
works.
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1 Introduction

The transmission of a classical particle through a disordered system such as a per-
colation network is determined by the availability of a spanning path in the system,
whereas the transmission of a quantum particle depends in addition on the quantum
effects such as interference and tunneling. These effects are expected to be particu-
larly important in mesoscopic systems such as the hopping transport of an electron
through an array of quantum dots. In this chapter, we consider a particularly simple
case of a single quantum mechanical particle of no spin or other internal degrees of
freedom that is traversing a quenched, disordered lattice by hopping from an avail-
able site to another available nearest neighbor site. This is the model we call quantum
percolation in this chapter. In this case, a diluted (or unavailable) nearest neighbor
site presents an infinite barrier, and thus the only quantum effect included here will
be the interference effect due to the many different paths of different lengths that
may be available to the particle. Therefore, the existence of a spanning path through
the system is a prerequisite for transmission but does not by itself guarantee. In gen-
eral, we expect a higher geometrical connectivity among the sites to be required for
transmission to occur, if at all, than for a classical particle. In fact, even for a com-
pletely ordered system, a quantum particle may exhibit zero transmission (reflection
resonance) depending on the details such as the energy of the particle and boundary
conditions [1].

We are motivated to study such a system at least in part because the existence
or absence of a localized-to-delocalized transition in a two-dimensional (2D) quan-
tum percolation system has been debated hotly in recent years. Initially, it had been
widely assumed that the universal scaling theory of Abrahams et al. [2], which
provided fundamental understanding of the Anderson model, also applied to quan-
tum percolation. According to this theory, there can be no such transition in 2D for
any finite amount of disorder in the absence of additional factors such as a magnetic
field or interactions (but see [3]). Rather, all disordered systems in 2D are local-
ized in thermodynamic limit according to the universal one-parameter scaling the-
ory. While the literature on the theoretical and numerical calculations performed on

Nakanishi, H., Islam, Md. F.: Quantum Percolation in Two Dimensions. Lect. Notes Phys. 762, 109–134 (2009)
DOI 10.1007/978-3-540-85428-9 4 c© Springer-Verlag Berlin Heidelberg 2009
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both models agreed on the existence of such a transition in three dimensions [4–6],
the same question for quantum percolation in two dimensions has remained a subject
of controversy for over two decades with various works coming down on opposing
sides.

On the one hand, the scaling studies based on numerical calculation of the con-
ductance [7], the investigation using vibration-diffusion analogy [8], finite-size scal-
ing analysis and transfer matrix methods [9] and vector recursion technique [10]
found no evidence of a transition. A study by Inui et al. [11] found all states to be
localized except for those with particle energies at the middle of the band and when
the underlying lattice is bipartite, such as the square lattice.

On the other hand, some studies such as those made using the exact series
expansion method applied to the moments of distances weighted by the trans-
mission coefficient between pairs of lattice sites [12], real space renormalization
method [13], and the inverse participation ratio [14] found a transition from ex-
ponentially localized states to more weakly localized states at some point within
a range of site occupation (availability) probabilities between 0.73 ≤ pc ≤ 0.87
on the square lattice (where the classical site percolation threshold is about 0.59).
A study based on energy level statistics [15], one using how a wave packet ini-
tially localized at a site spreads through the lattice [16] and one that calculates a
transfer matrix [17] also found a transition, but the nature of the state on the delo-
calized side of the transition remained not fully understood. More recently, Cuans-
ing and Nakanishi [18] and Islam and Nakanishi [19] used an approach that was
first suggested by Daboul et al. [12] to calculate the conductance of finite perco-
lation clusters of varying sizes with one-dimensional (1D) leads attached and ex-
trapolated those results toward infinite system sizes, interpreting them in the spirit
of finite-size scaling. They suggested that delocalized states exist and thus a transi-
tion would have to exist as well. The latter work also showed some evidence that
both algebraically localized state and extended state exist in addition to the more
common exponentially localized state and thus two successive transitions may exist
as well.

1.1 Quantum Percolation Model

Our quantum percolation model is described by the Schrödinger equation Hψ = Eψ
with the following tight-binding Hamiltonian [20, 21]

H =
∑

<ij>

Vij |i〉〈j| + (h.c.), (1)

where |i > and |j > are localized basic functions at sites i and j, respectively,
and Vij is the hopping matrix element that is equal to a constant V0 �= 0 if i and
j are available nearest neighbors, otherwise zero. The value of V0 sets the overall
energy scale and we will use V0 = 1 as the nominal standard value. In particu-
lar, we take the diagonal terms to be Vii = 0, corresponding to no on-site energy
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(and thus no diagonal disorder). All disorder in this model is off-diagonal and is
binary. Whether the sites are available or not is determined by a classical percola-
tion algorithm, that is, by an independent occupation probability p either at each site
(site percolation) or for each nearest-neighbor bond (bond percolation) [22]. In either
case, the disorder is a quenched, geometrical one, where the absence of a site (or a
bond) is equivalent to an infinite barrier. This is in contrast to the standard Anderson
model, where we take the off-diagonal terms Vij (i �= j) to be fixed and uniform,
and consider diagonal (or on-site) terms Vii, which are distributed randomly with a
certain probability distribution within some finite limits (such as uniformly within
|Vii| ≤ W ).

1.2 Quantum Percolation versus Ideal Chain

Before proceeding further, we note that the matrix V of Eq. (1) is identical up
to a factor to the matrix that describes the evolution of a Markov process called
the ideal chain that is constrained to the same percolation network [23–25]. An
ideal chain is a Gaussian random walk (no excluded volume effect), which dies
when it attempts to step into an unavailable site. Thus, the ideal chain probability
density of the random walker Pi(t + 1) at site i at time step t + 1 is related to
Pj(t) by

Pi(t + 1) =
∑

j

WijPj(t) , (2)

where the matrix W has only non-zero elements corresponding to the bonds con-
necting a nearest-neighbor pair of available sites i and j, and those elements have
a uniform value. These are exactly the same properties as our matrix V. So the
classical problem of the ideal chain is formally and mathematically identical to our
quantum percolation problem. The ideal chain problem is in turn equivalent to the
problem of the classical vibration of the network with boundary tethering [26, 27] as
well. Thus, quantum percolation belongs mathematically to a wide class of problems
that are related to each other via diffusion-vibration type analogies.

However, the main difference between quantum percolation and ideal chain lies
rather in the spectral regions of our interest; while in the ideal chain problem, we
are normally interested in the asymptotically long-time (or long-chain) limit and
thus the behavior at the very edges of the eigenspectrum of W (absolute values
close to the maximum possible value of 1), while the main interest of the quantum
percolation problem has been nearer the band center in energy E (certainly not lo-
cally around the spectral edges), that is, in the region of the eigenspectrum not far
from zero. This is because we are usually looking for states with higher transmis-
sion probability (less localized) and the common wisdom is that those states tend
to be found near the band center. As it turns out, this common wisdom is not en-
tirely correct (as seen below) and we need to investigate a broad region throughout
the spectrum, but it remains true that interesting behavior does occur near the band
center. This means that methods developed to study the long-chain limit of the ideal
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chain, which concentrate on the far edges of the spectrum of W [28] is unfortu-
nately not suitable to study quantum percolation even if they deal with the same
matrix.

1.3 Eigenspectrum of Quantum Percolation

A typical eigenvalue spectrum of quantum percolation on a (bond) percolation net-
work on the square lattice is shown in Fig. 1 and a measure of the mean size 〈s〉 of
an eigenstate is shown in Fig. 2. The sharp isolated peak right at the center of the
band in Fig. 1 is due to a large number of extremely local states that reside on a
small number of sites and they do not affect the global transmission characteristics;
this peak is seen to be present essentially for all p. In contrast, the overall shape of
the spectrum is seen to change dramatically from a depressed density of states at the
band center for the smaller values of p (more dilution) to a monotonically increasing
density of states toward the center for the larger values of p (less dilution). This may
be a hint of the significant changes taking place as p is varied. Note that this change
is taking place primarily near the center of the band. On the other hand, as we have
stated above, the decreasing trend of the density toward the edges of the spectrum
is what is important in the study of the ideal chain problem where it is expected to
be a stretched exponential decay as a function of the reciprocal of the distance from
the spectral edge (with a special stretch power at the classical percolation threshold)
[24, 25]. Though not shown here, the corresponding spectrum of the classical random
walk problem (ants) actually exhibits a power-law divergence towards the spectral
edge with the power related to the critical exponent known as the spectral dimension
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Fig. 1. Typical eigenvalue spectrum of the quantum percolation problem realized on bond
percolation networks containing 5000 occupied sites on the square lattice at various bond
occupation probabilities: p = 0.5 (•), 0.65 (×), 0.91 (
), 0.98 (©)
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Fig. 2. The mean fractional size 〈s〉 of the eigenstates (as defined in the text) is shown from
the same data as in the eigenvalue spectra of Fig. 1; p = 0.5 (•), 0.65 (×), 0.91 (
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[28]. Thus, the latter problem, which is associated with an analogous but somewhat
different matrix, in fact has an entirely different spectral density.

The mean fractional mode size 〈s〉 shown in Fig. 2 is defined as the average of

s =

(
∑

i

|ψi|4
)−1/

S , (3)

for the eigenstates in the corresponding region of the spectrum where ψi is the am-
plitude of the eigenstate at site i and S is the total size of the cluster (number of
available, connected sites in the network). The numerator in Eq. (3) is often called
the inverse participation ratio and is a measure of the size of the eigenstate. To see
this, just consider the extreme cases of a state that is concentrated at just one site ver-
sus a state that is uniformly spread out over the entire network. The former will have
the numerator equal to 1, while the latter will have it equal to S. Thus, s amounts
to a crude estimate of a factional size of the corresponding state. Of course, such
a measure does not distinguish how |ψi|2 is distributed geometrically; it only cares
about what values |ψi|2 occur on the cluster. Thus, it is at best one crude measure
of the overall mode size, lacking the information on the geometrical shape of the
probability density, and certainly not to speak of the distribution of the phases of ψi.
We will see later that the latter information actually plays a key role in determining
transmission.

From Fig. 2 we see that obvious changes again occur from a smooth dipping trend
at the center of the band at low p to nearly constant density at higher p, disregarding
the isolated, very small 〈s〉 right at the center. So as p increases, the size of the modes
near the band center is catching up to the rest of the spectrum at the same time as
their density is sharply increasing.
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1.4 Approach

These observations give us additional motivation to study this problem in more de-
tail to see whether such trends indeed lead to a phase transition. In the remaining
part of this chapter, we will present an overview of the quantum percolation studies
performed in our group over the last several years rather than attempting to describe
a huge number and variety of work that exists in literature (we have already made
references to a fair number of them above). Most of the results shown here are ob-
tained using the following approach. To study the transmission of a quantum particle
we connect two semi-infinite 1D leads to the 2D network (that we call cluster, bor-
rowing the terminology from classical percolation), one as the input and the other as
the output lead. We study this problem, for the most part, using two different types
of connection of the leads. In the point-to-point contact, the input lead is connected
to only one lattice site on the input side edge of the cluster and the output lead is
connected also to only one lattice site on the opposite edge of the cluster (usually at
diagonally opposite corners of the cluster). In the busbar type contact, all the lattice
points on the input side edge of the cluster are connected to the input lead by single
bonds, while all the lattice points on the output side of the cluster are similarly con-
nected to the output lead. Figure 3 illustrates the two types of connection of the leads
for the square lattice.

The wave function of the entire cluster-lead system can be calculated by solving
the time-independent Schrödinger equation:

Hψ = Eψ, (4)

–2

input chain input chain

output chainoutput chain

–1

a b c

fed

g h
i

1

2

–2
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a b c

fed

g h i

1

2

Fig. 3. 3 × 3 Square Lattice: On the left, the diagonal point-to-point connection and on the
right, the busbar type connection. The letters label the lattice points of the cluster part of the
Hamiltonian, while numbers label those of the leads
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where

ψ =

⎛

⎝
ψin

ψcluster

ψout

⎞

⎠ (5)

and ψin =
{
ψ−(n+1)

}
and ψout =

{
ψ+(n+1)

}
, n = 0, 1, 2 . . ., are the input and

output chain parts of the wave function, respectively.
Since the leads are of infinite lengths, the matrix form of the Schrödinger equa-

tion Eq. (4) becomes an infinite size problem. We can deal with this problem in two
ways. One is to effectively reduce it to a numerically finite problem by using an
ansatz proposed by Daboul et al. [12]. The other is to simply attach 1D chains of
finite, but increasing lengths and try to extrapolate the results to the point where the
dependence on the lead length essentially vanishes. Both approaches have been pur-
sued. In the Daboul ansatz approach, one assumes that the input and output part of
the wave function are of the form of discrete plane waves:

ψin→ψ−(n+1) = e−inκ + reinκ

ψout→ψ+(n+1) = teinκ,
(6)

where r is the amplitude of reflected wave and t is the amplitude of the transmitted
wave. This ansatz is consistent with the Schrödinger equation only for the wave
vector κ, which is related to the energy E by

E = e−iκ + eiκ. (7)

As an example of using this ansatz along with the energy restriction Eq. (7),
the matrix equation for a 3 × 3 cluster connected to the semi-infinite chains (Fig. 3)
reduces to (for details see [12])

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−E + eiκ c 0 0 0 0 0 0 0 0 0
c −E 1 0 1 0 0 0 0 0 0
0 1 −E 1 1 1 0 0 0 0 0
0 0 1 −E 0 0 1 0 0 0 0
0 1 0 0 −E 1 0 1 0 0 0
0 0 1 0 1 −E 1 0 1 0 0
0 0 0 1 0 1 −E 0 0 1 0
0 0 0 0 1 0 0 −E 1 0 0
0 0 0 0 0 1 0 1 −E 1 0
0 0 0 0 0 0 1 0 1 −E c
0 0 0 0 0 0 0 0 0 c −E + eiκ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + r
ψa

ψb

ψc

ψd

ψe

ψf

ψg

ψh

ψi

t

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiκ − e−iκ

0
0
0
0
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

Here c is the coupling of the leads with the cluster, which is usually also taken to
be equal to 1, but can be varied to see interesting effects. The busbar configuration
of Fig. 3(b) has a similar expression. Equation (8) is the exact expression for a 2D
system connected to the semi-infinite chains by the Daboul ansatz and it leads to
continuous eigenvalues ranging between −2 and +2. The spectrum is continuous
because it is still effectively infinite and it is non-degenerate except for the reversal
of left and right.

The main advantage of using this ansatz is that it not only allows us to calcu-
late the wave function but also helps us to study the transmission characteristics of
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the corresponding state directly. The transmission and the reflection coefficients are
obtained by taking the absolute square of t and r, respectively, that is T = |t|2 and
R = |r|2. Following the Landauer-Büttiker formalism [29], the conductance of the
system can then be determined from the resulting T and R. A disadvantage on the
other hand is that Eq. (7) that relates the wave vector of the incident particle with the
energy, restricts the energy of the particle to between −2 and +2. This restricts our
ability to study the system in the whole possible energy range since for the 2D cluster
the energy could in principle range more widely (between −4 and +4 for the square
lattice where the coordination number is 4). This is due, of course, to the effectively
one-dimensional nature of the system forced by attaching 1D semi-infinite leads and
by looking at the plane waves spreading over the entire leads. Although the restric-
tion only allows us to study a subset of the two-dimensional part of the transmission
that occurs within the 2D cluster portion, it still provides us with a large window to
observe the behavior of transmission as a function of the main variables of the prob-
lem, that is, the energy E, the site occupation probability p (the remainder of this
work uses the site percolation model for the underlying cluster), system size (i.e., the
edge length L), and the way input and output leads are connected to the cluster.

2 Resonances and Phase Variations in Ordered Limit

We begin by considering the ordered limit of p = 1, that is, all sites (bonds) of the
percolation network are occupied and thus available to host the hopping particle. As
we will illustrate below, even in this limit, the transport through the lattice is very
sensitive to the incident particle’s energy, varying from complete transmission to
complete reflection, and also to the type of coupling between the lattice and the input
and output chains. Moreover, we will illustrate a surprising degree of connection
between certain types of phase variations of ψ over the cluster and the transmission
coefficient T .

2.1 Transmission and Reflection Resonances

Shown in Fig. 4 is the transmission coefficient against the particle energy E for a
10 × 10 lattice with two different boundary conditions, namely, the point-to-point
and busbar type contacts of the input and output chains. Common to both types of
connections is the presence of peaks and valleys in T with sharp edges, which we call
resonances. Clearly, even with no disorder there are states that are almost completely
reflecting (T = 0); in fact, these highly reflecting states dominate for the busbar
boundary case.

The immediate proximity of transmission (T = 1) and reflection (T = 0) reso-
nances suggest their common origin, and indeed, [1] found that many (if not all) of
them arise mathematically as the degenerate eigenvalues of an isolated cluster por-
tion are split when the 1D leads are attached. The diamonds (�) in these figures in-
dicate the location of those degenerate eigenvalues. This phenomenon is analogous
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Fig. 4. The transmission coefficient T as a function of energy E for a 10 × 10 square lattice
calculated using the Daboul ansatz. (a) is for the point-to-point contacts to the input and output
chains, and (b) is for the busbar contacts. Also shown by the diamonds (�) are the locations
of the doubly degenerate eigenvalues of the submatrix that only contains the cluster sites.
From [1]

to resonant tunneling [30] of an incident particle through, for example, a double-
barrier system. In such a system, a peak in particle transmission occurs whenever
the incident particle’s energy is the same as the energy of one of the well’s bound
states. In this work, however, although there is no tunneling involved, we do see res-
onant transmission and reflection when the energy of the incident particle falls near
an eigenvalue of the isolated cluster.

On the other hand, the two boundary conditions also differ in that the point-to-
point contact case is largely transmitting while the busbar case is the opposite. This
difference arises from the additional interference effects at the much larger contact
region (edges) of the latter where large cancellations occur as an edge effect. We
also note the loss of symmetry about E = 0 for the busbar case as it is no longer a
bipartite geometry.

As the size of the central cluster is increased, the number of its associated eigen-
values also increases. The example from the ordered 50 × 50 square cluster with
point-to-point chain contacts is shown in Fig. 5. It is clear that there are correspond-
ingly much larger number of transmission and reflection resonances that are also
located near the doubly degenerate eigenvalues of the corresponding isolated square
cluster. Also highly transmitting states cluster near the band center as in the smaller
networks.

2.2 Effects of Wave Function Phases

One obvious question is whether one can judge immediately by looking at the prob-
ability density |ψ(r)|2 whether a state is highly transmitting or more reflecting. This
question is relevant since some common approaches to study the transmission (or lo-
calization) characteristic of the quantum percolation problem focus on the geometric
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Fig. 5. The transmission coefficient T as function of energy E for a 50 × 50 square lattice
calculated using the Daboul ansatz for the point-to-point contacts. From [31]

distribution of the probability density [10, 32–35]. This includes all studies that rely
solely on the participation ratios.

Shown in Fig. 6(a) is the probability density |ψ|2 for the state of E = 1.19 on a
50 × 50 ordered network with point-to-point contacts. Although we show only that
portion of the wave function that resides on the square cluster, the problem was actu-
ally solved for the entire system including the effectively infinite 1D leads using the
Daboul ansatz, and thus ψ(r) is not an eigenstate of an isolated cluster. Therefore,
the values of |ψ|2 right at the sites where the leads connect to the cluster do not pre-
dispose the calculation of the transmission coefficient in the way such values might
determine the overlap integrals based on the wave function solution over the isolated
cluster and the leads separately. As seen from the figure, the probability density is
extended throughout the cluster, and yet the transmission happens to be very low at
T ≈ 0.0007. This may appear puzzling at first, but if we look at the phase distribu-
tion shown in Fig. 6(b) and (c), we observe an interesting pattern. The phases consist
of many small plateaus of essentially just two values that differ by ∼ π, creating an
appearance of a rectangular parallelopiped. The ubiquitous phase difference of ∼ π
gives rise to destructive interference and hence the very low transmission. A calcu-
lation purely based on |ψ|2 (such as participation ratio analyses) would never have
picked up this state as one of almost zero transmission.

The state corresponding to energy E = 0.99, on the other hand, has a very
high transmission at T ≈ 0.996. The probability density and corresponding phase
pattern of the state are shown in Fig. 7. Clearly, the probability density alone does not
differentiate this state very well from that of Fig. 6. However, in this case the phase
difference between the neighboring sites (or plateaus) is ∼ 2π (zero modulo 2π) and
therefore ubiquitous constructive interference leads to very high transmission.

The two cases described above suggest that any state with a phase distribution
such that the phases between the neighboring sites differ by ∼ π or ∼ 2π will give
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Fig. 6. (a) The probability density of the system of size 50 × 50 corresponding to energy
E = 1.19 with the transmission coefficient T of about 0.0007. (b) Top view of the local
phases of the wave function and (c) Side view. From [31]

rise to especially low or high transmission, respectively. Any value of the preva-
lent phase differences between these two extremes will give rise to an intermediate
transmission. Even though we only illustrated with two examples from the ordered
cluster here, there appears to be a surprising degree of universality to the observation
across the energy and even boundary conditions and lattice types. For example, the
transmission under busbar type connection also turns out to follow the same simple
criteria for high- and low-transmitting states as does transmission through a cluster
on the triangular lattice. Thus, higher local connectivity and the lack of bipartite-
ness of the triangular lattice does not seem to lead to markedly different transmission
characteristics at least in this regard. Moreover, the same correlation between the
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Fig. 7. (a) The probability density of the system of size 50 × 50 corresponding to energy
E = 0.99 with the transmission coefficient T of about 0.996. (b) Top view of the phase
distribution of the wave function and (c) Side view. From [31]

transmission and phase variations of ψ is observed for disordered clusters [31] as
well. These discussions illustrate the universal importance of the phase variations for
the transmission of a quantum particle. The probability amplitudes alone do not de-
termine the transmission characteristics, and in particular, studying quantities such
as the participation ratio alone is not likely to reflect true transport properties of a
quantum particle.

3 Time-Independent Schrödinger Equation for Finite Disorder

In our quantum percolation model, disorder is introduced by randomly diluting (or
removing) a fraction of the lattice sites as unavailable to the hopping particle as in
the classical percolation algorithm. As the latter geometrical problem is not exactly
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solved, neither is the quantum problem at hand. We describe here the numerical ap-
proach that uses the Daboul ansatz as discussed before, but even then, we are faced
with formidable challenges. First is that a meaningful result requires averages over
a large number of quenched, disordered configurations at each amount of dilution.
Second is that the determination of the localization status requires the investigation
of the states of the system in thermodynamic limit. These challenges are on top of
the fact that not all states at a given dilution will share the same localization charac-
teristics; some may be well localized while others (say, at different E) on exactly the
same diluted network may be nearly extended. That there are many possible bound-
ary conditions adds an additional hurdle to a comprehensive understanding.

In view of these difficulties, Ref. [19] focused on the point-to-point contact ge-
ometry on the square lattice where transmission T is generally higher than for other
boundary conditions such as the busbar contacts. This is because the 2D system is
predominantly exponentially localized (with zero transmission in the thermodynamic
limit) and we are mainly interested in searching for an extended (or less localized)
state if any exists. In order to minimize the local effects of the immediate vicin-
ity of the point contacts, they also made a certain number (usually 9) of sites at
the corners of the cluster around the diagonal contact points to be always occupied
(available). They then solved the time-independent Schrödinger equation using the
Daboul ansatz on each of the many realizations of a disorder configuration of a given
size cluster (L × L) and a given value of disorder (p < 1), for strategically selected
values of the energy E, calculated the transmission coefficient T , and averaged those
to obtain the mean T for the size L and dilution q ≡ 1− p. This is repeated for grad-
ually increasing disorder (or q). The final step is to consider increasing cluster sizes
L, and they interpreted the results in the spirit of finite size scaling.

3.1 Energies Away from the Band Center

Reference [19] found similar trends at all values of E except for the immediate vicin-
ity of the band center E = 0. Thus, here we review their result from just one value
of energy E = 1.6 to illustrate their findings away from the band center. For each
level of disorder, the size of the clusters they studied varies from 10 × 10 to a max-
imum size of 180 × 180. The disorder average was performed over 1,000 clusters
for each cluster size and dilution level. From the corresponding results on the An-
derson model, the distribution of T over disorder realizations is expected to be non-
Gaussian. Indeed, various calculations [18, 19] found this to be true for the quantum
percolation as well. Thus, it is critical to study the statistics of T carefully in order
to make meaningful statements about its trend. The results quoted here, as averaged
over the 1,000 realizations per data point (given L, q, and E), have been subjected to
such analyses and the averages shown here are believed to be meaningful.

The log-log plot of the mean transmission T against the size L of the clusters
is shown at E = 1.6 for various disorder levels in the Fig. 8. Up to 28% dilution,
linear fits of the form of lnT = −b lnL+c are also shown, while for higher dilution,
exponential fits of the form of lnT = −bL + c are also shown on the log-log plot.
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Fig. 8. The log-log plot of transmission through disordered clusters at E = 1.6. Each data
point is the average over 1,000 independent realizations. The transmission curves for q = 5%,
10%, 13%, 15% and 20% dilution are separately shown in the inset. Error bars shown are the
standard errors of the mean. From [19]

At first sight, Fig. 8 appears to show that for lower dilution of up to about 25%
or 28%, the transmission decreases almost linearly in the log-log plot as the size of
the clusters increases, which translates to a power-law behavior of transmission in
the linear scale T = aL−b. However, the power-law exponent seems to gradually
increase with dilution. Eventually, for dilution higher than about 28%, the transmis-
sion evidently begins to fall exponentially as a function of L (i.e., T = a exp(−bL)),
as is evident from the lowest three curves in Fig. 8. If we interpret the dependence
on the cluster size as reflecting the corresponding distance scale dependence of T
on a hypothetically infinite 2D cluster, then these observations would translate to
an algebraic localization at lower dilution versus exponential localization at higher
dilution.

These fits are of fair quality both by inspection and according to the usual mea-
sures such as the coefficients of regression (|Rσ|2 ≥ 0.94 in all cases) at first glance.
However, the logarithmic scale conceals finer details particularly at lower dilutions.
For example, though the main plot of Fig. 8 appears to suggest an excellent linear fit
at dilution below 15%, the vertically expanded inset of the figure for the lower values
of disorder clearly suggests that the decreasing trend of lnT against lnL is in fact
much slower than linear.

Thus, Ref. [19] investigated the lower dilution regime more carefully, fitting the
data for T from the larger clusters on the linear scale to both the power-law and
exponential with a possibly nonzero offset
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Fig. 9. The linear plot of average transmission T through clusters with 2%, 3%, 5%, 10%,
13% and 15% disorders at E = 1.6 for larger sizes of the clusters (L > 26). The dotted
lines represent power-law fits and the solid lines represent the exponential fits with possibly a
non-zero offset. From [19]

T = a e−bL + c (9)

in Fig. 9. The dotted and solid lines represent the power-law fits and the exponential
fits with the possibility of nonzero offsets, respectively. As we can see from Fig. 9,
the exponential with offset begins to give a significantly better visual fit for small
dilutions such as for 2% and 3% disorder, while the goodness of fits for higher dis-
orders appear to be a toss-up between the two forms. This is corroborated by the
measures such as the regression coefficient |Rσ|2 and the cumulative square devia-
tions between the data and the fits as well. For 2% and 3% dilution, the corresponding
offsets are 0.27 ± 0.02 and 0.25 ± 0.01, respectively. Since a nonzero offset implies
a residual conductance even in the thermodynamic limit of L → ∞, the above ob-
servation suggests that the states at these low disorder are in fact extended, rather
than simply weakly localized. We note that this is the first direct numerical evidence
on the nonzero bulk transmission in quantum percolation (direct in the sense of the
actual calculation of T ).

The study of [19] thus suggests the existence of three regimes of transmission.
At higher disorders, the transmission drops exponentially as the size of clusters in-
creases. At intermediate disorders, the transmission follows power-laws of varying
exponent, whereas at low disorders, its behavior approaches a constant non-zero off-
set, c, suggesting possible delocalization of the states.
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3.2 Energies Near the Band Center

The transmission near the band center differs in some important ways compared to
that at other energies. At E ∼ 0, although the transmission is universally very high
for zero disorder as seen in Sect. 2, as soon as even a small amount of disorder is
introduced, the transmission quickly falls to very low values. Though it is difficult to
locate the delocalization transition, if any, because of the generally low transmission,
the analysis of [19] does show a behavior much weaker than power-law localization.
The width of the power-law localization regime appears to be very small and ex-
ponentially localized states are present for a disorder as low as 9% dilution for the
energy of E = 0.001.

Shown in Fig. 10 from [19] is a plot of T versus L, comparing the goodness of
power-law fits versus exponential fits with possibly non-zero offsets for E = 0.001
near the band center, analogous to Fig. 9, which was for E = 1.6, far from the band
center. The goodness of fits are not vastly different for the two kinds of fits except
for the 2% dilution, but it is still clear that generally the exponential fits with an
offset fits the data better than the power-laws for the dilution amounts shown in the
figure. The best fit estimates of the offsets at 2% and 3% dilution are 0.15±0.06 and
0.11± 0.02, respectively, still excluding zero offset within the errors and suggesting
a non-zero, bulk conductance in the thermodynamic limit.
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Fig. 10. Transmission coefficient T through the clusters with 2%, 3% and 5% disorders at
E = 0.001 for clusters of L > 26, Where each data point is the average over 1,000 inde-
pendent realizations. The dotted lines represent the power-law fits and the solid lines show the
exponential fits with offsets. From [19]
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3.3 Localization Length

The issue of the localization length Ll need to be discussed since even when the
system happens to be exponentially localized in the thermodynamic limit, in order to
observe it as such, the localization length of the state must be substantively smaller
than the system size. Otherwise, one may observe what appears to be a weaker form
of localization (such as power-law) or even an apparently extended state. So it would
obviously be useful if we have an estimate of Ll to compare with the system size.

With the finite size scaling type of approach taken by [19], this is possible by
using the data for T themselves self-consistently, at least in the regime clearly recog-
nized as exponentially localized by the method. In such a regime, T ∼ a e−bL and
thus 1/b gives the length scale over which T decays, which can then be interpreted
as the localization length. Near the band center at E = 0.001, the value of Ll es-
timated in this manner ranges from about 3 lattice spacings for 20% disorder to 16
lattice spacings at 9% disorder, well within the cluster sizes used (which was up to
150×150 at the higher dilution levels) to obtain these estimates. At the other extreme
of E = 1.6, the estimate of Ll ranged from about 4 lattice spacings for 38% disorder
to 17 lattice spacings for 30% disorder, still well within the cluster sizes used. For
dilutions smaller than these values, the power-law fits take over as the best numerical
fits and thus the situation is again consistent with the expectation that the localization
length would diverge both in an algebraically localized and extended regimes.

3.4 Suggested Localization Phase Diagram

Summarizing the study of [19], we have learned that there is a strong likelihood
that three different regimes of localization exist for quantum percolation depending
on the strength of disorder. The dilution range of these regimes, however, depends
on the energy of the particle. Using their estimates, the delocalized states appear to
emerge for a dilution of less than about 15%, except at the very center of the band. At
the center of the band, it seems to be much narrower and restricted to a significantly
less then 10%. Then, there is the power-law or algebraically localized regime upto
about 30% dilution (again except at the band centre where it is much narrower), and
finally an exponentially localized regime for higher dilution. A crude sketch showing
the suggested phase diagram is shown in Fig. 11.

The exponent of the power-law in the intermediate power-law regime, however,
depends on the disorder strength. As the disorder is varied continuously, the exponent
of the power-law also varies continuously, a characteristic that is reminiscent of the
Kosterlitz-Thouless (KT) transition in the 2D XY model [36].

4 Time-Dependent Schrödinger Equation: Sending a Wave
Packet Through a 2D Cluster

It is also possible to study the actual propagation of a quantum particle through the
2D network. Reference [37] does this by constructing a Gaussian wave packet in the
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Fig. 11. A sketch (not to scale) of the three localization regimes in the space of energy E and
dilution q based on the results of [19]

input chain that represents the incident particle and sending it into the 2D cluster
and observing the time evolution of the wave packet by numerically solving the time
dependent Schrödinger equation,

i
∂ψ(r, t)

∂t
= Hψ. (10)

Here,
ψ(r, t = 0) = (const.) e−(r−r0)

2/(4s2) e−ik0r (11)

(on the input chain only) s is the width of the wave packet, k0 is its central wave
vector and r0 is the location of the centre of the wave packet in the input chain. They
typically chose s = 4 lattice spacings and the initial position to be at the middle
of the input chain in their numerical calculations. The choices of these parameters
have to be made judiciously so that k0 is a well-defined mean wave number of the
incoming particle.

It is also clear that there is no easy way out to reduce an infinite size prob-
lem (with infinite 1D chains) to an effectively finite one as we did for the time-
independent Schrödinger equation using the Daboul ansatz, and thus one is forced to
attach chains of finite length and solve the problem numerically for the entire cluster
plus the chains. Since the chains must be finite in this approach, there are a few chal-
lenges not present in the approach of the previous section. First, one must minimise
the effect of the finite length of the chains by, for example, solving the problem for
gradually increasing chain lengths and ascertaining that the results obtained become
insensitive to further increases. Second, one must establish a suitable method to de-
termine the transmission coefficient T , since it is not explicitly contained in the time
evolution of the wave function but rather need to be derived or estimated from it.

Reference [37] tracks the time evolution of the wave packet by using a leap-frog
type method (described in detail, e.g. in [38]). According to this method, Eq. (10) is
first written in terms of the real and imaginary parts of the wave function ψ(r, t) =
R(r, t) + i I(r, t) as



Quantum Percolation in Two Dimensions 127

∂R(r, t)
∂t

= H I(r, t) (12)

∂I(r, t)
∂t

= −H R(r, t) , (13)

and then a leap-frog discretization for time t is applied to arrive at

I(r, t +
1
2
) ≈ I(r, t− 1

2
) − �t H R(r, t) (14)

R(r, t + 1) ≈ R(r, t) + �t H I(r, t +
1
2
) (15)

These last equations are then used to update and evolve the wave packet numerically.

4.1 Propagation Through an Ordered System

It is instructive to first graphically see the evolution of the wave packet through a fully
ordered (p = 1) cluster. Though we already know a great deal about the transmission
properties of the ordered cluster (see Sect. 2), we can learn a number of things by
actually visualizing the propagating wave packet as we will see below.

Shown in Fig. 12 are the snapshots when a wave packet propagates through the
diagonally connected leads. Initially prepared as a Gaussian wave form at the middle
of the input lead as in (a), its leading edge reaches the point of contact with the cluster
in (b) and splits into a reflecting wave plus one that propagates through the cluster
predominantly in the diagonal direction. As the wave packet spreads and propagates
through the cluster, it interferes with itself in many ways. This interference effect is
particularly large when the leading edge of the wave packet reaches the contact point
with the output lead in (c). Finally in (d) some portion of the wave exits the cluster,
largely keeping the Gaussian shape intact (though with a smaller amplitude), and its
leading edge touches the end of the output lead. This also leaves behind a second
wave of reflecting pattern slushing within the cluster.

As in this illustration, it is often obvious how to approximate the transmission
coefficient T in this approach. Reference [37] estimates T by summing the proba-
bility density for the portion of the wave packet that is on the output lead when the
leading edge of the wave packet has first reached the end of the output lead. They
verified the validity of this approximation by first employing increasing lead lengths
and thereby locating an optimal length where the approximation starts to yield stable
values of T . Then they used this optimal length in subsequent work.

The particle transmission depends very sensitively on the details of the boundary
connections for the ordered cluster, and this becomes visually obvious by looking
at the wave packet evolution with different boundary connection types. For exam-
ple, when the leads are connected in a point-to-point connection but to the edge
sites other than the diagonal corners, transmission is generally reduced significantly.
This is because, as the wave packet enters the cluster, it spreads out more broadly
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Fig. 12. A typical time evolution of a wave packet through a cluster of size 20× 20 with leads
connected diagonally at the lower left and upper right corners of the cluster. The time step for
each snapshot and corresponding reflection and transmission coefficients R and T are shown
at the top of each snapshot. From [37]

and generally in less well-defined directions, causing more widespread interference.
Similarly, the propagation of the wave packet under the busbar connection is dom-
inated by the destructive interference of the packet on the edge of the cluster at the
input contact and very little transmission through the cluster will be observed. We
refer the interested reader to the extensive illustrations in [37].

4.2 Wave Packet Propagation Through a Disordered Cluster

As a first step towards understanding the interference effects affecting the wave
packet’s transmission when the cluster is disordered, Ref. [37] investigated the ef-
fects of diluting (or removing) certain selected, fixed sites. The diluted sites act as
infinite potential barriers for the particle.

With a single site near the body diagonal diluted in the diagonal, point-to-point
connection, the time evolution of the wave packet is immensely affected as seen in
Fig. 13. As the wave packet encounters the diluted site, it gets scattered by the infinite
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Fig. 13. Time evolution of a wave packet in the presence of a single diluted site near the body
diagonal in the diagonal point-to-point connection. Compare with Fig. 12(b) and (c) with no
dilution. After [37]

barrier and transmission is reduced. The much broader spreading of the wave packet
is clearly observed in Fig. 13 as well as in the corresponding depressed values of T .

Effects of diluting selected sites is, however, in general complicated. For the di-
agonal connection, diluting any site tends to reduce transmission. For other boundary
connections, for example, off-diagonal point-to-point connections, a judicious choice
of the sites to remove can in fact lead to enhanced transmission. This is of course just
a reflection of the fact that interference could be either destructive or constructive,
and detailed geometry, particularly the symmetry or lack thereof, plays an important
role in determining the net effect of interference. However, the extreme destructive
and extreme constructive interferences that are needed to achieve near complete re-
flection or transmission, respectively, will require very special arrangements of disor-
der. In fact, what we mentioned in Sect. 2 about the correlation between transmission
and the predominance of local phase variations of ψ of ∼ π or ∼ 2π appears to be
true for the cases where the cluster is disordered as well. See [31] for the details.

We now turn to the random dilution of the quantum percolation problem, the
same problem that we focused on in Sect. 3 where the stationary state solutions of
the Schrödinger equation were investigated. Here, we track the time evolution of the
wave packets, originally prepared as Gaussian, through the percolation network at
some q = 1 − p > 0.

The Fig. 14 shows the time evolution of a wave packet through a particular re-
alization of a disordered cluster of size 30 × 30 with 10% dilution, with diagonally
connected leads. Comparing with Fig. 12 for the ordered cluster, the much broader
spreading of |ψ|2 is obvious, as is the much lower T . In addition, a large part of the
wave packet is now trapped inside the disordered cluster at these time scales. While
these features are common to all disorder realizations, closer analysis reveals that
they can be quantitatively very different. In fact, the values of T can differ by many
orders of magnitude from realization to realization, being very sensitive to the exact
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Fig. 14. Propagation of a wave packet is illustrated through a particular realization of a 30×30
cluster with 10% dilution with diagonally connected input and output leads. (a) and (b) are
two snapshots at t = 70 and 140, respectively. From [37]

locations of the diluted sites. For example, if the concentration of diluted sites near
the input lead is large then the reflection coefficient is observed to be large. These
subtleties become clear through visualizations such as the current method.

4.3 Localization Regimes from the Wave Packet Transmission

This method can also be used to study (and confirm) the nature of localization in
2D quantum percolation just in the same manner as the stationary state solution dis-
cussed in Sect. 3. For this purpose, one first prepares a particular incoming wave
packet (with a selected central wave number k0 which is analogous to a given value
of the energy E in the static problem, etc.). Then on a set of disorder realizations
at a particular level of disorder constructed on a given size of a cluster, the wave
packet is released from the input lead and its evolution is tracked until the lead-
ing edge of the packet reaches the end of the output lead. At that point, one uses
the probability fraction residing on the output lead as the approximate estimate of
T . For each dilution level and cluster size, the disorder average is taken, and then
the calculation is repeated for different dilution levels and cluster sizes. Clearly, the
additional need to track the evolution of ψ leads to higher computational require-
ments than for the stationary state calculations particularly for larger cluster sizes,
and thus limits the size of the cluster and the extent of disorder averages that can
be taken. The results of such a calculation by [37] are shown in Fig. 15 where each
data point is the average of 100 disorder realizations. In this work, the maximum
size of the cluster was 70 × 70 and k0 = 4.7 in units of reciprocal lattice spacings
was used.

We note the similarities between Fig. 15 above and Fig. 8 from Sect. 3, partic-
ularly in the apparently good fits to a straight line for the lower dilution levels (of
up to about 20% here) and to an exponential decrease for greater dilution. Again, a
closer inspection of these the log-log scale fits reveals considerable, systematic de-
viations just as in the stationary state case. Thus, Ref. [37] further investigated the
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matter by fitting the data on the linear scale for the larger cluster sizes (L > 26), just
as we showed in Sect. 3 for the stationary state solutions. The latter fitting results are
shown in Fig. 16.

Both by inspection of the fits and also more quantitative measures such as the re-
gression coefficients |Rσ|2 and residual square errors, Ref. [37] concluded that in all
these counts an exponential with offsets gives significantly better fits than a power-
law for the values of dilution shown in Fig. 16. Except for the 5% dilution case, the
95% confidence range of the offsets clearly excludes zero according to these fits,
consistent with a nonzero T even in thermodynamic limit for these cases. Thus, the
lower disorder portion of the data that was fitted to a power-law in Fig. 15 in fact
splits into those that actually fit better to an exponential with a nonzero offset (i.e.,
extended; up to ∼5% disorder) and those that fit to a power-law better (power-law
localized; between about ∼5% and ∼15% disorder) for the particular wave pack-
ets used.

Thus, the study of the propagation of the wave packet yields the same conclusion
as that of the static solutions, leading to the existence of three distinct regimes, that
is, exponentially localized states for about 20% or greater dilution (for these wave
packets), power-law localized states down to about 5% dilution, and extended states
with finite bulk conductance below that. This of course means that there must also
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be phase transitions between these qualitatively distinct states of the wave function,
confirming the static results at least for these particular wave packets.

5 Summary

In this chapter, we summarized the long-standing controversies related to the local-
ization nature of the quantum percolation problem in two dimensions and gave an
overview of the more recent numerical work that provides some evidence for the
existence of three distinct localization regimes in such a system. According to this
suggestion, in addition to the commonly found exponentially localized regime and
more elusive power-law localized regime, there is also a fully delocalized regime
with nonzero transmission in the thermodynamic limit. In addition, in the power-law
regime, the exponent that describes the power-law dependence of the transmission
on the system size (length scale) varies continuously with the strength of disorder, a
situation somewhat reminiscent of the Kosterlitz-Thouless transition in the 2D XY
model [36].
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29. M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985) 116
30. S. Datta. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press,

Cambridge, UK, 1992) 117



134 H. Nakanishi and Md. F. Islam

31. Md.F. Islam and H. Nakanishi, Euro. Phys. J. B., DOI: 10.1140/epjb/e2008-
00363-x (2008). 118, 119, 120, 129

32. J.W. Kantelhardt and A. Bunde, Phys. Rev. E 56, 6693 (1997) 118
33. J.W. Kantelhardt and A. Bunde, Ann. Phys. (Leipzig) 7, 5–6, 400–405 (1998) 118
34. J. Drager and O. Halfpap, Ann. Phys. (Leipzig) 7, 539 (1998) 118
35. K. Yakubo and T. Nakayama, Phys. Rev. B 40, 517 (1989) 118
36. J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973) 125, 132
37. Md.F. Islam and H. Nakanishi, Euro. Phys. J. B. (submitted). 125, 126, 127, 128, 129, 130
38. N.J. Giordano and H. Nakanishi. Computational Physics, 2nd ed. (Prentice-

Hall, New Jersy, USA, 2006) 126



Quantum Percolation in Disordered Structures

G. Schubert and H. Fehske

Ernst-Moritz-Arndt-Universität Greifswald, Institut für Physik, Felix-Hausdorff-Str. 6,
D-17489 Greifswald, Germany
{schubert,fehske}@physik.uni-greifswald.de

1 Introduction

Many solids, such as alloys or doped semiconductors, form crystals consisting of
two or more chemical species. In contrast to amorphous systems, they show a regu-
lar, periodic arrangement of sites but the different species are statistically distributed
over the available lattice sites. This type of disorder is often called compositional.
Likewise crystal imperfections present in any real material give rise to substitutional
disordered structures. The presence of disorder has drastic effects on various charac-
teristics of physical systems, most notably on their electronic structure and transport
properties.

A particularly interesting case is a lattice composed of accessible and inaccessi-
ble sites (bonds). Dilution of the accessible sites defines a percolation problem for
the lattice that can undergo a geometric phase transition between a connected and a
disconnected phase. Since “absent” sites (bonds) act as infinite barriers such a model
can be used to describe percolative particle transport through random resistor net-
works (see Fig. 1). Another example is the destruction of magnetic order in diluted
classical magnets. The central question of classical percolation theory is whether the
diluted lattice contains a cluster of accessible sites that spans the entire sample in the
thermodynamic limit or whether it decomposes into small disconnected pieces.

The corresponding problem of percolation of a quantum particle through a ran-
dom medium is much more involved. Here the famous concept of Anderson local-
ization comes into play [1]. Anderson argued that the one-particle wave functions in
macroscopic, disordered quantum systems at zero temperature can be exponentially
localized. This happens if the disorder is sufficiently strong or in energy regions
where the density of states is sufficiently small [2]. The transition from extended
to localized states is a result of quantum interference arising from elastic scattering
of the particle at the randomly varying site energies. Particles that occupy expo-
nentially localized states are restricted to finite regions of space. On the other hand,
particles in extended states can escape to infinity and therefore contribute to transport
(see Fig. 2).

Schubert, G., Fehske, H.: Quantum Percolation in Disordered Structures. Lect. Notes Phys. 762, 135–162 (2009)
DOI 10.1007/978-3-540-85428-9 5 c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. 2D site percolation. Shown are lattice realizations below (left) and above (right) the
classical percolation threshold pc = 0.592746

For the quantum percolation problem all one-particle states are localized below
the classical percolation threshold pc. Furthermore, for arbitrary concentrations of
conducting sites p > pc there always exist localized states on the infinite spanning
cluster [3]. Since for a completely ordered system (p = 1) all states are extended and
no states are extended for p < pc, one might expect a disorder-induced Anderson
transition at some critical concentration pq, with pc ≤ pq ≤ 1. The reason is that the
quantum nature of particles makes it harder for them to pass through narrow chan-
nels, despite the fact that quantum particles may tunnel through classically forbidden
regions [4]. As yet the existence of a quantum percolation threshold, different from
the classical one, is discussed controversial, in particular for the two-dimensional
(2D) case where also weak localization effects might become important [5].

Localization and quantum percolation have been the subject of much recent re-
search; for a review of the more back-dated work see for example, [6, 7]. The

periodic crystal disordered material

Bloch waves distorted waves Anderson localization

diffusion ’spatial confinement’

insulatorconductor

Fig. 2. Anderson transition in disordered systems
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underlying Anderson model (with uniformly distributed local potentials) and site per-
colation or binary alloy models (with a bimodal distribution of the on-site energies)
are the two standard models for disordered solids. Although, both problems have
much in common, they differ in the type of disorder, and the localization phenom-
ena of electrons in substitutional alloys are found to be much richer than previously
claimed. For instance, the binary alloy model exhibits not one, as the 3D Ander-
son model, but several pairs of mobility edges, separating localized from extended
states [3, 8, 9]. Moreover it appears that “forbidden energies” exist, in the sense that
near the band center the density of states continuously goes to zero. These effects
might be observed in actual experiments.

Understanding these issues is an important task, which we will address in this
tutorial-style review by a stochastic approach that allows for a comprehensive de-
scription of disorder on a microscopic scale. This approach, which we call the local
distribution (LD) approach [9, 10], considers the local density of states (LDOS),
which is a quantity of primary importance in systems with prominent local interac-
tions or scattering. What makes the LD approach “nonstandard” is that it directly
deals with the distribution of the LDOS in the spirit that Anderson introduced in his
pioneering work [1]. While the LDOS is just related to the amplitude of the elec-
tron’s wave function on a certain lattice site, its distribution captures the fluctuations
of the wave function through the system.

The present chapter will be organized as follows. After introducing the basic
concepts of the LD approach in Sect. 2 and explaining how to calculate the LDOS via
the highly efficient Kernel Polynomial Method (KPM), we exemplify the LD concept
by a study of localization within the Anderson model. Then, having all necessary
tools at hand, we proceed in Sect. 3 to the problem of quantum percolation. Refining
previous studies of localization effects in quantum percolation, we will demonstrate
the ‘fragmentation’ of the spectrum into extended and localized states. The existence
of a quantum percolation threshold is critically examined. To this end, we investigate
the dynamical properties of an initially localized wave packet on the spanning cluster,
using Chebyshev expansion in the time domain. In Sect. 4 we apply the findings
to several classes of advanced materials, where transport is related to percolating
current patterns. Here prominent examples are 2D undoped graphene and the 3D
colossal magnetoresistive manganites. Finally, in Sect. 5 we conclude with a short
summary of the topic.

2 Local Distribution Approach

2.1 Conceptional Background

In the theoretical investigation of disordered systems, it turned out that the distri-
bution of random quantities takes the center stage [1, 11]. Starting from a standard
tight-binding Hamiltonian of non-interacting electrons on a D-dimensional hypercu-
bic lattice with N = LD sites, the effect of compositional disorder in a solid may be
described by site-dependent local potentials εj .
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H = −t
∑

〈ij〉

(
c†i cj + H.c.

