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Part 1
OPENING REMARKS



Greetings

Recorded in Santa Barbara

David Gross1

Hi Claudio,

Good to see you. I am sorry I am not able to be there for your birthday. Jackie
and I really loved our visit last year, and I am sure we would have enormously
enjoyed what I expect will be a great party, but at the moment we have a previous
engagement somewhere in Thailand.

I have known Claudio since he was a mere lad of 22, a young graduate student of
Johnnie Wheeler when I first came to Princeton. He then stayed on as an Assistant
Professor, so I have known him for more than half of his life. After Princeton he
went to Texas and a few years later, much to my surprise, returned to Chile, first on
a part time basis, and then full time. I must say that at the time I was surprised and
amazed that he did this. I really admired him for his courage and dedication in going
back to Chile to help build science at such a very difficult and dangerous time.

I was delighted over the years to visit Claudio at the institute that he established
in Santiago and later in Valdivia. I tried to do the little I could do to help him in his
remarkable leadership in developing science in Chile and in healing the wounds of
previous hard times.

Claudio Teitelboim is truly a great scientist and a great statesman of science.
He has helped to transform Chilean science. I have enormous respect for him and
all that he has achieved and I just wish that I was there in person to offer him my
congratulations. I cannot be in Chile, so from afar, congratulations Claudio!

To paraphrase a well known Hebrew saying that is often said on such occasions
“until 120”. You are already half way there, so enjoy the rest, the second half.

Best of wishes,

Bye

David Gross

1 Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA,
e-mail: gross@kitp.ucsb.edu

M. Henneaux, J. Zanelli (eds.), Quantum Mechanics of Fundamental Systems: The Quest 3
for Beauty and Simplicity, DOI 10.1007/978-0-387-87499-9 1,
c© Springer Science+Business Media LLC 2009



4 Greetings

Recorded in Cambridge, MA

Frank Wilczek2

Greetings Claudio, greetings friends in Chile.

Claudio, as you will know, time is an illusion. The Hamiltonian that evolves
systems in time is just a constraint, and it is zero, so your 60th birthday should not
be a cause for alarm and there are other branches of the wave function in which you
are celebrating your 20th birthday or 30th, or 40th or whichever one your prefer.

Even on this branch of the wave function the 60th birthday is really a cause for
celebration. It is a chance to celebrate what has been achieved by this time that is
quite an impressive thing to contemplate.

Your contributions to fundamental physics are in retrospect even more remark-
able than they seemed at the time. Thinking about abstract problems on how you
quantize constraint systems or how you deal with extended objects and generalize
the Dirac quantization conditions or how you understand black holes as quantum
mechanical objects. These things to which you contributed so much and focused
interest on, have proved to be some of the most unlikely, yet rich and fertile fields
of theoretical physics in recent decades.

You have also of course founded the institute in Chile, which has been an extraor-
dinary place for intellectual adventure, not only in theoretical physics but in topics
that have proved to be, again, amazing choices of things to focus on. Glaciology
now is at the forefront of interest in the world’s problems of climate change and
what we are going to do about it and understanding it and of course, understanding
how the mind works is going to be the great occupation, I’m sure, of science in the
later parts of the twenty-first century.

Besides intellectual achievements and setting up other people’s intellectual
achievements, you have had direct effect on people’s lives, family, friends,
coworkers, and in future years you’ll have the joy not only of extending your own
adventures, but of watching their adventures as the solution of time marches on.

So you can look back with satisfaction and look ahead with anticipation.

Happy Birthday!

Frank Wilczek

2 Department of Physics, Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA, e-mail: wilczek@mit.edu
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Greeting from Utrecht

Gerard ’t Hooft3

Dear Marc, Jorge and other Organisers of the Claudio Fest,

Although, regretfully, I will not be able to be physically present at this gather-
ing, I do wish to send Claudio my very warmest wishes and congratulations for his
60th birthday. As the title of the meeting shows, 60 is the respectable age when
one is beginning to be more reflective, pondering about the real essentials of our
research topics: what is quantum mechanics, what is beauty and simplicity? In what
directions should future searches go, and what is it that we can expect? I hope the
meeting, by its informal nature, will be thought provoking. My warmest greetings
also to all my friends and colleagues who did manage to be present and I hope they
will bring Claudio the hommage he deserves.

In case it is still opportune: Merry Christmas and a Happy 2008,

Gerard ’t Hooft

3 Institute for Theoretical Physics, Utrecht University and Spinoza Institute, Postbus 8000, 3508
TA Utrecht, the Netherlands, e-mail: G.tHooft@phys.uu.nl



6 Greetings

For Claudio: A 60th Birthday Greeting

Stanley Deser4

Dear Claudio,

Let me preface this, at times indiscreet, 60th birthday message with the consola-
tion that, were it not for the impossible 18 h (each way) plane journeys, you would
have had to suffer the insult of hearing it live!

The much appreciated invitation to your celebration made me both count and re-
member: we have known each other for over half your life so far, and it led me back
to our first encounter, of early 1975, in Princeton. You were then already famous –
the successor in the lineage of Feynman and Misner – as the latest of Wheeler’s
“discoveries,” having reached New Jersey by the route closest to John’s heart, crazy
electrodynamics. Since we’re also traveling backward in time, that takes care of
defining Dick’s way, while Charlie’s (more recent) exploit was to destroy the beauty
of Maxwell–Einstein theory by (re-) discovering its – horribly complicated, “already
unified” – purely geometrical version. Your road was the radiation reaction prob-
lem, which you clarified so much that it forced Sidney Coleman to (sort of) do it
right later, also using exotic Feynman propagators, come to think of it. What most
impressed me however, in that initial meeting, was of a non-physics nature: you
looked like a Jeune Premier (someone will translate) and you (claimed you) were
equipping an ancient and highly unlikely-looking wreck of a yellow Land Rover
for the journey home (merely to Santiago, rather than Valdivia, but still) down the
(then highly unfinished) Pan-American highway. In drab, conventional, Princeton,
one can imagine that these characteristics stood out most vividly! I had been invited
for an informal visit by the Physics Department. I had a lot of fun – except when the
whole Physics Department – from Wigner down, would close for grading Freshman
physics exams (a Princeton custom, I was told!). Despite this quaint custom, you
and I were able start what would become a long-standing research collaboration,
whose first result was our Phys Rev electromagnetic duality paper (surviving those
unsettling local mores). It was to become famous, long before duality became fash-
ionable, but not before going through the usual “it’s wrong and trivial” scoffing. It
still gets quoted, and as you know, served as a basis of three of our further collab-
orations, with Henneaux and Gomberoff, at your Institute some two decades later,
as well as of more recent papers by you and Marc, that in turn generated ones by
Domenico Seminara and me. Duality has indeed evolved from breakthrough to tru-
ism, as (legend has it) good physics ideas always do!

The second big thing for us came less than 2 years after, early in 1977, when we
met on a freezing day in Harvard Yard (they all are) and realized that we had both
been dreaming that the then brand-new Supergravity might be the key to one of the

4 Department of Physics, Brandeis University, Waltham, MA, USA and Caltech, Pasadena CA,
USA, e-mail: deser@brandeis.edu
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really big problems in ordinary General Relativity: positive energy. For background
(in case there are younger members of the audience, unaware that there ever might
have been such a problem), it had long been suspected – I had wasted countless
years on it myself – that the GR Hamiltonian was nonnegative, and only vanished for
vacuum = flat space. A proof had actually quite recently appeared, by Schoen and
Yau, but it was very pure mathematics of the sort that no one whom I understood
understood, if you see what I mean. For you, the flash came via the notion that
SUGRA was some sort of Dirac square root of gravity, for me it was the same fact,
but stated as the SUGRA algebra’s relation that the Hamiltonian was the (hermitian)
square of the supercharge. We compared notes, calculated some more-and it held
up! I was eager to publish this final validation of SUGRA as also the savior of GR
stability and to finally shake the problem, while you wisely hesitated because our
proof was seemingly for the purely QUANTUM (because of the fermions) SUGRA,
rather than its classical GR counterpart, and you hoped we could soon overcome that
hurdle. I “won,” so we had to later cede a bit of the glory to Witten, who extracted the
classical content via Killing spinors, and to Grisaru who simply noted that classical
GR was the h = 0 limit, restricted to the no external fermion sector, of SUGRA,
at least formally. Nevertheless, ours represented (if I may say so) a most rewarding
accomplishment of SUGRA (and of its devoted servants), providing a clear physical
basis for a deep necessity.

I cannot speak as authoritatively about your many other non-research feats, such
as the enormous service rendered to Chile and to Science by the Center you have so
tirelessly served, starting from very lean and difficult times; many of your Northern
Hemisphere colleagues have witnessed this first-hand. Certainly, the now-legendary
South Pole theoretical physics conference of a few years back will eternally resonate
in the hearts of all its survivors, at many levels, including its superb organization-
even unto mobilizing the entire Air Force as well as commanding the Winter South
Pole’s weather to obey! On a personal note, Gary Gibbons and I are indebted to this
meeting for having gotten us started on perhaps the world’s lowest paper, if only (we
hope) latitude-wise! I can, however, say a bit more about the remarkable evolution
of some of the physics ideas that you have produced; this requires making a severe
selection, but the four surviving my triage should give the overall flavor: In sheer
SLAC citation density, of course it is BTZ that leads the list at 103 (and counting).
That a non-dynamical theory like 2 + 1 GR could be tortured into exhibiting a black
hole solution is already amazing; that it then became the first entropy-explanation
laboratory (triggered by Brown and Henneaux’s work), and still keeps on giving, tes-
tifies to its depth. It should also be a special source of all-Chilean pride. Next, there
is Regge–Teitelboim, as it is simply known, a clear and detailed exposition of the ins
and outs of the dynamics of GR, that has weaned whole generations of relativists,
despite its mysterious samizdat-like Italian publication. Then there is another, if less
famous, Regge–Teitelboim, one that is especially close to my heart, though for im-
pure reasons. Your work was a most original attempt to give a description of GR
in terms of higher-dimensional embeddings, and it prompted a followup by Pirani,
Robinson and me. We submitted ours to the Physical Review, in the days when one
did not toy with that Journal’s majesty; our title, “Embedding the G-String,” was not



8 Greetings

only technically appropriate but also (knowingly) salacious, as we were immediately
and thunderously informed: change title or you’ll never publish in Phys Rev again!
Though we (of course) gave in, it has always been a source of regret to all three of
us to have lost such a unique chance at a swinging reputation. Luckily(?), the orig-
inal title has been preserved for posterity in the Arxiv listing. Finally, Claudio has
always had a venturesome weakness (before it became de rigueur) for dimensions
outside the usual 4, in both directions; I think here not only of the 3 of BTZ, but of
his pioneering and very fertile work in 2D GR, as well as his forays into D > 4.

I could go on and on, but let me rest my case here and wish one of the giants in
our field a prolonged analytic continuation!

Stanley Deser
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Greeting from Rome

Volodia Belinski5

Dear Claudio,

First of all Trayasca Chaushescu! Then I congratulate you with your 60th
anniversary, with Christmas and with coming New Year. I wish you good health,
good money and satisfaction in your private life. These three ingredients are basic.

Plus to this I wish you to continue your successful scientific activity, in spite of
the fact that the works you already did are more than enough to leave a significant
trace in Theoretical Physics.

Unfortunately I cannot come to Valdivia at January for “Claudio fest” (I have
some health problems and recovering need few months from now, please remember
that I am much older than you, I am 66!). Hope to see you somewhere in the next
future.

Yours,

Volodia Belinski

5 INFN, Rome University “La Sapienza”, 00185 Rome, Italy, e-mail: belinski@ICRA.it
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Greeting from Göteborg

Bengt Nilsson6

Dear organizers,

It would be great to go to Chile and see Claudio again after so many years. I last
met him in Santiago, where we all met as you probably remember. Unfortunately,
I will not be able to make it. So maybe I can ask you to give him my very best
regards and wishes for the future.

Although I did not interact very much with him in Texas (we met just a couple of
times; he was in Europe, I think, for most of the time) I do owe him a lot for creating
(together with Weinberg) the postdoc position which was my first one (I had to turn
down an offer from Peccei in München which was a bit tricky).

I find Claudio an extremely nice and warm person and I wish him all the best.
He once took my wife and me out for dinner in Austin and he made a very special
impression on both of us.

Yours,

Bengt Nilsson

6 Fundamental Physics, Chalmers University of Technology, SE 412 96 Göteborg, Sweden, e-mail:
tfebn@fy.chalmers.se



Opening Lecture

Marc Henneaux

In the name of the organizing committee, it is a great pleasure to welcome all of you
to Claudio’s Fest, a meeting in which we shall celebrate the scientific work accom-
plished so far by Claudio. It has become customary to choose the 60th birthday for
such celebrations and we have followed the tradition, although we all know that a
scientific career does not stop at 60 and that we shall therefore miss all the important
scientific contributions that are still to come.

Your presence with us today is a clear homage that the international scientific
community is paying to a great scientist. The meeting is organized by CECS, with
support from the International Solvay Institutes, of which Claudio is an honorary
member.

“Quantum Mechanics of Fundamental Systems: The Quest for Beauty and Sim-
plicity” is the title that we have chosen for the conference. This is a wink to the early
days of CECS, since the physics meetings organized by Claudio in Santiago in the
1980s, when the center was just created, were precisely entitled “Quantum Mechan-
ics of Fundamental Systems.” We hope that the present conference will carry the
same pioneering spirit, the same freshness, the same driving enthusiasm as those
heroic meetings and that we shall all remember it as one of these unusual confer-
ences where something magic occurred.

To stimulate the discussions, we have invited more participants than speakers.
This is also in perfect line with the philosophy of the CECS’s early meetings where
discussions were central. I would like to thank all the participants, speakers and
non-speakers, for having accepted our invitation and for being with us to make this
meeting a very special event indeed.

“The Quest for Beauty and Simplicity” are words that we added to the title of the
original conferences in order to reflect Claudio’s central inspiration in his research.
Black holes, and in particular the black hole in three dimensions, as well as magnetic

M. Henneaux
Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231,
B-1050 Bruxelles, Belgium
e-mail: henneaux@ulb.ac.be

M. Henneaux, J. Zanelli (eds.), Quantum Mechanics of Fundamental Systems: The Quest 11
for Beauty and Simplicity, DOI 10.1007/978-0-387-87499-9 2,
c© Springer Science+Business Media LLC 2009



12 M. Henneaux

Fig. 1 The Quest for Beauty and Simplicity: Picasso’s series of 11 drawings of a bull

monopoles, are for instance enigmatically beautiful, and presumably ultimately sim-
ple objects which have been recurrent themes in Claudio’s investigations. The best
illustration of this quest for beauty and simplicity is due to Claudio himself, who
likes to show the famous series of 11 drawings of a bull due to Picasso to start some
of his lectures (Fig. 1).

This is a physics conference. I believe, however, that it would be impossible
to celebrate Claudio’s 60th birthday without evoking his exceptional contribution
to the development of science in Chile. When he decided more than 20 years ago to
give up prestigious positions in the United States to come back to Chile and to build
from scratch, without local support, a private research institute, I remember that
many colleagues all over the world said that he was completely mad and that this
enterprize was bound to fail. Time has shown that these pessimistic colleagues were
wrong and that Claudio was right. CECS is in the world league of top research insti-
tutions and remarkably contributes to the international scientific visibility of Chile.
If we are all here today in Chile, it is thanks to this most significant achievement.

I have known Claudio for almost 30 years now. What a long way since I arrived
at Princeton in 1978 as a student! What started as a 1-year visit turned into a long-
term collaboration. I think I am therefore in a good position to describe, in the name
of Claudio’s students and collaborators, his unique style of work that has deeply
influenced us as physicists. This is not an easy exercise – to speak about a friend in
his presence is never an easy exercise – but I’ll try to do it. Perhaps the first lesson
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that he taught us is that life is too short to lose one’s time on marginal problems.
One should develop a good scientific taste for what is relevant and important, even
if this means not following fashion.

Another lesson is that doing research is – and should be – enjoyable. It is es-
pecially enjoyable when one tries to foresee and anticipate the implications of a
plausible physics result before even attempting to prove it, trying to understand
whether these implications make sense. Again, life is too short and educated guess-
ing is the fastest – and funniest – way to go ahead.

Another unique aspect of Claudio’s style of work is his ability to take advantage
of any situation for doing physics. I am sure that all of us have on many occasions
discussed physics with him in unthinkable circumstances, be it during a motorbike
trip to a lost place in Texas to fetch an angora rabbit, or on a jeep ride on a bumpy
dust road to Zapallar, or in a dentist waiting room, or at an airport counter waiting for
the airline to accept sending with minimum extra charge oversized and overweight
luggage, or even on a risky boat trip in the middle of the night in which we almost
sank. Working with Claudio is indeed fun, but requires some capacity of adaptability
from his collaborators, which is not part of the standard academic training.

I will not elaborate more now on Claudio’s style and on the characteristics of his
work – we are all here because we know them!

Before letting the fest begin, I would just like to add a few words in Spanish –
this is a première.

Claudio, vengo a Chile desde hace más de veinte años y nunca he hablado
español en público. ¡Tengo que empezar a hacerlo! No hay mejor oportunidad que
hoy, en tu fiesta cientı́fica. Quiero añadir a lo que dije en inglés que hay otra cosa im-
portante que aprendı́ de ti : es que debemos ser capaces de tomar riesgos, que pueden
parecer a veces locos, no sólo riesgos en nuestras investigaciones sino también ries-
gos en la orientación de nuestra carrera, de nuestra profesión, quizás de nuestra
vida. No es una cosa que se aprende en cı́rculos académicos. Se puede apren-
der de exploradores, de poetas. Entonces voy a concluir con dos citas, la primera
del explorador francés Paul-Emile Victor que organizó expediciones al Ártico y
a la Antártica, y la segunda del poeta chileno Vincente Huidobro. Comienzo con
Paul-Emile Victor : “La única cosa que estamos seguros de no lograr es la que no
intentamos.” Y Huidobro : “Si yo no hiciera al menos una locura por ao, me volverı́a
loco.” Eres un ferviente adepto de estos principios y has convertido con tu ejemplo
a muchos de tus amigos.

And now, let the “fest” begin !
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On the Symmetries of Classical String Theory

Constantin P. Bachas

Abstract I discuss some aspects of conformal defects and conformal interfaces in
two spacetime dimensions. Special emphasis is placed on their role as spectrum-
generating symmetries of classical string theory.

1 Loop Operators in 2d CFT

Wilson loops [47] are important tools for the study of gauge theory. They describe
worldlines of external probes, such as the heavy quarks of QCD, which transform
in some representation of the gauge group and couple to the gauge fields minimally.
More general couplings, possibly involving other fields (e.g., scalars and fermions),
are in principle also allowed. They are, however, severely limited by the requirement
of infrared relevance or, equivalently, of renormalizability. In four dimensions this
only allows couplings to operators of dimension at most one, i.e., linear in the gauge
and the scalar fields. An example in which the scalar coupling plays a role is the
supersymmetric Wilson loop of N = 4 super-Yang Mills theory [38, 43].

The story is much richer in two space–time dimensions. Power-counting renor-
malizable defects in a two-dimensional non-linear sigma model, for example, are
described by the following loop operators

trVW (C) = trV Pei
∮

C Hdef , (1)

where V is the n-dimensional space of quantum states of the external probe, whose
Hamiltonian is of the general form

∮

C
Hdef =

∫

ds
[(

BM(Φ)∂αΦM + εαβ B̃M(Φ)∂βΦM
) dζ̂ α

ds
+ T(Φ)

]
. (2)

C.P. Bachas
Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75231 Paris,
France
e-mail: bachas@lpt.ens.fr

M. Henneaux, J. Zanelli (eds.), Quantum Mechanics of Fundamental Systems: The Quest 17
for Beauty and Simplicity, DOI 10.1007/978-0-387-87499-9 3,
c© Springer Science+Business Media LLC 2009



18 C.P. Bachas

Here s is the length along the defect worldline C, and the Hamiltonian is a hermitean
n× n matrix which depends on the sigma-model fields ΦM(ζα ) and on their first
derivatives evaluated at the position of the defect ζ̂ α(s). The loop operator is thus
specified by two matrix-valued one-forms, BMdΦM and B̃MdΦM , and by a matrix-
valued function, T, all defined on the sigma-model target space M . Because Hdef is
a matrix, the path-ordering in (1) is non-trivial even if the bulk fields are treated as
classical, and hence commuting c-numbers.

The non-linear sigma model is classically scale-invariant. The function T, on
the other hand, has naive scaling dimension of mass, so (classical) scale-invariance
requires that we set it to zero. The reader can easily check that, in this case, the
operator (1) is invariant under all conformal transformations that preserve C. This
symmetry is further enhanced if, as a result of the field equations, the induced
one-form

B̂ ≡
(

BM(Φ)∂αΦM + εαβ B̃M(Φ)∂βΦM
)

dζα (3)

is a flat U(n) connection, i.e., if in laconic notation dB̂ + [B̂, B̂] = 0. The loop op-
erator is in this case invariant under arbitrary continuous deformations of C, as
follows from the non-abelian Stoke’s theorem. Such defects can therefore be called
topological. The eigenvalues of topological loops W (C), with C winding around
compact space, are charges conserved by the time evolution. The existence of a one-
(spectral-) parameter family of flat connections is, for this reason, often tantamount
to classical integrability, see [6].

Quantization breaks, in general, the scale invariance of the defect loop even when
the bulk theory is conformal. This is because the definition of W (C) requires the in-
troduction of a short-distance cutoff ε . As the cutoff is being removed the couplings
run to infrared fixed points, B(ε) → B∗ and B̃(ε) → B̃∗ as ε → 0. I will explain
later that this renormalization-group flow can be described perturbatively [8] by
generalized Dirac–Born–Infeld equations. The fixed-point operators commute with
a diagonal conformal algebra. More specifically, if C is the circle of a cylindrical
spacetime, and LN , LN the left- and right-moving Virasoro generators, then

[LN −L−N , trVW ∗(C) ] = 0 ∀N. (4)

Topological quantum defects satisfy stronger conditions: they must commute sepa-
rately with the LN and with the LN .

These facts can be illustrated with the symmetry-preserving defect loops of the
WZW model [8]. Consider the following chiral, symmetry-preserving defect:

Or(C) = χr(Pei
∮

C λ Jata
), (5)

where Ja are the left-moving Kac–Moody currents, ta the generators of the global
group G, and χr the character of the G-representation, r, carried by the state-space
of the defect. In the classical theory Or(C) is topological for all values of the pa-
rameter λ . But upon quantization, the spectral parameter runs from the UV fixed
point λ ∗ = 0 to an IR fixed point λ ∗ � 1/k, where k is the level of the Kac–Moody
algebra (and k � 1 for perturbation theory to be valid). It is interesting here to
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note [8] that one can regularize (5) while preserving the following symmetries: (a)
chirality, i.e., [Oε

r (C),J a
N ] = 0 for all right-moving Kac–Moody (and Virasoro) gen-

erators, (b) translations on the cylinder, i.e., [Oε
r (C),L0 ± L0] = 0, and (c) global

Gleft-invariance. These imply, among other things, that the RG flow can be restricted
to the single parameter λ , and that the IR fixed-point loop operator is topological.
This fixed-point operator is the quantum-monodromy matrix of the WZW model [4].
It can be constructed explicitly, to all orders in the 1/k expansion, as a central ele-
ment of the enveloping algebra of the Kac–Moody algebra [3, 32].

The above renormalization-group flow describes, for G = SU(2), the screening
of a magnetic impurity interacting with the left-moving spin current in a quantum
wire. This is the celebrated Kondo problem1 [48] which can be solved exactly by the
Bethe ansatz [5,46]. It was first rephrased in the language of conformal field theory
by Affleck [1]. Close to the spirit of our discussion here is also the work of Bazhanov
et al. [11–13], who proposed to study quantum loop operators in minimal models
using conformal (as opposed to integrable lattice-model) techniques. Topological
loop operators were first introduced and analyzed in CFT by Petkova and Zuber [40].
Working directly in the CFT makes it possible to use the powerful (geometric and
algebraic) tools that were developed for the study of D-branes.

2 Interfaces as Spectrum-Generating Symmetries

Conformal defects in a sigma model with target M can be mapped to conformal
boundaries in a model with target M ⊗M by the folding trick [10, 39], i.e., by
folding space so that all bulk fields live on the same side of the defect. Confor-
mal boundaries can, in turn, be described either as geometric D-branes [41], or
algebraically as conformal boundary states on the cylinder [17, 42]. In the latter de-
scription space is taken to be a compact circle, and the boundary state is a (generally
entangled) state of the two decoupled copies of the conformal theory:

||B 〉〉 = ∑Bα1α̃1a2α̃2 |α1, α̃1〉⊗ |α2, α̃2〉. (6)

Here α j (α̃ j) labels the state of the left- (right-) movers in the jth copy. Unfolding
reverses the sign of time for one copy, and thus transforms the corresponding states
by hermitean conjugation. This converts ||B 〉〉 to a formal operator, O , which acts
on the Hilbert space H of the conformal field theory. The fixed-point operators of
the previous section are all, in principle, unfolded boundary states.

This discussion can be extended readily to the case where the theories on the left
and on the right of the defect are different, CFT1 
= CFT2. Such defects should be,
more properly, called interfaces or domain walls. They can be described similarly
by a boundary state of CFT1⊗ CFT2, or by the corresponding unfolded operator

1 Strictly-speaking, in the Kondo setup the magnetic impurity interacts with the s-wave conduction
electrons of a 3D metal. This is mathematically identical to the problem discussed here.
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O21 : H1 → H2. Conformal interfaces correspond to operators that intertwine the
action of the diagonal Virasoro algebra,

(L(2)
N −L

(2)
−N)O21 = O21(L

(1)
N −L

(1)
−N), (7)

while topological interfaces intertwine separately the action of the left- and right-
movers. In the string-theory literature conformal interfaces were first studied as
holographic duals [10, 18, 20, 37] to codimension-one anti-de Sitter branes [9, 36].
Note that conformal boundaries are special conformal interfaces for which CFT2 is
the trivial theory, i.e., a theory with no massless degrees of freedom. If O1 /0 is the
corresponding operator (where the empty symbol denotes the trivial theory) then

conformal invariance implies that (L(1)
N −L

(1)
−N)O1 /0 = 0.

Let me now come to the main point of this talk. Consider a closed-string back-
ground described by the worldsheet theory CFT1, and let O1 /0 correspond to a
D-brane in this background. Take the worldsheet to be the unit disk, or equiva-
lently the semi-infinite cylinder, with the boundary described by the above D-brane.
Consider also a conformal interface O21, where CFT2 describes another admissi-
ble closed-string background. Now insert this interface at infinity and push it to the
boundary of the cylinder, as in Fig. 1. The operation is, in general, singular except
when O21 is a topological interface in which case it can be displaced freely. Let
us assume, more generally, that this fusion operation can be somehow defined and
yields a boundary state of CFT2 which we denote by O21 ◦O1 /0. We assume that
the Virasoro generators commute past the fusion symbol. It follows then from (7)
that the new boundary state is conformal whenever the old one was. Since con-
formal invariance is equivalent to the classical string equations, one concludes that
O21 acts as a spectrum-generating symmetry of classical string theory. Conformal
interfaces could, in other words, play a similar role as the Ehlers–Geroch transfor-
mations [19, 27] of General Relativity.

CFT1CFT2

CFT2 D2

D1

Fig. 1 An interface brought from infinity to the boundary of a cylindrical worldsheet maps the
D-branes of one bulk CFT to those of the other. Conformal interfaces between two theories with
the same central charge act thus as spectrum-generating symmetries of classical string theory. In
many worked-out examples these include and extend the perturbative dualities, and other classical
symmetries, of the open- and closed-string action
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Bringing an interface to the boundary is a special case of the more general process
of fusion, i.e., of juxtaposing and then bringing two interfaces together on the string
worldsheet. This is of course only possible when the CFT on the right side of the
first interface coincides with the CFT on the left side of the second. Furthermore,
two interfaces can only be added when their left and right CFTs are identical. Since
fusion and addition cannot be defined for arbitrary elements, the set of all conformal
interfaces is neither an algebra nor a group. By abuse of language, I will nevertheless
refer to it as the “interface algebra.”2

The first thing to note is that the interface “algebra” is non-trivial even if re-
stricted only to elements with non-singular fusion. These include all the topological
interfaces, for which fusion is the regular product of the corresponding operators,
OA ◦OB = OAOB. The simplest topological defects are those whose internal state
is decoupled from the dynamics in the bulk. They correspond to multiples of the
identity operator, O = n1 with n a natural number. Their action on any D-brane
endows this latter with Chan–Paton multiplicity. Less trivial are the topological de-
fects which generate symmetries of the CFT, as well as the topological interfaces
that generate perturbative T-dualities. These were first studied, for several exam-
ples, in two beautiful papers by Fröhlich et al. [23,24]. The fact that all perturbative
string symmetries can be realized through the action of local defects is not a pri-
ori obvious (and needs still to be generally established). Other interesting examples
are the minimal-model topological defects, shown to generate universal boundary
flows [22, 28]. A different set of conformal interfaces whose fusion is non-singular
are those that preserve at least N = (2,2) supersymmetry [14, 15]. Some of these
descend from supersymmetric gauge theories in higher dimensions [29, 33–35].
Such interfaces were, in particular, used to generate the monodromy transformations
of supersymmetric D-branes transported around singular points in the Calabi–Yau
moduli space [16]. As these and other examples demonstrate, the interface “algebra”
is very rich even if restricted to interfaces with non-singular fusion.

Extending the structure to arbitrary interfaces is, nevertheless, an interesting
problem. Firstly, the algebras (without quotation marks) of non-topological de-
fects would provide, if they could be defined, large extensions of the automorphism
groups of various CFTs. Furthermore, while topological interfaces are rare – they
may only join CFTs that have isomorphic Virasoro representations – the conformal
ones are on the contrary common. A useful quantity is the reflection coefficient,
R, [44] which vanishes in the topological case. To see that conformal interfaces are
not rare, consider the nth multiple of the identity defect which is mapped, after
folding, to n diagonally-embedded middle-dimensional branes in M ×M [10].
A generic Hamiltonian of the form (2), with the tachyon potential T set to zero,
corresponds to arbitrary geometric and gauge-field perturbations of these diagonal
branes. Any solution of the (non-abelian, α ′ corrected) Dirac–Born–Infeld equa-
tions for these branes gives therefore rise to a conformal defect [8]. Likewise, any

2 The correct term for the interfaces is “functors.” For a more accurate mathematical terminology
the reader should consult, for instance, ref. [26].
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non-factorizable D-brane of CFT1⊗CFT2 unfolds to a non-trivial (i.e., not purely
reflecting) interface between the two conformal field theories.

For most of these interfaces the product of the corresponding operators is singu-
lar, so the fusion needs to be appropriately defined. A first step in this direction was
taken, in the context of a free-scalar theory, in [7]. The rough idea is to define the
fusion product as the renormalization-group fixed point to which the system of the
two interfaces flows when their separation, ε , goes to zero. A systematic way of do-
ing this, consistent with the distributive property of fusion,3 has not yet been worked
out for interacting theories. For free fields, on the other hand, the story is simpler.
The short-distance singularities are in this case expected to be of the general form

OA e−ε(L0+L0) OB � ∑
C

(e2π/ε)d C
AB N C

AB OC, (8)

where ε � 0 is the separation of the two (circular) interfaces on the cylinder, L0 +L0

is the translation operator in the middle CFT, the d C
AB are (non-universal) constants,

and the N C
AB are integer multiplicities. The singular coefficients in the above ex-

pression are Boltzmann factors for divergent Casimir energies. The latter must be
proportional to 1/ε which is the only scale in the problem (other than the inverse
temperature normalized to β = 2π).

By analogy with the operator-product expansion and the Verlinde algebra [45]
we may extract from expression (8) the fusion rule

OA ◦OB = ∑
C

N C
AB OC. (9)

The following iterative argument shows that this definition respects the conformal
symmetry: first multiply the left-hand-side of (8) with the most singular inverse
Boltzmann factor (the one with the largest d C

AB) and take the limit ε → 0 so as to

extract the leading term of the product. Since [LN − L−N ,e−ε(L0+L0)] � o(ε) the
result commutes with the diagonal Virasoro algebra. Next subtract the leading term
from the left-hand-side of (8), and mutliply by the inverse Boltzmann factor with the
second-largest d C

AB. This picks up the subleading term which, thanks to the above
argument and the conformal symmetry of the leading term, commutes also with
the diagonal Virasoro algebra. Continuing this iterative reasoning proves that the
right-hand-side of (9) is conformal as claimed.

3 The c === 1 CFT and a Black Hole Analogy

A simple context in which to illustrate the above ideas is the c = 1 conformal
theory of a periodically-identified free scalar field, φ = φ + 2πR. Consider the
interfaces that preserve a U(1)×U(1) symmetry, i.e., those described by linear

3 I thank Maxim Kontsevich for stressing this point.
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gluing conditions for the field φ . They correspond, after folding, to combinations
of D1-branes and of magnetized D2-branes on the orthogonal two-torus whose
radii, R1 and R2, are the radii on either side of the interface. The D1-branes are
characterized by their winding numbers, k1 and k2, and by the Wilson line and
periodic position moduli α and β . The magnetized D2-branes are obtained from
the D1-branes by T-dualizing one of the two directions of the torus – they have
therefore the same number of discrete and of continuous moduli.

Let us focus here on the D1-branes. The corresponding boundary states read

||D1,ϑ〉〉 = g(+)
∞

∏
n=1

(eS
(+)
i j ai

nã j
n)†

∞

∑
N,M=−∞

eiNα−iMβ |k2N,k1M〉⊗ |− k1N,k2M〉, (10)

where a j
n and ã j

n are the left- and right-moving annihilation operators of the field
φ j (for j = 1,2) and the dagger denotes hermitean conjugation. The ground states
|m,m̃〉 of the scalar fields are characterized by a momentum (m) and a winding num-
ber (m̃). The states in the above tensor product correspond to φ1 and φ2. Furthermore

S(+) = U T (ϑ)
(−1 0

0 1

)

U (ϑ) =
(−cos2ϑ −sin2ϑ
−sin2ϑ cos2ϑ

)

, (11)

where U (ϑ) is a rotation matrix and ϑ = arctan(k2R2/k1R1) is the angle between
the D1-brane and the φ1 direction. Finally, the normalization constant is the g-factor
[2] of the boundary state. It is given by

g(+) =
�√
2V

=

√
k2

1R2
1 + k2

2R2
2

2R1R2
=

√
k1k2

sin2ϑ
, (12)

where � is the length of the D1-brane, V the volume of the two-torus, and the last
rewriting follows from straightforward trigonometry. The logarithm of the g factor
is the invariant entropy of the interface.

Inspection of the expression (10) shows that the non-zero modes of the fields
φ j are only sensitive to the angle ϑ , which also determines the reflection coeffi-
cient of the interface. For fixed k1 and k2 the g factor is minimal when ϑ = ±π/4,
in which case the reflection R = 0 and the interface is topological. Note that this
requirement fixes the ratio of the two bulk moduli: R1/R2 = |k2/k1|. When |k1| =
|k2| = 1 the two radii are equal and the invariant entropy is zero. The correspond-
ing topological defects generate the automorphisms of the CFT, i.e., sign flip of
the field φ and separate translations of its left- and right-moving pieces. The iden-
tity defect corresponds to the diagonal D1-brane, with k1 = k2 = 1 and α = β = 0.
A T-duality along φ1 maps this topological defect to a D2-brane with one unit of
magnetic flux. The corresponding interface operator is the generator of the radius-
inverting T-duality transformation. All other topological interfaces have positive
entropy, logg = log

√|k1k2| > 0. One may conjecture that the following statement
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is more generally true: the entropy of all topological interfaces is non-negative, and
it vanishes only for T-duality transformations and for CFT automorphisms.

The interfaces given by (10)–(12) exist for all values of the bulk radii R1 and R2.
By choosing the radii to be equal we obtain a large set of conformal defects whose
algebra is an extension of the automorphism group of the CFT. For a detailed deriva-
tion of this algebra see [7]. The fusion rule for the discrete defect moduli turns out
to be multiplicative,

[k1,k2;s]◦ [k′1,k
′
2;s′] = [k1k′1,k2k′2;ss′], (13)

where [k1,k2;s] denotes a defect with integer moduli k1, k2, s, where s = +,−
according to whether the folded defect is a D1-brane or a magnetized D2-brane.
The above fusion rule continues to hold for general interfaces, i.e., when the radii
on either side are not the same. Let me also give the composition rule for the angle
ϑ in this general case (assuming s = s′ = +):

tan(ϑ ◦ϑ ′) = tanϑ tanϑ ′, (14)

where ϑ ◦ϑ ′ denotes the angle of the fusion product. The composition rule (13) was
first derived, for the topological interfaces, in [25]. In this case the tangents in the
last equation are ±1 and all operator products are non-singular.

There exist some intriguing similarities [7] between the above conformal inter-
faces and supergravity black holes. The counterpart of BPS black holes are the
topological interfaces, which (a) minimize the free energy for fixed values of the
discrete charges, (b) fix through an “attractor mechanism” [21] a combination of
the bulk moduli, and (c) are marginally stable against dissociation – the inverse
process of fusion. The interface “algebra” is, in this sense, reminiscent of an ear-
lier effort by Harvey and Moore [30] to define an extended symmetry algebra for
string theory. Their symmetry generators were vertex operators for supersymmetric
states of the compactified string. One noteworthy difference is that the additively-
conserved charges in our case are logarithms of natural numbers, rather than taking
values in a charge lattice as in [30]. Whether these observations have any deeper
meaning remains to be seen. Another direction worth exploring is a possible relation
of the above ideas with efforts to formulate string theory in a “doubled geometry,”
see for instance [31]. The doubling of spacetime after folding suggests that this may
provide the natural setting in which to formulate the defect algebras.

Time to conclude: conformal interfaces and defects are examples of extended
operators, which are a rich and still only partially-explored chapter of quantum
field theory. They describe a variety of critical phenomena in low-dimensional
condensed-matter systems which, for lack of time, I did not discuss. They can be,
furthermore, both added and juxtaposed or fused. When this latter operation can be
defined, the conformal interfaces form interesting algebraic structures which could
shed new light on the symmetries of string theory. For all these reasons they deserve
to be studied more.
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Eddington–Born–Infeld Action and the Dark
Side of General Relativity

Máximo Bañados

Abstract We review a recent proposal to describe dark matter and dark energy
based on an Eddington–Born–Infeld action. The theory is successful in describing
the evolution of the expansion factor as well as galactic flat rotation curves. Fluctua-
tions and the CMB spectra are currently under study. This paper in written in honor
of Claudio Bunster on the occasion of his 60th birthday.

Marc Henneaux remarked in his lecture at Claudio’s Fest (Valdivia Chile, January
2008) that working with him one learns to be brave. Claudio’s tuition has been
particularly important for me over the last 2 years. I have been working on an idea
that looked crazy at first sight and still looks pretty mad today. I have not had the
chance to talk to Claudio about these ideas and I have not sent him the papers I have
written [2, 3] because I know he will not read them! In this short contribution in his
honor I attempt to shoot two birds with one stone, hoping that the bird will not be me.

I shall review a project whose aim is to provide a candidate for dark matter and
dark energy, and whose seed relies on the study of general relativity around the de-
generate field gμν = 0. The project started as a purely formal idea, but it immediately
succeeded in reproducing some of the known phenomenological curves associated
to dark matter and dark energy. I thus decided to purse the idea to the end. In this
contribution I shall concentrate on the original motivation based on studying general
relativity near gμν = 0 [3]. This controversial motivation is now not needed because
an action implementing most of the ideas is available [2]. However, I believe that
exploring physics at gμν = 0 is an attractive idea, certainly not new, and perhaps
necessary to understand the origin of the Universe.

The first step comes from the first order vielbein formulation of general relativity.
An intriguing solution to the equations of motion,

εabcdRabec = 0 (1)

εabcdT aec = 0, (2)

M. Bañados
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is
ea = 0. (3)

The existence of this solution has not gone unnoticed, e.g., [9,10,13]. Its most salient
property is that it preserves the full set of diffeomorphisms and for this reason it is
often called the ‘unbroken’ ground state of general relativity. This point was stressed
in [9] were a symmetry breaking transition from ea = 0 to ea 
= 0, the big-bang, was
suggested. Topological transitions in this formulation were studied in [10].

Now, a key aspect of this solution is the fact that the spin connection is left
undetermined. The above equations of motion are supposed to determine both aa

and wab. However, since ea = 0 kills both (1) and (2), the spin connection becomes
a random field.1 The first step towards accepting ea = 0 as a solution is to understand
the nature of the spin connection at that point.

If one first solves the algebraic equation for the torsion expressing w ∼ e−1∂e
as a function of ea the same problem reappears in a different way. One may try to
recover the solution ea = 0 by a limit ea → 0. The connection w � e−1∂e has the
structure 0

0 and can be anything.2 This is equivalent to the statement that w becomes
random at ea = 0. One does learn something with this exercise though. The structure
0
0 appears provided both ea and its derivative vanish at all points. This tells us that
the limit ea → 0 cannot be associated to time evolution (where ea = 0 would occur
at some particular time t0). Trying to understand the big-bang as a transition from
zero metric into non-zero metric raises complicated issues on the role of causality.
Before the metric is created there is no causality at all [9].

The problem we shall attack in this paper is the arbitrariness of the connection at
ea = 0. Our approach will consist on adding a new interaction to the action such that,
as ea → 0, the spin connection does not go random but continues to be controlled
by second order field equations.

Interestingly there are no too many terms one could add. For reasons we shall ex-
plain in a moment, it is necessary to go back to the metric formulation. Consider the
following Palatini action including a new term that depends only on the connection,

I[g,Γ ] =
∫ [√

g(gμνRμν(Γ )+Λ)+κ
√
|Rμν(Γ )|

]
. (4)

Here Rμν is the Ricci tensor, which only depends on the connection, not the metric.
The new term is known as Eddington theory. The constant κ is a coupling con-
stant which in principle should be small enough such that this action is not in

1 This is related to another feature of ea = 0. The leading term of the action I[e,w]∼ ∫ εabcdRabeced

is cubic with respect to w = e = 0,
∫
εabcddwabeced . Thus, around ea = 0 there is no quadratic term

to expand, and no linearized theory can be defined. Of course the action can be expanded around
the ‘broken’ solution ea

μ = δ a
μ with a well-defined linearized theory, but the interactions become

non-renormalizable. In three dimensions this problem does not occur because the action has one
less power of ea and the quantum theory can be explored much further [13].
2 Note that in particular the limit may be a smooth differentiable function. In that case the curvature
is well-defined. In particular Rμν exists at the limit while R = gμνRμν does not. Not surprisingly,
metric invariants are not good objects to characterize the g = 0 phase.
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contradiction with well-known experiments. It is interesting to note the uniqueness
of this term. In the absence of a metric, Eddington’s functional is the only density
with the correct weight to respect diffeomorphism invariance. Note that Eddington’s
action cannot be defined in the first order tetrad formalism. The SO(3,1) curvature
Ra

bμν(w) cannot be traced to produce a two index object, without using ea
μ . This is

in contrast with the GL(4) curvature Rαβμν(Γ ) whose trace Rβν(Γ ) is a tensor and
independent from the metric.

The attractive feature of the action (4) is that if the metric was not present, then
the first two terms are not present and the dynamics is governed by Eddington’s
action.3 In this sense we have produced an action whose dynamics is well-defined
even if the metric is switched off.

However, it is now a simple exercise to prove that the action (4) does not pro-
duce any interesting new effects. Actually, this was already known to Eddington.
What happens is that the Einstein–Hilbert action with a cosmological term is dual
to Eddington’s action [8]. In other words, the Eddington term in (4) only renormal-
izes Newton’s constant.

This can be seen as follows. Consider the Palatini action for gravity with a cos-
mological constant,

IP[g,Γ ] =
∫ √

g(gμνRμν(Γ )−2Λ) (5)

It is well known that upon eliminating the connection using its own equation of
motion one arrives at the usual second order Hilbert action

IH [g] =
∫ √

g(R(g)−2Λ). (6)

It is less well-known but also true [8] that, if Λ 
= 0, then the metric can also be
eliminated by using its own equations.4 The variation δ I

δgμν = 0 yields,

gμν =
1
Λ

Rμν(Γ ). (7)

Since this is an algebraic relation for gμν it is legal to replace it back in the the action
obtaining Eddington’s functional

IE [Γ ] =
2
Λ

∫ √
det(Rμν). (8)

3 We borrow here the prescription from the tetrad formalism: εabcdRabeced ∼√
ggμνRμν vanishes

if ea ∼ gμν → 0. Another way to see this is by noticing that the volume element
√

g scales faster
than the metric inverse gμν , at least for d > 2.
4 This duality is of course well know to Claudio, and in fact the first time I heard about it was
from him.
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In the terminology of dualities, the action (5) is called the Parent action, while the
Einstein–Hilbert action (6) and Eddington’s action (8) are its daughters. IH and IE

are said to be dual to each other, and in many respects they are equivalent [6, 8].
Summarizing, the action (4) can be understood as general relativity interact-

ing with its own dual field. By a set of duality transformations we can transform
the whole action (4) into standard general relativity with a new coupling constant.
(Starting from (4) one eliminate the metric and to get Eddington action twice. Then
apply a new transformation to get back to Einstein–Hilbert.)

An important note of caution is in order here. The equivalence between the
Einstein–Hilbert and Eddington actions is true provided gμν is not degenerate. For
degenerate fields they do represent different dynamics, and in fact, only Eddington’s
action is well-defined in that case. The reason we shall not consider these cases is
that, at the end of the day, we are interested in non-degenerate metrics anyway. Our
guiding principle is to uncover what sort of modifications would be necessary to
incorporate gμν = 0 as an allowed state. But, the physics phenomena we shall be
interested do require a non-degenerate metric.

We shall now recall an analogy with condensed matter physics, suggesting a
different interpretation for Eddington’s action, which will truly depart from pure
general relativity.

Within standard general relativity, we have observed that if the metric is removed
then the spin connection goes random. This looks very similar to a set of spins, at
T > Tc, in the presence of an external magnetic field. As the field is removed the
spins go random. However, if the temperature is below its critical value T < Tc, then
the external field can be removed and the spins retain their ordered state. The crucial
property of spins which makes this possible is their self interaction. Eddington’s
action has a similar role. For the action (4), as the metric is removed, the connection
continues to be described by a well-defined set of equations.5

Now, spins also exhibit the opposite phenomena, namely spontaneous “mag-
netization.” If T < Tc then the random disordered state is unstable and decays
spontaneously into a broken ordered state. No external field is needed to trigger
this phenomena. Let us imagine that the connection in general relativity exhibits a
similar phenomena. That is, without introducing a metric, we assume that a con-
nection can exists and be described by some well-defined equations. We shall call
this connection Cμ

αβ . This field is fully independent from the metric. Obviously, the
only action consistent with general covariance is again Eddington’s theory,

I[C] =
∫ √

|Kμν (C)| (9)

5 At this point we treat the metric or tetrad as an external field which can be switched on and off, as
a mathematician would do. On a first approximation one does not look at the Maxwell equations
governing the external field but simply assume that it can be controlled at will. We have assumed
the same with the metric, treating it as an external field. A full action governing the coupled system
will be displayed below.
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where Kμν (C) is the (traced) curvature associated to the connection C. No metric is
needed for this construction. What we have in mind is the existence of a connection
Cμ
να that existed before the Universe, as a Riemannian manifold, was created. This

has to be interpreted with care because without gμν there are no causality relations.
At this point we have departed from the treatment suggested in [9]. In that ref-

erence the field which acquires an spontaneous non-zero expectation value was the
metric itself.

We shall now turn on the metric and consider the whole self consistent system.
The metric gμν generates its own connection, the Christoffel symbol Γ (g). Thus,
our theory will contain two independent connections. One, called C, is generated
spontaneously. The other, called Γ (g) is driven by the external field gμν .

The action describing the coupled system is notably simple. The pair g,Γ are
of course described by the standard Einstein–Hilbert action either in first or second
order form. On the other hand the field C is described by Eddington’s action.

Now, to make things more interesting we shall couple both connections through
the metric. Again, there are no two many couplings one can write. An attractive
possibility is the Einstein–Hilbert–Eddington–Born–Infeld action [2],

I =
∫ √

g(R−2Λ)+
2
αl2

√
|l2Kμν −gμν |. (10)

This action has several interesting properties. First, note that as g → 0 we re-
cover Eddington’s action for the field C. (We shall not need this limit in what
follows.) Second, (10) is a tensor Born–Infeld theory analogous to the scalar√

det(gμν + ∂μφ∂νφ) and vector
√

det(gμν + Fμν) Born–Infeld theories. Observe
that the equations of motion for the whole action are of second order. This is differ-
ent from the gravitational BI action written in [7] where extra terms had to be added
in order to eliminate the ghost. Finally, the action (10) contains dynamical proper-
ties which makes it an attractive candidate for dark matter and dark energy [2]. Both
appear in a unified way, just like the Chapligyn formulation [11]. It is also curious
to observe that the Chapligyn gas can be derived from a scalar Born–Infeld theory.

More specifically, for Friedman models, it follows that the Eddington field C
behaves like matter for early times and as dark energy for late times: its equation
of state w = p/ρ evolve from w = 0 near the big bang to w = −1 for late times.
One can also analyze the dynamics of objects moving around spherically symmetric
sources. The Eddington field in this case yields asymptotically flat rotation curves
and thus again provides a candidate for dark matter.

The reader may wonder what does gμν = 0 have to do with dark matter and dark
energy. Could one had predicted this (suggested) relationship? Our initial motivation
to look at gμν = 0 came from the following analogy. A particle at rest has an energy
mc2. The most direct manifestation of this energy is through gravity, and in fact mc2

is a source of curvature. From a Newtonian point of view, the energy of a particle at
rest is zero. Can we ask the same question in general relativity? Could flat space have
an energy-density associated to it? In the standard choice for zero point of energy,
flat space has zero energy. The very definition of energy in general relativity requires
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knowledge of boundary conditions and certainly gμν = 0 falls outside all examples.
However at the level of energy density, namely, the Einstein tensor Gμν(g), one may
wonder about its value at gμν = 0. Interestingly this tensor depends only on g−1∂g
and thus the limit can be defined in a way that Gμν(0) becomes finite. By a mixture
of Bianchi identities and some reasonable assumptions its value can be computed
and yields a contribution to Einstein equations similar to those expected from dark
matter [3].

The ideas presented in this contribution are highly speculative and need for-
malization. The analogy with spin systems is the most challenging and difficult
problem. Other applications like fluctuations and the CMB spectra are presently
under analysis [4]. The action (10) has several interesting formal properties under
duality transformations. This theory can be written as a bigravity theory, which have
been under great scrutiny in the past and also recently [1]. A detailed analysis will
be reported in [5]. Rotation curves for several galaxies has been analyzed in [12],
with interesting results.
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Light-Cone Field Theory, Maximal
Supersymmetric Theories and E7(7)
in Light-Cone Superspace

Lars Brink

Abstract In this lecture I describe the light-cone formulation of quantum field the-
ories especially the maximally supersymmetric ones. This is a formalism in which
we keep only the physical degrees of freedom for both bosons and fermions. I show
how N = 4 Yang–Mills Theory and N = 8 supergravity come out very naturally and
that they look very much alike. I finally show how to implement the E7(7) symmetry
for the supergravity theory. The new feature in this formulation is that all fields of
the supermultiplet including the graviton transform under E7(7).

1 Introduction

When we study supersymmetric theories, the maximally supersymmetric ones,
(N = 8, d = 4) supergravity [1, 2] and (N = 4, d = 4) Yang–Mills Theory [3, 4]
or their 11-dimensional or ten-dimensional versions always show up. The N = 1
supergravity in 11 dimensions [5], is the largest supersymmetric local field theory
with maximum helicity two (on reduction to d = 4). This theory has gained re-
newed prominence since its recognition as the infrared limit of M-Theory [6, 7].
Although M-Theory casts well-defined shadows on lower-dimensional manifolds,
its actual structure remains a mystery. We must therefore glean all we can from the
N = 1 supergravity theory or its dimensionally reduced versions before tackling
M-Theory. N = 1 supergravity is ultraviolet divergent in d = 11 but this divergence
is presumably tamed by M-Theory and the hope is that an understanding of this di-
vergent structure, will give us a window into the workings of M-Theory. Similarly
the N = 1 Yang–Mills Theory in ten dimensions [3, 4], which is the low-energy
limit of the open string theory in ten dimensions has been shown to play an important
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role in the AdS/CFT duality [8]. The four-dimensional version N = 4 Yang–Mills
Theory is also very special since it is free of ultraviolet divergences [9, 10].

In the normal covariant treatments of these two theories they look quite different,
one being a reparametrization invariant gravity theory, while the other is a Yang–
Mills gauge theory. However, in the light-cone formulations, the so-called LC2

formulations where all auxiliary degrees of freedom have been eliminated, [11,12],
the two superfields describing the field content of the two theories are particularly
simple and and very much alike. Indeed these superfields can be regarded as mas-
ter fields for a series of theories. Since they are natural partners in string theory this
similarity must be quite important and much of my research in recent years has been
to use this similarity and to try to use it to learn more about these theories and the
underlying string theory. They are, of course, very well studied during a long time
but they have consistently shown themselves to be more interesting than what meets
the eye.

Writing the two theories in the LC2 formulation has a price. We loose a lot of
information from the geometry and the only guideline will be the non-linearly real-
ized superPoincaré algebra. However, it is important to view these very important
theories from different angles and for certain question this formulation is the most
adequate one.

In this talk I will start from the beginning to build up light-cone field theories and
then go over to the supersymmetric ones. I will start the analysis in four dimensions
of space–time and then ‘oxidize’ them to higher dimensions keeping the specific
form of the superfields. Finally I will show how the E7(7) symmetry is implemented
in this formulation.

2 Light-Frame Formulation of Field Theories

In his famous paper of 1949 Dirac [13] argued that for a relativistically invariant
theory any direction within the light-cone can be the evolution parameter, the “time”.
In particular we can use one of the light-cone directions. For this discussion we will
use x+ = 1√

2
(x0 +x3) as the time. The coordinates and the derivatives that we will

use will then be

x± =
1√
2

(x0 ±x3); ∂± =
1√
2

(−∂0±∂3); (1)

x =
1√
2

(x1 + ix2); ∂̄ =
1√
2

(∂1 − i∂2); (2)

x̄ =
1√
2

(x1 − ix2); ∂ =
1√
2

(∂1 + i∂2), (3)

so that
∂+ x− = ∂− x+ = −1; ∂̄ x = ∂ x̄ = +1. (4)
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The derivatives are, of course, related to the momenta through the usual formula
pμ = −i∂ μ and we use the light-cone decomposition also for pμ . We will only
consider massless theories so we solve the condition p2 = 0. We then find

p− =
pp̄
p+ . (5)

The generator p− is really the Hamiltonian conjugated to the light cone time x+

and we see that the translation generators of the Poincare algebra are written with
just three operators. We will use Dirac’s vocabulary that generators that involve the
“time” are called dynamical (or Hamiltonians) and the others kinematical. Using
light-cone notation and the complex one from above for the transverse directions,
the most general form of the generators of the full Poincaré algebra at x+ = 0 is then
given by the four momenta

p− = − i
∂ ∂̄
∂+ , p+ = − i∂+, p = − i∂ , p̄ = − i ∂̄ , (6)

the kinematical transverse space rotation

j = j12 = x ∂̄ − x̄∂ +λ , (7)

the other kinematical generators

j+ = ix∂+, j̄+ = i x̄∂+, (8)

and
j+− = ix− ∂+, (9)

as well as the dynamical boosts

j− = ix
∂ ∂̄
∂+ − ix− ∂ + iλ

∂
∂+ , (10)

j̄− = i x̄
∂ ∂̄
∂+ − ix− ∂̄ + iλ

∂̄
∂+ . (11)

There is one degree of freedom in the algebra, namely the parameter λ which
is the helicity. At this stage it is arbitrary and checking the corresponding spin one
finds, of course, that it is |λ |. Hence the algebra covers all possible free field theo-
ries. We can let the generators act on a complex field φ(x) with helicity λ , with its
complex conjugate having the opposite helicity. This is the “first-quantized” version.
We can also consider the fields as operators having the commutation relation.

[∂+φ̄ (x),φ(x′)] = − i
2
δ (x− x′), (12)

where hence the momentum field conjugate to φ is ∂+φ̄ .
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We then introduce the “second-quantized” representation O in terms of the
“first-quantized” representation o as O = 2i

∫
d4x∂+φ̄(x) o φ(x). We then find that

the commutator between two of the generators J1 and J2 is

[J1,J2] = 2i
∫

d4x∂+φ̄ (x)[ j1, j2]φ(x). (13)

We can understand that P− truly is the Hamiltonian using (5)

P− = 2
∫

d4x∂+φ̄ (x)
∂ ∂̄
∂+ φ(x). (14)

Legendre transforming to the Lagrangian using the field momenta from (12) we
get the action

S =
∫

d4x

[

∂+φ̄(x)∂−φ(x)+ ∂+φ(x)∂−φ̄ (x)−2∂+φ̄(x)
∂ ∂̄
∂+ φ(x)

]

=
∫

d4x∂+φ̄(x)�φ(x). (15)

It is remarkable that there is a unique form of the kinematic term for any spin-λ field.
We should remember though that to specify the theory we have to give all Poincaré
generators, since the action via the Hamiltonian is just one of those generators. They
will show what spin the field describes.

In this representation it is straightforward to try to add interaction terms to the
Hamiltonian. This was done in [12]. Every dynamical generator will have interac-
tion terms. The procedure is very painstaking and there are as far as I know no other
way than trial and error to find the non-linear representation. On the other hand,
once such a representation is found it represents a possible relativistically invariant
interacting field theory. The result is that for every integer λ there exists a possible
three-point interaction. For λ even, the unique solutions are

S =
∫

d4x
{
φ̄(x)�φ(x)

+g
[ λ

∑
n=0

(−1)n
(
λ
n

)

φ̄(x)∂+λ (
∂̄ λ−n

∂+λ−n
φ(x)

∂̄ λ

∂+λ
φ(x))+ c.c.

]}

+O(g2). (16)

For λ odd, the field φ(x) must be in the adjoint representation of an external
group φa(x) and we have to introduce the fully antisymmetric structure constants
f abc in the interaction terms to find a possible term. (It is really by checking the four-
point coupling that we find that the field has to be representation of a Lie group.)
The results is
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S =
∫

d4x
{
φ̄a(x)�φa(x)

+g f abc
[ λ

∑
n=0

(−1)n
(
λ
n

)

φ̄a(x)∂+λ (
∂̄ λ−n

∂+λ−n
φb(x)

∂̄ λ

∂+λ
φ c(x))+ c.c.

]}

+O(g2). (17)

We note the non-locality in the interaction term in terms of inverses of ∂+. The
easiest way to understand it is to Fourier transform to momentum space. In the
calculations it is really defined by the rule 1

∂+ ∂+ f (x+) = f (x+). When performing
a calculation one has to specify exactly the situation of the pole in ∂+. In an sense
this is a remainder of the gauge invariance.

We can now check for special values of λ .

• λ = 0

The dimension of the coupling constant g is 1 (in mass units) and this is the usual
φ3-theory. This theory is superrenormalizable but not physical since it does not have
a stable vacuum having a potential with no minimum.

• λ = 1

The dimension of the coupling constant g is 0 and this theory is nothing but
non-abelian gauge theory in a specific gauge. If we go on we know that we need
a four-point coupling to fully close the algebra. Note that the action has no local
symmetry and the gauge group only appears as the external symmetry group.

• λ = 2

The dimension of the coupling constant g is −1 and this theory is the beginning
series of a gravity theory. It is clear from the dimensions of the coupling constant
that interaction terms to arbitrary order can be constructed without serious non-
localities. The four-point function related to Einstein’s theory is known [14]. Going
beyond the four-point coupling is probably too difficult, unless powerful computer
methods could be devised. We expect several solutions, of course, since we know
that the Hilbert action is but the simplest of all actions consistent with the equiv-
alence principle. Note that the action above, which is a fully gauge fixed Hilbert
action expanded in the fluctuations around the Minkowski metric, has no local sym-
metry, no covariance and knows nothing about curved spaces. It is probably useless
for discussions about global properties of space and time but can be useful in the
study of quantum corrections; to understand the finiteness properties of the quantum
theory.

• λ > 2

The dimension of the coupling constant g is <−1 and these theories are theo-
ries for higher spins. Again they are non-renormalizable in the naive sense like the
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spin-2 theory above. There are strong reason to believe that these theories cannot be
Poincaré invariant one by one when we go to higher orders in the coupling constant,
but the result above is an indication that certain sums of such theories interacting
with each other could possibly be invariant theories.

We can also find interacting solutions for λ half-integer. We can, of course, not
have a three-point coupling. We will in fact not be able to find self-interacting theo-
ries but have to consider the coupling of the half-integer spin field to an integer spin
field. We then find that we can couple a spin-1/2 field to a spin-1 or a spin-0 field to
recover in the first case a non-abelian gauge field coupled to a spin-1/2 field ψ i(x)
in a representation characterized by i of the external group such that we can have
a coupling ψ̄iψ jφaCi

ja, with Ci
ja the Clebsch–Gordan coefficient. It is interesting to

note that it is only in the interacting theory that we can prove the spin-statistics the-
orem [15]. The formalism demands the spin-1/2 field to be of odd Grassmann type
and the integer spin fields to be even. Note that there is no spinor space. The spin-
1/2 field is a complex (Grassmann odd) field with no space–time index. Its equation
of motion looks just like the one for a bosonic field. (Remember the free equation
the follows from (5).) However, the dimension of the field ψ(x) is different from the
one of the bosonic field, so the free action is

S =
∫

d4x∂+ψ̄(x)
�

∂+ψ(x). (18)

The fact that we do not need to use spinors is very special for d = 4, since the
transverse symmetry which is covariantly realized is SO(2)≈U(1), which does not
distinguish spinor representations.

We have hence seen that we can find all known unitary relativistic field theories as
representations of the Poincaré algebra, and we see their uniqueness and also what
kind of possibilities there are for higher spin fields. In a gauge invariant formulation
one can attempt to add in new terms that are gauge invariant. Invariably they lead
to problems with unitarity. We do not see those terms here since the theories are
unitary by construction.

It should be said here that we could have derived the expressions above by
starting with a gauge-covariant action and implement the light-cone gauge by
choosing the A+-component of the vector field to be zero and then solve for the
A−-component.

3 Light-Frame Formulation of Supersymmetric Field Theories

The known extension of the Poincaré algebra is to make it into a supersymmetry
algebra. This will lead to a restriction on relativistic dynamics. It is true that the
world does not look supersymmetric as such, but a good working hypothesis is that
at some stage supersymmetry is indeed a symmetry of the world.
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The standard covariant supersymmetry generator Qα is a spinor with the anti-
commutator

{Qα ,Q̄β} = γμαβPμ . (19)

The spinor Qα is four-component. It satisfies the Majorana condition which makes
it real in a certain representation of the γ-matrices. In the light-cone frame the spinor
splits up into two two-component spinor that can be rewritten as two complex op-
erators, which we call Q+ = − 1

2γ+γ−Q and Q− = − 1
2γ−γ+Q. From the Clifford

algebra {γμ ,γν} = 2ημν with η = diag(−1,1,1,1) we see that Q = Q+ +Q−, and
that the products − 1

2γ+γ− and − 1
2γ−γ+ are projection operators. We can linearly

combine the two components of the spinors into complex entities with no indices.
We can also augment by letting the Q’s transform as the representation N under
SU(N). The light-cone supersymmetry algebra is then

{Qm
+,Q̄+n} = −

√
2δm

n P+ (20)

{Qm
−,Q̄−n} = −

√
2δm

n P− (21)

{Qm
+,Q̄−n} = −

√
2δm

n P, (22)

where all other anticommutators are zero, except for the complex conjugate of the
last one. The indices m,n run from 1 to N.

The superPoincaré algebra can now be represented on a superspace with coor-
dinates x±,x, x̄,θm, θ̄n, where the coordinates θm and θ̄n are complex conjugates,
Grassmann odd and transform as N and N̄ under SU(N). We will denote their
derivatives as

∂̄m ≡ ∂
∂ θm ; ∂m ≡ ∂

∂ θ̄m
. (23)

The Q’s are then represented as (We use the notation with lower case letters for
operators that act on the field.)

qm
+ = −∂m +

i√
2
θm ∂+; q̄+n = ∂̄n − i√

2
θ̄n ∂+, (24)

and the dynamical ones as

qm
− =

∂̄
∂+ qm

+, q̄−m =
∂
∂+ q̄+m. (25)

On this space we can also represent “chiral” derivatives anticommuting with the
supercharges Q.

d m = −∂m − i√
2
θm ∂+; d̄n = ∂̄n +

i√
2
θ̄n ∂+, (26)
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which satisfy the anticommutation relations

{dm, d̄n } = −i
√

2δm
n ∂+. (27)

To find an irreducible representation we have to impose the chiral constraints

d mφ = 0; d̄m φ̄ = 0, (28)

on a complex superfield φ(x±,x, x̄,θm, θ̄n). The solution is then that

φ = φ(x+,y− = x−− i√
2
θm θ̄m,x, x̄, θm). (29)

We now have to add in θ -terms into the Lorentz generators to complete the rep-
resentation of the free algebra. The result is for λ = 0

j = x ∂̄ − x̄∂ + S12, (30)

where the little group helicity generator is

S12 =
1
2

(θ p ∂̄p − θ̄p ∂ p ) − i

4
√

2∂+
(d p d̄p − d̄p d p ). (31)

It ensures that the chirality constraints are preserved

[ j, dm ] = [ j, d̄m ] = 0. (32)

The other kinematical generators are

j+ = ix∂+, j̄+ = i x̄∂+. (33)

The rest of the generators must be specified separately for chiral and antichiral fields.
Acting on φ , we have

j+− = ix− ∂+ − i
2

(θ p∂̄p + θ̄p∂
p ), (34)

chosen so as to preserve the chiral combination

[ j+−, y− ] = − iy−, (35)

and such that its commutators with the chiral derivatives

[ j+−, dm ] =
i
2

dm, [ j+−, d̄m ] =
i
2

d̄m, (36)



Light-Cone Field Theory 41

preserve chirality. Similarly the dynamical boosts are

j− = ix
∂ ∂̄
∂+ − ix− ∂ + i

(
θ p∂̄p +

i

4
√

2∂+
(d p d̄p − d̄p d p )

) ∂
∂+ ,

j̄− = i x̄
∂ ∂̄
∂+ − ix− ∂̄ + i

(
θ̄p∂

p +
i

4
√

2∂+
(d p d̄p − d̄p d p )

) ∂̄
∂+ . (37)

They do not commute with the chiral derivatives,

[ j−, dm ] =
i
2

dm ∂
∂+ , [ j−, d̄m ] =

i
2

d̄m
∂
∂+ , (38)

but do not change the chirality of the fields on which they act. They satisfy the
Poincaré algebra, in particular

[ j−, j̄+ ] = − i j+−− j, [ j−, j+− ] = i j−. (39)

We can now follow the same path as we did in the last section to go over to a
“second-quantized” version in terms of integrals over the superfield and then add
interaction terms to the dynamical generators and try to close the algebra. In this
way we can construct all the known supersymmetric field theories as different rep-
resentations of various supersymmetry algebras with different values of λ and N.
It is particularly interesting to study the cases N = 4× integer. For those values one
can impose a further condition on the superfield φ namely the “inside out” condition

d̄m1
d̄m2

· · ·d̄mN/2−1
d̄mN/2

φ

=
1

N/2!
εm1m2···mN/2···mN−1mN dmN/2+1 dmN/2+2 · · ·dmN−1 dmN φ̄ . (40)

We can now construct three-point interaction terms for any N
4 even in the dy-

namical generators. This is certainly a tedious exercise based on writing the most
general terms in the interaction terms and then check the full algebra. The resulting
action is [12]

S =
∫

d4xdNθdN θ̄

×
{
φ̄ (x,θ )

�

∂+
N
2
φ(x,θ )

+
4g
3

[ N
4

∑
n=0

(−1)n
(N

4
n

)
1

∂+N/2
φ̄(x,θ )∂̄

N
4 −n∂+nφ(x,θ )∂̄ n∂+ N

4 −nφ(x,θ )

+c.c.
]}

+ O(g2). (41)
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When N
4 is odd, again the superfield has to transform as the adjoint representation

of an external group with structure constants f abc. The corresponding action is then

S =
∫

d4xdNθdN θ̄

×
{
φ̄a(x,θ )

�

∂+ N
2

φa(x,θ )

+
4g
3

f abc
[ N

4

∑
n=0

(−1)n
(N

4
n

)
1

∂+N/2
φ̄a(x,θ )∂̄

N
4 −n∂+nφb(x,θ )∂̄ n∂+ N

4 −nφ c(x,θ )

+c.c.
]}

+O(g2). (42)

We note that we can construct theories with higher spin if N
4 > 2. These are then

very special combinations of the theories constructed in the previous section, with
better quantum properties, since we know by experience that the more supersym-
metry there is the better are the quantum properties.

