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Preface

In the processes studied in contemporary physics one encounters the most
diverse conditions: temperatures ranging from absolute zero to those found in the
cores of stars, and densities ranging from those of gases to densities tens of times
larger than those of a solid body. Accordingly, the solution of many problems
of modern physics requires an increasingly large volume of information about the
properties of matter under various conditions, including extreme ones. At the same
time, there is a demand for an increasing accuracy of these data, due to the fact
that the reliability and computational substantiation of many unique technological
devices and physical installations depends on them.

The relatively simple models ordinarily described in courses on theoretical
physics are not applicable when we wish to describe the properties of matter in a
sufficiently wide range of temperatures and densities. On the other hand, experi-
ments aimed at generating data on properties of matter under extreme conditions
usually face considerably technical difficulties and in a number of instances are
exceedingly expensive. It is precisely for these reasons that it is important to de-
velop and refine in a systematic manner quantum-statistical models and methods
for calculating properties of matter, and to compare computational results with
data acquired through observations and experiments. At this time, the literature
addressing these issues appears to be insufficient. If one is concerned with opacity,
which determines the radiative heat conductivity of matter at high temperatures,
then one can mention, for example, the books of D. A. Frank-Kamenetskii [67],
R. D. Cowan [49], and also the relatively recently published book by D. Salz-
mann [196]. There are also a number of papers and collections of short conference
reports that analyze theoretical models in use and software packages [45, 205,
246, 240, 241]. Let us mention here one of the most perfected software programs,
OPAL, and the astrophysical library of opacity coefficients (at the Livermore Na-
tional Laboratory, USA) that is based on OPAL [92]. A large amount of work on
improved models of matter and tables of thermophysical properties was carried
out by the T4 group at the Los Alamos National Laboratory, USA. The results of
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this work are systematized in the SESAME database [246].
The aim of the present book is to give an exposition of a number of quantum-

statistical self-consistent field models (Part I) and methods for the computation
of properties of matter at high temperatures under conditions of local thermody-
namical equilibrium (Part II) — models and methods that recommend themselves
well in practice — and also to perform a critical analysis of these approaches,
with numerous examples illustrating the effectiveness of the models and numerical
methods applied.

In Part I the exposition begins with the very simple and at the same time uni-
versal generalized Thomas-Fermi model for matter with given density and temper-
ature. This model is then replaced by other, refined ones: the modified Hartree and
Hartree-Fock-Slater models, and also the relativistic Hartree-Fock-Slater model .
The latter uses the Hartree self-consistent field, an approximation for local ex-
change that refines the Slater exchange potential, and the relativistic Dirac equa-
tion for the radial parts of the wave functions. It is interesting to note that the
models mentioned above were first formulated for a free atom at temperature zero,
and then generalized to arbitrary temperatures and densities for the so-called av-
erage atom [188], which corresponds to an ion with average occupation numbers.
Thus, for example, a generalization of the Thomas-Fermi model (originally pro-
posed in 1926–1928) was achieved in 1949 by Feynman, Metropolis and Teller in
[61].

The quantum-statistical models listed above, among them the Hatree-Fock
model for matter with given temperature and density, can be derived by using a
unified variational principle, namely, the requirement of minimum of the grand
thermodynamic potential, written in the corresponding approximation. This uni-
fied approach makes the hierarchic structure of the models transparent and allows
one to keep track of the limits of applicability of the various approximations.

The solution of the systems of nonlinear equations arising in the construction
of self-consistent field models has required the development of special iteration
methods. As an initial approximation for calculating the self-consistent poten-
tial a potential found earlier for a less precise model was used. After solving the
Schrödinger (or Dirac) equation with the self-consistent potential thus obtained,
it became possible to find the energy spectrum of the quantum-mechanical sys-
tem, the corresponding wave functions, as well as the mean occupation numbers
of electron states and the mean degree of ionization of the substance studied. The
wide utilization of physical approximations in the iteration process and the special
attention paid to the tight spots, which required a large expenditure of computing
time, enabled researchers to construct sufficiently efficient and reliable algorithms.
Let us point out that reliability of computational methods is extremely important
in obtaining tables of thermophysical data, if one takes into account that it may
be needed to perform calculations in a wide range of temperatures and densities,
for arbitrary substances and mixtures.
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Figure 1: Spectral absorption coefficient κ, in cm2/g, as a function of the photon
energy h̄ω, in keV, for a gold plasma (Z = 79, T = 1 keV, ρ = 0.1 g/cm3)

Based on the models considered in Part I, in Part II we propose methods
for calculating various characteristics of matter, e.g., spectral photon-absorption
coefficients, Rosseland and Planck mean free paths, equations of state, which are
necessary in the complex computations that describe hydrodynamic processes with
radiative transfer in high-temperature plasmas, in particular, when laser radiation
or other sources of energy act on matter. The computational work, which requires
accounting for a large number of diverse effects, has a very large volume. To
illustrate how complex computations of this kind can be we show here the graph
of the spectral photon absorption coefficient in a gold plasma with density ρ = 0.1
g/cm3 at temperature T = 1 keV (see Figure 1).

At such high temperatures the transfer of energy is effected mainly by pho-
tons. The main processes of interaction of radiation with matter that need to be
accounted for here are photon absorption in spectral lines, photoionization, inverse
bremsstrahlung, and also Compton scattering.

Despite the fact that the line widths are very small (less than 1 eV), since
the number of ion states is huge, especially for matter with high Z, the number
of lines can be so large that the plasma heat conductivity in the domain of high
temperatures is mainly determined by photon absorption in the spectral lines.
For each line one has to take into account the splitting and broadening effects,
calculate its profile, determined by the interaction of the ion with electrons and
other ions, and compute its intensity and realization probability. It is quite clear
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that only reliable quantum-statistical models, effective numerical methods and
fast computers may help us in understanding the relative roles played by various
effects in the investigation of the interaction of radiation with matter and allow
us to calculate Rosseland mean opacities in the requisite ranges of temperatures
and densities.

The book deals mainly with matter under local thermodynamical equilib-
rium. Some problems connected with nonequilibrium plasma and methods for
deriving its properties are considered in the end of Chapter V.

The calculation of Rosseland mean free paths requires almost always detailed
information on ion energy levels and wave functions. At the same time, in the
computation of the equation of state one can usually restrict oneself to the average-
atom (more precisely — average-ion) model. In Chapter VI formulas for pressure,
internal energy and entropy of matter are relatively easily derived in the setting
of various models.

A number of problems of general nature, which supplement the traditional
course on quantum mechanics, are covered in the Appendix, where we present the
methods used in the main text to solve the Schrödinger and Dirac equations for
particles moving in a central field. We treat analytic, approximate and numerical
methods for the solution of these equations. Although these methods are proba-
bly studied well enough, the authors hope that the reader will be attracted not
only by the novelty of the methods presented, but also by their effectiveness in
applications. Thus, for example, the phase method for the numerical integration
of the Schrödinger and Dirac equations, which uses considerations connected with
the semi-classical limit, enables us to find the energy eigenvalues with high ac-
curacy after only two or three iterations. Moreover, the phase method proved to
be little sensitive to the choice of the initial approximation, and hence extremely
reliable and sufficiently economical in computating self-consistent potentials in a
wide range of temperatures and densities.

In those cases in which the solutions of the Schrödinger and Dirac equations
can be found in analytic, closed form, it is recommended to rely not on the study
of power series after one extracts the asymptotics, but on a sufficiently general
and very simple method of reducing the original equations to equations of hyper-
geometric type. This allows one immediately to obtain the asymptotics and the
solution in closed form in terms of classical orthogonal polynomials.

The semi-classical approximation is treated in a manner that facilitates its
application not only to the Schrödinger equation, but also to the Dirac equation.
For the bound-state wave functions it is expedient to use the interpolation form of
writing the semi-classical approximation in terms of Bessel functions, which allows
one to obtain solutions without angular points in the entire domain of interest.
In the numerical integration of the Schrödinger equation for the continuum wave
functions, a convenient normalization has been found that uses the semi-classical
approximation in the first zero of the wave function.
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Over the years the authors of this book took active part in solving prob-
lems of modern nuclear physics at the Keldysh Institute of Applied Mathematics.
Based on the quantum-statistical models and iteration methods for solving non-
linear systems of equations developed for this purpose, the software package and
database THERMOS was created, which allows one to obtain tables of radiative
and thermodynamic properties of various substances in a wide range of temper-
atures and densities. The physical models and computational algorithms used in
the THERMOS code, as well as in numerous other applications, constitute the
main content of the book we here offer to the reader. The material of the book
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Quantum-statistical
self-consistent field models



Chapter 1

The generalized Thomas-Fermi
model

In highly-ionized hot plasmas electrons and ions interact between themselves
mainly through the electrostatic attraction or repulsion of their charges. For this
reason, the first and foremost problem in the study of microscopic properties of
matter is that of determining the electrostatic potential in the field of which each
particle is situated, and also of determining the charge density at any point. Ob-
viously, these two quantities must be consistent, since the electrostatic field deter-
mines the charge distribution, which in turn is the source of the field.

The calculation of steady (or stationary) states of an electron-ion system is a
very difficult problem. To simplify it one can use the fact that the mass of the elec-
tron is many orders of magnitude smaller than the mass of an atomic nucleus, but,
on the other hand, the electrons and nuclei are acted upon by forces of the same
order of magnitude. Consequently, nuclei move considerably slower than electrons,
and to a high degree of accuracy one can assume that with respect to electrons
the nuclei are fixed force centers. When nuclei shift position, electrons reorganize
themselves rapidly, and so one can consider the equilibrium state of the electron
system for a fixed position of the nuclei, assuming that in any macroscopically
small volume a charge neutrality is preserved.

We shall consider that the equilibrium state of the system of interacting elec-
trons corresponds to the most probable distribution of electrons over their energies,
under the assumption that the total energy of the system and the total number of
electrons are preserved. The potential for the most probable electron distribution
will satisfy a nonlinear Poisson equation that connects the self-consistent potential
with the electron density.
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1.1 The Thomas-Fermi model for matter with given

temperature and density

1.1.1 The Fermi-Dirac statistics for systems of interacting particles

At high temperatures the generalized Thomas-Fermi model is the best and easiest
to implement model of dense matter [61]. This model is based on the Fermi-Dirac
statistics and the semiclassical approximation for electrons, i.e., it is assumed that
the electrons of atoms are continuously distributed in phase space according to the
Fermi-Dirac statistics. The Fermi-Dirac distribution is usually derived for the case
of an ideal gas in an external field, when one can speak about the energy levels εk

of an individual particle (see, e.g., [115]). One then assumes that the total energy
E of the system is equal to the sum of the energies of the individual particles:

E =
∑

k

Nkεk.

Here the mutual interaction of electrons is neglected and the values of the elec-
tron energies εk are independent of the occupation numbers Nk. These original
assumptions are not applicable to electrons of atoms, because, first, their inter-
action cannot be neglected and, second, the energy levels of electrons in atoms
depend on the occupancy of levels.

Let us derive the Fermi-Dirac distribution taking into account the Coulomb
interaction of electrons in the self-consistent field approximation. We shall assume
that our system is enclosed in some fixed volume. In the one-dimensional case,
where the surface element in phase space is dx dp (with x the coordinate and
p the momentum), one can easily see, using the Bohr-Sommerfeld quantization
rule, that one quantum state requires an area equal to 2πh̄ [120]. If we take into
consideration the spin of the electron, which results in the doubling of the number
of states, and use the system of atomic units (e = 1, m = 1, h̄ = 1), then after the
natural generalization of the one-dimensional result to the three-dimensional case,
we conclude that the number of states in the phase-space volume d�r d�p is equal to
2 d�r d�p/(2π)3 (here �p is the electron momentum, d�r = dx dy dz, d�p = dpxdpydpz).
This quantity corresponds to the statistical weight gk of the level with energy εk.

If n(�r, �p) denotes the degree of occupation of the phase-volume element d�rd�p
by electrons, then the total number of electrons in the system is

N =
∫∫

n(�r, �p )
2d�r d�p
(2π)3

. (1.1)

On the other hand,

N =
∫
ρ(�r ) d�r,

where ρ(�r ) is the density of electrons (more precisely, their concentration). Com-
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paring with (1.1), we get

ρ(�r) =
∫
n(�r, �p )

2d�p
(2π)3

. (1.2)

Let us find the total energy E of the electron system. The potential energy
of the electrons is

Ep = −
∫
ρ(�r )Va(�r ) d�r +

1
2

∫∫
ρ(�r )ρ(�r ′)
|�r − �r ′| d�r d�r

′,

where Va(�r ) is the potential of atomic nuclei. Therefore, in the nonrelativistic
approximation the sum of the kinetic and potential energies of the electron system
is given by the expression

E =
∫∫ [

p2

2
− Va(�r )

]
n(�r, �p )

2d�r d�p
(2π)3

+
1
2

∫∫
ρ(�r )ρ(�r ′)
|�r − �r ′| d�r d�r

′. (1.3)

In accordance with the fundamental principles of statistical thermodynamics,
we start from the fact that a closed system can be found with equal probability
in any admissible steady quantum state. Since we consider that the energy E of
the electron system is fixed, the probability of a given electron distribution is
proportional to the number of ways in which the given state can be realized for a
fixed energy E and total number of electrons N [119].

Let S be the logarithm of the number of admissible states of the system, i.e.,
the entropy of the system [111]. If one assumes that it makes sense to speak about
the state of a single electron in the field V (�r ), for which, in accordance with the
Pauli principle, Nk ≤ gk, then for given occupation numbers Nk we have

S = ln
∏

k

(
gk

Nk

)
=
∑

k

ln
gk!

(gk −Nk)!Nk!
.

When this formula is used it is not necessary to assume that the particles do not
interact. It suffices that near the equilibrium state a change in the occupation
numbers Nk will not result in a change in the number of energy levels and their
degeneracy (i.e., their statistical weights).

Using the Stirling formula n! ≈ √2πn(n/e)n for the factorial of large num-
bers, we obtain for n� lnn

S =
∑

k

[gk ln gk − (gk −Nk) ln(gk −Nk)−Nk lnNk] =

∑

k

[
gk ln

gk

gk −Nk
−Nk ln

Nk

gk −Nk

]
=

−
∑

k

gk [nk lnnk + (1− nk) ln(1− nk)] ,
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where nk = Nk/gk. Then the semiclassical approximation for the entropy S yields

S = −
∫∫

[n lnn+ (1− n) ln(1− n)]
2d�r d�p
(2π)3

, (1.4)

where n = n(r̃ , p̃) and it is assumed that the phase space element d�r d�p is macro-
scopically small, but contains a sufficiently large number of particles.

We need to find an occupancy distribution n(�r, �p ) for which the quantity S is
maximal for the given total energy E and total number of electrons N . Therefore,
the most probable distribution can be found by setting δS = 0 and varying n(�r, �p )
while keeping E and N fixed. In order to consider all the variations δn(�r, �p ) = δn
as independent, we will solve the problem with the help of undetermined Lagrange
multipliers λ1 = −1/θ and λ2 = µ/θ:

δS − 1
θ
δE +

µ

θ
δN = 0. (1.5)

As it will become clear below, the meaning of the quantities µ and θ is that of
chemical potential and temperature, respectively.

Using relations (1.1)–(1.4), let us calculate the variations δS, δE and δN ,
which figure in (1.5):

δS =
∫∫

δn ln
(

1− n
n

)
2d�r d�p
(2π)3

,

δE =
∫∫

δn

(
p2

2
− Va(�r )

)
2d�r d�p
(2π)3

+

1
2

∫∫
δρ(�r ) ρ(�r ′)
|�r − �r ′| d�r d�r ′ +

1
2

∫∫
δρ(�r ′) ρ(�r )
|�r − �r ′| d�r d�r ′ =

∫∫
δn

(
p2

2
− Va(�r )

)
2d�r d�p
(2π)3

+
∫∫

δρ(�r )
ρ(�r ′)
|�r − �r ′| d�r d�r

′.

Since
∫∫

δρ(�r )
ρ(�r ′)
|�r − �r ′| d�r d�r

′ =
∫∫

δn

[∫
ρ(�r ′) d�r ′

|�r − �r ′|
]

2 d�r d�p
(2π)3

= −
∫∫

δnVe(�r )
2d�r d�p
(2π)3

,

it follows that

δE =
∫∫

δn

[
p2

2
− V (�r)

]
2 d�r d�p
(2π)3

.

Here V (�r ) is the potential generated by the electrons and the atomic nuclei:

V (�r ) = Va(�r ) + Ve(�r ), Ve(�r ) =
∫
ρ(�r ′) d�r ′

|�r − �r ′| .
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The expression that we obtain for the variation δE in a self-consistent field
V (�r) is formally identical with that for noninteracting electrons placed in the
external field V (�r). Further, we obviously have

δN =
∫∫

δn
2d�r d�p
(2π)3

.

Substitution of the expressions for variations in the extremum condition (1.5)
yields ∫∫

δn(�r, �p )
[
ln

1− n
n
− 1
θ

(
p2

2
− V (�r )− µ

)]
2d�r d�p
(2π)3

= 0.

Since the variation δn(�r, �p ) is arbitrary, one concludes that

ln
1− n
n
− 1
θ

(
p2

2
− V (�r)− µ

)
= 0,

whence
n(�r, �p ) =

1

1 + exp
(
p2/2− V (�r )− µ

θ

) . (1.6)

We see that when the electrostatic interaction between electrons is taken into
account we obtain the Fermi-Dirac distribution (1.6) provided that we use the
formula (1.4) for the entropy. Note also that asking that the entropy be maximal
for a fixed energy E and given number of electrons N is equivalent to asking that
the grand thermodynamic potential Ω = E − θS − µN achieves a minimum for
the given µ and θ (we have δΩ = 0 if (1.5) holds).

1.1.2 Derivation of the Poisson-Fermi-Dirac equation for the
atomic potential

Distribution (1.6) allows us to find the electron density from (1.2):

ρ(�r ) =
2

(2π)3

∞∫

0

4πp2 dp

1 + exp
(
p2/2− V (�r)− µ

θ

) .

It is convenient to change the integration variable to y = p2/(2θ). This yields

ρ(�r ) =
(2θ)3/2

2π2
I1/2

(
V (�r ) + µ

θ

)
, (1.7)

where

Ik(x) =

∞∫

0

yk dy

1 + exp(y − x)
is the Fermi-Dirac integral [122].
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Since we now have an expression for ρ(�r ), we can write down the equation
for the potential V (�r ). Indeed, V (�r ) satisfies the Poisson equation

∆V = −4π
∑

i

Zδ(�r − �ri) + 4πρ(�r ),

where �ri is the position vector of the i-th nucleus. Using (1.7), we obtain

∆V = −4π
∑

i

Zδ(�r − �ri) +
2
π

(2θ)3/2I1/2

(
V (�r ) + µ

θ

)
. (1.8)

Equation (1.8), supplemented by boundary conditions for V (�r ), enables us,
in principle, to determine the self-consistent potential for any given distribution of
nuclei. However, it is clear that it is not possible to solve this problem as stated,
and hence that its formulation needs to be simplified. Usually one finds the average
potential Ṽ (�r ) in some domain near a nucleus, whose position is taken as the origin
of coordinates.

To obtain the average potential Ṽ (�r ), let us average the potential V (�r )
over the different positions of the nuclei. The average potential will be spherically
symmetric, provided that there is no distinguished direction in the plasma. The
Poisson equation (1.8) for Ṽ (r) reads

∆Ṽ = −4πZδ(�r ) +
2
π

(2θ)3/2I1/2

(
Ṽ (r) + µ

θ

)
, (1.9)

where 0 ≤ r < r0 and the value r0 is calculated from the charge neutrality condi-
tion

4π

r0∫

0

ρ̃(r)r2 dr = Z. (1.10)

Here ρ̃(r) is the average electron density corresponding to the potential Ṽ (r). From
condition (1.10) and equation (1.9) we obtain the boundary condition for Ṽ (r):

dṼ

dr

∣∣∣∣
r=r0

= 0. (1.11)

Furthermore, since the potential is in fact defined only up to a constant term, we
take

Ṽ (r0) = 0. (1.12)

As r0 it is natural to take the radius of the average atom cell, determined by
the condition

4
3
π(r0a0)3n = 1,
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where n=ρN
A
/A is the number of nuclei per unit of volume, i.e., their concentra-

tion, measured in 1/cm3, ρ is the density of matter in g/cm3, A is the atomic mass,
N

A
= 6.022 · 1023 is the Avogadro number, and a0 = h̄2/(me2) = 0.529 · 10−8 cm

is the atomic unit of length. This yields the value

r0 =
1
a0

(
3
4π

A

ρNA

)1/3

= 1.388
(
A

ρ

)1/3

. (1.13)

Thus, the volume of the average atom cell is assumed to be equal to the
volume assigned to one ion in matter with density ρ.*) In what follows, instead
of Ṽ (r) and ρ̃(r) we will use the notation V (r) and ρ(r). Also, for the electron
density ρ(r) we will indicate the dependence on the distance r (in contrast to the
density of matter ρ).

1.1.3 Formulation of the boundary value problem

If in equations (1.9)–(1.12) we pass to spherical coordinates, we obtain the equation
for the Thomas-Fermi potential V (r):

1
r

d2

dr2
(rV ) =

2
π

(2θ)3/2I1/2

(
V (r) + µ

θ

)
, 0 < r < r0, (1.14)

together with the boundary conditions

rV (r)|r=0 = Z, V (r0) = 0,
dV (r)
dr

∣∣∣∣
r=r0

= 0. (1.15)

To solve equation (1.14) it suffices to have two conditions; the third condition
serves for determining the value of the chemical potential µ. When equation (1.14)
is integrated numerically it is convenient to eliminate µ from its right-hand side
and replace the function V (r), which becomes infinite at r = 0, by a function that
remains bounded as r → 0. To this end we make the substitution

V (r) + µ

θ
=

Φ(r)
r

,

which yields the equation

d2Φ
dr2

=
4
π

√
2θ rI1/2

(
Φ
r

)
, 0 < r < r0. (1.16)

The function Φ(r) is subject to the boundary conditions

Φ(0) =
Z

θ
,

dΦ
dr

=
Φ(r)
r

∣∣∣∣∣
r=r0

.

*) We use the term average atom cell assuming that the neutral spherical cell contains the
average ion and free electrons.
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It is further convenient to pass from the independent variable r to the dimension-
less variable x = r/r0, so that for any density of matter the integration of the
equation will be carried out over the same interval 0 < x < 1. After the change of
variables

Φ(r)
r

=
φ(x)
x

, x =
r

r0

we arrive at the equation

d2φ

dx2
= ax I1/2

(
φ

x

) (
a =

4
π

√
2θ r20

)
(1.17)

with the boundary conditions

φ(0) =
Z

θr0
, φ′(1) = φ(1). (1.18)

The condition V (r0) = 0 allows us, after the boundary value problem (1.17)–
(1.18) is solved, to find the chemical potential µ. Indeed, we have

V (r0) + µ

θ
=
φ(x)
x

∣∣∣∣∣
x=1

,

i.e., µ/θ = φ(1). Together with the chemical potential µ it is convenient to use the
corresponding dimensionless quantity

η = −µ
θ

= −φ(1),

which is positive for large temperatures (provided that the density of matter is
not too large; see Figure 1.6 below).

1.1.4 The Thomas-Fermi potential as a solution of the Poisson
equation depending on only two variables

Equation (1.17) with the boundary conditions (1.18) is solved for matter with
atomic number Z and atomic weight A under given physical conditions, specified
by the temperature T and the density ρ. The quantity T will be measured in
keV, and so in atomic units θ = 36.75T . It is readily seen that the solution of
problem (1.17)–(1.18) is determined by only two quantities, a and φ(0), which can
be expressed in terms of new variables σ = ρ/(AZ) and τ = T/Z4/3, which in turn
play the role of a reduced density and reduced temperature, respectively. Indeed,
by (1.13) and (1.18),

a =
4
π

√
2θ r20 ∼

(
AZ

ρ

)2/3(
θ

Z4/3

)1/2

, φ(0) =
Z

θr0
∼
( ρ

AZ

)1/3 Z4/3

θ
.
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The quantities σ and τ completely determine the function φ(x) and the dimen-
sionless (reduced) chemical potential η = −φ(1).

Therefore, calculations of the Thomas-Fermi potential carried out for some
substance (A1, Z1) with temperature T1 and density ρ1 can be also used for another
substance (A2, Z2) with temperature T2 and density ρ2, as long as the following
relations hold:

ρ1

A1Z1
=

ρ2

A2Z2
,

T1

Z
4/3
1

=
T2

Z
4/3
2

.

Moreover, in this case the chemical potentials µ1 and µ2 are connected by the
relation µ1/θ1 = µ2/θ2 = −η. This self-similarity property allows one to obtain
the necessary data (atomic potential, internal energy, entropy, pressure, and so
on) for any substance once calculations were carried out for some substance in a
sufficiently wide range of temperatures and densities [98].

1.1.5 Basic properties of the Fermi-Dirac integrals

In order to solve problem (1.17)–(1.18) we must know a number of properties of
the Fermi-Dirac integrals

Ik(x) =

∞∫

0

yk dy

1 + exp(y − x) (k > −1) (1.19)

and also know how to calculate them. Since the chemical potential µ may take
both positive and negative values, the argument of the integral Ik(x) may vary
within wide limits, as seen from (1.14). Hence, it is useful to study the asymptotic
behavior of the integrals Ik(x) as x→ ±∞.

a) Let x� 1. Since the graph of the function

f(y) =
1

1 + exp(y − x)
is step-shaped (see Figure 1.1), for a fixed value of x� 1 we have

Ik(x) ≈
x∫

0

ykdy =
xk+1

k + 1
. (1.20)

In particular, I1/2(x) ≈ 2
3
x3/2, I3/2(x) ≈ 2

5
x5/2.

b) Let x � −1. Then, neglecting the 1 in the denominator of the integral
(1.19), we have

Ik(x) ≈
∞∫

0

ex−y ykdy = Γ(k + 1) ex. (1.21)
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f(y)

1

0, 5

00 10 20 30 40 50 60 y

Figure 1.1: The family of curves f(y) =
1

1 + exp(y − x) for x = 0, 10, 20, 50

Consequently, for large in modulus negative values of the argument x

I1/2(x) ≈ 1
2
√
π ex, I3/2(x) ≈ 3

4
√
π ex. (1.22)

The graph of the integral Ik(x) is sufficiently simple to trace (Figure 1.2).

0
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Ik(x)

x

k = −1/2

k = 1/2

k = 3/2

Figure 1.2: The Fermi-Dirac integrals Ik(x), k = −1/2, 1/2, 3/2

The next terms in the asymptotic expansions (1.20) and (1.21), and also
sufficiently accurate tables and interpolation formulas for the computation of the
integrals Ik(x) can be found in [46].

To conclude this subsection, let us derive the formula for the differentiation
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of the integrals Ik(x):

I ′k(x)=

∞∫

0

yk d

dx

(
1

1 + exp(y − x)
)
dy = −

∞∫

0

yk d

dy

(
1

1 + exp(y − x)
)
dy=

− yk 1
1 + exp(y − x)

∣∣∣∣
∞

0

+

∞∫

0

kyk−1

1 + exp(y − x) = kIk−1(x).

Thus, for k > 0
I ′k(x) = k Ik−1(x). (1.23)

1.1.6 The uniform free-electron density model

When the kinetic energy of the electrons is large compared with their potential
energy, i.e., V (r)/θ � 1 throughout most of the average atom cell, which corre-
sponds to either high temperatures or densities of matter, (1.7) shows that the
electron density in the cell is

ρ(r) ≈ ρ(r0) =
(2θ)3/2

2π2
I1/2(−η) = ρe. (1.24)

If Z0 is the average ion charge, then obviously

ρe =
Z0

(4/3)πr30
. (1.25)

Note that formula (1.24) may be valid not only for V (r)/θ � 1, but also in
the case of a degenerate gas of electrons, when V (r)/θ is sufficiently large, but
V (r)/θ� −η.

According to (1.24) and (1.25), the average ion charge Z0 is given by

Z0 =
4π
3
r30

(2θ)3/2

2π2
I1/2(−η) = 317.5

AT 3/2

ρ

2√
π
I1/2(−η) (1.26)

Recall that here and in what follows T is the temperature in keV and ρ is the
density of matter in g/cm3. Formula (1.26) shows that the average ionization
degree α = Z0/Z is a function of the variables σ = ρ/(AZ) and τ = T/Z4/3, i.e.,
α = α(σ, τ ), which is in agreement with Subsection 1.1.4.

In the limit η � 1 we get the Boltzmann statistics from the Fermi-Dirac
statistics. Using the asymptotics of the integral I1/2(x) for large negative x (see
(1.22)), we derive from (1.26) the following expression for the average ion charge
of a classical ideal plasma:

Z0 = 317.5
AT 3/2

ρ
e−η.
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If the effective radius of the ion core, r = r∗, the magnitude of which can be
estimated from the electron density distribution (see Figure 2.3), is much smaller
than the dimensions of the average atom cell, then the condition V (r)/θ � 1 is
satisfied almost everywhere in the cell and we arrive at the uniform free-electron
density model . The corresponding potential V (r) is determined by the equation
∆V = 4πρe and the boundary conditions

rV (r)|r=0 = Z0, V (r0) =
dV

dr

∣∣∣∣
r=r0

= 0.

This yields

V (r) =
Z0

r

[
1− 3

2
r

r0
+

1
2

(
r

r0

)3
]
. (1.27)

10
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Figure 1.3: The function rV (r) in the Thomas-Fermi model (solid curves) and
in the approximation of uniform electron density (dashed curves) for gold with
density ρ = 1 g/cm3 and different values of the temperature T in keV

Figure 1.3 shows the curves rV (r) for different values of the temperature for
the Thomas-Fermi potential and the potential (1.27); Table 1.1 gives the corre-
sponding values of the chemical potential η, the average ion charge Z0 (see (1.26))
and the effective radius r∗ of the ion core. As expected, the potential (1.27) and the
Thomas-Fermi potential are close to one another for r > r∗, but differ considerably
for r < r∗, as clearly displayed by Figure 1.3 and Table 1.1.
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Table 1.1: Reduced chemical potential η, average ion charge Z0, effective radius r∗

of the ion core in the Thomas-Fermi model for gold at density ρ = 1 g/cm3 and
different values of the temperature in keV (the radius of the atom cell is r0 = 8.08)

T 0.01 0.1 1 10
η 2.78 4.75 6.99 10.1
Z0 3.80 17.1 57.8 77.9
r∗ 2.63 2.58 0.83 0.11

As one can see in Figure 1.3, the uniform free-electron density model may
serve as an initial approximation for the Thomas-Fermi model, as, incidentally,
the Thomas-Fermi model itself does for quantum-mechanical models of matter
considered in Chapter 3.

1.1.7 The Thomas-Fermi model at temperature zero

For small θ, when (V (r) + µ)/θ � 1 throughout most of the cell, the equation of
the Thomas-Fermi potential can be obtained by passing to the limit in (1.14) and
using (1.20):

1
r

d2

dr2
(rV ) =

4
3π

(2θ)3/2

(
V (r) + µ

θ

)3/2

(1.28)

(as seen from (1.28), the temperature θ gets cancelled in this process). It is con-
venient to introduce the new function

Φ0(r) = r [V (r) + µ] , (1.29)

which satisfies the equation

√
r
d2Φ0

dr2
=

8
√

2
3π

Φ3/2
0 , 0 < r < r0. (1.30)

Equation (1.30) was studied in many works [213, 60, 73, 127]. It remains valid also
for large values of the chemical potential µ (µ � θ), which may be the case not
only when θ → 0, but also at relatively high temperatures in the case of strong
compression, when the electrons constitute a degenerate Fermi gas.



16 Chapter 1. The generalized Thomas-Fermi model

1.2 Methods for the numerical integration of the

Thomas-Fermi equation

1.2.1 The shooting method

As a preliminary step, let us analyze the qualitative behavior of the solution of
the Thomas-Fermi equation (1.17)

d2φ

dx2
= axI1/2

(
φ

x

)
, a =

4
π

√
2θ r20, 0 < x < 1, (1.31)

with the boundary conditions

φ(0) =
Z

θr0
, φ(1) = φ′(1). (1.32)

 

φ(x)

0

0

2

−2

−4

x = r/r00, 25 0, 5 0, 75

Figure 1.4: Typical profile of the function φ(x) (solid curve) and the line y = −ηx
(dashed line). The calculations were done for gold at temperature T = 0.1 keV
and density ρ = 1 g/cm3

Since φ′′ > 0, the function φ(x) is concave on the interval 0 < x < 1. In the
case η > 0 (η = −φ(1)) we have φ(1) = φ′(1) < 0. Observing that the potential
V (r) changes the most for small values of r and that the curve φ(x) is tangent to
the line y = −ηx at the point x = 1, we obtain the typical profile of φ(x) shown
in Figure 1.4.

To integrate equation (1.31) numerically it is convenient to start at the point
x = 1, move to the left for a given trial value η, and verify that the boundary
condition is satisfied at x = 0, and then continue, modifying η and “shooting”
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till one reaches the “target” φ(0) = Z/(θr0) by some algorithm for the numerical
integration of equation (1.31).

Since the function φ(x) changes the most when x is small, the best way to
proceed is to work with a variable step in x, or with a constant step in a new
variable, for example, u =

√
x, which makes the profile φ(u) more shallower. The

accuracy of the computations is guaranteed if one uses the Runge-Kutta method
with an automatic step choice.

When using the shooting method one can apply Newton’s method to find
η from the equation f(η) = Z/(θr0), where the values of the function f(η) =
φ(x)|x=0 are calculated by integrating the equation (1.31) with the boundary con-
dition φ(1) = φ′(1) = −η. Since the function F (η) = ln f(η) is closer to a linear
function than f(η), we will start with the equation

F (η) = ln
Z

θr0
, (1.33)

which satisfies better the conditions for the applicability of Newton’s method. In
this manner we obtain the following iteration scheme:

F (η(s)) + (η(s+1) − η(s))
dF

dη

∣∣∣∣
η=η(s)

= ln
Z

θr0
,

i.e.,

η(s+1) = η(s) +
ln

Z

θr0
− F (η)

dF/dη

∣∣∣∣∣
η=η(s)

. (1.34)

To find dF/dη, simultaneously with the Thomas-Fermi equation (1.31) one
can solve the equation for the function χ(x) = ∂φ/∂η:

χ′′ =
a

2
χ I−1/2

(
φ

x

)
, χ(1) = χ′(1) = −1. (1.35)

After integrating (1.31) and (1.35), we obtain dF/dη = χ(0)/φ(0).
In choosing the initial approximation η(0) it is convenient to use the uniform

electron density model (1.24), (1.25) and the assumption that Z0 = Z, which
yields

I1/2(−η) =
3π
2

Z

(2θ)3/2r30
. (1.36)

To calculate the initial value η = η(0), we replace I1/2(x) in formula (1.36)
by the following function:

Ĩ1/2(x) =

√
3
2

{
ln
[
1 +
(π

6

)1/3

exp
(

2x
3

)]}3/2

. (1.37)
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Figure 1.5: Graphs of the functions ln I1/2(x) (solid curve) and ln Ĩ1/2(x) (dashed
curve)

Indeed, this function has the same asymptotic behaviors as I1/2(x) when x→∞
and x→ −∞, and differs from the latter at x = 0 by less than 20% (Figure 1.5).

In this way we obtain

η(0) =
1
2

ln
π

6
− 3

2
ln

[
exp

(
3

√
2q2

3

)
− 1

]
, (1.38)

where

q =
3π
2

Z

(2θ)3/2r30
.

This expression can be simplified for small as well as for large values of q:

η(0) ≈ −
(

3
2
q

)2/3

for q � 1,

η(0) ≈ ln
(√

π

2q

)
for q � 1.

Note that the value of η furnished by (1.38) is usually somewhat lower than the
true value.

A representation about the dependence of φ(0) on η = −φ(1) is provided
by the Latter graphs [122], which show the curves y = φ(0) = f(η) for different
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10−4
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φ(0)

a = 10−2
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Figure 1.6: Dependence of φ(0) on η = −φ(1) for fixed values of the parameter
a (a = 10−2, 10−1, . . . , 106)

values of the coefficient a = (4
√

2θ/π) r20 (Figure 1.6). Earlier these graphs were
used to obtain the initial approximation η(0).

The iterations (1.34) may diverge in some cases; for example, this may happen
for very low temperatures. This is usually connected with a bad choice for the
initial approximations of η = η(0). To ensure that the iterations will converge it is
useful to combine Newton’s method with the bisection method. A method that is
faster than the shooting method is the double-sweep method with iterations [153].

1.2.2 Linearization of the equation and a difference scheme

The double-sweep method does not apply directly to problem (1.31)–(1.32) be-
cause equation (1.31) is nonlinear in the unknown function φ(x). For this reason
we will first linearize the right-hand side of (1.31). We have

I1/2

(
φ

x

)
≈ I1/2

(
φ̃

x

)
+
φ− φ̃
x

d

dζ
I1/2 (ζ)

∣∣∣
ζ=φ̃/x

=

I1/2

(
φ̃

x

)
+
φ− φ̃

2x
I−1/2

(
φ̃

x

)
. (1.39)
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Here φ̃(x) is some approximation of φ(x). Since the potential V (r) varies
most rapidly for small r, we can write equation (1.31) in difference form on a
nonuniform in r grid xi = ri/r0 (i = 0, 1, 2, . . . , N ; 0 ≤ x ≤ 1), using the following
approximation for the derivative φ′′(x):

d2φ

dx2

∣∣∣∣∣
x=xi

≈ 1
(xi+1 + xi)/2− (xi + xi−1)/2

(
φi+1− φi

xi+1 − xi
− φi− φi−1

xi − xi−1

)
=

2
xi+1 − xi−1

(
φi+1− φi

xi+1 − xi
− φi− φi−1

xi − xi−1

)
.

Then equation (1.31) becomes

2
xi+1 − xi−1

(
φi+1− φi

xi+1 − xi
− φi− φi−1

xi − xi−1

)
=

axiI1/2

(
φ̃i

xi

)
+
a(φi − φ̃i)

2
I−1/2

(
φ̃i

xi

)
. (1.40)

The boundary condition (1.32) at x = 0 for the difference scheme (1.40) is obvious:

φ0 =
Z

θr0
. (1.41)

To obtain the boundary condition at x = 1 in the difference form we use
Taylor’s formula:

φN−1 = φN − φ′NhN +
1
2
φ′′Nh

2
N +O(h3

N ), hN = xN − xN−1 = 1− xN−1. (1.42)

Here in accordance with (1.32) and (1.39) we must put

φ′N = φN , φ′′N = aI1/2(φN ) ≈ aI1/2(φ̃N ) +
a(φN − φ̃N )

2
I−1/2(φ̃N ).

Upon replacing in equalities (1.40)–(1.42) φ̃i by φ(s)
i and φi by φ(s+1)

i , where
s is the iteration number, we obtain a linear difference scheme for φ(s+1)

i in de-
pendence on φ

(s)
i , which can be solved by a double-sweep method with iterations

(see [70], and also [197], p. 34).

1.2.3 Double-sweep method with iterations

Equation (1.40) is of the form

aiyi−1 + biyi + ciyi+1 = di, (1.43)



1.2 Numerical methods 21

where yi = φ
(s+1)
i is the unknown function, i = 1, . . . , N − 1,

ai =
1

xi − xi−1
, bi = −ai − ci − a(xi+1 − xi−1)

4
I−1/2

(
φ

(s)
i

xi

)
,

ci =
1

xi+1 − xi
, di = a(xi+1 − xi−1)

[
xi

2
I1/2

(
φ

(s)
i

xi

)
− φ

(s)
i

4
I−1/2

(
φ

(s)
i

xi

)]
.

We will solve equation (1.43) on the nonuniform grid xi = (i/N)2 by the double-
sweep method, setting

yi+1 = αiyi + βi. (1.44)

The coefficients αi and βi are calculated for i = N − 1, N − 2, . . . , 1 by
formulas obtained via substitution of expression (1.44) in (1.43):

αi−1 = − ai

bi + ciαi
, βi−1 =

di − ciβi

bi + ciαi
.

The values αN−1 and βN−1 are determined from the boundary condition (1.42):

αN−1 =
1

1− hN +
h2

N

4
aI−1/2

(
φ

(s)
N

) ,

βN−1 =

−h
2
N

2
a

[
I1/2

(
φ

(s)
N

)
− φ

(s)
N

2
I−1/2

(
φ

(s)
N

)]

1− hN +
h2

N

4
aI−1/2

(
φ

(s)
N

) .

Since y0 = Z/(θr0) is known, formula (1.44) with i = 0, 1, . . ., N − 1 yields
yi = φ

(s+1)
i .

To start the calculations we need initial approximations for η and φ(x). If
we use the uniform electron density model, then according to expression (1.27) we
have

φ(0)(x) =
Z

θr0

(
1− 3

2
x+

1
2
x3

)
− η(0)x, (1.45)

where η(0) is given by (1.38).
The convergence of iterations is illustrated in Figure 1.7, which shows the

graphs of the functions θφ(s)(x) (s = 0, 1, 2, . . . ) for gold (Z = 79) with density
ρ = 1 g/cm3 and for different values of the temperature T in keV. The graphs
show that even for T = 0, when the initial approximation is rather crude, the
function φ(s)(x) is close to the solution φ(x) after two iterations.
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Figure 1.7: Double-sweep method with iterations. Successive approximations
y(s)(x) = θφ(s)(x) for gold with density ρ = 1 g/cm3 and for different values of
the temperature T in keV. As s grows, the values of y(s)(x) decrease, approaching
the function y(x) = θφ(x), where φ(x) is the solution of (1.31)

1.3 The Thomas-Fermi model for mixtures

1.3.1 Setting up of the problem. Thermodynamic equilibrium
condition

In physics and technology one rarely has to deal with pure materials consisting
of a single element. For example, stellar matter is a mixture of many elements,
ranging from hydrogen to iron. On the other hand, when we study the properties
of a pure material we need to keep in mind that even a small impurity may change
rather drastically its properties, for instance, its opacity.

Let us consider a mixture of N components with given temperature θ and
average density ρ. We denote by mi the mass fraction of the i-th component
(i = 1, 2, . . ., N). As in the case of a single-element substance, we shall assume
that the average atom cells are spheres of radii r0i, so that the volume occupied
by one cell of the i-th component is vi = 4

3 π r
3
0i.

Let us introduce the intrinsic (partial) density ρi of the i-th component as
the mass of the component divided by the volume that component occupies. Since



1.3 Thomas-Fermi model for mixtures 23

the volume of the mixture (which is proportional to
∑
mi/ρ) is equal to the sum

of the volumes occupied by the individual components of the mixture, we have

1
ρ

∑

i

mi =
∑

i

mi

ρi
.

Furthermore, under the conditions of thermodynamic equilibrium for system in
contact with diffusion, their chemical potentials should be equal (see [111]).

It follows that the calculation of the Thomas-Fermi potential Vi(r) for dif-
ferent cells of the mixture reduces to solving a system of second order nonlinear
differential equations (see (1.17) and (1.18)):

d2

dx2
φi(x) = aix I1/2

(
φi

x

)
, i = 1, 2, . . . , N, (1.46)

with boundary conditions

φi(0) =
Zi

θr0i
, φi(1) =

dφi

dx

∣∣∣∣
x=1

=
µi

θ
= −ηi.

Here

x =
r

r0i
,

φi(x)
x

=
Vi(r) + µi

θ
,

r0i = 1.388
(
Ai

ρi

)1/3

, ai =
4
√

2θ
π

r20i (1.47)

and Ai and Zi are the atomic weight and atomic number of the i-th component,
respectively. The radii r0i (and the intrinsic densities ρi connected with them)
must be chosen so that they will obey the relations

w
N∑

i=1

mi =
N∑

i=1

miwi

(
w =

1
ρ
, wi =

1
ρi

)
, (1.48)

ηi = ηj = η = −µ
θ

(for any i and j). (1.49)

1.3.2 Linearization of the system of equations

We are dealing here with a nonlinear boundary value problem. To solve it, let us
linearize the system (1.46), expanding its right-hand side in the variables φi, wi

near the approximate solution and retaining only the linear terms. If as approx-
imate values for φi and wi we take their values from the preceding iteration, we
arrive at the iteration scheme
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(s+1)

φ′′i =
(s)
aix I1/2

( (s)

φi

x

)
+
dai

dwi

∣∣∣∣
wi=

(s)
w i

x I1/2

( (s)

φi

x

)(
(s+1)
wi − (s)

w i

)
+

1
2

(s)
ai I−1/2

( (s)

φi

x

)(
(s+1)

φi −
(s)

φi

)
(1.50)

with boundary conditions

(s+1)

φi (0) =
Zi

θ
(s)
r0i

+
Zi

θ

d(1/r0i)
dwi

∣∣∣∣∣
wi=

(s)
wi

(
(s+1)
wi − (s)

wi

)
, (1.51)

(s+1)

φi (1) =
d

dx

(s+1)

φi (x)
∣∣∣∣
x=1

= −(s+1)
η (1.52)

(i = 1, 2, . . . , N), where s is the iteration number. Using the relations

dai

dwi
=

2
3
ai

wi
,

d(1/r0i)
dwi

= − 1
3r0i wi

,

we recast (1.50)–(1.52) as

(s+1)

φ′′i =
(s)
aix I1/2

( (s)

φi

x

)

1 +
2
3

(s+1)
wi − (s)

w i

(s)
w i



 +
(s)
ai

2
I−1/2

( (s)

φi

x

)(
(s+1)

φi −
(s)

φi

)
,

(1.53)

(s+1)

φi (0) =
Zi

θ
(s)
r0i



1−
(s+1)
wi − (s)

w i

3
(s)
w i



 , (1.54)

(s+1)

φi (1) =
d

dx

(s+1)

φi (x)
∣∣∣∣
x=1

= −(s+1)
η (1.55)

(i = 1, 2, . . . , N). The system of equations (1.53)–(1.55) contains, in addition to

the unknown functions
(s+1)

φi (x), the unknowns
(s+1)
wi , which must obey condition

(1.48). The quantities
(s)
ai and

(s)
r0i are expressed in terms of

(s)
wi via (1.47).

1.3.3 Iteration scheme and the double-sweep method

Since the above system (1.53)–(1.55) is linear in the unknowns
(s+1)

φi (x), one can explicitly isolate the dependence of
(s+1)

φi (x) on
(s+1)
wi and subse-

quently decouple the iterations for the calculation of
(s+1)

φi (x) and
(s+1)
wi . Indeed,
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let us write (1.53) in the form

L
(s+1)

φi = −
(s)
ai

2
I−1/2

( (s)

φi

x

)
(s)

φi +

[
1 +

2
3

(s+1)
wi − (s)

wi

(s)
wi

]
(s)
aix I1/2

( (s)

φi

x

)
,

where

L =
d2

dx2
−

(s)
ai

2
I−1/2

( (s)

φi

x

)
.

The solution of the linear equation Ly = C1f1(x) + C2f2(x) can be written as
y = C1y1 + C2y2, where Ly1 = f1, Ly2 = f2. Consequently,

(s+1)

φi (x) =
(s+1)
vi (x) +

[
1 +

2
3

(s+1)
wi − (s)

wi

(s)
wi

]
(s+1)
ui (x), (1.56)

where in accordance with (1.54)–(1.56) the functions
(s+1)
vi (x) and

(s+1)
ui (x) must

satisfy the following nonhomogeneous equations and boundary conditions:

(s+1)

v′′i −
1
2

(s)
aiI−1/2

( (s)

φi

x

)
(s+1)
vi = −1

2
(s)
aiI−1/2

( (s)

φi

x

)
(s)

φ i,

(s+1)

u′′i −
1
2

(s)
aiI−1/2

( (s)

φi

x

)
(s+1)
ui =

(s)
aixI1/2

( (s)

φi

x

)
,

(1.57)

(s+1)
vi (0) =

3
2
Zi

θ
(s)
r0i

,
(s+1)
vi (1) =

d

dx

(s+1)
vi (x)

∣∣∣∣
x=1

,

(s+1)
ui (0) = −1

2
Zi

θ
(s)
r0i

,
(s+1)
ui (1) =

d

dx

(s+1)
ui (x)

∣∣∣∣
x=1

.

The boundary conditions for the functions
(s+1)
ui (x) and

(s+1)
vi (x) at x = 1 are

obvious, while those at x = 0 can be derived as follows. By (1.54) and (1.56),

(s+1)
vi (0) +

[
1 +

2
3

(s+1)
wi − (s)

wi

(s)
wi

]
(s+1)
ui (0) =

Zi

θ
(s)
r0i

[
1− 1

3

(s+1)
wi − (s)

wi

(s)
wi

]
.

Putting here
(s+1)
vi (0) = αZi/(θ

(s)
r0i),

(s+1)
ui (0) = βZi/(θ

(s)
r0i), we deduce that the

coefficients α and β satisfy the relations α + β = 1, (2/3)β = −1/3, which in
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turn yield α = 3/2, β = −1/2. Equations (1.57) show that
(s+1)
ui (x) and

(s+1)
vi (x)

do not depend on
(s+1)
wi .

To solve the boundary value problems (1.57) for the functions
(s+1)
ui (x) and

(s+1)
vi (x) it is convenient to apply the double-sweep method (see Subsection 1.2.3).

Once the functions
(s+1)
ui (x) and

(s+1)
vi (x) are calculated, one can find

(s+1)
η =

−
(s+1)

φi (1), summing over i with the weight mi
(s)
wi/

(s+1)
ui (1) the equalities (1.56)

at x = 1 and making use of condition (1.48), which in the iteration process will
be assumed to hold for all values of s:

(s+1)
η = −

w
N∑

i=1

mi +
N∑

i=1

mi
(s)
w i

(s+1)
vi (1)

(s+1)
ui (1)

N∑
i=1

mi

(s)
w i

(s+1)
ui (1)

. (1.58)

Once
(s+1)
η is known, we can find

(s+1)
wi , setting x = 1 in (1.56):

(s+1)
wi = −1

2
(s)
wi

[
1 + 3

(s+1)
η +

(s+1)
vi (1)

(s+1)
ui (1)

]
. (1.59)

To obtain an initial approximation we will use, as in the case of a single-
element matter, the uniform free-electron density model (see formulas (1.24),
(1.25)) and the assumption that Z0i = Zi. This yields the relation

wi ≈ 3π
4
√

2 (1.388)3
Zi/Ai

θ3/2 I1/2(−η)
, (1.60)

from which, using (1.48), we obtain

I1/2(−η) ≈ 3π
4
√

2 (1.388)3
ρ

θ3/2

∑
imiZi/Ai∑

imi
. (1.61)

Using (1.60), (1.61), and also (1.37), we finally conclude that

(0)
wi = w

Zi

Ai

∑
imi∑

imiZi/Ai
,

(0)
η =

1
2

ln
π

6
− 3

2
ln

[
exp

(
3

√
2q2

3

)
− 1

]
, (1.62)

q = 2.795 · 10−3 · ρ

T 3/2

∑
imiZi/Ai∑

imi
,
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(0)

φi(x) =
Zi

θ
(0)
r0i

(
1− 3

2
x+

1
2
x3

)
− (0)
η x.

The proposed algorithm allows one to carry out calculations for any values of
the matter density and temperature, including the temperature zero. By (1.62), for

a fixed density ρ and T → 0 the initial approximation
(0)
η → −∞, which also holds

for the true value of η. When η < −10 the function I1/2(φ/x) can be replaced,
with good accuracy, by the asymptotic expression I1/2(φ/x) ≈ 2/3(φ/x)3/2, which
leads to formulas that are practically identical to those for T = 0 (see (1.30) in §
1.1). Using the estimate (1.62) for large q, the condition η < −10 can be replaced
by the more stringent one T < 0.001 ρ2/3 (where T is measured in keV and ρ in
g/cm3). Thus, in order to compute the Thomas-Fermi potential at T = 0 by means
of the method introduced above it suffices to calculate it for T = T ∗ = 0.001 ρ2/3

and then perform the corresponding transformations.
The double-sweep method with iterations is of second order of accuracy. If

this proves insufficient (which is the case, for example, for very small densities),
the one can use a higher-order scheme, applying Newton’s method to find the
chemical potential [148].

1.3.4 Discussion of computational results

The scheme (1.58)-(1.59) has been used to carry out computations in wide ranges
of temperature and density, for various substances and mixtures. To illustrate
the convergence of the iterations we give here the results of computations of the

quantity
(s)
η for a mixture of 10 elements with atomic numbers Z = 10, 20, . . . , 100

and mi = Ai (see Table 1.2). For mi 	= Ai the iterations converge no slower than
for mi = Ai. The number of iterations decreases rapidly when the temperature
increases.

Let us remark that when the number of components in the mixture is in-
creased, the number of iterations practically does not increase, remaining roughly
the same as in the case of a single-component substance. This feature is an essen-
tial advantage of the iteration scheme, because for a single-component substance
there are no iterations with respect to the partial density ρi.

As one can see in Table 1.2, the numerical method discussed above allows
one to calculate the atomic potentials in the Thomas-Fermi model for arbitrary
temperatures and densities, for a substance consisting of an arbitrary number of
elements. The domain of applicability of the Thomas-Fermi model is determined
by how small the quantum, exchange, and oscillation corrections to the potential
V (r) are (see Subsection 4.1.2). As a rule, when the temperature and the density
are increased, these corrections become smaller, and their relative magnitude is
the smaller the larger the atomic numbers Z of the elements forming the mixture.
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Table 1.2: Successive iterations
(s)
η for a mixture of 10 elements for some values of

the temperature T in keV and density ρ in g/cm3, obtained by the double-sweep
method

T
ρ

10−3 10−2 10−1 1 10

0.54991 4.31552 7.79948 11.25669 14.71056
1.19695 4.67097 8.06290 11.37281 14.71547
1.80567 4.98772 8.31204 11.38652 14.71548
2.39004 5.29413 8.56695 11.38660 14.71548
2.96247 5.62701 8.73447 11.38660

10−2 3.53084 6.00593 8.76165
4.09465 6.40929 8.76153
4.61664 6.71097 8.76154
4.96164 6.78590
5.03472 6.78521
5.03344 6.78523
5.03346 6.78523
5.03346

−14.66551 −1,03005 3,12536 6,64434 10,10539
−7.58149 −0.00109 3.52243 6.85742 10.11872
−3.64227 0.83856 3.91206 6.91850 10.11881
−1.61185 1.55669 4.27765 6.92075 10.11881

1 −0.54902 2.13822 4.50923 6.92075
−0.14336 2.45274 4.55315
−0.12944 2.49462 4.55316
−0.13091 2.49378 4.55316
−0.13091 2.49378
−308.991 −31.2226 −3.2089 1.88920 5.48475
−173.017 −17.3531 −1.4698 2.32163 5.54920
−118.438 −11.8071 −0.6193 2.55149 5.55142

102 −111.267 −11.0669 −0.4169 2.58634 5.55143
−111.561 −11.0966 −0.4145 2.58669 5.55143
−111.563 −11.0967 −0.4146 2.58669
−111.563 −11.0967 −0.4146



Chapter 2

Electron wave functions in a
given potential

The statistical Thomas-Fermi method provides us with an approximate way of
describing a wide class of spatially nonhomogeneous multi-electron systems and
has the advantage of being simple and universal compared with more accurate
quantum-mechanical methods. If the Thomas-Fermi potential differs only slightly
from the atomic potential in matter, which is true for sufficiently high temperatures
or densities, then using this potential one can find, in the one-electron approxi-
mation, the electron energy levels and wave functions corresponding to the atom
with average occupation numbers in the Thomas-Fermi approximation, and also
find the average occupation numbers themselves. This approach yields the simplest
approximation of the average atom, i.e., the ion with average occupation numbers
in an electrically neutral spherical cell. Later we will show how, using the energy
levels and wave functions of the average atom, one can carry out calculations for
concrete ions in a plasma in the framework of more complex models.

2.1 Description of electron states in a spherical average

atom cell

To find the energy levels and wave functions we will solve the Schrödinger equation

−1
2
∆ψ + U(r)ψ = εψ, (2.1)

where U(r) is the potential energy of the electron under study, defined by the
Thomas-Fermi potential. Separation of variables in spherical coordinates yields

ψ(�r ) =
1
r
R(r)(−1)mY�m(ϑ, ϕ),
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where Y�m(ϑ, ϕ) is a spherical harmonic (see Appendix, A.1.3), and the radial
function R(r) = Rε�(r) satisfies the equation

−1
2
R′′ +

[
U(r) +

�(�+ 1)
2r2

]
R = εR, (2.2)

or
R′′ + 2[ε− U�(r)]R = 0.

For bound states, R(r) = Rn�(r), ε = εn�, where n = nr + � + 1 is the principal
quantum number and nr is the number of zeroes of the radial function inside the
cell (see Subsection 2.1.1 below). As seen from (2.2), the energy eigenvalues εn�

and the corresponding radial functions Rn�(r) are determined by the function

U�(r) = U(r) +
�(�+ 1)

2r2
,

which serves as the potential energy in the one-dimensional Schrödinger equation
(2.2).

2.1.1 Classification of electron states within the average atom cell

Next let us examine the character of the dependence of the potential energy U�(r)
on �, setting U(r) = −V (r), where V (r) is the Thomas-Fermi potential. Figure
2.1 shows the graphs of the functions U�(r) (� = 0, 1, 2, 3) for gold (Z = 79)
at temperature T = 0.1 keV and density ρ = 100 g/cm3. The temperature and
density were chosen so that the figure will display all possible types of behavior of
the function U�(r)*).

For the sake of convenience, in the investigation of the function U�(r) we will
replace �(�+ 1) by (�+ 1/2)2, in accordance with the semiclassical approximation
used in the Thomas-Fermi model (see Appendix, A.4), and introduce the notation

y =
(
�+

1
2

)2

, Uy(r) = −V (r) +
y

2r2
.

The extrema of the function Uy(r) for each given y are attained for the

values r that are roots of the equation
d

dr
Uy(r) = 0, i.e., the equation F (r) = y,

where F (r) = −r3 d

dr
V (r). As computations show, the graphs of the function F (r)

are bell-shaped (see Figure 2.2). The roots of the equation F (r) = y determine
the positions of the minimum and the maximum of the Uy(r). The behavior of the
curves F (r) is readily understood using the Poisson equation and the boundary
conditions for the Thomas-Fermi potential. The boundary condition at r = 0 gives

F (0) = −r3 d
dr

(
Z

r

)∣∣∣∣
r=0

= 0, F ′(0) = Z.

*) As the density of matter is decreased, the curves U�(r) with different � become practically
identical for large values of r.
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Figure 2.1: The potential energy U�(r) = �(�+1)
2r2 −V (r) for � = 0, 1, 2, 3 for gold at

temperature T = 0.1 keV and density ρ = 100 g/cm3 (V (r) is the Thomas-Fermi
potential; the radius of the average atom cell is r0 = 1.67)

The Poisson equation (r2V ′)′ = 4πr2ρ(r) and the boundary condition V ′(r0) = 0
yield

F (r0) = 0, F ′(r0) = −4π r30 ρ(r0) ≈ −3Z0 < 0,

where Z0 is the average charge of the ion.
Let us denote the maximum value of F (r) by y∗. Examining Figure 2.2 we

see that for y < y∗ the equation F (r) = y has two roots,*) the smallest [resp.,
largest] of which corresponds to the minimum [resp., maximum] of the function
Uy(r). As y grows, the maximum and minimum of Uy(r) approach one another,
and the magnitude of the maximum increases:

d

dy
εmax(y) =

d

dy
Uy(r̃y) =

(
∂Uy

∂y
+
∂Uy

∂r̃y

∂r̃y
∂y

)
=

1
2r̃2y

> 0

(when r = r̃y the function Uy(r) attains its local maximum εmax(y)). If y < y∗,
then for εmin(y) < ε < εmax(y), where εmin(y) is the value of the local minimum
of Uy(r), the equation ε = Uy(r) has at least two roots, r1(ε) and r2(ε), while for

*) At low temperatures, for some values of � the equation F (r) = (� + 1/2)2 may have more
than two roots.
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Figure 2.2: The function F (r) = −r3 dV (r)/dr for gold at density ρ = 1 g/cm3

and different values of the temperature T in keV

ε > εmax(y) it has exactly one root. In the case y > y∗ the equation ε = Uy(r) has
one root for ε > Uy(r0), and has no roots in the remaining cases.

The behavior of an electron in the atom cell is determined by the distribution
of the roots of the equation

ε− Uy(r) = 0 (2.3)

in the interval 0 < r < r0; these roots determine the domain of the classical
motion of the electron, i.e., the domain where ε− Uy(r) > 0. Three typical cases
are possible.

(1) Equation (2.3) has a single root r = r1, i.e., one turning point. The
domain of classical motion of the electron with the energy ε, given by the inequality
ε > Uy(r), extends to the boundary of the cell r = r0. Clearly, such states have a
continuous energy spectrum, i.e., a continuum (see, e.g., Figure 2.1 for ε > 5 and
� = 0, 1, 2, 3). The corresponding electron states are not localized and transitions
of such electrons from one cell to another are possible.

(2) Equation (2.3) has two roots r1, r2 (turning points), with r1 < r2 � r0
(see Figure 2.1 with ε < −5 for � = 0, 1, 2). In this case one obtains a bound
state, the energy spectrum is discrete, and there is no need to specify boundary
conditions at r = r0, because the wave function is negligibly small outside the
domain of classical motion for r � r2.
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(3) Equation (2.3) has two or more roots, and the second root is close to the
boundary of the cell (see Figure 2.1 with −1 < ε < 3 for � = 2). Such states can
be assigned to the intermediate group. As a matter of fact, due to the influence
of neighboring atoms the energy spectrum of such electrons consists of a number
of bands of allowed energies. In some cases the positioning of the bands can be
determined by imposing boundary conditions of a special type: for example, in a
solid body one imposes some periodicity conditions. The simplest estimate of the
position and width of the bands ∆ε = ε1 − ε2 can be obtained by solving the
Schrödinger equation for the given n and �, with the conditions Rε1�(r0) = 0 and
d
(
r−1Rε2�(r)

)
/dr
∣∣
r=r0

= 0 (see [188], and also § 4.1).
Thus, we see that for the most important cases, (1) and (2), the energy

levels and wave functions can be found by solving the Schrödinger equation (2.2)
with the methods considered in the Appendix. The states in the intermediate
group require further investigation (see §§ 4.1 and 4.2 below). However, in many
situations, especially at high temperatures, only very few electrons are found in
the states of the intermediate group and in such situations there is no need to
account for the band structure of the energy spectrum.

R em a r k. Generally speaking, when one solves the Schrödinger equation
(2.2), one should eliminate from the Thomas-Fermi potential V (r) the proper elec-
trostatic energy of the electron in question (“self-interaction”). Hence, in equation
(2.2) instead of U(r) = −V (r) one can take

U(r) = −Z − 1
Z

V (r)− 1
r

(this includes the Fermi-Amaldi correction [45]). Such corrections obviously modify
the behavior of the potential for r ∼ r0 and change the energy spectrum of the
electrons in the intermediate group.

2.1.2 Model of an atom with average occupation numbers

Once the energy levels ε = εn� of electrons in a central field characterized by
the Thomas-Fermi potential are calculated, one can find the average occupation
numbers of electron states, using the Pauli principle and the Fermi-Dirac statistics.
Here the number Nn�m of bound electrons (i.e., electrons corresponding to the
discrete spectrum) in states with quantum numbers n, �,m and energy εn� within
one atom cell is given by the formula

Nn�m =
2

1 + exp
(εn� − µ

θ

) . (2.4)
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Obviously, the average number of electrons with quantum numbers n and � is

Nn� =
�∑

m=−�

Nn�m =
2(2�+ 1)

1 + exp
(εn� − µ

θ

) , (2.5)

where 2(2� + 1) is the degree of degeneracy (i.e., the multiplicity) of the energy
level εn�.

To calculate the number of electrons of the continuum, i.e., of the free elec-
trons , we will use the semiclassical approximation. The number of possible states
of an electron with quantum numbers �, m, with fixed projection of the spin and
with energy in the interval (ε, ε+dε), belonging to the phase-space volume element
dpε� dr is

1
π
dpε� dr,

where

pε� = pε�(r) =

√√√√2

[
ε+ V (r)− (�+ 1/2)2

2r2

]
.

Summing over the two possible projections of the spin, we find that in the
semiclassical approximation the average number of electrons with quantum num-
bers �, m and energy in the interval (ε, ε + dε) and which are located in the
spherical layer (r, r + dr) is given by

1

1 + exp
(
ε− µ
θ

) 2
π
dpε� dr =

2
πpε�

dε dr

1 + exp
(
ε− µ
θ

) = N(ε, r) dε dr, (2.6)

where
N(ε, r) =

2

πpε�(r)
[
1 + exp

(
ε− µ
θ

)] .

The semiclassical approximation (2.6), used for all electrons, including the bound
states, leads to an expression for the electron density ρ(r) in the Thomas-Fermi
model. In this case the number of electrons in the spherical layer (r, r+dr) is given
by

4π r2ρ(r) dr =




∑

�,m

∫
N(ε, r) dε



 dr,

whence

ρ(r) =
1

4πr2




∑

�

�∑

m=−�

∞∫

ε̃0(r)

2 dε

πpε�(r)
[
1 + exp

(
ε− µ
θ

)]



 . (2.7)
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In (2.7) the integration is carried out over the domain of classical motion of the
electron, given by p2

ε�(r) = 2ε+ 2V (r)− (�+ 1/2)2/r2 ≥ 0, i.e., for

ε > ε̃0(r) =
(�+ 1/2)2

2r2
− V (r). (2.8)

Summing over m, replacing summation with respect to � by integration with
respect to y = (�+ 1/2)2 and switching the order of integration, we obtain

ρ(r) =
1

2π2r2

∞∫

−V (r)

dε

1 + exp
(
ε− µ
θ

)
2r2[ε+V (r)]∫

0

dy√
2[ε+ V (r)]− y/r2 =

√
2

π2

∞∫

−V (r)

√
ε+ V (r)

1 + exp
(
ε− µ
θ

) dε =
(2θ)3/2

2π2

∞∫

0

√
x dx

1 + exp
(
x− V (r) + µ

θ

) ,

or

ρ(r) =
(2θ)3/2

2π2
I1/2

(
V (r) + µ

θ

)
, (2.9)

which coincides with formula (1.7).

2.1.3 Derivation of the expression for the electron density by means
of the semiclassical approximation for wave functions

Formula (2.9) for the electron density ρ(r) can also be derived directly from the
quantum-mechanical expression

ρ(�r ) =
∑

n,�,m
(εn� < ε0)

2

1+exp
(
εn� − µ

θ

) |ψn�m(�r )|2 +

∑

�,m

∫

ε > ε0

2

1 + exp
(
ε− µ
θ

) |ψε�m(�r )|2 dε, (2.10)

where ε0 = ε0(�) is the boundary of the continuum for electrons with given �,
and ψn�m(�r) and ψε�m(�r ) are the wave functions for the bound and free electron
states, respectively:

ψn�m(�r )=
1
r
Rn�(r)(−1)mY�m(ϑ, ϕ), ψε�m(�r )=

1
r
Rε�(r)(−1)mY�m(ϑ, ϕ).

(2.11)
In the domain of classical motion we use for the radial parts of the wave functions
the semiclassical approximation (which, strictly speaking, is valid far from the
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turning points):

Rn�(r) =
C1√
pε�(r)

sin
(
ξ +

π

4

)
, ε = εn�, (2.12)

Rε�(r) =
C2√
pε�(r)

sin
(
ξ +

π

4

)
. (2.13)

Here ξ = ξ(r) =
r∫

r1

pε�(r′) dr′ (with r1 denoting the first turning point), and

the constants C1 and C2 are determined from the normalization conditions. Out-
side the domain of classical motion and near the turning points we set the wave
functions equal to zero.

For the normalization constant C1 the semiclassical approximation yields the
relation

r0∫

0

R2
n�(r) dr ≈ C2

1

r2∫

r1

1
pε�(r)

1 + sin 2ξ(r)
2

dr ≈ C2
1

2

r2∫

r1

dr

pε�(r)
= 1. (2.14)

For the continuum electrons we require that the following condition be sat-
isfied when r0 →∞:

r0∫

0

Rε�(r)Rε′�(r) dr = δ(ε− ε′).

This yields C2 =
√

2/π (see § 2.3).
Substituting the wave functions (2.11) in (2.10) and using the addition the-

orem for spherical harmonics:

∑

m

|Y�m(ϑ, ϕ)|2 =
2�+ 1

4π
,

we obtain

ρ(�r ) = ρ(r) =
1

4πr2






∑

n,�
(εn� < ε0(�))

2(2�+ 1)

1 + exp
(
εn� − µ

θ

) R2
n�(r) +

∑

�

∞∫

ε0(�)

2(2�+ 1)

1 + exp
(
ε− µ
θ

) R2
ε�(r) dε





. (2.15)
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To carry out the summation over n we use the Bohr-Sommerfeld rule

r2∫

r1

pε�(r) dr = π

(
nr +

1
2

)
, nr = n− �− 1, (2.16)

which yields

π
dnr

dε
=

r2∫

r1

dr

pε�(r)
, (2.17)

i.e.,

dnr =
dε

π

r2∫

r1

dr

pε�(r)
.

Next, let us insert the semiclassical wave functions (2.12)–(2.13) in formula (2.15)
and pass from summation over n to summation over nr, and then replace the
latter by integration with respect to ε:

ρ(r) =
1

4πr2
∑

�

2(2�+ 1)×

{ ε0(�)∫

ε̃0(r)

1

1 + exp
(
ε− µ
θ

)



 C2
1

πpε�(r)

r2∫

r1

dr′

pε�(r′)



 sin2
(
ξ +

π

4

)
dε+

∞∫

ε0(�)

1

1 + exp
(
ε− µ
θ

) C2
2

pε�(r)
sin2
(
ξ +

π

4

)
dε

}
.

Here ε̃0(r) and ε0(�) determine the domain of classical motion of the electron (see
(2.8)) and the boundary of the continuum, respectively. Combining the integrals
we obtain

ρ(r) =
1

4πr2
∑

�

2(2�+ 1)

{ ∞∫

ε̃0(r)

1

1 + exp
(
ε− µ
θ

) 2
π pε�(r)

sin2
(
ξ +

π

4

)
dε

}
.

(2.18)
If in (2.18) we replace sin2(ξ + π/4) = (1 + sin 2ξ)/2 by 1/2 and then pass

from summation over � to integration with respect to y = (�+1/2)2 and carry out
the latter first, then we obtain an expression identical to (2.9).

As the derivation of formula (2.18) shows, in the Thomas-Fermi model oscilla-
tions of wave functions, and hence oscillations of the electron density are neglected.
The Thomas-Fermi method describes only the average behavior of physical quan-
tities and does not reproduce at all their oscillations, which are connected with the
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Figure 2.3: Dependence of the radial electron density 4πr2ρ(r) on x =
√
r/r0

according to the Thomas-Fermi model for gold at density ρ = 1 g/cm3 and different
temperatures T = 1, 10, 100, 1000 eV (the arrows indicate the direction in which
the curves change when the temperature is increased)

shell structure. Thus, the electron density of the average atom according to the
Thomas-Fermi model and its potential obtained by solving the Poisson equation
turn out to be consistent to one another, but the electron wave functions obtained
in this potential and the potential calculated by means of these functions will not
be so.

In addition, let us remark that the Thomas-Fermi model reproduces incor-
rectly the behavior of the electron density in the vicinity of the nucleus, i.e., for
r ∼ 0. From the behavior of the function I1/2[(V (r) + µ)/θ] for small r it follows
that ρ(r) ∼ 1/r3/2 →∞ as r → 0 (see formula (2.9)), whereas the electron density
must tend to some finite value. Indeed, for r = 0 only the electrons with � = 0
contribute to the electron density:

ρ(0) =
∑

α

Nα|ψα(0)|2 =
∑

n

C2
n0 |Y00(ϑ, ϕ)|2,

where Cn0 are certain constants, determined by the occupation numbers of the
levels with � = 0. Therefore, for the electron density calculated by means of wave
functions one has ρ(0) < ∞, in contrast to the Thomas-Fermi model. Note that
this peculiarity of the Thomas-Fermi model is practically inconsequential if one is
not interested in ρ(r) for r ∼ 0.



2.1 Electron states in an average atom cell 39

As formula (1.7) shows, we have ρ ′(r) = 0 on the boundary of the average
atom cell, i.e., for r = r0, which is in agreement with the uniform free-electron
density model. Note that the behavior of ρ(r) does not reveal the shell structure
of the atom. More accurate quantum-mechanical calculations (according to the
Hartree-Fock model, for example) also do not allow one to extract the shell struc-
ture from the graph of ρ(r). This structure can be seen from the graph of the
radial density 4πr2ρ(r) (see Figure 3.6).

The dependence of the distribution of the radial electron density 4πr2ρ(r) on
x =
√
r/r0, obtained using formula (1.7), is shown in Figure 2.3 for gold with fixed

density of matter ρ = 1 g/cm3 and different values of the temperature. As seen in
this, there exists a point r = r∗ in which the function r2ρ(r) attains its minimum.
The value r∗ gives information on the effective radius of the ion: in the domain
r > r∗ one finds mainly the free electrons, while for r < r∗ one finds the bound
electrons, which form the ion core. For the case considered here, at temperature
T = 1 eV, r∗ = r0(0.5)2 ≈ 2 a.u., while for T = 1 keV, r∗ = r0(0.05)2 = 0.02 a.u.
(r0 = 8.08 a.u.).

2.1.4 Average degree of ionization

Using the argument that has led to formula (2.9), let us calculate the number of
free electrons Z0 in one average atom cell. Here we assign to the continuum the
electron states with one turning point (see Figure 2.1). Then

Z0 = Z
(1)
0 − Z(2)

0 ,

where

Z
(1)
0 =

r0∫

0

dr

∞∫

0

dε

2r2[ε+V (r)]∫

0

2 dy

πpε�(r)
[
1 + exp

(
ε− µ
θ

)] , (2.19)

Z
(2)
0 =

r0∫

0

dr

∫
dε

∫
2 dy

πpε�(r)
[
1 + exp

(
ε− µ
θ

)] . (2.20)

The domain of integration in (2.20) is defined by the inequalities

0 ≤ y ≤ 2r2(ε+ V (r)) (0 ≤ y ≤ y∗), Uy(r) ≤ ε ≤ εy (ε ≥ 0),

i.e.,
0 ≤ y ≤ min{y∗, 2r2[ε+ V (r)]}, 0 ≤ ε ≤ εy∗ .

Incidentally, without substantially lowering the physical accuracy of the cal-
culations, we can obtain a simpler expression for Z(2)

0 if for given � we set the
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boundary of the continuum equal to ε = y/(2r20). Then the domain of integration
in (2.20) is specified by the inequalities

0 ≤ ε ≤ y

2r20
, 0 ≤ y ≤ 2r2[ε+ V (r)],

i.e.,

2r20ε ≤ y ≤ 2r2[ε+ V (r)], 0 ≤ ε ≤ V (r)
(r0/r)2 − 1

.

This yields for the values of Z(1)
0 and Z(2)

0 the expressions

Z
(1)
0 =

4
√

2
π

r0∫

0

r2 dr

∞∫

0

dε

√
ε+ V (r)

1 + exp
(
ε− µ
θ

) =

8
√

2
π

r0∫

0

r2[V (r)]3/2dr

∞∫

1

t2 dt

1 + exp
[
(t2 − 1)

V (r)
θ

+ η

] , (2.21)

Z
(2)
0 =

4
√

2
π

r0∫

0

r2 dr

V (r)/[(r0/r)2−1]∫

0

√
V (r)− [(r0/r)2 − 1] ε

1 + exp
(
ε− µ
θ

) dε =

8
√

2
π

r0∫

0

r2[V (r)]3/2

(r0/r)2 − 1
dr

1∫

0

t2 dt

1 + exp
[

1− t2
(r0/r)2 − 1

V (r)
θ

+ η

] (2.22)

(in (2.21) t =
√

1 + ε/V (r), while in (2.22) t =
√

1− [(r0/r)2 − 1] ε/V (r)).

Calculations show that the quantity Z(2)
0 serves as a correction, that is, usu-

ally Z(2)
0 � Z

(1)
0 . Let us remark that Z(1)

0 gives the number of free electrons with
energy ε > 0 per one atom cell. The inner integrals in (2.21) and (2.22) can be
calculated by Simpson’s formula, and for the outer ones one can use the trapezoid
formula, since the values of the potential V (r) are usually known on a nonuniform
mesh.

The average degree of ionization α = Z0/Z, like other quantities in the
Thomas-Fermi model, depends only on the reduced density σ = ρ/(AZ) and
reduced temperature τ = T/Z4/3. The curves α = const in the plane (τ, σ)-plane
are shown in Figure 2.4.
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Figure 2.4: Curves of constant degree of ionization α = Z0/Z = const in the (τ, σ)-
plane, where τ = T/Z4/3 and σ = ρ/(AZ)

2.1.5 Corrections to the Thomas-Fermi model

Due to its simplicity and universality, the Thomas-Fermi (TF) model found wide
applications in the description of properties of hot plasmas. Soon after the TF
model was formulated for temperature T = 0 [213, 60] and generalized for T 	= 0
[61], the question of finding its domain of applicability and the related issue of
constructing refined models arose. In this direction, already in the original model
for T = 0 it was proposed to include exchange and correlation effects [54, 225]. To
improve the generalized TF model for matter with given density and temperature,
researchers have resorted to the expansion of the Hamiltonian of the electron
system in powers of the Planck constant h̄. This has led to the TF model with
quantum and exchange corrections, known as the TFC model [103, 104, 98, 99].

The correction δV (r) to the TF potential in the TFC model can be expressed
as follows (see § 6.1):

δV (r) =
√

2
6π
√
θ

[
r0χ(x)/r +

1
2
I−1/2

(
φ(x)
x

)
− 1

2
I−1/2[φ(1)]− χ(1)

]
, (2.23)
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where x = r/r0, φ(x) is the solution of the TF model (1.17) and χ(x) is the
solution of the nonhomogeneous linear equation

χ′′(x) =

√
2θ r20
π

{
2I−1/2

(
φ(x)
x

)
χ(x) + 7x

[
I−1/2

(
φ(x)
x

)]2
−

xI1/2

(
φ(x)
x

)
I−3/2

(
φ(x)
x

)}
(2.24)

with boundary conditions χ(0) = 0, χ(1) = χ′(1).
As it turned out, it is not enough to include quantum, exchange, and corre-

lation corrections, since in addition to the regular corrections, i.e., those obtained
by expanding the Hamiltonian in a series of powers of the Planck constant h̄, the
ignored corrections connected with the shell structure (the so-called oscillation
corrections) may be very important. Indeed, it is precisely the shell effects that
explain the oscillations of the value of the normal density of various substances in
dependence of their atomic number Z. Recall that when we calculated the electron
density in the TF model by means of expression (2.18) we replaced sin2(ξ + π/4)
by 1/2. If we do not make this substitution, then we can approximately account
for the shell structure and obtain analytic formulas for calculating the electron
density which reproduce qualitatively its oscillations [106].

The range of applicability of the models listed above is limited by the small-
ness of the corrections. Moreover, the atomic potential, wave functions and corre-
sponding electron density furnished by models with corrections remain inconsis-
tent. A more consistent approach, which does not require that the corrections be
small, is an approach that takes into consideration the shell structure of the atom,
i.e., is based on the calculation of electron wave functions and the application of
self-consistent field models.

2.2 Bound-state wave functions

At temperature T ∼ 1 keV, knowledge of the Thomas-Fermi potential is sufficient
for solving many problems in the physics of hot plasma. At low temperatures, too,
the Thomas-Fermi potential does not differ too much from the Hartree-Fock-Slater
potential, especially for high-Z elements. As a consequence, using the Thomas-
Fermi potential one can easily find various characteristics of matter, study the
qualitative behavior of these characteristics in their dependence on density and
temperature, and so on. Furthermore, the Thomas-Fermi potential practically al-
ways serves as a good initial approximation in calculations of the self-consistent
field by means of more complex quantum-mechanical models.

To obtain the one-electron wave functions one needs to solve the Schrödinger
equation with some self-consistent central potential V (r). Various methods —
analytical, approximate and numerical—for solving the Schrödinger equation are



2.2 Bound-state wave functions 43

considered in the Appendix at the end of the book. In the next section we discuss
the application of these methods in practice and analyze their effectiveness.

2.2.1 Numerical methods for solving the Schrödinger equation

When iterations are carried out to obtain self-consistent atomic potentials one
has to solve hundreds, and sometimes even thousands of times the Schrödinger
equation with the given potential V (r). As a consequence, the effectiveness of a
method for calculating self-consistent potentials is to a large degree determined
by the effectiveness of the method used to solve the Schrödinger equation

−1
2
R′′

n� +
[
−V (r) +

�(�+ 1)
2r2

]
Rn� = εn�Rn�, 0 < r < r0. (2.25)

The boundary conditions for the radial function Rn�(r) at r = 0 are specified
by the requirement that the function Rn�(r)/r be bounded at zero, which gives
Rn�(0)=0. Depending on the physical situation, the boundary conditions at r = r0
can be quite different: Rn�(r0) = 0, (Rn�(r)/r)

′∣∣
r=r0

= 0, or periodicity conditions
(a version of such conditions is given in § 4.1).

As a rule, to solve the equation (2.25) in §§ 2 and 3 of the this chapter we will
take for V (r) the Thomas-Fermi potential. We will address first the problem of
finding the discrete energy spectrum of equation (2.25) under the condition that
the wave function and its derivative vanish as r0 → ∞. Some of the first calcula-
tions for a free atom were performed by D. Hartree [82]. To solve the Schrödinger
equation Numerov’s method and some iteration scheme for finding the energy
eigenvalues εn� have been used (see also [62]).

A more effective method is the phase method [216, 155], which is based on
the semiclassical approximation and a generalization of the Bohr-Sommerfeld con-
dition (see Appendix, §A.5). The phase method allows one to find the energy
eigenvalues with high accuracy in only two or three iterations; moreover, it is
little sensitive to the choice of the initial approximation, and hence exceptionally
reliable and sufficiently economical in the computation of self-consistent potentials
for a wide range of densities and temperatures.

As a comparison, the method of reverse iterations [141] has been tried as
well; it turned out to be faster, but less reliable, because it requires a sufficiently
accurate initial value of the energy, which is not always possible to achieve in
massive computations.

2.2.2 Hydrogen-like and semiclassical wave functions

In addition to direct numerical methods, different approximate methods for solving
equation (2.25) which rely on the analytic representation of wave functions are
available. The most convenient of these from the point of view of their further
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utilization are the hydrogen-like (or hydrogenic) wave functions

RH
n�(r) =

√
Zn�

n

√
(n− �− 1)!

(n+ �)!
e−x/2 x�+1 L2�+1

n−�−1(x), (2.26)

where x = 2Zn�r/n, Lα
m(x) are the Laguerre polynomials, and the value of the

effective charge Zn� is chosen in a special way, for example, by employing the
method of the trial potential (see Appendix, A.3.3)

Using the hydrogen-like wave functions one can readily calculate quantities
such as oscillator strengths, the probabilities of various radiative and collisional
processes, and other characteristics of atoms. The energy eigenvalue corresponding
to the wave function (2.26) is given by

εHn� = −Z
2
n�

2n2
+An�, (2.27)

where An� is a constant that describes external screening.
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Figure 2.5: Radial wave functions Rn�(r) as functions of x =
√
r/r0, calculated

in the hydrogen-like approximation (dashed curves) and by solving numerically
the Schrödinger equation (solid curves). The graphs of Rn�(r) are shown for the
principal quantum numbers n = 1, 2, 3, 4 and � = 0 (the number of zeroes of the
corresponding function is n−1). The calculations were done using the TF potential
for gold at T = 1 keV, ρ = 0.1 g/cm3

Hydrogen-like wave functions and numerical solutions of the Schrödinger
equation with the Thomas-Fermi potential, obtained for gold (T = 1 keV, ρ = 0.1
g/cm3), are shown in Figure 2.5. To save space the radial functions are shown only
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Figure 2.6: Hydrogen-like and numerical wave functions for n = 1, 2, 3, 4, � = 0 in
the TF potential for gold at T = 0.01 k.eV, ρ = 0.1 g/cm3

for � = 0, since for � 	= 0 the agreement between the approximate functions and
the exact ones is far better. At low temperatures the results may be less good (see
Figure 2.6), because the hydrogen-like approximation works only when the atomic
potential is close to the Coulomb potential in some region that is essential for the
wave function. The higher the temperature of the substance, the more adequate
the hydrogen-like wave functions prove to be. However, in some cases — for in-
stance, for the first shell — the hydrogen-like approximation is practically always
applicable, except, possibly, in the case of low-Z elements when the first shell is
fully occupied.

Incidentally, it may not be enough that the graphs of the approximate wave
functions are close to the graphs of the exact ones. More reliable indicators of the
quality of the approximate functions are the accuracy with which the orthogonality
relations are satisfied, what errors arise in the computation of matrix elements,
and so on. For example, the orthogonality conditions for the one-electron wave
functions for different values of the principal quantum number n and equal values
of � lead to the relation

∫
Rn�(r)Rn′�(r) dr = 0 (n 	= n′), which the hydrogen-

like functions for Zn� 	= Zn′� satisfy only approximately. At the same time, for
different values of � the wave functions are orthogonal thanks to the properties of
the spherical harmonics Y�m(ϑ, ϕ).

More accurate than the hydrogen-like wave functions are the wave functions
provided by the improved semiclassical approximation, which relies on Bessel func-
tions (see Appendix, A.4); we will use superscript “s” to indicate semiclassical
quantities, though we could have also used the notation “WKB”. The semiclas-
sical wave functions can be used in a wider range of temperatures and densities.
One should keep in mind, however, that the semiclassical functions are less con-
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venient than the hydrogen-like ones when it comes to deriving analytic formulas
for calculating cross-sections of radiative processes.

In the semiclassical approximation the value of the energy ε = εsn� is calcu-
lated by means of the Bohr-Sommerfeld formula

r2∫

r1

p(r)dr = π

(
n− �− 1

2

)
, (2.28)

where

p(r) =

√

2
[
ε+ V (r)− (�+ 1/2)2

2r2

]
, (2.29)

and r1, r2 are turning points (p(r1) = p(r2) = 0, r2 > r1).
The radial wave functions have the form

R(r) =






C

π

√
ξ

|p|K1/3(ξ), if p2(r) ≤ 0,

C√
3

√
ξ

p

[
J−1/3(ξ) + J1/3(ξ)

]
, if p2(r) ≥ 0,

(2.30)

where

p = p(r), ξ = ξ(r) =
∣∣∣∣

r∫

r̃

p(r′)dr′
∣∣∣∣,

r̃ is the turning point, ε = εsn� and C is a normalization constant.
Let us examine some specific aspects of the application of formulas (2.28)–

(2.30), depending on the choice of the turning point r̃. Set

R
(1)
n� (r) =






C1

π

√
ξ

|p|K1/3(ξ), if r ≤ r1,

C1√
3

√
ξ

p

[
J−1/3(ξ) + J1/3(ξ)

]
, if r1 ≤ r < r2,

where

ξ =
∣∣∣∣

r∫

r1

p(r′) dr′
∣∣∣∣;

R
(2)
n� (r) =






C2√
3

√
ξ

p

[
J−1/3(ξ) + J1/3(ξ)

]
, if r1 < r ≤ r2,

C2

π

√
ξ

|p|K1/3(ξ), if r ≥ r2,
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where

ξ =

∣∣∣∣∣∣

r∫

r2

p(r′) dr′

∣∣∣∣∣∣
.

The normalization constant C1 is usually taken to be positive, while the sign
of C2 is determined by the number of zeroes of the wave function. The function
R

(1)
n� (r) [resp., R(2)

n� (r)] has a singularity at r = r2 [resp., r = r1]. To obtain a
solution that is smooth for all values of r, we must match the functions R(1)

n� (r)
and R(2)

n� (r) by choosing the value of the energy ε = εn�.
For a given value of the energy—in particular, for the value obtained from the

Bohr-Sommerfeld condition — we use the folowing interpolation on the interval
(r1, r2):

RS
n�(r) = [1− a(r)]R(1)

n� (r) + a(r)R(2)
n� (r), a(r) =

r∫
r1

p(r) dr

r2∫
r1

p(r) dr
. (2.31)

Here the interpolation coefficient a(r) is chosen in such a way that the wave
function and its first derivative will be continuous in the turning points r1 and
r2. Note that in some energy interval the radial function furnished by formula
(2.31) will have no points of inflexion regardless of whether the Bohr-Sommerfeld
condition is satisfied or not. Therefore, if a more accurate value of the energy than
εsn� is known, it can be used to obtain the wave function by means of formula
(2.31).

In practical computations it is convenient to use tables of the functions
K1/3(ξ) and J−1/3(ξ) + J1/3(ξ). Moreover, in order to avoid dividing the small
quantities ξ(r) and p(r) one by another in the vicinity of the turning points, the
wave function can be represented for ξ ∼ 0 in the form

RS
n�(r) = A1 +A2ξ

2/3 (ξ ≤ 0.1), (2.32)

where the coefficients A1 and A2 are calculated using (2.30), A2 = ±0.955275A1

and the different signs correspond to the right and respectively the left side relative
to the first turning point and reverse signs for the second turning point.

At temperature T = 1 keV and density ρ = 0.1 g/cm3 the graphs of the semi-
classical and exact wave functions practically coincide for all considered values of n
and �. Good agreement is observed also at lower temperatures (see Figure 2.7 be-
low), in contrast to the hydrogen-like wave functions, which describe the spectrum
only for the inner shells with small quantum numbers.
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Table 2.1: Relative differences δ = (εn�− ε̃n�)/εn� ·100% between the approximate
energy levels, and the exact values εn� in the TF potential for gold at T = 1 keV
and ρ = 0.1 g/cm3. Also shown are the deviations ∆ of the approximate wave
functions from the numerical solutions of the Schrödinger equation (∆ = ∆n� is
calculated via (2.33) and multiplied by 100 %)

|εn�| δ % ∆ %

n � Schröd. H WKB H WKB

1 0 77532 0.01 1.73 0.29 1.95
2 0 16992 −0.03 −0.12 2.68 1.35
2 1 16573 0.05 0.03 1.29 2.67
3 0 7039 −0.07 0.06 4.56 2.08
3 1 6883 0.03 −0.12 3.54 2.02
3 2 6645 0.04 −0.09 1.33 2.35
4 0 3794 −0.09 −0.10 5.20 0.83
4 1 3728 0.04 0.04 3.97 0.73
4 2 3636 0.04 −0.07 1.74 0.75
4 3 3576 0.00 0.03 0.44 1.64
5 0 2336 −0.11 −0.05 5.50 0.88
5 1 2302 0.03 0.06 4.21 0.43
5 2 2257 0.05 −0.09 1.98 1.19
5 3 2228 0.01 −0.04 0.52 0.44
5 4 2220 0.00 0.03 0.10 1.84
6 0 1558 −0.14 0.01 5.65 1.22
6 1 1538 0.02 0.13 4.35 0.86
6 2 1513 0.03 −0.02 2.09 1.10
6 3 1496 0.01 −0.06 0.60 0.36
6 4 1491 0.00 −0.02 0.15 0.53
6 5 1490 0.00 −0.01 0.05 1.89

Tables 2.1 and 2.2 list the relative errors δ for energy levels in the TF poten-
tial obtained by the various methods discussed above. Also listed are the mean
square deviations ∆ = ∆n� of the approximate wave functions from the numerical
solutions, calculated according to the formula

∆n� =

√√√√√
r0∫

0

[
R̃n�(r)−Rn�(r)

]2
dr, (2.33)

where R̃n�(r) is the corresponding semiclassical or hydrogen-like wave function.
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Table 2.2: Difference between the approximate energies and wave functions and
the exact ones for gold at T = 0.01 keV and ρ = 0.1 g/cm3 (same notations as in
Table 2.1)

|εn�| δ % ∆ %
n � Schröd. H WKB H WKB
1 0 72242 0.00 1.83 0.31 1.95
2 0 12015 −0.10 0.19 3.71 1.69
2 1 11523 0.09 0.38 1.95 2.93
3 0 2854 −0.59 0.02 11.99 0.57
3 1 2627 0.15 −0.03 11.03 0.72
3 2 2208 1.31 0.00 6.16 1.88
4 0 672.5 −1.48 0.33 27.44 0.56
4 1 576.3 1.46 0.37 27.46 0.56
4 2 401.3 6.47 0.46 27.21 0.59
4 3 169.7 – 1.29 – 1.20
5 0 143.5 – 0.01 – 0.91
5 1 111.4 – 0.12 – 1.06
5 2 59.84 – −0.84 – 1.35
6 0 38.31 – −0.34 – 0.79
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Figure 2.7: Semiclassical and numerical radial functions for n = 1, 2, 3, 4, � = 0 in
the TF potential for gold with T = 0.01 keV and ρ = 0.1 g/cm3 (compare with
Figure 2.6)
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The quantity ∆2
n� corresponds to the square of the relative error, averaged with

the weight R2
n�(r):

∆2
n� =

r0∫

0

[
R̃n�(r)−Rn�(r)

Rn�(r)

]2
R2

n�(r) dr.

An analysis of the results of numerous computations, only a small part of
which are shown in tables 2.1, 2.2 and figures 2.5–2.7, leads to the following con-
clusions. At high temperatures (T ∼ 1 keV) the hydrogen-like wave functions
practically coincide with the exact ones (see Table 2.1). For the inner shells the
method of the trial potential yields good results for any temperatures and densities
(as well as for the free atom). For outer shells with number of electrons Nn� ≥ 1,
at temperatures T ∼ 0.01 keV and below, the radial functions are far from the
hydrogen-like ones.

Incidentally, for high-Z elements all the methods for solving the Schrödinger
equation considered here have practically the same physical accuracy, as a com-
parison with the corresponding numerical solutions of the Dirac equation shows:
the difference between the relativistic and nonrelativistic radial functions is con-
siderably larger than the error in the solutions of the Schrödinger equation by
approximate methods.

2.2.3 Relativistic wave functions

For high-Z elements it is necessary to account for relativistic effects and so, instead
of the Schrödinger equation (2.25), one needs to solve the system of equations (see
Appendix, A.2):






d

dr
F (r) +

κ

r
F (r) = α

[
εn�j + V (r) +

2
α2

]
G(r),

d

dr
G(r)− κ

r
G(r) = −α[εn�j + V (r)]F (r),

(2.34)

where F (r) = Fn�j(r) = rf(r) and G(r) = Gn�j(r) = rg(r) are the so-called
Dirac spin orbitals ; f(r) and g(r) are the large and respectively the small radial
components of the wave function, � is the orbital quantum number, and j = �±1/2
is the total momentum quantum number (j = 1/2 for � = 0); κ = −2(j − �)(j +
1/2) = ±(j + 1/2), or κ = −�− 1 for j = �+ 1/2 and κ = � for j = �− 1/2.

A numerical method for solving the system of equations (2.34) can be con-
structed by using methods for solving the Schrödinger equation, in particular, the
phase method (see Appendix, A.5). To this end it suffices to make the substitution
[80, 236]:

F (r) =
√
η(r)P (r), G(r) =

√
χ(r)Q(r), (2.35)
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where

η(r) = α

[
ε+ V (r) +

2
α2

]
, χ(r) = α[ε+ V (r)]. (2.36)

This yields an equation of Schrödinger type for each of the functions P (r)
and Q(r). Thus, for P (r) we have

P ′′ + k2(r)P = 0, (2.37)

with k2(r) given by

k2(r) = ηχ− 3
4

(
η′

η

)2

+
1
2
η′′

η
− κ

r

η′

η
− κ(κ+ 1)

r2
. (2.38)

The equation for the small component Q(r) is similar with (2.37)–(2.38), and in
fact can be obtained from the latter by making the change of variables P (r) →
Q(r), η(r)→ χ(r), χ(r)→ η(r), κ→ −κ.

To obtain the relativistic hydrogen-like radial functions F̃ (r) = FH
n�j(r) and

G̃(r) = GH
n�j(r) we will proceed by analogy with the nonrelativistic case and

use the solution of system (2.34) with the potential Ṽ (r) = Zn�j/r − An�j . The
effective charge Zn�j and the external screening constant An�j are calculated by
the method of the trial potential from the minimum condition for the functional

J(Zn�j) =

r0∫

0

[rV (r)− rṼ (r)]2
[
F̃ 2(r) + G̃2(r)

]
dr, (2.39)

(see [142]), under the supplementary condition

r0∫

0

[V (r)− Ṽ (r)]
[
F̃ 2(r) + G̃2(r)

]
dr = 0. (2.40)

The relativistic hydrogen-like radial functions F̃ (r) and G̃(r) are given by
the expressions (see Appendix, A.2):

F̃ (r) = FH
n�j(r) = Cn�j x

νe−x/2
[
f1 xL

2ν+1
n−j−3/2(x) + f2 L

2ν−1
n−j−1/2(x)

]
,

G̃(r) = GH
n�j(r) = Cn�j x

νe−x/2
[
g1 xL

2ν+1
n−j−3/2(x) + g2 L

2ν−1
n−j−1/2(x)

]
,

(2.41)

x = 2ar/α, ν =
√

(j + 1/2)2 − ζ2, ζ = αZn�j ,

a =
ζ√

(n− j − 1/2 + ν)2 + ζ2

,
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Cn�j =
a

2ν(κ− ν)α1/2ζ

√
(κ−ν)(n−j−1/2)! [aκ(n−j−1/2+ν)−ζν]

Γ (n− j − 1/2 + 2ν)
,

f1 =
aζ2

aκ(n− j − 1/2 + ν)− ζν , f2 = κ− ν, g1 =
κ− ν
ζ

f1, g2 = ζ.

For j = n− 1/2 in (2.41) we must put L2ν+1
−1 (x) = 0.

