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Preface

Italian students start studying Quantum and Statistical Mechanics in the last year of

their undergraduate studies. Many physicists think these subjects are the core of an

education in physics. At the same time, these two subjects are not easily learnt by

the average student. In Italy the final exam is divided in two separate parts: there is,

in fact, a written and an oral one. Most textbooks concentrate on the principles of the

theory and the applications are dealt with at the end of each chapter under the head-

ings ‘problems’ or ‘exercises’. Most of the times the latter consist only of the text of

the problem with some vague indications on how to proceed with the solution. Some

other times the solution is completely left to the student. The authors of the present

book think this is didactically wrong: these applications are crucial for a correct

understanding of the subject and help the students get acquainted with the mathe-

matical tools they have learnt in other classes. Many times we have noticed that a

simple change in the denominations of the letters was enough to throw a student in

disarray: a function whose behaviour was familiar when the independent variable

was called x, became unfathomable when the very same variable was the energy E.
In reality, during the elementary study of classical physics, the exercises are mostly

straightforward applications of the general formulae deduced from experience or at

the most require the simplest notions of differential and integral calculus. Things

change with Quantum and Statistical Mechanics whose mathematical formalism is

more complex. Also the problems and exercises reflect this point and the required

solutions often need longer and more elaborate manipulations.

It is for these reasons that in our teaching we have always dedicated a large

amount of time to the discussion of the applications, to the correction of the prob-

lems, and have tried to elaborate written solutions with lengthy discussions to help

the students get ready for the written exams. From this point to the publication of

our notes it has been a natural step.



vi Preface

Acknowledgements

Francesco Fucito wishes to specially thank M. Guagnelli with whom he has shared

the teaching of Statistical Mechanics at the Università di Roma Tor Vergata for many
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Part I

Theoretical Background



1

Summary of Quantum and Statistical Mechanics

1.1 One Dimensional Schrödinger Equation

In Quantum Mechanics, the state of a particle in one dimension and in presence of a

potential U(x, t), is entirely described by a complex wave function ψ(x, t) obeying
the time dependent Schrödinger equation

ih̄
∂ψ(x, t)

∂ t
=− h̄2

2m
∂ 2ψ(x, t)

∂x2
+U(x, t)ψ(x, t)

where m is the mass of the particle and h̄ is the Planck constant, h, divided by 2π .
If we multiply the Schrödinger equation by the complex conjugate wave function

ψ∗(x, t), take the complex conjugate of the Schrödinger equation and multiply by
ψ(x, t), and finally subtract both expressions, we find the so-called continuity equa-
tion

∂ |ψ(x, t)|2
∂ t

+
∂
∂x

[
ih̄
2m

(
ψ(x, t)

∂ψ∗(x, t)
∂x

−ψ∗(x, t)
∂ψ(x, t)

∂x

)]
= 0.

This equation represents the conservation law for the quantity
∫ |ψ(x, t)|2 dx and

allows us to interpret |ψ(x, t)|2 as the probability density function to find the particle
in the point x at a time t. The quantity

J(x, t) =
ih̄
2m

(
ψ(x, t)

∂ψ∗(x, t)
∂x

−ψ∗(x, t)
∂ψ(x, t)

∂x

)

is the density flux for such probability. The physical interpretation of |ψ(x, t)|2 sets
some conditions on ψ(x, t) that has to be chosen as a continuous not multivalued
function without singularities. Also, the derivatives of ψ(x, t) have to be continu-
ous, with the exception of a moving particle in a potential field possessing some

discontinuities, as we will see explicitly in the exercises. If the potential does not

depend explicitly on time,U(x, t) =U(x), the time dependence can be separated out

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 1, c© Springer-Verlag Italia 2012



4 1 Summary of Quantum and Statistical Mechanics

from the Schrödinger equation and the solutions, named stationary, satisfy

ψ(x, t) = e−
i
h̄ Etψ(x).

In such a case, the functions ρ = |ψ|2 and J are independent of time. Using the
form of ψ(x, t) in the original equation, we end up with the stationary Schrödinger
equation [

− h̄2

2m
d2

dx2
+U(x)

]
ψ(x) = Ĥψ(x) = Eψ(x).

The operator Ĥ is known as the Hamiltonian of the system. Continuous, non mul-

tivalued and finite functions which are solutions of this equation exist only for par-

ticular values of the parameter E, which has to be identified with the energy of the
particle. The energy values may be continuous (the case of a continuous spectrum

for the Hamiltonian Ĥ), discrete (discrete spectrum), or even present a discrete and
continuous part together. For a discrete spectrum, the associated ψ may be normal-

ized to unity ∫
|ψ(x)|2 dx= 1.

All the functions ψ corresponding to precise values of the energy are called eigen-

functions and are orthogonal. With a continuous spectrum, the condition of or-

thonormality may be written using the Dirac delta function∫
ψ∗

E(x)ψE ′(x)dx= δ (E−E ′).

The condition of continuity for the wave function and its derivatives is valid even in

the case when the potential energy U(x) is discontinuous. Nevertheless, such con-
ditions are not valid when the potential energy becomes infinite outside the domain

where we solve our differential equations. The particle cannot penetrate a region of

the space where U = +∞ (you can imagine electrons inside a box), and in such a
region we must have ψ = 0. The condition of continuity imposes a vanishing wave
function where the potential energy barrier is infinite and, consequently, the deriva-

tives may present discontinuities.

Let Ũ be the minimum of the potential. Since the average value of the energy is

Ē = T̄ +Ū , and since Ū > Ũ , we conclude that

Ē > Ũ

due to the positive value of T̄ , that is the average kinetic energy of the particle. This
relation is true for a generic state and, in particular, is still valid for an eigenfunction

of the discrete spectrum. It follows that En > Ũ , with En any of the eigenvalues of

the discrete spectrum. If we now define the potential energy in such a way that it

vanishes at infinity (U(±∞) = 0), the discrete spectrum is characterized by all those
energy levels E < 0 which represent bound states. In fact, if the particle is in a bound
state, its motion takes place between two points (say x1,x2) so that ψ(±∞) = 0.
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This constraints the normalization condition for the states. In Classical Mechanics,

the inaccessible regions where E <U have an imaginary velocity. In Quantum Me-

chanics, instead, particle motion can also take place in those regions where E <U ,
although the probability density function is going rapidly to zero there.

The continuous spectrum is described by positive values of the energy. In such

a case, the region of motion is not bounded (ψ(±∞) �= 0) and the resulting wave

function cannot be normalized.

We finally end this section giving some general properties of the solution to the

one dimensional Schrödinger equation:

all the energy levels of the discrete spectrum are non degenerate;

the eigenfunction ψn(x), corresponding to the eigenvalue En (n= 0,1,2, ...; Ei <
Ej if i < j), vanishes n times for finite values of x (oscillation theorem);
if the potential energy is symmetrical, U(x) =U(−x), all the eigenfunctions of
the discrete spectrum must be either even or odd.

1.2 One Dimensional Harmonic Oscillator

When treating the one dimensional harmonic oscillator from the point of view of

Quantum Mechanics, we need to replace the usual classical variables x (position)
and p (momentum) with the associated operators satisfying the commutation rule
[x̂, p̂] = ih̄11, where 11 is the identity operator. A stationary state with energy E sat-
isfies the following differential equation

− h̄2

2m
d2ψ(x)
dx2

+
1

2
mωx2ψ(x) = Eψ(x)

with m the mass of the oscillator and ω the angular frequency of the oscillations.

Eigenvalues and eigenstates of the Hamiltonian are given by

En = h̄ω
(
n+

1

2

)

ψn(x) = 〈x|n〉=CnHn(ξ )e−ξ 2/2 Cn =
1

2n/2
√
n!

(mω
h̄π

)1/4
where we have used a rescaled variable ξ defined by

ξ =

√
mω
h̄

x

and where

Hn(ξ ) = (−1)neξ 2 dn

dξ n e
−ξ 2
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represents the n-th order Hermite polynomial. The first Hermite polynomials are

H0(ξ ) = 1 H1(ξ ) = 2ξ

H2(ξ ) = 4ξ 2−2 H3(ξ ) = 8ξ 3−12ξ .
Equivalently, we can describe the properties of the harmonic oscillator with the

creation and annihilation operators, â† and â, such that [â, â†] = 11. In this case, the
Hamiltonian becomes

Ĥ = h̄ω
(
â†â+

1

2
11

)
= h̄ω

(
n̂+

1

2
11

)

where n̂= â†â is the number operator with the property n̂ |n〉= n |n〉 . The relations
connecting the creation and annihilation operators with the position and momentum

operators are ⎧⎨
⎩
â=
√

mω
2h̄ x̂+ i√

2mh̄ω
p̂

â† =
√

mω
2h̄ x̂− i√

2mh̄ω
p̂⎧⎨

⎩x̂=
√

h̄
2mω (â

†+ â)

p̂= i
√

mh̄ω
2 (â†− â).

The creation and annihilation operators act on a generic eigenstate as step up and
step down operators

â† |n〉=√
n+1 |n+1〉 â |n〉=√

n |n−1〉

so that

|n〉= (â†)n√
n!

|0〉 〈n|m〉= δnm.

1.3 Variational Method

The variational method is an approximation method used to find approximate
ground and excited states. The basis for this method is the variational principle
which we briefly describe now. Let |φ〉 be a state of an arbitrary quantum system

with one or many particles normalized such that

N = 〈φ |φ〉= 1.

The energy of the quantum system is a quadratic functional of |φ〉

E = 〈φ |Ĥ|φ〉
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and cannot be lower than the ground state ε0; in fact, let us expand the state |φ〉 in
the eigenfunction basis |ψn〉 (each one corresponding to the eigenvalue εn) of Ĥ

|φ〉=∑
n
〈ψn|φ〉|ψn〉 ∑

n
|〈ψn|φ〉|2 = 1.

Since εn ≥ ε0, we find that

E = 〈φ |Ĥ|φ〉=∑
n
|〈ψn|φ〉|2εn ≥∑

n
|〈ψn|φ〉|2ε0 = ε0.

From this we infer that the energy of the ground state can be found by minimization.

Let us start by variating the state |φ〉

|φ〉 → |φ〉+ |δφ〉.

The variation of the energy which follows is

δE = 〈δφ |Ĥ|φ〉+ 〈φ |Ĥ|δφ〉+O(δ 2).

At the same time, the normalization changes as

δN = 〈δφ |φ〉+ 〈φ |δφ〉+O(δ 2).

The extremum we are looking for must be represented by functions whose norm is

1. This condition can be efficiently imposed by introducing a Lagrangian multiplier

and minimizing the quantity

Qλ (φ) = 〈φ |Ĥ−λ11|φ〉= (E−λN).

The variation of Qλ (φ) must be zero for variations in both φ and λ

δφQλ (φ) = 〈δφ |Ĥ−λ11|φ〉= 0 δλQλ (φ) = δλ (〈φ |φ〉−1) = 0.

The second equation is the constraint, the first must be valid for arbitrary variations,

leading to

Ĥ|φ〉= λ |φ〉
which is the stationary Schrödinger equation. Multiplying by 〈φ |, we get the value
of the multiplier, i.e. the energy of the ground state. We remark that the condition of

constrained minimum, follows from that of unconstrained minimum δ (〈φ |Ĥ|φ〉) =
0 substituting Ĥ with (Ĥ−λ11). This can also be done by making |φ〉 depend on
the multiplier λ , whose value is fixed imposing

N = 〈φ(λ )|φ(λ )〉= 1.
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1.4 Angular Momentum

From the definition of the angular momentum in Classical Mechanics

LLL= rrr∧ ppp

with rrr ≡ (x,y,z), ppp ≡ (px, py, pz), we get its quantum mechanical expression, once
the vectors rrr, ppp are substituted by their correspondent operators. Once the commu-
tation rule between rrr, ppp is known, it is immediate to deduce the commutation rules
of the different components of the angular momentum

[L̂x, L̂y] = ih̄L̂z [L̂y, L̂z] = ih̄L̂x [L̂x, L̂z] =−ih̄L̂y.

From the theory of Lie Algebras, we know that a complete set of states is deter-

mined from a set of quantum numbers whose number is that of the maximum num-

ber of commuting operator we can build starting from the generators (in our case

L̂x, L̂y, L̂z). One of these operators is the Casimir operator

L̂2 = L̂2x + L̂2y + L̂2z

which is commuting with all the generators of the group, i.e. [L̂2, L̂i] = 0, i= x,y,z.
The other element of this sub algebra is one of the three generators L̂x, L̂y, L̂z: the

convention is to choose L̂z. The quantum states are thus labelled by the quantum

numbers l, m such that

L̂2 |l,m〉= h̄2l(l+1) |l,m〉 L̂z |l,m〉= h̄m |l,m〉 −m≤ l ≤ m

L̂+ |l,m〉= h̄
√

(l−m)(l+m+1) |l,m+1〉
L̂− |l,m〉= h̄

√
(l+m)(l−m+1) |l,m−1〉

where L̂± = (L̂x± iL̂y) are known as raising and lowering operators for the z com-
ponent of the angular momentum. Other useful relations are

[L̂z, L̂±] =±h̄L± [L̂2, L̂±] = 0 [L̂+, L̂−] = 2h̄L̂z

L̂+L̂− = L̂2− L̂2z + h̄L̂z

L̂−L̂+ = L̂2− L̂2z − h̄L̂z.

When acting on functions of the spherical polar coordinates, the generators and the

Casimir operator take the form

L̂x = ih̄
(
sinφ

∂
∂θ

+ cotθ cosφ
∂
∂φ

)

L̂y =−ih̄
(
cosφ

∂
∂θ

− cotθ sinφ ∂
∂φ

)
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L̂z =−ih̄
∂
∂φ

L̂2 =−h̄2
[
1

sinθ
∂
∂θ

(
sinθ

∂
∂θ

)
+

1

sin2 θ
∂ 2

∂φ 2

]
.

To write the state |l,m〉 in spherical coordinates it is useful to introduce the spherical
harmonics

Yl,m(θ ,φ) = 〈θ ,φ |l,m〉
which enjoy the property

Yl,m(θ ,φ) = (−1)m
√

(2l+1)
4π

(l−m)!
(l+m)!

eimφPm
l (cosθ) m≥ 0

Yl,m(θ ,φ) = Yl,−|m|(θ ,φ) = (−1)|m|Y ∗
l,|m|(θ ,φ) m < 0

where Pm
l (cosθ) is the associated Legendre polynomial defined by

Pm
l (u) = (1−u2)m/2 dm

dum
Pl(u) 0≤ m≤ l

Pl(u) =
1

2l l!
dl

dul

[
(u2−1)l

]
where Pl(u) is the Legendre polynomial of order l. Some explicit expressions for
l = 0,1,2 are

Y0,0(θ ,φ) =
1√
4π

Y1,0(θ ,φ) =
√
3

4π
cosθ Y1,±1(θ ,φ) =∓

√
3

8π
sinθe±iφ

Y2,0(θ ,φ) =
√

5

16π
(
3cos2 θ −1) Y2,±1(θ ,φ) =∓

√
15

8π
sinθ cosθe±iφ

Y2,±2(θ ,φ) =
√
15

32π
sin2 θe±2iφ .

Given the two angular momentum operators L̂1, L̂2, we now want to deduce the

states of the angular momentum operator sum of the two, L̂= L̂1+ L̂2. This is possi-
ble using the states |l1, l2,m1,m2〉 or |l1, l2, l,m〉, where h̄2l(l+1), h̄m are the eigen-
values of the operators L̂2 = L̂21+ L̂22 and L̂z = L̂1z + L̂2z respectively. The relation
between these two sets of states is

|l1, l2, l,m〉= ∑
m1,m2

〈l1, l2,m1,m2|l1, l2, l,m〉 |l1, l2,m1,m2〉 .
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The total angular momentum gets the values l = l2+ l1, l2+ l1−1, ..., |l2− l1|, m=
m1+m2 and the coefficients 〈l1, l2,m1,m2|l1, l2, l,m〉 are known as Clebsh-Gordan
or Wigner coefficients.

1.5 Spin

From the experiment of Stern and Gerlach or from the splitting of the electron en-

ergy levels in an atom it follows that, besides an angular momentum, a moving

electron has a spin. Such quantity has no classical correspondence and can get the
two values ±h̄/2. The generators of this physical quantity are

Ŝx =
h̄
2
σ̂x Ŝy =

h̄
2
σ̂y Ŝz =

h̄
2
σ̂z

where σ̂x, σ̂y, σ̂z are the Pauli matrices . A possible representation of these matrices
(the one where σ̂z is diagonal) is

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0

0 −1

)
.

The states which describe the spin are two dimensional vectors

χ =

(
χ1
χ2

)

and |χ1|2, |χ2|2 is the probability to get ±h̄/2 out of a spin measurement.

1.6 Hydrogen Atom

The problem of the motion of two interacting particles with coordinates rrr1, rrr2 can
be reduced, in analogy with Classical Mechanics, to the motion of a single particle

at distance r from a fixed centre. The Hamiltonian of the two particles of masses m1
and m2 and interacting with a centrally symmetric potentialU(r) is given by

Ĥ =− h̄2

2m1
∇∇∇21−

h̄2

2m2
∇∇∇22+Û(r̂)

where ∇∇∇21, ∇∇∇
2
2 are the Laplacian operators in the coordinates rrr1, rrr2 and rrr = rrr1− rrr2.

Using the coordinate of the center of mass

RRR=
m1rrr1+m2rrr2
m1+m2

the Hamiltonian becomes

Ĥ =− h̄2

2(m1+m2)
∇∇∇2R−

h̄2

2mr
∇∇∇2r +Û(r̂)
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where m1+m2 is the total mass and mr =m1m2/(m1+m2) the reduced mass. Then,
we seek the solution in the formΨ(rrr1,rrr2) = φ(RRR)ψ(rrr), where φ(RRR) describes the
motion of a free particle and ψ(rrr) describes the motion of a particle subject to the
centrally symmetric potentialU(r)

∇∇∇2ψ+
2mr

h̄2
[E−U(r)]ψ = 0.

With the use of spherical polar coordinates, the equation becomes

1

r2
∂
∂ r

(
r2
∂ψ
∂ r

)
+
1

r2

[
1

sinθ
∂
∂θ

(
sinθ

∂ψ
∂θ

)
+

1

sin2 θ
∂ 2ψ
∂φ 2

]
+
2mr

h̄2
[E−U(r)]ψ = 0.

The differential operator dependent on the angular variables coincides with the

Casimir operator L̂2, so that

h̄2

2mr

[
− 1

r2
∂
∂ r

(
r2
∂ψ
∂ r

)
+

L̂2

h̄2r2
ψ
]
+U(r)ψ = Eψ.

In the motion in a central field, the angular momentum is conserved: let us take

two arbitrary values l, m for the angular momentum and its projection on the z axis.
Given that the differential equation is separable, we look for a solution using the

ansatz

ψ(rrr) = R(r)Yl,m(θ ,φ)

where Yl,m are the spherical harmonics, which are eigenfunctions of both L̂z and L̂2.
The above equation becomes

1

r2
d

dr

(
r2
dR
dr

)
− l(l+1)

r2
R+

2mr

h̄2
[E−U(r)]R= 0.

Since the quantum number m is not appearing in this equation, the solutions will be
2l+ 1 degenerate with respect to the angular momentum. The dependence on Yl,m
has been removed by multiplying by Y ∗

l,m and integrating over the angular part of the

volume. Let us focus now on the radial part of the wave function and let us perform

a further change of variables, by setting R(r) = Θ(r)
r , to get

d2Θ
dr2

+

[
2mr

h̄2
(E−U(r))− l(l+1)

r2

]
Θ = 0.

The domain of variation of r is now [0,+∞], and at the boundary of this region the
wave function must vanish to guarantee that it can be normalized, thus leading to a

discrete spectrum. The equation we got after these manipulations looks like a one

dimensional Schrödinger equation with potential

Ue f f (r) =U(r)+
h̄2

2mr

l(l+1)
r2

.
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For a fixed l, the radial part is determined by the quantum number labelling the

energy, since in a one dimensional motion the eigenvalues are not degenerate. The

angular part with quantum numbers l,m, and the energy spectrum, En, determine the

particle motion without ambiguities. To label states with different angular momenta,

we use the notation

l = 0(s) 1(p) 2(d) 3( f ) 4(g) . . .

Using the theorem of oscillations we see that the ground state is always an s wave
since the wave function cannot have zeros for the lowest level, while the Yl,m for
l �= 0 are always oscillating functions with positive and negative values.
To close this section on the theory of the angular momentum, we report its appli-

cation to the case of hydrogen-like atoms , i.e. those atoms with one electron with

charge −e (and mass me) and nuclear charge Ze. After the center of mass is sepa-
rated out, the stationary Schrödinger equation describing the wave function of the

electron becomes

h̄2

2me

[
− 1

r2
∂
∂ r

(
r2
∂ψn,l,m

∂ r

)
+

l(l+1)
r2

ψn,l,m

]
− Ze2

r
ψn,l,m = Enψn,l,m

where we have used the wave function for the orbital motion

ψn,l,m(r,θ ,φ) = Rn,l(r)Yl,m(θ ,φ)

with n the principal quantum number giving the energy

En =−Z2e2

2n2a
a=

h̄2

mee2
(Bohr radius)

and Rn,l(r) the radial part of the wave function. Some of the expressions of Rn,l(r)
are here reported

R1,0(r) =
(
Z
a

)3/2
2e−Zr/a

R2,0(r) =
(

Z
2a

)3/2(
2− Zr

a

)
e−Zr/2a

R2,1(r) =
(

Z
2a

)3/2 Zr√
3a

e−Zr/2a.

1.7 Solutions of the Three Dimensional Schrödinger Equation

Let us now discuss the three dimensional solutions of the Schrödinger equation in

full generality. We start from(
h̄2

2m
∇∇∇2−U+E

)
ψ = 0
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and we will choose an appropriate coordinate system according to the symmetry

of the problem. This choice is crucial to get a separable differential equation and a

simple form for the potential. The standard example is the hydrogen atom where the

choice of spherical coordinates and a potential which is dependent only on the radius

naturally lead to variable separation. Once this is done, the left over problem is to

solve a one dimensional differential equation. The coefficients of these equations

have pole singularities. There is only a finite number of coordinate systems leading

to separable equations and their singularities can be classified according to their

number and type. The solutions are usually classified in mathematics manuals, but

to access these results some preliminary work is needed. This paragraph is meant

to be a guide on how to use these results, neglecting all mathematical rigor and

giving only the results of the theorems we will need (not many indeed) without

demonstrations. The starting point is the study of the singularities which leads to

the classification. Let us start with the one dimensional differential equation

y′′+ p(x)y′+q(x)y= 0

where y= y(x) is the unknown function, and p(x), q(x) some coefficients. Then, we
define the different kinds of singularities associated with p(x) and q(x).
A point x0(x0 �=+∞) is ordinary if p(x) and q(x) are analytic functions (without

singularities) in a neighborhood of x0. As an example, take the two equations

y′′ − exy= 0

x5y′′ − y= 0.

In the first, all the points x0 (x0 �=+∞) are ordinary. In the second, all the points x0,
except x0 = 0,+∞ are ordinary. As for the behaviour close to an ordinary point x0,
the Fuchs theorem guarantees that the solution may be expanded in Taylor series,

and that the radius of convergence of this series is at least equal to the distance

between x0 and the nearest singularity in the complex plane . For example, take the
equation

(x2+1)y′+2xy= 0

that is of the first order for simplicity. The solution is y = 1/(1+ x2) that can be
expanded in Taylor series with radius of convergence equal to 1, that is the distance

between x0 = 0 and i in the complex plane.
A point x0(x0 �=+∞) is a regular singularity if p(x) has at most a single pole and

q(x) at most a pole of order two, i.e. they are of the form

p(x) =
p0

(x− x0)
q(x) =

q0
(x− x0)2

with p0 and q0 non singular coefficients . To give some examples, consider the three
equations

(x−2)2y′′ − x3y= 0
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x3y′′+
x2

x−1y
′+ xy= 0

x3y′′+
x

x−1y
′+ xy= 0.

The first equation has a regular singularity in x0 = 2, the second has regular singular
points in x0 = 0 and x0 = 1, the third has a regular singularity in x0 = 1 and a

singularity that is non regular in x0 = 0.
In the case of regular singularities, a well developed theory exists and, in partic-

ular, Fuchs proved that these equations always possess a solution of the form

y(x) = (x− x0)αF(x)

where α is called indicial exponent, and F(x) is an analytic function in a neighbor-
hood of x0 . F(x) can be expanded in Taylor series with radius of convergence at
least equal to the distance between x0 and the nearest singularity. To make an exam-
ple, let us consider a second order differential equation with constant coefficients

y′′ − 4

x
y′+

4

x2
y= 0

that, with the substitution x= et , becomes

y′′(t)−5y′(t)+4y(t) = 0.

To find the solution we use the ansatz y = eαt . Substituting, we get the equation

for the index: α2− 5α + 4 = 0 which is solved by α = 1,4. With respect to x, the
general solution is y= ax+bx4 where a,b are integration constants. This makes the
Fuchs solution look more familiar. The Fuchs solution is more general than what

we just saw in this example since it can have singular points. If two solutions of the

indicial equation are coincident, the second solution in the neighborhood of x0 looks
like

y(x) = (x− x0)αF(x) ln(x− x0).

A point x0 �=+∞ is an irregular singularity if it is not an ordinary point or a regular
singularity .

To control the singularity at x0 = +∞, the strategy is the following: we first
change variable as

x=
1

t
d
dx

=−t2
d
dt

d2

dx2
= t4

d2

dt2
+2t3

d
dt

and then study the equation close to t = 0. For example, consider

y′ − y
2x

= 0.
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This equation has a regular singularity in x0= 0.With the change of variable x= 1/t,
we get

y′(t)+
y(t)
2t

= 0

and we see that t0 = 0 (that means x0 =+∞) is a regular singularity.
We are now ready to classify the solutions in terms of the singularities of the

equation. We will explicitly treat the cases with one, two, and three regular singu-

larities. We will also treat a case with both regular and irregular singularities. This

will allow us to discuss the relevant properties of the hypergeometric series and con-
fluent hypergeometric functions that we will encounter in the exercises proposed in
this book.

1 regular singularity. The equation takes the form

y′′+
2

x−a
y′ = 0

where the coefficient of the first derivative must be 2 not to have a singularity at

+∞. The solution is
y=C1+

C2
(x−a)

whereC1,C2 are the integration constants.

2 regular singularities.When we have two regular singularities (say in a and b),
a typical example is provided by the equation

y′′ =
(
λ +μ−1

x−a
− λ +μ+1

x−b

)
y′ − λμ(a−b)2

(x−a)2(x−b)2
y.

Let us first change variables with z= (x−a)/(x−b), so that x= a,b implies z=
0,+∞. The differential equation for y(z) with regular singularities in z = 0,+∞
has the form

y′′ − p̃
z
y′+

q̃
z2

y= 0

with p̃ = λ + μ − 1, q̃ = λμ . With this notation, λ and μ are the solutions of
the indicial equation close to z= 0. We also remark that there must be a relation
between the indicial exponents in order to have a regular singularity at infinity.

The solution is

y=C1zλ +C2zμ =C1

(
x−a
x−b

)λ
+C2

(
x−a
x−b

)μ

whereC1,C2 are constants of integration. If λ = μ the solution becomes

y= zλ (C1+C2 lnz) =
(
x−a
x−b

)λ (
C1+C2 ln

(
x−a
x−b

))
.
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3 regular singularities. This is the most interesting case, since it leads to the
hypergeometric series. We have already seen how a solution looks like around
regular singularities. Given an equation with three regular singularities, we first

send these points to 0,1,+∞. Then, we divide the solution by xα ,(x−1)β , where
α,β are solutions of the indicial equation. The resulting differential equation

has a solution, F(x), which is called hypergeometric series or hypergeometric
function; we must put our differential equation in this form to use the known

formulae in the literature. We then start from the following general form of the

equation with three regular singularities in the points a,b,c

y′′ =
[
λ +λ ′ −1

x−a
+

μ+μ ′ −1
x−b

+
ν+ν ′ −1

x− c

]
y′+[

λλ ′(a−b)(c−a)
(x−a)2(x−b)(x− c)

+
μμ ′(b− c)(a−b)

(x−a)(x−b)2(x− c)
+

νν ′(c−a)(b− c)
(x−a)(x−b)(x− c)2

]
y

known as Papperitz-Riemann equation. λ ,λ ′,μ,μ ′,ν ,ν ′ are the solutions of the
indicial equation for the singularities a,b,c. To send a,b,c to pre-assigned values,
we must change variables according to

z= γ
(x−a)
(x− c)

x=
(γa− cz)
(γ− z)

γ =
b− c
b−a

.

To have +∞ as a regular point we must, furthermore, satisfy

λ +λ ′+μ+μ ′+ν+ν ′ = 1.

The differential equation becomes

y′′ =
[
λ +λ ′ −1

z
+

μ+μ ′ −1
z−1

]
y′+[

λλ ′

z
− μμ ′

z−1 +ν(λ +λ ′+μ+μ ′+ν−1)
]

y
z(z−1) .

To get to our final form, we must first make the indices as simple as possible.

Let us then take a new solution in the form y(z) = zλ (z−1)μF(z). Substituting,
we get a differential equation for F(z). This equation is again of Fuchsian type
with singularities at 0,1,+∞. Due to our substitution, it is easy to verify that the
indices around 0,1,+∞ are (0,λ ′ −λ ),(0,μ ′ −μ),(ν+λ +μ,1−λ ′ −μ ′ −ν)
respectively. Since two indices have been set to zero, we are left with another

four which must satisfy the constraint that their sum must be one. Therefore, the

final number of independent indices in the differential equation is three. We then

call A and B the indicial exponents in z=+∞, and 1−C, C−A−B the two non
zero indicial exponents for the points z = 0 and z = 1, respectively. In the new

variables, the differential equation becomes

z(z−1)F ′′+[(A+B+1)z−C]F ′+ABF = 0
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that is the second order differential equation defining the hypergeometric series

F(A,B,C|z). Before giving information on this function, let us recapitulate the
steps which brought us to this point: starting from the Papperitz-Riemann equa-

tion, which is the most general form of a differential equation with three sin-

gularities, we sent the latter to three standard positions 0,1,+∞. Then we made
the indices as simple as possible, scaling the solution for the factors which give

the singularities. The final result is the standard form of the differential equation

which defines the hypergeometric series. Let us now analyze the solution. The

series expansion for F(A,B,C|z) is (note that F(A,B,C|0) = 1)

F(A,B,C|z) = 1+ AB
C

z+
A(A+1)B(B+1)

2!C(C+1)
z2+ · · · .

The general solution for the second order differential equation is given by

F(z) =C1F(A,B,C|z)+C2z1−CF(1+B−C,1+A−C,2−C|z)

whereC1,C2 are constants of integration.
The last argument we discuss is the analytical continuation of the hypergeo-

metric series. The hypergeometric series close to the origin is the one discussed

above: it possesses a radius of convergence equal to the distance between z = 0
and the nearest singularity in the complex plane , i.e. z = 1. How to connect the
behaviour of the hypergeometric series close to the origin to that close to the

other points of singularity? The formula giving the relation between hypergeo-

metric series with variables z and 1− z is

F(A,B,C|z) =Γ (C)Γ (C−A−B)
Γ (C−A)Γ (C−B)

F (A,B,A+B−C+1 |1− z)+

Γ (C)Γ (A+B−C)
Γ (A)Γ (B)

(1− z)C−A−BF(C−A,C−B,C−B−A+1|1− z).

A similar formula holds for the relation between hypergeometric series with vari-

ables z and 1/z

F(A,B,C|z) =Γ (C)Γ (B−A)
Γ (B)Γ (C−A)

(−z)−AF(A,1−C+A,1−B+A|1
z
)+

Γ (C)Γ (A−B)
Γ (A)Γ (C−B)

(−z)−BF(B,1−C+B,1+B−A|1
z
).

Regular and irregular singularities. In this case it is standard to put the regular
singularity in zero and the irregular one at +∞. This type of equation is found
after having separated the variables for the kinetic operator in the case of the

hydrogen atom. Let us start with

y′′+ p(x)y′+q(x)y= 0
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and

p(x) =
(1−λ −λ ′)

x
q(x) =−k2+

2α
x

+
λλ ′

x2

with k, α , λ and λ ′ constants. This is not the most general choice for p(x), q(x),
but is the most popular for applications of interest for physics. Looking for a

solution of the form y(x) = xλ f (x), with λ a solution of the indicial equation
around the singularity in zero, we get

f ′′+
1+λ −λ ′

x
f ′+
(
2α
x

− k2
)

f = 0.

To study the point at infinity we change variables according to x = 1/t. With
respect to this variable, the differential equation becomes

f ′′+
1+λ ′ −λ

t
f ′+
(
2α
t3

− k2

t4

)
f = 0.

The singularity is irregular due to the term 2α/t3−k2/t4 on the l.h.s. To remove
the singularity in k2/t4, we have to seek the solution in the form f (t) = e−k/tF(t),
and the equation becomes

F ′′+
(
2k
t2

+
1+λ ′ −λ

t

)
F ′ − k(1−λ ′+λ )−2α

t3
F = 0

which has an indicial equation with a solution F(t)≈ tβ . After having neglected
all the less divergent terms, this equation is

2kβ − k(1−λ ′+λ )+2α = 0

with solution β = (1− λ ′+ λ )/2−α/k. A solution for F(t) is tβ v1(t), where
v1(t) is an analytic function in t = 0. We can now go back to the original equation
and use y(x) = xλ e−kxF(x) to obtain

F ′′+
(
1+λ −λ ′

x
−2k

)
F ′ − k(1+λ −λ ′)−2α

x
F = 0.

If we set z= 2kx,C = 1+λ −λ ′, A= (1+λ −λ ′)/2−α/k, we get

zF ′′+(C− z)F ′ −AF = 0

that is the equation defining the confluent hypergeometric function with solution
F(A,C|z). This name is due to the fact that this equation can be obtained from the
case with three regular singularities, by making the singularity around 1 merge

with the singularity at +∞. The confluent hypergeometric function F(A,C|z) is
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defined by the series

F(A,C|z) = 1+ A
C

z
1!

+
A(A+1)

C(C+1)

z2

2!
+ ...

and the series reduces to a polynomial of degree |A| when A=−n, with n a non
negative integer. A general solution for the differential equation is given by

y(x) =C1e−kxxλF(
1+λ −λ ′

2
− α

k
,1+λ −λ ′|2kx)+

C2e−kxxλ
′
F(
1−λ +λ ′

2
− α

k
,1−λ +λ ′|2kx)

where C1, C2 are constants of integrations. When treating problems with spheri-
cal symmetry, it will be useful to connect the confluent hypergeometric functions

to the spherical Bessel functions. The formula of interest is the following

Jn+ 1
2
(x) =

1

Γ (n+ 3
2 )

(
1

2
x
)n+ 1

2

eixF(n+1,2n+2|−2ix)

where Jn+1/2 are the Bessel functions of half-integral order, with the property

jn(x) =
√

π
2x

Jn+1/2(x)

where jn(x) are the spherical Bessel functions. For the first values of n we get

j0(x) =
sinx
x

j1(x) =
sinx
x2

− cosx
x

j2(x) = sinx
(
3

x3
− 1

x

)
− 3cosx

x2
.

1.8 WKB Method

It is a distinctive feature of Quantum Mechanics that particles exhibit wave-like

properties. In particular, the De Broglie equation relates the wavelength λ to the

momentum p of a free material particle

p=
h
λ
.

When the De Broglie wavelength of a particle becomes small with respect to the

typical dimensional scale of our problem, our system is said to be quasi-classical.
In this limit, using an analogy with the case in which geometric optics is derived

starting from the equation of the electromagnetic waves, the wave function can be
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sought for in the form (we take the one dimensional case)

ψ(x) = e
i
h̄ S(x).

Substituting this expression in the stationary Schrödinger equation, we get

(
dS
dx

)2
− ih̄

(
d2S
dx2

)
−2m(E−U(x)) = 0.

The so-called quasi-classical approximation consists of the expansion of S(x) in
powers of h̄

S(x) = S0(x)+
h̄
i
S1(x)+

(
h̄
i

)2
S2(x)+ . . .

Using this expansion in the original equation and imposing the consistency order by

order in h̄, we get

O(h̄) :
(
dS0
dx

)2
= 2m(E−U(x))

O(h̄2) : 2

(
dS1
dx

)
=−

(
d2S0
dx2

)
(

dS0
dx

)

O(h̄3) : 2

(
dS2
dx

)
=−

(
d2S1
dx2

)
+( dS1dx )

2(
dS0
dx

) .

The first equation sets the zeroth order approximation: the wave function is a linear

combination of the exponential functions e±i/h̄
∫
p(x)dx, where p(x)=

√
2m(E−U(x))

is the classical momentum of the particle. The zeroth order is obtained by neglecting

the second order derivative with respect to the square of the first order derivative

h̄
∣∣∣∣
(

d2S0
dx2

)
(

dS0
dx

)2
∣∣∣∣= h̄

∣∣∣∣ 1p2 dpdx
∣∣∣∣= 1

2π

∣∣∣∣dλdx
∣∣∣∣� 1.

The zeroth order approximation will then be valid in the limit in which the os-

cillations of the wave function are small with respect to the typical scale of our

problem or when the momentum is large. This approximation will not be valid in

the points in which the classical motion gets inverted since in the inversion point

p = 0. The WKB approximation (after G. Wentzel, H.A. Kramers and L.Brillouin

who put forward the proposal for the first time in 1926) consists in solving the first

two equations in the series for h̄. After having solved the first equation, we can solve
the second getting S1 =− 1

2 ln p+ const. The wave function becomes

ψ =
A√
p
e

i
h̄
∫
pdx+

B√
p
e−

i
h̄
∫
pdx.



1.9 Perturbation Theory 21

The approximation is now valid for h̄|S2| � 1. The third equation in h̄ becomes
(after having substituted the S0(x) and S1(x) we have just found)

h̄
dS2
dx

=− 1

8π

(
d2λ
dx2

)
+

1

16πλ

(
dλ
dx

)2

and, integrating once

h̄S2 =− 1

8π

(
dλ
dx

)
+
∫

1

16πλ

(
dλ
dx

)2
dx.

We see that the condition h̄|S2| � 1 is satisfied when |dλ/dx| is very small.
Within the WKB approach, the requirement that the wave function is not multi-

valued leads to ∮
pdx=

(
n+

1

2

)
h n= 0,1,2,3, ...

This is known as the Bohr-Sommerfeld quantization rule. In the above expression,∮
pdx= 2

∫ x2
x1 pdx, where x1,2 are the turning points of the classical motion.

1.9 Perturbation Theory

When an eigenvalue problem is too complicated to be solved exactly, one can use

static perturbation theory. The theory of perturbations is an extremely important
computational tool in modern physics. In fact, it allows to describe real quantum

systems whose eigenvalues equations are, in general, not amenable to an exact treat-

ment. The method is based on the introduction of a “small” perturbation in the

Hamiltonian which allows for a series expansion. Let us suppose to have exactly

solved the eigenvalue problem for the Hamiltonian Ĥ0

Ĥ0|ψ(0)
k 〉= E(0)

k |ψ(0)
k 〉.

Let us then consider the potential energy εÛ , with ε � 1. The eigenvalues and

eigenfunctions of the Hamiltonian Ĥ = Ĥ0+ εÛ

Ĥ|ψk〉= Ek|ψk〉

may be found with a power series in the parameter ε . Let us then start with the case
where the eigenvalues of the Hamiltonian Ĥ0 are not degenerate. The eigenstates are
expanded as

|ψk〉= |ψ(0)
k 〉+∑

n�=k
cnk|ψ(0)

n 〉
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and, substituting this expansion back in the original equation, we find

(
Ĥ0+ εÛ

)(|ψ(0)
k 〉+∑

n�=k
cnk|ψ(0)

n 〉
)

= Ek

(
|ψ(0)

k 〉+∑
n�=k

cnk|ψ(0)
n 〉
)

.

The coefficients cnk and the energy Ek are expanded as

Ek = E(0)
k + εΔE(1)

k + ε2ΔE(2)
k + · · · cnk = εc(1)nk + ε2c(2)nk + · · · .

Projecting the Schrödinger equation on the eigenstate 〈ψ0k |, and retaining only the
first order in ε , we get

ΔE(1)
k =Ukk

c(1)nk =
Unk

E(0)
k −E(0)

n

k �= n

where the matrix elementUnk is defined as

Unk = 〈ψ(0)
n |Û |ψ(0)

k 〉.

This procedure can be extended to the second order in ε , and we find the correction

ΔE(2)
k = ∑

n�=k

|Ukn|2
E(0)
k −E(0)

n

.

When the eigenvalues of the Hamiltonian Ĥ0 are degenerate, let ψ
(0)
k1
, ψ(0)

k2
, . . . be the

eigenstates of Ĥ0 corresponding to the same energy Ek. At the first order in ε , the
correction to the unperturbed eigenvalue is found by diagonalizing the perturbation

matrixUps = 〈ψ(0)
p |Û |ψ(0)

s 〉 with p,s= k1,k2, ....
Let us now proceed with the properties of time dependent perturbations. To this

end, we consider a quantum system described by a time independent Hamiltonian

Ĥ0. Let us then assume that at time t = 0 we act on such system with time dependent
forces until a later time t = τ . Let us further suppose that the contribution of these
forces to the Hamiltonian is given by a perturbation Ĥ ′ such that⎧⎨

⎩
Ĥ ′ = Û(t) 0≤ t ≤ τ

Ĥ ′ = 0 t < 0, t > τ.

The probability that this perturbation generates a transition from the state |n〉 to the
state |m〉 (both of them eigenstates of Ĥ0) is given by the formula

Pm,n =
1

h̄2

∣∣∣∣
∫ τ

0
〈m|Û(t)|n〉ei (Em−En)

h̄ tdt
∣∣∣∣
2

.
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1.10 Thermodynamic Potentials

Thermodynamic systems are described by measurable parameters, such as energy

E, volume V , temperature T , pressure P, etc. The transfer of heat and energy in
the various processes involved is regulated by the laws of thermodynamics. For

infinitesimal changes towards another state, the conservation of the energy for a

thermodynamic system can be stated as follows

dE = δQ+dW

where dE is the infinitesimal change in the internal energy, δQ the amount of

heat exchanged and dW the infinitesimal work done on the system. This is known

as the first law of thermodynamics. For example, in the case of a fluid, we have
dW =−PdV (this is a case frequently considered hereafter), where P is the hydro-
static pressure and V the volume. It is obvious that a positive work (compression,

dV < 0) done on the system reduces its volume, in agreement with experimental

observations.

The second law of thermodynamics states that no thermodynamic process is pos-
sible whose only result is the transfer of heat from a body of lower temperature to

a body of higher temperature. Since the quantity δQ is not an exact differential,

one introduces the entropy S as the thermodynamic potential whose change for an
infinitesimal and reversible transformation between two states at an absolute tem-

perature T is

dS=
δQ
T

.

Moreover, if the number of particles changes, the first law becomes TdS = dE +
PdV −μdN, where μ is the chemical potential. The differential of the entropy S is
therefore written as

dS=
1

T
dE+

P
T
dV − μ

T
dN

so that E, V , N are the natural variables for the entropy S. The derivatives of S with
respect to the natural variables lead to specific thermodynamic quantities

1

T
=

(
∂S
∂E

)
V,N

P
T

=

(
∂S
∂V

)
E,N

− μ
T

=

(
∂S
∂N

)
E,V

.

Consistently with these constraints, the state of equilibrium is the state with max-

imum entropy. When the control variables of a system are different from E, V ,
N, other thermodynamic potentials are used. These are the enthalpy H(S,V,N),
the free energy F(T,V,N), the Gibbs potential Φ(T,P,N) and the grand potential
Ω(T,V,μ). Their definitions are given below, together with their natural variables
and the resulting control variables obtained after differentiation:

Enthalpy: H = E+PV

dH = TdS+VdP+μdN ⇒ H(S,P,N)
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T =

(
∂H
∂S

)
P,N

V =

(
∂H
∂P

)
S,N

μ =

(
∂H
∂N

)
S,P

.

Free Energy: F = E−TS

dF =−SdT −PdV +μdN ⇒ F(T,V,N)

−S=
(
∂F
∂T

)
V,N

−P=

(
∂F
∂V

)
T,N

μ =

(
∂F
∂N

)
T,V

.

Gibbs Potential: Φ = F+PV = H−TS

dΦ =−SdT +VdP+μdN ⇒Φ(T,P,N)

−S=
(
∂Φ
∂T

)
P,N

V =

(
∂Φ
∂P

)
T,N

μ =

(
∂Φ
∂N

)
T,P

.

Grand Potential: Ω = F−μN

dΩ =−SdT −PdV −Ndμ ⇒Ω(T,V,μ)

S=−
(
∂Ω
∂T

)
V,μ

P=−
(
∂Ω
∂V

)
T,μ

N =−
(
∂Ω
∂μ

)
T,V

.

From all these relations, a variety of useful constraints between second order deriva-

tives of the potentials may be obtained. For example, considering the enthalpy, we

have

T =

(
∂H
∂S

)
P,N

V =

(
∂H
∂P

)
S,N

.

We derive the first equation with respect to P and the second with respect to S(
∂
∂P

(
∂H
∂S

)
P,N

)
S,N

=

(
∂
∂S

(
∂H
∂P

)
S,N

)
P,N

from which we find (using Schwartz lemma for mixed partial derivatives) the fol-

lowing identity (
∂T
∂P

)
S,N

=

(
∂V
∂S

)
P,N

that is the mathematical condition for dH to be an exact differential. The associ-

ated relation is called Maxwell relation . Proceeding in a similar way for the other
potentials, one may prove other Maxwell relations(

∂S
∂V

)
T,N

=

(
∂P
∂T

)
V,N(

∂S
∂P

)
T,N

=−
(
∂V
∂T

)
P,N
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∂S
∂V

)
T,μ

=

(
∂P
∂T

)
V,μ

.

Another set of relations is obtained by considering that the thermodynamic poten-

tials are extensive . For example, take the free energy F = F(T,V,N): if we rescale
the volume V and the number of particles N with the same rescaling factor �, the
free energy rescales accordingly

F(T, �V, �N) = �F(T,V,N)

that implies F = N f (T, VN ), where f is the free energy density.
In order to quantify the change of temperature as a function of the absorbed heat,

specific heats are frequently introduced . By definition, the specific heat of a system
characterizes the heat required to change the temperature by a given amount. One

usually defines a particular heating process by keeping fixed some thermodynamic

variable. For a fluid, we will frequently use the specific heats at constant volume

and pressure

CV = T
(
∂S
∂T

)
V,N

=

(
∂U
∂T

)
V,N

CP = T
(
∂S
∂T

)
P,N

=

(
∂H
∂T

)
P,N

.

When working with partial derivatives of thermodynamic variables, it is sometimes

convenient to use the method of Jacobians. Let us consider two generic functions

u(x,y),v(x,y), where x and y are independent variables. The Jacobian is defined as
the determinant

J(u,v) =
∂ (u,v)
∂ (x,y)

= det

⎛
⎝
(
∂u
∂x

)
y

(
∂v
∂x

)
y(

∂u
∂y

)
x

(
∂v
∂y

)
x

⎞
⎠=

(
∂u
∂x

)
y

(
∂v
∂y

)
x
−
(
∂u
∂y

)
x

(
∂v
∂x

)
y
.

The Jacobian has the following properties

∂ (u,v)
∂ (x,y)

=−∂ (v,u)
∂ (x,y)

=
∂ (v,u)
∂ (y,x)

∂ (u,y)
∂ (x,y)

=

(
∂u
∂x

)
y

∂ (u,v)
∂ (x,y)

=
∂ (u,v)
∂ (t,s)

∂ (t,s)
∂ (x,y)

with t and s two other generic variables.
When dealing with thermodynamic states, it is also common to find an equation

of state, i.e. a relation between three thermodynamic variables, say x, y, z. In the
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most general case, such equation of state may be formulated as

f (x,y,z) = 0

with f (x,y,z) some given function. Such relation clearly reduces the number of
independent variables from three to two. On the manifold where the three variables

x,y,z are still consistent with the equation of state, we get

d f = 0=
(
∂ f
∂x

)
y,z

dx+
(
∂ f
∂y

)
x,z

dy+
(
∂ f
∂ z

)
x,y

dz

from which (
∂x
∂y

)
z
=−

(
∂ f
∂y

)
x,z

/

(
∂ f
∂x

)
y,z(

∂x
∂ z

)
y
=−

(
∂ f
∂ z

)
x,y

/

(
∂ f
∂x

)
y,z(

∂y
∂ z

)
x
=−

(
∂ f
∂ z

)
x,y

/

(
∂ f
∂y

)
x,z

.

It follows that (
∂x
∂y

)
z

(
∂y
∂ z

)
x

(
∂ z
∂x

)
y
=−1

that is a chain rule for x, y, z which can be used as an equation relating the variables
entering the equation of state.

1.11 Fundamentals of Ensemble Theory

Let us denote by qqq= (q1,q2, . . . ,qn) the generalized coordinates of a system with n
degrees of freedom, and ppp= (p1, p2, . . . , pn) the associated momenta. For example,
in the case of a fluid with N particles in three dimensions, we have n = 3N. A mi-
croscopic state is defined by specifying the values of the 2n variables (qqq, ppp), and the
corresponding 2n dimensional space is called the phase space. A given microscopic
state evolves in time along a trajectory given by the solution of the following 2n
differential equations

dpi
dt

=−
(
∂H
∂qi

)
dqi
dt

=

(
∂H
∂ pi

)
i= 1,2, ...,n

where H = H(ppp,qqq) is the Hamiltonian of the system and where the derivative with
respect to qi (pi) is performed by keeping fixed all the other variables. For a conser-
vative system, this trajectory lies on a surface of constant energy
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H(ppp,qqq) = E

sometimes called ergodic surface. During the finite time of a measurement, micro-
scopic fluctuations are so rapid that the system explores many microstates. There-

fore, given some observable O(ppp,qqq), its time average is equivalent to the average
over an ensemble of infinite copies of the system

Ō= lim
T→+∞

1

T

∫ T

0
O(ppp(s),qqq(s))ds= 〈O〉

where the average 〈...〉 is computed with some probability density function of the
phase space variables f (ppp,qqq). The resulting classical average is

〈O〉=
∫

f (ppp,qqq)O(ppp,qqq)dnpdnq.

It has to be noted that in Quantum Mechanics, since ppp and qqq cannot be measured
simultaneously, the concept of the phase space is somehow meaningless. Never-

theless, a quantum stationary state, say |ψi〉, with a well defined energy Ei, can be

defined from the stationary Schrödinger equation

Ĥ|ψi〉= Ei|ψi〉 i= 1,2, . . .

and a microscopic state is defined as a superposition of a set of states |ψi〉, chosen
to be consistent with some macroscopic requirements. Let us call M this set (or

ensemble). Consistently, we have some expectation value for the observable (an

operator) Ô on the i-th state

Oi = 〈ψi|Ô|ψi〉 i ∈M

and the average over the above mentioned set is

〈Ô〉= ∑
i∈M

Oi fi

with fi the probability associated with Oi. Usually, one defines the density matrix

corresponding to a given ensemble as

ρ̂ = ∑
i∈M

wi|ψi〉〈ψi|

with wi the weight (characteristic of the ensemble) associated with the state |ψi〉.
The corresponding ensemble average of an observable Ô is

〈Ô〉= ∑i∈M wi〈ψi|Ô|ψi〉
∑i∈M wi

=
∑i∈M wiOi

∑i∈M wi
=

Tr(ρ̂Ô)
Tr(ρ̂)

.

Therefore, the probability previously mentioned becomes fi =
wi

∑i∈M wi
.
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1.11.1 Microcanonical Ensemble

The microcanonical ensemble describes a closed physical system. For example, in
the case of a thermodynamic fluid, the associated probability distribution function

assigns equal probabilities to each microstate consistent with a fixed energy E, fixed
volume V , and fixed number of particles N. The number of states Ω(E,V,N) is
connected to the thermodynamic entropy

S(E,V,N) = k lnΩ(E,V,N).

This equation is known as the Boltzmann formula, k = 1.38× 10−23JK−1 is the
Boltzmann constant. For a system with a discrete set of microstates, the number of

states is just a discrete sum. When dealing with a continuous set of microstates, say

a classical fluid with N particles and Hamiltonian HN(ppp,qqq) in three dimensions, the
phase space volume occupied by the microcanonical ensemble is then

Ω(E,V,N) =
∫
HN(ppp,qqq)=E

d3N pd3Nq
h3N

where ppp = (p1, p2, ..., p3N) and qqq = (q1,q2, ...,q3N) are the momenta and positions
of the particles. The quantity h is a constant with dimension of action (∼ [pq]),
useful to makeΩ(E,V,N) dimensionless, and it is appropriate to identify it with the
Planck constant. It represents the minimal volume that can be measured according to

the Heisenberg indetermination principle. When the number of degrees of freedom

is very large (N � 1) one can define the phase space volume Σ(E,V,N) enclosed
by the energy surface HN(ppp,qqq) = E

Σ(E,V,N) =
∫
HN(ppp,qqq)≤E

d3N pd3Nq
h3N

and show that, apart from corrections of order lnN, the following definition of en-
tropy

S(E,V,N) = k lnΣ(E,V,N)

is equivalent to the previous one.

1.11.2 Canonical Ensemble

The canonical ensemble describes a system with a fixed volume V , fixed number
of particles N, and in thermal equilibrium with a reservoir at temperature T . The
system can exchange energy with the reservoir. A state is specified by the energy E
(we use the notation E for the energy of the microstate andU for the averaged one)

and the associated statistical weight is proportional to e−βE , where β = 1/kT . The
normalization factor, called canonical partition function, takes the form (still for the
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classical fluid considered in section 1.11.1)

QN(T,V,N) =
1

N!h3N

∫
e−βHN(ppp,qqq) d3N pd3Nq.

The factor N!, called Gibbs factor, accounts for the indistinguishability of the parti-
cles. The Thermodynamics of the system is obtained from the relation

F(T,V,N) =−kT lnQN(T,V,N)

where F(T,V,N) is the thermodynamic free energy.

1.11.3 Grand Canonical Ensemble

The grand canonical ensemble is used to describe a system inside a volumeV and in
equilibrium with a reservoir at temperature T and with a chemical potential μ . Both
the energy and particles exchanges are allowed in this case. A state is specified by

the energy E and the number N of particles, and the associated statistical weight is
proportional to zNe−βE , where z= eβμ is called fugacity . The normalization factor,
called grand canonical partition function, takes the form (still for the classical fluid
considered in section 1.11.1)

Q(T,V,μ) =∑
N

zNQN(T,V,N) =∑
N

eβμNQN(T,V,N)

where QN(T,V,N) is the canonical partition function seen in section 1.11.2. The
thermodynamic interpretation of this ensemble is given by

PV
kT

= lnQ(T,V,μ)

where P is the pressure of the system.

1.11.4 Quantum Statistical Mechanics

When we deal with quantummechanical problems where indistinguishable particles
are present, we need to distinguish two cases: particles with integer spin obeying

the Bose-Einstein statistics and called bosons; particle with half-odd-integer spin
obeying Fermi-Dirac statistics and called fermions. A generic energy state can be
occupied by an arbitrary number of bosons; for fermions, because of the Pauli ex-

clusion principle, it can be occupied by at most one particle. Quantum mechanical

effects usually emerge at high density and low temperatures while, at high temper-

atures and low densities, the classical limit (i.e. the Maxwell-Boltzmann statistics)

is recovered. A system of not interacting quantum particles is easily treated in the
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grand canonical ensemble, where

PV = kT lnQ(T,V,μ) = kT∑
ε

1

a
ln(1+ae−β (ε−μ)).

In the above expression, ε stands for the single particle energy and a discrete spec-
trum has been assumed (the continuous case is recovered by properly replacing the

summation with an integral). The Bose-Einstein statistics corresponds to a=−1, the
Fermi-Dirac statistics to a= 1, and the limit a→ 0 (or z= eβμ � 1) corresponds to

Maxwell-Boltzmann particles. The mean occupation number 〈nε〉 associated to the
energy level ε is given by

〈nε〉=− 1
β

(
∂ lnQ
∂ε

)
βμ

=
1

eβ (ε−μ) +a
.

1.12 Kinetic Approach

When working with very large volumes, the single particle energy levels would be so

close, that a summation over them may be replaced by an integral. Let us indicate

with ε = ε(p) the single particle energy, solely dependent on the absolute value
of the momentum p. Using the grand canonical ensemble, one gets the following
results for the average number of particles and pressure of an ideal quantum gas in

three dimensions

N =
∫
〈np〉Vd3p

h3
=
4πV
h3

∫ +∞

0

1

z−1eβε +a
p2dp

P=
4π
3h3

∫ +∞

0

1

z−1eβε +a

(
p
dε
dp

)
p2dp=

n
3

〈
p
dε
dp

〉
=

n
3
〈pv〉

where v is the absolute value of the speed of each particle, n = N/V the particles

density, and where we have used

〈
p
dε
dp

〉
=

∫ +∞

0
〈np〉

(
p
dε
dp

)
d3p

∫ +∞

0
〈np〉d3p

=

∫ +∞

0

1

z−1eβε +a

(
p
dε
dp

)
p2dp

∫ +∞

0

1

z−1eβε +a
p2dp

.

The above pressure arises from the microscopic motion of the particles and can

be deduced from purely kinetic considerations. To show this point, let us take an

infinitesimal element of area dAAA perpendicular to the z axis and located on the wall
of the container where the gas is placed. If we focus our attention on the particles

with velocity between vvv and vvv+dvvv, with f (vvv) the probability density function, the
relevant number of particles that in the time interval dt are able to hit the surface
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wall within the area dAAA and with velocities between vvv and vvv+dvvv is

dNhit = n(dAAA · vvv)dt × f (vvv)dvvv.

Due to the reflection from the wall, the normal component of the momentum un-

dergoes a change from pz to −pz; as a result, the normal momentum transfered by
these particles per unit time to a unit area of the wall is 2pzvzn f (vvv)dvvv. By definition,
the kinetic pressure of the gas is

P= 2n
∫ +∞

−∞
dvx

∫ +∞

−∞
dvy

∫ +∞

0
f (vvv) pzvz dvz = n〈pvcos2 θ〉 = n

3
〈pv〉

with θ the angle that the velocity is forming with the z axis. The previous equation
is indeed the very same equation obtained with the grand canonical ensemble with

the specification that f (vvv) is just the Bose-Einstein or Fermi-Dirac probability dis-
tribution function. In a similar way, we can determine the rate of effusion of the gas
through the hole (of unit area) in the wall

R= n
∫ +∞

−∞
dvx

∫ +∞

−∞
dvy

∫ +∞

0
f (vvv)vzdvz =

n
4

〈v〉.

1.13 Fluctuations

In the previous sections we have treated thermodynamic systems in equilibrium.

Nevertheless, fluctuations occur around the equilibrium states, and a precise prob-
ability distribution law may be derived in the framework of statistical mechanics.

If we look at a system (s) in contact with a reservoir (r), the total variation of the
entropy ΔS= ΔSs+ΔSr = S−S0 with respect to its equilibrium value S0 is

ΔS= S−S0 = k lnΩ f − k lnΩ0

where Ω f (Ω0) denotes the number of distinct microstates in the presence (or in the

absence) of the fluctuations. The probability that the fluctuation may occur is then

p ∝
Ω f

Ω0
= eΔS/k.

If the exchange of particles between the system and the reservoir (whose tempera-

ture is T ) is not allowed, the total variation of the entropy ΔS can be expressed only
in terms of the variation of the system’s temperature (ΔTs), entropy (ΔSs), pressure
(ΔPs), and volume (ΔVs) to yield

ΔS= − 1

2T
(ΔSsΔTs −ΔPsΔVs) .

We may now drop the subscript s knowing that each quantity refers to the properties
of the system and write down the probability as

p ∝ e− 1
2kT (ΔSΔT−ΔPΔV ).
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We note, however, that only two of the four Δ appearing in this probability can

be chosen independently. For instance, if we choose ΔT and ΔV as independent

variables, then ΔS and ΔP may be expanded with the help of Maxwell relations for
S and P

ΔS=
(
∂S
∂T

)
V
ΔT +

(
∂S
∂V

)
T
ΔV =

CV

T
ΔT +

(
∂P
∂T

)
V
ΔV

ΔP=

(
∂P
∂T

)
V
ΔT +

(
∂P
∂V

)
T
ΔV =

(
∂P
∂T

)
V
ΔT − 1

kTV
ΔV

where we have used the isothermal compressibility κT = − 1
V

(
∂V
∂P

)
T
. The associ-

ated probability is then

p ∝ e−
CV
2kT2

(ΔT )2− 1
2kTkTV (ΔV )2

which shows that the fluctuations in T and V are statistically independent Gaussian
variables with variances related to the specific heat and the isothermal compressibil-

ity.

1.14 Mathematical Formulae

In this section, useful formulae are given and briefly commented.

Gamma Function. The Gamma function is defined by the integral

Γ (ν) =
∫ +∞

0
e−xxν−1 dx ν > 0.

After the integration by parts, we can prove that

Γ (ν) =
1

ν
Γ (ν+1)

which can be iterated to give

Γ (ν+1) = ν× (ν−1)× (ν−2)× ...× (1+ p)× p×Γ (p) 0< p≤ 1.

Therefore, for integer values of ν (say ν = m), we have the factorial representa-
tion

Γ (ν) = Γ (m) = (m−1)!= (m−1)× (m−2)× (m−3)...×2×1

while, when ν is half-odd integer (say ν = m+ 1
2 ), we have

Γ (ν) = Γ
(
m+

1

2

)
=

(
m− 1

2

)
!=

(
m− 1

2

)
×
(
m− 3

2

)
...
3

2
× 1

2
×√

π
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where we have used

Γ
(
1

2

)
=
√
π.

Stirling approximation.We start from the integral representation for the facto-
rial

Γ (ν+1) = ν!=
∫ +∞

0
e−xxν dx ν > 0

and we derive an asymptotic expression for it. It is not difficult to see that when

ν � 1, the main contribution to this integral comes from the region around x≈ ν ,
with a width of order

√
ν . In view of this, if we write

x= ν+
√
νξ

and plug it back into the integral, we get

ν!=
√
ν
(ν
e

)ν ∫ +∞

−√
ν
e−

√
νξ
(
1+

ξ√
ν

)ν
dξ .

The integrand has a maximum in ξ = 0 and goes very fast to zero on both sides
of it. We therefore expand the logarithm of the integrand around ξ = 0, and take
the exponential of the resulting expression

ν!=
√
ν
(ν
e

)ν ∫ +∞

−√
ν
e−

ξ2
2 + ξ3

3
√
ν −...dξ .

When ν is large, we can approximate the integrand with a Gaussian and send
the lower limit of integration to infinity. The resulting expression is known as the

Stirling formula

ν!≈
(ν
e

)ν √
2πν ν � 1.

Multidimensional sphere. Consider a d dimensional space with coordinates xi
(i= 1,2, ...,d). The infinitesimal volume element of this space is

dVd =
d

∏
i=1

(dxi)

and the volume of a d dimensional sphere with radius R may be written as

Vd =CdRd

with its infinitesimal variation connected to the d dimensional surface Sd

dVd = SddR=CddRd−1dR.
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In the above expression, the constant Cd has to be determined. To do that, we

make use of the formula √
π =

∫ +∞

−∞
e−x2 dx.

Using an integral of this type for each of the xi involved, we obtain

πd/2 =
∫ +∞

−∞
dx1
∫ +∞

−∞
dx2...

∫ +∞

−∞
dxd e−∑

d
i=1 x

2
i =

∫ +∞

0
e−R2CddRd−1dR

where we have used polar coordinates with the radius given by

R=
√

x21+ x22+ ...+ x2d .

We now use the definition of Gamma function to get

πd/2 =
1

2
dCdΓ

(
d
2

)
=Cd(d/2)!

so that the volume and surface for the d dimensional sphere with radius R are

Vd =
πd/2

(d/2)!
Rd Sd =

2πd/2

(d/2−1)!R
d−1.

Bose-Einstein functions. In the theory of the Bose-Einstein gas, we will use the
following integrals

gν(z) =
1

Γ (ν)

∫ +∞

0

xν−1dx
z−1ex−1 .

When ν = 1, the integral can be solved exactly

g1(z) =
1

Γ (1)

∫ +∞

0

dx
z−1ex−1 = ln(1− ze−x)

∣∣+∞
0

=− ln(1− z).

A simple differentiation of gν(z) leads to the following recurrence formula

z
dgν(z)
dz

= gν−1(z).

When z is small, the integrand may be expanded in powers of z

gν(z) =
1

Γ (ν)

∫ +∞

0
xν−1

+∞

∑
l=1

(ze−x)l dx=
+∞

∑
l=1

zl

lν
= z+

z2

2ν
+

z3

3ν
+ ...

When z→ 1 and ν > 1, the function gν(z) approaches the Riemann zeta function
ζ (ν)

gν(1) =
1

Γ (ν)

∫ +∞

0
xν−1

+∞

∑
l=1

(e−x)l dx=
+∞

∑
l=1

1

lν
= ζ (ν).
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Some of the useful values of the Riemann zeta function are here reported

ζ (2) =
π2

6
ζ (4) =

π4

90
ζ (6) =

π6

945
.

The behaviour of gν(z) for z close to 1 and 0 < ν < 1 is given by the following

approximate formula

gν(e−α)≈ Γ (1−ν)
α1−ν z= e−α ≈ 1.

Fermi-Dirac functions. In the theory of the Fermi-Dirac gas, we will use the
following integrals

fν(z) =
1

Γ (ν)

∫ +∞

0

xν−1dx
z−1ex+1

.

When ν = 1, the integral can be solved exactly

f1(z) =
1

Γ (1)

∫ +∞

0

dx
z−1ex+1

=− ln(1+ ze−x)
∣∣+∞
0

= ln(1+ z).

As for the case of the Bose-Einstein functions, we have a recurrence relation

z
d fν(z)
dz

= fν−1(z)

and an expansion for small z

fν(z)=
1

Γ (ν)

∫ +∞

0
xν−1

+∞

∑
l=1

(−1)l−1(ze−x)ldx=
+∞

∑
l=1

(−1)l−1 z
l

lν
=z− z2

2ν
+

z3

3ν
− ...

The limit ν → 1 is connected to the Riemann zeta function ζ (ν)

fν(1) =
1

Γ (ν)

∫ +∞

0

xν−1dx
ex+1

=

(
1− 1

2ν−1

)
ζ (ν).
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Part II

Quantum Mechanics – Problems



2

Formalism of Quantum Mechanics
and One Dimensional Problems

Problem 2.1.
Let Â = Â† be an observable operator with a complete set of eigenstates |φn〉 with
eigenvalues αn (n= 0,1,2, ...). A generic state is given by

|ψ〉= N (3|ψ1〉−4i|ψ2〉)

where |ψ1〉, |ψ2〉 are orthonormal. Find N and the probability P4 that a measure-
ment of Â yields α4. What does it happen in case of degeneracy? Specialize these
calculations to the case |φn〉= |ψn〉.
Solution
The principles of Quantum Mechanics are encoded in four postulates:

the first postulate states that all the information for a physical system is contained

in a state vector |ψ(t)〉 properly defined in Hilbert space;
the second postulate fixes the properties of the Hermitian operators that represent

the classical variables like x (position) and p (momentum);
the third postulate says that regardless the state |ψ(t)〉 of a particle, the mea-
surement of an observable (with Ô the associated self-adjoint operator) produces
as result one of the eigenvalues O of Ô with probability P(O) = |〈O|ψ(t)〉|2.
Soon after the measurement, the system is projected into the eigenstate |O〉 cor-
responding to the eigenvalue O;
the fourth postulate gives the time evolution according to the Schrödinger equa-

tion

ih̄
∂
∂ t

|ψ(t)〉= Ĥ|ψ(t)〉

where Ĥ is the Hermitian operator known as Hamiltonian of the system.

It is the third postulate that applies here. However, preliminarly, we need to fix N in
order to normalize the wave function. A direct calculation shows that

1= 〈ψ|ψ〉= N2 (9+16)

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 2, c© Springer-Verlag Italia 2012
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from which N = 1
5 and

|ψ〉= 1

5
(3|ψ1〉−4i|ψ2〉) .

The probability that a measurement of the observable Â gives a particular eigenvalue
αn of the associated Hermitian operator, is given by the square modulus of the over-

lap between the state and the eigenstate |φn〉. In our case, the desired probability is

P4 =
1

25
|3〈φ4|ψ1〉−4i〈φ4|ψ2〉|2.

In case of degeneracy, we have to sum over all the eigenstates corresponding to the

same eigenvalue. When |φn〉 = |ψn〉, we only have two possible outcomes for the
measurement, i.e. α1 and α2. The associated probabilities can be calculated explic-
itly

P1 =
9

25
P2 =

16

25

that correctly satisfy P1+P2 = 1.

Problem 2.2.
Consider the operators Â, B̂, Ĉ, D̂, Ê, F̂ and simplify the commutator [ÂB̂Ĉ, D̂ÊF̂ ]
so as to show only commutators of type [X̂ ,Ŷ ], with X̂ ,Ŷ chosen among the above
mentioned operators.

Solution
We start by analyzing the simple commutator [ÂB̂,Ĉ]. Expanding it and introducing
the term ÂĈB̂, we get

[ÂB̂,Ĉ] =ÂB̂Ĉ−ĈÂB̂= ÂB̂Ĉ−ĈÂB̂± ÂĈB̂=

ÂB̂Ĉ− ÂĈB̂−ĈÂB̂+ ÂĈB̂= Â[B̂,Ĉ]+ [Â,Ĉ]B̂

which is a bilinear relation also known as the Jacobi identity. By a systematic use
of this property, we see that

[ÂB̂Ĉ, D̂ÊF̂ ] = Â[B̂Ĉ, D̂ÊF̂ ]+ [Â, D̂ÊF̂ ]B̂Ĉ

and, iterating this procedure, we obtain

[ÂB̂Ĉ, D̂ÊF̂ ] =ÂB̂{[Ĉ, D̂]ÊF̂+ D̂[Ĉ, Ê]F̂+ D̂Ê[Ĉ, F̂ ]}+
Â{[B̂, D̂]ÊF̂+ D̂[B̂, Ê]F̂+ D̂Ê[B̂, F̂ ]}Ĉ+
{[Â, D̂]ÊF̂+ D̂[Â, Ê]F̂+ D̂Ê[Â, F̂ ]}B̂Ĉ.

Problem 2.3.
When electrons impinge on a double slit, a diffraction pattern is obtained on a screen

located at distance l (a � l, with a the distance between the slits) from the slits: a
sketch is in Fig. 2.1, where O denotes the central maximum and x is a point seen
at angle θ1 from a slit and θ2 from the other. Let 2Δx be the position of the second
maximum. Determine Δx. For a given wavelength λ , determine the momenta (p1
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Fig. 2.1 Sketch of the diffraction pattern due to an electron beam passing through a double slit. The
slits are separated by a distance a. The diffraction pattern emerges on a screen located at distance
l from the slits. The resulting momentum transferred to the slits is connected to the position of the
maxima of intensity in the diffraction pattern through the Heisenberg uncertainty relation. Details
are reported in Problem 2.3

and p2) transferred to the slits and verify that the product ΔxΔ p (Δ p = |p1− p2|)
agrees with Heisenberg uncertainty relation.

Solution
Electrons and any other kind of microscopic particles have wave properties in agree-

ment with the De Broglie relation

p= h̄k =
2π h̄
λ

=
h
λ

involving momentum p and wavelength λ . If a particle has such a high momentum
that the wavelength is smaller than all the characteristic lengths in the experiment,

the typical wave phenomena like interference and diffraction may be hard to see.

The electron mass is light, and if the energy is in the Electronvolt (eV) range, p is
such that λ is comparable with the typical lattice spacing in many crystals. Anyhow
one can see wave phenomena in experiments such as electron diffraction through

thin metal films. The present problem illustrates this situation in the simple special

case of the double slit. Electrons hitting x on the second screen are deflected by the
first screen while passing it. Suppose the screen is set in motion by the electron and

we can calculate the momentum transfer from its recoil speed. We need to consider

only the vertical components of the momenta. The electron trajectories arriving at

point x through slit 1 or 2 have different deflections, and the momentum transfer is
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different, namely

p1 =
h
λ
sinθ1 ≈ h

λ
θ1 p2 =

h
λ
sinθ2 ≈ h

λ
θ2

where we have assumed that θ1, θ2 are small, corresponding to the condition that
the distance between the slits is very small respect to the distance of the screen from

the slits, i.e. a� l. Due to the geometry of the problem, we get

tanθ1 =
x− 1

2a
l

≈ θ1

tanθ2 =
x+ 1

2a
l

≈ θ2

from which we obtain

Δ p= |p1− p2|= h
λ
|sinθ1− sinθ2| ≈ h

λ
|θ1−θ2|= ha

λ l
.

Let us consider two waves with the same frequency and at the same time t:
A1ei(ωt+φ1), A2ei(ωt+φ2), with A1,A2 real numbers. Let I be the intensity of the wave
resulting from the superposition of the two

I = A21+A22+2A1A2 cos(φ1−φ2).

The term cos(φ1−φ2) is responsible for the phenomenon of interference, which is
constructive if

φ1−φ2 = kx12 = kasinθ =
2π
λ

asinθ ≈ 2π
λ

aθ = 2πm

with m an integer number and x12 the difference in the distances travelled by the two
beams arriving in x. As for the angle θ , we can use the average value of θ1 and θ2
given above

θ =
1

2
(θ1+θ2)≈

(x+ 1
2a)+(x− 1

2a)
2l

=
x
l
.

Let 2Δx be the distance between the second maximum and the origin O. We may
see Δx as the maximum error allowed on the distance, i.e. if the error is above Δx
we are unable to distinguish the location of the maxima. The relation between Δx,
a and λ is

θ =
2Δx
l

=
λ
a

where we have used the previous result with m = 1 and θ = 2Δx
l . The uncertainty

principle in this experiment takes the form: any determination of the two possible

alternatives for the electron destroys the interference between them. In other terms,

any measurement that allows one to know which slit the electron went through de-
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stroys the interference. Putting together all the results for Δx and Δ p, we obtain

ΔxΔ p=
1

2
h

that is Heisenberg uncertainty relation. A possible interpretation is that the first

screen recoils due to momentum transfer and this causes a shift of order Δx on
the second screen.

Problem 2.4.
Consider a one dimensional quantum harmonic oscillator with frequency ω and

mass m. Using the creation and annihilation operators to represent the position op-
erator x̂, determine the matrix elements (x̂2)0,0, (x̂2)1,1, (x̂2)2,2, (x̂2)0,2, (x̂5)10,5. The
matrix element (x̂)m,n = 〈m|x̂|n〉 is defined on the eigenstates |n〉 of the Hamiltonian
with eigenvalues En = (n+ 1

2 )h̄ω with n= 0,1,2,3, ....

Solution
The relation between the position and the creation and annihilation operators is

x̂=
x0√
2
(â+ â†)

where x0 =
√

h̄
mω is the characteristic length scale of the oscillator. The momentum

operator p̂ is written as

p̂=−i
h̄

x0
√
2
(â− â†)

and the Hamiltonian becomes

Ĥ =
p̂2

2m
+
1

2
mω x̂2 =

(
â†â+

1

2
11

)
h̄ω =

(
n̂+

1

2
11

)
h̄ω

where we have defined the number operator n̂ = â†â such that n̂ |n〉 = n |n〉. The
creation and annihilation operators satisfy the commutation rule

[â, â†] = ââ†− â†â= ââ†− n̂= 11.

Moreover, we know that â and â† act as step down and step up operators on the
eigenstates |n〉

â|n〉=√
n|n−1〉 â†|n〉=√

n+1|n+1〉
from which we see that

|n〉= 1√
n!
(â†)n|0〉.

Since â† increases n by 1 while â decreases n by 1, the only terms in the expansion of
(â+ â†)n that contribute are those with an equal number of â and â†. Thus, squaring
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x̂ one finds the operator identity

x̂2 =
x20
2
(â2+(â†)2+ ââ†+ â†â) =

x20
2
(â2+(â†)2+11+2n̂)

and

(x̂2)n,n =
x20
2
(1+2n)

and we find

(x̂2)0,0 =
1

2
x20 (x̂2)1,1 =

3

2
x20 (x̂2)2,2 =

5

2
x20.

By the same token, only products of annihilation operators count in the calcula-

tion of matrix elements like (x̂2)0,2 where one must go down by one step at each
occurrence of x̂. Since â√

2
|2〉= |1〉 and â|1〉= |0〉, we find

(x̂2)0,2 =
1

2
x20〈0|â2|2〉=

1√
2
x20.

A similar reasoning helps one to obtain (x̂5)10,5. In such a case, we consider x̂5 =
x50
25/2

(â+ â†)5, and select the only term allowing for 5 steps up, i.e. the term (â†)5.
The result is

(x̂5)10,5 =
x50√
25

〈10|(â†)5|5〉= x50√
5!25

〈10|(â†)10|0〉= x50
4
√
2

√
10!

5!
.

Problem 2.5.
Consider the wave packet

ψ(x, t = 0) = Ae−x2/4a2eik0x

with a, k0 constants and A a normalization factor. Show that this wave packet min-
imizes Heisenberg uncertainty relations for the position and momentum operators.

Finally, determine the time evolution of the wave packet at a generic time t.

Solution
We start by a statement of the relation between the wave packet at time t = 0 and

the energy eigenfunctions. These are solutions of the Schrödinger equation with

the energy eigenvalue falling in the free-particle continuum. Such solutions may be

labeled e.g. by the momentum. This set is complete. This is tantamount to say that

any reasonable function ψ(x) can be expanded in this basis

ψ(x) =
∫

cFψF(x)dF

where F is an appropriate set of quantum numbers. Since a generic quantum number
can take continuous values, as is the case when F stands for the momentum compo-
nents, we are using a notation involving the integral sign rather than the summation
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sign, which is typical of the discrete spectrum. In general, one has to consider con-

tinuous and discrete summations, as is the case if the continuum states bear angular
momentum quantum numbers. For definiteness, here we develop the case when F
is a continuous set, like the momentum components. The continuum eigenfunctions

ψF cannot be normalized like those of the discrete spectrum, by setting the integral

of the square modulus equal to 1. Unbound particles have a comparable probability

to be at any distance from the origin, so the wave function does not vanish at infinity,

and the integral blows up. We can normalize differently. We impose that |cF |2dF is
the probability that a measurement of F̂ is found to be between F and F + dF . By
completeness, we have ∫

ψ∗(x)ψ(x)dx=
∫

c∗FcFdF = 1.

The coefficients cF are found, in complete analogy with the discrete spectrum, by
projecting the function ψ(x) on the ψF(x). From the last equation, using the expan-
sion of ψ(x) in terms of the ψF(x), we deduce that

∫
c∗F

(∫
ψ(x)ψ∗

F(x)dx− cF

)
dF = 0.

For an arbitrary value of the coefficient cF , the above equation is satisfied only if
the integrand is zero, so that

cF =
∫

ψ(x)ψ∗
F(x)dx.

Again, using the expansion of ψ in terms of the ψF , we find

cF =
∫

ψ(x)ψ∗
F(x)dx=

∫
cF ′ψF ′(x)ψ∗

F(x)dxdF
′.

For an arbitrary value of cF , the last equation is satisfied only if∫
ψF(x)ψ∗

F ′(x)dx= δ (F−F ′)

and the functions ψF(x) are orthogonal for F �= F ′.
By this formalism we are now in position to deal with the wave packet. The

ψF eigenfunctions cannot be realized physically. For example, if they have a well-

defined momentum, the particle cannot be localized in any spatial domain however

large. The wave packet given by the problem is still a free particle wave function,

but it is localized in a region of size a. It can be normalized by taking A such that

1= |A|2
∫ +∞

−∞
|ψ(x)|2 dx= |A|2

∫ +∞

−∞
e−

x2

2a2 dx= |A|2a
√
2π
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from which A = 1/(2πa2)1/4. We can also expand ψ(x) in terms of plane waves,
corresponding to a Fourier integral of the wave packet

ψ(x) =
1√
2π

∫ +∞

−∞
ψ(k)eikxdk

where ψ(k), eikx play the role of the cF , ψF we have previously introduced. The

factor
√
2π is required for the correct normalization of the plane waves

〈x|k〉= 1√
2π

eikx 〈k|k′〉= 1

2π

∫ +∞

−∞
ei(k−k′)x dx= δ (k− k′).

The integral determining ψ(k) can be done by completing the square, and it is found
to be proportional to an exponential function

ψ(k) ∝
∫ +∞

−∞
e−ikxe−

x2

4a2 eik0x dx ∝ e−a2(k−k0)2 .

We can fix the normalization constant in front of it by imposing that |ψ(k)|2 is
normalized to unity. We then get

ψ(k) =
(
2a2

π

) 1
4

e−a2(k−k0)2

that is the Gaussian function centered in k0, i.e. the expectation value for p/h̄. By
the properties of the Gaussian distributions, we find that the uncertainties are

Δx=
√

〈x̂2〉−〈x̂〉2 = a Δk =
√

〈k̂2〉−〈k̂〉2 = 1

2a
.

We can verify explicitly this result in the case of the position operator x̂. The quantity
〈x̂〉 is zero due to the symmetries in the integral. At the same time, the average
squared position is

〈x̂2〉= 1√
2πa

∫ +∞

−∞
x2e−

x2

2a2 dx=
1√
2πa

lim
β→1

(−2a2) d
dβ

∫ +∞

−∞
e−

x2β
2a2 dx=

1√
2πa

(−2a2)
√
2πa lim

β→1
d
dβ

β− 1
2 = a2

from which we prove that Δx = a. Given the relation between the wave vector and
the momentum, p= h̄k, we find

ΔxΔ p=
h̄
2

that is the Heisenberg uncertainty relation for momentum and position.
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We can now discuss the time evolution. We need to solve the Schrödinger equa-

tion

ih̄
∂ |ψ(t)〉

∂ t
= Ĥ |ψ(t)〉

when the Hamiltonian does not depend explicitly on time. The general method of
separation of variables applies and we seek a solution of the form |ψ(t)〉= A(t)|ψ〉,
with the result ⎧⎨

⎩ih̄ dA(t)
dt = EA(t)

Ĥ |ψE〉= E |ψE〉
that is a couple of ordinary differential equations with constant coefficients. The

second is the stationary Schrödinger equation and yields the Hamiltonian eigen-

functions with energy E. Once E is known, we can insert it into the solution of the
first equation

A(t) = e−
iEt
h̄ .

We see that the states with a well defined value of the energy evolve like

ψE(x, t) = e−
iEt
h̄ ψE(x).

Going back to our wave packet, all the plane waves evolve in time with a well

defined phase

ψ(x, t) =
1√
2π

∫ +∞

−∞
ψ(k)ei(kx−ωt)dk

where, for the plane wave, we know that E = h̄ω = p2/2m = h̄2k2/2m. The above
integral can be done exactly, once we use the ψ(k) previously determined

ψ(x, t) =
1

(2π)1/2

(
2a2

π

) 1
4
∫ +∞

−∞
e−a2(k−k0)2+ikx− ih̄k2t

2m dk =

1

(2π)1/2

(
2a2

π

) 1
4

e−a2k20
∫ +∞

−∞
e−k2(a2+ ih̄t

2m )+k(2k0a2+ix)dk =

1

(2π)1/2

(
2a2

π

) 1
4
√

π(
a2+ ih̄t

2m

)e−a2k20e
(2k0a2+ix)

2

4(a2+ ih̄t
2m )

where we have completed the square in the exponential function. The resulting prob-

ability density function is

P(x, t) = |ψ(x, t)|2 = 1

√
2πa2

√
1+
(

h̄t
2ma2

)2 e
−

(
x− h̄k0t

m

)2

2a2
(
1+

(
h̄t

2ma2

)2)
.

The width (the variance of the Gaussian distribution) of the wave packet is propor-

tional to a2(1+( h̄t
2ma2 )

2), i.e. it increases as a function of time. The maximum of
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Fig. 2.2 The probability distribution function P(x, t) obtained in Problem 2.5, starting from the

initial wave packet ψ(x, t = 0) = 1

(2πa2)1/4
e−x2/4a2eik0x. We plot the case with a= 1, h̄

2ma2 = 1 and

h̄k0
m = 1 for two characteristic times t = 0 and t = 2.0

P(x, t) is not in x= 0 any longer, and it has moved to x0 = h̄k0t/m= p0t/m. We see
that the average value of the position evolves in time as the position of a point-like

particle with mass m and constant velocity p0/m

d〈x̂〉t
dt

=
p0
m

.

The evolution of P(x, t) is sketched in Fig. 2.2.

Problem 2.6.
Let us consider a quantum system with two states. The matrix representation of the

Hamiltonian in a given vector basis (assume h̄= 1 for simplicity) is

Ĥ =

(
0 1

1 0

)
;

determine the eigenstates and eigenvalues of Ĥ;
determine the time evolution operator e−iĤt ;

let

|ψ(0)〉=
(
1

0

)
Ô=

(
1 0

0 2

)

be the wave function at a time t = 0 and an observable Ô. Using the Schrödinger
representation, find the probability that a measurement of the observable Ô at a
time t > 0 gives 2. Repeat the calculation with the Heisenberg representation.
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Solution
The Hamiltonian matrix Ĥ coincides with the famous Pauli σ̂x matrix and its eigen-

vectors and eigenvalues are particularly simple. To determine the eigenvalues, we

have to solve

det

(
−λ 1

1 −λ

)
= λ 2−1= 0

from which we get λ = ±1. To determine the eigenvector |ψ1〉, corresponding to
λ = 1, we set (

0 1

1 0

)(
a
b

)
=

(
a
b

)

yielding a= b. The normalization condition (a2+b2 = 1), completely fixes |ψ1〉 up
to an unessential constant phase factor. The procedure must be repeated to find the

eigenvector corresponding to the eigenvalue −1. Eventually, we get

|ψ1〉= 1√
2

(
1

1

)
|ψ2〉= 1√

2

(
1

−1

)
.

We evaluate e−iĤt using three independent (but of course equivalent) approaches.

First, we rely on the definition of an analytic function of a matrix through the Taylor

series expansion

e−iĤt =
+∞

∑
n=0

1

n!
(−iĤt)n =

+∞

∑
n=0

(−1)n
2n!

t2n− iĤ
+∞

∑
n=0

(−1)n
(2n+1)!

t(2n+1) =

11cos t− iĤ sin t =

(
cos t − isin t

−isin t cos t

)

where we have used the property σ̂2nx = 11 and σ̂2n+1x = σ̂x, where n is an integer
number. Alternatively, we can use the Cauchy integral

e−iĤt =
1

2πi

∮ e−itz

(z11− Ĥ)
dz=

1

2πi

∮ e−itz

(z2−1)

(
z 1

1 z

)
dz=

(
1
2πi
∮ e−itz

(z2−1) zdz
1
2πi
∮ e−itz

(z2−1)dz
1
2πi
∮ e−itz

(z2−1)dz
1
2πi
∮ e−itz

(z2−1) zdz

)
=

(
cos t −isin t
−isin t cos t

)
.

As a third possibility, one starts defining a function F̂(Â) of a diagonal matrix Â
in the most obvious way, as the diagonal matrix obtained by applying F to the

elements on the diagonal. The definition extends naturally to all matrices that can

be diagonalized through a similarity transformation Ĉ. In other terms, ĈÂĈ−1 is
diagonal, so we apply F̂ , go back to the original basis, and define

F̂(Â) = ĈF̂(ĈÂĈ−1)Ĉ−1.
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The required matrix is

Ĉ = Ĉ−1 =
1√
2

(
1 1

1 −1

)

and its columns are |ψ1〉 , |ψ2〉. By these formulae, in our case we get again

Û(t) = e−iĤt =
1

2

(
1 1

1 −1

)(
e−it 0

0 eit

)(
1 1

1 −1

)
=

(
cos t −isin t
−isin t cos t

)
.

The operator Û(t) enables us to proceed at once with the time evolution of |ψ(0)〉
according to |ψ(t)〉= e−iĤt |ψ(0)〉

|ψ(t)〉= e−iĤt |ψ(0)〉=
(

cos t− isin t
−isin t cos t

)(
1

0

)
=

(
cos t
−isin t

)
.

This is a toy example, but generally the explicit calculation of e−iĤt in closed form

is prohibitively difficult. It may be easier to project the wave function on the basis

of the eigenfunctions of the Hamiltonian (|ψ1〉 , |ψ2〉). Then e−iĤt is diagonal with

eigenvalues e∓it .We first expand |ψ(0)〉

|ψ(0)〉= 1√
2
(|ψ1〉+ |ψ2〉).

Then, the associated time evolution is

|ψ(t)〉= e−iĤt |ψ(0)〉= 1√
2
(e−it |ψ1〉+ eit |ψ2〉) =

(
cos t

−isin t

)
.

Let us now discuss the properties of the operator Ô. The eigenvectors of Ô are

|ψ̃1〉=
(
1

0

)
|ψ̃2〉=

(
0

1

)
.

They differ from the |ψ1〉 , |ψ2〉 we found before. A measurement of Ô can give the
eigenvalue 2, only if the system is described by |ψ̃2〉. Writing

|ψ(t)〉=
(
cos t
−isin t

)
= cos t

(
1

0

)
− isin t

(
0

1

)
= c1(t) |ψ̃1〉+ c2(t) |ψ̃2〉

the sought probability is

P(2)t>0 = |〈ψ(t)|ψ̃2〉|2 = sin2 t.

Note that the initial wave function, |ψ(0)〉 = |ψ̃1〉, has no |ψ̃2〉 component and the
probability of a measurement giving 2 is P(2)t=0 = sin2(0) = 0. It is the time evolu-
tion that produces this probability. In summary: the probability that a measurement

of an observable Ô at time t = 0 yields Ok (eigenvalue of Ô, which belongs to the



Problems 51

eigenvector |ψ̃k〉) is the square modulus of the coefficient ck of |ψ̃k〉 in the expansion
of the wave function in the basis of eigenvectors of Ô. If Ô commutes with Ĥ the

coefficient ck is constant for t > 0. Otherwise, if Ô fails to commute with Ĥ, its time
dependence must be computed as we have seen.