3.1 Maximally Supersymmetric Yang–Mills Theory

The case N = 4 is especially interesting [3, 4]. All the physical degrees of freedom
are present in the superfield which can be expanded as

φ (y) =
1
∂+ A(y) +

i√
2
θmθ n Cmn (y) +

1
12
θm θ n θ pθ q εmnpq ∂+ Ā(y)

+
i
∂+ θ

m χ̄m(y)+
√

2
6
θmθ n θ p εmnpq χq(y). (43)

The fields A and Ā constitute the two helicities of a vector field while the antisym-
metric SU(4) bi-spinors Cmn represent six scalar fields since they satisfy

Cmn =
1
2
εmnpq Cpq. (44)

The fermion fields are denoted by χm and χ̄m. All have adjoint indices (not shown
here), and are local fields in the modified light-cone coordinates. This is the maximal
supersymmetric Yang–Mills theory. The full action is known [11]

S = −
∫

d4x
∫

d4θ d4θ̄
{
φ̄a �

∂+2 φ
a +

4g
3

f abc
( 1
∂+ φ̄

a φb ∂̄ φ c + c.c.
)

−g2 f abc f ade
( 1
∂+ (φb ∂+φ c)

1
∂+ (φ̄d ∂+ φ̄ e)

+
1
2
φbφ̄ c φd φ̄ e

)}
. (45)
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With this action it was shown [9] that the perturbation expansion is finite. There
is no need for renormalization and the theory is very special. It is one of the corner-
stones of modern particle physics. From the point of this lecture it appears as a very
special representation of the superPoincaré algebra.

3.2 Maximal Supergravity

The next case is N = 8 [12]. In this case the superfield can be expanded as

ϕ (y) =
1

∂+2 h(y) + iθm 1

∂+2 ψ̄m (y) + iθmn 1
∂+ Āmn (y)

−θmn p 1
∂+ χ̄mn p (y)− θmn pr Cmn pr (y) + i θ̃ (5)

mn p χmn p(y)

+ i θ̃ (6)
mn ∂+ Amn(y)+ θ̃ (7)

m ∂+ χm(y) + θ̃ (8) ∂+2
h̄(y), (46)

where

θm1···mn ≡ 1
n!
θm1 · · ·θmn , θ̃ (n)

n1···n8−n ≡ 1
n!
θm1···mn εm1···mn n1···n8−n . (47)

The helicity in the field goes from 2 to −2 and the theory has a spectrum com-
prised of a metric, 28 vector fields, 70 scalar fields, 56 spin one-half fields and 8
spin three-half fields. This theory is the maximal supergravity theory in d = 4. The
action can be simplified [16] to

S =
∫

d4xd8θd8θ̄
{

ϕ̄(x,θ )
�

∂+4ϕ(x,θ )+
3
2

g
1

∂+2 ϕ ∂̄ ϕ ∂̄ ϕ+ c.c.
]}

+ O(g2).

(48)

The four-point coupling was finally found a few years ago [17]. It is however
quite complicated and reflects the fact that the ∂+-derivatives can be sprinkled out
in very many ways. It is remarkable though, that the actions for the maximally super-
symmetric Yang–Mills theory and supergravity theory are so similar. In some sense
the supergravity theory is just an extension of the Yang–Mills one. In the modern
particle physics these two theories are very intimately connected even though the
direct physical consequences of them look quite different.

3.3 The Hamiltonian as a Quadratic Form

The two theories share also another unique property. We note that the free Hamilto-
nian for the (N = 4, d = 4) Yang–Mills Theory

H0 =
∫

d4xd4θ d4θ̄ φ̄a 2∂ ∂̄
∂+2 φ

a, (49)
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can be rewritten as a quadratic form

H0 =
1

2
√

2
(W0, W0 ), (50)

using the inner product notation

(φ , ξ ) ≡ 2i
∫

d4xd4θ d4 θ̄ φ̄
1
∂+ ξ , (51)

where φ and ξ are chiral superfields and

W a
0 =

∂
∂+ q̄+φ

a, (52)

is a fermionic superfield, the free dynamical supersymmetry variation of the su-
perfield (SU(4) spinor indices are summed over). The proof is straightforward,
and requires integration by parts and the use of of the inside-out property of the
superfields.

Also the fully interacting Hamiltonian [18] can be expressed as a quadratic form

H =
1

2
√

2
(W a, W a ) , (53)

where now

W a =
∂
∂+ q̄+φa −g f abc 1

∂+ (d̄φb∂+φ c), (54)

is the complete (classical) dynamical supersymmetry variation. The power of super-
symmetry allows for this simple rewriting of the fully interacting Hamiltonian.

The same can be shown to be true also for the (N = 8, d = 4) supergravity [17]
and was an important clue to find the four-point coupling. We have not found any
other theory with this property which again renders the two models to behave very
similarly and to have unique properties.

Note that this is not the same as the statement that the Hamiltonian satisfies

H = −2
√

2{Qm
−,Q̄−m}. (55)

4 Light-Frame Formulations of Higher Dimensional Theories

The procedure to find representations of the Poincaré algebra that we have followed
in the previous section can, of course, be extended to field theories in dimensions of
space–time higher than four. The covariant subalgebra which will be linearly real-
ized is then SO(d−2), so the physical fields will be representations of this algebra
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and hence characterized by these representations like we used helicity to distinguish
the physical fields in four dimensions. If we just implement Poincaré invariance as
in Sect. 2 we can, in principle, find all the possible field theories. However, the pro-
cedure gets easily tedious and furthermore there are few interesting quantum field
theories in higher dimensions because of the renormalization problems. The only
ones that are discussed are supersymmetric field theories since they are connected to
the superstring Theory. The ones that we have been interested in are the ones which
lead to interesting field theories when compactified to four dimensions, so let us
concentrate on those. The ones I will discuss here are ten-dimensional SuperYang–
Mills and 11-dimensional supergravity which under compactification leads to the
maximal theories discussed above.

4.1 Ten-Dimensional SuperYang–Mill Theory

The physical degrees of freedom of this theory are 8v and an 8s. If we insist that
the superfield should be a representation of the transverse SO(8) it must be in one
of the representations above. Since the natural spinor coordinate will also be an 8s,
such a superfield must include 8×28 components and must hence be very strongly
restricted. Such a formalism has been developed [19], but it is not clear that the
formalism is useful. Also it is not easily generalizable to the 11-dimensional case.
Instead I will describe a recent procedure developed in [20].

The idea is to use the same superfield as in four dimensions. In order to do that
we have to sacrifice the explicit covariance under SO(8) and use the decomposition

SO(8)⊃ SO(2) × SO(6). (56)

Since SO(6)∼ SU(4) we can identify the SU(4) as the external symmetry group
in the superfield equation (46). The remaining symmetry SO(8)/(SO(6)× SO(2))
will transform among the components of the superfield. First of all, the transverse
light-cone space variables need be generalized to eight. We stick to the represen-
tations used in the superfield, and introduce the six extra coordinates and their
derivatives as antisymmetric bi-spinors

xm4 =
1√
2

(xm+3 + ixm+6 ), ∂m4 =
1√
2

(∂m+3 + i∂m+6 ), (57)

for m 
= 4, and their complex conjugates

x̄pq =
1
2
εpqmn xmn; ∂̄pq =

1
2
εpqmn ∂mn. (58)

Their derivatives satisfy

∂̄mn xpq = (δm
pδn

q − δm
q δn

p ); ∂mn x̄pq = (δm
p δ n

q − δm
q δ n

p ), (59)



46 L. Brink

and

∂mn xpq =
1
2
ε pqrs ∂mn x̄rs = εmnpq. (60)

There are then no modifications to be made to the chiral superfield, except for the
dependence on the extra coordinates

A(y) = A(x, x̄,xmn, x̄mn,y
−), etc. (61)

These extra variables will be acted on by new operators that generate the higher-
dimensional symmetries.

4.2 The SuperPoincaré Algebra in Ten Dimensions

The SuperPoincaré algebra needs to be generalized from the form in four di-
mensions. One starts with the construction of the SO(8) little group using the
decomposition SO(8) ⊃ SO(2)× SO(6). The SO(2) generator is the same; the
SO(6)∼ SU(4) generators are given by

jm
n =

1
2

(xmp ∂̄pn − x̄pn∂mp ) − θm ∂̄n + θ̄n ∂m +
1
4

(θ p ∂̄p − θ̄p ∂ p )δm
n

+
i

2
√

2∂+
(dm d̄n − d̄n dm )+

i

8
√

2∂+
(d p d̄p − d̄p d p )δm

n. (62)

Note that we use the same spinors as in four dimensions because of the decomposi-
tion SO(8)⊃ SO(2)×SO(6), where SO(6)∼ SU(4). The extra terms with the d and
d̄ operators are not necessary for closure of the algebra. However they insure that
the generators commute with the chiral derivatives. They satisfy the commutation
relations

[
j, jm

n

]
= 0,

[
jm

n, jp
q

]
= δm

q jp
n − δ p

n jm
q. (63)

The remaining SO(8) generators lie in the coset SO(8)/(SO(2)×SO(6))

jpq = x∂ pq − xpq∂ +
i√
2
∂+ θ p θ q − i

√
2

1
∂+ ∂

p ∂ q +
i√

2∂+
d p dq,

j̄mn = x̄ ∂̄mn − x̄mn ∂̄ +
i√
2
∂+ θ̄m θ̄n − i

√
2

1
∂+ ∂̄m ∂̄n +

i√
2∂+

d̄m d̄n. (64)

All SO(8) transformations are specially constructed so as not to mix chiral and
antichiral superfields,

[ jmn, d̄p ] = 0; [ j̄mn, d p ] = 0, (65)
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and satisfy the SO(8) commutation relations

[
j, jmn

]
= jmn,

[
j, j̄mn

]
= − j̄mn,

[
jm

n, jpq
]

= δ q
n jmp − δ p

n jmq,
[

jm
n, j̄pq

]
= δm

q j̄np − δm
p j̄nq,

[
jmn, j̄pq

]
= δm

p jn
q + δ n

q jm
p − δ n

p jm
q − δm

q jn
p − (δm

p δ n
q − δ n

p δm
q ) j.

Rotations between the 1 or 2 and 4 through 9 directions induce on the chiral fields
the changes

δ φ =
( 1

2
ωmn jmn +

1
2
ω̄mn j̄mn

)
φ , (66)

where complex conjugation is like duality

ω̄pq =
1
2
εmnpqω

mn. (67)

For example, a rotation in the 1–4 plane through an angle θ corresponds to taking
θ = ω14 = ω23 (= ω23 = ω14 by reality), all other components being zero. Finally,
we verify that the kinematical supersymmetries are duly rotated by these generators

[ jmn, q̄+ p ] = δ n
p qm

+ − δm
p qn

+; [ j̄mn, qp
+ ] = δn

p q̄+m − δm
p q̄+n. (68)

We now use the SO(8) generators to construct the SuperPoincaré generators

j+ = ix∂+; j̄+ = i x̄∂+

j+mn = ixmn ∂+; j̄+mn = i x̄mn ∂
+. (69)

The dynamical boosts are now

j− = ix
∂ ∂̄ + 1

4 ∂̄pq ∂ pq

∂+ − ix− ∂ + i
∂
∂+

{
θm ∂̄m +

i

4
√

2∂+
(d p d̄p − d̄p d p)

}

−1
4
∂̄pq

∂+

{
∂+
√

2
θ pθ q −

√
2

∂+ ∂ p ∂ q +
1√
2∂+

d p dq
}

, (70)

and its conjugate

j̄− = i x̄
∂ ∂̄ + 1

4 ∂̄pq ∂ pq

∂+ − ix− ∂̄ + i
∂̄
∂+

{
θ̄m ∂m +

i

4
√

2∂+
(d p d̄p − d̄p d p)

}

−1
4
∂ pq

∂+

{
∂+
√

2
θ̄p θ̄q −

√
2

∂+ ∂̄p ∂̄q +
1√
2∂+

d̄p d̄q

}

. (71)
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The others are obtained by using the SO(8)/(SO(2)×SO(6)) rotations

j−mn = [ j−, jmn ]; j̄−mn = [ j̄−, j̄mn ]. (72)

We do not show their explicit forms as they are too cumbersome. The four super-
symmetries in four dimensions turn into one supersymmetry in ten dimensions. In
our notation, the kinematical supersymmetries qn

+ and q̄+n, are assembled into one
SO(8) spinor. The dynamical supersymmetries are obtained by boosting

i [ j̄−, qm
+ ] ≡ Qm, i [ j−, q̄+m ] ≡ Qm, (73)

where

Qm =
∂̄
∂+ q+

m +
1
2
∂mn

∂+ q̄+n,

Qm =
∂
∂+ q+m +

1
2
∂mn

∂+ q n
+. (74)

They satisfy the supersymmetry algebra

{Qm, Q n } = i
√

2δm
n

1
∂+

(
∂ ∂ +

1
4
∂ pq ∂ pq

)
, (75)

and can be obtained from one another by SO(8) rotations, as

1
2
εpqmn [ jpq, Qm ] = 4Q n, (76)

while
[ j̄pq, Qm ] = 0. (77)

Note also that

{Qm, qn
+ } =

i√
2
∂mn, (78)

4.3 The Generalized Derivatives

The cubic interaction in the N = 4 Lagrangian contains explicitly the derivative op-
erators ∂ and ∂̄ . To achieve covariance in ten dimensions, these must be generalized.
Remarkably the only change we have to is to introduce the following operator

∇ ≡ ∂̄ +
i

4
√

2∂+
d̄p d̄q ∂ pq, (79)

which naturally incorporates the rest of the derivatives ∂ pq, with α as an arbitrary
parameter. After some algebra, we find that ∇ is covariant under SO(8) transforma-
tions. We define its rotated partner as
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∇mn ≡
[
∇, jmn

]
, (80)

where

∇mn = ∂mn − i

4
√

2∂+
d̄r d̄s ε

mnrs ∂ . (81)

If we apply to it to the inverse transformation, it goes back to the original form

[
jpq, ∇

mn
]

= (δp
m δq

n − δq
m δp

n )∇, (82)

and these operators transform under SO(8)/(SO(2)× SO(6)), and SO(2)× SO(6)
as the components of an 8-vector.

We introduce the conjugate operator ∇ by requiring that

∇φ̄ ≡ (∇φ), (83)

with

∇ ≡ ∂ +
i

4
√

2∂+
d p dq ∂̄pq. (84)

Define
∇ mn ≡

[
∇, j̄mn

]
, (85)

which is given by

∇mn = ∂̄mn − i

4
√

2∂+
dr ds εmnrs ∂̄ . (86)

We then verify that

[
jmn, ∇pq

]
= (δp

m δq
n − δq

m δp
n )∇. (87)

The kinetic term is trivially made SO(8)-invariant by including the six extra
transverse derivatives in the d’Alembertian. The quartic interactions are obviously
invariant since they do not contain any transverse derivative operators. Hence we
need only consider the cubic vertex. In the paper [20] it is shown that to achieve
covariance in ten dimensions, it suffices indeed to replace the transverse ∂ and ∂̄ by
∇ and ∇, respectively. This is done by checking the invariance under the little group
SO(8). Together with the result from four dimensions this is enough to warrant in-
variance under the full superPoincaré group in ten dimensions. The full action is
then

S = −
∫

d4x
∫

d4θ d4θ̄
{
φ̄a �

∂+2 φ
a +

4g
3

f abc
( 1
∂+ φ̄

a φb ∇̄φ c + c.c.
)

−g2 f abc f ade
( 1
∂+ (φb ∂+φ c)

1
∂+ (φ̄d ∂+ φ̄ e)

+
1
2
φbφ̄ c φd φ̄ e

)}
. (88)
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This action is suitable in order to investigate the perturbative properties of the
theory. It is, of course, non-renormalizable but has still remarkable properties that
Nature might use. One can also study possible higher symmetries of this action.

4.4 Eleven-Dimensional Supergravity

N = 1 Supergravity in 11 dimensions, contains three different massless fields, two
bosonic (gravity and a three-form) and one Rarita–Schwinger spinor. Its physical
degrees of freedom are classified in terms of the transverse little group, SO(9), with
the graviton G(MN ), transforming as a symmetric second-rank tensor, the three-form
B[MNP ] as an anti-symmetric third-rank tensor and the Rarita–Schwinger field as a
spinor-vector,ΨM (M,N, . . . are SO(9) indices). This theory on reduction to four
dimensions leads to the maximally supersymmetric N = 8 theory.

In order to use the formalism and especially the superfield equation (46) devel-
oped in four dimensions for the maximally supersymmetric N = 8 theory we have
to decompose

SO(9)⊃ SO(2) × SO(7). (89)

The SO(7) symmetry can in fact be upgraded to an SU(8) symmetry. How-
ever, it is important to remember that it is really the SO(7) which is relevant when
we “oxidize” the theory to d = 11 and the coordinates θm and θ̄n used in the
four-dimensional case will now be interpreted as spinors under SO(7)×SO(2). To
distinguish this we will change the notation m, n to α, β for the spinors and use the
notation a, b for the vector indices of SO(7).

The first step is to generalize the transverse variables to nine. In the Yang–Mills
case, the compactified SO(6) was easily described by SU(4) parameters and we
made use of the convenient bi-spinor notation. In the present case, the compacti-
fied SO(7) has no equivalent unitary group so we simply introduce additional real
coordinates, xa and their derivatives ∂ a(where a runs from 4 through 10). The
chiral superfield remains unaltered, except for the added dependence on the extra
coordinates

h(y) = h(x, x̄,xa,y−), etc. (90)

These extra variables will be acted on by new operators that will restore the higher-
dimensional symmetries.

4.5 The SuperPoincaré Algebra in 11 Dimensions

The SuperPoincaré algebra needs to be generalized from its four-dimensional ver-
sion. The SO(2) generators stay the same and we propose generators of the coset
SO(9)/(SO(2)×SO(7)), of the form,
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ja = − i(x∂ a − xa ∂ ) +
i

2
√

2
∂+ θα (γa)α β θ

β − i√
2∂+

∂α (γa)α β ∂
β

+
i

2
√

2∂+
dα (γa)α β dβ (91)

j
b = − i( x̄∂ b − xb ∂̄ ) +

i

2
√

2
∂+ θ̄α (γb)

α β θ̄β − i√
2∂+

∂̄α (γb)
α β ∂̄β

+
i

2
√

2∂+
d̄α (γb)

α β
d̄β (92)

which satisfy the SO(9) commutation relations,

[
j, ja

]
= ja,

[
j, j̄b

]
= − j̄b

[
jcd , ja

]
= δ ca jd − δ da jc

[
ja, j̄b

]
= i jab + δ ab j, (93)

where j is the same as before, and the SO(7) generators read,

jab = − i(xa ∂ b − xb ∂ b ) + θα (γa)α β (γb)
β σ ∂̄σ

+ θ̄α (γa)α β (γb)
β σ ∂σ − 1√

2∂+
dα (γa)α β (γb)

β σ
d̄σ . (94)

The full SO(9) transverse algebra is generated by j, jab, ja and j̄b. All rotations are
specially constructed to preserve chirality. For example,

[ ja, d̄α ] = 0; [ j̄ b, dα ] = 0. (95)

The remaining kinematical generators do not get modified,

j+ = j+, j+− = j+−, (96)

while new kinematical generators appear,

j+a = ixa ∂+; j̄+b = i x̄b ∂+. (97)

We generalize the linear part of the dynamical boosts to,

j− = ix
∂ ∂̄ + 1

2 ∂
a ∂ a

∂+ − ix− ∂ + i
∂
∂+

{
θα ∂̄α +

i

4
√

2∂+
(dα d̄α − d̄α dα)

}

− 1
4
∂ a

∂+

{
∂+ θα (γ a)α β θ

β − 2
∂+ ∂α (γ a)α β ∂

β +
1
∂+ dα (γ a)α β dβ

}
.

(98)
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The other boosts may be obtained by using the SO(9)/(SO(2)×SO(7)) rotations,

j−a = [ j−, ja ]; j̄−b = [ j̄−, j̄b ]. (99)

We do not show their explicit forms as they are too cumbersome. The dynamical
supersymmetries are obtained by boosting

[ j−, q̄+η ] ≡ Qη = − i
∂
∂+ q+η − i√

2
(γ b )η ρ q ρ

+
∂ b

∂+ ,

[ j̄−, qα+ ] ≡ Qα = i
∂̄
∂+ q+

α +
i√
2

(γ a )α β q̄+β
∂ a

∂+ . (100)

They satisfy,

{Qα , qη+ } = − (γa )α η ∂ a, (101)

and the supersymmetry algebra,

{Qα , Qη } = i
√

2 δαη
1
∂+

(
∂ ∂ +

1
2
∂ a ∂ a

)
. (102)

Having constructed the free N = 1 SuperPoincaré generators in 11 dimensions
which act on the chiral superfield, we turn to building the interacting theory.

4.6 The Generalized Derivatives

The cubic interaction in the N = 8 Lagrangian explicitly contains the transverse
derivative operators ∂ and ∂̄ . To achieve covariance in 11 dimensions, we proceed
to generalize these operators as we did for N = 4 Yang–Mills. We found the gener-
alized derivative

∇ = ∂̄ −
√

2
16

d̄α (γ a )α β d̄β
∂ a

∂+ , (103)

which naturally incorporates the coset derivatives ∂m. We use the coset generators
to produce its rotated partner ∇ by,

[ ∇, ja ] ≡ ∇a = − i∂ a − i
√

2
16

d̄α (γ a )α β d̄β
∂
∂+ . (104)

It remains to verify that the original derivative operator is reproduced by undoing
this rotation; indeed we find the required closure,

[ ∇a, j
b ] = δ ab ∇
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The new derivative (∇, ∇a ), thus transforms as a 9-vector under the little group
in 11 dimensions. W. We define the conjugate derivative ∇, by requiring that

∇ϕ̄ ≡ (∇ϕ). (105)

This tells us that,

∇ ≡ ∂ −
√

2
16

dα (γ b )
α β

dβ
∂ b

∂+ (106)

This construction is akin to that for the N = 4 Yang–Mills theory, but this time it
applies to the “oxidation” of the (N = 8, d = 4) theory to (N = 1, d = 11) super-
gravity. This points to remarkable algebraic similarities between the two theories,
with possibly profound physical consequences. It remains to show that the simple
replacement of the transverse derivatives ∂ , ∂̄ by ∇,∇ in the (N = 8, d = 4) inter-
acting theory yields the fully covariant Lagrangian in 11 dimensions.

This can be done by checking the invariance under the little group SO(9). This is
a very tedious exercise which was done in paper [16]. Indeed it is possible to show
that the three-point coupling is invariant and that the 11-dimensional supergravity
theory can be written as

S =
∫

d10xd8θd8θ̄
{

ϕ̄(x,θ )
�

∂+4ϕ(x,θ )+
3
2

g

[
1

∂+2 ϕ ∇ϕ ∇ϕ+ c.c.

]}

+O(g2).

(107)

We have not yet shown that this also works for the four-point coupling. With it
one can study various properties of this theory, such as the one-loop graphs. They
will diverge but there might be ways to add more fields to get convergent answer.
This is one long term goal of this project. One can also study the symmetries of the
action. It is clear that the action is quite unique and has a profound rôle in modern
particle physics and any symmetry that can be found for this action is a genuine
physical symmetry. This theory is also the low-energy limit of the mystic M-theory
which is supposed to be the underlying theory to all string theories. This theory is
shrouded in mystery and any attempt to better understand the supergravity theory
can help us eventually understand M-theory.

5 Exceptional Symmetries in Maximal Supergravity

In their original work on N = 8 supergravity [1,2] Cremmer and Julia found an on-
shell, E7(7) duality symmetry. It is therefore natural to ask if this symmetry can be
exploited to bring simplicity to the quartic and higher-order interactions of N = 8
supergravity. In a recent paper [21], as a first step in this direction, we have shown
how to exploit this symmetry to construct the light-cone Hamiltonian to order κ2.
Our resulting expression is remarkably simpler than that formulation of the same
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Hamiltonian with over ninety terms [17]. In this process we also got the E7(7) trans-
formations to lowest order for all the fields in the theory. After a brief review o fE7(7)
duality in the covariant formalism with the scalar and field strengths alone, I will ex-
press the action of E7(7) in the LC2 formalism. The explicit non-linear E7(7) action
on the scalars and vector potentials to lowest non-trivial order in κ are derived in
this gauge; they stand as the starting point for our analysis.

5.1 Covariant N === 8 Supergravity

N = 8 Supergravity contains a graviton hμν and its 8 gravitinos ψ i
μ interacting

with matter composed of 28 vectors A[i j]
μ , 56 spinors χ [i jk], and 70 scalars C[i jkl],

labelled with SO(8) indices, i, j,k, l = 1, 2, . . . , 8. The much larger Cremmer–Julia
E7(7) symmetry acts on the scalars and the field strengths, and we begin with the
manifestly SO(8) symmetric order-κ2 N = 8 supergravity Lagrangian [22] with
those fields only. The scalar part is given by

LS = − 1
48

{

∂μCi jkl ∂ μC
i jkl +

κ2

2
Ci jkl C

klmn ∂μCmnpq ∂ μC
pqi j +O(κ3)

}

, (108)

where the scalar fields satisfy

Ci jkl =
1
4!
ε i jklmnpq C

mnpq
. (109)

The Lagrangian with the field strengths is given by

LV = −1
8

F i j
μν G μν i j + c.c. (110)

written in terms of the self-dual complex field strengths

F μν i j =
1
2

Fμν i j +
i
2

F̃μν i j, (111)

and

G μν i j = F μν i j +κC
i jkl

F μν kl +
κ2

2
C

i jkl
C

klmn
F μνmn + O(κ2), (112)

is linear in the field strengths.
The electro-magnetic duality transformations exchange equations of motion

∂μ
(
G μν i j +G

μν i j
)

= 0, (113)
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for Bianchi identities

∂μ
(
F μν i j −F

μν i j
)

= 0. (114)

These equations are manifestly SO(8) covariant. We can elevate this symmetry to
SU(8) [23] on the complex field strengths by demanding

δ
(
G μν i j +F μν i j) =

(
Rik + iSik

)(
G μν k j +F μν k j

)
− (i ↔ j), (115)

transforming as 28, while the other combinations (G μν i j −F μν i j) transform as the
complex conjugate 28,

δ
(
G μν i j −F μν i j) =

(
Rik − iSik

)(
G μν k j −F μν k j

)
− (i ↔ j). (116)

where Ri j are the 28 real antisymmetric rotation tensors which generate SO(8),
and Si j are 35 real symmetric traceless matrices in the coset SU(8)/SO(8). The
SU(8)/SO(8) coset transformations δ ′ on the complex field strengths

δ ′F μν i j = iSikG μν k j − (i ↔ j), δ ′G μν i j = iSikF μν k j − (i ↔ j), (117)

are the duality transformations which map the equations of motion into the Bianchi
identities and vice versa

δ ′
{
∂μ(G μν i j +G

μν i j)
}

= iSik ∂μ(F μν k j −F
μν k j) − (i ↔ j). (118)

The SU(8)/SO(8) transformations are only symmetries of the equations of motion
and the Bianchi identities, but not of the Lagrangian.

Consistency of the coset variation of this expression with the two variations of
(117) requires that the scalar fields transform linearly under the full SU(8), that is

δ ′Ci jkl = − iSimC
m jkl − ( i ↔ j ) − ( i ↔ k ) − ( i ↔ l ), (119)

i.e., as a 70. This is an exact equation with no order κ corrections. It follows that
the scalar Lagrangian (108) is SU(8) invariant. On the other hand, the complex field
strengths have more complicated non-linear coset transformation

δ ′F μν i j = iSim
(

F μνm j +κC
m jkl

F μν kl +
κ2

2
C

m jkl
C

kl pq
F μν pq + O(κ3)

)

− (i ↔ j). (120)

The terms on the right-hand-side transform differently order by order in κ :

F μνm j ∼ 28, while C
m jkl

F μν kl ∼ 28, and the order κ2 term has even more
complicated coset transformations. Yet, one can check that the commutator of two



56 L. Brink

such variations closes on SO(8) transformation, as required. The extension to SU(8)
duality on the field strengths is meaningful only in the interacting case when κ 
= 0,
since G μν i j −F μν i j = O(κ).

Cremmer and Julia extended the duality symmetries to the non-compact E7(7).
Assemble the complex field strengths in one column vector with 56 complex en-
tries [24].

Zμν =
(

G μν i j +F μν i j

G μν i j −F μν i j

)

≡
(

Xμν ab

Y μν
ab

)

, (121)

where a, b are SU(8) indices, with upper(lower) antisymmetric indices for 28(28).
Its two components

Xμν ab = 2F μν i j +κC
i jkl

F μν kl +
κ2

2
C

i jkl
C

klmn
F μνmn + O(κ3), (122)

Y μν
ab = κC

i jkl
F μν kl +

κ2

2
C

i jkl
C

klmn
F μνmn + O(κ3), (123)

are not independent, but related by

Y μν
ab − κ

2
Cabcd Xμν cd + O(κ2) = 0. (124)

The equations of motion (113) and Bianchi identities (114) can be written in terms
of Zμν

∂μ
(

Zμν + Z̃μν
)

= 0, (125)

where

Z̃μν ≡
(

0 1
1 0

)

Z
μν =

(
G
μν i j −F

μν i j

G
μν i j +F

μν i j

)

=
(

Y
μν ab

X
μν

ab

)

.

The upper component of (125) is the sum of the equations of motion and the Bianchi
identities, and the lower component the difference. It follows that the duality trans-
formations are those which act the same way on both Zμν and Z̃μν . Explicitly, under
the coset transformation denoted by δ

δ Xμν ab = Ξ abcd Y μν
cd , (126)

δ Y μν
ab = Ξ abcd Xμν cd , (127)

transform 28 into 28 and vice versa. It can be checked that such transformations with
real Ξ abcd leave both equations of motion and Bianchi identities invariant, while
those with pure imaginary Ξ abcd are duality transformations which interchange the
two. The transformations must respect the constraint (124) between the upper and
lower components of Zμν

δY μν
ab =

κ
2
δ
(

Cabcd Xμν ab
)

+ O(κ2),
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that is

Ξ abcdXμν cd =
κ
2
δCabcdXμν cd +

κ
2

Cabe fΞ e f mn(
κ
2

CmncdXμν cd) + O(κ2).

It follows that the scalars must transform non-linearly as

δCabcd =
2
κ
Ξ abcd − κ

2
Ce f [ab Ccd]mnΞ e f mn + O(κ3), (128)

where the indices inside the square brackets are antisymmetrized. Since the scalars
satisfy the self duality condition (109), so must Ξ abcd

Ξ abcd =
1
4!
εabcde f ghΞ e f gh, (129)

which restricts Ξ abcd to 70 real parameters. It also means that the extra term in (128)
is self-dual. Repeated use of (127) yields the commutator

[δ 1, δ 2]Xμν ab =
(
Ξ abe f

(2) Ξ (1)e f cd − Ξ abe f
(1) Ξ (2)e f cd

)
Xμν cd .

We can show [25] that the duality requirement (129) on the parameters of this com-
mutator yields exactly the 63 parameters of SU(8), resulting in a 133-parameter
group, the non-compact e since the e/SU(8) transformations are not unitary. The
E7(7)/SU(8) transformations of the complex field strengths follow

δF μν i j = −Ξ i jkl
F μν kl +

κ
2

(
Ξ i jkl −Ξ i jkl

)
C

klmn
F μνmn

+
κ2

4

(
Ξ i jkl −Ξ i jkl

)
C

klmn
C

mnpq
F μν pq + O(κ3). (130)

As we mentioned before, this equation is meaningful only when κ 
= 0. While the
scalar part of the Lagrangian LS is E7(7)-invariant, the vector Lagrangian LV is not.
Invariance is attained only after invoking the equations of motion.

5.2 E7(7) Invariance on the Light-Cone

The Abelian field strengths are written in terms of the potentials Ai j
μ through

Fμν i j = ∂ μAν i j − ∂νAμ i j.

In the LC2 formalism we choose the gauge conditions

A+ i j =
1√
2

(
A0 + A3)i j

= 0, (131)
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and invert the equations of motion to express A− i j in terms of the remaining
variables in the theory, the physical transverse components of the complex vector
potentials

Āi j =
1√
2
(A1 + iA2)i j ; Ai j =

1√
2
(A1 − iA2)i j.

A lengthy but straightforward computation yields

A− i j ≡ 1√
2

(
A0 −A3)i j

=
∂
∂+ Ai j +

∂
∂+ Āi j −κ 1

∂+

(
C

i jkl∂ Akl
)
−κ 1

∂+

(
Ci jkl∂ Ākl

)

+κ
∂
∂+2 (C

i jkl∂+ Akl ) +κ
∂
∂+2 (Ci jkl∂+ Ākl )

+
κ2

2
1
∂+

[
Ci jklC

klmn∂Amn +C
i jkl

Cklmn∂̄ Āmn

−(Ci jkl +C
i jkl)

∂
∂+ (Cklmn∂+Amn)− (Ci jkl +C

i jkl)
∂̄
∂+ (Cklmn∂+Āmn)

+
∂
∂+ (Ci jkl

C
klmn∂+Amn )+

∂̄
∂+ (Ci jklCklmn∂+Āmn)

]
+ O(κ3), (132)

where

∂̄ =
1√
2

(∂1 − i∂2), ∂ =
1√
2

(∂1 + i∂2), ∂+ =
1√
2

(−∂0 + ∂3)

(The occurrence of the non-local operator 1
∂+ is abundant in the LC2 formalism. It

is a harmless non-locality along the light-cone which is well understood.)
This enables us to find the LC2 complex field strengths F+−i j

F+−i j =
1
2

(
∂+A− i j +∂Ai j − ∂̄ Āi j

)

= ∂Ai j − κ
2

C
i jkl∂Akl − κ

2
Ci jkl ∂̄ Ākl +

κ
2
∂
∂+ (Ci jkl∂+Akl)+

κ
2
∂̄
∂+ (Ci jkl∂+Ākl)

+
κ2

4

[

Ci jklC
klmn∂Amn +C

i jkl
Cklmn∂̄ Āmn

−(Ci jkl +C
i jkl)
(
∂
∂+ (Cklmn∂+Amn)+

∂̄
∂+ (Cklmn∂+Āmn)

)

+
∂
∂+

(
C

i jkl
C

klmn∂+Amn
)

+
∂̄
∂+

(
Ci jklCklmn∂+Āmn

)]

+ · · · . (133)

By varying this expression and using (120), we arrive at the non-linear transforma-
tion of the physical vector potentials under SU(8)/SO(8)
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δ ′ Ai j = iSim
(

Am j +κ
1
∂+

(
C

m jkl∂+Akl
)

+ O(κ3)
)

− (i ↔ j). (134)

As in the covariant case, the terms on the right-hand-side do not share the same
coset transformations.

Similarly, the coset e/SU(8) transformations of the vector potentials are obtained
by substituting F+−i j in (130) with (133). Remembering that the scalars transform
non-linearly under E7(7)/SU(8) (128) , we find for the vector potentials

δAi j = −Ξ i jkl
Akl +

κ
2

(Ξ i jkl −Ξ i jkl)
1
∂+

(
C

klmn∂+Amn
)

+O(κ3), (135)

which preserve helicity, and exist as long as κ 
= 0.

5.3 The Vector and Scalar LC2 Hamiltonians

The vector Lagrangian (110) in the LC2 gauge, obtained by setting A+ i j = 0 and
replacing A− i j using the equations of motion, is given by

LV = Āi j (−∂+ ∂− + ∂ ∂̄ )Ai j

+
κ
2

[

∂+Ai j C
i jmn ∂−Āmn + ∂Ai j

(

C
i jkl∂Akl − ∂

∂+ (Ci jkl∂+Akl)

− ∂̄
∂+ (Ci jkl∂+Ākl)

)

+c.c.

]

− κ2

2
∂̄
∂+ (∂+Āi j Ci jkl)

∂
∂+ (Cklmn∂+Amn)

+
κ2

2

[

−1
2
∂Ai jC

i jkl
Cklmn∂̄ Āmn + ∂Ai jC

i jkl ∂̄
∂+ (Cklmn∂+Āmn) + c.c.

]

+
κ2

2

[

∂Ai jC
i jkl ∂

∂+ (Cklmn∂+Amn)− 1
2
∂
∂+ (∂+Ai jC

i jkl)
∂
∂+ (Cklmn∂+Amn)+ c.c.

]

+
κ2

4

[

∂−Āi jC
i jkl

C
klmn∂+Amn − ∂

∂+ (∂+Ai jC
i jkl

C
klmn)

(
∂Amn + ∂̄ Āmn)+ c.c.

]

+ O(κ3), (136)

while the scalar supergravity Lagrangian (108) becomes

LS = − 1
24

Ci jkl(∂+∂−− ∂ ∂̄ )Ci jkl

+
κ2

96
Ci jkl C

klmn (∂+Cmnpq ∂−C
pqi j + ∂−Cmnpq∂+C

pqi j

−∂Cmnpq ∂̄C
pqi j − ∂̄Cmnpq ∂C

pqi j)+ O(κ3). (137)
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Both contain the light-cone time derivative ∂− in their interactions. In order to have
a Hamiltonian without this derivative we eliminate it by the field redefinitions

Ci jkl = Di jkl − κ2

4
1
∂+

(
Dpq[i j∂+Dkl]mnDpqmn

)

+
3κ2

2∂+

(

∂+B[i j 1
∂+ (Dkl]mn∂+Bmn)

)

+
3κ2

2 ·4!∂+ ε
i jklrstu

(

∂+Brs
1
∂+ (Dtumn∂+Bmn)

)

+ O(κ3), (138)

Ai j = Bi j − κ
2

1
∂+

(
Di jkl∂+Bkl

)
+
κ2

8
Di jkl 1

∂+

(
∂+BmnDmnkl

)
+ O(κ3). (139)

This procedure leads to the unique Hamiltonian of the theory in component form.
The new vector potentials, Bi j now transform linearly under SU(8),

δ ′ Bi j = iSik Bk j − (i ↔ j),

so that i, j, . . . are now true SU(8) indices; in particular, their lowering produces the
“barred” representation. The E7(7)/SU(8) variations of the redefinitions yield the
transformation properties of the new fields

δ Bi j = − κ
4
ΞmnklD

i jklBmn +
κ
4
Ξ i jkl 1

∂+

(
Dmnkl∂+Bmn) + O(κ3), (140)

δDi jkl =
2
κ
Ξ i jkl − κ

2
Ξmnpq

1
∂+

(
Dmn[kl∂+Di j]pq

)

+
κ
2
Ξ pq[i j 1

∂+

(
∂+Dkl]mnDpqmn

)

−3κ

(
Ξmn[kl

∂+

(
∂+Bi j]Bmn

)
+ ε i jklrstuΞ tumn

4!∂+

(
Bmn∂+Brs

)
)

+ O(κ3).

(141)

We note that the E7(7)/SU(8) variation of the scalars contains terms quadratic in the
gauge fields. This mixing does not occur in the covariant formalism. Complicated
as they may seem, these variations are still incomplete since they do not include the
other fields of the theory. We will use the supersymmetry of N = 8 supergravity to
generalize the transformations (140) and (141) to include them.

5.4 E7(7) Light-Cone Superspace

We will now implement the E7(7) transformations on the superfield equation (46).
We remind ourselves that the kinematical supersymmetry transformations of the
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physical fields are

δs h = 0, δs h = − i

√
2

4
εmψm,

δsψ
m = 2

√
2εn∂+ Bmn, δsψm = −

√
2εm ∂+ h,

δs Bmn = −3i
√

2ε p χmnp, δs Bmn = −2i
√

2ε [mψn],

δs χ lmn = −
√

2
3!

εk ∂+Dklmn, δs χmnp = −3
√

2ε[p ∂
+ Bmn],

and finally
δs Dklmn = −4i

√
2ε [n χklm].

The quadratic operators

T i
j = − i√

2∂+

(

qiq̄ j − 1
8
δ i

jq
kq̄k

)

, (142)

which satisfy the SU(8) algebra

[T i
j, T k

l ] = δ k
j T i

l − δ i
l T k

j,

also act linearly on the chiral superfield

δSU8
ϕ(y) = ω j

i T i
j ϕ(y).

We can now include the other fields of the theory by demanding that the e/SU(8)
transformations commute with the kinematical supersymmetries, that is

[δs, δ ]ϕ(y) = 0. (143)

We begin by applying this equation to the vector potential. By carefully choosing
the parameters of both supersymmetry and of E7(7)/SU(8), we arrive at the gener-
alization of (140) to order κ

δ Bi j = −κ Ξ klmn
(

1
4

Di jkl Bmn +
1
4!

1
∂+ Dklmn∂+Bi j − 1

4!
εi jklmnrs

1
∂+ Brs∂+h

+
i

3!
1
∂+ χklm χ i jn − i

3!
εi jklmrst

1
∂+ χ

rstψn

)

+κ Ξ i jkl
1
∂+

(
1
4

Dklmn ∂+Bmn − 1
∂+ Bkl ∂+2 h

+
i

4(3!)2 χmnpχrstε
klmnprst − 3 i

1
∂+ χ

kln∂+ψn

)

+O(κ3), (144)
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as well as to the E7(7)/SU(8) transformations of the gravitinos since commutativity
implies

δs δ Bi j = −2i
√

2ε [i δ ψ j].

The result is

δ ψ i = −κ Ξmnpq
(

1
4!

1
∂+ Dmnpq∂+ψ i +

1
3!

Dmnpiψq

− 1
4!
εmnpqirst

1
∂+ χ

rst∂+h +
1
4
χ imnBpq +

1
3!

1
∂+ χmnp∂

+Biq

)

+O(κ3). (145)

Applying commutativity on the gravitinos yields the E7(7)/SU(8) transformation of
the graviton

δs δ ψ i = −
√

2ε i ∂
+ δ h,

with

δ h = −κ Ξ i jkl
(

1
8

Bi jBkl +
1
4!

1
∂+ Di jkl∂+h +

i
6

1
∂+ χ i jkψ l

)

+ O(κ3). (146)

All these transformations are non-linear. Similar equations can be derived for the 56
spinors and 70 scalars.

The inhomogeneous E7(7)/SU(8) transformations of order κ−1 of the scalar
fields can be expressed in superfield language, that is

δ (−1)ϕ = − 2
κ
θ i jkl Ξ i jkl,

which is chiral since E7(7) is a global symmetry: ∂+Ξ i jkl = 0. The order κ transfor-
mations of the superfield itself take a particularly simple form. We need only require
that its variation be chiral, with the tensor structure

κ Ξ i jkl(· · · )i jkl .

Assuming that the lower indices are carried by the antichiral derivatives dn leads to
the unique form of the transformation to first order in κ

κ
4!
Ξ i jkl 1

∂+2

(

di jkl
1
∂+ϕ ∂

+3ϕ − 4di jkϕ dl∂+2ϕ + 3di j∂+ϕ dkl∂+ϕ
)

,

where d̄k···l is a shorthand notation for d̄k · · · d̄l. Including the inhomogeneous term,
the e/SU(8) transformation can be written in a more compact way by introducing a
coherent state-like representation
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δ ϕ = − 2
κ
θ i jklΞ i jkl +

κ
4!
Ξ i jkl

(
∂
∂η

)

i jkl

1
∂+2

(
eη

ˆ̄d∂+3ϕ e−η
ˆ̄d∂+3ϕ

)
∣
∣
∣
∣
∣
η=0

+O(κ3), (147)

where

η ˆ̄d = ηm d̄m

∂+ , and

(
∂
∂η

)

i jkl
≡ ∂

∂η i

∂
∂η j

∂
∂ηk

∂
∂η l .

We note that these E7(7)/SU(8) transformations do close properly to an SU(8) trans-
formation on the superfield

[δ 1, δ 2 ]ϕ = δSU(8)ϕ .

It is chiral by construction dnδϕ = 0, with the power of the first inverse deriva-
tive set by comparing with the graviton transformation. Hence, all physical fields,
including the graviton transform under E7(7) and can be read off from this equation.
It will be interesting to see what constraints this puts on the geometry.

We can now extend the method to the dynamical supersymmetries, and determine
the form of the interactions implied by the E7(7) symmetry.

5.5 Superspace Action

The N = 8 supergravity action in superspace was first obtained in [26] and its LC2

form is derived in [12] to order κ , using algebraic consistency and simplified further
in [16]. It is remarkably simple:

S =− 1
64

∫
d4x

∫
d8θ d8θ

{

−ϕ �

∂+4 ϕ − 2κ
(

1
∂+2ϕ ∂ϕ ∂ϕ + c.c.

)

+ O(κ2)
}

,

(148)

where � ≡ 2(∂ ∂̄ − ∂+∂−). The light-cone superfield Hamiltonian density is then
written as

H = 2ϕ
∂ ∂̄
∂+4 ϕ + 2κ

(
1
∂+2ϕ ∂ϕ ∂ϕ + c.c.

)

+ O(κ2). (149)

It can be derived from the action of the dynamical supersymmetries on the chiral
superfield

δ dyn
s ϕ = δ dyn (0)

s ϕ + δ dyn (1)
s ϕ + δ dyn (2)

s ϕ + O(κ3),

= εm
{
∂
∂+ q̄mϕ+ κ

1
∂+

(
∂̄ d̄mϕ ∂+2ϕ − ∂+ d̄mϕ ∂+ ∂̄ ϕ

)
+ O(κ2)

}

.

(150)
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We now require that the E7(7)/SU(8) commutes with the dynamical supersym-
metries

[δ , δ dyn
s ]ϕ = 0. (151)

This commutativity is valid only on the chiral superfield. For example, [δ 1, δs ]
δ 2ϕ 
= 0, due to the non-linearity of the e transformation. This helps us understand
how the Jacobi identity

( [δ 1, [δ 2, δs ] ] + [δ 2, [δs, δ 1 ] ] + [δs, [δ 1, δ 2 ] ] ) ϕ = 0,

is algebraically consistent. In the last term the commutator of the two E7(7)/SU(8)
transformations, [δ 1, δ 2 ], yields an SU(8) under which the supersymmetry trans-
forms. This is precisely compensated by contributions from the first two terms.

Although the dynamical supersymmetry to order κ is already known, we re-

derive δ dyn (1)
s ϕ from the commutativity between the dynamical supersymmetries

and E7(7)/SU(8) transformations.
The inhomogeneous E7(7) transformations link interaction terms with different

order in κ . To zeroth order, one finds

[δ (−1), δ dyn (1)
s ]ϕ = δ (−1) δ dyn (1)

s ϕ = 0, (152)

since δ dyn (1)
s δ (−1)ϕ = 0. To find δ dyn (1)

s ϕ that satisfies both the above equation
and the SuperPoincaré algebra, one may start with a general form that satisfies all
the commutation relations with the kinematical SuperPoincaré generators,

δ dyn (1)
s ϕ ∝

∂
∂a

∂
∂b

1

∂+(m+n+1)

(
ea ˆ̄∂ ebε ˆ̄q∂+(2+m)ϕ e−a ˆ̄∂ e−bε ˆ̄q∂+(2+n)ϕ

)∣∣
∣
a=b=0

,

where ˆ̄∂ = ∂̄
∂+ , ε ˆ̄q = εm q̄m

∂+ . It is not difficult to see that this form with non-negative
m, n satisfies (152). The number of powers of ∂+ can be determined by checking the
commutation relation between two dynamical generators δp−(Hamiltonian variation
which is derived from the supersymmetry algebra) and δ j−(the boost which can also

be obtained through [δ j− , δq̄ ]ϕ = δ dyn
s ϕ), yielding that the commutator between

δ j− and δp− vanishes only when m = n = 0, which leads to the same form as (150)
written in a coherent-like form

δ dyn (1)
s ϕ =

κ
2
∂
∂a

∂
∂b

1
∂+

[
ea ˆ̄∂ebε ˆ̄q∂+2ϕ e−a ˆ̄∂e−bε ˆ̄q∂+2ϕ

]∣∣
∣
a=b=0

.

It is worth noting that this is the solution that has the least number of powers of ∂+

in the denominator, and thus the least “non-local”.
The same reasoning can be applied to higher orders in κ . To order κ , we find that

commutativity

[δ (−1), δ dyn (2)
s ]ϕ + [δ (1), δ dyn (0)

s ]ϕ = 0
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requires

δ (−1) δ dyn(2)
s ϕ

=
κ
4!
Ξ i jkl 1

∂+3

[

− d̄i jkl
∂
∂+ ϕ ∂

+3ε q̄ϕ+ 4 d̄i jk∂ϕ d̄l∂+2ε q̄ϕ− 3 d̄i j∂∂
+ϕ d̄kl∂

+ε q̄ϕ

− d̄i jkl
ε q̄
∂+ ϕ ∂∂+3ϕ+ 4 d̄i jkε q̄ϕ d̄l∂∂+2ϕ−3 d̄i j∂+ε q̄ϕ d̄kl∂∂

+ϕ

+ d̄i jkl
∂
∂+2 ε q̄ϕ ∂+4ϕ − 4 d̄i jk

∂
∂+ ε q̄ϕ d̄l∂+3ϕ + 3 d̄i j∂ε q̄ϕ d̄kl∂

+2ϕ

+ d̄i jkl ϕ ∂∂
+2ε q̄ϕ − 4 d̄i jk∂

+ϕ d̄l∂∂+ε q̄ϕ + 3 d̄i j∂
+2ϕ d̄kl∂ε q̄ϕ

]

,

(153)

where ε q̄ denotes εmq̄m, which can be written in a simpler form by rewriting it in
terms of a coherent state-like form:

δ (−1)δ dyn (2)
s ϕ =

κ
2 ·4!

Ξ i jkl ∂
∂a

∂
∂b

(
∂
∂η

)

i jkl

× 1
∂+3

[
ea∂̂ ebε ˆ̄qeη

ˆ̄d∂+4ϕ e−a∂̂e−bε ˆ̄qe−η
ˆ̄d∂+4ϕ

]
∣
∣
∣
∣
∣
a=b=η=0

. (154)

To find δ dyn(2)
s ϕ that satisfies (153), consider the chiral combination

Zmnpq ≡
(
∂
∂ξ

)

mnpq

(
eξ

ˆ̄d∂+4ϕe−ξ
ˆ̄d∂+4ϕ

)∣
∣
∣
ξ=0

,

= d̄mnpqϕ ∂+4ϕ − 4 d̄mnp∂+ϕ d̄q∂+3ϕ + 3 d̄mn∂+2ϕ d̄pq∂+2ϕ . (155)

The inhomogeneous e transformation of

Zi jkl ≡ 1
4!
ε i jklmnpqZmnpq,

has the simple form

δ (−1)Zi jkl =
1
4!
ε i jklmnpq d̄mnpqδ

(−1)ϕ ∂+4ϕ =
2
κ
Ξ i jkl ∂+4ϕ , (156)

which leads to the solution

δ dyn (2)
s ϕ =

κ2

2 ·4!
∂
∂a

∂
∂b

(
∂
∂η

)

i jkl

1
∂+4

×
(

ea∂̂+bε ˆ̄q+η ˆ̄d∂+5ϕ e−a∂̂−bε ˆ̄q−η ˆ̄dZi jkl
)
∣
∣
∣
∣
∣
a=b=η=0

,



66 L. Brink

where we have fixed the ambiguity discussed earlier by choosing the expression
with the least number of ∂+ in the denominator. Its algebraic consistency should
be checked in a future publication. This coherent state-like form is very efficient;

Written out explicitly δ dyn (2)
s ϕ consists of 60 terms.

The dynamical supersymmetry is then written in terms of the coherent state-like
form,

δ dyn
s ϕ =

∂
∂a

∂
∂b

{

ea∂̂ebε ˆ̄q∂+ϕ +
κ
2

1
∂+

(
ea ˆ̄∂+bε ˆ̄q∂+2ϕe−a ˆ̄∂−bε ˆ̄q∂+2ϕ

)

+
κ2

2 ·4!

(
∂
∂η

)

i jkl

1
∂+4

(
ea∂̂+bε ˆ̄q+η ˆ̄d∂+5ϕ e−a∂̂−bε ˆ̄q−η ˆ̄dZi jkl

)

+ O(κ3)

}∣
∣
∣
∣
∣
a=b=η=0

. (157)

We now use the fact, as Ananth et al. [17] have shown, that the N = 8 super-
gravity light-cone Hamiltonian can be written as a quadratic form (to order κ2),

H =
1

4
√

2
(Wm, Wm) ≡ 2 i

4
√

2

∫

d8θ d8θ̄ d4x W m
1
∂+3 Wm,

where the fermionic superfield Wm is the dynamical supersymmetry variation of ϕ

δ dyn
s ϕ ≡ εm Wm,

with
Wm = W

(0)
m + W

(1)
m + W

(2)
m + · · · .

Up to order κ , the Hamiltonian is simply

H =
1

4
√

2

[(
W

(0)
m , W

(0)
m

)
+
(
W

(0)
m , W

(1)
m

)
+
(
W

(1)
m , W

(0)
m

)]
, (158)

while the Hamiltonian of order κ2 consists of three parts:

H κ2
=

1

4
√

2

[(
W

(1)
m , W

(1)
m

)
+
(
W

(0)
m , W

(2)
m

)
+
(
W

(2)
m , W

(0)
m

)]
, (159)

where the first part was computed by Ananth et al. [17]

(
W

(1)
m , W

(1)
m

)
= i

κ2

2
∂
∂a

∂
∂b

∂
∂ r

∂
∂ s

∫
d8θ d8θ̄ d4x

× 1
∂+5

(
ea∂̂+bq̂m

∂+2ϕe−a∂̂−bq̂m
∂+2ϕ

)

×
(

er ˆ̄∂+s ˆ̄qm∂+2ϕe−r ˆ̄∂−s ˆ̄qm∂+2ϕ
)∣∣
∣
a=b=r=s=0

, (160)
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and the second and third parts are complex conjugate of each other. It suffices to
consider

(
W

(0)
m , W

(2)
m

)
= i

κ2

4!
∂
∂a

∂
∂b

(
∂
∂η

)

i jkl

∫

d8θ d8θ̄ d4x

× ∂̄
∂+ qmϕ

1
∂+7

(
ea∂̂+b ˆ̄qm+η ˆ̄d∂+5ϕ e−a∂̂−b ˆ̄qm−η ˆ̄dZi jkl

)
∣
∣
∣
∣
∣
a=b=η=0

.

(161)

Integration by parts with respect to d̄’s and use of the inside-out constraint (40)
allow for an efficient rearrangement of terms to yield the final expression

(
W

(0)
m , W

(2)
m

)
= −i

κ2

4!
∂
∂a

∂
∂b

∫
d8θ d8θ̄ d4x

× ∂̄
∂+4 qmdi jklϕ

(

ea∂̂ +b ˆ̄qm∂+ϕ e−a∂̂ −b ˆ̄qm
1
∂+4 Zi jkl

)∣∣
∣
∣
∣
a=b=0

.

(162)

Therefore, the Hamiltonian to order κ2 is written as

H κ2
= i

κ2

4
√

2

∫
d8θ d8θ̄ d4x

∂
∂a

∂
∂b

×
{

1
2
∂
∂ r

∂
∂ s

1
∂+5

(
ea∂̂+bq̂∂+2ϕe−a∂̂−bq̂∂+2ϕ

)(

er ˆ̄∂+s ˆ̄q∂+2ϕe−r ˆ̄∂−s ˆ̄q∂+2ϕ
)

−
[

1
4!

∂̄
∂+4 qmdi jklϕ

(

ea∂̂+b ˆ̄qm∂+ϕ e−a∂̂−b ˆ̄qm
1
∂+4 Zi jkl

)

+c.c.

]}∣∣
∣
∣
∣
a=b=r=s=0

.

(163)

to be compared with the 96 terms of Ananth et al. [17]!

6 Concluding Remarks

In this lecture I have shown that all the known quantum field theories follow by
studying representations of the Poincaré algebra. What we get though is essentially
the part of them which is amenable to perturbation theory, i.e., as expansions in a
coupling constant. We have learnt in recent years that quantum field theories are
very much richer than what meets the eye in a perturbation expansion. The for-
malism here is not suitable for such studies. It is very hard if possible to study
non-perturbative effects such as solitons, magnetic monopoles, branes and various
forms of duality. However, the formalism is a complement to other studies, it shows
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the physical symmetries of the theories and it is very useful for certain studies about
finiteness in perturbations expansions, which is one of the crucial tests of a quantum
gravity theory.

Acknowledgement It was a privilege to give this lecture at the celebration of Claudio Bunster’s
birthday celebration. Claudio has been a close friend of mine for very many years and I have
always admired his deep understanding of basic physics as well as of human relations. His tireless
and brave work for South American science is an example for all scientists.
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Strongly Hyperbolic Extensions of the ADM
Hamiltonian

J. David Brown

Abstract The ADM Hamiltonian formulation of general relativity with prescribed
lapse and shift is a weakly hyperbolic system of partial differential equations. In
general weakly hyperbolic systems are not mathematically well posed. For well
posedness, the theory should be reformulated so that the complete system, evolu-
tion equations plus gauge conditions, is (at least) strongly hyperbolic. Traditionally,
reformulation has been carried out at the level of equations of motion. This typi-
cally destroys the variational and Hamiltonian structures of the theory. Here I show
that one can extend the ADM formalism to (a) incorporate the gauge conditions
as dynamical equations and (b) affect the hyperbolicity of the complete system, all
while maintaining a Hamiltonian description. The extended ADM formulation is
used to obtain a strongly hyperbolic Hamiltonian description of Einstein’s theory
that is generally covariant under spatial diffeomorphisms and time reparametriza-
tions, and has physical characteristics. The extended Hamiltonian formulation with
1 + log slicing and gamma-driver shift conditions is weakly hyperbolic.

1 Introduction

This paper is dedicated to Claudio Bunster in celebration of his 60th birthday. In a
remarkable body of work Claudio showed that we can view the Hamiltonian formu-
lation of general relativity as fundamental. (See in particular refs. [14, 26, 27].) He
considered the requirement that the sequence of spatial three-geometries evolved
by the Hamiltonian should be interpretable as a four-dimensional spacetime. From
this assertion and a few modest assumptions he was able to derive the ADM
Hamiltonian [1,8] of general relativity. A number of deep insights into the nature of
gravity and matter came from his analysis, including the role of gauge symmetries in
electrodynamics and Yang–Mills theories and the necessity for all matter fields to
couple to gravity.
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In general relativity we are faced with the practical problem of predicting the
future evolution of strongly gravitating systems, including interacting black holes
and neutron stars. Such problems fall into the realm of numerical relativity. Natu-
rally, the first attempts at numerical modeling in general relativity were based on
the ADM Hamiltonian equations. By the early 1990s it became clear that the ADM
equations were not appropriate for numerical computation because they are not well
posed in a mathematical sense. What followed was more than a decade of activity
in which the ADM equations were rewritten in a variety of ways. The goal was to
produce a well posed system of partial differential equations (PDEs) for Einstein’s
theory. One strategy for modifying the ADM equations was to add multiples of the
constraints to the right-hand sides. Another strategy was to introduce new indepen-
dent variables defined as combinations of metric tensor components and their spatial
derivatives. This later strategy introduces new constraints into the system, namely,
the constraints that the definitions of the new variables should hold for all time.

In a practical sense, the effort to re-express the ADM equations has been success-
ful. Currently there are a number of formulations of the Einstein evolution equations
that appear to be “good enough,” the most popular for numerical work being the
BSSN system [2,24]. BSSN relies on a conformal splitting of the metric and extrin-
sic curvature. It introduces new independent variables, the “conformal connection
functions,” defined as the trace (in its lower indices) of the Christoffel symbols built
from the conformal metric.

BSSN and the other “modern” formulations of Einstein’s theory are very clever.
But at a basic level, these formulations are obtained through a manipulation of the
equations of motion as a system of PDEs. What is invariably lost is the beautiful
Hamiltonian structure found in the ADM formulation. In this paper I present a sys-
tematic procedure that can be used to modify the ADM equations in an effort to
obtain a good system of PDEs without losing the Hamiltonian structure.

A good system of PDEs is one that is mathematically well posed. As a general
rule, a system formulated in space without boundaries must be strongly hyperbolic
to be well posed. If boundaries are present, an even stronger notion of hyperbolicity,
symmetric hyperbolicity, is needed to prove well posedness. We are interested in
extensions of the ADM equations that, like the ADM equations themselves, have
first-order time and second-order space derivatives. It turns out that a simple pre-
scription can be given to test for strong hyperbolicity in such systems of PDEs. The
justification for this prescription requires a rather deep mathematical analysis, but
the prescription itself is fairly easy to apply. In Sect. 2, I discuss hyperbolicity and
justify the prescription for well posedness with heuristic arguments.

Another issue that has become apparent from recent numerical work is the
benefit, in practice, of incorporating the slicing and coordinate conditions (gauge
conditions) as dynamical equations. That is, the lapse function and shift vector
are not fixed a priori but are determined along with the other fields through evolution
equations of their own. The hyperbolicity of the entire system of PDEs, including
the equations for the lapse and shift, must be considered. The issues of gauge con-
ditions and hyperbolicity cannot be separated.
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In this paper I show that the Hamiltonian formulation of general relativity can
be extended to (a) incorporate dynamical gauge conditions and (b) alter the level
of hyperbolicity. In Sect. 3 the ADM formulation is enlarged by the introduction of
momentum variables π and ρa conjugate to the lapse function α and shift vector β a.
In this way the lapse and shift become dynamical. The new momenta are primary
constraints and they appear in the action with undetermined multipliers Λ and Ωa.
The usual Hamiltonian and momentum constraints, H and Ma, are secondary con-
straints. This Hamiltonian formulation of Einstein’s theory is not new [7, 12], and
is not substantially different from the original ADM formulation – like the ADM
formulation, it is only weakly hyperbolic. This is shown in Sect. 4.

The Hamiltonian formulation with dynamical lapse and shift is extended in
Sect. 5 by allowing the multipliers Λ and Ω a to depend on the canonical variables.
This has two effects. First, it changes the evolution equations for the lapse and
shift, yielding gauge conditions that depend on the dynamical variables. Second,
it changes the principal parts of the evolution equations and potentially changes the
level of hyperbolicity of the system. The hyperbolicity of the extended Hamiltonian
formulation is considered in Sect. 6 for a fairly general choice of multipliers that
preserves spatial diffeomorphism invariance and time reparametrization invariance.
When the multipliers are chosen so that the evolution equations are strongly hyper-
bolic with physical characteristics, the system is equivalent in its principal parts to
the generalized harmonic formulation of gravity [9,16,20]. It is also shown that the
extended Hamiltonian formulation with 1 + log slicing and the gamma-driver shift
condition is only weakly hyperbolic. A few final remarks are presented in Sect. 7.

2 Strong Hyperbolicity for Quasilinear Hamiltonian Systems

Let qμ , pμ denote pairs of canonically conjugate fields. We will consider
Hamiltonian systems for which Hamilton’s equations are a quasilinear system
of partial differential equations (PDEs). Thus we assume that the Hamiltonian
H is a linear combination of terms that are at most quadratic in the momenta
and spatial derivatives of the coordinates. More precisely, H should be a linear
combination of terms pμ pν , (∂aqμ)(∂bqν), pμ(∂aqν), pμ , (∂aqμ), and 1 with co-
efficients that depend on the q’s.1 (Here, ∂a denotes the derivative with respect
to the spatial coordinates.) One would like to show that Hamilton’s equations are
well posed as a system of PDEs. The subject of well posedness is a large, ac-
tive area of research in mathematics and physics. In this section I present a very
pedestrian account of the subject in the context of Hamiltonian field theory. Much
more rigorous and complete discussions can be found elsewhere. (See, for example,
refs. [6, 10, 11, 15, 19, 22,23, 25].)

A well posed system is one whose solutions depend continuously on the initial
data. For a well posed system, two sets of initial data that are close to one another

1 Note that terms proportional to ∂a pμ are also allowed in H since they are related to terms of the
form pμ (∂aqν ) through integration by parts.
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will evolve into solutions that remain close for some finite time. A system is not
well posed if it supports modes whose growth rates increase without bound with
increasing wave number. A concrete example is given below.

In analyzing well posedness we are primary concerned with the evolution in time
of high wave number (short wavelength) perturbations of the initial data. For this
purpose we can approximate the quasilinear system of PDEs by linearizing about
a solution. That is, we expand the Hamiltonian to quadratic order in perturbations,
which we denote δqμ , δ pμ . We then look for Fourier modes of the form δqμ =
q̄μeiωt+ikaxa

/(i|k|), δ pμ = p̄μeiωt+ikaxa
with nonzero wave number ka. Here, |k| ≡√

habkakb is the norm of ka defined in terms of a convenient metric hab (which
could be the inverse of the physical spatial metric). If the ansatz for δqμ , δ pμ is
substituted into the linearized Hamilton’s equations, the system becomes

ωv = (|k|A− iB−C/|k|)v (1)

where v is the column vector v = (q̄1, q̄2, . . . , p̄1, p̄2, . . .)T of Fourier coefficients.
Equation (1) shows that the problem of finding perturbative modes with wave num-
ber ka is equivalent to the eigenvalue problem for the matrix (|k|A− iB−C/|k|). The
eigenvector is v and the eigenvalue is the frequency ω .

What one is really doing in the construction above is replacing the system of
PDEs with a pseudo-differential system. The factor of i|k| in the denominator of
δqμ is, in effect, equivalent to a change of variables in which qμ is replaced by

qμ/
√

hab∂a∂b. In this way the second order (in space derivatives) PDEs are replaced
with an equivalent first order pseudo-differential system [19].

The behavior of ω as |k| becomes large depends on the leading order term A
in the matrix (|k|A− iB−C/|k|). The term A is the “principal symbol” of the sys-
tem. It is constructed from the coefficients of the highest “weight” terms in the
Hamiltonian, namely, the terms proportional to pμ pν , (∂aqμ)(∂bqν), pμ(∂aqν) and
(∂a pμ). Note that it is not necessary to linearize the equations of motion (or expand
the Hamiltonian to quadratic order) in order to find A. In practice we don’t actu-
ally linearize, we simply identify the coefficients of the highest weight terms in the
PDEs to form the matrix A.

If A has real eigenvalues and a complete set of eigenvectors that have smooth
dependence on the unit vector na ≡ ka/|k|, the system is said to be strongly hyper-
bolic. If A has real eigenvalues but the eigenvectors are not complete, the system is
said to be weakly hyperbolic. It can be proved that a strongly hyperbolic system of
quasilinear PDEs is well-posed [19].

