


Statistical Physics for Cosmic Structures



A. Gabrielli F. Sylos Labini
M. Joyce L. Pietronero

Statistical Physics
for Cosmic Structures

With 119 Figures

123



Dr. Andrea Gabrielli
Statistical Mechanics and Complexity Center -
INFM
c/o Dipartimento di Fisica
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Preface

This book has its roots in a series of collaborations in the last decade at
the interface between statistical physics and cosmology. The specific problem
which initiated this research was the study of the clustering properties of
galaxies as revealed by large redshift surveys, a context in which concepts
of modern statistical physics (e.g. scale-invariance, fractality..) find ready
application. In recent years we have considerably broadened the range of
problems in cosmology which we have addressed, treating in particular more
theoretical issues about the statistical properties of standard cosmological
models. What is common to all this research, however, is that it is informed
by a perspective and methodology which is that of statistical physics. We can
say that, beyond its specific scientific content, this book has an underlying
thesis: such interdisciplinary research is an exciting playground for statistical
physics, and one which can bring new and useful insights into cosmology.
The book does not represent a final point, but in our view, a marker in the
development of this kind of research, which we believe can go very much
further in the future. Indeed as we complete this book, new developments
- which unfortunately we have not been able to include here - have been
made on some of the themes described here. Our focus in this book is on
the problem of structure in cosmology. Our aim is to elucidate what the
principal concepts of modern statistical physics are in this context, and then
to illustrate their application to specific aspects of this problem.

At the outset we wish to acknowledge our debt to the numerous colleagues
and friends - both statistical physicists and cosmologists - with whom parts
of the work presented here have been done. We hope we have given the proper
credit to each of them by citing the relevant papers at the appropriate points
throughout the book. The responsibility for what is written here is, however,
entirely ours.

We acknowledge in particular the contribution of Marco Montuori, with
whom we have collaborated extensively on the analysis of galaxy clustering
data. On this subject we have also benefitted from collaboration with Hél`´ ene
di Nella-Courtois. Ruth Durrer has been involved in several projects which
have provided the basis for the presentation given here: on the problems of
biasing and of angular projection of fractals. She has also contributed to our
work on the statistical properties of density fields in standard cosmological
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models through many very useful discussions. We thank Thierry Baertschiger
for collaboration on the problem of gravitational clustering and related issues
which has stimulated the work on discretisation and initial conditions which
we describe in Chap. 7. We are especially indebted to him for the many sim-
ulations his has kindly provided us: most of the numerical results presented
are based on his computer codes. Bruno Marcos has kindly provided us with
some recent results on superhomogeneous distributions, a subject on which
we have benefitted from collaboration with him.

We thank Yuri V. Baryshev and Pekka Teerikorpi for the the many studies
performed together on galaxy structures, and for many stimulating discus-
sions over the years. Georges Paturel has been for many years our advisor on
problems related to the studies of galaxy samples.

We have had the pleasure to work on several issues presented here in
collaboration with Philip W. Anderson, Jean-Pierre Eckmann, Bernard Jan-
covici and Joel L. Lebowitz.

We also thank for discussions, comments and suggestions: Luca Amen-
dola, Daniel Amit, Tibor Antal, Robin Ball, Maurizio Bottaccio, Paul Cole-
man, Marc Davis, Paolo De Bernardis, George Djorgovski, Roberto Capuzzo-
Dolcetta, Hector de Vega, Daniel Eiseinstein, Pedro G. Ferreira, Petar V.
Grujic, Leo Kadanoff, David Hogg, Dominique Levesque, Benoit Mandel-
brot, Adrian Melott, Miguel A. Muñoz, Giorgio Parisi, Jim P.E. Peebles,˜
Daniel Pfenniger, Itamar Procaccia, Zoltan Rácz, Norma Sanchez, Bernard´
Sapoval, William C. Saslaw, Daniele Steer, Ann Pier Siebesma, Salvatore
Torquato, Jean-Philippe Uzan, Filippo Vernizzi, Alessandro Vespignani and
Pascal Viot. Finally we acknowledge suggestions and comments from Adolfo
Paolo Masucci, Thierry Sousbi and Nickolay Vasilyev.

The institutions which have provided financial support for our research,
and which we thank, are: the European Community (TMR network “Fractal
structures and self-organization” ERB4061PL970910 and Marie-Curie Fel-
lowship HPMF-CT-2001-01443), the “Istituto Nazionale di Fisica della Ma-
teria” (INFM, Sezione di Roma 1), the “Centro Studi e Ricerche Enrico
Fermi” (Rome, Italy), the Swiss National Science Foundation (Bourse pour
chercheurs avances no. 8220-64668), the Physics Department of the Univer-´
sity of Rome “La Sapienza”, the Department of Theoretical Physics of the
University of Geneva (Geneva, Switzerland), the Laboratoire de Physique
Theorique at the University of Paris XI (Orsay, France), the Laboratoire de´
Physique Nucleaire et de Hautes Energies at the University of Paris VI (Paris,´
France) and the Observatory of Paris (Lerma) (Paris, France).

Rome (Italy) Andrea Gabrielli
Rome (Italy) Francesco Sylos Labini
September 2004 Michael Joyce

Luciano Pietronero
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1 Introduction

“When inhomogeneties are considered (if at all) they are treated as unimpor-
tant fluctuations amenable to first order variational treatment. Mathematical
complexity is certainly an understandable justification, and economy or sim-
plicity of hypotheses is a valid principle of scientific methodology: but sub-
mission of all assumptions to the test of empirical evidence is an even more
compelling law of science.” Gerard de Vaucouleurs (1970)

1.1 Motivations and Purpose of the Book

Cosmology is the attempt to build a coherent physical theory to explain the
many and diverse observations of the universe at the largest scales. Statistical
physics is concerned with the understanding of systems with many degrees of
freedom. Clearly the second should therefore have much to say about and to
contribute to the former. And indeed it does. Cosmology has, in particular
in the development of its formalism since the 1970s, borrowed tools from
statistical physics. The mathematical language used to describe correlations
in galaxy catalogs, for example, was imported from the theory of liquids.
Direct exchange or even collaboration between people in the two communities
has, however, been rare. Cosmology has thus tended to seek instruments when
necessary from statistical physics, but has not been very much in contact
with or influenced by the many developments which have taken place in
statistical physics in the last decades. Statistical physics too – which has
not hesitated to apply its methods to many other fields even outside physics
(e.g. biology, geology, economics) – has been relatively shy with respect to
cosmology, despite the fact that this has become one of the most vibrant and
exciting fields in contemporary science. This book has come out of a series of
collaborations between researchers from both communities, collaborating on
a range of problems in cosmology approached with insights or methodologies
coming from statistical physics.

The primary aim of this book is to present in a systematic manner some of
the principal instruments used in modern statistical physics to describe and
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understand stochastic structure in different signals, and then to illustrate
their use in their application to various problems in cosmology. Its intended
audience is the large one of both cosmologists and statistical physicists in-
terested in cosmology, at the graduate or research level. For cosmologists we
hope that the first part of book can serve as a clear and accessible presen-
tation of methods and concepts of statistical physics for the description of
structures. The second part should then allow them to see the usefulness
of these methods and concepts when applied to problems in cosmology. For
statistical physicists the first part of the book should be a useful summary
of material with which they will in large part be familiar, but treated and
presented in a way which foreshadows the problems to which they are ap-
plied in the second part of the book. In this second part we have attempted to
make the presentation of the cosmological problems treated such that they are
for the most part accessible to statistical physicists. We emphasize, however,
that the book is not intended to be or to substitute a textbook of cosmology.
For readers without any background in cosmology, this second part would ide-
ally be complemented with the reading of parts of the many texts available
on structure formation in cosmology (e.g. [170, 179, 185, 208]).

In this introduction we give first a little bit of background on developments
in statistical physics in the last decades relevant to the problem of structures
in cosmology. This is intended primarily to help to give to cosmologists a first
impression of why statistical physicists have a different perspective on such
problems. We then give a brief summary of the organization and content of
the book, in two sections paralleling its structure: we treat first the appro-
priate methods of statistical physics, and then some of their applications in
cosmology.

1.2 Structures in Statistical Physics: A New Perspective

“More is different”: This epochal paper of 1972 by Phil Anderson [4] has set
the paradigm for what has now evolved into the science of complexity. The
idea that “reality has a hierarchical structure in which at each stage entirely
new laws, concepts, and generalizations are necessary, requiring inspiration
and creativity to just as great a degree as in the previous one” has set a
new perspective in our view of many natural phenomena. The reductionist
view focuses on the elementary bricks of which matter is made, but then
these bricks are put together in marvelous structures with highly elaborated
architectures. Complexity is the study of those architectures which depend
only in part on the nature of the bricks, but also have their fundamental
laws and properties which cannot be deduced from the knowledge of the
elementary bricks.

It has been realized that, in the physical sciences, the geometric complex-
ity of structures very often corresponds to fractal or multifractal properties
[150, 151]. It is not clear whether this is a unique and complete description
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of complexity, or simply the only framework which has been found for this
purpose. In the study of dynamical processes which can give rise to complex
geometrical structures, we have as basic concepts: chaos, fractals, avalanche
dynamics, and 1/f noise (see [188] for an overview of the state-of-the-art in
the field). Often complex structures arise from processes which are strongly
out of equilibrium and dissipative. There is a broad field, however, which is
in between equilibrium and non-equilibrium phenomena. This is the field of
glasses and spin glasses which leads to highly complex energy landscapes and
to the concept of frustrated configurations. Another important field in which
this set of new concepts can also be applied is that of biological adaptation
via evolution which is characterized by a degree of self-organization and a
critical balance between periods of smooth evolution and dramatic changes
resulting in bursts of extinctions.

A fundamental notion in this context is that of irregularity, one which is
completely new to physics. Let us explain with a simple example why this
notion is so fundamental and important: it requires, in particular, a whole new
mathematical language which supersedes that usually employed in physics.

In Fig. 1.1 we show examples of regular and irregular structures. In the top
left we have a distribution of points characterized by a small scale granularity
which turns, at larger scales, into a well defined background density with a
specific structure corresponding to an over-density around the center. One
can also represent such a structure by defining a density profile along a line
passing through the center as shown in the top right panel. This profile can
be well approximated by a smooth (analytical) function, which in this case
is a constant plus a Gaussian. If we consider the dynamical evolution of
such a structure including the specific interactions between its constituent
points, usually we can write differential equations for the smooth function
of the density profile. The structure is thus essentially represented by the
three elements: position, size and intensity (amplitude). The typical result of
this study is to understand whether the structure moves, if it becomes more
or less extended or more or less intense. This is the traditional approach
to the study of structures based on the implicit assumption of regularity or
analyticity which has been the one adopted in statistical physics before the
advent of critical phenomena in the seventies [3, 148].

The bottom left panel of Fig. 1.1 shows instead a strongly irregular dis-
tribution. In this case it is not possible to recognize any positive background
density, there are structures in many zones and at various scales, hierarchi-
cally organized in such a way that it is not possible to assign them a unique
characteristic size or intensity. This situation is also illustrated by the density
profile (bottom right) which is highly irregular at all scales. All the previ-
ous “regular fluid-like” concepts and theoretical methods loose their meaning
and, in order to give a proper characterization of the properties of this system,
one has to look at it from a new perspective. This highly irregular density
field, which is in this case of a stochastic multifractal, has its “regularity” in
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Example of regular and irregular structures in mass distributions. Top
panels: (left) A cluster in a homogeneous distribution. Right: Density profile. In
this case the fluctuation corresponds to an enhancement of a factor 3 with respect
to the average density. Bottom panels: (left) Multifractal distribution in the two
dimensional Euclidean space. Right: Density profile. In this case the fluctuations
are strongly irregular at all scales and there is no reference value, i.e. the average
density. The average conditional density scales as a power law from any occupied
point of the structure. (From [223])

scale transformations. This naturally leads to power-law density-density cor-
relations mainly characterized by typical exponents: the fractal dimensions.
Also from a theoretical point of view, the understanding of the origin of the
irregular or fractal properties cannot arise from the traditional approach with
differential equations but it requires new methods, e.g. scaling theories and
the renormalization group (RG) [79, 80, 151].

Most of theoretical physics is based on analytical functions and differential
equations for average values of the studied field. This implies that structures
should essentially be smooth, and irregularities are treated as small fluc-
tuations or isolated singularities. On the other hand, the study of critical
phenomena and the development of the RG theory in the seventies was a
major breakthrough [3, 245]. There one observes and describes phenomena
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in which intrinsic self-similar irregularities develop at all scales and fluctua-
tions cannot be described in terms of sufficiently localized regular functions.
The theoretical methods to describe this situation cannot be based on or-
dinary differential equations, in real or Fourier space, of the main physical
fields as self-similar and strong fluctuations up to the largest scale of the
field implies the absence of regularity everywhere and the usual “old” math-
ematical physics becomes redundant. The RG provides a new space – that
of scale transformations – in which the problem again becomes analytical.
These characteristics might seem to be specific only to thermodynamic criti-
cal phenomena, corresponding to a “critical” competition between order and
disorder. However, in the past years, the development of fractal geometry
has allowed us to realize that a larger variety of structures in nature are
intrinsically irregular and self-similar [151]. Mathematically speaking these
structures are described as singular in every point. This property can now
be characterized in a quantitative mathematical way by using the concept
of fractal dimension and other concepts developed in this field. However the
construction of a theory to explain the physical origin of these structures
is a very challenging task, which is still only in its infancy. This is actu-
ally the objective of much of the present activity in the field (see e.g. [79]).
The main difference between “popular” fractals like coast-lines, mountains,
clouds, lightnings etc., and the self-similarity of critical phenomena, is that
criticality at phase transitions occurs only when there is an extremely accu-
rate fine tuning of the relevant critical parameters (e.g. temperature, external
fields, etc.). In the more familiar structures observed in nature, instead, the
fractal properties are often self-organized, developing spontaneously out of
some dynamical process. It is probably in view of this important difference
that the two fields of critical phenomena and fractal geometry have proceeded
somewhat independently.

The fact that we are traditionally accustomed to think in terms of smooth
or analytical structures has a crucial effect on the type of questions we ask
and on the methods we use to answer them. If one has never been exposed
to the subtlety of strongly irregular and fractal-like structures, it is natural
that the hypothesis of regularity of fluctuations is not even questioned. It is
only after the above developments that we can realize that the property of
regularity of structures can be tested experimentally and that it may, or may
not, be present in a given physical system.

The physics of scale-invariant and complex systems is now a growing field
which treats problems from several disciplines ranging from condensed matter
physics to geology, biology, astrophysics and even economics [80, 240]. This
broad interdisciplinarity has been possible because these new ideas allow us
to look at many complex natural phenomena in a radically new and original
way, with unifying concepts which are independent of the details of the system
considered. The objective of this new approach is the study of complex, scale-
invariant structures, appearing both in space and time in a wide variety of
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natural phenomena, and new types of collective behaviors, the comprehension
of which is one of the most challenging problems in modern statistical physics.
Research in this field involves a cooperative effort of numerical simulations,
analytical and experimental work, which can be characterized by the following
three levels:

• (i) Mathematical or Geometrical Level

This consists in applying the methods of fractal geometry, introduced and
developed by Mandelbrot [150, 151], into new areas where strongly irregular
structures appear at least up to a certain scale, in order to get new insights
into important unresolved problems about the properties of these structures.
It is an approach which brings into the realm of scientific investigation many
phenomena characterized by intrinsic strong irregularities on sufficiently large
spatial or temporal windows, which have been previously neglected because
of the lack of an appropriate framework for their mathematical description.

• (ii) Development of Physical Models: The Active Principles for the Gener-
ation of Fractal Structures

Computer simulations represent an essential tool in the physics of com-
plex and scale-invariant systems. A large number of models have been in-
troduced to focus on specific mechanisms which can lead spontaneously to
fractal structures. Here we list some of them which give, we believe, the ac-
tive principles for certain processes which generate highly irregular structures
characterized by scale-invariant properties based on physical dynamics1: dif-
fusion limited aggregation (1983), dielectric breakdown model (1984). These
models are the prototype of fractals in which an iteration process based on
the Laplace equation leads spontaneously to very complex structures like that
shown in Fig. 1.2. Further examples are cluster-cluster aggregation (1983),
invasion percolation (1983) and the sandpile model (1987). The concept of
self-organization is common to all these models, but it has been especially
emphasized in relation to the sandpile model. Finally we mention the Kardar-
Parisi-Zhang model of surface growth (1986) and the Bak-Sneppen model
(1993) of biological evolution.

Going beyond these simplified models it is known, for example, that
the vortexes and velocity fields generated in fluid turbulence (as described
by Navier-Stokes equations) have multi-fractal properties (see e.g. [171]).
Whether gravitational dynamics may generate fractal clustering from ap-
propriate non-fractal initial conditions is still an open question.

• (iii) Development of Theoretical Understanding

In a phenomenological approach to these complex systems, scaling theory,
following its application in critical phenomena, has been successfully used.
1 In [80] one can find many papers on these models. In parentheses we show the

year of publication of each model.
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Fig. 1.2. A dielectric breakdown model in cylindrical geometry, which is an example
of a highly complex structure arising from a simple growth model in which the
growth probability is proportional to the local electric field [79]. The zebra stripes
around the structure represent equi-potential lines. (Elaboration and photo by B.B.
Mandelbrot and C.J.G. Evertsz.)

This is essential for the rationalization of the results of computer simulations
and experiments. This method allows us to identify the relations between
different properties and to focus on the essential ones. From the point of
view of the formulation of microscopic fundamental theories the situation is
still in evolution. These systems are far from equilibrium and their dynamics
is intrinsically irreversible. There does not seem to be a generalization of the
notion of ergodicity in equilibrium statistical mechanics, and the temporal
dynamics has to be explicitly considered in the theory. These, together with
the concept of self-organization (in reference to criticality), represent the
main new elements for the formulation of possible microscopic theories.
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1.3 Structures in Statistical Physics: The Methods

In the first part of this book we aim to give a systematic overview of the
principal tools used to describe structures in contemporary statistical physics.
This subject is naturally divided into two parts: one which treats spatial mass
distributions in which there are fluctuations about a well defined non-zero
mean value, and another which treats distributions which are of the kind we
have called intrinsically irregular. We devote two chapters to each of them.

Uniform Correlated Distributions

In Chap. 2 we describe systematically the framework which is used in statis-
tical physics to describe systems with small amplitude fluctuations about a
mean value e.g. density fluctuations in an ordinary fluid or charge fluctuations
in a plasma. We refer to such systems as “uniform” because the fluctuating
quantities possess a well-defined non-zero mean value. We will use this term
interchangeably with “homogeneous”, with the caveat that it should not be
confused with the (weaker) property of statistical homogeneity. This frame-
work is precisely the one which has been adopted widely in cosmology to
describe structures. Its primary instruments are the reduced two-point cor-
relation function ξ(r) and the power spectrum P (k). In our presentation we
place emphasis on the physical meaning and mathematical definitions of two
characteristic scales which are of primary importance in such distributions:
the homogeneity scale and the correlation length. We focus on these concepts
since there is often confusion concerning them in the cosmological literature.
The origin of this confusion is that the term “correlation length” has been
used sometimes in cosmology to refer to the scale which in fact corresponds
to that characterizing homogeneity (or uniformity). We now briefly discuss
this point.

In statistical physics the correlation length is defined as the distance up to
which the spatial memory (i.e. spatial correlation) of local fluctuations per-
sists, independently of their amplitude. In equilibrium statistical mechanics
this is equivalent to the length scale up to which the effect of a small local
perturbation is felt in the system considered. This is due to the fluctuation-
dissipation theorem [148] which links the response of the system to a local
perturbation and the large scale behavior of the two-point correlation func-
tion. There is no unique definition of the correlation length, but all definitions
give a length which diverges for a correlation function which is non-integrable.
For an exponentially decaying correlation function ξ(r) = Ae−r/rc , the corre-
lation length is simply the scale rc characteristic of the decay. For a sufficiently
“slow” power-law i.e. ξ(r) ∼ r−α, with α smaller than the spatial dimension,
the correlation length is infinite. The former would be typical of a system of
particles at equilibrium interacting through short-range forces (e.g. a gas at
high temperature), while the latter is distinctive of the behavior of fluctua-
tions in critical phenomena. In cosmology, on the other hand, a length scale,
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usually denoted r0 and widely used, is very often referred to as the “corre-
lation length”. This scale is, however, defined by the condition ξ(r0) = 1 i.e.
through the amplitude of ξ(r). This is not in line with the statistical physics
use of the term which we have just described. For instance, following this def-
inition, ξ(r) = Ae−r/rc and ξ(r) = (rc lnA)/r have both r0 = rc lnA, which
varies monotonically with the amplitude A. The “statistical physics” corre-
lation length, however, as just described above, is equal to rc in the former
case, and diverges in the latter case (in any dimension). Therefore this “cos-
mological” correlation length has a completely different physical meaning, as
the amplitude of ξ(r) is related to the local relative amplitude of the fluctu-
ations with respect to the average density, and cannot say anything about
the large scale behavior of the integrated fluctuations. The length r0 can be
in fact simply a measure of the (completely distinct) homogeneity scale, i.e.
a scale at which the fluctuations become of small amplitude with respect to
the average density.

In Chap. 3 we discuss the power spectrum P (k), which, for statistically
homogeneous processes, is simply the Fourier transform of ξ(r). We then give
a simple classification (into three classes) of correlated stochastic fluctuations
in uniform distributions, in terms of the behavior of P (k) as k tends to zero.
The classification divides systems according to the large scale behavior of
integrated fluctuations. A first class, for which 0 < P (0) < ∞, are those
systems which have behavior at large scales like that in a Poisson system, i.e.
with a variance of integrated fluctuations proportional to the volume of the
region. We refer to them therefore as “Poisson” or “substantially Poisson”.
The two other classes are characterized by how their integrated fluctuations
behave with respect to this case: For P (0) = ∞ they grow more rapidly as
a function of scale and we refer to them as “super-Poisson”. In this class
are all systems with an infinite correlation length, as the non-integrability of
ξ(r) corresponds to the divergence of P (k) as k tends to zero. Finally there
is a third class, with P (0) = 0, which have integrated fluctuations growing
less rapidly as a function of scale than in a Poisson distribution. For this
reason – they have fluctuations which are suppressed compared to those in a
completely uncorrelated distribution of points – we refer to them as “super-
homogeneous”.

We examine this last class in some detail as it is to it that the “primordial”
(i.e. very early time) fluctuations in standard cosmological models belong2.

2 We note that in this context there is another term which is used in cosmology with
a sense very different from its original usage in statistical physics: the canonical
“primordial” spectrum is referred to usually as the “scale-invariant” spectrum.
This has nothing to do with the notion as used in statistical physics, where
this refers to the invariance under scale transformations of a given system or of
its fluctuations. In cosmology, as discussed further in Chap. 6, the term “scale-
invariant” used in this context refers to a property of this particular spectrum:
the amplitude of the fluctuations it defines remains invariant as the “horizon
scale” increases.
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Their characteristic sub-Poisson integrated fluctuations represent a very non-
trivial property. It requires that there be a fine-tuned balance between corre-
lation and anti-correlation in the distribution (so that ξ(r) integrates to zero).
We note and discuss in some detail a relevant and interesting result about the
behavior of the variance of the mass fluctuations integrated in a volume: there
is in fact a lower limit to its growth, corresponding to a growth proportional
to the surface of the volume (compared to the volume itself in the Poisson
case). To illustrate these properties we consider various simple examples: a
regular lattice, or a “shuffled” lattice (which is obtained by randomly displac-
ing each particle of a lattice). A more physical example, which we describe is
the so called “one-component plasma” (OCP), which is simply a set of iden-
tical point charges interacting by the Coulomb force, embedded in a uniform
oppositely charged background giving overall charge neutrality. At thermal
equilibrium the distribution of the discrete charges is super-homogeneous at
scales much larger than the Debye length characterizing the screening of the
electric field.