In what we have seen above, the time dependence is entirely in the quantum state

|ψ(t)〉 and the operators do not depend on time (this is known as Schrödinger (S)
representation). QuantumMechanics, however, can also be formulated in a different
but equivalent form, in which the time dependence is passed from the quantum states

to the operators (this is known as Heisenberg (H) representation), i.e. the operators
evolve in time, while the wave function is kept the same as the initial time. The

Heisenberg operator is

ÔH(t) = Û−1(t)ÔÛ(t) = eiĤt Ôe−iĤt =

(
1+ sin2 t isin t cos t

−isin t cos t 1+ cos2 t

)
.

Since ÔH(t) = Û−1(t)ÔÛ(t) is a unitary transformation, the eigenvalues of ÔH are

still 1,2 and the eigenvectors are the columns of

Û−1(t) = eiĤt =

(
cos t isin t
isin t cos t

)
.

In this way, we find the relation between the Heisenberg and Schrödinger represen-

tations
|ψS(t)〉= Û(t) |ψH〉

ÔH(t) = Û−1(t)ÔSÛ(t).

The initial state is |ψ̃1〉, and we use it to calculate the expectation value in the
Heisenberg picture

〈ψ̃1|ÔH(t)|ψ̃1〉= 1+ sin2 t = λ1|c1|2+λ2|c2|2

where λ1,λ2 = 1,2 are the eigenvalues of ÔH(t) and c1,c2 the coefficients of the
expansion in the vector basis where ÔH(t) is diagonal. Since |c1|2+ |c2|2 = 1, we

get

P(2)t>0 = |c2|2 = sin2 t
in agreement with the previous result.

Problem 2.7.
A quantum harmonic oscillator has the Hamiltonian

Ĥ =

(
â†â+

1

2
11

)
h̄= ω = m= 1

where â† and â are the creation/annihilation operators. The oscillator is such that,
at a time t = 0, measurements of the energy never give results above E > 2. Give a

matrix representation for the operators Ĥ, x̂ = (â+ â†)/
√
2, p̂ = −i(â− â†)/

√
2
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using the formalism of the creation/annihilation operators. Verify the results in the

Schrödinger formalism. Then, for t > 0, determine the matrices x̂(t), p̂(t) in the
Heisenberg representation. Finally, verify the matrix elements of x̂(t), p̂(t) with the
time evolution of the wave function and the Schrödinger representation.

Solution
The eigenvalues of the Hamiltonian of the quantum harmonic oscillator are

En =

(
n+

1

2

)

because h̄ = ω = 1. The only eigenvalues lower than 2 are E0 = 1
2 and E1 = 3

2 .

Therefore, the wave function is a superposition of the first two states |0〉 and |1〉.
The matrix representations correspond to 2× 2 matrices whose elements are the
scalar product with these states. For a generic operator Â we have

Â=

(
〈0|Â|0〉 〈0|Â|1〉
〈1|Â|0〉 〈1|Â|1〉

)
.

Using the relation between â, â†, x̂, p̂ given in the text and recalling the step up and
step down action of the creation and annihilation operators on the generic eigenstate

â† |n〉=√
n+1 |n+1〉 â |n〉=√

n |n−1〉
we easily obtain all the operators at time t = 0

Ĥ =
1

2
11+

(
0 0

0 1

)
x̂(0) =

1√
2

(
0 1

1 0

)
p̂(0) =

i√
2

(
0 −1
1 0

)

and the eigenstates

|0〉=
(
1

0

)
|1〉=

(
0

1

)
.

We can now verify these results in the Schrödinger formalism. The normalized

eigenfunctions of the ground state and the first excited state are

ψ0(x) = 〈x |0〉= 1

π
1
4

e−
1
2 x
2

ψ1(x) = 〈x |1〉=
√
2

π
1
4

xe−
1
2 x
2

and we want to calculate the matrix elements 〈0| x̂ |0〉, 〈1| x̂ |1〉, 〈0| x̂ |1〉, 〈1| x̂ |0〉 and
those with p̂ in place of x̂. The first two of these elements are always zero because
the integrand function is even while the operator is odd. The other elements are

〈0| x̂ |1〉=〈1| x̂ |0〉=
∫ +∞

−∞
〈1| x̂|x〉〈x |0〉 dx=

∫ +∞

−∞
x〈1|x〉〈x |0〉 dx=

√
2

π

∫ +∞

−∞
x2e−x2 dx=

1√
2
.
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Similarly, for the matrix elements 〈0| p̂ |1〉 and 〈1| p̂ |0〉, we find

〈1| p̂ |0〉=−〈0| p̂ |1〉=
∫ +∞

−∞
〈1|x〉〈x|p̂ |0〉 dx=−i

∫ +∞

−∞
〈1|x〉 d

dx
〈x |0〉 dx=

− i

√
2

π

∫ +∞

−∞
xe−

1
2 x
2 d
dx

(
e−

1
2 x
2
)
dx= i

√
2

π

∫ +∞

−∞
x2e−x2 dx=

i√
2
.

The expressions of x̂(t) and p̂(t) in the Heisenberg representation (see also Problem
2.6) are

x̂(t) =eiĤt x̂(0)e−iĤt =
1√
2

(
e

it
2 0

0 e
3it
2

)(
0 1

1 0

)(
e−

it
2 0

0 e−
3it
2

)
=

1√
2

(
0 e−it

eit 0

)

p̂(t) =eiĤt p̂(0)e−iĤt =
i√
2

(
e

it
2 0

0 e
3it
2

)(
0 −1
1 0

)(
e−

it
2 0

0 e−
3it
2

)
=

i√
2

(
0 − e−it

eit 0

)
.

As for the Schrödinger representation, the time evolution of the eigenstates is

|0(t)〉= e−
it
2

(
1

0

)
|1(t)〉= e−

3it
2

(
0

1

)

and the operators are kept the same as those at time t = 0. The relevant matrix

elements are

〈0(t)| x̂(0) |1(t)〉= 1√
2

(
e

it
2 0

)(
0 1

1 0

)(
0

e−
3it
2

)
=

1√
2
e−it

〈1(t)| x̂(0) |0(t)〉= 1√
2

(
0 e

3it
2

)(
0 1

1 0

)(
e−

it
2

0

)
=

1√
2
eit

〈0(t)| p̂(0) |1(t)〉= i√
2

(
e

it
2 0

)(
0 −1
1 0

)(
0

e−
3it
2

)
=− i√

2
e−it

〈1(t)| p̂(0) |0(t)〉= i√
2

(
0 e

3it
2

)(
0 −1
1 0

)(
e−

it
2

0

)
=

i√
2
eit

and coincide with those of the Heisenberg representation.

Problem 2.8.
A quantum system with two orthonormal states (say |1〉 and |2〉) is described by the
following Hamiltonian

Ĥ = |1〉〈2|+ |2〉〈1|.
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At time t = 0, the average value of the observable

Ô= 3|1〉〈1|− |2〉〈2|

is 〈Ô〉 = −1. Determine the state |ψ(0)〉 at t = 0 and the smallest time t > 0 such

that |ψ(t)〉= |1〉.
Solution
A comment about the notation is in order. The text does not contain matrices, yet

this problem is an exercise on the Heisenberg formulation of Quantum Mechanics,

which is equivalent in principle to the Schrödinger continuous formulation but is

suitable for systems with a finite number of states. The matrix representation of the

Hamiltonian in the vector basis |1〉, |2〉 is given by 〈i|Ĥ| j〉 where |i〉, | j〉= |1〉, |2〉

Ĥ =

(
0 1

1 0

)
.

By diagonalisation and normalisation, one finds the well known eigenvectors of σ̂x

|+〉= 1√
2

(
1

1

)
|−〉= 1√

2

(
1

−1

)

with eigenvalues ±1. The inverse relation is given by

|1〉= |+〉+ |−〉√
2

|2〉= |+〉− |−〉√
2

.

The matrix representation of the operator Ô is

Ô=

(
3 0

0 −1

)
.

The fact that at time t = 0 any measurement of Ô yields the eigenvalue −1, implies
that the initial state coincides with |2〉

|ψ(0)〉= |2〉.

To determine the time evolution of this state, we need to express it in terms of the

eigenstates of Ĥ, which evolve by simple phase factors: from

|ψ(0)〉= |+〉− |−〉√
2

we immediately obtain

|ψ(t)〉= e−it |+〉− eit |−〉√
2
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and

|〈1|ψ(t)〉|2 =
∣∣∣∣
( 〈+|+ 〈−|√

2

)(
e−it |+〉− eit |−〉√

2

)∣∣∣∣
2

= sin2 t

is the probability that at time t the system is in |1〉. The first time that sin2 t = 1 is at
t = π

2 .

Problem 2.9.
A harmonic oscillator has angular frequency ω and Hamiltonian (in standard nota-

tion)

Ĥ =

(
â†â+

1

2
11

)
h̄ω =

(
n̂+

1

2
11

)
h̄ω.

We denote by |n〉 the n-th eigenstate of the Hamiltonian. At time t = 0 the oscillator
is prepared in the state

|ψ(0)〉= |2〉+ |3〉√
2

.

Write the wave function and compute the expectation values of the energy, position,

and momentum operators for t > 0.

Solution
The eigenstates of the Hamiltonian evolve in time with well defined phase factors

given by e−i Eth̄ , with E the energy of the eigenstate. In the case of the harmonic

oscillator, the generic eigenstate |n〉 takes the phase factor e−i(n+ 1
2 )ωt in the time

evolution. Therefore, we find

|ψ(t)〉= |2〉e−i 52ωt + |3〉e−i 72ωt
√
2

.

The average energy on |ψ(t)〉 is

〈Ĥ〉=
(
〈2|ei 52ωt + 〈3|ei 72ωt

√
2

)
Ĥ

(
|2〉e−i 52ωt + |3〉e−i 72ωt

√
2

)
=
1

2

(
5

2
+
7

2

)
h̄ω = 3h̄ω

where we have used Ĥ|n〉= (n̂+ 1
211
)
h̄ω|n〉= (n+ 1

2

)
h̄ω|n〉. The simplest way to

calculate the expectation values of x̂ and p̂ takes advantage of the relations to the
creation and annihilation operators â† and â⎧⎨

⎩
x̂= x0√

2
(â+ â†)

p̂=− ih̄
x0
√
2
(â− â†)

where x0 =
√

h̄
mω is a characteristic length scale of the oscillator. We recall the step

up and step down action of the creation and annihilation operators on the generic

eigenstate

â†|n〉=√
n+1|n+1〉 â|n〉=√

n|n−1〉
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and, using the orthogonality of the eigenstates (〈n|m〉= δnm), one concludes that

〈x̂〉t = x0
2
√
2

(
〈2|ei 52ωt + 〈3|ei 72ωt

)
(â+ â†)

(
|2〉e−i 52ωt + |3〉e−i 72ωt

)
=

x0
2
√
2

(
〈2|ei 52ωt + 〈3|ei 72ωt

)(
(
√
2|1〉+

√
3|3〉)e−i 52ωt+

(
√
3|2〉+2|4〉)e−i 72ωt

)
=

√
3

2
x0 cos(ωt)

〈 p̂〉t =− i
h̄

2
√
2x0

(
〈2|ei 52ωt + 〈3|ei 72ωt

)
(â− â†)

(
|2〉e−i 52ωt + |3〉e−i 72ωt

)
=

− i
h̄

2
√
2x0

(
〈2|ei 52ωt + 〈3|ei 72ωt

)(
(
√
2|1〉−

√
3|3〉)e−i 52ωt+

(
√
3|2〉−2|4〉)e−i 72ωt

)
=− h̄

x0

√
3

2
sin(ωt) =−mωx0

√
3

2
sin(ωt)

corresponding to the dynamical evolution of a classical harmonic oscillator with

zero initial momentum ⎧⎨
⎩〈x̂〉t = 〈x̂〉0 cos(ωt)

〈p̂〉t =−mω〈x̂〉0 sin(ωt)

where 〈x̂〉0 =
√

3
2x0 (see also Problem 2.32).

Problem 2.10.
Calculate the energy levels of a Schrödinger particle in a tree dimensional potential

well with the shape of a parallelepiped of edges a, b, c and infinite walls. This could
be a rough model for an electron in a quantum dot or a metal particle of this shape,

with a size of a few tens of atomic units, such that many properties depend on the

discrete energy levels.

Solution
The three dimensional stationary Schrödinger equation reads

− h̄2

2m
∇2ψ+(U−E)ψ = 0

where ψ = ψ(x,y,z) and where the Laplacian operator is acting on all the three
components x,y,z

− h̄2

2m

(
∂ 2ψ
∂x2

+
∂ 2ψ
∂y2

+
∂ 2ψ
∂ z2

)
+(U−E)ψ = 0.

The potential U(x,y,z) vanishes for 0 ≤ x ≤ a,0 ≤ y ≤ b,0 ≤ z ≤ c. The wave
function cannot penetrate where U diverges: ψ(a,y,z) = ψ(0,y,z) = ψ(x,b,z) =
ψ(x,0,z) = ψ(x,y,c) = ψ(x,y,0) = 0. Since ψ = 0 outside the parallelepiped, the
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Fig. 2.3 An infinite one dimensional potential well with a very strong repulsion in x= 0 and x= a.
In Problem 2.10 we present the solution of the Schrödinger equation with such a kind of potential

derivatives also vanish there, but not inside, so they must be discontinuous at the

boundary. Thanks to the symmetry, the partial differential equation is separable

ψ(x,y,z) = ψx(x)ψy(y)ψz(z)

and in the parallelepiped with edges a,b,c

h̄2

2m

(
1

ψx

d2ψx

dx2
+
1

ψy

d2ψy

dy2
+
1

ψz

d2ψz

dz2

)
+E = 0.

We now set k2 = k2x + k2y + k2z = 2mE/h̄2 = 2m(Ex+Ey+Ez)/h̄2 and solve, sepa-
rately for each variable, three one dimensional identical problems. We choose (arbi-

trarily) to work in the x direction and set ψx ≡ ψ . The resulting potential is plotted
in Fig. 2.3. The solution of the one dimensional Schrödinger equation gives the

following wave function

ψ(x) = Asin(kx+δ ).

The boundary conditions ψ(0) =ψ(a) = 0, if used separately, yield δ = 0 and ka=
nxπ , with nx a positive integer number (nx = 1,2,3, ...). The associated eigenvalues
are

Enx =
h̄2π2n2x
2ma2

and the wave function is

ψnx(x) = Asin
(nxπx

a

)
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with A a normalization constant

A2
∫ a

0
sin2
(nxπx

a

)
dx=

A2a
nxπ

∫ nxπ

0
sin2 xdx=

A2a
nxπ

(
1− cos(2x)

2

)∣∣∣∣
nxπ

0

=
A2a
2

= 1

so that A =
√
2/a. The normalized eigenstates for the three dimensional problem

are

ψ(x,y,z) = ψnx(x)ψny(y)ψnz(z) =

√
8

abc
sin
(nxπx

a

)
sin
(nyπy

b

)
sin
(nzπz

c

)
and the discrete spectrum is given by

Enx,ny,nz =
h̄2π2

2m

(
n2x
a2

+
n2y
b2

+
n2z
c2

)

with nx, ny, nz positive integer numbers.

Problem 2.11.
A Schrödinger particle with Hamiltonian Ĥ = p̂2

2m + V̂ is confined in a one dimen-

sional potential well with infinite walls (V = 0 for 0 ≤ x ≤ a; V = +∞ otherwise)
and its mass m is such that

h̄2π2

2ma2
= ε

with ε a given constant. The eigenfunctions of the Hamiltonian are (see Problem
2.10)

ψn(x) =

√
2

a
sin
(nπx

a

)
with n = 1,2,3, ... a positive integer number. At time t = 0 the particle is prepared
in the state described by

φ(x,0) =
ψ1(x)+ iψ2(x)√

2
.

Compute φ(x, t) and the probability Ple f t(t) of finding the particle at time t in the
region 0 ≤ x ≤ a

2 . Compute also the probability current density J(x, t). Verify the
continuity equation. How does φ(x, t) transform under parity P̂ (with respect to the
center of the well) and time reversal T̂?

Solution
Let us write for short

sn(x) = sin
(nπx

a

)
cn(x) = cos

(nπx
a

)
.

The time evolution driven by Ĥ is such that each eigenstate takes a phase factor

e−iEnt/h̄, where the energies can be written as En = n2ε . Therefore, we find

φ(x, t) =
s1(x)e−i εth̄ + is2(x)e−4i

εt
h̄√

a
.
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The probability density at time t of finding the particle at x is the square modulus

|φ(x, t)|2 = ρ(x, t) =
1

a

(
s21(x)+ s22(x)+2s1(x)s2(x)sin(ω12t)

)
where ω12 = 3ε

h̄ . The probability Ple f t(t) is obtained with the integral of ρ(x, t) in
the interval 0≤ x≤ a

2

Ple f t(t) =
∫ a

2

0
ρ(x, t)dx=

1

2
+
4

3π
sin(ω12t)

where we have used the following indefinite integrals

∫ π/2

0
sin2 xdx=

1

2

∫ π/2

0
(1−2cos(2x))dx= π

4

∫ π/2

0
sinxsin(2x)dx= 2

∫ π/2

0
sin2 xcosxdx= 2

∫ 1

0
y2 dy=

2

3
.

The probability density flux J(x, t) is

J(x, t) =
ih̄
2m

(
φ
∂φ ∗

∂x
−φ ∗ ∂φ

∂x

)
=

h̄
m
ℑ
(
φ ∗ ∂φ

∂x

)
=

h̄π
ma2

[2s1c2− s2c1]cos(ω12t).

Moreover, when we calculate the time derivative of the probability density function,

we get
∂ρ
∂ t

=
3π2h̄
ma3

s2s1 cos(ω12t).

We see that

∂J(x, t)
∂x

=
h̄π
ma2

cos(ω12t)
d
dx

[2s1c2− s2c1] =

h̄π2

ma3
cos(ω12t) [2c1c2−4s1s2−2c2c1+ s2s1] =−3π

2h̄
ma3

s2s1 cos(ω12t)

from which we can check the continuity equation

∂ρ(x, t)
∂ t

+
∂J(x, t)

∂x
=

∂ |φ(x, t)|2
∂ t

+
∂J(x, t)
∂x

= 0.

The above equation is a direct consequence of the Schrödinger equation and is fun-

damental for the Copenhagen interpretation of Quantum Mechanics.

A parity transformation P̂, with respect to the center of the well, is such that
x̃→−x̃, where x̃= x− a

2

P̂s1 = s1 P̂s2 =−s2.

In the Schrödinger theory, the time reversal operator is T̂ = K̂, where K̂ is the

Kramers operator which takes the complex conjugate; this means that if φ(t) is
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Fig. 2.4 We plot the asymmetric potential well with a depthU0 and an infinite barrier on one side.
The width of the well is a. The solution of the Schrödinger equation with this potential is discussed
in Problem 2.12

the solution of the Schrödinger equation with Ĥ(t), then φ ′(t) = φ ∗(−t) solves the
Schrödinger equation with Ĥ(−t) in place of Ĥ(t); therefore φ ∗(−t) is called the
time reversed wave function. Putting all these results together, we find

P̂φ(x, t) =
s1e−i εth̄ − is2e−4i

εt
h̄√

a

T̂ P̂φ(x, t) =
s1e−i εth̄ + is2e−4i

εt
h̄√

a
.

Consequently, the problem is invariant under T̂ P̂.

Problem 2.12.
A particle with mass m = 1/2 moves in the one dimensional potential well U(x)
(see Fig. 2.4) such that ⎧⎪⎪⎨

⎪⎪⎩
U(x) =U0 x≤ 0
U(x) = 0 0< x < a

U(x) = +∞ x≥ a.

Determine the values ofU0 and a for which we find bound states.

Solution
The potential is characterized by three distinct regions and we need to solve the

stationary Schrödinger equation separately in x ≤ 0 (region I), 0 < x < a (region
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II), and x≥ a (region III). In these regions, the potential is constant and the general
integral of the resulting equation with constant coefficients is well known. We solve

the Schrödinger equation in each region and then impose the continuity conditions.

The particle cannot be in the region III where the potential is infinite; therefore, for
x > a we set ψ(x) = 0. In particular, we impose ψ(a) = 0. However, ψ ′(x) cannot
also vanish for x → a from the left, because then ψ(x) = 0 everywhere; it follows

that ψ ′(x) has a jump at x = a, which is due to the divergence in the potential. On
the other hand, for x= 0 the potential is discontinuous but finite and we can assume
the continuity of both ψ and ψ ′. In the region I (where U0 > E, with E the bound
state energy) we must solve

(Ĥ−E)ψI = 0=− h̄2

2m
d2ψI

dx2
+(U0−E)ψI .

Moreover, in the region II, we find

(Ĥ−E)ψII = 0=− h̄2

2m
d2ψII

dx2
−EψII .

The solutions of the above differential equations are⎧⎨
⎩ψI(x) = Ae

√
2m(U0−E)

h̄ x x≤ 0
ψII(x) =C sin

(√
2mE
h̄ x+δ

)
0< x < a

where A,C, δ are integration constants that we shall find by the boundary conditions.
We note that the region I is classically forbidden, because the particle momentum
becomes imaginary. As a consequence of the Heisenberg uncertainty principle, we

cannot say that the particle is in a precise position of the region I without mixing
many momenta. Therefore, for a given momentum, this region is allowed and we

find a non zero probability (decaying exponentially to zero at infinity) to find the

particle there. The boundary condition ψII(a) = 0 leads to

sin

(√
2mE
h̄

a+δ

)
= 0

from which

δ =−
√
2mE
h̄2

a+nπ

with n an integer number. As for the continuity of the first derivative in x = 0, it is
convenient to combine it with the continuity of the function, that is

ψ ′
I(0)

ψI(0)
=

ψ ′
II(0)

ψII(0)
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so that√
2m(U0−E)

h̄
=

√
2mE
h̄

cot

(
−
√
2mE
h̄

a+nπ

)
=−

√
2mE
h̄

cot

(√
2mE
h̄

a

)

which is a transcendental equation. The solution can be worked out graphically. If

we define y= a
√
2m(U0−E)

h̄ and x = a
√
2mE
h̄ (not to be confused with the position in

the beginning of the problem), the solutions are found from the intersection of the

two curves

y=−xcotx

and

y2+ x2 = a2Ū0 = R2 Ū0 =
2mU0
h̄2

given in Fig. 2.5. We note that cotx= cosx/sinx≈ 1/x when x is small. Therefore,
y = −xcotx is negative close to the origin, while y2+ x2 = a2Ū0 is a circle with
radius R= a

√
Ū0 that is positive: near the origin there is no crossing. The function

y=−xcotx is zero when x= π/2. If R= π/2 we have an intersection and a bound
state. There are no bound states if

a2Ū0 = a2
2mU0
h̄2

<
π2

4
.

If a and U0 are such that this inequality is not satisfied, there are as many energy
levels as intersections, k = 1,2, . . ., a finite number at any rate. The intersections
occur in the first quadrant and the arc is a decreasing function; therefore the discrete

eigenvalues are ordered by the quantum number k.

Problem 2.13.
Find the energy spectrum for a particle with mass m in the symmetric potential well
(see Fig. 2.6) ⎧⎪⎪⎨

⎪⎪⎩
U(x) =U0 x≤ 0
U(x) = 0 0< x < a

U(x) =U0 x≥ a

withU0 > 0.

Solution
We first find the general integral in the three regions whereU(x) is constant, then we
discard the solutions that blow up for x→+∞ in the region III or for x→−∞ in the
region I. Following the same procedures of other problems (see also Problems 2.10
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Fig. 2.5 We look for the intersection between the two curves y=−xcotx and y2+x2 = R2, where
R2 = a2Ū0 = a2 2mU0

h̄2
. The case considered here refers to R2 = 8. These intersections are important

to characterize the bound states of a particle with mass m in the asymmetric potential well with
depthU0, width a, and an infinite barrier on one side (see Fig. 2.4)

Fig. 2.6 A symmetric potential well with depth U0 and width a. In Problem 2.13 we study the
solution of the Schrödinger equation for a particle with mass m in this potential field

and 2.12), we arrive at⎧⎪⎪⎨
⎪⎪⎩
ψI(x) = Aek1x x≤ 0
ψII(x) =C sin(kx+δ ) 0< x < a

ψIII(x) = Be−k1x x≥ a
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where A, B, C, δ are integration constants, k2 = 2mE/h̄2, k21 = 2m(U0−E)/h̄2 and
0< E <U0. We need to impose the continuity conditions for the wave function and
its derivative in x= 0 and x= a. These are equivalent to⎧⎨

⎩
ψ ′
I(0)

ψI(0)
=

ψ ′
II(0)

ψII(0)
ψ ′
II(a)

ψII(a)
=

ψ ′
III(a)

ψIII(a)

obtaining ⎧⎨
⎩k1 = kcotδ

−k1 = kcot(ka+δ ).

Combining these results, one finds

cotδ =−cot(ka+δ )

that implies δ =−ka−δ +nπ and

δ =
nπ
2

− ka
2

with n an integer number. Plugging this value of δ in the above equations, we get

cot

(
nπ− ka
2

)
=

k1
k

that is an equation whose solution depends on whether n is even or odd⎧⎨
⎩cot

( ka
2

)
=− k1

k n even

tan
( ka
2

)
= k1

k n odd.

If we define x = ka/2 (not to be confused with the position in the beginning of the
problem), y= k1a/2, the solutions of the transcendental equations are given by the
intersection of the curves (see Fig. 2.7)⎧⎪⎪⎨

⎪⎪⎩
x2+ y2 = R2 = mU0a2

2h̄2

y=−xcotx

y= x tanx.

We note that the discrete spectrum is always present because the curves always

intersect. It is also instructive to compare this result with the one of Problem 2.12,

where the potential well has an infinite barrier on one side. In this case, the curve

y= x tanx would be missing and there is a range of R without a discrete spectrum.



Problems 65

Fig. 2.7 We look for the intersection between the curve x2+ y2 = R2 = mU0a2

2h̄2
and y = x tanx or

y = −xcotx. The case considered here refers to R2 = 8. The variable x is related to the energy of
the bound states for a particle with mass m in the symmetric potential well given in Fig. 2.6. The
choice of the function tanx of cotx depends on the symmetry of the solution (odd or even)

Problem 2.14.
A Schrödinger particle in one dimension is in the state whose amplitude is described

by the wave function

ψ(x) = Ne−
x2

a2

where N is a normalization constant. Determine the average values of the kinetic en-
ergy and position and the density flux associated with the probability density func-

tion |ψ(x)|2.
Solution
First of all, we need to determine the normalization constant N from the condition

∫ +∞

−∞
|ψ(x)|2 dx= 1.

Physically, this says that the probability of spotting the particle in a finite region of

the x axis approximates 1 as closely as we wish, provided that the region is chosen
large enough. Such a scheme fails for ‘free’ states like plane waves: no finite region

however large has any appreciable probability of containing a plane wave state. If

we use the Gaussian integral
∫ +∞
−∞ e−y2dy=

√
π , we find

N2
∫ +∞

−∞
e−

2x2

a2 dx= N2
a√
2

∫ +∞

−∞
e−y2dy= 1
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so that N =

√
1
a

√
2
π . The average value of the kinetic energy T̂ is

〈ψ|T̂ |ψ〉=
∫ +∞

−∞
〈ψ|x〉〈x|T̂ |ψ〉dx=− h̄2

2ma

√
2

π

∫ +∞

−∞
e−

x2

a2
d2

dx2
e−

x2

a2 dx=

− h̄2

2ma

√
2

π

∫ +∞

−∞
e−

x2

a2

(
− 2

a2
+
4x2

a4

)
e−

x2

a2 dx=

h̄2

2ma
a√
π

∫ +∞

−∞

(
2

a2
− 2y2

a2

)
e−y2 dy.

Using the integral
∫ +∞
−∞ y2e−y2dy =

√
π
2 , we get 〈T̂ 〉 = h̄2

2ma2 . The average value of

the position operator 〈x̂〉 is zero: this is due to the symmetry of the wave function
and can be explicitly verified because the calculation of 〈x̂〉 leads to the integral∫ +∞
−∞ ye−y2 dy= 0. As for the density flux

J =
ih̄
2m

(
ψ

dψ∗

dx
−ψ∗ dψ

dx

)
=

h̄
m
ℑ
(
ψ∗ dψ

dx

)

it vanishes (it vanishes identically for ψ = ψ∗, that is, for any real ψ).

Problem 2.15.
Determine the discrete energy spectrum for a particle with massm in the asymmetric
potential well ⎧⎪⎪⎨

⎪⎪⎩
U(x) =U1 x≤ 0
U(x) = 0 0< x < a

U(x) =U2 x≥ a

with 0<U1 <U2.

Solution
We need to solve the Schrödinger equation in the three different regions: x≤ 0 (re-
gion I), 0< x< a (region II) and x≥ a (region III). Following the same procedures
of other problems (see Problems 2.10, 2.12, 2.13) we find the solutions in the three

regions ⎧⎪⎪⎨
⎪⎪⎩
ψI(x) = Aek1x x < 0

ψII(x) =C sin(kx+δ ) 0≤ x≤ a

ψIII(x) = Be−k2x x > a

where A, B,C, δ are integration constants and

k =

√
2mE
h̄2

k1 =

√
2m(U1−E)

h̄2
k2 =

√
2m(U2−E)

h̄2
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Fig. 2.8 We plot the asymmetric potential well with depths U1, U2 and width a. In Problem 2.15
we determine the energy spectrum for this potential

with 0 < E <U1 <U2. The wave functions for x > 0 and x < 0 go to zero when

x→±∞. We need to impose the continuity conditions for the wave function and its
derivative in x= 0 and x= a. These are equivalent to⎧⎨

⎩
ψ ′
I(0)

ψI(0)
=

ψ ′
II(0)

ψII(0)
ψ ′
II(a)

ψII(a)
=

ψ ′
III(a)

ψIII(a)

and we get ⎧⎨
⎩k1 tanδ = k

−k2 tan(ka+δ ) = k

that implies

δ = arctan

(
k
k1

)
+n1π

and

ka+δ =−arctan
(

k
k2

)
+n2π

with n1,n2 integers. Using the relation

arctanx= arcsin
(

x√
1+ x2

)
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and the property

(k/k1,2)√
1+(k/k1,2)2

=

√
E

U1,2
=

kh̄√
2mU1,2

we obtain

δ = arcsin

(
kh̄√
2mU1

)
+n1π

and

ka+δ =−arcsin
(

kh̄√
2mU2

)
+n2π.

The above equations can be subtracted with the result (n= n2−n1)

nπ− ka= arcsin
(

kh̄√
2mU1

)
+ arcsin

(
kh̄√
2mU2

)
.

If we define x= k/b= kh̄/
√
2mU1 =

√
E/U1 (not to be confused with the position

in the beginning of the problem) we rewrite the previous equation as

nπ−abx= arcsinx+ arcsin
(
x

√
U1
U2

)
= arcsinx+ arcsin(xsinγ).

Since we know that U1 <U2 and 0 ≤
√

U1/U2 ≤ 1, we have set sinγ =
√

U1/U2
with 0≤ γ ≤ π/2. Moreover, we define

yn(x) = nπ−abx

identifying different functions, each of them with a different value in x= 0, yn(x=
0) = nπ . Finally, we define

y(x) = arcsinx+ arcsin(xsinγ).

We need 0 ≤ E ≤ U1 for the discrete spectrum. When E varies in this interval,

0 ≤ x ≤ 1 and 0 ≤ arcsinx ≤ π/2. Also, when 0 ≤ x ≤ 1, we see that y(x) is a
monotonically increasing function with the property

0≤ y(x)≤ π/2+ arcsin(sinγ) = π/2+ γ

while the yn(x), which are monotonically decreasing functions, have the property
nπ ≥ yn(x)≥ nπ−ab. The solutions are given by the intersection of the two curves
yn(x) and y(x), i.e. the condition yn(x) = y(x) (see Fig. 2.9). For a fixed (positive) n,
due to the property of y(x), the condition that there is at least one intersection is

nπ−ab≤ π
2
+ γ

that implies the minimum value of yn(x) is below the maximum value of y(x).
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Fig. 2.9 We plot the functions y(x)= arcsinx+arcsin(xsinγ) and yn(x)= nπ−abx (n is an integer)
for the case n= 1. In the upper panel we report the case with γ = π

10 and ab= 2.0 while, in the lower
panel, we report the case with γ = π

10 and ab= 1.0. For a generic integer value n, the condition that
yn(x) intersects y(x) in the interval 0≤ x≤ 1 is nπ−ab≤ π

2 +γ . This condition corresponds to the
existence of a bound state for a particle with mass m in the asymmetric potential well of Fig. 2.8

Problem 2.16.
A particle with mass m is subject to the following one dimensional potential⎧⎨

⎩U(x) = +∞ x≤ 0,x≥ a

U(x) = 0 0< x < a.

At time t = 0 the wave function ψ(x) is such that any measurement of the energy
cannot give results larger than 3h̄2π2/ma2. Besides, the mean energy is 7π2h̄2/8ma2

and the average value of the momentum operator p̂ is 8h̄3a . Find as much as you can
about ψ(x) and the mean value of p̂4 at time t ≥ 0.
Solution
We see that the particle is inside a well with infinite potential barriers in x = 0 and
x = a. The normalized eigenstates and eigenvalues of the Hamiltonian have been
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determined in Problem 2.10, and they are

ψn(x) =

√
2

a
sin
(πnx

a

)

En =
π2h̄2n2

2ma2

with n a positive integer number. The condition E ≤ 3h̄2π2/ma2 requires n≤ 2 and
we are left with

|ψ〉= c1 |ψ1〉+ c2 |ψ2〉
where c1,c2 are complex numbers whose moduli are easily computed from the con-
dition of normalization plus the condition that the average value of the energy is

equal to 7π2h̄2
8ma2 , namely ⎧⎨

⎩|c1|2+ |c2|2 = 1
E = 7π2h̄2

8ma2 = E1|c1|2+E2|c2|2

yielding |c1|2 = 3/4, |c2|2 = 1/4. We wish to find ψ up to a constant phase factor

which has no physical meaning. To this end, we need the phase difference between

c1 and c2. This can be deduced from the mean value of the momentum operator,

since

〈ψ|p̂|ψ〉=8h̄
3a

=
∫ a

0
ψ∗(x)

(
−ih̄

d
dx

)
ψ(x)dx=

− ih̄
∫ a

0

(
|c1|2ψ∗

1

dψ1
dx

+ |c2|2ψ∗
2

dψ2
dx

+ c∗1c2ψ
∗
1

dψ2
dx

+ c∗2c1ψ
∗
2

dψ1
dx

)
dx

where, however, the first two terms can be dropped since the wave functions vanish

in x= 0 and x= a and so∫ a

0
ψ∗
1

dψ1
dx

dx=
∫ a

0
ψ∗
2

dψ2
dx

dx= 0.

If we set c1 = |c1|, c2 = eiα |c2| and we use the indefinite integral
∫
sin(m1x)cos(m2x)dx=−cos(m1−m2)x

2(m1−m2)
− cos(m1+m2)x

2(m1+m2)
+ const.

for m1,m2 integer numbers, we get the following result∫ a

0
ψ∗
1

dψ2
dx

dx=− 8

3a∫ a

0
ψ∗
2

dψ1
dx

dx=
8

3a
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and we find sinα =−2/√3. We cannot find α uniquely. We can do the calculation
of 〈ψ|p̂4|ψ〉 without this information, since

〈x| p̂4 |ψn〉= (−ih̄)4
d4ψn

dx4
=

(−ih̄πn
a

)4
ψn(x)

and so

〈ψ1|p̂4|ψ2〉= 0 〈ψn|p̂4|ψn〉=
(−ih̄πn

a

)4
with the result

〈ψ|p̂4|ψ〉= |c1|2 π
4h̄4

a4
+ |c2|2 16π

4h̄4

a4
=
19π4h̄4

4a4
.

Note that this does not evolve at all in time.

Problem 2.17.
Let |ψA〉 , |ψB〉 be the eigenvectors of the Hamiltonian Ĥ of a two-level system

Ĥ|ψA,B〉= EA,B|ψA,B〉 EA > EB.

Another basis |ψ1〉 , |ψ2〉, with

〈ψi|ψ j〉= δi j i, j = 1,2

is related to |ψA〉 , |ψB〉 by

|ψA,B〉= 1√
2
(|ψ1〉± |ψ2〉).

Find the matrix elements of the Hamiltonian Ĥ ′ in the basis |ψ1〉 , |ψ2〉 using the
dyadic notation and the matrix notation. Then, assuming that at time t = 0 the system
is in |ψ1〉, find the time evolved state using the time dependence of the Ĥ eigenstates,
and calculate the time t such that for the first time the system has probability 1 to

be in |ψ2〉. Show how one obtains the same result by the time evolution operator.
Assume h̄= 1 for simplicity.

Solution
The Hamiltonian Ĥ has the matrix representation

Ĥ =

(
EA 0

0 EB

)

on the basis |ψA〉 , |ψB〉. Writing the Hamiltonian in the equivalent dyadic form, we
get

Ĥ = EA|ψA〉〈ψA|+EB|ψB〉〈ψB|.
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Making the substitutions

Ĥ → Ĥ ′ |ψA〉 → 1√
2
(|ψ1〉+ |ψ2〉) |ψB〉 → 1√

2
(|ψ1〉− |ψ2〉)

and collecting terms, one readily arrives at

Ĥ ′ =
1

2
[(EA+EB)(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|)+(EA−EB)(|ψ1〉〈ψ2|+ |ψ2〉〈ψ1|)].

In matrix notation this is

Ĥ ′ =

(
EA+EB
2

EA−EB
2

EA−EB
2

EA+EB
2

)
.

One can do the same using the matrix notation by introducing the matrix Ĉ whose
columns are the vectors representing |ψA〉 and |ψB〉 in the new basis

Ĉ = Ĉ−1 =
1√
2

(
1 1

1 −1

)
.

This is the transformation matrix that yields directly the result Ĥ ′ = ĈĤĈ. The
evolved state is

|ψ1(t)〉= e−EAt |ψA〉+ e−EBt |ψB〉√
2

.

The amplitude to find the system in |ψ2〉= |ψA〉−|ψB〉√
2

is

A12 = 〈ψ2|ψ1(t)〉= e−iEAt − e−iEBt

2

and the probability is therefore

P12 = A212 =
1− cos((EA−EB)t)

2

that first attains unity at time t = π
(EA−EB)

. Alternatively, one can use the time evolu-

tion operator. Since Ĥ is diagonal, trivially

e−iĤt =

(
e−iEAt 0

0 e−iEBt

)

which leads to

e−iĤ ′t = Ĉe−iĤtĈ =
1

2

(
e−iEAt + e−iEBt e−iEAt − e−iEBt

e−iEAt − e−iEBt e−iEAt + e−iEBt

)
.

One obtains back the above results by computing

A12 = 〈ψ2|e−iĤ ′t |ψ1〉= 1

2

(
0 1

)( e−iEAt + e−iEBt e−iEAt − e−iEBt

e−iEAt − e−iEBt e−iEAt + e−iEBt

)(
1

0

)
.
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Fig. 2.10 A one dimensional periodic potential, which is a crude sketch of the effective potential
for an electron in a crystal. The period is c= a+b. For 0≤ x≤ a the potential vanishes, while for
a < x < c its value is a constant V0. In Problem 2.18 we characterize the band structure emerging
from the solution of the Schrödinger equation with this potential

Problem 2.18.
Show that the energy spectrum of a particle with mass m in the periodic potential

V (x) shown in Fig. 2.10 has a band structure (with allowed and forbidden bands)
for energies 0 ≤ E ≤ V0. Analyze in detail the case when b → 0, V0 → +∞, with
finite bV0 ≈ bk23 while k3 → +∞, with k23 = 2m(V0−E)/h̄2. This is a one dimen-
sional model of problems that commonly arise when studying the electronic states

in solids in the one body approximation; the effective periodic potential stands for

the interactions with the ion cores, assumed to be frozen, and all the many-body di-

rect and exchange interactions with the other electrons. The band theory is a useful

approximation to many solid state problems, including the conduction of electricity

in simple metals like Al at low temperatures.

Solution
The potential V (x) (see Fig. 2.10) is periodic (V (x+ a+ b) = V (x)) with period
c = a+ b. The eigenfunctions of a symmetric Hamiltonian do not generally have
the full symmetry of the potential; for instance, the solutions in a central potential

are not spherically symmetric, except those with vanishing angular momentum. The

solution that we seek will be periodic up to a phase factor

ψ(x+n(a+b)) = einθψ(x)



74 2 Formalism of Quantum Mechanics and One Dimensional Problems

being simultaneous eigenstates of the Hamiltonian and of the (unitary) translation

operator that commutes with Ĥ. While a constant phase factor has no physical mean-
ing, a space-time dependent might have; for instance the current and the kinetic en-

ergy of a plane wave state are encoded in its phase. The solution of the Schrödinger

equations in the four different regions (region I-region IV ) given in Fig. 2.10 is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψI(x) = Aeik1x+Be−ik1x −b≤ x < 0

ψII(x) =Ceik2x+De−ik2x 0≤ x≤ a

ψIII(x) = eiθ (Aeik1(x−a−b) +Be−ik1(x−a−b)) a < x < a+b

ψIV (x) = eiθ (Ceik2(x−a−b) +De−ik2(x−a−b)) a+b≤ x < 2a+b

with k21 = 2m(E−V0)/h̄2,k22 = 2mE/h̄2. As for the solution in the regions III and
IV , we remark that the condition ψ(x+ a+ b) = eiθψ(x) is equivalent to ψ(x) =
eiθψ(x−a−b). Next, we impose the continuity conditions in 0 and a as follows⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψI(0) = ψII(0)⇒ A+B−C−D= 0

ψ ′
I(0) = ψ ′

II(0)⇒ k1(A−B)− k2(C−D) = 0

ψII(a) = ψIII(a)⇒−eiθ (Ae−ik1b+Beik1b)+Ceik2a+De−ik2a = 0

ψ ′
II(a) = ψ ′

III(a)⇒−k1eiθ (Ae−ik1b−Beik1b)+ k2(Ceik2a−De−ik2a) = 0.

To find a non zero solution for this problem, the determinant of the associated matrix

must be zero. If we define α = eik1b,β = eik2a, the matrix associated to this system
is

M̂ =

⎛
⎜⎜⎜⎜⎝
1 1 −1 −1
− eiθ

α − eiθα β 1
β

k1 − k1 − k2 k2
−k1 e

iθ

α k1eiθα k2β − k2
β

⎞
⎟⎟⎟⎟⎠ .

Only the trivial solution of the system exists, unless detM̂ = 0 which requires

detM̂ =−4k1k2
(
1+ e2iθ

)
− eiθ

(
k21+ k22

)(α
β
− 1

αβ
−αβ +

β
α

)
+

2k1k2eiθ
(
α
β
+

1

αβ
+αβ +

β
α

)
=

eiθ{−8k1k2 cosθ −2(k21+ k22)[cos(k1b− k2a)− cos(k1b+ k2a)]+

4k1k2[cos(k1b− k2a)+ cos(k1b+ k2a)]}= 0.
Using the identity

cos(α+β ) = cosα cosβ − sinα sinβ
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Fig. 2.11 The graphical solution to the problem of a particle in the periodic potential of Fig. 2.10.
The intersections between the function f (k2a) = A

k2a
sin(k2a)+ cos(k2a) and the ±1 lines are the

band edges (since k2 determines the energy). For the case in this figure we took A= 2.0

and setting k23 = 2m(V0−E)/h̄2, with isinhx= sin ix and coshx= cos ix, we obtain
an equation for cosθ

cosθ = cos(k2a)cosh(k3b)− k22− k23
2k2k3

sin(k2a)sinh(k3b) 0≤ E ≤V0.

The condition for the energy comes from the requirement that θ be real, that is,
−1≤ cosθ ≤ 1. We concentrate on the case b→ 0, V0→+∞, with finite bV0 ≈ bk23
while k3 → +∞. The argument of sinh,cosh is k3b, which goes to zero like 1/k3
enabling us to develop in Taylor series. Approximating cosh(k3b)≈ 1, sinh(k3b)≈
k3b, k2 � k3 and setting A= abk23/2, the above condition reads

−1≤ A
sin(k2a)

k2a
+ cos(k2a)≤ 1.

The function f (k2a) = A
k2a
sin(k2a)+cos(k2a) is plotted in Fig. 2.11. The condition

is satisfied for all the continuous values of k2a in the intervals [x1,x2], [x3,x4], . . ..
This is the band structure requested by the problem.

Problem 2.19.
Let us consider a particle with mass m subject to the one dimensional potential

U(x) =−αx with α > 0:

determine the time evolution for Δ p=
√

〈p̂2〉−〈 p̂〉2, where p̂ is the momentum
operator;

determine the time evolution of the wave function ψ(x, t) knowing that ψ(x,0) =
eip0x/h̄−iφ0 , with p0 and φ0 constants.
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Solution
The potential given in the text is not leading to an eigenvalue problem that can be

easily solved: if we write the stationary Schrödinger equation we obtain a continu-

ous spectrum with the Airy functions as eigenfunctions. Thus, instead of applying

the definition of average value based on the knowledge of the eigenfunctions of the

Hamiltonian, we use the formula for the time evolution of the average value of a

generic operator Â
d〈Â〉t
dt

=
i
h̄
〈[Ĥ, Â]〉.

This formula is the quantummechanical analogue of the classical formula giving the

time evolution of a quantity in terms of its Poisson bracket with the Hamiltonian.

In our case, both p̂ and p̂2 commute with the kinetic part of Ĥ, and we find the
differential equation

d〈p̂〉t
dt

=
i
h̄
〈[Û , p̂]〉=− iα

h̄
〈[x̂, p̂]〉= α

which can be easily integrated

〈p̂〉t = αt+ p0

where p0 (the constant of integration) is the average value of p̂ at time t = 0. Simi-
larly, for the average of the squared momentum 〈p̂2〉, we get

d〈p̂2〉t
dt

=
i
h̄
〈[Û , p̂2]〉=− iα

h̄
〈[x̂, p̂2]〉.

We can make use of the Jacobi identity (see also Problem 2.2) to find

[x̂, p̂2] = [x̂, p̂p̂] = p̂[x̂, p̂]+ [x̂, p̂] p̂= 2ih̄p̂

and, hence
d〈p̂2〉t
dt

=
i
h̄
〈[Û , p̂2]〉=− iα

h̄
〈[x̂, p̂2]〉= 2α〈 p̂〉.

Integrating the above differential equation, we get

〈p̂2〉t = α2t2+2α p0t+ const.

Therefore, the final result is

Δ p=
√

〈 p̂2〉t −〈p̂〉2t =
√

α2t2+2α p0t+ const.− (αt+ p0)2 =
√
const.− p20.

Let us now face the second point. At time t = 0 the wave function is a plane wave
with an additional phase factor

ψ(x,0) = eip0x/h̄−iφ0 .
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When evolving in time the function ψ , both p0 and φ0 acquire a non trivial time
dependence. We therefore consider 〈p̂〉t and φ(t), whose values at time t = 0 are

〈p̂〉t=0 = p0 φ(0) = φ0.

The time evolution for 〈p̂〉t has already been determined before. As for φ , we request
that

ψ(x, t) = ei〈p̂〉t x/h̄−iφ(t) = eiαtx/h̄+ip0x/h̄−iφ(t)

is a solution of the Schrödinger equation

ih̄
∂ψ(x, t)

∂ t
= Ĥψ(x, t) =

(
− h̄2

2m
∂ 2

∂x2
−αx

)
ψ(x, t).

If we perform the derivatives, we get

h̄
dφ(t)
dt

=
1

2m
(αt+ p0)

2

leading to

φ(t) =
(αt+ p0)3

6mα h̄
− (p0)3

6mα h̄
+φ0.

Problem 2.20.
A quantum particle is in the ground state of a one dimensional harmonic oscillator

with Hamiltonian

Ĥ1 =
p̂2

2m
+
1

2
mω20 x̂

2.

At a given time, the frequency ω0 changes abruptly and the Hamiltonian becomes

Ĥη =
p̂2

2m
+
1

2
m(ηω0)2x̂2.

Determine the probability P(η) that the particle is in the ground state of the new
harmonic oscillator with frequency ηω0. Prove that the result is symmetric in η and
1
η and verify the limit η → 1.

Solution
The wave function for the ground state of the harmonic oscillator can be written as

ψ(1)
0 (x) =

1√
x1
√
π
e
− x2

2x2
1

where x21 =
h̄

mω0
. We also introduce the variable x2η = h̄

mηω0
to characterize the

ground state of the new harmonic oscillator with frequency ηω0

ψ(η)
0 (x) =

1√
xη

√
π
e
− x2

2x2η .
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In the approximation given by the text, the change from Ĥ1 to Ĥη is abrupt and the
requested probability is P= |A|2, where A is the overlap integral (see also Problem
5.13) between the two wave functions ψ(1)

0 (x) and ψ(η)
0 (x)

A=
∫ +∞

−∞
ψ(1)
0 (x)ψ(η)

0 (x)dx=
1√πx1xη

∫ +∞

−∞
e
− x2

2x2
1 e−

x2
2xη dx=

1√πx1xη

∫ +∞

−∞
e
− x2

x2a dx

where xa is such that
1

x2a
=
1

2

(
1

x21
+
1

x2η

)
.

Using the known result
∫ +∞
−∞ e−

x2

a2 dx= a
√
π , we get

A=

√
πxa√πx1xη

=
√
2

η
1
4√

1+η

and, hence

P(η) = 2
√
η

1+η
=

2√
η+ 1√

η
.

The result is indeed symmetric in η and 1
η . Moreover, in the limit η → 1 we see

that the probability becomes 1, as it should be expected because both Hamiltonians

become the same in that limit.

Problem 2.21.
A quantum system has two energy states and is characterized by the following

Hamiltonian

Ĥ =− h̄ω
2

(|0〉〈0|− |1〉〈1|)

where |0〉 and |1〉 are normalized orthogonal eigenstates with eigenvalues − h̄ω
2 and

+ h̄ω
2 , respectively. Let us consider the operator â with the property

â= |0〉〈1|

and let â† be the adjoint of â:

determine [â, â†]+ = ââ†+ â†â;
determine (â†)2 and â2;
determine the commutators [Ĥ, â]− and [Ĥ, â†]−, with [Â, B̂]− = ÂB̂− B̂Â;
determine the eigenvalues of n̂, with n̂ = â†â, and express Ĥ in terms of n̂ and
the operator Ê = |0〉〈0|+ |1〉〈1|.

Solution
From the definition of â and â†, we see that

â† = |1〉〈0|
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and, hence

[â, â†]+ = |0〉〈1|1〉〈0|+ |1〉〈0|0〉〈1|= Ê.

As for the square of â and â†, making use of the orthogonality of states, we find

â2 = |0〉〈1|0〉〈1|= 0

(â†)2 = |1〉〈0|1〉〈0|= 0.
Let us then determine the commutators [H, â]− and [Ĥ, â†]−

[Ĥ, â]− =− h̄ω
2

(|0〉〈0|− |1〉〈1|) |0〉〈1|+ h̄ω
2

|0〉〈1|(|0〉〈0|− |1〉〈1|) =−h̄ω â

[Ĥ, â†]− =− h̄ω
2

(|0〉〈0|− |1〉〈1|) |1〉〈0|+ h̄ω
2

|1〉〈0|(|0〉〈0|− |1〉〈1|) = h̄ω â†.

As for the last point, we note that

n̂= â†â= |1〉〈0|0〉〈1|= |1〉〈1|

that implies |0〉 and |1〉 are eigenstates of both Ĥ and n̂. We therefore conclude that

Ĥ=− h̄ω
2

(|0〉〈0|−|1〉〈1|±|1〉〈1|)=h̄ω|1〉〈1|− h̄ω
2

(|0〉〈0|+ |1〉〈1|)=h̄ω
(
n̂− Ê

2

)
.

Problem 2.22.
Let us consider the motion of a particle with energy E > U0 (U0 > 0) in the one

dimensional potential field U(x) = U0
(1+e−x)

. Determine the resulting reflection and

transmission coefficients.

Solution
To solve the problem we need to determine the properties of the solution of the

Schrödinger equation for x → ±∞. In the case of Classical Mechanics, a particle
with energy E >U0 moving from left to right, is not reflected from the potential,

due to the fact that E > limx→+∞U(x). In QuantumMechanics, instead, such particle
continues to move from left to right but a portion of the associated wave function is

reflected from the potentialU(x). Let

ψ(x)≈CTei
√
2m(E−U0)

h̄ x

be the solution of the Schrödinger equation for x→+∞, and

ψ(x)≈ ei
√
2mE
h̄ x+CRe−i

√
2mE
h̄ x

the form of the wave function for the free particle when x→−∞. The reflection and
transmission coefficients are defined through the density flux
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Fig. 2.12 The potential fieldU(x) = U0
(1+e−x)

withU0 = 1. In Problem 2.22 we determine the asso-
ciated reflection and transmission coefficients

J =
ih̄
2m

(
ψ

dψ∗

dx
−ψ∗ dψ

dx

)

of the incident wave and the density flux of the reflected/transmitted wave. For

simplicity, we have normalized to unity the coefficient of the incident wave trav-

elling from left to right. This is not important because the reflection/transmission

coefficient is defined as the ratio of the density flux in the reflected/transmitted

(JR ∝
√
2mE|CR|2, JT ∝

√
2m(E−U0)|CT |2) wave to that of the incident wave

(JI ∝
√
2mE). These densities depend on the derivatives of the solutions previously

discussed and, consequently, on the associated exponents. Therefore, the transmis-

sion coefficient is

T =

√
2m(E−U0)√
2mE

|CT |2

and the reflection coefficient is given by

R= 1−T = 1−
√
2m(E−U0)√
2mE

|CT |2 = |CR|2

where we have used the condition of continuity in the density flux (JI + JR = JT ).
Let us then characterize the solution of the Schrödinger equation with the potential

U(x)

ψ ′′+
(
α− β

1+ e−x

)
ψ = 0
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with α = 2mE/h̄2, β = 2mU0/h̄2. If we set z=−e−x, we can write the Schrödinger

equation for ψ(z)

d2ψ
dz2

+
1

z
dψ
dz

+

(
α
z2

+
β

z2(z−1)
)
ψ = 0

where we have used that
d2ψ
dx2

= z2
d2ψ
dz2

+ z
dψ
dz

.

When −∞< x <+∞, we get −∞< z< 0. There are two regular singularities in the
points z= 0 and z= 1 (see also Problems 2.25, 4.1, 4.2, 4.5 for a discussion of the
singularities associated with the Schrödinger equation). If we set z= 1/t, we get an
equation for ψ(t)

d2ψ
dt2

+
1

t
dψ
dt

+
1

t2

(
α− β t

(t−1)
)
ψ = 0

where we see that also z = +∞ (t = 0) is a regular singularity. The whole solution
is the product of the singular behaviour and a suitable hypergeometric function. To

determine the singular part, we need to calculate the indicial exponents with the

substitution ψ(z) = zλ ((z−1)μ ) in the original equation. In the limit z→ 0 (z→ 1),

we solve the resulting second order algebraic equation and we find the following

solutions

λ =±i
√

α−β =± i
h̄

√
2m(E−U0) μ = 0, 1.

We then seek the solution in the form

ψ(z) = zλ (z−1)μy(z) = zλ y(z)

since one of the solutions for μ is zero. As for the value of λ , we choose the minus
sign, since for x → +∞ (z → 0) the solution must represent a transmitted wave
travelling from left to right, that is

ψ ≈ e
i
h̄

√
2m(E−U0)x = (e−x)−

i
h̄

√
2m(E−U0) = z−

i
h̄

√
2m(E−U0).

Substituting ψ(z) = zλ y(z) in the original equation, we get

z(z−1)y′′+(z−1)(2λ +1)y′+βy= 0.

If we want to match the general equation for the hypergeometric series

z(z−1)y′′+[(A+B+1)z−C]y′+ABy= 0

we find

A= i(
√
α−
√

α−β )
B=−i(

√
α+
√

α−β )
C = 2λ +1=−2i

√
α−β +1
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from which we get the solution

y= F(A,B,C|z) = F(i(
√
α−
√

α−β ),−i(
√
α+
√

α−β ),−2i
√

α−β +1|z).

When z → 0 (x → +∞) the hypergeometric series becomes 1 and ψ represents the

plane wave travelling from left to right. To determine the reflection coefficient, we

need to determine the solution for z → −∞ (x → −∞). The problem is that of the

analytical continuation of the hypergeometric series from 0 to −∞. Therefore, we
need the formula relating the hypergeometric series with variables z and 1/z

F(A,B,C|z) =G(−z)−AF(A,1−C+A,1−B+A|1
z
)+

S(−z)−BF(B,1−C+B,1+B−A|1
z
)

with the constants G and S given by

G=
Γ (C)Γ (B−A)
Γ (B)Γ (C−A)

=
Γ (−2i√α−β +1)Γ (−2i√α)

Γ (−i(
√
α+
√

α−β ))Γ (−i(
√
α+
√

α−β )+1)

S=
Γ (C)Γ (A−B)
Γ (A)Γ (C−B)

=
Γ (−2i√α−β +1)Γ (2i

√
α)

Γ (i(
√
α−√α−β ))Γ (i(

√
α−√α−β )+1)

.

In the limit z→−∞, the hypergeometric series becomes 1 and we are left with

ψ(z)≈z−i
√

α−β
[
G(−z)i(

√
α−β−√

α) +S(−z)i(
√

α−β+
√
α)
]
=

(−1)−i
√

α−βG
[
ei
√
αx+

S
G
e−i

√
αx
]
.

Therefore, the reflection coefficient is R= |S/G|2, with S and G given above.

Problem 2.23.
Consider the one dimensional rectangular potential wall (V0)⎧⎨

⎩V (x) = 0 x < 0

V (x) =V0 x≥ 0.

In the case of a particle travelling from left to right, determine the energy E > V0
such that there is the same probability to find the particle in the regions x ≥ 0 and
x < 0. Using the same initial condition, repeat the calculation for the rectangular

potential barrier (see also Fig. 2.13)⎧⎪⎪⎨
⎪⎪⎩
V (x) = 0 x < 0

V (x) =V0 0≤ x≤ a

V (x) = 0 x > a.
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Fig. 2.13 A one dimensional rectangular potential wall (top) and a rectangular potential barrier
(bottom). In Problem 2.23 we study the solution of the one dimensional Schrödinger equation with
the property that the reflection and transmission coefficients are equal

Solution
The wave functions entering this problem cannot be normalized because E > V0.
Consequently, the condition that there is the same probability to find the particle in

the regions x < 0,x ≥ 0 implies that the reflection (R) and transmission (T ) coeffi-
cients are the same. Furthermore, the condition R+T = 1 imposes R= T = 1

2 .

Let us then start with the first case. The Schrödinger equation for x < 0 (region

I) and x ≥ 0 (region II) is satisfied (apart from an overall constant) by the wave
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functions ⎧⎨
⎩ψI(x) = eik1x+CRe−ik1x x < 0

ψII(x) =CTeik2x x≥ 0

with k1 =
√
2mE/h̄, k2 =

√
2m(E−V0)/h̄. The constants CR, CT are determined

from the condition of continuity of the wave function and its first derivative in x= 0.
In formulae, we get

1+CR =CT k1(1−CR) = k2CT

leading to

CT =
2k1

(k1+ k2)
CR =

(k1− k2)
(k1+ k2)

.

The transmission/reflection coefficient is the ratio of the density flux in the trans-

mitted/reflected wave to that of the incident wave (see also Problem 2.22). The def-

inition of the density flux is

J =
ih̄
2m

(
ψ

dψ∗

dx
−ψ∗ dψ

dx

)
.

The incident wave is given by eik1x. e−ik1x in ψI represents the reflected wave and

eik2x in ψII represents the transmitted wave. Therefore, we find JI ∝ k1, JR ∝ k1|CR|2,
JT ∝ k2|CT |2 and the transmission/reflection coefficients

T = |CT |2 k2k1 R= |CR|2.

The desired condition (T = R= 1
2 ) is translated into

1

2
= |CR|2 =

(
k1− k2
k1+ k2

)2

leading to the following equation for E

1

2
=

(√
E−√

E−V0√
E+

√
E−V0

)2

yielding E = (3
√
2+4)
8 V0.

As for the rectangular potential barrier of the second point, things are more com-

plicated. The Schrödinger equation has to be solved in the three different regions
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(x < 0, 0≤ x≤ a and x > a) and the solutions are⎧⎪⎪⎨
⎪⎪⎩
ψI(x) = eik1x+Ae−ik1x x < 0

ψII(x) = Beik2x+B′e−ik2x 0≤ x≤ a

ψIII(x) =CTeik1x x > a.

The conditions of continuity for the ψ and its first derivative in x= 0 and x= a are
translated into ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1+A= B+B′

1−A= k2
k1
(B−B′)

Beik2a+B′e−ik2a =CTeik1a

Beik2a−B′e−ik2a = k1
k2
CTeik1a.

If we sum the first and second of these equations and divide the third by the forth,

we get ⎧⎨
⎩B′ = 2k1

k1−k2
−B
(

k1+k2
k1−k2

)
Beik2a+B′e−ik2a

Beik2a−B′e−ik2a
= k2

k1
.

Substituting B′ in the second equation, we find

B=
k1(k1+ k2)e−ik2a

2k1k2 cos(k2a)− i(k21+ k22)sin(k2a)
.

Also, in the equations for the coefficients, we can sum the third and forth equations

and we get

CT =
2Bk2ei(k2−k1)a

k1+ k2
.

Substituting the value of B in this equation, we find

CT =
2k1k2e−ik1a

2k1k2 cos(k2a)− i(k21+ k22)sin(k2a)
.

Moreover, for this rectangular potential barrier, we have JI ∝ k1,JT ∝ k1|CT |2 and
the resulting transmission coefficient is

T = |CT |2 = 4k21k
2
2

(k21− k22)
2 sin2(k2a)+4k21k

2
2

.

Consequently, the reflection coefficient is

R= 1−T =
(k21− k22)

2 sin2(k2a)
(k21− k22)

2 sin2(k2a)+4k21k
2
2

.
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Fig. 2.14 The intersection of the two curves x = (r2 siny)/2y and x = (y2+ r2)1/2 (with r = 4)
allows us to determine the energy at which the transmission coefficient equals the reflection coef-
ficient for the rectangular potential barrier of Fig. 2.13

When sin2(k2a) = 0, i.e. k2a = nπ,n = 1,2, . . ., the reflection and transmission
coefficients become R = 0 and T = 1, i.e. the potential barrier is perfectly trans-

mitting the wave function. This happens when the width of the barrier satisfies

a= nπ/k2 = nλ/2, with λ = 2π/k2. Imposing T = 1/2 we find the desired condi-
tion for the energy E

4k21k
2
2

(k21− k22)
2
= sin2(k2a).

If we set x = ak1 (not to be confused with the position in the beginning of the
problem) and y = ak2, we realize that the desired value for E is found from the

intersection of the two curves⎧⎨
⎩x2− y2 = 2mV0a2

h̄2
= r2

x2y2 = r4
4 sin

2 y.

In Fig. 2.14 we plot x = (r2 siny)/2y, x = (y2+ r2)1/2. Since x ∝
√
E, we need to

look for positive solutions corresponding to a real energy. The first curve is a branch

of a hyperbola while the second is a decreasing oscillating function with maximum

value in y= 0. The intersection is possible when r2/2≥ r, i.e. r≥ 2 and
√

mV0a2
h̄ ≥ 2.

Problem 2.24.
Let us consider a one dimensional quantum harmonic oscillator. Using the Heisen-

berg representation, determine the time evolution of the operators x̂, p̂, â, â†. De-
termine the average value of x̂, p̂, x̂2, p̂2 on the generic eigenstate |n〉 of the Hamil-
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tonian Ĥ = h̄ω
(
â†â+ 1

211
)
, Ĥ |n〉= h̄ω

2

(
n+ 1

2

) |n〉, at time t = 0 and at the generic
time t > 0. If at time t = 0 the system is in the state

|α〉= c0|0〉+ c1|1〉

with c0 and c1 real constants, determine the average value of x̂, p̂, x̂2, p̂2 on such a
state at time t = 0 and at the generic time t > 0.

Solution
To determine the time evolution of the operators, we make use of the following

identity

eB̂Âe−B̂ = Â+[B̂, Â]+
1

2!
[B̂, [B̂, Â]]+

1

3!
[B̂, [B̂, [B̂, Â]]]+ · · ·

valid for two generic operators Â and B̂. Therefore, let us start by demonstrating
such formula. Let us define φ̂(t) = etB̂Âe−tB̂ with the property φ̂(1) = eB̂Âe−B̂. The

derivatives of φ̂(t) are

dφ̂(t)
dt

= B̂etB̂Âe−tB̂− etB̂ÂB̂e−tB̂ = [B̂, φ̂(t)]

d2φ̂(t)
dt2

=
d
dt
[B̂, φ̂(t)] =

[
B̂,

dφ̂(t)
dt

]
= [B̂, [B̂, φ̂(t)]]

d3φ̂(t)
dt3

=
d
dt
[B̂, [B̂, φ̂(t)] =

[
B̂,
[
B̂,

dφ̂(t)
dt

]]
= [B̂, [B̂, [B̂, φ̂(t)]]].

A possible way to define φ(1) = eB̂Âe−B̂ takes advantage of the Taylor expansion

of φ(t) around t = 0

eB̂Âe−B̂ = φ̂(1) = φ̂(0)+
dφ̂(t)
dt

∣∣∣∣
t=0

+
1

2!

d2φ̂(t)
dt2

∣∣∣∣
t=0

+
1

3!

d3φ̂(t)
dt3

∣∣∣∣
t=0

+ · · · .

Since φ̂(0) = Â, we can use the above expressions for the derivatives evaluated at
t = 0 and immediately obtain the desired result for eB̂Âe−B̂. Setting B̂= iĤt/h̄, we
are now ready to determine the time evolution for a generic operator Â(t) in the
Heisenberg representation

Â(t) =ei
Ĥt
h̄ Â(0)e−i Ĥt

h̄ = Â(0)+
it
h̄
[Ĥ, Â(0)]−

1

2!

t2

h̄2
[Ĥ, [Ĥ, Â(0)]]− i

t3

h̄3
1

3!
[Ĥ, [Ĥ, [Ĥ, Â(0)]]]+ · · · .
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When Â= â (the annihilation operator), we obtain

â(t) =eiω(â†â+ 1
2 11)t âe−iω(â†â+ 1

2 11)t = eiω â†ât âe−iω â†ât = â+ itω[â†â, â]

− 1

2!
(ωt)2[â†â, [â†â, â]]− i(ωt)3

1

3!
[â†â, [â†â, [â†â, â]]]+ · · ·=

â
(
1− itω− 1

2!
(ωt)2+ i(ωt)3

1

3!
+ · · ·

)
= âe−iωt .

Since â† is the adjoint of â, we easily obtain â†(t) = â†eiωt . From the relation be-

tween the creation/annihilation operators (â†, â) and the position/momentum oper-
ators (x̂, p̂), we know that⎧⎨

⎩x̂(t) =
√

h̄
2mω (âe

−iωt + â†eiωt)

p̂(t) = i
√

mh̄ω
2 (â†eiωt − âe−iωt).

We then consider the matrix elements of x̂, p̂, x̂2, p̂2 between the states |m〉 and |n〉
at time t = 0. Such elements evolve in time as

Anm(t) = 〈n, t| Â |m, t〉= e−i (Em−En)t
h̄ 〈n| Â |m〉= e−i (Em−En)t

h̄ Anm(t = 0)

where Â is chosen among the operators x̂, p̂, x̂2, p̂2. We are interested in the diagonal

elements (n = m) where the phase e−i (Em−En)t
h̄ is zero and we conclude that those

elements do not evolve in time. Therefore, it is necessary to calculate those matrix

elements only at time t = 0. To determine the average value of the position and mo-
mentum operators, we first rewrite x̂ and p̂ in terms of the creation and annihilation
operators. Then, knowing that â and â† act as step down and step up operators on
the eigenstates |n〉, we get⎧⎨

⎩x̂ |n〉=
√

nh̄
2mω |n−1〉+

√
(n+1)h̄
2mω |n+1〉

p̂ |n〉=−i
√

nmω h̄
2

|n−1〉+ i
√

(n+1)mω h̄
2

|n+1〉 .

Using the orthogonality of the eigenstates, we find

〈n| x̂ |n〉= 〈n| p̂ |n〉= 0

and, for the squared position and momentum operators, the result is

〈n| x̂2 |n〉= h̄
2mω

〈n|(â+ â†)2 |n〉= h̄
2mω

〈n|(ââ†+ â†â) |n〉= h̄
mω

(
n+

1

2

)

〈n| p̂2 |n〉=−mω h̄
2

〈n|(−â+ â†)2 |n〉= mω h̄
2

〈n|(ââ†+ â†â) |n〉= h̄mω
(
n+

1

2

)
.

To verify the above results, we can compute the average energy

E = 〈Ĥ〉= 〈p̂2〉
2m

+
mω2

2
〈x̂2〉= h̄ω

(
n+

1

2

)
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that is the expected result. Let us now answer the last question. At time t = 0 we

have

〈α|x̂|α〉=(c0〈0|+ c1〈1|)x̂(c0|0〉+ c1|1〉) =
√
2h̄
mω

c0c1

〈α|p̂|α〉=(c0〈0|+ c1〈1|)p̂(c0|0〉+ c1|1〉) = 0
〈α|x̂2|α〉=(c0〈0|+ c1〈1|)x̂2(c0|0〉+ c1|1〉) = h̄

2mω
(|c0|2+3|c1|2)

〈α|p̂2|α〉=(c0〈0|+ c1〈1|)p̂2(c0|0〉+ c1|1〉) = mh̄ω
2

(|c0|2+3|c1|2) .
To compute the average values on the state |α〉 at time t > 0, we need to evolve

the state with the action of the time evolution operator e−iĤt/h̄. Such operator is

diagonal with respect to the eigenstates of Ĥ and, therefore, the eigenstates |0〉 and
|1〉 acquire the phase factors e−iE0t/h̄ and e−iE1t/h̄ respectively, with E0 = h̄ω

2 and

E1 = 3h̄ω
2

|α, t〉= c0e−iωt
2 |0〉+ c1e−i 3ωt

2 |1〉.
The average values become

〈α, t|x̂|α, t〉=(c0ei
ωt
2 〈0|+ c1ei

3ωt
2 〈1|)x̂(c0e−iωt

2 |0〉+ c1e−i 3ωt
2 |1〉) =√

2h̄
mω

c0c1 cos(ωt)

〈α, t|p̂|α, t〉=(c0ei
ωt
2 〈0|+ c1ei

3ωt
2 〈1|)p̂(c0e−iωt

2 |0〉+ c1e−i 3ωt
2 |1〉) =

−
√
2mh̄ωc0c1 sin(ωt)

〈α, t|x̂2|α, t〉=(c0〈0|eiωt
2 + c1ei

3ωt
2 〈1|)x̂2(c0e−iωt

2 |0〉+ c1e−i 3ωt
2 |1〉) =

h̄
2mω

(|c0|2+3|c1|2)

〈α, t|p̂2|α, t〉=(c0ei
ωt
2 〈0|+ c1ei

3ωt
2 〈1|)p̂2(c0e−iωt

2 |0〉+ c1e−i 3ωt
2 |1〉) =

mh̄ω
2

(|c0|2+3|c1|2) .
Problem 2.25.
Determine the energy spectrum for the bound states of a particle with massm subject
to the Morse potential (see Fig. 2.15) defined byU(x) =M(e−2ax−2e−ax),M,a> 0.

When
√
2mM
h̄a = S, with S a positive integer, compute the number of bound states.
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Fig. 2.15 We plot the Morse potential defined byU(x) =M(e−2ax−2e−ax) with M = a= 1. The
associated energy spectrum for the bound states is characterized in Problem 2.25

Solution
The stationary Schrödinger equation with the Morse potential is

h̄2

2m
d2ψ
dx2

+(E−M(e−2ax−2e−ax))ψ = 0

where E is the energy. Since the derivative of an exponential function is still an

exponential function, it is convenient to define z= e−ax (z= 0 is zero when x→+∞
and z=+∞ when x→−∞). Therefore, we obtain

d2ψ
dx2

= a2z2
d2ψ
dz2

+a2z
dψ
dz

and the equation
d2ψ
dz2

+
1

z
dψ
dz

+

(
2β
z

+
γ
z2

−β
)
ψ = 0

where β = 2mM/(h̄2a2),γ = 2mE/(h̄2a2). The complete solution of this equation
can be found in the class of the confluent hypergeometric functions (see also Prob-

lems 2.22, 4.1, 4.2, 4.5 for a discussion of the singularities associated with the

Schrödinger equation). First of all, we need to examine the singularities of the equa-

tion: the point z = 0 is a regular singularity and the indicial exponent is found by

plugging the approximate form ψ(z)≈ zλ in the original equation

λ (λ −1)zλ−2+λ zλ−2+2β zλ−1+ γzλ−2−β zλ = 0.
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When z→ 0, the terms proportional to zλ−2 dominate and we find λ =±√−γ . We
note that γ must be negative; otherwise the wave function would present oscillations
and would be impossible to describe bound states: we therefore conclude that the

discrete spectrum is given by the negative energies. Since γ is negative, the correct
non divergent solution for z ≈ 0 is given by z+

√−γ . We next separate out the be-
haviour close to z = 0 and seek the solution in the form ψ(z) = zλ f (z). Plugging
this form in the Schrödinger equation, we find

f ′′+
(2
√−γ+1)

z
f ′+
(
2β
z

−β
)

f = 0

and we observe that the singular behaviour z−2 has been removed from the equation.
With the substitution z= 1/t, we can study the behaviour close to z=+∞ (t = 0)

f ′′ −
(
2
√−γ−1

t

)
f ′+
(
2β
t3

− β
t4

)
f = 0

and we see that there is a singularity in t = 0. The terms t−3, t−4 make the singularity
irregular: with this form of the equation it is not possible to find an indicial exponent

and a solution of the form f (t)≈ ta when t ≈ 0. To find an indicial equation with a
solution, we need to use the substitution f (t) = e−

√
β/tF(t), leading to

F ′′+

(
2
√

β
t2

− 2
√−γ−1

t

)
F ′ − (2

√−γ+1)
√

β −2β
t3

F = 0.

The effect of this substitution is to cancel out the terms proportional to t−4: it is
now possible to find a solution of the form F(t) ≈ tδ and the Fuchs theorem guar-
antees that the solution close to t = 0 behaves like tδu(t), with u(t) some ana-
lytic function. Going back to the original equation for f (z), with the substitution

f (z) = e−
√

β zY (z), we obtain the equation for Y (z)

Y ′′+
(
2
√−γ+1

z
−2
√

β
)
Y ′+

2β −2√β (
√−γ+ 1

2 )

z
Y = 0.

With the definition z= ξ/(2
√

β ), the equation becomes

ξY ′′+(2
√−γ+1−ξ )Y ′ −

(√−γ+
1

2
−
√

β
)
Y = 0

that is the confluent hypergeometric equation with solution

Y (A,C|ξ ) = Y
(
1

2
+
√−γ−

√
β ,2

√−γ+1,ξ
)

with

A=
1

2
+
√−γ−

√
β C = 2

√−γ+1.
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Going back to the original wave function, this has the form

ψ(z) = z
√−γe−

√
β zY
(
1

2
+
√−γ−

√
β ,2

√−γ+1|2
√

β z
)

.

To have ψ(+∞) = 0, the dominant contribution in ψ when z → +∞ must be ex-
ponential, i.e. the hypergeometric series must reduce to a polynomial. An infinite

number of terms would in fact spoil the exponential behaviour and the convergence

of the wave function when z → +∞. The n-th term in the series of the confluent

hypergeometric function is

A(A+1) · · ·(A+n−1)
(n!C(C+1) · · ·(C+n−1)) .

If A is zero or a negative integer number (A = −n,n = 0,1,2,3, ...) the series is
truncated and reduces to a polynomial: this is the condition of quantization for the

discrete spectrum. Expressing β and γ in terms of the original parameters, we find

En =−M

(
1− h̄a

(
n+ 1

2

)
√
2mM

)2
.

We recall that
√−γ is positive

√−γ =
√−2mEn

h̄a
=

√
2mM
h̄a

(
1− h̄a

(
n+ 1

2

)
√
2mM

)
=

√
2mM
h̄a

−
(
n+

1

2

)
≥ 0

and, therefore, n+ 1
2 ≤

√
2mM
ah̄ , i.e. the number of energy levels is finite. When√

2mM
h̄a = S, with S a positive integer, we find S+1 bound states.

Problem 2.26.
Discuss the existence of bound states for a particle with mass m subject to the one
dimensional Dirac delta function potentialU(x) =−δ (x).

Solution
Our potential is a Dirac delta function for which

∫ +ε

−ε
δ (x)dx= 1

for ε > 0. The associated Schrödinger equation is given by

h̄2

2m
d2ψ(x)
dx2

+(E+δ (x))ψ(x) = 0.

The wave function has to be continuous, a condition that is necessary to interpret its

square modulus as a probability density function. As for the properties of its deriva-

tive, care has to be taken. Let us concentrate on the infinitesimal interval [−ε,ε],
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with ε an arbitrarily small parameter. We first integrate the Schrödinger equation
between −ε and ε , and then send ε to zero

lim
ε→0

(
h̄2

2m

∫ +ε

−ε

(
ψ ′′(x)+(E+δ (x))ψ(x)

)
dx
)
=

h̄2

2m
(ψ ′(0+)−ψ ′(0−))+ψ(0)= 0

where the term multiplying E is zero due to the continuity of ψ in zero. Such equa-
tion reveals the singularity of the logarithmic derivative of ψ in the origin

ψ ′(0+)
ψ(0)

− ψ ′(0−)
ψ(0)

=−2m
h̄2

.

To find bound states, a negative energy is required, otherwise we would have a

continuous spectrum given by plane waves. Since the δ (x) is centered in zero, for
x �= 0 we find the Schrödinger equation for a free particle, whose solution is ψ(x)∝
e±

√−2mEx/h̄. To ensure a vanishing wave function at infinity, we have to select

ψ(x) = Ae−
√−2mEx/h̄

for x > 0 (A is a normalization constant) and

ψ(x) = Ae
√−2mEx/h̄

for x < 0. Using the discontinuity condition previously found, we get

ψ ′(0+)
ψ(0)

− ψ ′(0−)
ψ(0)

=
2
√−2mE

h̄
=
2m
h̄2

.

This condition is enough to determine the only value of the energy for which we

find a bound state, i.e. E =−m/2h̄2. For this value of the energy, the normalization
condition (see also Problem 2.29) yields

A=

√
m
h̄2

.

Problem 2.27.
Consider the one dimensional quantum harmonic oscillator with Hamiltonian Ĥ2 =
T̂ + V̂2, where T̂ is the kinetic energy (T̂ = p̂2

2m ) and V̂2 the potential energy

(V̂2 = h̄2

2mx40
x̂2, x0 =

√
h̄

mω ). Then, consider the Hamiltonian Ĥ4 = T̂ + V̂4, where

V̂4 = h̄2

6mx60
x̂4. Using the variational method with the Gaussian trial function

φ(x) = Ae−bx2

determine the best estimate for the wave functions φ (0)
2 ,φ (0)

4 and the corresponding

energies E(0)
2 ,E(0)

4 for the ground states of the two Hamiltonians.



94 2 Formalism of Quantum Mechanics and One Dimensional Problems

Solution
According to the variational principle, the ground state of the Schrödinger equa-

tion corresponds to the condition that E = 〈φ |Ĥ|φ〉 is minimized with respect
to the variations of the wave function φ . Besides the theoretical importance, the
variational principle is also very useful on practical grounds, because it allows to

construct approximate wave functions in many body problems that could not be

dealt with other elementary methods. One usually chooses a set of trial functions

φ(x,{λ1,λ2, ...,λn}) dependent on a given set of parameters {λ1,λ2, ...,λn}, and
minimizes the energy as a function of the parameters. If the exact state belongs

to the class of functions considered, we get the exact solution. If, on the contrary,

the exact solution does not belong to such a class, the minimum always overesti-

mates the ground state energy. Obviously, the larger is the set of parameters and

the better is the estimate of the state. When the trial function φ is not normalized,
the normalization condition can also be imposed with a Lagrange multiplier. In our

case, the normalization condition,
∫ +∞
−∞ |φ(x)|2 dx= 1, is particularly simple because

we know the Gaussian integral
∫ +∞
−∞ e−x2 dx =

√
π . Consequently, the value of A is

A=
(
2b
π
)1/4

.

In the harmonic case (i.e. when we treat Ĥ2), the trial function is exactly of the
same class of functions (it is a Gaussian) describing the ground state of the harmonic

oscillator (see Problems 2.20 and 2.32) with b= 1
2x20
and E(0)

2 = h̄ω
2 ,ω = h̄

mx20
.

In the anharmonic case (i.e. when we treat Ĥ4), we can use the variational method
with this trial function to approximate the ground state. We first need to compute the

energy E(b)= 〈T̂+V̂4〉. For the kinetic energy 〈T̂ 〉, we use the second order moment
of a Gaussian,

∫ +∞
−∞ x2e−x2dx=

√
π
2 , to get

〈T̂ 〉=− h̄2

2m
A2
∫ +∞

−∞
e−bx2 d

2e−bx2

dx2
dx=− h̄2

2m
A2
∫ +∞

−∞
e−bx2(−2b+4b2x2)e−bx2dx=

h̄2b
2m

.

Moreover, for the potential energy, we find

〈V̂4〉= h̄2A2

6mx60

∫ +∞

−∞
e−2bx

2
x4 dx=

h̄2

32mx60b
2

where we have used
∫ +∞
−∞ x4e−x2 dx= 3

√
π
4 . We now impose the condition

dE(b)
db = 0

and find

1− 2

b3
1

16x60
= 0

from which we get b = 1
2x20

and E = 3
8

h̄2

mx20
. We see that this energy is lower than

the energy of the ground state for the harmonic oscillator, i.e. E(0)
4 = 3

8 h̄ω < 1
2 h̄ω .

This is due to the fact that the anharmonic potential is smaller than the harmonic

one for small x. We finally remark that the effect of the anharmonic terms can also
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be studied using a perturbative approach. As for this point, see the Problems 7.22

and 7.25 in the section of Statistical Mechanics.

Problem 2.28.
Let us consider a particle with mass m subject to the harmonic potential U(x) =
1
2mx2. If the particle is in the trial state φ0(x) = Ae−Bx2 , with A a normalization
constant and B a free variational parameter, determine:

the average value of the energy as a function of B;
the value of B minimizing the energy.

If at time t = 0 the particle is in the state ψ = aφ0+bφ1, with φ0(x) given above and
φ1(x) the eigenstate of the harmonic oscillator with eigenvalue 32 h̄, determine:

the probability that at time t = 0 a measurement of the energy gives E = h̄/2;
the probability that at time t > 0 the particle is in the interval [−ε,ε], ε > 0.

Solution
We first need to determine A in terms of B using the normalization condition

1=
∫ +∞

−∞
|φ0(x)|2 dx= A2

∫ +∞

−∞
e−2Bx

2
dx= A2

√
π
2B

that implies A = (2B/π)1/4 and, hence, φ0(x) = (2B/π)1/4e−Bx2 . In the above ex-

pression, we have used the Gaussian integral

I(β ) =
∫ +∞

−∞
e−2βBx

2
dx=

√
π
2Bβ

with β = 1. Using the property

∫ +∞

−∞
x2e−2βBx

2
dx=− 1

2B
lim
β→1

dI(β )
dβ

=
1

4B

√
π
2B

we find the average value of the energy

E(B) =〈Ĥ〉=
√
2B
π

∫ +∞

−∞
e−Bx2

(
− h̄2

2m
d2

dx2
+
1

2
mx2
)
e−Bx2 dx=√

2B
π

[
− h̄2

2m

∫ +∞

−∞
e−Bx2 d

2e−Bx2

dx2
dx+

1

2
m
(
− 1

2B

)
lim
β→1

dI(β )
dβ

]
=√

2B
π

[
− h̄2

2m

∫ +∞

−∞
e−2Bx

2
(4B2x2−2B)dx+ 1

2
m
(
− 1

2B

)
lim
β→1

d
dβ

√
π
2Bβ

]
=√

2B
π

[
− h̄2

2m
4B2

(−2B) limβ→1
dI(β )
dβ

+
h̄2B
m

√
π
2B

+
m
8B

√
π
2B

]
=

− h̄2B
2m

+
h̄2B
m

+
m
8B

=
h̄2B
2m

+
m
8B

.
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We take the derivative and set it to zero

dE(B)
dB

=
h̄
m
− m
4B2

= 0

to find the value of B and the explicit form of the normalized wave function

B=
m
2h̄

E =
1

2
h̄ φ0(x) =

( m
π h̄

) 1
4
e−

mx2
2h̄ .

We note that φ0(x) is the wave function of the ground state of the harmonic oscilla-
tor. As given in the text, also φ1(x) is an eigenstate of the harmonic oscillator with
energy E1 = 3/2h̄, i.e. the first excited state. The probability that a measurement of
the energy gives E = h̄/2 is P(E = h̄/2) = |a|2. The time evolution of ψ is given by
the action of e−iĤt/h̄ on the wave function at time t = 0

〈x|ψ(t)〉= 〈x|e−iĤt/h̄|ψ(0)〉= ae−
it
2h̄ φ0(x)+be−

i3t
2h̄ φ1(x).

The probability to find the particle in the interval [−ε,ε] is the integral of |ψ(x, t)|2
between −ε and ε

P=
∫ ε

−ε
|ψ(x, t)|2 dx= |a|2

∫ ε

−ε
|φ0(x)|2 dx+ |b|2

∫ ε

−ε
|φ1(x)|2 dx

which is not dependent on time t, due to the fact that
∫ ε
−ε φ0(x)φ1(x)dx= 0 because

φ0(x)φ1(x) is an odd function.

Problem 2.29.
Consider the following Hamiltonian for a particle with mass m in one dimension

Ĥ =− h̄2

2m
d2

dx2
−δ (x̂)+b|x̂| b≥ 0.

For the special case b = 0, find the energy of the bound state with the variational

method using a trial function of the form ψ(x) = Ne−λ |x|, with λ a variational pa-
rameter and N the normalization factor (to be determined). Then, suppose that b> 0,
and find the variational condition with the same form of trial functions previously

used. Solve the case with small b. Is the energy increasing or decreasing? Try to
give some qualitative explanation.

Solution
The case with b= 0 is a one dimensional problemwith an attractive potential energy.
Such problems always have at least one bound state in the discrete spectrum, whose

squared wave function can be integrated.

First of all, we need to determine the normalization constant N. To do that, we
use the integral

∫ +∞
0 e−2λx dx= 1

2λ in the normalization condition

∫ +∞

−∞
|ψ(x)|2 dx= 2N2

∫ +∞

0
e−2λx dx=

N2

λ
= 1.
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We therefore have the normalized trial function

ψ(x) =
√
λe−λ |x|.

We have already discussed in Problem 2.26 the properties of the one dimensional

Schrödinger equation in presence of a Dirac delta function potential −δ (x), and
we have seen that the derivative of the wave function has a discontinuity in the

origin. We now want to analyze the same physical picture from the point of view of

the variational method (see also Problem 2.27 for a discussion on the method). We

need to compute the average energy on the normalized trial functions, and find its

minimum to determine the optimal value of λ . We start by calculating the average
kinetic energy on our trial functions. To do this, we note that the function ψ(x) has
a discontinuity with the property

ψ ′(0+)
ψ(0)

− ψ ′(0−)
ψ(0)

=−2λ .

This means that we have to take care in evaluating the second derivative ofψ close to
the origin. When averaging on the state ψ , we can divide the domain of integration
from −∞ to +∞ in the three regions [−∞,−ε[,[−ε,+ε], ]+ ε,+∞]. We get

〈ψ|T̂ |ψ〉=− h̄2

2m

∫ +∞

−∞
ψ(x)ψ ′′(x)dx=

− h̄2

2m

∫ +ε

−ε
ψ(x)ψ ′′(x)dx− h̄2

m

∫ +∞

+ε
ψ(x)ψ ′′(x)dx

where we have used the symmetry properties of ψ(x) to write

∫ +∞

+ε
ψ(x)ψ ′′(x)dx+

∫ −ε

−∞
ψ(x)ψ ′′(x)dx= 2

∫ +∞

+ε
ψ(x)ψ ′′(x)dx.

In the limit ε → 0, we find

− h̄2

m

∫ +∞

+ε
ψ(x)ψ ′′(x)dx=− h̄2

m

∫ +∞

+ε
ψ(x)λ 2ψ(x)dx≈−λ 2h̄2

2m
.

Close to the origin, if we want to take into account the above mentioned singularity

of ψ(x), we can use
ψ ′(x)
ψ(x)

=−λ [θ(x)−θ(−x)]

with θ(x) the Heaviside function. Therefore, in the limit ε → 0, we find

− h̄2

2m

∫ +ε

−ε
ψ(x)ψ ′′(x)dx≈ h̄2

m
λ
∫ +ε

−ε
|ψ(x)|2δ (x)dx= h̄2

m
λ 2.
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The average kinetic energy is

〈ψ|T̂ |ψ〉=−λ 2h̄2

2m
+

λ 2h̄2

m
=

λ 2h̄2

2m
.

We now need to determine the average potential energy

〈ψ|V̂ |ψ〉=−
∫ +∞

−∞
|ψ(x)|2δ (x)dx=−ψ2(0) =−λ

so that the total average energy is

E(λ ) = 〈ψ|T̂ |ψ〉+ 〈ψ|V̂ |ψ〉= h̄2λ 2

2m
−λ .

The variational condition is then imposed

dE(λ )
dλ

=
h̄2λ
m

−1= 0

leading to λ = m
h̄2
and E =− m

2h̄2
. With such a choice for λ we get

ψ(x) =
√

m
h̄2

e−
m
h̄2

|x|

that is the exact solution already studied in Problem 2.26. Let us now switch on the

term b|x̂| in the potential energy and compute its average on the state ψ(x)

b〈|x̂|〉= 2bλ
∫ +∞

0
xe−2λx dx= −bxe−2λx

∣∣∣+∞
0

+b
∫ +∞

0
e−2λx dx=

b
2λ

.

The new average energy has the form

E(λ ) =
h̄2λ 2

2m
−λ +

b
2λ

and the resulting variational condition is

dE(λ )
dλ

=
h̄2λ
m

−1− b
2λ 2

= 0.