Here is the rough idea. Let S denote the matrix whose rows are the left eigen-
vectors of A. Assuming strong hyperbolicity, the eigenvectors are complete and S−1

exists. The eigenvalue problem (1) can be written asω v̂ =(|k|Â− iB̂−Ĉ/|k|)v̂ where
v̂ ≡ Sv, Â ≡ SAS−1, B̂ ≡ SBS−1, and Ĉ ≡ SCS−1. Note that Â is diagonal with en-
tries equal to the (real) eigenvalues. Let a dagger (†) denote the Hermitian conjugate
(complex conjugate ∗ plus transpose T ). Since Â† = Â, we find
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(ω−ω∗)v̂†v̂ = v̂†(ω v̂)− (ω v̂)†v̂

= v̂†(|k|Â− iB̂− Ĉ/|k|)v̂− v̂†(|k|Â + iB̂T − ĈT /|k|)v̂
= −iv̂†(M + M†)v̂ (2)

where M ≡ B̂− iĈ/|k|. The left-hand side includes the factor (ω −ω∗) = 2iℑω =
−2iℜ(iω), so (2) can be written as 2ℜ(iω) = v̂†(M + M†)v̂/v̂†v̂. It follows that
ℜ(iω)≤ τ−1 where 2τ−1 is the maximum over |k| of the matrix norm of (M +M†).
[The matrix norm is the maximum of the real number v̂†(M + M†)v̂/(v̂†v̂).] From
this argument we see that the growth rate for the mode ka is bounded; it can grow
no faster than et/τ where τ is independent of ka.

Consider a simple example in one spatial dimension with two pairs of canonically
conjugate fields, q1, p1 and q2, p2. Let the Hamiltonian be given by

H =
∫

dx

{
1
2
[(p1)2 +(p2)2 +(q′1)

2 +(q′2)
2]+ 2p2q′1 + 2p1q′2

+p1(q2 + q1)+ p2(q2 −q1)+ q1q2

}

. (3)

Hamilton’s equations are

q̇1 = p1 + 2q′2 + q2 + q1, (4)

q̇2 = p2 + 2q′1 + q2 −q1, (5)

ṗ1 = q′′1 + 2p′2 + p2 − p1 −q2, (6)

ṗ2 = q′′2 + 2p′1 − p1 − p2 −q1. (7)

In this example the PDEs are linear so the linearization step is trivial: qμ → δqμ ,
pμ → δ pμ . Now insert the ansatz δqμ = q̄μeiωt+ikx/(i|k|), δ pμ = p̄μeiωt+ikx. This
yields

ω q̄1 = |k|(2nq̄2 + p̄1)− i(q̄1 + q̄2), (8)

ω q̄2 = |k|(2nq̄1 + p̄2)− i(q̄2 − q̄1), (9)

ω p̄1 = |k|(q̄1 + 2np̄2)− i(p̄2 − p̄1)+ q̄2/|k|, (10)

ω p̄2 = |k|(q̄2 + 2np̄1)+ i(p̄1 + p̄2)+ q̄1/|k|, (11)

where n ≡ k/|k| is the sign of the wave number k. Collecting the unknowns into
a column vector v = (q̄1, q̄2, p̄1, p̄2)T , we see that these equations become ωv =
(|k|A− iB−C/|k|)v where the matrices are given by

A =

⎛

⎜
⎜
⎝

0 2n 1 0
2n 0 0 1
1 0 0 2n
0 1 2n 0

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

1 1 0 0
−1 1 0 0
0 0 −1 1
0 0 −1 −1

⎞

⎟
⎟
⎠ , C =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 −1 0 0
−1 0 0 0

⎞

⎟
⎟
⎠ . (12)
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The principal symbol A has real eigenvalues ±1, ±3, and a complete set of eigen-
vectors. Therefore this system is strongly hyperbolic. The modes with wave number
k have frequencies ω = ±|k|+O(1/|k|) and ω = ±3|k|+O(1/|k|). In particular
the imaginary parts of the ω’s do not grow with increasing |k|.

Now replace the terms 2p2q′1 +2p1q′2 in the Hamiltonian with p2q′1 − p1q′2. The
principal symbol becomes

A =

⎛

⎜
⎜
⎝

0 −n 1 0
n 0 0 1
1 0 0 n
0 1 −n 0

⎞

⎟
⎟
⎠ (13)

while B and C are unchanged. The eigenvalues of A vanish and there are only two
independent eigenvectors. Therefore this system is weakly hyperbolic. The modes
with wave number k have frequencies ω = ±i

√
2|k|+ O(1) and ω = ±√2|k|+

O(1). The modes with frequency ω ≈ −i
√

2|k| will grow in time at a rate that is
unbounded as |k| increases.

The system described by this last example is not well posed. Indeed, consider
two initial data sets that differ from one another by terms qμ ∼ q̄μeikx/|k|2, pμ ∼
p̄μeikx/|k| where (q̄1, q̄2, p̄1, p̄2)T is an eigenvector with eigenvalueω =−i

√
2|k|+

O(1). In the limit as |k|→∞ these terms vanish and the two initial data sets coincide.
However, if we evolve these data sets the solutions will differ at finite time t by

terms qμ ∼ q̄μe
√

2|k|t+ikx/|k|2, pμ ∼ p̄μe
√

2|k|t+ikx/|k|. These terms do not vanish in
the limit |k| → ∞. This system is ill posed because the solution at finite time does
not depend continuously on the initial data.

In some cases it may be possible to model a physical system with ill posed PDEs
and to gain important physical insights through a formal analysis. Claudio’s beauti-
ful work on the (weakly hyperbolic) ADM equations is a perfect example! One can
imagine that the initial data are analytic, in which case the Cauchy–Kowalewski the-
orem guarantees that a solution exists for a finite time. But most data, even smooth
data, are not analytic. From a computational point of view, having an ill posed sys-
tem is unacceptable. Numerical errors will always introduce modes with large wave
numbers, with the size of |k| limited only by the details of the numerical implemen-
tation. For example, with a finite difference algorithm the maximum |k| is roughly
1/Δx where Δx is the grid spacing. In practice it does not take long for the numer-
ical solution to become dominated by this highest-wave number mode. As the grid
resolution is increased (Δx is decreased), the unwanted highest wave number mode
grows even more quickly. For practical numerical studies, we need our system of
PDEs to be well posed.

The analysis outlined above leads to the following test for strong hyperbolic-
ity. We begin by constructing the principal symbol A from the principal parts of
Hamilton’s equations. The principal parts of the q̇μ equations are the terms pro-
portional to pμ and ∂aqμ . In these terms we make the replacements pμ → p̄μ and
∂aqμ → naq̄μ . The principal parts of the ṗμ equations are the terms proportional
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to ∂a pμ and ∂a∂bqμ . In these terms we make the replacements ∂a pμ → na p̄μ and
∂a∂bqμ → nanbq̄μ . The principal symbol A is the matrix formed from the coefficients
of the q̄’s and p̄’s. The next step is to compute the eigenvalues and eigenvectors
of A. If A has real eigenvalues and a complete set of eigenvectors that depend
smoothly on na, the system is strongly hyperbolic and the initial value problem
is well posed.

3 ADM with Dynamical Lapse and Shift

The Einstein–Hilbert action is S =
∫

d4x
√−gR where g is the determinant of the

spacetime metric and R is the spacetime curvature scalar. Units are chosen such
that Newton’s constant equals 1/(16π). With the familiar splitting of the spacetime
metric into the spatial metric gab, lapse function α , and shift vector β a, the action
becomes

S[g,α,β ] =
∫

d4xα
√

g
(

R + KabKab −K2
)

. (14)

The extrinsic curvature is defined by

Kab ≡− 1
2α
(
ġab −2D(aβb)

)
, (15)

and Da denotes the spatial covariant derivative. The Hamiltonian can be derived in
a straightforward fashion if one recognizes that the action does not contain time
derivatives of the lapse and shift. Time derivatives of the spatial metric appear
through the combination Kab. Thus, we introduce the momentum

Pab ≡ ∂L

∂ ġab
=
√

g
(

Kgab −Kab
)

, (16)

where the Lagrangian density L is the integrand of the action. This definition can
be inverted for ġab as a function of Pab and used to define the Hamiltonian: H ≡∫

d3x
(
Pabġab −L

)
. This yields the ADM Hamiltonian

H =
∫

d3x(αH +β aMa) , (17)

where

H ≡ 1√
g

(
PabPab −P2/2

)
−√

gR, (18)

Ma ≡ −2DbPb
a (19)

are the Hamiltonian and momentum constraints.
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In the analysis above the lapse and shift are treated as non dynamical fields. They
appear in the Hamiltonian form of the action,

S[g,P,α,β ] =
∫ t f

ti
dt
∫

d3x
{

Pabġab −αH −β aMa

}
, (20)

as undetermined multipliers. Here ti and t f are the initial and final times. Extrem-
ization of S with respect to α and β a yields the constraints H = 0 and Ma = 0.

We can enlarge the ADM formulation to include the lapse and shift as dynamical
variables [7, 12]. Consider again the action (14). In addition to the momentum Pab

conjugate to the spatial metric, we also define conjugate variables for the lapse and
shift:

π ≡ ∂L

∂α̇
= 0, (21)

ρa ≡ ∂L

∂ β̇ a
= 0. (22)

This leads to primary constraints π = 0 and ρa = 0. The resulting Hamiltonian is
not unique; it is only determined to within the addition of arbitrary multiples of the
constraints:

H =
∫

d3x(αH +β aMa +Λπ+Ω aρa) . (23)

The coefficients Λ and Ω a appear as undetermined multipliers in the action, which
now reads

S[g,P,α,π ,β ,ρ ,Λ ,Ω ]

=
∫ t f

ti
dt
∫

d3x

{

Pabġab +πα̇+ρaβ̇ a −αH −β aMa −Λπ−Ω aρa

}

. (24)

The equations of motion, δS = 0, are2

ġab = Lβgab +
α√

g
(2Pab −Pgab), (25)

Ṗab = LβPab +
α√

g
(δ a

c δ b
d −gabgcd/4)(PPcd −2PcePd

e )

−α√gGab +
√

g(DaDbα−gabDcDcα) (26)

α̇ = Λ , (27)

π̇ = −H , (28)

β̇ a = Ω a, (29)

ρ̇a = −Ma, (30)

π = 0, (31)

ρa = 0, (32)

2 Throughout this paper I ignore the issues that arise when space has boundaries [5, 21].
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where Gab denotes the spatial Einstein tensor and Lβ is the Lie derivative with
respect to β a.

The equations above must hold for each time ti ≤ t ≤ t f . They are equivalent to
the Einstein equations supplemented with evolution equations for the lapse function
and shift vector. In particular, observe that π and ρa must vanish for all time by
(31) and (32). It follows that the time derivatives of π and ρa must vanish. In turn,
(28) and (30) imply that the usual Hamiltonian and momentum constraints are zero.
Equations (25) and (26) are the familiar ADM evolution equations, and (27) and
(29) supply evolution equations for the lapse and shift.

The evolution equations (25–30) are Hamilton’s equations derived from the
Hamiltonian (23). The time derivative of any function F of the canonical vari-
ables is Ḟ = {F,H} where the fundamental Poisson brackets relations are

defined by {gab(x),Pcd(x′)} = δ (c
(aδ

d)
b) δ

3(x,x′), {α(x),π(x′)} = δ 3(x,x′), and

{β a(x),ρb(x′)} = δ a
b δ

3(x,x′). We can interpret Hamilton’s equations as an ini-
tial value problem by following Dirac’s reasoning for constrained Hamiltonian
systems [13]. The initial data are chosen such that the primary constraints π and ρa

vanish at the initial time. According to (28) and (30), these constraints will remain
zero as long as H and Ma are constrained to vanish as well. Thus we impose
H = 0 and Ma = 0 as secondary constraints. The complete set of constraints,
π = 0, ρa = 0, H = 0, and Ma = 0 is first class.

4 Hyperbolicity of ADM with Dynamical Lapse and Shift

Hamilton’s equations (25–30) are equivalent to the ADM equations plus evolution
equations α̇ = Λ , β̇ a = Ω a for the lapse and shift. Let us analyze the level of hy-
perbolicity of these PDEs. The principal parts of the q̇ equations are the terms that
are proportional to p’s or first spatial derivatives of q’s. The principal parts of the
ṗ equations are the terms that are proportional to first spatial derivatives of p’s or
second spatial derivatives of q’s. Thus, we find

∂̂0gab
∼= 2gc(a∂b)β c +

α√
g
(2Pab −Pgab), (33)

∂̂0Pab ∼= α√g

2
gacgbdge f (∂e∂ f gcd −2∂e∂(cgd) f + ∂c∂dge f )

+
α√g

2
gabgcdge f (∂c∂egd f − ∂c∂dge f )+

√
g(gacgbd −gabgcd)∂c∂dα, (34)

∂̂0α ∼= −β a∂aα, (35)

∂̂0π ∼= √
ggabgcd(∂a∂cgbd − ∂a∂bgcd)−β a∂aπ , (36)

∂̂0β a ∼= −β b∂bβ a, (37)

∂̂0ρa
∼= 2gac∂bPbc −β b∂bρa, (38)
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where the symbol ∼= is used to denote equality up to lower order (non principal)
terms. These equations have been expressed in terms of the operator ∂̂0 ≡ ∂t −β a∂a

so that the characteristic speeds (the eigenvalues of the principal symbol) are defined
with respect to observers who are at rest in the spacelike slices.

We now construct the eigenvalue problem μv = Av for the principal symbol A.
The principal symbol is found from the coefficients on the right-hand sides of (33–
38). These coefficients are divided by a factor of α so that the characteristic speeds
will be expressed in terms of proper time rather than coordinate time. The result is

μ ḡab =
2
α

n(aβ̄b) +
1√
g
[2P̄ab−gab(P̄nn + P̄ABδAB)], (39)

μP̄ab =
√

g

2
[ḡab −2n(aḡb)n + nanb(ḡnn + ḡABδAB)−gabḡABδAB]

−
√

g

α
(gab −nanb)ᾱ , (40)

μᾱ = −(β ·n/α)ᾱ, (41)

μπ̄ = −
√

g

α
ḡABδAB − (β ·n/α)π̄, (42)

μβ̄a = −(β ·n/α)β̄a, (43)

μρ̄a =
2
α

P̄na − (β ·n/α)ρ̄a. (44)

where μ is the eigenvalue and v = (ḡab, P̄ab, ᾱ, π̄ , β̄a, ρ̄a)T is the eigenvector. In
these equations na is normalized with respect to the spatial metric, nagabnb = 1,
and a subscript n denotes contraction with na. We have also introduced an orthonor-
mal diad ea

A with A = 1,2 in the subspace orthogonal to na. That is, naea
A = 0 and

ea
Agabeb

B = δAB. A subscript A on a tensor (such as the metric gab or momentum Pab)
denotes contraction with ea

A.
The eigenvalue problem (39–44) splits into scalar, vector and trace-free tensor

blocks with respect to rotations about the normal direction na. The scalar block is

μ ḡnn =
2
α
β̄n +

1√
g
(P̄nn − P̄ABδAB), (45)

μ ḡABδAB = − 2√
g

P̄nn, (46)

μP̄nn = 0, (47)

μP̄ABδAB = −1
2
√

gḡABδAB − 2
α
√

gᾱ, (48)

μᾱ = −(β ·n/α)ᾱ, (49)

μπ̄ = −
√

g

α
ḡABδAB − (β ·n/α)π̄, (50)

μβ̄n = −(β ·n/α)β̄n, (51)

μρ̄n =
2
α

P̄nn − (β ·n/α)ρ̄n. (52)
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This block has eigenvalues 0 and −(β ·n/α), each with multiplicity 4. There is only
one eigenvector with eigenvalue 0, so the eigenvectors are not complete. The vector
block is

μ ḡnA =
1
α
β̄A +

2√
g

P̄nA, (53)

μP̄nA = 0, (54)

μβ̄A = −(β ·n/α)β̄A, (55)

μρ̄A =
2
α

P̄nA − (β ·n/α)ρ̄A. (56)

It has eigenvalues 0 and −(β · n/α), each with multiplicity 2. There is only one
eigenvector with eigenvalue 0, so the eigenvectors are not complete. Finally, the
trace-free tensor block is

μ ḡt f
AB =

2√
g

P̄t f
AB, (57)

μP̄t f
AB =

√
g

2
ḡt f

AB. (58)

This block has eigenvalues ±1 and a complete set of eigenvectors. Because the
eigenvectors for the scalar and vector blocks are not complete, the system (25–32)
is weakly hyperbolic.

5 Extending the ADM Formulation

In the previous section we modified the ADM Hamiltonian formulation of general
relativity so that the lapse function α and shift vector β a are treated as dynam-
ical variables. Their canonical conjugates are denoted π and ρa, respectively. The
undetermined multipliers for the constraints π = 0, ρa = 0 areΛ andΩ a. These mul-
tipliers are freely specifiable functions of space and time. They determine the slicing
and spatial coordinate conditions through the equations of motion α̇ = Λ and
β̇ a =Ω a.

Here is the key observation. The histories that extremize the action are unchanged
if we replace the multipliers by Λ →Λ + Λ̂ and Ω a →Ω a + Ω̂ a, where Λ̂ and Ω̂ a

are quasilinear functions of the canonical variables. By quasilinear, I mean that the
principal parts of Λ̂ and Ω̂ a are linear in the momenta (Pab, π and ρa) and first
spatial derivatives of the coordinates (∂cgab, ∂cα and ∂cβ a) with coefficients that
depend on the coordinates. With these replacements the action becomes

S[g,P,α,π ,β ,ρ ,Λ ,Ω ] =
∫ t f

ti
dt
∫

d3x

{

Pabġab +πα̇+ρaβ̇ a −αH −β aMa

−(Λ + Λ̂)π− (Ω a + Ω̂ a)ρa

}

, (59)
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and the Hamiltonian is

H =
∫

d3x
(
αH +β aMa +(Λ + Λ̂)π+(Ω a + Ω̂ a)ρa

)
. (60)

The solutions to the equations of motion are unaltered because the extra terms are
proportional to the constraints π = 0, ρa = 0. In the Hamiltonian formulation we can
dispense with the original multipliers Λ and Ω a; that is, these quantities can be
absorbed into the functions Λ̂ and Ω̂ a.

With Λ̂ and Ω̂ a restricted to be quasilinear in the momenta and first spatial deriva-
tives of the coordinates, the equations of motion become

ġab = Lβgab +
α√

g
(2Pab −Pgab)+

∂Λ̂
∂Pabπ+

∂Ω̂ c

∂Pab ρc, (61)

Ṗab = LβPab +
α√

g
(δ a

c δ
b
d −gabgcd/4)(PPcd −2PcePd

e )

−α√gGab +
√

g(DaDbα−gabDcDcα)

− ∂Λ̂
∂gab

π− ∂Ω̂ c

∂gab
ρc + ∂d

(
∂Λ̂

∂ (∂dgab)
π

)

+ ∂d

(
∂Ω̂ c

∂ (∂dgab)
ρc

)

, (62)

α̇ = Λ + Λ̂ +
∂Λ̂
∂π

π+
∂Ω̂ c

∂π
ρc, (63)

π̇ = −H − ∂Λ̂
∂α

π− ∂Ω̂ c

∂α
ρc + ∂d

(
∂Λ̂

∂ (∂dα)
π

)

+ ∂d

(
∂Ω̂ c

∂ (∂dα)
ρc

)

, (64)

β̇ a = Ω a + Ω̂ a +
∂Λ̂
∂ρa

π+
∂Ω̂ c

∂ρa
ρc, (65)

ρ̇a = −Ma − ∂Λ̂
∂β a π−

∂Ω̂ c

∂β a ρc + ∂d

(
∂Λ̂

∂ (∂dβ a)
π

)

+ ∂d

(
∂Ω̂ c

∂ (∂dβ a)
ρc

)

, (66)

π = 0, (67)

ρa = 0, (68)

Equations (61) and (62) are the usual ADM equations apart from terms proportional
to the constraints, π = 0 and ρa = 0. The equations that govern the slicing and spatial
coordinates are generalized by the presence of the functions Λ̂ and Ω̂ a. Apart from
terms that vanish with the constraints π = 0, ρa = 0, the evolution equation for
the lapse becomes α̇ = Λ + Λ̂ and the evolution equation for the shift becomes
β̇ a =Ω a + Ω̂ a. The equations for π̇ and ρ̇a are modified, but once again we see that
the complete set of constraints π = 0, ρa = 0, H = 0, and Ma = 0 is first class.

In principle we can choose Λ̂ and Ω̂ a to be any set of quasilinear functions
of the canonical variables. In practice we might want Λ̂ and Ω̂ a to satisfy certain
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transformation properties. For example we can restrict Λ̂ to be a scalar and Ω̂ a to
be a contravariant vector under spatial diffeomorphisms. This allows us to maintain
a geometrical interpretation of the equations of motion. In particular this allows us
to prepare and evolve identical geometrical data using different spatial coordinate
systems.

Another property that can be imposed on the formalism is reparametrization
invariance [13]. This is invariance under a change of coordinate labels t for the
constant time slices. Consider the infinitesimal transformation t → t − ε(t). In
the usual ADM system, the variables gab and Pab transform as scalars under
time reparametrization: δgab = ε ġab and δPab = εṖab. The time derivative of the
metric, ġab, transforms as a covariant vector. In one dimension a covariant vector
transforms in the same way as a scalar density of weight +1. It follows that the term
Pabġab that appears in the action is a weight +1 scalar density. For reparametriza-
tion invariance to hold, the integrand of the action should transform as a weight +1
scalar density since it is integrated over t. In particular the lapse function α and
shift vector β a, which multiply the scalars H and Ma, must transform as scalar
densities of weight +1.

Observe that the time derivatives α̇ and β̇ a are constructed from coordinate
derivatives of scalar densities and, as a consequence, these quantities do not trans-
form as tensors or tensor densities. We need to replace the coordinate derivatives
(dots) with covariant derivatives. We can do this by choosing a background metric
for the time direction. This should be viewed as part of the gauge fixing process.
Now, the physical metric for the time manifold is α2, so let α̃2 denote the back-
ground metric. The covariant derivative built from α̃2, acting on the densities α and
β a, is defined by

α̊ ≡ α̇− ( ˙̃α/α̃)α, (69)

β̊ a ≡ β̇ a − ( ˙̃α/α̃)β a. (70)

The extra terms needed for reparametrization invariance can be built into the action
or Hamiltonian by including a term ( ˙̃α/α̃)α in the function Λ̂ and a term ( ˙̃α/α̃)β a

in the function Ω̂ a.
With the appropriate terms included in Λ̂ and Ω̂ a, the time derivatives of the lapse

and shift appear in the action only in the combinationsπα̊ and ρaβ̊ a. Since α̊ and β̊ a

are covariant vector densities of weight +1, we see that π and ρa must transform as
contravariant vectors with no density weight. In one dimension, contravariant vec-
tors transform in the same way as a scalar density of weight −1. We will consider
π and ρa to be scalar densities of weight −1 under time reparametrization. It fol-
lows that, apart from the terms ( ˙̃α/α̃)α and ( ˙̃α/α̃)β a, the multipliers Λ + Λ̂ and
Ω a + Ω̂ a should transform as scalar densities of weight +2.

We have now established the rules for adding terms to the functions Λ̂ and Ω̂ a

such that the resulting formulation is invariant under time reparametrizations: these
terms must be weight +2 densities built from the scalars gab, Pab, the weight +1
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densities α , β a, and the weight −1 densities π , ρa. We can also insist that Λ̂ and
Ω̂ a should be, respectively, a scalar and a contravariant vector under spatial diffeo-
morphisms. With these properties in mind, a fairly general form for Λ̂ is

Λ̂ = ( ˙̃α/α̃)α+β aDaα−C1
α2

√
g

P+C4
α3

√
g
π . (71)

The first term in required for reparametrization invariance. The second term will
allow us to combine shift vector terms into a Lie derivative Lβ acting on α . The
terms multiplied by constants C1 and C4 are principal terms that will affect the hy-
perbolicity of the resulting equations. There are other principal terms that one can
add, such as α2β aρa/

√
g, but the form above will be general enough for present

purposes. There are also lower order terms that one can add to Λ̂ .
For Ω̂ a we must construct a spatial vector that [apart from the term ( ˙̃α/α̃)β a]

transforms as a weight +2 density under time reparametrizations. There are several
obvious ways to construct a spatial vector from the canonical variables at hand.
There are some possibilities that are not so obvious. Recall that the difference of
two connections is a tensor. Thus, the combination Γ a

bc − Γ̃ a
bc is a spatial tensor if

Γ a
bc are the Christoffel symbols built from the physical metric gab and Γ̃ a

bc are the
Christoffel symbols built from a background metric g̃ab. In setting up a numerical
calculation, for example, on a logically Cartesian grid, we can take g̃ab to be the flat
metric in Cartesian coordinates. Again, we view the introduction of the background
structure g̃ab as part of the gauge fixing process.

The general form for Ω̂ a that we will consider is

Ω̂ a = ( ˙̃α/α̃)β a +β bD̃bβ a +C2α2(Γ a
bc − Γ̃ a

bc)g
bc

+C3α2(Γ c
cb − Γ̃ c

cb)g
ab −C5αDaα−C6

α3

√
g
ρa. (72)

where D̃a is the covariant derivative compatible with g̃ab. The first term is required
for time reparametrization invariance. The second term will allow us to combine
time derivatives and shift vector terms into the operator ∂̂0 in the principle parts
of the equations for β a and ρa. The remaining terms will modify the principal
parts of the equations of motion and can affect the hyperbolicity of the system.
There are other principal terms that we could add to Ω̂ a, such as α2πβ a/

√
g or

αPabβb/
√

g. We can also add lower order terms.
With these expressions for Λ̂ and Ω̂ a, we find the following equations of motion

by varying the action (59):

g̊ab = Lβgab +
α√

g
(2Pab −Pgab)−C1

α2

√
g
πgab, (73)
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P̊ab = LβPab +
α√

g
(δ a

c δ b
d −gabgcd/4)(PPcd −2PcePd

e )−α√gGab

+
√

g(DaDbα−gabDcDcα)+C1
α2

√
g
(Pab −Pgab/2)π+C4

α3

2
√

g
π2gab

+C2D(a(ρb)α2)−C5αρ (aDb)α+
1
2
(C3 −C2)Dc(α2ρc)gab

+C2α2ρe(Γ e
cd − Γ̃ e

cd)g
acgbd +C3α2(Γ d

cd − Γ̃ d
cd)ρ

(agb)c

−C6
α3

√
g
(ρaρb +ρcρcgab/2), (74)

α̊ = Lβα+Λ −C1
α2

√
g

P+ 2C4
α3

√
g
π , (75)

π̊ = Lβπ−H + 2C1
α√

g
Pπ−3C4

α2

√
g
π2 −2C2α(Γ a

bc − Γ̃ a
bc)g

bcρa

−2C3α(Γ b
ab − Γ̃ b

ab)ρ
a −C5αDaρa + 3C6

α2

√
g
ρaρa, (76)

β̊ a = β bD̃bβ a +Ω a +C2α2(Γ a
bc − Γ̃ a

bc)g
bc +C3α2(Γ c

bc − Γ̃ c
bc)g

ab

−C5αDaα−2C6
α3

√
g
ρa, (77)

ρ̊a = D̃b(β bρa)−ρbD̃aβ b −Ma −πDaα, (78)

π = 0, (79)

ρa = 0. (80)

These equations are generally covariant under spatial diffeomorphisms and time
reparametrizations. Equations (73–78) are generated through the Poisson brackets
by the Hamiltonian (60). Note that for gab and Pab, which are scalars under time
reparametrization, the covariant time derivative (circle) is equivalent to a coordinate
time derivative (dot).

6 Hyperbolicity of the Extended ADM Formulation

The principal parts of the extended ADM evolution equations (73–78) are:

∂̂0gab
∼= 2gc(a∂b)β c +

α√
g
(2Pab −Pgab)−C1

α2

√
g
πgab, (81)
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∂̂0Pab ∼= α√g

2
gacgbdge f (∂e∂ f gcd −2∂e∂(cgd) f + ∂c∂dge f )

+
α√g

2
gabgcdge f (∂c∂egd f − ∂c∂dge f )+

√
g(gacgbd −gabgcd)∂c∂dα

+α2
[
C2gc(agb)d +(C3 −C2)gabgcd/2

]
∂cρd, (82)

∂̂0α ∼= −C1
α2

√
g

P+ 2C4
α3

√
g
π , (83)

∂̂0π ∼= √
ggabgcd(∂a∂cgbd − ∂a∂bgcd)−C5αgab∂aρb, (84)

∂̂0β a ∼= α2
[
C2gacgbd +(C3 −C2)gabgcd/2

]
∂bgcd

−C5αgab∂bα−2C6
α3

√
g
ρa, (85)

∂̂0ρa
∼= 2gac∂bPbc, (86)

From here it is easy to construct the eigenvalue problem for the principal symbol.
The symbol decomposes into scalar, vector, and trace-free tensor blocks under rota-
tions orthogonal to the normal vector na ≡ ka/|k|. For the scalar sector, we find

μ ḡnn =
2
α
β̄n +

1√
g
(P̄nn − P̄ABδAB)−C1

α√
g
π̄, (87)

μ ḡABδAB = − 2√
g

P̄nn −2C1
α√

g
π̄ , (88)

μP̄nn =
α
2

(C3 +C2)ρ̄n, (89)

μP̄ABδAB = −1
2
√

gḡABδAB − 2
α
√

gᾱ+α(C3 −C2)ρ̄n, (90)

μᾱ = −C1
α√

g
(P̄nn + P̄ABδAB)+ 2C4

α2

√
g
π̄ , (91)

μπ̄ = −
√

g

α
ḡABδAB −C5ρ̄n, (92)

μβ̄n =
α
2

(C3 +C2)ḡnn +
α
2

(C3 −C2)ḡABδAB −C5ᾱ−2C6
α2

√
g
ρ̄n, (93)

μρ̄n =
2
α

P̄nn. (94)

Again, the subscripts n and A denote contraction with na and ea
A, respectively. The

vector block is
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μ ḡnA =
1
α
β̄A +

2√
g

P̄nA, (95)

μP̄nA =
α
2

C2ρ̄A, (96)

μβ̄A = C2α ḡnA −2C6
α2

√
g
ρ̄A, (97)

μρ̄A =
2
α

P̄nA, (98)

and the trace-free tensor block is unmodified from before:

μ ḡt f
AB =

2√
g

P̄t f
AB, (99)

μP̄t f
AB =

√
g

2
ḡt f

AB. (100)

The eigenvalues for the scalar block are ±√
2C1 and ±√

C2 +C3, each with multi-
plicity two. The eigenvalues for the vector block are ±√

C2, each with multiplicity
two. For the tensor block the eigenvalues are ±1 and the eigenvectors are complete.

The eigenvalues are the characteristic speeds with respect to observers at rest in
the spacelike hypersurfaces. Let us choose the C’s such that the characteristics are
±1, that is, along the physical light cone. Then we must have C1 = 1/2, C2 = 1,
and C3 = 0. With this choice a careful analysis of the scalar block shows that the
eigenvectors are complete only if C4 = 1/8, C5 = 1, and C6 = 1/2. For these values
of the constants the eigenvectors for the vector block are complete as well. It can be
shown that with these values for the C’s the principal parts of the equations of motion
are equivalent to the generalized harmonic formulation of relativity [9, 16, 20]. This
will be discussed elsewhere [4].

The Hamiltonian system (73–80) is strongly hyperbolic with the choice of C’s
above. For this formulation the gauge conditions are

α̊ = β aDaα+Λ − α2

2
P√
g

+
α3

4
π√
g
, (101)

β̊ a = β bD̃bβ a +Ω a +α2(Γ a
bc − Γ̃ a

bc)g
bc −αDaα− α3

√
g
ρa (102)

If we choose Λ and Ω a to vanish, these gauge equations become

α̇−β a∂aα = α( ˙̃α/α̃)−α2K, (103)

β̇ a −β b∂bβ a = β a( ˙̃α/α̃)+α2(Γ a
bc − Γ̃ a

bc)g
bc −αgab∂bα, (104)
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to within terms that vanish with the constraints π = 0, ρa = 0. Here, K ≡ P/(2
√

g)
is the trace of the extrinsic curvature. These gauge conditions agree, to within lower
order (non-principal) terms, with the gauge conditions for the generalized harmonic
formulation of gravity [16].

It is not difficult to find choices for the constants (the C’s) that make the system
(73–80) strongly hyperbolic. The trick is to find a strongly hyperbolic system with
desirable coordinate and slicing conditions. Conditions similar to (103), supple-
mented with “gauge driver” equations, have been applied to the binary black hole
problem with mixed results [16,17,20]. With the BSSN evolution system, the gauge
conditions that work well for the binary black hole problem are “1 + log slicing,”

α̇−β a∂aα = −2αK, (105)

and “gamma-driver shift.” The gamma-driver condition is usually written as a sys-
tem of two first order (in time) equations for β a and an auxiliary field Ba = 4β̇ a/3.
These equations, along with suitable initial conditions, can be integrated to yield a
single first order equation for the shift [28]. Expressed as either two equations or
one, the gamma-driver condition depends on the trace (in its lower indices) of the
Christoffel symbols built from the conformal metric. In terms of the physical metric,
we can write the single-equation form of the gamma-driver shift condition as

β̇ a −β b∂bβ a =
3
4
√

g2/3
[

Γ a
bcgbc +

1
3

gabΓ c
bc

]

−ηβ a, (106)

where η is a constant parameter. The first term on the right-hand side (apart from
the factor of 3/4) is the trace of the conformal Christoffel symbols.

Let us see if we can find a set of functions Λ̂ and Ω̂ a that yield the gauge condi-
tions above, and then ask whether the resulting system is strongly hyperbolic. In this
example we dispense with any attempt to construct a formulation that is covariant
under spatial diffeomorphisms or time reparametrizations. Comparing (63) and (65)
with the 1 + log slicing condition (105) and the gamma-driver shift condition (106),
we find

Λ̂ = β a∂aα−αP/
√

g+ F1π+ Fa
2 ρa, (107)

Ω̂ a = β b∂bβ a +
3
4
√

g2/3
[

Γ a
bcgbc +

1
3

gabΓ c
bc

]

−ηβ a + Fa
3 π+ Fab

4 ρb, (108)

where the F’s are functions of the coordinates gab, α , and β a (and not their spatial
derivatives). In this case the analysis of hyperbolicity is complicated by the fact that
the scalar and vector blocks of the principal symbol are coupled by the terms Fa

2 , Fa
3 ,

and Fab
4 . The combined scalar/vector block has real eigenvalues, but completeness

of the eigenvectors can be achieved only if Fab
4 depends on the normal direction na ≡

ka/|k|. This is not acceptable; the Hamiltonian cannot depend on the propagation
direction of a perturbative solution. We conclude that there is no Hamiltonian of the
form (60) that yields strongly hyperbolic equations with 1 + log slicing (105) and
gamma-driver shift (106).



Strongly Hyperbolic Extensions of the ADM Hamiltonian 89

7 Concluding Remarks

This paper outlines a procedure for constructing Hamiltonian formulations of
Einstein’s theory with dynamical gauge conditions and varying levels of hyperbol-
icity. One can use this procedure as a tool to help identify well posed formulations
of the evolution equations that also maintain Hamiltonian and variational structures.
The issues of dynamical gauge conditions and hyperbolicity cannot be separated.
They are both dictated by the dependence of the multipliers Λ̂ and Ω̂ a on the
canonical variables. There are many possibilities that one can explore for this
dependence.

The Hamiltonian and variational formulations of general relativity have shaped
our perspective and provided deep insights into the theory. In addition, there are
a number of practical uses for a Hamiltonian/variational formulation. With an ac-
tion principle we can pass between spacetime and space-plus-time formulations by
adding or removing momentum variables. We can develop a fully first order multi-
symplectic version of the theory. We can also develop new computational techniques
such as variational and symplectic integrators [3, 18].

One important issue that has not been addressed here is the constraint evolution
system. In numerical simulations it is important to control the growth of constraint
violations. This might be accomplished in the present framework by including ap-
propriate terms in Λ̂ and Ω̂ a to ensure that the constraints are damped. For example,
a damping term −Cπ (where C is a positive constant) can be added to the π̇ equation
by including a lower order term Cα in Λ̂ . This issue will be explored in more detail
elsewhere [4].

The formalism outlined here can be further extend by introducing dynamical
equations for Λ and Ω a. This is accomplished by introducing momentum variables
conjugate to these multipliers. The new momentum variables are primary constraints
and are accompanied by a new set of undetermined multipliers. Dynamical equa-
tions for Λ and Ω a are introduced by allowing the new multipliers to depend on
the canonical variables. In this way we can construct gauge driver conditions sim-
ilar to the ones used with the generalized harmonic formulation [17, 20]. We can
also allow for gauge conditions that are expressed as systems of PDEs, such as the
two-equation version of the gamma-driver shift condition.
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Black Hole Entropy and the Problem
of Universality

S. Carlip

Abstract To derive black hole thermodynamics in any quantum theory of gravity,
one must introduce constraints that ensure that a black hole is actually present. For
a large class of black holes, the imposition of such “horizon constraints” allows the
use of conformal field theory methods to compute the density of states, reproducing
the correct Bekenstein–Hawking entropy in a nearly model-independent manner.
This approach may explain the “universality” of black hole entropy, the fact that
many inequivalent descriptions of quantum states all seem to give the same thermo-
dynamic predictions. It also suggests an elegant picture of the relevant degrees of
freedom, as Goldstone-boson-like excitations arising from symmetry breaking by a
conformal anomaly induced by the horizon constraints.

1 The Problem of Universality

Nearly 35 years have passed since Bekenstein [1] and Hawking [2] first showed us
that black holes are thermodynamic objects, with characteristic temperatures

TH =
h̄κ
2πc

(1)

and entropies

SBH =
A

4h̄G
. (2)

From the start, it was clear that a statistical mechanical description of these states
would be rather peculiar: in contrast to the entropy of an ordinary thermodynamic
system, black hole entropy is not extensive, depending on area rather than volume.
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Moreover, by Wheeler’s famous dictum, “a black hole has no hair”: a classical black
hole is determined completely by a few macroscopic characteristics, with no appar-
ent room for additional microscopic states. Nevertheless, from the earliest days of
black hole thermodynamics, the search for a microscopic understanding has been a
vigorous area of research.

Until fairly recently, that search was largely unsuccessful. Some interesting ideas
were suggested – entanglement entropy of quantum fields across the horizon [3], or
the entropy of quantum fields near the horizon [4] – but these remained speculative.
Today, in contrast, a great many physicists can tell you, often in great detail, exactly
what microscopic degrees of freedom underlie black hole thermodynamics. The new
problem is that they will offer you many different explanations. Depending on who
you ask, black hole entropy may count

• Weakly coupled string and D-brane states [5, 6]
• Horizonless “fuzzball” geometries [7]
• States in a dual conformal field theory “at infinity” [8, 9]
• Spin network states crossing the horizon [10]
• Spin network states inside the horizon [11]
• Horizon states in a spin foam [12]
• “Heavy” degrees of freedom in induced gravity [13]
• Entanglement entropy [3] (maybe “holographic” [14, 15])
• No local states – it’s inherently global [16]
• Nothing – it comes from quantum field theory in a fixed non-quantum back-

ground [2], which knows nothing of quantum gravity
• Maybe something else (points in a causal set in the horizon’s domain of depen-

dence [17]? Kolmogorov–Sinai entropy of strings spreading at the horizon [18]?)

There is, of course, nothing wrong with a healthy competition among candidates
for the proper description of the quantum black hole. The relevant degrees of free-
dom are, after all, presumably quantum gravitational – the Bekenstein–Hawking
entropy (2) involves both h̄ and G – and we do not yet have an established quan-
tum theory of gravity. But the fact that so many descriptions give exactly the same
answer is a true puzzle.

To see this puzzle more clearly, consider one of the most successful approaches
to black hole entropy, that of weakly coupled string theory. To count black hole
microstates a la Strominger and Vafa [5], one should proceed as follows:

1. Start with an extremal, supersymmetric, charged black hole
2. Find the horizon area and express it as a function of the charges
3. “Tune down” the gravitational coupling to form a weakly coupled string/brane

system
4. Count the states in this weakly coupled system, and express their number in terms

of the charges
5. Argue that supersymmetry (or other properties [19]) guarantees that the number

of states is the same at strong and weak coupling
6. Compare the results of steps 2 and 4 to determine the entropy as a function of the

horizon area
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The method is very effective, even away from extremality, and allows the compu-
tation not only of black hole entropy, but of Hawking radiation and even gray-body
factors. But the fundamental relationship between entropy and area arises only in-
directly, by way of the computation of charges, and this computation is different for
each new type of black hole. One cannot use the results from, say, a three-charge
black hole in five dimensions to conclude anything about a four-charge black hole
in six dimensions, but must recalculate the entropy and horizon area for each new
case. Weakly coupled string theory gives the Bekenstein–Hawking entropy, but it
gives it one black hole at a time.

2 Conformal Field Theory and the Cardy Formula

The natural question, then, is whether some property of the classical black hole can
explain this “universality” by determining the number of quantum states, indepen-
dent of the details of their description. This is a lot to ask, and I know of only one
case in which such a phenomenon occurs. Let us therefore take a brief detour to
explore two-dimensional conformal field theory.

A conformal field theory is a field theory that is invariant under both diffeomor-
phisms (general covariance) and Weyl transformations (“local scale invariance” or
“conformal invariance”) [20]. In two dimensions, one can always choose complex
coordinates; such a theory is then characterized by two symmetry generators L[ξ ]
and L̄[ξ̄ ], which generate holomorphic and antiholomorphic diffeomorphisms. The
Poisson bracket algebra of these generators is given by the unique central extension
of the algebra of two-dimensional diffeomorphisms, the Virasoro algebra:

{L[ξ ],L[η ]} = L[ηξ ′ − ξη ′]+
c

48π

∫

dz
(
η ′ξ ′′ − ξ ′η ′′)

{
L̄[ξ̄ ], L̄[η̄ ]

}
= L̄[η̄ ξ̄ ′ − ξ̄ η̄ ′]+

c̄
48π

∫

dz̄
(
η̄ ′ξ̄ ′′ − ξ̄ ′η̄ ′′) (3)

{L[ξ ], L̄[η̄ ]} = 0,

where the central charges c and c̄ (the “conformal anomalies”) depend on the par-
ticular theory. The zero-mode generators L0 = L[ξ0] and L̄0 = L̄[ξ̄0] are conserved
charges, roughly analogous to energies; their eigenvalues are commonly referred to
as “conformal weights” or “conformal dimensions.”

In 1986, Cardy discovered a remarkable property of such theories [21,22]. Given
any unitary two-dimensional conformal field theory for which the lowest eigenval-
ues Δ0 of L0 and Δ̄0 of L̄0 are nonnegative, the asymptotic density of states at large
eigenvalues Δ and Δ̄ takes the form

lnρ(Δ , Δ̄ ) ∼ 2π
√

(c−24Δ0)Δ
6

+ 2π

√
(c̄−24Δ̄0)Δ̄

6
, (4)
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with higher order corrections that are also determined by the symmetry [23–25].
The entropy is thus fixed by symmetry, independent of any details of the states
being counted. Note that upon quantization, after making the usual substitutions
{•,•} → [•,•]/ih̄ and Lm → Lm/h̄, a classical central charge ccl contributes ccl/h̄
to the quantum central charge, and a classical conformal “charge” Δ cl contributes
Δ cl/h̄ to the quantum conformal weight. The classical piece of a conformal field
theory thus yields a term of order 1/h̄ in the entropy (4), reproducing the behavior
of the Bekenstein–Hawking entropy (2).

At first sight, these results seem irrelevant to our problem. Black holes are not
typically two dimensional, and neither are they conformally invariant. There is a
sense, though, in which black holes are nearly two dimensional and nearly confor-
mally invariant near their horizons. Consider, for example, a scalar field ϕ near a
black hole horizon. If we write the metric in “tortoise” coordinates

ds2 = N2(dt2 −dr∗2)+ ds⊥2 with N → 0 at the horizon, (5)

the Klein–Gordon operator becomes

(�−m2)ϕ =
1

N2 (∂ 2
t − ∂ 2

r∗)ϕ+O(1), (6)

and it is evident that the mass and transverse excitations become negligible as
N → 0. The field is thus effectively described by a two-dimensional conformal field
theory [26]. A similar phenomenon occurs for other types of matter, and also, in
a sense, for gravity: a generic black hole metric admits an approximate conformal
Killing vector near the horizon [27].

Such an effective two-dimensional description has proven very useful in black
hole thermodynamics. Building on old results of Chistensen and Fulling [28],
Wilczek, Robinson, Iso, Morita, Umetsu, and others have recently shown that the
Hawking radiation flux [29] and, indeed, the full thermal spectrum [30, 31] can be
extracted from a two-dimensional conformal description, using methods that rely on
the conformal anomalies (c, c̄). Like most derivations of Hawking radiation, these
arguments are based on quantum field theory in a fixed black hole background.
But as Claudio showed long ago [32], essentially any effective two-dimensional de-
scription of gravity also involves a Virasoro algebra, typically with a nonvanishing
central charge. We might therefore hope that the conformal description could also
tell us about the statistical mechanics of the black hole states themselves.

3 2 + 1 Dimensions

There is one case in which a conformal field theory derivation of black hole en-
tropy has been completely successful [33, 34]. The Bañados–Teitelboim–Zanelli
black hole [35, 36] is a solution of the vacuum Einstein equations in three space-
time dimensions with a negative cosmological constantΛ =−1/�2. Like all vacuum
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Fig. 1 The Carter–Penrose
diagram for a nonextremal
BTZ black hole
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spacetimes in 2 + 1 dimensions, the BTZ geometry has constant curvature, and can
be in fact expressed as a quotient of anti-de Sitter space by a discrete group of
isometries. Nevertheless, it is a real black hole:

• It has a genuine event horizon at r = r+ and, if the angular momentum is nonzero,
an inner Cauchy horizon at r = r−, where r± are determined by the mass and
angular momentum

• It occurs as the end point of the gravitational collapse of matter
• Its Carter–Penrose diagram, Fig. 1, is essentially the same as that of an ordinary

Kerr-AdS black hole
• It exhibits standard black hole thermodynamics, with a temperature and entropy

given by (1) and (2), where the horizon “area” is the circumference A = 2πr+

The conformal boundary of a (2 + 1)-dimensional asymptotically anti-de Sitter
spacetime is a two-dimensional cylinder, so it is perhaps not surprising that the
algebra of asymptotic symmetries of the BTZ black hole is a Virasoro algebra (3). It
is rather more surprising that this algebra has a central extension, but as Brown and
Henneaux showed in [37], the classical central charge, computed from the standard
ADM constraint algebra, is nonzero:

c =
3�

2G
. (7)

The appearance of this central charge can be traced back to the need for bound-
ary terms in the canonical generators of diffeomorphisms, a phenomenon that we
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understand largely because of the pioneering work of Claudio and his collabora-
tors [38]. Moreover, the classical conformal weights Δ and Δ̄ can be calculated in
ordinary canonical general relativity, employing the same methods that are used to
determine the ADM mass [37]. Indeed, for the BTZ black hole, the zero modes
of the diffeomorphisms are linear combinations of time translations and rotations,
and the corresponding conserved quantities are linear combinations of the ordinary
ADM mass and angular momentum. A straightforward calculation gives

Δ =
1

16G�
(r+ + r−)2, Δ̄ =

1
16G�

(r+ − r−)2, (8)

and the Cardy formula (4) then yields an entropy

S = logρ ∼ 2π
8G

(r+ + r−)+
2π
8G

(r+ − r−) =
2πr+

4G
, (9)

which may be recognized as precisely the Bekenstein–Hawking entropy.
This derivation is one of the first examples of Maldacena’s celebrated AdS/CFT

correspondence [8]: the entropy of an asymptotically anti-de Sitter spacetime is de-
termined by the properties of a boundary conformal field theory. It is also a deeply
mysterious result. Quantum gravity in three spacetime dimensions has no local de-
grees of freedom [39], and it is not at all clear where one can find enough degrees of
freedom to account for the entropy (9). A review of current proposals can be found
in [40]; I will return to this question, in a more general context, in Sect. 6.

The BTZ black hole demonstrates in principle that conformal field theory can
be used to compute black hole entropy. Unfortunately, the generalization to higher
dimensions is difficult. The derivation of [33, 34] depends crucially on the fact that
the conformal boundary of (2 + 1)-dimensional asymptotically AdS space is a two-
dimensional cylinder, which provides a setting for a two-dimensional conformal
field theory. No higher-dimensional analog of the Cardy formula is known,1 so one
cannot, at least for now, use symmetries of a higher-dimensional boundary to con-
strain the density of states.

Moreover, the BTZ computations depend on a symmetry at infinity rather than
at the horizon. In 2 + 1 dimensions this may not matter, since there are no propa-
gating degrees of freedom between the black hole and the conformal boundary, but
in higher dimensions, it is less clear how to isolate black hole degrees of freedom.
One might argue that a single black hole configuration should make the dominant
contribution at infinity, but even this is now known to not always be true [41].

Despite these limitations, the BTZ results have proven surprisingly versatile.
In particular, many near-extremal black holes – including most of the black holes
whose entropy can be computed using weakly coupled string theory – have a near-
horizon geometry of the form BTZ × trivial, allowing the application of the BTZ
method in a more general setting [9]. For generic, nonextremal black holes, though,
a more general extension is needed.

1 Conformal field theory is qualitatively different in two and more than two dimensions: for d > 2,
the symmetry group has a finite set of generators, but for d = 2 it has infinitely many [20].
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4 Horizons and Constraints

While the conformal analysis of the BTZ black hole does not extend directly to
higher dimensions, it does suggest some interesting directions. We should, perhaps,
look for a hidden conformal symmetry, of the type discussed in Sect. 2, with a clas-
sical central charge; but we should look near the horizon.

To do so, we must first confront a fundamental conceptual issue. How, in a quan-
tum theory of gravity, do we specify that a black hole is present? In a semiclassical
approach, this is easy: we fix a background black hole metric and look at quantum
fields and metric fluctuations in that background. In a full quantum theory of gravity,
though, we cannot do that: the metric is a quantum operator whose components do
not commute, and cannot be simultaneously specified. We must therefore look for
a more limited set of constraints that are sufficient to guarantee the presence of the
desired black hole while remaining quantum mechanically consistent. The simplest
way to do this is to add conditions that ensure the presence of a horizon of some
sort – say, an isolated horizon [42] – and study quantum gravity in the presence of
these additional constraints. Physically, this amounts to asking questions about con-
ditional probabilities: for instance, “What is the probability of detecting a Hawking
radiation photon of energy E , given the presence of a horizon of area A?”

There are several ways to add such “horizon constraints,” which are reviewed
in [43]. One approach is to treat the horizon as a sort of boundary. At first sight, this
seems a peculiar thing to do: a black hole horizon is certainly not a physical bound-
ary for a freely falling observer. But a horizon is a hypersurface at which we can
impose “boundary conditions” – namely, the conditions that it is, in fact, a horizon.
As in the BTZ case, such restrictions require boundary terms in the generators of
diffeomorphisms, whose presence affects their algebra. It can then be shown that in
any spacetime of dimension greater than two, the subgroup of diffeomorphisms in
the r–t plane becomes a Virasoro algebra with the right central charges and confor-
mal weights to yield the Bekenstein–Hawking entropy [44–46].

Unfortunately, the diffeomorphisms whose algebra leads to this result are gen-
erated by vector fields that blow up at the horizon [47, 48], and this divergence is
poorly understood. Moreover, this method does not seem to work for the interesting
case of the two-dimensional dilaton black hole. One can therefore look at a slightly
different approach, in which the “horizon constraints” are literally imposed as con-
straints in canonical general relativity [49, 50].

The basic steps of this approach can be summarized as follows:

1. Dimensionally reduce to the “r–t plane,” which, as argued in Sect. 2, is the rele-
vant setting for near-horizon conformal symmetry. Such a reduction is possible
even in the absence of spherical or cylindrical symmetry, although it comes at the
expense of an infinite-dimensional Kaluza–Klein gauge group [51]. The action
then becomes

I =
1
2

∫

d2x
√

g

[

ϕR +V [ϕ ]− 1
2

W [ϕ ]hIJFI
abFJab

]

, (10)
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where the dilaton ϕ is the dimensionally reduced remnant of the transverse area
and FI is the field strength for the usual Kaluza–Klein gauge field AI . The poten-
tials V and W depend on the details of the higher-dimensional theory, and need
not be further specified.

2. Continue to “Euclidean” signature, as Claudio has often advocated [52]. The
metric can then be written in the form

ds2 = N2 f 2dr2 + f 2(dt +αdr)2. (11)

For a black hole spacetime, the horizon shrinks to a point and time becomes an
angular coordinate (see Fig. 2), with a period β determined by the geometry.2

Rather than evolving in t, we borrow a trick from conformal field theory [20] and
evolve radially, starting at a “stretched horizon” just outside r = 0.

3. Find the ordinary ADM-style constraints, which take the form

H‖ = ϕ̇πϕ − f π̇ f = 0

H⊥ = fπ fπϕ + f

(
ϕ̇
f

)·
− 1

2
f 2V̂ = 0 with V̂ = V +

hIJπIπJ

W

HI = π̇I − cJ
IKAKπJ = 0. (12)
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Fig. 2 A “Euclidean” black hole spacetime

2 Claudio and his collaborators were among the first to study such black holes in two-dimensional
dilaton gravity [53].
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These can be combined to form Virasoro generators

L[ξ ] =
1
2

∫
dtξ (H‖ + iH⊥)

L̄[ξ̄ ] =
1
2

∫

dtξ̄ (H‖ − iH⊥) , (13)

which satisfy the algebra (3) with vanishing central charge.
4. Determine the geometrical quantities that characterize the black hole:

the expansion s = ϕϑ = fπ f − iϕ̇ (14)

the surface gravity κ̂ = πϕ − i ḟ/ f + f 2 dω
dϕ

.

The surface gravity is not unique – in standard general relativity, it depends on
the normalization of the Killing vector at the horizon [42], which here appears as
a conformal factor ω that will be determined later.

5. Impose horizon constraints to ensure that our initial surface is a stretched horizon.
As Claudio noted in [52], the actual horizon is determined by the conditions
s = s̄ = 0. A stretched horizon with surface gravity κ̂H is naturally specified by
the slightly loosened conditions

K = s−a(κ̂− κ̂H) = 0

K̄ = s̄−a( ¯̂κ− ¯̂κH) = 0, (15)

where the constant a will be determined below.
6. Note that the horizon constraints K and K̄ do not commute with the Virasoro

generators (13), which are therefore not symmetries of the constrained system.
Cure this problem by using the Bergmann–Komar formulation of Dirac brackets
[54]. Let {Ki} be a set of constraints for which the inverse Δi j of {Ki,Kj} exists
(in Dirac’s language, a set of second class constraints). Then for any observable
O , the new observable

O∗ = O −∑
i, j

∫

dudv{O,Ki(u)}Δi j(u,v)Kj(v) (16)

will have vanishing Poisson brackets with the Ki. Since O∗ differs from O only
by a multiple of the constraints Ki, the two are physically equivalent. The Poisson
bracket {O∗

1 ,O∗
2} can be shown to be equal to the Dirac bracket of O1 and O2.

7. Work out the Poisson algebra of the modified Virasoro generators L∗[ξ ] and
L̄∗[ξ̄ ]. The conformal factor ω in (14) and the constant a in (15) are both fixed by
the requirement that these brackets be “nice,” and in particular that they reduce
to an ordinary Virasoro algebra at the horizon. Choosing modes

ξn =
β
2π

e2π int/β (17)
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for the vector fields used to smear the Virasoro generators, we obtain central
charges and conformal weights

c = c̄ =
3ϕH

4G
, Δ = Δ̄ =

ϕH

16G

(
κHβ
2π

)2

. (18)

8. Use the Cardy formula (4) to obtain an entropy

S =
2πϕH

4G

(
κHβ
2π

)

. (19)

This is almost the correct Bekenstein–Hawking entropy; it differs from the cor-
rect expression by a factor of 2π . I believe this factor has a simple physical
explanation: entropy should count the black hole degrees of freedom at a fixed
time, but because of our choice of radial evolution, we have computed the entropy
at the horizon for all times, effectively integrating over a circle of circumfer-
ence 2π .

5 Universality Again

Now, however, let us recall our original motivation, which was to understand the
“universality” of black hole entropy. If the conformal field theory/horizon constraint
picture is to explain this universality, it must be the case that the symmetry of the
preceding section is secretly present in all of the other derivations of black hole
entropy. This is certainly not obvious, but there are a few hopeful signs.

Let us first compare the horizon constraint method to the conformal approach
to the BTZ black hole described in Sect. 3. We can start by comparing the central
charges and conformal weights:

BTZ Horizon CFT

modes ξn ∼ ein(t±�φ)/� ξn ∼ einκHt

c
3�

2G
2π · 3ϕH

4πG
(20)

Δ , Δ̄
(r+ ± r−)2

16G�
2π · ϕH

32πG

(
κHβ
2π

)2

While the entropies agree, it appears that the central charges and conformal weights
do not. In fact, though, these disagreements can be traced to two simple sources [50]:
the periodicities of the modes do not match, and the BTZ results are based on a
coordinate system that is not corotating at the horizon, as one would desire for di-
mensional reduction. Once these differences are accounted for, the central charges
and conformal weights agree precisely. As noted in Sect. 3, the BTZ approach
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applies also to most of the black holes that can be exactly analyzed with weakly
coupled string theory, so this agreement is a significant step.

For loop quantum gravity, the connection is less clear. There is, however, an in-
teresting coincidence that may point toward something deeper. The horizon states
of a spin network described in [10] are characterized by a constrained SL(2,R)
Chern–Simons theory with coupling constant k = iA/8πγG, where γ is the Im-
mirzi parameter. Any three-dimensional Chern–Simons theory has an associated
two-dimensional conformal field theories, a Wess–Zumino–Witten model that ap-
pears, for example, in the description of boundary states [55]. In the present case,
this conformal field theory is Liouville theory, and its central charge is approxi-
mately 6k. If we choose Ashtekar’s original self-dual formulation of loop quantum
gravity [56], for which γ = i, this central charge agrees precisely with the value
obtained by the horizon constraint approach.

The central charge (18) also matches that of the “horizon as boundary” approach
of [45], and the conformal weights can be obtained as a Komar integral, as suggested
in a slightly different context by Emparan and Mateos [57]. I believe it should also
be possible to relate this method to the Euclidean path integral approach to black
hole entropy; work on this question is in progress.

6 What are the States?

If near-horizon conformal symmetry really provides a universal explanation for
black hole statistical mechanics, it had better not give us a unique description of
the relevant microstates. The problem, after all, is that many different microscopic
descriptions seem to yield the same macroscopic thermal properties; picking out one
“right” description would miss the point. Nevertheless, it is possible that the deriva-
tion of Sect. 4 might give a useful effective description of the microscopic degrees
of freedom.

Consider the standard Dirac treatment of constraints in quantum mechanics. A set
of classical (first class) constraints L[ξ ] = L̄[ξ̄ ] = 0 translates to a quantum restric-
tion on the space of states:

L[ξ ]|phys〉 = L̄[ξ̄ ]|phys〉 = 0. (21)

But in the presence of a central charge, such a restriction is inconsistent with the
Virasoro algebra (3). This is not new, of course, and it is well known how to fix the
problem [20]; for example, one can require that only the positive frequency pieces of
L[ξ ] and L̄[ξ̄ ] annihilate physical states. The net result, though, is that some states
that would have been unphysical in the absence of a central charge must now be
considered physical. Equivalently [58], the presence of boundaries or constraints can
remove gauge degeneracies among otherwise physically equivalent states, turning
“would-be gauge transformations” into new dynamical degrees of freedom.

This phenomenon may have first been observed by Claudio. In an underappreci-
ated passage in [32], he points out that the presence of a central charge in dilaton
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gravity is quantum mechanically consistent, but results in the appearance of a new
degree of freedom. In the present context, we are imposing the constraints (15) only
at the horizon, so it is only there that a central charge appears, but the new horizon
degree of freedom is essentially the same as Claudio’s.

As Kaloper and Terning have observed [59], this process is also somewhat rem-
iniscent of the Goldstone mechanism, in which a spontaneously broken symmetry
gives rise to massless excitations in the direction of the “broken” generators. Here,
of course, the broken symmetry is a gauge symmetry, and the corresponding de-
grees of freedom are therefore new. But as in the Goldstone mechanism, the pattern
of symmetry breaking may give us a universal effective description of the degrees
of freedom, while not touching on their “real” structure in terms of the fundamental
underlying quantum gravitational states.

For asymptotically anti-de Sitter spacetimes in three dimensions, an explicit de-
scription of the symmetry breaking and the corresponding degrees of freedom at
infinity is possible [60]. The resulting effective field theory is a Liouville theory.
This two-dimensional conformal field theory has the correct central charge and con-
formal weights to yield the Bekenstein–Hawking entropy via the Cardy formula,
but there is still a debate as to whether it really contains enough degrees of free-
dom [36]. A similar induced action can be found in five-dimensional asymptotically
anti-de Sitter gravity [61], although the problem of counting states has not been
solved. One might hope for a more general result in arbitrary dimension, perhaps
focusing on the horizon rather than infinity; Claudio is responsible for an interest-
ing effort in this direction [52].

One avenue for further research may be to look more carefully at the path integral
measure, which is in some sense a count of the number of states, in the presence of
a Virasoro algebra with a nonzero central charge. It is known that when second
class constraints {Ci} are present, the path integral acquires a Fadeev–Popov-like
determinant det |{Ci,Cj}|1/2 [62]. For a Virasoro algebra, this is

D = det |{Lm,Ln}|1/2 . (22)

A naive evaluation of this expression, using the algebra (3), almost gives the Cardy
formula: one finds D∼ exp{2π

√
6Δ/c}, which differs from (4) by a flip from c/6 to

6/c. This is a bit too simple, though, since the Virasoro algebra contains an SL(2,R)
subgroup, generated by {L0,L±1}, whose algebra remains first class. This adds a
large degeneracy, increasing the density of states; we really need to evaluate a de-
terminant of the form

D = det

∣
∣
∣
∣−

c
12

d3

dx3 +
d
dx

L+ L
d
dx

∣
∣
∣
∣

1/2

with L = L0 + L1e2ix + L−1e−2ix (23)

and trace over appropriate SL(2,R) states. It is not yet clear whether this approach is
still too naive; it may be that we need more detailed information about the SL(2,R)
representations than can be obtained from a constraint analysis alone.
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7 What Next?

While I have given some evidence for the proposal that black hole thermodynam-
ics is effectively determined by near-horizon conformal symmetry, the hypothesis
remains very far from being proven. I can think of two main directions to proceed.

First, we should try to connect the near-horizon symmetry more closely to other
derivations of black hole entropy. In loop quantum gravity, does the numerical co-
incidence discussed in Sect. 5 have any deeper significance? Is there a way of using
the associated Liouville theory to count states? In the “fuzzball” approach to black
holes in string theory [7], no single configuration is expected to have a near-horizon
conformal symmetry (or, indeed, a horizon); can a sum over configurations recover
such a symmetry? In induced gravity [13], a connection to conformal field theory
is already known [63]; can it be tied to the near-horizon symmetry discussed here?
Can the determinant (23) be evaluated, and will it give the correct density of states?
Does the spin foam method of [12], which relies on a treatment of the horizon as an
effective boundary, contain a hidden conformal symmetry?

Second, we should keep in mind that there is more to black hole thermodynam-
ics than the Bekenstein–Hawking entropy. As I noted in Sect. 2, the intensity and
spectrum of Hawking radiation can be obtained from an effective two-dimensional
theory near the horizon, using conformal field theory methods applied to matter
rather than gravity [29–31]. It is natural to hope that these matter degrees of free-
dom can be coupled to the near-horizon gravitational degrees of freedom to obtain
a dynamical description of Hawking radiation. In 2 + 1 dimensions, Emparan and
Sachs have shown that something of this sort may be possible [64]: a classical scalar
field can be coupled to the conformal boundary degrees of freedom of the BTZ black
hole, and conformal methods then yield the correct description of Hawking radia-
tion. If this result could be generalized to arbitrary dimensions, with a coupling at
the horizon, it would provide very strong evidence for the conformal description of
black hole thermodynamics.
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20. P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory (Springer, Berlin, 1997).
21. J. A. Cardy, Nucl. Phys. B 270 (1986) 186.
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Sources for Chern–Simons Theories

José D. Edelstein and Jorge Zanelli

Abstract The coupling between Chern–Simons Theories and matter sources de-
fined by branes of different dimensionalities is examined. It is shown that the
standard coupling to membranes, such as the one found in supergravity or in string
theory, does not operate in the same way for CS theories; the only p-branes that
naturally couple seem to be those with p = 2n; these p-branes break the gauge sym-
metry (and supersymmetry) in a controlled and sensible manner.

1 Introduction

Chern–Simons (CS) theories have a number of appealing attributes that make them
interesting candidates for the description of natural phenomena. In spite of their
promise, they also present a number of puzzling features that set them in a different
class from other gauge theories, such as those that have been successfully used for
the description of the Standard Model. In the case of higher (than three) dimensional
CS theories, aiming at describing gravitational physics, several important difficul-
ties emerge. Prominent among these, stands the problem of how to couple them to
different forms of matter such as, for instance, branes of different dimensionalities.

These extended objects, whose existence is familiar in the context of string
theory, play a natural role in CS gravitational theories based on supersymmetric
extensions of both the Poincaré and the anti de Sitter (AdS) groups. In the particu-
lar case of 11D, while M-theory is well-known to possess two kinds of branes – the
electric M2- and the magnetic M5-branes – the very same objects naively appear in a
CS theory based on the M-algebra [1]. It is not clear, however, whether these objects
actually belong to the spectrum of CS theory, and how they couple to the remaining
fields. We shall address both problems, on general grounds, in the present article.
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Interactions with sources provide a handle to probe the perturbative structure of
quantum theories, but that requires a well defined expansion of the interacting theory
as a power series in a weak coupling parameter. In this manner, currents generated
by point charges – and more generally, by charged extended objects such as strings
or higher dimensional branes – are standard mechanisms that allow extracting pre-
dictions from the effective low energy limit in string/supergravity theories, which
are in principle experimentally testable.

On the other hand, the perturbative expansion as a power series in the coupling
constant seems to be of little use in a CS system: CS theories are highly nonlinear
and self-interacting in a way that it is not possible to distinguish between the “free”
and the “interacting” parts of the action without making a severe mutilation of the
system. CS Lagrangians have no adjustable coupling constants (dimensionful or
otherwise). This a priori appealing feature has a downside: the separation between
background and perturbations is not clear-cut either.

A further complication is that since CS actions do not involve a metric, there
is no notion of energy, and hence no energy scale is naturally defined in them. An
energy scale can be introduced only at the cost of breaking gauge symmetry. In this
sense, CS systems can be viewed as the analog of noble gases in chemistry, because
they would not interact or bind to any other form of matter. It may seem as if they
are inert, subtle beautiful structures to be admired, unrelated to the physical reality
of the world. Here we will argue that this is not quite true: there is no obstruction
to the coupling between membranes whose worldvolumes are odd-dimensional and
non-Abelian CS systems.

On the road to understand such couplings, one faces the issue of uncovering
the BPS spectrum of supersymmetric higher dimensional CS theories. Besides the
expected presence of BPS branes preserving one half or one quarter of the original
supersymmetries, it is interesting to seek for possible states preserving all but one
supercharges that may be understood as constituents of the former. These so-called
BPS preon states were proposed in [2], and they were recently alleged to exist in the
osp(32|1) CS theory (and presumably in other related theories) [3]. The existence
of preons has also been recently ruled out as solutions of the presumed low-energy
limit of M-theory, the Cremmer–Julia–Scherk (CJS) supergravity [4]. Here we show
that the arguments presented in [2] are appropriate as well for CS theories based on
extensions of the AdS algebra, but they need a subtle improvement for the case of
Poincaré based theories such as the CS supergravity for the M-algebra.