Intrinsically Irregular Structures (Fractals and Multifractals)

In the following two chapters we describe the framework of fractal geometry
which has, as we have described above, become the instrument which has
allowed statistical physics to extend its analysis to a whole new class of sys-
tems: intrinsically irregular structures, i.e. systems which are never uniform
in the sense used above. A fractal mass distribution (Chap. 4) is, in a simple
sense, the most correlated of correlated systems: its average density is zero
in the infinite volume limit [223], but the conditional average density 〈n(r)〉p
(i.e. the average mass density in a small shell at a distance r from an occupied
point), decays to zero as a slow power-law r−γ , with 0 < γ ≤ d (the fractal
dimension of the mass distribution being defined as D = d−γ, where d is the
spatial dimension). This means that the fluctuation field, which coincides now
with the full density field, is highly irregular at all scales and is intrinsically
scale-invariant (see Chaps. 4–5). For this reason a fractal is not a uniform
distribution (i.e. is non-homogeneous) at any scale, and the concept of aver-
age density in a finite sample centered on an occupied point has no intrinsic
meaning because it depends on the sample size. There is a close link between
fractals and critical systems: if we take a liquid-gas co-existence phase at the
critical point and define a new density field as the subset of over-densities we
obtain a fractal mass distribution. Since the asymptotic average density of a
fractal distribution is zero, the functions ξ(r) and P (k), which are the basic
statistical quantities characterizing the fluctuations of stochastic uniform dis-
tributions, are not well defined in the infinite volume limit and are strongly
sample dependent if estimated in a finite sample. One has necessarily to work
in this case with conditional statistics (i.e. conditional on the presence of a
point of the system at the origin of coordinates). For the two-point proper-
ties, for example, one uses usually the conditional density 〈n(r)〉p mentioned
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above. In Chap. 4 we introduce the principal concepts for simple fractal mass
distributions defined by an infinite set of identical elements characterized, as
described, by strong and scale invariant irregularities at all distances, with
a conditional density decaying to zero as a slow power law. In particular
we focus on those spatial distributions of identical particles characterized by
these features, as this is the most interesting case for the study in cosmology
of the spatial distribution of objects such as galaxies. A complete two-point
description of fractal mass distributions is given by characterizing the sta-
tistical behavior of two-point correlations through the conditional density
and the fractal dimension, both describing the behavior of the mass distri-
bution under a scale transformation or a coarse-graining. For what concerns
the three-point statistical properties we discuss the typical behavior of the
conditional mass variance by introducing the concept of lacunarity, the void
distribution, the correction to scaling and log− log fluctuations. Further we
discuss other important aspects of fractals potentially useful for cosmological
applications, such as the problems of intersection between fractals and the
effects of an orthogonal or an angular projection of the system. All these
aspects are illustrated with both deterministic and stochastic examples.

In Chap. 5 we consider a wider class of strongly irregular distributions by
extending the previous concepts to measure theory. This permits a deep char-
acterization of irregular distributions of objects (e.g. point-particles) charac-
terized by a hierarchy of measures (e.g. masses). For these more complex
irregular mass distributions, a continuous spectra of fractal dimensions is
introduced in order to describe the scaling behavior under coarse graining
and scale transformations of the different objects characterized by different
measures. Also in this case we illustrate the complex concept of multifrac-
tality through the direct presentation of both deterministic and stochastic
paradigmatic examples and models.

1.4 Applications to Cosmology

In the second part of the book we describe various aspects of the puzzle of
cosmic structures, with the perspective of the mathematical and conceptual
framework of the first part.

Cosmological Models: The Super-Homogeneous Universe

We start with a discussion of the statistical properties of the theoretical
models now used by most cosmologists to describe the universe: so-called
“standard cold dark matter” (CDM) and its variants. In these models fluc-
tuations are described with the framework described in Chaps. 2 and 3, i.e.
small fluctuations about a well defined mean density. We focus in particu-
lar on the initial conditions for such models (i.e. very early in the history
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of the universe), specified by the so-called Harrison-Zeldovich power spec-
trum, examining their properties in real space. It is here that the concept
of “super-homogeneity” introduced in Chap. 3 is relevant, as these models
describe fluctuations which are in fact of this type. We discuss the ways in
which this is manifest in the real space correlation properties. Standard type
models are thus characterized by surface quadratic fluctuations (of the mass
in spheres) and, for the particular form of primordial cosmological spectra, by
a negative power-law in the reduced correlation function at large separations
(ξ(r) ∼ −1/r4). This real space view of these models is complementary to
that usually given, which privileges the k-space description. We also briefly
consider, in a similar spirit, the so-called “acoustic oscillations” observed
in the fluctuations of the cosmic microwave background radiation (CMBR),
identifying what they correspond to in real (i.e. angular) space correlations.

Primordial Fluctuations and Models in Statistical Mechanics

Chapter 7 follows on from the previous one: we consider here the generation
of particle distributions with the very specific properties we have discussed.
This is a problem which is of both heuristic and practical interest, because
the numerical simulations of formation of structures by gravity (cosmologi-
cal N-body simulations) require the generation of distributions of particles
which represent the continuous density field at the initial time. We first de-
fine the sense in which a particle distribution may be considered to be a
discretization of the continuous field, and then describe two approaches to
this problem. The first involves finding a microscopic thermodynamic system
which at thermal equilibrium gives rise to the desired correlation properties.
We describe how such a system can be obtained through a modification of
the OCP (Chap. 2). Secondly we analyze in a very general way the effect
of superimposing a stochastic displacement field on a point particles distri-
bution with given correlation properties. This includes the standard method
used in cosmological N-body simulations to generate initial conditions, which
involves imposing displacements on a simple lattice. We obtain the approxi-
mate relation used in this context as a special case, but we are able as well
to specify the full correlation properties described by these initial conditions.

Analysis of Galaxy Clustering Without the Assumption
of Homogeneity

We next turn to the question which first stimulated the interest of the sta-
tistical physicists among us in cosmology: the correlation properties of the
observed distribution of galaxies and galaxy clusters. It is here that the per-
spective of a statistical physicist, exposed to the developments of the last
decades in the description of intrinsically irregular structures, is radically dif-
ferent from that of a cosmologist for whom the study of fluctuations means
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the study of small fluctuations about a positive mean density. And it is here
therefore that the instruments used to describe strong irregularity, even if
limited to a finite range of scales, described in Chaps. 4 and 5, offer a wider
framework in which to approach the problem of how to characterize the cor-
relations in galaxy distributions.

Analyzing galaxy distributions in this wider context means treating these
systems without the a priori assumption of homogeneity, i.e. without the
assumption that the finite sample considered gives, to a sufficiently good ap-
proximation, the true (non-zero) mean density of the underlying distribution
of galaxies. While this is a simple and evident step for a statistical physicist,
it can seem to be a radical one for a cosmologist. After all the whole theoret-
ical framework of cosmology (i.e. the Friedmann-Robertson-Walker (FRW)
solutions of general relativity) is built on the assumption of an homogeneous
and isotropic distribution of matter. Our approach is an empirical one, which
surely is appropriate when faced with the characterization of data. Further
it is evidently important for the formulation of theoretical explanations to
understand and characterize the data correctly. Let us, however, note briefly
two common theoretical objections to this approach. One is that fractals are
incompatible with what is called the “cosmological principle”, by which it
is meant that there is no privileged point or direction in the universe. This
is a simple misconception about fractals. These irregular distributions are
in keeping with this principle in exactly the same way as inhomogeneities
treated in the standard framework of perturbed FRW models, i.e. they can
be considered statistically stationary and isotropic distributions in space in
the sense that their statistical properties are invariant under translation and
rotation in space. Another common objection is that there is an inconsis-
tency in using the Hubble law, which is used to convert redshift to physical
distance, if one does not assume homogeneity. This objection forgets that
the Hubble law is an established empirical relation, independent of theories
explaining it. Further it can be noted that what we are concerned with is
the distribution of visible matter: given that standard cosmological models
describe a universe whose energy density is completely dominated by several
non-visible components, reconciling the two is not in principle impossible (see
also Appendix E)3.

3 The idea of modeling the universe as a hierarchical structure is an old concept.
In the book by Baryshev and Teerikorpi [18] one may find a comprehensive and
self-contained account of the development of cosmological ideas related to the
concept of fractality. Among the first scientists who considered such ideas was
Charlier [44, 45] who applied the idea of a hierarchical (fractal in modern terms)
distribution in order to explain “Olbers paradox”. More recently de Vaucouleurs
(quoted at the beginning of this chapter) [63] proposed a hierarchical cosmology
to explain galaxy counts: after him Wertz [243] and then Haggerty & Wertz
[104, 105] developed a Newtonian hierarchical model. We refer the interested
reader to [18] and to [17, 103].
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In Chap. 8 we give a brief description of galaxy surveys, focusing in par-
ticular on the essential properties which must be considered if one wishes to
infer information from them about the correlation properties of the under-
lying galaxy distribution. One must take into account the extent to which
they are conditioned by being observed in a particular manner by an ob-
server located in our galaxy. These are known as selection effects. We de-
scribe the construction of so-called “volume-limited” samples which correct
as much as possible for the most important of these effects, and which are
appropriate for use in the statistical analysis which we describe in subsequent
chapters. We then give a brief account of the evolution of observations prob-
ing the distribution of galaxies, describing how structures – superclusters,
walls, voids, filaments – were revealed in the first large three dimensional
surveys which were published in the eighties. These maps revealed struc-
tures at scales much larger than had been suspected from the previous (fairly
isotropic) angular data. The simple visual impression (see Figs. 1.3–1.4) of
such three-dimensional data – apparently showing large fluctuations up to
the sample sizes – gives a strong prima facie case for an analysis which does
not assume that the underlying distribution is uniform (at the scales probed),
but rather encompasses the possibility that it may be intrinsically irregular.
The quantitative results obtained with the usual analysis performed on these
samples, which works with the reduced two-point correlation function ξ(r)
(or equivalently the power spectrum P (k)) and thus builds in the assumption
of homogeneity, give further evidence in this direction. While the correlation
function shows consistently a simple power-law behavior characterized by the
same exponent, there is very considerable variation between samples, with
different depth and luminosity cuts, in the measured amplitude of ξ(r) (and,
correspondingly, in the normalization of the power spectrum P (k)). This vari-
ation in amplitude is usually ascribed a posteriori to an intrinsic difference
in the correlation properties of galaxies of different luminosity (“luminosity
bias”, or “luminosity segregation”). It may, however, have a much simpler
explanation in the context of irregular distributions. In a simple fractal, for
example, the density in a finite sample decreases on average as a function of
sample size; samples of increasingly bright galaxies are in fact generically of
greater mean depth, which corresponds to an increasing amplitude of the cor-
relation function ξ(r) normalized to the “apparent” average density in each
sample.

With this motivation we move on in the following two chapters to de-
scribe in detail the application of simple statistical methods which allow a
characterization of galaxy clustering, irrespective of whether the underlying
galaxy distribution is homogeneous (or uniform in the sense we used it above)
or irregular at the sample size. In Chap. 9 we discuss the use of the average
conditional density 〈n(r)〉p (which measures, as noted above, the mean den-
sity in a shell at distance r from a given point (e.g. a galaxy). We describe
its theoretical (ensemble average) behavior for a wide class of distributions,
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Fig. 1.3. Progress in redshift surveys in the eighties. (a) Maps of the CfA2 redshift
survey (1986): Redshift distances cz are indicated (distances are simply given by
cz/100 Mpc/h) and the thickness in declination is 6 degrees. The small circle has a
diameter of 5Mpc/h, the clustering length according to the standard interpretation
of galaxy correlation. (b) Same region of the sky but in the CfA1 redshift survey
(1983). (c) Angular region of the CfA2 survey from the Zwicky catalog (1970).
(From [59])

simply characterized by the two scales we emphasized in Chap. 2: the homo-
geneity scale λ0 and the correlation length rc. The general form we consider
encompasses both some irregular distributions (simple fractals) and uniform
distributions, in particular those described by standard cosmological models.
We consider the average behavior of an estimator of the conditional density
as a function of the characteristic size of the sample Rs. If Rs � λ0 one can
detect using 〈n(r)〉p the existence and location of the homogeneity scale λ0.
If, on the other hand, Rs � λ0 it allows only the determination of the fractal
exponent characterizing the clustering on these scales.
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Fig. 1.4. Latest progress in redshift surveys. Sloan Great Wall (2003) compared
to CfA2 (1986) Great Wall at the same scale. Redshift distances cz are indicated
(distances are simply given by cz/100 Mpc/h). The small circle at the bottom has a
diameter of 5Mpc/h, the clustering length according to the standard interpretation
of galaxy correlation. The Sloan Digital Sky Survey slice is 4 degrees wide and the
CfA2 slice is 12 degrees wide so that both slices have approximately the same
physical width at the two walls. (Adapted from [101])

In Chap. 10 we discuss how the study of number counts from the ori-
gin (i.e. with respect to the observer in our galaxy) can be used to probe
the nature of the underlying distribution, again considering the same wide
class including both fractal-type distributions and the uniform distributions
typical of cosmological models. These number counts are counts of objects
(usually galaxies or galaxy clusters) in a given angular range on the sky, as
a function either of real distance, or, more usually in the context of cosmol-
ogy, as a function of the measured apparent luminosity of the objects. One
can then consider these counts in different angular regions, and study their
average behavior and variance. The slope of the average count (both for real
space and magnitude counts) gives a direct measure of the fractal dimension
(with homogeneity corresponding to the case that this dimension is three) on
scales relevant for those magnitudes, while the fluctuations about the average
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behavior differs qualitatively between irregular and uniform distributions: for
a simple fractal, it is a simple consequence of its scale-invariance at all scales
that the fluctuations of the counts, normalized to the mean count, are approx-
imately constant as a function of scale. This is also true in magnitude space,
while for any uniform distribution with superimposed correlated stochastic
fluctuations the normalized variance has a decaying behavior in both cases.

In both Chaps. 9 and 10 we consider, having given the methodological
basis for our analysis, the application of these methods to some real data
(surveys of galaxy and galaxy clusters). We do not attempt here to be com-
prehensive in our treatment of this issue, i.e. we do not attempt to present
in a comprehensive manner all the data available to us at the time of writ-
ing, nor to determine very precisely what constraints they put, in particular,
on the scale of homogeneity λ0. Rather we take some representative samples
which give both an illustration of the implementation of the methods we have
outlined, and give an indication of the approximate constraints which can be
obtained from current data. Using the average conditional density 〈n(r)〉p
this leads us to conclude that the galaxy distribution is very well described
as a simple fractal with dimension D ≈ 2 over approximately two orders
of magnitude in scale up to approximately 20 Mpc/h4. From the analysis of
number counts we can constrain the distribution – but more weakly as these
are un-averaged statistics affected by many corrections – from scales slightly
larger than this up to about 100 Mpc/h. A single effective fractal dimension –
albeit slightly larger with D ≈ 2.5 – gives the best single power fit to the
average count. Moreover fluctuations around this average behavior do not
appear to decay rapidly as they would in the case of small scale uniformity
of the distribution. We conclude therefore, that up to this larger scale, there
is no robust evidence for homogeneity, and that future surveys (in particu-
lar, the Sloan Digital Sky Survey (SDSS) which is currently underway) will
place much tighter constraints. We stress however the following important
point. If the homogeneity scale is determined to be finite, the fractal-inspired
analysis remains valid in two respects: (i) it is the unique way to detect the
homogeneity scale itself without a priori assumptions, and (ii) it gives the
right framework to obtain a full geometrical and statistical description of
the strongly clustered region.

It is perhaps useful to clarify briefly two related questions: (i) what we
mean here by “robust”, and (ii) how these constraints compare with those
commonly given in the cosmological literature, as there has been considerable
controversy on this point5. What is widely agreed is that the galaxy distribu-
tion is fractal at small scales, at least up to 10 Mpc/h. So the first limit quoted
above, based on the conditional density, is not particularly controversial.
4 See Chap. 8 for a definition of this unit of length.
5 We refer the reader to the relevant literature e.g. [223, 247], and references

therein, rather than entering into all the details of this controversy here, where
we wish to place the emphasis on methods and not results.
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However there is not agreement on the value of the fractal dimension. It is
usually quoted in the range D = 1.2 − 1.5 rather than the value we have
determined through our analysis. Nor is there agreement about our second
statement that there is no definite evidence for homogeneity at scales sig-
nificantly larger than this. The discrepancy in the estimation of the fractal
dimension has a simple explanation: it comes from a systematic effect which
enters depending on whether the estimation is done with the statistical esti-
mators of ξ(r) or of 〈n(r)〉p (see Sect. 9.3.1 in Chap. 9 for details).

In order to explain the origin of the second (and principal) point of con-
troversy, it is useful to clarify what we mean by the term “robust”, as behind
it lies our determination of the scale up to which one can obtain constraints
from data sets which sample finite regions around us. In order to clarify it,
one must analyze the role of finite size effects which enter when one estimates
the conditional density in such a finite sample6. We consider our results to
be robust up to the scale where we can determine an estimate of error for our
estimator without making assumptions beyond that of statistical isotropy and
stationarity (i.e. of translational and rotational invariance of the statistical
properties) about the nature of the underlying distribution at the scales of
the order of the sample size. In particular, of course, we do not make the
a priori assumption of homogeneity. In practice we explain that this means
that we use only estimates of the conditional average density which use shells
(or spheres) fully enclosed within the sample. Further we obtain our error
estimates from the variance between such estimates in non-overlapping re-
gions. Thus to determine our “robust” results we only use our estimator up
to scales of order of (but smaller than) the radius of the largest sphere that
can be inscribed in the sample about an occupied point.

One can, however, estimate the conditional density using information also
from shells partially enclosed in the volume. This is effectively what is done
in the standard analysis (i.e. that prevalent in the literature on galaxy cor-
relations), where pair-counting algorithms are used to estimate the reduced
two-point correlation function ξ(r), which allows results to be obtained up
to the largest distance between points in the sample. Given that several im-
portant large redshift surveys (e.g. the Las Campanas survey and the 2dF
survey) cover regions which are very narrow angular slices, this corresponds
to a scale, of order of the sample depth, which is very much larger than the
radius of the largest enclosed sphere, which gives an upper limit for estima-
tion using our methods. One can convert estimates of ξ(r) into an estimate
for 〈n(r)〉p, and thus extend our analysis apparently to these larger scales.
The determination of a value of r0 ≈ 5 Mpc/h then corresponds to a flat-
tening of 〈n(r)〉p at a scale of order 10 Mpc/h, and thus one concludes that
there is a clear tendency to homogeneity at this scale. The problem, as we
discuss in Chap. 9, is that, beyond the scale of the largest enclosed sphere,
the estimates are dominated by partially enclosed shells. One can then only
6 In Appendix G we describe these methods.
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estimate an error (i.e. the typical deviation from the true ensemble density)
by making a (completely untested) assumption about the real variance at
these scales (e.g. by assuming that the variance is that estimated in some
cosmological theoretical model). If one consistently found the same results
for ξ(r) within these error bars, one could make a stronger case for the valid-
ity of such models for the variance. However, as we have already mentioned,
very considerable variation is actually observed across the literature of these
estimates, in particular most strikingly in the amplitude of this function. In
the standard analysis these variations are, as we mentioned above, ascribed
to a new physical effect (“luminosity segregation”). Thus the question of
homogeneity and this secondary hypothesis have become entangled.

Whatever the final outcome of this controversy – it is, fortunately, one
which will be resolved by data in the next few years – it is evident that
the only way to determine whether the distribution of visible matter is sub-
stantially uniform at the sample scale, and to characterize its transition to
homogeneity, is to use a framework in which it is not assumed. It is precisely
such a framework which is described and applied here.

The Problem of “Bias”: Two Models

In the following three chapters the main focus is on the question of how clus-
tering may depend on the kind of object considered. Firstly in Chap. 11 we
explain how the analysis of the previous chapters, in which the simplifying
assumption was made that space and luminosity correlation properties are
independent, can be extended to the more general case where clustering de-
pends on luminosity. This is important as such effects are known to exist in
the real galaxy distribution (e.g. large elliptical galaxies are found preferen-
tially in dense clusters). This difference in clustering properties according to
luminosity is characterized by a set of multi-fractal exponents, using the for-
malism described in Chap. 5. Considering real galaxy data such luminosity
dependence is found, with brighter galaxies showing a slightly steeper fractal
exponent than that of the support (i.e. of the set of all galaxies). The quali-
tative statement that “bright galaxies are more clustered” thus corresponds
quantitatively to the variation of the clustering exponent, rather than the
variation of the amplitude of the correlation functions (as in the standard
interpretation coming from analysis with ξ(r)).

In Chap. 12 we consider the correlation properties of galaxy clusters, of
which quite extensive surveys have also been made. Because they are intrin-
sically brighter than galaxies, they allow one to probe much larger scales.
We explain how such surveys can be understood as a coarse-graining of the
underlying galaxy distribution, and consider how this allows for the deter-
mination of their correlation properties, in the case of a galaxy distribution
which is fractal, with or without a cross-over to homogeneity at a finite scale.
In particular we note that the fractal exponent of clusters should be the same
as that of the galaxies. Using the standard ξ(r) analysis an effect analogous
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to “luminosity bias” is found: while the exponent remains the same, the am-
plitude is much larger relative to that of galaxies (typically r0 	 15 ÷ 25
Mpc/h). In this case this is known as the “galaxy-cluster mismatch”. We
explain in more detail how both effects can be understood simply in the case
that the cross-over from fractality to homogeneity in the galaxy distribu-
tion is actually at scales as large as ∼50 Mpc/h. This is an interpretation
of these effects which is also consistent with the analysis of galaxy number
counts which we described above (with, however, the slight discrepancy in
the best-fit dimension, which for clusters is D ≈ 2).

In the standard interpretation of galaxy and cluster correlations result-
ing from the ξ(r) analysis, these observations of the varying amplitude are
ascribed to real physics, rather than being simply finite size effects as in the
alternative explanation we present. We turn in Chap. 13 to the standard
framework which has been developed to describe this effect. Generically this
goes under the name of “bias”, which is then simply taken to mean any dif-
ference between the correlation properties of any class of object (galaxy of
different luminosity or morphology, galaxy cluster, quasar . . . ) and that of the
“cold” dark matter which, in standard models, dominates the gravitational
clustering dynamics in the universe. The case that such a difference manifests
itself as an overall normalization of ξ(r) (or P (k)), as in the observations we
have been discussing, is known as “linear bias”.

We analyze in detail the original model, proposed by Kaiser in 1984 [123],
to explain this phenomenon. While this is just a simple model, of which many
variants have been proposed, it remains canonical in terms of the physical
picture it proposes: different kinds of objects are hypothesized to correspond
to selections from the underlying field above different thresholds for the den-
sity fluctuations, e.g. clusters are formed where there is over-density which is
greater than that required to form a galaxy. We note that linear amplifica-
tion of the “biased” correlation function with respect to the underlying one
is found only in the region of weak correlation. In the regime of strong corre-
lation (that which would be relevant to “luminosity bias” and the “galaxy-
cluster” mismatch) the correlation functions are related in a very non-linear
manner. Given that the amplification of the correlation function is linear at
sufficiently large separations r (where the correlations are indeed weak) one
might anticipate also a linear amplification for the power spectrum at small
k. We show, however, that, for cosmological spectra for which P (0) = 0, this
is not the case. The reason can be found in the property of super-homogeneity
of such spectra: the sampling in the bias model necessarily destroys the sur-
face nature of the fluctuations, as it introduces a volume (Poisson-like) term
in the variance. The “primordial” form of the power spectrum is thus not de-
tectable in the power spectrum determined from objects selected in this way.
We explain that this conclusion, although shown formally only for the specific
model, should hold for any generic model of bias. If a linear amplification is
obtained in some regime of scales (as it can be in certain phenomenological
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models of bias) it is necessarily a result of a fine-tuning of the model
parameters.

Some Instruments for the Study of Gravitational Clustering

In the last chapter of the book, we turn to one aspect of the theoretical
problem of gravitational clustering. In cosmology the main instrument for
treating this problem is numerical (in the form of N-body simulations), and
the analytic understanding of this crucial problem is very limited. Other than
in the regime of very small fluctuations where a linear analysis can be per-
formed, the available models of clustering are essentially phenomenological
models with numerous parameters which are fixed by numerical simulation7.
In these simulations – which typically set out to follow over some range of
scales the evolution of the “cold” dark matter – what is done in practice is a
particle simulation, i.e. a simulation in which the smoothening length intro-
duced in the gravitational force is much smaller than the initial inter-particle
distance. While this evolution is usually (see e.g. [133]) followed essentially in
k space, it is interesting to try also to study the evolution of clustering in real
space. In this perspective it is very useful to know the statistical properties
of the gravitational force on a particle due to all others in a stochastic point
distribution. This is the subject of this chapter.