The energy levels εHn�j are given by the formulas

εHn�j = − Z2
n�j/ñ

2

1 + ζ2/ñ2 +
√

1 + ζ2/ñ2
+An�j , (2.42)

where

ñ = n− ζ2

(j + 1/2) +
√

(j + 1/2)2 − ζ2
,

An�j =

r0∫

0

[
Zn�j

r
− V (r)

] [
F 2

n�j(r) +G2
n�j(r)

]
dr.

As formulas (2.41) show, the dependence of the relativistic hydrogen-like
functions on the effective charge Zn�j of the nucleus is rather complex compared
to that of the nonrelativistic functions. Consequently, the search for the minimum
of the functional (2.39) by an iterative method similar to method (A.76) in section
A.3 of the Appendix leads to complicated formulas. As it turned out, in practice it
is more convenient to compute Zn�j directly from the condition of minimum for the
integral in the right-hand side of (2.39), using the method of tangent parabolas.

The typical graph of the functional J(Zn�j) at high temperatures is shown in
Figure 2.8 for gold (T = 1 keV, ρ =0.1 g/cm3). For the given n, �, j the functional
has a unique minimum, which is always the case at high temperatures. At lower
temperatures, for large values of the principal quantum number n there may arise
stationary segments with subsequent vanishing of the minimum. This means that
for such values of n there are no hydrogen-like states. Results of the computation
of the effective charges Zn�j and Zn� are given in Table 2.3.

The relativistic and nonrelativistic wave functions are compared in Figure 2.9.
Then Figure 2.10 compares the hydrogen-like wave functions with numerical so-
lutions of the Dirac equation. The difference between the hydrogen-like approxi-
mation and the numerical solution of the Dirac equation may depend on n in a
non-monotone fashion. For example, for n = 3 the difference between the relativis-
tic and nonrelativistic functions is more notable than for n = 1 (see Figure 2.9).
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Figure 2.8: Dependence of the functional J on Z = Zn�j in the TF potential at
T = 1 keV, ρ = 0.1 g/cm3. Graphs are shown for the principal quantum numbers
n = 1, 2, 3, 4, 5, 10, � = 0 and j = 1/2. The top (resp. bottom) curve corresponds
to n = 1 (resp. n = 10)
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Figure 2.9: The large components Fn�j(r) of the relativistic radial wave functions
(solid curves) and solutions Rn�(r) of the Schrödinger equation (dashed curves).
The computations were carried out in the TF potential for gold at for T = 1 keV,
ρ = 0.1 g/cm3
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Figure 2.10: The large (Fn�j(r)) and the small (Gn�j(r)) components of the
hydrogen-like radial wave functions (dashed curves) and numerical solutions of
the Dirac equation (solid curves). The graphs are shown for the principal quan-
tum numbers n = 1, 2, 3, 4, � = 0, j = 1/2 (the main maximum decreases as n
grows). The calculations were carried out in the TF potential for gold at T = 1
keV, ρ = 0.1 g/cm3



2.2 Bound-state wave functions 55

Table 2.3: Effective charges in the TF potential for gold at T = 1 keV, ρ = 0.1
g/cm3, obtained by the method of the trial potential

n � j Zn�j Zn�

1 0 1/2 78.09 77.87
2 0 1/2 75.91 74.95
2 1 1/2 74.66 73.45
2 1 3/2 73.65
3 0 1/2 73.34 72.24
3 1 1/2 72.10 70.92
3 1 3/2 71.17
3 2 3/2 68.75 68.49
3 2 5/2 68.56
4 0 1/2 71.54 70.58
4 1 1/2 70.43 69.44
4 1 3/2 69.68
4 2 3/2 68.05 67.83
4 2 5/2 67.91
4 3 5/2 66.65 66.61
4 3 7/2 66.63
5 0 1/2 70.42 69.62
5 1 1/2 69.46 68.65

n � j Zn�j Zn�

5 1 3/2 68.85
5 2 3/2 67.57 67.40
5 2 5/2 67.46
5 3 5/2 66.57 66.53
5 3 7/2 66.54
5 4 7/2 66.26 66.25
5 4 9/2 66.25
6 0 1/2 69.68 68.99
6 1 1/2 68.85 68.15
6 1 3/2 68.33
6 2 3/2 67.28 67.13
6 2 5/2 67.18
6 3 5/2 66.48 66.45
6 3 7/2 66.46
6 4 7/2 66.23 66.23
6 4 9/2 66.23
6 5 9/2 66.17 66.17
6 5 11/2 66.17

Computations have shown also that for � = 0 the role of relativistic effects
is notable even for large n; this is connected with the behavior of the relativistic
functions for r = 0. As � grows, the difference between wave functions decreases
rapidly.

To calculate the relativistic wave functions in the semiclassical approximation
it suffices to use formulas (2.35)–(2.36) and the WKB method for the equation
(2.37). Energy eigenvalues obtained by various methods are listed in tables 2.4
and 2.5. As these tables show, the errors for the energy levels obtained by solving
the Dirac equation numerically, and the errors of the hydrogen-like approximation
do not exceed 1%, while the relativistic values differ from the nonrelativistic ones
by more than 10%.

The errors of the relativistic wave functions in the hydrogen-like and semi-
classical approximation are similar to those for the Schrödinger equation, shown in
tables 2.1 and 2.2. A comparison of just the solutions of the Schrödinger and Dirac
equations reveals that the relativistic corrections are considerably larger than the
errors of the approximate methods.
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Table 2.4: Energy levels in eV in the TF potential for gold with T = 1 keV, ρ = 0.1
g/cm3, calculated in various approximations

|εn�j | |εn�|
n � j Dirac H WKB Schröd.
1 0 1/2 85819 85824 87191 77532
2 0 1/2 19314 19317 19406 16992
2 1 1/2 18824 18812 18655 16573
2 1 3/2 16946 16939 16901
3 0 1/2 7755 7756 7784 7039
3 1 1/2 7569 7561 7521 6883
3 1 3/2 7071 7068 7077
3 2 3/2 6814 6811 6810 6645
3 2 5/2 6698 6696 6699
4 0 1/2 4100 4100 4113 3794
4 1 1/2 4022 4017 4001 3728
4 1 3/2 3821 3820 3817
4 2 3/2 3722 3720 3719 3636
4 2 5/2 3674 3672 3669
4 3 5/2 3609 3609 3605 3576
4 3 7/2 3590 3590 3584
5 0 1/2 2493 2493 2497 2336
5 1 1/2 2454 2451 2443 2302
5 1 3/2 2354 2353 2352
5 2 3/2 2305 2304 2303 2257
5 2 5/2 2281 2280 2280
5 3 5/2 2250 2250 2248 2228
5 3 7/2 2240 2240 2237
5 4 7/2 2230 2231 2229 2220
5 4 9/2 2225 2225 2222
6 0 1/2 1649 1649 1651 1558
6 1 1/2 1627 1625 1620 1538
6 1 3/2 1570 1569 1569
6 2 3/2 1542 1542 1541 1513
6 2 5/2 1528 1528 1528
6 3 5/2 1511 1511 1509 1496
6 3 7/2 1505 1505 1505
6 4 7/2 1499 1499 1498 1491
6 4 9/2 1496 1496 1495
6 5 9/2 1495 1495 1494 1490
6 5 11/2 1493 1493 1492
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Table 2.5: Energy levels in eV in the TF potential for gold with T = 0.01 keV,
ρ = 0.1 g/cm3, calculated in various approximations

|εn�j | |εn�|
n � j Dirac H WKB Schröd.
1 0 1/2 80522 80534 81885 72242
2 0 1/2 14275 14283 14327 12015
2 1 1/2 13715 13701 13518 11523
2 1 3/2 11883 11871 11887
3 0 1/2 3432 3436 3455 2854
3 1 1/2 3174 3160 3121 2627
3 1 3/2 2771 2766 2760
3 2 3/2 2334 2306 2317 2208
3 2 5/2 2247 2222 2241
4 0 1/2 824.4 821.6 826.4 672.5
4 1 1/2 713.5 694.9 700.2 576.3
4 1 3/2 615.6 605.6 612.1
4 2 3/2 432.9 407.3 427.8 401.3
4 2 5/2 413.4 390.8 410.0
4 3 5/2 176.1 151.7 173.9 169.7
4 3 7/2 172.1 148.2 170.0
5 0 1/2 178.6 172.3 178.3 143.5
5 1 1/2 139.1 125.2 136.6 111.4
5 1 3/2 119.5 110.0 119.1
5 2 3/2 64.22 59.38 64.10 59.84
5 2 5/2 61.64 57.94 61.60
5 3 5/2 15.73 4.06 16.76 15.51
5 3 7/2 15.61 4.06 16.61
6 0 1/2 44.88 50.08 45.36 38.31
6 1 1/2 34.54 49.54 34.36 29.62
6 1 3/2 31.10 45.27 31.19
6 2 3/2 17.39 2.18 17.34 16.60
6 2 5/2 16.94 2.18 16.88
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2.3 Continuum wave functions

2.3.1 The Schrödinger equation

In order to calculate the continuum wave function of an electron with energy ε in
the nonrelativistic approximation we need to solve the Schrödinger equation

−1
2
R′′

ε� +
[
−V (r) +

�(�+ 1)
2r2

]
Rε� = εRε�, 0 < r < r0, (2.43)

with the boundary condition Rε�(r)
∣∣
r=0

= 0 and some normalization condition.
In practical computations performed within the limits of the average atom cell,
the normalization of the function Rε�(r) is usually specified by the condition that
the quantity R2

ε�(r) drdε gives the number of electron states in the energy interval
(ε, ε+ dε) that belong to the spherical layer (r, r + dr), so that

r0∫

0

R2
ε�(r) dr = w(ε), (2.44)

where w(ε) is the density of electron states with given � and a definite direction
of the spin, counted for the unit energy interval.

In the semiclassical approximation (see formula (1.59))

R2
ε�(r) dr dε =

2
π pε�(r)

sin2
(
ξ +

π

4

)
dr dε ≈ dr dε

πpε�(r)
=
dr dp

π
,

p = pε�(r) =

√

2ε+ 2V (r)− (�+ 1/2)2

r2
,

which coincides with the number of possible states of the electron (without ac-
counting for spin), assigned to the corresponding phase-space element drdp; we
have

w(ε) ≈ 1
π

r0∫

r̃

dr

pε�(r)
(r̃ = r̃ε� is the turning point). (2.45)

The above expression for w(ε) can be used to normalize the solutions of
equation (2.43) in accordance with condition (2.44). As seen from (2.44), the di-
mensional representation of the continuum radial function differs from that of the
bound radial function by a factor of 1/

√
ε, and so when one employs the contin-

uum function it is usually necessary to carry out the corresponding integration
over the energy ε.
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In the improved semiclassical approximation

Rε�(r) =






1
π

√
ξ

|p|K1/3(ξ), if r ≤ r̃,

1√
3

√
ξ

p

[
J−1/3(ξ) + J1/3(ξ)

]
, if r ≥ r̃,

(2.46)

where

ξ = ξ(r) =
∣∣∣∣

r∫

r̃

p(r′) dr′
∣∣∣∣

(see Appendix, §A.4). Using the asymptotics of the Bessel functions together with
interpolation in the vicinity of the turning point r̃, one can recast formula (2.46)
in the computationally more convenient form

Rε�(r) =






1√
2π|p| e

−ξ, if ξ ≥ 0.5 and r < r̃,

√
2

3

[
b(r)(r − r̃) +

0.826994
b(r)

]
, if ξ < 0.5,

√
2
πp

sin
(
ξ +

π

4

)
, if ξ ≥ 0.5 and r > r̃,

(2.47)

where

b(r) = 1.11985
{

2
9r2

[ε(r + r̃) + r̃V (r̃)]
}1/6

.

When r0 � r̃ the semiclassical functions (2.46) and (2.47) satisfy the nor-
malization conditions (2.44)–(2.45). Indeed,

r0∫

0

R2
ε�(r) dr ≈

r0∫

r̃

2
πp

sin2
(
ξ +

π

4

)
dr ≈ 1

π

r0∫

r̃

dr

pε�(r)
.

Moreover, letting r0 →∞ we obtain
∞∫

0

Rε�(r)Rε′�(r) dr = δ(ε− ε′). (2.48)

This corresponds to the normalization usually adopted for the continuum wave
functions, which for r →∞ have the asymptotics

Rε�(r) �
√

2
πk

sin (kr + ϕ0) , (2.49)
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where k =
√

2ε and ϕ0 is a phase shift that is determined by the form of the
potential V (r) and depends on � and ε.
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Figure 2.11: Graphs of the numerical solution of the Schrödinger equation and of
the semiclassical approximation (2.47) for the continuum radial wave functions as
functions of the variable x =

√
r/r0 (in the case considered here the curves were

found to be identical). The computations were carried out in the TF potential for
gold at T = 1 keV, ρ = 0.1 g/cm3, ε = 5 a.u. = 136 eV, � = 0

In accordance to (2.48)–(2.49), when equation (2.43) is integrated numerically
one often uses the δ-function normalization with respect to energy, verifying that
the asymptotics (2.49) holds for sufficiently large r (see, e.g., [45]). However, it
is far more efficient to normalize numerical solutions of (2.43) already for small
values of r, using, for example, the derivative R′

ε�(r) in the first zero r = r∗ of the
numerical solution Rε�(r) and the semiclassical approximation (2.46) for ξ = ξ∗,
where ξ∗ is defined by the condition J−1/3(ξ∗) + J1/3(ξ∗) = 0. The formulas
giving the normalization constant have a simple form (see formula (A.112) in the
Appendix):






dRε�(r)
dr

∣∣∣
r=r∗

= −0.801952
√
pε�(r∗),

Rε�(r∗) = 0.

(2.50)

A comparison of the continuum wave functions obtained by various method for
� = 0 and ε = 5 a.u. = 136 eV is made in Figure 2.11. One can see that the
function given by formulas (2.47) practically coincides with the exact one. For
that reason in practice one can confine oneself to the approximation (2.47). Notice
that with the increase of � and ε the application of the semiclassical approximation
becomes more and more justified.
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2.3.2 The Dirac equations

The relativistic radial functions are obtained by solving the Dirac equations (see
(2.34)) 





d

dr
Fε(r) +

κ

r
Fε(r) = α

[
ε+ V (r) +

2
α2

]
Gε(r),

d

dr
Gε(r)− κ

r
Gε(r) = −α[ε+ V (r)]Fε(r),

(2.51)

with the boundary conditions Fε(0) = 0, Gε(0) = 0, where Fε(r) = Fε�j(r),
Gε(r) = Gε�j(r), κ = −2(j − �)(j + 1/2). To solve the system (2.51) numerically
for a given value of ε one resorts to the same methods as those used for the bound
states (for example, the Runge-Kutta method or the Numerov method).

In correspondence with the nonrelativistic case, we impose the normalization
condition

r0∫

0

[F 2
ε (r) +G2

ε(r)] dr = w̃(ε). (2.52)

The expression for the relativistic density of states w̃(ε) can be obtained by resort-
ing to the semiclassical approximation for the function P (r) = Fε(r)/

√
η (where

η = η(r) = α[ε+ V (r) + 2/α2]) with the help of equation (2.37), which allows one
to write the expressions for Fε(r) and Gε(r) in a form similar to (2.46). In doing
so one has to keep in mind that when r0 →∞ the normalization condition (2.48)
for the relativistic case becomes

∞∫

0

[Fε(r)Fε′(r) +Gε(r)Gε′(r)] dr = δ(ε− ε′). (2.53)

By formula (2.37), the semiclassical approximation for the large component Fε(r)
may be recast in a form analogous to (2.47):

Fε(r) =
√
η P (r) � C

√
η

k̄
sin
(
ξ +

π

4

)
, r > r̃. (2.54)

Here ξ = ξ(r) =
r∫
r̃

k̄(r′)dr′, k̄2(r) = k2(r) − 1/(4r2), r̃ is a turning point (i.e.,

k̄(r̃) = 0),

k2(r) = ηχ− 3
4

(
η′

η

)2

+
1
2
η′′

η
− κ

r

η′

η
− κ(κ+ 1)

r2
, χ = χ(r) = α[ε+ V (r)].

The semiclassical approximation for the small component Gε(r) can be ob-
tained by analogy with (2.54), using the equation for Q(r) = Gε(r)/

√
χ (see the

remark after (2.38) in § 2.2). However, it is better to start directly with equation
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(2.51), recalling that in the semiclassical approximation P ′(r) � C
√
k̄ cos(ξ+π/4).

We have

Gε(r) =
1
η

[
d

dr
Fε +

κ

r
Fε

]
� C√

ηk̄

[
k̄ cos

(
ξ +

π

4

)
+
(
η′

2η
+
κ

r

)
sin
(
ξ +

π

4

)]
,

that is,

Gε(r) = C

√
k̄2 + [η′/(2η) + κ/r]2

ηk̄
cos
(
ξ +

π

4
− δ
)
, (2.55)

where

tan δ =
η′/(2η) + κ/r

k̄
.

To calculate the normalization constant C we use (2.53) and the asymptotics
of the radial function for r → ∞. First let us derive a useful relation for the
normalization integral. To this end we multiply the first equation of the system
(2.51) by Gε′ and then subtract from the result the same equation, but with the
places of ε and ε′ switched. Similarly, we multiply the second equation in (2.51) by
Fε′ , then switch the places of ε and ε′ and subtract the resulting equations from
one another. This yields






Gε′
d

dr
Fε −Gε

d

dr
Fε′ +

κ

r
(FεGε′ − Fε′Gε) = α(ε− ε′)GεGε′ ,

Fε′
d

dr
Gε − Fε

d

dr
Gε′ − κ

r
(GεFε′ −Gε′Fε) = −α(ε− ε′)FεFε′ .

Next, let us subtract the second of the above equations from the first and
integrate the result from 0 to some value r:

r∫

0

[Fε(r′)Fε′(r′) +Gε(r′)Gε′(r′)] dr′ =

1
α(ε− ε′) [Fε(r)Gε′(r)− Fε′(r)Gε(r)] . (2.56)

Now let us require that, when r → ∞, relation (2.56) goes over into the
normalization condition (2.53). The asymptotic behavior of Fε(r) and Gε(r) as
r →∞ is readily derived from (2.54), (2.55) recalling that V (r)→ 0 when r →∞:






Fε(r) � C
√

k̃

αε
sin(k̃r + ϕ̃0),

Gε(r) � C
√
αε

k̃
cos(k̃r + ϕ̃0),

(2.57)
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where k̃ = k̃(ε) =
√
ε(2 + α2ε), ϕ̃0 is a phase shift.

Substituting expression (2.57) in the right-hand side of (2.56) and letting
r →∞ we obtain

∞∫

0

[Fε(r)Fε′(r) +Gε(r)Gε′(r)] dr =
C2

α(ε− ε′)×

lim
r→∞






√
k̃ε′

εk̃′
sin(k̃r+ϕ̃0)cos(k̃′r+ϕ̃0)−

√
k̃′ε

ε′k̃
sin(k̃′r+ϕ̃0)cos(k̃r+ϕ̃0)




 =

C2

α
lim

r→∞

{
sin(k̃−k̃′)r

ε−ε′ +

[√
ε′k̃−

√
εk̃′√

εk̃′(ε−ε′)
sin(k̃r+ϕ̃0) cos(k̃′r + ϕ̃0) +

√
ε′k̃−

√
εk̃′√

εk̃′(ε−ε′)
sin(k̃′r+ϕ̃0)cos(k̃r+ϕ̃0)

]}
. (2.58)

Since

lim
r→∞

sin(k̃ − k̃′)r
π(k̃ − k̃′)

= δ(k̃ − k̃′), (k̃ − k̃′)δ(k̃ − k̃′) = (ε− ε′)δ(ε− ε′),

we have

lim
r→∞

sin(k̃ − k̃′)r
ε− ε′ = πδ(ε− ε′).

Now let us show that the expression inside the square brackets in formula
(2.58) can be neglected when r → ∞. To do this it suffices to examine the first
term, because the second term coincides with the first after we replace k by k′ and
ε by ε′. The first term inside the square brackets gives

lim
r→∞

√
ε′k̃ −

√
εk̃′√

εk̃′(ε− ε′)
sin(k̃r + ϕ̃0) cos(k̃′r + ϕ̃0) =

1
2

[√
ε′k̃−

√
εk̃′√

εk̃′
lim

r→∞
sin(k̃−k̃′)r
ε− ε′ +

√
ε′k̃−

√
εk̃′√

εk̃′(ε−ε′)
lim

r→∞sin
[
(k̃+k̃′)r + 2ϕ̃0

]]
.

In the expression obtained the first term is equal to zero, because the factor
in front of the limit vanishes for ε = ε′, and by a basic property of the δ-function
f(ε′)δ(ε − ε′) = f(ε)δ(ε − ε′). In the second term limr→∞ sin[(k̃ + k̃′)r + 2ϕ̃0] is
also equal to zero, being the limit of a rapidly oscillating function. Summing up,
we have ∞∫

0

[Fε(r)Fε′(r) +Gε(r)Gε′(r)] dr =
C2

α
πδ(ε− ε′),
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which in conjunction with (2.53) yields C =
√
α/π.

Substituting the semiclassical functions Fε(r) and Gε(r) given by (2.54) and
(2.55) in (2.52) and replacing sin2(ξ+ π/4) and cos2(ξ+ π/4− δ) by 1/2, we have

w̃(ε) ≈
r0∫

0

αη

2πk̄

(
1 +

k̄2 + [η′/(2η) + κ/r]2

η2

)
dr. (2.59)

The relativistic and nonrelativistic continuum radial functions within the lim-
its of the average atom cell, obtained by numerical integration of the corresponding
equations (2.43) and (2.51) for a given energy ε, are shown in Figure 2.12.

Fε(r), Gε(r)

0

0

0.2

0.2

0.4 0.6 0.8 √
r/r0

−0.4

−0.2

Figure 2.12: The large and small components of the relativistic continuum radial
wave functions: numerical solutions of the Dirac equation (solid curves), and the
numerical solution of the Schrödinger equation (dashed curve). The computations
were carried out in the TF potential for gold at T = 1 keV, ρ = 0.1 g/cm3,
ε = 136 eV, � = 0, j = 1/2

The methods for the calculation of one-electron wave functions of the bound
and continuum states considered in Chapter II are used in computations of self-
consistent potentials for various models of matter, for the calculation of the photon
absorption cross-sections and cross-sections of other processes in plasma.



Chapter 3

Quantum-statistical
self-consistent field models

In a quantum-mechanical system of many interacting particles the motion of any
particle in the system is related in a rather complex way with the motion of all the
other particles. As a consequence, each particle is not in a determined state and
cannot be described by means of its one-particle wave function. The state of the
system as a whole is described by a wave function that depends on the coordinates
and spin variables of all the particles that form the system. The self-consistent field
method starts from the assumption that for an approximate description of the
system one can introduce a wave function for each particle of the system. Then
the interaction with the remaining particles is approximately accounted for by
introducing a field, averaged over the motion of those particles by means of their
one-particle wave functions. The one-particle wave functions must be consistent
in the sense that, on one hand, they are solutions of the Schrödinger equation
for a single particle moving in the averaged field produced by the other particles,
and, on the other hand, these one-particle wave functions themselves define the
averaged potential in which the particles move; whence the term “self-consistent
field”. The simplest method of introducing a self-consistent field, in which one
defines not wave functions, but the density of the spatial distribution of electrons,
is the Thomas-Fermi method proposed by L. Thomas (1926) and independently by
E. Fermi (1928). The subsequent development of the self-consistent field approach
has led to the elaboration of the Hartree and Hartree-Fock models.

If we consider the electron system at nonzero temperature the concept of
the self-consistent field must incorporate elements of statistics. One has to pay
attention to the distribution of ions over different states, taking into account also
their interaction with the free electrons and other ions. In the first approximation
this leads to the concept of the average atom, when an ion with the average
occupation numbers and free electrons are considered in an electrically neutral



66 Chapter 3. Quantum-statistical self-consistent field models

spherical cell , i.e., an average atom cell . The average atom may be considered
in the Thomas-Fermi model, as well as in more accurate approximations of the
Hartree or Hartree-Fock type or their modifications, including relativistic ones.
These and other quantum-statistical self-consistent field models for an average
atom can be derived from a unified variational principle, the requirement of a
minimum for the grand thermodynamic potential.

3.1 Quantum-mechanical refinement of the generalized

Thomas-Fermi model for bound electrons

3.1.1 The Hartree self-consistent field for an average atom

The Thomas-Fermi model gives an electron density ρ(r) that is consistent with
the potential V (r) in the framework of the semiclassical approximation. However,
the wave functions calculated for the Thomas-Fermi potential yield the electron
density ρ(�r ) =

∑
αNα|ψα(�r )|2, which does not coincide with the original electron

density for the TF model (here α denotes the set of quantum numbers that specify
the state of the electron). An analysis of the calculations carried out in Subsec-
tion 2.1.3 has shown that in order to obtain the electron density in the TF model
we essentially use only the component of ρ(�r ) =

∑
αNα|ψα(�r )|2, which does not

include the oscillations of wave functions.
At high temperatures the contribution of the oscillations is the most impor-

tant for the bound electrons with small values of the principal quantum number n.
For electrons with large quantum numbers and free electrons the contribution of
the oscillations is essentially smoothed out and so for them one can use the semi-
classical approximation (2.7). Accordingly, let us represent the electron density as
a sum of two terms [151, 188]:

ρ(�r ) = ρ1(�r ) + ρ2(�r ), (3.1)

where

ρ1(�r ) =
∑

εα<ε0

N(εα)|ψα(�r )|2, ρ2(�r ) =
∑

εα>ε0

N(εα)|ψα(�r )|2.

By appropriately choosing the energy ε0, which plays the role of an effective
boundary of the continuum, one can ensure that in the expression for ρ2(�r) the
summation is carried out only over free-electron states and over those bound states
for which N(εα) � 1. Moreover, in the expression for ρ2(�r) summation can be
replaced by integration, as we did when we derived the Thomas-Fermi model in
Subsection 2.1.3.

Since it is natural to consider that the potential for the average atom is spher-
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ically symmetric, calculation of ρ2(�r ) in the semiclassical approximation yields

ρ2(�r ) = ρ2(r) =
1
π2

∫
p2 dp

1 + exp
(
p2/2− V (r)− µ

θ

) , (3.2)

where the integral is taken over the domain

p2

2
− V (r) > ε0 (p ≥ 0).

The density of the bound electrons ρ1(�r ) is calculated directly in terms of
the wave functions

ψα(�r ) = ψn�m(�r ) =
1
r
Rn�(r)(−1)mY�m(ϑ, ϕ),

where the radial function Rn�(r) satisfies the Schrödinger equation

−1
2
R′′

n� +
[
−V (r) +

�(�+ 1)
2r2

]
Rn�(r) = εn�Rn�(r). (3.3)

Here we use the potential V (r) produced by the nucleus and all the electrons in the
average atom cell, which is justified for sufficiently high Z, when one can neglect
the “self-action” (see the Remark in Subsection 2.1.1). Generally speaking, when
one solves the Schrödinger equation (3.3) it is necessary to eliminate from the
potential V (r) the contribution of the electron under consideration. However, it is
more convenient to take into account the effect of the self-interaction later, when
we refine the Hartee model (see § 3.2 and § 3.3 below).

We will classify as bound states those states for which the classical domain
of motion (r1 < r < r2) lies inside the average atom cell and r2 � r0 (here r0 is
the radius of the cell and r1 and r2 are turning points). For such states the wave
function Rn�(r) should be negligibly small on the boundary of the cell, and hence
it can be assumed to be zero for r = r0. This function has nr = n − � − 1 zeroes
in the interval (r1, r2). Then for ρ1(�r ) we obtain the expression

ρ1(�r) =
∑

n, �, m
(εn�<ε0 )

2

1 + exp
(
εn� − µ

θ

)
(
Rn�(r)
r

)2

|Y�m(ϑ, ϕ)|2.

By the addition theorem for spherical harmonics,
�∑

m=−�

Y ∗
�m(ϑ, ϕ)Y�m(ϑ, ϕ) =

2�+ 1
4π

.

Therefore, the density of the bound electrons in the average atom is given by

ρ1(�r ) = ρ1(r) =
1

4πr2
∑

εn�<ε0

Nn�R
2
n�(r), Nn� =

2(2�+ 1)

1 + exp
(
εn� − µ

θ

) (3.4)
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(compare this with the derivation of formula (2.15)).
As in the Thomas-Fermi model, we shall assume that the potential V (r)

satisfies the Poisson equation

1
r

d2

dr2
(rV ) = 4π[ρ1(r) + ρ2(r)] (3.5)

together with the boundary conditions rV (r)|r=0 = Z, V (r0) = 0. The chemical
potential µ is determined from the condition of charge neutrality for the average
atom cell,

4π

r0∫

0

ρ(r)r2 dr = Z. (3.6)

3.1.2 Computational algorithm

Equations (3.1)–(3.6) constitute a rather complicated nonlinear system for the
functions Rn�(r), the energy levels εn�, the occupation numbers Nn�, the potential
V (r) and the chemical potential µ. This system can be solved by an iteration
method. In contrast to the Thomas-Fermi model, the model (3.1)–(3.6) reproduces
the shell structure of the atom. As expected, at high temperatures the electron
density ρ(r) and the potential V (r) turned out to be only weakly sensitive to the
variation of the effective boundary of the continuum, ε0. In practice the quantity
ε0 must be selected so that the occupation numbers Nn� are small for levels with
energy εn� > ε0 (see subsections 3.3.3 and 3.3.4 below).

Clearly, the average-atom model for matter with given temperature and den-
sity considered above is a modification of the Hartree model. The model (3.1)–(3.6)
allows one to carry out, in a unified manner, calculations for any temperature,
and in fact the higher the temperature, the faster the iterations converge and the
shorter the time needed for the computations. For heavy elements, when relativis-
tic corrections are essential, one needs to pass from the Schrödinger equation to
the Dirac equation (see Subsection 3.1.4 below).

The calculations can be done according the following scheme. As the initial
approximation for the potential it is natural to take the Thomas-Fermi potential
for the given temperature and density and the corresponding chemical potential
η = −µ/θ. Then one solves the Schrödinger equation for bound states (by the
phase method, for example; see Appendix, §A.5), which yields the energy levels
εn� and the radial functions Rn�(r).

To get a more accurate chemical potential η let us use the charge neutrality
condition (3.6), written in the form

f(η) =
∑

n,�
(εn�<ε0 )

2(2�+ 1)

1 + exp
(
εn�

θ
+ η

) + 4π

r0∫

0

r2ρ2(r) dr = Z, (3.7)
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where

ρ2(r) =
(2θ)3/2

2π2

∞∫

y0

y1/2 dy

1 + exp
(
y − V (r)

θ
+ η

) =

(2θ)3/2

2π2
I1/2

(
V (r)
θ
− η
)
− (2θ)3/2

2π2

y0∫

0

y1/2 dy

1 + exp
(
y − V (r)

θ
+ η

) , (3.8)

y0 = y0(r) = max
{

0;
V (r) + ε0

θ

}
.

Finally, using the value of η found in this way and relations (3.4), (3.8), we obtain
the occupation numbers Nn�, as well as ρ1(r) and ρ2(r).

−η = µ/θ−100−200−300−400−500

10

20

30

40

0

f(η)

Figure 3.1: The function f(η) (see equation (3.7))

Equation (3.7) is solved by Newton’s method. Let us note that at low tem-
peratures the Newton iterations may diverge, since in these circumstances the
function f(η) has step-like segments (see, e.g., Figure 3.1, where f(η) is calculated
for iron (Z = 26) with T = 1 eV and ρ = 0.1 g/cm3). In this case one combines
Newton method with the bisection method, which is applied whenever the next
Newton iteration gives a value of η that lies outside the previously determined
interval where the solution is to be found. Practice has shown that the bisection
method applied in this manner is more effective than the secant method.
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Once the refined density ρ(r) = ρ1(r)+ ρ2(r) is known, one can compute the
new potential by means of the Poisson equation (3.5). In the case of the average
atom the potential V (�r ) is spherically symmetric and the ordinary differential
equation (3.5) is easily solved. However, it is better to calculate the expression for
V (r) using the known solution of the Poisson equation in the three-dimensional
case:

V (�r ) =
Z

r
−
∫
ρ(r′)r′2 dr′ dΩ′

|�r − �r ′| .

To this end we use the expansion

1
|�r − �r ′| =

∞∑

s=0

4π
2s+ 1

s∑

m=−s

rs
<

rs+1
>

Y ∗
sm(ϑ, ϕ)Ysm(ϑ′, ϕ′),

where r< = min(r, r′), r> = max(r, r′). Integration with respect to the angles ϑ′

and ϕ′ yields ∫
Ysm(ϑ′, ϕ′) dΩ′ = δm0 δs0

∫
Y00(ϑ′, ϕ′) dΩ′.

As a result, the sum over s and m for V (r) reduces to a single term, corresponding
to s = 0. Therefore,

V (r)=
Z

r
− 4π

r0∫

0

r′2ρ(r′) dr′

r>
=
Z

r
− 4π



1
r

r∫

0

r′2ρ(r′) dr′ +

r0∫

r

r′ρ(r′) dr′



. (3.9)

After the new potential is obtained by means of formula (3.9), the iterations are
repeated the necessary number of times.

We have described a simple iteration process V (s+1)(r) = F [V (s)(r)], where
F [V (r)] designates the procedure by which the wave functions, the electron density
and the new potential are obtained, starting with V (r). At high temperatures,
when the main contribution to the self-consistent potential comes from the central
field of the nucleus (for example, for Z = 79 this is the case when T > 0.1 keV),
the simple iterations converge rapidly. However, as a rule such iterations diverge at
low temperatures. To improve the convergence we shall use a linear combination
of the obtained potential and the potential furnished by the preceding iteration:

Vα(r) = (1− α)V (s)(r) + αF [V (s)(r)]. (3.10)

In his calculations D. Hartree used the values α = 0.3÷0.5 (see § 3 of Chapter
5 in [83]). In our calculations the parameter α was chosen based on the following
considerations. Let us call mismatch ∆ = ∆(α) the quantity

∆(α) = {Vα(r)− F [Vα(r)]}
∣∣∣
r=r̃

, (3.11)

where r = r̃ is the point in which the difference Vα(r) − F [Vα(r)] is maximal in
absolute value.
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Figure 3.2: Graph of the dependence of the mismatch ∆(α) of the potential on
the parameter α for gold at temperature T = 0.01 keV and density ρ = 1 g/cm3

(rhombuses). The minimum of the mismatch is attained for α′ = 0.320. By drawing
a straight line (dashed) through the points corresponding to the values ∆ for α = 0
and α = 0.75, we obtain α = α∗ = 0.323

Computations have shown that the dependence ∆(α) has a piecewise-linear
character (Figure 3.2). For some value α = α′ one observes a jump of ∆(α) —
the quantity ∆(α) changes sign. The smallest mismatch is attained precisely for
this value of α.

The calculation of an accurate value of α′ require a large volume of additional
computations, and so in practice instead of α′ it is convenient to use a value α


close to α′, obtained by drawing a line through the values of ∆(α) for α = 0 and
some other α = ᾱ:

α


∆(0)
=

ᾱ

∆(0)−∆(ᾱ)
. (3.12)

Since the quantity ∆(0) is known from the preceding iteration, one needs
only one more computation for α = ᾱ. The value of ᾱ is chosen by experimenting
(in our calculations we took ᾱ = 0.75). If the value α
 obtained from formula
(3.12), is too small or too large (lies outside the interval [0.1, 1]), then α
 is chosen
equal to 0.1 or 1, respectively.

Thus, we obtain the iteration process

V (s+1)(r) = Vα∗(r) = (1− α∗)V (s)(r) + α∗F [V (s)(r)] (0.1 ≤ α∗ ≤ 1).



72 Chapter 3. Quantum-statistical self-consistent field models

The convergence of the iterations is determined by the condition

|∆(s)| = |∆(α∗)| < ε

(where, e.g., ε = 10−6). As a rule, no more than 10 iterations are needed; moreover,
with the growth of the temperature the number of iterations drops rapidly and
the value of α∗ approaches 1.

3.1.3 Analysis of computational results for iron

Let us examine the graphs obtained by calculations for iron with temperature
T = 0.1 keV and density ρ = 0.1 g/cm3. Here the radius of the average atom cell
is r0 = 11.4 and the chemical potential is η = 6.058 (ηTF = 6.039).

0
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2 4 6 8 r
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rV (r)

Figure 3.3: The potential rV (r) in the Hartree (solid curve) and Thomas-Fermi
models (dashed curve) for iron: Z = 26, T = 0.1 keV, ρ = 0.1 g/cm3

Figure 3.3 compares the functions rV (r) calculated for the Hartree potential
and the Thomas-Fermi potential. Examining the graphs one concludes that the
Thomas-Fermi potential can be applied successfully for high temperatures, and, in
addition, is a good initial approximation for quantum-mechanical computations.

To analyze how the choice of the effective boundary of the continuum ε0 in-
fluences the energy levels and the occupation numbers, computations were carried
out with a different numbers of bound states: for ε0 = −5.5 eV, taking into ac-
count the shells with principal quantum numbers n ≤ 7, and also for ε0 = −25 eV,
n ≤ 6 and ε0 = −50 eV, n ≤ 5 (see Table 3.1).

Table 3.1 shows a weak dependence of the potential V (r) on the parameter
ε0, which is confirmed by the coincidence of the occupation numbers Nn� and the
closeness of the energy levels εn�. The graphs of the function rV (r) for the three
indicated cases are practically indistinguishable. This is connected with the fact
that for the states with energies εn� > −100 eV (n > 4) the average occupation
numbers Nn� are very small due to strong ionization. Let us note that for higher
densities the dependence on ε0 may turn out to be essential.
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Table 3.1: Energy levels εn� and occupation numbers Nn� for iron at T = 0.1 keV,
ρ = 0.1 g/cm3. The calculations were carried out for three values of the effective
boundary of the continuum: ε0 = −5.5 eV (η = 6.06538), ε0 = −25 eV (η =
6.06537) and ε0 = −50 eV (η = 6.06253)

ε0 = −5.5 ε0 = −25 ε0 = −50

n � εn� Nn� εn� Nn� εn� Nn�

1 0 −7120.4 2.000 −7120.3 2.000 −7120.2 2.000
2 0 −1126.8 1.989 −1126.6 1.989 −1126.6 1.989
2 1 −1018.4 5.903 −1018.2 5.903 −1018.2 5.903
3 0 −376.92 0.182 −376.74 0.182 −376.73 0.183
3 1 −344.33 0.405 −344.15 0.405 −344.14 0.406
3 2 −296.34 0.429 −296.16 0.429 −296.14 0.430
4 0 −167.25 0.024 −167.07 0.024 −167.11 0.024
4 1 −154.39 0.064 −154.21 0.064 −154.25 0.065
4 2 −136.48 0.090 −136.30 0.090 −136.34 0.090
4 3 −129.01 0.117 −128.83 0.117 −128.86 0.117
5 0 −80.914 0.010 −80.758 0.010 −80.839 0.010
5 1 −74.684 0.029 −74.530 0.029 −74.612 0.029
5 2 −66.114 0.045 −65.961 0.045 −66.043 0.045
5 3 −62.266 0.060 −62.107 0.060 −62.185 0.060
5 4 −60.520 0.076 −60.348 0.076 −60.420 0.076
6 0 −38.114 0.007 −38.007 0.007
6 1 −34.717 0.020 −34.613 0.020
6 2 −30.036 0.031 −29.936 0.031
6 3 −27.756 0.043 −27.651 0.043
6 4 −26.527 0.054 −26.409 0.054
6 5 −25.474 0.066 −25.336 0.066
7 0 −14.918 0.005
7 1 −12.967 0.016
7 2 −10.261 0.026
7 3 −8.786 0.035
7 4 −7.804 0.045
7 5 −6.834 0.055
7 6 −5.754 0.064

Figures 3.4 and 3.5 display the density of the bound electrons ρ1(r) and the
density of the free electrons ρ2(r). We see that the electrons remaining on the
shells are located sufficiently close to the nucleus (see Figure 3.4). At the same
time the continuum electrons are uniformly distributed in space from the boundary
of the cell r0 = 11.4 up to the value r ∼ 2 with a considerably smaller density
(see Figure 3.5), which allows one to use the uniform free-electron density model
for ρ2(r) at high temperatures. The distribution of ρ2(r) (Figure 3.5), calculated
by means of formula (3.8), has an integrable singularity near zero, in agreement
with the Thomas-Fermi model (see § 2.1). Let us emphasize however that this
singularity has practically no influence on the computational results.
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Figure 3.4: Density of the bound electrons ρ1(r) in the Hartree model for iron
(Z = 26, T = 0.1 keV, ρ = 0.1 g/cm3; r0 = 11.4, Z0 ≈ 15)
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Figure 3.5: Free-electron density ρ2(r) in the Hartree model for iron (Z = 26, T =
0.1 keV, ρ = 0.1 g/cm3; r0 = 11.4, Z0 ≈ 15)
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Figure 3.6: Dependence of the radial electron density 4πr2ρ(r) on x =
√
r/r0

in the Hartree model (solid curve) and the Thomas-Fermi model (dashed curve),
calculated for Z = 26, T = 0.1 keV, ρ = 0.1 g/cm3 (compare this with the
difference in the corresponding potentials shown in Figure 3.3)
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Figure 3.7: Dependence of the radial electron density 4πr2ρ(r) on x =
√
r/r0 in

the Hartree model for iron with density ρ = 0.1 g/cm3 at different temperatures:
T = 10, 20, 50 and 100 eV. One sees how when the temperature is increased the
M -shell is ionized and simultaneously the density of the free electrons increases
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Figure 3.6 above shows the radial electron density 4πr2ρ(r) as a function
of the variable x =

√
r/r0. One sees that, compared with the Thomas-Fermi

model, the Hartree model has one different qualitative feature: it renders correctly
the oscillations of the radial electron density. As one can see from the graph,
at temperature T = 0.1 keV the shell with principal quantum number n = 3 is
practically unoccupied (cf. the average occupation numbers Nn� in Table 3.1). The
two sharp maxima correspond to fully occupied K- and L-shells; the M -shell is
not revealed. When the temperature is decreased the degree of occupation of the
M -shell increases, which is clearly seen in the graphs of the electron density shown
in Figure 3.7 above.

3.1.4 The relativistic Hartree model

For large values of Z in the Hartree model instead of the Schrödinger equation we
must use the Dirac equations. Then the 4-component wave function of an electron
with total momentum j and projection of the momentum on the z-axis m can be
written in the form (see Appendix, §A.2):

ψn�jm(�r ) = (−1)m+1/2 i�





−Cjm

j∓ 1
2 ,m− 1

2 ; 12 , 1
2

Fn�j(r)
r

Y�,m− 1
2
(ϑ, ϕ)

Cjm

j∓ 1
2 ,m+ 1

2 ; 12 ,− 1
2

Fn�j(r)
r

Y�,m+ 1
2
(ϑ, ϕ)

∓iCjm

j± 1
2 ,m− 1

2 ; 12 , 1
2

Gn�j(r)
r

Y�±1,m− 1
2
(ϑ, ϕ)

±iCjm

j± 1
2 ,m+ 1

2 ; 12 ,− 1
2

Gn�j(r)
r

Y�±1,m+ 1
2
(ϑ, ϕ)





.

Here the upper [resp., lower] sign is taken for � = j − 1/2 [resp., � = j + 1/2]. The
values of the Clebsch-Gordan coefficients Cjm

�,m−ms;
1
2 ,ms

are given in the Appendix,
Table A.1.

The radial functions Fn�j(r) = F (r) and Gn�j(r) = G(r) are solutions of the
Dirac equations with the potential V (r):






d

dr
F (r) +

κ

r
F (r) = α

[
εn�j + V (r) +

2
α2

]
G(r),

d

dr
G(r)− κ

r
G(r) = −α[εn�j + V (r)]F (r),

(3.13)

κ = −2(j − �)(j + 1/2).

The boundary conditions for the bound states read

F (0) = 0, G(0) = 0, F (r0) = 0, G(r0) = 0.
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The density of the bound electrons for εn�j < ε0 is given by the expression

ρ1(�r ) =
∑

n,�,j,m

1

1 + exp
(
εn�j − µ

θ

) |ψn�jm(�r )|2 =

∑

n,�,j

1

1 + exp
(
εn�j − µ

θ

)
∑

m

|ψn�jm(�r )|2.

Let us consider the contribution in ρ1(�r ) for fixed quantum numbers n, j
and � = j − 1/2:

∑

m

|ψn�jm(�r )|2 =
F 2

n�j(r)
r2




j∑

m=−j

j +m

2j

∣∣∣Y�,m− 1
2
(ϑ, ϕ)

∣∣∣
2

+

j∑

m=−j

j −m
2j

∣∣∣Y�,m+ 1
2
(ϑ, ϕ)

∣∣∣
2



+

G2
n�j(r)
r2




j∑

m=−j

j−m+1
2j+2

∣∣∣Y�+1,m− 1
2
(ϑ, ϕ)

∣∣∣
2

+

j∑

m=−j

j+m+1
2j+2

∣∣∣Y�+1,m+ 1
2
(ϑ, ϕ)

∣∣∣
2



.

Changing the summation index m to m+ 1 in the first sum in each of the square
brackets, we obtain

∑

m

|ψn�jm(�r )|2 =
F 2

n�j(r)
r2




j−1∑

m=−j−1

j+m+1
2j

∣∣∣Y�,m+ 1
2
(ϑ, ϕ)

∣∣∣
2

+

j∑

m=−j

j−m
2j

∣∣∣Y�,m+ 1
2
(ϑ, ϕ)

∣∣∣
2



+

G2
n�j(r)
r2




j−1∑

m=−j−1

j−m
2j+2

∣∣∣Y�+1,m+ 1
2
(ϑ, ϕ)

∣∣∣
2

+

j∑

m=−j

j+m+1
2j+2

∣∣∣Y�+1,m+ 1
2
(ϑ, ϕ)

∣∣∣
2



.

Now let us adjust the limits of the sum over m in accordance with the parameters
of the spherical harmonics. To this end we omit [resp., add] the terms equal to
zero in the first [resp., second] set of brackets:



78 Chapter 3. Quantum-statistical self-consistent field models

∑

m

|ψn�jm(�r )|2 =
F 2

n�j(r)
r2




j−1∑

m=−j

j+m+1
2j

∣∣∣Y�,m+ 1
2
(ϑ, ϕ)

∣∣∣
2

+

j−1∑

m=−j

j−m
2j

∣∣∣Y�,m+ 1
2
(ϑ, ϕ)

∣∣∣
2



+

G2
n�j(r)
r2




j∑

m=−j−1

j−m
2j+2

∣∣∣Y�+1,m+ 1
2
(ϑ, ϕ)

∣∣∣
2

+

j∑

m=−j−1

j+m+1
2j+2

∣∣∣Y�+1,m+ 1
2
(ϑ, ϕ)

∣∣∣
2



.

Combining the terms in each of the square brackets we obtain

∑

m

|ψn�jm(�r )|2 =
F 2

n�j(r)
r2

2j+1
2j

�∑

m�=−�

|Y�,m�
(ϑ, ϕ)|2+

G2
n�j(r)
r2

2j+1
2j+2

�+1∑

m�=−�−1

|Y�+1,m�
(ϑ, ϕ)|2.

As in the nonrelativistic case, we use the addition theorem for spherical
harmonics, which yields

∑

m

|ψn�jm(�r )|2 =
2j + 1
4πr2

[F 2
n�j(r) +G2

n�j(r)]. (3.14)

This expression was obtained for � = j−1/2. In much the same manner one verifies
that equality (3.14) holds also for � = j + 1/2. Finally, we have

ρ1(r) =
1

4πr2
∑

n,�,j

Nn�j [F 2
n�j(r) +G2

n�j(r)], (3.15)

where
Nn�j =

2j + 1

1 + exp
(
εn�j − µ

θ

)

and the sum is taken over the states with energy εn�j < ε0.
For ρ2(r) in the relativistic Hartree model one can retain the preceding for-

mula (3.8), because the relativistic corrections for the continuum electrons are
usually small. The calculation of the potential V (r) is carried out as in the nonrel-
ativistic model, using formula (3.9), where the contribution of the bound electrons
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Table 3.2: Energy levels in eV and occupation numbers for gold with T = 0.1 keV
and ρ = 0.1 g/cm3, computed in the relativistic and nonrelativistic variants of the
Hartree model (n ≤ nmax = 9). In the relativistic approach η = 6.830, Z0 = 22.99;
in the nonrelativistic approach η = 6.822, Z0 = 23.11

Relativistic computation Nonrelativistic computation

n � j |εn�j | Nn�j
∑

j Nn�j |εn�| Nn�

1 0 1/2 80523 2.000 2.000 73022 2.000
2 0 1/2 14661 2.000 2.000 12639 2.000
2 1 1/2 14054 2.000 6.000 12151 6.000
2 1 3/2 12261 4.000
3 0 1/2 3953.5 2.000 2.000 3435.8 2.000
3 1 1/2 3687.7 2.000 6.000 3211.1 6.000
3 1 3/2 3293.8 4.000
3 2 3/2 2858.4 4.000 10.000 2794.9 10.000
3 2 5/2 2774.5 6.000
4 0 1/2 1279.0 1.995 1.995 1175.4 1.986
4 1 1/2 1163.7 1.984 5.923 1079.3 5.888
4 1 3/2 1100.9 3.939
4 2 3/2 918.77 3.653 9.062 904.68 9.018
4 2 5/2 904.82 5.409
4 3 5/2 677.93 2.920 6.733 675.74 6.756
4 3 7/2 673.85 3.813
5 0 1/2 564.95 0.469 0.469 543.42 0.398
5 1 1/2 519.05 0.325 0.903 503.02 0.854
5 1 3/2 505.31 0.578
5 2 3/2 431.70 0.300 0.738 431.57 0.752
5 2 5/2 428.83 0.438
5 3 5/2 341.74 0.191 0.445 344.04 0.459
5 3 7/2 341.03 0.254
5 4 7/2 265.62 0.121 0.272 268.24 0.282
5 4 9/2 265.46 0.151

. . . . . . . . . . . . . . . . . .

to ρ(r) is calculated by means of formula (3.15) and using the Dirac equation
(3.13).

Figure 3.8 shows the graphs of the total electron density for gold at temper-
ature T = 0.1 keV and density ρ = 0.1 g/cm3, calculated in the relativistic and
nonrelativistic Hartree models. As the graphs reveal, the influence of the relativis-
tic effects for high-Z elements can be substantial for the first three shells (see also
Table 3.2 for the energy levels εn�, εn�j and occupation numbers Nn�, Nn�j).

The relativistic Hartree model, derived by simple arguments, is not suffi-
ciently rigorous, yet it allows one to account for the main relativistic effects. What
this model leaves out are the exchange and correlation effects, as well as the Breit
and a few other relativistic corrections. Let us point out that, in contrast to the
average atom, in the consideration of individual ion states it is necessary to take
into account also the non-centrally-symmetric part of the potential and refine the
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Figure 3.8: Dependence of the radial electron density 4πr2ρ(r) on x =
√
r/r0 in

the Hartree model for gold (Z = 79, T = 0.1 keV, ρ = 0.1 g/cm3), calculated
by using the relativistic (solid curve) and nonrelativistic (dashed curve) radial
functions

effects of the spin-orbit interaction [74]. A more rigorous approach to the deriva-
tion of quantum-statistical self-consistent field models can be realized by means
of variational principles.

3.2 The Hartree-Fock self-consistent field model for

matter with given temperature and density

3.2.1 Variational principle based on the minimum condition for the
grand thermodynamic potential

As above, we shall assume that the substance is in local thermodynamic equilib-
rium, and that the temperature is high enough so that the substance is a plasma
consisting of electrons and ions of various multiplicities. In Chapter I, to derive
the equations of the Thomas-Fermi model we used the simplest variational princi-
ple for a closed system — the requirement that the entropy be maximal. A more
general quantum-statistical description of the state of matter requires the intro-
duction of the mathematical apparatus of the density matrix and the application
of various statistical approximations. Thus, for example, one often resorts to the
approximation of the grand canonical ensemble [17]. Based on the approximation
selected one formulates and solves a variational problem for the wave functions
and the self-consistent potential.

The most general variational principle that is usually employed under equi-
librium conditions for the grand canonical ensemble is the condition of minimum
for the grand thermodynamic potential Ω = E − µN − θS. The application of
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this principle for a plasma with significant interaction between particles is prac-
tically impossible, and for this reason one resorts to various approximate ap-
proaches. One of the most productive turned out to be the density-functional
method [113, 133, 176, 168, 171]. In this method one constructs a certain approx-
imate electron density functional , which is interpreted, e.g., as the grand thermo-
dynamic potential of electrons. Then one solves the variational problem on the
minimum of this functional, which allows one to derive various models describing
the state of matter.

We will use a somewhat more general variational principle, without requiring,
in particular, that the functional to be minimized depends only on the electron
density. The justification for the application of the proposed method is that it
allows us to easily derive known equations, among them the equation for the
generalized Thomas-Fermi model, the Hartree-Fock equations for the average atom
and the Hartree-Fock-Slater equations.

The application of variational methods directly to a system of interacting
ions and electrons (see [171]) runs into a number of difficulties that have not been
circumvented to this time. For this reason one often adopts a simpler approach,
based on the application of the adiabatic approximation. In the adiabatic approxi-
mation the ions are regarded as classical particles, which move considerably slower
than the electrons, so that one can assume that for each new position of the ions
the electrons manage to reach thermodynamic equilibrium.

The average value of a physical variable F in some state of the electron
system, described by the density matrix Ŵ , can be represented in the form [17]

〈F̂ 〉 = Tr(Ŵ F̂ ), (3.16)

where Ŵ is the corresponding statistical operator (density matrix operator) of the
system. We shall assume that at equilibrium the functional Ω attains its minimum,
where Ω has the meaning of the grand thermodynamic potential of electrons and
is defined, in accordance with (3.16), by the formula

Ω = 〈Ω̂〉 = Tr
[
Ŵ (Ĥ − µN̂ + θ ln Ŵ )

]
. (3.17)

Here Ĥ is the Hamiltonian of the electron system, N̂ is the particle number op-
erator, θ is the temperature, µ is the chemical potential, and Ŵ is the statistical
operator corresponding to the density matrix.

In the approximation of the grand canonical ensemble the equilibrium density
matrix Ŵ obeys the Gibbs distribution

Ŵ =

exp

(
−Ĥ − µN̂

θ

)

Tr exp

(
−Ĥ − µN̂

θ

) , (3.18)
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which is defined by the Hamiltonian Ĥ .
Let us consider the expression for the Hamiltonian of the system of electrons

in a given field of ions. If one takes into account that the speed of propagation
of the interaction is finite, then already the classical energy of this interaction
depends on the whole prehistory of the motion of particles, rather than being
determined solely by the position of the particles at the given instance. If the
relative velocities of particles in the system are small compared with the speed
of light, then the distribution of particles in space changes little over the time
necessary for the transmission of the interaction between particles. In this case one
can define the classical Hamiltonian, up to terms of order (v/c)2, as a function
of only the coordinates and momenta of the particles in the system. Then the
Hamilton operator can be written in the form

Ĥ =
∑

i

�̂pi

2

2mi
+ U(�r1, �r2, . . . , �rN ) + Ĥ1,

where U is the potential energy of inter-particle interaction, which depends on the
mutual disposition of the particles and Ĥ1 is an operator that includes the spin-
orbit interaction as well as the part of the potential energy that depends on the
momenta of the particles and accounts for the retardation effects. The operator
Ĥ1 is of order (v/c)2 and in the nonrelativistic theory can be accounted for by
perturbation theory.

In the nonrelativistic approximation, if one neglects all spin interactions of
electrons and all nuclear effects (such as the dimensions and masses of nuclei being
finite rather than infinitesimal), the Hamiltonian of the electron system reads

Ĥ =
∑

i

[
−1

2
∆i + Ua(�ri)

]
+

1
2

∑

i�=j

1
|�ri − �rj | , (3.19)

where Ua(�ri) is the potential energy of the ith electron with coordinates �ri in a
given potential Va(�r ) of atomic nuclei, i.e., Ua(�ri) = −Va(�ri).

In the chosen representation for the given density matrix Ŵ the average value
of the operator Ω̂ = Ĥ − µN̂ + θ ln Ŵ is calculated by means of formula (3.16):

〈Ω̂〉 = Tr(Ŵ Ω̂) =
∑

n

wn

∫
Ψ∗

n(Q)Ω̂Ψn(Q) dQ, (3.20)

where wn = w(En, Nn) is the statistical probability of the system of electrons with
given energy E = En and particle number N = Nn, Ψn(Q) is the wave function of
such a state, Q is the set of coordinates qi of the electrons, where qi incorporates
the space variable �ri and the spin variable σi of the electron labelled i. Integration
over the whole configuration space Q ≡ {qi} means integration with respect to all
space variables �ri and summation over all spin variables σi.

As is clearly seen from (3.20), the average value of any quantity in such an
approach is calculated in two steps: first one calculates the average value of the
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quantity in the state with wave function Ψn(Q) for given energy En and particle
number Nn, and then the resulting values are averaged over the different states,
with a weight equal to the probabilities wn of these states. Note that the result
does not change if instead of Ψn(Q) one takes any complete system of functions.

For the electron density ρ(q) we obtain

ρ(q) = Tr
(
Ŵ
∑

i

δ(qi − q)
)

=
∑

n

wn×

Nn∑

i=1

∫ ∣∣∣Ψn(q1, q2, . . . , qi−1, q, qi+1, . . . , qNn
)
∣∣∣
2

dq1 dq2 . . . dqi−1 dqi+1 . . . dqNn
.

(3.21)

Here and in what follows the Dirac delta function δ(qi− q) = δσiσδ(�ri−�r ) is used
to simplify notation and to carry out the integration with respect to all variables
qi (i.e., integration with respect to �r1, �r2, . . . , �rN and summation with respect to
σ1, σ2, . . ., σN ).

3.2.2 The self-consistent field equation in the Hartree-Fock
approximation

Here we shall use the one-particle approximation, i.e., we shall assume that, for
any given energy and number of particles the wave function Ψ(Q) of the system is
represented as an anti-symmetric sum of products of one-particle wave functions,
taken over the occupied states νi (the Slater determinant)

Ψ(Q) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψν1(q1) ψν1(q2) . . . ψν1(qN
)

ψν2(q1) ψν2(q2) . . . ψν2(qN
)

. . . . . . . . . . . .

ψν
N

(q1) ψν
N

(q2) . . . ψν
N

(q
N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (3.22)

or as a linear combination of such determinats.

The system of functions ψν(q) is assumed to be orthonormal. Using the
orthogonality of the ψν(q)’s, one can express the average value of the original
Hamiltonian Ĥ over coordinates for a one-determinant function Ψ(Q) as follows
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(see Subsection 3.2.3 below, and also [83, 64]):

〈Ψ|Ĥ|Ψ〉 =
∑

ν

∫
ψ∗

ν(q)
[
−1

2
∆− Va(�r )

]
ψν(q) dq+

1
2

∑

ν,λ

∫ ∫ |ψν(q)|2|ψλ(q′)|2 dq dq′
|�r − �r ′| −

1
2

∑

ν,λ

∫ ∫
ψ∗

ν(q)ψν(q′)ψ∗
λ(q′)ψλ(q) dq dq′

|�r − �r ′| , (3.23)

where the summation is carried over all states ν and λ that appear in the expression
(3.22) for the function Ψ(Q).

Next, let us assume that for a temperature different from zero the one-particle
states ν are occupied with some probabilities nν (0 ≤ nν ≤ 1), which near the
equilibrium state can be approximately considered to be independent [105]. Then
the total probability of the given state is equal to the product of the probabilities
of the corresponding one-particle states. For example, the probability wn of the
state n, in which the first Nn states are occupied and the remaining ones are not,
is given by the formula

wn = nν1 · nν2 · . . . · nνNn
· (1− nνNn+1

) · (1− nνNn+2
) · . . . . (3.24)

Let us remark that, by virtue of their definition, the nν are the average occupation
numbers of the one-particle states ν.

In the approximation described above one can calculate all average values
of operators that we need. Thus, using induction, one can show that in formula
(3.17)

Tr(Ŵ ln Ŵ ) =
∑

n

wn lnwn =
∑

ν

[nν lnnν + (1− nν) ln (1− nν)] . (3.25)

Indeed, for a single one-particle state (ν = 1) we have two possibilities:
w1 = n1 for the occupied state and w2 = 1 − n1 for the unoccupied one, and so
formula (3.25) is obviously valid.

Suppose (3.25) is valid for k states (ν = 1, 2, . . . k), i.e.,

∑

n

wn lnwn =
k∑

ν=1

[nν lnnν + (1− nν) ln(1− nν)].

Now add a (k + 1)st state. The number of possible states of the system doubles,
and the probabilities of the new states are expressed in terms of wn as follows:

w(1)
n = nk+1wn, w(2)

n = (1− nk+1)wn.
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Consequently, we have
∑

n

w(1)
n lnw(1)

n +
∑

n

w(2)
n lnw(2)

n =

∑

n

nk+1wn(lnnk+1 + lnwn) +
∑

n

(1− nk+1)wn[ln(1− nk+1) + lnwn] =

nk+1 lnnk+1 + (1− nk+1) ln(1− nk+1) +
∑

n

wn lnwn =

k+1∑

ν=1

[nν lnnν + (1− nν) ln(1− nν)]

(here we used the fact that
∑
wn = 1). By the induction step, formula (3.25) is

valid for arbitrary k.

Note that formula (3.25) corresponds to formula (1.4) for the entropy in the
Thomas-Fermi approximation. From the orthogonality of the functions ψν(q) and
formulas (3.21) and (3.24) it follows that

ρ(q) =
∑

ν

nν |ψν(q)|2. (3.26)

Now using (3.17), (3.23) and (3.25) we obtain an expression for the ther-
modynamic potential Ω in the one-particle approximation, in the sense indicated
above (we denote it by ΩHF):

ΩHF =
∑

ν

nν

∫
ψ∗

ν(q)
[
−1

2
∆− Va(�r )

]
ψν(q) dq+

1
2

∑

ν,λ

nνnλ

∫∫ |ψν(q)|2|ψλ(q′)|2 dq dq′
|�r − �r ′| −

1
2

∑

ν,λ

nνnλ

∫∫
ψ∗

ν(q)ψν(q′)ψ∗
λ(q′)ψλ(q) dq dq′

|�r − �r ′| +

θ
∑

ν

[nν lnnν + (1− nν) ln (1− nν)]− µ
∑

ν

nν . (3.27)

Let us find the minimum condition for ΩHF for arbitrary nν (0 ≤ nν ≤1) and
an arbitrary orthonormal system of functions ψν(q). The normalization conditions∫ |ψν(q)|2 dq = 1 and the orthogonality conditions

∫
ψ∗

ν(q)ψλ(q) dq = 0 for λ 	= ν
are accounted for via Lagrange multipliers Λνλ. Then the minimum condition
for ΩHF reads

δΩHF + δ




∑

ν,λ

Λνλ

∫
ψ∗

ν(q)ψλ(q) dq



 = 0.
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Substituting here the expression (3.27) for ΩHF and calculating the variation, we
have

δΩHF + δ




∑

ν,λ

Λνλ

∫
ψ∗

ν(q)ψλ(q) dq



 =
∑

ν

δnν

∫
ψ∗

ν(q)Ĥ0ψν(q) dq+

∑

ν

nν

∫
ψ∗

ν(q)Ĥ0δψν(q) dq +
∑

ν

nν

∫
δψ∗

ν(q)Ĥ0ψν(q) dq + θ
∑

ν

δnν ln
nν

1− nν
−

µ
∑

δnν +
∑

ν,λ

Λνλ

[∫
δψ∗

ν(q)ψλ(q) dq +
∫
ψ∗

ν(q)δψλ(q) dq
]

= 0,

where

Ĥ0ψν(q)=

[
−1

2
∆−Va(�r )+

∑

λ

nλ

∫ |ψλ(q′)|2 dq′
|�r − �r ′|

]
ψν(q)−

∑

λ

nλ

∫
ψ∗

λ(q′)ψν(q′) dq′

|�r − �r ′| ψλ(q) (3.28)

(in deriving (3.28), in the calculation of the double sums and double integrals we
replaced λ by ν, q by q′, and so on).

Since the variations δψν , δψ∗
ν , and also δnν , are independent, the minimum

condition for ΩHF reads

Ĥ0ψν(q) +
1
nν

∑

λ �=ν

Λνλψλ(q) = −Λνν

nν
ψν(q) ≡ ενψν(q), (3.29)

nν = n(εν) =
1

1 + exp
(
εν − µ
θ

) . (3.30)

Equations (3.28)–(3.30) are the well-known Hartee-Fock (HF) equations for matter
with given temperature and density [105, 129].

Therefore, to obtain the Hartree-Fock equations (3.28)–(3.30) it suffices to
impose the minimum condition for the thermodynamic potential Ω = ΩHF in
the one-particle approximation. Note that ΩHF is expressed in terms of the one-
particle wave functions and occupation numbers, and, generally speaking, is not
a functional of the electron density ρ(q).

3.2.3 The Hartree-Fock equations for a free ion

At temperature zero*) the average occupation numbers nν can take the value 0
or 1 depending on the difference between the energy of the level εν and the Fermi

*) The content of Subsection 3.2.3 is important for the understanding of § 5.3, but it may be
skipped at a first reading.
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energy µ. If the energy levels are degenerate (i.e., several energies εν coincide for
different values of ν), then it is necessary to be more specific about the values
nν , so that the number of electrons in one atom will not exceed Z (except for
negative ions). Before we specify the set of occupation numbers nν and the one-
particle wave functions ψν(q), let us show how to obtain the average value of the
Hamiltonian (3.19) with single-determinant wave functions (3.22) and derive a
formula analogous to (3.23).

To calculate the contribution to the average value of the Hamiltonian de-
pending on the coordinates of one electron, for example, for

V1 = −1
2
∆1 − Va(�r1),

let us represent Ψ(Q) as the expansion with respect to the first column of the
determinant (3.22):

Ψ(Q) =
1√
N !

∑

α

ψα(q1)Ψ̃α(q2, q3, . . . qN ),

where Ψ̃α is the cofactor of order N − 1 obtained by deleting the first column and
the α-th row in (3.22). Since

∫
Ψ̃∗

α(q2, . . . , qN ) Ψ̃β(q2, . . . , qN ) dq2 . . . dqN = (N − 1)! δαβ , (3.31)

thanks to the orthogonality of the one-particle wave functions, the matrix element
〈Ψ |V1 |Ψ〉 is given by

〈Ψ |V1 |Ψ〉 = 1
N

∑

α

∫
ψ∗

α(q1)V1 ψα(q1) dq1. (3.32)

Further, since the expression (3.32) does not depend on the number of the electron
chosen, we obtain

〈Ψ
∣∣∣∣

N∑

i=1

Vi

∣∣∣∣Ψ〉 =
∑

α

∫
ψ∗

α(q)
[
−1

2
∆− Va(�r )

]
ψα(q) dq. (3.33)

To calculate the contribution of the two-electron interactions, let explain how
to calculate a matrix element for the operator

V12 =
1

|�r1 − �r2 | .

Using Laplace’s theorem [94], we represent the N -particle wave function Ψ(Q)
as the expansion by minors of order 2 constructed from the first two columns in
(3.22) with one-particle wave functions depending of q1 and q2:

Ψ(Q) =
1√
N !

∑

α<β

∣∣∣∣
ψα(q1) ψα(q2)
ψβ(q1) ψβ(q2)

∣∣∣∣ Ψ̃αβ(q3, q4, . . ., qN );
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here α and β run over all occupied states (α 	= β), and the function Ψ̃αβ is the
cofactor of order N − 2 obtained by deleting the first two columns and the rows
α and β in (3.22).

The functions Ψ̃αβ obey an orthogonality relation similar to (3.31):

∫
Ψ̃∗

αβ(q3, q4, . . . , qN )Ψ̃γδ(q3, q4, . . . , qN ) dq3 dq4 . . . dqN = (N − 2)! δαγ δβδ.

(3.34)

Using (3.34), we obtain the following expression for the average value of the op-
erator V12:

〈Ψ|V12|Ψ〉 =

1
N(N−1)

∑

α<β

∫∫ ∣∣∣∣
ψα(q1) ψα(q2)
ψβ(q1) ψβ(q2)

∣∣∣∣
∗ 1
|�r1−�r2 |

∣∣∣∣
ψα(q1) ψα(q2)
ψβ(q1) ψβ(q2)

∣∣∣∣ dq1 dq2 =

2
N(N−1)

∑

α<β

[∫∫ |ψα(q1)|2|ψβ(q2)|2
|�r1 − �r2 | dq1 dq2−

∫∫
ψ∗

α(q1)ψβ(q1)ψ∗
β(q2)ψα(q2)

|�r1 − �r2 | dq1 dq2

]
. (3.35)

Observing that (3.35) does not depend of the choice of the pair, summing
over all pairs yields

〈Ψ
∣∣∣∣
∑

i<j

1
|�ri − �rj |

∣∣∣∣Ψ〉 =
∑

α<β

∫∫ |ψα(q)|2|ψβ(q′)|2
|�r − �r ′| dq dq′−

∑

α<β

∫∫
ψ∗

α(q)ψβ(q′)ψ∗
β(q)ψα(q′)

|�r − �r ′| dq dq′ . (3.36)

The expressions (3.33) and (3.36) for the one-particle and two-particle operators,
respectively, prove the validity of formula (3.23).

Next let us consider some variants of the Hartree-Fock model. For an ion
with closed shells, for which Nn� =2(2�+ 1), the occupation numbers are nν = 1
for all participating levels ν. In the central-field approximation,

ψν(q) =
Rn�(r)
r

(−1)mY�m(ϑ, ϕ)χ 1
2 ms

(σ), (3.37)

where χ 1
2 ms

(σ) is a two-component spinor and q ≡ {r, ϑ, ϕ, σ}. To each ν we
associate a set of quantum numbers n, �, m and ms, which completely determines
the state of an electron (relativistic effects are neglected). The energy levels εν are
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independent of the projection of the orbital momentum m and the projection of
the spin ms, i.e., the multiplicity gν of each degenerate level ν equals 2(2�+ 1).

From (3.28), (3.29) one can obtain, using again (3.37), the Hartree-Fock
equations for a free ion in the single-determinant approximation of a central field,
setting Va(�r ) = Z/r. To that end it suffices to integrate with respect to q′ in (3.28),
i.e., integrate with respect to r′, ϑ′, ϕ′ and sum with respect to the spin variable
σ′, taking into account the orthogonality property of the one-particle functions
ψν .

First let us consider the term in the square brackets in (3.28), which corre-
sponds to the Coulomb interaction (see also Appendix, §A.1, Example 3):

Y (r) =
∑

λ

nλ

∫ |ψλ(q′)|2 dq′
|�r − �r ′| =

∑

n′,�′,m′,m′
s

nn′�′m′m′
s

∑

σ′

∫ ∑

s,m̃

4π
2s+ 1

rs
<

rs+1
>

R2
n′�′(r

′) dr′×
∫ [

Y ∗
�′m′(ϑ′, ϕ′)Y�′m′(ϑ′, ϕ′)Y ∗

sm̃(ϑ, ϕ)Ysm̃(ϑ′, ϕ′)χ†
1
2m′

s
(σ′)χ 1

2m′
s
(σ′)
]
dΩ′;

here superscript “†” denotes the conjugate transpose. Since for the closed shells
one has nn′�′m′m′

s
= 1, and since

∑

σ′
χ†

1
2ms

(σ′)χ 1
2 m′

s
(σ′) = δmsm′

s
,

∫
Y�1m1(ϑ, ϕ)Y�2m2(ϑ, ϕ)Y ∗

�3m3
(ϑ, ϕ) dΩ =

√
(2�1 + 1)(2�2 + 1)

4π(2�3 + 1)
C�30

�10�20
C�3m3

�1m1�2m2
,

where C�3m3
�1m1�2m2

are Clebsch-Gordan coefficients, we obtain

Y (r) =
∑

n′,�′,m′,m′
s

∑

s,m̃

√
4π

2s+ 1
Xs

n′�′,n′�′(r)C
�′0
�′0s0 C

�′m′
�′m′sm̃Y

∗
sm̃(ϑ, ϕ).

Here we used the notation

Xs
n�,n′�′(r) =

∞∫

0

rs
<

rs+1
>

Rn�(r′)Rn′�′(r′) dr′.

The coefficients C�′m′
�′m′sm̃ are different from zero only for m̃ = 0. Using the equalities

Y00(ϑ, ϕ) = 1/
√

4π, C�′0
�′0 00 = 1
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and the orthogonality property
∑

m′
C�′m′

�′m′s0 = (2�′ + 1)δs0

we get
Y (r) =

∑

n′,�′
Nn′�′ X

0
n′�′,n′�′(r), where Nn′�′ = 2(2�′ + 1).

For the exchange term in (3.28),

Xn�(r) =
∑

λ

nλ

∫
ψ∗

λ(q′)ψν(q′) dq′

|�r − �r ′| ψλ(q),

we have

Xn�(r) = (−1)m
∑

n′,�′,m′,m′
s

nn′�′m′m′
s
×

∑

σ′

∫
dr′
∫
dΩ′Rn′�′(r′)Rn�(r′)Y ∗

�′m′(ϑ′, ϕ′)Y�m(ϑ′, ϕ′)χ†
1
2 m′

s
(σ′)χ 1

2m′
s
(σ′)×

∑

s,m̃

4π
2s+ 1

rs
<

rs+1
>

Y ∗
sm̃(ϑ, ϕ)Ysm̃(ϑ′, ϕ′)

Rn′�′(r)
r

Y�′m′(ϑ, ϕ)χ 1
2 m′

s
(σ) =

(−1)m
∑

n′,�′,m′,m′
s,s,m̃

√
4π

2s+1
Xs

n�,n′�′(r)
Rn′�′(r)

r

√
2�+1
2�′+1

C�′0
�0s0C

�′m′
�msm̃×

Y�′m′(ϑ, ϕ)Y ∗
sm̃(ϑ, ϕ)δmsm′

s
χ 1

2ms
(σ).

The product Y�′m′(ϑ, ϕ)Y ∗
sm̃(ϑ, ϕ) admits an expansion into harmonics [220]:

Y�′m′(ϑ, ϕ)Y ∗
sm̃(ϑ, ϕ) =

(−1)m̃
∑

�̄,m̄

√
(2�′ + 1)(2s+ 1)

4π(2�̄+ 1)
C �̃0

�′0s0 C
�̄m̄
�′m′s −m̃ Y�̄m̄(ϑ, ϕ).

Next, using the orthogonality property,

∑

m′,m̃

(−1)m̃C �̄m̄
�′m′s−m̃C

�′m′
�msm̃ = (−1)�−�′

√
2�′ + 1
2�+ 1

δ��̄ δmm̄,

interchanging the upper and lower indices �′0 and �0 in one of the coefficients(
C�′0

�0s0 = (−1)s

√
2�+ 1
2�′ + 1

C�0
�′0s0

)
and observing that the number � − �′ + s must

be even, we obtain

Xn�(r) = (−1)m
∑

n′,�′

Nn′�′

4�+ 2

�+�′∑

s=|�−�′|

(
C�0

�′0s0

)2
Xs

n�,n′�′(r)
Rn′�′(r)

r
.
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After all these manipulations, the Hartree-Fock equations (3.29) for the radial
functions Rn�(r) in the case of closed shells take on the form


−1
2
d2

dr2
+
�(�+ 1)

2r2
− Z

r
+
∑

n′,�′
Nn′�′ X

0
n′�′,n′�′(r)



Rn�(r)−

∑

n′,�′

Nn′�′

4�+2

�+�′∑

s=|�−�′|

(
C�0

�′0 s0

)2
Xs

n�,n′�′(r)Rn′�′(r) =

εn�Rn�(r)+
∑

n′ �=n

εn′�,n�Rn′�(r). (3.38)

We should mention that when the one-particle functions are chosen in the
form (3.37) it suffices to require the orthogonality of the radial parts with different
values of n, since with respect to the other quantum numbers the orthogonality
condition is automatically satisfied. This means that the non-diagonal Lagrange
multipliers are different from zero only for �′ = �.

For ions with non-closed shells, instead of one determinant (3.22) one usually
employs a representation of the wave function as a linear combination of deter-
minants, corresponding to a specific coupling scheme for momenta [62, 83, 156].
Note that the wave functions and energy levels obtained by solving these equations
require further refinements, in particular, to account for the spin-orbit interaction
and the non-centrally-symmetric part of the Coulomb interaction. In many cases it
suffices to solve simpler equations to obtain Rn�(r), using the obtained wave func-
tions to construct the basis functions and applying the Ritz method to calculate
the ion energy levels of many-electron ions [212].

Let us consider one such variant of the HF method, in which the coupling
of momenta can be approximately replaced by a special choice of non-integer
occupation numbers nν (ν ≡ nlmms) such that

∑
m,ms

nν = Nn�. In the simplest
approximation of the average configuration that is consistent with the notion of
average atom we take

nν =
Nn�

2(2�+ 1)
.

The Hartree-Fock equations (3.38) for the closed shells remain valid in this ap-
proximation, and the total energy of the ion is given by the formula [62]:

E =
∑

n,�

Nn� In�+
1
2

∑

n,�

Nn�(Nn�−1)Hn�,n�+
∑

n,�

∑

n′�′>n�

Nn�Nn′�′ Hn�,n′�′ , (3.39)

where we have introduced the kinetic energy and the energy of the interaction of
the electron with the nucleus,

In� =
∫
Rn�(r)

(
−1

2
d2

dr2
+
�(�+ 1)

2r2
− Z

r

)
Rn�(r) dr, (3.40)
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as well as the matrix elements of the interaction between electrons,

Hn�,n� = F 0
n�,n� −

1
4�+ 1

2�∑

s=2

(
C�0

�0 s0

)2
F s

n�,n� , (3.41)

Hn�,n′�′ = F 0
n�,n′�′ −

1
4�+ 2

�+�′∑

s=|�−�′|

(
C�0

�′0 s0

)2
Gs

n�,n′�′ . (3.42)

The Slater integrals F s
n�,n′�′ and Gs

n�,n′�′ are calculated by the formulas:

F s
n�,n′�′ =

∫∫
rs
<

rs+1
>

R2
n�(r1)R

2
n′�′(r2) dr1 dr2, (3.43)

Gs
n�,n′�′ =

∫∫
rs
<

rs+1
>

Rn�(r1)Rn′�′(r1)Rn�(r2)Rn′�′(r2) dr1 dr2. (3.44)

Concerning methods for calculating the Slater integrals, see, e.g., [83].

3.3 The modified Hartree-Fock-Slater model

3.3.1 Semiclassical approximation for the exchange interaction

The numerical integration of the Hartree-Fock equations (3.28)–(3.30) runs into
certain difficulties, connected with the integral term—the last term in the right-
hand side of (3.28), associated with the exchange effects. If in (3.28) we neglect
the exchange, then we obtain from (3.29) a Schrödinger equation for the functions
ψν(q), which describe the electron states in the self-consistent Coulomb field of the
electrons and nuclei (Hartree model, § 3.1). Being solutions of an equation with a
given potential and the corresponding boundary conditions, the wave functions in
this model are mutually orthogonal. However, it turns out that the self-consistent
Hartree field incorporates also the Coulomb contribution of the electron under
investigation, known as self-action. The self-action can be easily eliminated if one
subtracts from the self-consistent Hartree potential the contribution of the electron
in question in the state with wave function ψν(q), but then the resulting wave
functions are no longer mutually orthogonal.

The semiclassical approximation can be used to approximately account for
the exchange effects, thereby refining the equations of the Hartree model. Since
this yields a unique effective potential for all electrons, the corresponding system
of wave functions will be orthogonal. Exchange effects were first accounted for in
a local approximation for the free atom at temperature T = 0 by Slater [203].
His results were subsequently revised in [113] (see also [78]), and then extended
to arbitrary temperatures in [152] and [79].

To obtain an approximate expression for the exchange term via a varia-
tional principle, we use as trial functions ψν(q) the normalized solutions of the
Schrödinger equation
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Ĥefψν(q) = ενψν(q), Ĥef = −1
2
∆− V (�r ), (3.45)

describing the motion of electrons in a field with some effective potential V (�r ),
which accounts for the exchange in a local manner. Since in the present case the
operator Ĥef is assumed to be Hermitian, the system of functions ψν(q) obtained
by solving problem (3.45) will be orthogonal.

The variational principle allows us to choose the best form of the potential
V (�r ) for which the solutions of equation (3.45) will be as close as possible to the
solutions of the Hartree-Fock equations (3.29)–(3.30). In doing so it makes sense
to retain the expression (3.30) for the occupation numbers, because that formula
does not depend explicitly on the specific approximation of the exchange effects.

Let us write the exchange energy (see the last term in (3.23))

Eex = −1
2

∑

ν,λ

nνnλ

∫ ∫
ψ∗

ν(q)ψν(q′)ψ∗
λ(q′)ψλ(q)

|�r − �r ′| dq dq′

in the form

Eex = −1
2

∫ ∫ |ρ(q, q′)|2
|�r − �r ′| dq dq′, (3.46)

where
ρ(q, q′) =

∑

ν

nνψν(q)ψ∗
ν(q′) = n(Ĥef)

∑

ν

ψν(q)ψ∗
ν(q′).

Here we have introduced the so-called occupation number operator n(Ĥef), whose
eigenvalues are nν and whose eigenfunctions coincide with the eigenfunctions of
the operator Ĥef , which acts only on functions of the variable �r (see the expression
(3.45) for Ĥef). Note that according to (3.26) we have ρ(q) = ρ(q, q′)|q′=q.

The system of functions ψν(q) is complete, and so
∑

ν

ψν(q)ψ∗
ν(q′) = δ(q − q′) = δσσ′ δ(�r − �r ′).

Hence, assuming that the operator Ĥef does not act on spin variables, we obtain

ρ(q, q′) = δσσ′n(Ĥef) δ(�r − �r ′).

Now let us use the Fourier integral representation of the δ-function:

δ(�r − �r ′) =
1

(2π)3

∫
ei�k(�r−�r ′) d�k.

This decomposition of the δ-function in plane waves ei�k�r enables us to sim-
plify considerably the calculations. It is important to emphasize that here we are
using only the completeness property of the system of plane waves, and we do
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not assume that plane waves are taken as approximations for the electron wave
functions.

The occupation number operator n(Ĥef) is a function of the sum of two non-
commuting operators, (1/2) ∆ and V (�r ). The first [resp., second] operator acts on
ei�k�r as multiplication by−k2/2 [resp., by V (�r )]. In the semiclassical approximation
one can neglect that the operators (1/2) ∆ and V (�r ) do not commute [68, 105].
Then in accordance with formula (3.30), we obtain

n(Ĥef) ei�k(�r−�r ′) = f(k2, �r ) ei�k(�r−�r ′),

where
f(k2, �r ) =

1

1 + exp
(
k2

2θ
− V (�r ) + µ

θ

) .

Substituting the expressions obtained in (3.46), we have

Eex≈−1
2

∑

σ,σ′
δ2σσ′

1
(2π)6

∫∫∫∫
f(k2, �r )f(k′2, �r )ei(�k−�k ′)(�r−�r ′)d�k d�k′ d�r d�r ′

|�r − �r ′| .

The integration with respect to �r ′ can be carried out in analytic form because
the volume occupied by the system of electrons is assumed to be sufficiently large.
Directing the axis z′ along the vector �k − �k ′, we obtain

∫
ei(�k−�k ′)(�r−�r ′)

|�r − �r ′| d�r ′ = lim
α→0

∫
e−αR+i(�k−�k ′)�R

R
d�R =

lim
α→0

2π

∞∫

0

e−αRRdR

π∫

0

ei|�k−�k ′|R cos ϑ sinϑ dϑ =

4π

|�k − �k ′| lim
α→0

∞∫

0

e−αR sin (|�k − �k ′|R) dR =
4π

|�k − �k ′|2 .

Since
∑

σ,σ′ δ2σσ′ = 2, using spherical coordinates for the integration with respect
to �k and �k′ we get

Eex = − 2
(2π)3

∫
d�r

∞∫

0

∞∫

0

f(k2, �r)f(k′2, �r )k2 dk k′2dk′
π∫

0

π∫

0

sinϑ dϑ sinϑ′dϑ′

k2 − 2kk′ cosϑ+ k′2

= − 1
2π3

∫
d�r

∞∫

0

∞∫

0

f(k2, �r )f(k′2, �r ) ln
∣∣∣∣
k + k′

k − k′
∣∣∣∣ k dk k

′ dk′.
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Next, let us introduce the new integration variables α = k2/(2θ), β = k′2/(2θ)
and denote

ξ = ξ(�r ) =
V (�r ) + µ

θ
,

F (ξ) =

∞∫

0

dα

∞∫

0

dβ

[
1

1 + exp (α− ξ) ·
1

1 + exp (β − ξ) ln
√
α+
√
β

|√α−√β|
]
.

Then

Eex = − θ2

2π3

∫
F (ξ) d�r, (3.47)

where F (ξ) can be expressed in terms of the Fermi-Dirac integral Ik(x). Indeed,
for the derivative F ′(ξ) we have

d

dξ
F (ξ) =

∞∫

0

∞∫

0

dα dβ ln
√
α+
√
β

|√α−√β|×
{
− d

dα

(
1

1 + exp (α− ξ)
)
· 1
1 + exp (β − ξ)−

d

dβ

(
1

1 + exp (β − ξ)
)
· 1
1 + exp (α− ξ)

}
,

whence, upon integrating by parts,

F ′(ξ)=−
∞∫

0

dα

1 + exp (α− ξ)

∞∫

0

dβ

1 + exp (β − ξ)

[
1

α− β

√
β

α
+

1
β − α

√
α

β

]
=

∞∫

0

α−1/2 dα

1 + exp (α− ξ)

∞∫

0

β−1/2 dβ

1 + exp (β − ξ) = I2
−1/2(ξ).

We conclude that

Eex = − θ2

2π3

∫
d�r

(V (�r )+µ)/θ∫

−∞

[
I−1/2(t)

]2
dt. (3.48)

In the semiclassical approximation we can express Eex through the electron
density ρ(q). To this end, let us clarify the connection between ρ(q) and V (�r ),
using the semiclassical approximation and a Fourier integral in much the same
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way as we proceeded above to derive (3.47). We have

ρ(q) =ρ(q, q′)|q′=q = δσσ′ n(Ĥef) δ(�r − �r ′)|q′=q =
1

(2π)3

∫
e−i�k�rn(Ĥef) ei�k�r d�k ≈ 1

(2π)3

∫
f(k2, �r ) d�k =

1
(2π)3

∞∫

0

4πk2 dk

1 + exp
(
k2

2θ
− V (�r ) + µ

θ

) =
(2θ)3/2

4π2
I1/2

(
V (�r ) + µ

θ

)
, (3.49)

which obviously coincides with formula (1.7), since ρ(q) = ρ(�r)/2. Therefore, we
can write

Eex = −
∫
ϕ[ρ(�r ), θ] d�r, (3.50)

where

ϕ[ρ(�r ), θ] ≡ ϕ(ρ, θ) =
θ2

2π3

ξ∫

−∞

[
I−1/2(t)

]2
dt. (3.51)

Here, in accordance with (3.48), (3.49), in the semiclassical approximation instead
of ξ = (V (�r )+µ)/θ we take the root of the equation ρ(�r ) = (2θ)3/2I1/2(ξ)/(2π2).
Obviously, ξ is a function of ρ(�r)/θ3/2, where the electron density ρ(�r) is calculated
by using the wave functions ψν(q).

3.3.2 The equations of the Hartree-Fock-Slater model

Thus, for the thermodynamic potential Ω, which in the approximation considered
above we denote by ΩHFS, we have

ΩHFS=
∑

ν

nν

∫
ψ∗

ν(q)
[
−1

2
∆− Va(�r )

]
ψν(q) dq+

1
2

∑

νλ

nνnλ

∫ ∫ |ψν(q)|2|ψλ(q′)|2 dq dq′
|�r − �r ′| −

∫
ϕ[ρ(�r ), θ] d�r+

θ
∑

ν

[nν lnnν + (1− nν) ln(1− nν)]− µ
∑

ν

nν ,

where
ρ(�r) =

∑

σ

ρ(q), ρ(q) =
∑

ν

nν |ψν(q)|2.

Proceeding as in the case of the Hartree-Fock equations, let us require that
the minimum condition

δΩHFS + δ

[
∑

ν

Λν

∫
ψ∗

ν(q)ψν(q) dq

]
= 0
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be satisfied, where the Lagrange multipliers Λν are introduced to account for
the normalization conditions for ψν(q). They correspond to the diagonal Lagrange
multipliers Λνν in equations (3.29). Note that in the present case it is not necessary
to require that the wave functions ψν(q) be orthogonal, because the solutions of
equation (3.45) are orthogonal to one another. Taking the variation, we obtain the
equations of the Hartree-Fock-Slater (HFS) model:

[
−1

2
∆− Va(�r ) +

∑

λ

nλ

∫ |ψλ(q′)|2 dq′
|�r − �r ′| − ∂ϕ

∂ρ

]
ψν(q) = ενψν , (3.52)

nν =
1

1 + exp
(
εν − µ
θ

) , (3.53)

where the eigenvalues are εν = −Λν/nν .
This shows that the effective potential in (3.45) is equal to

V (�r ) = Vc(�r ) + Vex(�r ).

The Coulomb part of the potential, Vc(�r ), is calculated as in the Hartree model:

Vc(�r ) = Va(�r )−
∑

λ

nλ

∫ |ψλ(q′)|2 dq′
|�r − �r ′| . (3.54)

By (3.51) and (3.52), the exchange correction Vex(�r ) is given by

Vex(�r ) =
∂ϕ

∂ρ
=
∂ϕ

∂ξ
· ∂ξ
∂ρ

=
θ1/2

π
√

2
I−1/2(ξ), (3.55)

where ξ is the root of the equation (see (3.49))

I1/2(ξ) =
2π2

(2θ)3/2
ρ(�r ). (3.56)

The calculation of exchange corrections can be simplified by using interpo-
lation formulas. In particular, the exchange energy Eex is given by the integral
ξ(ρ,θ)∫
−∞

[
I−1/2(t)

]2
dt, which is convenient to represent, using (3.56), as a function

of one variable

ζ =
ρ

θ3/2
=
√

2
π2

I1/2(ξ). (3.57)

Let us construct an interpolation formula for the exchange integral, which gives
the true asymptotics for ζ → 0 and ζ →∞:

ξ∫

−∞

[
I−1/2(t)

]2
dt � π4ζ2

[1 + aζ + (8π4/81)ζ2]1/3
. (3.58)
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Here we have introduced a free parameter a, which can be found from the condition
that the error be minimal. As a result, using (3.51) in conjunction with (3.58) we
obtain for the function ϕ(ρ, θ) the expression

ϕ(ρ, θ) ≈ πρ2

2θ

[
1 + 4.9

ρ

θ3/2
+

8π4

81
· ρ

2

θ3

]−1/3

, (3.59)

where ρ = ρ(�r ) is the electron density. The error of formula (3.59) does not
exceed 1%.

In much the same way as we derived the formula (3.58), we can obtain the
approximate formula

I−1/2(ξ) �
√

2π2ζ

[1 + 5.7ζ + (π4/3)ζ2]1/3
,

where ζ is given by formula (3.57). This yields a convenient interpolation formula
for ∂ϕ/∂ρ, with an error of about 1.5% [152]. Finally, we have

Vex(�r ) =
πρ(�r )
θ

[
1 + 5.7

ρ(�r )
θ3/2

+
π4

3
· ρ

2(�r )
θ3

]−1/3

, (3.60)

where ρ(�r ) is the electron density. Since Vex(�r ) > 0, exchange effects lead to a
decrease of the Coulomb repulsion in the potential.

The behavior of the exchange correction (3.60) as a function of the electron
density ρ = ρ(�r ) for various values of the temperature is shown in Figure 3.9. For
comparison, the figure also shows the results obtained by using the interpolation
formula from [188],

V R
ex(�r ) = [1− λ2(r)]

3
2

(
3ρ(r)
π

)1/3

+ λ2(r)
πρ(r)
θ

, (3.61)

where λ(r) = max{1, 2θ(3π2ρ(r))−2/3}. The formula (3.61) for θ = 0 gives the
expression V S

ex, obtained by Slater [203]:

V S
ex =

3
2

(
3ρ
π

)1/3

.

From (3.60) with θ = 0 we have Vex = (3ρ/π)1/3, which agrees with results of
W. Kohn et al. [87, 113] and differs from Slater’s expression by the factor 3/2. This
is a consequence of the application of the variational principle for obtaining Vex,
in contrast to [203], where the exchange term was approximated directly in the
Hartree-Fock equations. An analysis of various approximations for the exchange
correction at temperature zero is contained in the book by Slater [204], as well
as in that by Cowan [49], Chapter 8. As one can see in Figure 3.9, when the
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Figure 3.9: Dependence of the exchange correction Vex(ρ) to the potential on the
electron density ρ = ρ(r) for three different temperatures: T = 0.01, 0.1, 1 keV.
The solid [resp., dashed] curve represents expression (3.60) [resp., (3.61)]

temperature is different from zero, formula (3.60) gives a smoother dependence
of Vex on ρ(r) than the interpolation (3.61); at high temperatures, in both cases
Vex � πρ/θ.

As we will show below, the variational principle yields wave functions that are
closer to the solutions of the Hartree-Fock equation than the ones given by other
approximation methods. Let us remark that for the one-particle energy levels the
result may be different, but the utilization of the wave functions obtained in the
Hartree-Fock-Slater model and of the Hartree-Fock approximation for the energy
levels of ions allows one to obtain reliable results (see Subsection 4.4.4).

3.3.3 The equations of the Hartree-Fock-Slater model in the case
when the semiclassical approximation is used for continuum
electrons

When one solves the system of equations (3.52)–(3.56) it is required, generally
speaking, to calculate the wave functions of all possible electron states, including
those for the continuous spectrum. The number of such functions may be very
large. Since the semiclassical approximation gives good results for the electrons
with large quantum numbers, it is natural to use it for the electron states whose
energy is larger than some value ε0, as we did in the Hartree model. The quantity
ε0 can be regarded as the effective boundary of the continuum.
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For large temperatures, due to ionization the average occupation numbers for
highly excited states are very small and if, in addition, the radius of the ion core is
much smaller than the dimensions of the average atom cell, i.e., r∗ � r0, then the
issue of how to choose ε0 in practical calculations is readily settled. Namely, after
one calculates the average occupation numbers Nn�, the parameter ε0 is chosen
from the condition that Nn� be small for the upper shells (see Subsection 3.1.3).

When the variational principle considered in § 3.2 is used, it suffices to stip-
ulate that for the choice of ε0 the number of states that are not associated to the
continuum does not change when the variation is performed, i.e., that the bound
states do not cross the fixed edge ε0 for small variations of the occupation numbers
and wave functions, or, in other words, that no additional discrete spectrum states
arise for ε < ε0.

Let us examine this question in more detail, following [157]. The expression
for the one-particle energy εν in the Hartree-Fock-Slater model is

εν =
∫
ψ∗

ν(q)
[
−1

2
∆− V (�r )

]
ψν(q) dq,

where according to (3.54)–(3.55)

V (�r ) = Va(�r )−
∫
ρ(q′) dq′

|�r − �r ′| +
∂ϕ

∂ρ
. (3.62)

In the semiclassical approximation the energy of an electron is given by the formula
εν
∼= ε(q, �p ) ≡ ε = p2/2− V (�r ), where �p is the momentum of the electron.

Let us use the indicated approximation to calculate the thermodynamic po-
tential ΩHFS, considering that the semiclassical states with energy ε > ε0 are
occupied with a distribution function n(q, �p ), 0 ≤ n(q, �p ) ≤ 1, which for the mo-
ment is not known. In connection with this, in the ensuing formulas summation
with respect to the discrete states will be carried out for the states with energy
εν < ε0, while the integration with respect to q and �p will be carried out for states
with energy ε = ε(q, �p ) > ε0. Note that in what follows, when we perform the
variation, although ε0 is fixed, some terms in the sum over ν may be added or may
disappear, because the condition εν < ε0 is replaced by εν + δεν < ε0. Here the
variation δεν is determined by the variations of ψν(q), nν and n(q, �p ). To formally
carry out the summation and integration over all states, we will simplify notation
by using the step function

β(x) =
{

1, if x > 0,
0, if x ≤ 0.

We denote the corresponding thermodynamic potential by ΩHFS(ε0). Applying to
the thermodynamic potential (3.27) the semiclassical approximation for ε > ε0,
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we obtain

ΩHFS(ε0)=
∑

ν

β(ε0 − εν)nν

∫
ψ∗

ν(q)
(
−1

2
∆
)
ψν(q) dq+

∫∫
[1− β(ε0 − ε)]n(q, �p )

p2

2
d�p

(2π)3
dq −

∫
ρ(q)Va(�r ) dq+

1
2

∫∫
ρ(q)ρ(q′) dq dq′

|�r − �r ′| −
∫
ϕ[ρ(�r), θ] d�r+

θ
∑

ν

β(ε0 − εν)[nν lnnν + (1− nν) ln(1− nν)] +

θ

∫∫
[1− β(ε0 − ε)] [n lnn+ (1− n) ln(1− n)]

d�p

(2π)3
dq − µ

∫
ρ(q) dq.

