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Preface

As is well-known, the classical Brownian motion is a stochastic process which is self-
similar of index 1/2 and has stationary increments. It is actually the only continuous
Gaussian process (up to a constant factor) to have these two properties that are often
observed in the ‘real life’, for instance in the movement of particles suspended in a
fluid, or in the behavior of the logarithm of the price of a financial asset. More gener-
ally, it is natural to wonder whether there exists a stochastic process which would be
at the same time Gaussian, with stationary increments and selfsimilar, but not neces-
sarily with an index 1/2 as in the Brownian motion case. Such a process happens to
exist, and was introduced by Kolmogorov [27] in the early 1940s for modeling turbu-
lence in liquids. The name fractional Brownian motion (fBm in short), which is the
terminology everyone uses nowadays, comes from the paper by Mandelbrot and Van
Ness [29].

The law of fBm relies on a single parameter H between 0 and 1, the so-called
Hurst parameter or selfsimilarity index. Fractional Brownian motion is interesting
for modeling purposes, as it allows the modeler to adjust the value of H to be as
close as possible to its observations. It is worthwhile noting at this stage, however,
that the picture is not as rosy as it seems. Indeed, except when its selfsimilarity index
is 1/2, fBm is neither a semimartingale, nor a Markov process. As a consequence,
its toolbox is limited, so that solving problems involving fBm is often a non-trivial
task. On the positive side, fBm offers new challenges for the specialists of stochastic
calculus!

The goal of this book is to develop some aspects of fBm (as well as related topics),
without seeking for completeness at all. To be comprehensive would have been an
impossible task to fulfill anyway, given the huge amount of works that are nowadays
dedicated to fBm'. Instead, my guiding thread was to develop the topics I found the
most aesthetic (with all the subjectivity it implies!) by trying to avoid technicalities
as much as possible, in order to show the reader that solving questions involving fBm
may lead to beautiful mathematics. In fact, it was often an excuse for the development
of'a more general theory, for which the fBm then becomes a concrete and significant
example.

! According to MathSciNet, at the time this book is written there is more than one thousand
papers dealing with fBm.



vi Preface

The plan of the book, which is directed at an audience having a reasonable prob-
ability background (at the level of any of the standard texts) is as follows. Chapter
1 gathers the needed preliminary results; in particular, it recalls the exact definitions
of Gaussian vectors, sequences and processes, as well as their basic properties. It
also contains a proof of the existence of the fBm. Chapter 2 introduces the fBm and
provides some of its main properties. Chapter 3 develops an integration theory with
respect to fBm. When the Hurst parameter is greater than 1/2, it also gives a frame-
work allowing to solve integral equations involving fBm. Chapter 4 is devoted to
the study of the asymptotic behavior of the cumulative distribution function of the
supremum of fBm. In passing, we prove that the supremum of any Gaussian process
roughly behaves like a single Gaussian variable with variance equal to the largest
variance achieved by the entire process. Chapter 5 contains all the definitions and re-
sults on Malliavin calculus that are relevant throughout the sequel. Chapter 6 gives a
complete characterization of CLTs on the Wiener space in terms of “fourth moments
conditions”, by combining Stein’s method with Malliavin calculus. The asymptotic
behavior of the quadratic variation of fBm is then studied in detail. Chapter 7 shows
how fBm (as well as another related process) arises naturally in the large limit of par-
tial sums associated to time series with long-range dependence. Finally, Chapter 8
extends some of the results of Chapter 7 to the free probability context; in particular,
it introduces the reader to a non-commutative counterpart of the fBm.

It is fair to mention that this book is not the only treatise devoted to fBm. Other
references (focusing mainly on different aspects of fBm) include the books by Bi-
agini, Hu, @ksendal and Zhang [3], Cohen and Istas [11], Embrechts and Maejima
[17], Hu [22], Mishura [30], Nualart [45], Pipiras and Taqqu [49], Prakasa Rao [50]
and Samorodnitsky and Taqqu [56]. Also, it is worthwhile noting that the present
book complements in many respects the recent monograph [39] by the author with
Peccati (and viceversa), that only tangentially deals with fBm.

Nancy and Paris, June 2012 Ivan Nourdin
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Chapter 1
Preliminaries

Our aim in this first chapter is to introduce the reader to the realm of Gaussian families
(including vectors, sequences and processes). We start with some very elementary
facts (generally stated without proofs) about Gaussian random variables and vectors,
that are used throughout the book. We next deal with stochastic processes: first in a
wide sense, then by focusing on the Gaussian case only. We conclude this chapter
by proving the existence of the hero of this book, namely the fractional Brownian
motion.

1.1 Gaussian Random Vectors

Here and throughout the book (except in Chapter 8), every random object is defined
on an appropriate probability space (2, ¥, P). The symbols ‘E’, “Var’ and ‘Cov’ de-
note, respectively, the expectation, the variance and the covariance associated with P.

Definition 1.1. Let ; € R and 6* = 0. A real-valued random variable G is said to
have a Gaussian distribution with mean |v and variance o2, written G ~ N (i, 0%),
if its characteristic function is given by

E [e”G] = o2y e R,

Alternatively, we say that G is a Gaussian random variable with mean | and vari-
ance 6*. When G ~ N (0, 1), we simply say that G is a standard Gaussian random
variable.

The following properties hold.

Proposition 1.1. 1. If G ~ N (i, 0), then G = p with probability one.
2.Ifo # 0, then G ~ N (., 0?) has a density f with support equal to R, given by

1

—(x—)?/(20?)
\/Znoze , xeR.

f(x) =

Nourdin L.: Selected Aspects of Fractional Brownian Motion, B&SS,
DOI 10.1007/978-88-470-2823-4_1, © Springer-Verlag Italia 2012



2 1 Preliminaries

3.IfG ~ N(u,02), then E[e'C] = e'*°9%/2 < oo forall t € R.

4.1f G, ~ N(,ul,alz) and G, ~ N(,uz,azz) are independent, then G| + G, ~
N (w1 + pa, 0% + 03).

5.1fa,b € R and G ~ N(u,0?), then aG + b ~ N(au + b, a*c?).

Let us now consider the situation where more than one Gaussian random variable is
involved.

Definition 1.2. 1. Letd = 2. Arandom vector G = (Gy, ..., Gg) issaidto have a d-
dimensional Gaussian distribution if, for everyty, ..., tq € R, the random variable
ZZ:] tr G has a one-dimensional Gaussian distribution. When (G, ..., Gg)
has a d-dimensional Gaussian distribution, we say that the random variables
Gy,...,Gy are jointly Gaussian or, alternatively, that (Gy,...,Gg) is a Gaus-
sian random vector.

2. Let I be an arbitrary set. A Gaussian family indexed by I is a collection of random
variables (G;)iey such that, for every d = 2 and every iy, ...,iq € I, the vector
(Giy,....Gi,) has a d-dimensional Gaussian distribution.

It is immediate to check that the distribution of any d-dimensional Gaussian vector
(G, ...,Gy) is uniquely determined by its mean u = (w1, ..., itqg), Where

,bLkZE[Gk], k=1,...,d,
and its covariance matrix C = (Cg 1)1<k,i<d, given by
Cr1 =Cov(Gy.Gy), kiI=1,....d.

One has indeed that, for all #1,...,7; € R,

d d d
. . 1
E |:exp (l E lka)j| =expy! E ek — ) E lktlck,l . (1.1)
k=1 k=1

k=1
When G = (Gy,...,Gy) verifies (1.1), we write G ~ N;(u, C). Thanks to (1.1),

we get an easy-to-check criterion for independence.

Corollary 1.1. Let G = (Gy,...,Gy) be a Gaussian random vector. Let J C
{1.....d}and set J¢ = {1,...,d} \ J. Then, {G;}jes and {Gy}rejc are inde-
pendent if and only if Cov(Gj, Gy) = 0 forall j € J andk € J€.

Since a variance is positive, the covariance matrix C of a Gaussian random vector
(Gy, ...,Gy) is necessarily such that

d d
Z txt;Cy,; = Var (Z l‘ka) =0, t,....t5 €R;
k=1

k,l=1

i.e., C is positive in the sense of symmetric matrices. It is a remarkable fact that the
converse implication holds as well.



1.2 Hermite Polynomials 3

Theorem 1.1. Let C = (Ci1)1<k.1<a be a real-valued d x d symmetric positive
matrix. Then, there exists a centered Gaussian random vector G = (Gy,...,Gg)
admitting C as covariance matrix (that is, such that E[Gy] = 0 and Cov(Gy, G;) =
Cigforallk,l =1,...,d).

Due to Theorem 1.1, we understand the importance to have criterions for a given
symmetric matrix to be positive. This is indeed a crucial task when working in the
Gaussian realm, and we defer this analysis in the subsequent Section 1.3.

1.2 Hermite Polynomials

We introduce a family of polynomials, namely the Hermite polynomials, that allow
to do effective calculations on expectations involving Gaussian random vectors. Let
us start with an auxiliary definition.

Definition 1.3. The linear operator § : €' — €° is defined as

Bp)(x) = xp(x) —¢'(x), x€R. (1.2)
We then have the following useful duality formula.

Proposition 1.2. Let G ~ N (0,1) and let ¢, : R — R be of class €' and have
no more than an exponential growth together with their derivatives. Then

E[Y'(G)e(G)] = E[y(G)(¢)(G)]. (1.3)

Proof. An integration by parts (the bracket term is easily shown to vanish) immedi-
ately gives the desired conclusion; indeed,

e 24 x

E[Y'(G)e(G)]

o0 , 1
/_ Ve,
o0 1 2

/ V0O, e dx = EV@)60@). B
—00 27‘[

The family of Hermite polynomials is defined as the orbit of 1 (viewed as a con-
stant function) under the action of §.

Definition 1.4. For any integer k = 1, the kth Hermite polynomial is defined as
Hy = 81, where 1 indicates the function constantly equal to one and § is defined by
(1.2). By convention, we also set H_; = 0 and Hy = 1.

The first few Hermite polynomials are H; = X, H, = X2 —1land H; = X° —3X.
The next proposition gathers the main properties of these polynomials.

Proposition 1.3. The family (Hy)ren C R[X] of Hermite polynomials has the fol-
lowing properties.

\. H = kHy_y and Hyy = XHy — kHy_, for all k € N.
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2. The family («/lk' Hy)ken is an orthonormal basis of L*(R, leﬂe_xz/zdx).
3. Let (U, V) be a Gaussian vector with U,V ~ N (0, 1). Then, for all k,l € N,

E[H(U)H; (V)] =

KIE[UVIF  ifk =1
0 otherwise.

Proof. 1. Let D : R[X] — R[X] be the differentiation operator (i.e., DP = P’),
and recall the definition (1.2) of §. It is readily checked that D& — 8D is the identity
operator on R[X], that is, (D6 —8D)P = P for all P € R[X]. More generally, an
easy induction (on k) leads to

D&F —6kD = ks, k= 1.
We deduce that
H| = D§¥1 = k6*'1 4+ 6*D1 = kH;_,,
as well as

Hyyy = 8511 = 6681 = 6Hy = XHy — H] = XHy — kHy_,.

2.LetG ~ N(0,1). If k =1 = 1 (recall the convention H_; = 0), we can write

E[Hk(G)H,(G)] = E[Hk(G)(8'1)(G)]
E[H] (G)(Sl_1 1)(G)] by the duality formula (1.3)

= kE[Hi_1(G)H;_,(G)] by point (1).

By continuing the procedure, we get that the family ( «/lk' Hyp)ren is orthonormal in

L*(R, \/1271 e=x/2 dx). On the other hand, it is immediate to prove (e.g. by induction
through the second equality in (1)) that the polynomial Hj has degree k for any
k € N. Hence, to prove the claim at (2) it remains to show that the monomials X%,
k € N, generate a dense subspace of L?(R, JIZn e‘xz/zdx). For this purpose, it is
sufficient to prove that, if /' € L*(R, leﬂe_xz/zdx) satisfies E[G¥ f(G)] = 0 for
all k € N, then f is equal to zero. For z € C, let

¢(z) = E[f(G)e'*C].

Using the dominated convergence theorem, we immediately see that ¢ is an entire
function, with ¢ (2) = i* E[G* f(G)e'?*C],k € N, z € C. Hence, ¢*(0) = 0
for all k € N, that is, ¢ = 0. By the uniqueness of Fourier transforms, this implies
f=o.

3. Forall ¢ € R, the function x — e* belongs to L*(R, J;ne_xz/zdx). Therefore,
by point (2),

1
er = kz k!E[eCGHk(G)] Hy (x).
=0
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By applying (1.3) repeatedly, we get
o2
E[e¢C Hi(G)] = E[e“C (851)(G)] = ¥ E[e¢C] = ke,

so that
cx—"2 = ck
2 =
e kE k!Hk(x).
=0

For all 5,¢ € R, the previous identity yields
o0 Sk o0 [l

E| Y HeW) Y Hi(V)
k=0"" I=0 "’

2 2 2412
E I:eSU—S2 etV—tZ} — e—Y 2 E[eSU+tV]

kil

>y EUH@) Hy (V)]
ki=0

24 42
— o1 L EIU+V)?
o0
skik

=> ¥ E[UVIF.

k=0

1 _ StE[UV]

By identifying the coefficients in these two series expansions, we get the formula
in (3). O

1.3 Gaussian Processes

We now extend the results of Section 1.1 in the level of stochastic processes. Let
T be a given set (viewed as a set of ‘times’); in this book, we will always consider
T =[0,T]with T < oo, T = [0,00) or T = R. We recall that a (real-valued)
stochastic process X = (X;);eT 1s merely a collection, indexed by T, of real-valued
random variables defined on the same probability space (2, ¥, P).

Definition 1.5. Let X = (X;)ser and Y = (Y;)seT be two stochastic processes
defined on the same probability space (2, , P). If P(X; = Y;) = 1 forallt € T,
we say that X and Y are modifications of each other.

Remark 1.1. Let X and Y be modifications of each other. In general, we do not have
that
PVteT: X;=Y;) =1 (1.4)

(Here is an explicit counterexample: for T = [0, c0), consider X; = 0 and Y; =
1(¢—s), with € a positive random variable having a density; then P(X; = Y;) = 1 for
allt = 0,but P(Vt =2 0: X; =Y;) = 0.) We however that

PVteTNQ: X, =Y,) =1,

from which we deduce that (1.4) holds true whenever X and Y are further con-
tinuous. O
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Definition 1.6. Let X = (X;);eT and Y = (Y;)eT be two stochastic processes,
possibly defined on two different probability spaces. We say that X and Y have the
same law, and we write X law Y, to indicate that (X;,, ..., X;,) and (Y4, ....Yy,)
have the same law for alld = 1 and all t,,...,t; € T.

Remark 1.2. Tt is worthwhile noting that two modifications X and Y necessarily have
the same law. Indeed, from Definition 1.5 we deduce that P(X; = Y;,..., X;, =
Y;,) = 1foralld > landallt,...,t; € T, meaning in particular that X Yy o

Definition 1.7. A stochastic process X = (X¢)reT is said to be Gaussian if, for all
d=landallt,,... .tg €T, (Xy,..., Xs,)is a Gaussian random vector. The mean
of X is then the function m : T — R given by m(t) = E[X,], while the covariance
of X is the function T : T?> — R given by I'(s,t) = Cov(Xs, X;). When m = 0, we
say that X is centered.

Exactly as for Gaussian random vectors, we have the following uniqueness in law
result.

Proposition 1.4. Two Gaussian processes have the same law if and only if they have
the same mean and the same covariance.

Proof. See, e.g., [25, Lemma 11.1]. O

It is more difficult to cope with the existence problem. We start with a relevant
definition.

Definition 1.8. 4 symmetric function T : T? — R is of positive type if

d
Z axaiU(tg, 1) =2 0
k=1

foralld =1, t,,...,tg € Tanday,...,az € R.
For example, the symmetric function
[:[0,00° =R, (s,¢)sAt=inf(s,1) (1.5)

is of positive type; indeed, if d = 1, #1,...,15 € [0,00) and ay,...,a; € R are
given, then

d d 0o
> @ T(e.n) = ) akal/ Ljo,6,1 ()Xo, (x)d x (1.6)
kl=1 0

k=1

oo d 2
/ (Zakl[o,,k](x)) dx = 0.
0 Ng=i

The next statement emphasizes three stability properties of symmetric functions
of positive type.
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Proposition 1.5. Let '}, T, : T? — R be two symmetric functions of positive type.
Then, the sum Ty 4 Ty, the product T\ Ty and the function ™' — 1 are of positive type.

Proof. The statement for the sum is obvious. Let us consider the product. Letd > 1,
t,...,tg € Tanday,...,ags € R. We have to show that

d

> Tite. t)Ta(te. t)aga; = 0. (1.7)
k=1

Let M; = (m] )i<ki<d € Ma(R),i = 1,2,be the two symmetric matrices defined
by m}c ; = Li(tx,17). It is a well-known fact from Linear Algebra that there exists
an orthogonal matrix P = (pr1)i<k,i<d € Mq(R), as well as a diagonal matrix
D = (dr)i<ki<a € Ma(R) with non-negative entries, such that M; = PD'P,
where ’- stands for the transpose operator. We then have

d d d
> Tt t)Date tagar =Y d;j > Talte.ty) pr.jax prjar.
k=1 =l k=1

from which we immediately get that (1.7) holds true, since

d
> Taltx. 11) pr.jax pr.jar = 0
k=1

by positivity of I';. Finally, because of the previous stability with respect to sum and
. k. .. ..
product, the function Z;Ll (Fkl!) is of positive type for all N = 1, and so is its

pointwise limit eT" — 1 as well. O

The next result explains why the class of symmetric functions of positive type
is of particular interest for Gaussian processes. It represents the exact extension of
Theorem 1.1 to the level of processes.

Theorem 1.2 (Kolmogorov). Consider a symmetric function T' : T? — R. Then,
there exists a centered Gaussian process X = (Xy)reT having T for covariance
function (that is, such that E[X;] = 0 and E[X;X;] = U (s,t) foralls,t € T) ifand
only if T is of positive type.

Proof. See, e.g., [16, Theorem 12.1.3]. O

Going back to the function I" given by (1.5), we deduce that there exists a centered
Gaussian process W = (W;);> such that E[W;W;] = s At for all 5,7 = 0: this is
indeed the classical Brownian motion. Using Corollary 1.1, it is easily checked that
W has independent increments, that is, W(t)), W(t) — W(t1), ..., W(tg) — W(tg—1)
are independent for alld > 1 andt; > ... > t; = 0. For further use, we also
introduce the two-sided classical Brownian motion W = {W,},cr as

{Wt‘ ifr =0

We=\w2, iti<o- (1.8)
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where W! and W? are two independent (one-sided) classical Brownian motions.
Equivalently, any centered Gaussian process admitting I' : R> — R, (s,1)
; (|t] 4+ |s| — |t —s]) for covariance function is a two-sided classical Brownian motion.

1.4 Continuity

Generally, when dealing with a Gaussian process for modeling purposes, we impose
not only a covariance structure, but we also seek for continuous sample paths. The
following lemma is the ideal tool to check this further property.

Lemma 1.1 (Kolmogorov—Centsov). Fix a compact interval T = [0,T] C Ry,
and let X = (X;)ieT be a centered Gaussian process. Suppose that there exists
C,n > 0 such that, forall s,t € T,

E[(X: — X5)’] < C|t —s|. (1.9)

Then, forallx (0, g) there exists a modification Y of X with a-Hoélder continuous
paths. In particular, X admits a continuous modification.

Proof. Fix t > s. Since X is Gaussian and centered, we have that
X, — X & VE[(X, - X,)IG,
where G ~ N (0, 1). We deduce from (1.9) that, forall p > 1,
E[IX; — X,|?] < CPPE[|G|?] |1 — "/,

Therefore, the general version of the classical Kolmogorov—éentsov lemma (see, e.g.,
[25, Theorem 2.23]) applies and gives the desired result. O

Remark 1.3. 1f the process X in Lemma 1.1 is already known to be continuous, then
the conclusion of Lemma 1.1 can be reformulated as: “for all & € (0, 1 ), the paths
of X are a-Holder continuous on [0, 7']”.

1.5 Existence of the Fractional Brownian Motion

In this section, we show the existence of the fractional Brownian motion. Further
properties of fractional Brownian motion are discussed at length in the next Chapter 2.

Proposition 1.6. Let H > 0 be a real parameter. Then, there exists a continuous
centered Gaussian process BH = (BtH )t=0 With covariance function given by

1
Cr(s,1) = 2(s2H + 22— —sPH), st =0, (1.10)

if and only if H < 1. In this case, the sample paths of B are, for any a € (0, H),
a-Hélder continuous on each compact set.
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Proof. According to Kolmogorov Theorem 1.2, to get our first claim (except for the
continuity property, see below for this), we must show that 'y is of positive type if
and only if H < 1.

Assume first that H > 1. Whent; = 1,1, =2,a; = —2 and a, = 1, we have

@iyt 1) +2a1a:T (1, ) + a3Th (b, 1) = 4 — 227 < 0.

As a consequence, ['g is not of positive type when H > 1.
The function I'y is of positive type; indeed, I';(s,7) = st so that, forall d > 1,
ti,....tg =0anday,...,aq € R,

d d 2
Z Cy(tk. t)aga; = (Zlkak) = 0.
k=1

k=1

Consider now the case H € (0, 1). For any x € R, the change of variable v =
u|x| (whenever x # 0) leads to the representation

242

1 o0 1_e—u X
2H _
|x|~" = cn /0 ey du, (1.11)

where cy = fooo(l — e‘”z)u_l_ZHdu < 00. Therefore, for any 5,7 > 0, we have

S2H + t2H _ |[ —S|2H

1 (e ] 1— —u?t? 1 — —u?s?
/ I (I
0

i wl+2H
2,2 2 22
1 0 U t (eZu ts l)e—u s
+ du
ca o wl+2H
2.2 2.2
1 w(l_e—ut)(l_e—us)d
A wl+2H u
N 1 i on /oo tne—uztzsne—uzszd
u,
CH = n! 0 u1—2n+2H
so that, foralld > 1,¢,...,t; = 0anday,...,aqy € R,

d
1
Z ) (l]?H + Z‘IZH — |ty — tl|2H)akal
k=1

du
ul+2H

1 [ (ZZ:KI - e_uzt’i)ak)2
J

- 2cy

+ du = 0.

2
d 22
1 X.on oo (Zk:ltl?e kak)
0 wl—2n+2H

!
2cH — n!
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That is, 'y is of positive type when H € (0, 1).
To conclude the proof of Proposition 1.6, suppose that H € (0, 1], and consider a
centered Gaussian process B = (B,H )¢=0 with covariance function given by (1.10).

We then have
E(BI = BIY1=1—sP, si=0,

so that Kolmogorovf(vjentsov Lemma 1.1 (see also Remark 1.3) applies and shows
the second claim of Proposition 1.6 (see also Remark 1.2). O



Chapter 2
Fractional Brownian Motion

Fractional Brownian motion is a stochastic process which deviates significantly from
Brownian motion and semimartingales, and others classically used in probability the-
ory. As a centered Gaussian process, it is characterized by the stationarity of its in-
crements and a medium- or long-memory property which is in sharp contrast with
martingales and Markov processes. The aim of this chapter is to introduce this pro-
cess and to provide some of its main and basic properties.

2.1 Definition

The fractional Brownian motion, which was introduced by Kolmogorov in [27] and
further developed by Mandelbrot and Van Ness in [29], is defined as follows.

Definition 2.1. Let H € (0, 1]. A fractional Brownian motion (fBm in short) of Hurst
parameter H is a centered continuous Gaussian process BH = (BtH )t=0 with co-
variance function

1
E[BH BH] = 2(12H + 525 — |t —sPH). 2.1)

According to Proposition 1.6, fractional Brownian motion well exists and has
Holder continuous paths. When H > ;, it is readily checked that its covariance
function verifies

1 t s
2(z2H + 527 — |t —sPH) = H(2H—l)f du/ dvlv—ulPi2. (22)
0 0

Unfortunately, the useful identity (2.2) is not valid when H < ; since, in this case,
the kernel |[v — u|> =2 is not integrable.

The following proposition emphasizes two particular values of H, and shows that
the case H = 1 is somehow trivial. As a consequence, from now on, we will always
assume that 0 < H < 1.

Nourdin L.: Selected Aspects of Fractional Brownian Motion, B&SS,
DOI 10.1007/978-88-470-2823-4_2, © Springer-Verlag Italia 2012
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Proposition 2.1. Let B be a fractional Brownian motion of Hurst index H € (0, 1].

1.IfH = ; then fBm is nothing but a classical Brownian motion.
2.If H = 1then BtH = tBlH almost surely for all t = 0.

. . . 1
Proof. 1. We immediately see that the covariance of B2 reduces to (s,7) > s A t, SO
1. . . .
that B2 is a classical Brownian motion.

2. When H =1, we have, forall t > 0,

E[(Bff —tBI')] = E[(Bf')"] - 2E[Bf B{']| + P E[(B])?]
=2t +1-1-0)H)+1>=0,

that is, BfY = tBH almost surely. a

2.2 Basic Properties

Proposition 2.2. Let BH be a fractional Brownian motion of Hurst parameter H €
(0,1). Then:

1. [Selfsimilarity] For alla > 0, (a=# BH )50 = (BH) 1=y,
law

2. [Stationarity of increments] For all h > 0, (B2, — B;ﬁq)tao = (BtH),;o.

t+h
ime i ; 2H pH law pH
3. [Time inversion] (¢ BI/,)z>0 = (B{")>o0.
Conversely, any continuous Gaussian process BH = (BtH )e=0 with BOH = 0,

Var(BlH ) = 1 and such that (1) and (2) hold, is a fractional Brownian motion of
index H.

Proof. To prove that points (1), (2) and (3) hold, the way is the same: in these three
cases, it is readily checked that the process in the left-hand side is centered, Gaussian
and has (2.1) for covariance. Proposition 1.4 allows then to conclude. Conversely, let
BH = (B,H )¢=0 be a continuous Gaussian process with BOH = 0 and Var(BIH )=1
that further verifies (1) and (2). We must show that B is centered and has (2.1) for
covariance. From (2) witht = h > 0, we get that E[BZI;I = 2E[BH], whereas
from (1) we infer that E[B] = 2H E[B]. Combining these two equalities gives
E[BH] = 0forallz > 0. Thatis, B¥ is centered. Now, let s,z > 0. We have

EIBY B = | (EIBHY) + EIBEY) ~ ELB! — BI'Y)

= (EUBH) + E(BH) - EIBE,)Y) because of ()

2

1

2E[(BlH)2](12H + 52 — |t —s]*")  because of (1)
1

= Z(IZH + 525 — |t — 5.

The proof of the proposition is done. O
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2.3 Three Stochastic Representations

In this section, we show that fractional Brownian motion can be represented as a
Wiener integral in (at least) three different ways.