The starting point for such a study is the one-point statistics of this
quantity, i.e. the probability distribution of the gravitational force felt by
a particle in the system. In practice the problem has been exactly solved
(by Chandrasekhar [43]) only in the case of uncorrelated Poisson point pro-
cesses (when the probability distribution of this force is given by the so-called
Holtzmark distribution). In this chapter we describe a simple extension of this
result to the case of a so-called Gauss-Poisson process, which has non-trivial
two-point correlation properties, but no non-zero higher order correlations.
It can thus be considered the first step in increasing correlations beyond the
Poisson case. We determine, within a well controlled approximation scheme,
the one-point force distribution by identifying the way in which spatial corre-
lations can significantly affect the behavior in the uncorrelated Poisson case.
In both cases we consider the contribution to this force coming from the first
nearest neighbor particle, and find it to be the dominant contribution. This
implies that the gravitational force acting on the single particles is in general
a strongly spatially fluctuating quantity. The same kind of study, restricted
to the description of the first and second moments of the force and of their
dependence on the lower and upper cut-offs, is also presented in the case of
statistically stationary and isotropic pure fractal particle distributions. The
scaling behavior of these quantities is found to change radically depending
on whether the fractal dimension of the system is less than or greater than
two (in three dimensions). Finally, we present a brief analysis of the spatial

7 There are notable exceptions in the literature. See e.g. [208], and [64, 65, 66].
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correlations between the gravitational forces experienced by different parti-
cles in a given distribution. It is observed that, even if the force acting on a
particle is strongly fluctuating in space, it nevertheless displays in most cases
long range correlation with the force felt by other particles.

1.5 Perspectives for the Future

The aim of this book is, as we said at the beginning, to give, firstly, a system-
atic introduction to methods of statistical physics used to describe structures
in mass distributions with different degrees of geometrical complexity found
in many natural phenomena, and then to show a series of applications of
these methods to the problem of structure as encountered in cosmology. This
second part does not aim to be complete, but is rather an opening onto these
problems. Our emphasis has been on the observational questions related to
galaxy distributions, and to some extent on how cosmology treats structure
in its current models. We have underlined that the observational issues dis-
cussed here will, we believe, be resolved in the coming years by new data. In
particular for the methods we have proposed to resolve the central questions
raised - that of a satisfactory space characterization of clustering, that of
homogeneity, and also the related question of luminosity properties of clus-
tering – one needs the depth, uniformity of completeness and wide angular
coverage which will be provided by the Sloan Digital Sky Survey within a
few years.

These observational questions feed into many fascinating theoretical ones.
We only address very tangentially in this book the primary question which
arises from the successful application of the concepts of fractality to galaxy
clustering: what is the dynamical origin of the observed fractal clustering?
what is the origin of the weak multi-fractality when one considers also lumi-
nosity? Irrespective of the scale to which a simple fractal behavior is finally
found to persist, this problem is posed. Current cosmological models invoke
a complicated and fine-tuned chain of different physics (gravitational in the
dark matter and non-gravitational in the visible) to explain phenomenolog-
ically the observation of power-law clustering over a limited range of scales,
with amplitudes for ξ(r) and P (k) which depend on the kind of object. Basic
questions remain unanswered: does gravitational dynamics give rise to fractal
clustering? And from what initial conditions? N-body simulations of gravita-
tional clustering in cosmology usually aim to reproduce in as much detail as
possible the actual universe described by current cosmological models, rather
than addressing basic physical questions of this type. We believe there is
much unexplored space for a statistical physics approach to such problems,
which should be able to shed light on the more general characteristics of
gravitational clustering.

In a more strictly cosmological setting the question of the precise scale
at which homogeneity in the distribution of visible matter is reached is of
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considerable importance. Depending on the scale, the theoretical questions
posed change. What theories can really predict is the clustering of dark mat-
ter, and its homogeneity scale is fixed (to be small, or order of a few Mpc/h) in
most standard cosmological models, by the normalization to the fluctuations
observed in the CMBR. What difference can be tolerated between this value
and the observed homogeneity scale of the distribution of visible matter is, as
we have discussed, linked to the theory of bias. By its nature a phenomenolog-
ical approach, it is therefore difficult to say exactly what bound it places on
the transition to homogeneity. As discussed, we highlight in Chap. 13 the diffi-
culty these models have in accounting for the observations. Are there strong
theoretical upper bounds on the scale of homogeneity? Many cosmologists
would probably reply in the affirmative, citing two factors: incompatibility
of inhomogeneity at large scale with FRW solutions of general relativity, and
more specifically, with the isotropy of the CMBR. In Appendix E we discuss
a model which illustrates that these objections are not well founded. It is
a low density FRW model, containing only homogeneous radiation with a
superimposed fractal distribution of baryons extending to arbitrarily large
scales. It is shown that the latter can, because it is asymptotically empty, be
treated as a perturbation to the former. Further it turns out that the CMBR
fluctuations estimated are in fact too small to account for those actually ob-
served. While such a model is not viable in detail as a cosmological model, it
suggests to us that such unconventional avenues deserve further exploration.8

Beyond these problems there are certainly many others in cosmology on
which an approach from statistical physics may shed light. An evident one,
which we only touch on very superficially here in Chap. 6, is the CMBR. For
this case the description of fluctuations in the framework of uniform distribu-
tions is valid and appropriate, as there is indeed a very well defined average
for the temperature. While cosmologists describe and study the CMBR al-
most exclusively in terms of their theoretical models for the universe, it may
prove fruitful to look at these rich data in a more phenomenological way with
the many other instruments used by statistical physicists to study stochastic
processes.

8 We note, for example, that Ribeiro in a series of papers [202] has analyzed some
numerical solutions of Tolman model which may be useful for the treatment
of fractal objects in the framework of General Relativity. An interesting model
describing an extremely inhomogeneous matter distribution in General Relativity
has been recently presented in [1].



Part I

Statistical Methods



2 Uniform and Correlated Mass Density Fields

2.1 Introduction

In the analysis of finite samples of a stochastic field or a signal characterized
by intrinsic fluctuations the simplest hypothesis is to represent it as a uniform
average background with superimposed positive and negative stochastic fluc-
tuations1. The typical examples for which this approach has been developed
and extensively applied are those of an electromagnetic signal with noise in
time, or the density field of a fluid at high temperature in space. In the con-
text of astrophysics this approach has been widely applied to the temperature
fluctuation field of the cosmic microwave background radiation (CMBR) for
which it appears well justified. It has also been extensively applied to the
study of the spatial distribution of galaxies in space, where its basic assump-
tion appears to be less well founded. The basic reason behind this approach
is of simplicity and convenience: In this perspective one can treat fluctuations
as perturbations around a mean field, which represents a major simplifica-
tion for the analysis and the theoretical description of the system. Then one
can develop suitable perturbation theories, which are usually simpler than
non-perturbative approaches, in order to capture the relevant aspects of the
phenomenon. For all stochastic systems which can be represented in this way,
specific statistical tools have been introduced in the past in order to permit a
fine and complete statistical analysis. In particular this task is accomplished
by the so-called theory of stationary stochastic processes (SSP). This chapter
is devoted to the description of such a statistical framework.

Let us consider, first of all, which kinds of stochastic systems can be stud-
ied in this way. There are all the processes in which the fluctuating signal is
continuous in space and such that, if averaged over sufficiently large spatial
windows, it becomes practically constant in space. These systems are com-
monly called continuous SSP [68, 100]: The temperature field related to the
CMBR belongs to this class. Many other examples can be found in physics
and other disciplines: for instance the continuous mass density field of an
1 In this book we are mainly interested in spatial systems (mass density or temper-

ature stochastic fields), but most of statistical descriptions introduced in what
follows can be simply translated to temporal processes. For a comprehensive
review of stochastic processes see [53, 100].
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homogeneous fluid at thermal equilibrium. In general the continuous stochas-
tic field can be positive or negative at different points, while for stochastic
mass densities the sign is strictly non-negative. Moreover fluctuations can be
more or less spatially correlated.

A more complex case is when a stochastic system, usually a spatial mass
(or measure) distribution, is representable as a discrete point process [53],
that is the subclass of stochastic processes defining stochastic spatial distri-
butions of separated massive point-particles. If it is statistically stationary in
space it is called a stationary point process (SPP). A simple example is shown
in Fig. 2.1 [53]. Note that in this case the stochastic field is discontinuous
and strictly non-negative. However, if the average of this discrete mass den-
sity is well defined (i.e., sample size independent) and positive, we can apply
also the previous representation (i.e., average value + positive and negative
stochastic fluctuations) by smoothing the system on some uniformity or ho-
mogeneity scale and by analyzing small amplitude density fluctuations field
around the average. As in the continuous case mass density fluctuations can
be more or less spatially correlated (see Fig. 2.2). Thus, when such a point
process is smoothed out on a scale much larger than the average inter-particle
separation, it can be seen as a continuous stochastic process of the previous

Fig. 2.1. Spatial distribution of randomly placed point-particles without corre-
lations (Poisson point process) in two-dimensional Euclidean space. The positive
average density is in this case a well-defined concept, in the sense that its estimate
from a single, sufficiently large, sample is independent of the sample size
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Fig. 2.2. Point process with small-scale correlations. On sufficiently large scales
such a point-particle distribution is statistically homogeneous and isotropic as the
one shown in Fig. 2.1

class (actually any mass distribution is discrete at sufficiently small scales,
and the fluid-like continuous density field picture is permitted because of such
a smoothing procedure on scale larger than the “atomic” length). Therefore
most of statistical tools introduced for continuous SSP can be extended to
this class of discrete distributions.

It is important to note, however, that there are mass (or measure) density
fields for which some of the above mentioned statistical tools introduced
in this chapter give spurious and invalid results. An important example of
these mass densities is constituted by the so-called fractal measures [83].
Chap. 4 is devoted to this class of measures, and in particular to those point
distributions presenting these features. A fractal mass density is strictly non-
negative, but its average value in the infinite volume limit is zero i.e., it
is asymptotically empty (see Fig. 2.3). However, if we take an arbitrary
point belonging to the system, the mass density around it decays slowly
(as a power-law) with distance. Therefore the estimator of the average mass
density seen by any point of the system in a finite sample gives an infinite
relative error with respect to the actual value (i.e., zero). This implies that
only statistical averages are defined which are conditioned on the fact that
the origin of coordinates is a point of the set, whilst free averages without
this condition give the same results as for a completely empty set. The fact
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Fig. 2.3. Fractal point distribution with fractal dimension D = 1.47 in two dimen-
sional Euclidean space. In this case the estimate of the average density from the
single sample is strongly dependent on the sample size, and therefore gives intrin-
sically spurious estimates of the asymptotic average density: in fact this structure
is asymptotically empty

that the asymptotic average density is zero while it decays slowly from any
point of the set implies that: (i) it is an extremely irregular mass density
which is “singular” at every distribution point; (ii) any point of the system
sees at finite distance an average density mass fluctuation which is positive
and infinite relative to the asymptotic average density.

Consequently, in studying fractals the interest is not in the amplitude of
fluctuations, but rather in their spatial scaling behavior. All these features
imply that many of the statistical tools and quantities introduced for the
previous “more regular” stochastic systems are not well defined for fractals.
The suitable statistical tools for fractals are presented in Chap. 4.

This brief excursion into the world of fractals has been made to underline
that, before applying the statistical framework of ordinary (i.e., sufficiently
uniform in space) SSP, presented in this chapter, to the analysis of a stochas-
tic mass (or measure) density, one should verify that the schema “positive
average value + small amplitude stochastic correlated (or uncorrelated) spa-
tially decreasing fluctuations” is valid. This is done by verifying primarily
the statistical stationarity of the process, that is the homogeneity in space
of the statistical properties (see below), and the existence of a well defined
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positive (i.e., sample independent) average for the density. For this last step
it is necessary to use the more general statistical approach suitable for the
analysis of fractal densities discussed in Chaps. 4–5. Once the appropriate
tests are passed, one may apply the statistical framework of SSP we now
describe.

2.2 Basic Statistical Properties and Concepts

In this section we study the basic properties of those stochastic systems
(mainly mass density fields) that can be represented as SSP, where stationary
refers to the spatial statistical properties (it is sometimes called statistical
translational invariance or statistical homogeneity). The single realization of
such a SSP can be thought to be a particular mass density field. In the context
of cosmology the requirement of statistical stationarity is justified by the fact
that in the study of the mass distribution of the universe the cosmological
principle is assumed: there are no preferential points or directions in the
universe2. Clearly this principle must be intended in the statistical sense. It
implies that the statistical properties of the considered SSP inside a sample
volume should not depend on the location of the sample in the universe.

We now give a brief introduction to the theory of SSP, exposing the general
features of correlation analysis, and presenting explicit examples of stochas-
tic distributions, such as Poisson point processes and Gaussian continuous
density fields (GDF), to illustrate the essential points.

Let us consider the random mass distribution represented by the micro-
scopic density function or field ρ(r). In what follows definitions and theorems
are valid for density fields representing both cases of continuous fluid-like
mass distributions, which are called in the literature continuous stochastic
processes, and of a discrete particle distribution, called in the literature SPP
[53]. In the former case ρ(r)dV represents the mass (or more generally the
measure) contained in the infinitesimal volume dV around the point r. In
the latter case, it gives the number of particles in the same small volume,
assuming particles of identical unitary mass. Consequently, in this case ρ(r)
can be represented as

ρ(r) =
∑

i

δ(r − ri) , (2.1)

where ri is the position vector of the particle i of the distribution and δ(x)
is the Dirac delta function. More generally, if point-particles have different
2 Note that the condition of statistical isotropy and homogeneity is also satisfied

by stochastic processes with zero average density in the infinite volume limit
(stochastic fractals – see Chap. 4). This condition is sometimes referred to as
the “conditional cosmological principle” [47, 151, 223]. The requirement of exact
(deterministic) rotational and traslational invariance, which is not satisfied in
this case, is a stronger version of the “cosmological principle”.



32 2 Uniform and Correlated Mass Density Fields

masses, we write:
ρ(r) =

∑
i

miδ(r − ri) ,

where mi is the mass of the particle at ri. Unless explicitly specified, we
will study mainly the case of unitary mass particles. Moreover we limit our
analysis to ordinary or regular point processes, which are SPP such that,
taking a small volume ∆V in an arbitrary point of the space, the probability
of having more than one point-particle inside it is an infinitesimal of higher
order than ∆V . This means basically that point-particles are separated from
one another by a finite distance.

In both continuous and discrete cases the function ρ(r) is to be thought of
as a realization of a continuous SSP or of a SPP. In the case of a continuous
field this means that to any point r is associated a positive random variable
ρ̂(r) whose “extracted” value is ρ(r). Therefore the random function ρ̂(r) can
be seen as a continuous set of random variables which may be correlated or
not. The stochastic process consists in extracting the value ρ(r) at any point
of the space, and it is completely characterized by its “probability density
functional” (PDF) P[ρ(r)]. This functional can be interpreted as the joint
probability density function of the random variables ρ̂(r) at every point r. In
order to clarify better its role, let us partition the space in a countable set of
small cubic cells of volume ∆V centered around the lattice points r1, r2, . . ..
Let ρ(ri) be the local average density in the cell around the generic point ri:

ρ(ri) =
1

∆V

∫
∆V

∫∫
(ri)

d3rρ(r) ,

where ∆V (ri) is the cubic cell centered around ri.
We call p(ρ(r1), ρ(r2), . . .) the joint probability density function of the

local densities in all the cells. In the limit ∆V → 0 this function converges to
the functional P[ρ(r)]. The knowledge of P[ρ(r)] (or of p(ρ(r1), ρ(r2), . . .))
permits formally the evaluation of the average of any function of the density
field.

Once the average operation is defined, we can give a definition of conti-
nuity of the stochastic field using it. The usual definition of continuity of a
stochastic process is the following:

lim
|∆|→0

〈|ρ̂(r + ∆) − ρ̂(r)|2〉 = 0 . (2.2)

where 〈 . . .〉 is the ensemble average over all the possible realizations of the
stochastic process i.e., the average over P[ρ(r)].

For a discrete stochastic distribution of particles, on the other hand, the
SPP generating the function ρ(r), of the form of (2.1), can be considered
as follows. Once the space is divided into sufficiently small cells of volume
∆V as in the previous case, the stochastic point process consists in occu-
pying the cells with a point-particle with a certain probability (as clarified
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above, we consider that the cells are so small that the probability of occu-
pation of a single cell with two or more particles can be neglected). Let ni

be the random variable “number of particles” in the cell centered around ri

that takes the value 1 if the cell is occupied or 0 if the cell is unoccupied.
The corresponding values of the local average density ρ(ri) in the ith cell
are respectively 1/∆V and 0. In general the probabilities of occupation of
different cells are not independent of each other. In terms of the variables ni,
a general configuration of such a discretized system is given by a sequence of
1 and 0 describing the state of occupation of all the cells, while using local
densities the configuration will be given by a sequence of 1/∆V and 0. The
joint probability of each possible occupation configuration of the whole set
of cells determines completely the point process (and the average operation)
in the limit ∆V → 0. Therefore in this case P[ρ(r)] can be seen as the limit
∆V → 0 of such a joint probability distribution.

Let us now clarify better the meaning of “spatial stationarity” for a
stochastic process. By this it is meant that the functional P[ρ(r)] is invariant
under spatial translations. This property is also called statistical homogeneity
or translational invariance of the stochastic process. This definition implies
the following more intuitive property for the case of a continuous mass den-
sity field: If we take an arbitrary set of N points r1, r2, . . . , rN , the joint
probability density p[ρ(r1 + r0), ρ(r2 + r0), . . . , ρ(rN + r0)] of the value
of the random field at the translated points r1 + r0, r2 + r0, . . . , rN + r0

does not depend on the translation vector r0. In other words it depends only
on the relative vectorial separations among the different points. For the dis-
crete case this property can be rephrased as follows: taken the arbitrary set
of N points r1, r2, . . . , rN and a small volume ∆V , the joint probability
that at the same time the cells of volume ∆V around the translated points
r1 + r0, r2 + r0, . . . , rN + r0 have an arbitrary state of occupation does
not depend on the translation vector r0. In particular this implies that, if we
take a finite volume of size V centered (in some well-defined way) around the
point r0, then the probability of having N particles inside it does not depend
on r0, but only on V and on the shape and orientation of the volume.

In what follows, we often suppose that the mass distribution is also statis-
tically isotropic, that is P[ρ(r)] is also invariant under spatial rotation. Most
of the definitions and properties introduced below are based only on spatial
stationarity.

Let ρ0 be the average value of the stochastic field:

〈ρ̂(r)〉 = ρ0 . (2.3)

As already mentioned if the analyzed stochastic field is a mass or measure
density, then we can apply the ordinary SSP (continuous or SPP) framework
if and only if ρ0 > 0. It is this which we refer to as the condition of uniformity,
or alternately homogeneity. In the case that the latter term is used, it should
not be confused with the (much weaker) property of statistical homogeneity
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(i.e., stationarity) of the stochastic field. As we have discussed this latter
refers only to the invariance of the statistical properties of the stochastic
field under spatial translations.

2.2.1 Spatial Averages and Ergodicity

Before discussing the definition of correlation functions, it is important to
introduce another property of the SSP or SPP we consider, which is needed
to give a full statistical meaning to volume averages. A typical assumption
in the statistical analysis of stochastic fields is the so-called ergodicity of the
stochastic process which generates the mass field both in the continuous and
discrete case. In order to clarify the meaning of ergodicity, let us take a generic
observable F = F (ρ(r1), ρ(r2), . . .) of the mass distribution ρ(r). Ergodicity
means that 〈F 〉 is equal to the spatial average F given by:

F = lim
V →+∞

1
V

∫
V

∫∫
d3r0F (ρ(r1 + r0), ρ(r2 + r0), . . .) , (2.4)

where V is the integration volume and limV →+∞ means that the limit of
the integration is taken over all space Ω (with volume ‖Ω‖ = +∞). Finally,
ρ(r) is almost any realization of the mass distribution “extracted” from the
probability functional P[ρ(r)]. This property is also referred to as the self-
averaging property of the distribution. Note that if the average in (2.4) is
extended only to a finite sub-sample V of the whole space Ω, then (2.4) is only
an estimator of 〈F 〉 in the given sub-sample. In cosmology one typically has
only such finite volume estimators. Therefore the assumption of ergodicity
is necessary if we want to use these statistical estimators of some specific
quantities to build or verify hypotheses and theories. An analysis of real
space estimators is presented in Chap. 9 and in the Appendixes F-G.

The assumption of ergodicity is based on a theorem of continuous stochas-
tic processes: the ergodic theorem of Birkhoff-Khinchin which states that if
ρ(r) has a well-defined average value ρ0, then the volume average, in the
infinite volume limit, converges with probability one to a well-defined limit
[100].

2.2.2 Homogeneity and Homogeneity Scale

Let us now consider the meaning of homogeneity (or uniformity) given by
(2.3) in terms of the spatial average in a single realization of a stochastic mass
distribution. Due to the assumption of ergodicity of the stochastic process,
for a single realization of the mass distribution (i.e., a strictly non-negative
field) the existence of a well-defined average positive density implies that [90]

lim
R→∞

1
‖C(R;x0)‖

∫
C

∫∫
(R,x0)

ρ(r)d3r = ρ0 > 0 ∀x0 . (2.5)
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where ‖C(R,x0)‖ ≡ 4πR3/3 is the volume of the sphere C(R,x0) of radius
R, centered on an arbitrary point x0. When (2.5) is valid i.e., a well-defined
positive average density exists for the mass distribution, the characteristic
homogeneity scale λ0 (or uniformity scale) can be defined as the scale such
that ∣∣∣∣∣∣∣∣∣∣∣∣∣ 1

C(R;x0)

∫
C

∫∫
(R;x0)

d3r ρ(r) − ρ0

∣∣∣∣∣∣∣∣∣∣∣∣∣ < ρ0 ∀R > λ0, ∀x0 . (2.6)

In the next section we will see that this scale substantially depends on the
nature of the correlations between density fluctuations at different points
i.e., on the two-point correlation function. This scale gives basically the dis-
tance above which fluctuations can be considered small with respect to the
mean density and a perturbative approach can be appropriate to describe the
physics of the system. At smaller scales, however, fluctuations can be large
and irregular, as in a fractal with a crossover to homogeneity, and must be
treated in a different statistical and physical framework (see Chap. 4).

2.3 Correlation Functions

In this section we introduce the definitions and the principal properties of
the auto-correlation functions for a spatially SSP. The quantity

〈ρ̂(r1)ρ̂(r2) . . . ρ̂(rl)〉

is called the complete l-point correlation function of the density field. For
more general correlation functions characterizing different morphological and
statistical aspects of stochastic mass distributions, see e.g., [230]. Statistical
stationarity imply that the l-point correlation functions 〈ρ̂(r1) . . . ρ̂(rl)〉, for
any l, depend only on the vectorial relative distances among the l points [90]
ri − rj with i, j = 1, . . . , l.

In the discrete case of a SPP the quantity

〈ρ̂(r1)ρ̂(r2) . . . ρ̂(rl)〉 dV1VV , dV2VV , . . . , dVlVV

gives the a priori probability of finding l particles simultaneously, in a single
realization, placed one to one in the infinitesimal volumes dV1VV , dV2VV , . . . , dVlVV
respectively around r1, r2, . . . , rl. Indeed, in this case, because of (2.1),
ρ(r)dV is equal to unity if there is one particle in the volume element dV
around r, and zero if not.

Let us analyze in more detail the two and three-point correlation func-
tions introducing the concept of reduced correlation functions. As mentioned
above, due to the hypothesis of statistical stationarity and isotropy (SSI)
〈ρ̂(r1)ρ̂(r2)〉 depends only on r12 = |r1 − r2|, and 〈ρ̂(r1)ρ̂(r2)ρ̂(r3)〉 is a
function only of r12 = |r1 − r2|, r23 = |r2 − r3| and r13 = |r1 − r3|. The
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reduced two and three-point correlation functions are defined respectively as
[25, 182]

C2CC (r12) = 〈(ρ̂(r1) − ρ0) (ρ̂(r2) − ρ0)〉 (2.7)
C3CC (r12, r23, r13) = 〈(ρ̂(r1) − ρ0) (ρ̂(r2) − ρ0) (ρ̂(r3) − ρ0)〉 .

The quantity C2CC (r12) is also called covariance function: This is the prin-
cipal function used to study and characterize spatial correlations between
fluctuations from the average value. For a generic stochastic process ρ0 can
be positive, negative or zero. However, in the case of a discrete or continuous
mass distribution with a well defined positive average density ρ0 > 0, (2.7)
are usually defined in a dimensionless form as

ξ̃(r12) =
C2CC (r12)

ρ2
0

(2.8)

ζ̃(r12, r23, r13) =
C3C (r12, r23, r13)

ρ3
0

. (2.9)

Note that in the case of a mass field ρ̂(r) is a non-negative quantity; therefore
ξ̃(r) ≥ −1 at any r. We can write in general the relations between complete
and reduced two and three-point correlation functions as:

〈ρ̂(r1)ρ̂(r2)〉 ≡ ρ2
0 + C2CC (r12) (2.10)

〈ρ̂(r1)ρ̂(r2)ρ̂(r3)〉 ≡ ρ3
0 + C2CC (r12) + C2CC (r23) +

C2CC (r13) + C3C (r12, r23, r13) . (2.11)

The reduced two and three-point correlation functions just introduced are
also called connected because in field theory they are given by the sum only
of the connected Feynman graphs defining the complete correlation functions
[3]. Unfortunately for the connected n-points correlation functions with n ≥ 4
we cannot extend (2.7) simply but need to introduce the cumulant expan-
sion which is the usual way to isolate the connected parts of the complete
correlation functions. This is done explicitly in the next subsection.