)
+

N∑

j=1

εjc
†
jcj . (1)

The operators c†j (cj) create (annihilate) an electron in a Wannier state centered
at site j, the on-site potentials εj are drawn from some probability distribution p[εj ],
and t denotes the nearest-neighbor hopping element. While all characteristics of a
certain material are determined by the corresponding distribution p[εj ], we have to
keep in mind, that each actual sample of this material constitutes only one particular
realization {εj}. The disorder in the potential landscape breaks translational invari-
ance, which normally can be exploited for the description of ordered systems. Hence,
we have to focus on site-dependent quantities such as the LDOS at lattice site i,

ρi(E) =
N∑

n=1

|〈i|n〉|2 δ(E − En) , (2)

where |n〉 is an eigenstate of H with energy En and |i〉 = c†i |0〉. Probing different
sites in the crystal, ρi(E) will strongly fluctuate, and recording the values of the
LDOS we may accumulate the distribution f [ρi(E)]. In the thermodynamic limit,
taking into account infinitely many lattice sites, the shape of f [ρi(E)] will be inde-
pendent of the actual realization of the on-site potentials {εj} and the chosen sites,
but depend solely on the underlying distribution p[εj ]. Thus, in the sense of distri-
butions, we have restored translational invariance, and the study of f [ρi(E)] allows
us to discuss the complete properties of the Hamiltonian (1). The probability density
f [ρi(E)] was found to have essentially different properties for extended and local-
ized states [12]. For an extended state, the amplitude of the wave function is more
or less uniform. Accordingly, f [ρi(E)] is sharply peaked and symmetric about the
(arithmetically averaged) mean value ρme(E). On the other hand, if states become lo-
calized, the wave function has considerable weight only on a few sites. In this case,
the LDOS strongly fluctuates throughout the lattice and the corresponding LDOS
distribution is mainly concentrated at ρi = 0, very asymmetric and has a long tail.
The rare but large LDOS-values dominate the mean value ρme(E), which therefore
cannot be taken as a good approximation of the most probable value of the LDOS.
Such systems are referred to as “non-self-averaging”. In numerical calculations, this
different behavior may be used to discriminate localized from extended states in the
following manner: Using the KPM with a variable number of moments for different
interval sections (see Sect. 2.2) we calculate the LDOS for a large number of samples,
Kr, and sites, Ks. Note that from a conceptual point of view, it makes no difference
if we calculate f [ρi(E)] for one large sample and many sites or consider smaller (but
not too small) systems and more realizations of disorder. As the latter procedure is
numerically more favorable, we will revert to this. Next, we sort the LDOS values
for all energies within a small window around the desired energy E into a histogram.
As the LDOS values vary over several orders of magnitude, a logarithmic partition
of the histogram presents itself. Although this procedure allows for the most intu-
itive determination of the localization properties in the sense of Anderson [1], there
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are two drawbacks. First, to achieve a reasonable statistics, in particular for the slots
at small LDOS values, a huge number of realizations is necessary. To alleviate the
problems of statistical noise, it is advantageous to look at integral quantities such as
the distribution function

F [ρi(E)] =
∫ ρi(E)

0

f [ρ′i(E)] dρ′i(E) , (3)

which also allows for the determination of the localization properties. While for ex-
tended states the more or less uniform amplitudes lead to a steep rise of F [ρi], for
localized states the increase extends over several orders of magnitude. Second, for
practical calculations the recording of the whole distribution (or distribution func-
tion) is a bit inconvenient, especially if we want to discuss the localization properties
of the whole band. Therefore, we try to capture the main features of the distribu-
tion by comparing two of its characteristic quantities, the (arithmetically averaged)
mean DOS,

ρme(E) =
1

KrKs

Kr∑

k=1

Ks∑

i=1

ρi(E) , (4)

and the (geometrically averaged) so called typical DOS ,

ρty(E) = exp
(

1
KrKs

Kr∑

k=1

Ks∑

i=1

ln
(
ρi(E)

))
. (5)

The typical DOS puts sufficient weight on small values of ρi. Therefore, compar-
ing ρty(E) and ρme(E) allows to detect the localization transition. We classify a
state at energy E with ρme(E) �= 0 as localized if ρty(E) = 0 and as extended
if ρty(E) �= 0. This method has been applied successfully to the pure Anderson
model [13–15] and even to more complex situations, where the effects of corre-
lated disorder [16], electron-electron interaction [17, 18] or electron-phonon cou-
pling [19, 20] were taken into account.

2.2 Calculation of the Local Density of States
by the Variable Moment Kernel Polynomial Method

At first glance, Ref. (2) suggests that the calculation of the LDOS could require a
complete diagonalization of H . It turns out, however, that an expansion of ρi in
terms of a finite series of Chebyshev polynomials Tn(x) = cos(n arcos x) allows
for an incredibly precise approximation [21]. Since the Chebyshev polynomials form
an orthogonal set on [−1, 1], prior to an expansion the Hamiltonian H needs to be
rescaled, H̃ = (H − b)/a. For reasons of numerical stability, we choose the pa-
rameters a and b such that the extreme eigenvalues of H̃ are ±0.99. In this way, the
outer parts of the interval, where the strong oscillations of Tn(x) can amplify numer-
ical errors, contain no physical information and may be discarded. In terms of the
coefficients, the so called Chebyshev moments,
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μm =

1∫

−1

ρi(x)Tm(x) dx =
N∑

n=1

〈i|n〉〈n|Tm(xn)|i〉 = 〈i|Tm(H̃)|i〉 , (6)

the approximate LDOS reads

ρi(x) =
1

π
√

1 − x2

(
g0μ0 + 2

M−1∑

m=1

gmμmTm(x)

)
. (7)

The Gibbs damping factors

gm =
(

1 − mφ

π

)
cos(mφ) +

φ

π
sin(mφ) cot(φ) (8)

with φ = π/(M + 1), are introduced to damp out the Gibbs oscillations result-
ing from finite-order polynomial approximations. The introduction of these factors
corresponds to convoluting the finite series with the so called Jackson kernel [22]. In
essence, a δ-peak at position x0 is approximated by an almost Gaussian of width [21]

σ =

√
M − x2

0(M − 1)
2(M + 1)

(1 − cos(2φ)) ≈ π

M

√
1 − x2

0 +
4x2

0 − 3
M

. (9)

Thus, for a fixed number of moments, M , the resolution of the expansion gets better
toward the interval boundaries. While in most applications this feature is harmless
or even useful, here a uniform resolution throughout the whole band is mandatory to
discriminate resolution effects from localization. This gets clear, if we respect that
a small value of ρi at a certain energy may either be due to a true low amplitude
of the wave function, or to the absence of any energy level for the current disorder
realization within one kernel width. Depending on which part of the interval we want
to reconstruct, we need to restrict the used number of moments in (7) accordingly to
ensure a constant σ. We call this procedure the Variable Moment KPM (VMKPM).
The resulting approximations of a series of δ-peaks using the standard KPM and the
VMKPM, respectively, are compared in Fig. 3.

For practical calculation of the moments, we may profit from the recursion rela-
tions of the Chebyshev polynomials,

–1
0

1

–10 1 0 1
0

1

Fig. 3. Approximation of a series of equally weighted δ-peaks using the standard KPM (left)
and the VMKPM (right). While both methods reproduce the correct spectral weight (solid
line), only in the latter case a uniform resolution is obtained, reflected by the equal height of
the peaks. The dashed-dotted line in the left panel is a guide to the eye being proportional to
the inverse of the resolution (9)
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Tm+1(x) = 2xTm(x) − Tm−1(x) , (10)

starting from T0(x) = 1 and T1(x) = x, and calculate the μm iteratively. Addition-
ally, we may reduce the numerical effort by another factor 1/2 by generating two
moments with each matrix vector multiplication by H̃ ,

μ2m−1 = 2〈i|Tm(H̃)Tm−1(H̃)|i〉 − μ1 ,

μ2m = 2〈i|Tm(H̃)Tm(H̃)|i〉 − μ0 .
(11)

Note that the algorithm requires storage only for the sparse matrix H̃ and two vectors
of the corresponding dimension. Having calculated the desired number of moments,
we calculate several reconstructions (7) for different M . We obtain the final result
with uniform resolution by smoothly joining the corresponding results for the dif-
ferent subintervals. As the calculation of the μm dominates the computational effort,
the additional overhead for performing several reconstructions is negligible as they
can be done using a Fast Fourier Transform (FFT) routine.

2.3 Illustration of the Method: Anderson Localization in 3D

To clarify the power of the method, let us briefly apply it to the Anderson model
of localization [1], for which the principal results are well known and can be found
in the literature [2, 7]. The Anderson model is described by the Hamiltonian (1),
using local potentials εj , which are assumed to be independent, uniformly distributed
random variables,

p[εj ] =
1
γ

θ
(γ

2
− |εj |

)
, (12)

where the parameter γ is a measure for the strength of disorder. The spectral prop-
erties of the Anderson model have been carefully analyzed (see e.g. [23]). For suf-
ficiently large disorder or near the band tails, the spectrum consists exclusively of
discrete eigenvalues, and the corresponding eigenfunctions are exponentially local-
ized. Since localized electrons do not contribute to the transport of charge or energy,
the energy that separates localized and extended eigenstates is called the mobility
edge. For any finite amount of disorder γ > 0, on a 1D lattice, all eigenstates of
the Anderson Hamiltonian are localized [24, 25]. This is believed to hold also in
2D, where the existence of a transition from localized to extended states at finite γ
would contradict the one parameter scaling theory [26, 27]. In three dimensions, the
disorder strength has a more distinctive effect on the spectrum. Only above a critical
value γc all states are localized, whereas for γ < γc a pair of mobility edges sep-
arates the extended states in the band center from the localized ones near the band
edges [28]. For this reason, the 3D case serves as a prime example on which we
demonstrate how to discriminate localized from extended states within the local dis-
tribution approach. In the upper panel of Fig. 4, we show the resulting distribution
of ρi(E = 0), normalized by its mean value ρme, for two characteristic values of
disorder. As ρme is a function of disorder, this normalization ensures 〈ρi/ρme〉 = 1
independent of γ, allowing for an appropriate comparison. In the delocalized phase,
γ = 3t, the distribution is rather symmetric and peaked close to its mean value. Note
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Fig. 4. Upper panel: Finite-size scaling of the normalized LDOS distribution f [ρi/ρme] at
the band center (|E| ≤ 0.01t) for the Anderson model. For the different system sizes N we
adapted the resolution σ such that Nσ ≈ 6.14 is constant and calculated 106, 104, 1024, 400
realizations of ρi for N = 103, 203, 403, 803. Lower left panel: Double-logarithmic plot of
f [ρi/ρme] for the localized case together with lognormal fits (13) to the data. Note that for
better visibility the data for N = 403, 203, 103 were shifted vertically by 2, 3, and 4 orders of
magnitude towards smaller values. Right lower panel: Distribution function F [ρi/ρme] of the
above data

that increasing both the system size and VMKPM resolution, such that the ratio of
mean level spacing to the width of the Jackson kernel is fixed, does not change the
distribution. This is in strong contrast to the localized phase, γ = 24t, where the
distribution of ρi(E) is extremely asymmetric. Although most of the weight is now
concentrated close to zero, the distribution extends to very large values of ρi, causing
the mean value to be much larger than the most probable value. Performing a similar
finite-size scaling underlines both the asymmetry and the singular behavior, which
we expect for infinite resolution in the thermodynamic limit. Note also, that for the
localized case, the distribution of the LDOS is extremely well approximated by a
lognormal distribution [29],

Φlog(x) =
1√
2πσ2

0

1
x

exp

(
− (ln (x/x0))

2

2σ2
0

)
, (13)
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as illustrated in the lower-left panel of Fig. 4. The shifting of the distribution towards
zero for localized states is most obvious in the distribution function F [ρi], which is
depicted in the lower-right panel of Fig. 4. While for extended states the more or
less uniform amplitudes lead to a steep rise of F [ρi], for localized states the increase
extends over several orders of magnitude. Capturing the essential features of the
LDOS distribution by concentrating on the mean (ρme) and typical (ρty) density of
states, we determine the localization properties for the whole energy band depending
on the disorder. As can be seen from Fig. 5, ρme(E) and ρty(E) are almost equal for
extended states, whereas for localized states ρty(E) vanishes while ρme(E) remains
finite. Using the well-established value γc(E = 0) � 16.5 t as a calibration for
the critical ratio ρty/ρme, required to distinguish localized from extended states for
the used system size and resolution, we reproduce the mobility edge in the energy-
disorder plane [2, 30, 31] (see lower-right panel of Fig. 5). We also find the well-
known re-entrant behavior near the unperturbed band edges [32, 33]: Varying γ for
some fixed values of E (6 t < E ≤ 7.6 t) a region of extended states separates two
regions of localized states. The Lifshitz boundaries, shown as dashed lines, indicate
the energy range, where eigenstates are in principle allowed. As the probability of
reaching the Lifshitz boundaries is exponentially small, we cannot expect to find
states near these boundaries for the finite ensembles considered in any numerical
calculation.
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Fig. 5. Mean (solid) and typical (dashed) density of states of the 3D Anderson model on
a lattice with N = 603 sites and periodic boundary conditions (PBC) for different values
of disorder γ. We used Nσ = 45 and the shown curves result from an ensemble of 2000
individual LDOS spectra obtained for different sites and realizations of disorder. Lower right
panel: Mobility edge (dots) as obtained for (ρty/ρme)c = 0.05 and Lifshitz boundaries (dashed
line)
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3 Localization Effects in Quantum Percolation

In disordered solids, the percolation problem is characterized by the interplay of pure
classical and quantum effects. Besides the question of finding a percolating path of
“accessible” sites through a given lattice, the quantum nature of the electrons imposes
further restrictions on the existence of extended states and, consequently, of a finite
DC-conductivity.

As a particularly simple model we start again from the basic Hamiltonian (1)
drawing the {εj} from the bimodal distribution

p[εj ] = p δ(εj − εA) + (1 − p) δ(εj − εB) . (14)

The two energies εA and εB could, for instance, represent the potential landscape
of a binary alloy ApB1−p, where each site is occupied by an A or B atom with prob-
ability p or 1 − p, respectively. Therefore we call (1) together with the distribution
(14) the binary alloy model. In the limit Δ = (εB − εA) → ∞ the wave function of
the A sub-band vanishes identically on the B-sites, making them completely inac-
cessible for the quantum particles. We then arrive at a situation where noninteracting
electrons move on a random ensemble of Ñ lattice points, which, depending on p,
may span the entire lattice or not. The corresponding quantum site percolation model
reads

H = −t
∑

〈ij〉∈A

(c†i cj + H.c.) , (15)

where the summation extends over nearest-neighbor A-sites only and, without loss
of generality, εA is chosen to be zero.

Within the classical percolation scenario the percolation threshold pc is defined
by the occurrence of an infinite cluster A∞ of connected A sites. For the simple cu-
bic lattice this site-percolation threshold is p3D

c = 0.311609 [34] for the 3D case
and p2D

c = 0.592746 [35] in 2D. In the quantum case, the multiple scattering of the
particles at the irregular boundaries of the cluster can suppress the wave function,
in particular within narrow channels or close to dead-ends of the cluster. Hence, this
type of disorder can lead to absence of diffusion due to localization, even if there is
a classical percolating path through the crystal. On the other hand, for finite Δ the
tunneling between A and B sites may cause a finite DC-conductivity although the A
sites are not percolating. Naturally, the question arises whether the quantum perco-
lation threshold pq, given by the probability above which an extended wave function
exists within the A sub-band, is larger or smaller than pc. Previous results [36, 37]
for finite values of Δ indicate that the tunneling effect has a marginal influence on
the percolation threshold as soon as Δ � 4tD.

3.1 3D Site Percolation

Before discussing possible localization phenomena let us investigate the behavior of
the mean DOS for the binary alloy and quantum percolation model in 3D. Figure 6
shows that as long as εA and εB do not differ too much, there exists a single and if
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p �= 0.5 asymmetric electronic band [36]. At about Δ � 4tD this band separates
into two sub-bands centered at εA and εB , respectively. The most prominent feature
in the split-band regime is the series of spikes at discrete energies within the band.
As an obvious guess, we might attribute these spikes to eigenstates on islands of A or
B sites being isolated from the main cluster [3, 38]. It turns out, however, that some
of the spikes persist, even if we neglect all finite clusters and restrict the calculation
to the N̄ sites of A-type on the spanning cluster, A∞. This is illustrated in the upper
panels of Fig. 7, where we compare the DOS of the binary alloy model at Δ → ∞
and the quantum percolation model. Increasing the concentration of accessible sites,
the mean DOS of the spanning cluster is evocative of the DOS of the simple cubic
lattice, but even at large values of p a sharp peak structure remains at E = 0 (see
Fig. 7, lower panels).

To elucidate this effect, which for a long time was partially not accounted
for in the literature [3, 36, 39, 40], in more detail, in Fig. 8 we fix p at 0.337,
shortly above the classical percolation threshold. In addition to the most dom-
inant peaks at E/t = 0,±1,±

√
2, we can resolve distinct spikes at E/t =

1
2

(
±1 ±

√
5
)
,±

√
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on a N = 643 lattice with PBC for different concentrations of A-sites p and local potential
differences Δ. Taking all sites into account, we chose the resolution such that Nσ = 45 and
calculated 1000 individual LDOS spectra for different probe realizations and sites
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eigenvalues of the tight-binding model on small clusters of the geometries shown
in the right part of Fig. 8. In accordance with [3] and [41] we can thus argue that the
wave functions, which correspond to these special energies, are localized on some
“dead ends” of the spanning cluster.

The assumption that the distinct peaks correspond to localized wave functions is
corroborated by the fact that the typical DOS vanishes or, at least, shows a dip at these
energies. Occurring also for finite Δ (Fig. 6), this effect becomes more pronounced
as Δ → ∞ and in the vicinity of the classical percolation threshold pc. From the
study of the Anderson model we know that localization leads at first to a narrow-
ing of the energy window containing extended states. For the percolation problem,
in contrast, with decreasing p the typical DOS indicates both localization from the
band edges and localization at particular energies within the band. Since finite cluster
wave functions such as those shown in Fig. 8 can be constructed for numerous other,
less probable geometries [42], an infinite discrete series of such spikes might exist
within the spectrum, as proposed in [41]. The picture of localization in the quantum
percolation model is then quite remarkable. If we generalize our numerical data for
the peaks at E = 0 and E = ±t, it seems as if there is an infinite discrete set of
energies with localized wave functions, which is dense within the entire spectrum.
In between there are many extended states, but to avoid mixing, their density goes to
zero close to the localized states. Facilitated by its large special weight (up to 11%
close to pc) this is clearly observable for the peak at E = 0, and we suspect similar
behavior at E = ±t. For the other discrete spikes the resolution of our numerical
data is still too poor and the system size might be even too small to draw a definite
conclusion.

In order to understand the internal structure of the extended and localized states
we calculate the probability density of specific eigenstates of (15) restricted to A∞
for a fixed realization of disorder. Figure 9 visualizes the spatial variation of |〈i|n〉|2
for an occupation probability well above the classical percolation threshold. The fig-
ure clearly indicates that the state with E = 0.649t is extended, that is, the spanning
cluster is quantum mechanically “transparent”. On the contrary, at E = 3.501t, the
wave function is completely localized on a finite region of the spanning cluster. This
is caused by the scattering of the particle at the random surface of the spanning
cluster.

A particularly interesting behavior is observed at E = 0. Here, the eigenstates
are highly degenerate and we can form wave functions that span the entire lattice
in a checkerboard structure with zero and nonzero amplitudes (see Fig. 9). Al-
though these states are extended in the sense that they are not confined to some
region of the cluster, they are localized in the sense that they do not contribute to
the DC-conductivity. This is caused by the alternating structure that suppresses the
nearest-neighbor hopping, and in spite of the high degeneracy, the current matrix el-
ement between different E = 0 states is zero. Hence, having properties of both the
classes of states, these states are called anomalously localized [43, 44]. Another indi-
cation for the robustness of this feature is its persistence for mismatching boundary
conditions, for example, periodic (antiperiodic) boundary conditions for odd (even)
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Fig. 9. Normalized probability density N̄ |〈i|n〉|2 for three eigenstates of the quantum perco-
lation model. The chosen energies are representative for a localized (E = 3.501t), extended
(E = 0.649t) and anomalous localized (E = 0) state. We performed an exact diagonalization
for A∞ for one realization of disorder on a N = 323 lattice with PBC and p = 0.458

values of the linear extension L. In these cases, the checkerboard is matched to itself
by a manifold of sites with vanishing amplitude.

Furthermore, for the previously mentioned special energies, the wave function
vanishes identically except for some finite domains on loose ends (such as those
shown in the right panel of Fig. 8), where it takes, except for normalization, the
values (±1,∓1), (1,±

√
2, 1), (−1, 0, 1), . . . Note that these regions are part of the

spanning cluster, connected to the rest of A∞ by sites with wave function amplitude
zero [41].

In the past, most of the methods used in numerical studies of Anderson localiza-
tion have also been applied to the binary alloy model and the quantum percolation
model in order to determine the quantum percolation threshold pq, defined as the
probability p below which all states are localized (see, e.g. [45, 46] and references
therein). The existence of pq is still disputed. As yet, the results for pq are far less pre-
cise than, for example, the values of the critical disorder reported for the Anderson
model. For the simple cubic lattice numerical estimates of quantum site-percolation
thresholds range from 0.4 to 0.5 (see [46] and references therein). In Figs. 6–8 we
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present data for ρty, which shows that pq > pc. In fact, within numerical accuracy,
we found ρty = 0 for p = 0.337 > pc.

To get a more detailed picture we calculate the normalized typical DOS, ρty/ρme,
in the whole concentration-energy plane. The left panel of Fig. 10 presents such a
kind of phase diagram of the quantum percolation model. This data also support a
finite quantum percolation threshold pq

>∼ 0.4 > pc (see also [36, 46–48]), but as
the discussion above indicated, for E = 0 and E = ±t the critical value pq(E) = 1,
and the same may hold for the set of other “special” energies. The transition line
between localized and extended states, pq(E), might thus be a rather irregular (frac-
tal?) function. On the basis of our LDOS distribution approach, however, we are not
in the position to answer this question with full rigor.

Finally, let us come back to the characterization of extended and localized states
in terms of distribution functions. The right panel of Fig. 10 displays the distribution
function, F [ρi(E)], for four typical points in the energy-concentration plane, corre-
sponding to localized, extended and anomalously localized states, respectively. The
differences in F [ρi(E)] are significant. The slow increase of F [ρi(E)] observed for
localized states corresponds to an extremely broad LDOS-distribution, with a very
small most probable (or typical) value of ρi(E). This is in agreement with the find-
ings for the Anderson model. Accordingly, the jump-like increase found for extended
states is related to an extremely narrow distribution of the LDOS centered around the
mean DOS, where ρme coincides with the most probable value. At E = 0 and low p,
the distribution function exhibits two steps, leading to a bimodal distribution density.
Here the first (second) maximum is related to sites with a small (large) amplitude of
the wave function–a feature that substantiates the checkerboard structure discussed
above. For higher p, where we already found a reduced spectral weight of the central
peak in ρme, also the two-step shape of the distribution function is less pronounced.
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Fig. 10. Left panel: Normalized typical DOS ρty/ρme in the concentration-energy plane for
the quantum percolation model restricted to A∞. For a fixed resolution of σ = 0.0002 we
adapted the system sizes to keep N̄σ = 45 constant, that is, N = 623, . . . , 1203 for p =
0.944, . . . , 0.318. The results based on the calculation of 1000 individual LDOS spectra for
different cluster realizations and sites. Right panel: Distribution function of the LDOS for four
characteristic states, for which the parameters (p, E) are indicated by crosses in the left panel.
The parameters for the curves A, B and C are the same for which we showed the characteristic
states in Fig. 9
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Therefore we may argue that the increase in weight of the central peak for lower p is
substantially due to the checkerboard states.

Having a rather complete perception of the physics in 3D, let us now come to the
2D case, for which the findings in literature are more controversial.

3.2 2D Site Percolation

Although the main characteristics of the 3D site-percolation problem, for example,
the fragmentation of the spectrum, persist in 2D, there exist some particularities and
additional difficulties. In particular, the existence of a quantum percolation threshold
1 > pq > pc = 0.592746 is even less settled than in 3D. Published estimates range
from pq = pc to pq = 1 (see [46, 49] and references therein). This uncertainty is due
to the extremely large length scales, on which localization phenomena take place in
2D, a fact well known for the standard Anderson model. Furthermore, the special
characteristics of the band center states seem to be of particular importance [44, 50].

Local Density of States

Figure 11 shows the mean and typical DOS of the 2D quantum percolation model,
calculated by the LD approach. For large p, ρme clearly resembles the 2D DOS shape
for the ordered case. For these parameters ρty nearly coincides with ρme except for the
band center, where ρty shows a strong dip. If we reduce the occupation probability,
the spikes at special energies appear again (see Sect. 3.1), with most spectral weight
at E = 0. The weight of the central peak (9% close to pc) is reduced as compared
with the 3D case.

In order to obtain reliable results for the infinite system, we examine the depen-
dency of ρty on the system size, for fixed N̄σ. Here, we find a characteristic differ-
ence between large and small p. Whereas for large p, above a certain system size, ρty

is independent of N , it continuously decreases for low-occupation probabilities. This
behavior is evocative of extended and localized states, respectively. Taking a look at
the underlying distribution functions, we find a similar situation as in the 3D case.
At E = 0, the two level distribution evolves, indicating the checkerboard structure
of the state. Away from the special energies, the distribution function exhibits the
shape characteristic for extended and localized states. This behavior exposes when
we compare F [ρi(E)] for different system sizes. Whereas for extended states the dis-
tribution function is insensitive against this scaling, it shifts towards smaller values
for localized ones.

Although these results are quite encouraging, one aspect deserves further atten-
tion. If we try to calculate the LDOS distribution at a given energy E, due to the finite
resolution of the KPM, it will also contain contributions from states in the vicinity of
E. Thus, taking the fragmentation of the spectrum into localized and extended states
seriously, the LDOS distribution within this artificial interval will contain contribu-
tions of each class of states.

For practical calculations, this causes no problems, as except for the most pro-
nounced peaks, the probability of finding a state which is localized on one of the
geometries as in the right panel of Fig. 8 drops very fast with its complexity.
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Fig. 11. Upper panels: Mean (solid line) and typical (dashed lines) DOS for the 2D per-
colation model for p = 0.7 (left) and p = 0.9 (right). The dashed lines correspond to the
typical DOS for different system sizes (from top to bottom) N = 1142, 4002, 5722, 11442

for p = 0.7 and N = 1002, 3502, 5002, 10002 for p = 0.9. Again, we adapt σ, such that
N̄σ = 45. The curves are ensemble averages over 1000 (500 for the largest systems) in-
dividual LDOS spectra for different cluster realizations and sites. Lower panel: Distribution
function of the LDOS for three characteristic energies: E = 0 (solid lines), E = 0.5t (dashed-
dotted lines), and E = 2.5t (dashed lines). To underline the finite size scaling, we show the
results for two system sizes, 3502 (4002) marked with circles, and 5002 (5722) with squares

Time Evolution

The expansion of the time evolution operator U(τ) = e−iHτ in Chebyshev poly-
nomials allows for a very efficient method to calculate the dynamics of a quantum
system. We may profit from this fact by calculating the recurrence probability of a
particle to a given site, PR(τ), which for τ → ∞ may serve as a criterion for localiza-
tion [2, 27]. While for extended states on the spanning cluster PR(τ → ∞) = 1/N̄ ,
which scales to zero in the thermodynamic limit, a localized state will have a finite
value of PR(τ) as N̄ → ∞. The advantage of considering the time evolution is that
in general the initial state is not an eigenstate of the system and therefore contains
contributions of the whole spectrum. This allows for a global search for extended
states and a detection of pq.

Let us briefly outline how to calculate the time evolution of the system by means
of Chebyshev expansion [51, 52]. Of course, as a first step, the Hamiltonian has to
be rescaled to the definition interval of the Chebyshev polynomials, leading to
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U(τ) = e−i(aH̃+b)τ = e−ibτ

[
c0 + 2

M∑

k=1

ckTk(H̃)

]
. (16)

The expansion coefficients ck are given by

ck =

1∫

−1

Tk(x)e−iaxτ

π
√

1 − x2
dx = (−i)kJk(aτ) , (17)

where Jk denotes the Bessel function of the first kind. Due to the fast asymptotic
decay of the Bessel functions

Jk(aτ) ∼ 1
k!

(aτ
2

)k

∼ 1√
2πk

(eaτ
2k

)k

for k → ∞ , (18)

the higher-order expansion terms vanish rapidly. Thus, we do not need additional
damping factors as in the Chebyshev expansion of the LDOS, but may truncate the
series at some order without having to expect Gibbs oscillations. Note that the ex-
pansion order necessary to obtain precise results will surely depend on the time step
used, normally M ∼ 2at will be sufficient. Thus, for optimum performance of the
algorithm, we have to find a suitable compromise between time step Δτ and expan-
sion order M . Anyhow, for reasonable M , the method permits the use of larger time
steps compared to the standard Crank-Nicolson algorithm.

Having this powerful tool at hand, we are now in the position to calculate how
ψ(ri, τ) evolves on A∞ in time. The ‘natural’ time scales of the system are given
by the energy of the nearest-neighbor hopping element τ0 = 1/t, describing one
hopping event, and the time a particle needs (in a completely ordered system) to
visit each site once, T0 = Nτ0. As initial state, we prepare a completely localized
state, whose amplitude vanishes exactly, except for two neighboring sites, where
it has amplitudes a and

√
1 − a2, respectively. For this state we can calculate the

energy E = 2ta
√

1 − a2 and, choosing a appropriately, we may continuously tune
E ∈ [−t, t]. Taking into account more complicated initial configurations of occupied
sites (see right panel in Fig. 8) we may also adjust higher energies. For each starting
position, however, the local structure of A∞ limits the possible configurations.

In Fig. 12 we compare the time evolution of a state for high and low occupation
probabilities p, for which qualitatively different behaviors emerge. For p = 0.65,
the wave function is localized on a finite region of the cluster. Following the time
evolution up to very long times (> 100T0) we demonstrate that this is not just a tran-
sitional state during the spreading process of the wave function, but true ‘dynamical’
localization. This behavior is in strong contrast to p = 0.90, where the state spreads
over the whole cluster within a short fraction of this time (0.1T0). For any fixed time
there are some sites with slightly larger amplitudes (see the darker dots in the last im-
age of the time series). Those are due to contributions from localized states, which
are also present in the initial state. However, as the wave function extends over the
whole cluster, for large p not all states in the spectrum may be localized. Since the
time evolution of initial states at p = 0.65 and p = 0.90 behaves in such a different
manner, we conclude that there exists a quantum percolation threshold in between.
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Fig. 12. Time evolution of a state at E = 0.5t on the spanning cluster of a N = 2002 lattice
for p = 0.65 (left) and p = 0.90 (right). We show the normalized square of the wave function
amplitude at the different sites N̄ |ψ(ri, τ)|2 . Due to this normalization, for an extended state
which is evenly spread over all sites of A∞ this quantity is equal to unity
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Consequently, we have a method at hand, capable to visualize the dynamical
properties of localization in quantum percolation [53].

4 Percolative Effects in Advanced Materials

Current applications of quantum percolation concern, for example, transport
properties of doped semiconductors [44] and granular metals [54], metal-insulator
transition in 2D n-GaAs heterostructures [55], wave propagation through binary in-
homogeneous media [56], superconductor-insulator and (integer) quantum Hall tran-
sitions [57, 58], or the dynamics of atomic Fermi-Bose mixtures [59]. Another im-
portant example is the metal-insulator transition in perovskite manganite films and
the related colossal magnetoresistance (CMR) effect, which in the mean time is be-
lieved to be inherently percolative [60]. Quite recently (quantum), percolation mod-
els have been proposed to mimic the minimal conductivity in undoped graphene [61].
In doped graphene, in the split-band regime, an internal mobility edge might appear
around the Fermi energy by introducing impurities [62]. Moreover, geometric disor-
der is shown to strongly affect electronic transport in graphene nanoribbons [63]. In
the remaining part of this chapter we exemplarily investigate two specific random re-
sistor network models to describe qualitatively charged transport in graphene sheets
and bulk manganites.

4.1 Graphene

Due to its remarkable electronic properties, recently a lot of activity has been devoted
to graphene, the atomic mono/bi-layer modification of graphite [64–66]. Especially
the gapless spectrum with linear dispersion near the Fermi energy and the possibil-
ity of continuously varying the charge carrier density (from n- to p- type) by means
of applying a gate voltage are of technological interest. In view of possible applica-
tions, such as graphene-based field effect transistors, it is highly desirable to know
how these characteristics change in the presence of disorder, inherent in any pre-
pared probe. Therefore, much work has been dedicated to study possible localization
effects due to the presence of disorder (see [67] and references therein).

The extraordinary electronic structure of graphene results in unusual transport
properties. In this material a finite minimal conductivity is observed, which might
be attributed to a mesoscopically inhomogeneous density of charge carriers [68–70],
caused by spatially varying charge trapping on the substrate. To describe the influ-
ence of these charge inhomogeneities on the transport properties, percolative random
resistor networks (RRN) have been proposed [61]. Following this line, we apply the
LD approach to a minimal model [71] that can be constructed in generalization of
the 2D percolation model described in Sect. 3.2.

Let us consider a 2D lattice on which two sublattices represent regions of differ-
ent charge carrier concentrations. These regions (sites) are randomly connected with
each other (left panel of Fig. 13). The hopping probability for such links (to some
next nearest neighbors) is assumed to be much higher than for direct nearest neighbor
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hopping events. The later ones are reduced by the leakage, λ, as compared with the
others. To examine the influence of anisotropic hopping, we model the corresponding
RRN by the Hamiltonian

H = −t
[
λ
∑

m

(
c†mcn + c†mce

)
+
∑

m even

(
ηmc†mcne + (1 − ηm)c†ecn

)

+
∑

m odd

(
ηmc†ecn + (1 − ηm)c†mcne

) ]
+ H.c. ,

(19)

where e(ast) and n(orth) denote the nearest neighbors of site m in x- and y-direction
and ne is the next-nearest neighbor in “north-east” direction. We assume PBC. The
random variable ηm ∈ {0, 1} determines which diagonal in a square is connected
(right panel in Fig. 13). Shifting the expectation value of the {ηm}, we may adjust
the anisotropy of the system p = 〈ηm〉. While the link directions are isotropically
distributed for p = 0.5, increasing (decreasing) p generates a preferred direction of
hopping, favoring stipe-like structures. Note that in the limit of vanishing leakage
this model is equivalent to the 2D percolation model discussed in Sect. 3.

First representative results for the RRN model are presented in Fig. 14. In par-
ticular it shows the influence of finite leakage and anisotropy. In contrast to the 2D
percolation model, where the DOS spectra are completely symmetric, the inclusion
of next-nearest neighbor hopping causes an asymmetry that grows with increasing
λ. For large p, the mean DOS is evocative of the 1D DOS, except for the multi-
tude of spikes, which we can attribute again to localized states on isolated islands.
In the isotropic, low-leakage case, a vanishing ρty suggests that all states are local-
ized. Either increasing p or λ leads to a finite value of ρty. But even at p = 0.90 this
effect is marginal for small λ, thus presumably no extended states exist. Increasing
the leakage results in a finite ρty for E > 0 also at p = 0.5. This feature becomes

t
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t
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λt λt

λt

λt

λt λt

λtmm

m m

ηm= 0

ηm= 1

m even m odd

Fig. 13. Left panel: One particular cluster realization of the RRN model at p = 0.5. Right
panel: Visualization of the generation rule for the RRN model
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of the finite size dependence, ρty for a N = 3502 sites system is also included (dotted lines).
The results base on the calculation of 1000 individual LDOS spectra for different cluster real-
izations and sites

even more pronounced at high anisotropy, which indicates the existence of extended
states for these parameters.

In Fig. 15 we present some characteristic eigenstates of this model for a fixed
realization of disorder. These results support the conclusions drawn from the typical
DOS. For the isotropic, low-leakage case we find a clearly localized state with in-
ternal checkerboard structure. Increasing the anisotropy, many states are extended in
one direction (see also the 1D-like shape of ρme), while localized in the other one.
The leakage has a more drastic effect on the nature of the states, as they are extended
in some sense for both values of p. The amplitudes on different lattice sites fluctuate
over several orders of magnitude, however, explaining the reduced value of ρty as
compared to ρme (cf. Fig. 14).

Due to the simplicity of the model, these results are surely not suitable to be com-
pared to real experimental transport data, but can be seen as a first step towards an at
least qualitative understanding of the extraordinary transport properties in graphene.
In any case, also here the LD approach may serve as a reliable tool to discuss local-
ization effects.

4.2 Doped CMR Manganites

The transition from a metallic ferromagnetic (FM) low-temperature phase to an insu-
lating paramagnetic high-temperature phase observed in some hole-doped manganese
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Fig. 15. Characteristic eigenstates of the RRN model on a N = 1002 lattice at different
anisotropies p, leakage rates λ, and energies E. Shown is the normalized occupation proba-
bility N |〈i|n〉|2

oxides (such as the perovskite family La1−x[Sr,Ca]xMnO3) is associated with an
unusual dramatic change in their electronic and magnetic properties. This includes
a spectacularly large negative magnetoresistive response to an applied magnetic
field (see Fig. 16, Left panel), which might have important technological applica-
tions [72].

Recent experiments indicate the coexistence of localized and itinerant charge
carriers close to the metal-insulator transition in the FM phase of CMR manganites.
Above Tc the activated behaviour of the conductivity [73] as well as the structure of
the pair distribution function (PDF) [74] indicate the formation of small polarons,
that is, of almost localized carriers within a surrounding lattice distortion. Interest-
ingly these polarons continue to exist in the metallic phase below Tc, merely their
volume fraction is noticeably reduced. For the coexistence of conducting and insu-
lating regions within the metallic phase different scenarios were discussed, which
relate the metal-insulator transition to phase separation [75] and percolative phe-
nomena [76, 77]. In particular microscopic imaging techniques, such as scanning
tunnelling spectroscopy [78, 79] or dark-field imaging [80], seem to support the lat-
ter idea.
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In a previous work [81], we addressed this problem theoretically. We proposed a
phenomenological mixed-phase description that is based on the competition of a po-
laronic insulating phase and a metallic, double-exchange driven ferromagnetic phase,
whose volume fractions and carrier concentrations are determined self-consistently
by requiring equal pressure and chemical potential. In more detail, we assume that
the resistivity of the metallic component is proportional to the expression

ρS [z] =
gS [z] − γS [z]2

γS [z]2
, (20)

derived by Kubo and Ohata [82], which associates ρ with the fluctuation of the
double-exchange matrix element caused by the thermal spin disorder. Here S = 3/2
is the localized spin formed by the t2g electrons of the manganese. Both,

gS [z] =
SBS [z]

(2S + 1)2

(
(2S + 2) coth

(S + 1)z
S

− coth
z

2S

)
+

S + 1
2S + 1

(21)

γS [z] =
S + 1
2S + 1

+
S

2S + 1
coth

(
S + 1
S

z

)
BS [z] , (22)

exhibit a magnetic field dependence, where BS [z] = 1
2S

[
(2S + 1) coth (2S+1)z

2S −
coth z

2S

]
. The resistivity of the insulating component is assumed to match the resis-

tivity of the high-temperature phase, which in experiment is well fit by the activated
hopping of small-polarons [73]. Hence, the resistivities of the two components are
given by,

ρ(f) =
B

x(f)

(
ρS [S(λ + λext)] + ρmin

)
and ρ(p) =

A

βx(p)
ρS [Sλext] e−βεp ,

(23)



Quantum Percolation in Disordered Structures 159

where εp is the polaron binding energy, β = 1/kBT the inverse temperature, λ is
the inner Weiss field, λext is the external magnetic field and the prefactors A and B
as well as the cut-off ρmin are free model parameters which could be estimated from
experimental data. Then, at a given doping level x, that is chemical potential μ, the
resulting carrier concentrations x(f) and x(p) in the coexisting regions define the two
volume fractions by the equations

x = p(f)x(f) + p(p)x(p) and p(f) + p(p) = 1 , (24)

(see [81]). The resistivity of the whole sample, which may consist of an inhomoge-
neous mixture of both components, is calculated on the basis of a RRN. More pre-
cisely, we choose nodes from a cubic lattice that belong to the metallic component
with probability p(f) and to the polaronic component with probability p(p). Each of
these nodes, which represent macroscopic regions of the sample, is connected to its
neighbours with resistors of magnitude ρ(f) or ρ(p), respectively.

Inserting the volume fractions and carrier concentrations from the mixed-phase
model we obtain the resistivities shown in Fig. 16 (Right panel). The jump-like be-
haviour of the resistivity originates to a large degree from the changing volume frac-
tion of the metallic component, which can cross the percolation threshold. However,
the conductivity of the component itself as well as its carrier concentration strongly
affect ρ for T < Tc. An external magnetic field causes a reasonable suppression of ρ,
that is, a noticeable negative magnetoresistance. Compared to the real compounds the
calculated effect is a bit weaker. Nevertheless, in view of the rather simple model for
the conductivity the agreement is quite satisfactory. More involved assumptions, for
example, an affinity to the formation of larger regions of the same type in the sense
of correlated percolation [84] would naturally affect the resistivity of the system and
its response to an external field.

5 Conclusions

In this tutorial we demonstrated the capability of the local distribution approach to
the problem of quantum percolation. In disordered systems the local density of states
(LDOS) emerges as a stochastic, random quantity. It makes sense to take this stochas-
tic character seriously and to incorporate the distribution of the LDOS in a descrip-
tion of disorder. Employing the Kernel Polynomial Method we can resolve with very
moderate computational costs the rich structures in the density of states originating
from the irregular boundary of the spanning cluster.

As for the standard Anderson localization and binary alloy problems the geo-
metrically averaged (typical) density of states characterizes the LDOS distribution
and may serve as a kind of order parameter differentiating between extended and
localized states. For both 2D and 3D quantum site percolation, our numerical data
corroborate previous results in favor of a quantum percolation threshold pq > pc

and a fragmentation of the electronic spectrum into extended and localized states. At
the band center, so called anomalous localization is observed, which manifests itself
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in a checkerboard-like structure of the wave function. Most notably, monitoring the
spatial evolution of a wave packet in time for the 2D case, we find direct evidence
for ‘dynamical’ localization of an incident quantum particle at p = 0.65 > pc, while
its wave function is spread over the percolated cluster for p = 0.9. This finding
additionally supports the existence of a quantum percolation threshold.

Without doubt quantum percolation plays an important role in the transport of
several contemporary materials, such as 2D graphene or 3D manganese oxides. To
close the gap between the study of simple percolation models and a realistic treat-
ment of percolative transport in these rather complicated materials will certainly be
a challenge of future research.
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78. M. Fäth, S. Freisem, A.A. Menovsky, Y. Tomioka, J. Aarts, and J.A. Mydosh,

Science 285, 1540 (1999) 157
79. T. Becker, C. Streng, Y. Luo, V. Moshnyaga, B. Damaschke, N. Shannon, and

K. Samwer, Phys. Rev. Lett. 89, 237203 (2002) 157
80. M. Uehara, S. Mori, C.H. Chen, and S.W. Cheong, Nature 399, 560 (1999) 157
81. A. Weiße, J. Loos, and H. Fehske, Phys. Rev. B 68, 024402 (2003) 158, 159
82. K. Kubo and N. Ohata, J. Phys. Soc. Jpn. 33, 21 (1972) 158
83. P. Schiffer, A.P. Ramirez, W. Bao, and S.W. Cheong, Phys. Rev. Lett. 75,

3336 (1995) 158
84. D. Khomskii and L. Khomskii, Phys. Rev. B 67, 052406 (2003) 159

arXiv:0705.0532v2


Quantum Percolation in the Quantum Hall Regime

C. Sohrmann1, J. Oswald2 and R.A. Römer1
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1 Introduction

In 1980, an altogether unexpected discovery was made by Klaus von Klitzing and
coworkers [1] when carrying out Hall measurements on a metal-oxide-semiconductor
field-effect transistor (MOSFET) . They discovered that for a system of electrons
confined to two dimensions and subject to a strong, perpendicular magnetic field, B,
the resistivity tensor, ρ, and the conductivity tensor, σ, can freeze to the form

ρ

(
0 h/e2j

−h/e2j 0

)
and σ

(
0 −je2/h

je2/h 0

)
, (1)

with j being an integer.3 Astonishingly, it turned out that this quantization holds over
a wide range of B or the applied voltage, forming quantized plateaus, and is indepen-
dent of the sample geometry and choice of material. A commonly adopted geometry
is, for instance, the Hall bar, as sketched in Fig. 1(a). In between those plateaus, the
Hall conductivity, σxy , performs a transition and the longitudinal conductivity, σxx,
assumes a finite value of close to e2/h, as shown schematically in Fig. 1(b). This
was the fruitful discovery of the integer quantum Hall effect (IQHE). Contrary to the
classically expected linear relation between ρxy and B, this quantization of transport
sets in at very low temperatures and high-sample quality. The importance of the dis-
covery lies in the precision and resilience of the quantization and allowed for a high-
precision determination of the fine-structure constant, defined as α = e2/(2ε0hc),
where c is the vacuum speed of light and ε0 the vacuum permittivity. Ultimately, the
IQHE was adopted as a metrological standard, defining the international reference
resistance as

RK−90 = h/e2 = 25812.807Ω , (2)

3 We note that in 2D, the resistivities (ρxx, ρxy) and conductivities (σxx, σxy) are equivalent
to the resistances (Rxx, Rxy) and conductances (Gxx, Gxy), respectively.
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Fig. 1. Schematic sketch of (a) a Hall bar geometry for the measurement of the longitudinal
and the Hall resistance, (b) the plateau structure of the Hall conductance as well as the finite
longitudinal resistance at the plateau transitions in the IQHE. The current in the Hall bar flows
from the so-called source to the drain, indicated by the arrow on the left and on the right,
respectively

with an absolute error of ±5 · 10−3Ω [2]. The IQHE was soon followed by another
unexpected, arguably even more surprising finding. When carrying out Hall measure-
ments on even cleaner samples, higher fields, and lower temperatures, Tsui, Störmer
and Gossard discovered in 1982 [3] that the Hall conductivity becomes quantized
also at intermediate magnetic fields or voltages and acquires certain fractional values
of e2/h, such as 1/3, 2/3, 2/5, and so on. Owing to the logic, this effect was called
fractional quantum Hall effect (FQHE). Whereas the IQHE was soon motivated with
a gauge argument in a noninteracting system of electrons [4], the FQHE turned out
to be far more complicated and could only be described with correlated many-body
states [5] or collective excitations with fractional charge [6, 7], although still lacking
a firm, microscopic derivation.

The scope of this chapter will be limited to the IQHE for which single-particle
and network-type models [4, 8–16] inspired by arguments of classical percolation
and extensions thereof have successfully been able to reproduce general features such
as the position and height of the plateaus. Furthermore, interactions become an essen-
tial part when trying to interpret experimental results such as recently observed pat-
terns in the compressibility [17, 18] or the conductance [19, 20], enhancement of the
g-factor [21], negative compressibility [22], filling factor dependence of the Landau
level (LL) width [23], or the Hall insulator [24]. Hence, we also outline numerical
investigations of such electron-electron interaction related effects using a mean-field
Hartree-Fock (HF) approach and thereby neglecting higher correlations among the
electrons. Since HF accounts for Thomas-Fermi screening effects while at the same
time leading to a critical exponent ν̃ whose value is found to be consistent with results
of noninteracting approaches [25, 26], this appears to be a reasonable starting point.
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2 The Quantized Hall Effect and Classical Percolation

2.1 The Clean 2D System in a Magnetic Field

For the classical picture of a two-dimensional system with perpendicular magnetic
field B = (0, 0, B), one readily finds the classical Hall resistance

Rxy =
B

ene
. (3)

Thus, for a fixed carrier density, in the classical picture one expects a linear rela-
tion between the Hall resistance and the magnetic field as shown in Fig. 1.

Let’s now turn to a quantum mechanical description of a 2D perfectly periodic
system of electrons. Ignoring edge effects, we study the bulk Hamiltonian for a single
electron

h0 =
1

2m∗ (p − eA)2, (4)

where p is the momentum and A = B(0, x)T the vector potential of the magnetic
field in Landau gauge. Introducing the cyclotron coordinate ζ=

(
ξ
η

)
and the guiding

center coordinates R =
(
X
Y

)
, we find

h0 =
�ωc

2lc
ζ2 =

�ωc

2lc
(η2 + ξ2) . (5)

Then the Schrödinger equation with the magnetic Hamiltonian (4) is solved by the
degenerate Landau functions [27]

ϕn,k(r) = 〈r|ϕn,k〉
1√

2nn!
√
πlcL

exp
[
iky − (x− kl2c)

2

2l2c

]
Hn

(
x− kl2c

lc

)
, (6)

with the eigenenergies En = (n + 1/2)�ωc , where n labels the Landau level index
and k = 2πj/L with j = 1, . . . , Nφ the momentum. Hn(x) is the nth Hermite
polynomial, and lc =

√
�/eB, the magnetic length. We can determine the number of

states per LL as Nφ = L2B/Φ0 = L2/(2πl2c), which is also the number of magnetic
flux quanta, Φ0 = h/e, which penetrate the area L2. It proves very useful to define
a quantity that characterizes the filling of the system, called the filling factor ν, by
ν = Ne/Nφ, where Ne is the number of electrons in the system. The spectrum of h0

consists of a sequence of δ-peaks at energies En, where each energy corresponds to
an Nφ-fold degenerate state.

2.2 Landau Level Broadening due to Disorder

Real systems will inevitably contain a certain amount of disorder due to, for in-
stance, impurities, imperfections, or surface contamination. Having disorder in the
system will lift the degeneracy by broadening the δ-peaked LLs into bands. For
a smooth disorder potential compared to the magnetic length, especially in the
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limit B → ∞, it can be shown [28] that the eigenstates will follow equipotential
lines of the disorder potential at the corresponding eigenenergies and the average
density of states will then equal the overall distribution of energies in the poten-
tial, that is, ρ(E) = P [V ]. We use NI Gaussian-type “impurities”, randomly dis-
tributed at rs, with random strengths ws ∈ [−W,W ], and a fixed width d, such that
VI(r) =

∑NI
s=1

(
ws/πd

2
)
exp[−(r − rs)2/d2] =

∑
q VI(q) exp(iq · r) with

VI(q) =
NI∑

s=1

ws

L2
exp
(
−d2|q|2

4
− iq · rs

)
, (7)

where qx,y = 2πj/L and j = −Nφ,−Nφ − 1, . . . , Nφ. The aerial density of impu-
rities, therefore, is given by nI = NI/L

2 (cf. Fig. 2). The problem of whether a state
is localized or extended in the presence of disorder can be captured conveniently
with the localization length, ξ(E), a quantity that characterizes the spatial spread of
the wave function [28]. It has been show [29] that at the transition, the localization
length diverges as a power,

ξ(E) = |E − Ec|−ν̃ , (8)

where ν̃ is the critical exponent [29]. This exponent characterizes the transition and
is believed to be independent of microscopic details of the impurity potential.