To find λ , we need to solve a cubic equation. The solution is simpler when b is
small (it is the case of our problem), because we can use an iterative method to find

such solution. A zeroth order approximation delivers the same result as before, i.e.

λ = λ0 = m
h̄2
. As a first order approximation, we can determine a λ1 such that

h̄2λ1
m

−1− b
2λ 20

= 0.
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Fig. 2.16 A one dimensional potential well with a Dirac delta function δ (x) in the middle. In
Problem 2.30 we characterize the eigenstates and eigenvalues for a particle with mass m subject to
this potential

This produces λ1 = m
h̄2
+b h̄2

2m to be used in the expression of E(λ ). The result is

E ≈− m
2h̄2

+b
h̄2

2m
+ . . .

and the energy increases due to the terms proportional to b, that is an expected result
because the term b|x̂| is a repulsive potential.
Problem 2.30.
Determine the eigenstates and eigenvalues for a particle with mass m subject to the
potential ⎧⎨

⎩V (x) = +∞ x≤−a,x≥ a

V (x) = δ (x) −a < x < a

reported in Fig. 2.16.

Solution
The Schrödinger equation for −a < x < a is

h̄2

2m
d2ψ
dx2

+(E−δ (x))ψ = 0.

The boundary conditions yield ψ(±a) = 0, plus the condition of continuity in x= 0.
The first derivative is not continuous in x= 0 (see also Problem 2.26). We also note
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that the operator

h̄2

2m
d2

dx2
+(E−δ (x))

is invariant under the spatial inversion x→−x (we recall that δ (x) = δ (−x)). This
means that if ψ(x) is a solution to our problem, also ψ(−x) is automatically a so-
lution. Moreover, we are dealing with a one dimensional problem, and there cannot

be two independent solutions with the same eigenvalue. To prove this statement we

suppose the contrary to be true, and consider ψ1,ψ2 as two independent solutions
with the same potential V and the same eigenvalue E

ψ ′′
1,2 =

2m
h̄2

(V −E)ψ1,2.

If we divide the two Schrödinger equations by ψ1,ψ2, we get

ψ ′′
1

ψ1
=
2m
h̄2

(V −E) =
ψ ′′
2

ψ2

that implies ψ ′′
1ψ2−ψ ′′

2ψ1 = 0. One integration leads to

ψ ′
1ψ2−ψ ′

2ψ1 = const.

where the constant of integration is zero due to the boundary condition ψ1,2(±∞) =
0. This happens because ψ1,2 is an eigenfunction of the discrete spectrum and must
go to zero at ±∞ to be normalized. Therefore, we obtain

ψ ′
1ψ2 = ψ ′

2ψ1

and another integration gives ψ1 = cψ2, where c is an integration constant: we see
that the two functions ψ1,ψ2 are linearly dependent and this violates the previous
assumption of independence.

Let us then go back to our problem considering the two solutions ψ(x) and
ψ(−x). Applying the previous argument, we find ψ(x) = cψ(−x) and, applying
another spatial inversion, we get ψ(x) = c2ψ(x). This means that c=±1 and all the
solutions of the Schrödinger equation must be either even or odd. In general, this

is true for a generic one dimensional symmetrical potential V (x) = V (−x). When
we integrate the Schrödinger equation through the discontinuity (see also Problem

2.26), we get

lim
ε→0

(
h̄2

2m

∫ +ε

−ε

(
ψ ′′(x)+(E−δ (x))ψ(x)

)
dx
)
=

h̄2

2m
(ψ ′(0+)−ψ ′(0−))−ψ(0)= 0

from which
ψ ′(0+)
ψ(0)

− ψ ′(0−)
ψ(0)

=
2m
h̄2

.
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We note that the odd functions have ψ(0) = 0 and do not present a discontinuity in
the derivative. For these functions, the Dirac delta function in x = 0 does not exist,
and they possess the energy spectrum of a potential well (see Problem 2.10). For the

even functions things change. When x �= 0, the solution of the Schrödinger equation
takes the form

ψ(x) = Asin
[√

2mE
h̄2

(x+ γ)
]

where A,γ are constants set by the boundary conditions. Imposing ψ(±a) = 0, we
find γ =±a and ⎧⎨

⎩
ψ(x) = Ax<0 sin

[√
2mE
h̄2

(x+a)
]

−a≤ x < 0

ψ(x) = Ax>0 sin
[√

2mE
h̄2

(x−a)
]

0< x≤ a.

The condition ψx>0(x) = ψx<0(−x) imposes

Ax<0 sin

[√
2mE
h̄2

(−x+a)

]
= Ax>0 sin

[√
2mE
h̄2

(x−a)

]

that means −Ax<0 = Ax>0 = Ã. The solutions are⎧⎨
⎩
ψ(x) =−Ãsin

[√
2mE
h̄2

(x+a)
]

−a≤ x < 0

ψ(x) = +Ãsin
[√

2mE
h̄2

(x−a)
]

0< x≤ a.

The condition of discontinuity of the first derivative in x= 0 is

ψ ′(0+)
ψ(0)

− ψ ′(0−)
ψ(0)

=−2
√
2mE
h̄2

cot

(√
2mE
h̄2

a
)
=
2m
h̄2

.

The energy spectrum E is given by the solution of this equation. Setting A2 =
2ma2/h̄2, x =

√
E (not to be confused with the position in the beginning of the

problem), the solutions can be found by looking at the intersection of the two curves⎧⎨
⎩y= xcot(Ax)

y=− A
2a

reported in Fig. 2.17.

Problem 2.31.
Determine the transmission and reflection coefficients for a particle with mass m in
a potential barrier given by a one dimensional Dirac delta function V (x) = V0δ (x),
V0 > 0.

Solution
We need to determine the solution of the Schrödinger equation in the two regions x≤
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Fig. 2.17 We plot the two curves y= xcot(Ax) and y=− A
2a with A= 2 and a= 1

15 . The intersec-
tion is important to characterize the eigenstates and eigenvalues for a particle with mass m subject
to the potential shown in Fig. 2.16

0 (region I) and x > 0 (region II). The resulting wave function must be continuous
in x = 0 while its first derivative must present a discontinuity (see Problem 2.26).

The wave functions are ⎧⎨
⎩ψI(x) = eikx+CRe−ikx x≤ 0
ψII(x) =CTeikx x > 0

with k=
√
2mE
h̄ . The condition of continuity yields ψI(0) = ψII(0) and this is equiv-

alent to

1+CR =CT .

As for the discontinuity of the first derivative in x= 0, we get

ψ ′(0+)
ψ(0)

− ψ ′(0−)
ψ(0)

=
ikCT

(1+CR)
− ik(1−CR)

(1+CR)
=
2mV0
h̄2

.

Using these two conditions (continuity of the function and discontinuity of the

derivative), we get

CR =
mV0
h̄2

1(
ik− mV0

h̄2

) CT = 1+CR =
ik(

ik− mV0
h̄2

) .
The resulting density fluxes are proportional to

JI ∝ k JR ∝ k|CR|2 JT ∝ k|CT |2.
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The transmission and reflection coefficients are

R= |CR|2 = 1

1+ 2h̄2E
mV 20

T = |CT |2 = 1

1+
mV 20
2h̄2E

.

With these expressions is immediate to verify that T +R= 1.

Problem 2.32.
Characterize the uncertainty relations for two generic self-adjoint operators (K̂ and
F̂) with commutation rule [K̂, F̂ ] = iM̂ (also M̂ is a self-adjoint operator), and de-

termine the most general form of the wave packet minimizing such relation when

K̂ = x̂, F̂ = p̂,M̂ = h̄11. Using such wave packet, determine the averages 〈x̂〉, 〈 p̂〉,
〈x̂2〉 and 〈 p̂2〉. Finally, determine the time evolution of the wave packet with the
Hamiltonian of the harmonic oscillator and verify that the average values of the

position and momentum operators satisfy the classical equations of motion.

Solution
Let us start by defining the average of K̂ and F̂ on a generic state ψ(x)

〈K̂〉=
∫

ψ∗(x)Kψ(x)dx 〈F̂〉=
∫

ψ∗(x)Fψ(x)dx

and introducing the operators Δ K̂ and Δ F̂

Δ K̂ = K̂−〈K̂〉11 Δ F̂ = F̂−〈F̂〉11.

These new operators satisfy the commutation rule

[Δ K̂,Δ F̂ ] = iM̂.

We next introduce the integral I(α), with α a generic real parameter

I(α) =
∫

|(αΔK− iΔF)ψ(x)|2 dx≥ 0.

The above inequality is surely true, since I(α) is defined as the integral of a squared
function. If we use the fact that K̂ and F̂ are self-adjoint operators, we can write

I(α) as

I(α) =
∫

ψ∗(x)(αΔK+ iΔF)(αΔK− iΔF)ψ(x)dx=∫
ψ∗(x)(α2(ΔK)2+αM+(ΔF)2)ψ(x)dx=(
α
√

〈(Δ K̂)2〉+ 〈M̂〉
2

√
〈(Δ K̂)2〉

)2
− 〈M̂〉2
4〈(Δ K̂)2〉 + 〈(Δ F̂)2〉=

〈(Δ K̂)2〉
(
α+

〈M̂〉
2〈(Δ K̂)2〉

)2
+ 〈(Δ F̂)2〉− 〈M̂〉2

4〈(Δ K̂)2〉 ≥ 0.
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The first term of the inequality is positive because it is the square of a function. The

last two terms contribute with a positive term when

〈(Δ F̂)2〉〈(Δ K̂)2〉 ≥ 1

4
〈M̂〉2

that is the desired form of the uncertainty relation. If we set

α = ᾱ =− 〈M̂〉
2〈(Δ K̂)2〉

the integral I becomes

I(ᾱ) =
∫ ∣∣∣∣
( 〈M̂〉ΔK
2〈(Δ K̂)2〉 + iΔF

)
ψ(x)

∣∣∣∣
2

dx= 〈(Δ F̂)2〉− 〈M̂〉2
4〈(Δ K̂)2〉 ≥ 0

that is another way to produce the uncertainty relation. The condition

〈(Δ F̂)2〉〈(Δ K̂)2〉= 1

4
〈M̂〉2

is obtained when I(ᾱ) = 0. This means that the wave packet minimizing the uncer-
tainty relation has to satisfy( 〈M̂〉Δ K̂

2〈(Δ K̂)2〉 + iΔ F̂
)
|ψ〉= 0.

When we set

Δ K̂ = Δ x̂= x̂− x̄11 Δ F̂ = Δ p̂= p̂− p̄11=−ih̄
d
dx

− p̄11 M̂ = h̄11

with x̄= 〈x̂〉 and p̄= 〈p̂〉, we obtain the differential equation(
x− x̄
x20

+
d
dx

− i
p̄
h̄

)
ψ(x) = 0

with x20 = 2〈(Δ K̂)2〉 = 2〈(Δ x̂)2〉, whose solution is the following normalized wave
packet

ψ(x) =
1√√
πx0

e
− (x−x̄)2

2x2
0

+i p̄xh̄
.

We can determine the average values 〈x̂〉,〈p̂〉,〈x̂2〉,〈 p̂2〉 using some properties of
the Gaussian integrals

〈x̂〉=
∫ +∞

−∞
ψ∗(x)xψ(x)dx=

1√
π

∫ +∞

−∞
e−( x

x0
− x̄

x0
)2
(

x
x0

)
x0d
(

x
x0

)
= x̄

〈p̂〉=
∫ +∞

−∞
ψ∗(x)

(
−ih̄

d
dx

)
ψ(x)dx= p̄

∫ +∞

−∞
ψ∗(x)ψ(x)dx+ ih̄

〈
x̂− x̄11

x20

〉
= p̄
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〈x̂2〉=〈(x̂± x̄11)2〉= 〈(x̂− x̄11)2〉+ 〈x̄211〉+2x̄〈(x̂− x̄11)〉= x20
2
+ x̄2

〈 p̂2〉=− h̄2
∫ +∞

−∞
ψ∗(x)

d2ψ(x)
dx2

dx=

− h̄2√
π

∫ +∞

−∞

[
− 1

x20
+

(
ip̄
h̄
−
(

x
x20

− x̄
x20

))2]
e−
(

x
x0
− x̄

x0

)2 dx
x0

=

h̄2

x20
+ p̄2− h̄2√

πx20

∫ +∞

−∞

(
x
x0

− x̄
x0

)2
e−
(

x
x0
− x̄

x0

)2 dx
x0

+

ih̄p̄√
πx20

∫ +∞

−∞

(
x
x0

− x̄
x0

)
e−
(

x
x0
− x̄

x0

)2 dx
x0

=
h̄2

2x20
+ p̄2.

We see that our wave packet has non zero average values for the position and mo-

mentum operators. We will now show that the average values evolve in time accord-

ing to the solutions of the equations of motion of the classical harmonic oscillator

⎧⎨
⎩x(t) = x(0)cos(ωt)+ p(0)

mω sin(ωt)

p(t) =−mωx(0)sin(ωt)+ p(0)cos(ωt).

To determine the time evolution, we write |ψ〉=∑n cn |ψn〉where |ψn〉 are the eigen-
states of the harmonic oscillator. Once we know the generic projection coefficient

cn, the time evolution of the wave packet is given by the phase factors e−iEnt/h̄ mul-

tiplying the cn, where En = h̄ω(n+ 1
2 ) is the eigenvalue of the n-th eigenstate. We

first introduce the scalar quantity

a=
x̄√
2x0

+
ix0 p̄
h̄
√
2

and rewrite the wave packet as

ψ(x) =
1√√
πx0

e−
1
2

(
x
x0

)2− 1
2

(
x̄
x0

)2
+
√
2
(

x
x0

)
a
.

Then, we consider the n-th eigenstate of the harmonic oscillator

ψn(x) =
1√

2nn!
√
πx0

e−
1
2 (

x
x0
)2Hn

(
x
x0

)
=

(−1)n√
2nn!

√
πx0

e
1
2 (

x
x0
)2 dne−( x

x0
)2

d( x
x0
)n
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with Hn the n-th order Hermite polynomial, and compute the projection coefficient
cn as

cn =
∫ +∞

−∞
ψ(x)ψ∗

n (x)dx=
(−1)n√
2nn!π

e−
1
2

(
x̄
x0

)2 ∫ +∞

−∞
e
√
2a
(

x
x0

)
dne−

(
x
x0

)2

d
(

x
x0

)n dx
x0

=

(−1)ne−
1
2

(
x̄
x0

)2
√
2nn!π

(
dn−1e−

(
x
x0

)2

d
(

x
x0

)n−1 e
√
2a
(

x
x0

)
− dn−2e−

(
x
x0

)2

d
(

x
x0

)n−2 d e
√
2a
(

x
x0

)

d
(

x
x0

) + · · ·
)∣∣∣∣

+∞

−∞
+

(−1)ne−
1
2

(
x̄
x0

)2
√
2nn!π

(−1)n
∫ +∞

−∞
dne

√
2a
(

x
x0

)

d
(

x
x0

)n e−
(

x
x0

)2 dx
x0

=

ane−
1
2

(
x̄
x0

)2
√
n!π

∫ +∞

−∞
e
√
2a
(

x
x0

)
−
(

x
x0

)2 dx
x0

=
ane−

1
2

(
x̄
x0

)2
+ 1
2 a
2

√
n!

=
1√
n!

ane
ip̄x̄
2h̄ − 1

2 |a|2

where we have used the integration by parts and set |a|2 = aa∗. The exponential
eip̄x̄/2h̄ is a constant with respect to the variable x and we neglect it, since we can
define the wave packet with an additional unimportant phase factor

ψ(x)→ e−
ip̄x̄
2h̄ ψ(x) =

1√√
πx0

e
− (x−x̄)2

2x2
0 .

The time evolution is then given by

ψ(x, t) =∑
n
cne−

iEnt
h̄ ψn(x) = e−

1
2 |a|2e−

iωt
2 ∑

n

1√
n!
(ae−iωt)nψn(x)

where we see that the quantity a previously defined gets the phase factor e−iωt (it

is exactly the time evolution of the annihilation operator we have seen in Problem

2.24). The time dependence in a is directly translated in a time dependence of the
average values x̄(t) and p̄(t)

a(t) = ae−iωt =
x̄(t)√
2x0

+
ix0 p̄(t)
h̄
√
2

so that

a∗(t) = a∗eiωt =
x̄(t)√
2x0

− ix0 p̄(t)
h̄
√
2

.
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The average values x̄(t) and p̄(t) are then obtained from the two previous relations.
If we define x0 =

√
h̄/mω , we get

x̄(t) =
x0√
2
(a(t)+a∗(t)) =

√
h̄

2mω
(a(t)+a∗(t)) =√

2h̄
mω

(ℜ(a)cos(ωt)+ℑ(a)sin(ωt)) =

x̄(0)cos(ωt)+
1

mω
p̄(0)sin(ωt)

p̄(t) =i
h̄

x0
√
2
(−a(t)+a∗(t)) = i

√
1

2
mh̄ω(−a(t)+a∗(t)) =

√
2mh̄ω(−ℜ(a)sin(ωt)+ℑ(a)cos(ωt)) =

−mω x̄(0)sin(ωt)+ p̄(0)cos(ωt)

that is the solution of the equations of motion for the classical harmonic oscillator

previously anticipated.

Problem 2.33.
We consider a particle with charge q and mass m= 1 subject to the one dimensional

harmonic potential U(x) = x2
2 (h̄ = ω = 1), and placed in a constant electric field,

Ex, directed along the positive x direction. Determine the eigenfunctions and eigen-
values of the Hamiltonian and the average values 〈x̂〉,〈 p̂〉,〈x̂2〉,〈 p̂2〉. If at time t = 0
the wave function is

ψ(x,0) = (π)−
1
4 e−

1
2 x
2−iφ(0)

with φ(0) = 0 the initial phase factor, determine the wave function ψ(x, t) at time t.

Solution
The Hamiltonian of the problem is

Ĥ =
p̂2

2
+

x̂2

2
−qExx̂=

p̂2

2
+

x̂2

2
−2Ax̂

where we have introduced the constant A = qEx
2 . We can complete the square and

rewrite the Hamiltonian as

Ĥ =
p̂2

2
+

x̂2

2
−2Ax̂+2A211−2A211= p̂2

2
+

(x̂−2A11)2
2

−2A211=
p̂2

2
+

ŷ2

2
−2A211= Ĥho−2A211

with ŷ= x̂−2A11. We also note that the derivative is not changed by the translation,
i.e. d2/dx2 = d2/dy2; therefore, the momentum operators in the coordinates x and y
are the same and the Hamiltonian Ĥho =

p̂2
2 + ŷ2

2 is the one of the harmonic oscillator

with coordinate y. The eigenvalue problem in the stationary Schrödinger equation
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can be solved

Ĥ |n〉= (Ĥho−2A211) |n〉=
[(

n+
1

2

)
−2A2

]
|n〉

where the eigenstates |n〉 are those of the harmonic oscillator in the coordinate y
with energies diminished by the quantity −2A2

〈y|n〉= ψn(y) = ψn(x−2A) = 1√
2nn!

√
π
e−

1
2 y
2
Hn(y) =

(−1)n√
2nn!

√
π
e
1
2 y
2 dne−y2

dyn

En =

(
n+

1

2

)
−2A2

with Hn(y) the n-th order Hermite polynomial. From the relation between ŷ, p̂ and
the creation and annihilation operators â†, â⎧⎨

⎩ŷ= 1√
2
(â+ â†)

p̂=− i√
2
(â− â†)

plus the step down and step up action of â, â† on the eigenstates |n〉

â |n〉=√
n |n−1〉 â† |n〉=√

n+1 |n+1〉

we find the following average values

〈n| x̂ |n〉=〈n| ŷ+2A11 |n〉= 1√
2
〈n|(â+ â†) |n〉+2A= 2A

〈n| p̂ |n〉=− i√
2
〈n|(â− â†) |n〉= 0

〈n| x̂2 |n〉=〈n|(ŷ+2A11)2 |n〉= 1

2
〈n|(â+ â†)2 |n〉+4A2 =

1

2
〈n|(ââ†+ â†â) |n〉+4A2 =

(
n+

1

2

)
+4A2

〈n| p̂2 |n〉=− 1

2
〈n|(â− â†)2 |n〉= 1

2
〈n|(ââ†+ â†â) |n〉= n+

1

2
.

We now discuss the time evolution of the wave function

ψ(x,0) = (π)−
1
4 e−

1
2 x
2−iφ(0) = (π)−

1
4 e−

1
2 (y+2A)

2−iφ(0) = (π)−
1
4 e−

1
2 (y−ȳ)2−iφ(0)

where we have used the definition ȳ=−2A. We expect the time evolution to appear
in the average values of the position (ȳ(t)) and momentum (p̄(t)) and in the phase
factor (see also Problem 2.17). Therefore, we rewrite

ψ(y, t) = (π)−
1
4 e−

1
2 (y−ȳ(t))2−iφ(t)+ip̄(t)y.
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The average value of the position ȳ(t) is found with

dȳ(t)
dt

= i〈[Ĥ, ŷ]〉= i
2
〈[p̂2, ŷ]〉= i

2
〈[p̂, ŷ]p̂+ p̂[ p̂, ŷ]〉= 〈 p̂〉= p̄(t).

As for the average value of the momentum operator p̄(t), we get

d p̄(t)
dt

= i〈[Ĥ, p̂]〉= i
2
〈[ŷ2, p̂]〉=− i

2
〈[p̂, ŷ]ŷ+ ŷ[p̂, ŷ]〉=−〈ŷ〉=−ȳ(t).

If we take the derivative of the first expression, we find

d2ȳ(t)
dt2

=
d p̄(t)
dt

=−ȳ(t)

that is the equation of motion for the classical harmonic oscillator with solution

ȳ(t) =C1 sin t+C2 cos t.

Imposing the initial conditions ȳ(0) = −2A, p̄(0) = 0, we get C1 = 0, C2 = −2A.
To determine the phase factor, we use the time dependent Schrödinger equation

i
∂ψ(y, t)

∂ t
=

(
−1
2

∂ 2

∂y2
+

y2

2
−2A2

)
ψ(y, t)

which leads to

i
∂ψ(y, t)

∂ t
=

[
−y

d p̄
dt

+ i(y− ȳ(t))
dȳ
dt

+
dφ
dt

]
ψ(y, t)

∂ 2ψ(y, t)
∂y2

=

[
−1− p̄(t)2+(y− ȳ(t))2−2i(y− ȳ(t)) p̄(t)

]
ψ(y, t).

Plugging this back into the Schrödinger equation and using the relations d p̄/dt =
−ȳ(t), p̄= dȳ/dt we find

dφ(t)
dt

=
1

2
+
1

2

((
dȳ
dt

)2
− ȳ2(t)

)
−2A2.

The above relation is integrated with the initial condition φ(t = 0) = 0 leading to

φ(t) =
1

2
t+

1

2

∫ t

0

((
dȳ(s)
ds

)2
− ȳ2(s)

)
ds−2A2t =

1

2
t+

1

2

(
ȳ(t)

dȳ(t)
dt

−
∫ t

0
ȳ(s)
(
d2ȳ(s)
ds2

+ ȳ(s)
)
ds
)
−2A2t =

t
2
+

ȳ(t)p̄(t)
2

−2A2t
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where we have used
d2 ȳ(s)
ds2 =−ȳ(s), 0≤ s≤ t. Summarizing, the wave function is

ψ(y, t) = (π)−
1
4 e−

1
2 (y−ȳ(t))2− it

2− 1
2 iȳ(t) p̄(t)+ip̄(t)y+2iA2t

where ȳ(t), p̄(t) are calculated from the classical equations of motion (see also Prob-
lems 2.9 and 2.32).

Problem 2.34.
Let us consider the one dimensional quantum harmonic oscillator with frequency ω ,
and let â and |n〉 be the annihilation operator and the normalized eigenstate of â†â
with eigenvalue n. Determine the commutator [â,(â†)n], with n a positive integer
number. Then, consider the generic normalized state |α〉= ∑n cn|n〉, and determine
the coefficients cn in such a way that â|α〉= α|α〉, with α a real number.
Solution
Let us start by determining the commutator [â,(â†)n]. The idea is to use the Jacobi
identity (see also Problem 2.2)

[Â, B̂Ĉ] = B̂[Â,Ĉ]+ [Â, B̂]Ĉ

which, applied to our case, yields

[â,(â†)n] = (â†)n−1[â, â†]+ [â,(â†)n−1]â† = (â†)n−1+[â,(â†)n−1]â†

where we have used [â, â†] = 1. We can also determine [â,(â†)n−1]

[â,(â†)n−1] = (â†)n−2[â, â†]+ [â,(â†)n−2]â† = (â†)n−2+[â,(â†)n−2]â†

which, plugged back in the previous expression, leads to

[â,(â†)n] = 2(â†)n−1+[â,(â†)n−2](â†)2.

By iteration, we obtain

[â,(â†)n] = n(â†)n−1.

As for the second point, we know that

â|n〉=√
n|n−1〉

and the condition â|α〉= α|α〉 is equivalent to

cn
√
n= αcn−1.

Therefore, if we define c0 =C, we find c1 =Cα , c2 =C α2√
2
and, finally, cn =C αn√

n!
.

The normalization condition fixes the constant C = e−
α2
2 . This state is known as

coherent state
|α〉= e−

α2
2 ∑

n

αn
√
n!
|n〉.
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In Problem 2.35 we will further characterize the properties of this kind of states and

determine the time evolution.

Problem 2.35.
Consider the one dimensional quantum harmonic oscillator with h̄ = m = ω = 1.

We define the coherent state as

|α〉= Aeα â† |0〉

with α a complex number, |0〉 the ground state, and â† the creation operator:

determine the normalization constant A;
show that |α〉 is an eigenstate of the annihilation operator â with eigenvalue α;
show that the average value of the position operator x̂ on |α〉 is non zero;
determine the probability to find the n-th eigenvalue of the energy in the state
|α〉;
determine the time evolution of |α〉.

Solution
Let us consider the action of eα â† on the state |0〉

eα â† |0〉=
+∞

∑
n=0

αn

n!
(â†)n |0〉=

+∞

∑
n=0

αn
√
n!

|n〉

where we have used (by iteration) the following relation

â† |n〉=√
n+1 |n+1〉 .

If we take the square modulus of the coherent state, we find

1= 〈α|α〉= |A|2
+∞

∑
n=0

+∞

∑
m=0

αn
√
n!

(α∗)m√
m!

〈m|n〉= eαα
∗ |A|2.

Therefore, the normalized state is

|α〉= e−
1
2αα

∗
eα â† |0〉 .

As for the second point, we write eα â† with its Taylor expansion

â |α〉= Aâ
+∞

∑
n=0

αn

n!
(â†)n |0〉 .

The next step is the calculation (see also Problem 2.34) of the commutator [â,(â†)n]

[â,(â†)n] =[â, â†](â†)n−1+ â†[â,(â†)n−1] =

(â†)n−1+(â†)[â, â†](â†)n−2+(â†)2[â,(â†)n−2] =

2(â†)n−1+(â†)2[â,(â†)n−2] = . . .= n(â†)n−1
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where we have used the Jacobi identity (see also Problem 2.2). This result allows us

to rewrite â |α〉 as

â |α〉=Aâ
+∞

∑
n=0

αn

n!
(â†)n |0〉=A

+∞

∑
n=0

αn

n!

(
(â†)nâ+n(â†)n−1

) |0〉=A
+∞

∑
n=0

αn

n!
n(â†)n−1 |0〉 .

Setting n′ = n−1 we can rewrite the right hand side as α |α〉: the extra term gener-
ated by this substitution is indeed zero because (−1)!=+∞. As for the third point,
we need to calculate the average value of the position operator on |α〉. To do this,
we use the relation

〈α| x̂ |α〉= 1√
2
〈α|(â+ â†) |α〉= 1√

2
(α+α∗) =

√
2ℜ(α)

and write

〈α| â† = α∗ 〈α|
with â |α〉= α |α〉. The probability to find the energy eigenvalue En = n+ 1

2 in the

state |α〉 is

|cn|2 = e−αα∗ | 〈n|
+∞

∑
m=0

αm

m!
(â†)m |0〉 |2 = e−αα∗ | 〈n|

+∞

∑
m=0

αm
√
m!

|m〉 |2 = e−αα∗ (αα∗)n

n!

i.e. a Poisson distribution. The time evolution of the state is given by

|α, t〉=e−
1
2αα

∗ +∞

∑
n=0

αn
√
n!

e−iEnt |n〉= e−
1
2αα

∗ +∞

∑
n=0

αn
√
n!

e−i(n+ 1
2 )t |n〉=

e−
1
2αα

∗
e−

1
2 it

+∞

∑
n=0

(αe−it)n√
n!

|n〉= e−
1
2αα

∗
e−

1
2 it

+∞

∑
n=0

(α â†e−it)n

n!
|0〉

where the last series sums to an exponential function (we already met this kind of

wave function in Problem 2.32).



3

Angular Momentum and Spin

Problem 3.1.
Determine the uncertainty relations between the orbital angular momentum L̂LL =
(L̂x, L̂y, L̂z) and the components of the position and of the momentum operators

r̂rr = (x̂, ŷ, ẑ), p̂pp = (p̂x, p̂y, p̂z). Then, find the operator L̂z in spherical polar coordi-

nates and explain why the operators φ̂ (azimuthal angle) and L̂z can be measured

simultaneously. What are the functions of φ̂ whose commutator with L̂z has a phys-

ical sense?

Solution
We start from the commutation rules involving the position and the momentum op-

erators

[x̂i, p̂ j] = ih̄δi j11.

The orbital angular momentum is given by LLL = rrr∧ ppp. The different components of
such vector, using the Einstein convention for summation on repeated indexes, can

be written as

L̂i = εi jkr̂ j p̂k

where εi jk is the Levi-Civita tensor and i, j,k= x,y,z. Such tensor is totally antisym-
metric and conventionally chosen in such a way that εxyz = 1. Using the commuta-
tion rule between position and momentum operators, we find

[L̂i, r̂ j] = εikl r̂k[p̂l , r̂ j] =−ih̄εikl r̂kδl j = ih̄εi jkr̂k

[L̂i, p̂ j] = εikl [r̂k, p̂ j]p̂l = ih̄εikl p̂lδk j = ih̄εi jl p̂l .

The operator L̂z, when acting on a function in Cartesian coordinates, is a differential

operator with the property

L̂z =−ih̄
(
x
∂
∂y

− y
∂
∂x

)
.

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 3, c© Springer-Verlag Italia 2012
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The useful relations to rewrite it in spherical polar coordinates are⎧⎪⎪⎨
⎪⎪⎩
x= r sinθ cosφ

y= r sinθ sinφ

z= r cosθ

and the inverse ⎧⎪⎪⎨
⎪⎪⎩
r =
√

x2+ y2+ z2

θ = arccos
( z
r

)
φ = arctan

( y
x

)
.

Furthermore ⎧⎪⎪⎨
⎪⎪⎩

∂ r
∂y = sinθ sinφ ;

∂ r
∂x = sinθ cosφ

∂θ
∂y = 1

r cosθ sinφ ;
∂θ
∂x = 1

r cosθ cosφ
∂φ
∂y = cosφ

r sinθ ;
∂φ
∂x =− sinφ

r sinθ

leading to

L̂z =− ih̄
(
x
∂
∂y

− y
∂
∂x

)
=−ih̄r sinθ cosφ

(
∂ r
∂y

∂
∂ r

+
∂θ
∂y

∂
∂θ

+
∂φ
∂y

∂
∂φ

)
+

ih̄r sinθ sinφ
(
∂ r
∂x

∂
∂ r

+
∂θ
∂x

∂
∂θ

+
∂φ
∂x

∂
∂φ

)
=−ih̄

∂
∂φ

.

We now write the Heisenberg uncertainty relations (see Problem 2.32)

〈(Δ F̂)2〉〈(Δ K̂)2〉 ≥ 1

4
〈M̂〉2

where
[K̂, F̂ ] = iM̂

with K̂, F̂ ,M̂ self-adjoint operators. If we consider the operators φ̂ and L̂z, we see

that their commutator gives a finite non zero result. Nevertheless, we note that they

have different domains. As for the case of L̂z, its eigenfunctions and eigenvalues are

obtained from the solutions of the ordinary differential equation

−ih̄
dψ(φ)
dφ

= Lzψ(φ)

with 0≤ φ ≤ 2π . The solutions of such equation are
ψ(φ) = AeiLzφ/h̄.

The need to interpret the square modulus as a probability distribution prevents the

functions from being multivalued

ψ(φ +2π) = ψ(φ)
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and imposes that the eigenvalues of L̂z are quantized: Lz = mh̄, with m an integer

number. The corresponding normalized eigenfunctions are

ψ(φ) =
1√
2π

eimφ .

We see that the operator L̂z acts on periodic functions. The action of φ̂ on a periodic
function ψ(φ), leads to φ̂ψ(φ) = φψ(φ) = f (φ), which is manifestly non periodic

f (φ +2π) = (φ +2π)ψ(φ +2π) = (φ +2π)ψ(φ) �= f (φ).

Therefore, we conclude that, before taking the commutator between two operators

and ask if they can (or cannot) be measured simultaneously, we need to be sure they

act on the same functional space. In the case of L̂z, we need operators acting on

periodic functions, as for example cosφ ,sinφ and their combinations.

Problem 3.2.
Consider the orbital angular momentum L̂LL = (L̂x, L̂y, L̂z) in Cartesian coordinates
(x,y,z) and determine the commutators [[[L̂x, L̂y], L̂x], L̂x], [[[L̂x, L̂y], L̂x], L̂y], [[[L̂x, L̂y],
L̂x], L̂z]. Finally, determine the action of L̂2 = L̂2x + L̂2y + L̂2z on the combination
(x̂[L̂y, ẑ]− ŷ[L̂x, ẑ]+ ẑ[L̂x, ŷ]).

Solution
To solve this problem, we need to consider the commutation rules of the angular

momentum. In particular, we know that

L̂LL∧ L̂LL= ih̄L̂LL

from which we get

[L̂x, L̂y] = L̂xL̂y− L̂yL̂x = ih̄L̂z

[L̂z, L̂x] = L̂zL̂x− L̂xL̂z = ih̄L̂y

[L̂y, L̂z] = L̂yL̂z− L̂zL̂y = ih̄L̂x.

The above relations can be used to simplify the first commutator requested by the

text

[[[L̂x, L̂y], L̂x], L̂x] = ih̄[[L̂z, L̂x], L̂x] =−h̄2[L̂y, L̂x] = ih̄3L̂z.

When the last L̂x is interchanged with L̂y, we get

[[[L̂x, L̂y], L̂x], L̂y] = ih̄[[L̂z, L̂x], L̂y] =−h̄2[L̂y, L̂y] = 0.

Also, when the last L̂x is interchanged with L̂z, we get

[[[L̂x, L̂y], L̂x], L̂z] = ih̄[[L̂z, L̂x], L̂z] =−h̄2[L̂y, L̂z] =−ih̄3L̂x.

As for the second point, from the relation

[L̂x, ŷ] = [ŷ p̂z− ẑ p̂y, ŷ] = ih̄ẑ



116 3 Angular Momentum and Spin

and its cyclic permutations, we find

x̂[L̂y, ẑ]− ŷ[L̂x, ẑ]+ z[L̂x, ŷ] = ih̄(x̂2+ ŷ2+ ẑ2).

Therefore, we see that the combination x̂[L̂y, ẑ]− ŷ[L̂x, ẑ] + ẑ[L̂x, ŷ] is directly pro-
portional to the square of the distance from the origin of coordinates (r̂2) and is
independent of the angles, i.e. when projected on the angular variables it is propor-

tional to the spherical harmonic Y0,0(θ ,φ). Since the spherical harmonics Yl,m are
eigenfunctions of L̂2 with eigenvalues h̄2l(l+1), we find

L̂2(x̂[L̂y, ẑ]− ŷ[L̂x, ẑ]+ ẑ[L̂x, ŷ]) = 0.

Problem 3.3.
Consider the Hamiltonian of a plane rigid rotator

Ĥ1 =
L̂2z
2I

with L̂z the z component of the orbital angular momentum and I the momentum
of inertia. Then, consider the Hamiltonian of a free particle with anisotropic mass

(mx �= my) moving on a two dimensional plane

Ĥ2 =
p̂2x
2mx

+
p̂2y
2my

with p̂x,y the x,y component of the momentum operator:

determine the lower bound of the product σ21σ
2
2 , with σ

2
i = 〈(Δ Ĥi)

2〉 = 〈Ĥ2
i 〉−

〈Ĥi〉2 (i= 1,2) and where the average 〈...〉 is meant on a generic state |ψ〉;
determine the energy of the ground state of the Hamiltonian Ĥ = Ĥ1+ Ĥ2;
when mx = my, determine the eigenvalues of Ĥ = Ĥ1+ Ĥ2.

Solution
We use the results of Problem 2.32, where we have seen that the Heisenberg uncer-

tainty relations can be written as

〈(Δ F̂)2〉〈(Δ K̂)2〉 ≥ 1

4
〈M̂〉2

where K̂ and F̂ are two generic self-adjoint operators with commutation rule

[K̂, F̂ ] = iM̂. We have to identify K̂ = Ĥ1 and F̂ = Ĥ2 and determine the commutator

[Ĥ1, Ĥ2] =
L̂z

2I
[L̂z, Ĥ2]+ [L̂z, Ĥ2]

L̂z

2I
=

ih̄
2I

(L̂z p̂x p̂y+ p̂x p̂yL̂z)

(
1

mx
− 1

my

)

where we have used

[
Ĥ2, L̂z

]
=

[
p̂2x
2mx

+
p̂2y
2my

, x̂ p̂y− ŷ p̂x

]
=−ih̄p̂x p̂y

(
1

mx
− 1

my

)
[p̂s, p̂ j] = δs j11 [ŝ, p̂ j] = δs jih̄11 (s, j = x,y)
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and the Jacobi identity (see Problem 2.2). Therefore, the result is

σ21σ
2
2 = 〈(Δ Ĥ1)2〉〈(Δ Ĥ2)2〉 ≥ 1

4

(
h̄
2I

)2
(〈ψ|(L̂z p̂x p̂y+ p̂x p̂yL̂z)|ψ〉)2

(
1

mx
− 1

my

)2

and we see that we get 0 in the isotropic case. The same happens when we are in a

state with zero px,y or Lz. The ground state of the Hamiltonian Ĥ = Ĥ1+ Ĥ2 is ψ =
1√
2π
, i.e. a state where both 〈(Δ Ĥ1)2〉 and 〈(Δ Ĥ2)2〉 are zero. Finally, in the isotropic

case (mx = my = m), [Ĥ1, Ĥ2] = 0 and the eigenvalues of Ĥ1, Ĥ2 are summed: Ĥ1
has a discrete spectrum with eigenvalues h̄2k2

2I , with k an integer number (see also

Problem 5.1); Ĥ2 has a continuous spectrum with eigenvalues
p2x+p2y
2m . Therefore, the

eigenvalues of Ĥ are

Ek,px,py =
h̄2k2

2I
+

p2x + p2y
2m

.

Problem 3.4.
Let us consider a system whose Hamiltonian is

Ĥ =
L̂+L̂−

h̄

where L̂± are the raising and lowering operators for the z component of the orbital
angular momentum. At time t = 0, the system is described by the following wave

function

ψ(θ ,φ ,0) = Asinθ sinφ .

Expand the initial wave function on the spherical harmonics and determine the nor-

malization constant. Finally, determine the time evolution of the wave function

and find the time t at which the wave function is identical to the initial state, i.e.
ψ(θ ,φ , t) = Asinθ cosφ .

Solution
We first recall some useful formulae for the spherical harmonics Yl,m(θ ,φ) =
〈θ ,φ |l,m〉

Yl,m(θ ,φ) = (−1)m
√

(2l+1)
4π

(l−m)!
(l+m)!

eimφPm
l (cosθ) m≥ 0

Yl,m(θ ,φ) = Yl,−|m|(θ ,φ) = (−1)|m|Y ∗
l,|m|(θ ,φ) m < 0

where Pm
l (cosθ) is the associated Legendre polynomial of order l defined by

Pm
l (u) = (1−u2)m/2 dm

dum
Pl(u) 0≤ m≤ l

Pl(u) =
1

2l l!
dl

dul

[
(u2−1)l

]
.
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For l = m= 1 we get

Y1,±1(θ ,φ) =∓
√
3

8π
e±iφ sinθ .

Therefore, the normalized wave function can be written as

ψ(θ ,φ ,0) =
1√
2
(Y1,1(θ ,φ)+Y1,−1(θ ,φ))

that implies A = −i
√

3
4π . To determine the time evolution, it is convenient to find

the eigenvalues of the Hamiltonian. From the definition of the raising and lowering

operators for the z component of the orbital angular momentum, we have

L̂+ = (L̂x+ iL̂y) L̂− = (L̂x− iL̂y)

and, hence
L̂+L̂− = (L̂2x + L̂2y + h̄L̂z) = (L̂2− L̂2z + h̄L̂z)

where L̂2= L̂2x+ L̂2y+ L̂2z is the squared orbital angular momentum. The Hamiltonian
is diagonal with respect to the basis given by the Yl,m

Ĥ|l,m〉= (h̄l(l+1)− h̄m2+ h̄m)|l,m〉

with eigenvalues
El,m = (h̄l(l+1)− h̄m2+ h̄m).

Therefore E1,1 = 2h̄ for Y1,1 and E1,−1 = 0 for Y1,−1. The time evolution is obtained

with the action of e−
iĤt
h̄ on ψ(θ ,φ ,0)

ψ(θ ,φ , t) = e−
iĤt
h̄ ψ(θ ,φ ,0) =

i√
2
(e−2itY1,1(θ ,φ)+Y1,−1(θ ,φ)).

The time t at which ψ(θ ,φ , t) =ψ(θ ,φ ,0) is found by imposing that e−2it = 1. This
happens for the first time when t = π .

Problem 3.5.
In a constant magnetic field B1, a spin 1/2 particle evolves from time t = 0 to t = T
according to the Hamiltonian

Ĥ(t) =−μσ̂zB1

where σ̂z is the usual Pauli matrix for the z component of the spin. At time t = 0

the probability that the spin is +h̄/2 along the x axis is 1. Solve the Schrödinger

equation for the spinor |ψ(t)〉=
(
a(t)
b(t)

)
and calculate |ψ(T )〉. After t = T , the time

evolution proceeds in a discontinuous way with the Hamiltonian which depends on
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time according to the law ⎧⎨
⎩Ĥ(t) =−μσ̂zB1 t ≤ T

Ĥ(t) = +μσ̂zB2 t > T.

Calculate |ψ(2T )〉. Find B2 such that a measurement of spin in the y direction at
time t = 2T must give −h̄/2.

Solution
At time t = 0, since the probability to find the particle with spin projection +h̄/2
along x is 1, the wave function must be an eigenstate of the Pauli matrix σ̂x

σ̂x|ψ(0)〉= |ψ(0)〉

with the Pauli matrices given by

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0

0 −1

)
.

The normalized eigenstate is

|ψ(0)〉= 1√
2

(
1

1

)
.

In the time interval 0 ≤ t ≤ T , time evolution is driven by Ĥ(t) = −μσ̂zB1, whose
eigenvalues are ∓μB1. The corresponding time evolution operator is diagonal

Û(0, t) = e−iĤt/h̄ =

(
e

iμ
h̄ B1t 0

0 e−
iμ
h̄ B1t

)
.

Therefore, we can apply Û(0, t) to |ψ(0)〉

|ψ(t)〉= Û(0, t)|ψ(0)〉= e−
iμ
h̄ B1t
√
2

(
e2

iμ
h̄ B1t

1

)
.

When t > T , time evolution is driven by Ĥ(t) = μσ̂zB2, and the corresponding time
evolution operator can be applied to |ψ(T )〉= Û(0,T )|ψ(0)〉

|ψ(t)〉= Û(T, t)|ψ(T )〉= e−
iμ
h̄ B1T+

iμ
h̄ B2(t−T )

√
2

(
e2

iμ
h̄ B1T−2 iμ

h̄ B2(t−T )

1

)
.

A measurement of the spin projection along y is surely −h̄/2 at time 2T when

|ψ(2T )〉= eiα√
2

(
i
1

)
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meaning that, apart from an unimportant phase factor, we are exactly in the eigen-

state with negative eigenvalue of the Pauli matrix given by σ̂y. The required condi-

tion is therefore

e
2iμT
h̄ (B1−B2) = i

and, hence

B1 = B2+
π h̄
4μT

+
nπ h̄
μT

n= 0,±1,±2, ...

Problem 3.6.
We consider a Stern-Gerlach apparatus allowing the orientation of the spin in a

generic direction n̂= (sinθ cosφ ,sinθ sinφ ,cosθ), with arbitrary θ and φ . For the
state with spin projection + h̄

2 in the n̂ direction, determine the values of θ and φ
such that:

1) the probability that a measurement of the z component of the spin gives + h̄
2 is

P(z,+) = 1
4 ;

2) the angle φ maximizes the probability P(y,+) that a measurement of the y com-
ponent of the spin gives + h̄

2 .

Solution
We start from the relation between the spin operator and the Pauli matrices

ŜSS=
h̄
2
σ̂σσ

where

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0

0 −1

)
.

The spin matrix in the direction of n̂ = (sinθ cosφ ,sinθ sinφ ,cosθ) is obtained
from the scalar product

ŜSS · n̂= 1

2
h̄

(
cosθ sinθ e−iφ

sinθ eiφ −cosθ

)
.

The eigenvectors of ŜSS · n̂ are

|+, n̂〉=
(
cos
( θ
2

)
sin
( θ
2

)
eiφ

)
|−, n̂〉=

(
−sin( θ2 )e−iφ

cos
( θ
2

)
)

.

The state |+, n̂〉 represents the state with spin projection + h̄
2 in the n̂ direction. In

this state, the probability that a measurement of the z component of the spin gives
+ h̄
2 , is the square modulus of the scalar product with

|+,z〉=
(
1

0

)
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that is the eigenstate of σ̂z with eigenvalue +1. The result is cos
( θ
2

)
. Therefore, the

condition P(z,+) = 1
4 means that cos

2
( θ
2

)
= 1

4 and

cos

(
θ
2

)
=±1

2
.

There are two possible solutions: θ
2 = π

3 and
θ
2 = 2π

3 . Since θ ≤ π , the solution is
θ = 2π

3 . Using sin(
θ
2 ) =

√
3
2 , the state with spin projection + h̄

2 in the n̂ direction
becomes

|ψ〉=
(

1
2√
3
2 eiφ

)
.

We now need to set the condition in 2) to determine φ . The probability that a mea-
surement of the y component of the spin gives + h̄

2 , is the square modulus of the

scalar product with

|+,y〉= 1√
2

(
1

i

)

that is the eigenstate of σ̂y with eigenvalue +1. Therefore, we find

P(y,+) =
1

8
(1+

√
3sinφ)2+

3

8
cos2 φ .

The maximum is found from the equations⎧⎨
⎩

dP
dφ =

√
3
4 cosφ(1+

√
3sinφ)− 3

4 cosφ sinφ =
√
3
4 cosφ = 0

d2P
dφ2 =−

√
3
4 sinφ < 0

with solution φ = π
2 .

Problem 3.7.
At time t = 0, a quantum state |ψ(0)〉 is an eigenstate of L̂2, L̂z with eigenvalues 2h̄2

and 0 respectively. Determine the time evolution of |ψ(0)〉 according to the Hamil-
tonian Ĥ = L̂x, with L̂i the i-th component of the orbital angular momentum and L̂2

its square. When a measurement of the energy gives −h̄, express the corresponding
state as a linear combination of the eigenstates of L̂2 and L̂z.

Solution
The state |ψ(0)〉 is an eigenstate of the z component of the orbital angular momen-
tum but not of the x component. It follows that the Hamiltonian is not diagonal with
respect to the basis given by the spherical harmonics. We remark that the choice

of diagonalizing L̂z together with L̂2 is purely arbitrary: the commutation rules for
the angular momentum are very general and, to perform calculations, one has to

provide a matrix representation of the operators or to write them in terms of differ-

ential operators. Two standard examples are the Pauli matrices for the spin and the

momentum operator written as−ih̄∇∇∇. To solve our problem it is more convenient to
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work with matrices. In this case, L̂z is a diagonal matrix with eigenvalues h̄, 0 and
−h̄

L̂z = h̄

⎛
⎜⎝1 0 0

0 0 0

0 0 −1

⎞
⎟⎠

and its eigenvectors are

|1,1〉z =

⎛
⎜⎝10
0

⎞
⎟⎠ |1,0〉z =

⎛
⎜⎝01
0

⎞
⎟⎠ |1,−1〉z =

⎛
⎜⎝00
1

⎞
⎟⎠

and |ψ(0)〉= |1,0〉z. The matrix representation of L̂x is given by

L̂x =
h̄
2

⎛
⎜⎝ 0

√
2 0√

2 0
√
2

0
√
2 0

⎞
⎟⎠ .

The eigenvalues of this matrix are h̄, 0, −h̄ and correspond to the eigenvectors

|1,1〉x = 1

2

⎛
⎜⎝ 1√

2

1

⎞
⎟⎠ |1,0〉x = 1√

2

⎛
⎜⎝ 1

0

−1

⎞
⎟⎠ |1,−1〉x = 1

2

⎛
⎜⎝−1√

2

−1

⎞
⎟⎠ .

The time evolution operator is e−iĤt/h̄, and its action on a generic eigenstate with

energy En is particularly simple, because it produces a phase e−iEnt/h̄. Therefore, we

need to expand our state |ψ(0)〉 as a linear combination of the eigenvectors |1,m〉x
with m= 0,±1

|ψ(0)〉= a|1,1〉x+b|1,0〉x+ c|1,−1〉x.
The coefficients are found to be a= c= 1/

√
2, b= 0. When acting with e−iĤt/h̄ on

this state, the terms in the right hand side acquire a phase factor depending on their

eigenvalues

|ψ(t)〉= 1√
2
(e−it |1,1〉x+ eit |1,−1〉x).

From the text of the problem, we know that a measurement of Ĥ gives −h̄. Soon
after this measurement, the system is described by the state |1,−1〉x which can be
decomposed as

|1,−1〉x = a|1,1〉z+b|1,0〉z+ c|1,−1〉z
with the following coefficients: a= c=−1/2, b= 1/√2.
Problem 3.8.
An atom with the orbital angular momentum l = 1 is subject to a constant magnetic
field BBB = B(sinθ cosφ ,sinθ sinφ ,cosθ), where B is a constant parameter and θ ,φ
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give the direction of BBB. The atom is described by the following Hamiltonian

Ĥ = μL̂LL ·BBB

where μ is a constant magnetic moment. Characterize the energy spectrum.

Solution
We note that the eigenvalues of the scalar product L̂LL ·BBB are invariant under rotations.
Therefore, we can choose a reference system such that the magnetic field is oriented

along the z direction, i.e. BBB = B(0,0,1). Consequently, the Hamiltonian becomes
proportional to the third component of the orbital angular momentum, L̂z, whose

eigenvalues are h̄, 0 , −h̄. The eigenvalues of the Hamiltonian Ĥ = μBL̂z follow

E+1 = μBh̄ E0 = 0 E−1 =−μBh̄.

It is instructive to repeat the calculation without choosing the direction of BBB along
z, and show that we get the same result. For l = 1 the angular momentum has the

following matrix representation

L̂x =
h̄√
2

⎛
⎜⎝ 0 1 01 0 1

0 1 0

⎞
⎟⎠ L̂y =

h̄√
2

⎛
⎜⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎟⎠ L̂z = h̄

⎛
⎜⎝1 0 0

0 0 0

0 0 −1

⎞
⎟⎠ .

Therefore, writing down explicitly Ĥ = μL̂LL ·BBB, we get

Ĥ = μ(BxL̂x+ByL̂y+BzL̂z) = μ h̄B

⎛
⎜⎜⎝
cosθ sinθe−iφ√

2
0

sinθeiφ√
2

0 sinθe−iφ√
2

0 sinθeiφ√
2

−cosθ

⎞
⎟⎟⎠ .

We can now calculate the characteristic polynomial det(Ĥ − λ11). Setting λ̃ =
μ h̄Bλ , we need to calculate

det(Ĥ−λ11) = μ h̄Bdet

⎛
⎜⎜⎝
cosθ − λ̃ sinθe−iφ√

2
0

sinθeiφ√
2

−λ̃ sinθe−iφ√
2

0 sinθeiφ√
2

−cosθ − λ̃

⎞
⎟⎟⎠ .

The result is

det(Ĥ−λ11)
μ h̄B

=− λ̃ (λ̃ 2− cos2 θ)− (cosθ − λ̃ )sin2 θ
2

− (−cosθ − λ̃ )sin2 θ
2

=

− λ̃ (λ̃ 2− sin2 θ − cos2 θ) =−λ̃ (λ̃ 2−1).
The eigenvalues are the roots of the equation

λ̃ (λ̃ 2−1) = 0

with solutions λ̃ = 0,±1, that is the same result obtained previously.
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Problem 3.9.
We consider a system with two particles, each one with spin 1/2. Let the z
components of the spins, Ŝ1z and Ŝ2z, be diagonal, i.e. we use the vector basis∣∣ 1
2 ,S1z

〉
z⊗
∣∣ 1
2 ,S2z

〉
z with S1z,S2z =± 1

2 (to simplify matters, set h̄= 1). For a general
linear combination of the elements of this vector basis, determine the probability

that a simultaneous measurement of Ŝ1z and Ŝ2z gives as result:

S1z =+1/2, S2z =+1/2;
S1z =+1/2, S2z =−1/2;
S1z =−1/2, S2z =+1/2;
S1z =−1/2, S2z =−1/2.

Then, determine the probability that a simultaneous measurement of Ŝ1y (the y com-
ponent of the spin for the first particle) and Ŝ2z gives S1y = +1/2 and S2z = +1/2.
Finally, determine the probability that a measurement of Ŝ2z alone gives −1/2 as
result.

Solution
We take the general linear combination of the four states

∣∣ 1
2 ,S1z

〉
z ⊗
∣∣ 1
2 ,S2z

〉
z with

S1z,S2z =± 1
2

|ψ〉=α
∣∣∣∣12 , 12

〉
z
⊗
∣∣∣∣12 , 12

〉
z
+β
∣∣∣∣12 , 12

〉
z
⊗
∣∣∣∣12 ,−12

〉
z
+

γ
∣∣∣∣12 ,−12

〉
z
⊗
∣∣∣∣12 , 12

〉
z
+δ
∣∣∣∣12 ,−12

〉
z
⊗
∣∣∣∣12 ,−12

〉
z
.

The probability that a simultaneous measurement of Ŝ1z and Ŝ2z gives one of the
four results reported in the text, is the square modulus of the coefficient multiplying

the state with the desired values of the projections S1z,S2z

P
(
S1z =

1

2
,S2z =

1

2

)
= |α|2 P

(
S1z =

1

2
,S2z =−1

2

)
= |β |2

P
(
S1z =−1

2
,S2z =

1

2

)
= |γ|2 P

(
S1z =−1

2
,S2z =−1

2

)
= |δ |2.

To determine the probability associated with a measurement of Ŝ1y, we need to use
the basis where the y component of the spin Ŝy is diagonal. The matrix representation
of such observable is proportional to a Pauli matrix

Ŝy =
1

2

(
0− i
i 0

)

with eigenvalues ±1/2 corresponding to the eigenvectors
∣∣∣∣12 , 12

〉
y
=

1√
2

(
−i
1

) ∣∣∣∣12 ,−12
〉

y
=

1√
2

(
i
1

)
.
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Also, the eigenvectors corresponding to projections±1/2 of the z component of the
spin are ∣∣∣∣12 , 12

〉
z
=

(
1

0

) ∣∣∣∣12 ,−12
〉

z
=

(
0

1

)
.

Then, we need to write
∣∣ 1
2 ,
1
2

〉
z ,
∣∣ 1
2 ,− 1

2

〉
z in terms of

∣∣ 1
2 ,
1
2

〉
y ,
∣∣ 1
2 ,− 1

2

〉
y

∣∣∣∣12 , 12
〉

z
=

i√
2

(∣∣∣∣12 , 12
〉

y
−
∣∣∣∣12 ,−12

〉
y

)

∣∣∣∣12 ,−12
〉

z
=

1√
2

(∣∣∣∣12 , 12
〉

y
+

∣∣∣∣12 ,−12
〉

y

)
.

To determine the probability to find S1y = 1/2 and S2z = 1/2, we consider in |ψ〉
only those states with S2z = 1/2

|ψ〉S2z=1/2 = α
∣∣∣∣12 , 12

〉
z
⊗
∣∣∣∣12 , 12

〉
z
+ γ
∣∣∣∣12 ,−12

〉
z
⊗
∣∣∣∣12 , 12

〉
z

and expand
∣∣ 1
2 ,
1
2

〉
z ,
∣∣ 1
2 ,− 1

2

〉
z for the first particle in terms of

∣∣ 1
2 ,
1
2

〉
y ,
∣∣ 1
2 ,− 1

2

〉
y

|ψ〉S2z=1/2 =
i√
2
α

(∣∣∣∣12 , 12
〉

y
−
∣∣∣∣12 ,−12

〉
y

)
⊗
∣∣∣∣12 , 12

〉
z
+

1√
2
γ

(∣∣∣∣12 , 12
〉

y
+

∣∣∣∣12 ,−12
〉

y

)
⊗
∣∣∣∣12 , 12

〉
z
=

iα+ γ√
2

∣∣∣∣12 , 12
〉

y
⊗
∣∣∣∣12 , 12

〉
z
+

γ− iα√
2

∣∣∣∣12 ,−12
〉

y
⊗
∣∣∣∣12 , 12

〉
z
.

The answer to the second point is

P
(
S1y =

1

2
,S2z =

1

2

)
=

|α|2+ |γ|2
2

.

Finally, the probability that a measurement of Ŝ2z gives −1/2, is

P
(
S2z =−1

2

)
= |β |2+ |δ |2

that is obtained taking the square of the scalar product between |ψ〉 and

|ψ〉S2z=−1/2 = β
∣∣∣∣12 , 12

〉
z
⊗
∣∣∣∣12 ,−12

〉
z
+δ
∣∣∣∣12 ,−12

〉
z
⊗
∣∣∣∣12 ,−12

〉
z
.
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Problem 3.10.
Let us consider two particles with spins S1 = 3/2 and S2 = 1:

at time t = 0, determine the wave function of the generic bound state with total
spin S= S1+S2 = 1/2 and projection along z equal to Sz = S1z+S2z = 1/2;
determine the time evolution of the wave function ψ(t) according to the Hamil-
tonian Ĥ = Ŝ1zŜ2z/h̄, and the time at which ψ(t) = ψ(0);
determine the time evolution of the average 〈Ŝ2+Ŝ2−〉.

In the above expressions, Ŝiz is the z component of the spin for the i-th particle, and
Ŝ2± are the raising and lowering operators for the z component of Ŝ2.

Solution
Let |S1,S1z〉 and |S2,S2z〉 be the eigenfunctions of the operators Ŝ1z and Ŝ2z respec-
tively. We need to move to the basis |S,Sz,S1,S2〉 where the total spin Ŝ = Ŝ1+ Ŝ2
and its projection along z are diagonal. The relation between the two bases is pro-
vided by

|S,Sz,S1,S2〉= ∑
S1z,S2z

CS,Sz
S1,S1z,S2,S2z

|S1,S1z〉⊗ |S2,S2z〉

where we need to determine the coefficients CS,Sz
S1,S1z,S2,S2z

(known as Clebsh-Gordan

coefficients) in the case S1 = 3/2, S2 = 1, S= 1/2, Sz = 1/2. The degeneracy of the
bound states for two particles with spins S1 = 3/2 and S2 = 1 is

d12 = (2S1+1)(2S2+1) =
(
2× 3

2
+1

)
(2×1+1) = 12

and the sum S = S1 + S2 can take the values S = S1 + S2,S1 + S2 − 1,S1 + S2 −
2, ..., |S2−S1|. In our case S= 5/2,3/2,1/2. The state with the z component of the
total spin Sz = S1z+ S2z = 1/2 must be a linear combination of the states |S1,S1z〉,
|S2,S2z〉 such that Sz = S1z+S2z = 1/2

∣∣∣∣12 , 12 , 32 ,1
〉
= α

∣∣∣∣32 , 32
〉
⊗|1,−1〉+β

∣∣∣∣32 , 12
〉
⊗|1,0〉+ γ

∣∣∣∣32 ,−12
〉
⊗|1,1〉 .

To find explicitly the coefficients α , β and γ , we act with Ŝ+ = Ŝ1+⊗11+11⊗ Ŝ2+ on
both members of the above equation: when acting on the left hand side, we consider

the raising operator for the z component of the total spin, i.e. Ŝ+; when acting on
the right hand side, we consider that Ŝ+ is the sum of Ŝ1+ and Ŝ2+ and that both of
them act on the spin of a specific particle, leaving the other unchanged. The action

of Ŝ+ on a generic state is

Ŝ+ |S,Sz〉= h̄
√

(S−Sz)(S+Sz+1) |S,Sz+1〉



Problems 127

and gives zero when we act on the state with Sz = S. Therefore, we find

Ŝ+

∣∣∣∣12 , 12 , 32 ,1
〉
= 0=

√
2α
∣∣∣∣32 , 32

〉
⊗|1,0〉+

√
3β
∣∣∣∣32 , 32

〉
⊗|1,0〉+

√
2β
∣∣∣∣32 , 12

〉
⊗|1,1〉+2γ

∣∣∣∣32 , 12
〉
⊗|1,1〉=

(
√
2α+

√
3β )
∣∣∣∣32 , 32

〉
⊗|1,0〉+(

√
2β +2γ)

∣∣∣∣32 , 12
〉
⊗|1,1〉 .

Multiplying this equation by |3/2,3/2〉⊗|1,0〉 and |3/2,1/2〉⊗|1,1〉, and using the
orthogonality and the normalization of the states, we end up with⎧⎨

⎩
√
2α+

√
3β = 0√

2β +2γ = 0

with solution α =−√3/2β ,γ =−β/
√
2. The condition that the state is normalized

leads to β = 1/
√
3. Therefore, the answer to the first question is∣∣∣∣12 , 12 , 32 ,1

〉
=− 1√

2

∣∣∣∣32 , 32
〉
⊗|1,−1〉+ 1√

3

∣∣∣∣32 , 12
〉
⊗|1,0〉− 1√

6

∣∣∣∣32 ,−12
〉
⊗|1,1〉 .

The time evolution is obtained with the action of the time evolution operator e−iĤt/h̄,

where Ĥ = Ŝ1zŜ2z/h̄. The result is∣∣∣∣12 , 12 , 32 ,1, t
〉
=− e

3it
2√
2

∣∣∣∣32 , 32
〉
⊗|1,−1〉+

1√
3

∣∣∣∣32 , 12
〉
⊗|1,0〉− e

it
2√
6

∣∣∣∣32 ,−12
〉
⊗|1,1〉 .

The condition that ψ(t) = ψ(0) leads to t = 4πk, with k an integer number. As for
the time evolution of 〈Ŝ2+Ŝ2−〉t , it is given by the formula

d〈Ŝ2+Ŝ2−〉t
dt

=
i
h̄
〈[Ĥ, Ŝ2+Ŝ2−]〉.

To compute the commutator in the right hand side, we recall that [Ŝi, Ŝ j] = ih̄εi jkŜk,
where εi jk is the Levi-Civita tensor and i, j,k = x,y,z. Such tensor is totally anti-
symmetric and conventionally chosen in such a way that εxyz = 1. Recalling the

definitions Ŝ± = (Ŝx± iŜy), we get [Ŝ±, Ŝz] = ∓h̄Ŝ±. Using the Jacobi identity (see
also Problem 2.2)

[Â, B̂Ĉ] = B̂[Â,Ĉ]+ [Â, B̂]Ĉ

and the result [Ŝ1i, Ŝ2 j] = 0, ∀i, j, we find
[h̄Ĥ, Ŝ2+Ŝ2−] =[Ŝ1zŜ2z, Ŝ2+Ŝ2−] = Ŝ1z[Ŝ2z, Ŝ2+Ŝ2−] =

Ŝ1z
(
[Ŝ2z, Ŝ2+]Ŝ2−+ Ŝ2+[Ŝ2z, Ŝ2−]

)
= h̄Ŝ1z(Ŝ2+Ŝ2−− Ŝ2+Ŝ2−) = 0.
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This implies that 〈Ŝ2+Ŝ2−〉t does not change in time, and its value can be found by
averaging on the state at time t = 0

〈Ŝ2+Ŝ2−〉t = 〈Ŝ2+Ŝ2−〉t=0 =
〈
1

2
,
1

2
,
3

2
,1, t = 0

∣∣∣∣ Ŝ2+Ŝ2−
∣∣∣∣12 , 12 , 32 ,1, t = 0

〉
.

Another possible way to determine 〈Ŝ2+Ŝ2−〉t , is to average the operator Ŝ2+Ŝ2− on
the state at time t: also in this case we conclude that 〈Ŝ2+Ŝ2−〉 does not change in
time. We now use the relation Ŝ2+Ŝ2− = Ŝ22− Ŝ22z+ h̄Ŝ2z, leading to

Ŝ2+Ŝ2−
(
− 1√

2

∣∣∣∣32 , 32
〉
⊗|1,−1〉+ 1√

3

∣∣∣∣32 , 12
〉
⊗|1,0〉− 1√

6

∣∣∣∣32 ,−12
〉
⊗|1,1〉

)
=

2h̄2√
3

∣∣∣∣32 , 12
〉
⊗|1,0〉− 2h̄2√

6

∣∣∣∣32 ,−12
〉
⊗|1,1〉 .

Finally, since the states are orthogonal, the value of 〈Ŝ2+Ŝ2−〉t at time t = 0 is given
by

〈Ŝ2+Ŝ2−〉t=0 =
〈
1

2
,
1

2
,
3

2
,
1

2
, t = 0

∣∣∣∣ Ŝ2+Ŝ2−
∣∣∣∣12 , 12 , 32 , 12 , t = 0

〉
= h̄2.

Problem 3.11.
Consider a one dimensional problem where pairs of particles (each one with spin

1/2) form bound states. The Hamiltonian for such a system is

Ĥ =
p̂2

2m
+U(x)ŜSS1 · ŜSS2

with m the effective mass and ŜSS1, ŜSS2 the spin operators for the two particles. The
potential energy is U(x) = 0 for x ≤ 0 and U(x) =U0 > 0 for x > 0. For a given

energy E > U0
4 , determine the reflection coefficient when the bound state is a triplet.

Solution
We need to rewrite the product ŜSS1 · ŜSS2 in terms of the operators Ŝ21, Ŝ22 and Ŝ2. To this
end, we write

Ŝ2 = Ŝ21+ Ŝ22+2ŜSS1 · ŜSS2
from which we get

ŜSS1 · ŜSS2 = 1

2
(Ŝ2− Ŝ21− Ŝ22).

For a fixed value of the total spin S, the solution of the Schrödinger equation (see
Problem 2.23) has the form⎧⎨

⎩ψ(x) = eik1x+CRe−ik1x x≤ 0
ψ(x) =CTeik2x x > 0

with

k21 =
2mE
h̄2

k22 =
2m(E− 1

2U0(S(S+1)−S1(S1+1)−S2(S2+1)))

h̄2
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where the constants CR, CT are determined from the condition of continuity of the

wave function and its first derivative in x = 0. As for the spin part, there are d12 =
(2S1+1)(2S2+2) = 4 bound states for the two particles with spin S1,2 = 1/2. The
total spin for these bound states can take the values S= S1+S2,S1+S2−1,S1+S2−
2, ..., |S2−S1|, that implies S = 1,0 in our case. These states are (see also Problem
4.9) ∣∣∣∣1,1, 12 , 12

〉
=

∣∣∣∣12 , 12
〉
⊗
∣∣∣∣12 , 12

〉
∣∣∣∣1,0, 12 , 12

〉
=

1√
2

(∣∣∣∣12 , 12
〉
⊗
∣∣∣∣12 ,−12

〉
+

∣∣∣∣12 ,−12
〉
⊗
∣∣∣∣12 , 12

〉)
∣∣∣∣1,−1, 12 , 12

〉
=

∣∣∣∣12 ,−12
〉
⊗
∣∣∣∣12 ,−12

〉
defining the so-called triplet (i.e. a state with spin 1 that is triple degenerate).∣∣∣∣0,0, 12 , 12

〉
=

1√
2

(∣∣∣∣12 , 12
〉
⊗
∣∣∣∣12 ,−12

〉
−
∣∣∣∣12 ,−12

〉
⊗
∣∣∣∣12 , 12

〉)

defines a singlet state (i.e. a state with spin 0 that is not degenerate). The reflection

coefficient, in line with what we have found in previous problems (see Problem

2.23), is given by

R= |CR|2 =
(
k1− k2
k1+ k2

)2

where k22 =
2m
(
E−U0

4

)
h̄2

for the triplet. Therefore, we find

R=

⎛
⎝
√
2mE−

√
2m(E− U0

4 )

√
2mE+

√
2m(E− U0

4 )

⎞
⎠
2

= 4

(
4E− U0

2 −4
√

E(E− U0
4 )

)2
U2
0

.

Problem 3.12.
A hydrogen atom with nuclear spin Sn = 1/2 (vector basis given by

∣∣ 1
2 ,
1
2

〉
N and∣∣ 1

2 ,− 1
2

〉
N and h̄ = 1 for simplicity) is found in a state with the orbital angular mo-

mentum l = 2. The total angular momentum operator is F̂FF = ŜSSn + ŜSSe + L̂LL, where
ŜSSe refers to the electron (spin Se = 1/2) part. How many different quantum states

are present? What are the possible values of the total angular momentum F? How
many states belong to the different F? Denoting with MF the eigenvalues of F̂z (the
projection of F̂FF along the z axis), write down the normalized states |F,MF〉= |3,3〉
and |F,MF〉= |3,2〉. Finally, determine 〈3,2|ŜSSe · ŜSSN |3,2〉.
Solution
For a given value of the angular momentum J, we have 2J+ 1 states and, hence,
l = 2 means 5 states while the spin 1/2 means 2 states. Therefore, we find 5×
2× 2 = 20 states. The same number of states can also be seen as coming from the
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direct product of the spaces associated with the different angular momenta. When

considering two angular momenta, J1 and J2, the sum of the two (Jtot ) can take the
values Jtot = J1+ J2,J1+ J2− 1,J1+ J2− 2, ..., |J2− J1|. Therefore, when we sum
l = 2 and Se = 1/2, we have 5/2 and 3/2; if we further add Sn, we find F = 3,2,1.
The case F = 2 is double degenerate. Counting these states, we have 7 states with
F = 3, 10 states with F = 2, and 3 states with F = 1, for a total of 7+10+3= 20.
The state with maximum F and MF is unique

|3,3〉=
∣∣∣∣12 , 12

〉
N
⊗
∣∣∣∣12 , 12

〉
e
⊗|2,2〉L.

Starting from |3,3〉 and using the lowering operator for the z component of the total
angular momentum

F̂− = Ŝn−+ Ŝe−+ L̂−

we can obtain states withMF = 2. For the lowering operator, we recall the property

Ĵ−|J,MJ〉=
√

(J+MJ)(J−MJ +1)|J,Mj −1〉.

Therefore, when acting with F̂− on |3,3〉 and with Ŝn,−+ Ŝe,−+ L̂− on
∣∣ 1
2 ,
1
2

〉
N ⊗∣∣ 1

2 ,
1
2

〉
e⊗|2,2〉L, we find the following result

|3,2〉= 1√
6

(∣∣∣∣12 ,−12
〉

N
⊗
∣∣∣∣12 , 12

〉
e
⊗|2,2〉L+∣∣∣∣12 , 12

〉
N
⊗
∣∣∣∣12 ,−12

〉
e
⊗|2,2〉L+2

∣∣∣∣12 , 12
〉

N
⊗
∣∣∣∣12 , 12

〉
e
⊗|2,1〉L

)
.

As for the last point, we recall that

ÂAA · B̂BB= ÂxB̂x+ ÂyB̂y+ ÂzB̂z =
1

2

(
Â+B̂−+ Â−B̂+

)
+ ÂzB̂z

with Â±, B̂± the raising and lowering operators for the z component of Â, B̂. Setting
ÂAA= ŜSSN and B̂BB= ŜSSe, we find that 〈3,2|Ŝez · ŜNz|3,2〉= 0 and

〈3,2|ŜSSN · ŜSSe|3,2〉= 1

2
〈3,2|ŜN+Ŝe−+ ŜN−Ŝe+|3,2〉= 1

6
.

Problem 3.13.
Determine the operator R̂α,z, allowing for a rotation of an angle α around the z axis.
Determine the eigenstates of R̂α,z and rotate of an angle α = π

2 the state |ψ〉 =
|1,1〉+|1,−1〉√

2
, with |1,m〉 (m=±1,0) the eigenstates of the z component of the orbital

angular momentum L̂z.

Solution
Symmetry transformations (including rotations) are described by unitary operators.

In particular, we identify the orbital angular momentum as the operator generating
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rotations. Therefore, for a generic rotation of an angle α around the n axis, we need
to use the projection of the orbital angular momentum on such axis and define

R̂α,n̂ = e−iα n̂·L̂LL/h̄

as the operator generating the rotation. In our case, the rotation is around the z axis
and R̂α,z = e−iαL̂z/h̄. The matrix representation of the z component of the orbital
angular momentum is

L̂z = h̄

⎛
⎜⎝1 0 0

0 0 0

0 0 −1

⎞
⎟⎠

and it is not difficult to calculate e−iαL̂z/h̄ because L̂z is diagonal

R̂α,z =

⎛
⎜⎝e−iα 0 0

0 0 0

0 0 eiα

⎞
⎟⎠ .

Therefore, the states |1,m〉 (m=±1,0) are eigenstates of R̂α,z with eigenvalues e∓iα

and

R̂α,z|ψ〉= e−iα |1,1〉+ eiα |1,−1〉√
2

from which

R̂ π
2 ,z

|ψ〉=−i
|1,1〉− |1,−1〉√

2
.

Problem 3.14.
A quantum system with spin S= 1/2 has the following Hamiltonian

Ĥ = L̂z+
Ŝx
2

with L̂z the z component of the orbital angular momentum, and Ŝx the projection of
the spin on the x axis. At time t = 0, a simultaneous measurement of L̂y and Ŝy (the
y components of the orbital angular momentum and the spin) gives h̄ and h̄/2:

write down the state at t = 0 in the vector basis where L̂z, Ŝz are diagonal;
determine the time evolution of the state at the generic time t;
determine the first time at which a measurement of L̂y and Ŝy gives the same
values found at time t = 0.

Solution
The operator L̂y has the following matrix representation

L̂y =
ih̄
2

⎛
⎜⎝
0 −√

2 0√
2 0 −√

2

0
√
2 0

⎞
⎟⎠
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and its eigenvectors are

|1,1〉y = 1

2

⎛
⎜⎝ 1

i
√
2

−1

⎞
⎟⎠ |1,0〉y = 1√

2

⎛
⎜⎝10
1

⎞
⎟⎠ |1,−1〉y = 1

2

⎛
⎜⎝ 1

−i
√
2

−1

⎞
⎟⎠

corresponding to the eigenvalues h̄, 0, −h̄. The eigenstate of Ŝy with eigenvalue h̄/2
is given by ∣∣∣∣12 , 12

〉
y
=

1√
2

(
−i
1

)

and, therefore, the state at time t = 0 is

|ψ(0)〉= |1,1〉y⊗
∣∣∣∣12 , 12

〉
y
=

1

2
√
2

⎛
⎜⎝ 1

i
√
2

−1

⎞
⎟⎠⊗

(
−i
1

)
=

1

2
√
2

[⎛⎜⎝10
0

⎞
⎟⎠+ i

√
2

⎛
⎜⎝01
0

⎞
⎟⎠−

⎛
⎜⎝00
1

⎞
⎟⎠]⊗[−i

(
1

0

)
+

(
0

1

)]

where we have expanded in the vector basis where L̂z, Ŝz are diagonal. To determine
the time evolution, we need to expand the spin part in the vector basis where Ŝx is
diagonal. The eigenstates of Ŝx are∣∣∣∣12 , 12

〉
x
=

1√
2

(
1

1

) ∣∣∣∣12 ,−12
〉

x
=

1√
2

(
1

−1

)

and we can express
∣∣ 1
2 ,
1
2

〉
y in terms of

∣∣ 1
2 ,± 1

2

〉
x as∣∣∣∣12 , 12

〉
y
=
1√
2

(
−i
1

)
=

(1− i)
2
√
2

(
1

1

)
− (1+ i)
2
√
2

(
1

−1

)
=

(
1− i
2

)∣∣∣∣12 , 12
〉

x
−
(
1+ i
2

)∣∣∣∣12 ,−12
〉

x
.

The time evolution is

|ψ(t)〉= e−i L̂zth̄ ⊗ e−i Ŝxt2h̄

(
|1,1〉y⊗

∣∣∣∣12 , 12
〉

y

)
=

[
e−it

2

⎛
⎜⎝10
0

⎞
⎟⎠+

i
√
2

2

⎛
⎜⎝01
0

⎞
⎟⎠− eit

2

⎛
⎜⎝00
1

⎞
⎟⎠]⊗[ (1− i)e−

it
4

2
√
2

(
1

1

)
− (1+ i)e

it
4

2
√
2

(
1

−1

)]



Problems 133

where the operator e−iL̂zt/h̄ acts on the orbital part (|1,1〉y) while e−iŜxt/2h̄ acts on

the spin part (
∣∣ 1
2 ,
1
2

〉
y). The first time at which the state is equal to the initial one is

found from e−
it
4 = 1, leading to t = 8π .

Problem 3.15.
Consider a hydrogen atom with potential energy V (r) = − 1

r (the electron charge

is such that e = 1) and the trial function ψ(r) = Ne−( r
a )
2
, where r is the radial

coordinate and N,a constants:

determine the normalization constant N;
determine the average value of the energy on the state ψ(r);
determine the optimal value of a using the variational method.

Solution
We start from the normalization condition for the trial function ψ(r)

∫ +∞

0
|ψ(r)|2r2dr

∫ π

0
sinθdθ

∫ 2π

0
dφ = 4πN2

∫ +∞

0
r2e−

2r2

a2 dr = 4πN2
a3

8

√
π
2
= 1

where we have used the integral
∫ +∞
0 r2e−

2r2

a2 dr = a3
8

√π
2 . The resulting value of N

is N =
√

1
a3
(
2
π
) 3
4 . We then proceed with the computation of the average energy. As

for the kinetic energy, we rewrite the Laplacian operator as

∇2 =
1

r2
∂
∂ r

(
r2

∂
∂ r

)
− L̂2

h̄2r2

where L̂2 is the squared orbital angular momentum. The trial function ψ(r) has no
angular part, meaning that it is proportional to the spherical harmonic Y0,0(θ ,φ) =
1√
4π
that is an eigenfunction of L̂2 with zero eigenvalue. Therefore, the average

kinetic energy is

T (a) = 〈ψ|T̂ |ψ〉=− h̄2

2m
4πN2

∫ +∞

0
r2e−

r2

a2

(
1

r2
d
dr

(
r2

d
dr

e−
r2

a2

))
dr =

− h̄2

2m
4πN2

∫ +∞

0
r2
(
4r2−6a2

a4

)
e−

2r2

a2 dr =
3

2

h̄2

ma2

where we have used
∫ +∞
0 r4e−

2r2

a2 dr = 3a5
32

√π
2 . As for the average value of the po-

tential energy, we get

V (a) = 〈ψ|V̂ |ψ〉=−4πN2
∫ +∞

0
r e−

2r2

a2 dr =−
√
2

π
2

a
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where we have used
∫ +∞
0 re−

2r2

a2 dr = a2
4 . The average energy is

E(a) = T (a)+V (a) =
3

2

h̄2

ma2
−
√
2

π
2

a
.

Imposing the variational condition
dE(a)
da = 0 (see also Problems 2.27 and 2.29), we

find that

−3 h̄2

ma3
+

√
2

π
2

a2
= 0

and, hence, a=
√π

2
3
2
h̄2
m .

Problem 3.16.
Consider a quantum system with the total (orbital plus spin) angular momentum

J = 3/2:

write down the matrix representation of the raising and lowering operators Ĵ±
for the z component of Ĵ. To this end, make use of the vector basis where Ĵz is
diagonal;

write down the matrix representation of Ĵx and Ĵy (the x and y components of Ĵ);
determine the sum of the diagonal elements of the matrix representation of the

angular momentum in the direction n̂= 1√
3
(1,1,1).

Solution
The matrix representation of Ĵz is a diagonal matrix with eigenvalues MJ = − 3h̄

2 ,

− h̄
2 , +

h̄
2 , +

3h̄
2 , that is

Ĵz =
h̄
2

⎛
⎜⎜⎝
3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

⎞
⎟⎟⎠ .

The action of the raising and lowering operators Ĵ± on the generic eigenstate |J,MJ〉
is

Ĵ+|J,MJ〉= h̄
√

(J−MJ)(J+MJ +1)|J,MJ +1〉
Ĵ−|J,MJ〉= h̄

√
(J+MJ)(J−MJ +1)|J,MJ −1〉

and, hence

Ĵ+ = (Ĵ−)† = h̄

⎛
⎜⎜⎝
0
√
3 0 0

0 0 2 0

0 0 0
√
3

0 0 0 0

⎞
⎟⎟⎠ .

Once we know Ĵ±, Ĵx and Ĵy follow

Ĵx =
Ĵ++ Ĵ−
2

=
h̄
2

⎛
⎜⎜⎝
0

√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

⎞
⎟⎟⎠
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Ĵy =
Ĵ+− Ĵ−
2i

=
h̄
2

⎛
⎜⎜⎜⎝

0 −i
√
3 0 0

i
√
3 0 −2i 0

0 2i 0 −i
√
3

0 0
√
3 0

⎞
⎟⎟⎟⎠ .

The sum of the diagonal elements of ĴJJ · n̂ is zero, since the trace of a matrix is
invariant under rotations.

Problem 3.17.
Let us consider the three dimensional rotator with Hamiltonian

Ĥ =
−3h̄L̂z+ L̂2

2I

where L̂2 is the squared orbital angular momentum, L̂z its component along the z
direction, and I the momentum of inertia:

for a given value l of the orbital angular momentum, determine the smallest en-
ergy available El,l and its eigenstate;

determine the ground state for the system, showing that it corresponds to the case

l = 1;
determine the eigenstate and eigenvalue for the first excited state.

Solution
The eigenstates of Ĥ are the spherical harmonicsYl,m = 〈θ ,φ |l,m〉, with the property

L̂2 |l,m〉= h̄2l(l+1) |l,m〉 L̂z |l,m〉= h̄m |l,m〉 .

Therefore, the eigenvalues of Ĥ are

El,m =
h̄2

2I
(l(l+1)−3m) .

For a given l, we find a minimum for m= l

El,l =
h̄2

2I

(
l2−2l) .

The minimum El,l is found when l = 1, E1,1 =− h̄2
2I , with eigenstate

Y1,1(θ ,φ) =−
√
3

8π
e+iφ sinθ .

Finally, the first excited state is double degenerate and corresponds to l = 2, m= 2
or l = 0, m= 0 with energy E0,0 = E2,2 = 0. The two eigenstates are

Y0,0(θ ,φ) =
1√
4π

Y2,2(θ ,φ) =
1

4

√
15

2π
sin2 θe2iφ .
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Problem 3.18.
Two particles of spin S1 = 1 and S2 = 1/2 form a bound state with total spin S =
1/2 and projection along the z axis Sz = 1/2. Find the probability to measure the
different values of the projection along z and x for the spin of the second particle
(Ŝ2z and Ŝ2x). If a measurement of Ŝ2x gives 1/2, determine the possible outcomes of
a simultaneous measurement of Ŝ1x and the associated probabilities. For simplicity,
assume h̄= 1.

Solution
Let us represent the states with |S1,S1z〉z and |S2,S2z〉z, where Si is the spin of the
i-th particle and Siz its projection along the z axis. For the bound states, we use the
total spin S= S1+S2, its projection along the z axis, Sz = S1z+S2z, and the values of
the spin S1 and S2: |S,Sz,S1,S2〉z. The total number of states for two particles with
spins S1 = 1 and S2 = 1/2 is

d12 = (2S1+1)(2S2+1) = (2×1+1)(2× 1

2
+1) = 6.

As already discussed in Problem 3.12, the same number of states can also be seen

as coming from the direct product of the spaces associated with the different spins.

When considering two spins, S1 and S2, the sum of the two can take the values

S = S1+ S2,S1+ S2− 1,S1+ S2− 2, ..., |S2− S1|, that implies S = 3/2, S = 1/2 in
our case. Consequently, the degeneracy of the bound states is dS = d3/2+ d1/2 =
4+2= 6. The state with maximum S and Sz is unique∣∣∣∣32 , 32 ,1, 12

〉
z
= |1,1〉z⊗

∣∣∣∣12 , 12
〉

z
.

If we act on the left hand side with the lowering operator Ŝ− = Ŝ1−⊗11+11⊗ Ŝ2−,
we get

Ŝ−
∣∣∣∣32 , 32 ,1, 12

〉
z
=
√
3

∣∣∣∣32 , 12 ,1, 12
〉

z

from which (acting with Ŝ1−⊗11+11⊗ Ŝ2− on |1,1〉z⊗
∣∣ 1
2 ,
1
2

〉
z), we get∣∣∣∣32 , 12 ,1, 12

〉
z
=

√
2

3
|1,0〉z⊗

∣∣∣∣12 , 12
〉

z
+

1√
3
|1,1〉z⊗

∣∣∣∣12 ,−12
〉

z
.

At fixed Sz = 1/2, the state with S= 1/2 must be of the form∣∣∣∣12 , 12 ,1, 12
〉

z
= α |1,0〉z⊗

∣∣∣∣12 , 12
〉

z
+β |1,1〉z⊗

∣∣∣∣12 ,−12
〉

z

with α and β real constants to be determined. Since the states
∣∣ 3
2 ,
1
2 ,1,

1
2

〉
z and∣∣ 1

2 ,
1
2 ,1,

1
2

〉
z correspond to different values of the total spin S, they are orthogonal,
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that implies

0=

(√
2

3
〈1,0|z⊗

〈
1

2
,
1

2

∣∣∣∣
z
+

1√
3
〈1,1|z⊗

〈
1

2
,−1
2

∣∣∣∣
z

)
×

(
α |1,0〉z⊗

∣∣∣∣12 , 12
〉

z
+β |1,1〉z⊗

∣∣∣∣12 ,−12
〉

z

)
=

√
2

3
α+

1√
3
β .

This condition, together with the normalization condition 1= α2+β 2, completely
determines the state∣∣∣∣12 , 12 ,1, 12

〉
z
=

1√
3
|1,0〉z⊗

∣∣∣∣12 , 12
〉

z
−
√
2

3
|1,1〉z⊗

∣∣∣∣12 ,−12
〉

z
.

A measurement of Ŝ2z on this state produces 1/2 and −1/2 as result, with probabil-
ities P(1/2) = 1/3 and P(−1/2) = 2/3. To get insight on the possible outcomes for
the measurement of the x component of Ŝ2, we need to change basis, and express∣∣ 1
2 ,± 1

2

〉
z in the basis where Ŝ2x is diagonal. Therefore (see also Problem 3.14)∣∣∣∣12 , 12

〉
z
=
1√
2

(∣∣∣∣12 , 12
〉

x
+

∣∣∣∣12 ,−12
〉

x

) ∣∣∣∣12 ,−12
〉

z
=
1√
2

(∣∣∣∣12 , 12
〉

x
−
∣∣∣∣12 ,−12

〉
x

)

where the subscript x means that we are dealing with the eigenstates of Ŝ2x. With
this change of basis, the state becomes

∣∣∣∣12 , 12 ,1, 12
〉

z
=

(
1√
6
|1,0〉z−

√
1

3
|1,1〉z

)
⊗
∣∣∣∣12 , 12

〉
x
+

(
1√
6
|1,0〉z+

√
1

3
|1,1〉z

)
⊗
∣∣∣∣12 ,−12

〉
x
.

We see that a measurement of Ŝ2x gives ±1/2 with probability 1/2. Also, if a mea-
surement of Ŝ2x gives +1/2, the outcome of a simultaneous measurement of Ŝ1x is
obtained by projecting |1,0〉z and |1,1〉z on the vector basis where Ŝ1x is diagonal.
The eigenvectors of Ŝ1x are

|1,1〉x =
1

2

⎛
⎜⎝ 1√

2

1

⎞
⎟⎠ |1,0〉x =

1√
2

⎛
⎜⎝ 1

0

−1

⎞
⎟⎠ |1,−1〉x =

1

2

⎛
⎜⎝ 1

−√
2

1

⎞
⎟⎠

and, hence

|1,1〉z =
1

2
|1,1〉x+

1√
2
|1,0〉x+

1

2
|1,−1〉x

|1,0〉z =
1√
2
(|1,1〉x−|1,−1〉x).
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The part of
∣∣ 1
2 ,
1
2 ,1,

1
2

〉
z with S2x = 1/2 becomes∣∣∣∣12 , 12 ,1, 12

〉
z,S2x=1/2

=

(
− 1√

6
|1,0〉x−

1√
3
|1,−1〉x

)
⊗
∣∣∣∣12 , 12

〉
x
.

Therefore, given S2x = 1/2, a simultaneous measurement of Ŝ1x gives as result S1x =
1,0,−1 with probabilities

P(S1x = 1,S2x = 1/2)= 0 P(S1x = 0,S2x = 1/2)=
1

6
P(S1x =−1,S2x = 1/2)= 1

3
.

Problem 3.19.
Two particles with spins S1 = 1 and S2 = 1/2 form a bound state. Construct the

eigenstates for the total spin Ŝ = Ŝ1+ Ŝ2 and its projection Ŝz along the z axis. If at
time t = 0 the system is in the state with total spin S= 1/2 and projection Sz = 1/2,
and if the Hamiltonian of the system is Ĥ = Ŝ2z (i.e. the projection of the second
spin on the z axis), determine the probability that at a time t > 0 a measurement of

the squared total spin and Ŝz gives 15/4 and 1/2 respectively. For simplicity, use
h̄= 1.