2.3.1 Characteristic Function and Cumulants Expansion

We now give the simple mathematical recipe to find the connected n-point
correlation functions for any value of n [98]. To simplify the presentation
we limit the discussion to a vector X ≡ {X1, X2, . . . , XN} of N random
variables Xi whose value is xi, instead of treating the more general case of
a stochastic field ρ̂(r) depending on the continuous parameter r. The vector
X can be thought of as the field ρ̂ in the discretized space.

Let p(x) be the joint probability density function of all the components of
X. The characteristic function of the stochastic vector X is defined as [100]:
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p̃(k) = 〈exp(−ik · X)〉 =
∫

dNx p(x) exp(−ik · x) , (2.12)

where k ≡ {k1, k2, . . . , kN}. The fact that p(x) is a probability density func-
tion, and the general theorems of the Fourier transform (FT) imply, among
others, the following simple properties of the characteristic function (̃k):

1) (̃0) = 1.

2) |p̃(k)| ≤ 1.

3) (̃k) is a uniformly continuous function of its argument for all real k.

4) If the moment
〈∏N

i=1 X li
i

〉
exists, it is given by:

〈
n∏

i=1

X li
i

〉
=

[
n∏

i=1

(
i

∂

∂ki

)li

p̃(k)

]
k=0

. (2.13)

The moments given in (2.13) are also called the complete correlation coef-
ficients of the stochastic vector X, and they are the discrete analogues of
the correlation functions 〈ρ̂(r1)ρ̂(r2) . . . ρ̂(rl)〉 for the stochastic field ρ̂(r)
depending on the continuous parameter r. Equation 2.13 implies that the
Taylor series of (̃k), if it exists, can be written as:

p̃(k) =
∞∑

j=0

(−i)j

0,∞∑
l1, ... ,lN

〈
X l1

1 . . . X lN
N

〉
l1! . . . lN !

δ

(
j,

N∑
m=1

lm

)
kl1
1 . . . klN

N , (2.14)

where δ(a, b) is the Kronecker delta function which is 1 if a = b and 0
otherwise.

5) Knowing (̃k) one can obtain p(x) by simply inverting the FT:

p(x) = (2π)−N

∫
dNk p̃(k) exp(ik · x) . (2.15)

6) If the variables {Xi} are independent i.e., p(x) =
∏

i pi(xi), then

p̃(k) =
N∏

i=1

p̃i(ki) , (2.16)

where p̃i(ki) is the FT of pi(xi). 6-bis) If Y =
∑N

i=1 Xi, where the variables
Xi are mutually independent, then the characteristic function φy(k) of the
stochastic variable Y is simply given by

φy(k) =
N∏

i=1

p̃i(k) . (2.17)
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We can now introduce the cumulant generating function ψ(k) which is
defined by:

ψ(k) = log (̃k) . (2.18)

Let us assume that all the moments of p(x) exist and are finite, so that (̃k),
and therefore ψ(k), can be expanded in Taylor series. We then have

ψ(k) =
∞∑

j=0

(−i)j

0,∞∑
l1, ... ,lN

C(X l1
1 , . . . , X lN

N )
l1! . . . lN !

δ

(
j,

N∑
m=1

lm

)
kl1
1 . . . klN

N . (2.19)

The quantities C(X l1
1 , . . . , X lN

N ) are called cumulants of the stochastic vector
X. They are also called connected correlation coefficients. In order to find
the relationship between cumulants and complete correlation coefficients one
has to use (2.14) and (2.19) linked by (2.18) (note that for small |k| the
characteristic function takes the from p̃(k) = 1+δp̃δ (k) where δp̃δ (k) is small).
In general the relations found between C(X l1

1 , . . . , X lN
N ) and the moments

are not simple. The first three cumulants are given by:

C(Xi) = 〈Xi〉 (2.20)
C(Xi, XjX ) = 〈XiXjX 〉 − 〈Xi〉 〈XjX 〉
C(Xi, XjX ,Xk) = 〈XiXjX Xk〉 − 〈XiXjX 〉 〈Xk〉 − 〈Xi〉 〈XjX Xk〉−

〈XiXk〉 〈XjX 〉 + 2 〈Xi〉 〈XjX 〉 〈Xk〉 .

We see that if 〈Xi〉 = x0 for any i = 1, . . . , N then the second and the third
equation of (2.20) are the discrete equivalent of (2.7).

As further clarified in what follows, the importance of the cumulants or
connected correlation functions is due to their behavior in the context of
Gaussian distributions. In fact if

p(x) = B exp

⎡
⎣
⎡⎡
−

1,N∑
i,j

(xi − 〈Xi〉) Ai,j (xj − 〈XjX 〉)
⎤
⎦
⎤⎤

,

where Â ≡ ((Ai,j)) is a positive definite matrix and B a normalization con-
stant, then it is simple to show that all cumulants, except C(Xi) and C(Xi, XjX )
with i, j = 1, . . . , N , are zero. Therefore cumulants of order larger than two
are a measure of deviations from Gaussianity for multivariate distributions.
These results can be easily extended to the case of stochastic fields ρ̂(r)
depending on a continuous parameter.

Finally, the origin of the term connected comes from quantum field theory
(in fact a quantum field can be seen as a continuous stochastic process).
More precisely, it comes from the Feynman graphs expansion of complete
correlation functions in field theory [3]. In this context one can see that the
cumulants are given by only the sum of connected graphs.
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2.3.2 Correlation Length

Let us comment on the definition given in (2.8). First of all, we see that C2CC (r)
(or equivalently ξ̃(r) in the case of a mass distribution with ρ0 > 0) measures
the spatial memory of mass density fluctuations on the scale r. In fact, if C2CC (r)
is different from zero, it means that the knowledge of the mass density at a
generic point of the space influences the conditional probability density of the
mass density at another point at distance r from the first one. In statistical
physics, in order to characterize through a single number the persistence of
correlations in the fluctuation field, the concept of correlation length rc has
been introduced. Different and practically equivalent definitions of rc can
be found in literature, all sharing the same characteristic of distinguishing
systems with slow decay of correlations from systems where the decay is fast.
A definition is [148]:

r2
c =

∫
Ω

∫∫
ddr r2|C2CC (r)|∫

Ω

∫∫
ddr |C2CC (r)| . (2.21)

The concept of correlation length has been introduced basically to distinguish
two cases (in a d-dimensional space): (i) C2CC (r) ∼ r−γ with 0 < γ < d, and
(ii) C2CC (r) ∼ exp(−r/r∗) at sufficiently large r. The case (i) is typical of the
correlation function of the order parameter of a thermodynamic system at
the critical point of a second-order phase transition, while (ii) is the ordinary
behavior of it far from criticality. The main difference between (i) and (ii)
is that in the first case

∫
ddr C2CC (r) → ∞, while in the second one the same

integral is finite. Every definition found in the literature will give rc → +∞
for the former case, and rc ∼ r∗ for the latter. The reason for this kind of
definition of rc for statistical mechanical systems is that for such systems
one can prove fluctuation-dissipation theorems [116] which state that the
response of the system to a localized small perturbation is proportional to
the integral of the reduced correlation function. Therefore a small localized
perturbation is felt by the system in a region of size rc, while in the case of
a critical structure it is felt up to the system size [148]. Moreover, as shown
in Sect. 2.10, the correlation length is the characteristic scale beyond which
integrated fluctuations in a finite volume e.g., the mass fluctuations in a finite
volume V in a stochastic mass density field, can be considered a Gaussian
variable. In Fig. 2.4 we show the typical behaviors of C2CC (r) for a finite and
infinite correlation length.

Note that the definition of rc given by (2.21), as any other used in sta-
tistical physics, does not depend on the amplitude of C2CC (r) but only on the
rate of its decay. This is an important point in the context of cosmology as
the term correlation length is often used for the spatial scale marking the
cross-over from large to small fluctuations. This can lead to confusion in par-
ticular when the system is characterized by power-law correlations. Instead,
the scale λ0 given by (2.6), as discussed in what follows, is a more appropriate
definition of this cross-over scale which should be more appropriately called
the homogeneity scale.
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Fig. 2.4. Behavior of C2(r) for a stochastic field with a finite correlation length
rc = 5 (solid line), which is manifested by an exponential cut-off of the two-point
correlation function. Instead, in the case of an infinite correlation length (dashed
line) C2(r) has a power-law decay (as r−1 in this case). The amplitude of the
correlation function is not related to the value of the correlation length, which
instead describes the rate of decrease of C2(r) i.e., its spatial persistence at large
scales

2.3.3 Other Properties of the Reduced Two-Point
Correlation Function

Let us now analyze some general properties of C2CC (r) and ξ̃(r) in d-dimensions.

• In the case of a continuous SSP it is possible to show from (2.2) that C2CC (r)
is a continuous function of r.

• We have seen that, in the case of a continuous SSP (2.2) must hold. It is
simple to show that this implies that C2CC (0) = s2, where s2 is the variance
(usually finite) of the density field in a single point i.e., s2 = (

〈
ρ̂(r)2

〉−ρ2
0).

In general for a homogeneous mass density field (ρ0 > 0) s2/ρ2
0 < 1 in order

to have the mass density positive at any point. As shown below, for a point
process (i.e., a discrete particle distribution) s2 → +∞. Accordingly we
have that ξ̃(0) = +∞.

• It can be shown that, for a stationary ergodic process, the auto-correlation
function has its maximum at r = 0:

C2CC (0) ≥ |C2CC (r)| . (2.22)
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• It can be demonstrated that the correlation function of any well defined
SSP (here we impose only spatial stationarity and not isotropy) satisfies
the property

〈f |f〉 =
∫ ∫

ddr1d
dr2f(r1)C2CC (r1 − r2)f(r2) ≥ 0 . (2.23)

for any real f(r) in the appropriate class of functions (e.g., with a well
defined FT). That is, C2CC (r1 − r2) is a positive definite correlation kernel.
Therefore it is not necessarily possible to find a SSP for which a given
arbitrary function represents the reduced two-point correlation function.

For a continuous SSP one can formulate such a property in a more strict
way as a necessary and sufficient condition for the existence of a continu-
ous SSP with a given C2CC (r). This is the so-called Wiener-Khinchin (or only
Khinchin) theorem (which can be seen as a special case of the Bochner theo-
rem ) [100, 230]: Given a function C2CC (r) a necessary and sufficient condition
for the existence of a SSP with C2CC (r) as reduced two-point correlation func-
tion is that C2CC (r) can be written as

C2CC (r) =
1

(2π)d

∫
P (k) exp(ik · r)ddk (2.24)

where P (k) ≥ 0 ∀k, and integrable in k-space. We address the properties of
the FT (2.24) of the correlation function in Chap. 3.

For a discrete SPP a proposition similar to the Wiener-Khinchin theorem
can be formulated. However, as shown more clearly in Chap. 3, it gives only
a necessary condition for the existence of a SPP with a given correlation
function C2CC (r). At present a necessary and sufficient condition for this class
of stochastic process is not yet known.

Going back to continuous SSPs, note that, for instance, a box function

C2CC (r) =
{

A if r ≤ rc

0 otherwise (2.25)

cannot be an acceptable two-point correlation function. One can see this
because (i) it is not continuous (ii) its FT (in d = 1) is 2A sin(krc)/k which
is not positive definite [182].

2.3.4 Mass Variance

Let us now limit the discussion to (non-negative) mass fields (with well de-
fined ρ0 > 0) in d = 3 (extensions to other dimensions is straightforward), and
analyze the mass fluctuations in finite volumes relating them to the density-
density correlation functions. In particular in this section we consider the
mass fluctuation in a generic sphere of radius R with respect to the average
mass. Let M(R) =

∫
C

∫∫
(R)

ρ̂(r)d3r be the stochastic variable giving the mass
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included inside the sphere C(R) of radius R. In Sect. 2.10, by using the cen-
tral limit theorem of probability theory, we will see that, if the mass density
field has a finite correlation length rc, the quantity M(R) for R � rc can be
considered a Gaussian variable, while this is not the case if rc → ∞.

Fluctuations of this mass in different spheres with the same radius can be
estimated by the normalized mass variance σ2(R) defined as

σ2(R) =
〈M(R)2〉 − 〈M(R)〉2

〈M(R)〉2 , (2.26)

where
〈M(R)〉 =

∫
C

∫∫
(R)

d3r〈ρ̂(r)〉 = ρ0‖C(R)‖ =
4π

3
ρ0r

3 , (2.27)

and
〈M(R)2〉 =

∫
C

∫∫
(R)

d3r1

∫
C

∫∫
(R)

d3r2〈ρ̂(r1)ρ̂(r2)〉 . (2.28)

Note that, because of the assumed translational invariance of P[ρ(r)], (2.28)
does not depend on the location of the center of the sphere. Therefore we can
assume the origin of coordinates as the center of the sphere. The extension of
the definition of the mass variance to a generic volume V is straightforward
from (2.26)–(2.28) by substituting C(R) with V . In general, for a statistically
stationary mass density field with well defined ρ0 > 0, substituting (2.10) in
(2.26), we obtain

σ2(R) =
1

‖C(R)‖2

∫
C

∫∫
(R)

d3r1

∫
C

∫∫
(R)

d3r2ξ̃(|r1 − r2|) . (2.29)

Equation 2.29 makes explicit the relation between fluctuations in one-point
properties (as in this case the mass or the number of points in a sphere)
and two-point correlations. In general similar links can be found between
fluctuations in n-point properties and (n + 1)-point correlations.

One can show that for a SSP with a well defined positive average ρ0, the
statistical counterpart of the uniformity or homogeneity condition (2.5) is

lim
R→∞

σ2(R) = 0 . (2.30)

This implies directly that ξ̃(r) → 0 for r → +∞, which is thus a necessary
condition for there to be a well defined average value of the density field: This
is satisfied both by continuous stochastic mass densities and discrete point
processes with ρ0 > 0.

An alternative and slightly different definition to (2.6) for the scale char-
acterizing homogeneity is given by the scale at which σ2(R) is equal to unity
(or some other appropriate fiducial value). In the literature about the dis-
tribution of matter in the universe (galaxies, clusters etc.) there is no global
convention about how this scale is defined; in fact it is a scale which is almost



2.3 Properties of the Two-Point Correlation Function 43

never discussed in precise terms. The two most commonly used quantities in
the characterization of the two-point properties are (i) the scale r0 defined
by ξ(r0) = 1, and (ii) the amplitude of the normalized mass variance at a
fiducial physical scale, taken to be 8h−1 Mpc (see Chap. 8 for the definition
of this unit of length). Given (or having determined) the dependence on scale
of the correlation function or normalized mass variance, these can be easily
related to one another.

The scale r0 has, unfortunately, been widely referred to in the cosmo-
logical literature as the “correlation length”. As already mentioned, it has
no relation to the statistical physics use of the same term, which is a scale
characterizing the rate of decay of fluctuations, and not of their amplitude.
(See [97] for a clear discussion of this point. A practical working definition
of the homogeneity scale applicable in the analysis of galaxy surveys, and a
discussion of the current status of this scale, is given in [140] and in Chap. 8).

Let us return to a further analysis of (2.29) and (2.30). It is very impor-
tant to note that the condition given by (2.30), which holds for any mass
distribution generated by a SSP with a positive ρ0, is very different from the
requirement ∫

d3rξ̃(r) = 0 , (2.31)

where the integral is extended to all the space. Equation (2.31) is a much
stronger special condition which holds for certain mass density fields –
the ones to which we will ascribe the name “super-homogeneous” [91] (in
Chap. 3). Finally, we note that in cosmology the following approximation is
often used (e.g., [184, 208])∫

C

∫∫
(R)

d3r1

∫
C

∫∫
(R)

d3r2ξ̃(|r1 − r2|) ≈ ‖C(R)‖
∫

C

∫∫
(R)

d3rξ̃(r) , (2.32)

in particular, in evaluating the variance through (2.29). Such an approxima-
tion is not always valid even for large R, and the convergence properties of
the double integral need to be examined carefully to establish it. In partic-
ular it does not hold when the condition (2.31) is satisfied by the system.
This will be evident following the analysis we give in Chap. 3, where we will
show that, for any mass distribution (continuous or discrete), σ2(R) = R−a

where 0 < a ≤ d + 1 (where d is the space dimension) at large R. Using the
approximation given by (2.32), one could apparently obtain through (2.29)
arbitrarily rapidly decaying behaviors with an appropriate power-law behav-
ior in the correlation function. A detailed analysis of mass fields satisfying
(2.31), and a complete classification of all the possible mass distributions
coming from a SSP or a SPP with ρ0 > 0, based on an analysis of the mass
variance, will be given in Chap. 3.
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2.4 Poisson Point Process

In this section we present the simplest example of a SPP (i.e., spatially sta-
tionary random point-particle distribution): the three-dimensional Poisson
point process. The generalization to other dimensions is straightforward. The
stochastic process generating such a distribution can be defined as follows.
We partition all of space into small cells of volume dV , and we consider the
following Poisson occupation process of each cell independently of all other
ones: Let us chose a positive number ρ0 > 0 (dV must be chosen in such a
way dV � 1/ρ0) and either occupy the cell with a particle of unitary mass
with probability ρ0dV or leave it empty with the complementary probabil-
ity 1 − ρ0dV . This process defines the stochastic density field in each cell as
follows

ρ̂(r) =
{

1
dV with probability ρ0dV
0 with probability 1 − ρ0dV

(2.33)

where r is the center of the cell of volume dV . Note that we have assumed
no correlation between different cells i.e., the knowledge of the occupation
status of a cell does not influence the probability of occupation of any other
cell. Therefore ρ0 > 0 is the only parameter characterizing this SPP. We have
also excluded the possibility of a double occupation of a cell. This is not a
limitation in the limit dV → 0, as the probability of double occupation of a
single cell is an infinitesimal of higher order in dV . Equation (2.33) means
that in each cell the microscopic density follows a binomial distribution. Given
this definition of the SSP it is simple now to calculate any average over the
process (i.e., over P[ρ(r)]). First of all one obtains

〈ρ̂(r)〉 = ρ0 , (2.34)

and the homogeneity scale (using (2.6)) is given by

λ0 	 1

ρ
1/3
0

(2.35)

which means that the average size of a void in this kind of particle distribution
is of the order of the mean separation between two nearest neighbor particles
(see Fig. 2.1 and Fig. 2.5).

The lack of correlations implies

〈ρ̂(r1)ρ̂(r2)〉 =
{

ρ2
0 if r1 �=�� r2

ρ0
dV if r1 = r2

. (2.36)

In the limit dV → 0 one obtains

〈ρ̂(r1)ρ̂(r2)〉 − ρ2
0 = ρ0δ(r1 − r2) . (2.37)

Hence the reduced two-point correlation function (see (2.10)) can be written
as
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λ0

Fig. 2.5. Poisson distribution in the two-dimensional Euclidean space. The ho-
mogeneity scale λ0 is shown. It is of the same order of the mean inter-particle
separation

ξ̃(r) =
δ(r)
ρ0

. (2.38)

Note that, as discussed in Sect. 2.3.3 above, for any SPP ξ̃(r = 0) = +∞.
Further one can obtain the reduced three-point correlation function (2.8):

ζ̃(r12, r23, r13) =
δ(r1 − r2)δ(r2 − r3)

ρ2
0

. (2.39)

The two previous relations make evident that there is no correlation be-
tween different points. That is, the reduced correlation functions ξ̃ and ζ̃
have only the so-called “diagonal” part. As explained below, this diagonal
part is present in the reduced correlation functions of any other discrete
SPP. At this point we can evaluate the normalized mass variance in a sphere
of radius R by applying (2.29):

σ2(R) =
1

ρ0‖C(R)‖ ≡ 1
〈M(R)〉 ∼ R−3 , (2.40)

which can be expressed in the following form valid in any dimension〈
M2(R)

〉− 〈M(R)〉2 = 〈M(R)〉 , (2.41)
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with 〈M(R)〉 ∼ Rd. In Chap. 3 we show that both for a continuous SSP or
a discrete SPP, if C2CC (r) is mainly positive and rapidly decreasing to zero at
large r (see (2.29)), we have always a relation of proportionality σ2(R) ∼ R−d

at sufficiently large scales in d-dimensions. For this reason we will call this
type of mass distribution “substantially Poisson”. As we will discuss in Chap.
3, we can classify all mass distributions in three different classes depending on
the large scale behavior of the mass fluctuations: (i) “substantially Poisson”,
(ii) “super-homogeneous” and (iii) “critical”, if the normalized mass variance
decays respectively (i) as in (2.40), (ii) faster, or (iii) slower.

As an application of the previous formalism we consider the following
question: what is the probability of finding exactly M particles in a volume
V ? By a direct integration, it is simple to show that for a particle distribution
generated by a homogeneous Poisson point process (2.33) this is given by the
well-known Poisson law (see [142, 208]):

P (M,V ) =
〈M〉M exp(−〈M〉)

M !
(2.42)

where 〈M〉 = ρ0V is the expected average number of particles in the volume
V . The only characterizing parameter is ρ0. Clearly this function satisfies the
normalization condition ∞∑

M=0

P (M,V ) = 1 . (2.43)

From (2.42) we can calculate the number variance obtaining
〈
M2

〉−〈M〉2 =
〈M〉, which is the most famous relation of Poisson statistics and the general-
ization of (2.40) to an arbitrary volume V . Note that sometimes one would
like to generate (for example with a computer simulation) a Poisson distri-
bution by fixing a-priori the total number of points N , in the system volume
V i.e., by throwing N particles in random positions in V . In this case one
cannot know the ensemble value of the average density ρ0 but only the sam-
ple estimate N/V and the properties of its probability distribution are given
again by (2.42). For further discussions of the properties of this probability
distribution see [208, 142].

2.5 Stochastic Point Processes with Spatial Correlations

In this section we analyze in detail some features of correlation functions for
the case of a generic statistically stationary and isotropic stochastic distribu-
tion of point-particles with unitary mass (i.e., SPP). We show that for any
SPP with ρ0 > 0 we can write

ξ̃(r) =
δ(r)
ρ0

+ ξ(r) ,

ζ̃(r1, r2, r12) =
δ(r1)δ(r2)

ρ2
0

+ ζ(r1, r2, r12) , (2.44)
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where the functions ξ and ζ are the non-diagonal parts, which are defined only
for r > 0 and r1, r2 > 0 respectively. In general, ξ(r) (usually denoted h(r) in
statistical physics) is a smooth function of r [90]. The contribution at r = 0
to ξ̃(r) and at r1 = r2 = 0 to ζ̃(r1, r2, r12), are called the diagonal part of the
correlation functions3. In the simple Poisson case ξ(r) ≡ ζ(r1, r2, r12) ≡ 0 (an
example of this kind of distribution is shown in Fig. 2.2). In order to show
the first relation in (2.44) it is sufficient to observe that:

〈ρ̂(r)ρ̂(r′)〉 =

〈∑
i,j

δ(r − ri)δ(r′ − rj)

〉
=

ρ0δ(r − r′) +

〈∑
i�=�� j

δ(r − ri)δ(r′ − rj)

〉
. (2.45)

By calling 〈∑
i�=�� j

δ(r − ri)δ(r′ − rj)

〉
= ρ2

0[1 + ξ(|r − r′|)] , (2.46)

we obtain the first of (2.44). An analogous treatment can be applied to
ζ(r1, r2, r12).