Fig. 2. Example for a smooth disorder potential constructed on a 300 × 300 nm sample from
NI = 288 impurities with a Gaussian profile [30] as described in Sect. 4.1

2.3 Mapping Onto a Percolation Problem

The idea to map the IQHE onto a classical percolation problem can be visualized
most easily in the high-field limit, B → ∞, i.e. lc → 0. In this limit the cyclotron ra-
dius of the electrons vanishes and the center coordinates take the role of the ordinary
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spatial coordinates. We assume a Hamiltonian of the form H = h0 + V (r), where
V (r) is a disorder potential due to the electron-impurity interaction. Furthermore,
we assume the eigenstates of this Hamiltonian, φα(r), are linear combinations of
Landau states, that is, φα(r) =

∑
n,k Cα

n,kϕn,k(r). The coefficients can be found
from the Schrödinger equation, H|φ〉 = E|φ〉, which reads in matrix form

∑

n′k′

〈ϕnk|V |ϕn′k′〉Cα
n′,k′ = E′

αC
α
n,k , (9)

and which by virtue of the form of the matrix elements,

〈ϕnk|V |ϕn′k′〉 =
∫

d2rχn

(
x− kl2c

)
V (r)χn′

(
x− k′l2c

)
exp [−iy(k − k′)] ,

(10)
is given in short as

∑
n′k′〈ϕnk|V |ϕn′k′〉Cα

n′,k′ = E′
αC

α
n,k. With the high-field ap-

proximation, the coupling between different LLs may be neglected and the problem
can be solved for each level individually, that is, the n-index can be left out of the
discussion. For easier analytical treatment, the sum will be replaced by an integral,
that is,

∑
k′ = (L/2π)

∫
dk′, and the coefficient is substituted by its Taylor expan-

sion as C(k′) = exp[(k − k′)d/dq]C(q)|q=k. With some algebra [16, 31] and the
limit lc → 0, one can state the problem as a differential equation. The solution yields
parameterized orbits, V (X,Y (X)) = E′ along the equipotential lines of the disor-
der potential at the respective eigenenergies E′. In this approximation, it becomes
apparent that only states along percolating equipotential lines will be extended. For
a smooth potential in 2D, this is possible for a singular energy in the center of each
LL and thus only a single state will be extended in the limit L → ∞ [16]. Thus,
the problem of the IQHE can be mapped approximately to a classical percolation
problem [14] for each LL.

In Fig. 3, we show the charge density of a single state at the bottom and in the
middle of the band, respectively. Evidentally, the states align along equipotentials

Fig. 3. Noninteracting charge density of a single localized (left figure) and delocalized (right
figure) state for a system of size L = 500 nm at B = 6T. States are located at around ν = 0.1
and ν = 0.5, respectively. The disorder potential is indicated by the equipotential lines
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of the disorder potential and thus the guiding center approximation gives a good
account of the situation.

However, the IQHE is more complex than this simple, classical percolation pic-
ture suggest. Even ignoring many-body interactions, there are two quantum effects
that may alter the scenario. The first is quantum mechanical tunneling, which may
allow transmission through the system even away from the classically critical point.
Clearly, tunneling will occur wherever different contour lines come very close. These
points are the saddle points (SPs) in the potential landscape. The second effect is the
possibility of quantum mechanical self-interference along the equipotential lines,
leading to localization and hence a reduction in transmission. The modeling and
investigation of these two counter-acting quantum effects is what gave rise to the
network models to be considered next.

3 Network Models at the IQHE

3.1 The Chalker-Coddington Model

The original goal of the Chalker-Coddington (CC) concept was to calculate the lo-
calization length of the electronic states in the high magnetic field limit as a function
of energy. In this context, the CC-model is a powerful method to circumvent a di-
rect solution of Schrödingers equation by considering mainly the following facts:
(a) the electronic states exhibit unidirectional transmission (directed channels) and
(b) the extension of the wave function follows almost exactly the equipotential lines
of the random potential, while it is localized on the length scale of the magnetic
length perpendicular to the equipotential lines, which is schematically shown in
Fig. 4(a). One has to demand current conservation all along the channels between the
nodes, which are formed by the saddles of the random potential (encircled regions
in Fig. 4(a)). Another important ingredient is current conservation at the nodes itself,
which requests a unitary matrix between the transmitted amplitudes of incoming and
outgoing channels. Figure 4(b) shows schematically the trajectories of the channels
while passing a SP or being reflected at the SP of the potential. The transmitted am-
plitudes of the wave functions across the saddles are associated with currents and the
current conservation of incoming and outgoing channels demands [14, 16]:

|ψ1|2 + |ψ3|2 = |ψ2|2 + |ψ4|2 . (11)

This is maintained by the unitary scattering matrix S,
(
ψ2

ψ4

)
= S ·

(
ψ1

ψ3

)
. (12)

S has the general form

S =
(
e−iϕ2 0

0 eiϕ4

)(
−r t
t r

)(
eiϕ1 0
0 e−iϕ3

)
, (13)
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(a) (b)

Fig. 4. (a) Schematic lateral potential distribution after [14]. The full curves represent equipo-
tentials and the arrows give the direction of transmission. The + and - denotes maxima and
minima. The bold line represents the contour along which the electronic state is extend. The
perpendicular extension is indicated by the broken curves. The broken circles mark the cou-
pling regions, which become the nodes of the network (b) Node of the network with two
incoming and two outgoing channels. The channels in the CC network are treated according
to the transfer matrix, which relates transmitted amplitudes and phases of the wave functions
on the left (ψ1, ψ2) to the transmitted amplitudes and phases of the wave functions on the right
(ψ3, ψ4)

with r the reflection and t the transmission coefficient for the amplitudes. An equiv-
alent representation is the usage of the so-called transfer matrix T

(
ψ4

ψ3

)
= T ·

(
ψ1

ψ2

)
, (14)

with

T =
(
eiϕ4 0
0 eiϕ3

)(
1/t r/t
r/t 1/t

)(
eiϕ1 0
0 eiϕ2

)
. (15)

Due to current conservation (t =
√

1 − r2), the transfer matrix T can be de-
scribed by a single parameter Θ, with Θ and ϕ real [14]:

T =
(
eiϕ4 0
0 eiϕ3

)(
coshΘ sinhΘ
sinhΘ coshΘ

)(
eiϕ1 0
0 eiϕ2

)
. (16)

Here E � EC , EC being a critical energy near the center of the LL and E the
energy of the transmitting state, corresponds to Θ � 1, whereas E � EC corre-
sponds to Θ � 1 [14]. Hence Θ is a monotonous function of the energy with respect
to the critical energy near the LL center and is considered to depend linearly on the
energy close to the LL center. A change between the cases Θ � 1 and Θ � 1 cor-
responds to switching from either full transmission to full reflection or vice versa,
which at the same time acts like a rotation of the node by 90◦. Realistically, one
should study a network that is topologically disordered. Instead, it has been sup-
posed that randomness in the link phases of the channels that connect the nodes is
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Fig. 5. The CC network of [14] with strip boundary conditions, connected to semi-infinite ideal
conductors. A “slice” of the network is defined between dashed vertical lines and each slice is
divided in to 4 different subslices, divided by the dotted lines. Each subslice is represented by
a transfer matrix and their product gives the transfer matrix of a whole slice. The transmission
through the whole system then is the product of all slices

sufficient while using a square lattice. For calculating the localization length, long
narrow samples have been build on the basis of this network, which are connected
to infinitely long ideal conductors on both sides. Periodic boundary conditions have
been applied across the width of the sample, which thus represents a cylinder geom-
etry. Figure 5 shows the network layout as used in [14]. The main purpose has been
to calculate the transfer matrix of the whole network, which relates the amplitudes
on the left to those on the right. The network has been cut into slices and the total
transfer matrix being the product of the transfer matrix of each of the slices. Without
going into further details, CC have been able to show, that except for one value of
Θc = 0.8814 all states tend to be localized. CC finally managed to fit the power
law dependence of the localization length versus Θ − Θc and obtained a slope of
γ = 2.5. Quite a number of variations and extensions of the CC model have been
made by different authors. A recent review of random network models is given by
Kramer et al. [16].

3.2 The Nonequilibrium Network Model

One of the major features of the CC network model is the fact, that it attributes cur-
rents to the single directed channels. In this way, it does not distinguish between
persistent currents, which can also exist without external current supply, and experi-
mentally excited nonequilibrium currents. Furthermore, the CC model does not pro-
vide a handle to the excitation potentials, which are introduced by the contacts of real
samples. Another important aspect is the fact that the CC model is unexceptionally
a coherent network. Altogether this makes it impossible to extend the CC model in
order to include the presence of dissipation. Strictly speaking, the CC model is well
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able to map out the different QH transport regimes, as demonstrated in context with
the scaling theory of the QHE, but it does not describe the current transport itself.

During the past couple of years a Landauer-Büttiker-type network representation,
which aims directly at the current transport, has been developed. It can be used for the
numerical simulation of the current transport of two-dimensional electron systems in
the high-magnetic field regime [32, 33]. This approach allows to build up a network,
which describes the effect of nonequilibrium currents injected via metallic contacts
such as in real experiments. The handling of the nodes as well as the association
of the channels with currents and potentials is substantially different from the CC
model [33]. Figure 6(a) shows a single node of the network, which transmits the
potentials u1 and u3 from the incoming channels to the outgoing channels with the
potentials u2 and u4. Figure 6(b) demonstrates, how a network can be composed by
combining several nodes. In contrast to the CC model, the currents are attributed to
channel pairs. The longitudinal current I from the right to the left (see Fig. 6(a)) is
described by

I = (e2/h) · (u1 − u4) = (e2/h) · (u2 − u3) . (17)

Also the other possibility to build a pair of channels describes a current

IR = (e2/h) · (u1 − u2) = (e2/h) · (u4 − u3) . (18)

IR is a transverse current between the channel pairs (indicated by the arrow in
Fig. 6a). The ratio of IR/I corresponds to the relation between reflection and trans-
mission coefficients R/T of the Landauer-Büttiker (LB) formalism and has been
given the symbol P . P allows to derive the potentials of the outgoing channels in
terms of the potentials of the incoming channels [32, 33]

u2 = (u1 + P · u3)/(1 + P ) , (19)

u4 = (u3 + P · u1)/(1 + P ) . (20)

(a) (b)

Fig. 6. (a) Node of the network with two incoming and two outgoing channels. The channels
1 → 2 and 3 → 4 are treated like edge channels (ECs) with backscattering, where P rep-
resents the backscattering (see text). (b) Arrangement of the nodes for building the minimal
physical element of a network, which is a closed loop of a so called magnetic bound state. The
complete network is composed by putting together a sufficient number of such adjacent loops
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It is important to realize that in this way the nodes of the network provide a handle
to both, the excitation potentials and the nonequilibrium currents. By substituting
P by R/T , the above equations can be transformed also into the following matrix
equation:

(
u2

u4

)(
T R
R T

)
·
(
u1

u3

)
. (21)

This matrix must not be confused with the scattering matrix (S) in Eq. (13) as used
by the CC model. It might be somewhat confusing, that the S-Matrix of the CC
model considers the transmission from 1 → 2 and 3 → 4 as a reflection, while in
accordance with the EC-picture in this model the current transported by the channel
pair (1 → 2 and 3 → 4) is considered as a transmission process. This inconsistency
results from the CC model, which assigns currents to single channels which then
appear as being repelled at the saddle. Therefore we have to interchange r ↔ t
before comparing this model with the CC model. In this way, we obtain a matrix that
seems almost identical with the S-matrix, except the fundamental difference that
T = t2 and R = r2. Therefore there exists formally no way for deriving Eq. (21)
from the S-matrix of the CC model.

The theoretical basis of P is transmission across SPs of long rage potential fluc-
tuations in the bulk [33],

P = exp
[
−L2(EF − ELL)

eṼ

eB

h

]
. (22)

The saddle energy corresponds to the LL center ELL, eB/h is the number of states
of a LL, L and Ṽ are connected to the Taylor expansion of the involved SP: L is
the period and Ṽ the amplitude of a 2D cosine-potential, which has the same 2nd
order Taylor expansion like the actual saddle potential. Representing the encircled
saddle in Fig. 7 by an appropriate two-dimensional Cosine potential, which matches
the saddle curvature, we get the dashed plotted Cosine function. However, the real
potential modulation results from a random potential. It is easily seen, that, therefore,
the overall LL broadening Γ will be larger than Ṽ .

Fig. 7. Schematic one-dimensional representation (x - profile) of a fluctuating potential to-
gether with the idealized 2D-Cosine potential with the right Taylor coefficients for represent-
ing the encircled saddle
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The geometry of the sample is defined by shaping the lateral density profile of
the carriers, which are distributed over the network grid. The local carriers’ density
enters the nodes via the function P , which depends locally on EF−ELL, with EF the
Fermi energy and ELL the LL center. Therefore P is in general different for different
nodes and each involved Landau band is represented by a complete network [32].
In this way, contact leads, gate electrodes and the effect of inhomogeneities can be
modeled. In order to fill up the network with P -values for the numerical calculation
of the resulting current and potential distribution, we have two options that will be
discussed in the next sections.

3.3 Periodic Grid

We use a periodic grid of reduced lateral resolution without explicitly including po-
tential fluctuations. In this case, L corresponds to a much larger length than the real
mean fluctuation period and therefore also the corresponding potential modulation Ṽ
appears much larger than the real mean fluctuation amplitude. Consequently, neither
L nor Ṽ have a physical meaning independently from each other. Only the prefactor
of (EF − ELL) in the exponent of Eq. (22) as a whole is relevant. It defines an en-
ergy interval for the Fermi level, in which bulk conduction is possible. The overall
LL broadening, which we assume to be Gaussian, in this case is only used for calcu-
lating the magnetic field dependent Fermi level EF. Therefore different parameters
have to be used for describing the density of states (DOS)EF and the bulk conduc-
tance Gxx(EF). This is demonstrated for the most simple case of representing the
whole sample by a single node and deriving Gxx(EF) for a single LL [34, 35]: Since
Rxx = P ·h/e2 and Gxx = Rxx/(R2

xx +R2
xy), we get Gxx = (e2/h) ·P/(1+P 2),

which forms a peak, while P = 0 −→ ∞. If we plot now DOS(EF) and Gxx(EF)
normalized to each other within the same diagram, we get a situation as shown in
Fig. 8. While the localization picture maps out localized and de-localized states as a
function of energy [29], this model considers current transport across localized mag-
netic bound states by tunneling. The associated conductance decays exponentially
as a function of the energy as indicated in Fig. 8. Such a smearing-out of the sharp
boundaries between localized and de-localized states in the observed conductance
variation is evident from experimental results [36] and already successfully repro-
duced by this model [37].

3.4 Realistic Fluctuating Potential Modulation

The second option for the numerical calculation is that we introduce a realistic fluc-
tuating potential modulation, which also can be discretized on the network grid. At
the first glance, the regular network appears as a model of a periodic potential mod-
ulation, while the native random potential of a real sample suggests that a random
network should be used instead. However, as will be demonstrated in the following,
this network model can be understood also as a concept for effective discretization
of a random network. Obviously, lateral long-range potential fluctuations will lead
to a corresponding lateral fluctuation of the local filling factor, which, in turn, will
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Fig. 8. DOS and conductance Gxx versus Fermi energy. The model suggests a smooth change
of the bulk conductance at the boundaries between localized and de-localized states mapped
out by the localization model (indicated by the two vertical dashed lines). The light colored
Gxx-peak can be understood to correspond with the light colored region around the saddle
energy in Fig. 7

lead to a lateral variation of the coupling function P of the nodes in the network.
Suppose we wish to model a random potential on the basis of the regular network,
then we need to choose the grid period to be much less than the typical length scale
of the potential fluctuations. This is qualitatively shown in Fig. 9, where the system
is supposed to be close to half filling, which means the possibility of bulk current
flow. However, half filling only means ν = 0.5 on average and, due to the potential
fluctuations, there will exist regions with locally ν > 0.5 and regions with locally
ν < 0.5. In Fig. 9 the shaded regions represent ν > 0.5 and the nonshaded regions
ν < 0.5. Most effective coupling at the nodes appears at P = 1, which corresponds
to exact half filling ν = 0.5. Due to the randomization of the potential, only few of
all nodes will remain close to half filling and most of them will depart from half fill-
ing, which leads to a coupling function of P � 1 in the shaded regions and P � 1
outside. However, P � 1 or P � 1 means mainly that an incoming channel is
almost completely transmitted either to the one or the other outgoing channel of the
node. This appears as a rotation of a node by 90◦ upon changing from one case to
the other. As can be seen in Fig. 9, in this way the network guides the transmitted
channels all around the boundaries between ν > 0.5 and ν < 0.5. Therefore, in this
case, most of the nodes are physically inactive, but just switching the whole trans-
mitted channel to either the one or the other outgoing channel. Only the nodes near
the saddles of the real potential, where ν ≈ 0.5, and where also the real loops of the
magnetic bound states get close to each other, become physically active by coupling
different real loops. However, for modeling realistically shaped macroscopic sample
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Fig. 9. Cutout of the bulk region showing the scheme of discretization of a random potential on
the basis of the network model. The average filling factor of the associated LL is assumed to be
close to ν = 0.5. The shaded regions represent ν > 0.5, which corresponds to a value of the
coupling function P � 1 and the nonshaded regions represent ν < 0.5, which corresponds
to P � 1. The basic grid consists of alternating rows and lines of nodes in same orientation.
Therefore, a change from P � 1 to P � 1 appears graphically as a rotation of the nodes by
90◦ within a line and a row and as can be seen in the figure, the corresponding nodes inside and
outside the shaded area appear rotated against each other. Following now the inter connections
in the network, one can see that in this way a channel at the boundary between ν > 0.5 and
ν < 0.5 is automatically guided to follow these boundaries (bold line). In real samples, this
corresponds to a arbitrarily shaped magnetic bound state following the contour lines of the
random potential. Most of the nodes with P � 1 or P � 1 serve as some sort of switching
device in the network and are therefore not physically active. Only those near the saddle of
the real potential, where also the real magnetic bound states get close together (marked by the
arrows), act physically as tunneling junctions within the framework of the Landauer-Büttiker
formalism

structures together with realistic potential fluctuations, the numerical effort at present
is beyond our capabilities.

It should be pointed out that this network concept for handling experimentally
excited nonequilibrium currents and potentials is in principle not restricted to the
above presented two options for generating the input data for the network. This net-
work model can be more generally understood as an independent transport module,
which can be merged with any microscopic model, that delivers the tunneling coef-
ficients R and T at the designated nodes of the network.

3.5 An Application of the Nonequilibrium Network Model:
The Standard Hall Bar

In the following, we present two examples for the application of this network model.
The first one is the modeling of a standard Hall bar sample structure at a bulk carrier
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density of n = 4 × 1011cm−2. The transport data in terms of Rxx as well as the
lateral distribution of the excitation potential and the excess current density are cal-
culated as a function of the magnetic field (Figs. 10, 11). The local current density
is represented by the absolute value of the transmitted excess current at the individ-
ual nodes by using Eqs. (17) and (18). The distribution of the excitation potential,
which is transmitted by the directed channels between the nodes, is shown gray scale
coded in a 2D plot. The grid size of the network for this simulation is 255 × 39
nodes. For this special demonstration only very short voltage probes located close
to the current contacts at the ends of the Hall bar have been used in order to get
the maximum of an undisturbed bulk region without needing a too large network.
The placement of the contacts and voltage probes can be designed freely and the
distances are larger for comparison with real experiments. Also extended current
contacts can be realized instead of point contacts as used in this case. The resulting
longitudinal resistance Rxx is shown in Fig. 10 as a function of the magnetic field.
Figure 11(a) shows the situation in the plateau regime at B = 6.3T close to the be-
ginning of the plateau transition (3 → 2). The excitation potential resembles edge
stripes without longitudinal voltage drop, just as expected from the edge channel
picture in the plateau regime of the IQHE. The edge stripe in dark gray at the lower
edge corresponds to the high excitation potential, which is supplied to the current
contact on the left, the upper edge stripe, which is slightly less dark, corresponds
to the low-excitation potential, which is supplied to the current contact on the right.
The intermediate potentials appear in light gray to allow the visualization of the ex-
istence of edge stripes. In contrast, the current is not pushed towards the edges but
appears distributed homogeneously all over the bulk region instead. While this fact
is in agreement with the bulk current picture of the IQHE, it seems in contradiction
with the original idea of the EC picture. The peak in the current density at the far
end of the 3D plot results from the usage of point contacts for the current supply.

4,0
0

5000

15000
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20000

4,5 5,0 5,5

B (T)

n = 4 x 1011cm–2

R x
x(Ω

)

6,0

Uxy

II

Uxx

Uxx

Uxy

6,5 7,0

Fig. 10. Longitudinal resistance Rxx versus magnetic field. The Rxx peaks appear at the
transitions between filling factors 4 and 3 as well as 3 and 2
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Fig. 11. Lateral distribution of the excess current (upper 3D plot) and the excitation potential
(lower gray scale coded 2D plot, see text) (a) at the ν = 3 plateau close to the beginning of
the plateau transition from 3 to 2, (b) at the ν = 2 plateau right after the plateau transition
from 3 to 2 and (c) right at the plateau transition from 3 to 2

For a better visibility of the transverse current density profile in the middle of the
sample, the second current point contact at the front end has been cut away in the
3D plot. Figure 11(c) shows the situation exactly at the position of the Rxx peak. As
expected from an ohmic conductor the lateral distribution of the excitation potential
exhibits now a smooth potential drop also in longitudinal direction of the sample.
In contrast to Fig. 11(a) the edge stripes disappeared, leaving only slightly dark ar-
eas near the current contacts, which quickly dissolve into the bulk region. However,
the lateral distribution of the excitation current now gets inhomogeneous and forms
peaks near the edges of the sample. Figure 11(b) shows the situation again in the
plateau regime, but now at B = 6.9T right after completing the transition to the
ν = 2 plateau. In this case, the situation is similar to Fig. 11(a) and the current is
again distributed homogeneously all across the bulk. This puzzling behavior, which
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at the first glance seems to contradict the edge channel picture, can be explained in
the following way: Dissipation-less excess current is flowing in the so-called incom-
pressible regions between edge stripes while the edge stripes themselves are current-
less [38, 39]. In the plateau regime, all of the bulk region represents an incompress-
ible stripe, while in the transition regime the bulk gets compressible. Therefore, in
the plateau transition regime the bulk screens out most of the transverse excitation
potential gradient and leaves only narrow incompressible stripes between the bulk
and the inner most edge stripe, which now takes the screened part of the transverse
potential gradient. Although we have a mixture of dissipation-less and dissipative
current in the transition regime, the dissipation-less part of the current gets squeezed
to those narrow incompressible stripes close to the edges, which consequently leads
to an enhancement of the current density near the edges. At this point, it should be
emphasized that the frequently appearing conflict in the discussion of edge versus
bulk current picture comes mainly from a misinterpretation of the EC picture, by at-
tributing the excess currents directly to the individual ECs. This is the same problem,
which does not allow for the CC model to handle excess currents, because it also at-
tributes currents to the individual channels, which is only correct for the equilibrium
case.

3.6 Another Application: Complex Sample Structures

The second example demonstrates the complexity of sample structures that can be
handled by this network model. The sample structure is a so-called ‘anti-Hall bar
within Hall bar’ geometry. It consists of an outer boundary forming a standard Hall
bar and a hole in the bulk region of this Hall bar, where the inner boundary also forms
a Hall bar. Figure 12 shows the schematic outline of this structure, which is driven
as a doubly connected specimen with independent floating current sources attached
to the outer and inner boundary. This geometry was developed and experimentally
investigated for the first time by R.G. Mani [40] and the first successful numerical

1 2
3 4

65
A B

C D

E F

300 μm

ΙΑ,Β

Ι1,2

Fig. 12. The “anti-Hall bar within a Hall bar” experimental configuration utilized by Mani.
[40] Here, the exterior boundary, associated contacts, and current source IA,B constitute the
Hall bar, while the interior boundary, interior contacts, and the current supply I1,2 make up the
“anti-Hall bar” configuration. In the typical experiment, each of the floating current sources
are set to a constant value, and the voltages on the Hall bar and/or the ‘anti-Hall bar’ are
probed as a function of the ramped transverse magnetic field
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simulation of this setup was achieved with this network model [41, 42]. The main
motivation for this investigations was to pickup the question about the role of edge
versus bulk in the IQHE. In the following only the main results will be summarized.
It is most striking, that in full agreement between experimental (see Fig. 14) and
simulation data (see Fig. 13) the Hall voltages of the inner (anti Hall bar) and outer
(Hall bar) boundaries appear edge specific. This means that the Hall voltages depend
exclusively on the current supplied to the associated edge. In contrast, the longitu-
dinal voltages of the Hall bar and the anti-Hall bar are identical and depend exactly
on the sum of both currents. This behavior is the same as in the high-magnetic field
regime as well as in the low-magnetic field regime, where plateaus are not yet es-
tablished [42]. This strongly indicates that edge and bulk related effects might be
important at the same time and that, therefore, a clear distinction between those may
even not be possible. Already in context with the investigation of the current distri-
bution in a standard Hall bar above we got a strong indication that the results of this
network model may cover both, the edge and bulk related aspects of the IQHE. In
fact, it does not distinguish between bulk end edge effects in the first place and thus
suggests an equivalence between the edge and bulk current picture. Such an equiva-
lence in the plateau regime is nicely demonstrated for the current compensated situ-
ation of the anti-Hall bar within the Hall bar structure (I12 = −IAB). Reconsidering
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Fig. 13. Left: A network model simulation of (a) Hall voltage, V3,5, at different I1,2 and
constant exterior current IA,B = 25 nA. The interior Hall voltage V3,5 is proportional to the
interior current I1,2. (b) Simulation of the exterior (Hall bar) Hall voltage, VC,E , at different
currents I1,2 and constant exterior current IA,B = 25nA. The exterior Hall voltage VC,E

is insensitive to the interior current I1,2. Right: (a) the longitudinal voltage V3,4 at the “anti-
Hall bar” and (b) the longitudinal voltage VC,D at the Hall bar. Panel (a) and (b) are identical
because the longitudinal voltages are insensitive to the boundary of origin of the current, unlike
the Hall voltages. Note that the diagonal voltages vanish at current compensation, IA,B − I1,2
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Fig. 14. Experimental data of Mani [40]. Insets: The “anti-Hall bar within a Hall bar” config-
uration. The voltage probes and current contacts are labeled as in the simulation of Fig. 13.
Left: (a) The interior Hall voltage, V3,5, with −25 nA ≤ I1,2 ≤ +25 nA and fixed current
IA,B = 25 nA. (b) The exterior Hall voltage VC,E under the same conditions remains un-
changed. Right: (a) The longitudinal voltage V3,4. (b) The longitudinal voltage VC,D . The
longitudinal voltages observed on either boundary of the left branch of the sample are identi-
cal because the longitudinal voltages are insensitive to the boundary of origin of the current.
At current compensation, IA,B = −I1,2, the diagonal voltages vanish

Fig. 12 such a current compensation appears as if we would have a single circuit
loop, including both current sources in series, while closing the current loop across
the bulk region between contacts A and 1 as well as B and 2. Now we have two op-
tions for an interpretation: (i) Using the EC picture, the inner and outer edge appear

Fig. 15. The calculated current density distribution, which suggests bulk flow, is illustrated for
the case of current compensation (IA,B = −I1,2) at a magnetic field of B = 8T according
to Fig. 13. The logarithm of the current density is gray scale coded as indicated on the right
side. Black indicates zero current density, while the current density increases toward the light
gray regions, but finally gets dark again at highest-current density, thus allowing to visualize
the “hot spots” of highest-current density at the point contacts A,B,1,2
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decoupled and produce independent Hall voltages that have the same value and the
same polarity. (ii) Using the bulk current picture, a bulk current flow should appear
between inner and outer contacts (between A and 1 as well as B and 2), even in the
plateau regime, while there should be no bulk current flow in the upper and lower
branch of the sample. This is nicely demonstrated by Fig. 15, which shows the calcu-
lated bulk current density in the plateau regime of the structure for the case of current
compensation. The upper and lower branch in this consideration serve as Hall volt-
age probes for the bulk current between A and 1 as well as B and 2, giving a Hall
voltage between, for example, C and E but also between 3 and 5, which is the same.

The chosen examples for the application of the presented nonequilibrium net-
work demonstrate that the model addresses edge and bulk aspects of current flow in
the IQHE regime on an equal basis, and thus it may be able to handle most of the
complex configurations investigated in experimental setups.

3.7 The Real-Space Renormalization Approach

The real-space RG approach [43, 44] is yet another way of numerically exploiting
the successful percolation picture for describing a 2D electron systems and can, for
instance, be applied to the CC network analogously to the case of 2D bond percola-
tion [45–47]. The nonequilibrium network model presented in Sect. 3.2 might also
be a potential candidate for renormalization. An RG unit is constructed containing
several SPs from a CC network [48, 49]. For these SPs the RG transformation has to
relate their S matrices with the S matrix of the super-SP. The RG unit used here is
extracted from a CC network on a regular 2D square lattice. The super-SP consists
of five original SPs connected according to Fig. 16. Circles correspond to SPs and
lines to links in the network. Using this intuitive picture one can identify the loss
of connectivity in comparison with the original CC network, namely, the four edge
nodes within a 3 × 3 SP pattern are fully neglected as are their outer bonds. Thus,
the super-SP has the same number of incoming and outgoing channels as an original
SP. In analogy to bond percolation the size of the RG unit in terms of lattice spacing
equals 2 [48].

φ2
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Fig. 16. CC network on a square lattice consisting of nodes (circles) and links (arrows). The
RG unit combines five nodes (full circles) by neglecting some connectivity (dashed circles).
Φ1, . . . , Φ4 are the phases acquired by an electron along the loops as indicated by the ar-
rows. Ψ1, . . . , Ψ4 represent wave function amplitudes, and the thin dashed lines illustrate the
boundary conditions used for the computation of level statistics
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Between the SPs of the RG unit an electron travels along equipotential lines,
and accumulates a certain Aharonov-Bohm phase as in the original network. Differ-
ent phases are uncorrelated, which reflects the randomness of the original potential
landscape. As shown in Sect. 3.2, each SP is described by an S matrix, which con-
tributes two equations relating the wave-function amplitudes of incoming, Ii, I

∗
i and

outgoing, Oi, O
∗
i channels. All amplitudes Ii, I

∗
i besides the external I1 and I∗4 can

then be expressed by Oi, O
∗
i using the phases, for example, I5 = eiΦ15O1, where

Φ15 is the phase shift along the link between SPs I and V . The resulting 10 modified
scattering equations form a linear system that has to be solved in order to obtain the
transmission properties of the corresponding super-SP:

Ax = b , (23)

with

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

−t5e
iΦ15

−r5e
iΦ15

0 0 0 0
1 0 0 0

−t2e
iΦ12 1 0 0

−r2e
iΦ12 0 1 0

0 −r3e
iΦ23 0 1

0 t3e
iΦ23 0 0

0 0 0 t4e
iΦ34

0 0 0 −r4e
iΦ34

0 0 0 0
0 0 0 0

⇒

⇒

−r1e
iΦ31 0 0 0

t1e
iΦ31 0 0 0
0 0 −r2e

iΦ42 0
0 0 t2e

iΦ42 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 −r5e

iΦ45 0 1
0 t5e

iΦ45 0 0

0
0
0
0

−t3e
iΦ53

−r3e
iΦ53

0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(24)

x = (O1, O
∗
1 , O2, O

∗
2 , O3, O

∗
3 , O4, O

∗
4 , O5, O

∗
5)T

, (25)

and
b = (t1I1, r1I1, 0, 0, 0, 0, r4I∗4 , t4I

∗
4 , 0, 0)T

. (26)

Note that the amplitudes on the external links coincide with the amplitudes
of the super-SP as I1 = I ′, I∗4 = I ′∗, O5 = O′ and O∗

2 = O′∗. Setting the
incoming links of the super-SP according to I ′ = 1, I ′∗ = 0 one can deduce the
transmission coefficient t′ of the super-SP, since O′ = t′I ′ = t′1 = t′. For the
transmission coefficient of the super-SP this method yields the following expression
[44]:
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t′ =

∣∣∣∣∣
t1t5(r2r3r4eiΦ3 − 1) + t2t4ei(Φ1+Φ4)(r1r3r5e−iΦ2 − 1) + t3(t2t5eiΦ1 + t1t4eiΦ4 )

(r3 − r2r4eiΦ3 )(r3 − r1r5eiΦ2 ) + (t3 − t4t5eiΦ4 )(t3 − t1t2eiΦ1 )

∣∣∣∣∣ .

(27)

Here Φj corresponds to the sum over the three phases forming a closed loop within
the RG unit (see Fig. 16). Equation (27) is the RG transformation, which allows one
to generate the distribution P (t′) of the transmission coefficients of super-SPs using
the distribution P (t) of the transmission coefficients of the original SPs. Since the
transmission coefficients of the original SPs depend on the electron energy ε, the fact
that delocalization occurs at ε = 0, implies that a certain distribution, Pc(t) — with
Pc(t2) being symmetric with respect to t2 = 1

2 — is the FP distribution of the RG
transformation (27).

A systematic improvement of the RG structure by inclusion of more than five SPs
into the basic RG unit [50–52] leads to similar results. In contrast, using a smaller RG
unit [53] does not describe the critical properties of the QH transition with the same
accuracy [54]. For the construction of a properly chosen RG unit two conflicting
aspects have to be considered. (i) With the size of the RG unit also the accuracy of
the RG approach increases since the RG unit can preserve more connectivity of the
original network. (ii) As a consequence of larger RG units the computational effort
for solving the scattering problem rises, especially in the case where an analytic
solution, as Eq. (27), is not attained. Because of these reasons building an RG unit is
an optimization problem depending mainly on the computational resources available.

With this scheme very large system sizes can be achieved conveniently using a
few nodes only. This method yields a very accurate value for the critical exponent of
ν = 2.39 ± 0.01 [54]. The idea of tunneling at SPs remains a useful concept even in
the presence of correlations among the electrons [55] and may, for instance, be used
in an effective description of highly correlated states, as in the FQHE (d’Ambrumenil
et al. 2007, unpublished).

Another application of the real-space RG approach to the CC model, concerns
the distribution functions P of two-point conductance G and the resistances Rxx

and Rxy . Furthermore, closing the incoming and outgoing links of the RG unit and
thus quantizing the allowed energies, one can make contact with previous studies of
energy level statistics. A suitable scaling ansatz again allows the independent esti-
mation of ν. These results are in good agreement with previous studies and validate
the present RG approach [49].

A further application is concerned with the possible existence of the quantized
Hall insulator. While it is established that plateau-plateau and insulator-plateau tran-
sitions exhibit the same critical behavior [56–66] the value of the Hall resistance
Rxy in this insulating phase is still rather controversial [67]. Various experiments
have found that Rxy remains very close to its quantized value h/e2 even deep in
the insulating regime when already Rxx � h/e2 [57–60, 68]. This scenario has
been dubbed the quantized Hall insulator. On the other hand, theoretical predictions
based on quantum coherent models show that a diverging Rxy should be expected
[53, 69]. Extending the RG approach to the calculation of suitable means for Rxy

and Rxx the RG approach can in fact reconcile these findings by establishing that
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the most-probable value of Rxy remains rather close to h/e2 even for large Rxx, but
then diverges with the predicted power-law for Rxx > 20h/e2.

Last, the RG approach is also ideally placed to study the changes of the crit-
ical properties due to truly long-ranged,4 so-called macroscopic inhomogeneities.
Close to the transition the localization length ξ becomes sufficiently large. Then the
long-ranged disorder can affect the character of the divergence of ξ. We note that in
previous considerations inhomogeneities were incorporated into the theory through a
spatial variation of the local resistivity [71–75], that is, “inhomogeneously incoher-
ent”. The CC model based RG approach is able to retain the full quantum coherence.

4 Hartree-Fock Approach to the IQHE

In order to investigate the nonequilibrium currents of interacting electrons one might
suggest to use results from HF calculations as input data for the nonequilibrium
network model of Sect. 3.2. In the following we will briefly outline the HF approach
in the Landau basis and present results for the charge density (i.e., effective potential)
of such interacting calculations that could, in a further step, serve as more realistic
input data.

4.1 Derivation of the Hartree-Fock Equations

We consider an interacting 2DES in the (x, y)-plane subject to a perpendicular mag-
netic field, B = Bez . The system can be described by a Hamiltonian of the form

Hσ
2DESh

σ + VC
(p − eA)2

2m∗ +
σg∗μBB

2
+ VI(r) + VC(r, r′) , (28)

where σ = ±1 is a spin degree of freedom, VI is the smooth random potential (7)
modeling the effect of the electron-impurity interaction, VC represents the electron-
electron interaction term and m∗, g∗, and μB are the effective electron mass, g-factor,
and Bohr magneton, respectively [76]. The electron-electron interaction potential has
the form

VC(r, r′)
γe2

4πεε0
1

|r − r′|
∑

q

VC(q) exp [iq · (r − r′)] , (29)

with

VC(q) =
γe2

4πεε0lc
1

Nφ|q|lc
. (30)

The parameter, γ, will allow us to continually adjust the interaction strength; γ =
1 corresponds to the bare Coulomb interaction. The Hamiltonian is represented in
matrix form using the periodic Landau states |nk〉 and we have

4 Note that sometimes the term “long-ranged disorder” is also used for a disorder that has a
finite correlation radius which is larger than the magnetic length [70]. This is different from
the present situation.
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Hσ
n,k;n′,k′ = 〈nk|Hσ

2DES|n′k′〉

=
(
n +

1
2

+
σg∗

4
m∗

me

)
�ωcδn,n′δk,k′ + Vn,k;n′,k′ + Fσ

n,k;n′,k′ , (31)

with the cyclotron energy �ωc = �eB/m∗. The disorder matrix elements are given
by Vn,k;n′,k′ =

∑
q VI(q)Sn,k;n′,k′(q), where mixing of LLs is included. The ex-

plicit form of the plane wave matrix elements, Sn,k;n′,k′(q) = 〈nk| exp(iq ·r)|n′k′〉
and the Fock matrix Fσ

n,k;n′,k′ can be found in [30]. The total energy Etot in terms
of the above matrices is given as

Etot = Tr

(
hD +

1
2
FD
)

=
1
2

∑

σ

∑

n,k;n′,k′

(
2hσ

n,k;n′,k′ + Fσ
n,k;n′,k′

)
Dσ

n′,k′;n,k ,

(32)

where the density matrix is Dn,a;m,b =
∑

α fαC
α
n,aC

α,∗
m,b with fα the Fermi func-

tion and Cα
n,a the expansion coefficients for the Landau basis [30]. A variational

minimization of 〈Ψ |H2DES|Ψ〉 with respect to the coefficients yields the Hartree-
Fock-Roothaan equation [77]. However, convergence of the Roothaan algorithm is
rather poor. In most cases it runs into an oscillating limit cycle [76]. This limit cycle
can be avoided be minimizing a penalized energy functional

E′(Dold,Dnew) = E(Dold,Dnew) + b||Dold − Dnew||2 , (33)

instead of the actual HF energy functional where “old” and “new” denote two consec-
utive states in the HF-self-consistency cycle. This, then, leads to the Level-Shifting
algorithm (LSA) [78]. However, while LSA avoids limit cycles, it can and does lead
to unphysical solutions. A further improvement is based on the Optimal-Damping
algorithm (ODA) [79]. The iteration is carried out just as in the Roothaan algorithm,
only that the new density matrix is a mixture of the old and the new density matrix,
thas is,

D = (1 − λ)Dold + λDnew , (34)

with a damping parameter, λ, which is chosen optimally according to the direction
of steepest descent in the total HF energy [76]. As it turns out, the performance
also depends strongly on the interaction strength and the position of the Fermi level.
For some filling factors and choices of parameters, we might find fast convergence
with one of the algorithms described above. However, over the whole range of filling
factors only a combination of ODA and LSA can guarantee convergence in any case.

4.2 Charge Density Distribution and Screening

We will now focus on the behavior of the electron density in the presence of electron-
electron interactions. The spatial distribution of the total electronic density

n(r) =
∑

σ

M∑

α=1

|ψσ
α(r)|2 (35)

= L−2
∑

σ

∑

n,k,n′,k′

∑

q

Dσ
n,k;n′,k′Sn,k;n′,k′(q) exp(−iqr) (36)
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is readily calculated in our system. It details the disorder screening mechanism by
providing direct insight into the interplay of disorder and interaction. Let us start at
the QH transition. Figure 17(a) depicts the critical charge density at ν = 1/2 for a
noninteracting system in units of n0. The contour lines show the impurity poten-
tial VI(r) where the critical energy VI(r) = εF is highlighted by a thick line. The
charge density evidently behaves according to the semi classical approximation [29]
and follows the equipotential lines of VI(r). Similarly, Figs. 18(a) and 19(a) show
the noninteracting situation at ν = 0.1 and 0.9, respectively. For the interacting case,
however, we expect Thomas-Fermi screening theory to apply [80–83]. This approx-
imation is appropriate for an impurity potential smooth on the scale of the magnetic
length as well as a sufficient separation of the Landau bands, characterized by the
condition �ωc/lc >

√
〈|∇VI(r)|2〉. The electrostatic potential of the charge density
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Fig. 17. Spatial distribution of electron density n(r)/n0 at B = 4T and ν = 1/2 as indicated
by the grey scale for (a) γ = 0, (b) Hartree-interaction at γ = 0.3 and (c) full HF interaction
with γ = 0.3. Solid contour lines show the equipotential lines of VI(r) for (a) and the screened
potential contours of (39) for (b) and (c). The thick solid lines corresponds to half-filling
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Fig. 18. Spatial distribution of electron density n(r)/n0 at B = 4T and ν = 0.1 as indicated
by the grey scale for (a) γ = 0, (b) Hartree-interaction at γ = 0.3 and (c) full HF interaction
with γ = 0.3. Lines and grey scales as in Fig. 17

φ(r) =
e

4πεε0

∫
d2r′

n(r′) − n̄

|r′ − r| (37)

and the impurity potential VI(r) form a screened potential Vscr(r) = VI(r) + eφ(r).
Here, n̄ accounts for the positive background. Since a flat screened potential is ener-
getically most favorable, one expects to find Vscr(r)εF for the case of perfect screen-
ing. However, since fluctuations of the density, δn(r) = n(r) − n̄, are restricted
between an empty and a full LL, that is, 0 < δn(r) < n0, the screening is not always
perfect, but depends on the fluctuations in the impurity potential as well as on the
filling factor [80–82]. The plane can be divided into fully electron or hole depleted
insulating regions — where n(r) = 0 or n(r) = n0, respectively — and metallic
regions — where n(r) lies in between. Depending on the filling factor, the extent of
those regions varies. Close to the band edge, insulating regions dominate (see Figs.
18 and 19). Screening is highly nonlinear and transport virtually impossible. On the
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Fig. 19. Spatial distribution of electron density n(r)/n0 at B = 4T and ν = 0.9 as indicated
by the grey scale for (a) γ = 0, (b) Hartree-interaction at γ = 0.3 and (c) full HF interaction
with γ = 0.3. Lines and grey scales as in Fig. 17

other hand, if disorder is weak enough, there exists a finite range of filling factors in
the centers of each band where metallic regions cover most of the sample, percolate
and render the whole system metallic. The disorder is effectively screened and trans-
port greatly enhanced. In that case, the charge density nscr(r) can be obtained by
Fourier transforming the screened potential. In 3D, this simply leads to the Laplace
equation. For 2D, however, one obtains [84]

nscr(q) = −2εε0
e2

|q|VI(q) + νn0δq,0 , (38)

where the |q| = 0 term is “perfectly screened” by the positive background and thus
does not contribute to the screening of the impurity potential. In other words, in
our system only the fluctuations, δn(r) are essential for screening. Hence, in 2D, a
perfectly screening charge density would obey



Quantum Percolation in the Quantum Hall Regime 189

nscr(r) = −4πεε0
e2

∫
d2r′

Δ2DVI(r′)
|r − r′| + νn0 . (39)

Clearly, the actual charge density is expected to deviate from nscr(r) for several
reasons. First, the fluctuations of n(r) are restricted as discussed above. Second, (39)
is valid for the Hartree case only. For comparison, in Figs. 17, 18, 19(b) we have
depicted the charge density of a Hartree-calculation. The density displays purely
classical behaviour and fits the contour lines, Eq. (39), perfectly. Taking the Fock
contribution into account will introduce short wavelength fluctuations due to the ten-
dency for crystallization. However, we still expect the charge density to follow (39)
in the limit of |q| → 0. Figure 17(c) shows results for the charge density of interact-
ing electrons at ν = 1/2. Broken lines indicate the regions where nscr(r) exceeds
the range for δn(r) either below or above, that is, areas that cannot be screened at
all and, thus, exhibit insulating behavior. Otherwise, we find the charge density to
follow nscr(r) very closely. In this regime, the density is well described by (39) and
the screening is very effective. Metallic regions dominate over insulating ones and
transport is expected to be good. In contrast, if the filling factor is close to an integer
value, the charge density cannot provide sufficient fluctuations in order to screen ef-
fectively. We have depicted this situation for ν = 0.1 in Fig. 18(c) and for ν = 0.9
in Fig. 19(c). In Figs. 18(c) and 19(c) we depict plots of n(r) and nscr(r) for the
sample of Fig. 17, demonstrating the discussed effects again very clearly.

5 Conclusions

In Sect. 3, we have reviewed some of the most prominent network models for the
explanation of the IQHE. These models are largely based on and most easily justi-
fied by single-particle wave function arguments as recalled in Sect. 2. Let us now
comment how the HF results above modify these approaches. Clearly, the inclusion
of the electronic many-body interactions, even at the Hartree level alone, changes the
pattern and spatial distribution of the electronic wave functions. No longer the bare,
but rather the screened disorder potential dictates the behavior of the wave functions.
Nevertheless, we also find that the topology of the resulting 2D wave function in the
HF approximation retains much of the character of the noninteracting state. The per-
colating, delocalized state is much the same as before. And even at the band edges,
we see that the HF-localized states still localize roughly where the nointeracting
states did. This is not true for the simple Hartree approximation, where states tend
to be much more smeared. Thus, we see that while the inclusion of interaction at the
HF level does alter some of the characteristics of the IQHE and in particular high-
lights the importance of screening effects (and the division into linear and nonlinear
screening regions), it does at the same time support the basic justifications on the
network models: states exist along contours of some disordered (but not necessarily
bare) potential and the percolation across this effective potential describes the QH
phenomenon.

These qualitative arguments can in principle be put on a firm quantitative basis
by using the results of the microscopic HF calculation to extract for each SP in a
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given (screened) disorder landscape the transmission and reflection coefficients as
well as the connectivity network of the SPs. In order to do so, one could for example
identify two states ψσ

α(1), ψσ
β (2), separated by a SP at ν � 0.5, and then compute

their overlap 〈ψσ
α(1)|ψσ

β (2)〉 restricted to the vicinity of the SP. In practice, however,
such a numerical identification appears far from trivial, particularly if more than one
LL is to be taken into account. As a first attempt to address this task one could follow
the procedure as described in Sect. 3.4 in context with Fig. 9: One takes the density
distribution from the HF calculation, as shown for example, in Fig. 17 and maps it on
a sufficiently dense grid of the nonequilibrium network. As an initial step the nodes
are handled as usual by applying Eq. (22), which can be easily transformed into a
much more suitable form for this purpose [33]

P = exp
[
−ΔνL2 eB

h

]
. (40)

The exponent of Eq. (40) contains the typical size of the fluctuation period L,
the filling factor of the LL relative to half-filling Δν and the remaining part is the
density of states of the LL. On this basis the results of Fig. 17 can be directly mapped
on the network grid. Only for those nodes, which are sufficiently close to half-filling
and thus get a P value close to 1, the above equation is replaced by the calculation
of the overlap between the real states resulting from the HF calculation at the saddle.
This overlap is expected to be a measure of the transmission coefficient of the node.
Finally, the involved saddle is described by the value P = R/T , which is transferred
back to the corresponding node of the grid. The final numerical solution procedure
for the network in order to obtain the distribution of the excess current and the exci-
tation voltage remains the same as already described. We believe this strategy to be
a promising route to future research.
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Percolative Quantum Transport in Manganites
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1 Introduction

Recent experiments on transition metal oxides, in particular the manganites [1–4],
have brought the issue of ‘percolative transport’ center stage in correlated elec-
tron systems. On the one hand, there are spatial imaging experiments [5–8], using
scanning tunnelling microscopy, magnetic force microscopy, etc., which suggest
the coexistence of metallic and insulating regions on the nanoscale, on the other
hand there are theoretical predictions [9] on phase separation (PS) and cluster co-
existence near first order phase boundaries. This has led to the suggestion [6] that
the unusual transport in these materials, including the ‘colossal magnetoresistance’
(CMR), arises from percolative conduction through a network of metallic and in-
sulating domains. The volume fraction of the metallic regions, e.g., changes with
temperature, applied field, etc., but it was hoped that classical percolation theory
would provide a suitable framework for analysing the complex phenomena. Fig-
ure 1, from Uehara et al. [6], has been a defining image. The authors spatially
resolved measurements on manganite thin films in the phase coexistence regime
and suggested that the transport should be interpreted in terms of percolation of
ferromagnetic metallic (FMM) clusters in an antiferromagnetic insulating (AF-I)
background.