Solution
The total spin for these bound states can take the values S= S1+S2,S1+S2−1,S1+
S2−2, ..., |S2−S1|, which means S = 3

2 and S = 1
2 . Following the same procedures

of previous problems (see Problems 3.10 and 3.18), we write down the unique state

with maximum S and Sz ∣∣∣∣32 , 32 ,1, 12
〉
= |1,1〉⊗

∣∣∣∣12 , 12
〉

and we act with the lowering operator, Ŝ− = Ŝ1− ⊗ 11+ 11⊗ Ŝ2−, to produce states
with smaller Sz (see also Problems 3.12 and 3.18). The result is∣∣∣∣32 , 12 ,1, 12

〉
=

√
2

3
|1,0〉⊗

∣∣∣∣12 , 12
〉
+

1√
3
|1,1〉⊗

∣∣∣∣12 ,−12
〉

∣∣∣∣32 ,−12 ,1, 12
〉
=

√
2

3
|1,0〉⊗

∣∣∣∣12 ,−12
〉
+

1√
3
|1,−1〉⊗

∣∣∣∣12 , 12
〉

∣∣∣∣32 ,−32 ,1, 12
〉
= |1,−1〉⊗

∣∣∣∣12 ,−12
〉

.

The state with S= 1/2 and Sz = 1/2 is orthogonal to
∣∣ 3
2 ,
1
2 ,1,

1
2

〉
and is given by∣∣∣∣12 , 12 ,1, 12

〉
=

1√
3
|1,0〉⊗

∣∣∣∣12 , 12
〉
−
√
2

3
|1,1〉⊗

∣∣∣∣12 ,−12
〉

.

Again, using the lowering operator, we obtain∣∣∣∣12 ,−12 ,1, 12
〉
=

1√
3
|1,0〉⊗

∣∣∣∣12 ,−12
〉
−
√
2

3
|1,−1〉⊗

∣∣∣∣12 , 12
〉

.
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To obtain the time evolution of the state with S= 1/2 and Sz = 1/2, we act with the
time evolution operator e−iĤt on the wave function at time t = 0

∣∣∣∣12 , 12 ,1, 12 , t
〉
= e−iĤt

∣∣∣∣12 , 12 ,1, 12
〉
=

e
−it
2√
3
|1,0〉⊗

∣∣∣∣12 , 12
〉
−
√
2

3
e

it
2 |1,1〉⊗

∣∣∣∣12 ,−12
〉

.

The state corresponding to S(S+1) = 15/4 and Sz = 1/2 is
∣∣ 3
2 ,
1
2 ,1,

1
2

〉
. The desired

probability is the square modulus of the projection of
∣∣ 1
2 ,
1
2 ,1,

1
2 , t
〉
on
∣∣ 3
2 ,
1
2 ,1,

1
2

〉

P
(
S(S+1) =

15

4
,Sz =

1

2

)
=

∣∣∣∣
〈
3

2
,
1

2
,1,
1

2

∣∣∣∣ 12 , 12 ,1, 12 , t
〉∣∣∣∣

2

.

The result is

P
(
S(S+1) =

15

4
,Sz =

1

2

)
=
8

9
sin2
( t
2

)
.

At time t = 0 this probability is zero because the states are orthogonal. It is because
of the time evolution that we find a non zero projection on the state

∣∣ 3
2 ,
1
2 ,1,

1
2

〉
.

Problem 3.20.
A neutron with massm has zero charge, spin 1/2, and magnetic moment gμN , where

g≈−1.913 and μN is the nuclear magneton μN = eh̄
2mc . At a time t = 0, the neutron

is found in a state such that:

its momentum is well defined and its value is ppp= h̄kkk (kkk = const.);
a measurement of σ̂y (Ŝy = h̄

2 σ̂y is the y component of the spin and σ̂y the Pauli

matrix) gives 1 with probability 9
10 ;〈σ̂z〉= 3/5.

The neutron is plunged in a constant magnetic field BBB along the x axis. Write the
wave function of the particle at time t = 0 and the Hamiltonian. Determine the time
t (if it exists) at which there is a zero probability to find the system in the eigenstate
of σ̂y with eigenvalue −1.
Solution
From the first condition we infer that the wave function is a plane wave

〈x|ψ(t = 0)〉= eikkk·xxx

(2π h̄)
3
2

|χ(t = 0)〉

where |χ(t = 0)〉 is a spinor independent of the spatial coordinates. In the basis
where σ̂z is diagonal, the two possible states for the projection of the spin along the

y direction are

∣∣∣∣12 , 12
〉

y
=

1√
2

(
1

i

) ∣∣∣∣12 ,−12
〉

y
=

1√
2

(
1

−i

)
.
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At t = 0, the spinor |χ(t = 0)〉 is a superposition of ∣∣ 12 , 12〉y and ∣∣ 12 ,− 1
2

〉
y

|χ(t = 0)〉= c+

∣∣∣∣12 , 12
〉

y
+ c−

∣∣∣∣12 ,−12
〉

y

where c± are projection constants with the properties |c+|2 = 9
10 , |c+|2+ |c−|2 = 1.

Therefore, apart from an unimportant overall phase factor, we get

|χ(t = 0)〉= 3√
10

∣∣∣∣12 , 12
〉

y
+

eiφ√
10

∣∣∣∣12 ,−12
〉

y
.

The relative phase φ is obtained from the last condition in the text

3

5
= 〈χ(t = 0)|σ̂z|χ(t = 0)〉.

Indeed, the average 〈χ(t = 0)|σ̂z|χ(t = 0)〉 is equal to(
3

2
√
5
(1 − i)+

e−iφ

2
√
5
(1 i)

)
·
(

3

2
√
5

(
1

−i

)
+

eiφ

2
√
5

(
1

i

))
=
3

5
cosφ

from which we see that cosφ = 1, that implies φ = 2nπ with n an integer number,
and

|ψ(t = 0)〉= eikkk·xxx

(2π h̄)
3
2

1√
5

(
2

i

)
.

There are two terms in the Hamiltonian: the first is the kinetic energy ( p̂
2

2m ), and the

second is the spin-field interaction (gμNB h̄
2 σ̂x) . Thus

Ĥ =
p̂2

2m
+gμNBŜx =

p̂2

2m
+gμNB

h̄
2
σ̂x.

In order to answer the third question, we must evolve |χ(0)〉. To this end, we expand
|χ(0)〉 in Ĥ eigenstates. The question concerns the spin. Since the field is directed

along x, we expand in the eigenstates

∣∣∣∣12 , 12
〉

x
=

1√
2

(
1

1

) ∣∣∣∣12 ,−12
〉

x
=

1√
2

(
1

−1

)
.

To determine the coefficients of the expansion, we project |χ(0)〉 on ∣∣ 12 , 12〉x and∣∣ 1
2 ,− 1

2

〉
x 〈

1

2
,
1

2

∣∣∣∣
x
χ(0)

〉
=

(
1√
2
(1 1 )

)
·
(
1√
5

(
2

i

))
=

(2+ i)√
10
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〈
1

2
,−1
2

∣∣∣∣
x
χ(0)

〉
=

(
1√
2
(1 −1 )

)
·
(
1√
5

(
2

i

))
=

(2− i)√
10

and, hence

|χ(0)〉= 1√
10

{
(2+ i)

∣∣∣∣12 , 12
〉

x
+(2− i)

∣∣∣∣12 ,−12
〉

x

}
.

The time evolution is obtained with the action of the time evolution operator e−iĤt/h

on the wave function at time t = 0. Such operator is diagonal with respect to the

eigenstates of Ĥ and, therefore, the eigenstates
∣∣ 1
2 ,
1
2

〉
x and

∣∣ 1
2 ,− 1

2

〉
x acquire the

phase factor e−iEt/h̄, with E =±h̄ξ (ξ = 1
2gμNB) being the eigenvalues. The result is

|χ(t)〉= 1√
10

{
(2+ i)e−iξ t

∣∣∣∣12 , 12
〉

x
+(2− i)eiξ t

∣∣∣∣12 ,−12
〉

x

}
.

The last question requires the projection of this wave function on the spinor∣∣ 1
2 ,− 1

2

〉
y. This turns out to be

〈
1

2
,−1
2

∣∣∣∣
y
χ(t)

〉
=
(2+ i)e−iξ t

√
10

〈
1

2
,−1
2

∣∣∣∣
y

1

2
,
1

2

〉
x

+
(2− i)eiξ t√

10

〈
1

2
,−1
2

∣∣∣∣
y

1

2
,−1
2

〉
x

=

(2+ i)√
10

e−iξ t (1+ i)
2

+
(2− i)√
10

eiξ t
(1− i)
2

={
e−iξ t (1+3i)

2
√
10

+ eiξ t
(1−3i)
2
√
10

}
.

In order to have a vanishing projection, we must ensure

cos(ξ t)+3sin(ξ t) = 0.

We take as auxiliary unknown y= cos(ξ t) and write

y+3
√
1− y2 = 0

leading to y=± 3√
10
and t =

cos−1
(

3√
10

)
ξ .

Problem 3.21.
A particle with spin 1

2 and magnetic moment μ̂μμ = gŜSS (ŜSS is the spin operator) is
subject to a constant magnetic field BBB= (0,By,0). Its Hamiltonian is given by

Ĥ =−μ̂μμ ·BBB=−g · ŜSS ·BBB=−gŜyBy.

At a time t = 0, the particle is in a state such that:

the probability that a measurement of the z component of the spin gives h̄
2 is 2/3;

the averages of the spin operators in the x and y directions (Ŝx and Ŝy) are such
that 〈Ŝx〉= 〈Ŝy〉 ≥ 0.
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Determine the eigenvalues of the Hamiltonian. Knowing that the averages of the x
and y components of the spin are equal, i.e. 〈Ŝx〉= 〈Ŝy〉, determine the state at t = 0,
and evolve the wave function to a later time t.

Solution
We start by writing down a matrix representation for the Hamiltonian

Ĥ =−gŜSS ·BBB=−gBy
h̄
2
σ̂y =−gBy

h̄
2

(
0 −i
i 0

)

where σ̂y is one of the Pauli matrices. The eigenvalues of the Hamiltonian are rapidly

found

det

(
−E igByh̄

2

− igByh̄
2 −E

)
= E2− h̄2g2B2y

4
= 0

from which we get E± = ∓gByh̄/2. It is then convenient to use the eigenstates of
Ŝz = h̄

2 σ̂z, even if the Hamiltonian Ĥ is not diagonal with respect to such a vector

basis. The eigenstates of σ̂z are∣∣∣∣12 , 12
〉

z
=

(
1

0

) ∣∣∣∣12 ,−12
〉

z
=

(
0

1

)

and we can always think of expressing |ψ(0)〉 in terms of ∣∣ 12 , 12〉z, ∣∣ 12 ,− 1
2

〉
z

|ψ(0)〉= α
∣∣∣∣12 , 12

〉
z
+β
∣∣∣∣12 ,−12

〉
z

where α can be thought of as a positive real parameter (α > 0). From the first

condition given in the text, it follows that

α =

〈
1

2
,
1

2

∣∣∣∣
z
ψ(0)

〉
=

√
2

3

because

∣∣∣∣
〈
1
2 ,
1
2

∣∣∣∣
z
ψ(0)

〉∣∣∣∣
2

= 2
3 . Since |α|2+ |β |2 = 1, we can write

β =

〈
1

2
,−1
2

∣∣∣∣
z
ψ(0)

〉
=

eiϕ√
3

in terms of a yet unknown phase ϕ . One can find ϕ from the condition 〈Ŝx〉= 〈Ŝy〉.
Let us start by computing 〈Ŝx〉. The eigenstates of Ŝx are∣∣∣∣12 , 12

〉
x
=

1√
2

(
1

1

) ∣∣∣∣12 ,−12
〉

x
=

1√
2

(
1

−1

)
.
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The states
∣∣ 1
2 ,± 1

2

〉
z can be expanded in terms of

∣∣ 1
2 ,± 1

2

〉
x∣∣∣∣12 , 12

〉
z
=

1√
2

(∣∣∣∣12 , 12
〉

x
+

∣∣∣∣12 ,−12
〉

x

)
∣∣∣∣12 ,−12

〉
z
=

1√
2

(∣∣∣∣12 , 12
〉

x
−
∣∣∣∣12 ,−12

〉
x

)

so that

Ŝx|ψ(0)〉=Ŝx
1√
3

{(∣∣∣∣12 , 12
〉

x
+

∣∣∣∣12 ,−12
〉

x

)
+

eiϕ√
2

(∣∣∣∣12 , 12
〉

x
−
∣∣∣∣12 ,−12

〉
x

)}
=

h̄
2
√
3

{(∣∣∣∣12 , 12
〉

x
−
∣∣∣∣12 ,−12

〉
x

)
+

eiϕ√
2

(∣∣∣∣12 , 12
〉

x
+

∣∣∣∣12 ,−12
〉

x

)}

from which, using the orthogonality of states
∣∣ 1
2 ,± 1

2

〉
x, we get

〈Ŝx〉= h̄
√
2

3
cosϕ.

We proceed in a similar way for 〈Ŝy〉. The eigenstates of Ŝy are∣∣∣∣12 , 12
〉

y
=

1√
2

(
1

i

) ∣∣∣∣12 ,−12
〉

y
=

1√
2

(
1

−i

)

and ∣∣∣∣12 , 12
〉

z
=

1√
2

(∣∣∣∣12 , 12
〉

y
+

∣∣∣∣12 ,−12
〉

y

)

∣∣∣∣12 ,−12
〉

z
=− i√

2

(∣∣∣∣12 , 12
〉

y
−
∣∣∣∣12 ,−12

〉
y

)

so that

Ŝy|ψ(0)〉=Ŝy
1√
3

{(∣∣∣∣12 , 12
〉

y
+

∣∣∣∣12 ,−12
〉

y

)
− ieiϕ√

2

(∣∣∣∣12 , 12
〉

y
−
∣∣∣∣12 ,−12

〉
y

)}
=

h̄
2
√
3

{(∣∣∣∣12 , 12
〉

y
−
∣∣∣∣12 ,−12

〉
y

)
− ieiϕ√

2

(∣∣∣∣12 , 12
〉

y
+

∣∣∣∣12 ,−12
〉

y

)}

and

〈Ŝy〉= h̄
√
2

3
sinϕ.

Imposing the condition 〈Ŝy〉= 〈Ŝx〉 ≥ 0, we obtain

sinϕ = cosϕ
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and

ϕ =
π
4
+2nπ n= 0,1,2,3, ...

In conclusion, the initial state (if n= 0) is

|ψ(0)〉=
√
2

3

∣∣∣∣12 , 12
〉

z
+

ei
π
4√
3

∣∣∣∣12 ,−12
〉

z

and the average components of the spin in the x and y directions are given by

〈Ŝx〉= 〈Ŝy〉= h̄
3
.

The time evolution of the wave function at any subsequent time t is

|ψ(t)〉=
∣∣∣∣12 , 12

〉
y
e−iE+t/h̄A+

∣∣∣∣12 ,−12
〉

y
e−iE−t/h̄B

where

A=

〈
1

2
,
1

2

∣∣∣∣
y
ψ(0)

〉
=
3− i
2
√
3

and

B=

〈
1

2
,−1
2

∣∣∣∣
y
ψ(0)

〉
=
1+ i
2
√
3
.



4

Central Force Field

Problem 4.1.
Let us consider a particle subject to the following three dimensional harmonic po-

tential

U(r) =
Mω2r2

2

with r the radial distance in spherical polar coordinates. Discuss the properties of
the associated Schrödinger equation for r ≈ 0 and r →+∞.

Solution
Our potential energy is dependent only on the absolute value of the distance from

the origin. For this reason, we seek the solution by separating radial and angular

variables

ψn,l,m(r,θ ,φ) =
Rn,l(r)

r
Yl,m(θ ,φ).

The associated Schrödinger equation becomes[
− h̄2

2M
d2

dr2
+
1

2
Mω2r2+

h̄2l(l+1)
2Mr2

−En,l

]
Rn,l(r) = 0.

If we define the new length scale a =
√

h̄/(Mω), we can rewrite the equation in
terms of the variables x= r/a, ε = En,l/(h̄ω). Removing all quantum numbers sub-
scripts for simplicity, the Schrödinger equation takes now the form[

d2

dx2
− x2− l(l+1)

x2
+2ε

]
R(x) = 0

which, when x≈ 0, yields [
d2

dx2
− l(l+1)

x2

]
R(x) = 0

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 4, c© Springer-Verlag Italia 2012
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where we discarded all the non divergent terms. All singularities are regular. The

regular singularities are found in the coefficients of the differential equation (on

which no derivatives act) written in the form
p j

xk− j . k is the degree of the highest order
derivative (in our case, we have a second order differential equation, so that k = 2)
and j = 1, ...,k is an index indicating the coefficient (see section 1.7 for a detailed
discussion). If we make the ansatz R(x) = xα and plug it back in the equation, we get

α(α−1)− l(l+1) = 0

which has solutions α = −l, l+ 1. The physical solution is the one without diver-
gences in the origin, i.e. R(x) = xl+1.
Let us now discuss the behaviour of the solution close to infinity (r=+∞) . First

of all, we need to change variable by setting x= 1/t. The derivatives transform like

d
dx

=−t2
d
dt

d2

dx2
= t4

d2

dt2
+2t3

d
dt

and the Schrödinger equation in the variable t becomes(
d2

dt2
+
2

t
d
dt

− 1

t6
− l(l+1)

t2
+
2ε
t4

)
R(t) = 0

where we see that the singularities are not regular. A way to study the properties of

the solution for x� 1, is to assume the functional form R(x) = eS(x), plug it back in
the original equation, and neglect the term with the second derivative(

dS
dx

)2
− (x2−2ε) = 0

so that S(x) = S(x0)±
∫ x
x0

√
s2−2ε ds ≈ ± x2

2 , because at infinity the term s2 domi-

nates over ε . We then choose the minus sign in the exponent R(x)≈ e−x2/2 to ensure

a zero probability density function for large x. This is in line with the familiar solu-
tion of the one dimensional oscillator, since the three dimensional one is separable.

Problem 4.2.
Determine the energy spectrum for a particle with mass M subject to the following

three dimensional central potential⎧⎨
⎩U(r) = 0 r ≤ a

U(r) = +∞ r > a

where a is a constant and r is the radial distance in spherical polar coordinates.

Solution
The solution to our problem is given by the wave function ψn,l,m(r,θ ,φ) that for
r ≤ a describes the motion of a free particle and such that ψn,l,m(a,θ ,φ) = 0. We
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seek a solution in the form

ψn,l,m(r,θ ,φ) =
Rn,l(r)

r
Yl,m(θ ,φ)

where the term 1/r is important to remove the dependence on the first order deriva-
tive 2

r
∂
∂ r in the Laplacian operator. The corresponding Schrödinger equation for

Rn,l(r) is

− h̄2

2M
d2Rn,l(r)

dr2
+

h̄2l(l+1)
2Mr2

Rn,l(r) = En,lRn,l(r)

given that the spherical harmonics Yl,m(θ ,φ) are eigenstates of the angular part of
the Laplacian operator. Setting k2 = 2MEn,l/h̄2, and removing all quantum numbers
subscripts for simplicity, we get

R′′ −
(
l(l+1)

r2
− k2

)
R= 0.

In the point r = 0 we find a regular singularity. The indicial exponent around this

point is found by plugging R= rλ in the original equation, with the result λ = l+1
and λ = −l. The physical solution is the first one, because in this case we can
guarantee the finiteness of the wave function when r → 0 (remember that the radial

wave function is R/r, and the behaviour for r ≈ 0 is therefore given by rl). We
now remove such asymptotic behaviour by setting R(r) = rl+1y(r). The resulting
Schrödinger equation for y(r) becomes

y′′+
2(l+1)

r
y′+ k2y= 0.

We can also study the behaviour of y close to infinity. To do that, we make use of
the change of variable r = 1/t and find the equation for y(t)

y′′ − 2l
t
y′+

k2

t4
y= 0

where we see that the singularity in t = 0 (r = +∞) is irregular. We then seek the
solution in the form y(t) = eik/tF(t) to remove the singularity in t4 and find the
indicial equation. The equation for F(t) is

F ′′+
(
−2ik

t2
− 2l

t

)
F ′+

(
2ik
t3

+
2ikl
t3

)
F = 0.

Setting F(t) = tβ , the resulting indicial equation has solution β = 1+ l. Plugging
all these results back in the original equation for the function R(r) = rl+1eikrF(r),
we find

F ′′+
(
2ik+

2(l+1)
r

)
F ′+

2ik(l+1)
r

F = 0.
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The change of variable x=−2ikr allows us to obtain the confluent hypergeometric
equation

xF ′′+(2(l+1)− x)F ′ − (l+1)F = 0

defining the function F(l+1,2(l+1)|x). We therefore write the general solution as

ψn,l,m(r,θ ,φ) =
1

r
Rn,l(r)Yl,m(θ ,φ) = rleikrF(l+1,2(l+1)|−2ikr)Yl,m(θ ,φ) =

1√
r

(
2

k

)l+ 1
2

Γ
(
l+

3

2

)
Jl+ 1

2
(kr)Yl,m(θ ,φ).

The Jl+1/2 are the Bessel functions of half-integral order, whose relation with the
hypergeometric function is

Jl+ 1
2
(kr) =

1

Γ (l+ 3
2 )

(
1

2
kr
)l+ 1

2

eikrF(l+1,2(l+1)|−2ikr).

The quantization rules are set by the boundary condition in r = a

Jl+ 1
2
(ka) = 0

from which k = Xn,l/a that means En,l = h̄2X2n,l/(2Ma2). Xn,l are the zeros of the

Bessel functions which can be determined once we know the value of l. For exam-
ple, when l = 0, the function J1/2(ka) is

J1/2(ka) =

√
2ka
π
sin(ka)

ka

and the zeros correspond to Xn,0 = nπ = ka, with n an integer number. Therefore,
one gets En,0 = h̄2(nπ)2/(2Ma2). The other quantization rules (for l > 0) can be

obtained from

jl(x) =
√

π
2x

Jl+1/2(x)

with jl(x) the spherical Bessel functions with the property

jl(x) = (−x)l
(
1

x
d
dx

)l
sinx
x

.

Problem 4.3.
Determine the minimum value ofU0 > 0 such that a particle with mass m subject to
the following central potential⎧⎨

⎩U(r) =−U0 r ≤ a (region I)

U(r) = 0 r > a (region II)
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has s-type bound states. In the above expressions, a is a constant and r is the radial
distance in spherical polar coordinates.

Solution
When the particle is in the bound state of s-type, the orbital angular momentum is
l = 0. We then seek a solution with a negative energy E: we set ε = −E > 0 and

write the wave function as

ψ(r,θ ,φ) =
R(r)
r

Y0,0(θ ,φ).

The corresponding Schrödinger equation for the radial part R(r) becomes⎧⎨
⎩

d2RI
dr2 + k21RI = 0 r ≤ a
d2RII
dr2 − k22RII = 0 r > a

where k21 = 2m(U0− ε)/h̄2 and k22 = 2mε/h̄
2. We note that the first order derivative

2
r
∂
∂ r of the Laplacian cancels out, due to the choice of R(r)/r as the radial part of

the wave function. The solutions of the above equations, satisfying finiteness of the

wave function in r = 0,+∞, are{
RI(r) = Asin(k1r) r ≤ a
RII(r) = Be−k2r r > a.

Then, we need to impose the continuity conditions for the wave function and its

derivative in r = a. These conditions are equivalent to

R′
I(a)

RI(a)
=

R′
II(a)

RII(a)

yielding k1 cot(k1a) =−k2. We note that such a kind of condition is the same we find
when we solve the one dimensional problem of a particle in a rectangular potential

well with an infinite energy barrier on one side (see Problem 2.12). If we set x= k1a
and y= k2a, the solution is given by the intersection of the two curves⎧⎨

⎩x2+ y2 = 2ma2U0
h̄2

= R̃2

y=−xcotx.

The smallest x such that −xcotx = 0 is x = π/2. The radius R̃ has to take this
value to find an intersection corresponding to a bound state with zero energy. That

corresponds to

U0 =
π2h̄2

8ma2
.

For the values

R̃2 =
2ma2U0

h̄2
> π2/4

we have other bound states with negative energies.
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Problem 4.4.
A hydrogen atom with Hamiltonian Ĥ = T̂ +V̂ , where T̂ is the kinetic energy oper-
ator and V (r) =− e2

r the potential energy, is in the ground state:

determine the average value of the modulus of the force F = e2
r2 between the

electron and the nucleus, and the one of the associated potential energy V (r);
starting from the average energy 〈Ĥ〉, determine the average value of the kinetic
energy 〈T̂ 〉 and 〈2T̂ +V̂ 〉.

Solution
We start from the wave function of the ground state

ψ(r,θ ,φ) = R1,0(r)Y0,0(θ ,φ) =
1√
πa3

e−
r
a

with a the Bohr radius. We then make use of the following integrals
∫ +∞

0
e−xdx= 1

∫ +∞

0
xe−xdx= 1

to obtain the average values of F̂ and V̂

〈
F̂
〉
=

〈
e2

r̂2

〉
=
∫

ψ2(r,θ ,φ)
e2

r2
d3r =

4πe2

πa3

∫ +∞

0
e−

2r
a dr =

2e2

a2

〈
V̂
〉
=−

〈
e2

r̂

〉
=−

∫
ψ2(r,θ ,φ)

e2

r
d3r =−4πe

2

πa3

∫ +∞

0
re−

2r
a dr =−e2

a
.

Since we know the energy of the ground state for the hydrogen atom, 〈Ĥ〉 = − e2
2a ,

we find that

〈T̂ 〉= 〈Ĥ〉−〈V̂〉= e2

2a
and

〈2T̂ +V̂ 〉= 0.
This result is a particular case of the so-called virial theorem, i.e. a general equation
relating the average of the total kinetic energy with that of the total potential energy

for physical systems consisting of particles bound by potential forces. In the most

general case, such relation has the form

2〈ψ|T̂ |ψ〉= 〈ψ|r̂rr ·∇∇∇|ψ〉

which can be simplified when treating potential forces with spherical symmetry and

proportional to rn (our case corresponds to n=−1). In such cases, we find

rrr ·∇∇∇= r
d
dr

V (r) = nV (r)
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so that

2〈ψ|T̂ |ψ〉= n〈ψ|V̂ |ψ〉.
If we know that the state ψ has an average energy equal to E

〈ψ|T̂ |ψ〉+ 〈ψ|V̂ |ψ〉= E

we can find the average of the kinetic and potential energy as

〈ψ|T̂ |ψ〉= n
n+2

E 〈ψ|V̂ |ψ〉= 2

n+2
E

which, for n=−1, is consistent with the previous result.
Problem 4.5.
Determine the energy spectrum for a particle with mass M subject to the following

three dimensional central potential

U(r) =
1

2
Mω2r2

with ω a constant and r the radial distance in spherical polar coordinates. Discuss
the properties of the solution in spherical and Cartesian coordinates.

Solution
As usual with centrally symmetric potentials, we seek the solution in the form

ψn,l,m(r,θ ,φ) =
Rn,l(r)

r
Yl,m(θ ,φ).

The resulting three dimensional Schrödinger equation for the radial part Rn,l(r) be-
comes (

− h̄2

2M
d2

dr2
+

h̄2

2M
l(l+1)

r2
+
1

2
Mω2r2

)
Rn,l(r) = En,lRn,l(r)

or, equivalently (
d2

dz2
− z2− l(l+1)

z2
+2ε

)
R(z) = 0

where z =
√

Mω/h̄r and ε = En,l/(h̄ω), and where we have removed all quantum
numbers subscripts for simplicity. The equation has a regular singularity in z= 0 and
an irregular one in z=+∞, suggesting that the solution for the differential equation
is in the class of the confluent hypergeometric functions. Close to the origin (z= 0),
we set R(z)≈ zλ and find the solutions λ = l+1,−l. The first solution is the physical
one because it does not diverge in z= 0. Moreover, for z� 1, the solution is of the

form R(z)≈ e−z2/2. This can be seen by neglecting the terms z−2 and ε with respect
to z2 (see also Problem 4.1). Therefore, the general solution can be sought in the

form

R(z) = zl+1e−z2/2F(z).
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The original equation becomes

F ′′+2
(
l+1
z

− z
)
F ′+(2ε−2l−3)F = 0.

To find the usual confluent hypergeometric form, we need to define the new variable

x= z2 and obtain

xF ′′+
(
l+

3

2
− x
)
F ′+

(
1

2
ε− 1

2
l− 3

4

)
F = 0.

The solution is F = F(−ε/2+ l/2+ 3/4, l + 3/2|z2). We recall that the general
confluent hypergeometric function F(A,C|z) is defined by the series

F(A,C|z) = 1+ A
C

z
1!

+
A(A+1)

C(C+1)

z2

2!
+ ...

and that the series reduces to a polynomial of degree |A| when A = −n, with n a
non negative integer (see also Problem 2.25). Therefore, to preserve the convergent

behaviour of the solution at infinity, we have to set

−n=−ε
2
+

l
2
+
3

4
.

The corresponding eigenvalues for the Hamiltonian are

En,l = h̄ω
(
2n+ l+

3

2

)
.

We note that we can write the potential also in Cartesian coordinates (x,y,z not to
be confused with the above variables)

U(x,y,z) =
1

2
Mω2r2 =

1

2
Mω2(x2+ y2+ z2).

The associated Schrödinger equation allows the separation of variables. The result-

ing picture is that of three independent one dimensional harmonic oscillators whose

Hamiltonian eigenvalues are

Enx,ny,nz = h̄ω
(
nx+ny+nz+

3

2

)

with nx,ny,nz non negative integers. The eigenstates are therefore

ψnx,ny,nz(x,y,z) =CnxCnyCnze
−a2r2/2Hnx(ax)Hny(ay)Hnz(az)

with

Cn =
1

2n/2
√
n!

(
Mω
h̄π

)1/4
a=

√
Mω
h̄
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and where

Hn(ξ ) = (−1)neξ 2 dn

dξ n e
−ξ 2

represents the n-th order Hermite polynomial.

Problem 4.6.
The three dimensional quantum harmonic oscillator with Hamiltonian

Ĥ =
p̂2

2m
+

m
2

[
ω2(x̂2+ ẑ2)+Ω 2ŷ2

]
is slightly anisotropic, with λ = Ω−ω

ω � 1. The system is prepared in the ground

state:

using Cartesian coordinates, write down the wave function ψ(x,y,z) of the
ground state;

using spherical polar coordinates (r,θ ,φ), expand ψ(r,θ ,φ) to first order in λ ;
analyzing the wave function obtained in the previous point, write down the prob-

ability to find l = 0 as a function of the radial distance r.

Solution
The Hamiltonian may be seen as that of two harmonic oscillators with frequency ω
(along x and z) and one harmonic oscillator with frequency Ω (along y). Variables
can be separated and the wave function can be sought as the product of functions

ψnx,ny,nz(x,y,z) = ψnx(x)ψny(y)ψnz(z)

with nx,ny,nz non negative integers. The ground state is obtained when nx = ny =
nz = 0

ψ0,0,0(x,y,z) =
(mω
π h̄

) 1
2

(
mΩ
π h̄

) 1
4

e−F(x,y,z)

with the function F(x,y,z) defined by

F(x,y,z) =
x2+ z2

2x20
+

y2

2y20

and x20 =
h̄

mω , y
2
0 =

h̄
mΩ . The associated energy is

E0,0,0 = h̄
(
ω+

Ω
2

)
.

As for the second point, we need to start from the function F(x,y,z) written in
spherical polar coordinates

F(x,y,z) =
x2+ y2+ z2

2x20
+ y2

(
1

2y20
− 1

2x20

)
=

r2

2x20

(
1+

y2

r2
x20

(
1

y20
− 1

x20

))
=

r2

2x20

[
1+λ

y2

r2

]
.
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Setting y= r sinθ sinφ , we find the following results

F(r,θ ,φ) =
r2

2x20

(
1+λ sin2 θ sin2 φ

)

ψ0,0,0(r,θ ,φ) =
(mω
π h̄

) 1
2

(
mΩ
π h̄

) 1
4

e
− r2

2x2
0 e

− r2

2x2
0

λ sin2 θ sin2 φ
.

The isotropic limit is given by λ → 0

ψ0,0,0(r,θ ,φ) = ψ(iso)
0 (r) =

(mω
π h̄

) 3
4
e−

r2
2x0 .

When λ is small, we can expand the wave function in Taylor series

ψ0,0,0(r,θ ,φ) =ψ(iso)
0 (r)

(
1+

λ
4

)(
1−λ

r2

2x20
sin2 θ sin2 φ

)
≈

ψ(iso)
0 (r)

(
1+λ

(
1

4
− r2

2x20
sin2 θ sin2 φ

))

where the factor
(
1+ λ

4

)
comes from

Ω
1
4 = (ω(1+λ ))

1
4 ≈ ω

1
4

(
1+

λ
4

)
.

As for the third point, the probability to measure l = 0 is obtained by taking the

square of the projection of ψ0,0,0 on Y0,0

P(r, l = 0) =
∣∣∣∣
∫ π

0
sinθdθ

∫ 2π

0
Y0,0(θ ,φ)ψ0,0,0(r,θ ,φ)dφ

∣∣∣∣
2

=

∣∣∣∣∣ψ
(iso)
0 (r)√
4π

[
4π+πλ − 2λ r2π

3x20

]∣∣∣∣∣
2

where we have used the integral
∫ π
0 sin

3 θdθ
∫ 2π
0 sin2 φdφ = 4

3π .

Problem 4.7.
Let us study a hydrogen atom and neglect its nuclear spin. We denote by n the
principal quantum number, by l,m the angular quantum numbers, and by

∣∣ 1
2 ,± 1

2

〉
the eigenstates of the z component of the electron spin Ŝz. A complete set of bound
states is given by |n, l,m〉⊗ ∣∣ 12 ,± 1

2

〉
. The atom is prepared in the state

|ψ〉= |1,0,0〉⊗ ∣∣ 12 , 12〉+ |2,1,1〉⊗ ∣∣ 12 ,− 1
2

〉
+ |2,1,0〉⊗ ∣∣ 12 , 12〉√

3
;
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determine the average of the z component of the spin 〈ψ|Ŝz|ψ〉 and of the energy
〈ψ|Ĥ|ψ〉;
determine the standard deviation σE of the energy defined by

σE =

√
〈ψ|Ĥ2|ψ〉− (〈ψ|Ĥ|ψ〉)2.

Solution
The average of the z component of the spin is easily found, once we recall that

Ŝz |n, l,m〉⊗
∣∣∣∣12 ,±12

〉
=± h̄

2
|n, l,m〉⊗

∣∣∣∣12 ,±12
〉

so that, using the orthogonality of the states, we find

〈ψ|Ŝz|ψ〉=1
3

(
〈1,0,0|⊗

〈
1

2
,
1

2

∣∣∣∣+ 〈2,1,1|⊗
〈
1

2
,−1
2

∣∣∣∣+ 〈2,1,0|⊗
〈
1

2
,
1

2

∣∣∣∣
)
×

Ŝz

(
|1,0,0〉⊗

∣∣∣∣12 , 12
〉
+ |2,1,1〉⊗

∣∣∣∣12 ,−12
〉
+ |2,1,0〉⊗

∣∣∣∣12 , 12
〉)

=

1

3
h̄
(
1

2
− 1

2
+
1

2

)
=

h̄
6
.

The energy spectrum for the hydrogen atom is given by

En =− e2

2n2a
n= 1,2,3, ...

with a the Bohr radius. Therefore, we obtain (we express the result in terms of the
Rydberg R= e2

2a )

Ĥ|ψ〉=− R√
3

(
|1,0,0〉⊗

∣∣∣∣12 , 12
〉
+
1

4
|2,1,1〉⊗

∣∣∣∣12 ,−12
〉
+
1

4
|2,1,0〉⊗

∣∣∣∣12 , 12
〉)

from which

〈ψ|Ĥ|ψ〉=−R
3

(
1+

2

4

)
=−R

2
.

For the square of the Hamiltonian, we find

Ĥ2|ψ〉= R2√
3

(
|1,0,0〉⊗

∣∣∣∣12 , 12
〉
+
1

16
|2,1,1〉⊗

∣∣∣∣12 ,−12
〉
+
1

16
|2,1,0〉⊗

∣∣∣∣12 , 12
〉)

from which

〈ψ|Ĥ2|ψ〉= R2

3

(
1+

2

16

)
=
3R2

8
.
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The associated standard deviation is

σE =

√
〈ψ|Ĥ2|ψ〉− (〈ψ|Ĥ|ψ〉)2 = R√

8
.

Problem 4.8.
A particle with unitary mass is subject to a centrally symmetric force with associated

potential

V (r) =
α
rβ

where α is a real number, β an integer number, and r the radial distance in spherical
polar coordinates. Determine the largest value of β and the corresponding values of
α such that the system has positive energies in the discrete spectrum. In this case,
analyze the wave function in a neighborhood of the origin. To simplify matters,

make use of atomic units (see Problem 5.15).

Solution
As we know from the theory, the discrete spectrum is characterized by all those

energy levels which represent bound states. In such a case, the region of motion is

bounded, the resulting wave function can be normalized, and the probability to find

the particle at infinity tends to zero. To study the problem, we need to replace the

potentialV with the effective potentialVe f f given by the sum ofV and the centrifugal
term

Ve f f (r) =
α
rβ

+
l(l+1)
2r2

which is different for states with different l. We see that the motion of a particle
in a spherically symmetric field, is equivalent to a one dimensional motion under

the effect of the potential energy Ve f f . To have positive values of the energy in the

discrete spectrum, Ve f f cannot be zero at infinity but it must be a positive constant

(or infinity). Also, for r = 0, Ve f f (0) = ±∞ depending on the values of α and β .
Therefore, our requirements are:

the effective potential is positive at infinity, V (+∞)> 0;
the effective potential has a local minimum for a finite r.

To verify the existence of a local maximum or minimum, we take the first derivative

of Ve f f , and set it to zero in the point r0

− βα
(l(l+1))

= rβ−20 :

the case β > 2 and α < 0 gives V (0) = −∞ and V (+∞) = 0. We immediately

see that r0 is a local maximum. Consequently, this case cannot describe bound
states;

the case α > 0 (still with β > 2) is not producing bound states because V (0) =
+∞, V (+∞) = 0 and the first derivative of the potential is zero for an imaginary
r0;
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when β = 2 (with arbitrary α) the effective potential is monotonic without a local
minimum. No bound states are possible;

when β = 1, we find V (+∞) = 0 and we have to rule out this case because the
discrete spectrum, if any, has no positive energies;

the case β = 0 produces V (0) = +∞,V (+∞) = 0 and the effective potential has
not a minimum for a finite r0;
with β =−1, α < 0 we find V (0) = +∞,V (+∞) =−∞. Again, we do not find a
minimum inVe f f and, consequently, the Hamiltonian has not a discrete spectrum;

finally, the case β =−1 and α > 0 satisfies our requirements.

The stationary Schrödinger equation can be analyzed by setting ψ(r,θ ,φ) =
R(r)
r Yl,m(θ ,φ) and eliminating the spherical harmonicsYl,m(θ ,φ) using their orthog-
onality properties. When working with atomic units (see Problem 5.15), we get[

d2

dr2
+2E−2αr− l(l+1)

r2

]
R(r) = 0.

We have regular singularities in r = 0, and we can seek the solution in the form

R(r)≈ rλ . Plugging this back in the original equation, we have

λ (λ −1)rλ−2+2Erλ −2αrλ+1− l(l+1)rλ−2 = 0.

The second and third terms are subleading with respect to rλ−2 when r → 0, so that

λ =−l, l+1. The physical solution corresponds to the non divergent solution in the
origin, i.e. λ = l+1.

Problem 4.9.
Characterize the ground state for the Helium atom. In particular, determine the value

of the total spin and determine its degeneracy when the interaction between the two

electrons is vanishingly small. Repeat the exercise for the first excited energy level.

Finally, provide qualitative arguments to characterize the energy of the first excited

state when the interaction between the electrons is taken into account. Make use of

the wave functions of the first two atomic levels

φ1s(r) =
1√
π

(
Z
a

) 3
2

e−
Zr
a φ2s(r) =

1√
4π

(
Z
2a

) 3
2
(
2− Zr

a

)
e−

Zr
2a

with Z = 2 the atomic number and a the characteristic atomic length scale (the Bohr
radius).

Solution
We first neglect the interaction between the two electrons. When acting on a function

of the coordinates, the Hamiltonian takes the form

Ĥ =− h̄2

2m

(
∇21+∇

2
2

)−Ze2
(
1

r̂1
+
1

r̂2

)
.
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In this approximation, the problem is that of two independent electrons, each one

subject to the Coulomb central field U(r) = −Ze2/r. The solution is known from
the theory of the hydrogen-like atoms, leading to the energy spectrum

εn =−Z2e2

2an2
n= 1,2,3, ...

Therefore, the energy of the ground state of the Helium atom is

E1 = 2ε1 =−Z2e2

a
.

The wave function is characterized by the symmetric (s) and antisymmetric (a) lin-
ear combinations (i.e. it takes a ± sign under the interchange of the electrons) of

φ1s(r1) and φ1s(r2). For the ground state, the antisymmetric combination vanishes,
and we are left with the symmetric orbital wave function

ψs(r1,r2) = φ1s(r1)φ1s(r2) =
1

π

(
Z
a

)3
e−

Z(r1+r2)
a .

The total wave function is ψ(r1,r2) = ψs(r1,r2)χ , where χ refers to the spin part.
Since the total wave function has to be antisymmetric, the spin part has to be anti-

symmetric

χ =
1√
2

(∣∣∣∣12 , 12
〉
1

⊗
∣∣∣∣12 ,−12

〉
2

−
∣∣∣∣12 ,−12

〉
1

⊗
∣∣∣∣12 , 12

〉
2

)

that is a singlet state (i.e. a state with spin 0 that is not degenerate).

The first excited energy state is a bit more complicated. One electron is in the

state 1s (n= 1, l = 0), while the other in 2s (n= 2, l = 0). The possible orbital wave
functions are

Φs(r1,r2) =
1√
2
(φ1s(r1)φ2s(r2)+φ1s(r2)φ2s(r1))

ψ(r1,r2) =Φs(r1,r2)χ

where Φs(r1,r2) is symmetric and defines the parahelium states, while Φa(r1,r2)
is antisymmetric and defines the orthohelium states. As for the total wave function
(orbital motion plus spin), Φs(r1,r2) is multiplied by the singlet state previously
described, whileΦa(r1,r2) is multiplied by one of the following spin wave functions

χ1 =
∣∣∣∣12 , 12

〉
1

⊗
∣∣∣∣12 , 12

〉
2

χ2 =
1√
2

(∣∣∣∣12 , 12
〉
1

⊗
∣∣∣∣12 ,−12

〉
2

+

∣∣∣∣12 ,−12
〉
1

⊗
∣∣∣∣12 , 12

〉
2

)
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χ3 =
∣∣∣∣12 ,−12

〉
1

⊗
∣∣∣∣12 ,−12

〉
2

defining the so-called triplet (i.e. a state with spin 1 that is triple degenerate). The

energy of the parahelium and orthohelium states is the same, unless we introduce the

interaction potential between the electrons, Uint(rrr1,rrr2) = e2/(|rrr1− rrr2|). The wave
functionΦa(r1,r2) is zero when r1 = r2 = 0, whileΦs(r1,r2) has a maximum in this
point. This means that the electrons preferentially stay either away from the nuclear

region (orthohelium) or close to it (parahelium). The contribution of the interaction

potential comes from

〈Ûint〉=
∫ ∫

Φ∗(r1,r2)
e2

|rrr1− rrr2|Φ(r1,r2)d3r1d3r2

which can be calculated for the orthohelium (Φ = Φa) and the parahelium states

(Φ = Φs). The result is that 〈Ûint〉 is positive in sign and smaller for the orthohe-
lium. This happens because in the orthohelium case the spatial wave function is

antisymmetric, the electrons tend to stay away from each other, and this reduces the

repulsive effect of Uint . We conclude that the total energy is lower for the orthohe-

lium state.

Problem 4.10.
An atom has two electrons with modulus of the charge e, spin S = 1/2, and with
the orbital angular momentum l = 0. The nuclear charge is e. Characterize the en-
ergy spectrum when the two electrons occupy the lowest energy levels available,

and in the limit where the interaction potential between the electrons is negligible.

Determine the wave function of the system and verify its normalization. Finally,

determine the probability Pε to find both electrons in a spherical region of radius ε
centered in the nucleus.

Solution
From the point of view of Quantum Mechanics, the two electrons have to be con-

sidered as indistinguishable particles. Particles with half-odd-integer spin obey the

Fermi-Dirac statistics and their resulting wave function has to be antisymmetric

when the two particles are interchanged. Such property is a direct consequence of

the Pauli principle which states that, in a system composed of identical fermions,

there cannot be two particles with the same quantum numbers. The antisymmetric

combination of identical objects is in fact zero.

In the case of our problem, the wave functions are those of the hydrogen atom

(ψ(rrr) = Rn,l(r)Yl,m(θ ,φ)⊗
∣∣ 1
2 ,Sz/h̄

〉
) with n= 1, l = m= 0,Sz =±h̄/2

ψ1(rrr1) = R1,0(r1)Y0,0(θ1,φ1)⊗
∣∣∣∣12 , 12

〉
= 2a−3/2e−r1/a 1√

4π
⊗
∣∣∣∣12 , 12

〉

ψ2(rrr2) = R1,0(r2)Y0,0(θ2,φ2)⊗
∣∣∣∣12 ,−12

〉
= 2a−3/2e−r2/a 1√

4π
⊗
∣∣∣∣12 ,−12

〉
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where a = h̄2/mee2 is the Bohr radius (me is the mass of the electron) and where∣∣ 1
2 ,± 1

2

〉
refer to the eigenstates of Ŝz, i.e. the operator describing the z component

of the spin with eigenvalues ±h̄/2. The antisymmetric combination of ψ1(rrr1) and
ψ2(rrr2) is

ψ(rrr1,rrr2) =
1√
2
(ψ1(rrr1)ψ2(rrr2)−ψ1(rrr2)ψ2(rrr1)).

We then verify the normalization N2 =
∫ ∫ |ψ(rrr1,rrr2)|2 d3r1d3r2

N2 =
16a−6

(4π)2

(∫ π

0
sinθdθ

∫ 2π

0
dφ
)2(∫ +∞

0
r2e−2r/a dr

)2
= 1

where we have used that
∫ +∞
0 x2e−2xdx = 1

4 . Finally, the probability to find the two

electrons in a spherical region of radius ε is given by the integral of |ψ(rrr1,rrr2)|2 in
the region 0≤ r1,2 ≤ ε

Pε = 16a−6
∫ ε

0
r21e

−2r1/a dr1
∫ ε

0
r22e

−2r2/adr2 = 16
(∫ ε

a

0
x2e−2x dx

)2
.

A direct calculation shows that

Pε = 16
(
lim
β→2

d2

dβ 2

∫ ε
a

0
e−xβ dx

)2
= 16

(
e−2ε/a

(
− ε2

2a2
− ε
2a

− 1

4

)
+
1

4

)2
.

Problem 4.11.
Let us consider the following spherical wave function

ψ(rrr) =
e±ikkk·rrr

r

where r is the radial distance in spherical coordinates, kkk= krrr/r the wave vector and
k its modulus. Determine:

the density flux for the probability density function;

the number of particles in the unit time passing through the spherical surface of

radius R for a given kkk = krrr/r.

Solution
The wave vector kkk = krrr/r is in the same direction of rrr. Consequently, the wave
function can be written as a function of the radial distance r and the modulus k

ψ(r) =
e±ikr

r
.

The density flux for the probability density function is obtained from the usual den-

sity flux

JJJ =
ih̄
2m

(ψ∇∇∇ψ∗ −ψ∗∇∇∇ψ)
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by considering its radial component

Jr =
h̄
2mi

[
ψ∗ dψ

dr
−ψ

dψ∗

dr

]
.

An explicit calculation shows that

Jr =
h̄
2mi

[
e∓ikr

r

(
±ik

e±ikr

r
− e±ikr

r2

)
− e±ikr

r

(
∓ik

e∓ikr

r
− e∓ikr

r2

)]
=± h̄k

mr2
.

The number of particles in the unit time passing (exiting or entering) through the

spherical surface of radius R is just the integral of Jr over such surface

N =
∫ 2π

0
dφ
∫ π

0
jRR2 sinθdθ =±4π h̄k

m
.

Problem 4.12.
Consider a hydrogen atom and determine the probability distribution function for

the momentum in the ground state (1s). With such result, determine the average
kinetic energy, and compare the result with the one obtained in the position space

(see Problem 5.15). For simplicity, make use of atomic units.

Solution
The wave function of the ground (1s) state has principal quantum number n= 1 and
the orbital angular momentum l = 0

ψ1,0,0(r,θ ,φ) = R1,0(r)Y0,0(θ ,φ) = 2e−r 1√
4π

where we have used atomic units. In this way, the variable r is dimensionless. We
recover physical units (see also Problem 5.15) by introducing the proper length scale

(a, the Bohr radius) and energy scale (e2/a, the atomic energy). To find the distri-
bution of the momentum, we have to determine the generic mode (whose absolute

value is denoted with pr) in Fourier space starting from the wave function

ψ1,0,0(pr) =
1√
π

∫
e−(ippp·rrr+r)d3r = 2

√
π
∫ +∞

0

∫ +1

−1
e−(iprr cosθ+r)r2 drd cosθ =

2
√
π

ipr

(∫ +∞

0
e−(−iprr+r)r dr−

∫ +∞

0
e−(iprr+r)r dr

)
=

2
√
π

ipr

(
1

(−ipr+1)2
− 1

(ipr+1)2

)
=

8
√
π

(p2r +1)2

and take its square modulus

|ψ1,0,0(pr)|2 = 64π
(1+ p2r )4

.
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The integral of such quantity gives the normalization of ψ1,0,0(pr)

∫ +∞

0
|ψ1,0,0(pr)|2d3pr = 256π2

∫ +∞

0

p2r
(1+ p2r )4

dpr = 8π3

where we have used the indefinite integral

∫ x2

(1+ x2)4
dx=− x

6(1+ x2)3
+

x
24(1+ x2)2

+
x

16(1+ x2)
+
arctanx
16

+ const.

The normalized probability distribution function between pr = 0 and pr =+∞ is

P(pr) =
|ψ1,0,0(pr)|24π p2r

8π3
=

32p2r
π(1+ p2r )4

.

The kinetic term in the three dimensional Schrödinger equation (with mass m = 1

and h̄= 1) may be written as (radial part plus angular part) T̂ = p̂2r
2 + L̂2

2r2 , with L̂
2 the

squared orbital angular momentum. Moreover, the angular term for the ground state

is zero, due to the fact that it is proportional to the spherical harmonic Y0,0(θ ,φ) that
is an eigenstate of L̂2 with eigenvalue 0. Therefore, using the indefinite integral

∫ x4

(1+ x2)4
dx=

x
6(1+ x2)3

− 7x
24(1+ x2)2

+
x

16(1+ x2)
+
arctanx
16

+ const.

we find

〈T̂ 〉= 1

2
〈 p̂2r 〉=

1

2

∫ +∞

0
P(pr)p2r dpr =

16

π

∫ +∞

0

p4r
(1+ p2r )4

dpr =
1

2
.

Such value is in agreement with the kinetic energy determined in Problem 5.15,

where we will use the representation of the wave functions in the position space.
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Perturbation Theory and WKB Method

Problem 5.1.
A plane rigid rotator has the following Hamiltonian

Ĥ0 =
L̂2z
2I

where I is the momentum of inertia and L̂z =−ih̄ d
dφ is the component of the angular

momentum in the z direction (φ is the azimuthal angle). A small perturbation

Ĥ1 = λ cos(2φ̂) λ � 1

is applied to the rotator. Determine the average value of Ĥ1 on each unperturbed
eigenstate. Then, determine the off-diagonal elements of the perturbation matrix

between the degenerate states. Finally, find the first order correction to the energy

of the ground state and the splitting induced on the energy of the first excited state.

Solution
We first determine the eigenstates of Ĥ0. To do that, we have to solve the differential
equation

− h̄2

2I
dψk(φ)

dφ
= εkψk(φ) 0≤ φ ≤ 2π

leading to the following normalized eigenstates

ψk(φ) =
eikφ√
2π

with k an integer number. The values k and −k correspond to the same eigenvalue
of the energy

εk = h̄2
k2

2I

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 5, c© Springer-Verlag Italia 2012
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meaning that all the states show a degeneracy, with the only exception of k= 0. The
average value of the perturbation Ĥ1 on a generic eigenstate is given by

〈k|Ĥ1|k〉= λ
2π

∫ 2π

0
e−ikφ cos(2φ)eikφdφ =

λ
2π

∫ 2π

0
cos(2φ)dφ = 0

and, in particular, for the ground state (k= 0) we find 〈0|Ĥ1|0〉= 0. The off-diagonal
matrix elements between degenerate states are

〈−k|Ĥ1|k〉= λ
2π

∫ 2π

0
e2ikφ cos(2φ)dφ =

1

2
λδk1 k > 0

as we can see by writing cos(2φ) = (e2iφ + e−2iφ )/2 and using the fact that the
integral of the exponential function e±2iφ+2ikφ over a period is zero, unless k = 1.

As a consequence, the perturbation matrix is zero with the only exception of the first

excited state. In the latter case, we can represent such matrix in the following way

Ĥ(1)
1 =

λ
2

(
0 1

1 0

)
.

We conclude that the ground state and the states with |k| > 1 are unperturbed. The

first excited state with energy ε1 splits in two states with energies h̄2 12I ± 1
2λ .

Problem 5.2.
A quantum system is characterized by a discrete spectrum whose eigenstates are

|ψ(0)
L 〉 and |ψ(0)

R 〉, corresponding to the energies EL = 0 and ER =M respectively. In

such a vector basis, the matrix representation of the unperturbed Hamiltonian is

Ĥ0 =
(
0 0

0 M

)
.

A perturbation V̂ is switched on and the new Hamiltonian is

Ĥ = Ĥ0+V̂ =

(
0 m
m M

)
.

Using perturbation theory, determine the first and second order corrections to the

eigenvalues of Ĥ0. To do that, you can define a parameter λ = m
M and assume that

λ � 1.

Solution
The problem is non degenerate because |ψ(0)

L 〉 and |ψ(0)
R 〉 correspond to different

energies. Also, the perturbation can be written as λV̂ ′ where

V̂ ′ =
(
0 M
M 0

)
.
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The unperturbed eigenstates of Ĥ0 are

|ψ(0)
L 〉=

(
1

0

)
|ψ(0)

R 〉=
(
0

1

)

corresponding to the unperturbed energies E(0)
L = 0 and E(0)

R = M. The first order
corrections to the eigenvalues correspond to the diagonal elements of the perturba-

tion matrix V ′
nk = 〈ψ(0)

n |V̂ ′|ψ(0)
k 〉, with n,k = L,R

〈ψ(0)
L |V̂ ′|ψ(0)

L 〉= 〈ψ(0)
R |V̂ ′|ψ(0)

R 〉= 0.

For the second order corrections in λ , we need to use

ΔE(2)
n = ∑

k �=n

|V ′
nk|2

E(0)
n −E(0)

k

.

The matrix elements of interest are

V ′
LR =V ′

RL =M

from which we find

ΔE(2)
L =−M2

M
=−M ΔE(2)

R =
M2

M
=M

and

EL ∼= E(0)
L +λΔE(1)

L +λ 2ΔE(2)
L =−m2

M

ER ∼= E(0)
R +λΔE(1)

R +λ 2ΔE(2)
R =M+

m2

M
.

Problem 5.3.
Let us consider a quantum system with Hamiltonian Ĥ such that⎧⎨

⎩Ĥ|0〉= 0
Ĥ|n〉= n! Q|n〉 n= 1,2,3, ...

where |n〉 are the eigenstates (〈n|k〉 = δnk) and Q > 0 a positive constant. Using

perturbation theory, find the first order correction ΔE(1)
0 to the energy of the ground

state induced by the perturbation

V̂ =V
+∞

∑
n=0

αn/2 (|n〉〈0|+ |0〉〈n|)

where V > 0. Also, determine the second order correction ΔE(2)
0 to the energy of

the ground state induced by the same perturbation. What is the value of α such that
the total correction ΔE(1)

0 +ΔE(2)
0 is zero?
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Solution
The ground state is |0〉 and has zero energy. The first order correction is

ΔE(1)
0 = 〈0|V̂ |0〉= 2V.

As for the second order correction, it can be found with the Taylor series of the

exponential function

ΔE(2)
0 =−

∞

∑
n=1

|〈0|V̂ |n〉|2
Qn!

=−V 2

Q

∞

∑
n=1

αn

n!
=−V 2

Q
(eα −1).

The value of α such that the total correction is ΔE(1)
0 +ΔE(2)

0 = 0 is given by the

equation

2V =
V 2

Q
(eα −1)

so that

α = ln

(
2Q+V

V

)
.

Problem 5.4.
A one dimensional quantum harmonic oscillator with Hamiltonian

Ĥ0 =
(
â†â+

1

2
11

)
h̄ω =

(
n̂+

1

2
11

)
h̄ω

is subject to a small perturbation V̂ = λ â†â†ââ. Determine the first order pertur-
bative corrections to the energy spectrum. Then, compute the exact solution and

compare it with the result of perturbation theory.

Solution
We need to write the perturbation in a more convenient way. We know the commu-

tation relations of the creation and annihilation operators â† and â

[â, â†] = ââ†− â†â= 11

and we can rewrite V̂ in the following way

V̂ = λ â†â†ââ= λ â†(ââ†−11)â= λ (n̂2− n̂)

with n̂ = â†â the number operator. We note that the perturbation is diagonal with
respect to the eigenstates (|n〉) of the harmonic oscillator

V̂ |n〉= λ (n̂2− n̂)|n〉= λ (n2−n)|n〉.

The first order correction to the energy spectrum is therefore the exact solution to

our problem.
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Problem 5.5.
A quantum particle with massM moves in a two dimensional infinite potential well⎧⎨

⎩V (x,y) = 0 |x| ≤ L
2 , |y| ≤ L

2

V (x,y) = +∞ |x| ≥ L
2 , |y| ≥ L

2 .

Determine the eigenstates and eigenvalues for the Hamiltonian. Imagine to construct

states with four electrons (with spin 1/2). What is the energy of the ground state?
At some point, a perturbation

Ĥ ′(x̂, ŷ) = λ X̂(x̂)Ŷ (ŷ)

is switched on. In the above expression, X̂(x̂) and Ŷ (ŷ) are generic operators, x̂ and
ŷ the position operators in the two coordinates, and λ a small parameter. Construct
the perturbation matrix for the case of a single electron occupying the first excited

state. In the special case

Ĥ ′(x̂, ŷ) = λ
x̂ŷ
L2

determine the first order correction to such a state.

Solution
We need to solve the Schrödinger equation in the two dimensional potential well.

This is similar to the three dimensional case solved in Problem 2.10. When variables

are separated in the Schrödinger equation, we find the eigenfunctions

ψn,m(x,y) = un(x)um(y)

with n,m positive integers and un(x) correctly normalized

un(x) =

√
2

L
sin

(
πn
L

(
x+

L
2

))
.

The eigenvalues are

En,m =
h̄2π2

2ML2
(n2+m2).

We note that the ground state (denoted with E1,1 and corresponding to the case
n = m = 1) is non degenerate. The first excited state (denoted with E1,2 and corre-
sponding to the case n+m= 3) is double degenerate. When we have four electrons
with spin 1/2, two of them go in the ground state, while the remaining two in the
first excited state, with a total energy

E4 = 2(E1,1+E1,2).

When we have a single electron in the first excited state, a vector basis is given by{
〈x,y|1〉= u2(x)u1(y)
〈x,y|2〉= u1(x)u2(y)
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with the property 〈1|2〉= 0, 〈1|1〉= 〈2|2〉= 1. The representation of the perturbation
matrix in such a vector basis is

Ĥ ′ =

(
λ 〈u2|X̂ |u2〉〈u1|Ŷ |u1〉 λ 〈u2|X̂ |u1〉〈u1|Ŷ |u2〉
λ 〈u1|X̂ |u2〉〈u2|Ŷ |u1〉 λ 〈u1|X̂ |u1〉〈u2|Ŷ |u2〉

)
.

Therefore, when we have Ĥ ′(x̂, ŷ) = λ x̂ŷ
L2 , we need to consider the following inte-

grals

2

L

∫ + L
2

− L
2

sin

(
π
L

(
x+

L
2

))
sin

(
2π
L

(
x+

L
2

))
xdx=− 16

9π2
L

2

L

∫ + L
2

− L
2

sin

(
2π
L

(
x+

L
2

))
sin

(
2π
L

(
x+

L
2

))
xdx= 0.

The second integral is zero because the integrand is the product of an even function

(sin2
(
2π
L

(
x+ L

2

))
) and an odd one (x). The first integral is non zero and can be done

using the following results

∫ π

0
sinξ sin(2ξ )ξdξ = 2

∫ π

0
sin2 ξ cosξ ξdξ =−2

3

∫ π

0
sin3 ξdξ

and

∫ π

0
sin3 ξdξ =

∫ π

0
sinξdξ −

∫ π

0
sinξ cos2 ξ dξ =

(
−cosξ +

1

3
cosξ

)∣∣∣∣
π

0

=
4

3
.

Therefore, the matrix representation of Ĥ ′ is

Ĥ ′ = λ
(
16

9π2

)2(
0 1

1 0

)

with eigenvalues ΔE(1)
± = ±λ ( 16

9π2 )
2. We see that the perturbation removes the de-

generacy completely, and the energy of the first excited state splits in two levels with

energies E1,2+ΔE(1)
± .

Problem 5.6.
A particle is confined in a one dimensional potential well in the segment 0≤ x≤ L
and is under the effect of the perturbation V (x) = V0 cos(πxL ). Determine the first
order correction to the energy of the ground state and the first excited state.

Solution
As we know from the solution of the Schrödinger equation in the one dimensional

potential well (see Problem 2.10), the normalized eigenstates are given by

〈x|n〉= ψn(x) =

√
2

L
sin
(nπx

L

)
n= 1,2,3, ...
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and they are not degenerate. When applying time independent perturbation theory

to determine the energy correction, we have to compute the general integral

〈n|V̂ |n〉= ΔE(1)
n =

2V0
L

∫ L
2

0
sin2
(nπx

L

)
cos
(πx

L

)
dx=

2V0
π

∫ π
2

0
sin2(nt)cos t dt.

For n= 1 (the ground state), the integral is simple

ΔE(1)
1 =

2V0
π

∫ π
2

0
sin2 t cos t dt =

2V0
π

∫ 1

0
sin2 td(sin t) =

2V0
π

∫ 1

0
x2 dx=

2V0
3π

.

For n= 2, we find

ΔE(1)
2 =

2V0
π

∫ π
2

0
sin2(2t)cos t dt =

8V0
π

∫ π
2

0
sin2 t cos3 t dt =

8V0
π

∫ 1

0
sin2 t cos2 td(sin t) =

8V0
π

∫ 1

0
x2(1− x2)dx=

16V0
15π

.

Problem 5.7.
A quantum system is described by the following Hamiltonian

Ĥ = Ĥ0+ Ĥ ′

where

Ĥ0 =

(
1 0

0 −1

)

and Ĥ ′ has to be considered as a small perturbation with the following representation

Ĥ ′ = η

(
0 1

1 0

)

with η a small parameter. Determine the correction to the energy of the ground state
up to second order in perturbation theory. Then, find the exact solution and compare

it with the result of perturbation theory.

Solution
First of all, we need to compute the eigenstates and eigenvectors of the unperturbed

Hamiltonian Ĥ0. We determine the characteristic polynomial p(λ ) associated with
Ĥ0

p(λ ) = det(Ĥ0−λ11) = det

(
1−λ 0

0 −1−λ

)
=−(1−λ 2).

Solving the equation p(λ ) = 0 we find the eigenvalues λ =±1 and the correspond-
ing eigenstates

|+1〉=
(
1

0

)
|−1〉=

(
0

1

)
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which satisfy

Ĥ0|−1〉=−|−1〉 Ĥ0|1〉=+|1〉.
The ground state is |−1〉 with energy E−1 =−1; the other is the excited state with
energy E1 = +1. To determine the first order correction ΔE(1)

−1 to the ground state,
we need to compute the matrix element 〈−1|Ĥ ′|−1〉. The result is

ΔE(1)
−1 = 〈−1|Ĥ ′|−1〉= η

(
0 1

)(
0 1

1 0

)(
0

1

)
= 0.

The first non zero correction for the ground state energy comes at the second order

in perturbation theory. To compute it, we make use of the expression

ΔE(2)
−1 = ∑

n�=−1

∣∣〈n|Ĥ ′|−1〉∣∣2
E−1−En

where with |n〉we mean a generic state different from the ground state. The previous
expression is particularly simple in our case, because we have only two states

ΔE(2)
−1 =

∣∣〈1|Ĥ ′|−1〉∣∣2
E−1−E1

=−η2

2

where we have used that

〈1|Ĥ ′|−1〉= 〈−1|Ĥ ′|1〉= η
(
0 1

)(
0 1

1 0

)(
1

0

)
= η .

To answer the last question, we note that we can rewrite the full Hamiltonian as

Ĥ = Ĥ0+ Ĥ ′ =

(
1 η
η −1

)

and determine the characteristic polynomial

p(η)(λ ) = det(Ĥ−λ11) = det

(
1−λ η
η −1−λ

)
=−(1−λ 2)−η2

from which we extract the eigenvalues (solving p(η)(λ ) = 0) as

E(η)
−1 =−

√
1+η2 E(η)

1 =+
√
1+η2.

The energy of the ground state can be expanded for small η , and we find

E(η)
−1 =−

√
1+η2 ≈−1− η2

2
+O(η4)

in agreement with the result of perturbation theory previously found.
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Problem 5.8.
Let us consider the two dimensional harmonic oscillator with Hamiltonian

Ĥ0 =
p̂2x + p̂2y
2M

+
1

2
Mω2(x̂2+ ŷ2).

Write down the eigenstates of Ĥ0. Then, using Cartesian coordinates, write down
the eigenfunctions of the lowest three energy levels in terms of the eigenfunctions

of the one dimensional harmonic oscillator. At some point, the perturbation

Ĥ ′ = λ x̂2ŷ2

is switched on. Determine the first order correction induced by such perturbation on

the energy of the second excited state. You can make use of the following identities

(x̂2)0,0 =
1

2
x20 (x̂2)1,1 =

3

2
x20 (x̂2)2,2 =

5

2
x20 (x̂2)0,2 =

1√
2
x20

where x0 =
√

h̄
Mω and where we have defined the generic matrix element of the

squared position operator (x̂2)n,m = 〈n|x̂2|m〉 (see also Problem 2.4), with |n〉, |m〉
the eigenstates of the one dimensional case. Also, you can consider that x̂2 has zero
matrix elements when evaluated between two states with opposite parity.

Solution
The Hamiltonian Ĥ0 is the sum of two Hamiltonians, each one representing a one

dimensional harmonic oscillator. The corresponding energy is the sum of the two

energies

E(0)
m,n = h̄ω(m+n+1) = h̄ω

(
m+

1

2

)
+ h̄ω

(
n+

1

2

)
with m and n non negative integers. Let us take the eigenfunctions ψn of the one

dimensional harmonic oscillator with coordinate x

〈x|n〉= ψn(ξ ) =CnHn(ξ )e−ξ 2/2

where

ξ =

√
Mω
h̄

x Cn =
1

2n/2
√
n!

(
Mω
h̄π

)1/4
and where

Hn(ξ ) = (−1)neξ 2 dn

dξ n e
−ξ 2

represents the n-th order Hermite polynomial. These states have a well defined par-
ity, i.e. they are even (odd) for n even (odd).
We now construct the eigenstates of Ĥ0 as the product of the eigenstates of the

one dimensional case. The ground state is

Ψ0,0(x,y) = ψ0(x)ψ0(y).
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The first excited state is double degenerate, with a vector basis given by

Ψ1,0(x,y) = ψ1(x)ψ0(y) Ψ0,1(x,y) = ψ0(x)ψ1(y).

The second excited state is triple degenerate, with a vector basis given by

Ψ1,1(x,y) = ψ1(x)ψ1(y)

Ψ2,0(x,y) = ψ2(x)ψ0(y)

Ψ0,2(x,y) = ψ0(x)ψ2(y).

Therefore, the representation of the perturbation matrix in such a vector basis is

λ

⎛
⎜⎝

(x̂2)21,1 0 0

0 (x̂2)2,2(x̂2)0,0 (x̂2)22,0(x̂
2)20,2

0 (x̂2)22,0(x̂
2)20,2 (x̂

2)2,2(x̂2)0,0

⎞
⎟⎠= λx40

⎛
⎜⎝

9
4 0 0

0 5
4
1
2

0 1
2
5
4

⎞
⎟⎠ .

The perturbation removes the degeneracy completely. The energy eigenvalue cor-

responding to the state Ψ1,1(x,y) is 3h̄ω + 9
4λx

4
0, with

9
4λx

4
0 the energy correction

induced by the perturbation. The other two states (Ψ2,0(x,y) andΨ0,2(x,y)) mix to-
gether, with resulting energies 3h̄ω+ 7

4λx
4
0 and 3h̄ω+ 3

4λx
4
0.

Problem 5.9.
A three dimensional rigid rotator has Hamiltonian

Ĥ0 =
L̂2

2I

where L̂2 is the square of the orbital angular momentum and I the momentum of

inertia. The rotator is subject to the following perturbation

Ĥ ′ = λ
√
3

4π
cos θ̂

where θ is the azimuthal angle and λ is a small parameter. Discuss a possible phys-
ical interpretation for the perturbation when the rigid rotator possesses an electric

dipole. Determine the effect of Ĥ
′
on the ground state of the rotator.

Solution
A possible physical interpretation for the perturbation is that of a coupling energy

between the electric dipoles (say ddd) and a given uniform electric field (say EEE) di-
rected along the z axis. The coupling between the dipole and the electric field pro-
duces the scalar product ddd · EEE and this explains the cosθ in the perturbation. A
similar situation will be analyzed in the context of equilibrium statistical mechanics

in Problem 7.31.
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As for the unperturbed Hamiltonian, its eigenstates are given by the spherical

harmonics Yl,m(θ ,φ) = 〈θ ,φ |l,m〉 which are in fact eigenstates of L̂2

Ĥ |l,m〉= El,m |l,m〉

with the energies El,m = h̄2l(l+1)
2I . The unperturbed ground state is given by the con-

stant spherical harmonic

〈θ ,φ |0,0〉= Y0,0(θ ,φ) =
1√
4π

and the first order correction by

ΔE(1)
0 = 〈0,0|Ĥ ′|0,0〉= λ

4π

√
3

4π

∫ 2π

0
dφ
∫ π

0
sinθ cosθdθ = 0.

Therefore, we need to consider the second order effect to find a non zero correc-

tion. This can be easily understood because the perturbation is proportional to the

spherical harmonic

Y1,0(θ ,φ) =
√
3

4π
cosθ

and the spherical harmonics are orthogonal. Therefore, when applying the formula

for the second order correction in perturbation theory

ΔE(2)
0 = ∑

|l,m〉�=|0,0〉

| 〈0,0|δ Ĥ |l,m〉 |2
E0,0−El,m

the only term producing a non zero effect is that with |l,m〉= |1,0〉

ΔE(2)
0 =−|〈0,0|Ĥ ′|1,0〉|2

2h̄2
2I

=− Iλ 2

h̄2

∣∣∣∣
∫

1√
4π

Y 21,0(θ ,φ)dΩ
∣∣∣∣
2

=− Iλ 2

4π h̄2
.

Problem 5.10.
A measurement of the energy

Ĥ = Ŝx

for a particle with spin 1/2 gives surely H = 1/2. In the above expression, Ŝx is
the x component of the spin. Assuming h̄ = 1, determine the first and second order
energy corrections on this state induced by the perturbation

δ Ĥ = ε Ŝ+Ŝ−

where Ŝ± are the raising and lowering operators for the z component of the spin.

Solution
We need to determine the perturbative corrections to the eigenvalue 1/2. In the
vector basis where the z component of the spin is diagonal, the matrix representation
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of the Hamiltonian can written as

Ĥ = Ŝx =
1

2
σ̂x =

1

2

(
0 1

1 0

)

where σ̂x is one of the Pauli matrices. The eigenstates corresponding to the eigen-

values ±1 of σ̂x are

∣∣∣∣12 , 12
〉
=

1√
2

(
1

1

) ∣∣∣∣12 ,−12
〉
=

1√
2

(
1

−1

)
.

From the properties of the raising and lowering operators for the z component of the
spin

Ŝ± = Ŝx± iŜy =
(σ̂x± iσ̂y)

2

σ̂y =

(
0 −i
i 0

)
Ŝ+ =

(
0 1

0 0

)
Ŝ− =

(
0 0

1 0

)

we can write the perturbation as

δ Ĥ = ε Ŝ+Ŝ− = ε

(
1 0

0 0

)
.

The first order correction to the energy of
∣∣ 1
2 ,
1
2

〉
is

ΔE(1)
1
2

=

〈
1

2
,
1

2

∣∣∣∣ε Ŝ+Ŝ−
∣∣∣∣12 , 12

〉
=

ε
2

(
1 1

)(
1 0

0 0

)(
1

1

)
=
1

2
ε.

The second order correction is

ΔE(2)
1
2

= ∑
n�= 1

2

|〈 12 ,n∣∣δ Ĥ ∣∣ 12 , 12〉 |2
E 1
2
−En

and the summation is particularly simple in our case, because we have only two

states

ΔE(2)
1
2

=

∣∣∣∣∣ ε2 (1 1)
(
1 0

0 0

)(
1

−1

)∣∣∣∣∣
2

1
2 − (− 1

2 )
=
1

4
ε2.

Problem 5.11.
A particle without spin is found in a quantum eigenstate of the operators L̂2 and
L̂z, with L̂ the orbital angular momentum and L̂i its i-th component (i = x,y,z).
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Determine the average values of L̂x, L̂y, L̂2x , L̂
2
y . Then, given the Hamiltonian

Ĥ = L̂2x + L̂2y

determine the time evolution of the generic eigenstate. At some point, the perturba-

tion

δ Ĥ = εL̂z ε � 1

is switched on. Using first order perturbation theory, determine the correction to the

energy of the ground state for the case l = 1.

Solution
The state of the particle |l,m〉 is entirely specified by the quantum numbers l and m
such that

L̂2 |l,m〉= h̄2l(l+1) |l,m〉
L̂z |l,m〉= h̄m |l,m〉 .

Before computing the average values of the operators given in the text, let us recall

some useful properties of the angular momentum. The commutation rules are

[L̂i, L̂ j] = iεi jkh̄L̂k

where εi jk is the Levi-Civita tensor and i, j,k= x,y,z. Such tensor is totally antisym-
metric and conventionally chosen in such a way that εxyz = 1. The raising (L̂+) and
lowering (L̂−) operators for the z component of the orbital angular momentum are
defined by

L̂± = (L̂x± iL̂y) L̂x =
(L̂++ L̂−)

2
L̂y =−i

(L̂+− L̂−)
2

.

The associated commutation rules are given by

[L̂±, L̂z] =∓h̄L̂± [L̂+, L̂−] = 2h̄L̂z.

Finally, the action of L̂± on the states |l,m〉 is

L̂± |l,m〉= h̄
√

(l∓m)(l±m+1) |l,m±1〉 .

Let us now compute the expectation values for L̂x, L̂y, L̂2x , L̂
2
y . For L̂x and L̂y, we get

〈l,m| L̂x |l,m〉=1
2
〈l,m|(L̂++ L̂−) |l,m〉=

h̄
2

√
(l−m)(l+m+1)〈l,m|l,m+1〉+

h̄
2

√
(l+m)(l−m+1)〈l,m|l,m−1〉= 0
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and similarly for L̂y. The expectation values of L̂2x and L̂2y are non zero. To see that,
it is useful to rewrite L̂2x and L̂2y as

L̂2x =
(L̂++ L̂−)2

4
=

(L̂2++ L̂2−+ L̂+L̂−+ L̂−L̂+)
4

=
(L̂2++ L̂2−+2L̂−L̂++2h̄L̂z)

4

L̂2y=− (L̂+− L̂−)2

4
=− (L̂2++ L̂2−− L̂+L̂−− L̂−L̂+)

4
=

(−L̂2+− L̂2−+2L̂−L̂++2h̄L̂z)

4
.

When averaged on the state |l,m〉, L̂2± give zero. Therefore, we have

〈l,m| L̂2x |l,m〉=〈l,m| L̂2y |l,m〉=
1

2
〈l,m|(L̂−L̂++ h̄L̂z) |l,m〉=

h̄2

2
(m+(l−m)(l+m+1)) =

h̄2

2
(l(l+1)−m2).

This is the correct result because L̂2 = L̂2x+ L̂2y+ L̂2z , and the average value of L̂
2
x+ L̂2y

must coincide with the one of L̂2− L̂2z

〈l,m| L̂2− L̂2z |l,m〉= h̄2(l(l+1)−m2).

To determine the state at time t (say |l,m, t〉), we have to apply the time propagator
e−iĤt/h̄ to |l,m〉

|l,m, t〉= e−iĤt/h̄ |l,m〉= e−ih̄(l(l+1)−m2)t |l,m〉 .

As for the last point, we first have to determine the unperturbed energy spectrum

El,m = h̄2(l(l+1)−m2).

For l = 1 we find E1,1 = E1,−1 = h̄2,E1,0 = 2h̄2. Therefore, the ground state for
l = 1 has energy h̄2 and is double degenerate. To find the correction to the energy
in the degenerate case, we have to determine the eigenvalues of the matrix whose

elements are 〈1,±1|δ Ĥ |1,±1〉. Our case is particularly simple because the pertur-
bation is diagonal. The matrix representation of L̂z and the eigenvectors of interest

are

L̂z = h̄

⎛
⎜⎝1 0 0

0 0 0

0 0 −1

⎞
⎟⎠ |1,1〉=

⎛
⎜⎝10
0

⎞
⎟⎠ |1,−1〉=

⎛
⎜⎝00
1

⎞
⎟⎠

and the perturbation matrix is

(
〈1,1|δ Ĥ |1,1〉 〈1,1|δ Ĥ |1,−1〉

〈1,−1|δ Ĥ |1,+1〉 〈1,−1|δ Ĥ |1,−1〉

)
= ε h̄

(
1 0

0 −1

)
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that is a diagonal matrix with eigenvalues±ε h̄. Therefore, the perturbation removes
the degeneracy with a resulting energy splitting

E(ε)
1,1 = E1,1+ΔE1,1 = h̄2+ ε h̄

E(ε)
1,−1 = E1,−1+ΔE1,−1 = h̄2− ε h̄.

Problem 5.12.
A two dimensional quantum system in the (x,y) plane is described by the following
Hamiltonian

Ĥ =
p̂2x + p̂2y
2m

+
1

2
m(ω2x x̂

2+ω2y ŷ
2)+V (eλρ̂ −1)

representing a harmonic oscillator with mass m and frequencies ωx, ωy, plus a per-

turbation

δ Ĥ =V (eλρ̂ −1)
where V is a constant, λ � 1 a perturbation parameter, and ρ̂ = âxây+ â†y â

†
x . In our

notation, â†s and âs (s = x,y) are the creation and annihilation operators for the one
dimensional oscillator

Ĥs =
p̂2s
2m

+
1

2
mω2s ŝ

2 = h̄ω
(
â†s âs+

1

2
11

)
.

Using perturbation theory in λ and ignoring effects higher than O(λ 2), determine
the correction to the energy of the ground state of the harmonic oscillator. Then,

determine the value of V for which such effect is zero.

Solution
If we expand the perturbation in Taylor series up to O(λ 2), we get

δ Ĥ =V (eλρ̂ −1) =V
(
λρ̂+

λ 2ρ̂2

2
+ ....

)

When applying perturbation theory, we have to consider the effects of the first term

(λρ̂) up to the second order in perturbation theory. Consistently, the effects of the
second term (

λ 2ρ̂2
2 ) are considered up to the first order in perturbation theory. The

unperturbed Hamiltonian represents two independent quantum harmonic oscillators,

that implies we have stationary states of type |nx,ny〉 = |nx〉|ny〉 (nx,y = 0,1,2, ...)
with energy

Enx,ny = h̄ωx

(
nx+

1

2

)
+ h̄ωy

(
ny+

1

2

)
.

It follows that the ground state corresponds to nx = ny = 0. Let us then evaluate the
effect of the perturbation term λρ̂ on this state. The first order correction is zero
because

ΔE(1)
λρ̂ = 〈0,0|λV ρ̂|0,0〉= λV 〈0,0|âxây+ â†y â

†
x |0,0〉= λV 〈0,0|1,1〉= 0
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where we have used the orthogonality of states (〈0|1〉= 0) and the properties of the
creation and annihilation operators

â†s |0〉= |1〉 âs |0〉= 0 s= x,y.

A non zero effect is obtained at the second order in perturbation theory

ΔE(2)
λ ρ̂ =

|〈0,0|λV ρ̂|1,1〉|2
E0,0−E1,1

=− λ 2V 2

h̄(ωx+ωy)
.

Concerning the term
λ 2ρ̂2
2 , as explained before, we only need to consider its effect

up to first order in perturbation theory. When evaluating ρ̂2, we get

ρ̂2 = âxâyâxây+ âxâyâ†y â
†
x + â†y â

†
x âxây+ â†y â

†
x â
†
y â
†
x

and we see that, when averaged on the ground state, the only term producing a non

zero result is âxâyâ†y â
†
x . Therefore, the first order perturbative correction is

ΔE(1)
λ2 ρ̂2
2

=
λ 2V
2

〈0,0|âxâyâ†y â†x |0,0〉=
λ 2V
2

.

Summing all the contributions, we get

ΔEtot = ΔE(2)
λρ̂ +ΔE(1)

λ2 ρ̂2
2

=− λ 2V 2

h̄(ωx+ωy)
+

λ 2V
2

.

We see that the effect is zero when ΔEtot = 0, that implies V =
h̄(ωx+ωy)

2 .

Problem 5.13.
A one dimensional quantum harmonic oscillator with charge q (consider h̄ = m =
ω = 1) is in the ground state ψ0(x). At some point, a uniform electric field directed
along the positive x direction is switched on. Determine the probability that the
oscillator is found in the excited states of the new Hamiltonian.

Solution
When there is no electric field, the wave function for the ground state of the har-

monic oscillator is

ψ0(x) =
1

π
1
4

e−
1
2 x
2
.

As discussed in Problem 2.33, the eigenstates of the one dimensional harmonic

oscillator with charge q under the effect of the uniform electric field Ex, are written

as

ψn(y) =
1√

2nn!
√
π
e−

1
2 y
2
Hn(y) =

(−1)n√
2nn!

√
π
e
1
2 y
2 dne−y2

dyn

where y= x−qEx = x−2A is a shifted coordinate (A= qEx/2). When prepared in
the state ψ0(x), the probability that the harmonic oscillator is in one of the excited



Problems 179

states ψn(y), is given by the square of the projection coefficient of ψn(y) on ψ0(x).
For the projection coefficient, we can integrate by parts n times to get

cn =
∫ +∞

−∞
ψ0(x)ψn(y)dx=

(−1)n√
2nn!

√
π
e−2A

2
∫ +∞

−∞
e−2Ax

dne−x2+4Ax

dxn
dx=

(−1)ne−2A2√
2nn!

√
π

{[(
dne−x2+4Ax

dxn

)
e−2xA−

(
dn−1e−x2+4Ax

dxn−1

)
de−2xA

dx
+ · · ·

]∣∣∣∣
+∞

−∞
+

(−1)n
∫ +∞

−∞

(
dne−2xA

dnx

)
e−x2+4Axdx

}
=

(−1)n2nAne−2A2√
2nn!

√
π

∫ +∞

−∞
e−x2+2Axdx.

Using the integral
∫ +∞
−∞ e−x2+2Axdx=

√
πeA2 we get

cn = e−A2 (−1)n√
n!

(√
2A
)n

.

The desired probability is

P0,n = |cn|2 = 1

n!

(
2A2
)ne−2A2 = 1

n!
λ ne−λ

that is a Poisson distribution with mean value λ = 2A2.

Problem 5.14.
A one dimensional harmonic oscillator with charge q, mass M, and frequency ω is

subject to a uniform electric field

E(t) =
A√
πτ

e−(
t
τ )
2

with A, τ constants. From the point of view of Classical Mechanics, determine the
momentum transferred from the perturbation to the oscillator from time t = −∞ to
time t =+∞.
Then, suppose to treat the system as a quantummechanical one. If at time t =−∞

the oscillator is in the fundamental state, determine the transition probability that it

will be in the first excited state at t =+∞.

Solution
The Hamiltonian of the system is

Ĥ =
p̂2

2M
+

Mω2x̂2

2
− Aqx̂√

πτ
e−( t

τ )
2
.

Using the derivative of the potential V (x, t) =−qE(t)x with respect to x and chang-
ing its sign, we can determine the force acting on the oscillator. The integral of

such a force gives the classical momentum transferred from the electric field to the
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harmonic oscillator

P=
∫ +∞

−∞
F(t)dt =

∫ +∞

−∞
qE(t)dt =

qA√
πτ

∫ +∞

−∞
e−( t

τ )
2
dt = qA.

As for the transition probability between a generic initial state |n〉 and a final state
|m〉, it is

wm,n =
1

h̄2

∣∣∣∣
∫ +∞

−∞
Vmn(t)ei

(Em−En)
h̄ tdt

∣∣∣∣
2

where En,Em represent the eigenvalues of the states |n〉, |m〉 andVmn(t) is the matrix
element of the potential V (t) evaluated on the unperturbed states

Vmn(t) =−
∫ +∞

−∞
ψ∗

m(x)qE(t)xψn(x)dx=−qE(t)〈m|x̂|n〉.

We specialize these formulae to our case, using (E1−E0)/h̄= ω , and determining
the matrix element making use of the creation and annihilation operators

〈1|x̂|0〉=
√

h̄
2Mω

〈1|(â+ â†)|0〉=
√

h̄
2Mω

.

The desired transition probability is

w1,0 =
q2A2

2πMω h̄

∣∣∣∣
∫ +∞

−∞
e−( t

τ )
2+iωt dt

τ

∣∣∣∣
2

=
P2

2Mω h̄
e−

ω2τ2
2 .

Depending on the value of τ , representing the characteristic time of the perturbation,
we have different physical scenarios. If τ � 1/ω , the characteristic time of the
perturbation is much larger than the oscillation time, and the oscillator perceives a

slowly varying perturbation. This is the adiabatic case: the transition probability is

small and, in the limit of an infinitely slow perturbation, it tends to zero (the system

is then found in a stationary state). If τ � 1/ω we are in the opposite case: the

perturbation is fast, its derivative with respect to time is very large, and the result is

w1,0 =
P2

2Mω h̄

that is the ratio between the classical energy and the quantum mechanical one. For

the perturbation theory to be valid, this probability must be much smaller than 1, the

latter being the probability to remain in the original ground state.

Problem 5.15.
Let us consider a hydrogen-like atom in the ground state with nuclear charge equal

to Ze (e is the absolute value of the electron charge). Determine the average values
of the kinetic and potential energies. Using the first order corrections coming from

perturbation theory, determine the energy variation when the nuclear charge changes
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from Ze to (Z+1)e. Finally, compare the result of perturbation theory with the exact
result. To simplify matters, you can make use of atomic units.

Solution
The ground state for an atom with nuclear charge Ze has quantum numbers n = 1

(principal quantum number) and l = 0, m = 0 (angular momentum quantum num-

bers). If we use atomic units we get

ψ1,0,0(r,θ ,φ) = R1,0(r)Y0,0(θ ,φ) = 2Z
3
2 e−Zr 1√

4π
.

To obtain dimensional quantities, we have to multiply by the Bohr radius, a =
h̄2/(mee2) = 0,529× 10−8 cm, where me is the mass of the electron. The atomic

unit of energy is Eatomic = e2/a = mee4

h̄2
= 4,46× 10−11erg = 27,21 electronvolt

(eV). To go to atomic units we set e=me = h̄= 1. Let us then verify the normaliza-
tion of the wave function∫

|ψ1,0,0|2d3r = 4Z3
∫ +∞

0
e−2Zrr2dr =

1

2
lim
β→1

d2

dβ 2

∫ +∞

0
e−rβdr = 1.

The radial probability distribution function between r = 0 and r = +∞ is given by
P(r) = 4Z3r2e−2Zr. Due to the normalization of the wave function, P(r) is correctly
normalized to unity when we integrate between r=0 and r=+∞, i.e.

∫ +∞
0 P(r)dr =

1. The potential energy is U(r) = −Z/r and its expectation value on the ground
state is

〈Û〉=4Z3
∫ +∞

0
e−2Zr

(
−Z

r

)
r2dr =−4Z4

∫ +∞

0
e−2Zrr dr =

Z2 lim
β→1

d
dβ

∫ +∞

0
e−rβdr = Z2 lim

β→1

(
− 1

β 2

)∫ +∞

0
e−rdr =−Z2.

The kinetic energy operator is

T̂ =−1
2
∇2 =−1

2

(
1

r2
∂
∂ r

(
r2

∂
∂ r

)
− L̂2

h̄2r2

)

where the last term includes the square of the orbital angular momentum opera-

tor, whose eigenfunctions are the spherical harmonics Yl,m(θ ,φ) with eigenvalues
h̄2l(l+1). In our case l = 0, and the term L̂2

h̄2r2
is not present. The average value of

the kinetic energy is therefore

〈T̂ 〉=4Z3
∫ +∞

0
e−Zrr2

(
−1
2

1

r2
d
dr

(
r2

d
dr

))
e−Zrdr =

2Z3
∫ +∞

0
e−2Zr(2Zr−Z2r2)dr = Z2

∫ +∞

0
re−rdr− Z2

4

∫ +∞

0
e−rr2dr =

Z2− Z2

4
lim
β→1

d2

dβ 2

∫ +∞

0
e−β rdr =

Z2

2
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that is a positive value, as it should be. To verify these calculations, we can set

Z = 1, and see if we recover the result for the ground state (n = 1, l = 0,m = 0) of
the hydrogen atom whose energy is E1(Z = 1) = −1/2. Summing the kinetic and
potential contributions, we get

〈Ĥ〉= 〈T̂ 〉+ 〈Û〉= E1 =−1/2

that is the correct result.

When the nuclear charge changes from Z to Z+1, the associated potential may
be seen as the original potential with charge Z plus a perturbationU ′, defined by

U ′ =Ufinal −Uinitial =− (Z+1)

r
+

Z
r
=−1

r
.