Here ψν(q), nν and n = n(q, �p ) are unknown functions that need to be determined,
and

ρ(q)=
∑

ν

β(ε0 − εν)nν |ψν(q)|2 +
∫

[1− β(ε0 − ε)]n(q, �p )
d�p

(2π)3
. (3.63)

Taking the variation of ΩHFS(ε0) subject to the constraint
∫ |ψν(q)|2 dq = 1

and using formula (3.63) to calculate δρ(q), we obtain

δΩHFS(ε0) + δ
∑

ν

Λν

∫
ψ∗

ν(q)ψν(q) dq =

∑

ν

nνβ(ε0 − εν)
∫
δψ∗

ν(q)
[
−1

2
∆− V (�r ) +

Λν

nν
− µ
]
ψν(q) dq+

∑

ν

nνβ(ε0 − εν)
∫
ψ∗

ν(q)
[
−1

2
∆− V (�r ) +

Λν

nν
− µ
]
δψν(q) dq+

∑

ν

δnνβ(ε0 − εν)
[∫

ψ∗
ν(q)
(
−1

2
∆− V (�r )

)
ψν(q) dq + θ ln

nν

1− nν
− µ
]

+

∫∫
δn[1− β(ε0 − ε)]

[
p2

2
− V (�r ) + θ ln

n

1− n − µ
]

d�p

(2π)3
dq+

∑

ν

δβ(ε0 − εν) [θnν lnnν + θ(1− nν) ln(1− nν)− µnν ] +

∑

ν

δβ(ε0 − εν)nν

∫
ψ∗

ν(q)
(
−1

2
∆− V (�r )

)
ψν(q) dq−

∫∫
δβ(ε0 − ε) [θn lnn+ θ(1− n) ln(1− n)− µn]

d�p

(2π)3
dq−

∫∫
δβ(ε0 − ε)

(
p2

2
− V (�r )

)
n(q, �p )

d�p

(2π)3
dq = 0. (3.64)
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The quantity δβ(ε0−εν) may be different from zero in the interval |εν−ε0| <
|δεν |. For example, δβ = 1 corresponds to an additional term in the sum with
respect to ν which arises because the energy εν changes under variation (if this
term vanishes, δβ = −1). Correspondingly, the quantity δβ(ε0 − ε) is different
from zero in the interval ε0 − δε < ε < ε0.

In order to satisfy the minimum condition for ΩHFS(ε0), we require that the
factors in front of the variations δψ∗, δnν and δn vanish and that the expression
containing δβ vanishes as well. Setting the factor in front of δψ∗

ν(q) (or δψν(q))
equal to zero we obtain the equations for electrons with energy εν < ε0, which
coincide with (3.52):

[
−1

2
∆− V (�r )

]
ψν(q) = ενψν(q). (3.65)

Here εν = −Λν/nν + µ, the potential V (�r ) is given by formula (3.62), and for
electrons with energy ε > ε0 the semiclassical approximation is used.

Next, the requirement that the factors in front of δnν and δn(q, �p ) be equal
to zero leads to the relations

nν =
1

1 + exp
(
εν − µ
θ

) , (3.66)

n(q, �p ) =
1

1 + exp
(
ε− µ
θ

) , ε =
p2

2
− V (�r ). (3.67)

Finally, setting the remaining terms in (3.64) equal to zero, let us use the
equalities (3.65)–(3.67), as well as the relations

nν lnnν + (1− nν) ln(1− nν)=(1− nν)
εν − µ
θ

+ lnnν ,

n lnn+ (1− n) ln(1− n)=(1− n)
ε− µ
θ

+ lnn,

which follows from (3.66) and (3.67). Then for the remaining terms in (3.64) we
have

∑

ν

δβ(ε0 − εν)(εν − µ+ θ lnnν)−
∫∫

δβ(ε0 − ε) [ε− µ+ θ lnn(q, �p )]
d�p

(2π)3
dq = 0. (3.68)

Since the variations δβ(ε0 − εν) and δβ(ε0 − ε) can be different from zero
only for εν = ε0 and respectively ε = ε0, in (3.68) we can take out of the brackets
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the common factor

A(ε0) = ε0 − µ+ θ ln
1

1 + exp
(
ε0 − µ
θ

) .

This yields

A(ε0)δ

[
∑

ν

β(ε0 − εν)−
∫∫

β(ε0 − ε) d�p

(2π)3
dq

]
= 0. (3.69)

3.3.4 The thermodynamic consistency condition

The first term in the square brackets in (3.69) is the quantum mechanical expres-
sion for the number of one-electron states with energies εν < ε0:

f1(ε0) =
∑

ν

β(ε0 − εν).

Here, in accordance with the definition of the function β, the sum is taken over
the states ν for which εν < ε0. In particular, in the nonrelativistic approximation
without accounting for bands we have

f1(ε0) =
∑

n,�

2(2�+ 1) (εn� < ε0).

The second term gives the corresponding expression for the number of states
in the semiclassical approximation:

f2(ε0) =
∫∫

β(ε0 − ε) d�p

(2π)3
dq =

∫∫

p2/2−V (r)<ε0

2d�p d�r
(2π)3

.

To understand the physical meaning of condition (3.69), recall that the quan-
tity ε0 was introduced to simplify the calculations. However, as follows from
(3.69), in order to satisfy the minimum condition for the thermodynamic poten-
tial ΩHFS(ε0), the number of states accounted for in various approximations for
the description of electrons must not change when ε0 is changed. In other words,
when the number of states treated quantum-mechanically increases, the number
of states accounted for in the semiclassical approximation must decrease by the
same amount, and conversely.

Thus, in accordance with (3.69), in addition to the equations (3.65)–(3.67)
of the HFS model with the semiclassical approximation we require for the elec-
trons with energy ε < ε0 that f1(ε0) = f2(ε0), which gives an equation for the
determination of ε0:

∑

ν

β(ε0 − εν) =
∫∫

p2/2−V (r)<ε0

2d�p d�r
(2π)3

. (3.70)
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Figure 3.10: The number of states with energy ε < ε0: quantum-mechanical cal-
culation f1(ε0) (solid curve); semiclassical calculation f2(ε0) (dashed curve)

The typical behavior of the functions f1(ε0) and f2(ε0) is shown in Fig-
ure 3.10 (where Z = 26, T = 15 eV, ρ = 15.64 g/cm3). The solutions of equation
(3.70) correspond to the intersection points of the graphs of f1 and f2. There
may be many such solutions, but there always are two basic solutions. The first
one, ε0 = ∞, corresponds to the purely quantum mechanical calculation, when
for all electron states one solves the Schrödinger equation (3.65) and calculates
the wave functions. The second one, ε0=−∞, corresponds to the Thomas-Fermi
approximation (with the exchange accounted for via formula (3.55)), when for all
electron states one uses the semiclassical approximation. If exchange is neglected,
then from (3.62), (3.63) and (3.67) one obtains the equations of the Thomas-Fermi
model.

The practical value of condition (3.70) becomes evident when computations
are performed in a wide range of temperatures T and densities ρ [145]. In this case
if one does not require that the thermodynamic consistency condition be satisfied,
then for some values of T and ρ discrete energy levels may pass through ε = ε0,
which results in a sharp change in thermodynamic functions. This is particularly
strongly manifested for the pressure, which is the derivative of the free energy. Such
an irregular behavior of thermodynamic functions has no physical interpretation
and is caused only by the application of various approximations in the model for
ε > ε0 and ε < ε0. When condition (3.70) is satisfied such incorrect behavior
is eliminated and the behavior of the thermodynamic functions becomes regular.
Figure 3.11 shows examples of isotherms of the electron pressure of iron, calculated
with and without employing equation (3.70).

For relatively small densities of matter the quantity ε0 can be determined
not from equation (3.70), but from the condition A(ε0) � 0 (see (3.69)). From
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Figure 3.11: The electron pressure for iron in the HFS model (cf. § 6.4) with
temperature T = 10 eV and different densities; for the continuous curve ε0 was
calculated with the help of equation (3.70), while the dashed curve was computed
for ε0 = 0

this last condition it follows that (ε0 − µ)/θ � 1, and using formula (3.66) we
conclude that the average occupation numbers of the levels with energy εν ≥ ε0
are such that nν � 1. In this case, as we have seen in Subsection 3.1.3 for iron with
T = 100 eV and ρ = 0.1 g/cm3, the choice of different values of the parameter ε0
has practically no influence on computational results.

Thus, based on the variational principle used in this chapter, we succeeded
in refining and generalizing the Hartree model introduced in § 3.1. The resulting
Hartee-Fock-Slater self-consistent field model for the average atom has a consid-
erably wider domain of applicability than the Thomas-Fermi model. Let us add
that starting with the Hartee-Fock-Slater model for the average atom and using the
one-electron wave functions to construct a basis for the wave functions of many-
electron ions one can refine the model further when considering the individual
states of ions in plasma.



Chapter 4

The Hartree-Fock-Slater model
for the average atom

The approaches formulated in Chapter III allow one to obtain different mod-
els of matter, and then refine them according to the necessities. At high tem-
peratures good results are given by the simplest approach of the average atom, in
which the self-consistent potential is calculated for an ion with average occupation
numbers of the energy levels together with the free electrons in the charge-neutral
spherical cell. If the dimensions of the ion cores are small compared with the
distances between ions, then the average-atom model allows one to obtain, in a
relatively simply manner, the degree of ionization and the equation of state of a
substance. In the description of photon absorption processes, which require the
consideration of concrete (individual) states of ions, this can be done, in the first
approximation, by resorting to perturbation theory [45].

Further refinements of models of matter are connected, first, with refining
the description of individual states of ions and, second, with accounting for their
interaction at high densities by employing boundary conditions of periodic type.

4.1 The Hartree-Fock-Slater system of equations in a

spherical cell

4.1.1 The Hartree-Fock-Slater field

The system of equations (3.65)–(3.67), (3.70) allows us, in principle, to obtain
the wave functions ψα(q) for a given position of the nuclei and given value of
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the chemical potential µ, which is determined from the condition of charge neu-
trality of the system of electrons and ions in matter. However, to actually carry
the calculations for the original system of equations is clearly impossible. For that
reason, as in the Thomas-Fermi and Hartree models, instead of the potential V (�r )
for a given position of the nuclei one usually looks for the average potential near
the nucleus in question, averaging V (�r ) over the different positions of the other
nuclei. If there is no preferred direction, it is natural to consider that the average
potential is spherically symmetric. Assuming that in the average-atom approxima-
tion the one-electron states with opposite directions of the projection of the spin
are occupied in identical manner, in formulas of Chapter III we can carry out the
summation with respect to σ, which leads to replacing q by �r, dq by 2d�r and ρ(q)
by ρ(�r )/2.

The Schrödinger equation in a central potential V (r) admits for a given value
εα = ε the particular solutions

Ψε�m(�r ) =
1
r
Rε�(r)(−1)mY�m(ϑ, ϕ), (4.1)

where the radial function Rε�(r) satisfies the equation

−1
2
R′′

ε�(r) +
[
−V (r) +

�(�+ 1)
2r2

]
Rε�(r) = εRε�(r). (4.2)

For r = 0 the radial function must satisfy the boundary condition Rε�(0) = 0.
To formulate the conditions on the boundary of the average atom cell one can
proceed in different ways. Let us consider first the case of high temperatures and
relatively small densities, when the ion core takes only a small part of the atom
cell and the states of the electrons in the so-called intermediate group are practi-
cally not occupied. In this case the boundary conditions for r = r0 are imposed
for the bound and free states exactly as in §§ 2.2, 2.3. Such an approach allows
one to carry out computations of Rosseland mean opacities, spectral absorption
coefficients and equations of state in a wide range of temperatures and densities
within the Hartree-Fock-Slater model, using the computational algorithm of the
Hartree model presented in Subsection 3.1.2. To do this, it suffices to add the
exchange correction Vex(r) in the formula (3.9) for the potential V (r).

Let us write the Hartree-Fock-Slater system of equations for the average
atom in the case of high temperatures and low densities. For the electron density
ρ(r), the contribution of bound states with ε < ε0 will be calculated using wave
functions; for the remaining states we will use the semiclassical approximation:

ρ(r) = ρ1(r) + ρ2(r), (4.3)

where

ρ1(r) =
1

4πr2
∑

εn�<ε0

Nn�R
2
n�(r), Nn� =

2(2�+ 1)

1 + exp
(
εn� − µ

θ

) , (4.4)
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ρ2(r) =
(2θ)3/2

2π2

∞∫

y0

y1/2 dy

1 + exp
(
y − V (r) + µ

θ

) , (4.5)

y0 = y0(r) = max
{

0;
V (r) + ε0

θ

}
.

The chemical potential µ is determined from the condition of charge neutral-
ity of the average atom cell:

4π

r0∫

0

ρ(r)r2 dr = Z. (4.6)

The potential V (r) includes, in addition to the Coulomb part Vc(r), the
exchange correction Vex(r):

V (r) = Vc(r) + Vex(r), (4.7)

where

Vc(r) =
Z

r
− 4π



1
r

r∫

0

r′2ρ(r′) dr′ +

r0∫

r

r′ρ(r′) dr′



 , (4.8)

Vex(r) =
πρ(r)
θ

[
1 + 5.7

ρ(r)
θ3/2

+
π4

3
ρ2(r)
θ3

]−1/3

. (4.9)

The effective boundary of the continuum ε0 is determined from the thermo-
dynamic consistency condition (3.70):

8
√

2
3π

r0∫

0

[max {0, ε0 + V (r)}]3/2r2 dr =
∑

n,�

2(2�+ 1) (εn� < ε0). (4.10)

Compared with the Hartree model considered earlier, the Hartree-Fock-Slater
model incorporates exchange effects and has the advantage that the additional
condition (4.10) allows one to choose an optimal—from the point of view of the
volume of computations and the resulting accuracy—value of ε0, because when ε0
is decreased the volume of computations decreases as well, though the accuracy
may worsen. Condition (4.10) also enables one to calculate more correctly the
thermodynamic functions of matter, which are derivatives of the thermodynamic
potential Ω.

In the low-density approximation considered here, the thermodynamic con-
sistency condition (4.10) will be satisfied whenever ε0 satisfies the inequality

εn� < ε0 < εn+1,�′ (4.11)
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for some value of n = nmax and arbitrary � < n, �′ < n+ 1. This follows from the
fact that the left-hand side of equation (4.10) is a smooth monotone function of ε0,
whereas the right-hand side depends on ε0 in a step-like manner (cf. Figure 3.10).
Hence, for ε0 in the interval (4.11) equation (4.10) always has a root. Note that
in addition to (4.11), it is necessary that Nn� � 1. In the computational process
the selected value n = nmax does not change.

To simplify formulas we have considered the nonrelativistic variant of the
HFS model. The relativistic approximation is readily obtained if for the density
of the bound electrons one uses the equations (3.13) and (3.15).

Table 4.1: The energy levels εn�j in eV and the average occupation numbers Nn�j

according to the relativistic Hartree and Hartree-Fock-Slater models for an iron
plasma with temperature T = 100 eV and density ρ = 0.1 g/cm3

|εn�j | Nn�j

n � j Hartree HFS Hartree HFS

1 0 1/2 7194 7534 2.000 2.000
2 0 1/2 1142 1247 1.991 1.997
2 1 1/2 1031 1144 1.972 1.991
2 1 3/2 1020 1132 3.937 3.979
3 0 1/2 379.6 395.9 0.188 0.215
3 1 1/2 346.3 363.1 0.139 0.160
3 1 3/2 344.7 361.0 0.273 0.313
3 2 3/2 296.3 313.6 0.173 0.201
3 2 5/2 296.0 313.1 0.259 0.300
4 0 1/2 168.1 171.7 0.025 0.025
4 1 1/2 155.0 158.8 0.022 0.022
4 1 3/2 154.5 158.2 0.043 0.044
4 2 3/2 136.5 140.5 0.036 0.037
4 2 5/2 136.4 140.4 0.054 0.056
4 3 5/2 128.9 127.0 0.050 0.049
4 3 7/2 128.8 126.9 0.067 0.065
5 0 1/2 81.31 82.37 0.010 0.010
5 1 1/2 75.01 76.24 0.010 0.010
5 1 3/2 74.79 76.00 0.020 0.020
5 2 3/2 66.18 67.57 0.018 0.018
5 2 5/2 66.12 67.51 0.027 0.027
5 3 5/2 62.26 61.17 0.026 0.025
5 3 7/2 62.24 61.14 0.035 0.034
5 4 7/2 60.49 58.29 0.034 0.033
5 4 9/2 60.47 58.28 0.043 0.041

. . . . . . . . . . . . . . . . . . . . .

Table 4.1 lists energy levels and average occupation numbers calculated in
the relativistic variants of the Hartree and Hartree-Fock-Slater models for an iron
plasma with temperature T = 100 eV and density ρ = 0.1 g/cm3. The table shows
that in the present case accounting for the exchange effects leads to a change of
about 15 % in the average occupation numbers for the first nonfilled shell with
n = 3. The average charge of the ion in the Hartree model is Z0 = 14.06, while in
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the Hartree-Fock-Slater model it is Z0 = 13.85.

4.1.2 Periodic boundary conditions in the average spherical cell
approximation

When the density of matter is increased, a certain number of electrons may oc-
cupy states of the intermediate group (see § 2.1), and so in the general case one
has to take into account the band structure of the energy spectrum of electrons.
The bands were approximately accounted for in the average-atom model by B. F.
Rozsnyai [188] via two boundary conditions, which define the widths of the bands:






R
(1)
n� (r0) = 0 for the lower edge of the band,

d

dr

(
R

(2)
n� (r)
r

)∣∣∣∣∣
r=r0

= 0 for the upper edge of the band.
(4.12)

In addition to conditions (4.12), we need to know the distribution of electrons
over energies within the band, i.e., the density of states , which we will denote by
w(ε) (see § 2.3). In [188], in addition to (4.12), it was assumed that

w(ε) =
dN(ε)
dε

∼ √ε− ε1, (4.13)

where ε1 is the lower edge of the band.
The approximation (4.12), (4.13) is valid only for sufficiently narrow bands,

i.e., when their width is considerably smaller than the distance between neigh-
boring levels. In the case of wide bands this approximation may lead to incorrect
results for the position of the bands, as well as for their occupancy (see [152]).

More precise results are provided by an approach based on the Wigner-Zeitz
cell method, well known in solid state physics [239, 110]. The utilization of this
approach is justified for sufficiently high densities. Let us remark that for small
densities the results are practically independent of the boundary conditions ob-
tained in this manner, and hence these conditions can be used for all values of
the temperature and density. If the calculations yield a band width that is much
smaller than the distance between energy levels, then such states can be regarded
as discrete.

Since the physical conditions do not change from cell to cell, in the formula-
tion of the boundary conditions corresponding to the average potential V (r) it is
natural to start from the assumption that the structure is periodic in any distin-
guished direction and take as boundary conditions for the electron wave functions
Ψα(�r ) the conditions resulting from translational symmetry. For r = r0 we have

|Ψα(�r )|2 = |Ψα(−�r )|2.
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It follows that
Ψα(�r ) = ei�k�r Φα�k(�r ),

where �k is an arbitrary real constant vector (quasi-momentum) and Φα�k(�r ) is a
periodic function. From the periodicity condition for the function Φα�k(�r ) and the
continuity of its derivative we obtain the boundary conditions for the function
Ψα(�r ) (see also [170, 223]):






e−i�k�r Ψα(�r ) = ei�k�r Ψα(−�r ), if |�r | = r0,

e−i�k�r ∂

∂r
Ψα(�r ) = −ei�k�r ∂

∂r
Ψα(−�r ), if |�r | = r0.

(4.14)

The effective reciprocal cell in �k-space is also spherical in this approximation,
and its volume is equal to (2π)3

/ (
4
3πr

3
0

)
. It follows that the quantity |�k| · r0,

henceforth denoted by k, can take values in the interval

0 ≤ k ≤ k0 =
(

9π
2

)1/3

≈ 2.418.

We will seek the wave function Ψα(�r ) for a given value of k as a superposition
of functions (4.1), setting ε = ε(k) and taking into account that the projection
m of the orbital momentum � on the z-axis is conserved (here it is convenient to
direct the polar axis z along the quasi-momentum vector �k):

Ψα(�r ) =
∑

�′≥|m|
i�

′
An�m,�′(k)Ψ̃ε�′m(�r ). (4.15)

Here the symbol α = n�m denotes the set of quantum numbers that determine the
state of the electron for the given value of k (the numbers n and � determine the
energy level to which the band shrinks when the density of matter is decreased,
see below); the factor i�

′
is introduced to make the coefficients An�m,�′(k) real.

As computations have shown, the coefficients An�m,�′(k) in the expansion
(4.15) decrease when �′ increases (see, e.g., Table 4.2). In practice one can neglect
the electron states with orbital momentum �′, for which there is no classical domain
of motion within the limits of the average atom cell. Accordingly, in what follows
we shall take �′ ≤ �max.

The wave functions Ψα(�r ) are normalized as usual
∫

(|�r|<r0)

|Ψα(�r )|2 d�r = 1.

This condition can be satisfied by requiring that
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Table 4.2: Dependence of the coefficients An�m,�′(k) on �′ for various values of k.
The results are shown for iron in the TF potential with T = 0 and ρ = 7.85 g/cm3

(m = 0, n = 4, � = 2)

k
�′ 0.000 0.500 1.000 1.500 2.000 2.418

0 0.000 −0.081 −0.270 0.490 0.720 0.900
1 0.000 0.390 0.620 −0.660 −0.530 −0.084
2 1.000 −0.890 −0.660 0.400 0.170 0.170
3 0.000 −0.190 −0.330 0.380 0.360 0.330
4 0.000 0.017 0.065 −0.130 −0.190 −0.210
5 0.000 −0.001 −0.008 0.030 0.067 0.092
6 0.000 0.000 0.000 −0.005 −0.017 −0.028
7 0.000 0.000 0.000 0.000 0.004 0.009
8 0.000 0.000 0.000 0.000 0.000 0.001

r0∫

0

R2
ε�′(r) dr = 1,

�max∑

�′=|m|
A2

n�m,�′ = 1.

The coefficients An�m,�′(k) can be found from the boundary conditions (4.14).
In the manipulations below we will use the fact that

Ψ̃ε�′m(−�r ) =
(−1)m

r
Rε�′(r)Y�′m(π − ϑ, π + ϕ) =

(−1)�′+m

r
Rε�′(r)Y�′m(ϑ, ϕ).

Substituting the expansion (4.15) in the conditions (4.14), multiplying the result
by i−�′′ Y ∗

�′′m(ϑ, ϕ) and integrating over the angular variables, we obtain

�max∑

�′′=|m|
An�m,�′′(k)am�′�′′(k)g�′�′′(ε) = 0 (�′ = |m|, |m|+ 1, . . . , �max), (4.16)

where

g�′�′′(ε) =






Rε�′′(r0), if �′ is odd,

d

dr

(
Rε�′′(r)

r

) ∣∣∣∣∣
r=r0

, if �′ is even.
(4.17)

The coefficients

am�′�′′(k) = i�
′′−�′
∫
Y�′′m(ϑ, ϕ)Y ∗

�′m(ϑ, ϕ)e−ik cos ϑ dΩ (4.18)

can be expressed in terms of the Clebsch-Gordan coefficients by decomposing
e−ik cos ϑ into spherical harmonics [220] (see also Subsection 4.2.2).
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The system (4.16) has nontrivial solutions if its determinant is equal to zero.
This condition yields the possible values of the energy εn�m(k). Since for k=0 we
have

am�′�′′(0) = δ�′�′′ ,

equation (4.16) with k=0 will be satisfied if Rε�′(r0) = 0 (when �′ is odd) or
d(r−1Rε�′(r))/dr)

∣∣
r=r0

= 0 (when �′ is even) for some �′ = � (and then we have
An�m,�′′(0) = δ��′′). The values of ε that satisfy these conditions will be denoted
by εn�, where n is the principal quantum number, corresponding to the fact that
function Rε�(r) has n− �− 1 zeroes in the interval (0, r0). In connection with this
the quantum numbers n and � determine the energy εn�, which corresponds to the
edge of the band at k = 0. It is precisely these quantum numbers that define the
discrete level to which the band shrinks when the density is decreased.

4.1.3 The electron density and the atomic potential in the Hartree-
Fock-Slater model with bands

For given values of n, � and m, the number N(ε, k) of electrons found in states
ranging from k to k+dk is equal—up to a normalization constant—toN(ε)4πk2 dk,
where

N(ε) =
2

1 + exp
(
ε− µ
θ

) , ε = εn�m(k).

Recalling the normalization in the �k-phase space, we finally obtain

N(ε, k) = N(ε)
4πk2 dk

(4/3)πk3
0

.

Since εn�m = εn�,−m and An�m,�′ = An�, −m,�′ , it is sufficient to carry out the
calculations only for m ≥0.

Thus, in order to approximately account for the band structure of the energy
spectrum of the intermediate group of electrons it is necessary to modify the HFS
model introduced in Subsection 4.1.1. The calculation of the energy spectrum and
wave functions by means of formulas (4.15), (4.16) is done for values of the electron
energy ε < ε0. In the calculation of the electron density ρ1(r) the summation
over bound states is carried out according to formula (4.4). Summation over the
states of the intermediate group must be replaced by summation over the quantum
numbers n, �, m, �′ and integration over the quasi-momentum �k. The formula
for ρ1(r) takes on the form

ρ1(r) =
1

4πr2




∑

n,�

Nn�R
2
n�(r) +

∑

n,�,m,�′

k0∫

0

N(ε)A2
n�m,�′(k)R

2
ε�′(r)

3k2 dk

k3
0



 .

(4.19)
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Here in the first term in the square brackets summation over n, � is carried out
over the bound states with energy εn� < ε0. The summation over n, �,m, �′ and
the integration over k in the second term is carried out for the intermediate-group
states with energies εn�m(k) < ε0.

The formulas for ρ2(r) and V (r) remain the same as above (see formulas
(4.5)–(4.9)), whereas equation (4.10) for the determination of ε0 becomes some-
what more complex:

8
√

2
3π

r0∫

0

[max {0, ε0 + V (r)}]3/2r2 dr =
∑

n,�

2(2�+ 1) +
∑

n,�,m

k0∫

0

6k2 dk

k3
0

. (4.20)

Here, as in (4.19), summation over the quantum numbers n�, n�m and integration
over the quasi-momentum k are carried out over states with energy ε < ε0.

4.1.4 The relativistic Hartree-Fock-Slater model

To account for relativistic effects, instead of the Hamiltonian (3.18) of the electron
system we follow I. P. Grant’s work [74] and consider the Hamiltonian

Ĥ =
∑

i

ĤD
i +

1
2

∑

i�=j

[
1

|�ri − �rj | + B̂ij

]
+ Ĥem + Ĥint, (4.21)

where
ĤD

i = c �̂α �̂p+ c2β̂ − Va(�ri),

B̂ij = − 1
2|�ri − �rj |



�̂αi · �̂αj +

(
�̂αi · (�ri − �rj)

)(
�̂αj · (�ri − �rj)

)

|�ri − �rj |2



 .

The corrections Ĥem and Ĥint are connected with the effects of vacuum polariza-
tion and interaction with the radiation field. Also, �̂p = −i�∇ and the operators �̂α
and β̂ can be expressed in terms of the Pauli matrices �σ (see Appendix, §A.2).

The utilization of the one-particle approximation in relativistic quantum the-
ory runs into serious methodological difficulties, since, rigorously speaking, the
concept of a single particle in a relativistic system with interaction cannot be
defined. Nevertheless, by introducing additional approximations one can use a
one-particle approximation analogous to that considered in § 3.2. In this approach
the multi-electron wave functions are represented as an expansions in one-electron
wave functions with determined values of the total momentum j and its projection
m on the z-axis.

To obtain Hartree-Fock-Slater equations incorporating relativistic effects it
is necessary to proceed in much the same way as in Chapter III, replacing the
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operator −(1/2)∆ by −ic�̂α�∇+ c2β̂, in accordance with (4.21). In the rather crude
approximation of the average atom it does not make sense to introduce corrections
connected with magnetic interactions (the Breit corrections B̂ij), or the polariza-
tion and radiative corrections. If necessary, these corrections can be incorporated
in the framework of perturbation theory when computations of detailed character-
istics of an atom are carried out, for example, in the computation of the positions
of spectral lines.

Proceeding as indicated, the equations of the relativistic Hartree-Fock-Slater
model are derived from the equations (3.63)–(3.67) upon replacing the Schrödinger
equation by the Dirac equation

[
−ic�̂α�∇+ c2β̂ − V (�r )

]
ψν(q) = ενψν(q), (4.22)

where the symbol ν stands for the set of quantum numbers n, �, j, m and ψν(q)
is a 4-component spinor. For nν one has the same formula (3.66).

The distribution function n(q, �p ) of the continuum electrons also becomes
relativistic; however, in it, as in the exchange term, we will neglect relativistic
effects, since the influence of the latter on these quantities are small.

According to (A.41)-(A.42), in a spherical cell we have

ψn�jm(q) =
1
r






Fn�j(r)
∑

m�,ms
Cjm

�m�
1
2ms

i�(−1)m�Y�m�
(ϑ, ϕ)χsms

(σ),

(−1)kGn�j(r)
∑

m�′ ,ms
Cjm

�′m�′
1
2 ms

i�
′
(−1)m�′Y�′m�′(ϑ, ϕ)χsms

(σ),

where Fn�j(r) and Gn�j(r) are the large and respectively the small radial parts of
the wave function, j is the momentum quantum number of the electron and m is
the projection of j on the z-axis (� = j ± 1/2, �′ = 2j − �, k = (�− �′ + 1)/2).

As a rule, in computations one can solve the Dirac equation for the inner
shells, where relativistic effects are the most significant, while in the remaining
cases it is convenient to use the Pauli approximation [49]. This allows one to use
the same method for imposing periodic boundary conditions as in Subsection 4.1.2.
Indeed, in the Pauli approximation for the radial parts of the wave functions, like
in the nonrelativistic case, one solves the Schrödinger equation by incorporating
relativistic corrections in the potential V (r). To deal with the inner electrons,
for which one uses the Dirac equation, one can consider that the relativistic one-
electron energy levels are discrete and neglect the band structure of the spectrum
for these levels.

Following the approach described above, for the inner shells the Schrödinger
equation (4.2) is replaced by the Dirac equations






dFn�j(r)
dr

= −κ
r
Fn�j(r) + α

[
2
α2

+ εn�j + V (r)
]
Gn�j(r),

dGn�j(r)
dr

=
κ

r
Gn�j(r)− α [εn�j + V (r)]Fn�j(r),

(4.23)
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where κ = −2(j − �)(j + 1/2). For higher levels, among them the states of the
intermediate group, one applies the Pauli-type approximation (see [49], Chapter
7):

−1
2
R′′

ε�(r) +
[
−V (r)− VP(r) +

�(�+ 1)
2r2

]
Rε�(r) = εRε�(r), (4.24)

VP(r) =
α2

2

{
[
ε+ V (r)

]2 − δ�0
2
V ′(r) [R′

ε�(r)/Rε�(r)− 1/r]
1 + α2

[
ε+ V (r)

]
/2

}
. (4.25)

4.2 An iteration method for solving the Hartree-Fock-

Slater system of equations

4.2.1 Algorithm basics

In practice it may be required to carry out computations of the equation of state
and the photon absorption coefficients in a wide range of temperatures and den-
sities (about 500–1000 (T , ρ)-cases for each substance). Therefore, it is very im-
portant to construct an efficient algorithm for solving the system of equations of
the Hartree-Fock-Slater model or of its modifications considered in § 4.1.

In the solution of the Hartree-Fock-Slater system of equations the iteration
process that computes the successive values V (s)(r) is similar to the iteration
process used to solve the Hartree system of equations, described in § 3.1. Let us
mention some specific aspects of the computations.

The computations with no accounting for the band structure present no diffi-
culties, and the efficiency of the computational algorithms is not inferior to that of
the algorithms for the Hartree model. For very small densities one has to pay some
attention to the choice of the grid; however, the computations can be simplified
considerably if one resorts to the uniform electron density approximation for the
electrons of continuum (see Subsection 4.2.4 below). The most labor-consuming is
the computation of the band structure of the energy spectrum and wave functions
for the electrons of the intermediate group of states. The corresponding algorithms
will be described in detail in Subsection 4.2.2.

An important factor for the convergence of the iterations for the potential in
the Hartree model, as well as for the Hartree-Fock-Slater system of equations is the
condition of preservation of charge neutrality of the average atom cell throughout
the iteration process. An analogous role in the convergence of iterations is played
by the supplementary condition (4.10) for determining ε0 (or condition (4.20 for
the variant of the model that accounts for the band structure). The role played
by these conditions in the convergence of the iterations becomes clear in the case
of small densities. In particular, it turns out that the number of discrete levels
intervening in formula (4.4) must not change in the iteration process.
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4.2.2 Computation of the band structure of the energy spectrum

In the approximation adopted above, the band structure of the energy spectrum
of electrons in matter, i.e., the dependence of allowed energy values ε on the quasi-
momentum k, is determined, for given n, � and m, from the condition that the
system of equations (m ≥ 0)

�max∑

�′′=m

An�m,�′′am�′�′′(k)g�′�′′(ε) = 0 (�′ = m,m+ 1, . . ., �max) (4.26)

admits a nontrivial solution An�m,�′ . Such a condition is that the determinant of
this system be equal to zero

D(k, ε(k)) = det ‖am�′�′′(k)g�′�′′(ε)‖ = 0. (4.27)

Before we look at a method for calculating ε(k), let us describe the process
of computing the quantities am�′�′′(k) and g�′�′′(ε). To compute the coefficients
am�′�′′(k) by means of formula (4.18), we use the expansion of a plane wave into
Legendre polynomials, which yields

e−ik cos ϑ =
√

π

2k

∞∑

L=0

(−i)L(2L+ 1)PL(cosϑ) JL+1/2(k), (4.28)

where PL(x) are Legendre polynomials and JL+1/2(k) are Bessel functions.
Substituting expression (4.28) in formula (4.18) we obtain

am�′�′′(k) =
√

π

2k

∑

L

(−1)
L+�′′−�′

2 (2L+ 1)JL+1/2(k)Dm�′�′′L, (4.29)

where

Dm�′�′′L =
∫
PL(cosϑ)Y ∗

�′m(ϑ, ϕ)Y�′′m(ϑ, ϕ) dΩ =
√

(2L+ 1)(2�′′ + 1)
(2�′ + 1)

C�′0
L0 �′′0C

�′m
L0 �′′m.

Formulas for C�′m
L0 �′′m can be found, for example, in [220]. In the computation of

Dm�′�′′L one replaces n! by the preliminarily computed numbers n!/10n, which
accelerates the computations and allows one to avoid operating with very large
numbers.

For the summation over L in (4.29) it is better to go from higher to lower
values of L, starting with L = �′ + �′′. This choice of summation order reduces
the computational errors, since the terms of the series (4.29) decrease when L
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increases. In this connection, for the calculation of the Bessel functions JL+1/2(k)
it is convenient to apply the recursion relation

Jn−1/2(k) =
2n+ 1
k

Jn+1/2(k)−Jn+3/2(k) (n = �′+�′′−1, �′+�′′−2, . . .). (4.30)

The calculation using (4.30) is stable against round-off errors. To be able to apply
relation (4.30) one needs to know the values of JL+1/2(k) for L = �′ + �′′ and
L = �′ + �′′ − 1. The latter can be computed by using series expansions for the
Bessel functions. Note that, for large L and k � 1, the quantity JL+1/2(k) may
be negligibly small, because for small k

JL+1/2(k) ∼=
(
k

2

)L+1/2 (L+ 1)!√
π (2L+ 2)!

.

In this case formula (4.30) is applied for L ≤ Lmax < �′+�′′, and the values of
JL+1/2(k) for L > Lmax are taken to be zero (the value of L = Lmax is determined,
for example, by the condition JL+1/2(k) < 10−20 ).

When one solves the Hartree-Fock-Slater system of equations it is necessary
to know how to compute the wave functions Rε�(r) and their derivatives R′

ε�(r) in a
wide range of values of ε and �. To compute Rε�(r) we use quadratic interpolation
with respect to energy, based on the wave functions computed earlier on some
mesh with respect to ε. To choose the mesh we use the results of the computation
of ε(k) in the preceding iteration. Thus, if the previously computed energy values
ε(s)(k) of the s-th iteration with respect to the potential obey the inequality

ε(s)a ≤ ε(s)(k) ≤ ε(s)b ,

then to carry out the (s + 1)-st iteration we choose the mesh values εi so as
to guarantee sufficient accuracy in the interval (ε(s)a − ∆ε, ε(s)b + ∆ε), where one
denotes ∆ε = 0.1|ε(s)b − ε(s)a |.

For the first iteration, the values ε(0)a and ε(0)b are determined using the bound-
ary conditions in the approximation (4.12) and the phase method for solving the
Schrödinger equation (see Appendix, §A.5). One of these two values (ε(0)a or ε(0)b ,
depending of the orbital number �) coincides with ε(0)n�m(0).

As � grows, the dependence of the wave functions Rε�(r) on the energy ε
becomes simpler, and consequently for large � it is reasonable to use simpler for-
mulas. As it turns out, in this case linear interpolation with respect to energy
provides sufficient accuracy.

To compute the allowed energy values εn�m(k), i.e., to solve equation (4.27),
the secant method proved to be the most efficient. The determinant D(k, ε) was
calculated by the Gauss elimination method with choice of the principal ele-
ment [222]. The high efficiency of the method was achieved thanks to the simplicity
of the computation of the determinant D(k, ε) as a result of using the previously
computed coefficients am�′�′′(k) and the availability of simple interpolation formu-
las for Rε�(r).
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4.2.3 Computational results

Table 4.3 lists values of residuals in the computation of the Hartree-Fock-Slater
potential for aluminum with density ρ = 0.271 g/cm3 and various values of
the temperature. The residual was calculated by means of the formula ∆s =
max

r
|V (s)(r)− F [V (s)(r)]| (compare with (3.11)). For the temperature T = 1 eV

and the same density (ρ = 0.271 g/cm3), Figure 4.1 shows the graphs of the po-
tential V (s)(r), multiplied by the radius r, for the iteration number s = 0, 1, 2, . . . .

Table 4.3: Residual in the iterations for the Hartree-Fock-Slater potential for alu-
minum with density ρ = 0.271 g/cm3 and various temperatures: T = 0 and T =1;
10; 100; 1000 eV

s T = 0 T = 1 eV T = 10 eV T = 100 eV T = 1000 eV

0 7.996 · 10−1 8.391 · 10−1 1.108 · 100 3.229 · 10−1 1.099 · 10−1

1 2.337 · 10−1 2.229 · 10−1 3.438 · 10−1 3.005 · 10−2 1.916 · 10−2

2 5.506 · 10−2 4.537 · 10−2 8.002 · 10−2 6.754 · 10−3 1.022 · 10−4

3 2.403 · 10−2 2.409 · 10−2 2.850 · 10−2 2.429 · 10−3 1.372 · 10−5

4 1.030 · 10−2 9.990 · 10−3 1.449 · 10−2 1.728 · 10−4 6.851 · 10−7

5 5.548 · 10−3 5.032 · 10−3 7.691 · 10−3 4.129 · 10−5

6 2.281 · 10−3 2.220 · 10−3 3.967 · 10−3 1.175 · 10−6

7 9.943 · 10−4 1.087 · 10−3 2.015 · 10−3

8 5.050 · 10−4 4.865 · 10−4 1.016 · 10−3

9 2.425 · 10−4 2.516 · 10−4 5.093 · 10−4

10 1.176 · 10−4 1.116 · 10−4 2.547 · 10−4

11 5.127 · 10−5 5.300 · 10−5 1.272 · 10−4

12 2.572 · 10−5 2.429 · 10−5 6.350 · 10−5

13 1.210 · 10−5 1.268 · 10−5 3.171 · 10−5

14 6.434 · 10−6 6.124 · 10−6 4.524 · 10−6
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Figure 4.1: Successive iterations of the potential rV (s)(r) for aluminum with tem-
perature T = 1 eV and density ρ = 0.271 g/cm3
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Figure 4.2: Dependence of the allowed energies ε(k) = εn�m(k), in atomic units,
on the quasi-momentum k for aluminum with density ρ = 2.71 g/cm3 and tem-
perature T = 10 eV and T = 100 eV

Practically, already the third iteration yields values of the potential close to
the solution. A high accuracy (∆s < 10−5) is required only for low temperatures
in the calculation of internal energy of matter, which in this case is determined by
a difference of large quantities.

Figures 4.2 and 4.3 display results of the computation of allowed energies
εn�m(k) for aluminum for various temperatures and densities. As one can see from
these figures, the computation of the band structure is necessary only for high
densities and low temperatures.

This is particularly transparent in Figure 4.4, which shows the upper and
lower edges of the allowed energy bands for aluminum, i.e., minm,k εn�m(k) and
maxm,k εn�m(k), in their dependence on the density ρ in g/cm3. The computations
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Figure 4.3: Allowed energy values ε(k) = εn�m(k) for aluminum with temperature
T = 1 eV and densities ρ = 2.71 g/cm3 and ρ = 27.1 g/cm3
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Figure 4.4: Dependence of the upper and lower edges of the allowed energy bands
for aluminum (minm,k εn�m(k) and maxm,k εn�m(k), in atomic units) on the density
ρ in g/cm3 at temperature T = 0

were carried out for temperature T = 0. When the temperature is increased the
bands shrink rapidly, and the corresponding levels become discrete.

4.2.4 The uniform-density approximation for free electrons in the
case of a rarefied plasma

For low densities of matter practically the entire average atom cell is filled by
a homogeneous gas of electrons and in order to calculate self-consistent atomic
potential one needs to use special grids, sufficiently fine near the nucleus for r < r̃,
where r̃ is the dimension of the ion core, and less fine in the remaining domain r̃ <
r < r0 (where r0 is the radius of the average atom cell). Utilization of special grids
complicates the computational scheme and require a persistent error control, which
makes massive computations difficult. Moreover, the constraint on the density is
not removed. Therefore, it is reasonable to use approximate analytic solutions
which are valid in the present case.

Considering that in a plasma with small density the free electrons are uni-
formly distributed far from nuclei, we set the density of electrons ρ(r) for r > r̃
equal to a constant value ρ(r) = ρ̃ = ρ(r̃).

The magnitude of r̃ is determined by the degree of ionization of the plasma
and the occupation of the ion shells. One can set approximately (see (A.36))

r̃ =
2n2

max

Z0
,

where nmax is the principal quantum number of the last partially filled shell and
Z0 is average ion charge.
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Near the ion core, i.e., for r < r̃, the distribution of electrons and the self-
consistent potential will be calculated by means of formulas (4.3)–(4.9). In the
domain r > r̃, using the constancy of the electron density, we have

V (r) = Vc(r) + Vex(r), r̃ < r < r0, (4.31)

where

Vc(r) =
4π
3
ρ̃r30
r

[
1− 3

2
r

r0
+

1
2

(
r

r0

)3
]
. (4.32)

The exchange correction Vex is calculated using formula (4.9) with ρ(r) = ρ̃.
Thus, we must find the solution of the Hartree-Fock-Slater equation only for

r < r̃, taking into account the fact that in this domain

r̃∫

0

4πr2ρ(r) dr = Z − Z̃,

where Z̃ = 4π(r30 − r̃3)ρ̃/3.
Expressions (4.31) and (4.32) will be used below to calculate matrix elements

at low densities whenever we need to know the electron density and the atomic
potential in the entire atom cell.

4.3 Solution of the Hartree-Fock-Slater system of

equations for a mixture of elements

4.3.1 Problem setting

For a mixture of N components with mass fractions mi (i = 1, 2, . . .N) at a
specified temperature θ and average density ρ, the radius of the average atom cell
of the i-th component is given by the formula (see Subsection 1.3.1):

r0i = 1.388
(
Ai

ρi

)1/3

,

where ρi is the intrinsic density and Ai is the atomic mass. The concentration of
the i-th component (relative fraction of ions) is

ci =
mi/Ai∑
mi/Ai

.

By formula (1.48),

N∑

i=1

mi

ρi
=

1
ρ

N∑

i=1

mi, or
N∑

i=1

mi

Ai
r30i = (1.388)3

1
ρ

N∑

i=1

mi. (4.33)
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Furthermore, we must require the equality of the chemical potentials or elec-
tron pressures for each of the components in the mixture. Note that for sufficiently
high temperatures and not too large densities it suffices to require the equality of
chemical potentials, and then other equilibrium characteristics, namely, the elec-
tron pressures and the electron densities on the boundaries of the atom cells will
also coincide.

To simplify the exposition, we will consider the equations for a mixture and
the computational algorithm for the case of relatively low densities, for which it is
not necessary to impose the periodicity conditions (4.14). At the same time, the
conditions for the applicability of the cell approximation must be satisfied, i.e.,
the degree of ionization must be sufficiently high.

In each cell the calculation of the potential Vi(r) for the i-th component of
the mixture is done using the electron density

ρi(r) = ρ1i(r) + ρ2i(r), (4.34)

where

ρ1i(r) =
∑

n,�,j

1
4πr2

Nn�j,i

[
F 2

n�j,i(r) +G2
n�j,i(r)

]
(εn�j,i < ε0i),

ρ2i(r) =
(2θ)3/2

2π2

∞∫

y0i

y1/2 dy

1 + exp
(
y − Vi(r) + µi

θ

) ,

Nn�j,i =
2j + 1

1 + exp
(
εn�j,i − µi

θ

) , y0i = max
{

0,
Vi(r) + ε0i

θ

}
.

The wave functions Fn�j,i(r) and Gn�j,i(r) and the energy values εn�j,i are
obtained by solving the Dirac equations (4.23) with the potentials Vi(r) defined by
formulas (4.7)–(4.9), in which one uses the electron density ρi(r) and the nucleus
charge Zi for the i-th component of the mixture.

Moreover, for each average atom cell the charge neutrality condition is sat-
isfied:

Zi − Z0i(µi) =
∑

n,�,j

Nn�j,i(µi) (εn�j,i < ε0i), (4.35)

where

Z0i(µi) = 4π

r0i∫

0

ρ2i(r)r2 dr.

The thermodynamic equilibrium conditions read

µi = µj = µ (i 	= j).
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In the low-density approximation considered here the thermodynamic con-
sistency condition (4.10) will be satisfied provided that the quantities ε0i obey for
some n = nmax,i the inequalities

εn,i < ε0i < εn+1,i,

where

εn,i =

∑
�,j

Nn�j,i εn�j,i

∑
�,j

Nn�j,i

and the numbers n are such that Nn,i =
∑
�,j

Nn�j,i � 1 for all components of the

mixture (i = 1, 2, . . ., N). The chosen values nmax,i remain the same throughout
the computational process (see Subsection 4.1.1).

4.3.2 Iteration scheme

As in the case of a substance consisting of atoms of a single element, for a mixture
of elements (see (4.33)–(4.35)) the unknowns of the Hartree-Fock-Slater system of
equations include, in addition to Vi(r), ρi(r), εn�j,i, µi = µ, the radii r0i of the
cells, which complicates the problem considerably.

The HFS system of equations for a mixture can be solved by calculating
the self-consistent potentials for each element of the mixture, and then ensuring
that the chemical potentials coincide. This may be achieved by using interpolation
of preliminarily calculated tables for single elements. Such a scheme, however, is
not economic enough, since the volume of computations grows rapidly with the
number of components in the mixture.

A more economical scheme can be obtained if, at each iteration carried out
to compute the self-consistent atomic potentials, one simultaneously adjusts the
values of the radii r0i so that when the self-consistent potentials for the elements of
the mixture are obtained, their chemical potentials will be simultaneously adjusted
as well [160].

In constructing the iteration scheme we will start from the requirement that
the charge neutrality condition (4.35) be satisfied during the iteration process.
Starting with given values r(s)0i and V

(s)
i (r), we can compute the corresponding

energy values ε(s)n�j,i. Before we calculate the new electron densities and the new

atomic potentials V (s+1)
i (r), we will find new values of r(s+1)

0i that are closer to
the sought solution, the way we did in the Thomas-Fermi model (see § 1.3).

Let xi = r30i; then for any values of xi that we may choose the charge neu-
trality condition (4.35) and condition (4.33) must be satisfied, i.e.,

Bi(µi, xi) + Z0i(µi, xi)− Zi = 0, i = 1, 2, . . . , N, (4.36)
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N∑

i=1

mi

Ai
xi − (1.388)3

1
ρ

N∑

i=1

mi = 0, (4.37)

where

Z0i(µi, xi) =
2(2θ)3/2

π

3√xi∫

0

r2 dr

∞∫

y
(s)
0i

y1/2 dy

1 + exp

(
y − V

(s)
i (r) + µi

θ

) , (4.38)

y
(s)
0i = max

{
0;
V

(s)
i (r) + ε

(s)
0i

θ

}
,

Bi(µi, xi) =
∑

n�j

Nn�j,i(ε
(s)
n�j,i, µi) (ε(s)n�j,i < ε

(s)
0i ), (4.39)

Nn�j,i(ε, µ) =
2j + 1

1 + exp
(
ε− µ
θ

) .

Since the potentials V (s)
i (r) are calculated for r ≤ r

(s)
0i , in order that the

expression (4.38) be defined for all xi, we put V (s)
i (r)=V (s)

i (r(s)0i ) for r > r
(s)
0i .

We shall solve the system (4.36)–(4.37) in the linear approximation, expand-
ing Bi and Z0i near xi = x̄i = (r(s)0i )3 and µi = µ̄i. The quantities x̄i, µ̄i satisfy
the equations (4.36), (4.37) for the given V

(s)
i (r), ε(s)n�j,i, ε

(s)
0i , but fail to satisfy

the equality of chemical potentials for all elements in the mixture. In the linear
approximation we have

Bi(µi, xi) ∼= Bi(µ̄i, x̄i) +
∂Bi

∂µi
(µi − µ̄i) +

∂Bi

∂xi
(xi − x̄i),

Z0i(µi, xi) ∼= Z0i(µ̄i, x̄i) +
∂Z0i

∂µi
(µi − µ̄i) +

∂Z0i

∂xi
(xi − x̄i), (4.40)

where the derivatives are calculated for µi = µ̄i and xi = x̄i:

∂Z0i

∂µi
=

2(2θ)3/2

πθ

3√x̄i∫

0

r2 dr×





1
2

∞∫

y
(s)
0i

y−1/2dy

1 + exp
(
y − V

(s)
i (r) + µ̄i

θ

) +
(y(s)

0i )1/2

1 + exp
(
y
(s)
0i −

V
(s)
i (r) + µ̄i

θ

)





,
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∂Z0i

∂xi
=

2(2θ)3/2

3π

∞∫

y
(s)
0i

y1/2dy

1 + exp

(
y − V

(s)
i (r) + µ̄i)

θ

) ,

∂Bi

∂µi
=

1
θ

∑

n�j

Nn�j,i

[
1− Nn�j,i

2j + 1

]
(ε(s)n�j,i < ε

(s)
0i ),

∂Bi

∂xi
= −∂Bi

∂µi

∑

n�j

∂ε
(s)
n�j,i

∂xi
(ε(s)n�j,i < ε

(s)
0i ).

To compute ∂ε(s)n�j,i/∂xi we shall make a further approximation, assuming

that when xi changes, the energy value ε
(s)
n�j,i changes only as a result of the

external screening due to the free electrons. In this approximation

ε
(s)
n�j,i

∼= ε̄
(s)
n�j,i +

3
2
Z0i

r0i
, (4.41)

where ε̄(s)n�j,i does not depend on r0i. In view of (4.41),

∂Bi

∂xi
= −1

2
∂Bi

∂µi

1
3
√
xi

(
Z0i

xi
− 3

∂Z0i

∂xi

) ∣∣∣∣
µ=µ̄i,x=x̄i

.

Substituting the expansions (4.40) in (4.36), we obtain
(
∂Bi

∂xi
+
∂Z0i

∂xi

)
(xi − x̄i) = Zi −Bi(µ̄i, x̄i)− Z0i(µ̄i, x̄i)−
(
∂Bi

∂µi
+
∂Z0i

∂µi

)
(µi − µ̄i) = −

(
∂Bi

∂µi
+
∂Z0i

∂µi

)
(µi − µ̄i), (4.42)

because Bi(µ̄i, x̄i) + Z0i(µ̄i, x̄i) = Zi, in accordance with the choice of µ̄i, x̄i. We
are seeking solutions of equation (4.42) that satisfy the self-consistency condition
for our problem, i.e., such that µi = µ. Then for xi we get the expression

xi = x̄i

{
1− (∂Bi/∂µi + ∂Z0i/∂µi) (µ− µ̄i)

(∂Bi/∂xi + ∂Z0i/∂xi)x̄i

}
. (4.43)

Now let us multiply (4.43) by mi/Ai and sum over i, observing that

N∑

i=1

mi

Ai
xi =

N∑

i=1

mi

Ai
x̄i.

We have

µ =
N∑

i=1

mi

Ai

(
∂Bi/∂µi + ∂Z0i/∂µi

∂Bi/∂xi + ∂Z0i/∂xi

)
µ̄i

/ N∑

i=1

mi

Ai

(
∂Bi/∂µi + ∂Z0i/∂µi

∂Bi/∂xi + ∂Z0i/∂xi

)
.

(4.44)
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Computations have shown that using formulas (4.43), (4.44) to get the new
values of µ and xi at temperatures T ≥ 10 eV leads to a sufficiently rapidly
converging iteration process. However, at lower temperatures the iterations may
diverge, since the initial approximation, obtained within the Thomas-Fermi model,
turns out to be rather crude.

To ensure the convergence of the iterations, we will use a method similar to
that discussed in Subsection 3.1.2 for a single-component substance. Looking only
in the direction of change of xi, we set

x
(s+1)
i = x̄i + ξ(s)(xi − x̄i), (4.45)

where xi is calculated via formula (4.43) and the iteration parameter ξ(s) (0 <
ξ(s) < 1) is determined from the conditions of convergence of the iterations. Specif-
ically, we increase or decrease ξ(s) during the iteration process depending on the
quantity

∆(s) = |µ(s+1) − µ(s)|+
∑

i

(
|xi − x̄i|+ |∆V (s)

i |
)
,

where µ(s), µ(s+1) are the values of µ furnished by formula (4.44) at the (s+1)-st
and s-th iterations and ∆V (s)

i is the residual of the potential of the i-th component
at the s-th iteration (see formula (3.11)).

For the first iteration we put ξ(0) = 0.5. After that the change of ξ(s) depends
on the change of ∆(s). If ∆(s) < ∆min (in computations we took ∆min = 0.1N) and
∆(s) < ∆(s−1), we put ξ(s+1) = 1.2 ξ(s). If ∆(s) > ∆(s−1), we put ξ(s+1) = 0.8 ξ(s).
In addition, the value of ξ(s) must be confined to some interval (generally, we took
0.1 < ξ(s) < 0.75).

The iteration runs as follows. Computing x(s+1)
i by means of formula (4.45),

we find the corresponding values of the chemical potentials µ(s+1)
i , which satisfy

the charge neutrality conditions (4.36). With the resulting values x(s+1)
i , µ(s+1)

i

we calculate the electron density (4.34) for each component of the mixture and
the corresponding potentials V (s+1)

i (r). This iteration step is repeated until the
condition ∆(s) < ε is satisfied, where ε is the prescribed accuracy (e.g., ε = 10−6).

The iteration scheme described above is readily modified when, instead of
the equality of chemical potentials, one imposes other equilibrium conditions, for
example, the equality of electron pressures [159]. Since the electron pressure Pei of
the i-th component for the given temperature is a single-valued function of µi and
xi, to obtain the new iteration formulas it suffices to replace in (4.43) and (4.44)
the quantities µ and µi by Pe and Pei, respectively, and in the calculation of the

derivatives ∂Bi/∂Pei, ∂Z0i/∂Pei use the representation
∂Bi

∂Pei
=
∂Bi

∂µi

/
∂Pei

∂µi
and

the analogous representation for the derivative of Z0i.
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4.3.3 Examples of computations

To illustrate the convergence of the iteration scheme computations were carried
out for a mixture of 5 elements with atomic numbers Zi = 20 · i − 10 and mass
fractionsmi = Ai, for the average density of matter ρ = 1 g/cm3 and temperatures
T = 1, 10, 100, 1000 eV. The successive values of µ(s) are given in Table 4.4,
which also lists the value of the chemical potential µ̄, obtained without accounting
for relativistic corrections. Table 4.4 demonstrates that the chemical potential µ,
and hence the average occupation numbers of the electron states, are considerably
better than those produced by the TF model for mixtures at low temperatures
(µTF = µ(0)).

Table 4.4: Successive iterations of the chemical potential µ for a mixture of 5
elements with Zi = 20 · i− 10, mi = Ai at various temperatures and with density
ρ =1 g/cm3; s is the iteration number. Also shown are the values of the chemical
potential µ = µ̃ calculated without accounting for relativistic effects

s T = 1 T = 10 T = 100 T = 1000

0 0.009527 −0.89123 −16.5737 −253.798
1 −0.452196 −1.06334 −16.7666 −254.312
2 −0.435761 −1.08857 −16.7659 −254.306
3 −0.380846 −1.07340 −16.7660 −254.308
4 −0.276685 −1.07994 −16.7662 −254.308
5 −0.229350 −1.07795 −16.7663
6 −0.224280 −1.07864 −16.7663
7 −0.211847 −1.07813
8 −0.203926 −1.07837
9 −0.190126 −1.07823
10 −0.182146 −1.07835
11 −0.181542 −1.07829
12 −0.181299 −1.07829
13 −0.181475
14 −0.181249
15 −0.181299
16 −0.181093
17 −0.180894
18 −0.180739
19 −0.180614
20 −0.180649
21 −0.180632
22 −0.180633

µ̃ −0.177880 −1.09428 −16.7732 −254.121

Table 4.5 gives more detailed results of computations of the self-consistent
potential for a mixture of bromate and agar (C190H190O20Br), which is used in
laser targets [242]. The table shows how the radii of the atom cells r0i, the average
ion charges Z0i and the chemical potentials µi change in the iteration process.
The computations were carried out for the temperature T=10 eV and the density
ρ = 0.1 g/cm3.
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The approximate description of a mixture of elements described above as-
sumes that the temperature is sufficiently high, so that each component of the
mixture is in ionized state. Possible molecular formations of ions (see, e.g., [196])
were neglected.

Table 4.5: Successive iterations for C190H190O20Br at temperature T=10 eV and
density ρ =0.1 g/cm3 (s is the iteration number).

s H C O Br

0 r0i 4.679940 6.486292 6.717963 7.676817
Z0i 0.728529 2.097298 1.425806 1.377438
µi −1.174687 −1.121720 −1.304069 −1.465673

1 r0i 4.515875 6.584268 6.155903 7.407173
Z0i 0.728529 2.053058 1.817736 2.946070
µi −1.174687 −1.129704 −1.211395 −1.178415

2 r0i 4.487279 6.575564 6.388097 7.367198
Z0i 0.711451 2.067104 1.893517 2.904261
µi −1.146903 −1.142695 −1.105721 −1.146844

3 r0i 4.483484 6.572734 6.433727 7.367306
Z0i 0.708375 2.065190 1.941147 2.904244
µi −1.142000 −1.141674 −1.134700 −1.141254

4 r0i 4.483516 6.573425 6.426683 7.368448
Z0i 0.707964 2.065036 1.939742 2.904784
µi −1.141348 −1.141255 −1.142349 −1.141198

5 r0i 4.483258 6.573039 6.431701 7.368129
Z0i 0.707968 2.065064 1.942909 2.904869
µi −1.141353 −1.141359 −1.140592 −1.141347

6 r0i 4.483762 6.573742 6.422386 7.368866
Z0i 0.707940 2.065023 1.936132 2.904849
µi −1.141309 −1.141305 −1.142718 −1.141305

7 r0i 4.483489 6.573333 6.427720 7.368478
Z0i 0.707994 2.065095 1.940392 2.904945
µi −1.141396 −1.141403 −1.140385 −1.141396

8 r0i 4.483417 6.573249 6.428882 7.368382
Z0i 0.707965 2.065052 1.940996 2.904901
µi −1.141349 −1.141346 −1.141126 −1.141348

9 r0i 4.483433 6.573284 6.428465 7.368403
Z0i 0.707957 2.065048 1.940477 2.904885
µi −1.141336 −1.141334 −1.141414 −1.141336

10 r0i 4.483399 6.573229 6.429167 7.368345
Z0i 0.707959 2.065042 1.941081 2.904876
µi −1.141339 −1.141340 −1.141229 −1.141341

11 r0i 4.483399 6.573229 6.429167 7.368345
Z0i 0.707955 2.065041 1.940948 2.904896
µi −1.141333 −1.141332 −1.141331 −1.141330
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4.4 Accounting for the individual states of ions

The average-atom model considered in §§ 4.1–4.3 provides an effective description
of the atom cell in plasma for an ion with average occupation numbers and free
electrons. A real plasma involves a large number of diverse ion states. As we will
see in Subsection 5.5.2, a detailed configuration accounting is rather crucial in
opacity calculations. To account for individual states of ions in computations one
usually relies on perturbation theory, and one assumes that the perturbation of the
potential is connected with the change of the electron density as a result of changes
in the occupation numbers of the electron shells (fluctuations of the occupation
numbers) [150, 45].

The main inaccuracy in perturbation methods is connected with the fact
that the wave functions obtained for the average ion will not be consistent with
the atomic potential of the ion under consideration. This inaccuracy can be elimi-
nated by accounting for the ion’s occupation numbers corresponding to a given
configuration.

1400 1500 1600 1700 h̄ω
102

103

104

κ(ω)

Figure 4.5: Dependence of the absorption coefficient (measured in cm2/g) in alu-
minum at temperature T = 22 eV and density ρ = 0.01 g/cm3 on the energy
of photons (in eV). The solid [resp., dashed] curve was computed using the wave
functions of the average atom [resp., of the ions]

To give an example, Figure 4.5 compares the absorption spectra of the alu-
minum, calculated using the wave functions of the average atom, as well as the
wave functions of ions. One can see that an improved accuracy in locating the po-
sitions of the lines may turn out to be quite essential in the description of details
of the spectrum.
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4.4.1 Density functional of the electron system with the individual
states of ions accounted for

In a high-temperature plasma, especially for high-Z elements, a very large number
of qualitatively different ion states occur, and accounting for all possible states
requires laborious computations. However, such accounting can be achieved if we
use a detailed description only for the most important part of the ions states
and apply the average-atom approximation for the remaining states. The choice
of the states that will be subject to a detailed description is determined by the
formulation of the problem. The least labor-consuming is the method in which for
a group of states whose ionization degrees are close to one another we choose only
one representative.

To simplify the exposition, we will consider here the case in which such states
are determined by the occupation pattern of the first non-closed shell (or several
such shells). Accordingly, we divide all electron states into two groups. In the
first group we include the states ν which determine the basic ion configurations
that we singled out. The symbol ν stands for the set of quantum numbers that
define such electron states, the occupation numbers of which are fixed (given).
The remaining states ν, belonging to the continuous and the discrete spectrum,
are assigned to the second group and will be described in the average-occupation-
numbers approximation. In this approximation it is assumed that the electron
populations of the upper levels are in equilibrium with the continuum. It is further
assumed that the densities of these populations are small and that they have only
a weak influence on the inner structure of the ion levels. The effective configuration
corresponding to the given occupation numbers of the electron states ν and some
average occupation numbers of the states ν will be denoted by Q.

Suppose that, as in § 3.2, for a temperature T 	= 0 the one-particle states ν
are occupied with some probabilities nν (the values nν coincide with the average
occupation numbers of the state ν and satisfy the condition 0 ≤ nν ≤ 1), and each
set of numbers nQ

ν (nQ
ν = 1 or nQ

ν = 0), determining an effective configuration Q,
occurs with probability WQ (

∑
QWQ = 1). Considering that the occupation prob-

abilities of the shells near the equilibrium state are independent (see the derivation
of formula (3.19)), we conclude that the probability of the given state is calcu-
lated as the product of WQ and the values nν or 1−nν depending on whether the
state ν is occupied or not. For example, for given occupation numbers of states ν
for the configuration Q (this configuration is realized with probability WQ), with
occupied states ν1, ν2, . . . , νn and unoccupied remaining states νNn+1, νNn+2, . . .,
we have

Wn = WQnν1nν2 · . . . · nν Nn

(
1− nν Nn+1

)
· . . . ; (4.46)

here
∑

ν n
Q
ν +Nn = Nn, where Nn is the number of electrons in the system.

In the approximation adopted here formulas (3.25) and (3.26) are replaced
by
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Tr(Ŵ ln Ŵ ) =
∑

n

Wn lnWn =

∑

Q

WQ

{
lnWQ +

∑

ν

[nν lnnν + (1− nν) ln(1− nν)]

}
,

ρ(q) =
∑

Q

WQ

(
∑

ν

nQ
ν

∣∣∣ψQ
ν (q)
∣∣∣
2

+
∑

ν

nν |ψν(q)|2
)
. (4.47)

Using formula (3.17) we can obtain the expression for the thermodynamic
potential Ω in the one-particle approximation, in the sense explained above:

Ω =
∑

Q

WQEQ+θ
∑

Q

WQ lnWQ+θ
∑

Q

WQ

∑

ν

[nν lnnν +(1− nν) ln(1− nν)]−

µ
∑

Q

WQ

[
∑

ν

nQ
ν +
∑

ν

nν

]
. (4.48)

Here EQ is the energy of the configuration Q (see below).
We are looking for the minimum of Ω for arbitrary values of nν , WQ (where

0 ≤ nν ≤ 1 and
∑

QWQ = 1), and also for functions ψQ
ν (q), ψν(q), subject to

the orthogonality and normalization conditions. Applying a variational principle
in much the same way as we did in § 3.2, we obtain equations of Hartree-Fock type
for each configuration Q and a separate equation for the average ion. Note that,
as we shall see below, here the atomic potential of the average ion is obtained via
an explicit averaging over the configurations Q.

In practice one usually resorts to an approximate description of exchange
effects of Slater type for the temperature and density of matter (see § 3.3). This
leads to a simplification of the functional Ω and of the corresponding equations
obtained by the minimization of Ω. The expression for EQ in the Hartree-Fock-
Slater approximation has the form

EQ =
∑

ν

nQ
ν

∫ (
ψQ

ν (q)
)∗
[
−1

2
∆ + Va(�r )

]
ψQ

ν (q) dq+

∑

ν

nν

∫
ψ∗

ν(q)
[
−1

2
∆+Va(�r )

]
ψν(q) dq +

1
2

∫∫
ρQ(q)ρQ(q′)
|�r − �r ′| dq dq′+

∫
ϕ[ρQ(q), θ] dq, (4.49)
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where Va(�r ) is the potential generated by nuclei,

ρQ(q) =
∑

ν

nQ
ν

∣∣∣ψQ
ν (q)
∣∣∣
2

+
∑

ν

nν |ψν(q)|2, (4.50)

and ϕ (ρ, θ) is given by formula (3.51).

4.4.2 The Hartree-Fock-Slater equations of the ion method in the
cell and plasma approximations

Further simplifications are achieved by passing to the cell or plasma models. First
let us consider the cell model of matter for a dense high-temperature plasma. To
describe a substance as a whole, the equations for EQ and for the wave functions
must contain the potential Va(�r ) of the nuclei, corresponding to some position
of the latter. To solve such a problem seems hardly possible, and so one usually
considers the average potential near some nucleus, averaging it over the position of
the other nuclei. If such an averaging is carried out directly in the HFS equations,
then the problem becomes more complex due to the necessity of accounting in
explicit form for the interaction of ions corresponding to different configurations
and different charges of the ion core.

It is convenient to do the averaging before we apply the variational principle.
Since in a plasma there is no distinguished direction, the resulting average atomic
potentials will be spherically-symmetric. The corresponding nuclei can be enclosed
in a sphere whose size is such that the cells with the selected ion configurations
Q will be charge neutral. Thus, we will assume that the individual states of ions
Q can be described by specifying charge neutral spherical cells, of different sizes,
with volumes VQ. Then the integration in (4.49) may be carried out only in the
corresponding cells Q, and the result is summed over all cells.

From the condition of conservation of the average volume we have

∑

Q

WQVQ = V =
4
3
π(1.388)3

A

ρ
, (4.51)

where A is the atomic weight and ρ is the density of matter in g/cm3. The re-
quirement that the cells be charge neutral reads

∑

ν

nQ
ν +
∑

ν

nν = Z, (4.52)

where Z is the charge of the nucleus. The charge neutrality condition (4.52) allows
us to neglect the interaction of ions and instead of the potential of all nuclei, give
only the potential of a single selected nucleus, i.e., Va(�r ) = Z/r, assuming that
the total functional Ω can be represented as a sum over cells.
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If we use the expression (4.48) for the functional Ω and the supplementary
conditions

∑

Q

WQ = 1,
∑

ν

nQ
ν +
∑

ν

nν = Z,

∫
|ψQ

ν (q)|2dq = 1,
∫
|ψν(q)|2 dq = 1,

∑

Q

WQVQ = V,

and then introduce the corresponding Lagrange multipliers A, BQ, ΛQ
ν , Λν and P,

the variational principle reads

δ

{
∑

Q

WQEQ + θ
∑

Q

WQ lnWQ + θ
∑

Q

WQ

∑

ν

[nν lnnν + (1−nν) ln (1−nν)]−

µ
∑

Q

WQ

[
∑

ν

nQ
ν +
∑

ν

nν

]
+
∑

Q

BQ

[
∑

ν

nQ
ν +
∑

ν

nν − Z
]

+

∑

Q

∑

ν

ΛQ
ν

[∫ ∣∣∣ψQ
ν (q)
∣∣∣
2

dq − 1
]

+
∑

ν

Λν

[∫
|ψν(q)|2 dq − 1

]
+

A



∑

Q

WQ − 1



+ P



∑

Q

WQVQ − V



}

= 0.

Substituting here the expression (4.49) for EQ and performing the variation, we
obtain

∑

Q

δWQ

{
EQ + θ lnWQ + θ

∑

ν

[nν lnnν + (1− nν) ln(1− nν)]+

θ +A+ PVQ − µ
[
∑

ν

nQ
ν +
∑

ν

nν

]}
+

∑

Q

WQ

{
∑

ν

δnν

[∫
ψ∗

ν(q)ĤQψν(q) dq + θ
∑

ν

ln
nν

1− nν
− µ− BQ

WQ

]
+
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∑

ν

nν

∫
δψ∗

ν(q)ĤQψν(q)dq +
∑

ν

nQ
ν

∫
δ
(
ψQ

ν (q)
)∗
ĤQ ψ

Q
ν (q) dq+

∑

ν

nν

∫
ψ∗

ν(q)ĤQδψν(q) dq +
∑

ν

nQ
ν

∫ (
ψQ

ν (q)
)∗
ĤQδψ

Q
ν (q) dq

}
+

∑

Q

WQδVQ

{
∂

∂VQ

[
EQ + θ

∑

ν

[nν lnnν + (1− nν) ln(1− nν)]

]
+A
}

+

∑

ν

ΛQ
ν

WQ

[∫
δ
(
ψQ

ν (q)
)∗
ψQ

ν (q)dq +
∫ (

ψQ
ν (q)
)∗
δψQ

ν (q)dq
]

+

∑

ν

Λν

[∫
δψ∗

ν(q)ψ(q)dq +
∫
ψ∗

ν(q)δψ(q)dq
]

= 0,

where

ĤQ = −1
2
∆ + Va(r) +

∑

ν

nQ
ν

∫ |ψQ
ν (q′)|2 dq′
|�r − �r ′| +

∑

ν

nν

∫ |ψν(q′)|2dq′
|�r − �r ′| − ∂ϕ(ρQ)

∂ρQ
. (4.53)

Considering that the variations δnν , δψν , δψ∗
ν , δψQ

ν , δ
(
ψQ

ν

)∗
, δWQ and δVQ are

independent, we obtain the following conditions of minimum:

ĤQψ
Q
ν (q) = − ΛQ

ν

WQn
Q
ν

ψQ
ν (q) ≡ εQ

ν ψ
Q
ν (q), (4.54)

Ĥ0ψν(q) = −Λν

nν
ψν(q) ≡ ενψν(q), (4.55)

nν =
1

1 + exp
(
εν − µ̃
θ

) , (4.56)

WQ = exp



−
EQ − µ

(∑
nQ

ν +
∑
nν

)
+ θ +A+ PVQ

θ



 , (4.57)

∂

∂VQ

(
EQ + θ

∑

ν

[nν lnnν + (1− nν) ln(1− nν)]

)
+ P = 0, (4.58)

where we used the notations
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µ̃ = µ+
∑

Q

BQ, Ĥ0 =
∑

Q

WQĤQ.

Since
∑

ν n
Q
ν +
∑

ν nν = Z, relation (4.57) yields

WQ = C exp
(
−EQ + PVQ

θ

)
, (4.59)

where the constant C is chosen from the normalization condition. From (4.58) it
follows that

PQ
e ≡ −

∂

∂VQ

(
EQ + θ

∑

ν

[nν lnnν + (1− nν) ln(1− nν)]

)
= P. (4.60)

The quantity PQ
e is the derivative of the free energy with respect to volume

(taken with the minus sign), and according to the definition given in [17], it is the
electron pressure in the cell Q. Therefore, condition (4.60) means that the electron
pressures in all the cells Q must be equal to each other.

The cell approximation assumes a sufficiently high density of matter, at which
violation of the charge neutrality of the cell leads to a highly disordered state of
plasma with fast relaxation to the equilibrium state, in which every cell, the size
of which is determined by the electron pressure produced in it, is charge neutral.

In the opposite case of low densities, for an ideal or weakly non-ideal plasma
the requirement of charge neutrality of the cells may be too restrictive and in
practice is not satisfied (for example, whenever negative ions are present). Under
such circumstances, as a rule, one can neglect the interaction of cells, whose sizes
are sufficiently large. Here we can assume that the free electrons are uniformly
distributed in space with a constant density. In this case the cells of individual
ion states may be considered of equal size. Further, let us note that in the case
at hand charge neutrality may not hold in each cell, though for the plasma as a
whole the charge neutrality condition is satisfied, i.e.,

∑

Q

WQ

(
∑

ν

nQ
ν +
∑

ν

nν

)
= Z. (4.61)

Application of the variational principle yields (in much the same way as
above) the following system of Hartreee-Fock-Slater equations for the ion method
in the plasma approximation:

ĤQψ
Q
ν (q) = − ΛQ

ν

WQn
Q
ν

ψQ
ν (q) ≡ εQ

ν ψ
Q
ν (q), (4.62)

Ĥ0ψν(q) = −Λν

nν
ψν(q) ≡ ενψν(q), (4.63)
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nν =
1

1 + exp
(
εν − µ
θ

) , (4.64)

WQ = C exp



−
EQ − µ

(∑
nQ

ν +
∑
nν

)

θ



 . (4.65)

Here the coefficient C and the chemical potential µ are determined from the nor-
malization condition

∑
QWQ = 1 and the charge neutrality condition (4.61),

respectively.
Thus, the cell and the plasma approximations correspond to the two limit

cases of high and low densities of matter. Note that at high temperatures there
exists a sufficiently wide range of intermediate densities for which the results of
computations carried out in the two approximations are practically identical. This
means that for high temperatures there is a smooth transition from the model
(4.54)–(4.60) to the model (4.61)–(4.65) when the density decreases. For very
small densities the plasma approximation (4.61)–(4.65) may become unapplicable
because the condition of local thermodynamic equilibrium is violated (see § 5.7).

4.4.3 Wave functions and energy levels of ions in a plasma

Let us apply the average-atom model in the computation of wave functions and
energy levels of ions in a plasma. As a rule, such computations rely on the one-
electron wave functions obtained for free ions in the Hartree-Fock approximation.
However, keeping in mind that for the calculation of Rosseland opacities it is
necessary to take into account a huge number of ion states in the plasma, the
computations can be simplified considerably by using the one-electron wave func-
tions provided by the Hartree-Fock-Slater model of the average atom. Then, as
numerical experiments have demonstrated, the physical accuracy is roughly the
same as when the one-electron wave functions of the Hartree-Fock model are used.

It should be noted that when we used the HFS self-consistent potential V (r)
we have amended it so that V (r) ≥ 1/r for all r < r0, where r0 is the radius of
the average atom cell [49].

Figure 4.6 compares the wave functions obtained via the Hartree-Fock-Slater
model with those calculated via the Hartree-Fock model. The computations were
carried out for an iron plasma at temperature T = 20 eV and with density ρ =
10−4 g/cm3. Under these conditions the average occupation numbers define the
average configuration 1s22s22p63s1.853p4.123d1.24, which is obtained by solving the
Hartree-Fock-Slater equations for the average atom.
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Figure 4.6: Left: Comparison of wave functions for the iron ion (Z = 26), obtained
in the Hartree-Fock model for the configuration 1s22s22p63s23p43d1 (solid curve)
and in the Hartree-Fock-Slater model for the same configuration (dashed curve).
Right: Comparison of wave functions in the Hartree-Fock model for the configu-
ration 1s22s22p63s23p43d1 (solid curve) and in the Hartree-Fock-Slater model for
the average configuration 1s22s22p63s1.853p4.123d1.24 (dashed curve). One can see
that here the radial functions practically coincide
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Tables 4.6–4.7 list the energy of terms, in atomic units, computed in the ap-
proximation of intermediate coupling scheme by using the wave functions obtained
via the Hartree-Fock and the Hartree-Fock-Slater models (see Subsection 5.3.3).
The letters S, P,D, . . . with a number in front of them indicate the dominating
component of the term (the number corresponds to multiplicity). The computa-
tions were done for iron (Z = 26), and also for chromium (Z = 24). The experi-
mental data were borrowed from the library of spectroscopic atomic data of the US
National Institute of Standards and Technology (http://www.physics.nist.gov).

Table 4.6: Energies of terms of the configurations 3s23p63d2 and 3s23p63d4f for
iron (Z = 26)

Term J experiment HF HFS

Q = 3s23p63d2 E0 = −1250.436 E0 = −1250.214

3F 2 0.000 0.000 0.000
3 0.005 0.005 0.005
4 0.010 0.011 0.011

1D 2 0.080 0.097 0.088

3P 0 0.091 0.111 0.101
1 0.093 0.113 0.103
2 0.097 0.117 0.108

1G 4 0.132 0.148 0.134

1S 0 — 0.358 0.323

Q = 3s23p63d4f E0 = −1247.402 E0 = −1247.218

1G 4 0.000 0.000 0.000

3F 2 0.000 0.008 0.007
3 0.002 0.009 0.008
4 0.006 0.008 0.007

3G 3 0.014 0.024 0.022
4 0.029 0.027 0.026
5 0.039 0.030 0.028

1D 2 0.018 0.022 0.021

1F 3 0.025 0.039 0.037

3D 1 0.027 0.035 0.032
2 0.027 0.035 0.032
3 0.031 0.034 0.032

3P 2 0.036 0.046 0.042
1 0.038 0.048 0.044
0 0.039 0.049 0.046

1H 5 0.046 0.066 0.061

1P 1 0.053 0.066 0.060

3H 4 — 0.012 0.012
5 — 0.011 0.010
6 — 0.016 0.015
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As these tables and figures demonstrate, the approximation considered here,
naturally, does not provide the accuracy needed in spectroscopic investigations,
yet it is totally satisfactory for the computation of photon absorption coefficients
and Rosseland mean opacities in a hot plasma.

Table 4.7: Energies of terms of the configuration Q = 3s23p63d4 for chromium
(Z = 24)

Term J experiment HF HFS

E0 = −1041.056 E0 = −1040.525

5D 0 0.0000 0.0000 0.0000
1 0.0003 0.0003 0.0002
2 0.0008 0.0009 0.0007
3 0.0016 0.0017 0.0015
4 0.0026 0.0028 0.0025

3P 0 0.076 0.098 0.069
1 0.078 0.100 0.070
2 0.081 0.103 0.073

3H 4 0.079 0.090 0.064
5 0.079 0.091 0.064
6 0.080 0.092 0.065

3F 2 0.084 0.104 0.073
3 0.084 0.104 0.074
4 0.085 0.105 0.074

3G 3 0.094 0.114 0.082
4 0.095 0.115 0.083
5 0.096 0.116 0.083

3D 3 0.117 0.143 0.106
2 0.117 0.148 0.106
1 0.118 0.148 0.107

1F 3 0.187 0.207 0.148

3F 2 0.197 0.245 0.176
3 0.197 0.245 0.175
4 0.197 0.245 0.175

3P 0 0.222 0.247 0.177
1 0.223 0.249 0.179
2 0.225 0.250 0.180

1I 6 — 0.136 0.096

1G 4 — 0.143 0.101

1D 2 — 0.179 0.127

1G 4 — 0.277 0.198

1S 0 — 0.167 0.118

1D 2 — 0.374 0.269

1S 0 — 0.484 0.347



Part II

Radiative and thermodynamical
properties of high-temperature

dense plasma



Chapter 5

Interaction of radiation with
matter

The higher the temperature of matter, the larger the role radiation plays in en-
ergy transfer processes. At very high temperatures (of the order of several million
degrees), the main mechanism of energy redistribution is its transfer, effected by
photons, because the energy flux carried by photons is considerably larger than the
energy flux carried by other particles. If the photon free paths are small compared
to the characteristic dimensions of the plasma, then the diffusion approximation
holds, which leads to the radiative heat conduction equation. The conductivity co-
efficient in this equation depends in a complex nonlinear way on the temperature
and density of matter as well as on the spectral photon absorption coefficients.
The radiative heat conduction equation found wide applications in the description
of various processes in high-temperature dense plasmas [234, 147, 67, 45, 130, 89].

When the photon free paths are comparable to the characteristic dimen-
sions of the plasma, the diffusion approximation is not applicable, and in order
to describe energy transfer processes it is necessary to solve the radiative transfer
equation with the spectral dependence of the absorption coefficients of photons
accounted for [50]. Furthermore, when part of the radiation escapes the plasma,
the thermodynamic equilibrium condition may be violated, in which case, together
with the photon transport, one has to account for the level kinetics of electrons
[134].

To describe the interaction of radiation with matter we will use the radiative
transfer equation, neglecting the diffraction and interference effects (see [67, 174])
and will consider the simplest methods for solving it.
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5.1 Radiative heat conductivity of plasma

5.1.1 The radiative transfer equation

To study the energy transfer processes in matter we start from the photon distri-
bution function f(�r, �Ω, ν, t). The function f(�r, �Ω, ν, t) measures the concentration
of photons with direction �Ω and frequency ν, in a given point of space �r and
at time t. Therefore, the number of radiation quanta in the volume element dV ,
which contains the point �r, in the frequency interval dν and propagating in the
solid angle dΩ (it is assumed that �Ω is a unit vector) at time t is equal to

f(�r, �Ω, ν, t) dV dΩ dν.

The spectral intensity of the radiation, i.e., the energy per unit of frequency trans-
ferred in a unit of time through the unit of surface in direction �Ω is given by

Iν = Iν(�r, �Ω, t) = hνcf(�r, �Ω, ν, t). (5.1)

The function f(�r, �Ω, ν, t), depending on seven scalar variables, satisfies an
integro-differential equation known as the radiative transfer equation [67, 174]:

∂f

∂t
+ c(�Ωgrad)f = N∗A∗

ν − c(Naσa + nσs)f +

cnσs

∫∫
K[(�Ω, �Ω ′), ν, ν′]f(�Ω ′, ν′) dΩ ′ dν′ (5.2)

(under the integral sign we kept only the arguments of f with respect to which
one integrates). The left-hand side of equation (5.2) represents the material (La-
grangian) derivative of the function f. If the photons would not interact with
particles of matter, then this derivative would be equal to zero. The right-hand
side of the equation represents the change in the number of photons due to emis-
sion and absorption by matter, as well as to scattering processes by particles of
matter.

In the first right-hand side term, N∗ denotes the concentration of particles
of matter capable of emitting a photon of frequency ν; A∗

ν denotes the proba-
bility of emission of a photon with frequency ν in the direction �Ω. The second
term expresses the decrease in the number of photons, moving in direction �Ω, due
to elastic or inelastic interactions. The particles with which the photons interact
during collisions are characterized by an effective scattering cross-section σs and
an absorption cross-section σa, both depending on the frequency ν. Further, in
equation (5.2) Na [resp., n] is the concentration of particles of matter capable of
absorbing [resp., scattering] photons. In all processes of interaction of radiation
with matter a key role is played by the interaction with electrons, since the in-
teraction cross-section is inverse proportional to the square of the particle mass.
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Let us remark also that if the elementary cross-sections depend on the energy of
particles, then the corresponding terms in (5.2) must be integrated with respect
to the energy distribution function of these particles.

The last integral term in the right-hand side characterizes the increase of
the number of photons, moving in direction �Ω, due to photons that earlier moved
in direction �Ω ′, and then were scattered at an angle of (�Ω, �Ω ′) (i.e., the angle
between the directions �Ω and �Ω ′), with the frequency changing from ν′ to ν. The
kernel of the integral, K[(�Ω, �Ω ′), ν, ν′], is the probability of scattering by the angle
(�Ω, �Ω ′), which is determined by the interaction mechanism. Scattering of light
by free electrons (Compton effect) is accompanied by a change in frequency for
photon energies comparable with the electron’s own energy mc2, which is equal to
0.51 MeV. If, however, the energy of the photon is small compared to mc2, then
the frequency shift due to scattering is also small, and the cross-section tends to
the Thompson cross-section σ0 = (8/3)πr2e , where re = e2/(mc2) is the classical
radius of the electron. Scattering effects are studied in more detail in [199]. In
what follows we will assume, as a rule, that we are dealing with pure Thompson
scattering. In this case the kernel K[(�Ω, �Ω ′), ν, ν′] of the integral degenerates to
K[(�Ω, �Ω ′)] and represents the probability of scattering by the angle (�Ω, �Ω ′). As
for the computations of the scattering cross-sections of the bound electrons, which
belong to the discrete spectrum, here the scattering cross-section is much smaller
than the corresponding absorption cross-section. For that reason we will assume
that in (5.2) n stands for the concentration of free electrons and scattering effects
will be accounted for in the nonrelativistic approximation.

Before we consider the effective absorption cross-section σa of the bound
and free electrons and rewrite equation (5.2) to account for the approximations
adopted here, we need to examine the first term N∗A∗

ν in the right-hand side of
(5.2). If the photons would obey the classical statistics, the emission would be
isotropic and its probability A∗

ν would not depend on the distribution function f .
Since the photons actually obey the Bose statistics, the emission probability of
photons of frequency ν depends on the number of photons already present in the
phase-space cell under consideration. If one denotes by f the distribution function
relative to the dimensionless unit volume of phase space dV d�p/h3 (where p =
hν/c, d�p = dpxdpydpz), the emission probability will be proportional to 1 + f,
where f is the spectral density of photons with given direction of polarization.
Therefore, A∗

ν = Aν(1 + f), where Aν does not depend on f, and the distribution
functions f and f are related as follows:

f dV dΩ dν = 2f
dV d�p

h3
. (5.3)

Since for photons with momentum p and direction of motion in the solid
angle dΩ we have d�p = p2 dp dΩ, this yields

f =
h3

2p2

dν

dp
f =

c3

2ν2
f. (5.4)
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The scattering probability of photons in some cell of the phase space will
also be proportional to 1 + f, but for scattering without energy change this effect
drops from the transfer equation and can be neglected (see, e.g., [67]).

Substituting expression (5.4) in (5.2), we obtain the transfer equation for
photons with the induced emission accounted for, in the case where scattering
takes place without a change in energy :

1
c

∂f

∂t
+ (�Ωgrad)f =

N∗

c
Aν

(
1 +

c3

2ν2
f

)
−Naσaf −

nσsf + nσs

∫
K[(�Ω, �Ω ′)]f(�Ω ′) dΩ ′. (5.5)

In practical computations the term
1
c

∂f

∂t
in (5.5) can usually be neglected

(quasi-stationary case). Consequently, in the nonrelativistic quasi-stationary case
the transfer equation can be recast in the form

(�Ωgrad)f = −Naσa

(
1− c2

2ν2

N∗

Na

Aν

σa

)
f +

N∗

c
Aν −

nσsf + nσs

∫
K[(�Ω, �Ω ′)]f(�Ω ′) dΩ ′. (5.6)

The quantity
c2

2ν2

N∗Aν

Naσa
represents the induced emission correction. The

form (5.6) is convenient because the emission probability and the absorption cross-
section are connected by the principle of detailed balance (for some peculiarities
concerning strongly broadened lines the reader is referred to [235]). In the case
when the matter can be assigned a determined temperature (i.e., when thermody-
namic equilibrium is established among the particles of matter), this connection
can be found with no difficulty. To that end it suffices to consider the isotropic
case, when the radiation is in equilibrium with matter, so that f = [f ], where [f ]
denotes the photon distribution function in the equilibrium state. Then, since

∫
K[(�Ω, �Ω ′)] dΩ ′ = 1,

equation (5.6) yields

[f ] =
2ν2

c3
1

2ν2

c2
Naσa

N∗Aν
− 1

.

According to the Boltzmann statistics,

N∗

Na
=
g∗

ga
exp (−hν/θ),
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where θ denotes the temperature of matter and g∗, ga are the corresponding sta-
tistical weights of excited and absorbing states. Consequently, the formula for [f ]
takes on the form

[f ] =
2ν2

c3
1

2ν2

c2
σa

Aν

ga
g∗

exp (hν/θ)− 1
.

On the other hand, by Planck’s formula, the photon distribution function in the
thermodynamic equilibrium state is

[f ] = fP(ν) =
2ν2

c3
1

exp (hν/θ)− 1
, (5.7)

whence

2ν2

c2
σa

Aν

ga
g∗

= 1. (5.8)

In the case of partial local thermodynamic equilibrium, when matter is char-
acterized by a definite temperature θ, and the photon distribution function is not
given by Planck’s formula, the radiative transfer equation reads (using (5.7) and
(5.8))

(�Ωgrad)f = − [Naσa (1− exp (−hν/θ)) + nσs] f +
N∗

c
Aν +

nσs

∫
K[(�Ω, �Ω′)]f(Ω′) dΩ′, (5.9)

where
N∗

c
Aν = Naσa

2ν2

c3
exp (−hν/θ) = Naσa (1− exp (−hν/θ)) fP(ν). (5.10)

When the conditions of local thermodynamic equilibrium are not satisfied,
in particular, when the radiation results in a nonequilibrium distribution of ions
among excited states, equation (5.6) must be solved together with the system of
equations governing the level kinetics. In this case the populations of the states
Na and N∗ are determined by the relations between the rates of the collisional
and radiative processes. Here an important circumstance is that the rates of the
radiative processes depend on the local intensity of radiation Iν (the photon distri-
bution function f , see (5.1)). For that reason, in the calculation of the populations
in a nonequilibrium plasma and of the distribution of its radiation, a certain con-
sistency between these quantities must be ensured. Since, as a rule, the rates of
the radiative processes are much larger that those of collisional processes, in a
number of situations one can restrict ourselves to various quasi-stationary approx-
imations, which simplifies the problem considerably [31, 134, 163]. In what follows,
as a rule, we will assume that the conditions of local thermodynamic equilibrium
are satisfied and, in addition, the radiation is nearly isotropic.
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5.1.2 The diffusion approximation

If the angular distribution of photons is almost isotropic and the radiation mean
free path may be considered to be small compared to the characteristic lengths,
then to solve the problems of radiative gas dynamics one resorts to the diffusion
approximation for the transfer equation (5.9). To this end it suffices to expand the
distribution function f in spherical harmonics and then retain only the terms of
first order in the cosines.

To derive the diffusion approximation we consider first the one-dimensional
case, when the distribution function does not depend on y and z and (5.9) can be
written as

µ
∂f

∂x
= − [Naσa (1− exp (−hν/θ)) + nσs] f +

Naσa (1− exp (−hν/θ)) fP + nσs

∫
K[(�Ω, �Ω′)]f(µ′) dΩ′, (5.11)

where µ = cosϑ, ϑ being the angle between the direction of the photon momentum
and the x-axis. In the present case dΩ = sin ϑ dϑ dϕ. Let us introduce the angular
moments of the distribution function:

fk =
∫
µkf(µ) dΩ = 2π

1∫

−1

µkf(µ) dµ, k = 0, 1, 2.

The zeroth moment f0 is simply the concentration of photons of frequency ν
at the point with coordinate x. The first angular moment is equal, up to a constant
factor, to the flux of photons of frequency ν in the direction of the x-axis:

jx(ν) =
∫
vxf(µ) dΩ =

∫
cµf(µ) dΩ = cf1. (5.12)

Multiplying jx(ν) by hν, we obtain the flux of radiative energy Fx = hνcf1. The
second angular moment gives the flux of the momentum, i.e., up to a constant
factor, the pressure P exerted by photons on a surface perpendicular to the x-
axis:

P =
∫
pxvxf(µ) dΩ =

∫
hν

c
µ cµ f(µ) dΩ = hνf2 (5.13)

(here px and vx are the projections of the momentum and the velocity on the
x-axis).

Multiplying equation (5.11) by different powers of µ and integrating with
respect to µ, we can obtain equations that connect angular moments of various
orders. Indeed, let us multiply (5.11) by the first power of µ and integrate. We
obtain
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∂f2
∂x

= − [Naσa (1− exp (−hν/θ)) + nσs] f1 +

nσs

∫∫
K[(�Ω, �Ω′)]µf(ν′) dΩ dΩ′. (5.14)

In the right-hand side of (5.14) the integration must be carried out over all
possible directions �Ω and �Ω′. In the integration one can exploit the fact that the
scattering probability K[(�Ω, �Ω′)] depends only on the angle (�Ω, �Ω′) between the
directions �Ω and �Ω′. Let µ∗ = cos(�Ω, �Ω′). Clearly, the result of the integration
does not change if in the integrand in (5.14) we change the integration variables
and for a fixed direction �Ω′, instead of integrating with respect to the direction �Ω,
we integrate over all possible µ∗ and the corresponding ϕ; here in the integrand
the quantity µ (that is, the cosine of the angle between the direction �Ω and the
x-axis) must be expressed through µ∗ and µ′. After that we must integrate with
respect to the direction �Ω′. This yields

∫∫
K(µ∗)µf(µ′) dΩ dΩ′ =

∫
f(µ′)

[∫
µK(µ∗) dΩ∗

]
dΩ′. (5.15)

x

y

z

�Ω

�Ω′

�Ω0

µ

µ′

µ∗

Figure 5.1: Coordinate axes

To integrate with respect to Ω∗ it is convenient to choose a new system of
coordinates (x′, y′, z′), in which the z′-axis points in the fixed direction �Ω′. Then
µ, i.e., the cosine of the angle between �Ω and the x-axis, can be written as the
scalar product of the corresponding unit vectors �Ω and �Ω0:

�Ω = (sinϑ cosϕ, sinϑ sinϕ, cosϑ),

�Ω0 = (sinϑ0 cosϕ0, sinϑ0 sinϕ0, cosϑ0).
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The angles ϑ, ϕ characterize the direction �Ω (cos ϑ = µ∗); the x-axis points in the
direction �Ω0 (cosϑ0 = µ′, see Figure 5.1).

Therefore,

µ = (�Ω · �Ω0) = cosϑ cosϑ0 + sinϑ sinϑ0 cos(ϕ− ϕ0). (5.16)

After integration over ϕ in the inner integral in (5.15), the second term of
expression (5.16) for µ gives 0, because both K(µ∗) and f(µ′) are independent of
the angle ϕ. Further, since cosϑ cosϑ0 = µ∗µ′, the integral in the right-hand side
of (5.14) can be written as a product of two integrals:

∫
f(µ′)

[∫
µK(µ∗) dΩ∗

]
dΩ′ =

∫
µ′f(µ′) dΩ′

∫
µ∗K(µ∗) dΩ∗. (5.17)

The first of these integrals is the first angular moment f1 = jx(ν)/c, the second
integral is the cosine of the scattering angle µ∗, averaged over the scattering indi-
catrix K(µ∗), i.e., the average cosine of the deviation angle ϑ of a particle due to
scattering, which characterizes the anisotropy of scattering:

∫
µ∗K(µ∗) dΩ∗ = cosϑ. (5.18)

Substituting (5.17) in (5.14) we obtain an important relation connecting the first
and second angular moments of the distribution function, i.e., the energy flux and
the pressure:

∂f2
∂x

= − [Naσa (1− exp (−hν/θ)) + nσs(1− cosϑ)
]
f1. (5.19)

As (5.19) shows, the role of the scattering is characterized by the quantity

σtr = σs(1− cosϑ), (5.20)

which is known as the transport cross-section. For isotropic scattering, as one can
see from (5.18), cosϑ = 0 and σtr = σs. If scattering is anisotropic, but symmetric,
i.e., the scattering indicatrix is an even function of µ∗, then from (5.18) and (5.20)
it follows that σtr = σs, as in the isotropic case.

Using (5.12) and (5.19), we obtain the following expression for the flux:

jx(ν) = −�(ν)c ∂f2
∂x

, (5.21)

where

�(ν) =
1

Naσa (1− exp (−hν/θ)) + nσs(1− cosϑ)
(5.22)
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is the effective free path of photons with frequency ν, which is determined by
the scattering cross-section, corrected for anisotropy, and the absorption cross-
section, corrected for induced emission. In the nonrelativistic case the differential
scattering cross-section is proportional to 1+cos2 ϑ, and so according to (5.18) we
will henceforth assume that cosϑ = 0 whenever scattering is accounted for.

It follows from (5.21) and (5.13) that the flux is proportional to the gradient of
the photon pressure. Formula (5.21) resembles the elementary formula for particle
diffusion in the one-dimensional case,

j = −�v
3
df0
dx

(5.23)

(where � is the mean free path, v the velocity, and f0 the concentration of particles).
Indeed, in the case when the distribution function has the form

f =
1
4π

f0 + aµ, (5.24)

where a is a constant, the expressions (5.21) and (5.23) coincide, because

f2 = 2π

1∫

−1

f µ2 dµ = 2π

1∫

−1

(
f0
4π

+ aµ

)
µ2 dµ =

1
3
f0. (5.25)

Here it is natural to use, instead of the transfer equation, the diffusion equation
(analogous to the heat conduction equation) and to regard the process of energy
transfer by photons as radiative heat conduction.