Let us now rewrite the expression linking the normalized mass variance
with the two-point correlation function using (2.44):

σ2(R) =
1

ρ0‖C(R)‖ +
1

‖C(R)‖2

∫
C

∫∫
(R)

d3r1

∫
C

∫∫
(R)

d3r2ξ(|r1 − r2|) . (2.47)

Note that the sign of the second term of (2.47) is not uniquely determined. In
fact we can have, as we have mentioned above, particle distributions whose
normalized mass variance decays faster than 1

‖C(R)‖ for large R (see Chap. 3).
In the discrete case, in order to measure σ2(R), one has to take into account
both terms of (2.47), and not only the second one. Therefore, from (2.29), the
variance (2.47) can, in general, be written as the sum of two contributions:

σ2(R) = σ2
PN (R) + Ξ(R) , (2.48)

where the first term σ2
PN represents the intrinsic Poisson noise present in

any discrete SPP, which is usually called shot noise, and the second term
Ξ(r) (which, as remarked above, does not have a determined sign) is the
additional contribution due to correlations (i.e., due to ξ(r) = 0) between��
different particles.
3 Note that in cosmology only the non-diagonal part ξ(r) is usually called the

two-point correlation function [184].
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2.5.1 Conditional Properties

For the case of a discrete SPP it is often very important to consider observa-
tions from a point occupied by a particle. In order to characterize statistically
these observations it is necessary to define a new kind of average for the ob-
servable F : the conditional average 〈F 〉p. This is defined as an ensemble
average (i.e., over P[ρ(r)]) with the condition that the origin of the coordi-
nates is occupied by a particle of the distribution. When only one realization
ρ(r) extracted from P[ρ(r)] is available, 〈F 〉p can be substituted by the spa-
tial average in the following way. By calling N(V ) the number of particles in
the volume V we can write:

F (ρ(r1), ρ(r2), . . .)p = lim
V →∞

1
N(V )

N(V )∑
i=1

F (ρ(r′
i + r1), ρ(r′

i + r2), . . .) ,

(2.49)
where the sum is restricted to all the points r′

i occupied by point-particles.
Again in the case in which only a finite sample of the system is available, the
sum in (2.49) is restricted to the particles r′

i belonging to the sample, and
(2.49) must be considered only as an estimator of 〈F 〉p.

Let us now introduce the conditional correlation functions. For a SPP the
quantity

〈ρ(r1)ρ(r2) . . . ρ(rl)〉p dV1VV dV2VV . . . dVlVV (2.50)

gives the a-priori probability of finding l particles placed in the infinitesi-
mal volumes dV1VV , dV2VV , . . . , dVlVV respectively around r1, r2, . . . , rl with the
condition that the origin of coordinates is occupied by a particle. We call
〈ρ(r1)ρ(r2) . . . ρ(rl)〉p the conditional l-point average density. In particular
for l = 1 the function 〈ρ(r)〉p represents the average density of particles seen
by a fixed particle at a distance r from it.

It is possible to relate conditional correlation functions to the ordinary
ones by applying the rules of conditional probability. Indeed, using the basic
rule of conditional probability4, one can write:

〈ρ̂(r)〉p =
〈ρ̂(0)ρ̂(r)〉

ρ0

〈ρ̂(r1)ρ̂(r2)〉p =
〈ρ̂(0)ρ̂(r1)ρ̂(r2)〉

ρ0
. (2.51)

However, in general, the following convention is assumed in the definition
of the conditional densities: the particle at the origin does not count itself.
4 Given two events A and B, the conditional probability P (A|B) that the event

A occurs if the event B has occurred, is given by P (A|B) = P (A ∩ B)/P (B),
where P (A∩B) is the unconditional joint probability for the occurrence of both
A, B and P (B) is the unconditional probability for the occurrence of the event
B without any condition [100].
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Therefore 〈ρ(r)〉p is defined only for r > 0, and 〈ρ(r1)ρ(r2)〉p for r1, r2 > 0.
Consequently, we write

〈ρ̂(r)〉p = ρ0[1 + ξ(r)] (2.52)

〈ρ̂(r1)ρ̂(r2)〉p = ρ2
0

[
1 + ξ(r1) + ξ(r2) + ξ̃(r12) + ζ(r1, r2, r12)

]
.

Note that, while 〈ρ̂(r)〉 is a one-point statistical quantity 〈ρ̂(r)〉p is a two-
point quantity as we are conditioning the average to the fact that the origin of
coordinates is occupied by a particle. Similarly 〈ρ̂(r1)ρ̂(r2)〉p is a three-point
statistical quantity.

Before passing to the application to the Poisson case, we note that
〈ρ̂(r1)ρ̂(r2)〉p, even though defined already for r1, r2 > 0, can be separated
(in analogy with the unconditional two-point density) into a diagonal part
giving the singular contribution for r1 = r2 and a non-diagonal part giving
the regular contribution for r1 �=�� r2. In order to obtain this result, we start
directly from the definition

〈ρ̂(r1)ρ̂(r2)〉p =

〈∑
i,j

δ(r1 − ri)δ(r2 − rj)

〉
p

. (2.53)

Equation (2.53) can be rewritten as

〈ρ̂(r1)ρ̂(r2)〉p =

〈∑
i,j

δ(r1 − ri)δ(r2 − rj)

〉
p

=

〈∑
i

δ(r1 − ri)δ(r2 − ri)

〉
p

+

〈
i�=�� j∑
i,j

δ(r1 − ri)δ(r2 − rj)

〉
p

=

δ(r1 − r2) 〈ρ̂(r1)〉p + Γ (2)(r1, r2) , (2.54)

where we have called

Γ (2)(r1, r2) =

〈
i�=�� j∑
i,j

δ(r1 − ri)δ(r2 − rj)

〉
p

. (2.55)

By applying (2.52) to the case of a Poisson distribution, we obtain:

〈ρ̂(r)〉p = ρ0

〈ρ̂(r1)ρ̂(r2)〉p = ρ2
0

[
1 +

δ(r1 − r2)
ρ0

]
. (2.56)

The fact that 〈ρ̂(r)〉p = 〈ρ̂(r)〉 correspond to the fact that in a Poisson
distribution different points are spatially uncorrelated. In general, if a SPP
has a short ranged two-point correlation (i.e., a finite correlation length), then
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conditional and unconditional properties at large distances are practically the
same. Note that conditional correlations, appropriately normalized, have the
important advantage of being well defined also for fractal structures as will
be discussed Chap. 4.

2.5.2 Integrated Conditional Properties

We now study fluctuations of the number of point-particles seen by another
particle of the distribution within a distance R from it. Let us call N(R) the
random variable representing the number of points seen by a given particle
in a sphere of radius R around it. By integrating the first of (2.52) in the
sphere C(r) in d = 3, we can write directly

〈N(R)〉p =
∫

C

∫∫
(R)

〈ρ̂(r)〉pd3r = ρ0‖C(r)‖ + ρ0

∫
C

∫∫
(R)

ξ(r)d3r . (2.57)

Therefore, with respect to unconditional observations, we have an extra-term,
the second one, which take into account the clustering properties of the dis-
tribution compared with a Poisson distribution which has no clustering at all.
Note that since the origin of the coordinates is occupied, (2.57) is a two-point
quantity.

Let us now define the conditional normalized variance σ2
p(r), which is the

variance of the variable N(R):

σ2
p(r) ≡ 〈N(R)2〉p − 〈N(R)〉2p

〈N(R)〉2p
, (2.58)

where
〈N(R)2〉p =

∫
V

∫∫
(R)

∫
V

∫∫
(R)

〈ρ̂(r1)ρ̂(r2)〉pd3r1d
3r2 . (2.59)

2.5.3 Detection of the Homogeneity Scale of a Discrete SPP

In this section we proceed to a further discussion of the concept of homo-
geneity (or uniformity) scale λ0 for a discrete point process, classifying the
different but substantially equivalent definitions given in different sections
above, and explaining the principal method to detect it through the anal-
ysis of a finite sample of the distribution. Only in the case where one has
successfully measured the homogeneity scale to be smaller than the size of
a given sample, can the estimator of the reduced two-point correlation func-
tion in the sample be considered to approximate its real value (defined in
the infinite volume limit or through an ensemble average). This is a crucial
point that must be considered every time one considers the analysis of finite
samples (e.g., volume limited samples of galaxy redshift surveys as discussed
in Chap. 8) of spatial point-particle distributions.
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The homogeneity scale marks the cross-over from large to small correla-
tions or fluctuations. We have already defined this scale in (2.5). An alterna-
tive definition of λ0 is the length-scale at which the normalized mass variance
in spheres is of order unity

σ2(λ0) 	 1 (2.60)

and σ2(R) < 1 for ∀R > λ0. We stress that the definition of the homogeneity
scale via (2.60) can be misleading when the average density is not a well-
defined property in the given sample i.e., if the estimator of the average
density measured in the sample is sample-dependent, as in fractal particle
distributions (see Chaps. 4–5).

Clearly λ0 can be equivalently defined as the length scale beyond which
the average density becomes well-defined, and therefore we can write

|〈ρ̂(r)〉p − ρ0| < ρ0 (2.61)

for all r > λ0. This is equivalent to

ξ(λ0) 	 1 , (2.62)

and ξ(r) < 1 for all r > λ0. Note that for both these definitions, we need
to have a sufficiently precise estimator of the asymptotic average density ρ0

in order to find λ0. For a single sample, this requirement is satisfied if its
size Rs � λ0. It may seem that there is a problem here for analysis in a
finite sample: to evaluate λ0 we need to know ρ0 accurately enough, but to
know ρ0 in turn we need to know λ0 in such a way that the ratio between
the number of points in the sample and its volume is a good estimator of
the asymptotic average density. In order to break this loop and to make it
possible that the function ξ(r) can be accurately enough estimated in a single
finite sample, we need to have a method for determining λ0 independently
of the knowledge of ρ0. The operative way to detect the homogeneity scale
is by looking for a flattening of the conditional density 〈ρ̂(r)〉p with scale
[223]. In fact, if the system reaches to a good approximation the condition of
homogeneity well within the sample size, then the conditional density 〈ρ̂(r)〉p
must flatten toward ρ0 for some r < Rs. The point where the flattening is
observed can be taken to represent λ0. Only if λ0 < Rs is detected in this way
is it possible to estimate ξ(r) from the finite sample. The latter then gives
a more refined instrument than the conditional density to study correlations
and their spatial persistence and to address the more difficult problem of
detecting the correlation length rc from a single sample (see also Chap. 9).
Note that this method of detection of λ0 is free from any a-priori assumption
about the homogeneity in the sample. As will be discussed in Chaps. 8–9 this
is a very important point in the context of the analysis of galaxy redshift
surveys.

Let us finally emphasize again that, whichever of the above definitions is
used for λ0, this length scale is a completely distinct one from the correlation
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length rc which measures a different property of the system. To clarify this
point it suffices to consider a case in which we have a critical system with
a well defined average density (and hence not a fractal) for which ξ(r) =
(r/r0)−γ with 0 < γ < d. In this case λ0 = r0, while as discussed before
rc → +∞. This is due to the fact that λ0 is related to the amplitude of
fluctuations (in this case given by r0), while rc describe the persistence of the
correlation in the fluctuations regardless of their amplitude.

2.6 Nearest Neighbor Probability Density
in Point Processes

The probability density of the distance between nearest neighbor (nn) parti-
cles in a stochastic particle distribution (i.e., point process) is important for
many physical applications. The simple Poisson case was first considered in
[111]. It is possible to extend, with some approximations, this approach to
the case of a particle distribution with correlations (for a complete analysis,
see [230]).

Let us denote by ω(r)dr the probability that the nn particle to a given
particle lies at a distance in the range [r, r + dr]. This probability is equal by
definition to the joint probability that there are no particles in the range [0, r],
and a particle in the spherical shell between r and r +dr. Let us assume first
that these two events can be considered independent of one another. Using
the definitions of the conditional density 〈ρ̂(r)〉p and of the PDF ω(r), the
function ω(r) itself must then satisfy the equation in d = 3

ω(r) =
(

1 −
∫ r

0

∫∫
ω(r′)dr′

)
4πr2〈ρ̂(r)〉p . (2.63)

Clearly the probability of having no particles in [0, r) and that of having one
particle in [r, r+dr) are really independent only in absence of density-density
correlations between different spatial points (i.e., only in the case of a Poisson
distribution). However, (2.63) can be used as an approximate equation also
for the case that correlations are non-zero but sufficiently weak.

2.6.1 Poisson Case

In a Poisson distribution (2.63) is exact because of the absence of any spatial
correlation between different points. Using (2.56), we obtain

ω(r) = 4πρ0r
2 exp

(
−4πρ0r

3

3

)
, (2.64)

by solving explicitly the integral (2.63) (see Fig. 2.6). This function satisfies
the necessary normalization condition
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Fig. 2.6. Nearest-neighbor distribution for a Poisson point process (solid line) with
average density ρ0 = 1 and 〈Λ〉 ≈ 0.5 and for a particle distribution with power-law
correlation of the type ξ(r) = (r/10)−1 (dashed line)

∫ ∞

0

∫∫
ω(r)dr = 1 . (2.65)

A useful distance scale is the average distance between nearest neighbor
particles:

〈Λ〉 =
∫ ∞

0

∫∫
ω(r)rdr . (2.66)

We readily obtain

〈Λ〉 =
(

3
4πρ0

) 1
3

ΓeΓΓ

(
1 +

1
3

)
, (2.67)

where ΓeΓΓ (x) is the Euler gamma-function. Therefore the average nn separa-
tion is of the same order as the average distance per particle ρ

−1/3
0 , which in

this case is also the homogeneity scale λ0 (i.e., the only intrinsic length scale
of the distribution). It is possible also to compute the typical fluctuation of
the nn separation by considering that

〈Λ2〉 =
∫ ∞

0

∫∫
ω(r)r2dr = ΓeΓΓ (5/3)

(
4
3
ρ0

)− 2
3

, (2.68)

from which we obtain that
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Σ2
Λ = 〈(Λ − 〈Λ〉)2〉 =

(
ΓeΓΓ (5/3) − Γ 2

eΓΓ (4/3)
)(4

3
ρ0

)− 2
3

(2.69)

so that
ΣΛ

〈Λ〉 	 1
3

. (2.70)

The probability of finding a point in the range [0, r] is thus very small if
r � 〈Λ〉. In Chap. 4 we will extend this result to the case of an inhomogeneous
Poisson SPP, in which the average density of particles 〈ρ̂(r)〉 depends on r.

2.6.2 Particle Distributions with Spatial Correlations

Let us now extend the analysis in d = 3 of the nn distance to homogeneous
SPPs with weak correlations. In this case (2.63) can be seen as a first order
approximation. We denote 〈ρ̂(r)〉p = Γ (r) to make clear that for a statisti-
cally stationary and isotropic particle distribution 〈ρ̂(r)〉p depends only on
the scalar distance r. From (2.63), we then obtain

ω(r) = A(r∗)r2Γ (r) exp
(
−4π

∫ r

r

∫∫
∗

r′2Γ (r′)dr′
)

, (2.71)

where r∗ is an arbitrary normalization distance, and A(r∗) is the normaliza-
tion constant depending on r∗ for a given Γ (r). Let us consider two different
cases corresponding to different functional behaviors of Γ (r) = ρ0(1 + ξ(r)).

• Let us consider the case where the reduced correlation function has an
exponential decay of the type

ξ(r) = A exp(−r/rc) , (2.72)

with A < 1. In this case, from (2.52), we can further approximate

Γ (r) ≈
{

ρ0(1 + A) for r � rc

ρ0 for r � rc .
(2.73)

Hence for r � rc the behavior converges rapidly to that found for the
purely Poisson case, but with the replacement ρ0 → ρ′0 = ρ0(1+A), as the
small distance behavior clearly gives the dominant contribution.

• A very different situation occurs when the reduced correlation function has
a power-law behavior with distance:

ξ(r) 	
(

r

r0

)−γ

for r � r0 , (2.74)

with 0 < γ < 3. From (2.52) and (2.71), one has

ω(r) = Aρ0r
2

[
1 +

(r0

r

)−γ
]

exp
(
−4π

3
ρ0r

3 − 4πρ0

3 − γ
rγ
0 r3−γ

)
. (2.75)
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From (2.75) we see that for r � r0 the behavior converges slowly to the
Poisson one. Instead for r � r0, where ξ(r) � 1, it is very different and,
as discussed in Chap. 4, is very similar to the behavior typical of a fractal
particle distribution.

2.7 Gaussian Continuous Stochastic Fields

In this section we present the basic properties of the most important case of a
continuous SSP: the Gaussian field. Its relevance relies on two mathematical
facts:

• The central limit theorem: as we will discuss in Sect. 2.10, if about a
random variable Y can be seen as the appropriately normalized sum of
many independent (or almost independent) random variables, then one
can demonstrate, making appropriate hypotheses that Y is a Gaussian
variable;

• Information theory [174]: as we will discuss in Sect. 2.11 if a random vari-
able we know only the average value and the finite variance, then its most
probable probability distribution is the Gaussian one. This can be seen by
maximizing the Shannon entropy with the constraint given by the knowl-
edge of the average value and the variance.

Therefore, when one studies stochastic signals, in many contexts Gaus-
sianity arises as a natural working hypothesis at least as a zero order ap-
proximation. This is the case in cosmology, for example, of the temperature
fluctuations in the CMBR.

Here we first introduce the generic Gaussian field without the requirement
of spatial stationarity and subsequently we specialize the discussion to the
stationary case.

In order to introduce the Gaussian continuous mass density field in a
simple way, let us consider a partitioning of space into small cubic cells of
volume ∆V whose center is denoted ri. The random variable representing
the local average density in the ith cell is

ρ(ri;∆V ) =
1

∆V

∫
∆V

∫∫
(ri)

ddrρ̂(r) ,

where ρ̂(r) is the microscopic stochastic field and ∆V (ri) is the small cell
around the point ri. The probability of a realization {ρ(ri;∆V )} of the Gaus-
sian mass density field is defined by the joint probability density function
p({ρ(ri;∆V )}) given by:

p({ρ(ri;∆V )}) = B exp

⎡
⎣
⎡
−1

2

∑
i,j

(ρ(ri;∆V ) − mi)Aij(ρ(rj ;∆V ) − mj)

⎤
⎦
⎤

,

(2.76)
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where B is the normalization constant, Â = ((Aij)) a positive definite and
symmetric matrix and mi are real constants. In general Aij will depend on
ri, rj and on the discretization volume ∆V . If the continuous limit ∆V → 0
is appropriately taken, p({ρ(ri;∆V )}) converges to the Gaussian functional
P[ρ(r)] for the microscopic field ρ̂(r):

P[ρ(r)] ∼ exp
[
−1

2

∫
V

∫∫ ∫
V

∫∫
ddr ddr′(ρ(r) − m(r))K(r, r′)(ρ(r′) − m(r′))

]
,

(2.77)
where V is the volume of the space of definition of the field,

K(ri, rj) = lim
∆V →0

Aij

∆V 2
,

is the so-called correlation kernel, and m(r) is an arbitrary function that, as
we show below, defines the average of the field.

In order to see why the matrix Â must be positive definite, it is sufficient
to use the fact that p({ρ(ri;∆V )}) is a probability density function. If Â is
not positive definite it is simple to show that p({ρ(ri;∆V )}) cannot be prop-
erly normalized by integrating over all the possible discretized mass density
functions ρ(r;∆V ). Indeed let us call δρ the vector whose ith component is
[ρ(ri;∆V ) − mi], therefore we can rewrite (2.76) in the following vectorial
form

p({ρ(ri;∆V )}) ≡ p(δρ) = B exp
[
−1

2
δρ · Âδρ

]
. (2.78)

Since Â is symmetric, it is diagonalized by an orthonormal transformation R̂
(orthogonality implies R̂−1 = R̂t, where R̂−1 is the inverse matrix and R̂t is
the transposed).

Let us call Q ≡ R̂δρ. The components of Q, being linear combinations
of those of δρ, are stochastic variables. By calling Ŝ ≡ R̂ÂR̂t, which is a
diagonal matrix (Sij = Siiδij), we can write the probability density function
f(Q) of the “rotated” stochastic field Q as

f(Q) ≡ p(δρ = RtQ) = B exp

[
−1

2

∑
i

SiiQ
2
i

]
≡ B

∏
i

exp
[
−1

2
SiiQ

2
i

]
,

(2.79)
which is the product of one-dimensional Gaussian functions. The Sii are
the eigenvalues of Â. The normalization constant is unchanged because the
change of variables determined by an orthonormal transformation has an
unitary Jacobian determinant. From (2.79), in order to have f(Q) (and hence
p({ρ(ri;∆V )})) integrable over all the variables Qi (i.e., normalizable) we
need Sii > 0 ∀i. This is equivalent to requiring Â to be positive definite. We
will see in Chap. 3 that this requirement, in the case in which Aij depends
only on ri − rj , is another formulation of the Khinchin or Bochner theorem
for Gaussian fields.
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It is simple to show that

〈ρ(ri;∆V )〉 = mi ∀i
(2.80)〈(ρ(ri;∆V ) − mi)(ρ(rj ;∆V ) − mj)〉 = CijCC ,

where Ĉ ≡ ((CijCC )) = Â−1. Because of (2.80), Ĉ is called the correlation
matrix. The diagonal element CiiCC is the variance of the stochastic field ρ̂ in
the ith cell (i.e., in the cell around ri). The main feature of a Gaussian field
is that the knowledge of the set of average values {mi} and of the correlation
matrix Ĉ determines completely any other l-point correlation coefficient (i.e l-
point correlation function in the continuous limit) for any l > 2. In field theory
this property is called Wick’s theorem and can be formulated as follows:

〈(ρ(ri1) − mi1) . . . (ρ(ril
) − mil

)〉 ={
0 if l is odd

l!
(l/2)!2l/2

{
CiCC 1i2 . . . CiCC

l−1il

}
symm

if l is even (2.81)

where
{
CiCC 1i2 . . . CiCC

l−1il

}
symm

represents the symmetric product of
CiCC 1i2 . . . CiCC

l−1il
. For instance for l = 4 with four different indices, we have

{CiCC 1i2CiCC 3i4}symm =
1
3

[CiCC 1i2CiCC 3i4 + CiCC 4i1CiCC 2i3 + CiCC 1i3CiCC 2i4 ] .

A trivial case is {
C2

iiCC
}

symm
= C2

iiCC .

It is simple to show that (2.81) is equivalent of saying that all the cumulants
of order greater than two of the Gaussian distribution are zero.

The most important case is when the Gaussian field is spatially stationary
(or homogeneous). In this case mi = ρ0 ∀i, Aij = A(ri − rj), and, as a
consequence, CijCC = C(ri − rj) which is the discretized two-point connected
correlation function. If the field is also statistically isotropic Aij and CijCC
depend only on |ri−rj |. Moreover, if ρ0 �= 0, we can write the dimensionless,��
but discretized, connected two-point correlation function ξ̃(ri, rj) as:

ξ̃(ri, rj) =
CijCC

ρ2
0

. (2.82)

The main property of a spatially stationary Gaussian field is that the diago-
nalizing operator for the correlation matrix Ĉ (and also its inverse Â) is the
Fourier Trasform operator. This will be shown in Chap. 3, where the anal-
ysis of stationary Gaussian fields will be completed through the discussion
of the properties in Fourier space, the problem of the continuum limit, and
the presentation of a simple recipe to construct correlated Gaussian fields.
For the moment, concerning this last point, we only specify that in the con-
tinuous limit ∆V → 0 the double sum in (2.76) becomes a double integral
and p({ρ(ri;∆V )}) converges to the functional P[ρ(r)] as shown by (2.79).
Therefore the ensemble averages become path integrals where any functional
form ρ(r) of the microscopic field ρ̂(r) represents a single path.
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2.8 Power-Laws and Self-Similarity

A power-law correlation function usually has deep conceptual implications.
In particular it implies self-similarity of the fluctuation field. The term self-
similarity was introduced in connection to fractal objects and second order
phase transitions in order to characterize their shared property of giving
spatial patterns whose high degree of complexity is invariant under a scale
transformation [116]. The same concept is also referred to as scale-invariance.

In the context of stochastic processes self-similarity can be defined as
follows: applying to space a re-scaling of the length by a factor b > 0

r → r′ = br (2.83)

leaves the correlation function between fluctuations unchanged apart from a
re-scaling of the global amplitude that depends on b but not on the variable
r. This leads to the functional relation (we use the notation C2CC (r) in order
to unify the analysis for the continuous and the discrete case):

C2CC (r′) = C2CC (br) = A(b)C2CC (r) for r > 0 (2.84)

which is clearly satisfied by a power-law with any exponent (A(b) is a pre-
factor depending on b only). Indeed, for

C2CC (r) = ξ0r
−γ (2.85)

we have
C2CC (r′) = ξ0[br]−γ = b−γC2CC (r) . (2.86)

Note that (2.84) does not hold, for example, for an exponential function

C2CC (r) = ξ0e
−r/r0 . (2.87)

We have seen in Sect. 2.3.2 that r0 is the correlation length rc of this stochas-
tic field, while fields satisfying (2.85) have rc → ∞.

Equation 2.86 reflects the fact that for a power-law C2CC (r) a re-scaling
of distances does not change the persistence of the spatial correlation of the
fluctuation field. That is the re-scaling of distances results only in a re-scaling
of the amplitude of fluctuations, but not in a change of the rate of decrease
of their spatial “memory”. As the amplitude changes, the homogeneity scale
(whatever its precise definition) will change. Instead for a ξ(r) as in (2.87),
a spatial re-scaling changes both properties. In both cases the correlation
length actually changes as r

′
c = b rc, but in the first case, if 0 < γ < d,

where d is the spatial dimension rc → +∞. The case γ > d, even though we
have a sort of scale-invariance, is usually assimilated in statistical physics to
the exponential case because, from the point of view of spatially integrated
fluctuations (see Sect. 2.3.4), we have a behavior of the same kind as that of
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an exponential correlation function. On the contrary, as explicitly shown in
Chap. 3, for 0 < γ < d the spatially integrated fluctuations have a stronger
persistence at any scale. This is the reason why for the case γ > d one usually
speaks of “non-dangerous” power-laws.