Claudio Bunster was a promoter of the idea that the world history of a point
particle, as well as that of the entire Universe, can be viewed as similar objects, to
be treated quantum mechanically in a similar way [5]. Bunster was also a pioneer
in considering currents with support on branes as sources coupled to p-form gauge
potentials. In [6, 7], he showed that it is impossible to minimally couple a non-
Abelian connection to a p-brane for p > 0. It is therefore a suitable form of tribute
to celebrate his 60th birthday, to discuss a context in which this obstruction can be
circumvented.
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2 Remarks on the BPS Spectrum of CS Supergravity

A key feature of higher dimensional supergravity theories (and, more generally,
of string/M-theory) is their natural coupling to certain branes. The dimensionality
of these objects is strongly restricted by the tensorial properties of the field con-
tent of the theory. In 11D supergravity, for instance, the three-form field couples
naturally to an electric 2-brane (M2) or to a magnetic 5-brane (M5). Moreover,
these branes are BPS states, their mass being quantum mechanically equal to their
charges.

The BPS spectrum of higher dimensional CS theories is not yet well understood.
There are some scattered examples in the literature but no general results or exhaus-
tive studies have been undertaken so far. In the present section we will illustrate
some of the difficulties that this problem embodies. We will focus on the case of
the CS supergravity for the M-algebra, though our results are quite general. We
will argue that it may be necessary to reconsider the way sources and couplings
come into place in these theories. A concrete proposal is then presented in the
forthcoming section.

2.1 CS Supergravity for the M-Algebra

One of the nicest features of CS supergravities is that, being gauge theories, their
dynamical variables are connections living in a given Lie algebra. Their fiber bundle
structure seems an auspicious starting point towards a quantization program. How-
ever, this is an intricate problem, mostly due to the existence of highly nontrivial
vacua with radically different dynamical content and the lack of a perturbative
expansion around many of them [8, 9].

It is possible to write down a CS supergravity theory with the symmetry dic-
tated by the so-called M-algebra explicitly realized off-shell [1]. Soon after the
discovery of M-theory [10, 11], it was suggested that CS supergravity might pro-
vide a covariant non-perturbative formulation of quantum M-theory [12] based upon
osp(32|1), the minimal supersymmetric extension of the AdS group in 11D. The
observation that this theory violates parity conservation (a symmetry that, for con-
sistency, should be present in M-theory [13, 14]), prompted the suggestion of a CS
theory based on osp(32|1)× osp(32|1) [15]. These CS theories have a number of
nice features that include the presence of a central extension whose tensorial char-
acter matches that of an extended object like the M5-brane. The M2-brane, instead,
enters the game in a less natural way. A CS theory based on the M-algebra puts both
basic constituents of M-theory in a more democratic ground.

The M-algebra includes, apart from the Poincaré generators Jab and Pa, a
Majorana supercharge Qα and two additional bosonic generators, Zab and Zabcde

that close the supersymmetry algebra [16],

{Qα ,Qβ} = (CΓ a)αβ Pa +(CΓ ab)αβ Zab +(CΓ abcde)αβZabcde

≡ Pαβ ,
(1)
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where the charge conjugation matrix C is antisymmetric. The “central charges” Zab

and Zabcde are tensors under Lorentz rotations but are otherwise Abelian generators.
It must be stressed that the M-algebra is not the same as osp(32|1), nor a subalgebra
of the latter, and not even a contraction of it. The M-algebra can be obtained through
an expansion of osp(32|1), which corresponds to an analytic continuation of the
Maurer–Cartan form [17–19]. This mechanism was used to obtain the actions for
the corresponding algebras in [20].

The field content of the theory is thus given by a connection in the M-algebra,

A =
1
2
ωab Jab + ea Pa +

1√
2
ψα Qα + bab

[2] Zab + babcde
[5] Zabcde , (2)

where e and ω describe the metric and affine features of the spacetime geometry
(including torsion); ψ is the gravitino, and b[2] and b[5] are Abelian gauge fields
in antisymmetric tensor representations of the Lorentz group. The field strength
F = dA +A ∧A reads

F =
1
2

Rab Jab + T̃ a Pa +
1√
2
Dψα Qα + F̃ab

[2] Zab + F̃abcde
[5] Zabcde , (3)

where Rab = dωab +ωa
c ∧ωcb is the curvature 2-form, and

T̃ a = Dea − 1
4
ψ̄Γ aψ ,

F̃a1···ak
[k] = Dba1···ak

[k] − 1
4
ψ̄Γ a1···akψ .

(4)

It is important to specify at this point the expression for the covariant derivative
acting on the gravitino, Dψα = dψα + 1

4ω
α
βψβ .

The CS form1 is the Lagrangian of the theory, constructed through the standard
requirement that dC11 = 〈F ∧ ·· · ∧F 〉, where the bracket 〈· · · 〉 stands for a mul-
tilinear form of the M-algebra generators GA whose only non-vanishing bosonic
components are

〈Ja1a2 Ja3a4 Ja5a6 Ja7a8 Ja9a10 Pa11〉 =
16
3
εa1a2a3a4a5a6a7a8a9a10a11 ,

〈Ja1a2 Ja3a4 Ja5a6 Ja7a8 Ja9a10 Zabcde〉 = −4α
9
εa1a2a3a4a5a6a7a8abc δ

a9a10
de ,

〈Ja1a2 Ja3a4 Ja5a6 Ja7a8 Ja9a10 Zab〉 =
16(1−α)

3

[
δ a7...a10ab

a1...a6
− δ a9a10ab

a1...a4
δ a7a8

a5a6

]
.

(5)

1 In general, for a 2n− 1 theory, the Chern–Simons form is given as dC2n−1 = 〈F ∧ · · · ∧F 〉
(n times), 〈· · · 〉 being an invariant tensor for the corresponding Lie algebra.
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As a consequence of this, the equations of motion are quintic polynomials in the
curvature,

〈F ∧·· ·∧F GA〉 = 0 . (6)

2.2 Preons in the CS M-Theory

The spectrum of BPS states in M-theory goes beyond the M2- and M5-brane. By
algebraic reasoning, one would expect to have so-called preons. These are states that
preserve the supersymmetric invariance due to all but one real supercharge compo-
nent. For instance, in 11D, this amounts to 31 real supercharges. It has been argued
that CS supergravity possesses BPS preons in its spectrum [3]. That proof, however,
is somewhat biased by the assumption that the relevant Lie algebra is osp(32|1).
In this section we will closely follow the compelling algebraic reasoning presented
in [3] in support of a proof of existence of BPS states in CS M-theory.

Assume that we are interested in a BPS preon solution preserving 31 real su-
percharges. This means that there are 31 (real components of the generalized)
Killing spinors, εJ

α , J = 1, . . . 31. They are defined in terms of the differential op-
erator that generates the supersymmetry transformation of the gravitino, δψα =
DεJ

α = dεJ
α +Ωα

βεJ
β . There is a single bosonic spinor λα , orthogonal to εJ

α ,
εJ
α λα = 0, that characterizes the expected preonic state. It is natural, then, to call it

|λ 〉, which schematically satisfies εJ
α Qα |λ 〉 = 0, for all J. Thus, Qα |λ 〉 = λα |λ 〉,

and therefore, Pαβ |λ 〉 = λα λβ |λ 〉. It is useful to complete the basis of spinors
both with indices up, {εJ

α ,wα}, and down, {uJ
α ,λα}. It is always possible to

choose both bases in such a way that they are orthogonal wαλα = 1, εJ
αuI

α = δ I
J ,

wαuJ
α = εJ

αλα = 0.
The εJ

α are Killing spinors, D εJ
α = 0, and since d(εJ

α λα) = 0, it turns out
that D λα is proportional to λα . Let us thus define the one-form A as D λα = Aλα .
The application of two consecutive covariant derivatives yields DD λα = Rα

β λβ ,

where Rα
β is the generalized curvature two-form

Rα
β = dΩα

β −Ωα
γ ∧Ωγ

β . (7)

On the other hand, by applying the exterior derivative to the remaining orthogonal-
ity relations, the expression for the covariant derivatives of the remaining spinors
DuI

α = BI λα , where BI is a collection of 31 1-forms, and Dwα = −Awα −BI εI
α ,

are easily obtained. Performing now the same trick on wαDλα and εJ
αDλα , one

gets DDλα = dA λα . It is easy to play the same trick with uI
α , with the result

DDuI
α = Rα

β uI
β =∇BIλα , where ∇BI = dBI +A∧BI . All in all, we can decom-

pose both Ω and R in the spinorial basis as [3]

Ωα
β = Aλα wβ + BI λα εI

β −dλα wβ −duI
α εI

β ,

Rα
β = dAλα wβ +∇BI λα εI

β .

(8)
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Now, let us complete the argument used in [3] for the case of the smallest AdS
superalgebra osp(32|1). The bosonic part of the connection is a one-form in the
subalgebra sp(32)

Ω osp(32|1) =
1
2

eaΓ a +
1
4
ωabΓ ab +

1
240

babcdeΓ abcde . (9)

Thus, Ωαβ =Ωβα , that is, Ω [αβ ] = 0. Both Ω and R belong to sp(32). Thus, they
are traceless Ωα

α = Rα
α = 0. This means A = 0, then Rα

β = dBIλαεI
β . This

implies that the generalized supercovariant curvature is nilpotent [3]

Rα
γ ∧Rγ

β = 0 , (10)

due to the orthogonality εI
αλα = 0. Now, since the gauge connection in the

osp(32|1) CS supergravity, A precisely matches Ω , then F = R. The equation
of motion (that formally looks like (6)) is, then, always satisfied for a BPS preonic
configuration. Still, it is necessary to check the actual integrability of (10), as there
might be, for instance, topological obstructions.

Now, coming back to the case of the M-algebra, it is important to stress that
ΩM−algebra = 1

4 ωabΓ ab, which is not A . Then, R = 1
2 Rab Jab 
= F . The nilpo-

tency of R, thus, does not guarantee a priori the solution of the CS equations of
motion. This is a generic feature of all theories built as extensions of Poincaré CS
supergravity (see, for example, [21]). Notice that this is qualitatively different to
the behavior of AdS-based Lie algebras. The connection between both kinds of the-
ories, though, is well understood [20]. However, recalling that the nonvanishing
components of the invariant tensor for all these theories look like those displayed
earlier in (5), we can conclude that at least four factors in (6) admit the replace-
ment F →R, and this guarantees that the preonic configuration – if no topological
obstruction arises and it actually solves (10) – always satisfies the CS supergravity
equations.

2.3 Difficulties with the Standard M-Brane Construction
in CS Theory

In standard supergravity one typically “deduces” from a given SUSY algebra that
there are BPS states. Applying the same analysis to a CS theory in a straightforward
manner meets with severe difficulties that cast doubt on the viability of the strategy.
In order to fix ideas, let us begin by recalling how it is that standard supergravity
couples to a membrane. The exercise will suggest why a similar strategy would not
work for a CS supergravity. Let us present the argument through an example.

Consider a flat M2-brane extended in the x1–x2 plane. It should be associated
with a non-zero value of Z12 (the very presence of the M2-brane breaks the Lorentz
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group from SO(1,10) to SO(1,2)×SO(8)). Let us choose the Majorana representa-
tion in which C = Γ 0 [(Γ 0)2 = 1]. In that case, for a static membrane,

{Qα ,Qβ} = δαβ P0 +(Γ 012)αβZ12 . (11)

In 11D, the Majorana spinors Qα are real. So, the left hand side is manifestly
positive definite. The sign of Z12 can be flipped by replacing a membrane by an anti-
membrane. Instead, P0 ≥ 0. Thus, as a consequence of the positive definite bracket,
using Witten–Olive’s construction [22], it turns out that

P0 ≥ |Z12| . (12)

A BPS M2-brane is expected to saturate the bound, P0 = Z12,

{Qα ,Qβ} = P0
[
1∓Γ 012]

αβ . (13)

Spinors ε satisfying Γ 012 ε = ±ε are eigenspinors of {Qα ,Qβ} with zero eigen-
value. These are the spinors corresponding to the 1/2 unbroken supersymmetries.
A similar argument holds for the M5-brane. This argument is naively independent
of the dynamics, i.e., whether it is given by a CS Lagrangian or that of Cremmer–
Julia–Scherk. We will come back to this point shortly.

In standard CJS supergravity, δψ = (d +ΩCJS)ε , with the connection given by
the 32×32 matrix valued 1-form

ΩCJS =
1
4
ωabΓ ab +

i
18

ea Fab1b2b3 Γ
b1b2b3 +

i
144

ea Fb1b2b3b4 Γ
ab1b2b3b4 . (14)

An M2-brane has non-vanishing F012r, r being the transverse radial direction.
Imposing δψ = 0 leads to three different equations, δψm = δψr = δψs = 0, where
m = 0,1,2, r amounts for the radial direction and s runs over transverse indices. The
second equation just provides a differential equation that dictates the radial depen-
dence ε(r). Now, since the spinor ε obeys a chirality prescription, we see that,

δψm =
1
4
ωm abΓ abε− 1

12
εmnpΓ npr F012r ε = 0 ,

δψs =
1
4
ωs abΓ abε+

1
12
Γ 012r

s F012r ε = 0 ,

(15)

and we see that, provided the only non-vanishing components of the spin con-
nection are ωmr

m and ωsr
s , which is the case in standard supergravity for a natural

D-brane ansatz, previous equations would only lead to non-trivial solutions pro-
vided, precisely, the chirality condition Γ 012 ε = ±ε is imposed on the spinor. The
whole picture is self-consistent.

Instead, in CS M-theory supergravity, the supersymmetry transformation of the
gravitino is dramatically simpler, δψμ = Dμε = 0, the only difference having to
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do with the fact that now ω can have a contorsion contribution, ω = ω(0) + κ .
The naive expectation is that κ should play the role of the A[3] form. For example,
A[3] = ea ∧ eb ∧κab [23]. However, whatever is the case, the above equation would
lead schematically to (

a1Γ ab + a2Γ cd
)
ε = 0 , (16)

and this could never reduce to Γ 012 ε = ±ε , the projection that, according to our
simple algebraic argument, is necessary for the M2-brane. At best, the resulting
condition, if consistent with the M2-brane projection, would lead to a 1/4 super-
symmetric configuration that does not correspond to the M2-brane.

This is not the end of the story. For Chern–Simons theories one cannot rely on
the naive analysis performed using the M-algebra. We know that the canonical struc-
ture of these theories is intricate. We should first check whether we are working in
a degenerate sector or in a generic one, and use Dirac’s formalism thoroughly to
determine the exact form of the supersymmetry algebra on the constraint surface.
This was partially done for 5D CS supergravity in [24]. A necessary step to put our
conclusions on a firm ground involves a generalization of this analysis to the 11D
case, which is not an easy job. It is still intriguing to figure out how the inconsistency
between the Γ matrix structure of the algebra and the supersymmetry transforma-
tion laws shall be solved. For this to happen, the actual Γ matrix structure should
change after the Dirac analysis. This would lead to the very interesting scenario in
which the starting point might be quite a rather strange looking CS theory whose
constrained algebra looks like the M-algebra. This seems very hard to implement.

In what follows, we present an alternative route to couple a CS theory to a brane,
taking as a model the electromagnetic coupling to a the worldline of a point-charge
(0-brane). Starting from the observation that the electromagnetic coupling is also
the integral of a CS form, the coupling is generalized to higher-dimensional branes
and to non-Abelian connections. The resulting structure may not be the most general
form, but it has the advantage that it exploits the geometric features of the CS forms
to bring about the interactions (no metric required, topological origin, quantized
charges, etc.).

3 CS Actions as Brane Couplings

A Chern–Simons action is a functional for a Lie-algebra valued one-form A ,
defined in a topological space of dimension D = 2n + 1,

I2n+1[A ] =
κ

n + 1

∫

Γ 2n+1

n

∑
k=0

ck 〈A 2k+1 ∧ (dA )n−k〉 , (17)

where 〈· · · 〉 denotes the symmetrized trace in some representation of the Lie algebra,
A p means A ∧ ·· · ∧A (p times), (dA )q should be analogously understood as
dA ∧ ·· · ∧ dA (q times), ck are specific coefficients (c0 = 1), and κ is a constant,
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known as the level of the theory. The fundamental difference between CS theories
and the vast majority of physical actions is the absence of a metric structure and
of dimensionful parameters in the former. This makes the theory simultaneously
scale invariant, covariant under general coordinate transformations, and background
independent.

The simplest example of a CS action is the familiar minimal coupling between
an electric point charge and the electromagnetic potential,

IInt =
∫

MD
jμAμdDx . (18)

Since the current density jμ has support on the worldline of the charge, (18) can also
be written as an integral over a (0+1)-dimensional manifold, which corresponds to
the case n = 0 in (17),

I0+1[A ] = κ
∫

Γ 1
〈A 〉 . (19)

Here the manifoldΓ 1 is the worldline of the charge, a one-dimensional submanifold
embedded in the higher-dimensional space MD, which is identified as the spacetime.
The D-dimensional embedding spacetime may have a metric which induces a natu-
ral metric on the worldline, but this metric is not necessary to construct the action.

In [6, 7], Bunster analyzed the generalization of (18) to describe the coupling
between a (p−1)-brane to a gauge potential, with an interacion of the form

IInt =
∫

MD
jμ1μ2···μp Aμ1μ2···μpdDx . (20)

He showed that this form of minimal coupling can only be defined (for any p > 1)
if the connection is Abelian, i.e., it transforms as A → A + dΛ , where Λ is a (real
valued) (p− 1)-form. The extension to non-Abelian connections was shown to be
inconsistent due to the noncommutativity of the Hamiltonian at different times. As
we show below, this obstruction does not arise if the branes couple to CS forms,
Abelian or otherwise.

3.1 0+1 CS Theories

As emphasized in [25], the same expression (18) can also be interpreted as the
action, in Hamiltonian form, for an arbitrary mechanical system of finitely many
degrees of freedom [26]. Therefore all mechanical systems are also examples of
CS theories. Moreover, the Bohr–Sommerfeld rules of quantum mechanics, as well
as Dirac’s quantization rule for electric–magnetic charges, can be seen as conse-
quences of the topological origin of CS theories, the Chern classes. So, CS theories
are far from exceptional, they seem to be rather commonplace in physics.
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For most Lie groups of physical interest (unitary, orthonormal), the generators are
traceless and therefore 〈A 〉 = 0. The only important exception is the U(1) group,
and therefore one should look at the coupling between an electric charge e = κ and
the electromagnetic field,

I = e
∫

Γ 1
Aμ(z)dzμ , (21)

where zμ are the embedding coordinates of the worldline Γ 1, giving the position
of the charge in MD. The interesting point is that the electromagnetic interaction
is a model that captures the essential features of the coupling between higher-
dimensional CS theories and branes.

The point charge is described by a delta function with support at the position of
the charge on the spatial section x0 = constant. The interaction term is

I =
∫

MD
j(D−1)
0 ∧A , (22)

where

j(D−1)
0 = κδ (D−1)(x− z)dΩD−1 . (23)

Here dΩD−1 is the volume form of the spatial section in the rest frame of the charge.
The action (21) by itself can be varied with respect to the embedding coordinates
zμ which, in the mechanical interpretation, are the enlarged phase space coordi-
nates, zμ ↔ (pi,qi,t) [25]. This means, in particular, that the embedding space must
be odd-dimensional. This underscores the fact that a CS theory in a spacetime of
dimension D = (2n + 1) can be naturally coupled to a 0 + 1 Chern–Simons ac-
tion defined on a one-dimensional worldline. This idea may be easily generalized
to include CS actions for all lower (odd-) dimensional worldvolumes generated by
2p-branes, with p < n, as we show next.

3.2 (2n+1)-Dimensional Abelian CS Theories and 2p Branes

Comparing (17) with the expression for the coupling between a point charge and the
electromagnetic potential (19), it is clear that a (2p + 1) CS action, can be viewed
as the coupling between the connection and a 2p-brane [25, 27, 28]. One is then led
to consider the general coupling between an Abelian connection A and external
sources with support on the (2p + 1)-worldvolumes of all possible 2p-branes that
can be embedded in M2n+1,

I2n+1[A ] =
∫

Γ 2n+1

n

∑
p=0

j(2n−2p)
2p ∧C2p+1 =

n

∑
p=0

κp

∫

Γ 2p+1
C2p+1 . (24)
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Here the levels κp are independent dimensionless coupling constants that can be
identified with the “electromagnetic” charges.2 For simplicity we set κn = 1 here.
The simplest rendering of this form is p = 0, n = 1: a point charge acting as the
source of a 2 + 1 Abelian CS connection. The action reads

I[A ] =
∫

Γ 2+1

[
1
2
A ∧dA + j(2)

0 ∧A

]

. (25)

Assuming Γ 2+1 to be compact and without boundary, the action can be varied with
respect to A . The field equation reads, not surprisingly,

F = j(2)
0 , (26)

where j(2)
0 is the 2-form charge density describing a point charge at rest,

j(2)
0 = κ0δ (2)(z)dx∧dy . (27)

The field A is given by

A =
κ0

2π
dφ , (28)

as shown by direct integration of the field equation dA = κ0δ (x,y)dx∧dy on a disc,
and using Stokes’ theorem on a manifold that is topologically R

2−{0}. This source
produces a magnetic field (F0i = 0) concentrated along the worldline of the charge,
like an infinitely thin solenoid (with the only peculiarity that the solenoid is infinitely
long in the time direction) [29,30]. So, this configuration is the electromagnetic field
produced by a magnetic point source (monopole).

Similarly, a (2n+1)-CS form couples to the worldvolume of a charged 2p-brane
through the interaction

I[A ] =
∫

Γ 2n+1
j(2n−2p)
2p ∧C2p+1 , (29)

where j(2n−2p)
2p stands for a (2n−2p) form with support on the worldvolume of the

2p brane embedded in the (2n + 1)-dimensional spacetime, and the field equations
read

F n =∑
p

j(2n−2p)
2p ∧F p . (30)

where F k = F ∧·· ·∧F (k times).

2 Local gauge invariance of the Chern–Simons form guarantees that I2n+1[A ] is gauge invariant

provided the currents j(2n−2p)
2p are closed (conserved), d j(2n−2p)

2p = 0. Under quite general argu-
ments, analogous to Dirac’s for the quantization of the electric/magnetic charges, it can be shown
that these charges must also be quantized.
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3.3 Coupling of Non-Abelian CS Actions to 2p-Branes

The above construction can be extended to non-Abelian connections simply allow-
ing C2p+1 to be a (2p + 1) CS form for the same non-Abelian connection3 A .
However, the generalization meets an important new constraint: the invariant tensor
τa1a2···an+1 of a given Lie algebra, with generators Ga, a = 1,2, . . . r,

τa1a2···an+1 := 〈Ga1Ga2 · · ·Gan+1〉 , (31)

required for the CS action in 2n + 1 dimensions (see, for example, (5)), may not be
defined for all values of n. It is an open problem how many invariant tensors of a
given rank there exist for a given Lie algebra. This puts a severe restriction on the
kinds of allowed couplings between a non-Abelian connection A and a 2p-brane.
Generically, one could write (29) as in the previous case, but since there is no guar-
antee that a given Lie algebra admits an invariant tensor of a certain rank, many CS
forms C2p+1 may vanish identically.

An alternative possibility is that the 2p-brane couples to a (2p+1)-CS form con-
structed with the invariant tensor for a subalgebra of the Lie algebra defining the
local symmetries of the theory in the embedding space M2n+1. In fact, the presence
of the brane generically produces a topological defect that partially breaks the orig-
inal gauge symmetry. The surviving symmetry forms a subalgebra that admits an
invariant tensor that can be used to construct a CS form on the worldvolume of the
brane/defect. This was observed to occur in the presence of a codimension 2 topo-
logical defect [31, 32]. There, the defect breaks the gauge symmetry SO(D− 1,2)
down to SO(D−2,1), giving rise to a gravitational action in D−1 dimensions out
of a topological invariant in D+ 1 dimensions.

Another interesting feature of this mechanism of symmetry breaking by a 2p-
brane is this: suppose one couples a connection for the AdS algebra in 2n + 1
dimensions; the worldvolume of the brane,4 is a manifold of dimension 2p + 1,
and the maximal symmetry of the tangent space is SO(2p,2). Since the number of
components of a spinor representation goes as 2[D/2], for every reduction by two in
the dimension of the brane, there is a reduction by half in the number of components
of the possible Killing spinors admitted by the configuration. This means that one
can expect to generate 1/2, 1/4 (in general 1/2k) BPS states in this manner.

One alternative to the breaking would occur if the fermions in the space with
a defect are combined in complex representations. For instance, starting from 11D
and an osp(32|1) real spinor with 32 components, the presence of a codimension
two defect would break the spacetime symmetry down to so(8,2)× so(2) admitting
a complex spinor with 16 components. The supersymmetric extension of the AdS

3 Note that although A may be a non-Abelian connection, C2p+1 is in the center of the algebra and
hence commuting. In this way, the obstruction presented in [6, 7] can be circumvented.
4 These arguments may be extended to the case of spacelike worldvolumes. The fate of supersym-
metry is unclear in this case, though.
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group in 9D is SU(8,8|1). Topological defects will host Killing spinors living in
representations of the latter group and this generically implies the breaking of a
fraction of the original supersymmetries. For particular values of the parameters,
however, it might happen that the defect preserves all the supercharges (see the
example below).

An interesting case that deserves further discussion is that of a membrane cou-
pled to an 11D CS theory for the M-algebra. It is not hard to be tempted to identify
such an object as the M2-brane. Notice that its coupling to the gauge connection
is given through a 3D CS action based at most on the maximal supersymmetric
extension of so(2,1)× so(8). This term is reminiscent of the action for multiple
M2-branes recently unveiled by Bagger and Lambert [33]. No doubt that there are
important differences, such as the presence of extra scalar fields (and their super-
symmetric partners) and the fact that the CS Lagrangian in the BL theory is based
upon a 3-algebra. Our approach attempts to address how these branes couple to the
11D fields while BL theory aims at describing the dynamics of multiple M2-branes
on their own. They are not on equal footing. However, we find striking that our in-
dependent proposal for the introduction of M2-branes in a CS theory based on the
M-algebra possesses these similarities and consider that this is a worth exploring
avenue for further research.

3.3.1 Example: Topological Defects

Branes are, in a broad sense, topological obstructions, like boundaries and defects.
They restrict the continuous differentiable propagation on the manifold, which have
topological consequences for the allowed orbits and for the spectrum of the differ-
ential operators. CS systems are particularly sensitive to the topological structure of
the spacetime on which they are defined, and therefore the coupling between a con-
nection dynamically governed by a CS action and a brane is necessarily nontrivial.
Instead of developing a general theory for this problem, we illustrate this with an
example. The discussion will remain at an introductory level and the reader is en-
couraged to look for the relevant sources as they become available.

Consider a (2n + 1)-dimensional AdS spacetime where a point has been re-
moved from the spatial section. The evolution in time of the missing point is a
removed one-dimensional worldline. The resulting topology is not that of AdS and
it allows for nontrivial winding numbers for SD−2 spheres mapped onto the space-
time. In principle, there could be an angular defect concentrated on the removed
line, which measures the strength of the singularity. The defect is produced by an
identification in the angular directions whereby the solid angle ΩD−2 of the SD−2

sphere is shrunk to (1−α)ΩD−2. The metric produced by this angular defect can
be written as

ds2 = −(1 +ρ2)dT 2 +(1 +ρ2)−1dρ2 +α2ρ2dΩ 2
D−2 . (32)
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It is straightforward to check that this metric has a naked curvature singularity in the
angular components of the Riemann tensor,

Rαβθφ =
[

−1 +
√

1 + M
r2

]

δαβθφ , (33)

while the remaining components are those of a constant curvature, R0r
0r = −1,

R0α
0β = Rrα

rβ = −δαβ . This looks like the standard (2n + 1) AdS CS black hole
(in r(ρ) radial coordinate) [34]. However, for 0 < α < 1, the (dimensionless) mass
parameter corresponds to a “negative mass black hole,” −1 < M(α) < 0, which is
just a naked singularity [35].

The resulting space does not admit Killing spinors and the singularity cannot
correspond to a BPS configuration, except for D = 3 in the limit when the angular
defect becomes maximal (α→ 1). This special case, M = 0, corresponds to a mass-
less 2+1 black hole and the space now admits half of the Killing spinors of the AdS
spacetime. In this case, the defect can legitimately be called a BPS 0-brane5 [35].

The massless 2+1 black hole can also be generated through a particular identi-
fication by a Killing vector in AdS3 space and this mechanism can be repeated in
higher dimensions: starting with AdS2n+1, an identification with a Killing vector
that has a fixed point generates a topological defect at the fixed point and breaks
the symmetry from SO(2n,2) down to SO(2n−1,1)×R. The AdS space has max-
imal supersymmetry with 2n component spinors; the topological defect can have at
most 2n−1 local supersymmetries, that is 1/2 BPS. Additional breakings generated
by further identifications with Killing spinors, would reduce the supersymmetry to
1/4, 1/8, etc. [35, 37]. This topological symmetry breaking was recently exploited
in [31, 32] to generate an effective Einstein–Hilbert action in four dimensions from
a topological defect in a six-dimensional topological field theory.

4 Summary and Gambling on Future Directions

We have presented a proposal for the coupling of sources in CS theories. When the
spacetime dimensions is D ≤ 3, this amounts to the standard minimal gauge cou-
pling. However, for higher dimensional CS theories this produces new interaction
terms with a number of consequences on which this article just offers a first glance.
The coupling is entirely given in terms of the connection of the original theory and
does not require (the otherwise problematic) non-Abelian p-forms to couple directly
with extended objects such as branes. We argue that this suggests the need to revisit
the exploration of the BPS spectrum of CS theories, a certainly difficult subject,
in a way that possibly circumvents naive obstructions to the existence of expected
objects such as the M2-brane in a CS theory based on the M-algebra.

5 For D > 3 the massless black holes also have a curvature singularity and are not BPS, as shown
in [36].



Sources for Chern–Simons Theories 121

We have explored the existence of preons in CS theories. Following the algebraic
reasoning introduced in [3], we have shown that it applies to CS theories based
on extensions of the AdS algebra, but needs some improvement for the case of
Poincaré-based theories such as the CS supergravity for the M-algebra. We should
emphasize that even if the integrability conditions of the local Killing spinor con-
ditions are consistent with the equations of motion, it is still necessary to scrutinize
the actual integrability of the equations, as there might be, for example, topological
obstructions.

Our proposal for the introduction of sources implies a novel mechanism of sym-
metry breaking through the presence of defects in CS theories. Since the couplings
are given in terms of CS forms with support in lower dimensional submanifolds,
they will be written generally in terms of subalgebras of the original algebra.

The quantization of CS theories is an important problem. The case of 0 + 1 is
just the old Bohr–Sommerfeld quantization [25]. The 2+1 case is well-understood:
the path integral is given in terms of knot invariants [38, 39]. The corresponding
quantization for higher dimensions remains an open problem.

The emergence of a dimensionful physical scale in the theory may arise through
condensates of the form 〈A •A 〉 
= 0, where the bracket is an invariant tensor of the
reduced (physical) symmetry. For instance, in a CS theory based on the AdS group
broken down to the Lorentz group, 〈A •A 〉 reduces to ea

μ eb
ν ηab = �2 gμν . The

remnant Lorentz symmetry suggests the possibility that the induced dynamics may
be governed by the Einstein–Hilbert action. This is indeed the case in the scheme
studied in [31, 32], and might be a promising avenue to explore the (still open)
connection between CS theories and ordinary supergravity.
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The Emergence of Fermions and the E11 Content

François Englert and Laurent Houart

Abstract Claudio’s warm and endearing personality adds to our admiration for his
achievements in physics a sense of friendliness. His constant interest in fundamen-
tal questions motivated the following presentation of our attempt to understand the
nature of fermions. This problem is an essential element of the quantum world and
might be related to the quest for quantum gravity. We shall review how space–time
fermions can emerge out of bosons in string theory and how this fact affects the
extended Kac–Moody approach to the M-theory project.

1 Introduction

Despite the impressive theoretical developments of superstring theory, the quan-
tization of gravity remains elusive. The difficulties encountered in coping with the
non-perturbative level may well hide non-technical issues. A crucial point is whether
the assumed quantum theoretical framework can cope with the quantum nature of
space–time, in particular when confronted to the existence of black hole and the
cosmological horizons. In this essay, we inquire into the fundamental nature of
fermions, which constitute an essential element of the quantum world. We shall
review how in string theory space–time fermions can be constructed out of bosons
and we shall discuss how this fact affects the extended Kac–Moody approach to the
M-theory project for quantum gravity.

In Sect. 2 we unveil the fermionic subspaces of the bosonic closed strings com-
pactified on sublattices of a E8 × S̃O(16) weight lattice, where S̃O(16) is the
universal covering group of SO(16) [4]. All modular invariant fermionic closed
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Bruxelles, Campus Plaine C.P.225, 1050 Bruxelles, Belgium
e-mail: fenglert@ulb.ac.be

M. Henneaux, J. Zanelli (eds.), Quantum Mechanics of Fundamental Systems: The Quest 125
for Beauty and Simplicity, DOI 10.1007/978-0-387-87499-9 9,
c© Springer Science+Business Media LLC 2009



126 F. Englert and L. Houart

strings, supersymmetric or not, are obtained from the parent bosonic strings by a
universal truncation performed on both left and right sectors, or on the right sector
for the heterotic strings. Supersymmetry arises when the sublattice of the S̃O(16)
weight lattice is taken to be the E8 root lattice so that the bosonic gauge group
in each sector is G = E8 × E8. We found that not only the closed string spectra
of the fermionic string, but also the charges, the chiralities and the tensions of all
the fermionic D-branes are encoded in the bosonic strings [4]. In addition, the uni-
versal truncation applied to the unique tadpole-free unoriented bosonic string with
Chan–Paton group SO(213) yields all tadpole- and anomaly-free open unoriented
fermionic strings [4, 19].

In Sect. 3 we review the attempt to formulate the M-theory project in terms
of the very-extended Kac–Moody algebra E11 ≡ E+++

8 [41] (or the overextended
E10 ≡ E++

8 [29]). Along this line of thought, the inclusion of the bosonic string sug-
gest the introduction of the algebra D+++

24 [32] (or D++
24 ). However it is easily shown

that the D+++
24 fields cannot accommodate the degrees of freedom needed to gen-

erate the fermionic subspaces of the bosonic string. More generally we argue that,
without extending the D+++

24 algebra, one cannot encode genuine bosonic string de-
grees of freedom and, similarly, that E11 alone does not encode genuine superstring
degrees of freedom.

2 Fermions and Supersymmetry from the Bosonic String

It is well-known that ten-dimensional fermionic strings can be analyzed in terms
of bosonic operators, a consequence of the boson-fermion equivalence in two di-
mensions. The approach taken here is different. We wish to show that the Hilbert
space of all the perturbative fermionic closed strings, and of all their tadpole- and
anomaly-free open descendants, are subspaces of the 26-dimensional closed bosonic
string theory, and of its tadpole-free open descendant, compactified on suitable
16-dimensional manifolds [3, 4, 18, 19].

2.1 The Fermionic Subspaces of the Closed Bosonic String

To accommodate space–time fermions in the left and/or the right sector of the
26-dimensional closed bosonic string one must meet three requirements:

1. A continuum of bosonic zero modes must be removed. This can be achieved by
compactifying d = 24− s transverse dimensions on a d-dimensional torus. This
leaves s+ 2 non-compact dimensions with transverse group SOtrans(s).
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2. Compactification must generate an internal group SOint(s) admitting spinor rep-
resentations.1 This can be achieved by toroidal compactification on the weight
lattice of a simply laced Lie group G of rank d containing a subgroup SOint(s).
The latter is then mapped onto SOtrans(s) in such a way that the diagonal algebra
SOdiag(s) = diag[SOtrans(s)×SOint(s)] becomes identified with a new transverse
algebra. In this way, the spinor representations of SOint(s) describe fermionic
states because a rotation in space induces a half-angle rotation on these states.
This mechanism is distinct from the two-dimensional world-sheet equivalence
of bosons and fermions. It is reminiscent of a similar mechanism at work in
monopole theory: there, the diagonal subalgebra of space–time rotations and
isospin rotations can generate space–time fermions from a bosonic field con-
densate in spinor representations of the isospin group [25–27].

3. The consistency of the above procedure relies on the possibility of extending
the diagonal algebra SOdiag(s) to the new full Lorentz algebra SOdiag(s + 1,1),
a highly non trivial constraint. To break the original Lorentz group SO(25,1) in
favor of the new one, a truncation consistent with conformal invariance must be
performed on the physical spectrum of the bosonic string. Actually, the states
described by 12 compactified bosonic fields must be projected out, except for
momentum zero-modes of unit length [3, 18]. The removal of 12 bosonic fields
accounts for the difference between the bosonic and fermionic light cone gauge
central charges. Namely, in units where the central charge of a boson is 1, this
difference counts 11 for the superghosts and (1/2).2 for time-like and longitudi-
nal Majorana fermions. The zero-modes of length � = 1 kept in the 12 truncated
dimensions contribute a constant �2/2 to the mass.2 They account for the re-
moval by truncation of the oscillator zero-point energies in these dimensions,
namely for −(−1/24).12 = +1/2. Moreover, the need to generate an internal
group SOint(s) via toroidal compactification requires s/2 compactified bosons
which can account for s transverse Majorana fermions (we hereafter take s to be
even, in which case s/2 is the rank of the internal group). Therefore, one must
ensure that the total number d = 24− s of compactified dimensions is at least
12 + s/2. In other words,

s ≤ 8, (1)

and the highest available space–time dimension accommodating fermions is
therefore s+2 = 10 [3,18]. Here, we restrict our discussion to the case s+2 = 10.

To realize this program we choose a compactification of the closed string at an
enhanced symmetry point with gauge group GL×GR where GL = GR = G (or GR = G

1 Throughout this paper we shall denote by SO(s) all the groups locally isomorphic to the rotational
group of order s(s−1)/2. When specifically referring to its universal covering group, we shall use
the notation S̃O(s). Also we shall keep the same notation for groups and their Lie algebra.
2 We choose units in which the string length squared α ′ = 1/2.
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for the heterotic string) and G = E8×SO(16) (or E8× S̃O(16)/Z2 = E8×E8). Recall
that in terms of the left and right compactified momenta, the mass spectrum is

m2
L

8
=

pL
2

2
+ NL −1,

m2
R

8
=

pR
2

2
+ NR −1, (2)

and

m2 =
m2

L

2
+

m2
R

2
; m2

L = m2
R. (3)

In (2) NL and NR are the oscillator numbers in 26-dimensions and the zero-modes
pL, pR span a 2d-dimensional even self-dual Lorentzian lattice with negative (resp.
positive) signature for left (resp. right) momenta. This ensures modular invariance
of the closed string spectrum [33]. The massless vectors αμ−1,R α i

−1,L|0L,0R〉 and

αμ−1,L α
i
−1,R|0L,0R〉, where the indices μ and i refer respectively to non-compact and

compact dimensions, generate for generic toroidal compactification a local symme-
try [UL(1)]d × [UR(1)]d . But more massless vectors arise when pL and pR are roots
of simply laced groups GL and GR of rank d (with root length

√
2). The gauge sym-

metry is then enlarged to GL ×GR.

2.1.1 The Group G = E8 × S̃O(16)

The compactification lattices in both sectors (or in the right sector only for the het-
erotic strings) are taken to be sublattices of the G = E8 × S̃O(16) weight lattice.
These sublattices must preserve modular invariance, which means that the left and
right compactified momenta pL, pR must span a 2d-dimensional even self-dual
Lorentzian lattice. All closed fermionic strings follow then from the properties of
the S̃O(16) weight lattice and the subsequent truncation.

The weight lattice ΛS̃O(2n) split into four sublattices.

ΛS̃O(2n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(o)2n : po + p (s)2n : ps + p
(v)2n : pv + p (c)2n : pc + p

po = (0,0,0, . . .0
︸ ︷︷ ︸

n

) ps = (
1
2
,

1
2
,

1
2
, . . .

1
2︸ ︷︷ ︸

n

)

pv = (1,0,0, . . .0
︸ ︷︷ ︸

n

) pc = (
−1
2

,
1
2
,

1
2
, . . .

1
2︸ ︷︷ ︸

n

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

and the E8 weight (and root) lattice is

ΛE8 = (o)16 +(s)16. (5)

Here p is a vector of the root lattice ΛR of SO(16).
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The partition functions o,v,s,c corresponding to the lattices (o),(v),(s),(c) are

Pj2n = ∑
p∈ΛR;N(c)

exp

{

2π iτ
[
(p+ p j)2

2
+ N(c)− n

24

]}

j = o,v,s,c. (6)

Here N(c) is the oscillator number in the compact dimensions. Note that the additive
group of the four sublattices of the weight lattice of SO(2n) is isomorphic to the
center of the covering group S̃O(2n), that is Z4 for n odd and Z2 ×Z2 for n even.

2.1.2 The Modular Invariant Truncation

These lattices combine to form four modular invariant partition functions which
after the truncation generate the four non-heterotic fermionic strings in ten dimen-
sions [4]. In what follows, we shall only write down the SO(16) characters in the
integrand of amplitudes: the E8 characters in E8 × S̃O(16) will be entirely truncated
and will play no role and we do not display the contribution of the eight light-cone
gauge non-compact dimensions. For the four bosonic ancestors, we get

OBb = ō16 o16 + v̄16 v16 + s̄16 s16 + c̄16 c16 (7)

OAb = ō16 o16 + v̄16 v16 + s̄16 c16 + c̄16 s16 (8)

IIBb = ō16 o16 + s̄16 o16 + ō16 s16 + s̄16 s16 (9)

IIAb = ō16 o16 + c̄16 o16 + ō16 s16 + c̄16 s16 (10)

where the bar superscript labels the left sector partition functions.
The universal truncation from E8 × S̃O(16) to SOint(8) is defined by decompos-

ing SO(16) into SO′(8)×SO(8)int and erasing the E8 and SO′(8) lattices except, in
accordance with item 3 of the above discussion, for unit vectors of SO′(8). In this
way the internal momenta p[SO(8)] are related to p[G ] by

p2[G ]
2

=
p2[SO(8)]

2
+

1
2

(11)

The unit vectors are identified as follows. The decomposition of an SO(16) lattice
in terms of SO ′(8)×SO(8) lattices yields

(o)16 = [(o)8′ ⊕ (o)8] + [(v)8′ ⊕ (v)8],

(v)16 = [(v)8′ ⊕ (o)8] + [(o)8′ ⊕ (v)8],

(s)16 = [(s)8′ ⊕ (s)8] + [(c)8′ ⊕ (c)8],

(c)16 = [(s)8′ ⊕ (c)8] + [(c)8′ ⊕ (s)8]. (12)
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The vectors of norm one in SO ′(8) are the 4-vectors p′
v, p′

s and p′
c defined in (4).

We choose one vector p′
v and one vector p′

s. (One might equivalently have chosen
p′

c instead of p′
s.) In this way we get from (12)

o16 → v8, v16 → o8, (13)

s16 →−s8, c16 →−c8. (14)

It follows from the closure of the Lorentz algebra that states belonging to v8 or o8 are
bosons while those belonging to the spinor partition functions s8 and c8 are space–
time fermions. The shift of sign in the fermionic amplitudes, which is consistent
with the decomposition of s16 and c16 into SO′(8)× SO(8)int , is required by the
spin-statistic theorem and is needed to preserve modular invariance in the truncation.

The four ten dimensional fermionic string partition functions are

OBb → ō8 o8 + v̄8 v8 + s̄8 s8 + c̄8 c8 ≡ OB (15)

OAb → ō8 o8 + v̄8 v8 + s̄8 c8 + c̄8 s8 ≡ OA (16)

IIBb → v̄8 v8 − s̄8 v8 − v̄8 s8 + s̄8 s8 ≡ IIB (17)

IIAb → v̄8 v8 − c̄8 v8 − v̄8 s8 + c̄8 s8 ≡ IIA (18)

Note that the partition functions of supersymmetric strings IIA and IIB arise from
E8 ×E8 sublattices of the E8 × S̃O(16) weight lattice.

The same procedure can be used to obtain all the heterotic strings, supersymmet-
ric or not, by selecting the modular partition functions which are truncated in the
right channel only. It will later be extended to D-branes and open descendants.

2.1.3 The Configuration Space Torus Geometry

The four modular invariant theories can be formulated in terms of the actions

S =
−1
2π

∫

dσdτ
[
{gab∂αXa∂αXb + babεαβ∂αXa∂βXb}+ημν∂αXμ∂αXν

]
,

(19)

with gab a constant metric and bab a constant antisymmetric tensor in the compact
directions (a,b = 1, . . .,16), ημν = (−1; +1, . . .) for μ ,ν = 1, . . .,10 and 0 ≤ σ ≤ π .
The fields Xa are periodic with period 2π . In this formalism the left and right
momenta are given by

pR =
[

1
2

mb + na(bab + gab)
]

eb,

pL =
[

1
2

mb + na(bab −gab)
]

eb, (20)
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where {ea} is the dual of the basis {ea} defining the configuration space torus3

x ≡ x + 2πnaea na ∈ Z , (21)

and the lattice metric is given by

gab = ea.eb. (22)

Explicit forms of the gab and bab tensors for the four models are given in [4].
The D9-branes pertaining to the four different bosonic theories compactified on

the E8 × S̃O(16) lattices provide an easy way to construct their configuration space
tori. We shall find that these tori are linked to each other through global properties
of the universal covering group S̃O(16).

The tree channel amplitudes Atree of the D9-branes are obtained from the torus
partition functions (7)–(10) by imposing Dirichlet boundary conditions on the com-
pact space. For open strings the latter do not depend on bab and are given by

∂τXa = 0, (23)

where τ is the worldsheet time coordinate and σ the space one. Using the worldsheet
duality which interchanges the roles of τ and σ , these equations yield the following
relation between the left and right momenta:

pL −pR = 0, (24)

as well as a match between left and right oscillators in the tree channel. The con-
ditions (24) determine the closed strings which propagate in the annulus amplitude.
Imposing them on the four tori amounts to keep all characters which appear diago-
nally in (7)–(10). Up to a normalization, the annulus amplitudes, written as closed
string tree amplitudes, are

Atree(OBb) ∼ (o16 + v16 + s16 + c16),
Atree(OAb) ∼ (o16 + v16),
Atree(IIBb) ∼ (o16 + s16),
Atree(IIAb) ∼ o16. (25)

We express suitably normalized Atree as a loop amplitude A for a single open
string (i.e., without Chan–Paton multiplicity) by performing a change of variable
and the S-transformation on the modular parameter (τ→−1/τ). The result is given
in Table 1.

3 In the previous sections momenta compactification was defined in both left and right channels.
Both compactifications are obtained in the action formalism from the compactification on the con-
figuration torus and the (quantized) b-field.
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Table 1 Characters of the bosonic D9-branes in the tree and loop channels

Atree A

OBb ∼(o16 + v16 + s16 + c16) o16

OAb ∼(o16 + v16) o16 + v16

IIBb ∼(o16 + s16) o16 + s16

IIAb ∼o16 o16 + v16 + s16 + c16

The configuration space tori of the four bosonic theories (7)–(10) are defined
by lattices with basis vectors {2πea} according to (21). We note that the Dirichlet
condition (24) reduces (20) to pL = pR = (1/2)maea (independent of bab). Using the
general expression for lattice partition functions (6), we then read off for each model
the dual of its SO(16) weight sublattice from the four tree amplitudes in Table 1. We
then deduce the {ea} from the duality between the root lattice (o)16 and the weight
lattice (o)16 + (v)16 + (c)16 + (s)16, and from the self-duality of (o)16 + (v)16 and
(o)16 +(s)16. We get

ea = (1/2)wa, (26)

where the wa are weight vectors forming a basis of a sublattice (r)16 of the weight
lattice of SO(16). The sublattice (r)16 for each theory is

(OBb) : (r)16 = (o)16,

(OAb) : (r)16 = (o)16 +(v)16,

(IIBb) : (r)16 = (o)16 +(s)16,

(IIAb) : (r)16 = (o)16 +(v)16 +(s)16 +(c)16. (27)

These tori can be visualized by the projection depicted in Fig. 1.
The tori t̃ of the four bosonic theories are, as group spaces, the maximal toroids

T̃ /Zc of the locally isomorphic groups E8 × S̃O(16)/Zc where Zc is a subgroup of
the center Z2 ×Z2 of the universal covering group S̃O(16). We write

t̃ (OBb) = T̃ ,

t̃ (OAb) = T̃ /Zd
2 ,

t̃ (IIBb) = T̃ /Z+
2 or T̃ /Z−

2 ,

t̃ (IIAb) = T̃ /(Z2 ×Z2), (28)

where Zd
2 = diag(Z2 × Z2) and the superscripts± label the two isomorphic IIBb

theories obtained by interchanging (s)16 and (c)16.
There is thus a unified picture for the four theories related to the global properties

of the SO(16) group [4]. The OBb theory built upon T̃ plays in some sense the role
of the “mother theory” of the others. One may view the different maximal toroids
(28) as resulting from the identification of center elements of S̃O(16), which are
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= (o)16

7 8

= (v)16

= (s)16
= (c)16

IIAb

IIBb OBb

IIBb

OAb

Fig. 1 Projected weight lattice of S̃O(16) in the 7–8 plane of the SO(16) Dynkin diagram depicted
in the figure. We see from (21), (26) that the volumes ξi of the unit cells, exhibited in shaded
areas, must be multiplied by (2π)8 ×2−8 to yield the SO(16) compactification space torus volume
of the four bosonic theories (in units where α ′ = 1/2). The two IIBb theories defined by the two
rectangles are isomorphic and differ by the interchange of s16 and c16

OB IIAIIB OAIIB

(o)

SÕ(16)

(s)

= =

SÕ(16)/Z2
+=E8

(c)

==

SÕ(16)/Z2
−=E8

(v)

==

SÕ(16)/Z2
d SÕ(16)/Z2

+x Z2
−

===

b bb bb

Fig. 2 Identification of center elements of S̃O(16) in the four closed string bosonic theories

represented by weight lattice points, with its unit element. These identifications give
rise to the smaller shaded cells of Fig. 2. In this way, the unit cell of the IIBb theory
is obtained from the OBb one by identifying the (o)16 and (s)16 lattice points (or
alternatively the (o)16 and the (c)16 lattice points) and therefore also the (v)16 and
(c)16 lattice (or the (v)16 and the (s)16 lattice), as seen in Fig. 2. It is therefore equal
to the unit cell of the E8 lattice.4 The unit cell of the OAb theory is obtained by
identification of (o) and (v), and of (s)16 and (c)16.

4 The latter however does not contain (v)16 and (c)16 lattice points.
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2.2 The Fermionic D-Branes

Table 1 lists the partition functions of a single “elementary” D9-brane for the four
SO(16) bosonic strings. In Table 2 below, using the universal truncation, we list
the corresponding fermionic D9-branes and their loop partition function Atrunc. We
now generalize the analysis to encompass several D-branes [4].

First, we remark that the relative position of the different D9-branes in the eight
compact dimensions of the SO(16) torus is not arbitrary. Group symmetry requires
that the partition function of an open string with end points on D9-branes be a lin-
ear combination of the four SO(16) characters. The vector d separating the two
points where two distinct D9-branes meet the SO(16) torus determines the partition
function of the string starting at one point and ending at the other after winding any
number of times around the torus. The smallest eigenvalue of the string Hamiltonian
is (1/2)d.d/π2. Therefore d/π must be a weight and the D9-branes can only be sep-
arated in the compact space (rescaled by a factor π−8) by a weight vector. Consider
for instance two branes in the OBb theory, one located at (o)16 and the other located
at (v)16. The partition function of a string beginning and ending on the same brane
is o16, while the partition function of an open string stretching between them is v16.
For the other theories, the partition function of a string beginning and ending on
the same brane will then contain, in addition to o16, the characters corresponding
to the strings stretched between (o)16 and all points identified with (o)16. This can
be checked by comparing the identifications indicated in Fig. 2 with the partition
functions A listed in Table 1.

If one chooses the location of one elementary brane as the origin of the weight
lattice, the other D9-branes can then only meet the SO(16) torus (rescaled by π−8)
at a weight lattice point. The number of distinct elementary branes is, for each of the
four bosonic theories, equal to the number of distinct weight lattice points in the unit
cell. For the mother theory OBb there are four possible elementary D9-branes. We
label them by their positions in the unit cell, namely by (o)16,(v)16,(s)16 and (c)16.
Note that these weight lattice points represent the center elements of the S̃O(16). For
the other theories the unit cells are smaller and there are fewer possibilities. The unit
cell of the IIBb theory allows only for two distinct branes (o)16 = (s)16, (c)16 = (v)16

(or those obtained by the interchange of (s)16 and (c)16, as seen in Fig. 2). Similarly
for the OAb theory, we have the two branes (o)16 = (v)16 and (s)16 = (c)16, and
finally for the “smallest” theory IIAb, we have only one elementary brane (o)16 =
(v)16 = (s)16 = (c)16. Finally to describe several D9-branes meeting at the same
point of the SO(16) torus, one uses the appropriate Chan–Paton factors.

2.2.1 Charge Conjugation

Charge conjugation of the truncated fermionic strings is encoded in their bosonic
parents. A brane sitting at (v)16 can always be joined by an open string to a brane
sitting at (o)16. The partition function of such a string is given by the character
v16 and therefore the two branes can exchange closed strings with tree amplitude
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c
c

(v)

(c)

(o)

(s)

Fig. 3 Charge conjugation of the fermionic D9-branes from the position of their bosonic ances-
tors on the S̃O(16) torus. (Subscripts in the labeling of the lattice points is omitted.) The charge
conjugate branes are linked by the lines C

Table 2 Fermionic D9-branes charges encoded in their bosonic ancestors

A A trunc Fermionic D9-branes Stability

OBb → OB o16 v8 D+
1 +D+

2 +D−
1 +D−

2 Stable
OAb → OA o16 + v16 v8 +o8 D0

1 +D0
2 Unstable

IIBb → IIB o16 + s16 v8 − s8 D+ +D− Stable
IIAb → IIA o16 + v16 + s16 + c16 v8 +o8 − s8 − c8 D0 Unstable

Atree = o16 + v16 − s16 − c16 as follows from the S-transformation of the charac-
ters. Namely the closed string exchange describing the interaction between these
two branes has opposite sign for the (s)16 and (c)16 contribution as compared to the
closed string exchange between D9-branes located at the same point. This shift of
sign persists in the truncation to the fermionic theories where the above tree am-
plitude becomes o8 + v8 + s8 + c8. This shift of sign thus describes the RR-charge
conjugation between fermionic D9-branes. It is encoded in the bosonic string as a
shift by the lattice vector (v) (see Fig. 3). In particular, when (o)16 and (v)16 are
identified, all branes of the fermionic offsprings are neutral. These are always un-
stable branes, as the truncation of v16 is o8 and contains a tachyon. Charged branes
are always stable.

The distinct fermionic D9-branes and their charge conjugates can thus be directly
read off from Fig. 1. They are included in Table 2, where the charge is indicated by
a superscript +,− or 0, and additional quantum numbers by a subscript.

2.2.2 Chirality

We now consider the truncation of bosonic D-branes to lower dimensional fermionic
Dp-branes (p < 9). This is a non-trivial problem for the following reason. In
fermionic string theories, a T-duality interchanges type IIA with IIB, and type
OA with OB while transmuting D9-branes to D8-branes without changing their
corresponding A trunc amplitudes given in Table 2. More generally, while the am-
plitudes of Dp-branes for p odd are essentially the same as the D9-brane amplitude,
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Table 3 Fermionic Dp-brane partition functions (p ≤ 9) and their bosonic ancestors

Ap, p odd Ap+8, p even A trunc
p , p odd A trunc

p , p even

OBb → OB o16 o16 + v16 v8 o8 + v8

OAb → OA o16 + v16 o16 o8 + v8 v8

IIBb → IIB o16 + s16 o16 + v16 + s16 + c16 v8 − s8 o8 + v8 − s8 − c8

IIAb → IIA o16 + v16 + s16 + c16 o16 + s16 o8 + v8 − s8 − c8 v8 − s8

those of the p even would require, at the bosonic level, the interchange of IIAb with
IIBb and OAb with OBb for the universal truncation to yield the correct chirality.

This problem is beautifully solved [4] by noticing that the truncation of bosonic
Dp-branes with p even would violate Lorentz invariance for the fermionic strings
except if this A, B interchange could be performed at the bosonic parent level. And
such interchange is indeed a symmetry of the compactified bosonic string! One has
to perform an “odd” E-duality which interchanges on the SO(16) torus Dirichlet
with Neumann boundary conditions and simultaneously performs the required A, B
interchange. One thus obtains in this way the loop amplitudes of the bosonic par-
ents which lead from the universal truncation to the correct fermionic amplitudes
consistent with Lorentz invariance. This is summarized in Table 3.

2.2.3 Tensions

We recall that the tension T bosonic
Dp of a Dp-brane in the 26-dimensional uncompact-

ified theory is [36]

T bosonic
Dp =

√
π

24κ26
(2πα ′1/2)11−p, (29)

where κ2
26 = 8πG26 and G26 is the Newtonian constant in 26 dimensions. The ten-

sions of the Dirichlet D9-branes of the four compactified theories are obtained from
(29) by expressing κ26 in term of the ten-dimensional coupling constant κ10. Recall-
ing that κ26 =

√
Vκ10 where V is the volume of the configuration space torus, one

finds from Fig. 1,

TOBb
=

√
π√

2κ10
(2πα ′1/2)−6, (30)

TOAb
= TIIBb

=
√
π

κ10
(2πα ′1/2)−6, (31)

TIIAb
=

√
2
√
π

κ10
(2πα ′1/2)−6. (32)

We now perform the universal truncation on the loop amplitudes A listed in Table 3
to compute the tensions of the fermionic branes. Tensions are conserved in the
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truncation, as proven in [19]. The tensions of the different bosonic D9-branes given
in (30)–(32) are thus equal, when measured with the same gravitational constant κ10,
to the tensions of the corresponding fermionic D9-branes [30, 37]. This is indeed a
correct prediction.

2.3 Tadpole-Free and Anomaly-Free Fermionic Open Strings

The open descendants of the closed bosonic theories will be determined by imposing
the tadpole condition [1] on the bosonic string, namely by imposing that divergences
due to massless tadpoles cancel in the vacuum amplitudes. We will show that the
bosonic OBb, IIBb and OAb theories admit tadpole-free open bosonic descendants
and that those descendants give after truncation the three open fermionic string the-
ories which are anomaly- or tadpole-free [4, 19]. Compactification of the bosonic
string plays of course a crucial role, as the following analysis for the uncompact-
ified unoriented bosonic string would recover the unique consistent Chan–Paton
group SO(213).

A first step in obtaining the open descendant corresponding to the four bosonic
string theories characterized by the tori amplitudes T (7)–(10) is the construction
of the Klein bottle amplitudes K (Fig. 4). These are obtained from the amplitudes
T /2 +K , which are the torus closed string partition functions T with the projec-
tion operator (1 +Ω)/2 inserted, where Ω interchanges the left and right sectors:
Ω |L,R >= |R,L >. This can be done for OBb, IIBb and OAb but not for IIAb, be-
cause Ω in that case is not a symmetry of the theory. The IIAb theory does not
admit any open descendant. The projection onΩ eigenstates amounts to impose the
condition

pR = pL, (33)

on the closed string momenta equations (20). Acting withΩ/2 on the three different
tori (7)–(9), one finds the three Klein bottle amplitudes5

Torus

Möbius stripAnnulusKlein bottle

Fig. 4 World-sheet contributions to unoriented open strings

5 Recall that we display only the SO(16) contribution to the amplitudes.
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K (OBb) =
1
2
(o16 + v16 + s16 + c16), (34)

K (IIBb) =
1
2
(o16 + s16), (35)

K (OAb) =
1
2
(o16 + v16). (36)

The two remaining amplitudes with vanishing Euler characteristic, the annulus A
and the Möbius strip M , determine the open string partition function (Fig. 4). The
annulus amplitudes of D9-branes with generic Chan–Paton multiplicities are

A (OBb) =
1
2
(n2

o + n2
v + n2

s + n2
c)o16 +(nonv + nsnc)v16

+(nons + nvnc)s16 +(nonc + nvns)c16, (37)

A (OAb) =
1
2
(n2

o + n2
s )(o16 + v16)+ nons (s16 + c16), (38)

A (IIBb) =
1
2
(n2

o + n2
v)(o16 + s16)+ nonv (v16 + c16). (39)

To get the Möbius amplitudes M and to implement the tadpole condition we express
the Klein bottle and annulus amplitudes (34)–(36) and (37)–(39) as closed string tree
channel amplitudes using the S-transformation of the characters. From the resulting
amplitudes Ktree and Atree one obtains the Möbius amplitudes Mtree by requiring
that each term in the power series expansion of the total tree channel amplitude
Ktree +Atree +Mtree be a perfect square. One gets

Mtree(OBb) = ε1 (no + nv + ns + nc) ô16, (40)

Mtree(IIBb) = ε2 (no + nv) ô16 + ε3 (no −nv) ŝ16, (41)

Mtree(OAb) = ε4 (no + ns) ô16 + ε5 (no −ns) v̂16, (42)

where εi = ±1 will be determined by tadpole conditions. The “hat” notation in the
amplitudes (40)–(42) means that the overall phase present in the characters r16 is
dropped. This phase arises because the modulus over which M is integrated (and
which is not displayed here) is not purely imaginary but is shifted by 1/2, inducing
in the partition functions i16 an alternate shift of sign in its power series expansion as
well as a global phase. This one half shift is needed to preserve the group invariance
of the amplitudes. A detailed discussion of the shift in general cases can be found
in [1].

We now impose the tadpole conditions on the three theories, namely we impose
the cancellation of the divergences due to the massless mode exchanges in the total
amplitudes Ktree + Atree +Mtree. One determines in this way the Chan–Paton of
the tadpole-free compactified unoriented bosonic open strings. The universal trun-
cation preserves these factors and one gets in this way the correct tadpole-free and
anomaly-free open fermionic strings [1], as indicated in Table 4.
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Table 4 Chan–Paton group of tadpole- and anomaly-free fermionic strings

Chan–Paton group

OBb → OB → B [SO(32−n)×SO(n)]2

OAb → OA → A SO(32−n)×SO(n)
IIBb → IIB → I SO(32)
IIAb → IIA –

2.4 The Fermionic Content of the Bosonic String: Summary

– From the torus compactification of the bosonic string on the weight lat-
tice of E8 × S̃O(16) and the universal truncation to SO(8) keeping p′

v,p
′
s ∈

SO′(8) one recovers all the closed fermionic string spectra. Those resulting
from the compactification on the E8 ×E8 sublattice are supersymmetric.

– Spectra, charges, chiralities, tensions of all the fermionic D-branes are ob-
tained from their bosonic parents by the same universal truncation.

– Tadpole and anomaly cancellation of unoriented open fermionic strings fol-
low from the tadpole free unoriented bosonic string by the same universal
truncation.

3 The Generalized Kac–Moody Approach

The five consistent superstring theories appear to be related by U-dualities and a
conjectured non-perturbative formulation encompassing all of them has been la-
beled M-theory. Attempts to understand its symmetries has led to an approach to the
M-theory project based on generalized Kac–Moody algebras. We shall analyze to
what extend the connection between bosonic and fermionic strings found in Sect. 2
survives in this Kac–Moody approach. This will shed some light on its significance.

3.1 E11 ≡ E+++
8 and 11-Dimensional Supergravity

Among the consistent superstring theories, type IIA and type IIB are maximally su-
persymmetric, i.e., they are characterized by 32 supercharges. We will focus on such
maximally supersymmetric phase of M-theory, whose classical limit is assumed to
be 11-dimensional supergravity and whose dimensional reduction to ten dimensions
yields the low energy effective action of type IIA superstring. The bosonic action of
11-dimensional supergravity is given by
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S (11) =
1

16πG11

∫

d11x
√

−g(11)
(

R(11)− 1
2.4!

FμνστFμνστ +CS-term

)

. (43)

Scalars in the dimensional reduction of the action (43) to three space–time dimen-
sions realize non-linearly the maximal non-compact form of the Lie group E8 as a
coset E8/SO(16) where SO(16) is its maximal compact subgroup. Here, the sym-
metry of the (2+1) dimensionally reduced action has been enlarged from the GL(8)
deformation group of the compact torus T 8 to the simple Lie group E8. This sym-
metry enhancement stems from the detailed structure of the action (43).

Coset symmetries were first found in the dimensional reduction of 11-
dimensional supergravity [7] to four space–time dimensions [6] but appeared
also in other theories. They have been the subject of much study, and some classic
examples are given in [5,8,23,28,29,40]. In fact, all simple maximally non-compact
Lie group G can be generated from the reduction down to three dimensions from
actions of gravity coupled to suitably chosen matter fields [9].

It has been suggested that these actions, or possibly some unknown exten-
sions of them, possess a much larger symmetry than the one revealed by their
dimensional reduction to three space–time dimensions in which all fields, except
(2+1)-dimensional gravity itself, are scalars. Such hidden symmetries would be, for
each simple Lie group G , the Lorentzian [24] “overextended” G ++ [12] or “very-
extended” G +++ [20, 32] infinite Kac–Moody algebras generated respectively by
adding two or three nodes to the Dynkin diagram defining G . One first adds the
affine node, then a second node connected to it by a single line to get the G ++

Dynkin diagram and then similarly a third one connected to the second to generate
G +++. In particular, the E8 invariance of the dimensional reduction to three dimen-
sions of 11-dimensional supergravity would be enlarged to E++

8 ≡ E10 [29] or to
E+++

8 ≡ E11, as first proposed in [41]. The extension of the Dynkin diagram of E8

to E11 is depicted in Fig. 5. The horizontal line in Fig. 5 form the Dynkin diagram of
the A10 subalgebra of E11. It is labeled the gravity line, as the nodes 4–10 of Fig. 5
arise from the reduction of gravitational part of the action (43).

To explore the possible significance of these huge symmetries a Lagrangian for-
mulation [13] explicitly invariant under E10 has been proposed. It was constructed
as a reparametrization invariant σ -model of fields depending on one parameter t,
identified as a time parameter, living on the coset space E10/K+

10. Here K+
10 is the

subalgebra of E10 invariant under the Chevalley involution. The σ -model contains
an infinite number of fields and is built in a recursive way by a level expansion of

E8
+++

1 32 7 984 65

11

10

Fig. 5 Dynkin diagram of E11 ≡ E+++
8
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E10 with respect to its subalgebra A9 [13,34] whose Dynkin diagram is the “gravity
line” defined in Fig. 5, with the node 1 deleted.6 The level of an irreducible rep-
resentation of A9 occurring in the decomposition of the adjoint representation of
E10 counts the number of times the simple root α11 not pertaining to the gravity
line appears in the decomposition. The σ -model, limited to the roots up to level
3 and height 29, reveals a perfect match with the bosonic equations of motion of
11-dimensional supergravity in the vicinity of the space-like singularity of the cos-
mological billiards [10,11,14], where fields depend only on time. It was conjectured
that space derivatives are hidden in some higher level fields of the σ -model [13]. We
shall label this σ -model Scosmo.

An alternate E10 σ -model parametrized by a space variable x1 can be formulated
on a coset space E10/K−

10, where K−
10 is invariant under a “temporal” involution en-

suring the Lorentz invariance SO(1,9) at each level in the A9 decomposition of E10.
This σ -model provides a natural framework for studying static solutions [16, 17].
It yields all the basic BPS solutions of 11D supergravity, namely the KK-wave, the
M2 brane, the M5 brane and the KK6-monopole, smeared in all space dimensions
but one, as well as their exotic counterparts. We shall label the action of this σ -
model Sbrane. The algebras K+

10 and K−
10 are both subalgebras of the algebra K−

11
invariant under the temporal involution defined on E11, which selects the Lorentz
group SO(1,10) = K−

11 ∩A10 in the A10 decomposition of E11 [16, 21].
The underlying algebraic structure in this approach is thus E11 and the infinite

number of covariant fields are the parameters of the coset E11/K−
11 which can be re-

cursively determined by the level decomposition with respect to A10. In this section,
we adopt this algebraic description of the field content of Kac–Moody algebras.

The first three levels contain the space–time degrees of freedom of 11-
dimensional gravity along with their duals as depicted in Table 5. These levels
are labeled classical.