The attempts to fit transport results in the vicinity of insulator-metal transitions
(IMT) in these materials to predictions of percolation theory have had mixed success.
While there have been impressive fits to the transport data by using effective medium
theory, there are several fundamental shortcomings of the standard percolation sce-
nario when applied to the manganites. For example, (a) the resistivity changes much
faster with concentration than predicted by percolation theory, and (b) the metal-
insulator transitions are often first order, unlike typical percolation transitions that
are second order. It seems that even if ‘percolation theory’ were to be a suitable start-
ing point we would need a more sophisticated framework than uncorrelated classical
percolation. In this review, our focus will be on the underlying microscopic theory,

Majumdar, P.: Percolative Quantum Transport in Manganites. Lect. Notes Phys. 762, 195–226 (2009)
DOI 10.1007/978-3-540-85428-9 7 c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Schematic illustration of sub-micrometer scale coexistence of charge ordered insulating
(dark area) and ferromagnetic metallic (white area) domains, based on TEM measurements
in La1−x−yPryCaxMnO3. The typical size of the domains is 0.5 μm. (a) At zero field the
magnetisations of ferro domains are random. (b) All domains can be aligned by applying
a field of order 4 KOe, allowing percolative conduction through the ferromagnetic metallic
regions. From M. Uehara et al., Nature 399, 560 (1999), with permission

its connection with quantum percolation, and the circumstances under which a clas-
sical percolation limit might emerge.

The review is organised as follows: In the next section I recapitulate a few stan-
dard results in quantum percolation. This is followed by (ii) a summary of some of
the key transport and spatially resolved measurements in the manganites, and the
relevant microscopic model. The section after (iii) describes cluster coexistence and
percolative effects in a single-band model with magnetic phase competition. This
is followed by (iv) the results on percolative phenomena in a more realistic two-
band model, including the effect of electron-phonon interactions. The final section
(v) attempts a connection between the microscopic results, quantum percolation, and
phenomenological resistor network theory.

2 Standard Quantum Percolation

Quantum percolation [10, 11] is usually discussed as the quantum variant of clas-
sical percolation, i.e., with wave propagation and interference effects included. We
would like to view quantum percolation, in the manganite context, as a limiting case
of the general quantum disorder problem, defined below. As we will see in our dis-
cussion of microscopic models, this, rather than usual quantum percolation, is the
more appropriate starting point.



Percolative Quantum Transport in Manganites 197

2.1 The Disordered Quantum Problem

The general disorder problem for non interacting spinless electrons on a lattice has
the form:

H =
∑

〈ij〉
tijc

†
i cj +

∑

i

εic
†
i ci (1)

c and c† are fermionic annihilation and creation operators, respectively, and the
model involves ‘bond disorder’ in the nearest neighbour hopping amplitude, tij and
‘site disorder’ in the εi. A complete description of the problem requires the proba-
bility distribution for these variables, P{tij} and P{εi}, where the angular brackets
{..} refer to the complete bond or site configuration.

In most cases, the problem is simplified by assuming uncorrelated disorder,
where the distribution factorises into a product of the form

P{ε} = ΠiP (εi), (2)

where P is now a ‘one point’ distribution. In this case, the realisation of disorder can
be generated by picking the random variable independently at each site (or bond)
irrespective of its value in the neighbouring sites. Most model calculations are done
using a Gaussian, binary or ‘box’ distribution P (εi), while the distribution for tij
depends on the specific physical context. Often the entire probability distribution
is not relevant and low-order moments, e.g., the mean ε̄ = 〈εi〉 =

∫
P (ε)εdε, the

variance 〈(εi − ε̄)2〉, etc., are used to characterise the disorder.
Most of the theoretical effort in disorder studies has been on understanding trans-

port and localisation in the case of uncorrelated disorder. One is usually interested
in: (i) the mobility edge that separates spatially extended states from localised states,
(ii) the localisation threshold, i.e., the disorder at which all states in the band become
localised, and (iii) the critical behaviour of conductivity (σ), correlation length (ξ),
etc., near the localisation transition.

Among the well-known results [12] are (i) the absence of a metallic phase in 1D
and 2D in the presence of arbitrarily weak disorder, and (ii) the localisation of all
eigenstates in the band in 3D when the disorder is comparable to the bandwidth.

Even non-interacting disordered electron systems may have unusual properties if
the background ‘disorder’ distribution is non-trivially correlated. The standard per-
colation problem assumes an uncorrelated distribution, while in manganites the ef-
fective ‘disorder’ will turn out to be essentially correlated.

2.2 Quantum Percolation

The quantum percolation problem is a limiting case of the more general disorder
problem defined above and involves an uncorrelated binary distribution for P (ε) or
P (t) as discussed below.
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Site Percolation

Site percolation involves two kinds of sites, one with a low potential ε = 0, say,
and another with a large potential ε → ∞. A fraction p of the sites have potential
ε = 0 and a fraction 1 − p have potential ε → ∞. In the language of the distribution
function

P (ε) = pδ(ε) + (1 − p)δ(ε− V )V →∞ (3)

and all the bonds in the problem are set to t = 1. The problem is, thus, characterised
purely by the fraction p of low-energy sites. The threshold p at which these sites form
a spanning cluster defines the classical site percolation threshold, ps

Cl. That threshold
is 0.593 for a 2D square lattice and 0.312 for a 3D simple cubic lattice [13]. Due to
interference effects quantum transport requires a higher threshold ps

Q. The threshold
for localisation of all eigenstates is ps

Q ≈ 0.44 [11] for a 3D simple cubic lattice.

Bond Percolation

The bond percolation problem keeps all site potentials at the same value ε = 0,
say, but sets a fraction 1 − p of the hopping integrals to zero. The bond distribution
function assumes the form

P (t) = pδ(t− 1) + (1 − p)δ(t). (4)

Here, again classical bond percolation and conduction would occur at some thresh-
old pb

Cl and quantum transport at a higher value pb
Q. The thresholds are pb

Cl = 0.500
for a 2D square lattice and pb

Cl = 0.249 for a 3D simple cubic lattice [13]. The
corresponding pb

Q ≈ 0.32 [11] for a 3D simple cubic lattice. Both site and bond
percolation in the classical limit involve a connected path through the ‘valley’, while
the quantum case is complicated by additional interference and localisation effects.
In 2D, e.g., neither the site nor the bond percolation model allow any extended elec-
tronic states.

Effective Medium Theory

What is the actual conductivity of a system after the spanning cluster forms? The
answer to this requires the solution of a resistor network model [14] by utilising
Kirchoffs laws. In the continuum limit this leads to ‘effective medium theory’ and,
except close to the insulator-metal transition, one can use simple analytical approx-
imations. Resistor network theory and effective medium approximations have been
used to model the manganite data as we will see later.

3 Manganites: Phenomenology and Model

The manganites have a vast phenomenology involving several kinds of long range or-
der, unusual magnetotransport and spatially inhomogeneous electronic states. These
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have been ably reviewed [1–4] in the recent past. Since this volume focuses on per-
colative effects I highlight only those aspects of manganite phenomena that are as-
sociated with spatial clustering and percolative transport. Similarly, although there is
finally a single model for the real material, simpler versions of it can usefully clarify
aspects like phase competition, polaron formation, etc. In what follows we first re-
view the phenomenology relevant for us, and then present the comprehensive model.
Limiting cases of this are studied in the next two sections.

3.1 Phenomenology

Among the experiments relevant to percolative effects in the manganites are exam-
ples of remarkable spatial imagery, which indicate ‘insulator-metal’ coexistence on
the nanoscale [5–8], and bulk data on magnetisation and transport [15, 16]. There are
also noise measurements, etc., which seem to indicate a percolation transition [17].

We started with a suggestive image of phase segregation based on a TEM ex-
periment. Figure 2 shows an explicit spatial map [8] of the ‘local conductance’ in
a sample of La1−xCaxMnO3 at x ∼ 0.3, just below the ferromagnetic transition,
TC ∼ 230K, for different magnetic fields. The nature of a region, metallic or insu-
lating, is decided by the slope of the local I−V characteristic. The ‘volume fraction’

Fig. 2. A generic spectroscopic image 0.61 μm × 0.61 μm of the local electronic structure
of (La,Ca)MnO3 for T just below TC for magnetic fields 0, 0.03, 1, 3 , 5 and 9T (left to
right and top to bottom). The light areas correspond to insulating regions and dark areas to
metallic regions. The shade represents the slope of the local I-V spectrum. From M. Fath,
et al., Science, 285, 1540 (1999), with permission
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of the (dark) ‘metallic’ regions grows with applied field and correlates with an in-
crease in the bulk conductance of the sample. This example is mainly to provide
a concrete instance of nanoscale coexistence in the manganites – with the caution
that such explicit measurements are rare, and the large MR observed in manganite
samples is not always associated with phase separation.

Let us now turn to a set of measurements that explicitly tried to analyse transport
in phase separated manganites within a percolative framework.

Uehara et al. [6] made an attempt to interpret their magnetotransport data on
La1−x−yPryCaxMnO3 in terms of percolation theory. These samples, at x = 3/8
and varying y, show spatial segregation in their TEM image. At y = 0 the system
is primarily a ferromagnetic metal at low temperature, while increasing y increases
the charge-ordered insulating (CO-I) character and the d.c resistivity. At low tem-
perature the system shows a metal-insulator transition at y = yc ≈ 0.41. The TEM
images suggested a spatial patchwork of FMM and CO-I domains at intermediate y,
and the natural inference was that the conduction occurs when spin polarised FMM
domains percolate. The aspect of ‘spin polarisation’ is necessary since, unlike stan-
dard metal-insulator composites, electron motion in manganites is intimately tied to
the orientation of the background spins: antiparallel orientation of domain moments
prevents electron transmission. Figure 3, from their paper [6], shows the (hysteretic)
temperature dependence of the resistivity, ρ(T, y), the magnetoresistance for various
y in a field of 4kOe, and a log-log plot of the low T resistivity with respect to yc − y.

How well does the result fit within the (classical) percolation framework? The
lowest panel shows that at zero field, h = 0, the exponent p in ρ ∝ (yc − y)p

turns out to be −6.9, far above the 3D percolation prediction of p ≈ −1.9. Part of
this discrepancy can be attributed to the requirement of ‘domain polarisation’ for
transport, which goes beyond ‘scalar’ percolation and introduces an extra variable
(the domain moment orientation) in the transport process. If the transport is measured
in a moderate field, h = 4kOe in this case, the resistivity follows ρ ∝ (yc − y)−2.6

– certainly closer to the standard value.
The same group did measurements [15] of the electrical conductivity (σ), ther-

mal conductivity (κ) and thermopower (S) for these phase separated systems, and
attempted a fit of the complete temperature dependent conductivity using a ‘gener-
alised effective medium’ (GEM) theory. Figure 4 shows the raw data on the tempera-
ture dependence of the conductivity and the low field magnetisation (left panels) and
the correlation of σ, κ and S, with the magnetisation at low temperature (right pan-
els). The chemical control parameter is the Pr concentration (now called x instead
of y).

The GEM formulation uses the conductivity of the metallic and insulating ‘build-
ing blocks’, σM (T ) and σI(T ) respectively, as inputs and predicts the conductivity
of the composite as a whole. A ‘fit’ would indicate that a percolative scenario is valid
for the system. The GEM equation has the form

(1 − f)

(
σ

1/t
I − σ

1/t
E

σ
1/t
I −Aσ

1/t
E

)
+ f

(
σ

1/t
M − σ

1/t
E

σ
1/t
M −Aσ

1/t
E

)
= 0, (5)
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Fig. 3. Transport and magnetic properties of La5/8−yPryCa3/8MnO3 as a function of temper-
ature and y. (a) T dependence of resistivity, cooling and heating runs. (b) Magnetoresistance
of samples at h = 4kOe. (c) Log-log plot of resistivity versus (yc − y), with yc = 0.41, zero
and finite field. The slopes are mentioned in the text. Percolation theory predicts a smaller
slope ∼ −1.9 shown as a dashed line. From M. Uehara et al., Nature 399, 560 (1999), with
permission

where σE is the effective medium conductivity to be determined. A = (1 − fc)/fc,
where fc is the MIT threshold and f is the volume fraction of the metal. In this
case it was assumed that f(T, x) is proportional to the FMM volume fraction
Mx(T )/M0(T ), and that σI corresponds to the x = 0.625 material and σM to
x = 0. Figure 5 shows the fit of the measured conductivity to the GEM expres-
sion and the complex temperature dependence is indeed well reproduced, but the
best fit to the low temperature data occurs for t ∼ 4, which is too large for standard
percolation.
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Fig. 4. Percolative features in transport in the La5/8−xPrxCa3/8MnO3 family. Left panels:
(a) Conductivity for heating and cooling, (b) m/h data on heating after zero field cooling.
Right panels: Electrical conductivity, thermal conductivity and thermopower, respectively, in
(a), (b), and (c), at temperature 100K and 10K. The lines are various fits to the GEM equation
(see text). From K.H. Kim et al., Phys. Rev. Lett. 84, 2961 (2000), with permission

In the same spirit, experiments by Hardy et al. [16], Figure 6, study the man-
ganite sample Pr1−xCaxMnO3 at x = 0.37 under various perturbations, use the
measured magnetisation as a basic indicator of the ‘metallic’ phase fraction, and
correlate it with the conductivity of the sample. The conductivity, when plotted
against M , seems to follow a simple power law over four orders of magnitude:

Fig. 5. Fit of the conductivity data to a generalised effective medium (GEM) result with t = 2
and fc = 0.17. From K.H. Kim et al., Phys. Rev. Lett. 84, 2961 (2000), with permission
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Fig. 6. Scaling of the conductivity with magnetisation for different variations in external con-
ditions. The solid line is σ ∝ (M − Mc)

s, where Mc is the critical value for percolation, and
s = 3.6. From V. Hardy et al., Phys. Rev. B 64, 064402 (2001), with permission

σ ∼ (M −Mc)3.6. While the correlation is impressive the critical exponent is much
larger than 2.

If these results suggest that transport in the manganites is necessarily tied to
phase coexistence and percolation, albeit a non-standard form of percolation, careful
experiments have revealed [18–20] that CMR can also arise without any PS (and
associated percolative effects). We do not enter into that discussion right now and
only highlight in Figure 7 the circumstance where cluster coexistence, percolative
transport, and CMR are related. Systems where the disorder is large can show CMR
without any spatial coexistence. The ‘left’ pathway is what we will explore in this
review.

3.2 Microscopic Model

The manganites are remarkably complex in terms of the number of interactions at
play [4, 21]. Thankfully, there is a consensus on the relevant degrees of freedom and
the interactions between them. Let us write the most ‘complete’ model, highlight
the physical effects at play and abstract simpler models that one can analyse with
control.

The electronically active orbitals in the manganites arise from the twofold degen-
erate eg level, which delocalise via hybridisation with oxygen 2p states. The com-
prehensive tight-binding model, neglecting oxygen orbitals, etc., is

H =
αβ∑

〈ij〉σ
tαβ
ij c†iασcjβσ +

∑

i

(εi − μ)ni − JH

∑

i

Si.σ̂i + JAF

∑

〈ij〉
Si.Sj

− λ
∑

i

Qi.τ̂i + Hstiff + Hph−dyn + HHubb. (6)
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Fig. 7. Pathways to colossal magnetoresistance in the manganites. Experiments indicate that
cluster coexistence and percolative effects are not essential for CMR effects to emerge. In
special circumstances, however, there could be percolative effects (the left path) and it is these
parameter regimes that we will study in this review

The tαβ
ij are hopping amplitudes between doubly degenerate Mn eg levels at neigh-

bouring sites, εi refers to substitutional disorder and μ is the chemical potential. JH

is the strong Hunds coupling between the eg electrons and the S = 3/2 ‘core spin’
(t2g electrons) and JAF the antiferromagnetic superexchange between neighbouring
Mn spins. The ‘orbital moment’, τi, of the eg electrons is Jahn-Teller coupled to the
octahedral distortion parameter Qi, through the electron-phonon coupling λ. Hstiff

is the stiffness of the lattice. In its simplest form it is ∼ (K/2)
∑

i Q
2
i , but in reality

is of ‘cooperative’ character, i.e., involves phonon degrees of freedom in more than
one octahedra. The phonons are quantum variables, with intrinsic dynamics arising
from Hph−dyn ∼ P 2/(2MQ), where P is the momentum and MQ the mass of the
relevant oscillator. Finally, the undoped state in the manganites, e.g., LaMnO3, is a
Mott insulator, arising (partly) from large on site ‘inter-orbital’ Hubbard repulsion,
HHubb ∼ U ′∑

i,α�=β niαniβ .
The electron-phonon, electron-spin and Hubbard interactions are all large � t,

where t is the typical hopping scale in the problem, and therefore beyond the range
of perturbation theory. The detailed model, unfortunately, is far too complex for the
present methods of many body theory, if it were to be handled in a realistic three di-
mensional situation. However, it is possible to simplify the model somewhat, recog-
nising that (i) at large doping of the Mott insulator, e.g., x ∼ 0.3 − 0.4, the Hubbard
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interaction probably does not have a qualitative effect, (ii) the phonons are in the
adiabatic regime, with typical frequency ωph =

√
K/MQ � t and, as a first ap-

proximation, we can explore the adiabatic limit ωph = 0, and (iii) the S = 3/2 may
be approximated as a ‘classical’ spin.

This still leaves us with the problem of (disordered) electrons strongly coupled
to (classical) phonon and spin degrees of freedom. The qualitative effects in such a
system include (i) magnetic order, arising from JH driven double exchange and JAF

driven AF superexchange, (ii) the possibility of polaron formation if the electron-
phonon (EP) coupling is sufficiently large compared to the kinetic scale, and (iii) the
phase competetion between different kinds of long range order.

These complexities, observed experimentally in the manganites, can be recovered
by retaining double exchange, the AF superexchange and the Jahn-Teller interaction.
Phonon dynamics Hph−dyn or the Hubbard interaction HHubb are not essential for
the qualitative effects. ‘Percolative’ transport is one among many effects that emerge
in this model. It arises from cluster coexistence, which in turn originates from phase
competition between a homogeneous ferromagnetic metal and an antiferromagnetic
charge ordered insulator (AF-CO-I), as we have mentioned earlier.

Postponing a discussion of EP coupling related complications to a later section
let us start with a simpler case that involves competition between a FMM and an AF-
I in a one band model, without involving phonon or orbital variables. This will throw
light on several key qualitative issues related to cluster coexistence and associated
transport.

4 Percolative Effects in a One Band Model of Phase Competition

The coexistence of two phases with distinct electronic, magnetic and possibly struc-
tural properties is best conceived at T = 0 in a clean system. Think of electrons cou-
pled to phonons, spins, etc. What kind of long-range order can arise in the ground
state? For a specified chemical potential, μ, the ground state configuration of the spin
and lattice variables, {Xi} say, assumed classical, is determined by δE/δXi = 0,
where E{Xi;μ} is the energy of the system in the {Xi} background. The minimum,
Emin(μ), usually occurs for a unique {Xi} at each μ, and in this background the
electron density n(μ) is also unique. However, in the presence of competing inter-
actions, two distinct {Xi} configurations could be degenerate minima of E at some
μ. The corresponding μ = μc marks a first order phase boundary, and the two ‘end-
point’ densities, n1 and n2 bracket a region of coexistence. There is no homogeneous
phase with density between n1 and n2. In this regime the system breaks up into two
macroscopic domains, with density n1 and n2.

4.1 Scenario

The effect of disorder is to convert the regime of macroscopic phase separation to
mesoscale or nanoscale cluster coexistence of the two phases. Cluster coexistence
can lead to an insulator-metal transition (IMT) when the ferromagnetic ‘metallic’
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clusters percolate, generating a conducting pathway through the system. Conversely,
with increasing temperature, the ferromagnetic clusters can fragment due to spin
disorder, leading to a rapid rise in resistance due to disruption of the conducting
backbone. An applied field can also have a remarkable effect in the poorly conduct-
ing low-temperature phase, if the system is near the critical density for the IMT. The
magnetic field can polarise the large but ‘uncorrelated’ cluster moments, enhance
inter cluster tunnelling in these half-metallic systems and enormously enhance the
conductance. There is a fascinating variety of IMT’s driven by varying density, tem-
perature or magnetic field that can emerge in such a system.

Fig. 8. An early result on cluster coexistence in the one orbital model from A. Moreo et al.,
Phys. Rev. Lett. 84, 5568 (2000). The model uses finite JH and JAF = 0, but the central
feature is still phase competition between FMM and AF-I. Monte Carlo (MC) simulation with
on site disorder, JH=8.0, and JAF=0.0, in units of t = 1. (A) 〈n〉 vs μ for a L = 20 chain
at T = 1/75 using 24,000 MC sweeps per {φi} set. The results are averages over ∼100 of
{φi} configurations for the values of W shown; (B) Nearest-neighbours t2g-spin correlations
versus their location along a L = 60 chain with μ = −6.7 and T = 1/75. Shown are results
for one representative MC snapshot, W = 0.25 (upper panel) and W = 1.0 (lower panel).
Other snapshots differ from this one only by small fluctuations. The FM-AF clusters remain
pinned at the same locations as the simulation evolves; (C) Density of states at T=1/75, L = 20
and μ = −6.7 showing the presence of a pseudo-gap. The average density is 〈n〉∼0.87; (D)
Results of a representative MC snapshot for an 8×8 cluster, T = 1/50, μ = −6.2 (close to the
critical value), and W = 1.0. Regions with FM or AF nearest-neighbour t2g-spin correlations
are shown. Reproduced with permission
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While this scenario is attractive and plausible, and provides a conceptual frame-
work for analysing the transport data, first principles calculations on the underlying
disordered interacting models are quite difficult. The ‘real space’ approach required
in this inhomogeneous problem requires a Monte Carlo technique involving iterative
diagonalisation of the system Hamiltonian. The computational cost scales as N4,
where N is the system size, and limits N to ∼ 100. Results of such studies (see
Fig. 8 [9] for an early example) suggest the validity of the coexistence argument, in
terms of the emerging spatial structures, but cannot quantify the effect of disorder
on the cluster distribution. More seriously, given the large finite size gaps in small
lattices, it is impossible to access the dc conductivity and analyse metal-insulator
transitions.

We used the ‘self consistent renormalisation’ (SCR) method [22], developed by
us, wherein the spin-fermion model is mapped on to a classical spin model with self
consistently computed exchange. We first compare our results in detail with exact
simulations on small lattices, and then present transport results and spatial features
on large lattices. The large size allows us detailed access to the spatial correlations,
the electronic density of states (DOS), the resistivity, and the full optical response.
We also describe the evolution of these properties in response to a magnetic field,
and the origin of colossal ‘tunnelling magnetoresistance’ (TMR) in the model.

4.2 Model and Method

The model we use is H = Hel + HAF + Hmag in 2D [23], with:

Hel =
∑

〈ij〉,σ
tijc

†
iσcjσ +

∑

i

(εi − μ)ni − JH

∑

i

Si.σi

HAF = JAF

∑

〈ij〉
Si.Sj

Hmag = −h
∑

i

Siz. (7)

The hopping tij = −t for nearest neighbours, and εi is a random on site potential
uniformly distributed between ±Δ/2. We assume JH/t → ∞, and set the reference
scale t = 1, For illustrative purpose we choose disorder Δ = 1.0 and JAF =
0.05. We vary μ as needed, use |Si| = 1, and measure all our energies, temperature,
frequency, etc., in units of t.

At large JH/t the electron spin at site Ri is ‘slaved’ to the orientation of Si.
Since the electron ‘hopping’ process is spin conserving, a random magnetic back-
ground greatly impedes electron motion. Conversely, a ferromagnetic state aids elec-
tron propagation and minimises the energy of the system. This is the heart of double
exchange ferromagnetism. Notice that this mechanism works only if there are elec-
trons present and, crudely, becomes stronger with increasing electron density. On
the other hand superexchange antiferromagnetism driven by JAF works even in the
absence of electrons. It is not hard to see that at fixed JAF the system will make a
transition from an anti-ferromagnetic state to a ferromagnet when the electron den-
sity is increased from n = 0. This change turns out to be first order and that is at the
heart of our story.
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Technically, the JH/t → ∞ limit leads to a spinless fermion problem with near-
est neighbour hopping amplitude tijeff dictated by Si and Sj , tijeff/t = cos θi

2 cos θj

2

+ sin θi

2 sin θj

2 e−i (φi−φj). θi and φi are the polar and azimuthal angles for the vector
Si. ‘Integrating out’ the fermions using the SCR approximation leads to the follow-
ing effective spin Hamiltonian:

Heff{Si} = −(1/β)logTre−β(Hel+HAF )

≈ −
∑

〈ij〉
Dijfij + JAF

∑

〈ij〉
Si.Sj . (8)

Dij is determined self consistently as the average of Γ̂ij = (eiΦijγ†
i γj + h.c) over

the assumed equilibrium distribution ∝ e−βHeff{Si}. Φ is a phase factor related to
tan−1 Im(teff )

Re(teff )
and γ etc. represent spinless fermions in the large JH model.

Although the Dij enter as ‘nearest neighbour’ exchange, they arise from a so-
lution of the full quantum statistical problem in the disordered finite temperature
system. In the presence of competing interactions and quenched disorder, this leads
to a set of strongly inhomogeneous, spatially correlated and temperature dependent
‘exchange’ Dij . These exchange in turn determine the FM-AF clusters and the re-
lated percolation effects.

The principal results that are relevant for our discussion are as follows:

• The visual evidence of cluster coexistence, and the dependence of cluster size on
temperature, disorder and electron density.

• A microscopic estimate of the resistivity, and its correlation with the spatial struc-
tures.

• The strong low field response in magnetisation and conductivity, due to align-
ment of ‘cluster moments’.

Let us first show the benchmarks of our SCR method with respect to exact diagonal-
isation based calculation, and then move on to the actual results.

4.3 Benchmarks Against Exact Results

How well does our effective Hamiltonian capture the correct physics at coexistence?
Since the parameter space is large, the checks are focused on n = 0.1 and Δ = 1.0,
tracking results across disorder realisations and with varying temperature.

Figure 9, left panels, compares the variation of carrier density with chemical
potential obtained within the two schemes at low temperature. The discontinuity
at Δ = 0, between the undoped AF state and the ferromagnetic metal signifies a
first order transition, and the instability of homogeneous phases for 0 < n < 0.25.
There is only a slight difference in the ‘critical’ μ at which the transition occurs,
obtained within the two schemes. Disorder Δ = 1.0 smears out the discontinuity (on
these small lattices) and ‘allows’ stable mean densities between n = [0, 0.25]. The
disorder averaged n− μ data is almost identical between ED-MC and Heff .
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Fig. 9. Comparing thermodynamic and transport results between exact diagonalisation based
Monte Carlo (ED-MC) and our SCR scheme on a 8 × 8 lattice. Symbols for ED-MC results
and dashed lines for SCR

Now the transport, Fig. 9 extreme right. Our resistivity is the inverse of the (ther-
mal and disorder averaged) optical conductivity σ(ω) at the scale of mean level spac-
ing in the system. The ‘resistivity’ so computed is compared between ED-MC and
Heff in Fig. 9, right. We also show the associated magnetisation.

There are two features to note: (i) transport properties match reasonably be-
tween the two schemes, and (ii) the small size ‘resistivity’ does not show the cru-
cial turnaround feature that would signify low-temperature metallicity (and shows
up only on larger systems). It is crucial to break the size barrier and access transport
at lower frequency.

The ‘density field’ that emerges is of course not homogeneous and involves co-
existing regions of FMM and AFI. While the detailed cluster pattern and correlation
length can only be studied by using Heff on large lattices, notice the ability of Heff

to capture the same spatially resolved patterns as ED-MC for a specific realisation
of {εi}. In Fig. 10 we show the ‘cluster pattern’, as encoded in the nearest neighbour
spin correlation, for both Heff and ED-MC for two realisations of disorder. The first
pair of rows belong to one realisation of {εi} and the next pair to another. Within a
pair, the top row tracks the result with ED, the bottom row with Heff . Temperature
varies along the row, from ∼ 2Tc to T = 0 (left to right). As the results indicate both
schemes lead to the same ‘fingerprint’ of the underlying disorder. The basic reason
that Heff reproduces such detailed features faithfully is that it actually solves the
same Schrodinger equation as ED-MC, albeit fewer times, in the same disordered
background.

4.4 Results at Zero Field

Having established the credibility of the SCR scheme in this context, let us look at
the results obtained using this method on large lattices, ∼ 24 × 24 to 32 × 32.

At low-electron density, the competetion in the DE+SE model is between a
{π, π} AF phase and a ferromagnet. We set JAF = 0.05 and scanned in μ to lo-
cate the μc for the first order boundary. The density changes from n = 0 to n ∼ 0.20
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Fig. 10. Comparing cluster patterns in ED-MC with SCR results for two different realisations
of disorder. Temperature values along a row are T = 2Tc, 1.2Tc, 0.8Tc and 0.1Tc

at the discontinuity. Moderate disorder smooths out the discontinuity in n(μ) con-
verting it to a sharp crossover.

We probed the coexistence regime, n ∼ 0 − 0.2, with varying electron density,
temperature (T ), and Δ = 0.2 and Δ = 1.0. All the results are obtained by cooling
the system from the high T paramagnetic, approximately homogeneous, phase.

The two panels in Fig. 11 show the thermally averaged nearest-neighbour spin
correlation. The mean density n in these figures vary from 0.06 to 0.15 from the top
row to bottom the row in each panel, straddling the coexistence region, the disorder
is Δ = 0.2 (left panels) and Δ = 1.0, (right panels), and the data is obtained in a
cooling sequence. Along each row the temperature varies as T = 2Tc, 1.2Tc, 0.8Tc,
and 0.1Tc for both panels, as one moves from left to right.

The figure provides direct visual evidence of ‘clustering’. Note that the FMM
clusters form in an attempt to minimise electronic kinetic energy – and are far from
random as in standard percolation. At fixed density and temperature, the cluster pat-
tern for stronger disorder (Δ = 1.0) is more fragmented than for Δ = 0.2. The
contrast reduces with increasing T , as the spins in the AF regions fluctuate out of
antiparallel alignment.The large density regions sustain a finite local magnetisation,
whereas, the empty regions give rise to local AFM.
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Fig. 11. Cluster pattern with varying density, temperature and disorder. Left Panel: weak
disorder, Δ = 0.2, Right Panel: strong disorder, Δ = 1.0. Electron density n =
0.06, 0.08, 0.10, 0.12 and 0.15 from top to bottom. Temperatures T = 2Tc, 1.2Tc, 0.8Tc

and 0.1Tc from left to right in each panel

Figure 12 shows the typical size of FMM clusters [23], inferred from a Lorentzian
fit to the magnetic structure factor, i.e., Sq ∼ (q2 + ξ−2)−1. The resulting correla-
tion length depends on n, Δ and T , decreasing with increasing disorder and T , and
increasing with increasing density. The main panels, (a) and (b), highlight the n de-
pendence at different T and Δ, while the inset replots the same data to highlight the
dependence on disorder. To completely understand the variation of cluster sizes with
temperature, density and disorder one would have to solve the problem on even larger
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Fig. 12. Ferromagnetic correlation length inferred by fitting Lorentzians through the spin
structure factor data
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Fig. 13. Magnetisation, m(T ), and structure factor, Sq(T ) at q = {π, π}. Panel (a) − (b):
data for Δ = 0.2, panel (c) − (d): data for Δ = 1.0. The legends are common to panels
(a) − (d). Panel (e): The characteristic temperature (see text), Tch(n, Δ): triangle down: AF
at Δ = 1.0, square: AF at Δ = 0.2, triangle up: FM at Δ = 1.0, circles: FM at Δ = 0.2.
Panel (f): m(T = 0) with varying n, circles: Δ = 0.2, squares: Δ = 1.0. System size:
24 × 24

lattices.The dependences, overall, are intuitive, and correlate well with the transport
data that we discuss further on.

Figure 13 shows the magnetisation, m(T ), and the AF peak in the magnetic
structure factor Sq at q = {π, π} to illustrate the evolution from the AF to the FM
phase with increasing n. Panel (a)–(b) are at Δ = 0.2 and panel (c)–(d) at Δ = 1.0.
The ‘extremal’ densities are either strongly AF or FM, while for n ∼ 0.08 − 0.12
both FM and AF reflections have finite weight. Panel (e) tracks the ‘characteristic
temperature’, Tch(n,Δ), identified from the maximum in ∂2O/∂T 2, where O is the
appropriate order parameter (of the FM or AF phase). In the shaded region, 0.10 <
n < 0.14, it is difficult to resolve the Tch accurately. Panel (f) shows the change in
‘saturation magnetisation’ m(T = 0) with increasing n and changing disorder. The
small moment regime, m < 0.1, for n < 0.1 is a ‘ferro-insulator’ phase, as we will
discover from the transport data. In this regime the moments in different clusters are
only weakly correlated. It would be very interesting to see the effect of a magnetic
field on these weakly coupled FM regions. We will discuss these effects later in this
section.

Figure 14 shows the low-energy density of states (DOS) for n = 0.1. Even at
weak disorder, panel (a), there is a ‘pseudogap’ in the system averaged DOS, at
the lowest temperature, T ∼ 0.01. However, the pseudogap rapidly fills up with
increasing T , and the DOS tends towards the universal profile of the spin disordered
2D DE model. At stronger disorder, panel (b), the ‘dip’ in the DOS at μ is deeper.
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Fig. 14. Low-energy density of states, at n = 0.10. Panel (a): data at Δ = 0.2, panel (b):
data at Δ = 1.0. The DOS is plotted with respect to ω−μ(T ), incorporating the T dependent
shift in μ. Lorentzian broadening of δ functions to 0.03. Data averaged over 30 copies

Due to stronger pinning, the clusters and the gap feature, survives to higher T , and
only for T � Tch tends to the asymptotic form.

Figure 15 shows resistivity, ρ(T ), with varying n and disorder. The comparison
of panel (a), Δ = 0.2, and panel (b), Δ = 1.0, indicates that ρ(T ) for stronger
disorder is systematically larger. The trends, however, are similar in the two cases and
allows a tentative classification of the ‘global’ aspects of transport. At both Δ = 0.2
and Δ = 1.0 there is a critical density, nc(Δ), below which ρ(T = 0) diverges,
indicating the absence of any connected ‘conducting path’. The inset to panel (b)
shows the trend in the T = 0 conductivity with increasing FM cluster area, aFM .
The following qualitative picture emerges for transport in the coexistence regime:
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Fig. 15. Resistivity, ρ(T ), with varying n. Panel (a): Δ = 0.2, panel (b): Δ = 1.0. Results
obtained on ‘cooling’. System size 24 × 24, data obtained by inverting the ‘mean conduc-
tivity’. Average over 20 − 50 copies of {εi} (error bars comparable to symbol size, unless
otherwise indicated). Results on size 32 × 32 are similar. Inset, panel (b): Normalised T = 0
conductivity, at Δ = 1, -vs- FMM surface area
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• At low T , and for n > nc(Δ), there is, by definition, some connected ‘metallic
path’ through the sample. It is reasonable to assume that at least in this connected
region the spins are aligned due to DE. Since cluster dimension and electron
wavelength are comparable in our system a large fraction of the resistance arises
from the non-trivial geometry of the current path. This scattering is quantum
mechanical, and the low T metallic phase corresponds to a quantum percolative
regime for roughly 0.15 > n > 0.08 at Δ = 1.0.

• With increasing T , the resistance of the conducting network increases due to DE
spin fluctuations and, till the network is disrupted, there is a regime dρ/dT > 0.
This ‘metallic’ behaviour occurs despite the very large residual resistivity. This is
a regime of weak magnetic scattering on the conducting network. If n � nc, e.g.,
n = 0.20 in Fig. 15(b), so that inhomogeneities are weak, ρ(T ) will smoothly
increase to the T � Tch asymptotic value.

• With further increase in T , in the n > nc regime, the spin disorder can destroy
some of the ‘weak links’, disrupting the conducting network and leading to a
sharp increase in ρ(T ) see, e.g., n = 0.1 in Fig. 15(b). This correlates well
with reduction in typical cluster size with increasing T , discussed in the next
paragraph. Depending on n and the extent of disorder (and system size, in a
simulation) there could be a rapid rise or a ‘first order’ metal-insulator transition
(MIT). This is spin disorder induced breakup of clusters driving a MIT.

• Beyond this ‘MIT’ the conduction is through the ‘insulating’ regions, with iso-
lated patches contributing to nominally activated transport, as visible in Fig.
15(b) for n < 0.12. For T � Tch, as the structures disappear, Fig. 11, and
the system becomes homogeneous, ρ(T ) is dominated by spin disorder scatter-
ing. This is a diffusive regime with saturated spin disorder scattering, visible for
T > 0.08 at all densities.

• For n < nc, the regime of low-density isolated clusters, ρ(T ) falls monotoni-
cally, and the response is typical of low-density ferromagnetic polarons in a AF
background. This occurs for n < 0.08 at Δ = 1.0, and at lower n at Δ = 0.20.

The variation in the FMM cluster size, discussed earlier, is broadly consistent
with the above description and strengthens the proposed transport scenario.

4.5 Effect of a Magnetic Field

The effect of a magnetic field [24] and temperature can be studied through a host of
physical indicators, e.g., the density-density correlation function Dnn(q), the spin-
spin correlation function Dss(q), the density of states at Fermi level N(εF ), the
magnetisation m(h, T ) and, of course, the resistivity ρ(h, T ).

The pattern for the nearest neighbour spin correlation fs
2 (Ri) = 〈Si.S1+δ〉 is

shown in Fig. 16 [24] for three temperatures and for three fields, h = 0, h = 0.01
(central column) and h = 0.10 (right column). The first row shows the high T para-
magnetic phase, where fs

2 is small on all links since the thermal scale is much larger
than both the exchange and field scales. It is only at h = 0.10 that we see signs
of magnetisation. The contrast improves with cooling (left column) but the field
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Fig. 16. Nearest neighbour spin correlation fs
2 = 〈Si.S1+δ〉 at n = 0.1, Δ = 1.0. System

size 32 × 32. Field variation along the row: h = 0.0, 0.01, 0.10, and temperature, up the
column, T = 0.06, 0.03, 0.01

response is similar at the lower temperatures as well, i.e., h = 0 and h = 0.01
are virtually indistinguishable.

For the n = 0.1 case at Δ = 1.0, where the low T cluster pattern is rather
fragmented, and the h = 0 magnetisation is rather low, < 0.1, the immediate effect
of an applied field is to orient the ‘cluster moments’ parallel to the field. Since the
clusters typically have > 10 spins coupled together even a weak field have a large
effect on m(h, T ). Although this does not change the ‘local electronic structure’
and N(εF ) is mostly unaffected, the parallel moments allow enhanced tunnelling
between the FMM domains leading to large low-field MR. Since the cluster pattern
does not change (at low fields) the correlation length associated with Dnn is unaf-
fected. Overall, the main low-field effect at low T is alignment of the large ‘cluster
moments’ in the direction of the field and a consequent increase in electron mobility.

At larger fields two other effects come into play. The FMM phase grows in vol-
ume, and residual spin disorder (due to finite temperature) within the domains gets
suppressed. The system now behaves like a canonical ‘clean’ DE ferromagnet, with
a large DOS at εF . The bulk magnetisation nears saturation.

While the cluster pattern is insensitive to a weak magnetic field, both the resistiv-
ity and the magnetisation respond dramatically, Fig. 17. There is essentially a ‘two



216 P. Majumdar

0 0.04T/t
0

100

200

300

400

ρ

: h = 0.00
: h = 0.004
: h = 0.01
: h = 0.05

0 0.04T/t
0

0.2

0.4

0.6

0.8

m

0 0.05 0.1

h

0

0.2

0.4

0.6

0.8

m
: T = 0.010
: T = 0.022
: T = 0.034

0 0.05 0.1

h

0

100

200

300

ρ
0.4 0.6

a
FM

0

0.5

1
m
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stage’ response to an applied field (particularly at low temperature) in the coexis-
tence regime. A weak field aligns the large ‘cluster moments’ parallel to the field,
without significantly changing the FMM volume fraction. This enhances the tun-
nelling between FMM domains, which may have been supressed earlier due to ran-
dom orientation of the cluster moments. The magnetisation rises sharply and there
is an attendant sharp drop in resistivity. At a larger field, the FMM volume fraction
itself increases and the transport phenomena can probably be described by a volume
fraction dependent percolative effect.

These results on magnetotransport at phase coexistence share several generic fea-
tures with the manganites [5–8], but there are key differences too. These are (i) the
important regime of coexistence in manganites is between a FMM and an antiferro-
magnetic charge ordered insulator (AF-CO-I), and crucially involves the Jahn-Teller
(JT) phonons. This requires enlarging our model. (ii) It is supposed that the FMM
and CO-I regions are nominally of equal density, which is why such domains can sur-
vive over μm scale. Our clusters are ‘charged’ due to the density difference between
FMM and AFI. In any real system, Coulomb effects would have to be considered in
such a case.

Nevertheless, the single band model sheds light on several qualitative issues that
arise in interpreting transport data and spatial structures on the manganites. A more
quantitative comparison with manganite data requires inclusion of the lattice and
orbital degrees of freedom. This is relevant also because the presence of strong
electron-phonon coupling in the manganites makes the condition for cluster coex-
istence and percolation more restrictive.
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5 Percolation in Two Band Models with Electron-Phonon
Coupling

The changing balance between superexchange and double exchange, with increasing
electron density, in the one band model leads to either an AF-I or a FMM. While other
phases are possible, these two dominate. In the two band model, there are more exotic
possibilities, and in particular close to electron density n = 0.5 the system goes into
an orbital ordered AF state, the so called CE phase [25], with zigzag ferromagnetic
chains coupled AF between them. The presence of electron phonon interaction leads
to charge modulations in this phase [26], resulting in a CE-CO-OO state. The reason
we enter into this discussion is because this CE phase, rather than a simple AF, is the
main competitor of the FMM in the manganites. One component of the percolative
pattern, when it occurs, is the CE-CO-OO-I phase, the other is the FMM. The other
element that will emerge due to the electron-phonon coupling is the rather unusual
effect of disorder – something not foreseen in the Imry-Ma [27] scenario.

5.1 Scenario

Much of the ‘action’ in the manganites is near n = 0.5, which also corresponds to
hole doping x = 1−n = 0.5 of the parent Mott insulator. The CE phase lives at (and
around) n = 0.5 in systems with low bandwidth, while the FMM lives at n > 0.6.
There is a first order phase boundary between the CE-CO-OO-I and FMM, just as
between AF-I and FMM in the one-band case. This is potentially the most promising
regime for exploring phase separation and percolative transport in a ‘composite’ of
metallic FM and insulating CE-CO-OO domains. Indeed, the experiments we cited
early on were precisely in this regime. With that in mind our focus will be on iden-
tifying the circumstances (bandwidth, temperature, type of disorder) under which
percolative effects emerge. In essence, we will explore the two pathways indicated
earlier in Fig. 7.

5.2 Model and Method

The model below describes a two-band situation [28] with eg electrons Hunds cou-
pled to t2g derived core spins, in a two-dimensional square lattice. The electrons are
also coupled to Jahn-Teller phonons, while the core spins have an AF superexchange
coupling between them. These ingredients are all necessary to obtain a CE-CO-OO
phase. We include the effect of disorder through an on site potential.

H =
αβ∑

〈ij〉σ
tijαβc

†
iασcjβσ +

∑

i

(εi − μ)ni − JH

∑

i

Si.σi + JAF

∑

〈ij〉
Si.Sj

− λ
∑

i

Qi.τ i +
K

2

∑

i

Q2
i . (9)

Here, c and c† are annihilation and creation operators for eg electrons and α, β are
the two Mn-eg orbitals dx2−y2 and d3z2−r2 , labelled (a) and (b) in what follows. tijαβ
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are hopping amplitudes between nearest-neighbour sites with the symmetry dictated
form: txaa = tyaa ≡ t, txbb = tybb ≡ t/3, txab = txba ≡ −t/

√
3, tyab = tyba ≡ t/

√
3,

where x and y are spatial directions
The eg electron spin is σμ

i =
∑α

σσ′ c
†
iασΓ

μ
σσ′ciασ′ , where the Γ ’s are Pauli ma-

trices. It is coupled to the t2g spin Si via the Hund’s coupling JH , and we assume
JH/t � 1. λ is the coupling between the JT distortion Qi = (Qix, Qiz) and the
orbital pseudospin τμ

i =
∑αβ

σ c†iασΓ
μ
αβciβσ, and K is the lattice stiffness. We set

t = 1, K = 1, and treat the Qi and Si as classical variables. The chemical po-
tential μ is adjusted so that the electron density remains n = 1/2, which is also
x = 1 − n = 1/2.

We consider effectively a lattice of Mn ions and consider two kinds of disor-
der, since they seem to have rather distinct effects on the phase competition between
FMM and CE-CO-OO-I. (i) The alloy disorder due to cationic substitution, intro-
duced to control hole doping, is modelled as a random potential εi at the Mn site
picked from the distribution PA(εi) = 1

2 (δ(εi − Δ) + δ(εi + Δ)). This is called
A-site disorder in a perovskite ABO3, and is homogeneous – in that every site has
a potential. (ii) One can also substitute on the Mn site itself, the ‘B site’. Such a
situation is modelled via PB(εi) = ηδ(εi − V ) + (1 − η)δ(εi), where η is the
percent substitution and V the effective potential at the impurity site. For dilute B-
type scatterers only a small fraction of sites have a potential, although that potential
can be large.

For A-type disorder the mean value is ε̄i = 0 and the variance is Δ2
A = 〈(εi −

ε̄i)2〉 = Δ2, while for B-type disorder ε̄i = ηV and Δ2
B = 〈(εi − ε̄i)2〉 = V 2η(1−

η).
We use the ‘travelling cluster approximation’ (TCA) [29], developed by us, to

solve this problem. It handles both strong coupling and disorder effects accurately
and allows access to large system size.

5.3 Results

Let us start with the phases that emerge [28] for varying JT coupling and JAF at
x = 0.5, Fig.18 left panel, in the absence of disorder. We will also discuss how the
ground state changes with x for a typical choice of λ and JAF , shown in Fig. 18,
right panel.

At low λ and low JAF double exchange is the dominant interaction and kinetic
energy optimisation leads to a homogeneous ferromagnetic state without any orbital
or charge order (FM-OD-CD). This phase has a finite density of states at the Fermi
level εF and is metallic. As JAF is increased, keeping the JT coupling small, the char-
acter first changes to ‘A-type’ with peaks in the magnetic structure factor Smag(q)
at q = {0, π} or {π, 0}, then an orbital ordered but uniform density CE phase, with
simultaneous peaks at q = {0, π}, {π, 0}, and {π/2, π/2}. At even larger JAF the
dominant correlations are ‘G-type’ with a peak at q = {π, π}. By contrast, increas-
ing λ at weak JAF keeps the system ferromagnetic but leads to charge and orbital
order (FM-CO-OO) for λ > 1.6. Our interest is in a charge ordered CE phase. Such
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Fig. 18. (a) The ground state at x = 0.5 for varying JAF and λ, in the absence of disorder.
(b) The doping (n = 1 − x) dependence of the ground state for varying chemical potential μ
and typical electronic couplings, λ = 1.6 and JAF = 0.1, near the FM-OD-CD & CE-CO-
OO phase boundary. The phases in the vicinity of x = 0.5 are expected to show up in a cluster
pattern on introducing disorder at x = 0.5

a state, with charge modulation ∼ 0.5±0.2, say, shows up when both λ and JAF are
moderately large.

Since the effect of disorder might be to create cluster coexistence of phases of
different densities that arise in the clean limit, Fig.18.(b) shows the phases and phase
separation windows that occur at a typical coupling, JAF = 0.1 and λ = 1.6. For
these couplings the clean system is a CE-CO-OO phase at x = 0.5, a FMM for
x < 0.4, and an A type AF for x > 0.55.

The naive expectation is that disorder would lead to cluster coexistence of AF-
CO phases, that arise for x ≥ 0.5, with the FMM phase at x < 0.4, Fig. 18(b).
For weak A-type disorder we discover [28] that the long range charge and mag-
netic order is broken down to the nanoscale, with no signs of a percolative pattern
of FMM clusters. The system is an insulating glass. The response to B-type disorder
is more interesting, with a moderately large on site energy V on the B-impurities.
We explored V = 1, 2 and 4 and η = 2, 4 and 8%. The response, as we vary the
fraction of scatterers (η), is similar to A-type at weak ΔB . However, before the peak
at q = {0, π}, {π, 0} vanishes we see the emergence of a ferromagnetic feature at
wavevector q = {0, 0}. There is a window at intermediate η where B-type disorder
leads to coexistence of FM and CO-OO-AF regions. In terms of transport, inter-
mediate A-type disorder strengthens the insulating character in ρ(T ), while B-type
disorder of comparable variance leads to an insulator-metal transition on cooling,
and a (poor) metallic state at low temperature [28].

The top row in Fig. 19 compares low temperature MC snapshots of the magnetic
correlations at λ = 1.6, in the clean system (left), to that with ΔA = 0.5 (centre)
and ΔB = 0.56. The respective panels in the middle row show the electron density
〈ni〉 corresponding to the panels above. The panels at the bottom are the thermally
averaged Smag(q) in the three cases. In the clean limit, the magnetic correlations are
CE, with a checkerboard density distribution, and simultaneous magnetic peaks at
q = {0, π}, {π, 0} and {π/2, π/2}. For A-type disorder there are stripelike mag-
netic correlations with small (atomic scale) FM clusters but no signature of phase
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Fig. 19. MC snapshots and magnetic structure factor at low temperature, T = 0.01, size
40 × 40. Left row: λ = 1.6, non disordered, middle row, λ = 1.6, A-type disorder with
Δeff = 0.5, right row, λ = 1.6, B-type disorder with V = 2, η = 8%, Δeff = 0.56. Top
panel shows the nearest neighbour magnetic correlation Si.Si+δ , where δ = x or y. Middle
panel shows the charge density 〈ni〉 for the configuration above. Bottom panels shows the
MC averaged Smag(q). In each panel q = {0, 0} at the bottom left corner, q = {π, 0} at the
bottom right corner, etc.

coexistence. The density field is also inhomogeneous in the nanoscale, with only
short range charge correlations, and Smag(q) has weak peaks at q = {0, π} and
{π, 0} but no noticeable feature at q = {0, 0}. B-type disorder, however, leads to
FM regions coexisting with stripelike AF correlations. The density field shows a
corresponding variation, being roughly homogeneous within the FM droplets (with
local density n ∼ 0.6), and a CO pattern away from the FM regions. Smag(q) now
has peaks at q = {0, π}, {π, 0} and {0, 0}.