In Figs. 2.7–2.9 we show a visual example of “self-similarity” and of the
real meaning of the correlation length. The system represented is the two-
dimensional Ising model, in absence of an external magnetic field. It is the
most widely studied model to investigate the critical behavior of a system
at a second order phase transition (e.g., magnetic or liquid-gas systems at
the critical point) [116]. This model shows scale-invariant properties when
the temperature is set to the critical value TcTT . In all the three figures the
concentric boxes give the concentric reproduction of a finite portion of the
system under three different re-scalings of the distances. This re-scaling pro-
cedure is also called coarse graining. In all the figures the two different colors
represent the two local states of magnetization (positive and negative). Note
that the color does not refer to the amplitude of fluctuations, but only to
their sign. They could be equally 10−5 or 105 times the average value of the
studied stochastic field: the self-similarity has nothing to do with their ampli-
tude. Therefore the size or characteristic length of a single color area gives a
measure of the persistence of fluctuations, and thus of the correlation length
of the stochastic system. A similar construction can be made, for example,
also for a stochastic mass density field representing areas where the density
fluctuation from the average is positive with one color and areas of negative
fluctuations with another color.

When T > TcTT (Fig. 2.7) both the states of magnetization are present
in the system, and the regions with constant magnetization (i.e., of a single
color) have a typical size which is a decreasing function of (T − TcTT ) (i.e.,
∼(T − TcTT )−ν with ν > 0). This size, as stated above, is strictly related to
the finite correlation length rc(T ) at the temperature T . Therefore, under
repeated re-scaling of distances, as shown by the figure, the average size
of the regions magnetized in one direction decreases until they disappear
completely. That is the coarse-graining does not act only on the amplitude
of correlations, but also on their spatial scale. Consequently the fluctuation
field is not self-similar. Instead when T < TcTT (Fig. 2.9) (spontaneously broken
symmetry) one state dominates over the other. However the typical size of
the residual state (the dark one in the figure), i.e. the size of the holes in the
dominating state, is again finite. This is a measure of the correlation length
which is therefore finite, and the re-scaling procedure has a similar effect as
in the T > TcTT phase, marking the lack of self-similarity or scale-invariance.
Finally at T = TcTT (see Fig. 2.8) again as at T > TcTT , the two magnetization
states are equally present in the system, but the size of regions of a given color
only has no characteristic finite value, i.e., we have regions of a fixed state
of magnetization of any size, and the correlation length rc(TcTT ) is infinite. A
direct consequence of this situation is that under spatial re-scaling we obtain
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Fig. 2.7. Ising model at temperature T > TcTT . Compact regions of both states of
magnetization are present, but they have a small typical size which is a measure of
the finite correlation length rc(T ). The finiteness of the correlation length implies
that under a coarse graining (i.e., rescaling of distances) the picture does not look
the same and the typical size of compact regions changes. This means that the
fluctuation field is not spatially self-similar.

images practically indistinguishable from the original one. Therefore we see
that the concept of self-similarity and scale-invariance are strictly related to
that of the correlation length in statistical physics. On the other hand, the
concept of homogeneity scale is not of relevance in this context.

This discussion is closely related to the Gaussianity of fluctuations in
the system. As shown explicitly in Sect. 2.10, the integrated fluctuations in a
finite volume e.g., the mass fluctuations ∆M(V ) in a volume V of a stochastic
mass density field, can be considered Gaussian only if the size of the volume
V 1/d (where d is the space dimension) is much larger than the correlation
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Fig. 2.8. Ising model at the critical temperature (T = TcTT ): There are clusters of
fluctuations of a fixed sign of all sizes and the correlation length diverges rc(TcTT ) →
∞. The absence of an intrinsic characteristic scale is shown by the fact that at
different “zooms” the system looks the same i.e., the fluctuation field is self-similar
and has fractal features

length rc. On the other hand, for a stochastic density field with an infinite
correlation length the mass in a finite volume V of is not Gaussian distributed
at any spatial scale.

2.9 Mass Function and Probability Distribution

Let us now consider the statistical properties of a stochastic distribution
of point-particles with different masses. The ith particle has mass mi. The
microscopic density is then

ρ(x) =
∑

i

miδ(r − ri) . (2.88)
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Fig. 2.9. Ising model below the critical temperature (T < TcTT ). In this case the
symmetry of the system is spontaneously broken, and one of the two states of mag-
netization dominates. The clusters of the opposite state of magnetization (i.e., the
holes in the dominating magnetization) have a typical finite size which is a measure
of the finite correlation length rc(T ). Consequently, the system no longer appears
self-similar under coarse graining

As discussed at the beginning of the chapter, point processes can be gener-
alized to include point-particle distributions generated not only through a
stochastic choice of the positions of the particles, but also of their masses. In
general these two quantities are correlated. We limit now the discussion to
the simplest case in which there is no correlation between mass and position.
The opposite case of strong correlations between positions and masses will be
presented in Chap. 5 in the context of multifractal measures. Thus the joint
probability density function of having N particles of masses m1,m2, . . . ,mN

placed respectively at the points r1, r1 . . . , rN is then of the form:
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f(r1, . . . , rN ;m1, . . . ,mN ) = p(r1, . . . , rN )
N∏

i=1

φ(mi) ,

where φ(m) is the probability density function (or mass function) for the
mass of a particle with m > 0. In particular, with this hypothesis, the joint
probability of finding a particle of mass between m and m+dm in the volume
element dV at r can be written as

ν(r,m)dV dm = 〈ρ̂(r)〉φ(m)dV dm . (2.89)

For the conditional probability (i.e., conditioned on observing particles from
another particle) we simply obtain

〈ν(r,m)〉p dV dm = 〈ρ̂(r)〉p φ(m)dV dm . (2.90)

Let us now analyze the statistical properties of the macroscopic mass M(V )
in a finite volume V . We can write

M(V ) =
∫

V

∫∫
ddr

∑
i

miδ(r − ri) . (2.91)

It is clear that
〈M(V )〉 = m0n0V , (2.92)

where
m0 =

∫ ∞

0

∫∫
dmmφ(m)

and n0 > 0 is the average number density of particles, i.e., 〈∑i δ(r − ri)〉.
On the other hand

〈
M2(V )

〉
= m2

1n0V + m2
0n

2
0

(
V 2 +

∫
V

∫∫ ∫
V

∫∫
ddrddr′ξ(r, r′)

)
, (2.93)

where
m2

1 =
∫ ∞

0

∫∫
dmm2 φ(m)

and

ξ(r, r′) =
1
n2

0

〈∑
i�=�� j

δ(r − ri)δ(r − rj)

〉
− 1

is the usual non-diagonal part of the connected two-point correlation function
of the number density (as usual we are particularly interested in the case in
which the microscopic number density is statistically stationary, which gives
ξ(r, r′) = ξ(r − r′)). Therefore the quadratic mass fluctuation is:

〈
M2(V )

〉− 〈M(V )〉2 = m2
1n0V + m2

0n
2
0

∫
V

∫∫ ∫
V

∫∫
ddrddr′ξ(r, r′) , (2.94)
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which is the extension to the case of distributions of point-particles with
different masses of (2.29). Similarly we can extend (2.59) by using also the
third moment of the probability density function φ(m) and the three-point
correlation function of the number density.

An important question, in the present context, is whether there is a scale
above which M(V ) (or its fluctuations appropriately normalized) can be con-
sidered a Gaussian variable. The arguments given in Sect. 2.10 below about
the validity of the central limit theorem can be applied directly to the case of
point-particles of equal mass. They can also be extended to include the case
of different masses. In particular if m2

1 is finite and the correlation length rc

of the microscopic number density is finite we can say that M(V ) is Gaussian
if V 1/d � rc. If, instead, m2

1 and/or rc are infinite we cannot draw such a
conclusion.

Note that in general there are more difficult cases of spatial distributions
of point-particles with masses. The first case is when n0 > 0 is well defined,
but there are non-trivial correlations between masses and positions. The sec-
ond case is when the point-particle distribution is fractal (n0 = 0 but the
conditional average number density is slowly decreasing as a power-law), and
masses and positions are not correlated. Finally, the last and more difficult
case is when the point-particle distribution is fractal and positions and masses
are correlated. All these possibilities will be discussed in Chap. 5.

2.10 The Random Walk and the Central Limit Theorem

In order to consider an example of a stochastic process leading to a Gaussian
behavior of certain quantities, let us consider an ordinary one-dimensional
random walk without memory [43]. To discuss this process is very important
because it permits, through the introduction of the central limit theorem, to
show the extent of the “Gaussian class” of processes. We will then consider
how memory (i.e correlations) introduces mathematical complications which
may lead to deviations from the central limit theorem [186].

Let us firstly consider the uncorrelated walk in one dimension. The walk
consists of random independent steps of length xn with n = 1, 2, . . . . whose
common probability density function is p(x). For simplicity we assume that
the distribution has zero average:

〈x〉 =
∫ ∞

−∞

∫∫
p(x)xdx = 0 . (2.95)

Moreover let us consider the case in which
〈
x2
〉

> 0 is finite. We are interested
in the probability density function of the end-to-end distance XN after N
steps i.e., of the variable

XN =
N∑

n=1

xn . (2.96)
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The problem is easily generalized to the case in which 〈x〉 �= 0 by considering��
that on average it introduces a constant drift N 〈x〉 to the sum variable XN .

It is convenient to introduce the re-scaled variable

UNU =
XN√

N
. (2.97)

Let us call W (UNU ) the PDF of UNU . The problem of determining it reduces
therefore to the evaluation of the integral

W (UNU ) =
∫

. . .

∫ +∞

−∞

∫∫ [
N∏

n=1

dxnp(xn)

]
δ

(∑N
n=1 xn√

N
− UNU

)
(2.98)

where δ(x) is the Dirac delta-function. The joint probability density of the
path leading to XN can be factorized due to the independence of different
steps. By using the integral representation of the delta-function

δ(y) =
1
2π

∫ ∞

−∞

∫∫
exp(iky)dk (2.99)

we obtain

W (UNU ) =
1
2π

∫ ∞

−∞

∫∫
dk exp(−ikUNU )

[
N∏

n=1

∫ +∞

−∞

∫∫
dxnp(xn) exp(ikxn/

√
N)

]
.

(2.100)
Since the function p(xn) is the same at each step, all the terms of the product
in (2.100) are identical. This gives[

N∏
n=1

∫ +∞

−∞

∫∫
dxnp(xn) exp(ikxn/

√
N)

]
=
[∫ ∞

−∞

∫∫
dxp(x) exp(ikx/

√
N)

]N

.

(2.101)
By expanding the exponential term in the right side integral of (2.101), and
considering that

〈
x2
〉

< +∞, we obtain

[∫ ∞

−∞

∫∫
dxp(x) exp(ikx/

√
N)

]N

	
[
1 +

ik√
N

〈x〉 − k2

2N

〈
x2
〉

+ o(k2/N)
]N

,

(2.102)
where o(a) means an infinitesimal of higher order than a. The second term
in the sum of the right-hand side of (2.102) is zero in view of (2.95).

For large N we then have

lim
N→∞

[
1 − k2

2N

〈
x2
〉

+ o(N−1)
]N

= exp
[
−k2

2
〈
x2
〉]

. (2.103)

Inserting this result into (2.100) we eventually obtain the central limit Gaus-
sian theorem
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WgWW (U) = lim
N→∞

W (UNU ) =
1√

2πσ2
exp

[
− U

2σ2

]
(2.104)

with variance
σ2 =

〈
x2
〉

(2.105)

which is equal to that of p(x). Considering the variable XN , we can say that
for sufficiently large N it is a Gaussian variable with zero average value and
variance given by

〈
X2

N

〉 	 Nσ2. The central limit theorem thus gives the well
known property of the random walk, that after N steps a distance 	 √

Nσ
is covered.

We point out an important property of the Gaussian PDF often referred
to as stability which is strictly related to the above limit theorem. A PDF
p(x) is said to be stable if, given two mutually independent variables X1

and X2 identically distributed according to p(x), then the sum variable Y =
X1 + X2, appropriately normalized (in the present case divided by

√
2), is

again distributed according to the same PDF p(x). The Gaussian PDF is
not the only stable probability law, but it is probably the most important in
physical applications.

There are two essential elements which have allowed us to obtain the
Gaussian distribution for the sum of variables i.e., the central limit theorem:

1. The steps are mutually independent and identically distributed. This al-
lows us to factorize the total probability distribution in (2.98) and to
obtain a product of N identical terms in (2.100).

2. The second moment
〈
x2
〉

is finite permitting the expansion in (2.102) and
(2.103).

Note that, in order to obtain the result (2.104), it is not necessary to have
for each step the same PDF p(x). It is sufficient that all the steps have only
the same 〈x〉 = 0 and the same finite

〈
x2
〉

> 0.
It is possible to define random walks satisfying the first requirement above

but not the second. A particularly interesting case is represented by the so-
called Levy flights [178] (see Appendix B). For these walks p(x) has a power-
law tail at large x and the second moment

〈
x2
〉

diverges. The main effect of
this modification is that the asymptotic end-to-end distribution is no longer
Gaussian but has a so-called fat tail (i.e., slow power-law). However other
limit theorems can be proved for this case leading to other stable asymptotic
PDFs [178].

Weakening the first condition can also lead to deviations from the central
limit Gaussian behavior. Let us analyze this point in more detail. Following
a derivation analogous to that given above, it can be shown that if all the
steps xn are mutually independent, but not equally distributed i.e., all with
zero mean but different finite variances

〈
x2

n

〉
such that

∑N
n=1

〈
x2

n

〉 ∼ N for
large N and under suitable hypothesis on the higher moments of {xn}, then
for asymptotically large N the variable XN is still Gaussian with zero mean
but with variance
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σ2(XN ) =
N∑

n=1

〈
x2

n

〉
.

Since σ2(XN ) ∼ N for large N , then UNU is Gaussian with the variance

σ2(UNU ) =
∑N

n=1

〈
x2

n

〉
N

independent of N . In more general, if all {xn} are independent and
〈
x2

n

〉
<

+∞ such that σ2(XN ) ∼ Nα with α > 0, under suitable hypothesis on
the tails of the PDFs {pn(xn)} of the variables {xn}, then UNU , redefined as
XN/Nα/2, is Gaussian in the large N limit with asymptotic variance inde-
pendent of N .

Another situation in which the first condition is relaxed is when the single
steps xn are identically distributed with zero mean and finite variance, but
non-zero correlations are present i.e.,

〈xnxm〉 �= 0 for some�� n �=�� m .

In this case the behavior of UNU (and also of XN ) for large N depends on how
long the correlation of the steps persists i.e., it depends on the correlation
length of the step-step correlation function 〈xnxm〉. In particular it can be
shown [84, 186] that if the correlation length (expressed as a number of steps)
is finite and N is much larger than it, then UNU is again a Gaussian variable
with zero mean and finite variance. In this case, however, the variance is
not simply given by

〈
x2
〉
, but depends also on the correlation function. For

example, if 〈xnxm〉 decays as A exp
(
− |n−m|

τ

)
with finite correlation length

τ > 0, then for N/τ � 1, the variable UNU can be considered with good
approximation a Gaussian variable with a variance depending on

〈
x2
〉
, A,

and τ , diverging when one of these three parameters diverges.
To illustrate this last case we consider a further simple explicit example.

Let us consider the set of random variables {x1, x2, . . . , xN} all with zero
mean and the same finite variance

〈
x2
〉
. Moreover we suppose that we can

partition this set into N/m (we take for simplicity N as an integer multiple of
m) sub-sets {x(l−1)m+1, x(l−1)m+2, . . . , xlm} with l = 1, . . . , N/m, in such a
way that two variables are correlated if they belong both to the the same sub-
set, while they are not if they belong to two different sub-sets. It is clear that
m represents the correlation length of this system. Moreover let us suppose
for simplicity that

〈
x(l−1)m+ix(l−1)m+j

〉
= a �= 0, with 1�� ≤ i �=�� j ≤ m and

l = 1, . . . , N/m, where a is a constant independent of i, j and l. Clearly
|a| ≤ 〈

x2
〉
. The variable XN , as defined by (2.96), can be rewritten as

XN =
N/m∑
l=1

yl , (2.106)
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where

yl =
m∑

i=1

x(l−1)m+i for l = 1, . . . , N/m , (2.107)

form a set of independent variables with zero mean and common variance〈
y2

l

〉
= m

〈
x2
〉

+ m(m − 1)a . (2.108)

At this point we can apply the central limit theorem for independent variables
to (2.106), obtaining that, when N/m → ∞, the PDF of XN is a Gaussian
with zero mean and variance given by

σ2(XN ) = N [
〈
x2
〉

+ (m − 1)a] .

Consequently, the variable UNU defined by (2.97) is Gaussian with variance〈
x2
〉

+ (m − 1)a.
Coming back to the general case, it is possible to show that, if the cor-

relation function 〈xnxm〉 has an infinite correlation length i.e., it decreases
with |n−m| as a sufficiently slow power-law, the PDF of XN in the large N
limit no longer converges to a Gaussian distribution, and its form strongly
depends on the step-step correlation function.

2.10.1 Probability Distribution of Mass Fluctuations
in Large Volumes

Let us now apply these results on the random walk to stationary stochastic
mass density fields in d-dimensions with a well defined average density ρ0 > 0.
In complete analogy, we can say that, if the reduced density-density correla-
tion function C2CC (r) has a finite correlation length rc (i.e., if C2CC (r) decreases
sufficiently rapidly as a function of r), then the mass M(R) contained in a
given spherical volume of radius R, with R � rc can be considered approx-
imately a Gaussian variable with mean ρ0V (R) (where V (R) is the volume
of the sphere of radius R), and variance proportional to (R/rc)d with a coef-
ficient depending on rc and on the amplitude coefficient of C2CC (r). Note that,
as a consequence, the “local” average density in the same volume, defined by
ρ(R) = M(R)/V (R), is also Gaussian, but with mean ρ0 and variance pro-
portional to R−d. Therefore in the limit R → ∞ the PDF of ρ(R) converges
to the Dirac delta-function δ (ρ(R) − ρ0). This shows that ρ(R) in the large
R limit is a self-averaging variable with mean ρ0.

On the contrary if ρ0 > 0 is still well defined, but C2CC (r) has an infinite
correlation length, decreasing slowly to zero, then the variable M(R) cannot
in general be considered Gaussian at any R, and the shape of its PDF will
depend strongly on C2CC (r). As shown above, in this case, the variance of
M(R) is proportional to Ra with d ≤ a < 2d. From this we can derive
simply that the variance of ρ(R) is proportional to Ra−2d. This ensures,
even in this “strongly correlated” case, the convergence of the PDF of ρ(R)
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to δ (ρ(R) − ρ0) for R → ∞. This is another way of saying that, because
of the normalization of ρ(R) with respect to M(R), the convergence of its
PDF to a delta-function is not governed by the central limit theorem, but
by the law of large numbers [100], which has a range of validity much larger
than the central limit theorem. In fact, it can be shown that for its validity
it is sufficient only that C2CC (r) → 0 for r → ∞, independently of the rate
of decrease to zero (i.e., of the correlation length) of C2CC (r) itself. Due to
this, the limit self-averaging shape of the PDF of ρ(R) is approximately
reached when R � λ0, where λ0 is the homogeneity scale which has been
defined above. However, in this strongly correlated case, there is no length
beyond which we can say that ρ(R) is, with good approximation, Gaussian.
For instance, at the critical point of a second order phase transition, where
the long-range correlations yield diverging fluctuations, the situation is more
complicated and the PDF is generally non trivial. A remarkable simplification
occurs even in critical systems where the large scale fluctuations give rise to
universality [148]: for macroscopic quantities this means that the shape of the
PDF depends only on few general characteristics of the system (see [5, 197]
and references therein). Many aspects of non-equilibrium PDF have been
explored by [5, 197], resulting in a classification of non-Gaussian PDFs for
macroscopic quantities in non-equilibrium steady states.

This discussion clarifies further the different roles of the correlation and
the homogeneity scales in homogeneous stationary stochastic fields. A more
extreme case will be presented in Chap. 4 when fractal mass distributions
will be considered.

2.11 Gaussian Distribution as the Most Probable
Probability Distribution

Here we show briefly that the Gaussian distribution for a random variable
can be seen as the most probable distribution if, about the variable, we know
only the mean value and the finite variance.

The derivation of this result is based on the use of the so-called Shannon
entropy introduced in the context of information theory [174]. The concept
of Shannon entropy is just fundamental in information theory. The entropy
of a random variable is defined in terms of its probability distribution and
can be shown to be a good measure of randomness or uncertainty. Given
a set of events {E1, E2, . . . , EnEE } with respectively normalized probabilities
{P1PP , P2PP , . . . , PnPP } (

∑n
i=1 PiPP = 1), the related Shannon entropy is defined as

Sd(P1PP , P2PP , . . . , PnPP ) = −
n∑

i=1

PiPP log PiPP . (2.109)

It can be shown that the larger this entropy the larger is the uncertainty and
the lower is the information about the set of events {E1, E2, . . . , EnEE } [239].
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Clearly the definition given in (2.109) includes the case in which the set
of events is the set of possible values of a numerical variable. Therefore it can
be extended to the case in which the random variable X gets a continuous
set of values x ∈ IRII with a probability density function p(x). In this case
(2.109) can be rewritten as5

Sc[p[[ (x)] = −
∫ +∞

−∞

∫∫
dx p(x) log p(x) . (2.110)

Let us now consider a random variable X about which we know only the
mean value

〈X〉 =
∫ +∞

−∞

∫∫
dx x p(x) (2.111)

and the second moment

〈
X2

〉
=
∫ +∞

−∞

∫∫
dx x2 p(x) (2.112)

which is taken to be finite. The question we want to address is: what is
the most probable distribution for X given only this information? The usual
prescription to answer this question is the so-called maximum entropy prin-
ciple saying that we have to find the function p(x) maximizing the Shannon
entropy given by (2.110) and satisfying the conditions (2.111) and (2.112).
Moreover we have to require that p(x) satisfies the normalization condition

∫ +∞

−∞

∫∫
dx p(x) = 1 . (2.113)

This is done by looking for the function p(x) which is a zero of the functional
derivative of the constrained entropy:

F [p[[ (x)] = −
∫ +∞

−∞

∫∫
dx p(x) log p(x) − λ1

∫ +∞

−∞

∫∫
dx p(x) −

λ2

∫ +∞

−∞

∫∫
dx x p(x) − λ3

∫ +∞

−∞

∫∫
dx x2p(x) , (2.114)

5 Note that the entropy Sd defined by (2.109) for a discrete random variable is
always positive just as the thermodynamic entropy in physics. Instead the en-
tropy Sc for a continuous variable, defined by (2.110), can be both positive and
negative. This problem can be overcome by discretizing the phase space of the
continuous variable in a discrete set of cells of size ε, and considering the “dis-
crete” entropy Sd defined by (2.109) where PiPP � p(xi)ε

d is now the probability
that the continuous variable lies in the ith cell around xi. It is simple to show
[174] that for sufficiently small ε, the two entropies Sc and Sd differ by only a
constant: Sd � Sc − d log ε where d is the dimensionality of the variable.
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where λ1, λ2 and λ3 are the Lagrange multipliers corresponding to the three
conditions (2.111), (2.112), and (2.113). By taking the functional derivative
and setting it equal to zero, we find the equation:

δF [p[[ (x)]
δp(x)

≡ − log p(x) − 1 − λ1 − λ2x − λ3x
2 = 0 , (2.115)

which gives
p(x) = exp

[−λ3x
2 − λ2x − 1 − λ1

]
, (2.116)

which is a Gaussian distribution. The Lagrange multipliers can be found by
requiring the equalities (2.111), (2.112) and (2.113). This gives finally

p(x) =
1√

2πσ2
exp

[
− (x − 〈X〉)2

2σ2

]
, (2.117)

where σ2 =
〈
X2

〉−〈X〉2. Finally, in order to verify that (2.117) is actually a
maximum of the expression (2.114) and not only an extremum, it is sufficient
to verify that the second functional derivative of (2.114) is negative definite.
This can immediately seen to be the case as the second functional derivative
is easily found to be −1/p(x), which for any PDF p(x) is negative for all x.
This result can be simply extended to the case in which X is not a scalar
but a vector of N components X1, . . . , XN about which we know 〈Xi〉 and
〈XiXjX 〉 for i, j = 1, . . . ,N. In this case we find the generalized N -dimensional
Gaussian distribution given by (2.76).