Let us anticipate from Section 5.1 that the Wiener integral of a two-sided Brow-
nian motion W = (W});¢ is nothing but a suitable Gaussian family

{/ F)dW, - f Lz(R)},
R

whose law is characterized by the following features:
E |:/ f(u)qu] =0 (2.3)
R
£| [ rowaw, [ eoaw| = [ rogodn @4)

The first representation of fBm (obtained in [29]) is the so-called time represen-
tation.

Proposition 2.3. Let H € (O, é) U (é, 1), set

1 o0
CH = \/ZH ~|—/0 (a +u)H—2 —uH_é)zdu < 00,

and let W = (W;);er be a two-sided classical Brownian motion, see (1.8). Then,
(any continuous modification of) the process B = (BH),, defined as

1 0 t
B = ([t cntam o [e-ntiam,).
CH —00 0
(2.5)
is a fractional Brownian motion of Hurst parameter H.

Proof. We first check that the Wiener integral in (2.5) is well-defined. When u —
—o0, one has, for all fixed r > 0,

2
(w2 - (_u)H—é)z ~ (H - ;) 12 (—u)?H 3.
Hence, u > ((t —u)# =2 — (—u)H_é)2 is integrable at —oo because 2H —3 < —1.
Since 2H —1 > —1, itis integrable at u — 0~ as well. Therefore, the Wiener integral
fi)oo ((t — u)H_é — (—u)H_é)d W, is well-defined. Similarly, one shows that the
constant ¢y is finite and that the Wiener integral jot (t—u)f —2d W, is well-defined.
Consequently, B,H is well-defined for any ¢ = 0.
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Now, let us show that (any continuous modification of) B¥ is a fractional Brow-
nian motion of Hurst parameter H . First, using (2.3), it is clear that B¥ is centered
and Gaussian. Second, observe that

1 1 1
BtH = /(([—M)H 21(u<t}—(—u)H 21{u<0})qu~
CH JR
Fix t > s = 0. By using (2.4) and with v = u — s = (¢ — 5)w, we can write
1 _1 _1 2
E[(B =B = / (=0T Ty = (s =T 2 1yy) du
H ‘R

1 1 . 2
= c2 / ((t -5 U)H 2Ny<t—s} — (_U)H 2 1{v<0}) dv
R

H
(l‘ —S)ZH 1 1 2
= ) (1 =w)I 2 1<y — (—w) 21 <gy) "dv
Cy R
= (t —s)*.

Using moreover that B(f{ = 0, we get that, forany t > s = 0,

1
EBS B = (ENB{ — B{')’| + E[(B{ — By’ - E[(B" — B{")?))
1
_ 2(S2H 4 2H _ (t _S)ZH)’
which leads to the desired conclusion. O

Remark 2.1. Proposition 2.3 provides an alternative proof for the fact that I'y given
by (1.10) is of positive type when H € (0, 1).

Our second representation of fBm is the spectral representation (also called har-
monizable representation).

Proposition 2.4. Let H € (0, ) U (5. 1), set

4 1 —cos ",
H = pH+1 U <00
and let W = (W;)ser be a two-sided classical Brownian motion, see (1.8). Then,
(any continuous modification of) the process B = (BH),, defined as

1 01— t ® sin(ut
B = / cos(ut) [ sint) 2.6)
da \J-o |u|H+:2 o Ju|/ft2

is a fractional Brownian motion of Hurst parameter H.
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Proof. First, it is straightforward to check that the Wiener integral in (2.6) is well-
defined. Next, let us show that (any continuous modification of) B is a fractional
Brownian motion of Hurst parameter H. First, using (2.3), it is clear that BH is
centered and Gaussian. On the other hand, by (2.4) we have, for any ¢ > s,

El(Bi" = B")’)
1 /0 (cos(ut) - cos(us))zd 1 /°° (sin(ut) - sin(us))zd
u
0

2 o |u[2H+1 u a2, |u[2H+1
1 [ (cos(ut) — cos(us))2 + (sin(ut) — sin(us))2
= d2, /0 y2H+1 du
2 [ 1—cos(u(t—s))
= d Jo y2H+1 du
2(t —s)*1 [ 1 —cosv 2H
=" /0 v = (=92

Using moreover that B(f{ = 0, we get that, forany t > s = 0,
1
EBI B = (E(BS" — B’ + EIB{ - B")’] - E[(B{' — B)?))
1
— 2(S2H + le _ (t _S)ZH)’
which leads to the desired conclusion. O

Finally, the following Proposition 2.5 (see [13, 34]) provides a third representation
of fractional Brownian motion. It shows more precisely that fBm has the form of
a Volterra process, that is, can be represented as BtH = fot Ky (t,s)d Wy, where
W = (W;) s> is a classical Brownian motion and K is an explicit square integrable
kernel.

Proposition 2.5. Let H € (0, é) U (; 1) and, fort > s > 0, set

\/ HQH-1) y GiH fst(u—s)H_%uH_;dM

Jy (=) 1=2H x H =2 g
ifH >}
KH(Z,S) = 2H
(1—2H) [} (1—x)—2H xH =3 gx
1
x [(;)H 2t —s)H=2 - (H - ;)sé_H fst uH=3 —s)H_édu]
ifH <)

Let W = (W;);>¢ be a classical Brownian motion, and define B = (BH),>, by

t
B :/ K (t,s)d Ws. (2.7)
0
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Then, (any continuous modification of) B¥ is a fractional Brownian motion of Hurst
parameter H.

Proof. To limit the size of the book, we only do the proof for H € (;, 1). (The
case H € (0, ;) is slightly more difficult to handle, and we refer to [45, Proposi-
tion 5.1.3] for the details.) So, assume that H > ; It is straightforward to check
that fol Ky (t.s)*ds < oo for all t > 0. Thus, (2.7) is well-defined. On the other
hand, using (2.3), it is clear that BY is centered and Gaussian. Let us now compute
E[BF BH] fort > 5. We have, using (2.4),

E[BF B (2.8)
S
= / Kg(t,u)Kg(s,u)du
0
HQ2H —1 § 4
( ) / duul—ZH/ dy(y_u)H—%yH—;
0 u

B fol(l—x)l_ZHxH_gdx
S
x/ dz(z—u)H_%zH_é
u

HQ2H —1 ! $
= ( ) R /dyyH_é/ dzzH=2
Jo (1 =x)1=2H xH=24x Jo 0
NZ

y
x/ duul_ZH(y—u)H_g(z—u)H_%.
0

(2.9)
Setting a = iX;:Z and then x = 7 o Yields
ynz 3 3
/ u'H(y — )2z —w)f 2 du
0
o0
= |z =P | a"aG Ay =z vy M da
IRy
1
= |z— y|2H-2(yz)5_H / xH_g(l —x)'2H gx. (2.10)
0

By plugging (2.10) into (2.9) and by using (2.2) as well, we get

E[B B

t s
H(2H—l)f dy/ dz|z — y|H =2
0 0

= ;(r”’ + 57— | — s ).

The proof of Proposition 2.5 is thus complete. O
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2.4 Semimartingale Property

In this section, we study the asymptotic behavior of the p-variations of the fractional
Brownian motion. As a byproduct, we will show that fBm is never a semimartingale
except, of course, when it is the classical Brownian motion corresponding to H = é
(Recall that a real-valued process is called a semimartingale if it can be decomposed
as the sum of a local martingale and a cadlag adapted process of locally bounded vari-
ation. For a standard reference on the notion of semimartingale, we refer the reader
to, e.g., the book [51] by Protter.) At this stage however, it is worth to mention the
following surprising result proved in [9] by Cheridito. Suppose that B¥ is a fBm
with Hurst parameter H € (3/4, 1) and let W be an independent classical Brownian
motion. Then M; = B,H + Wi, t = 0, is a semimartingale! We refer to [9] for the
details.

This being said, let us go back to the goal of this section, that is, showing that
fBm is not a semimartingale except when its Hurst index is 1 /2. Using Hermite poly-
nomials, we start with a general preliminary result, which may be viewed as a law of
large numbers for fBm.

Theorem 2.1. Let G ~ N(0,1) and let f : R — R be a measurable function
such that E[f*(G)] < oo. Let B be a fractional Brownian motion of Hurst index
H € (0,1). Then, as n — oo,

1 & 2
Y SBE —BL) % ELSG)] @.11)

k=1

Remark 2.2. Using the selfsimilarity property of B (Proposition 2.2(2)), we imme-
diately deduce that, under the assumptions of Theorem 2.1, we have equivalently that

1 ¢ 2
O 0 (B, B_y) L E[£(G)] asn — oo. (2.12)
k=1

Proof of Theorem 2.1. When H = é, the convergence (2.11) follows, of course, di-
rectly from the classical law of large numbers, due to the independence of increments
in this case. Assume now that H # ; Since E[f?(G)] < oo, we can expand f in
terms of Hermite polynomials (Proposition 1.3(2)), and write:

o=y ;ll‘Hl(x), x €R. (2.13)
=0 :

The orthogonality property of Hermite polynomials implies that Z?io cl2 =
E[f?(G)] is finite. Also, choosing x = G and taking the expectation in (2.13) leads
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to co = E[f(G)]. Hence

n

B+ 3 FBE B = Y (FB - BIL) - E/G))

k=1 k=1

= Z\/IZHI(B,C — B{)).

=1

We deduce, by using among other Proposition 1.3(3) to go from the second to the
third line,

1 . H H :
B[ (- e+ > - 5) |

n

1 2

c
- nZZ ST EH(BE - B )H (B - Bf))]
=1 k,k'=1
- 2ZCI Z (B — B )BE - B
=1 k.k’'=1
= nZZc, Z pr (k=K'
=1 k.k'=1
with
1
pr(x) = pr(1x]) =, (Ix + 17 + | — 127 —2|xP), - x e Z.
Because py (x) = [BH(B\x\+1 gl)], we have, by Cauchy-Schwarz, that
o)l < E(BEY]JEWBE,, — BE)? =
This leads to

1 n " " 2
| (-svon s, Sl - st) ]

< DY Y Ionlk— ) = Var(£G) | S otk — k)]

=1 k,k’=1 k.k’'=1
n n—k’ n—1
—Var(f(G)) Do X len ()] <2Var(f(G)) Z|pH(k>|
k'=1k=1-k’

To conclude, it remains to study the asymptotic behavior of Zz;ll lpm (k)|. Tt is
readily checked that py (k) ~ HQH — 1)k*=2 as k — oco. If H < ) then
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22;11 lor (k)| = Y pe; lpm (k)| < oo asn — oo, implying in turn that (2.11)
holds. If H > | then Y37\ o (k)| ~ HQH — 1) Y3 Z\ k*H=2 ~ Hn?H " as
n — 0o, and (2.11) holds as well, because H < 1. O

As a direct application of the previous proposition, we deduce the following result
about the p-variations of the fBm.

Corollary 2.1. Let BY be a fractional Brownian motion of Hurst parameter H &
(0,1), and let p € [1,4+00). Then, in L*(R) and as n — oo, one has

, 0 ifp> g
> IB, = Bl yl” = L ENGIP)  if p= 4. with G ~ N (0, 1),
k=1 +o0 ifp< .
Proof. Just apply (2.12) with f(x) = |x|?. O

We are now ready to prove that fractional Brownian motion is not a semimartin-
gale, except when its Hurst parameter is ; . This explains why integrating with respect
to it is an interesting and non-trivial problem, see Chapter 3.

Theorem 2.2 (Rogers [53]). Let BY be a fractional Brownian motion of Hurst index
H € (0,1/2) U (1/2,1). Then BH is not a semimartingale.

Proof. By the selfsimilarity property of B¥ (Proposition 2.2(1)), it is sufficient to
consider the time interval [0, 1]. Let us recall two main features of semimartingales
on [0, 1]. If S denotes such a semimartingale, then:

Lo Y %1 (Sk/n — Stk=1y/n)* = (S)1 < 0o in probability as n — oo;
2. if we have, moreover, that (S); = 0, then S has bounded variations; in particular,
with probability one, sup=1 Y g—; |Sk/n — Se—1)/n| < 00.

The proof is now divided into two parts, according to the value of H with respect

« IfH <}, Corollary 2.1 yields that Zzzl(Bgn - B, ) = 00,50 (1) fails,
implying that B cannot be a semimartingale.
e IfH > ;, Corollary 2.1 yields that ZZ:](Bk/n — B(k_l)/,,)2 — 0. Let p be
suchthat | < p < flI We then have, still by Corollary 2.1, that Y ;_, |B,5n —
B (IZ_I) /n |p — 00. Moreover, because of the (uniform) continuity of # B,H (w)
on [0, 1], we have
H H p—1 as.
2R ’Bk/n - B(k—l)/n| — 0.
Hence, using the inequality
n
H H P
Z |Bk/n - B(k—l)/n|
k=1 n
H H p—l H H
< sup ’Bk/n - B(k—l)/n’ X Z |Bk/n = Be—1y/nl-

1<k<n
k=1
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we deduce that > _, |Blgn — Bg_l) /n| = 00. These two facts being in contra-
diction with (2), B cannot be a semimartingale. O

2.5 Markov Property

Let X be areal-valued process. Recall that X is called a Markov process if it satisfies,
for all Borel set A C R and all real numbers ¢ > s > 0,

P(X; e A| Xy, u <5)=P(X; € A]| Xy).
For fractional Brownian motion, we have the following result.

Theorem 2.3. Let B be afiactional Brownian motion of Hurst index H € (0,1/2)U
(1/2,1). Then BH is not a Markov process.

Proof. We proceed by contradiction. Assume that B is a Markov process. Since it
is a Gaussian process as well, we must have (see, e.g., [25, Proposition 11.7] or [52,
Chapter III, Exercise 1.13]), forall 0 < s < ¢ < u, that

EBY BME((B)) = E[BF BME[BF BH. (2.14)
Choose u = 1 in (2.14), and set, for 0 < s < 1:
1
ou(s) = E[BEBH] = 2(1 + 57 —(1-5)") > 0. (2.15)
Observe that ool
E[B;" B;"]
=¢g(s/t), 0<s<t<1.
E[(B])]
We deduce from (2.14) that

¢u(s) = ¢u(s/t)pu(r), O0<s<t<l1 (2.16)
Set o (x) = log ¢ (e™) for x = 0 and observe that
og(0) =0 and xll)ngo og(x) = —oc0. (2.17)
Moreover, the functional identity (2.16) implies that

or(x+y)=ea(x) +ou(y), x,y=0,

so that, by differentiating (e.g. with respect to x), the function ¢}, is constant over
R . Using (2.17), we deduce the existence of ¢ > 0 such that ¢ (x) = —c x for all
x = 0. Equivalently
ou(s) =5 0<s<I1. (2.18)
By differentiating in (2.15), we get that ¢y, (s) = H(2H —1) (SZH_Z —(1— S)ZH_Z).
Since H(2H —1) # 0and 2H —2 < 0, we deduce that lim,_,; |¢}; (s)| = co. But we
also have ¢, (s) = c(c— 1)s¢~2 by differentiating in (2.18), hence lim;_, | o7 ()| =
c|c — 1| # o0, leading to a contradiction.
The proof of the theorem is done. O
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2.6 Hurst Phenomenon

Fractional Brownian motion has been used successfully to model a variety of natural
phenomenons. Following [56], let us see how it was introduced historically, and why
its selfsimilarity index is called ‘Hurst parameter’.

In the fifties, Hurst [23] studied the flow of water in the Nile river, and empirically
highlighted a somewhat curious phenomenon. Let us denote by X, X», ... the set of
data observed by Hurst. The statistics he looked at was the so-called R/S-statistic
(for ‘rescaled range of the observations’), defined as

max<i<n (Si — | Sy) —minj<i<n (Si — | Sn)
VA (= sy

where S, = X; + ... + X,,. It measures the ratio between the highest and lowest
positions of the partial sums with respect to the straight line of uniform growth and
the sample standard deviation.

As a crude approximation, let us first assume that the X;’s are i.i.d. with common
mean i € R and common variance 0> > 0. Because ¢ \}n (Stney — [nt]p) is

3

R
Xi,..., Xp) =
S( 1 )

constant on each (i/n, (i + 1)/n) whereas ¢t +— jn (Sy — np) is monotonous, the
maximum of ¢ > jn (Spuey — [l — 1(Sy — np)) on [0, 1] is necessarily attained

at a point of the form ¢ = fl, i =0,...,n. Therefore,

1 1 i
Stnny — [0t — (S — = Si— Sn).
o] Jn( ) = 11K = 1S = p0)) Jn oréliasxn( " n ")

Similarly,

1 1 i
inf [l — t(Sy — np)) = in (S — .
telg),l] Jn (Stnny = btlpe = £(Sn = nj0)) Jn 0<i<n (Sl n Sn)

1 . .
{max (S,- - s,,) — min (Si - S,,)}
o/n |1<isn n I<i<n n

= ¢ (ml/n (Stn1 — [”']M)) :

Hence,

where

#(f) = sup () =1f ()} = inf {£(0)—1f (D)}

Thus, by applying the celebrated Donsker’s theorem, we get that

. . .
{max (S,» ! S,,) — min (Si ! S)}
o/n \1<isn n 1<i<n n
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converges in law to

p(W) = Oiltlgl{Wt —tWi} —Ogtlgl{Wz —tWi},

where W stands for a classical Brownian motion on [0, 1]. Finally, because

1 & 1
nZ(Xi—nSn) — 0 as.
i=1

(by the strong law of large numbers), we get that
1
Jn

as n — oo. That is, in the case of i.i.d.observations the R/S-statistic grows as /n,
where n denotes the sample size. But this is not what Hurst observed when he cal-
culated the R/S-statistic on the Nile river data (between 622 and 1469). Instead, he
found a growth of order n%74.

Is it possible to find a stochastic model explaining this fact? As we will see, frac-
tional Brownian motion allows one to do so. Indeed, let X, X», ... have now the
form

R law .
X (Xt Xa) = sup (W, — (Wi} — inf (W, — 13}

X;=u+o(Bf -BH), (2.19)

with BH a fractional Brownian motion of index H = 0.74. That is, the X;’s have
again u for mean and o> for variance, but they are no longer independent. Due to the
specific form of (2.19), it is readily checked, by a telescoping sum argument, that

maxisi<n (B — | By) — mini<i<n (B — | B)Y)

2
JiS (BE — BH, ~ 1 BH)

Using the selfsimilarity property of B (Proposition 2.2(1)), we get that

R
X X =

: {max (BE — ' BH)— min (BH - B,{f)}

nfl |i<i<n n 1<i<n n
law i . i
= max (Bil/{n - BIH) — min (Bil/{n - BlH)
1<i<n n 1<i<n n

a.s. H H . H H
— sup {B;" —tB;"}— inf {B*' —tB asn — oo.
ostls)l{ t v ostsl{ t v

_ 1 _ s
On the other hand, as n — oo we have that n 1Bf = pH lBlH o whereas, by

LZ
Theorem 2.1, }l > (BI-H — Biff 1)2 — 1. Putting all these facts together yields

1

R law H H : H H
WH X S(Xl""’X")_)oilzlgl{Bt — 1B }—nglgl{Bt —tB;"}

as n — oo; hence the model (2.19) represents a plausible explanation to the phe-
nomenon observed by Hurst in [23].



Chapter 3
Integration with Respect to Fractional Brownian
Motion

We have just seen in Chapter 1 (Theorem 2.2) that, except when it is a standard Brow-
nian motion, fractional Brownian motion B# is not a semimartingale. As a result, the
usual It6 calculus is not available for use, and alternate methods are required in order
to define and solve differential equations of the type

t t
X, = X0+/ o(Xy)dBH +/ b(X,)ds, t€][0,T]. 3.1)
0 0

This chapter contains only a few examples of how one can obtain a stochastic
calculus with a fractional Brownian motion as integrator. (For instance, we will not
speak about the possibility to use Wick product and Malliavin calculus. For this, we
refer the reader to [3, 45] and the references therein.)

When H > 1/2, it happens that the regularity of the sample paths of B is
enough and allows for the solution to be defined pathwise using Young integral, see
Section 3.1. Under such a regime, existence and uniqueness for (3.1) are shown in
Section 3.2 under reasonable assumptions on the coefficients o and b.

In the case that H < 1/2, a powerful approach (known as rough path theory)
may be used to make sense of (3.1), at least if H is not too small. See [18, 28]. In this
book, we only focus on a very specific situation when H < 1/2, precisely the case
where the underlying dimension is one and when one seeks for a change of variable
formula of the type

T
f(BEY = £(0) +/0 f'(BEYdBH 4 a correction term. (3.2)

This analysis is done in Section 3.3.

3.1 Young Integral

Fix T > 0 as being the horizon time. (That is, in the sequel all the considered func-
tions are going to be defined on the time interval [0, T'].) For any integer [ > 1, we

Nourdin L.: Selected Aspects of Fractional Brownian Motion, B&SS,
DOI 10.1007/978-88-470-2823-4_3, © Springer-Verlag Italia 2012
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denote by €’ the set of functions g : [0, 7] — R that are [ times differentiable and
whose /th derivative is continuous. We use the common convention that €9 denotes
the set of continuous functions g : [0, 7] — R. For any o € [0, 1], we denote by
C* the set of Holder continuous functions of index «, that is, the set of functions
f [0, T] — R satisfying

Flom sy HOIO

<s<t<T  (t —s)%

(Observe the calligraphic difference between €/ and C%.) We also set | f|oo =
supseqo, 7] |.f(¢)], and we equip C* with the norm

[flle = 1f le 4 1.f oo-

We have | f|oo < | f(2)| + T%| f|e forallz € [0, T].
Fix f € C%, and consider the operator Ty : €' — €' defined as

Ty (g)(1) = /0 Fadg () = /0 fang'ydu., 1 €[0.7].

Forany s,t € [0,T], s < t, we have

10 - T7@)6) = [ fgtodu = lim Jo(f.g.5.0),

with
211

Jo(fog.8,t) = Z fls+k27" (t—s)){g(s+k2_”(t—s))—g(s+(k—1)2_” (t—s))}.
k=1

We can decompose

2)1—1

Ta(fig.s.t) = Y fs+2k27"(t — 5))

k=1
x (g(s +2k27"(t —5)) — g(s + (2k — 1)27" (1 — 5)))
2’1_1

+ ) fls+ @k =127 —9))

k=1
x (g(s + 2k — 1)27"(t —5)) — g(s + 2k —2)27"(t — 5))).

Thus

Jn(f.g.5.1) = Jn1(f. &.5.1)

on—1

==Y (fls+ @27 —5) = f(s + 2k = 1)27"(t — 5)))
k=1

x (g(s + 2k — 1)27"(t —5)) — g(s + 2k —2)27"(t —5))).
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so that, for any 8 € [0, 1],

1 - -
[In(f,8:5:0) = Tn1 (£, 0] < (0 =9)* P | [ lalglp27" 70,

Now, fix 8 > 1 — . By summing the previous inequality over n = 1, we get

/ g wdu — f(0)(g(t) = g(s)| < Caplflalglpt —9)**P,  (3.3)

with Cy g = 1 302 27"@ =D < 00, We deduce that

/ Fa)g w)ds| < | floolglp(t — )P + Coplflalglpt —5)* P
< (14 Copg T fllalglp —s)P. (3.4)
Consequently:
‘ [O g w)du (14 G el (3.5)
and )
‘ /0 Fag adu| < (1 + CapT)TE Flalels. (3.6)

Finally, by combining (3.5) with (3.6) and by using the crude bound |g|g < ||gllg as
well, we get

H/O f@)g' wdu| < (14 CopT*)(1+TP)fallglls- (3.7)

B

The following result, which is central in the theory (as it will lead to the definition of
the Young integral), is an immediate consequence of (3.7).

Theorem 3.1 (Young [67]). Let f € C* with o € (0, 1), and let B € (0, 1) be such
that o + B > 1. The linear operator Ty : €' C CP — CP# defined as Tr(g) =
Jo )&’ (w)du is continuous with respect to the norm || - || g. By density, it extends

(in an unique way) to an operator Ty : C B Ck.

Definition 3.1. Let f € C% and g € CP with o + B > 1. The Young integral
fo. f(u)dg(u) is (well-)defined as being Ty (g).

The Young integral obeys the following chain rule.

Theorem 3.2. Let ¢ : R?> — R be a € function, and let f,g € C® with o €

(3. 1]. Then [, 32 (f (), gu))df () and [, 32 (f (), g(u))dg (u) are well-defined
as Young integrals. Moreover, for all t € [0, T], we have

L9
S(F(1). (1)) = B(£(0). g(0)) + /0 ajf (f (). g)df ()

L9
4 / ? 5(f ). g))dgu). (3.8)
0 8g
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Proof. Because ¢ is €2 and f, g are C%, the functions u g}f (f(u),g(u))and u —
gg (f(u), g(u)) are C* too by the Mean Value Theorem. Consequently, since 2o > 1,

the integrals [, g}’ (f(u), g(w))df (u) and fot g? (f(u), g(u))dg(u) are well-defined
as Young integrals for any ¢ € [0, T]. When f and g belong to €', the identity (3.8)
is a consequence of the fundamental theorem of calculus. Finally, we may prove (3.8)
in full generality by using a density argument. O

3.2 Solving Integral Equations

The material developed in the previous section allows one to solve integral equations
driven by Holder continuous functions of index bigger than ; . In particular, it applies
to sample paths of fractional Brownian motion of Hurst parameter H > ; (see indeed
Proposition 1.6). We start with the multidimensional case and, then, we strengthen the
statement in the one-dimensional case.

3.2.1 Multidimensional Case

Theorem 3.3. Fix two integers d,m > 1, and let g : [0,T] — R” and o : R —
Mam(R). Write g = (gj)1<j<m and 0 = (0ij)1<i<d, 1<j<m- Fix B € (; 1), and
assume that each gj is B-Hélder continuous. Suppose moreover that each o;j is of
class €% and is bounded together with its two derivatives. Finally, consider an initial

conditiona = (ay, ...,ag) € R%. Then, for all o € (;,,B), the integral equation
m. g
xi(t) =a; + Z/ oij(x(w)dg;(m), i=1,....d, (3.9)
j=1"9

admits a unique solution x = {x;}1<i<q on [0, T] satisfying |xila < o0 for any
i =1,....d.In (3.9), the integrals with respect to g; are understood in the Young
sense (Definition 3.1).

Proof. To simplify the exposition, we ‘only” do the proof for m = d = 1 (that is, in
the one-dimensional case). The general case may be obtained mutatis mutandis with
cumbersome notation, and wet let the details as a useful exercise.