Using first order perturbation theory, we know that the correction to the energy of

the ground state is

ΔE(1)(Z) = 〈Û ′〉=−Z

that is the same integral done before with −1/r instead of −Z/r. At the same time,
we also know the exact result for the ground state

ΔE(Z) = Ef inal −Einitial =− (Z+1)2

2
+

Z2

2
=−Z− 1

2
.

We observe that for large Z the perturbative calculation agrees very well with the
exact result.

Problem 5.16.
A Hydrogen atom is placed in an external electric field given by the following po-

tential

V (r,θ , t) =− 1
π
Bτr cosθ
t2+ τ2

where B, τ are constants, and θ ,r are the inclination angle and the radial distance in
spherical polar coordinates respectively. If at time t =−∞ the atom is in the ground
state, determine the probability that it will be in the state 2p at t =+∞. To simplify
matters, you can make use of atomic units.

Solution
We directly apply the formula for the transition probability

Pm,0 =

∣∣∣∣
∫ +∞

−∞
〈2,1,m|V̂ |1,0,0〉eiωtdt

∣∣∣∣
2

=

∣∣∣∣〈2,1,m|r̂ cos θ̂ |0,0,0〉
∫ +∞

−∞
Bτ
π

eiωt

t2+ τ2
dt
∣∣∣∣
2

.

In fact, the quantum numbers of the state 2p are n = 2, l = 1, m = 0,±1. The dif-
ference between the two energies (in atomic units the energy is En = −1/(2n2))
is: ω = E2−E1 =−1/8− (−1/2) = 3/8. We now calculate 〈2,1,m|r̂ cos θ̂ |1,0,0〉.
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First of all, we note that the state with l = 1 is triple degenerate

ψ2,1,1(r,θ ,φ) = R2,1(r)Y1,1(θ ,φ) =
1

8
√
π
re−

r
2 eiφ sinθ

ψ2,1,0(r,θ ,φ) = R2,1(r)Y1,0(θ ,φ) =
1

4
√
2π

re−
r
2 cosθ

ψ2,1,−1(r,θ ,φ) = R2,1(r)Y1,−1(θ ,φ) =
1

8
√
π
re−

r
2 e−iφ sinθ .

The wave function for the ground state has not an angular dependence, due to the

fact that the spherical harmonic for l = 0 is constant

ψ1,0,0(r) =
1√
π
e−r.

The matrix element 〈2,1,m|r̂ cos θ̂ |1,0,0〉 is zero if we use ψ2,1,±1, i.e. the states
with the z component of the angular momentum equal to ±1, because V and ψ1,0,0
do not depend on φ and the integral of e±iφ over a period is zero. The matrix element
with the state whose z component of the angular momentum is zero gives

〈2,1,0|r̂ cos θ̂ |1,0,0〉= 1

2
√
2

∫ +∞

0
r4e−

3r
2 dr

∫ +1

−1
cos2 θ d(cosθ) =

1

3
√
2

∫ +∞

0
r4e−

3r
2 dr =

(
2

3

)5
1

3
√
2
lim
β→1

d4

dβ 4

∫ +∞

0
e−rβdr =

27
√
2

35
.

Substituting this result back in the formula for the transition probability, we obtain

P1,0=
B2τ2

π2
215

310

∣∣∣∣
∫ +∞

−∞
eiωt

(t+iτ)(t− iτ)
dt
∣∣∣∣
2

=
B2τ2

π2
215

310

∣∣∣∣2iπ limt→iτ

eiωt

(t+iτ)

∣∣∣∣
2

=
B2215

310
e−

3
4 τ

where we have used the method of residuals, choosing a contour surrounding the

region Ω of the complex plane where ℑ(Ω)> 0 .

Problem 5.17.
For a given energy ε , the WKB method leads to the following expression for the
transmission coefficient through a potential barrier V (x)

T ≈ e−
2
h̄
∫ x2
x1

√
2m(V (x)−ε)dx

where x1,x2 satisfy the condition V (x1) =V (x2) = ε . Using the WKB method, give
an estimate of the transmission coefficient for an electron with charge e and mass m
through the potential barrier of Fig. 5.1: the one dimensional potential is V (x) = 0
for x < 0 and V (x) = V0− eExx for x ≥ 0, where Ex is a constant field and V0 the
potential energy barrier in x = 0. You can assume that the energy is ε < V0 (see
Fig. 5.1).
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Fig. 5.1 An electron with constant energy ε and charge e has a non zero probability to pass through
the one dimensional potential barrier that is V (x) = 0 for x < 0 and V (x) = V0− eExx for x ≥ 0,
where Ex is a constant field and V0 the potential energy barrier in x = 0. In Problem 5.17 we
determine the transmission coefficient through this potential energy barrier using the WKBmethod

Solution
The transmission coefficient can be computed using the same ideas of Problems

2.22, 2.23, 2.31, plus the WKB approximation when determining the wave function.

The result for the transmission coefficient for the penetration through the potential

barrier is the one given in the text

T ≈ e−
2
h̄
∫ x2
x1

√
2m(V (x)−ε)dx.

The points x1,x2 are found from the condition V (x1) = V (x2) = ε , yielding x1 =
0,x2 =

V0−ε
eEx

. Therefore, we can compute the integral in the exponential function of

the previous formula

∫ V0−ε
eEx

0

√
2m(V0− ε− eExx)dx=

√
2meEx

∫ V0−ε
eEx

0

√(
V0− ε
eEx

− x
)
dx=

2

3

√
2meEx

(
V0− ε
eEx

) 3
2

.

The resulting transmission coefficient is

T ≈ e−
4
3

√
2m

eExh̄
(V0−ε)

3
2
.

Problem 5.18.
Using the Bohr-Sommerfeld quantization rule, determine the energy levels of a one

dimensional harmonic oscillator with unitary frequency and mass m. Comment on
the final result.
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Solution
The Bohr-Sommerfeld quantization rule is given by

∮ √
2m(En−V )dx= 2

∫ x2

x1

√
2m
(
En− 1

2
mx2
)
dx=

(
n+

1

2

)
2π h̄

where x1,x2 are the turning points of the classical motion and where, in the second
integral, we have used the harmonic potential V (x) = 1

2mx2. To solve the integral,
we use ∫ √

a+ cx2dx=
x
2

√
a+ cx2+

a
2

∫
1√

a+ cx2
dx

and get

∫ x2

x1

√
2m
(
En− 1

2
mx2
)
dx=

1

2
En

⎛
⎝2m∫ x2

x1

1√
2m
(
En− 1

2mx2
)dx
⎞
⎠=

1

2
EnT = Enπ.

This is true because the first term in the integration formula is zero, since at the turn-

ing points we have En =V (x1) =V (x2). Moreover, T = 2π/ω = 2π is the relation
between the period of motion and the (unitary) frequency, with T defined as the time
needed to go from x1 to x2 and come back

2m
∫ x2

x1

1√
2m
(
En− 1

2mx2
)dx= 2m

∫ x2

x1

1

p
dx= 2

∫ x2

x1

1

v
dx= 2

∫ x2

x1
dt = T

where p=mv=
√
2m(En−V )with p,v the momentum and velocity of the particle.

The final result is therefore

En =

(
n+

1

2

)
h̄.

We note that such semi-classical result is the exact result for the quantum harmonic

oscillator. All higher other corrections in the WKB approximation are indeed zero

in this case.

Problem 5.19.
Using the Bohr-Sommerfeld quantization rule, determine the energy spectrum for

a free particle with mass m in a one dimensional infinite potential well of width a.
Compare with the exact result (see Problem 2.10).

Solution
We start by considering the potential well localized in the region 0 ≤ x ≤ a. The
momentum is conserved and its absolute value is equal to pn. Due to the reflection
from the wall (say the wall in x = a), momentum undergoes a change from pn to
−pn. The Bohr-Sommerfeld quantization rule yields

∮
pndx= pn

∫ a

0
dx− pn

∫ 0

a
dx= 2pn

∫ a

0
dx=

(
n+

1

2

)
h
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so that

pn =
h
2a

(
n+

1

2

)
n= 0,1,2, ...

The associated energy is therefore

En =
p2n
2m

=
h2

8ma2

(
n+

1

2

)2
.

The energy spectrum for a particle in a one dimensional infinite potential well can

be calculated exactly (see Problem 2.10)

En =
p2n
2m

=
h2

8ma2
n2.

Aswe see, opposite to the result in Problem 5.18, the Bohr-Sommerfeld quantization

rule does not provide an exact result but just an approximate one.

Problem 5.20.
The potentialU(x) is characterized by two symmetrical wells separated by a barrier
(see Fig. 5.2). With an impenetrable barrier, the energy levels correspond to the case

of a single particle in one well (region I or region II). The ground state of such case
has energy E0, and a passage through the potential barrier results in a splitting of
the ground state into two energy levels. Using the WKB method, give an estimate

of such effect.

Solution
The subject of this problem is the quantum tunnelling, i.e. the quantum mechani-

cal phenomenon for which a particle passes through a potential energy barrier that

Fig. 5.2 A potential barrier with two symmetric wells. Due to the tunneling effect through the
potential barrier, the ground state of the single particle motion in one well receives a correction.
Problems 5.20 and 5.21 characterize this quantum mechanical effect
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classically could not overcome, because its total kinetic energy is lower than the

potential energy of the barrier itself (see Fig. 5.2, where the energy E0 is lower
thanU(x) in the origin). In Quantum Mechanics it exists a finite probability to pass
through such barrier which goes to zero as the barrier gets higher. Here we want

to characterize such probability using the WKB method. Neglecting the tunneling

through the barrier, we can solve the Schrödinger equation describing the motion of

the particle in one well (say in the region I of Fig. 5.2)

Ĥψ0(x) = E0ψ0(x).

The wave function ψ0(x) is such that its square modulus is normalized to 1 when
integrated between 0 and+∞, i.e.ψ0(x) solves the one dimensional problem with an
infinite potential barrier in x = 0. When the probability of tunneling is considered,
the particle can go through the barrier and enter into the region II, where its wave
function is described by ψ0(−x). The correct zeroth order approximation for the
wave function, taking into account the tunneling effect, is given by the symmetric

and antisymmetric combinations of ψ0(x) and ψ0(−x)⎧⎨
⎩ψ1(x) = 1√

2
[ψ0(x)+ψ0(−x)]

ψ2(x) = 1√
2
[ψ0(x)−ψ0(−x)].

Being the potential U(x) symmetric, the wave functions have a well defined parity
when x → −x. Since the probability of the tunneling is small, the variation in the
energy levels is small as well. Moreover, in the region I we have ψ0(x)� ψ0(−x),
while in the region II we have the opposite, ψ0(−x)� ψ0(x). From these consid-
erations, it follows that the product ψ0(x)ψ0(−x) is a vanishingly small quantity
in both regions and the symmetric/antisymmetric combinations shown above are

correctly normalized

∫ +∞

−∞
|ψ1(x)|2dx≈ 1

2

[∫ +∞

0
|ψ0(x)|2dx+

∫ 0

−∞
|ψ0(−x)|2dx

]
= 1

∫ +∞

−∞
|ψ2(x)|2dx≈ 1

2

[∫ +∞

0
|ψ0(x)|2dx+

∫ 0

−∞
|ψ0(−x)|2dx

]
= 1.

Let us now consider the region I and write the corresponding Schrödinger equation
for ψ0 and ψ1 ⎧⎨

⎩
d2ψ0
dx2 + 2m

h̄2
(E0−U)ψ0 = 0

d2ψ1
dx2 + 2m

h̄2
(E1−U)ψ1 = 0.
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If we are interested in deriving a formula for the difference E1−E0, we can multiply
the first equation by ψ1, the second by ψ0, and subtract the two expressions

−ψ1
d2ψ0
dx2

+ψ0
d2ψ1
dx2

+
2m
h̄2

(E1−E0)ψ1ψ0 = 0.

Integrating between 0 and +∞, we find

(E1−E0)
2m
h̄2

∫ +∞

0
ψ1(x)ψ0(x)dx=

∫ +∞

0

(
ψ1

d2ψ0
dx2

−ψ0
d2ψ1
dx2

)
dx=

(
ψ1

dψ0
dx

−ψ0
dψ1
dx

)∣∣∣∣
+∞

0

.

In the region I, ψ0(−x) is vanishingly small, and we can further simplify

∫ +∞

0
ψ1(x)ψ0(x)dx=

∫ +∞

0

1√
2
[ψ0(x)+ψ0(−x)]ψ0(x)dx≈

1√
2

∫ +∞

0
|ψ0(x)|2dx= 1√

2
.

Moreover, ψ0(±∞) = 0 because ψ0 represents a bound state. From the definition of
ψ1 it follows that

ψ1(0) =
√
2ψ0(0)

dψ1(0)
dx

= lim
x→0

1√
2

[
dψ0(x)

dx
− dψ0(−x)

d(−x)

]
= 0.

Therefore, we obtain

E0−E1 =
h̄2

m
ψ0(0)

dψ0(x)
dx

∣∣∣∣
x=0

.

For E2−E0 we find a similar expression with the sign changed

E2−E0 =
h̄2

m
ψ0(0)

dψ0(x)
dx

∣∣∣∣
x=0

.

The explicit form of ψ0(0) and its derivative is obtained with the WKBmethod. The
point x = 0 is in the forbidden classical region, because U(0) > E0. For a generic
point x in this region, the wave function is

ψ0(x) =
√

ω
2πv(x)

e−
1
h̄
∫ x1
x |p(y)|dy

with
p(y) =

√
2m(E0−U(y)).
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Its derivative is

dψ0(x)
dx

=

{
−1
2

√
ω

2πv3(x)
dv(x)
dx

+

√
ω

2πv(x)

[
d
dx

(
−1

h̄

∫ x1

x
|p(y)|dy

)]}
F(x,x1) =(

−1
2

√
ω

2πv3(x)
dv(x)
dx

+

√
ω

2πv(x)
|p(x)|

h̄

)
F(x,x1)

where F(x,x1) = e−
1
h̄
∫ x1
x |p(y)|dy. In these formulae, v(x) = |p(x)|/m and ω is the

angular frequency of the classical period of motion, satisfying

T =
2π
ω

= 2m
∫ x2

x1

dx√
2m(E0−U(x))

where x1, x2 are the turning points of the classical motion deduced from U(x1) =
U(x2) = E0. If we specialize to the case where x= 0 is a maximum of the potential,
we find dv(x)

dx

∣∣∣∣
x=0

= 0

and, plugging all this in the formula for the energy, we get

E2−E1 =
ω h̄
π

e−
2
h̄
∫ x1
0 |p(y)|dy =

ω h̄
π

e−
1
h̄
∫+x1−x1

|p(y)|dy

giving the energy difference of the splitting in terms of the integral of the modulus

of the momentum |p(y)| in the classically forbidden region. In Problem 5.21 we will
apply this formula to a biquadratic potential.

Problem 5.21.
Specialize the formulae obtained in Problem 5.20 to the ground state of the potential

U(x) = g2
(x2−a2)2

8
.

In the above expression, g and a are constants. To determine the turning points (i.e.
the points x1 and x2 in Fig. 5.2) and the angular frequency for the classical mo-
tion, you can approximate the potential with a quadratic form around its minimum.

Moreover, you can treat h̄ as a small parameter.

Solution
The potential U(x) is very similar to the one shown in Fig. 5.2 with two minima
located at (±a,0) and a maximum in (0,g2a4/8). When we increase the parame-
ter g, the height of potential barrier increases and the two wells become separated
when g → +∞. It is easy to see that, around the two minima, the potential U(x) is
well approximated by a quadratic harmonic potential. To show that, let us take the

minimum located at x = a and set y = x−a. In the limit y → 0, we can rewrite the

potential as

U(x) =
g2

8
(x2−a2)2 =

g2

8
(x+a)2(x−a)2 =

g2

8
(y+2a)2y2 ≈ 1

2
g2a2y2 =

1

2
mω2y2
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from which we see that the angular frequency is such that ga =
√
mω . The energy

of the ground state is E0 = h̄ω/2 and the turning points of the classical motion are
given by the condition E0 =U(x). For the region I (see Fig. 5.2), we get

1

2
mω2(x−a)2 = E0 =

1

2
h̄ω

yielding xI1,2 = a±√h̄/(mω). The turning points in the region II are determined
in a similar way, with the result xII1,2 = −a±√h̄/(mω). Therefore, the tunneling

phenomenon takes place between the points −a+
√

h̄/(mω) and a−√h̄/(mω).
As discussed in the last formula of Problem 5.20, the energy splitting is

E2−E1 =
ω h̄
π

e−
2
h̄ I(x1)

where

I(x1) =
∫ +x1

0
|p(y)|dy=

∫ a−
√

h̄
mω

0

√
2m(U(y)−E0)dy.

Treating h̄ as a small parameter, the integral I(x1) can be computed as follows

I(x1) =
∫ a−

√
h̄

mω

0

√
2m
(
g2

8
(y2−a2)2− 1

2
h̄ω
)
dy=

∫ a−
√

h̄
mω

0

mω(a2− y2)
2a

√
1− 4a2h̄

mω(a2− y2)2
dy≈

∫ a−
√

h̄
mω

0

mω(a2− y2)
2a

dy−
∫ a−

√
h̄

mω

0

ah̄
(a2− y2)

dy=

∫ a−
√

h̄
mω

0

(
mωa
2

− mωy2

2a
− h̄
2(a− y)

− h̄
2(a+ y)

)
dy=

mωa2

3
− 1

2
h̄+

1

2
h̄ ln

√
h̄

mωa2
− 1

2
h̄ ln
(
2−
√

h̄
mωa2

)
+O(h̄

3
2 ) =

mωa2

3
− 1

2
h̄+

h̄
2
ln

√
h̄

4mωa2
+O(h̄

3
2 ).

Plugging this result back in the formula for the energy splitting, we get

E2−E1 =
ω h̄
π

e−
2
h̄ I(x1) ≈ gah̄√

mπ

√
4mωa2

h̄
e−

2mωa2
3h̄ = 2

√
g3a5h̄
m

e−
2mωa2
3h̄ .
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Statistical Mechanics – Problems



6

Thermodynamics
and Microcanonical Ensemble

Problem 6.1.
We know that the free energy F(T,V,N) of a thermodynamic system is extensive.

Show that

N
(
∂F
∂N

)
T,V

+V
(
∂F
∂V

)
T,N

= N f = F

with f the free energy density expressed in suitable variables. Given this result, from
the differential properties of F(T,V,N), show that

Φ = Nμ

with Φ the Gibbs potential defined as Φ = F +PV . In the above expression, μ is
the chemical potential properly defined in terms of F(T,V,N).

Solution
The fact that the free energy is an extensive thermodynamic potential means that

F(T,V,N) = N f (T,v)

where v=V/N is the specific volume and f (T,v) the free energy density, which is
a function of the specific volume v and the temperature T . From the derivatives of
F we know that

N
(
∂F
∂N

)
T,V

=N
(
f (T,v)+N

(
∂ f
∂v

)
T

(
∂v
∂N

)
V

)
=N

(
f (T,v)−N

(
∂ f
∂v

)
T

V
N2

)

where we have considered that f (T,v) depends on N because v=V/N. By the same
token, we can write

V
(
∂F
∂V

)
T,N

=VN
(
∂ f
∂v

)
T

(
∂v
∂V

)
N
=V

(
∂ f
∂v

)
T
.

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 6, c© Springer-Verlag Italia 2012
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Summing up the previous two equations, we obtain

N
(
∂F
∂N

)
T,V

+V
(
∂F
∂V

)
T,N

= N f = F

that is the desired result. From the differential properties of F , we also know that

dF =−SdT −PdV +μdN

that implies

P=−
(
∂F
∂V

)
T,N

μ =

(
∂F
∂N

)
T,V

which can be used in the previous identity to find

N
(
∂F
∂N

)
T,V

= Nμ = F+PV.

This answers the second question because Φ = F+PV .

Problem 6.2.
A thermodynamic system has an internal energy E, a pressure P, a volume V , a
chemical potential μ , and a number of particles N. Assume that the entropy of such
system is extensive and prove the relation

S= N
(
∂S
∂N

)
E,V

+V
(
∂S
∂V

)
E,N

+E
(
∂S
∂E

)
V,N

.

Using such result and the first law of thermodynamics, prove the Gibbs-Duhem

equation

Ndμ =−SdT +VdP.

Solution
Due to the extensive nature of the entropy function, we can rewrite it as

S(E,V,N) = Ns(e,v)

where v = V
N and e = E

N are the specific volume and specific energy respectively.

Therefore, the function s represents the entropy density. Given the above functional
relation, we can evaluate some derivatives of interest

V
(
∂S
∂V

)
E,N

=V
(
∂ s
∂v

)
e

E
(
∂S
∂E

)
V,N

= E
(
∂ s
∂e

)
v

N
(
∂S
∂N

)
E,V

= Ns(e,v)−V
(
∂ s
∂v

)
e
−E
(
∂ s
∂e

)
v
.
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If we sum up the previous three relations, we obtain

S= N
(
∂S
∂N

)
E,V

+V
(
∂S
∂V

)
E,N

+E
(
∂S
∂E

)
V,N

that is the desired result. We can now eliminate the derivatives using the first law of

thermodynamics(
∂S
∂V

)
E,N

=
P
T

(
∂S
∂E

)
V,N

=
1

T

(
∂S
∂N

)
E,V

=−μ
T

and obtain

S=−μN
T

+
PV
T

+
E
T
.

If we multiply by the temperature T and differentiate both sides, we get

d(TS) = TdS+SdT =−d(μN)+d(PV )+dE.

Again, we can use the first law of thermodynamics in its differential form, TdS =
dE+PdV −μdN, to further simplify as

Ndμ =−SdT +VdP

that is the final result.

Problem 6.3.
Prove the following Maxwell relations(

∂S
∂V

)
T
=

(
∂P
∂T

)
V

(
∂T
∂P

)
S
=

(
∂V
∂S

)
P

(
∂S
∂P

)
T
=−

(
∂V
∂T

)
P

valid for a thermodynamic system with a constant number of particles. To solve this

problem, use the first law of thermodynamics dE = TdS−PdV .

Solution
Following the hint given by the text, we can obtain(

∂E
∂S

)
V
= T

(
∂E
∂V

)
S
=−P

that implies(
∂
∂V

(
∂E
∂S

)
V

)
S
=

(
∂T
∂V

)
S

(
∂
∂S

(
∂E
∂V

)
S

)
V
=−

(
∂P
∂S

)
V

from which we find (using Schwartz lemma for mixed partial derivatives) the fol-

lowing identity (
∂T
∂V

)
S
=−

(
∂P
∂S

)
V
.
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We can then use the definition of the Jacobian for the variables (x,y) and (r,s)

J(x,y) =
∂ (x,y)
∂ (r,s)

=

(
∂x
∂ r

)
s

(
∂y
∂ s

)
r
−
(
∂x
∂ s

)
r

(
∂y
∂ r

)
s

to rewrite the previous relation as

∂ (T,S)
∂ (V,S)

=
∂ (P,V )

∂ (V,S)
.

Obviously, the relation between the variables (T,S) and (P,V ) can be expressed
also in terms of other variables (r,s), not necessarily equal to (V,S). To do that, it is
sufficient to multiply such relation by

∂ (V,S)
∂ (r,s)

∂ (T,S)
∂ (r,s)

=
∂ (P,V )

∂ (r,s)

where r and s have to be chosen properly. By choosing these variables as (V,T ),(P,S)
and (P,T ) respectively, we can prove the desired relations(

∂S
∂V

)
T
=

∂ (S,T )
∂ (V,T )

=− ∂ (T,S)
∂ (V,T )

=− ∂ (P,V )

∂ (V,T )
=

∂ (P,V )

∂ (T,V )
=

(
∂P
∂T

)
V(

∂T
∂P

)
S
=

∂ (T,S)
∂ (P,S)

=
∂ (P,V )

∂ (P,S)
=

(
∂V
∂S

)
P(

∂S
∂P

)
T
=

∂ (S,T )
∂ (P,T )

=−∂ (T,S)
∂ (P,T )

=−∂ (P,V )

∂ (P,T )
=−

(
∂V
∂T

)
P
.

Problem 6.4.
Consider a statistical system with a constant number of particles. Using the various

thermodynamic potentials, express the specific heat at constant volume CV , and the

one at constant pressure CP, in terms of the thermal expansion coefficient α , the
isothermal compressibility κT , and the adiabatic compressibility κS, given by

α =
1

V

(
∂V
∂T

)
P

κT =− 1
V

(
∂V
∂P

)
T

κS =− 1
V

(
∂V
∂P

)
S
.

Solution
From the definition ofCV we can write

CV = T
(
∂S
∂T

)
V
= T

∂ (S,V )

∂ (T,V )
= T

∂ (S,V )

∂ (T,P)
∂ (T,P)
∂ (T,V )

=

T

(
∂S
∂T

)
P

(
∂V
∂P

)
T
−
(

∂S
∂P

)
T

(
∂V
∂T

)
P(

∂V
∂P

)
T
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where we can use the definition of the specific heat at constant pressure CP =

T
(

∂S
∂T

)
P
and get

CV =CP−T

(
∂S
∂P

)
T

(
∂V
∂T

)
P(

∂V
∂P

)
T

.

The infinitesimal variation of the Gibbs potential Φ gives

dΦ =−SdT +VdP

that implies (
∂Φ
∂T

)
P
=−S

(
∂Φ
∂P

)
T
=V

and also(
∂
∂P

(
∂Φ
∂T

)
P

)
T
=−

(
∂S
∂P

)
T

(
∂
∂T

(
∂Φ
∂P

)
T

)
P
=

(
∂V
∂T

)
P
.

The use of Schwartz lemma for mixed partial derivatives leads to(
∂S
∂P

)
T
=−

(
∂V
∂T

)
P

which is a Maxwell relation that we can plug in the equation obtained previously

CV =CP+T

(
∂V
∂T

)2
P(

∂V
∂P

)
T

=CP−TV
α2

κT
.

We now need another equation relating CV and CP. To this end, we make use of the

adiabatic compressibility κS, and write it in terms of the Jacobians

−κSV =

(
∂V
∂P

)
S
=

∂ (V,S)
∂ (V,T )

∂ (P,T )
∂ (P,S)

∂ (V,T )
∂ (P,T )

=

(
∂S
∂T

)
V(

∂S
∂T

)
P

(
∂V
∂P

)
T

that implies
κS

κT
=

CV

CP
.

This is the second equation we were looking for. We can now solve the coupled

equations ⎧⎨
⎩CV −CP =−TV α2

κT
CV
CP

= κS
κT

with the final result

CP =
TVα2

κT −κS
CV =

κS

κT

TVα2

κT −κS
.
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Problem 6.5.
Using the various thermodynamic potentials for a gas with a fixed number of parti-

cles, prove the following identities

(
∂T
∂P

)
H
=

T 2

CP

[
∂ (V/T )
∂T

]
P(

∂E
∂V

)
T
= T 2

[
∂ (P/T )
∂T

]
V(

∂E
∂S

)
T
=−P2

[
∂ (T/P)
∂P

]
V
.

Moreover, prove that the first of these identities is exactly zero for a classical ideal

gas. For the first identity, make use of a relation between H, T and P of the type
f (H,T,P) = 0, with f unknown. For the second and third identity, use the first law
of thermodynamics. Also, make use of Maxwell relations.

Solution
Following the hint given by the text, we start from a general relation between H, T
and P in the form

f (H,T,P) = 0

with f unknown. Differentiating both sides we find

d f = 0=
(
∂ f
∂H

)
T,P

dH+

(
∂ f
∂T

)
H,P

dT +

(
∂ f
∂P

)
H,T

dP

that implies (
∂H
∂T

)
P
=−

(
∂ f
∂T

)
H,P

/

(
∂ f
∂H

)
T,P(

∂H
∂P

)
T
=−

(
∂ f
∂P

)
H,T

/

(
∂ f
∂H

)
T,P(

∂T
∂P

)
H
=−

(
∂ f
∂P

)
H,T

/

(
∂ f
∂T

)
H,P

which may be combined as(
∂T
∂P

)
H
=−

(
∂T
∂H

)
P

(
∂H
∂P

)
T
.

With the identity
(
∂H
∂T

)
P
=CP, we have

(
∂T
∂P

)
H
=− 1

CP

(
∂H
∂P

)
T
.
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We now start from the differential expression of the enthalpy

dH = TdS+VdP

and expand dS in terms of the independent variables T and P

dH = T
[(

∂S
∂T

)
P
dT +

(
∂S
∂P

)
T
dP
]
+VdP

from which we immediately find(
∂H
∂P

)
T
=V +T

(
∂S
∂P

)
T
.

Also, one of Maxwell relations tells us that
(

∂S
∂P

)
T
=−

(
∂V
∂T

)
P
, so that

(
∂H
∂P

)
T
=−T 2

[
∂ (V/T )
∂T

]
P

with the final result(
∂T
∂P

)
H
=− 1

CP

(
∂H
∂P

)
T
=

T 2

CP

[
∂ (V/T )
∂T

]
P
.

We also note that for a classical ideal gas, the equation of state gives PV = NkT , so
that V

T = Nk
P and [

∂ (V/T )
∂T

]
P
= 0.

As for the second identity, we start from

dE = TdS−PdV

and differentiate with respect to V at constant temperature(
∂E
∂V

)
T
= T

(
∂S
∂V

)
T
−P.

Again, one Maxwell relation gives(
∂S
∂V

)
T
=

(
∂P
∂T

)
V

from which we can obtain immediately the final result(
∂E
∂V

)
T
= T 2

[
∂ (P/T )
∂T

]
V
.
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Finally, for the third identity, we can use a similar procedure. Starting from

dE = TdS−PdV

we can differentiate with respect to S at constant temperature(
∂E
∂S

)
T
= T −P

(
∂V
∂S

)
T

that can be further simplified using the Maxwell relations(
∂V
∂S

)
T
=

(
∂T
∂P

)
V

with the final result (
∂E
∂S

)
T
=−P2

[
∂ (T/P)
∂P

]
V
.

Problem 6.6.
Unlike an ideal gas, which cools down during an adiabatic expansion, a one dimen-

sional rubber band (with spring constant K and rest position x0 = 0) is increasing

its temperature when elongated in an adiabatic way. Write down the first law of

thermodynamics for this case, looking at possible similarities with the case of the

ideal gas. If the rubber band is elongated isothermally, what happens to the entropy?

For the first part make sure that the signs are appropriate, according to experimen-

tal observations. In the second part, use Maxwell-type relations derived from the

appropriate thermodynamic potential.

Solution
We know from the first law of thermodynamics that TdS = δQ= dE−dW . When
studying an ideal gas, it is appropriate to define the work on the system by dW =
−PdV , with P the pressure andV the volume. This is in agreement with the fact that
the work done on the system (positive sign) reduces the volume occupied by the gas.

This means that for an adiabatic transformation (δQ = 0) we have dW = −PdV =
dE, i.e. the gas heats up (dE > 0) during a compression (dV < 0). For the rubber

band, given the elongation x, we have a restoring force F = −Kx. The associated
work on the system is dW = Kxdx so that, for an adiabatic transformation, we have

dE = Kxdx

meaning that the energy increases upon elongation. Therefore, the first law of ther-

modynamics is

TdS= δQ= dE−Kxdx.

Let us now face the second point. The appropriate thermodynamic potential is the

free energy F whose variation is such that

dF = dW −SdT = Kxdx−SdT
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from which (
∂F
∂T

)
x
=−S

(
∂F
∂x

)
T
= Kx.

Let us derive the first expression with respect to x, the second with respect to T and
set them equal (using Schwartz lemma for mixed partial derivatives). The result is(

∂S
∂x

)
T
=−K

(
∂x
∂T

)
x
= 0

which is nothing but a Maxwell-type relation for the rubber band. Such relation

implies that during an isothermal elongation the entropy stays constant.

Problem 6.7.
Let E and M be the internal energy and the magnetization of some material im-

mersed in a magnetic field H. Prove that, for the specific heat at constant H, the
following relation

CH =

(
∂E
∂T

)
H
−H

(
∂M
∂T

)
H

holds.

Solution
Let us start by writing down the first law of thermodynamics for the magnetic sys-

tem. The work done to increase the magnetization by dM is dW = HdM. As a
consequence, if we choose T andM as variables to describe the system, the first law

gives

TdS= dE(T,M)−H(T,M)dM =

(
∂E
∂T

)
M
dT +

(
∂E
∂M

)
T
dM−H(T,M)dM.

Let us stress that the situation is the analogue of an homogeneous fluid described by

two variables among P,V,T . In our case, the variable H (that is the analogue of P
for the fluid) is intensive whereas the extensive one is given by the magnetizationM
(the analogue of the volume V ). We therefore find

CM = T
(
∂S
∂T

)
M
=

(
∂E
∂T

)
M

that is the quantity of heat that we have to supply in order to increase of a degree the

temperature of the system at constant magnetization, i.e. the analogue of the specific

heat at constant volume. If, instead of the variables T and M, we choose T and H,
we get

TdS=dE(T,H)−HdM(T,H) =(
∂E
∂T

)
H
dT +

(
∂E
∂H

)
T
dH−H

(
∂M
∂T

)
H
dT −H

(
∂M
∂H

)
T
dH
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from which, at constant H, we immediately find

CH = T
(
∂S
∂T

)
H
=

(
∂E
∂T

)
H
−H

(
∂M
∂T

)
H
.

Problem 6.8.
Let us consider the first law of thermodynamics for a system with volumeV , number
of particles N, energy E, and entropy S = S(E,V,N). Using the definition of the
chemical potential as

μ =

(
∂F
∂N

)
T,V

with the free energy given by F = E−TS, and the relation

(
∂S
∂E

)
N,V

=
1

T

prove that

μ
T

=−
(
∂S
∂N

)
E,V

.

To solve the problem, use the differential expression of S = S(E,V,N) with the
volume V and the temperature T kept constant.

Solution
Following the hint, we start from the differential expression of S= S(E,V,N)

dS(E,V,N) =
(
∂S
∂E

)
V,N

dE+

(
∂S
∂V

)
E,N

dV +

(
∂S
∂N

)
E,V

dN.

Now, we can follow the variation of S with both T and V kept constant

(dS)T,V =

(
∂S
∂E

)
N,V

(dE)T,V +

(
∂S
∂N

)
E,V

(dN)T,V

from which (
∂S
∂N

)
T,V

=

(
∂S
∂E

)
N,V

(
∂E
∂N

)
T,V

+

(
∂S
∂N

)
E,V

.

As given by the text, we also can use(
∂S
∂E

)
N,V

=
1

T

and, hence

T
(
∂S
∂N

)
T,V

=

(
∂E
∂N

)
T,V

+T
(
∂S
∂N

)
E,V
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which finally gives

−T
(
∂S
∂N

)
E,V

=

(
∂E
∂N

)
T,V

−T
(
∂S
∂N

)
T,V

=

(
∂
∂N

(E−TS)
)

T,V
=

(
∂F
∂N

)
T,V

= μ

that is
μ
T

=−
(
∂S
∂N

)
E,V

which is the desired result.

Problem 6.9.
A statistical system is composed of N independent distinguishable particles. Each

one of these particles has only two energy levels, E1 and E2, such that E2−E1 =
ε > 0. Choose a suitable ground state for the energy and write down the total energy
as a function of the temperature T . Finally, discuss the limits T → 0 and T →+∞.

Solution
We set the ground state to have zero energy, E1 = 0. As a consequence, we find

that E2 = ε . A general state is completely specified once we assign the set {n j}, j=
1, . . . ,N, where n j = 0 or 1 indicates if the j-th particle is in the ground state or
in the excited one, respectively. Using this convention, the expression for the total

energy is

E =
N

∑
j=1

n jε = mε

where m is the occupation number for the second energy level, i.e. the number of

particles having energy ε . In order to compute the energy as a function of the tem-
perature, we need to use the relation(

∂S
∂E

)
N
=
1

T

where the entropy S = k lnΩ requires the knowledge of the number of microstates

Ω accessible to the system. This can be computed by simply considering all the

possible ways to choose m objects out of N

Ω(m,N) =
N!

(N−m)!m!
.

Using the Stirling approximation, we find

S(m,N) = k lnΩ(m,N)≈ k[N lnN− (N−m) ln(N−m)−m lnm]

1

T
=

(
∂S
∂E

)
N
=
1

ε

(
∂S
∂m

)
N
=

k
ε
ln

(
N−m

m

)
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Fig. 6.1 A one dimensional chain composed of N � 1 localized sites. Each site is occupied by a
polymer with two energy states: it can be straight (with energy hbend = ε = 0) or it can bend (on
the right or on the left) with energy hbend = ε > 0. The thermodynamic properties of this system
are discussed in Problem 6.10

from which we get

E = mε =
Nε

1+ eε/kT
.

In the limit T → 0, we find E → 0 meaning that only the ground state is occupied by

the particles. In the limit T →+∞, we obtain E →Nε/2 indicating that both energy
levels are equally populated.

Problem 6.10.
We consider a one dimensional chain composed of N � 1 localized sites. Each site

is occupied by a polymer with two energy states: it can be straight (with energy

hbend = 0) or it can bend (on the right or on the left) with energy hbend = ε > 0,

independently of the bending direction (see Fig. 6.1). Compute the entropy of the

system, S(E,N), for a fixed total bending energy E = mε (m is an integer number

such that m � 1). Also, determine the internal energy as a function of the tem-

perature and the resulting heat capacity, CN =
(
∂E
∂T

)
N
, under the assumption that

(N−m)� 1. Finally, determine the behaviour of the internal energy in the limit of

low and high temperatures.

Solution
We know that the total bending energy is fixed and equal to mε . This means that
we have m bended polymers. Therefore, we have to consider all the possible ways
to extract m distinguishable (the sites are localized) objects out of N, i.e. N!

m!(N−m)! .

We also have to consider the degeneracy (that is 2 in this case) associated with the

positive bending energy, since the polymer can bend on the right and on the left.

Therefore, the total number of microstates Ω(E,N) associated with the total energy
E = mε is

Ω(E,N) =
N!

m!(N−m)!
2m.
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We then apply the Boltzmann entropy formula and use the Stirling approximation

for the factorials to get

S(E,N) =k lnΩ(E,N)≈
kN
[m
N
ln2− m

N
ln
(m
N

)
−
(
1− m

N

)
ln
(
1− m

N

)]
=

kN
[

E
Nε

ln2− E
Nε

ln

(
E
Nε

)
−
(
1− E

Nε

)
ln

(
1− E

Nε

)]
.

The temperature is given by the derivative of the entropy

1

T
=

(
∂S
∂E

)
N
=

k
ε

[
ln2− ln

(
E
Nε

)
+ ln

(
1− E

Nε

)]

from which

ln

(
Nε
E

−1
)
= βε− ln2

so that

E =
2Nε

eβε +2
.

The heat capacity becomes

CN =

(
∂E
∂T

)
N
= 2Nk(βε)2

eβε

(2+ eβε)2
.

In the limit of low temperatures we find

lim
β→+∞

E = 0

indicating that only the ground state (ε = 0) is populated. In the limit of high tem-
peratures we find

lim
β→0

E =
2

3
Nε.

We note that if we change the degeneracy from 2 to 1, all the results coincide with

those of Problem 6.9.

Problem 6.11.
We want to study the thermodynamic properties of a magnetic system with unitary

volume. Such system is characterized by the following constitutive equations for the

magnetization and internal energy as a function of the temperature T and magnetic
field H

M(T,H) = Nm
[
coth

(
mH
kT

)
− kT

mH

]

E(T,H) =CMT
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with CM , m and N constants. Working in the limit mH � kT , find the relation be-
tween the temperatures and magnetizations of two generic thermodynamic states

(say 1 and 2) connected by an adiabatic transformation. Finally, in the same limit

mH � kT , give an estimate of the entropy S(E,M) once we know the value of the
energy (E0) and magnetization (M0) of a given reference state.

Solution
The first part of the problem deals with an adiabatic transformation. For this reason,

we start from the first law of thermodynamics for the magnetic system

δQ= dE−HdM

and require no heat exchange, i.e. 0= δQ= dE−HdM. Since dE =CMdT , we get

H(M,T )dM = dE =CMdT

and we need to extract the function H(M,T ) from our constitutive equation for the
magnetization. In the limit mH � kT we obtain

coth

(
mH
kT

)
≈ 1

and

M(T,H) = Nm
(
1− kT

mH

)
from which we can find H as a function of M and T

H(M,T ) =
NkT

Nm−M
.

Therefore, the corresponding adiabatic transformation is characterized by the fol-

lowing differential relation

CM

Nk
dT
T

=
dM

Nm−M

which can be integrated between (T1,M1) and (T2,M2) with the following result

(
T1
T2

)CM/Nk

=
Nm−M2

Nm−M1
.

As for the second point, we start from the first law of thermodynamics in its differ-

ential form

dS=
dE
T

− H
T
dM
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Fig. 6.2 A one dimensional rubber band is modelled with a chain of N+ 1 molecules. From one
molecule we can establish a link with the successive one by moving a step forward or backward.
The characteristic length of the link between two molecules is a, and the distance between the first
and last molecule is x. In Problem 6.12 we show how to predict the thermodynamic properties of
this system starting from the microcanonical ensemble

and integrate between (E0,M0) and a generic state with energy E and magnetization
M

S(E,M) =CM

∫ E

E0

dE
E

−Nk
∫ M

M0

dM
Nm−M

=

CM ln

(
E
E0

)
+Nk ln

(
Nm−M
Nm−M0

)
+S(E0,M0).

Problem 6.12.
We want to describe the elasticity of a rubber band with a very simple one dimen-

sional model characterized by a chain of N+ 1 molecules (see Fig. 6.2). From one
molecule we can establish a link with the successive one by moving a step forward

or backward, with no difference from the energetical point of view (i.e. the internal

energy is only dependent on the total number N). The characteristic length of the
link between two molecules is a, and the distance between the first and last molecule
is x. Find the entropy for the system. Suppose that, for a small variation dx, we can
write the work on the system as dW = −gdx, with g a tension needed to keep the
distance x. At a fixedN, the number of all the possible pairs (N+,N−) consistent with
a given macrostate at constant energy must be computed. Finally, find the relation

between the temperature and the tension, and determine the sign of the latter.

Solution
The number of links realized with forward steps must be properly related to the

number of backward steps in such a way that

x= a(N+−N−)
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plus the condition that

N = N++N−

because the molecules are N+1, and the links are N. Therefore, we find that⎧⎨
⎩
N+ = 1

2

(
N+ x

a

)
N− = 1

2

(
N− x

a

)
.

The entropy is dependent on the number of total configurations, i.e. all the possi-

ble ways to extract N+ forward steps and N− backward steps out of N, with the
constraint that N = N++N−. Therefore, we can write

S(x,N) = k ln
(

N!
(N−N+)!N+!

)
= k ln

(
N!

N−!N+!

)
= k ln

(
N!

(N2 − x
2a )!(

N
2 +

x
2a )!

)

from which, using the Stirling approximation, we get

S(x,N)
k

≈ N lnN− 1

2

(
N+

x
a

)
ln

(
N
2
+

x
2a

)
− 1

2

(
N− x

a

)
ln

(
N
2
− x
2a

)
.

From the first law of thermodynamics, we know that

TdS= dE−dW = dE+gdx

and, since the internal energy is only dependent on N, we can write

g= T
(
∂S
∂x

)
N

leading to

g=−kT
2a
ln

(
N+ x

a
N− x

a

)
.

We immediately see that the tension g has negative sign, because a > 0, x > 0 and

ln
(

N+ x
a

N− x
a

)
> 0.

Problem 6.13.
A statistical system is composed of N particles with spin 1

2 , immersed in a magnetic

field H. The particles are fixed in their positions and possess a magnetic moment μ .
The Hamiltonian of such system is

H =−μH
N

∑
i=1

σi
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where σi = ±1. Determine the entropy, the energy, the specific heat, and the mag-
netization. Finally, defining the susceptibility as

χ =

(
∂M
∂H

)
T,N

prove Curie law, i.e. that χ is inversely proportional to the temperature whenH → 0.

Solution
Let us set ε = μH and let N± be the number of particles with σi =±1. The Hamil-
tonian can be written as

H = E =−μH
N

∑
i=1

σi =−εN++ εN− =−εN++ ε(N−N+) = εN−2εN+

from which

N+ =
1

2

(
N− E

ε

)
N− =

1

2

(
N+

E
ε

)
.

The entropy is connected to the number of total configurations, i.e. all the possible

ways to extract N+ and N− spins out of N, with the constraint that N = N+ +N−.
Therefore, we can write

S(E,H,N)=k ln
(

N!
N+!(N−N+)!

)
= k ln

(
N!

N+!N−!

)
≈

k
(
N lnN−

(
N
2
− E
2μH

)
ln

(
N
2
− E
2μH

)
−
(
N
2
+

E
2μH

)
ln

(
N
2
+

E
2μH

))

where we have used the Stirling approximation for the factorials. The dependence

on the temperature is found with

1

T
=

(
∂S
∂E

)
H,N

=
k

2μH
ln

(
N− E

μH

)
(
N+ E

μH

)
from which we extract the energy

E =−NμH tanh
(
μH
kT

)

and the specific heat

C =

(
∂E
∂T

)
H,N

=
Nμ2H2

kT 2

(
1− tanh2

(
μH
kT

))
.

Finally, the magnetization is given by

M = μ(N+−N−) =−E
H

= Nμ tanh
(
μH
kT

)
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and the susceptibility by

χ =

(
∂M
∂H

)
T,N

=
Nμ2

kT

(
1− tanh2

(
μH
kT

))
.

When the magnetic field is small, we find tanh2
(

μH
kT

)
≈ 0 and

lim
H→0

χ =
Nμ2

kT

that is Curie law.

Problem 6.14.
Let us assume that the air rises in the atmosphere adiabatically like an ideal gas.

Determine the way the temperature T changes as a function of the height z and
express the final result in terms of the gravitational acceleration g, the ratio of the
specific heats at constant pressure and volume, the mass m of each particle, and the
Boltzmann constant k. To solve the problem, consider an infinitesimal cylinder of air
and write down the equation determining the mechanical equilibrium, from which

you can extract the variation of the pressure P in terms of the ratio P/T . Finally,
combine this result with the variation of the temperature with respect to the pressure

obtained from the equation of state and that for an adiabatic change (PV γ =const.,
with γ the ratio of the specific heats) for a simple gas to get the desired result.

Solution
Let us consider the air inside a cylinder with height dz and base S. In order to obtain
the condition of mechanical equilibrium, the pressure must be a function of the

height, P(z). The force acting on the inferior base is P(z)S, while that acting on the
upper base is −P(z+ dz)S. Also, gravity acts on the cylinder with a force equal to
−mρ(z)Sdzg, where ρ(z) stands for the density in the number of particles and m is
the mass of each particle. The mechanical equilibrium requires that

−P(z+dz)S+P(z)S−ρ(z)Sdzgm= 0

leading to a differential equation for P(z)

P(z+dz)−P(z)
dz

=
dP(z)
dz

=−gmρ(z).

The equation of state for an ideal gas can be used to find

ρ(z) =
P(z)
kT (z)

which can be substituted in the previous expression to yield

dP(z)
dz

=−gm
k

P(z)
T (z)

.
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After differentiating the equation of state, and substituting Nk using this equation
again, we find

VdP+PdV = NkdT =
PV
T

dT.

Dividing by PV , we get
dP
P

+
dV
V

=
dT
T

.

Also, the condition that PV γ =const. leads to

dP
P

+ γ
dV
V

= 0

that, combined with the previous one, gives

dT
T

=
dP
P

+
dV
V

=
dP
P

− 1

γ
dP
P

or, equivalently (
dT
dP

)
=

(
γ−1
γ

)
T
P
.

We now combine this result with the expression obtained previously for the deriva-

tive of the pressure with respect to height

dT
dz

=

(
dT
dP

)(
dP
dz

)
=

(
1− γ
γ

)
mg
k

that is the desired result.

Problem 6.15.
Suppose we are able to measure the thermal expansion coefficient at constant pres-

sure

α =
1

V

(
∂V
∂T

)
P

for a thermodynamic fluid with a constant number of particles. Determine, under the

same conditions, the derivative of the entropy with respect to the pressure,
(

∂S
∂P

)
T
.

Solution
We can solve the problem starting from the Gibbs potential defined as Φ = F+PV ,
with F the free energy. From the differential form of Φ we get

dΦ =−SdT +VdP

and we find immediately(
∂Φ
∂T

)
P
=−S

(
∂Φ
∂P

)
T
=V.
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Then, using Schwartz lemma for mixed partial derivatives, we find the following

identity(
∂S
∂P

)
T
=−

(
∂
∂P

(
∂Φ
∂T

)
P

)
T
=−

(
∂
∂T

(
∂Φ
∂P

)
T

)
P
=−

(
∂V
∂T

)
P

and the final result (
∂S
∂P

)
T
=−αV.

Problem 6.16.
A physical system is composed of N distinguishable particles, and each particle

can be found in a state with energy 0 or ε > 0. The excited state has degeneracy

d = 4 while the ground state is not degenerate. The total energy of the system is

given by E = nε , with n a positive integer (n ≤ N). Write down the number of
microstates corresponding to the macrostate with energy E = nε . Then, identify the
temperature T and compute the ratio of the occupation numbers for the two energy
levels as a function of T and ε . Verify the limit of high temperatures in the final
result.

Solution
The total energy is E = nε and the number of microstates related to this energy is
given by all the possible ways to choose n distinguishable objects out of N

Ωn =

(
N
n

)
=

N!
n!(N−n)!

.

We also know that the excited energy state has a degeneracy equal to 4, i.e. whenever

a particle occupies the energy level ε , this can happen in 4 different ways. Therefore,
the number of microstates is given by

Ω(E,N) =Ωn4
n =

(
N
n

)
4n

where n depends on the energy E. For largeN, we can use the Stirling approximation
(N!≈ NNe−N) and write

S(E,N) = k lnΩ(E,N)≈−Nk [α lnα+(1−α) ln(1−α)−α ln4]

where we have defined α = n
N = E

Nε . The temperature T is given by

1

kT
=
1

k

(
∂S
∂E

)
N
=

1

Nεk

(
∂S
∂α

)
N
=
1

ε
ln

(
4(1−α)

α

)
.

We can explicitly invert this expression for α , and find the occupation numbers

n= Nα = N
4e−βε

1+4e−βε n0 = N−n= N
1

1+4e−βε
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where β = 1
kT . Their ratio is

n
n0

=
4e−βε

1+4e−βε .

In the limit of high temperatures (β � 1), we get n
n0

≈ 4/5, meaning that the five
levels available (one level with energy 0 and four levels with energy ε) are equally
populated. Note that if we change the degeneracy from 4 to 1, all the results coincide

with those of Problem 6.9.

Problem 6.17.
Two independent statistical systems (1 and 2) are both characterized by N energy

levels and m1,m2 indistinguishable quanta distributed in these levels (m1,2 � 1).

The energy of both systems is proportional to the number of associated quanta

E1 = α1m1 E2 = α2m2

with α1,α2 > 0. Write down the number of microstates and determine the entropies
for both systems . Then, suppose we establish a contact between the two systems

so that they reach some equilibrium condition without exchanging quanta. In this

situation, determine the relation between m1, m2, α1 and α2.

Solution
The number of states available for each system is

Ω(m1,2,N) =
(N−1+m1,2)!
m1,2!(N−1)!

that is the way to distribute m1,2 indistinguishable objects into N levels. If we in-

terpret the energy levels as boxes, we have N+1 partitioning lines delimiting these
boxes. The first and last partitioning lines can be considered fixed (we are then left

with N−1 of them) and we need to find the total number of arrangements for N−1
partitioning lines and m1,2 quanta (see Fig. 6.3), for a total of (N−1+m1,2) objects.
The total number of these arrangements is (N− 1+m1,2)!. Also, a permutation of
two internal partitioning lines or quanta does not change the configuration (they are

indistinguishable), and this is the reason for the presence of (N− 1)! and m1,2! in
the denominator. The entropy of both systems is given by the Boltzmann formula

S(m1,2,N) =k lnΩ(m1,2,N) = k(ln(N−1+m1,2)!− ln(N−1)!− lnm1,2!)≈
k(ln(N+m1,2)!− lnN!− lnm1,2!)≈
k[(N+m1,2) ln(N+m1,2)−N lnN−m1,2 lnm1,2]

from which we can extract the temperatures

1

T1,2
=

(
∂S

∂E1,2

)
N
=

1

α1,2

(
∂S

∂m1,2

)
N
=

k
α1,2

ln

(
N+m1,2

m1,2

)
.
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Fig. 6.3 The arrangement of a given number of energy quanta into N levels can be thought of as
a combinatorial problem where we distribute some indistinguishable objects (quanta) in N distin-
guishable boxes (energy levels). The boxes are characterized by indistinguishable partitioning lines
(or ‘vertical walls’) separating the energy levels. For the technical details see Problem 6.17

The condition of thermal equilibrium is T1 = T2 so that

α1
α2

=
ln
(

N+m1
m1

)
ln
(

N+m2
m2

)
is the desired relation between m1, m2, α1 and α2.

Problem 6.18.
A one dimensional harmonic oscillator has the energy (in some suitable units)

ε = n+ 1
2 , where the positive integer n represents the number of energy quanta

associated with the oscillator. Let us consider N one dimensional distinguishable

harmonic oscillators with a fixed energy E and compute their total energy density
E/N, entropy density S/N, and temperature T . Make the assumption that, in the
limit of large N, the density E/N is finite, while E − N

2 and E + N
2 are both very

large. Finally, analyze the high temperature limit of the energy, verifying the con-

sistency with the equipartition theorem.

Solution
We have to determine all the microstates of the system with total energy

E =
N

∑
i=1

εi =
N

∑
i=1

(
ni+

1

2

)

where ni are the energy quanta associated with the i-th oscillator. We can write the
previous equation as

N

∑
i=1

ni = E− N
2
= Q

where Q is an integer number because it is a sum of integers. We can now think

that the N oscillators are boxes where we have to distribute Q quanta. The N boxes
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imply the presence of N + 1 partitioning lines: if we keep fixed the first and last
partitioning lines, we have to determine the total number of arrangements for N−
1 (indistinguishable) partitioning lines and Q (indistinguishable) quanta (see also

Problem 6.17). The total number of these arrangements is

Ω(E,N) =
(Q+N−1)!
Q!(N−1)! =

(E+ N
2 −1)!

(E− N
2 )!(N−1)!

and the entropy is given by the Boltzmann formula

S(E,N) = k lnΩ(E,N).

In the thermodynamic limit, for a finite density E/N, we can write (using the Stirling
approximation for the factorials)

S(E,N)
N

≈ k
[(

E
N
+
1

2

)
ln

(
E
N
+
1

2

)
−
(
E
N
− 1

2

)
ln

(
E
N
− 1

2

)]

from which we compute the temperature

1

T
=

(
∂S
∂E

)
N
= k ln

(
E/N+ 1

2

E/N− 1
2

)
.

This allows us to express the energy density in terms of T

E
N

=
1

2
coth

(
1

2kT

)
.

This result shows that the quantummechanical oscillators do not obey the (classical)

equipartition theorem for the energy. Only in the limit of high temperatures, when
T � 1, we can use the Taylor expansion coth 1x ≈ x (x� 1) to find

E
N

≈ kT.

This is in agreement with the equipartition theorem (see also Problem 7.20), which

assigns to each degree of freedom an energy contribution equal to kT/2. In our case,
we have N one dimensional oscillators, each one with a position and a momentum.
The total energy would then be

E =
kT
2

×N× (1+1) = NkT

which is in agreement with the high temperature limit previously obtained.
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Problem 6.19.
An ultrarelativistic gas with N � 1 particles is in a volume V . The total energy is

E = c
N

∑
i=1

pi

where pppi is the momentum of the i−th particle with pi = |pppi| its absolute value,
and where c is the speed of light. The total energy is fixed and the particles are
indistinguishable. Give an estimate for the entropy and write down the equation of

state. Finally, determine the specific heat at constant pressure CP. If D is the region
of the phase space such that ∑N

i=1 |pppi| ≤ E/c, the following integral

IN(E) =
∫
D

N

∏
i=1

p2i dpi =
2N

(3N)!

(
E
c

)3N

may be useful.

Solution
In the limit when N � 1 we can approximate (to determine the thermodynamic

properties of the system) the integral over the surface at constant energy with the

integral in the volume enclosed by that surface. In other words, the number of states

is well approximated by

Ω(E,V,N)≈ Σ(E,V,N) =
1

h3N

∫
D

N

∏
i=1

d3qi d3pi.

If we use the hint given in the text of the problem and the fact that the particles are

indistinguishable, we immediately obtain that

Ω(E,V,N)≈ Σ(E,V,N) = (4πV )N
IN(E)
h3NN!

=
1

N!(3N)!

(
8πVE3

h3c3

)N

.

Let us now use the Stirling approximation to evaluate the entropy S(E,V,N)

S(E,V,N) = k lnΩ(E,V,N)≈ k lnΣ(E,V,N)≈ Nk
[
ln

(
b̃
VE3

N4

)]
+4Nk

where b̃ = 8π
27h3c3 . In order to obtain the temperature and the pressure, we have to

compute the derivatives of the entropy

1

T
=

(
∂S
∂E

)
V,N

=
3Nk
E

P= T
(
∂S
∂V

)
E,N

=
NkT
V

.

We find that the equation of state is exactly the same as that of an ideal gas: PV =
NkT . The energy is E = 3NkT . The latter result is in agreement with the classical
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equipartition theorem predicting that (see Problem 7.20)

E = c
N

∑
i=1

pi =
N

∑
i=1

〈
pi

(
∂H
∂ pi

)〉
= 3NkT

whereH is the Hamiltonian of the system, 〈...〉 is meant as an ensemble average, and
where the derivative with respect to pi is performed by keeping fixed all the other
variables. Using the equation of state and the internal energy, we can also write the

entropy as a function of (T,P,N)

S(T,P,N) = Nk ln
(
27k4b̃T 4

P

)
+4Nk.

This expression is useful to determine the specific heat at constant pressure

CP = T
(
∂S
∂T

)
P,N

= 4Nk.

Problem 6.20.
Let us consider 2 systems A and B, each one composed of 2 distinguishable particles.
Consider that the total energy for the system is ETOT =EA+EB = 5 in some suitable
units. A and B are in thermal equilibrium and are separated by a rigid wall not

allowing for particles and energy exchange. Compute the entropy when EA = 3 and
EB = 2. Repeat the same calculations when the energy exchange between the two

systems is allowed. In the calculations, consider that each particle energy can only

be a positive integer number.

Solution
Let us indicate with (q1,q2) a microstate of two particles where the first particle
has energy q1 and the second one has energy q2. For the system A, all the possible
microstates are given by (3,0), (0,3), (2,1), (1,2). Similarly, for the system B,
we find the following set of microstates: (2,0), (0,2) and (1,1). Therefore, for the
system A the number of microstates is ΩA(EA = 3) = 4, while for the system B we
have ΩB(EB = 2) = 3. When particles and energy exchange are not allowed, the

total number of microstates is simply given by the product

Ω(EA+EB = 5) =ΩA(EA = 3)×ΩB(EB = 2) = 12

and the entropy is S = k ln12. In the second case we have an energy exchange. All
the energies of A and B are those that satisfy ETOT = EA+EB = 5. They are: (EA =
5,EB = 0), (EA = 0,EB = 5), (EA = 4,EB = 1), (EA = 1,EB = 4), (EA = 3,EB = 2),
(EA = 2,EB = 3). For each one of these cases, the microstates are identified

(EA = 5,EB = 0) : A : (5,0),(0,5),(4,1),(1,4),(3,2),(2,3) B : (0,0);

ΩA(EA+EB = 5) =ΩA(EA = 5)×ΩB(EB = 0) = 6



218 6 Thermodynamics and Microcanonical Ensemble

(EA = 0,EB = 5) : A : (0,0) ,B : (5,0),(0,5),(4,1),(1,4),(3,2),(2,3);

ΩA(EA+EB = 5) =ΩB(EA = 0)×ΩA(EB = 5) = 6

(EA = 4,EB = 1) : A : (4,0),(0,4),(3,1),(1,3),(2,2) B : (1,0),(0,1);

ΩA(EA+EB = 5) =ΩA(EA = 4)×ΩB(EB = 1) = 10

(EA = 1,EB = 4) : A : (1,0),(0,1) ,B : (4,0),(0,4),(3,1),(1,3),(2,2);

ΩA(EA+EB = 5) =ΩA(EA = 1)×ΩB(EB = 4) = 10

(EA = 3,EB = 2) : A : (3,0),(0,3),(2,1),(1,2) B : (2,0),(0,2),(1,1);

ΩA(EA+EB = 5) =ΩA(EA = 3)×ΩB(EB = 2) = 12

(EA = 2,EB = 3) : A : (2,0),(0,2),(1,1) B : (3,0),(0,3),(2,1),(1,2);

ΩA(EA+EB = 5) =ΩA(EA = 2)×ΩB(EB = 3) = 12.

Therefore, the total number of states is given by

Ω(ETOT = 5) =
5

∑
i=0

Ω(EA = i)×Ω(EB = ETOT − i) = 56

and the entropy by S = k ln56. We remark that in this case we can obtain the same
number of states by considering all the possible ways to distribute 5 indistinguish-

able quanta into 4 distinguishable levels, that is

Ω(ETOT = 5) =
(5+4−1)!

3!5!
=

8!

3!5!
= 8×7= 56.

Problem 6.21.
Starting from the line at zero energy, and working in the two dimensional phase

space of a classical plane rotator, draw the lines at constant energy producing cells

with volume h in the phase space. Determine the energy of these states and compare
them with the eigenvalues of the corresponding quantum mechanical problem.

Solution
The Hamiltonian of the classical plane rotator is H = p2

2I , where p is the momentum
associated with the rotation angle θ and I is the momentum of inertia. The variable θ
is periodic and the phase space is the strip of the plane (θ , p) between −π and π . In
Fig. 6.4 we draw the lines at constant energy (that implies p=const.) corresponding
to the momenta p1, p2, p3. We obtain cells with volume h if the relations 2π p1 = h,
2π p2= 2h, etc. hold. To summarize, we have found pn = nh̄ (n is an integer number)
and the corresponding energies

En =
n2h̄2

2I
.

For the plane rotator in the quantum mechanical case we have

Ĥ =
L̂2z
2I

=− h̄2

2I
∂ 2

∂θ 2
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Fig. 6.4 In the phase space of a plane rotator, we draw the lines at constant energy producing cells
with volume h. In this way, we find different momenta pn = nh̄ (n is an integer number) and the
corresponding energies En =

n2 h̄2
2I , with I the momentum of inertia of the plane rotator. For further

details see Problem 6.21

where L̂z is the orbital angular momentum in the direction of the rotation axis. An

explicit calculation (see also Problem 5.1) shows that the eigenstates for the energy

are

Fn(θ) =
1√
2π

einθ

with n an integer number. The eigenvalues are

En =
n2h̄2

2I

that is the very same result obtained with the above construction in the classical

phase space.

Problem 6.22.
A statistical system is composed of R indistinguishable quanta distributed in N en-
ergy levels in such a way that we do not find empty levels (R > N � 1). Indicating

with Ri the number of quanta in the i-th level, the total energy of the system is

R= R1+R2+ . . .+RN . Show that the total number of microstates is(
R−1
N−1

)
.

When N = 3 and R= 6, write down explicitly all the configurations. Finally, in the
general case with R > N � 1, compute the entropy of the system and determine

the equilibrium temperature. Try to establish an analogy between this physical sys-

tem and the combinatorial problem of arranging R indistinguishable objects in N
boxes.
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Fig. 6.5 The distribution of 6 indistinguishable quanta in 3 distinguishable energy levels. In the
top panel we show all the possible 28 microstates. The requirement that there are no empty en-
ergy levels reduces the number of microstates to 10 (bottom panel). All the details are reported in
Problem 6.22

Solution
We can think that the N levels are boxes delimited by N+1 partitioning lines. If we
keep fixed the first and last partitioning lines and create all the possible arrangements

of R+N− 1 elements (quanta or partitioning lines), the number of microstates is
evaluated as (

N+R−1
N−1

)
=

(
N+R−1

R

)
=

(N+R−1)!
R!(N−1)!

where the denominator accounts for all the permutations realized by shuffling the R
quanta and the N− 1 partitioning lines (see also Problems 6.17 and 6.18). Unfor-
tunately, this is not enough for our purposes, because we know from the text that

no empty levels are present, i.e. all the partitioning lines have to be placed in be-

tween the quanta. This means that during an arrangement of R quanta, we only have
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R−1 interspacings to place the partitioning lines. Therefore, the correct number of
microstates is given by all the possible ways to select N − 1 interspacings out of
R−1 (

R−1
N−1

)
=

(R−1)!
(R−N)!(N−1)!

that is the expression reported in the text. Another alternative procedure is the fol-

lowing: first of all, we can think to occupy each of the N boxes with a single quan-
tum; the remaining R−N quanta can be freely arranged in the N boxes, for a total of(

N+R−N−1
N−1

)
=

(
R−1
N−1

)
=

(R−1)!
(R−N)!(N−1)!

microstates. The case with N = 3 and R= 6 is treated explicitly in Fig. 6.5. For the
sake of completeness, we first report the most general case (top panel of the figure)

where the number of microstates is(
N+R−1

R

)
= 28

and where we also find empty levels. The condition that there is no empty level

reduces (see lower panel of Fig. 6.5) the number of microstates to(
R−1
N−1

)
= 10.

In the case with R > N � 1, the general form of the entropy is

S(N,R) = k ln
(

(R−1)!
(R−N)!(N−1)!

)
≈ k[−(R−N) ln(R−N)+R lnR−N lnN]

where we have used the Stirling approximation for the factorials. We then find the

temperature as
1

T
=

(
∂S
∂E

)
N
=

(
∂S
∂R

)
N
= k ln

R
(R−N)

.

Problem 6.23.
Let us consider N one dimensional classical harmonic oscillators with the same

mass m and frequency ω in the microcanonical ensemble. Determine the internal

energy in the limit N � 1.

Solution
Let us start from the Hamiltonian of the system

HN =
N

∑
i=1

(
p2i
2m

+
1

2
mω2q2i

)
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where pi and qi are the momentum and position for the i-th oscillator. In order to
compute the number of states at fixed energy E, we should perform the integral

Ω(E,N) =
∫
HN=E

dNqdN p
hN

but, when determining the thermodynamic properties in the limit N � 1, we can

replace the surface integral with the volume integral

Σ(E,N) =
∫
HN≤E

dNqdN p
hN

.

We next introduce the new variables Yi (i= 1,2, ...,2N) with the property

p j =
√
2mYj q j =

√
2

mω2
YN+ j j = 1,2, ...,N

in such a way that the previous volume integral becomes

Σ(E,N) = (
√
2m)N

(√
2

mω2

)N
1

hN

∫
D

(
2N

∏
i=1

dYi

)

where D is the region such that

N

∑
i=1

(
p2i
2m

+
1

2
mω2q2i

)
=

2N

∑
i=1

Y 2i ≤ E.

In other words, in the variables Yi, the region D is just a 2N dimensional sphere with
radius

√
E. We recall that the volume of the 2N dimensional sphere with radius R is

V2N =
πN

NΓ (N)
R2N

and we find the following result for Σ(E,N)

Σ(E,N) =
(
2

hω

)N ∫
D

(
2N

∏
i=1

dxi

)
=

(
2

hω

)N πN

NΓ (N)
EN .

Therefore, the entropy is given by

S(E,N)≈ Nk lnE+C

where C is a constant independent of E. The internal energy is found through the
relation

1

T
=

(
∂S
∂E

)
N
=

Nk
E

leading to

E = NkT
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which is in agreement with the equipartition theorem assigning an energy contribu-

tion equal to kT/2 to each degree of freedom (see Problems 7.20, 7.21 and 7.18).

The quantum mechanical analogue of this situation is discussed in Problem 6.18.

Problem 6.24.
N atoms are arranged regularly in N localized lattice sites so as to form a perfect

crystal. If one moves n atoms (with the condition 1� n � N) from lattice sites to
localized interstices of the lattice, this becomes an imperfect crystal with n defects.
The numberM of interstitial sites into which an atom can enter is of the same order

of magnitude as N. Let ε be the energy necessary to move an atom from a lattice

site to an interstitial one. Show that, in the equilibrium state at temperature T , the
following relation

n≈
√
NMe−

ε
2kT

is valid.

Solution
The number of states is

Ω(n,M,N) =
N!

n!(N−n)!
M!

n!(M−n)!

where the first term accounts for all the possible ways to choose n atoms out of
N available sites, and the second one for all the possible ways in which these n
atoms can be arranged in the M interstices. We remark that the atoms are treated as

distinguishable, because they occupy localized sites or interstices. Using the Stirling

approximation and the Boltzmann formula S= k lnΩ , we find

S(n,M,N)≈ k[N lnN+M lnM−2n lnn− (N−n) ln(N−n)− (M−n) ln(M−n)]

and for the inverse temperature

1

T
=

(
∂S
∂E

)
N,M

=
1

ε

(
∂S
∂n

)
N,M

=
k
ε
ln

(
(N−n)(M−n)

n2

)

leading to
(N−n)(M−n)

n2
= e

ε
kT

which is an equation for n. Instead of solving exactly this equation, we consider the
condition N,M � n, so that we can approximate (N−n)(M−n)≈ NM and finally

obtain

n=
√
NMe−

ε
2kT .

Problem 6.25.
A statistical system is composed of two ultrarelativistic particles moving in a seg-

ment of length L. Write down the Hamiltonian for the system and compute the

volume of the phase space enclosed by the surface at constant energy E.
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Fig. 6.6 The phase space region at constant energy for 2 ultrarelativistic particles moving in a
segment of length L. Further technical details are reported in Problem 6.25

Solution
The energy for an ultrarelativistic particle is E = |p|c, with p the momentum and c
the speed of light. In the case of two particles, the total energy is

H(p1, p2) = c(|p1|+ |p2|).

The volume of the phase space enclosed by the region at constant E is

Σ(E,L) =
∫ L

0
dq1

∫ L

0
dq2

∫
H(p1,p2)≤E

dp1dp2 = L2
∫
H(p1,p2)≤E

dp1dp2.

If we set x= cp/E in the Hamiltonian, we obtain

Σ(E,L) =
E2L2

c2

∫
|x1|+|x2|≤1

dx1dx2.

In the (x1,x2) plane we can identify the 4 regions (see also Fig. 6.6)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 =−x2+1 1-st region

x1 = x2−1 2-nd region

x1 =−x2−1 3-rd region

x1 = x2+1 4-th region

that constitute a rhombic region whose total area can be easily computed as∫
|x1|+|x2|≤1

dx1dx2 = 2

so that Σ(E,L) = 2E2L2
c2 .
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Problem 6.26.
Consider a free gas with N particles and internal energy E inside a container of

volume V . Starting from the Sackur-Tetrode formula for the entropy

S(E,V,N) = Nk

{
5

2
− ln

[(
3π h̄2

m

)3/2
N
5
2

VE
3
2

]}

find the free energy F , the enthalpy H, and the Gibbs potential Φ .

Solution
To find the solution we must express the potentials in the right variables

F = F(T,V,N) H = H(S,P,N) Φ =Φ(P,T,N).

Let us start with the free energy whose variables are T,V,N

F(T,V,N) = E(S(T,V,N),V,N)−TS(T,V,N).

With this notation we have emphasized that F is a natural function of T,V,N while
the entropy is a natural function of E, V , N. We must then write E, S in terms of T ,
V , N to proceed further. From the Sackur-Tetrode formula we get

E(S,V,N) =
(
3π h̄2

m

)
N
5
3

V
2
3

e
2S
3Nk− 5

3 .

The first law of thermodynamics is dE = TdS−PdV +μdN, from which we find

T =

(
∂E
∂S

)
V,N

=

(
3π h̄2

m

)
N
5
3

V
2
3

e
2S
3Nk− 5

3
2

3Nk
=
2E
3Nk

.

This is the equipartition theorem which states that each degree of freedom con-

tributes kT/2 to the energy. In turn, plugging this expression for E in the Sackur-
Tetrode entropy will give

S(T,V,N) = Nk

{
5

2
+ ln

[(
mkT
2π h̄2

) 3
2 V
N

]}
.

Putting everything together

F(T,V,N) =E−TS=
3NkT
2

− 5NkT
2

− ln
[(

mkT
2π h̄2

) 3
2 V
N

]
=

NkT

⎧⎨
⎩ln

⎡
⎣(2π h̄2

mkT

) 3
2 N
V

⎤
⎦−1

⎫⎬
⎭ .
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Let us now consider the enthalpy. Using once again the first law of thermodynamics,

we find

−P=

(
∂E
∂V

)
S,N

=−2E
3V

from which E = 3
2PV and

H(S,P,N) = E+PV =
5

2
PV.

This is not yet enough, since H is a function of S,P,N. We must express V in terms
of S, P, N. In the formula for the energy in terms of the entropy we previously
got starting from the Sackur-Tetrode entropy, we substitute E = 3/2PV and we

get

V =

(
2π h̄2

m

) 3
5 N

P
3
5

e
2S
5Nk−1.

Putting all of this in the formula for the enthalpy, we find

H(S,P,N) =
5

2

(
2π h̄2

m

) 3
5

NP
2
5 e

2S
5Nk−1

which is what we were looking for. At last let us consider the Gibbs potential,

Φ(P,T,N). We use the equation of state of an ideal gas

−P=

(
∂F
∂V

)
T,N

=−NkT
V

.

Then, taking the free energy and substituting V = NkT/P we get

Φ(P,T,N) = F(T,V (P,T,N),N)+PV (P,T,N) = NkT

⎧⎨
⎩ln

⎡
⎣(2π h̄2

mkT

) 3
2 P
kT

⎤
⎦
⎫⎬
⎭ .
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Canonical Ensemble

Problem 7.1.
A classical gas in a volume V is composed of N independent and indistinguishable
particles. The single particle Hamiltonian is H = p2

2m , with m the mass of the particle
and p the absolute value of the momentum. Moreover, for each particle, we find 2
internal energy levels: a ground state with energy 0 and degeneracy g1, and an ex-
cited state with energy E > 0 and degeneracy g2. Determine the canonical partition
function and the specific heat CV as a function of the temperature T . Analyze the
limit of low temperatures and comment on the final result.

Solution
When computing the canonical partition function, we have to consider the contin-

uous part of the Hamiltonian ( p
2

2m ), plus the contribution coming from the internal

degrees of freedom. The partition function for the N particles is then the product of
N single particle partition functions

QN(T,V,N) =
VN

h3NN!

(∫ +∞

−∞
e−β p2

2m dp
)3N (

g1+g2e−βE
)N

=

VN

h3NN!

(
2πm
β

) 3N
2 (

g1+g2e−βE
)N

due to the well known formula
∫ +∞
−∞ e−ax2dx =

√
π
a . The factorial N! accounts for

the classical indistinguishability of the particles. From the partition function we

compute the energy

U =−
(
∂ lnQN

∂β

)
V,N

=
3

2
NkT +N

g2Ee−E/kT

g1+g2e−E/kT

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 7, c© Springer-Verlag Italia 2012
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and the specific heat

CV =

(
∂U
∂T

)
V,N

=
3

2
Nk+

d
dT

(
Ng2Ee−E/kT

g1+g2e−E/kT

)
=
3

2
Nk+

Ng1g2E2eE/kT

kT 2(g2+g1eE/kT )2
.

We note that the temperature appears only in the contribution of the internal degrees

of freedom. For low temperatures, we find

g1g2E2eE/kT

kT 2(g2+g1eE/kT )2
≈ g1g2E2

kT 2g21e
E/kT → 0

that is the expected result because in such limit only the ground state (the one with

0 energy) is populated.

Problem 7.2.
The Hamiltonian matrix for a quantum system can be written as

Ĥ =−g
B√
2

⎛
⎜⎝ 0 1 01 0 1

0 1 0

⎞
⎟⎠ g > 0.

Discuss a possible physical meaning of the Hamiltonian and compute the canonical

partition function and the average energy as a function of the temperature.

Solution
We note that the Hamiltonian can be written as Ĥ =−gBL̂x with L̂x the x component
of the orbital angular momentum in three dimensions

L̂x =
h̄√
2

⎛
⎜⎝ 0 1 01 0 1

0 1 0

⎞
⎟⎠ .

We therefore interpret the Hamiltonian as that of a particle with spin 1 placed in a

magnetic field with strength B and directed along the x axis. The computation of the
canonical partition function directly follows from the eigenvalues of the Hamilto-

nian

E1 =−gB E2 = 0 E3 = gB.

The resulting canonical partition function is

Q(β ) =
3

∑
i=1

e−βEi = eβgB+1+ e−βgB

from which we extract the average energy with a suitable derivative

U =−d lnQ(β )
dβ

=−gB(eβgB− e−βgB)

eβgB+1+ e−βgB .
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Problem 7.3.
Let us consider N indistinguishable non interacting particles placed in a segment of
length a. Find the corresponding quantum mechanical partition function and deter-
mine the free energy and the internal energy in the limit of low temperatures. Finally,

assuming that the energy levels are infinitesimally spaced, give an estimate for the

free energy and the internal energy as functions of the temperature. For simplicity,

when computing the degeneracy factor for a given configuration in the energy space,

use the classical treatment for indistinguishable particles.

Solution
We can write the partition function for the N particles as

QN(T,a,N) =∑
E
e−

E
kT

where E are the eigenvalues of the Hamiltonian of the system. We can explicitly

write down the following conditions for the total energy E and the number N

E =∑
ε
nεε N =∑

ε
nε

where nε is the number of particles with eigenvalue ε . Therefore, we can write the
partition function in the following way

QN(T,a,N) = ˜∑{nε}g{nε}e
− 1

kT ∑ε nε ε

with g{nε} the number of possible ways to select a set {nε} out of N objects, and

where ∑̃{nε} is meant to be the sum over all the possible configurations satisfying

N = ∑ε nε . The degeneracy factor g{nε} depends on the statistics and, in the ap-
proximation requested by the text, is equal to

g{nε}= N!
(n1!n2!n3! · · ·) .

We further have to divide by N! in order to take into account the indistinguishability
of the particles, i.e. we have to use the Gibbs factor. Therefore, the degeneracy

coefficient is g{nε}=∏ε
1
nε !
. The partition function is

QN(T,a,N) = ˜∑{nε}∏ε
1

nε !

(
e−

ε
kT

)nε
=
1

N!
˜∑{nε}N!

(
∏
ε

1

nε !

(
e−

ε
kT

)nε)
=

1

N!

(
∑εe

− ε
kT

)N
=
1

N!
QN
1 (T,a)

where we have used the generalization of the binomial formula, and where we have

denoted with Q1(T,a) the partition function of the single particle. To clarify the
above steps in the calculation, set xε = e−ε/kT and consider the simple case where
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ε = 1,2 (N particles with 2 energy levels). The partition function is

QN(T,a,N) =
N

∑
k1=0

1

k1!(N− k1)!
xk11 xN−k1

2

where we recognize, on the right hand side, the binomial formula

(x1+x2)N =
N

∑
k1=0

(
N
k1

)
xk11 xN−k1

2 =
N

∑
k1=0

N!
k1!(N− k1)!

xk11 xN−k1
2 = ˜∑{ki}N!

(
∏
i

1

ki!
xkii

)

with ∑̃{ki} the sum over all configurations such that k1+k2 =N. Therefore, we have

QN(T,a,N) =
(x1+ x2)N

N!
=

QN
1 (T,a)
N!

.

Going back to the most general case, let us concentrate on the energy levels of

the single particle to compute the related partition function. The eigenvalues of the

Hamiltonian for a free particle in a segment a directly come from the solution of the
stationary Schrödinger equation (see also Problem 2.10 in the section of Quantum

Mechanics) for the eigenstate ψn(x)

− h̄2

2m
d2ψn(x)

dx2
= εnψn(x).

The requirement that ψn(x) is zero at x= 0 and x= a leads to the following normal-
ized eigenstates

ψn(x) =

√
2

a
sin
(nπx

a

)
n= 1,2,3, ...

and gives rise to the discrete energy spectrum

εn =
π2h̄2n2

2ma2
= αn2 α =

π2h̄2

2ma2
n= 1,2,3, ...

The resulting partition function of the single particle for low temperatures may be

written as

Q1(T,a) =
+∞

∑
n=1

e−
αn2
kT = e−

α
kT +(e−

α
kT )4+ · · · ≈ e−

α
kT

from which we compute the free energy

F =−kT lnQN =−kT ln
(
QN
1

N!

)
≈ kTN lnN+

Nπ2h̄2

2ma2

and the internal energy

U = F+TS= F−T
(
∂F
∂T

)
a,N

=−
(
∂ lnQN

∂β

)
a,N

≈ Nπ2h̄2

2ma2
.
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When the energy levels are infinitesimally spaced, we can approximate the sum with

an integral as

Q1(T,a) =
+∞

∑
n=1

e−
αn2
kT =

+∞

∑
n=0

e−
αn2
kT −1≈

∫ +∞

0
e−

αx2
kT dx−1=

√
kT
α

∫ +∞

0
e−y2 dy−1=

√
ma2kT
2π h̄2

−1

from which we compute the free energy

F = kT lnN!−NkT ln

⎛
⎝
√

ma2kT
2π h̄2

−1
⎞
⎠

and the internal energy

U =−
(
∂ lnQN

∂β

)
a,N

=
1

2

NkT

1−
√

2π h̄2
ma2kT

.

Problem 7.4.
A physical system is composed of N distinguishable spins assuming two possible

values±1. These two values correspond to the energy levels±ε , respectively. Com-
pute the total energy E using the Boltzmann formula and the microcanonical ensem-
ble. Finally, compare the results with those in the canonical ensemble.

Solution
Let us call N± the number of particles with spin orientation ±1. Then, we have to
consider the equations determining the total number of particles and the total energy

for the system ⎧⎨
⎩N = N++N−
E = (N+−N−)ε

from which we extract N± as ⎧⎨
⎩N+ = 1

2

(
N+ E

ε
)

N− = 1
2

(
N− E

ε
)
.

For a given E and N, the number of states is therefore given by all the possible ways
to extract N+ (or N−) objects out of N, with the constraint that N = N++N−. This
number is

Ω(E,N) =
N!

N+!(N−N+)!
=

N!
N+!N−!

=
N![

1
2

(
N+ E

ε
)]
!
[
1
2

(
N− E

ε
)]
!
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from which, with N � 1 and the use of the Stirling approximation, we obtain

S(E,N) =k lnΩ(E,N)≈ k
[
N lnN− 1

2

(
N+

E
ε

)
ln

(
N+

E
ε

)
−

1

2

(
N− E

ε

)
ln

(
N− E

ε

)
+N ln2

]

and
1

T
=

(
∂S
∂E

)
N
=− k

2ε
ln

(
N+

E
ε

)
+

k
2ε
ln

(
N− E

ε

)

leading to the internal energy

E =−Nε tanh(βε).

Let us repeat the same calculation in the canonical ensemble. The partition function

for the single spin is obtained by summing e−βH over the two possible energy states
(H =±ε)

Q1(T ) = ∑
m=±1

e−mβε = eβε + e−βε = 2cosh(βε)

and the total (N particles) partition function is given by

QN(T,N) = QN
1 (T )

from which we determine the free energy, the entropy and the average internal en-

ergy as

F = − 1
β
lnQN =−NkT ln(2cosh(βε))

S = −
(
∂F
∂T

)
N
= Nk(ln(2cosh(βε))−βε tanh(βε))

U = F+TS=−
(
∂ lnQN

∂β

)
N
=−Nε tanh(βε).

The result is basically the same as the one obtained with the microcanonical ensem-

ble, with the exception that the energy E is replaced by the average energyU = 〈E〉.
Problem 7.5.
A point with mass m moves along the x axis under the effect of a conservative force
with the following potential

V (q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1
2mω

2(q+a)2 q≤−a

0 −a < q < a
1
2mω

2(q−a)2 q≥ a
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with a a positive constant. When the system is in contact with a reservoir at tem-

perature T , find the canonical partition function, the average energy and the specific
heat. Finally, comment on the limit a→ 0.

Solution
We compute the canonical partition function

Q1(β ) =
1

h

∫ +∞

−∞
e−β p2

2m dp
∫ +∞

−∞
e−βV (q) dq

where the integral in q can be done by dividing in three different sub intervals
([−∞,−a], [−a,+a] and [a,+∞])

Q1(β )=
1

h

∫ +∞

−∞
e−β p2

2m dp
[∫ −a

−∞
e−β mω2

2 (q+a)2dq+
∫ +a

−a
dq+

∫ +∞

a
e−β mω2

2 (q−a)2dq
]
.

The integral over momenta is immediate. The one over the space coordinates can be

further simplified by setting y= q±a

Q1(β ) =
1

h

(
2πm
β

)1/2 [
2

∫ +∞

0
e−β mω2

2 y2dy+2a
]
=

2π
hβω

+
2a
h

(
2πm
β

)1/2

where we have used the well known Gaussian integral
∫ +∞
−∞ e−aq2 dq =

√
π
a . The

average energy is

U =−d lnQ1(β )
dβ

=
1

2
kT +

π(kT )2

2πkT +2aω(2πkTm)1/2

which can be rearranged as

U =
kT
2

+
AT 2

BT +DT 1/2

with A= πk2, B= 2πk and D= 2aω(2πkm)1/2. The specific heat is

C =
dU
dT

=
k
2
+

ABT 2+ 3
2ADT 3/2

(BT +DT 1/2)2
.

We note that, in the limit a → 0, the potential V (q) becomes exactly quadratic and
the Hamiltonian corresponds to a one dimensional harmonic oscillator. This can be

explicitly verified in the above results, because in that limit we find

D→ 0 A/B= k/2

so that

U → kT C → k

which are the internal energy and the specific heat for a classical one dimensional

harmonic oscillator.



234 7 Canonical Ensemble

Problem 7.6.
Let us consider a statistical system with N states, with energies εn = nε, n =
0, . . . ,N−1. The system is in contact with a reservoir at temperature T . Determine
the probability that the system is in the state with energy εn and verify the final
result.

Solution
The canonical partition function is written as

QN(T,N) =
N−1
∑
n=0

e−nβε =
N−1
∑
n=0

xn =
+∞

∑
n=0

xn−
+∞

∑
n=N

xn =

1

1− x
−

+∞

∑
m=0

xm+N =
1

1− x
− xN

1− x
=
1− xN

1− x
=
1− e−Nβε

1− e−βε

where we have set x= e−βε . The probability associated with an energy level is

P(εn) =
e−βεn

QN(T,N)
=

e−nβε(1− e−βε)

1− e−Nβε .

It is simple to verify that
N−1
∑
n=0

P(εn) = 1

which proves the validity of final result, i.e. the fact that the probability is properly

normalized.

Problem 7.7.
N independent and distinguishable particles move in a one dimensional segment

between q = 0 and q = L. Determine the equation of state of the system, given the
following single particle Hamiltonian

H =
p2

2m
−α ln

(
q
L0

)
α > 0.

In the above expression, α is a constant giving the strength of the potential V (q) =

−α ln
(

q
L0

)
and L0 is a characteristic length scale. Determine the pressure for very

low temperatures and comment on the limit α → 0.

Solution
We determine the single particle partition function by integrating in the phase space

Q1(T,L) =
1

h

∫ +∞

−∞
e−β p2

2m dp
∫ L

0
eαβ ln(

q
L0

) dq=
1

h

√
2mπ
β

Lαβ+1

αβ +1

1

Lαβ0
.

Due to independence, the N particles partition function is the product of N single

particle partition functions, i.e. QN(T,L,N) = QN
1 (T,L). The pressure can be com-
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puted from the derivative of the free energy with respect to the ‘volume’, i.e. L in
our case. Since the free energy is F =−kT lnQN , the pressure follows

P=−
(
∂F
∂L

)
T,N

= KT
(
∂ lnQ
∂L

)
T,N

=
NKT
L

(
1+

α
KT

)
.

In the limit of low temperatures, we find a pressure contribution different from zero

P=
Nα
L

.

This is possible because, even without thermal fluctuations, we have a non zero en-

ergy contribution coming from the potential V (q) in the Hamiltonian. The pressure
becomes zero when α → 0 and such potential contribution disappears.

Problem 7.8.
A physical system is characterized by two energy levels: the first one has energy E1
and degeneracy g1, while the second one has energy E2 and degeneracy g2. Prove
that the entropy S can be written as

S=−k
[
p1 ln

(
p1
g1

)
+ p2 ln

(
p2
g2

)]

where pi with i = 1,2 is the probability that the system is found in the i-th energy
level. Use the connection between the entropy S and the average energyU and free

energy F . Remember that both probabilities have to satisfy p1+ p2 = 1.

Solution
From the definition of free energy we know that

S
k
= β (U−F)

whereU is the average internal energy and F the free energy. For the average inter-
nal energy we can use

U = p1E1+ p2E2

while, for the free energy, we know that −βF = lnQ, where Q is the partition func-
tion of the system. Therefore, we have

S
k
= β p1E1+β p2E2+ lnQ.

We also note that the probability associated with the i-th level is pi =
gie−βEi

Q , so that

βEi+ lnQ=− ln
(

pi
gi

)
.
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Plugging this result in the equation for S, and recalling that p1+ p2 = 1, we obtain

S
k
=β p1E1+β p2E2+ lnQ=

− (p1+ p2) lnQ− p1 ln
(

p1
g1

)
− p2 ln

(
p2
g2

)
+ lnQ=

− p1 ln
(

p1
g1

)
− p2 ln

(
p2
g2

)

that is the desired result.

Problem 7.9.
The canonical partition function for a fluid, whose molecules possess two charac-

teristic frequencies ω and Ω , is given by

Q(β ) =
1

(1− e−β h̄ω)(1− e−β h̄Ω)
.

Find the average internal energy U , the entropy S, and the specific heat C. Finally,
determine the low temperature limit of the entropy.

Solution
The internal energy, the entropy and the specific heat can be written as suitable

derivatives of the canonical partition function Q(β ). The internal energy is

U =−d lnQ(β )
dβ

=
h̄ω

eβ h̄ω −1 +
h̄Ω

eβ h̄Ω −1 .

The entropy is given by

S=
U
T
+ k lnQ=

h̄
T

(
ω

eβ h̄ω −1 +
Ω

eβ h̄Ω −1
)

− k
[
ln(1− e−β h̄ω)+ ln(1− e−β h̄Ω )

]
.