In this E11 algebraic approach the crucial problem is to elucidate the role of
the huge number of fields beyond the classical levels (level ≥3, height >29) and
to find their significance. Addressing this problem could bring an answer to two
fundamental questions of this approach. First, is space–time itself encoded in the
algebra and is then E11 a symmetry of the uncompactified theory? Second, does E11

Table 5 Low level E11 fields

Level Field Supergravity content

Level 0 gμν Gravity
Level 1 Aμνλ 3-Form potential
Level 2 Aμνλρστ 6-Form dual potential
Level 3 Aμνλρστυζ |ζ Dual graviton
Level ≥ 3 Non “classical” ?

6 Level expansions of G+++ algebras in terms of a subalgebra AD−1 have been considered in
[31, 42].
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describes the degrees of freedom of 11-dimensional maximal supergravity or more,
for instance string degrees of freedom in some tensionless limit?

It is fair to say that up to now there is no clear and totally satisfying answer to
these questions. But recent progress to be discussed below points toward an answer
to the second question.

It has been conjectured that the fields corresponding to the real roots of E9 ⊂ E11

are dual fields and are not new degrees of freedom [38]. It was indeed shown that
these fields express non-closing Hodge-like dualities relating between themselves
the usual degrees of freedom of maximal 11-dimensional supergravity. Explicitly,
from the E11 fields parametrizing the coset E11/K−

11, the subset of real roots of
E9 ⊂ E11 generate, using these non-closing dualities realized as E9 Weyl reflec-
tions, an infinite U-duality E9 multiplet of BPS static solutions of 11-dimensional
supergravity [22].

In another development [2, 39], it was shown that another class of E11 fields
contain all those needed to describe all the maximal gauged supergravity in D ≤ 11
dimensions. Namely the D− 1 forms and the D-forms content, present in the E11

algebraic description interpreted in D dimensions, matches the embedding tensor
description [15] of all the gauged maximal supergravities. Hence the E11 algebraic
approach appears to contain the algebraic structure of all maximal non-abelian su-
pergravities (with 32 supercharges). However again, although these transcend 11D
ungauged maximal supergravity they do not contain new degrees of freedom.

There is still an infinite number of other fields characterized by A10 representa-
tions with mixed Young tableaux. Their significance is hitherto unclear.

We now turn to the generalized Kac–Moody approach to the bosonic string. This
will give some new information on the field content in the algebraic approach.

3.2 D+++
24 and the Bosonic String

The low-energy effective action of the D = 26 bosonic string (without tachyon)
contains gravity, the NS-NS three form field strength and the dilaton. It is given by

S =
∫

d26x
√−g

(

R− 1
2
∂μφ∂ μφ − 1

2.3!
e−

1
3 φHμνσHμνσ

)

, (44)

and H = db.
Upon dimensional reduction to three space–time dimensions, one would have

expected to have a GL(23)×U(1) symmetry (the U(1) coming from the dila-
ton). Again, there is an enhancement to a simple Lie algebra, namely D24 in its
split form. The symmetry is non-linearly realized and the scalar lives in the coset
SO(24,24)/SO(24)×SO(24). The corresponding Dynkin diagram of D24 is the part
of the diagram Fig. 6 on the right of the dashed line.

Having this symmetry in three dimensions, the discussion of the preceding sec-
tion suggests that the “very extended” Kac–Moody algebra D+++

24 could encode a
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Fig. 6 Dynkin diagram of
D+++

24 D24

1 25245432

2627

+++

1 5432 2524

2627

87 1096 11 23

D24
+++

Fig. 7 The decomposition of D+++
24 into A9 ×D16 with levels defined by the nodes α27 and α10

Table 6 Low level representations in the decomposition of D+++
24 into A9 ×D16. Their Dynkin

labels are pr and pi , their dimensions dr and di. r2 is the root norm and μ the outer multiplicity

l1, l2 pi pr r2 dr di μ

0, 0 000000000 000000000000000 0 1 1 2
0, 0 100000001 000000000000000 2 99 1 1
0, 0 000000000 010000000000000 2 1 496 1
1, 0 000000001 100000000000000 2 10 32 1
0, 2 100000100 000000000000000 2 1155 1 1
2, 0 000000010 000000000000000 2 45 1 1
0, 1 000100000 000000000000000 2 210 1 1
1, 1 001000000 100000000000000 2 120 32 1

symmetry of the bosonic string [32]. The physical fields of this algebraic approach
would then live in a coset D+++

24 /K−
24 where K−

24 is the maximal subalgebra invari-
ant under the temporal involution. The corresponding Dynkin diagram is depicted
in Fig. 6.

To make contact with the analysis of Sect. 2 and uncover a possible relation
through truncation with the fermionic strings in ten space–time dimensions we con-
sider the decomposition of D+++

24 into A9 ×D16 where the diagram of A9 is the
gravity line of a ten dimensional space–time and D16 a symmetry arising from a
torus compactification of 16 dimensions. In this decomposition the unbroken subal-
gebra K−

24 decomposes into SO(1,9)× SO(16)× SO(16). Physical fields appear in
the double level decomposition with respect to the nodes α27 and α10 in Fig. 7.

The level l1 (resp. l2) counts the number of times the root α10 (resp. α27) appears
in the decomposition of the adjoint representation of D+++

24 into irreducible repre-
sentations of A9 and SO(16,16). The first levels are listed in Table 6 obtained from
the SimpLie program [35].

Thus, the internal space of the the physical fields is the coset SO(16,16)/
SO(16)×SO(16). This is exactly the moduli space of modular invariant compacti-
fications of the closed bosonic string on a 16-dimensional torus. At a generic point,
one has U(1)16

L ×U(1)16
R where L (resp. R) stands for left (resp. right). We thus
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expect to find 32 abelian gauge fields and these indeed appear in Table 6 at the level
(1,0) in the fundamental representation of SO(16,16). As explained in Sect. 2, the
compactifications needed for uncovering by truncation the fermionic strings are the
special points of enhanced symmetry in the coset where the torus is identified to
one of the four maximal toroids of [S̃O(16)/Zi]×E8, where Zi is an element of the
center Z2 ×Z2 of the universal covering S̃O(16). For Zi = Z2, (resp. Zi = Z2 ×Z2)
this yields the gauge group (E8 ×E8)L × (E8 ×E8)R, which yields after truncation
to the maximal supersymmetric type IIB (resp. IIA) string theory.

One may first ask if the non-abelian extension of the gauged U(1)16
L ×U(1)16

R to
(E8 ×E8)L × (E8 ×E8)R, which appear at these enhanced symmetry points are en-
coded in D+++

24 , as do the non-abelian gauging of maximal supergravities in E+++
8 .

The answer is no, as spinor representations of D16 cannot appear in the adjoint
representation of D+++

24 . This means that one would have to extend the algebra of
D+++

24 to include fields not contained in the adjoint representation of the generators
if one wishes to recover the information encoded in the torus compactification at
these enhanced symmetry points.

The problem is not limited to enhanced symmetry points involving spinor rep-
resentations of the group. The stringy nature of the massless degrees of freedom
enlarging the abelian gauging to a non abelian one at enhanced symmetry points
has no counterpart in the non-abelian gauging of maximal supergravities which ap-
pear in E+++

8 and which are studied in [2, 39]. These indeed do not introduce new
degrees of freedom. One might then expect that the D+++

24 fields do not comprise
the genuine string degrees of freedom of the bosonic string. Similarly, despite the
fact that E+++

8 does contain spinor representations of orthogonal groups, the E+++
8

fields are not expected to comprise genuine superstring degrees of freedom such
as the massless fields resulting from torus compactifications at enhanced symmetry
points. In that case, if the the full set of string degrees of freedom are to be included
in some M-theory project, its algebraic description would transcend the description
by the E+++

8 fields.
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Why Does the Universe Inflate?

S.W. Hawking

Can you hear me?

It is a great pleasure for me to be back again in Chile, to celebrate the 60th
birthday of an old friend, and esteemed colleague, Claudio Bunster, whom I have
known for almost 40 years. Claudio has done so much for science in general, and for
science in Chile in particular. Being in the city of Valdivia where CECS, the center
he created, is located, is quite meaningful to me.

Twenty-five years ago, we held a Nuffield workshop on the Very Early Universe
in Cambridge. The inflation scenario had just been proposed, by Guth and others, to
account for many of the otherwise unexplained features of the Hot Big Bang model.
The original Old Inflation proposal depicted in Fig. 1, of thin walled bubbles, form-
ing in a meta-stable vacuum state, was shown not to work. If the bubble formation
rate was high, the bubbles would be close together, and inflation would not last long
enough. On the other hand if the bubble formation rate was low, the bubbles would
be so far apart, that they never join up and thermalize.

Instead, a different scenario, shown in Fig. 2, called new inflation was proposed.
I have got into trouble in the past, in assigning credit for new inflation, so I will just
say I first encountered the idea when I visited Andrei Linde in Moscow in October
1981.

The essential ingredient of new inflation, and of nearly all later inflationary pro-
posals, is that the scalar field that drives inflation, rolls slowly down an effective
potential. This slow roll down mechanism, enabled me, and a number of other peo-
ple, to calculate the perturbations that would be caused by quantum fluctuations in
the very early universe. Again I’m not going to stir up a hornets nest by trying to
assign credit for this. I leave that to the Nobel committee. At first, different people
got different results, but I invited the major players to a workshop in Cambridge in
the summer of 1982, and they nearly all came. After long and occasionally heated

S.W. Hawking
Department of Applied Mathematics and Theoretical Physics, Cambridge, UK
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for Beauty and Simplicity, DOI 10.1007/978-0-387-87499-9 10,
c© Springer Science+Business Media LLC 2009



148 S.W. Hawking

Time
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Fig. 1 Old inflationary scenario
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Fig. 2 New inflationary scenario

discussions, we all agreed on the amplitude and the spectrum of the perturbations
that would be generated by slow roll inflation.

• Amplitude

Δ2(k) =
1

24π2M4
P

V
ε

• Spectrum
Δ2(k)αkns−1 ,

where ns −1 = −4ε+ 2η .
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These predictions were spectacularly confirmed by Cobee 10 years later, and
then in more detail by W-map. They rank in importance with the discovery of the
expansion of the universe, and of the microwave background Radiation, because
they would explain the origin of structure in the universe, and ultimately our own
existence. It demonstrates that the early universe, is governed by quantum theory.

Slow roll inflation, is a mechanism for generating perturbations in a smooth back-
ground, that depends only on the shape of the effective potential, but is otherwise
independent of what is giving rise to the potential. This is fortunate, because there
is no agreement on the source of the potential. However whatever it is, one can ask,

Why did the universe inflate? Why did the scalar field start with a high value of
the potential, and run down to a minimum. Why didn’t it just start at the minimum?

In the original new inflation model, the universe was supposed to have started
out as a hot big bang model, and to have cooled to a meta-stable state, in which
the scalar field is delicately balanced at a maximum of the potential. This seemed
implausible, and it was unsatisfactory to invoke one hot big bang stage, to explain
another.

Instead, in this talk, I want to provide an answer to the question, that will apply
to any model of the potential. For that, one needs a theory of initial conditions. The
only well formulated theory I know, is the no boundary proposal. This says that in
the Euclidean regime, space time is compact, and without boundary. It is the only
natural boundary condition.

Ψ [hi j,Σ ] =
∫

Dge−S[g]

Sum over all metrics that have Σ as boundary
and where the induced metric on Σ is hij.

According to the no boundary proposal, the amplitude,Ψ , for a state with metric
h, and matter field’s φ , on a spacelike surface Σ , is given by the path integral over
all no boundary metrics, with those values on the surface Σ . For simplicity, I shall
consider only final states in which the metric is that of a three sphere of radius
a, and the matter fields are a single homogeneous scalar field, φ . The amplitudes
for slightly inhomogeneous final states, will be lower, and this, as Halliwell and
I first showed, leads to the fluctuations in the microwave background, that we all
discussed 25 years ago. My main concern in this talk however, will not be with these
inhomogeneous fluctuations, but with the homogeneous and isotropic background,
on which they occur. I will discuss large scale inhomogeneities at the end.

The amplitude,Ψ , is the wave function of the universe. It will obey the Wheeler
DeWitt equation.

[

−Gi jkl
δ 2

δhi jδhkl
− 3R(h)h1/2 + 2Λh1/2

]

Ψ [hi j] = 0

Where Gi jkl is the metric on superspace, Gi jkl = 1
2 h−1/2(hikh jl + hilh jk −hi jhkl)

and 3R is the scalar curvature of the intrinsic geometry of the three-surface.
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In the case that the surfaces, Σ , are three spheres of radius a, and the matter is a
single scalar field φ , this is a wave equation in the (a,φ) plane, with a playing the
role of time.

1
2

[
∂ 2

∂a2 −a2 − 1
a2

∂ 2

∂φ2 + a4V

]

Ψ(a,φ0 = 0

In the Euclidean region, a2V < 1, there will be a real Euclidean solution of the
field equations, and the wave function will be exponential. Outside this region, how-
ever, there will only be complex solutions, and the wave function will oscillate
rapidly.

One can represent the wave function as the product of a rapidly varying phase,
C, and slowly varying amplitude, B. Plugging this in the Wheeler DeWitt equation,
one finds that C obeys the Hamilton Jacobi equation.

Ψ = BeiC

∇C ·∇C + J = 0

∇B ·∇C = 0

One can therefore interpret the wave function by WKB, as corresponding to a
family of Lorentzian solutions of the field equations. The trajectories of the solutions
are given by the gradient of C, raised by the Wheeler DeWitt metric. The amplitude,
B, obeys a conservation equation, which implies that the amplitudes of individual
solutions are constant over the evolution of the solutions. This is shown in more
detail in a paper by Jim Hartle, Thomas Hertog, and myself.

These Lorentzian solutions, start at different potentials, and roll down to the min-

imum. The amplitude for a solution that starts at a potentialV0, will be e
3

4πV0 . Clearly,
this strongly favors starting at a low value of the potential, which would give little
or no slow roll inflation (Fig. 3).

N

A
m

pl
itu

de Amplitude = e1/m2N

Fig. 3 No boundary amplitude
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This has been recognized to be a problem with the no boundary proposal, for
some time. I think the answer, is that there are two different probabilities involved.
The amplitude gives the probability for the entire universe. However, one does not
observe the entire universe, but only a Hubble volume around oneself. The number
of such Hubble volumes at a given matter density, is proportional to the volume of
the universe at that time, which in turn is proportional to e3N , where N is the number
of e-foldings of inflation. Thus on a frequency definition of probability, the probabil-
ity of observing a Hubble volume of a given history, is proportional to the probability
of that history, times e3N .

The volume weighting transforms the probability distribution over N, the amount
of inflation. It can more than compensate for the reduction in amplitude, due to a
higher starting value of the potential, if the slow roll parameter, ε , at the start of in-
flation, is less than the potential, V0, in Planck units. This is the same as the condition
at which it is argued that quantum fluctuations will drive the volume averaged po-
tential upwards, in the eternal inflation scenario. However, this derivation of eternal
inflation, is not gauge invariant, and violates energy conservation and the constraint
equations. The argument I have given for volume weighting, suffers from none of
those difficulties (Fig. 4).

The condition, ε < V , was not satisfied at the time the microwave fluctuations
we observe within our horizon were produced, because V/ε was about 10−5 at that
time. This indicates that inflation must have started much earlier, and that N, the
number of e-foldings of inflation, must have been much greater than 60.

It is reasonable to suppose that near the minimum, the potential is quadratic, plus
a cosmological constant. If the potential, continued to be quadratic all the way up
to the Planck density, the volume weighted probability will increase with increasing
starting potential, only for starting potentials near the Planck density. Even at the
Planck density, the volume weighted probability, will only be equal to that, for one
e-folding of inflation.

Surface of present
matter density

Hubble
Volume

P(Observing a Hubble Volume) = | Ψ |2 × Number of Hubble Volumes

∝ | Ψ |2 e3N

Time

Space

Fig. 4 Volume weighting
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This diagram, taken from the paper by Hartle, Hertog, and myself, shows the
volume weighted probability as a function of the potential, for a quadratic potential
with minimum at φ = 0. On the other hand, for a solution that starts at a maximum
or a saddle point, the probability distribution will favor very large N, if the curva-
ture of the potential at the maximum is low. The dominant contribution is therefore
likely to come from broad saddle points below the Planck density. The metrics will
be well within the semi classical regime. They would start out with a Hawking–
Moss instanton, a de Sitter like state which is unstable, and begins to run down the
potential hill. The origin of the universe, is in the low energy regime of M theory, in
which four dimensional general relativity, is a good approximation (Fig. 5).

The volume weighting implies that the universe starts at sufficiently high po-
tential, that the eternal inflation condition, V > ε , is satisfied. But this is also the
condition that the fluctuations in the scalar field are so large, that the surfaces of
constant scalar field, don’t foliate the spacetime. The usual calculation of inhomo-
geneous perturbations, uses the constant scalar field gauge. This will break down for
modes that leave the horizon while the eternal inflation condition, is satisfied. For
such modes, spatial gradients will not be important. Each mode will evolve indepen-
dently, like a separate universe, and may fall into different vacua. The universe will
be a mosaic of nearly homogeneous patches, like the structure predicted by eternal
inflation. Unlike the eternal inflation scenario however, the no boundary amplitude
with volume weighting, gives this result in a gauge invariant manner, without viola-
tion of the conservation or constraint equations. Any history is finite in duration, so
inflation certainly is not eternal (Fig. 6).

I have shown that the no boundary proposal, with volume weighting, can explain
why the universe inflated, why it started with a high potential, and ran down to
a minimum. The volume weighting implies that the universe starts at sufficiently
high potential, that different regions evolve independently. This gives the universe a
mosaic structure.
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Fig. 5 Volume weighted probability
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j = jm

Potential with a Maximum at j = jm

Fig. 6 Volume weighted probability

I would like to thank the organizers of this meeting again, for inviting me, to this
beautiful country, which I discovered about 10 years ago. My stay in Chile is not
over, and I look forward to the coming days.

Thank you for listening.



Kac–Moody Algebras and the Structure
of Cosmological Singularities: A New Light
on the Belinskii–Khalatnikov–Lifshitz Analysis

Marc Henneaux

Abstract The unexpected and fascinating emergence of hyperbolic Coxeter groups
and Lorentzian Kac–Moody algebras in the investigation of gravitational theories in
the vicinity of a cosmological singularity is briefly reviewed. Some open questions
raised by this intriguing result, and some attempts to answer them, are outlined.

1 Introduction

As reported by Khalatnivov [46], the problem of cosmological singularities was
considered by Lev Landau as one of the three most important problems of theoretical
physics. While great breakthroughs occurred in the understanding of supercon-
ductivity and phase transitions – the other two important problems identified by
Landau – taming singularities in gravity theory (understanding their structure and
their possible resolution in an appropriate completion of gravity) remains to this
day a challenge which raises a vast number of unanswered questions, in spite of the
important advances achieved in the field in the last 50 years or so.

A major development in the area was the construction by Belinskii, Khalatnikov
and Lifschitz (“BKL”) [4,5] of a general solution of the gravitational field equations
in the vicinity of a spacelike (“cosmological”) singularity. Their work led recently
to new investigations pointing to a fascinating and somewhat unexpected connec-
tion between gravity and Lorentzian Kac–Moody algebras [17, 23]. The purpose of
article is to briefly review these recent developments and to provide a guide to the
literature on the subject.

It is a pleasure to dedicate this article to Claudio Bunster, long term collabora-
tor and friend, on the occasion of his 60th birthday. The choice of cosmological
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singularities is a particularly appropriate subject since it is Claudio (then named
“Claudio Teitelboim”) who introduced some 30 years ago the author to the remark-
able BKL analysis (interest in the BKL analysis was then motivated by the desire to
understand the “zero signature” limit of gravity [35, 37, 56, 57]).

2 Original BKL Analysis and Extension to Higher Dimensions

In their investigation of the generic dynamical behavior of the gravitational field in
the vicinity of a cosmological (=spacelike) singularity, Belinskii, Khalatnikov and
Lifschitz discovered the following remarkable features in four dimensions [4, 5]:

• As one reaches the singularity, the spatial points decouple in the sense that the
dynamical Einstein equations, which are partial differential equations, become
ordinary differential equations with respect to time (one finite number of ODE’s
at each spatial point).

• In that limit, the off-diagonal components of the metric freeze (i.e. tend to def-
inite limits) so that the non trivial dynamics is carried by the three independent
scale factors that indicate how distances along three independent spatial direc-
tions change with time.1

• The dynamics of the scale factors exhibit a never-ending, oscillatory behavior of
chaotic type with an infinite number of oscillations as one goes to the singularity
(see also [50]).

This work was reformulated by Chitre and Misner in terms of a billiard motion in
the 2-dimensional hyperbolic space of the dynamically independent scale factors
(the three scale factors are related by the Hamiltonian constraint) [11, 51]. Chaos
is related in that picture to the finiteness of the volume of the billiard table. This
reformulation turns out to be crucial for exhibiting the symmetries.

The extension to higher dimensions was started by Belinskii and Khalatnikov in
five dimensions [3] and continued in [29, 30, 32] to all spacetime dimensions, with
the surprising result that while the first two features (decoupling of spatial points
and freezing of off-diagonal components) still hold, chaos disappear in spacetime
dimensions ≥11. The infinite number of oscillations of the scale factors is replaced
asymptotically by a monotonic Kasner regime. In particular, 11-dimensional pure
gravity is non chaotic. However, if one includes the 3-form of 11-dimensional su-
pergravity, chaos reappears [15].

The understanding of the higher dimensional dynamics in terms of a billiard mo-
tion was also achieved and led to the same picture of a cosmological billiard ball
moving in an hyperbolic space of higher dimension [17, 23, 41, 42]. This picture
still holds if one includes dilatons and p-forms: the dilatons play the role of ex-
tra scale factors, while the p-form components play the role of extra off-diagonal
components.

1 See [4, 5, 23] for more information on the choice of slicing adapted to the singularity and the
definition of scale factors.
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It should be stressed that the emergence of chaos for those models that are chaotic
is a statement valid for generic initial data. Chaos may be absent in models with par-
ticular spacetime symmetries, which form a set of measure zero. This corresponds
to removing billiard walls and enlarging thereby the billiard table, making its origi-
nally finite volume infinite (see [16, 31]).

3 Emergence of Coxeter Groups and Kac–Moody Algebras

The billiard picture just described holds for any Lagrangian of the form

S[gμν ,φ ,A(p)] =
∫

dDx
√
−(D)g

[

R−∑
i

∂μφi∂ μφi

−1
2∑p

1
(p + 1)!

el(p)φF(p)
μ1···μp+1F(p)μ1···μp+1

]

+ “more” (1)

where D is the spacetime dimension. The integer p ≥ 0 labels the various p-forms
A(p) present in the theory, with field strengths F (p) equal to dA(p),

F(p)
μ1···μp+1 = ∂μ1A(p)

μ2···μp+1 ± p permutations . (2)

In fact, the field strength could be modified by additional coupling terms of
Yang–Mills or Chapline–Manton type [6, 10] (e.g. FC = dC(2) −C(0)dB(2) for
two 2-forms C(2) and B(2) and a 0-form C(0), as it occurs in ten-dimensional type
IIB supergravity), but we include these additional contributions to the action in
“more”. Similarly, “more” might contain Chern–Simons terms, as in the action for
11-dimensional supergravity [13]. The real parameters l(p)i measure the strengths
of the couplings to the dilatons.

However, a new feature emerges for theories which have the property that when
reduced to three dimensions on a torus, their Lagrangian equals (after dualization to
scalars of all the fields that can be dualized) the sum of the standard Einstein–Hilbert
action plus the scalar Lagrangian of the non-linear sigma-model G/H, where G is
some simple Lie group and H its maximal compact subgroup,

L = LE +LG/H. (3)

This class of theories include pure gravity in D = d + 1 dimensions (for which the
group G is SL(d−1,R) and H = SO(d−1) [9,14]), or 11-dimensional supergravity,
for which G = E8,8 and H = SO(16) [12, 49].

The crucial feature that emerges in that case is that the billiard table is then a
Coxeter polyhedron and hence the billiard group (generated by the reflections in the
billiard walls) is a Coxeter group [17]. This means that the angles of the billiard
table are acute and equal to integer submultiples of π (see [38] for information on
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Coxeter groups relevant to this context). Furthermore, the Coxeter polyhedron is a
simplex and the matrix built out of the scalar products of the wall forms wi defining
the billiard

Ai j = 2
(wi|wj)
(wi|wi)

(4)

turns out to be the Cartan matrix of the Lorentzian Kac–Moody algebra G++ [17,
21]. Here, G++ denotes the overextension [34,43,45] of the algebra G. Namely, it is
obtained by adding a further simple root to the untwisted affine extension G+ of G.
That root, the “overextended root” is attached to the affine root by a single line. We
give here a few examples.

• The algebra A++
1 relevant to pure, four-dimensional gravity.

• The algebra E++
8 ≡ E10 relevant to 11-dimensional supergravity.

Both A++
1 and E10 are hyperbolic, which means that if one removes any node

from their Dynkin diagram, one obtains a Dynkin diagram which is either of
finite or affine type. For instance, in the case of E10, one gets successively (re-
moving the node −1, 0, etc.): E+

8 which is affine, and A1 ⊕E8, A2 ⊕E7, A3 ⊕E6,
A4 ⊕D5, A5 ⊕A4, A6 ⊕ A1 ⊕ A2, A8 ⊕A1, D9, A9, which are all of finite type
(Figs. 1 and 2).

• The algebra B++
8 ≡ BE10 relevant to N = 1 ten-dimensional supergravity with

one vector multiplet.
As shown in [36], “split symmetry controls chaos” and hence, it is the same
billiard that controls the dynamics of ten-dimensional supergravity with k vector
multiplets, in which case the symmetry algebra in three dimensions so(8,8 + k)
whose maximal split subalgebra so(8,9). The algebra BE10 is easily verified to
be hyperbolic (Fig. 3).

• The algebra D++
8 ≡ DE10 relevant to pure N = 1 ten-dimensional (Fig. 4).

The algebra DE10 is also easily verified to be hyperbolic.

1−1 0

Fig. 1 The hyperbolic algebra A++
1 . The node 1 defines the Dynkin diagram of A1, the nodes

1 and 0 form the Dynkin diagram of its affine extension, while the nodes 1, 0 and −1 define its
overextension A++

1

−1

8

76543210

Fig. 2 The hyperbolic algebra E10. The nodes labelled 1, . . . , 8 form the Dynkin diagram of
E8, the nodes 0,1, . . . , 8 form the Dynkin diagram of its affine extension E+

8 , while the nodes
−1,0,1, . . . , 8 define its overextension E++

8 ≡ E10
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-1 87

1

654320

Fig. 3 The hyperbolic algebra BE10. The nodes labelled 1, . . . , 8 form the Dynkin diagram of
B8, the nodes 0,1, . . . , 8 form the Dynkin diagram of its affine extension B+

8 , while the nodes
−1,0,1, . . . , 8 define its overextension B++

8 ≡ BE10

-1

1
8

7

654320

Fig. 4 The hyperbolic algebra DE10. The nodes labelled 1, . . . , 8 form the Dynkin diagram of
D8, the nodes 0,1, . . . , 8 form the Dynkin diagram of its affine extension D+

8 , while the nodes
−1,0,1, . . . , 8 define its overextension D++

8 ≡ DE10

We stress that the emergence of the Kac–Moody structure holds for all theories
whose toroidal dimensional reduction to three dimensions has the properties indi-
cated above, but it is by no means necessary to actually perform the reduction to
three dimensions to get the billiard. This follows from the dynamics for generic
initial conditions.

It also turns out that the billiard table is a fundamental domain for the action of
the Weyl group on hyperbolic space (upper sheet of the unit hyperboloid). That it is
acute-angled is crucial in this respect.

The fact that one gets the Weyl group of a Lorentzian Kac–Moody algebra is
rather remarkable as it depends on the presence of all walls. As analysed in [39]
removing some walls, as dictated for instance by spatial cohomology in a regime
of intermediate asymptotics [58], might yield Coxeter groups that are not equal to
Weyl groups. One might then get a billiard table that is not acute-angled, or which
is not a simplex.2 Getting the Weyl group of a Kac–Moody algebra is thus a quite
non trivial phenomenon.

Finally, we note that hyperbolic Kac–Moody algebras exist only up to rank 10.
In rank 10, there are four of them, namely, E10, BE10, DE10 already encountered,
as well as CE10 which is the algebra dual to BE10 (its Dynkin diagram is obtained
by reversing the arrow connecting the nodes 7 and 8). The Weyl group of rank 10
algebras act naturally on 9-dimensional hyperbolic space, and hyperbolicity trans-
lates itself in the property that the billiard table (fundamental domain) has finite
volume. The disappearance of chaos for pure gravity as one increases the spacetime
dimensions follows from the fact that the algebras A++

k are hyperbolic up to A++
7 ,

while A++
k is not hyperbolic for k ≥ 8 [20].

2 It should also be recalled that in hyperbolic space, Coxeter polyhedra need not be simplices.
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For information we note that while simplex Coxeter groups exist in hyperbolic
space up to dimension 9 as we have just recalled, non simplex Coxeter groups exist
in hyperbolic space up to dimension 996 [59].

4 Motion in Cartan Subalgebra

One can precisely reformulate the billiard dynamics as a motion in the Cartan sub-
algebra of the associated Kac–Moody algebra. To that end, let us recall the basic
features of a Kac–Moody algebra [45].

A Kac–Moody algebra is defined by a (generalized) Cartan matrix Ai j (i, j =
1, . . . , N), namely, a (square) matrix with the following properties:

• Aii = 2
• Ai j ∈ Z− (i 
= j)
• Ai j 
= 0 ⇒ A ji 
= 0.

The corresponding Kac–Moody algebra A is generated by 3N generators {hi,ei, fi}
(i = 1, . . . , N = r + 2) subject to the following relations

[hi,h j] = 0 (5)

[hi,e j] = Ai je j, [hi, f j] = −Ai j f j, [ei, f j] = δi jhi (6)

[ei, [ei, [ei, [· · · , [ei,e j]] · · · ]
︸ ︷︷ ︸

1−Ai j times

= 0, [ fi, [ fi, [ fi, [· · · , [ fi, f j]] · · · ]
︸ ︷︷ ︸

1−Ai j times

= 0 (7)

Relations (5) and (6) are the Chevalley relations, relations (7) are the Serre relations.
The integer N is called the rank of the algebra.

A central feature of Kac–Moody algebra is the triangular decomposition,

A = N −⊕H ⊕N +

where (a) H is the Cartan subalgebra (linear combinations of hi); (b) N + contains
the linear combinations of the “raising operators” ei and their multiple commutators
[ei,e j], [ei, [e j,ek]], etc. not killed by the above relations; and (c) N − contains the
linear combinations of the “lowering operators” fi and their multiple commutators
[ fi, f j], [ fi, [ f j, fk]], etc. not killed by the above relations. This generalizes the well-
known triangular decomposition of finite-dimensional simple Lie algebras, e.g.

⎛

⎝
a b c
d e f
g h −a− e

⎞

⎠=

⎛

⎝
0 0 0
d 0 0
g h 0

⎞

⎠+

⎛

⎝
a 0 0
0 e 0
0 0 −a− e

⎞

⎠+

⎛

⎝
0 b c
0 0 f
0 0 0

⎞

⎠

for sl(3).
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One has
[h,ei] = αi(h)ei

where αi ∈ H� are the simple roots. If

[ei1 , [ei2 , [· · · , [eim−1 ,eim ]] · · · ]] 
= 0,

then αi1 +αi2 + · · ·αim is a (positive) root,

[h, [ei1 , [ei2 , [· · · , [eim−1 ,eim ]] · · · ]]]
= (αi1 +αi2 + · · ·αim)(h) [ei1 , [ei2 , [· · · , [eim−1 ,eim ]] · · · ]]

(Jacobi identity). One has similar relations on the negative side. If the matrix Ai j is
symmetrizable,

Ai j = 2di Si j, di > 0, Si j = S ji,

as we shall assume here, on can define a scalar product in the real linear span of the
simple roots,

(αi|α j) = Si j.

It is customary to normalize the scalar product such that the longest roots have
length squared equal to 2.

One distinguishes three cases, according to which the scalar product is Euclidean
(finite case), positive semi-definite (affine case) or of neither of these two types
(indefinite case). It is only in the Euclidean case that the algebra is finite-
dimensional. In the other two cases, it is infinite-dimensional.

In the affine and indefinite cases, a root can be real (=spacelike) or imaginary
(=timelike or null). Simple roots are real; real roots are similar to roots of finite-
dimensional, simple Lie algebras: they are non-degenerate and furthermore, if α is
a real root, the only multiples of α that are roots are ±α . By contrast, the imaginary
roots do not enjoy these properties and are poorly understood. The indefinite case
with Lorentzian signature is called “Lorentzian”.

The Weyl group of A is generated by fundamental Weyl reflections:

si : λ → si(λ ) = λ −2
(λ |αi)
(αi|αi)

αi.

It is a discrete subgroup of O(N − 1,1)+ in the Lorentzian case (time orientation
preserving elements of O(N −1,1)). It has a well defined action on the upper light
cone and on the upper sheet of the unit hyperboloid ((N−1)-dimensional hyperbolic
space). The fundamental Weyl chamber is defined in terms of the simple roots by
αi(h) ≥ 0. If it is completely contained within the light cone, the algebra is called
hyperbolic. Its intersection with hyperbolic space has then finite volume and is a
fundamental domain for the action of the Weyl group on hyperbolic space.

The dictionary between the billiard motion and the Kac–Moody algebra is given
in the following table [17, 20]
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Gravity side Kac–Moody side
Scale factors ↔ Cartan degrees of freedom

Billiard motion ↔ Lightlike motion
in Cartan subalgebra

Walls ↔ Hyperplanes orthogonal
to simple roots

Reflection against a wall ↔ Fundamental Weyl reflection

Finite volume of billiard table ↔ Hyperbolic algebra

5 Hidden Symmetries?

The intriguing emergence of the Weyl group of a Kac–Moody algebra in the BKL
limit has prompted the conjecture that the Kac–Moody algebra itself might be a
hidden symmetry of the corresponding gravitational theory (possibly augmented by
new degrees of freedom) [22]. Part of the excitement regarding this conjecture is due
to the fact that the same conjecture was made (earlier in the case of some of the ap-
proaches) following different lines in [33,40,43,44,52,60]. Attempts to substantiate
the conjecture have been made based on the idea of non linear realizations, in which
the conjectured symmetry is manifest [22, 60]. The problem is then to connect the
dynamics of the non linear sigma model to the (super)gravity dynamics through an
appropriate dictionary and to establish their equivalence (with the possible addition
of new degrees of freedom on the gravity side). It is not the purpose here to review
all the interesting work that has gone into studying various aspects of this conjec-
ture. We shall only allude to the approach inspired by the cosmological billiards,
which is the exclusive subject of this article.

The BKL analysis suggests to consider the (1 + 0)-non linear sigma model
G++/K(G++) (geodesic motion on G++/K(G++)) [22]. Namely, one goes be-
yond the dynamics in the Cartan subalgebra by including as dynamical variables
the fields associated with the positive roots. This approach has met with spectacu-
lar successes at low “levels” [22] (see [18] for a systematic analysis) since its low
level truncation reproduces the dynamics of supergravity consistently truncated to
homogeneous modes (in a sense made precise in [22]). But no one has been able to
push it systematically to higher levels so far to include the full supergravity theory.
Further work (and new ideas) appears to be necessary. Part of the problem is that
the dictionary between the sigma model variables and the supergravity fields is not
understood. A better control of duality appears also to be necessary. The same suc-
cess works, up to the same levels, if one includes the fermionic degrees of freedom,
leading, on the sigma-model side, to a spinning particle action [24, 26–28]

Two other spectacular findings provide additional support to the conjecture:

• The quantum corrections to M-theory are compatible with the E10 algebraic
structure, in the sense that they correspond to roots of E10 [19] (see also [1, 2,
25, 47, 48] for further discussions and developments).
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• The massive deformation of type IIA supergravity corresponds to a level 4 root
of E10 (or E11) [21,53], a result that can be extended to other deformations of the
theory in lower dimensions (see the original works [7, 8, 54, 55] for entries into
this fast growing literature).

6 Conclusions

We have reviewed the dynamics of the gravitational field in the vicinity of a cosmo-
logical singularity pioneered by the remarkable work of BKL and have shown that
it can be described in terms of fascinating structures: hyperbolic Coxeter groups and
Kac–Moody algebras. This seems to be the tip of an iceberg indicating an even more
richer structure at a deeper level, yet to be discovered.
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Black Holes with a Conformally Coupled
Scalar Field

Cristián Martı́nez

Abstract We consider gravity in presence of a cosmological constant in arbitrary
spacetime dimensions with a conformally coupled scalar field and a self-interacting
potential. The energy-momentum tensor is traceless when the constant appearing in
front of the non-minimal coupling term and the power of the self-interacting poten-
tial are properly chosen. First, configurations with a constant scalar field are studied.
In the general case, the spacetime is required to be an Einstein space. However, for
a special value of the scalar field this condition can be relaxed and it is enough that
the spacetime has a constant scalar curvature fixed by the cosmological constant.
In this case the cosmological constant and the self-interacting coupling constant are
related. The second part is devoted to searching black holes dressed with a confor-
mally coupled scalar field in dimensions greater than four. Since the existence of
a no-go theorem discarding static and asymptotically flat black holes in higher di-
mensions, we introduce a cosmological constant and a self-interacting potential in
the action. Using a standard static ansatz for the metric, which includes both spheri-
cally symmetric as topological black holes, and a scalar field depending only on the
radial coordinate, it is shown that there are no higher-dimensional counterparts of
the known black holes in three and four dimensions.

1 Introduction

The organizers of Claudio’s Fest have subtitled this volume as “The Quest for
Beauty and Simplicity.” It is a very good choice that describes the outstanding sci-
entific contributions of Claudio Bunster. Trying to follow the spirit, the simplest
form of matter interacting with a black hole that one could consider corresponds
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to a single real scalar field. However, when this field is minimally coupled and the
spacetime is asymptotically flat, the so called no-hair conjecture [1–3] indicates that
this class of black hole would not exist. In the last 30 years, a large number of arti-
cles have studied this problem and recent works can be found in [4–14]. However,
there are different ways to circumvent this conjecture as we show below.

In the 1970s a four-dimensional and spherically symmetric asymptotically flat
black hole [15, 16] was reported. This black hole is dressed with a conformally
coupled scalar field, i.e., when the corresponding stress-energy tensor is traceless.
Conformally coupled scalar fields in General Relativity have been used to model
quantum effects in semiclassical theories [17–23]. This model has a well posed
initial value formulation [24], and it was shown to reproduce better – than the mini-
mally coupled scalar field – the local propagation properties of Klein Gordon fields
on Minkowski spacetime [25].

A black hole solution, where the scalar field is conformally coupled and regular
everywhere1 was found in [26]. In this three-dimensional black hole, the space-
time is asymptotically anti-de Sitter because a negative cosmological constant is
included. This black hole solution was extended by considering a one parameter
family of conformal self-interacting potential [27]. The presence of a cosmological
constant allows to find exact four-dimensional black hole solutions, where the scalar
field is regular on and outside the event horizon [28–31]. Numerical black hole so-
lutions can also be found in four [32–36] and five dimensions [37]. Further exact
solutions were found in [38].

Some interesting aspects of these black hole solutions are studied in [39–61]. Re-
cently, using a combination of analytical and numerical methods, it was shown [62]
that there no other four-dimensional static, spherically symmetric black hole solu-
tions with a conformally coupled scalar field in presence of a positive cosmological
constant, satisfying the dominant and strong energy condition between the event and
cosmological horizon, besides the solution reported in [28].

In this contribution, we are interested in higher-dimensional solutions of the
Einstein equations with a cosmological constant and a conformally coupled self-
interacting scalar field. After introducing the model in Sect. 2, we analyze the
constant scalar field configurations in Sect. 3. In the general case, the spacetime
is required to be an Einstein space, however, for a special value of the scalar field
this condition is relaxed and the spacetime must have constant scalar curvature, and
the cosmological constant and the self-interacting coupling are related. Section 4 is
devoted to search black hole solutions with non-constant conformally coupled scalar
field in dimensions greater than four. It is known that in absence of a cosmological
constant and a self-interacting potential a static, spherically symmetric black hole
conformally dressed exist only in four dimensions. In this way, the quest of possible
higher-dimensional black holes requires to include them in the action. Using a stan-
dard static ansatz for the metric and the scalar field, which include the possibility
of topological event horizons, we show by direct integration of the field equations
that there are no higher-dimensional black holes with a conformally coupled scalar
field. Finally, concluding remarks are presented in Sect. 5.

1 In the previous four-dimensional counterpart [15, 16] the scalar field diverges at the horizon.
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2 The Conformal Scalar Coupling

In d spacetime dimensions the action for gravity, in presence of a cosmological
constantΛ , with a non-minimally coupled scalar field φ is given by,

I[gμν ,φ ] =
∫

ddx
√−g

[
R−2Λ

2κ
− 1

2
gμν∂μφ∂νφ − ξ

2
Rφ2 −αφ p

]

, (1)

where κ and α are the gravitational and self-interaction coupling constants, respec-
tively. The matter piece of the action is invariant under the conformal transforma-
tions gμν → Ω 2gμν and φ → Ω

2−d
2 φ , provided that ξ and p take the following

unique values:

ξ =
1
4

d−2
d−1

and p =
2d

d−2
. (2)

With these values in the action we say that the scalar field is conformally coupled to
gravity. Hereafter, we will consider only this case.

The field equations derived from the action are

Gμν +Λgμν = κT φ
μν , (3a)

�φ − ξRφ− pαφ p−1 = 0, (3b)

where the energy-momentum tensor is

T φ
μν = ∂μφ∂νφ − 1

2
gμνgαβ∂αφ∂β φ −αgμνφ p + ξ

[
gμν�−∇μ∇ν + Gμν

]
φ2.

(3c)
This energy-momentum tensor differs from the standard one by the last term,

which is proportional to ξ , and that comes from the non-minimal coupling Rφ2 of
the action. Note that the trace of T φ

μν vanishes on shell

T φ μ
μ =

(
d−2

2

)

φ
[
�φ − ξRφ− pαφ p−1]= 0. (4)

Thus, the trace of (3a) gives
R =

2Λd
d−2

. (5)

Then, all the possible solutions of this theory have a constant scalar curvature.
In general, (3b) can be derived from (3a). To see this, one can take the covariant

derivative of Einstein equations (3a)

∇νGν
μ +Λ∇νδνμ = κ∇νT φ

μ
ν ,

and since that ∇νGν
μ and ∇νδνμ identically vanish,

∇νT φ
μ
ν = ∂μφ

[
�φ − ξRφ− pαφ p−1]= 0.
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Thus, if φ is not a constant, the conservation of the energy-momentum tensor implies
(3b). The case of a constant scalar field, where (3b) is independent, will be studied
in the next section.

3 Solutions with a Constant Scalar Field

As it was noticed previously, it is interesting to comment on those solutions of the
field equations (3) for which φ = φo 
= 0 is a constant. For this configuration, (3)
reduce to:

(
1− ξκφo

2)Gμν +(Λ +καφo
p)gμν = 0, (6a)

R +α
p
ξ
φo

p−2 = 0. (6b)

Compatibility between the trace of (6a) and (6b) implies

φo
p−2 = −Λξ

α
(α,Λ 
= 0). (7)

Replacing this expression for φo in (6) we obtain

(
1−κξφo

2) [Gμν +Λgμν
]

= 0, (8a)

R− 2Λd
d −2

= 0. (8b)

If κξφo
2 
= 1, (8b) can be derived from (8a) and the general solution is given by any

Einstein spacetime with a constant scalar field satisfying (7). In the case κξφo
2 = 1,

the spacetime is not required to be an Einstein space, instead it must satisfy (8b),
which is a weaker condition. However, since φo

−2 = κξ , the consistency with (7)
implies that the ratio Λ/α is fixed in this case:

1
κ

= ξ
(

−Λ
α
ξ
) d−2

2

. (9)

Note that for odd and four dimensionsΛ and α should have opposite signs because
the gravitational constant κ is a positive real number.

It is easy to check that in absence of a self-interacting potential, i.e., α = 0, a
constant scalar field is only possible for a vanishing cosmological constant, Λ = 0,
and vice versa. Thus if κξφo

2 
= 1, the line element verifies Gμν = 0 and the scalar
field is an arbitrary constant. In the special case κξφo

2 = 1, the metric tensor must
satisfy R = 0.
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If one consider an additional conformal matter field, like the Maxwell field in
four dimensions or the non-linear generalization proposed in [63], i.e., a matter field
with a traceless energy-momentum tensor T c

μν , (8a) now reads

(
1−κξφo

2) [Gμν +Λgμν
]
= κT c

μν . (10)

In the same way as in four dimensions [28, 62], (10) corresponds to the Einstein
equation for the additional matter field with an effective gravitational constant κeff =
(
1−κξφo

2
)−1κ . Thus the case where

(
1−κξφo

2
)

< 0, i.e., when κeff is negative,
is weird because it is equivalent to having repulsive gravitational forces.

4 Black Hole Solutions

Now we are interested in searching static black hole spacetimes dressed with non-
constant scalar fields. As it was mentioned before, in presence of a non-constant
scalar field it is enough consider (3a), which can be written as

Rμν =
κ

1−κξφ2 [(1−2ξ )∂ μφ∂νφ −2ξφ∇μ∇νφ

+
1

d −1

(

αφ p − ξ
2

Rφ2 − 1
2
∂ρφ∂ρφ

)

+
2Λ

κ(d−2)

]

δ μν . (11)

In order to solve these equations we consider an extension of the general static and
spherically symmetric line element in d spacetime dimensions

ds2 = −eh(r) f 2(r)dt2 + f−2(r)dr2 + r2dσ2
d−2 and φ = φ(r), (12)

where dσ2
d−2 stands for the line element of the d −2-dimensional base manifold Σ ,

which is assumed to be an Einstein space with Ricci tensor Rm
n(Σ) = (d − 3)γδ n

m,
where m and n denote the d − 2 coordinates of the base manifold. For instance, in
d = 4, this means that Σ is a two-dimensional surface locally isometric to the sphere,
flat space, or hyperbolic manifold for γ = 1, 0, −1, respectively. This ansatz allows
accommodate possible topological black holes solutions. In principle, Σ is assumed
to be compact for ensuring compact black hole horizons.

The presence of a Kronecker delta in (11) suggests to subtract the different com-
ponents of the Ricci tensor. Moreover, the Ricci tensor is diagonal for the ansatz
(12) and its base manifold components are all the same, which will be denote by
Rm̄

m̄ ( no summation over m̄). Thus, the equations derived from Rt
t −Rr

r, Rt
t −Rm̄

m̄

and Rm̄
m̄ are respectively:

−d−2
2r

h′ =
κ

1−κξφ2

(
2ξφφ ′′ +(2ξ −1)φ ′2 − ξφφ ′h′

)
(13a)
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−1
2

[

f 2 ′′ +
(

3
2

h′ +
d−4

r

)

f 2′ +
(

h′′ +
h′2

2
+

d−3
r

h′
)

f 2
]

− d−3
r2 (γ− f 2)

=
2κξφφ ′

1−κξφ2

(
f 2

r
− f 2′

2
− h′ f 2

2

)

(13b)

− f 2′

r
− h′ f 2

2r
+

d−3
r2 (γ− f 2)

=
κ(d−1)−1

(1−κξφ2)

(

αφ
2d

d−2 − dΛφ2

4(d−1)
+

2(d −1)Λ
κ(d−2)

− f 2

2

(

φ ′2 +
(d−2)φφ ′

r

))

(13c)

It is convenient to divide the analysis of this equations in two cases: the first case
considersΛ = α = 0, and in the second one Λ and α a priori have no restrictions.

4.1 Case Λ === α === 0

The first solution of these equations, in four dimensions and γ = 1, was obtained by
Bocharova, Bronnikov and Melnikov in 1970 and independently by Bekenstein in
1974 [15, 16]. The line element has the form

ds2 = −(1−M/r)2dt2 +(1−M/r)−2dr2 + r2dΩ 2,

and the scalar field is

φ(r) =

√
6
κ

M
r−M

.

This solution (BBMB) is an extremal black hole, provided M > 0, and the singularity
of φ at the horizon r = M should not be considered as a physical pathology since a
particle does not feel infinite tidal forces when it is approaching the horizon [64].

One year before his tragic decease, Xanthopoulos in collaboration with Zannias
found [70] the general static, spherically symmetric and asymptotically flat solu-
tion of (13). They shown that in this family of solutions there is only one with a
smooth event horizon and it is the BBMB solution. Few months later Xanthopoulos,
now in collaboration with Dialynas [71], using transformations that related the Ein-
stein equations with a minimally coupled scalar field with the case of a conformally
coupled scalar field, shown that the previous result also holds for any spacetime
dimension greater than three. Thus the black hole solution only exists in four di-
mensions and it is the BBMB solution. Later Klimčı́k [72] confirmed this result by
the direct integration of the field equations including the three-dimensional case. In
what follow, we analyze how the presence of a cosmological constant and a self-
interacting potential could change such a surprising result.
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4.2 Case of Λ and α Not Simultaneously Null

As far as the author knows, the general solution of the involved equations (13) have
not been discovered. In order to get a more manageable system, a simple choice
is to set h′ = 0, i.e., to choose the metric function h(r) to be a constant. With this
simplification the system (13) reads:

0 = 2ξφφ ′′ +(2ξ −1)φ ′2 (14a)

− f 2′′

2
− d −4

2r
f 2 ′ − d −3

r2 (γ− f 2) =
2κξφφ ′

1−κξφ2

(
f 2

r
− f 2′

2

)

(14b)

− f 2′

r
+

d−3
r2 (γ− f 2)

=
κ(d−1)−1

(1−κξφ2)

(

αφ
2d

d−2 − dΛφ2

4(d−1)
+

2(d −1)Λ
κ(d−2)

− f 2

2

(

φ ′2 +
(d−2)φφ ′

r

))

(14c)

The main simplification comes from (14a) since that it only involves the scalar field
and it is integrable giving the simple expression

φ(r) =
(

A
r + B

) d−2
2

, (15)

where A and B are integration constants.
In the case h′ = 0, before dealing with (14b) and (14c), it is very useful to consider

(5), which leads

R = − f 2′′ − 2(d−2)
r

f 2 ′ +
(d −2)(d−3)

r2 (γ− f 2) =
2Λd
d−2

. (16)

This equation can be directly integrated and one obtains

f 2(r) = γ+ cr2 +
a

rd−3 +
b

rd−2 , (17)

where a and b are integration constants, and c = −2Λ [(d − 1)(d− 2)]−1. Now, re-
placing (15) and (17) in (14b) and (14c), we obtain

bd
(
(r + B)d−1 −κξAd−2(r + B)

)
= (d −2)κξAd−2

(
2γrd−1 + a(d−1)r2 + bdr

)

(18a)
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2(2−d)(r + B)2rdκΛ + 8b(d−1)2
(

A2−d(r + B)d − (r + B)2κξ
)

= κ
(
(−2 + d)(2B + r)

(
(−2 + d)(−1 + d)

(
br + ar2 + r−1+dγ

)
−2r1+dΛ

))

+8κA2(d−1)αrd (18b)

respectively. These equations can be written as vanishing polynomials of the
variable r. This implies that each coefficient of these polynomials must be zero,
producing relations between the integration constants and the coupling constants
appearing in the action. In what follows an analysis of these equations, divided in
the cases d = 3, d = 4 and d > 4, will be presented.

4.2.1 Three-Dimensional Case

In the three dimensional case, γ = 0 and (18a) and (18b) reduce to

3
8

bB(8B−Aκ)+ b

(

6B− 3Aκ
4

)

r +
(

3b− aAκ
4

)

r2 = 0, (19)

1
4

bB2(8B−Aκ)+
3
4

bB(8B−Aκ)r +
(

6bB− 3Abκ
8

− 1
4

aABκ
)

r2

+
(

2b− 1
8

Aκ
(
a + B2Λ + 8A2α

)
)

r3 = 0, (20)

respectively. These equations generate three different solutions:

1. Stealth solution without self-interacting potential. In this case a = b = B =α = 0,
Λ = −l−2 and A is an arbitrary positive constant. The metric and the scalar field
take the form

ds2 = − r2

l2 dt2 +
l2

r2 dr2 + r2dθ 2, φ =

√
A
r
.

This spacetime corresponds to a massless BTZ black hole endowed with a non-
trivial scalar field whose energy-momentum tensor vanishes. This kind of matter
field, named stealth field can be found also in flat space [65].

2. Stealth solution with a self-interacting potential. In this case a = b = 0,Λ =−l−2

and A =
√

B2

8α l2 . As the previous case, we have a massless BTZ black hole with
a stealth field

φ =

√
|B|√

8αl2(r + B)
.

3. Black hole solution dressed with a conformally coupled scalar field. This class
is characterized by A = 8Bκ−1,a = 3B2(Λ + 512ακ−2) and b = 2B3(Λ +
512ακ−2). When the cosmological constant is negative Λ = −l−2 and B ≥ 0
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we have the black hole solution defined with the metric function

f 2(r) =
r2

l2 − (1−512ακ−2l2)
(

3B2

l2 +
2B3

l2r

)

,

and the scalar field

φ =

√
8B

κ(r + B)
.

This solution, without self-interacting potential, was found in [26], and it was
generalized for the case α 
= 0 in [27]. Remarkably the scalar field is regular
everywhere. The entropy of this black hole is proportional to area of the event
horizon, but the numerical factor is different to 1/4. The case of α = 0 is related
with the back reaction of a conformal field on the BTZ black hole [66], and it
was proved to be unstable against linear symmetric perturbations [67] like the
BBMB solution [68].

4.2.2 Four-Dimensional Case

In four dimensions, (18a) and (18b) read

bB

(

4B2 − 2
3

A2κ
)

+2b
(
6B2 −A2κ

)
r+
(
12bB−aA2κ

)
r2 +

(

4b− 2
3

A2γκ
)

r3 = 0,

(21)

3bB2(6B2 −A2κ
)
+ 12bBr

(
6B2 −A2κ

)−6r2 (−18bB2 + A2bκ+ aA2Bκ
)

+r3 (72bB−3A2(a + 2Bγ)κ
)
+ r4 (18b−A2κ

(
6A2α+ 3γ+ B2Λ

))
= 0, (22)

respectively. The following solutions can be obtained:

1. Stealth solutions. This case occurs when a = b = B = γ = 0. The line element is

ds2 = − r2

l2 dt2 +
l2

r2 dr2 + r2dσ2,

where Λ = −3l−2 and dσ2 is the line element of a surface locally isometric to
the two-dimensional flat space. The scalar field is

φ =

√
1

2l2α
|B|

r + B
,

with B 
= 0 and α > 0. In the case of a vanishing self-interacting coupling con-
stant, α = 0 the scalar field is φ = A/r, where A is arbitrary. Note that these
solutions are similar to those found in three dimensions with a vanishing energy-
momentum tensor.
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2. Black hole solution dressed with a conformally coupled scalar field. This class
is defined by A2 = 6B2κ−1, a = 2γB, b = γB2, and also it requires a relation
between α and Λ

α = − κ
36
Λ .

This relation is equivalent to the one described by (9) in the case of a constant
scalar field.
The lapse function is

f 2(r) = −Λ
3

r2 + γ
(

1 +
B
r

)2

,

and the scalar field

φ =

√
6
κ

|B|
r + B

.

Then we have two different black holes. When the cosmological constant is posi-
tive, γ = 1 and B < 0 the solution corresponds to the de Sitter black hole reported
in [28]. In the case of a negative cosmological constant, γ = −1 and B > 0 the
solution is a topological black hole [30].

4.2.3 Higher-Dimensional Case

Using the binomial theorem in (18a)

bd

(

rd−1 +(d−1)rd−2B + · · ·+ 1
2
(d−1)(d−2)Bd−3r2

+(d−1)Bd−2r + Bd−1 −κξAd−2(r + B)
)

= (d −2)κξAd−2
(

2γrd−1 + a(d−1)r2 + bdr
)

(23)

For d > 4, the only possible solution of the previous equation is a = b = γ = 0. Thus,
there are no black holes solutions in higher dimensions. This proves the conjecture
proposed in [69]. Replacing these values in (18b) we obtain the single condition

A2α+ B2ξΛ = 0. (24)

This condition contains the horizonless cases found in three and four dimensions.
Then it is possible to write a simple expression for any spacetime dimension: The
metric is defined by

ds2 = − r2

l2 dt2 +
l2

r2 dr2 + r2dσ2, (25)
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where l2 = −(d−1)(d−2)/(2Λ) and dσ2 is the line element of d−2-dimensional
Ricci flat manifold.2 The stealth scalar field is given by

φ(r) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(√
(d −2)2

8l2α
|B|

r + B

) d−2
2

for α > 0,

(
A
r

) d−2
2

for α = 0.

(26)

5 Concluding Remarks

The main result presented here is somewhat negative. Choosing h′ = 0 in the general
static ansatz (12) it was possible to prove that there are no black holes with a con-
formally coupled scalar field in dimensions greater than four. However, the analysis
of the field equations with a simplified version of the ansatz can be seen as a nec-
essary step before dealing the involved general case, which will be our next target.
Finally, I still remember the enormous emotion that I felt when the black hole solu-
tion [26] emerged from my notes. This happened at the very beautiful CECS’ house
in Santiago, where young students learnt about the quest for beauty and simplicity.
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Quantum Mechanics on Some Supermanifolds

Luca Mezincescu

Abstract Results of recent investigations on super Landau Models, are presented in
a way streamlined as to outline the difficulties connected to the formulation of non
relativistic motion on some supermanifolds and the subsequent solution of these
difficulties.

1 Introduction

In what follows I will present some results of recent investigations [1–6] on super
Landau Models, streamlined as to outline the difficulties connected to the formula-
tion of non relativistic motion on some supermanifolds and the subsequent solution
of these difficulties.

I will consider the quantum motion on some coset supermanifolds of the form
G/H where G is a supergroup while H can be just a group. More specifically I will
consider 1-dimensional non relativistic sigma models, of Brink Schwarz type, where
G acts in the target space. Such models have been considered only recently and I will
explain the heuristic reason for this is. Given the superalgebra g corresponding to G,
we seek such g’s which have an involution which is also an automorphism of this
algebra, and which upon quantization goes into the hermitian conjugation † with
respect to the naturally defined invariant inner product. It may happen that some
odd generators Q and Q† have the following anticommutation relation:

{
Q,Q†}= C. (1)

If C is not a positive definite operator the corresponding relation implies that there
must be negative norms in the corresponding quantum system, and this seems like
the end of the story. It may happen however that the G invariant Hamiltonian H, has
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nevertheless real eigenvalues and a complete system of eigenvectors whose norms
as mentioned before are not positive definite:

H |ΦA〉 = λA |ΦA〉 , (2)

〈ΦA|ΦB〉 = (−)g(A) δAB, (3)

where g(A) = ±1 when the corresponding norm of the vector |ΦA〉 is positive re-
spectively negative. We proceed in the following way: first we define the Hilbert
space metric operator G by:

G |ΦA〉 = (−)g(A) |ΦA〉 , G2 = 1, (4)

then we redefine the inner product1 as:

〈〈ΦA|ΦB〉〉 ≡ 〈GΦA|ΦB〉 = δAB. (5)

We can therefore introduce the ‡ Hermitian conjugation with respect to the new
inner product

〈〈ΦA |O|ΦB〉〉 =
〈〈O‡ΦA|ΦB

〉〉
, (6)

where
O‡ = GO†G. (7)

We end up with a space in which we have two Hermitian conjugations with respect
to two inner products, the original inner product which was not positive definite
but which was fixed by the requirement of its invariance under the transformations
corresponding to the superalgebra g, and the new positive definite inner product
just introduced. The fact that we have two operations of Hermitian conjugation,
under which the Hamiltonian of the system is Hermitian, has the rather surprising
consequence that the number of integrals of motion of this system is enhanced.
Indeed consider an integral of motion O, we have

[O,H] = 0, (8)

taking now the † and the ‡ of this relation we obtain that

O‡ −O† = G
[O†,G

]
, (9)

is also an integral of motion, which is non vanishing if [O,G] 
= 0. We will organize
these integrals of motion so as to have simple conjugation properties for each of
them. We introduce the shift operator:

OG = G
[O†,G

]
, O‡

G = −O†
G, (10)

1 This step is similar to [7], see also [8].
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and the tilde operator:

Õ = O+
1
2
O†

G, Õ‡ = Õ†. (11)

Therefore the restoration of the positive definite inner product, exhibits additional
integrals of motion of the corresponding model. The standard lore is that if you have
a quantum model with a certain unitary symmetry, by changing the inner product
you are bound to loose this unitary symmetry. We are going to analyze in the next
sections, how in specific examples, the additional integrals of motion combine to
re-obtain a unitary symmetry of starting model.

2 Fermionic Landau Model

The fermionic Landau model [4, 9] is obtained from the ordinary Landau model by
replacing the corresponding complex commuting coordinate with a complex anti-
commuting one. We first establish the notation for the bosonic Landau model.

Consider a motion in the complex plane C with the Lagrangian,

Lb = |ż|2 − iκ (żz̄− ˙̄zz) . (12)

This model can be viewed as a non linear realization of the magnetic translations
group

[P,P†] = 2κ , (13)

over the corresponding central charge. The kinetic term and the connection term in
(12), are obtained from the Lie algebra element:

g−1dg = iωPP + iω̄PP† + A2κκ , (14)

where g belongs to the corresponding coset.
In the quantum version of this model we have:

Hb = a†a +κ , [a,a†] = 2κ , E = 2κ
(

n +
1
2

)

, (15)

where
a = i(∂z̄ +κz) , a† = i(∂z −κ z̄) . (16)

The generators of the magnetic translations are:

P = −i(∂z +κ z̄) , P† = −i(∂z̄ −κz) . (17)
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Replacing now the commuting complex coordinate z, with the anticommuting com-
plex coordinate ζ :

Lf = ζ̇ ˙̄ζ − iκ
(
ζ̇ ζ̄ + ˙̄ζζ

)
, (18)

note the change of sign in the terms linear in the time derivatives, which follows
from reality condition. This Lagrangian also follows from a coset space construction
of the supermagnetic translation group

{Π †,Π} = 2κ , (19)

and because of the term quadratic in time derivatives one expects to have ghosts
upon quantization [10]. Indeed this is what happens, a canonical quantization of
this model leads to the following result:

Ĥf = −α†α−κ , {α,α†} = −2κ , E = ±κ , (20)

where
α =

(
∂ζ̄ −κζ

)
, α† =

(
∂ζ −κζ̄

)
. (21)

It is clear that one will have problems with the positivity of the norm because of the
wrong sign in the anticommutator of the odd creation and annihilation operators α†

and α , (κ > 0). Indeed the wave vector for this system is

ψ
(
ζ , ζ̄
)

= A+ ζB+ ζ̄C+ ζ̄ζD , (22)

and independently of the Grassmann parities of the coefficients in the wave vector,
the creation and annihilation operators of this system will be hermitian conjugates
to each other under the inner product:

〈Ψ1,Ψ2〉 = ∂ζ ∂ζ̄ (Ψ∗
1Ψ2) , (23)

under which the Hamiltonian is also hermitian. Under this inner product also the
conserved magnetic translations

Π = ∂ζ +κζ̄ , Π † = ∂ζ̄ +κζ . (24)

are hermitian conjugate to each other. We are therefore in the situation that the
Hamiltonian admits a complete system of eigenvectors which even if orthogonal
among themselves do not have a positive definite norm. The Hilbert space metric
operator is extremely easy to find, as it is just proportional to the Hamiltonian

G = −κ−1Hf . (25)

Because of this the integrals of motion will not change their hermitian conjugates
when one converts to the new inner product. The negative norms result from the
wrong sign of the anticommutator of the odd creation and annihilation operators,
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and the change of the norm, results in a change of the hermitian conjugates of these
operators. This renders the system into a usual 4-state system:

α‡ = α†, {α,α‡} = 2κ , Ĥ f = α‡α−κ . (26)

This is therefore our simplest example where upon quantization of a system, the
naive norm has to be modified in order to obtain a sound quantum mechanical sys-
tem. In the following two sections we will present further examples, in increasing
order of difficulty, where such situations arise.

3 Superplane Landau Model

This model [4, 9] is obtained by taking

L = Lb + Lf , (27)

where Lb is given by (12), and Lf is given by (18). It represents a motion in C(1|1)

with the coordinates (z,ζ ). This model can be viewed as the coset space construction
of ISU (1|1)/[SU (1|1)×Z]. SU (1|1) has the odd generators

Q = z∂ζ − ζ̄ ∂z̄, Q† = z̄∂ζ̄ + ζ∂z, (28)

whose anticommutators gives the central charge

{
Q,Q†}= C = z∂z + ζ∂ζ − z̄∂z̄ − ζ̄∂ζ̄ . (29)

The supergroup ISU (1|1) is obtained by adjoining the magnetic translations P and
P† given by (17), and supermagnetic translations Π and Π † given by (24). The
nonvanishing brackets are

[P,P†] = 2κ , {Π †,Π} = 2κ , [Q,P] = iΠ , (30)

{Q†,Π} = iP, [C,P] = −P, [C,Π ] = −Π , (31)

together with the corresponding hermitian conjugate relations.
The quantization of this model leads to the quantum Hamiltonian

H = a†a−α†α, (32)

acting on the space spanned by the wave functionsΨ
(
z, z̄, ζ , ζ̄

)
. The involutions in

the algebra are realized as Hermitian conjugates within the inner product

〈Ψ1,Ψ2〉 =
∫

dzdz̄∂ζ ∂ζ̄ (Ψ∗
1Ψ2) , (33)
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and all the eigenstates are constructed in the usual way with the help of a, a†, α, α†.
As in the Fermionic Landau model case we will have negative norms and because of
the direct product structure of this model the metric operator will be the same
G = −κ−1Hf . This operator commutes with all the generators of ISU (1|1), less
the odd generators Q and Q†. Therefore according to our established strategy we
will compute the resulting integrals of motion according to (10, 11). We obtain

QG = − ı
κ

S, S = a†α, Q̃ = − ı
2κ

P†Π , (34)

together with the corresponding Hermitian conjugate operators. The upshot is that
the unitary symmetry of the model is the following: The charges

P,Π , Q̃; P†,Π †,Q̃†; C̃ = C +
1

2κ
H, (35)

form a ISU (1|1) with commutation relations like (29–31), with the obvious corre-
spondence of the notation. The surprising feature is that the remaining operators,
whose graded brackets with the novel ISU (1|1) vanish, form a supersymmetry
algebra {

S,S‡}= H, (36)

which is quite puzzling as the Hamiltonian is related to time translations. Now it is
well known that the Landau electron is related to the planar limit of the particle on
the sphere in the field of a monopole at the origin. For the particle on the sphere in
the field of the monopole, Dirac’s quantization condition applies so that the electric
charge is an integer multiple 2N of a minimal allowed charge. The planar Landau
model is then found by taking the limit in which the radius of the sphere R → ∞,
N → ∞ with N

R2 fixed. In the next section we are going present an example of a
motion on a supermanifold which has the sphere as its body, and the subsequent
redefinition of the norm and rearrangement of its symmetry.