Let o : R — R be of class €2 and be bounded together with its derivatives. Let
also g : [0, T] — R be B-Holder continuous, with 8 € (;, 1). Finally, leta € R be a
given initial condition. We have to show that, for all ¢ € (é , B), the integral equation

x(t)=a+ /ta(x(s))dg(s), t €10,T], (3.10)
0

admits a unique solution x : [0, 7] — R belonging to C“.
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Let M > 0 be such that max{|0|ec. |0”|0c. [0”|oc} < M. Fix @ € (}. B), and let
7 > 0 be small enough so that

1
Coupt® < 1; 4M|glpt?™ < 1 and t*M|g|g(3 + Cup) < . (3.11)
Here, Cop = ) Y pe 27"@ A1 < oo, Consider the Banach space

BY :={x:[0,7] > R: x(0) = a and |x|y < 1}

equipped with the norm | - |. Let 7 be the operator defined, for x € BY, as

t
Tx)(t)=a +/ o(x(u))dg(u), tel0,1].
0
Combining (3.11) with (3.4), for x € BY we have

1T ()|o < 20 llalglpe? ™ <2(J0]o + 10"|oo|xla)Iglpe? ™ < 1;

hence 7 (x) € BY. In other words, the ball BY is invariant by the operator 7.
On the other hand, for any x, y € By and s,¢ € [0, ], we have

0 (x(1)) — 0 (1) — 0 (x(s5)) + o ((s))|
1
(x(0) — (1) /O o/ (vx (1) + (1 — v)y()dv

1
~(x(s) — ¥(s)) /0 o/ (vx(s) + (1 — v)y(s))dv
1
= |y~ x) + ) [O o (v () + (1= )y(O))dv

1
+ (x(s) — »(5)) /0 (0'(vx(@) + (1 —v)y(t))dv — o’ (vx(s)

+ (- v)y(s)))dv‘

U/|oo|x — Ylalt =]+ |x _y|ot7-'a|0”|oo(|x|ot + |J’|a)|t —s|*

<
< U/|oo|x = Vlelt =% 4 2|x _y|afa|0”|oo|t —s]%,

|
|
so that
lo(x) —o(Me < |x — y|a(|0/|oo + 2Ta|0//|oo) < x = ylaM(1 +27%).

Thus, for any x, y € BS and s, ¢ € [0, t], we have, using moreover (3.3), that

|T(x)(@) =T ()(@) =T (x)(s) + T (y)(s)]

t

[ (ot ~ o) dga

5
lo(x(®)) —a(y(®))|Ig(t) — g(s)| + Caplo(x) — o (W)lalglplt —s|*F
10" loolx (1) = y(0)]Iglplt — 1P + Caplx — ylaM (1 + 25%)|g gt — 5|*F
< M|x = ylat®[glglt = sIP + Caplx — ylaM(1 + 21%)|g|glt — s|*+7,

/A

/A
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so that, because of (3.11),
TC) =T Dla < 1x = ylat®IglpM (1 + Cap +2Capt”)

1
< Jx = ylot*M|glg(3 + Cap) <

2|x_y|¢x-

Applying the fixed point argument to 7 : B — B leads to a unique solution to
(3.10) on [0, ]. One is then able to obtain the unique solution on an arbitrary interval
[0, k], with k = 1, by patching solutions on [jz, (j + 1)t]. Notice here that a crucial
point, which allows one to use a constant step t, is the fact that the conditions (3.11)
do not depend on the initial condition a (indeed, it only relies on «, B, |0|0os |0”]|co»
|0”| and [g]g). o

3.2.2 One-Dimensional Case

In this section, we strengthen Theorem 3.3 in the one-dimensional case, by being
more precise with the shape of the solution. Let us introduce our new context. Let
g € CPwith B e (;, 1), and let 0,b : R — R be two given functions. We aim to
solve integral equations of the form

t t
x(t) = x(0) +/ o(x(u))dg(u) —i—/ b(x(u))du, te][0,T], (3.12)
0 0
where the unknown function x : [0, 7] — R is assumed to belong to C#, and where

the integral with respect to g is understood in the Young sense (Definition 3.1).

Theorem 3.4 (Doss [15] — Sussmann [62]). Suppose that 0 : R — R is bounded
and of class €2, with bounded first and second derivatives. Suppose moreover that
b : R — R is Lipschitz. Then the one-dimensional equation (3.12) admits a unique
solution in CB. This unique solution is given by

x(t) =¢(g(),y@). 1€][0.T], (3.13)

for a suitable continuous function ¢ : R*> — R and a function y : [0, T] — R which
solves an ordinary differential equation.

Proof. Let ¢ : R? — R be the solution of the ordinary differential equation

d¢
dax

Notice that such a solution exists globally, thanks to our assumption. It is readily
checked that 5
¢ ¢ ¢

d
, 0,y)=1,
0xdy y ady ©.7)

=009, $0,y) =y

0
=o'$);

so that

99 (x.y) = el o Gudu.
ay
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If A stands for a uniform bound of o, 6’ and ¢”, we deduce

0¢ (x,y) < A,
dy

This implies that
p(x, y1) — p(x, y2)| < ey — ysl;

hence, if L is a Lipschitz constant for b, then
6@ (. y1) = b(@(x. y2)| < Le¥l|y1 = ya. (3.14)
Moreover, by using the inequality |e¥! — e*2| < el“1lT12l|y — 5|, we can write

e Jo o/ @uy)du _ =[5 o' (¢(u,y2))du

—e

X s x [x]
< o @ 5 G [, 1) — o' (. )|
0

Ix]
< AezAlxI[O |p(u, y1) — P (u. y2)|du

< Alx|e* ™|y — yal. (3.15)

It follows from (3.14) and (3.15) that ¥ (x, y) = b(¢(x, y))e™ Ji o' @G.)du gatisfies
Lipschitz and growth conditions of the form

Y (x,y) =¥ (x,y2)| < Lilyi =2l —k<x,y,y2<k (3.16)
|1//(X,y)| < K1+Kk|y|’ |X|§k, yER’ (317)

where the constants L and K depend on k.
Let y : [0, 7] — R be the solution to the ordinary differential equation

yO) =y, y). t€[0.T]. y(0)=x(0).

Such a solution exists and is unique because of (3.16)-(3.17). Let x : [0,7] — R
be the function defined by (3.13). Thanks to the assumptions made on o as well as
the bounds shown above, we immediately prove that x belongs to ©P . Moreover, a
straightforward application of (3.8) shows that x satisfies (3.12).

We only sketch the proof of uniqueness. Let x be a solution to (3.13) belonging
to €# . Let z be the function defined as z () = ¢(—g(z), x(¢)). Using (3.8), we may
show that Z(¢) = ¥ (g(¢),z(¢)) (with z(0) = x(0)). By a uniqueness argument in
the ordinary differential equation defining y, we deduce that z(z) = y(¢) for all ¢.
Hence, y(t) = ¢(—g(t), x(¢)), which is equivalent to x(¢) = ¢(g(t), y(¢)). This
finishes the proof of the uniqueness in (3.12). O
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3.3 Dimension One and Hurst Index Less than 1/2

Let B be a fractional Brownian motion of index H € (0, 1/2). Using the infinite-
ness of the quadratic variation of B (which is an immediate consequence of Corol-
lary 2.1 with p = 2), it is straightforward to check that the sample paths of B¥ do
not belong to Uge(1/2,11C %, implying in turn that one cannot apply Theorem 3.2 when
H < 1/2. Asaresult, it happens that the Young integral is not a good candidate when
wanting to integrate against a fBm of index less than 1/2.

In this section, we will study what is undoubtedly the most simple situation that
one can consider. It is nevertheless deep enough to make interesting phenomenons
arise. Consider a function f : R — R (whose regularity will be made explicit later
on). As far as a change of variable formula for f (B;I ) is concerned, it is reasonable
to expect something like

T
f(BH) = £(0) +/0 f'(BH)dBE + a correction term, (3.18)

where the exact meaning of the stochastic integral with respect to B¥ remains to be
given and the form of the correction term has to be discovered.

Let us first investigate what happens when one deals with a forward Riemann sum
approach.

Definition 3.2. Let X = (X;)efo,r1and Y = (Y1):e[0,1] be two continuous stochas-
tic processes. Provided the limit exists in probability, we define the forward integral
of Y with respect to X as being

n—1

T
/0 Yod™ Xs = nlig}o];ykT/n (X+17/n — XkT/n)-

In order to have an idea whether this definition is or not relevant in our context, let us
first study the very simple case X = ¥ = B . (We also fix T = 1 for the sake of
simplicity.) We have

n—1

2 2 2
(BIH) = Z ((Bg+1)/n) - (Blgn) )
k=0
n—1 n—1 5
= 22 Blgn(B(Ilg-‘rl)/n - Blgn) + Z(Bg-i-l)/n - Blgn) :
k=0 k=0

Assume for the time being that fol BHd=BH exists. We deduce that, as n — oo,

n—1 1

H H \2 proba H\2 H 1— nH
> Bisnm—Bin) = (BfY) —2[0 By d” B
k=0

But this latter fact is clearly in contradiction with Corollary 2.1 (p = 2). We con-
clude that fOT BHd=BH does not exist whenever H < 1/2, something which is
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inconceivable for a reasonable theory of integration with respect to B . So, we must
change our Definition 3.2. Let us try the following one.

Definition 3.3. Let X = (X;)ejo,r1and Y = (Y:):e[0,1] be two continuous stochas-
tic processes. Provided the limit exists in probability, we define the symmetric integral
of Y with respect to X as being

T n—1
o . 1
/ Yed° Xy = lim Z 2(Y(k+1)T/n + Yiryn) (Xk+0)1/n — Xir/n)-  (3.19)
0
=0

n—>o00

If BH is a fBm of index H > 1/2 and if f : R — R of class C? then, by relying
to the fact that the quadratic variation of B¥ is finite, it is not very difficult to prove

that fOT f'(BH)d°BH exists and that we have

T
7B = 10+ [ rihas!. (3.20)
Setting f(x) = x2, (3.20) says that
T
(BE)? = 2/ BHa°BE. (3.21)
0

If H < 1/2, we have just seen that the forward integral fOT BHd=BH does not exist.
But (3.21) is still valid; in fact, using the identity

n-l pH + BH
H (k+1)/n k/n (nH H
(B") =2 Z (BGi+1)/n — Biin): (3.22)

we can immediately see that (3.21) holds for any 0 < H < 1. The natural question
which arises is the following: is (3.20) valid for any 0 < H < 1? The answer is no.
In reality, taking f(x) = x>, similarly to (3.22) we can expand as follows

n—1

> (<B{z+n/,,>3 - (B,)")

k=0

(")

1
2((B(k+1)/n) + (Bi)*) (Bies1yn = Bin)

I
M|

~
I
S o

—~ o H H |3
(B(k+l)/n - Bk/n) :

For fol(BsH )2d° B to exist, we deduce that it is necessary and sufficient that the

cubic variation of B¥ | defined as

n—1

. H H \3
JL“;O Z(B(k+1)/n - Bk/n) ) (3.23)
k=0
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exists in probability. Set X = B,fl — B,fl_ 1>k =1, and observe that
1
E[XxX;] = plk —1) = 2(|k—z 1P k=1 = 1P =20k — 1PH).

We have
p(k) = p(—=k) ~ HQH — Dk*772  as k| — oo,

50 ) ez lp(k)| < oo (recall that H < 1/2). By applying the (forthcoming) Breuer—
Major Theorem 7.2 with ¢ (x) = x3 (we have ¢ (x) = 3H,(x) + H3(x), hence the
Hermite rank of ¢ is one), we deduce that

3 law

1 n—1
n > BE, - BI) = N(.0f) asn — o, (3.24)
k=0

where (since Y ;o5 p(k) = 0 by a telescoping sum argument)

3
ok = 37k +1PH 4k — 127 20k PH) > 0. (3.25)
keZ

By the selfsimilarity property of B, (3.24) is clearly equivalent to

n—1
1 3 law
p3H—1 E (B(I;H)/n - Blgn) — N(0,0%) asn — oo,
k=0

from which we deduce that the limit in (3.23) exists in probability if and only if
H > é. That is, the integral fol(BsH)2d°BsH exists if and only if H > 1/6. As a
result the formula (3.20), which holds true when H > 1/2, cannot be extended to
the case H < 1/6. On the other hand, this observation asks the following important
question: is (3.20) correct forall H > 1/6? The next result provides a positive answer.

Theorem 3.5 (Cheridito—Nualart [10] — Gradinaru et al. [19]). Let BH bea frac-
tional Brownian motion with Hurst index H > é,ﬁx T >0andlet f : R - R
be a € function with polynomial growth together with all its derivatives. Then

fOT f'(BHEYd°BE exists (in the sense of (3.19)) and we have

T
F(BE) = £(0) + /0 £/(BHyd°BE. (3.26)

Our proof of Theorem 3.5 follows [37], and will rely on a fine estimate of the
weighted power variations associated to fractional Brownian motion. Before giving
it, let us observe that (3.26) shows no correction term. But if we allow the limit in
(3.19) to be only in law and if we consider the critical case H = 1/6, it is worth noting
that, in this case, we get a chain rule formula involving a correction term, which takes
the surprising form of a classical Itd integral with respect to an independent Brownian
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motion W. Namely, for f as in Theorem 3.5 and with k = 07/ > 0 given by (3.25),

we have

f(B”G):f(O)Jr/T £/(BY%)d° Bl — © /T S"(BYAWs.  (3.27)
T 0 s s 12 J, s S .

The proof of (3.27) (which is out of the scope of this book) can be found in Nourdin,
Réveillac and Swanson [43].

Let us now do the proof of Theorem 3.5.

Proof. Without loss of generality and in order to simplify the exposition, we assume
that 7 = 1. Also, we set

H H H
ABf, =Bl ., B, k=0...n-1

and we recall that H € (. }). We can write, forany a,b € R,

) = f@+ @b -a)+ ) f' @b -a) +  fO@)b-a)

L rO@b—a) +

1
@\ (B
tog/ @O+

(6)
120/ FOWB—0di

) = f@ + SO0~ ) G-+ fOG)E -

L rOm) b -

_ e o
FOBG -+

(6)
Ny /f ()t — a)*dr

120
Sy = f"@) + [P @b -a) + 2f<“>(a>(b ~@'+  fO@b - a)
1 rb
+6/ FO B —1)’dr

b
1O0) = fO@ + fO@O -+ L fO@E -t + ) [ 10060

b
1O0) = 9@+ fO@b-a+ [ FOu®-nds
b a
1O0) = 9@+ [ rOw.
so that
) = f@+ (6 + @) -a)~ | fO@b-ay

— fO@b - — o fO@b ) + R.b)
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with
R(a,b)—m/ f“”(t)((b 0= (=)’ =106 —1)*(b —a)?

+10(b —t)’(b—a)* =5(b—1t)(b—a)* + (b — a)S)dz

Observe that
1
[R@b)l < o tes[glpb]|f<6>(z)|(b—a)6, a.beR. (3.28)
Setting a = Blgn and b = (k+1)/n and summing over k = 0,...,n — 1 yields
1 n—1
SBI) = fO) + 3 (/B ynyn) + f(BE,) ABL, (329)
k=0
n—1 n—1
12 Z f(3)(Bk/n)(ABk/n 24 Z f(4)(Bk/n)(ABk/n)
1 n—1 n—l1
H
~ R0 Z f(S)(Bk/n)(ABk/n + Z R(Bi) B(k+1)/n)
k=0

Using (3.28), we have

n—1 n—1

1
> RO Bilsnym)| < g D0, Sup |f“’)(BH)|(M?k/,,>6
k=0 k=0 n<us"y

1 -
< g 1FOBD) Z(AB&)&
k=0

and this term tends to zero in probability as n — oo since, by (2.12),

n—1

n®H= lz(ABk/n)6_)15
k=0

ob
implying in turn (because H > é) that Z (AB )6 "2 0asn — oo. Let us
expand the monomials x*, m = 1,2,3,4,5,in terms of the Hermite polynomials:

x = Hi(x)

x? = Hy(x)+ 1

x> = H3(x) +3 Hi(x)

x* = Hy(x) 4+ 6 Hy(x) +3

x> = Hs(x) + 10 Hy(x) + 15 H,(x).



3.3 Dimension One and Hurst Index Less than 1/2 35

Also, for any integer ¢ > 1 and any continuous function g : R — R, let us introduce
the following quantity:

n—1
Vi(g) =D (Bl Hy " AB,). =1
k=0
We then have

n—1
S rOBINABE) =nHYO(fO) 430y O (fO), (3.30)
k=0
n—1
> rOBE B (3.31)
k=0

n—1

=n YD (fD) + enHyD(f D) 4 3n N f OB

k=0
n—1
— p4H Vn(4)(f(4)) + 3n—4HVn(2)(f(4)) + 3n2H Z f(4)(BlZn)(ABIZn)2’
k=0
n—1
Zf“)(B,fjn)(ABgn)S (3.32)

k=0
=nHyO () 1007y O () 4150 Hy D (£ ),

The following result, which is of independent interest, provides the asymptotic be-

havior of V,,(q) (g) for any value of ¢ = 2. (It is worth noticing that the picture when
H > ; is also known, but it will not be used here. See [37].)

Theorem 3.6 (Nourdin—Nualart-Réveillac—Tudor). Let B be a fractional Brow-
nian motion of Hurst index H € (0, ;), let ¢ = 2 be an integer, and let g : R — R
be a €= function with polynomial growth together with all its derivatives. Let W
denote a classical Brownian motion independent of B and set

1 q
ogn = [, k% (Ik + 1PH + |k — 1]2H — 2|k 2H)?.
€

Then, the following convergences hold true as n — 0o:

LIf0<H < ,, then
1
gH—1y @)y L2 (D7 @) (pH
nITE) = ) & B )ds:
1
2.IfH = 2 then

1 law (—1)q ! !
Vo= Q) [ @ sihas + oen [ sBIaw.
Vn 29 Jo 0
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3.1f21q < H < é,then
1 @) law 1 H
V, () = ogm | g(B;)dW.
Vn “Jo
Proof. See [35, 37] for H < ;q, [36, 42] for H = ;q and [37] for H > . O

We will also need the asymptotic behavior of Vn(l)(g), which is not given in the
previous theorem but can be deduced from it.

Proposition 3.1. Let B be a fractional Brownian motion of Hurst index H € (0, é)
andlet g : R — R be a €% function with polynomial growth together with all its
derivatives. Then, as n — 00,

_ proba 1 1
=1y () "= —2/0 ¢ (BH)ds. (3.33)

Ifé < H < ; we also have

_ 1 _ nol 2 proba
nHy gy 4+ S N (B )(ABE,) = 0. (3.34)
k=0

Proof. Let us first prove (3.33). We have

B(I;(1+1)/" H H 1 ’ H H \2
[ etodu = o8l ) 888, + o' (BB,

Bk/n

B(Il-x{Jrl)/Vl ’ ’ H H
+ / Y (g (t)—g (Bk/n))(B(k+1)/n —nydt

Bk/n
1
= ¢BI)ABL, + 5 p2H g (B )H,n"AB,) + 1)
B(I;»{Jrl)/n , , H H
+ o (') = &' (Biiyu) (Bgryn — D1,
k/n

so that, by summing over k = 0, ...,n — 1 and by multiplying by n>#~1,

BH

B | - 1 1 n—1
w1 [T g ="V @+ VO + Y g Bl
k=0

n—1 BH
_ (k+1)/n
+ n?f IZ/BH (&) — g BED)BE 1y m — Dt (3.35)
k=0

k/n
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In (3.35), we have

- n—1 B(IZ+1)/n , , I u
n Z/H (g (t)_g (Bk/n))(B(k+1)/n —l)dl
—07Bic/n
n—1
< BH B « p2H-1 ABH )2
k={)1,1.?§;—1ﬁsus +1 1¢'(B,") —£'( k/n)| " ];)( k/n)
n—1
S MUGOI |g (BH) (BH)| x n2H IZ(ABk/n)Z
[u— v|<1/n k=0

and this last term tends to zero in probability as n — oo because, on one hand,

n—I1

1N aBf, =
k=0

by (2.12) and, on the other hand,

8'(B) — ' (B =0
u, ve 0,1]
lu— v|<1/n
by the uniform continuity of the sample paths of g’ o B on the compact interval
H a.s.
[0, 1]. Since H < ), we have that n>#~! fOBl g)du = 0asn — oo. By Theorem
3.6, we have that ! V,,(z) (g’) — 0 in law, hence in probability. Finally, the Riemann

sum ! Zk 0 8'( Iin) converges almost surely to fol g (Bf)ds asn — oo. Putting
all these limits in (3.35) yields (3.33).
Let us now prove (3.34). We have

BH
(k+1)/n d
/ Y gu)du

k/n
1 1
= g(B,)AB, + &' (BE,)(AB,) + &' (B,)(AB,)’

1 B(IZ+1)/I1 /// 3
+6fH (z)(B(k+1)/n 1)’ dt
Bk/n

1
= g(B )ABH, + g’(B,Sn)(ABﬁn)z

l _ —
b B H 0 8Bl + 0 (Bl 6" ABE,)

1 [B&som
+6/H g" (O (B g1y —1)d1,

Bk/n
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so that, by summing over k = 0, ...,n — 1 and by multiplying by n =24,

B!
n_ZH/ g(u)du (3.36)
0
_ [ 2
B 3HVn(1)(g) + 2n 2H Zg/(Blgn)(ABlgn)
k=0

1
_SH Vn(:;) (g/l) + n—SH Vn(l)(g//)

_ (I\-H)/n
2H Z/ ///( )(B(k+1)/n t) dl

+

0’\'—‘0\'—‘

It is obvious that n =2 fo g(u)d u 30. Moreover from Theorem 3.6 and since

H > 6 > llo,wehavethatn 5HV(3)( ) —> 0. Also, from (3.33) and since H > ,

we deduce that n=># V,,(l)(g”) —> 0. Finally, we have

— B([Z+l)/" " H 3
X_:fBH g" () BH ), — 1) dt

—2H n—1
<5, 2 s 18 BDIABE,)
k=0 nSUs",

n—ZH

n_2H n—
< " BH ABH 4’
4 uSup 18" u>|kZ_0( im)

and this term tends to zero in probability as n — oo since, by (2.12),
n—1 I3
n TN ABE ) S
k=0

ob
implying in turn (because H > é) that n =28 Z (AB )4 2 0asn — oo.
Putting all these facts together in (3.36) concludes the proof of (3.34). O

We can now finish the proof of Theorem 3.5. From Theorem 3.6 and since

rob. rob.
H > !, weimmediately deduce that n=*# V(z)(f(“)) P20, n3H V(3) (f®) = 20
n—5H V(3)(f(5)) pmba _4HV(4)(f(4)) pi)b 0 and n=3H Vn(s)(f(s)) pﬂa 0. From
roba
Proposition 3.1, n_SHV(l)(f(S)) "2 0 and
_ 1 _ nol proba
nHYIOLO) 4 0Ty F OB (ABE,) 0.
k=0

Putting all these limits in the decompositions (3.30)-(3.31)-(3.32) and then in (3.29)
yield the desired conclusion (3.26). O



Chapter 4
Supremum of the Fractional Brownian Motion

For all x > 0, one has

(- L) m [ (i)
3 4
x X x y
Ry L B L —x2p2
< e dy < ye dy = e ,
X X Jx X

from which we deduce that

o0
lim x 2 log/ eV 2y = —1/2. 4.1)
X

X—>00
Let (BM) ;> be a fractional Brownian motion of Hurst index H € (0, 1) and consider

its running maximum

MHE = sup BE, t>0.
uel0,1]

When H = 1/2, it is well-known that Mll/2 faw [N (0, 1)] (see, e.g., [52, Proposition
3.7]). Relying to this property as well as (4.1), it is straightforward to check that

lim x2log P(M\* = x) = —1/2, 4.2)
X—>00
lim (logx)~'log P(M/* < x) = 1. (4.3)
x—0Tt

The exact distribution of M lH is still an open problem for H # 1/2. In this
chapter, we shall extend (4.2)—(4.3) to any value of H. It is our opinion that the ex-
tension of (4.3) (due to Molchan [31]) is one of the most beautiful result dealing with
fractional Brownian motion.

Nourdin L.: Selected Aspects of Fractional Brownian Motion, B&SS,
DOI 10.1007/978-88-470-2823-4_4, © Springer-Verlag Italia 2012
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4.1 Asymptotic Behavior at Infinity

The following result is the extension of (4.2) to any value of H.
Theorem 4.1. For any H € (0, 1), we have

lim x2log P(MH = x) = —1/2.
X—>00

Actually, Theorem 4.1 is an easy corollary of the following result, which is of
the upmost importance in the modern theory of Gaussian processes. It asserts that
the supremum of a Gaussian process roughly behaves like a single Gaussian variable
with variance equal to the largest variance achieved by the entire process.

Theorem 4.2. Let X = (X;);c[0,1] be a centered and continuous Gaussian process.
Set 0% = supsefo,1] Var(Xy). Then m := E[supye(o,1] Xu] is finite and we have, for
all x > m,
_(x—m)?
P( sup X,,Zx) <e 2? .
u€l0,1]

As we just said, Theorem 4.2 implies Theorem 4.1.

Proof of Theorem 4.1. We notice first that

N R P /Oo ~2dy = P(BY = x) < P(M > x)
- e S e y = 1 = X)X 1 = X)
V2 \x X3 V2 Jx

implying in turn that

liminfx2log P(MH = x) = —1/2. (4.4)
X—>00

On the other hand, Theorem 4.2 implies, for any x large enough,

- E MH 2 —E MH 2
log P (M{T = x) <— (= £ 1])H _ o El 1]), (4.5)
2 supeqo,1y Var(B;") 2
implying in turn that
limsup x 2log P(MH = x) < —1/2. (4.6)
X—>00
By combining (4.6) and (4.4), we conclude the proof of Theorem 4.1. O

Let us now prove Theorem 4.2. In preparation to this, we recall that any positive
definite symmetric matrix C € My (R) admits a unique square root (that is, there is
a unique positive definite symmetric matrix +/C € My (R) satisfying (+v/C)? = C),
and we prove the following result.
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Theorem 4.3. Let C € My (R) be a symmetric positive definite matrix, let G ~
N (0,C), and let ¢ : R? — R be a Lipschitz and €' function. Then, for all x > 0
and with
M = sup [|vV/C V¢(2)|ga € [0, 00),
zeR4

we have

2
P($(G) = E[$(G)] + x) < exp (—2’;42)

2
P($(G) < EIp(G)] - x) < exp (—ZLQ) .

The proof of Theorem 4.3 (shown to us by Christian Houdré [21]) relies on the
following lemma.

Lemma 4.1. Let C € My (R) be a symmetric positive definite matrix, let G ~
Ny (0,C), and let ¢, : R? — R be two Lipschitz and ‘€ functions. Then

1
Cov(¢(G), ¥(G)) =/0 E(NCV$(Gy), VC VY (Hy))gada, (4.7)

C aC
(G, Hy) ~ Nag <O’<1C C)) 0<a<l.