We can understand the difference between the impact of A-type and B-type dis-
order as follows. (1) The presence of A-type inhibits the coexistence of large FMM
and AF-CO-OO clusters, despite the presence of a PS window in the clean problem,
Fig. 18.(b), because (a) atomic scale potential fluctuations disallow CO coherence
beyond a few lattice spacings, while (b) homogeneous FMM clusters are destabilised
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by the disorder and become charge modulated. The result is a nanoscale correlated
insulating glassy phase. (2) Dilute strongly repulsive scatterers act very differently:
(a) they force an e0

g state at the impurity sites and generate an ‘excess density’ 0.5×η
that has to be distributed among the remaining Mn sites, (b) the parent x = 0.5
CO phase cannot accommodate this excess charge homogeneously and the system
prefers to phase separate into x ∼ 0.5 AF-CO and x ∼ 0.4 FM clusters, (c) unlike
the A-type case, the FM clusters can survive and percolate since at low η there can
be large connected patches without a B-type site. We have verified this explicitly
for several impurity configurations. These observations are consistent with what has
been long observed in the manganites [18–20, 30, 31], and stresses that while per-
colative effects do indeed occur in the manganites they do so only in systems with
low ionic mismatch (like the La-Pr-Ca family). B-site substitution can be used as a
‘trigger’ in these situations.

6 Connection with Quantum Percolation and Resistor Networks

Although we finally have transport calculations for manganites based on microscopic
theory, the system sizes are still modest, ∼ L = 40, and can hardly access the
mesoscale, let alone the ‘bulk’ limit. However, it seems meaningless to try and extend
these microscopic calculations to ever larger scales. What one requires is an effective
description at large scales whose parameters can be extracted from a microscopic
theory of the kind we have discussed. This could be at two levels:

• Recreate the effective background ‘disorder’ (including spins, phonons, etc.) on
large spatial scales and solve the quantum transport problem exactly in these non-
trivial backgrounds. This in effect is the correlated quantum percolation frame-
work that we had mentioned earlier. Notice that this scheme can be used even
when there is no ‘cluster coexistence’ in the system.

• If cluster patterns emerge and have significantly large correlation length (com-
pared to electron phase breaking length) then one should be able to use a clas-
sical percolation framework where the resistivity can be computed via effective
medium theory. This seems to be appropriate for some of the experiments on
La-Pr-Ca based systems but the critical exponents suggest that the cluster size
distribution is non-trivial.

In the rest of the review, we briefly discuss the two issues above. The first aspect
has not seen much discussion in the literature since it is hard to solve the micro-
scopic problem. The second approach has been thoroughly explored by Dagotto and
coworkers and I will only provide a summary of their key results.

6.1 Effective Quantum Percolation Models

What is the possible connection of the disordered interacting electron problems we
described to the problem of quantum percolation? It is true that results from these
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models yield spatial patterns reminiscent of percolation but we need a microscopic
understanding to critically compare and exploit the similarity.

To recapitulate, quantum percolation is a limiting case of a disordered electron
system of the form:

H =
∑

〈ij〉
tijc

†
i cj +

∑

i

εic
†
i ci, (10)

where the fraction of non-zero bonds and ‘low-energy’ sites are specified simply by
fractions pb and ps, say.

Does this resemble the manganite problem in any way? Let us revisit the one
band model, which is the simplest case involving FMM and AF-I phase competition
and resulting cluster coexistence. In the JH/t → ∞ limit it assumes a form:

H =
∑

〈ij〉
teff
ij (Si,Sj)γ

†
i γj +

∑

i

εiγ
†
i γi + J

∑

〈ij〉
Si.Sj . (11)

Here, the nearest neighbour hopping is teffij /t = −(cos θi

2 cos θj

2 + sin θi

2 sin θj

2

e−i(φi−φj)) where θi and φi are polar and azimuthal angles of the spin Si. The
random potential is just the ‘bare’ random potential.

This model does have some similarity to our ‘disordered electron’ model in that

1. It involves bond randomness in the teffij .
2. It involves site randomness in the εi.

The differences, however, are more significant:

1. The teffij are not 0/1 as in the quantum percolation model but have a continuous
distribution.

2. εi is a weak potential, and does not by itself create ‘excluded’ sites.
3. There are crucial correlations in the spatial distribution of the teffij , since they are

related to background spin variables and the spin configuration is controlled by
the Boltzmann distribution

P{S} ∝ Trγ,γ†e−βH . (12)

For example the nearest neighbour (NN) spin-spin correlation, that primarily
controls Dij is decided by

〈Si.Sj〉 = Z−1

∫
DSTrγ,γ†Si.Sje

−βH ,

where Z is the partition function and it is obvious that NN exchange Dij and Djk,
say, will be highly correlated due to the spin-spin correlations.

The spin-spin correlation is controlled by the Boltzmann weight that prefers con-
nected clusters for FMM domains in order to minimise electronic kinetic energy. The
bond correlations in the standard quantum percolation model, by contrast, are purely
statistical in nature. As a consequence, such clusters have a fractal structure, while
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the clusters that emerge from energy optimisation have smooth surfaces. To generate
cluster patterns as in Fig. 11, e.g., one would need to use not only the ‘one point’
distribution for the teffij and εi but also short range correlations in the teffij . That can
be extracted either via some approximation on the full distribution above, or through
parametrisation of the patterns obtained via MC.

6.2 Resistor Network Theory

Due to the difficulty in accessing transport properties from microscopic calculations,
there have been attempts [32, 33] to construct a ‘resistor network’ theory, replac-
ing the coexisting clusters by ‘metallic’ or ‘insulating’ resistors, and computing the
overall resistance of the network. We have reviewed some attempts by experimenters
to fit their data to the percolation/effective medium framework, and the mixed suc-
cess. The critical exponents turn out to be too large, and first-order transitions cannot
be obtained. We reproduce below some data reviewed by Burgy et al. [33], Fig. 20,
highlighting these shortcomings.

The resistor network approach is somewhat unsatisfactory also because: (i) the
‘resistance’ of the network elements have to be inferred from experiments depending
on the endpoint compositions in the coexistence regime, (ii) the quantum character of
electron transmission between clusters is lost out in the Ohm-Kirchhoff formulation,
and (iii) the sensitivity of intergrain transmission to core spin orientation (and the
resulting low field MR) cannot be captured.

The failure of traditional percolation has led to the exploration of more evolved
schemes for generating the cluster distribution. It is clear from Fig. 21(d), reproduced
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Fig. 20. Results illustrating the ‘abrupt’ character of the metal-insulator transition in some
manganites (compositions indicated). (a) Dependence of residual ρdc on chemical substitution
at 0 (•) and 4 kOe (◦). The solid line represents the prediction of standard percolation, while
the dotted one is a guide to the eye. The 
 are results of a simulation using a broad distribution
of bonds (α=0.857). (b) Resistivity versus T , at magnetic fields 0 (•) and 7 T (◦). (c) Field
dependence of the spin-wave stiffness at T=40 K. From Burgy et al., Phys. Rev. B 67, 014410
(2003), with permission
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Fig. 21. (a) Typical snapshot of an 8×8 MC simulation of the one-orbital model (Hund cou-
pling JH=∞, T=0.01t, t the hopping amplitude, and density 0.8). JAF is 0 everywhere, but in
the bonds of the ladder where they take the value 0.12t. The average spin-spin correlation in
the ladder is –0.4 (effective “double-exchange” hopping 0.54), as opposed to –1.0 (effective
hopping 0) when isolated from the FM region (effective hopping 1). (b) Similar to (a) but
for density 0.5. Here JAF=0 is 0 in the upper portion minus the finger-like region. In the rest
JAF=0.15t, favouring a flux state. The effective hopping in the flux region is 0.7, while in the
finger it is as high as 0.9. (c) The different neighbourhoods in Vichniac’s notation. (d) Typical
configuration for standard percolation on a 1282 lattice at (or just below) the critical density.
(e) Same as (d) but for correlated disorder (γ=0.2). (f) Same as (d) but for the annealing rule
(MGE5). (g) Same as (d) but for the nucleating rule (MGE4). The latter is particularly promis-
ing since a small increase in p leads to a fully saturated final state, in a first-order transition.
From Burgy, et al., Phys. Rev. B 67, 014410 (2003), with permission
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from [33] that the density distribution created in standard percolation models has no
correpondence with the kind of structures that emerge in the experiments or micro-
scopic theory. More complex schemes have been used to generate the clusters as
Fig. 21(e)–(g) shows. These involve annealing/nucleating rules discussed in detail
by the authors. When the resistivity is computed in these kind of backgrounds the re-
sults do show critical exponents quite different from standard percolation, and even
a first-order transition. In the absence of microscopic understanding, however, such
schemes remain ad hoc.

7 Conclusions

The manganites are a promising system for studying percolative transport in a cor-
related electron system. Not all of transport phenomena in the manganites involve
‘percolation’, there are regimes where interesting magnetotransport is seen without
any obvious cluster coexistence. Nevertheless, there are situations, involving systems
with low cation disorder, where cluster coexistence and percolative transport is evi-
dent. While this provides hope that a well established formalism can be employed to
analyse the physics, standard percolation theory needs to be significantly expanded
to address these phenomena. The complexity arises from the non-trivial character of
the cluster distribution, dictated by the quantum physics of electron delocalisation. I
hope this article provides an entry point to this fascinating field. It is obvious that the
task of constructing effective percolation models faithful to the microscopic theory
is far from over!
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1 Introduction

It is our common household experience that when the voltage drop across a fuse
exceeds a limit, the fuse burns out. A fuse is nothing but a conductor that conducts
uniform current under an applied voltage up to a certain limit beyond it burns out
and becomes non-conducting. This is called fuse failure. Similarly, in a dielectric
breakdown, a dielectric starts to conduct electricity when the voltage drop across it
attains certain threshold value. The above two phenomena are examples of break-
down process that is described broadly as the failure of a physical attribute when the
perturbing force driving it goes beyond a limiting value. The most common example
of the process is the breaking of a material at a high stress beyond its strength.

Naturally occurring solids are almost always inhomogeneous and have defects
like vacancies, micro cracks or impurities. These defects are weak points across
which stress fields or electric fields or current densities concentrate. Depending on
the geometry of the defect, the concentrated field can be very high. If the field or
density exceeds the material fatigue limit, failure nucleates locally around the defect
and starts to propagate. The propagation can be arrested, or can spread to the entire
system leading to the global failure of the system, depending on the field strength and
the defect structure in the material. The failure of a material, thus, depends largely
on the disorder present in it.

The simplest form of the weak points is substitutional disorder that can be re-
alised by the inclusion of non-conducting material in a conducting material or vice
versa. Since we are interested in the macroscopic properties of global failure, we con-
sider failures at length scale larger than the regions in which the local failure appears
(i.e. atomic distances). At this scale, the disordered fuse system can be modelled
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, 227–250 (2009)
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by a lattice whose bonds are non-conducting with a certain probability (1 − p) and
conducting otherwise.

For such models, one can apply the principles of percolation theory [47, 48].
Below the percolation threshold pc (for p < pc) the system is not connected globally
by channels of conducting bonds and so non-conducting, whereas for p > pc the
system is conducting (at least one continuous path exists across the system via the
conducting bonds).

For p > pc, when conducting channels span across the system and the system
is conducting, one can ask what is the fuse current If required so that the system
becomes non-conducting. At I > If (p) not a single spanning path of conducting
bonds exists. At p = 1, all the conducting bonds are present and If (1) normalised
by the sample size is simply the fuse threshold current for each of the conducting
bonds. For p < pc, the conducting bonds does not form a continuous path across the
sample, and the sample is insulating. With increasing voltage V across the sample,
one can get a continuous path through original conductors and broken dielectric for
V ≥ Vb(p), where Vb(p) is the dielectric breakdown voltage. At p = 0, all the non-
conducting bonds are there in the system and Vb(0) normalised by the system size is
simply the breakdown threshold of each of the non-conducting bonds. On the other
hand, as p → pc, both the dielectric breakdown voltage and fuse failure current tend
to zero. The corresponding phase diagram is shown in Fig. (1).

In this article, we will review the basic ideas in breakdown problems in terms of
the fuse failure and dielectric breakdown problems and then discuss how these ideas
can be extended to the breakdown in quantum mechanical systems such as Ander-
son insulators. In disordered electronic systems above two dimensions, the electronic
states below the mobility edge are all localised (the system with Fermi level within
this range behaves as an insulator) and the states above the mobility edge are ex-
tended (the system turns to a conductor for Fermi level in this range). The Anderson
transition from insulating to conducting phase across the mobility edge is well stud-

Conducting

Conducting

Insulating

Insulating

Vb(p) If(p) IV

0 pc p 1

Fig. 1. Phase diagram of a mixture containing p fraction of conductors and (1 − p) fraction
of insulators at random. On the left side, the sample is insulating for voltage V less than the
breakdown voltage Vb(p) and conducting otherwise. On the right side, the system is conduct-
ing for current I less than the fuse current If (p) and insulating otherwise
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ied [26]. We discuss here the possibility of a breakdown from insulating to conduct-
ing phase by applying strong electric field and compare the quantum breakdown with
the classical dielectric or fuse breakdown in disordered materials.

2 Analysis of the Fuse Problem

2.1 Disordered Fuse Network

In a pure conductor placed between two electrodes with a potential difference,
the field lines within the conductor are all parallel to each other and perpendicu-
lar to the electrode surfaces. In presence of a disorder in the form of an insulating
region, the field lines get deformed around the defect. As a result in the vicinity of
the defect current density increases to ie from i, the current density value far away
from the defect. So one can write

ie = i(1 + k), (1)

where k is the enhancement factor that depends on the geometry of the defect. As an
example, k becomes l/b for an elliptic defect of semi-major axis l and semi-minor
axis b [12]. For electrode surface area S total current I is

I = Si =
Sie

1 + k
. (2)

Failure occurs for the first time when ie becomes equal to i0 which is the fatigue
limit of the sample material. The failure current is then

If =
Si0

1 + k
. (3)

Larger the enhancement factor k, smaller is the failure current If . For an exam-
ple, if l >> b for an elliptic defect, If may get reduced by a large extent. So the pres-
ence of defects in the material facilitates failure and the presence of sharper edges
of defects make the system more vulnerable to failure. The failure makes the defect
bigger and hence k larger. This means that the current density around the defect en-
hances further causing failure again. The process causes rapid failure of the whole
sample. This means that external voltage for the global failure is the same as the
voltage for the first local failure and a local failures once started leads to the failure
of the entire sample. This type of failures are called brittle failures.

So far we have discussed the influence of a single defect of a regular size within
the sample. Natural and engineering samples usually contain a large number of de-
fects of irregular shapes and sizes at random. To get some quantitative estimate of
the failure criteria in terms of defect parameters we idealise the solid to lattice model
and use percolation theory for defects [18, 38, 39].

We start with a hypercubic lattice in 2d or 3d with all conducting bonds. The
simplest defect can be introduced by removing one bond parallel to the direction of
the current flow. In this case, failure current is calculated as
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If =
π

4
Li0 (4)

in 2d, where Li0 is the fracture current of the lattice in absence of any defects and
L is the linear size of the lattice. The enhancement factor is 4/π here. We introduce
randomness in shape and size of the defect by removing (1−p) fraction of the bonds
randomly. It is no longer possible to determine the most vulnerable defect and to
calculate the enhancement factor. We consider two limits: (1) dilute limit (p → 1)
when the defect density is small and (2) near the critical point pc, where the defect
density is large and beyond which the lattice loses its connectivity.

Dilute Limit (p → 1)

In this limit, there are only a few isolated defects (insulating bonds) in the sample.
The current density around a defect is effectively independent of the presence of
other defects. Under such considerations the most vulnerable of the defects will lead
to the failure of the system. So our primary task is to identify the most probable dan-
gerous defect (the weakest point that causes the largest concentration of the current
density).

The ensemble of n successively removed bonds, far from boundaries [18, 19],
in a plane perpendicular to the current flow, act as a dangerous defect. In 2d, it is a
linear defect and in 3d the defect has the shape of a disc. The current through the
conducting bonds at the immediate neighbourhood of the defect is

ie = i(1 + k2n) (in 2d), ie = i(1 + k3n
1
2 ) (in 3d). (5)

Here, i is current density through the bonds far away from the defect. Enhance-
ment factor k contains

√
n term because current is diverted by n defects to spread

uniformly around the perimeter of the disc, which is proportional to
√
n. The proba-

bility of appearance of a defect of n successive insulating bonds is

P (n) ∼ (1 − p)nLd, (6)

where L is the lattice size and d is the dimension of the lattice. Ld provides the
number of places that the defects can occupy. The approach of P (n) ≈ 1 gives the
size of most probable dangerous defect:

nc = − 2
ln(1 − p)

lnL (in 2d), nc = − 3
ln(1 − p)

lnL (in 3d). (7)

Combining (5) and (7) ie becomes

ie = i

[
1 + k2

(
− 2 lnL

ln(1 − p)

)]
(in 2d),

= i

[
1 + k3

(
− 3 lnL

ln(1 − p)

) 1
2
]

(in 3d). (8)
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Here, the total current is iL(d−1). Equating ie with the threshold value i0, the
expression for the failure current becomes

If =
i0L

1 + 2k2[ ln L
ln(1−p) ]

(in 2d),

If =
i0L

2

1 +
√

3k3[ ln L
ln(1−p) ]

1
2

(in 3d). (9)

From the equations it is clear that as p → 1, If reduces to i0L
d−1, the value of

the current in the lattice with all the bonds conducting. The slope of the If (p) versus
p curve at p = 1 is infinite (see Fig. 1). It is expected because even the presence
of a single defect enhances the process of breakdown through cascade. The most
important thing is the size dependence of If . For large enough L and p not very
close to 1 (such that the absolute value of ln(1 − p) is not too large) the failure
current per bond if (= If/L

d−1) decreases as 1/ lnL and 1/(lnL)1/2 in 2d and 3d,
respectively.

Critical Behaviour (p → pc)

Near criticality (p → pc), the material is strongly disordered and can be described by
node-link-blob picture [17, 43, 45] of percolation theory (see Fig. 2). Close to pc the
conducting part of the material extends over the sample to form percolating cluster,
which is self-similar up to the length scale ξp, the percolation correlation length. The
geometry of the cluster inside each cell appears same as that of the original cluster at
smaller scale. This means that the infinite cluster may be divided into cells of size ξp.
Each cell consists of backbone bonds (which takes part in current conduction) and
numerous dangling bonds (bonds which do not take part in current conduction). Only
backbone is important because it takes part in conductivity. The backbone is made
of two kinds of bonds: multiply connected bonds that appear as blobs; and singly
connected bonds (called red bonds) that appear as links. Distribution of current in
the sample is solely determined by links; being singly connected, each link has to
carry the full current inside a cell. Since at threshold (pc) correlation length (ξp)
spans the sample (large enough), it is reasonable to assume that the failure current
approaches zero as p → pc.

To determine quantitatively the critical behaviour of the failure current If , we
consider the voltage V applied across the node-link-blob network. Since V is dis-
tributed among L/ξp number of links (or cells) in series, the average voltage across
each link is VL ∼ ξpV . The resistance of the sample R is related to average link
resistance RL through R ∼ ξd−2

p RL, since there are Lξ−1
p number of links in se-

ries in the length L of the sample and there are ξ−1
p number of parallal such links.

So the mean current in a link appears to be iL ∼ ξd−1
p V/R through the relation

iL = VL/RL. V equals to failure or fuse voltage Vf when iL reaches the maximum
current which a link can stand. One can assume fuse voltage behaves as

Vf ∼ (p− pc)−tf . (10)
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Node

Lc

Blob

Link

ξp

Fig. 2. A portion of the node-link-blob super lattice model near pc. The distance between two
nodes of the lattice is ξp, while chemical length of the tortuous link of the super lattice is Lc

Using the relation ξp ∼ (p − pc)−ν and R ∼ (p − pc)−tc , tf comes out as
tf = tc − (d− 1)ν. From the relation If = Vf/R, we get

If ∼ (p− pc)(d−1)ν . (11)

The values of the correlation length exponent ν are 1.33 in d = 2 and 0.88 in
d = 3 and the values of the conductivity exponent tc are 1.33 in d = 2 and 2 in
d = 3 [47, 48]. So it is clear that the fuse voltage Vf attains finite value in 2d and
diverges with the exponent 0.2 in 3d, in contrary to the failure current which always
approaches zero as p → pc.

Influence of the Sample Size

Size dependence of If is related to the notion of the most dangerous defect present
in the sample. In the present context, the most dangerous defect is a ‘cell’ of the
infinite cluster with length ξp in the direction parallel to the applied voltage and lmax

in the perpendicular direction. The total probability of having a defect of size l is,
P = g(l)(L/ξp)d, where g(l) is the probability density of defect cluster of linear
size l. Percolation theory predicts [40, 47, 48] that

P ∼ exp

(
− l

ξp

)(
L

ξp

)d

. (12)

lmax is obtained when P ≈ 1 and

lmax ∼ ξp lnL. (13)

Now the current that flows through the side link of the defect is proportional to
(lmax)d−1I and one obtains
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If ∼ (p− pc)(d−1)ν

(lnL/ξp)(d−1)
. (14)

So this is the correction over equation (11) due to finite size of the sample.
Bergman and Stroud [7] gave an idea about the competition between extreme statis-
tics and percolation statistics. The extreme statistics (size dependence of the most
probable defect and failure current) is expected to dominate for lnL > ξp (or, when
Lifshitz scale is greater than the connectedness correlation length). The dominance
of extreme statistics is expected for p far away from percolation threshold when the
correlation length ξp is small.

Li and Duxbury [27] proposed the dependence of If on L through (lnL)−ψf .
The approximate range of ψf is

1
2(d− 1)

< ψf < 1. (15)

Considering the results of the dilute limit and in the critical region, the combined
form of (9) and (11) is

If = I0

[
(p−pc)
(1−pc)

]φf

1 + K
[
− ln(L/ξp)

ln(1−p)

]ψf
. (16)

The value of the different exponents (see Table 1) and the constant K depend on
the dimension and on the type of percolation. From (9) and (14) one can see that the
combined result is valid only for 2d. The expression has three obvious features:

1. For p = 1, If = I0, as expected.
2. Near p = 1, (p− pc) is almost constant and we get back the expression (9).
3. Near pc, the denominator of (16) is of the order of unity and we recover the

expresion (11) with φf = (d− 1)ν.

Table 1. Theoretical estimates for the fuse failure exponent φf

Dimension Lattice percolation Continuum percolation

2 ν(= 4/3) ν + 1(= 7/3)
3 2ν(� 1.76) 2(ν + 1)(� 3.76)

2.2 Distribution of the Failure Current Dilute Limit (p → 1)

In random fuse networks, the failure current If shows large sample to sample fluc-
tuations. Since the failure current is determined by the weakest defect in the sample,
the fluctuations in the failure currents do not come down with the system size. The
average failure current is not a self-averaging quantity.
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Distribution of the failure currents in a system of size L follows as (see Ref. [12])

FL(I) = 1 − exp

⎡

⎣−AdL
d exp

⎧
⎨

⎩−dA lnL

(
I0
I − 1
I0
If

− 1

)d−1
⎫
⎬

⎭

⎤

⎦ . (17)

The derivative of this cumulative failure probability distribution FL(I) with re-
spect to current I provides the current I at which the system fails. Certainly, at most
probable failure current the derivative becomes maximum. Here, I0 is the failure
current for pure sample. It may become obvious with a simple calculation that If

appears to be the most probable failure current (as was assumed in calculation) only
in the limit of large enough system size.

Though the current I can vary from zero to infinity, the form of FL(I) is mean-
ingful only for I upto I0. One should expect the value unity for FL(I) at I = I0 and
I = ∞, but it is true only for large system size. FL(I) suffers from size and defect
concentration dependence through If (see equation 9).

The above expression is referred to as the Gumbel distribution [23]. Another well
known one that is very often used in engineering is Weibull distribution

FL(I) = 1 − exp
[
−rLd

(
I

If

)m ]
. (18)

Here, m is a constant and for large m (say more than 5) If refers to most probable
failure current.

At Critical Region (p → pc)

Near criticality the cumulative failure distribution function is

FL(I) = 1 − exp
[
−A′

dL
d exp

(
−k′(p− pc)ν

I
1

d−1

)]
, (19)

where A′
d and k′ are two constants.

2.3 Continuum Model

One can extend the ideas of lattice percolation to continuum conducting medium.
A material at the scale of the size of the defects can be looked upon as a con-
tinuous field with some defects as inclusions in the field. In continuum model of
lattice percolation, insulating spherical holes (circular holes in 2d) are punched at
random as defects in a uniform conducting sample. The holes can overlap (Swiss-
cheese model) and two non-overlapping neighbouring holes have a conducting re-
gion between them. These regions constitute conducting channels of cross-section δ.
Somewhat similar to the breakdown problem discussed above, the transport prop-
erties of any such channel depend on the transport capacities (cross-section and
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length) of the narrowest part (the weakest bond) of the channel. With some rea-
sonable assumptions, one [24] can express the transport capacities of the weakest
region in terms of percolation cluster statistics on the lattice (particularly in terms of
the percolation correlation length ξp).

Both the discrete and continuum type are almost same in the dilute limit (p → 1).
So all the results derived earlier for discrete model are valid here. But near criticality
an infinite percolation cluster, with the links of mean length ξp and of different cross-
sectional width δ, is formed. The backbone [17, 43] of this cluster is represented by
a super lattice (see Sect. 2.1) of tortuous singly connected links and blobs crossing
at nodes at a separation

ξp ∼ |p− pc|−ν . (20)

The chemical length between any two nodes is

Lc ∼ |p− pc|−ζ . (21)

For singly connected bonds (or sites) on the percolating backbone, ζ = 1 in all
dimensions [24] except d = 1 [15, 47, 48]. There are (L/ξp)d−1 number of parallel
links exist between two electrodes, where L is the size of the sample. The current in a
link is given by iL = (ξp/L)d−1I . The current density i in a channel of cross-section
δ is given by

i ∼
ξd−1
p I

δd−1
(22)

The maximum current density is obtained for minimum cross-section δmin,
which is inversely proportional to the shortest chemical length Lc [4, 6, 24]. If i0
is the threshold current density at which the material fails, then

i0 ∼ ξd−1
p Ld−1

c If (23)

and we get,

If ∼ (p− pc)ν+1 (in 2d), If ∼ (p− pc)2(ν+1) (in 3d). (24)

Thus, the exponents for the failure current are higher than those of the discrete
model.

Using If = Vf/R and R ∼ |p − pc|−t̃c with Eqs (20) and (21) the expression
for fuse voltage becomes Vf ∼ |p − pc|t̃f with t̃f equal to (d − 1)(ν + 1) − t̃c
[12]. t̃c is the conductivity exponent: t̃c � 1.3 and 2.5 in 2d and 3d, respectively.
Consequently, t̃f becomes approximately 1 and 1.3 in 2d and 3d, respectively. Un-
like discrete percolation where failure current at pc attains a finite value in 2d and
vanishes only in 3d, in continuum percolation failure voltage always vanishes at pc.

2.4 Electromigration

Electromigration is an example where we find the practical application of the con-
cepts we have hitherto discussed. Miniaturisation of the circuits and gadgets have be-
come the norm of the day. Very thin metallic films are used as interconnects among
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the active parts of devices, resulting in large current densities through the metallic
films. Having large enough momentum, the free electrons become able to displace
metallic ions from their equilibrium positions. Thus, depending upon the material a
net material transport occurs [51] through grain boundary diffusion, surface diffusion
or lattice diffusion. This ionic displacement and the accumulated effect of material
transport due to large current densities (more than 104 A/cm2) are called electromi-
gration. Over time such electromigration leads to void formation at the cathode and
extrusion at the anode in thin film interconnects. Such void formation and hillock for-
mation cause an open circuit and a short circuit to neighbouring connecting wires,
respectively. The problem of material accumulation can be suppressed by the layers
of other material around and above the interconnects. The problem of open circuit
due to void formation has received much attention as the random failures of several
interconnects finally lead to failure of the entire device.

Let a fraction (1 − p) of the resistors he removed from random resistor network
(say in 2d). A random walker starts its walk from one of the lateral sides (those
without electrodes) of the network, and jumps from one cell to a nearest neighbour
cell by crossing the bonds irrespective of occupied or unoccupied bonds, intending to
reach the opposite side, with the constraint that it never visits a cell more than once.
Let the whole path consists of n0 occupied and n1 unoccupied bonds. For a given
configuration of missing resistors the minimum value of n0 is the shortest path.The
mean shortest path < n0 > (for theoretical study see Ref. [14, 49]) can be realised by
considering the average over a large number of configurations. An electro migration
induced failure of the network can be realised if the walker fuses the resistors as it
crosses them. The criterion for a resistor to fuse is not a particular value of current
(as in the fuse model), rather a particular value of threshold charge Q0 that attains
the resistor from the time of application of the constant current I0 to the network
(for details of the model see Ref. [10, 55]). If t1 is the failure time of an arbitrary
resistor of the network which is subjected to a constant current I0, then the resistor
must satisfy ∫ t1

0

I(t)dt = Q0 (25)

to fail.
So shortest path for a given impurity concentration is the path that corresponds

to the smallest number of resistors to fuse. The problem is to study the variation of
failure time of the whole network τ with p. For a network having an isolated defect
of length n, τ is given by

τ = (L− n)Q0/I0, (26)

where LQ0/I0 is the τ value for the pure network. In pure limit the mean failure
time < τ > is related to the longest probable defect with size nc. This means that
the bonds which fuse are also the bonds with largest current.

τ decreases as p decreases from pure limit, and approaches zero at pc, since the
number of bonds to be broken goes also to zero. The shortest path n0, the failure
current If , the number of broken bonds Nf and the failure time < τ >, all these
quantities tend to go to zero at pc with the correlation length exponent ν.
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2.5 Numerical Simulations of Random Fuse Network

The numerical simulation of failure of random fuse network in 2d was carried out
by de Arcangelis et al. [16]. Here, one starts with a lattice, the bonds of which are
conductors and present with a probability p. An increasing external voltage is applied
across the lattice and the voltage V 1

f when there is first local failure is recorded.
The fused bond is removed and the voltage is raised till there is a second failure
at V 2

f . The process is continued till the global failure at a voltage V fin
f occurs. The

variation of V 1
f and V fin

f with p are studied. V 1
f decreases with decreasing p till

p ∼ 0.7 whereupon it attains minimum value and then it starts increasing again.
V fin

f , on the contrary, increases monotonically and behaves almost identically as V 1
f

for |p − pc| < 0.08. Both approaches pc with the diverging exponent 0.48. It seems
that V 1

f exhibits pseudodivergence in 2d.
Duxbury et al. [19] performed similar type of simulations covering the whole

range of p from 1 to pc = 0.5. Their simulation results concerning If versus p graph
fit well with the interpolation formula (16) with the exponent value φf = 1, whereas
the theoretically predicted value is 1.33. This may be due to the finite size effect (see
Fig. 3).

They also demonstrated the finite value of V 1
f at pc by looking into the variation

of If and the conductance near pc. Following Eq. (9) they checked the linear depen-
dence of L/If on lnL successfully for several values of p, varying L from 10 to 200
and determined ψf = 1 from their slopes. The slope increases as p approaches pc.
Instead of (17) they preferred

FL(V ) = 1 − exp

[
−AL2exp

(
−KL

V

)]
(27)

as cumulative distribution function of failure voltage.

Fig. 3. L/If versus ln L expressing their linear dependence (after Duxbury et al. [19]). The
curves from top to bottom correspond to initial impurity probability p = 0.6, 0.7, 0.8 and 0.9,
respectively
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Arcangelis et al. [16] and Duxbury et al. [19] determined the number of fused
bonds Nf up to complete failure and they found that Nf goes to zero algebraically
as p → pc with an exponent seemingly equal to the correlation length exponent ν.

3 Dielectric Breakdown Problem

In dielectric breakdown problem the sample is insulating and conducting material
acts as defects in the composite. The volume fraction (p) of the conducting material
is less than the critical volume fraction (pc) so that the system overall is not conduct-
ing. The dielectric portions can withstand electric field upto ec, at and beyond which
they become conducting (local breakdown). Global breakdown occurs when the con-
ducting portions span the sample with the succession of local breakdown under the
influence of an increasing external field.

In 2d, the solution for dielectric problem can be obtained from the solution of fuse
problem with the aid of duality relation [9, 35]. We follow Bowman and Stroud [9]
and consider the case where p is smaller than pc and the sample is macroscopically
insulating. The equations for the induction vector D and the field E are

� ·D = 0
� × E = 0 (28)

D(r) = ε(r)E(r),

where ε(r) is local dielectric constant of the insulating portion and E is irrotational .
With E = − � φ equations (28) yields

∂

∂x

[
ε(r)

∂φ

∂x

]
+

∂

∂y

[
ε(r)

∂φ

∂y

]
= 0, (29)

where φ is the scalar potential. Now consider the dual composite of the original,
where insulator phase of the original is replaced by conducting phase and vice versa.
The sample is macroscopically conducting and the relevant quantities are current
density i and electric field Ē. These satisfy the equations

� ·i = 0
� × Ē = 0 (30)

i(r) = σ(r)Ē(r)

Since i is divergence less, i can be expressed as a curl of a vector potential V. V
(V = Vz = ψ(x, y)) is chosen in such a way, only z-component of i vanishes.
Assuming local conductivity as σ(r) = 1/ε(r) equations (30) yields

∂

∂x

[
ε(r)

∂ψ

∂x

]
+

∂

∂y

[
ε(r)

∂ψ

∂y

]
= 0. (31)

Comparing (29) and (31), one has
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∂ψ

∂x
=

∂φ

∂x
,

∂ψ

∂y
=

∂φ

∂y
. (32)

With all these, the components of current density i in dual composite become

ix = ∂ψ/∂y = Ey, iy = −∂ψ/∂x = −Ex. (33)

Thus, we see that the magnitude of the current density in the dual composite is
equal to the magnitude of the electric field in the original one and the direction is
rotated by 90◦. It can also be shown that the field Ē of the dual problem is equal to
vector D of the dielectric problem and is rotated by 90◦. Now the physical corre-
spondence of the two pictures can be easily established [12, 41].

All the results of fuse problem can be utilised for obtaining the solution for di-
electric problem. For example, the equations (16) and (19) can be used in a straight
forward way on replacing I0 and If by V0 and Vb, respectively, and also (1−p) by p.

3.1 Dielectric Breakdown Problem

As in the fuse problem, dielectric breakdown problem can be viewed on a discrete
lattice with disorder in the framework of percolation theory. Basically, a lattice of
insulating bonds is considered out of which p (p < pc) fraction of bonds are con-
ducting at random. For this purpose resistor (capacitor) of different resistivity (ca-
pacitance) [8, 9] can be used. Resistors (capacitors) of smaller (higher) resistance
(capacitance) are used for conducting bonds.

Dilute Limit (p → 0)

The problem is very similar to the fuse problem. The enhanced local field due to the
presence of long defect (made of n number of larger valued capacitors (conducting
bonds) perpendicular to the electrode, is (following Beale and Duxbury [5])

Ee = E(1 + kn), (34)

where E is the externally applied field and k is the enhancement factor. It is valid for
all dimensions. The probability to find a long defect made of n conducting bonds is

P (n) ∼ pnLd. (35)

The most probable defect size is

nc = − d

ln p
lnL. (36)

The enhanced field near the insulating bond adjacent to the most probable defect
is now

Ee = E

[
1 + Kd

(
− lnL

ln p

)]
. (37)
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When enhanced field Ee of any bond attains threshold value of dielectric break-
down, local breakdown takes place and the bond becomes conducting. So breakdown
voltage becomes

Vb =
E0L[

1 + Kd

(
− ln L

ln p

)] , (38)

where E0 is the breakdown field without defect.

Close to Critical Point (p → pc)

In this limit, consider the conducting defects that are on the average the percola-
tion correlation length ξp distance apart. Hence, average field is V1/ξp = V/L,
where V and V1 are externally applied voltage and potential difference between
any two conducting defects, respectively. The maximum attainable field is V1/a,
where a is the minimum available separation (bond length) between the defects in
the network. When the local electric field V1/a reaches the bond-threshold value
ec, breakdown occurs. Now the required average electric field for local breakdown
is Eb = (a/ξp)ec. Near pc, ξp diverges as ξp(p) ∝ a(p − pc)−ν . So the critical
behaviour of the average breakdown field as derived by Lobb et al. [28] appears as

Eb ∼ (pc − p)ν . (39)

in all dimensions. This can also be derived [49] from the concept of minimum gap
g(p), as Eb can be considered as proportional (see Sect. 2.4) to g(p) and g(p) is
proportional to ξ−1

p (see relation 20), the result above follows. Since Eb is inversely
proportional to the linear dimension of the most vulnerable defect and the typical
size of the defect or conducting clusters diverges at pc, Eb approaches zero in this
limit.

Influence of Sample Size

We consider a critical defect that is a pair of longitudinal very closely spaced clusters
of conducting material (almost linear in shape) of the order of size l situated one
after one, parallel to the direction of the applied field E in a Ld lattice. The field
between these two clusters enhanced by a factor l time E. Far from pc these clusters
appear with the probability (1/ξp) exp(−l/ξp). Thus, the most dangerous defect (the
largest cluster) is of the order of lmax ∼ ξp ln(Ld). The first breakdown field E1

b

(field needed to break the first bond) scales as 1/lmax in a finite but large system [5].
Since, in this particular case breakdown field for the sample is same as for the first
breakdown, Eb becomes

Eb ∼ (pc − p)ν

lnL
. (40)

This approximate expression for the average breakdown field was derived by
Beale and Duxbury [5].
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Larger sample has higher chance of having a larger vulnerable defect. So larger
sample requires smaller electric field for breakdown and Eb becomes zero in the limit
L → ∞. Breakdown path is always on the average perpendicular to the electrode.
So the above result is independent of dimension.

Due to the dominating behaviour of (pc − p)ν over lnL, breakdown field tends
to zero as p approaches pc. Very near to pc Chakrabarti and Benguigui ([12] p. 66)
proposed a scaling relation as

Eb ∼ (pc − p)ν

ln(L/ξp)
. (41)

According to Bergman and Stroud [7], Eb may become size independent very
close to pc, and a cross-over from extreme statistics to percolation dominated statis-
tics may be there.

Summary

A general formula may be inferred for dielectric breakdown field as follows:

Eb = E0
[(pc − p)/pc]φb

1 + K
[

ln(L/ξp)
− ln p

] , (42)

with the exponent φb (=ν for lattice percolation) dependent on the dimension and on
the type of percolation. For the theoretically estimated value for φb (see Table 2).

Table 2. Theoretical estimates for the dielectric breakdown exponent φb

Dimension Lattice percolation Continuum percolation

2 ν(= 4/3) ν + 1(= 7/3)
3 ν(� 0.88) ν + 1(� 1.88)

3.2 Distribution of Breakdown Field

Distribution function FL(E) in dielectric breakdown is defined as the probability of
breakdown of a dielectric system of size L in an external electric field E. Usually,
Weibull distribution [52, 53]

FL(E) = 1 − exp(−rLdEm) (43)

is used to fit the distribution function of breakdown and failure problems. Here r and
m are constants. Duxbury and his co-workers [5, 18–20] argued that the distribution
function for dielectric (and electrical) breakdown is given by Gumbell distribution:
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FL(E) = 1 − exp
[
−ALd exp

(
−K

E

)]
. (44)

It can be derived [5] from a simple scaling argument based on percolation cluster
statistics [21, 25, 46]. It is valid for L >> ξp or in dilute limit. The two expression
(43) and (44) are qualitatively same if the Weibull exponent m is large. Although
second one provides better fit to numerical simulation [5]. Sornette [44] argued that
the expression (44) is not appropriate in continuum system having percolation type
of disorder, rather, Weibull-like distribution is valid there.

3.3 Continuum Model

The model consists of dielectric material with the spherical (circular in 2d) conduct-
ing inclusions as defects with randomly positioned centres having the possibility
to overlap. We assume breakdown field Eb is proportional to the width δ. For break-
down ξ−1

p numbers of link elements to be broken. With the same logic as in Sect. 2.3,
Eb ∼ δminξ

−1
p ∼ L−1

c ξ−1
p or

Eb ∼ (pc − p)ν+1 (45)

very near to pc [13, 28]. So continuum system is weaker than the discrete one. This is
because the conductivities of the conducting channels increases as p → pc, whereas,
conductivity of the bonds in discrete model is independent of p.

3.4 Shortest Path

The concept of shortest path is already mentioned in Sect. 2.4 in the context of elec-
tromigration. Just as before, we consider a walker starting to walk from one electrode
with jump from one site to another and reaches the opposite electrode after executing
a self-avoiding walk. The aim of the walker is to create a percolating conducting path
by transforming a insulating bond to conducting bond when it jumps between two
conducting sites separated by the insulating bond. n0 denotes the total number of in-
sulating bonds that are to be transformed into conducting bonds during walk across
the sample. After completion of the walk, the sample experiences a continuous con-
ducting path between the electrodes and in this way dielectric breakdown comes into
existence.

The shortest path for a given configuration is defined as the path with the smallest
n0.The normalised smallest path is given by g(p) =< n0 > /L, where < n0 > is
obtained by considering the average of n0 over a large number of configurations.
Some authors call g(p) by minimum gap.

The behaviour of g(p) has been studied [20, 49] extensively in 2d and 3d for reg-
ular and directed percolation scenario. As p increases from zero to pc, the minimum
gap g(p) decreases from unity to zero with the correlation length exponent ν.
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3.5 Numerical Simulations in Dielectric Breakdown

Stochastic Models

In these models, stochastic growth processes are considered which mimic the di-
electric breakdown processes. For example, Sawada et al. [42] considered a random
growth process where growth takes place in two ways: tips of the pattern grow with a
probability p0 and new tips (branching) appear with probability pn (here, pn < p0).
In their simulation, the pattern appears as fractal and fractal dimension can be tuned
by the parameter R (= po/pn). However, results of such a simplification do not
satisfy experimental results of dielectric breakdown [37].

To mimic the dielectric discharge pattern in gasses Niemeyer et al. [36] suggested
a stochastic model where the breakdown pattern generated in turn determines the
local electric field and the growth probability. The model could reproduce the fractal
properties of dielectric breakdown process by numerical simulations. In this model,
the breakdown pattern starts growing from the centre of a lattice with insulating
bonds. One electrode is placed at the centre and other one is placed at a long distance
on the circumference of a circle. In one step, only one interface bond (and a point)
among all the nearest neighbours of the pattern breaks down, depending upon the
growth probability p and becomes the member of the pattern. The newly added bond
becomes a conductor and the newly added site is shorted to the voltage of the central
electrode. The growth starts from the centre and grows radially outwards. The growth
probability p depends on the local field (potential), which in turn is controlled by the
breakdown pattern via the relation

p(i, j → i′, j′) =
(Vi′,j′)η

∑
(Vi′,j′)η

, (46)

where the indices i, j and i′, j′ represent the discrete lattice coordinates. The electric
potential V is defined for all sites of the lattice by the discrete Laplace equation

Vi,j =
1
4
(Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1) (47)

with the boundary condition V = 0 for each point of the discharge pattern and
V = 1 outside the external circle. η describes the relation between local field and
growth probability. The fractal structure of the pattern has been seen to obey

N(r) ∼ rdf , (48)

where N(r) is the total number of discharge points inside a circle of radius r and df

is the Hausdorff dimensions. In 2d one has df � 2, 1.89± 0.01, 1.75± 0.02, 1.6 for
η = 0, 0.05, 1, 2, respectively. The structure tends to be more linear with larger η.
The observed value of d for η = 1 is in good agreement with the experimental result
(� 1.7) (Niemeyer and Pinnekamp [37]) and the resulting figure is very similar to
Lichtenberg figure.
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The same pattern for η = 1 has been produced surprisingly by a different growth
model: diffusion-limited aggregation model (DLA) of Witten and Sadner [54] (For
review see Meakin [31]). Niemeyer et al. neither justifies the appearance of η nor
provides any theoretical explanation regarding explicit rule for breakdown. Many
models (for details see Ref. [41]) have been proposed but a model that fully describes
dielectric breakdown in solids is still lacking.

Deterministic Models

Contrary to Niemeyer et al. [36], Takayasu [50] introduced deterministic approach
to produce dendritic fractal pattern (as is found in lightning) by considering a pri-
ori spatial fluctuation on bond resistances (ri = θr; θ ∈ [0, 1]) and the non-linear
irreversible characteristics of the resistance: once the potential difference across a
resistance ri attain a pre-assigned threshold voltage vc, ri reduces to δri (δ is a small
positive quantity) and its resistivity then never changes. This is the breakdown of a
resistor in this model. Breakdown of a resistor induces successive breakdown of other
resistors leading to the formation of percolation cluster of broken resistors. The pat-
tern appears to be anisotropically fractal with the dimension df = 1.58 ± 0.12 in
2d. Due to anisotropy this df is less than the fractal dimension 1.89 of a percolating
network in 2d.

Family et al. [22] made the stochastic model of Niemeyer et al. [36] deterministic
by attaching randomly a breakdown coefficient θ (θ ∈ [0, 1]) to each insulating bond.
There are two versions of this model: In one model, at each time step an interface
bond ij with the largest θV η

ij breaks down, whereas in the other model an interface
bond breaks down with a probability θV η

ij/pmax, where η is an adjustable constant
and pmax is the largest value of θV η

ij among all the interface bonds. The patterns
appear as tuneable (varying η) fractal. In the first model, stringy highly anisotropic
(with branches) pattern with fractal dimension of about 1.2 appears in 2d, whereas
in the second one pattern is strikingly lacking in anisotropy. The shape of the pattern
is similar to those found in Niemeyer et al. [36] except the fractal dimension of
1.70 ± 0.05 (for η = 1) in 2d. The results for df appear same to that for DLA on a
square lattice [30] and to that for the same model in a homogeneous medium (here,
cross and square-shaped patterns appear) [22].

Direct simulations of dielectric breakdown from various groups confirmed the
theoretical consideration for size and impurity dependence of breakdown voltages
quite successfully. In these simulations, a discrete lattice of insulating bonds is con-
sidered with p fraction of bonds as conductors. Each insulator breaks down to con-
ductor at a threshold value of voltage drop vc. A macroscopic voltage is applied and
the voltage distribution throughout the lattice is computed by solving Laplace equa-
tion (47). The insulator with largest voltage drop (at or above vc) is converted to a
conductor (incidence of first local breakdown). The voltage distribution is then recal-
culated, the second local breakdown is identified and the process continues. If at any
step the applied voltage is not large enough to cause breakdown of any insulator, it is
increased gradually. The simulation continues till a sample spanning cluster of con-
ductors appears. The applied voltage Vb at which global breakdown occurs divided
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Fig. 4. The variation of first breakdown field Eb and the minimum gap g(p) with initial impu-
rity probability p, (after Manna and Chakrabarti [29]). The two quantities behave same very
near to the percolation threshold pc, whereas far from pc they behave differently

by the sample size L is identified as breakdown field Eb. It has been experienced that
the breakdown field Eb is same as the field E1

b required for the occurrence of first
local breakdown.

Manna and Chakrabarti [29] determined the p dependence of both E1
b and g(p)

for the entire range of p below pc. They found (see Fig. 4) that both E1
b and g(p)

go to zero at pc with the exponent of value almost equal to 1. They argued that the
exponent is actually ν and the smallness of the value is due to the smallness of the
lattice size (L = 25, where exact pc is not reachable). Bowman and Stroud [9] found
that E1

b vanishes at pc with an exponent equal to 1.1 ± 0.2 in 2d and 0.7 ± 0.2 in
3d for both site and bond problems. These are consistent with the correlation length
exponent (ν) values of 4/3 and 0.88 in 2d and 3d, respectively.

Beale and Duxbury [5] proposed a relation for first (local) breakdown field as

E1
b ∼ 1

A(p) + B(p) lnL
. (49)

Near pc, they found A(p) and B(p) vary like (pc − p)−ν (in the lattice of size
L = 50, 70, 100) as is expected from (40). From the plot of ln{B(p) ln(p)} versus
− ln(pc − p) their data shows ν = 1.46 ± 0.22, which is in good agreement with
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Fig. 5. The plot of dielectric breakdown susceptibility versus applied voltage for several sam-
ple sizes (after Acharyya and Chakrabarti [1]). The inset shows that the difference of the
maximum susceptibility field and the minimum sample-spanning cluster field decreases with
increasing sample size

exact value 4/3 in 2d. Their data fits well to the Gumbel double exponential form
(44) for cumulative failure distribution. Manna and Chakrabarti [29] and Beale and
Duxbury [5] found the exponent φb of Eq. (42) to be about 1.0 and 1.2, respectively.

Acharyya and Chakrabarti [2] found that starting with a concentration p (p < pc)
of the conductors, the rate at which the insulating bonds breaks down to conduc-
tors as the electric field is raised in a dielectric breakdown diverges at breakdown
voltage Vb.

This indicates that global breakdown process is highly correlated very near to
Vb. They defined a new quantity named as breakdown susceptibility χ (= dn/dV ).
Here, n(V ) is the average number of broken bonds at an external voltage V (< Vb)
for a fixed value of p. It is obvious that for a sufficient voltage V , n(V ) saturates to
Ld. χ exhibits a maxima at V eff

b which is different from V fin
b , where V fin

b is the volt-
age required to create the last member of the sample-spanning conducting cluster.
V eff

b approaches V fin
b with increasing sample size L. It seems that χ is a divergent

quantity for infinite sample (see Fig. 5). So there exists a possibility to predict V fin
b

without going to the complete breakdown point of the sample. Statistics of the grow-
ing clusters up to Vb (minimum external voltage required to have the global connec-
tion across the sample via the conducting sites) in 2d site percolation was studied by
Acharyya et al. [3]. Vb is identified not only as the point of global breakdown but
also the point of divergence of the rate of the various statistical quantities such as
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total number of conducting sites, the average size of the conducting cluster and the
number of such clusters.