If the distribution function f is not known, but one can assume that

f =
1
4π

f0 + δ, (5.26)

and that f is almost isotropic (|δ| � f0), then in this very simple case we also
have

f2 = 2π

1∫

−1

(
f0
4π

+ δ

)
µ2 dµ ≈ f0

2

1∫

−1

µ2 dµ =
1
3
f0,

i.e., in accordance to (5.21),

jx(ν) = −�(ν)c
3

∂f0
∂x

. (5.27)

Formula (5.27) expresses the diffusion approximation for the one-dimensional
case. To generalize it to the three-dimensional case, it suffices to replace ∂f0/∂x
by grad f0:

�j(ν) = −�(ν)c
3

grad f0. (5.28)
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We can state that the diffusion approximation is applicable whenever in the
spherical harmonics expansion of the angular part of the distribution function
one can neglect all terms, except the first two. Notice that the simplest diffusion
approximation with the coefficient 1/3, obtained by means of formula (5.25), can
be refined considerably by resorting to the quasi-diffusion approximation [72, 174].
In the quasi-diffusion approximation the diffusion coefficients are calculated by
taking into account the real distribution of the radiation fields.

In what follows, side by side with the notations h and ν, we shall also use
h̄ = h/(2π) and ω = 2πν.

5.1.3 The Rosseland mean opacity

Under conditions of complete local thermodynamic equilibrium, when matter and
radiation are characterized in each point of space by one and the same temperature,
(5.7) yields for the photon concentration f0(ω) the expression

f0(ω) = 4πfP(ω) = 2fP(ν) =
ω2

π2c3
1

exp(h̄ω/θ)− 1
.

According to (5.28), in the diffusion approximation the flux of energy transferred
by photons with frequency ω is equal to

�F (ω) = −�(ω)c
3

gradu(ω), (5.29)

where

�(ω) =
1

Naσa (1− exp(−h̄ω/θ)) + nσs
, (5.30)

u(ω) = h̄ ω f0(ω) =
h̄ω3

π2c3
1

exp(h̄ω/θ)− 1
(5.31)

is the spectral density of radiative energy.*) According to the Stefan-Boltzmann
law,

u =

∞∫

0

u(ω) dω = aθ4, a =
π2

15c3h̄3
. (5.32)

The total flux of radiative energy

�F =

∞∫

0

�F (ω) dω (5.33)

*) u(ω) = 4π
c

Bω , where Bω is the Planckian: Bω = h̄ω3

4π3c2
1

exp(h̄ω/θ)−1
.
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is given in the diffusion approximation by an expression of the form

�F = −�c
3

gradu. (5.34)

Combining formulas (5.29), (5.31) and (5.33), (5.34) one obtains the Rosseland
mean free path

� =
15
4π4

∞∫

0

�(x)
x4e−x

(1− e−x)2
dx, (5.35)

where x = h̄ω/θ, and the spectral free path �(x) for the energy of photons h̄ω is
given by formula (5.30).

In the astrophysics literature, to characterize radiative transfer properties of
matter, together with the Rosseland mean free path �, one uses the quantity

κR =
1
ρ�
,

called opacity or Rosseland mean opacity (ρ is the density of matter). The quantity
κR is also referred to as the Rosseland mean absorption coefficient.

Although the flux of radiative energy (5.34), written as (see (5.32))

�F = −k grad θ,

is identical in form with the usual Fourier law of heat conduction, the equations
describing energy transfer in a hot dense medium are highly nonlinear, because
k = (4/3) �caθ3, where � = �(ρ, θ) depends in a complicated way on temperature
and density (see Figure (5.29)).

5.1.4 The Planck mean. Radiation of an optically thin layer

Let us examine the opposite limit case, when the photon free path is comparable
with the characteristic dimensions of plasma and the radiative heat conduction
approximation is not applicable. Ordinarily, in this case scattering effects can be
neglected.

By (5.9), for a plane plasma layer in local thermodynamic equilibrium we
have

µ
∂f

∂x
= −ρκ(ω)

(
f − fP(ω)

)
, (5.36)

where the spectral absorption coefficient with induced emission accounted for is
given by

κ(ω) =
Naσa(ω)

ρ
(1− exp (−h̄ω/θ)) .
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For a homogeneous plasma layer of thickness L, the solution of (5.36) in the
absence of other external sources has the form (the x-axis is perpendicular to the
layer):

f(x, µ, ω) =






fP(ω) (1− exp (−κ(ω)ρx/µ)), if 0 ≤ µ ≤ 1,

fP(ω) (1− exp (κ(ω)ρ(L− x)/µ)), if − 1 ≤ µ ≤ 0.
(5.37)

where 0 ≤ x ≤ L.
The flux of radiation leaving the plasma layer at x = L in the positive

direction of the x-axis (µ > 0) is given by the double integral

F+ =
∫
dω

∫

µ>0

dΩ c h̄ω µf = 2πch̄

∞∫

0

dω

1∫

0

dµω µf.

In accordance with our assumption that the absorption coefficient κ(ω) is
small, in (5.37) we replace the exponential by its series expansion and retain only
the first two terms. This yields the following expression for the outgoing radiation
(for a more accurate solution for a plane layer see Subsection 5.7.6):

F+ = 2πκPρL
cu

4π
= κPρL

caθ4

2
,

where

κP =

∫
κ(ω)u(ω) dω
∫
u(ω) dω

=
15
π4

∞∫

0

κ(x)
x3e−x

1− e−x
dx (5.38)

is called the Planck mean absorption coefficient. Note that the expression for the
flux F+ can be recast as

F+ = 2κPρLσT
4,

where σ = ca/4 = 1.028 · 105 W/(cm2 eV4) is the Stefan-Boltzmann constant.

5.2 Quantum-mechanical expressions for the effective

photon absorption cross-sections

5.2.1 Absorption in spectral lines

The interaction of radiation with matter at high temperatures is determined by
the behavior of electrons in the electromagnetic radiation field. To describe this be-
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havior one usually applies the nonstationary perturbation theory to the electron–
radiation-field system. It is assumed that in the absence of a field the electron is
in some steady state belonging to the discrete or continuous spectrum.

In the nonrelativistic approximation the correction to the Hamiltonian is
equal to the difference between the kinetic energy of the electron in the presence
of the field and in its absence, respectively:

H ′ =
1

2m

(
�̂p − e

c
�A
)2
− 1

2m
�̂p 2,

or

H ′ = − e

mc
�̂p · �A+

e2

2mc2
�A 2, (5.39)

where �̂p = −i h̄∇ is the electron momentum operator and �A is the vector potential
of the electromagnetic field.

The second term in (5.39) is essential only for high densities of radiation,
when multi-photon processes become important. As a result, the ion–radiation-
field interaction is approximately described by the operator

H ′ = − e

mc

∑

j

�̂pj · �Aj ,

where the sum is taken over all electrons of the ion under consideration and �Aj is
the vector potential of the radiation field acting on the j-th electron.

In the first approximation of perturbation theory the total probability of
absorption of a photon per unit of time for the ion transition from state a to state
b can be calculated by the formula (see, e.g., [67, 30, 123, 205]):

Wab =
1
2

∑

s

πe2

h̄ω2
bam

2
u(ωba)

∫
dΩk

∣∣∣∣

〈
b
∣∣∣
∑

j

ei�k�rj (�u(s) · �̂pj)
∣∣∣a
〉∣∣∣∣

2

.

Here u(ω) dω is the energy density of radiation in the interval (ω, ω + dω); ωba =
(εb−εa)/h̄, where εa and εb are the energies of the ion in the initial and final state,
respectively; k = ωba/c is the wave number of the photon; dΩk is the solid-angle
element in the direction of the wave vector �k; �u(s) is the polarization unit vector
of the photon (s = 1, 2); �rj is the position vector of the j-th electron of the ion.

The probability of absorption, per unit of time, of a photon with frequency
in the interval (ω, ω + dω) when the ion undergoes a transition from state a to
state b is given by the expression

W (ω) dω = WabJab(ω)dω,

where Jab(ω) denotes the profile of the absorption line (
∫
Jab(ω) dω = 1). Ques-

tions concerning the broadening of spectral lines are treated in § 5.4.
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In practice it is convenient to pass from transition probabilities to effective
cross-sections:

σ(ω) =
W (ω)

cu(ω)/(h̄ωba)
=

Jab(ω)
π

2
αa2

0

1
mh̄ωba

∑

s

∫
dΩk

∣∣∣∣

〈
b
∣∣∣
∑

j

ei�k�rj (�u(s)�̂pj)
∣∣∣a
〉∣∣∣∣

2

(5.40)

(here a0 denotes the Bohr radius and α is the fine-structure constant).
In most cases expression (5.40) can be simplified considerably using the elec-

tric dipole approximation. For an electron in a bound state with principal quantum
number n one has the estimate rj ∼ n2/Z. Therefore, in (5.40) the argument of
the exponential �k ·�rj ∼ ω rj/c is usually small and for ω < Zc/n2 the exponential
can be replaced by 1.

Passing to the dipole approximation in (5.40) and taking into account the
relation between matrix elements of the momentum operator of the electron and
matrix elements of the position-vector operator, we obtain the following expres-
sion for the absorption cross-section for the ion transition from state a to state b
(integration over Ωk for nonpolarized radiation gives the factor 8π/3; the profile
Jab(ω) is normalized on the energy scale in atomic units):

σ(ω) = 2π2αa2
0fabJab(ω), (5.41)

where fab is the oscillator strength:

fab =
2
3
mωba

h̄

∣∣∣〈a
∣∣∑

j

�rj
∣∣b〉
∣∣∣
2

. (5.42)

The oscillator strength is a dimensionless quantity; its numerical values are smaller
than unity (cf. the theorem on the sum of oscillator strengths [28]).

To derive expressions (5.41)–(5.42) for the oscillator strength we used the
connection between the matrix elements of the momentum and position-vector
operators: 〈b∣∣�̂p ∣∣a〉 = −imωba 〈b

∣∣�r
∣∣a〉. As shown, for example, in [28], in a Coulomb

field Z/r one also has the relation

〈b∣∣�̂p ∣∣a〉 = i
Ze2

ωba
〈b
∣∣∣
�r

r3

∣∣∣a〉.

Thus, in addition to (5.42), one can obtain two other expressions for the os-
cillator strength if we replace the operator �rj by �pj/ωba, or by Z�rj/(ω2

ba r
3
j ). If one

would use the exact wave functions of the states a and b, then the three expres-
sions would coincide. However, since in computations one uses approximate wave
functions, the three different ways of writing the oscillator strengths may lead to
different results. Usually the operators �r and �p/ωba lead to identical results; when
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the operator Z�r/(ω2
ba r

3) is used, the calculation of oscillator strengths requires
highly accurate wave functions for small values of r.

Now let us pass to the single-configuration approximation in (5.42). Suppose
that for a given electron configuration Q there is defined the set of occupation
numbers

{
NQ

n�

}
and the wave functions for the states |a〉 and |b〉 are linear com-

binations of determinants (3.22) (we use perturbation theory to account for the
noncentral part of the electrostatic interaction of electrons and their spin-orbit
interaction). In the absence of external fields (and neglecting the inner electric
microfield) one can assume that the states |a〉 and |b〉 are characterized by some
value of the momentum J and its projection on the z-axis, M . Since for a given
configuration of the ion with fixed J and M there may be several states with dif-
ferent energies, we introduce an additional index γ, which specifies uniquely the
state of the ion in the approximation adopted here. For the moment we will not
specify the type of the vector coupling, allowing the types LS, jj, or the coupling
of intermediate type (see § 5.3 below). We have

|a〉 ≡ |γJM〉 =
∑

q

Ca
qMΨa

qM , |b〉 ≡ |γ′J ′M ′〉 =
∑

q′
Cb

q′M ′Ψb
q′M ′ ,

where Ψa
qM , Ψb

q′M ′ are the one-determinant wave functions, constructed, for ex-
ample, from one-electron functions of the form

ψν(q) = ψn�mlms
(�r, σ) =

1
r
Rn�(r) (−1)m�Y�m�

(ϑ, ϕ)χ 1
2ms

(σ).

Since the operator
∑

j �rj is a sum of operators, each of which acts on the
coordinates of only one electron, the oscillator strength fab will be different from
zero in the case when the final state of the ion differs from the initial state through
the position of only one electron (the description of the states a and b uses the
same one-electron wave functions), i.e.,

fab =
2
3
ωba

∑

qq′

(
Cb

q′M ′
)∗
Ca

qM |�rαβ |2,

�rαβ =
∫
ψ∗

α(q)�rψβ(q) dq, (5.43)

where ψα(q), ψβ(q) are the electron wave functions before and after transition.
Depending on the initial and final states of the electron, it is convenient to divide
the photon absorption processes into three groups:

1) absorption in spectral lines, or bound–bound transitions;

2) photoionization, or bound–free transitions;

3) inverse bremsstrahlung, or free–free transitions.
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The total cross-section of absorption in spectral lines (line absorption cross-
section), denoted here by σbb(ω), is obtained by averaging (5.41) with respect to
the initial state a = |QγJM〉 and summing over the final states b = |Q′γ′J ′M ′〉:

σbb(ω) = 2π2αa2
0

∑

ab

Pa fab Jab(ω), (5.44)

where Pa is the probability of the initial state of the ion.

In the calculation of oscillator strengths, an error in the value of ωba has only
a weak influence on the results of the computation, and so this quantity may be
replaced by the difference of the average energies over the configurations Q and
Q′, which differ by a change in the state of a single electron. In this approximation
ωba ≈ EQ′−EQ, where the energies averaged over configurations, EQ and EQ′ , are
determined by the sets of occupation numbers {NQ

n�} and {NQ′
n� }. The probability

of the state is Pa ≈ gaPQ/gQ, where ga is the statistical weight of state a, P
Q

is the probability of realization of configuration Q and g
Q

is its statistical weight
(
∑

a∈Q ga = gQ). Let us remark that such an approximation may turn to be
rather crude if the splitting over energies inside subconfigurations is a quantity of
the same order as or higher than the temperature of matter (see Subsection 5.5.3).

Since dipole transitions are possible only between configurations that differ
through the state of a single electron, which changes its orbital momentum by one
unit, summation over the final configurations Q′ can be replaced by summation
over the one-electron transitions n� → n′�′. Suppose that in the initial state on
the level n� there are N = NQ

n� electrons, and that the corresponding number for
the level n′�′ is N ′ = NQ

n′�′ . Then

g
Q

=
(

4�+ 2
N

)(
4�′ + 2
N ′

)
,

where (
G

N

)
=

G!
(G−N)!N !

.

One can assume that the form of the line Jab(ω) depends only on the con-
figuration {NQ

n�} and the quantum numbers n� and n′�′ of the initial and final
state of the electron. This corresponds to a group of lines being replaced by one
line of intensity equal to the sum of the intensities of all lines in the group (in the
multiplet). Here we also use such an approximation; however, in § 5.5 it will be
shown how to account for the multiplet structure of the spectrum by means of a
certain effective profile.
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Since (see [205])

∑

γJMγ′J′M ′

∣∣∣∣∣∣
〈QγJM |

∑

j

�rj |Q′γ′J ′M ′〉
∣∣∣∣∣∣

2

=

(
4�+ 1
N − 1

)(
4�′ + 1
N ′

) ∑

mmsm′m′
s

|〈n�mms|�r |n′�′m′m′
s〉|2 ,

we obtain the following expression for the line absorption cross-section [49, 191]:

σbb(ω) = 2π2αa2
0

∑

Q

PQ

∑

n�,n′�′
NQ

n�

[
1− NQ

n′�′

2(2�′ + 1)

]
fQ

n�,n′�′ J
Q
n�,n′�′(ω). (5.45)

Here JQ
n�,n′�′(ω) is the form of the absorption line for the transition n� → n′�′,

averaged over the states of configuration Q; fQ
n�,n′�′ is the oscillator strength,

averaged over the quantum numbers m, ms of the initial states and summed over
the quantum numbers m′, m′

s of the final states:

fQ
n�,n′�′ =

1
2(2�+ 1)

∑

mms

∑

m′m′
s

2
3

(EQ′ − EQ)
∣∣�rn�mms,n′�′m′m′

s

∣∣2 , (5.46)

�rn�mms,n′�′m′m′
s

=
∫
ψ∗

n�mms
(q)�rψn′�′m′m′

s
(q) dq. (5.47)

The sum over m, ms and m′, m′
s in (5.46) is calculated by means of the relation

(see [28])

∑

m′m′
s

∣∣�rn�mms,n′�′m′m′
s

∣∣2 =






�+ �′ + 1
2(2�+ 1)

(rn�,n′�′)2, if �′ = �± 1,

0, if �′ 	= �± 1,

where

rn�,n′�′ =

r0∫

0

Rn�(r)rRn′�′(r) dr. (5.48)

The difference of the average energies of configurations in (5.46) can be re-
placed by the corresponding difference in the average-atom approximation accord-
ing to the Hartree-Fock-Slater model, which gives (see [204])
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EQ′ − EQ ≈ εn′�′ − εn�.

Therefore, for �′ = �± 1

fQ
n�,n′�′ =

2
3

(εn′�′ − εn�)
�+ �′ + 1
2(2�+ 1)

(rn�,n′�′)
2 . (5.49)

For high-Z plasmas relativistic effects may play essential role. In the first
approximation, we replace the one-electron functions ψn�mms

by the functions
ψn�jm, where j is the quantum number characterizing the total momentum of the
electron (i.e., the sum of its orbital and spin momenta). Since in the calculation of
σbb(ω) it is particularly important to account for the position of the spectral line,
the relativistic corrections to the energy will be calculated by means of solutions
of the Dirac equations, while in the calculation of oscillator strengths for the wave
functions ψn�jm we will use the nonrelativistic approximation, in which

ψn�jm(q) =
∑

m�ms

Cjm

�m�
1
2 ms

ψn�m�ms
(q), (5.50)

where Cjm

�m�
1
2ms

are the Clebsch-Gordan coefficients.

Thus, for high-Z plasmas in formula (5.45) the quantities

εn�, NQ
n�, JQ

n�,n′�′(ω),
NQ

n′�′

2(2�′ + 1)
, fQ

n�,n′�′

must be replaced by, respectively,

εn�j , NQ
n�j , JQ

n�j,n′�′j′(ω),
NQ

n′�′j′

2j′ + 1
, fQ

n�j,n′�′j′ .

In this case we obtain for the oscillator strengths the expression

fQ
n�j,n′�′j′ =

2
3

(εn′�′j′ − εn�j)
1

2j + 1

∑

mm′
|�rn�jm,n′�′j′m′ |2 , (5.51)

where

�rn�jm,n′�′j′m′ =
∫
ψ∗

n�jm �r ψn′�′j′m′ dq. (5.52)

As it follows from (5.50) and (5.52), the dipole matrix elements are expressed
through Clebsch-Gordan coefficients. Using the Wigner-Eckhart theorem [220],
one can carry out the summation in (5.51) over m, m′. This finally yields

fQ
n�j,n′�′j′ =

1
3

(εn′�′j′ − εn�j) (2j′ + 1)(�+ �′ + 1)W 2

(
�′j′�j;

1
2
1
)

(rn�,n′�′)2,
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where W (�′j′�j; 1
21) is the Racah coefficient.

We see that the line absorption cross-section for high-Z plasmas can be writ-
ten in the form (compare with(5.45))

σbb(ω) = 2π2αa2
0

∑

Q

PQ

∑

n�j,n′�′j′
NQ

n�j

(
1− NQ

n′�′j′

2j′ + 1

)
fQ

n�j,n′�′j′ J
Q
n�j,n′�′j′(ω).

(5.53)

The main difficulty in calculating σbb(ω) is that one has to account for a huge
number of configurations Q, and in a number of cases for each such configuration
one has to account for the splitting of levels (see Subsection 5.3.3). Simplifications
are usually achieved by using various statistical methods to describe effectively
groups of spectral lines that correspond to collections of configurations with close
energies (see Subsections 5.5.3, 5.5.5), as well as by simplifying the quantities
figuring in (5.53).

At high temperatures the hydrogen-like wave functions may be used [143].
This simplifies considerably the computation of dipole matrix elements (5.48).
Substitution of the function

Rn�(r) = Cn�e
−Zn�r/n

(
2Zn�r

n

)�+1

L2�+1
n−�−1

(
2Zn�r

n

)

in formula (5.48) yields

rn�,n′�′ =

x0∫

0

e−xPN (x)dx ≈
∞∫

0

e−xPN (x)dx, (5.54)

where x = (Zn�/n+ Zn′�′/n
′) r, x0 = (Zn�/n+ Zn′�′/n

′) r0, and PN (x) is a
polynomial of degree N = n+ n′.

Gauss quadrature using Laguerre polynomials allows one to calculate inte-
grals of the form (5.54) exactly up to degree N = 2smax − 1, where smax is the
number of nodes in the quadrature formula (for n ≤ 10 one can take smax = 12).
In this manner we obtain the formula

(rn�,n′�′)2 = Zn�Zn′�′(ξn�,n′�′)2, (5.55)

where

ξn�,n′�′ =
nn′ smax∑

s=1
asxsMn�(x1s)Mn′�′(x2s)

(n′Zn� + nZn′�′)2
,

x1s =
2n′Zn�

n′Zn� + nZn′�′
xs, x2s = 2xs − x1s,
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and

Mn�(x) =

√
(n− �− 1)!

(n+ �)!
x�+1L2�+1

n−�−1(x).

Here xs and as are the nodes and respectively the weights in the Gauss quadrature
formula for the integral (5.54) using the Laguerre polynomials L0

n(x).

Table 5.1: Dipole matrix elements rn�,n′�′ for gold with temperature T = 0.5 keV
and density ρ = 1.93 g/cm3

n� n′�′ formula (5.55) WKB HFS

1 0 2 1 0.016 0.016 0.016
1 0 3 1 0.006 0.006 0.006
2 0 3 1 0.029 0.037 0.037
2 0 4 1 0.012 0.016 0.016
2 1 3 0 0.009 0.013 0.015
2 1 3 2 0.058 0.059 0.060
2 1 4 0 0.001 0.005 0.006
2 1 4 2 0.026 0.023 0.024
3 0 4 1 0.037 0.068 0.068
3 1 4 0 0.021 0.045 0.047
3 1 4 2 0.066 0.093 0.093
3 2 4 1 0.019 0.031 0.035
3 2 4 3 0.146 0.149 0.151

Table 5.1 lists the dipole matrix elements rn�,n′�′ for gold with temperature
T = 0.5 keV and density ρ = 1.93 g/cm3, calculated by means of numerical
wave functions (HFS), the semiclassical wave functions (2.31) (WKB), and also by
formula (5.55). The table shows that the hydrogen-like approximation (5.55) gives
totally acceptable results for the basic transitions, though it fails to describe some
transitions with small values of rn�,n′�′ (see r21,40). Note that the semiclassical
wave functions yield a more accurate result than the hydrogen-like approximation
for all matrix elements.

Thus, the hydrogen-like approximation (5.55) may prove too crude to de-
scribe details of the absorption spectrum when weak lines in the spectrum are
important (see [142]).

5.2.2 Photoionization

We have considered transitions in which both the initial and the final state are
bound states. Now let us address the case when the final state (and also both
the initial and the final state) belong to the continuum. The photon absorption
processes in such transitions are referred to respectively as photoabsorption (pho-
toionization) and inverse bremsstrahlung. The cross-sections for such transitions
can be derived from the formula for σbb(ω) upon replacing the wave functions
Rn′�′(r) by the continuum wave functions Rε′�′(r), normalized according to the
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conditions given in § 2.3 (for a more accurate analysis of photoionization processes
the reader is referred to, e.g., [229]).

Here the sum over the quantum numbers n′ must be replaced by the integral
over the energy ε′. Moreover, if in the consideration of photoionization processes
one neglects broadening effects and the deviation of the occupancy of free electron
states from the average one, then the expression for the photoionization cross-
section in the nonrelativistic approximation takes on the form

σbf(ω) = 2π2αa2
0

∑

Q

P
Q

∑

n�,�′
NQ

n�

∞∫

ε0

(1− nε′)δ(ω − ε′ + εQ
n�)f

Q
n�,ε′�′ dε

′, (5.56)

fQ
n�,ε′�′ =






2
3
(ε′ − εn�)

(�+ �′ + 1)
2(2�+ 1)

(rn�,ε′�′)2, if �′ = �± 1,

0, if �′ 	= �± 1.

(5.57)

For high-Z elements, if we introduce the relativistic corrections for the position of
photoionization thresholds, formula (5.56) can be recast as

σbf(ω) = 2π2αa2
0

∑

Q

PQ

∑

n�j,�′j′
NQ

n�j

∞∫

ε0

(1− nε′)δ(ω− ε′ + εQ
n�j)f

Q
n�j,ε′�′j′ dε

′, (5.58)

fQ
n�j,ε′�′j′ =

1
3
(ε′ − εn�j)(2j′ + 1)(�+ �′ + 1)W 2

(
�′j′�j;

1
2
1
)

(rn�,ε′�′)2. (5.59)

Here

rn�,ε′�′ =

r0∫

0

Rn�(r)rRε′�′(r) dr, (5.60)

nε is the distribution function of free electrons

nε =
1

1 + exp
(
ε− µ
θ

) , (5.61)

and ε0 is the boundary of the continuum.
Let us examine a method for calculating the radial integrals (5.60) in the

case when Coulomb wave functions are used. Obviously, the main contribution
to the value of the integral rn�,ε′�′ comes from the values of r in the region near
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the maximum of Rn�(r). In accordance with the idea of the method of the trial
potential by means of which the Coulomb functions Rn�(r) are computed, in the
domain where the function Rn�(r) is notably different from zero the potential V (r)
can be replaced by the Coulomb potential with external screening

Ṽ (r) =
Zn�

r
−An�.

It follows that when one computes the integrals rn�,ε′�′ in the essential integration
domain r1 ≤ r ≤ r2 it is natural to use the radial wave functions Rε′�′(r), which
are solutions of the Schrödinger equation for the potential Ṽ (r):

Rε′�′(r) = Cε′�′ Fε′�′(r) +Dε′�′ Gε′�′(r) (r1 ≤ r ≤ r2). (5.62)

Here Fε′�′(r) is a particular solution of the Schrödinger equation with the potential
Ṽ (r) that behaves like r�′+1 when r → 0, and Gε′�′(r) is another solution of the
same equation. The constants Cε′�′ and Dε′�′ are to be found from the matching
conditions in r = r1 of the solution Rε′�′(r) given by (5.62) and the solution of
the Schrödinger equation with the potential V (r) in the interval 0 ≤ r ≤ r1. If the
solution (5.62) is used starting with the value r = 0, then we must put Dε′�′ = 0.
One may expect that for small values of r1 the second term in (5.62) gives only a
small contribution in the integral rn�,ε′�′ , especially for small values of the principal
quantum number n. The validity of this assumption was verified by comparing the
values of rn�,ε′�′ obtained directly by means of the solutions Rn�(r) and Rε′�′(r) of
the Schrödinger equation with the values obtained by the method discussed here.

If one neglects the fact that the potential V (r) differs from Ṽ (r) for r ≤ r1
and one takes Dε′�′ = 0, then instead of (5.62) one has [147]:

Rε′�′(r) = Cε′�′ Fε′�′(r), (5.63)

where for ε′ ≥ An�

Fε′�′(r) = r�′+1 e−ikr F

(
i Zn�

k
+ �′ + 1, 2�′ + 2, 2ikr

)
, k =

√−2ε′. (5.64)

Using the hydrogen-like wave functions for the bound and free states we
obtain

fn�,ε′�′ = fn�,ε′�∓1 =
24�′+5

3(n− �− 1)!(n+ �)!

(
n

Zn�

)4
�>

2�+ 1
fn(λ)λ�′+4×

[
(n± �>)(n− 1± �>)ϕn−�′−2,�′(λ)− ϕn−�′,�′(λ)

]2 �′∏

s=1

[
(n2 − s2)λ+ s2

]
, (5.65)
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λ ≡ λn� =
1

ε′ − εn�

Z2
n�

2n2
, �> = max(�, �′);

fn(λ) =






exp

(
−4n

√
λ

1− λ arctg

√
1− λ
λ

)

1− exp

(
−2πn

√
λ

1− λ

) , if λ < 1,

exp(−4n), if λ = 1,

exp

(
−4n

√
λ

λ− 1
arcth

√
λ− 1
λ

)
, if λ > 1.

When � = 1, �′ = 0 the product
∏�′

s=1

[
(n2 − s2)λ+ s2

]
must be replaced

by 1. The functions ϕm�(λ) are calculated by means of the recursion relations

ϕm�(λ) = −(m− 1)(m+ 2�)ϕm−2,�(λ) + 2
[
2λ(m+ �− n)−m− �]ϕm−1,�(λ),

where m = 0, 1, 2, . . . , ϕ0�(λ) = 1, ϕ−1,�(λ) = 0.

Figure 5.2 (T = 0) compares experimental values of the photoionization cross-
section in gold [243], obtained under normal conditions, with computational results
in various approximations. The calculations were carried out for the temperature
T = 1 eV and density ρ = 0.1 g/cm3, since the photoionization cross-sections are
practically independent of temperature in the considered range of photon energies
h̄ω > 0.1 keV (to simplify notation, here and in what follows we will write ω
instead h̄ω in our graphs). For T ∼ 0 there is also no dependence on density, since
the cross-sections are expressed in cm2/g. The calculations of the photoionization
thresholds and effective charges were carried out by using the code THERMOS
and the Hartree-Fock-Slater potential with relativistic corrections accounted for.

As the graphs demonstrate, the results obtained by using numerical wave
functions agree well with the experimental values in the whole range of photon
energies. As expected, for T = 0 the hydrogen-like approximation yields good
results for all inner shells (n ≤ 3), which allows one to simplify considerably
the calculations for large photon energies. For the temperature T = 1 keV the
hydrogen-like approximation agrees with the numerical calculations for all the
shells accounted for (n ≤ 9)
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Figure 5.2: Dependence of the photoionization cross-section in gold (measured in
cm2/g) on the energy of photons in keV. The solid [resp., dashed] curve shows
the results of calculations with the code THERMOS using numerical wave func-
tions [resp., the hydrogen-like approximation (5.65)]. In the upper figure the small
triangles indicate experimental values [243]

5.2.3 Inverse bremsstrahlung

When one calculates the inverse bremsstrahlung cross-sections one can neglect the
deviation of the occupation numbers of the initial state from their mean values,
i.e., one can replace PQ, εQ

n� and NQ
n� by 1, ε and 2(2� + 1)nε, respectively, and

also neglect relativistic effects. In this approximation the cross-section, calculated
per one atom cell, has the form

σff(ω) = 2π2αa2
0

∑

�

∑

�′=�±1

∞∫

ε0

∞∫

ε0

2(2�+1)nε(1−nε′)δ(ω+ε−ε′)fε�,ε′�′ dεdε
′. (5.66)

The summation over � is carried out from � = 0 to � = �max. The maximal
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orbital momentum �max is defined so that when � > �max the domain of classical
motion of the electron lies beyond the limits of the atom cell. To carry out the
summation one can use the Gauss quadrature formulas, which rely on Chebyshev
polynomials of a discrete variable [154]. To calculate the oscillator strengths it is
convenient to use the matrix elements of the acceleration, which give the main
contribution for small r:

fε�,ε′�′ =
�+ �′ + 1
3(2�+ 1)

1
(ε′ − ε)3




r0∫

0

Rε�(r)
dV (r)
dr

Rε′�′(r) dr




2

. (5.67)

The inverse bremsstrahlung cross-section (5.66) may be alternatively written
using the Gaunt generalized factor g(ε, ε′):

σff(ω) =
16παa2

0

3
√

3
Z2

0

ω3

∞∫

0

nε(1− nε′)g(ε, ε′) dε, (5.68)

where Z0 is the average number of free electrons, ε′ = ε+ ω. The Gaunt factor is
chosen so that in the Kramers approximation g(ε, ε′) = 1.

Calculations based on formula (5.66) are rather time consuming, so in prac-
tice one resorts to various approximations. For example, in the Born-Elwert ap-
proximation the function g(ε, ε′) can be written in the form

g(ε, ε′) =
√

3
π

√
ε′

ε
ln

(√
ε′ +
√
ε√

ε′ −√ε

)
1− exp

[
−2πZ0/

√
2ε′
]

1− exp
[−2πZ0/

√
2ε
] . (5.69)

The inverse bremsstrahlung absorption cross-section (5.68) with the factor
g(ε, ε′) in formula (5.69) differs from the commonly used Born-Elwert approxi-
mation [205] by accounting for degeneracy effects. Computational results for the
inverse bremsstrahlung cross-section by formula (5.68) for an iron plasma in es-
sentially different temperature and density ranges are shown in Figure 5.3. For
comparison, results of computations carried out with the code STA [242] using
numerical wave functions are shown as well. For temperature T = 20 eV and den-
sity ρ = 10−4 g/cm3 (rarefied plasma, see Figure 5.3a), in the calculation with
numerical wave functions special methods of summation over the quantum num-
ber � had to be used, because the number of terms in (5.66) is very large. For
temperature T = 600 eV and density ρ = 8 g/cm3 (dense hot plasma, see Figure
5.3b), the main difficulty is to integrate numerically with respect to the energy ε,
because for large ε the integrands are rapidly oscillating functions.

As the figures show, in the region of not too large photon energies (ω/θ < 5)
the results of the calculations using wave functions and those using the approxi-
mation (5.68), (5.69) practically coincide.
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Figure 5.3: Dependence of the photoionization cross-section in iron (measured
in cm2/g) on the energy of photons, measured in eV. The continuous [resp.,
hatched] curve shows the results obtained using formula (5.68) [resp., the code
STA]. The calculations were carried out for temperature T = 20 eV and density
ρ = 10−4 g/cm3 [Figure (a)], and also for T = 600 eV and ρ = 8 g/cm3 (b)

5.2.4 Compton scattering

Using the Klein-Nishina formula and results of [199], the following interpolation
formula was derived for the Compton scattering cross-section [147]:

σs(ω) =
8π
3
α4a2

0Z0 f(E, T ), (5.70)

where E is the photon energy, T the plasma temperature (both E and T are
expressed in keV),

f(E, T ) =
{

1, if T < 2 or E < 0.25,
a(E)(T − 2) + b(E), if T ≥ 2 and E ≥ 0.25;
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a(E) =
{

2.04 · 10−5E − 6.44 · 10−4
√
E + 5.13 · 10−3, if E < 210,

3.04 · 10−6E − 1.455 · 10−4
√
E + 1.53 · 10−3, if E ≥ 210;

b(E) =
{

5.622 · 10−4E − 5.365 · 10−2
√
E + 1.1116, if E < 210,

8.455 · 10−4E − 5.157 · 10−2
√
E + 1.0273, if E ≥ 210.

5.2.5 The total absorption cross-section

The total absorption cross-section that accounts for induced emission and scatter-
ing processes is given by the sum

σ(ω) =
(
1− e−x

)
[σbb(ω) + σbf(ω) + σff(ω)] + σs(ω), x =

ω

θ
. (5.71)

The absorption coefficient measured in cm2/g (opacity) has the form

κ(ω) =
NA

A
σ(ω), (5.72)

where NA is the Avogadro number and A the atomic weight.

The contribution of various processes to the Rosseland mean is illustrated in
Table 5.2 for iron. As the table clearly shows, the lines determine the Rosseland
mean free path for small and moderate densities; for very large densities inverse
bremsstrahlung becomes dominant.

Table 5.2: Influence of various absorption processes on the Rosseland mean in an
iron plasma with temperature T = 100 eV and different densities. The Rosseland
means in cm2/g are shown: κR accounts for all processes; κcon

R neglects the spectral
lines; κff

R accounts only for inverse bremsstrahlung

ρ, g/cm3 κR κcon
R κff

R

0.0001 9.19 1.57 0.0094
0.001 38.6 11.4 0.0773
0.01 261 89.4 0.641
0.1 1240 551 4.48
1 2820 1760 27.5

7.86 4130 3190 171
50 8500 8400 785

1000 21600 21600 20900
10000 29700 29600 28400
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For a mixture of elements Zi (i=1, · · · , N) with mass fractionsmi (
∑
mi =1)

we have

κ(ω) = NA

N∑

i=1

mi

Ai
σi(ω), (5.73)

where Ai is the atomic weight and σi(ω) the absorption cross-section of the i-th
element (see also [190, 181]).

5.3 Peculiarities of photon absorption in spectral lines

Among the processes of photon absorption by electrons listed in § 5.2, the most
important from a theoretical as well as volume of computations point of view is
the process of photon absorption in spectral lines. The reason is that in order
to account for the spectral lines it is necessary, first, to describe in detail the
structure of levels (terms) of a huge number of individual ion states in plasma
and find the probability of realization of such states. Second, the structure of
the terms gives only the position of the spectral lines, and to determine their
intensities (oscillator strengths) it is necessary to construct the wave functions of
all ion states in plasma. Finally, the most difficult task is the calculation of the
form (profile) of the absorption lines, which determine the effects of the interaction
of an ion with free electrons and other ions of the plasma, and with the radiation
field, and also the Doppler effect. A large body of literature is devoted to these
problems, including widely known monographs and textbooks (see, e.g., [75]). Our
aim here is to construct algorithms that would yield satisfactory results even in the
presence of hundreds of thousands of spectral lines. In this section we will consider
the probability distributions of various ion states and the position of spectral lines.
The calculations of line profiles will be treated in the next section.

5.3.1 Probability distribution of excited ion states

The probability distribution PQ of excited ion states for a configuration Q with
occupation numbers NQ

ν (where ν is the set of quantum numbers determining
a one-electron level) can be calculated starting from the Gibbs distribution. To
simplify formulas, we will assume that the temperature is sufficiently high, so that
the splitting with respect to terms may be considered small compared with the
temperature. Moreover, we shall assume that the interaction with free electrons is
accounted for in the calculation of the ion energy EQ. In this approximation

PQ =
1
Ω
gQ exp

(
−EQ − µNQ

θ

)
,

where EQ is the energy of the ion averaged over the configuration Q, µ is the
chemical potential, NQ =

∑
ν
NQ

ν , and gQ denotes the statistical weight of the
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configuration Q,

gQ =
∏

ν

(
gν

NQ
ν

)
=
∏

ν

gν !

NQ
ν !(gν −NQ

ν )!
,

and finally Ω is the partition function over all ion configurations:

Ω =
∑

Q

gQ exp
(
−EQ − µNQ

θ

)
.

To get a preliminary estimate for the most probable configurations one can
use the binomial distribution [45]. In this approximation the probabilities of level
occupancy

pν =
1

1 + exp
(
εν − µ
θ

)

are assumed to be independent, and the total probability of realization of a config-
uration Q with given occupation numbers NQ

ν is given by the binomial distribution

P bin
Q =

∏

ν

(
gν

NQ
ν

)
p

NQ
ν

ν (1− pν)gν−NQ
ν . (5.74)

For the Gibbs distribution it is convenient to use instead of PQ the notation

Pks =
Pk

Ωk
gks exp

(
−Eks − Ek0s0

θ

)
, (5.75)

where k is the ionization degree of the configuration Q (k = 0, 1, . . . , kmax = Z);
s is the number of the excited state (s = 0, 1, 2, . . . ); k0, s0 are the ionization
degree and the number of state of the most probable ion (the ion whose occupa-
tion numbers are the closest to the average values); Pks is the probability of the
ion being in the state s with ionization degree k (Pk =

∑
s Pks), and Ωk is the

corresponding partition function:

Ωk =
∑

s

gks exp
(
−Eks − Ek0s0

θ

)
.

The probabilities Pk satisfy the normalization condition
∑

k Pk = 1.

In computations one usually takes into account only those configurations Q
for which PQ is larger than some prescribed value. This condition determines the
range of variation of the occupation numbers NQ

ν .

To calculate the probabilities Pks it is necessary to find the connection be-
tween ionization and the chemical potential. Let us assume that the average-atom
model gives the correct value of the ionization; then necessarily

∑
k kPk = Z0.

Starting from (5.75), we obtain the following system of equations for the determi-
nation of Pk (see the derivation of the Saha equations in Subsection 6.2.2):
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Pk+1

Pk
= ζ

Ωk+1

Ωk
,

∑
k

Pk = 1,

∑
k

kPk = Z0;

(5.76)

here ζ = exp(−µ/θ) and µ is the chemical potential.
It is convenient to rewrite the last equation in (5.76) in the form

ζ
d lnF
dζ

= Z0, (5.77)

where

F = F (ζ) = ζk0 f0(ζ), fm(ζ) =
kmax∑

k=0

ζk−k0km Ωk.

Equation (5.77) is solved by Newton’s method:

ζ(p+1) = ζ(p) f0f2 + f2
0Z0 − f2

1

f0f2 + f0f1 − f2
1

∣∣∣∣∣
ζ=ζ(p)

, p = 0, 1, . . . , (5.78)

where the initial value ζ(0) is calculated by means of the average-atom model. The
iteration scheme (5.78) is analogous to the scheme used to find the ion concentra-
tions in the Saha model (6.55). Let us remark that for the calculation of fm(ζ)
in the summation over k one can start with k = k0, and subsequently increase or
decrease k till the corresponding states become of low probability.

As an example let us consider the probability distribution of excited ion states
in gold, computed for various temperatures (see Figure 5.4). It is evident that
for temperature T =1 keV the binomial distribution and the Gibss distribution
differ only slightly from one another, whereas for T = 50 eV the difference is
considerable.

5.3.2 Position of spectral lines

To calculate the center of a group of absorption spectral lines for a one-electron
transition α→ β, let us consider two configurations Q = {NQ

ν } and Q′ = {NQ′
ν }.

Configuration Q′ differs from Q by the position of one electron:

NQ′
ν =






NQ
ν , if ν 	= α, β,

NQ
ν − 1, if ν = α,

NQ
ν + 1, if ν = β.
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Figure 5.4: Dependence of the probability distribution of excited ion states on the
ionization degree k for a gold plasma with density ρ = 0.1 g/cm3 at temperatures:
(a) T = 1 keV, (b) T = 50 eV. The continuous [resp., hatched] line represents the
probability distribution obtained by using the Gibbs distribution (5.75) [resp., the
binomial distribution (5.74)]

In the nonrelativistic approach the center of the group of lines is approxi-
mately determined by the difference between the energies of the configuration Q
and Q′ (see formula (3.39)):

EQ′ − EQ = Iα − Iβ +
∑

ν

NQ
ν (Hνβ −Hνα) + (Hαα −Hαβ). (5.79)

Calculating EQ by means of the wave functions obtained, say, in the Hartree-
Fock-Slater model, one can set, in the simplest approximation,

ωαβ = EQ′ − EQ. (5.80)

When hydrogen-like wave functions are used, if we put α = n�, β = n′�′,
ν = n̄�̄ and retain only the first terms in the expansion of EQ in Slater integrals,
we obtain the expression (see Subsection 3.2.3 ):

In� =

∞∫

0

Rn�(r)
(
−1

2
d2

dr2
+
�(�+ 1)

2r2
− Z

r

)
Rn�(r)dr ≈ Zn�(Zn� − 2Z)

2n2
,
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Hn�,n̄�̄ ≈ F (0)

n�,n̄�̄
=

∞∫

0

∞∫

0

1
r>
R2

n�(r1)R
2
n̄�̄(r2)dr1dr2 ≈

Zn�

n2
− Zn�

2n2n̄

smax∑

s=1

as
M2

n�(us)
us

smax∑

s′=1

as′us′
M2

n̄�̄
(vss′)
vss′

,

where

us =
n̄Zn�

n̄Zn� + nZn̄�̄

xs, vss′ = xs′ +
nZn̄�̄

n̄Zn� + nZn̄�̄

xs,

Mn�(x) =

√
(n− �− 1)!

(n+ �)!
x�+1L2�+1

n−�−1(x).

Relativistic corrections can be incorporated by setting

ωn�j,n′�′j′ = ωn�,n′�′ + εn′�′j′ − εn′�′ − εn�j + εn�. (5.81)

For the oscillator strengths the formulas (5.49) and (5.55) remain valid.

5.3.3 Atom wave functions and addition of momenta

In the central-field approximation, to each configuration Q there corresponds a
set of states that differ from one another through the orientation of the orbital
and spin momenta of the electrons. Assigning all these states to one and the same
energy level of the ion (atom) is possible only as long as we neglect the spin-orbit
interaction as well as that part of the electrostatic interaction between electrons
that is not accounted for in the central-field approximation.

The joint consideration of such interactions is a rather difficult task, so one
usually resorts to perturbation theory, assuming that one of the interactions is
much weaker than the other. In the resulting approximation the ion wave function
can be constructed by specifying a scheme for addition of momenta, based on some
type of vector coupling between them. When one speaks about different types of
coupling it is implied that the electrostatic and spin-orbit interactions that are
not accounted for in the self-consistent potential may be interpreted as couplings
of various types between the orbital momentum vectors �� and the spin momentum
vectors �s of the electrons of the ion.

The principal part of the energy of spin-orbit interaction is given by the
expression

Vso = −α
2

2
1
r

dV

dr
���s, (5.82)
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where V = V (r) is the potential in which the electron moves. As a rule, for low-
Z atoms the spin-orbit interaction is considerably weaker than the electrostatic
one, and so the former is neglected due to the presence of the small parameter
α2 in (5.82). In such cases one uses the approximation of the LS-coupling; here
the orbital and spin momenta are coupled (added) independently, and the total
momentum of the ion is �J = �L+ �S.

When Z is increased, the relative role played by the spin-orbit interaction
grows rapidly, and it no longer makes sense to speak about the orbital and spin
momenta of the electron as separate entities. Rather, it only makes sense to speak
about the total momentum of each electron, �j = �� + �s. In this case one usually
resorts to the jj-coupling approximation, in which one first couples the momenta
��i and �si in the total momentum �ji, and then all these individual momenta are
coupled in the total momentum of the ion, �J =

∑
�ji. For a detailed description of

the corresponding methods the reader is referred to the books [48, 102, 156, 37,
221, 195, 212].

For multi-charged, multi-electron ions the LS- or jj-coupling approximation,
as a rule, is not applicable, since the spin-orbit interaction and the electrostatic
interaction not accounted for in the self-consistent potentials are quantities of
the same order of magnitude (especially for p − d or d − f transitions inside a
shell). In this case it is necessary to resort to an approximation based on an
intermediate-type coupling scheme and account simultaneously for the spin-orbit
interaction and the noncentral part of the Coulomb interaction. In many cases
it is necessary to incorporate the interaction between configurations and thus
use a multi-configuration approximation [195]. We shall use a method for the
construction of ion wave functions [48] which, despite being relatively demanding
from the computational point of view, is sufficiently transparent.

Let us consider a coupling of intermediate type that uses the one-electron
functions in the representation n�jm. For a given configuration Q = {Nn�}, we
will take into account all its subconfigurations q = {Nn�jm} with occupation
numbers Nn�jm, which can take the values 0 or 1, so that

∑
jmNn�jm = Nn�. For

each subconfiguration q one can construct the one-determinant function

ΨqM =
1√
N !

det ||ψi(�rk, σk)||, (5.83)

where k = 1, 2, . . . , N (N is the number of electrons: N =
∑
Nn�), and to each i

we associate the quantum numbers n�jm, which determine the state of an electron
with the wave function

ψn�jm(�r, σ) =
1
r
Rn�(r)

∑

m�,ms

Cjm

�m�
1
2 ms

(−1)m�Y�m�
(ϑ, ϕ)χ 1

2ms
(σ). (5.84)

The radial functions Rn�(r) can be obtained by solving the Hartee-Fock-Slater
equation, in which case the functions ψn�jm will be eigenfunctions of the Hamil-
tonian
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Ĥ0(�r ) = −1
2
∆− V (r), (5.85)

where V (r) is the Hartree-Fock-Slater self-consistent potential.
For a multi-electron ion the Hamiltonian Ĥ is not the sum of the Hamilto-

nians (5.85) for all electrons, because (5.85) accounts only for the principal part
of the interaction, which can be described by the central self-consistent potential.
The remaining, noncentral part and other interactions (in particular, the spin-orbit
one) represent corrections to the sum of the expressions (5.85) over all electrons,∑

i Ĥ0(�ri), and can be incorporated by perturbation theory. For the sake of defi-
niteness we will consider only the main corrections, setting (see [156])

Ĥ =
∑

i

[
−1

2
∆i − Z

ri

]
+
∑

i<j

1
|�ri − �rj | −

α2

2

∑

i

1
r

dV

dr
��i �si, (5.86)

where in addition to the electrostatic interactions of electrons with the nucleus and
between themselves we have included the main part of their spin-orbit interaction.

The one-determinant function ΨqM is an eigenfunction of the operator of the
projection of the total angular momentum on the z-axis, the magnitude of which
is given by

M =
∑

n,�,j,m

mNn�jm.

We shall seek the wave function of the ion, which is a joint eigenfunction of

the operators Ĵz, �̂J2 and Ĥ , in the first order of perturbation theory. It is known
that in our case it suffices that the sought-for function ΨγJM be an eigenfunction

of the operator Ĥ , because then it also is an eigenfunction of the operators �̂J2 and
Ĵz (see [48]; the supplementary index γ was introduced to distinguish between the
solutions with the same J and M). Let us represent the function ΨγJM as a linear
combination of functions (5.83):

ΨγJM =
∑

q

CγJ
qMΨqM . (5.87)

The coefficients of this decomposition are found by solving the secular equation

∑

q′
CγJ

q′M

(
〈q|Ĥ |q′〉 − E

)
= 0, (5.88)

where each eigenvalue E = EγJM and each eigenvector
{
CγJ

qM

}
correspond to

specified values of γ, J and M . The condition that the energy E is independent of
M allows one to classify the states and determine the quantities J and M for each
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solution. If for certain J and M there are several such vectors, then the index γ
is used to distinguish between them.

The matrix 〈q|Ĥ|q′〉 is calculated as follows (see [48]). For diagonal elements,
i.e., for q ≡ q′, we have

〈q|Ĥ|q〉 =
∑

α

Nα(Iα + ∆Eα) +
1
2

∑

α,β

NαNβHαβ , (5.89)

where

α = {n�jm}, β = {n′�′j′m′},

∆Eα =
ζnα�α

2

[
jα(jα + 1)− �α(�α + 1)− 3

4

]
,

ζn� = −α
2

2

r0∫

0

1
r

dV

dr
R2

n�(r) dr.

A two-electron matrix element is given by the expression

Hαβ = 〈αβ
∣∣∣∣

1
r12

∣∣∣∣αβ〉 − 〈αβ
∣∣∣∣

1
r12

∣∣∣∣βα〉,

where

〈αβ
∣∣∣∣

1
r12

∣∣∣∣αβ〉 =
∑

σσ′

∫∫
ψ∗

α(�r1, σ)ψ∗
β(�r2, σ′)ψα(�r1, σ)ψβ(�r2, σ′)
|�r1 − �r2| d�r1 d�r2,

〈αβ
∣∣∣∣

1
r12

∣∣∣∣βα〉 =
∑

σσ′

∫∫
ψ∗

α(�r1, σ)ψ∗
β(�r2, σ′)ψα(�r2, σ′)ψβ(�r1, σ)
|�r1 − �r2| d�r1 d�r2

(in the last expression the nonzero terms correspond to the states α and β with
the same direction of the spin). If the subconfiguration q′ is obtained from the
subconfiguration q by changing the state of a single electron (say, in configuration
q that electron occupies the state α, while in q′ it occupies the state γ), then

〈q′|Ĥ |q〉 = (−1)
P ∑

β

Nβ

(
〈αβ
∣∣∣∣

1
r12

∣∣∣∣ γβ〉 − 〈αβ
∣∣∣∣

1
r12

∣∣∣∣βγ〉
)
,

where P is the number of permutations needed to obtain subconfinguration q from
subconfiguration q′ (see [48]). If one chooses some enumeration of all possible states
of electrons for which α < β, γ < δ, then P will be equal to the sum of all occupied
states lying between α and β, as well as between γ and δ.
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In the case when two electrons change state (α→ γ, β → δ),

〈q′|Ĥ|q〉 = (−1)
P

(
〈αβ
∣∣∣∣

1
r12

∣∣∣∣ γδ〉 − 〈αβ
∣∣∣∣

1
r12

∣∣∣∣ δγ〉
)
,

In the remaining cases, when more than two electrons change states, 〈q′|Ĥ|q〉 = 0.

In the calculation of the matrix elements 〈αβ
∣∣∣∣

1
r12

∣∣∣∣ γδ〉 by using the one-

electron wave functions (5.84) one can integrate with respect to the angular vari-
ables and sum with respect to the spin variable σ. This yields

〈αβ
∣∣∣∣

1
r12

∣∣∣∣ γδ〉 =
∑

ms,m′
s

∑

m̄α,m̄β ,m̄γ ,m̄δ

δmα−mγ ,mδ−mβ
(−1)mα+mδ−ms−m′

s×

Cjαmα

�αm̄α
1
2 ms

C
jβmβ

�βm̄β
1
2 m′

s
C

jγmγ

�γm̄γ
1
2ms

Cjδmδ

�δm̄δ
1
2m′

s
×

∑

k

Dk
�α,mα−ms;�γ ,mγ−ms

Dk
�β ,mβ−m′

s;�δ,mδ−m′
s
R

(k)
αβγδ,

where

Dk
�m̃,�′m̃′ = (−1)m̃−m̃′√

(2�+ 1)(2�′ + 1)×
(
� k �′

0 0 0

)(
� k �′

−m̃ m̃− m̃′ m̃′

)
,

R
(k)
αβγδ =

∫ ∫
rk
<

rk+1
>

Rnα�α
(r1)Rnβ�β

(r2)Rnγ�γ
(r1)Rnδ�δ

(r2) dr1 dr2. (5.90)

The calculation of the eigenvectors and eigenfunctions can be done by means of
the standard schemes, for example, by Jacobi’s method [16, 226].

EXAMPLE. Let us examine in more detail the case of two p-electrons in the one-
configuration approximation, assuming a coupling of intermediate type, i.e., con-
sidering that the corrections due to the spin-orbit interaction and the noncentral
part of the electrostatic interaction are of the same order. Two p-electrons may oc-
cupy 6 different states with different quantum numbers j,m (j = 1/2, m = ±1/2;
j = 3/2,m = ±1/2,±3/2). The one-electron wave functions of these states are
given by formula (5.85). The one-determinant function of a subconfiguration q
whose states ν1 = j1m1 and ν2 = j2m2 are occupied has the form

ΨqM =
1√
2

∣∣∣∣∣∣

ψν1(�r1, σ1) ψν1(�r2, σ2)

ψν2(�r1, σ1) ψν2(�r2, σ2)

∣∣∣∣∣∣
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(here we neglect the interaction between unoccupied and occupied shells).

Since M = m1 + m2, then, for example, for M = 2 one has two different
one-determinant functions with j1 = 3/2,m1 = 3/2; j2 = 3/2, m2 = 1/2 and
j1 = 3/2,m1 = 3/2; j2 = 1/2, m2 = 1/2. In what follows q will be specified by the
occupancy of the state jimi, i.e., q = 3/2,+3/2; 3/2,+1/2 means that N 3

2
3
2

= 1,
N 3

2
1
2

= 1, and all the remaining Njimi
= 0. For M = 2 the matrix < q|H|q′ > has

the form

q 3
2 + 3

2 ; 3
2 + 1

2
3
2 + 3

2 ; 1
2 + 1

2
q′

3
2 + 3

2 ; 3
2 + 1

2 F0 − 3F2 + ζ −√8F2

3
2 + 3

2 ; 1
2 + 1

2 −√8F2 F0 − F2 − ζ/2

Here

ζ = −α
2

2

∫
V ′(r)
r

R2
n�(r) dr, F0 = R

(0)
n�n�,n�n� , F2 =

1
25
R

(2)
n�n�,n�n� ,

where R(k)
n�n�,n�n� are the Slater integrals (5.90) for the shell with principal quantum

number n and orbital number � = 1. We remind the reader that we are calculating
the energy for only two p-electrons. The diagonalization of this matrix yields two
levels:

1D′
2

3P ′
2

}
= F0 − 2F2 + ζ/4±

√
9F 2

2 −
3
2
F2ζ +

9
16
ζ2

(we use the traditional notation, indicating the dominating term).

For M = 1 we have

q 3
2 + 3

2 ; 3
2 − 1

2
3
2 + 3

2 ; 1
2 − 1

2
3
2 + 1

2 ; 1
2 + 1

2
q′

3
2 + 3

2 ; 3
2 − 1

2 F0 − 3F2 + ζ −√2F2 −√6F2

3
2 + 3

2 ; 1
2 − 1

2 −√2F2 F0 − 4F2 − ζ/2
√

3F2

3
2 + 1

2 ; 1
2 + 1

2 −√6F2

√
3F2 F0 − 2F2 − ζ/2

The diagonalization of this matrix gives three levels; two of them coincide with
the ones obtained above, while the third has the form

3P ′
1 = F0 − 5F2 + ζ/2.
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Finally, for M = 0 we have

q 3
2

+ 3
2
; 3

2
− 3

2
3
2

+ 1
2
; 3

2
− 1

2
3
2

+ 1
2
; 1

2
− 1

2
3
2
− 1

2
; 1

2
+ 1

2
1
2

+ 1
2
; 1

2
− 1

2

q′

3
2

+ 3
2
; 3

2
− 3

2
F0 + F2 + ζ −4F2 −√

2F2 −√
2F2 5F2

3
2

+ 1
2
; 3

2
− 1

2
−4F2 F0 + F2 + ζ −√

2F2 −√
2F2 −5F2

3
2

+ 1
2
; 1

2
− 1

2
−√

2F2 −√
2F2 F0 − 3F2 + ζ/2 2F2 0

3
2
− 1

2
; 1

2
+ 1

2
−√

2F2 −√
2F2 2F2 F0 − 3F2 + ζ/2 0

1
2

+ 1
2
; 1

2
− 1

2
5F2 −5F2 0 0 F0 − 2ζ

The diagonalization of this matrix yields, in addition to the levels already
obtained, the following levels:

1S′
0

3P ′
0

}
= F0 +

5
2
F2 − ζ/2±

√
225
4
F 2

2 +
15
2
F2ζ +

9
4
ζ2.

Table 5.3 shows numerical results for various configurations of np2 ions of
aluminum, iron, molybdenum and gold, obtained by direct diagonalization of the
matrix considered here (the results coincide with those of calculations employ-
ing the analytic formulas). The term energies are given in atomic units and are
measured from the minimal energy for the configuration. The values of the Slater
integrals and of the parameters ζ, calculated according to the Hartree-Fock-Slater
model for the corresponding configurations, are displayed in Table 5.4.

Table 5.3: Term energies, in atomic units, for various configurations of np2 ions of
aluminum, iron, molybdenum and gold

term J Al Fe Mo Au

3P ′ 0 0.0000 0.0000 0.0000 0.0000
1 0.0084 0.0410 0.0695 0.5300
2 0.0230 0.0849 0.1153 0.6037

1D′ 2 0.2183 0.2324 0.2411 1.1892

1S′ 0 0.5212 0.4640 0.3974 1.3566
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Table 5.4: The Slater integrals and the parameters ζ, in atomic units, for the above
configurations of np2 ions of aluminum, iron, molybdenum and gold (see Table 5.3)

Element n Configuration R0
n1n1,n1n1 R2

n1n1,n1n1 ζ
(lower shells

are fully occupied)

Al 2 2s2 2p2 1.79271 0.84045 0.00151
Fe 3 3s2 3p2 1.25282 0.63666 0.00551
Mo 4 4s2 4p2 0.80900 0.43070 0.07596
Au 5 5s2 5p2 0.90334 0.49448 0.40953

As one sees in the tables, the magnitude of the multiplet splitting reaches
35 eV for gold, which is considerably higher than the width of the spectral line (see
further in § 5.4). The effects of multiplet splitting are particularly important when
the main contributors to the Rosseland mean free path are the p − d and d − f
transitions of multielectron ions (see § 5.5). In this case the number of components
of the multiplet reaches several hundreds or even thousands.

5.4 Shape of spectral lines

Since an ion can be in an excited state only for a finite time interval τ , according
to the well-known uncertainty principle the energy of the ion in such a state
is defined up to an error of ∆E ∼ h/τ . Consequently, a spectral line cannot
be monochromatic; rather, it is a set of lines, i.e., it has a certain shape. The
probability of absorption of a photon with frequency in the interval ω, ω+dω, per
unit of time, when the ion changes from a state a to a state b is equal to

W (ω) dω = Wab J(ω) dω, (5.91)

where Wab is the total transition probability (per unit of time) from state a to
state b, i.e., ∫

W (ω) dω = Wab,

which is equivalent to the normalization
∫
J(ω) dω = 1. The expression for the

transition probability Wab is given in Subsection 5.2.1. Here we are interested only
in the relative distribution of the intensity J(ω).

In the framework of classical electrodynamics the intensity distribution of a
spectral line is described by the Lorentz dispersion formula

J(ω) =
1
π

γ/2
(ω − ω0)2 + (γ/2)2

(5.92)
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(here ω0 is the position of the center of the spectral line and γ is called the line
width). The quantum-mechanical consideration of the interaction of a free atom
with an electromagnetic field also leads to formula (5.92). In that approach the
quantity γ is called the natural (or radiation) width of the line. In the general
case, when the profile of the line is not Lorentzian, the term line width signifies
the distance between the points of the contour in which the intensity is equal to
half the maximal value.

According to quantum theory, the natural width γ of the line in the transition
from state a to state b is equal to the sum of the widths of the initial and final
states: γ = γa +γb, where γa = 1/τa, τa is the mean lifetime of the atom in state a;
γb = 1/τb, τb is the mean life time of the atom in state b. In addition to the natural
broadening, there are other effects that result in the broadening of spectral lines.

First, collisions of electrons (and also of ions) with the ion under consideration
reduces the ion’s lifetime in the given excited state.

Second, electrical fields in a plasma split and shift energy levels. Conse-
quently, instead of a single line with definite frequency one observes many lines
with frequencies close to one another, emitted by different ions. This effect is called
Stark broadening.

Further, the chaotic thermal motion of the radiating ions results in a fre-
quency shift of the spectral lines emitted by a moving ion. This is known as the
Doppler broadening of lines.

Moreover, the autoionization process that accompanies photon emission may
also contribute to line broadening (Auger effect, see Subsection 5.4.7). As a rule,
for a dense hot plasma this effect may be neglected.

At thermodynamic equilibrium the shape of the absorption line coincides with
the shape of the emission line. Due to the fact that spectral lines are not strictly
monochromatic, but occupy some frequency band, bound–bound transitions may
exert a considerable influence on the Rosseland mean free path of photons, because
the number of spectral lines for high-Z elements may be huge.

5.4.1 Doppler effect

The simplest among the effects leading to broadening of spectral lines is the
Doppler effect.

Let J(ω) dω be the intensity distribution when the Doppler effect is neglected.
If an ion emits a spectral line with frequency ω′ and moves with velocity v in the
direction of the observer, then what one sees in the fixed coordinate system is
a spectral line with frequency ω = ω′(1 + v/c). This means that the intensity
distribution of the spectral line for the given values ω′ and v will be J(ω′) =
δ(ω − ω′(1 + v/c)) dω.

Let W (v) be the distribution function (normalized to 1) of ions according to
the projections of the velocities on a distinguished direction. Then the probability
that an ion whose velocity in the direction of the line of sight lies in the interval
(v, v + dv) will emit a line with frequency in the interval (ω′, ω′ + dω′) is equal
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to the product J(ω′) dω′W (v) dv. We see that intensity distribution in the fixed
coordinate system with the Doppler effect accounted for has the form

Φ(ω) dω = dω

∫
δ
(
ω − ω′

(
1 +

v

c

))
J(ω′)W (v) dω′ dv.

Integrating with respect to ω′ and putting (1 + v/c)−1 ≈ 1− v/c, we obtain

Φ(ω) ≈
∫
J
(
ω − ωv

c

)
W (v) dv.

In the case when the velocity distribution of ions is Maxwellian, i.e.,

W (v) dv =

√
M

2πθ
exp
(
−Mv2

2θ

)
dv, (5.93)

where M = 1836A is the ion mass and A the atomic weight, we have

Φ(ω) =
1√
πD

∞∫

0

J (ω − s) e−s2/D2
ds, (5.94)

D =
ω

c

√
2θ
M
.

5.4.2 Electron broadening in the impact approximation

The effect of the interaction of a radiating ion with other ions and electrons on the
shape of spectral lines was studied in a large number of works (see, e.g., [18, 112,
85, 75, 114, 177, 178, 84]). Here we shall confine ourselves to the consideration of
two limit cases, the first of which corresponds to the interaction of slow particles
with a radiating atom (quasi-static broadening), while the second deals with the
interaction of fast particles (impact broadening).

In the first case the interaction changes little over the duration of the photon
absorption process under consideration, i.e., it is quasi-static and leads mainly
to a line shift. In this case the line intensity distribution J(ω) dω is equal to the
probability that the position of the line will lie in the interval ω, ω + dω when
the interaction with perturbing particles is accounted for. In the temperature
and density ranges we are interested in, the quasi-static theory describes well
the interaction with ions, since the mean lifetime of excited states of an ion is
considerably shorter than the time a ion requires to fly a distance of the order of
the mean distance between ions. Ion broadening accounted for in the framework
of the quasi-static approximation will be considered in Subsection 5.4.6.

Electron broadening is usually considered in the impact approximation, be-
cause electron velocities are much greater than ion velocities. An elementary treat-
ment of the impact theory was first given by Lorentz. According to Lorentz, when
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the perturbing particles collide with a radiating atom they completely terminate
the radiation process, as a result of which radiation is no longer monochromatic.

Suppose that an atom emits radiation of frequency ω0 in the time interval
from 0 to T . Then the amplitude distribution, which can be obtained by expansion
in a Fourier integral, will be equal to

J(ω, T ) ∼
T∫

0

ei(ω−ω0)t dt =
ei(ω−ω0)t − 1
i(ω − ω0)

∣∣∣∣
t=T

.

If one could observe a single radiation act, then the intensity distribution according
to frequencies would be proportional to |J(ω, T )|2dω. However, the observed line
is a mixture of radiation emmited by many atoms, which radiate during different
time intervals, the mean value of which τ is given by τ = 1/νc, where νc is the
collision frequency. The probability that a given atom radiates in the time interval
T is τ−1e−T/τ . It follows that the intensity distribution of the observed line is

J(ω) =
1
τ

∞∫

0

|J(ω, T )|2 e−T/τ dT ∼ 1
(ω − ω0)2 + ν2

c

.

Thus, we obtained the Lorentz dispersion curve, whose total width at half of the
maximum of the intensity is 2νc.

The Lorentz profile may be obtained by examining the radiation processes in
a more rigorous way. Let us consider a quantum-mechanical system consisting of
an ion, free electrons and a radiation field. The total Hamiltonian of this system
can be written as a sum

H = Hi +He +Hr +Hie +Hir +Her, (5.95)

where Hi is the Hamiltonian of the considered ion in the field �F generated by
other ions, He the Hamiltonian of the free electrons and Hr the Hamiltonian of
the radiation field; Hie, Hir and Her describe the interaction of the ion with the
free electrons, of the ion with the radiation field, and of the free electrons with the
radiation field, respectively. The term Her has only a weak influence on the shape
of spectral lines and will be neglected in what follows, as is usually done in the
study of line broadening.

5.4.3 The nondegenerate case

Let us denote by ψ(i)
n and εn the eigenfunctions and energy eigenvalues of the ion

Hamiltonian Hi. Suppose that at the initial time t = 0 the ion is in one of the
steady states ψ(i)

n1 . We will study the absorption of photons with frequencies close
to some resonance frequency ω0, corresponding to the transition n1 → n2. The
levels n1 and n2 are assumed to be nondegenerate.
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To solve the Schrödinger equation

ih̄
∂Ψ
∂t

= HΨ,

where Ψ is the wave function of the system, we resort to perturbation theory. To
this end it is convenient to represent the Hamiltonian (5.95) in the form

H = H0 +H,

where
H0 = Hi +He + 〈n1|Hie|n1〉+Hr,

H = Hir +Hie − 〈n1|Hie|n1〉,
(5.96)

note that H � H0 [86, 147].
The eigenfunctions of the Hamiltonian H0 have the form

ψ
(0)
nλν = ψ(i)

n ψ
(e)
λ ψ(r)

ν ,

where ψ(i)
n , ψ(e)

λ , ψ(r)
ν are eigenfunctions of the Hamiltonians Hi, He + 〈n1|Hie|n1〉

and Hr, respectively:
Hiψ

(i)
n = εnψ

(i)
n , (5.97)

[
He + 〈n1|Hie|n1〉

]
ψ

(e)
λ = ελ ψ

(e)
λ , (5.98)

Hrψ
(r)
ν = ενψ

(r)
ν . (5.99)

Therefore,
H0ψ

(0)
nλν = εnλνψ

(0)
nλν , εnλν = εn + ελ + εν .

In accordance with nonstationary perturbation theory, let us expand the wave
function of the system, Ψ(t), with respect to the set of functions ψnλν(t) =

ψ
(0)
nλν exp

(
− it
h̄
εnλν

)
:

Ψ(t) =
∑

nλν

anλν(t)ψnλν(t).

The coefficients anλν(t) of the expansion satisfy the equations

ih̄ȧnλν =
∑

n′λ′ν′
〈nλν|H|n′λ′ν′〉 exp

[
it

h̄
(εnλν − εn′λ′ν′)

]
an′λ′ν′(t). (5.100)

By (5.96), the matrix elements 〈nλν|H|n′λ′ν′〉 have the form

〈nλν|H|n′λ′ν′〉 = 〈nν|Hir|n′ν′〉 · δλλ′+
〈nλ|Hie|n′λ′〉 · δνν′ − 〈n1λ|Hie|n1λ

′〉 · δnn′ δνν′ (5.101)
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(here we used the fact that the systems of functions ψ(i)
n , ψ(e)

λ , ψ(r)
ν are orthonor-

mal). The system of equations (5.100) will be solved with the initial conditions

anλν(0) =

{
1, if nλν = n1λ1ν1,

0, if nλν 	= n1λ1ν1.

Here we will neglect a number of terms in the right-hand sides of the equations,
motivated by the following qualitative description of the behavior of the coefficients
anλν(t). We shall assume that for values of t that are not too large, as long as
|an1λ1ν1 | � |anλν |, the functions |an1λ1ν1(t)| decrease, while the functions |anλν(t)|
with nλν 	= n1λ1ν1 grow due to the transitions from the initial state n1λ1ν1.

Ordinarily, the transition probability due to the interaction with free elec-
trons is large only when the energy of the ion does not change significantly as
a result of these interactions — inelastic collisions with large transfer of energy
have low probability. Since the energy level εn1 is nondegenerate, the most impor-
tant contributions are due to the transitions corresponding to the matrix elements
〈n1λ|Hie|n1λ1〉. But according to (5.101), in the expression for the matrix ele-
ment 〈nλν|H|n1λ1ν1〉 the matrix elements 〈n1λ|Hie|n1λ1〉 cancel out. It follows
that for moderately large values of t the probability of transition from the initial
state is determined mainly by the interaction with radiation (the first term in
(5.101)), and the fastest growing among the functions anλν(t) are the functions
an2λ1ν2(t) corresponding to the resonant absorption of photons with frequency
ω0 = (εn2 − εn1)/h̄.

Thus, over a sufficiently long time interval the functions |an1λ1ν1(t)| and
|an2λ1ν2(t)| will be larger than all the remaining functions |anλν(t)|. Consequently,
in that time interval transitions between states that do not include the states
n1λ1ν1 and n2λ1ν2 can be neglected. This leads to the following system of equa-
tions:





ih̄ȧn1λ1ν1(t) =
∑

nλν

〈n1λ1ν1|H|nλν〉 exp
[
it

h̄
(εn1λ1ν1 − εnλν)

]
anλν(t),

ih̄ȧn2λ1ν2(t) =
∑

nλν

〈n2λ1ν2|H|nλν〉 exp
[
it

h̄
(εn2λ1ν2 − εnλν)

]
anλν(t),

ih̄ȧnλν(t) = 〈nλν|H|n1λ1ν1〉 exp
[
it

h̄
(εnλν − εn1λ1ν1)

]
an1λ1ν1(t)+

〈nλν|H|n2λ1ν2〉 exp
[
it

h̄
(εnλν − εn2λ1ν2)

]
an2λ1ν2(t).

(5.102)

In the last of these equations nλν 	= n1λ1ν1, nλν 	= n2λ1ν2 and there is
no summation over different values of ν2, the reason being that we neglect the
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matrix elements where the energy conservation law is strongly violated, i.e., the
difference εnλν − εn2λ1ν1 is large (we neglect the matrix elements 〈nν1|Hir|n2ν2〉
and 〈n1λ1|Hie|nλ1〉 with n 	= n1, as well as 〈n2λ1|Hie|nλ1〉 and 〈n1ν1|Hir|nν2〉
with n 	= n2). For the sake of convenience, let us introduce the notation

an1λ1ν1 = a0, εn1λ1ν1 = ε0,

an2λ1ν2 = aα, εn2λ1ν2 = εα,

anλν = ak, εnλν = εk (nλν 	= n1λ1ν1, nλν 	= n2λ1ν2).

The form of the representation of ψ(e)
λ was chosen so that ε0 does not change when

λ1 does, and the energy of the level εα may change weakly with λ1 due to the
interaction with free electrons.

To carry out the calculations we resort to a method described in W. Heitler’s
book [86], Ch. IV, § 16 and in the paper [85]. Following this method, we pass from
the functions ak(t), aα(t) to the functions uk(ε), uα(ε) by the Fourier transforma-
tion, and then letting t→∞ we obtain from the system of equations (5.102) the
relations 





a0(∞) = 0,

aα(∞) =
uα(εα)

εα − ε0 + 1
2 ih̄Γ(εα)

,

ak(∞) =
uk(εk)

εk − ε0 + 1
2 ih̄Γ(εk)

.

(5.103)

The functions uα(ε), uk(ε) and Γ(ε) satisfy the system of equations






uα(ε) = Hα0 +Hααζ(ε− εα)uα(ε) +
∑
k

Hαkζ(ε− εk)uk(ε),

uk(ε) = Hk0 +Hkαζ(ε− εα)uα(ε),

h̄

2
Γ(ε) = i

∑

α

H0αζ(ε− εα)uα(ε) + i
∑

k

H0kζ(ε− εk)uk(ε),

(5.104)

where ζ(x) is the singular function

ζ(x) = P 1
x
− iπδ(x) = lim

σ→0
(σ>0)

1
x+ iσ

.

The symbol P
∞∫

−∞

1
x
f(x) dx denotes the integral in the sense of principal value. In

what follows we shall use the fact that xζ(x) = 1.
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The first two equations of system (5.104) yield

uα(ε) =
Hα0 +

∑
k

HαkHk0ζ(ε− εk)

1− ζ(ε− εα)
[
Hαα +

∑
k

|Hαk|2ζ(ε− εk)
] =

(ε− εα)
[
Hα0 +

∑
k

HαkHk0ζ(ε− εk)
]

(ε− εα)−
[
Hαα +

∑
k

|Hαk|2ζ(ε− εk)
] .

This expression shows that uα(εα) = 0, since for ε = εα the denominator is
different from zero. Indeed, for ε = εα the imaginary part of the denominator is
equal to

π
∑

k

|Hαk|2δ(εα − εk) > 0.

Therefore, by (5.103), aα(∞) = 0. The expression obtained for uα(ε) can be
simplified since the term Hα0 is of first order with respect to the magnitude of the
perturbation, while the sum

∑
k HαkHk0ζ(ε − εk) is of second order (in the sum

with respect to k the singularity of the function ζ(ε − εk) is inessential, because
this summation presumes an integration over a continuous spectrum of energies
εk). Based on the same considerations, in the denominator of the expression for
uα(ε) one can neglect Re

∑
k |Hαk|2ζ(ε−εk) in comparison with Hαα. This finally

yields

uα(ε) =
(ε− εα)Hα0

(ε− εα)−
[
Hαα − iπ

∑
k

|Hαk|2δ(ε− εk)
] .

For uk(ε) we derive from (5.104) the expression

uk(ε) = Hk0 +
HkαHα0

(ε− εα)−
[
Hαα − iπ

∑
k

|Hαk|2δ(ε− εk)
] =

Hk0 +
HkαHα0

(ε− εα −Hαα) + 1
2 ih̄γ(ε)

,

where

γ(ε) =
2π
h̄

∑

k

|Hαk|2δ(ε− εk).
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Substituting these expressions for uα(ε) and uk(ε) in the third equation of system
(5.104) we obtain

1
2
h̄Γ(ε) = i

∑

α

|H0α|2
(ε− εα −Hαα) + 1

2 ih̄γ(ε)
+ i
∑

k

|H0k|2ζ(ε− εk) +

i
∑

α

H0kHkαHα0ζ(ε− εk)
(ε− εα −Hαα) + 1

2 ih̄γ(ε)
�

i
∑

α

|H0α|2
(ε− εα −Hαα) + 1

2 ih̄γ(ε)
+ i
∑

k

|H0k|2ζ(ε− εk).

Since the quantity h̄γ(ε) is small, applying the limit relation

ζ(x) = lim
σ→0
(σ>0)

1
x+ iσ

,

one obtains

1
2
h̄Γ(ε) = i

∑

α

|H0α|2ζ(ε− εα −Hαα) + i
∑

k

|H0k|2ζ(ε− εk).

The form of the matrix elements allows us to conclude that Hαα does not change
when α varies (assuming the state n2 fixed). Let us denote Hαα = ∆. The sum∑

α |H0α|2ζ(ε− εα −∆) is a slowly varying function of the variable ε. Therefore,
∑

α

|H0α|2ζ(ε− εα −∆) �
∑

α

|H0α|2ζ(ε− εα)

whence
1
2
h̄Γ(ε) � i

∑

α

|H0α|2ζ(ε− εα) + i
∑

k

|H0k|2ζ(ε− εk).

It follows that

Re Γ(ε) =
2π
h̄

[
∑

α

|H0α|2δ(ε− εα) +
∑

k

|H0k|2δ(ε− εk)

]
,

Im Γ(ε) =
2
h̄
P
[
∑

α

|H0α|2
ε− εα

+
∑

k

|H0k|2
ε− εk

]
.

Let us find the probability of photon absorption in the frequency interval
ω, ω + dω for the transition of the ion from the state n1 to the state n2. Directly,
that is, by using aα(∞), this is not possible, because aα(∞) = 0. For this reason
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we will proceed as follows. Consider those values of k for which Hαk 	= 0. It turns
out that for these values of k the matrix elements H0k = 0. Indeed, by (5.101),
Hαk 	= 0 for states k such that

(1) λ = λ1, and the number of photons in the state k differs by the number
of the photons in the state α by one, and so H0k = 0;

(2) ν = ν2, but for such states H0k = 0, because we have neglected the matrix
elements 〈n1λ1|Hi�|nλ1〉 with n 	= n1 and 〈n1ν1|Hir|nν2〉 with n 	= n2.

Therefore, for values of k for which Hαk 	= 0, the quantity |ak(∞)|2 may
be regarded as the conditional probability of the following transition: as a result
of absorbing a photon, the system passes first to the state α, and then to the
considered state k = kα (transition through an intermediate state).

Let us calculate the probability J(ε, ε′) dε dε′ that the energy εα lies in the
interval ε, ε+ dε and the energy εkα

lies in the interval ε′, ε′ + dε′.
Obviously,

J(ε, ε′) dε dε′ =
∑

α
(ε ≤ εα ≤ ε+ dε)

∑

kα

(ε′ ≤ εkα
≤ ε′ + dε′)

|akα
(∞)|2 =

∑

α,kα

|HkααHα0|2
|εkα
− ε0 + 1

2 ih̄Γ(εkα
)|2 |εkα

− εα −∆ + 1
2 ih̄γ(εkα

)|2 �

∑
α,kα

|HkααHα0|2

|ε′ − ε0 + 1
2 ih̄Γ(ε′)|2 |ε′ − ε−∆ + 1

2 ih̄γ(ε
′)|2 .

The sum figuring in the numerator of the expression for J(ε, ε′) dε dε′ may
be written in the form A(ε, ε′) dε dε′, where A(ε, ε′) is a continuous function.

Indeed,

∑

α
(ε ≤ εα ≤ ε+ dε)

∑

kα

(ε′ ≤ εkα
≤ ε′ + dε′)

|HkααHα0|2 �

dε dε′
∑

α

∑

kα

|HkααHα0|2 δ(ε− εα)δ(ε′ − εkα
).

Therefore,

J(ε, ε′) =
A(ε, ε′)

|ε′ − ε0 + 1
2 ih̄Γ(ε′)|2 |ε′ − ε−∆ + 1

2 ih̄γ(ε
′)|2 .
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The function J(ε, ε′) has a sharp maximum in the region ε = ε′ = ε0, because the
quantities ∆, h̄Γ, h̄γ are small. Near this maximum

J(ε, ε′) � A0

|ε′ − ε0 + 1
2 ih̄Γ|2 |ε′ − ε−∆ + 1

2 ih̄γ|2
,

where
A0 = A(ε0, ε0), Γ = Γ(ε0), γ = γ(ε0).

The probability that the energy εα lies in the interval ε, ε+ dε is then given by

J(ε) =

∞∫

−∞
J(ε, ε′) dε′ ∼ 1

(ε0 − ε−∆ + 1
2 h̄ ImΓ)2 + [12 h̄(γ + Re Γ)]2

.

Compared to ∆, the term 1
2 h̄ ImΓ can be neglected, being a quantity of the next

order of smallness with respect to the perturbation H, and we obtain

J(ε) ∼ 1
(ε0 − ε−∆)2 + [12 h̄(γ + Re Γ)]2

.

Further, since ε0 − ε = h̄ω + εn1 − εn2 (ε = εα and ω is the frequency of the
absorbed photon in the transition from the state with energy ε0 to the state with
energy εα), the probability of absorption of a photon with frequency in the interval
ω, ω + dω is equal to

J(ω) dω ∼ 1
(ω − ω0)2 + (Γ0/2)2

, (5.105)

where
ω0 =

1
h̄

(εn2 − εn1 + ∆), Γ0 = γ + Re Γ.

Thus, we arrived at the Lorentz formula with a frequency shift ∆/h̄ and width
Γ0. The quantity

Γ0 =
2π
h̄

(
∑

k

|Hαk|2δ(ε0 − εk) +
∑

α

|H0α|2δ(ε0 − εα) +
∑

k

|H0k|2δ(ε0 − εk)

)

(5.106)
represents the total probability of transition, per unit of time, from the initial
state n1λ1ν1 to the final state n2λ1ν2, under the action of the perturbation H.

According to the definition of ∆, the position of the spectral line ω0 is given
by

ω0 =
1
h̄

(ε′n2
− ε′n1

), (5.107)

where

ε′n2
= εn2 + 〈n2λ1|Hie|n2λ1〉, ε′n1

= εn1 + 〈n1λ1|Hie|n1λ1〉
are the energies of the ion in the states n2 and n1 with the corrections due to the
interaction of the ion with free electrons.
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5.4.4 Accounting for degeneracy

To clarify how degeneracy affects the shape of spectral lines, let us consider the
case where the top level consists of a set of levels εn2s

, (s = 1, 2, . . .) that are close
to one another, and the frequencies of the other transitions, ω�m = (ε� − εm)/h̄
differ sharply from the frequencies ω0s = (εn2s

− εn1)/h̄ for � 	= n2, m 	= n1.
In this case we obtain a system of equations similar to (5.102), where now

instead of n2 we have n2s and in the right-hand side one sums over s. Let

an2sλ1ν2 = aαs, εn2sλ1ν2 = εαs.

Then, similarly to (5.103), when t→∞ we obtain





a0(∞) = 0,

aαs(∞) =
uαs(εαs)

εαs − ε0 + 1
2 ih̄Γ(εαs)

,

ak(∞) =
uk(εk)

εk − ε0 + 1
2 ih̄Γ(εk)

.

The functions uαs(ε), uk(ε) and Γ(ε) satisfy the system of equations





uαs(ε) = Hαs,0 +
∑
s′
Hαs,αs′ζ(ε− εαs′)uαs′(ε) +

∑
k

Hαs,kζ(ε− εk)uk(ε),

uk(ε) = Hk0 +
∑
s′
Hk,αs′ζ(ε− εαs′)uαs′(ε),

h̄

2
Γ(ε) = i

∑

αs′
H0,αs′ζ(ε− εαs′)uαs′(ε) + i

∑

k′
H0k′ζ(ε− εk′)uk′(ε),

(5.108)
whence

uαs = Hαs,0 +
∑

s′
Hαs,αs′ζ(ε− εαs′)uαs′ +

∑

k,s′
Hαs,kHk,αs′ζ(ε− εk)ζ(ε− εαs′)uαs′ +

∑

k

Hαs,kζ(ε− εk)Hk0. (5.109)

As we did when we solved (5.104), the last term in (5.109) can be neglected.
To solve the resulting system, we replace uαs by the functions

cαs = ζ(ε− εαs)uαs,

which in turn will be, for each fixed value of α, solutions of the finite system of
equations

(ε− εαs)cαs = Hαs,0 +
∑

s′
cαs′
[
Hαs,αs′ +

∑

k

Hαs,kHk,αs′ζ(ε− εk)
]
. (5.110)
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Let λ(p)
α and {b(p)

αs } be the eigenvalues and the eigenvectors of the homoge-
neous system associated to the system (5.110):

(λ(p)
α − εαs)b(p)

αs =
∑

s′
b
(p)
αs′

[
Hαs,αs′ +

∑

k

Hαs,kHk,αs′ζ(ε− εk)
]
. (5.111)

It is readily verified that the solution of (5.110) has the form

cαs =
∑

p

b
(p)
αs

ε− λ(p)
α

, (5.112)

where the eigenvectors {b(p)
αs } are normalized so that

∑

p

b(p)
αs = Hαs,0. (5.113)

The eigenvalues λ(p)
α have negative imaginary parts. Indeed, from (5.111) it

follows that

(λ(p)
α − λ̄(p)

α )
∑

s

|b(p)
αs |2 =

∑

ss′
b
(p)
αs′ b̄

(p)
αs

∑

k

Hαs,kHk,αs′
[
ζ(ε− εk)− ζ̄(ε− εk)

]
,

(the overbar denotes complex conjugation), whence

Im λ(p)
α = − π

∑
s
|b(p)

αs |2
∑

k

δ(ε− εk)

∣∣∣∣∣
∑

s

Hk,αsb
(p)
αs

∣∣∣∣∣

2

< 0.

Note also that, since the perturbation is small, Reλ(p)
α ≈ εαp (i.e., εαs at s = p);

accordingly, henceforth we will replace Reλ(p)
α by εαp.

Since the sum
∑

k Hαs,kHk,αs′ζ(ε − εk) is a slowly varying function of ε, it
follows from (5.111) that the eigenvectors {b(p)

αs } and eigenvalues λ(p)
α will depend

only weakly on ε (i.e., if ε changes by a quantity of the order of the width of
the spectral line, {b(p)

αs } and λ(p)
α may be assumed to be constants). Using (5.112),

equations (5.108) yield

uk(ε) = Hk0 +
∑

s

Hk,αs

∑

p

b
(p)
αs

ε− λ(p)
α

,

whence

ak(∞) =
1

ε− ε0 + 1
2 ih̄Γ(ε)

[
Hk0 +

∑

s

Hk,αs

∑

p

b
(p)
αs

ε− λ(p)
α

]∣∣∣∣∣
ε=εk
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and

h̄

2
Γ(ε) = i

∑

αs

H0,αs

∑

p

b
(p)
αs

ε− λ(p)
α

+

i
∑

k

H0kζ(ε− εk)

[
Hk0 +

∑

s

Hk,αs

∑

p

b
(p)
αs

ε− λ(p)
α

]
≈

i
∑

k

|H0k|2ζ(ε− εk) + i
∑

αs

H0,αs

∑

p

b
(p)
αs

ε− λ(p)
α

.

Since ζ(x) = lim
σ→0
(σ>0)

1
x+ iσ

, we have
1

ε− λ(p)
α

≈ ζ(ε− εαp), and so

h̄

2
Γ(ε) ≈ i

∑

k

|H0k|2ζ(ε− εk) + i
∑

p

∑

αs

H0,αsb
(p)
αs ζ(ε− εαp).

The second term in the right-hand side depends weakly on ε, and conse-
quently it changes only slightly if in the function ζ(ε − εαp) we replace ε by the
close value ε+ εαp − εαs. Using (5.113), we obtain

h̄

2
Γ(ε) ≈ i

∑

k

|H0k|2ζ(ε− εk) + i
∑

αs

|H0,αs|2ζ(ε− εαs). (5.114)

It can be easily shown that if for some value k = kα we have Hk,αs 	= 0, then
H0k = 0. Therefore, the quantity |akα

(∞)|2 can be interpreted as the conditional
probability that the system, after absorbing a photon with frequency ωα, such
that εαs = ε0+ h̄ω0s− h̄ωα, will pass to the state kα.

The probability of interest here, namely, the probability of absorption of a
photon with frequency in the interval ω, ω + dω, can be calculated by means of
the formula

J(ω) dω =
∑

ω<ωα<ω+dω

∑

kα

|akα
(∞)|2.

In the present case the line intensity J(ω) is not represented just by a sum
of Lorentz contours corresponding to transitions to each of the upper levels n2s;
rather, it also contains interference terms. Nevertheless, the intensity J(ω) can be
represented approximately as a Lorentz contour if we use the following approxi-
mate equality (see (5.113)):

∑

p

b
(p)
αs

ε− λ(p)
α

≈ 1
ε− λα

∑

p

b(p)
αs =

Hαs,0

ε− λα
,
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where λα is some average of the values λ(p)
α . From the secular equation for λ(p)

α

corresponding to (5.111) we conclude that the arithmetic mean of the values λ(p)
α

is given by the formula

λα =
〈
εαs +Hαs,αs +

∑

k

|Hαs,k|2ζ(ε− εk)
〉

s

(here the brackets 〈· · · 〉s denote the arithmetic mean value over the states s). We
conclude that

Reλα ≈ 〈εαs〉s, Imλα = −π〈
∑

k

|Hαs,k|2δ(ε− εk)
〉

s
= − h̄

2
〈γαs〉s.

In this approximation

akα
(∞) =

∑
s
Hk,αsHαs,0

[
εk − ε0 +

1
2
ih̄Γ(εk)

] [
εk − 〈εαs〉s +

1
2
ih̄〈γαs〉s

]

and we obtain the following formula for J(ω):

J(ω) ∼ 1
(
ω − 〈ω0s〉s

)2 +
(〈Γ0s〉s/2

)2 , (5.115)

where

Γ0s =
2π
h̄

{
∑

k

|Hαs,k|2δ(εαs − εk) +

∑

αs

|H0,αs|2δ(ε0 − εαs) +
∑

k

|H0k|2δ(ε0 − εk)

}
, (5.116)

which is given by an expression similar to (5.106), is the total probability of the
transition, per unit of time, from the initial state n1λ1ν1 to the final state n2sλ1ν2,
under the action of the perturbation H. The quantity ω0s, which determines the
position of the spectral line, can be represented in the form

ω0s =
1
h̄

(ε′n2s
− ε′n1

),

where

ε′n2s
= εn2s

+ 〈n2sλ1|Hie|n2sλ1〉, ε′n1
= εn1 + 〈n1λ1|Hie|n1λ1〉

are the energies of the ion in the states n2s and n1, respectively.
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In view of result obtained above, one should expect that for transitions be-
tween groups of levels that are close to one another, the intensity distribution J(ω)
will also be described, in some approximation, by the Lorentz formula, in which
now the line width is equal to the sum of the mean widths for the upper and lower
groups of levels.

Substituting expression (5.101) for the matrix elements in (5.116), we obtain
the following expression for the line width (we assume that averaging has been
carried out):

γ ≡ Γ0 = γ(r)
n1

+ γ(r)
n2

+ γ(e)
n1

+ γ(e)
n2

+ γ(u)
n1n2

.

Here
γ(r)

n =
2π
h̄

∑

n′ν

∣∣〈nν1|Hir|n′ν〉∣∣2 δ(εn + εν1 − εn′ − εν) (5.117)

is the natural (radiation) width of the energy level of the ion in the state n, which
is equal to the probability of transition, per unit of time, from the state n due to
the interaction with the electromagnetic field;

γ(e)
n =

2π
h̄

∑

n′ �=n

∑

λ

∣∣〈nλ1|Hie|n′λ〉∣∣2 δ(εn + ελ1 − εn′ − ελ) (5.118)

is the broadening due to the interaction with the free electrons; and

γ(u)
n1n2

=
2π
h̄

∑

λ

∣∣〈n2λ1|Hie|n2λ〉 − 〈n1λ1|Hie|n1λ〉
∣∣2δ(ελ1 − ελ) (5.119)

is, in the terminology of [112], the universal broadening, which is a result of elastic
collisions.

5.4.5 Methods for calculating radiation and electron broadening

In the dipole approximation the natural width of the line (5.117) for the state n�
(i.e., the reciprocal of the lifetime of this state, see Subsection 5.7.4) equals

γ
(r)
n� = 2π2α

∑

n′�′ �=n�

(
1− Nn′�′

2(2�′ + 1)

)
Fn�,n′�′(|εn� − εn′�′ |/h̄), (5.120)

where

Fn�,n′�′(ω) =






(
h̄ω3

π2c2
+ 4πBω

)
2�′ + 1
2�+ 1

fn′�′,n�

h̄ω
, if εn′�′ < εn�,

4πBω
fn�,n′�′

h̄ω
, if εn′�′ > εn�,

Bω =
h̄ω3

4π3c2
1

ex − 1
,
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ω = |εn�− εn′�′ |/h̄, x = h̄ω/θ, α = 1/c = 1/137.036, and the factor
(
1− Nn′�′

2(2�′+1)

)

accounts for the occupancy of the level n′�′ (see the derivation of (5.45)). The
quantity γ(r)

n� is expressed in atomic units.
The sum for εn′�′ < εn� accounts for induced and spontaneous emission,

while for εn′�′ > εn� it accounts for absorption. In the latter case one should,
generally speaking, account for the states belonging to the continuum, but due to
the presence of the factor 1/(ex − 1) those states have practically no contribution
to the natural width.

To calculate the electron widths γ(e)
n1 , γ(e)

n2 and γ
(u)
n1n2 it is necessary to con-

struct wave functions of the ion-free electron system, adopting some coupling
scheme of momenta. Width calculations then become rather tedious, despite the
fact that the influence of errors on widths is sufficiently weak, as we shall see
below. For that reason, we shall use the one-electron approximation, i.e., we shall
assume that a spectral line is connected with a change of state of only one electron
of the ion. To obtain the line width connected with the transitions of the electron
in question, it suffices that, in formulas (5.118)–(5.119), in the summation over
various states of the ion, we restrict ourselves to those states in which our electron
changes its position. After we obtain the one-electron widths, we must average
them over the quantum numbers of the electron within a group of one-electron
energy levels that are close to one another.

To calculate the widths of spectral lines using formulas (5.118)–(5.119) we
must know the eigenfunctions ψ(i)

n , ψ(e)
λ , ψ(r)

ν . The photon wave functions are well
known (see, e.g., [86]). The calculation of the electron wave functions for the bound
and continuum states is considered in §§ 2.2, 2.3.

In the calculation of the matrix elements 〈nλ1|Hie|n′λ〉 that appear in the
expressions for the widths γ(e)

n and γ(u)
n1n2 we may assume, with little loss of accu-

racy, that the potentials Vλ and Vλ1 that act on the continuum electrons are equal.
Indeed, let us put Vλ1 = Vλ and calculate the matrix elements 〈nλ1|Hie|n′λ〉. Ob-
viously, the Hamiltonian Hie can be written as a sum of Hamiltonians, each of
which acts on the coordinates of a single electron in the ion under consideration:

Hie =
∑

s

1
|�rs − �rp | ,

where �rs is the position vector of the s-th electron of the ion and �rp is the position
vector of the perturbing electron. For Vλ = Vλ1 , the one-electron wave functions
corresponding to the states λ and λ1 are orthogonal. Therefore, in the one-electron
approximation the matrix element 〈nλ1|Hie|n′λ〉 will be different from zero if and
only if the initial state differs from the final state only through the position of
one electron of the ion and the state of one of the perturbing electrons. If the
wave functions and the energies of these two electrons in the initial state nλ1

[resp., final state n′λ] are ψk(�r), εk [resp., ψk′(�r ), εk′ ] for the electron of the ion
and ϕµ(�r ′), εµ [resp., ϕµ′(�r ′), εµ′ ] for the perturbing electron, then the matrix
element 〈nλ1|Hie|n′λ〉 takes on the form



200 Chapter 5. Interaction of radiation with matter

〈nλ1|Hie|n′λ〉 =
∫
ψ∗

k(�r )ϕ∗
µ(�r ′)

1
|�r − �r ′| ψk′(�r )ϕµ′(�r ′) d�r d�r ′. (5.121)

Summing with respect to n′ and λ in (5.118) and applying the Pauli principle, we
obtain

γ(e)
n =

∑

k′
(1− nk′) γ(e)

kk′ , (5.122)

where

γ
(e)
kk′ = 2π

∑

µ,µ′
nµ(1− nµ′)

∣∣∣∣
∫
ψ∗

k(�r )ϕ∗
µ(�r ′)

1
|�r − �r ′|ψk′(�r )ϕµ′(�r ′) d�r d�r ′

∣∣∣∣
2

×

δ(∆εkk′ + εµ − εµ′); (5.123)

here nk and nµ are the occupation coefficients of the electron states, equal to 1
for the occupied states and to 0 for the unoccupied ones and ∆εkk′ is the differ-
ence between the initial and final energies of the ion when one of the electrons
passes from state k to state k′. In what follows, instead of ∆εkk′ we will use its
approximation εk− εk′ , since this has practically no influence on the value of γ(e)

n .
According to its meaning, the quantity γ

(e)
kk′ is the probability of transition

of a bound-state electron from state k to state k′ per unit of time due to the
interaction with the free electrons.