Proof. By bilinearity and approximation, it is enough to show (4.7) for ¢(x) =
e!H¥ra and ¥ (x) = e'“*'re when s, € R? are given (and fixed once for all).
Set

where

(/)a(t,s) = E[ei((.’f)’(gg))]]gzd].
We have

1 1
/ E(NCV¢(Gy), VCVY(Hy))gada = —(v/Ct, Jcsmd/ 0a(t,5)da.
0

0

(4.8)
Observe that G faw o faw G ~ N;(0,C), that Hy and G are independent and that
H, = G, a.s. Hence,

13
Cov($(G). ¥(G)) = ¢1(t.5) — golt.s) = [O . alt.s)da

C oC C C Cco
e €)=+ 0

we have, with ¢g (1) = E[e!"C)ra],

Since

9a(t,5) = @1(1,9)%@(t,5)' ™% = pg(t + 9)%pc (1) pg(s)' ™.
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Consequently,
d
5 P2 1+8) = (logpc (1 +5) —log 96 (1) — log 96(5))¢u (. ),
_1 2
implying in turn, since ¢g(f) = e ? IVCta (see (1.1),

1
@1(t,5) — @o(t.s) = —(v/Ct, \/Cé‘)Rd f wa(t,s)da. (4.9)

0
The two right-hand sides in (4.8) and (4.9) being the same, the proof of Lemma 4.1
is complete. O

We are now able to prove Theorem 4.3.

Proof of Theorem 4.3. Replacing ¢ by ¢ — E[¢(G)] if necessary, we may assume that
E[¢(G)] = 0 without loss of generality. By Lemma 4.1, we can write

E[$(G)e"* @] = Cov($(G).e'*(@)

’/1 E[(VC V$(Ga), VC V(Hy))gae'* T ]da
0

/N

1
ffo E[IVC V$(Go)|galIVC Vo (Hy)|ga e H)]da

/A

1
tM? / E[e"?HDda = tM? E[e'?()],
0

where, in the last equality, we used that Hy ™G foralla e [0, 1]. Thus,
d
5 E D1 = Elp(G)e'* D) < 1M? E[e'(D),

so that, after integration,

E[e"*(©@] < etz}yz, t>0.

Using Markov inequality and then setting t = x/M? (which is the optimal choice),
we get, for any x > 0,

2m? x?
P((G) = x) < e XE[e" @] < o—tx+3 < _ _
#(6) 2 x) < E[ D) < e exp ()
By replacing ¢ by —¢, we deduce

2
P(@(G) < —x)=P(—¢(G) = x) <exp (—2);/[2)

as well, which concludes the proof of the theorem. O
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As a corollary of Theorem 4.3, we get the following result.

Corollary 4.1. Fixd = 1 and let G = (Gy, ..., Gy) be a centered Gaussian vector
of R2. Then, for all x > 0,

2
X

P | max G; = E | max G; <e

(1$isxd ' |:1sisxd li|+x) P 2max Var(G;)

I<i<

(4.10)
¥2
Pl max G, < E| max G;j|—x | < exp| —
1<i<d 1<i<d 2 max Var(G;)
1<i<d
(4.11)
d

Proof. Using max |x;| < inz, notice first that £[| max;<j<q Gi|] < oo. Let
1<i<d P
C = (Ci,j)1<i,j<a denote the covariance matrix of G and, for any 8 > 0, let

¢p(z) = log (Zeﬂzl), z e R4,

i=1

Forany u,v € R¢ and B > 0, we have

1
|¢3(u) —qbﬂ(v)\ = ‘/o (Vg (tu + (1 —t)v),u — v)gadt

< max Vg (2)|ga v —v|ga < [lu —vlga,
zeR4

where in the last inequality we used that
d Bz; 2 d Bz;
ePzi ePZi
||V¢ﬂ(2)||ﬁed=2< a ) S sy =
i=1 Zj:l ez i=1 2.j=1 ePzi
That is, ¢g is 1-Lipschitz continuous on R?. On the other hand,

d eBlzitz))

Z Ci,; d 2
Lj=l (Zk:l eﬂ“’)

oBitz))

..... ij=1 (Zk leﬂzk>

= max |C,]|— max Var(G;), (4.12)
iy =lhend =1,

IVC Vg(2) |2

K
|B
Hi
5
AR
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where the last equality comes from the Cauchy-Schwarz inequality. By applying The-
orem 4.3, we deduce that, for all x > 0,

2
P(#p(G) = E[¢p(G)] + x) < exp (_Zmax-zlx i )’

.....

Ps(G) < Figg@ -0 <o (- T,

Finally, observe that 8 — oo implies (4.10)-(4.11). Indeed,

1
_ Bmaxi<i<a zi
lglizg(d zZ; = 8 log (e ) < ¢p(2)
1
Bmaxi<i<a Zi)
,B log (a’e 5 logd + max z;,

I<i<d
implying in turn that E[¢g(G)] — E[max<;<q G;i] and ¢g(z) — max,g;<q z; for
allz e R?, O

Corollary 4.1 implies Theorem 4.2.

Proof of Theorem 4.2. 1t is divided into two steps.

Step 1. Assume for the time being that m = oco. Fix x > 0. By monotone conver-
gence and continuity, we have

E[ sup sz—n:| — m = o0.
k=1,...,2"
Hence, let n be large enough so that E [supk=1,m,2n sz—n] = 2x. If supyefo,1) Xu <
x, then

sup szn—E|: sup sz n] < sup Xy —E[ sup sz ni|
k=1,...,2 k=1,...,2 uel0,1] k

< —X.

=1,...,2

Thus, using (4.11) as well,

P(su Xu$x)$P( sup szn—El: sup szni|$—x)
u€l0,1] k=1,...,2 k=1,...,2

_x2
<e 202,

By letting x — oo and by noticing that sup,¢[o,1] Xu» < oo a.s. (since X has contin-
uous paths), we get a contradiction. Hence m < co.

Step 2. By applying Corollary 4.1, we get

X2
P su Xio—n = E su Xpor—n x| <exp|-— .
(k=1,.?,2” k2 |:k=1,,.P,2" k2 :| * ) P ( 202)
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Fatou’s lemma together with monotone convergence (see Step 1) then implies

2
X

Pl sup Xy=>m+x|<e — ,

(uE[OI,)l] ! i ) xp( 202)

and the proof of Theorem 4.2 is concluded. O

4.2 Asymptotic Behavior at Zero

The following result is the extension of (4.3) to any value of H. We follow Molchan
[31] and Aurzada [2].

Theorem 4.4 (Molchan). For any H € (0, 1), we have

-H

1
lim (logx) 'log P(MH < x) =
x_)0+( gx)” log P(M; ) u

The proof of Theorem 4.4 is divided into two parts: Lemma 4.3 and Lemma 4.4.
Also, we shall make use of the following auxiliary result.

Lemma 4.2. For any H € (0, 1), we have

¢ -1
E|:(/ eB'ﬁdu) :|~HE[M1H]IH_l ast — oo.
0

Proof. For any x > 0, we have (using in particular that B# W _pH )

P BH|=x) <P BH > P —BH >
(uzl[lot,)l]| | x) (uzl[lol,)l] u x) + (uzl[lol,)l] w =X

=2P(MH = x).

Together with (4.5), this implies that 51[1p , |BMH | has all exponential moments (that
u€l0,1
is, for all 0 € R,

E I:eeSUPME[O.l] |B#‘i| < oo) (4.13)

By selfsimilarity, s1[1p] |Bf | has all exponential moments for all # > 0 as well. In
u€el0,t

particular, we can freely interchange expectation and differentiation in the forthcom-
ing calculations.
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Now, fix > 0 and observe that (B ),.co.] = (BH , — BH),.c[0.); indeed, these

two processes are centered, Gaussian and have the same covariance. We deduce that

U T (e
E [eBz” (foteBﬁdu) } —E [3at (log/(;teB,fldu)}

ad ! ad !
BlE |:10g/ erdui| = (E |:log/ e’HBlydu] + logt) by selfsimilarity
0 0

3 ! 1 ' BH "B
E|: (logf !B g }—i— = Ht"'E J o + .
3t 0 t fO et By du t

(4.14)
Since BH has continuous paths, we have
fol BH " Bl gy

: - M ast — oo,
HpH
Jo " Bu du

Moreover,
I pH tHBH
Jo Ble' P du
1 HpRpH
Jo "B du

By dominated convergence, the desired conclusion follows by letting 1 — oo
in (4.14). O

< sup |BH| as.
\ue[OI,)l]| u |

Lemma 4.3. For any H € (0, 1), we have

log P(MH < 1-H
liming 108 LM S X) . (4.15)
x—0F log x H

Proof. Set x(t) = 3t_H(\/logt+logt),t > 0. Since x'(t) ~ —3Ht11(f£, ast — oo,
one can choose M > 0 large enough so that x : [M,00) — (0,x(M)] is a strictly
decreasing bijection. For x = M, let #(x) be uniquely defined by

x =31(x)"#(Vlogt(x) + logt(x)). (4.16)
Since #(x) — oo as x — 0, we deduce from (4.16) that, as x — 0,

1 logt 1
08X —H or, equivalently, og(x) — —

. 4.17
logt(x) log x H @.17)

Assume for the time being that, for some ¢ > 0 and for all ¢ large enough,

P (M <371 (Viogt + logr) ) Vet =H = c. (4.18)



Taking the logarithm and setting ¢ = #(x) yield, for all x > 0 small enough,

log P(MlH <x)+ 3\/10gt(x) + (1 — H)logt(x) = logc,

4.2 Asymptotic Behavior at Zero

implying in turn (4.15), see also (4.17).
So, let us show that (4.18) holds true. To this aim, assume that ¢ is an integer for
the sake of simplicity and consider

oF

@

For any ¢ > 1, we have

{ inf B,fi 2—3\/10gt},
uel0,1]

t—1
ﬂ{ sup (B,fI—B,fI)§3«/logt}.

u,vefi,i+1
iy lwveliitn

t -1
E|:(/ eBL{idu) i| §A1+A2+A3+A4,
0

where

Ay =

Ay =

A; =

Ay =

1{M,H s3¢1ogz+3logt}nﬂ;j|

1 —1
By
ro =1
B
(/(; e du) l{MtH >3«/10gt+310gt}ﬂ§2%i|

1 -1
/0 eB'fIdu l(Q%)L] .

Study of A;. We have

A < Vet p(MHF < 3V/logt + 3log1)
H
1

— e3«/logt P(M

<3t H (Jlogt + logt)).

Study of A,. We have

1 =2
E [(/ eBu”du) } <E I:e_szue[o.l] Bu”] —E [ezsupuem.u(—B#)]
0

=F [eleH] < oo by Theorem 4.2.

47

(4.19)



48 4 Supremum of the Fractional Brownian Motion

Also, as t — oo,

P((QH) = P( inf BH < 3J10gz) P (ueir[lofl](—B,f’) < —3J10gt)

uel0,1]
= P (M >3v10g1)
= O(t's_g) by Theorem 4.2, for all & > 0
= 0@™?).
Using Cauchy-Schwarz, we deduce that A, = O(t™') ast — oo.
Study of A;. We have

-1
QIn{MH >3logt +3logt} C U {ue[lznlerl]BH > 310gl}

Indeed, leti = 0,...,7 — land s € [i,i + 1] be such that M = BH;it MH >
3/logt +3logt and supy yepii+11(BE — BH) < 3/logt then, forallu € [i,i + 1],

0 < Bf —3logt —3logt = B — BH + BH —3./logt —3logt

<
< BP —3logt,

so that infyep; ;+1] B = 3logt. Thus,

t—1 t -1
BH -3 _ 42
A3 <) E [(/0 e du) Lintucy i mag,}} <Py 1=17

i=0 i=

Study of A4. We have, as t — o0,

P((Q)°) < ZP ( sup BHI —BH > 3dlogz)

u,veli, t+1]

tP( sup BH — BH > 3\/10gt)

u,vef0,1]
= 0(18_; ) by Theorem 4.2, for all & > 0
= 0(t™?).
)
Recall also from (4.19) that £ |:( ! oBi du) ] < 00. Using Cauchy-Schwarz, we
deduce that A4 = O(t™ ") ast — oo.

Conclusion. By putting all these estimates together, we get that

t —1
E |:(/ eBLIt{du) :| < 3Vloet P(ME <37 (Vlogt + logt)) + O™,
0
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ast — oo. But E[(fot eBquu)_l] ~ E[MlH]tH_l ast — oo by Lemma 4.2, so
(4.18) holds true for ¢ large enough. O
Lemma 4.4. For any H € (0, 1), we have

1-H
limsup (log x)~! log P(MIH <x) < . (4.20)
x—0t H

Proof. To limit the size of the book, we only do the proof for H € ( é, 1). We follow

the approach developed in [2]. (The case H € (0, ;) is slightly more difficult to
handle, and we refer to [2] for the details.) During the proof of (4.20), we shall make
use of the following classical and very important result.

Lemma 4.5 (Slepian [58]). Fix some integers d = 2 and ky,....k; = 1, and
consider a centered Gaussian vector

(Gl.....Gp.....G{.....GL).

Assume thatE[GflGl{] =0foralli # j,a=1,....kjandb =1,... k;. Then,
forany xi,...,xq5 €R,

P(max{Gl,...,G,il} le) P(max{Gd,...,G,fd} < xd)

<P (max{Gll,...,G,il} < Xp, ..., max{Gfi,...,G,‘cid} < xd).

Proof. By reasoning by induction, we suppose without loss of generality that d = 2.
Let us first change the notation to simplify the exposition. We want to prove that, if
G = (Gy,...,Gpyy) is a given centered Gaussian vector such that

E[GiGj] =0, i=1....,p, j=p+Ll....p+gq,

and if G = (@1, ....G p+q) 1s another centered Gaussian vector such that
PN . . . .. 2 2
EGiG,) = | FIGIG] G ) el pPUlp+ 1 pta)
0 otherwise

then, forall x,y € R,
P(max{Gy,...,Gp} < x) P(max{Gp41.,....Gpyq} < ¥)
=P (max{al,...,ap} <ux, max{ap+1,...,6l,+q} < y)

< P(max{Gl, oo Gpy < x, max{Gp41,...,Gpiq) < y).

Without loss of generality, let us assume that G and G are independent. Let ¢ (1) =
Siur) ... forq(Uprq), u € RPTY, where each f; is a positive, decreasing and
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smooth enough function. For 7 € [0,1], set (1) = E[¢p(v/1G + V1 — t@)]. We
have

. 1
E[$(G)] — E[p(©G)] = /0 o' (1)

ptq

—Z [ (x/zG+¢1—zG)(2w 2J11—z6i)}

1 ptq az¢ R
=, > E[a e («/tG—l—\/l—tG)} (E[GiGj]—E[GiGj])

iL,j=

p ptq

P’
=3 > E [ (JtG+«/1—tG)]E[GG]

i=1j=p+1
But when i # j, we have

¢

g, @ = 10w T] Setu) = 0

k#i,j
We deduce that
ptq pta R
E[¢p(G) =E [1‘[ fi(G»} > E [1‘[ ﬁ(Gi)} = E[p(G)].
i=1 i=1
and the conclusion is attained by taking, for each 7, a sequence fl.(") of positive,

decreasing, €2 approximations to the indicator lcoox] 0 = 1,...,p)or 1(_eo,y]
(i=p+1....p+9). o

Corollary 4.2. Let BH be a fractional Brownian motion of Hurst index H € (; 1).
Then, forallt = 1, all x1,x; = 0 and all x5 € R,

H H H
P (OilsJEIB < xl) P (122:(& - B") < xz) P(B{" < x3)

$P(supB < xi, sup(B —BlH)sz,Ble)q).
0<s<1

1

2

Proof. Forany s € [0, 1] and u € [1, +00), we have, using (2.2) since H >

s u
E[BH(BY - BI')| = HQH - 1)/0 dx/l B0y — x5 0
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s 1
EBEBH| = H2H — 1)[ dx/ dyly —xPH72 > 0.
0 0
Slepian’s Lemma 4.5 then implies that

P (k_slupzn B]g—n < x1) P (k_slupzn(Bﬁ_(t_l)kz_n - BIH) < xz) P(BlH < x3)

..........

..........

A monotone convergence argument as 7 — oo allows one to conclude the proof. O

We are now in a position to prove Lemma 4.4 for H € ( é 1). Fixt > 1 and let

B(s) = [, a1000)1/#) () — 21021 1a10g1)1/8 41(5), s = 0.

We have

t o -1 t - -1
E |:(/ eBs ds) Z E | Livs<r: BH <(s)} (/ eBs ds)
0 0
t —1
> P(Vs<t: BY <¢() (/ e¢(s)ds) .
0
For ¢ large enough, observe that

1 (2logt)'/H

t
,/ e?9ds = e(2logt)'H + t 12 ~i100 €(2log ) H
0

implying in turn that fot e?®ds < 2e(2logt)"/H for t large enough. Therefore, for
t large enough,

¢ -1
P(Vs<t: Bl <¢(s)) <2elogn)!/" E [(/ eBs”ds) } . @421
0
On the other hand, by (4.15) we have that

(logt)F]I_lP(Mle )—>oo ast — 0o.

2logt
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Therefore, for ¢ large enough, (log?) P (MlH < 21(£gt) = P(Bhl’< 2 implying in
Heo

turn:
(logn)'=# P(MH < 1)

1
<P (MIH <, ost )P(M,H <)P(BE <-2)

A< H
P( 5 210gt) ( <?+1B5—1\1)P(Bl <-2)
. 7 _ B < H o _
( : 2logt)P( sup (B — B )\1) P(BH < -2)

by stationarity

S
o~

Oss

1
H _ BH Hy H o _
P(oi ngs 2logt’ e (B, =BI) < 1. B < 2)
by Corollary 4.2
1
<P BH < B < -1
(02 By s 2logt’ 1508, s )
=P ( SH <1, sup BSH < —210gt)
0<s<(210gt) H (2logt) 111 <s<t(2logt) 111
by selfsimilarity
<P B <1, su BI < —210gt)
O<s<(2 logt)H (2logt) H <s<t
=P (Vs<t: BE <¢()
‘ —1
<2e(2logt)# E [(/ eBsts) } by (4.21)
0
< c (logt) # A= by Lemma 4.2, for some ¢ > 0. (4.22)

Using first the selfsimilarity property of B and then (4.22), we deduce that
P(MIH <x)= P(Mf{H <1)<c(- logx)z_HH X ,

for any x > 0 small enough, frow which it is immediate that (4.20) holds. O



Chapter 5
Malliavin Calculus in a Nutshell

In this chapter, we introduce the reader to the basic operators of Malliavin calculus.
This is because, in the next chapter, we shall use this framework to study the con-
vergence in law of some functionals involving fractional Brownian motion. For the
sake of simplicity and to avoid useless technicalities, we only consider the case where
the underlying Gaussian process, fixed once for all, is a two-sided classical Brownian
motion W = (W;);er (see (1.8)) defined on some probability space (2, ¥, P); we
further assume that the o-field ¥ is generated by W.

For a detailed exposition of Malliavin calculus and for missing proofs, we refer
the reader to the textbooks [39, 45].

5.1 It6 Stochastic Calculus

In this section, we survey some of the basic properties of the stochastic integral of
adapted processes with respect to W, as introduced by It6. (For a detailed exposition
of It6 stochastic calculus and for missing proofs, we refer the reader to the classical
textbook [52].)

Foreacht € R, let ¥; be the o-field generated by the random variables {Ws, s <
t} together with the null sets of % .

Definition 5.1. A stochastic process u = (u;),er is called adapted" if u, is F,-
measurable for any t € R.

We denote by L*(R x Q) = L*(R x Q, B(R) ® F, A x P) (where A stands for
the Lebesgue measure) the set of square integrable processes, and by L2 (R x Q) the
subspace of adapted processes. Let & be the class of elementary adapted processes,

! Any adapted process u that is either cadlag or caglad admits a progressively measurable
version. We will always assume that we are dealing with it, meaning that the restriction of
u to the product (—oo, ] x Q is B((—o0, t]) ® F-measurable for all 7.

Nourdin L.: Selected Aspects of Fractional Brownian Motion, B&SS,
DOI 10.1007/978-88-470-2823-4_5, © Springer-Verlag Italia 2012



54 5 Malliavin Calculus in a Nutshell

that is, a process u belongs to & if it has the form

n
Ur = ZFil[[[,[i+l)(t) (51)

i=1

where t; < ... < ft41, and every F; is an ¥, -measurable and square integrable
random variable.

Definition 5.2. For an adapted process u of the form (5.1), the random variable

| wsdW= 3" F (Wi - W) (5.2)

e i=1
is called the It6 integral of u with respect to W.

The It6 integral of elementary processes is a linear functional that takes values on
L?(R2) and has the following basic features, coming mainly from the independence
property of the increments of W':

E [/R udes] =0 (5.3)
E[/R usd Wy x/ﬂ;vdes] = EURusvsds}. (5.4)

Thanks to the isometry (5.4), the definition of [ usd Wj is extended to all adapted
process u of Lfl (R x2), and (5.3)—(5.4) continue to hold in this more general setting.

When u € L?(R) is deterministic, it is straightforward to show (using (5.2) as
well as a characteristic function argument) that

/ usdWs ~ N (0/ u?ds). (5.5)
R R

One of the most important tool in the Itd stochastic calculus is its associated
change of variable formula.

Theorem 5.1. Fixd > 1, let x1,...,xg € Randlet F : RY > Rbea €2-function.
Also, fori = 1,...,d, suppose that u; and v; are measurable and adapted processes
verifying f_too u; (s)’ds < oo a.s. and fioo [v; (s)|ds < oo a.s. for everyt € R. Set
Xi=x; + [ioo u; (s)d Wy + jioc vi(s)ds foranyi = 1,...,d. Then

d .t
aF
F(X)..... X% = F(xl,...,xd)—i—Z/ ax.(x;,...,xf)ui(s)dm
i= —00 i

+Z/ Xl,...,Xsd)vi(S)dS

i=1

" Z/ ax,ax, (X} XD ui(9)uj(s)ds. (5.6
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5.2 Multiple Wiener—Ito Integrals and Wiener Chaoses

Let f € L*(R?). Let us see how one could give a ‘natural” meaning to the g-fold
multiple integral

/
W= [ e spdiy i,
q

where the prime indicates that one does not integrate over the hyperdiagonals #; =
tj, i # j. To achieve this goal, we shall use an iterated It6 integral; the following
heuristic ‘calculations’ are thus natural within this framework:

s SG1.. . 8g)d Wy .. d W,

_ / PG5 syiromsoiyyd W - dWe,
0eBy

5(7(1) So(g—1)
= / dWs, / Wioa - / AWsg i F (515, 8¢)
0eCy

= / dVth/ dVVtz/ thqf(lofl(l),...,lgfl(q))
0EBy -

= / dVth / dVVtz [ thq f(l‘g(l), AU l‘g(q)). 5.7
0eBy

Now, we can use (5.7) as a natural candidate for being / qW (f).

Definition 5.3. Let g = 1 be an integer.
1. When f € L*(RY), we set

IY(f) = aw, [ aw,. . [ AW, faree o). (58)
Y= 3 [Caw [ awn :

The random variable 1 qW (f) is called the qth multiple Wiener-Ité integral of f .
2. The set Jf;v of random variables of the form IqW(f), f e L?>(RY), is called the
qth Wiener chaos of W. We also use the convention J(JV =R

The following properties are readily checked.

Proposition 5.1. Let ¢ > 1 be an integer and let f € L*(RY).
1. If f is symmetric, then

[ee] 1 tg—1
LV (f) =q!/ dW,I/ dW,Z.../ dW,, f(ti,... . tg). (5.9)
—00 —00

2. We have N
17 (f) =17 (). (5.10)
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where 7 stands for the symmetrization of f given by
~ 1
flo, .. 1q) = g! Z Slaqy, - o)) (5.11)
€6y
3. Let Dy C RY be the collection of the hyperdiagonals of RY, i.e.
Dy ={(t1.....t9) €eRY : t; =t; for somei # j}.

When [ay,bi[x ... x[aq, bg[NDg = 9 (that is, when [a1,bi[, ..., [aq, by are disjoint
intervals of R), we have

1) May s ® o ® Nag ) = (Wo, — Way) ... (W, — Way). (5.12)

(In (5.12) and throughout the book, we write fi ® ... ® f4 to indicate the tensor

product of fi, ..., fy, defined by (fi ® ... ® f)(t1,....tg) = filt)) ... f(tg).)
4. Forany p,q =1, f € L>(R?) and g € L*(RY),

E[IY(f)] =0 (5.13)
ELY(H1Y (9] = PN Diewey ifP=4q (5.14)
E[ILY(HI) (@l =0 ifp+#q. (5.15)

Multiple Wiener-It6 integrals and Hermite polynomials are intimately connected.

Proposition 5.2. Let e € L>(R) have norm 1, let ¢ > 1 be an integer, and recall the
Definition 1.4 of Hermite polynomials. Then

H, (/Re(s)dWs) =1V (e®9). (5.16)

Proof. Lett € R and, forany x € Randa = 0, set hy(x,a) = aq/qu(x/Ja)
ifa # 0and hy(x,0) = x?. Using Proposition 1.3(1), it is readily checked that

(é 3(252 + a({iz) hg = 0and 3‘1 hg = qhg—,.1t6’s formula (5.6) implies then that

hg (/_;e(u)qu,[_too 62(u)du)

_ q[_toodW” e(t1) byt (/_;e(u)qu,/_; ez(u)du)

t 141 tg—2
q!/ dWwy, e(tl)[ dW,Ze(tz).../ AWy, e(tg—1)

—0Q

why (/_:1 e(u)d W, /_t:ol ez(u)du)

t 1 tg—1
q!/ dWwy, e(tl)[ dW,Ze(tg).../ dW,e(ty).

—0oQ
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By choosing = oo and because [ e?(u)du = 1, we get

H, ( /R e(u)qu) =1 (e®7)

and the proof of (5.16) is complete. O

The space L?(R2) can be decomposed into the infinite orthogonal sum of the
spaces Jf;v . (It is precisely here that we need to assume that the o-field ¥ is gener-
ated by W.) It follows that any square-integrable random variable F € L?(2) admits
the following chaotic expansion:

F=E[F]+) 1 (f) (5.17)
g=1

where the functions f; € L*(R?) are symmetric and uniquely determined by F.

The following result contains a very useful property of Wiener multiple integrals
(the so-called hypercontractivity property) which states that all the L” (£2)-norms are
equivalent for multiple Wiener-1t6 integrals of a given order.

Theorem 5.2 (Nelson [32]). Let f € L>*(R?) withq = 1. Then, for all r € [2, +00),

E[IL (DI < [ = D201 f 1] 2@y < 0o (5.18)

Proof. See, e.g., [39, Corollary 2.8.14]. O

As an application, let us deduce from Theorem 5.2 that the law of any random
vector composed of either single or double Wiener-1t6 integrals is determined by its
joint moments. It is an interesting result (that we shall use in the proof of Theorem 7.3)
because the laws of multiple integrals of order strictly greater than two are, in general,
not determined by their moments. See Slud [59] or Janson [24, Chapter VI] for a
complete picture.