2.12 Summary and Discussion

In this chapter we have defined and studied the main characteristics of sta-
tionary stochastic processes (SSP), focusing mainly on stochastic mass den-
sity fields ρ̂(r). In this context we have distinguished between (1) continuous
fields and (2) discrete point-particle distributions which are usually called
stochastic point processes (SPP). In particular we have analyzed the proper-
ties of uniform or homogeneous (i.e., non-fractal) mass density fields which in
general can be characterized as a mass fluctuation field around a well defined
average density ρ0 > 0.

For the general class of SSP, we have defined the concepts of ensemble
average, and discussed the hypothesis of ergodicity required to replace the
ensemble average with the volume average. Moreover, we have introduced
the concept of spatial correlation and of n-point correlation functions, focus-
ing on the two-point correlation analysis, which characterize the influence
that the knowledge of the values of the field at a point of the space has
on the conditional probability of observing another value of the field at an-
other spatial point. Restricting the analysis to fluctuation fields (i.e. defined
with respect to the average ρ0 > 0), we have introduced also to concept of
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cumulants and connected correlation functions. The two main lengths charac-
terizing fluctuations and correlation properties of a homogeneous stochastic
field are the homogeneity scale and the correlation length. The former marks
the length scale beyond which fluctuations can be considered “small”, while
the latter characterize the rate of decrease in space of correlations between
fluctuations. We have noted that these two distinct scales characterizing very
different properties of stochastic fields are very often confused in the cosmo-
logical literature.

We have discussed also the general properties of integrated fluctuations
(e.g., mass fluctuations in finite volumes) relating them to correlation func-
tions.

For the SPP class we have presented a complete treatment of an ex-
plicit example: the Poisson particle distribution, which is the “most random”
particle distribution possible. Then we have generalized the analysis to more
general SPPs introducing the concept of conditional densities and conditional
fluctuations, relating them again to correlation functions. In this context we
have studied also the statistics of the distance between neighboring particles.

Also for the continuous SSP class, we have presented an explicit and
paradigmatic example: the continuous Gaussian field. We have stressed the
fundamental role it plays in the study of randomly fluctuating signals and
phenomena, discussing the central limit theorem, and the relation between
Gaussianity and information theory.

Finally we have presented the concepts of scale-invariance and self-
similarity of the fluctuation field characterizing them in terms of the scaling
properties of the two-point correlation function. These concepts will be de-
veloped in Chaps. 4–5.



3 The Power Spectrum and the Classification
of Stationary Stochastic Fields

3.1 Introduction

In the previous chapter ordinary continuous SSP and discrete SPP have been
characterized only through a real space description based on the n-point
correlation functions. In particular a central role in the real space statistical
analysis of such stochastic processes is played by the connected two-point
correlation function C2CC (r) (or ξ̃(r) for uniform stochastic mass density fields
with well defined average density ρ0 > 0). The analysis of a stochastic process
limited to the two-point correlation properties is usually called correlation
theory. In this chapter we introduce the Fourier conjugate characterization
of the same kind of stochastic fields through the definition and the study of
the so-called power spectrum (PS).

3.2 General Properties

3.2.1 Mathematical Definitions

First of all, let us introduce some mathematical definitions and results of
Fourier analysis which we will use. Let us suppose that our stationary stochas-
tic field is defined in a cubic volume V of size L (V = Ld, where d is the
spatial dimension). Let us take an arbitrary function f(r) defined in this
volume. We define the Fourier transform (FT) of f(r) in the volume V as:

f̃(k) =
∫

V

∫∫
ddr f(r) e−ik·r . (3.1)

This implies that

f(r) =
1
V

∑
k

f̃(k) eik·r , (3.2)

where the sum is over all the k whose components ki satisfy ki = 2mπ/L
with m = . . . ,−2,−1, 0, 1, 2, . . . . Usually, in mathematical textbooks, the
FT f̃(k) is equal to that of (3.1) multiplied by a factor V −1 in order to have
(3.2) without this factor. We choose this different definition because with this
choice it is not necessary to redefine the FT in the limit V → ∞. In fact,



74 3 The Power Spectrum and the Classification of SSF

in this limit, it is simple to show that above equations become directly the
usual Fourier relations in the d-dimensional infinite Euclidean space:{

f̃(k) =
∫

ddr f(r) e−ik·r

f(r) = 1
(2π)d

∫
ddrf̃(k) eik·r .

(3.3)

In what follows, we introduce the following simplified notation for (3.3):{
f̃(k) = FT [f(r)]
f(r) = FT−1

[
f̃(k)

]
.

(3.4)

Let us now consider the FT of a stochastic fluctuation field. From this chapter
on, to simplify notation we will denote by ρ(r) both the stochastic function
ρ̂(r) (i.e., the infinite dimensional random variable) and its realization ρ(r)
(i.e., the value of the random variable). The stochastic fluctuation field is
then denoted by δρ(r) = ρ(r) − ρ0 and its Fourier integral in the volume V
by:

δρ̃(k;V ) =
∫

V

∫∫
ddr δρ(r) e−ik·r . (3.5)

Since δρ(r) is real, we have that δρ̃(−k;V ) = δρ̃∗(k;V ) (where a∗ is the
complex conjugate of the generic complex number a). Through the definition
of δρ̃(k;V ) we can define the PS of the stochastic field ρ(r) as:

S(k) =

〈
|δρ̃(k;V )|2

〉
V

, (3.6)

where 〈 . . .〉 is the usual ensemble average. In several physical contexts, as in
condensed matter theory, S(k) is also called the structure factor [108]. In the
mathematical context of SPP it is instead often called the Bartlett spectrum
[16]. Since ergodicity is strictly valid only in the infinite volume limit, the
ensemble average can be rigorously substituted by the volume average only
in the limit V → ∞. Therefore from now on we shall work directly in this
limit:

S(k) = lim
V →∞

〈
|δρ̃(k;V )|2

〉
V

. (3.7)

The PS is the simplest statistical measure of the net contribution of the
mode k to the realization of the stochastic process. Note that if the stochastic
process ρ(r) is statistically isotropic then S(k) ≡ S(k). In order to find the
relationship between S(k) and the connected two-point correlation function
C2CC (r), let us consider the covariance between different modes directly in the
limit V → ∞:

lim
V →∞

〈δρ̃(k;V )δρ̃(k′;V )〉 =
∫ ∫

ddr ddr′ 〈δρ(r)δρ(r′)〉 e−i(k·r+k′·r′)

= (2π)dδ (k + k′)
∫

ddr C2CC (r) e−ik·r , (3.8)
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where we have used the assumed statistical translational invariance of the
SSP. Equations (3.7) and (3.8) imply that, for a stationary stochastic field,
the PS is the FT of the reduced two-point correlation function:

S(k) =
∫

ddr C2CC (r) e−ik·r ≡ FT [C2CC (r)] . (3.9)

Conversely, we can write:

C2CC (r) =
1

(2π)d

∫
ddk S(k)eik·r ≡ FT−1 [S(k)] . (3.10)

Rigorously speaking (3.9) is valid if C2CC (r) is strictly integrable over all space,
otherwise it must be understood in the sense of distributions [100]. These
results constitute one of the main points of the celebrated Wiener-Khinchin
(or only Khinchin) theorem already introduced in Chap. 2 which states that
[100, 230]:

• Given an arbitrary function C2CC (r), there exists at least one continuous SSP
which has C2CC (r) as its connected two-point correlation function, if and only
if its FT S(k) is non negative at all k. Moreover, if the SSP has finite one
point variance s2 ≡ C2CC (0), S(k) must be integrable over all space; in other
words S(k) must be, apart from a normalization constant, a probability
density function1.

• For a SPP a similar condition holds, even though in this case it is only
a necessary condition (the search for sufficient conditions is still an open
problem): Given a C2CC (r), which at r = 0 is equal to ρ0δ(r), a necessary
condition to have an SPP of average density ρ0 having C2CC (r) as connected
two-point correlation function is that its FT S(k) is non-negative at any k
and that S(k) → ρ0 for k → ∞.

For a statistically isotropic SSP in d = 3 (3.9) and (3.10) can be rewritten
as

S(k) = 4π
∫ ∞

0

∫∫
C2CC (r)

sin(kr)
kr

r2dr (3.11)

C2CC (r) =
1

2π2

∫ ∞

0

∫∫
S(k)

sin(kr)
kr

k2dk . (3.12)

If the SSP ρ(r) represents an homogeneous mass density field (i.e., with a
finite homogeneity scale beyond which it can be considered spatially uniform
1 In this context we include in the continuous SSP also the case in which, though

limr→r′
〈
|ρ(r) − ρ(r′)|2

〉
= 0, the variance C2(0) = +∞, but this limit is ap-

proached continuously for r → 0. The sub-case with C2(0) < +∞ can thus be
called “strictly” continuous. While if C2(0) < +∞, integrability of S(k) is re-
quired, for the weaker case C2(0) = +∞, approached continuously for r → 0, we
have only that S(k) vanishes for k → ∞.
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to a good approximation), either continuous or discrete, with a well defined
ρ0 > 0, then the fluctuation field can be made dimensionless by writing

δρ(r) ≡ δρ(r)
ρ0

.

In cosmology this is called the matter density contrast. As shown in Chap. 2
the dimensionless connected two-point correlation function can be written as

ξ̃(r) = 〈δρ(r + r0)δρ(r0)〉 =
C2CC (r)

ρ2
0

.

In this case the PS is usually redefined as

P (k) =
S(k)
ρ2
0

,

in such a way that the relations (3.9) and (3.10) can be rewritten as

P (k) = FT
[
ξ̃(r)

]
(3.13)

ξ̃(r) = FT−1 [P (k)] . (3.14)

An analogous replacement of S(k) with P (k) and of C2CC (r) with ξ̃(r) can be
made in (3.11) and (3.12).

3.2.2 Limit Conditions

We limit here our discussion to isotropic SSPs. The limit conditions for the
connected two-point correlation function C2CC (r) are:

• For r → 0 we must have C2CC (r) ∼ rα with α > −d. This is a necessary
condition in order that the integrated (i.e., mass) fluctuations have finite
variance at any finite spatial scale (see (2.29)). This is a fundamental re-
quirement in order for the density field to be a well defined stochastic
process (because, if α < −d the FT of C2CC (r) diverges at any k). For a
point-particle distribution (SPP) we always have also the diagonal contri-
bution ρ0δ(r) to C2CC (r) which is relevant only at r = 0 (see Chap. 2).

• For r → ∞ correlations must vanish i.e., C2CC (r) ∼ rβ with β < 0 (in the
case of a power-law behavior).

These conditions on C2CC (r) imply respectively the following properties for the
PS S(k):

• If the SSP is continuous (e.g., a Gaussian field), then limk→∞ S(k) = 0
i.e., S(k) ∼ kγ with γ < 0 for a power-law behavior. If, moreover, it has
finite one-point variance C2CC (0) < +∞ (i.e., “strictly” continuous with finite
variance), then limk→∞ kdS(k) = 0 i.e., γ < −d for the power-law case.
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In Chaps. 6–7 we will see that this condition is satisfied in cosmological
models of the mass density field ρ(r).
For a point-particle distribution (SPP), on the other hand, the presence
of the delta-like diagonal term in C2CC (r) implies that S(k → ∞) = ρ0 (i.e.,
P (k → ∞) = 1/ρ0). However, even in this case, there is a similar constraint
on the large k behavior: limk→∞ |S(k)−ρ0| = 0 i.e., |S(k)−ρ0| ∼ kγ again
with γ < 0.

• For k → 0 one has S(k) ∼ kδ with δ > −d.

By studying the FT relating S(k) and C2CC (r), it is possible to write relations
between the pairs of scaling exponents α, γ and β, δ. For instance, in d = 3
one has that, if S(k) = Akβ exp(−k/kc), then β = −δ − 3 (the details of
the derivation can be found in [184]). However, if S(k) = kβf(k) where f(k)
is analytic everywhere in k (note that exp(−k/kc) is not analytic at k = 0
because it is a function of the modulus of k) and f(0) = a > 0, C2CC (r)
decays at large r faster than any power (e.g., exponentially) for β = 2m
where m = 0, 1, 2, 3, . . .. In fact in this case S(k) is analytic everywhere and
therefore its FT must decay faster than any power at large r.

3.3 The Power Spectrum for the Poisson Point Process
and Other SPP

As seen in the previous chapter, in the case of a Poisson distribution of unitary
mass point-particles, the two-point correlation function is

ξ̃(r) =
δ(r)
ρ0

. (3.15)

Therefore, by applying directly (3.9), one finds the PS to be simply:

P (k) =
1
ρ0

. (3.16)

The interpretation of (3.16) is that in a Poisson point process every mode has
the same weight, which is the signature of the complete absence of two-point
correlations. This case is also called white noise.

Since for any stationary stochastic point process the function ξ̃(r) =
δ(r)/ρ0 + ξ(r) with ξ(r) defined for r > 0, going to zero at r → ∞, and
integrable at r = 0, one always has

lim
k→∞

P (k) = 1/ρ0

as in the Poisson case.
It is important to note that P (0) has an important meaning when related

to large scale mass fluctuations for any stationary mass density field. By
definition
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P (0) =
∫

ddrξ̃(r) , (3.17)

where the integral extends over all space. In the next section we will show
that large scale mass fluctuations are related to the behavior of P (k) around
k = 0. In particular we will see that every stationary stochastic density field
with P (0) = A > 0 but finite presents the same large scale behavior of
the mass fluctuations as for a Poisson SPP with an effective density ρ0 =
1/A. Therefore we name this class of SSP substantially Poisson. This class
is characterized by having sufficiently short range and mainly positive two-
point correlations, as for example in a homogeneous gas in equilibrium at
high temperature.

3.4 The Power Spectrum and the Mass Variance:
A Complete Classification

Let us analyze the relation between the PS and the mass-variance in both dis-
crete or continuous stochastic mass density fields with a well defined positive
average density ρ0. We first rewrite the relations (2.27)–(2.28), generalizing
them to the case in which we calculate the mass variance in a topologically
more complex volume V of size V . To do this one introduces the window
function WVWW (r) defined as

WVWW (r) =
{

1 if r ∈ V
0 otherwise .

(3.18)

Therefore we can rewrite (2.27) as

〈M(V)〉 =
∫

WVWW (r) 〈ρ(r)〉 ddr = ρ0V . (3.19)

and (2.28) as

〈
M2(V)

〉
=
∫ ∫

ddr1d
dr2WVWW (r1)WVWW (r2) 〈ρ(r1)ρ(r2)〉 , (3.20)

where all the integrals are over all space. The normalized variance

σ2(V) ≡
〈
M2(V)

〉− 〈M(V)〉2
〈M(V)〉2

is then given by

σ2(V) =
1

V 2

∫ ∫
ddr1d

dr2WVWW (r1)WVWW (r2)ξ̃(r1 − r2) . (3.21)

By writing ξ̃(r) as the FT of the PS P (k), one obtains
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σ2(V) =
1

(2π)d

∫
ddkP (k)|W̃VWW (k)|2 (3.22)

which is explicitly positive, and W̃VWW (k) is the FT of WVWW (r), divided by the
volume defined by the window function itself, i.e.,

W̃VWW (k) =
1
V

∫
ddr e−ik·rWVWW (r) (3.23)

with V =
∫

WVWW (r)ddr by definition (therefore W̃VWW (0) = 1).
We now treat directly the case in which V is a sphere of radius R in the

three-dimensional space which is relevant for the application to cosmology
discussed in Chap. 6. The generalization to d �= 3 dimensions is straightfor-��
ward. Therefore let us consider the real sphere of radius R for which the FT
of the window function is

W̃RW (k) =
3

(kR)3
(sin kR − kR cos kR) . (3.24)

One then finds assuming statistical isotropy so that P (k) = P (k), the ex-
pression for the normalized mass variance in real spheres

σ2(R) =
9

2π2

∫ ∞

0

∫∫
dk

(sin kR − kR cos kR)2

(kR)6
k2P (k) . (3.25)

Let us, without loss of generality, assume that P (k) = Aknf(k), where
A > 0 and f(k) a cut-off function chosen such that (i) limk→0 f(k) = 1,
and (ii) limk→∞ knf(k) is finite. We also require, as discussed in the previous
section, n > −3 to have the integrability of P (k) around k = 0. The condition
(ii), which implies that at large wave-numbers f(k) ∼ k−α with α ≥ n,
includes both the case of a continuous SSP (for which limk→∞ P (k) = 0)
and the point process (for which limk→∞ P (k) = 1/ρ0)2. It is convenient to
rescale variables putting x = kR to rewrite (3.25) as

σ2(R) =
9A

2π2

1
R3+n

∫ ∞

0

∫∫
dx (sin x − x cos x)2 xn−4f

( x

R

)
. (3.26)

By analyzing in detail this formula, we will obtain the following general rela-
tion between the large R behavior of σ2(R) and the small k behavior of P (k)
[91]:

σ2(R) ∼
⎧⎨⎧⎧
⎩
⎨⎨R−(3+n) for − 3 < n < 1

R−4 log R for n = 1
R−4 for n > 1 .

(3.27)

2 Actually, as shown Sect. 3.5.1, there are also point processes with only a discrete
translational invariance characterized by a PS with delta function contributions
on periodic lattice sites. The present arguments can be extended easily to include
this case.
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Therefore for n = 0, as mentioned above, a Poisson-like behavior of mass
fluctuations is obtained. This agrees with the fact that n = 0 implies∫

d3r ξ̃(r) = A > 0

as in the Poisson case. On the other hand for −3 < n < 0 i.e., in the case
where ∫

d3r ξ̃(r) = +∞

we obtain a super-Poisson scaling of mass fluctuations, that is 〈∆M2(R)〉
grows as a function of R faster than in a Poisson system. This is the char-
acteristic behavior of the order parameter fluctuations of a thermodynamic
system at the critical point of a second order phase transition (e.g., liquid-
gas critical point) [148]. Finally, for n > 0, we obtain a sub-Poisson behavior
of mass fluctuations. That is 〈∆M2(R)〉 grows as a function of R slower
than in a Poisson system. For this reason we call this kind of systems super-
homogeneous. Other authors refer to this class of mass density fields as
hyper-uniform [231]. Note that n > 0 implies that∫

d3r ξ̃(r) = 0 ,

which is a non-local balance condition on positive and negative density-
density correlations. It is simple to see that this non-local condition implies
a sort of stochastic long-range order. In fact, as explicitly shown in the fol-
lowing, a regular array of unitary mass particles (i.e., a lattice), has n → ∞.
Therefore the larger is n the more regularly density fluctuations are spatially
distributed. It is important to note that for any n ≥ 1 we have as a limit-
ing behavior σ2(R) ∼ R−4. This means that there is no stationary stochastic
mass density field, either continuous or discrete, such that the quadratic mass
fluctuation

〈
∆M2(R)

〉
in a sphere of radius R grows slower than the surface

of the sphere for large values of R. This last sentence can be shown to be
true in any dimension [24].

In order to derive (3.27), we introduce the following assumption only to
simplify the demonstration, without limiting the general validity of the final
result:

f(k) =

{
1 for k ≤ k0(

k
k0

)−α

for k > k0 ,
(3.28)

where k0 > 0 is the cross-over wave number. In this case this cross-over wave
number plays also the role of the upper cut-off of the integral in (3.25), as
it marks the transition to the tail of P (k) guaranteeing the integrability for
large k of the integrand of (3.25). This is equivalent to requiring the finiteness
of mass-fluctuations for finite values of R.
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We can rewrite (3.26) as follows:

σ2(R) =
9A

2π2

1
R3+n

[∫ k0R

0

∫∫
dx (sin x − x cos x)2 xn−4

+ (k0R)α

∫ ∞

k

∫∫
0R

dx (sin x − x cos x)2 xn−4−α

]
, (3.29)

where we have put kR = x. Let us now analyze the scaling behavior of the
oscillating factor of the window function:

(sin x − x cos x)2 ∼
{

x6

9 for x � 1
x2 for x � 1 .

(3.30)

We now consider the case k0R � 1 to study the asymptotic behavior of the
normalized mass variance for R → ∞. First of all, let us analyze the behavior
of the first integral in (3.29):

I1 ≡
∫ k0R

0

∫∫
dx (sin x − x cos x)2 xn−4 . (3.31)

Since n > −3, I1 is well behaved at its lower limit x = 0. It is simple to show
that for n < 1, I1 converges to a finite positive value when R → +∞, while
it diverges as Rn−1 if n > 1. This implies that for k0R � 1 we can write:

I1 ∼
⎧⎨⎧⎧
⎩
⎨⎨a > 0 for − 3 < n < 1

log R for n = 1
Rn−1 for n > 1 .

(3.32)

Let us now study the second integral of (3.29) in the same limit:

I2II ≡
∫ ∞

k

∫∫
0R

dx (sin x − x cos x)2 xn−α−4 	
∫ ∞

k

∫∫
0R

dxxn−α−2 .

Recalling that α ≥ n (from the hypothesis of the finiteness of mass fluctua-
tions), we can therefore write at large R

I2II ∼ Rn−α−1 , (3.33)

which goes to zero for R → +∞3. Consequently, the following scaling behav-
ior for σ2(R) is found:

σ2(R) =
9A

2π2

1
R3+n

[I1 + (k0R)αI2II ] ∼
⎧⎨⎧⎧
⎩
⎨⎨R−3−n for − 3 < n < 1

R−4 log R for n = 1
R−4 for n > 1

(3.34)
which is the result given in (3.27).
3 Note that, given the behavior in (3.33), the demonstration can be formally ex-

tended to the wider range α > n − 1, instead of our starting hypothesis α ≥ n
which includes all possible SSP and SPP.
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We note the following important property of (3.34). Since, as seen above,
σ2(R) is determined basically by the integral I1, we can say that, in the limit
of large R (R � k−1

0 ) and n < 1, mass fluctuations in a sphere of radius R are
dominated by modes of the stochastic process with k 	 1/R i.e., with a wave
length k−1 of the same order as the radius of the sphere. In fact, in this case,
the behavior of I1 is dominated by the region of the integrand around x = 1.
On the other hand, for n ≥ 1, by a similar argument, we can say that the mass
fluctuation are determined by modes with k 	 k0 i.e., the integration cut-off
of the PS, which are independent of R. In practice, if we take two spheres of
radius R � 1/k0 in a system with n > 1, the mass fluctuation between them
can be considered as given by a Poisson-like fluctuation restricted to the last
shell of thickness k−1

0 of the spheres.
Sometimes in the cosmological literature (e.g., [147]) the divergence of I1

as Rn−1 for n > 1 is considered as a simple mathematical pathology due to
the fact that relative mass fluctuations are calculated in a spherical window
function with a perfectly sharp boundary. For this reason this sharp window
function in real space is often replaced by a smooth Gaussian window of the
following type:

WRWW (r) ∼ e−r2/R2
.

This means that, from a randomly chosen center point, particles at distance
r are counted with a Gaussian probability

p(r;R) ∼ e−r2/R2

instead of having p(r;R) = 1 if r ≤ R and p(r;R) = 0 if r > R. With such a
modification of the window function I1 converges for R → +∞ even for n ≥ 1,
being dominated by modes with k 	 1/R (x 	 1) for any n. Consequently,
with the use of this smoothed window function one obtains σ2(R) ∼ 1/R3+n

also for n > 1. This difference is important in cosmology because, as we will
discuss in Chap. 6, the form of the “primordial” PS is the so-called Harrison-
Zeldovich spectrum with P (k) ∼ k at small k. The reason why the use of
such a Gaussian window function leads to σ2(R) ∼ 1/R3+n also for n > 1,
is because it models the edge of the sphere as smeared on the length scale
of the whole radius. If, instead, the window function were smeared around
the edge over a length independent of R we would get again σ2(R) ∼ 1/R4

for every n > 1. In applications to observational data, the smearing of the
edge of the window function can take into account some uncertainty in the
measure of distance (e.g., the measure of the distance between our galaxy
and the others). This uncertainty is, in principle, not strictly proportional to
the distance itself. Therefore, while of course the use of smoothed window
functions is valid mathematically, it misses an important point, which is that
the limit behavior of the normalized mass variance, as 1/R4 for n > 1, has a
very real physical meaning which has to do with the minimal intrinsic noise
present in any stochastic mass distribution.
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Our simple treatment and results are supported by rigorous mathematical
studies about point processes. It has been shown [24] that there is no way
in d-dimensions of distributing points in the space in such a way that σ2(R)
decreases faster than R−(d+1). The problem of finding in d > 1 dimensions
(in d = 1 the problem has been solved [231]) the point-particle distribution
having the minimal σ2(R) at large R (i.e., not only the exponent which is
d + 1 but also the coefficient) in ordinary sharp spherical window functions
is still an open issue [231]. Going back to the use of Gaussian windows, we
can say that the window WRW (r) = exp(−r2/R2) completely obscures this
behavior for n ≥ 1, giving an apparent behavior of a real space variance
∝ 1/Rd+n. On the other hand the measure of σ2(R) in such a Gaussian
window function can be very useful as a direct real space measure of the
exponent n characterizing the small k behavior of the PS (P (k) ∼ kn) even
for n ≥ 1. However the application of this window function in finite samples
can be problematic and affected by strong finite size effects obscuring the
real intrinsic behavior of the system.