4 Super-Flag

We will be seeking to find a minimal superalgebra which contains the SU(2) alge-
bra, and which has an involution which upon quantization goes into the Hermitian
conjugate operation. The first candidate will be Osp(1|2), but this algebra does not
have the involution we seek. It has an involution which is a pseudoreality condi-
tion for the spinor generators, but this involution is not compatible with a standard
Berezin like involutions, which is what we seek. This algebra has been considered
in [11], and these authors do not mention any clash between the positive definiteness
and invariance of the norm. The next algebra will be that of SU(2|1) for which it is
possible to find a standard involution. The Lie superalgebra su(2|1) is spanned by
even charges (F,J3,J±), satisfying the commutation relations of U(2), and a U(2)
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doublet of odd charges (Π ,Q); we write the complex conjugate charges as (Π†,Q†)
since we want to exhibit the mentioned involution. The non-zero commutators of
the even charges are

[J+,J−] = 2J3, [J3,J±] = ±J±. (37)

The non-zero commutators of the odd generators with the even generators are

[J+,Π ] = iQ, [J−,Q] = −iΠ ,

[J3,Π ] = −1
2
Π , [J3,Q] =

1
2

Q,

[F,Π ] = −1
2
Π , [F,Q] = −1

2
Q, (38)

and their Hermitian conjugates. Finally, the non-zero anti-commutators of the odd
charges are

{
Π ,Π †} = −J3 + F,

{
Q,Q†}= J3 + F,

{
Π ,Q†} = iJ−,

{
Π †,Q

}
= −iJ+. (39)

The relevant cosets are SU(2|1)/U(1|1)≡CP(1|1) (the bosonic generator in U(1|1)
is J3 + F), this is what we call the SuperSphere [2, 6], and SU(2|1)/[U(1)×U(1)],
which we call the Super-Flag [3, 6]. We have considered both these cases but I will
concentrate on the Super-Flag in what follows, because here the results are sharper.
For Super-Flag the formula analogous to (14), tells us that we have three Cartan
forms and two U(1) connection terms. We will use only one Cartan form, and in
an appropriate parametrization of the coset space through coordinates ZM = z,ξ i,
Z̄M = z̄ ξ̄i, i = 1,2 we will have

E+ = K
− 1

2
1 K−1

2

[
dz−K−1

1

(
dξ 1 − zdξ 2)(ξ̄2 + zξ̄1

)]
, (40)

where:

K1 = 1 + ξ̄1ξ 1 + ξ̄2ξ 2, K2 = 1 + z̄z+
(
ξ 1 − zξ 2)(ξ̄1 − z̄ξ̄2

)
. (41)

Our charge will move in the magnetic fields corresponding to the two U(1), Kahler
connections:

A = −idZM∂M lnK2 + c.c., B = idZM∂M lnK1 + c.c. . (42)

By the standard rules of non linear realizations the Lagrangian:

L = |ω+|2 + NA + MB, (43)
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where ω+, A, B, are the pullbacks of the corresponding forms, will be invariant
under the isometry transformations

δ z = a + āz2 − (ε̄2 + zε̄1)
(
ξ 1 − zξ 2) , (44)

δξ 1 = aξ 2 + ε1 +(ε̄ ·ξ )ξ 1,

δξ 2 = −āξ 1 + ε2 +(ε̄ ·ξ )ξ 2.

As it can be easily seen the kinetic terms for the odd variables will come from the
connection terms and will be first order in time. This model has been quantized
using the so called Gupta–Bleuer method, and exhibits the interesting feature that
the constraints become first class for a given energy [12], however we can stay away
from this, by restricting the parameters N, M so that N > 0,−N − 1

2 < M < 0. The
quantum Hamiltonian for this system is:

Ĥ = HN = −K2
2 K1∇

(N)
z ∇(N)

z̄ + N, (45)

where N is the strength of the charge monopole interaction, and it is quantized, that
is 2N is a positive integer, and

∇(N)
z = ∂z −N∂z lnK2, ∇(N)

z̄ = ∂z̄ + N∂z̄ lnK2. (46)

The physical wave superfields are defined as solutions to the equations:

ˆ̄ϕ i|Ψ〉 = 0 (i = 1,2), (47)

where ˆ̄ϕ i are some odd differential operators, the solutions of which are

Ψ(N,M) = KM
1 K−N

2 Φ
(
z, z̄sh,ξ 1,ξ 2) (48)

where z̄sh is the “shifted” coordinate defined by

z̄sh = z̄− (ξ 2 + z̄ξ 1)(ξ̄1 − z̄ξ̄2). (49)

The Hamiltonian (45), is diagonalized by the set of physical eigenvectors:

Ψ(N,M)
(�) = K2

−NK1
M∇z

2(N+1)....∇z
2(N+�)Φ(N+�,M− �

2 )
(
z,ξ i) , (50)

with

∇2N
z = ∂z − 2(N) z̄sh

1 + zz̄sh
, (51)

HΨ(N,M)
(�) = [(2�+ 1)N + �(�+ 1)]Ψ(N,M)

(�), � = 0,1,2, . . . (52)
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One can see that the higher level eigenfunctions are determined in terms of analytic
superfields,

Φ(N+�, M− �
2 )
(
z,ξ i)= A(N+�, M− �

2 ) + ξ iψ(N+�, M− �
2 )

i + ξ 1ξ 2F(N+�, M− �
2 ), (53)

like the ones which determine the ground state but with different external charges,
with the help of a corresponding sequence of covariant derivatives. It is convenient
to express the invariant norm in terms of these functions, and it is also convenient
to find the images of physical operators of interest on these analytic functions. The
upshot is very simple: to get the level � norm, operator image (as we are interested
in the action of conserved charges their action does not change the level), replace in
the ground state norm, or operator image, the numbers N,M by N + �,M − �

2 . This
is a remarkable simplification as it reduces the study of the higher levels norms,
or operators to those of the ground state with corresponding external charges. The
SU(2|1) invariant norm of the ground state of external charges N,M is

||Ψ(N, M)
(0)||2 = 2

∫
dzdz̄

(1 + zz̄)2(N++1)

{

M (2M + 2N + 1) ĀA +
1
2

F̄F

+M
(
ψ̄1ψ1 + ψ̄2ψ2

)
+

N + 1
1 + zz̄

(
ψ̄2 + z̄ψ̄1) (ψ2 + zψ1)

}

. (54)

All the functions appearing in the norm are polynomials in z whose maximum de-
gree is determined from the convergence of the corresponding integral. This norm
can be diagonalized, however important clues about its nature come from consider-
ing the images of the SU(2) generators

iJ+ = Jz̄ = −2Nz+ z2∂z − ξ 1 ∂
∂ξ 2 , (55)

iJ− = Jz = ∂z + ξ 2 ∂
∂ξ 1 , (56)

J3 = z∂z −N +
1
2

(

ξ 1 ∂
∂ξ 1 − ξ 2 ∂

∂ξ 2

)

, (57)

acting on the analytic superfields. Indeed solving the equation:

J−Φ(N,M) (z,ξ i)= 0, (58)

one obtains that the SU(2) representation content in the analytic superfieldΦ(N, M),
is four representations with angular momentum, N, N ± 1

2 ,N. The corresponding
norms, (for the range mentioned before: N > 0, −N − 1

2 < M < 0), are negative for
the states with angular momentum N, N − 1

2 , while the states with angular momen-
tum N + 1

2 , N, have positive norm. The standard angular momentum procedure of
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acting with rising operator on the lowest weight states establishes that all the states
in a given representation of SU(2) contribute the same sign to the norm. The Hilbert
space metric operator is

G =
1

N + 1
2

[

J2 +(B−2M)2 −2

(

N +
1
2

)2
]

, (59)

and it commutes with the even charges of SU(2|1) J, and B. It does not commute
with the odd charges Π ,Q,Π †,Q†. Therefore according to our procedure outlined
before we expect a doubling of the odd generators of the original SU(2|1) algebra
that is we expect the new generators ΠG,Π̃ ,QG,Q̃, together with the correspond-
ing conjugates. We should stress that all these new generators are constructed on
the enveloping algebra of the original algebra, therefore they are automatically con-
served quantities. Next we will outline the closure of these new generators for this
particular model. As a sample relation we take the anticommutators of ΠG with Π ‡

G

{ΠG,Π ‡
G} =

−8M
2N + 1

(J3 + FG) , FG = 2M + 2N + 1−F, (60)

this formula is to be compared with the original commutation relations of the odd
generators

{
Π ,Π †}= −J3 + F,

{
Q,Q†}= J3 + F,

(61)

which suggests to rescale the generators like

Q′
G =

√
2N + 1
−8M

Π ‡
G. (62)

The numerical factors appearing in these rescalings can be expressed in terms of the
Casimir operators of the SU(2|1) algebra. For a given irreducible representation of
SU(2|1)acting on Φ(N, M)

(
z,ξ i
)

the action of the Casimir operators is

C2 = −2M (2M + 2N + 1) , C3 = (4M + 2N + 1)C2. (63)

and then from these two relations one can express the numbers N,M in terms of the
corresponding Casimirs. Now when one considers higher levels, the rule is to re-
place the charges N,M by N +�, M− �

2 and � gets reabsorbed into the corresponding
redefinition of the image of the Casimir for that level, rendering a level free defini-
tion of the generators, albeit a complicated one. The upshot is that the Π ′

G,Q′
G and

their conjugates generate a new SU(2|1) algebra, which is the the analogue of the
supersymmetry algebra obtained in the Planar Landau model considered in a previ-
ous section. There remain the other operators Π̃ · · · a sample of which is
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Π̃ =Π +
1
2
ΠG =Π +

√ −2M
2N + 1

Q′
G

‡
, (64)

whose anticommutator
{
Π̃ ,Π ′

G
‡
}

, leads to a new even operator. With additional

rescalings this operator together with its Hermitian conjugate generate a new SU(2)
algebra. The final result is that the closure of the algebra is an SU(2|2) algebra with
a central charge N + � + 1

2 , which can also be expressed in terms of the SU(2|1)
Casimirs.

5 Conclusions

We have therefore shown that the change of the norm resurrects some Quantum
Mechanical models on some supermanifolds. Contrary to the usual belief that the
change of the norm leads to the loss of the unitary symmetries, in the examples con-
sidered, this change of norm lead to a rearrangement of the symmetries to which
the enveloping algebra of the original algebra played a fundamental role. This may
be a purely superalgebra phenomena as it appears that when one ends up with an
enhanced symmetry, this is due to the fact that, that the SU(2|1) representations ap-
pearing in the spectra of the Super-Flag can be reinterpreted as short representations
of SU(2|2), which can be unitarily represented. The importance of the short rep-
resentations in supersymmetric models with extended supersymmetry suggests that
such constructions may be relevant. It is a challenging goal to try to give a strictly
geometrical construction of these type of models bypassing the dynamical aspect of
the redefinition of the norm.
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John Wheeler’s Quest for Beauty and Simplicity

Charles W. Misner

Abstract Some recollections and comments are given about John A. Wheeler as
a mentor, as a teaching researcher, and as a driving force in the revitalization of
general relativity in the 1950s and 1960s. His relationship to Hugh Everett and the
“Many worlds” interpretation of quantum mechanics is also discussed.

It’s a great pleasure to be here on this occasion, Claudio’s 60th birthday Fest. I’m
going to talk about John Wheeler. Both Claudio and I were Wheeler’s Ph.D. stu-
dents. That means we could call Wheeler our doktorfather which makes us brothers
in science.

This talk is essentially historical. It describes the atmosphere in which Claudio
and I were trying to advance the state of gravitational physics a long time ago when
it was not at the forefront of physics the way it has been in recent times. At the times
I started with Wheeler in the 1950s and even into the later 1960s when Claudio came
there, gravitation physics was considered a very suspect and distant piece of physics
that was not relevant to anything that was going on in the real physicists’ world. John
Wheeler began the movement of gravitation physics into the forefront of physics in
the United States, and contributed strongly to this transition in the rest of the world.
My talk here today is mainly concerned with this era in Wheeler’s career.

But this is just one piece of John Wheeler. He actually talks about going through
three different periods of his life spending about 20 years on each of them. I won’t
concentrate on his earlier work where he took the viewpoint that particles are funda-
mental and would try to explain everything in terms of particles. This lasted through
about 1955 and includes all his work on nuclear physics and some field theory. Dur-
ing that period he also did important work on nuclear fission and contributed to the
development of atomic bombs during World War II and to H-bombs at the begin-
ning of the Cold War. He was involved in that for a couple years just before I arrived
at Princeton in 1953. I will talk mostly about his years at Princeton before he went
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to Texas. This period he describes as one where he was trying to explain particles
(and everything) in terms of fields. Although his approach was initially out of the
mainstream, it led to great developments in general relativity and its astrophysical
applications. When he moved to Texas after retiring from Princeton in 1976 his
interests went more to the fundamentals of quantum mechanics and he had many
important students there. His motto for that period was “It from Bit” and he has
referred to that period as “everything is information.” He retired again in 1986 and
returned to a quieter life in the neighborhood of Princeton where he’s been living
since. [A few months after this Claudio Fest meeting, John Archibald Wheeler died
on April 13, 2008 at age 96.]

1 Wheeler and Teaching

John Wheeler was very interested in teaching and devoted himself to teaching all
his life. As one aspect important for physics, he thought that the best way to learn
anything is to teach it, and that’s in the way he got into the general relativity. When
he decided that it was safe to let Ph.D. students work on relativity, he asked to
teach it as a graduate course and taught it the first time a year before I arrived in
Princeton. When teaching, John focuses on inspiration before he focuses on content.
Every so often he would teach elementary courses (perhaps the honors course for
freshman physics majors or perhaps a more general course). In any course his first
lecture would talk about something he was very enthusiastic about. This was usually
a research project he or his students were working on currently. He would give an
impression of the questions that were in the forefront and then explain how they
were attacking the problem. Then he would then slowly morph that into whatever
he needed to teach after the first lecture and begin to get down to brass tacks. In an
elementary course this might be velocity, Newton’s laws, vectors or whatever. This
way he would show the enthusiasm he had from current research. Another favorite
theme he pressed on students was that, more important than solving a problem, was
getting the right question. He also felt students were essential to his research, as
their questions would suggest new ways of approaching a problem.

Many insights into John’s interactions with students can be found in a privately
distributed volume of letters and career comments prepared at the instigation of
Peter Putnam (one of John’s lesser known students) on the occasion of John’s 65th
birthday. At a talk similar to this given at the opening of the “John Archibald
Wheeler International School of Relativistic Astrophysics” in Erice, Sicily in June
2006 I presented many selections from that book, so these are not repeated in this
report of my talk at the Claudio Fest. They can be found in the Proceeding of that
School which are edited by Matzner and Ciufolini and published by World Scientific
in 2008. But I am happy to repeat a quotation from Claudio’s contribution to that
book. Claudio found that John worked tremendously in trying to help him improve
his presentations of all the work he was doing but always with a sense of humor. One
advice to Claudio was that “the central idea should always stand out very clearly,
sharply, just as in ‘Cuba si, Yankee no’.”
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2 John A Wheeler and the Recertification of GR as True Physics

This section of my ClaudioFest talk can also be found in the 2006 Erice report
(Matzner and Ciufolini, World Scientific 2008), where it is explained that one of
John’s themes was daring conservativism. That meant exploring the equations of
well established theories while looking for predictions for possibilities others dared
not consider. In this line Wheeler treated wormholes in spacetime, bundles of radi-
ation held together by gravitation to form configuration with mass but containing
no massive particles, etc. These explorations and other developments led Wheeler
with many students, including Claudio, to reinvigorating general relativity in the
United States and preparing for its still continuing resurgence under the impact of
new astrophysical data.

3 John A Wheeler and Hugh Everett III

In view of the emphasis of the ClaudioFest as distinct from the Erice 2006 talk,
I here present another example of daring conservativism which was recognized as
important by Wheeler, but which in this case left him conflicted as he hoped it
need not be so daring. This was the dissertation of my roommate Hugh Everett III
which Wheeler edited and supported for Hugh’s Ph.D., but from which he eventually
withdrew full support.

Although Hugh was making great progress in game theory which he had al-
ready studied as an undergraduate, he was provoked by informal discussions in
Princeton with Niels Bohr’s assistant Aage Petersen to think about the interpre-
tation of quantum mechanics. This he approached in a combination of Wheelerish
daring conservativism and his own inclination to enjoy arguments where he thought
he could be more logical than his counterparty in the discussion. Knowing of my
decision to work with Wheeler who was optimistic that a thesis could be short and
quick, Hugh also decided to get a Ph.D. with Wheeler. But anyway, he liked to argue
and when he heard Bohr’s assistant Aage Petersen describing the Bohr interpretation
he just thought that sounded like nonsense. So, wanting to prove his point, he began
working up his ideas and, as Wheeler would say, just following the equations. Let
them tell us something instead of us assuming that they will verify what we know,
or give us a numerical correction. And so Hugh worked out this interpretation of
quantum mechanics which says that the Schrödinger equation continues to work
all the time. It never stops. There is no collapse of the wave function. The wave
function that includes both the observer and the equipment just goes its own way
according to the Schrödinger equation. This was attractive for Wheeler, because it
was daring conservativism that says “push ahead with the equations.” And Everett
could be a very very logical. But Bohr was Wheeler’s principal mentor and a man
he highly respected and emulated in many ways. John got Everett his Ph.D. – I think
Wheeler forced him to tone it down a bit in the writing before he presented to the
committee – but he got him a degree. But then, a year or two later, he sent Hugh
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off to try to argue it all out with Bohr so the questions would all get straightened
out. Well that was unlikely to happen and didn’t. Everett went to Copenhagen and
spent several weeks there. Even before Hugh finished his Ph.D. he had gone to the
Pentagon and got a good job doing game theory kind of things. Hugh was also very
clever and accomplished there, and so by the time he came to Copenhagen he was
making such a good salary that he could stay at the Hotel d’Angleterre, which is the
most expensive and fancy hotel in Copenhagen. I think the Bohr Institute had never
had a visitor stay there before. But anyway he had two or three afternoons trying to
talk to Bohr with the expected result that they couldn’t hear each other.

There is more to learn about Hugh Everett this year, as there is activity spurred
on by the fact that 2007 was 50 years since Hugh’s dissertation was published.
In addition to conferences on that occasion there is a BBC television hour. That
program is about his son trying to discover his father and what his father had done.
It was, from the son’s point of view, such a dysfunctional family that he never knew
his father was a scientist. The son is a rock star and I think that’s the reason that the
BBC could do the program. Having a rock star to follow around as he researches his
father makes the show much more attractive to general audiences.
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Magnetic Monopoles in Electromagnetism
and Gravity

Rubén Portugueś

Abstract Magnetic monopoles have rivaled black holes as the most beautiful and
elusive entities in the world of theoretical physics since they were first considered
in the early twentieth century. They naturally arise in electromagnetism and have
immediate implications on the underlying symmetries, both dynamical and internal,
at both the classical and quantum level. In this article we will recap some facts about
magnetic monopoles in electromagnetism, in particular notions regarding their con-
tribution to the angular momentum of a system and how these concepts are related
to the quantization condition for the product of the charges of a fundamental elec-
tric pole and magnetic pole. We then proceed to consider magnetic poles in general
relativity and briefly address similar considerations in this theory.

1 Introduction

In many ways Dirac can be considered the father, or at least a very influential parent,
of modern theoretical physics: the importance of his contributions is unquestionable.
He sought to bestow upon theoretical physics a sense of beauty and simplicity which
he believed to be realized through the power of mathematics and its unequivocal
elegance and unity. In his paper of 1931 [1] he writes:

“The most powerful method of advance that can be suggested at present is to employ all
the resources of pure mathematics in attempts to perfect and generalize the mathematical
formalism that forms the existing basis of theoretical physics, and after each success in this
direction, to try to interpret the new mathematical features in terms of physical entities.”

He was extremely successful himself following this philosophy with the predic-
tion in 1930 of the existence of positrons which earned him the Nobel Prize in
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1933. In the 1931 paper Dirac predicted yet another physical entity: the magnetic
pole. Magnetic poles have not yet been observed in nature, yet their beauty and
importance in modern theoretical physics are only rivaled by those of another elu-
sive entity, the black hole. This may not be a coincidence. Consider the following
wild argument. The quantization condition for the product of a fundamental electric
charge q and a magnetic charge g, which will be the main subject of this article,

qg
2π h̄

∈ Z, (1)

can be used to infer that the fundamental magnetic charge may actually be rather
large. If we further assume some notion of supersymmetry and the fact that a mag-
netic pole may satisfy a BPS-like bound, it is not completely out of the question that
objects carrying magnetic charge may be very massive and undergo gravitational
collapse. Hopefully the arguments outlined in this brief paper will add weight to the
belief that the physics of magnetic monopoles is beautiful and important and may
help shed light upon our understanding of quantum effects in gravity theories.

2 Magnetic Poles in Classical Electromagnetism

With the conventions we will use throughout, Maxwell’s equations are

∇ ·E = ρ ,

∇ ·B = 0,

∇×E = −∂B
∂ t

,

∇×B = J+
∂E
∂ t

. (2)

These give the electric field E and magnetic field B in terms of the sources, namely
the charge density ρ and the current density J. The second equation allows us to
write the magnetic field in terms of a vector potential A

B = ∇×A, (3)

and then the third equation allow us to express the electric field in terms of A and a
scalar potential Φ:

E = −∇Φ − Ȧ. (4)

This potential A is often said to be the electromagnetic potential “in the electric
picture” meaning that its definition allows only for the existence of electric sources.

The motion for a particle of charge q in the background of these fields is de-
scribed by the Lorentz force law:

F = q(E+ ṙ×B) . (5)
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In what follows we will often use the solutions to Maxwell’s equations corre-
sponding to a point electric particle with charge q placed at a point with position
vector a

E(r) =
q(r−a)

4π |r−a|3 , (6)

and the corresponding scalar potential

Φ(r) =
q

4π |r−a| . (7)

By analogy with (6), if the second of Maxwell’s equations in (2) was modified to
allow for magnetic sources, we would expect the magnetic field around a point par-
ticle with magnetic charge g placed at a to be given by

B(r) =
g(r−a)

4π |r−a|3 . (8)

In this section we will start by considering simple implications of the existence
of a monopole magnetic field, especially on the angular momentum of a particle
moving in this field. Then, in preparation for the quantum theory, we will look
at electromagnetic potentials and see Dirac strings emerge already in the classical
theory.

2.1 The Field Angular Momentum

Let us now consider an electric charge q of mass m placed at a point a in the back-
ground field of a magnetic pole g placed at the origin. The background magnetic
and dynamical electric fields are given by (8) with a = 0 and (6) respectively. As
is well known, the angular momentum stored in the electromagnetic field does not
vanish. It can be calculated from the standard symmetric energy-momentum tensor
of the electromagnetic field and is given by

L f ield =
∫

V
r× (E×B) =

qg
4π

a
|a| . (9)

This expression is independent of the magnitude of a even though it depends on its
direction, and therefore the limit a → 0 cannot be taken continuously. For exam-
ple, if we place the charge above the pole the angular momentum will be negative,
whereas it will be positive if placed below. Whatever the sign, if we assume the
angular momentum to be quantized in integer multiples of h̄/2, we obtain the quan-
tization condition qg

2π h̄
∈ Z. (10)
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This was first noted by Fierz [2] and is the statement that quantization of the field
angular momentum results in the Dirac quantization condition. The fact that there
exists a shift in the angular momentum by h̄/2 when considering charge monopole
composites without fermions in sight has been lucidly analyzed in [3]. We will re-
turn to this in Sect. 3.3.

2.2 A Test Electric Charge in the Background
of a Magnetic Pole (I)

Let us consider a charged particle moving in the magnetic field of a pole placed at
the origin. In particular, following [4,5], let us examine its angular momentum. The
torque τ experienced by the particle is given by

τ = r×F, (11)

where the force is given by the Lorentz force law (5). We find that the change in
angular momentum is

dL
dt

= τ = q
(

r× ṙ× gr
4πr3

)
=

d
dt

(
qg
4π

r
|r|
)

. (12)

We can therefore deduce that the conserved angular momentum is not the usual
L = mr× ṙ, but that there is an extra term:

L = mr× ṙ− qg
4π

r
|r| . (13)

The same result was derived in [6] by demanding that the velocity should transform
as a vector under rotations. We will see below that there are at least two more ways
of deriving this result.

2.3 The Electromagnetic Potential and the Appearance
of the Dirac String

We know that the magnetic field due to a point source at the origin will be given by
(8) with a = 0:

B(r) =
gr

4π r3 . (14)

What is the electromagnetic potential that gives rise to this field? We find that, math-
ematically, the potential giving rise to this field in the sense of (3) can be written as
the 1-form
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A =
g

4π
(k− cosθ ) dφ , (15)

where k is an arbitrary constant. We will now see that this (alone) is not the potential
for a magnetic pole. The monopole field (14) is manifestly spherically symmetric.
We can calculate the magnetic flux through a sphere surrounding the pole and we
obtain ∫

S2
B ·dS = g

(

=
∫

V
∇ ·B

)

. (16)

We can in fact remove an infinitesimally small cap on the sphere (take the cap S
to be on the North pole surrounded by the curve C ) and the value of this surface
integral will be unchanged. This configuration is shown on the left hand side of
Fig. 1.

According to the argument just given, the outward magnetic flux through this cap
should be zero. We may try to check this explicitly:

∫

S
B ·dS =

∫

S
(∇×A) ·dS

=
∮

C
A ·dl

=
g
2
(k−1), (17)

where we have used Stokes’ theorem. We find in fact that when k = −1 there is ac-
tually an inward flux equal to the pole strength g across the cap at the North pole.1

We arrive at the conclusion that the potential (15) does not fully correspond to the
magnetic field (14), but that it describes a magnetic pole everywhere, except on the
positive z-axis (when k = −1), on the negative z-axis (when k = 1) or on the whole
of the z-axis (for all other values of k). This ought to be expected because a potential
in the electric picture, as mentioned in the introduction to Sect. 2, should not allow

Fig. 1 A magnetic pole, shown on the right, is described by the potential (15), shown here for
k =−1 on the left hand side plus a Dirac string shown in the middle which must be added to cancel
the inward flux that the potential has along the positive z-axis

1 Similarly, it can be checked that when k = 1 there will exist an inward magnetic flux across the
South pole cap. For all other values of k there is magnetic flux across both caps.
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for magnetic sources. We can however truly describe a magnetic monopole in the
electric picture: we must add a string carrying total positive magnetic flux +g and
superimpose it on the configuration described by (15) in order to cancel these north
and/or south pole contributions. This is the Dirac string, and as shown schematically
in Fig. 1, by introducing it we are able to describe magnetic monopoles when con-
sidering electromagnetic potentials. In a very similar way, electric charges can be
described with potentials in the magnetic picture by introducing dual Dirac strings.

2.4 The Dirac String and Rotations

The electric field due to a point charge is spherically symmetric and so is the mag-
netic field due to a magnetic pole (14). The vector potential (15) is manifestly not
so. From the discussion in the last section it is clear that rotating the vector potential
will rotate the location of the Dirac string. This rotation can nevertheless be gauged
away. Consider the vector potential with k = 1 and the string along the negative
z-axis:

Ak=1 =
g

4π
(1− cosθ ) dφ . (18)

After a rotation by π radians along the x-axis the angular coordinates change as
φ → φ ′ = 2π−φ and θ → θ ′ = π−θ such that

A(k=1) → A′ =
g

4π
(−1− cosθ ) dφ = A(k=−1), (19)

as expected. We can accompany this with the gauge transformation A → A′ = A+
dλ with λ = gφ

2π which transforms A(k=−1) back to A(k=1), so the rotation can be
undone by a gauge transformation. Let us see how this works in general.

The usual Killing vectors which generate SO(3) rotations on the two-sphere are
given by

ξX = −sinφ
∂
∂θ

− cosφ cotθ
∂
∂φ

,

ξY = cosφ
∂
∂θ

− sinφ cotθ
∂
∂φ

,

ξZ =
∂
∂φ

. (20)

They satisfy the algebra
[ξA,ξB] = −εABCξC. (21)

Under an infinitesimal rotation generated by one of these vectors, the vector poten-
tial changes by the Lie derivative along the vector field:

LξB
Ai = ξ j

B∂ jAi + A j∂iξ j
B = ξ j

BFji + ∂i(ξ j
BA j). (22)
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For the monopole vector potential (15) this Lie derivative is non-zero and hence
usual rotational symmetry would appear to be broken. As illustrated above however,
we can undo its effect if we accompany the Lie derivative by a gauge transformation
Ai → Ai + ∂iΛ such that the total change is

δξB
Ai = LξB

Ai + ∂iΛB = 0. (23)

The gauge transformations that we find associated with the three Killing vector
fields are

ΛX = − g
4π

cosφ sinθ − ξ j
XA j =

gk
4π

cotθ cosφ − g
4π

cosφ
sinθ

ΛY = − g
4π

sinφ sinθ − ξ j
Y A j =

gk
4π

cotθ sinφ − g
4π

sinφ
sinθ

ΛZ = − g
4π

cosθ − ξ j
ZA j = − gk

4π
. (24)

We note thatΛZ is a constant gauge parameter, yet it needs to be considered in order
that the new rotation generators defined below satisfy the algebra.

We can combine the gauge transformationsΛB and the naive rotation operators ξB

to create new rotation operators ξ̂B = ξB +ΛB
∂
∂λ by using the fact that the generator

of gauge transformations is the electric charge q, which is in turn conjugate to the
coordinate on the U(1) fiber which we call λ , so we can write:

ξ̂X = −sinφ
∂
∂θ

− cosφ cotθ
∂
∂φ

+
(

gk
4π

cosφ cotθ − g
4π

cosφ
sinθ

)
∂
∂λ

,

ξ̂Y = cosφ
∂
∂θ

− sinφ cotθ
∂
∂φ

+
(

gk
4π

sinφ cotθ − g
4π

sinφ
sinθ

)
∂
∂λ

,

ξ̂Z =
∂
∂φ

− gk
4π

∂
∂λ

. (25)

These operators satisfy the SO(3) algebra just as (20). We have therefore seen that
when considering rigid rotations in the presence of magnetic poles we are auto-
matically led to consider gauge transformations. This, which is a priori unexpected,
points to an intricate relationship between spacetime and internal symmetries.

2.5 A Test Electric Charge in the Background
of a Magnetic Pole (II)

Let us go back to considering a test electric charge in the background of a magnetic
pole. We will now see that it is possible to get direct access to the angular momentum
in the field by analyzing the angular momentum of this charge.
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There is an alternative way to arrive at this result which we believe is worth
recalling. The motion of the charge is described by the action

S =
∫ (

1
2

mẋiẋ
i −qAiẋ

i
)

dt. (26)

We may apply the standard Noether procedure to obtain that for a variation δx the
action changes by

δS =
∫

d
dt

[
(mẋi −qAi)δxi] (27)

on-shell, i.e., when the equations of motion hold. The transformation will generate
a conserved charge if the action is invariant off-shell up to the integral of a total
derivative. Let us consider what the case is for a rotation generated by δxi = ξ i

B.
The first term in (26) is the norm of a vector and therefore manifestly invariant
under rotations. The variation of the second term becomes

δS = −q
∫ (

ẋiδξB
Ai + AiδξB

ẋi)

= −q
∫ (

LξB
Ai
)

ẋi, (28)

where we have used δξB
Ai = (∂ jAi)δξB

x j. If, as is the case here (see (23)), the Lie
derivative of Ai is given by a total derivative LξB

Ai = −∂iΛB this becomes

δS = q
∫

d
dt

[ΛB] . (29)

We can now equate (27) and (29) to obtain the charge JB conserved under rotations

JB = (mẋi −qAi)ξ i
B −qΛB. (30)

In fact, theΛB are the gauge transformations we computed in (24). For example, for
rotations about the z-axis, we obtain that

JZ = mφ̇ +
qg
4π

cosθ , (31)

and in general the result (13).
From the expression (13) it is clear that the angular momentum does not vanish

when the particle is at rest. This apparent paradox is explained by comparing (13)
with (9). The extra piece is the angular momentum of the electromagnetic field,
which must be included because the electric field of the test particle is dynamical and
hence the angular momentum of the electromagnetic field changes with time. Only
the sum of the standard orbital angular momentum and the field angular momentum
is conserved.
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Expressing the angular momentum in terms of the (non gauge invariant) conju-
gate momenta pφ = mφ̇ − qAφ one obtains, for the angular momentum about the
z-axis,

JZ = pφ + k
qg
4π

. (32)

In the gauge k = 1 and when the particle is on the positive z-axis, the field angular
momentum is just equal to the extra term appearing in JZ , besides the usual pφ .
This is a way to identify the field angular momentum if one knows the total angular
momentum, as we’ll see below is the case for gravity, and as we saw in Sect. 2.1,
this may then be quantized to obtain the Dirac quantization condition. Note that in
the gauge k = 0, pφ is equal to the total angular momentum.

3 Onwards: Magnetic Monopoles and Quantum Theory

We have seen that the consideration of magnetic monopoles in electromagnetism
requires the introduction of Dirac strings for a consistent mathematical description.
We have also seen that usual notions of angular momentum need to be modified
in their presence. The most surprising implication however is yet to come and that
is the quantization condition written above in (1). This obviously requires that we
should consider the quantum theory, and we start by looking at the argument as first
put forward by Dirac.

3.1 Dirac’s Original Argument

Dirac originally considered a particle whose motion is represented by a complex
wave functionΨ . It is straightforward to deduce that the value of the phase of the
wave function is unobservable, but that changes in the phase along curves in space
must be the same for wave functions of the same representation if the theory is to
have an unambiguous physical interpretation. It is possible to writeΨ as

Ψ =Ψ1eiβ , (33)

whereΨ1 has a definite phase at each point in space and any indeterminacy in the
phase is absorbed into β . This means that β is not necessarily a well defined function
of x, y, z, t but that its derivatives are well defined at each point (and obviously need
not satisfy the integrability conditions). We therefore have that

−ih̄∇Ψ = eiβ (−ih̄∇Ψ1 + h̄∇β )Ψ1. (34)

We recognize this as a minimal coupling term: the wave functionΨ1 now describes
a particle of arbitrary charge q moving in an electromagnetic field with potentials
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A =
h̄
q
∇β , A0 = − h̄

q
∂β
∂ t

. (35)

Therefore, non-integrable derivatives of the wave function can be naturally inter-
preted in terms of potentials of the electromagnetic field. The change in phase along
a closed curve C which bounds a surface S will be given by

∮

C=δS
(∇β ) ·dl =

∫

S
(∇×∇β ) ·dS

=
q
h̄

∫

S
(∇×A) ·dS

=
q
h̄

∫

S
B ·dS. (36)

Note that from the point of view of the mathematics of the theory, this phase is
defined up to integral multiples of 2π . We will now try to interpret this mathemat-
ical leniency physically. First consider a very small closed curve C . Schrödinger’s
equation implies that the wave function will be continuous and hence the change in
phase around the curve will be small and cannot differ by an integral multiple of 2π
for different wave functions. An exception to this argument occurs when the wave
function vanishes as then the phase is not defined and continuity considerations will
no longer apply. The vanishing of a complex quantity like the wave function in three
dimensions will generally occur along a line, which Dirac called a “nodal line” and
we now recognize as a Dirac string. If the curve C considered above encircles a
nodal line, the change in the phase of the wave function could indeed possibly be
close to an integral multiple of 2π ; this multiple n will be a characteristic of the
nodal line under consideration and its sign will confer upon the nodal line a direc-
tion. The total change in the phase when encircling C will be

2π∑
i

ni +
q
h̄

∫

S
B ·dS, (37)

where the sum is over nodal lines which are indexed by the integer i. If the surface
S is closed then this change must be zero. Only nodal lines that originate within
the surface will contribute to the sum as every other line will puncture the surface an
even number of times and its contributions will cancel. We therefore obtain the result
that the end points of the nodal lines are points of singularity in the electromagnetic
field. The total flux that crosses the closed surface S in this case is g =

∫
B ·dS =

2πnh̄
q , which leads to the well known Dirac quantization condition

qg
2π h̄

∈ Z. (38)

By relentlessly pursuing the mathematical implications of quantum mechanics we
have been led to the deduction that magnetic poles can exist and that the product of
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the magnetic and electric charges must obey the quantization condition (38). Along
the way we have also learnt that the wave function must vanish along a Dirac string.
In fact, in terms of the physical fields it is as if the Dirac string had been removed
entirely and the physics was defined on R

3 − string(s).

3.2 An Argument by Wilzcek

Another derivation of the quantization condition was presented by Wilzcek in [7].
Consider a solenoid extending along the z axis and a particle of charge q orbiting
around it. When no current is flowing through the solenoid the orbital angular mo-
mentum will be quantized in units Lz ∈ h̄Z. When there is a current flowing through
the solenoid the electric field the particle experiences is given by Faraday’s law (the
third of Maxwell’s equations in (2)):

E(r) = − ẑ× rΦ̇
2π(x2 + y2)

, (39)

where Φ is the magnetic flux through the solenoid, dot denotes time derivative and
hat denotes a unit vector. The change in angular momentum is given by the torque

L̇z = [r×F]z = − q
2π
Φ̇ , (40)

where we have used the Lorentz force law F = q(E + v×B), so that the angular
momentum is now quantized in units

Lz ∈ h̄Z− qΦ
2π

. (41)

If you consider the charge to be orbiting infinitesimally above a magnetic pole of
strength g, the flux threaded through the orbit will be g/2. The angular momentum
will be quantized in units

Lz ∈ h̄Z− qg
4π

. (42)

If the particle was orbiting just below the magnetic pole the same argument would
lead to a quantization of the form

Lz ∈ h̄Z+
qg
4π

. (43)

If these two spectra are to be equivalent, the difference between them must be an
integer times h̄, which leads yet again to the quantization condition

gq
2π h̄

∈ Z. (44)
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Notice that for an odd integer, this changes the spectrum of Lz from integer values to
half integer values as was mentioned at the end of Sect. 2.1. The question that now
arises is whether the wave function will be periodic or antiperiodic, an issue which
we will now investigate.

3.3 Considerations on the (Anti-)periodicity of the Wave Function

We saw in Sect. 2.5 that by applying Noether’s procedure to the action describing
an electric charge moving in the field of a magnetic monopole we could obtain
the conserved angular momentum (13) and in particular the expression (32) for the
angular momentum about the z-axis in terms of the conjugate momentum:

JZ = pφ + k
qg
4π

. (45)

It follows from our discussion in the preceding section, and has been shown in [3,6],
that the difference JZ −qg/4π has integer eigenvalues. We may rewrite this assertion
in the notation used here as the statement that in the gauge k = 1 the operator pφ =
h̄
i
∂
∂φ has integer eigenvalues and therefore the wave function is periodic in φ .
However the periodicity of the wave function depends on k. This can be traced

to the fact that differentiating with respect to φ

pφ =
h̄
i
∂
∂φ

|λ (46)

at constant λ (where λ is the coordinate along the U(1) fiber) is not invariant under
the gauge transformation

λ → λ − gφ
4π

, (47)

which brings k from 1 to 0. As (47) itself shows, the wave function picks up a
phase factor e−i qg

4π φ . This in turn implies that in the gauge k = 0 the wave function
is antiperiodic in φ when qg/4π is half integer. This anti-periodicity is permissible
because as discussed at the end of Sect. 3.1 in the gauge k = 0 an infinite line is
removed from R

3 and the resulting configuration space for the electron is therefore
not simply connected.

Another interesting manifestation of the lack of simple connectedness due to the
infinite line formed by the two strings when k = 0 is the following: the closed path
traveled in configuration space when the string sweeps out a closed surface around
the electric charge is not contractible to the identity, whereas it is so when the string
is half infinite (see [8,9]). For this reason the string wave function changes sign after
the turn and one obtains the same quantization condition as when k = 1, in which
case the path is contractible and the wave function returns to its original value.
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4 Beyond the Linear Theory for Spin Two

We have seen that magnetic monopoles in electromagnetism give rise to interesting
physics and bring together ideas involving spatial rotations and gauge transforma-
tions and that, when considered in the quantum theory, they lead to the aforemen-
tioned quantization condition. It is natural to ask whether magnetic sources can be
introduced in gravity and if so whether any of the arguments presented in Sects. 2
and 3 carry through to the gravity case.2

The gravitational analog of the point electric charge is the Schwarzschild so-
lution, in the sense that it is a solution of the vacuum field equations regular
everywhere except for at the origin. It is also spherically symmetric and the Killing
vectors (20) act on sections of constant (t,r) and generate two-spheres. It is in
fact the unique solution with all these properties. In what follows we will consider
another spacetime: the Taub-NUT solution [11]. This is an exact solution of the vac-
uum Einstein theory describing a gravitational dyon. The quantization condition on
the energy of a particle moving in the Taub-NUT geometry is a well known result
which has been discussed by many authors [12–16] and which can be viewed as a
consequence of the existence of closed timelike curves [17].

In what follows we shall rederive the quantization condition along new lines,
from the quantization of the angular momentum stored in the gravitational field as
was done for electromagnetism above.

4.1 The Gravitating Magnetic Pole

The Taub-NUT metric is given by

ds2 = −V (r)[dt + 2N(k− cosθ )dφ ]2 +V(r)−1dr2 +(r2 + N2)(dθ 2 + sin2 θ dφ2),
(48)

with

V (r) = 1− 2(N2 + Mr)
(r2 + N2)

=
r2 −2Mr−N2

r2 + N2 , (49)

where N and M are referred to as the magnetic and electric masses. A pure magnetic
mass has M = 0. The number k can be changed according to

k → k′ = k−α (50)

by performing a t coordinate transformation

t → t ′ = t + 2Nαφ . (51)

2 This question was studied in [10], where the linearized case was considered in detail for spins 2
and higher and then the spin 2 case was considered along the lines presented here. We refer the
reader to that paper for a full list of references.
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The metric (48) is singular on the z-axis. This singularity is most easily seen by
calculating |∇t|2 and can be interpreted as a singularity of the metric or of the t
coordinate. It is known in the literature as the Dirac–Misner string singularity, due
to its analogy with the Maxwell case. Its location depends on the value of k: for
k = 1 the singularity is at θ = π and for k = −1 it is at θ = 0. For all other values
of k both string singularities exist. The choice k = 0 makes the North and South
poles play a symmetrical role. In his paper [17], Misner showed that the singularity
is a coordinate singularity and that the metric describes a non-singular manifold
provided that the time coordinate t is taken to be periodic with period 8πN.

4.2 Spatial Rotations and Quantization Condition

Even though the metric contains a dtdφ term, it is spherically symmetric. How-
ever, the rotation group acts on spacetime in an unconventional way [17] and the
rotation Killing vectors differ from those of flat space by extra terms. One can under-
stand the origin of these additional terms by comparing the Taub-NUT solution with
the standard electromagnetic magnetic monopole solution as presented in Sect. 2.4
and recalling that for stationary metrics, the mixed time-space metric components
are naturally interpreted as the component of an electromagnetic vector potential
(gravitomagnetism): g0i ∼ Ai. In this spirit, the above metric component g0i would
correspond to a monopole potential

Aφ = −2N(k− cosθ ) (52)

with magnetic charge N, as has been observed by many authors.
To understand the form of the Killing vectors, we start with the generator of

rotations around the z-axis. It is recalled in Sect. 2.4 that in the electromagnetic case,
rotations of the electromagnetic potential of a magnetic pole must be accompanied
by gauge transformations. When the g0i metric components are interpreted as the
components of a vector potential, the electromagnetic gauge transformations lift to
diffeomorphisms along the time direction. We therefore expect the gauge parameter
which accompanies a rotation to lift to a component along ∂/∂ t.

This expectation turns out to be correct. The metric (48) has four Killing vectors,
given in [17] for k = 1, which we display as

ξt =
∂
∂ t

,

ξx = −sinφ
∂
∂θ

− cosφ cotθ
∂
∂φ

+
(

2Nk cosφ cotθ −2N
cosφ
sinθ

)
∂
∂ t

,

ξy = cosφ
∂
∂θ

− sinφ cotθ
∂
∂φ

+
(

2Nk sinφ cotθ −2N
sinφ
sinθ

)
∂
∂ t

,

ξz =
∂
∂φ

−2Nk
∂
∂ t

. (53)
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These satisfy the commutation relations

[ξa,ξb] = −εabcξc, [ξa,ξt ] = 0, (54)

where a,b,c = x,y,z and εxyz = 1, which constitute the standard su(2)× u(1) Lie
algebra. Notice the similarities between (53) and the vectors displayed in (25). For
N = 0, which is the Schwarzschild case, the three Killing vectors ξa generate space-
like two-spheres. In the case of Taub-NUT, although the algebra is the same, the
action of the group on the manifold is, as pointed out by Misner, different. In fact,
the ξa which satisfy the su(2) algebra now generate the r =constant three-spheres.
These three-spheres have a Lorentzian metric.

The three rotation Killing vectors ξa are invariant under reflections with respect
to the origin (t →−t, θ → π −θ , φ → φ +π , N →−N and k →−k). This invari-
ance is expected because the Killing vectors, being the generators of rotations, are
pseudo-vectors.

One also observes that ξz has a component along ∂/∂ t proportional to the mag-
netic mass a fact which we will now use to show a different derivation of the
quantization condition.

Consider an electric mass following a geodesic in the Taub-NUT spacetime, with
four-momentum pμ = muμ . There exists a conserved charge associated with every
Killing vector field, and in particular a charge JZ associated with ξz:

JZ = mξ μz uμ = pφ −2Nmu0k. (55)

We see that just as in the electromagnetic case, the angular momentum about the
z-axis has an additional term besides the standard pφ . This extra piece comes from
the angular momentum in the field, which varies as the particle moves and which
must be taken into account in the conservation law. In fact, the extra term coincides
with the angular momentum in the field when k = 1 and the particle is on the pos-
itive z-axis. Thus the angular momentum in the field is equal to 2Nmu0. Requiring
this angular momentum to be quantized in multiples of h̄/2 yields the quantization
condition

4Nmu0 ∈ h̄Z. (56)

Note that when the particle is on the negative z-axis, the angular momentum in the
field coincides with the extra term in JZ when k = −1 and therefore changes sign.

Formula (56) agrees with the condition that comes from periodicity in time of
the wave function. Suppose indeed that the electric mass is described by a wave
function ψ . The time dependence of ψ is given by

ψ ∝ e−
iEt
h̄ (57)

where E = mu0 is the energy of the particle. Recalling that time is periodic with
period Δ t = 8πN, and requiring single valuedness of the wave function, we obtain
EΔ t = 2nπ h̄ which implies, yet again, that

4Nmu0 ∈ h̄Z. (58)

Single-valuedness is required because the closed timelike curves are contractible.
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Equations (56) and (58) derived above are particular cases of the more general
covariant result derived for the linearized theory of spin ≥ 2 in [10], which followed
an adaptation of the arguments presented by Dirac in another great paper [18].
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The Census Taker’s Hat

Leonard Susskind

Abstract If the observable universe really is a hologram, then of what sort? Is it
rich enough to keep track of an eternally inflating multiverse? What physical and
mathematical principles underlie it? Is the hologram a lower dimensional quantum
field theory, and if so, how many dimensions are explicit, and how many “emerge?”
Does the Holographic description provide clues for defining a probability measure
on the Landscape?

The purpose of this lecture is first, to briefly review a proposal for a holographic
cosmology by Freivogel, Sekino, Susskind, and Yeh (FSSY), and then to develop
a physical interpretation in terms of a “Cosmic Census Taker:” an idea introduced
in [1]. The mathematical structure – a hybrid of the Wheeler-DeWitt formalism and
holography – is a boundary “Liouville” field theory, whose UV/IR duality is closely
related to the time evolution of the Census Taker’s observations. That time evolution
is represented by the renormalization-group flow of the Liouville theory.

Although quite general, the Census Taker idea was originally introduced in [1],
for the purpose of counting bubbles that collide with the Census Taker’s bubble. The
“Persistence of Memory” phenomenon discovered by Garriga, Guth, and Vilenkin,
has a natural RG interpretation, as does slow roll inflation. The RG flow and the
related C-theorem are closely connected with generalized entropy bounds.

1 Introduction

Of all the “String Inspired” cosmological scenarios, only one seems to me to have
an element of inevitability to it. The facts and principles that drive it are as follows:

• Observational evidence supports the existence of a period of slow-roll inflation
during which the universe exponentially expanded by a factor no less than e50.
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The universe grew to a size which is at least 1,000 times larger (in volume) than
the portion which is observable.

• A small residual vacuum energy of order 10−123M4
p remained at the end of in-

flation and now dominates the energy density of the universe. If this situation
persists, then not only is the universe at least 1,000 larger than what can be seen;
it is 1,000 larger than what can ever be seen [2, 3].

• String Theory apparently gives rise to an immense Landscape of de Sitter
vacua [4–7] with a very dense “discretuum” of vacuum energies. None of these
vacua are absolutely stable: each can decay to vacua with smaller cosmological
constant.

• Black Hole (or Observer) Complementarity [8–10], and the Holographic
Principle [11, 12], have been confirmed by string theory, at least in a certain
wide class of backgrounds [13–15]. The implication is twofold. On the one
hand, observer complementarity requires the identification of a causal patch;
conventional quantum mechanics only makes sense within such a patch. The
Holographic Principle requires that a region of space be described by boundary
degrees of freedom whose number does not exceed the area, measured in Planck
Units.

• Inflation, if it lasts long enough, has a tendency [16–21] to populate the Land-
scape with a great diversity of nucleated “pocket universes.”

The first two items imply that all of observable cosmology consisted of a roll
from one value of the vacuum energy (probably no bigger than 10−14M4

p), to its
final current value. How and why the universe began with such an unnatural energy
density is not explained by any standard theory, but the Landscape suggests the fol-
lowing guess: At some point in the remote past the universe occupied a point on the
Landscape with a much higher vacuum energy, perhaps of order one in Planck units.
Rolling, unimpeded, to a vacuum energy of 10−14 without getting stuck in a local
minimum is unlikely. (Think of rolling a bowling ball from the top of Mount Everest
to sea level.) It is far more likely that the universe would get stuck in many minima,
and have to tunnel [22] multiple times, before arriving at the very small vacuum
energy required by conventional slow-roll inflation. We will not dwell on Anthropic
issues in this paper, but I would point out that a long period of conventional inflation
appears to be required for structure formation [23]. The argument is similar to the
well-known Weinberg argument concerning the cosmological constant.

These considerations strongly suggest that the period of conventional slow-roll
inflation was preceded by a tunneling event from a previous neighboring vacuum.
In other words, the observed universe evolved by a sudden bubble nucleation from
an “Ancestor” vacuum, once removed on the Landscape. It seems obvious that one
of the next big questions for cosmology will be to find the theoretical and observa-
tional tools to confirm or refute the past existence of an Ancestor, and to find out
as much as we can about it. If we are lucky and the amount of slow-roll inflation
that followed bubble nucleation is as small as observational evidence allows, then
we have a chance of seeing features of the Ancestor imprinted on the sky [23]. The
two smoking guns would be:
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• Negative spatial curvature: bubble nucleation leads to a negatively curved, infi-
nite, FRW universe.

• Tensor modes in the CMB, but only in the lowest harmonics. Although the vac-
uum energy subsequent to tunneling (during conventional slow-roll inflation) was
almost certainly too small to create observable tensor modes, the cosmological
constant in the Ancestor was probably much larger. During the Ancestor epoch,
large tensor fluctuations would be created by rapid inflation. A tail (diminishing
rapidly with l ) of those fluctuations could be visible if the number of slow-roll
e-foldings is minimal.

If the observational evidence for an Ancestor is weak, so is the current theoretical
framework. To many of us, eternal inflation, bubble nucleation, and a multiverse,
seem all but inevitable, but it is also true that they have inspired what Bjorken1

has called “the most extravagant extrapolation in the history of physics.” Eternal
inflation leads to an uncontrolled infinity of “pocket universes” which we have no
good idea how to regulate – the inevitable has led to the preposterous. In my opinion,
this situation reflects serious confusion, and perhaps even a crisis.

Eternal inflation is not the only extravagance that we have had to tame in recent
decades. I have in mind the fact that a naive but very compelling interpretation of
black holes seemed, at one time, to imply that a black hole can absorb an infinite
amount of information behind its horizon [24, 25]. By feeding a black hole with
coherent energy at the same rate that it evaporates, it would seem that an infinity of
bits could be lost to the observable world.

I believe these two crises may be related. In both cases the infinities result from
“cutting across horizons” and attempting to describe global space-like surfaces with
independent degrees of freedom at each location. The cure is to focus attention
on a single causal region, and to describe it by a Holographic set of degrees of
freedom [8, 26].

In FSSY [27] the authors described one such holographic framework – call it
holography in a hat – based on mathematical ideas that have become familiar from
String Theory. At the same time, Shenker and collaborators [1] have developed an
intuitive “gedanken observational” approach based on a fictitious observer called
the “Census Taker.” My purpose in this lecture is to explain the close connection
between these ideas.

2 The Census Bureau

Let us begin with a precise definition of a causal patch. Start with a cosmologi-
cal space–time and assume that a future causal boundary exists. For example, in
flat Minkowski space the future causal boundary consists of I + (future light like

1 James Bjorken, private communication.
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Fig. 1 Conformal diagram for ordinary flat Minkowski space. The causal patch associated with
the “Census Bureau” is the entire space–time. A Census Taker and his past light-cone are also
shown

infinity) and a single point, time-like-infinity. For a (non-eternal) Schwarzschild
black hole, the future causal boundary has an additional component: the singularity.

A causal patch is defined in terms of a point a on the future causal boundary. I’ll
call that point the “Census Bureau.2” The causal patch is, by definition, the causal
past of the Census Bureau, bounded by its past light cone. For Minkowski space,
one usually picks the Census Bureau to be time-like-infinity. In that case the causal
patch is all of Minkowski space as seen in Fig. 1.

In the case of the Schwarzschild geometry, a can again be chosen to be time-like-
infinity, in which case the causal patch is everything outside the horizon of the black
hole. There is no clear reason why one can’t choose a to be on the singularity, but it
would lead to obvious difficulties.

The term “Census Taker” was introduced [1] to denote an observer, at a point
inside a causal patch, who looks back into the past and collects data. He can count
galaxies, other observers, hydrogen atoms, colliding bubble-universes, civilizations,
or anything else within his own causal past. As time elapses the Census Taker sees
more and more of the causal patch. Eventually all Census takers within the causal
patch arrive at the Census Bureau where they can compare data.

De Sitter space has the well known causal structure as shown in Fig. 2. In this
case all points at future infinity are equivalent: the Census Bureau can be located

2 This term originated during a discussion between myself and Steve Shenker in a Palo Alto Cafe.
Neither of us will admit to having coined it first, but it wasn’t me.
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Fig. 2 Conformal diagrams for eternal and metastable de Sitter space. The grey areas are causal
patches associated with the points a. In the metastable case the causal patch is associated with the
tip of a hat

at any of them. However, String Theory and other considerations suggest that de
Sitter minima are never stable. After a series of tunneling events they eventually end
in terminal vacua with exactly zero or negative cosmological constant. The entire
distant future of de Sitter space is replaced by a fractal of terminal bubbles.

Decay to negative cosmological constant always leads to a singular crunch. Bar-
ring governmental stupidity, this seems an unlikely place for a Census Bureau. The
disadvantages (or advantages) of locating a government agency at a crunch are the
same as at a black hole singularity.

Terminal vacua with zero cosmological constant seem more promising; the bub-
ble then evolves to an open, negatively curved, FRW geometry, bounded by a
“hat” [27]. The Census Bureau is at the tip of the hat.

In the case of the black hole, the degrees of freedom beyond the horizon, i.e.,
outside the causal patch, are redundant descriptions of degrees of freedom within
the patch: they should not be double-counted. We assume that the same is true of
the causal patch of a hat. In both cases the conventional rules of quantum mechanics
are expected to apply only within the causal patch. Furthermore the rules should
respect the Holographic Principle.

The reader may wonder about the relationship between hatted terminal geome-
tries, and observational cosmology with a non-zero cosmological constant. There
are two answers: the first is that for many purposes, the current cosmological
constant is so small that it can be set to zero. Later we will argue that the con-
formal field theory description of the approximate hat which results from non-zero
cosmological constant is an ultraviolet cut-off version of the type of field theory that
describes a hat.

The second answer was emphasized by Shenker et al. [1] who argued that be-
cause our present de Sitter vacuum will eventually decay, a Census Taker can look
back into our current vacuum from a point at or near the tip of a hat, and gather in-
formation. In principle the Census Taker can peek back, not only into the Ancestor
vacuum (our vacuum in this case), but also into bubble collisions with other vacua
of the Landscape. Much of this paper is about the gathering of information as the
Census Taker’s time progresses, and how it is encoded in the renormalization-group
(RG) flow of a holographic field theory.
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3 Open FRW and Euclidean ADS

The classical space–time in the interior of a Coleman De Luccia bubble, has the
form of an open infinite FRW universe, Let H3 represent a hyperbolic geometry
with constant negative curvature.

dH 2
3 = dR2 + sinh2 R dΩ 2

2 . (1)

The metric of open FRW is

ds2 = −dt2 + a(t)2dH 2
3 , (2)

or in terms of conformal time T (defined by dT = dt/a(t))

ds2 = a(T )2(−dT 2 + dH 2
3 ) (3)

Note that in (1) the radial coordinate R is a hyperbolic angle and that the symmetry
of the spatial sections is the non-compact group O(3,1). This O(3,1) symmetry
plays a central role in what follows.

If the vacuum energy in the bubble is zero, i.e., no cosmological constant, then
the future boundary of the FRW region is a hat. The scale factor a(t) then has the
early and late-time behaviors

a(T ) ∼ t ∼ DeT . (4)

For early time when T → −∞ the constant D is conveniently chosen to be the
Hubble scale of the Ancestor, H−1.

a(T ) = H−1eT (T →−∞) (5)

At late time it is always larger. In the simplest thin-wall case D is given by the
Ancestor Hubble-length at all times.

In Fig. 3, a conformal diagram of FRW is illustrated, with surfaces of constant
T and R shown in red and blue. The green region represents the de Sitter Ances-
tor vacuum. Figure 4 shows the Census Taker, as he approaches the tip of the hat,
looking back along his past light cone.

Part of the inspiration for FSSY was the geometry of the spatial slices of con-
stant T . Each slice, taken by itself, is a three dimensional, negatively curved,
hyperbolic plane. It is very familiar to relativists and string theorists, being identical
to 3-D Euclidean anti de Sitter space. The best way that I know of for becoming
familiar with the hyperbolic plane is to study Escher’s drawing “Limit Circle IV.”
It is both a drawing of Euclidean ADS and also a fixed-time slice of open FRW.
In Fig. 5, the green circle is the intersection of Census Takers past light cone with
the time-slice. As the Census Taker advances in time, the green circle moves out,
ever closer to the boundary.
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Fig. 3 A Conformal diagram for the FRW universe created by bubble nucleation from an
“Ancestor” metastable vacuum. The Ancestor vacuum is shown in grey. The time-like and space-
like curves are surfaces of constant T and R. The two-sphere at spatial infinity is indicated by Σ

Fig. 4 The Census Taker is indicated by the dot. The light-like lines represent his past light-cone
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Fig. 5 Escher’s drawing of the Hyperbolic Plane, which represents Euclidean anti de Sitter space
or a spatial slice of open FRW. The circle near the boundary shows the intersection of the Census
Taker’s past light-cone, which moves toward the boundary with Census-Taker-time

A fact (to be explained later) which will play a leading role in what follows, con-
cerns the Census Taker’s angular resolution, i.e., his ability to discern small angular
variation. If the time at which the CT looks back is called TCT , then the smallest
angle he can resolve is of order exp(−TCT ). It is as if the CT were looking deeper
and deeper into the ultraviolet structure of a quantum field theory on Σ .

The boundary of anti de Sitter space plays a key role in the ADS/CFT corre-
spondence, where it represents the extreme ultraviolet degrees of freedom of the
boundary theory. The corresponding boundary in the FRW geometry is labeled Σ
and consists of the intersection of the hat I +, with the space-like future boundary
of de Sitter space. From within the interior of the bubble, Σ represents space-like
infinity. It is the obvious surface for a holographic description. As one might ex-
pect, the O(3,1) symmetry which acts on the time-slices, also has the action of two
dimensional conformal transformations on Σ . Whatever the Census Taker sees, it is
very natural for him to classify his observations under the conformal group. Thus,
the apparatus of (Euclidean) conformal field theory, such as operator dimensions,
and correlation functions, should play a leading role in organizing his data.

In complicated situations, such as multiple bubble collisions, Σ requires a pre-
cise definition. The asymptotic light-cone I + (which is, of course, the limit of the
Census Takers past light cone), can be thought of as being formed from a collec-
tion of light-like generators. Each generator, at one end, runs into the tip of the hat,
while the other end eventually enters the bulk space–time. The set of points where
the generators enter the bulk define Σ .
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4 The Holographic Wheeler-DeWitt Equation

Supposedly, String Theory is a quantum theory of gravity, and indeed it has proved
to be a remarkably powerful one, but only in certain special backgrounds. As effec-
tive as it is in describing scattering amplitudes in flat (supersymmetric) space–time,
and black holes in anti de Sitter space, it is an inflexible tool which at present is
close to useless for formulating a mathematical framework for cosmology. What is
it that is so special about flat and ADS space that allows a rigorous formulation of
quantum gravity, and why are cosmological backgrounds so difficult?

The problem is frequently blamed on time-dependence. But time-dependent de-
formations of anti de Sitter space or Matrix Theory are easy to describe. Something
else is the culprit. There is one important difference between the usual String Theory
backgrounds and more interesting cosmological backgrounds. Asymptotically-flat
and anti de Sitter backgrounds have a property that I will call asymptotic coldness.
Asymptotic coldness means that the boundary conditions require the energy density
to go to zero at the asymptotic boundary of space.3 Similarly, the fluctuations in
geometry tend to zero. This condition is embodied in the statement that all physical
disturbances are composed of normalizable modes. Asymptotic coldness is obvi-
ously important to defining an S-matrix in flat space–time, and plays an equally
important role in defining the observables of anti de Sitter space.

But in cosmology, asymptotic coldness is never the case. Closed universes have
no asymptotic boundary, and homogeneous infinite universes have matter, energy,
and geometric variation out to spatial infinity; under the circumstances an S-matrix
cannot be formulated. String theory at present is ill equipped to deal with asymp-
totically warm geometries. To put it another way, there is a conflict between a
homogeneous cosmology, and the Holographic Principle which requires an isolated,
cold, boundary.

The traditional approach to quantum cosmology – the Wheeler-DeWitt equa-
tion – is the opposite of string theory; it is very flexible from the point of view of
background dependence – it doesn’t require any definite boundary condition, it can
be formulated for a closed universe, a flat or open FRW universe, de Sitter space,
or for that matter, flat and anti de Sitter space space–time – but it is not a consistent
quantum theory of gravity. It is based on an obsolete approach – local quantum field
theory – that fails to address the problems that String Theory and the Holographic
Principle were designed to solve: the huge over-counting of degrees of freedom
implicit in a local field theory.

FSSY suggested a way out of dilemma: synthesize the Wheeler-DeWitt philos-
ophy with the Holographic Principle to construct a Holographic Wheeler-DeWitt
theory. We will begin with a review of the basics of conventional WDW; For a more
complete treatment, especially of infinite cosmologies, see [28].

3 Note that asymptotic coldness refers only to conditions at spatial infinity. A violation of asymp-
totic coldness does not imply that the temperature remains finite as the time goes to infinity,
although even this is a problem in geometries that contain de Sitter boundary conditions. Hats
are somewhat better in that they become cold at late time.
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The ten equations of General Relativity take the form

δ
δgμν

I = 0 (6)

where I is the Einstein action for gravity coupled to matter. The canonical formula-
tion of General Relativity makes use of a time–space split [29]. The six space–space
components are more or less conventional equations of motion, but the four equa-
tions involving the time index have the form of constraints. These four equations are
written,

Hμ(x) = 0. (7)

They involve the space–space components of the metric gnm, the matter fields Φ ,
and their conjugate momenta. The time component H0(x), is a local Hamiltonian
which “pushes time forward” at the spatial point x. More generally, if integrated
with a test function,

∫
d3x f (x) H0(x) (8)

it generates infinitesimal transformations of the form

t → t + f (x). (9)

Under certain conditions H0 can be integrated over space in order to give a global
Hamiltonian description. Since H0 involves second space derivatives of gnm, it is
necessary to integrate by parts in order to bring the Hamiltonian to the conven-
tional form containing only first derivatives. In that case the ADM equations can be
written as ∫

d3x H = E. (10)

The Hamiltonian density H has a conventional structure, quadratic in canonical
momenta, and the energy E is given by a Gaussian surface integral over spatial
infinity. The conditions which allow us to go from (7) to (10) are satisfied in asymp-
totically cold flat-space–time, as well as in anti de Sitter space; in both cases global
Hamiltonian formulations exist. Indeed, in anti de Sitter space the Hamiltonian of
the Holographic boundary description is identified with the ADM Energy, but, as
we noted, cosmology, at least in its usual forms, is never asymptotically cold. The
only recourse for a canonical description, is the local form of equations (7).

When we pass from classical gravity to its quantum counterpart, the usual gener-
alization of the canonical equations (7) become the Wheeler-DeWitt equations,

Hμ |Ψ〉 = 0 (11)

where the state vector |Ψ 〉 is represented by a wave functional that depends only on
the space components of the metric gmn, and the matter fields Φ .
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The first three equations

Hm|Ψ 〉 = 0 (m = 1, 2, 3.) (12)

have the interpretation that the wave function is invariant under spatial diffeomor-
phisms,

xn → xn + f n(xm) (13)

In other words Ψ (gmn, Φ) is a function of spatial invariants. These equations are
usually deemed to be the easy Wheeler-DeWitt equations.

The difficult equation is the time component

H0|Ψ〉 = 0. (14)

It represents invariance under local, spatially varying, time translations. Not only
is (14) difficult to solve; it is difficult to even formulate: the expression for H0 is
riddled with factor ordering ambiguities. Nevertheless, as long as the equations are
not pushed into extreme quantum environments, they can be useful.

4.1 Wheeler-DeWitt and the Emergence of Time

Asymptotically cold backgrounds come equipped with a global concept of time.
But in the more interesting asymptotically warm case, time is an approximate, de-
rived, concept [28, 30], which emerges from the solutions to the Wheeler-DeWitt
equation. The perturbative method for solving (14) that was outlined in [28], can
be adapted to the case of negative spatial curvature. We begin by decomposing the
spatial metric into a constant curvature background, and fluctuations. Since we will
focus on open FRW cosmology, the spatial curvature is negative, the space metric
having the form,

ds2 = a2 (dR2 + sinh2 R (dθ 2 + sin2 θdφ2)
)
+ a2hmndxmdxn (15)

In (15) a is the usual FRW scale factor and the x’s are (R, θ , φ).
The first approximation, in which all fluctuations are ignored, is usually called

the mini-superspace approximation, but it really should be seen as a first step in
a semiclassical expansion. In lowest order, the Wheeler-DeWitt wave function de-
pends only on the scale factor a. To carry out the leading approximation in open
FRW it is necessary to introduce an infrared regulator which can be done by bound-
ing the value of R,

R < R0 (R0 � 1). (16)

Lets also define the total dimensionless coordinate-volume within the cutoff region,
to be V0.

V0 = 4π
∫

dRsinh2 R ≈ 1
2
πe2R0. (17)
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The first (mini-superspace) approximation is described by the action,

L =
−aV0ȧ2 −V0a

2
(18)

Defining P to be the momentum conjugate to the scale factor a,

P = −aV0ȧ (19)

the Hamiltonian H0 is given by,4

H0 =
1

2V0
P

1
a

P+
1
2

V0a (20)

Finally, using P = −i∂a, the first approximation to the Wheeler-DeWitt equation
becomes,

−∂a
1
a
∂aΨ −V 2

0 aΨ = 0. (21)

The equation has the two solutions,

Ψ = exp(±iV0a2), (22)

corresponding to expanding and contraction universes; to see which is which we use
(19). The expanding solution, labeledΨ0 is

Ψ0 = exp(−iV0a2). (23)

From now on we will only consider this branch.
There is something funny about (23). Multiplying V0 by a2 seems like an odd

operation. V0a3 is the proper volume, but what is V0a2? The answer in flat space is
that it is junk, but in hyperbolic space its just the proper area of the boundary at R0.
One sees from the metric (3) that the coordinate volume V0, and the coordinate
area A0, of the boundary at R0, are (asymptotically) equal to one another, to within
a factor of 2.

A0 = 2V0. (24)

Thus the expression in the exponent in (23) is − 1
2 iA, where A is the proper area of

the boundary at R0.