Proposition 5.3. Let ey, ..., e, be functions in L>*(R) and f, ..., fq be symmetric
functions in L*(R?). Then, the law of the random vector

(Zvoooos Zega) = UV (€)oo Ly (er), Y (f1)o o 1Y (f2))

is determined by its joint moments. That is, if (Y1,...,Y,1+4) is a random vector
satisfying

ElY" .. Y =E[Z]" ... Z ]

for each choice ofny, ... ,ny4+q €N, then

law

(Ylv-“er-l—d) = (Zlv-~~er+d)-
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Proof. Since

x2
E[el‘ulW(e)l] — JZ 1 || || / et|x|e_2||e||2 dx < 00 (519)
e R

forany e € L2(R) \ {0} and ¢ > 0, it is sufficient to show that, for any symmetric
function f € L?(R?), there exists t > 0 such that

Ele'" DN < oo, (5.20)

(It is indeed a routine exercise to deduce the desired conclusion from (5.19)-(5.20).)
To do so, without loss of generality we may and will assume that 2| f || 2r2) =
E[IZW (/)?] = 1, so that (5.18) implies that, for every r = 2,

ENLY (HINVr <r-1,

implying in turn that P(|12W ()] >u) <u"(r—1) for every u > 0. Choosing
r = r(u) = 1 + u/e, the previous relation shows that P(|12W(f)| > u) < eve,
for every u > e. By a Fubini argument,

E[etlle(f)|] =1 _|_t/0 et”P(|12W(f)| > u)du,

1|y

hence E|[e (NN < oo for every ¢ € [0, 1/e). The proof is concluded. O

Another interesting application of Theorem 5.2 is the following result.

Proposition 5.4. Let (f,)n=1 be a sequence of non-zero symmetric elements of
L*(RY). If the sequence (IqW (f1))n=1 converges in law, then

sg}])E[|IqW(f,,)|r] < oo foreveryr > 0. (5.21)

Proof. Recall the Paley’s inequality: if F' is a positive random variable with E[F] = 1
and if 6 € (0, 1), then

E[F?|P(F > 0) = (1-0)~ (5.22)
(The proof of (5.22) is easy: consider the decomposition F' = Flr~g) + Fl{r<e),
take the expectation and use Cauchy-Schwarz to deduce that 1 < /E[F?]
VP(F > 6) + 6.) Combining (5.18) for r = 4 with (5.22), we get for every
0 € (0,1) and with F = 1)V (f)*/ E[1) (fo)?],

(E[1) (/)
E[1Y (f)¥]

The sequence (/ (;V (fn))n=1 converging in law, it is tight and we can choose M > 0

large enough such that P(IqI’V(f,,)2 > M) < 979! foralln = 1. On the other hand,
by (5.23) with € = 2/3 and all n, we have

P(1)V (fu)* > 0E[1) (f)*]) = (1 - 6)° > (1—0)2971. (5.23)

POV > M) <97 < PUY () > 5 EUY (7).
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As a consequence, sup,=| £ [I;V (f)?] < 312” . Applying (5.18) we conclude
(5.21). a

Multiple Wiener-It6 integrals are linear by construction. Let us see how they be-
have with respect to multiplication. To this aim, we need to introduce the concept of
contractions.

Definition 5.4. Whenr € {1,...,p Aq}, f € L>(R?) and g € L*(RY), we write
f ®; g to indicate the rth contraction of [ and g, defined as being the element of
L?>(RP+472T) given by

(f ®r )t tprg—2r) (5.24)
= f f(tl, RN D o P ,x,)g(tp_H_l, ceos lpg—2rs X15 .- L Xr)
R"

xXdxy...dx,.

By convention, we set [ @y g = f ® g as being the tensor product of f and g, that
is, (f ®)t1,....lp+q) = f(t1,... . 1p)&(Ip+1, - Ip+q)

Observe that
I/ ®r glizwp+a—ry < 1 fl2wey)lgl2wey, 7=0.....pAq  (525)

by Cauchy-Schwarz, and that f ®, g = (f. g)r2») When p = g. The next result
is the product formula between multiple Wiener-1t6 integrals.

Theorem 5.3. Let p,q > 1 and let f € L>(R?) and g € L*(RY) be two symmetric
functions. Then

DG
e =3 r!(f ) (‘j) 1Yy (fBrg). (5.26)
r=0

where f®,g stands for the symmetrization of f ®, g (see (5.11)).
Proof. See, e.g., [45, page 12]. O

5.3 Malliavin Derivatives

Let F € L?(R2) and consider its chaotic expansion (5.17).

Definition 5.5. 1. When m > 1 is an integer, we say that F belongs to the Sobolev-
Watanabe space D™? if

o0
> a7 fall} 2ay < 00 (5.27)
g=1
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2. When (5.27) holds with m = 1, the Malliavin derivative DF = (D;F)er of F
is the element of L*(Q2 x R) given by

o0
DF =Y gl (f,¢.1). (5.28)
g=1
It is clear by construction that D is a linear operator. Using the orthogonality and
the isometry properties of multiple Wiener-Ito integrals, it is easy to compute the
L?-norm of DF in terms of the kernels f; appearing in the chaotic expansion (5.17)
of F:

Proposition 5.5. Let F € D'2. We have

o0
E [||DF||§2(R)] = aq'l fal} 2oy
qg=1

Proof. By (5.28), we can write
0o 2
E(IDF ] = [ B (St (i) ) Jar
R p

= quE[lpW (fp(0) 10 (foC.1))] .

P,q=1
Using (5.15), we deduce that

E[IDF sy = iqz [ 2 [ Gatoy ]
<

Finally, using (5.14), we get that

o0 oo
E[IDF 32| =D a*@— D! /R | f2 GO ooy 42 =Y aa | a7 -
q=1 g=1 O

Let H, denote the gth Hermite polynomial (for some ¢ > 1) and let e € L*(R)
have norm 1. Recall (5.16) and Proposition 1.3(1). We deduce that, for any r = 0,

D (#y ([ eaw:)) = Da0al @) = a1 e et

= qHy— (/R e(s)dWs) e(t) = H, (/Re(s)dWs) D, (/R e(s)dWs) )

More generally, the Malliavin derivative D verifies the chain rule:

Theorem 5.4. Let ¢ : R — R be both of class €' and Lipschitz, and let F € D'-2.
Then, (F) € DY? and

D,o(F)= ¢ (F)D,F, teR. (5.29)
Proof. See, e.g., [45, Proposition 1.2.3]. O
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5.4 Generator of the Ornstein—Uhlenbeck Semigroup

Recall the definition (5.27) of the Sobolev—Watanabe spaces D2, m > 1, and that
the symmetric kernels f; € L*(R?) are uniquely defined through (5.17).

Definition 5.6. 1. The generator of the Ornstein—Uhlenbeck semigroup is the linear
operator L defined on D>?* by

LF ==Y q1) (fy).
qg=0

2. The pseudo-inverse of L is the linear operator L™ defined on L*(Q) by

1
L7F == "1 (fo).
=4
q
It is obvious that, for any F € L*(S2), we have that L™' F € D?? and
LL™'F = F — E[F]. (5.30)

Our terminology for L™ is explained by the identity (5.30). Another crucial property
of L is contained in the following result.

Proposition 5.6. Let F € D>? and G € D'2. Then
E[LF x G] = —E[(DF. DG) 2. (5.31)

Proof. By bilinearity and approximation, it is enough to show (5.31) for F = [ pW f)
and G = 1)V (g) with p.q = 1and f € L*(RY), g € L*(R%) symmetric. When
p # ¢, we have

E[LF x Gl = —pE[1," (/)1 ()] =0

and
E[(DF,DG)r2®)] = pq /0 ELY (fC.on1) (gC.o)ldt =0

by (5.15), so the desired conclusion holds true in this case. When p = ¢, we have

E[LF x G] = —qE[1) (f)1) (9)] = 0 = —qq!{ /. g)12R)

and
E[(DF, DG)2w)]
[ee)
=0 [ B e e
= g = ! [ (S0 gC0)marndt = g0 e
by (5.14), so the desired conclusion holds true also in this case. O

We are now in a position to state and prove an integration by parts formula which
will play a crucial role in the sequel.
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Theorem 5.5. Let ¢ : R — R be both of class €' and Lipschitz, and let F € D"?
be such that E[F] = 0. Then

E[Fo(F)] = E[¢'(F)(DF.—DL™'F)2®)]. (5.32)
Proof. Using the assumptions made on F and ¢, we can write:
E[Fo(F)] = E[L(L™'F)p(F)] (by (5.30))

— E[{Dp(F),.—~DL™'F)p@)]  (by (531))
= E[¢'(F){(D¢(F),~DL™'F)2®)] (by (5.29)),

which is the announced formula. O

In (5.32), the random variable (DF, —DL™! F)12(r) belongs to L' (Q)since F €
D2, Indeed,

E[[{DF,=DL™'F)2@)|] < \/ENIDF I3 gy] y ENDL F )]
o0 o0
= Y aafal ey | D@ = DUy
q=1 q=1

o0
< Y aq'1 Sy} ey = ENIDF []2g)] < 00 (533)
qg=1

Theorem 5.5 admits a useful extension to indicator functions. Before stating and
proving it, we recall the following classical result from measure theory.

Proposition 5.7. Let B be a Borel set in R, assume that B C [—A, A] for some
A > 0, and let |1 be a finite measure on [—A, A]. Then, there exists a sequence (hy)
of continuous functions with support included in [— A, A] and such that h, (x) € [0, 1]
and 1g(x) = lim, o0 1y (X) p-a.e.

Proof. This is an immediate corollary of Lusin’s theorem, see e.g. [54, page 56]. O

Corollary 5.1. Let B be a Borel set in R, assume that B C [—A, A] for some A > 0,
and let F € D" be such that E[F] = 0. Then

F
E[F/_ IB(x)dx:| = E[1g(F)(DF.—DL™'F)2(®)].

Proof. Let A denote the Lebesgue measure and let Pr denote the law of F. By Propo-
sition 5.7 with 4 = (A + Pr)|[—4,4] (that is, p is the restriction of A + Pr to
[—A, A]), there is a sequence (/) of continuous functions with support included in
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[—A, A] and such that 1, (x) € [0, 1] and 15(x) = lim,—co /1, (x) p-a.e. In particu-
lar, 15(x) = lim,— 00 i, (x) A-a.e. and Pr-a.e. By Theorem 5.5, we have moreover
that

F
E[F/_ h,,(x)dx} = E[hn(F){(DF,—DL™'F)2®)]-

The dominated convergence applies and yields the desired conclusion. O

As a corollary of both Theorem 5.5 and Corollary 5.1, we shall prove that the
law of any multiple Wiener-1t6 integral is always absolutely continuous with respect
to the Lebesgue measure except, of course, when its kernel is identically zero. This
result was obtained by Shigekawa in [57].

Corollary 5.2 (Shigekawa). Let ¢ = 1 be an integer and let [ be a non zero element
of L>(RY). Then the law of F = IqW(f) is absolutely continuous with respect to the
Lebesgue measure.

Proof. Without loss of generality, we further assume that f is symmetric. The proof
is by induction on ¢g. When ¢ = 1, the desired property is readily checked because
IV (f) ~ N(O, ”f”ZLZ(]R))' Now, let ¢ = 2 and assume that the statement of Corol-

lary 5.2 holds true for ¢ — 1, that is, assume that the law of [ ;K 1 (g) is absolutely
continuous for any symmetric element g of L?(R?~") such that || g|;2ga—1) > 0.
Let f be a symmetric element of L*(R?) with || f || 2ra) > 0. Let & € L*(R) be
such that ||fO°o fC,8)h(s)ds ||L2(Rq 1 # 0. (Such an % necessarily exists because,
otherwise, we would have that f(-,s) = 0 for almost all s = 0 which, by symmetry,
would imply that / = 0; this would be in contradiction with our assumption.) Using
the induction assumption, we have that the law of

(DF,h)12r) = / DsF h(s)ds = ql,;_, (/ S, s)h(s)ds)
is absolutely continuous with respect to the Lebesgue measure. In particular,
P((DF,h)2w) =0) =0,
implying in turn, because {|| DF |[z2r) = 0} C {{DF, h)12r) = 0}, that
P(||DF |2y > 0) = 1. (5.34)

Now, let B be a Borel set in R. Using Corollary 5.1, we can write, foreveryn > 1,

1 _
E |:1Bﬂ[—n,n](F)q ”DF”lz}(]R)jI E [1Bﬂ[—n,n](F)<DF7_DL 1F)LZ(]R)]

F
E[F/ lBﬂ[—n,n](J’)dY:|-
—00

Assume that the Lebesgue measure of B is zero. The previous equality implies that

1
E [lam[_n,n](F)q IIDFIIiz(R)] =0, n>1.
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But (5.34) holds as well, so P(F € B N[—n,n]) = 0 forall n > 1. By monotone
convergence, we actually get P(F € B) = 0. This shows that the law of F is abso-
lutely continuous with respect to the Lebesgue measure. The proof of Corollary 5.2
is concluded. o



Chapter 6
Central Limit Theorem on the Wiener Space

A widely acclaimed achievement of probability has been its success in approximating
the distributions of arbitrarily complicated random variables in terms of a rather small
number of ‘universal’ distributions. Central limit theorem, which proves convergence
to the Gaussian law, is the best known among this type of results. However, for practi-
cal purposes, it is much more important to know how accurate such an approximation
is, and this is of course a more difficult question to answer. For instance, central limit
theorem was known already around 1715 (and in full generality by 1900), whereas
the corresponding approximation theorem of Berry and Esseen was only proved in
1941. Stein’s method, introduced in 1972 in [60], offers a general means of solving
such problems.

The goal of this chapter (which, in a sense, is a summary of the content of the
book [39]) is to explain how to combine Stein’s method with Malliavin calculus in
order to assess the distance between the laws of regular Brownian functionals and a
one-dimensional Gaussian distribution. Notably, we deduce a complete characteriza-
tion of Gaussian approximations inside a fixed Wiener chaos, which is systematically
stronger than the popular method of moments.

In Section 6.4, one uses the approach developed in this chapter to study the asymp-
totic behavior of the quadratic variation of fBm.

6.1 Stein’s Lemma for Gaussian Approximations

We start by introducing the distance we shall use to measure the closeness of the laws
of random variables.

Definition 6.1. The total variation distance between the laws of two real-valued ran-
dom variables Y and Z is defined by

dry(Y,Z) = P(Y € B)— P(Z € B)|, 6.1
rv(Y,Z) 2SR | P( ) — P( ) (6.1)
where B(R) stands for the set of Borel sets in R.

Nourdin L.: Selected Aspects of Fractional Brownian Motion, B&SS,
DOI 10.1007/978-88-470-2823-4_6, © Springer-Verlag Italia 2012
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When B € B(R), we have that P(Y € BN [—-n,n]) - P(Y € B)and P(Z €

B N [-n,n]) - P(Z € B) as n — oo by the monotone convergence theorem. So,

without loss we may restrict the supremum in (6.1) to be taken over bounded Borel
sets, that is,

dry(Y,Z) = P(Y € B)— P(Z € B)|. 6.2

rv (Y, Z) Bes%r()R)l ( ) — P( )| (6.2)

B bounded

The following statement contains all the elements of Stein’s method that are
needed for our discussion. For more details and the heuristic behind the method, one
can consult the recent books [8, 39] and the references therein.

Lemma 6.1 (Stein). Let N ~ N (0, 1) be a standard Gaussian random variable. Let
h : R — [0, 1] be any continuous function. Define fy, : R — R by

X

i) = €5 /_ (h@) — E(N)))e™ da 6.3)

5 [ (@) — EV))e da. (6.4)

Then fy is of class €', and satisfies |x f(x)| < 1, |/, (0)] < 2and
Fux) = xfi(x) + h(x) = E[h(N)] (6.5)
forall x € R.
Proof. The equality between (6.3) and (6.4) comes from
0 = E[h(N)— E[h(N)]]

= U @) — Ev)e-4

= o | (@ = Emv)e da,
Using (6.4) we have, for x = 0:

‘(2 +OO tlz
|xfa(x)| = |xe> / (h(a) — E[h(N)])e™ 2 da
p
32 +o00 &2 42 +o00 &2
Ser/ e_zdaSeZ/ ae” 2da =1.
pe pe

Using (6.3) we have, for x < 0:

x| = [xe™ [ (hta) ~ EBO)e da

2 400 2 2 +oo 2
< |xle 2 e 2da<e ae” 2da = 1.
| \

x| x|

The identity (6.5) is readily checked to be true. In particular, we deduce that
| /(O] < [xfa ()] + |h(x) — E[A(N)]| < 2

for all x € R. The proof of the lemma is complete. O
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6.2 Combining Stein’s Method with Malliavin Calculus

We now derive a bound for the Gaussian approximation of a centered Malliavin-
differentiable random variable, following the approach initiated in [38].

Theorem 6.1 (Nourdin—Peccati). Let W be a two-sided classical Brownian motion
defined on some probability space (2, ¥, P), and assume further that the o-field ¥
is generated by W. Let the notation of Chapter 5 prevail. Consider F € D' with
E[F] = 0. Then, with N ~ N (0, 1),

dry(F.N) <2E[[1 = (DF,—DL™'F):m)|].- (6.6)

Proof. Let B be a bounded Borel set in R. Let A > 0 be such that B C [—A4, A]. Let
A denote the Lebesgue measure and let Pr denote the law of F. By Proposition 5.7
with 1 = (A 4 Pfr)|[—4—,4] (thatis, 1t is the restriction of A + Pg to [—A, A]), there
is a sequence (h,) of continuous functions such that 4, (x) € [0,1] and 1g(x) =
lim,— 00 /1, (Xx) p-a.e. By the dominated convergence theorem, E[h,(F)] — P(F €
B) and E[h,(N)] — P(N € B) asn — o0o. On the other hand, using Lemma 6.1
as well as (5.32) we can write, for each n,

|E[hn(F)] — E[ha(N)]| = |ELfy, (F)] = E[F fp, (F)]|
= |E[f (F)(1 = (DF,=DL™'F) > (g)]
< 2E[|1 = (DF,—DL™'F) 2wy l]-

Letting n goes to infinity yields
|P(F € By— P(N € B)| <2E[|1 = (DF.—DL™'F)2w)l].

which, together with (6.2), implies the desired conclusion. O

6.3 Wiener Chaos and the Fourth Moment Theorem

In this section, we apply Theorem 6.1 to chaotic random variables, that is, to random
variables having the specific form of a multiple Wiener-It6 integral. We begin with a
technical lemma.

Lemma 6.2. Let g > 1 be an integer and consider a symmetric function f € L*(RY).
Set F = IqW (f)ando? = E[F? = q!”fHZLZ(Rq)' The following two identities hold:

_ 4
1 2 12 q ~
E [(oz - IDFEs) } D DYAE () NCYE St

r=1

(6.7)
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and
4
E[FY] - ervz( ) Qg =2\ f &1 f 1172 2a-2r) (6.8)
q-1 2
q 2qg —2r ~
=Y q? () {nf@rfnzz(m_zf) + ( . )nf@rfnizm_m}.
r=1
(6.9)
In particular,
) 1 2 ? g—1 4 4
Ello —q||DF||L2(R) S 3 (E[F*]—30%). (6.10)

Proof. For any t € R, we have D, F = qlq”il(f(-, t)) so that, using the product
formula (5.26),

1 2
PPy =a [ (760 s

2
.<q;1) B2 (fCOBr fCD)d

I

RS
S
~ _Q
i1

=

q-1 g—1 2
= qAZr'< r ) 12‘;/—2—2r(f('vt) ®r f(',t))dt
r=0
q—1 q—l 2
:qzr'< r ) 2q—2— Zr(/ f( t)®rf( t)dt)
r=0
q—1 g—1 2
=QZ”< . )12”3_2_2,(.}‘ Br11 f)
r=0

q B 2
qZ(r—l)!(f_i) Yy ar (S @ f)
r=1

q-1 1 2
q!||f||izGRq)+q2(r—1)!(j’_l) Yo fe ). 6l
r=1

Since E[F?] = q!”f”ZLZ(Rq) = o2, the identity (6.7) follows now from (6.11) and
the orthogonality/isometry properties of multiple Wiener-Itd integrals.

Recall the hypercontractivity property (5.18) of multiple Wiener-It6 integrals, and
observe the relationships —L 7' F = ;F and D(F?) = 3F2DF. Hence, by com-

bining formula (5.32) with an approximation argument (the derivative of ¢(x) = x3
being not bounded), we infer that

E[F]|=E[F x F] = 2E[F2||DF||2LZ(R)]. (6.12)
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Moreover, the product formula (5.26) yields

q 2
F%=quﬂ=§:ﬂ@)lgﬂxf®mm (6.13)
§s=0

By combining this last identity with (6.11) and (6.12), we obtain (6.8) and finally
(6.10).

It remains to prove (6.9). Let o be a permutation of {1,...,2¢} (this fact is
written in symbols as 0 € ©y,). If r € {0,...,q} denotes the cardinality of
{o(1),...,0(q)} N{1,...,q} then it is readily checked that r is also the cardinality
of {o(g+1),....0029)yN{g +1,...,2¢q} and that

Azq f(tly Ce ,lq)f(lo(l), Cee fg(q))f(lq+1, . ,l‘zq)
Xf(lo'(q+1)v ) to‘(2q))d[1 e dth
= /R? . (f ®r F)X1, ..., Xag—2r)?dx1 ... dx2g—2r
q—2r

= |If ®r f”il(RM—Zr)' (6.14)

Moreover, for any fixed r € {0,...,q}, there are (‘rl)z(q!)2 permutations o € G,
such that #{o'(1),...,0(¢)} N {1,...,q} = r. (Indeed, such a permutation is com-
pletely determined by the choice of: (1) r distinct elements yy, ..., y, of {1,...,¢4};
(2) q — r distinct elements y,4i,...,y4 of {g + 1,...,2q}; (3) a bijection be-
tween {1,...,¢q} and {yi....,yq4}; (4) a bijection between {g + 1,...,2¢q} and
{1,....2¢}\{»1, . ... yq}.) Now, observe that the symmetrization of f ® f is given by

~ 1
f®f(lls cees t2q) = (2q)' Z f(lo(l)s ) ta(q))f([tr(q-i-l)a ey to(2q))~
’ 0€@yy

Therefore,
1 &£ 122 g,

1
= (26])!2 Z /qu f(to(l)s s ta(q))f(la(q+l)v cees to(2q))

0,0'€@yy

Xf(l‘g/(l), e taf(q))f(l‘g/(q+1), e laf(zq))dtl R dl‘zq
1
= f,...,t [ P §
29)! Z /RM S a) S (tg+1 2q)

0eGyy
Xf(to(l)v ey ta’(q))f(to'(q+1), ey tu’(Zq))dtl ce dlzq
1 q
— 'Z > f F(trstg) ftgsts - tag)
2q)! r=0 0€Gyy R

{o(1),...,0(@)}N{1,....q}=r
Xf(la(l)v cees la(q))f(ta(q-i-l), cees ta(Zq))dtl cee dl2q~
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Using (6.14), we deduce that

g—1

2
~ q
QNS BS agey = 2@ 0 12y + @ () 1S ®r £ 1Baaamsry-

r=1
(6.15)
Using the orthogonality/isometry properties of multiple Wiener-1td integrals, the
identity (6.13) yields

q 4
E[F*] = Zw(j) 2q =201 f & f 172 goa—2ry

r=0
= (2‘])!||f®f”2LZ(RZq) + (‘1!)2||f”4Lz(Rq)

q—1 4
p _
+ 0 (r) Qg =200 f & f 172 g2a—2ry-
r=1

By inserting (6.15) in the previous identity (and because (¢!)*| /|7 &) = EIF 2)?
= o%), we get (6.9). O

As a consequence of Lemma 6.2, we deduce the following bound on the total
variation distance for the Gaussian approximation of a normalized multiple Wiener-
16 integral.

Theorem 6.2 (Nourdin—Peccati). Let g = 1 be an integer and consider a symmetric
function f € L?>(RY). Set F = IqW(f), assume that E[F*] = 1, and let N ~
N(0,1). Then

—1
dry(F,N) sz\/q3 |E[F4] - 3. (6.16)
q
Proof. Since L™'F = — | F, we have (DF,—=DL™'F) o) = ||DF||§2(R). So,
we only need to apply Theorem 6.1 and then formula (6.10) to conclude. O

The estimate (6.16) allows one to deduce the following characterization of CLTs
on Wiener chaos.

Corollary 6.1 (Nualart—Peccati [46]). Let ¢ = 1 be an integer and consider a se-
quence (f,) of symmetric functions of L*(RY). Set F, = I qW (fn) and assume that
E[F} — 0% > 0asn — oo. Then, as n — oo, the following four assertions are
equivalent:

1. Fy % N ~ N(0,02);

2. E[F}] — E[N*] =30*;

3. 1/ ®r fullL2@ea—2ry = Oforallr =1,...,q — 1.
4. | fo ®r fullLawea—2ry — 0 forallr =1,...,q—1.

Proof. Without loss of generality, we may and do assume that 0> = 1 and E[F?] = 1
for all n. The implication (2) — (1) is a direct application of Theorem 6.2. The im-
plication (1) — (2) comes from the Continuous Mapping Theorem together with an
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approximation argument (observe that sup,>; E[F,}] < oo by the hypercontractivity
relation (5.18)). The equivalence between (2) and (3) is an immediate consequence of
(6.8). The implication (4) — (3) is obvious since || £,y full < || fr ®r fnll, Wwhereas
the implication (2) — (4) follows from (6.9). O

6.4 Quadratic Variation of the Fractional Brownian Motion

In this section, we use Theorem 6.1 in order to derive an explicit bound for the second-
order approximation of the quadratic variation of a fractional Brownian motion on
[0, 1]. We mainly follow [38] and [5].

Let BE = (BtH )t=0 be a fractional Brownian motion with Hurst index H €
(0, 1). A natural question is the identification of the Hurst parameter from real data.
To do so, it is popular and classical to use the quadratic variation (on, say, [0, 1]),
which is observable and given by

n—1
H H
Sn=_ B, ym—BE). n=1
k=0
Recall from (2.12) that
b
n*f=1s, 2P asn — oo (6.17)

We deduce that the estimator H n, defined as
~ 1 logsS,

"T 2 2logn’

. ~  proba . . . .
satisfies H, — 1 asn — oo. To study its asymptotic normality, consider

n*H H g2 —opq (aw 1 = H H\2
Fn="_ S By — B —n ] = o > LBE, - B —1],
" k=0 " k=0

where 0, > 0 is so that E[F?] = 1. We then have the following result.