In much the same way we obtain for γ(u)
n1n2 the expression

γ(u)
n1n2

= γ
(u)
kk′ = 2π

∑

µ,µ′
nµ(1− nµ′)×

∣∣∣∣
∫ [|ψk′(�r )|2 − |ψk(�r )|2] ϕ

∗
µ(�r ′)ϕµ′(�r ′)
|�r − �r ′| d�r d�r ′

∣∣∣∣
2

δ(εµ − εµ′). (5.124)

A sufficiently good approximation in calculations of line widths for high tem-
peratures is the one in which γ

(e)
kk′ and γ

(u)
kk′ are calculated for the average ion

configuration, neglecting the action of electrical fields of the other ions and the
relativistic splitting of lines. As the wave functions of bound-state electrons one
uses the functions

ψn�m(�r ) =
1
r
Rn�(r) (−1)mY�m(ϑ, ϕ),

while for the continuum electrons one takes

ψε�m(�r ) =
1
r
Rε�(r) (−1)mY�m(ϑ, ϕ),

where Rn�(r), Rε�(r) are solutions of the Schrödinger equation with the Hartree-
Fock-Slater self-consistent potential.
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Let us replace summation with respect to the free-electron states µ and µ′

by integration with respect to ε and ε′. When we count the number of states
of continuum electrons µ′ we need to keep in mind that in a transition between
states the spin of a free electron is conserved. Therefore, if for k and k′ we use the
quantum numbers n�m and n′�′m′, we arrive at the following expression for γ(e)

kk′ :

γ
(e)
n�m,n′�′m′ = 4πe−η

∑

�̄m̄

∑

�̄′m̄′

∫
(1− nε)(1− nε′)e−ε/θ dε×

∣∣∣∣
∫
Rn�(r)Y ∗

�m(ϑ, ϕ)Rε�̄(r
′)Y ∗̄

�m̄(ϑ′, ϕ′)×

1
|�r − �r ′| Rn′�′(r′)Y�′m′(ϑ, ϕ)Rε′�̄′(r

′)Y�̄′m̄′(ϑ′, ϕ′) dr dΩ dr′ dΩ′
∣∣∣∣
2

, (5.125)

where n�m 	= n′�′m′, the integration with respect to �r and �r ′ is carried over the
atom cell for ε′ = ε+ εn� − εn′�′ , nε = 1/[1 + exp(ε/θ + η)] and η is the reduced
chemical potential: η = −µ/θ.

In much the same way we obtain for γ(u)
kk′ the expression

γ
(u)
n�m,n′�′m′ = 4πe−η

∑

�̄m̄

∑

�̄′m̄′

∫
(1− nε)2e−ε/θ dε×

∣∣∣∣
∫ [
|Rn′�′(r)Y�′m′(ϑ, ϕ)|2 − |Rn�(r)Y�m(ϑ, ϕ)|2

]
×

1
|�r − �r ′| Rε�̄(r

′)Y ∗̄
�m̄(ϑ′, ϕ′)Rε�̄′(r

′)Y�̄′m̄′(ϑ′, ϕ′) dr dΩ dr′ dΩ′
∣∣∣∣
2

. (5.126)

To obtain the average widths γ(e)
n� we carry out the summation in (5.122) with

respect to the quantum numbers n′, �′,m′ and average over m, replacing 1−nk′ by
its mean value 1−Nn′�′/(2(2�′ + 1)). After that we average the universal widths
over m and m′. This finally yields

γ
(e)
n� =

1
2�+ 1

∑

m

∑

n′�′m′

(
1− Nn′�′

2(2�′ + 1)

)
γ

(e)
n�m,n′�′m′ (n�m 	= n′�′m′) (5.127)
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and
γ

(u)
n�,n′�′ =

1
(2�+ 1)(2�′ + 1)

∑

m

∑

m′
γ

(u)
n�m,n′�′m′ . (5.128)

The total width for the transition n�→ n′�′ will be equal to

γn�,n′�′ = γ
(r)
n� + γ

(r)
n′�′ + γ

(e)
n� + γ

(e)
n′�′ + γ

(u)
n�,n′�′ . (5.129)

To calculate the electron widths (5.125) and (5.126) we shall use the expan-
sion of 1/|�r − �r ′| in spherical harmonics,

1
|�r − �r ′| =

∑

s,m̃

4π
2s+ 1

rs
<

rs+1
>

Ysm̃(ϑ, ϕ)Y ∗
sm̃(ϑ′, ϕ′) (5.130)

and express the integrals over the angular variables in terms of the Wigner 3j-
symbols. This yields

γ
(e)
n�m,n′�′m′ = 4πe−η

∑

�̄�̄′

∑

m̄m̄′
(2�+ 1)(2�′ + 1)(2�̄+ 1)(2�̄′ + 1)×

∫
(1− nε)(1− nε′)e−ε/θ dε×

∣∣∣∣∣∣

∑

s,m̃

(
� �′ s
0 0 0

)(
�̄ �̄′ s
0 0 0

)(
� �′ s
−m m′ m̃

)(
�̄ �̄′ s
−m̄ m̄′ −m̃

)
R

(s)

n�n′�′ε�̄ε′ �̄′

∣∣∣∣∣∣

2

,

(5.131)

ε′ = ε+ εn� − εn′�′ ,

γ
(u)
n�m,n′�′m′ = 4πe−η

∑

�̄�̄′

∑

m̄m̄′

∫
(1− nε)2e−ε/θ dε×

∣∣∣∣∣
∑

sm̃

√
(2�̄+ 1)(2�̄′ + 1)

(
�̄ �̄′ s
0 0 0

) (
�̄ �̄′ s
−m̄ m̄′ −m̃

)
×

[
(2�′ + 1)R(s)

n′�′n′�′ε�̄ε′�̄′(−1)m′
(
�′ �′ s
0 0 0

) (
�′ �′ s
−m′ m′ m̃

)
−

(2�+ 1)R(s)

n�n�ε�̄ε′ �̄′(−1)m

(
� � s
0 0 0

) (
� � s
−m m m̃

)]∣∣∣∣∣

2

. (5.132)

Here
R

(s)

n�n′�′ε�̄ε′ �̄′ =
∫
Rn�(r)Rε�̄(r

′)
rs
<

rs+1
>

Rn′�′(r)Rε′�̄′(r
′) dr dr′.
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Summing with respect to m, m′ and using the orthogonality relations for
the Wigner coefficients (see, e.g., [220, 230]), one can show that for an arbitrary
function f(s, m̃) the following relation holds:

∑

mm′

∣∣∣∣∣
∑

sm̃

(
� �′ s
−m m′ m̃

)
f(s, m̃)

∣∣∣∣∣

2

=

∑

ss′

∑

m̃m̃′
f(s, m̃) f(s′, m̃′)

∑

mm′

(
� �′ s
−m m′ −m̃

)(
� �′ s′

−m m′ −m̃′

)
=

∑

sm̃

1
2s+ 1

f2(s, m̃){� �′ s}. (5.133)

Using (5.133), we have

γ
(e)
n�m,n′�′m′ =(2�+ 1)(2�′ + 1)

∑

s,m̃

1
2s+ 1

(
� �′ s
0 0 0

)2(
� �′ s
−m m′ m̃

)2

γ
(e)
n�,n′�′,s ,

(5.134)
where

γ
(e)
n�,n′�′,s =4πe−η

∑

�̄�̄′

(2�̄+ 1)(2�̄′ + 1)
(
�̄ �̄′ s
0 0 0

)2

×
∫

(1− nε)(1− nε′)e−ε/θ
[
R

(s)

n�n′�′ε�̄ε′ �̄′

]2
dε,

ε′ = ε+ εn� − εn′�′ .

Similarly,

γ
(u)
n�m,n′�′m′ = γ

(e)
n′�′m′,n′�′m′ + γ

(e)
n�m,n�m − 2(2�+ 1)(2�′ + 1)×

∑

s,m̃

1
2s+ 1

(
�′ �′ s
0 0 0

) (
� � s
0 0 0

)
×

(−1)m+m′
(

�′ �′ s
−m′ m′ m̃

) (
� � s
−m m m̃

)
γ

(u)
n�,n′�′,s , (5.135)

where

γ
(u)
n�,n′�′,s = 4πe−η

∑

�̄�̄′

(2�̄+ 1)(2�̄′ + 1)
(
�̄ �̄′ s
0 0 0

)2

×
∫

(1− nε)2e−ε/θ R
(s)

n′�′n′�′ε�̄ε�̄′ R
(s)

n�n�ε�̄ε�̄′ dε.
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Table 5.5 lists the values of the radiation width γ(r)
n� , of the electron widths γ(e)

n�

and γ(u)
n�,n′�′ , and of their sum γn�,n′�′ , for a gold plasma with density ρ=0.1 g/cm3

and at various temperatures (see formulas (5.120), (5.127), (5.128) and (5.129)).
For illustration purposes, we have chosen transitions from the levels n� = 31, 41,
43. As the table shows, the Lorentz widths of spectral lines are of the order of
fractions of eV.

Table 5.5: The radiation width γ(r)
n� and the electron widths γ(e)

n� , γ(u)
n�,n′�′ of levels,

in eV, and the total widths γn�,n′�′ in a gold plasma at density 0.1 g/cm3 and
various temperatures (the notation 1.45−13, say, means 1.45·10−13)

T , eV n� n′�′ γ
(r)
n� γ

(r)
n′�′ γ

(e)
n� γ

(e)
n′�′ γ

(u)
n�,n′�′ γn�,n′�′

100 31 32 1.45−13 1.01−11 6.55−14 5.51−14 1.47−06 1.47−06
31 40 1.45−13 1.44−06 6.55−14 1.20−03 2.36−04 1.44−03
31 42 1.45−13 2.82−05 6.55−14 2.72−04 2.20−04 5.20−04
31 50 1.45−13 5.29−05 6.55−14 1.30−02 7.89−04 1.38−02
31 52 1.45−13 2.12−04 6.55−14 2.43−02 8.50−04 2.53−02
31 60 1.45−13 2.52−04 6.55−14 2.79−02 1.48−03 2.97−02
31 62 1.45−13 2.38−04 6.55−14 3.15−02 1.61−03 3.33−02

41 42 5.60−06 2.82−05 3.05−04 2.72−04 4.72−07 6.12−04
41 50 5.60−06 5.29−05 3.05−04 1.30−02 4.54−04 1.38−02
41 52 5.60−06 2.12−04 3.05−04 2.43−02 5.34−04 2.53−02
41 60 5.60−06 2.52−04 3.05−04 2.79−02 1.54−03 3.00−02
41 62 5.60−06 2.38−04 3.05−04 3.15−02 1.77−03 3.38−02

43 52 5.49−05 2.12−04 1.88−04 2.43−02 5.77−04 2.53−02
43 54 5.49−05 8.64−04 1.88−04 5.01−03 1.04−03 7.15−03
43 62 5.49−05 2.38−04 1.88−04 3.15−02 1.85−03 3.38−02
43 64 5.49−05 5.73−04 1.88−04 2.92−02 2.55−03 3.26−02

1000 31 32 4.13−03 7.15−03 8.66−04 3.52−04 1.68−05 1.25−02
31 40 4.13−03 2.11−02 8.66−04 2.32−03 4.39−04 2.89−02
31 42 4.13−03 5.45−02 8.66−04 1.75−03 2.98−04 6.16−02
31 50 4.13−03 2.04−02 8.66−04 3.92−03 1.32−03 3.06−02
31 52 4.13−03 4.34−02 8.66−04 3.44−03 1.17−03 5.30−02
31 60 4.13−03 1.62−02 8.66−04 8.35−03 2.29−03 3.19−02
31 62 4.13−03 3.09−02 8.66−04 7.88−03 2.16−03 4.60−02

41 42 2.82−02 5.45−02 2.25−03 1.75−03 1.38−05 8.67−02
41 50 2.82−02 2.04−02 2.25−03 3.92−03 5.99−04 5.53−02
41 52 2.82−02 4.34−02 2.25−03 3.44−03 4.67−04 7.78−02
41 60 2.82−02 1.62−02 2.25−03 8.35−03 1.79−03 5.68−02
41 62 2.82−02 3.09−02 2.25−03 7.88−03 1.61−03 7.09−02

43 52 1.10−01 4.34−02 7.22−04 3.44−03 1.07−03 1.58−01
43 54 1.10−01 5.25−02 7.22−04 9.20−04 5.29−04 1.64−01
43 62 1.10−01 3.09−02 7.22−04 7.88−03 2.62−03 1.52−01
43 64 1.10−01 3.47−02 7.22−04 4.22−03 2.01−03 1.51−01
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5.4.6 Ion broadening

The starting assumption of the quasi-static theory of ion broadening is that the
splitting of a spectral line in separate components and the position of these compo-
nents in the absorption spectrum depends on the electric field F , whose probability
distribution, W (F ), is assumed to be known. The total profile of the spectral line
is obtained by averaging the set of profiles of components with the distribution
function of their shifts in dependence of the field [38].

Therefore, in order to calculate the profile we must first find the distribution
function of the ion microfield W (F ) and the Stark frequency-shift ∆ω = ∆ω(F )
for each component of the spectral line in each of the ions.

Here we shall consider only temperatures and densities for which the effective
radius of the ion core is considerably smaller than the radius of the atom cell. In
these circumstances one can assume, with a high degree of accuracy, that the
electric field generated by ions is homogeneous within the limits of the ion core
under consideration. Let us consider a system of N ions of charge Z0, whose
positions are specified by position vectors �r1, �r2, . . . , �rN . The intensity of the field
generated by these ions in the origin of coordinates where the ion under study is
located is equal (in atomic units) to

�F = −Z0

N∑

i=1

�ri
r3i
.

For a given position of the ions, the probability that the field intensity will lie in
the interval �F , �F + d�F is given by the expression

Q(�r1, �r2, . . . , �rN , �F ) d�F = δ

(
�F + Z0

N∑

i=1

�ri
r3i

)
d�F .

Here δ(�x) is Dirac’s delta-function. According to the Boltzmann statistical distri-
bution, the probability of a given position �r1, �r2, . . . , �rN of the ions is proportional
to

exp
[
−1
θ
U(�r1, �r2, . . . , �rN )

]
d�r1d�r2 . . . d�rN ,

where U(�r1, �r2, . . . , �rN ) is the potential energy of the system of N ions. Therefore,
the probability that the field intensity will lie in the interval �F , �F + d�F can be
found by averaging over all positions of the ions:

p(�F ) d�F =

∫
exp
[
−1
θ
U(�r1, �r2, . . . , �rN )

]
·δ
(
�F+Z0

N∑
i=1

�ri
r3i

)
d�r1d�r2 . . . d�rN

∫
exp
[
−1
θ
U(�r1, �r2, . . . , �rN )

]
d�r1d�r2 . . . d�rN

d�F .
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To simplify the calculations, let us expand the delta-function in plane waves:

δ

(
�F + Z0

N∑

i=1

�ri
r3i

)
=

1
(2π)3

∫
exp

[
i

(
�F + Z0

N∑

i=1

�ri
r3i

)
��

]
d��.

Then

p(�F ) =
1

(2π)3

∫
T (�� ) exp(i �F�� ) d��, (5.136)

where

T (��) =

∫
exp

[
−1
θ
U(�r1, �r2, . . . , �rN ) + i��Z0

N∑

i=1

�ri
r3i

]
d�r1d�r2 . . . d�rN

∫
exp
[
−1
θ
U(�r1, �r2, . . . , �rN )

]
d�r1d�r2 . . . d�rN

. (5.137)

Since the function U(�r1, �r2, . . . , �rN ) does not depend on the choice of the
coordinate system, but depends only on the mutual distances between ions, T (��)
is actually a function of � = |��|. Accordingly, p(�F ) = p(F ), where F = |�F |.

Let W (F ) dF denote the probability that the absolute value of the electric
field lies in the interval F, F + dF . Then, by (5.136),

W (F ) = 4πF 2p(F ) =
2F
π

∞∫

0

� sin(�F ) · T (�) d�. (5.138)

Starting with formulas (5.136), (5.137) and applying the Bohm-Pines separation
of electrostatic interactions into long-distance and short-distance interactions one
can obtain various approximate expressions for W (F ). For a rarefied plasma the
Boltzmann factor exp [−U(�r1, �r2, . . . , �rN )/θ], which accounts for the nonuniformity
of the ion distribution, can be replaced by 1 since in the present situation the
distribution of the ions in space can indeed be assumed to be homogeneous. This
leads to the Holtsmark distribution for W (F ). This distribution is clearly the
limit case obtained by letting θ →∞ while keeping ρ = const, or by letting ρ→ 0
at fixed temperature. The Holtsmark distribution is obtained by using formulas
(5.137), (5.138) and replacing the Boltzmann factor by 1:

T (�) = lim
N→∞

∫
exp

(
i��Z0

N∑

i=1

�ri
r3i

)
d�r1d�r2 . . . d�rN

∫
d�r1d�r2 . . . d�rN

=

lim
N→∞

[
1
V

∫
exp
(
i��Z0

�r

r3

)
d�r

]N
;
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here N = nV , V is the volume of the system of ions and n is the concentration of
ions in atomic units (n = 1/v, where v = 4

3πr0
3 is the volume of the atom cell).

For fixed values of n the above limit is easily calculated if one observes that the
integral ∫ [

1− exp

(
i���r

r3
Z0

)]
d�r

over an infinite volume converges.
Indeed,

T (�) = lim
V →∞



1− 1
V

∫

V

(
1− exp

i���r

r3
Z0

)
d�r




nV

=

exp



−n
1∫

−1

∞∫

0

2πr2
(

1− exp
i�µ

r2
Z0

)
dµdr



 =

exp



−4πn

∞∫

0

(
1− sin(�Z0/r

2)
(�Z0/r2)

)
r2dr



 =

exp



−2πn(�Z0)3/2

∞∫

0

(
1− sin x

x

)
dx

x5/2



 .

The integral appearing in the argument of the exponential reduces via integration
by parts to the Fresnel integral [10]. Consequently, T (�) is given by

T (�) = exp
[
− 4

15
(2π�Z0)3/2n

]
. (5.139)

Substituting (5.139) in expression (5.138) for W (F ) we obtain the Holtsmark dis-
tribution

W (F ) =
2
πF

∞∫

0

x sinx · exp
[
− 4

15
(2πxZ0/F )3/2n

]
dx. (5.140)

In the case of high densities, for small values of the amplitude of oscillations
of the central ion about the equilibrium position (i.e., when this amplitude is
considerably smaller than the radius of the ion sphere), the simple harmonic-
oscillator approximation is applicable. To obtain the corresponding distribution,
let us calculate the force that arises when the ion is displaced at a distance r from
its equilibrium position. We can assume that the external charges do not act on
the ion. Then the ion is acted upon by the force of attraction corresponding to a
charge of magnitude

q = −Z0

(
r

r0

)3

.
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Therefore, the absolute magnitude of the intensity of the field acting on the ion is

F =
|q|
r2

=
Z0

r30
r,

and the potential energy of the ion is

U(r) = Z0

r∫

0

F (r) dr =
1
2
F 2r30.

By the Boltzmann statistics, the probability that the ion will be located in
the domain r, r + dr is proportional to

exp
[
−1
θ
U(r)
]
r2 dr ∼ exp

[
−F

2r30
2θ

]
F 2 dF.

Thus, in the approximation considered here

W (F ) ∼ exp
[
−F

2r30
2θ

]
F 2. (5.141)

A more precise distribution of the ion microfield, which is valid in a wide
range of temperatures and densities, can be derived by resorting to a model of
perturbing independent particles and results of computer modelling [91]. These
results are approximated by the following simple dependence [194]:

W (F ) =
H(u)
F0

, H(u) =
2u
π

∞∫

0

x sin(ux) ·exp



−
x3/2

(
1 +

Γ√
x

)1.2876



 dx, (5.142)

where u = F/F0, F0 = 2πZ0 (4n/15)2/3 is the normal Holtsmark intensity of the
field and Γ is a nonideality parameter. As nonideality parameter one can take the
corresponding parameter for the mutual interaction between ions in the average-
atom approximation: Γ = Z2

0/(θr0). The distribution (5.142) goes over into the
Holtsmark distribution when Γ → 0, and into the simple harmonic-oscillator ap-
proximation when Γ→∞.

Figure 5.5 displays the distribution functions W (F ) of the ion microfield
obtained in various approximations, as functions of the variable u = F/F0, for
different values of the dimensionless parameter Γ. This parameter can vary in
wide limits; for example, for gold at T = 1 keV, ρ = 1 g/cm3 the parameter Γ ∼ 7;
for iron at T = 20 eV, ρ = 10−4 g/cm3 — Γ ∼ 0.7; and for hydrogen at T = 1 eV,
ρ = 10−9 g/cm3 — Γ ∼ 0.02. As Figure 5.5 clearly shows, the approximation
(5.142) gives good results throughout the entire domain of parameters, practically
coinciding with (5.140) for Γ < 0.03 and with (5.141) for Γ > 3.
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Figure 5.5: The distribution W (F ) of the ion microfield as function of u = F/F0

for Γ = 0.03 (a), Γ = 0.3 (b) and Γ = 3 (c): (1) the Holtsmark distribution
(5.140), (2) the simple harmonic oscillators approximation (5.141), (3) formula
(5.142), continuous line

Including in the considerations even a constant electric filed complicates sub-
stantially the task of determining the energy levels of a multi-electron ion [48].
With the more modest aim of deriving the influence of the Stark effect on the
Rosseland mean free path, we shall account for this effect in the simplest one-
electron approximation.
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In a given constant electric field �F , the one-electron energy levels and wave
functions of the electrons can be found by perturbation theory. As the unperturbed
Hamiltonian we take H0 = −1

2∆−V (r), where the effective central potential V (r)
is the self-consistent potential of the relativistic Hartree-Fock-Slater model, corre-
sponding to the most probable state of the ion and free electrons. The perturbation
has the form

H ′ = �F · �r.
As the unperturbed wave functions, corresponding to the total angular mo-

mentum of the electron motion �j = ��+ �s, we take

ψn�jm =
∑

m�,ms

Cj m

�m�
1
2 ms

ψn�m�ms
.

Then the matrix of the operator H0 in this approximation is diagonal and its
elements are independent of m:

〈n � j m |H0 |n′�′j′m′〉 = εn�jδnn′δ��′δjj′δmm′ .

Let us calculate the matrix elements of the operator �F · �r, taking the z-axis
to be directed along the field: �F · �r = Fz. Since Fz =

√
4π/3FrY10(θ, ϕ) is

an irreducible rank-1 tensor operator that commutes with the spin operator, the
Wigner-Eckart theorem gives [220]

〈n � j m |Fz |n′ �′ j′m′〉 = (−1)j−m

(
j 1 j′

−m 0 m′

)
(−1)

3
2−�′+j×

√
(2j + 1)(2j′ + 1)W (� j �′ j′ ;

1
2

1) · (n � ‖Fz ‖n′ �′), (5.143)

where the reduced matrix element

(n � ‖Fz ‖n′ �′) = (−1)(�+�′+1)/2

√
�′ + �+ 1

2
F rn�,n′�′ (�′ = �± 1).

Since the Wigner 3jm-symbol
(

j 1 j′

−m 0 m′

)
is different from zero only

when m′ = m, this shows that, besides the principal quantum number n, the
energy levels are characterized by the quantum number m. The eigenfunctions of
the Hamiltonian H = H0 +H ′ can be written as linear combinations of functions
ψn�jm with fixed values of n and m:

ψ(s)
nm =

∑

�j

c
(s)
n�jmψn�jm,

where s is the number of the eigenvalue ε(s)nm. The coefficients c(s)n�jm are determined
by solving the secular equation

(ε(s)nm − εn�j)c
(s)
n�jm =

∑

�′j′
〈n � j m |Fz |n �′ j′m〉c(s)n�′j′m.



5.4 Shape of spectral lines 211

To calculate the line absorption cross-sections, instead of the transitions
n�j → n′�′j′ in formula (5.53) we must account for the transitions nms→ n′m′s′

(m′ = m, m± 1), setting

σbb(ω) = 2π2αa2
0

∞∫

0

dF W (F )×

∑

Q

PQ

∑

nms

∑

n′m′s′
NQ

nms

(
1−NQ

n′m′s′

)
fnms,n′m′s′Jnms,n′m′s′(ω), (5.144)

where

fnms,n′m′s′ =
2
3

(
ε
(s′)
n′m′ − ε(s)nm

) ∣∣∣∣
∫

(ψ(s′)
n′m′)∗�rψ(s)

nmd�r

∣∣∣∣
2

and Jnms,n′m′s′(ω) is the corresponding line profile.
In those cases where the influence of ion broadening is considerably stronger

than other broadening effects the calculations can be simplified. For example, in
the case of the linear Stark effect, if we take for the position of the center of the
components of the spectral line

ωnms,n′m′s′(F ) = ωnms,n′m′s′(0) + C̃nms,n′m′s′ · F

and consider the shape of each component to be a δ-function, then one can carry
out the integration with respect to the field F in (5.144). This yields

σbb(ω) ≈ 2π2αa2
0

∑

Q

PQ

∑

nms

∑

n′m′s′
NQ

nms

(
1−NQ

n′m′s′

)
×

f̃nms,n′m′s′
W
[
(ω − ω0)/C̃nms,n′m′s′

]

C̃nms,n′m′s′
, (5.145)

where ω0 = ωnms,n′m′s′(0) and the quantities f̃nms,n′m′s′ , C̃nms,n′m′s′ are calcu-
lated for the most probable field F . A similar formula can be derived for the case
of the quadratic Stark effect.

Computations based on formulas (5.144) and (5.145) are rather tedious, al-
though in many cases the influence of the Stark broadening on the Rosseland
mean free path is of about 1% [147]. In table calculations, ion broadening is usu-
ally accounted for in a simpler way [189]. Let us assume that only two levels are so
close to one another that it is necessary to account for their splitting. This leads
to an eigenvalue problem for a 2 × 2 matrix. Since the role played by the Stark
effect is the largest for upper levels, where the influence of relativistic corrections
is small, in the calculation of the Stark splitting one can restrict ourselves to the
classification of levels according to the quantum numbers n�, considering that the
shifts εn�j for j = �± 1/2 are equal.



212 Chapter 5. Interaction of radiation with matter

Consider the shift due to the Stark effect, taking into account a level εn′�′

that is closest to the level εn�, taking, for instance, n′ = n and �′ = � − 1. Write
εn� = ε0 +∆/2, εn,�−1 = ε0−∆/2, where ε0 = (εn� + εn,�−1)/2, ∆ = εn�− εn,�−1.
Then the‘ energy levels ε with respect to ε0 in a constant electric field of intensity
F is found from the equation

∣∣∣∣∣∣∣∣

∆
2
− ε V12

V21 −∆
2
− ε

∣∣∣∣∣∣∣∣
= 0, (5.146)

where V12 = V21 = 〈n �m |Fz|n′�′m′〉 is the matrix element of the electron–electric
field interaction (see (5.143)):

〈n �m |Fz|n′�′m′〉 =






δmm′

√
(�+ 1)2 −m2

(2�+ 3)(2�+ 1)
F rn�,n′�′ if �′ = �+ 1,

δmm′

√
�2 −m2

(2�+ 1)(2�− 1)
F rn�,n′�′ if �′ = �− 1;

〈n �m |Fz|n′�′m′〉 = 0 if �′ 	= �± 1.
Equation (5.146) yields ε =

√
(∆/2)2 + V12V21, and the shift of the level εn�

in the electric field F is

∆ε = ε− ∆
2

=

√(
εn� − εn,�−1

2

)2

+ V 2
12 −

εn� − εn,�−1

2
. (5.147)

Let us average the quantity ∆ε over the direction of the field �F ; this is
equivalent to averaging over the projection of the orbital momentum m on the
direction of the filed. Assuming that the dependence on the field is essentially
quadratic

(
(∆/2)2 � V 2

12

)
, the averaged value can be obtained if in (5.147) we

replace V 2
12 by the quantity

〈V 2
12〉 ≡ v2

n�,n′�′ =
1

2�<

�<∑

m=−�<

|〈n�m|Fz|n′�′m〉|2 =
�>F

2r2n�,n′�′

3(2�< + 1)

(�< = min{�, �′}, �> = max{�, �′}).
Considering two nearest-neighbor levels n, � − 1 and n, � + 1 of the level n�

(in the case � = 0 or � = n− 1 — one such nearest-neighbor level), we obtain for
the average shift in the field F the value

dn� = ∆n,�−1
n� + ∆n,�+1

n� ,
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where

∆n′�′
n� =

√(
ε> − ε<

2

)2

+ v2
n�,n′�′ −

ε> − ε<

2

(ε< = min{εn�, εn′�′}, ε> = max{εn�, εn′�′}).
In the calculation of the line absorption coefficients the influence of ions will

be accounted for in the form of an additional Lorentz broadening (see [189]):

γ
(st)
n�,n′�′ = dn� + dn′�′ , (5.148)

where the average Stark shifts of the levels dn� and dn′�′ are calculated in the
maximally probable field F with respect to the distribution (5.142) (see Figure
5.5). Generally speaking, the influence of ion broadening, manifested by an addi-
tional Lorentz width (5.148), is usually overestimated. Note that if the additional
broadening is accounted for as a Doppler broadening, then the effects of the ion
broadening, as a rule, are underestimated.

5.4.7 The Voigt profile

If the Doppler effect is superposed on the Lorentz profile of the spectral line by
means of formula (5.94), we arrive at the Voigt line profile [205]:

Jαβ(ω) =
1√
πD

K

(
ω − ωαβ

D
,
γ

D

)
. (5.149)

Here

K(x, y) =
y

π

∞∫

−∞

exp (−s2)
(x− s)2 + y2

ds, (5.150)

ωαβ is the position of the line center for the transition α→ β (εα < εβ), γ = γαβ

is the Lorentz line width, and D is the Doppler broadening parameter:

D =
ωαβ

c

√
2θ

1836A
. (5.151)

The Lorentz width is provided by the formula (see (5.127))

γαβ = γn�,n′�′ = γ
(r)
n� + γ

(r)
n′�′ + γ

(e)
n� + γ

(e)
n′�′ + γ

(u)
n�,n′�′ + γ

(st)
n�,n′�′ . (5.152)

To calculate the Voigt integral one can use the scheme described in [154].
Due to the presence of the factor exp(−s2), the most essential domain for the
integration with respect to s in (5.150) corresponds to |s| < 1 . In that domain
the function y/[(x − s)2 + y2] is, for each fixed value of x, a sufficiently smooth
function of s, provided that y is relatively large. It follows that, for y > 1, in
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order to calculate K(x, y) one can use Gauss-type quadrature formulas based on
Hermite polynomials:

K(x, y) ≈ 1
π

n∑

j=1

λj
y

(x− sj)2 + y2
. (5.153)

For small values of y the function y/[(x− s)2 + y2] has a sharp maximum in
the point x = s, as a result of which the quadrature formula (5.153) fails when x is
small. To circumvent this, it is desirable to transform the expression for K(x, y) to
a form that is more suitable for applying Gauss-type quadrature formulas. Namely,
we have

K(x, y) =
1
π

Im

∞∫

−∞

e−s2

x− s− iy ds.

If we now use the Cauchy theorem to replace integration along the real axis by
integration along a line parallel to it, setting s = ai+ t (a > 0,−∞ < t <∞), we
obtain

K(x, y) =
1
π

Im

∞∫

−∞

e−(ai+t)2

(x− t)− i(a+ y)
dt =

1
π
ea2

∞∫

−∞

e−t2 [(a+ y) cos 2at− (x− t) sin 2at]
(x− t)2 + (a+ y)2

dt. (5.154)

Thanks to this transformation, the function 1/[(x − s)2 + y2], which has a sharp
maximum, is replaced by the function 1/[(x− t)2 +(a+ y)2], which in the domain
essential for integration can be sufficiently well approximated by polynomials of
relatively small degree. However, this procedure introduces a supplementary, os-
cillating factor. It is natural to take a = 1, and then in the domain essential for
integration the function (a+y) cos 2at−(x−t) sin 2at becomes sufficiently smooth
as well. Now instead of (5.153) we obtain

K(x, y) ≈ ea2

π

n∑

j=1

λj
(a+ y) cos 2asj − (x− sj) sin 2asj

(x− sj)2 + (a+ y)2
. (5.155)

Formula (5.155) gives good results for arbitrary values of x and y even for a small
number of quadrature points [154].

5.4.8 Line profiles of a hydrogen plasma in a strong magnetic field

An external magnetic field, in addition to the electric fields of the ions and electrons
of a plasma, exerts a strong influence on the shape of spectral lines. Let us examine
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the influence of a magnetic field on the example of a hydrogen (deuterium) plasma
[140, 53]. Such a problem arises, in particular, in the investigation of radiative
transfer processes in low-temperature edge plasma in a tokamak. For example, in a
deuterium plasma in the divertor of the Alcator C-Mod tokamak, with temperature
T ∼ 1 eV, electron density ne ∼ 1015 cm−3 and magnetic field B ∼ 8 T, radiation
in spectral lines plays a determining role in the energy transfer process, and this
transfer depends in an essential manner on the shapes of lines [173].

In electric and magnetic fields the degeneracy is removed and the spectral
lines corresponding to transitions between levels with quantum numbers n̄ and
n split into separate components. The shift of each component and its intensity
depend on the value of the magnetic field �B, the value of the quasi-static ion
microfield �F and the angle between the vectors �F and �B. Moreover, the intensity
of a component depends on the direction in which the radiation propagates, more
precisely, on the angles between the wave vector �k and the vectors �F and �B. The
total profile of the line for the transition n̄ → n can be calculated by averaging
over the magnitude and direction of the quasi-static ion microfield (in what follows
the dependence on the magnetic field �B is not indicated explicitly, though it is
implied):

Φn̄n(ω) =
1
4π

∫
W (F )

∑

νν

Gνν(�F )φνν(ω, �F )d�F . (5.156)

Here W (F ) is the probability distribution function of the electric ion microfield,
Gνν(�F ) and φνν(ω, �F ) are the relative intensity and respectively the profile of
the component ν → ν of the transition n̄ → n (ν and ν designate collections of
quantum numbers that specify the initial and final states of each component).

The profile of each component is determined by the Doppler effect and the
interaction of the atom with the free electrons (the natural broadening is here
negligibly small):

φνν(ω, �F ) =
1√
πDνν

∫
ϕνν(ω − ωνν − s, �F )e−(s/Dνν)2 ds,

where Dνν = (ωνν/c)(2T/M)1/2 is the Doppler broadening parameter, M is the
atom mass, and ωνν is the position of the center of the component ν → ν. For the
profile ϕνν one uses the approximation proposed by Seaton for the calculation of
the broadening of Stark components of a hydrogen plasma by electrons [201]. In
our case the splitting of lines is due not only to the Stark effect, but also to the
Zeeman effect, which imposes a specific character to the method for calculating
component profiles and requires some modification of the theory [201].

The relative intensities of the components ν → ν in the dipole approximation
are given by the expression

Gνν =

∣∣�u(s)〈ν|�r |ν〉∣∣2
∑
νν

∣∣�u(s)〈ν|�r |ν〉∣∣2
, (5.157)
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where �u(s) is the unit polarization vector of the photon. For unpolarized light

Gνν =
ωn̄n

n2fnn̄

∑

s=1,2

∣∣�u(s)〈ν|�r |ν〉∣∣2, (5.158)

where fnn̄ is the total oscillator strength of the transition n→ n̄.
The lines n̄ → n will be regarded as isolated; for this to be possible it is

necessary that their characteristic width be smaller than the distance between the
nearest levels, which imposes restrictions on the magnitude of the magnetic field
and on the electron density:

B < c/n̄4, ne < 0.05/n̄15/2. (5.159)

Let us remark that the straight-line approximation of classical trajectories for
perturbing electrons, which is customary in the theory of spectral-line broaden-
ing, does not lead to additional constraints on the magnitude of the magnetic
field. Indeed, that condition requires that the Larmor frequency be smaller than
the plasma frequency, or B< (8πc2ne)1/2. But as one can readily verify, the last
inequality is always satisfied if the constraints (5.159) hold. The spin-orbit interac-
tion can also be neglected, since the fine-structure splitting at temperature T ∼ 1
eV is smaller than the Doppler width of levels.

As Epstein has shown in the framework of Bohr’s theory (see [35, 40]), the
joint influence of the magnetic and electric fields on the orbit of an electron in the
state with principal quantum number n and orbital number � can be described,
in the first approximation with respect to the field, as a uniform and independent
precession of the vectors 3

2n
��∓ �ra with angular velocities �ω1 and �ω2:

�ω1,2 =
1
2c

�B ∓ 3
2
n�F

(here �� is the angular momentum of the electron and �ra is its position vector,
averaged over the orbital motion.) In the same approximation one can obtain the
corrections to the energy of the electron. The quantum-mechanical approach yields
— in the first approximation of perturbation theory — the same result [53]. The
Hamiltonian Ĥ is written as the sum Ĥ = Ĥ0+Ĥ ′ of the unperturbed Hamiltonian
Ĥ0 = −∆/2 − 1/r and the perturbation Ĥ ′ = (1/2c) �B · �� + �F · �r, which in the
subspace of states with given n can be represented in the form

Ĥ ′ =
1
2c
�B · ��− 3

2
n�F · �A = �ω1 · �I1 + �ω2 · �I2.

Here �I1,2 =
1
2

(
��± �A

)
and �A is the Runge-Lenz vector, which in the indicated

subspace satisfies the relation �A = −2�r/(3n) (see, e.g., [53]).

The operators �I1,2 commute with Ĥ0 and obey the usual commutation re-
lations for the angular momentum operator. It follows that I2

1 = I2
2 = j(j + 1),



5.4 Shape of spectral lines 217

where j is determined by the number of possible states, i.e., 2(2j+ 1)2 = 2n2 and
j = (n − 1)/2; moreover, the projections of �I1 on the axis �ω1 and of �I2 on the
axis �ω2 (denoted here by n′ and n′′, respectively) may take the 2j + 1 integer or
half-integer values −j, −j + 1, . . . , j − 1, j.

In the first order of perturbation theory

εnn′n′′ms
= − 1

2n2
+ ω1n

′ + ω2n
′′ +

1
c
Bms, (5.160)

wherems = ±1
2 is the projection of the spin on the axis directed along the magnetic

field.
The corresponding wave function ψnn′n′′ can be written as a linear combina-

tion of wave functions in parabolic coordinates with the z-axis directed along the
electric field �F :

ψnn′n′′ =
j∑

i1=−j

j∑

i2=−j

dj
n′i1(α1)d

j
n′′i2(α2)ψni1i2 , (5.161)

where dj
kk′(α) = Dj

kk′(0, α, 0) is the Wigner function corresponding to the rotation
by angle α around the z-axis (see [220]) and ψni1i2 ≡ ψn1n2m are wave functions
in parabolic coordinates. In the present case these functions are conveniently char-
acterized by the quantum numbers i1 and i2, representing the projections of the
operators �I1 and �I2 on the z-axis; these numbers are connected with the ordi-
nary parabolic quantum numbers n1, n2 and the magnetic quantum number m
(n1 + n2 + |m|+ 1 = n) by the following relations:

i1 + i2 = m, i1 − i2 = n2 − n1.

Further, α1 and α2 are the angles between the z-axis (i.e., the vector �F ) and the
vectors �ω1 and �ω2, respectively:

cosα1 =

1
2c
B cos ϑ− 3

2
nF

ω1
, cosα2 =

1
2c
B cos ϑ+

3
2
nF

ω2
,

where ϑ is the angle between �F and �B.
The shift of the component ν → ν relative to the center of the line (ν denotes

the set of quantum numbers nn′n′′) can be calculated with the help of (5.160) to
be

ωνν − ωn̄n = ω̄1n̄
′ + ω̄2n̄

′′ − ω1n
′ − ω2n

′′,

where ω̄1 and ω̄2 are the angular velocities of precession for the upper level n̄.
The dipole matrix elements 〈ν|�r |ν〉 with the wave functions (5.161) can be

represented as linear combinations of matrix elements calculated in parabolic co-
ordinates. Let u(s)

x , u(s)
y , u(s)

z be the Cartesian coordinates of the unit polarization
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vector �u(s) in a system of coordinates with the z-axis directed along �F and the
x-axis lying in the plane of the vectors �F and �B. Then

�u(s)〈ν|�r|ν〉 =
∑

a=x,y,z

u(s)
a 〈ν|a|ν〉.

Here

〈ν|a|ν〉 ≡ 〈n̄n̄′n̄′′ |a|nn′n′′〉 =
j∑

i1,i2=−j

j̄∑

ī1 ,̄i2=−j̄

dj
n′i1(α1) d

j
n′′i2(α2)×

dj̄
n̄′ ī1

(ᾱ1) d
j̄
n̄′′ ī2

(ᾱ2)〈n̄1n̄2m̄|a|n1n2m〉, (5.162)

where the matrix elements 〈n̄1n̄2m̄|a|n1n2m〉 in parabolic coordinates for a =
x, y, z are calculated by means of Gordon’s formulas [28].

The Wigner functions dj
kk′(α) in (5.161) and (5.162) can be expressed in

terms of Jacobi polynomials [220]:

dj
kk′(α) = ξkk′

[
s!(s+ µ+ ν)!

(s+ µ)!(s+ ν)!

]1/2 (
sin

α

2

)µ (
cos

α

2

)ν

P (µ,ν)
s (cos α),

where µ = |k − k′|, ν = |k + k′|, s = j − (µ+ ν)/2, ξkk′ = 1 for k′ ≥ k and ξkk′ =
(−1)k′−k for k′ < k. The Jacobi polynomials P (µ,ν)

s are conveniently calculated by
means of recursion relations [154].

In the case of polarized light we direct one of the polarization vectors, �u(1),
along the normal to the plane of the vectors �k and �B, and take the other, �u(2), to
lie in this plane and be orthogonal to �k. It is convenient to carry out the averaging
with respect to the direction �u(s) in (5.156) in a system of coordinates attached to
the magnetic field. Let ϕ denote the angle between the projections of the vectors
�k and �F in the plane orthogonal to �B. Then

u(1)
x = cosϑ sinϕ, u(1)

y = cosϕ, u(1)
z = sinϑ sinϕ,

u(2)
x = − cosβ cosϑ cosϕ− sinβ sinϑ, u(2)

y = cosβ sinϕ,

u(2)
z = − cosβ sinϑ cosϕ+ sinβ cosϑ,

where β is the angle between �k and �B.
Using (5.156), (5.157) and assuming that the profiles of individual compo-

nents are independent of the angle ϕ, we finally obtain for the transition n→ n:

Φn̄n(ω) =
ωn̄n

4n2fnn̄

∞∫

0

dFW (F )
∑

νν

π∫

0

dϑ sinϑφνν(ω, ϑ, F )×
{
2 sin2 β(xνν sinϑ− zνν cosϑ)2 + (1 + cos2 β)×

[
(xνν cosϑ+ zνν sinϑ)2 + (yνν)2

]}
, (5.163)
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where the matrix elements xνν , yνν , zνν are given by (5.162).
Line shapes have been calculated for a deuterium plasma with temperature

T = 1 eV and electron density ne = 3 · 1015 cm−3. Under these conditions the
influence of the magnetic field, the Stark effect and the Doppler effect on the lower
lines of the Lyman and Balmer series are of the same order (see Table 5.6), which
requires that these effects be computed simultaneously.

Table 5.6: Broadening parameters of lines (in eV) in a deuterium plasma with
T = 1 eV, ne = 3 · 1015 cm−3, B = 8 T

Line Electron Doppler Stark Shift in a
width parameter shift magnetic field

Lyα 4.1 · 10−5 3.3 · 10−4 1.2 · 10−4 4.6 · 10−4

Lyβ 1, 7 · 10−4 3.7 · 10−4 1.9 · 10−4 4.6 · 10−4

Lyγ 4.7 · 10−4 4.2 · 10−4 2.5 · 10−4 4.6 · 10−4

Dα 1.7 · 10−4 6.2 · 10−5 1.9 · 10−4 4.6 · 10−4

Figure 5.6 shows the profiles of the spectral lines Lyα (2 → 1) and Dα

(3 → 2), computed by means of formula (5.163). The computations were done in
the absence of a magnetic field as well as in the presence of a magnetic field of
strength B = 8 T directed parallel to the wave vector �k, perpendicular to �k, and
at an angle of 45o with �k. The graphs show that the magnetic field exerts a strong
influence on the shape of the spectral lines, which is confirmed experimentally
[3, 161].

1 2 3 4

1 2 3 4

Figure 5.6: Profiles of the lines Lyα (left) and Dα (right) with no magnetic field
(1) and in the presence of a magnetic field B = 8 T directed perpendicularly (2),
at an angle of 45o (3) and parallel (4) to the wave vector �k

5.5 Statistical method for line-group accounting

The computation of line absorption cross-sections using formula (5.44) requires
a considerable amount of computer time. A main reason for this is the presence
of a huge number spectral lines in a dense plasma. This is connected with the
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realization of a large number of states of various ions which, having a small con-
centration, may contribute to the absorption coefficient because the value of the
cross-section near the center of the line is large. In addition, there are consider-
able computational difficulties due to the fact that it is necessary to account for
various effects that lead to line splitting and broadening in plasma. For example,
accounting in a sufficiently accurate manner for line splitting and broadening due
to the electric fields of neighboring ions results increase of several tens of times in
computing time.

To deal with this it is necessary to considerably simplify the computations.
This can be done by grouping spectral lines and describing the resulting groups by
means of some effective profile. Clearly, the application of such a description for
groups of nonoverlapping lines can lead to considerable errors and to distortion of
the absorption spectrum. To avoid this, it is necessary to analyze how line splitting
and broadening mechanisms affect the photon absorption coefficients.

5.5.1 Shift and broadening parameters of spectral lines in plasma

Let us examine the most important effects leading to line splitting and broadening
in a hot dense plasma. First of all, a large number of lines arise because identical
one-electron transitions (see (5.53)) take place in fields of ions that differ from
one another through their configuration Q =

{
N

Q

n�j

}
and, connected with this,

through the effective charge of the ion core, external screening, etc. Moreover, for
a given configuration Q an essential role is played by the multiplet splitting of
levels according to the total momentum of the ion’s electrons.

In the examination of the effects that influence the shape and width of a
line, it is necessary to bring into picture, in addition to the natural broadening,
the broadening due to the interaction of the ion with free electrons, with other
ions, and also to the Doppler and other effects (for example, the Auger effect).
All the line splitting and broadening effects listed above lead to line overlapping
and to blurring of details of the spectrum. To characterize the degree to which
lines may overlap, let us consider a gold plasma (Z = 79) with temperature T = 1
keV and several different values of the density: ρ = 0.1 g/cm3, ρ = 1 g/cm3 and
ρ = 10 g/cm3.

Table 5.7 lists for these cases the energy levels εα and the average occupation
numbers of electron states, Nα (α ≡ n�j). Moreover, Figure 5.7 below shows
the graphs of the ion probability distribution Pk with respect to the degree of
ionization k.
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Table 5.7: Energy levels (in eV) and the average occupation numbers in a gold
plasma with temperature T = 1 keV and densities ρ = 0.1 g/cm3 (Z0 = 66.4),
ρ = 1 g/cm3 (Z0 = 60.9), ρ = 10 g/cm3 (Z0 = 52.1). The computations took into
account shells with n ≤ 9

ρ = 0.1 g/cm3 ρ = 1 g/cm3 ρ = 10 g/cm3

n � j |εn�j | Nn�j |εn�j | Nn�j |εn�j | Nn�j

1 0 1/2 86396 2.0000 85269 2.0000 83850 2.0000

2 0 1/2 19648 2.0000 18619 2.0000 17299 2.0000
2 1 1/2 19153 2.0000 18100 2.0000 16759 2.0000
2 1 3/2 17261 3.9988 16224 3.9996 14897 3.9998

3 0 1/2 7919 0.4419 7108 1.0628 6001 1.5157
3 1 1/2 7745 0.3848 6911 0.9645 5782 1.4309
3 1 3/2 7229 0.4983 6420 1.4525 5317 2.4497
3 2 3/2 7011 0.4106 6147 1.2114 4991 2.1312
3 2 5/2 6889 0.5520 6034 1.6769 4886 3.0395

4 0 1/2 4129 0.0128 3514 0.0606 2644 0.1972
4 1 1/2 4048 0.0118 3422 0.0555 2541 0.1796
4 1 3/2 3882 0.0200 3277 0.0963 2419 0.3213
4 2 3/2 3791 0.0183 3161 0.0860 2277 0.2817
4 2 5/2 3746 0.0262 3122 0.1242 2246 0.4104
4 3 5/2 3686 0.0247 3027 0.1131 2106 0.3603
4 3 7/2 3665 0.0322 3010 0.1484 2093 0.4745

5 0 1/2 2508 0.0025 2030 0.0141 1330 0.0572
5 1 1/2 2468 0.0024 1985 0.0135 1280 0.0544
5 1 3/2 2389 0.0045 1919 0.0252 1229 0.1036
5 2 3/2 2344 0.0043 1861 0.0238 1158 0.0967
5 2 5/2 2322 0.0063 1843 0.0351 1145 0.1431
5 3 5/2 2293 0.0061 1796 0.0335 1077 0.1339
5 3 7/2 2283 0.0081 1788 0.0444 1071 0.1776
5 4 7/2 2264 0.0080 1754 0.0429 1018 0.1686
5 4 9/2 2258 0.0099 1749 0.0533 1015 0.2102

6 0 1/2 1659 0.0011 1268 0.0661 686.6 0.0345
6 1 1/2 1637 0.0011 1243 0.0064 658.8 0.0296
6 1 3/2 1593 0.0020 1207 0.0124 633.5 0.0578
6 2 3/2 1568 0.0020 1175 0.0121 694.0 0.0556
6 2 5/2 1555 0.0029 1165 0.0179 587.1 0.0828
6 3 5/2 1539 0.0029 1139 0.0174 548.7 0.0798
6 3 7/2 1533 0.0038 1134 0.0231 545.7 0.1060
6 4 7/2 1522 0.0038 1116 0.0227 515.4 0.1029
6 4 9/2 1519 0.0047 1113 0.0283 513.8 0.1284
6 5 9/2 1515 0.0047 1103 0.0280 493.0 0.1258
6 5 11/2 1513 0.0056 1102 0.0336 492.0 0.1508
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Figure 5.7: Ion probability distribution with respect to the ionization degree k for
a gold plasma with temperature T = 1 keV and densities ρ = 0.1 g/cm3, ρ = 1
g/cm3 and ρ = 10 g/cm3

Knowledge of the average occupation numbers allows one to estimate the
number of spectral lines corresponding to a given one-electron transition n�j →
n′�′j′. To do the estimation we will assume that with sufficiently large probability
in the plasma there are realized configurations Q with occupation numbers of
electron states NQ

α such that

Nα − δNα ≤ NQ
α ≤ Nα + δNα, (5.164)

where δNα is the mean square dispersion of the occupation numbers NQ
α relative

to their mean values Nα.
To calculate δNα we will use the binomial distribution (5.74), which yields

δNα =
[
gαNα

(
1− Nα

gα

)]1/2

(5.165)

(here gα denotes the statistical weight of the level α). Since the number of distinct
ion states N (neglecting splitting effects) correspond approximately to the number
of configurations considered, we obtain the estimate

N ≈
∏

α

(2 · [δNα + 0.9] + 1), (5.166)

where [x] denotes the integer part of x. Generally speaking, the number of spectral
lines is obviously considerably higher than N , in particular due to multiplet split-
ting of levels. In the case Z = 79, T = 1 keV, ρ = 1 g/cm3 the estimate (5.166)
yields N ∼ 105, and when splitting effects are incorporated one has N ∼ 108.

Next let us examine the typical line shifts and broadening parameters for one
of the one-electron transitions n�j → n′�′j′, with n = 3, � = 1, j = 3/2, n′ = 4,
�′ = 2, j′ = 5/2. The results of the computation of the various relevant quantities
are shown in Table 5.8. As one can see, a change in the ion charge by the amount
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Table 5.8: Typical values of the line shift and broadening (in eV) for the transition
3p3/2 → 4d5/2 in gold at temperature T = 1 keV

Effect ρ = 0.1 g/cm3 ρ = 1 g/cm3 ρ = 10 g/cm3

1. Change of ion charge 50–200 45–200 40–150
2. Change of occupation

of outer shells 0.1–6 0.2–8 0.3–12
3. Multiplet splitting with

respect to total momentum 0–28 0–28 0–28
4. Natural broadening 0.06 0.04 0.03
5. Doppler effect 0.4 0.4 0.4
6. Electron broadening 0.07 0.1 0.3
7. Ion broadening 0.006 0.04 0.2

∆Z ∼ 1–5 results in a shift of lines and also of photoionization thresholds by �
40–200 eV (see the first row in Table 5.8).

The magnitude of the shift can be easily estimated using the hydrogen-like
approximation for the energy levels:

εn� = −Z
2
n�

2n2
+An�,

whence
∆εn� ≈ Zn� ∆Zn�

n2
, (5.167)

i.e., for instance, ∆εn� ≈ 120 ∆Zn� eV for n = 4 (see Table 2.3, which lists effective
charges Zn� for the average ion).

The influence of the external screening is much weaker, the corresponding
shift being only of � 0.1–12 eV. A similar shift � 0–28 eV is obtained for the
value of the level splitting with respect to the total momentum (see row 3 in the
table). The total dispersion of the positions of lines in ions with identical charge
is ∆E � 20–30 eV.

If the number of lines is sufficiently large, so that the condition Nγ � ∆E is
satisfied, where γ is the typical line width for the given transition, then the groups
of spectral lines corresponding to the given energy interval ∆E will overlap. For
density ρ = 0.1 g/cm3 one has N ∼ 103, while for densities ρ = 1 g/cm3 and
ρ = 10 g/cm3 one has N ∼ 105 and N ∼ 107, respectively. As one can see
from Table 5.8, the condition of line overlapping for the transition in question
is practically satisfied already for a density ρ = 1 g/cm3. For larger densities,
in particular for ρ = 10 g/cm3, the lines overlap completely, which changes the
situation cardinally compared with the case of absorption in a single spectral line.

It is interesting to note that until relatively recently researchers thought
that spectral lines have no effect on the Rosseland opacity. For instance, in the
monograph [67], in his analysis of the influence of various processes on the radiative
heat conductivity of matter, the author argues as follows:
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Figure 5.8: Contribution of various processes to the spectral absorption coefficient
for a gold plasma (Z = 79, T = 1 keV, ρ = 0.1 g/cm3). The solid curve corre-
sponds to the total absorption coefficient κ(ω); also shown are the contributions
of photoionization (dashed curve), bremsstrahlung (dashed-dotted curve), and the
domains of influence of the main transitions n→ n′

“We did not include among the processes considered those for which both
the initial and the final state are bound states. This refers to absorption, which
results in the presence of spectral lines. Generally speaking, this process cannot
be always neglected. However, in the special case of radiative heat conductivity it
practically has no importance due to the specific features of the Rosseland mean.
If we are dealing with a thin line, then the opacity will be very large in a very
narrow frequency interval. But according to Rosseland, what is being averaged over
frequency is not the opacity, but the reciprocal quantity, i.e., the free path. Within
the limits of the spectral line the free path is very small, but so is the frequency
interval. Even if one considers that the free path within the limits of the line is
zero, that would only mean that from the Rosseland integral we must exclude the
frequency interval corresponding to the line width. In the limit of infinitely thin
lines, their influence on the Rosseland mean is identically equal to zero, regardless
of how strong the absorption in the spectral lines is. From this point of view, the
natural and Doppler width of lines are negligible. Absorption in lines may manifest
itself in the radiative heat conductivity only due to the broadening of lines at high
densities as a result of collisions. However, quantitative estimates show that, in
fact, in stellar conditions this effect can be neglected. If the density is so high that
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the lines become very broad due to collisions, then inverse bremsstrahlung plays
a more essential role than all transitions from bound states. In view of the above
argument, in the consideration of radiative heat conductivity we will consider only
the three processes listed above.”

As a matter of fact, in many cases absorption in spectral lines in a hot plasma
is the most important process in the description of radiative heat conductivity.
For example, accounting for spectral lines in gold with temperature T = 1 keV
and density ρ=0.1 g/cm3 leads to a decrease of about ten times in the Rosseland
mean free path (see Figure 5.8 above).

It is precisely the line groups that determine the absorption spectrum (see
Figure 5.9a in the natural scale, in contrast to the logarithmic scale used in Fig-
ure 5.8) and the emissivity (Figure 5.9b), exerting a strong influence on the mag-
nitude of the free paths of photons (Figure 5.9c).
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Figure 5.9: Dependence of the spectral characteristics of a gold plasma in the
interval of photon energies 0 < h̄ω < 20T , at temperature T = 1 keV and density
ρ = 0.1 g/cm3 on the photon energy in keV: (a) absorption coefficient, in cm2/g
(opacity); (b) emissivity in TW/(cm3·eV·steradian); (c) free path, in cm; (d) free
path times the Rosseland weight function
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The emissivity j(ω) was calculated in accordance with Kirchhoff’s law (see
Subsection 5.1.3):

j(ω) = ρ κ(ω)Bω =
h̄ ω3ρ κ(ω)

4π3c2
e−x

1− e−x
, where x =

h̄ ω

T
. (5.168)

Note that for the calculation of the Rosseland mean free path the most important
domain is T < h̄ω < 10T (see Figure 5.9d, which shows the subintegral curve

�(ω)R(x), R(x) =
15
4π4

x4e−x

(1− e−x)2
).

Fluctuations of the occupation numbers lead to a broadening of the domain
of influence of the spectral lines corresponding to one and the same one-electron
transition. This factor is most prominent for high densities (in the case of gold,
for example, for densities ρ ≥ 0.01 g/cm3). For smaller densities the multiplet
structure of the spectrum (see Subsection 5.5.3 below) becomes the dominating
factor. Next to it, especially for low-Z elements in a highly ionized state, when
the number of possible ion states is not large, the Stark effect, which determines
the broadening of spectral lines, may prove important [75, 189].

5.5.2 Fluctuations of occupation numbers in a dense hot plasma

A detailed description of the level structure of each ion in a hot plasma requires
enormous computational resources. In practice it is convenient to group together
levels that are close to one another, thereby creating a transition arrays from one
group of levels to another.

In particular, such numerical algorithms using an unresolved transition array
(UTA) method are constructed in a natural manner if, for example, one does not do
a detailed accounting with respect to the quantum numbers �, j and assumes that
different configurations of ions differ only through the total number of electrons
on the shell with principal quantum number n. In this way one has to deal with a
relatively small number of configurations {NQ

n }, with occupation numbers Nn =
NQ

n = 0, 1, 2, . . ., 2n2.
Once the numbers NQ

n are given, the occupation numbers of the correspond-
ing averaged representative of this group of configurations are given by the formula

N̄Q
n�j =

2j + 1
2n2

NQ
n . (5.169)

Similarly, one can carry out a more detailed configuration accounting by
setting, for example,

N̄Q
n�j =

2j + 1
2(2�+ 1)

NQ
n�. (5.170)

and sorting the configurations {NQ
n�}.

In such approach it is convenient to start with quantities obtained in the
average-atom approximation, regarding the different configurations as fluctuations



5.5 Statistical method for line-group accounting 227

3.2 3.3 3.4 3.5
0

105

2 · 105

κ(ω)

a

3.2 3.3 3.4 3.5
0

b

2 · 104

4 · 104

3.2 3.3 3.4 3.5
0

c

2 · 103

4 · 103

3.2 3.3 3.4
0

d

2 · 103

4 · 103

ω, keV

Figure 5.10: Line absorption coefficient (without accounting for multiplet splitting)
for the transition 3p 3

2 → 4d5
2 in a gold plasma at temperature T = 1 keV and

density ρ = 1 g/cm3, for different numbers of ion configurations accounted for:
(a) one configuration, (b) 24 configurations, corresponding to various degrees of
ionization, (c) about 6000 configuration, (d) more than 70000 configurations

of the occupation numbers about their average values. It is clear that one needs to
take into considerations only the shells that are not filled, more specifically, those
among them for which the occupation numbers are not too small. In practice
it suffices to take into account 2 or 3 shells, and the amount of details may be
decreased with the growth of the principal quantum number.

Figure 5.10 shows the absorption coefficients for the transition 3p3/2 → 4d5/2

at T = 1 keV, ρ = 1 g/cm3, computed by formula (5.53). In the first case (Fig-
ure 5.10a) one considers only one configuration, corresponding to the average
ion. Figure 5.10b accounts for the main configurations, corresponding to various
degrees of ionization. For Figure 5.10c about 6000 configurations, with different
numbers {NQ

n�}, were accounted for. Finally, Figure 5.10d accounts for practically
all possible configurations {NQ

n�j} (more than 70000). As a result of accounting
for an increasing number of configurations, the total absorption coefficient of the
lines 3p 3

2 → 4d5
2 fills out more and more densely the spectrum interval 3.1–3.5

keV, approaching the smooth curve obtained by Moszkowski’s method, described
below in Subsection 5.5.3 (see Figure 5.11).
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Figure 5.11: Line absorption coefficient for the transition 3p 3
2 → 4d5

2 at tem-
perature T = 1 keV and density ρ = 1 g/cm3 for a detailed configuration ac-
counting without multiplet splitting and with multiplet splitting accounted for by
Moszkowski’s method (smooth curve)

5.5.3 Statistical description of overlapping multiplets

Multiplet splitting leads to a further increase in the number of lines, which is
particularly important for multielectron ions of high-Z elements. Such ions may
exhibit states with a large number of partially occupied shells (including the d
and f shells), which results in a huge number of multiplet components [166].
In a number of cases, to account for the term structure one needs to use the
intermediate-coupling approximation [71, 93, 132]. This makes the computations
considerably more difficult, and they can be done only on supercomputers.

To calculate the averaged coefficients — the Rosseland and Planck mean free
paths, the group constants, — it hardly makes sense to give a minute descrip-
tion of fine details of the absorption spectrum. In this case we may regard the
multiplet-splitting effects as an additional broadening of the lines and calculate
the combined profile of the multiplet on the basis of some statistical distribution
of its components [22, 26, 138].

Assuming that in the one-configuration approximation the ion wave functions
can be constructed as linear combinations of Slater determinants (5.84), we obtain
the following expression for the average of the ion energy over the configuration
Q:

EQ =

∑
γJM

g(γJM) 〈γJM |Ĥ|γJM〉
∑

γJM

g(γJM)
≡ 〈γJM |Ĥ |γJM〉Q, (5.171)

where Ĥ is the Hamiltonian of the system of electrons of the ion, g(γJM) is the
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statistical weight of the state γJM and 〈· · · 〉Q denotes averaging over all possible
states of configuration Q.

Next, by a know relation from probability theory, the dispersion of the energy
of an electron configuration is given by

σ2
Q = 〈E2

γJM 〉Q − 〈EγJM 〉2Q, (5.172)

where EγJM = 〈γJM |Ĥ|γJM〉.
In much the same manner one can define the dispersion of the energy of the

transition between two configurations Q and Q′:

σ2
Q→Q′ = 〈(Eγ′J′M ′ − EγJM )2〉Q,Q′ − (〈Eγ′J′M ′ − EγJM 〉Q,Q′)2 , (5.173)

where 〈· · · 〉Q,Q′ denotes the averaging with the weights of the corresponding com-
ponents of the multiplet.

Explicit calculations based on formulas (5.171)–(5.173) were carried out in
[23, 24, 25], where analytic formulas for the dispersion (5.173) were obtained in
the approximation of a different type of coupling. However, for practical opacity
computations such expressions are too tedious, and so it is more convenient to
confine ourselves to a simpler approximation, whose accuracy is comparable to that
in [25]. If one neglects the interaction between electron shells, then to calculate the
dispersion of energies of a transition between arbitrary configurations one can use
the sum of the corresponding squared dispersions of transitions for two-electron
configurations.

Let us consider the one-electron transition α→ β from configuration Q to
configuration Q′, where Q = αN and Q′ = αN−1β, assuming that the electron in
the state β does not influence the state α. Then, as it was shown on a number
of examples in [138] by Moszkowski, for such a transition the dispersion can be
calculated by means of the formula

σ2
Q→Q′ � (N − 1)(gα −N)

gα − 2
σ2

αα→αβ , (5.174)

where σ2
αα→αβ is the dispersion for the transition α2 → αβ and gα is the statistical

weight of the state α.

Formula (5.174) can be derived by a simple argument. First, we shall assume
a quadratic dependence of the dispersion of the multiplet splitting on the number
of electrons N . Next, we observe that the dispersion is equal to zero for N = 1
and N = gα; also, if N = 2, then σ2

Q→Q′ must coincide with σ2
αα→αβ . Note that in

this approach the dispersion attains its maximum for N ∼ gα/2, as it should be.
Accordingly, for the transition αN1βN2 → αN1−1βN2+1 we have

σ2
Q→Q′ � (N1 − 1)(gα −N1)

gα − 2
σ2

αα→αβ +
N2(gβ −N2 − 1)

gβ − 2
σ2

αβ→ββ . (5.175)



230 Chapter 5. Interaction of radiation with matter

Summing the expressions for the dispersions of the transitions ανN → βνN ,

σ2
ανN→βνN � N(gν −N)

gν − 1
σ2

αν→βν , (5.176)

and adding the expression (5.175) to the result, we conclude that in the general
case the mean square dispersion of the components of the multiplet Q → Q′ of
the one-electron transition α→ β is given by

σ2
αβ �

(NQ
α − 1)(gα −NQ

α )
gα − 2

σ2
α2→αβ +

NQ
β (gβ −NQ

β − 1)
gβ − 2

σ2
αβ→β2 +

∑

ν �=α,β

NQ
ν (gν −NQ

ν )
gν − 1

σ2
αν→βν , (5.177)

where the two-electron dispersions σαν→βν are calculated in the approximation
provided by some coupling scheme. In practice it is convenient to use the jj- or
LS-coupling, since for these choices the energy of two electrons can be calculated
by means of simple analytic formulas.

Expression (5.177) is convenient for practical computations, because the cal-
culation of the dispersion of the transition α → β for a given configuration Q
reduces to that of dispersions of transitions in two-electron configurations, which
in the approximation adopted here are independent of the concrete states of ions.
This allows one, based on two-electron dispersions calculated previously, to deter-
mine the dispersion for any multi-electron configuration with a minimum number
of numerical operations.

Let us consider, for example, the situation when the two-electron dispersions
are treated in the approximation of the jj-coupling:

σ2
αν→βν = 〈∆E2

αν→βν〉 − 〈∆Eαν→βν〉2,

where the parameters 〈∆Em
αν→βν〉 for m = 1, 2 are calculated using the shifts of

ion energies due to a change in the state of one of the electrons:

〈∆Em
αν→βν〉 =

∑
J,J′(2J + 1)(2J ′ + 1)|∆Eαν→βν(J, J ′)|m

∑
J,J′(2J + 1)(2J ′ + 1)

.

Here
∆Eαν→βν(J, J ′) = E(jβ, jν , J ′)− E(jα, jν , J),

|jν − jα| ≤ J ≤ jν + jα, |jν − jβ | ≤ J ′ ≤ jν + jβ , |J − J ′| ≤ 1.

To calculate E(j1, j2, J) we assume that the one-electron wave functions remain
unchanged when the electron states change; what changes is only the total mo-
mentum J and, correspondingly, the multi-electron wave function, i.e., the linear
combination of determinants (5.177). In this approximation, the energy of two
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electrons with total momentum J is determined by means of the Slater integrals
F s

αν and Gs
αν (see [156] and also the analogous formulas (3.39), (3.44) for the

nonrelativistic case):

E(jα, jν , J) = Iα + Iν +
jν+jα∑

s=|jν−jα|
(asF

s
αν − bsGs

αν), (5.178)

where

as = (−1)jα+jν−J
√

(2jα + 1)(2jν + 1)W (jαjνjαjν ; Js)Cjα
1
2

jα
1
2 s0

C
jν

1
2

jν
1
2 s0

,

bs = (2jα + 1)W (jαjνjνjα; Js)
(
C

jν
1
2

jα
1
2 s0

)2 [
1 + (−1)lα+lν+s

]
/2,

(in the case α = ν the coefficient bs = 0).
To illustrate the use of formula (5.177), we give here results of the computed

transition arrays 4s → 4p for the ions Ni II, Mo XVI and Pr XXXIII (see fig-
ures 5.12–5.14 below). The computations were carried out for the configuration
3d8 4s, for various temperatures and densities (see Table 5.9). As the figures show,
formula (5.177) describes well the distribution of overlapping clusters of lines.
Moreover, when the density increases the profiles of such clusters, computed with
the term structure accounted for, approach the profile given by dispersion (5.177).
Note that the computing time required for the detailed calculation is several orders
larger that in the case of Moszkowski’s method.

Table 5.9: Lorentz widths γ in eV for the lines of the transition 3d8 4s→ 3d8 4p in
the ions Ni II, Mo XVI and Pr XXXIII for different values of the temperature T
(measured in eV) and density ρ (measured in g/cm3). Also shown is the average-
ion charge Z0

ρ 10−3 10−2 10−1 1

T 2 2.5 3
Ni II γ 0.0058 0.042 0.6

Z0 1.18 1.06 0.82

T 65 75 115
Mo XVI γ 0.013 0.12 0.74

Z0 15.8 14.6 15.36

T 200 250 350
Pr XXXIII γ 0.0051 0.031 0.29

Z0 32.9 32.9 32.4
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Figure 5.12: Spectral absorption coefficients for the transition 3d8 4s→ 3d8 4p in
the Ni II ion for different densities ρ, with the spin-orbit interaction accounted
for via a coupling of intermediate type (continuous curves) and computed by
Moszkowski’s method (dashed curves)
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Figure 5.13: Same as in Figure 5.12, but for the Mo XVI ion



234 Chapter 5. Interaction of radiation with matter

λ,Å
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Figure 5.14: Same as in Figure 5.12, but for the Pr XXXIII ion

For a comparison with the more accurate method found in [25], Table 5.10
lists the dispersions for several transitions in a tungsten plasma, computed with
the wave functions of the average ion for T = 0.5 keV, ρ = 0.5 g/cm3 (in this case
the average charge of the ion is Z0 = 46). If one recalls that the charge of the ion
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W 48 in [25] differs from the charge of the average ion, in the potential of which the
wave functions were calculated, one can consider that the approximation (5.177)
yields a satisfactory accuracy.

Table 5.10: Dispersions of several transitions for a tungsten plasma. The computa-
tions using formula (5.177) were carried out with the wave functions of the average
ion at temperature T = 0.5 keV and density ρ = 0.5 g/cm3

σαβ σαβ

Transition according to (5.177) according to ref. [25]

3d3
3/2

d6
5/2

→ 3d2
3/2

d6
5/2

4p1/2 6.50 8.14

3d3
3/2

d6
5/2

→ 3d3
3/2

d5
5/2

4p3/2 6.11 5.18

3d4
3/2

d5
5/2

→ 3d4
3/2

d4
5/2

4p3/2 6.13 6.43

3d4
3/2

d5
5/2

→ 3d3
3/2

d5
5/2

4p3/2 6.68 6.47

The influence of the multiplet splitting effects on the absorption coefficients
is illustrated on Figure 5.15 below (see also Table 5.11), which shows some results
of computations for an iron plasma, carried out in various approximations with
the codes THERMOS, STA and OPAL. The codes OPAL and STA, in contrast to
THERMOS, use a parametric potential (see, e.g., [180]). Absorption in spectral
lines is accounted for either in the approximation of a coupling scheme of inter-
mediate type with a detailed accounting for terms (OPAL), or in the statistical
approximation [26], which is more precise than Moszkowski’s method, but requires
a considerably larger volume of computations (STA).

As one can see from Figure 5.15 and Table 5.11, the multiplet splitting de-
termines the radiative heat conductivity of iron at temperatures T < 0.1 keV and
for densities ρ ∼ 10−4 g/cm3 (see also Figure 5.16, which displays the spectral
absorption coefficients for an iron plasma at T = 20 eV, ρ = 10−4 g/cm3).

The redistribution of spectral lines due to multiplet splitting modifies the
absorption spectrum in essential manner, and this effect becomes even more im-
portant for low densities (see Figure 5.17 for a xenon plasma at temperature T =
15 eV and density ρ = 10−6 g/cm3). As the density increases—in particular, for
densities ρ > 0.01 g/cm3, the influence of the term structure becomes less notable,
because for such densities the determining role is played by the fluctuations of the
occupation numbers.

The practical importance of accounting for the effects of multiplet splitting
in the computation of absorption coefficients is particularly transparent in as-
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Figure 5.15: Dependence of the Rosseland mean opacity κR for iron on the temper-
ature T in keV for densities ρ = 10−4 g/cm3 and ρ = 10−1 g/cm3, calculated with
the code THERMOS. The dashed [resp., continuous] curve represents the values
calculated without the multiplet structure of the levels [resp., with the multiplet
structure accounted for in the Moszkowski approximation]. Also shown are the
values obtained with the codes OPAL and STA for T = 0.02 keV, ρ = 10−4 g/cm3

and for T = 0.1 keV, ρ = 0.1 g/cm3 (they practically lie on the continuous curve,
see Table 5.11)

Table 5.11: Rosseland mean opacity κR for an iron plasma

T, eV ρ, g/cm3 Code κR, cm2/g

THERMOS 7.87·103

20 10−4 STA 7.68·103

OPAL 6.11·103

THERMOS 1.43·103

100 10−1 STA 1.38·103

OPAL 1.18·103

trophysical applications. As it turned out, the heaviest component of the stellar
atmospheres of cepheids, iron plasma, despite having very small concentration,
determines their opacity [209]. Highly accurate computations carried out with the
OPAL code at the Livermore National Laboratory, USA, [182] and the Sandia
Laboratory experiments which confirm these computations, allowed researchers to
explain the puzzling behavior of cepheids in the Herzsprung-Russell diagram [209].

Therefore, for low densities of matter, in many cases, in addition to a de-
tailed accounting of configurations, a detailed accounting of terms is necessary,
and satisfactory results are obtained only when a coupling scheme of intermediate
type is used.
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Figure 5.16: Spectral absorption coefficients of iron at temperature T = 20 eV
and density ρ = 10−4 g/cm3: (a) values computed without accounting for the
multiplet structure of levels; (b) computed with the multiplet structure of levels
accounted for in the approximation of an intermediate-type coupling, using the
code OPAL [182], (c) computed with the multiplet structure of levels accounted
for in the Moszkowski approximation, using the code THERMOS
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Figure 5.17: Absorption coefficients (in 105 cm2/g) in various approximations : (a)
configurations are accounted for by using perturbation theory without calculation
of the multiplet structure; (b) the multiplet structure of levels is accounted for in
the approximation of an intermediate coupling scheme. The computations were
carried out for a xenon plasma (Z = 54) at temperature T = 15 eV and density
ρ = 10−6 g/cm3

5.5.4 Effective profile for a group of lines

In a sufficiently dense plasma it is possible that the conditions for the overlapping
of lines on characteristic energy intervals, which are determined by the magnitude
of the multiplet splitting and the line shift due to the change of the occupation
numbers in different configurations Q, are realized. To account for the influence
of various configurations, let us first combine the contribution of the broadening
effects (5.151), (5.152) and of the multiplet splitting (5.177) in the form of a
profile ΦQ

αβ(ε − εQ
αβ), where εQ

αβ is the energy of the transition α → β, averaged
over all states of the configuration Q (including averaging with respect to the total
momentum J). Using ΦQ

αβ(ε− εQ
αβ), the absorption cross-section corresponding to

the one-electron transition α→ β can be written as

σαβ
bb (ε) = C0

∑

Q

PQN
Q
α

(
1− NQ

β

gβ

)
fQ

αβΦQ
αβ(ε− εQ

αβ), (5.179)

where the oscillator strength fQ
αβ is also averaged over the states of configuration

Q, and C0 = 2π2αa2
0 = 4 · 10−18 cm2.

In the simplest case of total overlapping of lines one can sum over the con-
figurations Q, relying on the average-atom approximation:

σαβ
bb (ε) = C0Nα

(
1− Nβ

gβ

)
fαβJαβ(ε). (5.180)

Here Jαβ(ε) is some combined profile for the set of overlapped lines of the transition
α → β and fαβ is the corresponding oscillator strength for the average ion with
occupation numbers Nα.
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Let us calculate Jαβ(ε) in the case where all the lines of the transition α→ β
are grouped near one maximum [56]. We make the approximate assumption that
the profiles of the lines of one and the same transition are independent of the
configuration Q, differing only through the position of the line’s center. We shall
also assume that the wave functions of the ion under consideration differ only
slightly from the wave functions of the average atom. Then for the transition
energies εQ

αβ and the oscillator strengths fQ
αβ , corresponding to the average values

over the configuration Q, we have

εQ
αβ � εαβ + ∆εQ = εαβ +

∑

q

δNqG
αβ
q , (5.181)

fQ
αβ ≈

2
3
εQ
αβ

∣∣∣∣

(∑

j

�rj

)Q

αβ

∣∣∣∣
2

≈ 2
3
εQ
αβ |�rαβ |2 =

εQ
αβ

εαβ
fαβ , (5.182)

where δNq = NQ
q − Nq, Gαβ

q ≡ Gq = Hβq − Hαq, Hkq is the matrix element
of the pair interaction of electrons in the states k and q, calculated from the
wave functions of the average ion (see (3.39)); εαβ and fαβ are the energy and
respectively the oscillator strength for the transition α→ β, corresponding to the
average ion.

Substituting (5.181) and (5.182) in (5.179), we have

σαβ
bb (ε) � C0

fαβ

εαβ
gα

∑

Q

PQ(εαβ+∆εQ)(nα+δnα)(1−nβ−δnβ)Φαβ(ε−εαβ−∆εQ),

(5.183)

where nα = Nα/gα, δnα = δNα/gα.
To continue the calculation, it is convenient to represent the function Φαβ as

a Fourier integral:

Φαβ(ε− εαβ −∆εQ) =
1√
2π

∞∫

−∞
φ(s) exp[is(εαβ + ∆εQ − ε)]ds. (5.184)

This yields a formula of the form (5.180):

σαβ
bb (ε) = C0gαnα(1− nβ)fαβJαβ(ε), (5.185)

where

Jαβ(ε) =
1√
2π

∞∫

−∞
φ(s) exp[is(ε− εαβ)]

∑

Q

PQ exp[−is∆εQ]×
[
1 +

∆εQ

εαβ

] [
1 +

δnα

nα
− δnβ

1− nβ
− δnαδnβ

nα(1− nβ)

]
ds. (5.186)
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The expression (5.186) describes the distribution of the population of spectral lines
corresponding to the transition α→ β. If we introduce the functions

F(s) =
∑

Q

PQ exp[−is∆εQ]
[
1 +

∆εQ

εαβ

][
1 +

δnα

nα
− δnβ

1− nβ
− δnαδnβ

nα(1− nβ)

]
,

(5.187)

F (ξ) =
1√
2π

∞∫

−∞
F(s) exp(−isξ) ds, (5.188)

and recall that
∫∞
−∞ exp[−iξ(s− s′)] dξ = 2πδ(s− s′), then the profile (5.186) can

be recast as

Jαβ(ε) =

∞∫

−∞
Φαβ(ε− εαβ − ξ)F (ξ)dξ. (5.189)

Thus, in order to calculate Jαβ(ε) it suffices to determine the function F(s).
To this end let us substitute expression (5.181) in (5.187) and expand the expo-
nential in a series. Then, up to terms (δn)2, we have

F(s) =
∑

Q

PQ

{
1 +

δnα

nα
− δnβ

1− nβ
+

∑

q

gq
δnqGq

εαβ

[
1 +

δnα

nα
− δnβ

1− nβ
− δnαδnβ

nα(1− nβ)

]
+

is
∑

q

gqδnqGq

[
1 +

δnα

nα
− δnβ

1− nβ
+
∑

p

gp
δnpGp

εαβ

]
+

(is)2

2

∑

p,q

gqgpδnqδnpGqGp

}
.

Henceforth we will denote averaging with respect to the binomial distribution
(5.74) with brackets 〈· · · 〉. Under the no-correlation assumption (i.e., in the case
when 〈δnpδnq〉 = 0 whenever p 	= q), we have

F(s) ∼= 1 +
〈δn2

α〉
εαβnα

gαGα −
〈δn2

β〉
εαβ(1− nβ)

gβGβ +

is

[
〈δn2

α〉
nα

gαGα −
〈δn2

β〉
(1− nβ)

gβGβ +
∑

q

g2
q

〈δn2
q〉G2

q

εαβ

]
+

(is)2

2

∑

q

g2
q 〈δn2

q〉G2
q. (5.190)
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By a property of the binomial distribution,

〈δn2
q〉 =

nq(1− nq)
gq

, (5.191)

and so

F(s) =
(

1 +
E1

εαβ

)[
1 +

E1 + E2/εαβ

1 + E1/εαβ
is+

E2

1 + E1/εαβ

(is)2

2

]
, (5.192)

where

E1 = Gα(1− nα)−Gβnβ, E2 =
∑

q

gqnq(1− nq)G2
q. (5.193)

Therefore, in terms of two known moments of the distribution (5.192), the function
F (ξ) (see (5.188)) can be approximated by a Gaussian

F (ξ) � 1 + E1/εαβ√
2πσ

exp
[
− (ξ −∆)2

2σ2

]
, (5.194)

where

∆ =
E1 + E2/εαβ

1 + E1/εαβ
, σ2 =

E2

1 + E1/εαβ
. (5.195)

Thus, the profile of the group of lines is given by the expression

Jαβ(ε) =
1 + E1/εαβ√

2π σ

∞∫

−∞
Φαβ(ε− εαβ − ξ) exp

[
− (ξ −∆)2

2σ2

]
dξ. (5.196)

To derive formula (5.196) we have used the expression (5.181) for the tran-
sition energy and the binomial distribution (5.74) for the probability of different
configurations. Furthermore, we have assumed that the lines are substantially over-
lapping and that the fluctuations of the occupation numbers are small compared
with the statistical weight of levels, i.e., δnα = δNα/gα � 1. Both these conditions
are well satisfied for high-Z elements at temperatures when roughly half of the
electrons are ionized. Note that if the binomial distribution is applicable, then, as
follows from (5.191), the condition that the fluctuations be small is also satisfied.

In most practical problems the individual profiles Φαβ(ε − εαβ) of spectral
lines are described by the Voigt function (see (5.149)):

Φαβ(ε− εαβ) =
1√
πD

K

(
ε− εαβ

D
,
γ

D

)
,

where γ is the Lorentz width of the line and D is the Doppler broadening param-
eter. The convolution of the Voigt function with the Gauss distribution (5.194)
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according to formula (5.196) yields again the Voigt function, but with different
parameters:

Jαβ(ε) =
1 + E1/εαβ√
π(D2 + 2σ2)

K

(
ε− εαβ −∆√
D2 + 2σ2

,
γ√

D2 + 2σ2

)
. (5.197)

Therefore, in the approximation adopted here the total profile of the set of
Voigt lines is also described by the Voigt function. In the case where the density of
lines is large, when the width of an individual line γ can be neglected in comparison
with their mean square dispersion σ, putting Φαβ(ε − εαβ) = δ(ε − εαβ) and
assuming that the conditions E1/εαβ � 1, E2/εαβ � 1, are satisfied, we obtain
for the profile (5.196) the Gaussian curve

Jαβ(ε) =
1√

2πE2

exp
(
− (ε− εαβ − E1)2

2E2

)
. (5.198)

Expression (5.198) was used by Stein, Shalitin and Ron in [210], where some other
parameters E1 and E2 were obtained.

Formula (5.180) gives one smooth envelope for the entire group of lines of a
one-electron transition α→ β. Such an approximation is rather crude, because in
many cases the profile of overlapped lines corresponding to a one-electron transi-
tion has a more complex shape and is given by a function with a certain number of
maxima. These maxima arise due to the presence of states of the group of ions that
differ considerably through their transition energies. To sharpen formula (5.180) it
seems natural to group together the lines near such maxima and describe the en-
tire population of lines of the considered one-electron transition as a set of several
effective profiles (5.196).

Such a generalization is carried out in the papers [19, 55]. In particular, in
[55] the authors use the fact that the fluctuations of the occupation numbers on
the lower shells “shift” the lines more notably than the fluctuations on the upper
levels. It is precisely such configurations, in which the occupancy of the lowest
shells is affected by ionization changes, that will determine the main groups of
lines. Hence, it is appropriate to single out a small number of shells, for which it
is desirable that the summation in (5.179) over their occupation numbers be done
explicitly. Suppose, for example, that µ is such a shell (the generalization to the
case of several shells is straightforward). In (5.179) the summation over the shells
q 	= µ can be carried out approximately up to terms (δn)2, by analogy with the
way we proceed above.

In this manner we obtain

σαβ
bb (ε) = C0

fαβ

εαβ

gµ∑

Ñµ=0

Pµ ε
µ
αβ N

µ
α

(
1− Nµ

β

gβ

)
Jµ

αβ(ε). (5.199)

Here Pµ is the probability that on the shell µ there are Ñµ electrons (Ñµ =
0, 1, 2, . . . gµ), εµ

αβ = εαβ + (Ñµ −Nµ)Gαβ
µ , Nµ is the average number of electrons
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on the shell µ,

Nµ
q =
{
Ñµ, if q = µ,
Nq, if q 	= µ,

Jµ
αβ(ε) =

1 + Eµ
1 /ε

µ
αβ√

2πσµ

∞∫

−∞
Φαβ(ε− εµ

αβ − ξ) exp
[
− (ξ −∆µ)2

2σ2
µ

]
dξ, (5.200)

∆µ =
Eµ

1 + Eµ
2 /ε

µ
αβ

1 + Eµ
1 /ε

µ
αβ

, σ2
µ =

Eµ
2

1 + Eµ
1 /ε

µ
αβ

,

Eµ
1 =






−Gαβ
β Nβ/gβ if α = µ, β 	= µ,

Gαβ
α (1−Nα/gα) if α 	= µ, β = µ,

Gαβ
α (1−Nα/gα)−Gαβ

β Nβ/gβ if α 	= µ, β 	= µ,

Eµ
2 =
∑

q �=µ

Nq

(
1− Nq

gq

)(
Gαβ

q

)2
.

Using in (5.180) the Voigt profiles for Φαβ we obtain the following expression
for the effective profile:

Jµ
αβ(ε) =

1 + Eµ
1 /ε

µ
αβ√

π(D2 + 2σ2
µ)
K



ε− ε
µ
αβ −∆µ√

D2 + 2σ2
µ

,
γµ

αβ√
D2 + 2σ2

µ



 . (5.201)

Here γµ
αβ is the characteristic Lorentz width of the transition α→ β for the group

of lines corresponding to the configuration {Ñµ}. Note that instead of a shell µ
one could take some group of states with close energies.

To illustrate our discussion we show in Figure 5.18 the results of computations
for the transition 3p 3

2 → 4d5
2 in gold (for T = 1 keV, ρ = 1 g/cm3 and ρ = 0.1

g/cm3) according to formula (5.53), with a detailed accounting for configurations
(with the multiplet structure accounted for in the Moszkowski approximation),
using formula (5.180) (we refer to this approximation as the effective method)
and using formula (5.199). One can see that for density ρ = 1 g/cm3 the effective
method (5.180) yields results that are close to those obtained by the detailed
computation. By contrast, for ρ = 0.1 g/cm3 formula (5.180) does not render well
the results of the detailed computation, but the results provided by the sharpened
formula (5.199) — the dotted curve in Figure 5.18 — practically coincide with
those of the detailed computation.

5.5.5 Statistical description of the photoionization process

An approximation similar to the approximation (5.180), but designed to account
for spectral lines, can be obtained also for photoionization processes [57]. To that
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Figure 5.18: The line absorption coefficient for the transition 3p 3
2 → 4d5

2 in gold
with detailed accounting for configurations, with the multiplet structure accounted
for in the Moszkowski approximation (solid curves) and obtained via the effective
method (dashed curves): (a) T = 1 keV, ρ = 1 g/cm3; (b) T = 1 keV, ρ = 0.1
g/cm3. The dashed curves with one maximum represent the result of the compu-
tation based on formula (5.180); the dotted curve with three maxima represents
the result of the computation based on formula (5.199)

end let us write the photoionization cross-section of the one-electron process εα +
ε→ ε′ in the form

σαε′
bf (ε) = C0

∑

Q

∑

�′
PQN

Q
α [1− n(ε′)]fQ

αε′�′Φα(ε), (5.202)

where the function Φα(ε) defines the contribution of various broadening processes,
n(ε) = 1/ [1 + exp ((ε− µ)/θ)] and C0 = 4 · 10−18 cm2 (see (5.179)). Using ap-
proximations analogous to (5.181), (5.182), and also the binomial distribution, we
have

σαε′
bf (ε) = C0fαε′�′Nα[1− n(ε′)]Jα(ε), (5.203)

where the profile of all photoionization thresholds of the process α → ε′�′ is de-
scribed by an expression similar to (5.196):

Jα(ε) =
1 + E1/(ε′ − εα)√

2π σ

∫
Φα(ε− εα − ξ) exp

[
− (ξ −∆)2

2σ2

]
dξ. (5.204)

Here
∆ =

E1 + E2/ε

1 + E1/ε
, σ2 =

E2

1 + E1/ε
, ε = ε′ − εα,

E1 = Hαα(1− nα)− n(ε′)w(ε′)Hε′�′,ε′�′ ,

E2 =
∑

q

gqnq(1− nq)
[
Hαq −

√
w(ε′)Hε′�′,q

]2
.
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The density of free electron states w(ε) is introduced in order that the normal-
ization of the continuum wave functions adopted in § 2.3 be preserved during the
calculation of the matrix elements Hαβ.

To calculate the total photoionization cross-section from the level α we must
integrate expression (5.203) over all final states ε′ (the summation over the orbital
momentum �′ is carried out in the resultant formula):

σα
bf(ε) =

∞∫

0

σαε′
bf (ε)dε′. (5.205)

Since Jα(ε) has a sharp maximum for the value ε′ = ε∗ = ε + εα − E1 and the
functions fαε′ and n(ε′) change only slightly in the essential part of the integration
domain, we have

σα
bf(ε) ∼= C0

∑

�′
fαε∗�′Nα[1− n(ε∗)]

∞∫

0

Jα(ε) dε′. (5.206)

Putting, as is customary, Φ(ε) = δ(ε), and using the conditions E1/(ε′ − εα)� 1,
E2/(ε′ − εα)� 1, which are satisfied almost always, the summation yields

σα
bf(ε) ∼= C0

∑

�′
fαε∗�′Nα[1− n(ε∗)]

[
1 + erf

(
ε∗√
2E2

)]
, (5.207)

where
erf(x) =

2√
π

∫ x

0

exp(−y2)dy.

The statistical methods (5.180), (5.199) and (5.207) allow one, in a number
of situations, to reduce the computing time without a major loss of accuracy.

5.6 Computational results for Rosseland mean paths
and spectral photon-absorption coefficients

5.6.1 Comparison of the statistical method with detailed
computation

The spectral absorption coefficients at temperature T = 1 keV and density ρ = 0.1
g/cm3 for gold, calculated by means of the effective method (5.180), as well as by
a detailed accounting of more than 70000 configurations using formula (5.179),
are shown in Figure 5.19. One can see that the effective method renders well the
behavior of the absorption coefficient in the mean, coarsening, of course, the details
of the spectrum. The mean characteristics are rendered far more accurately (see
Table 5.12).
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Figure 5.19: Absorption coefficient, measured in cm2/g, for a gold plasma with
temperature T = 1 keV and density ρ = 0.1 g/cm3: (a) for a detailed configuration
accounting (� = 0.422 cm), (b) obtained by the effective method (� = 0.510 cm)

We must emphasize that as the plasma density increases, accounting for
configurations becomes considerably more complicated, because the fluctuation
width of the distribution over the degrees of ionization increases (see Figure 5.7).
However, as has to be expected, the accuracy of the description of the absorption
spectrum by means of the effective method, as a rule, increases.

The absorption coefficient for T = 1 keV and ρ = 1 g/cm3 is shown in
Figure 5.20. The detailed computation required to account for more than 106

configurations in order that the absorption coefficient reached saturation and ap-
proached the results of the computation using the effective method (the detailed

Table 5.12: Absorption coefficients in a gold plasma: Rosseland mean (κR) and
Planck mean (κP), in cm2/g. The computations were carried out with a detailed
accounting for configurations and by using the effective method (5.180)

κR κP

T ρ Detailed Effective Detailed Effective

0.1 0.1 3710 4760 7806 7723
1 5927 7112 9288 9346
10 8274 7668 10301 10050

0.316 0.1 678 674 1507 1473
1 1218 1290 2410 2467
10 1555 1764 3156 3489

1 0.1 23.7 19.6 157 149
1 137 130 449 438
10 274 282 791 805

3.16 0.1 0.36 0.37 2.63 2.79
1 2.00 1.61 18.8 17.9
10 14.6 10.9 66.8 65.7
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computation required roughly a 1000 times more time). Compared with the case
T = 1 keV, ρ = 0.1 g/cm3, here the lines are considerably wider and the result
produced by the effective method is much closer to that of the detailed calculation:
�det = 0.0073 cm, �eff = 0.0077 cm.
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Figure 5.20: Absorption coefficient, measured in cm2/g, for a gold plasma with
temperature T = 1 keV and density ρ = 1 g/cm3: (a) for a detailed configuration
accounting (� = 0.0073 cm), (b) obtained by the effective method (� = 0.0077 cm)

Therefore, computations based on the effective method, on the one hand, give
an acceptable approximate result (especially for mean values), and on the other
hand, they yield a limit estimate of the absorption coefficient in spectral lines
in the presence of a very large influence of the splitting and broadening effects
(in this connection see [192]). Let us mention that the differences between the
results of the detailed computation and the effective method seen in Table 5.12
are connected mainly with the different way in which these methods account for
photoionization effects.

To illustrate the application of the effective method (5.207), we give here
results of the computation of the photoionization cross-sections for T = 3 keV,
ρ = 1.9 g/cm3 for gold and for T = 20 eV, ρ = 10−4 g/cm3 for iron. For gold the
shift E1 is not very important (being of several atomic units), while the dispersion
(the quantity E2 in formula (5.204)) leads to a considerable smoothing of the
behavior of the photoionization cross-section near the threshold. This is clearly
seen in Figure 5.21, which shows the photoionization cross-section obtained with
a detailed configuration accounting (768 ion states were accounted for), as well as
by means of the effective method, for the level n = 2, � = 0, j = 1/2.

As one can see in Figure 5.21, the calculation of the photoionization cross-
section without accounting for configurations gives a rather crude result, whereas
the effective method agrees well with the detailed computation. Moreover, by
increasing the number of configurations considered in the detailed computation
and accounting for the multiplet structure of the spectrum and other broadening
and splitting effects one can apparently reach an even better agreement.

Figure 5.21 makes clear also that accounting for configurations leads to quali-
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Figure 5.21: The absorption coefficient (in cm2/g) under photoionization of the
level 2s1/2 in a gold plasma with temperature T = 3 keV and density ρ = 1.9
g/cm3, calculated with various methods of accounting for configurations: the
hatched-dotted line with one step was obtained in the average-atom approxima-
tion, the dotted line with steps—by the detailed account of ion configurations, and
the continuous line—by the effective method

tative changes in the absorption spectrum compared with the average-atom model.
Note also the quantitative changes in the average characteristics, in particular, ac-
counting for fluctuations of photoionization thresholds may result in a change of
∼ 20% in the Rosseland free path (spectral lines where not included in the com-
putations). At lower temperatures the divergence of the results obtained in the
average-atom approximation from those furnished by the detailed computation
becomes even more notable.

Figure 5.22 displays the results of the computation of photoionization cross-
section for iron at temperature T = 20 eV and density ρ = 10−4 g/cm3, calculated
by means of a detailed configuration accounting according to formula (5.202), as
well as by means of the effective method (5.207). Here the result obtained by means
of the average-atom approximation differs by a factor of 2 from that furnished by
the detailed computation, whereas the effective method (5.207) agrees well with
the detailed computation.

The results of computations based on formula (5.199) are compared with
experimental data [228] for a holmium plasma (Z = 67) in Figure 5.23. The figure
shows the spectral transmission coefficient, which has calculated by means of the
formula

T (ω) = e−κ(ω)ρL, (5.208)
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Figure 5.22: The absorption coefficient (measured in cm2/g) under photoioniza-
tion of an iron plasma at temperature T = 20 eV and density ρ = 10−4 g/cm3,
calculated with various ways of accounting for configurations: detailed approach
(solid curve); effective accounting (dashed curve)
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Figure 5.23: Transmission coefficient in a holmium plasma at temperature T = 20
eV and density ρ = 0.03 g/cm3 (the thickness of the plasma layer is L = 5·10−4 cm)
as a function of the photon energy in eV (solid curves): (a) neglecting the multiplet
structure; (b) with the multiplet structure of the spectrum accounted for in the
Moszkowski approximation and with the fluctuations of the occupation numbers
accounted for by means of formula (5.199). Experimental data [228] (dashed curve)
are also provided for each of the two cases (a) and (b)
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where κ(ω) is the spectral absorption coefficient, ρ is the plasma density, and L is
the thickness of the plasma layer (for the holmium plasma L = 5 · 10−4 cm). One
can see that computations based on formula (5.199) yield satisfactory agreement
with the experiment. At the same time, computations that neglect the multiplet
structure of the spectrum do not agree with the experimental results in the domain
of strong lines.

5.6.2 Dependence of the absorption coefficients on the element
number, temperature and density of the plasma

The computation of absorption coefficients and free paths of photons (spectral, as
well as Rosseland means) are carried out by using various codes (programs). Brief
information about such codes and the approximations adopted in them can be
found in papers and reports of international workshops on opacity computations
[247, 241, 242]. Therein there are also given computational results for a number of
elements and mixtures and comparisons with experimental data (see [179, 227]).
Let us remark that the successes achieved to this date in the development of exper-
imental methods as well as the utilization of multiprocessor supercomputers allow
one to make major advances in the theoretical description of radiative properties
of matter (this is demonstrated by a whole series of recently published works; see,
e.g., [172, 207, 208, 228, 1, 126, 185, 51, 39, 84, 11, 69], as well as the special
issue Radiative Properties of Hot Dense Matter of the Journal of Quantitative
Spectroscopy and Radiative Transfer, vol. 81, no. 1–4, 2003.

Based on the codes developed, databases (libraries) of photon absorption
coefficients were and continue to be created (see Subsection 6.5.6). Two well-
known such data bases are OPLIB (Lawrence Livermore National Laboratory)
and SESAME (Los Alamos National Laboratory), both in the US. A similar data
base and the code THERMOS*) were developed at the M. V. Keldysh Institute
of Applied Mathematics in Moscow. THERMOS makes it possible to describe
radiative and thermodynamic properties of various substances and mixtures in a
wide range of temperatures and densities. The reader can find the models and
algorithms implemented in the code THERMOS in this book.