Ψ0 = exp(−2iA). (25)

This is a suggestive indication of a Wheeler-DeWitt boundary-holography of open
FRW.

4 The factor ordering in the first term is ambiguous. I have chosen the simplest Hermitian factor
ordering.
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To go beyond the mini-superspace approximation one writes the wave function
as a product ofΨ0, and a second factor ψ(a,h,Φ) that depends on the fluctuations.

Ψ(a,h,Φ) =Ψ0 ψ(a,h,Φ) = exp(−iV0a2) ψ(a,h,Φ). (26)

By integrating the Wheeler-DeWitt equation over space, and substituting (26), an
equation for ψ can be obtained.

i∂aψ+
1

aV0
∂a

1
a
∂aψ = Hmψ (27)

In this equation Hm has the form of a conventional Hamiltonian (quadratic in the
momenta) for both matter and metric fluctuations.

In the limit of large scale factor the term 1
aV0
∂a

1
a∂aψ becomes negligible and (27)

takes the form of a Schrodinger equation.

i∂aψ = Hmψ (28)

Evidently the role of a is not as a conventional observable, but a parameter rep-
resenting the unfolding of cosmic time. One does not calculate its probability, but
instead constrains it – perhaps with a delta function or a Lagrange multiplier. As
Banks has emphasized [30], in this limit, and maybe only in this limit, the wave
function ψ has a conventional interpretation as a probability amplitude.

4.2 Holographic WDW

All of this brings us to the central question of this lecture: what form does the correct
holographic theory take in asymptotically warm cosmological backgrounds? The
answer suggested in FSSY was a holographic version of the Wheeler-DeWitt theory,
living on the space-like boundary Σ .

As we have described it, the Wheeler-DeWitt theory is a throwback to an older
view of quantum gravity based on the existence of bulk, space-filling degrees of
freedom. It has become clear that this is a tremendous overestimate of the capacity
of space to contain quantum information. The correct (holographic) counting of
degrees of freedom is in terms of the area of the boundary of space [11, 12]. In the
present case of open FRW, the special role of the boundary is played by the surface
Σ at R = ∞.

Just as in the ADS/CFT correspondence [15], it is useful to define a regulated
boundary, Σ0, at R = R0. In principle R0 can depend on angular location on Ω2. In
fact later we will discuss invariance under gauge transformations of the form

R → R + f (Ω2). (29)

(The notation f (Ω2). indicating that f is a function of location on Σ0.)
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The conjecture of FSSY is that the correct Holographic description of open FRW
is a Wheeler-DeWitt equation, but one in which the degrees of freedom are at the
boundary of space, i.e., on Σ , instead of being distributed throughout the bulk.

Thus we assume the existence of a set of boundary fields, that include a two
dimensional spatial metric on Σ0. The induced spatial geometry of the boundary
can always be described in the conformal gauge in terms of a Liouville field U(Ω2).

ds2 = e2U(Ω2)e2R0(Ω2)dΩ 2
2 (30)

U may be decomposed into a homogeneous term U0, and a fluctuation; obviously
the homogeneous term can be identified with the FRW scale factor by

eU0 = a. (31)

In Sect. 8 we will give a more detailed definition of the Liouville degree of freedom.
In addition we postulate a collection of boundary “matter” fields. The boundary

matter fields, y, are not the limits of the usual bulk fields Φ , but are analogous to the
boundary gauge fields in the ADS/CFT correspondence. In this paper we will not
speculate on the detailed form of these boundary matter fields.

4.3 The Wave Function

In addition to U and y, we assume a local Hamiltonian H(xi) that depends only
on the boundary degrees of freedom (the notation xi refers to coordinates of the
boundary Σ ), and a wave functionΨ(U,y),

Ψ(U,y) = e−
1
2 S+iW . (32)

At every point of Σ ,Ψ satisfies

H(xi)Ψ (U,y). = 0 (33)

In (32), S(U,y) and W (U,y) are real functionals of the boundary fields. For rea-
sons that will become clear, we will call S the action. However, S should not in any
way be confused with the four-dimensional Einstein action.

The local Hamiltonian H(xi), and the imaginary term W in the exponent, play
important roles in determining the expectation values of canonical momenta, as well
as the relation between scale factor and ordinary time. In this paper H and W will
play secondary roles.

We make the following three assumptions about S and W :

• Both S and W are invariant under conformal transformations of Σ . This follows
from the symmetry of the background geometry: open FRW.
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• The leading (non-derivative) term in the regulated form of W is − 1
2 A where A is

the proper area of Σ0,

W = −1
2

∫

Σ
e2R0e2U + ... (34)

This follows from (25).
• S and W have the form of local two dimensional Euclidean actions on Σ . In

other words they are integrals, over Σ , of densities that involve U , y, and their
derivatives with respect to xi.

The first of these conditions is just a restatement of the symmetry of the Coleman
De Luccia instanton. Later we will see that this symmetry is spontaneously broken
by a number of effects, including the extremely interesting “Persistence of Memory”
discovered in by Garriga et al. [31].

The second condition follows from the bulk analysis described earlier in (25). It
allows us to make an educated guess about the dependence of the local Hamiltonian
H(xi) on U . A simple form that reproduces (25) is

H(x) =
1
2

e−2Uπ2
U −2e2U + ... (35)

where πU is the momentum conjugate to U . It is easily seen that the solution to the
equation HΨ = 0 has the form (25).

The highly nontrivial assumption is the third item – the locality of the action.
As a rule quantum field theory wave functions are not local in this sense. That
the action S is local is far from obvious. In our opinion it is the strongest (mean-
ing the weakest) of our assumptions and the one most in need of confirmation.
At present our best evidence for the locality is the discrete tower of correlators,
including a transverse, traceless, dimension-two correlation function, described in
the next section. In principle, much more information can be obtained from bulk
multi-point functions, continued to Σ . For example, correlation functions of hi j

would allow us to study the operator product expansion of the energy-momentum
tensor.

As I said, the assumption that S is local is a very strong one, but I mean it in
a rather weak sense. One of the main points of this lecture is that there is a nat-
ural RG flow in cosmology (see Sect. 6). By locality I mean only that S is in the
basin of attraction of a local field theory. If it is true, locality would imply that the
measure

Ψ ∗Ψ = e−S (36)

has the form of a local two dimensional Euclidean field theory with action S, and
that the Census Taker’s observations could be organized not only by conformal
invariance but by conformal field theory.
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5 Data

The conjectured locality of the action S is based on data calculated by FSSY. The
background geometry studied in [27] was the Minkowski continuation of a thin-wall
Coleman De Luccia instanton, describing transitions from the Ancestor vacuum to
a hatted vacuum. For a number of reasons such a background cannot be a realistic
description of cosmology. First of all, there is a form of spontaneous breaking of the
O(3,1) symmetry that Garriga, Guth, and Vilenkin call “The Persistence of Mem-
ory.” In Sect. 8 we will see that these type of effects are “dual” to effects expected
in the theory of RG-flows.

More importantly, we do not live in a universe with zero cosmological constant.
Observational cosmology has come close to ruling out vanishing cosmological
constant, but also theoretical considerations rule it out; in the Landscape of String
Theory the only vacua with exactly vanishing cosmological constant are supersym-
metric. Nevertheless, hatted geometries are interesting in that they are the simplest
versions of asymptotically warm geometries.

In FSSY, correlation functions were computed in the thin-wall, Euclidean,
Coleman De Luccia instanton, and then continued to Minkowski signature. The
more general situation, including the possibility of slow-roll inflation after tunnel-
ing, is presently under investigation with Ben Freivogel, Yasuhiro Sekino, and Chen
Pin Yeh. Here we will mostly confine ourselves to the thin-wall case.

We begin by reviewing some facts about three-dimensional hyperbolic space and
the solutions of its massless Laplace equation. An important distinction is between
normalizable modes (NM) and non-normalizable modes (NNM); a scalar minimally
coupled field χ is sufficient to illustrate the important points.

The norm in hyperbolic space is defined in the obvious way:

〈χ |χ〉 =
∫

dRdΩ2 χ2 sinh2 R (37)

In flat space, fields that tend to a constant at infinity are on the edge on normaliz-
ability. With the help of the delta function, the concept of normalizability can be
generalized to continuum-normalizability, and the constant “zero mode” is included
in the spectrum of the wave operator, but in hyperbolic space the normalization
integral (37) is exponentially divergent for constant χ . The condition for normal-
izability is that χ → 0 at least as fast as e−R. The constant mode is therefore
non-normalizable.

Normalizable and non-normalizable modes have very different roles in the con-
ventional ADS/CFT correspondence. NM are dynamical excitations with finite
energy and can be produced by events internal to the anti de Sitter space. By con-
trast NNM cannot be excited dynamically. Shifting the value of a NNM is equivalent
to changing the boundary conditions from the bulk point of view, or changing the
Lagrangian from the boundary perspective. But, as we will see, in the cosmological
framework of FSSY, asymptotic warmness blurs this distinction.
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5.1 Scalars

Correlation functions of massless (minimally coupled) scalars, χ , depend on time
and on the dimensionless geodesic distance between points on H3. In the limit in
which the points tend to the holographic boundaryΣ at R→∞, the geodesic distance
between points 1 and 2 is given by,

l = R1 + R2 + log(1− cosα) (38)

where α is the angular distance on Ω2 between 1 and 2. It follows on O(3,1) sym-
metry grounds that the correlation function 〈χ(1)χ(2)〉 has the form,

〈χ(1)χ(2)〉 = G(T1, T2, l1,2)
= G{T1, T2, (R1 + R2 + log(1− cosα))} . (39)

Before discussing the data on the Coleman De Luccia background, let us consider
the form of correlation functions for scalar fields in anti de Sitter space. We work
in units in which the radius of the anti de Sitter space is 1. By symmetry, the cor-
relation function can only depend on l, the proper distance between points. The
large-distance behavior of the two-point function has the form

〈χ(1)χ(2)〉 ∼ e−(Δ−1)l

sinh l
. (40)

In anti de Sitter space the dimension Δ is related to the mass of χ by

Δ(Δ −2) = m2. (41)

We will be interested in the limit in which the two points 1 and 2 approach the
boundary at R → ∞. Using (38) gives

〈χ(1)χ(2)〉 ∼ e−ΔR1e−ΔR2(1− cosα)−Δ . (42)

It is well known that the “infrared cutoff ” R, in anti de Sitter space, is equivalent
to an ultraviolet cutoff in the boundary Holographic description [15]. The expo-
nential factors, exp(−ΔR) in (42) correspond to cutoff dependent wave function
renormalization factors and are normally stripped off when defining boundary corre-
lators. The remaining factor, (1− cosα)−Δ is the conformally covariant correlation
function of a boundary field of dimension Δ .

In FSSY it was claimed that in the Coleman De Luccia background, the cor-
relation function contains two terms, one of which was associated with NM and
the other with NNM. A third term was found, but ignored on the basis that it was
negligible when continued to the boundary. In fact the third term has an interesting
significance that we will come back to, but first we will review the terms studied in
FSSY.



230 L. Susskind

Fig. 6 Contours of integration for the two contributions G1, G2

In [27] the correlation function was expressed as a sum of two contour integrals
on the k plane – k being an eigenvalue of the Laplacian on H3. The integral involves
a certain reflection coefficient R(k) for a Schrodinger equation, derived from the
wave equation on the Coleman De Luccia instanton. The contour integral is

e−(T1+T2)
∮

C

dk
2ı

R(k)e−ik(T1+T2)

(
e−ikR − e−ikR−2πk

)

2sinhRsinhkπ
(43)

The contours of integration are shown in Fig. 6. The integrand has poles at all
imaginary values of k, with a double pole at k = i. In addition there may be other
singularities in the lower half plane. FSSY studied only the terms coming from the
upper contour labeled a in the figure. It contains two terms related to NM and NNM
respectively.

The normalizable contribution, G1, is an infinite sum, each term having the form
(42) with T -dependent coefficients. For late times,

G1 =
∞

∑
Δ=2

GΔe(Δ−2)(T1+T2) e−(Δ−1)l

sinh l

→
∞

∑
Δ=2

GΔ e(Δ−2)(T1+T2)e−ΔR1e−ΔR2(1− cosα)−Δ (44)

where Δ takes on integer values from 2 to ∞, and GΔ are a series of constants which
depend on the detailed CDL solution.

The connection with conformal field theory correlators is obvious; (44) is a sum
of correlation functions for fields of definite dimension Δ , but with coefficients
which depend on the time T . (It should be emphasized that the dimensions Δ in
the present context are not related to bulk four dimensional masses by (41).) Note
that the sum in (44) begins at Δ = 2, implying that every term falls at least as fast as
exp(−2R) with respect to either argument. Thus every term is normalizable.

Let us now extrapolate (44) to the surface Σ . Σ can be reached in two ways – the
first being to go out along a constant T surface to R =∞. Each term in the correlator
has a definite R dependence which identifies its dimension.
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Another way to get to Σ is to first pass to light-like infinity, I +, and then slide
down the hat, along a light-like generator, until reaching Σ . For this purpose it is
useful to define light-cone coordinates, T± = T ±R.

G1 = e−(T+
1 +T+

2 )∑
Δ

GΔ e(Δ−1)(T−
1 +T−

2 )(1− cosα)−Δ (45)

We note that apart from the overall factor e−(T+
1 +T+

2 ), G1 depends only on T−,
and therefore tends to a finite limit on I +. If we strip that factor off, then the
remaining expression consists of a sum over CFT correlators, each proportional
to a fixed power of eT−

. In the limit (T− → −∞) in which we pass to Σ , each
term of fixed dimension tends to zero as e(Δ−1)(T−

1 +T−
2 ) with the dimension-2 term

dominating the others.
The second term in the scalar correlation function discussed by FSSY consists of

a single term,

G2 =
el

sinh l
(T1 + T2 + l) → {

T +
1 + T+

2 + log(1− cosα)
}

(46)

The contribution (46) does not have the form of a correlator of a conformal field
of definite dimension. To understand its significance, consider a canonical massless
scalar field in two dimensions. On a two sphere the correlation function is ultraviolet
divergent and has the form

log
{
κ2(1− cosα)

}
(47)

where κ is the ultraviolet regulator momentum. If the regulator momentum varies
with location on the sphere – for example in the case of a lattice regulator with a
variable lattice spacing – formula (47) is replaced by

log{(1− cosα)}+ logκ1 + logκ2 (48)

Evidently if we identify the UV cutoff κ with T +,

logκ = T + (49)

the expressions in (46) and (48) are identical. The relation (49) is one of the central
themes of this paper, that as we will see, relates RG flow to the observations of the
Census Taker.

That the UV cutoff of the 2D boundary theory depends on R is very familiar from
the UV/IR connection [15] in anti de Sitter space. In that case the T coordinate is
absent and the log of the cutoff momentum in the conformal field theory would just
be R. The additional time dependent contribution in (49) will become clear later
when we discuss the Liouville field.

The logarithmic ultraviolet divergence in the correlator is a signal that massless
2D scalars are ill defined; the well-defined quantities being derivatives of the field.
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When calculating correlators of derivatives, the cutoff dependence disappears. Thus
for practical purposes, the only relevant term in (48) is log(1− cosα).

The existence of a dimension-zero scalar field on Σ is a surprise. It is obviously
associated with bulk field-modes which don’t go zero for large R. Such modes are
non-normalizable on the hyperbolic plane, and are usually not included among the
dynamical variables in anti de Sitter space.

In String Theory the only massless scalars in the hatted vacua would be moduli,
which are expected to be “fixed” in the Ancestor. For that reason FSSY considered
the effect of adding a four-dimensional mass term, μχ2, in the Ancestor vacuum.
The result on the boundary scalar was to shift its dimension from Δ = 0 to Δ = μ
(for small μ less than the Ancestor Hubble constant the corresponding mode stays
non-normalizable). However the correlation function was not similar to those in G1,
each term of which had a dependence on T−. The dimension μ term depends only
on T+:

G2 → e−μT+
1 e−μT+

2 log(1− cosα)−μ (50)

The two terms, (45) and (50) depend on different combinations of the coordi-
nates, T + and T−. It seems odd that there is one and only one term that depends
solely on T + and all the rest depend on T−. In fact the only reason is that FSSY
ignored an entire tower of higher dimension terms, coming from the contour b that,
like (50), depend only on T +. From now on we will group all terms independent of
T− into the single expression G2:

G2 =∑
Δ ′

GΔ ′e−(Δ ′)(T+
1 +T+

2 )(1− cosα)−Δ
′

(51)

The Δ ′ include μ , the positive integers and whatever other poles appear for ik < 1.
In the case μ = 0, the leading term in G2 is (46).

We will return to the two terms G1 and G2 in Sect. 6.5.

5.2 Metric Fluctuations

To prove that there is a local field theory on Σ , the most important test is the
existence of an energy-momentum tensor. In the ADS/CFT correspondence, the
boundary energy-momentum tensor is intimately related to the bulk metric fluc-
tuations. We assume a similar connection between bulk and boundary fields in the
present context. In FSSY, metrical fluctuations were studied in a particular gauge
which we will call the Spatially Transverse-Traceless (STT) gauge. The coordi-
nates of region I can be divided into FRW time, T , and space xm where m = 1, 2, 3.
The STT gauge for metric fluctuations is defined by

∇mhmn = 0
hm

m = 0 (52)
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In the second of equations (52), the index is raised with the aid of the background
metric (3). The main benefit of the STT gauge is that metric fluctuations satisfy
minimally coupled, massless, scalar equations, and the correlation functions are
similar to G1 and G2. However the index structure is rather involved. We define
the correlator,

〈hμν hστ 〉 = G
{μσ
ντ
}

= G1
{μσ
ντ
}

+ G2
{μσ
ντ
}

. (53)

The complicated index structure of G was worked out in detail in FSSY. In this
paper we quote only the results of interest – in particular those involving elements
of G

{μσ
ντ
}

in which all indices lie in the two-sphere Ω2. Thus we consider the cor-

relation function G1

{
ik
jl

}
.

As in the scalar case, G1 consists of an infinite sum of correlators, each cor-
responding to a field of dimension Δ = 2, 3, 4, . . . . The asymptotic T and R
dependence of the terms is identical to the scalar case, and the first term has Δ = 2.
This is particulary interesting because it is the dimension of the energy-momentum
tensor of a two-dimensional boundary conformal field theory. Once again this term
is also time-independent.

After isolating the dimension-two term and stripping off the factors exp(−2R),
the resulting correlator is called G1

{
ik
jl

}
|Δ=2. The calculations of FSSY revealed

that this term is two-dimensionally traceless, and transverse.

G1

{
ik
il

}
|Δ=2 = G1

{
ik
jk

}
|Δ=2 = 0

∇iG1

{
ik
jl

}
|Δ=2 = 0. (54)

Equation (54) is the clue that, when combined with the dimension-2 behavior of
G1
{

ik
il

} |Δ=2, hints at a local theory on Σ . It insures that it has the precise form of a
two-point function for an energy-momentum tensor in a conformal field theory. The

only ambiguity is the numerical coefficient connecting G1

{
ik
jl

}
|Δ=2 with 〈T i

j T
k

l 〉.
We will return to this coefficient momentarily.

The existence of a transverse, traceless, dimension-two operator is a necessary
condition for the boundary theory on Σ to be local: at the moment it is our main
evidence. But there is certainly more that can be learned by computing multipoint
functions. For example, from the three-point function 〈hhh〉 it should be possible
verify the operator product expansion and the Virasoro algebra for the energy-
momentum tensor.

Dimensional analysis allows us to estimate the missing coefficient connecting
the metric fluctuations with T i

j , and at the same time determine the central charge c.
In [27] we found c to be of order the horizon entropy of the Ancestor vacuum. We
repeat the argument here:
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Assume that the (bulk) metric fluctuation h has canonical normalization, i.e., it
has bulk mass dimension 1 and a canonical kinetic term. Either dimensional analysis
or explicit calculation of the two point function 〈hh〉 shows that it is proportional to
square of the Ancestor Hubble constant.

〈hh〉 ∼ H2. (55)

Knowing that the three point function 〈hhh〉 must contain a factor of the gravita-
tional coupling (Planck Length) lp, it can also be estimated by dimensional analysis.

〈hhh〉 ∼ lpH4. (56)

Now assume that the 2D energy-momentum tensor is proportional to the boundary
dimension-two part of h, i.e., the part that varies like e−2R. Schematically,

T = qh (57)

with q being a numerical constant. It follows that

〈T T 〉 ∼ q2H2

〈T TT 〉 ∼ q3lpH4. (58)

Lastly, we use the fact that the ratio of the two and three point functions is para-
metrically independent of lp and H because it is controlled by the classical algebra
of diffeomorphisms: [T,T ] = T . Putting these elements together we find,

〈T T 〉 ∼ 1
l2
pH2 (59)

Since we already know that the correlation function has the correct form, including
the short distance singularity, we can assume that the right hand side of (59) also
gives the central charge. It can be written in the rather suggestive form:

c ∼ Area/G (G = l2
p) (60)

where Area refers to the horizon of the Ancestor vacuum. In other words, the cen-
tral charge of the hypothetical CFT is proportional to the horizon entropy of the
Ancestor .

5.3 Dimension Zero Term

The term G2

{
ik
jl

}
begins with a term, which like its scalar counterpart, has a non-

vanishing limit on Σ . It is expressed in terms of a standard 2D bi-tensor t
{

ik
jl

}
which
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is traceless and transverse in the two dimensional sense. If the correlation function
were given just by t

{
ik
jl

}
, it would be a pure gauge artifact. One can see this by

considering the linearized expression for the 2D curvature-scalar C,

C = ∇i∇ jh
i j −2∇i∇i Tr h. (61)

The 2D curvature associated with a traceless transverse fluctuation vanishes, and
since t

{
ik
jl

}
by itself is traceless-transverse with respect to both points, it would be

pure gauge if it appeared by itself.

However, the actual correlation function G2

{
ik
jl

}
is given by

G2

{
ik
jl

}
= t
{

ik
jl

}
{R1 + T1 + R2 + T2 + log(1− cosα)} (62)

The linear terms in R+T , being proportional to t
{

ik
jl

}
are pure gauge, but the finite

term
t
{

ik
jl

}
log(1− cosα) (63)

gives rise to a non-trivial 2D curvature-curvature correlation function of the form

〈CC〉 = (1− cosα)−2. (64)

One difference between the metric fluctuation h, and the scalar field χ , is that we
cannot add a mass term for h in the Ancestor vacuum to shift its dimension.

Finally, as in the scalar case, there is a tower of higher dimension terms in the

tensor correlator, G2

{
ik
jl

}
that only depend on T +.

The existence of a zero dimensional term in G2

{
ik
jl

}
, which remains finite in

the limit R → ∞ indicates that fluctuations in the boundary geometry – fluctuations
which are due to the asymptotic warmness – cannot be ignored. One might expect
that in some way these fluctuations are connected with the field U that we encoun-
tered in the Holographic version of the Wheeler-DeWitt equation. In the next section
we will elaborate on this connection.

That is the data about correlation functions on the boundary sphere Σ that form
the basis for our conjecture that there exists a local holographic boundary descrip-
tion of the open FRW universe. There are a number of related puzzles that this data
raises: First, how does time emerge from a Euclidean QFT? The bulk coordinate R
can be identified with scale size just as in ADS/CFT but the origin of time requires
a new mechanism.

The second puzzle concerns the number of degrees of freedom in the boundary
theory. The fact that the central charge is the entropy of the Ancestor suggests that
there are only enough degrees of freedom to describe the false vacuum and not the
much large number needed for the open FRW universe at late time.
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6 Liouville Theory

6.1 Breaking Free of the STT Gauge

The existence of a Liouville sector describing metrical fluctuations on Σ seems dic-
tated by both the Holographic Wheeler-DeWitt theory and from the data of the
previous section. It is clear that the Liouville field is somehow connected with
the non-normalizable metric fluctuations whose correlations are contained in (62),
although the connection is somewhat obscured by the choice of gauge in [27]. In
the STT gauge the fluctuations h are traceless, but not transverse (in the 2D sense).
From the viewpoint of 2D geometry they are not pure gauge as can be seen from
the fact that the 2D curvature correlation does not vanish. One might be tempted to
identify the Liouville mode with the zero-dimension piece of (62). To do so would
of course require a coordinate transformation onΩ2 in order to bring the fluctuation
h j

i to the “conformal” form h̃δ j
i .

This identification may be useful but it is not consistent with the Wheeler-DeWitt
philosophy. The Liouville field U that appears in the Wheeler-DeWitt wave function
is not tied to any specific spatial gauge. Indeed, the wave function is required to be
invariant under gauge transformations,

xμ → xμ + f μ(x) (65)

under which the metric transforms:

gμν → gμν +∇μ fν +∇ν fμ . (66)

Let’s consider the effect of such transformations on the boundary limit of hi j. The
components of f along the directions in Σ induce 2D coordinate transformation
under which h transforms conventionally. Invariance under these transformations
merely mean that the action S must be a function of 2D invariants.

Invariance under the shifts f R and f T are more interesting. In particular the com-
bination f + = f R + f T generates non-trivial transformations of the boundary metric
hi j. An easy calculation shows that,

h j
i → h j

i + f +(Ω2)δ j
i . (67)

In other words, shift transformations f +, induce Weyl re-scalings of the boundary
metric. This prompts us to modify the definition of the Liouville field from

U = T + h̃ (68)

to
U = T + h̃+ f +. (69)
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One might wonder about the meaning of an equation such as (69). The left side of
the equation is supposed to be a dynamical field on Σ , but the right side contains an
arbitrary function f +. The point is that in the Wheeler-DeWitt formalism the wave
function must be invariant under shifts, but in the original analysis of FSSY a spe-
cific gauge was chosen. Thus, in order to render the wave function gauge invariant,
one must allow the shift f + to be an integration variable, giving it the status of a
dynamical field.

A similar example is familiar from ordinary gauge theories. The analog of the
Wheeler-DeWitt gauge-free formalism would be the unfixed theory in which one
integrates over the time component of the vector potential. The analog of the STT
gauge would be the Coulomb gauge. To go from one to the other we would perform
the gauge transformation

A0 → A0 + ∂0φ . (70)

Integrating over the gauge function φ in the path integral would restore the gauge
invariance that was given up by fixing Coulomb gauge.

Returning to the Liouville field, since both h̃ and f are linearized fluctuation
variables, we see that the classical part of U is still the FRW conformal time.

One important point: because the effect of the shift f + is restricted to the trace
of h, it does not influence the traceless-transverse (dimension-two) part of the metric
fluctuation, and the original identification of the 2D energy-momentum tensor is
unaffected.

Finally, invariance under the shift f− is trivial in this order, at least for the thin
wall geometry. The reason is that in the background geometry, the area does not
vary along the T− direction.

Given that the boundary theory is local, and includes a boundary metric, it is
constrained by the rules of two-dimensional quantum gravity laid down long ago by
Polyakov [32]. Let us review those rules for the case of a conformal “matter” field
theory coupled to a Liouville field. Two-dimensional coordinate invariance implies
that the central charge of the Liouville sector cancels the central charge of all other
fields. We have argued in [27] (and in Sect. 5) that the central charge of the matter
sector is of order the horizon area of the Ancestor vacuum, measured in Planck
Units. It is obvious from the 4-dimensional bulk viewpoint that the semiclassical
analysis that we have relied on, only makes sense when the Hubble radius is much
larger than the Planck scale. Thus we take the central charge of matter to satisfy
c� 1. As a consequence, the central charge of the Liouville sector, cL, must be large
and negative. Unsurprisingly, the negative value of c is the origin of the emergence
of time.

The formal development of Liouville theory begins by defining two metrics
on Ω2. The first is what I will call the reference metric ĝi j. Apart from an appro-
priate degree smoothness, and the assumption of Euclidean signature, the reference
metric is arbitrary but fixed. In particular it is not integrated over in the path integral.
Moreover, physical observables must be independent of ĝi j.
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The other metric is the “real” metric denoted by gi j. The purpose of the reference
metric is merely to implement a degree of gauge fixing. Thus one assumes that the
real metric has the form,

gi j = e2Uĝi j. (71)

The real metric – that is to say U – is a dynamical variable to be integrated over.
For positive cL the Liouville Lagrangian is

LL =
Q2√ĝ

8π

{
∇̂U∇̂U + R̂u

}
(72)

where R̂, ∇̂, all refer to the sphere Ω2, with metric ĝ. The constant Q is related to
the central charge cL by

Q2 =
cL

6
(73)

The two dimensional cosmological constant has been set to zero for the moment,
but it will return to play a surprising role. For future reference we note that the
cosmological term, had we included it, would have had the form,

Lcc =
√

ĝλe2U . (74)

It is useful to define a field φ = 4QU in order to bring the kinetic term to canon-
ical form. One finds,

LL =
√

ĝ
8π

{
∇̂φ∇̂φ + QR̂φ

}
(75)

and, had we included a cosmological term, it would be

Lcc =
√

ĝλ exp
φ

2Q
. (76)

By comparison with the case of positive cL, very little is rigorously understood
about Liouville theory with negative central charge. In this paper we will make a
huge leap of faith that may well come back to haunt us: we assume that the theory
can be defined by analytic continuation from positive cL. To that end we note that
the only place that the central charge enters (75) and (76) is through the constants Q
and γ , both of which become imaginary when cL becomes negative. Let us define,

Q = iQ. (77)

Equations (75) and (76) become,

LL =
√

ĝ
8π

{
∇̂φ∇̂φ + iQR̂φ

}

=
√

ĝ
8π

{
∇̂φ∇̂φ + 2iQφ

}
(78)
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(where we have used R̂ = 2), and

Lcc =
√

ĝλ exp
−iφ
2Q

. (79)

Let us come now to the role of λ . First of all λ has nothing to do with the
four-dimensional cosmological constant, either in the FRW patch or the Ancestor
vacuum. Furthermore it is not a constant in the action of the boundary theory. Its
proper role is as a Lagrange multiplier that serves to specify the time T , or more
exactly, the global scale factor. The procedure is motivated by the Wheeler-DeWitt
procedure of identifying the scale factor with time. In the present case of the thin-
wall limit, we identify exp2U with exp2T . Thus we insert a δ function in the path
integral,

δ
(∫ √

ĝ(e2U − e2T )
)

=
∫

dzexp iz

(∫ √
ĝ(e2U − e2T )

)

(80)

The path integral (which now includes an integration over the imaginary 2D cos-
mological constant z) involves the action

LL + Lcc =
√

ĝ
8π

{

∇̂φ∇̂φ + 2iQφ+ 8π izexp
−iφ
2Q

−8π ize2T
}

(81)

There is a saddle point when the potential

V = 2iQφ + 8π izexp
−iφ
2Q

−8π ize2T (82)

is stationary; this occurs at,

exp
−iφ
2Q

= e2T

z = i
Q2

8π
e−2T (83)

or in terms of the original variables,

e2U = e2T

λ =
Q2

8π
e−2T (84)

Once λ has been determined by (84), the Liouville theory with that value of λ
determines expectation values of the remaining variables as functions of the time.
Thus, as we mentioned earlier, the cosmological constant is not a constant of the
theory but rather a parameter that we scan in order to vary the cosmic time.

It should be noted that the existence of the saddle point (84) is peculiar to the
case of negative c.
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6.2 Liouville, Renormalization, and Correlation Functions

6.3 Preliminaries

There are two preliminary discussions that will help us understand the application of
Liouville Theory to cosmic holography. The first is about the ADS/CFT connection
between the bulk coordinate R, and renormalization-group-running of the boundary
field theory. There are three important length scales in every quantum field theory.
The first is the “low energy scale;” in the present case the low energy scale is the
radius of the sphere which we will call L.

The second important length is the “bare” cutoff scale – where the underlying
theory is prescribed. Call it a. The bare input is a collection of degrees of freedom,
and an action coupling them. In a lattice gauge theory the degrees of freedom are
site and link variables, and the couplings are nearest neighbor to insure locality5 In
a ferromagnet they are spins situated on the sites of a crystal lattice.

The previous two scales have obvious physical meaning but the third scale is ar-
bitrary: a sliding scale called the renormalization or reference scale. We denote it
by δ . The reference scale is assumed to be much smaller than L and much larger
than a, but otherwise it is arbitrary. It helps to keep a concrete model in mind. In-
stead of a regular lattice, introduce a “dust” of points with average spacing a. It is
not essential that a be uniform on the sphere. Thus the spacing of dust points is a
function of position, a(Ω2). The degrees of freedom on the dust-points, and their
nearest-neighbor couplings, will be left implicit.

Next we introduce a second dust at larger spacing, δ . The δ -dust provides the
reference scale. It is well known that for length scales greater than δ , the bare theory
on the a-dust can be replaced by a renormalized theory defined on the δ -dust. The
renormalized theory will typically be more complicated, containing second, third,
and nth neighbor couplings.

Generally, the dimensionless form of the renormalized theory will depend on δ
in just such a way that physics at longer scales is exactly the same as it was in the
original theory. The dimensionless parameters will flow as the reference scale is
changed.

If there is an infrared fixed-point, and if the bare theory is in the basin of attraction
of the fixed-point, then as δ becomes much larger than a, the dimensionless param-
eters will run to their fixed-point values. In that case the continuum limit (a → 0)
will be a conformal field theory with SO(3,1) invariance.

Similar things hold in the theory of bulk anti de Sitter space, although in that
case the discussion of the bare scale is less relevant – one might as well take the
continuum limit a → 0 from the start. In the boundary field theory the infrared scale
is provided by the spherical boundary of ADS. From the bulk viewpoint the bound-
ary is at infinite proper distance, at R = ∞. However, the time for a signal to reach

5 Nearest neighbor is common but not absolutely essential. However this subtlety is not important
for us.



The Census Taker’s Hat 241

the boundary and be reflected back to the bulk is finite. In that respect anti de Sitter
space behaves like a finite cavity, requiring specific boundary conditions. To be def-
inite, the bulk theory is infrared regulated by replacing Σ with a reference-boundary
Σ0, at finite R. Specifying the boundary conditions on Σ0 is equivalent to specifying
the field theory parameters at scale δ . In parallel with the field theory discussion, the
cutoff R, can vary with angular position: R = R0(Ω2). We can now state the UV/IR
connection by the simple identification,

δ (Ω2) = e−R0(Ω2) (85)

A useful slogan is that “Motion along the R direction is the same as renormalization-
group flow.”

Now to the second preliminary – some observations about Lioville Theory. Again
it is helpful to have a concrete model. Liouville theory is closely connected with
the theory of dense, planar, “fishnet” diagrams [33] such as those which appear in
large N gauge theories, and matrix models [34–36]. The fishnet plays the role of
the bare lattice in the previous discussion, but now it’s dynamical – we sum over
all fishnet diagrams, assuming only that the spacing (on the sphere) is everywhere
much smaller than the sphere size, L. As before, we call the angular spacing between
neighboring points on the sphere, a(Ω).

Each fishnet defines a metric on the sphere. Let dα be a small angular interval
(measured in radians). The fishnet-metric is defined by6

ds2 =
dα2

a(Ω)2 (86)

As before we introduce a reference scale δ . It can also be a fishnet, but now it
is fixed, its vertices nailed down, not to be integrated over. We continue to assume
that δ satisfies the inequalities, a(Ω)� δ (Ω)� L, but otherwise it is arbitrary. The
δ -metric is defined by

ds2
δ =

dα2

δ (Ω)2 (87)

We can now define the Liouville field U . All it is is the ratio of the reference and
fishnet scales:

eU ≡ δ/a (88)

Using (88) together with δ = e−R, and ds = dα
a , we see that U is also given by the

relation,

ds = dα e(R0+U). (89)

In (89) both R0 and U are functions of location on Ω2, but only U is dynamical,
i.e., to be integrated over.

6 Strictly speaking there is no need to introduce a discrete fishnet lattice at the scale δ . It is sufficient
to just define a continuous function δ (Ω2), and from it define a reference metric by (86).
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6.4 Liouville in the Hat

With that in mind, we return to cosmic holography, and consider the metric on the
regulated spatial boundary of FRW, Σ0. In the absence of fluctuations it is

ds2 = e2R0e2T d2Ω2.

In general relativity it is natural to allow both R0 and T to vary over the sphere,
so that

ds2 = e2R0(Ω2)e2T(Ω2)d2Ω2 (90)

The parallel between (89 and (90) is obvious. Exactly as we might have expected
from the Wheeler-DeWitt interpretation, the Liouville field, U , may be identified
with time T , at least when both are large.

U ≈ T (91)

To summarize, Let’s list a number of correspondences:

δ ↔ μ−1 ↔ eR

λ ↔ e−T

a ↔ e−T+
= e−(T+R) (92)

One other point about Liouville Theory: the density of vertices of a fishnet is
normally varied by changing the weight assigned to vertices. When the fishnet is
a Feynman diagram the weight is a coupling constant g. It is well known that the
coupling constant and Liouville cosmological constantare alternate descriptions of
the same thing. Either can be used to vary the average vertex density – increasing it
either by increasing g or decreasing λ . The very dense fishnets correspond to large
U and therefore large FRW time, whereas very sparse diagrams dominate the early
Planckian era.

6.5 Proactive and Reactive Objects in Quantum Field Theory

There are two kinds of objects in Wilsonian renormalization that correspond quite
closely to the terms G1 and G2 that we have found in the Sect. 5. I don’t know if
there is a term for the distinction, but I will call them “proactive” and “reactive”.
Proactive objects are not quantities that we directly measure; they are objects which
go into the definition of the theory. The best example is the exact Wilsonian action,
defined at a specific reference scale. The form of proactive quantities depends on
that reference scale, and so does the value of their matrix elements; indeed their
form, varies with δ in such a way as to keep the physics fixed at longer distances.
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By contrast, reactive objects are observables whose value does not depend at all
on the reference scale. They do depend on the “bare” cutoff scale a through wave
function renormalization constants, which typically tend to zero as a → 0. The wave
function renormalization constants are usually stripped off when defining a quantum
field but we will find it more illuminating to keep them.

The distinction between these two kinds of objects is subtle, and is perhaps best
expressed in Polchinski’s version of the exact Wilsonian renormalization group [37].
In that scheme, at every scale there is a renormalized description in terms of local
defining fields φ(x), but the proactive action grows increasingly complicated as the
reference scale is lowered.

Consider the exact effective action defined at reference scale δ . It is given by an
infinite expansion of the form

LW (δ ) =
∞

∑
Δ=2

gΔOΔ (93)

Where OΔ are a set of operators of dimension Δ , and gΔ are dimensional coupling
constants. The renormalization flow is expressed in terms of the dimensionless cou-
pling constants,

g̃Δ = gΔδ (2−Δ ). (94)

The g̃ satisfy RG equations,

dg̃
d logδ

= −β (g̃), (95)

and at a fixed point they are constant. Thus the dimensional constants gΔ in the
Lagrangian will grow with δ . Normalizing them at the bare scale a, in the fixed-
point case we get,

gΔ = ga

{
δ
a

}(Δ−2)

(96)

LW (δ ) =
∞

∑
Δ=2

OΔ

{
δ
a

}(Δ−2)

. (97)

Now consider the two point function of the effective action, 〈LW (δ )LW (δ )〉,
evaluated at distance scale L � δ

〈LW (δ )LW (δ )〉 =
∞

∑
Δ=2

〈OΔOΔ 〉
(
δ
a

)2(Δ−2)

(98)

Suppose the theory is defined on a sphere of radius L and we are interested in the
correlator 〈LW (δ )LW (δ )〉 between points separated by angle α. The factor 〈OΔOΔ 〉
is the two-point function of a field of dimension Δ , in a theory on the sphere of size
L, with an ultraviolet cutoff at the reference scale δ . Accordingly it has the form
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〈OΔOΔ 〉 =
(
δ
L

)2Δ
(1− cosα)−Δ (99)

where the two factors of
(
δ
L

)Δ
are the ultraviolet-sensitive wave function renormal-

ization constants. The final result is

〈LW (δ )LW (δ )〉 =
∞

∑
Δ=2

CΔ

(
δ
a

)2(Δ−2)(δ
L

)2Δ
(1− cosα)−Δ (100)

Note the odd dependence of (100) on the arbitrary reference scale δ . That depen-
dence is typical of proactive quantities.

Now consider a reactive quantity such as a fundamental field, a derivative of such
a field, or a local product of fields and derivatives. Their matrix elements at distance
scale L will be independent of the reference scale (although it will depend of the
bare cutoff a) and be of order,

〈φφ〉 ∼
(a

L

)2Δφ
(101)

where Δφ is the operator dimension of φ . Thus we see two distinct behaviors for the
scaling of correlation functions:

(
δ
a

)2(Δ−2)(δ
L

)2Δ
proactive (102)

and
(a

L

)2Δφ
reactive (103)

The formulas are more complicated away from a fixed point but the principles are
the same.

We note that the effective action is not the only proactive object. The energy-
momentum tensor, and various currents computed from the effective action, will
also be proactive. As we will see these two behaviors – proactive and reactive –
exactly correspond to the dependence in (45) and (46).

Now we are finally ready to complete the discussion about the relation between
the correlators of Sect. 5 and proactive/reactive operators. Begin by noting that in
ADS/CFT, the minimally coupled massless (bulk) scalar is the dilaton, and its as-
sociated boundary field is the Lagrangian density. It may seem puzzling that in
the present case, an entire infinite tower of operators seems to replace, what in
ADS/CFT is a single operator. In the case of the metric fluctuations a similar tower
replaces the energy-momentum tensor. The puzzle may be stated another way. The
FRW geometry consists of an infinite number of Euclidean ADS time slices. At what
time (or what 2D cosmological constant) should we evaluate the boundary limits of
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the metric fluctuations, in order to define the energy-momentum tensor? As we will
see, a parallel ambiguity exists in Liouville theory.

Return now, to the three scales of Liouville Theory: the infrared scale L, the ref-
erence scale δ , and the fishnet scale a, with L � δ � a. It is natural to assume that
the basic theory is defined at the bare fishnet scale a by some collection of degrees of
freedom at each lattice site, and also specific nearest-neighbor couplings – the latter
insuring locality. Now imagine a Wilsonian integration of all degrees of freedom on
scales between the fishnet scale and the reference scale, including the fishnet struc-
ture itself. The result will be a proactive effective action of the type we described in
(93). Moreover the correlation function of Le f f will have the form (100). But now,
making the identifications (85) and

δ
a

= eU = eT , (104)

we see that (102) for proactive scaling becomes (for each operator in the product)

e(Δ−2)T e−ΔR (105)

This is in precise agreement with the coefficients in the expansion (44). Similarly
the reactive scaling (103) is e−ΔT+

, in agreement with the properties of G2.
It is not obvious to me exactly why the bulk fields should correspond to proactive

and reactive boundary fields in the way that they do. I might point out the solutions
to the wave equation in the bulk are generally sums of two types of modes,

χ− → g−(Ω2) F−(T−) e−2T

χ+ → g+(Ω2) F+(T +). (106)

Evidently the two types of solutions couple to objects that are reactive and proactive
under the RG flow.

What happens to the proactive objects if we approach Σ by sending T + → ∞
and T− → −∞? In this limit only the dimension-two term survives: exactly what
we would expect if the matter action ran toward a fixed point. All of the same
things hold true for the tensor fluctuations. Before the limit T− →−∞, the energy-
momentum tensor consists of an infinite number of higher dimension operators but
in the limit, all tend to zero except for the dimension two term.

It should be observed that the higher dimension contributions to G1

{
ik
jl

}
are not

transverse in the two-dimensional sense. This is to be expected: before the limit
is taken, the Liouville field does not decouple from the matter field, and the mat-
ter energy-momentum is not separately conserved. But if the matter theory is at a
fixed point, i.e., scale invariant, the Liouville and matter do decouple and the matter
energy-momentum should be conserved. Thus, in the limit in which the dimension-
two term dominates, it should be (and is) transverse-traceless.

The RG flow is usually thought of in terms of a single independent flow-
parameter. In some versions it’s the logarithm of the bare cutoff scale, and in other
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Fig. 7 The Wilson line of scales, and the two dimensional R,T plane

formulations it’s the log of the renormalization scale. In the conventional ADS/CFT
framework, R can play either role. One can imagine a bare cutoff at some large R0 or
one can push the bare cutoff to infinity and think of R as a running renormalization
scale.

However, for our purposes, it is better to keep track of both scales. One can either
think of a one-dimensional (logarithmic) axis – we can call it the “Wilson line” –
extending from the infrared scale to the fishnet scale a, or a two dimensional R,T
plane. In either case the effective action as a function of two independent variables.
Figure 7 shows a sketch of the Wilson line and the two dimensional plane represent-
ing the two directions R, and T .

The two independent parameters can be chosen to be a and δ , or equivalently R
and T . Yet another choice is to work in momentum space. The reference energy-
scale is usually called μ .

μ = eR (107)

And in the case of negative central charge, the two-dimensional cosmological con-
stant λ can replace T .

In this light, it is extremely interesting that the distinction between proactive and
reactive scaling, corresponds to motion along the two light-like directions T− and
T + as depicted in Fig. 8.

It is important to understand that the duality between FRW cosmology and
Liouville 2D gravity does not only involve the continuum fixed point theory. As
long as T is finite the theory has some memory of the bare theory. It’s only in the
limit T →∞ that the theory flows to the fixed point and loses memory of the bare de-
tails. We will come back to this point in Sect. 8 when I discuss the Garriga et al. [31]
“Persistence of Memory” phenomenon.
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Fig. 8 Proactive and reactive quantities scale with the two light-like directions T− and T +

6.6 Boussovian Bounds and The c-Theorem

When a conformal matter theory is coupled to a Liouville field, the two sectors
decouple, except for the constraint that the total central charge vanish,

c + cL = 0, (108)

where c and cL refer to matter and Liouville respectively. Moreover the matter cen-
tral charge is constant since a conformal theory is, by definition, at a fixed-point.
From now on when I speak of the central charge I will be referring to the matter
sector only.

There is one caveat to this rule that c is constant at a fixed point: it applies
straightforwardly as long as the reference scale is much smaller than the infrared
scale, i.e., the size of the sphere. However, the finite (coordinate) size of the bound-
ary sphere provides an infrared cutoff that is similar to the confinement scale in
a confining gauge theory. As the reference scale becomes comparable to the total
sphere, the theory runs out of lower energy degrees of freedom and, with some def-
inition, the c-function will go to zero.

The central charge is a measure of the number of degrees of freedom in an area-
cell of size e−2T+

. Naively, the holographic principle would say it is the area in such
a cell in Planck units. However, as we have seen in the past, this is not always the
case [38, 39].

Recall that motion up and down the T− axis, at fixed T +, corresponds to the
usual RG flow of the Wilsonian action (keeping the bare scale fixed and letting the
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reference scale vary). Thus, at a fixed point, the area along a fixed T + line should
be constant. In the thin wall limit the area is given by

A = e2T sinh2 R. (109)

As long as R � 1 the area is indeed constant for fixed T +. However as we approach
R ∼ 1 the area quickly tends to zero, consistent with the remarks above.

More generally, away from fixed points the Zamolodchikov c-theorem requires
c to decrease with increasing reference-scale δ . This seems to suggest that the area
must monotonically decrease as T− increases, with T + held fixed, which, as we will
see raises a paradox; the area is not monotonic beyond the thin-wall approximation.

The study of how area varies along light sheets – “Boussology” – has a long and
celebrated history which I will assume you are familiar with [39]. Rather than deal
with the equations that determine how area varies I will draw some Bousso diagrams
and tell you the conclusions. First the thin-wall case: Figure 9 shows the FRW patch
of a thin-wall Coleman De Luccia nucleation. In fact it is the forward light-cone of
a point in flat Minkowski space. The red line is a light-sheet of constant T+. The
Bousso wedges indicate the light-like directions along which the area decreases.
The entire geometry consists of a single region in which all wedges point toward

Fig. 9 Bousso diagram for the FRW geometry resulting from a thin-wall CDL bubble. The entire
FRW geometry consists of a single region in which the contracting light-sheets all point in the
same directions. The thin light-like line is a surface of constant T +
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Fig. 10 Bousso diagrams for radiation dominated and slow-roll universes. The slow-roll case has
been simplified by attaching a de Sitter region to a patch of flat space–time. The grey area represents
the inflating region

the origin – the vertical side of the triangle – at R = 0. The area is maximum at
“enter”: it is almost constant from “enter” to a and then b, but by c it starts to
significantly decrease. All of this is in accord with the c-theorem.

Next, in Fig. 10 some more interesting cosmological examples are shown. On the
left is pure radiation dominated FRW. Unlike the thin-wall case it consists of two
regions separated by the bold black line. In this case the area increases from “enter”
to a, reaching a maximum at b and then decreasing very imperceptibly to c. At c it
starts a quick decent to zero. This looks dangerous.

On the right side of Fig. 10 the blue region is a patch with a finite vacuum en-
ergy. It is intended to model an era of slow-roll inflation. For simplicity, at reheating
(horizontal edge of the blue region) I have attached it to flat space–time. More real-
istically one might attach it to the radiation dominated case but the result would be
the same.

In this slow-roll case the area starts an exponential increase at “enter” and again
reaches a maximum at b. Beyond that the behavior is the same as for thin-wall.
In fact this behavior of an increase of area, followed by a decrease is very generic.
It would seem to violate the c-theorem.

The point, however, is that the identification of c with area is wrong. The number
of degrees of freedom of a system is a direct measure of the maximum entropy of
that system. The right measure of c, for example at the point a, is not the area of
a, but rather the maximum entropy that can pass through the light-sheet from a to
the origin at R = 0. According to Bousso, that is given by the maximum entropy on
the interval between a and b, plus the maximum entropy between b and the origin.
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Calling the areas of the various points A(a), A(b), A(c) the maximum entropy of
the light-sheet bounded by a is given by,

Smax(a) = (A(b)−A(a))+ (A(b)). (110)

It is maximized at “enter” and monotonically decreases to zero at R = 0. Thus,
identifying c = Smax restores the monotonicity of the central charge.

It’s interesting to compare the naive behavior, c = A with the correct formula
c = Smax in the slow-roll inflationary case. The naive formula would have c ex-
ponentially increasing from “enter” to b. The correct formula has it exponentially
decreasing toward its (inflated) value at b.

7 Scaling and the Census Taker

7.1 Moments

Now we come to the heart of the matter: the intimate connection between the scaling
behavior of two-dimensional quantum field theory and the observations of a Census
Taker as he moves toward the Census Bureau. In order to better understand the
connection between the cutoff-scale and T +, let’s return to the similar connection
between cutoff and the coordinate R in anti de Sitter space. We normalize the ADS
radius of curvature to be 1; with that normalization, the Planck area is given by 1/c
where c is the central charge.

Consider the proper distance between points 1 and 2 given by (38). The relation
l = R1 + R2 + log(1− cosα) is approximate, valid when l and R1,2 are all large.
When l ∼ 1 or equivalently, when

α2 ∼ e−(R1+R2) (111)

(38) breaks down. For angles smaller than (111) the distance in anti de Sitter space
behaves like

l ∼ eRα. (112)

Thus a typical correlation function will behave as a power of (1− cosα) down to
angular distances of order (111) and then fall quickly to zero.

The angular cutoff in anti de Sitter space has a simple meaning. The solid angle
corresponding to the cutoff is of order e−2R while the area of the regulated boundary
is e+2R. Thus, metrically, the cutoff area is of order unity. This means that in Planck
units, the cutoff area is the central charge c of the boundary conformal field theory.

Now consider the cutoff angle implied by (48) and (49). By an argument parallel
to the one above, the cutoff angle becomes

α2 ∼ e−(T+
1 +T+

2 ) (113)
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Once again this corresponds to a proper area on Σ0 (the regulated boundary) which
is time-independent, and in Planck units, of order the central charge.

Consider the Census Taker looking back from some late time TCT . For conve-
nience we place the CT at R = 0. His backward light-cone is the surface

T + R = TCT . (114)

The CT can never quite see Σ . Instead he sees the regulated surfaces corresponding
to a fixed proper cutoff (Fig. 4). The later the CT observes, the smaller the angular
structure that he can resolve on the boundary. This is another example of the UV/IR
connection, this time in a cosmological setting.

Let’s consider a specific example of a possible observation. The massless scalar
field χ of Sect. 5 has an asymptotic limit on Σ that defines the dimension zero field
χ(Ω). Moments of χ can be defined by integrating it with spherical harmonics,

χlm =
∫
χ(Ω)Ylm(Ω)d2Ω (115)

It is worth recalling that in anti de Sitter space the corresponding moments would all
vanish because the normalizable modes of χ all vanish exponentially as R →∞. The
possibility of non-vanishing moments is due entirely to the asymptotic warmness of
open FRW.

We can easily calculate7 the mean square value of χlm (It is independent of m).

〈χ2
l 〉 =

∫

log(1− cosα)Pl(cosα) ∼ 1
l(l + 1)

(116)

It is evident that at a fixed Census Taker time TCT , the angular resolution is limited by
(113). Correspondingly, the largest moment that the CT can resolve corresponds to

lmax = eTCT (117)

Thus we arrive at the following picture: the Census Taker can look back toward Σ
but at any given time his angular resolution is limited by (113) and (117). As time
goes on more and more moments come into view. Once they are measured they are
frozen and cannot change. In other words the moments evolve from being unknown
quantum variables, with a gaussian probability distribution, to classical boundary
conditions that explicitly break rotation symmetry (and therefore conformal sym-
metry). One sees from (116) that the symmetry breaking is dominated by the low
moments.

But I doubt that this phenomenon ever occurs in an undiluted form. Realistically
speaking, we don’t expect massless scalars in the non-supersymmetric Ancestor. In
Sect. 5 we discussed the effect of a small mass term, in the ancestor vacuum, on the

7 I am indebted to Ben Freivogel for explaining (116) to me.
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correlation functions of χ . The result of such a mass term is a shift of the leading
dimension8 from 0 to μ . This has an effect on the moments. The correlation function
becomes

e−μT+
1 e−μT+

2 (1− cosα)−μ . (118)

and the moments take the form

〈χ2
l 〉 = e−2μTCT

∫

(1− cosα)μ Pl(cosα) (119)

The functional form of the l dependence changes a bit, favoring higher l, but more
importantly, the observable effects decrease like e−2μTCT . Thus as TCT advances, the
asymmetry on the sky decreases exponentially with conformal time. Equivalently it
decreases as a power of proper time along the CT’s world-line.

7.2 Homogeneity Breakdown

Homogeneity in an infinite FRW universe is generally taken for granted, but before
questioning homogeneity we should know exactly what it means. Consider some
three-dimensional scalar quantity such as energy density, temperature, or the scalar
field χ . Obviously the universe is not uniform on small scales, so in order to define
homogeneity in a useful way we need to average χ over some suitable volume. Thus
at each point X of space, we integrate χ over a sphere of radius r and then divide by
the volume of the sphere. For a mathematically exact notion of homogeneity the size
of the sphere must tend to infinity. The definition of the average of χ at the point
X is

χ(X) = lim
r→∞

∫
χd3x
Vr

(120)

Now pick a second point Y and construct χ(Y ). The difference χ(X)− χ(Y )
should go to zero as r → ∞ if space is homogeneous. But as the spheres grow larger
than the distance between X and Y , they eventually almost completely overlap. In
Fig. 11 we see that the difference between χ(X) and χ(y) is due to the two thin
crescent-shaped regions, 1 and 3. It seems evident that the overwhelming bulk of
the contributions to χ(X), χ(Y ) come from the central region 3, which occupies
almost the whole figure. The conclusion seems to be that the averages, if they exist
at all, must be independent of position. Homogeneity while true, is a triviality.

This is correct in flat space, but surprisingly it can break down in hyperbolic
space.9 The reason is quite simple: despite appearances the volume of regions 1

8 In the de Sitter/CFT correspondence [40], the dimension of a massive scalar becomes complex
when the mass exceeds the Hubble scale. In our case the dimension remains real for all μ . I thank
Yasuhiro Sekino for this observation.
9 L.S. is grateful to Larry Guth for explaining this phenomenon, and to Alan Guth for emphasizing
its importance in cosmology.
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Fig. 11 Two large spheres centered at X and Y

and 3 grow just as rapidly as the volume of 2. The ratio of the volumes is of order

V1

V2
=

V3

V2
∼ l

Rcurvature
(121)

and remains finite as r → ∞.
To be more precise we observe that

χ(X) =
∫

1 χ+
∫

2 χ
V1 +V2

χ(Y ) =
∫

3 χ+
∫

2 χ
V3 +V2

(122)

and that the difference χ(X)− χ(Y) is given by

χ(X)− χ(Y) =
∫

1 χ
V1 +V2

−
∫

1 χ
V1 +V2

(123)

which, in the limit r → ∞ is easily seen to be proportional to the dipole-moment of
the boundary theory,

χ(X)− χ(Y ) = l
∫

χ(Ω)cosθd2Ω = l χ1,0, (124)

where l is the distance between X and Y .
Since, as we have already seen for the case μ = 0, the mean square fluctuation in

the moments does not go to zero with distance, it is also true that average value of
|χ(X)− χ(Y)|2 will be nonzero. In fact it grows with separation.
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However there is no reason to believe that a dimension zero scalar exists. Mod-
uli, for example, are expected to be massive in the Ancestor, and this shifts the
dimension of the corresponding boundary field. In the case in which the field χ
has dimension μ , the effect (non-zero rms average of moments ) persists in a some-
what diluted form. If a renormalized field is defined by stripping off the wave
function normalization constants, exp(−μT +), the squared moments still have fi-
nite expectation values and break the symmetry. However, from an observational
point of view there does not seem to be any reason to remove these factors. Thus it
seems that as the Census Taker time tends to infinity, the observable asymmetry will
decrease like exp(−2μTCT ).

8 Bubble Collisions and Other Matters

The Census Taker idea originated with attempts to provide a measure on the Land-
scape. By looking back toward Σ , the Census Taker can see into bubbles of other
vacua – bubbles that in the past collided with his hatted vacuum. By counting the
bubbles of each type on the sky, he can try to define a measure on the Landscape.
Whether or not this can be done, it is important to our program to understand the
representation of bubble collisions in the language of the boundary holographic field
theory.

Long ago, Guth and Weinberg [41] recognized that a single isolated bubble is
infinitely unlikely, and that a typical “pocket universe” will consist of a cluster of
an unbounded number of colliding bubbles, although if the nucleation rate is small
the collisions will in some sense be rare. To see why such bubble clusters form it is
sufficient to recognize why a single bubble is infinitely improbable. In Fig. 12 the
main point is illustrated by drawing a time-like trajectory that approaches Σ from
within the Ancestor vacuum. The trajectory has infinite proper length, and assuming
that there is a uniform nucleation rate, a second bubble will eventually swallow the
trajectory and collide with the original bubble. Repeating this process will produce
an infinite bubble cluster.

More recently Garriga, Guth, and Vilenkin [31] have argued that the multiple
bubble collisions must spontaneously break the SO(3,1) symmetry of a single bub-
ble, and in the process render the (pocket) universe inhomogeneous and anisotropic.
The breaking of symmetry in [31] was described, not as spontaneous breaking,
but as explicit breaking due to initial conditions. However, spontaneous sym-
metry breaking is nothing but the memory of a temporary explicit symmetry
breaking, if the memory does not fade with time. For example, a small magnetic
field in the very remote past will determine the direction of an infinite ferromag-
net for all future time. Spontaneous symmetry breaking is “The Persistence of
Memory.”

The actual observability of bubble collisions depends on the amount of slow-
roll inflation that took place after tunneling. Much more than 60 e-foldings would
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Fig. 12 The top figure represents a single nucleated bubble. The vertical trajectory is a time-like
curve of infinite length approaching Σ . Because there is a constant nucleation rate along the curve,
it is inevitable that a second bubble will nucleate as in the lower figure. The two bubbles will collide

probably wipe out any signal, but our interest in this paper is conceptual. We will
take the viewpoint that anything within the past light-cone of the Census Taker is in
principle observable.

In the last section we saw that perturbative infrared effects are capable of break-
ing the SO(3,1) symmetry, and it is an interesting question what the relation
between these two mechanisms is. The production of a new bubble would seem
to be a non-perturbative effect that adds to the perturbative symmetry breaking ef-
fects of the previous section. Whether it adds distinctly new effects that are absent
in perturbation theory is not obvious and may depend on the specific nature of the
collision. Let us classify the possibilities.

8.1 Collisions with Identical Vacua

The simplest situation is if the true-vacuum bubble collides with another identical
bubble, the two bubbles coalescing to form a single bubble, as in the top of Fig. 13.

The surface Σ is defined by starting at the tip of the hat and tracking back along
light-like trajectories until they end – in this case at a false vacuum labeled F. The
collision is parameterized by the space-like separation between nucleation points.
Particles produced at the collision of the bubbles just add to the particles that were
produced by ordinary FRW evolution. The main effect of such a collision is to create
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Fig. 13 In the top figure two identical bubbles collide. This would be the only type of collision
in a simple landscape with two discrete minima – one of positive energy and one of zero energy.
In the lower figure a more complicated situation is depicted. In this case the false vacuum F can
decay to two different true vacua, “light” and “dark,” each with vanishing energy. The two true
vacua are connected by a flat direction, but CDL instantons only lead to the light and dark points

a very distorted boundary geometry, if the nucleation points are far apart. When
they are close the double nucleation blends in smoothly with the single bubble.
These kind of collisions seem to be no different than the perturbative disturbances
caused by the non-normalizable mode of the metric fluctuation. Garriga, Guth, and
Vilenkin, compute that the typical observer will see multipole moments on the sky,
but as we’ve seen, similar multipole moments can also occur perturbatively.

In the bottom half of Fig. 13 we see another type of collision in which the col-
liding bubbles correspond to two different true vacua: red (r) and blue (b). But in
this case red and blue are on the same moduli-space, so that they are connected by a
flat direction.10 Both vacua are included within the hat. In the bulk space–time they
bleed into each other, so that as one traverses a space-like surface, blue gradually
blends into purple and then red.

On the other hand the surface Σ is sharply divided into blue and red regions, as if
by a one dimensional domain wall. This seems to be a new phenomenon that does
not occur in perturbation theory about either vacuum.

As an example, consider a case in which a red vacuum-nucleation occurs first,
and then much later a blue vacuum bubble nucleates. In that case the blue patch
on the boundary will be very small and The Census Taker will see it occupying

10 I assume that there is no symmetry along the flat direction, and that there are only two tunneling
paths from the false vacuum, one to red, and one to blue.
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tiny angle on the sky. How does the boundary field theorist interpret it? The best
description is probably as a small blue instanton in a red vacuum. In both the bulk
and boundary theory this is an exponentially suppressed, non-perturbative effect.

However, in a conformal field theory the size of an instanton is a modulus that
must be integrated over. As the instanton grows the blue region engulfs more and
more of the boundary. Eventually the configuration evolves to a blue 2D vacuum,
with a tiny red instanton. One can also think of the two configurations as the ob-
servations of two different Census Takers at a large separation from one another.
Which one of them is at the center, is obviously ambiguous.

The same ambiguous separation into dominant vacuum, and small instanton, can
be seen another way. The nucleation sites of the two bubbles are separated by a
space-like interval. There is no invariant meaning to say that one occurs before the
other. A element of the de Sitter symmetry group can interchange which bubble
nucleates early and which nucleates later.

Nevertheless, a given Census Taker will see a definite pattern on the sky. One can
always define the CT to be at the center of things, and integrate over the relative size
of the blue and red regions. Or one can keep the size of the regions fixed – equal for
example – and integrate over the location of the CT.

From both the boundary field theory, and the bubble nucleation viewpoints, the
probability for any finite number of red-blue patches is zero. Small red instantons
will be sprinkled on every blue patch and vice versa, until the boundary becomes
a fractal. The fractal dimensions are closely connected to operator dimensions in
the boundary theory. Moreover, exactly the same pattern is expected from multiple
bubble collisions.

But the Census taker has a finite angular resolution. He cannot see angular fea-
tures smaller than δα ∼ exp(−TCT ). Thus he will see a finite sprinkling of red and
blue dust on the sky. At TCT increases, the UV cutoff scale tends to zero and the CT
sees a homogeneous“purple” fixed-point theory.

The red and blue patches are reminiscent of the Ising spin system (coupled to
a Liouville field). As in that case, it makes sense to average over small patches
and define a continuous “color field” ranging from intense blue to intense red. It is
interesting to ask whether Σ would look isotropic, or whether there will be finite
multipole moments of the renormalized color color field (as in the case of the χ
field). The calculations of Garriga, Guth, and Vilenkin suggest that multipole mo-
ments would be seen. But unless for some reason there is a field of exactly zero
dimension, the observational signal should fade with Census Taker time.

There are other types of collisions that seem to be fundamentally different from
the previous. Let us consider a model landscape with three vacua – two false, B and
W (Black and White); and one true vacuum T . Let the vacuum energy of B be bigger
than that of W , and also assume that the decays B →W , B → T , and W → T are all
possible. Let us also start in the Black vacuum and consider a transition to the True
vacuum. The result will be a hat bounded by Σ .

However, if a bubble of W forms, it may collide with the T bubble as in Fig. 14.
The W bubble does not end in a hat but rather, on a space-like surface. By contrast,
the true vacuum bubble does end in a hat. The surface Σ is defined as always, by
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Fig. 14 A bubble of True vacuum forms in the Black false vacuum and then collides with a
bubble of White vacuum. The true vacuum is bounded by a hat but the White vacuum terminates
in a space-like surface. Some generators of the hat intersect the Black vacuum and some intersect
the White. Thus Σ , shown as the red curve, is composed of two regions

following the light-like generators of the hat backward until they enter the bulk –
either Black or White – as in Fig. 14.

In this case a portion of the boundary Σ butts up against B, while another por-
tion abuts W . In some ways this situation is similar to the previous case where the
boundary was separated into red and blue regions, but there is no analogue of the
gradual bleeding of vacua in the bulk. In the previous case the Census Taker could
smoothly pass from red to blue. But in the current example, the CT would have to
crash through a domain wall in order to pass from T to W . Typically this happens
extremely fast, long before the CT could do any observation. In fact if we define
Census Takers by the condition that they eventually reach the Census Bureau, then
they simply never enter W .

From the field theory point of view this example leads to a paradox. Naively, it
seems that once a W patch forms on Σ , a B region cannot form inside it. A constraint
of this type on field configurations would obviously violate the rules of quantum
field theory; topologically (on a sphere) there is no difference between a small W
patch in a B background, and a small B patch in a W background. Thus field config-
urations must exist in which a W region has smaller Black spots inside it. There is
no way consistent with locality and unitarity to forbid bits of B in regions of W .

Fortunately the same conclusion is reached from the bulk point of view. The rules
of tunneling transitions require that if the transition B →W is possible, so must be
the transition W → B, although the probability for the latter would be smaller (by a
large density of states ratio). Thus one must expect B to invade regions of W .

As the Census Taker time advances he will see smaller and smaller spots of each
type. If one assumes that there are no operators of dimension zero, then the pat-
tern should fade into a homogeneous average grey, although under the conditions I
described it will be almost White.

The natural interpretation is that the boundary field theory has two phases of
different free energy, the B free energy being larger than that of W . The dominant
configuration would be the ones of lower free energy with occasional fluctuations
to higher free energy.
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8.2 The Persistence of Memory

The “Persistence of Memory” reported in [31] had nothing to do with whether
or not the Census Taker’s sees a fading signal: Garriga, Guth, and Vilenkin were
not speaking about Census Taker time at all. They were referring to the fact that
no matter how long after the start of eternal inflation a bubble nucleates, it will
remember the symmetry breaking imposed by the initial conditions; not whether the
signal fades with TCT . Returning to Fig. 12, one might ask why no bubble formed
along the red trajectory in the infinitely remote past. The authors of [31] argue that
eternal inflation does not make sense without an initial condition specifying a past
surface on which no bubbles had yet formed. That surface invariably breaks the
O(3,1) symmetry and distinguishes a “preferred Census Taker” who is at rest in the
frame of the initial surface. He alone sees an isotropic sky whereas all the other
Census Takers see non-zero anisotropy. What’s more the effect persists no matter
how late the nucleation takes place.