4 Zener Breakdown in Anderson Insulators

From the microscopic point of view, current conduction requires the mobility of the
electrons across the material and for composites of metals and dielectrics or insu-
lators this means that there must be percolating paths of conducting material in the
system (as long as electron is considered a classical particle). If p denotes the concen-
tration of the conducting material in the composite and pc the percolation threshold,
then from our previous discussion we know that the conductivity will go to zero at
pc as |p − pc|tc [47, 48]. For p below pc, the composite ceases to be conducting
and the classical breakdown voltage needed to make the system conducting goes as
|p− pc|φb (see Sect. 3.1).

Studies on Anderson transition (see Ref. [26] for example) show that electron
as a quantum particle cannot diffuse even through the geometrically percolating path
due to the coherent back scattering (of the wave function) from the random geometry
of the cluster in a dimension less than three. Since all the states on any percolating
lattice gets localised (exponentially) electrons do not diffuse through the disordered
(percolating) lattice.

In a three dimensional disordered systems, there exist a mobility edge (a sharp
energy level in conduction band) εc below which all the states are localised and above
which all the states are extended. Insulting or conducting phase appears depending
upon the position of Fermi level εf below or above the mobility edge εc. The (An-
derson) transition from the insulating phase (εf < εc) to metallic phase (εf > εc)
(where the electrons are quantum mechanically percolating that is their wave func-
tions extend all over) across the mobility edge in a percolating disordered solid,
has already been well studied [26]. In metallic phase, the conductivity increases as
|εf − εc|tq ; tq �= tc.

In the case of a classical non-percolating (p < pc) system, an application of
an external electric field Eb forces the system to undergo breakdown following the
relation Eb ∼ |pc − p|ν (see Sect. 3.1). In analogy with the above classical dielectric
breakdown problem, one can think of a problem of quantum dielectric breakdown
(possibility of the appearance of a conducting path) in Anderson insulating (εf <
εc or quantum mechanically non-percolating) phase with an application of strong
electric field. This may be thought as a kind of complementary problem of the Zener
breakdown in insulator.

In an insulator, states are localised exponentially within the atomic distance a
and effective band width w is in general larger than a. There exists a possibility
of tunnelling of the states across the band gap if the energy gained by an electron in
travelling an atomic distance a in an electric field E is larger or equal to the band gap
�εb (or when eEa ≥ �εb). Here e denotes the electronic charge and the band gap
is the separation between conduction and valance band. In Zener breakdown, bands
get effectively tilted in strong electric field E in the direction of the field, reducing
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Fig. 6. Schematic density of states for Anderson insulators (d > 2) shown in (a), where the
Fermi label εf is below the mobility edge εc (metallic phase for εf > εc). For strong electric
field E, the band of (localized) states get tilted and tunnelling occurs when the effective width
w(= |
εm|/eE) of the mobility gap 
εm, is less than or equal to the localization length ξq

the band gap effectively from �εb to eEa. If the effective width of the reduced band
gap (w = �εb/eE) becomes of the order of atomic distance a interband tunnelling
takes place for w ≤ a and the insulation breaks down. So the Zener breakdown field
Eb scales linearly with the band gap: Eb = �εb/ea.

Similar kind of breakdown of insulation can occur in the case of Anderson in-
sulators with an application of strong electric field E in more than two dimension.
States are localised (exponentially) with in the localisation length ξq, where ξq varies
as ξq ∼ |�εm|−νq . Here �εm is the mobility gap; �εm ≡ εc − εf . One can now
easily think of a possibility of tunnelling across the mobility gap, if the energy gained
by an electron in travelling a distance ξq in field E is of the order of the mobility gap
�εm (or when eEξq ≥ �εm). Thus, in contrary to the standard Zener breakdown in
semiconductors, here breakdown field Eb scales almost quadratically with mobility
gap as [11]

Eb =
�εm
eξq

� |�εm|Tq ; Tq = 1 + νq (50)

(νq ∼ 0.9 [26, 32–34], giving Tq ∼ 1.9 in 3d).
The tunnelling probability g(E) decreases exponentially with the width of the ef-

fective barrier as g(E) ∼ exp(−w/ξq) ∼ exp(−�εm/eEξq)∼ exp(−|�εm|Tq/E).
The cumulative failure probability of Gumbel form (same as for fracture [18–20] )
for a sample of size L under field E is given by [11]

FL(E) ∼ 1 − exp[−Ldg(E)]

∼ 1 − exp

[
−Ldexp

(
−|�εm|Tq

E

)]
. (51)

This gives

Eb ∼ |�εm|Tq

lnL
, (52)
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as the size dependence of the typical breakdown field for and above which FL(E) is
significant.

5 Conclusions

We have discussed the classical failure of the fuse system, the dielectric breakdown
and the quantum breakdown in the Anderson insulators. We have discussed how the
extreme value statistics and the resulting Gumbel distribution arises in breakdown
and failure processes, especially when the disorder concentration is low. At high
concentration of disorder near the percolation threshold, we have discussed how the
cross-over might take place from extreme value to percolation statistics. We dis-
cussed the system size dependence that arises at the distribution of the failure current
at low disorder regime. Finally, the extension of Zener breakdown phenomenon for
band insulators to the disorder-induced Anderson insulators have been discussed in
Sect. 4.
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1 Introduction

During the past decades, there has been an increasing fascination and surprises with
diverse quantum many-body effects. With the magical touch of interaction a sim-
ple electron system may assume insulating, metallic, magnetic or superconducting
states according as the control parameters are changed. Strongly correlated electron
systems, as exemplified by the high-Tc superconductors and their host materials re-
alized in transition-metal oxides, as well as by organic metals, have provided us with
an ideal playground, where various crystal structures with band-filling control and
band-width control etc., provide the richness in the phase diagram [1].

On the other hand, there is a long history of interests in nonequilibrium phase
transitions. Statistical mechanically, there is an intriguing problem of how we can
generally define the notion of a ‘phase’ in nonequilibrium systems, but we can still
discuss individual systems in specified nonequilibrium conditions to extract more
general viewpoints. Now, if we combine the above two ingredients, namely if we
consider strongly correlated electron systems in nonequilibrium, we plunge into
an even more fascinating physics (Fig. 1). In fact, recent years have witnessed an
upsurge of interests in nonequilibrium states in many-body systems with drastic
changes in the electronic states in strong dc electric fields, in intense laser fields,
etc.

Electric Field  F

+–

V
transport

strongly correlated electron system

Fig. 1. Non-linear transport and optical response
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Developments in fabrication techniques such as realization of clean thin films
with electrodes attached have triggered several groundbreaking experiments, for ex-
ample, nonlinear transport measurements in thin films [2–7], in layered systems [8]
and observations of clean metallic states in heterostructures [9]. Nonlinear phenom-
ena in correlated electron systems now begin to attract interests in a wide range of
researchers. One obvious area of application is future-generation electronic devices,
where a high sensitivity of a system near a phase boundary to external conditions
may lead to drastic functionalities [2]. However, even more attractive is its relevance
to fundamental physics, especially, to nonequilibrium statistical physics, where we
can observe the behavior of various phase transitions taking place under nonequilib-
rium conditions.

The purpose of the present article is to discuss the nonequilibrium metal-insulator
transition in strongly correlated electron systems [10–13], which is known, for equi-
librium systems, as Mott’s transition. Before going into detail, we first give a brief
introduction of the transition, and discuss how quantum breakdown through nonadi-
abatic transitions in nonequilibrium becomes relevant in nonlinear transports.

The model we study is the single-band Hubbard model, which is the simplest
possible one that captures many essential properties of correlated electron physics.
The Hamiltonian reads

H0 = −thop

∑

〈i,j〉σ

(
c†iσcjσ + h.c.

)
+ U
∑

i

ni↑ni↓, (1)

where ciσ annihilates an electron on-site i with spin σ, niσ = c†iσciσ the number
operator, U the strength of the on-site Coulomb repulsion, and thop the hopping in-

tegral. The filling n =
1
L

L∑

i=1

〈ni↑ + ni↓〉, with L the number of sites, is an important

parameter, which changes the groundstate property drastically.
When the band is half-filled with one electron per site on average (n = 1), each

electron tends to be localized on a separate lattice site and the spin tends to be antifer-
romagnetically correlated. When U/t is large enough, the groundstate is insulating,
which is called Mott’s insulator (Fig. 2(a)), and the groundstate is separated from
the charge excited states with a many-body energy gap – Mott gap. When we inject

(a) (b) (c)

insulator doped metal (equilibrium)

Fig. 2. Metal-insulator transition in equilibrium due to doping: (a) A Mott insulator realized
at half filling. (b) A hole-doped metallic state. (c) An electron-doped metallic state
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Fig. 3. (a) Schematic experimental configuration. (b) Carriers (doublons and holes) created by
an external electric field

carriers (usually with a chemical doping by adding or replacing to other elements) to
increase (electron doping) or decrease (hole doping) the filling from unity, the Mott
gap collapses for large enough doping, and the system becomes metallic. This is the
metal-insulator transition or the Mott transition, which is widely observed in strongly
correlated materials. In these materials, a state occupied simultaneously by up and
down spin electrons—which we call a doublon—and holes carry the current. After
the discovery of the high-temperature superconductivity in cuprates, carrier-doped
Mott insulators have been subject to a huge number of experimental and theoretical
studies.

Now, let us consider what will happen if we attach a set of electrodes to a strongly
correlated sample, and apply a large bias voltage across the electrodes (Fig. 3 (a)).
Although the setup may seem simple enough, there is a profound physics involved.

In regions near the electrodes (or near the interface in the case of heterojunctions
between a strongly correlated and ordinary materials), a “band bending” similar to
doped semiconductors can take place and lead to an interface Mott transition when
the filling becomes one [14]. The width of the insulating layer changes as the applied
bias is changed, which dominates the behavior of the nonlinear transport (i.e. the I-V
characteristics). The result (with DMRG + Hartree potential) for the band-bending
effects in this case can be understood if we assume a local equilibrium for the re-
lation between the density of electrons and the potential. The local properties are
determined by the Hartree potential governed by Poisson’s equation, which in turn
determines the local chemical potential and controls the metal-insulator transition.

Even more interesting, however, is the case where we no longer have local equi-
librium. Specifically, a quantum many-body breakdown of a Mott’s insulator takes
place when the applied electric field is large enough and creates doublons and holes
in the Mott insulating groundstate (Fig. 3(b)) [11–13].

The creation mechanism is a many-body analogue of the “Zener breakdown” ,
well-known in semiconductor physics [15]. Namely, while we cannot use the notion
of the electronic band structure for correlated electron systems, we can envisage the
carrier-creation process as a tunneling across a kind of barrier. As displayed in Fig. 4,
production of carriers occurs through tunneling between the Mott insulating ground
state and excited states with doublons and holes. If we denote the distance between
a doublon and a hole by ldh, the energy profile as a function of ldh roughly reads
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Fig. 4. Dielectric breakdown of a Mott insulator in a strong electric field due to many-body
Landau-Zener transition: The ground state and excited states with charge excitations are sepa-
rated by an energy barrier, and quantum tunneling among many-body states takes place when
the electric field is strong enough

ΔE ∼ U − ldhF, (2)

where F is the strength of the electric field. The profile curve reaches the energy
before the creation of the doublon-hole pair for the separation at which

ΔE ∼ U − l̄dhF = 0, (3)

to which the tunneling becomes possible. There is a threshold field strength for this
process to occur. This is because larger quantum fluctuations are required to have a
larger separation between doublon and hole in the Mott insulator.

In other words, the overlaps of many-body wave function of the ground state and
excited states decrease rapidly for large ldh. We can formulate this with the Landau-
Zener picture in the time-dependent gauge for the external electric field, for which,
as we shall show below [12] (50), the threshold field strength is given by

Fth =
Δc(U)2

8thop
, (4)

where Δc(U) is the charge gap (i.e. the Mott gap), and the tunneling rate per length
is given by

Γ (F )/L = −2F
h

a ln [1 − p(F )] , (5)

where p(F ) = e−π
Fth
F is the tunneling probability and a a non-universal constant

depending on the detail of the system. The tunneling rate Γ (F )/L, being related to
the production rate of carriers, is directly related to physical properties in the bulk if
the interface effect is neglected. Indeed, such a nonlinearity in the I-V characteristics
has been observed in real materials, most prominently in a one-dimensional copper
oxide [16].
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Another interesting consequence of (3) is that it gives the “critical separation” of
the doublon-hole excitation l̄dh = U/Fth. This has to do with the convex shape of
the energy profile against ldh (Fig. 4), which is reminiscent of the energy profile for
the standard nucleation theory that treats the critical size of a stable-phase droplet to
grow without being crushed, although the physics involved is quite different. In the
present case, when the field is greater than the threshold, the electric-field induced
metallic state, where doublon-hole pairs continue to be created, becomes the stable
phase.

The first goal of this article is to derive the relations presented above and study
the creation mechanism of carriers (this part is the extended argument of our papers
[12, 13]). We need to treat the process quantum mechanically and in a many-body
formulation. In doing so, we present a renewed and unified interpretation of the Zener
transition of insulators . The key quantity is the effective Lagrangian of quantum
dynamics (see Sect. 2.2 for a detailed introduction) which is defined by [12]

L(F ) = − i

Ld
lim

t→∞

1
t

lnΞ(t), (6)

where Ξ(t) is the ground state-to-ground state transition amplitude and Ld is the
volume of the d dimensional system and L the linear size. There is a deep relation be-
tween the theories of dielectric breakdown in condensed matter and a branch in quan-
tum field theory known as nonlinear quantum electrodynamics (QED) (Table 1). The
effective Lagrangian defined above coincides with the Heisenberg-Euler effective
Lagrangian for nonadiabatic evolution [12, 17]. The effective Lagrangian have been
used to study the Schwinger mechanism of electron-positron pair production from
the QED vacuum in strong electric fields [18]. In fact, we show that the Schwinger
mechanism and the Zener tunneling are equivalent, where the effective action coin-
cides if we consider the breakdown of simple Dirac type band insulators. Further-
more, the effective action gives the nonadiabatic extension of the Berry phase theory
of polarization.

Table 1. Relation between the theory of dielectric breakdown in condensed matter and non-
linear QED from the point of view of the effective Lagrangian

Dielectric breakdown in cond. matter Non-linear QED

Mechanism Zener breakdown [13] Schwinger mechanism [18]
Excitation Electron (doublon)-hole pair Electron-positron pair

back reaction
Effect of

interaction
Many-body Landau-Zener

Nonlinear polarization Cross correlation (ME effect) photon-photon interaction
Nonadiabatic Berry phase theory

[12]
–

In the latter part of the chapter we shall discuss the effect of annihilation of
doublon-hole pairs (Fig. 5). In a one-dimensional system, a doublon and a hole
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pair creation
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Fig. 5. Annihilation processes for carriers in a correlated electron system

cannot pass each other without being pair-annihilated even as virtual processes. Since
the ground state is locally stable, the many-body state tends to remain in the ground
state, but there should be a finite probability for the state to “branch into” excited
states through many paths in the many-body energy space. Thus, the long-time be-
havior of the wave function involves numerous scattering processes in the energy
space, where, as we shall see, the phase interference plays a key role. We can in-
deed regard the phase before the dielectric breakdown takes place as a dynamical
localization in the many-body energy space, which reduces the tunneling rate and
makes the groundstate survive [10, 11]. A statistical mechanical treatment helps in
understanding this, and we briefly discuss it in terms of the quantum walk.

A brief comment on the numerical methods used in the article. In order to under-
stand the nonequilibrium processes, we need to integrate the time-dependent, many-
body Schrödinger equation to look at the evolution of the many-body wave function
in, say, the Hubbard model in strong electric fields. This is a formidable task, for
which no analytically exact treatment is known, therefore we rely on several nu-
merical methods, which include the exact diagonalization and the time-dependent
density matrix renormalization group method (td-DMRG; The version of td-DMRG
we adopt is the one proposed by White and Feiguin [19]).

2 Nonadiabatic Evolution and Pair Creation of Carriers

2.1 Electric Fields and Gauge Transformation

When we describe a system in finite electric fields, we can choose from two gauges.
One is the case where we have a slanted electrostatic potential, with the gauge field
Aμ = (Fx, 0) for a one-dimensional system with F = eE being the electric field,
while the other represents the electric field via a time-dependent vector potential,
Aμ = (0,−Ft).

In the first gauge, the tilted potential enters in the Hamiltonian as

H(F ) = H0 + FX̂, X̂ =
∑

j

jnj , (7)



Quantum Breakdown in a Strongly Correlated Electron System 257

where X̂ is the position operator [20] and H0 the original Hamiltonian. This gauge is
incompatible with systems that have periodic boundary conditions. The Hamiltonian
H(F ) in fact becomes an unbounded operator in an infinite system, since one can
lower the energy indefinitely by moving an electron to j → −∞.

In the other gauge, which we call the time-dependent gauge, the hopping term of
the Hamiltonian becomes time-dependent as

H(φ(t)) = −thop

∑

iσ

(
ei 2π

L φ(t)c†i+1σciσ + h.c
)

+ V̂ , (8)

where Φ(t) represents a time-dependent Aharonov-Bohm(AB) flux,

φ(t) ≡ Φ(t)/Φ0 = FLt/h. (9)

Physically, this gauge amounts to considering a periodic system (a ring) and a mag-
netic flux piercing the ring, where the time-dependent flux induces electric fields by
Faraday’s law (Fig. 6). For a higher-dimensional system, the ring becomes a (gen-
eralised) torus. The time-dependent gauge is suited for periodic systems since it is
compatible with the lattice translation symmetry. The electric current operator is ob-
tained by differentiating the Hamiltonian by A1 as

J(φ) = −dH(φ)
dA1

= −ithop

∑

iσ

(
ei 2π

L φc†i+1σciσ − e−i 2π
L φc†−iσci+1σ

)
. (10)

There exists an important operator relation among H , J and X̂ ,

J(φ) =
i

�

[
H(φ), X̂

]
, (11)

which comes from Heisenberg’s equation of motion for the current operator, J(φ) =
d
dtX̂ .

We can relate the two gauges with a twist operator [21] defined by

g(φ) = e−i 2π
L φX̂ , (12)

and the two Hamiltonians are related by a gauge transformation generated by the
twist operator, that is,

H(F ) = g†(φ(t))H(φ(t))g(φ(t)) − ig†(φ(t))∂tg(φ(t)). (13)

Φ (t)

Electric Field F

Electric Field F

(a) (b)

Fig. 6. (a) Time-independent gauge. (b) Time-dependent gauge
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2.2 Heisenberg-Euler Effective Lagrangian

We first discuss the nonadiabatic evolution of electron wave functions in insulators
(either one-body or many-body) in strong electric fields. Let us consider an insulator
at T = 0 and F = 0, which is described by the ground state wave function |Ψ0〉. We
then switch on the electric fields at t = 0 to study the quantum mechanical evolution
of the system. We limit our discussions to coherent dynamics and ignore the effect
of dissipation due to heat bath degrees of freedom as well as boundary effects near
the electrodes.

A key quantity to study the nonadiabatic evolution and quantum tunneling in
strong electric fields is the (condensed-matter counterpart to the) effective La-
grangian introduced for QED by Heisenberg and Euler [17]. In the time-independent
gauge, the electrons are described by the solution of the Schrödinger equation,

|Ψ(t)〉 = e−itH(F )|Ψ0〉, (14)

where we have put � = 1. The overlap of the solution with the ground state for F = 0
– groundstate-to-groundstate transition amplitude – should contain the information
on the tunneling processes, so we define

Ξ(t) = 〈Ψ0|e−itH(F )|Ψ0〉eitE0 , (15)

where we have factored out the trivial dynamical phase of the ground state, E0 =
〈Ψ |H(F = 0)|Ψ〉. In the case of the time-dependent gauge, we need to be care-
ful, since the ground state is φ dependent. If we denote |0;φ〉 as the instantaneous
groundstate of H(φ) and its energy as E0(φ), the groundstate-to-groundstate transi-
tion amplitude becomes

Ξ(τ) = 〈0;φ(τ)|T̂ e−
i
�

∫ τ
0 H(φ(s))ds|0;φ(0)〉e i

�

∫ τ
0 E0(φ(s))ds, (16)

where T̂ stands for the time ordering, and E0(φ) = 〈0;φ(τ)|H(φ)|0;φ〉 the dynam-
ical phase of the ground state.

We define [12] the effective Lagrangian by

L(F ) = − i

Ld
lim

t→∞

1
t

lnΞ(t), (17)

where Ld is the volume of the d dimensional system with a linear dimension of
L. We can also regard the Lagrangian as the exponent of the asymptotic behavior
of the amplitude, Ξ(τ) ∼ eiτLdL(F ). When the electric field is large enough, the
groundstate becomes unstable with the quantum tunneling to excited states activated.
The tunneling rate is described by the imaginary part of the effective Lagrangian,

Γ (F )/Ld ≡ 2Im L(F ), (18)

which gives the rate of the exponential decay of the vacuum (groundstate). In the
quantum field theory, the decay rate of an unstable vacuum has been discussed by
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Fig. 7. The original problem studied by Callan and Coleman in which quantum tunneling from
an unstable vacuum is considered [22]

Callan and Coleman, where the tunneling takes place when the potential is suddenly
changed by an external field [22] (Fig. 7).

As we shall see later in several models, in the theory of dielectric breakdown, the
tunneling corresponds to creation of charge carriers. In band insulators the carriers
are electrons and holes, while in Mott insulators they are doublons and holes. If we
neglect boundary effects and assume that all the carriers are absorbed by electrodes,
we can conclude that the tunneling rate is proportional to the leakage current, that is,

Jleak ∝ Γ (F )/Ld. (19)

Indeed, this is the original picture of Zener when he calculated the leakage current
in a simple band insulator (Fig. 8). Zener has studied the dielectric breakdown in a
simple one-dimensional insulator, using the time-independent gauge [23] as well as
the time-dependent gauge [15]. In the former, he has calculated the tunneling prob-
ability of Bloch functions in constant electric fields to obtain the tunneling rate. In,

(a)
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(b)

CB

VB

E
ne

rg
y

real space

Fig. 8. Two models of the dielectric breakdown studied by Zener. (a) Time-independent gauge.
(b) Time-dependent gauge
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the time-dependent gauge, he has described the problem as a system with a time de-
pendent Hamiltonian represented by a two-by-two matrix to study the tunneling near
the level anti-crossing, which is now known as the Landau-Zener transition [15, 24].

The reason why we have called L(F ) the effective Lagrangian is that it coincides
with the Heisenberg-Euler effective Lagrangian in QED [17]. They have studied the
dynamics and nonlinear responses of the QED vacuum in strong electric fields by
calculating the effective Lagrangian (for a review, see e.g. [25]). By integrating out
high-energy degrees of freedom (polarization processes due to electron-positron cre-
ation/annihilation) they arrived at an effective description of the low-energy degrees
of freedom, namely the quantum correction, originating from the fluctuation of the
QED vacuum, to the Maxwell theory of electromagnetism. Indeed, if we apply our
formalism to band insulators with Dirac-type (mass-gapped) dispersions, the effec-
tive Lagrangian coincides with the Heisenberg-Euler Lagrangian with some modifi-
cations coming from the Brillouin zone structure of the Bloch waves as will be shown
in the next section. The correspondence between the two phenomena is straightfor-
ward: The ground state of the insulator translates to the QED vacuum, charge exci-
tations to the electron-positron pairs. The tunneling rate also has its QED counter-
part, namely, the vacuum decay rate due to the Schwinger mechanism – creation of
electron-positron pairs in strong electric fields [18].

Related Theories

We conclude this section with comments on the relation of the effective Lagrangian
approach to earlier theoretical frameworks.

Berry’s phase theory of polarization:

In the Berry’s phase theory of polarization [26–29], the ground state expectation
value of the twist operator e−i 2π

L X̂ , which shifts the phase of electron wave functions
on-site j by − 2π

L j [27], plays a crucial role. It was revealed that the real part of a
quantity

w =
−i

2π
ln〈0|e−i 2π

L X̂ |0〉 (20)

gives the linear-response electric polarization, Pel = −Rew [20], while its imaginary
part gives a criterion for metal-insulator transition, that is D = 4πImw is finite in
insulators and divergent in metals [29]. The present effective action is regarded as a
non-adiabatic (finite electric field) extension of w. To give a more accurate argument,
recall that the effective Lagrangian can be expressed as

L(F ) ∼ −i�

τL
ln
(
〈0|e− i

�
τ(H+FX̂)|0〉e i

�
τE0

)
(21)

for d = 1. Let us set τ = h/LF and consider the small F limit. For insulators we
can replace H with the groundstate energy E0 to have L(F ) ∼ wF in the linear-
response regime. Thus, the real part of Heisenberg-Euler’s expression [17] for the
nonlinear polarization PHE(F ) = −∂L(F )/∂F naturally reduces to the Berry’s
phase formula Pel in the F → 0 limit (cf. (26) below). Its imaginary part, which is
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related to the decay rate as ImPHE(F ) = −�

2
∂Γ (F )/L

∂F , reduces to −D/4π and gives
the criterion for the transition, originally proposed for the zero field case.

Non-Hermitian quantum mechanics

The dielectric breakdown of Mott insulators was also studied in the framework of
non-Hermitian quantum mechanics [30, 31]. Fukui and Kawakami studied a non-
Hermitian Hubbard model in which the leftward and rightward hopping integral are
assumed to be unequal [30]. The non-Hermiticity is assumed to represent the cou-
pling of the system with a “dissipative environment”. With the Bethe ansatz solution
they have observed the gap between the ground state and the first excited state to
close when the hopping asymmetry is large enough. It seems that the remaining
question is to relate this result with measurable quantities.

2.3 Zener Breakdown of Band Insulators Revisited – Nonadiabatic Geometric
Phase and the Schwinger Mechanism

Before examining the dielectric breakdown of correlated electron systems, let us
first discuss the dielectric breakdown of band insulators in an electric field F within
the effective-mass picture. This will turn out to be heuristic, since we can obtain an
analytic expression for the effective Lagrangian that can be readily applied to general
band insulators.

For simplicity, we take a pair of hyperbolic bands ε±(k) = ±
√
V 2 + v2k2 (con-

sidered here in d spatial dimensions), where 2V is the band gap, −(+) denote the
valence (conduction) band, and v the asymptotic slope of the dispersion.

We first obtain the groundstate-to-groundstate transition amplitude with the time-
dependent gauge in the periodic boundary condition. There, a time-dependent AB-
flux in units of the flux quantum, φ(τ) = FLτ/h (with the electronic charge e = 1
and L being the system size), is introduced to induce an electric field F , which makes
the Hamiltonian time dependent as

H(φ(τ)) =
∑

k,α=±
εα

(
k +

2π
L

φ(τ)e‖

)
c†α(k)cα(k). (22)

Here e‖ is the unit vector parallel to F, and c†α(k) the creation operator with spin
indices dropped. The groundstate-to-groundstate transition amplitude is as given in
(16) and, as before, the quantum dynamics is defined from the asymptotic behavior,
Ξ(τ) ∼ e

i
�

τLdL(F ).
The dynamics of the one-body model can be solved analytically (Fig. 9(b)), since

we can cut the dispersion in d spatial dimensions into slices, each of which reduces
to Landau-Zener’s two band model in 1D [15, 24]. Namely, if we decompose the
k vector as (k⊥, k‖), where k⊥ (k‖) is the component perpendicular (parallel) to
F, where each slice for a given k⊥ is a copy of Landau-Zener’s model with a gap
Δband(k) ≡ 2

√
V 2 + v2k2

⊥. The Landau-Zener transition takes place around the
level anti-crossing for which k‖ + 2π

L φ(τ) moves across the Brillouin zone(BZ) in
a time interval δτ = h/F . The process can be expressed as a scattering and the
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Fig. 9. (a) Energy levels of a Dirac band in 2D. (b) A one-dimensional slice of the higher
dimensional Dirac band in which carriers (doublons and holes) are created by an external
electric field in the k‖ direction

Bogolubov coefficients between the “in” and “out” states (see Fig. 9) is given by the
solution to the two band problem, that is,

c†+(k) →
√

1 − p(k)e−iχ(k)c†+(k) +
√

p(k)c†−(k),

c†−(k) → −
√

p(k)c†+(k) +
√

1 − p(k)eiχ(k)c†−(k). (23)

Here the tunneling probability for each k is given by the Landau-Zener(LZ) formula
[15, 24],

p(k) = exp
[
−π

(Δband(k)/2)2

vF

]
. (24)

On the other hand, the phase χ(k) = −θ(k) + γ(k) appearing in the Bogolubov co-
efficients consists of the trivial dynamical phase, �θ(k) =

∫ δτ

0
ε+(k+ 2π

L φ(s)e‖)ds,
and the Stokes phase [15, 32],

γ(k) =
1
2

Im
∫ ∞

0

ds
e−i(Δband(k)/2)2s

s

[
cot(vFs) − 1

vFs

]
. (25)

The Stokes phase, a non-adiabatic extension of Berry’s geometric phase [33], de-
pends not only on the topology of the path but, unlike the adiabatic counterpart, also
on the field strength F [34]. In terms of the fermion operators the ground state is
obtained by filling the lower band |0;φ〉 =

∏
k c†−(k − 2π

L φe‖)|vac〉, where |vac〉
is the fermion vacuum with c±(k)|vac〉 = 0. If we assume that excited charges are
absorbed by electrodes we obtain from Eqs. (16) and (23)

Re L(F ) = −F

∫

BZ

dk
(2π)d

γ(k)
2π

,

Im L(F ) = −F

∫

BZ

dk
(2π)d

1
4π

ln [1 − p(k)] , (26)
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where the dynamical phase θ cancels the factor e
i
�

∫ τ
0 E0(φ(s))ds in (16).

Integration over k in (26) leads to the ground state decay rate per volume for a
d-dimensional hyperbolic band,

Γ (F )/Ld =
F

(2π)d−1h

(
F

v

)(d−1)/2

×
∞∑

n=1

1
n(d+1)/2

e−πn V 2
vF

[
erf

(√
nvπ3

F

)]d−1

. (27)

The threshold for the tunneling is governed by the most nonlinear (actually essen-

tially singular) factor in the above formula, namely, e−πn V 2
vF , so that the threshold

electric field is given by

Fth =
V 2

v
. (28)

Although an analytic integration in (26) is possible for a Dirac band (= hyperbolic
valence and conduction bands), the expression is valid for general band dispersions.
In Fig. 10, the leakage current divided by the field strength, which is proportional to
Γ (F )/FLd, is plotted for the spatial dimension d = 1, 2, 3. The F -dependence is
essentially

Jleakage ∝ F (d+1)/2e−π
Fth
F , (29)

which has a threshold behavior as shown in the inset of the figure. Above the
threshold, two regimes exist. In the medium field regime, the current scales as
jleakage ∼ F (d+1)/2, where the power depends on d. However, when the field
strength is even stronger, the error function appearing in (27), which is due to the
lattice structure (with the k integral restricted to the BZ), starts to take an asymptote
(erf(x) ∼ (2/

√
π)x). Then various factors (including a power of F ) cancel with each

other, and the leakage current in the F → ∞ limit approaches a universal function,
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Fig. 10. The dependence of the conductivity on the electric field in the non-linear regime for
band insulators with spatial dimension d = 1, 2, 3. The inset zooms in the threshold region
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Jleakage ∝ Γ (F )/Ld → −F

h
ln
[
1 − exp

(
−π

Fth

F

)]
, (30)

where the d dependence disappears up to a trivial d-dependent numerical factor. This
prediction on the non-linear transport can be checked experimentally including low-
dimensional systems such as carbon nanotubes (d = 1). Graphene (d = 2) is also
interesting, but this system has a massless Dirac dispersion, so that a special treat-
ment is required.

Comparison to Heisenberg-Euler-Schwinger’s results in nonlinear QED

Let us have a closer look at the decay of the QHE vacuum. In 1936, Heisenberg and
Euler studied Dirac particles in strong electric fields, and discussed nonlinear opti-
cal responses of the QED vacuum – vacuum polarization – in terms of an effective
Lagrangian [17]. Later, Schwinger refined their approach and calculated the vacuum
decay rate [18].1 Up to the one-loop level, Schwinger calculated the vacuum-to-
vacuum transition amplitude using the proper time regularization method to obtain

ΔLQED(F ) =
1

8π2

∫ ∞

0

ds

s2

[
F cot(Fs) − 1

s

]
e−ism2

e (31)

for (3+1)-dimensional QED, where me is the electron mass. The integrand has a pole
in the complex domain and has an imaginary part, which gives

Γ (F )QED/Ld =
αF 2

2π2

∞∑

n=1

1
n2

exp
(
−nπm2

e

|F |

)
, (32)

the famous Schwinger’s formula for the electron-positron pair creation rate [18],
where α = 1/137 is the fine-structure constant.

Thus, the expression for the QED effective Lagrangian, (31), coincides with the
Stokes phase for the nonadiabatic Landau-Zener tunneling, except for a difference
in the momentum integral. As we have mentioned above, an important difference
in lattice systems is that the momentum integral is limited to the Brilliouin zone,
and the decay-rate acquires an extra factor (compare (27) with (32)). This modifica-
tion changes the strong field limit of the leakage current that leads to the universal
expression (30). Another important difference, which is quantitative, appears in the
threshold voltage: The threshold for band insulators Eband

th = F band
th /e = V 2/vae

(a: lattice constant) is many orders smaller than the threshold for the QED instability

EQED = m2
ec3

�
∼ 1016 V/cm. For example, if we have an insulator with parameters

a = 10−7cm, v = 2thop = 1eV, V = 1eV, then the threshold becomes as small as
Eband

th = 107V/cm.
Heisenberg and Euler’s original aim was to discuss nonlinear optical properties

of the vacuum in terms of ΔL. In fact, they calculated the effective Lagrangian in
the presence of both electric and magnetic fields [17], and obtained

1 For references on the effective-action approach of nonlinear electrodynamics, see [25, 35].
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ΔLQED(F ) = C
E2 − B2

2
+

2α2

45m4
e

[
(E2 − B2)2 + 7(E · B)2

]
+ . . . , (33)

where C is a diverging constant that we drop after renormalization. The electric
polarization can be obtained from the real part of the effective action via

ΔP (F ) =
∂

∂F
ΔL(F ). (34)

If we plug in (33), the nonlinear polarization of Dirac particles becomes

ΔP =
2α2

45m4
e

(
−4B2E + 14B2

‖E + 4E3
)

+ . . . , (35)

=
∞∑

n=1

P (n)(B)En, (36)

where B‖ is the component of B parallel to E, and P (n)(B) the n−th order non-
linear polarization. Thus, we can examine nonlinear polarizations and cross correla-
tions (a combined effect of E,B) with the effective Lagrangian, as touched upon in
Table 1.

2.4 Dielectric Breakdown in a Mott Insulator – Many-Body Landau-Zener
Transition and a Nonequilibrium Phase Diagram

Before applying the effective Lagrangian approach to the dielectric breakdown of
Mott insulators, we need to examine the excitation spectra, which is displayed in
Fig. 11. There we plot, for the half-filling, the many-body energy levels of the Hamil-
tonian,

H(φ(t)) = −thop

∑

iσ

(
ei 2π

L φ(t)c†i+1σciσ + h.c.
)

+ U
∑

i

ni↑ni↓ + V
∑

i

(−1)ini.

(37)

Here U is the Hubbard repulsion, V a staggered potential to introduce valence
and conduction bands, so that U = V = 0 corresponds to a noninteracting system
in a free space, U = 0, V �= 0 a band insulator, and a large U and V = 0 a Mott
insulator. In the figure, we have only plotted charge excitations (where the charge
rapidities are excited in the language of Bethe-ansatz solution). As can been seen,
levels cross in the free model while in the band and the Mott insulators an energy gap
separates the ground state from excited states. The gap is 2V for the band insulator.
The Hubbard Hamiltonian Eq. (37) with U �= 0, V = 0 is also exactly solvable in
1D. Woynarovich used the Bethe-ansatz method [36, 37] to study the ground state as
well as the excited states (see also [38–40]). The two solid lines in Mott insulator’s
spectrum correspond to the ground state and the charge-excited state with one pair of
complex charge rapidities, quantum numbers appearing in the Bethe-ansatz solution.
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Fig. 11. Adiabatic spectrum En(φ) for a finite system (L = 10 here) obtained by the Lanczos
method. We plot low-lying excitations in the half-filled subspace N↑ = N↓ = L/2. (a) a non-
interacting system in a free space, (b) a band insulator (U/thop = 0, V/thop = 0.3), and (c) a
Mott insulator (U/thop = 1.5, V/thop = 0). The circles indicate avoided level crossings

The energy gap ΔE(U) between these states are known to converge to the Mott gap
ΔMott(U) in the limit of infinite system,

ΔE(U) → Δc(U). (38)

An important feature in the spectrum of the Mott insulator is that level repulsion
occurs at many places over the excited states. The repulsion comes from Umklapp
electron-electron scattering, that is a scattering process in which the momentum sum
changes by reciprocal lattice vectors. In band insulators level, repulsions obviously
come from one-body scattering as we have seen above.

Why have we first looked at the adiabatic spectrum? There is an important re-
lation between the adiabatic energy and the current expectation value. From the

Hellmann-Feynman theorem, ‘that is’,
dE

dλ
=

〈Ψ |∂H/∂λ|Ψ〉
〈Ψ |Ψ〉 for H(λ)|Ψ(λ)〉 =

E(λ)|Ψ(λ)〉, we obtain

Jn(φ) = 〈n;φ|J(φ)|n;φ〉

=
(

L

2π

)
∂En(φ)

∂φ
, (39)

which is valid for all φ. If we expand it around φ = 0, we get
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Jn(φ) = Jn(0) +
(

L

2π

)
∂2En(0)

∂φ2
φ + O(φ2). (40)

Using φ = FLt/h and defining the transport coefficients Dn by Jn(φ) =
Jn(0) + DnFt + O(F 2), we obtain

Dn(L) =
(

L

2π

)2
∂2En(0)

∂φ2
. (41)

When we focus on a dissipation less adiabatic transport at T = 0, the total current
thus reads

〈J(t)〉 = D0(L)Ft, (42)

which is determined by the Drude weight (charge stiffness) D0(L). As we can see in
Fig. 11, even for insulators ((b) and (c)), the Drude weight D0(L) of a finite system
is not necessarily zero. If we remember Kohn’s criterion [41] for metal-insulator
transitions, stated as

lim
L→∞

D0(L) =
{

0 insulator,
finite perfect metal,

(43)

we can see that we must go to the limit of infinite systems to distinguish metals from
insulators. Indeed, the problem of taking the infinite-size limit is that also occurs in
the study of dielectric breakdown in Mott insulators as we shall see later.

Short-Time Behavior – An Exact Diagonalization Result

Since the time evolution of many-body systems cannot be treated analytically, we
employ numerical methods to time-integrate in two steps—for short-time behavior
and long-time behavior. For the short-time evolution in dielectric breakdown of Mott
insulators we exactly diagonalize the time-dependent Schrödinger equation as fol-
lows: First we start from the ground state of H(φ = 0) at time t = 0. The wave
function evolves with the phase that increases as

φ(t) = 0 → FLt/h. (44)

Here F = eaE is the field strength, L the length of the chain. We numerically
solve the time-dependent Schrödinger equation,

i
d

dt
|Ψ(t)〉 = H(φ(t))|Ψ(t)〉. (45)

We choose the initial state to be the ground state |0〉 of H(0), which is obtained
here by the Lanczos method. The time integration of the state vector, which, being a
many-body state, has a huge dimension, requires a reliable algorithm. So we adopt
here the Cranck-Nicholson method that guarantees the unitary time evolution, where
the time evolution is put into a form,

|Ψ(t + Δt)〉 = e−i
∫ t+Δt

t
H(t) dt |Ψ(t)〉 � 1 − iΔt/2H(t + Δt/2)

1 + iΔt/2H(t + Δt/2)
|Ψ(t)〉, (46)
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which is unitary by definition. Here, the time step is taken to be small enough (dt =
1.0×10−2 with the time in units of �/t hereafter) to ensure convergence for L ≤ 10,
for which the dimension of the Hamiltonian is ∼ 104. We have concentrated on the
total Sz = 0 subspace with N↑ = N↓ = L/2.

Evolution of the total current

We first plot in Fig. 12(b) the result for the expectation value of the current den-

sity averaged over the sites, J = − it
L

∑
i,σ

(
ei 2π

L φ(t) c†i+1σciσ − h.c.
)
. The be-

havior of J(t) for a fixed value of the electric field F is seen to fall upon three
regimes when U is varied: A perfect metallic behavior (J(t) ∝ t) when the elec-
trons are free (U/W = 0), an insulating behavior (J(t) = 0) when the interaction
is strong enough (U/W � 1), and an intermediate regime of U/W where J is fi-
nite with some oscillations for finite systems. In contrast, a non-half-filled system in
non-equilibrium (F �= 0) has a time evolution that is distinct from the ground-state
behavior (Fig. 12(d)). The difference has its root in the spectral property as will be
discussed later.

If we look at the behavior over several periods (0 < φ < 10) for a fixed value
of U/W for the half-filled (Fig. 12(c)) and for a non-half-filled case (Fig. 12(d)), the
result may be summarized as follows:

(i) Small F regime (Mott insulator preserved at half filling)
A drastic difference between the half-filled and doped systems appears for small
F . When half-filled, J(t) in the limit of F → 0 smoothly approaches a periodic
saw-tooth behavior with periodicity φ = 1, which is the AB-oscillation of the
ground-state current.

(ii) Moderate F regime (metal)
In this regime, the current in the half-filled case is nonzero and shows oscillatory
behaviors (seen typically in data for LF = 0.008 in Fig. 12(c)).

(iii) Large F regime (perfect metal)
When the electric field F becomes large enough, the system behaves as a kind of
metal. The current J(t) exhibits a long-period (ΔΦ = Φ0L) oscillation, which
is the Bloch oscillation, a hallmark of a metal.

The averaged current,

〈J〉 =
1
T

∫ T

0

〈J(t)〉dt, (47)

integrated over a quarter of the Bloch period (with φ(T ) = L
4 ) is plotted against

F in Fig. 13 for various values of U . We can see that 〈J〉 becomes nonzero rather
abruptly at the metallization as F is increased, where the threshold electric field
increases and the F - dependence becomes weaker when we increase U/t. Just after
the metallization some oscillation (in the F - dependence this time) is seen for finite
systems.
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Fig. 12. (a) The sample geometry, where an AB flux, φ(t) = LFt, increasing linearly with
time induces an electric force through Faraday’s law. (b) Time evolution of the current, J(t),
for a half-filled, 10-site Hubbard model for various strengths of the Hubbard repulsion, 0 ≤
U/W ≤ 5 (W = 4thop is the noninteracting band width) for a fixed electric field F = 1/10L.
Time is measured in units of τt ≡ �/thop, LF in thop, and J(t) in 1/τt. The range of the
time in this panel is restricted to a range of the AB-flux 0 ≤ φ ≤ 1. (c) A wider plot of the
current for various values of F with a fixed U/W = 0.25, again for the half-filled case. Here
the horizontal axis is φ. (d) A plot similar to (c) for a non-half-filled case (N↑ = N↓ = 3 <
L/2 = 5)
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Fig. 13. Dependence of the averaged current 〈J(t)〉 on F for various values of U/t for the
half-filled Hubbard model with L = 6

Evolution of the survival probability

In order to calculate the decay rate introduced above, we compute the temporal evo-
lution of the ground-state survival probability,

P0(t) = |〈0;φ(s)|T̂ e−
i
�

∫ t
0 H(φ(s))ds|0; 0〉|2, (48)

where |0;φ〉 denotes the ground state of H(φ). The survival probability is related to
the decay rate of the ground state by P0(t) = e−Γt.

The short-time feature in the survival probability is expected to be described by
the single Landau-Zener transition between the ground state and the lowest excited
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Fig. 14. (a) Spectrum of the half-filled Hubbard model H(φ) for 0 ≤ φ ≤ 1. Bold lines
represent the ground state and the first state among the tunneling-allowed excited states, re-
spectively. (b) U/W -dependence of the Mott gap ΔE, encircled in (a). W = 4thop is the
non-interacting band width, and system size is L = 10 and U/thop = 1.5
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state, displayed by the two bold lines in the figure,2 that takes place around φ = 1
2

(Fig. 14(a)). If we concentrate on the two levels, the time evolution operator at t =
Δt (Δt = h

FL is defined as the time when φ(Δt) = 1 is reached) is approximated
by a 2 × 2 matrix,

U2level(t = Δt) =
(√

1 − pe−iχ −√
p√

p
√

1 − peiχ

)
, (49)

where the tunneling probability p is given by the Landau-Zener formula [15, 24, 42],

p = exp
(
−π

FLZ
th

F

)
, FLZ

th =
[Δc(U)/2]2

v
. (50)

Here, Δc(U) is the excitation gap (Fig. 14(b)), v = 2thop, and χ the sum of dynam-
ical and Stokes phases.

In order to verify (50), we can numerically calculate the survival probability
P0(t) from t = 0 to t = Δt for various U and F (Fig. 15). After determining
the tunneling probability from p = 1−P0(Δt), we plot it against the diabaticity pa-

rameter (Δc(U)/2)2

vF . The data points (Fig. 15(b)) for various values of U fall around
a common line, which is just the prediction of the Landau-Zener formula. The agree-
ment is better for smaller values of U where we can treat the Umklapp term as a
perturbation.

Long-Time Behavior—A Time-Dependent DMRG Result

The conclusion obtained in the previous section with the exact diagonalization is
that the short-time behavior after the electric field is switched on is dominated by the
single Landau-Zener transition between the ground state and the first excited state.
However, several important questions remain, for example,

Will the first transition remain finite in the infinite-size limit? Indeed, Kohn’s crite-
rion (43) asserts that the φ dependence of the ground-state energy of a Mott
insulator should vanish for L → ∞. This implies that the adiabatic flow (Fig.
11(c)) should become flat in this limit, which may seem to indicate that the tran-
sition will be washed out. However, this contradicts with the expression for the

threshold FZener = [Δc(U)/2]2

v (50), which remains finite in the L → ∞ limit.
Since this expression is obtained in a small system and in the small U limit,
there is a possibility that this breaks down. Surprisingly, we shall show that this
expression survives in large systems even when U is not small (Fig. 18).

The effect of pair annihilation After the first transition, we expect the system to un-
dergo further transitions to higher-energy levels. This process, however, should
be couterbalanced by other processes, the pair annihilation of doublons and
holes. These processes, which do not conserve the total momentum in general,

2 In Fig. 14(a), three states appear in the circle. However, transition from the ground-state to
the middle state is forbidden by symmetry.
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Fig. 15. (a) Short-time temporal evolution of the survival probability P0(t) in the half-filled
Hubbard model (L = 10, N↑ = N↓ = 5) for various values of F with U/t = 0.1. The
inset shows the solutions of the LZS equation with its asymptotic values indicated as dashed
horizontal lines. (b) The transition probability p, with P (t = Δt) = 1−p, plotted against the
diabaticity parameter. The dashed line is the prediction of the Landau-Zener formula

are caused by the Umklapp scattering. Thus, the pair creation (= Landau-Zener
transitions to high-energy states) tends to be offset by pair annihilation, which
implies that the decay rate of the ground state may become smaller compared to
the single Landau-Zener transition case.3

3 A similar problem has been studied from a general point of view by Wilkinson and Morgan
[44].
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These questions have motivated us to study the dielectric breakdown in the
half-filled Hubbard model for longer time periods, which is accomplished by the
time-dependent density matrix renormalization group method. A version of the real-
time DMRG was first introduced by Cazalilla and Marston with a truncated DMRG
Hilbert space and a renormalized Hamiltonian [43]. Precision of their method de-
grades rapidly in the long-time limit, since an update of the Hilbert space is lacking.
Recently, Vidal proposed an improved method for simulating time-dependent phe-
nomena in one-dimensional lattice systems employing the Trotter-Suzuki decompo-
sition [45, 46]. White and Feiguin [19] as well as other groups [47] modified this
idea and combined it with the finite-size DMRG algorithm.

If we denote the DMRG wave function as

|Ψ〉 =
∑

lαjαj+1r

ψlαjαj+1r|l〉|αj〉|αj+1〉|r〉, (51)

where |l〉, |r〉 is the basis of the truncated Hilbert space with dimension m and
|αj〉, |αj+1〉 are the two sites that bridge the left and right blocks in the DMRG
procedure. By employing the Trotter-Suzuki decomposition,

e−idtH � e−idtH1/2e−idtH2/2 . . . e−idtH2/2e−idtH1/2, (52)

we can apply the time-evolution operator e−idtHj/2 to the j-th wave function as
(
e−idtHj/2ψ

)

lαjαj+1r
=
∑

α′
jα′

j+1

(
e−idtHj/2

)

αjαj+1;α′
jα′

j+1

ψlα′
jα′

j+1r. (53)

After applying e−idtHj/2, we diagonalize the density matrix and move to the next
link just as in the usual finite-size algorithm. One cycle of this procedure results in
an evolution of time by dt, and we can repeat it as many times as we wish. Compared
with the version by Cazalilla-Marston [43], this algorithm has a higher precision
and we can simulate non-equilibrium excited states efficiently [47], although one
drawback of the t-dependent DMRG is that we can only treat systems with open
boundary conditions.

Here we study transient behaviors of the one-dimensional Hubbard model with
open-boundary condition. We use the time-independent gauge, for which the Hamil-
tonian is

H(F ) = −thop

∑

j,σ

(
c†j+1σcjσ + h.c.

)
+ U
∑

j

nj↑nj↓ + FX̂, (54)

where X̂ =
∑

j jnj is the position operator representing the tilted potential. As in
the previous section, we start the time evolution from the F = 0 ground state |0〉
obtained by the usual finite-size DMRG. The wave function in this gauge is simply

|Ψ(t)〉 = e−itH(F )|0〉, (55)

which is obtained with the t-dependent DMRG.
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Evolution of the charge density

We first discuss the temporal evolution of the charge density, nj(t) = 〈Ψ(t)|nj |Ψ(t)〉,
after the electric field is switched on at t = 0. At half-filling, the initial distribution is
nj(t) = 1. After the application of the electric field, a charge density wave (CDW)
pattern is formed when the electric field is not too strong (Fig. 16(a)). This state is
stationary and the density profile do not change any further. The pattern is formed be-
cause the boundary condition breaks the translational symmetry, where the amplitude
of the pattern corresponds to the polarization ΔP (F ) induced by the field. When the
electric field becomes stronger, charge transfers start to occur, with charge accumula-
tion and charge depletion being formed around the edges in an open-boundary chain
(Fig. 16). This is a sign that the ground state collapses due to quantum tunneling.