The computation of detailed tables imposes special requirements on the codes
used for that purpose, namely, the codes must be not only precise, but also suffi-
ciently fast, in order to be able to carry out the computation of a large number of
cases with respect to temperature and density of matter. To ensure precision it is

*) The name THERMOS stands for:

T — Thomas–Fermi model
H — Hartree, Hartree–Fock, Hartree–Fock–Slater self-consistent field models
E — Equation of state
R — Rosseland mean free path
M — Mixture of elements
O — Opacity calculations
S — Storage of data
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necessary to accurately compute each of the individual processes discussed in the
present chapter, since any of them may prove to be determining factor in some
range of temperatures and densities. Along with the approximations employed, an
important role is played by the choice of code parameters, such as the number of
shells accounted for, the amount of ions accounted for, the computational meshes,
etc.

Table 5.13: Influence of the number of shells accounted for, nmax, on the absorption
coefficients in a gold plasma with density ρ = 0.1 g/cm3 and temperature T =
1 keV (also shown is the corresponding average charge of the ion, Z0)

nmax Z0 κR, cm2/g κP, cm2/g

6 66.47 19.4 155
8 66.41 23.1 157
9 66.39 23.7 157
10 66.36 24.3 157
12 66.28 24.5 157
14 66.20 24.5 157

Since the most computationally-demanding process is accounting for absorp-
tion in spectral lines, the main parameter that determines the time required for
computations is the number of electron shells accounted for. Note that actually
the amount of ions (configurations) accounted for has a larger influence on the
computing time; however, the effective methods considered in § 5.5, allow one to
simplify the calculation process in the most complex situations. Table 5.13 lists
results of computations of the Rosseland mean free path in gold with different
numbers n of shells accounted for, where n ≤ n max, n max = 6÷ 14. The comput-
ing times for a detailed configuration accounting with n max = 6 and n max = 14
differ by a factor of 15. This clearly demonstrates that, in order to achieve a high
efficiency and accuracy of codes, it is necessary to enrich the computational pro-
cedures by various physical models and methods. The universality of the codes
allows one to compute in a wide range of temperatures and densities, and, by
comparing the results obtained by different methods, to ensure their reliability.

The values of the averaged absorption coefficients in the state of local thermo-
dynamic equilibrium are determined by the temperature, density and composition
of matter. In the region of high temperatures and relatively small densities, when
matter is almost fully ionized, the determining role is played by the scattering pro-
cesses (5.62). Under such conditions the following simple formula for the Rosseland
mean free path, measured in cm, holds:

� = 2.5
A

ρZ0
, (5.209)

where Z0 is the average charge of the ion, A is its atomic weight, and ρ is the
density in g/cm3.
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If for high temperatures one increases the plasma density, then inverse brems-
strahlung processes become the dominant factor. For a fully ionized dense plasma
the corresponding formula for the Rosseland free path in the Kramers approxima-
tion (5.228) is (see [234]):

� = 70
A2T 7/2

ρ2Z3
0

, (5.210)

where T is the temperature in keV.
Formulas (5.209), (5.210) are valid when the influence of the electrons in

bound states can be neglected. As a rule, the dependence of the absorption co-
efficients on temperature and density has a more complex character. Usually a
considerable influence on absorption coefficients is exerted by spectral lines, and
the photoionization processes are also rather important.

A comparison of the photoionization cross-sections obtained by means of the
codes THERMOS, OPAL and STA for an iron plasma at temperature T = 20 eV
and density ρ = 10−4 g/cm3 is given in Figure 5.24. As one can see, the more
detailed accounting for the photoionization thresholds made in the OPAL code
compared with the THERMOS and STA codes (in OPAL the energy levels are
calculated in the approximation of an intermediate coupling scheme) results in a
smoothing of the photoionization thresholds.
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Figure 5.24: The absorption coefficient (measured in cm2/g) under photoionization
in an iron plasma at temperature T = 20 eV and density ρ = 10−4 g/cm3 with
detailed configuration accounting, computed by the THERMOS code (solid curve),
the OPAL code (dashed curve—left figure) and the STA code (dashed curve—right
figure)

The spectral dependence of the absorption coefficients κ(ω) with all processes
considered in § 5.2 accounted for, is illustrated in Figure 5.25 for molybdenum
(Z = 42) with density ρ = 0.1 g/cm3. As the figure demonstrates, the spectral
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dependence of the absorption coefficient for molybdenum in the indicated range is
determined by the processes of photoionization and absorption in the spectral lines.
The influence of these processes on the Rosseland mean free path depends in turn
of the role they play near the maximum of the Rosseland weight function. Note
that the most important contribution to the Rosseland mean free path comes from
the domain with minimal opacity (see Figure 5.26, which shows the subintegral
curves for the computation of Rosseland mean free paths for molybdenum).

The role of the spectral lines is clearly seen in Figure 5.27, which compares
the absorption coefficients with, as well as without the spectral lines accounted
for, for the relatively light element aluminum (Z = 13) and for gold (Z = 79). It is
evident that the influence of bound-bound transitions depends on the occupation
numbers of the electron shells. As an analysis reveals, the domain where the lines
exert maximal influence correspond to an ionization such that on the first nonfilled
shell one finds only roughly half of the electrons (see also Table 5.14). Thus, for
example, in the case of gold with T = 1 keV, ρ = 1 g/cm3, the level with number
n = 3 hosts about half of the maximum possible number of electrons.

Let us mention that in a substantial range of temperatures and densities the
spectral lines fill densely certain parts of the spectrum and their profiles overlap
essentially due to fluctuations of the occupation numbers and multiplet splitting
effects. As a consequence, the results of the calculation of Rosseland free paths are
usually little sensitive to the magnitude of electron width and the method used
to account for the ion broadening (Stark effect). In particular, when the electron
widths are doubled in this domain, the mean free path changes only by a few
percent.

Table 5.14: Average ion charge Z0 of gold at different temperatures and densities

ρ, g/cm3 T , keV

0.1 0.316 1.0 3.16

10−4 32.655 52.906 69.522 77.000
10−3 29.688 51.034 69.021 76.998
10−2 26.357 48.648 68.573 76.996
10−1 22.282 43.920 66.400 76.809
100 17.868 36.813 60.877 75.601
101 16.095 30.414 52.124 71.329
102 19.119 29.098 45.644 65.198
103 43.001 43.547 47.811 58.950
104 61.000 61.000 61.052 63.067
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Figure 5.25: Absorption coefficients (in cm2/g) in a molybdenum plasma for the
energy interval 0 < h̄ω < 20T , for different temperatures T in eV and density
ρ = 0.1 g/cm3
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Figure 5.26: Photon free path �(ω) (in cm), multiplied by the Rosseland weight
function R(x), x = h̄ω/T , in a molybdenum plasma for the energy interval 0 <
h̄ω < 20T , for different temperatures T in eV and density ρ = 0.1 g/cm3 (compare
with Figure 5.25)
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Figure 5.27: Dependence of the absorption coefficients (opacity κR = 1/(ρ�)) on
the density ρ (in g/cm2), in an aluminum plasma and a gold plasma, with the
spectral lines accounted for (solid curves) and not accounted for (dashed curves),
at the temperatures T = 0.1 keV and T = 1 keV
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Figure 5.28: The Rosseland mean (solid curves) and Planck mean (dashed curves)
absorption coefficients, in cm2/g, as functions of the element number Z, for T =
1 keV, ρ = 0.1 g/cm3 and T = 0.28 keV, ρ = 0.05 g/cm3

The dependence of the absorption coefficients on the element number is illus-
trated in Figure 5.28, which displays the Rosseland and Planck mean absorption
coefficients for two cases with respect to the temperature and density (T = 1 keV,
ρ = 0.1 g/cm3 and T = 0.28 keV, ρ = 0.05 g/cm3).
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Figure 5.29: Dependence of the Rosseland mean free path �R (in cm) for aluminum,
molybdenum, and gold plasmas on temperature T (in keV). The curves are calcu-
lated for different densities ρ = 10k g/cm3, where k = −4,−3,−2,−1, 0, 1, 2, 3, 4
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Figure 5.29 on the preceding page shows the Rosseland mean free paths
for aluminum (Z = 13), molybdenum (Z = 42) and gold (Z = 79) plasmas as
functions of the temperature T (in keV) for densities ρ from 10−4 g/cm3 up to
104 g/cm3; the density changes by one order of magnitude from one curve to the
next (the free path decreases when the density increases). The character of the
dependence of the absorption coefficient κ = 1/(ρ�) on temperature and density
depends in turn on the degree of ionization of the electron shells. At beginning
of the ionization of each shell the coefficient decreases, but later, when the shell
becomes almost half ionized, the absorption coefficient may increase notably due
to the increasing influence of spectral lines.

A comparison of the computational results for Rosseland mean free paths at
density ρ = 0.1 g/cm3 in aluminum (Z = 13), copper (Z = 29) and europium
(Z = 63) carried out with the code THERMOS and the SESAME database [245],
published in [215] (in graphic form) was made in [162]. This comparison has shown
that at temperatures T > 100 eV the differences between the two compared results
are very small (the graphs are indistinguishable). At lower temperatures, where
the main contribution to the Rosseland integral is due to photoionization, some
differences are observed [162].

Experimental values of the absorption coefficient κR in aluminum and iron
for density ρ � 1 g/cm3 and temperatures from 0.5 keV to 1.25 keV are published
in [12, 13]. Tables 5.15–5.16 compare those data with results of computations
done in the Thomas-Fermi model [147, 150] and in the Hartree-Fock-Slater model
(using the code THERMOS), and also with results of computations using the
codes LEDCOP, OPAL, HOPE and STA [241].

Table 5.15: Rosseland mean absorption coefficient κR, in cm2/g, for aluminum

T , keV 0.5 0.75 1.0 1.25
Thomas-Fermi 40.5 9.09 2.09 0.83
THERMOS 46.1 10.3 2.14 0.83

OPAL 59.3 2.13
HOPE 53.1 1.92
STA 52.5 2.08

Experiment [12, 13] 51 ± 8 13 ± 2 2.9 ± 0.4 1.1 ± 0.2

Table 5.16: Rosseland mean absorption coefficient κR, in cm2/g, for iron

T , keV 0.5 0.75 1.0 1.25
Thomas-Fermi 62.5 7.81 2.70 1.59
THERMOS 79.6 8.37 3.14 2.29
LEDCOP 74.8 2.79

OPAL 84.2 3.48
HOPE 78.2 3.56
STA 71.8 2.74

Experiment [12, 13] 82 ± 12 7.8 ± 1 2.3 ± 0.4 1.3 ± 0.2
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Table 5.17: The absorption coefficient κR in cm2/g for gold

T ρ [34] [162] THERMOS THERMOS
detailed effective

0.316 19.3 1731 2116 2013 1901
0.316 1.93 1323 1433 1276 1447
0.75 19.3 526 552 545 624
0.75 1.93 260 329 312 374
1 19.3 245 308 287 326
1 1.93 104 167 145 145

Note that there is reasonably good agreement with experimental data for
T ≤ 0.75 keV within the limits of experimental errors, whereas for temperatures
higher than 1 keV there are notable differences. On the other hand, the results
of the computations done with the different codes agree well with one another.
Since the data in [12] were obtained by processing computations using certain
codes for radiative gas dynamics, further analysis and processing of those data by
incorporating new results are apparently necessary.

For a dense hot plasma of heavy elements only few theoretical values of the
absorption coefficients are known and those are rarely found in the literature. The
most complete and accurate data on opacity computations are provided by the
SESAME database at the Los Alamos National Laboratory in the US, though
they are not readily accessible to all researchers. Among the published results
there are data for gold [139, 33, 34], lead [32] and europium [215, 88]. Table 5.17
compares results obtained by using the code THERMOS with the data for gold
published in [34].

Also shown in the table are data given in [162], obtained earlier without
accounting for the multiplet structure of the spectrum, but using a variant of the
effective method (5.199). One can see that the various approximations considered
yield close results (differences are smaller than 20 %), except for the case T = 1
keV, ρ =1.93 g/cm3, for which the THERMOS results are 1.5 larger than the data
in [34].

5.6.3 Spectral absorption coefficients

Figures 5.30–5.31 compare computed and experimental values of the transmission
function for a germanium plasma (Z = 32, T = 76 eV, ρ = 0.05 g/cm3) and an
iron plasma with a 19.8 % NaF admixture (T =59 eV, ρ = 0.013 g/cm3). The
thickness of the plasma layer is L = 0.0032 cm for germanium and L = 0.03 cm for
the iron with the NaF admixture. Satisfactory agreement between the THERMOS
results and experimental data is observed.

Next, figures 5.32 and 5.33 compare results obtained by means of the code
THERMOS (with detailed accounting for configurations and accounting for the
term structure in the Moszkowski approximation) with results provided by the
OPAL and STA codes [241, 242]. As indicated earlier (see Subsection 5.5.5), the
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codes THERMOS, OPAL and STA employ different models and approximations
in the calculation of energy levels of ions and of wave functions, as well as in
that of cross-sections of radiation-matter interaction. Comparisons of the different
methods allow one to draw conclusions about the degree of uncertainty of the data
and on their reliability.
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Figure 5.30: Transmission of a germanium plasma at temperature T = 76 eV
and density ρ = 0.05 g/cm3 as a function of the photon energy (in eV), obtained
by means of the code THERMOS (solid curve) and from experimental data [66]
(dashed curve)
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Figure 5.31: Transmission of an iron plasma with an NaF admixture at tempera-
ture T = 59 eV and density ρ = 0.013 g/cm3 as a function of the photon energy
(in eV), obtained by means of the code THERMOS (solid curve) and from exper-
imental data [207] (dashed curve)
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Modern information technologies allow researchers to create and amass data-
bases of spectral and mean photon absorption coefficients for various elements and
mixtures (cf. Subsection 5.6.5). Such databases are necessary for solving many
problems of radiative gas dynamics and in the design of new technologies and
devices.
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Figure 5.32: Comparison of spectral absorption coefficients in a Fe plasma at tem-
perature T= 31.7 eV and density ρ = 0.01 g/cm3, obtained with the THER-
MOS code (solid curve, κR = 1.565 · 104), the OPAL code (upper dashed curve,
κR = 1.734 · 104) and the STA code (lower dashed curve, κR = 1.640 · 104)
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Figure 5.33: Spectral absorption coefficients in a C190H190O20Br plasma (agar
with an admixture of bromine) at temperature T= 270 eV and density ρ = 0.2
g/cm3, computed with the THERMOS code (solid curve, κR = 45) and with the
OPAL code (upper dashed curve, κR = 45) and the STA code (lower dashed curve,
κR = 46)

As an example, let us consider a problem of major importance in the pro-
duction of X-ray sources [47]. For such a source to be efficient it is necessary that
it converts the maximal amount of energy injected into radiation. Such conver-
sion requires that the materials used enjoy certain properties; in particular, in a
number of problems a critical parameter is the free path of photons. To achieve
a highly efficient conversion one needs a material that for specified temperature
and density has minimal free path. Using databases of spectral absorption coeffi-
cients one can analyze the behavior of these coefficients as functions of the element
number Z (see Figure 5.28).

As we have seen in a number of examples, the photon absorption spectrum
is specific to each element. At high temperatures, for high-Z elements a basic role
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is played by absorption in spectral lines, which are arranged in sufficiently narrow
groups with alternating windows of transparency (domains of the spectrum for
which the free path is maximal). As a consequence, the transport of radiation
for different elements takes place in different domains of the spectrum, though
the radiative heat conductivities of elements whose numbers Z are close to one
another are almost identical. By a special choice of elements with a specific Z one
can close transparency windows and obtain a substance with minimal free path.

Let us consider a mixture of an arbitrary number of elements, with mass
fractions mi (i = 1, 2, . . . , n). For such a substance the Rosseland mean free path
� is given by the formula

� =
1

ρ κR
=

∞∫

0

R(x)

ρ
n∑

i=1

miκi(x)
dx, (5.211)

where x =
h̄ω

kT
,

R(x) =
15
4π4

x4e−x

(1− e−x)2

is the weight function, and κi(x) is the spectral absorption coefficient of the i-th
component of the mixture. In formula (5.211) for the mixture it is assumed that
the dependence of the spectral absorption coefficients on the partial (intrinsic)
densities of the elements in the mixture is weak. Therefore, one makes the as-
sumption that approximately the partial densities of all components are equal to
the matter density ρ.

We are required to find such mi (
∑n

i=1mi = 1) that the value of � will be
minimal. The conditions for minimum read

∂

∂mi

(
1
κR

)
= 0, i = 1, 2, . . . , n− 1. (5.212)

Since mn = 1−∑n−1
i=1 mi, one can recast (5.212) as

∞∫

0

κi(x)− κn(x)
κ2(x)

R(x) dx = 0, (5.213)

where κ(x) =
∑
miκi(x).

Multiplying (5.213) by mi and summing over i, we obtain a relation for i = n,
which together with equations (5.213) for i = 1, 2, . . . , n − 1 yields a system of n
nonlinear equations for the determination of the mass fractions mi:

∞∫

0

κi(x)R(x)
(
∑

k mkκk(x))2
dx =

∞∫

0

R(x)∑
k mkκk(x)

dx, i = 1, 2, . . . , n. (5.214)
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We will solve this system by an iteration method, setting

m
(s+1)
i = m

(s)
i + ∆mi. (5.215)

Note that the condition
∑
mi = 1 will be satisfied whenever equations (5.214)

hold. Substituting (5.215) in (5.214), we obtain, in the linear approximation, a
system of linear equations for the unknowns ∆mi:

n∑

k=1

Aik∆mk = bi, (5.216)

where

Aik =

∞∫

0

[2κi(x)− κ(x)]κk(x)
κ3(x)

R(x)dx, bi =

∞∫

0

κi(x)− κ(x)
κ2(x)

R(x)dx.

As one can see in Figure 5.28, to minimize the Rosseland mean free path
we must use elements with Z ≥ 40. We will assume that for these elements the
spectral absorption coefficients κi(x) are known. To solve the resulting system of
∼ 40 equations for Z = 40, 41, . . . , 83 (radioactive elements are excluded) several
iterations according to formulas (5.215), (5.216) are needed.

Table 5.18: Mass fractions mi of the different elements for a compound with mini-
mal Rosseland mean free path and the corresponding Rosseland mean absorption
coefficients κR = 1/(ρ�), in cm2/g

T = 0.28 keV, ρ = 0.05 g/cm3 T = 1 keV, ρ = 0.1 g/cm3

Element mi κR Element mi κR

Ce 0.097 529.4 Ce 0.116 7.1
Nd 0.074 528.0 Eu 0.072 7.4
Eu 0.103 508.5 Gd 0.072 7.2
Ho 0.081 460.4 Ho 0.063 7.5
Yb 0.080 462.0 Lu 0.108 9.2
Hf 0.062 500.8 W 0.090 11.8
Re 0.076 614.1 Au 0.167 19.1
Au 0.115 785.6 Tl 0.083 23.0
Tl 0.096 851.0 Bi 0.228 28.5
Bi 0.216 922.0

Mixture 1512.6 Mixture 78.1

Table 5.18 lists mass fractions mi of the different elements for the resulting
compound with minimal Rosseland mean free path and the corresponding Rosse-
land mean absorption coefficients κR. The computations were carried out for two
cases: T = 0.28 keV, ρ = 0.05 g/cm3 and T = 1 keV, ρ = 0.1 g/cm3. We see that
the magnitude of the free path for a mixture can be made 2–3 smaller than that
for a pure substance.
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5.6.4 Radiative and electron heat conductivity

For very high densities of matter the flux of energy transported by electrons be-
comes comparable to or even larger than the flux of energy transported by photons.
To compare the energy fluxes in the case of high temperatures it is convenient to
describe the electron heat conductivity of plasma as a radiative one. To that end,
let us write the heat flux �Fe transported by electrons in a form analogous to the
radiative heat conductivity approximation (5.34):

�Fe = −κegrad θ = −�e 4acθ
3

3

grad θ.

Here κe is the electron heat conductivity coefficient and �e is the mean effective
free path of heat-conducting electrons:

�e =
3κe

4acθ3
.

The total energy flux can be then written as

�F = −�eff 4acθ
3

3

grad θ,

where �eff = � + �e is the effective free path which includes the Rosseland mean
free path �.

The value of �e can be expressed through the heat conductivity coefficients,
as proposed by Basko (see [21]):

�e =
(κ2

S + κ2
H)1/2

θ3
[cm],

where κS is the heat conductivity coefficient of an ideal nondegenerate plasma:

κS = 1.17 · 10−3 ε1θ
5/2

ZeffL1
,

and κH is the heat conductivity coefficient for the case of strong degeneration:

κH = 3.10 · 10−4 ε2θθ
3/2
F

ZeffL2
.

The extra (compared to the well-known expressions of Spitzer and Hubbard) fac-
tors ε1,2 introduced above arise when corrections due to the nonideal character of
the plasma are accounted for [21]. The values of all the numerical factors reflect the
fact that the plasma temperature θ and the Fermi temperature θF are measured
in atomic units.
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The Coulomb logarithms of electron-ion collisions can be calculated by the
formulas

L1 = 0.5 ln



1 + 9
〈Z2〉
Γ2

(
max

{
1,
[

Zeff

3Γ(1 + Z0)

]1/2
})2


 ,

L2 = 0.5 ln

[(
2πZeff

3

)2/3 (
1.5 +

3
Γ

)1/2
]
,

where Γ is the nonideality parameter:

Γ =
〈Z2〉
r0

min
(

1
θ
;

1
θF

)
.

In estimations one can neglect the nonideality corrections, taking ε1 = ε2 = 1.
As effective charge Zeff ≡ 〈Z2〉/Z0 we use the approximation

Zeff =
{

1, if Z0 ≤ 1,
Z0, if Z0 > 1,

where Z0 is the average ion charge according to the Hartree-Fock-Slater model.
R ema r k. For photon energies ω ≤ ωp, where ωp is the plasma frequency

(ωp =
√

4πne =
√

3Z0/r30), a large influence on the radiative transfer processes
is exerted by collective effects that we left out of the picture. To describe the
transport of photons in this case we need to resort to electrodynamics, describing
the medium by means of its dielectric permeability ε (

√
ε = n + ik, where k =

ρκ c/ω, κ is the absorption coefficient in cm2/g and n is the refraction coefficient).
The role of the refraction (and reflection) processes may be significant at relatively
low temperatures.

5.6.5 Databases of atomic data and spectral photon absorption
coefficients

The development of communication networks (Internet, etc.) yields new mecha-
nisms for effective information exchange between network databases. This makes
possible to combine the efforts of many researchers in accumulating and analyzing
atomic data, obtained experimentally as well as by using various approximations
and computer codes. Here is a brief list of relevant websites:

• Database of the National Institute of Standards and Technology,

http://physics.nist.gov/cgi-bin/AtData/main asd,

contains experimental information on the position of spectral lines of 99
elements and the energy levels of ions of 52 elements. It is a very convenient
and readily accessible source of reliable atomic data.
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• Database of the International Atomic Energy Agency (Vienna, Austria),

http://www-amdis.iaea.org/databases.htm.

It contains information on electron-atom, ion-ion and intermolecular inter-
actions, on interaction of particles with a surface, and also on scattering
and ionization and excitation and de-excitation cross-sections. The data are
presented mainly in a specialized form (in the ALADDIN format).

• The database of the National Institute for Fusion Science, Data and Planning
Center (Nagoya, Japan),

http://dbshina.nifs.ac.jp,

is a large-volume and universal interactive network reference tool, which con-
tains a large amount of data on ionization and excitation.

We should mention separately several computational databases, containing infor-
mation on spectral and integral photon absorption coefficients for various elements
and mixtures (values of opacity, Rosseland and Planck mean free paths):

• Database of the European Opacity Project (maintained by M. J. Seaton):
TOPbase of Opacity Project, http://cdsweb.u-strasbg.fr/topbase.html.

• Database of results generated by the code LEDCOP of the Los Alamos Na-
tional Laboratory: TOPS Opacities (LANL, Los–Alamos, USA),
http://www.t4.lanl.gov/cgi-bin/opacity/tops.pl.

• Database of results generated by the code OPAL of the Lawrence Livermore
National Laboratory: OPLIB (LLNL, Livermore, USA),
http://www-phys.llnl.gov/Research/OPAL/opal.html.

Widely used in calculations of atomic data are also the codes written by
R. Cowan (http://aphysics2.lanl.gov/tempweb), the code GRASP by I. P. Grant
and coauthors (http://www.maths.ox.ac.uk/∼ipg), and the code FAC written by
Ming Feng Gu (http://kipac-tree.stanford.edu/fac).

5.7 Absorption of photons in a plasma with

nonequilibrium radiation field

The investigation of hot plasmas produced in laser, beam or discharge devices re-
quires that one takes into account its nonequilibrium character, due to nonstation-
ary ionization and/or outgoing (incoming) radiation. The utilization in radiative
gas dynamics codes of opacity coefficients that are obtained on the basis of equilib-
rium or quasi-equilibrium models of matter (for example, in the approximation of
total escape of radiation) is not always justified, since the radiation field is formed
in the dynamics of plasma and has an essential influence on the microstates of
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the ions in the plasma, and hence on the thermodynamic and radiation properties
of the plasma. In their turn, the ion microstates determine the emissivity of the
plasma and its spectral absorption coefficients. Accounting for the nonequilibrium
character of the radiation field may modify considerably the composition of the
plasma, its degree of ionization, the photon absorption coefficients and the emis-
sivity at the same thermodynamic parameters of the plasma, i.e., at the same
internal energy and pressure.

In practice, in addition to the local thermodynamic equilibrium approxima-
tion one often resorts to the so-called coronal equilibrium (CE) approximation, in
which the ions are considered in the ground state and all collision excitations are
removed simultaneously due to radiation decay because the plasma is completely
transparent. A more general approximation is the collisional radiative steady state
(CRSS) model, in which the radiation field is assumed to be known, for example,
it is the Planckian field with the given radiation temperature.

Let us mention here also the collisional radiative equilibrium (CRE) model,
in which one assumes equilibrium state for some configuration of radiating plasma
[196].

5.7.1 Basic processes and relaxation times

Let us consider a plasma composed of electrons e, ions Aj
s of different charges j in

some states s, and photons h̄ω. Various processes of interaction between particles
and between particles and radiation take place in the plasma, for example,

1) elastic collisions between particles, i.e., collisions that do not modify their
internal states, but redistribute the kinetic energies among the particles;

2) inelastic collisions:

a) excitation due to electron impact and the inverse de-excitation process:

e+Aj
s

−→
←− e′ +Aj

s′ ;

b) ionization and the inverse three-body recombination process:

e+Aj
s

−→
←− e+ e′ +Aj+1

s′ ;

3) processes of interaction of ions and electrons with photons:

a) absorption and emission in spectral lines

Aj
s + h̄ω

−→
←− Aj

s′ ;

b) photoionization and photorecombination

Aj
s + h̄ω

−→
←− Aj+1

s′ + e ;
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c) bremsstrahlung and inverse bremsstrahlung

e+Aj
s + h̄ω

−→
←− e′ +Aj

s ;

d) Auger effect and the inverse process of dielectronic capture

Aj
s′′

−→
←− e+Aj+1

s ;

e) Compton scattering
e+ h̄ω −→ e′ + h̄ω′.

Here e′ is an electron with an energy different from that of e, s′ is an excited state
relative to s, s′′ is a doubly excited state.

Needless to say, we have listed here by far not all processes that take place
in a plasma. In principle, any process in which several photons, electrons and ions
participate that is not forbidden by the conservation laws and selection rules may
occur. In practice one singles out the most essential processes, i.e., the processes
with maximal probability.

Under conditions of thermodynamic equilibrium, statistical equilibrium holds
between all components of the system and all processes that take place in it. The
values of the thermodynamic variables are close to their mean values, and the
energy is distributed over all degrees of freedom in accordance to the distribution
law.

In these circumstances the state of the matter-radiation system is character-
ized by a well-defined temperature, which in turn determines

(i) the distribution function of particles over energies;
(ii) the rates of the excitation, ionization and other processes;
(iii) the spectral density of the equilibrium radiation.
Therefore, under conditions of thermodynamic equilibrium, only the element

composition, the temperature and the density need to be specified in order to be
able, in principle, to determine all the properties of a plasma. If the system is not in
an equilibrium state, then it will reach equilibrium after some time; this transition
process is called relaxation. In a number of cases one speaks about incomplete
equilibrium; one example is when the distribution functions of particles according
to energy retain their forms, but the temperature appearing in these functions
becomes a parameter. In the description of nonequilibrium processes one often
assumes that the velocity distribution of ions and electrons is maxwellian, but with
a different temperature. Moreover, notions like rotation temperature, oscillation
temperature, excitation (distribution) temperature, population temperature of a
level, ionization temperature, radiation temperature, and so on are used [125, 31].
Obviously, in the case of complete equilibrium all these temperatures coincide.

When equilibrium does not hold, knowledge of the element composition, tem-
perature, and density of a plasma is not sufficient for determining its properties. In
this case the system composed of plasma particles and radiation is nonstationary,
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transfer processes take place in it, and the system relaxes to equilibrium if there
are no external sources acting on matter. Among the important characteristics of
a nonequilibrium system are the relaxation times of the different degrees of free-
dom. By definition, the relaxation time τp of some parameter p to its equilibrium
value p0 is defined by the relation

dp

dt
� p0 − p(t)

τp
.

As an example, let us estimate the time required to reach the equilibrium
distribution for an admixture of particles of mass m1 in a gas of particles of mass
m2 in equilibrium. Consider an arbitrary collision of particles of different masses:

m1, v1 −→ ←− m2, v2

In the system of coordinates attached to the particle m2, the conservation laws of
energy and momentum yield






m1(v2
1 − v′12) = m2v

′
2
2
,

m1(v1 + v′1) = m2v
′
2,

where v1 > 0 and v2 = 0 are the particle velocities before collision, while v′1, v
′
2

are the respective velocities after collision. This allows us to calculate the relative
change in the energy of the molecule with mass m1:

∆ε
ε

=
m1(v2

1 − v′12)
m1v2

1

=
4m1m2

(m1 +m2)2
.

Suppose ν collisions take place per unit of time. Then the relaxation time τp
can be estimated from the relation ∆ε ντp ∼ ε, or

τp � (m1 +m2)2

4m1m2

1
ν
.

We see that when m1 = m2 the relaxation time coincides with the free-
flight time τ = 1/ν. If, however, m1 � m2 (for example, for ions and electrons
m1/m2 � 1836A, where A is the atomic weight), then the relaxation time is many
times larger than the free-flight time (by a factore of about 104).

In real processes full equilibrium is practically nonexistent: as a rule, the
state of a medium changes with time, and mass and energy fluxes occur. For this
reason in practice it is customary to employ the hypothesis of local thermodynamic
equilibrium (LTE) when equilibrium holds in each sufficiently small volume of
matter, being characterized by a well-defined temperature. It is also assumed that
changes in the system take place slower than the relaxation to equilibrium.

The condition for the applicability of the LTE approximation at high temper-
atures depends in an essential manner on the role of the radiation, since radiation
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processes are the fastest. For a large radiation density, in order for the LTE ap-
proximation to apply it is necessary that the photon free path � be much smaller
than the typical length over which the temperature and density change:

�

T
|∇T | � 1,

�

ρ
|∇ρ| � 1. (5.217)

For low plasma densities the radiation processes usually violate the LTE,
and consequently in this case the LTE approximation is applicable only when the
radiation processes are negligible compared with the collision processes, i.e.,

w(r) � w(c), (5.218)

where w(r) and w(c) are the probabilities of the radiation and respectively collision
processes.

In the opposite case, i.e., when

w(r) � w(c), (5.219)

the coronal approximation applies (see Subsection 6.3.4 below).
At high temperatures and low densities condition (5.217) is almost always

violated in laboratory plasmas, so even if conditions (5.218) or (5.219) do not hold,
one cannot, in particular, assume that the level populations are in equilibrium.
In this case it is necessary, together with photon transfer processes, to take into
consideration the nonequilibrium kinetics of the populations on bound levels [31].

5.7.2 Joint consideration of the processes of photon transport and
level kinetics of electrons

In the steady-state approximation, if one neglects scattering processes then the
transfer equation for radiation of intensity Iω = Iω(�r, �Ω) and photon energy h̄ω
reads

(�Ω∇)Iω = j(ω, Iω)− ρκ(ω, Iω) · Iω, (5.220)

where κ = κ(ω, Iω) is the absorption coefficient, j = j(ω, Iω) is the emissivity and
�Ω is the unit vector in the direction of propagation of the radiation.

The absorption coefficient and the emissivity of plasma are determined by
the electron populations of the ground and excited states of ions or, in other
words, by the number of ions with ionization degree j found in some state s; we
will denote this number by njs = njs(�r) (thus the relative concentration of ions
is xjs = njs/ni, where ni = ρN

A
/A is the ion density, N

A
being the Avogadro

number and A the atomic weight).
In the absence of macroscopic transport processes, the concentrations njs

must obey the balance conditions

dnjs

dt
=
∑

j′s′
(nj′s′ wj′s′→js − njswjs→j′s′) , (5.221)
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where wjs→j′s′ is the total probability of transition of an ion from the state js to
the state j′s′ due to the processes described in Subsection 5.7.1.

The probabilities of the collision processes are determined by the density
of the free electrons and their energy distribution. The probabilities of radiation
processes depend in essential manner on the photon distribution function f ∼
Iω/ω

3, more precisely, on how much of the radiation remains (is reabsorbed) in
the plasma. In particular, absorption in spectral lines is proportional to f, while
emission is proportional to 1+f. In particular, if a considerable part of the radiation
is reabsorbed, then equations (5.220) and (5.221) must be solved simultaneously.

In the case of a single spectral line (two-level approximation), starting from
these equations one can obtain the well-known Bieberman-Holstein integro-differ-
ential equation for the distribution of the electron population of an excited state
[2, 31], assuming that the excited state is much less populated than the ground
state. In the general case solving the equations (5.220) and (5.221) does not seem
to be possible due to the huge number of ion states in the plasma and the necessity
of a detailed description of the numerous elementary processes with the complex
geometry of plasma formations accounted for.

To investigate the main functional dependencies of the population and radi-
ation distributions, we will consider the simplest approximation, in which instead
of the detailed computation of the absorption and emission coefficients one resorts
to the effective methodology described in § 5.5, and instead of the system (5.221)
one considers the corresponding system of level kinetics in the approximation of
average occupation numbers of one-electron levels Nν :

Nν =
∑

js

njsN
js
ν /ni, (5.222)

where N js
ν is the number of electrons on the level ν in the ion state js. Here a

one-electron level ν is understood as the set of quantum numbers n�j that specify
the state of the electron: the principal quantum number n, the orbital quantum
number �, and the quantum number j of the total angular momentum of the
electron.

5.7.3 Average-atom approximation

In the average-atom approximation*) it is convenient to write the spectral absorp-
tion and emission coefficients by making the dependence on the average occupation

*) As in the equilibrium case, the concept of the average atom presupposes the approximation
of the average ion, i.e., of the ion with the average occupation numbers, which together with the
free electrons is contained in an electrically-neutral spherical cell.
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numbers Nν and the radiation intensities Iω explicit [164]:

κ′ω =
NA

A

{
∑

µ<ν

Nµ

(
1− Nν

gν

)
σ̃bb

µνΦ abs
µν (ω) +

∑

µ

Nµ(1− nε)σ̃bf
µ (ω) + σ̃ff(ω)

}
, (5.223)

j′ω = ρ
NA

A

{
∑

µ<ν

Nν

(
1− Nµ

gµ

)
gµ

gν
σ̃bb

µνΦem
νµ (ω) +

∑

µ

nε

(
1− Nµ

gµ

)
gµ σ̃

bf
µ (ω) + e−ω/θσ̃ff(ω)

}[
ω3

4π3c2
+ Iω

]
. (5.224)

The coefficients κω and jω in equation (5.220) differ from κ′ω and j′ω in that
the part of j′ω contributed by the induced radiation and proportional to Iω, is
moved over to κ′ω to obtain κω. Note also that here we neglect scattering pro-
cesses. In formulas (5.223)–(5.224), gν is the statistical weight, εν is the energy of
the level ν at given temperature T , density ρ and radiation intensity Iω, ε = ω+εν

is the energy of the electron after ionization, nε is the distribution function of
the free electrons according to energy ε, σ̃bb

µν(ω), σ̃bf
µ (ω), σ̃ff(ω) are the reduced

line-absorption, photoionization and inverse bremsstrahlung cross-sections, respec-
tively, and Φµν(ω) is the line profile of absorption (with the superscript abs) or
emission (with the superscript em).

Usually, for simplicity, one assumes that during emission or absorption a total
redistribution over frequencies takes place inside the spectral line, and so one can
consider that

Φabs
µν (ω) = Φ em

νµ (ω) = Φµν(ω). (5.225)

Since the joint profile Φµν(ω) is obtained by averaging a huge number of compo-
nents (see (5.196), where this profile was denoted by Jµν(ε)), the approximation
(5.225) is justified when the energy spread of line components is smaller than the
temperature of matter.

The reduced cross-sections σ̃bb
µν(ω), σ̃bf

µ (ω), σ̃ff(ω) differ from the usual cross-
sections introduced in Subsection 5.2.1 in that the factors connected with the
occupation numbers of levels and their degeneracy are now incorporated into the
absorption coefficient κ′ (see (5.223)). In particular,

σ̃bb
µν = 2π2αa2

0fµν , (5.226)

where fµν is the oscillator strength (see (5.180)).
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In the average-atom model, for the photoionization and inverse bremsstrah-
lung cross-sections it is convenient to use the simple Kramers approximation

σ̃bf
µ (ω) =

64π α
3
√

6
a2
0

Zµ |εµ|3/2

gµ

1
ω3
, (5.227)

σ̃ff(ω) =
16π α
3
√

3
a2
0Z

2
0θ e

ζ/θ 1
ω3
, (5.228)

where Z0 is the average ion charge, Zµ is the effective charge for the level µ and
ζ is the chemical potential.

In a nonequilibrium plasma the average occupation numbers Nν are deter-
mined from the condition of balance of electrons with respect to energy levels
[175, 193]:

dNν

dt
= (1− Nν

gν
)Sν −NνLν . (5.229)

Here Sν is the total rate, (more precisely, the flux) measured in 1/sec, of the
processes leading to an increase of the number electrons in the state ν, and Lν is
the total rate of the processes leading to a decrease of the number of electrons in
that state:

Sν =
∑

µ<ν

Nµ(αabs
µν + αex

µν) +
∑

µ>ν

Nµ(αem
µν + αdex

µν ) + αir
ν + αphr

ν + αdc
ν , (5.230)

Lν =
∑

µ<ν

(
1− Nµ

gµ

)
(αem

νµ + α dex
νµ ) +

∑

µ>ν

(
1− Nµ

gµ

)
(αabs

νµ + αex
νµ)+

αii
ν + αphi

ν + αai
ν . (5.231)

We used the following notation for the rates of the processes considered (the
number of the corresponding transitions occurring during one unit of time per one
ion): αex

µν and αdex
νµ for the excitation and respectively the quenching of the level ν;

αii
ν and αir

ν for ionization and three-body recombination; αabs
µν , αem

νµ for absorption
and emission in lines; αphi

ν and αphr
ν for photoionization and photorecombination;

and αai
ν and αdc

ν for the Auger effect (autoionization) and dielectronic capture.

5.7.4 Rates of radiation and collision processes

To calculate the rates of elementary processes one uses the formulas obtained in
the works [219, 193, 218, 124, 134]. The oscillator strengths, energy levels and
other requisite quantities are calculated on the basis of the relativistic Hartree-
Fock-Slater self-consistent field model, with given occupation numbers Nν of the
electron states, which satisfy the system of equations (5.229)–(5.231). The rates of
the direct and inverse processes are connected by the conditions of the principle
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of detailed balance; at equilibrium from these conditions should follow the Fermi-
Dirac distribution of level occupancies for each of the considered processes. This
yields a simply connection between direct and inverse processes.

It is convenient to express the rates of the radiation processes in terms of
the corresponding reduced cross-sections (5.226)–(5.228) with the radiation field
accounted for [134, 164]:

αabs
µν = ν0

∫
σ̃bb

µνΦµν(ω)
ω

(∫
IωdΩ

)
dω, (5.232)

αem
νµ = ν0

gµ

gν
exp
(
εν − εµ

θ

)∫
σ̃bb

µνΦµν(ω)
ω

(
ω3

π2c2
+
∫
IωdΩ

)
e−ω/θdω, (5.233)

αphi
µ = ν0

∫
σ̃bf

µ (ω)
ω

(∫
IωdΩ

)
dω, (5.234)

αphr
µ = ν0gµ exp

(
ζ − εµ

θ

)∫
σ̃bf

µ (ω)
ω

(
ω3

π2c2
+
∫
IωdΩ

)
e−ω/θdω. (5.235)

Here, in the cross-section formulas (5.226)–(5.228), one puts a0 = 1; ν0 = me4/h̄3

= 4.134 · 1016 1/s is the atomic frequency, ζ is the chemical potential of the free
electrons, assumed here to be in equilibrium at temperature θ; dΩ is the solid-
angle element. If the intensity Iω is expressed in TW/(cm2·eV·steradian), then to
translate it into atomic units we must multiply by CW = 4.23 · 10−3. In order for
j(ω) to be expressed in TW/(cm3· eV· steradian), we must divide the expression
of j(ω) by the same number CW.

For low densities (see formula (1.26), and also Subsection 6.2.2)

eζ/θ ≈ 3
2

√
π

2
Z0

r30θ
3/2

,

where Z0 = Z −∑ν Nν is the number of free electrons per atom (Z0 = ne/ni and
ne is the free electron density).

The rate of the collision processes can be calculated by means of formulas
analogous to those obtained in Subsection 5.4.5 for the electron widths of lines
in the impact approximation (see [218]). However, because of the approximate
character of the model (5.230)-(5.231), we can use the following simple formulas
(see [124, 219])*):

αex
µν = 1.3 · 1016 ρZ0

Aθ3/2
fµν

E1(xµν)
xµν

, (5.236)

*) More accurate calculations relying on the distorted wave method or on the Born approxi-
mation enable one to derive simple semi-empirical formulas for rates that are specific for a given
element [218].
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αdex
νµ =

gµ

gν
exµναex

µν , (5.237)

αii
ν = 1.3 · 1016 ρZ0

Aθ3/2

E1(xν)
xν

, (5.238)

αir
ν = gν exp

(
ζ − εν

θ

)
αii

ν . (5.239)

In the above formulas xµν = (εν − εµ)/θ, xν = |εν |/θ and E1(x) is the integral
exponential. In [193], instead of E1(x), B. F. Rozsnyai uses the function Ẽ1(x) =
E1(x)− xE1(x+ 0.3)/(x+ 0.3), which in a number of cases yields a more correct
value for the rate.

To calculate the probability of autoionization per one second for an electron
at the level n� with de-excitation of another electron, n′′�′′ → n′�′, let us use the
simplest dipole approximation [237]:

W ai
n� = 4.1 · 1016 2π

gn�

fn′�′,n′′�′′

ω

gn′�′

gn′′�′′




∑

�̃

�+ �̃+ 1
2

r0∫

0

Rn�(r)Rε�̃(r)
r2

dr




2

,

where ω = εn′′�′′ − εn′�′ , ε = ω + εn� > 0.
The quantity inside parentheses can be calculated in the hydrogen-like ap-

proximation using the connection between the matrix elements of the acceleration
and of the position vector (see Subsection 5.2.1) and the expression (5.65) for the
oscillator strength.

Summing over all possible de-excitation processes we obtain for the autoion-
ization rate the expression

αai
ν =

∑

µ<µ′
Nµ′

(
1− Nµ

gµ

)
W ai

νµ′µ (5.240)

where ν = n�, µ = n′�′, µ′ = n′′�′′, W ai
νµ′µ = W ai

n�.
For the inverse process of dielectronic capture, similar considerations yield

αdc
ν = gν exp

(
ζ − εν

θ

) ∑

µ<µ′
Nµ

(
1− N ′

µ

g′µ

)
gµ′

gµ
W ai

νµ′µ (5.241)

The kinetic equations (5.230)–(5.231) include dielectronic capture processes
instead of the dielectronic recombination processes, as is usually done. In the
average-atom approximation the process of dielectronic recombination may be
considered as a result of kinetic processes of dielectronic capture, autoionization,
and radiative decay [193]. Therefore, this process depends on the relations between
all the aforementioned rates at given temperature and density.
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5.7.5 Radiation properties of a plasma with nonequilibrium
radiation field

The simplest way to analyze the dependence of radiation characteristics of plasma
(i.e., of its absorption and emission coefficients) on the levels of the nonequilib-
rium radiation is to make use of some quasi-stationary (steady-state) approxima-
tion. Such an approximation works well whenever the gas-dynamics processes are
considerably slower than the collision and radiation processes. The type of quasi-
stationarity is determined by the relations between the rates of various processes.
In particular, among the widely used approximations are the coronal model (see
Subsection 6.3.4), the collisional-radiative model for transparent plasma, and oth-
ers [31, 44, 20, 193, 36]. A crucial step for a simplified description of the complex
nonstationary processes in a plasma is to single out among all processes the most
important ones that, in addition, have a sufficiently high rate, and first of all, the
radiative processes.

Our goal here is to investigate the basic dependencies on the levels of the
nonequilibrium radiation rather than solving a concrete problem. With this in
mind, let us consider quasi-stationary solutions of the system (5.229)–(5.231) in-
corporating all collision and radiative processes listed above, assuming, however,
that the radiation intensity Iω is arbitrary.

In the quasi-stationary approximation (dNν/dt = 0) we can recast the sys-
tem (5.229)–(5.231) in a form that is convenient for the application of iterative
methods:

Nν =
gν

1 + gνLν/Sν
. (5.242)

Here the rates Sν and Lν depend not only on all average occupation numbers of
levels, Nν , but also on the energies εν and the oscillator strengths fµν , which in
turn are determined by the state of the average ion (i.e., its occupation numbers
Nν).

Since the calculation of energy levels and wave functions of electrons for a
given state of an ion is rather laborious (this problem was solved in the approxi-
mation of the Hartree-Fock-Slater self-consistent field model), two iteration cycles
were used to solve the system (5.242).

First, for given energies ε(s)ν and oscillator strengths f (s)
µν , where s is the

iteration number, the average occupation numbers Nν were calculated by carrying
out additional iterations according to the formula

N (p+1)
ν =

gν

1 + gνLν/Sν

∣∣∣∣∣
Nν=N

(p)
ν

, p = 0, 1, 2, . . . (5.243)

To improve the convergence, use was made of the relaxation procedure

Ñν = αN (p+1)
ν + (1− α)N (p)

ν ,

where α=0.3÷ 0.5.



278 Chapter 5. Interaction of radiation with matter

After the iterations (5.243) converged, the resulting occupation numbers were
used to determine new energy levels ε(s+1)

ν and oscillator strengths f (s+1)
µν by solv-

ing the Hartree-Fock-Slater system of equations with the given occupation num-
bers. Then the process was repeated for as long as the condition

max
ν

∣∣∣Nν

(
ε(s+1)
ν , f (s+1)

µν

)
−Nν

(
ε(s)ν , f (s)

µν

)∣∣∣ < 10−6

was satisfied.
In this way we obtain average occupation numbers, electron energy levels

and electron wave functions that are consistent with the given radiation field Iω.
These are then used to calculate the absorption coefficients and emissivities of the
plasma. The resulting coefficients make it possible to get a more accurate value of
the radiation field by solving the transfer equation (5.220). The described iteration
cycle is then repeated till there will be complete consistency between the radiation
field Iω(�r, �Ω) and the level populations Nν(�r).

As an example, the method was tested to calculate the radiative properties
of nonequilibrium molybdenum and tungsten plasmas at density ρ = 0.01 g/cm3

and different temperatures T , which are contained in a thermostat with a given
radiation temperature, i.e., the radiation field was specified by the function

Iω = Bω(Tr) =
h̄ω3

4π3c2
1

eh̄ω/Tr − 1
, (5.244)

where Tr is the effective temperature of the radiation. When Tr = T local thermo-
dynamic equilibrium holds, i.e., formula (5.224) must yield j(ω) = ρκ(ω)Bω(T ).

The results of the computations for a molybdenum plasma (T = 100 eV, ρ =
0.01 g/cm3) and a tungsten plasma (T = 200 eV, ρ = 0.01 g/cm3) are displayed in
figures 5.34 and 5.35. These show the average degree of ionization (average charge
of the ion) Z0, the Rosseland and Planck mean absorption coefficients, as well

as the radiative losses (integral emissivity) of the plasma, Q = 4π
∫
j(ω)dω, as

functions of the parameter ξ, which characterizes the level of radiation in plasma
relative to the equilibrium value:

ξ =

∫
κ(ω)Iω/ω3 dω

∫
κ(ω)Bω/ω

3 dω

.

Note that ξ is determined not only by the intensity of the nonequilibrium radiation
in plasma, but also by how much of this radiation is reabsorbed by the plasma.

As the figures show, there are two regions, depending on the parameter ξ,
where the character of the behavior of the quantities considered is essentially
different. In our case this takes place for Tr � T/2, which gives ξ = ξ∗ = 0.34 for
molybdenum and ξ = ξ∗ = 0.27 for tungsten.
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Figure 5.34: Average charge of the ion Z0 and the radiation losses Q in
103 TW/cm3 as functions of the parameter ξ for a molybdenum plasma (T = 100
eV, ρ = 10−2 g/cm3) and a tungsten plasma (T = 200 eV, ρ = 10−2 g/cm3)
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Figure 5.35: Reciprocals of the Rosseland mean free paths, 1/�R, and of the Planck
mean free path, 1/�P, as functions of the parameter ξ. The notations are the same
as in Figure 5.34

Analysis shows that for ξ < ξ∗ the main role is played by collision processes,
whereas for ξ > ξ∗ everything is determined by radiation. In this connection, the
character of the approximation of opacities in gas-dynamic codes in the domains
where radiation plays the main role must be different from that in the domains
where that role is taken over by collision processes. In particular, such approxi-
mations, which describe the data shown in figures 5.34 and 5.35, were constructed
in [163].

In the numerical modeling of dynamical processes in a plasma, the radiation
intensity Iω is, of course, not defined by formula (5.244), but must be found by
solving the transfer equation (5.220). The joint solution of the photon transfer
equation and the equation of level kinetics of electrons, even in the average-atom
approximation, is a computationally very complex problem [164]. In a number of
cases one can use simpler approximations.
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5.7.6 Radiative heat conductivity of matter for large gradients of
temperature and density

Let us examine the case when the temperature or density change considerably over
distances of the order of the free path of photons, which violates the conditions for
the applicability of the diffusion approximation in the calculation of the radiation
flux [147].

For simplicity, we will confine ourselves to the case of plane geometry. We will
also assume that absorption in lines is essential, which allows us to neglect photon
scattering. In this case it is convenient to write the radiative transfer equation in
the form

µ
∂Iω
∂z

+
1

�ω(z)
Iω =

1
�ω(z)

Bω(T ). (5.245)

Here z is the coordinate, �ω = �(ω) = 1/ (ρκ(ω)) the spectral free path of photons,
µ the cosine of the angle between the z-axis and the direction of propagation of the
radiation, Iω(µ, z) the spectral intensity of the radiation and Bω(T ) the spectral
intensity the equilibrium radiation in matter at temperature T , normalized with
respect to the ω-scale:

Bω(T ) = ch̄ω fp(ω) =
h̄ω3

4π3c2
1

ex − 1
, x =

h̄ω

kT

(Kirchhoff’s radiation law is assumed to hold).
Since the volume occupied by matter is finite, equation (5.245) is supple-

mented with the following boundary conditions:

Iω(µ,−∞) = 0 if µ > 0;

Iω(µ,∞) = 0 if µ < 0.
(5.246)

The solution of the boundary value problem (5.245)–(5.246) has the form

Iω(z, µ) =

z∫

−∞

1
µ�ω(z′)

exp



−
−z∫

z′

dz′′

µ�ω(z′′)



 Bω(T )|T=T (z′) dz
′ if µ > 0;

Iω(z, µ) = −
∞∫

z

1
µ�ω(z′)

exp




z′∫

z

dz′′

µ�ω(z′′)



 Bω(T )|T=T (z′) dz
′ if µ < 0.

The flux of energy carried by photons, for some value of z, which for the sake
of definiteness we take equal to zero, is given by

F =

∞∫

0

Fω dω, (5.247)
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where

Fω = 2π

1∫

−1

µ Iω(0, µ) dµ=2π

1∫

0

µdµ






0∫

−∞
Bω exp



−
0∫

z

dz′

µ�ω(z′)



 dz

µ�ω(z)
−

∞∫

0

Bω exp



−
z∫

0

dz′

µ�ω(z′)



 dz

µ�ω(z)




 . (5.248)

Next, let us transform expression (5.248) via integration by parts with respect
to the variable z:

Fω =−2π

1∫

0

µdµ






0∫

−∞
exp



−
0∫

z

dz′

µ�ω(z′)



 dBω

dz
dz+

∞∫

0

exp



−
z∫

0

dz′

µ�ω(z′)



 dBω

dz
dz




.

For the derivative dBω(T )/dz we have

dBω(T )
dz

=
h̄c

πk
aT 2 dT

dz
R(x), (5.249)

where a is the radiation constant and R(x) is the Rosseland weight function:

a =
π2k4

15c3h̄3
, R(x) =

15
4π4

x4e−x

(1− e−x)2

(see (5.32), (5.35)). Integration with respect to µ yields the integral exponential
E3:

1∫

0

µ exp
(
−u
µ

)
dµ = E3(u), (5.250)

where

En(u) =

∞∫

1

exp(−tu)
tn

dt.

Now using (5.249) and (5.250), we obtain for Fω the expression

Fω = −2
ah̄c

k
R(x)

∞∫

−∞
T 2(z)

dT (z)
dz

E3





∣∣∣∣∣∣

z∫

0

dz′

�ω(z′)

∣∣∣∣∣∣



 dz. (5.251)
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Therefore, the total flux is

F =

∞∫

0

Fω dω = −2
ah̄c

k

∞∫

−∞
T 2(z)

dT (z)
dz




∞∫

0

R(x)E3





∣∣∣∣∣∣

z∫

0

dz′

�ω(z′)

∣∣∣∣∣∣



 dω



 dz.

Changing the variable ω to x = h̄ω/(kT ) and switching the order of integration
with respect to ω and z, we obtain

F = −2ac

∞∫

0

R(x)




∞∫

−∞
T 3(z)

dT (z)
dz

E3





∣∣∣∣∣∣

z∫

0

dz′

�ω(z′)

∣∣∣∣∣∣



 dz



 dx. (5.252)

Since the function E3(u) decays rapidly when u grows, the size of the es-
sential part of the integration domain with respect to z in (5.252) is of the order
several photon free-path lengths. From gas-dynamics calculations it is known that
the heat flux is a smooth function of coordinates. Hence, in the case when the
free path is small, in a domain of the order of several free-path lengths the flux
may be regarded as constant. Assuming a power-like dependence of the Rosseland
mean free path on temperature (� ∼ Tn) and calculating the flux in the diffu-
sion approximation, we obtain an approximate rule governing the dependence of
temperature on coordinates:

Tn+3(z)
dT (z)
dz

= const = Tn+3
0

dT

dz

∣∣∣∣
z=0

, (5.253)

where T0 = T (0).
Using (5.253), we obtain for the total flux the expression

F = − �̃ c
3

4aT 3
0

dT

dz

∣∣∣∣
z=0

, (5.254)

where

�̃ =

∞∫

0

�̃ω R(x) dx , (5.255)

�̃ω =
3
2

∞∫

−∞

[
T0

T (z)

]n
E3





∣∣∣∣∣∣

z∫

0

dz′

�ω(z′)

∣∣∣∣∣∣



 dz. (5.256)

Comparing (5.254) with the expression of F in the diffusion approximation
we see that the quantity �̃ plays a role similar to that played by the Rosseland
mean free path � in the equation for the radiative heat conductivity (see (5.35)),
and when the variation of T (z) is small over distances of the order of �ω, then
�̃ = �.
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Since E3

(∣∣∫ z

0
(1/�ω(z′))dz′

∣∣) is a rapidly varying function of the variable z
even when �ω(z) does not depend on z, to calculate the integral (5.256) it is
convenient to recast it as

�̃ω =

0∫

−∞

(
T0

T (z)

)n

�ω(z) d




E4




0∫

z

dz′

�ω(z′)








−

∞∫

0

(
T0

T (z)

)n

�ω(z) d




E4




z∫

0

dz′

�ω(z′)








 . (5.257)

To integrate in (5.257) it is convenient to use the trapezoid rule with respect
to the variable y = y(z) = E4

(∣∣∫ z

0
(1/�ω(z′))dz′

∣∣), i.e.,

z2∫

z1

�ω(z)
(

T0

T (z)

)n

d




E4





∣∣∣∣∣∣

z∫

0

dz′

�ω(z′)

∣∣∣∣∣∣








 =

1
2

[
�ω(z1)

(
T0

T (z1)

)n

+ �ω(z2)
(

T0

T (z2)

)n] [
y(z2)− y(z1)

]
.

Note that for this method the integration becomes exact when dT/dz = dρ/dz = 0.
To interpret the result obtained above, let us recall that we are dealing with

transport of photons, for which the magnitude of the free path is influenced in es-
sential manner by absorption in spectral lines. Since the intensity of lines depends
on the temperature and density of matter, large gradients of temperature and den-
sity lead to a redistribution of absorption over frequencies, which in fact translates
into an additional effective broadening of such groups of lines. If in the essential
domain of integration in the variable x = h̄ω/(kT ) for the integral (5.255) the lines
are already overlapped, one should expect that the mean effective free path �̃ will
differ only slightly from the free path calculated without this additional broad-
ening, i.e., from the Rosseland mean free path �. Therefore, one should expect
that the influence of the temperature and density gradients will be maximal in the
range of values of T and ρ where absorption in lines has an essential influence on
the free path, but the lines are practically not overlapped.



Chapter 6

The equation of state

The equation of state is a necessary complement to the thermodynamic laws,
which allows the latter to be applied to real substances. By “equation of state” one
usually means a set of two relations which define the pressure and internal energy
of a physically homogeneous system in thermodynamic equilibrium as functions
of two arbitrary parameters that specify the state of matter. An example of two
such relations is

P = P (T, ρ), E = E(T, ρ),

where T and ρ are the temperature and density of matter, P is the pressure and
E is the specific internal energy, i.e., the energy per unit of mass.

The equations of state cannot be derived solely from the thermodynamic
laws; they are determined experimentally or are calculated theoretically, based
on representations about the structure of matter provided by the methods of
statistical mechanics. In § 6.1 we have shown how, by using the Thomas-Fermi
model for matter with given temperature and density, one can in a relatively
easy manner obtain formulas for the pressure, internal energy and entropy. In the
exposition that follows these relations will be verified and sharpened by means of
refined models and will be compared with experiments.

Let us remark that, as it turned out, in the study of opacity of matter and
the calculation of Rosseland mean free path knowledge of the characteristics of
the average atom is not enough (see § 5.5), since the photon absorption process
(and especially the absorption in spectral lines) takes place not in the average ion,
but in some state of the ion with concrete occupation numbers. At the same time,
quantum-statistical models of the average atom, which deal with one ion with
average occupation numbers, allow one to obtain sufficiently accurate equations
of state in a wide range of temperatures and densities.
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6.1 Description of thermodynamics of matter based on

quantum-statistical models

6.1.1 Formulas for the pressure, internal energy and entropy
according to the Thomas-Fermi model

The electron pressure is readily found if we use the Thomas-Fermi statistics and
calculate the value of the pressure on the boundary r = r0 of the average atom
cell, where V (r) = 0, dV/dr = 0. If we “place” a rigid wall at the boundary of the
atom cell, then the change in the density of the flux of electron momenta per unit
of time during their reflection in the wall gives the electron pressure Pe. Let us
choose the z-axis drawn from the center of the atom cell to be perpendicular to the
wall. Then for electrons with momentum �p ranging in the element of phase-space
volume d�p = dpxdpydpz = p2 dp sinϑdϑ dϕ, the momentum-flux density changes
at the rate

N(�p )d�p · p cosϑ · 2p cosϑ,

where, according to formulas (1.2) and (1.6),

N(�p )d�p =
2

(2π)3
d�p

1 + exp
(
p2/2− V (r)

θ
+ η

)
∣∣∣∣
r=r0

=
2

(2π)3
p2 dp sinϑdϑdϕ

1 + exp
(
p2

2θ
+ η

) .

Integration with respect to the variables ϕ, ϑ and p yields

Pe =
2

(2π)3

∞∫

0

dp

π/2∫

0

dϑ

2π∫

0

dϕ
p2 sinϑ · 2p2 cos2 ϑ

1 + exp
(
p2

2θ
+ η

) =

1
3π2

∞∫

0

p4dp

1 + exp
(
p2

2θ
+ η

) =
(2θ)5/2

6π2
I3/2(−η).

We can arrive to the same expression if we calculate the pressure as the average
momentum transported by electrons per unit of time across a unit of surface:

Pe =
2

(2π)3

∞∫

0

dp

π∫

0

dϑ

2π∫

0

dϕ
p2 sinϑ · p2 cos2 ϑ

1 + exp
(
p2

2θ
+ η

) =
(2θ)5/2

6π2
I3/2(−η). (6.1)

The electron density on the boundary of the atom cell is given, according to
formula (1.7), by
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ρ(r0) = ρe =
(2θ)3/2

2π2
I1/2(−η). (6.2)

Therefore, using the asymptotics of the function Ik(x), we conclude that at high
temperatures, when η � 1 and the average kinetic energy of the continuum elec-
trons is much larger than the potential energy, we obtain

Pe = ρeθ, (6.3)

i.e., the well-known formula for the pressure of an ideal Boltzmann gas. For large
negative values of η = −µ/θ, i.e., for high densities and low temperatures, formulas
(6.1) and (6.2) yield

Pe =
4
√

2
15π2

µ5/2, ρe =
2
√

2
3π2

µ3/2, (6.4)

and so for a degenerate Fermi gas the pressure depends on the electron density
according to a power law:

Pe =
1
5
(3π2)2/3ρ5/3

e . (6.5)

To proceed further we need the following interpolation formula for the function
I3/2(x), which is analogous to formula (1.37) for I1/2(x):

I3/2(x) ≈ 3
10
I1/2(x)

[
125 + 60I1/2(x) + 18I2

1/2(x)
]1/3

,

Then from (6.1) and (6.2) we obtain a simple approximation for pressure, which
holds for a Boltzmann as well as for a degenerate electron gas [98]:

Pe = ρe

[
θ3 + 3.36ρeθ

3/2 +
9π4

125
ρ2
e

]1/3

, (6.6)

where ρe = Z0/v, Z0 is the number of free electrons per atom and v = 4
3πr

3
0 is the

volume of the atom cell.
To find the total pressure we must take into account the pressure of nuclei

(ion cores). At high temperatures nuclei are usually regarded as an ideal gas. In
this case the total pressure is given by the formula

P = 2.942 · 104

(
Pe +

θ

v

)
GPa (6.7)

(see Figure 6.1).
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Figure 6.1: Pressure surface in the Thomas-Fermi model for gold, and the
corresponding isotherms and isochores at temperatures T = 10i keV, i =
−3,−2,−1, 0, 1 and densities ρ = 10k g/cm3, k = −3,−2,−1, 0, 1, 2, 3

The expression for the internal energy of the electrons in one atom cell follows
from formula (1.3):

Ee =
2

(2π)3

∫ ∫ [
p2

2
− Z

r
− 1

2

(
V (r)− Z

r

)]
n(r, p) d�rd�p = Ek + Ep, (6.8)

Ek =
2

(2π)3

∫ ∫
p2

2
n(r, p) d�rd�p =

3
√

2
π2

vθ5/2

1∫

0

x2I3/2

(
φ(x)
x

)
dx, (6.9)
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Ep = −1
2

∫
ρ(r)
(
V (r) +

Z

r

)
d�r =

− 3√
2π2

vθ5/2

1∫

0

x2

[
φ(x)
x

+ η +
Z

θr0x

]
I1/2

(
φ(x)
x

)
dx. (6.10)

Let us denote the integrals appearing in (6.10) by

J1 =

1∫

0

xφ(x)I1/2

(
φ(x)
x

)
dx, J2 = η

1∫

0

x2I1/2

(
φ(x)
x

)
dx,

J3 = φ(0)

1∫

0

xI1/2

(
φ(x)
x

)
dx.

To calculate these integrals we use integration by parts, attempting either to reduce

them to the integral
1∫
0

x2I3/2 (φ(x)/x) dx that gives the kinetic energy (6.9), or to

write them in a simpler form, using equation (1.17) and the boundary conditions
(1.18). Since

d

dx

[
xI3/2

(
φ(x)
x

)]
= I3/2

(
φ(x)
x

)
+

3
2
xI1/2

(
φ(x)
x

)
xφ′ − φ
x2

,

we have

xφ(x)I1/2

(
φ(x)
x

)
= −2

3
x2 d

dx

[
xI3/2

(
φ(x)
x

)]
+

2
3
x2I3/2

(
φ(x)
x

)
+ x2I1/2

(
φ(x)
x

)
φ′(x)

and consequently the integral J1 can be recast in the form

J1 = −2
3
x2 · xI3/2

(
φ(x)
x

) ∣∣∣∣
1

0

+
4
3

1∫

0

x2I3/2

(
φ(x)
x

)
dx+

2
3

1∫

0

x2I3/2

(
φ(x)
x

)
dx+

1∫

0

x2I1/2

(
φ(x)
x

)
φ′(x) dx =

− 2
3
I3/2 (−η) + 2

1∫

0

x2I3/2

(
φ(x)
x

)
dx+

1
a

1∫

0

xφ′′(x)φ′(x) dx.
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The last integral above can be reduced again to J1. Indeed,

1∫

0

xφ′′(x)φ′(x) dx =

1∫

0

x

2
d[φ′(x)]2 =

x

2
[φ′(x)]2

∣∣∣∣
1

0

−1
2

1∫

0

φ′(x) dφ(x) =

1
2
η2 − 1

2
φ′(x)φ(x)

∣∣∣∣
1

0

+
1
2

1∫

0

φ(x)φ′′(x) dx =
1
2
φ(0)φ′(0) +

a

2
J1.

Finally, we obtain the following expression for J1 :

J1 = −4
3
I3/2(−η) +

1
a
φ(0)φ′(0) + 4

1∫

0

x2I3/2

(
φ(x)
x

)
dx. (6.11)

After integration by parts, the integrals J2 and J3 are readily calculated to be

J2 =
η

a

1∫

0

xφ′′(x) dx =
η

a



xφ′(x)
∣∣1
0
−

1∫

0

φ′(x) dx



 =
η

a
φ(0),

J3 =
φ(0)
a

1∫

0

φ′′(x) dx = −η
a
φ(0)− 1

a
φ(0)φ′(0).

Thus, the potential energy of the electrons, Ep, is given by

Ep =
2
√

2
π2

vθ5/2



I3/2(−η)− 3

1∫

0

x2I3/2

(
φ(x)
x

)
dx



 . (6.12)

Formulas (6.1) and (6.8)–(6.12) yield the virial theorem:

2Ek + Ep = 3Pev. (6.13)

The virial theorem holds not only in the framework of the Thomas-Fermi model,
but also in the more precise quantum-mechanical approach [17]. This theorem may
be used to obtain the pressure, but requires a high accuracy in calculating Ek and
Ep.

When one computes the specific internal energy we have to remember that
the total internal energy itself is not of interest — what counts is by how much
this energy is larger than the energy corresponding to matter at null temperature
and null pressure. Therefore, it makes sense to subtract from the value given by
formula (6.8) the internal energy of an isolated atom, E0 = −0.76874512 · Z7/3

[73], corresponding to T = 0, ρ = 0, and also take into account the kinetic energy
of nuclei 3

2 kT = 3
2 θ:
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E =
2.626 · 103

A

(
Ee − E0 +

3
2
θ

)
kJ/g (6.14)

(see Figure 6.2).
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Figure 6.2: Internal energy surface according to the Thomas-Fermi model for gold,
and the isotherms and isochores at temperatures T = 10i keV, i = −3,−2,−1, 0, 1
and densities ρ = 10k g/cm3, k = −3,−2,−1, 0, 1, 2, 3

The entropy of electrons is given by the expression (see (1.4)):

Se = − 2
(2π)3

∫ ∫
[n ln n+ (1− n) ln (1− n)] d�r d�p =

− 4
√

2θ3/2r30
π

1∫

0

∞∫

0

[n ln n+ (1− n) ln (1− n)] y1/2dy x2 dx,
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where

y = p2/(2θ), n ≡ n(r, p) = 1
/[

1 + exp
(
y − φ(x)

x

)]
.

The integral with respect to y can be calculated by integrating by parts twice
and observing that the terms obtained by setting y = 0 and y = ∞ are equal to
zero:

∞∫

0

[n ln n+ (1− n) ln (1− n)]y1/2dy =

− 2
3

∞∫

0

y3/2 ln
n

1− n
∂n

∂y
dy = −2

3

∞∫

0

y3/2

(
−y +

φ(x)
x

)
∂n

∂y
dy =

− 5
3

∞∫

0

y3/2

1 + exp
(
y − φ(x)

x

)dy +
φ(x)
x

∞∫

0

y1/2

1 + exp
(
y − φ(x)

x

)dy =

− 5
3
I3/2

(
φ(x)
x

)
+
φ(x)
x

I1/2

(
φ(x)
x

)
.

Therefore,

Se =
4
√

2θ3/2r30
π

1∫

0

[
5
3
I3/2

(
φ(x)
x

)
− φ(x)

x
I1/2

(
φ(x)
x

)]
x2dx,

and using (6.11) we have

Se =
4
√

2θ3/2r30
π



4
3
I3/2(−η)− 7

3

1∫

0

x2I3/2

(
φ(x)
x

)
dx



− Zφ′(0). (6.15)

If we now account for the contribution of nuclei to the entropy in the ideal-gas
approximation (considering that their statistical weight is equal to 1), we finally
obtain

S =
0.9648 · 102

A

[
Se +

3
2

ln
(
Mθv2/3

2π

)
+

5
2

]
kJ/(g·eV), (6.16)

where M = 1836 ·A is the ion mass (see Figure 6.3).
The graphs of pressure, internal energy and entropy for gold furnished by for-

mulas (6.7), (6.14) and (6.16), respectively, are shown in figures 6.1–6.3. Although
these graphs were obtained for gold (Z1 = 79, A1 = 197), for other elements (Z2,
A2) the graphs retain their shape, but all quantities corresponding to the contri-
bution of electrons are multiplied by scaling factors that depend on the element
in question:
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Figure 6.3: Entropy surface according to the Thomas-Fermi model for gold, and
isotherms and isochores at temperatures T = 10i keV, i = −3,−2,−1, 0, 1 and
densities ρ = 10k g/cm3, k = −3,−2,−1, 0, 1, 2, 3

ρ→ A2Z2

A1Z1
· ρ, T →

(
Z2

Z1

)4/3

· T,

P →
(
Z2

Z1

)10/3

· P, E →
(
Z2

Z1

)7/3

· E, S → Z2

Z1
· S (6.17)

(recall the self-similarity properties of the Thomas-Fermi potential discussed in
§ 1.1).
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6.1.2 Quantum, exchange and oscillation corrections to the
Thomas-Fermi model

To refine the Thomas-Fermi model one can resort to the expansion of the electron
density in the Hartree-Fock approximation in powers of the Planck constant h̄.
Such an expansion was obtained in [103] by recasting the Hartree-Fock equation
as a Poisson equation for the self-consistent Coulomb potential:

∆V (�r) = 4πρ(�r)− 4πZδ(�r), (6.18)

where Z is the charge of the nucleus. The difference between (6.18) and the anal-
ogous equation in the Thomas-Fermi model (see Subsection 1.1.2) is that here the
electron density ρ(�r) is expressed through the density matrix ρ̂(Ĥ). If for basis
functions we take plane waves, then

ρ(�r) =
∫
e−i�p�r/h̄ρ̂(Ĥ)ei�p�r/h̄ 2d�p

(2π)3
, (6.19)

where

ρ̂(Ĥ) = f

(
Ĥ − µ
θ

)
=

1

1 + exp

(
Ĥ − µ
θ

) , (6.20)

Ĥ =
1
2
�̂p 2 − V (�r)− Â(�r, �̂p),

Â(�r, �̂p) =
1
2

∫
e−i�p ′�r/h̄ 4πh̄2ρ̂(Ĥ ′)

|�p− �p ′|2 ei�p ′�r/h̄ d�p ′

(2π)3
. (6.21)

Here �̂p = −ih̄∇ is the momentum operator and Â(�r, �̂p) is the exchange-interaction
operator. Although in atomic units the Planck constant h̄ is equal to 1, it is
partially left in formulas to facilitate the computation of the expansion in powers
of h̄. When we expand the expression appearing in (6.19) in powers of h̄ we must
keep in mind that the expansion is valid only for functions that are analytic in
h̄. As a matter of fact, as one can see from (6.19), the analyticity conditions
are violated, and consequently the expansion leaves unaccounted for the so-called
oscillation corrections (see below).

To calculate the action of the operator ρ̂(Ĥ) on the function ei�p�r/h̄ it suffices
to replace in Ĥ the operator �̂p by �p − ih̄∇, and instead of e−i�p�r/h̄ ρ̂(Ĥ) ei�p�r/h̄ in
(6.19) one can write the action of the operator f(â+ b̂) (see (6.20)) on the unity,
where

â =
(�p− ih̄∇)2

2θ
, b̂ = −Φ(�r) = −V (�r) + µ

θ

(here we neglected the exchange interaction).
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For f(â+ b̂) one has the following expansion in commutators (see [105]):

f(â+ b̂) = f(a+ b̂)− 1
2
f ′′(a+ b̂)[̂b, â] +

1
6
f ′′′(a+ b̂)

{
[̂b, [̂b, â]]− [â, [̂b, â]

}
+

1
8
f IV(a+ b̂)([̂b, â])2 + . . . , (6.22)

which yields

e−i�p�r/h̄f

(
�̂p 2

2θ
− Φ

)
ei�p�r/h̄ = f(ε) +

ih̄

2θ
f ′′(ε)�p∇Φ +

h̄2

4θ
f ′′(ε) ∆Φ−

h̄2

6θ
f ′′′(ε)(∇Φ)2 +

h̄2

6θ2
f ′′′(ε)(�p∇)2Φ− h̄2

8θ2
f IV(ε)(�p∇Φ)2 + . . . , (6.23)

where we used the notation

ε =
p2

2θ
− V (�r ) + µ

θ
.

First let us consider the first term of order zero in h̄, discarding all the other
terms. This means that, in addition to the already unaccounted for exchange
interaction Â = Â(�r, �̂p) ∼ h̄2, we also neglect the fact that the operators �̂p and
Φ(�r ) do not commute. In this way we obtain the expression for the electron density
in the Thomas-Fermi model:

ρTF(�r ) =
2

(2π)3

∫
d�p

1 + exp
(
p2

2θ
− VTF(�r ) + µTF

θ

) =

√
2 θ3/2

π2
I1/2

(
VTF(�r ) + µTF

θ

)
,

where

∆VTF(�r ) = 4πρ TF(�r ) =
4
√

2 θ3/2

π
I1/2

(
VTF(�r ) + µTF

θ

)
.

To incorporate the corrections of second order in h̄ it is necessary, in addition
to (6.23), to account for the corrections connected with the exchange interaction
(6.21), for which is suffices to use the linear approximation in Â:
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δρex(�r ) =
∫ [

f

(
p2

2θ
− Φ− Â

θ

)
− f
(
p2

2θ
− Φ
)]

2d�p
(2π)3

≈

∂

∂Φ

∫
Â

θ
f

(
p2

2θ
− Φ
)

2 d�p
(2π)3

=

4πh̄2

2(2π)3θ
∂

∂Φ

∫∫ f

(
p2

2θ
− Φ
)
f

(
p ′2

2θ
− Φ
)
d�pd�p ′

|�p− �p ′|2 =

2θh̄2

π3

∂

∂Φ

Φ∫

−∞

[
I ′1/2(t)

]2
dt =

2θh̄2

π3

[
I ′1/2(Φ)

]2
(6.24)

(cf. the calculation of the exchange integral in Subsection 3.3.1).
Substituting the expression (6.23) in (6.19) and incorporating the correction

(6.24) we obtain the expression for the electron density in the Thomas-Fermi model
with corrections (TFC):

ρTFC(�r )=
√

2 θ3/2

π2

{
I1/2(Φ)+

h̄2
√

2
π
√
θ

(
I ′1/2(Φ)

)2
+

h̄2∆Φ
12 θ

I ′′1/2(Φ)− h̄2(∇Φ)2

24 θ
I ′′′1/2(Φ)

}
. (6.25)

Let us set Φ = Φ0 + h̄2Φ1, where

Φ0 = Φ0(�r ) =
VTF(�r ) + µTF

θ
,

Φ1 = Φ1(�r ) =
√

2
6π
√
θ

[
I ′1/2

(
VTF(�r ) + µTF

θ

)
+ ζ(�r )

]
,

and then substitute Φ in the equation ∆Φ = 4πρ/θ. If we retain only the terms of
order h̄2, then the correction ζ = ζ(�r ) is defined by the expression

∆ζ − 4
√

2θ
π

I ′1/2(Φ0) · ζ =
4
√

2θ
π

Y ′(Φ0), (6.26)

where

Y (x) = I1/2(x)I ′1/2(x) + 6

x∫

−∞

[
I ′1/2(t)

]2
dt. (6.27)
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Further, to calculate the integral Y (x) one can use approximations for the
Fermi-Dirac function [46] and formula (3.58) for the integral

x∫

−∞

[
I ′1/2(t)

]2
dt =

1
4

x∫

−∞

[
I−1/2(t)

]2
dt.

Assuming spherical symmetry and passing to the variable x = r/r0 (0 ≤
x ≤ 1), we obtain the equation of the Thomas-Fermi model with corrections (see
Subsection 2.1.5) for the function χ(x) = rζ(r)/r0:

χ′′ − 4
√

2θ
π

r20 I
′
1/2

(
φ(x)
x

)
χ =

4
√

2θ
π

r20 xY
′
(
φ(x)
x

)
, (6.28)

χ(0) = 0, χ(1) = χ′(1),
φ(x)
x

= Φ0(r).

The corrections for the thermodynamic functions of electrons are obtained in
much the same way as the thermodynamic functions of electrons in the Thomas-
Fermi model. The formulas for corrections have the following form [104, 98]:

for pressure

∆P =
θ2

3π3

[
χ(1)I1/2(φ(1)) + Y (φ(1))

]
; (6.29)

for energy

∆E =
2θ2

3π2
r20




1∫

0

xχ(x)I1/2

(
φ(x)
x

)
dx+ 2

1∫

0

x2Y

(
φ(x)
x

)
dx



+

Z
√

2θ
6π

χ′(0)−∆E0, (6.30)

where ∆E0 = −0.2690017Z5/3;
for entropy

∆S =
2θ
3π2

r20




1∫

0

xχ(x)I1/2

(
φ(x)
x

)
dx+ 4

1∫

0

x2Y

(
φ(x)
x

)
dx



+
√

2Z
6π
√
θ
χ′(0).

(6.31)

The corrections ∆P , ∆E and ∆S enjoy the self-similarity property, like the
pressure, energy and entropy themselves in the Thomas-Fermi model. In particu-
lar, if one knows their values for an element (Z1, A1), then for another element
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(Z2, A2), with the appropriate scaling of the temperature and density (see (6.17)),
we must carry out the transformation

∆P →
(
Z2

Z1

)8/3

·∆P, ∆E →
(
Z2

Z1

)5/3

·∆E, ∆S →
(
Z2

Z1

)1/3

·∆S. (6.32)
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Figure 6.4: Magnitude of the corrections to the Thomas-Fermi model for alu-
minum. The solid curves in the (T, ρ)-plane correspond to a fixed value of the
quantum and exchange corrections to pressure (see (6.29)): for the outer [resp.,
inner] curve the correction is about 5% [resp., 30%]

Detailed tables of thermodynamic quantities computed by means of the
Thomas-Fermi model and the Thomas-Fermi model with corrections can be found
in [98]. A representation about the magnitude of these corrections is provided by
Figure 6.4, which shows the curves corresponding to a fixed correction to pressure
for aluminum: ∆P/P TF=0.3 and ∆P/P TF=0.05. Analogous curves for other ele-
ments can be obtained by using the similarity properties (6.17) and (6.32). From
the magnitude of these corrections one could draw conclusions about the applica-
bility of the Thomas-Fermi model, provided that one would bring into the picture
the oscillation corrections [106].

Let us illustrate on a simple example how an oscillation correction to the elec-
tron density at temperature T = 0 can be calculated in the one-dimensional case.
We will proceed from the expression for the density of particles at temperature
zero:

ρ(x) = 2
∑

εn≤µ

|ψn(x)|2. (6.33)
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Here the factor 2 is introduced to account for the two directions of the spin,
ψn(x) is the solution of the stationary Schrödinger equation and µ is the chemical
potential (Fermi energy).

In the semiclassical approximation, the wave function ψn(x) in the classical
domain of motion an < x < bn has the form

ψn(x) =
cn√
pn(x)

sin
(
σn(x) +

π

4

)
, (6.34)

where

σn(x) =

x∫

an

pn(x)dx, pn(x) =
√

2[εn − U(x)],

εn is the energy of the particle and U(x) is the potential energy. The constant cn
is determined from the condition

∫ bn

an
ψ2

n(x)dx = 1, which yields c2n = 2/τ0
n, with

τ0
n = τn(bn) =

∫ bn

an
[1/pn(x)]dx. Substituting expression (6.34) in (6.33), we obtain

ρ(x) = 2
∑

εn≤µ

c2n
pn(x)

sin2[σn(x) +
π

4
] = ρTF(x) + ρosc(x), (6.35)

where

ρTF(x) =
∑

εn≤µ

2
τ0
n

1
pn(x)

, ρosc(x) =
∑

εn≤µ

2
τ0
n

1
pn(x)

sin 2σn(x).

The first term in (6.35), which corresponds to the Thomas-Fermi model,
yields the averaged density distribution. It can be calculated with the help of the
Bohr-Sommerfeld quantization rule (see Subsection 2.1.3).

The second term in (6.35), which describes shell effects, can be calculated
in closed form by using the Poisson summation formula and integration by parts
(see [106]):

ρosc(x) = − 1
τ0p(x)

cos 2σ(x) ctgπ
τ (x)
τ0

, (6.36)

where p(x), σ(x) and τ (x) are calculated in the same way as pn(x), σn(x) and
τn(x), but for εn = µ. Note that formula (6.36), like the analogous formula for the
three-dimensional case, has a singularity when ρosc →∞ for certain values of x. To
remove these singularities tedious additional calculations are needed. Oscillation
corrections have an irregular character and are specific for each element [106].
Exchange, quantum and oscillation corrections are accounted for in the equation
of state in [108].
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6.2 The ionization equilibrium method

6.2.1 The Gibbs distribution for the atom cell

In the case of an ideal equilibrium plasma (which is also in equilibrium with the
radiation), a model widely used to calculate the composition and thermodynamic
functions of the plasma is the ionization equilibrium method (the Saha-Boltzmann
equations, see, e.g., [119]). The equations of this model can be derived if one starts
from the Gibbs distribution and uses as a subsystem a spherical cell of volume
v = 4

3πr
3
0. In this approximation the probability of a state with energy E and

number of electrons N is given by

W = Cg exp
(
−E − µN

θ

)
, (6.37)

where g is the statistical weight of the state and µ is the chemical potential.
Since we are interested only in the distribution of ions for any possible states

of the free electrons, the distribution (6.37) must be averaged over all possible
states of the free electrons. As an approximation we may consider that all the
quantities figuring in the Gibbs distribution are taken for some average density of
the free electrons. In particular, the energy E may be assumed to be equal to the
sum of the ion energy Ejs (j is the degree of ionization and s is the number of
the ion state with the given degree of ionization j), the average energy of the free
electrons, Ee, and the average energy of interaction of the ion under consideration
with the free electrons, Eje, i.e.,

E = Ejs + Eje + Ee. (6.38)

We write the number of electrons in the cell as

N = Z − j + Z0, (6.39)

where Z is the charge of the nucleus and Z0 is the average charge of the ion (the
average number of free electrons per one ion).

Accordingly, the concentration of ions with charge j in state s, xjs, that is,
the fraction of ion with charge j in the state s, is given by

xjs = C gjs exp
(
−Ejs + Eje + µj

θ

)
, (6.40)

where gjs is the statistical weight of the corresponding state of the ion and C is a
normalization constant.

Using (6.40), one obtains relations between concentrations of ions with dif-
ferent degrees of ionization:
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xj+1,p

xjs
=
gj+1,p

gjs
exp
(
−µ
θ

)
exp
(
−Ej+1,e − Ej,e

θ

)
exp
(
−Ej+1,p − Ej,s

θ

)
.

(6.41)

6.2.2 The Saha approximation

Next, let us find how the chemical potential µ and the density of the free electrons
ρe are related. We shall assume that the potential V (r) created by the free electrons
and the ion under consideration is central.

According to the Fermi-Dirac statistics

ρe = ρe(r) =
2

(2π)3

∫
4πp2 dp

1 + exp
[
1
θ

(
p2

2
− V (r)− µ

)] .

For a nondegenerate electron gas exp (−µ/θ)� 1, and so

ρe(r) ≈ 8π
(2π)3

exp(µ/θ)
∫
p2 exp

[
−1
θ

(
p2

2
− V (r)

)]
dp. (6.42)

At sufficiently high temperatures the potential energy of the electrons can
be neglected. In this approximation the electron density ρe is a constant, and we
obtain

exp(−µ/θ) =
2
ρe

(
θ

2π

)3/2

.

Since ρe = 3Z0/(4πr30), we have

exp(−µ/θ) =
2
3

√
2
π

r30θ
3/2

Z0
(6.43)

(compare to formula (1.26)).
Using (6.41), (6.43) and neglecting the interaction between the free electrons

and the ion (for small densities of the free electrons Eje ≈ 0), we obtain the system
of Saha-Boltzmann equations

Z0
xj+1,p

xjs
=

2
3

√
2
π
r30θ

3/2 gj+1,p

gjs
exp
(
−Ej+1,p − Ejs

θ

)
. (6.44)

These equations must be supplemented by the normalization and charge neutrality
conditions

∑

js

xjs = 1,
∑

js

jxjs = Z0. (6.45)
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The quantities Ej+1,p and Ejs that appear in (6.44) are determined from ex-
perimental data, and are also computed in the Hartree-Fock (Hartree-Fock-Slater)
approximation, or by means of some semi-empirical models (see, e.g., [76]). As its
derivation shows, the ionization equilibrium model is applicable for sufficiently low
densities of matter. Let us mention two circumstances that restrict the domain of
applicability of the model. First, it may be the case that no data on energy levels
of highly ionized ions are available in the literature. Second, when the density
increases, the energy levels shift and may not agree with the experimental data
obtained for free ions. Let us add here that, in the case of very low densities the
plasma is, as a rule, in another equilibrium state — coronal equilibrium — and
consequently it cannot be described by the Saha equations (see Subsection 6.2.4).

It is convenient to rewrite the system of equations (6.44)–(6.45) in terms of
the ion concentrations

xj =
∑

s

xjs. (6.46)

This is done by summing with respect to s and p in (6.44), (6.45). This yields





Z0
xj+1

xj
= ϕj , j = 0, 1, . . . , jmax,

∑

j

xj = 1,
∑
j

jxj = Z0,

(6.47)

where

xjs =
xj

Bj
gjs exp

(
−Ejs − Ej0

θ

)
, (6.48)

ϕj =
2
3

√
2
π
r30θ

3/2Bj+1

Bj
exp
(
−Ij
θ

)
, (6.49)

Bj =
∑

s

gjs exp
(
−Ejs − Ej0

θ

)
, (6.50)

Ij = Ej+1,0 − Ej0 is the ionization potential of the ion with charge j and Ej0 is
the energy of the ground state of the ion j (the energies Ejs are measured starting
from the ground state of the atom: j = 0, s = 0).

The thermodynamic functions of matter in the ionization equilibrium model
are computed according to the formulas for the ideal Boltzmann gas with the
ionization loss accounted for:

P = (Z0 + 1)
θ

v
, (6.51)

E =
3
2
(Z0 + 1)θ +

∑

js

xjs(Ejs − E00). (6.52)
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6.2.3 An iteration scheme for solving the system of equations of
ionization equilibrium

To solve the system (6.47) let us derive an equation for Z0, eliminating the quan-
tities xj by taking the product of the first j equations of the system:

x1

x0
· x2

x1
· · · xj

xj−1
=

j−1∏

k=0

(
ϕk

Z0

)
= aj , (6.53)

j = 1, 2, . . . , j max; a0 = 1.

Since xj = x0aj (this being a consequence of (6.53)), the normalization condi-
tion

∑
j xj = 1 yields x0 = 1/

∑
j aj . Substituting this expression in the last of

equations (6.47), we obtain the sought-for equation for the determination of Z0:

Z0 =

∑
j

jaj

∑
j

aj
. (6.54)

To solve (6.54) we use Newton’s iteration method

(s+1)

Z0 =
(s)

Z0 − F
∂F
∂Z0

∣∣∣∣∣
Z0=

(s)
Z0

,

where

F = F (Z0) = Z0 −

∑
j

jaj

∑
j

aj
.

Observing that ∂aj/∂Z0 = −jaj/Z0, we arrive at the following iteration scheme:

(s+1)

Z0 = Z0
〈j2〉 − 〈j〉2 + 〈j〉
〈j2〉 − 〈j〉2 + Z0

∣∣∣∣
Z0=

(s)
Z 0

, (6.55)

where

〈jk〉 =

∑
j

jkaj

∑
j

aj
.

To obtain an initial approximation we note that the quantities ϕj decrease
with the growth of j, since the ionization energies Ij increase with j. Therefore,
the values aj either decrease when j grows, if ϕ0/Z0 < 1, or have a maximum for
some value j = j0, for which
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ϕj0−1/Z0 ≥ 1, ϕj0/Z0 ≤ 1. (6.56)

From equation (6.54) it follows that Z0 ≈ j0, because aj has a maximum for
j ≈ j0. We conclude that as a criterion for choosing j0 we can use, instead of
(6.56), the condition

ϕj0−1/j0 ≥ 1 ≥ ϕj0/j0, (6.57)

which in turn shows that j0 is the smallest value of j for which ϕj/j ≤ 1. Since
xj = x0aj , to find an approximate value of Z0 in the system (6.47) one can neglect
all xj , except for the two largest ones. If aj0+1 > aj0−1, i.e., ϕj0−1ϕj0/j

2
0 > 1, then

for the largest values of xj we must take xj0 and xj0+1. This yields the system





Z0
xj0+1

xj0

= ϕj0 ,

xj0 + xj0+1 = 1,

j0xj0 + (j0 + 1)xj0+1 = Z0,

whence

Z0 =
(j0 − ϕj0) +

√
(j0 + ϕj0)2 + 4ϕj0

2
. (6.58)

In the case aj0−1 ≥ aj0+1, i.e., ϕj0−1ϕj0/j
2
0 ≤ 1, when we choose an approx-

imate value for Z0 we must replace j0 by j0 − 1 in formula (6.58).
When one computes the statistical sums Bj one has to keep in mind that for

low densities — in particular, for a free atom — such sums diverge. In practical
computations one truncates these statistical sums, discarding the highly-excited
states, or diminishing the role they play. As the analysis carried out in [100] has
shown, the most effective approach is to take into account only those bound states
for which the domain of classical motion of the electron lies inside the atom cell
[149].

To estimate the radius of the electron orbit in a highly-excited state with
quantum numbers n and � for an ion with ionization degree j we may consider, as
an approximation, that the electron moves in the field (j + 1)/r. The domain of
classical motion of such an electron is defined by the inequalities

r
(1)
n� < r < r

(2)
n� ,

where

r
(1,2)
n� =

n2

j + 1



1∓
√

1−
(
�+ 1/2
n

)2


 .
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To compute the statistical sums Bj we must consider only the states for which
r
(2)
n� < r0. When the density is increased further, it is necessary to account for

the fact that the ionization potential decreases by the amount ∆Ij � 3j/(2r0),
and also pay attention to the possible vanishing of weakly-coupled bound levels
(their transition into the continuum). Note that under such circumstances the
Saha-Boltzmann approximation ceases to work. When the density grows, the so-
called cell models become increasingly more accurate, among them the quantum-
statistical Hartree-Fock-Slater self-consistent field model discussed in Chapter IV.

6.2.4 Coronal equilibrium

For low densities, in a totally transparent plasma the equilibrium population of
levels prescribed by the Gibbs distribution (6.40) may fail to be realized in the
case of a real plasma. The point is that, due to the high rate of radiative processes
the collisional electron excitations are rapidly eliminated by radiative decay to
the ground state. For such a plasma one can assume that all ions with various
ionization degrees are the most of the time in the ground state.*)

From (5.22) we have

dnj

dt
= αrec

j+1,jnj+1 − (αrec
j,j−1 + αion

j,j+1)nj + αion
j−1,jnj−1, (6.59)

where nj is the concentration of ions with ionization degree j and αion
j,j′ , αrec

j,j′ are
the total ionization and recombination rates of these ions. For small densities, in
an optically thin plasma one can include into considerations the impact ionization
(ii), photorecombination (phr) and dielectronic recombination (dr) processes only:

αion
j,j+1 =

∑

s

∑

s′
αii

js→j+1,s′ , (6.60)

αrec
j,j−1 =

∑

s

∑

s′
α phr

js→j−1,s′ +
∑

s

∑

s′
αdr

js→j−1,s′ . (6.61)

Here the sum is taken over those states s of an ion with ionization degree j that
are close to the ground state s = 0 (Ejs−Ej0 � θ, where Ejs is the energy of the
ion state js). The excitations take place for states js∗ such that Ejs∗ − Ej0 � θ,
i.e., there exists a gap between ground and excited states, which is essential for
the coronal approximation.

Putting dnj/dt = 0 and grouping the direct and inverse processes for each of
the ions, we obtain from (6.59) the relations

nj+1

nj
=
αion

j,j+1

αrec
j+1,j

, j = 0, 1, . . . , Z − 1.

*)The Gibbs distribution and the Saha equation are valid for a low-density transparent plasma
if this plasma is placed in a thermostat with the radiation temperature equal to the electron
temperature.
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Finally, in the coronal approximation the system of equations for the relative
concentrations xj = nj/

∑
j nj reads

xj+1

xj
=
αion

j,j+1

αrec
j+1,j

, (6.62)

∑

j

jxj = Z0, (6.63)

∑

j

xj = 1. (6.64)

11 12 13 14 15 16 17

experiment

11 12 13 14 15 16 17

CE, T = 28 eV

11 12 13 14 15 16

LTE, T = 12 eV

λ, nm

Figure 6.5: Experimental emission spectrum of a xenon plasma (the intensity is
measured in arbitrary units; see [169]) and calculated values of its emissivities for
density ρ = 10−6 g/cm3, in different approximations: LTE - Saha, CE - coronal
equilibrium. The calculations were carried out with an additional broadening of
0.05 eV.
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Figure 6.5 compares the spectra of a xenon plasma with density ρ = 10−6

g/cm3, obtained in different approximations. In the coronal model the plasma
temperature T = 28 eV must be more than two times larger than the equilibrium
temperature of the plasma, T = 12 eV, in order for the same degree of ionization
Z0 = 9.6 to be attained (see Table 6.1). The experimental data shown in the figure
have an integral character; nevertheless, it is obvious that the result given by the
coronal equilibrium (CE) model are considerably closer to the experimental data
than those given by the Saha approximation (LTE).

The collisional radiative equilibrium (CRE) model considered in Subsection
5.7.2 describes the CE, LTE and intermediate cases, depending on the amount of
reabsorbed radiation.

Table 6.1: Ionization composition of a xenon plasma for density ρ = 10−6 g/cm3

and two temperatures, T = 12 eV and T = 28 eV, according to the Saha model
(LTE) and the coronal equilibrium approximation (CE)

T = 12 eV T = 28 eV

j CE LTE j CE LTE

3 0.0013 6 0.0004
4 0.0422 7 0.0126
5 0.2641 8 0.0596
6 0.2568 9 0.3675
7 0.3909 0.0001 10 0.4337
8 0.0444 0.0026 11 0.1181
9 0.0002 0.4480 12 0.0078
10 0.4892 13 0.0001
11 0.0365 14 0.0014
12 0.0002 15 0.0464
13 16 0.3412

17 0.4809
18 0.1043
19 0.0249
20 0.0009

Z0 = 6.1 Z0 = 9.6 Z0 = 9.6 Z0 = 16.7

6.3 Thermodynamic properties of matter in the

Hartree-Fock-Slater model

Utilization of the ionization equilibrium models makes it possible to obtain reliable
results for low densities and relatively low temperatures. In the case of very high
temperatures and densities good results are furnished by the Thomas-Fermi model.
A more precise delineation of the domain of applicability of theoretical equations
of state is a rather complex task, which requires the elaboration of more refined
approaches. Thus, for example, the Thomas-Fermi model with corrections (TFC)
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was constructed in an attempt to clarify what is the domain of applicability of
the Thomas-Fermi model (see [104], and also Subsection 6.1.2). Later it turned
out that incorporating quantum and exchange corrections in the TFC model is
not sufficient — oscillation corrections must also be accounted for. This has led to
the semiclassical shell model (SSM) [106, 108]. As it follows from the derivation
of the equations of the TFC and SSM models, the domain of applicability of these
models is determined by how small the incorporated corrections are.