As before, when the Census Taker’s time advances, the asymmetry should be-
come diluted if there are no dimension zero operators, but the existence of a
preferred Census Taker at finite time makes this symmetry breaking seem differ-
ent than what we have discussed up to now.

Let us consider how this phenomenon fits together with the RG flow discussed
earlier.11 Begin by considering the behavior for finite δ in the limit of small a. It is
reasonable to suppose that in integrating out the many scales between a and δ , the
theory would run to a fixed point. Now recall that this is the limit of very large T . If
in fact the theory has run to a fixed point it will be conformally invariant. Thus we
expect that the symmetry O(3,1) will be unbroken at very late time.

On the other hand consider the situation of δ/a near 1. The reference and bare
scales are very close and very few degrees of freedom have been integrated out.
There is no reason why the effective action should be near a fixed point. The impli-
cation is that at very early time (recall, δ/a = eT ) the physics on a fixed time slice
will not be conformally invariant. Near the beginning of an RG flow the effective
action is strongly dependent on the bare theory. The implication of a breakdown of
conformal symmetry is that there is no symmetry between Census Takers at differ-
ent locations in space. In such situations the center of the (deformed) anti de Sitter
space is, indeed, special.

Shenker and I suggest that the GGV boundary condition at the onset of eternal
inflation is the same thing as the initial condition on the RG flow. In other words,
varying the GGV boundary condition is no different from varying the bare fishnet
theory.

Is it possible to tune the bare action so that the theory starts out at the fixed
point? If this were so, it would be an initial condition that allowed exact conformal
invariance for all time. Of course it would involve an infinite amount of fine tuning
and is probably not reasonable. But there may be reasons to doubt that it is possible
altogether, even though in a conventional lattice theory it is possible.

11 These observations are based on work with Steve Shenker.
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The difficulty is that the bare and renormalized theories are fundamentally dif-
ferent. The bare theory is defined on a variable fishnet whose connectivity is part of
the dynamical degrees of freedom. The renormalized theory is defined on the fixed
reference lattice. The average properties of the underlying dynamical fishnet are re-
placed by conventional fields on the reference lattice. Under these circumstances it
is hard to imagine what it would mean to tune the bare theory to an exact fixed point.

The example of the previous subsection involving two false vacua, B and W ,
raises some interesting questions. First imagine starting with GGV boundary con-
ditions such that, on some past space-like surface, the vacuum is pure Black and
that a bubble of true vacuum nucleates in that environment. Naively the boundary is
mostly black. That means that in the boundary theory the free energy of Black must
be lower than that of White.

But we argued earlier that white instantons will eventually fill Σ with an almost
white, very light grey color, exactly as if the initial GGV condition were White. That
means that White must have the lower potential energy. What then is the meaning
of the early dominance of B from the 2D field theory viewpoint?

The point is that it is possible for two rather different bare actions to be in the
same broad basin of attraction and flow to the same fixed point. The case of Black
GGV conditions corresponds to a bare starting point (in the space of couplings)
where the potential of B is lower than W . During the course of the flow to the fixed
point the potential changes so that at the fixed-point W has the lower energy.

On the other hand, White GGV initial conditions corresponds to starting the flow
at a different bare point – perhaps closer to the fixed point – where the potential of
W is lower.

This picture suggests a powerful principle. Start with the space of two-dimensional
actions, which is broad enough to contain a very large Landscape of 2D theories.
With enough fields and couplings the space could probably contain everything. As
Wilson explained [42], the space divides itself into basins of attraction. Each initial
state of the universe is described either as a GGV initial condition, or as a bare
starting point for an RG flow. The endpoints of these flows correspond to the possible
final states-the hats – that the Census Taker can end up in.

We have not exhausted all the kinds of collisions that can occur – in particular
collisions with singular, negative cosmological constant vacua. A particularly thorny
situation results if there is a BPS domain wall between the negative and zero CC
bubbles, then as shown by Freivogel et al. [43] the entire hat may disappear in a
catastrophic crunch. A possible interpretation is that the catastrophe is due to the
existence of a relevant operator which destabilizes the fixed point. These and other
issues will be taken up in a paper with Shenker.

8.3 A Remark About Supersymmetry

Most likely, the only 4D vacua with exactly vanishing cosmological constant are
supersymmetric. Does that mean that the boundary theory on Σ is also supersym-
metric? The answer is no: correlators on Σ are largely determined by the properties
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of the non-supersymmetric Ancestor vacuum. For example, the gravitino will be
massive in the Ancestor, and the methods of [27] would give different dimensions,
Δ , for the graviton and gravitino fluctuations.

In fact Σ is contiguous with the de Sitter Ancestor and has every reason to
strongly feel the supersymmetry breaking. It is the region close to the tip of the
hat where the physics should be dominated by the properties of the supersymmetric
terminal vacuum. If one looks at the expansion (45), it is clear that the tip of the hat
is dominated by the asymptotically high dimensional terms. Thus we expect super-
symmetry to manifests itself asymptotically, in the spectrum and operator products
of high dimensional operators.

8.4 Flattened Hats and Other Tragedies

In a broad sense this paper is about phenomenology: the Census Taker could be us.
If we lived in an ideal thin-wall hat we would see, spread across the sky, correlation
functions of a holographic quantum field theory. We could measure the dimensions
of operators both by the time dependence of the received signals, and their angular
dependence. Bubble collisions would appear as patches resembling instantons.

Unfortunately (or perhaps fortunately) we are insulated from these effects by
two forms of inflation – the slow-roll inflation that took place shortly after bubble
nucleation – and the current accelerated expansion of the universe. The latter means
that we don’t live in a true hatted geometry. Rather we live in a flattened hat, at least
if we ignore the final decay to a terminal vacuum.

The Penrose diagram in Fig. 15 shows an Ancestor, with large vacuum energy,
decaying to a vacuum with a very small cosmological constant. The important new
feature is that the hat is replaced by a space-like future infinity. Consider the Census
Taker’s final observations as he arrives at the flattened hat. It is obvious from Fig. 15

Fig. 15 If a CDL bubble leads to a vacuum with a small positive cosmological constant, the hat is
replaced by a rounded space-like surface. The result is that no Census Taker can look back to Σ
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that he cannot look back to Σ . His past light cone is at a finite value of T +. Thus for
each time-slice T , there is a maximum radial variable R = R0(T ) within his ken, no
matter how long he waits. In other words there is an unavoidable ultraviolet cutoff.
It is completely evident that a final de Sitter bubble must be described by a theory
with no continuum limit; in other words not only a non-local theory, but one with
no ultraviolet completion.

This suggests that de Sitter Space may have an intrinsic imprecision. Indeed,
as Seiberg has emphasized, the idea of a metastable vacuum is imprecise, even in
condensed matter physics where they are common.12

The more tragic fact is that all of the memory of a past bubble may, for observa-
tional purposes, be erased by the slow-roll inflation that took place shortly after the
Coleman De Luccia tunneling event – unless it lasted for the minimum permitted
number of e-foldings [23]. In principle the effects are imprinted on the sky, but in
an exponentially diluted form.

8.5 Note About W

What I have described is only half the story: the half involving S, the real part of
logΨ . The other half involves W , the phase of the wave function. Knowing S is
enough to compute the expectation values of the fields y at a given value of time, or,
strictly speaking, at a value of the scale factor. Scanning over scale factors can be
done by varying the Liouville cosmological constant.

However, quantum mechanics cannot be complete without the phase of the wave
function. In particular, the values of conjugate momenta requires knowledge of W .
The same is true for products of fields at different times.

9 Some Conclusions

I’ve given some circumstantial evidence that there is a duality between cosmology
on the Landscape, and two-dimensional conformal field theory, with a Liouville
field. The data that supports the theory are the computations done in [27], but more
importantly, a compelling physical picture accompanies the data. The most pertinent
observation is that the sky is a two-sphere. Moreover, it is covered with interesting
observable correlations; in principle we can look back through the surface of last
scattering and observe these correlations at any past time. The Liouville field, or
alternately, the Liouville cosmological constant (not to be confused with the four-
dimensional cosmological constant) is the dual of that time, along the observers
backward light-cone.

12 I am grateful to Nathan Seiberg for discussions on this point.
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As we view the deep sky from increasingly late times, we can in principle see
greater angular detail on Σ0, i.e., spatial “almost-infinity.” The increasing angular
resolution defines a renormalization group flow that begins with some bare action,
and ends at an infrared fixed point. The starting point of the flow is equivalent to
the boundary condition, whose memory, Garriga, Guth, and Vilenkin have argued,
is persistent. The phenomena of symmetry breaking – the picking out of a special
Census Taker at the center of things – by the GGV’s initial condition, is equivalent
to the breaking of conformal symmetry, at the start of a RG flow. As in anti de Sitter
space, breaking conformal symmetry makes the center of ADS (at R = 0) special.

Our considerations are based on the Holographic Principle but with a new twist.
The asymptotic warmness of space requires a field in order to represent geomet-
ric fluctuations at infinity. By now we are used to one or more spatial directions
emerging holographically, but this new Liouville degree of freedom creates a new
emergence – of time.

Examples of cosmic phenomena that can be simply interpreted as two-
dimensional field theory phenomena are the bubble collisions of Guth and
Weinberg [41], which appear as instantons on the two-dimensional sky; the fading of
the initial conditions with Census Taker time is connected with the spectrum of con-
formal dimensions – in particular the lack of dimension zero scalars; and ordinary
slow-roll inflation corresponds to an exponential decrease in the Zamolodchikov
c-function [44]. It will be interesting to try to interpret CMB fluctuations in this
language but this has not been studied – at least that I know of.

10 Warning to All Census Takers

Memo from the Director

Keep in mind that when you look back toward Σ , what you see will be influenced
not only by conditions on the regulated boundary, but also by the gravitational field
between you and Σ0. Angular separations detected by you, must be corrected for
nearby gravitational distortions such as lensing and gravitational waves. Please
make all corrections before reporting your data.
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Abstract Static wormhole solutions in vacuum for gravity in diverse dimensions
are discussed. In dimensions greater than four the theory corresponds to a partic-
ular case of the Lovelock action, so that it admits a unique AdS vacuum. One of
the wormhole solutions connects two asymptotically locally AdS spacetimes so
that both asymptotic regions are connected by light signals in a finite time. The
Euclidean continuation of the wormhole can be seen as instanton with vanishing
action, and the mass can also be obtained from a surface integral which is shown to
vanish. Its stability against free scalar field perturbations is guaranteed provided the
squared mass is bounded from below by a negative quantity which could be more
stringent than the Breitenlohner–Freedman bound. An exact expression for the spec-
trum is found analytically. For nonminimal coupling, stability can also be achieved
for scalar fields with slow fall-off, and three different quantizations can be carried
on, being characterized by the fall-off of the scalar field, which can be fast or slow
with respect to each asymptotic region. In four dimensions a static spherically sym-
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connects two static homogeneous universes of constant spatial curvature. Time runs
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1 Introduction

This article is dedicated to Claudio Bunster on the occasion of his 60th birthday.
It is a great honor to take this opportunity to express my gratitude to him, who in
my opinion has been the greatest national physicist ever, for his wise guidance and
intrepid support through the years. As a Chilean, I can further tell that Claudio’s
contributions have been well far beyond theoretical physics, helping our country to
be ready to face future challenges through science.

Gravity in diverse dimensions is a subject in which Claudio has done major con-
tributions, encouraging in many ways the following work, that is being made along
different fronts in collaboration with my colleagues Diego Correa, Gustavo Dotti,
Julio Oliva and David Tempo.

The pursuit for wormhole solutions, which are handles in the spacetime topology,
it is as old as General Relativity and it has appeared in theoretical physics within
different subjects, ranging from the attempt of describing physics as pure geometry,
as in the Einstein–Rosen bridge model of a particle [1], to the concept of “charge
without charge” [2], as well as in different issues concerning the Euclidean approach
to quantum gravity (see, e.g., [3]). More recently, the systematic study of this kind
of objects was pushed forward by the works of Morris, Thorne and Yurtsever [4,5].
However, one of the obstacles to circumvent, for practical affairs, is the need of
exotic forms of matter, since it is known that the required stress-energy tensor does
not satisfy the standard energy conditions (see, e.g., [6]). This makes the stability as
well as the existence of wormholes to be somehow controversial.

The need of exotic matter is also required to construct static wormholes for
General Relativity in higher dimensions. Nonetheless, in higher-dimensional space-
times, if one follows the same basic principles of General Relativity to describe
gravity, the Einstein theory is not the only possibility. Indeed, the most general the-
ory of gravity in higher dimensions leading to second order field equations for the
metric is described by the Lovelock action which possesses nonlinear terms in the
curvature [7]. Within this framework, it is worth pointing out that in five dimensions
it has been found that the so-called Einstein–Gauss–Bonnet theory, being quadratic
in the curvature, admits static wormhole solutions in vacuum [8]. This solution was
found allowing a cosmological (volume) term in the Einstein–Gauss–Bonnet ac-
tion, and choosing the coupling constant of the quadratic term such that the theory
admits a single anti-de Sitter (AdS) vacuum. The wormhole connects two asymp-
totically locally AdS spacetimes each with a geometry at the boundary that is not
spherically symmetric. It is worth to remark that in this case, no energy conditions
can be violated since the whole spacetime is devoid of any kind of stress-energy
tensor. Generically, the mass of the wormhole appears to be positive for observers
located at one side of the neck, and negative for the ones at the other side, such that
the total mass always vanishes. This provides a concrete example of “mass without
mass.”

These solutions extend to higher dimensions for special cases of the Lovelock
class of theories, also selected by demanding the existence of a unique AdS vacuum
[8–10].
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It is then natural to wonder whether static wormholes in vacuum could also exist
in four dimensions, which of course should be in some framework beyond General
Relativity.

The next section is devoted to review the five-dimensional case including some
interesting remarks about the behavior of geodesics, as well as the proof of the
finiteness of their Euclidean action. The mass of these solutions is also obtained
from surface integrals. Section 3 is devoted to explain how these results can be
extended to higher dimensions, and includes a summary of the stability proof of
static wormholes in vacuum against scalar field perturbations. The possibility of
having wormholes in vacuum in four dimensions within conformal gravity is ex-
plored through a concrete example in Sect. 4.

2 Static Wormholes in Vacuum: The Five Dimensional Case

The action for the Einstein–Gauss–Bonnet theory with a volume term in five dimen-
sions reads

I = κ
∫

d5x
√−g

(
R−2Λ+α

(
R2 −4RμνRμν + RαβγδRαβγδ

))
, (1)

where κ is related to the Newton constant, Λ to the cosmological term, and α is
the Gauss–Bonnet coupling. As it was shown in [9], for static geometries whose the
spacelike section is a warped product of the real line with a nontrivial manifold, this
theory admits additional freedom to fix the metric at the boundary for the special
case when the Gauss–Bonnet coupling is properly tuned in terms of the cosmologi-
cal and Newton constants. In this case it is useful to express the action (1) as

I5 = κ
∫
εabcde

(

RabRcd+
2

3l2 Rabeced+
1

5l4 eaebeced
)

ee, (2)

where Rab = dωab +ωa
fω

f b is the curvature two-form for the spin connectionωab,
and ea is the vielbein. The coupling of the Gauss–Bonnet term turns out to be such
that the theory possesses a unique AdS vacuum of radius l. In the absence of torsion,
the field equations can be simply written as

Ea : =εabcdeR̄bcR̄de = 0, (3)

where R̄bc := Rbc + 1
l2 ebec.

If the boundary metric is chosen as a compact three-dimensional manifold of
negative Ricci scalar, then two different kinds of wormhole solutions in vacuum are
obtained.

The first one is described by the following metric

ds2
5 = l2[−cosh2 (ρ−ρ0)dt2+ dρ2+ cosh2 (ρ)dΣ2

3

]
, (4)
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where ρ0 is an integration constant and dΣ2
3 stands for the metric of the base man-

ifold Σ3 which can be chosen to be locally of the form Σ3 = S1 ×H2/Γ . Here Γ is
a freely acting discrete subgroup of O(2,1) and the radius of the hyperbolic mani-
fold H2 turns out to be 3−1/2, so that the Ricci scalar of Σ3 has the value of −6, as
required by the field equations. The metric (4) describes a static wormhole with a
neck of radius l, located at the minimum of the warp factor of the base manifold, at
ρ = 0. Since −∞< ρ < ∞, the wormhole connects two asymptotically locally AdS
spacetimes so that the geometry at the boundary is locally given by R× S1 ×H2.
Actually, it is simple to check that the field equations are solved provided the base
manifold Σ3 has a negative constant Ricci scalar satisfying

R̃ = −6. (5)

It worth pointing out that Σ3 is not an Einstein manifold, and that any nontrivial
solution of the corresponding Yamabe problem (see, e.g., [11]) provides a suitable
choice for Σ3.

The causal structure of the wormhole is depicted in Fig. 1, where the dotted ver-
tical line shows the position of the neck, and the solid bold lines correspond to the
asymptotic regions located at ρ = ±∞, each of them resembling an AdS spacetime
but with a different base manifold since the usual sphere S3 must be replaced by Σ3.
The line at the center stands for ρ = ρ0.

It is apparent from the diagram that null and timelike curves can go forth and back
from the neck. Furthermore, note that radial null geodesics are able to connect both
asymptotic regions in finite time. Indeed, one can see from (4) that the coordinate
time that a photon takes to travel radially from one asymptotic region, ρ = −∞, to
the other at ρ = +∞ is given by

Δ t =
∫ +∞

−∞
dρ

cosh(ρ−ρ0)
=
[
2arctan

(
eρ−ρ0

)]+∞
−∞ = π ,

ρ=−∞ ρ=0 ρ=ρ0 ρ=+∞

i−

  i+

Fig. 1 Penrose diagram for the wormhole (4)
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which does not depend on ρ0. Thus, a static observer located at ρ = ρ0 says that
this occurred in a proper time given by π l. Note also that this observer actually lives
on a static timelike geodesic, and it is easy to see that a small perturbation along ρ
makes him to oscillate around ρ = ρ0. This means that gravity is pulling towards
the fixed hypersurface defined by ρ = ρ0 which is parallel to the neck. Hence, the
constant ρ0 corresponds to a modulus parametrizing the proper distance between
this hypersurface and the neck. Actually, one can explicitly check that radial timelike
geodesics are always confined (see below).

The second wormhole in vacuum is described by the metric

ds2 = l2 [−e2ρdt2 + dρ2 + cosh2 (ρ)dΣ2
3

]
, (6)

possessing also a throat located at ρ = 0. Its Riemann tensor is given by

Rtρ
tρ = − 1

l2 , Rρ i
ρ j = − 1

l2 δ
i
j, Rti

t j = − 1
l2 tanh(ρ)δ i

j,

Ri j
kl =

1
l2

R̃i j
kl

cosh2 (ρ)
− 1

l2 tanh2 (ρ)
(
δ i

kδ
j

l − δ i
l δ

j
k

)
, (7)

where latin indices run along the base manifold. At the asymptotic regions ρ→±∞
the curvature components approach

Rtρ
tρ = − 1

l2 , Rρ i
ρ j = − 1

l2 δ
i
j, Rti

t j �∓ 1
l2 δ

i
j,

Ri j
kl �− 1

l2

(
δ i

kδ
j

l − δ i
l δ

j
k

)
, (8)

This makes clear that the wormhole (6) connects an asymptotically locally AdS
spacetime (at ρ →∞) with another nontrivial smooth spacetime at the other asymp-
totic region (ρ → −∞). Note that although the metric looks singular at ρ → −∞,
the geometry is well behaved at this asymptotic region. This is seen by noting that
the basic scalar invariants can be written in terms of contractions of the Riemann
tensor with the index position as in (7), whose components have well defined limits
(given in (8)). Thus, the invariants cannot diverge. As an example, the limits of some
invariants are

lim
ρ→−∞Rαβ αβ = − 8

l2 , lim
ρ→−∞Rαβ γδRγδ αβ =

40
l4 , lim

ρ→−∞Cαβ
γδCγδ

αβ =
8
l4 (9)

where Cαβ
γδ is the Weyl tensor. Some differential invariants have also been com-

puted and they become all well behaved as ρ →−∞.
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2.1 Geodesics Around Wormholes in Vacuum

The class of metrics that describe the wormhole solutions presented here is of the
form

ds2 = −A2 (ρ)dt2 + l2 [dρ2 + cosh2 (ρ)dΣ2] , (10)

where the lapse function A(ρ) can be obtained from (4) and (6).

2.1.1 Radial Geodesics

The radial geodesics are described by the following equations

ṫ − E
A2 = 0 , (11)

l2ρ̇2 − E2

A2 + b = 0, (12)

where dot stands for derivatives with respect to the proper time, the velocity is nor-
malized as uμuμ =−b, and the integration constant E corresponds to the energy. As
one expects, (12) tells that gravity is pulling towards the fixed hypersurface defined
by ρ = ρ0, where ρ0 is a minimum of A2 (ρ).

As it can be seen from (4) we have A2(ρ) = l2 cosh2(ρ−ρ0), then the equations
for radial geodesics (11) and (12) reduce to

ρ̇2 − E2

l4 cosh2 (ρ−ρ0)
= − b

l2 , (13)

ṫ − E

l2 cosh2 (ρ−ρ0)
= 0. (14)

These equation immediately tell us that the ρ coordinate of a radial geodesic be-
haves as a classical particle in a Pöschl–Teller potential, so that timelike geodesics
are confined and they oscillate around the hypersurface ρ = ρ0. Consequently, an
observer sitting at ρ = ρ0 lives in a timelike geodesic (here dτ/dt = l, τ the proper
time of this static observer), and radial null geodesics connect both asymptotic re-
gions (i.e., ρ =−∞ with ρ = +∞) in a finite coordinate time which does not depend
on ρ0 (the static observer at ρ = ρ0 says that this occurred in a proper time Δτ = π l).
These observations give a meaning of ρ0: gravity is pulling towards the fixed hyper-
surface defined by ρ = ρ0, which is parallel to the neck at ρ = 0, and therefore ρ0

is a modulus parameterizing the proper distance from this hypersurface to the neck.
The geodesic structure of the second wormhole (6) is quite different from the

previous one. In this case, the radial geodesic equations (11) and (12) read

ρ̇2 − e−2ρE2

l4 = − b
l2 , (15)
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l2 ṫ − e−2ρE = 0. (16)

As expected, the behavior of the geodesics at ρ → +∞ is like in an AdS space-
time. Moreover, since gravity pulls towards the asymptotic region ρ →−∞, radial
timelike geodesics always have a turning point and they are doomed to approach to
ρ → −∞ in the future. Note that the proper time that a timelike geodesic takes to
reach the asymptotic region at ρ = −∞, starting from ρ = ρ f is finite and given by

Δτ =
∫ ρ = ρ f

ρ = −∞
l2dρ√

E2e−2ρ − l2
=
π l
2
− l tan−1

(√
E2

l2 e−2ρ f −1

)

< ∞. (17)

It is easy to check that null radial geodesics can also reach the asymptotic region
at ρ = −∞ in a finite affine parameter. This, together with the fact that spacetime
is regular at this boundary, seems to suggest that it could be analytically continued
through this surface. However, since the warp factor of the base manifold blows up
at ρ = −∞, this null hypersurface should be regarded as a spacetime boundary.

2.1.2 Gravitational Vs. Centrifugal Forces

An interesting effect occurs for geodesics with nonzero angular momentum. One
can see that for the class of spacetimes (10), there is a region where the gravitational
and centrifugal effective forces point in the same direction. These are expulsive
regions that have a single turning point for any value of the conserved energy, and
within which bounded geodesics cannot exist.

Let us then consider metrics of the form (10) with the further restriction that
the base manifold Σ3 have a Killing vector ξ . Choosing adapted coordinates y =
(x1,x2,φ) such that ξ = ∂/∂φ , the base manifold metric is dΣ2

3 = g̃i j(x)dyidy j and
the spacetime geodesics with x fixed are described by the following equations

ṫ =
E
A2 ; φ̇ =

L
C2

l2ρ̇2 = −b +
E2

A2 − L2

C2 . (18)

Here we have used the fact that, if ua is the geodesic tangent vector, then ξ aua = L
is conserved, and φ̇ = L /(C2g̃φφ (x)) =: L/C2, where C := l cosh(ρ). If ξ is a U(1)
Killing vector then L is a conserved angular momentum. Examples are not hard
to construct. For wormholes, we need a nonflat three-manifold with R̃ = −6 and a
U(1) isometry, an example being S1 ×H2/Γ , where Γ is a freely acting discrete
subgroup of O(2,1), and the metric is locally given by

dΣ2
3 =

1
3

(
dx1

2 + sinh2(x1) dx2
2)+ dφ2. (19)
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The motion along the radial coordinate in proper time is like that of a classical
particle in an effective potential given by the r.h.s. of (18). This effective potential,
has a minimum at ρ = ρ̄ only if the following condition is fulfilled

A′ (ρ̄)

A(ρ̄)3 E2 =
L2 tanh ρ̄
cosh2 ρ̄

. (20)

This expresses the fact that the gravitational effective force is canceled by the cen-
trifugal force if the orbit sits at ρ = ρ̄ . The class of spacetimes under consideration
have regions U where the sign of A−3A′ is opposite to that of tanh ρ̄ , i.e., the ef-
fective gravitational and centrifugal forces point in the same direction. Within these
regions, there is at most a single turning point, and consequently bounded orbits
cannot exist.

In the case of the wormhole (4) the centrifugal force reverses its sign at the neck,
located at ρ = 0, and the gravitational force does it at ρ = ρ0, so that both forces
point towards the same direction for ρ between zero and ρ0. Thus, the expulsive
region U is nontrivial whenever ρ0 
= 0. This situation is depicted in Fig. 2a.

In the case of the wormhole solution (6) the region U is defined ρ ≤ 0 (see
Fig. 2b).

2.2 Regularized Euclidean Action

Here it is shown that the wormhole geometries described above have vanishing
Euclidean action. It has been shown that the action (2) can be regularized by adding
a suitable boundary term in a background independent way, which depends only on

Fig. 2 Gravitational vs. centrifugal forces for wormholes in vacuum. In this diagram, black and
dashed arrows represent the effective gravitational and centrifugal forces, respectively. Figures (a)
and (b), correspond to the wormholes (4) and (6), respectively
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the extrinsic curvature and the geometry at the boundary [12–14]. The total action
then reads

IT = I5 −B4, (21)

where the boundary term is given by

B4 =κ
∫

∂M
εabcdeθ abec

(

Rde − 1
2
θ d

fθ
f e +

1
6l2 edee

)

, (22)

and θ ab is the second fundamental form. The total action (21) attains an extremum
for solutions of the field equations provided

δ IT = κ
∫

∂M
εabcde

(
δθ abec −θ abδec

)(

R̄de − 1
2
θ d

f θ
f e − 1

2l2 edee
)

= 0, (23)

where R̄ab := Rab + 1
l2 eaeb. Therefore, following Regge and Teitelboim [15], the

value of the regularized Euclidean action makes sense for solutions which are bona
fide extrema, i.e., for solutions such that condition (23) is fulfilled.

The Euclidean continuation of the class of wormholes is described by metrics of
the form

ds2 = A2 (ρ)dτ2 + l2dρ2 +C2 (ρ)dΣ2
3 , (24)

where 0 ≤ τ ≤ β is the Euclidean time, and the functions A and C correspond to the
ones appearing in (4) and (6).

As shown in [9], it is simple to verify that the wormholes solutions under discus-
sion are truly extrema of the total action (21).

2.2.1 Wormholes in Vacuum as Extrema of the Regularized Action

For the class of solutions under consideration, the curvature two-form satisfies

R̄01 = R̄1m = 0, (25)

and the condition (23) reduces to

δ IT = κβ [F I3 + 6 G V3]∂Σ , (26)

where β is the Euclidean time period, V3 is the volume of the base manifold, and
∂Σ is the boundary of the spatial section. In (26) I3 is defined by

I3 :=
∫

Σ3

√
g̃R̃ d3x, (27)
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and the functions F and G in (26) are given by

F :=
2
l

[
A′δC−AδC′+C′δA−CδA′] , (28)

G :=
[
A′ (C2 −C′2)+ 2C′ (CA−C′A′)] δC

l3

− [A(C2 −C′2)+ 2C
(
CA−C′A′)] δC′

l3 (29)

+C′ (C2 −C′2) δA
l3 −C

(
C2 −C′2) δA′

l3 .

Here we work in the minisuperspace approach, where the variation of the functions
A and C correspond to the variation of the integration constants, and prime (′) de-
notes derivative with respect to ρ .

Now it is simple to evaluate the variation of the action (26) explicitly.
The Euclidean continuation of both wormhole solutions in (4) and (6) can be

written as

ds2 = l2
[
(coshρ+ asinhρ)2 dτ2 + dρ2 + cosh2ρdΣ2

3

]
, (30)

where the metrics (4) and (6) are recovered for a2 < 1 and a2 = 1, respectively, and β
is arbitrary. In this sense, the wormhole (6) can be regarded as a sort of extremal case
of the wormhole (4). In this case, since the boundary is of the form ∂Σ = Σ+

3 ∪Σ−
3

it is useful to introduce the regulators ρ±, such that ρ− ≤ ρ ≤ ρ+ . Using the fact
that the base manifold has a negative constant Ricci scalar given by R̃ = −6, the
variation of the action (26) reduces to

δ IT = 6κβ l δa [V3]
ρ+
ρ− = 0. (31)

Note that, as in the case for the black hole, the boundary term vanishes regardless
the position of the regulators ρ− and ρ+.

Having shown that the wormholes are truly extrema of the action, it makes sense
to evaluate the regularized action on these solutions.

2.2.2 Euclidean Action for Wormholes in Vacuum

For the class of solutions of the form (24), which satisfy (25), the bulk and boundary
contributions to the regularized action IT = I5 −B4, given by (2) and (22) respec-
tively, reduce to

I5 = κβ [H I3 + 6 J V3] , (32)

B4 = κβ [h I3 + 6 j V3]∂Σ . (33)
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The functions H and J in the bulk term are defined by

H := −8
l

∫
AC dρ , (34)

J :=
4
l3

∫ [(
C2)′ (AC)′ − 4

3
AC3
]

dρ , (35)

where the integrals are taken along the whole range of ρ . For the boundary term
(33), the functions h and j are respectively defined by

h = −2
l
(AC)′ , (36)

j = − 1
l3

[

(AC)′
(

C2

3
−C′2

)

+
(
C2)′

(
AC
3

−A′C′
)]

. (37)

Now it is straightforward to evaluate the regularized Euclidean action for the
class of solutions under consideration.

The Euclidean continuation of the wormhole metrics (4) and (6) are smooth in-
dependently of the Euclidean time period β . The Euclidean action IT = I5 −B4, is
evaluated introducing regulators such that ρ− ≤ ρ ≤ ρ+.

In the case of the Euclidean wormhole (4) the regularized Euclidean action van-
ishes regardless the position of the regulators, since

I5 = B4 = 2κ lβV3
[
3sinh(ρ0)+8cosh3 (ρ)sinh(ρ−ρ0)

]ρ+
ρ− . (38)

Consequently, the total mass of this spacetime also vanishes, since M = − ∂ IT
∂β = 0.

For the wormhole (6) the Euclidean action reads

IT = 6κβV3 [(J− j)− (H −h)] , (39)

with

H = −2l
(
e2ρ + 2ρ

)∣
∣ρ+
ρ− , (40)

J = −1
3

l
(−e4ρ + 3e2ρ + 12ρ− e−2ρ)∣∣ρ+

ρ− , (41)

h = −2l e2ρ ∣∣ρ+
ρ− ,

j = −1
3

l
(−e−4ρ + 3e2ρ− e−2ρ)∣∣ρ+

ρ− . (42)

The regularized action vanishes again independently of ρ±, and so does it mass.
It is worth pointing out that both wormholes can be regarded as instantons with

vanishing Euclidean action.
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The mass for the spacetime metrics discussed here can also be obtained from a
suitable surface integral coming from a direct application of Noether’s theorem to
the regularized action functional.

2.2.3 Mass from a Surface Integral

As it was shown that the wormhole solutions are truly extrema of the regularized
action, one is able to compute the mass from the following surface integral

Q(ξ ) =
κ
l

∫

∂Σ
εabcde

(
Iξ θ abec +θ abIξec

)(

R̃de +
1
2
θ d

f θ
f e +

1
2l2 edee

)

, (43)

obtained by the straightforward application of Noether’s theorem.1 Here ξ = ∂t is
the timelike Killing vector.

For a metric of the form (24), satisfying (25), (43) gives

M = 2
κ
l

[
(
A′C−C′A

)
(

I3 +
3
l2

(
C2 −C′2)V3

)]

∂Σ
, (44)

which can be explicitly evaluated for the wormhole solutions.
As explained in [8], for the wormhole solution in (4), one obtains that the contri-

bution to the total mass coming from each boundary reads

M± = Q± (∂t) = ±6κV3 sinh(ρ0) , (45)

where Q± (∂t) is the value of (43) at ∂Σ±, which again does not depend on ρ+
and ρ−. The opposite signs of M±, are due to the fact that the boundaries of the spa-
tial section have opposite orientation. The integration constant ρ0 can be regarded
as a parameter for the apparent mass at each side of the wormhole, which vanishes
only when the solution acquires reflection symmetry, i.e., for ρ0 = 0. This means
that for a positive value of ρ0, the mass of the wormhole appears to be positive for
observers located at ρ+, and negative for the ones at ρ−, with a vanishing total mass
M = M+ + M− = 0.

For the wormhole (6) the total mass also vanishes since the contribution to the
surface integral (43) coming from each boundary reads

M± = ∓ 6κV3, (46)

so that M = M+ + M− = 0.
Note that M± are concrete examples of Wheeler’s conception of “mass without

mass”.

1 The action of the contraction operator Iξ over a p-form αp = 1
p!αμ1···μp dxμ1 · · ·dxμp is given by

Iξ αp = 1
(p−1)! ξ

νανμ1 ···μp−1 dxμ1 · · ·dxμp−1 , and ∂Σ stands for the boundary of the spacelike section.
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As explained in the next section, these results found here are not peculiarities of
five-dimensional gravity, and similar structures can be found in higher dimensional
spacetimes [9, 10].

3 Higher-Dimensional Wormholes in Vacuum

As shown in [8], the five-dimensional static wormhole solution in vacuum, given by
(4), can be extended as an exact solution for a very special class of gravity theories
among the Lovelock family in higher odd dimensions d = 2n + 1. In analogy with
the procedure in five dimensions, the theory can be constructed so that the relative
couplings between each Lovelock term are chosen so that the action has the highest
possible power in the curvature and possesses a unique AdS vacuum of radius l. The
field equations then read

EA := εab1···b2nR̄b1b2 · · · R̄b2n−1b2n = 0, (47)

which are solved by the straightforward extension of (4) to higher dimensions

ds2 = l2[−cosh2 (ρ−ρ0)dt2+ dρ2+ cosh2 (ρ)dΣ2
2n−1

]
,

where ρ0 is an integration constant, and dΣ2
2n−1 stands for the metric of the base

manifold. In the generic case, the base manifold must solve the following equation2

εm1···m2n−1 R̄m1m2 · · · R̄m2n−3m2n−2 ẽm2n−1 = 0, (48)

where ẽm is the vielbein of Σ2n−1 . Note that this is a single scalar equation which
admits a wide class of solutions. It is simple to verify that Σ2n−1 = H2n−1/Γ and
Σ2n−1 = S1 ×H2n−2/Γ give a solution provided the radii of the hyperbolic spaces
H2n−1 and H2n−2 are given by rH2n−1 = 1 and rH2n−2 = (2n−1)−1/2, respectively.3 In
order to describe a wormhole the hyperbolic spaces must be quotiented by a freely
acting discrete subgroup Γ of O(2n−2,1), otherwise the spacetime would possess
only one conformal boundary (see, e.g., [16]). Further examples in five and seven
dimensions for base manifolds corresponding to all the possible products of constant
curvature spaces in five and seven dimensions have been constructed in [17]. Note
that generically, Σ2n−1 is not an Einstein manifold.

The metric in higher odd dimensions then describes a static wormhole with a
neck of radius l connecting two asymptotic regions which are locally AdS space-
times, so that the geometry at the boundary can be given by R×S1×H2n−2/Γ . The

2 Equation (48) corresponds to the trace of the Euclidean field equations for the same theory in
2n−1 dimensions with a unit AdS radius.
3 As explained in [8], the field equations acquire certain class of degeneracy around the solution
with Σ2n−1 = H2n−1.
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wormhole in higher dimensions shares the features described in the five-dimensional
case, including the meaning of the parameter ρ0, and its causal structure is depicted
in Fig. 1.

As in the five-dimensional case, the Euclidean continuation of the wormhole
metric is smooth and it has an arbitrary Euclidean time period. The Euclidean action
can be regularized in higher odd dimensions in a background independent way as
in [12–14], by the addition of a suitable boundary term which is the analogue of
(22), and can also be written in terms of the extrinsic curvature and the geometry at
the boundary. The nonvanishing components of the second fundamental form θ ab

acquire the same form as in the five-dimensional case, so that it is easy to check
that the regularized action has an extremum for the wormhole solution. As in the
five-dimensional case, the Euclidean continuation of the wormhole can be seen as
an instanton with a regularized action that vanishes independently of the position
of the boundaries, so that its mass is also found to vanish. This means that AdS
spacetime has a greater action than the wormhole, but a lower “vacuum energy.”

The wormhole mass for the Lorenzian solution can also be shown to vanish
making use of a surface integral which is the extension of (43) to higher odd di-
mensions [12–14]. The contribution to the total mass coming from each boundary
does not depend on the location of the boundaries and is given by

Q± (∂t) = ±αnVd−2 κ sinh(ρ0) ,

so that for a nonvanishing integration constant ρ0, the wormhole appears to have
“mass without mass.” Here αn :=

[
(1−2n)n−1−2n(1−n)n−1

]
(2n−1)!

It is simple to show that for different base manifolds, the Euclidean action also
vanishes, and the surface integrals for the mass possess a similar behavior.

Wormholes in vacuum have also been shown to exist for a wider class of theo-
ries for all dimensions greater than four [10], which are selected as in [18] by the
requirement of having a unique maximally symmetric vacuum solution.

3.1 Stability of Asymptotically Locally AdS Wormholes in Vacuum
Against Scalar Field Perturbations

It is natural to wonder whether the wormholes described here can be regarded as a
stable solutions providing a suitable ground state in order to define a field theory on
it. This has been explored in [17] for the case in which the apparent mass at each
side of the wormhole (4) vanishes (ρ0 = 0), so that the solution acquires reflection
symmetry. In this case the metric reads

ds2
d = l2 [−cosh2ρ dt2 + dρ2 + cosh2ρ dΣ2

d−2

]
. (49)

As a first step in this direction, it has been proved that the wormholes described
by the metric (49) are stable against scalar field perturbations, provided its squared
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mass satisfies a lower bound. The bound is generically more restrictive than that
discovered by Breitenlohner and Freedman for AdS spacetime [19], given by
m2 > m2

BF with

m2
BF := − 1

l2

(
d−1

2

)2

. (50)

The strategy followed to prove their stability is similar to the one used by Breiten-
lohner and Freedman for AdS spacetime [19–21]. Thus, one can see that for a free
massive, minimally coupled scalar field, stability of the metric (49) is guaranteed
provided the squared mass is bounded from below by a negative quantity which
depends on the lowest eigenvalue of the Laplace operator on the base manifold.
Remarkably, the Klein–Gordon equation for the scalar field can be solved analyti-
cally on the background metric (49), so that an exact expression for the spectrum
can be found requiring the energy flux to vanish at each boundary. These bound-
ary conditions single out scalar fields with fast fall-off. It can also be shown that in
the presence of nonminimal coupling with the scalar curvature, stability can also be
achieved for scalar fields with slow fall-off provided the squared mass also satis-
fies certain negative upper bound. It is worth to remark that, unlike the case of AdS
spacetime, the Ricci scalar of the wormhole is not constant, so that the nonminimal
coupling contributes to the field equation with more than just a shift in the mass.
Nevertheless, in this case an exact expression for the spectrum can also be found,
and three different quantizations for the scalar field can be carried on, being charac-
terized by the fall-off of the scalar field, which can be fast or slow in each one of the
asymptotic regions.

As it occurs for asymptotically AdS spacetimes [22–26], it is natural to expect
that these results can be extrapolated to scalar fields with a selfinteraction that can
be unbounded from below. In this case, it would be interesting to explore the sub-
tleties due to the presence of a nontrivial potential, since the asymptotic form of the
scalar field obtained through the linear approximation could no longer be reliable.
Indeed, for certain critical values of the mass, the nonlinear terms in the potential
could become relevant in the asymptotic region, such that the scalar field would be
forced to develop additional logarithmic branches [22]. These effects should also
be sensitive to the spacetime dimension, and for certain critical values of the mass,
they would be particularly relevant in the sense of the dual conformal field theory.
Nonetheless, note that the existence of asymptotically AdS wormholes raises some
puzzles concerning the AdS/CFT correspondence [16, 27, 28].

It is also natural to wonder about the stability of the wormhole against grav-
itational perturbations. However, this is not a simple task, since for the class of
theories under consideration, the degrees of freedom of the graviton could depend
on the background geometry (see, e.g., [29,30]), so that the dynamics of the pertur-
bations has to be analyzed from scratch. Nevertheless, it is simple to check that the
wormhole solves the field equations of the corresponding locally supersymmetric
extension in five [31] and higher odd dimensions [32, 33]. If the wormhole had
some unbroken supersymmetries, its stability would be guaranteed nonperturba-
tively. However, a quick analysis shows that the wormhole in vacuum breaks all
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the supersymmetries. Nonetheless, one cannot discard that supersymmetry could
be restored by switching on the torsion as in [34], or some nontrivial gauge fields
without backreaction [35, 36].

It would also be interesting to explore whether stability holds for the whole class
of wormholes discussed here.

For pure Gauss–Bonnet gravity, it has also been shown that wormhole solutions
with a jump in the extrinsic curvature along a “thin shell of nothingness” exist [37],
and this has also been extended to the full Einstein–Gauss–Bonnet theory in five
dimensions [38]. For this theory, it is possible to have wormholes made of thin
shells of matter fulfilling the standard energy conditions [39,40]. For smooth matter
distributions, wormholes that do not violate the weak energy condition also exist,
provided the Gauss–Bonnet coupling constant is negative and bounded according to
the shape of the solution [41, 42].

4 Static Wormholes in Vacuum in Four Dimensions

It is very simple to obtain a wormhole solution in four dimensions from the com-
pactification of the five-dimensional ones in vacuum discussed here, since it has
been shown that they always admits a base manifold with a S1 factor. The dimen-
sionally reduced metrics in four dimensions then possess similar geometrical and
causal behavior as their five-dimensional seeds. Nonetheless, the dimensionally re-
duced solution is supported by a nontrivial dilaton field with a clumsy nonvanishing
stress-energy tensor.

If one wonders about the possibility of realizing this class of wormholes in
vacuum in four dimensions, one knows that it should be performed within some
scenario beyond general Relativity. Our previous experience has shown that one of
the key features allowing this possibility is the relaxation of the asymptotic condi-
tions for the metric. An interesting theory possessing this last feature is conformal
gravity (see, e.g., [43, 44]), whose Lagrangian can be written as the square of the
Weyl Tensor, so that the action reads

I = α
∫

d4x
√−gCαβμνCαβμν .

Apart from being invariant under diffeomorphisms, this action is also invariant un-
der local rescalings of the metric

gμν →Ω 2(x)gμν ,

and the field equations are given by the vanishing of the Bach tensor, i.e.,

(

∇μ∇ν +
1
2

Rμν
)

Cα
μβν = 0.

It is simple to verify that any Einstein space with cosmological constant is a solution
of the theory in vacuum.
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Conformal gravity was intensively studied in the past and it has been show to be
renormalizable [45, 46] – note that the coupling α is dimensionless. Nevertheless,
the theory possesses fourth-order field equations for the metric, so that it has ghosts
as it is generically expected. In the context we are interested in, regardless the theory
is suitable or not as the ultimate one to describe gravity, it certainly deserves to be
studied.

It is also worth pointing out that it has been recently shown that for smooth
matter distributions, wormholes that do not violate the weak energy condition near
the throat can exist in conformal gravity [47].

For our purposes, it is worth pointing out that the most general spherically sym-
metric solution of conformal gravity (see, e.g., [48]) possesses a relaxed asymptotic
behavior as compared with general relativity. Thus, for the reasons explained above,
the door is open to look for wormholes in vacuum within this theory.

As shown in [49], conformal gravity admits a static spherically symmetric worm-
hole solution in vacuum, whose metric reads

ds2 = −(1 + a2 tanh(ρ)
)

dt2 +
1

(1 + a2 tanh(ρ))
dρ2 + l2

0 cosh(ρ)2 dΩ 2, (51)

where dΩ 2 stands for the line element of S2, and the range of the radial coordinate
is given by −∞ < ρ < ∞. The wormhole possesses a single integration constant a
that parametrizes the radius of the neck given by

l2
0 =

1√
3a4 + 1

,

being located at ρ = 0. The wormhole connects two static homogeneous universes of
constant spatial curvature with different radii, as it can be seen from the asymptotic
behavior of the curvature

lim
ρ→∞±Rmn

kl = −(1±a2)δmn
kl,

and time runs at different rates at each side of the neck, since

lim
ρ→∞±gtt = −(1±a2) .

The case of a2 → −a2 just amounts to reflection symmetry on the radial coordi-
nate ρ .

For a2 < 1 The wormhole interpolates between static universes with spatial ge-

ometries given by hyperbolic spaces of radii
(
1±a2

)−1/2
. In the case of a = 0 the

metric acquires a simple form, which reads

ds2 = −dt2 + dρ2 + cosh(ρ)2 dΩ 2,
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and it can be regarded as “the groundstate” with l0 = 1 and Cαβ
μν 
= 0. For a = 1 the

wormhole interpolates between flat space and a static universe with spatial geometry
given by a hyperbolic space of radius 2−1/2. In the case of a2 > 1 the wormhole
develops a cosmological horizon at one side of the neck, located at ρ = ρ+, with

ρ+ = − tanh−1
(

1
a2

)

,

and interpolates between an Einstein Universe (R×S3) for ρ = −∞, and R×H3.
The causal structure of the wormhole coincides with the one of Minkowski

spacetime in two dimensions for a2 ≤ 1, and for a2 > 1 reduces to the one of two-
dimensional Rindler spacetime.

The extension of the wormhole (51) with radial electric or magnetic fields can
also be found, and it turns out to have electric or magnetic “charge without charge.”
The solutions can be further generalized to the case of necks with genus greater than
one. It can also be shown that the wormholes in vacuum generically correspond
to the matching of different Einstein spacetimes at infinity by means of improper
conformal transformations.

As an ending remark, it is worth pointing out that the definition of mass in con-
formal gravity is a very subtle issue, which is not free of controversy [50–53]. Thus,
in order to have a suitable analysis of the solutions the construction of finite con-
served charges written as suitable surface integrals for conformal gravity should be
addressed.
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Part 3
CLOSING



Claudio Bunster: A Personal Recollection

Jorge Zanelli

When I met Claudio for the first time, by the end of the winter 1978, I felt I had
known him for a long time. Indeed, I was quite familiar with Claudio’s remarkable
work on classical electrodynamics, and he was a living legend among students and
faculty at the University of Chile. At the time Claudio graduated, undergraduates
were required to write a short thesis summarizing some topic and possibly includ-
ing some experimental results. In his undergraduate thesis, Claudio solved an old
open problem in a field where many old pros had tried their artillery before. This
greatly exceeded the requirements for graduation and was in stark contrast with the
scientific background of the country, where the great majority of university profes-
sors never published a single scientific paper in their entire life.

So, this is how I got to know Claudio, that legendary undergraduate student who
managed to publish the solution of an old outstanding problem [1] (Fig. 1).

When I started working on my PhD, one of the hot references among the graduate
students in theoretical physics was the little book Claudio had recently published
with Andrew Hanson and Tullio Regge on constrained Hamiltonian systems [2]
which I had studied thoroughly and contained many enlightening examples that
were so necessary to understand Dirac’s famous little book [3]. I had no image in
my mind of the real Claudio, but I expected him to be like one of those pedantic
young professors who haven’t completely recovered from their own fame (Fig. 2).
Instead, what I met looked more like a cross between a poet, a snake charmer and a
car mechanic. In the early 1980s Chile was under extreme political tension and the
possibilities for developing a scientific career were as remote as pursuing a career
in Greek literature in Afghanistan today. At the time, there was a minute Chilean
scientific community, mostly working abroad, and the very few resident scientists
were found at the two main universities in Santiago. The natural thing to do would
have been to set up the institute in one of these universities, which meant accepting
the rules of the central government of the time, or to start an operation under the

J. Zanelli
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Fig. 1 The first paper published by Claudio Bunster when he arrived in Princeton to work with
J. A. Wheeler

Fig. 2 Claudio discussing with Jeanette Nelson and Romualdo Tabensky in Princeton, ca. 1978

umbrella of some of the ONG’s run by the political opposition. Claudio and his
two partners, the biologist Ramon Latorre and the geophysicist Armando Cisternas,
chose to invent a third possibility, and against all expectations, they managed to raise
some funds to start a new, independent, world class, research institute. This testifies
to the other outstanding feature of our celebrated friend: he doesn’t follow standard
rules. The Centro de Estudios Cientı́ficos de Santiago, also known by its tongue-
in-cheek acronym, CECS, has been attracting top scientists and scholars from all
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Fig. 3 The rented two-story building that housed CECS in Santiago from its foundation until it
moved 850 km south

Fig. 4 Claudio introducing the next speaker at a conference in 1991, as the speaker (left) looks on

over the world to this remote place on earth, where most of them would have only
considered visiting for holidays. After running successfully for 15 years, CECS was
a landmark for science in Latin America (Figs. 3 and 4). It had acquired a presence
that was admired and respected in Chile and by our neighbors. A standard person
would feel satisfied and would expect to run the institute by automatic pilot, thanks
to the considerable momentum it had acquired. Not Claudio. When things looked
like standard scenarios, he found it unbearable and had to move on. So at the end
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of 1999, Claudio made a strong bet that the center could be relocated in Valdivia,
get funding and be even more successful than in Santiago. Today, this looks like
a great decision, but it was far from obvious 8 years ago. It was an act of poetic
madness. Within a few years, CECS had renovated several buildings and built new
ones for the researchers, administration, wet labs and lecture rooms. The institute
in Valdivia was again on firm ground and continued to be one of the leaders in the
fields of Biology and Theoretical Physics. Again, that looks like an achievement
to feel proud and satisfied, now it seemed that one could start to quietly enjoy the
fruits of success. This would be the normal path for most people, but not Claudio.
He wanted new challenges and is always looking for new adventures.

In 2002, Claudio managed to get funds to start a new scientific area at CECS in
the field of Glaciology an Climate Change. This was not a news item as it is to-
day, but he had the foresight 8 years ago when he invited a group of glaciologists
whom he hardly knew to organize a conference at the newly established institute
in Valdivia. At the same time, he mobilized resources to start a transgenic facility
at CECS that was to become a pioneer in Latin America as well, giving the biolo-
gists at CECS a unique edge in the field, as well as harnessing the opportunity for
new developments in areas of molecular biology and genomics with many potential
applications (Fig. 5).

Nowadays, CECS has grown to be a leading institute that has helped considerably
to put Chile in the scientific map of the world. It has a unique mixture of fields that
came together by the potential of their researchers and thanks to the vision and
leadership of Claudio Bunster. His quest for beauty and simplicity, together with his
constant pursuit of an ultimate frontier have taken him and his team to explore the
confines of the universe, the mysteries of life on Earth, and the challenges this life
is facing at present. Nobody would doubt the beauty and mathematical simplicity of

Fig. 5 The remodeling of the Schuster Hotel in 2000, which houses CECS in Valdivia today
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Fig. 6 The breathtaking beauty of Antarctica seen from the expedition camp in Patriot Hills, 2004

black holes and magnetic poles; we all marvel at the beauty of living matter; no one
could remain indifferent by the magnificence of a glacier.

The achievements of Claudio Bunster in these 60 years seem more than enough
for most of us, but I am certain they are not enough for him. I wonder where he will
take us next (Fig. 6).
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Profile of Claudio Bunster

In life and work, Claudio Bunster prefers extreme challenges. Bunster, a physicist
who contemplates brain-warping theories of space and time, returned to his native
Chile from the United States precisely when most intellectuals would have stayed
clear – during the middle of the Pinochet dictatorship. Shut out of the universities
by the military government, he broke the conventional mold by founding a research
institute that he then moved from Santiago, the capital, to Valdivia in southern Chile,
against the flow of minds and money. He led the presidential science advisory com-
mittee during the administration of Eduardo Frei, and served on the Dialogue Board
of Human Rights to reconcile Chilean military and civil society.

For his achievements, Bunster was elected to the National Academy of Sciences
in 2005. In his Inaugural Article, which appeared in the July 24, 2007 issue of
PNAS [1], he showed that after a black hole swallows a magnetic monopole, the
space–time singularity starts rotating.

Learning Physics Despite the Hurdles

During high school in Santiago, Bunster taught himself physics. He had to. “My
teachers were extremely boring,” he says. At first, he did not know what physics was,
just that he liked the name. There was something magic in the way “fı́sica” rolled off
the tongue. Then he became intrigued more and more by the nature of time. When
he was 15, he found a book on relativity theory in a bookstore. “I remember being
astonished to think,” he says, “that when I saw a leaf in a tree moving with the wind,
I was observing the past, since it had taken some time for the light to travel from the
leaf to my eye.”

This is a Profile of a recently elected member of the National Academy of Sciences to accompany
the member’s Inaugural Article on page 12243 in issue 3D of volume 104.
c© 2008 by The National Academy of Sciences of the USA

M. Henneaux, J. Zanelli (eds.), Quantum Mechanics of Fundamental Systems: The Quest 295
for Beauty and Simplicity, DOI 10.1007/978-0-387-87499-9 19,
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Fig. 1 Claudio Bunster

When he entered the University of Chile in Santiago in 1965, he enrolled in the
new and experimental “Institute of Sciences,” an oddity in the system of Chilean
universities that, even now, he considers “little Soviet Unions”: stolid, inflexible
bureaucracies that never take risks.

Nevertheless, he pursued on his own what he calls the problem of classical
electrodynamics: the electron, a charged particle, interacts with its own field. The
self-energy stored in this interaction is infinite if calculated by standard meth-
ods. “It seemed to me that one should eliminate the concept of field altogether,”
Bunster says.

When someone told Bunster that John Archibald Wheeler and Richard Feynman
had done just that and published their results in a 1945 paper in Reviews of Modern
Physics [2], he rode buses all over Santiago trying desperately to find back issues of
the journal. He finally found what he was looking for in the library of the Institute
of Cosmic Rays. “I read the paper with emotion,” he says. “There it was, not only
done, but done with a style I had not seen before. Deep, elegant physics that read
as literature. Equations written with words instead of symbols. Generosity in giving
credit to the work of others.”

Then the book Geometrodynamics, a collection of articles by Wheeler and col-
leagues [3], fell into his hands. “I was mesmerized,” Bunster says. “Here was a
contemporary theoretical physicist doing general relativity as frontier science, mix-
ing gravity with the rest of physics – daring, magic! I thought I should find a way
to study under that man.” Wheeler, one of the most prominent physicists of the
century, was a professor at Princeton University, the global epicenter of physics,
a continent away. It seemed impossible that Bunster would ever be able to ap-
proach him.
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Exciting Times

Just when Bunster thought he would never get to Princeton, he “had an unbelievable
piece of luck,” he explains. In a footnote to one of Wheeler’s papers, the theorist
acknowledged a French mathematician named André Avez. Bunster knew that Avez
happened to be in Santiago at the time. Through his mathematics teacher, he ar-
ranged an introduction. Avez and Bunster had lunch and spoke for several hours.
At the end of their conversation, Bunster recalls Avez saying: “Well, I will write on
your behalf to Princeton. The food there will not be as good as in Chile but you will
learn the best mathematics and physics in the world.” Several weeks later, Bunster
received a letter from Wheeler himself indicating that he had requested the Gradu-
ate School Office to mail Bunster an application package. Bunster still remembers
Wheeler writing that he knew of “the many things [Bunster] had already learned
and the many books [he] had already read.” But Wheeler warned that competition
to get into the Princeton Ph.D. program was fierce.

“I applied, and waited anxiously for the postman every day,” Bunster says.
“I even went to the corner to intercept him. And then, one day, the letter arrived.”
He had been accepted.

Times were exciting at Princeton. Wheeler’s group consisted of eight or ten stu-
dents and postdocs, with others “orbiting around.” The eminent professor had just
coined the name “black hole” for the space–time singularity that forms when a star
collapses on itself and crams so much mass into so small a space that the intense
gravity prevents light from escaping.

Although astronomers have now found many promising candidates, when
Bunster was in Wheeler’s lab, black holes were pure theory. The equations predicted
them, but no experimental evidence had been found. “The black hole has come from
conjecture to maybe being responsible for the structure of the universe,” Bunster
says. Being such extreme objects, black holes naturally attracted his attention when
he joined Wheeler’s group. Another topic that fascinated him was quantum gravity,
the branch of physics that seeks to unify quantum mechanics with general relativity.
“I was interested in looking at space–time as a derived – as opposed to fundamen-
tal – concept, he says, pointing out that today many contemporary physicists look
to string theory to explain the basis for space and time.

“Space–time is like a layer cake made of pancakes,” he says. “Each pancake is
space at a given time. And therefore, in quantum mechanics, Wheeler said there
could be no space–time, because there is no precise history of space. He invented
something called ‘superspace,’ which was a big space in which each point was a
three-dimensional space.” In his doctoral dissertation, Bunster showed how what
we experience as space and time would emerge in the classical limit of quantum
superspace.

Bunster spent 1 year after completing his doctorate as a postdoc in Wheeler’s
group before being promoted to assistant professor. There were some very bright
minds around. Bunster often discussed ideas with the legendary Freeman Dyson.
“I treasure those conversations with him,” he says. But his most productive collab-
oration was with a young Italian named Tullio Regge. “He had very original ideas,
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and so at a young age he became a professor” at the Institute for Advanced Study
(IAS) – a center for theoretical research in Princeton, NJ. At this time, and until
2005 (when he discovered the identity of his biological father), Claudio Bunster was
known as Claudio Teitelboim. Many terms in the field of quantum gravity bear the
Regge–Teitelboim moniker: the Regge–Teitelboim model, Regge–Teitelboim equa-
tions, and so on.

Torn Between Two Worlds

Wheeler left Princeton for the University of Texas at Austin in 1977. Soon after,
Bunster joined Regge, Dyson, and others at the IAS. It was a top-notch forum, he
says, “where one was welcome to pursue crazy lines of thought.” Also, the IAS was
very flexible with duties – there were no classes to teach – and permitted Bunster to
travel home regularly so he could lay the groundwork for a research institute that he
planned to establish there. In Chile the political situation had imploded.

On September 11, 1973, the military overthrew the government of Salvador
Allende. At first a junta governed Chile, and then Augusto Pinochet ruled alone
with a ruthless hand. Chilean expatriates were aware of the turmoil in their country
and Bunster was torn between the crisis in his homeland and the intellectual haven
of Princeton. “It was the end of an illusion,” he says of the coup, “and with hind-
sight it’s easy to see that [the Allende plan] would not have worked, but there was
an illusion of change, and then all that collapsed and there was all this brutality. The
sense of impotence, being away and not being able to do anything about it, was very
strong.”

During this time, Wheeler had not forgotten about his former student. Indeed, he
tried very hard to persuade Bunster to join his group at Austin. A magazine called
The Texas Monthly began to appear regularly in Bunster’s mailbox on Wheatsheaf
Lane in Princeton. The chance to rejoin Wheeler was an offer Bunster couldn’t
refuse, and he moved to Austin in 1980. He was productive in Texas for a while, but
Chile began to loom ever larger in his thoughts. So he negotiated a deal in which
University of Texas, Austin, allowed him to spend half the year in Texas and the
other half in Chile. With seed money from the Tinker Foundation, he founded an
independent research institute in Santiago called the Centro de Estudios Cientificos
de Santiago (CECS).

Unfortunately, the University of Texas, Austin, arrangement did not work out.
“Half a man is less than half a man,” Bunster quips. He returned to the IAS at
Princeton, which he knew was

“I had shown independence of thought and a willingness to go into battle.”

generous with its flexibility. For several years, he shuttled between Princeton and
Santiago. But as the CECS became a more concrete entity, he increasingly felt the
gravitational pull of Chile, where, even though banned from teaching at the univer-
sities, he eventually settled for good.
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“It cannot be a coincidence that I did so during the hard times of the Pinochet
dictatorship,” he says. “Not because I was in favor of it. Quite the opposite. I felt that
precisely at that time I could be more useful, and this could be best accomplished by
having an independent place where colleagues from all over the world could visit
and bring some light into the darkness.”

The Pinochet regime would have preferred darkness. “Sometimes one could feel
the presence of a government agent lurking around,” Bunster says. But the CECS
was tolerated, perhaps because of its lack of a conventional political agenda. “There
were phone threats, but for those times that was peanuts,” says Bunster.

Building a Ship of Small Draft

Bunster used the IAS – an example of a center of excellence where international
visitors would be welcome – as inspiration for building the CECS. But beyond the
ideals of excellence and openness, the CECS, which was set up in a rented house in
the Santiago suburbs, was not a heavily planned venture. Its motto is a quote from
Captain James Cook: “If you plan to make a voyage of discovery, choose a ship of
small draught.”

“Big ships cannot go into shallow waters or narrow passages,” Bunster explains.
“They are not easy to maneuver. The universities are not ships of small draft in
Chile.”

The CECS has three main areas of concentration: theoretical physics, molecular
physiology, and glaciology and climate change. “We say we are interested in the
cosmos, the planet and life,” says Bunster. “You know, it sounds very much like a
policy but it was just a string of coincidences. Instead of choosing research fields, the
focus was put on finding first-rate people willing to take risks and open new paths.
The people were primary, not the fields. The rest was the magic of life.” These days
the CECS is home to 15 leading researchers, plus postdocs and graduate students for
a total staff of 80. Apart from Bunster’s status as director, the institute’s governing
structure is horizontal – all scientists bear the title of “researcher” and have equal
standing. Leadership is exerted by achievement and stature, and not by bureaucratic
rank, Bunster says.

In 2000, Bunster organized the institution’s move from Santiago to the southern
city of Valdivia. “This country is very centralized, and the migration of a group
of first-rate people from the capital to the south goes against the usual stream,”
he says. “It was a revolutionary move, and it worked very well.” Drawing on his
contacts from his time at Princeton and University of Texas, Austin, Bunster has
built the CECS into an internationally recognized retreat. There is no tenure and
no permanent source of money, but the researchers often feel exhilarated by their
freedom. A sense of solidarity prevails.

“Sometimes there is an Antarctic exploration and one has to choose between a
new transgenic facility or going to the south pole,” explains Bunster. “So the bi-
ologists say, well, go to the south pole, we’ll do our lab next year.” Money does
remain an issue, though. “The Center is fully equipped,” Bunster says, “but we had
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a budget for six years that burned in three because we did the work planned for six
and more. We think that life is too short. So I am at the moment trying to keep the
boat moving.”

Public Service and Science

Once Bunster returned to Chile, he could not help but become enmeshed in public
service. After a plebiscite denied Pinochet a further role in the Chilean govern-
ment in 1988, Patricio Aylwin was elected the new president and served until 1994
in a period during which Chile made the transition from military to civilian rule.
Then, when Eduardo Frei came to power in 1994, he named Bunster as his sci-
ence advisor and head of the presidential advisory committee for scientific matters.
Bunster believes Frei chose him because “I had shown independence of thought and
a willingness to go into battle.” This was an opportunity to revamp national sci-
ence support, and Bunster took the initiative, developing the Presidential Chairs on
Science: prestigious, well funded research positions. A committee of distinguished
foreign scientists (to bypass established local power groups) chose the honorees,
who received their awards from the Chilean president himself in a ceremony at the
presidential palace. “It was also novel,” Bunster says, “that there were very few
strings attached. The money was not minor by Chilean standards” – $100,000 US a
year for 3 years.

Bunster was able to further expand this support. During one of his regular stays
at the IAS, he had a conversation with Phillip Griffiths, then IAS director, about
taking the Presidential Chairs to a higher level by giving support to groups rather
than individuals. Griffiths, who was interested in fostering science in developing
countries, had the support of James Wolfensohn, then president of the World Bank.
With a World Bank loan, Bunster was able to kick-start the Millennium Science
Initiative (MSI), which makes grants to centers of excellence in Chile, currently
on the order of $2 million US per year for 10 years. The CECS has received MSI
funding since 2000. Following the Chilean prototype, the MSI has been extended to
several other countries.

At the end of his administration, Frei established the Dialogue Board on Human
Rights to break the barrier between the military and civil society. “Democracy was
weak,” Bunster says, “and I strongly believed that one should talk to the military,
rather than keeping them isolated.” Bunster was nominated to the Board and thought
hard about how science might help reconcile the military to the people. One av-
enue that seemed promising was glaciology. The military possessed the logistics
and transport to enable research in harsh territory.

“When the Dialogue Board was established,” he remembers, “I was one of the
few people who had not been on the side of the Pinochet government, and yet had a
relationship of mutual trust and respect with the military that had grown from work-
ing in the field, shoulder to shoulder with them, taking risks together and getting
to know each other through long conversations inside a tent with the wind and the
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snow howling outside.” At one meeting Bunster recalls that the Board debated for
days behind closed doors, “wondering whether to dig into the brutalities of the past,
or, without ignoring those, to focus on showing a road to the future.” Pressing for
the committee to reach a decision, Bunster told them that “in quantum mechanics, a
photon has no reality or meaning until it is emitted by an atom.” Thereupon a general
stood up in agreement. His branch of the armed forces adhered to the quantum the-
ory, he said. “That was very important, because he was ‘on the other side,”’ Bunster
says. The Dialogue Board was thereby able to send a message to the Chilean people
that the barrier had been broken between the military and society. Bunster has since
overseen collaborations between the Chilean military and CECS researchers con-
ducting research on climate change in Antarctica and on the Patagonian ice fields.

The Confluence of Extremes

Through all his forays into public service and his work to create and administer
the CECS, Bunster has continued his research. In his Inaugural Article [1], he and
colleague Marc Henneaux considered what would happen when two extreme objects
are brought together: a black hole and a magnetic monopole. Magnetic monopoles
(particles at which magnetic field lines would originate, or end, as electric field lines
do at electrons and protons) have not yet been observed in experiments, but they
keep turning up in calculations. “Black holes are known because they hide things,”
Bunster says. “So it’s quite natural to think that maybe the magnetic poles are hiding
inside black holes.”

One reason why Bunster might think so is that research has shown that black
holes, such as the candidate Sagittarius A∗ at the center of the Milky Way, rotate.
Indeed, the radiation emitted from matter falling into black hole candidates shows
that they are rotating. However, “it’s not clear where the rotation comes from,” says
Bunster. He thinks it might be caused by monopoles. “And so we played this game
and we let the monopole fall radially into a non-rotating black hole,” he says. One
might think that the black hole would just swallow the monopole. But the result of
Bunster’s and Henneaux’s calculations was that the black hole began to rotate.

Exactly how to show that black holes really do contain magnetic monopoles is a
different challenge, but one that work such as Bunster’s may eventually set up for
astronomers to conquer. Black holes, quantum superspace, Chilean geography, the
fight against oppressive dictatorship: all his life, Claudio Bunster has sought out the
extreme, taken its measure, and solved it with innovation and enterprise.
Postscript. On May 12, 2008, Bunster spoke at John Archibald Wheeler’s memorial
service in Princeton, NJ. Wheeler, Bunster said, often quoted Teddy Roosevelt’s
exhortation “Do what you can, where you are, with what you have.”

“I followed his advice,” said Bunster. “At latitude 40S there is a science institute
where one can find the footprints of Wheeler in every corner.”

Kaspar Mossman, Science Writer
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