In the limit of low temperatures (large β ) the exponential functions are� 1 and the

entropy goes to zero exponentially. Moreover, using the identity d
dT =−kβ 2 d

dβ , we

can determine the specific heat

C =
dU
dT

= kβ 2
[

h̄2ω2eβ h̄ω

(eβ h̄ω −1)2 +
h̄2Ω 2eβ h̄Ω

(eβ h̄Ω −1)2
]
.

Problem 7.10.
Consider a system composed of 2 filaments (a,b) intersecting one with each other so
as to form a double helix. On these filaments there are N sites forming energy bonds
in such a way that the i-th site of the filament a can link only with the i-th site of the
filament b (see Fig. 7.1). For an open bond, the energy of the system increases by a
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Fig. 7.1 We show a system composed of 2 filaments (a,b) intersecting one with each other so
as to form a double helix. Each filament possesses N sites forming energy bonds with the other
filament’s sites. When a bond connecting the different sites is open, it releases an energy ε > 0. In
Problem 7.10 we study the statistical mechanics of such system in the framework of the canonical
ensemble

factor ε > 0. The system presents various configurations, including the configuration
with all closed bonds, or configurations with open bonds from site 1 up to site p (p<
N) and all the others closed. The last bond (p = N) cannot be opened. Moreover,
for each site, there is a degeneracy G > 1 due to a rotational freedom around the

site itself. Write down the canonical partition function and determine the average

number of open bonds 〈p〉. Is there any critical temperature Tc above which the
canonical ensemble is meaningless for large N?
Finally, after defining the variable x = G2e−βε and setting x = 1+η , find the

behaviour of 〈p〉 for small η and compute the linear response function(
∂ 〈p〉
∂η

)
N

when η → 0. For large N, determine the power law dependence on N of the linear
response function.

Solution
Let us start by determining the partition function. Let us call p the number of open
bonds. From the text we know that 0≤ p≤ N−1. The partition function is

QN(T,N) =
N−1
∑
p=0

G2pe−β pε =
N−1
∑
p=0

xp =
1− xN

1− x
x= G2e−βε
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where we have assumed x �= 1. For the convergence of the previous series at large
N, it is important to have

G2e−βε < 1

from which

T < Tc =
ε

2k lnG
where Tc is a critical temperature above which the canonical ensemble does not give
a finite partition function for large N. The average of p is evaluated as

〈p〉= ∑N−1
p=0 pxp

∑N−1
p=0 x

p
= x

d
dx
ln

(
N−1
∑
p=0

xp
)

=
NxN

xN −1 −
x

x−1 .

If we set x= 1+η , we find

NxN

xN −1 −
x

x−1 =
N(1+η)N

(1+η)N −1 −
1+η
η

≈

N+N2η+ N2(N−1)
2 η2+ N2(N−1)(N−2)

6 η3....

Nη+ N(N−1)
2 η2+ N(N−1)(N−2)

6 η3...
− 1+η

η

that implies

〈p〉 ≈ N−1
2

+
N2−1
12

η+O(η2).

The requested linear response, when η → 0, is(
∂ 〈p〉
∂η

)
N
=

N2−1
12

which grows up with the second power of N for N � 1.

Problem 7.11.
Let us take the classical Hamiltonian

H = vp+
(
A
p

)2
+B2p4 (q− vt)2

where A, B, v are constants. Moving to a quantum mechanical description, deter-

mine the eigenvalues for the energy and the canonical partition function. To solve

this problem, we suggest to simplify the form of the Hamiltonian with a canonical

transformation whose generating function is given by

F(q,Q, t) = λ
q− vt
Q

with the choice λ = 1

B
√
2M
, where M has the physical dimensions of a mass.
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Solution
The canonical transformation generated by F(q,Q, t) produces a change in the co-
ordinates from (p,q, t) to (P,Q, t) such that

p=
(
∂F
∂q

)
Q,t

P=−
(
∂F
∂Q

)
q,t

.

The new Hamiltonian is given by

H̃ = H+

(
∂F
∂ t

)
q,Q

.

Since p=
(
∂F
∂q

)
Q,t

= λ
Q , P=−

(
∂F
∂Q

)
q,t

= λ q−vt
Q2 ,

(
∂F
∂ t

)
q,Q

=−λv
Q , we find that

p=
λ
Q

q− vt =
PQ2

λ

and

H̃ = H+

(
∂F
∂ t

)
q,Q

=
A2Q2

λ 2
+λ 2B2P2.

Finally, using the suggested value of λ , we find

H̃ =
P2

2M
+2MB2A2Q2 =

P2

2M
+
1

2
Mω2Q2

that is not time dependent and corresponds to a one dimensional harmonic oscillator

with angular frequency ω = 2AB and mass M. The eigenvalues of the Hamiltonian
are

En =

(
n+

1

2

)
h̄ω n= 0,1,2, . . .

and the canonical partition function is

Q(T ) =
+∞

∑
n=0

e−β h̄ω(n+ 1
2 ) =

e−β h̄ω/2

1− e−β h̄ω =
1

2sinh
(
β h̄ω
2

) .
Problem 7.12.
A cylinder with radius a (see Fig. 7.2) is positively charged, due to the fact that it re-
leases negative charges in a larger cylinder with radius R. Thermal fluctuations tend
to move away the negative charges, while the electrostatic attraction makes them

move back. If the number of negative charges is N and if we neglect the repulsion

between them, the Hamiltonian for the N negative charges (in suitable units) is

H =
N

∑
i=1

[
p2i
2m

+2e2n ln
( ri
L

)]
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Fig. 7.2 A cylinder with radius a is positively charged, due to the fact that it releases negative
charges in a larger cylinder with radius R. Thermal fluctuations tend to move away the negative
charges, while the electrostatic attraction makes them move back. Thermodynamic equilibrium is
described in the framework of the canonical ensemble in Problem 7.12

where ri is the radial distance (a≤ ri ≤ R) of the i-th charge, e the absolute value of
the charge, L the height of the cylinders and n= N

L .

Compute the canonical partition function. Also, determine the probability density

function p(r) associated with the radial position of a single charge. Finally, deter-
mine the average radial position and, more generally, the momentum of order �, 〈r�〉.

Solution
The canonical partition function is

QN(T,L,N) =
1

h3NN!

∫ ( N

∏
i=1

d3pid3qi

)
exp

[
−β

N

∑
i=1

(
p2i
2m

+2e2n ln
( ri
L

))]
≈

(
2πL
Nλ 3

)N

L2βe
2nN
[∫ R

a
r1−2e

2n/kT dr
]N

=

(
2πL
Nλ 3

)N

L2βe
2nN

[
R2(1−e2n/kT )−a2(1−e2n/kT )

2(1− e2n/kT )

]N

where

λ =
h√

2πmkT

is the thermal length scale and where we have used the Stirling approximation for

the factorials, i.e. N! ≈ NN . The probability density function associated with the
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radial position is

p(r) =
re−(2e2n/kT ) ln(r/L)∫ R

a re−(2e2n/kT ) ln(r/L)dr
=

2

(
1− e2n

kT

)
r1−2e2n/kT

R2(1−e2n/kT )−a2(1−e2n/kT )
= Ar1−2e

2n/kT

where we have used the constant A defined as

A= 2

(
1− e2n

kT

)
1

R2(1−e2n/kT )−a2(1−e2n/kT )
.

The average position becomes

〈r〉=
∫ R

a
r p(r)dr =

(
AkT

3kT −2e2n
)
(R3−2e

2n/kT −a3−2e
2n/kT )

and the momentum of order �

〈r�〉=
∫ R

a
r� p(r)dr =

(
AkT

(2+ �)kT −2e2n
)
(R2+�−2e2n/kT −a2+�−2e2n/kT ).

Problem 7.13.
Let us consider a one dimensional chain composed of N rings. Each ring possesses
r different configurations of energy Ei and length xi (i = 1,2, ...,r). Moreover, the
chain is subject to a force F > 0 at its ends, in such a way that the energy for the

single ring in the i-th configuration is

Hi = Ei−Fxi.

The whole system is in thermal equilibrium at constant temperature T . Write down
the partition function and the average length 〈L〉 of the chain. Specialize to the case
with r = 2 and, assuming that E2 > E1 and x2 > x1, write down the average length
for F = 0. When F = 0, analyze the limit of low and high temperatures and give

an estimate of the characteristic temperature that separates the two regimes. Finally,

compute the linear response

χ =

(
∂ 〈L〉
∂F

)
T,N

showing that limF→0 χ > 0. Comment on the physical meaning of these results.

Solution
From the energy of the single ring in the i-th configuration

Hi = Ei−Fxi
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we can write down the partition function for the system

QN(T,F,N) =

[
r

∑
i=1

e−β (Ei−Fxi)

]N

where we explicitly keep the dependence on F to be used later in the differentiation
of the partition function. As for the average length, we can write it as a suitable

derivative of the partition function

〈L〉= 1

β

(
∂ lnQN

∂F

)
T,N

.

For the case r = 2 we find

QN(T,F,N) =
[
e−β (E1−Fx1) + e−β (E2−Fx2)

]N
〈L〉= 1

β

(
∂ lnQN

∂F

)
T,N

= N
x1e−β (E1−Fx1) + x2e−β (E2−Fx2)

e−β (E1−Fx1) + e−β (E2−Fx2)
.

The limit F → 0 is evaluated as

〈L〉= N
x1+ x2e−β (E2−E1)

1+ e−β (E2−E1)
.

If δ = E2−E1 � kT , we find

〈L〉= N
(x1+ x2)

2

while, for δ � kT , we get

〈L〉= N(x1+ x2e−βδ )

meaning that the transition between the high and low temperature regimes takes

place when δ ≈ kT . In order to compute the linear response of the system, we need
to expand 〈L〉 in series of F . Neglecting the second order contributions, we find that

〈L〉=N
x1e−β (E1−Fx1) + x2e−β (E2−Fx2)

e−β (E1−Fx1) + e−β (E2−Fx2)
=

N
x1e−βE1(1+βFx1)+ x2e−βE2(1+βFx2)
e−βE1(1+βFx1)+ e−βE2(1+βFx2)

+O(F2) =

N
x1(1+βFx1)+ x2e−βδ (1+βFx2)
(1+βFx1)+ e−βδ (1+βFx2)

+O(F2) =

N
(x1+ x2e−βδ )+βF(x21+ x22e

−βδ )

(1+ e−βδ )
[
1+ βF(x1+x2e−βδ )

(1+e−βδ )

] +O(F2) =

N
(x1+ x2e−βδ )+βF(x21+ x22e

−βδ )

(1+ e−βδ )

[
1− βF(x1+ x2e−βδ )

(1+ e−βδ )

]
+O(F2) =

A+βFN
(x1− x2)2e−βδ

(1+ e−βδ )2
+O(F2)
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Fig. 7.3 We show a one dimensional array of lattice sites with two possible states: open and closed
sites. A signal is produced by open sites and can propagate from left to right through consecutive
open sites. In Problem 7.14 we characterize the canonical partition function of such system

where in the positive constant A we have collected all the terms independent of F .
It follows that

χ =

(
∂ 〈L〉
∂F

)
T,N

= βN
(x1− x2)2e−βδ

(1+ e−βδ )2
+O(F)

lim
F→0

χ = βN
(x1− x2)2e−βδ

(1+ e−βδ )2
> 0

meaning that an increase of the force produces an elongation of the chain, that is the

analogue of the thermodynamic relation −
(
∂V
∂P

)
T,N

> 0 valid for a gas.

Problem 7.14.
A one dimensional array of N lattice sites is in thermal equilibrium at tempera-

ture T . These sites can be closed (with energy 0) or open (with energy ε). A signal
is produced from open sites and can travel from left to right. The signal can be

transmitted from an open site, only if its nearest neighbor is open (see Fig. 7.3).

The first site of the array always produces a signal that can travel up to a given

point of the lattice. From that point on, there cannot be any other production of

signals. Find the partition function of the system and the average number of open

sites 〈n〉. At low temperatures, show that this quantity is independent of N. Fi-
nally, compute the fluctuation of the number of open sites 〈(Δn)2〉 = 〈n2〉− 〈n〉2.
When counting all states, explicitly consider the configuration with all closed

sites.

Solution
From the information given in the text, we know that there are only N available

configurations with length n = 0,1,2,3, ...,N. They are all the subarrays of open
sites that allow for the transmission of the signal from the beginning of the array up
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to the n-th site (n= 1,2,3, ...,N), plus the configuration with all closed sites (n= 0).
If we set x= e−βε , the partition function may be written as

QN(T,N) =
N

∑
n=0

e−βnε =
N

∑
n=0

xn =
+∞

∑
n=0

xn−
+∞

∑
n=N+1

xn =

1

1− x
−

+∞

∑
m=0

xm+(N+1) =
1− xN+1

1− x
=
1− e−β (N+1)ε

1− e−βε .

The average number of open sites is

〈n〉=∑
N
n=0 ne

−βnε

QN
= x

d
dx
lnQN = x

d
dx
ln

N

∑
n=0

xn = x
d
dx
ln
1− xN+1

1− x
=

x
d
dx
ln(1− xN+1)− x

d
dx
ln(1− x) =

x
1− x

− (N+1)xN+1

1− xN+1
=

e−βε

1− e−βε −
(N+1)e−β (N+1)ε

1− e−β (N+1)ε .

In the limit of low temperatures we have x= e−βε � 1. This means

〈n〉 ≈ x= e−βε

which is independent of N. The reason for this independence is that, in the limit
of low temperatures, only those configurations with low energy are available: these

configurations have a small number of open sites.

As for the fluctuations of the number of open sites, we directly derive them from

the partition function as

〈(Δn)2〉=x
d
dx

(
x
d
dx
lnQN

)
= x

d
dx

〈n〉= ∑N
n=0 n

2xn

QN
−
(
∑N

n=0 nx
n

QN

)2
=

x
(1− x)2

− (N+1)2xN+1

(1− xN+1)2
.

In the limit of low temperatures, we find x= e−βε � 1, so that 〈(Δn)2〉 ≈ x+2x2 is
independent of N. Again, this is due to the low temperature limit, where the system
tends to occupy the lowest energy levels corresponding to a small number of open

sites.

Problem 7.15.
Determine the energy fluctuations 〈(ΔE)2〉 for a system of N independent one di-

mensional harmonic oscillators with frequency ω , mass m, and subject to a con-
stant gravitational acceleration g along the direction of oscillation. Make use of the
canonical ensemble in the classical limit.
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Solution
If we call p the momentum and q the spatial coordinate, the Hamiltonian of the
single oscillator is

H =
p2

2m
+
1

2
mω2q2+mgq.

The canonical partition function is determined by performing first the integral over

the momenta

Q1(T ) =
1

h

∫ +∞

−∞
e−β p2

2m dp
∫ +∞

−∞
e−

1
2βmω

2q2−βmgq dq=

1

h

√
2πm
β

∫ +∞

−∞
e−

1
2βmω

2q2−βmgq dq.

For the integral in the coordinate q, we rearrange the exponential as

∫ +∞

−∞
e−

1
2βmω

2q2−βmgq dq=
∫ +∞

−∞
e−

1
2βmω

2
(
q+ g

ω2

)2
+ 1
2βm

g2

ω2 dq=

e
1
2βm

g2

ω2
∫ +∞

−∞
e−

1
2βmω

2
(
q+ g

ω2

)2
dq

where we can set y= q+ g
ω2 , so that

e
1
2βm

g2

ω2
∫ +∞

−∞
e−

1
2βmω

2y2dy= e
1
2βm

g2

ω2

√
2π

mβω2
.

The final result for the single oscillator partition function is

Q1(T ) =
1

h

∫ +∞

−∞
e−β p2

2m dp
∫ +∞

−∞
e−

1
2βmω

2q2−βmgq dq=

1

h

√
2πm
β

√
2π

mβω2
e
βmg2

2ω2 =
2π
hβω

e
βmg2

2ω2

while, for the total partition function, we get QN(T,N) = QN
1 (T ). The average en-

ergy is

U =−
(
∂ lnQN

∂β

)
N
=−N

d
dβ

(
mβg2

2ω2
+ ln

(
2π
hω

)
− lnβ

)
=

− Nmg2

2ω2
+

N
β

=−Nmg2

2ω2
+NkT.

The specific heat is then computed as C =
(
∂U
∂T

)
N
= Nk, from which we find the

fluctuations

〈(ΔE)2〉= kT 2C = Nk2T 2.
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We note that we have obtained the same specific heat of a collection of N harmonic
oscillators without the effect of gravity. This can be easily understood in terms of

the Hamiltonian, that we can rewrite as

H =
p2

2m
+
1

2
mω2q2+mgq=

p2

2m
+
1

2
mω2(q+ x0)2− mg2

2ω2

with x0 =
g
ω2 . This is nothing but the Hamiltonian of the harmonic oscillator whose

equilibrium position is q=−x0, plus the constant energy

E0 =−mg2

2ω2
.

This means that the average energy is exactly the one of the harmonic oscillator plus

the constant E0, which is not affecting the specific heat.

Problem 7.16.
A one dimensional chain is hung on a ceiling. One of its extremes is fixed, while the

other holds a massM (see Fig. 7.4). Gravity is acting along the negative z direction.
The chain is formed by two kinds of distinguishable rings: they are ellipses with

the major axis oriented vertically or horizontally. The major and minor axes have

lengths l+a and l−a respectively. The number of rings is fixed to N and the chain is
in thermal equilibrium at temperature T . Find the average energyU and the average

length 〈L〉 of the chain. Finally, determine the linear response function (F =Mg)

χ =

(
∂ 〈L〉
∂F

)
T,N

in the limit of high temperatures.

Solution
If n is the number of rings with vertical major axis, the number of rings with vertical
minor axis must be N−n. The total length is then

L= (l+a)n+(l−a)(N−n)

and the associated energy

E(n) =−MgL=−E1n−E2(N−n)

where E1 =Mg(l+a) and E2 =Mg(l−a). Therefore, the canonical partition func-
tion is given by

QN(T,N) =
N

∑
n=0

gne−βE(n) =
N

∑
n=0

N!
n!(N−n)!

enβE1+(N−n)βE2
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Fig. 7.4 A massless chain is hung on a ceiling and holds a mass M, with gravity acting along the
negative z direction. The rings are ellipses with the major axis oriented vertically or horizontally.
The total number of rings is fixed, while their arrangement (i.e. the length of the chain) changes as
a function of the temperature. The canonical partition function is computed in Problems 7.16 and
7.17

where we have explicitly considered the appropriate degeneracy (gn = N!
n!(N−n)! ) for

each configuration. We recognize in the partition function the binomial representa-

tion

(p+q)N =
N

∑
n=0

N!
n!(N−n)!

pnqN−n

with p= eβE1 and q= eβE2 . Therefore, we obtain the following result for the parti-
tion function

QN(T,N) =
(
eβE1 + eβE2

)N
.

Another possible approach to compute the partition function is discussed in Problem

7.17. The average energy is

U =−
(
∂ lnQN

∂β

)
N
=−N

d
dβ

ln
(
eβE1 + eβE2

)
=−N

E1eβE1 +E2eβE2

eβE1 + eβE2
=

−NMg [l+a tanh(βMga)] .

The average length is given by

〈L〉=− 1

Mg

(
∂ lnQN

∂β

)
N
=− U

Mg
.

When β →+∞ we obtain the lowest energy state, that is 〈L〉 ≈ N(l+a). In fact, the
lowest energy state imposes the maximum length of the chain, given the minus sign
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in the relation betweenU and 〈L〉. On the other hand, in the limit β → 0, we obtain

〈L〉 ≈ Nl+NβMga2 = Nl+NβFa2.

In this limit, the linear response function is

χ =

(
∂ 〈L〉
∂F

)
T,N

=
Na2

kT

that is basically the same result we obtain (Curie law for magnetism) in the magnetic

system of Problem 6.13 with the identification a= μ .

Problem 7.17.
Consider the same physical situation of Problem 7.16. Show an alternative way to

determine the partition function. Then, determine the average length 〈L〉 and give
an estimate for the linear response function

χ =

(
∂ 〈L〉
∂F

)
T,N

with F =Mg, showing that χ > 0.

Solution
If we think that the origin of the z axis is located at the upper end of the chain (see
Fig. 7.4) the total potential energy of the system is

E =−MgL

with L the total length of the chain, which is dependent on the number of rings with
vertical major axis. If the chain is formed by n rings with vertical major axis (and
N−n rings with vertical minor axis), the length of the chain and the energy are

L= (l+a)n+(l−a)(N−n)

E =−Mg((l+a)n+(l−a)(N−n)) =−F((l+a)n+(l−a)(N−n)).

We can think of each ring contributing to the total gravitational potential energy

with an energy E± =−Mg(l±a) =−F(l±a), depending on its vertical axis. This
means that the whole system can be seen as composed of N rings with two energy
states each. The partition function is then evaluated as

QN(T,F,N) = QN
1 (T,F) =

(
eβF(l+a) + eβF(l−a)

)N
=
(
2eFlβ cosh(aFβ )

)N
where we have explicitly kept into account the dependence on F to be used later

in the differentiation of the partition function. With respect to Problem 7.16, this is

an alternative way to compute the partition function and gives the same result. The
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average length is given by

〈L〉= 1

β

(
∂ lnQN

∂F

)
T,N

=
1

β

(
∂ (NFlβ +N ln(2cosh(aFβ )))

∂F

)
T,N

=

Nl+Na tanh(aFβ ).

We remark that we would have obtained the same result starting from the expression

of the total average energy

〈L〉=−U
F

andU =−
(
∂ lnQN
∂β

)
F,N
. Finally, we compute the linear response function as

χ =

(
∂ 〈L〉
∂F

)
T,N

=
Na2β

cosh2(aFβ )

from which we see that χ > 0, i.e. the chain is elongating if the force increases.

Problem 7.18.
A two dimensional gas confined in the (x,y) plane is characterized by N non in-

teracting particles in thermal equilibrium at temperature T . The Hamiltonian of the
single particle is

H =
1

2m
(p2x + p2y)+

1

2
mω2

[
a(x2+ y2)+2bxy

]
where px, py are the components of the momentum and m, ω , a and b are constants
(a > 0 and a2 > b2). Compute the canonical partition function and the specific heat
for the system.

Solution
The particles are non interacting so that the total partition function is

QN(T,N) = QN
1 (T )

where Q1 is the partition function of the single particle

Q1(T ) =
1

h2

∫
e−βH dxdydpx dpy =

1

h2
IpIq

Ip =
∫ +∞

−∞
e−β p2x

2m dpx
∫ +∞

−∞
e−β

p2y
2m dpy =

2πm
β

Iq =
∫ +∞

−∞
e−βamω2 y2

2 dy
∫ +∞

−∞
e−βmω2 (ax

2+2bxy)
2 dx.
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Using the integral
∫ +∞
−∞ e−(Ax2+2Bx)dx= eB

2/A
(π
A

)1/2
, we easily obtain

Iq =
2π

βmω2

(
1

a2−b2

)1/2

leading to

QN(T,N) =
(
βhω
2π

)−2N (
a2−b2

)−N/2
.

In order to determine the specific heatC, we first need to compute the internal energy

U =−
(
∂ lnQN

∂β

)
N
= 2NkT

from which

C =

(
∂U
∂T

)
N
= 2Nk

which is in agreement with the classical equipartition of the energy (see Problem

7.20).

Problem 7.19.
Compute the average energy and the specific heat for a system of N distinguishable
particles of mass m in d dimensions with the following Hamiltonian

H =
N

∑
i=1

p2i
2m

+ω
N

∑
i=1

qbi

where b is a positive integer and ω a positive constant independent of the temper-

ature. In the above expression, pi and qi refer to the d dimensional modulus of the
momentum and position for the i-th particle. Determine the internal energy and give
the corresponding prediction for the equipartition theorem. When working with a

generic d dimensional vector xxx = (x1,x2, ...,xd), make use of the following volume
integral

I (�,φ ,d) =
∫

e−�(x21+...+x2d)
φ/2

ddx= G(φ ,d)�−d/φ

where G(φ ,d) is a constant which is not useful to determine the average energy and
the specific heat.

Solution
We start from the canonical partition function

QN(T,N) = QN
1 (T )

where Q1(T ) is the single particle partition function

Q1(T ) =
1

hd

∫
e−β

(p21+...+p2d )
2m dd p

∫
e−βω(q21+...+q2d)

b/2
ddq.



Problems 251

The integral over the momentum variables is the product of d Gaussian integrals
(each one equal to

√
2πmkT ) while the integral over the position coordinates corre-

sponds to the case �= βω and φ = b of the integral,I , given above. Therefore, the
total partition function is given by

QN(T,N) =
[G(b,d)]N

hdN

(
ω1/b

(2πm)1/2

)−Nd

β−N(d/2+d/b).

We can extract the energy and the specific heat as follows

U =−
(
∂ lnQN

∂β

)
N
= Nd

(
1

2
+
1

b

)
kT

C =

(
∂U
∂T

)
N
= Nd

(
1

2
+
1

b

)
k.

We see that each degree of freedom in the momentum space contributes with a term

kT/2 to the total energy, while those in the position space with a term kT/b. This is
indeed consistent with the general result (we will discuss it in Problem 7.20)

〈
N

∑
i=1

p2i
2m

〉
=
1

2

N

∑
i=1

d

∑
k=1

〈
pik

(
∂H
∂ pik

)〉
=

NdkT
2

〈
N

∑
i=1

ωqbi

〉
=
1

b

N

∑
i=1

d

∑
k=1

〈
qik

(
∂H
∂qik

)〉
=

NdkT
b

where the derivative with respect to pik, qik is performed by keeping fixed all the
other variables.

Problem 7.20.
Compute the canonical partition function for a gas with N particles under the effect
of a one dimensional harmonic potential in the quantum mechanical case. Deter-

mine the specific heat and show that the classical limit is in agreement with the

equipartition theorem for the energy.

Solution
The partition function is

QN(T,N) = QN
1 (T ) =

(
+∞

∑
n=0

e−(n+ 1
2 )

h̄ω
kT

)N

= e−
Nh̄ω
2kT

(
+∞

∑
n=0

(
e−

h̄ω
kT

)n)N

=

e−
Nh̄ω
2kT

(
1

1− e−
h̄ω
kT

)N

=

(
1

2sinh
( h̄ω
2kT

)
)N
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so that we can compute the free energy

F =−kT lnQN = NkT ln
(
2sinh

(
h̄ω
2kT

))

and the entropy

S=−
(
∂F
∂T

)
N
=−Nk ln

(
2sinh

(
h̄ω
2kT

))
+

Nh̄ω
2T

1

tanh
( h̄ω
2kT

) .
The internal energyU = F+TS and the specific heatC =

(
∂U
∂T

)
N
are given by

U =
Nh̄ω
2

1

tanh
( h̄ω
2kT

) C = Nk
(

h̄ω
2kT

)2
1

sinh2
( h̄ω
2kT

) .
In the limit of high temperatures C ≈ Nk. This is exactly the result obtained using
the equipartition theorem, i.e. a contribution to the average energy of kT/2 for each
degree of freedom (see Problem 7.20). In our case, for each oscillator, we have one

degree of freedom for the position and another for the momentum leading to

N
(
kT
2

+
kT
2

)
= NkT.

This can be made more rigorous if we consider a generic non interacting system

composed of N particles in one dimension (for simplicity) with Hamiltonian

H =
N

∑
i=1

Hi =
N

∑
i=1

(T (pi)+U(qi))

where T and U are the kinetic and the potential energy while ppp = (p1, p2, ..., pN)
and qqq = (q1,q2, ...,qN) represent the momenta and positions of the whole system.
If xi and x j are generic phase space variables (momentum or position), we find the

following identity

〈
xi

(
∂H
∂x j

)〉
=

∫
xi

(
∂H
∂x j

)
e−

H
kT dNpdNq

∫
e−

H
kT dN pdNq

=

−kTxie−
H
kT

∣∣∣(x j)2

(x j)1
+ kT

∫ (∂xi
∂x j

)
e−

H
kT dN pdNq

∫
e−

H
kT dN pdNq

where the derivative with respect to xi is done by keeping fixed all the other vari-
ables. In the above expression, we have used the integration by parts and denoted

with (x j)2, (x j)1 the values of the variable x j at the boundaries. If x j is a momentum,

we have a boundary value for the kinetic energy T ((x j)1,2) = +∞; if it is a position,
we haveU((x j)1,2) = +∞ to ensure particles confinement. This is enough to safely
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assume that the boundary term is zero

xie−
H
kT (−kT )

∣∣∣(x j)2

(x j)1
= 0

and obtain the following result

〈
xi

(
∂H
∂x j

)〉
= kT

∫ ( ∂xi
∂x j

)
e−

H
kT dN pdNq∫

e−
H
kT dN pdNq

= δi jkT.

If we use the Hamiltonian of a collection of N harmonic oscillators with mass m and
frequency ω

H =
N

∑
i=1

(
p2i
2m

+
1

2
mω2q2i

)

and the fact that pi
(

∂H
∂ pi

)
=

p2i
m , qi

(
∂H
∂qi

)
= mω2q2i , we can write

〈
N

∑
i=1

(
p2i
m

+mω2q2i

)〉
= 2NkT.

This implies the following relation for the average energy

〈H〉=
〈

N

∑
i=1

(
p2i
2m

+
1

2
mω2q2i

)〉
= NkT.

Problem 7.21.
Consider the one dimensional quantum harmonic oscillator with mass m and fre-

quency ω in the canonical ensemble. Starting from the density matrix of the system,
find the correct probability density function associated with the position x and dis-
cuss the following limits: kT � h̄ω and h̄ω � kT . Finally, analyze the average value
of the energy and compare the quantum mechanical and classical cases.

Solution
We start from the density matrix written as

ρ̂(T ) =
+∞

∑
n=0

e−
εn
kT |n〉〈n|

with |n〉 the eigenstates and εn = h̄ω(n+1/2) . The partition function may be written
as

Q(T ) = Tr(ρ̂(T )) =
∫
〈x|ρ̂|x〉dx=

∫ +∞

∑
n=0

e−
εn
kT ψ2n (x)dx
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where we have used the completeness of the eigenstates of the position operator, i.e.∫ |x〉〈x|dx= 11. The requested probability density function is
P(x) = A

+∞

∑
n=0

e−
εn
kT ψ2n (x)

where the constant A is needed for the normalization and where we have used ψ2n (x)
instead of |ψn(x)|2 because the wave functions are real. The probability density
function may be found if we are able to sum the series. We will not do that directly,

but we will instead calculate

dP(x)
dx

= 2A
+∞

∑
n=0

e−
εn
kT ψn

dψn

dx
.

Obviously dψn/dx = i
h̄ p̂ψn, where p̂ is the momentum operator and where, from

now on, we will make use of the creation and annihilation operators â†, â. Let us
then recall the relation between x̂, p̂ and â†, â⎧⎨

⎩x̂=
√

h̄
2mω (â+ â†)

p̂=−i
√

mh̄ω
2 (â− â†).

Since the creation and annihilation operators act on a generic eigenstate as step up

and step down operators

â† |n〉=√
n+1 |n+1〉 â |n〉=√

n |n−1〉

the term dψn/dx can be written as

dψn

dx
=

i
h̄
p̂ψn =− i

h̄
(〈n|p̂|n−1〉ψn−1+ 〈n| p̂|n+1〉ψn+1)

meaning that the oscillator momentum has non zero matrix elements for transitions

between n and n±1. Also, the following relations hold

〈n|p̂|n−1〉=i

√
mh̄ω
2

√
n

〈n|p̂|n+1〉=− i

√
mh̄ω
2

√
n+1

〈n|x̂|n−1〉=
√

h̄
2mω

√
n

〈n|x̂|n+1〉=
√

h̄
2mω

√
n+1
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which are all symmetric matrix elements. Moreover, from the relation between p̂
and x̂, we obtain

〈n|p̂|n−1〉= imω〈n|x̂|n−1〉

〈n|p̂|n+1〉=−imω〈n|x̂|n+1〉.
Therefore, for the derivative of the distribution function, we get

dP(x)
dx

=− 2iA
h̄

+∞

∑
n=0

e−
εn
kT (〈n|p̂|n−1〉ψn−1(x)ψn(x)+ 〈n| p̂|n+1〉ψn+1(x)ψn(x)) =

2mAω
h̄

+∞

∑
n=0

e−
εn
kT (〈n|x̂|n−1〉ψn−1(x)ψn(x)−〈n|x̂|n+1〉ψn+1(x)ψn(x))=

2mAω
h̄

+∞

∑
n=0

e−
εn
kT (e−

h̄ω
kT 〈n|x̂|n+1〉ψn(x)ψn+1(x)−〈n|x̂|n+1〉ψn+1(x)ψn(x))=

− 2mAω
h̄

(1− e−
h̄ω
kT )

+∞

∑
n=0

e−
εn
kT 〈n|x̂|n+1〉ψn+1(x)ψn(x)

where we have used the matrix elements of p̂ and x̂ and moved to the new variable
n′ = n− 1. In this new variable, the sum goes from n′ = −1 to n′ = +∞, but the
matrix element 〈−1| x̂ |0〉 is zero, so that n′ = n = 0, . . .+∞. Finally, we have used
the fact that the matrix elements are symmetric. A similar calculation can be done

for xP(x)

xP(x) =A
+∞

∑
n=0

e−
εn
kT (〈n|x̂|n−1〉ψn−1(x)ψn(x)+ 〈n|x̂|n+1〉ψn+1(x)ψn(x)) =

A(1+ e−
h̄ω
kT )

+∞

∑
n=0

e−
εn
kT 〈n|x̂|n+1〉ψn+1(x)ψn(x).

We are now ready to compute the ratio of the quantities obtained previously

1

xP(x)
dP(x)
dx

=−2mω
h̄

tanh

(
h̄ω
2kT

)
.

The solution for the differential equation

dP
P

=−2mω
h̄

x tanh
(

h̄ω
2kT

)
dx

is

P(x) = Ae−
mω
h̄ x2 tanh( h̄ω

2kT ).
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Integrating in x between −∞ and +∞ we are able to find the normalization. There-
fore, the probability density function for the position is

P(x) =

√
mω
π h̄

tanh

(
h̄ω
2kT

)
e−

mω
h̄ x2 tanh( h̄ω

2kT ).

For kT � h̄ω we obtain

P(x) =

√
mω2

2πkT
e−

mω2
2kT x2

that is the classical distribution. For h̄ω � kT we get

P(x) =
√

mω
π h̄

e−
mω
h̄ x2

which is the square of the wave function in the ground state, i.e.ψ0(x)=
(mω
π h̄
)1/4 e−mω

2h̄ x2 .

If we set β = 1/kT , the average energy becomes

〈Ĥ〉= Tr(Ĥe−β Ĥ)

Tr(e−β Ĥ)
=− d

dβ
lnTr(e−β Ĥ) =

d
dβ

ln

(
2sinh

(
β h̄ω
2

))
=
1

2
h̄ω coth

(
β h̄ω
2

)
.

We note that in the classical limit where β h̄ω � 1, we can expand

coth

(
β h̄ω
2

)
≈ 2

β h̄ω

and find 〈Ĥ〉 ≈ kT , that is consistent with the equipartition theorem of the energy

(see Problem 7.20) assigning to each degree of freedom a contribution equal to

kT/2. For the quantum mechanical case, we first plug the value of 〈Ĥ〉 in P(x)

P(x) =

√
mω2

2π〈Ĥ〉e
−mω2x2

2〈Ĥ〉 .

Then, we note from the Hamiltonian that the momentum and position have the same

quadratic functional form and, instead of x, we can set p/(mω) to find the probabil-
ity density function for the momentum

P(p) =

√
1

2πm〈Ĥ〉e
− p2

2m〈Ĥ〉
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where the normalization is properly found by normalizing P(p) to unity. It is now
possible to compute the following average quantities

〈
1

2
mω2x̂2

〉
=

√
mω2

2π〈Ĥ〉
∫ +∞

−∞

(
1

2
mω2x2

)
e
−mω2x2

2〈Ĥ〉 dx=
1

2
〈Ĥ〉

〈
p̂2

2m

〉
=

√
1

2πm〈Ĥ〉
∫ +∞

−∞

(
p2

2m

)
e
− p2

2m〈Ĥ〉 dp=
1

2
〈Ĥ〉

where we see that the averages of the momentum and position operators give the

same contribution to the average energy.

Problem 7.22.
The potential energy of a one dimensional classical oscillator can be written as the

sum of harmonic and anharmonic contributions

V (x) = λx2− γx3−αx4

with λ , γ , α > 0 and γ and α small with respect to λ . The oscillator is in thermal
equilibrium at temperature T . Use perturbation theory in γ with α = 0 to show that
the leading anharmonic contribution to the average value of x is given by

〈x〉An = 3γkT
4λ 2

.

Then, in the general case when both γ and α are different from zero, show that

the leading anharmonic correction to the specific heat C is given by the following
expression

CAn =
3

2
k2T
(

α
λ 2

+
5γ2

4λ 3

)
where we have used the subscript An to indicate that we are dealing with the anhar-
monic part.

Solution
For the classical harmonic oscillator, the average value of x is obviously zero. In the
anharmonic case, due to the presence of the cubic terms in the potential, such value

becomes different from zero. The average position is

〈x〉=
∫
xe−βHdxdp∫
e−βHdxdp

with

H =
p2

2m
+V (x) =

p2

2m
+λx2− γx3−αx4.
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The first anharmonic contribution in perturbation theory comes from the Taylor ex-

pansion of the exponential function with respect to γ and α

e−β (λx2−γx3−αx4) = e−βλx2(1+βγx3+βαx4+β 2
γ2x6

2
+ . . .).

In the ratio defining 〈x〉, the integrals in dp cancel out

〈x〉=
∫ +∞
−∞ xe−βλx2(1+βγx3+βαx4+β 2 γ

2x6
2 + . . .)dx∫ +∞

−∞ e−βλx2(1+βγx3+βαx4+β 2 γ
2x6
2 + . . .)dx

.

When α = 0, the average 〈x〉 may be written as

〈x〉=
∫ +∞
−∞ xe−βλx2(1+βγx3)dx∫ +∞

−∞ e−βλx2 dx
+O(γ2)

and the first non zero correction to the harmonic contribution is

〈x〉An =
∫ +∞
−∞ e−βλx2βγ x4 dx∫ +∞

−∞ e−βλx2 dx
.

If we use the integrals ∫ +∞

−∞
e−ax2dx=

√
π
a∫ +∞

−∞
x4e−ax2dx=

1

a2
lim
s→1

d2

ds2

∫ +∞

−∞
e−sax2dx=

3

4

√
π
a5

with a= βλ , we find

〈x〉An = 3γkT
4λ 2

.

To obtain the second result, we set α �= 0 and we expand the partition function

Q(β ) =
1

h

∫ +∞

−∞
e−β p2

2m dp
∫ +∞

−∞
e−βλx2(1+βγx3+βαx4+β 2

γ2x6

2
+ . . .)dx

where it is important to consider the Taylor expansion of the exponentials up to β 2.
Together with the above integrals, we also use

∫ +∞

−∞
x6e−ax2dx=− 1

a3
lim
s→1

d3

ds3

∫ +∞

−∞
e−sax2dx=

15

8

√
π
a7

and we find the following result

Q(β ) =
π
hβ

(
2m
λ

)1/2
(1+Bβ−1)
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where we have set B = 3
4

α
λ 2 +

15
16

γ2
λ 3 . The first term is the partition function of the

harmonic oscillator, i.e. QH(β ) = π
hβ
(
2m
λ
)1/2

. The second term contains the correc-

tions of the anharmonic potential. We then recall the definition of the specific heat,

C = dU
dT , and the relation between the average energy and the partition function,

U =− d lnQ(β )
dβ . For lnQ(β ) we find

lnQ(β ) = lnQH(β )+ ln(1+Bβ−1)

where the first term is the harmonic part, while the second term is the anharmonic

correction. This second term may be expanded as

ln(1+Bβ−1)≈ B/β

and we obtain the anharmonic correction to the energy

UAn ≈ B
β 2

= Bk2T 2.

The specific heat is

CAn ≈ 2Bk2T =
3

2
k2T
(

α
λ 2

+
5

4

γ2

λ 3

)

that is the desired result.

Problem 7.23.
Study the magnetization of a three dimensional system with N identical dipoles,

each one with magnetic moment μμμ and momentum of inertia mI , in presence of a

constant magnetic field HHH = (0,0,H) (directed along the z direction) at temperature
T . These dipoles may be considered as distinguishable and localized in space. Write
down the total partition function and concentrate on the terms related to the coupling

with the magnetic field. Identify the magnetization in the limit of high and low

temperatures and compute the susceptibility when H → 0.

Solution
The physical picture of this problem is that the thermal fluctuations disrupt the or-

dered situation in which the magnetic dipoles are oriented along the direction of

the magnetic field. In this way, we expect that when T → 0 the system exhibits a

magnetization M �= 0, while in the limit of high temperatures the dipoles orientate
in some non coherent way with resulting zero total magnetization M = 0.
The Hamiltonian H of the system is characterized by the kinetic terms due to

the rotational freedom of the dipoles, plus the coupling with the magnetic field

H =
N

∑
i=1

(
p2θi
2mI

+
p2φi

2mI sin
2 θi

−μμμ i ·HHH
)

=Hrot −
N

∑
i=1

μH cosθi
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where

Hrot =
N

∑
i=1

(
p2θi
2mI

+
p2φi

2mI sin
2 θi

)

is the rotational part of the Hamiltonian, with (θi,φi) the angles determining the
position of the i-th dipole in the phase space and (pθi , pφi) the associated momenta.
The partition function for the system is

QN(T,H,N) =
1

h2N

∫ ( N

∏
i=1

dpθid pφidθidφi

)
e
−β ∑N

i=1

(
p2θi
2mI

+
p2φi

2mI sin
2 θi

−μH cosθi

)

and satisfies QN(T,H,N) = QN
1 (T,H), where

Q1(T,H) =
1

h2

∫ +∞

−∞
dpθ

∫ +∞

−∞
dpφ

∫ π

0
dθ
∫ 2π

0
dφ e

−β

(
p2θ
2mI

+
p2φ

2mI sin
2 θ

−μH cosθ

)
.

The Gaussian integrals in pθ and pφ lead to

Q1(T,H) =
2πmIkT

h2

∫ 2π

0
dφ
∫ π

0
eβμH cosθ sinθ dθ

due to the well known formula
∫ +∞
−∞ e−ax2dx=

√
π
a . We recognize in

Q(M)
1 (T,H) =

∫ 2π

0
dφ
∫ π

0
eβμH cosθ sinθ dθ

the contribution to the partition function due to the coupling with the magnetic field.

In this way, we can easily compute the average value of the total magnetization

M = μ

〈
N

∑
i=1
cosθi

〉
= NkT

(
∂ lnQ(M)

1

∂H

)
T

.

Therefore, to compute the magnetization, it is necessary only the single dipole par-

tition function

Q(M)
1 (T,H) =

∫ 2π

0
dφ
∫ π

0
e
μH cosθ

kT sinθ dθ =
4πkT
μH

sinh

(
μH
kT

)
.
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Given the magnetization, we can define the average magnetic moment for the single

dipole as

μ̄ =
M
N

=kT

(
∂ lnQ(M)

1

∂H

)
T

= kT
(

∂
∂H

ln

(
4πkT
μH

sinh

(
μH
kT

)))
T
=

μ
[
coth

(
μH
kT

)
− kT

μH

]
= μL

(
μH
kT

)

where L(μH/kT ) is the Langevin function such that

L
(
μH
kT

)
≈
⎧⎨
⎩
1

μH
kT � 1 low temperatures

μH
3kT

μH
kT � 1 high temperatures.

If N is the number of dipoles, the magnetization is

M = Nμ̄ =

⎧⎨
⎩
Nμ low temperatures

Nμ2H
3kT high temperatures.

For high temperatures M → 0 if H → 0. Also, we can define the susceptibility χ as
the variation of the magnetization with respect to the magnetic field. In the limit of

small H and for high temperatures it is found that

lim
H→0

χ = lim
H→0

(
∂M
∂H

)
T,N

≈ N0μ2

3kT
=

C
T

where the constant C = N0μ2/3k is the Curie constant. The quantum mechanical

analogue of this situation is discussed in Problem 7.24.

Problem 7.24.
When we treat the problem of paramagnetism (see Problem 7.23) from the point of

view of Quantum Mechanics, the starting point is the relationship between the mag-

netic moment of a dipole and its total angular momentum operator ĴJJ = (Ĵx, Ĵy, Ĵz)

μ̂μμ = gμB
ĴJJ
h̄

with μB Bohr magneton and g the Landè degeneracy factor. Let us consider a sys-
tem of N localized dipoles, each one with a fixed total angular momentum equal

to J. These dipoles are placed in a constant magnetic field HHH = (0,0,H) (directed
along the z direction). It follows that the number of allowed orientation of the mag-
netic moment in the direction of the applied field is limited to the eigenvalues of Ĵz.
Compute the partition function and, in the limit of high temperatures, determine the

magnetization and the susceptibility.
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Solution
The Hamiltonian of the system is written as

Ĥ =−
N

∑
i=1

μ̂μμ i ·HHH.

We know that the magnetic field is directed along the z direction. Therefore, we
rewrite the Hamiltonian as

Ĥ =−
N

∑
i=1

HgμB
Ĵzi
h̄

.

The major difference with respect to the classical case (treated in Problem 7.23)

arises from the fact that the magnetic moment in the direction of the applied mag-

netic field does not have arbitrary values. The eigenvalues for Ĵzi/h̄ are−J ≤m≤ J.
This means that the partition function of the single dipole is

Q1(T,H) =
J

∑
m=−J

e
gμBHm

kT

i.e. the integral over all the possible orientation angles is here replaced by a discrete

sum over all the possible projection values of ĴJJ along z. If we set x= gμBH/kT and
z= ex, we obtain

Q1(T,H) =
J

∑
m=−J

emx =
J

∑
m=−J

zm =
−1
∑

m=−J
zm+

J

∑
m=0

zm =

J

∑
m=1

1

zm
+

J

∑
m=0

zm =
J−1
∑

m′
=0

1

zm
′
+1

+
J

∑
m=0

zm =
1

z

1− 1
zJ

1− 1
z

+
1− zJ+1

1− z
=

1− z2J+1

zJ(1− z)
=

z−(J+ 1
2 )− z(J+

1
2 )

z−
1
2 − z

1
2

=
sinh[(J+ 1

2 )x]
sinh

( x
2

) =
sinh[(J+ 1

2 )
gμBH
kT ]

sinh
(

gμBH
2kT

)
where we have used

J

∑
m=0

zm =
+∞

∑
m=0

zm−
+∞

∑
m=J+1

zm =
1

1− z
− zJ+1

+∞

∑
m′

=0

zm
′
=
1− zJ+1

1− z
.

The magnetization of the single dipole is given by

μ̄ = kT
(
∂ lnQ1
∂H

)
T
= gμB

[(
J+

1

2

)
coth

(
J+

1

2

)
x− 1

2
coth

( x
2

)]
= gμBBJ(x)

where we have used the Brillouin function BJ(x)

BJ(x) =
[(

J+
1

2

)
coth

(
J+

1

2

)
x− 1

2
coth

( x
2

)]
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whose low and high temperature limits are

BJ(x)≈
⎧⎨
⎩J x= gμBH

kT � 1 low temperature

1
3J(J+1)

gμBH
kT x= gμBH

kT � 1 high temperature.

If we introduce the number of dipoles N, the total magnetization at high tempera-
tures is

M =
Ng2μ2BJ(J+1)H

3kT
.

For the susceptibility χ =
(
∂M
∂H

)
T,N

we obtain the Curie law

lim
H→0

χ = lim
H→0

(
∂M
∂H

)
T,N

=
Ng2μ2BJ(J+1)

3kT
=

C
T

withC =
Ng2μ2BJ(J+1)

3k .

Problem 7.25.
Determine the canonical partition function for a quantum oscillator with the poten-

tial

V̂ =
x̂2

4
+α x̂4.

To determine the energy spectrum, treat α as a small parameter and use the first

order perturbative results. Finally, verify the classical limit at high temperatures.

For simplicity, use h̄= ω = 1, m= 1/2.

Solution
The Hamiltonian of the system is

Ĥ = Ĥ0+δ Ĥ = p̂2+
x̂2

4
+α x̂4

where Ĥ0 = p̂2+ x̂2
4 is the unperturbed Hamiltonian for the harmonic oscillator. We

first have to determine the quantum mechanical correction to the energy eigenvalues

of Ĥ0. To this end, it is convenient to use the creation and annihilation operators and
write

Ĥ0 = â†â+
1

2
11.

The relations between these operators and the position and momentum operators (x̂
and p̂) are given by

x̂= (â†+ â) p̂=−i
(â− â†)
2

.

Also, the commutation rules for â and â+ are written as

[â, â†] = 11.
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We recall that the action of â and â+ on the eigenstates is such that

â|n〉=√
n|n−1〉

â†|n〉=√
n+1|n+1〉

â†â|n〉= n|n〉
ââ†|n〉= (n+1)|n〉.

In perturbation theory, the first order correction to the n-th eigenvalue (due to x̂4) is
given by

〈n|x̂4|n〉= 〈n|(â+ â†)4|n〉.
In principle, we can expand the binomial with â and â+, but the whole calculation
may be done in a more elegant and efficient way. We first observe that we only need

to consider those terms that possess two â and two â†. The number of these terms
is equal to the number of couples available out of 4 elements, i.e.

(
4
2

)
= 6 in total:

1) â†â†ââ, 2) â†ââ†â, 3) â†âââ†, 4) ââ†â†â, 5) ââ†ââ†, 6) âââ†â†. We also note that
we can combine âââ†â† and â†â†ââ in such a way that

âââ†â†+ â†â†ââ= â(â†â+11)â†+ â†(ââ†−11)â= ââ†ââ†+ â†ââ†â+11

where we have used the identity [â, â†] = ââ†− â†â= 11. To summarize, the whole
correction is such that

〈n|x̂4|n〉= 〈n|2â†ââ†â+ â†âââ†+2ââ†ââ†+ ââ†â†â+11|n〉= 6
(
n2+n+

1

2

)
.

The resulting partition function of the oscillator is

Q1(T ) =
+∞

∑
n=0

e−
[(n+ 1

2
)+6α(n2+n+ 1

2
)]

kT ≈ e−
1
2kT

+∞

∑
n=0

(
1−6α

(
n2+n+ 1

2

)
kT

)
e−

n
kT =

√
x
+∞

∑
n=0

(
1−6α

(
n2+n+ 1

2

)
kT

)
xn

where we have set x= e−1/kT . We recall some useful formulae

+∞

∑
n=0

xn =
1

1− x

+∞

∑
n=0

nxn = x
d
dx

(
+∞

∑
n=0

xn
)

=
x

(1− x)2

+∞

∑
n=0

n2xn = x2
d2

dx2

(
+∞

∑
n=0

xn
)
+

+∞

∑
n=0

nxn = x2
d2

dx2

(
+∞

∑
n=0

xn
)
+x

d
dx

(
+∞

∑
n=0

xn
)
=

x(x+1)
(1− x)3



Problems 265

needed to evaluate the partition function

Q1(T ) =
√
x
[
1

1− x
− 3α

kT
(x+1)2

(1− x)3

]
.

In the limit of high temperatures, we find

x≈ 1− 1

kT
√
x≈ 1− 1

2kT

so that the partition function becomes

Q1(T )≈ kT −12α(kT )2

where we have neglected terms proportional to α and αT . We can also check that
the expansion ofQ1(T,V ) for high temperatures (i.e. the classical limit) is recovered
with the classical formalism

Q1(T ) =
1

2π

∫ +∞

−∞
e−

p2
kT dp

∫ +∞

−∞
e−

1
4
x2+αx4

kT dx≈
1

2π

∫ +∞

−∞
e−

p2
kT dp

∫ +∞

−∞
e−

x2
4kT

(
1−α

x4

kT

)
dx= kT −12α(kT )2.

The term 1
2π in front of the integral is due to the normalization of the phase space in

the system of units where h= 2π . Also, to compute the integrals, we have used the
following identities ∫ +∞

−∞
e−ax2dx=

√
π
a∫ +∞

−∞
x4e−ax2dx=

1

a2
lim
β→1

d2

dβ 2

∫ +∞

−∞
e−aβx2dx=

3

4

√
π
a5

.

Problem 7.26.
In a very crude approximation, a biatomic molecule may be modelled with two

beads connected by an undeformable rod (see Fig. 7.5). Therefore, we have five

degrees of freedom, i.e. the motion of the center of mass (three degrees) and the

angular variables (two degrees). The partition function of this system is the product

of the one of the center of mass (that is equal to the one of a free particle) and the

contribution due to the angular part. Concentrate on the angular part and determine

the internal energy U and the specific heat C due to the rotational contributions for
a gas of biatomic heteronuclear molecules. Repeat the calculation for homonuclear

molecules. Discuss both the classical and quantum mechanical cases.

Solution
We choose as generalized coordinates q = (θ ,φ) and associated momenta p =
(pθ , pφ ) (see Fig. 7.5). The Hamiltonian of the rigid rotator takes the form

H =
L2

2I
=

p2θ
2I

+
p2φ

2I sin2 θ
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Fig. 7.5 We show a very crude approximation for a biatomic molecule: two beads (the two atoms)
connected by an undeformable rod. Such approximation allows us to determine the thermodynamic
properties and the specific heat deriving from the rotational degrees of freedom (see Problem 7.26)

with I the momentum of inertia. The partition function is

QN(T,N) = QN
1 (T ) =

(2IkT )N

h̄2N

because

Q1(T ) =
1

h2

∫ +∞

−∞
dpθ

∫ +∞

−∞
dpφ

∫ π

0
dθ
∫ 2π

0
dφ e

− 1
kT

(
p2θ
2I +

p2φ
2I sin2 θ

)
=
2IkT
h̄2

where we have first done the integral over the momenta and then the one over the

angular coordinates. The specific heat is given by

C =

(
∂U
∂T

)
N
=−

(
∂
∂T

(
∂ lnQN

∂β

)
N

)
N
= Nk.

For the case of homonuclear molecules, the integration over φ in the partition func-
tion is between 0 and π . In fact, when θ → π−θ , a rigid rotation of π for the angle
φ leaves the system unchanged since the two atoms are identical. In other words,

there is a relation between the partition functions for heteronuclear and homonuclear

molecules, that is

Qhete = 2Qhomo.

Therefore, the energyU and the specific heat are unchanged becauseU=−
(
∂ lnQN
∂β

)
N
.

As for the quantum mechanical case, the Hamiltonian becomes an operator Ĥ that

is diagonal with respect to the basis given by the spherical harmonics Yl,m(θ ,φ) =
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〈θ ,φ |l,m〉
Ĥ |l,m〉= L̂2

2I
|l,m〉= εl |l,m〉

where the energies are

εl =
l(l+1)h̄2

2I
with degeneracy 2l+ 1, because the quantum number m does not appear explicitly
in the Hamiltonian. The resulting partition function for the single molecule is

Q1(T ) =
+∞

∑
l=0

(2l+1)e−
l(l+1)h̄2
2IkT =

+∞

∑
l=0

(2l+1)e−
l(l+1)Θ

T

whereΘ = h̄2/2Ik. For T �Θ we approximate the sum with an integral and obtain

Q1(T )≈ T
Θ

∫ +∞

0
e−ξdξ =

T
Θ

from which

C =

(
∂U
∂T

)
N
=−

(
∂
∂T

(
∂ lnQN

∂β

)
N

)
N
= Nk

that is the classical limit. For T �Θ we keep only the first terms of the sum

Q1(T )≈ 1+3e− 2Θ
T +5e−

6Θ
T + · · ·

leading to

C ≈ 12Nk
(
Θ
T

)2
e−

2Θ
T

that goes exponentially to zero. For the case of homonuclear molecules, the wave

function has to satisfy

|ψ(xxx)|2 = |ψ(−xxx)|2

which means that the physical content (i.e. the probability density function) of the

wave function does not change when interchanging the atoms. This is nothing but

a parity symmetry. In other words, the wave function must be symmetric (even)

or antisymmetric (odd) under the interchange of the two atoms, ψ(xxx) = ±ψ(−xxx).
The angular dependence of the wave function is given by the spherical harmonics

Yl,m(θ ,φ) which, under the interchange of the atoms, behave like

Yl,m(θ ,φ)→ (−1)lYl,m(θ ,φ).

The resulting wave function is symmetric (even) for l even and antisymmetric (odd)
for l odd. These two cases are associated with two different partition functions

Qodd
1 (T ) =

+∞

∑
l=1,3,...

(2l+1)e−
l(l+1)h̄2
2IkT
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Qeven
1 (T ) =

+∞

∑
l=0,2,...

(2l+1)e−
l(l+1)h̄2
2IkT .

For high temperatures, T �Θ , we obtain

Qodd
1 (T )≈ Qeven

1 (T )≈ 1

2
Q1(T ) =

T
2Θ

that is the classical result. For low temperatures, T �Θ , we get

Qodd
1 (T )≈ 3e− 2Θ

T +7e−
12Θ
T + · · ·= e−

2Θ
T (3+7e−

10Θ
T + · · ·)

Qeven
1 (T )≈ 1+5e− 6Θ

T + ...

from which

Codd ≈ 700

3

(
Θ
T

)2
kNe−

10Θ
T

Ceven ≈ 180
(
Θ
T

)2
kNe−

6Θ
T .

Problem 7.27.
Determine the probability distribution function in the phase space for a relativistic

particle in a volume V and with energy ε(p) =
√

m2c4+ p2c2, where p is the ab-
solute value of the momentum, m the mass, and c the speed of light. Give the final
result in terms of the modified Bessel functions

Kν(z) =
∫ +∞

0
e−zcosh t cosh(νt)dt

Kν(z)≈ (ν−1)!
2

( z
2

)−ν
z� 1,v > 0.

Check what happens in the limit mc2
kT → 0.

Solution
In general, the probability distribution function ρ(ppp,qqq) is

ρ(ppp,qqq) = Ae−ε(ppp,qqq)/kT .

Such distribution must be normalized in order to be considered a proper probability

distribution function∫
ρ(ppp,qqq)d3pd3q= A

∫
e−ε(ppp,qqq)/kT d3pd3q = 1.

From this normalization condition we determine the constant A. For this specific
case, ε(ppp,qqq) = ε(p) is dependent only on the absolute value of the momentum and
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not on the spatial coordinates. Therefore, we have to set

4πAV
∫ +∞

0
e−ε(p)/kT p2dp= 1.

We then use ε(p) =
√

m2c4+ p2c2 and set sinhx = ξ = p
mc . The above integral

becomes

1

A
=4πV

∫ +∞

0
e−

1
kT

√
m2c4+p2c2 p2 dp= 4πV (mc)3

∫ +∞

0
e−

mc2
kT

√
1+ξ 2ξ 2dξ =

4πV (mc)3
∫ +∞

0
e−

mc2
kT coshx sinh2 xcoshxdx=

4πV (mc)3
(∫ +∞

0
e−

mc2
kT coshx cosh3 xdx−

∫ +∞

0
e−

mc2
kT coshx coshxdx

)
.

These integrals may be expressed in terms of the modified Bessel functions Kν given
in the text. Therefore, the normalization is such that

1

A
=
4π(kT )3

c3
Vz3
(
d2K1(z)

dz2
−K1(z)

)

where z= mc2
kT . When z� 1 (mc2

kT � 1), we use the asymptotic property given in the

text to find
1

A
≈ 4π(kT )3

c3
Vz3
(
2

z3
− 1

z

)
≈ 8π(kT )3

c3
V.

This is the same result we obtain when we consider the Hamiltonian H = pc and
impose the normalization

1= 4πAV
∫ +∞

0
e−pc/kT p2dp=

4π
c3

AV (kT )3
∫ +∞

0
x2e−x dx=

8π
c3

AV (kT )3

where
∫ +∞
0 x2e−x dx= 2.

Problem 7.28.
A gas of N indistinguishable and non interacting particles is placed in a volume

V and is in thermal equilibrium at temperature T . The Hamiltonian of the single
particle can be written as

H = apb = a(p2x + p2y + p2z )
b/2 a,b > 0

where p is the absolute value of the momentum and (px, py, pz) its components.
Compute the average internal energy U , the pressure P, and the chemical potential
μ . Finally, verify the limit

a=
1

2m
b= 2

with m a constant with physical dimensions of a mass.
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Solution
The particles are non interacting and, therefore, the total partition function QN is the

product of the partition functions of the single particles

QN(T,V,N) =
QN
1 (T,V )

N!

where N! takes into account the indistinguishability of the particles. For Q1, we can
write down the integral in the phase space

Q1(T,V ) =
∫ d3pd3q

h3
e−βH =

∫ d3pd3q
h3

e−βapb =
4πV
h3

∫ +∞

0
e−βapb p2 dp.

For the integral in the momentum space, we have used spherical polar coordinates

and integrated over the whole solid angle 4π . Introducing the new variable x =
βapb, we easily obtain

p=
(

x
aβ

) 1
b

dp=
1

abβ

(
x
aβ

) 1−b
b

dx

and the integral for Q1 becomes

Q1(T,V ) =
4πV
bh3

(
1

aβ

) 3
b ∫ +∞

0
x
(3−b)

b e−x dx.

We can use the definition of the Euler Gamma function∫ +∞

0
xγ−1e−x dx= Γ (γ)

to simplify the integral as

Q1(T,V ) =
4πV
bh3

(
1

aβ

) 3
b
Γ
(
3

b

)
.

The average internal energyU is

U =−
(
∂ lnQN

∂β

)
V,N

≈−N
(
∂ lnQ1
∂β

)
V

and, since Q1 is written as Aβ−3/b with A independent of β , we find that

U =
3NkT

b
.

For the pressure, we can write

P=
N
β

(
∂ lnQ1
∂V

)
T
=

NkT
V

.
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Finally, for the chemical potential, we know that

μ =− 1
β

(
∂ lnQN

∂N

)
T,V

and, using the Stirling approximation (lnN!≈ N lnN−N), we obtain

μ ≈− 1
β

(
∂ (N lnQ1−N lnN+N)

∂N

)
T,V

=
1

β
ln

(
N
Q1

)
=
1

β
ln

(
Nbh3(aβ )3/b

4πVΓ (3/b)

)
.

We note that when a= 1
2m and b= 2 we obtain, as expected, the results for an ideal

classical gas with Hamiltonian H = p2
2m .

Problem 7.29.
Consider N distinguishable and non interacting particles. The single particle energy
spectrum is εn = nε , with n = 0,1,2, ...,+∞ and degeneracy gn = n+1 (ε > 0 is a

constant). Compute the canonical partition function QN , the internal average energy

U , the energy fluctuations

〈(ΔE)2〉= 〈E2〉−〈E〉2

and the specific heatC.

Solution
The particles are non interacting and distinguishable, that implies

QN(β ,N) = QN
1 (β )

where Q1(β ) is the partition function of the single particle

Q1(β ) =
+∞

∑
n=0

(n+1)e−βεn

that we write as the sum of two terms

Q1(β ) =
+∞

∑
n=0

ne−βεn+
+∞

∑
n=0

e−βεn.

The first term on the right can be written as the derivative of the second term

Q1(β ) =− d
d(βε)

+∞

∑
n=0

e−βεn+
+∞

∑
n=0

e−βεn

so that we simply have to compute a single sum

+∞

∑
n=0

e−βεn =
1

1− e−βε .
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The final result is

Q1(β ) =− d
d(βε)

(
1

1− e−βε

)
+

1

1− e−βε =
e−βε

(1− e−βε)2
+

1

1− e−βε =

=
1

(1− e−βε)2
.

The energy is evaluated as

U =−
(
∂ lnQN

∂β

)
N
=−N

d lnQ1(β )
dβ

=
2Nε

eβε −1 .

As for 〈(ΔE)2〉, we observe that

〈(ΔE)2〉= 1

QN

(
∂ 2QN

∂β 2

)
N
−
(
1

QN

∂QN

∂β

)2
N
=

∂
∂β

(
1

QN

∂QN

∂β

)
N
=−

(
∂U
∂β

)
N

and obtain

〈(ΔE)2〉= 2Nε2eβε

(eβε −1)2 .

The value of the specific heat is related to 〈(ΔE)2〉 in the following way

C =

(
∂U
∂T

)
N
=− 1

kT 2

(
∂U
∂β

)
N
=

〈(ΔE)2〉
kT 2

=
2Nε2eβε

(eβε −1)2kT 2 .

Problem 7.30.
An ideal classical gas is in thermal equilibrium at temperature T and is formed by
N independent indistinguishable molecules in a spherical container of radius R. A
force is directed towards the center of the sphere, with the following potential

V (r) = αr α > 0.

Find the pressure P and the particles density close to the surface of container.

Solution
Let us start from the Hamiltonian of the single particle

H =
p2

2m
+V (r)

and compute the total partition function

QN(T,R,N) =
1

N!
QN
1 (T,R)
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where

Q1(T,R) =
1

h3

∫
e−βHd3pd3q=

1

h3

[∫ +∞

−∞
e−β p2/2mdp

]3
4π
∫ R

0
r2e−βαrdr =

1

h3

(
2πm
β

)3/2
4π
∫ R

0
r2e−βαrdr.

We now set βαr = x, dr = 1
βα dx, so that we have

Q1(T,R) =
1

h3

(
2πm
β

)3/2
4π

β 3α3

∫ βαR

0
x2e−xdx.

The integral in x can be done

∫ βαR

0
x2 e−xdx=

[
e−x(−x2−2x−2)]βαR

0

from which we obtain the partition function

Q1(T,R)=
1

h3

(
2πm
β

)3/2
4π

β 3α3
(
−(αβR)2e−αβR−2(αβR)e−αβR−2e−αβR+2

)
.

Once we know the partition function, we can compute the pressure as

P=−
(
∂F
∂V

)
T,N

=
N
β

1

4πR2

(
∂ lnQ1
∂R

)
T

where (
∂ lnQ1
∂R

)
T
=

R2(αβ )3e−αβR(−(αβR)2e−αβR−2(αβR)e−αβR−2e−αβR+2
)

so that

P=
NkT
4π

(αβ )3e−αβR(−(αβR)2e−αβR−2(αβR)e−αβR−2e−αβR+2
) .

From the equation of state for the ideal gas P= n(R)kT , we extract the density n(R)
close to the surface of the container

n(R) =
N
4π

(αβ )3e−αβR(−(αβR)2e−αβR−2(αβR)e−αβR−2e−αβR+2
) .

Problem 7.31.
An ideal classical gas is formed by N indistinguishable non interacting molecules.

Each one of the molecules is localized in space and has an electric dipole equal to d̃.
The whole gas is in thermal equilibrium at temperature T and is under the effect of
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a constant electric field with intensity E directed along the z axis. The Hamiltonian
of the single dipole is

H =
1

2I
p2θ +

1

2I sin2 θ
p2φ − d̃E cosθ

that is the rotational energy plus the coupling with the electric field. In the above

expression, I is the momentum of inertia of the molecule, (θ ,φ) its angles in spheri-
cal polar coordinates, and (pθ , pφ ) the associated momenta. Prove that the partition
function of the single dipole can be written as

Q1(T,E) =
2I sinh(β d̃E)

h̄2β 2d̃E
.

Then, defining the polarization as P= N
V 〈d̃ cosθ〉, show that

P=
N
V

(
d̃ coth(β d̃E)− 1

βE

)

where 〈...〉 is the average over the single particle statistics. Finally, in the limit of
weak field (β d̃E → 0), show that the dielectric constant ε , defined by

εE = ε0E+P

is equal to ε = ε0+ Nβ d̃2
3V .

Solution
The partition function of the single dipole can be written as

Q1(T,E) =
1

4π2h̄2

∫ π

0
dθ
∫ 2π

0
dφ
∫ +∞

−∞
dpθ

∫ +∞

−∞
dpφ e

−β

(
p2θ
2I +

p2φ
2I sin2 θ

−d̃E cosθ

)
.

The integral in dφ produces 2π . Also, we can perform the Gaussian integrals in dpθ
and dpφ which produce

√
2πI/β and

√
2πI sin2 θ/β respectively. To summarize,

we obtain

Q1(T,E) =
I

h̄2β

∫ π

0
sinθ eβ d̃E cosθ dθ

which we can write, by setting x= cosθ , as

Q1(T,E) =
I

h̄2β

∫ +1

−1
eβ d̃Ex dx=

I
h̄2β 2d̃E

(eβ d̃E − e−β d̃E)

that is

Q1(T,E) =
2I sinh(β d̃E)

h̄2β 2d̃E
.
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As for the second point, we note that

〈d̃ cosθ〉= d̃
∫
e−βH cosθ dφ dθ dpφ dpθ∫

e−βH dφ dθ dpφ dpθ
=
1

β

(
∂ lnQ1
∂E

)
T

and we obtain

〈d̃ cosθ〉= d̃ coth(β d̃E)− 1

βE
.

In the limit x→ 0, the function cothx is expanded as cothx≈ 1
x +

x
3+ . . . . Therefore,

it is possible to verify that, in the limit β d̃E → 0, we get

P≈ N
V

(
1

βE
+

β d̃2E
3

− 1

βE

)
=

Nβ d̃2E
3V

and, hence

ε0E+P= ε0E+
Nβ d̃2E
3V

=

(
ε0+

Nβ d̃2

3V

)
E = εE

with ε = ε0+ Nβ d̃2
3V .

Problem 7.32.
Consider an ideal gas of N non interacting indistinguishable particles placed in a

volumeV . The single particle Hamiltonian is H = p2/2m, with p the absolute value
of the momentum and m the mass of each particle. Prove the following relations

S(T,V,N)
Nk

= ln

(
Q1(T,V )

N

)
+T
(
∂ lnQ1(T,V )

∂T

)
V
+1

S(T,P,N)
Nk

= ln

(
Q1(T,P,N)

N

)
+T
(
∂ lnQ1(T,P,N)

∂T

)
P,N

where S is the entropy, P the pressure, and Q1 is the canonical partition function of
the single particle.

Solution

Since we are dealing with non interacting particles, the total partition function of

the system QN can be written in terms of the single particle partition function Q1 as

QN(T,V,N) =
QN
1 (T,V )

N!

where N! accounts for the indistinguishability of the particles. From the definition
of the free energy F , we also know that ST =U−F , whereU is the internal energy.

The relation between the free energy and the canonical partition function is

F(T,V,N) =−kT lnQN(T,V,N) =−kT (lnQN
1 (T,V )− lnN!)
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where, using the Stirling approximation for the factorials, we find

F(T,V,N) =−kT (N lnQ1(T,V )−N lnN+N)

that implies

F(T,V,N) =−NkT ln
(
Q1(T,V )

N

)
−NkT.

The average energy in terms of the partition function is

U =−
(
∂ lnQN

∂β

)
V,N

= kT 2
(
∂ lnQN

∂T

)
V,N

and, using QN(T,V,N) = QN
1 (T,V )/N!, we easily obtain

U = NkT 2
(
∂ lnQ1(T,V )

∂T

)
V
.

Combining all these results, we get

S(T,V,N)
Nk

= ln

(
Q1(T,V )

N

)
+T
(
∂ lnQ1(T,V )

∂T

)
V
+1.

Furthermore, for an ideal gas of massive particles (see Problems 7.1 and 7.19), we

have

Q1(T,V ) =V
(
2πmkT

h2

)3/2
and PV = NkT . Combining these results, we can rewrite the partition function of
the single particle in terms of T and P

Q1(T,P,N) =
TNk
P

(
2πmkT

h2

)3/2
and therefore (

∂ lnQ1(T,V )

∂T

)
V
=

(
∂ lnQ1(T,P,N)

∂T

)
P,N

− 1

T
.

The previous equation for the entropy is then equivalent to

S(T,P,N)
Nk

= ln

(
Q1(T,P,N)

N

)
+T
(
∂ lnQ1(T,P,N)

∂T

)
P,N

that is the desired result.

Problem 7.33.
Consider a statistical system with a fixed number of particles and prove the Gibbs-
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Helmholtz equation

H =Φ+TS=−T 2
[
∂ (Φ/T )

∂T

]
P

withH the enthalpy andΦ the Gibbs potential. Finally, substituting inH andΦ+TS
the corresponding expressions in terms of partition functions, verify that we obtain

an identity.

Solution
Let us recall the definitions of the thermodynamic potentials

H ≡ H(S,P) =U+PV

F ≡ F(T,V ) =U−TS

Φ ≡Φ(T,P) = F+PV.

From the second equation we obtain U = F + TS. Substituting this result in the
Gibbs potential, we find

Φ = F+PV =U−TS+PV = H−TS.

We also know that

dΦ =−SdT +VdP

from which

S=−
(
∂Φ
∂T

)
P

and

H =Φ+TS=Φ−T
(
∂Φ
∂T

)
P
=−T 2

[
∂ (Φ/T )

∂T

]
P
.

In the context of the canonical ensemble we can write

F =−kT lnQN

S=−
(
∂F
∂T

)
V
= k
[
∂ (T lnQN)

∂T

]
V
= k lnQN + kT

(
∂ lnQN

∂T

)
V

P=−
(
∂F
∂V

)
T
= kT

(
∂ lnQN

∂V

)
T

U = kT 2
(
∂ lnQN

∂T

)
V
.

Therefore, we obtain

H =U+PV = kT 2
(
∂ lnQN

∂T

)
V
+VkT

(
∂ lnQN

∂V

)
T
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Φ = F+PV =−kT lnQN +VkT
(
∂ lnQN

∂V

)
T

from which we see that the relation H =Φ+TS is verified.

Problem 7.34.
A three dimensional gas is in thermal equilibrium at temperature T and is char-

acterized by N indistinguishable and non interacting ultrarelativistic particles. The

Hamiltonian of the single particle is

H = pc

with p the absolute value of the momentum and c the speed of light. Write down
the canonical partition function for this system. Also, find the density of states

g(E,V,N), verifying explicitly that

(
∂S
∂E

)
V,N

∣∣∣∣∣
E=U

=
1

T

where S= k lng is the entropy andU is the average energy such thatU = 〈E〉.
Solution
The particles are non interacting and the canonical partition function QN is written

as

QN(T,V,N) =
QN
1 (T,V )

N!
where Q1(T,V ) is the partition function of the single particle expressed as

Q1(T,V ) =
∫ d3pd3q

h3
e−β pc =

4πV
h3

∫ +∞

0
p2 e−β pcdp.

We can solve the integral exactly to find

QN(T,V,N) =
1

N!

[
8πV

(
kT
hc

)3]N
.

The density of states is the inverse Laplace transform of the partition function

g(E,V,N) =
1

2πi

∫ β ′+i∞

β ′−i∞
QN(T,V,N)eβE dβ =

1

2π

∫ +∞

−∞
QN

(
1

k(β ′+ iβ ′′)
,V,N

)
e(β

′+iβ ′′)E dβ ′′

where β ′ > 0. The variable β = β ′+ iβ ′′ is now treated as a complex variable and
the integration path is parallel and to the right of the imaginary axis, i.e. along the
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straight line Re(β ) = β ′ = const . We can make use of the general result

1

2πi

∫ β ′+i∞

β ′−i∞

eβx

βα+1 dβ =
xα

α!
x≥ 0

and set α = 3N−1, x= E to obtain

g(E,V,N) =
1

N!(3N−1)!
(
8πV
h3c3

)N

E3N−1.

In the thermodynamic limit, N � 1, and we can use 3N instead of 3N−1. Thus, the
entropy (see also Problem 6.19) is

S= 3Nk lnE+ const.

where the constant does not depend on E. This means that

(
∂S
∂E

)
V,N

=
3Nk
E

.

At the same time, we can compute the average energy from the canonical partition

function as

U =−
(
∂ lnQN

∂β

)
V,N

= 3NkT

which can be substituted in the previous expression to get

(
∂S
∂E

)
V,N

∣∣∣∣∣
E=U

=
1

T
.

Problem 7.35.
Characterize the energy fluctuations for a statistical system composed of a fixed

number of N distinguishable particles with two energy levels, ε1 and ε2, with de-
generacy g1 and g2 respectively.

Solution
From the canonical ensemble we know that the fluctuations of the energy are given

by

〈(ΔE)2〉= kT 2C

whereC is the specific heat that can be computed from the partition function

QN(T,N) =

(
2

∑
r=1

gre−βεr

)N

=
(
g1e−βε1 +g2e−βε2

)N
.

The average energy is computed as
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U = −
(
∂ lnQN

∂β

)
N
= N

g1ε1+g2ε2e−βΔ

g1+g2e−βΔ

with Δ = ε2− ε1. We therefore find the specific heat

C =

(
∂U
∂T

)
N
= − 1

kT 2

(
∂U
∂β

)
N
=

N
kT 2

g1g2Δ 2e−βΔ
(
g1+g2e−βΔ

)2
leading to

〈(ΔE)2〉 = N
g1g2Δ 2e−βΔ
(
g1+g2e−βΔ

)2
that is the desired result.

Problem 7.36.
An ideal gas with N non interacting indistinguishable particles with mass m is lo-

cated in a spherical container with radius R. The system is subject to an external

force with potential

V (r) = αr3 α > 0

with r the distance from the center of the sphere. Find the partition function for the
system in thermal equilibrium at temperature T and the pressure as a function of the
distance from the center. At some point, a small hole with area σ is pierced on the
surface of the container, perpendicular to some given direction (say x). In the limit
of external weak field (α → 0), find the pressure on the surface of the container and

give an estimate for the x momentum component transfered in the unit time through
the small hole at constant T .

Solution
The partition function of the single particle is

Q1(T ) =
∫ d3qd3p

h3
e−β p2

2m −βαr3 .

With the help of spherical polar coordinates d3q = 4πr2dr, and the substitution
x= r3, we rewrite Q1(T ) as

Q1(T ) =
4π
3

∫
e−β p2

2m d3p
∫ R3

0
e−βαxdx=

4π
3
λ−3

∫ R3

0
e−βαxdx

where we use the characteristic length λ = h√
2πmkT

coming from the Gaussian inte-

gral over momenta. The final result is

Q1(T ) =
4πkT
3α

λ−3(1− e−βαR3)
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that, combined with the expression for the total partition function

QN(T,N) =
QN
1 (T )
N!

is the answer to the first question. As for the second point, we can look at the local

chemical potential which is given by

μtot = μid +αr3

where

μid = kT ln(nλ 3)

is the chemical potential of an ideal free gas with density n and Hamiltonian
H = p2/2m. Due to the presence of the potential V (r), the system develops an in-
homogeneous density n(r) depending on the radial position r. When moving from
r = 0 to a generic r, we can impose the condition that μtot stays constant and find

kT ln(n(r)λ 3)+αr3 = kT ln(n(0)λ 3)

that is

ln

(
n(r)
n(0)

)
=−βαr3

from which

n(r) = n(0)e−βαr3 .

In order to find n(0), we impose that the integral of n(r) over all the domain is
exactly equal to N

4π
∫ R

0
r2 n(r)dr = 4π n(0)

∫ R

0
r2 e−βαr3dr =

4π kT n(0)
3α

(
1− e−βαR3

)
= N

and we find

n(0) =
3αN
4πkT

1

1− e−βαR3
.

To compute the pressure, we use the ideal gas law P(r) = n(r)kT to find

P(r) =
3αN
4π

e−βαr3

1− e−βαR3
.

When α → 0, the numerator is getting close to 1 while the denominator to βαR3 =
αR3/kT . We know that 4πR3/3 is the volume of the sphere and we find

P=
NkT
V

.

As for the effusion problem, the transferred momentumM can be found using simple

considerations (see also the section on kinetic physics, Problem 9.3). If we consider
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that the surface of the hole is perpendicular to the x axis and we impose that the
transferred momentum obeys a Maxwellian distribution function

f (vvv) = n
( m
2πkT

)3/2
e−

1
2βmv2x− 1

2βmv2y− 1
2βmv2z

we can write

M =σ m
∫
vx>0

f (vvv)v2x d
3v=

σ mn
( m
2πkT

)3/2(∫ +∞

−∞
e−

1
2βms2ds

)2(∫ +∞

0
e−

1
2βmv2x v2xdvx

)
=
1

2
σnkT

where, in the limit α → 0, the density n = N/V is homogeneous and does not de-

pendent on the radial position.

Problem 7.37.
A statistical system is characterized by N distinguishable and non interacting atoms
in thermal equilibrium with a reservoir at temperature T . Each atom can occupy the
energy levels En = (n+ 1)ε (ε > 0, n = 0,1,2, ...,+∞) and the degeneracy of the
n-th level is equal to gn = λ n, with λ > 1. Compute the canonical partition function,
the specific heat, and analyze the result at low temperatures. Is there any temperature

Tc above which the canonical description is not well posed?

Solution
The total partition function is

QN(T,N) = QN
1 (T )

where Q1 is the partition function for the single atom. A direct calculation can be
performed with the result

Q1(T ) =
+∞

∑
n=0

λ ne−β (n+1)ε = e−βε
+∞

∑
n=0

e−(βε−lnλ )n

that is

Q1(T ) =
1

eβε −λ
.

The previous calculation is meaningless if we have

elnλ−βε ≥ 1

that is T ≥ Tc = ε
k lnλ , where this Tc is a characteristic temperature above which our

statistical treatment is not well posed. When T < Tc, we can define and compute the
average energy as

U =−
(
∂ lnQN

∂β

)
N
=

Nε
1−λe−βε
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and the specific heat as

C =

(
∂U
∂T

)
N
=

Nλε2e−βε

kT 2(1−λe−βε)2
.

In the limit of low temperatures the specific heat goes to zero

lim
T→0

C = 0.

Problem 7.38.
Consider an ideal gas formed by atoms of type A and atoms of type B. These atoms
can bound to each other and form the molecule AB, according to the reaction

A+B↔ AB

taking place at temperature T in a volume V . If NA, NB, NAB are the numbers (� 1)

of particles for the species entering the reaction, show that

NAB

NANB
=

fAB
fA fB

where fX (X = A,B,AB) is the single particle partition function. Treat all the atoms
as indistinguishable.

Solution
The equilibrium condition is given by the equality of the chemical potentials

μA+μB = μAB

where μX is the chemical potential of the system X . From the canonical ensemble
we know that

μX =−kT
(
∂ lnQX

∂NX

)
T,V

where QX (T,V,N) is the partition function. We find(
∂ lnQA

∂NA

)
T,V

+

(
∂ lnQB

∂NB

)
T,V

=

(
∂ lnQAB

∂NAB

)
T,V

.

We recall that

QX (T,V,NX ) =
f NX
X (T,V )

NX !

and we use the Stirling approximation for the factorials

ln

(
fA
NA

)
+ ln

(
fB
NB

)
= ln

(
fAB
NAB

)
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Fig. 7.6 An ideal classical gas formed by N molecules with mass m is placed inside a cylinder
with radius R and height L. The cylinder is rotating with angular velocity Ω around its symmetry
axis. The particles density is inhomogeneous in space and is studied in Problem 7.39

leading to
NAB

NANB
=

fAB
fA fB

which is the desired result.

Problem 7.39.
Let us consider an ideal classical gas formed by N � 1 indistinguishable particles

with mass m placed in a cylinder of radius R and height L rotating around its axis
with angular velocity Ω . The resulting Hamiltonian of the single particle is

H =
1

2m
p2− 1

2
mΩ 2r2.

with p the absolute value of the momentum and r the distance from the rotation

axis. The whole system is in equilibrium at temperature T . Using the canonical
ensemble, compute the gas density in the cylinder and discuss the limit Ω → 0.

Finally, determine the pressure on the surface of the container.

Solution
We use cylindrical coordinates (r,z,φ) and start from the Hamiltonian of the single
particle H (see Fig. 7.6). The presence of the term 1

2mΩ
2r2 in the Hamiltonian

produces an inhomogeneous density of particles throughout the cylinder. The local

density n(r,z,φ) can be written as

n(r,z,φ) = N
∫
e−βH d3p
Q1(T,R)

with Q1(T,R) the partition function of the single particle. We remark that n(r,z,φ)
is normalized in such a way that

N =
∫ L

0
dz
∫ 2π

0
dφ
∫ R

0
n(r,z,φ)r dr.
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The single particle partition function is

Q1(T,R) =
1

h3

∫
e−β p2

2m d3p
∫ L

0
dz
∫ 2π

0
dφ
∫ R

0
r eβ

mΩ2r2
2 dr =(

2πm
h2β

)3/2
2πL

∫ R

0
r eβmΩ

2r2/2 dr =
(
2πm
h2β

)3/2
2πL

βmΩ 2

(
e
βmΩ2R2

2 −1
)

.

From the previous expression we find

n(r,z,φ) = n(r) =
NmΩ 2β
2πL

eβmΩ
2r2/2

eβmΩ2R2/2−1 .

The dependence of the density on the local coordinates is only in the radial distance

r, as it should be expected because the term mΩ 2r2/2 (that is responsible for the in-
homogeneity) is only dependent on r. The same result can be obtained by imposing
a constant local chemical potential in the cylinder (similarly to what we have done

in Problem 7.36). The local chemical potential is defined by

μTOT = μid − mΩ 2r2

2
.

In the above expression, μid is the chemical potential of an ideal gas with density n
and Hamiltonian H = p2/2m

μid = kT ln(nλ 3)

where

λ =
h√

2πmkT

is the thermal length scale. The density nmust depend on r in order to guarantee the
constancy of μTOT , i.e.

kT ln(n(0)λ 3) = kT ln(n(r)λ 3)− mΩ 2r2

2

from which we find

n(r) = n(0)e
βmΩ2r2

2 .

The normalization n(0) is found by imposing
∫
n(r)rdrdφ dz=N, yielding the very

same result previously found. The limit Ω → 0 corresponds to the case where the

density becomes homogeneous. This can be seen by Taylor expanding the exponen-

tial functions in the density for Ω → 0

n(r)≈ NmΩ 2β
2πL

(
1+ βmΩ2r2

2 +O(Ω 2)
)

(
βmΩ2R2

2 +O(Ω 2)
)
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to find

n(r)≈ N
πR2L

=
N
V

with V = πR2L the volume of the cylinder. As for the pressure, it can be derived
directly from the total free energy F = −kT lnQN , with the total partition function

written as QN(T,R,N) =
QN
1 (T,R)
N! , and the definition

P=−
(
∂F
∂V

)
T,N

.

Differentiation with respect to V is connected to differentiation with respect to R as
∂
∂V = 1

2πRL
∂
∂R , so that we find

P=
NmΩ 2

2πL
e
βmΩ2R2

2(
e
βmΩ2R2

2 −1
)

that is the equation for the ideal gas, P= n(R)kT , with the local density in R

n(R) =
NmΩ 2β
2πL

eβmΩ
2R2/2

eβmΩ2R2/2−1 .

Problem 7.40.
Using the first law of thermodynamics, write the chemical potential in terms of en-

ergy derivatives. Repeat this computation writing it in terms of entropy derivatives.

Using the Sackur-Tetrode formula for the entropy (see Problem 6.26), show that

these two formulae for the chemical potential lead to the same result that is found

using the formalism of the canonical ensemble.

Solution
The first law of thermodynamics, including a chemical potential, can be written as

dU = TdS−PdV +μdN.

Differentiating with respect to N, keeping S and V constant, we get

μ =

(
∂U
∂N

)
S,V

.

Let us now rewrite our first equation as

dS=
dU
T

+
P
T
dV − μ

T
dN.
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At the same time, differentiating with respect to N, keeping V and U constant, we

get

−μ
T

=

(
∂S
∂N

)
U,V

.

To compute these derivatives we will need the Sackur-Tetrode formula for an ideal

gas in a box of volume V

S(U,V,N) = Nk

{
5

2
− ln

[(
3π h̄2

m

)3/2
N
5
2

VU
3
2

]}

and the associated energy

U(S,V,N) =
(
3π h̄2

m

)
N
5
3

V
2
3

e
2S
3Nk− 5

3 .

An explicit computation gives

−μ
T

=

(
∂S
∂N

)
U,V

= k ln

[(
m
3π h̄2

)3/2 VU3/2

N
5
2

]
.

From the first law of thermodynamics we find

T =

(
∂U
∂S

)
V,N

=

(
3π h̄2

m

)
N
5
3

V
2
3

e
2S
3Nk− 5

3
2

3Nk
=
2U
3Nk

from which we find U = 3
2NkT which can be plugged back in − μ

T to recover the

chemical potential written as

μ =−kT ln

[
V
N

(
mkT
2π h̄2

) 3
2

]
.

As for the expression of μ in terms of energy derivatives, we get

μ =

(
∂U
∂N

)
S,V

=

(
5π h̄2

m

)(
N
V

) 2
3

e
2S
3Nk− 5

3 − 2S
3N2k

(
3π h̄2

m

)
N
5
3

V
2
3

e
2S
3Nk− 5

3 =

e
2S
3Nk− 5

3
π h̄2

mV
2
3

(
5N

2
3 − 2SN− 1

3

k

)
=
1

3
N− 5

3U

(
5N

2
3 − 2SN− 1

3

k

)
=

2U
3N

ln

⎡
⎣(3π h̄2

m

) 3
2 N

5
2

VU
3
2

⎤
⎦=−kT ln

[
V
N

(
mkT
2π h̄2

) 3
2

]

which coincides with the expression of μ in terms of entropy derivatives. It is now
left to check these formulae against the result that can be found using the canonical
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ensemble formalism. The single particle partition function is

Q1(T,V ) =
1

h3

∫
e−β p2

2m d3pd3q=
V
h3

(∫ +∞

−∞
e−β p2

2m dp
)3

=
V
h3

(2πmkT )
3
2 .

The N particles partition function is readily obtained

QN(T,V,N) =
Q1(T,V )

N!

from which the free energy F = −kT lnQN follows. At last, using the Stirling ap-

proximation (N!≈ NNe−N), we get

μ =

(
∂F
∂N

)
T,V

≈−kT ln
(
Q1
N

)
=−kT ln

[
V
N

(
mkT
2π h̄2

) 3
2

]
.
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Grand Canonical Ensemble

Problem 8.1.
A gas is in contact with a surface. On the surface we find N0 localized and distin-
guishable sites adsorbing N (N ≤ N0) molecules of the gas (each site can adsorb
zero or one molecule of the gas). Find the grand canonical partition function of the

system, and determine the chemical potential as a function of the average number

of particles 〈N〉 which are adsorbed by the surface. You can think that the canonical
partition function of an adsorbed molecule is a function only of the temperature,

Q(T ), and that all the adsorbed molecules are non interacting.