More successful are the approaches based on the self-consistent field method,
in which it is not required that the corrections be small. The first computations in
the framework of the modified Hartree-Fock-Slater model [152], whose foundations
for matter with given temperature and density were first established in [151],
have demonstrated that this model can be applied to calculate photon absorption
coefficients and Rosseland mean free paths , as well as to describe the equations
of state in a wide range of temperatures and densities. Nevertheless, to make the
Hartree-Fock-Slater model applicable to the computation of equations of state
has required a fundamental revision of certain details of this model, including, in
particular, the following:

1) In the computation of the contribution of ions to the equation of state of a
dense nonideal plasma, the strong repulsive force between ions at small distances
due to the fact that the ions have finite dimensions (rather than being point
particles) was accounted for in [158].

2) When one approximates the exchange potential for large values of r (in
the case of small densities) one has, as shown in [49], to use the asymptotics of
the self-consistent potential, V (r) ∼ 1/r, which enables one to better describe the
energy spectrum of excited electron states (see Subsection 4.3.3).

3) The influence of the effective boundary of the continuum, i.e., of the value
ε0 of the electron energy above which the semi-classical approximation applies
in the HFS model, turned out to be more substantial in the calculation of the
equation of state than in that of the photon absorption coefficients. As shown in
§ 3.3, to satisfy the thermodynamic consistency condition the value of ε0 must
be chosen in accordance to the conditions of conservation of the total number of
possible electron states [157].

Among the factors enumerated above, which affect the results of computa-
tions, the choice of the effective boundary of the continuum ε0 proved to be the
most essential. To make the right choice of ε0, in the computation of tables of
equations of state it is sufficient to fix the number of the root of the equation for
the determination of ε0 for all values of the temperature T and density ρ. Viola-
tion of this condition may lead to nonphysical results for some values of T and
ρ. The influence of the nonuniqueness in the choice of ε0, i.e., of the number of
the fixed root, on the results of computations of the equation of state and shock
adiabats is analyzed in [158]. It turned out that computational results are practi-
cally independent of ε0 whenever the value of this parameter is sufficiently large,
for example, when it lies in the region of the allowed energy bands under normal
conditions, i.e., for T = 0, ρ = ρ0, where ρ0 is the normal density of matter.
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6.3.1 Electron thermodynamic functions

Expressions for the electron thermodynamic functions—pressure Pe, energy Ee and
entropy Se—can be derived from the thermodynamic potential Ω = E− θS−µN :

Pe = −Ω
v
, (6.65)

Ee = Ω− θ ∂Ω
∂θ
− µ∂Ω

∂µ
, (6.66)

Se = −∂Ω
∂θ

(6.67)

(see [17]). Here v = (4/3)πr30 is the volume of the spherical atom cell.
Formula (6.65) is sufficiently simple. However, computations relying on this

formula suffer from a loss of accuracy because the expression for Ω contains large
quantities with different signs. For that reason, the simplest way to derive a for-
mula for the pressure is not from relation (6.65), but from the equivalent relation
obtained by differentiating the free energy F = E − θS with respect to volume:

P = −
(
∂F

∂v

)

T,N

.

The pressure will obviously be expressed through the contributions of the bound
and continuum electrons, as well as through the derivative of the supplementary
term (3.69) with respect to the volume v, which in view of the thermodynamic
consistency condition (3.70) is equal to zero.

First of all, let us remark that for the contribution of the continuum electrons
one obtains an expression that is similar to the expression (6.1) for the pressure
in the Thomas-Fermi model, where the integration is carried out starting with the
boundary of the continuum ε0.

To calculate the contribution of the bound electrons we shall use the expres-
sions for the energy and entropy in the HFS model (3.51), keeping in mind that the
splitting with respect to the spin variable can be neglected at high temperatures.
The states with different projections of the spin will have identical energy εν and
occupation numbers nν . To account for the spin we introduce the factor 2. We
obtain

F = E − θS = 2
∑

ν

nν

∫
ψ∗

ν(�r )
[
−1

2
∆− Va(r)

]
ψν(�r ) d�r+

1
2

∫∫
ρ(�r )ρ(�r ′)
|�r − �r ′| d�r d�r

′−
∫
ϕ(ρ) d�r + 2θ

∑

ν

[
nν lnnν + (1−nν) ln(1−nν)

]
, (6.68)

where
ρ(�r ) = 2

∑

ν

nν |ψν(�r )|2 ,
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nν =
1

1 + exp
(
εν − µ
θ

) .

Let us change variables to make the dependence on the radius r0 of the atom
cell explicit:

�r = r0 �x, ψ̄(�x ) = r
3/2
0 ψ(r0�x ),

V̄ (x) = r0V (r0x), ρ̄(x) = r30ρ(r0x), ϕ̄(ρ̄) = r40ϕ(r−3
0 ρ̄).

In addition, we need to separate the components of the self-consistent potential.
These are the Coulomb component V̄c(x) = r0Vc(r0x), where

Vc(r) = Va(r)−
∫

ρ(�r ′) d�r ′

|�r − �r ′| , (6.69)

the contribution of the nucleus Va(r) = Z/r
(
V̄a(x) = r0Va(r0x)

)
, and the effective

exchange potential
∂ϕ̄

∂ρ̄
=

1
r0

∂ϕ

∂ρ
.

Using the Schrödinger equation (3.52) for ψν(�r ), we obtain a similar equation for
ψ̄ν(�x ):

−1
2
∆ψ̄ν = r20

(
εν +

V̄

r0

)
ψ̄ν . (6.70)

The free energy (6.68) is given by

F = 2
∑

ν

nν

∫ (
εν +

V̄

r0

) ∣∣ψ̄ν(�x)
∣∣2 d�x− 1

2r0

∫
(V̄c + V̄a)ρ̄ d�x−

1
r0

∫
ϕ̄ d�x+ 2θ

∑

ν

[
nν lnnν + (1− nν) ln(1− nν)

]
. (6.71)

Since
∂F

∂v
=

1
4πr20

∂F

∂r0
, we have 3Pv = −r0 ∂F

∂r0
. Differentiating expression

(6.71) with respect to r0, we obtain

3Pv = −r0 ∂F
∂r0

= −2r0
∑

ν

∂nν

∂r0

∫ (
εν +

V̄

r0

) ∣∣ψ̄ν(�x)
∣∣2 d�x−

2r0
∑

ν

nν

∫
∂

∂r0

(
εν +

V̄

r0

) ∣∣ψ̄ν(�x)
∣∣2 d�x−2r0

∑

ν

nν

∫ (
εν +

V̄

r0

)
∂

∂r0

∣∣ψ̄ν(�x)
∣∣2 d�x−

1
2r0

∫
(V̄c + V̄a)ρ̄ d�x+

1
2

∫
∂

∂r0
(V̄c + V̄a)ρ̄ d�x+

1
2

∫
(V̄c + V̄a)

∂ρ̄

∂r0
d�x−

1
r0

∫
ϕ̄ d�x+

∫
∂ϕ̄

∂r0
d�x−2r0

∑

ν

(µ−εν)
∂nν

∂r0
. (6.72)
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We will use the obvious relations

∑

ν

∂nν

∂r0
= 0, (6.73)

and

2
∑

ν

∂nν

∂r0

∫
V̄

r0

∣∣ψ̄ν(�x )
∣∣2 d�x+

2
∑

ν

nν

∫
V̄

r0

∂

∂r0

∣∣ψ̄ν(�x )
∣∣2 d�x =

∫
V̄

r0

∂ρ̄

∂r0
d�x. (6.74)

Next, let us differentiate equation (6.70) with respect to r0, multiply the result by
ψ̄∗

ν(x) and subtract from it the complex-conjugate equation (6.70), multiplied by
∂ψ̄ν(�x )/∂r0. Integrating the resulting relation with respect to d�x and using the
Green formula in the right-hand side, we obtain

1
2

∫

|�x |=1

[
∂ψ̄ν

∂r0

∂ψ̄∗
ν

∂x
− ψ̄∗

ν

∂

∂r0

∂ψ̄ν

∂x

]
ds =

2r0
∫ (

εν +
V̄

r0

) ∣∣ψ̄ν(�x )
∣∣2 d�x+ r20

∫
∂

∂r0

(
εν +

V̄

r0

) ∣∣ψ̄ν(�x )
∣∣2 d�x. (6.75)

The left-hand side of this expression is equal to zero if we use boundary
conditions of the form (4.14), because the expression in the square brackets changes
sign on the upper and lower hemispheres. From the Poisson equation for V̄c(x) it
follows that 4πxρ̄ = (xV̄c − xV̄a)′′. Using this relation and integrating by parts
twice we have

∫
∂V̄c

∂r0
ρ̄ d�x = 4π

∫
∂V̄c

∂r0
ρ̄x2 dx =

∫
∂ρ̄

∂r0
(V̄c − V̄a) d�x . (6.76)

Now combining relations (6.76), (6.73)–(6.74) and the fact that the right-
hand side of equation (6.75) vanishes, we obtain

3Pv = −
∫
V̄
∂ρ̄

∂r0
d�x+2

∑

ν

nν

∫ (
εν +

V̄

r0

) ∣∣ψ̄ν(�x )
∣∣2 d�x− 1

2r0

∫
(V̄c + V̄a)ρ̄ d�x+

1
2

∫
∂ρ̄

∂r0
(V̄c − V̄a) d�x+

1
2

∫
(V̄c + V̄a)

∂ρ̄

∂r0
d�x− 1

r0

∫
ϕ̄ d�x+

∫
∂ϕ̄

∂r0
d�x. (6.77)

Since
∂ϕ̄

∂r0
=

4
r0

∫
ϕ̄ d�x− 3

r0

∫
ρ̄
∂ϕ̄

∂ρ̄
d�x+

∫
∂ϕ̄

∂ρ̄

∂ρ̄

∂r0
d�x (6.78)
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and V̄ = V̄c +
∂ϕ̄

∂ρ̄
, the terms involving the derivative

∂ρ̄

∂r0
in (6.77) cancel each

other. Returning to the variable r, using the following equality for the exchange
term:

12π

r0∫

0

(
ϕ−ρ ∂ϕ

∂ρ̄

)
r2 dr = 4πr30

(
ϕ−ρ ∂ϕ

∂ρ

)∣∣∣∣
r=r0

+ 4π

r0∫

0

r3
d

dr

(
∂ϕ

∂ρ

)
ρ dr, (6.79)

as well as the obvious relation V ′ = V ′
c +

d

dr

∂ϕ

∂ρ
, we obtain

3Pv = 2
∑

ν

nν

∫
(2εν + 2V ) |ψν(�r )|2 d�r−

1
2

∫
(Vc + Va)ρ d�r +

∫
r(V ′ − V ′

c )ρ d�r + 4πr30

(
ϕ− ρ ∂ϕ

∂ρ

)∣∣∣∣
r=r0

. (6.80)

Now let us transform (6.80) so that only the terms with r = r0 remain. First
of all, note that

2π
∫

(Vc + Va + 2rV ′
c ) ρ r2 dr =

1
2

∫
(rVc + rVa + 2r2V ′

c )(rVc)′′ dr =

1
2

r0∫

0

d

dr

[
(rVc)′

(
r(rVc)′ − rVc + rVa

)]
= 0. (6.81)

The radial part of the wave function for ε = εν satisfies the equation

−1
2
R′′

ε� +
(
�(�+ 1)

2r2
− V (r)

)
Rε� = εRε�, (6.82)

Let us differentiate this equation with respect to r, multiply the result by
rRε� and subtract from it equation (6.82) twice, first multiplied by rR′

ε�, and then
multiplied by 2R. This yields

(2ε+ 2V + rV ′)R2
ε� = −1

2
(
rRε�R

′′′
ε� − rR′

ε�R
′′
ε� + 2Rε�R

′′
ε�

)
=

− 1
2
d

dr

[
Rε�R

′
ε� + rRε�R

′′
ε� − r(R′

ε�)
2
]
. (6.83)

Using (6.83), instead of (6.80) we obtain

P =

{
ϕ− ρ ∂ϕ

∂ρ
− 1

4πr30

∑

ν

nν

[
Rε�R

′
ε� + rRε�R

′′
ε� − r(R′

ε�)
2
]}∣∣∣∣∣

r=r0

, (6.84)
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where ε = εν .
In [224, 95] several other formulas for the electron pressure were obtained,

which differ between them and also from (6.84). However, all these formulas are
equivalent when periodic boundary conditions of the type (4.14) are satisfied.

Recalling that Vex = ρ
∂ϕ

∂ρ
, the final formulas for the electron components of the

pressure, energy and entropy can be recast in the following forms:

Pe =
2
√

2
3π2

θ5/2

∞∫

y0(r0)

y3/2dy

1 + exp
(
y − V (r0) + µ

θ

) +

ρ(r0)∫

0

V ex(ρ′)dρ′ − ρ(r0)V ex[ρ(r0)]−

3
4πr30k

3
0

∑

n�m�′

k0∫

0

k2dkA2
n�m�′(k)nε

[
Rε�′R

′
ε�′ + rRε�′R

′′
ε�′ − r(R′

ε�′)
2
]∣∣∣∣

r=r0

. (6.85)

Here

y0 = y0(r) = max
{

0;
V (r) + ε0

θ

}
, nε =

[
1 + exp

(
ε− µ
θ

)]−1

, ε = εn�m(k),

and the sum with respect to n, �,m, �′ and the integration with respect to k are
carried out for states with energy ε < ε0. In the next two formulas for the internal
energy and the entropy the summation and integration are carried out in the same
manner:

Ee =
6
k3
0

∑

n�m

k0∫

0

k2dk nε

r0∫

0

[ε+ V (r)]
∑

�′
A2

n�m�′(k)R
2
ε�′(r) dr+

4
√

2
π

θ5/2

r0∫

0

r2 dr

∞∫

y0

y3/2dy

1 + exp
(
y − V (r) + µ

θ

)−

2π

r0∫

0

[
Z

r
+ V (r)− Vex(r)

]
ρ(r)r2dr−

4π

r0∫

0




ρ(r)∫

0

Vex(ρ′) dρ′ − θ ∂

∂θ

ρ(r)∫

0

Vex(ρ′) dρ′



 r2dr − E0, (6.86)
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where E0 is the energy of the free atom (so that for T = 0, ρ = 0 we have Ee = 0);

Se =
6
k3
0

∑

n�m

k0∫

0

[nε lnnε + (1− nε) ln(1− nε)] k2 dk − Z0µ
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−

4π
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V (r)ρ(r)r2 dr + 4π
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20
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) +

8
√

2
3π

θ3/2 ln [nε0(1− nε0)]

r0∫

0

y
3/2
0 (r)r2 dr. (6.87)

6.3.2 Accounting for the thermal motion of ions in the charged
hard-sphere approximation

In a strongly-interacting nonideal plasma one cannot separate the thermodynamic
functions into electron and ion components [65]. However, at high temperatures,
where the main contribution to the equation of state is made by electrons, the
contribution of ions can be regarded as a supplementary term. At the foundation
of such a separation lies the assumption about the average atom, whose charac-
teristics — in particular, the intra-atomic potential — are defined by averaging
the quantity one is interested in over all possible states of the ion in question as
well as over the position of the other ions. As a result of this approximation, the
electron structure of the average atom is calculated in the charge-neutral atom cell
(see Chapter IV). As it turns out, in this manner the main part of the electron-ion
interaction is effectively accounted for (for a more accurate discussion see [90]).

The influence of the motion and interaction of ions can be accounted for by
using the characteristics of the average atom and applying perturbation theory
in the adiabatic approximation [186, 187]. To account for the interaction between
ions it is necessary to go beyond the framework of the atom-cell approximation.
One of the ways to do this is to regard the plasma as an idealized gas of interacting
particles. In particular, as such an idealized model one can consider a gas of pos-
itively charged hard spheres (CHS) that move on the background of a uniformly
distributed negative charge of electrons [167].

The parameters of the CHS model, in particular, the dimensions and charges
of ions, depend on the results of computations inside atom cells. Therefore, in the
general case, to obtain the equations of a thermodynamically consistent model it is
necessary to impose the minimum condition for the total thermodynamic potential
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of the system of ions and electrons, which complicates the problem considerably.
In the domain where the main contribution to the thermodynamic potential is
due to the electrons, the minimum condition for the thermodynamic potential is
almost identical to the minimum condition for the thermodynamic potential of
the electrons.

To obtain the total thermodynamic functions let us represent them as a sum
of contributions due to electrons (indicated by the subscript “e”) and to ions
(indicated by the subscript “i”). Then, if the electron and ion components are
expressed in atomic units, the total pressure (measured in GPa) and the total
energy (measured in kJ/g) are given by:

P = 2.942 · 104(Pe + Pi), (6.88)

and respectively

E =
2.626 · 103

A
(Ee + Ei). (6.89)

The simplest approximation that accounts for the motion of ions is the ideal-
gas approximation (see formulas (6.4), (6.11) and (6.13)). The ideal-gas approxi-
mations can be used for sufficiently high temperatures and gas densities. For dense
and condensed media, however, this model is rather crude. Approximations that
account for the interaction between ions are required. Thus, for example, in the
one-component plasma (OCP) model it is assumed that ions with identical charge
move in a homogeneous medium that carries a charge of opposite sign [81, 116].
The ion charge Z0, or the average number of free electrons in the atom cell, can
be approximated by the formula Z0 = (4π/3)r30ρ(r0), where ρ(r0) is the electron
density on the boundary of the cell.

For a one-component plasma methods of molecular dynamics have been used
to calculate the distribution function of ions and their interaction energy and,
based on these results, the corresponding interpolation formulas were derived. In
the OCP approximation [81, 116]

Pi =
[
1 +

∆Ei

3θ

]
θ

v
, Ei =

3
2
θ + ∆Ei, (6.90)

where ∆Ei is the correction to the internal energy in the OCP model (see [81])
and v is the volume of the atom cell.

In computations of the equation of state it is convenient to modify somewhat
the interpolation formulas given in [81] for the interaction energy ∆Ei given by the
OCP model in order that they continue to work for arbitrary temperatures and
densities. The point is that in the OCP model, at values of the nonideality parame-
ter Γ close to 158, where Γ = Z2

0/(θr0), a phase transition occurs in the solid state.
An accurate description of this phase transition requires a detailed analysis of the
thermodynamic functions near the transition point. Since the physical accuracy
of the OCP model is not beyond dispute, in practical computations, to simplify
the calculation of the ion contribution to the equation of state, one requires that
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at large values of the nonideality parameter Γ the ion energies Ei will not exceed
the asymptotic value 3θ:

∆Ei =






∆EOCP, if ∆EOCP <
3
2
θ,

3
2
θ, if ∆EOCP ≥ 3

2
θ,

(6.91)

where for Γ > 0.1

∆EOCP = θΓ3/2
4∑

i=1

ai

(bi + Γ)i/2
− θΓa1,

a1 = −0.895929, b1 = 4.666486,
a2 = 0.11340656, b2 = 13.675411,
a3 = −0.90872827, b3 = 1.8905603,
a4 = −0.11614773, b4 = 1.0277554.

The proposed modification practically does not affect the final results of
computations of the equation of state, yet it allows one to avoid a detailed analysis
of the phase transition in the indicated range of temperatures and densities.

In the OCP model the ions are regarded as point particles and their interac-
tion potentials is assumed to be Z2

0/r (see [116]). The point-charge approximation
fails at high densities of matter, when the dimensions of the ion cores are compa-
rable with the interatomic distances [77]. For example, such a situation arises for
a shock compression of factor σ � 3 ÷ 4, where σ = ρ/ρ0, ρ0 being the normal
density of matter.

To account approximately for the influence of the strong repulsion between
ions at arbitrary temperatures and high densities one can use the model of charged
hard spheres (CHS) [167, 158, 144], or the simpler approximation in which to the
OCP model one adds the correction furnished by the model of hard spheres:

Pi =
[
1 +

η(4 + 2η)
(1− η)2 +

∆Ei

3θ

]
θ

v
, Ei =

3
2
θ + ∆Ei, (6.92)

where η = (r∗/r0)3 and r∗ is the effective radius of the ion core.
Formulas (6.90), (6.92) are not thermodynamically consistent, since the pack-

ing parameter η and the average ion charge Z0 are functions of temperature and
density. Thermodynamically consistent expressions for energy and pressure can be
obtained by starting from the expression for the free energy in the CHS approxi-
mation [167]. However, the increase in the complexity of formulas is not matched
by an increase in their level of physical accuracy.
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6.3.3 Effective radius of the average ion

For given values of the temperature T and density ρ, the value of r∗ can be
estimated based on the following considerations. We shall assume that all the
electrons of the atom cell can be divided into so-called free electrons, which are
uniformly distributed over the cell with a density ρ(r0) that is equal to the density
of electrons on the boundary of the atom cell, and the remaining, bound electrons,
with density ρ(r)−ρ(r0). Outside the domain 0 < r < r∗ the function ρ(r)−ρ(r0)
is required to decay rapidly.

The interaction between ion cores becomes essential at distances r∗ for which
the density of the bound electrons, ρ(r) − ρ(r0), is sufficiently large. Obviously,
some part of the bound electrons will be found beyond the limits of the core, i.e.,
for r > r∗. If the number of such electrons is taken to be equal to the number of
the free electrons that penetrate inside the sphere r < r∗, then we arrive at the
expression

4π

r0∫

r∗

(ρ(r)− ρ(r0))r2 dr = 4π

r∗∫

0

ρ(r0)r2 dr. (6.93)

Formula (6.93) yields good results for sufficiently high temperatures, when
more than one electrons are ionized. In particular, for metals the radii of the ion
cores computed by means of formula (6.93) agree well with experimental results
under nearly-normal conditions. For dielectrics and inert gases, when under normal
conditions there is no ionization, formula (6.93) gives r∗ = r0. Therefore, in their
case we will require that, in addition to (6.93), the quantity r∗ be bounded, say,
by the radius of the last shell that hosts electrons. One can put approximately
r∗ < 2n2/Zn�, where n, � are the quantum numbers of that shell and Zn� is the
corresponding effective charge.

Since 4π
∫ r0

0
ρ(r)r2 dr = Z, condition (6.93) can be recast as

4π

r∗∫

0

ρ(r)r2 dr = Z − Z0. (6.94)

The effective radius of the ion, as given by formula (6.94), depends on the
matter temperature and density. When T and ρ grow, r∗ decreases rapidly. In
the case of extremely high temperatures and densities, when full ionization takes
place, formula (6.94) yields r∗ ∼= 0. Let us mention that in some cases, for a weakly
ionized plasma the ratio of r∗ to the radius of the atom cell r0 may grow with T
and ρ.

Figure 6.6 shows the graph of the dependence of the packing parameter
η = (r∗/r0)3 on temperature on the shock compression curve for aluminum. As
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Figure 6.6: Dependence of the packing parameter η on temperature T on the shock
adiabat of aluminum
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Figure 6.7: Shock adiabat of aluminum, for different way of accounting for the ion
contribution to the equation of state (solid curve — charged hard spheres, dashed
curve — one-component plasma, dashed-dotted curve — ideal gas)

results of the computation of the shock adiabat for aluminum show, the maximum
value η ≈ 0.2 is attained at temperature T ∼ 35 eV and density ρ ∼ 12 g/cm3. At
such a temperature one may expect that the contribution of ions will have a large
influence on the shock adiabat. And indeed this is plainly seen in Figure 6.7, which
displays the shock adiabat of aluminum, with the contribution of ions accounted
for according to the ideal gas, OCP and CHS models (note the differences in the
behavior of the curves for σ ∼ 4.5, P ∼ 104 GPa).

6.3.4 On methods for deriving wide-range equations of state

Since the domain of applicability of the equations of state constructed on the basis
of a specific model is limited, in practical computations of tables in a wide range
of temperatures and densities one resorts to various methods of approximation
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and interpolation of the data provided by different models. Such methods can be
divided into three main groups:

1) Semi-empirical models of equations of state, in which the functional form
of the equation and the constant coefficients are chosen from the requirement that
the computational results should match known experimental data and asymptotics
[117, 4, 41, 42].

2) Phenomenological models of the equations of state, which contain param-
eters determined from experimental data that are not directly connected with the
equations of state (for example, the ionization equilibrium model, which involves
the energy levels of excited ion states) [183, 136, 76, 21, 184].

3) Computations based on statistical and quantum-statistical models of mat-
ter that do not rely on experimental data [122, 98, 152, 202, 188].

One of the first and most successful method proved to be the interpolation
of data of the Thomas-Fermi model with experiments (see, e.g., [58]). Currently
the most widely used is the method in which in order to construct wide-range
equations of state one interpolates between the results obtained by means of the
TF (TFC) model for high densities, the ionization equilibrium model for small
densities and semi-empirical equations of state for nearly normal conditions (see,
e.g., [58, 136, 214, 97], as well as the well-known library of equations of state
SESAME [245, 246]).

The equations of state constructed in this way are verified by comparison
with experiment. Note that for dense hot plasmas the available experimental data
are relatively poor and they do not provide a completely enough information on the
reliability of the equations of state. The evaluation of the accuracy of the derived
and applied in practice equations of state in a wide range of temperatures and
densities is based not only on experimental verification, but also on calculations
using theoretical models with different levels of accuracy.

6.4 Computational results

6.4.1 General description

The Hartee-Fock-Slater model has been used to compute equations of state of
various substances in a wide range of temperatures and densities. In these compu-
tations, in order to determine the effective boundary of the continuum ε0 for an
arbitrary temperature and arbitrary density, it suffices to fix the number of the
root of equation (4.20), labelling the roots according to the growth of the electron
energy (see Figure 3.10). It is clear, on physical grounds, that the energy value ε0
in the normal state (T = 0, ρ = ρ0) should lie in the region of the upper level of
electron energies (or in the conduction band for metals). This condition yields the
number N of the root, close to the number of the electron shells (counted with
quantum numbers n and �) in the atom (in particular, for aluminum N = 4, for
iron N = 6, and for gold N = 18).
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Violation of the thermodynamic consistency condition for the chosen ε0 may
lead to physically incorrect results, such as those obtained, for example, in [107,
240]. In [107] the authors used the value ε0 = −√ρ(r0), where ρ(r0) is the electron
density on the boundary of the atom cell. For bound states [resp., states with
energy ε > ε0] they used semi-classical wave functions (2.12) [resp., the semi-
classical approximation (4.5)].

In calculations based on the method of [107], when the plasma density ρ is
increased, bound energy levels ε = εn� successively cross the effective boundary of
the continuum ε0, because as ρ increases the energies of the levels also increase,
while the effective boundary ε0 = −√ρ(r0) decreases. This results in jumps in the
thermodynamic functions of electrons, which are interpreted as phase transitions
(see Figure 6.8). As one can see from equation (4.20), after εn� becomes larger than
ε0, to account correctly for the electrons found in the states with quantum numbers
n� it is necessary to modify the position of the effective boundary ε0 (see Subsection
3.3.4). This results in the smoothing of the thermodynamic functions and absence
of phase transitions at extremely high compressions, though the character of the
dependence on density may differ from the smooth curve furnished by the Thomas-
Fermi model.
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Figure 6.8: Cold compression curves for iron: the pressure P as a function of
density ρ at temperature T = 0 (solid curve — HFS model, dashed-dotted curve,
which passes into the solid curve when ρ > 103 g/cm3 — TF model, dashed curve
with a plateau — according to [107])

Figure 6.8 compares, in the pressure region P ∼= 108 GPa, the cold compres-
sion curves obtained by means of the HFS and TF models, as well as according
to the model of [107]. By selecting the parameter ε0 in accordance to condition
(4.20) the cold compression curve becomes smoother in the range of extremely
high pressures, regardless of whether the broadening of discrete levels into bands
is taken into account or not.
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Figure 6.9: The electron pressure P and energy E in aluminum according to dif-
ferent models. Shown are the isotherms at several temperatures: 1 — T=3.98 eV,
2 — T=39.8 eV, 3 — T=398 eV, as functions of the density ρ in g/cm3 (solid
curve — HFS, dashed curve — TFC, dashed-dotted curve — TF)

For a detailed comparison of the computational results obtained by different
models in a wide range of temperatures and densities we take aluminum as an
example [144]. Figure 6.9 shows for comparison three isotherms of the electron
components of pressure and energy for the temperatures 3.98, 39.8 and 398 eV,
obtained by means of three different models: HFS, TF and TFC. As one can
see in this figure, the largest differences between models (some of the results are
several times larger that the other!) occur for low temperatures, near the normal
density; there the results of the HFS computations occupy an intermediate position
between the results of the TF and TFC models. Note that the corrections in the
TFC model to the initial TF data turned out to be here of the order of the ground
quantity, which indicates that the TFC model is not applicable in the considered
range of densities ρ. With the growth of the temperature the differences become
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less significant.
We should point out to a peculiarity in the behavior of the isotherms com-

puted by means of the HFS model for T = 3.98 eV. For densities ρ ∼ 30 g/cm3

these curves intersect the corresponding curves of the TFC model before turning
into the asymptote. This feature is connected with the restructuring of the energy
spectrum of electrons and the related change in the occupancy of bands 3s and 3d
(see Figure 4.4).

6.4.2 Cold compression curves

Accounting for the band structure of the electron energy spectrum in the Hartree-
Fock-Slater model makes it possible to apply this model not only for the calculation
of properties of rarefied and dense gas plasmas, but also of those of solid materi-
als under strong compression. The results of experimental studies of equations of
state of solid materials are mainly concentrated in the region of normal conditions
(P ≤ 100 GPa). For extremely high pressures (P > 10 TPa) the TF model, or the
more accurate TFC model, become applicable. Since equations of state are needed
in a wide range of compression factors, methods for the computation of equations
of state using available experimental data in combination with asymptote extrap-
olation according to the statistical TF and TFC models became widely used in
practice. However, such methods do not always yield reliable results, because in
the intermediate domain, where the Thomas-Fermi model is not applicable and
no experimental data are available, the irregular shell effects neglected in the sta-
tistical models may have a large contribution.
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Figure 6.10: Cold compression curves of sodium and aluminum (pressure as a
function of compression σ = ρ/ρ0; solid curve — HFS, dashed curve — TFC,
dashed-dotted curve — TF, rhombuses — experiment [5, 15])

First let us examine some results of computations in different models for alka-
line metals. It is known that for such metals the Fermi surface is nearly spherical,
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and so apparently here the Wigner-Zeits spherical-cells approximation should not
lead to significant errors, because in this approximation the Fermi surface is also a
sphere. At the same time, for alkaline metals the TF and TFC models are indeed
not applicable due to the strong influence of shell effects.

The comparison done in Figure 6.10 of the cold compression curve of sodium
obtained by means of the HFS model with the experimental data of [15] shows that
the HFS model describes the situation relatively well. The computed theoretical
value of the normal density of sodium, ρ0 = 1.36 g/cm3 (i.e., the density for which
the pressure P = 0), is closer to the experimental value of ρ0 = 0.97 g/cm3 than the
value ρ0 = 2.8 g/cm3 provided by the TFC model. For lithium the normal density
according to the HFS model, ρ0 = 0.54 g/cm3, differs from the experimental value
ρ0 = 0.53 g/cm3 by only 2%.

Figure 6.11 compares computational results for cold compression of helium
and neon obtained by means of the HFS model with those obtained by means of
the TFC model and with experimental data generated by the method of molecular
beams [121]. Note the good agreement between HFS calculations and experimental
data for sufficiently large compressions. However, while for helium the results agree
with the data provided by the TFC model, for neon the TFC results are worse
than the HFS ones.
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Figure 6.11: Cold compression curves for helium and neon (pressure as a function
of density ρ; solid curve — HFS, dashed curve — TFC, rhombuses — experiment
[121])

In the case of the cold compression curves of aluminum, iron and gold (see,
for example, Figure 6.10 for aluminum), there is a notable deviation from exper-
imental data [5, 238] for weak compressions, namely, of about 10% for aluminum
and gold, and 20% for iron.
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6.4.3 Shock adiabats

Detailed tables of equations of state, obtained by means of the Hartree-Fock-
Slater model, allow one to build compression curves for substances. These curves
are alternatively known as shock adiabats (the spelling adiabatics is used as well)
or Hugoniot adiabats . The last term is connected with the fact that, in accordance
with conservation laws, under compression of a substance the following Hugoniot
relation holds across the shock-wave front [234]:

2(E − E0) = (P + P0)
(

1
ρ0
− 1
ρ

)
, (6.95)

where E0, P0, ρ0 are the internal energy, the pressure and the density of the
undisturbed medium and E, P , ρ are the corresponding quantities behind the
shock wave, for the compressed medium. The mass velocity U and the wave velocity
D of the shock wave are connected with P and E by the relations

U =

√
2(E − E0)(P − P0)

P + P0
, D =

P − P0

ρ0U
. (6.96)

Since, in accordance to the equation of state, P = P (ρ, T ) and E = E(ρ, T ),
it follows that once the value of the density ρ is given, one can find the temperature
T and the pressure P on the shock adiabat (6.95).
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Figure 6.12: Shock adiabat of aluminum according to different models (pressure
in GPa as a function of compression σ = ρ/ρ0): solid curve — HFS, dashed curve
— QZI, rhombuses — experimental data

Shock adiabats of aluminum and iron, calculated by means of the Hartree-
Fock-Slater model, are shown in figures 6.12 and 6.13. Also shown are compu-
tational results provided by the TFC model for iron as well as results obtained
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Figure 6.13: Shock adiabat of iron (solid curve — HFS, dashed curve — TFC
[101]). Also shown are experimental data of [6, 7, 8, 9]

by means of the interpolation of the TFC and Saha equations of state [97] (the
so-called quasi-zone interpolation, QZI) for aluminum. For comparison, the figures
also display experimental data. The abscissae [resp. ordinates] represent compres-
sion σ = ρ/ρ0 (ρ0 = 2.71 g/cm3 for aluminum and ρ0 = 7.85 g/cm3 for iron)
[resp., pressure in GPa].

One sees that shell effects play a rather essential role after the substance is
compressed almost to the limit density and begins to heat intensely. The contribu-
tion of the temperature ionization of each shell manifests itself as a slowly varying
oscillation about the TFC-computed curve.

An analysis of the data given in Figure 6.12 shows that in the domain of
compressions σ � 1÷1.8 (pressure P ≤ 200 GPa), the position of the shock adiabat
of aluminum based on available experimental data and semi-empirical equations
of state is established with sufficient reliability. In the compression range σ � 1.8 –
2.8, the experimental results partly contradict each other, so that a critical analysis
of data obtained in various experiments in this domain of compressions becomes
necessary. For higher compressions (σ > 3) part of the experimental data are
affected by hard to control and rather high errors, and therefore we may consider
that the computational results obtained by means of the HFS model, as well as
those obtained by the QZI method, do not contradict these data. Overall, from
the results displayed above it is seen that the HFS shock adiabat for compressions
σ ≥ 1.8 agrees well with the experimental results [200]. The QZI adiabat has, in
the domain of compressions σ < 3, the tendency to deviate considerably from the
experimental data and the computational results cited.

For high compression factors (σ � 5), the first oscillation of the QZI shock
adiabat is shifted relative to the first oscillation according to the HFS model
towards the domain of higher compression factors. The second oscillations on
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the adiabats, which correspond to the ionization of the K-shell at temperatures
T � 1 keV, lie considerably closer to one another. The shift of the oscillation
on the QZI adiabat relative to the HFS adiabat is apparently due to the fact
that in the QZI method, in computations according to the Saha model a certain
approximation is used to lower the ionization potentials at high temperatures,
whereas in the HFS model such a decrease in the ionization potentials is obtained
without any supplementary assumptions. The reliability of the HFS shock adiabat
in this domain of compressions is confirmed by the good agreement between the
results of computations of the equation of state for a hot rarefied plasma with the
results provided by the ionization equilibrium model with nonideality accounted
for in the Debye-Huckel approximation of the grand canonical ensemble (Saha-
GDH [76], see below).
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Figure 6.14: Isotherms of pressure P and internal energy E for gold as functions
of density ρ
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To apply the equations of state obtained in the Hartree-Fock-Slater model
in practice, they must be made more accurate for nearly-normal conditions. The
simplest way to achieve this is to rely on semi-empirical equations of state, which
are compatible with experimental data.

Using computational results obtained with the Hartree-Fock-Slater model in
conjunction with semi-empirical models — in particular, the model discussed in
[43], one can construct equations of state that are valid in a wide range of temper-
atures and densities. Such equations of state are indispensable for the numerical
modelling of gas dynamic processes. Figure 6.14 above shows pressure and internal
energy isotherms for gold obtained by means of equations of state constructed in
the manner described above. These results were kindly provided to us by V. V.
Val′ko. The corresponding shock adiabat is shown in Figure 6.15.

1 2 3 4 5 σ

102

104

106

P , GPa

Figure 6.15: Shock adiabat of gold (solid curve — the HFS model combined with
a semi-empirical equation of state; dashed curve — the TFC model [101]). Also
shown are experimental results reported in [96, 244, 9, 8, 5, 131]

6.4.4 Comparison with the Saha model

For an ideal or weakly nonideal plasma the equation of state and other charac-
teristics of matter can be calculated independently within the framework of the
ionization equilibrium model, using experimental values of the energy levels of
ions. The very fact that the ionization equilibrium model uses experimental in-
formation makes it possible to achieve sufficiently reliable results in many cases.
Therefore, it is very interesting to compare the existing theoretical models with
the result of computations according to the Saha model in the range where its
applicability is beyond doubt.
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Table 6.2: Comparison of some characteristics of aluminum for T = 24.28 eV,
ρ = 1.49 · 10−4 g/cm3, obtained with the TF, HFS and Saha models

Model Average occupation numbers Number of free Chemical
of bound electron states electrons potential

n = 1 n = 2 n = 3 n = 4
TF 2.000 4.870 0.040 0.010 6.048 9.177
HFS 2.000 4.157 0.016 0.005 6.804 9.270
Saha 2.000 4.317 0.015 0.005 6.674 9.276

Table 6.2 compares the average occupation numbers obtained by the TF,
HFS and Saha models for aluminum at temperature T � 25 eV and density
ρ � 1.5 · 10−4 g/cm3. In the TF and HFS models these numbers were obtained,
for states with principal quantum number n and orbital number �, by the formula

Nn� =
2(2�+ 1)

1 + exp
(
εn� − µ

θ

) ,

where µ is the chemical potential and εn� are the energy eigenvalues calculated by
means of the TF or HFS potential, respectively (the results for the TFC poten-
tial practically coincide with the TF results). In the Saha model the occupation
numbers were obtained by averaging the populations on a level with given val-
ues of n and � over all ion states. The probabilities of possible ion states, which
are necessary in the averaging, were determined from the full system of Saha-
Boltzmann equations (see (6.47)). Note that the average occupation numbers of
electron states constitute one of the most important characteristics of matter;
indeed, they determine the degree of ionization, and hence the equation of state.

As one can see in Table 6.2, the computational results in the HFS model
agree well with those in the Saha model, whereas the TF model yields, for ex-
ample, for the shell with principal quantum number n = 3, an average number
of electrons that is larger by a factor of 2.5. Let us remark that for a sufficiently
high temperature the results provided by the Thomas-Fermi model agree well with
those provided by the Hartree-Fock-Slater model. As the temperature decreases,
in the TF model the inaccuracy in the determination of the occupation numbers
— and consequently of other characteristics of matter — grows rapidly.

To characterize the possible magnitude of the deviations we take as an ex-
ample the results of the calculation of the internal energy of lithium for pressure
P = 0.1 GPa. Figure 6.16 below shows the results of computations according to
the TF, TFC, Saha and HFS models. In the considered range of temperatures and
densities, for T ≥ 1 eV the results for the Saha model may be practically regarded
as experimental results, because the energy levels of the excited states of lithium
are well known, and under these conditions the plasma may be considered as ideal.
As Figure 6.16 shows, the computational results using the HFS model agree well
with those using the Saha model. At the same time, one observes a considerable
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deviation from the results generated by the TF and TFC models, which in the
considered range give practically identical results. For example, for temperature
T = 5 eV the energy according to the HFS model is 2.5 smaller than the energy
according to the TFC model, while for T = 15 eV the opposite holds, namely,
the energy according to the HFS model 1.3 time larger than that according to the
TFC model.

0.1
1

1

2 5 10

10

20 50 T , eV

E, kJ/g

Figure 6.16: Specific internal energy of lithium at pressure P = 0.1 GPa, according
to different models (solid curve — HFS, dashed curve — TFC, dashed-dotted curve
—TF, dots — Saha [76])

The differences between the thermodynamic functions for the indicated val-
ues of the temperature and pressure are caused by the major contribution of the
shell effects, which is considerably larger than the quantum and exchange cor-
rections of the TFC model. The results of HFS computations agree with those
of the TFC computations only starting at temperatures T ≥ 50 eV, i.e., only
when the lithium becomes fully ionized. The influence of the shell effects on the
plasma thermodynamic functions remains essential for heavier elements as well.
Figure 6.17 below compares the pressures and internal energies of aluminum for
densities ρ = 0.01 g/cm3 and temperatures T = 3.98 ÷ 700 eV obtained with
the HFS and TFC models with the results obtained with the Saha-GDH model
(more precisely, according to the Saha model where the effects of nonideality are
accounted for in the approximation of the grand canonical ensemble and using the
Debye-Huckel potential [76]).

The good agreement between the data provided by the HFS model and the
computational results relying on the Saha model should come as no surprise, since
the highest ionization potentials of ions are quite accurately described by the
HFS model, and the accuracy of the average-atom approximation increases with
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Figure 6.17: Ratio of the pressure (a) and internal energy (b) in aluminum with
density ρ=0.01 g/cm3 to the corresponding quantities for the fully ionized ideal
gas, according to different models: solid curve — HFS, dashed curve — TFC, dots
— Saha; here Pz = (Z+1) θ/v, Ez = 3

2 (Z+1) θ

number of different ion states that are actually realized. It is precisely the last two
circumstances that are characteristic for highly ionized rarefied plasma.

An analysis of the results obtained shows that in the region of liquid-metallic,
dense and rarefied plasma with temperature T > 5 eV , the HFS model yields suf-
ficiently reliable results, which is confirmed by a comparison with the experimental
data in the shock compression region, as well as with computations according to
various semi-empirical models and the Saha model. The difference between the
HFS data and the TFC data at low temperatures (T � 5÷ 10 eV) reach � 100%,
while for high temperatures (T � 50÷100 eV) the difference is of � 15%. As for the
solid-state characteristics of a substance, especially the thermodynamic descrip-
tion of phase transitions, here it is necessary to more accurately account for the
band structure of the electron energy spectrum and the exchange and correlation
effects than it is currently done in the HFS model.

6.5 Approximation of thermophysical-data tables

Let us address several questions concerning the utilization of equations of state
and photon free paths in gas-dynamic computations. The requisite thermophysical
data are usually maintained in the form of tables, which can be readily modified
and made more accurate whenever necessary. How detailed are the meshes used
to build the tables depends on how accurately one wishes to render specific fea-
tures of the behavior of physical quantities. Usually the most economical in this
respect are the nonuniform meshes, in particular, for temperature and density.
The tabular data obtained are then used on more detailed meshes, determined by
the numerical methods for solving the problems of radiative gas dynamics. This
makes it necessary to multiply interpolate data given in tabular form.
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The approximation of two-dimensional thermophysical-data tables must sat-
isfy certain smoothness requirements. In particular, the function F (x, y) interpo-
lating the initial data must be continuous together with its first derivatives with
respect to the variables x, y (where, say, x = log10T , y = log10ρ). Furthermore,
quite often the initial physical quantities satisfy conditions such as sign constancy
or absence of oscillations; they may enjoy properties such as monotonicity or con-
vexity with respect to one of the variables in some ranges of x and y. Interpolation
splines do not, in the general case, preserve such properties, and so in order to
construct approximations that reproduce correctly the geometric properties of the
initial dependencies one is advised to use locally approximating splines [233, 118].
The application of these splines in gas dynamic codes has also certain advantages
owing to their relative simplicity and the local character of the coefficients of the
spline, which are determined only by the tabular values of the given function that
are the closest to the point under consideration.

6.5.1 Construction of an approximating spline that preserves
geometric properties of the initial function

In [231] the authors used local splines of minimal defect to construct an approx-
imation F (x, y) of a function f(x, y) that is given in tabular manner on a uni-
form mesh in a rectangular domain. The construction of the approximating spline
F (x, y) is rather natural and is transparently carried out by representing the mixed
derivative Fxy of the sought-for spline as a bilinear form in each cell of the two-
dimensional grid in such a way that the first derivatives in the center of the cell will
coincide with the corresponding difference derivatives. By integrating the mixed
derivative Fxy it is relatively easy to obtain the partial derivatives Fx, Fy and the
approximating spline F (x, y) in the rectangular domain considered.

The representation of the function F (x, y) through normalized one-variable
B-splines reads

F (x, y) =
i+p∑

k=i

j+q∑

�=j

bpq
k�B

(p)
k (x)B(q)

� (y). (6.97)

Here the indices i, j and the orders p, q of the normalized B-splines are determined
by the position of the point (x, y) in the considered rectangular domain where the
table {fk�} is given (inside the table p = q = 2; near the borders one of the
numbers p or q is equal to 1; near corners p = q = 1). Normalized B-splines are
nonnegative functions with maximum value equal to 1 (see [118]).

The spline B(1)
i (x) is given on a mesh xi and is a piecewise linear continuous

function on the interval (xi, xi+2), satisfying B(1)
i (x) = 0 outside this interval:

B
(1)
i (x) =






ᾱi(x), if xi ≤ x < xi+1;

1− ᾱi+1(x), if xi+1 ≤ x ≤ xi+2,
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where ᾱi(x) = (x− xi)/hx, hx is the x-step of the mesh.

The spline B(2)
i (x) is given on the mesh x∗i = (xi + xi+1)/2, is polynomial of

degree two on each of the subintervals (x∗k, x
∗
k+1), k = i, i+ 1, i+ 2 of the interval

(x∗i , x
∗
i+3), has there a continuous first derivative and vanishes outside this interval:

B
(2)
i (x) =






1
2α

2
i (x), if x∗i ≤ x < x∗i+1;

1
2 + αi+1(x)(1− αi+1(x)), if x∗i+1 ≤ x < x∗i+2;

1
2 (1− αi+2(x))2, if x∗i+2 ≤ x ≤ x∗i+3,

where αi(x) = (x− x∗i )/hx.

The splines B(1)
i (y) and B

(2)
i (y) are defined in the much the same way. For

a uniform mesh the spline coefficients bpq
k� = fk�, where fk� = f(xk, y�) are the

tabular data. The approximating function (6.97) is a biquadratic spline in the
“inner” part of the table, a bilinear function near the “corners” of the table,
and has a mixed order near its borders. The results of the investigation of the
spline F (x, y) demonstrate that it provides a smooth approximation of the ini-
tial tabular-given function f(x, y) and reproduces well its geometric structure,
i.e., it preserves those geometric properties (sign constancy, monotonicity, convex-
ity, existence of a “plateau”, etc.) that the initial functional dependence f(x, y)
possesses, in the entire rectangular domain considered, or in some part of it. More-
over, the approximating spline (6.97) smoothes out singularities of “break” type
(if such singularities are present in the initial functional dependence) on the 1-2
node, without introducing additional structural changes like oscillations, loss of
monotonicity, and so on.

In the case of nonuniform meshes the spline takes on a more complicated
form. Namely, if we denote

ᾱi(x) = (x− xi)/hx,i, αi(x) = (x− x∗i )/h∗x,i,

and

hx,i = xi+1 − xi, h∗x,i = (hx,i + hx,i+1)/2,

then

B
(1)
i (x) =






ᾱi(x), if xi ≤ x < xi+1,

1− ᾱi+1(x), if xi+1 ≤ x ≤ xi+2,

0, if x < xi or x > xi+2,
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B
(2)
i (x) =






h∗x,i

h∗x,i + h∗x,i+1

α2
i (x), if x∗i ≤ x < x∗i+1,

h∗x,i

h∗x,i + h∗x,i+1

+ 2
h∗x,i+1

h∗x,i + h∗x,i+1

αi+1(x)−

(
h∗x,i+1

h∗x,i + h∗x,i+1

+
h∗x,i+1

h∗x,i+1 + h∗x,i+2

)
α2

i+1(x), if x∗i+1 ≤ x < x∗i+2,

h∗x,i+2

h∗x,i+1 + h∗x,i+2

(1− αi+2(x))2, if x∗i+2 ≤ x ≤ x∗i+3,

0, if x < x∗i or x > x∗i+3.

For the coefficients bpq
k� one takes a linear combination, with the appropriate

weights, of the values that are the closest to the (k, �)-node in the mesh of tabular
data:

b22k� = (1− γk) (1− δ�) fk� + γk (1− δ�) fk+m,� +
(1− γk) δ� fk,�+n + γk δ� fk+m,�+n. (6.98)

The weights γk, δ� and the index shifts m, n are given by the formulas

γk =
|hx,k − hx,k−1|

4 max{hx,k;hx,k−1} , δ� =
|hy,� − hy,�−1|

4 max{hy,�;hy,�−1} ,

m = sign(hx,k − hx,k−1), n = sign(hy,� − hy,�−1),

where hx,k = xk+1 − xk, hy,� = y�+1 − y�.

The coefficients b12k�, b
21
k� and b11k� required for the regions adjacent to the

boundaries are found from the requirement that F (x, y) be smooth. The repre-
sentation (6.97)–(6.98) on nonuniform meshes is in fact a certain symmetrization
based on a piecewise bilinear interpolation of the data {fk�} in the two-dimensional
case [232].

The results of the numerical investigation of the spline (6.97)–(6.98) on uni-
form and nonuniform meshes have shown that this approximation:

– ensures that F (x, y) has the requisite smoothness, i.e., it is continuous to-
gether with its first derivatives;

– goes over into a one-dimensional approximation if in the table {fij} there is
no dependence on one of the variables in some subdomain of the domain D
under consideration;

– guarantees a precise rendering of a plateau if one is present in the initial
functional dependence f(x, y);
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– coincides with the tabular data in the corners of the rectangular domain D;

– makes it possible to reproduce geometric features (sign constancy, mono-
tonicity, convexity) present in the initial functional dependence f(x, y);

– ensures an exact approximation for bilinear functions.

The qualities listed above are in a certain sense achieved at the cost of some
loss of accuracy in the case of smooth functions. At the same time it is obvious
that, as a rule, the error of the applicable models exceed the interpolation error.
One could have reached a higher accuracy by using approximations that are exact
for polynomials of higher degrees, for instance, are exact for quadratic functions.
However, already in the one-dimensional case one can provide examples of func-
tions, meshes and approximations which are exact for quadratic functions, but
which do not reproduce geometric properties of the initial function (for instance,
its sign constancy).

6.5.2 Numerical results

First of all, let us compare approximation (6.97)-(6.98) with the well known meth-
ods of approximation by cubic splines [222] and interpolation in the mean by
second-order splines [233] for functions of one variable f(x) (here in the case
of the spline (6.97) we assume that there is no dependence in y). The computa-
tions of the coefficients of interpolating cubic splines and interpolating-in-the-mean
second-order splines were carried out by solving the corresponding systems of lin-
ear algebraic equations that differ only through their right-hand sides. To close
the system of equations for the interpolating cubic spline, additional boundary
conditions were imposed using the exact values of the second derivative f ′′(x)
at endpoints of the segment [a, b], i.e., f ′′(a) and f ′′(b). For the interpolating-in-
the-mean spline the values f ′(a) and f ′(b) of the first derivative were given. The
interpolating cubic [resp., the interpolating-in-the mean] spline was constructed
from the values fi = f(xi) of the function f(x) in the nodes of the mesh {xi}
[resp., from the exact values of the integral Si =

∫ xi+1

xi
f(x)dx]. For the considered

local spline (6.97) only the values f(xi) were used. These approximations were
constructed on different nonuniform meshes, the same for all three splines.

The results of computations for smooth functions demonstrate a satisfactory
accuracy of the approximation for both the function and its derivative. The smooth
test function used was f(x) = sin x. A nonuniform mesh with slowly varying step:
hmax ≈ 0.3, hmin ≈ 0.2, with the rates of decrease and increase of the step equal
to 0.9 and 1.1, respectively, was used. In particular, in the uniform metric the
error of the local approximation lies within 0.5% for the function and 1% for the
derivative. As expected, the cubic spline gives the smallest approximation error,
both for the function and its derivative. The error of the interpolating-in-the-mean
spline is one order lower than the error of the local spline (6.97). For the derivative,
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Figure 6.18: Results of the approximation of a “break” (dashed curves): (a) —
interpolating cubic spline, (b) — interpolating-in-the-mean spline, (c) — local
spline (6.97). The solid broken line represents the initial functional dependence
f(x), while the rhombuses show the tabular data
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Figure 6.19: Pressure isotherms of iron at temperatures from 1 eV to 10 eV. Solid
curves — approximation, asterisks (through which the dashed curves are drawn)
— tabular data)
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the error of the interpolating-in-the-mean spline and that of the local spline are
practically identical. Thus, in the case of smooth functions on meshes with rela-
tively detailed rendering of the character of the behavior of the initial functional
dependence f(x) the three different types of approximation yield a completely
satisfactory accuracy and are practically indistinguishable on the graphs.

For functions with a “break-type” singularity (an abrupt change in the deriva-
tive, typical for equations of state) the results of the three approximations dis-
cussed above are displayed in Figure 6.18. A piecewise uniform mesh was used,
with step h = 0.2 to the left of the break point and h = 0.1 to its right. As
expected, the local spline (6.97)–(6.98), in contrast to interpolating splines, repro-
duces the behavior of the function f(x) near the break point, preserving the sign
constancy, monotonicity and convexity.

The enumerated advantages of the spline (6.97) are quite important, espe-
cially when the character of the dependence of the tabulated functions employed
may change abruptly. Figure 6.19 shows a part of the pressure isotherms of the
equation of state of iron in the regions of two phase transitions: vapor-liquid and
liquid-solid. Since the initial quantities change by several orders, the interpolation
was carried out in logarithmic variables.

As one can see from Figure 6.19, despite the fact that the mesh selected is
rather crude near the liquid-vapor phase transition, the accuracy provided by the
approximation using the local spline (6.97) is completely satisfactory for practical
problems.
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ANALYTIC METHODS

A.1 Quantum mechanical problems that can be solved

analytically

Many problems of quantum mechanics lead to differential equations of the form

u′′ +
τ̃(x)
σ(x)

u′ +
σ̃(x)
σ2(x)

u = 0, a < x < b, (A.1)

where σ(x), σ̃(x) are polynomials of degree at most 2 and τ̃(x) is a polynomial of
degree at most 1. Equation (A.1) can be obtained from an equation that is well
known in the analytic theory of differential equations and the theory of special
functions, namely, the Riemann equation with three singular points, via a change
of variables that sends one of the singular points to infinity [128]. Equations of the
form (A.1) allow one to describe the harmonic oscillator, the motion of a particle
in a central field, the hydrogen atom, or a hydrogen-like ion in the relativistic and
nonrelativistic settings, as well as many other problems of atomic, molecular and
nuclear physics. Thus, for instance, the Schrödinger equation for the harmonic
oscillator,

−1
2
ψ′′ +

x

2

2
ψ = εψ, −∞ < x <∞, (A.2)

is a particular case of equation (A.1) with σ(x) = 1, τ̃(x) = 0, σ̃(x) = 2ε− x2.
When the Schrödinger equation for a central potential is solved by the method

of separation of variables one obtains the following equation for the angular part
of the wave function:

(1− x2)u′′ − 2xu′ +
(
µ− m2

1− x2

)
u = 0 (A.3)

where
x = cosϑ, m = 0,±1,±2 . . . , µ = const.

In this case σ(x) = 1− x2, τ̃(x) = −2x, σ̃(x) = µ(1− x2)−m2.
To equation (A.1) one can reduce also many other model problems connected,

in particular, with the study of scattering and interaction of neutrons with heavy
nuclei, or the analysis of the rotation-vibration spectra of molecules, and so on
(for example, the solutions of the Schrödinger equation with the Morse, Kratzer,
Woods-Saxon, Pöschl-Teller potentials [63]). All these problems can be solved
from a unified standpoint on the basis of a simple method [154].

A.1.1 Equations of hypergeometric type

Equation (A.1) can be simplified using the change of variable u = ϕ(x)y with a
special choice of the function ϕ(x). Substituting u = ϕ(x)y in (A.1), we obtain
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y′′ +
(
τ̃

σ
+ 2

ϕ′

ϕ

)
y′ +
(
σ̃

σ2
+
τ̃

σ

ϕ′

ϕ
+
ϕ′′

ϕ

)
y = 0. (A.4)

To ensure that equation (A.4) will be not more complicated than equation
(A.1), it is natural to require from the very beginning that the coefficient of y′

have the form τ (x)/σ(x), where τ (x) is a polynomial of degree at most 1. This
yields the following equation for the function ϕ(x):

ϕ′

ϕ
=
π(x)
σ(x)

, (A.5)

where
π(x) =

1
2
[τ (x)− τ̃ (x)] (A.6)

is a polynomial of degree at most 1. Then equation (A.4) takes on the form

y′′ +
τ (x)
σ(x)

y′ +
σ(x)
σ2(x)

y = 0, (A.7)

where
σ(x) = σ̃(x) + π2(x) + π(x)[τ̃(x)− σ′(x)] + π′(x)σ(x).

Since τ (x) and σ(x) are polynomials of degree at most one and two, respec-
tively, equation (A.7) has the same form as (A.1). To simplify further, let us pick
the polynomial π(x) so that

σ(x) = λσ(x), (A.8)

where λ is some constant. In this way we arrive at the equation of hypergeometric
type

σ(x)y′′ + τ (x)y′ + λy = 0, (A.9)

particular solutions of which can be found in explicit form [154]. The name of
the equation comes from the fact that among these particular solutions one finds
the Gauss hypergeometric functions and the confluent hypergeometric functions.
Condition (A.8) gives an equation for the polynomial π = π(x):

π2 + (τ̃ − σ′)π + σ̃ − kσ = 0,

where
k = λ− π′. (A.10)
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If we assume that the constant k is known, then solving the quadratic equa-
tion yields

π(x) =
σ′ − τ̃

2
±
√(

σ′ − τ̃
2

)2

− σ̃ + kσ. (A.11)

In order to be able to extract the root and make π(x) a polynomial of degree
at most 1, the discriminant of the polynomial of second degree under the radical
sign in (A.11) must be equal to zero. This condition yields an equation for the
constant k that typically is quadratic*). Once k is determined, we find π(x) us-
ing formula (A.11), and then τ (x) and λ using formulas (A.6) and (A.10). Then
from equation (A.5) we find the function ϕ(x), which determines the asymptotic
behavior of the solutions of equation (A.1). Obviously, the reduction of equation
(A.1) to equation (A.9) can be achieved in several ways, in accordance with the
choice of different values of k and the choice of different signs in formula (A.11)
for π(x). By imposing additional requirements, in particular, that the solution be
square integrable, the choice of the function ϕ(x) becomes unique (see below).

Let us find the polynomial solutions of equation (A.9) in explicit form. To
this end, we will first show that the derivative v1(x) = y′(x) satisfies an equation
of the same type. Indeed, differentiating (A.9) we have

σ(x)v′′1 + τ1(x)v′1 + µ1v1 = 0, (A.12)

where τ1(x) = τ (x)+σ′(x) is a polynomial of degree at most 1 and µ1 = λ+ τ ′(x)
is a constant.

Similarly, differentiating (A.9) n times, we easily obtain for the function
vn(x) = y(n)(x) the equation of hypergeometric type

σ(x)v′′n + τn(x)v′n + µnvn = 0, (A.13)

where
τn(x) = τ (x) + nσ′(x),

µn = λ+ nτ ′ +
n(n− 1)

2
σ′′.

This property enables us to construct a family of particular solutions of
equation (A.9), corresponding to certain values of λ. Indeed, for µn = 0 equation
(A.13) has the obvious particular solution vn(x) = const. Since vn(x) = y(n)(x),
this means that for

λ = λn = −nτ ′ − n(n− 1)
2

σ′′ (A.14)

*)Except for the one case when for σ(x) = const the polynomial under the radical sign in
(A.11) is of degree 1. In this case the solutions of equation (A.1) can be expressed in terms of
Bessel functions [154].
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there exists a particular solution y = yn(x) of the equation of hypergeometric type
which is a polynomial of degree n.

To write yn(x) explicitly, let us multiply equations (A.9) and (A.13) by func-
tions ρ(x) and ρn(x) such that the resulting equations can be written in self-adjoint
form

(σρy′)′ + λρy = 0, (A.15)

(σρnv
′
n)′ + µnρnvn = 0. (A.16)

The functions ρ(x) and ρn(x) satisfy the differential equations

(σρ)′ = τρ, (A.17)

(σρn)′ = τnρn. (A.18)

Using the explicit expression for τn(x), we readily establish a connection
between ρn(x) and ρ0(x) = ρ(x). Namely,

ρ′n
ρn

=
τn − σ′

σ
=
τ − σ′

σ
+ n

σ′

σ
,

whence
ρ′n
ρn

=
ρ′

ρ
+ n

σ′

σ

and consequently
ρn(x) = σn(x)ρ(x). (A.19)

Since σ(x)ρn(x) = ρn+1(x) and vn(x) = y(n)(x), equation (A.16) may be
recast as the recursion relation

ρnvn = − 1
µn

(ρn+1vn+1)′.

This yields successively

ρy = ρ0v0 = − 1
µ0

(ρ1v1)′ =
(
− 1
µ0

)(
− 1
µ1

)
(ρ2v2)′ = . . . =

1
An

(ρnvn)(n),

where

An = (−1)n
n−1∏

k=0

µk, A0 = 1.

Thus, for the solutions of equation (A.9) in the form of a polynomial of
degree n, i.e., for y = yn(x) corresponding to λ = λn, with the property that
vn = y(n)(x) = const, we obtain the following formula (known as the Rodrigues
formula [154]):

yn(x) =
Bn

ρ(x)
dn

dxn
[σn(x)ρ(x)] , (A.20)
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where Bn is a normalization constant, n = 0, 1, 2, . . . .
The polynomial solutions (A.20) of equation (A.9) that have the orthogo-

nality property are called classical orthogonal polynomials. Such polynomials are
widely used in quantum mechanics. By inverting formula (A.20) for arbitrary
values of λ one can obtain a unified integral representation for the solutions of
equation (A.1) and their derivatives, in particular, for the Bessel functions and
the Gauss hypergeometric functions [154].

A.1.2 Bound state wave functions and classical orthogonal
polynomials

Consider a particle moving in some time-independent force field. If the external
forces confine the particle to a bounded domain of space, so that it cannot escape
to infinity, then one speaks about bound states of the particle. To find the wave
functions ψ(�r ) that describe such states and the corresponding energy levels E,
one solves the stationary Schrödinger equation

− h̄2

2m
∆ψ + U(�r )ψ = Eψ, (A.21)

where h̄ is the Planck constant, m the mass of the particle, and U(�r ) the potential
energy. The wave function ψ(�r ) must satisfy the normalization condition

∫
|ψ(�r )|2 d�r = 1. (A.22)

For many problems of quantum mechanics that can be solved by the method
of separation of variables the Schrödinger equation (A.21) can be reduced to the
form of a generalized equation of hypergeometric type (A.1). The energy E appears
in the coefficients of equation (A.1) as a parameter. Here one can assume that
σ(x) > 0 for x ∈ (a, b), and that in the endpoints of the interval (a, b), if they
are not infinity, the polynomial σ(x) is equal to zero. Among the possible ways of
reducing equation (A.1) to the form (A.9) there is one for which the condition
b∫

a

|y(x)|2 ρ(x)dx <∞ (the weight function ρ(x) > 0), and hence the normalization

condition for the wave function, is satisfied. One has the following

THEOREM. Let y = y(x) be a solution of the equation of hypergeometric type
(A.9). Assume that the function ρ(x) satisfies the equation [σ(x)ρ(x)]′ = τ (x)ρ(x),
is bounded and has non-negative values on an interval (a, b), and in the endpoints
of the interval satisfies the conditions

σ(x)ρ(x)xk
∣∣
x=a,b

= 0, k = 0, 1, . . . .

Then equation (A.9) has nontrivial solutions y(x) with the property that y(x) is
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bounded and the function y(x)
√
ρ(x) is square integrable on (a, b) only for

λ = λn = −nτ ′ − n(n− 1)
2

σ′′, n = 0, 1, . . . .

These solutions have the form

y(x, λn) = yn(x) =
Bn

ρ(x)
dn

dxn
[σn(x)ρ(x)] (with Bn a constant),

i.e., they are classical orthogonal polynomials of degree n, which are orthogonal
with weight ρ(x) on the interval (a, b).

To satisfy the conditions imposed on the function ρ(x) for the classical or-
thogonal polynomials, the polynomial τ (x) must have a negative derivative and a
zero in the interval (a, b) if σ(x) > 0 for x ∈ (a, b). Indeed, from the Rodrigues for-
mula (A.20) for the polynomials yn(x) it follows that y1(x) = B1τ (x), and hence
that τ (x), like any orthogonal polynomial, has a zero in the orthogonality interval
(a, b). Multiplying equation (A.15) by y(x) and integrating the left-hand side by
parts, we obtain the following relation for the function y1(x):

b∫

a

σ(x)ρ(x)[y′1(x)]
2 dx = λ1

b∫

a

ρ(x)y2
1(x) dx.

Since, by (A.14), for n = 1 we have λ1 = −τ ′, it is clear that τ ′ < 0 if σ(x) > 0
for x ∈ (a, b). It follows that for the wave function ψ(�r ), which satisfies the
Schrödinger equation (A.21) and the normalization condition (A.22), the bound-
edness requirements are met [154].

Let us apply the methods described above to the solution of a number of
typical problems of quantum mechanics.

EXAMPLE 1. To determine the spectrum of the harmonic oscillator, we have to
find, for the Schrödinger equation (A.2), the values of the energy ε for which the
wave function ψ(x) satisfies the normalization condition (A.22).

In the present case σ(x) = 1, τ̃(x) = 0, σ̃(x) = 2ε − x2. Using (A.11), we
obtain the following expression for the polynomial π(x):

π(x) = ±
√
x2 − 2ε+ k.

The constant k is found from the condition that the expression under the radical
sign has a double root, i.e., k = 2ε. From the two possible forms π(x) = ±x,
we need to choose the one for which the function τ (x) = τ̃(x) + 2π(x) has a
negative derivative. Therefore, τ (x) = −2x, which correspond to (see formulas
(A.5)–(A.11))

π(x) = −x, ϕ(x) = exp(−x2/2), ρ(x) = exp(−x2), λ = 2ε− 1.
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The energy eigenvalues are found from equation (A.14):

λ+ nτ ′ +
n(n− 1)

2
σ′′ = 0,

which yields

ε = εn = n+
1
2
, n = 0, 1, . . . . (A.23)

The eigenfunctions yn(x) are given by (A.20):

yn(x) = Bn exp(x2)
dn

dxn
[exp(−x2)]. (A.24)

If Bn = (−1)n, then the functions yn(x) coincide with the Hermite polynomials
Hn(x). Hence, the wave function ψ(x) are given by

ψn(x) = Cn exp(−x2/2)Hn(x), Cn =
1√√
π2nn!

. (A.25)

In the present case the requirement of square integrability for the wave func-
tion ψ(x) is the same as for the function yn(x)

√
ρ(x).

A.1.3 Solution of the Schrödinger equation in a central field

A fundamental problem in quantum mechanics of atoms is that of the motion of
an electron in a central field of attraction. This is connected with the fact that
the description of the motion of electrons in an atom which uses the central-
field approximation is the basis of computations of various properties of atomic
structures [29, 83, 49]. Such a description allows one to understand in a satisfactory
manner specific aspects of the behavior of atoms and find their energy states,
without solving the very difficult quantum-mechanical many-body problem.

In order to find the wave function ψ(�r ) of a particle moving in a central field
with potential energy U(r) we need to solve the Schrödinger equation (A.21)

∆ψ +
2m
h̄2

[E − U(r)]ψ = 0. (A.26)

We will seek particular solutions of (A.26) by separating variables in spherical
coordinates, setting

ψ(�r ) = F (r)W (ϑ, ϕ).

For the functions F (r) and W (ϑ, ϕ) we obtain the equations
[

1
sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1
sin2 ϑ

∂2

∂ϕ2

]
W + µW = 0 (A.27)

and
1
r2

d

dr

(
r2
dF

dr

)
+
[
2m
h̄2

(E − U(r))− µ

r2

]
F (r) = 0, (A.28)



346 Appendix. Methods for solving the Schrödinger and Dirac equations

where µ is a constant.
As we can convince ourselves by separating the variables ϑ, ϕ and using the

Theorem in A.1.2, equation (A.27) has solutions that satisfy the boundedness and
single-valuedness conditions for 0 ≤ ϑ ≤ π, µ = �(� + 1). Moreover, in this case
W (ϑ, ϕ) = (−1)mY�m(ϑ, ϕ), where Y�m(ϑ, ϕ) are spherical harmonics of order �,
with � = 0, 1, . . . and m = 0,±1, . . . ,±�:

Y�m(ϑ, ϕ) = Θ�m(x)Φm(ϕ) (x = cosϑ),

Φm(ϕ) =
1√
2π
eimϕ (m = 0,±1, . . . ,±�),

Θ�m(x) = C�m(1− x2)m/2P
(m,m)
�−m (x) =

(−1)�−m

2��!

√
2�+ 1

2
(�+m)!
(�−m)!

(1− x2)−m/2 d
�−m

dx�−m
(1− x2)� (m ≥ 0).

Here P (m,m)
�−m (x) are the Jacobi polynomials P (α,β)

n (x), which for m = 0 co-
incide with the Legendre polynomials P�(x), and for m > 0 coincide with the
associated Legendre functions of the first kind. For m < 0 we have, by defini-
tion, Θ�,−m(x) = (−1)mΘ�m(x). The normalization constant C�m for spherical
harmonics is chosen in the simplest way, as done, for example, in the well-known
monograph of Bethe and Salpeter [28]:

C�m =
1

2m�!

√
2�+ 1

2
(�−m)!(�+m)! .

By introducing the factor (−1)m in the angular part W (ϑ, ϕ) of the wave function,
as is done in most quantum mechanics books, many relations for the angular
momentum operator can be written in a simpler form. Thus, for example, for the
operators L̂x ± iL̂y we have (see §A.2 below):

(L̂x ± iL̂y)ψ�m =
√

(�∓m)(�±m+ 1)ψ�,m±1.

We should mention also that in a number of quantum mechanics books, in
order to simplify notation the solution of the Schrödinger equation in a central
field is written from the very beginning in the form ψ(�r) = r−1Rn�(r)Y�m(ϑ, ϕ),
with the understanding that Y�m(ϑ, ϕ) already contains the factor (−1)m. How-
ever, when considering the Dirac equation it is anyway necessary to introduce
supplementary phase factors in the angular parts of each of the four components
of the relativistic wave function (see §A.2). Therefore, it is logically justified to
keep for Y�m(ϑ, ϕ) the classical notation adopted in mathematical physics.

Next, let us examine the radial part of the wave function. The substitution
R(r) = rF (r) reduces (A.28) to the equation
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R′′ +
[
2m
h̄2

(E − U(r))− �(�+ 1)
r2

]
R = 0. (A.29)

For bound states the wave function must satisfy the normalization condition∫ |ψ(�r )|2r2dr dΩ = 1. Since
∫
Y�m(ϑ, ϕ)Y ∗

�′m′(ϑ, ϕ)dΩ = δ��′δmm′ ,

the normalization condition for the function R(r) becomes

∞∫

0

R2(r)dr = 1. (A.30)

Here it is assumed that the function F (r) = R(r)/r is bounded for r → 0.

A.1.4 Radial part of the wave function in a Coulomb field

The only atom for which the Schrödinger equation can be solved exactly is the
simplest possible — the hydrogen atom. This, however, does not diminish, but
rather increases the value of the exact solution of the problem for the hydrogen
atom, since analytic, closed-form solutions can be used as a point of departure in
approximate calculations for more complex quantum-mechanical systems.

For the quantum-mechanical description of the hydrogen atom we need to
consider the relative motion of an electron (of massm and charge−e) and a nucleus
(of mass M and charge e). We will solve a more general problem, assuming that
the charge of the nucleus is Ze.

The problem we are dealing with, namely, the motion of an electron and a
nucleus, can be readily reduced to the problem of a single body, a particle with
the reduced mass

µ =
mM

m+M
,

moving in the Coulomb field U(r) = −Ze2/r, i.e., to the solution of the equation

∆ψ +
2µ
h̄2

(
E +

Ze2

r

)
ψ = 0.

Since m/M ≈ 1/(1836A) � 1 (where A denotes the atomic weight), we will
assume from now on that µ = m.

After passing to spherical coordinates, the radial function R(r) will obviously
satisfy equation (A.29). In that equation it is convenient to pass to dimensionless
variables, using the atomic system of units, in which for the units of charge, length
and energy one takes the charge e of the electron and the quantities

a0 =
h̄2

µe2
= 0.529 · 10−8 cm, E0 =

e2

a0
= 27.2 eV.
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Then equation (A.29) becomes

R′′ +
[
2
(
E +

Z

r

)
− �(�+ 1)

r2

]
R = 0. (A.31)

The requirement that the wave function ψ(�r ) be bounded and square inte-
grable can be reduced to the requirement that the function R(r)/r be bounded
for r → 0 and that the normalization condition (A.30) be satisfied.

Equation (A.31) is a particular case of the generalized equation of hyperge-
ometric type (A.1), in which we now have

σ(r) = r, τ̃(r) = 0, σ̃(r) = 2Er2 + 2Zr − �(�+ 1).

Let us reduce (A.31) to an equation of hypergeometric type (A.9). In our
case the polynomial π(r) is given by (see (A.5)-(A.11)):

π(r) =
1
2
±
√

1
4
− 2Er2 − 2Zr + �(�+ 1) + kr.

The constant k is chosen from the condition that the expression under the radical
sign have multiple roots. This yields the following possible values for k:

k = 2Z ± (2�+ 1)
√−2E

(from the form of the potential it follows that bound states are possible only for
E < 0). Among all admissible forms of the polynomial π(r) we choose one for
which the function τ (r) has a zero in the interval (0,∞) and a negative derivative.
These conditions are satisfied by τ (r) = 2(�+ 1−√−2Er), which yields

k = 2Z − (2�+ 1)
√−2E, π(r) = �+ 1−√−2E r,

ϕ(r) = r�+1 exp(−√−2E r), ρ(r) = r2�+1 exp(−2
√−2E r),

λ = 2
[
Z − (2�+ 1)

√−2E
]
.

The energy eigenvalues E are determined from the condition (A.14), i.e.,

λ+ nτ ′ +
n(n− 1)

2
σ′′ = 0 (n = 0, 1, . . .),

where n is the degree of the polynomial y(r) and, accordingly, the number of zeroes
of the radial wave function. Using the expressions for λ, τ (r) and σ(r) obtained
above, we get

E = − Z2

2(n+ �+ 1)2
. (A.32)

The value of E is completely determined by the number n+ �+1, which is known
as the principal quantum number.
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The number of zeroes of the radial function R(r) is usually denoted by nr,
while the principal quantum number is denoted by n (n = nr +�+1). To use these
notations, we need to replace n by nr = n− �−1 in the preceding formulas. Then,
by (A.20), the functions y(r) = yn�(r) (where now n is the principal quantum
number) take on the form

yn�(r) =
Bn�

r2�+1 exp
(
−2Z
n
r

) dn−�−1

drn−�−1

[
rn+� exp

(
−2Z
n
r

)]

and up to a factor they coincide with the Laguerre polynomials L2�+1
n−�−1(x), where

x = 2Zr/n. For the radial function R(r) = Rn�(r) we obtain the expression

Rn�(r) = Cn�e
−x/2x�+1L2�+1

n−�−1(x). (A.33)

It is readily verified that the functions Rn�(r) satisfy the original requirement that
∞∫
0

R2
n�(r)dr < ∞. The constant Cn� is found from the normalization condition

(A.22):

n

2Z
C2

n�

∞∫

0

e−xx2�+2
[
L2�+1

n−�−1(x)
]2
dx = 1. (A.34)

The integral in (A.34) can be calculated by means of the recursion relation for
Laguerre polynomials,

xLα
n(x) = −(n+ 1)Lα

n+1(x) + (2n+ α+ 1)Lα
n(x)− (n+ α)Lα

n−1(x).

Using the orthogonality relation for the Laguerre polynomials, this yields

∞∫

0

e−xx2�+2
[
L2�+1

n−�−1(x)
]2
dx = 2n

∞∫

0

e−xx2�+1[L2�+1
n−�−1(x)]

2dx = 2nd2
n�,

where d2
n� denotes the square of the norm of the polynomial L2�+1

n−�−1(x). Therefore,

Cn� =

√
Z(n− �− 1)!
n2(n+ �)!

. (A.35)

The simplest radial function corresponds to the case nr = 0, i.e., � = n− 1:

Rn�(r) =
1

�+ 1

√
Z

(2�+ 1)!
e−x/2x�+1.

The most complicated form of the radial function occurs for � = 0, when
the function has the maximum possible number of zeroes for the given principal
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Figure A.1: Distribution of the electron charge in the hydrogen atom for the K,
L, M , and N shells for � = 0, as function of the variable x =

√
r. The position

of the main maximum corresponds to the average distance between electron and
nucleus

quantum number n. However, in this case the dependence of the wave function on
the angles ϑ, ϕ is the simplest, namely, for � = 0 the wave function is spherically-
symmetric, since Y00(ϑ, ϕ) = 1/

√
4π. Figure A.1 shows the distribution of the

electron charge R2
n�(r) for some states of the hydrogen atom with � = 0, for shells

with principal quantum numbers n = 1, 2, 3, 4, i.e., for the K, L, M , N shells.

EXAMPLE 2. Once the radial function Rn�(r) is known, we can calculate
various characteristics of a hydrogen-like atom, in particular, the average distance
between nucleus and electron in the states with quantum numbers n, �:

〈rn�〉 =
∞∫

0

rR2
n�(r)dr = C2

n�

( n
2Z

)2
∞∫

0

e−xx2�+1
[
xL2�+1

n−�−1(x)
]2
dx.

To calculate the integral it is sufficient to use the recursion relation for the Laguerre
polynomials and their orthogonality:

〈rn�〉 =
1

2Z
[
3n2 − �(�+ 1)

]
. (A.36)

Knowledge of wave functions allows us to obtain a visual representation of
the hydrogen atom with the electron in different excited states. Figure A.2 shows
the distribution of the radial electron density R2

n�(r)|Y�m(ϑ, ϕ)|2 for the states of
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the hydrogen atom with n = 7, m = 0 for � = 0, 1, . . . , 6. Each picture displays the
values of the function R2

n�(r)P
2
� (cosϑ) in a plane passing through the nucleus. The

curves where the charge density vanishes are concentric circles with the nucleus
as center and lines passing through the nucleus. In three-dimensional space these
curves would be spheres and cones, respectively.

The fact that the successive maxima of the radial electron density monotoni-
cally increase or decrease along lines passing through the nucleus in the ϑ-direction
and on circles of a given radius r can be explained by investigating the behavior
of the functions R2

n�(r) and P 2
� (cosϑ). To do this, let us consider the differential

equation
[k(x)y′]′ + q(x)y = 0,

which has the particular solutions Rn�(r) = Cn�e
−x/2x�+1L2�+1

n−�−1(x) (x = 2r/n)
and P�(x) (x = cosϑ) for special choices of k(x) and q(x). To examine the qual-
itative behavior of a solution y(x) on an interval where k(x) > 0, q(x) > 0, it is
convenient to introduce the function

v(x) = y2(x) + a(x)[k(x)y′(x)]2,

where the factor a(x) will be chosen in a special way. We have

v′(x) = a′(x)[k(x)y′]2 + 2yy′[1− a(x)k(x)q(x)].

Choosing a(x) so that the condition 1− a(x)k(x)q(x) = 0 is satisfied, we obtain

v(x) = y2(x) +
k(x)
q(x)

[y′(x)]2, v′(x) =
[

1
k(x)q(x)

]′
[k(x)y′(x)]2.

This shows that the intervals of monotone increase or decrease of the function
v(x) will coincide with the analogous intervals for the function 1/(k(x)q(x)). Note
that the values of the functions v(x) and y2(x) coincide in the points of maximum
of y(x) as well as in the points where k(x) = 0. This allows us to find the intervals
in which the successive maxima of the functions P 2

� (x) and R2
n�(r) increase or

decrease. For example, in the case of the Legendre polynomials P�(x),

k(x) = 1− x2, q(x) = �(�+ 1), v′(x) =
2x

�(�+ 1)
[y′(x)]2.
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Figure A.2: Space distribution of the electron charge in the hydrogen atom for
the states n = 7, � = 0, 1, . . . , n − 1 for m = 0. The plots show the graphs of the
function z = f(x, y), where x = r cosϑ, y = r sinϑ, f(x, y) = R2

n�(r)P
2
� (cosϑ)
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Therefore, if 0 ≤ ϑ < π/2 the magnitudes of the successive maxima of the
function P 2

� (cosϑ) decrease when ϑ increases, whereas for π/2 < ϑ ≤ π they
decrease. The behavior of the functions R2

n�(r) is analyzed in the same manner,
and one concludes that for r > �(�+ 1)/Z the successive maxima increase (see
figures A.1 and A.2).

EXAMPLE 3. Let us find the electrostatic potential generated by a hydrogen-
like atom.

Suppose an electron moving in the Coulomb field of a nucleus with charge Z
is in the steady state with wave function ψn�m(�r ). If we consider that the nucleus
does not move and is located in the point r = 0, then the potential of the nucleus is
Z/r. Hence, for the average potential V (r) produced in the point r by the electron
and the nucleus we obtain

V (r) =
Z

r
−
∫ |ψn�m(�r ′)|2

|�r − �r ′| (r′)2 dr′dΩ′.

To calculate the integral we use the generating function for the Legendre polyno-
mials and the addition theorem for spherical harmonics:

1
|�r − �r ′| =

∞∑

s=0

rs
<

rs+1
>

Ps(cosω)=
∞∑

s=0

rs
<

rs+1
>

[
4π

2s+ 1

s∑

m′=−s

Y ∗
sm′(ϑ′, ϕ′)Ysm′(ϑ, ϕ)

]
,

where ω is the angle between the vector �r and �r ′, r< = min(r, r′), r> = max(r, r′).
Since

ψn�m(�r ′) =
1
r′
Rn�(r′)(−1)mY�m(ϑ′, ϕ′),

we have
∫ |ψn�m(�r ′)|2

|�r − �r ′| (r′)2 dr′dΩ′ =
∞∑

s=0

4π
2s+ 1

∑

m′
Ysm′(ϑ, ϕ)

∫
rs
<

rs+1
>

R2
n�(r

′) dr′×
∫
Y�m(ϑ′, ϕ′)Y ∗

�m(ϑ′, ϕ′)Y ∗
sm′(ϑ′, ϕ′) dΩ′. (A.37)

If we use the explicit form of the spherical harmonics:

Y�m(ϑ, ϕ) =
1√
2π
eimϕΘ�m(cosϑ),

then after integration with respect to ϕ′ in the sum over m′ only the term with
m′ = 0 remains, and so

V (r) =
Z

r
−

∞∑

s=0

4π
2s+ 1

Ys0(ϑ, ϕ)

∞∫

0

rs
<

rs+1
>

R2
n�(r

′) dr′×
∫
Y�m(ϑ′, ϕ′)Y ∗

�m(ϑ′, ϕ′)Y ∗
s0(ϑ

′, ϕ′) dΩ′.
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The integration with respect to r′ gives

∞∫

0

rs
<

rs+1
>

R2
n�(r

′) dr′ =
1

rs+1

r∫

0

(r′)sR2
n�(r

′) dr′ + rs

∞∫

r

R2
n�(r

′)
(r′)s+1

dr′.

The integral of a product of three spherical harmonics reduces to the integral of a
product of three functions Θ�m(cosϑ):

∫
Y�m(ϑ′, ϕ′)Y ∗

�m(ϑ′, ϕ′)Y ∗
s0(ϑ

′, ϕ′) dΩ′ =
1√
2π

1∫

−1

Θ2
�m(x)Θs0(x) dx.

The last integral is different from zero only for s = 0, 2, . . . , 2�, i.e., the sum
over s in (A.37) contains only a finite number of terms. This follows from the
connection between the functions Θ�m(x) and orthogonal polynomials:

Θ�m(x) = C�m(1− x2)m/2P
(m,m)
�−m (x).

Here P (α,β)
n (x) are the Jacobi polynomials, which for α = β = 0 coincide with the

Legendre polynomials Pn(x), and C�m are constants. Consequently,

Θ2
�m(x)Θs0(x) = C2

�m(1− x2)m
[
P

(m,m)
�−m (x)

]2
Ps(x).

It is known that an orthogonal polynomial (in particular, a Legendre polynomial)
is orthogonal to any polynomial of smaller degree. This means that for s > 2�
the integral in question is equal to zero. Further, for s odd the function under the
integral sign is odd because

Ps(−x) = (−1)sPs(x).

Therefore, the integral is zero also for s odd.
In the case when the electron is in the background state (n = 1, � = 0), all

the integrals are readily calculated. We obtain

V (r) =
Z − 1
r

+
(
Z +

1
r

)
exp(−2Zr). (A.38)

For small r, V (r) ≈ Z/r, as expected, while for r → ∞, V (r) ≈ (Z − 1)/r
(the potential of the nucleus screened by the electron).

Let us remark that the integral of a product of three spherical harmonics
Y�1m1(ϑ, ϕ)Y�2m2(ϑ, ϕ)Y�m(ϑ, ϕ) can be expressed through the Clebsch-Gordan co-
efficients C�m

�1m1�2m2
= 〈�1m1�2m2|�m〉, or the more symmetrized 3jm-symbols

(
�1 �2 �
m1 m2 −m

)
=

(−1)�1−�2+m

√
2�+ 1

C�m
�1m1�2m2

, (A.39)
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for which tables and formulas of various kind are available [220]. The Clebsch-
Gordan coefficients and the related Racah coefficients are remarkably simply con-
nected with the classical orthogonal polynomials of a discrete variable on a linear
or quadratic mesh [146]. This connection allows one, using the basic properties of
orthogonal polynomials, to study the properties of the vector-coupling coefficients
and derive needed formulas.

A.2 Solution of the Dirac equation for the Coulomb

potential

For high-Z atoms the electron energies become comparable with the rest energy
mc2. In such situations, to calculate energy levels and wave functions one needs
to use the Dirac equation. For an electron in a central field with potential energy
U(r) the Dirac equation reads [28, 52]

ĤΨ =
[
c(�̂α �̂p ) +mc2β̂ + U(r)

]
Ψ = EΨ,

where Ψ is the 4-component wave function

Ψ =





Ψ1

Ψ2

Ψ3

Ψ4



 , (�̂α �̂p ) =
3∑

k=1

α̂kp̂k

(
p̂k =

h̄

i

∂

∂xk

)
,

α̂k =
(
O σk

σk O

)
, β̂ =

(
I O
O −I

)
, I =

(
1 0
0 1

)
, O =

(
0 0
0 0

)
.

Usually for σk one takes the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Let us write the Dirac equations for each of the components of the wave function:

− i

h̄c
(E − U(r)− E0) Ψ1 +

∂Ψ3

∂z
+
(
∂

∂x
− i ∂

∂y

)
Ψ4 = 0,

− i

h̄c
(E − U(r)− E0) Ψ2 − ∂Ψ4

∂z
+
(
∂

∂x
+ i

∂

∂y

)
Ψ3 = 0,

− i

h̄c
(E − U(r) + E0) Ψ3 +

∂Ψ1

∂z
+
(
∂

∂x
− i ∂

∂y

)
Ψ2 = 0,

− i

h̄c
(E − U(r) + E0) Ψ4 − ∂Ψ2

∂z
+
(
∂

∂x
+ i

∂

∂y

)
Ψ1 = 0

(E0 = mc2 is the rest energy of the electron).
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It is convenient to use the relativistic system of units, in which the electron mass
m, the Planck constant h̄ and the speed of light c are all equal to 1. Then the
Dirac equations for an electron in the Coulomb field U(r) = −Ze2/r become

−i
(
E +

µ

r
− 1
)

Ψ1 +
∂Ψ3

∂z
+
(
∂

∂x
− i ∂

∂y

)
Ψ4 = 0,

−i
(
E +

µ

r
− 1
)

Ψ2 − ∂Ψ4

∂z
+
(
∂

∂x
+ i

∂

∂y

)
Ψ3 = 0,

−i
(
E +

µ

r
+ 1
)

Ψ3 +
∂Ψ1

∂z
+
(
∂

∂x
− i ∂

∂y

)
Ψ2 = 0,

−i
(
E +

µ

r
+ 1
)

Ψ4 − ∂Ψ2

∂z
+
(
∂

∂x
+ i

∂

∂y

)
Ψ1 = 0.

(A.40)

Here µ=αZ, α= e2/(h̄c) is the fine structure constant, 1/α = 137.036, and the
energy E includes the rest energy mc2 (0 < E < 1).

A.2.1 The system of equations for the radial parts of the wave
functions

In spherical coordinates (r, ϑ, ϕ) the variables in the system of equations (A.40)
can be separated if we use the fact that in a central field the angular momentum
of a particle is conserved. Then one can construct eigenfunctions corresponding
to specified eigenvalues of the operators Ĥ, Ĵ2 and Ĵz (here Ĵ2 is the square of
the angular momentum operator and Ĵz is the operator of the projection of the
angular momentum on the z-axis).

Since the spin interacts with the current generated by the orbital motion of
the electron, in the general case the electron cannot have a determined value of the
spin or orbital momentum. However, its wave function with the requisite symmetry
properties can be constructed from a mixture of states with orbital momentum
� = j − 1/2 and � = j + 1/2, adding to them the spin in the appropriate manner.

Accordingly, the wave function of a state in which the total momentum of
the particle is equal to j and its projection on the z-axis is equal to m can be
written in terms of the Clebsch-Gordan coefficients as a sum of products of the
space and spin parts of the wave function:

(
Ψ1

Ψ2

)
=
∑

m�,ms

Cjm

�m�
1
2ms

fN�j(r)W�m�
(ϑ, ϕ)χsms

(σ), (A.41)

(
Ψ3

Ψ4

)
=
∑

m�′ ,ms

Cjm

�′m�′
1
2ms

(−1)(�−�′+1)/2gN�′j(r)W�′m�′ (ϑ, ϕ)χsms
(σ). (A.42)
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Here the spin wave functions χsms
(σ) are the basic two-component spinors, cor-

responding to s = 1/2, ms = ±1/2 (σ is the spin variable):

χ1/2,1/2 =
(

1
0

)
, χ1/2,−1/2 =

(
0
1

)
;

W�m
�
(ϑ, ϕ) = i�(−1)m

�Y�m
�
(ϑ, ϕ) are the angular parts of the wave functions;

fN�j(r) and (−1)(�−�′+1)/2gN�′j(r) are the radial parts of the wave functions (the
index N is connected with the number of zeroes of the function fN�j(r)); and,
finally, Cjm

�m�
1
2ms

= 〈�m�
1
2 ms | j m〉 are the Clebsch-Gordan coefficients (m =

m� + ms, see Table A.1). The angular parts of the wave functions satisfy the
relation

(L̂x ± iL̂y)W�m�
(ϑ, ϕ) = [(�∓m�)(�±m� + 1)]1/2W�,m�±1(ϑ, ϕ).

In order to satisfy the last relation, we introduce the factor (−1)m
� in the

angular component of the wave function W�m
�
(ϑ, ϕ), assuming that the spherical

harmonics Y�m
�
(ϑ, ϕ) are normalized in the simplest way [28, 154]. The factor i� is

introduced to ensure that the functions f(r)=fN�j(r) and g(r)=gN�′j(r) will sat-
isfy differential equations with real coefficients. As we will see below, introducing
in (A.42) the factor (−1)(�−�′+1)/2 in the radial part of the wave function allows
one to derive a system of equations for the radial parts of the wave functions f(r)
and g(r) in a form that works for � = j − 1/2 as well as for � = j + 1/2.

Table A.1: Values of the Clebsch-Gordan coefficients Cjm

�m�
1
2 ms

ms
1

2
−1

2
j

� +
1

2

√
j + m

2j

√
j − m

2j

� − 1

2
−
√

j − m + 1

2j + 2

√
j + m + 1

2j + 2

Note that for given values of j,m and � in equation (A.42) we must put
�′ = 2j−�. This is connected with the fact that after we substitute the expressions
(A.41) for Ψ1 and Ψ2 in the last two of the Dirac equations (A.40) we obtain for
Ψ3 and Ψ4 the representation (A.42) for �′ = 2j − � (see formulas (A.45) and
(A.46) below). For this reason the radial part of the wave function gN�′j(r) will
henceforth be denoted by gN�j(r).
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Recall that in equations (A.41) and (A.42) j is the quantum number char-
acterizing the total angular momentum of the electron (j = 1/2, 3/2, . . .). The
quantum number m takes half-integer values ranging from −j to j. Clearly, for
� = j ∓ 1/2 we have �′ = j ± 1/2.

Upon substituting in (A.41) and (A.42) the expressions for the spin and
angular parts of the wave functions χsms

(σ), W�m�
(ϑ, ϕ), W�′m�′ (ϑ, ϕ), as well as

the values of the Clebsch-Gordan coefficients, we obtain for � = j−1/2 the formula





Ψ1

Ψ2

Ψ3

Ψ4



 = (−1)m+1/2 i�





−
√
j +m

2j
fN�j(r)Y�,m−1/2(ϑ, ϕ)

√
j −m

2j
fN�j(r)Y�,m+1/2(ϑ, ϕ)

√
j −m+ 1

2j + 2
igN�j(r)Y�+1,m−1/2(ϑ, ϕ)

√
j +m+ 1

2j + 2
igN�j(r)Y�+1,m+1/2(ϑ, ϕ)





. (A.43)

Similarly, setting � = j + 1/2 in (A.41) and (A.42), we get





Ψ1

Ψ2

Ψ3

Ψ4



 = (−1)m+1/2 i�





√
j −m+ 1

2j + 2
fN�j(r)Y�,m−1/2(ϑ, ϕ)

√
j +m+ 1

2j + 2
fN�j(r)Y�,m+1/2(ϑ, ϕ)

√
j +m

2j
igN�j(r)Y�−1,m−1/2(ϑ, ϕ)

−
√
j −m

2j
igN�j(r)Y�−1,m+1/2(ϑ, ϕ)





. (A.44)

Now let us substitute the expressions (A.43) and (A.44) in the system of
equations (A.40) and use the following formulas, which are given in [28]:

∂

∂z
[f(r)Y�m(ϑ, ϕ)] =

√
(�+m+ 1)(�−m+ 1)

(2�+ 3)(2�+ 1)
Y�+1,m(ϑ, ϕ)

[
df

dr
− �f(r)

r

]
+

√
(�+m)(�−m)
(2�+ 1)(2�− 1)

Y�−1,m(ϑ, ϕ)
[
df

dr
+ (�+ 1)

f(r)
r

]
, (A.45)
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(
∂

∂x
±i ∂
∂y

)
[f(r)Y�m(ϑ, ϕ)]=

±
√

(�±m+2)(�±m+1)
(2�+ 3)(2�+ 1)

Y�+1,m±1(ϑ, ϕ)
[
df

dr
−�f(r)

r

]
∓

√
(�∓m)(�∓m− 1)

(2�+ 1)(2�− 1)
Y�−1,m±1(ϑ, ϕ)

[
df

dr
+ (�+ 1)

f(r)
r

]
. (A.46)

This yields the following system of equations for f(r) = fN�j(r) and g(r) =
gN�j(r):






f ′ +
1 + κ

r
f −
(
E + 1 +

µ

r

)
g = 0,

g′ +
1− κ
r

g +
(
E − 1 +

µ

r

)
f = 0,

(A.47)

where µ = αZ and the constant κ depends on �:

κ =

{
−(�+ 1) for � = j − 1/2,

� for � = j + 1/2.

Clearly, |κ| = j+1/2. Let us mention here that in the nonrelativistic approximation
|f(r)| � |g(r)| (this will be shown later, in Subsection A.2.5).

The functions f(r) and g(r) for bound states must satisfy the normalization
condition

∞∫

0

r2
[
f2(r) + g2(r)

]
dr = 1, (A.48)

which in turn follows from the normalization condition for the 4-component wave
function Ψ.

A.2.2 Reduction of the system of equations for the radial functions
to an equation of hypergeometric type

Let us write the system of equations (A.47) in matrix form, setting

u =
(
u1

u2

)
=
(
f(r)
g(r)

)
.

Then
u′ = Au, (A.49)
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where

A =
(
a11 a12

a21 a22

)
=





−1 + κ

r
1 + E +

µ

r

1− E − µ

r
−1− κ

r



 .

To find the function u1(r), let us eliminate the function u2(r) from the system
(A.49). We obtain for u1(r) the second-order differential equation

u′′1 −
(
a11 + a22 +

a′12
a12

)
u′1 +

(
a11a22 − a12a21 − a′11 −

a′12
a12

a11

)
u1 = 0. (A.50)

Similarly, eliminating u1(r), we obtain the following equation for u2(r):

u′′2 −
(
a11 + a22 +

a′21
a21

)
u′2 +

(
a11a22 − a12a21 − a′22 +

a′21
a21

a22

)
u2 = 0. (A.51)

The coefficients of the matrix A have the form

aik = bik +
cik
r
,

where bik and cik are constants. Equations (A.50) and (A.51) are not generalized
equations of hypergeometric type (see (A.1) in §A.1). This is because

a′12
a12

= − c12
c12r + b12r2

,

and so the coefficients of u′1(r) and u1(r) in equation (A.50) have the form

a11 + a22 +
a′12
a12

=
p1(r)
r
− c12
c12r + b12r2

(b12 = 1 + E 	= 0, c12 = µ 	= 0),

a11a22 − a12a21 − a′11 +
a′12
a12

a11 =
p2(r)
r2
− c12
c12r + b12r2

c11 + b11r

r

(here p1(r) and p2(r) are polynomials of degree at most one and two, respectively).
Equation (A.50) would be a generalized equation of hypergeometric type

(A.1), with σ(r) = r, if one of the coefficients b12 or c12 would be equal to zero.
Here it is convenient to argue as follows. A linear transformation

(
v1
v2

)
= T

(
u1

u2

)

with a nonsingular matrix T that does not depend on r takes our system (A.49)
into a system of the same form for the functions v1(r) and v2(r), namely

v′ = Ãv,
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where

Ã = TAT−1 =
(
ã11 ã12

ã21 ã22

)
.