Theorem 6.3. Let N ~ N (0, 1) and assume that H < 3/4. Then, limy,_, o o,f/n =
23,z PP(r)if H € (0, ), with p : Z — R given by

1
o(r) = 2(|r 1P 4 — 1P -2 PH), (6.18)

and lim,_, o 07/ (nlogn) = 196 if H = i. Moreover, there exists a constant cg > 0
(depending only on H) such that, for everyn = 1,
n ifH € (0.

(logn)3/2 iFH =5

dry(Fp,N) < cu ¥ v ’
n4H—3 lfH = g’ i

logn

(6.19)
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As an immediate consequence of Theorem 6.3, provided H < 3/4 we obtain that

(s, — 1) BN (0,23 p2(r) asn — o, (6.20)
rez
implying in turn
Vnlogn(H, — H) i N (0 Zp (r)) asn — oo. (6.21)
reZ

Indeed, we can write
logxzx—l—/;xdu/lu ig forall x > 0,
so that (by considering x > land 0 < x < 1)
[logx + 1 — x| < (x—21)2 {1+ xlz} for all x > 0.

As a result,

Jn

«/nlogn(f-\l,, —H)=- 5 log(n*71s,) = _Jn

P (HZH_ISn —1)+ Ry
with

H— . 2
< GOS0

4y/n (n2H-15,)?

Using (6.17) and (6.20), it is clear that R, pga 0 as n — oo and then that (6.21)
holds true.

Now we have motivated it, let us go back to the proof of Theorem 6.3. We will
need the following ancillary result.

Lemma 6.3. 1. For any r € Z, let p(r) be defined by (6.18). If H # ; one has
o(r) ~ HRQH — )|r* 12 as |r| — oo If H = ; and |r| = 1, one has
p(r) = 0. Consequently, Y, oz p*(r) < oo ifand only if H < 2

notl
2. Foralla > —1, we have Y n_ 1r ~ Ty asn — oo.

Proof. 1. The sequence p is symmetric, that is, one has p(n) = p(—n). Whenr — oo,
p(ry = HQH — 1)r*72 4 o(r?H72),

Using the usual criterion for convergence of Riemann sums, we deduce that

> ,cz p*(r) is finite if and only if 4H — 4 < —1 ifand only if H < i

2. For o > —1, we have:

1 o /r\@ ! 1
Z( ) —>[ x%dx = asn — 00.
n n 0 o+ 1

r=1

+
We deduce that 3"_, r* ~ ™" as n — oc. O

o
a+1
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We are now in a position to prove Theorem 6.3.

Proof of Theorem 6.3. Thanks to the selfsimilarity property of B (Proposi-
tion 2.2(1)), we may replace F}, in the proof by

1 n—1
= YO lBE, - By —1].
" k=0

Using Proposition 2.3, we have moreover that there exists a sequence {ex }ren (the
explicit expression of the e ’s is not needed here) such that

(B, —BF' : ke N} i {/ ex(s)d W : keN} = {1V (ex): k eN},
R

where W stands for a two-sided Brownian motion and / W() p = 1, denotes the
pth multiple Wiener-1t6 integral associated to W'. Observe in particular that, for all
k,l €N,

/R ec(s)er(s)ds = E[(BE, — BEYBH, — BE) = ptk 1) (622)

with p given by (6.18). As a consequence, we may replace F, by

n—1

Pz, [0 o) 1]

k=0

in this proof without loss of generality. Now, using the product formula (5.26) (or,
equivalently, 1t6’s formula), we deduce that

1
F, =1V (f,), with f, = .
n 2 (fn), with f, o, Zek X e

Let us compute the exact value of 0,,. By the isometry formula (5.14) we can write

”klo

= E[F,%] = 2||fn”22(R2) Z (ex.er) LZ(R) o2 Z P (k—l)

That is,
n—1
o =2 pk=1)=2) (n—[rDp().
k,1=0 |rl<n
Assume that H < i and write

=2y p (r)( |) Ljri<n}-

rezZ

2
On
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Since Y,z p*(r) < oo by Lemma 6.3, we obtain by dominated convergence that,
when H < ;,

2
im 7 =23 p(). (6.23)
n—oo n
rez
Assume now that H = i. We then have p?(r) ~ p 4('|’r| as |r| — oo, implying in turn
9n 1 9nlogn
2
(DICEIADD T 32
|r|<n 0<|r|<n

and

9 9
Sl ~ o Yo~

|r|<n |r|<n

as n — oo. Hence, when H = i,

2 9
im " = . (6.24)
n—oo nlogn 16

On the other hand, recall that the convolution of two sequences {u(n)},ecz and
{v(n)}nez is the sequence u * v defined as (u * v)(j) = Y,z u(M)V(j — n),
and observe that (v * v)(I —i) = ) ey u(k —)v(k — i) whenever u(n) = u(—n)
and v(n) = v(—n) foralln € Z. Set

pn(k) = 1p() 1kjcn—1y, k €Z,n=1.

We then have (using (6.7) for the first equality, and noticing that /, ®1 f,, = [, ®1 fn),

1 2
£ (1= 101G ) |
] n—1
=81/ ® fulliagey = 4 D Pl —Dpl = otk —i)pl = j)
™, jk,0=0
8 n—1
e 2 2 Pnlk=Dpuli = )patk = D)pall = j)

nil=0jkeZ

/A

n—1

8
= 4 2 (axp)l i)

=0

8n 8n
e 2wk o) R = lon % pullfacz,
" keZ n

/N

Recall Young’s inequality: if s, p, ¢ = 1 are such that ; + ; =1+ ;, then

lu *vleszy < luller@yllvilesz)- (6.25)
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Let us apply (6.25) withu = v = p,, s =2and p = ‘3‘. We get

2 4
|l on * Pn”@(Z) < ||,0n||[§(Z),
so that

3
(Z ). e

|k|<n

el (1= Yoy 2 )] 8
[( - [2<f,,)]||LZ(R)) }\ v

n

Recall the asymptotic behavior of p(k) as |k| — oo from Lemma 6.3(1). Hence

o(1) if H €(0,3)
3" lptk)|* = { O(logn) ifH =3 (6.27)
lel<n OmGH=IB) if H e (3.1).

Assume first that H < i and recall (6.23). This, together with (6.26) and (6.27),

imply that
1 , )
]s E (1—2||D[12(fn)1||L2(R))

1 . 5
Jn if H € (0,3)

3/2 .
<cg x { Ooem™™ qpp 5
Jn 8

1
E Hl — IDIE ey

4H-3 53
n 1fHe(8,4

Therefore, the desired conclusion holds for H € (0, i) by applying Theorem 6.1.
Assume now that H = i and recall (6.24). This, together with (6.26) and (6.27),

imply that
1 2
} < E|:(1—2||D[12(fn)]||2Lz(R)) }

= O(1/logn),

1
E Hl — I ey

and leads to the desired conclusion for H = i as well. ]

6.5 Multivariate Gaussian Approximation

We conclude this chapter with the proof of Theorem 6.6, which is going to be crucial
in our (modern) proof of the Breuer—-Major theorem in the next chapter. We start by
a kind of multivariate counterpart of Theorem 6.1.
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Theorem 6.4 (Nourdin—Peccati—Réveillac [40]). Fix d > 2, and let F =
(F\. ..., Fy) be a random vector such that F; € D" with E[F;] = 0 for any i.
Let C € My4(R) be a symmetric and positive matrix, and let N ~ Ny (0, C). Then,
forany h : R? — R belonging to €* and such that

2
< 00,

ax;x; &)

" |loo ;= max su
17 Nl P S P %

we have

B ERWI| < )W oo Y E[|Coi{DE; ~DL™ F)paey|]. 628)
i,j=1

Proof. Without loss of generality, we assume that N is independent of the underlying
Brownian motion W. Let & be as in the statement of the theorem. For any 7 € [0, 1],
set W(r) = E[h(\/l —tF + \/tN)], so that

1
E[h(N)] — E[h(F)] = ¥(1) — ¥(0) = /0 '(1)dt.

We easily see that W is differentiable on (0, 1) with

W (1) = éE [aa)]: (V1—tF + «/tN) (2i/tNi = 2¢11_zFi)}'

By integrating by parts, we can write
oh
E|, (V1—tF+ ViN)N;

ax,-
oh

= E{E|, (V1—tx+ ViN)N;
dox; x=F

0%h

d
= \/tZCi’j E {E |:8x,-8xj (V1—1x+ «/tN)lx:F}

_ J;ZC,J [ax,ax, (x/l—tF+\/tN)j|.



6.5 Multivariate Gaussian Approximation 77

By using (5.32) in order to perform the integration by parts, we can also write

E [;}i (V1—1F + \/Z‘N)Fi]

= E {E [;}i (V1—tF + \/tx)F,}bC:N}

B Z ‘ { [ax, dx; (Vi-iF+ th)(DFj,_DL_IFi)LZ(R)]x=N}

Ph
= J1-1 Z E [axiaxj (V1—tF + ViN)(DF;, —DL_IF,-)Lz(R):| :
=1

Hence
1 & *h ¥ 1
(1) = E 1—tF tN)(C;.; —(DF;,—DL™'F; ,
( ) 2 i12=:1 [8x,- 3Xj ( + ) ( 1] ( J z)L2(R)):|
and the desired conclusion follows. O

A consequence of Theorem 6.4 is the following result, which asserts roughly
speaking that, for a sequence of vectors of multiple Wiener-It6 integrals, componen-
twise convergence to Gaussian always implies joint convergence. This result, which
is nothing but the multivariate counterpart to Theorem 6.1, will allow to effectively
study the Gaussian approximation of general functionals by using their chaotic ex-
pansion, see Theorem 6.6.

Theorem 6.5 (Peccati-Tudor [48]). Let d = 2 and qq4,...,q1 = 1 be some fixed
integers. Consider vectors

Fn:(Fl,nwqud,n) (I (fln) CE) qd(fdn)) n=l,

with f; n € L*(R%) symmetric. Let C € My(R) be a symmetric and positive matrix.
Assume that
lim E[Fi,nFj,n] =GC;, 1<i,j< d. (6.29)
n—>00
Then, as n — oo, the following two conditions are equivalent:

1. F, converges in law to Ny (0,C),
2. F;  converges in law to N (0, C; ;) foreveryi =1,....d.

Proof. The implication (1) — (2) being trivial, we only concentrate on (2) — (1). So,
assume (2) and let us show that (1) holds true. Thanks to (6.28), we are left to show
that, foreachi, j = 1,...,d,

_ 1 L@ ..
(DFjn,—DL™"Fin) 2wy = " (DFjn, DFin)r2@y — C(i,j) asn— oo.
1
(6.30)
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We consider all the possible cases for ¢; and g;.

First case: q; = q; = 1. We have (DFj, DF;n) 12wy = (fin. fin)2w) =
E[F; » F; »]. Butitis our assumption that E[F; , Fj ,] — C(i, j) so (6.30) holds true
in this case.

Second case: q; = 1 and gj > 2 (a similar analysis might be done whenever g; =
land g; = 2). We have (DFjn, DFin)2®) = (fins DFjn)r2®) = 1g;—1(fin ®1
fin). We deduce that

E[(DFjn. DFin)jagy) = (@ = DU fin®1 finll 72 g, -,
< (gj — DU fin @1 15, n”LZ(]RqJ_l
- (ql - l)(fl,n ® fz,m fj,n ®qj-—1 fj,n>L2(R2)
< - 1)!||ﬁ’”||i2(R)||fJ¥" ®q;—1 finlLo®)
= (Qj - 1)'E[F12,n]||fj,n ®qj—1 fj,n||L2(]R2)-

At this stage, observe the following two facts. First, because g; # ¢;, we
Law

have C(i, j) = 0 necessarily. Second, since E[F]%n] — C(j,j)and F;, —
N(0,C(j, j)), we have by Theorem 6.1 that || fj.» ®4,-1 finlz2®2 — 0. Hence,
(6.30) holds true in this case as well.

Third case: q; = q;j = 2. We have, using the product formula (5.26),

1
0 (DFjpn, DFin)12R)
12

@ /0 L, fin GOV gy im0t

qi—1 %}
= (i Z r'(Qz ) 12q,-—2—2r (/(; fi,n('»t) ®r fj,n('vt)d[)

q;i—!1

qi—1

2
1
qi ' fins fim)r2waiy + qi Z(F - 1)!(‘1;_ 1) Lg;—2r (fin ®r fin)

r=1

qi—1

2
i — 1
E[Fi,nFj,n] + qi Z(r - 1)!(?_ 1) 12q,~—2r(fi,n Qr fj,n)~

r=1
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We deduce that

2
E[(q (DFym. DFn)oce) — C(i,j)) ]

= (E[FinFjn] — Cl. )
qi—1

gi —
+q, Z(’” 1)'2< l ) (2q; =2 fin® rfj,n”izGqui—zr)-

The first term of the right-hand side tends to zero by assumption. For the second term,
we can write, whenever r € {1,...,q; — 1},

||ﬁ,n§rﬂ,n||iz(R2qi—2r) S ”]{t,n ®r f},n”iz(RZqi—Zr)
= (fin ®gi—r fin: fin ®gi—r fin)2@mor)
< ”ft,n ®q,——r fi,n||L2(R2’)||fj,n ®q,-—r fj,n||L2(R2’)-

Since Fip y N(0,C(i,i)) and Fj, oy N(0,C(j, j)), by Theorem 6.1 we have
that || fin ®q;—r finllrzwer)l fin ®qi—r finllL2@wery — 0, thereby showing that
(6.30) holds true in our third case.

Fourth case: q; > q; = 2 (a similar analysis might be done whenever ¢; >
q; = 2). We have, using the product formula (5.26),

1
gi <DFj,n’ DFi,n)LZ(]R)
=) [ n oDy, a0
gi—1 qi — 1 o0
=4dqj Z r'( l )( ’ )Iqi+qj—2—2r (/0 fi,n(',t) Qr fj,n(‘»t)dt)
q;i—1 _ qi — 1
=4dqj Z ( )( ! , )Iqi+qj—2—2r (fi,n ®r+1 fj,n)
qi = 1) (q; =1
= qj Z(r - ! r_1 1 Iq,'+q,-—2r(fi,n Rr fj,n)-
r=1
We deduce that

1 2
E <DFj,na DFi,n>L2(R)

qi

2 2
qi — 1 qi —1 ~
= 61, Z(r )'2( i 1) (’.]_ ! ) (ql =+ qj —27’)!||ﬁ,n®rfj,n||12(qu-+qj—2r).
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Forany r € {1,...,q;}, we have

> 2 2
||ﬁ,n®r.f_‘l',n||L2(qu-+qj—2r) < ”ﬁ,” ®r f},"”LZ(Rq,‘-‘rqj—Zf)
= (fin ®gi—r fin: fin ®q;—r fin)L2®2r)
I fin ®gi—r fimllLz@weryll fim ®q;—r fimllL2wery

/A

/A

||ftn ||]{2(qu) || fj,n ®qj —r fj,n ||L2(R2").

Since Fj oy N(O,C(j,j))andg; —r € {l,...,q; — 1}, by Theorem 6.1 we have
that || fj.n ®¢;—r finlrL2@>) — 0. We deduce that (6.30) holds true in our fourth
case.

Summarizing, we have that (6.30) is true for any i and j, and the proof of the
theorem is done. O

Remark 6.1. 1f the integers ¢4, ...,q; are pairwise disjoint in Theorem 6.5, then
(6.29) is automatically verified with C; ; = 0 forall i # j (see (5.15)).

We shall now prove a criterion of asymptotic normality for centered random vec-
tors of L>(S2).

Theorem 6.6. Fix an integer d = 1, and let F, = (F,},...,F,f), n =1 bea
sequence of random vectors in L*(2) such that E[F,z] = 0for alli and n. For any i
and n, consider the chaotic expansion (5.17) of F., that is,

F,i = Z IIW(fni,l)s

=1
with fnil e L2(RY) symmetric for all i, | and n. Suppose in addition that:

L. forfixedi,j =1,....dandl 21,C; ;| = limn_mol!(f,f,l,fnj;l)Lz(Rz) exists;

2.fori,j=1,...,d, Z?il |Cl‘,j’1|<00,' ' '

3.forl =22, i=1,....dandr =1,...,1 —1, ||fn’l Q, f,:,l”Lz(Rzl—zr) — 0as
n— oo;

4. fori =1,...,d, limy_eo SUPp=1 Z?iN-H “”ﬂf,l”inmh = 0.

Then F, iy Na(0,C) asn — oo, where C = (C;,j)1<i,j<a 1S given by

o
Cij=Y Ciji
=1

Remark 6.2. Of course, condition (3) can be replaced by any of the equivalent asser-
tions (1)—(4) of Corollary 6.1.
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Proof of Theorem 6.6. Set F) \ = YL L(f! ) as well as

N
Cy = (Z C,-,,-,l) e My (R). (6.31)
=1

Isi,j<d

It is readily checked that the symmetric matrix Cyy is positive: indeed, forany x € R?,
we have

d N d N
> xixg Y Ciju = Jim D xixi YIS e
i,j=1 I=1 ij=l I=1
N d 2
— 1 . fi
—,,ILHQOZ“ > oxifl > 0.
=1 i=1 LZURU

Similarly, C is positive. Let Gy ~ Nz (0, Cx) and G ~ N, (0, C). For any t € R?,
we have

|E[ei(t’F")Rd] _ E[ei(t,G)Rd”

< |E[ei<t’F")Rd] . E[ei(z,F,LN)Rd” + |E[el‘(l,FnAN)Rd] _ E[ei(t,GN)Rd”
+|Efe!ONrd] — Ele!"Ora]|

= danN +ba N +cn.

Thanks to (2), observe that

_1 _1 1
em2\CNtlgd _ g=2(Clilga | < SR 1€ = Cwllagg @y — 0

en = |

as N — oo0. On the other hand, due to (4),

supany < tlge sup \/El Fo = Fuv 3]

d o)
= lelea sup | D7 D7 DA 1oy = 0 as N — co.
T N i=1I=N+1

Fix ¢ > 0. We can choose and fix N large enough so that sup,>; a, v < €/3 and
cy < ¢e/3.Dueto(1),(3)and (5.15), we deduce from Corollary 6.1 and Theorem 6.5
that, as n — oo,

Law
(Il(f,,[l),...,Il(f,;{l),...,IN(f,,{N),...,IN(f;{N)) — Nna(0, M),
where M = (Mg p)1<a,p<nd € Mna(R) is given by

0 ifa=(k—-1)d+iandb=(—-1)d +jwithl <k #I<N
and1 <i,j <d
A4ﬁﬁ = . .
Ci ifa=((—-1)d+iandb=((—-1)d+ jwithl <I<N
and 1 <i,j <d.
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In particular, F, n Liv) Gy ~ MNy(0,Cy) asn — oo (with Cy given by
(6.31)), so that b, y < ¢/3 if n is large enough. Summarizing, we have shown that
|E[e’"Frird] — E[e'"CIrd]| < g if n is large enough, which is the desired con-
clusion. o



Chapter 7
Weak Convergence of Partial Sums of Stationary
Sequences

Normalized sums of i.i.d. random variables satisfy the usual central limit theorem.
But this is not necessarily the case if the i.i.d. random variables are replaced by a
stationary sequence with long-range dependence, that is, with a correlation which
decays slowly as the lag tends to infinity.

In this chapter, we study in details three situations. The first one corresponds to
the celebrated Breuer—Major theorem, where we have weak convergence to classi-
cal Brownian motion. In the second one, we will obtain weak convergence to the
fractional Brownian motion. Finally, the so-called Rosenblatt process (which may be
seen as a suitable non-Gaussian generalization of fBm) will appear in the limit of the
third one.

7.1 General Framework

Let X = (Xk)ken be a stationary Gaussian sequence with E[X;] = 0 and E[X i] =
1,andlet p(k—1) = E[Xy X;] be its correlation kernel. (Observe that p is symmetric,
that is, p(n) = p(—n) for all n = 1.) Consider the linear span J¢ of X, that is, #
is the closed linear subspace of L?(Q2) generated by (X )xen. It is a real separable
Hilbert space and, consequently, there exists an isometry ® : # — L?(R). For any
k € N, set ¢, = O(Xy); we then have, for all k,/ € N,

/R ex(s)er(s)ds = E[X X)) = p(k — 1), (7.1)
so that
(Xp: keN) & {[ ex(s)dWy : k e N} = {1/ (ex): k e N},
R

where W is a two-sided Brownian motion. Since the forthcoming limits only involve
the distribution of the X ’s, we assume from now on without loss of generality that
X =1 1W (ex)-

Nourdin L.: Selected Aspects of Fractional Brownian Motion, B&SS,
DOI 10.1007/978-88-470-2823-4_7, © Springer-Verlag Italia 2012
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Let¢ € L*(R, J;ﬂe_xz/zdx) be such that

/R $(x)e™Pdx = 0, (7.2)

andlet Hy(x) = 1, Hi(x) = x, Hy(x) = x?>—1, ..., denote the sequence of Hermite
polynomials (Definition 1.4). According to Proposition 1.3(2) and because it satisfies
(7.2), one can decompose ¢ in terms of Hermite polynomials as

¢(x) =Y arH(x), (7.3)

I2q

where ¢ > 1 and a, # 0. The integer q is called the Hermite rank of ¢ and we have
Var(¢p(N)) = 315, ajl! < oo if N ~ N (0, 1). Set

[n1] [n7]
Valp.t) =D ¢ (Xa) =D a1 ) Hi(Xp). 120. (74)
k=1

I1=q k=1

When Y, oz |p(k)|? = oo (we then say that X has long-range dependence), we
will specialize our study to the case where p has the form

ok) =k PLk), k=1, (7.5)

with0 < D < [11 and L : (0,00) — (0, o0) slowly varying at infinity and bounded
away from 0 and infinity on every compact subset of [0, 00).
A slowly varying function at infinity L is such that

lim L(cx)/L(x)=1 forallc > 0. (7.6)
X—>00

Constants and logarithm satisfy (7.6). A useful property of slowly varying functions
is the Potter’s bound (see [6, Theorem 1.5.6(2)]): for every § > 0, there is C =
C(6) > 1 such that, forall x,y > 0,

L(x) _ x\? (x)_’S
Liy) S C max{(y) A . (7.7)

We also have the following crucial result.

Theorem 7.1 (Karamata). Let L : (0,00) — (0, 00) be slowly varying at infinity.
Assume further that L is bounded away from 0 and infinity on every compact subset
of [0, 00). Then, for any o € (0, 1),

n I—a
Sy~ 1_LOE”) asn — oo, (1.8)

J=1
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Proof. We have
1 Y !
nl_aL(n);] L(])—/O L (x)dx,
with
SLG) (F\ 7
ln(x) = Z L(n) (l’l) 1[/’71,11)()()
j=1

Since L(j)/L(n) = L(n(j/n))/L(n) — 1 for fixed j/n asn — oo, one has
[y(x) = leo(x) for x € (0,1), where [oo(x) = x~%. By choosing a small enough
§ > 0sothata +8 < 1and L(j)/L(n) < C(j/n)~? (this is possible thanks to
(7.7)), we get that

[nt]

(@+38)
I, (x)| < C Z ( ) L1, (%) < Cx~@+d)

for all x € (0, 1). The function in the bound is integrable on (0, 1). Hence, the domi-
nated convergence theorem yields

1 o ! b 1
. L . l d — (Xd — ,
s 2 (= [ ttrax = [xmeax= 1

which is equivalent to (7.8). O

For more about slow varying functions, we refer the reader to the book [6], which
is the classical reference on the subject.

7.2 Central Limit Theorem

As shown by the following important result, partial sums associated to ‘any’ station-
ary times series with short-range dependence (that is, such that ) ", ., |p(k)|? < 00)
always converge to the classical Brownian motion (see Remark 7.1(3) for an exam-
ple built from a fractional Brownian motion). Our proof does not rely on cumulants
and diagrams as in the seminal paper [7] by Breuer and Major, but on the material
developed in Chapter 6.

Theorem 7.2 (Breuer-Major). Let ¢ : R — R be the function given by (7.3) (with
Hermite rank g = 1) and recall the definition (7.4) of Vu(¢.-). If Y ez |p(k)|4 is
finite, then, as n — 00,

V(¢ ) e > adiry " p(k) x B2, (7.9)

I=q keZ

with BY? a classical Brownian motion. (The fact that Y izq ail'yY rez p(k) is well-
defined and positive is part of the conclusion.)
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Remark 7.1. 1. With extra efforts (we omit the details here), it is possible to prove that
the convergence (7.9) actually holds in the Skorohod space of cadlag functions.

2. It is worthwhile noting that the classical Donsker’s theorem is a particular case
of Theorem 7.2. Indeed, let Y}, Y>, ... be any sequence of square integrable i.i.d.
random variables. It is a well-known result that any random variable Y has the
same law than Fy '(U), where U is uniformly distributed on (0, 1) and

F;l(u) inf{s e R: u < F(s)}, ue(0,1),

is the pseudo-inverse of Fy(y) = P(Y < y), y € R. In particular, if X ~
N(0,1), then U := leﬂ fW e~ **/2dy is uniformly distributed on (0, 1). Thus,

—00
if X1, X,,... ~ N(0,1) are i.i.d. and if Y is a given random variable, then the
sequence { Yy }x> defined by Yy = ¢ (X} ), where

* —u?/2
d(x) = (\/271/ e du), x €R,

is composed of i.i.d. random variables with the same law than that of Y, so that
we recover Donsker’s theorem by applying Theorem 7.2. (Observe that p(k) = 0
if k # 0and that )", ajl! = Var(Y}).)

3. Let B be a fractional Brownian motion with Hurst index H € (0, 1). An explicit
example of centered stationary Gaussian sequence satisfying >, ., [p(k)|? < oo
is given by the increments

H H
Xe = By — By

whenever H < 1 —1/(2¢). (See also Lemma 6.3.)

Now, let us proceed with the proof of Theorem 7.2.

Proof of Theorem 7.2. Our main tool is Theorem 6.6. According to Section 7.1, we
may and will assume that X = IV (¢x) for all k. Since E[X}] = lexll7> gy =1
we have, by (7.3) and (5.16), that

[nt] [nt]

jnvn(qs,z)— > o) = J SO aH (X0 = 31 (fustt, ),

k=11=2q I=q
where the symmetric function f,,;(¢,-) € L? (R?) is given by
q
1
Saaxiox) = > er(x) .. ex(xp).
Vi

Fixd = landt,....tg = 0,and set F} = Y00 IV (fua(ti,)), i = 1.....d.
To conclude the proof, we need to check that F, = (F,,..., Fnd) wy Ng(0,C) as
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n — oo, where C = (C; ;) 1<i,j<a € Ma(R) is given by

Cij=1ti Nt X Zl!alzZp(v)l.

I=q vEZ

To do so, we will check the four conditions (1)—(4) of Theorem 6.6.