Solution
Due to the independence of the molecules, the canonical partition function for N ad-
sorbed molecules is the product of N single molecule partition functions. Moreover,
being the sites localized (distinguishable), we have to determine all the possible

ways to select N sites out of the N0 available. This provides the following canonical
partition function for the N adsorbed molecules

QN(T,N) =
N0!

N!(N0−N)!
QN(T ).

We now determine the grand canonical partition function summing over all the pos-

sible values of N, i.e. N = 0,1,2, ...,N0. The result is

Q(T,z) =
N0

∑
N=0

zNQN(T,N) =
N0

∑
N=0

N0!
N!(N0−N)!

zNQN(T )

with z the fugacity. The above expression can be directly summed using the binomial
formula

Q(T,z) =
N0

∑
N=0

N0!
N!(N0−N)!

zNQN(T ) =

N0

∑
N=0

N0!
N!(N0−N)!

(zQ(T ))N1N0−N = (zQ(T )+1)N0 .

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 8, c© Springer-Verlag Italia 2012
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The average number of adsorbed molecules is

〈N〉= z
(
∂ lnQ
∂ z

)
T
= N0

zQ(T )
zQ(T )+1

=
N0

z−1Q−1(T )+1

that implies

1+
1

zQ(T )
=

N0
〈N〉

or, alternatively

zQ(T ) = eβμQ(T ) =
〈N〉

N0−〈N〉 .

Therefore, the chemical potential can be given as a function of T , Q(T ), 〈N〉 and N0

μ = kT ln
( 〈N〉
Q(T )(N0−〈N〉)

)
.

Problem 8.2.
Let us consider a gas of N molecules in a volume V at temperature T with mass m
and fugacity

z(T,V,N) =
(
N
V

)
λ 3

with λ = h√
2πmkT

and h the Planck constant. Some of these molecules are bound to
some independent attraction sites (each site cannot have more than one molecule),

and the total number of these sites is N0. The associated canonical partition function,
Q(T ), of the site-molecule system is made of the bound state formed from the site
and the molecule (see also Fig. 8.1). Using the grand canonical ensemble, compute

the average number of molecules for each site, together with the associated proba-

bility to have zero and one molecule respectively. Comment on the limit where the

molecules density goes to zero and the temperature is high.

Fig. 8.1 A molecular gas is in contact with a wall where N0 independent attraction sites are lo-
calized. The average number of adsorbed molecules can be computed using the grand canonical
ensemble (see Problem 8.2)
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Solution
The grand canonical partition function for the single site is

Qsite(T,z) = 1+ zQ(T )

and the probabilities to find 0 or 1 molecule in the site are evaluated as

P0 =
1

1+ zQ(T )
P1 =

zQ(T )
1+ zQ(T )

.

From the probability, we compute the average number of molecules in each site

〈N〉site =
1

∑
n=0

nPn =
zQ(T )

1+ zQ(T )
=

1

z−1Q−1(T )+1

meaning that the total average number of molecules adsorbed by the N0 sites is

〈N〉sites = N0〈N〉site = N0
z−1Q−1(T )+1

.

The same result is obtained by considering the grand canonical partition function

of the N0 sites (see Problem 8.1). Considering the fugacity z =
(N
V

)
λ 3, where λ =

h(2πmkT )−1/2, we see that only in the limit of small density and high temperature
(i.e. z� 1) all the sites are empty

lim
z→0

〈N〉sites = 0.

Problem 8.3.
Consider a solid-gas (s-g) system in equilibrium. Compute the variation of the pres-

sure with respect to the temperature using the Clausius-Clapeyron equation(
dP
dT

)
c
=

Δh
TΔv

with Δv = vg− vs and Δh = hg− hs the variations of the specific volumes and en-
thalpies respectively (i.e. volume/enthalpy for a single particle). Consider that the

specific volume of the solid is small, so that vs � vg, and assume that the gas is well
approximated by an ideal one. Then, define the specific heat at the coexistence of

the two phases, cc = T
(

∂ s
∂T

)
c
, and prove the following relation

cc = cP−T
(
∂v
∂T

)
P

(
dP
dT

)
c

with cP the specific heat at constant pressure. In the above expression, the subscript
c means that we evaluate the different quantities on the coexistence curve for the
solid-gas equilibrium. To answer the first question, approximate the solid as a col-



292 8 Grand Canonical Ensemble

lection of Ns � 1 distinguishable three dimensional quantum harmonic oscillators.

To answer the second question, choose the equilibrium pressure as a function of the

temperature, P= P(T ), justifying this choice.

Solution
If we assume that the change in the volume is mainly due to the gas, we find that

Δv≈ vg = kT
P and (

dP
dT

)
c
≈ PΔh

kT 2
.

We now need to compute both the solid and gas enthalpy from which we can extract

Δh. The grand canonical partition function of the gas is given by

Q(T,Vg,zg) =
+∞

∑
N=0

zNg QN(T,Vg,N) =
+∞

∑
N=0

(zgVg f (T ))N

N!
= ezgVg f (T )

where QN(T,Vg,N) =
(Vg f (T ))N

N! is the N particles canonical partition function (see

Problem 7.1) and

f (T ) = h−3 (2πmkT )
3
2 zg = eμg/kT

where μg is the chemical potential of the gas. The pressure is found by taking the

logarithm of the grand canonical partition function

P=
kT
Vg
lnQ = zgkT f (T )

and for the average number (Ng) and average energy (Ug) we get

Ng = zg

(
∂ lnQ
∂ zg

)
T,Vg

= zgVg f (T )

Ug =−
(
∂ lnQ
∂β

)
Vg,zg

= zgVgkT 2 f
′
(T ).

As for the solid, we can model it as a system of three dimensional quantum har-

monic oscillators which are distinguishable and localized in a volumeVs. The grand

canonical partition function is

Q(T,zs) =
+∞

∑
N=0

(zsφ(T ))N =
+∞

∑
N=0

⎛
⎝zs

(
+∞

∑
n=0

e−β h̄ω(n+ 1
2 )

)3⎞⎠
N

= (1− zsφ(T ))−1

where

φ(T ) =
(
2sinh

(
h̄ω
2kT

))−3
.
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The resulting pressure (Ps), average number (Ns), and average energy (Us) are

Ps =
kT
Vs
lnQ =−kT

Vs
ln(1− zsφ(T ))

Ns = zs

(
∂ lnQ
∂ zs

)
T
=

zsφ(T )
1− zsφ(T )

Us =−
(
∂ lnQ
∂β

)
zs
=

zskT 2φ
′
(T )

1− zsφ(T )
.

Since zs and T are intensive, the pressure of the solid goes to zero when Vs → +∞.
Moreover, the equation for Ng is equivalent to

zg = Ng/(Vg f (T ))

while, from the equation for Ns, we have

zsφ(T ) =
Ns

Ns+1
≈ 1− 1

Ns

so that zs = φ−1(T ) in the limit Ns � 1. The equilibrium condition implies the

equality of fugacities (zs = zg)

Ng

Vg
=

P
kT

=
f (T )
φ(T )

.

This justifies the choice P= P(T ) to be used later. Let us now determine the varia-
tion of the specific enthalpy. We know that

Ug = zgVgkT 2 f
′
(T ) = NgkT 2 f

′
(T )/ f (T )

from which we extract the enthalpy for the gas

Hg =Ug+PVg =
NgkT 2 f

′
(T )

f (T )
+NgkT

where we have used the ideal gas law. In a similar way, the enthalpy for the solid

reads

Hs =Us− kT ln(1− zsφ(T )) = NskT 2
φ ′
(T )

φ(T )
− kT ln(1− zsφ(T )).

Therefore, we can evaluate Δh= Hg
Ng

− Hs
Ns
which is the specific enthalpy variation.

As we noted above, the choice P = P(T ) is justified by the condition of thermody-
namic equilibrium and, when looking at the entropy density s as a function of the



294 8 Grand Canonical Ensemble

pressure P and temperature T , we have

cc = T
(

∂ s
∂T

)
c
= T

(
∂ s
∂T

)
P
+T
(
∂ s
∂P

)
T

(
dP
dT

)
c
= cP−T

(
∂v
∂T

)
P

(
dP
dT

)
c

where we have used the Maxwell relation(
∂ s
∂P

)
T
=−

(
∂v
∂T

)
P
.

The latter can be derived from the differential expression for the chemical potential

dμ =−sdT + vdP, that implies(
∂μ
∂T

)
P
=−s

(
∂μ
∂P

)
T
= v.

If we differentiate the first expression with respect to P, and the second with respect
to T , we find the aforementioned Maxwell relation. To compute cc, we first need to
compute cP

cP =

(
∂h
∂T

)
P

with h = hs+ hg. Since hs and hg have been computed before, cP is known. More-

over,
(

∂v
∂T

)
P
≈
(
∂vg
∂T

)
P
= k/P, because the ideal gas law is valid. Finally, using the

Clausius-Clapeyron equation for
( dP
dT

)
c, we know all the terms entering the defini-

tion of cc.

Problem 8.4.
Consider a three dimensional classical gas of independent and indistinguishable par-

ticles with a single particle Hamiltonian H(ppp,qqq) = F(ppp), where ppp and qqq are the
momentum and position of the single particle. Prove that, in the grand canonical

ensemble, the probability to have N molecules

P(N) =
zNQN(T,V,N)
Q(T,V,z)

is a Poisson distribution. In the above expression, QN(T,V,N), z and Q(T,V,z) are
the canonical partition function of N particles, the fugacity, and the grand canonical
partition function respectively. Determine the fluctuations 〈(ΔN)2〉, verifying that
the correct result for the Poisson distribution is recovered, i.e. that the fluctuations

coincide with the average value.

Solution
The definition of the grand canonical partition function is

Q(T,V,z) =
+∞

∑
N=0

zNQN(T,V,N)
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with QN(T,V,N) the canonical partition function for N particles

QN(T,V,N) =
1

N!h3N

∫
e−βHN(ppp1,ppp2,...,qqq1,qqq2,...) d3N pd3Nq=

1

N!h3N

(∫
e−βF(ppp) d3pd3q

)N

=
1

N!
QN
1 (T,V ) =

1

N!
(V f (T ))N

whereHN is the total Hamiltonian (the sum of the single particle Hamiltonians), and

f (T ) is a function of the temperature coming from the integral in the momentum

space: since the exact dependence on the temperature does not play a relevant role

in what follows, we will keep it in a very general form. The average number of

particles is

〈N〉=
+∞

∑
N=0

zNQN(T,V,N)
Q(T,V,z)

N = z
(
∂ lnQ
∂ z

)
T,V

= z

(
∂
∂ z
ln

(
+∞

∑
N=0

(zV f (T ))N

N!

))
T,V

=

z
(

∂
∂ z

(zV f (T ))
)

T,V
= zV f (T )

where we have used that

+∞

∑
N=0

(zV f (T ))N

N!
= ezV f (T ).

The above expression reveals the probability P(N) to find a number N of particles

P(N) =
zNQN(T,V,N)
Q(T,V,z)

=
(zV f (T ))N

N!
e−zV f (T ) =

〈N〉N
N!

e−〈N〉

which is exactly a Poisson distribution. The fluctuations in the grand canonical en-

semble are

〈(ΔN)2〉= 〈N2〉−〈N〉2 = z
(
∂ 〈N〉
∂ z

)
T,V

= zV f (T ) = 〈N〉.

It is instructive to show that we obtain the same result when evaluating 〈(ΔN)2〉
with the probability function previously found

〈(ΔN)2〉=〈N2〉−〈N〉2 =
+∞

∑
N=0

N2
e−〈N〉〈N〉N

N!
−〈N〉2 =

+∞

∑
N=1

N2
e−〈N〉〈N〉N

N!
−〈N〉2 =

+∞

∑
N=1

N
e−〈N〉〈N〉N
(N−1)! −〈N〉2 =

+∞

∑
N=1

(N−1)e
−〈N〉〈N〉N
(N−1)! +

+∞

∑
N=1

e−〈N〉〈N〉N
(N−1)! −〈N〉2 =

+∞

∑
N=2

(N−1)e
−〈N〉〈N〉N
(N−1)! + e−〈N〉〈N〉

+∞

∑
N=1

〈N〉N−1
(N−1)! −〈N〉2 =

e−〈N〉〈N〉2
+∞

∑
N=2

〈N〉N−2
(N−2)! + 〈N〉−〈N〉2 = 〈N〉2+ 〈N〉−〈N〉2 = 〈N〉
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where we have used the series expansion of the exponential function

eA =

+∞

∑
N=0

AN

N!
=

+∞

∑
N=1

AN−1

(N−1)! =
+∞

∑
N=2

AN−2

(N−2)! .

Problem 8.5.
Consider a reaction involving proton (p), electron (e), and hydrogen (H) gases

p+ e↔ H

taking place in a volume V and in thermal equilibrium at temperature T . Let us also
assume that the gases may be treated as ideal classical ones of non interacting par-

ticles, taking into account only the spin degeneracy. Find the electron density ne as
a function of the hydrogen density nH and the temperature T , assuming the condi-
tion of zero total charge. As for the energy spectrum of the hydrogen atom, consider

only the ground state with energy −E0. Also, you can ignore the electron mass as
compared to the one of the proton, so that the hydrogen mass is well approximated

by the proton mass.

Solution
The grand canonical partition function for a classical ideal gas with independent

particles is

Q(T,V,z) =
+∞

∑
N=0

eβμNQN
1

N!
= ezQ1

where Q1 is the partition function of the single particle and z= eβμ its fugacity. We
then use the result for the ideal classical gas (see also Problem 7.1) and add the spin

degeneracy (g) as a multiplicative factor

Q1(T,V ) = gV
(
2πmkT

h2

)3/2
.

The average number is

〈N〉= z
(
∂ lnQ
∂ z

)
T,V

= zQ1 = zgV
(
2πmkT

h2

)3/2

so that we find

n=
〈N〉
V

=
zQ1
V

= geβμ
(
2πm
βh2

)3/2
.

This leads to the following result for the electron (g = 2), proton (g = 2), and hy-

drogen (g= 4) densities

ne = 2eβμe

(
2πme

βh2

)3/2
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np = 2eβμp

(
2πmp

βh2

)3/2

nH = 4eβμH eβE0
(
2πmp

βh2

)3/2
where we have written the hydrogen energy as the one of the ground state (−E0) plus

the kinetic energy of the proton (
p2H
2mH

≈ p2H
2mp
). The equilibrium condition imposes

μH = μe+μp

so that, using the previous expressions, we can write

ne = 2λ
3/2
e eβ (μH−μp)

where λe =
2πme
βh2 . The ratio

nH
np
is

nH
np

= 2eβE0eβ (μH−μp)

and, hence, eβ (μH−μp) = nH
2np

e−βE0 . Plugging this result back in the relation for ne,
we get

ne = λ 3/2e
nH
np

e−βE0 .

The condition that the total charge is zero implies ne = np. This allows to write the

previous expression as

n2e = nHλ
3/2
e e−βE0

from which we extract the desired result

ne =
√
nHλ

3/4
e e−βE0/2.

Problem 8.6.
An ideal gas of N non interacting molecules with magnetic moment μ and mass m
is immersed in a magnetic field BBB= (0,0,B), so that the single particle Hamiltonian
is

H =
p2

2m
− sμB

with p the absolute value of the momentum and s = ±1 depending on the particle
we consider, i.e. with the momentum parallel or antiparallel to BBB . These two kinds
of molecules have densities n+ and n− respectively. What is the ratio n−/n+ as a
function of B at equilibrium?

Solution
The problem can be solved by imposing the constancy of the chemical potentials.

Starting from the Hamiltonian of the single particle, we can write down the two

chemical potentials for the molecules with magnetic moment parallel (+) or an-
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tiparallel (−) to BBB
μ+ = μ id

+ −μB

μ− = μ id
− +μB

where μ id± is the chemical potential of an ideal free gas with density n± and Hamil-
tonian H = p2/2m

μ id
± = kT ln(n±λ 3)

with λ = h√
2πmkT

a thermal length scale. The densities n± must show a dependence
on B in order to guarantee the equality of the chemical potentials, otherwise non
equilibrium fluctuations appear (see also Problems 7.36 and 7.39 based on similar

ideas). This leads to

kT ln(n−(B)λ 3)+μB= kT ln(n+(B)λ 3)−μB

from which we can extract directly the ratio n−/n+ as a function of B and the tem-
perature T

n−
n+

= e−
2μB
kT .

Problem 8.7.
Consider a reaction involving oxygen (O), hydrogen (H), and water (H2O) molecules

O+2H ↔ H2O

taking place in a volume V and in thermal equilibrium at temperature T . Consider
that the hydrogen density (nH ) is constantly twice the one of the oxygen (nO). Also,
all the gases involved may be considered as ideal ones with independent particles.

Compute the water density nH2O as a function of nO and T . Assume that the masses
of water and oxygen molecules are such that mH2O = 18mH and mO = 16mH .

Solution
Chemical equilibrium requires the equality of the chemical potentials. This condi-

tion reads

μO+2μH = μH2O.

In general, the chemical potential μ is defined as

μ =

(
∂F
∂N

)
T,V

where the free energy F may be defined in terms of the canonical partition function
QN

F =−kT lnQN ≈−NkT
(
ln

(
Q1
N

)
+1

)

QN(T,V,N) =
QN
1 (T,V )

N!
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where we used the Stirling approximation for N and where Q1 is the single particle
canonical partition function

Q1(T,V ) =V
(
2πmkT

h2

)3/2
.

The result for the chemical potential is

μ =

(
∂F
∂N

)
T,V

=−kT ln
(
Q1
N

)
.

Alternatively, we can use the grand canonical ensemble for the partition function

Q(T,V,z) =
+∞

∑
N=0

zN
QN
1 (T,V )

N!
= ezQ1(T,V )

where z= eμ/kT is the fugacity. Recalling that

〈N〉= z
(
∂ lnQ
∂ z

)
T,V

= zQ1 = eμ/kTQ1

we find for μ the very same result obtained before, with the only difference that the
number of particles in the canonical ensemble has to be replaced with the averaged

number of particles. When we balance the chemical potentials, we obtain

ln

(
Q1O
NO

)
+2ln

(
Q1H
NH

)
= ln

(
Q1H2O
NH2O

)

from which we get
NH2O

NON2H
=

Q1H2O
Q21HQ1O

.

With the conditions on the masses given in the text, we find

nH2O = 4

(
9

8

)3/2( h2

2πmHkT

)3
n3O.
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Kinetic Physics

Problem 9.1.
Determine the number of particle-wall collisions per unit area for an ideal quantum

gas composed of N independent particles inside a cubic container of volume V .
Treat the general case with a single particle energy ε = ε(p), i.e. only dependent on
the absolute value of the momentum. Also, determine the pressure and discuss the

corresponding classical limit. Finally, discuss the case of a photon gas with a single

particle energy

ε = cp c= const.

and a chemical potential μ = 0. For the general case of a quantum gas, the number
of particles per unit volume with the momentum between ppp and ppp+dppp is

dNppp

dV
=

g
(2π h̄)3

1

e
(ε−μ)
kT ±1

d3p=
2

(2π h̄)3
1

e
(ε−μ)
kT ±1

dφ sinθ dθ p2 dp

where g is the spin degeneracy, and±1 refers to fermions/bosons respectively. In the
above expression, p, θ and φ refer to spherical polar coordinates in the momentum
space.

Solution
The number of collisions per unit area and time is provided by all those particles

whose velocity vvv (with absolute value v) is sufficiently high to cover the distance
between their position and the walls of the container. Let us choose a wall, and set

the z axis perpendicular to the wall. The number of collisions per unit time (dt) and
area (dA) is given by those particles contained in the volume (see also Fig. 9.1)

dV = dAvzdt = vcosθdt.

The velocities are in general not directed along z, and that is the reason why we have
to consider only their projection vcosθ . We also have to set vz > 0 or, alternatively,
cosθ > 0, that implies 0≤ θ < π/2, because we are interested only in those particles
that move towards the wall and not in the opposite direction. For a given θ and

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 9, c© Springer-Verlag Italia 2012
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Fig. 9.1 The effusion of gas molecules through an opening of area dA in the walls of a vessel
containing the gas. The case of a quantum gas is discussed in Problem 9.1

momentum p, the total number of particles hitting the wall per unit time and area is
obtained by multiplying

dNppp
dV by the quantity vcosθ

dNhit =
g

(2π h̄)3
〈nε〉v cosθ dφ sinθ dθ p2 dp

where we have defined

〈nε〉= 1

e
(ε−μ)
kT ±1

as the mean occupation number for the energy level ε (see problems on the quantum
gases in the next chapters). From the kinetic point of view, the pressure is given

by the momentum transferred to the walls. If pi and p f are the z components of
the momentum before and after the collisions, the total transferred momentum is

Δ p = pi − p f = pz − (−pz) = 2pz = 2pcosθ , if we assume that the collision is
elastic, i.e. the net effect of collision is to change sign to the normal component of

the momentum. Therefore, the pressure P is given by the following expression

P= 2
∫
pcosθ dNhit d3p=

2g
(2π h̄)3

∫ 2π

0
dφ
∫ π

2

0
sinθ cos2 θdθ

∫ +∞

0
vp3

1

e
(ε−μ)
kT ±1

dp.

As for the classical limit, it corresponds to the case e
(μ−ε)
kT � 1. If this condition

is well verified for all ε of physical interest, the probability function reduces to
the standard Maxwell-Boltzmann factor of classical statistical mechanics. Also, for

the average number of particles 〈nε〉, the condition that e
(μ−ε)
kT � 1 may be read as

〈nε〉� 1, i.e. the probability that the energy level ε is occupied is very small. In this
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limit, the pressure may be approximated by

P ≈ 2g
(2π h̄)3

∫ 2π

0
dφ
∫ π

2

0
sinθ cos2 θdθ

∫ +∞

0
vp3e

(−ε+μ)
kT (1∓ e

(−ε+μ)
kT )dp.

Let us now come to the last question of the problem, i.e. the photon gas with μ = 0
(see also Problems 10.10-10.14 on black body radiation in the chapter on Bose-

Einstein gases). In particular, the condition μ = 0 may be read as the mathematical
condition to have thermodynamic equilibrium: if we consider the free energy F , it
reads

0=

(
∂F
∂N

)
T,V

= μ.

For a photon gas, we have to consider a spin degeneracy g= 2 to take into account
the multiplicity of transverse modes and the fact that the longitudinal modes do not

appear in the radiation. If we now use ε = pc and v= c in the previous formula, we
obtain

P=
4

(2π h̄)3

∫ 2π

0
dφ
∫ π

2

0
sinθ cos2 θdθ

∫ +∞

0
cp3

1

e
cp
kT −1

dp.

If we use the known result

∫ +∞

0

x3

ex −1dx=
π4

15

we can solve exactly the integral on the right hand side

P=
8π
3h3c3

(kT )4
∫ +∞

0

x3

ex −1dx=
8π5

45h3c3
(kT )4.

Problem 9.2.
An ideal three dimensional classical gas composed of N molecules with mass m is
in thermal equilibrium at temperature T in a container with volume V . Determine
the relation between the temperature T and:

• the average absolute value of the velocity for the gas;

• the average squared velocity of the gas.



304 9 Kinetic Physics

Solution
Let us start by computing the Maxwell distribution. We consider a single molecule
with coordinates qqq = (qx,qy,qz) and momentum ppp = (px, py, pz) in the three di-
mensional space. The molecule is in contact with a reservoir at temperature T , and
we can use the canonical distribution to compute the probability that the molecule

occupies a cell with volume d3qd3p in the phase space

P(qqq, ppp)d3qd3p ∝ e−β p2
2m d3qd3p

or, equivalently, using the velocity vvv instead of the momentum ppp, we find

P′(qqq,vvv)d3qd3p ∝ e−β mv2
2 d3qd3v.

We now look for the number of molecules per unit volume with velocity between

vvv and vvv+dvvv. This number is proportional to the probability multiplied by the total
number N and divided by the volume element d3q

f (vvv)d3v ∝
NP′d3qd3v

d3q

that is

f (vvv)d3v=Ce−β mv2
2 d3v

where C is a normalization constant. The previous distribution function is the

Maxwell distribution function for the velocity. The constant C is determined by

imposing that the integral of the distribution function is equal to the total density

n= N/V

C
∫

e−β mv2
2 d3v=C

∫ +∞

−∞
e−β mv2x

2 dvx
∫ +∞

−∞
e−β

mv2y
2 dvy

∫ +∞

−∞
e−β mv2z

2 dvz = n

leading toC= n
(
βm
2π

)3/2
. Also, we can determine the probability distribution g(vx)

associated with one component of the velocity, for example in the x direction. This
is found by integrating in dvy and dvz the previous expression

g(vx)dvx = dvx
∫

f (vvv)dvydvz = n
(
βm
2π

)1/2
e−βmv2x dvx.

Using the last equation, we can compute the average value 〈vx〉 ≡ vx in the x direc-
tion

vx =
1

n

∫ +∞

−∞
g(vx)vxdvx = 0
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that is obvious, due to the symmetry of the distribution function. The result is differ-

ent from zero if we consider the absolute value of the velocity. We first use spherical

polar coordinates, and then obtain the probability F(v) that the molecule has the ab-
solute value of the velocity between v and v+ dv by integrating out the angular
variables

F(v)dv= 4πn
(
βm
2π

)3/2
e−β mv2

2 v2dv.

With this new distribution function, we can compute v= 〈v〉

v=
1

n

∫ +∞

0
F(v)vdv=

(
8kT
πm

)1/2

that is the answer to the first question posed by the text. Finally, using the probability

F(v), we have

〈v2〉= 1

n

∫ +∞

0
F(v)v2dv

from which we obtain the relation

1

2
m〈v2〉= 3

2
kT.

Problem 9.3.
An ideal three dimensional classical gas composed of N particles with unitary mass
is in thermal equilibrium at temperature T in a container of volume V . A small hole
with area A is present on the surface of the container. Compute:

the effusion rate as a function of the average value of the absolute velocity;

the momentum transferred as a function of the gas pressure.

Solution
The effusion is defined as the number of particles exiting the hole per unit time and

area. If we assume the area of the hole to be perpendicular to the x axis, this number
is given by

R=
∫
vx>0

f (vvv)vx d3v

and knowing that f (vvv) is a Maxwellian distribution function

f (vvv) = n
(

β
2π

)3/2
e−β v2

2 n=
N
V

we get

R=
n
2

(
β
2π

)1/2 ∫ +∞

0
e−β v2x

2 d(v2x) =
n

(2πβ )1/2
.
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Fig. 9.2 A schematic view of the isothermal atmosphere under the effect of gravity. The barometric
formula for the pressure is deduced with simple kinetic considerations in Problem 9.4

We also recall the average absolute value of the velocity v = 〈v〉 = (
8kT
π

)1/2
(see

Problem 9.2 and use m= 1), from which we obtain

R=
nv
4

.

This effusion may be regarded as an efficient method to separate molecules with dif-

ferent masses because the average velocity depends on the mass itself and, for fixed

temperature, it is larger for lighter molecules. As for the momentum transferred

through the hole, we get

M =
∫
vx>0

v2x f (vvv)d
3v= n

(
β
2π

)1/2 ∫ +∞

0
e−β v2x

2 v2xdvx =
nkT
2

from which M = P
2 , because P= nkT .

Problem 9.4.
Using simple kinetic considerations, derive the barometric formula for the pres-

sure in the atmosphere. Assume that we can treat the atmosphere as an ideal gas at

equilibrium, composed of particles with mass m. For the sake of simplicity, treat the
problem as one dimensional along the vertical coordinate z, with a local Maxwellian
distribution function of the velocity vz

f (vz) = n(z)
(

m
2πkT (z)

)1/2
e−

mv2z
2kT (z)

with a space dependent density (n(z)) and temperature (T (z)).

Solution
Let us consider a column of air with height h (see also Fig. 9.2) and base A. The
density of the air is not constant and it varies with the height, due to the effect of
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the gravitational field. The standard derivation of the barometric formula is done by

computing the difference in pressure at the ends of the cylinder (similarly to what

we have done in Problem 6.14). However, this is unnecessary if a Boltzmann micro-

scopic approach is adopted. Here one considers a vertical column of gas, isolated

from all external disturbances and in equilibrium, i.e. with no mass, momentum,

heat transfers. Consider the two regions of the column at z = 0 and z = h. Let n1
and T1 be the air density and the temperature at height z= 0, and n2 and T2 those at
height z= h. As suggested by the text, we can assume that the Maxwellian distribu-
tion for the velocities is valid. Let us compute the number of molecules that move

downwards through A at z = h per unit time and area. To do that, we start from the
Maxwell distribution at height h

f2(vz)dvz = n2

(
m

2πkT2

)1/2
e−

mv2z
2kT2 dvz.

The number of molecules moving per unit time and area through A is obtained by
integrating f2(vz) times the velocity vz (gas effusion)

N2 = n2

(
m

2πkT2

)1/2 ∫ +∞

0
vze

− mv2z
2kT2 dvz = n2

(
kT2
2πm

)1/2
.

On the contrary, molecules leaving the lower region at z = 0 lose kinetic energy in
moving to the upper region, and only those whose velocity is such that

1

2
mv2z ≥ mgh→ vz ≥

√
2gh

will reach the height h. It follows that

N1 = n1

(
m

2πkT1

)1/2 ∫ +∞
√
2gh

vze
− mv2z
2kT1 dvz = n1

(
kT1
2πm

)1/2
e−

mgh
kT1 .

If the gas is in equilibrium, a mass transfer through A at z= h is not possible, so that
N1 = N2, and

n1
√
T1e

−mgh
kT1 = n2

√
T2.

Let us now consider the transport of the energy through A per unit time and area.
For the molecules moving downwards we have

K2 = 〈1
2
mv2z × vz〉= n2

(
m

2πkT2

)1/2
1

2
m
∫ +∞

0
v3z e

− mv2z
2kT2 dvz = n2

(kT2)3/2

(2πm)1/2
.

Each of the molecules moving upwards will only succeed in carrying an energy
1
2mv2z −mgh to the height h, so that the net transfer of the energy upwards is

K1 = n1

(
m

2πkT1

)1/2 ∫ +∞
√
2gh

(
1

2
mv2z −mgh

)
vze

− mv2z
2kT1 dvz.
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If we set ξ 2 = v2z −2gh we end up with the following integral

K1 = n1

(
m

2πkT1

)1/2
e−

mgh
kT1
1

2
m
∫ +∞

0
ξ 3e−

mξ2
2kT1 dξ = n1

(kT1)3/2

(2πm)1/2
e−

mgh
kT1 .

If there is not a net transfer of the energy (thermal equilibrium), we need to set

n1T
3/2
1 e−

mgh
kT1 = n2T

3/2
2 .

If we use this equation with the one obtained previously for the density, we find

T1 = T2, that is the condition that the atmosphere is isothermal. We now call T the
atmosphere temperature and write the equation relating n1 and n2 as

n2 = n1 e−
mgh
kT

from which, using the equation of state for the ideal gas, we find the barometric

formula for the atmosphere

p(h) = p(0)e−
mgh
kT .

Problem 9.5.
Consider an ideal classical gas in thermal equilibrium at temperature T . The gas is
composed of N molecules in total: N/2 with mass m1 (type 1) and N/2 with mass
m2 = 4m1 (type 2). The gas is placed in a container with volume V . At time t = 0, a
small hole with area A is produced on the container’s wall, and the effusion process
starts. Assuming that the whole process takes place at equilibrium with temperature

T , compute the number of particles of type 2 that remain in the container when the
number of particles of type 1 is reduced by a factor 2.

Solution
We denote by Ni(t) the number of particles of type i as a function of time and write
down the following differential equations (i= 1, 2)

dNi(t)
dt

=−ARi

where Ri denotes the number of particles of i-th type exiting the hole per unit time
and area, i.e. the i-th rate of effusion. From the general theory of effusion (see also
Problem 9.3) we know that Ri =

ni〈vi〉
4 , where ni and vi denote the density and ab-

solute value of the velocity for the molecules of type i. Given this relation, the
differential equations (i= 1, 2) become

dNi(t)
dt

=−ANi〈vi〉
4V
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which can be solved

Ni(t) =
N
2
e−A〈vi〉t/4V .

At time t1 the particles of the first type are reduced by a factor 2, which means that
their number is equal to N/4

N
2
e−A〈v1〉t1/4V =

N
4

from which we get t1 = 4V ln2
A〈v1〉 . It is now sufficient to plug t1 in the expression for

N2(t) to find the number of particles of type 2 present when t = t1

N2(t1) =
N
2
e−〈v2〉 ln2/〈v1〉 =

N
2
e− ln2/2

because 〈vi〉 =
(
8kT
πmi

)1/2
and m2 = 4m1 (see Problem 9.2). This means that when

the lighter particles are reduced by a factor 0.5, the heavier ones are reduced by a
factor ≈ 0.707.
Problem 9.6.
A box with volume V is separated in two equal parts by a tiny wall. In the left side
of the box there is an ideal classical gas of N0 molecules with mass m and pressure
P0, while the right side is empty. At time t = 0, a small hole with area A is produced
on the wall. Determine the pressure P(t) as a function of time that is exerted by the
gas on the left side. Assume that the temperature stays constant during the effusion

process. Discuss the limit t →+∞.

Solution
When the small hole is made on the wall, the number of particles changes in time.

If we call N(t) the number of particles in the left side, the right side is then filled
with N0−N(t) molecules. In the time interval between t and t+ dt the number of
molecules moving from left to right is (see Problem 9.3)

Rl→r =
AN(t)v
4V

with v the average value of the absolute velocity, v = 〈v〉 = (
8kT
πm

)1/2
(see Problem

9.2). At the same time, the number of molecules moving from right to left is

Rr→l =
A(N0−N(t))v

4V
.

Therefore, we can write

dN(t)
dt

=−AN(t)v
4V

+
A(N0−N(t))v

4V
=− Av

4V
(2N(t)−N0).
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If we set M(t) = 2N(t)−N0 and dM = 2dN, the resulting differential equation is

dM(t)
dt

=−bM(t)

where we have used b = Av/2V . We obtain M(t) = Ce−bt , with C an integration

constant computed from the condition that at time t = 0 we have M = N0. This
means thatC = N0 and

N(t) =
N0
2
(1+ e−bt).

Since the pressure is proportional to N for a fixed volume and temperature, we get

P(t) =
P0
2
(1+ e−bt).

In the limit t →+∞ the pressure on both sides is equal to P0/2.

Problem 9.7.
A cylindrical container (whose height L is very large, L � 1, with respect to the

radius of its base) with base located at z= 0, contains N particles with mass m1 =m
and N particles with mass m2 = 4m. The gas is ideal, non interacting, in thermal
equilibrium at temperature T , and under the effect of a constant gravitational accel-
eration g. At some point, a small hole is opened in the lateral surface and, at later
times, it is observed that the number of particles of mass m1 is equal to the number
of particles of mass m2. Under the assumption that the effusion process takes place
at equilibrium, determine the height h at which the hole was opened.

Solution
When the number of particles of mass m1 and m2 is the same, the effusion rate of
both particles is the same, i.e. R1 = R2. When studying the effusion of a gas through
a small hole, it is known (see Problem 9.3) that the number of particles per unit time

and area is R = n(h)v
4 , where n(h) is the local density at height h and v the average

value of the absolute velocity of the gas, vi = 〈vi〉 =
(
8kT
πmi

)1/2
(see Problem 9.2).

As a consequence, the condition R1 = R2 implies

n1(h)v1 = n2(h)v2.

Using the previous expressions for vi, i= 1,2, and recalling the relation between the
particles masses, i.e. m2 = 4m1, we obtain

n2(h) = 2n1(h).

When studying the change of density for a gas under the effect of gravity, we obtain

(see also Problem 9.4)

ni(h) =Cie−
migh
kT
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whereCi (i= 1,2) are normalization constants which can be found by imposing that
the total number of particles for each mass is N. We find

Ci

∫ L

0
e−

migh
kT dh≈Ci

∫ +∞

0
e−

migh
kT dh= N

leading toCi = Nmig/kT . Therefore, we can write

n1(h) =
Nmg
kT

e−
mgh
kT n2(h) =

4Nmg
kT

e−
4mgh
kT

and the condition n2(h) = 2n1(h) becomes

4e−
4mgh
kT = 2e−

mgh
kT

or, alternatively h= kT ln2
3mg .

Problem 9.8.
Let us consider a two dimensional classical system composed of N particles with

mass m and single particle Hamiltonian

H =
p2

2m
+V (r) =

p2

2m
+
1

2
μ2r2− 1

4
λ r4

where p is the absolute value of the momentum and whereV (r) is a potential (μ > 0
and λ > 0) due to external forces, with r the radial distance (r> 0) from a fixed cen-
ter. The whole system is in thermal equilibrium at temperature T . Compute the rate
of particles dN(t)/dt escaping from ‘the peak’ of the potential energy barrier under
the assumption that the non quadratic part of the potential is a small perturbation

(λ 	 1).

Solution
We need to find the peak of the potential, say located at r = b. From the condition
dH/dr = 0 we find

μ2r−λ r3 = 0.

If we neglect the solution r = 0, we get r = b= μ/
√
λ (see also Fig. 9.3, where we

plot V (r) with λ = μ = 1).
The number of particles exiting a small hole per unit time and area (see Problems

9.2 and 9.3) is

R= ρ(b)
〈v〉
4

= ρ(b)
√

kT
2πm

where ρ(b) is the local density at r= b. Multiplying this result by 2πb (the perimeter
of the circle with radius b), we get the total number of particles escaping from the
peak of the potential per unit time

dN(t)
dt

= ρ(b)b
√
2πkT
m

.
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Fig. 9.3 We plot the potential energy barrier V (r) = 1
2μ

2r2− 1
4λ r

4 for λ = μ = 1. In Problem 9.8
we compute the number of particles per unit time escaping from ‘the peak’ of the potential energy
barrier located at r = b= μ/

√
λ

To solve the problem, we finally need to compute ρ(b), i.e. the particles density in
the peak of the potential. From the assumption of equilibrium (see also Problems

7.12, 7.36 and 7.39), we know that

ρ(r) = ce−
V (r)
kT = ce

−
(

μ2r2
2kT − λ r4

4kT

)

and we have to determine the constant c by imposing that the integral of ρ(r) over
the space gives the total number of particles. We obtain

N = 2π
∫ +∞

0
rρ(r)dr = 2πc

∫ +∞

0
r e

−
(

μ2r2
2kT − λ r4

4kT

)
dr.

As reported in the text, we can treat λ as a small parameter, so that we can Taylor
expand the exponential function in the integrand

N ≈ 2πc
∫ +∞

0
r
(
1+

λ r4

4kT

)
e−

μ2r2
2kT dr.

If we set μ2r2/2kT = y, we get

N =
2πkTc
μ2

∫ +∞

0

(
1+

λkTy2

μ4

)
e−y dy
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from which

c=
Nμ2

2πkT
1(

1+ 2λkT
μ4

) .

Finally, we have to plug this value of c in the equation for ρ(b), consider that b =
μ/

√
λ , and plug ρ(b) in the equation for dN(t)/dt. The final result is

dN(t)
dt

=
Nμ3√

2πmλkT
(
1+ 2λkT

μ4

)e−
μ4
4kTλ .

Problem 9.9.
Let us consider a cubic container with volume V and negligible mass which is on a
smooth surface without friction. In the container we find N molecules of an ideal gas
(each particle has mass m) in thermal equilibrium at temperature T . At time t = 0 a
small hole with area A is opened on one side of the container. This hole stays opened
for a small time interval Δ t. Determine the velocity of the container as a function of
T , m, V , Δ t. Assume that in the time interval Δ t the pressure and the temperature of
the container stay constant.

Solution
During the effusion, the momentum transferred (see also Problem 9.3) per unit time

through A is equal to Π = AP
2 , where P is the pressure inside the container. The

velocity of the container is v = APΔ t
2M , where M is the total mass of the gas, that we

approximate with Nm (some particles will exit, so it won’t be exactly equal). Using
this information and the equation of state for the ideal gas (PV = NkT ), we find

v=
AkTΔ t
2mV

.



10

Bose-Einstein Gases

Problem 10.1.
Consider a three dimensional gas of bosons with spin 0 and single particle energy

given by

ε =
p2

2m
where p is the absolute value of the momentum andm the mass of the particle. Write
down the equation determining the critical temperature (Tc) for the Bose-Einstein
condensation in the ground state.

Solution
We start by writing down the logarithm of the grand canonical partition function for

the quantum gas obeying the Bose-Einstein statistics

lnQ =−
∫
ln(1− ze−βε)

d3pd3q
h3

=−4πV
h3

∫ +∞

0
ln(1− ze−βε)p2dp

where ε = p2
2m . For the average density of particles 〈N〉/V , we find

〈N〉
V

=
z
V

(
∂ lnQ
∂ z

)
T,V

=
1

V

∫
1

z−1eβε −1
d3pd3q

h3
=
4π
h3

∫ +∞

0

1

z−1eβε −1 p
2dp.

The above integral may be written in terms of the Bose-Einstein functions gα(z)

gα(z) =
1

Γ (α)

∫ +∞

0

xα−1dx
z−1ex−1

as 〈N〉
V

=

(
2πmkT

h2

)3/2
g3/2(z).

For a given 〈N〉, the fugacity z depends on the temperature T . At the same time,
for a given T , z cannot be above the maximum value zmax = eβε

∣∣
p=0 = 1, to ensure

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 10, c© Springer-Verlag Italia 2012
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positive occupation numbers. The equation for the critical temperature is found by

setting z= 1 and T = Tc (β = βc =
1
kTc
) in the equation for 〈N〉

〈N〉
V

=

(
2πmkTc

h2

)3/2
g3/2(1).

Making use of the Riemann zeta function such that ζ (3/2) = g3/2(1), we find

Tc =
h2

2πmk

( 〈N〉
Vζ (3/2)

)2/3
.

Problem 10.2.
Using the continuous approximation, discuss the phenomenon of the Bose-Einstein

condensation and the existence of a critical temperature for one (d = 1) and two

dimensional (d = 2) gases placed in a cubic d dimensional volume of edge L with a
single particle energy ε = p2

2m , where p is the absolute value of the momentum and
m its mass.

Solution
In order to reveal the existence of a critical temperature, we need to consider the

equation determining the particles average density. The dimensionless volume el-

ement in the phase space is given by gLddd p
(2π h̄)d , where g is the spin degeneracy

(g = 2S+ 1) and d the space dimensionality (d = 1,2). For the case with d = 2

we find
gL2d2p
(2π h̄)2

=
gL22π pdp
(2π h̄)2

=
gL2mdε
2π h̄2

while, for d = 1
gLdp
2π h̄

=
gL

√
mdε

2
√
2επ h̄

.

The corresponding average densities are given by

〈N〉
L2

=
gm
2π h̄2

∫ +∞

0

dε
z−1eβε −1 =

gm
2π h̄2

kT
∫ +∞

0

dx
z−1ex−1 =

gm
2π h̄2

kTg1(z)

and

〈N〉
L

=
g
√
m

2
√
2π h̄

∫ +∞

0

1√
ε

dε
z−1eβε −1=

g
√
mkT

2
√
2π h̄

∫ +∞

0

1√
x

dx
z−1ex−1=

g
√
mkT

2
√
2
√
π h̄

g 1
2
(z)

for d = 2 and d = 1 respectively. Since the average number of particles must be a

positive quantity, we must have 0 ≤ z ≤ 1. When we reach the critical value z = 1,
the Bose-Einstein condensation sets in for the particles in the ground state ε = 0.

Therefore, the equation for the critical temperature Tc is obtained by setting z = 1

and T = Tc in the equation for
〈N〉
L ,

〈N〉
L2 . For the case d = 2 we can solve the integral
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exactly because

g1(z) =− ln(1− z).

Moreover, we know that when z ≈ 1 we find gn(z) ≈ (lnz)−(1−n) (0< n < 1). This

means that for the d = 1 case (where n= 1/2) we have

g 1
2
(z)≈ (lnz)−

1
2 .

Therefore, the integrals defining
〈N〉
L ,

〈N〉
L2 for d = 1 and d = 2 diverge when z → 1

and the corresponding critical temperatures are zero, i.e. the Bose-Einstein conden-

sation, contrary to what happens in the three dimensional gas (see Problem 10.1),

does not take place.

Problem 10.3.
Consider a gas composed of 〈N〉 particles obeying the Bose-Einstein statistics. The
gas is in a d dimensional container with volume V . The single particle energy is
ε = pb, where p is the absolute value of the momentum and b a positive con-
stant. Suppose that 〈N〉/V is fixed and determine the conditions for which the Bose-
Einstein condensation takes place.

Solution
Similarly to Problem 10.1, we write the logarithm of the grand canonical partition

function for the quantum gas obeying the Bose-Einstein statistics in d dimensions

lnQ =−
∫
ln(1− ze−βε)

dd pddq
hd

=−ΩdV
h3

∫ +∞

0
ln(1− ze−βε)pd−1dp

and find the average density of particles 〈N〉/V as

〈N〉
V

=
z
V

(
∂ lnQ
∂ z

)
T,V

=
1

V

∫
1

z−1eβε −1
dd pddq

hd
=

Ωd

hd

∫ +∞

0

1

z−1eβε −1 p
d−1dp.

In the above expression, Ωd is the d dimensional solid angle. The equation for the
critical temperature (Tc) is found by setting z= 1, β = βc =

1
kTc
in the equation for

〈N〉. Using the new variable x = βε = pb, the existence of a non zero Tc is then
closely related to the behaviour of the integral

I =
∫ +∞

0

xd/b−1dx
ex−1 .

In particular, it is important to examine its behaviour in a neighborhood of the origin

x= 0, since for large x the integrand is exponentially small and the integral is surely
convergent. We find that the integral converges only if d/b> 1, while diverges when
d/b≤ 1. When the integral converges (d/b> 1) there is a finite critical temperature
Tc at which the ground state starts to be occupied by a significant fraction of the
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particles. At such critical temperature, we find

〈N〉
V

=
Ωd(kTc)d/b

bhd

∫ +∞

0

xd/b−1dx
ex−1 =

Ωd(kTc)d/b

bhd
Γ (d/b)gd/b(1)

with

gd/b(z) =
1

Γ (d/b)

∫ +∞

0

xd/b−1dx
z−1ex−1 .

The final result is

kTc =
( 〈N〉

V
bhd

ΩdΓ (d/b)ζ (d/b)

)b/d

where ζ (d/b) is the Riemann zeta function such that ζ (d/b) = gd/b(1).

Problem 10.4.
A Bose-Einstein gas is characterized by particles of mass m and spin S = 0 in a

volume V . The single particle energy is

ε =
p2

2m
+nΔ

where p2
2m is the kinetic term, Δ > 0 a constant, and n an integer number equal to

n= 0,1. Determine the equation for the critical temperature Tc of the Bose-Einstein
condensation. In the limit Δ � kT , is the critical temperature increasing or decreas-
ing with respect to the case ε = p2

2m (see Problem 10.1)?

Solution
We start from the equation determining the average number of particles

〈N〉= ∑
n=0,1

∫
1

z−1eβ
p2
2m+βnΔ −1

d3pd3q
h3

= ∑
n=0,1

4πV
h3

∫ +∞

0

1

z−1eβ
p2
2m+βnΔ −1

p2dp

where we have considered that the whole energy spectrum is made up of a continu-

ous part ( p
2

2m ) and a discrete one (nΔ ). Furthermore

〈N〉= ∑
n=0,1

V (2πmkT )3/2

h3
1

Γ (3/2)

∫ +∞

0

1

z−1ex+βnΔ −1x
1/2dx.

Using the Bose-Einstein functions

gα(z) =
1

Γ (α)

∫ +∞

0

xα−1dx
z−1ex−1

we get
〈N〉
V

=
1

λ 3
g3/2(z)+

1

λ 3
g3/2(ze

−βΔ )
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with λ =
√

h2
2πmkT a thermal length scale. The equation defining the critical temper-

ature Tc is obtained by imposing that z = eβE0 = 1 when T = Tc, where E0 = 0 is

the ground state energy. Therefore, we find

〈N〉
V

=
1

λ 3c
g3/2(1)+

1

λ 3c
g3/2(e

−βcΔ ).

In the limit Δ � kTc we can use g3/2(e−βcΔ ) ≈ e−βcΔ (because g3/2(x) ≈ x when
x	 1) and we get

〈N〉
V

=
1

λ 3c
g3/2(1)+

1

λ 3c
e−βcΔ

or, equivalently

λ 3c
〈N〉
V

=

(
h2

2πmkTc

)3/2 〈N〉
V

= g3/2(1)+ e−βcΔ = ζ (3/2)+ e−βcΔ .

In Fig. 10.1 we have considered the case k = 1,
(

h2
2πmk

)3/2 〈N〉
V = 0.05 and reported

the functions y = 0.05T−3/2
c and y = ζ (3/2)+ e−Δ/Tc for Δ = 0.1. From the inter-

section we find the critical temperature. The intersection with the curve y= ζ (3/2),
instead, gives the critical temperature for the case with ε = p2

2m (see Problem 10.1).

We see that the critical temperature is decreased by the discrete spectrum when

compared to the case with ε = p2
2m .

Problem 10.5.
Consider a two dimensional Bose-Einstein gas in a domain of area A. This gas is
characterized by a fixed average number 〈N〉 of ultrarelativistic particles with spin
0 and single particle energy

ε = cp

with p the absolute value of the momentum and c the speed of light. Prove that, un-
like the non relativistic case, we find a critical temperature Tc for the Bose-Einstein
condensation. Also, below Tc, determine the way the particles density changes in
the condensed phase as a function of the temperature T .

Solution
Let us start from the average number of particles

〈N〉= 1

4π2h̄2

∫
1

z−1eβcp−1d
2qd2p

where we can use spherical polar coordinates in the momentum space and perform

exactly the integral in the spatial coordinates

〈N〉= A
2π h̄2

∫ +∞

0

p
z−1eβcp−1dp.
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Fig. 10.1 The critical temperature Tc for the Bose-Einstein condensation of the gas described

in Problem 10.4 is found from the intersection of the two curves y =
(

h2
2πmkTc

)3/2 〈N〉
V and

y = g3/2(1)+ e−βcΔ . We have considered the case k = 1,
(

h2
2πmk

)3/2 〈N〉
V = 0.05 and reported the

functions y= 0.05T−3/2
c , y= ζ (3/2)+e−0.1/Tc . The intersection with the curve y= ζ (3/2) corre-

sponds to the critical temperature of Problem 10.1

If we set βcp= x, we can write the density n= 〈N〉
A as

n=
〈N〉
A

=
1

2πβ 2c2h̄2

∫ +∞

0

zxe−x

1− ze−x dx.

We now expand the denominator as a geometric series

n=
1

2πβ 2c2h̄2

∫ +∞

0

(
zxe−x

+∞

∑
k=0

zke−kx

)
dx=

1

2πβ 2c2h̄2
+∞

∑
k=1

zk
∫ +∞

0
xe−kx dx

where we have interchanged the series with the integral. We then solve the integral

and obtain

n=
1

2πβ 2c2h̄2
+∞

∑
k=1

zk

k2
.

The equation for the critical temperature Tc is found by setting z = 1 and T = Tc
(β = βc =

1
kTc
) in the equation for n

n=
1

2πβ 2c c2h̄2
+∞

∑
k=1

1

k2
=

π
12β 2c c2h̄2
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where we have used ∑+∞
k=1

1
k2 =

π2
6 . The above equation, for a given density, deter-

mines the critical temperature

βc =
1

kTc
=

√
π
3n

1

2ch̄
.

When β increases above βc, a significant fraction (say n0) of the total number of
bosons condenses in the ground state, so that the total density is

n= n0+
π

12β 2c2h̄2
= n0+n

(
βc

β

)2

and, hence

n0 = n

(
1−

(
βc

β

)2)
.

Problem 10.6.
Let us consider a collection of 〈N〉 bosonic quantum harmonic oscillators in two

dimensions, with spin 0 and frequency ω . Identify the critical value of the chemical
potential μc for which the density of states has a divergence in the ground state.

Then, give an estimate for the chemical potential μ in the limit z → 0. Finally,

discuss the existence of a critical temperature for the phenomenon of the Bose-

Einstein condensation.

Solution
In the most general case, the expression for the average number of states character-

izing the system is

〈N〉= ∑
states

1

z−1eβεstate −1
with z= eβμ and μ the chemical potential. In our case, we can write down this num-
ber using the known expression for the energy levels of a two dimensional quantum

harmonic oscillator (see for example Problem 5.8), i.e. Enx,ny = h̄ω(nx + ny + 1),
with nx,y non negative integers. The result for 〈N〉 is

〈N〉=
+∞

∑
nx,ny=0

1

z−1eβ h̄ω(nx+ny+1)−1 .

If we set n= nx+ny, the degeneracy of a given n is g(n) = n+1. In this way, for a
generic function of the sum f (n) = f (nx+ny), we have

∑
nx,ny

f (nx+ny) =∑
n
g(n) f (n).



322 10 Bose-Einstein Gases

The summation over n can be used to determine the average number as

〈N〉=
+∞

∑
nx,ny=0

1

z−1eβ h̄ω(nx+ny+1)−1 =
+∞

∑
n=0

n+1
z−1eβ h̄ω(n+1)−1 .

Particles in the ground state, n= 0, have a critical value of the chemical potential. In
such a case, the denominator becomes zero when eβ h̄ω = zc, i.e. μc = h̄ω . In order
to answer the second question, we note that when z→ 0 we can approximate 〈N〉 as

〈N〉=
+∞

∑
nx,ny=0

1

z−1eβ h̄ω(nx+ny+1)−1 ≈ ze−β h̄ω
+∞

∑
nx,ny=0

e−β h̄ω(nx+ny) =

ze−β h̄ω

(
+∞

∑
n=0

e−nβ h̄ω

)2

=
ze−β h̄ω

(1− e−β h̄ω)2
=

z

4sinh2
(
β h̄ω
2

)
leading to

μ =
1

β
ln

(
4〈N〉sinh2

(
β h̄ω
2

))
.

The critical temperature, if any, is found by imposing simultaneously that in the

limit μ → μc, N0 = 0, T = Tc = 1
kβc and that the sum defining 〈N〉 is convergent (N0

is the average number of bosons in the condensed state). We have

〈N〉= N0+
+∞

∑
n=1

n+1
enβ h̄ω −1 =

+∞

∑
n=1

n+1
enβch̄ω −1 .

The sum converges and, for a fixed 〈N〉, the previous equation defines implicitly the
critical temperature.

Problem 10.7.
Make use of the Clausius-Clapeyron equation for the Bose-Einstein gas treated in

Problem 10.1 and find the relationship between the pressure and the temperature in

presence of a Bose-Einstein condensation. Suppose that the condensed phase has a

negligible specific volume. Make use of the fact that the latent heat is L= 5
2kT

ζ( 52 )
ζ( 32 )

,

where ζ is the Riemann zeta function.

Solution
The Clausius-Clapeyron equation (see also Problem 8.3) is given by

dP
dT

=
L

TΔv

where Δv is the variation of the specific volume and L the latent heat. For a Bose
gas, when both phases coexist, the gaseous one has a specific volume vg, whereas
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the condensed one has a negligible specific volume vc ≈ 0 . This means that

Δv= vg =
(
V
N

)
g
=

λ 3

ζ
(
3
2

)
where λ =

√
2π h̄2
mkT . We also know that L = 5

2kT
ζ( 52 )
ζ( 32 )

. Therefore, we can write the

Clausius-Clapeyron equation as

dP
dT

=
L

TΔv
=
5

2
kT

ζ
(
5
2

)
ζ
(
3
2

) 1

Tvg
=
5

2
kζ

(
5

2

)
1

λ 3
=
5

2

P
T
.

that implies PT− 5
2 = const.

Problem 10.8.
An average number 〈N〉 of bosons (spin S = 1) in three dimensions is subject to a
constant magnetic field with intensity B directed along the z axis. The single particle
energy is

ε =
p2

2m
− τszB

where τ is the magnetic moment, p the absolute value of the momentum, and sz =
−1,0,+1. Using the formalism of quantum gases, determine the average occupation
numbers associated with the three different values of the spin. Also, write down the

magnetizationM and its approximation in the limit of small B. Finally, in the limit of
high temperatures and small densities (the classical limit), define the susceptibility

χ =

(
∂M
∂B

)
T,〈N〉

and prove Curie law

lim
B→0

χ ≈ 〈N〉
T

.

Solution
We start by writing down the total average number of particles

〈N〉= ∑
states

1

eβ (Estate−μ)−1
where ∑states indicates all the possible states available for the system, each one with

energy Estate. We note that the energy has a kinetic term ( p
2

2m ) plus the potential

energy of the dipoles arising from the presence of the magnetic field (τszB). When
computing∑states, the kinetic term represents a continuous spectrum and contributes

with the integral ∫ d3pd3q
h3
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while we have to consider a discrete sum (because sz =−1,0,+1) for the magnetic
term. The final result is

〈N〉= ∑
sz=−1,0,+1

∫ d3pd3q
h3

1

e
β
(

p2
2m−τBsz−μ

)
−1

.

We can think that this total number is composed of three terms, i.e. 〈N0〉, 〈N+〉 and
〈N−〉, identifying the average occupation numbers for the states with different spin
projection along the z axis

〈N〉= 〈N0〉+ 〈N+〉+ 〈N−〉

from which

〈Nsz〉=
V
h3

∫ d3p

e
β
(

p2
2m−τBsz−μ

)
−1

sz =±1,0.

If we set z= eβμ , x= β p2
2m and λ = h√

2πmkT
, we have

〈Nsz〉=
V
λ 3

g3/2(ze
βτszB) g3/2(z) =

1

Γ (3/2)

∫ +∞

0

x1/2dx
z−1ex−1 .

The magnetization is defined as

M = τ∑
sz

sz〈Nsz〉= τ(〈N+〉−〈N−〉)

that is

M =
τV
λ 3

[
g3/2(ze

βτB)−g3/2(ze
−βτB)

]
.

In the limit of small B, we can expand the exponentials to obtain

g3/2(ze
±βτB)≈ g3/2(z(1±βτB))

and a Taylor series of g3/2(z(1±βτB)) for small zβτB yields

g3/2(z(1±βτB)) = g3/2(z)± zβτB
dg3/2(z)

dz
+O(B2).

We can also use the properties of the Bose-Einstein functions

z
dg3/2(z)

dz
= g1/2(z)

to get the magnetization when B→ 0

M =
2τ2V
kTλ 3

Bg1/2(z)+O(B
2).
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Moreover, for high temperatures and low densities, we have z → 0 (classical limit)

and we can approximate g3/2(z)≈ z. Therefore, when B→ 0, the total average num-

ber of particles in the classical limit is

〈N〉= 〈N0〉+ 〈N+〉+ 〈N−〉= 3V
λ 3

g3/2(z)≈
3zV
λ 3

from which we extract z as a function of the density

z=
λ 3

3

〈N〉
V

which can be substituted in the magnetization

M =
2τ2V
kTλ 3

Bg1/2(z)+O(B
2)≈ 2τ2V

kTλ 3
Bz+O(B2) =

2τ2〈N〉
3kT

B+O(B2)

and, hence

lim
B→0

χ = lim
B→0

(
∂M
∂B

)
T,〈N〉

=
2τ2〈N〉
3kT

that is Curie law (see also Problems 6.13, 7.23 and 7.24 ).

Problem 10.9.
Let us consider a system of 〈N〉 non relativistic bosons with mass m and spin 0 in a
cylindrical volume of base A and height L. The gas is under the effect of a constant
gravitational field with acceleration g. Show that the critical temperature for the

Bose-Einstein condensation is well approximated by

Tc ≈ T (0)
c

⎡
⎣1+ 8

9

1

ζ (3/2)

(
πmgL

kT (0)
c

)1/2
⎤
⎦

where T (0)
c is the critical temperature in absence of an external field (see Problem

10.1). Assume that mgL 	 kT (0)
c . To solve the problem, set ω = ze−βmgh, where

h is the vertical coordinate. Then, with α = − ln(ω), make use of the following
expansion valid for ω ≈ 1

g3/2(ω)≈ Γ
(
−1
2

)
α1/2+ζ

(
3

2

)
+ · · ·

with

Γ
(
3

2

)
=

√
π
2

Γ
(
−1
2

)
=−2√π.

Solution
We write down the equation for the total average number of bosons

〈N〉= 4πA
h3

∫ L

0
dh

∫ +∞

0

p2

z−1eβmgheβ p2/2m−1dp
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and, by setting ω = ze−βmgh and x= β p2
2m , we can write

〈N〉= 2πA
(
2mkT
h2

)3/2
Γ
(
3

2

)
1

βmg

∫ z

ze−βmgL

g3/2(ω)

ω
dω

where ∫ +∞

0

x1/2

ω−1ex−1dx= Γ
(
3

2

)
g3/2(ω).

We now make use of the expansion suggested by the text for g3/2(ω), where α =
− ln(ω), valid for values of ω close to 1 (small α)

g3/2(ω)≈ Γ
(
−1
2

)
α1/2+ζ

(
3

2

)
+ · · · .

We know that Γ
(
3
2

)
=

√
π
2 and Γ

(− 1
2

)
=−2√π , and close to the transition (where

z≈ 1 and α ≈ βmgh) we can write

g3/2(ω)≈−2√π(βmgh)1/2+ζ
(
3

2

)

which can be plugged into the equation for the average number 〈N〉

〈N〉= A
(
2πmkT

h2

)3/2 [
Lζ

(
3

2

)
−2√π(βmg)1/2

∫ L

0
h1/2dh

]
.

We then factorize the term Lζ
(
3
2

)
and define V = AL to obtain

〈N〉=V
(
2πmkT

h2

)3/2
ζ
(
3

2

)[
1− 4

3

1

ζ
(
3
2

)
√

πmgL
kT

]
.

This equation, for fixed 〈N〉/V , implicitly defines the critical temperature Tc for
the Bose-Einstein condensation. To compute it, we recall that we have to assume

mgL << kT (0)
c . To give a zeroth order approximation for Tc, we can neglect the

second term inside the square bracket, obtaining the known result

T (0)
c =

h2

2πmk

(
〈N〉

Vζ
(
3
2

)
)2/3

which coincides with the critical temperature for a gas of free bosons without any

external field (see Problem 10.1). As a first order approximation, we can plug the

zeroth order result obtained previously into the equation for 〈N〉 and get

Tc ≈ h2

2πmk

(
〈N〉

Vζ
(
3
2

)
)2/3

1[
1− 4

3
1

ζ( 32 )

√
πmgL

kT (0)
c

]2/3
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where, if we expand the denominator with 1
(1−x)α ≈ 1+αx (x	 1), we finally obtain

Tc ≈ T (0)
c

⎡
⎣1+ 8

9

1

ζ (3/2)

(
πmgL

kT (0)
c

)1/2
⎤
⎦

that is the desired result.

Problem 10.10.
Determine the maximum of the Planck distribution (for the three dimensional case)

as a function of the frequency and the wavelength. Show that this is possible

if we maximize the function xa/(ex − 1) for a = 3 and a = 5 respectively. This

means solving the equation x = a(1− e−x), which can be done in an iterative way
xn = a(1− e−xn−1), starting from x1 = 1 (stop after 5 iterations). Verify Wien law,

λmaxT =const., and comment on the fact that we find two different constants in the
two approaches.

We know that the sun produces the largest amount of radiation around the wave-

length ≈ 5×10−5 cm. Using the results previously obtained, determine:
the temperature of the sun;

the amount of energy produced, knowing that the main mechanism of produc-

tion of such energy is the transformation of hydrogen into helium, and that this

reaction stops when 10% of the hydrogen has been converted. A good approxi-

mation is to take the whole mass of the hydrogen equal to the mass of the sun

(use Einstein relation E = ΔMc2);
the lifetime of the sun.

You can use the following numerical constants: h= 6.625×10−27 erg s; c= 3×1010
cm s−1; σB = 5.67×10−5 erg cm−2 s−1 K−4; Rsun = 7×1010 cm;Msun = 2×1033
g; k = 1.38×10−16 erg K−1.

Solution
The dimensionless volume element in the phase space for a free photon gas is given

by

2
V
h3

dpxdpydpz =
8πV
h3

p2dp=
8πV
c3

ν2dν

with p= hν
c . The energy density per unit frequency uν is obtained by multiplying the

dimensionless volume element by the Bose-Einstein distribution and by the energy,

and dividing by the volume V

uνdν =
8πh
c3

ν3dν

e
hν
kT −1

.

Using the relation λν = c, we also obtain the energy density per unit wavelength uλ

uλdλ =
8πhc
λ 5

dλ

e
hc
λkT −1

.
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Local maxima are found by imposing the following conditions

duν
dν

=
8πh
c3

(
kT
h

)2 d
dx

(
x3

ex−1
)
= 0

duλ
dλ

=
dλ ′

dλ
duλ ′

dλ ′ = 8πhc
(
kT
h

)4 dλ ′

dλ
d
dx

(
x5

ex−1
)
= 0

with λ ′ = 1/λ and x = hν
kT in the first case, and x = hc

λkT in the second. These are
the functions given in the text of the problem. Using an iterative procedure, xn =
a(1−e−xn−1), we get x1= 1, x2= 1.89636, x3= 2.54966, x4= 2.76568, x5= 2.8112
(for a= 3) and x1= 1, x2= 3.1606, x3= 4.788, x4= 4.9584, x5= 4.9649 (for a= 5),
from which

hνmax

kT
= 2.82144

hc
λmaxkT

= 4.96511.

The last relation proves Wien law. Using νmax = c/λmax in the first relation, we note

that the two constants are not equal. The reason is that both distributions, uν and uλ ,
are given per unit frequency and wavelength respectively. It then follows from the

relation dλ = −λ 2dν/c that a unitary interval of frequencies is not corresponding
to a unitary interval of wavelengths, i.e. they are not directly proportional.

Wien law proves that the spectrum of our radiation is dependent only on λmaxT ,
a fact that is now used to answer the other questions of the problem. Using the

numerical constants given by the text, we obtain

Tsun =
1

4.96

hc
kλ

≈ 6000K.

Let us now compute the total energy emitted by the sun through the mechanism of

transformation of hydrogen into Helium. From the text, we know that such reaction

stops when the 10% of hydrogen has been converted. Therefore, the total energy

produced is

ETOT = ΔMc2 = 0.1×2×1033×9×1020erg≈ 2×1053erg.

If we assume the sun behaves like a black body, we can use Stefan-Boltzmann law

to estimate the release of energy per unit time and area. If we multiply by the total

surface 4πR2sun, we obtain the energy released in the unit time. Consequently, an
estimate for the lifetime of the sun naturally emerges

tsun =
ETOT

σBT 44πR2sun
≈ 2×1053erg
4×1033ergs−1 ≈ 0.5×1020s≈ 1.5×1012years.
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Problem 10.11.
At the temperature Tγ = 3000K in a volume Vγ , the electromagnetic radiation de-
coupled from the plasma originating after the Big Bang. Knowing that the present

temperature is Tnow = 3K, what is the ratio between the present volume and Vγ if
we assume an adiabatic expansion? Has the peak of the Planck distribution moved?

How much these values change if we consider a d dimensional universe? Let us
suppose that for T < Tγ the electrons can only interact electromagnetically. Is it
reasonable to consider them not to be interacting?

Solution
We first recall the infinitesimal volume element for a d dimensional sphere of ra-
dius R

dVd =
dπd/2

(d/2)!
Rd−1 dR.

Then, we consider the dimensionless volume element in the phase space for the

photon gas

gV
(2π h̄)d

dd p=
gV

(2π h̄)d
dπ

d
2( d

2

)
!
pd−1dp=

gVd

π
d
2 (2c)d

( d
2

)
!
ωd−1dω

where V is the volume, ω = pc
h̄ , and g = d−1 accounts for the independent polar-

izations in d dimensions. For the average energy we find

U =
gVdh̄

π
d
2 (2c)d

( d
2

)
!

∫ +∞

0

ωddω

e
h̄ω
kT −1

=
gVd

π
d
2 (2h̄c)d

( d
2

)
!
(kT )d+1

∫ +∞

0

xddx
ex−1 .

A photon gas has a zero chemical potential, that implies Φ = μN = PV +F = 0.

This leads to PV = −F . The term PV is related to the grand canonical partition

function

−F =PV = kT lnQ =−kT
gVd

π
d
2 (2c)d

( d
2

)
!

∫ +∞

0
ωd−1 ln(1− e

−h̄ω
kT )dω =

kT
gV

π
d
2 (2c)d

( d
2

)
!

h̄
kT

∫ +∞

0

ωddω

e
h̄ω
kT −1

=
gV

π
d
2 (2c)d

( d
2

)
!h̄d

(kT )d+1
∫ +∞

0

xd dx
ex−1=

U
d

where we have used the integration by parts. Finally, the entropy is

S=
U−F

T
=

d+1
d

U
T
∝VTd

meaning that, for a fixed d, the adiabatic transformation (S= const.) leads to

VTd = const.
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Using this result with d = 3, we find the ratio of the volumes at the temperatures

Tγ = 3000K and Tnow = 3K as

VTnow
VTγ

=

(
Tγ
Tnow

)3
≈ 109.

As for the peak of Plank distribution, we set x = h̄ω
kT , consider the function f (x) =

xd−1
ex−1 , and find its maximum xM (see also Problem 10.10). After differentiation, we
obtain

d f (x)
dx

∣∣∣∣
x=xM

=
(d−1)xd−2M

exM −1 − exMxd−1M
(exM −1)2 = 0

leading to

(d−1)exM − (d−1)− xMexM = 0.

In general, the maximum of the distribution verifies xM =M(d)withM(d) a generic
function of d. Therefore, given the temperature, the ωp for the peak is such that

h̄ωp

kT
=M(d).

For a fixed d, when moving from Tγ to Tnow, we can estimate the change in frequency

ωp(Tnow)
ωp(Tγ)

=
Tnow
Tγ

≈ 10−3

valid for every d. Let us now answer the last question. We introduce the specific
volume v=V/〈N〉, i.e. the volume for a single particle. The average distance among
the particles is thus r≈ v

1
3 = n−

1
3 , where n is the average density which, for a photon

gas, reads

n=
1

π2c3

∫ +∞

0

ω2dω
eh̄ω/kT −1 =

2ζ (3)(kT )3

π2h̄3c3
.

We then get

e2/r
kT

≈ e2n
1
3

kT
=

e2

h̄c

(
2ζ (3)
π2

)1/3
≈ 0.62× e2

h̄c
= 0.62× 1

137
≈ 0.0045.

This justifies the approximation in the text of the problem.

Problem 10.12.
An ideal black body is able to absorb all the incident radiation and emit it according

to the Planck formula. At equilibrium, the emissivity of the black body is equal to

its absorption. Assume that both the earth and the sun behave like ideal black bodies

in equilibrium. Knowing that:

the earth’s temperature is TE ≈ 14 C = 287 K;
its distance from the sun is D= 1.5×1013cm;
the radius of the sun is RS = 6.96×1010cm;
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Fig. 10.2 A schematic view of the problem of two black bodies (the earth and the sun) in thermo-
dynamic equilibrium and separated by a very large distance (see Problem 10.12)

give an estimate for the sun’s temperature. The earth’s surface may be well approx-

imated by a two dimensional area on the surface of the sphere with radius D (see

Fig. 10.2).

Solution
To determine the radiation emitted by the sun, we need to compute the average

energy density of a black body with a volume V . We get

U
V

=
h̄

π2c3

∫ +∞

0

ω3dω

e
h̄ω
kT −1

=
k4T 4

π2h̄3c3

∫ +∞

0

x3dx
ex−1 =

π2k4

15h̄3c3
T 4.

Using the formula for the effusion through a small hole, we find the energy emitted

per unit area and time as

RS =
c
4

U
V

= σT 4S

which is the Stefan-Boltzmann law. This emission is clearly isotropic and the total

emissivity is given by the product of the radiation flux per unit area and the total

spherical surface of the sun, i.e. PS = 4πR2SσT 4S . Only a fraction of this total emitted
radiation reaches the earth: this fraction is the ratio πR2E/(4πD2) (see Fig. 10.2)
which represents the solid angle of emission in the direction of the earth. From the

information of the text, we know that all the radiation absorbed is emitted by the

earth. This implies the equation

(4πR2S)(σT 4S )
πR2E
4πD2

= (4πR2E)(σT 4E )

which gives

TS =

√
2D
RS

TE ≈ 5960K.
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Problem 10.13.
Using the formalism of the ideal quantum gases with a continuous spectrum in the

energy, prove the pressure-energy relation

PV =
α
3
U

when the single particle energy is given by ε = pα , with p the absolute value of
the momentum and α > 0. Using this result, determine the relation between the

energy and the temperature for an ultrarelativistic gas (ε = p taking the speed of
light c = 1) with zero chemical potential. To this end, make use of the first law of
thermodynamics dU = TdS−PdV , where U(T,V ) = u(T )V (u(T ) is the energy
density) and use the Maxwell relations derived from the thermodynamic potential

suited to describe this case.

Solution
A generic quantum gas is described by the following occupation number

〈nε〉= 1

z−1e
ε
kT +a

with a=±1 (a=−1 means Bose-Einstein and a= 1 means Fermi-Dirac). It follows
that

PV
kT

= lnQ =
gV
a

∫ +∞

0
ln
[
1+aze−

ε
kT

] 4π p2dp
h3

=

4πgV
ah3

[
p3

3
ln
[
1+aze−

ε
kT

]+∞
0

+
∫ +∞

0

p3

3

aze−
ε
kT

1+aze−
ε
kT

1

kT
dε
dp

dp

]

where Q =Q(T,V,z) is the grand canonical partition function and g the spin de-
generacy. The boundary term in the expression for PV/kT is equal to zero and we
find

PV =
4πgV
h3

∫ +∞

0

p3

3

1

z−1e
ε
kT +a

dε
dp

dp=
4πgV
3h3

∫ +∞

0

1

z−1e
ε
kT +a

(
p
dε
dp

)
p2dp.

The average number of states and the average energy are

〈N〉= 4πgV
h3

∫ +∞

0

1

z−1e
ε
kT +a

p2dp.

U =
4πgV
h3

∫ +∞

0

1

z−1e
ε
kT +a

ε p2dp

from which

P=
4πg
3h3

∫ +∞

0

1

z−1e
ε
kT +a

(
p
dε
dp

)
p2dp=

4πgα
3h3

∫ +∞

0

1

z−1e
ε
kT +a

pα p2dp=
αU
3V

.
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Let us now look at the relation between the average energy and the temperature for

an ultrarelativistic gas with ε = p and zero chemical potential. From the first law of
thermodynamics, we know that dU = TdS−PdV . If we differentiate this expression
with respect to V at constant temperature, we get(

∂U
∂V

)
T
= T

(
∂S
∂V

)
T
−P= T

(
∂P
∂T

)
V
−P

where we have used the Maxwell relation(
∂S
∂V

)
T
=

(
∂P
∂T

)
V

coming from the differential expression of the free energy dF = −SdT −PdV . If
we now assume that U = Vu(T ) and that P = u

3 , we end up with the following

differential equation

u=
T
3

du
dT

− u
3

that is simplified to yield T du
dT = 4u. The solution is u(T ) = AT 4 with A a normal-

ization constant. This result may be somehow useful when computing the average

energy for a a photon gas, in the sense that it predicts the correct power law in the

temperature associated with the energy density. Unfortunately, the use of a classical

approach would lead to an infinite normalization constant, A → +∞. In this case,
the use of Quantum Mechanics is needed to obtain a finite A (see Problems 10.10,
10.11 and 10.12).

Problem 10.14.
Compute the density of the states a(ε), the entropy S, the free energy F , the enthalpy
H, and the Gibbs potential Φ , for a photon gas in three dimensions using the grand
canonical formalism for the quantum gases.

Solution
We first determine the density of states a(ε) and then use it for the computation of
the partition function. The single particle energy is ε = pc, with p the absolute value
of the momentum and c the speed of light. Our gas has z= 1 and the spin degeneracy
is g= 2 to take into account the two different directions of the transverse modes and
the fact that the longitudinal modes do not appear in the radiation. The density of

states a(ε) is determined from

2
Vd3p
h3

=
8πV p2dp

h3
= a(ε)dε

where we have used spherical polar coordinates in the momentum and integrated

over the angular variables, because the energy depends only on the absolute value

of the momentum. If we use p= ε/c we get

a(ε)dε =
8πV
h3c3

ε2dε.
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The pressure is given by

PV
kT

= lnQ =−8πV
h3c3

∫ +∞

0
ln
(
1− e−

ε
kT

)
ε2dε =

8πV
3kTh3c3

∫ +∞

0

ε3

e
ε
kT −1

dε =

8πV
3h3c3

(kT )3
∫ +∞

0

x3

ex−1dx=
8π5V
45h3c3

(kT )3 =C(kT )3

where we have integrated by parts and used the following definition for the con-

stantC

C =
8π5V
45h3c3

.

The average energy can be computed taking the derivative of the logarithm of the

partition function

U = kT 2
(
∂ lnQ
∂T

)
V
= 3C(kT )4

so that we can write down the pressure in terms of the energy (see also Problem

10.13) as

PV =
U
3
.

Moreover, for the entropy we find

S= k
(
∂ (T lnQ)

∂T

)
V
= 4Ck4T 3.

We can now compute the free energy and the enthalpy

F =U−TS=−C(kT )4 H =U+PV = 4C(kT )4.
As a check, using the results previously obtained, we compute

Φ = F+PV = 0.

This is the correct result because, given an average number of particles N, the Gibbs
potential is related to the chemical potential μ , Φ = μN, and μ = 0 in our case

because we are dealing with a photon gas.

Problem 10.15.
An average number 〈N〉 of bosons with spin S= 0 is confined in a two dimensional
domain with surface A. The gas is ultrarelativistic with a single particle energy ε =
pc, where p is the absolute value of the momentum and c the speed of light. Compute
the number of states and determine the correction to the equation of state for the

ideal gas at high temperatures. We recall that the pressure is such that PA =U/d
(see Problem 10.13), with U the average energy and d the space dimensionality.
Also, the Gamma function

Γ (n) =
∫ +∞

0
e−t tn−1dt = (n−1)!

may be useful.
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Solution
The average number of particles is

〈N〉= 2πA
h2

∫ +∞

0

pdp
eβ (pc−μ)−1

and, at high temperatures, we can set z	 1 with z= eβμ . We first write the integral
by setting x= β pc

〈N〉= 2πA
h2(βc)2

∫ +∞

0

ze−xxdx
1− ze−x

and we Taylor expand in z by keeping only the first two terms of the expansion

〈N〉 ≈ 2πA
(hβc)2

[
z
∫ +∞

0
e−xxdx+ z2

∫ +∞

0
e−2xxdx

]

from which, using the values of the Gamma function, we get

z
(
1+

z
4

)
= n

′

with n
′
= 〈N〉(hβc)2

2πA . Solving for z and approximating
√
1+n′ ≈ 1+ 1

2n
′ − 1

8 (n
′
)2 we

find z ≈ n
′ (
1− n

′
4

)
. We now need the average energy to evaluate the equation of

state (PA= U
2 ). Again, making use of the Gamma function, we find

U =
2πAc
h2

∫ +∞

0

p2dp
eβ (pc−μ)−1 ≈ 2πAc

h2(βc)3

(
z
∫ +∞

0
x2e−xdx+ z2

∫ +∞

0
x2e−2xdx

)
=

4πAc
h2(βc)3

z
(
1+

z
8

)

where we can plug z= n
′ (
1− n

′
4

)
to obtain

U ≈ 4πAc
h2(βc)3

n
′
(
1− 1

8
n
′
)
+O((n

′
)3).

From PA= U
2 we obtain the pressure

P=
〈N〉kT

A

(
1− 1

16

〈N〉(hβc)2
Aπ

)

showing a negative first order correction to the classical equation of state. A similar

problem (see Problem 11.13) can be considered for a Fermi-Dirac gas and shows a

positive correction to the ideal equation of state.
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Fermi-Dirac Gases

Problem 11.1.
An atomic nucleus of Helium consists of a gas of 0.18 nucleons in a volume of 1
fm3 (1fm = 10−13cm). In this system, we can find two kinds of nucleons (protons
and neutrons) with spin S = 1/2 and their masses, mn ≈ 1GeV, may be considered
equal. Compute the Fermi energy for the system and comment about its nature at

the ambient temperature. Assume that the particles are independent with a single

particle energy

ε =
p2

2mn

where p is the absolute value of the momentum. Also, make use of: h = 7×
10−24GeVs, 10−14cm≈ 7×10−25s, k = 8.61×10−5eV/K

Solution
We first need to find the Fermi energy εF as a function of the particles density. To
this end, we impose that at zero temperature the gas occupies all the energy levels

up to εF , and the average number of particles is

〈N〉= 4πgV
h3

∫ pF

0
p2dp=

4πgV p3F
3h3

with g the spin degeneracy factor and pF =
√
2mnεF the Fermi momentum. There-

fore, the Fermi energy for the system is

εF =

(
3〈N〉
4πgV

)2/3 h2

2mn

where one has to use the degeneracy factor g = 4 because each nucleon has the z
component of the spin Sz =± h̄

2 (see also Problem 3.9). We obtain εF ≈ 25M eV. At

the ambient temperature we know that kT ≈ 0.0259eV. It is verified that εF � kT
and, therefore, the system is fully degenerate.

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 11, c© Springer-Verlag Italia 2012
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Fig. 11.1 A possible approximation for the Fermi-Dirac occupation number (〈nε 〉): in the point
where ε = μ we draw the tangent to 〈nε 〉. The resulting thermodynamic properties for the two
dimensional gas are discussed in Problem 11.2

Problem 11.2.
Consider a Fermi gas with spin S and energy ε = p2/2m, where p is the absolute
value of the momentum and m the associated mass. The gas is placed on a two

dimensional surface A at finite temperature T . Let us approximate the Fermi-Dirac
occupation number (〈nε〉) in the following way: in the point where ε = μ draw the
tangent to 〈nε〉 as shown in Fig. 11.1. Write down the expression for 〈nε〉 obtained
in this way and determine the average energy. Finally, compute the specific heat CA
and comment on the result.

Solution
For this system, the density of states a(ε) is such that

(2S+1)
∫ d2pd2q

h2
=

∫
a(ε)dε =C

∫
dε

where C = (2S+ 1)mA/(2π h̄2) is a constant. To proceed with the calculations, we
need to determine the form of 〈nε〉. We start by computing the tangent to 〈nε〉 where
ε = μ . For the Fermi-Dirac statistics we can use

〈nε〉= 1

eβ (ε−μ) +1

so that

〈nε〉|ε=μ =
1

2
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while, for the derivative, we have

d〈nε〉
dε

=− βeβ (ε−μ)(
eβ (ε−μ) +1

)2
from which

d〈nε〉
dε

∣∣∣∣
ε=μ

=−β
4
.

Therefore, we have to write the equation for a straight line r(ε) touching the point
(μ, 12 ) and with angular coefficient −β

4 . Such equation is

r(ε) =
1

2
+

β
4
(μ− ε).

The desired form for 〈nε〉 is

〈nε〉=
⎧⎨
⎩1 0≤ ε ≤ μ−Δ

r(ε) μ−Δ ≤ ε ≤ μ+Δ

with Δ = 2kT . For simplicity, we can write r(ε) as

r(ε) =
1

2
+

β
4
(μ− ε) =

1

2

(
1− x

Δ

)
with x= ε−μ . The average energy is

U =C
∫
〈nε〉εdε =C

∫ μ−Δ

0
εdε+

C
2

∫ Δ

−Δ

(
1− x

Δ

)
(μ+ x)dx

where we can expand the integrand of the second integral as

(
1− x

Δ

)
(μ+ x) = μ+ x− μx

Δ
− x2

Δ

so that

U =
C
2
(μ−Δ)2+

C
2

∫ Δ

−Δ

[
μ+ x− μx

Δ
− x2

Δ

]
dx=

C
2
(μ−Δ)2+CμΔ − C

3
Δ 2.

The final result is

U =
C
2
μ2+

C
6
Δ 2

from which

CA =

(
∂U
∂T

)
A,N

=
4k2CT
3

=
4mA(2S+1)k2T

6π h̄2
.
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The result is linear in the temperature, and this is in agreement with the specific heat

of the Fermi gas only for low temperatures, where we know that CA = mAπk2T
3h̄2

(see

the exact solution analyzed in Problem 11.3) when S= 1/2. In the approximate case
of this problem, when S= 1/2, we find CA = 4mAk2T

3π h̄2
. Due to the approximations in

〈nε〉, the constant in front of the temperature is not the same as that of the exact
solution.

Problem 11.3.
A Fermi gas with 〈N〉 particles of spin S = 1/2 and mass m is placed in a two

dimensional domain of area A at finite temperature T . Determine:

the Fermi energy εF as a function of the density;
the chemical potential μ as a function of T and εF ;
the limit limT→0 μ , verifying that it is equal to εF ;
the specific heat at constant areaCA in the low temperature limit.

Solution
The Fermi energy can be computed from the total number of particles at zero tem-

perature

〈N〉= 2

4π2h̄2

∫
d2q

∫
d2p

where the domain of integration is such that p2
2m ≤ εF . The integral in the position

coordinates gives the area of the region A. For what the momentum is concerned,

using polar coordinates, we get

n=
〈N〉
A

=
1

π h̄2

∫ √
2mεF

0
pdp=

mεF
π h̄2

and we easily find εF = nπ h̄2
m . When T �= 0, the average number of particles is written

as

n=
1

π h̄2

∫ +∞

0

1

eβ (ε−μ) +1
p dp

where we have used ε = p2/2m. We can set x= βε , and obtain

n=
m

βπ h̄2

∫ +∞

0

1

e−βμex+1
dx.

The integral can be done exactly, with the result

n=
m

βπ h̄2

∫ +∞

0

1

e−βμex+1
dx=

m
βπ h̄2

ln

(
ex

e−βμex+1

)∣∣∣∣
+∞

0

=
m

βπ h̄2
ln(1+ eβμ).

Using the Fermi energy εF = nπ h̄2
m , we obtain ln(1+ eβμ) = βεF or, equivalently

μ =
1

β
ln(eβεF −1).
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It is now immediate to show that in the limit of low temperatures (β → +∞) the
chemical potential equals the Fermi energy

lim
β→+∞

1

β
ln(eβεF −1) = εF .

As for the last point, we need to study the internal energy U for low temperatures.

We first write downU as

U =
mA
π h̄2

∫ +∞

0

ε
eβ (ε−μ) +1

dε

and note that it is an integral of type

I =
∫ +∞

0

f (ε)
eβ (ε−μ) +1

dε

with f (ε) = ε for our case. To solve the integral I, we change variables by setting
x= β (ε−μ), and obtain

I =
1

β

∫ +∞

−βμ

f (μ+ x/β )
ex+1

dx

that we write as the sum of two integrals

I =
1

β

(∫ 0

−βμ

f (μ+ x/β )
ex+1

dx+
∫ +∞

0

f (μ+ x/β )
ex+1

dx
)

.

In the first integral, we change x into −x to get

I =
1

β

(∫ βμ

0

f (μ− x/β )
e−x+1

dx+
∫ +∞

0

f (μ+ x/β )
ex+1

dx
)

.

We also note that 1/(e−x+1) = 1−1/(ex+1), so that we can write

I =
1

β

[∫ βμ

0
f (μ− x/β )dx+

∫ +∞

0

f (μ+ x/β )
ex+1

dx−
∫ βμ

0

f (μ− x/β )
ex+1

dx
]
.

In the limit T → 0, i.e. β →+∞, we find

I = μ f (μ)+
2 f ′(μ)
β 2

∫ +∞

0

x
ex+1

dx

because, when β →+∞, we have used

f (μ+ x/β )− f (μ− x/β )≈ 2x
β

f ′(μ).
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If we now set f (ε) = ε , and we note that the relevant integral involved is

∫ +∞

0

x
ex+1

dx=
π2

12

we can determine the behaviour ofU for low temperatures as

lim
T→0

U ≈ mA
π h̄2

[
μ2+

k2T 2π2

6

]

from which, when T → 0, we find

CA =

(
∂U
∂T

)
A,N

=
mAπk2T
3h̄2

.

Problem 11.4.
At a finite temperature T , we want to describe a Fermi gas in three dimensions with
an average number of particles N, spin S, and with a single particle energy given by

ε =
p2

2m

where p is the absolute value of the momentum and m the associated mass. If we

define the fugacity as z= eβμ , show that

1

z

(
∂ z
∂T

)
P
=− 5

2T
f5/2(z)
f3/2(z)

with fα(z) the Fermi function of order α . Then, define the specific volume as v= V
N

and, in the limit of low temperatures, determine the ratio γ ≡ CP−Cv
Cv

, where CP and

Cv are the specific heats at constant pressure and specific volume. You can make use

of the following formulae

fα(z) =
1

Γ (α)

∫ +∞

0

xα−1dx
z−1ex+1

z
d fα(z)

dz
= fα−1(z)

S= Nk
[
5

2

f5/2(z)
f3/2(z)

− lnz
]

(Entropy)

f1/2(z)≈
2

π1/2
(lnz)1/2

(
1− 1

24
π2(lnz)−2

)
T → 0

f3/2(z)≈
4

3π1/2
(lnz)3/2

(
1+

1

8
π2(lnz)−2

)
T → 0

f5/2(z)≈
8

15π1/2
(lnz)5/2

(
1+

5

8
π2(lnz)−2

)
T → 0.
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Solution
We start by considering the relation between the pressure and the internal energy for

a three dimensional quantum gas with a single particle energy ε = p2
2m (see Problem

10.13)

P=
2

3

U
V

.

The average energyU is then expressed in terms of the function f5/2(z)

U =
4πgV
2mh3

∫ +∞

0

1

z−1eβ
p2
2m +1

p4dp=
3

2
kT

gV
λ 3

f5/2(z)

where g= 2S+1 is the degeneracy factor and λ =
√

h2
2πmkT a thermal length scale.

The previous result is equivalent to

U = c1VT 5/2 f5/2(z)

with c1 a constant independent of the temperature. If we go back to the equation for
the pressure P, we get

P=
2c1
3

T 5/2 f5/2(z).