Obviously, the coefficients ãik are linear combinations of aik, and consequently

ãik = b̃ik +
c̃ik
r
,

where again b̃ik and c̃ik are constants. It follows that the equations for v1(r) and
v2(r) will be similar to (A.50) and (A.51):

v′1 −
(
ã11 + ã22 +

ã′12
ã12

)
v′1 +

(
ã11ã22 − ã12ã21 − ã′11 +

ã′12
ã12

ã11

)
v1 = 0, (A.52)

v′2 −
(
ã11 + ã22 +

ã′21
ã21

)
v′2 +

(
ã11ã22 − ã12ã21 − ã′22 +

ã′21
ã21

ã22

)
v2 = 0. (A.53)

To make (A.52) a generalized equation of hypergeometric type it suffices to
put b̃12 = 0, or c̃12 = 0. Similarly, for (A.53) it suffices to put b̃21 = 0, or c̃21 = 0.
These conditions give certain constraints on the choice of the matrix T . Let

T =
(
α β
γ δ

)
.

Then

T−1 =
1
∆

(
δ −β
−γ α

)
, ∆ = αδ − βγ,

and so

Ã =




a11αδ − a12αγ + a21βδ − a22βγ a12α

2 − a21β
2 + (a22 − a11)αβ

a21δ
2 − a12γ

2 + (a11 − a22)γδ −a11βγ + a12αγ − a21βδ + a22αδ



 .

There are several possible choices for α, β, γ, δ. As a matter of fact, in books
on quantum mechanics only one of the choices corresponding to the conditions
b̃12 = 0, b̃21 = 0 is used [123]. We will consider the case when the constants
α, β, γ, δ are chosen from the conditions c̃12 = 0, c̃21 = 0, which give the equations

2καβ + µ(α2 + β2) = 0,

2κγδ + µ(γ2 + δ2) = 0.
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We will show that this requirement is preferable over the requirement b̃12 = 0,
b̃21 = 0. The conditions c̃12 = 0, c̃21 = 0 will be satisfied if we take the matrix T
to be of the form

T =
(

µ ν − κ
ν − κ µ

)
,

where µ = αZ, ν =
√
κ2 − µ2. In this way we arrive at the following system of

equations for the functions v1(r) and v2(r):

v′1 =
(
−ν + 1

r
+
Eµ

ν

)
v1 +

(
1 +

Eκ

ν

)
v2, (A.54)

v′2 =
(

1− Eκ

ν

)
v1 +

(
ν − 1
r
− Eµ

ν

)
v2. (A.55)

If 1+Eκ/ν 	= 0, then from the system (A.54), (A.55) one can eliminate v2(r)
and obtain a generalized equation of hypergeometric type for the function v1(r):

v′′1 +
2
r
v′1 +

(E2 − 1)r2 + 2Eµr − ν(ν + 1)
r2

v1 = 0. (A.56)

In the special case E = −ν/κ (i.e., 1 + Eκ/ν = 0), the general solution of
equation (A.54) has the form

v1(r) = C1r
−ν−1eEµr/ν .

This function v1(r) satisfies the integrability condition (A.48) only when C1 = 0.
Then (A.55) yields

v2(r) = C2r
ν−1e−Eµr/ν . (A.57)

Clearly, the functions v1(r) ≡ 0 and v2(r) with C2 	= 0 satisfy the conditions of our
problem. Note that such a solution is possible only for κ < 0 (i.e., for � = j−1/2),
because ν > 0 and E > 0.

A.2.3 Equations of hypergeometric type for the bound states and
their solution

Consider equation (A.56). First, let us examine the behavior of the function v1(r)
for small r. When r → 0,

∣∣(E2 − 1)r2 + 2Eµr
∣∣� ν(ν + 1),

and so in the vicinity of the point r = 0 the behavior of v1(r) will be approximately
described by the Euler equation

r2v′′1 + 2rv′1 − ν(ν + 1)v1 = 0,
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whose solution has the form

v1(r) = C1r
ν + C2r

−ν−1.

From the conditions imposed on v1(r) it follows that C2 = 0. Hence, for r ∼ 0 we
have v1(r) ≈ C1r

ν .
Equation (A.56) is an equation of type (A.1), with σ(r)=r, τ̃(r)=2, σ̃(r)=

(E2−1)r2+2Eµr−ν(ν+1). We can reduce (A.56) to an equation of hypergeometric
type (A.9) by means of the substitution v1 = ϕ(r)y , where ϕ(r) satisfies the
equation ϕ′/ϕ = π(r)/σ(r), with π(r) a polynomial of degree at most one.

Among the four possible forms for the polynomial π(r) we choose the one for
which the function τ (r) = τ̃(r)+ 2π(r) has a negative derivative and a zero in the
interval (0,∞). When π(r) = −ar + ν, where a =

√
1− E2, ν =

√
κ2 − µ2, the

function τ (r) = 2(ν + 1− ar) satisfies these requirements, and we get

ϕ(r) = rνe−ar, ρ(r) = r2ν+1e−2ar, λ = 2 [µE − (ν + 1)a] .

The energy values E = EN are found from the equation

λ+Nτ ′ +
1
2
N(N − 1)σ′′ = 0, N = 0, 1, . . . ,

whence
µE − (N + ν + 1)a = 0. (A.58)

The eigenfunctions are given by the Rodrigues formula:

y
N

(r) =
CN

ρ(r)
dN

drN
[σN (r)ρ(r)] = CN r−2ν−1e2ar d

N

drN

(
rN+2ν+1e−2ar

)
(A.59)

(we denote the degree of the polynomial y(r) by N , because we want to preserve
the notation n for the principal quantum number, which will be needed below).
The functions y

N
(r) coincide, up to a constant factor, to the Laguerre polynomials

L2ν+1
N (x), where x = 2ar.

The energy eigenvalues E = −ν/κ found above satisfy the equation (A.58)
for N = −1. It is therefore natural to replace N by N − 1 in formulas (A.58) and
(A.59) and define the energy eigenvalues by means of the equality

µE − (N + ν)a = 0, N = 0, 1, . . . . (A.60)

For N = 1, 2, . . . the function v1(r) has the form

v1(r) = ANx
νe−x/2L2ν+1

N−1 (x), x = 2ar (A.61)

(v1(r) = 0 if N = 0). It is readily verified that the functions rv1(r) are square
integrable, as required.
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Equation (A.54) with E = EN (N = 1, 2, . . .) yields

v2(r) =
1

1 + (Eκ)/ν

[
v′1(r) +

(
ν + 1
r
− Eµ

ν

)
v1(r)

]
.

Substituting here the expression for v1(r), we get

v2(r) = xν−1e−x/2y(x),

where y(x) is a polynomial of degreeN . To find y(x), we first write the equation for
the function v2(r) obtained by eliminating v1(r) from the system (A.54), (A.55):

v′′2 +
2
r
v′2 +

(E2 − 1)r2 + 2Eµr + ν(1− ν)
r2

v2 = 0. (A.62)

This translates into the following differential equation for the polynomial y(x):

xy′′ + (2ν − x)y′ +Ny = 0. (A.63)

Equation (A.63) is of hypergeometric type. Its unique polynomial solution is
the Laguerre polynomial y(x) = BNL

2ν−1
N (x), and so

v2(r) = BN xν−1e−x/2L2ν−1
N (x). (A.64)

It is readily verified that the solution (A.57) obtained earlier for E = −ν/κ is a
particular case of this formula for N = 0. As expected, expression (A.64) for the
function v1(r) can be obtained from the expression (A.61) for v1(r) if we replace
ν by ν−1. This is connected with the fact that equation (A.56) becomes equation
(A.62) when ν is replaced by ν − 1.

To find how the constants AN and BN in (A.61) and respectively (A.64) are
related, let us compare the behavior of the left- and right-hand sides of (A.54)
when r → 0, using the formula

Lα
N (0) =

Γ(N + α+ 1)
N ! Γ(α+ 1)

.

We have

2aνAN L2ν+1
N−1 (0) = −2a(ν + 1)ANL

2ν+1
N−1 (0) +

(
1 +

Eκ

ν

)
BNL

2ν−1
N (0),

whence
AN =

ν + Eκ

aN(N + 2ν)
BN , N = 1, 2, . . . .

Since, by (A.60),

N(N + 2ν) = (N + ν)2 − ν2 =
E2µ2

a2
− ν2 =

E2κ2 − ν2

a2
,

we conclude that
AN =

a

Eκ− νBN .
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A.2.4 Energy levels and radial functions

Once the functions v1(r) and v2(r) are known, we can find f(r) and g(r):



f

g



 = T−1




v1

v2



 , T−1 =
1

2ν(κ− ν)




µ κ− ν

κ− ν µ



 .

Therefore,



f(r)

g(r)



 =
BN

2ν(κ− ν)x
ν−1e−x/2




f1 f2

g1 g2








xL2ν+1

N−1 (x)

L2ν−1
N (x)



 ,

where

f1 =
aµ

Eκ− ν , f2 = κ− ν, g1 =
a(κ− ν)
Eκ− ν , g2 = µ;

E = ENj =
1√

1 + (µ/(N + ν))2
, ν =

√
(j + 1/2)2 − µ2,

x = 2ar, a =
µ/(N + ν)√

1 + (µ/(N + ν))2
, µ = αZ.

In the case N = 0 (� = j−1/2) the formulas for f(r) and g(r) remain valid
if we formally set the terms containing L2ν+1

−1 (x) equal to zero. When � = j+ 1/2,
we have N = 1, 2, . . . . The number N is determined by the number of zeroes of
the functions f(r) and g(r) (as we shall see below, the number of zeroes of f(r) is
N for j = �+ 1/2 and N − 1 for j = �− 1/2).

Let us calculate the normalization coefficient BN , using the normalization
condition (A.48). We have

∞∫

0

r2[f2(r) + g2(r)]dr =
B2

N

4ν2(κ− ν)2(2a)3
∞∫

0

e−xx2ν×

×
{[
f1xL

2ν+1
N−1 (x) + f2L

2ν−1
N (x)

]2
+
[
g1xL

2ν+1
N−1 (x) + g2L

2ν−1
N (x)

]2}
dx =1.

We need to calculate integrals of two type:

J1 =

∞∫

0

e−xxα+1 [Lα
n(x)]2 dx

and

J2 =

∞∫

0

e−xxαLα
n−1(x)L

α−2
n (x)dx.
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The integral J1 can be expressed in terms of the squared norm of the Laguerre
polynomials

d2
n =

∞∫

0

e−xxα [Lα
n(x)]2 dx =

1
n!

Γ(n+ α+ 1).

This is done by using the recursion relation

xLα
n(x) = −(n+ 1)Lα

n+1(x) + (2n+ α+ 1)Lα
n(x)− (n+ α)Lα

n−1(x)

and the orthogonality property

∞∫

0

e−xxαLα
n(x)Lα

m(x) dx = 0 (m 	= n).

This yields

J1 = (2n+ α+ 1)

∞∫

0

e−xxα [Lα
n(x)]2 dx =

1
n!

(2n+ α+ 1) Γ(n+ α+ 1).

To calculate J2 it suffices to expand the polynomial Lα−2
n (x) with respect to the

polynomials Lα
k (x):

Lα−2
n (x) = C1L

α
n(x) + C2L

α
n−1(x) + . . . .

The coefficients C1 and C2 are easily found by comparing the coefficients of xn

and xn−1 in both sides of this equality. This yields C1 = 1, C2 = −2, and so

J2 = −2

∞∫

0

e−xxα
[
Lα

n−1(x)
]2
dx = −2

Γ(n+ α)
(n− 1)!

.

Therefore,

BN = 2a2

√
(κ− ν)(Eκ− ν)N !

µΓ(N + 2ν)
.

We finally obtain

f(r) =
BN

2ν(κ− ν)x
ν−1e−x/2

[
f1xL

2ν+1
N−1 (x) + f2L

2ν−1
N (x)

]
,

g(r) =
BN

2ν(κ− ν)x
ν−1e−x/2

[
g1xL

2ν+1
N−1 (x) + g2L

2ν−1
N (x)

]
,

(A.65)

where
f1 =

aµ

Eκ− ν , f2 = κ− ν, g1 =
a(κ− ν)
Eκ− ν , g2 = µ
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(for N = 0 we must set xL2ν+1
−1 (x) = 0, in accordance with (A.61)). Let us mention

that for the solutions of the Dirac equation with the Coulomb potential one usually
resorts to a more complicated representation in terms of confluent hypergeometric
functions (see, e.g., [28]).

The wave functions (A.65) correspond to the energy values

E = E
N j =

1√
1 + (µ/(N + ν))2

, µ = αZ, ν =
√

(j + 1/2)2 − µ2, (A.66)

where for j = �+ 1/2 [resp., j = �− 1/2] N takes the values N = 0, 1, 2, . . .[resp.,
N = 1, 2, . . .].

A.2.5 Connection with the nonrelativistic theory

To get the nonrelativistic limit, let us pass from the Dirac equation to the Schrödin-
ger equation. This is ordinarily done using atomic units (e = 1, m = 1, h̄ = 1;
then c = 1/α = 137.036). The expression for the energy levels (A.66), originally
written in mc2 units, becomes

ENj =
1√

1 +
(

αZ

N + ν

)2

mc2

me4/h̄2
=

1

α2

√

1 +
(

αZ

N + ν

)2
(A.67)

in atomic units. If the quantity αZ is small, then

ν=
√

(j + 1/2)2− (αZ)2 ≈j + 1/2.

Eliminating the rest energy E0 = mc2 from ENj , we obtain

εn�j = ENj − E0 ≈ − Z2

2n2
,

where

n = N + j +
1
2

=

{
N + �+ 1, if j = �+ 1/2 (N = 0, 1, . . .),
N + �, if j = �− 1/2 (N = 1, 2, . . .).

This formula obviously coincides with formula (A.23) of §A.1 for the Schrödinger
equation, which gives the energy levels of an electron in a Coulomb field; n plays
the role of the principal quantum number.

Now let us consider the nonrelativistic limit for the radial parts of the wave
functions, f(r) and g(r). To this end we pass to atomic units in formula (A.65),
setting N = n− j − 1/2. Since the system of atomic [resp., relativistic] units uses
h̄2/(me2) [resp., h̄/(mc)] for the unit of length, it follows, according to (A.48), that
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in order to switch to atomic units we must multiply the right-hand side of (A.65)
by (

h̄/mc

h̄2/me2

)−3/2

=
(
e2

h̄c

)−3/2

= α−3/2.

After that, the formulas for the radial functions F (r) = rf(r) and G(r) =
rg(r) in atomic units are obtained by multiplying (A.65) by rα−3/2 = x/(2aα1/2):

F (r) ≡ Fn�j(r) = Cn�jx
νe−x/2

[
f1xL

2ν+1
n−j−3/2(x) + f2L

2ν−1
n−j−1/2(x)

]
,

G(r) ≡ Gn�j(r) = Cn�jx
νe−x/2

[
g1xL

2ν+1
n−j−3/2(x) + g2L

2ν−1
n−j−1/2(x)

]
.

(A.68)

Here

x=2ar/α, a=

αZ

n− j − 1/2 + ν√

1 +
(

αZ

n− j − 1/2 + ν

)2
, ν=

√
(j + 1/2)2− (αZ)2,

f1 =
a(αZ)2

κa(n− j − 1/2 + ν)− αZν , f2 = κ− ν, g1 =
κ− ν
αZ

f1, g2 = αZ,

Cn�j =
a

2ν(κ− ν)Zα3/2

√
(κ− ν)(n− j − 1/2)! [aκ (n− j − 1/2 + ν)− αZν]

Γ(n− j − 1/2 + 2ν)
,

κ =






−(�+ 1), if � = j − 1/2,

�, if � = j + 1/2,
(� = 0, 1, . . . , n− 1).

The number of zeroes of the large component of the relativistic radial function
Fn�j(r) is equal to nr = n − � − 1, like in the nonrelativistic case, although for
� = j + 1/2 the degree of the polynomial

f1xL
2ν+1
n−j−3/2(x) + f2L

2ν−1
n−j−1/2(x)

is n−j−1/2 = nr +1. In this case one of the zeroes of this polynomial is negative,
which does not change the number of zeroes of the radial function Fn�j(r) for
r > 0.

Let us estimate the order of magnitude of the coefficients f1, f2 and g1, g2 for
small values of αZ in formula (A.68). Here

a =
√

1− E2 ≈ αZ

n
, ν ≈ j +

1
2
.
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(1) Let � = j − 1/2. Then κ = −(� + 1), κ − ν = κ −√κ2 − (αZ)2 ≈ 2κ,
Eκ− ν ≈ 2κ, whence




f1 f2

g1 g2



 ≈





− (αZ)2

2(�+ 1)n
−2(�+ 1)

αZ

n
αZ



 .

(2) Let � = j + 1/2. Then

κ = �, κ− ν ≈ (αZ)2

2�
, Eκ− ν = (E − 1)κ+ κ− ν ≈ (αZ)2

2�n2
(n2 − �2),

whence



f1 f2

g1 g2



 ≈





2�n
n2 − �2

(αZ)2

2�

αZn

n2 − �2 αZ



 .

These considerations show that in both cases |G(r)| � |F (r)| for αZ � 1.
In case (1), i.e., for � = j − 1/2 we have

F (r) ≈
√
Z(n− �− 1)!
n2(n+ �)!

x�+1e−x/2L2�+1
n−�−1(x),

where x = 2ar/α ≈ 2Zr/n, which coincides with the corresponding solution of
the Schrödinger equation (A.33) of §A.1. Clearly, in this case the radial function
F (r) has nr = N = n − � − 1 zeroes. Similarly, in case (2), when � = j + 1/2 we
again obtain expression (A.33) from §A.1, and F (r) has nr = N − 1 = n− �− 1
zeroes.

The representation of the functions F (r) and G(r) in the form (A.68) is
convenient for passing to the nonrelativistic limit, since only one of the coefficients
f1, f2, g1, g2 is much larger than all the others when αZ → 0. By contrast, in the
traditional representation for F (r) and G(r) there are several coefficients of the
same order of smallness, and so to show that the nonrelativistic limit coincides
with the solution of the Schrödinger equation one needs to resort, in addition, to
the recursion relations for hypergeometric functions.

The passage to the limit considered above allows us to write a formula for εn�j

in a computationally convenient form. Subtracting the rest energy of the electron
from (A.66) and passing to atomic units, we have

εn�j =
1
α2








1 +
(αZ)2

(
n− (j + 1/2) +

√
(j + 1/2)2 − (αZ)2

)2





−1/2

− 1





,
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or

εn�j = − Z2

(
1 +

(αZ)2

ñ2
+

√
1 +

(αZ)2

ñ2

)
ñ2

, (A.69)

where

ñ = N + ν = n− (αZ)2

j + 1/2 +
√

(j + 1/2)2 − (αZ)2
,

n is the principal quantum number, j = 1
2 ,

3
2 , . . . , n− 1

2 .

As formula (A.69) shows, for a given j the energy eigenvalues of the hydrogen-
like ion are independent of �. Therefore, in addition to the degeneracy with respect
to the projection of the momentum j on the z-axis (the energy levels are indepen-
dent of m), there is also a two-fold degeneracy with respect to � for j < n− 1/2.

Table A.2 lists, for the K, L, M , N shells, the quantum numbers n, j and �,
which characterize the possible electron states in a hydrogen-like gold ion, and the
corresponding energy level. For the arrangement of the quantum numbers in the
indicated order the energy levels of the electron, given by formula (A.69), increase
with n and j.

Table A.2: Energy levels of the hydrogen-like gold atom (Z = 79) in atomic units.
For comparison, the nonrelativistic values of the energy εn = −Z2/(2n2) and their
deviation ∆ (in percents) from the relativistic values are also shown.

n j � εn εn�j ∆ n j � εn εn�j ∆

1 1/2 0 −3121 −3435 9.1 4 1/2 0 −195 −211 7.4
4 1/2 1 −211 7.4

2 1/2 0 −780 −879 11.3 4 3/2 1 −200 2.6
2 1/2 1 −879 11.3 4 3/2 2 −200 2.6
2 3/2 1 −797 2.1 4 5/2 2 −197 1.2

4 5/2 3 −197 1.2
3 1/2 0 −347 −381 9.1 4 7/2 3 −196 0.5
3 1/2 1 −381 9.1
3 3/2 1 −357 2.8 5 1/2 0 −125 −133 6.2
3 3/2 2 −357 2.8 5 1/2 1 −133 6.2
3 5/2 2 −350 0.9 5 3/2 1 −128 2.4
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APPROXIMATION METHODS

It is well known that only aver small number of quantum-mechanical problems,
which all concern simple systems, can be solved by analytic methods. Generally,
for real physical systems one cannot manage without a suitable approximation
method. In a number of cases the approximate calculation of energy levels and
wave functions can be successfully carried out by means of a variational method
and on the basis of the semiclassical approximation. Approximation methods en-
able us to determine the relative role played by various factors in the given physical
system, to choose a suitable initial approximation, and to construct efficient nu-
merical methods for the further, more precise investigation of the problem under
consideration.

A.3 The variational method and the method of the trial

potential

A.3.1 Main features of the variational method

The variational method for computing the ground-state energy ε0 of the system
under study amounts to using the inequality

ε0 ≤
∫
ψ∗(ξ)Ĥψ(ξ)dξ, (A.70)

where Ĥ is the total Hamiltonian operator of the system, ξ is the collection of
values of all independent coordinates (ξ is a point in configuration space), dξ
is the volume element in configuration space, and ψ(ξ) is an arbitrary function
subject to the normalization condition

∫
ψψ∗dξ = 1.

Indeed, let Ĥϕn = εnϕn,
∫
ϕ∗

m(ξ)ϕn(ξ) dξ = δmn. Then

ψ =
∞∑

n=0

anϕn;
∑

n

|an|2 = 1;

∫
ψ∗Ĥψ dξ =

∞∑

n=0

|an|2εn ≥ ε0

∞∑

n=0

|an|2 = ε0.
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Thus, the calculation of the ground-state energy reduces to the calculation of
the minimum of the integral (A.70) for variations of the normalized wave function
ψ(ξ), i.e.,

ε0 = min
∫
ψ∗Ĥ ψdξ under the condition

∫
ψ∗ψ dξ = 1. (A.71)

In practice, the calculation of ε0 reduces to choosing a trial function that contains a
number of parameters α, β, . . . . These parameters are found by solving the system
of equations

∂J

∂α
= 0,

∂J

∂β
= 0, . . . , (A.72)

where
J(α, β, . . .) =

∫
ψ∗(ξ, α, β, . . .)Ĥψ(ξ, α, β, . . .) dξ.

For a successful choice of the form of the trial function one obtains a value of ε0
that is close to the true value even for a small number of parameters. The wave
function ϕ0 will approximately coincide with the function ψ(ξ, α, β, . . .).

The calculation of the energy ε1 of the first excited state reduces to solving
the variational problem

ε1 = min
∫
ψ∗

1Ĥψ1 dξ

under the additional orthonormalization conditions
∫
ψ∗

1ψ1 dξ = 1,
∫
ψ∗

1ψ0 dξ = 0.

In the calculation of the next excited states the number of additional condi-
tions increases, and the problem becomes more complex. In some cases the requi-
site orthogonality conditions are satisfied for an appropriate choice of trial func-
tions thanks to symmetry properties. For example, in the investigation of the
motion of a particle in a central field the orthogonality of the states with differ-
ent values of � is a consequence of the orthogonality of the spherical harmonics
Y�m(θ, ϕ).

The variational method described above is also known as the Ritz method.

EXAMPLE. Let us find the ground-state energy of a two-electron system in the
field of a nucleus with charge Z, in the nonrelativistic approximation. In this case
the Schrödinger equation reads

Ĥψ = Eψ,

where the Hamiltonian is

Ĥ = −1
2
∆1 − 1

2
∆2 − Z

r1
− Z

r2
+

1
r12

.
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Since the Hamiltonian does not contain spin variables, the complete wave function
is a product of a function depending on the space variables and a function depend-
ing on the spin variables, such that the complete wave function is anti-symmetric.

When one calculates the ground-state energy, the anti-symmetric spin part of
the wave function is not required. As a symmetric trial function, depending on the
space variables, one takes the product of two elementary hydrogen-like functions
with effective charge Z ′ < Z:

ψ(�r1, �r2) =
C

4π
e−Z′(r1+r2).

The constant C is found from the normalization condition:

∫
|ψ(�r1, �r2)|2 d�r1 d�r2 = C2




∞∫

0

e−2Z′r r2dr




2

=
4C2

(2Z ′)6
= 1,

i.e., C = 4(Z ′)3.
The expression for the energy takes on the form

E(Z ′) =
∫
ψ∗(�r1, �r2)Ĥψ(�r1, �r2) d�r1d�r2 =

Z ′2

2
+
Z ′2

2
− ZZ ′−

ZZ ′ +
∫
ψ∗(�r1, �r2)ψ(�r1, �r2)

r12
d�r1 d�r2 = Z ′2 − 2ZZ ′ + J,

where

J = C2

∞∫

0

dr2



r22e−2Z′r2

∞∫

0

r21e
−2Z′r1

r>
dr1



 =
5
8
Z ′,

because ∞∫

0

r21e
−2Z′r1

r>
dr1 =

1
4Z ′3

[
1
r2
−
(

1
r2

+ Z ′
)
e−2Z′r2

]
;

here r> = max(r1, r2) (see Example 3 in §A.1).
Therefore,

E(Z ′) = Z ′2 − 2ZZ ′ +
5
8
Z ′ .

The minimum condition for E(Z ′),

dE

dZ ′ = 2Z ′ − 2Z +
5
8

= 0,

yields

Z ′ = Z − 5
16
, E = −

(
Z − 5

16

)2

.
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Here an experimentally measurable quantity is not the total energy of the atom,
but its ionization potential I. For a helium-like ion the ionization potential is
I = E0 − E, where E0 = −Z2/2. In particular, for helium (Z = 2)

I = − (2)2

2
+
(

2− 5
16

)2

= 0.848 a.e. = 186114 cm−1.

Further refinements of the variational method provided for the ionization
potential the value (see [30]):

I = 198317.974± 0.022 cm−1,

while the experimental value is

Iexp = 198310.82± 0.15 cm−1.

If the motion of the nucleus, relativistic corrections and the interaction of the
electron with its own field (Lamb shift) are accounted for, one obtains the corrected
value of the ionization potential

Itheor = 198310.665 cm−1.

A.3.2 Calculation of hydrogen-like wave functions

The variational method can be applied also for the calculation of energy and wave
functions of multi-electron atoms. In the simplest approximation one assumes that
each electron in the atom is acted upon by a unique potential generated by the
other electrons and the nucleus. In connection with this assumption let us consider
the following problem.

Suppose we need to solve the Schrödinger equation

−1
2
R′′

n� +
[
−V (r) +

�(�+ 1)
2r2

]
Rn� = εRn� (0 < r <∞) (A.73)

with a given potential V (r). As trial functions for an electron with quantum num-
bers n, � we will use the radial functions R̃n�(r) corresponding to the trial potential

Ṽ (r) =
Zn�

r
−An�, (A.74)

where Zn� is the effective charge of the nucleus and An� is the external screening
constant. The function R̃n�(r) satisfies the equation

−1
2
R̃′′

n� +
[
−Ṽ (r) +

�(�+ 1)
2r2

]
R̃n� = ε̃ R̃n�, (A.75)

where

ε̃ = ε̃n� = −Z
2
n�

2n2
+An�, R̃n�(r) = Cn� x

�+1 e−x/2L2�+1
n−�−1(x),
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x =
2Zn� r

n
, C2

n� =
Zn�

n2

(n− �− 1)!
(n+ �)!

,

∞∫

0

R̃2
n�(r)dr = 1.

The representation of the atomic potential in the form (A.74) is in agree-
ment with the Thomas-Fermi model considered in Chapter I and the uniform
free-electron density model that follows from the latter for high temperatures. In-
deed, a bound electron with quantum numbers n and � is essentially located in the
spherical layer (r, r + ∆r), in the vicinity of the main maximum of the function
Rn�(r). As a rule, the volume of such a spherical layer constitutes only a small
fraction of the volume of the atom cell. The outer electrons with respect to this
layer generate in the region of the principal maximum a constant potential, de-
termined by the external screening constant An�. The inner electrons decrease the
attraction of the nucleus (Zn� < Z). The parameters Zn� and the related Slater
screening parameters are widely used in atomic calculations [83, 50, 135].

When the variational method is used, the constant Zn�, which determines
the wave function R̃n�(r), can be found directly from the condition

εn� = min
Zn�

∞∫

0

R̃n�(r)ĤR̃n�(r) dr.

Here the additional mutual orthogonality conditions can be disregarded, because
(i) if the values of � are different, the wave functions will be orthogonal thanks

to the orthogonality of the spherical harmonics;
(ii) if the values of � are identical, while the quantum numbers n are different,

then the principal maxima of the functions R̃n�(r) and R̃n′�(r) are located quite far
from one another, which yields the approximate equality

∫
R̃n�(r) R̃n′�(r) dr ≈ 0

(see Figure 2.5).
Thus, we have

εn� = min

∞∫

0

R̃n�

(
−1

2
R̃′′

n� − V (r)R̃n� +
�(�+ 1)

2r2
R̃n�

)
dr =

= min

∞∫

0

[ε̃n� + Ṽ (r)−V (r)]R̃2
n� dr = min



Z
2
n�

2n2
−

∞∫

0

V (r)R̃2
n�(r, Zn�) dr



 .

Since

R̃2
n�(r, Zn�)

dr

r
=
Zn�

n2
e−xQn�(x) dx,

where

Qn�(x) =
(n− �− 1)!

(n+ �)!
x�+1

(
L2�+1

n−�−1(x)
)2
, x =

2Zn� r

n
,
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we conclude that

εn� = min



Z
2
n�

2n2
− Zn�

n2

∞∫

0

e−xQn�(x)rV (r)
∣∣∣
r=nx/(2Zn�)

dx



 . (A.76)

The minimum condition dεn�/dZn� = 0 yields

Zn� =

∞∫

0

e−xQn�(x)
[
−r2 dV

dr

] ∣∣∣∣∣
r=nx/(2Zn�)

dx,

or

Zn� =

∞∫

0

e−xQn�(x)
[
rV (r)− r d

dr
(rV (r))

] ∣∣∣∣∣
r=nx/(2Zn�)

dx. (A.77)

To find Zn�, we use the simplest iteration scheme that results from (A.77):

(s+1)

Zn� =
(s)
α n� +

(s)

β n�, (A.78)

where
(s)
α n� =

∞∫

0

e−xQn�(x)rV (r)

∣∣∣∣∣
r=nx/(2

(s)
Z n�)

dx,

(s)

β n� =

∞∫

0

e−xQn�(x)
[
−r d

dr
(rV (r))

] ∣∣∣∣∣
r=nx/(2

(s)
Z n�)

dx,

s being the iteration number. As the initial approximation one can use the pre-
ceding values of Zn�:

(0)

Z 10 = Z,
(0)

Z 20 = Z10,
(0)

Z 21 = Z20, . . . ,

since usually Z > Z10 > Z20 > Z21 and so on.

To calculate the quantities
(s)
αn� and

(s)

βn� we use the Gauss-type quadrature
formulas [154]

b∫

a

f(x)ρ(x)dx =
N∑

j=1

ajf(xj). (A.79)

In our case it is natural to take ρ(x) = e−x. Then xj are the zeroes of the Laguerre
polynomial L0

N (x) and

f(x) = Qn�(x)rV (r) or f(x) = −Qn�(x)r
d

dr
[rV (r)] ,
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where r = nx/(2Zn�). The integral (A.77) can be calculated in closed form when-
ever f(x) is a polynomial of degree at most 2N − 1. We need to choose N in such
a manner that the functions rV (r) and r d

dr [rV (r)] will be well enough approxi-
mated by polynomials in the essential part of the domain of integration. As a rule,
for n < 10 one can take N = 12. Note that the numbers Qn�(xj) are independent
of the potential V (r), which is convenient in calculations.

Once the values Zn� are found, we can use (A.76) to find the energy values
εn� and the external screening constant An�:

εn� =
Zn�

n2

(
Zn�

2
− αn�

)
, An� =

Zn�

n2
(Zn� − αn�) . (A.80)

A.3.3 Method of the trial potential for the Schrödinger and Dirac
equations

A method that is close to the variational method is the so-called method of the
trial potential [217], which is based on the fact that the function Rn�(r) is notably
different from zero only in a small interval of r. For that reason, the behavior
of the potential V (r) outside this interval has apparently little influence on the
character of the function Rn�(r).

In the method of the trial potential the effective charge Zn� is found from
the condition of minimum of the functional

Φ(Zn�) =
∫ [

rV (r)− rṼ (r, Zn�, An�)
]2
R̃2

n�(r, Zn�) dr, (A.81)

where the screening constant An� is determined from the additional condition that
the energy eigenvalue ε̃ should be close to ε. As such a condition it is natural to ask
that the first correction to the energy ε̃ according to perturbation theory vanishes:

∫
[V (r)− Ṽ (r, Zn�, An�)]R̃2

n�(r, Zn�) dr = 0. (A.82)

This yields

An� =
Z2

n�

n2
−
∫
V (r)R̃2

n�(r, Zn�) dr.

Figures A.3, A.4 and tables A.3, A.4 show some results obtained by solving
the Schrödinger equation with the Thomas-Fermi potential for gold with density
ρ = 0.1 g/cm3 and temperatures T = 1 keV and T = 0.01 keV. As one can see,
the results obtained by the method of the trial potential are somewhat superior
to those obtained by the variational method. Even in the case of low tempera-
tures, when the wave functions are far from the hydrogen-like wave functions (see
Figure A.4), the method of the trial potential reproduces well the position of the
principal maximum of the wave function.
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Figure A.3: Dependence of the radial function R40(r) on the variable x =
√
r/r0

for gold (Z = 79) in the TF potential with temperature T = 1 keV and density
ρ = 0.1 g/cm3 (the solid, dashed and dotted-dashed curves represent the numerical
solution, the result of the method of the trial potential, and the result of the
variational method, respectively). Here the variational method and the method of
the trial potential give practically identical results
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Figure A.4: Dependence of the radial function R40 on x =
√
r/r0 for gold (Z = 79)

with temperature T = 0.01 keV and density ρ = 0.1 g/cm3 (the solid, dashed and
dotted-dashed curves represent the numerical solution, the result of the method
of the trial potential, and the result of the variational method, respectively)
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Due to its computational simplicity, the method of the trial potential is effi-
cient in finding the parameters Zn�j and An�j in the relativistic case as well. To
implement it, it suffices to replace R̃2

n�(r) by F̃ 2
n�j(r) + G̃2

n�j(r) in formulas (A.81)
and (A.82) (see formulas (A.68) in §A.2). Let us mention that the computer time
required by this method is roughly 50–100 smaller than the time needed for the
numerical integration of the corresponding equations.

The results of computations by the method of the trial potential for the
Schrödinger and Dirac equations are discussed in more detail in § 2.2.

Table A.3: Energy eigenvalues εn� (in atomic units), computed by the method of
the trial potential and the variational method, and also obtained by integrating
numerically the Schrödinger equation in the TF potential for gold (Z = 79) at
temperature T = 1 keV and density ρ = 0.1 g/cm3. Since the quantities εn� < 0,
we give their absolute values

|εn�|
n � trial var. Schröd.

1 0 2848.956 2848.733 2849.178

2 0 624.644 624.667 624.434
2 1 608.827 608.869 609.049

3 0 258.848 258.950 258.662
3 1 252.887 252.906 252.937
3 2 244.108 244.120 244.180

4 0 139.554 139.587 139.432
4 1 136.949 136.951 136.992
4 2 133.562 133.565 133.623
4 3 131.390 131.392 131.395

5 0 85.948 85.956 85.855
5 1 84.586 84.586 84.609
5 2 82.917 82.919 82.953
5 3 81.868 81.871 81.873
5 4 81.568 81.569 81.569

6 0 57.328 57.333 57.252
6 1 56.521 56.521 56.534
6 2 55.578 55.579 55.597
6 3 54.984 54.986 54.988
6 4 54.802 54.802 54.802
6 5 54.760 54.757 54.757

|εn�|
n � trial var. Schröd.

7 0 40.349 40.353 40.209
7 1 39.791 39.792 39.795
7 2 39.166 39.167 39.177
7 3 38.794 38.795 38.799
7 4 38.683 38.678 38.677
7 5 38.648 38.645 38.645
7 6 38.631 38.630 38.628

8 0 29.502 29.507 29.247
8 1 29.004 29.004 28.947
8 2 28.543 28.544 28.560
8 3 28.307 28.308 28.309
8 4 28.225 28.225 28.225
8 5 28.204 28.206 28.201
8 6 28.190 28.188 28.187
8 7 28.179 28.176 28.176

9 0 22.118 22.120 21.788
9 1 21.617 21.617 21.578
9 2 21.285 21.286 21.308
9 3 21.133 21.133 21.132
9 4 21.071 21.071 21.071
9 5 21.057 21.057 21.052
9 6 21.045 21.042 21.041
9 7 21.034 21.030 21.031
9 8 21.024 21.019 21.020



380 Appendix. Methods for solving the Schrödinger and Dirac equations

Table A.4: Energy eigenvalues εn� in the TF potential for gold with temperature
T = 0.01 keV and density ρ = 0.1 g/cm3. For n > 5 the variational method
considered here does not work

|εn�|
n � trial var. Schröd.

1 0 2655.040 2655.019 2654.842

2 0 441.965 442.042 441.559
2 1 423.276 423.089 423.464

3 0 105.494 106.452 104.885
3 1 96.456 96.763 96.562
3 2 80.303 80.549 81.159

4 0 25.053 27.309 24.677
4 1 20.933 22.284 21.159
4 2 13.988 14.272 14.748
4 3 3.136 5.393 6.235

5 0 5.323 7.891 5.270
5 1 3.819 5.421 4.095
5 2 2.028 2.101 2.199

|εn�|
n � trial var. Schröd.

5 3 0.149 — 0.570

6 0 1.671 — 1.408
6 1 1.592 — 1.088
6 2 0.333 — 0.610
6 3 -0.010 — 0.164

7 0 1.012 — 0.485
7 1 0.630 — 0.364
7 2 0.014 — 0.178

8 0 0.559 — 0.140
8 1 0.232 — 0.088
8 2 0.016 — 0.010

9 0 — — 0.005

A.4 The semiclassical approximation

The semiclassical approximation has proven to be quite effective in the analysis
of many problems of quantum mechanics. The basic problem that lies at the
foundation of the semiclassical approximation is to obtain a uniform asymptotics
for λ→∞ for the solutions of a differential equation of the form

[k(x)y′]′ + λr(x)y = 0.

The first investigations of this problem were carried out by Liouville and Green in
the first half of the 19th century (see Chapter 6 in [165]). The method was further
developed by Wentzel, Kramers, Brillouin and Jeffreys (the WKB methods) and
also by many other authors.

A.4.1 Semiclassical approximation in the one-dimensional case

Let us examine the behavior of the solutions of the equation

[k(x)y′]′ + λr(x)y = 0 (A.83)

as λ → ∞. As the simple example of equation (A.83) with k(x) = const and
r(x) = const shows, this behavior depends on the sign of the functions k(x) and
r(x). For this reason, in what follows we will consider equation (A.83) on intervals
where k(x) and r(x) are of constant sign. First let us examine the case when on
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some interval (a, b) the functions k(x) and r(x) have the same sign, say k(x) >
0, r(x) > 0. We assume that k(x) and r(x) have continuous first and second
derivatives.

A.4.1.1. To simplify equation (A.83), we use the change of variables

y(x) = ϕ(x)u(s), s = s(x). (A.84)

We have
y′x = ϕ′

xu+ ϕu′ss
′
x,

(ky′)′ = (kϕ′u+ kϕu′s′)′ = (kϕ′)′u+ kϕ′u′s′ + (ks′)′ϕu′ + ks′(ϕ′u′ + ϕu′′s′).

Substitution in (A.83) yields

u′′ + f(s)u′ + [λg(s)− q(s)]u = 0,

where

f(s) =
2k(x)s′(x)ϕ′(x) + [k(x)s′(x)]′ϕ(x)

k(x)ϕ(x)[s′(x)]2
,

g(s) =
r(x)

k(x)[s′(x)]2
, q(s) = − [k(x)ϕ′(x)]′

k(x)ϕ(x)[s′(x)]2
.

To investigate the behavior of y(x) when λ → ∞ it is convenient to choose the
functions s(x) and ϕ(x) from the conditions f(s) = 0 and g(s) = 1, which gives

[s′(x)]2 =
r(x)
k(x)

,

ϕ′

ϕ
= − (ks′)′

2ks′
= −1

4
[ln(ks′)2]

′
= −1

4
(ln kr)′ = −1

4

(
k′

k
+
r′

r

)
. (A.85)

Thus, the equation for u(s) takes on the form

u′′ + [λ− q(s)]u = 0, (A.86)

where

q(s) = − [k(x)ϕ′(x)]′

r(x)ϕ(x)

∣∣∣
x=x(s)

= −k
′ϕ′ + kϕ′′

rϕ
= −k

′

r

ϕ′

ϕ
− k
r

[(
ϕ′

ϕ

)′
+
(
ϕ′

ϕ

)2
]

=

k

4r

[(
k′

k
+
r′

r

)′
+
(

3
4
k′

k
− 1

4
r′

r

)(
k′

k
+
r′

r

)]
. (A.87)
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In the case when the functions k(x) and r(x) have different signs on (a, b),
equation (A.83), with the aid of the substitution s′2 = −r(x)/k(x), is transformed
into an equation similar to (A.86):

u′′(s)− [λ+ q(s)]u(s) = 0, (A.88)

where q(s) is given by the same formula as in the first case. Since the investigation
of the behavior of solutions when λ→ +∞ for equation (A.88) is basically carried
out with the same methods as for equation (A.86), we will confine ourselves to
the first case, when equation (A.83) reduces to the form (A.86) by means of the
substitution (A.84).

From (A.85) it follows that

s(x) =

x∫

x0

√
r(t)
k(t)

dt (a ≤ x0 ≤ b), ϕ(x) = [k(x)r(x)]−1/4.

Let s(a) = c (c ≤ 0), s(b) = d (d ≥ 0). The function s(x) is continuous
and monotonically increasing on (a, b). Hence, there exists the inverse function
x = x(s), which is also continuous and monotonically increasing on (c, d).

A.4.1.2. It is natural to expect that in the limit λ → +∞ the solutions of (A.86)
will coincide with solutions of the simpler equation

u′′ + λu = 0,

i.e.,
u(s) ≈ A cosµs+B sinµs,

where µ =
√
λ, A and B are some constants.

To prove this assertion we use a method proposed by V. A. Steklov [211].
Namely, let us solve the equation

u′′ + µ2u = q(s)u

regarding the right-hand side as a known function. In this way we obtain

u(s) = u(s) +Rµ(s), (A.89)

where
ū(s) = A cosµs+B sinµs,

Rµ(s) =
1
µ

s∫

0

sinµ(s− s′) q(s′)u(s′)ds′.

We claim that for c ≤ s ≤ d the term Rµ(s) can be neglected compared with
max |u(s)| when µ→∞, i.e.,

lim
µ→∞

Rµ(s)
M(µ)

= 0, (A.90)
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where
M(µ) = max

c≤s≤d
|u(s)| ≤ |A|+ |B|.

From the expression for Rµ(s) it follows that

|Rµ(s)| ≤ 1
µ
LM(µ), (A.91)

where

L =

d∫

c

|q(s′)| ds′, M(µ) = max
c≤s≤d

|u(s)|.

Let us estimate M(µ) for µ → +∞. From relations (A.89) and (A.91) it follows
that, for c ≤ s ≤ d,

|u(s)| ≤M(µ) +
1
µ
LM(µ),

whence
M(µ) ≤M(µ) +

1
µ
LM(µ).

Therefore, if µ > L, then

M(µ) ≤ M(µ)
1− L/µ

which in view of (A.91) yields

Rµ(s)
M(µ)

≤ L

µ− L.

This proves (A.90).
The uniform estimate obtained above remains valid also in the case when the

interval (c, d) is infinite, provided that the integral
∫ d

c
|q(s)|ds converges.

Returning to the original variables, we conclude that when k(x) > 0, r(x) > 0
on (a, b) the solutions of equation (A.83) admit for λ→ +∞ the representation

y(x) =
1√

k(x)p(x)
[A cos ξ(x) +B sin ξ(x)], (A.92)

where

p(x) =

√

λ
r(x)
k(x)

, ξ(x) =

x∫

x0

p(x′)dx′.

The replacement of the solution of equation (A.83) by the approximate solution
(A.92) lies at the foundation of the semiclassical method for solving equation
(A.83).
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In the case when k(x) > 0, r(x) < 0, we similarly obtain

y(x) =
1√

k(x)p(x)
[Aeξ(x) +Be−ξ(x)], (A.93)

where

p(x) =

√√√√λ

∣∣∣∣∣
r(x)
k(x)

∣∣∣∣∣, ξ(x) =

x∫

x0

p(x′) dx′.

When the exact solution is replaced by the approximate one, what really matters
is that the inequality L � µ (where L =

∫ d

c
|q(s)|ds) holds for equation (A.86).

Therefore, the approximate solutions (A.92) and (A.93) can be used not only when
λ is large, but also when λ ∼ 1, provided that L� 1. As seen from formula (A.87),
this is the case when the derivatives of the functions k(x) and r(x) are small, i.e.,
when the coefficients of equation (A.83) vary in a slow, smooth manner. Note
that the right-hand side of formula (A.87) contains the logarithmic derivatives of
k(x) and r(x), as well as derivatives of these logarithmic derivatives. When the
coefficients of equation (A.83) vary in a smooth manner, the derivatives of the
logarithmic derivatives of k(x) and r(x) are usually neglected, and one considers
that the most essential term in the right-hand side of (A.87) is the second one,
which must satisfy the condition

∣∣∣∣∣
k

4r

(
3
4
k′

k
− 1

4
r′

r

)(
k′

k
+
r′

r

)∣∣∣∣∣� 1. (A.94)

This condition is somewhat more crude than the condition L� 1. However, if we
consider the Schrödinger equation, written in the form

d2ψ

dx2
+ p2(x)ψ = 0,

where
p(x) =

√
2[ε− U(x)],

then for this equation the condition (A.94) will coincide with the condition of
applicability of the semiclassical approximation ordinarily used in quantum me-
chanics, ∣∣∣∣∣

p′

p2

∣∣∣∣∣� 1, (A.95)

provided that in (A.94) we put k(x) = 1 and r(x) = p2(x).

A.4.1.3. In practice it is of interest to obtain an approximate solution of equation
(A.83) for λ → +∞ whose validity extends all the way to the endpoints of the
interval (a, b) in case the functions r(x) and k(x) are singular or vanish in a and
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b. For example, let us consider the problem of the approximate representation of
the solution of equation (A.83) for a ≤ x < b when

k(x) = (x− a)αk0(x), r(x) = (x− a)βr0(x),

where the functions k0(x) > 0 and r0(x) > 0 have continuous second-order deriva-
tives for a ≤ x < b. In order for s(a) to be finite, we will assume that

1
2
(β − α) > −1. (A.96)

Let us rewrite the expressions for s(x) and q(x) for x0 = a:

s(x) =

x∫

a

√
r0(t)
k0(t)

(t− a)(β−α)/2dt, (A.97)

q(s) = (x− a)α−β−2 k0(x)
4r0(x)

×

×
{

(α+ β)(3α− β − 4)
4

+
x− a

2

[
(3α+ β)

k′0
k0

+ (α− β)
r′0
r0

]
+

(x− a)2
[(

k′0
k0

+
r′0
r0

)′
+
(

3
4
k′0
k0
− 1

4
r′0
r0

)(
k′0
k0

+
r′0
r0

)]}
.

If x ≈ a, then

s(x) ≈
√
r0(a)
k0(a)

(x− a)(β−α+2)/2

[(β − α+ 2)/2]
,

and consequently the expression for q(s) can be recast as

q(s) =
ν2 − 1/4

s2
+ sγ−2f(s),

where

γ =
2

β − α+ 2
> 0, ν =

|α− 1|
β − α+ 2

> 0

and the function f(x) is continuous for 0 ≤ s < s(b). Here q(s) is singular for s→ 0.
To apply Steklov’s method it is convenient to isolate the principal singularity of
the function q(s), i.e., rewrite (A.86) in the form

u′′ +
(
µ2 − ν2 − 1/4

s2

)
u = sγ−2f(s)u (µ =

√
λ), (A.98)

and then solve this equations, regarding its right-hand side as a known function.
Since the equation

u′′ +
(
µ2 − ν2 − 1/4

s2

)
u = 0
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has the solution
u = Avν(µs) +Bv−ν(µs),

where vν(x) =
√
xJν(x), A and B are constants, Jν(x) is the Bessel function of

the 1st kind, we obtain the solution of equation (A.98) in the form

u(s) = Avν(µs) +Bv−ν(µs) + Rµ(s), (A.99)

where

Rµ(s) =

s∫

s0

Kµ(s, s′)(s′)γ−2f(s′)u(s′)ds′,

Kµ(s, s′) =
π

2µ sinπν
[vν(µs)v−ν(µs′)− vν(µs′)v−ν(µs)].

One can show that the term Rµ(s) in (A.99) can be neglected when µ → +∞
[154].

Returning to the original variables, we obtain the solution of equation (A.83)
in the semiclassical approximation:

y(x) =

√
ξ(x)

k(x)p(x)

{
AJν [ξ(x)] +BJ−ν [ξ(x)]

}
, (A.100)

p(x) =

√

λ
r(x)
k(x)

, ξ(x) =

x∫

a

p(x′)dx′.

For integer values of ν in (A.100) we must replace J−ν(ξ) by Yν(ξ). Note that
for ξ(x) � 1, replacing the Bessel function in (A.100) by the first term of the
asymptotic expansion leads to a formula equivalent to (A.92).

If k0(x) > 0 and r0(x) < 0, representation (A.100) must be replaced by

y(x) =

√
ξ(x)

k(x)p(x)

{
CIν [ξ(x)] +DKν [ξ(x)]

}
, (A.101)

p(x) =

√√√√λ

∣∣∣∣∣
r(x)
k(x)

∣∣∣∣∣, ξ(x) =

x∫

a

p(x′)dx′,

where Iν(z) and Kν(z) are modified Bessel functions.

Analogous formulas can be obtained for the domain a < x ≤ b when the
functions k(x) and r(x) have the form

k(x) = (b− x)αk0(x), r(x) = (b− x)βr0(x).
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A.4.2 Application of the WKB method to an equation with
singularity. Semiclassical approximation for a central field

In the study of the motion of a particle in a central field it is of interest to derive
the semiclassical approximation for the equation

y′′ + r(x)y = 0, (A.102)

where the function x2r(x) is continuous together with its first and second deriva-
tives for 0 ≤ x ≤ b. The approximation (A.100) obtained earlier is not applicable
for equation (A.102), because α = 0, β = −2 and condition (A.96) is not satisfied.
However, the change of variables x = ez, y = ez/2v(z) reduces (A.102) to the form
[137]

v′′(z) + r1(z)v = 0, (A.103)

where
r1(z) = −1

4
+ x2r(x)|x=ez .

The function r1(z) differs only slightly from the constant −1
4 + limx→0 x

2r(x)
when z → −∞ (which corresponds to x → 0). Furthermore, one can show that
limz→−∞ r

(k)
1 (z) = 0 (k = 1, 2, . . .). For example, if k = 1 we have

d

dz
r1(z) =

d

dx
[x2r(x)]

dx

dz
= x

d

dx
[x2r(x)]→ 0, x→ 0.

It follows that for negative values of z with |z| sufficiently large the function
r1(z) and its derivatives will vary slowly and the semiclassical approximation will
apply to equation (A.103). If the condition of applicability of the semiclassical
approximation for equation (A.103) is satisfied for all requisite values of z, then
upon returning to the old variables we obtain an approximate solution of equation
(A.102) in the form considered earlier, but with r(x) replaced by the function

r(x)− 1
4x2

.

Thus, for instance, when one solves in spherical coordinates the Schrödinger
equation

−1
2
R′′ +

[
U(r) +

�(�+ 1)
2r2

]
R = εR

for the radial part R(r) of the wave function, where U(r) is the potential energy,
ε is the total energy of the particle and � = 0, 1, 2, . . . is the orbital quantum
number, the semiclassical approximation yields the expression

R(r) =






√
ξ

|p| [CI1/3(ξ) +DK1/3(ξ)], if r ≤ r̃,

√
ξ

p
[AJ1/3(ξ) +BJ−1/3(ξ)], if r ≥ r̃.

(A.104)
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Here

p = p(r) =

√√√√2

[
ε− U(r)−

(
�+ 1

2

)2

2r2

]
, (A.105)

ξ = ξ(r) =
∣∣∣

r∫

r̃

p(r′) dr′
∣∣∣

and r̃ is the root of the equation p(r) = 0 that is the closest to r = 0 (we assume
that this root is simple). The approximation (A.104) remains valid also for � = 0,
provided that x2r(x) has a limit as x→ 0.

Since the function R(r) is required to be bounded for r → 0, i.e., ξ →∞, we
must put C = 0. From the junction condition in r = r̃ for the functions R(r) and
R′(r) the constants A and B can be expressed through the constant D. Expanding
the expression under the radical sign in the formula for p(r) in powers of r− r̃ one
can readily verify that the functions p(r)/

√|r − r̃|, ξ(r)/|r − r̃|3/2 and their first
derivatives are continuous in the point r = r̃. Hence, from the junction condition
for R(r) and R′(r) at the point r = r̃ one obtains analogous junction conditions
for the function Φ(r) = (ξ/2)1/3

√|p|/ξ R(r) and its derivatives. We have

Φ(r) =






A (ξ/2)2/3

Γ (4/3)
+

B

Γ (2/3)
+O[(r − r̃)3], if r ≥ r̃,

Dπ

2 sin(π/3)

[
1

Γ (2/3)
− (ξ/2)2/3

Γ (4/3)

]
+O[(r − r̃)3], if r ≤ r̃.

From the condition that the function Φ(r) and its derivative be continuous in
r = r̃ and the fact that ξ ∼ |r − r̃|3/2 it follows that

A = B =
π√
3
D.

A.4.3 The Bohr-Sommerfeld quantization rule

Let us use the semiclassical approximation to compute the energy levels of an
electron that moves in a one-dimensional potential well, a typical graph of which
is shown in Figure A.5.

We will assume that for any energy ε > Umin there are only two turning
points, x1 and x2, determined by the condition U(x1) = U(x2) = ε. As we have
shown, in the semiclassical approximation, in the domain x1 ≤ x < x2 the wave
function of the particle has the form

ψ1(x) = A

√
ξ1
p

[J1/3(ξ1) + J−1/3(ξ1)],
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Figure A.5: Potential well

ξ1 = ξ1(x) =

x∫

x1

p(x′)dx′, p = p(x) =
√

2[ε− U(x)].

If for the fixed limit in the integral we take the turning point x2 instead of x1,
then for x1 < x ≤ x2 we get

ψ2(x) = B

√
ξ2
p

[J1/3(ξ2) + J−1/3(ξ2)], ξ2 = ξ2(x) =

x2∫

x

p(x′)dx′.

In any point x lying between x1 and x2 one can impose the junction conditions

ψ1(x) = ψ2(x), ψ′
1(x) = ψ′

2(x). (A.106)

Let us choose the point x so that it is far from the turning points and the conditions
ξ1 � 1, ξ2 � 1 are satisfied. Then, using the asymptotics of the Bessel function,

J±1/3(ξ) ≈
√

2
πξ

cos
(
ξ ∓ π

6
− π

4

)
,

we derive from (A.106) the relations

A cos
(
ξ1 − π

4

)
= B cos

(
ξ2 − π

4

)
,

A sin
(
ξ1 − π

4

)
= −B sin

(
ξ2 − π

4

)
,

(A.107)

where in the differentiation we used the condition (A.95) of applicability of the
semiclassical approximation.

Since ξ2 =
∫ x2

x1

p(x)dx− ξ1, upon dividing the second relation in (A.107) by

the first one obtains

tan
(
ξ1 − π

4

)
= tan



ξ1 +
π

4
−

x2∫

x1

p(x)dx



 ,



390 Appendix. Methods for solving the Schrödinger and Dirac equations

which yields the Bohr-Sommerfeld quantization rule

x2(ε)∫

x1(ε)

p(x)dx = π

(
n+

1
2

)
(A.108)

for the energy levels of the discrete spectrum ε = εn, n = 0, 1, 2, . . .. Since the
zeroes of the wave function lie inside the interval (x1, x2) (as clearly follows from
the form of the semiclassical solution outside this interval), the n in (A.108) is the
number of zeroes of the wave function ψ(x). Setting ξ2 = π(n+ 1/2)− ξ1 in any
of the relations (A.107), we conclude that B = (−1)nA.

According to (A.105) and (A.108), for a particle moving in the central field
U(r) the Bohr-Sommerfeld condition reads

r2(ε)∫

r1(ε)

p(r)dr = π

(
nr +

1
2

)
, (A.109)

where nr is the number of zeroes of the radial function.

EXAMPLE 1. Let us find the energy levels of a hydrogen-like atom, with
U(r) = −Z/r, in the semiclassical approximation.

To this end we calculate the integral in the left-hand side of (A.109), using
integration by parts:

r2∫

r1

p(r)dr = rp(r)
∣∣∣
r2

r1

−
r2∫

r1

r

(
− Z
r2

+
(�+ 1/2)2

r3

)

√

2
[
ε+

Z

r
− (�+ 1/2)2

2r2

] dr =

Z

r2∫

r1

dr√
2εr2 + 2Zr − (�+ 1/2)2

+

x2∫

x1

(�+ 1/2)2dx√
2ε+ 2Zx− (�+ 1/2)2x2]

∣∣∣∣∣
x=1/r

=

Z√−2ε

a∫

−a

dx√
a2 − x2

− (�+ 1/2)

b∫

−b

dx√
b2 − x2

= π

(
Z√−2ε

− �− 1/2
)
.

A comparison with (A.109) yields

ε = εn� = − Z2

2n2
,

where n = nr + �+ 1 is the principal quantum number. Thus, the energy levels of
a hydrogen-like ion provided by the semiclassical approximation coincide with the
exact ones. A similar assertion holds for the linear harmonic oscillator.
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A.4.4 Using the semiclassical approximation to normalize the
continuum wave functions

The semiclassical continuum wave functions provide a rather good approxima-
tion, because the higher the energy ε, the smoother the behavior of the function
p(r). However, a known difficulty arises, connected with the normalization of the
numerical solutions of the Schrödinger equation [45, 49]. In the semiclassical ap-
proximation, the continuum wave functions Rε�(r), normalized by the condition
(see § 2.3)

∞∫

0

Rε�(r)Rε′�(r)dr = δ(ε− ε′), (A.110)

have the form

R̃ε�(r) =






1
π

√
ξ

|p|K1/3(ξ), if r ≤ rε�,

1√
3

√
ξ

p
[J−1/3(ξ) + J1/3(ξ)], if r ≥ rε�,

(A.111)

where rε� is a turning point. The first zero r = r∗ of the function R̃ε�(r) corre-
sponds to the first zero ξ = ξ∗ of the equation

J−1/3(ξ∗) + J1/3(ξ∗) = 0,

where ξ∗ = 1.929379. For the derivative of the semiclassical function (A.111) we
have

d

dr
R̃ε�(r)

∣∣∣
r=r∗
≈
√
ξ∗p(r∗)

3
[J ′

−1/3(ξ
∗) + J ′

1/3(ξ
∗)] = −0.801952

√
p(r∗). (A.112)

This condition can be used in the numerical integration of the Schrödinger
equation to normalize the continuum wave functions: the value of R′

ε� in the first
zero of Rε�(r) is set equal to R̃′

ε�(r), in accordance with formula (A.112).
EXAMPLE 2. Consider the normalization of the continuum wave function for

the Coulomb potential U(r) = −Z/r. For ε = 0 the Schrödinger equation has an
exact solution, which can be expressed in terms of Bessel functions. In particular,
for � = 1 we have

Rε�(r) =
√

2rJ3(
√

8Z r).

In this case computations based on formula (A.112) give the normalization coef-
ficient 0.99998 instead of 1.
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NUMERICAL METHODS

A.5 The phase method for calculating energy eigenval-

ues and wave functions

A.5.1 Equation for the phase and the connection with the
semiclassical approximation

To find the energy levels and wave functions of a electron moving in a given central
field with potential V (r), we consider the problem of solving the Schrödinger
equation

−1
2
R′′ +

[
−V (r) +

�(�+ 1)
2r2

]
R = εR, 0 < r <∞, (A.113)

with the boundary conditions R(0) = R(∞) = 0 and the normalization condition∫∞
0
R2(r)dr = 1. Here the function R(r) must have a prescribed number of zeroes

nr = n− �− 1 in the interval (0,∞), n being the principal quantum number.
The problem posed above is usually solved as follows. For some energy value ε

one integrates equation (A.113) in the direction of increasing values of r, starting
at r = 0 with initial conditions corresponding to the behavior of the the wave
function R(r) for r ∼ 0, i.e., R(r) ∼ r�+1. Denote the resulting solution by R0(r).
For the sake of definiteness, we will assume, as is customary, that R0(r) > 0
for small r. In much the same way, integrating equation (A.113) in the direction
decreasing values of r, one can find a solution R∞(r), which for r → ∞ behaves
like exp(−√−2ε r), if V (r)→ 0 as r →∞.

The energy eigenvalues ε = εn� are usually found from the conditions that
the functions R0(r) and R∞(r) and their first derivatives be continuous in some
intermediate point r = r∗. Generally, the direct use of these conditions in the
calculation of energy eigenvalues requires a sufficiently large number of iterations,
since the functions R(r) and R′(r) depend on ε in a rather complex manner. To
simplify the dependence on ε we resort to the semiclassical approximation.

In the semiclassical approximation the solution of equation (A.113) in the
domain of classical motion r1 < r < r2 has the form

R(r) =
C√
p(r)

sin




r∫

r1

p(r)dr +
π

4



 , (A.114)
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where

p(r) = pε�(r) =

√√√√2

[
ε+ V (r)− (�+ 1/2)2

2r2

]
, (A.115)

p(r1) = p(r2) = 0.

Starting from representation (A.114), one obtains the Bohr-Sommerfeld condition
for the determination of the energy eigenvalues in the semiclassical approximation
(see the derivation of formulas (A.109) in §A.4).

Let us find a representation of the function R(r) with the property that in
the semiclassical approximation it will go over, in a natural manner, into repre-
sentation (A.114). To this end we will seek the function R(r) in the form

R(r) = g(r) sinϕ(r). (A.116)

For the derivative R′(r) we use the expression

R′(r) = a(r)g(r) cosϕ(r), (A.117)

because in the semiclassical approximation

R′(r) = C
√
p(r) cos




r∫

r1

p(r)dr +
π

4



 .

Let us require that in the semiclassical approximation the function a(r) will go
over into p(r). Then obviously the phase ϕ(r) will go over into

r∫

r1

p(r′)dr′ +
π

4

which readily leads to conditions analogous to the Bohr-Sommerfeld condition.
Assuming the function a(r) is given, let us write the equations that the

functions g(r) and ϕ(r) must satisfy. Differentiating expression (A.116) for R(r)
yields

g′ sinϕ+ gϕ′ cosϕ = ag cosϕ. (A.118)

Similarly, differentiating expression (A.117) and using the Schrödinger equa-
tion (A.113), we have

ag′ cosϕ− agϕ′ sinϕ+ a′g cosϕ = −fg sinϕ,

where

f(r) = 2[ε+ V (r)]− �(�+ 1)
r2

.
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Therefore,

ϕ′ = a− sinϕ
[(
a− f

a

)
sinϕ− a′

a
cosϕ

]
, (A.119)

g′

g
= cosϕ

[(
a− f

a

)
sinϕ− a′

a
cosϕ

]
. (A.120)

Equation (A.120) shows that the function g(r) has no zeroes, i.e., it indeed
has the character of an amplitude factor in (A.116).

A.5.2 Construction of an iteration scheme for the calculation of
eigenvalues

In accordance with the semiclassical approximation, it is natural to put a(r) = p(r)
in the domain of classical motion. Outside that domain we take for a(r) a bounded
function that does not vanish, so that dϕ/dr > 0 for all r, in agreement with the
meaning of the phase ϕ. For definiteness, we put a(∞) =

√−2ε. Then, by (A.116)
and (A.117),

tanϕ = a(r)
R(r)
R′(r)

. (A.121)

Taking into account the way R(r) behaves when r → 0 and r →∞, we find that

tanϕ(0) = lim
r→0

a(r)
�+ 1

r = 0, (A.122)

tanϕ(∞) = − lim
r→∞

a(r)√−2ε
= −1. (A.123)

Let ϕ0(r) and ϕ∞(r) be two solutions of equation (A.119), with the first
satisfying condition (A.122) and the second satisfying condition (A.123), i.e.,
ϕ0(0) = 0, ϕ∞(∞) = −π/4. For the energy eigenvalue ε = εn�, similarly to the
Bohr-Sommerfeld condition obtained above, we have the condition tanϕ0(r) =
tanϕ∞(r), or ϕ0(r)−ϕ∞(r) = πk, where k is an integer. Obviously, k = nr +1 =
n− �, i.e., the relation

ϕ0(r∗)− ϕ∞(r∗) = π(n− �) (A.124)

must hold in any intermediate point r = r∗ (r1 < r∗ < r2).
Note that the value of the phase ϕ(r) in the nodes of the function R(r) is

equal to πm, with m an integer, while its value in the nodal points of the derivative
R′(r) is π(m+1/2), for any choice of the function a(r). In any intermediate point
r = r∗ the value of the phase ϕ(r) is determined by the value of a(r∗).*)

*) Strictly speaking, to derive equality (A.124) it is not necessary to give precisely
the conditions (A.122)–(A.123) for r = 0 and r = ∞ and require that the functions a(r)
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In the domain of classical motion, away from the turning points, we follow
the semiclassical approximation and put a(r) = p(r). Then for the sewing point
one can take a point r = r∗ (r1 < r∗ < r2) for which p′(r∗) = 0, i.e., (see (A.115))

−r3 dV
dr

∣∣∣∣
r=r∗

=
(
�+

1
2

)2

.

Near r = r∗ the condition |p′| � p2 for the applicability of the semiclassical
approximation is obviously satisfied.

Let us remark that the semiclassical approximation (A.114) can be obtained
directly from equation (A.119), setting a(r) = p(r) ≈√f(r):

ϕ′ =
dϕ

dr
≈ p+

p′

2p
sin 2ϕ,

whence

ϕ ≈
∫
p(r)dr +

∫
p′

2p2
p(r) sin 2ϕ(r) dr.

Here the second term is small not only because
∣∣p′/p2

∣∣ � 1, but also due
to the presence of the factor sin 2ϕ(r) in the integrand. From this formula it also
follows that in the domain of classical motion ϕ′(r) ≈ p(r) > 0, which was assumed
in the derivation of condition (A.124).

In the semiclassical approximation equation (A.124) coincides with the Bohr-
Sommerfeld quantization rule. To solve this equation numerically (by Newton’s
method, for instance), it would be convenient to reduce it to an equation of the
form F (ε) = 0 such that the function F (ε) is almost linear in ε. It is clear, however,
that in practice such a reduction is not an easy task. For this reason, the procedure
described has been implemented for the typical case of the Coulomb potential with
external screening V (r) = Z/r − A (see Example 1 in §A.4, and also §A.3). If, in
this case, instead of equation (A.124) we take the equivalent equation

π2

[ϕ0(r∗)− ϕ∞(r∗) + π�]2
− 1
n2

= 0, (A.125)

and g(r) have a specific behavior outside the domain of classical motion. Indeed, rep-
resentation (A.116)–(A.117) is actually used only inside the domain of classical motion,
where the function R(r) oscillates and where all the nodal points of the functions R(r)
and R′(r) lie. For example, one can use the following boundary conditions for the phase
functions ϕ0(r) and ϕ∞(r):

ϕ0(r̃1) =
π

4
, ϕ∞(r̃2) = −π

4
,

where the points r̃1 and r̃2 are solutions of the equation f(r) = 0, i.e., R′′(r) = 0,
and determine the domain of oscillations of the function R(r). Since p2(r) ≈ f(r), this
domain of oscillations, r̃1 < r < r̃2, is almost identical to the domain of classical motion,
r1 < r < r2.
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we conclude that, in the semiclassical approximation, it has the form

2(A− ε)
Z2

− 1
n2

= 0,

i.e., the requisite linearity in ε holds. One can expect that in the general case, too,
the right-hand side of equation (A.125) will be almost linear in ε. Thus, we arrive
at the following iteration scheme for determining the eigenvalue ε = εn�:

(s+1)
ε =

(s)
ε +

1
2
ϕ0(r∗)− ϕ∞(r∗) + π�

∂ϕ0(r∗)
∂ε

− ∂ϕ∞(r∗)
∂ε

{
1−
(
ϕ0(r∗)− ϕ∞(r∗) + π�

πn

)2
}∣∣∣∣∣

ε=
(s)
ε

(A.126)
(s is the iteration number).

The values of the functions ϕ0(r) and ϕ∞(r), and also of ∂ϕ0(r)/∂ε and
∂ϕ∞(r)/∂ε, in the point r = r∗ can be found with the help of the values of R0(r),
R′

0(r) and R∞(r), R′
∞(r), which in turn are obtained via the numerical integration

of equation (A.113). Starting from (A.121), let us construct continuous functions
ϕ0(r) and ϕ∞(r), using the principal branch of the function arctan and setting
a(r) = p(r):

ϕ0(r) =






arctg
(
p(r)

R0(r)
R′

0(r)

)
+ πk1, if

R0(r)
R′

0(r)
> 0,

arctg
(
p(r)

R0(r)
R′

0(r)

)
+ π(k1 + 1), if

R0(r)
R′

0(r)
< 0,

ϕ∞(r) =






arctg
(
p(r)

R∞(r)
R′∞(r)

)
− π(k2 + 1), if

R∞(r)
R′∞(r)

> 0,

arctg
(
p(r)

R∞(r)
R′∞(r)

)
− πk2, if

R∞(r)
R′∞(r)

< 0.

Here k1 [resp., k2] is the number of zeroes of R0(r) [resp., R∞(r)] in the interval
(0, r∗) [resp., (r∗,∞)].

To calculate ∂ϕ/∂ε we resort again to formula (A.121), setting a(r) = p(r):

1
cos2 ϕ

∂ϕ

∂ε
=

1
p(r)

R(r)
R′(r)

+ p(r)
[

1
R′(r)

∂R(r)
∂ε

− R(r)
(R′(r))2

∂R′(r)
∂ε

]
,

whence

∂ϕ

∂ε
=

1
p(r)

R′(r)R(r) + p(r)
[
R′(r)

∂R(r)
∂ε

−R(r)
∂R′(r)
∂ε

]

(R′(r))2 + p2(r)R2(r)
. (A.127)
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Using the Schrödinger equation (A.113) one can show that

d

dr

[
R′(r)

∂R(r)
∂ε

−R(r)
∂R′(r)
∂ε

]
= 2R2(r). (A.128)

To this end it suffices to differentiate equation (A.113) with respect to ε and then
multiply the resulting equation by R(r) and subtract from it equation (A.113),
multiplied by ∂R(r)/∂ε. Now integrating (A.128) we obtain

R′
0(r)

∂R0(r)
∂ε

−R0(r)
∂R′

0(r)
∂ε

= 2

r∫

0

R2
0(r) dr,

R′
∞(r)

∂R∞(r)
∂ε

−R∞(r)
∂R′

∞(r)
∂ε

= −2

∞∫

r

R2
∞(r) dr.

Therefore, in view of (A.127),





∂ϕ0(r∗)
∂ε

=

1
p(r)

R′
0(r)R0(r) + 2p(r)

r∫

0

R2
0(r) dr

(R′
0(r))2 + p2(r)R2

0(r)

∣∣∣∣∣
r=r∗

,

∂ϕ∞(r∗)
∂ε

=

1
p(r)

R′
∞(r)R∞(r)− 2p(r)

∞∫

r

R2
∞(r) dr

(R′∞(r))2 + p2(r)R2∞(r)

∣∣∣∣∣
r=r∗

.

(A.129)

We see that when the iteration scheme (A.126) is used, it suffices to know
the values of the radial function Rn�(r) and of its derivative R′

n�(r). Hence, in
the actual calculations of energy levels and wave functions it is natural to resort
directly to a difference scheme for the Schrödinger equation (A.113), without using
the equation for the phase ϕ(r).

R em a r k 1. To understand the role played by the function a(r), let us con-
sider the following model eigenvalue problem:

y′′ + k2y = 0, 0 < x < 1.

We need to select the values of k for which the boundary conditions y(0) = y(1) = 0
are satisfied; clearly, k = nπ, where n = 1, 2, . . . .

Let us pass to polar coordinates:





y = g(x) sinϕ(x),

y′ = g(x) cosϕ(x).
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Figure A.6: Dependence of the value ϕ(1) on k for a = 1 (left) and a = k (right)

For the solution y = sin kx, which satisfies the boundary condition y(0) = 0, we
have

g sinϕ = sin kx, g cosϕ = k cos kx,

whence
tanϕ =

1
k

tan kx.

Imposing the boundary condition y(1) = 0 at x = 1, we obtain

tanϕ(1) =
tan k
k

,
∂ϕ

∂k

∣∣∣∣
x=1

=
k − sin k cos k

k2 cos2 k + sin2 k
.

In particular,

∂ϕ

∂k

∣∣∣∣
x=1

=






k, if k =
π

2
+ nπ,

1/k, if k = nπ.

The equation that determines the eigenvalues k reads

ϕ(1) = πn.

Newton’s method proves ineffective in solving this equation, because the value
of ϕ(x) for x = 1 depends on k in an highly nonlinear manner (see Figure A.6 (left),
which shows the values of ϕ(x)|x=1 as a function of k). As one can see from this
figure, convergence may fail due to the stepwise character of the function. However,
if we put y′ = a(x)g(x) cosϕ(x) and substitute a(x) = k in this expression, then
the phase is smoothed out and for x = 1 we obtain tanϕ = tan k, i.e., ϕ = k (see
Figure A.6 (right)). Now Newton’s method will converge after one iteration.

R ema r k 2. When the energy levels are calculated in the semiclassical ap-
proximation by means of Newton’s method directly from the Bohr-Sommerfeld
quantization rule

r2(ε)∫

r1(ε)

pε�(r)dr = π

(
nr +

1
2

)
,
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it is natural to write the latter in a form similar to (A.125):

π2

[ϕ(ε) + π�]2
− 1
n2

= 0, ϕ(ε) =

r2(ε)∫

r1(ε)

pε�(r)dr +
π

2
.

Then, by (A.126), we obtain the iteration scheme

(s+1)
ε =

(s)
ε +

[ϕ(ε) + π�]
{
1− [(ϕ(ε) + π�)/(πn)]2

}

2
∂ϕ(ε)
∂ε

∣∣∣∣∣
ε=

(s)
ε

, (A.130)

where

∂ϕ(ε)
∂ε

=

r2(ε)∫

r1(ε)

dr

pε�(r)
.

A.5.3 Difference schemes for calculating radial functions

To find the values of the solution R(r) of equation (A.113) one usually employs
difference schemes of sufficiently high order of accuracy, with a constant or variable
step in r. First let us consider a very simple difference scheme of 4-th order of
accuracy for the equation v′′ = g(x), on a uniform grid xi+1 = xi + h (i =
1, 2, . . . , N). Integrating this equation we obtain

v(x) =

x∫

xi

(x− t)g(t) dt+ vi + Ci(x− xi), where vi = v(xi).

This yields

vi+1 − 2vi + vi−1 =

xi∫

xi−1

(t− xi−1)g(t) dt+

xi+1∫

xi

(xi+1 − t)g(t) dt. (A.131)

To calculate the integrals we can approximate the function g(x) on the in-
terval x ∈ (xi−1, xi+1) in various ways. Let us use the quadratic interpolation

g(x) = gi +
gi+1 − gi−1

2h
(x− xi) +

gi+1 − 2gi + gi−1

2h2
(x− xi)2.

Substituting this expression in (A.131), we obtain

vi+1 − 2vi + vi−1

h2
= gi +

1
12

(gi+1 − 2gi + gi−1). (A.132)
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Let us find the order of accuracy of this scheme. By Taylor’s formula

vi±1 = vi ± v′ih+ v′′i
h2

2
± v′′′i

h3

6
+ v

(iv)
i

h4

24
+O(h5),

and so

vi+1 − 2vi + vi−1

h2
= v′′i + v

(iv)
i

h2

12
+O(h3) = gi + g′′i

h2

12
+O(h3).

Since, by Taylor formula for g(x),

gi+1 − 2gi + gi−1 = g′′i h
2 +O(h3),

we conclude that

vi+1 − 2vi + vi−1

h2
= gi +

1
12

(gi+1 − 2gi + gi−1) +O(h3).

A comparison with (A.132) shows that, for given values of vi and vi−1, we
indeed obtained a 4-th order scheme for vi+1.

Let us apply the results obtained above to the numerical integration of an
equation of the form v′′ = F (x)v (for example, of the one-dimensional Schrödinger
equation). Setting g(x) = F (x)v in (A.132), we have

vi+1 − 2vi + vi−1

h2
= Fivi +

1
12

(Fi+1vi+1 − 2Fivi + Fi−1vi−1),

which leads to Numerov’s scheme [83]:

(
1− h2

12
Fi+1

)
vi+1 − 2

(
1 +

5
12
h2Fi

)
vi +
(

1− h2

12
Fi−1

)
vi−1 = 0. (A.133)

To apply Numerov’s scheme for the numerical integration of equation (A.113)
on a grid uniform in r we must set

vi =R(ri), Fi =−2[ε+ V (ri)] +
�(�+ 1)
r2i

, h=ri+1 − ri, i = 2, 3, . . . , N − 1.

This yields

Ri+1 = 2
1 + 5

12h
2Fi

1− 1
12h

2Fi+1

Ri −
1− 1

12h
2Fi−1

1− 1
12h

2Fi+1

Ri−1. (A.134)

If the values of R(r) for r = r1 and r = r2 = r1 + h are given, the scheme
(A.134) allows us to calculate the values of R0(r) at given points of the grid. To
calculate R∞(r), we can apply the scheme (A.133) for r < rN in the form

Ri−1 = 2
1 + 5

12h
2Fi

1− 1
12h

2Fi−1

Ri −
1− 1

12h
2Fi+1

1− 1
12h

2Fi−1

Ri+1. (A.135)
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A.5.4 The radial functions near zero and for large values of r

To be able to use formulas (A.134) and (A.135) we must know the values of the
function R(r) in two initial points r1, r2 (and, correspondingly, in the points rN
and rN−1). First let us consider the problem when the integration of equation
(A.113) is carried out starting from the point r = 0 in the direction of increasing
values of r.

To determine the values of R(r) in the neighborhood of zero (i.e., for r ≈ 0),
we recast equation (A.113) as

R′′ − �(�+ 1)
r2

R = f(r)R, where f(r) = −2[ε+ V (r)]). (A.136)

In the problems at hand limr→0 rV (r) = Z. If we regard the right-hand side
of (A.136) as a known function, then using Duhamel’s principle, which enables us
to express the solution of the nonhomogeneous equation in terms of the solution
of the homogeneous equation, we obtain

R(r) = Cr�+1 +
r�+1

2�+ 1

r∫

0

[
1−
(
r′

r

)2�+1
]
f(r′)(r′)−�R(r′) dr′.

Setting
R(r) = Cr�+1y(r), where lim

r→0
y(r) = 1,

we have

y(r) = 1 +
1

2�+ 1

r∫

0

[
1−
(
r′

r

)2�+1
]
r′f(r′)y(r′)dr′.

Since the function rf(r)y(r) has a limit when r → 0, to calculate the integral
for small values of r one can replace rf(r)y(r) by its linear approximation,

rf(r)y(r) = a+ br,

where a = −2Z. After integration we obtain

y(r) = 1 + r

(
− Z

�+ 1
+

br

2(2�+ 3)

)
.

Setting here br = 2Z + rf(r)y(r) and C = C0, we see that for small r

R0(r) = C0r
�+1

1− (�+ 2)Zr
(�+ 1)(2�+ 3)

1− r2f(r)
2(2�+ 3)

(C0 > 0). (A.137)

Now using (A.137) one can find the values R0(r1) and R0(r2), and then
employ formula (A.134) to calculate R0(r).
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For r = rN , in accordance with the choice of the sign of the function R(r) for
small r, we put R∞(rN ) = (−1)n−�−1C∞ (where C∞ > 0). The value R∞(rN−1) is
calculated by using the semiclassical approximation, which works well if the point
rN is sufficiently far from the second turning point r = r̃2, i.e.,

∫ rN

r̃2
|p(r)|dr � 1

(here r̃1 and r̃2 are the turning points, which should not be confused with the
grid points r1 and r2). On the other hand, note that for too large values of rN
the computation of R∞(r∗) is plagued by an accumulation of rounding errors. For
this reason, in computations it is convenient to choose rN from the approximate

equality
rN∫
r̃2

|p(r)|dr ≈ 10.

Thus, in the semiclassical approximation

R∞(rN−1) =

√∣∣∣∣
p(rN )
p(rN−1)

∣∣∣∣ exp




rN∫

rN−1

|p(r)|dr


R∞(rN ). (A.138)

When the iteration scheme (A.126) is used, in addition to the values R0(r∗)
and R∞(r∗), which can be found with the aid of (A.134) and (A.135), we need to
calculate R′

0(r
∗) and R′

∞(r∗). The value of the derivative R′(r) can be recovered
from the values of the function R(r) by means of Taylor’s formula, recalling that
R′′(r) = F (r)R(r):

R(r±h) = R(r)±hR′(r)+
h2

2
F (r)R(r)± h

3

3!
[F (r)R(r)]′+

h4

4!
[F (r)R(r)]′′+O(h5).

Solving the expression for R(r + h) − R(r − h) with respect to R′(r), we
obtain the requisite formula with accuracy O(h4):

R′(r) =
(R(r + h)−R(r − h))/(2h)− h2F ′(r)R(r)/6

1 + h2F (r)/6
.

After the energy eigenvalues are calculated via the scheme (A.126), the radial

function R(r), which must obey the normalization condition
∞∫
0

R2(r)dr = 1 and

be continuous in the point r = r∗, can be found in terms of the functions R0(r)
and R∞(r) calculated following the recipe

R(r) = D
R0(r)
R0(r∗)

for 0 < r ≤ r∗, R(r) = D
R∞(r)
R∞(r∗)

for r ≥ r∗,

where

D =



 1
R2

0(r∗)

r∗∫

0

R2
0(r)dr +

1
R2∞(r∗)

∞∫

r∗

R2
∞(r)dr




−1/2

.
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A.5.5 Computational results

To calculate the function R(r) by means of the difference scheme (A.133) with
a constant step ∆r = h we need a sufficiently large number of points ri. This
is connected with the fact that in the region of small values of r the function
U�(r) = −V (r) + �(�+ 1)/(2r2) varies rapidly. It turns out that more reliable are
the difference schemes with variable step ∆ri used in numerical integration, for
example, the Runge-Kutta scheme with automatic choice of step for a given order
of accuracy.

In practice, instead of r it is more convenient to take x =
√
r or x = ln r

as independent variable. Then one can use, as above, the Numerov scheme with
∆x =const. For example, in the case x =

√
r, the change of variables x =

√
r,

R(r) =
√
xW (x) transforms (A.113) into an equation that does not contain the

first derivative:

d2W

dx2
= F (x)W (x), F (x) = −8r [ε+ V (r)] +

4�(�+ 1) + 3
4

r

∣∣∣∣
r=x2

.

Similarly, the change of variables x = ln r, R(r) = ex/2W (x) transforms (A.113)
into the equation

d2W

dx2
= F (x)W (x), F (x) =

(
�+

1
2

)2

− 2r2 [ε+ V (r)]
∣∣∣∣
r=ex

.

The integration of these equations by Numerov’s method is carried out in the
intervals (x1, x

∗+∆x) and (x∗−∆x, x
N

) using the initial valuesW (x1) andW (x2),
obtained by means of formulas (A.137), and the values W (xN ) and W (xN−1),
obtained by means of the semiclassical approximation (A.138).

Computations have shown that the iteration process (A.126) is computa-
tionally efficient [155]. To illustrate the accuracy of the computations and the
rate of convergence of the iterations tables A.5 – A.6 list the successive values

of the energy,
(s)
εn�, for the Thomas-Fermi potential (with Z = 79, T = 1 keV,

ρ = 0.1 g/cm3), obtained by Numerov’s method. Results are shown for different
numbers N of points of a grid that is uniform with respect to

√
r/r0, r0 = 17.4.

The exact value of εn� was obtained by means of a Runge-Kutta method with
accuracy control (error smaller than 10−6). To simplify the tables the results are
displayed for n ≤ 4 and n = 9. For n > 4, as computations have shown, the
convergence rate does not get worse.

The initial value
(0)
εn�= ε̃n� was calculated in the semiclassical approximation

by means of formula (A.130). The influence of the initial approximation on the
rate of convergence of the iterations is illustrated by Table A.6, in which in the

first column one takes
(0)
εn� = 1.5 ε̃n�, in the second one takes

(0)
εn� = 0.5 ε̃n�, and

in the third, for comparison, one takes
(0)
εn� = ε̃n� (the number of grid points is

N = 500).
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Table A.5: Iterations
(s)
ε n� for the Thomas-Fermi potential (Z = 79, T = 1 keV

ρ=0.1 g/cm3)

n � N = 125 N = 250 N = 500 εn� (Runge-K.)

1 0 −2661.98638940 −2902.33409669 −2852.65239995 −2849.17788058
−2852.68543528 −2848.54090217 −2849.04011851
−2858.53546993 −2848.92042311 −2849.04118595
−2858.95317352 −2848.92011080 −2849.04118589
−2858.98357033 −2848.92011107 −2849.04118589
−2858.98578532 −2848.92011107
−2858.98594674
−2858.98595851
−2858.98595936
−2858.98595942
−2858.98595943

2 0 −595.37770290 −628.38311020 −626.10921430 −624.43437793
−626.58135038 −624.41279501 −624.42145950
−625.54395006 −624.42421953 −624.42095247
−625.54288033 −624.42418770 −624.42095251
−625.54288041 −624.42418779 −624.42095251
−625.54288041 −624.42418779

2 1 −599.25361751 −604.09464834 −607.58726534 −609.04915129
−609.22795813 −609.07079676 −609.05232485
−609.15574781 −609.06222871 −609.05155792
−609.15607315 −609.06223107 −609.05155793
−609.15607167 −609.06223107 −609.05155793
−609.15607168

3 0 −253.66806911 −258.23657499 −259.25176745 −258.66158054
−259.18033446 −258.66602217 −258.65927606
−259.02899288 −258.66463146 −258.65876493
−259.03004624 −258.66463557 −258.65876498
−259.03003834 −258.66463556 −258.65876498
−259.03003840 −258.66463556
−259.03003839

3 1 −256.83614063 −254.16789552 −252.72990557 −252.93686050
−253.02176538 −252.94593219 −252.93777058
−253.00603191 −252.94287109 −252.93767461
−253.00611075 −252.94287199 −252.93767461
−253.00611035 −252.94287199
−253.00611036

3 2 −242.92187909 −244.07358263 −244.48978619 −244.18008049
−244.19337568 −244.18113102 −244.18084667
−244.18867280 −244.18110016 −244.18066156
−244.18867866 −244.18110016 −244.18066156
−244.18867865

4 0 −137.81652997 −139.71655719 −139.66788434 −139.43180899
−139.60745024 −139.43457064 −139.43126146
−139.61361153 −139.43518570 −139.43079378
−139.61357070 −139.43518385 −139.43079379
−139.61357098 −139.43518386 −139.43079379
−139.61357097

9 0 −21.63165056 −21.79779582 −21.80696817 −21.78817276
−21.81917858 −21.78936719 −21.78817983
−21.81724104 −21.78936920 −21.78819009
−21.81725231 −21.78936920 −21.78819009
−21.81725225
−21.81725225
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Table A.6: Same as in Table A.5, but for different values of

(0)
ε n� (the number of

grid points is N = 500)

n �
(0)
ε n� = 1.5ε̃n�

(0)
ε n� = 0.5ε̃n�

(0)
ε n� = ε̃n�

1 0 −4278.97859992 −1426.32619997 −2852.65239995
−2901.57021032 −2306.53497848 −2849.04011851
−2848.87180002 −2811.28303029 −2849.04118595
−2849.04119440 −2848.94523986 −2849.04118589
−2849.04118589 −2849.04119117 −2849.04118589
−2849.04118589 −2849.04118589

−2849.04118589

2 0 −939.16382146 −313.05460715 −626.10921430
−716.82873046 −583.03029883 −624.42145950
−630.81321159 −624.21186547 −624.42095247
−624.43131044 −624.42098171 −624.42095251
−624.42095156 −624.42095251 −624.42095251
−624.42095251 −624.42095251
−624.42095251

2 1 −911.38089801 −303.79363267 −607.58726534
−707.84877667 −542.48283307 −609.05232485
−615.49440987 −609.39429220 −609.05155792
−609.06707413 −609.05159433 −609.05155793
−609.05155778 −609.05155793 −609.05155793
−609.05155793 −609.05155793
−609.05155793

3 0 −388.87765117 −129.62588372 −259.25176745
−279.42283108 −304.63958151 −258.65927606
−260.04599856 −267.38720905 −258.65876493
−258.66189055 −258.83742839 −258.65876498
−258.65876469 −258.65879800 −258.65876498
−258.65876498 −258.65876498
−258.65876498 −258.65876498

3 1 −379.09485836 −126.36495279 −252.72990557
−242.77148845 −261.07316148 −252.93777058
−253.14347454 −253.08076261 −252.93767461
−252.93776185 −252.93771602 −252.93767461
−252.93767461 −252.93767461
−252.93767461 −252.93767461

3 2 −366.73467928 −122.24489309 −244.48978619
−329.73651407 −247.25717717 −244.18084667
−281.47443353 −244.20017403 −244.18066156
−248.77557031 −244.18066221 −244.18066156
−244.22545811 −244.18066156
−244.18066524 −244.18066156
−244.18066156
−244.18066156

4 0 −209.50182650 −69.83394217 −139.66788434
−120.09361223 −145.24226617 −139.43126146
−142.05794293 −139.65009864 −139.43079378
−139.48393238 −139.43119357 −139.43079379
−139.43081592 −139.43079378 −139.43079379
−139.43079379 −139.43079379
−139.43079379 −139.43079379

9 0 −32.71045225 −10.90348408 −21.80696817
−21.72346630 −21.37967389 −21.78817983
−21.78806957 −21.78248161 −21.78819009
−21.78819009 −21.78818932 −21.78819009
−21.78819009 −21.78819009

−21.78819009
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The relatively large value of N is connected with the fact that the same grid
was used for all values of n (n = 1, 2, . . . , 9). Fixing the number of grid points to
be the same N for all wave functions is convenient in the computation of the self-
consistent atomic potential, electron density, and so on (in doing so, the function
R10(r), for example, is different from zero only in the first 20 points of the grid).

As the third column of Table A.5 shows, already the first iteration practically
allows us to obtain the five true digits for the energy eigenvalue. A manifestly
bad initial approximation (see Table A.6) increases only slightly the number of
iterations. It is clear that the phase method can be applied to the solution of many
other eigenvalue problems.

A.5.6 The phase method for the Dirac equation

Dirac’s system of equations reads





d

dr
F (r) +

κ

r
F (r) = α

[
ε+ V (r) +

2
α2

]
G(r),

d

dr
G(r)− κ

r
G(r) = −α[ε+ V (r)]F (r),

(A.139)

where ε = εn�j is the energy eigenvalue, F (r) = Fn�j(r) and G(r) = Gn�j(r) are
the large and respectively the small radial wave functions times the radius r, � is
the orbital quantum number, j = �±1/2 is the total momentum quantum number
(j > 0) and κ = −2(j − �)(j + 1/2).

The system (A.139) is easily integrated numerically. To construct an itera-
tion scheme for finding energy levels we follow the earlier considerations for the
Schrödinger equation.

Using the functions

η(r) = α

[
ε+ V (r) +

2
α2

]
, χ(r) = α[ε+ V (r)],

introduced in [80, 236], and the change of variables

F (r) =
√
η(r)P (r), G(r) =

√
χ(r)Q(r)

we obtain for P (r) the equation (see (2.37))

d2P

dr2
+ k2(r)P = 0, (A.140)

where

k2(r) = ηχ− rκ√η
(

1
rκ√η

)′′
= ηχ− 3

4

(
η′

η

)2

+
1
2
η′′

η
− κ

r

η′

η
− κ(κ+ 1)

r2
.
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To calculate the energy eigenvalues one can use an iteration scheme entirely similar
to that for the Schrödinger equation:

(s+1)
ε =

(s)
ε +

1
2
ϕ0(r∗)− ϕ∞(r∗)+ π�

∂ϕ0(r∗)
∂ε

− ∂ϕ∞(r∗)
∂ε

{
1−
(
ϕ0(r∗)− ϕ∞(r∗)+ π�

πn

)2
}∣∣∣∣∣

ε=
(s)
ε

,

(A.141)
where

ϕ0(r∗) =






arctan
[
k(r∗)

P0(r∗)
P ′

0(r∗)

]
+ πk1, if

P0(r∗)
P ′

0(r∗)
> 0;

arctan
[
k(r∗)

P0(r∗)
P ′

0(r∗)

]
+ π(k1 + 1), if

P0(r∗)
P ′

0(r∗)
< 0;

ϕ∞(r∗) =






arctan
[
k(r∗)

P∞(r∗)
P ′∞(r∗)

]
− π(k2 + 1), if

P∞(r∗)
P ′∞(r∗)

> 0;

arctan
[
k(r∗)

P∞(r∗)
P ′∞(r∗)

]
− πk2, if

P∞(r∗)
P ′∞(r∗)

< 0.

Here k2(r) = k2(r)− 1
4r2

, k1 is the number of zeroes of P0(r) from r = 0 to r = r∗,

and k2 is the number of zeroes of P∞(r) from r = r∗ to r = r0. The position of the
point r∗ is determined by the condition that it must lie in the region of oscillation
of the function P (r), and that d

drk(r)|r=r∗ ≈ 0. The values of the derivatives
∂ϕ0(r∗)/∂ε and ∂ϕ∞(r∗)/∂ε are calculated by means of the formulas





∂ϕ0(r∗)
∂ε

=

(
∂

∂ε
k(r)
)
P ′

0(r)P0(r) + k(r)

r∫

0

(
∂

∂ε
k2(r)

)
P 2

0 (r) dr

(P ′
0(r))2 + k

2
(r)P 2

0 (r)

∣∣∣∣∣
r=r∗

,

∂ϕ∞(r∗)
∂ε

=

(
∂

∂ε
k(r)
)
P ′
∞(r)P∞(r)−k(r)

∞∫

r

(
∂

∂ε
k2(r)

)
P 2
∞(r)dr

(P ′∞(r))2 + k
2
(r)P 2∞(r)

∣∣∣∣∣
r=r∗

.

For small r the value of P0(r) can be determined by isolating the principal
singularity for r ∼ 0. Writing (A.140) in the form

d2P0

dr2
− ν(ν + 1)

r2
P0 = µ(r)P0,

ν = −1
2

+
√
κ2 − α2Z2
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and proceeding much like in the case of the Schrödinger equation (i.e., setting
P0(r) = C0r

ν+1y(r), y(0) = 1), we obtain

P0(r) = C0r
ν+1 1 + (ν + 2)ar/[(2ν + 2)(2ν + 3)]

1− µ(r)r2/(4ν + 6)
,

where C0 is the normalization constant and a = limr→0 rµ(r). In order to find
the asymptotic behavior of P∞(r) when r → ∞ it is convenient to resort to the
semiclassical approximation.

Let us emphasize that it is advisable to integrate numerically the system
(A.139), and then to use P (r) = F (r)/

√
η(r) in the iteration scheme (A.141).
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164, 276
hydrogen-like ion, 337, 368, 388

induced emission, 148, 155
internal energy, 11, 121, 285, 288, 290,

313, 324
intrinsic density, 123
inverse bremsstrahlung, 159, 164, 168,

269, 273
ion core, 14, 39, 108, 122, 123, 287
ionization degree, 13, 40, 173

Kirchhoff’s law, 280
Kramers approximation, 169, 274

Lorentz profile, 186

method of the trial potential, 369, 375
Moszkowski’s method, 231

normalization condition, 342

occupation numbers, 4, 29
one-component plasma, 315
opacity, 155
oscillation corrections, 27, 42, 294, 308
oscillator strength, 158, 172

partial density, 27, 263
Pauli approximation, 116, 117
Planck mean free path, 228
Poisson equation, 3, 8, 30, 31, 68, 70,

294
principle of detailed balance, 148, 275

quasi-diffusion approximation, 154, 155

quasi-zone interpolation, 325

radiative heat conduction equation,
145

radiative transfer equation, 146, 280
relaxation time, 270
Ritz method, 370
Rodrigues formula, 340
Rosseland mean free path, 155, 228

Saha model, 328
Slater integrals, 92, 181, 231
spin-orbit interaction, 80, 91, 176, 178
Stark effect, 209, 211, 212, 226, 253
Stefan-Boltzmann constant, 156
Stirling formula, 5

Thomas-Fermi model, 4
Thomas-Fermi model with corrections,

296, 297, 308
three-body recombination, 268, 274
transition array, 226

unresolved transition array, 226

variational method, 369
virial theorem, 290
Voigt function, 241
Voigt line profile, 213

Wigner-Zeits cell, 323