The decay rate of the ground state

The groundstate-to-groundstate transition amplitude is, in the time-independent
gauge,

Ξ(t) = 〈0|e− i
�

τ(H+FX̂)|0〉e i
�

tE0 , (56)

where we denote the ground state of H as |0〉 and its energy as E0. Figure 17(a)
shows the temporal evolution of the ground-state survival probability |Ξ(t)|2 for a
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Fig. 16. Temporal evolution of the charge density nj(t) in the half-filled Hubbard model with
m = 150, L = 50, dt = 0.02 for F = 0.1 (a) and F = 1.0 (b). (c) depicts a cross section of
(a) for t = 4



Quantum Breakdown in a Strongly Correlated Electron System 275

(b)

Γ(
F

)/
L

0.00
0.0 0.2 0.4

0.02

0.04

F       (U)
Mott
th

(a)

0.06
0.11

F=0.17

0 10 20 30
0

1

2
short time

long time

F/thop
t

Fig. 17. (a) Temporal evolution of the ground-state survival probability |Ξ(t)|2 after the
electric field F is switched on at t = 0 in the 1D half-filled Hubbard model with U/thop =
3.5, obtained with the time-dependent DMRG for L = 50 with the size of the DMRG Hilbert
space m = 150 and the time step dt = 0.02. The dashed line represents − ln |Ξ(t)|2 =
Γ (F )t+c for F/thop = 0.17, while the dotted line delineates the initial slope (the short-time
behavior). (b) The decay rate versus F in the half-filled Hubbard model. Dashed curve is a fit
to (57), where FMott

th (U) is the threshold

system with U/thop = 3.5. As time evolves, the slope of − ln |Ξ(t)|2 (∝ the de-
cay rate) decreases after an initial stage, which implies a suppression of the tun-
neling from the short-time behavior. This should indicate that charge excitations
are initially produced due to the Landau-Zener tunneling from the ground state
to the first excited states, but that scattering among the excited states become im-
portant as the population of the excitations grows. In other words, pair annihi-
lation of carriers becomes important and acts to suppress the tunneling rate. We
have determined Γ (F ) from the long-time behavior with a fitting − ln |Ξ(t)|2 =
Γ (F )t + const.

The decay rate per length Γ (F )/L is plotted in Fig. 17(b), where we have varied
the system size (L = 30, 50) to check the convergence. Γ (F )/L is seen to remain
vanishingly small until the field strength exceeds a threshold. To characterize the
threshold Fth(U) for the breakdown we can evoke the form obtained above for the
one-body system. The formula (in (27) for d = 1 with the error function ignored and
the factor of 2 recovered for the spin degeneracy),

Γ (F )/L = −2F
h

a(U) ln
[
1 − exp

(
−π

FMott
th (U)

F

)]
, (57)

is originally derived for one-body problem, and an obvious interest here is whether
the formula can be applicable if we replace the one-body F band

th with the many-body
FMott

th (U). In the above we have added a factor a(U), a parameter representing the
suppression of the quantum tunneling. The dashed line in Fig. 17(b) is the fitting
to the formula for U/thop = 3.5, where we can see that the fitting, including the
essentially singular form in F , is surprisingly good, given a small number of fitting
parameters. The value of a(U) turns out to be close to but smaller than unity (taking
between 0.77 to 0.55 as U/t is increased from 2.5 to 5.0).
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Fig. 18. The dielectric-breakdown phase diagram on the (U, F ) plane for the one-dimensional
Hubbard model. The symbols are the threshold FMott

th (U) obtained by fitting the decay rate
Γ (F )/L to (57)), while the dashed line is the prediction F = FLZ

th (U) of the Landau-Zener
formula (58)

If we perform this for various values of U we can construct a “nonequilibrium
(dielectric-breakdown) phase diagram”, as displayed in Fig. 18, which plots the U
dependence of FMott

th . The dashed line is the prediction of the Landau-Zener for-
mula [13],

FLZ
th (U) =

[Δc(U)/2]2

v
. (58)

For the size of the Mott (charge) gap we use the Bethe-ansatz result, [48]

Δc(U) =
8thop

U

∫ ∞

1

√
y2 − 1

sinh(2πythop/U)
dy, (59)

with v/thop = 2. As can be seen, the DMRG result and the Landau-Zener result
agrees surprisingly well.

2.5 Long-Time Behavior and a Mapping to a Quantum Random Walk

Since many levels should be involved in the above pair creation/annihilation pro-
cesses, next thing we want to have is a statistical mechanical setup for the time
evolution of the Mott insulator. The problem at hand is a closed quantum system
in external driving forces (e.g., electric fields), which are represented by a time vary-
ing parameter φ(t) of the Hamiltonian. We want to discuss the asymptotic solution
of the time-dependent Schrödinger equation

i�
d

dt
|Ψ(t)〉 = H(φ(t))|Ψ(t)〉. (60)

We introduce |n;φ〉 as the set of eigenstates of the time-dependent Hamiltonian
H(φ), and denote the energy eigenvalue as En(φ), that is H(φ)|n;φ〉 = En(φ)|n;φ〉



Quantum Breakdown in a Strongly Correlated Electron System 277

0 1 2 3 φ

(b) idealized spectrum

0.2 0.4 0.6 0.8 1.0

–9

–8

–7

0.0

φ

(a) Half-filled (Mott insulator)

0

±2

±1

↪

n

quantum interference

Fig. 19. (a) The spectrum of the half-filled Hubbard model. The circle corresponds to Landau-
Zener transition between the two energy levels which can be expressed by a 2 × 2 unitary
matrix (65). (b) Idealized energy levels where level anticrossings are expressed by circles.
Quantum interference takes place, when contributions from different paths are considered

(Fig. 19). Since |n;φ〉 forms a complete orthonormal basis, the wave function |Ψ(t)〉
can be expanded as

|Ψ(t)〉 =
∑

n

ψ(n, t)e−
i
�

∫ t
0 En(s)ds|n;φ(t)〉 (61)

with coefficients ψ(n, t) = 〈n;φ(t)|T̂ e−i
∫ t
0 H(φ(s))ds|0; 0〉/e− i

�

∫ t
0 En(s)ds. Note

that we have removed the contribution from the dynamical phase
∫ t

0
En(s)ds/� in

the definition of ψ(n, t). Although the evolution depends on the detail of the system
(H(φ)), we can deduce some universal features that depend only on the feature of
the energy levels, that is distribution of level repulsion in the spectrum.

Each energy level is subject to the Landau-Zener tunneling to neighboring levels
in a time period Δt/2, and is most conveniently expressed in terms of the transfer
matrix representation [10, 49]. To this end, we denote the pairs as

Ψ(n, τ) =
(

ψL(n, τ)
ψR(n, τ))

)
, (62)

and the time evolution “rule” (shown in Fig. 20) can be expressed as

Ψ(n, τ + 1) = Pn+1Ψ(n + 1, τ) + Qn−1Ψ(n− 1, τ), (63)

where Pn (Qn) is the upper (lower) half of a 2 × 2 unitary matrix,

Un =
(
an bn

cn dn

)
, Pn =

(
an bn

0 0

)
, Qn =

(
0 0
cn dn

)
. (64)
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Fig. 20. Application of Qn and Pn in the quantum random walk

The diagonal elements of Un represent the Landau-Zener transition from the n-th
level to (n− 1) or (n + 1)-th level, where the explicit form is

Un =
( √

pne
iβn

√
1 − pne

iγn

−
√

1 − pne
−iγn

√
pne

−iβn

)
. (65)

Here the Landau-Zener tunneling probability pn depends on the ratio of the Zener
threshold field Fn

Zener and the electric field F as

pn = exp
(
−π

Fn
Zener

F

)
, (66)

where Fn
Zener generically depends on n.

If we regard Ψ(n, τ) =
(
ψL(n, τ)
ψR(n, τ)

)
as a “qubit” on “site” n, Eq. (63) defines

an evolution of a one-dimensional quantum walk with a reflecting boundary at n = 0
corresponding to the ground-state (Fig. 19(c)). A quantum walk is a quantum coun-
terpart of the classical random walk. Models with essentially equivalent ideas have
appeared in various fields: to name a few, quantum transport and dissipation [13, 50],
quantum Hall effect [51], optics [52, 53] and recently in quantum information [54–
65]. In the field of quantum information (see e.g. [66]), introduced by Aharonov,
Ambainis, Kempe and Vazirani in 2001 [67], the quantum walk is arousing interest
in the hope of revealing new features in the quantum algorithms (for reviews see
[54, 56, 61]). Researches stem into many directions, for example, the effect of ab-
sorbing boundary conditions [55, 57, 64], higher-dimensional systems [57, 64, 68],
localization in systems with internal degrees of freedom [69], and many powerful
analytical techniques are being developed.

An important feature of the quantum walk, as opposed to the classical walk, is
that different transition paths interfere with each other quantum mechanically. We
in fact find that the quantum interference leads to a dynamical localization, an ana-
log of Anderson’s localization taking place in the energy space rather than in the
position space. In our previous work [7], we have employed the PRQS method, a
technique to treat quantum walks, to perform the path integral, and obtained the
exact asymptotic distributions of the wave function for a simplified model. The
resultant states can be categorized into three types, depending on the strength of
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Fig. 21. The time evolution of the distributions of wave function amplitude ρ(n, t) =
|ψ(n, t)|2 in energy space. The vertical axis n is the index of the energy levels. (a) For small
tunneling, the distribution is localized at the ground state. (b) For intermediate tunneling, a
localized state remains, while the amplitude starts to bifurcate into excited states of the wave
function is excited. (c) When the tunneling is larger than the threshold, the localized state
disappears

the electric field, as schematically plotted in Fig. 21. (A) is an adiabatic evolu-
tion that takes place in weak driving forces (electric fields). The dominant part
of the distribution ρ(n, t) against energy is a delta function localized around the
ground-state. When the driving force become stronger, quantum tunneling broad-
ens the delta function, as plotted in (B). The shape of the peak is maintained by
a balance between tunneling and dynamical localization. (C) is the case where the
driving force overwhelms the effect of dynamical localization, and the system is
driven rapidly into the excited states. This, in our view, corresponds to the dielectric
breakdown.
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2.6 Experimental Implications

Now we discuss experimental implication of the many-body Landau-Zener transi-
tion mechanism. In fact, there are several mechanisms that may lead to breakdown
of insulators. For example, Fröhlich’s electric avalanche mechanism may take place,
in which a small number of excited electrons act as a seed and become accelerated
by the electric field until they cooperatively destroy the insulator. We can distinguish
Landau-Zener transition from the avalanche mechanism through the temperature de-
pendence and from interface effects by changing the size of the sample. Another
important effect is the band bending near an interface of the Mott insulator and elec-
trodes. For a thin sample, this may lead to injection of carriers, and results in the
interface Mott transition [14].

Dielectric breakdown of one-dimensional Mott insulators was experimentally
studied by Taguchi et al., who obtained the J−E characteristics (Fig. 22) of Sr2CuO3

and SrCuO2 samples [16], which are both quasi-1D, strongly correlated electron sys-
tems. Experiments were done by placing small single crystals in circuits as shown
in Fig. 22(a), and the voltage drop V was measured while the current density J was
fixed. Depending on the strength of the electric field F , transport properties change
drastically, as summarized in the following.

In weak electric fields, the J − E characteristics shows an Ohmic behavior
at finite temperatures. When the electric field exceeds a threshold value, the cur-
rent shows a dramatic increase. Such drastic changes cannot be explained by per-
turbation in F , and we must consider non-perturbative effects, that is a behavior
essentially singular in F like J ∼ function of exp (−Fth/F ) , which is a typi-
cal tunneling effect with threshold Fth. The temperature dependence (Fig. 23) of
the threshold can be fit well by Fth(T )/Fth(0) ∼ exp (−T/T0). This excludes
the avalanche mechanism, for which an activation type temperature dependence
(F avalanche

th (T )/Fth(0) ∼ exp (T0/T )) is expected.
One indication that the breakdown is indeed quantum in nature is that the thresh-

old extrapolates to a finite value for T → 0. From the extrapolation (Fig. 23(a)), we
obtain a threshold,

F exp
th ∼ 106 − 107 (eV/cm), (67)

for Sr2CuO3 and SrCuO2. The Landau-Zener result (intended for T = 0) of the
threshold (50) is

FLZ
th (U) =

[Δc(U)/2]2

v
∼ (1eV)2/(10−7eV/cm) ∼ 106 (eV/cm) (68)

is comparable with the experimental result.
Interestingly, the decay rate Γ (U) we have introduced theoretically can be mea-

sured experimentally [16]. This is done by studying the transient behavior of the
current after the electric field is switched on at t = 0. At first the current density is
zero, and then becomes non-zero after a certain delay time t = τ(F ) (Fig. 23(b),
lower inset). The authors in [16] have introduced a phenomenological percolation
model to relate the delay time with the production rate P (F ) of the conductive do-
mains (see [16]). In this model, conductive domains are envisaged to grow in the



Quantum Breakdown in a Strongly Correlated Electron System 281

(Finite T effect)
Ohmic law

Dielectric breakdown(b) (c)
Linear response
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ρ(
V

,T
)

Negative differential
resistance

(a)

Fig. 22. (a) A schematic measurement circuit. (b) J −E characteristics of a SrCuO2 sample.
(c) Temperature dependence of the resistance for various applied voltages. After Taguchi et al.
[16]

sample, and the current density is assumed to become finite when the left and right
electrodes are connected by these domains (Fig. 23(c)). This leads to a relation,

P (F ) = −
(
F

dτ

dF

)−1

. (69)

The experimental result for the production rate in Fig. 23(b) is obtained in
this way.

The nature and the microscopic origin of the “conductive domain” are not clear,
but if we interpret them to be domains with a high density of charge excitations pro-
duced by the Landau-Zener transition, the vacuum decay rate per volume Γ (F )/Ld
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Fig. 23. An experimental result for the temperature dependence of the threshold electric field
Fth(T ) for the dielectric breakdown (adopted from Taguchi et al. [16]). Dashed lines corre-
spond to a fitting to exp(T0/T ) predicted by Fröhlich’s electron avalanche. Solid lines corre-
spond to a fitting to exp(−T/T0). (b) The electric-field dependence of the delay time τd for
Sr2CuO3. (c) The production rate of “conductive domains”. The inset exemplifies the temporal
evolution of the current at various applied voltages. Adopted from Taguchi et al. [16]

characterizes quantum tunneling from the ground state to excited states. With the
identification we expect that the decay rate and the production rate are identical,
that is,

P (F ) ∼ Γ (F ). (70)

This identification is encouraged by the field dependence of P (F ) (lower panel of
Fig. 23(b)), which is close to the expected form,

Γ/L ∼ −2F
h

a(U) ln
[
1 − exp

(
−π

FMott
th

F

)]
, (71)

of the decay rate.
In this experiment a scaling study—a systematic change of the size of the

sample—was also performed to confirm that the nonlinear effect occurs in the bulk.
From these observations, we conclude that the experiment by Taguchi et al. [16] can
be explained by the many-body Landau-Zener tunneling mechanism. However, to
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be more confident, we need to know the temperature dependence of the threshold
theoretically, which is still a challenging task in the present many-body system.

2.7 Conclusion

In this chapter, we have explained how dielectric breakdown of Mott insulators can
be explained from the non-equilibrium behaviors of charge carriers, especially from
their creation and annihilation processes. Both processes are the result of many-body
Landau-Zener non-adiabatic tunneling transition between many-body energy lev-
els, where charge creation processes are counterbalanced by annihilation processes.
From numerical result we have obtained a nonequilibrium (dielectric-breakdown)
phase diagram. If the coherence of the dynamics is preserved at sufficiently low
temperatures, a quantum interference, as modeled by a quantum walk in energy
space, may lead to dynamical localization, which saturates the creation process
and leads to a nonequilibrium stable state. The decay rate Γ (F ) that we have dis-
cussed is a measurable quantity: it is the production rate observed by Taguchi et al.
[16] in copper oxides. The experimental result is consistent with our prediction
Γ (F ) ∼ F

2π ln(1− p) when an extrapolation to zero temperature is made. It is an in-
teresting future topic to understand the properties of the nonequilibrium stable state
in more detail.

An important open question is how the energy dissipation processes take place in
non-equilibrium situations. Here we have stressed that the many-body processes act
effectively as a source of dissipation through scattering, but an explicit incorporation
of heat-bath effects, electrode effects, etc, is left to a future problem.
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1 Introduction

1.1 Percolation Theory

Percolation theory is concerned with the behaviour of connected clusters in a random
graph. Originally developed to mathematically describe random media, it has over
the years matured to a field of research in its own right. At its core is the notion of a
percolation threshold: Say, on a cubic two-dimensional lattice Z

2 neighbouring ver-
tices are connected by an edge with probability p, the distributions being identical
for all edges and independent. We say then that this edge is ‘open’. Clearly, when
p = 0, all vertices are unconnected to each other. If we now increase the probability
p starting from zero, more and more vertices will be connected. For small values of
p, this will typically lead to isolated, non-crossing, small clusters of connected ver-
tices. With increasing probability, the size of the clusters will also increase. The key
observation now is that there exists a critical percolation threshold p

(c)
2 that marks

the arrival of an infinite crossing cluster. For p < p
(c)
2 , all open clusters are finite,

whereas for p > p
(c)
2 there exists almost certainly an open-infinite cluster. This be-

haviour of having a connected open-crossing cluster in a finite subset of Z
2 can also

be impressively documented by simple numerical simulations. Since the early work
on fluid flow in a porous stone giving rise to the first simple percolation model [21],
percolation theory has found numerous applications in a quite impressive portfolio of
diverse fields, besides being a mathematical discipline in its own right [16]. This in-
cludes the study of disordered many body systems in classical and quantum physics
of instances of fluid dynamics and fire propagation, of reliability of processes or of
many aspects of statistical mechanics.

When it comes to applying percolation theory to physical systems, this article
forms an exception in this book. This chapter is concerned with the connection be-
tween percolation theory on the one hand and quantum information processing on

Kieling, K., Eisert, J.: Percolation in Quantum Computation and Communication. Lect. Notes Phys. 762, 287–319 (2009)
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the other hand. We are facing a percolation-type situation somewhat similar to the
one encountered in the study of disordered systems.

• However, in the context of quantum information processing, the randomness we
encounter is not the one of classical probabilistic parameters in a model, but
rather originates from the statistical character of quantum theory under measure-
ments as such.

• Also, it is not the aim to model physical systems in their unknown properties,
but rather think of engineered quantum systems that have been prepared in a very
specific state for a very specific purpose. In this sense, the emphasis is less on a
posteriori description of properties of systems or materials that are already there.
Instead, to explore what state preparation and what communication protocols are
possible, when limited to probabilistic processes in quantum information appli-
cations.

This chapter forms an instance of a ‘review’ on the link between percolation theory
and quantum information theory, as a topic that is presently receiving notable atten-
tion. We will see that this link is a quite natural one, where percolation in several
ramifications enters as a concept to overcome limitations imposed by probabilistic
processes that occur in measurement processes. Yet, whereas this link has been men-
tioned a number of times in the literature, so far, only four research articles flesh
out this link in detail [1, 9, 28, 34]. This chapter can, hence, be seen as (i) a short
review on the material that is known and published at present, as (ii) a presentation
of a long and more detailed version of the short proof presented by the same authors
in [28], and, most importantly, as an (iii) invitation to the subject. Readers familiar
with elements of quantum information theory may wish to skip to Sect. 2.

1.2 Quantum Computation and Communication

Quantum information processing takes the idea seriously that when storing or pro-
cessing information, it matters whether the underlying physical system follows clas-
sical or quantum laws. In classical information theory, one is used to the fact that
it hardly makes sense to think of the physical carrier of information, as one can
transform the information stored in one form to another carrier in a lossless fashion
anyway. This abstraction from the physical carrier is challenged when one thinks of
single quantum systems forming the elementary processing units. Indeed, the task of
transforming the ‘information stored in a quantum system’ into classical information
and back is impossible. Quantum information processing is, however, not so much
concerned with limitations due to quantum effects, but rather thinks of new applica-
tions in computing and communication when the carriers of information are single
quantum systems.

A quantum computer [14, 32] is such an envisioned device: One thinks of having
an array of quantum systems – spins, say, referred to as qubits. This system, associ-
ated with a Hilbert space H = (C2)⊗n, is initially prepared in a known, preferably
pure quantum state described by a state vector |ψ〉. Then one manipulates the state by
means of unitary time evolution or by means of measurements. Acknowledging that
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not any unitary dynamics is accessible on a quantum many-body system, in the cir-
cuit model, this step of computation is broken down to quantum gates [14, 32]. One,
hence, implements a sequence of unitary gates that have trivial support on all sites
except single sites – giving rise to single qubit gates – and pairs of sites – two-qubit
gates. The state vector after the unitary time evolution is then

|ψ〉 =
∏

j

Uj |ψ〉. (1)

This is followed by local individual measurements on the spins. The measurement
outcomes at the end then deliver (typically statistical) data, from which the outcome
of the computation can be estimated. The important point is that because the quantum
system follow the laws of quantum mechanics and can be prepared in a superposition
exploring an exponentially large Hilbert space, some problems could be solved with
significantly less effort on this envisioned device than on any classical computer. In
fact, they could be solved with polynomial effort in case of some problems such as
factoring that are believed to be computationally hard classically.

Yet, the circuit model is only one out of the several models for quantum compu-
tation. In the computational model having center stage in this chapter, one abandons
the need for unitary control via quantum gates, and performs only local measure-
ments on an entangled quantum state of many constituents. This is the model of the
one-way computer [8, 23, 37]. The entanglement present in the initial resource then
facilitates the efficient simulation of any other computation that had unitary gates
available. Needless to say, in any such approach, the core question is how to actually
prepare this initial resource state, an instance of a cluster or graph state [23, 24]. It is
in this preparation – and in the way to overcome the intrinsically probabilistic char-
acter of quantum measurements – that percolation ideas will be important in the first
part of this chapter. It will turn out that by making use of percolation ideas some of
the key obstacles in some physical architectures to realize quantum computation can
be weakened. In particular, in optical approaches, we will see that percolation ideas
facilitate the preparation of such states with little dependence of preparation steps on
earlier measurement outcomes – an experimentally very difficult prescription in this
context. Percolation will, hence, help us to think of what is known as linear optical
quantum computation [9, 28, 29, 47].

The second part of this chapter is dedicated to a related but different question.
This is taken from quantum communication and key distribution: Several applica-
tions in quantum information processing, most importantly, quantum key distribution
for the secure transmission of classical data, but also instances of the envisioned dis-
tributed quantum computing, rely on the availability of almost maximally entangled
states shared between spatially separated laboratories. If one has several such stations
on the way, each communicating and exchanging quantum particles with a number
of neighbours, one arrives at the idea of a quantum network. In Sect. 3 we will review
the use of percolation ideas to establish maximally entangled pairs for quantum com-
munication between arbitrary stations, based on the published work [1, 34]. Here, the
main point will be that classical percolation ideas can be employed to meet the aim
of sharing entanglement between arbitrary vertices of a graph: Instead, appropriate
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quantum measurements allow to outperform the situation of classical edge perco-
lation. In this sense, one encounters a notion of entanglement percolation. In fact,
such entanglement percolation can drastically outperform strategies based on stan-
dard edge percolation.

2 Percolation and Quantum Computing

2.1 General Concepts

We now turn to the preparation of cluster or more generally graph states as resource
state for measurement-based quantum computation. This measurement-based model
is a desirable route to quantum computation in a number of architectures. This is not
the least due to the very clear distinction between the preparation of entanglement,
and the consumption thereof by means of measurements, abandoning the need for
unitary gates. Percolation ideas play the crucial role here when thinking of errors,
of dealing with probabilistic gates building up the states and, most importantly, of
coping with the daunting feed-forwards (dependence of later action on earlier mea-
surement outcomes).

It will be necessary – before we establish the percolation argument – to introduce
a number of concepts that will be used later on. A graph state [24, 41, 43] is a
quantum state described by an undirected graph G = (V,E), with V being the set of
vertices, and E the set of edges. The vertices are embodied by physical systems, so
single spins or qubits. The edges represent interactions. More specifically, a graph
state is the simultaneous eigenstate to the set of stabilizers

K
(a)
G = σ(a)

x

⊗

b:dist(a,b)=1

σ(b)
z (2)

for all a ∈ V with eigenvalue 1, that is,

K
(a)
G |ψG〉 = |ψG〉 ∀a ∈ V. (3)

Here, dist(x, y) is the graph-theoretical distance [5] between vertices x and y on
G, that is, dist(x, y) = 1 for neighbouring vertices. Here and in the following, σ(b)

x,y,z

denotes a Pauli operator with support on the Hilbert space of the physical system
labelled b.

Equivalently, this state can be thought of as having each qubit prepared in the
state vector |+〉 = (|0〉 + |1〉)/

√
2 and applying an interaction leading to a phase

gate or controlled-Z-gate

Uz = |0, 0〉〈0, 0| + |0, 1〉〈0, 1| + |1, 0〉〈1, 0| − |1, 1〉〈1, 1| (4)

to neighbouring vertices a, b ∈ G, so to vertices that are connected by an edge
(a, b) ∈ E. Because these gates are diagonal in the computational basis, they com-
mute, and hence the order in which they are applied does not influence the final state.
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Such a graph state may be defined for any graph. Most important for our pur-
poses are lattices where V ⊂ Z

2, so finite cubic lattices in two dimensions. Such
a graph state of a cubic lattice is called a cluster state [8]. It has been shown that
local measurements on single constituents of such a cluster state are just as powerful
as the gate model for quantum computation, and it can, hence, efficiently simulate
any other quantum computer [37, 38]. That is, for a given finite computation there
exists a finite graph with V ⊂ Z

2 such that the computation can be simulated by a
sequence of suitable single-qubit local measurements on the cluster state. The usual
mapping from a circuit model to a cluster state allows to label one dimension as time
that comes in handy because only time slices of a cluster actually have to exist at a
given point during the computation. We will also frequently encounter finite subsets
of the hexagonal lattice which, is a computation resource in the same sense. Note
that a priori the lattice does not correspond to any spatial lattice – what determines
the quantum state are solely the adjacencies on the graph.

When preparing cluster states, there are two main types of errors where percola-
tion comes into play:

• One can think of the above lattice structure emerging from a physical lattice.
This may be an optical lattice generated by standing wave laser light, where
atoms are located at individual lattice sites [31].4 By means of interactions or
controlled collisions, implementing (2) or (4), respectively, a cluster state can in
principle be prepared in such systems. Yet, Mott hole defects, where sites are left
unoccupied in a random fashion, lead to defects. This is a situation where ideas
of site percolation can overcome the problem of having non-unit filling factors.

• Using other types of quantum systems, cluster states have to be prepared se-
quentially, by means of explicitly employing gates to pairs of constituents. This
should not be confused with the absence of gates when doing the actual computa-
tion via measurements – the gates used during state preparation are independent
of the actual algorithm to perform. The most resource-efficient and, hence, most
feasible ideas of doing quantum computation with linear optical systems or with
atoms in optical cavities (see, e.g. [30] and references therein) rely on exactly
such a sequential build-up of the cluster state. Here, one starts from elementary
building blocks, like entangled photon pairs. From these building blocks the full
cluster or graph state can be prepared by means of a sequential application of
controlled-Z gates. During the course of this process, in principle, gates between
any pair of qubits are allowed, which one is actually applied at a given step de-
pends on a chosen prescription which, in turn, depends on outcomes of earlier
gate applications. The lattice structure is imposed by the sequence of gates, so
every state described by an undirected graph without degenerate edges can be
generated.

4 We leave issues that are under significant consideration in the literature such as the question
of locally addressing single sites in measurements aside and focus on the preparation of the
cluster state.
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This being the most promising approach to think of optical quantum computing,
it seems important to address two major challenges that have to be overcome in
such an approach:5.

1. The applied gates necessarily operate in a probabilistic fashion.6 Indeed, the
probability of success of such gates is typically quite small [13, 40]. Hence,
when sequentially preparing a cluster state, needless to say, the very or-
der in which the states are sent through the entangling gates plays a cru-
cial role [20, 26, 27]. Especially, the success probability of the fusion gates,
psuccess = 1/2, will be of central interest as this is already the optimal prob-
ability for such a gate in linear optics [11, 20]. A naive approach of trying
to grow an n × n cluster state by using such gates will fail. However, this
obstacle can in principle be overcome: One can show, using combinatorical
methods and ideas of convex optimization, that there exist methods to achieve
an optimal scaling of O(n2) invocations of quantum gates (and number of
qubits), despite the gates operating probabilistically [20].

2. Unfortunately, this – and actually any such – procedure leads to a great deal
of conditional dynamics: Depending on the outcomes of earlier fusion oper-
ations, one has to decide which pair of states will be used in the next step.
This, however, turns out to be a significant challenge in actual experimen-
tal realizations, as it requires active switching including coherent interaction
between any pair of modes in the setup, while unused modes are stored in
quantum memories, thus, clearly rendering it a very difficult prescription.

To lessen this daunting requirement, percolation ideas can come into play: One
could think of a static setup, that is, an underlying structure is imposed onto the
resources and only applications of entangling gates between nearest neighbours
are allowed. The probabilistic nature of quantum gates is the source of random-
ness; we now face a problem of edge percolation. How exactly this will work
and how to find bounds to the scaling of the resource requirements to prepare
two-dimensional cluster states even if the probability of an edge being open is
smaller than the critical percolation threshold for a two-dimensional cubic lat-
tice p < p

(c)
2 , will be the subject of the next section [28]. The latter property –

which is responsible for some technicalities – is important, as the probability of
success of the fusion gate happens to be psuccess = 1/2, which is identical with
the critical percolation threshold p

(c)
2 = 1/2. Hence, ways have to be found to

achieve percolation even using such gates.

5 Again, we will focus on the intrinsic problems of such an idea. From a physical perspective,
the development of heralded sources with high efficiency and mode quality, as well as
detectors with high-detector efficiency are major obstacles, a significant research effort is
dedicated to.

6 This is a consequence of gates being in turn implemented by means of measurements. All
non-linearities in fully linear optical systems have to be effectively realized by means of
measurements, and this randomness is, hence, the intrinsic randomness in measurements
in quantum mechanics. Gates such as the fusion gates [10, 35] act in effect as the desired
controlled-Z gate, albeit in a probabilistic fashion. In approaches based on atoms in optical
cavities, coupled via light similar issues occur.
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By further developing these ideas, one can ask whether there is a phase transition
in edge percolation with respect to quantum computing applications: One thinks of
a cubic lattice as in 2, with edges being open in case a gate was successful. If p >

p
(c)
2 , one can extract a resource almost certainly that allows for universal quantum

computing. Below the threshold p < p
(c)
2 , one can show that one can almost certainly

simulate the evolution of the quantum system on a classical computer. Hence, this
regime is not only useful for quantum computation, but also classically efficiently
tractable.7 In this sense, there is a phase transition in the computational potency of
the resource depending on the probability of an edge being open.

In these different flavours, we will encounter percolation ideas in the context of
quantum computing. To be brief, we concentrate on the latter two aspects, putting
an emphasis on bond percolation (so all p will be bond probabilities unless stated
otherwise). We note, however, that the problem of site percolation can be treated
similarly.

2.2 Resource State Preparation in Measurement-Based Computing

Renormalization

The goal of this section will be to show how to generate a cluster state of a given size
with probabilistic entangling gates (succeeding with probability p) almost certainly
with the help of bond percolation. The lattice will be divided into blocks, which will
be reduced later to single qubits, thus ‘renormalizing’ the lattice. Whenever a block
contains a crossing open cluster that connects the block’s four faces (in the first two
dimensions), we will refer to this crossing cluster as a renormalized qubit. If the
crossing clusters of two neighbouring blocks actually touch each other (i.e. there
exists an open path between two vertices of the first and the second renormalized
qubits that lies completely within the union of the two respective blocks, and they are
connected by open bonds), then the reduction of the blocks to single qubits will yield
a ‘renormalized bond’ between these qubits. How this reduction actually works is the
scope of the following sections. Now, we are looking for the probability Pp(U(L, k))
of the event U(L, k) to occur. U(L, k) denotes the event that the renormalied square
lattice of size L × L with hyper cubic blocks of size k×d is fully occupied and
connected. Given a dependence of the block size on the lattice size, k(L), we will
use the abbreviation Pp(L) = Pp(U(L, k(L))).

The result is more precisely phrased as follows:

Theorem 1 (Resource consumption). Let p > p
(c)
d , d ≥ 2 being the dimension of a

hyper cubic lattice. Then for any μ > 0, the probability Pp(L) of having an L × L
renormalized cubic lattice fulfils

7 A similar situation has been observed in Ref. [19], where a Kitaev’s toric code state is not a
universal resource, but can be classically efficiently simulated [7]. If one modifies the state
very little by means of local phases, one cannot keep track of measurements classically in
an efficient fashion. But in fact, it can be shown that the state would serve as a universal
resource for quantum computation [18, 19].
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lim
L→∞

Pp(L) = 1, (5)

with an overall resource consumption of R(L) = O(L2+μ).

Here, p(c)
d denotes the percolation threshold of the d-dimensional hyper cubic lattice.

R is used to refer to the number of initial resources, so that the constituents are placed
on each lattice site with the ability of ‘growing’ connections to their neighbours in a
probabilistic manner. Note, that the dimension d can always be chosen such that the
gates at hand (p > 0) operate in a regime that allows for percolation (p > p

(c)
d ).

Proof. (d ≥ 3) In the case of dimensions d > 2, so different from d = 2, cross-
ing paths in different directions do not necessarily intersect. This approach is often,
nevertheless, favourable due to the higher critical percolation threshold in higher di-
mensions. Let us fix L ∈ N and take

U = [1, 2kL]×2 × [1, 2k]×d−2 ⊂ Z
d (6)

for some k ∈ N. This slab can be divided into L2 disjoint hypercubes with an edge
length of 2k. With Ay(k), y = (y1, y2) ∈ [2, 2L]×2 we denote the (2k)×d hypercube
starting at (y1 − 2)k + 1, (y2 − 2)k + 1, . . . , 1). For y = 2x,

x ∈ M = [1, L]×2, (7)

these hyper cubes Ay(k) are the disjoint blocks, and M plays the role of the renor-
malized square lattice.

Furthermore, we will use the overlap between adjacent blocks in the first direc-
tion,

By(k) = Ay(k) ∩A(y1+1,y2)(k) (8)

for y1 = 2, . . . , 2L− 1, and the union of disjoint neighbouring blocks in the second
direction, Cz(k) = Az(k) ∩A(z1,z2+2)(k), z2 = 2, 4, . . . , 2(L− 1).

On these blocks we will define a series of events as follows:

• Ay(k): There exists an open crossing cluster in Ay(k) in the first dimension, so
an open path containing open vertices a and b with a1 = (y1−2)k+1, b1 = y1k.
For p > p

(c)
d there exists a constant g > 0, only dependent on p, such that [16]

Pp(Ay(k)) ≥ 1 − exp(−gk2). (9)

• By(k): The number of open left-to-right crossing clusters in By(k) (see Fig. 1)

does not exceed 1. It is shown in [2] that for p > p
(c)
d there exist constants

a, c > 0, only dependent on p, such that the probability of By(k) occurring
satisfies

Pp(By(k)) ≥ 1 − (2k)2da exp(−ck). (10)
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Fig. 1. The blocks Ay for y = 2x. The two highlighted regions constitute the block A(3,2),
and the darkest one is an overlap with a neighbouring block, so B(3,2)

• Dy(k): We can now make use of the two events defined before. Let Dz(k), z1 =
3, 5, . . . , 2L − 1, z2 = 2, 4, . . . , 2L, be the events in which there exists an open
left-to-right crossing cluster in both blocks, at (z1−1, z2) and at (z1+1, z2), and
these two clusters are actually connected (see Fig. 2). That means, there exists
an open left-to-right crossing cluster in A(z1−1,z2)(k) ∪ A(z1+1,z2). The events
Ay(k) and By(k) are increasing events8. This allows for application of

Lemma 1 (FKG inequality). Let X and Y be increasing events. Then

Pp(X ∩ Y) ≥ Pp(X)P (Y). (11)

This results in an upper bound for Pp(Dy(k)), with

Fig. 2. Again, the blocks Ay for y = 2x are shown and the highlighted region is the intersec-
tion C(2,2)

8 Let χ(Ap) denote the characteristic function of the event A for an elementary probability
p. An increasing event A is one that satisfies |χ(Ap)| ≤ |χ(Ap′)| if p ≤ p′.
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Dy(k) =

(
⋂

a=0,±1

A(y1+a,y2)(k)

)
∩ B(y1−1,y2)(k) ∩ B(y1,y2). (12)

• Ez(k): The next event we need is the one that ‘connects’ two blocks in the second
dimension. Let Ez(k) be the event that there exist at most one open left-to-right
crossing cluster in Cz(k). In order to apply the arguments of [2], we extend the
blocks in the last d − 2 dimensions by another 2k. The probability of Ez(k)
occurring is bounded by

Pp(Ez(k)) ≥ 1 − (4k)2da exp(−2ck). (13)

• The last event, Fz(k), we will define here is that of having an open left-to-
right crossing clusters in both, A(z1,z2)(k) and A(z1,z2+2)(k), but at most one
in A(z1,z2)(k) ∪ A(z1,z2+2)(k). That means, again, that there is actually one
left-to-right crossing cluster in Cz(k), but it connects the left and right faces
of A(z1,z2)(k) and A(z1,z2+2)(k) simultaneously. Again, by using the FKG in-
equality we can construct an upper bound to the probability of occurrence of
Fz(k) = A(z1,z2)(k) ∩ A(z1,z2+2)(k) ∩ Cz(k).

Having all these events at our disposal, the goal of realizing a fully renormalized
lattice can be formulated quite easily: we are looking for a simultaneous occurrence
of Dz(k) and Fz(k) for a suitable set of z = (z1, z2)’s, so

U(L, k) =

⎛

⎜⎝
⋂

z1=3,5,...,2L−1
z2=2,4,...,2L

Dz(k)

⎞

⎟⎠ ∩

⎛

⎜⎝
⋂

z1=2,4,...,2L

z2=2,4,...,2(L−1)

Fz(k)

⎞

⎟⎠ . (14)

By subsequent application of the FKG inequality we can express an upper bound
to the probability of U(L, k) occurring in terms of the probabilities of the former
events:

Pp(U(L, k)) ≥
∏

y1=2,3,...,2L
y2=2,4,...,2L

Pp(Ay(k))
∏

y1=2,3,...,2L−1
y2=2,4,...,2L

Pp(By(k)) ×

∏

y1=2,4,...,2L

y2=2,4,...,2(L−1)

Pp(Ey(k))

≥ (1 − exp(−gk2))2L2−L × (15)

((1 − (2k)2da exp(−ck))2(1 − (4k)2da exp(−c2k)))L(L−1).

Now, we will have to find the block-size scaling k(L) such that this probability
is approaching unity for large L. Moreover, we are looking for a ‘good’ scaling, in
the sense that the overall resource scaling L2k(L)d does not differ too much from
the optimal O(L2). In order to invert (15), so to find the best k(L) consistent with
this approach, we, however, still need to relax the problem to some extent. By using
the slowest increasing term in (15) we can bound the expression from above: there
exists an integer k0 such that
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Pp(U(L, k)) ≥ (1 − (2k)2da exp(−ck))5L2
(16)

for all k ≥ k0. Let us now use the ansatz k = �Lε , for some ε > 0.
For any x ∈ N there exists a L0 ∈ N such that for all L ≥ L0

1 −A(2Lε)2d exp(−cLε) ≥ 1 − 1/(xL2). (17)

Further,

lim
L→∞

(
1 − 1/(xL2)

)5L2

= e−5/x (18)

and for every ε > 0 we can find an x such that 1 − e−5/x < 1 − ε.
Therefore, the chosen dependence of k on L is sufficient to achieve a success

probability within a chosen ε around 1, getting arbitrary close in the limit of large L:

lim
L→∞

Pp(U(L, k(L))) = 1. (19)

Combining this with the number of blocks used, L2, this induces a resource scaling
of R(L) = O(L2+dε).

(d = 2) In the two-dimensional case the connection between paths in the two direc-
tions is, of course, not an issue – whenever a block Ay is crossed in both directions,
these two crossing paths necessarily intersect. The events needed in this case are the
following:

• Gi,r: The rectangle Ci,r = ∪y,yr=iAy is crossed in the r-th dimension. Here,
Ci,r is the i-th row or i-th column in case of r = 1 or r = 2, respectively. The
probability for such an event to happen satisfies [16]

Pp(Gi,r) ≥ 1 − skL exp(−tk), (20)

with s, t > 0.

Again, the Gi,r are increasing events, so the probability of simultaneous crossing
in all rows and columns,

U =
⋂

i=1,...,L
r=1,2

Gi,r (21)

satisfies
Pp(U)(L, k) ≥ (1 − skL exp(−tk))2L. (22)

Now, the choice of k = �Lε can be used again, together with the last steps for
the case d > 2. Thus, in the two-dimensional case a resource scaling of R(L) =
O(L2+dε) holds as well.

Although the proof was explicitly stated in terms of bond percolation, a reasoning
along these lines will hold as well for site percolation or mixed site/bond percolation,
as long as the probabilities in question are above the respective threshold.
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Path Identification

For the cluster state to be of any use in quantum computing, the number of resources
required to simulate a given quantum circuit has to depend efficiently (i.e. polynomi-
ally) on the size of the circuit. As the size L of the cluster state required to implement
a given circuit has a polynomial dependence on the circuit’s size [37], Theorem 1 al-
ready provides a suitable scaling in the number of qubits required.

Still, the amount of time and classical memory required to implement a given
computation has to obey a well-tempered scaling as well. The ‘quantum part’ (i.e.
the number of subsequent measurements in the preparation- and in the computing
stage) only requires O(1) of time for preparation of the initial pieces, a single step
for all the simultaneous entangling operations, and the measurements to reduce the
cluster to the renormalized one and perform the computation. Many of them can be
performed in parallel, but an upper bound is given by R(L).

The classical amount of memory, of course, starts with R(L) to store all gate out-
comes (and therefore the percolated graph). In the following, the scaling of classical
resources will be analysed 9.

Crossing clusters

For identification of the crossing clusters within the blocks, cluster finding algo-
rithms such as the Hoshen-Kopelman-algorithm [25] can be employed. Out of the
box this would require O(kd−1) of classical memory and O(kL2) time steps. If there
exist more than one crossing cluster (which is as of (13) highly improbable), only a
single one (e.g. the one with the largest surface) will be chosen for the subsequent
procedure.

Connecting the blocks

A ‘mid-qubit’ which is a member of a crossing cluster near the centre of the block
will be chosen (R(L) time-steps) in every block. Let us define an open path on G =
(V,E) between a1, an+1 ∈V by P(a1, an+1) = {(a1, a2), (a2, a3), . . . , (an, an+1)}
with (ai, ai + 1) ∈ E, i = 1, . . . , n, and its length by |P(a1, an+1)| = n. Because
we are using undirected graphs, (a, b) = (b, a) and there is a corresponding path
from b to a for each path from a to b. Open paths between the mid-qubits of all pairs
of neighbouring blocks are identified using a breadth-first-search (BFS) algorithm
[42] (R(L) time and memory complexity).

To prevent loops from being present in the paths in the first place, the following
procedure is employed:

1. Using BFS on the crossing clusters starting from the mid-qubits and constrained
to the respective block, each site is labelled with the length of the shortest path
to the mid-qubit in this block. By going in the direction of decreasing length, the
shortest path P(s,m(x)) to a block’s x mid-qubit m(x) can be found within its
block, starting from any site s.

9 More details and a MatLab implementation of the relevant parts can be found in the sup-
plementary material of [28] at http://www.imperial.ac.uk/quantuminformation.
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2. The facing boundaries of all pairs of neighbouring blocks (x1, x2) are searched
for the pair of sites (s1, s2), one in each block, with the least sum of their dis-
tances |P(s1,m1)| + |P(s2,m2)| from their respective mid-qubits m1 and m2,
and the bond (s1, s2) being open.

3. With the composite path P(m1, s1)∪(s1, s2)∪P(s2,m2) a loop-free connection
between m1 and m2 is found. Although paths from the mid-qubits to different
neighbours might have sub-paths in common, there will be no loops inside a
block due to starting always with the same site and the same algorithm for all
paths to the boundaries in a given block.

Reduction to a Renormalised Lattice

Instead of the whole square lattice which would require to identify cross-like junc-
tions within the blocks, the procedure will renormalize to a hexagonal lattice where
only T-junctions are required. Of course it will be embedded in the square lattice ge-
ometry in the obvious way. A square lattice would involve crosses the construction
of which is not clear when T-junctions have been found and local measurements are
used for reduction. There is, however, an easy way to turn the whole lattice into a
square one by using local measurements afterwards [44].

The procedure to cut out parts of the cluster, or yanking paths straight, involves
single qubit measurements of the Pauli operators σy and σz . Let us briefly summarize
the effective action of these operations when applied to a qubit constituting a vertex
a ∈ V of a graph state |ψG〉 with G = (V,E) [24]. The neighbourhood of a vertex a
will be denoted by Na = {b : dist(a, b) = 1}, the sub graph of G induced by A ⊂ V
is G[A] = (A, {(a, b) ∈ E : a, b ∈ A}) and the complement of a graph G with
respect to the set of all possible edges by Gc = (V, {(a, b) : a, b ∈ V } \ E). The
measurement rules now read

• σy measurements perform local complementations: G′ = (G[V \{a}]\G[Na])∪
G[Na]c. So, it swaps all possible edges in its immediate neighbourhood.

• A σz ‘cuts’ the vertex a. The graph representing the resulting state is G′ =
G[V \ {a}].

The resulting graphs G′ actually are only obtained after applying some local unitaries
to the neighbours of a, which depend on the measurement outcomes, to the remaining
qubits. However, one can also store the effective unitary to apply to each remaining
qubit (a memory requirement of O(1) per qubit) and adjust the measurement basis of
the subsequent measurements. Because each qubit will be measured out by the end
of the computation, it is sufficient to use the second approach to the compensation of
random measurement results.

The first application is to isolate the paths and eliminate the spare sites and dan-
gling ends towards the mid-qubits. This is achieved by cutting out all unneeded sites
by measuring their qubits in the σz basis.

Now, one is left with a hexagonal lattice where each edge possibly consists of a
long path and each site might consist of a triangular structure in the worst case (de-
pending on the type of lattice used, also the wanted single-qubit sites are possible).
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Fig. 3. Effect of a σy measurement on a triangular junction of a cluster. If the three arms are,
as shown, not immediately connected outside the triangle, a σy measurement on the dark qubit
has the effect of destroying the triangle in favour of a T-shaped junction. Due to symmetry,
any of the three qubits in the triangle could have been chosen

The triangles can be destroyed by suitable σy-measurements, as shown in Fig. 3. Af-
ter that, only single-qubit junctions are left, the paths between which can be shrinked
by subsequent application of σy-measurements to a single edge.

Summing up all these contributions we realize that both – the amount of classical
memory and the number of time-steps – are bounded by R(L) as well.

It should be pointed out that one obstacle in one-way quantum computation is
to keep the whole state in memory. Having fixed the algorithm in advance, the re-
quired state size is known and therefore also the block size for a fixed allowed error
rate. Therefore, to grow individual blocks and reduce them to single qubits, only the
neighbouring blocks have to exist. This especially allows for growing the reduced lat-
tice in the time direction while the computation moves on, requiring only O(L1+μ)
qubits to be kept in memory.

Decreasing the Vertex Degree

Choosing the appropriate lattice

To actually utilize the protocols based on percolation theory the initial resources (i.e.
the stars sitting on the lattice sites) should be as small as possible. As it is more
difficult to prepare larger states (this is the problem to be solved in the first place),
the lattice with the lowest vertex degree for which psuccess > p(c) is still fulfilled will
be favourable.

Again, results known in percolation theory, but also specifics of the physical
implementation can be used to decrease the vertex degree of the initial states. First,
using star resources, one would have to look for the lattice with the smallest vertex
degree that is still suitable for the bond probabilities at hand. It is not necessary to
stay in two dimensions, as the blocking procedure can use high-dimensional lattices
and renormalize them to two-dimensional square lattices.

For example, in the case mentioned above, psuccess = 1/2, the smallest vertex
degree compatible with p is 4, realized by the diamond lattice with p

(c)
� ≈ 0.389.

That translates into five-qubit initial states. To see, that the procedure still works for
lattices different from cubic, see the results of numerical simulations on the diamond
lattice in Fig. 4.
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Fig. 4. Results of Monte Carlo simulations to determine the scaling behaviour of the renor-
malization procedure on the diamond lattice. The dependence of the diamond lattice’s block
size k×k×k on the size L×L of the renormalized square lattice is shown for three different
sets of site- and bond probabilities (ps, pb). The threshold for the probability of U occurring
was chosen to be 1/2. 105 blocks of each size were created and used to randomly populate
each lattice size 103 times

Covering lattice

If the entangling operations at hand have the property that one of the qubits survives
(such as the probabilistic parity check ‘fusion’ [10] in linear optics), the following
property of bond-percolation can further reduce the size of the initial pieces. So far,
the sites of the lattice are occupied by single qubits, the bonds are given by edges in
the underlying entanglement graph. If one qubit is left by the entangling operation
we will not think of this one as being a site itself, but rather belonging to the bond
between its neighbouring site.

Having such a graph state (which exact lattice type does not matter), we can
measure the central qubit a of the initial stars (the dark one in Fig. 5) in the σy-basis.
Given the specific structure we have at hand, this operation actually performs a trans-
formation from the lattice type we had before to its covering lattice: now think of the
qubits that were sitting on the bonds as proper sites. The old sites have disappeared
(they have been measured out) and the new ones are connected to all the new sites
that were in the same neighbourhood of an old site (local complementation).