Condition 1. Fix an integer [ = ¢ and lett > s > 0 be two given real numbers. We

have

2(fni (s, )s fua (@) 2wy
||fn,l (tv ) ) ”iZ(RI) + ||fn,l (S7 ) )HZLZ(]RI) - ||fn,l (tv ") - fn,l(s» )”iZ(RZ)

2 [nt]

2 [ns] 5 [nt]—[ns]

KD DV DY (ST D DAY )

i,j=1

i,j=1 i,j=1

[nt] = |v| [ns] = [v]
ai Y p@) T i<y a7 D) o<y

veZ

veZ

[nt] — [ns] — [v]
—aj Z p(v) | L{jo|<[nt]=[ns]}-

VEZ

It follows from the dominated convergence theorem that, as n — oo,

D fa (i) Sua ) pawey — Cija o=t Aty x1la} Y p(w)'. (7.10)

veZ

Condition 2. Since E[X2] = 1 for all v, we have by Cauchy-Schwarz that [p(v)| < 1
for all v. We can thus write

o0

D lai Y p)' <) lai x Y lp)|” = E[¢*(X)] Y p()|? < co.

I=q

veZ

I=q vEZ veEZL

Condition 3. Fix | = q,1 # 1.Foralln > 1,r =1,...,] — 1l andt € (0,00), we

have

”fn,l (Zv ) Qr fn,l (tv ')”]2}(]1{21—21')

4

a

n2

[n1]

> plu— o) pli = ) plu i)' (v~ ).

i,ju,v=1
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Consequently, using |p(u —v) p(u — i)l_’| < |pu —v)|* + |p(u —i)|", we obtain
that

”fn,l (t,7) ®r fn,l (1, ')”iZ(Rzlfzr)

a4 [nl] . . . —_— . . —_ .
< 5D =o' (lol = HIlp@ = NI+ ol = DI o = J)I")
i,j,u,v=1

4 [nt]
LY Ipl Y (ot = DI e = DI+ e = DI @ = I

<
uez i,j,v=1
4
< U el 3 0l Y oG
s P p(i p(J
uezZ li|<[nt] [j1<[nt]
_ r ) _ l—r . —
=24} Y lp@)|' xn7 3" ()" xn T Y e
uez li|<[nt] |j1<[nt]

Therefore, to conclude that || f, 1 (¢, ) ®p fn,1(t, )| 2(R20—2ry — 0, it remains to prove
that, forany r = 1,...,/ — 1,

w0, (7.11)

lj1<[n1]

For that, fix § € (0,¢), and decompose the sum in (7.11) as

2. =2+ )

l7ls[ne]  1jI<[né]  [n8]<ljl<[nt]
By the Holder inequality we obtain (recall that ) _; lo()HIF < > ez lP()]Y < 00)
; r/l
IS () < @l 4 1)1 (Z |p<j)|’) < o5t
|71=<[nd] JEZL
where ¢ is some constant, as well as
r/l
i () < ( ) |p<j)|’) |
[nél<ljl<n [né]<ljl<n

The first term converges to 0 as 6 goes to zero (because 1 < r < [ — 1), and the
second also converges to 0 for fixed § and n — oo. This proves that (7.11) holds true.
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Condition 4. For t € (0,00) and N = ¢, we have

o) 1 o) [nt]
2 My = D alt y el =)
I=N+1 I=N+1 i,j=1
o0

/A

> @l Y )’

I=N+1 veZ

oo
2
< 2l x Y7 ajll,
vEZ I=N+1

so that limy 00 SUPy>1 Z})iN+l M fua(t,-) ”iZ(]Rl) = 0. The proof of Theorem 7.2
is concluded. O

7.3 Non-Central Limit Theorem

In this section, we investigate what happens when, contrary to what is assumed in
Section 7.2, we have ) ;. |p(k)|? = oo. Actually, to go further we need to precise
the behavior of p at infinity. We will specialize our study to the case where p has
the form (7.5) with 0 < D < ; and L : (0,00) — (0, 00) a function which is
slowly varying at infinity (which is further bounded away from 0 and infinity on every
compact subset of [0, 00)). We then have the following result, that goes back to Taqqu
[63] (see also Davydov [12]) and Dobrushin-Major [14].

Theorem 7.3 (Dobrushin-Major-Taqqu). Let ¢ : R — R be the function given
by (7.3) and recall the definition (7.4) of V,, (¢, ).

1. Assume the Hermite rank of ¢ is ¢ = 1, and that p satisfies (7.5) with0 < D < 1.
Then, as n — o0,

Va(o,-) fd.d. a « BI-DI2,

n=P2JLmy (= D/2)(1~ D) 712

with B'=P/2 4 fractional Brownian motion of parameter H = 1 — D /2.

2. Assume the Hermite rank of ¢ is ¢ = 2, and that p satisfies (7.5) with 0 < D <
1/2. Then, as n — oo,

Va(g,) fdd a RI-D

n=PL(n) \/(1—1))(1—21))X ’ (7.13)

with R'=P a Rosenblatt process of parameter H = 1 — D (see Definition 7.1).

The Rosenblatt process appearing in (7.13) is defined as follows.



90 7 Weak Convergence of Partial Sums of Stationary Sequences

Definition 7.1. Let H € (1/2,1). The Rosenblatt process of parameter H is the
stochastic process (Rfl )t=0 defined by the double Wiener-Ité integral

R =1V (fu(t.)). t=0, (7.14)
where
\/H(2H—1) o, 0
Ju(tx. ) =y (s—x)f (s=»3 ds, (7.15)
B(5.1—=H) Jo

with B the usual Beta function.

For any s, ¢ = 0, we have the crucial relationship
/R(t - x)_?_l(s - x)f"ldx — B(H/2,1— H)|t —s|H", (7.16)
Indeed, fort > s,
[(l—x)+ (s—x)+ dx—/ t—x)7 (s —x)7 ldx

= /O (t—s+u)? u?ldu = (1 —s)H- 1/ (14+v)2 1% 1y

= (1 —s)H /01 wH (1 —w)? "'dw = B(H/2,1— H)(t — )7,
Using (7.16) and (2.2), it is straightforward to check that, for any # > 0,

EIRIRI =2 [ fia(t.x.3) fnGo.x.y)d vy

HQ2H —1) lu — v ~2dudv

[0,£]x[0,s]

— ;‘(ZZH +s2H _ |t —S|2H).

7.3.1 Computation of Cumulants

The Rosenblatt process is a double Wiener-1t6 integral. As such, it enjoys useful prop-
erties, that we derive now in full generality. Let f € L*(R?) be a given symmetric
kernel. One of the most effective ways of dealing with 1,V (f) is to associate to f
the following Hilbert-Schmidt operator:

A LR~ LR g~ f @iz = [ (g0, 017
We write {)Lf,j - 1} and {eﬁ jij= 1}, respectively, to indicate the eigenval-

ues of Ay and the corresponding eigenvectors (forming an orthonormal system in
L*(R)).
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Some useful relations between all these objects are given in the next proposition.
The proof, which is omitted here, relies on elementary functional analysis (see e.g.
Section 6.2 in [20]).

Proposition 7.1. Let f be a symmetric element of L*(R?), and let the above notation
prevail.

1. The series Z;il /\J‘,’ ; converges forevery p = 2, and f admits the expansion

oo
F=32sj erj®eypy, (7.18)
j=1

where the convergence takes place in L*(R?).
2. For every p = 2, one has the relations

p e’}
Tr(Af) = /Rp dxy..odxp [ [ fixis) =) A7, (7.19)
j=1

i=1

with the convention X,y = x|, and where Tr(Aje) stands for the trace of the pth
power of Ay.

In the following statement we collect some facts concerning the law of a random
variable of the type I ZW( f).

We recall that, given a random variable F' with moments of all order, the cumulant
of order p = 1 of F is defined by

0P
& (F) = (=), li=olog g5 (1),

where ¢r (t) = E[e'*F] stand for the characteristic function of F. It can be shown
that the moments of a given random variable are completely determined by its cu-
mulants, and vice versa. For more background on cumulants, see the recent book by
Peccati and Taqqu [47].

Proposition 7.2. Let f be a symmetric element of L*(R?).
1. The following equality holds:

o Y Ay (V1) (7.20)
j=1

where (N;);=1 is a sequence of independent N (0, 1) random variables, and the
series converges in L*(Q).
2. Forevery p =2 2,

P
Kp (IzW(f)) = 2P (p— 1)!/1Rv dx;...dx, l_[ f(xi,xit1), (7.21)
i=1

with the convention Xp4| = Xj.
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Proof. Relation (7.20) is an immediate consequence of (7.18), of the identity
w w 2
L (erj ®erj) = 11" (er;)” =1,
as well as of the fact that the family {e ' } is orthonormal (implying that the sequence

{1 1W (eﬁ j) : j = 1} is composed of independent N (0, 1) random variables).
To prove (7.21), first observe that (7.20) implies that

—itA
E [eitIZW(f)] e

1_[ \/1 2ll)tf]

Thus, standard computations give

IOgE I:eillzw(f):l = —it Z)\,fl Zlog ZZt)Lf;l)

(2 t) LGP &
2 S =T S,
p=2 j=1

(7.22)

We can now identify the coefficients in the series (7.22), so to deduce that
« (L) =E[LY(NH] =0
and
27! i e (17 ()
' b
j=1 P

thus obtaining the desired conclusion, see also (7.19). O

The following lemma gives a further expression of (7.21) for functions of interest.

Lemma 7.1. Let T C R, lete : T xR — R be a measurable function, fix two integers
d=1landp =2, andletv,,...,v  be given signed measures on R. Assume further

that )
Z/Rdx\//;e(l,x)”wl(dl) < 0.
j=1

Finally, for any j = 1,....d, define f; € L*(R?) to be

fj(x,y)=/Te(s,x)e(s,y)vj(ds), x,y €R.

We then have, for all 0y, ...,04 € R,

d
"p(zeilzw(f/))_zp "(p—1)! Z 6, ..., (7.23)

Jj=1 JlseesJp=1

»
x/ Ujl(dS])...Vjp(dSp)l_[/ e(si,x)e(si+1,x)dx,
T? o /R
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with the convention S, = S|.

Proof. Using (7.21), we can write

d

K,,(ée,-le(m) = Kp(fzw(;“))
» , d

= 2P7 l(p_l)!/ dxy.. dpo(ZQ J‘",(xl,x,+1))

i=1

=27 1(p— 1)1 Z .. 9],,/ dx; .. dx,,l‘[ﬁ,<xl,xl+1>

j] ...... ]p—l
= 2271 (p — 1) Z 0, .. Gjp/ dx; .. dx,,l_[/e(s xi)e(s, xi4+1)vj, (ds)
j1 ..... jp_l

1
=2 (p -1 Z 0 .. ]"f v (ds1)...vj, (dsp)/ e(si,x)e(si+1,x)dx.
J1seenndp=1
0
Let us come back to the Rosenblatt process R¥. In the next result, we give a
formula for the cumulants of any linear combination built from R at given times
t,y..otg,d = 2.

Proposition 7.3. Fix d > 1, let t1,...,t; be positive real numbers, and let RH
be a Rosenblatt process of parameter H € (1/2,1). Then, for all p = 2 and all
91,...,9,1’ GR,

(Ze RH (1))

=272V (p —1)\HP?(2H — 1)P/? (7.24)

M&v

th p z H-1
0;,...0;, dsy...dsp [ ]lsivr —sil "7,
0 0 i=1

with the convention s, = ).

,,,,, Jp=1

Proof. This is an immediate consequence of (7.15) and Lemma 7.1 with T = R,

measures
\/H (2H —1)
(ds) = d
v; (ds) B(H/2.1 — H) Lio,;;1(s)ds
H_
and the function e(s, x) = (s — x) } " O

Corollary 7.1. For any H € (;, 1), the Rosenblatt process R has stationary incre-
ments and is selfsimilar with parameter H.
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Proof. Since the law of R is determined by its moments (see Proposition 5.3) or
equivalently by its cumulants, it suffices to use expression (7.24). Let & > 0. Re-
placing R (t;) by R (t; + h) — R¥ (h) in the left-hand side of (7.24) changes the
integrals fot " in the right-hand side by integrals |, }fi * Since this does not modify the
right-hand side, the process R has stationary increments. To prove selfsimilarity, let
a > 0, replace each 1y,...,1, by aty,...,at, in (7.24) and note that the right-hand
side is then multiplied by a factor a?H . O

7.3.2 Proof of Theorem 7.3
The starting point of the proofs of (7.12) and (7.13) is the same, and rely on the

following lemma.

Lemma 7.2 (Reduction). Let ¢ : R — R be the function given by (7.3) (with
Hermite rank g = 1). Let X be a stationary Gaussian sequence as in Section 7.1 and
assume that its covariance kernel p satisfies (7.5) with 0 < D < 1/q. Decompose
pasd =agHy + a and recall the definition (7.4) of V,, (¢, ). Then, for any fixed
120 Vy(@.1) = 0in L*(Q) as n — oco.

Proof. To simplify the exposition, we assume without loss of generality that 1 = 1.
By Cauchy-Schwarz, we have |p(j)| < 1 forall j > 1. For any integer / larger than
or equal to ¢ + 1, we can thus write

1 . ’ I " /
E|:(n1—qD/2L(n)q/2 ;;HI(Xk)) j| = 024D [ (n)4 Z ok — k'

k,k'=1
I N
< g (142 X otk

I1<k’<k<n

I $
.—gD \g
S - (nya (1+2ZJ L(j) )

J=1

We deduce using Proposition 1.3(3) that, for any r > ¢,

1 oo n 2
E[(nl—qD/ZL(n)q/Z ;az ]; Hz(Xk)) ]

1 n o0
< 142 P ()4 211, 2
nl_qDL(n)q( + ;J () )era,l (7.25)

Now, observe the following three facts:

1. by Karamata’s Theorem 7.1, we have

n>Il)n1 qDL(n)q Z] qDL(])q < 00;
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2. since gD < 1, we have that n9°~'L(n)™¢ — 0 (to see this, use (7.7) with 1/L
instead of L, the function 1/L being slowly varying as well);
3. because Var(¢(N)) = Y2, ajl! < oo (with N ~ N(0,1)), we have that

2, aill - 0asr — oo.
We deduce from (7.25) and (1)—(2)—(3) that

im0 B[ (ot e o 2 k) | =0 @220

I=r k=1

On the other hand, fix € € (0, 1]. There exists an integer M > 0 large enough so that,
forall j > M,

(Dl =J7PLG) <e< 1.
For any integer / larger than or equal to g + 1, we can write

n

! S ? I /
E[(n]—qD/ZL(n)q/z ]; Hl(Xk)) } = nz_qDL(n)q kz ,O(k —k )l

k=1
Z' n n
< e 2 142 2 etk —k0l)
k.k’'=1 k.k'=1
|k—k'|<M k>k’'+M
[

<
n'=4D [ (n)4

((ZM +1) + 2st_qDL(j)q).

Jj=1

Karamata’s Theorem 7.1 leads to

, 1 “ ? 201e
hr?l)So%p E|:(n1—qD/2L(n)q/2 I; Hl(Xk)) i| < 1—gD’
Since ¢ > 0 is arbitrary, this implies that

1 " L?
pi=aD2L (nya? I; Hi(Xg) >0 asn — oo (7.27)

for all fixed! =g + 1.
Finally, the combination of (7.26) and (7.27) implies the desired conclusion. 0O

Proof of (7.12). Thanks to Lemma 7.2 we can assume that ¢ (x) = a; H,(x) = a;x.
We are thus left to show that

fd.d. 1
Zn B!~D/2, 28
7 Ja-pi-p) 729
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with
1 [nt]

nl=D/2 \/L(n) =

and B'~P/2 a fractional Brownian motion of parameter H = 1 — D/2.
As a first step, we claim that, for any # = 0 and as n — oo,

Zn(t) = Xi. 120, (7.29)

[n1] (2D
n2=D L(n )kkz,lp(k k) — (1—D/2)(1- D)’ (7.30)

Indeed, decompose the left-hand side as

1 A 1 /
n>=D(n) Z p(k — k') + 2D L(n) Z plk — k).

kk'=1,...[nt] kk'=1,...[nt]
lk—k'|<2 |k—k'|=3

Using |p(k)| < 1, the first term is bounded by 5¢n?~!/L(n) and therefore tends to
zero as n — oo (recall that D < 1). Concerning the second term, one has, using
(7.5),

1 , ) )
nZ—DL(n) Z p(k_k):/Rz ln(X,x)dxdx,
k,k'=1,...,[nt] T
|k—k'|=3
with
k—k' |72 L(k - k')
ln(X,x/) = Z " L(n) 1[/(;1,/;,)(x)l[k/n_l,/;l/)(x/)-
kk'=1,...,[nt]
lk—k’|=3

For fixed |k — k’|/n and as n — oo, one has
L(lk —k')/L(n) = L(n x |k —k'|/n)/L(n) — 1,

so that [, (x, x") = leo(x, x") for any x, x" € R4, where

loo(x. x") = |x —x'|_D Ljo, 2 (x, x7).

Let us show that /,, is dominated by an integrable function. If k — kK’ = 3 (the case

where k' — k = 3 is similar by symmetry), x € [kn , n) and x’ € [k _1 K . )» then

3 k—=k 1
< <Sx+  —x,

n n n

’ 2 . . .
so that x — x" = ~, implying in turn

k—k , 1 x—=x
n n 2
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Since D < 1, one can choose a small enough § so that D + § < 1 and L(k —
k")/L(n) < C((k —k’)/n)~% (this is possible thanks to (7.7)). We get that

, k—k'|P7 :
[In(x,x)| < C Z Lot ey () -y (X7)
k.k'=1,...,[nt]
k7123

/|—D—8 )

The function in the bound is integrable on Ri. Hence, the dominated convergence
theorem applies and yields, as n — oo,

1 A
22D L) > plk—k)

kk'=1,...[nt]
lk—k’|=3
2-D
— l (x,x/)dxdx/:/ x—x'|""dxdx =
R, [0,z]2| ~ (1-D/2)2-D)

This concludes the proof of (7.30).
Now, consider t; > ... > t; = 0, and recall the definition (7.29) of Z,(¢). For
any j =i, one has, asn — oo,

E[Zn (lj)Zn (li)]
1 1 1
= ELZu@)) + , E[Zn(0)") = EWZa(ty) = Zn(1)))

1 [nt;] [n2/] [nt;1-[nt;]
SR () S EVCRED DUET R SR (S 3)

kk'=1 kk'=1 kk'=1
Using (7.30), we deduce that

1

)(ZiZ_D-i-ljZ_D t —t)*"P).  (731)

Since { Xj }x>1 is a centered Gaussian family, so is {Z,,(#;) }1<i<a, and (7.31) implies
that (7.12) holds. O

Proof of (7.13). Thanks to Lemma 7.2 we can assume that ¢(x) = a,Hy(x) =
a>(x? —1). We are thus left to show that

fdd. 1 1—-D

V(1= D)(1-2D) ’ 732
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with
[nt]

Fat)= DL( )Z( 2 t=0, (7.33)

and R'~P a Rosenblatt process of parameter H = 1 — D/2.

Recall from Section 7.1 that one can assume without loss of generality that X; =
1 W(ek) with {ex} C L?(R) such that (7.1) is satisfied. Using the product formula
(5.26), we deduce that F, (1) = IW(fn (z,)) forall t = 0, with

[n1]

1
Y e(Xer(y), x,yeRy.

XD = 1 ) 2

Now, consider f; > ... > f; = 0. Using (7.1) and Lemma 7.1 with T = R,
measures

1 [nt;]

v;(ds) = W=D L(n ) Z Ok (ds) (with 8 the Dirac mass at k)

and the function e(k, x) = eg(x), we get, forany p =2 and 6,,...,0; € R,

d
Kp ( Y 6 Fy (tj)) (7.34)
j=1

_ [nt;,] [nt;,] P
27N p-1)! ¢ L&
SIS SEURUN SRR Bl § LUREY
Jiseenip=1 k=1  kp=li=l
with the convention k4, = k;. To obtain the limit of (7.34) as n — oo and thus to
conclude the proof of (7.12), we proceed in five steps.

Step I (Determination of the main term). We split the sum Z,[Cnlti‘l Y k’:’_"l in
the right-hand side of (7.34) into

> + > (7.35)

ki=1,..., [nljl] ki=1,..., [nt,l]
kp=1,"[nt;,] kp=1,."[nt;,]
Vi:lk,+1 —k;|=3 ﬂii‘k,_»'_l —k;|<2

and we show that the second sum in (7.35) is asymptotically negligible as n — oco.
Up to reordering, it is enough to show that

1 p
R = ppD [ ()0 > ]‘[ p(kis1 — ki) (7.36)
ki=1,..., [ntj ] i=1

kp=1,..[nt;,]
lke1—kp|<2
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tends to zero as n — oo. In (7.36), let us bound p(k, — kp—1)p(k) — kp) by 1. We
get that

[ntjl [ntp—1]

Ris< pDL(n)p YooY ]_[p(km ki).

k=1 kp—1=1 i=1

Set g, (1, x) = nP27 1 L(n)~"/2 Y11 ¢4 (x), and observe that

[n2),] [ntp—1] p—2
n—D—(p— 2)DL(n)p -2 Z Z l_[p(k,+1 ki)
ki=1 kp 1=li=l1

(( ((gn (tj1 > ) R fn(t2v )) 1 fn(t3v )) . . ) 1 fn (tp—Z’ '), gn(tp—h '))LZ(]R)
< Nlgn @y eyl fa (2 M2y - - - 1 fn (tp—25 L2 @) €0 (p—1, ) L2 w).

But

[nt]
1
pea ”f”(t")”iz(Rz) = P zDL(n)z Z p(k = k'y?

k.k'=1
1
=R o 2 PO (b))
[k <[nt]
[nt] [nt]—1
—-2D 2
SSED abf (2 (1 +2 Y kP L(k) ) < o0,

k=1
where the finiteness holds because of Theorem 7.1. Similarly, we have

[nt]
1
2 —
’S};E" ”gn(l:')”Lz(R) - n>Il) n2— DL(I’[) Z p(k k)

k.k’'=1

1
=S b () > pk)([nt] - k1)

[kl<[n]

/A

[nt]—1
[n1] -D
21;1? 22D L(n)? 142 kX_:l k™7 L) | < oo.
We deduce that R, = O(n*?~'L(n)~?), so that R, — 0 as n — oo since 2D < 1.

Step 2 (Expressing sums as integrals). We now consider the first term in (7.35)
and express it as an integral, so to apply the dominated convergence theorem. We
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have, using the specific form (7.5) of p,

P
> [ [otkisi —ki)
[

ki=1,...[nt;]  i=1

1
nP=PD [ (n)P

kp=1,.[nt;,]
Vi:lk;y1—k;|=3

P S b

ki=1,..., [nt_,-l] i=1

P L(kit1 — ki)
L(n)

kiv1 —ki
n

kp=1,.Int;,]
Vi:lk;y1—k;i|=3

o0 o0
/ / In(x1,....xp)dxy . ..dxp,
0 0

P L(lkis1 — ki)
L(n)

where

4 ) .
ln()ﬂ,...,xp): Z H‘kl+ln kl

k1=1,...,[nt_,-l] i=l1

kp=1,..Int;,]
Vi:lk;y1—k;i|=3
X1 k=1 &y (X1) o L kp—t kp (Xp).
[ ) [ )

n ’n

Step 3 (Pointwise convergence). We show the pointwise convergence of /,,. Since,
for fixed |k;+1 — k;|/n and as n — oo, one has

L(lkit1 = ki)/L(n) = L(n X |ki+1 = ki|/n)/L(n) — 1,

one deduces that [,(xy,...,xp) = loo(x1,...,Xxp) forany xi,...,x, € Ry, where

»
loo(X1s... Xp) = 1[0,;,1](x1)~-~1[0,p,p](xp)l—[ IxXip1 — x| 72,
i=1

with the convention x| = x;.

Step 4 (Domination). We show that /,, is dominated by an integrable function. If
ki+1—ki = 3 (the case where k; | —k; = 3 is similar by symmetry), x; € [ki,l_l, ];’
and x; 4 € [k"‘*n‘_l, k’:’l), then

3 kiy1—ki 1
< i+1 i < Xigl + _—
n n n
so that x; 41 — x; = i, implying in turn

kiy1 —k; I Xip1— X
= Xi41 — Xi — = .
n n 2
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Since 2D < 1, choose a small enough § so that 2D + 2§ < 1 and
Lkivi =kl _ o ((TKisn = kil \ ™
L(n) n

(this is possible thanks to (7.7)). We get that

|ln(x1»---,xp)|

DS |

ki=1,...[nt;] i=1

kp=1,.Int;,]
Vi: |k,+1 —ki|=3

—D—§

+1 —
ki l[k]n—l’/;])(xl)...1[/(,,”—1’1(’5;)()61,)

< C2(D+8)p1[0 161) - Lo 1 (xp)l_[ xip1 — x| 7P
i=l1

The function in the bound is integrable on R”, see indeed Proposition 7.3 with
H=1-D>)

Step 5 (Dominated convergence). By combining the results of Steps 2 to 4, we
get that the dominated convergence theorem applies and yields

d
Kp ( D6 Fn(lj))

j=1
p—1 j Lip 4 _D
— 2P (p—1) Z 0 ...0;, dxy ... dx, H|x,~+1—x,-|
Joesdp=1 0 0 i=1

We recognize that, up to a multiplicative constant, this is the quantity in (7.24) with
H = 1— D. More precisely,

) : : 1-D
KP(; 9an(lj)) — /(1 — Dyr(1—2D)o /cp(;ej]g (tj)),

J

which concludes the proof of (7.12) thanks to Proposition 5.3 and the fact that the
knowledge of moments is equivalent to the knowledge of cumulants. O



Chapter 8
Non-Commutative Fractional Brownian Motion

In the previous chapter, we showed that normalized sums associated to a stationary
sequence with long-range dependence may yield a non-central limit theorem (The-
orem 7.3). Here, motivated by the fact that there is often a close correspondence
between classical probability and free probability, we want to investigate whether
similar non-central results hold in the free probability setting. This leads to the defi-
nition of the non-commutative fractional Brownian motion. In passing, we will also
prove the free counterpart of Breuer—Major theorem 7.2.

Our main reference for free probability is the book [33] by Nica and Speicher.
The needed material on Wigner multiple integrals is taken from the seminal paper [4]
by Biane and Speicher.

8.1 Free Probability in a Nutshell

In the same way as calculus provides a nice setting for studying limits of sums and
classical Brownian motion provides a nice setting for studying limits of random
walks, free probability provides a convenient framework for investigating limits of
random matrices. (See chapter 5 of the excellent book [1] by Anderson, Guionnet
and Zeitouni for more details about this.) In this section, we survey the main con-
cepts of free probability theory that are useful in the sequel.