We can now differentiate both sides with respect to the temperature keeping P con-
stant

0=
5

2
T 3/2 f5/2(z)+T 5/2

(
z
d f5/2(z)

dz

)(
∂ z
∂T

)
P

1

z

from which, using the property z
d f5/2(z)

dz = f3/2(z), we obtain

1

z

(
∂ z
∂T

)
P
=− 5

2T
f5/2(z)
f3/2(z)

that is the desired result. We can proceed in a similar way for the observable N and
obtain

N
V

= c2T 3/2 f3/2(z)

where, again, c2 is a numerical constant. Differentiating both sides with respect to
the temperature and keeping v= V

N constant, we obtain

0=
3

2
T 1/2 f3/2(z)+T 3/2

(
z
d f3/2(z)

dz

)(
∂ z
∂T

)
v

1

z

from which, using that z
d f3/2(z)

dz = f1/2(z), we get

1

z

(
∂ z
∂T

)
v
=− 3

2T
f3/2(z)
f1/2(z)

.
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We then compute the ratio of the specific heats at constant pressure and specific

volume,CP andCv. We note that the entropy S is a function of N and z, that means

CP

Cv
=

(
T∂S
∂T

)
P,N(

T∂S
∂T

)
v,N

=

(
T∂S
∂ z

)
(

T∂S
∂ z

)
(

∂ z
∂T

)
P(

∂ z
∂T

)
v

=

(
∂ z
∂T

)
P(

∂ z
∂T

)
v

=
5

3

f5/2(z) f1/2(z)
( f3/2(z))2

where we have used the results obtained previously for
(

∂ z
∂T

)
P
and

(
∂ z
∂T

)
v
. In the

low temperature limit, we can use the expansions given in the text and assume that

lnz= βμ ≈ βεF

CP

Cv
=

(
1+ 5

8π
2
(

kT
εF

)2)(
1− 1

24π
2
(

kT
εF

)2)
(
1+ 1

8π2
(

kT
εF

)2)2 ≈ 1+ π2

3

(
kT
εF

)2
.

Consistently, we find

γ =
CP−Cv

Cv
≈ π2

3

(
kT
εF

)2
.

Problem 11.5.
An average number 〈N〉 of fermions with spin 1/2 is confined in a one dimensional
segment of length L. We have the following dispersion relation between the energy
ε and the momentum p⎧⎨

⎩ε = ε0 sin2( |p|ah̄ ) 0≤ |p| ≤ π h̄
2a

ε = ε0[3− sin2( |p|ah̄ )] π h̄
2a < |p| ≤ π h̄

a .

In the above expressions, ε0 = h̄2
2ma2 with a and h̄ constants. In the limit of a fully

degenerate gas, compute the average energy for the following cases:

L= 〈N〉a
2 ;

L= 〈N〉a;
L= 3〈N〉a

2 .

Solution
We first need to determine the Fermi momentum as a function of 〈N〉/L. To do that,
we first compute the average particles density

〈N〉
L

=
2

2π h̄

∫ +pF

−pF
dp

from which we extract the value of the Fermi momentum

pF =
N
L
π h̄
2

.
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When L= 〈N〉a
2 , we have pF = π h̄

a , so that

U =
2Lε0
π h̄

(∫ π h̄
2a

0
sin2

( |p|a
h̄

)
dp+

∫ π h̄
a

π h̄
2a

[
3− sin2

( |p|a
h̄

)]
dp

)

leading to

U =
3Lε0
a

.

In the second case, when L= 〈N〉a, we find pF = π h̄
2a and

U =
2Lε0
π h̄

∫ π h̄
2a

0
sin2

( |p|a
h̄

)
dp

that means

U =
Lε0
2a

.

Finally, in the last case, we get pF = π h̄
3a and

U =
2Lε0
π h̄

∫ π h̄
3a

0
sin2

( |p|a
h̄

)
dp

leading to

U =
Lε0
3a

[
1− 3

√
3

4π

]
.

Problem 11.6.
Consider a one dimensional fully degenerate Fermi gas with spin S = 1/2. The gas
is confined in a one dimensional segment of length L (0 ≤ x ≤ L). The dispersion
relation between the energy and the momentum (see also Problem 11.5) has the

following structure ⎧⎨
⎩
ε = ε0 sin2

( |p|a
h̄

)
0≤ |p| ≤ π h̄

2a

ε = ε0
[
1+ ln

( |p|a
h̄

)]
π h̄
2a ≤ |p| ≤ π h̄

a .

Compute the average energy when the first energy band (0≤ |p| ≤ π h̄
2a ) is filled and

the corresponding number of states. Repeat the calculation when both energy bands

are filled.

Solution
When the first energy band is completely filled, all the states in the momentum space

are occupied up to |p|= π h̄
2a . In this situation, the average number of states is given

by

〈N〉= 2
∫ L

0
dq

∫
|p|≤ π h̄

2a

dp
h

=
2L
h

π h̄
a

=
L
a
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Fig. 11.2 We construct the allowed continuous energy spectrum for a fully degenerate Fermi gas
in a cylindrical container under the effect of gravity g. The kinetic energy ( p

2

2m ) and the potential
energy (mgz) have to be chosen in such a way that the total energy (kinetic plus potential) is below
the Fermi energy εF . In Problem 11.7 we compute the Fermi energy and the internal energy

and the average energy is

U = 4
∫ L

0
dq

∫ π h̄
2a

0
ε0 sin2

( pa
h̄

) dp
h

=
Lε0
2a

.

When both energy bands are filled, the corresponding average number of states is

〈N〉= 2
∫ L

0
dq

∫
|p|≤ π h̄

a

dp
h

=
4L
h

π h̄
a

=
2L
a

while, for the average energy, we have

U =4
∫ L

0
dq

∫ π h̄
2a

0
ε0 sin2

( pa
h̄

) dp
h

+4
∫ L

0
dq

∫ π h̄
a

π h̄
2a

ε0
[
1+ ln

( pa
h̄

)] dp
h

=

Lε0
a

[
1

2
+ lnπ+ ln2

]
.

Problem 11.7.
A fully degenerate Fermi gas with spin S = 1/2 and 〈N〉 particles is placed in a
cylindrical container with base A and height H. The gas is under the effect of a
constant gravitational acceleration g acting along the negative z direction. The max-
imum height allowed for the gas coincides with H. Compute the Fermi energy as a
function of 〈N〉/A. Finally, compute the average energy of the system.
Solution
The energy is written as

ε =
p2

2m
+mgz.
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The gas is fully degenerate, and we have ε ≤ εF , so that

mgz≤ εF − p2

2m
.

The maximum height (zMAX ) reached by the particles is obtained by minimizing

the kinetic term p2
2m (i.e. setting it equal to 0) and we get mgzMAX = εF . From the

information of the text, we know that this maximum height is exactly the height of

the container. This implies a relationship between the Fermi energy εF and H

H =
εF
mg

.

The average number of states is

〈N〉= 2
∫ d3pd3q

h3
=
2A
h3

∫ εF
mg

0
dz

∫
d3p

where the integral in the momentum space is over the domain defined by

p2

2m
+mgz≤ εF .

Therefore, for a given z, we need to integrate in the spherical region of radius p =

(2m(εF −mgz))1/2, and the integral is

〈N〉=2A
h3

∫ εF
mg

0

4π
3

(2m(εF −mgz))3/2 dz=

8π
3

A
h3

(2mεF)3/2
εF
mg

∫ 1

0
t3/2dt =

32

15

(2m)1/2

g
πA
h3

ε5/2F

from which we extract the relation between εF and 〈N〉/A

εF =

(
15h3g〈N〉
32π

√
2mA

)2/5
.

For the average energy, we can write

U =
8πA
h3

∫ εF
mg

0
dz

∫ √
2m(εF−mgz)

0

(
p2

2m
+mgz

)
p2dp

that reduces to

U =
8πA
h3

(2m)5/2

10m
ε5/2F

εF
mg

∫ 1

0
(1−φ)5/2dφ+

8πA
h3

mg
3
(2m)3/2ε3/2F

(
εF
mg

)2 ∫ 1

0
φ(1−φ)3/2dφ
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Fig. 11.3 A fully degenerate Fermi gas is confined in a triangular region with base 2R and height
R. The gas is under the effect of gravity g. In Problem 11.8 we determine the average number of
fermions, assuming that the maximum height reached by the gas coincides with the height of the
triangle

where we can compute the two relevant integrals as

∫ 1

0
(1−φ)5/2dφ =

2

7

∫ 1

0
φ(1−φ)3/2dφ =

4

35
.

Problem 11.8.
Let us consider a Fermi gas with spin 1/2 and mass m confined in the two dimen-
sional domain sketched in Fig. 11.3: in the (x,y) plane, it is a triangle with base 2R
and height R. This gas is at temperature T = 0 and is under the effect of a constant
gravitational field g. Compute the average number 〈N〉 of fermions under the as-
sumption that the maximum height reached by the gas is exactly the height of the

triangle.

Solution
The single particle energy is

ε =
p2

2m
+mgy

where p is the absolute value of the momentum. The gas is fully degenerate (T = 0),
and we have ε ≤ εF , defining the allowed energy domain

p2

2m
+mgy≤ εF

with εF the Fermi energy. Due to the symmetry of the problem, we can work with
half of the domain (the one with x ≥ 0) and multiply the final result by two. We

therefore have

〈N〉= 2π
π2h̄2

∫ √
2m(εF−mgy)

0
pdp

∫ yM

0
dy

∫ R−y

0
dx.
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We finally need to compute the maximum height yM reached by the gas (similar

ideas are discussed in Problem 11.7). In particular, yM is reached when p = 0 and

ε = εF , so that yM = εF
mg . From the information of the text we learn that yM = R and

εF = mgR. Therefore, the integral is

〈N〉= 2π
π2h̄2

∫ √
2m(εF−mgy)

0
pdp

∫ yM=R

0
dy

∫ R−y

0
dx=

2π
π2h̄2

m2g
∫ R

0
(R− y)2dy

with the final result

〈N〉= 2

3π h̄2
m2gR3.

Problem 11.9.
Compute the average number of particles for a fully degenerate relativistic gas with

spin S= 1/2 in a cubic container of edge L. The gas is under the effect of a constant
gravitational acceleration g acting along one direction (say −x). Consider explicitly
the cases:

v	 c with negligible rest energy;
v≈ c (ultrarelativistic),

where v is the velocity of the particles and c the speed of light. Assume that L> εF
mg ,

with m the mass of each particle and εF the Fermi energy.

Solution
The general expression for the momentum is

ppp=
mvvv√
1− v2

c2

with associated kinetic energy εk(p) = c
√

p2+m2c2. For small velocities and neg-

ligible rest energy, we have εk(p)≈ p2
2m . For v≈ c, instead, we get εk(p) = pc. In our

case, we also have a constant acceleration g. Therefore, the single particle energy in
the two cases is

ε =
p2

2m
+mgx

ε = cp+mgx.

Moreover, the gas is fully degenerate and the distribution function in the energy

space is 0 for ε ≥ εF and 1 for ε < εF , with εF the Fermi energy. The total average
number of particles is found by integrating in the energy space up to ε = εF . In
Fig. 11.4 we have sketched the allowed regions of integration in the two cases. The

average number of particles for v	 c is

〈N〉= 4π(2S+1)
(2π h̄)3

L2
∫ √

2mεF

0
p2 dp

∫ − p2

2m2g
+

εF
mg

0
dx=

(
L2

π2h̄3

)
4
√
2

15

ε
5
2
F
√
m

g
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Fig. 11.4 We construct the allowed continuous energy spectrum for a fully degenerate relativistic
Fermi gas under the effect of a constant gravitational acceleration (g). In Problem 12.17 we treat
the following cases: 1) v 	 c and negligible rest energy (top) 2) v ≈ c (bottom), where v is the
velocity of the particles and c the speed of light

while, for v≈ c, we get

〈N〉=
(

L2

π2h̄3

)∫ εF
c

0
p2dp

∫ −pc+εF
mg

0
dx=

(
L2

π2h̄3

)
ε4F

12mgc3
.

Problem 11.10.
Determine the average number of particles 〈N〉 as a function of the Fermi energy
for a fully degenerate Fermi gas (with spin S = 1/2) in two dimensions with the
following single particle energy

ε = (p2x + p2y)
s s > 0
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where px and py are the two components of the momentum and s is a positive integer.
Finally, compute the average energy U as a function of 〈N〉 and the area of the
domain occupied by the gas.

Solution
The gas is fully degenerate so that the distribution in the energy space is a Heaviside

function around the Fermi energy

εF = p2sF

with pF the absolute value of the Fermi momentum. In the momentum space, the

energy levels are occupied up to pF and we can write the following expression for
the total average number

〈N〉= 2

(2π h̄)2

∫
dxdy

∫
dpx dpy =

A
π h̄2

∫ pF

0
pdp=

A
2π h̄2

p2F

with A the area of the region occupied by the gas. The average energy is

U =
2

(2π h̄)2

∫
dxdy

∫
(p2x + p2y)

sdpx dpy =
A
π h̄2

∫ pF

0
p2s+1 dp=

Ap2s+2F

π h̄2(2s+2)
.

We can easily determine pF from the first equation and plug it back in the second
one to get

U =
(2〈N〉)s+1
2s+2

(
π h̄2

A

)s

.

Problem 11.11.
A fully degenerate Fermi gas (with spin S= 1/2) is characterized by 〈N〉 non inter-
acting electrons confined in 2 dimensions within a circular region of radius R. The
single particle energy is

ε =
p2

2m
+αr

where r is the distance from the center of the circular region, p the absolute value
of the momentum, and α > 0 a constant. Determine the Fermi energy εF and the
average energy when:

the potential energy term is small, i.e. αR	 εF ;
the potential energy at the border of the disc is larger than the Fermi energy, i.e.

αR > εF .

Solution
The allowed domain of integration is obtained by imposing ε ≤ εF , that is

ε =
p2

2m
+αr ≤ εF .
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Fig. 11.5 We construct the allowed continuous energy spectrum for a fully degenerate Fermi gas
confined in a two dimensional circular region with radius R. The gas is under the effect of a central
force with potentialV (r) = αr. In Problem 11.11 we compute the Fermi energy εF and the average
energyU when αR	 εF and αR > εF

Furthermore, we have to consider that the radial distance of the particles is r ≤ R.
When αR< εF (and in particular when αR	 εF ) we can use the integral (see also
Fig. 11.5) over the whole circular region 0 ≤ r ≤ R, and 0 ≤ p ≤ √

2m(εF −αr)
with the certainty that the argument of the square root never changes its sign. The

average number of fermions is given by the following integral

〈N〉= 2

4π2h̄2

∫ ∫
D
d2pd2q=

2

h̄2

∫ √
2m(εF−αr)

0
pdp

∫ R

0
r dr=

2m
h̄2

(
εF

R2

2
−α

R3

3

)

where we have used polar coordinates in both the momentum (d2p = 2π pdp) and
position (d2q = 2πr dr) space. If we consider the condition αR 	 εF , the above
result is well approximated by

〈N〉= 2m
h̄2

(
εF

R2

2
−α

R3

3

)
≈ 2m

h̄2
εF

R2

2

from which εF = h̄2〈N〉
mR2 . The average energy is

U=
2

h̄2

∫ √
2m(εF−αr)

0
pdp

∫ R

0
r
(

p2

2m
+αr

)
dr=

2

h̄2
m
(
ε2FR2

4
− α2R4

8

)
≈ m

h̄2
ε2FR2

2
.

In the second case (αR > εF ), we cannot vary r between 0 and R (see Fig. 11.5). In
the (αr, p2

2m ) plane, we need to span the triangular region 0≤ αr≤ εF , 0≤ p2
2m ≤ εF ,

with area ε2F/2. Therefore, the average number is given by

〈N〉= 2

4π2h̄2

∫ ∫
D
d2pd2q=

2

h̄2

∫ pF

0
pdp

∫ 1
α (εF−p2/2m)

0
r dr
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Fig. 11.6 The allowed continuous energy spectrum for a fully degenerate Fermi gas is character-
ized by a forbidden gap of energy: the particles have energies below ε0 or above 2ε0. The Fermi
energy changes when the energy gap disappears. Details are reported in Problem 11.12

where pF =
√
2mεF . A calculation leads to

〈N〉= 1

α2h̄2

∫ pF

0
p
(
εF − p2

2m

)2
dp=

mε3F
3α2h̄2

from which εF =
(
3α2h̄2〈N〉

m

)1/3
. For the average energy, we have the following

integral

U =
2

h̄2

∫ pF

0
pdp

∫ 1
α (εF−p2/2m)

0

(
p2

2m
+αr

)
r dr

leading toU =
mε4F
4α2h̄2

.

Problem 11.12.
Let us consider a fully degenerate Fermi gas with spin 1/2 placed in a volume V .
The single particle energy for this gas is ε = p2

2m , with p the absolute value of the
momentum and m the mass of the particle. The average number of particles is

〈N〉= 16πV (2mε0)3/2

3h3
.

Furthermore, there is a forbidden gap of energy: the particles may have an energy

below ε0 or above 2ε0, without the possibility to fill in between (see Fig. 11.6).
Compute the variation in the internal energy due to the disappearance of the energy

gap.

Solution
Let us start by computing the Fermi energy for the system without energy gap (we

call this situation ‘case B’). We have

〈N〉= 8πV
h3

∫ p(B)F

0
p2 dp=

8πV (2mε(B)F )3/2

3h3
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where we have used that

gV
h3

d3p=
4πV
h3

(2m)
3
2 ε

1
2 dε

with g= 2 the spin degeneracy. The relation between εF and ε0 is given by

〈N〉= 8πV
h3

∫ p(B)F

0
p2 dp=

8πV (2mε(B)F )3/2

3h3
=
16πV (2mε0)3/2

3h3

leading to

ε(B)F = 22/3ε0

from which we learn that the Fermi level for the system without the band is larger

than ε0. The expression for the internal energy is

U (B) =
8πV
h3

∫ p(B)F

0

p4

2m
dp

that is

U (B) =
16πVm(2m)1/2

5h3
25/3ε5/20 .

Let us now consider the situation with the energy gap (we call this situation ‘case

A’). From the above considerations, we already know that the Fermi level has to be
located above 2ε0 in order to accommodate all the particles. Therefore, we obtain

〈N〉=8πV
h3

(∫ √
2mε0

0
p2 dp+

∫ ε(A)F
√
2
√
2mε0

p2 dp

)
=
4πV (2m)3/2

h3

(∫ ε0

0

√
ε dε+

∫ ε(A)F

2ε0

√
ε dε

)
=
8πV (2m)3/2

3h3
(ε3/20 +(ε(A)F )3/2− (2ε0)3/2)

from which we get ε(A)F as a function of ε0

ε(A)F = ε0(1+23/2)2/3.

For the internal energy we have

U (A) =
16πVm(2m)1/2

5h3
ε5/20 (1+(1+23/2)5/3−25/2)

and, for the difference ΔU =U (A)−U (B), we obtain the following result

ΔU =
16πVm(2m)1/2

5h3
ε5/20 (1+(1+23/2)5/3−25/2−25/3)

that is the variation in the internal energy due to the disappearance of the gap.
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Problem 11.13.
Determine the first order correction, for z 	 1, to the equation of state for a gas

of ultrarelativistic three dimensional fermions with spin S = 1/2. In the previous
expression, z= eβμ is the fugacity of the gas and μ its chemical potential.

Solution
Starting from the energy of the ultrarelativistic particle

ε = cp

with c the speed of light and p the absolute value of the momentum, the expressions
for the pressure P and particles density n are such that

P
kT

=
8π
h3

∫ +∞

0
ln(1+ ze−βcp)p2dp

and

n=
8π
h3

∫ +∞

0

ze−βcp

1+ ze−βcp p
2dp.

Since z	 1, we can expand the logarithm defining P

P
kT

=
8π
h3

∫ +∞

0
(ze−βcp− z2e−2βcp

2
+ ...)p2dp.

To simplify matters, let us introduce

A=
8π
h3

∫ +∞

0
e−βcpp2dp B=

8π
h3

∫ +∞

0
e−2βcpp2dp

in such a way that
P
kT

= zA− 1

2
z2B.

Also, in the expression for n, we can expand the denominator up to the second order
in z

n= zA− z2B.

Our objective is now to find z as a function of n and plug this result in the equation
for P. We write

z=
1

A
(n+ z2B)

and solve this equation in an iterative way. When z is small, the first approxima-
tion is z = z0 = 0. If we use this information in the above equation we have the

first order approximation z = z1 = n/A. Finally, the next order (i.e. z2) is found by
substituting z1

z= z2 =
n
A

(
1+

nB
A2

)
.
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Using this expression in the equation for P, we get

P
kT

= n
(
1+

nB
2A2

)

where, when evaluating z2, we have neglected terms like n3 and n4. Finally, we need
to compute the integrals A and B. Recalling the definition of the Gamma function

Γ (n) =
∫ +∞

0
e−t tn−1dt = (n−1)!

we find

A=
16π

h3c3β 3
B=

2π
h3c3β 3

so that
P
kT

= n
(
1+

n
16A

)
showing a positive first order correction to the classical equation of state. A similar

problem (see Problem 10.15) can be considered for a Bose-Einstein gas and shows

a negative correction to the ideal equation of state.

Problem 11.14.
An average number N of fermions is placed in a volumeV at temperature T = 0. The

single particle energy is ε = p2
2m , with m the mass of the particle and p the absolute

value of the momentum. Give an estimate for the isothermal compressibility

κT =− 1
V

(
∂V
∂P

)
T,N

.

Solution
When T = 0, we know that F =U − TS =U . Moreover, for a quantum three di-

mensional gas, the following pressure-energy relation

PV =
2

3
U

holds (see also Problems 10.13, 12.16). Therefore, we can write down the equation

for the pressure as

P=−
(
∂F
∂V

)
T,N

=−
(
∂U
∂V

)
T,N

=− ∂
∂V

(
3

2
PV

)
T,N

=−3
2

[
V
(
∂P
∂V

)
T,N

+P

]
.

Simplifying this relation, we find

−V
(
∂P
∂V

)
T,N

=
5

3
P=

10

9

U
V

=
2

3

N
V
εF =

h̄2

3m

(
6π2

g

) 2
3
(
N
V

) 5
3
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where g is the degeneracy factor due to the spin of the particles, and where we have
used the relation between the average energy and the Fermi energy

U =
3

5
NεF =

3

5

h̄2

2m

(
6π2

g

) 2
3
(
N
V

) 5
3

.

This can be easily proved from the basic equations determining the average number

N and average energyU for the fully degenerate Fermi gas

N =
4πVg
h3

∫ pF

0
p2dp=

4πVg
h3

p3F
3

U =
4πVg
h3

∫ pF

0

p4

2m
dp=

4πVg
h3

p5F
10m

with pF =
√
2mεF . From the first we get

εF =
h̄2

2m

(
6π2N
gV

) 2
3

while, from the second

U =
4πVg
h3

p5F
10m

=
3

5
N

p2F
2m

=
3

5
NεF .

The requested compressibility is given by

κT =− 1
V

(
∂V
∂P

)
T,N

=

⎛
⎝ h̄2

3m

(
6π2

g

) 2
3
(
N
V

) 5
3

⎞
⎠

−1

.

Problem 11.15.
A gas is composed of an average number 〈N〉 of non interacting fermions with spin
1/2 in equilibrium at temperature T = 0. The gas is placed on a two dimensional

disc with radius R and is under the effect of a constant radial force. The energy of
the single particle is

ε =
p2

2m
−br

with p the absolute value of the momentum, m the mass of the particle, and b > 0

a constant. Compute the Fermi energy εF , the average internal energy U , the free
energy F , and the pressure P exerted at the border of the disc.

Solution
We start by writing down the average number of particles in the system

〈N〉= 2

h2

∫
D
d2pd2q
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whereD is a suitable domain of integration such that the energy ε is below the Fermi
energy, i.e. p2

2m −br≤ εF . If we set εk = p2/2m and we use polar coordinates in both
the momentum (d2p= 2π pdp) and position (d2q= 2πr dr) space, we get

〈N〉= 2m
h̄2

∫
D
rdrdε =

2m
h̄2

∫ R

0
r dr

∫ εF+br

0
dεk =

mεFR2

h̄2
+
2mbR3

3h̄2

from which it is easily obtained that εF = 〈N〉h̄2
mR2 − 2bR

3 . For the average energy, we

find

U =
2m
h̄2

∫
D
(εk−br)r drdεk =

mR2

2h̄2

(
ε2F −

b2R2

2

)
.

The computation of the free energy is very simple because we are dealing with a

fully degenerate gas with T = 0, that means F = (U−TS)|T=0 =U . The pressure is
obtained using the appropriate derivative of the free energy with respect to the area

A= πR2

P=−
(
∂F
∂A

)
T=0,〈N〉

=−
(
∂U
∂A

)
T=0,〈N〉

and, since the infinitesimal change of the area is written as dA= 2πRdR, we get

P=− 1

2πR

(
∂F
∂R

)
T=0,〈N〉

=− 1

2πR

(
∂U
∂R

)
T=0,〈N〉

=
m
2π h̄2

(bR+ εF)2 .

Problem 11.16.
A container in d dimensions with volume 2V is separated in two equal parts, A and
B, by a wall allowing for the exchange of particles. A fully degenerate Fermi gas
with spin S = 1/2, mass m, and with a magnetic moment τ directed along the z
direction, is placed in both regions. The gas has a kinetic energy

εk =
p2

2m

with p the absolute value of the momentum in d dimensions. At some point, a weak
magnetic field H directed along the z direction is switched on in the region A. Under
the assumption that the density is the same in both regions, determine the direction

of the density flux of the particles as a function of d. Is there any dimension deq
where the system is in chemical equilibrium?

Solution
We recall that the infinitesimal volume element for the sphere with radius R in d
dimensions is

dVd =
dπ

d
2( d

2

)
!
Rd−1dR.
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Therefore, we can write down the number of states in an infinitesimal cell of the

momentum space as

gV
(2π h̄)d

dd p=
gV

(2π h̄)d
dπ

d
2( d

2

)
!
pd−1 dp=

2V
(2π h̄)d

d(2mπ)
d
2

2
( d
2

)
!

ε
d
2−1
k dεk

with g = 2 the spin degeneracy. The gas in the region A has also the interaction
energy with the magnetic field ±τH, where the sign depends on the orientation of
the spin. This means that the spin degeneracy is removed and we have two groups

of particles: those with spin parallel to H and energy

ε+ = εk− τH =
p2

2m
− τH

and those with spin antiparallel to H and energy

ε− = εk+ τH =
p2

2m
+ τH.

Since the gas is completely degenerate, we find ε± ≤ μA in the region A, with μA
the Fermi energy in such a region. The average number of particles in this region is

〈NA〉=C
[∫ (μA+τH)

0
ε

d
2−1
k dεk+

∫ (μA−τH)

0
ε

d
2−1
k dεk

]
=

2C
d

[
(μA+ τH)

d
2 +(μA− τH)

d
2

]
where we have used the definition

C =
V

2(2π h̄)d
d(2mπ)

d
2( d

2

)
!

.

In the region B, the spin degeneracy is not removed because the magnetic field is
not present, and we have

〈NB〉= 4C
d

μ
d
2
B

with μB the Fermi energy in the region B. Both gases have the same density and
the volume in both regions is the same. Therefore, we can set 〈NA〉= 〈NB〉 with the
result

(μA+ τH)
d
2 +(μA− τH)

d
2 = 2μ

d
2
B .

If we factorize μA in the right hand side and set x = τH/μA, we can expand the

resulting binomial function in the limit of small H (x	 1) using

(1+ x)α = 1+αx+
α
2
(α−1)x2+ . . .



360 11 Fermi-Dirac Gases

so that (
μB

μA

) d
2

= 1+
1

8
d(d−2)

(
τH
μA

)2
.

For d < 2, we have μB < μA and the particles flow from A to B (the system wants to
minimize the chemical potential). For d = deq = 2 we have μB = μA and there is no

net flow of particles, i.e. the system is in chemical equilibrium. Finally, when d > 2,
we have μB > μA with a resulting flow from B to A.

Problem 11.17.
A three dimensional volume is separated in two parts by a rigid and impenetrable

wall. The first part contains a Fermi gas composed of particles with spin 1/2, while
the second one a Fermi gas of particles with spin 3/2. In both cases the single

particle energy is ε = p2
2m , with p the absolute value of the momentum and m the

associated mass. Determine the density ratio at the mechanical equilibrium in the

limit of zero temperature.

Solution
We need to impose the condition of the mechanical equilibrium between the two

parts. If the single particle energy is ε = p2
2m , the relation between the pressure (P)

and the average internal energy (U) is P = 2U
3V (see also Problems 10.13 and 11.5).

The mechanical equilibrium requires

P1 = P2

that implies

U1
V1

=
U2
V2

.

Let us now compute the internal energy for the gas of particles with spin 1/2. When
the gas is fully degenerate (zero temperature) it reads

U1 = g1
4πV1
h3

∫ p1F

0

p4

2m
dp

where p1F is the Fermi momentum, and the factor g1 = 2S+ 1 = 2 corresponds to
the spin degeneracy. We easily obtain

U1
V1

=
4π
5mh3

p51F.

The computation of the energy for the gas with spin 3/2 goes along the same lines,
with the only exception that we have a different spin degeneracy g2 = 2S+ 1 = 4

and a different Fermi momentum p2F. Therefore, we find

U2
V2

=
8π
5mh3

p52F.
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The final step is to replace the Fermi momentum with some function of the average

density. For a fully degenerate Fermi gas, the particles density is

ni =
〈Ni〉
Vi

= gi
4π
h3

∫ piF

0
p2 dp i= 1,2

so that

p1F =
(
n1
3h3

8π

)1/3
p2F =

(
n1
3h3

16π

)1/3
.

If we plug the expressions for p1F and p2F in the equation defining the internal
energy, we find that U1

V1
= U2

V2
is equivalent to

(3n1)5/3h2

10m(8π)2/3
=

(3n2)5/3h2

10m(16π)2/3

that implies n1
n2

= 2−2/5.

Problem 11.18.
An electron gas is at equilibrium at temperature T = 0. The single particle energy is

ε = p2
2m , with m the mass of the electron and p the absolute value of the momentum.

The electrons occupy a container with volume V which, in turn, occupies a larger

container of volume V +ΔV , with ΔV 	 V . The gas container is initially isolated
from the larger one by some walls. At some point, the walls are removed, and the

electron gas reaches a new equilibrium state in the larger volume. The total average

energy is unchanged. What is the temperature of the new equilibrium state? Given

the condition ΔV 	V , we assume that the temperature is small. Compare the result
with the classical counterpart.

Solution
For a Fermi gas at T = 0 in a volume V , all the energy levels are occupied up to
the Fermi energy εF(V ). The function giving the occupation number is a Heaviside
theta function that is 1 for energies ε ≤ εF(V ) and 0 otherwise. The total average
energy is

UT=0 =
8πV
h3

∫ pF

0

p2

2m
p2dp=

4πV
5mh3

p5F =
3

5
〈N〉εF(V )

where pF =
√
2mεF(V ) is the Fermi momentum. Given the average number

〈N〉= 8πV
h3

∫ pF

0
p2dp=

8πV
3h3

p3F

we can write

εF(V ) =
p2F
2m

=
1

2m

(
3h3

8π
〈N〉
V

)2/3
.
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When T �= 0 in the volumeV +ΔV , the energy is always connected to the logarithm
of the grand canonical partition function as

UT �=0 =−
(
∂ lnQ
∂β

)
V,z

= kT 2
(
∂ lnQ
∂T

)
V,z

=
3kTV
λ 3

f5/2(z) =

3

2
〈N〉kT f5/2(z)

f3/2(z)
=
3

5
〈N〉εF(V +ΔV )

[
1+

5π2

12

(
kT

εF(V +ΔV )

)2
+ . . .

]

where λ = h/(2πmkT )1/2, and where we have used the Fermi-Dirac functions

fα(z) =
1

Γ (α)

∫ +∞

0

xα−1dx
z−1ex+1

with their asymptotic expansions (valid when T → 0)

f3/2(z) =
4

3
√
π
(lnz)3/2

[
1+

π2

8
(lnz)−2+ . . .

]

f5/2(z) =
8

15
√
π
(lnz)5/2

[
1+

5π2

8
(lnz)−2+ . . .

]

lnz≈ εF(V +ΔV )

kT

[
1− π2

12

(
kT

εF(V +ΔV )

)2
+ . . .

]
.

In the new equilibrium state, we know that the energy is the same as before, so that

3

5
〈N〉εF(V +ΔV )

[
1+

5π2

12

(
kT

εF(V +ΔV )

)2
+ . . .

]
=
3

5
〈N〉εF(V ).

The Fermi energy for the volume V +ΔV can be expanded as

εF(V +ΔV ) =
1

2m

(
3h3

8π
〈N〉

V +ΔV

)2/3
= εF(V )

(
1− 2

3

ΔV
V

)
+ . . .

which can be substituted in the previous equation to obtain

T =
εF(V )

kπ

√
8

5

ΔV
V

+ ....

In the classical case, making use of the equipartition theorem, we assign to each

degree of freedom an energy contribution equal to kT/2 (see also Problems 7.18,
7.19, 7.20). For N particles in three dimensions with a single particle energy ε =
p2x+p2y+p2z

2m , the total energy would be U = 3
2NkT . Consequently, for a fixed energy

and fixed number of particles, the temperatures in the volumes V and V +ΔV must
be the same.
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Fluctuations and Complements

Problem 12.1.
Characterize the fluctuations of the energy in the grand canonical ensemble and

prove that

〈(ΔE)2〉= 〈(ΔE)2〉can+ 〈(ΔN)2〉
(
∂U
∂N

)2
T,V

whereU = 〈E〉 is the average energy, N the average number of particles, 〈(ΔN)2〉 its
fluctuations, and 〈(ΔE)2〉can the energy fluctuations as obtained from the canonical
ensemble.

Solution
If the grand canonical partition functionQ=Q(T,V,z) is known, we can define the
average energy

U = 〈E〉=−
(
∂ lnQ
∂β

)
V,z

=−
(
∂ lnQ
∂β

)
V,α

with α =− lnz, and the associated fluctuations are

〈(ΔE)2〉= 〈E2〉−〈E〉2 =−
(
∂U
∂β

)
V,z

= kT 2
(
∂U
∂T

)
V,z

.

The average number of particles is

N =−
(
∂ lnQ
∂α

)
β ,V

and its fluctuations are

〈(ΔN)2〉= 〈N2〉−〈N〉2 = kT
(
∂N
∂μ

)
T,V

.

Cini M., Fucito F., Sbragaglia M.: Solved Problems in Quantum and Statistical Mechanics.
DOI 10.1007/978-88-470-2315-4 12, c© Springer-Verlag Italia 2012
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From the previous expressions forU and N, we obtain

(
∂N
∂β

)
V,α

=−
(

∂
∂β

(
∂ lnQ
∂α

)
β ,V

)
V,α

=−
(

∂
∂α

(
∂ lnQ
∂β

)
V,α

)
β ,V

=

(
∂U
∂α

)
β ,V

or, equivalently (
∂N
∂T

)
V,z

=
1

T

(
∂U
∂μ

)
T,V

.

We can now considerU =U(T,V,N) with N a function of T,V,z

dU(T,V,N(T,V,z)) =
(
∂U
∂T

)
V,N

dT +

(
∂U
∂V

)
T,N

dV +

(
∂U
∂N

)
T,V

dN(T,V,z)

dN(T,V,z) =
(
∂N
∂T

)
V,z

dT +

(
∂N
∂V

)
T,z

dV +

(
∂N
∂ z

)
T,V

dz

so that

dU =

((
∂U
∂T

)
V,N

+

(
∂U
∂N

)
T,V

(
∂N
∂T

)
V,z

)
dT+

((
∂U
∂V

)
T,N

+

(
∂U
∂N

)
T,V

(
∂N
∂V

)
T,z

)
dV +

(
∂U
∂N

)
T,V

(
∂N
∂ z

)
T,V

dz.

If we compute
(
∂U
∂T

)
V,z
, we obtain

(
∂U
∂T

)
V,z

=

(
∂U
∂T

)
V,N

+

(
∂U
∂N

)
T,V

(
∂N
∂T

)
V,z

.

The fluctuations become

〈(ΔE)2〉=kT 2
(
∂U
∂T

)
V,z

= kT 2
(
∂U
∂T

)
V,N

+ kT 2
(
∂U
∂N

)
T,V

(
∂N
∂T

)
V,z

=

〈(ΔE)2〉can+ kT
(
∂U
∂N

)
T,V

(
∂U
∂μ

)
T,V

where we have used the formula for the fluctuations of the energy in the canonical

ensemble

〈(ΔE)2〉can = kT 2
(
∂U
∂T

)
V,N

.

It is also noted that (
∂U
∂μ

)
T,V

=

(
∂U
∂N

)
T,V

(
∂N
∂μ

)
T,V
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and, hence

〈(ΔE)2〉= 〈(ΔE)2〉can+
(
∂U
∂N

)2
T,V

〈(ΔN)2〉

that is the desired result.

Problem 12.2.
A system is in equilibrium with a reservoir at temperature T

′
and pressure P

′
. Prove

that, in a fluctuation with respect to the equilibrium state at constant pressure, the

increase or decrease of the entropy only depends upon the sign of the thermal ex-

pansion coefficient

α =
1

V

(
∂V
∂T

)
P
.

For simplicity, no exchange of particles is allowed. To solve the problem, relate the

entropy variation to α and CP (the specific heat at constant pressure) and finally

show thatCP ≥ 0. Also, consider that the total energy and volume of the system and
the reservoir is conserved.

Solution
The quantity we are interested in is the variation of the entropy during the expansion,

i.e. (∂S/∂V )P. Following the suggestion of the text, we can use the method of the

Jacobians and relate
(

∂S
∂V

)
P
to α andCP

(
∂S
∂V

)
P
=

∂ (S,P)
∂ (V,P)

=

∂ (S,P)
∂ (P,T )
∂ (V,P)
∂ (P,T )

=

(
∂S
∂T

)
P(

∂V
∂T

)
P

=
CP

αTV
.

Therefore, it is sufficient to show thatCP ≥ 0. Our system is initially at equilibrium
with the reservoir at temperature T

′
and pressure P

′
. The total entropy, i.e. the one

of the system (s) plus the one of the reservoir (r), attains its maximum value at the
equilibrium. Therefore, a fluctuation can only reduce it

ΔStot = ΔSs+ΔSr ≤ 0.

From the first law of thermodynamics we know that

ΔSs =
∫ f

i

1

Ts
dUs+

∫ f

i

Ps
Ts

dVs

and

ΔSr =
∫ f

i

1

Tr
dUr+

∫ f

i

Pr
Tr

dVr

where i and f stand for the initial and final state. Also, the temperature and the pres-
sure of the reservoir do not change appreciably and stay equal to their equilibrium

values (the reservoir is so large that the expansion of the system does not perturb its
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pressure and temperature). Therefore, we have

ΔSr =
∫ f

i

1

Tr
dUr+

∫ f

i

Pr
Tr

dVr =
1

T ′

∫ f

i
dUr+

P
′

T ′

∫ f

i
dVr =

1

T ′ ΔUr+
P

′

T ′ ΔVr.

On the contrary, for the system we have to use

ΔSs =
∫ f

i

1

Ts
dUs+

∫ f

i

Ps
Ts

dVs

where we are not allowed to bring out of the integral Ts and Ps because, in principle,
those parameters vary. Moreover, if the total volume and energy are conserved

ΔVr =−ΔVs ΔUr =−ΔUs.

Therefore, we can write

ΔSs+ΔSr = ΔSs− 1

T ′ ΔUs− P
′

T ′ ΔVs ≤ 0

or, equivalently
ΔUs+P′ΔVs−T ′ΔSs ≥ 0.

Let us now drop the subscript s

ΔU+P′ΔV −T ′ΔS≥ 0

knowing that we are referring to the properties of the system hereafter. We can now

expand ΔU = ΔU(S,V ) up to second order

ΔU =

(
∂U
∂S

)
V
ΔS+

(
∂U
∂V

)
S
ΔV+

1

2

((
∂ 2U
∂S2

)
V
(ΔS)2+

(
∂ 2U
∂V 2

)
S
(ΔV )2+2

(
∂
∂S

(
∂U
∂V

)
S

)
V
ΔSΔV

)

and we can substitute this in the previous expression, with T = (∂U/∂S)V and P=
−(∂U/∂V )S(

∂ 2U
∂S2

)
V
(ΔS)2+

(
∂ 2U
∂V 2

)
S
(ΔV )2+2

(
∂
∂S

(
∂U
∂V

)
S

)
V
ΔSΔV =(

∂T
∂S

)
V
(ΔS)2+

(
∂T
∂V

)
S
ΔSΔV −

(
∂P
∂V

)
S
(ΔV )2−

(
∂P
∂S

)
V
ΔSΔV ≥ 0.

We note that ΔT and ΔP can be written as

ΔT =

(
∂T
∂S

)
V
ΔS+

(
∂T
∂V

)
S
ΔV

ΔP=

(
∂P
∂V

)
S
ΔV +

(
∂P
∂S

)
V
ΔS
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that implies

ΔTΔS−ΔPΔV ≥ 0.
This final expression is a relationship between T , P, S and V . If we choose T and P
as independent variables and expand S and V at first order, we have

ΔT
[(

∂S
∂T

)
P
ΔT +

(
∂S
∂P

)
T
ΔP

]
−ΔP

[(
∂V
∂T

)
P
ΔT +

(
∂V
∂P

)
T
ΔP

]
=(

∂S
∂T

)
P
(ΔT )2−

(
∂V
∂P

)
T
(ΔP)2+

[(
∂S
∂P

)
T
−
(
∂V
∂T

)
P

]
ΔTΔP≥ 0.

If we keep P constant (ΔP= 0), we find that(
∂S
∂T

)
P
(ΔT )2 = TCP(ΔT )2 ≥ 0

that impliesCP ≥ 0 because both T and (ΔT )2 are positive.

Problem 12.3.
Unlike an ideal gas, which cools down during an adiabatic expansion, a one dimen-

sional rubber band (with spring constant K and rest position x0 = 0) is increasing

its temperature T when elongated in an adiabatic way. Determine the probability for
the fluctuations from the rest position (Δx) and compute 〈(Δx)2〉 and 〈ΔxΔT 〉.
Solution
As already discussed in Problem 6.6, the first law of thermodynamics reads

TdS= dE−Kxdx.

Let us now derive the probability for the fluctuations. In the case of a fluid with

pressure P and volume V , the first law is written as TdS = dE + PdV , and the
probability of the fluctuations reads

p ∝ e−
1
2kT (ΔSΔT−ΔPΔV ).

When comparing the first law of thermodynamics for the fluid and the one for the

rubber band, we see that the elastic force−Kx plays the role of the pressure P, while
the elongation Δx plays the role of the variation of the volume ΔV . This means that
we can follow the same derivation for the probability of the fluctuations for a fluid

and replace P with −Kx and ΔV with Δx. Therefore, we find

p ∝ e−
1
2kT (ΔSΔT+K(Δx)2).

To compute 〈(Δx)2〉 and 〈ΔxΔT 〉 we need to expand ΔS in terms of Δx and ΔT

ΔS=
(
∂S
∂T

)
x
ΔT +

(
∂S
∂x

)
T
Δx=

Cx

T
ΔT +

(
∂S
∂x

)
T
Δx
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where we have introduced the specific heat at constant elongation

Cx = T
(
∂S
∂T

)
x
.

As already discussed in Problem 6.6, the entropy stays constant during an isothermal

elongation (
∂S
∂x

)
T
= 0

and the probability of the fluctuations becomes

p ∝ e−
Cx
2kT2

(ΔT )2− K
2kT (Δx)2

from which we see that Δx and ΔT are statistically independent Gaussian variables
with the property

〈(Δx)2〉= kT
K

〈ΔxΔT 〉= 0.
Problem 12.4.
Consider a gas with a fixed number of particles. Using the probability of the fluctu-

ations from the thermodynamic equilibrium, prove that:

〈ΔTΔP〉= T 2
CV

(
∂P
∂T

)
V
;

〈ΔVΔP〉=−T ;
〈ΔTΔS〉= T ;

〈ΔVΔS〉= T
(
∂V
∂T

)
P
.

To simplify matters, assume k = 1.

Solution
As we know from the theory, the probability of the fluctuations from the thermody-

namic equilibrium is

p ∝ e
1
2T [ΔVΔP−ΔSΔT ]

where we can use the differential expressions for P= P(T,V ) and S= S(T,V )

ΔP=

(
∂P
∂V

)
T
ΔV +

(
∂P
∂T

)
V
ΔT

ΔS=
(
∂S
∂V

)
T
ΔV +

(
∂S
∂T

)
V
ΔT
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to obtain

[ΔVΔP−ΔSΔT ] =
(
∂P
∂V

)
T
(ΔV )2+

(
∂P
∂T

)
V
ΔTΔV−(

∂S
∂V

)
T
ΔVΔT −

(
∂S
∂T

)
V
(ΔT )2 =

(
∂P
∂V

)
T
(ΔV )2−

(
∂S
∂T

)
V
(ΔT )2.

Then, using the Maxwell relation
(

∂S
∂V

)
T
=

(
∂P
∂T

)
V
, we can simplify the formula

for the probability as

p ∝ e
1
2T [(

∂P
∂V )T (ΔV )2−( ∂S

∂T )V (ΔT )2]

from which we extract 〈(ΔV )2〉 and 〈(ΔT )2〉, the standard deviations of V and T
respectively

〈(ΔV )2〉=−T
(
∂V
∂P

)
T

〈(ΔT )2〉= T
(
∂T
∂S

)
V

〈ΔVΔT 〉= 0.

It is now immediate to show that

〈ΔPΔT 〉=
(
∂P
∂V

)
T
〈ΔVΔT 〉+

(
∂P
∂T

)
V
〈(ΔT )2〉=

T
(
∂P
∂T

)
V

(
∂T
∂S

)
V
=

T 2

CV

(
∂P
∂T

)
V

where we have used P= P(T,V ). Similarly, we can obtain

〈ΔPΔV 〉=
(
∂P
∂V

)
T
〈(ΔV )2〉+

(
∂P
∂T

)
V
〈ΔVΔT 〉=−T

(
∂P
∂V

)
T

(
∂V
∂P

)
T
=−T.

Then, we can consider S= S(T,V ) and obtain

〈ΔTΔS〉=
(
∂S
∂V

)
T
〈ΔVΔT 〉+

(
∂S
∂T

)
V
〈(ΔT )2〉= T

(
∂S
∂T

)
V

(
∂T
∂S

)
V
= T

〈ΔVΔS〉=
(
∂S
∂V

)
T
〈(ΔV )2〉+

(
∂S
∂T

)
V
〈ΔTΔV 〉=

−T
(
∂S
∂V

)
T

(
∂V
∂P

)
T
=−T

(
∂S
∂P

)
T
= T

(
∂V
∂T

)
P

where we have used the Maxwell relation −
(

∂S
∂P

)
T
=

(
∂V
∂T

)
P
.

Problem 12.5.
Consider a system with internal energy E, volume V , temperature T , and with a
fixed number N of particles. Using the probability of the fluctuations, compute the
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energy fluctuations showing that they are

〈(ΔE)2〉=CVT 2+ kTTV
(
∂E
∂V

)2
T

whereCV is the specific heat at constant volume and κT =− 1
V

(
∂V
∂P

)
T
the isothermal

compressibility. Compare this result with the one obtained in Problem 12.1. To solve

the problem, take the differential of the energy, square it and take the average. To

simplify matters, assume k = 1.

Solution
Following the suggestion in the text, we take E = E(T,V ) and compute

ΔE =

(
∂E
∂V

)
T
ΔV +

(
∂E
∂T

)
V
ΔT =

(
∂E
∂V

)
T
ΔV +CVΔT.

Squaring and taking the average we get

〈(ΔE)2〉=
(
∂E
∂V

)2
T
〈(ΔV )2〉+C2V 〈(ΔT )2〉+2〈(ΔV )(ΔT )〉CV

(
∂E
∂V

)
T
.

The formula for the probability of the fluctuations is

p ∝ e
1
2T [ΔVΔP−ΔSΔT ].

Substituting in it P= P(T,V ), S= S(T,V ) we find (see Problem 12.4)

〈ΔVΔT 〉= 0 〈(ΔT )2〉= T 2

CV
〈(ΔV )2〉=−T

(
∂V
∂P

)
T
=VTκT .

Plugging this back in 〈(ΔE)2〉, we get the desired result

〈(ΔE)2〉=CVT 2+ kTTV
(
∂E
∂V

)2
T
.

All these expressions are obtained with the assumption that the number of particles

N is fixed. In particular, the equation for 〈(ΔV )2〉 may also be used to derive an
expression for the fluctuations in the specific volume v=V/N

〈(Δv)2〉= VTκT

N2

or also the fluctuations in the density n= N/V

〈(Δn)2〉= 〈(Δv)2〉
v4

=
TκTN2

V 3
.
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Furthermore, considering a system with a fixed volume V and a variable number of
particles N, we can write

〈(ΔN)2〉= 〈(Δn)2〉V 2 = TκTN2

V
.

Substituting this back in the previous result for 〈(ΔE)2〉, we get

〈(ΔE)2〉=CVT 2+ 〈(ΔN)2〉V
2

N2

(
∂E
∂V

)2
T
.

By the same token, at a fixed temperature T , we can connect the derivative of the
energy with respect to V in a system with fixed N, to that of the energy with respect
to N in a system with fixed V , i.e.

(
∂E
∂V

)2
T
=

(
∂E
∂N

)2
T

N2

V 2
.

In fact N,V are extensive functions (homogeneous functions of order one) and

N = V f (P,T ), i.e. N is proportional to the volume (the ideal gas gives an explicit

example). The final result is

〈(ΔE)2〉=CVT 2+ 〈(ΔN)2〉
(
∂E
∂N

)2
T

that is in agreement with the result of Problem 12.1.

Problem 12.6.
A system is in thermal equilibrium at temperature T and is composed of N particles
(N = 1,2). They can be found in three energy levels E = nε,n = 0,1,2. Determine
the grand canonical partition function for particles obeying:

Fermi-Dirac Statistics (FD);

Bose-Einstein statistics (BE);

Maxwell-Boltzmann statistics for indistinguishable particles (MB).

Solution
The grand canonical partition function is

Q(T,z) =
2

∑
N=1

zNQN(T,N) = zQ1(T,1)+ z2Q2(T,2)

where the canonical partition function has been used

QN(T,N) = ˜∑{nE}g{nE}e
−β ∑E nEE

with {nE} = (n0,n1,n2) the set of occupation numbers for the energy levels and
g{nE} the associated degeneracy. With ∑̃ we mean that the set {nE} is satisfying
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Fig. 12.1 The possible arrangements of N = 1,2 particles in 3 energy levels. We treat explicitly the
Fermi-Dirac (FD), Bose-Einstein (BE) and Maxwell-Boltzmann (MB) cases. The resulting grand
canonical partition functions are discussed in Problem 12.6

the constraint N =∑E nE . Regarding the degeneracy coefficient, for the Fermi-Dirac
case we have ⎧⎨

⎩g(FD){nE}= 1 nE = 0,1

g(FD){nE}= 0 nE = 2,3,4, ...

For the Bose-Einstein case we have

g(BE){nE}= 1.

Finally, the Maxwell-Boltzmann case for indistinguishable particles leads to

g(MB){nE}= 1

∏E nE !
.

For the case of a single particle, the canonical partition function is independent of

the statistics and is equal to

Q(FD)
1 (T,1) = Q(BE)

1 (T,1) = Q(MB)
1 (T,1) = 1+ e−βε + e−2βε .

For the case of two particles, we find three different results, dependent on the statis-

tics. In Fig. 12.1 we report all the resulting configurations. To be noted that in the

FD and BE statistics, particles (denoted by the crosses) are indistinguishable. On

the other hand, in the MB statistics, we first consider the particles as distinguishable
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(crosses and filled symbols), and then divide by the factor 2! to account for their

indistinguishability. The final result is:

Q(FD)
2 (T,2) = e−βε + e−2βε + e−3βε ;

Q(BE)
2 (T,2) = 1+ e−βε +2e−2βε + e−3βε + e−4βε ;

Q(MB)
2 (T,2) = 1

2 + e−βε + 3
2e

−2βε + e−3βε + 1
2e

−4βε .

Problem 12.7.
Consider a system with a single particle and two energy levels (0 and ε). Write
down the canonical partition function Q1. Then, consider the same system with two
particles and write down the partition function when:

the particles are treated as classical and distinguishable (the Maxwell-Boltzmann

case);

the particles obey Bose-Einstein statistics;

the particles obey Fermi-Dirac statistics.

What is the relation between these partition functions and Q1? Repeat the calcula-
tion for the case with three particles and three energy levels (0, ε1 and ε2). Using
these examples, determine the number of terms generated in the general case of n
particles in m energy levels. Characterize the limit where the Maxwell-Boltzmann

case gives the same result as the quantum (Bose-Einstein and Fermi-Dirac) cases.

Solution
The single particle partition function is very simple and independent of the statistics

Q1(T ) = 1+ e−βε .

In the case of two particles with the Maxwell Boltzmann (MB) statistics, we find

Q(MB)
2 (T ) = 1+ e−βε + e−βε + e−2βε = (1+ e−βε)2 = (Q1(T ))2.

In the quantum cases, i.e. Bose-Einstein (BE) and Fermi-Dirac (FD), we have in-

distinguishable particles. In the Bose-Einstein case, a generic energy level can be

occupied by any number of bosons

Q(BE)
2 (T ) = 1+ e−βε + e−2βε .

In the Fermi-Dirac case, due to the Pauli exclusion principle, a generic energy level

is occupied by at most one particle

Q(FD)
2 (T ) = e−βε .

The case with three particles and three energy levels provides the following result

for the Maxwell-Boltzmann statistics

Q(MB)
3 (T ) = 1+ e−3βε1 + e−3βε2 +3e−βε1 +3e−βε2 +6e−β (ε1+ε2) +3e−β (2ε1+ε2) +

3e−β (ε1+2ε2) +3e−2βε1 +3e−2βε2 = (1+ e−βε1 + e−βε2)3 = Q31(T )
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where Q1(T ) = 1+ e−βε1 + e−βε2 in this case. The total number of terms is
NMB = 3× 3× 3 = 33 = 27 because each particle can occupy the energy levels

independently from the others. For the case of n particles in m energy levels, we

find

NMB = nm

and the coefficients in front of the terms have the form n!
n1!n2!n3!

, where ni is the
occupation number of the i-th level. In the Bose-Einstein case, the case of three
particles in three energy levels gives

Q(BE)
3 (T ) = 1+ e−3βε1 + e−3βε2 + e−βε1 + e−βε2 + e−β (ε1+ε2) + e−β (2ε1+ε2) +

e−β (ε1+2ε2) + e−2βε1 + e−2βε2 .

The total number of terms is 10. In general, when dealing with m energy levels and
n particles, we find a total number of terms equal to

NBE =
(n+m−1)!
(m−1)!n! .

Finally, the case of three Fermi-Dirac particles in three energy levels, produces

Q(FD)
3 (T ) = e−β (ε1+ε2).

With this quantum statistics, the case of n particles and m energy levels has a total
number of terms equal to

NFD =
m!

(m−n)!n!
.

Only in the limit of high temperatures (more energy levels are accessible) and low

densities (not so many particles to accommodate), the behaviour of all physical sys-

tems tends asymptotically to what we expect on classical grounds. In such limit, the

occupation number for each energy level is ni = 0,1, and all theMaxwell-Boltzmann
terms, once divided by the Gibbs factor n! (to account for the indistinguishability of
the particles), are the same as those found in Q(FD)(T ) or Q(BE)(T ). To give an ex-
ample, in the case of three particles in three energy levels, only the term 6e−β (ε1+ε2)

survives. Dividing by 3!= 6, we get the quantum result of Q(FD)
3 (T ) and Q(BE)

3 (T )
(in which we have also neglected the contributions from states with more than one

particle per energy level).

Problem 12.8.
A volume V is filled with N independent distinguishable particles of a given gas

with constant energy E. Let us split the volume V in two subvolumes

V =V1+V2
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where V1 and V2 are filled with N1 and N2 particles, respectively. Let

p=
V1
V

q=
V2
V

be the associated volume fractions such that p+q= 1. Find the probability PK thatK
particles are located inV1 and compute 〈K〉 and 〈(ΔK)2〉= 〈(K−〈K〉)2〉, where 〈...〉
means the average with respect to PK . Finally, compute the fluctuations

√
〈(ΔK)2〉
〈K〉 .

Solution
The number of possible spatial configurations for a particle located in a volumeV is
proportional to V itself. If there is no spatial correlation (particles are independent),
the probability that any one of the particles is found in a given region is totally

independent of the positions of the other particles. It follows that the probability

to find K particles in V1 (and obviously (N−K) particles in V2) is proportional to
VK
1 VN−K

2

PK = A
N!

K!(N−K)!
VK
1 VN−K

2

where we have considered the factor N!
K!(N−K)! to take into account all the possible

ways to choose K distinguishable particles out of N. In the above expression, A is a
normalization constant found by imposing that the sum of PK over all the possible
realizations of K is equal to 1. Using the binomial representation

N

∑
K=0

N!
K!(N−K)!

VK
1 VN−K

2 = (V1+V2)N =VN

one can write

N

∑
K=0

PK = A
N

∑
K=0

N!
K!(N−K)!

VK
1 VN−K

2 = AVN = 1

so that A= 1
VN . The resulting probability is

PK =
1

VN

(
N
K

)
VK
1 VN−K

2 =
1

VN

(
N
K

)
VK
1 VN−K

2 =

(
N
K

)
pKqN−K .

The average number 〈K〉 is

〈K〉 =
N

∑
K=0

KPK =
N

∑
K=0

K

(
N
K

)
pKqN−K = p

d
dp

N

∑
K=0

(
N
K

)
pKqN−K =

p
d
dp

(p+q)N = Np(p+q)N−1 = Np
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where we have considered that p+q= 1. The fluctuations are given by

〈(ΔK)2〉 = 〈(K−〈K〉)2〉=
N

∑
K=0

K2PK −
(

N

∑
K=0

KPK

)2

=

(
p

d
dp

)2 N

∑
K=0

(
N
K

)
pKqN−K − (Np)2 =

p
d
dp

(pN(p+q)N−1)− (Np)2 =

pN(p+q)N−1+ p2N(N−1)(p+q)N−2− (Np)2 = Npq.

The final result is √
〈(ΔK)2〉
〈K〉 =

√
Npq
Np

=

√
q
p
1√
N

.

We remark that for large N the fluctuations are negligible for a finite value of p and
q. Only when p gets very small they become large.

Problem 12.9.
Consider an ideal gas with N � 1 independent particles in a volumeV . Using simple
considerations, determine the probability PK that K 	 N (i.e. p= V0

V 	 1) particles

are located in the subvolume V0 	V . Assume that N−K � 1.

Solution
The probability that a single particle is in the volume V0 is p = V0

V . The resulting

probability that K particles are in V0 and (simultaneously) N−K particles are in the
volume V −V0 is

PK =CK,N pK(1− p)N−K =
N!

K!(N−K)!
pK(1− p)N−K

where CK,N represents all the possible ways to select K particles out of N. It imme-
diately follows that the average number of particles in V0 is

〈K〉= Np.

All these results are found in Problem 12.8.We now derive some asymptotic formula

for the probability PK . In the limit suggested by the text, we can use the Stirling
approximation, N!≈√

2πN
(N

e

)N
, to get

N!
(N−K)!

≈
√
2πN

(
N
e

)N eN−K√
2π(N−K)(N−K)N−K

=

√
N

N−K
e−K

(
N

N−K

)N

(N−K)K =

(
1− K

N

)− 1
2

e−K
(
1− K

N

)−N

NK
(
1− K

N

)K

≈(
1+

K
2N

)
e−K(1+K)NK

(
1− K2

N

)
≈ e−KNK .
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In the same limit, since we know that 〈K〉= Np, we find

(1− p)N−K ≈ (1− p)N = (1− p)
〈K〉
p ≈ e−〈K〉.

If we use all these results together, we find

PK = NK pK
e−〈K〉

K!
=

〈K〉Ke−〈K〉

K!

that is a Poisson distribution with average value equal to 〈K〉.
Problem 12.10.
During a thermally induced emission, some electrons leave the surface of a metal.

Let us assume that the electron emissions are statistically independent events and

that the emission probability during a time interval dt is λdt, with λ a constant. If
the process of emission starts at time t = 0, determine the probability of emission of
n electrons in a time interval t > 0.

Solution
Let us call Pn(t) the probability to emit n electrons in the time interval t. The com-
position rule for the probabilities gives

Pn(t+dt) = Pn−1(t)P1+Pn(t)(1−P1)

P0(t+dt) = P0(t)(1−P1)

where P1 = λdt is the probability to emit one electron, as explained in the text.
Clearly, (1−P1) is the probability not to emit the electron. If we expand

Pn(t+dt)≈ Pn(t)+
dPn(t)
dt

dt

and we use P1 = λdt, we obtain the following differential equations

dPn(t)
dt

= λ [Pn−1(t)−Pn(t)] n �= 0

dP0(t)
dt

=−λP0(t).

These differential equations need boundary conditions which are Pn(0) = 1 for n=
0, and Pn(0) = 0 for n �= 0, i.e. at time t = 0 we have probability one to find zero

electrons and probability zero to find at least one electron. For P0 we can solve
immediately and find

P0(t) = e−λ t .

As for Pn with n �= 0, we start by considering the solution of the differential equation
dy(t)
dt

+ p(t)y(t) = q(t)



378 12 Fluctuations and Complements

that is given by

y(t) = e−
∫ t
0 p(x)dx

[∫ t

0
q(s)e

∫ s
0 p(t ′)dt ′ ds+ const.

]
.

If we set y(t) = Pn(t), q(t) = λPn−1(t) and p(t) = λ we have

Pn(t) = e−λ t
[
λ
∫ t

0
Pn−1(s)eλ s ds+ const.

]
.

Using the boundary conditions, we can solve for n= 0,1,2,3, ... and find

P0(t) =e−λ t

P1(t) =(λ t)e−λ t

P2(t) =
(λ t)2

2
e−λ t

P3(t) =
(λ t)3

3!
e−λ t

from which we guess the following form of the solution

Pn(t) =
(λ t)n

n!
e−λ t .

It is straightforward to verify that this Pn(t) is the solution of the differential equa-
tions given above.

Problem 12.11.
The Ising model is characterized by a number N of particles with spin S = 1/2 lo-
calized on a given lattice. The Hamiltonian of the system is given by the interaction

energy between these spins

H =−J∑
〈i j〉

σiσ j

where J is a coupling constant and where σi =±1 are the values of the projections
of the spin along the z axis. The sum ∑〈i j〉 is performed over all the values of i, j
which are nearest neighbor. Using the canonical ensemble, compute the free energy

and the specific heat in the case of a one dimensional chain of N � 1 spins with

periodic boundary conditions (σN+1 ≡ σ1).

Solution
Starting from the HamiltonianH , we find the partition function

QN(T,N)= ∑
σ1=±1

· · · ∑
σN=±1

eβ̃ ∑
N
i=1σiσi+1= ∑

σ1=±1
· · · ∑

σN=±1

N

∏
i=1

(cosh β̃ +σiσi+1 sinh β̃ )
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with β̃ = J/kT . In the above expression, we have used the following relation

eβ̃σiσi+1 = cosh β̃ +σiσi+1 sinh β̃

because σiσi+1 =±1. If we expand the product, we obtain terms of type

(cosh β̃ )N−k(sinh β̃ )k(σi1σi1+1)(σi2σi2+1) . . .(σikσik+1).

It is easy to see that all the mixed terms (i.e. those involving spins on different

locations) give zero as a result when summed over all the possible realizations. Let

us make an example and compute

Q2(T,2) = ∑
σ1=±1

∑
σ2=±1

(cosh β̃ +σ1σ2 sinh β̃ )(cosh β̃ +σ2σ3 sinh β̃ ) =

∑
σ1=±1

∑
σ2=±1

(
(cosh β̃ )2+(sinh β̃ )2+2σ1σ2 sinh β̃ cosh β̃

)
=

4
(
(cosh β̃ )2+(sinh β̃ )2

)
where we have used the periodic relation σ3 = σ1 and also

∑
σ1=±1

∑
σ2=±1

σ1σ2 = ∑
σ1=±1

σ1 ∑
σ2=±1

σ2 = (1−1)(1−1) = 0.

Therefore, in the case of N spins, the partition function is

QN(T,N) = 2N
[
(cosh β̃ )N +(sinh β̃ )N

]≈ 2N(cosh β̃ )N
because cosh β̃ > sinh β̃ (β̃ �= +∞) and N � 1. As for the free energy F , internal

energyU = F+TS, and the specific heatC =
(
∂U
∂T

)
N
, we have

F =−NkT ln(2cosh β̃ )

U = F+TS= F−T
(
∂F
∂T

)
N
=−NJ tanh β̃

C =
Nkβ̃ 2

(cosh β̃ )2
.

Problem 12.12.
Consider the Ising model discussed in Problem 12.11. In presence of an external

magnetic field H, the Hamiltonian of the system is given by the interaction energy
between the spins plus the coupling with the magnetic field

H =−J∑
〈i j〉

σiσ j −H
N

∑
i=1

σi
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where J is a constant coupling and where σi =±1 are the values of the projections
of the spin along the z axis. The sum ∑〈i j〉 is performed over all the values of i, j
which are nearest neighbor. Show that this model does not present a magnetization

M in the limit N � 1, H → 0 and β <+∞.

Solution
We need to compute the magnetization. To this end, we start from the Hamiltonian

H =−J
N

∑
i=1

σiσi+1−H
N

∑
i=1

σi

and the partition function

QN(T,H,N) = ∑
σ1=±1

· · · ∑
σN=±1

e
J
kT ∑

N
i=1σiσi+1+

H
kT ∑

N
i=1σi =

∑
σ1=±1

· · · ∑
σN=±1

e
J
kT ∑

N
i=1σiσi+1+

1
2

H
kT ∑

N
i=1(σi+σi+1)

where we have used the periodic boundary condition σN+1 ≡ σ1. In this expression,
the variables σi are just numbers assuming the values ±1. Let us imagine to de-
fine the states |si =±〉 so that the i-th spin may be described by a complete set of
eigenstates |+〉,|−〉 such that the ‘spin’ operator, σ̂i, has σi as eigenvalue

σ̂i |si〉= σi |si〉 .

Therefore, we recognize in the partition function matrix elements of type

〈si|e J
kT σ̂iσ̂i+1+

1
2

H
kT (σ̂i+σ̂i+1) |si+1〉= e

J
kT σiσi+1+

1
2

H
kT (σi+σi+1).

From the generic element, we immediately find out the components

〈+|e J
kT σ̂iσ̂i+1+

1
2

H
kT (σ̂i+σ̂i+1)|+〉= e

J
kT + H

kT = eβ (J+H)

〈−|e J
kT σ̂iσ̂i+1+

1
2

H
kT (σ̂i+σ̂i+1)|−〉= e

J
kT − H

kT = eβ (J−H)

〈+|e J
kT σ̂iσ̂i+1+

1
2

H
kT (σ̂i+σ̂i+1) |−〉= e−

J
kT = e−βJ

〈−|e J
kT σ̂iσ̂i+1+

1
2

H
kT (σ̂i+σ̂i+1) |+〉= e−

J
kT = e−βJ

giving us the representation of the well known transfer matrix T̂

T̂ =

(
eβ (J+H)e−βJ

e−βJeβ (J−H)

)
.

Using these results and the completeness relation

∑
si=±

|si〉〈si|= |+〉〈+|+ |−〉〈−|= 11
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we write down the partition function as

QN(T,H,N) = ∑
s1=±

· · · ∑
sN=±

〈s1| T̂ |s2〉〈s2| T̂ |s3〉 . . .〈sN | T̂ |s1〉=

∑
s1=±

〈s1| T̂ N |s1〉= 〈+| T̂ N |+〉+ 〈−| T̂ N |−〉= λN
1 +λN

2

where λ1,λ2 are the eigenvalues of T̂ given by

λ1,2 = eJβ
(
cosh(βH)±

√
cosh2(βH)−2e−2Jβ sinh(2Jβ )

)

with the property λ1 > λ2 if β < +∞. For large N, the specific magnetization is
given by

M =
1

N

(
∂F
∂H

)
T,N

=− 1

Nβ

(
∂ lnQN

∂H

)
T,N

=− 1

Nβ

(
∂ ln(λN

1 +λN
2 )

∂H

)
T,N

=

− 1

Nβ

(
∂
∂H

ln

[
λN
1

(
1+

(
λ2
λ1

)N)])
T,N

≈− 1
β

(
∂ lnλ1
∂H

)
T
=

−
sinh(βH)+ sinh(βH)cosh(βH)√

cosh2(βH)−2e−2Jβ sinh(2Jβ )

cosh(βH)+
√
cosh2(βH)−2e−2Jβ sinh(2Jβ )

=

− sinh(βH)√
cosh2(βH)−2e−2Jβ sinh(2Jβ )

from which we see that M goes to zero in the limit H → 0.

Problem 12.13.
Let us consider a generic ideal quantum gas of bosons in a volume V at temperature
T . Show that the following relation for the entropy

S= k∑
i
[−〈ni〉 ln〈ni〉+(1+ 〈ni〉) ln(1+ 〈ni〉)]

holds. In the above expression, 〈ni〉 represents the occupation number for the i-th
energy level. What does it happen in the case of fermions?

Solution
Let us start from the expression of the occupation number

〈ni〉= 1

z−1eβεi −1
from which we can write

z−1eβεi =
1+ 〈ni〉
〈ni〉
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and, since z= eβμ , we get

−βμ+βεi = ln(1+ 〈ni〉)− ln〈ni〉.

From the logarithm of the grand canonical partition function we find the pressure

lnQ =
PV
kT

=−∑
i
ln(1− ze−βεi) =−∑

i
ln

(
1

1+ 〈ni〉
)
=∑

i
ln(1+ 〈ni〉).

The entropy can be written as

S=
1

T
(−Nμ+PV +U)

where with N we mean the average number in the grand canonical ensemble. The

average energy and average number are

U =−
(
∂ lnQ
∂β

)
V,z

N = z
(
∂ lnQ
∂ z

)
T,V

.

We first note that
U
T

=−kβ
(
∂ lnQ
∂β

)
V,z

= k∑
i
βεi〈ni〉.

Then, for the quantity
μN
T , we find

μN
T

=
μ
T
z
(
∂ lnQ
∂ z

)
T,V

= k∑
i
βμ〈ni〉

so that

−μN
T

+
U
T

= k∑
i
(−βμ+βεi)〈ni〉= k∑

i
〈ni〉 ln(1+ 〈ni〉)− k∑

i
〈ni〉 ln〈ni〉.

When we substitute this expression and

PV
T

= k∑
i
ln(1+ 〈ni〉)

in the equation for the entropy, we find

S= k∑
i
[−〈ni〉 ln〈ni〉+(1+ 〈ni〉) ln(1+ 〈ni〉)]

that is the desired result. Similar calculations can be done in the case of fermions

with the occupation number

〈ni〉= 1

z−1eβεi +1
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and the final result is

S= k∑
i
[−〈ni〉 ln〈ni〉− (1−〈ni〉) ln(1−〈ni〉)] .

Problem 12.14.
Write down the probability that an energy level is occupied by m particles in the

following cases:

a gas of bosonic (independent) particles with density n= 1016 particles per cm3

at temperature T ≈ 400K;
a photon gas at room temperature.

Before writing down the probability, determine whether the system can be treated

with the classical or quantum statistics. Make use of the following constants k =
10−16erg/K, h= 10−27erg s, me = 10

−28g.

Solution
Let us start with the bosons gas. We first need to know if the gas is in a classical or

quantum regime. To this end, we compute the thermal length scale

λ =
h√

2πmekT
≈ 2×10−7cm

and we see that we are in the regime where nλ 3 	 1: we can treat the gas with the

classical statistics, where the occupation number of the energy level ε is

〈nε〉 ≈ ze−βε 	 1.

Summing 〈nε〉 over all the possible energies, we find the total average number of
particles 〈N〉, i.e. 〈N〉= ∑ε〈nε〉 ≈ ∑ε ze−βε , that implies

z=
〈N〉

∑ε e−βε 〈nε〉= 〈N〉e−βε

∑ε e−βε .

The probability to find a particle in the energy level ε is proportional to 〈nε〉, and
the probability to have m particles is proportional to 〈nε〉m, that is

Pε(m) =
A1
m!

〈nε〉m =
1

m!
〈nε〉m
e〈nε 〉

.

The factor m! takes into account the (classical ) indistinguishability of the particles
and A1 = e−〈N〉 sets the normalization of Pε(m) in such a way that ∑+∞

m=0Pε(m) = 1.
As for the case of the photon gas, we need to use the Bose-Einstein statistics leading

to

Pε(m) = A2
(
ze−βε

)m
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with A2 the normalization constant found with

+∞

∑
m=0

Pε(m) = A2
+∞

∑
m=0

(
ze−βε

)m
=

A2
1− ze−βε = 1

leading to A2 = 1− ze−βε . Moreover, in the case of a photon gas, the chemical
potential is zero and z= 1. The final result is

Pε(m) =
(
e−βε

)m(
1− e−βε

)
.

Problem 12.15.
In the primordial universe the particles formed a plasma at equilibrium. Among

the various species of particles, there were electrons, positrons, photons interacting

according to

γ ↔ e++ e−

which was responsible for equilibrium. At that time the electrons were “hot”, i.e.

they were relativistic. Compute the density ne± in the two limits kT � mec2 and
kT 	mec2(v/c	 1) and show that in the latter ne± is negligible with respect to the
photon density. Consider that, for the reaction A↔ B+C at equilibrium, the follow-
ing relation among the chemical potentials holds: μA = μB+μC. Furthermore, since

the number density of the electrons and positrons is the same (for “hot” particles

virtual annihilations dominate over other reactions), the charge density for the lep-

tons is zero and an odd function of the chemical potentials, and μe+ +μe− = μγ = 0
leads to μe+ = μe− = 0. Some useful constants are: me = 10−28g, c = 1010cm/s,
T > 4×103K, k = 10−16erg/K. Moreover

∫ +∞

0

xn−1

ex+1
dx= (1−21−n)Γ (n)ζ (n)

∫ +∞

0

xn−1

ex−1 dx= Γ (n)ζ (n).

Solution
The energy of a relativistic particle is ε =

√
c2p2+(mec2)2. Let us consider our

two cases. When kT � mec2, we have ε/kT ≈ pc/kT and this is the case of an

ultrarelativistic particle of mass close to zero. The multiplicity factor is connected

to the spin states and it is g= 2, corresponding to the two elicity states of a massless
particle. Given that the chemical potential is zero, we get the average densities for e±

ne± =
2

(2π h̄)3

∫
1

eβcp+1
d3p=

(kT )3

π2(h̄c)3

∫ +∞

0

x2

ex+1
dx=

(kT )3

π2(h̄c)3
3Γ (3)ζ (3)

4
=
3(kT )3ζ (3)
2π2(h̄c)3

.
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When kT 	 mec2(v/c 	 1), this is the standard relativistic case for which ε ≈
p2
2me

+mec2. Therefore

ne± =
2

(2π h̄)3

∫
1

eβ
p2
2me +βmec2 +1

d3p≈ 2

(2π h̄)3

∫
e−β p2

2me −βmec2d3p

= 2

(
2πmekT

h2

) 3
2

e−
mec2
kT .

The photon density is

nγ =
1

π2c3

∫ +∞

0

ω2dω
eh̄ω/kT −1 =

2ζ (3)(kT )3

π2h̄3c3

while the argument of the exponential gives

mec2

kT
≈ 0.25×105.

This makes the exponential very suppressed and therefore ne± 	 nγ .

Problem 12.16.
In the primordial universe the various species of particles were in thermal equilib-

rium due to the different subnuclear reactions. The cross section, σ , of one of these
reactions times the particles density n gives �≈ 1/nσ for the free mean path, i.e. the
average distance between two collisions. Given that the cross section is the number

of scattered particles per unit area and unit time, a particle which travels the unitary

distance (1cm) collides against the other particles contained in the volume of base

σ and height 1cm. This volume contains σn particles. When the universe becomes
larger than �, this specie of particles decouples from thermal equilibrium because

the number of collisions is not enough to guarantee equilibrium. The Thermody-

namics is that of a free expanding gas. Given that the universe expands linearly with

a coefficient given by the Hubble constant H ≈√
ρGN (ρ is the energy density and

GN the Newton constant), the decoupling threshold is given by σn/H ≈ 1.
Use the latter formula to compute the neutrinos decoupling temperature. Suppose

the neutrinos have a zero chemical potential. Neutrinos are weakly interacting

and their cross section is given by σ ≈ G2FT
2 where GF is the Fermi constant.

For the universe density, n, and energy density, ρ , neglect all constants and only
retain the temperature dependence for a relativistic gas.

The universe keeps expanding. For kT �mec2 compute the entropy of the plasma
which only contains electrons, positrons and photons (e−, e+, γ respectively).
Consider these particles to have zero chemical potential.

Compute the entropy of the photon gas for kT 	 mec2 considering that all the
electrons and positrons have annihilated yielding photons.

Compute now (VT 3)kT�mec2/(VT 3)kT	mec2 = (TkT�mec2/TkT	mec2)
3 where, as

a first approximation, we can take the volumes to be equal. This ratio is the
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same between the temperatures of the photon background radiation and that of

the neutrinos, ν . In fact, at kT ≈ mec2, the neutrinos were already decoupled
and were evolving starting from TkT�mec2 ; γ’s, instead, evolved starting from
TkT	mec2 . Find the temperature of the neutrinos at the present time, knowing

that the ratio TkT�mec2/TkT	mec2 has kept constant from that epoch to present

times.

Use the unit system for which c= 1, k = 1.
In this system [Energy]=[Mass]=[Temperature]=1/[Length]=1/[Time]. Furthermore

1GeV ≈ 10−3erg, 1GeV ≈ 1013K, 1GeV ≈ 10−24g, 1GeV ≈ 10−14cm, 1GeV =
6.610−25s, me = 0.5MeV, GF ≈ 10−5GeV−2, GN = m−2

Planck = 1/(1019GeV)2. Fi-
nally ∫ +∞

0

xn−1

ex+1
dx= (1−21−n)Γ (n)ζ (n)

∫ +∞

0

xn−1

ex−1 dx= Γ (n)ζ (n).

Solution
Let us start by evaluating

1≈ σn
H

=
G2FT

2T 3√
GNT 2

from which T 3 =
√
GN
G2F

= 10−9GeV3 = (1010K)3. In fact, the relativistic particles

density is such that n≈ T 3 and the energy density ρ ≈ T 4 (see also Problem 12.15).
This temperature is larger than T ≈ me = 0.5MeV = 5× 10−4GeV = 5× 109K.
Let us compute the entropy for T � me. Since the chemical potential is zero, we

find

0=Φ = μN = E−TS+PV

fromwhich S= V
T (ρ+P). For a relativistic gas P= ρ/3 holds fromwhich S= 4

3
V
T ρ .

For the electrons and positrons e±, the energy density is

ρe± =
2

(2π h̄)3

∫ cp
eβcp+1

d3p=
(kT )4

π2(h̄c)3

∫ +∞

0

x3

ex+1
dx=

(kT )4

π2(h̄c)3
7Γ (4)ζ (4)

8

while for the photons we get

ργ =
2

(2π h̄)3

∫ cp
eβcp−1d

3p=
(kT )4

π2(h̄c)3

∫ +∞

0

x3

ex−1dx=

(kT )4

π2(h̄c)3
Γ (4)ζ (4).
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Therefore

SkT�mec2 =
4

3

V
T
(ρe+ +ρe− +ργ) =

4

3

V
kT
11

4

(kT )4

π2(h̄c)3
Γ (4)ζ (4).

Analogously

SkT	mec2 =
4

3

V
T
ργ =

4

3

V
T

(kT )4

π2(h̄c)3
Γ (4)ζ (4).

Since the entropy stays constant, and in first approximation we can neglect volume

changes, we find

(VT 3)kT�mec2

(VT 3)kT	mec2
≈

T 3kT�mec2

T 3kT	mec2
=
4

11
⇒ TkT�mec2

TkT	mec2
=

(
4

11

) 1
3

.

This ratio has stayed constant until modern times and therefore Tν = (4/11)1/3Tγ =
0.71×3K≈ 2K.
Problem 12.17.
A three dimensional container is separated in two parts by an adiabatic wall which

moves without friction. One side is filled with a photon gas in equilibrium at tem-

perature T . The other side contains a fully degenerate Fermi gas of 〈N〉 particles
with spin S = 1

2 and single particle energy ε = pc, with p the absolute value of the
momentum and c the speed of light. Find the volume occupied by the fermions, VF ,

under the assumption of mechanical equilibrium. We recall the relation between the

pressure and the energy, PV =U/d (see also Problem 10.13), with d the space di-
mensionality and V the volume occupied by the ultrarelativistic gas. Moreover, we

recall that ∫ +∞

0

x3

ex−1dx=
π4

15
.

Solution
Let us start by analyzing the Fermi (F) gas. If we consider the single particle energy

ε = pc

we can evaluate the average number 〈N〉 of fermions

〈N〉= 2
∫
ε≤εF

d3pd3q
h3

=
8πVF

h3

∫ pF

0
p2dp=

8πVF

h3
p3F
3

=
8πVF

3h3

(εF
c

)3
where we have used pF = εF

c . The Fermi energy is

εF =

(
3〈N〉h3
8πVF

)1/3
c.



388 12 Fluctuations and Complements

To determine the pressure, we use the information given in the text and look for the

internal energy

UF = 2
∫
ε≤εF

d3pd3q
h3

pc=
8πVF

h3

∫ pF

0
cp3dp=

8πVFc
4h3

(εF
c

)4
from which

PF =
1

4

( 〈N〉
VF

)4/3
hc

(
3

8π

)1/3
.

Let us then consider the photon (ph) gas. We can use, again, the relation PphVph =
Uph/d with d = 3. ForUph we write (see also Problems 10.10 and 10.11)

Uph = 2
4πVph

h3

∫ +∞

0

1

eβcp−1 p
2(cp)dp

where, if we set x= βcp, we find

Uph =
8πVphc

h3
1

(βc)4

∫ +∞

0

x3

ex−1dx.

Using the integral given in the text, we get

Uph =
8π
h3

Vph
k4

c3
π4T 4

15

and the pressure is

Pph =
8π5

45

(kT )4

(hc)3
.

The mechanical equilibrium requires PF = Pph so that

VF = 〈N〉
(

hc
kT

)3(
45

32

1

π5

)3/4(
3

8π

) 1
4

.

Problem 12.18.
Our starting point is the first law of thermodynamics for a gas of N (N � 1) particles

in a volume V .

1) Find the relation among the variations of the energy, dU , and volume, dV , in pro-
cesses at constant T , V . Write ( ∂U∂V )T,N in terms of the pressure P and a suitable
derivative of the entropy.

2) Take the Sackur-Tetrode equation (see Problem 6.26) for the entropy and verify

you obtain for ( ∂U∂V )T,N the right result.
3) Compute the entropy for a Fermi and Bose-Einstein gas. Consider the bosons at a

higher temperature with respect to their condensation point (what happens below
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such temperature in these equations?). Give the final result in terms of

gn(z) =
1

Γ (n)

∫ +∞

0

xn−1dx
z−1ex−1

fn(z) =
1

Γ (n)

∫ +∞

0

xn−1dx
z−1ex+1

with a suitable n. Check these results in the classical limit against the Sackur-
Tetrode equation.

4) Repeat the computation in 2) with the entropy computed in 3) writing ( ∂U∂V )T,N
explicitly in terms only of P and z (using the functions fn(z) and gn(z)): what
is changing? In the classical limit of high temperatures and low densities verify

that you recover the result of the computation in 2).

For point 3) you can use the fact that, in the grand canonical ensemble, the entropy

is given by

S= kT
(
∂ lnQ
∂T

)
V,z

−Nk lnz+ k lnQ

whereQ(T,V,z) is the grand canonical partition function and z the fugacity.

Solution
The first law of thermodynamics is

dU = TdS−PdV +μdN.

We can then expand the entropy as

dS=
(
∂S
∂T

)
V,N

dT +

(
∂S
∂V

)
T,N

dV +

(
∂S
∂N

)
T,V

dN

and plugging it back in the previous formula

dU = T

[(
∂S
∂T

)
V,N

dT +

(
∂S
∂V

)
T,N

dV +

(
∂S
∂T

)
T,V

dN

]
−PdV +μdN.

For constant T , N we get

(
∂U
∂V

)
T,N

=

[
T
(
∂S
∂V

)
T,N

−P

]
.

The Sackur-Tetrode entropy is a function ofU , V , N

S(U,V,N) = Nk

{
5

2
− ln

[(
3π h̄2

m

)3/2
N
5
2

VU
3
2

]}
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but, substituting the energy of a free gas (U = 3
2NkT ) we get

S(T,V,N) = Nk

{
5

2
+ ln

[(
mkT
2π h̄2

) 3
2 V
N

]}
.

We can now explicitly compute
(

∂S
∂V

)
T,N

T
(
∂S
∂V

)
T,N

=
NkT
V

= P

where we used the equation of state of an ideal gas PV = NkT . Combining now the
above expressions we find that

(
∂U
∂V

)
T,N

=

[
T
(
∂S
∂V

)
T,N

−P

]
= [P−P] = 0.

This is the expected result for the classical gas since, in this case, the internal energy

is not a function of the volume V . We must now repeat the previous computation in
the quantum case

S= kT
(
∂ lnQ
∂T

)
V,z

−Nk lnz+ k lnQ

where Q(T,V,z) is the grand canonical partition function and z the fugacity. We
furthermore remember that for a quantum gas

PV
kT

= lnQ =
gsV
λ 3

φ5/2(z)

N
V

= gs
φ3/2(z)
λ 3

are valid. In the above expressions, gs is the spin degeneracy, φ = f ,g are the Fermi-
Dirac and Bose-Einstein functions respectively, and λ = h/

√
2πmkT is the thermal

length scale. The above equations are valid for temperatures above the point of the

Bose-Einstein condensation, otherwise we must add toN a contribution representing
the condensed phase. Finding S is now simple

S=
5

2

gskVφ5/2(z)
λ 3

−Nk lnz= S1(T,V,z)+S2(z,N)

where we have defined S1(T,V,z) = 5
2

gskVφ5/2(z)
λ 3 and S2(z,N) = −Nk lnz. It is easy

to compare this result with the classical result: in this limit φn(z)≈ z and using

N
V

= gs
φ3/2(z)
λ 3

≈ gsz
λ 3
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we eliminate z from S giving the result

S=
5

2

gskVφ5/2(z)
λ 3

−Nk lnz≈ 5

2

gskVz
λ 3

−Nk lnz=
5

2
Nk−Nk lnz=

5

2
Nk+Nk ln

(
gs
λ 3

V
N

)
= Nk

{
5

2
+ ln

[
gs

(
mkT
2π h̄2

) 3
2 V
N

]}
.

The only difference lies in the spin degeneracy term. If we repeat the classical com-

putation including gs the two results are identical. Let us then start by evaluating(
∂S
∂V

)
T,N

=

(
∂S1
∂V

)
T,N

+

(
∂S2
∂V

)
T,N

where we separated the contribution of S1 and S2. The entropy S1 is a function of
T,V,z, while in

(
∂U
∂V

)
T,N

we must compute the entropy at constant T , N. We then

need results at constant z and not at constantN. Using the formalism of the Jacobians
we find

(
∂S1
∂V

)
T,N

=
∂ (S1,N)
∂ (V,N)

∣∣∣∣
T
=

∂ (S1,N)
∂ (V,z)
∂ (V,N)
∂ (V,z)

∣∣∣∣∣
T

=

(
∂S1
∂V

)
T,z

(
∂N
∂ z

)
T,V

−
(
∂S1
∂ z

)
T,V

(
∂N
∂V

)
T,z(

∂N
∂ z

)
T,V

=

(
∂S1
∂V

)
T,z

−
(
∂S1
∂ z

)
T,V

(
∂N
∂V

)
T,z

(
∂ z
∂N

)
T,V

=

(
∂S1
∂V

)
T,z

+

(
∂S1
∂ z

)
T,V

(
∂ z
∂V

)
T,N

where we used (
∂N
∂V

)
T,z

(
∂ z
∂N

)
T,V

(
∂V
∂ z

)
T,N

=−1.

The derivatives of S1 with respect to V and z are easy to compute(
∂S1
∂V

)
T,z

=
5

2

gskφ5/2(z)
λ 3

(
∂S1
∂ z

)
T,V

=
5

2

gskV
λ 3

dφ5/2(z)
dz

=
5

2

kgsVφ3/2(z)
zλ 3

remembering that
dφn(z)
dz

=
φn−1(z)

z
.
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Only the derivative of zwith respect toV needs a little care. In fact , gsφ3/2(z)= λ 3N
V ,

from which we get (∂φ3/2(z)
∂V

)
T,N

=− λ 3N
gsV 2

=−φ3/2(z)
V

and (
∂ z
∂V

)
T,N

=

(∂φ3/2(z)
∂V

)
T,N

(
dz

dφ3/2(z)

)
=− zφ3/2(z)

Vφ1/2(z)
.

The final result for
(
∂S1
∂V

)
T,N

is(
∂S1
∂V

)
T,N

=
5

2

gskφ5/2(z)
λ 3

− 5

2

kgsφ 23/2(z)
λ 3φ1/2(z)

.

The entropy S2(z,N) is a function of z and N and we get(
∂S2
∂V

)
T,N

=−Nk
z

(
∂ z
∂V

)
T,N

=
Nk
V

φ3/2(z)
φ1/2(z)

.

All these results together give

T
(
∂S
∂V

)
T,N

=T
(
∂S1
∂V

)
T,N

+T
(
∂S2
∂V

)
T,N

=

5

2

gskTφ5/2(z)
λ 3

− 5

2

kTgsφ 23/2(z)
λ 3φ1/2(z)

+
NkT
V

φ3/2(z)
φ1/2(z)

and, reporting in terms of z and the pressure P, we get

T
(
∂S
∂V

)
T,N

=

[
5

2
− 3

2

φ 23/2(z)
φ5/2(z)φ1/2(z)

]
P

where we have used

P=
gskTφ5/2(z)

λ 3
.

The final result is

(
∂U
∂V

)
T,N

=

[
T
(
∂S
∂V

)
T,N

−P

]
=
3

2

[
1−

φ 23/2(z)
φ5/2(z)φ1/2(z)

]
P.

In the classical limit φn(z)≈ z and(
∂U
∂V

)
T,N

=
3

2

[
1−

φ 23/2(z)
φ5/2(z)φ1/2(z)

]
P≈ 3

2

[
1− z2

z2

]
P= 0.
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