Intuitively, the covering lattice has the same connectivity properties as the orig-
inal lattice before. Paths through a star between two arms are existent iff the star
was present and the two entangling operations involving these arms were successful.
The same holds on the covering lattice. This property is reflected by the equation
p
(c)
G,b = p

(c)
Gc,s, so bond percolation on the original lattice induces site percolation on

the covering one.
As the local complementation inside the stars commute with the entanglement

operation between them, the central qubit might be neglected from the very start (see
Fig. 5). So, one further qubit can be saved by starting with the fully connected graph
state (locally equivalent to the GHZ state) that has one qubit less than the corre-
sponding star. In case of the diamond lattice, with four-qubit GHZ states (tetrahedral
states), the pyrochlore lattice can be built.
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Fig. 5. Pairs of initial resources for the diamond lattice and its covering one, the pyrochlore
lattice. A probabilistic entangling gate is applied between pairs of qubits of all neighbour-
ing initial states. The central qubit (dark), is measured out in the σy-basis, resulting in the
transformation from diamond to pyrochlore lattice

Further methods to reduce the amount of conditional dynamics in linear optical
quantum computing

Surely, if the scheme requires quite large initial stars, they can be prepared with
the same tools probabilistically, starting from smaller stars. For a fair assessment,
however, the constraints that led to the percolation scheme in the first place have to
be imposed here as well. That is, the restriction to a static setup. Whether composite
stars can be used in a static layout now depends on how the entangling gates work
in detail, that is, what the failure outcomes are. This is of interest due to the fact that
in general a failure in the star preparation step would require back-up steps that do
not allow for subsequent application of further entangling gates without re-routing.
A type of gates with suitable properties is the one that acts as a σz-measurement on
both qubits on failure. For example, parity check based gates in linear optics offer
this feature.

That this feature might actually bring some benefit is shown by the following
example (see Fig. 6). Two instances of such an entangling gate are applied to a pair
of five-qubit stars, one to a pair of arms and one to the central qubits. On success of
one of the ‘arm’ fusion gates, the two stars are connected by a two-edge chain. The
middle qubit of this chain (dark) will be measured out in the σx-basis, leaving the
two centres merged in a redundantly encoded qubit, being the centre of a star with
six arms. A second application of such a gate on the two qubits of the new centre
will always succeed due to the entanglement already existing between them.

If, however, the first gate operation failed, the two arms the gate was acting on
will be cut of as a consequence of the σz failure outcome. The σx measurement
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Fig. 6. A pair of five-qubit stars (stars with four arms and one central qubit) can be used
to create a single seven-qubit star with a probability of psuccess = 1 − (1 − pgate)

2. With
pfailure = (1 − pgate)

2 the six arm qubits are separated from each other

now acts on one part of a product state, leaving the other part – the two stars –
unchanged. Now, a second try is possible by application of the entangling operation
to the centre qubits. The success outcome will be the same as above, on failure the
centres will be cut off, leaving the six qubits in the product state vector |+〉⊗6. The
failure outcome is the result of two consecutive failures of these entangling gates, so
psuccess = 1 − (1 − pgate)2, which is psuccess = 3/4 in the case of the linear optics
gate mentioned earlier.

All these operations do not need any classical post-processing or re-routing,
therefore, this scheme is suitable to be used in the procedures introduced above.
Because the centre qubits are simply cut off when a failure occurs, this procedure
and the bond percolation involving the arms are completely independent. So, both
processes together can be modelled as a mixed site/bond percolation with the site
probability being ps = psuccess.

As long as the bond probability and the initial state preparation (site-) probability
are above the percolation threshold of the respective lattice, this scheme might be
useful to further reduce the size of the initial star shaped quantum states.

2.3 Phase Transitions in the Computational Power

A related yet complementary motivation to look at percolation theory in the context
of quantum computing is the question whether a universal resource state can be pre-
pared in principle. Surely, above the percolation threshold a universal resource for
quantum computing can be extracted from a percolating lattice in an efficient man-
ner, as has been described in the previous section. This approach, in turn, will fail
almost surely below the threshold. Indeed, it has been shown in [9] that for p < p(c)

the statistics of all possible measurements (so all possible quantum computations)
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on the state represented by the resulting graph can almost certainly be efficiently
simulated on a classical computer. This effect can indeed be seen as a phase tran-
sition in computational power of the resource state described by the lattice (caused
by the phase transition of the mean cluster size). Assuming that BQP�=BPP10, this
phase transition distinguishes between states that can be used for universal quantum
computing and those which cannot (see also [19]).

This phase transition can be made precise under the assumption that a certain
quantity – the entanglement width – provides a handle on the computational uni-
versality of a family of states, by using it as an order parameter and investigating
its properties in the sub- and supercritical regime. The entanglement width Ewd is
a measure of entanglement, introduced in [44]. It can be used to characterize the
amount of entanglement – somehow the degree of ‘non-classicality’ – contained in
a quantum system. We refer to [44] for its definition and properties. For d = 2, it
can be seen that the amount of entanglement contained in the states described by the
lattice jumps from a logarithmic to a linear scaling in L at the percolation threshold.

Supercritical

Above the respective percolation threshold of a particular lattice of size L2+μ with
μ > 0, an L × L square lattice can be extracted efficiently, as shown in Sect. 2.2. In
[9] an alternative algorithm is proposed, which achieves μ = 0 for d = 2.

Theorem 2 (Supercritical states). Let p > p
(c)
2 . With probability

lim
L→∞

Pp(L) = 1, (23)

and an overall resource consumption of O(L2) an L × L cluster – a resource for
universal quantum computing – can be generated from a square lattice.

In this approach, in contrast to the renormalization algorithm described in
Sect. 2.2, the block size of the renormalized lattice is not held fixed [9], resulting
in an improved scaling of the resource consumption in case of the two-dimensional
square lattice.

Again, this approach can be used to grow the cluster state while computation
moves on. With a fixed width new layers can be added on top, allowing for subse-
quent identification of new horizontal paths (and their connections to the underlying
lattice). So it is not required to keep the whole lattice in memory, rather only a set of
qubits of size O(L).

A natural substructure of a percolating n × n lattice is already provided by the
fact that there exist at least m = O(n) vertex-disjoint crossing paths (which shall be
event Gm(n)) in either dimension almost certainly in the limit of large n.

10 This means that quantum computers are actually more powerful than classical computers.
Although this feature is assumed to be highly plausible, the strict separation of the com-
plexity classes remains unproven today, not unlike the situation for P �=NP.
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Consider the event of having at least one left-to-right crossing path in a two-
dimensional n× n block, which happens with probability

Pp(A(n)) ≥ 1 − exp(−g(p)n2), (24)

g(p) > 0 (9). When this event is still happening when changing the state r arbi-
trary edges on the lattice, there have to be at least r + 1 vertex-disjoint left-to-right
crossings in this block. With r = β(p)n an inequality from [16] allows us to write

Pp(Gβ(p)n(n)) ≥ 1 −
(

p

p− p
(c)
2

)β(p)n

e−ng(p). (25)

In the limit of n → ∞ this probability approaches unity, if

g(p) − β(p) log

(
p

p− p
(c)
2

)
> 0, (26)

which can always be achieved by suitable choice of β for a given p. Therefore, in
the limit of large m, there are almost certainly m vertex-disjoint open left-to-right
crossing paths in a square lattice of side length n = m/β(p). In other words, the
number of these crossings scales as O(n).

Algorithm

The challenge now is to identify O(L) suitable paths such that the reduction to a
fully populated regular lattice with the tools of Sect. 2.2 is possible. In [9] a very
detailed description of an algorithm achieving this goal can be found, some of the
steps of which are illustrated in Fig. 7. The important stages are the following:

1. Path identification: An algorithm from maze solving, the right-hand wall follower,
which can identify the right-most path along a wall (which will be the surface of

Fig. 7. Illustration of the algorithm to extract an L × L lattice with only constant overhead
per site. The left picture shows the initial percolated lattice. At the right, the identified paths
after alternating bridge decomposition and error correction, as well as the final graph after the
quantum measurements are shown
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the graph or the previous path), is used. By applying it consecutively it finds a
maximum set of non-intersecting crossing open paths in either direction.
Vertical paths are found by using every third path that result from the right-hand
wall follower. For horizontal paths, the 2-local version of this algorithm is used,
which means that a graph distance on the underlying lattice to the previous path
of at least 3 is ensured.
These gaps between neighbouring paths ensure that the reduction can be per-
formed in the end. A distance of 1 between neighbouring horizontal paths is surely
not enough when it comes to the shortening of intermediate parts by means of σy

measurements. Having one qubit in between turns out to be not enough, where
intersections with vertical paths occur.

2. Alternating bridge decomposition: While fixing paths in the horizontal direction,
the vertical ones are cut into segments between neighbouring horizontal paths
(bridge decomposition). By only using every other of these segments (alternating
bridge decomposition), a hexagonal structure is imposed, simplifying the reduc-
tion stage as before, while still giving rise to a universal resource state. Due to
the choice of using every third vertical path, the graph has essentially the same
topology as a hexagonal lattice, up to local errors at the crossings. For an in-
depth analysis we refer to [9]. The bridge decomposition further assures a simple
topology of the crossing points, because multiple crossings and common parts of
horizontal and vertical paths are cut out.

3. Correction of local errors: All that is left at this stage is a hexagonal structure
where the bonds consist of paths the vertices of which have vertex degree 2, and
the sites consist of a couple of vertices with degree not necessarily 3. More specif-
ically, they contain vertices of degree ≥ 3 on the horizontal paths (the abutments)
and one vertex per crossing of degree ≥ 2 at the beginning (or end, respectively)
of a vertical path. By appropriately removing the vertices in the middle of the
abutments from the graph, the crossings are reduced to single vertices of degree
3 (a T-shaped junction), thus allowing for reduction of the lattice by local Pauli
measurements.

After this classical identification process is done, the graph is reduced to a hexagonal
lattice using local measurements as in Sect. 2.2.

Entanglement width

An L × L cluster state has an entanglement width of Ewd = O(L). Due to the fact
that the entanglement width does not increase during one-way computation (which
also is what is effectively done to extract the cluster from the percolated lattice in
all known proposals, see also Sect. 2.2), the extracted cluster can be used to derive a
lower bound to this entanglement width,

Ewd(p > p(c)) ≥ O(L). (27)

This bound holds for any regular lattice with d ≥ 2 above its respective percola-
tion threshold.
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Subcritical

Below the percolation threshold the following behaviour is observed:

Theorem 3 (Subcritical states). For p < p
(c)
2 , the corresponding quantum states

can be simulated efficiently on a classical computer.

The idea behind the proof is that the entanglement width is bounded by the entangle-
ment width of the largest connected component [9]. Below the percolation threshold,
this is of size O(d logL) [3], therefore bounding

Ewd ≤ O(logL). (28)

Making use of [3], it is shown that this bound holds for 2 ≤ d ≤ 6. Further,
the logarithmic scaling of the size of the largest connected component results in the
computational space to be of size poly(L), so efficiently simulatable by classical
means.

3 Quantum Repeater Networks for Quantum Communication

3.1 General Concepts

Another quite natural application of percolation ideas in the context of quantum in-
formation processing is to find ways of designing quantum networks for quantum
communication. This is now an application no longer related to quantum computa-
tion, but to quantum communication and quantum key distribution. Here, the concept
of a network emerges quite naturally, and it seems meaningful to ask to what extent
percolation ideas can help here.

The setting we will discuss in this section – reviewing the content of
[1, 22, 34] – is slightly different from the previous ones: We will no longer make
strict use of classical percolation ideas to identify threshold behaviour in the pos-
sibility of preparing some quantum states. Instead, but in a closely related fashion,
we will ask to what extent one can modify quantum measurement schemes to real-
ize percolation-like settings which outperform standard-bond percolation when naive
measurement patterns are used. It will, hence, be not be sufficient to look at classical
properties of quantum states as before, but we will have to consider the quantum
states as such.

The idea of quantum communication or, more specifically, of quantum key dis-
tribution plays a seminal role in quantum information science. Indeed, whenever
two laboratories share quantum systems in highly entangled states, by appropriate
measurements and classical post-processing, a secret key can be extracted from the
measurement data. This key can then be used for the secure transmission of classical
data. For a review on this idea, which has led to numerous experimental implemen-
tations, and based on which commercial devices are available, see, for example [15].
For ‘sufficiently entangled’ states one can indeed show that the resulting key distri-
bution is unconditionally secure, in the sense that the security proof does not rely on
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unproven assumptions on the hardness of certain mathematical problems. Instead, it
is merely assumed that an eventual eavesdropper could have access to any techno-
logical device, but is constraint by the laws of quantum theory as such in his or her
possible action.

The functioning of such ideas, however, relies on the availability of sufficiently
pure and entangled quantum states. If – in a sense – too much noise is in the sys-
tem, which is the situation encountered in the distribution of entangled state through
noisy channels over large distances, then the key will no longer necessarily be se-
cure. In such a situation, ideas of quantum state distillation or of quantum repeaters
offer a solution. This amounts to a fragmentation of the whole transmission line to a
sequence of repeater stations, or, more generally, to a network of repeater stations.
And here, needless to say, is where percolation ideas come in.

We will start by describing the setting of [1]. Consider some lattice, the vertices
of which are identified with repeater stations, or laboratories in which one can per-
form quantum operations. Between such vertices, non-maximally entangled states
can be created. Once two vertices share entangled quantum systems, we will say that
they are connected by a ‘quantum edge’. Following this entanglement distribution
process, only ‘local’ operations constrained to the qubits of a repeater station are
possible, coordinated by classical communication. This is the setting of local oper-
ations with classical communication (LOCC), which is the standard paradigm when
considering distributed quantum systems. Based on such operations, purification pro-
tocols [6, 46] can transform a single pair or a chain of two pairs into a maximally
entangled pair, the equivalent to an open bond. This process is intrinsically proba-
bilistic, which represents the bond probability. The probability of success of such a
protocol (and with it the bond probability) depends not only on the amount of en-
tanglement that is available in the very beginning but also on the distillation strategy
employed. Therefore, we cannot assign unique bond probabilities to a lattice with
quantum bonds.

3.2 Classical Entanglement Percolation

We will now compare two different settings, following [1, 34]. The first approach is
to make use of natural physical measurements, where each of the quantum edges is
purified separately. This then leads to a familiar edge percolation problem: A quan-
tum edge corresponds to sharing a non-maximally entangled state with a state vector
of the form

|ϕ〉 = λ1
1/2|0, 0〉 + λ2

1/2|1, 1〉. (29)

λ1 and λ2 are the Schmidt coefficients satisfying λ1 + λ2 = 1, assuming that
λ1 ≥ λ2. For simplicity, all non-maximally entangled states are taken to be pure.
It is known that there exist local quantum operations assisted by classical communi-
cation (LOCC) that transform |ϕ〉 into a maximally entangled pair with state vector
2−1/2(|0, 0〉 + |1, 1〉), with a probability of success of

p1 = min(1, 2(1 − λ1)). (30)
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This probability of success will be referred to as singlet conversion probability
(SCP) of a single quantum edge. In general, having a LOCC conversion protocol
means that there exist operators M

(k)
A ,M

(k)
B satisfying

∑
k(M (k)

A )†M (k)
A ≤ 1 and∑

k(M (k)
B )†M (k)

B ≤ 1 which can be implemented with LOCC such that

(M (k)
A ⊗M

(k)
B )|ϕ〉 = (p(k))1/2(|0, 0〉 + |1, 1〉)2−1/2, (31)

p1 =
∑

k p(k). In this case, the filtering is quite simple: we merely need to consider

a single successful outcome, k = 1, and take M
(1)
A = (λ2/λ1)1/2|0〉〈0|+ |1〉〈1| and

M
(2)
B = 1. As can be readily verified, this leads to a maximally entangled state with

the above probability of success. This filtering process is called Procrustean method
[4].

Once one has a maximally entangled pair, we encounter the situation as before,
and we say the corresponding edge is open, in the sense of usual edge percolation,
and as being used throughout this chapter. If the protocol fails, one is led to an un-
entangled state, and the edge is closed. Hence, λ1 governs the percolation behaviour
and defines the edge probability. If one is above the percolation threshold of the
respective lattice, a connected path can be identified almost certainly between any
two vertices A and B of the lattice. Let c(A,B) denote the event that A and B are
connected by maximally entangled bonds. Then,

lim
dist(A,B)→∞

P (c(A,B)) > 0 (32)

if and only if p1 > p(c). Physically, this means that A and B share a perfect quantum
channel through which the state of a single qubit can be sent in a lossless fashion.
This setting which is the natural analogue of edge percolation will be called classical
entanglement percolation (CEP).

3.3 Quantum Percolation Strategies

The quantum character of the involved states (‘quantum edges’), however, allows for
some improvement. The main observation is that for quantum systems, one does not
necessarily have to perform the above measurements, leading individually to open
or closed edges, but can resort to appropriate local collective operations. If the task
is to achieve a perfect quantum channel between any two vertices A and B in a lat-
tice, then we have achieved this when having a maximally entangled pair of qubits
between A and B at our disposal. This process should succeed in the best possible
fashion. The aim, hence, is to maximize the SCP, so the probability to achieve a max-
imally entangled pair between two vertices A and B, but not necessarily exploiting
the above CEP.

To exemplify the mechanism, let us first consider a one-dimensional chain with
three vertices, A, B, and C, such that A and B, and B and C share a state with state
vector |ϕ〉 each (they are connected by a quantum edge). This is a quantum repeater
situation. Then, clearly, applying the above filtering corresponding to CEP twice, one
succeeds with a probability p2

1.
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But, since vertex B holds two quantum systems, one can also do a collective
local operation. The SCP asks for the optimal probability p =

∑
k p(k) such that

(M (k)
A ⊗M

(k)
B1,B2

⊗M
(k)
C )|ϕ〉A,B1 |ϕ〉B2,C = (p(k)/2)1/2 × (33)

(|0, 0〉A,C + |1, 1〉A,C)|0, 0〉B1,B2 .

Clearly, p ≥ p2
1, as the protocol in (33) includes the prescription of CEP where one

tries to purify the entanglement between A and B1 and B2 and C individually.
We can also easily obtain an upper bound to the probability of success: The class

of protocols defined in (33) is included in the one of (31) in the case when A, B1,
and B2 are treated as a single system. Doing such collective operations (instead of
only in B1 and B2) can only improve the probability of success, hence, this upper,
bound.

Somewhat surprisingly, it can be shown that this bound can indeed be achieved
[6, 46]. In B1 and B2 one performs a joint measurement k = 1, . . . , 4 with

M
(k)
B1,B2

= |ψ(k)〉B1,B2〈ψ(k)|B1,B2 , (34)

where

|ψ(1)〉 = (|0, 0〉 + |1, 1〉)2−1/2, |ψ(2)〉 = (|0, 0〉 − |1, 1〉)2−1/2, (35)

|ψ(3)〉 = (|0, 1〉 + |1, 0〉)2−1/2, |ψ(4)〉 = (|0, 1〉 − |1, 0〉)2−1/2. (36)

Two of the outcome probabilities of this four-outcome measurement are equal to
pmax = (λ2

1 + λ2
2)/2, whereas the two further outcome probabilities are given

by pmin = λ1λ2. This local filtering is in fact nothing but a collective ‘Bell’-
measurement in the σzσz-basis. This procedure reaches the above upper bound, and
hence,

p = p1. (37)

This scheme, simple as it is, already shows that with collective operations, one
can improve the involved probabilities, from p2

1 to p1. Note that here the SCP is
taken as a figure of merit, whereas other figures of merit, like the average final en-
tanglement quantified in terms of an entanglement measure, can also be meaningful
quantifiers of success of the scheme [34]. Also, the same protocol is optimal in case
one has two different pure states in the Schmidt basis at hand.

3.4 Absence of Improvement for One-Dimensional Systems

A first natural instance where this process can be applied is the case of one-
dimensional systems. In this case, it turns out, there is no improvement possible
[22, 34]. The improvement that is possible for two quantum edges does not persist
in the asymptotic limit of a quantum chain, and an exponential decay of the SCP
with the distance between two vertices of the chain cannot be avoided [1]. Moreover,
the only way of having unit SCP is to have a chain of maximally entangled pairs in
the first place. The argument to show this makes use of the entanglement measure
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of the concurrence of a two-qubit state. For a state vector |ϕ〉 =
∑

j,k Tj,k|j, k〉 its
concurrence is found to be C(ϕ) = 2|det(T )|, in terms of the 2 × 2-matrix T . In the
situation of having a one-dimensional chain of repeaters involving N + 1 quantum
edges and hence N + w vertices, involving N correlated measurements, one then
finds that the maximum average concurrence of the first and the last qubit in the
chain is given by

C = sup
M

∑

r1,...,rN

2
∣∣∣det
(
|ϕ1〉〈ϕ1|M (r1)

1 |ϕ2〉〈ϕ2| . . .M (rN )
N |ϕN+1〉〈ϕN+1|

)∣∣∣ .

(38)

In this expression, M stands for all measurements, whereas the M
(ri)
i are 2 × 2

matrices specifying the ri-th outcome at site i, corresponding to the state vector
|μi〉 =

∑
j,k(M (ri)

i )j,k|j, k〉 of this specific measurement outcome. From this ex-
pression demonstrating the exponential decay of the concurrence with the distance
between two vertices in a one-dimensional chain, one can also derive the exponential
decay of the SCP. Hence, while for two repeaters one can find a better probability
of success, this does not lead to a different asymptotic performance of this type of
quantum percolation strategy.

For other lattices, different from simple one-dimensional chains, one can im-
prove the situation, however, compared to classical entanglement percolation, as we
will discuss in the subsequent subsection. In this way, a lattice having some quan-
tum edges can be transformed into a different lattice with maximally entangled pairs
being randomly distributed, whereas the distribution will depend on the strategy em-
ployed (e.g. CEP or collective operations). This approach can outperform methods
relying solely on classical probabilities and equivalences between these lattices (e.g.,
covering, matching, or dual lattices). This is an effect which is caused by the quantum
nature of the bonds.

3.5 Examples of Quantum Percolation Strategies

Hexagonal lattice

An example to highlight the difference to a purely classical approach is the following:
One starts from the situation where neighbours on a hexagonal lattice share two
specimens of the same state. This situation is very natural in the quantum case. One
simply has to distribute a state of the same kind twice. The aim is to establish a
connected open path between arbitrary vertices (taken from a triangular sub lattice).

Theorem 4 (Singlet conversion probability in the hexagonal lattice). Consider a
hexagonal lattice, where nearest neighbours share |ϕ〉⊗2 with |ϕ〉 = λ1

1/2|0, 0〉 +
λ2

1/2|1, 1〉. Then, if λ1 > (1/2 + sin(π/18))1/2 but 1 − λ1 > sin(π/18), CEP
does not lead to edge percolation, whereas joint measurements result in an infinite
connected cluster.

We start by describing the situation for CEP. Each pair of neighbours shares
|ϕ〉⊗2, so the optimal SCP of transforming these two copies into a maximally entan-
gled state (an open edge) is p1 = 2(1 − λ2

1), where the λ2
1 originates from the fact
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that we have two specimens at hand. It is easy to see that with the above choice for
λ1 one arrives at an edge probability of

2(1 − λ2
1) < 1 − 2 sin(π/18) = p

(c)� ≈ 0.6527. (39)

Hence, with this strategy one falls below the percolation threshold of the hexagonal
lattice.

We now turn to a strategy exploiting the more potential of the quantum setting.
We resolve every second site as shown in Fig. 8. Now, as described in the caption
of Fig. 8, one performs the protocol of (33), leading to a triangular lattice. The edge
probability in this new triangular lattice is given by

2λ2 = 2(1 − λ1) > 2 sin(π/18) = p
(c)
Δ ≈ 0.3473 (40)

with the above choice for λ1. Hence, we are now above the percolation threshold
for the triangular lattice, and one can proceed as usual to demonstrate that an infi-
nite cluster emerges. Therefore, bond percolation processes with quantum bonds are
related to each other in a different way than those with classical bonds. More specif-
ically, it is possible to find a parameter regime for which the hexagonal lattice does
not percolate, but can be transformed into a percolating triangular lattice, if quantum
operations are allowed for.

Fig. 8. Top row: A hexagonal and a triangular lattice. Each dark bond is constituted by two en-
tangled pairs (here shown as light bonds). Every second vertex is highlighted. The bottom row
shows how the transformation works: Pairs of qubits are taken from the highlighted vertices.
Onto the respective pairs of edges, the protocol of (33) is applied, succeeding with probability
p. Using this quantum operation, the lattice is transformed from a hexagonal lattice to a new
triangular lattice (for cluster states this actually corresponds to performing a σy-measurement
on the highlighted sites). On this new triangular lattice, an edge is open if the protocol of (33)
has been successful
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Equally interesting is the proposal to use the optimal singlet conversion strategy
to transform a square lattice into two independent square lattices of doubled size, for
which the bond probability is larger than in the original lattice.

Square lattice

Another striking example of what can happen in quantum percolation is a nested
protocol of distillation steps. This has been proposed in [34], which develops the
ideas of [1] in more detail. Here, a set of non-maximally entangled pairs will be
used which cannot be transformed into maximally entangled ones deterministically
by employing the process mentioned above, so p1 < 1.

Consider the situation of Fig. 9. Initially, arranged in a square, one has four iden-
tical pairs in a state with state vector |ϕ〉. Then one can perform local operations to
the marked subsystems, as Bell-measurements in the σxσz-basis (Fig. 9a). The origi-
nal states |ϕ〉 have Schmidt coefficients {λ1, λ2}, the new state with state vector |ϕ′〉
will have Schmidt coefficients, the smaller of which is given by

λ′
2 = (1 − (1 − (4λ1λ2)2)1/2)/2. (41)

Given the four original input states, by applying this local filtering twice, two such
output states will be left. By using a further local operation (Fig. 9b) – an instance
of a distillation protocol – a final state vector |ϕ′′〉 can be achieved (Fig. 9c), which
is more entangled than |ϕ′〉. The largest Schmidt coefficient of this final state is
given by λ′′

1 = max{1/2, (λ′
1)

2} [33, 34]. This state is maximally entangled iff both
Schmidt coefficients are equal, so iff λ′′

1 = 1/2. The range in which that can be
achieved is

1/2 ≤ λ1 ≤ λ∗
1 =

1
2

(
1 + (1 − (2(

√
2 − 1))1/2)1/2

)
≈ 0.65. (42)

(c)(b)(a)

ϕϕ

ϕ ϕ ϕ

ϕ
ϕ

Fig. 9. Transformation of a square lattice (a) to another square lattice (c) by means of a pair
of (a) two-partite measurements and (b) an entanglement distillation on the resulting state.
Starting with a square lattice where each bond consists of |ϕ〉⊗2 (similar to Fig. 8), this process
generates a square lattices with

√
2 times the lattice constant
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Hence, certain non-maximally entangled ‘quantum edges’ (with CEP probability
smaller than one) can be deterministically transformed into maximally entangled
bonds, so edges that are open with unit probability.

Note that each of the above steps involving local operations can be achieved
deterministically, resorting to LOCC operations. In each case, the measurement out-
come on each vertex has to be available to the other vertices to do the appropri-
ate corrections and to render the scheme deterministic. Such an idea can be used
to transform a square lattice, in which vertices share ‘quantum edges’ with nonunit
CEP bond probability in form of non-maximally entangled states into a square lattice
with unit edge probability.

Theorem 5 (Singlet conversion in the square lattice). A square lattice where near-
est neighbours share |ϕ〉⊗2 can be transformed into a square lattice, the edges of
which being fully occupied by maximally entangled pairs, using collective measure-
ments at the individual sites, given that λ1 < λ∗

1.

One could say that the protocol transforms a square lattice with

1 ≥ p1 ≥ 2λ∗
2 ≈ .70 (43)

into a square lattice with p1 = 1. Again, and more clearly so, this is a transformation
between different bond percolation processes that crosses the critical threshold in a
way that is not possible in percolation with classical edges.

Square lattice II

To consider yet another effect, we will have a second look at the square lattice[34].
As mentioned in Sect. 3.3, a joint measurement can be applied to a two-pair chain
such that the SCP of the new bond equals the original bonds’ SCP on average. Let
us apply this operation at every other site of a square lattice as indicated in Fig. 10,
thereby replacing it with two disjoint square lattices with double the lattice constant.

Fig. 10. Transformation of a square lattice into two disjoint ones by means of two qubit
measurements. Left: At every other lattice site two operations are carried out, affecting the
dark and light qubits, respectively. Right: The resulting lattice consists of two disjoint square
lattices
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Neighbouring sites in the resulting graph sit on different lattices. We pick two
pairs of neighbours, a = (A,A′) and b = (B,B′) and ask for the probability of
finding at least one open path between these two sets of sites, so the event H = a ↔
b. On the doubled lattices this accounts to the event of having at most one path out
of A ↔ B and A′ ↔ B′. In the limit of large separation of a and b, the probability
amounts to

P ′
p(H) = θ2(p)(2 − θ2(p)), (44)

where θ(p) is the percolation probability, so the probability of a given site to belong
to an infinite spanning path.

In contrast, on the original lattice this quantity asymptotically fulfils

Pp(H) ≤ θ2(p)(2 − Pp(A ↔ A′))2. (45)

In [34] a Monte Carlo simulation to find the quantity Pp(A ↔ A′) for p ↘ p
(c)
2 is

carried out, yielding 2−Pp(A ↔ A′) ≈ 1.313 in comparison to (2−ϑ2(p(c)
2 ))1/2 =√

2. So, a doubling of the lattice spacing using joint quantum operations can be ad-
vantageous when it comes to the connection of pairs of sites. It is conjectured [34]
that this property holds for all p. Further, examples along similar lines are also pre-
sented in [34].

4 Summary and Open Problems

4.1 Open Problems

To elaborate the aforementioned invitation to this topic, we list some open problems
that arose from the work so far. Concerning issues of ‘classical percolation for cluster
state preparation’ this includes the following list of problems:

• In dimensions d ≥ 3 crossing paths in different directions do not imply a crossing
of these paths. Further, development could aim at finding an algorithm similar to
the one in Sect. 2.3. These would be able to identify structures that are topolog-
ically equivalent to universal computing resource states in a percolated lattice at
higher dimension, thus allowing this tool to be used for resource state production
for arbitrary gate probabilities with resources amounting to O(L2).

• While it appears from numerical results that a constant overhead per site cannot
be achieved with static renormalization, its optimal scaling is not evident. Ac-
cording to Fig. 4, this is at most logarithmic, rather than polynomial as the bound
in Theorem 1 suggests.

• Further, an investigation towards the required initial resource size would help
implement these protocols in the future. After all, small highly entangled quan-
tum states have to be produced in the very beginning, the smaller the better. There
will be a tradeoff between the possible gate probabilities and the number of initial
qubits needed, the exact behaviour of which might be interesting. It includes op-
timization over possible local linear optical operations that do not require global
re-routing.
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• All ideas presented in this chapter presume ideal states, optical elements or quan-
tum gates. This, however, will of course never be achieved in any implementa-
tion. The general problem of quantum error correction needs to be revisited in
the framework of percolation, as there might arise new ways for error correction
of special classes of errors (for first ideas see [28]).

• As has been shown in [18], there are a number of resource states very differ-
ent from the cluster states that form universal resources for quantum comput-
ing. Dictated by the underlying physical architecture, there might be states that
are more suitable than cluster states, exploiting the specific strengths of the re-
spective architecture. However, if probabilistic processes are involved (like PEPS
projections with linear optics), it is not obvious how to generalize the percolation
scheme to other states.
Information flow through these states is in general not ruled as easily as with
single qubit Pauli measurements. Suitable applications of SWAP gates might help
in using percolated versions of these resources for computing, though not giving
a solution for distillation of hole-free states as such (as may be needed as resource
for error correction).

Complementing these questions on the tightness of the given bounds, there are a
number of open questions relating to the idea of entanglement percolation:

• The aim of Sect. 3 was to look at the problem of entangled state distribution with
the tool of percolation. One, relatively vague, open problem is to find applications
of this idea in a context different from entanglement distribution as such.

• One step in this direction could be to combine the idea of entanglement perco-
lation with ones of quantum computation in the first part of this book chapter.
Clearly, entanglement percolation could also help to further reduce the required
resources in a renormalized lattice, albeit requiring more difficult collective mea-
surements on the way, the probabilistic nature of which might lead to some trade-
off.

• Within restricted classes of percolation settings (such as restrictions to the geom-
etry or the possible local operations), it seems important to identify the optimal
entanglement percolation strategy.

• It is still far from clear how to fully incorporate mixed states in this setting, which
seems important when considering lossy quantum channels.

4.2 Summary

Even though the first ideas to incorporate quantum information with percolation the-
ory were only proposed very recently [1, 28], it seems clear that open problems
in quantum state preparation and quantum communication can indeed benefit from
results known in percolation theory. Since randomness is intrinsic in quantum me-
chanics, one often has to overcome the probabilistic nature of quantum operations.
As we have discussed, a context in which this most naturally occurs is in quantum
computation using lattice system. Here static lattices with a non-unit probability of
the existence for bonds and sites occur naturally in cluster state preparation, where
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the random nature is due to probabilistic quantum gates, or due to Mott defects in the
preparation. Ideas of percolation – specifically questions of when crossing clusters
exist – led to methods of renormalization that effectively remove this probabilistic as-
pect from quantum state preparation. Along similar lines, it seems realistic to expect
related instances where percolation ideas help to overcome the intrinsic randomness
of quantum mechanical state manipulation.

A key challenge will be, needless to say, to take mixed quantum states fully into
account, and to see in quantitative terms to what extent renormalization ideas can
be combined with methods of fault tolerance, error correcting codes or protection
strategies in state preparation for the use of quantum computation [12, 36, 39, 45]. A
step into this direction has been taken in [28].

We have also seen that when taking the quantum nature of the states seriously,
one can often outperform strategies based on simple measurements and invoking
notions of edge percolation. Such an approach seems particularly suitable for re-
alizations in quantum networks for quantum communication and key distribution,
but could equally well also be applied to the above context of quantum computation.
New phenomena emerge when appropriate collective operations are allowed for, giv-
ing rise to an interesting interplay between questions of entanglement theory on the
one hand and percolation theory on the other hand.

On a related but different note, ideas of percolation seem also to provide power-
ful tools in a slightly different context, namely to study correlation and entanglement
properties of quantum many-body systems from the perspective of quantum infor-
mation. Notably, the scaling of the entanglement entropy in the Ising model can be
assessed by invoking concepts of classical percolation [17]. The question of relating
percolation ideas to problems in quantum information science is at its infancy, but
one should expect more applications to come.
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abutment, 306
Aharonov-Bohm phase, 182
Anderson localization, 83, 141, 278
Anderson model, 87, 88, 109, 139

magnetic field, 88
Anderson transition, 84, 85, 88, 228, 247
ant, 14

Bell-measurement, see mesurement, Bell-
Berry phase, 260

non-adiabatic, theory of, 255
theory of polarization, 255

Bethe lattice, 3
biased diffusion, 16
binary alloy model, 144
bipartite, 110, 117, 119
Boltzmann’s relaxation time approximation,

see Debye relaxation
failure of, see non-Debye relaxation

bond percolation, 1, 31
tunneling enhanced, 27

breadth-first-search, 298
breakdown dynamics (reversible) in RRTN

breakthrough or first passage time, 67, 74
breakthrough vs. relaxation time, 76

breakdown field
breakdown exponent, 44
dynamical critical point, 44

breakdown susceptibility, 246
bridge decomposition, 306
brittle failure, 229
busbar contact, 114

Cayley tree, 3

Chalker-Coddington, 168
Chebyshev expansion, 151
chemical length, 232, 235
classical entanglement percolation, see

percolation, entanglement, classical
classical percolation, 31, 164
cluster, 1

crossing, 293, 298, 304
cluster state, see state, cluster
collective excitations, 164
colossal magneto-resistance

CMR effect, 154
in manganites, 195, 203, 204

compressibility, 164
concurrence, 311
conditional dynamics, see feed-forward
conductance, 110, 164
conductivity, 8

tensor, 163
continuous time random walk, 60

scale-invariance of (response) shape, 60
correlated electron system, 195

insulating glassy phase, 221
manganites, 225
nonlinear phenomena, 252
spin-spin interaction, 222

correlation length, 7, 231, 233, 235
Coulomb interaction, 55, 56, 139, 184, 252,

see correlated electron system
critical energy, 169
critical exponent, 164, 166
cubic lattice, see lattice, cubic
current conservation, 35, 57, 168, 169
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global, 62, 64
lattice Kirchhoff’s dynamics, 63, 74
local, 62, 64

cyclotron energy, 185

Daboul ansatz, 115, 121
Debye relaxation, 59
degenerate Landau functions, 165
delocalization transition, 100
density matrix, 185
density matrix renormalization group

DMRG, 273
finite-size DMRG, 273
real-time DMRG, 273
time dependent DMRG, 256

diamond lattice, see lattice, diamond
dielectric breakdown, 238, 239, 249

field, 66, 245
half-filled Hubbard model, 273
quantum version, 247, 249
reversible, in semi-classical RRTN, 65–73
voltage, 66, 228

diffusion, 14
diffusion-vibration analogy, 111
disorder, quantum problem, 165, 196, see

Anderson model
distribution function

Gumbel, 234, 237, 241, 246, 249
Weibull, 234, 241

doublon-hole excitation, 254, 255
field induced/driven metal, 255
Landau-Zener tunneling, 275
tunneling threshold field, 254

ductile failure, 74
in the RRTN, 74, 76

dynamic criticality, 22
dynamic random resistor network, 28

DRRN, 42, 44, 67
dynamical localization, 278, 279, 283

early stage power-law dynamics
blinking times of fluorescence in single

CdSe quantum dots, 60
Ca2+ channels in living cells, 61
cellular automata models of earthquakes,

62
dielectric relaxation experiment, 60
earthquakes, 62

grain-size growth by gelation, sintering
etc., 61

hole transport in PVK, Si-MOS, 60
in the RRTN, 63–65
photocurrent in a-semiconductors, 60
rebinding of ligands of iron in dissociated

heme-proteins, 60
simulation of diffusion limited aggregate

(DLA) growth, 61
earthquake dynamics

two power-laws
aftershocks, Omori law, 62
foreshocks, 62

electromigration, 236
energy level repulsion

interacting: Mott insulator, 266
single particle:band insulator, 266

energy level statistics, 183
entanglement, 289, 302, 308

distillation, 313
purification, 308, 310
width, 304, 306

entanglement percolation, see percolation,
entanglement

equipotential lines, 166, 167, 182
excitation potential, 170, 172, 177
exponent

chemical length, 235
conductivity in continuum model, 235
conductivity in discrete model, 232
conductivity in the RRTN, 34
correlation length, 232, 236, 240, 242, 245

maximal RRTN, 32, 33
dielectric breakdown field in continuum

model, 242
dielectric breakdown field in discrete

model, 240, 241, 245, 246
dielectric breakdown field in RRTN

model, 70–73
fuse failure current in continuum model,

233, 235
fuse failure current in discrete model, 232,

233, 237
fuse failure voltage in continuum model,

235
fuse failure voltage in discrete model, 232,

237
minimum gap, 67, 240
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number of broken bonds upto global fuse
failure, 238

size dependence of fuse failure current,
233, 237

extended states, 131

feed-forward, 290, 292, 302, 303, 315
Fermi level, 173
filling factor, 165
finite size scaling, 98, 100, 121

in RRTN, near pct, 33–34
FKG inequality, 295, 296
Flory, 1
FQHE, 164
fractal, 9
fractal dimension

maximal RRTN, 34
fractional charge, 164
fragmentation of the spectrum, 150
free energy, 6
fuse failure, 227

current, 228, 231, 233, 234

gate, 289
controlled-Z, 290–292
fusion, 292, 301, 302
probabilisitc, 290
probabilistic, 292, 293, 301, 302, 317
SWAP, 316

Gaussian wave packet, 125
Gaussian-type impurities, 166
gelation, 1, 18
GHZ state, see state, GHZ
graph, 290
graph state, see state, graph
graphene, 154

Hall bar, 163, 175
Hall conductivity, 163
Hartree-Fock, 164
Hausdorff dimension, 243
hexagonal lattice, see lattice, hexagonal
high magnetic field regime, 171
high-field limit, 166
high-precision determination of the

fine-structure constant, 163
Hoshen-Kopelman method, 4
Hoshen-Kopelman-algorithm, 298
Hubbard interactions

adiabatic limit, 205
Hubbard model, single-band, 252

ideal chain, 111
incipient, 11
incipient infinite cluster, 34
incompressible stripe, 178
infinite cluster, 11
international reference resistance, 163
inverse participation ratio, 113
IQHE, 163
Ising, 5

joint measurement, see measurement, joint

Kosterlitz-Thouless transition, 125, 132
KPM, 139

Landau level, 164, 165
Landau-Zener formula, 276
Landau-Zener model, two-band, 261
Landau-Zener transition, 260, 261, 270, 271,

277, 278
Laplace equation, 243, 244
lattice, 291, 308

covering, 301
cubic, 291–297
diamond, 300–302
hexagonal, 291, 299, 306, 311–313
optical, 291
pyrochlore, 301, 302
square, 293, 297, 299, 304, 313–315
triangular, 312

LDOS, 139
Leath method, 4
Lifshitz scale, 233
linear optics, 289, 291, 301, 302, 315
local distribution approach, 137
local measurement, see measurement, local
localization length, 56, 125, 166, 170
localized states, 110, 131
localized-to-delocalized transition, 105, 109
LOCC, 308, 314
log-periodic, 16
longitudinal conductivity, 163

magnetic field, 163
magnetic length, 165
magnetisation, 6
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Markov process, 111
MatLab, 298
mean cluster size, 7
mean DOS, 139
measurement, 288, 292, 307

Bell-, 310, 313
joint, 310, 311, 314
local, 289, 291, 299, 302, 306, 312, 316

measurement-based quantum computer,
see quantum computer, measurement
based

minimum gap, 240, 242, 245
minimum gap path, 67, 69
minimum metallic conductivity, 84
mobility edge, 87, 247
Monte Carlo, 301

in RRTN, 33
MOSFET, 22, 163
Mott metal-insulator transition, 253, 280
Mott/charge gap, 254, 266, 276

metallic doping, 253
Mott insulator, 204, 252

quantum breakdown, 253

negative compressibility, 164
network-type models, 164
node-link-blob model, 231
non-adiabatic transition, 252
non-adiabatic tunneling, 264

Landau-Zener transition, 283
non-Debye relaxation, 26, 59, 64
non-equilibrium currents, 170, 172
non-equilibrium network, 181
non-equilibrium phase transition, 251

metal-insulator transition, 252
non-self-averaging property of RRTN, 43
nonlinear ac response

in the RRTN/CRC model, 46–55
intermediate frequency, 51
low frequency insulator, 53
low frequency metal, 52

nonlinear dc response, 21
2D electron gas, MOSFET, 22
C-black-polymer composites, 24
carbon-black loaded rubbers, 23
DNA molecules, 23
granular superconductors, 22
in the RRTN, 35–46
intramolecular junction SWNT, 23

metal-insulator composites, e.g. Ag-KCl,
25

mobility of a polymer, 23
movement of foam in porous rocks, 23
oil/water microemulsions, 25
viscosity of a Bingham fluid, 23
ZnO varistors, 23, 43

nonlinear response
optical properties, 264
polarization, 260
QED vacuum, 260

Omori law
earthquake, aftershock dynamics, 62

one parameter scaling theory, 84
vs. quantum percolation, 100

one-way quantum computer, see quantum
computer, measurement-based

optical cavities, 291
optical lattice, see lattice, optical

participation ratio, 118
Pauli measurement, see measurement, Pauli
percolation

bond, 31, 293, 312
semi-classical, or semi-quantum, 24, 27

bond correlated, 34
entanglement, 290, 309–316

classical, 308–309
quantum, 88, 90, 197

(statistically) correlated disorder, 221
one band model, 205
two band model, 217

site, 291
site/bond, 303

percolation probability, 7
persistent currents, 170
phase transition, 303

non-equilibrium, 252
point-to-point contact, 114
Potts, 5
purification, see entanglement purification
pyrochlore lattice, see lattice, pyrochlore

quantization, 163
quantized Hall insulator, 183
quantum algorithms, 278
quantum bond percolation model, 198
quantum breakdown, 252
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relation to nonlinear QED, 255
quantum communication, 289, 307
quantum computer, 288

measurement-based, 289, 290, 293–307
quantum electrodynamics, QED

nonlinear theory, 255
quantum information, 278
quantum interference, 277, 278, 283
quantum mechanical self-interference, 168
quantum mechanical tunneling, 168
quantum percolation, see percolation,

entanglement
quantum random walk, 256, 276, 278
quantum site percolation model, 144, 198
qubit, 288, 293

radius of gyration, 7
random graphs, 3
random network models, 170
random resistor cum tunneling-bond network

RRTN, 28
random resistor cum tunnelling-bond

network
RRTN, 28, 78

random resistor network
RRN, 28, 39, 154

re-routing, see feed-forward
real-space RG approach, 13, 33, 181
recursion method

scalar version, 90
slice version, 90
vector version, 92

renormalization, 12, 32, 293–300
repeater, 307
resistivity tensor, 163
resonant reflection, 117
resonant transmission, 117
resource consumption, 292, 293, 298, 304,

315
resource overhead, see resource consumption
resource scaling, see resource consumption
RRTN

effective medium approximation, 29
maximal, 28, 29, 32–34, 39

saddle point, 168, 172
scaling laws, 7
scattering matrix, 172
Schmidt coefficients, 308

shortest path, 236, 242
singlet conversion probability, 309, 311, 314
site percolation, 1
spanning, 2
spin, 184
square lattice, see lattice, square
stabilizer, 290
state

cluster, 290–291
GHZ, 301
graph, 290–291
mixed, 316
toric code, 293

Stokes phase, 262
non-adiabatic Berry phase, 262

stretched exponential, 112
strongly correlated electron system, 251,

252, 280
in non-equilibrium, 251

susceptibility, 6
swiss-cheese model, 234

temperature, 5
Thomas-Fermi screening, 164, 186
threshold, 2

dielectric breakdown voltage, 66, 228, 244
fuse current, 228, 231
Landau-Zener, 276
Landau-Zener tunneling, 254
percolation, 27, 228, 247, 249
QED instability, 264
site percolation, 144
tunneling enhanced percolation, 27

tight binding hamiltonian, 110
comprehensive for manganites, 203

time evolution, 151
toric code state, see state, toric code
transfer matrix, 169
transmission coefficient, 116, 127
triangular lattice, see lattice, triangular
typical DOS, 139

universal scaling, 109
universality, 8
universality class, 24, 100

maximal RRTN vs. RRN, 34, 72
quantum percolation vs. Anderson model,

100, 105
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variable range hopping, VRH, 55, 86

Efros-Shklovskii type, 55

Mott type, 55, 86

RRTN results, 56–59

with super-localized states, 56

vertex degree, 300

vulcanisation, 1

wall follower, 305

Zener breakdown, 247–249, 253, 255, 259,
261

quantum version, 247, 248


	Preface
	Classical Percolation
	D. Stauffer
	Introduction
	Methods
	Quantities and Exponents
	Fractal Dimension: Incipient Infinite Cluster
	Simple Renormalisation Group
	Diffusion and Percolation
	Summary
	References


	Nonlinear Response, Semi-classical Percolation and Breakdown in the RRTN Model
	A.K. Sen
	Introduction
	The Origin of the RRTN Model and Its Percolative Aspects
	Nonlinear Steady-State I-V Characteristics
	Periodic Driving and AC-Response in the RRTN/CRC Model
	VRH and Low Temperature Conduction in the RRTN
	Slow Power-law Dynamics Far-from-Equilibrium
	Aspects of Reversible Breakdown in the RRTN Model
	Dynamical Characteristics of Breakdown
	Summary and Further Works
	References


	Quantum Transmittance Through Random Media
	A. Mookerjee, T. Saha-Dasgupta, and I. Dasgupta
	Introduction
	One Parameter Scaling Theory of Localization
	Transport Mechanisms in Disordered Media
	Some Models of Disordered Systems
	Some Earlier Studies on the Quantum Percolation Model
	The Vector Recursion Method and Its Applications
	Conclusions
	References


	Quantum Percolation in Two Dimensions
	H. Nakanishi, and Md. Fhokrul Islam
	Introduction
	Resonances and Phase Variations in Ordered Limit
	Time-Independent Schrödinger Equation for Finite Disorder
	Time-Dependent Schrödinger Equation: Sending a Wave Packet Through a 2D Cluster
	Summary
	References


	Quantum Percolation in Disordered Structures
	G. Schubert and H. Fehske
	Introduction
	Local Distribution Approach
	Localization Effects in Quantum Percolation
	Percolative Effects in Advanced Materials
	Conclusions
	References


	Quantum Percolation in the Quantum Hall Regime
	C. Sohrmann, J. Oswald and R.A. Römer 
	Introduction
	The Quantized Hall Effect and Classical Percolation
	Network Models at the IQHE
	Hartree-Fock Approach to the IQHE
	Conclusions
	References


	Percolative Quantum Transport in Manganites
	P. Majumdar
	Introduction
	Standard Quantum Percolation
	Manganites: Phenomenology and Model
	Percolative Effects in a One Band Model of Phase Competition
	Percolation in Two Band Models with Electron-Phonon Coupling
	Connection with Quantum Percolation and Resistor Networks
	Conclusions
	References


	Classical and Quantum Breakdown in Disordered Materials
	D. Samanta, B.K. Chakrabarti and P. Ray
	Introduction
	Analysis of the Fuse Problem
	Dielectric Breakdown Problem
	Zener Breakdown in Anderson Insulators
	Conclusions
	References


	Nonequilibrium Quantum Breakdown in a Strongly Correlated Electron System
	T. Oka and H. Aoki
	Introduction
	Nonadiabatic Evolution and Pair Creation of Carriers
	References


	Percolation in Quantum Computation and Communication
	K. Kieling and J. Eisert
	Introduction
	Percolation and Quantum Computing
	Quantum Repeater Networks for Quantum Communication
	Summary and Open Problems
	References


	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