8.1.1 Non-Commutative Probability Space

Definition 8.1. A non-commutative probability space is a von Neumann algebra A
(that is, an algebra of bounded operators on a complex separable Hilbert space,
closed under adjoint and convergence in the weak operator topology) equipped with
a trace @, that is, a unital linear functional (meaning preserving the identity) which
is weakly continuous, positive (meaning ¢(X) > 0 whenever X is a non-negative
element of A; i.e. whenever X = Y Y™ for some Y € A), faithful (meaning that

Nourdin L.: Selected Aspects of Fractional Brownian Motion, B&SS,
DOI 10.1007/978-88-470-2823-4_8, © Springer-Verlag Italia 2012
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if o(YY*) = 0 then Y = 0), and tracial (meaning that (XY ) = @(YX) for all
X, Y € A, even though in general XY # YX).

We will not need to use the full force of this definition, only some of its consequences.
The reader is referred to [33] for a systematic presentation.

8.1.2 Random variables

Definition 8.2. In a non-commutative probability space, we refer to the self-adjoint
elements of the algebra as random variables.

Any random variable X has a law puyx, which is defined as follows.

Proposition 8.1. Let (A, ¢) be a non-commutative probability space and let X be a
random variable. There exists a unique probability measure |1y on R with compact
support and the same moments as X. More precisely, the support |y is a subset of
[=IX |, | X 1] (with || - || the operator norm) and iy is such that

[R 0 dpix (x) = (Q(X)). 8.1)

for all real polynomial Q.
Proof. See [33, Proposition 3.13]. O

8.1.3 Convergence in law

Definition 8.3. Let (A, @) be a non-commutative probability space.

1. We say that a sequence (X1, ..., Xkn), n = 1, of random vectors (meaning that
each X; p is a self-adjoint operator in (A, ¢)) converges in law to a random vector
(X1,00s - - - » Xk ,00), and we write

law
(Xl,n» ey Xk,n) —> (Xl,oo: ey Xk,oo)s
to indicate the convergence in the sense of (joint) moments, that is,

Tim ¢ (OXim e X)) = ¢ (QXioo o Xkoo)) . (82)

for any polynomial Q in k non-commuting variables.

2. We say that a sequence (Fy,) of non-commutative stochastic processes (meaning
that each F,, is a one-parameter family of self-adjoint operators F, (t) in (A, ¢)) con-
verges in the sense of finite-dimensional distributions to a non-commutative stochas-

tic process Foo, and we write

fd.d.
F, - Fs,

to indicate that, for any integer k = 1 and any t, ...ty =0,

(Fa(t1). -+ Fun(t0)) = (Foo(t1). ... Foolt).
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8.1.4 Free Independence

In the free probability setting, the notion of independence (introduced by Voiculescu
in [64]) goes as follows.

Definition 8.4. Let A, ..., A, be unital subalgebras of A. Let X1, ..., X be ran-
dom variables chosen from among the #A; s such that, for | < j < m, two consecutive
elements X; and Xy, do not come from the same A;, and such that ¢(X;) = 0 for
each j. The subalgebras A, ..., A, are said to be fiee (or freely independent) if; in
this circumstance,

P(X1 Xz X,) = 0. (83)

Random variables are called freely independent if the unital algebras they generate
are freely independent.

Freeness is in general much more complicated than classical independence. For ex-
ample, if X, Y are free and m,n = 1, then by (8.3),

(X" —p(X™) D" —p(¥Y™M1)) = 0.
By expanding (and using the linear property of ¢), we get
p(X"Y") = p(X™)p(Y"), (8.4)

which is what we would expect under classical independence. But, by (8.3), we also
have

P((X —pX)DY =) DX —p(X)DH(Y —¢((¥)])) =0.

By expanding and by using (8.4) and the tracial property of ¢ (for instance p(X Y X) =
©(X?Y)) we get

P(XYXY) = o(Y)’0(X?) + o(X)*0(Y?) — p(X) (Y )?,

which is different from ¢(X?)@(Y?), which is what one would have obtained if X
and Y were classical independent random variables. Nevertheless, if X, ..., Xy are
freely independent, then their joint moments are determined by the moments of X,
..., X4 separately, as in the classical case.

8.1.5 Semicircular Distribution

Definition 8.5. The semicircular distribution 8(m,o?), with mean m € R and vari-
ance o* > 0, is the probability distribution

1
8$(m,o%)(dx) = - V402 — (x = m)2 ljx_m|<20} dX. (8.5)

By convention, 8 (m,0) is the Dirac mass &,.
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A simple calculation shows that the odd centered moments of - (m, o'2) are all zero,
whereas its even centered moments are given by (scaled) Catalan numbers: for non-
negative integers k,

m+20

/ (x —m)**$(m, o) (dx) = Cro*¥,
m—20

1

where G = ;| (zlf) (see, e.g., [33, Lecture 2]). In particular, the variance is o

while the centered fourth moment is 20*. The semicircular distribution plays here
the role of the Gaussian distribution. It has the following similar properties.

2

Proposition 8.2. 1. If S ~ 8(m,0?)anda,b € R, thenaS +b ~ 8§(am+b,a*c?).
2.If S ~ 8(my,0}) and Sy ~ 8(my,03) are fieely independent, then Sy + S, ~
8(my + my, 0} + 03).

Proof. The first property is immediately shown. The second property can be verified
using the R-transform (which characterizes the law and linearizes free independence,
meaning that, if X and Y are freely independent, then Ry +y (z) = Rx(z) + Ry (z2),
z € C). Since the R-transform of the semicircular law is Rg(y o2)(2) = m + 0°z
(see [33, Formula (11.13)]), the desired conclusion follows easily. Details are left to
the reader. O

8.1.6 Free Brownian Motion

Definition 8.6. 1. A one-sided fiee Brownian motion S = {S;}+>0 is a non-commuta-
tive stochastic process with the following defining characteristics:
1) So=0.

(i1) Forty > t; = 0, the law of Sy, — Sy, is the semicircular distribution of mean
0 and variance t, — 1.

(iii) For all n and t, > -+ > t, > t; > 0, the increments S;,, S, — Sy, ...,
St, — St,_, are freely independent.

2. A two-sided free Brownian motion S = {S;}eR is defined to be

g S =0
P S2, ift<0”

where S' and S? are two freely independent one-sided free Brownian motions.

8.1.7 Wigner Integral

From now on, we suppose that L?(IR?) stands for the set of all real-valued square-
integrable functions on R?. When ¢ = 1, we only write L?(R) to simplify the nota-
tion.
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Let S = {S;};er be a two-sided free Brownian motion. Let us quickly sketch
out the construction of the Wigner integral of f with respect to S. For an indicator
function f = Iy, ), the Wigner integral of f is defined by

/ 1[u,v](x)de = Sv — Su.
R

We then extend this definition by linearity to simple functions of the form f =
Zf-czl ;i 1 [y, v;]» Where [u;, v;] are disjoint intervals of R. Simple computations show
that

/ f(x)dSx ~ 8 (o, / fz(x)dx) (8.6)
R R
¢(4fummx§4guw&)=Wﬁmumy 8.7

By approximation, the definition of [ f(x)dSy is extended to all f € L*(R), and
(8.6)-(8.7) continue to hold in this more general setting.

8.1.8 Semicircular Sequence and Semicircular Process

The following definition is the free counterpart of Definition 1.2.

Definition 8.7. 1. Let k = 1. A random vector (X,, ..., Xx) is said to have a k-
dimensional semicircular distribution if, for every Ay, ..., A € R, the random
variable My X1 + ...+ Ay Xy has a semicircular distribution. In this case, one says
that the random variables X, ..., Xy are jointly semicircular or, alternatively,
that (X1, ..., Xx) is a semicircular vector.

2. Let I be an arbitrary set. A semicircular family indexed by I is a collection of
random variables {X; : i € I} such that, for every k = 1 and every (i1, ...,i) €
1%, the vector (Xiy, ... Xi,) has a k-dimensional semicircular distribution.

3. When X ={X; : i € I}isasemicircular family for which I is denumerable (resp.
for which I = R4), we say that X is a semicircular sequence (resp. semicircular
process).

The distribution of any centered semicircular family {X; : i € I} turns out to
be uniquely determined by its covariance function I' : /2 — R given by I'(i, j) =
¢(X;X;). (This is an easy consequence of [33, Corollary 9.20].) When / = N, the
family is said to be stationary it I'(i, j) = ['(|i — j|) foralli, j € N.

Let X = {Xi : k € N} be a centered semicircular sequence and consider the
linear span # of X, that is, J is the closed linear subspace of L?(¢) generated by
X. It is a real separable Hilbert space and, consequently, there exists an isometry
®: H — L?>(R).Forany k € N, set ey = ®(Xy); we have, forall k,/ € N,

Aqumwwx=ﬂnxn=Nhn (8.8)
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Thus, since the covariance function I" of X characterizes its distribution, we have

(Xp: keNy & {/ek(x)de:keN},
R

with the notation of Section 8.1.7.

8.1.9 Multiple Wigner Integral

Let S = {S;}/er be a two-sided free Brownian motion, and let ¢ = 1 be an inte-
ger. When f belongs to L?(IR?) (recall from Section 8.1.7 that it means, in particu-
lar, that f is real-valued), we write f* to indicate the function of L?(IR?) given by

Sty = fty, ... ).
Following [4], let us quickly sketch out the construction of the multiple Wigner
integral of f with respect to S. Let D, C RY be the collection of all diagonals, i.e.

Dy, ={(t1,....t5) eRY: t; =1t; forsomei # j}.

For an indicator function f = 14, where A C R? has the form A = [a, b[x ... X
lag.bg[ with A N Dy = @, the gth multiple Wigner integral of f is defined by

17(f) = (Sp, — Say) - - (Sp, — Say)-

We then extend this definition by linearity to simple functions of the form f =

Sk aila,. where A; = [af,bi[x... x [a},. b}[ are disjoint g-dimensional rect-
angles as above which do not meet the diagonals. Simple computations show that

eUg (1) =0 (8.9)

o3 (NG () = (f 8" 2ra). (8.10)

By an isometry argument, the definition of / (f (f) is extended to all f € L*(RY),

and (8.9)—(8.10) continue to hold in this more general setting. If one wants [ (f (f)to
be a random variable in the sense of Section 8.1.2, it is necessary that f be mirror
symmetric, that is, f = f*, in order to ensure that / [}g (f) is self-adjoint, namely

(I(f (f)* = ]‘}9 (f). Observe that [15 (f) = Jg f(x)dSx (see Section 8.1.7) when
q = 1. We have moreover

w(ll;g(f)lf(g)) =0 when p # ¢, f € L*(R?) and g € L>(RY). (8.11)

Definition 8.8. Whenr € {1,...,p Aq)}, f € L>(R?) and g € L*(RY), we write
f ~ g to indicate the rth contraction of f and g, defined as being the element of
L?>(RP+472T) given by

A gt tprgar) (8.12)

= / f(tla~-~,tp—r7x1,u-,xr)g(xrw--7x17tp—r+l,-~~atp+q—2r)
R”

dxy...dx,.

By convention, set f A g = f ® g as being the tensor product of [ and g.
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Since f and g are not necessarily symmetric functions, the position of the identified
variables x1,...,x, in (8.12) is important, in contrast to what happens in classical
probability, see (5.24). Observe moreover that

If A gllegetary < I f l2@nllgllime (8.13)

by Cauchy-Schwarz, and also that / 2 g = (f, &) wp) When p = q.
We have the following product formula, see [4, Proposition 5.3.3] and compare
with (5.26).
Theorem 8.1 (Biane—Speicher). Let f € L?>(R?) and g € L*>(RY). Then
g

ISNOIZ@) =D 130 (f ~ 2). (8.14)
r=0

We deduce the following useful result, which is the free counterpart of (5.16):
Corollary 8.1. Let e € L*>(R) and q > 1. Then

U, ( A e(x)de) =17 (e®). (8.15)

Here, Uy(x) = 1, Ui(x) = x, Up(x) = x> =1, Us(x) = x> —2x, ..., is the
sequence of Tchebycheff polynomials of second kind (determined by the recursion
Ugs1 = xUy—Ug—1) and [ e(x)dSy is understood as a Wigner integral (as defined
previously).

Proof. The proof is by induction on ¢ = 1. The case ¢ = 1 is obvious, as U} = X
and Ils (e) = [ e(x)dSy. Assume now that (8.15) is shown for I,... ¢, and let us
prove it for g + 1. We have, using respectively our induction property, (8.14) and the

calculation e ~ (¢®9) = ||e|| e®171l = ¢®a~1,

Ug+1 ([I;e(x)de)
= /Re(x)de x Uy (/R e(x)de) —U;— (/R e(x)de)

= IP(e)1; (e®) — 15 | (e®7") = 17, (e®IT).

2
L*(R)

Hence, the desired conclusion is proved by induction. O

8.1.10 Wiener—Wigner Transfer Principle

We state a Wiener—Wigner transfer principle for translating results between the clas-
sical and free chaoses. This transfer principle will allow us to easily prove the free
version of the Breuer—-Major Theorem 7.2. It is important to note that Theorem 8.2
requires the strong assumption that the kernels are symmetric in both the classical
and free cases. While this is no loss of generality in the Wiener chaos, it applies to
only a small subspace of the Wigner chaos of orders 3 or higher.
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Theorem 8.2 (Kemp—Nourdin—Peccati—Speicher [26, 41]). Let d,q;,...,qq = 1
be some fixed integers, consider a positive definite symmetric matrix C € Mgz (R)

and let W (resp. S) be a classical (resp. free) Brownian motion. Let (Gy,...,Gg)
be a Gaussian vector and (S, ..., Sg) be a semicircular vector, both centered with
covariance C. Foreachi = 1,...,d, we consider a sequence { fi n}n=1 of symmetric

functions in L*(RY%). Then, as n — o9,

(IS fra)ee e I3 (fan)) = (S1.-. Sa)

if and only if

(LY fimeeo 1Y ) = (Var1Gi.. .. 4a'Ga).

Proof. In order to keep the size of the book within bounds, we only consider the one-
dimensional case, that is, we do the proof by assuming that ¢ = 1. The complete
proof can be found in [41].

More precisely, we shall prove the following result. Let ¢ > 2 be a given integer
(the case ¢ = 1 being trivial), let 0 > 0 be a non-negative real number, let W (resp.
S) be a classical (resp. free) Brownian motion, and let { f,, },>; be a sequence of
symmetric functions in L?(IR?). Then, as n — oo, we have equivalence between

law

17 (fw) = 8(0.0%) (8.16)
and
1Y (f) = N (0,q10%). 8.17)

The proof of (8.16)<«>(8.17) is divided into several steps.

Step 1 (Expressing the moments of / [f (f))- Let f be a symmetric function in

L*(R?) and assume that || f'[|;2rey = 1. Fix k = 3. By iterating the product formula
(8.14), we can write

B = Y 1 (DR ),

r€Ay, q
where

Akg = {r: (riy...,1k—1) E{O,l,...,q}k_l 21y <29 —2ry,
r3 <3q—2r1 —2ry, ..., Fp— S(k—l)q—Zrl—...—Zrk_z},

and |r| = r; +. ..+ rr—;. By taking the p-trace in the previous expression and taking
into account that (8.9) holds, we deduce that

(IS =D (A NHAEN.)E T (8.18)

re By q
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with
Bk,q = {1’ = (7‘1,.. . ,rk_l) S Ak,q : 2|I‘| = kq}

Ifre Bygthen2r; + ...+ 21—y =kgandrg_y < (k —1)qg —2r —... = 2rg—,
implying in turn that

2rgy=q+(k—=1)g—=2r—... =212 =q +rr_1,

that is, 1, = ¢. As a result, (8.18) becomes

U7 ()= D (S ANDAD DT L ey 819

rECk'q
with

Cry = {r= (ri,...,rp—0) € {0,1,...,q}k_2: r < 2q —2ry,
r3 <3¢ —2r1 =2, ... g < (k—=2)g —2r — ... = 213,
2ri 4 ...+ 2rg— = (k = 2)q}.

Let us decompose Cy , into Dy 4 U Ey 4, with Dy 4, = Ci , N{0,¢}* 2 and Ey , =
Ck,q \ Dk,q. We then have

S () = DA AN D) g

€Dy 4
+ ) S ADAENDE ) pge
r€Eg ¢4

Using the two relationships f A f=f® fand f A f= ”f”iZ(Rq) =1,itis
evident that, for allr € Dy 4,
(- SADENDE LS ge =1

We deduce that

U7 () =#Drg+ Y (C..(FANAL D" ) amay

rEEk.q

On the other hand, by applying (8.19) with g = 1 and f = 1| ;}, we get that

(P (o))
Z (G (U A Tpap) 2 T - 5 T, Lo) 2@

reCy1

> 1 =4#Cp,.

reCy

o(SH)
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Since it is easily checked that Dy 4 is in bijection with Cy ; (indeed, divide the ;s in
Dy 4 by q), we deduce that

U7 () =S+ D (S AR DS L ey (8:20)

rEEk_q

Step 2 (Fourth moment). Let us specialize (8.20) to the case k = 4. We then have

qg—1
o7 () = e(SH+ D f ~ NS fFpge
r=1
g—1
24 ) S A Flagea—ry- (8.21)
r=1
Step 3 (Proof of (8.16)—(8.17)). Assume that (8.16) holds true. Without loss of
generality, one can assume that 0 = 1 and that ¢ (1 (f»)?) = ”f"”iZ(Rq) = 1 for
any n (instead of lim, o0 @(1; (f2)?) = 1). Due to (8.16), we have ¢ (1 (f,)*) —
@(S}) =2 asn — co. We deduce from (8.21) that, forany r = 1,...,¢ — 1 and as
n— oo,

”fn r fn”iZ(qu—zr) = ”fn B anZLZ(qu—zr) — 0. (8-22)

This, together with E[IqW ()2 = ' fa
lary 6.1 that (8.17) holds true.

||2Lz(Rq) = ¢! for any n, implies by Corol-

Step 4 (Proof of (8.17)—(8.16)). Assume that (8.17) holds true. First, using
Proposition 5.4, we deduce that E[IqW(fn)z] = q!||fn||22(Rq) — qlo?asn — oo.
Without loss of generality, one can assume that 0 = 1 and that || f, ||12J2 ®RH = 1
for any n. We deduce from Corollary 6.1 that (8.22) holds true. Fix k = 3, let
(ri,....,1k—2) € Egqandlet j € {1,...,k — 2} be the smallest integer such that
ri €{l,....,q —1}. Then:

(G 2 ) 2 1)) ™S s ) oo

) (RN R B/ AN/ RES S B0 RSl A B

ol | (O (A T A R A A T e A AR
(since fo A fu=1)

= [((.(fa®® ) ® U 2 ) 2 f) )5 o Fa) oo |

SN @ ® f)® (fu A Sl fullF7 7" (Cauchy-Schwarz)

r; .
= || fa = nll  (since ”fn”izog«q =1

— 0 asn — oo by (8.22).

Therefore, we deduce from (8.20) that (p(I,f (f)*) — (p(Slk) as n — 0o, which is
equivalent to (8.16). O



8.2 Non-Commutative Fractional Brownian Motion 113

8.2 Non-Commutative Fractional Brownian Motion
We are now in a position to define the non-commutative fractional Brownian motion.

Definition 8.9. Let H € (0,1). A non-commutative fractional Brownian motion
(ncfBm in short) of Hurst parameter H is a centered semicircular process ST =
{S ,H }e=o (in the sense of Definition 8.7) with covariance function

1
o(SEsH) = 2(z2H + 527 — |t —sPH). (8.23)

It is readily checked that §'/2 is nothing but a one-sided free Brownian motion. Im-
mediate properties of S, obtained by reasoning as in the proof of Proposition 2.2,
include the selfsimilarity property and the stationary property of the increments. Con-
versely, ncfBm of parameter H is the only standardized semicircular process to verify
these two properties, since they determine the covariance (8.23), see again Proposi-
tion 2.2.

In the classical probability case, we derived in Section 2.3 three representations
for the fractional Brownian motion. These representations continue to hold mutatis
mutandis for ncfBm, by replacing the Wiener integral by its Wigner counterpart. For
example, and as in (2.5), we have here

st ([T (@m0t - et has,+ [a-ulas,).
0 0

CH

with S a two-sided free Brownian motion.
As an illustration, let us show that normalized sums of semicircular sequences
can converge to ncfBm.

Proposition 8.3. Let {X; : k € N} be a stationary semicircular sequence with
o(Xr) = 0 and (p(X,%) = 1, and suppose that its correlation kernel p(k — 1) =
o(X X)) verifies

n
> plk =1~ Kn*" L(n) asn — o, (8.24)
k,l=1

with L : (0,00) — (0, 00) slowly varying at infinity (see (7.6)), 0 < H < 1 and
K > 0. Consider the sequence (Z,) of non-commutative stochastic processes given
by

[nt]

Za(t) =
0=, i

Xk, t=0.

fdd. . . .
Then Z, — VK SH asn — 0o, where ST is a non-commutative fractional Brow-
nian motion.
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Proof. Forany t = s = 0, we have, as n — oo,

@ Zn(t)Zn(s)]
1 1 1
= 0 [Za@]+ L0 [Za()] = L0 [(Za(0) = Zu(5))]
1 [nt] ' . 1 [ns] . '
= 2wt L) >l —j)+ L () > i = j)
ij=1 ij=1
1 [nt]—[ns]
“ 2w L) > pl—J)
i,j=1
N f(z”’ + 527 — (1 —5)) = Kp(SH7(1)SH (s)).

Since the Xy ’s are centered and jointly semicircular, the process Z,, is centered and
semicircular as well, and the desired conclusion follows. ]

8.3 Central and Non-Central Limit Theorems

8.3.1 General Framework

Let Y = {Y; : k € N} be a stationary semicircular sequence with ¢(Y;) = 0 and
qo(Ykz) = 1, and let p(k — ) = @(YY;) be its correlation kernel. (Observe that
p is symmetric, that is, p(n) = p(—n) foralln = 1.) Let Up(x) = 1, Uj(x) =
x, Us(x) = x> — 1, Us(x) = x> — 2x, ..., denote the sequence of Tchebycheff
polynomials of second kind (determined by the recursion xUy = Uy + Ug—_;), and
consider a polynomial Q € R[X] of the form

0(x) =Y aU(x). (8.25)

I1=q

with ¢ = 1 and a; # 0, and where only a finite number of coefficients a; are non
zero. The integer ¢ is called the Tchebycheff rank of Q. Finally, set

[n7] [n1]
Wa(Q.1) =) Q) =D ary U(Yp), t=0. (8.26)
k=1 I2q k=1

The main result of this section goes as follows:

Theorem 8.3 (Nourdin—Taqqu [44]). Let Q be the polynomial defined by (8.25) and
let Wy, (Q,-) be defined by (8.26).
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L IfY kg |p(k)|4 is finite, then, as n — oo,

Wa(Q.) tag Z 23" p(k)! x S'72, (8.27)
J =q keZ

with SY2 a free Brownian motion.

2. Let L : (0,00) — (0,00) be a function which is slowly varying at infinity and
bounded away from 0 and infinity on every compact subset of [0, 00), assume that
q = 1 and that p has the form

pk) =k PL(k), k=1, (8.28)
with 0 < D < 1. Then, as n — oo,

W, (Q,) fd.d. a w §1-DP2,

W=P2 Ly (D)1~ D) (629

with S'=P/2 a4 non-commutative fractional Brownian motion of parameter H =
1—-DJ2.

In [44], we derive more generally the limit in law of W, (Q, -) (properly normal-
ized) for ¢ = 2 and when p satisfies (8.28) with 0 < D < ;

8.3.2 Proof of the Central Limit Theorem (8.27)

Consider the Gaussian counterpart (in the usual probabilistic sense) of { Y }xen,
namely X = {Xj}reny where X is a stationary Gaussian sequence with mean 0
and same correlation p.

We assume in this proof that 3", ., |0(k)|9 < oo; this implies 3,5 |o(k)|! <
oo forall I = ¢. Since Q given by (8.25) is a polynomial, we can choose N large
enough so thata; = 0 forall/ > N. Set

[n1]
Va(Hpt) =Y Hi(Xy), t20. l=gq.....N.
k=1

Breuer—-Major Theorem 7.2, together with Theorem 6.5, implies that

(Vn(qu) Vn(HNv'))
g m

converges as 1 — oo in the sense of finite-dimensional distributions to

(8.30)

(04 Va! Bgr--..on VNI B ).
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where 012 = ZkeZ ,o(k)l (Il =gq,...,N),and By, ..., By are independent classical
Brownian motions. (The fact that ) ", ., p(k)! = 0 is part of the conclusion.) On the
other hand, using both (5.16) and (8.15), we get, forany / = ¢, ..., N, that

[nt] [n1]

V,,(Hl,t)zllW( e,‘f’l) and W,,(U,,z)=1f( e,‘f”),
k=1 k=1

where the sequence {ey }xen is as in (8.8), / IW stands for the multiple Wiener-1td
integral of order / and [ IS stands for the multiple Wigner integral of order /. We
observe that the kernel Z][c":tll ef’l is a symmetric function of L?(R’). Therefore,

according to Theorem 8.2, we deduce that the free counterpart of (8.30) holds as
well, that is, we have that

(Wn(Uq»') Wn(UNv))
\/n sy \/n s

converges as 1 — oo in the sense of finite-dimensional distributions to

((Iq Sq,...,UN SN) R
where S, ..., Sy denote freely independent free Brownian motions. The desired
conclusion (8.27) follows then as a consequence of this latter convergence, together
with the decomposition (8.25) of Q and the identity in law (see Section 8.1.5):

1
aq04Sq + ... +anonSy = \/a£2105+...+a%\,0]2\,xS1/2. O

8.3.3 Proof of the Non-Central Limit Theorem (8.29)

Since the following result is a literal extension of Lemma 7.2, we let the details of its
proof to the reader.

Lemma 8.1 (Reduction). Let Q € R[X] be the polynomial given by (8.25) (with
Tchebicheff rank g = 1). Let Y be a stationary semicircular sequence as in Section
8.3.1 and assume that its covariance kernel p satisfies (8.28) with 0 < D < 1/q.
Decompose Q as Q = a,Uy + R, and recall the definition (8.26) of Wy, (Q, ). Then,
Jor any fixedt =0, W,(R,t) — 0in L*(¢) as n — oo.

We can now proceed with the proof of (8.29).

Proof of (8.29). Thanks to Lemma 8.1 we can assume that Q = a1U; = a1 X. We
are thus left to show that

1 Pl e 1 1D/

n'=P2\/L(n) e = V(1 —=D/2)(1 - D)

where $'~P/2 is a non-commutative fractional Brownian motion of parameter H =
1 — D/2.But (8.31) is in fact a direct consequence of Proposition 8.3 together with
(7.30).

(8.31)
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