3.4.1 The Complete Classification of Mass Fluctuations
versus Power Spectrum

The arguments in the previous section can be generalized to Euclidean spaces
of any dimension d. Therefore supposing P (k) = Aknf(k) as above, it is
possible to proceed to the following classification for the scaling behavior of
the normalized mass-variance:

σ2(R) ∼
⎧⎨⎧⎧
⎩
⎨⎨R−(d+n) for − d < n < 1

R−(d+1) log R for n = 1
R−(d+1) for n > 1

(3.35)

Therefore

• For −d < n < 0 (i.e., P (0) ≡ ∫
ddr ξ̃(r) = +∞), we have “super-Poisson”

mass fluctuations typical of systems at the critical point of a second order
phase transition (see Figs. 3.1–3.3);

• For n = 0 (i.e., P (0) ≡ ∫
ddr ξ̃(r) = A > 0), we have Poisson-like fluctu-

ations, and the system can be called substantially Poisson. This behavior
is typical of many common physical systems e.g., a homogeneous gas at
thermodynamic equilibrium at sufficiently high temperature;

• For n > 0 (i.e., P (0) ≡ ∫
ddr ξ̃(r) = 0), we have “sub-Poisson” fluctuations,

and for this reason, as aforementioned, we name this class of systems super-
homogeneous. This behavior is typical, for example, of lattice-like point
distributions where positively correlated regions are balanced by negatively
correlated ones, in order to satisfy the condition

∫
ddr ξ̂(r) = 0. Therefore

the condition of P (0) = 0 corresponds to a sort of underlying long-range
order. Since this class of mass distributions play an important role in cos-
mology (see Chap. 6), we devote the next section and part of Chap. 7 to a
deeper analysis using several examples from physics and geometry.
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Fig. 3.1. Power spectra with a small k behavior as P (k) = Akn exp(−k/kc) for
three values of n = −1, 0, 1 which correspond to critical, Poisson-like and super-
homogeneous correlations in d = 3

3.5 Super-Homogeneous Mass Density Fields

As we will discuss in Chap. 6 current standard cosmological models for
the distribution of mass fluctuations in the universe share approximately the
same small k scaling behavior of P (k), which is a direct consequence of the
so-called Harrison-Zeldovich condition (see Chap. 6). This condition implies
that at sufficiently small k the PS behaves as P (k) ∼ k at all cosmological
epochs. Therefore it implies that the global mass distribution of the universe
is super-homogeneous at large scales. As discussed in the previous section
this means that these models are characterized by the most rapid decreasing
behavior of normalized mass fluctuations with spatial scale: σ2(R) ∼ R−4 in
three dimensions (up to logarithmic corrections).

In this section we introduce some simple super-homogeneous point-
particle distributions in order to illustrate the special properties of this class
of mass distributions. The contrast with the Poisson behavior of mass fluc-
tuations will be stressed.
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Fig. 3.2. The relative normalized mass variance for the three systems considered
in Fig. 3.1: σ2(R) at large R behaves as σ2(R) ∼ R−α with α = n + 3 = 2, 3, 4
respectively for n = −1, 0, 1

3.5.1 The Lattice Particle Distribution

The simplest case of a super-homogeneous mass distribution is a regular array
of particles occupying all the sites of a Bravais lattice [253]. This can be con-
sidered the most uniform class of point processes in the following sense: For
this kind of point-particle distribution it has been demonstrated rigorously
that, for sufficiently large R,

σ2(R) ∼ R−d−1 , (3.36)

which we have seen to be the lower limit on the scaling behavior for mass fluc-
tuations at large scales. Moreover, in d = 1 the regular chain of point-particles
has been shown to be the point process minimizing the amplitude pre-factor
of (3.36). There is numerical evidence, but no rigorous demonstration, of the
same property for particular lattices in higher dimensions [231].

We limit here the discussion to the case of a cubic lattice, but the results
can be simply extended to more complex lattices. Let R be the vector position
of the generic site of the lattice, and a the lattice spacing (or lattice constant).
Therefore the microscopic density of particles of identical mass m placed on
the lattice sites can be written:

ρ(r) = m
∑
R

δ(r − R) , (3.37)
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Fig. 3.3. Absolute value of the reduced two-point correlation function ξ(r) for
the three systems considered in Fig. 3.1. Note that for n = −1 ξ(r) ∼ r−2, while
for n = 0 it has an exponential decay corresponding to the absence of correlation.
Instead for n = 1 it has a negative power-law tail: ξ(r) ∼ −r−4

where the sum is extended to all the lattice sites. Clearly the average mass
density is

ρ0 ≡ 〈ρ(r)〉 =
m

ad
. (3.38)

Note that a lattice of particles cannot be seen as a genuine stochastic SPP.
In fact, it is a deterministic particle distribution with continuous transla-
tional invariance broken to only a discrete translational invariance. There-
fore its two-point correlation function depends on the coordinates of both
the points and not only on their difference, and the Khinchin (elsewhere
Wiener-Khinchin) theorem is not valid. Therefore, in order to evaluate the
PS, we have to use the definition given by (3.7) which is valid also for non-
stationary mass distributions. By performing the Fourier integral of (3.37) in
a cubic volume V , taking the square modulus and sending V to infinity in the
appropriate way (considering that in this limit the cubic lattice is invariant
under lattice vector translations), it is simple to verify that (see Fig. 3.4):

P (k) = (2π)d
∑
H �=�� 0

δ(k − H) , (3.39)
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Fig. 3.4. Power spectrum of a cubic lattice together with the one of a Poisson
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where the sum is over all the vectors of the reciprocal Bravais lattice with the
exception of the vector 0. About (3.39) we remark that

• the support of P (k) (i.e., the region of the k-space where P (k) > 0) is
discrete. This is due to the fact that the lattice is a deterministic point-
particle distribution. All genuinely stochastic point processes give rise to a
PS with a continuous support [198].

• P (0) = 0, and around k = 0 (more precisely in the first Brillouin zone
[253]) the spectrum is completely flat, that is we can say that in the small k
region it behaves as P (k) ∼ k+∞. As seen above this implies that σ2(R) ∼
R−d−1 at sufficiently large scales.

• As mentioned above, the two-point correlation function of the lattice de-
pends on the coordinates of both the points in a more complex way than
only on their difference. This is because the continuous statistical transla-
tional invariance is broken. However the function ξ̃(r) defined by

ξ̃(r) ≡ FT−1 [P (k)] = ad
∑
R

δ(r − R) − 1 (3.40)

can be seen as a sort of connected two-point correlation function of the
system in the following sense: If we define an ensemble of identical lattices
differing one from each other only by a rigid random translation of the
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whole system, it is simple to show by direct calculation that the connected
two-point correlation function defined by the ensemble average is given by
(3.40).

In Chap. 7 it is shown that many other super-homogeneous particle distribu-
tions with a wide range of positive scaling exponents for the small k behavior
of the PS can be obtained by perturbing appropriately this lattice system. In
partcular this is the usual method employed in cosmology to generate initial
conditions for numerical simulations of gravitational clustering.

3.5.2 The One Component Plasma

In this section we describe a classical statistical mechanical model character-
ized by a super-homogeneous particle distribution at thermodynamic equi-
librium: the so-called one component plasma (OCP). This model consists of
a system of identical positively charged point particles interacting through a
repulsive Coulomb potential V (r) = 1/r, in a continuous uniform negative
background giving overall charge neutrality usually called jellium (see [22]
for a detailed overview of the subject). In what follows we show that at ther-
modynamic equilibrium the particles are distributed in a super-homogeneous
manner. If each particle carries a unitary mass and charge, the microscopic
mass density of the particles is given as usual by

ρ(r) =
∑

i

δ(r − ri) (3.41)

where ri is the position of the ith particle. Consequently, the total microscopic
charge density (including the uniform negative background) is

ρc(r) =
∑

i

δ(r − ri) − ρ0 (3.42)

where
ρ0 =

1
V

lim
V →∞

∫
d3rρ(r) > 0 , (3.43)

is the uniform charge density of the jellium which gives the global charge
neutrality of the system.

Since the interaction potential is known, one can write down the Hamil-
tonian of the system and study the canonical ensemble averages (indicated
as usual with 〈 . . .〉) of the main thermodynamic quantities [116]. In this way
it has been shown [22] that this system can exists in two phases:

1) a low temperature ordered crystal solid phase, in which the particles
are arranged in a lattice-like manner, and

2) a high temperature glassy disordered, but still super-homogeneous,
phase.

Both phases are characterized by the fact that, in order to minimize the
free energy, the positively charged particles arrange themselves in space in
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such a way as to screen the mutual interaction in the most efficient way at
that temperature. If the temperature is sufficiently low this screening leads
the particles to be arranged on a regular lattice array (the ensemble connected
two-point correlation function is given by (3.40)). At high temperature the
entropic contribution to the free energy is dominant and prevents the particle
system from arranging itself in a perfect lattice order. However the particles
are still spatially distributed in a super-homogeneous manner.

0 5 10 15
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0

0.5

1

1.5

P(ka)

Γ=1
Γ=10
Γ=100

Fig. 3.5. Power spectrum (measured in units of the inter-particle separation a) of
three different OCP models corresponding to three different value of the factor Γ =
(n1/3kT )−1, which is defined as the ratio between the potential energy (�n−1/3)
at the mean particle separation and their kinetic energy (�kT ). Larger values of Γ
correspond to lower temperatures (or equivalently stronger coupling). The decay of
the PS at small k reflects the fact that the distribution is more ordered, at large
scales, than a typical Poisson configuration with the same average density. The
oscillations for larger Γ correspond to the increase of the degree of order of the
system as the temperature decreases

In this section we focus on this second “glassy” phase (see Figs. 3.5–
3.6), in which the particle configurations can be described by a statisti-
cally isotropic and super-homogeneous SPP [155]. This implies also that the
two-point correlation function is self-averaging and depends only on the mod-
ulus of the distance r between the two points i.e., it has the form:

ξ̃(r;T ) =
δ(r)
ρ0

+ ξ(r;T ) , (3.44)
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Fig. 3.6. An OCP-like configuration (left panel) and a Poisson distribution (right
panel) with approximately the same number of points. Both are projections of thin
slices of three dimensional distributions. (From [92])

where we have indicated explicitly the parametric dependence on the temper-
ature T . It can be proved quite generally [155] that in this high temperature
phase ξ̃(r;T ) satisfies the general condition for super-homogeneity∫

ξ̃(r;T )d3r = 0

which, in our case, can be rewritten as:

ρ0

∫
ξ(r;T )d3r = −1 . (3.45)

In the OCP context (3.45) is identified to as a sum rule which originates from
the perfect screening of charge due to the long-range nature of the Coulomb
potential. In order to see this in a simple way, let us suppose that an external
infinitesimal charge density ρext = εeik·r of very long wavelength is applied
to the system. It creates an external electric potential

Φ(r) =
∫

ρext(r′ )
|r − r ′| d

3r ′ =
4π

k2
εeik.r (3.46)

and a perturbation to the Hamiltonian

HextHH =
∫

ρc(r)Φ(r)d3r = ε
4π

k2

∫
ρc(r)eik.rd3r . (3.47)

Using linear response theory [108], the induced charge is given by

ρind(r ′) = −β〈ρc(r ′)HextHH 〉 (3.48)
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where the average is over the unperturbed statistical ensemble and β =
(kT )−1 (where k is the Boltzmann constant). Thus, assuming that the applied
charge is perfectly screened i.e., that the system responds with an induced
charge density ρind = −ρext, we have, in the limit, k → 0,

−εeik.r ′ 	 −βε
4π

k2

∫
〈ρc(r ′)ρc(r)〉eik.rd3r . (3.49)

Therefore the PS behaves, for k → 0, as

P (k;T ) 	 k2

4πn2β
. (3.50)

The behavior of the PS at small k is traceable through (3.46) as being simply,
up to a factor β, the inverse of the FT (in the sense of distributions) of the
repulsive 1/r potential. In a similar way it is simple to show that using a
more general repulsive potential

Φ(r) = 1/ra

with −1 < a < 3, the PS at small k behaves as P (k) ∼ k3−a (i.e., super-
homogeneous), while for any a ≥ 3 one has a substantially Poisson small k
behavior of the PS (with logarithmic corrections for a = 3). In particular for
a = 2 the cosmological Harrison-Zeldovich spectrum for the PS is obtained
[92] (see Chap. 6). We will discuss this point further in Chap. 7.

3.6 Further Analysis of Gaussian Fields

In this section we continue the analysis of continuous Gaussian fields, beyond
the discussion given in Sect. 2.7.

We limit ourselves to stationary Gaussian fields, and present the discus-
sion directly in the continuum. Statistical stationarity implies that the cor-
relation matrix (see Sect. 2.7) between the two points r and r′ is a function
of only the difference r − r′. We will see that, in this context, the diago-
nalization procedure for the correlation matrix corresponds to the Fourier
representation of the field, and to the introduction of the PS.

Let us call V the cubic volume in which the Gaussian SSP ρ(r) is defined.
Its probability density functional is given by (see Sect. 2.7)

P [ρ(r)] ∼ exp
[
−1

2

∫
V

∫∫ ∫
V

∫∫
ddrddr′δρ(r)K(r − r′)δρ(r′)

]
, (3.51)

where δρ(r) = ρ(r) − ρ0 with ρ0 = 〈ρ(r)〉 an arbitrary fixed constant (in-
dependent of r given the assumed stationarity of the process) giving the
ensemble average of the field, and K(r) is the so-called correlation kernel.
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It is simple to extend to the continuum the arguments introduced in
Sect. 2.7 to show that K(r) must be positive definite i.e., such that∫

V

∫∫ ∫
V

∫∫
ddrddr′f(r)K(r − r′)f(r′) > 0 (3.52)

for any function f(r) in the appropriate class. We will further clarify this
point in passing to the Fourier space representation of the process. Any av-
erage 〈 . . .〉 of the stochastic field ρ(r) is defined by the functional measure
defined by (3.51). Let us denote by F [ρ(r)] a generic function of the stochastic
field at one or more spatial points. Formally, its average is defined to be

〈F [ρ(r)]〉 =

∫
D[ρ(r)]F [ρ(r)] exp

[
−1

2

∫
V

∫∫ ∫
V

∫∫
ddrddr′δρ(r)K(r − r′)δρ(r′)

]
∫

D[ρ(r)] exp
[
−1

2

∫
V

∫∫ ∫
V

∫∫
ddrddr′δρ(r)K(r − r′)δρ(r′)

] ,

(3.53)
where

∫
D[ρ(r)] . . . indicates the functional integral (also called path integral)

and D[ρ(r)] is the functional differential over the ensemble (for the general
properties of functional integrals, see for instance [3]). By putting F [ρ(r)] =
ρ(r)ρ(r′) in (3.51), we obtain the complete two-point correlation function.
Performing this average by using (3.53) may seem a difficult task. However,
as we are going to show by passing to the Fourier representation, it is not
necessary to perform it directly from (3.53) in order to find the correlation
function 〈ρ(r)ρ(r′)〉 and its connected part.

As in Sect. 3.2, we can write

δρ(r) =
1
V

∑
k

eik·rδρ̃(k) , (3.54)

and
K(r) =

1
V

∑
k

eik·rK̃(k) , (3.55)

where δρ̃(k) and K̃(k) are respectively the FT of δρ(r) and K(r), and k runs
over all the vectors whose components are any integer multiple of (2π)/V 1/d.
Note that, as K(r) is real and K(r) = K(−r), then also K̃(k) is real and
K̃(k) = K̃(−k). Recall that since δρ(r) ∈ IRII , δρ̃(k) is a complex number
satisfying

δρ̃(−k) = δρ̃∗(k) . (3.56)

By substituting (3.54) and (3.55) in (3.51), we can write

P [ρ(r)] ∼ exp

[
− 1

2V

∑
k

K̃(k) |δρ̃(k)|2
]

=

exp

[
− 1

V

∑
k+

K̃(k) |δρ̃(k)|2
]

=
∏
k+

exp
[
− 1

V
K̃(k) |δρ̃(k)|2

]
, (3.57)
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where
∑

k+ and
∏

k+ indicate respectively the sum and the product over
half of the Fourier vectors k e.g., all the Fourier modes k with the first
component limited to be positive or zero4. This corresponds to the application
of the condition (3.56) imposing that δρ(r) be real. Let us call Re [δρ̃(k)] and
Im [δρ̃(k)] respectively the real and the imaginary part of δρ̃(k), so that

|δρ̃(k)|2 = (Re [δρ̃(k)])2 + (Im [δρ̃(k)])2 .

Note that (3.57) shows that for stationary Gaussian fields the Fourier repre-
sentation is equivalent to the linear transformation leading to the diagonal-
ization presented in Sect. 2.7.

The last expression of (3.57) implies that all k belonging to the selected
half of space are independent of each other, and that for each k the quan-
tities {Re [δρ̃(k)]} and {Im [δρ̃(k)]} are two independent Gaussian random
variables with zero mean and variance given by

〈
(Re [δρ̃(k)])2

〉
=
〈
(Im [δρ̃(k)])2

〉
=

V

2K̃(k)
, (3.58)

which gives 〈
|δρ̃(k)|2

〉
=

V

K̃(k)
. (3.59)

Since, by definition, the variance (3.58) must be positive, we conclude that
K̃(k) > 0 for each k, and, by Fourier theory, this is equivalent to the condition
(3.52). Given the definition (3.6) of the PS S(k) of a SSP, we conclude that

S(k) =
1

K̃(k)
. (3.60)

Equations (3.59) and (3.60) are the formulation of the Wiener-Khinchin (else-
where only Khinchin) theorem for Gaussian fields. From (3.60), the connected
two-point correlation function C2CC (r − r′) = 〈δρ(r)δρ(r′)〉 is calculated by
simply evaluating (3.10) without explicitly performing the average (3.53).

Moreover, by using (3.57), it is simple to demonstrate that every cumulant
of the process of order n > 2 vanishes. Consequently, any complete correlation
function of order n > 2 is completely determined byρ0 and C2CC (r) and by using

4 Actually, in this way, all the modes with the first component of k equal to zero
are counted twice. However in the limit V → ∞ this contribution vanishes as it
corresponds to a set of k of measure zero.
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the formulas of the cumulant expansion (see Sect. 2.3.1) with the cumulants
of order larger than 2 set equal to zero5.

Before passing to study the general problem of the statistical properties of
the linear combinations of Gaussian variables, we note that the analysis just
given provides a practical recipe to build a Gaussian field ρ(r) with arbitrary
connected two-point correlation function C2CC (r) with non-negative FT and
average value ρ0:

• First of all the FT of C2CC (r) has to be calculated. This gives the PS S(k);
• The next step is given by choosing two independent Gaussian random

numbers a(k) and b(k), for each k belonging to the half-space with positive
first component and satisfying the Fourier condition in the cubic volume
V (i.e., with components which are multiples of 2π/V 1/d), with zero mean
and variance V S(k)/2, for each k independently of the others;

• The third step consists in composing a and b in two conjugate complex
numbers: c(k) = a(k) + ib(k) and c(−k) = a(k) − ib(k);

• The fourth step consists in evaluating the Fourier sum

δρ(r) =
1
V

∑
k

c(k)eik·r ,

where the sum is now over all the Fourier vectors.
• The last step consists simply in shifting the field by setting the mean equal

to ρ0:
ρ(r) = δρ(r) + ρ0 .

Finally, we note that the infinite volume limit V → ∞ can be taken in a
simple way, all the Fourier series being replaced by the appropriate Fourier
integrals. This leads us to rewrite (3.57) as

P [ρ(r)] ∼ exp
[
− 1

2(2π)d

∫
ddk K̃(k) |δρ̃(k)|2

]
. (3.61)

Also in this limit we still have the relations

S(k) =
1

K̃(k)
,

and
ξ̃(r) = FT−1[S(k)] ,

which, together with the knowledge of ρ0, give the complete description of
the Gaussian field.
5 In quantum field theory this recipe leads to the Wick theorem for Gaussian fields.
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3.6.1 Real Space Composition of Gaussian Fields, Correlation
Length and Size of Structures

Here we give another simple recipe to construct Gaussian fields with a given
PS or two-point correlation function. We present this case in the continuum
formulation, but the discretized version of it, useful for numerical applica-
tions, is evident. The recipe is the following (in d-dimensions):

• Take a white Gaussian field (also called simply white noise) φ(r) i.e., a
Gaussian field whose correlation properties are the following:{ 〈φ(r)〉 = 0

〈φ(r)φ(r′)〉 = σ2δ(r − r′) .
(3.62)

• Choose a correlation factor F (r), and define the correlated Gaussian field
ψ(r) through

ψ(r) =
∫

ddr′F (r − r′)φ(r′) . (3.63)

It is clear from this formula and from the properties of the white Gaussian
field that ψ(r) is statistically stationary. If, moreover F (r) is a function
only of r = |r| then ψ(r) is also statistically isotropic.

• From (3.62) and (3.63) it is simple to show by direct integration that

〈ψ(r)〉 = 0 , (3.64)

and that the connected two-point correlation function is given by

C2CC (r) = σ2

∫
ddr′F (r′)F (r′ + r) . (3.65)

As a consequence the PS is given by

S(k) = σ2|F̃ (k)|2 , (3.66)

where F̃ (k) = FT [F (r)]. From (3.66) and the Wiener-Khinchin theorem
(see Sects. 3.6) we have that the function F (r) must be such that S(k) is
integrable.

We now consider some simple explicit examples which show how the char-
acteristic lengths of F (r) can be related to the typical size of the structures
in the field ψ(r).

As a first example we set σ = 1 and take

F (r) = e−r/l . (3.67)

The field ψ(r) defined by (3.63) will be correlated over a region of size l,
and it can be seen from (3.65) that C2CC (r) will be exponentially damped for
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r > l in any dimension d i.e., l is the correlation length of the system. In
particular in d = 2 for this choice of F (r), from (3.66), we have

S(k) =
4π2l4

[1 + (kl)2]3
.

We can see that for k < 1/l the PS S(k) is approximately white (i.e., k-
independent), meaning that the largest structures (i.e., correlated region) in
the system are of size l. In Figs. 3.7 and 3.8 we show two pictures of this case
in which the system volume has been discretized in 512 × 512 pixels. In the
first case we have chosen l = 14 (i.e., much smaller than the sample size) and
in the second one l = 200 (i.e., comparable with the sample size). In both
cases the typical size of the over-densities (dark) and under-densities (light)
is evidently given by the choice of l.

In the case that F (r) (and, consequently, C2CC (r)) has many different char-
acteristic scales, or has no finite characteristic scale (i.e., “slow” power-law
tailed C2CC (r)), the relation of the typical size of over-densities (or under-
densities) with the shape of F (r) is much more complex [237]. For example
if F (r) presents m different characteristic scales as in

F (r) =
m∑

i=1

Aie
−r/li ,

the PS, in d = 2, will be given by

S(k) =
m∑

i=1

4π2A2
i l

4
i

[1 + (kli)2]3
.

It is clear from this formula that the typical scale of over-densities will depend
in a complex way both on all the lengths li and on all the weights Ai.

3.7 Summary and Discussion

In this chapter we have presented the Fourier counterpart of the statistical
analysis of the two-point correlation properties of an ordinary SSP, both in
the continuous and in the discrete cases.

This kind of analysis is based on the introduction of the power spec-
trum (PS) S(k) of the process, which measures the net contribution of each
complex k-mode to the construction of the stochastic field in real space in-
dependently of its phase. It is simple to show that, in the case of spatial
stationarity of the field, S(k) is simply related to the connected two-point
correlation function C2CC (r) by the FT operation. Therefore C2CC (r) and S(k)
contain the same information about the stochastic process. However, depend-
ing on the context, it may be more convenient or appropriate to concentrate
on the analysis of one of the two.
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Fig. 3.7. Correlated Gaussian field with a single exponential cut-off as in (3.67).
In this case l = 14 and the box size is L = 512 in units of the lattice spacing.
The typical structures of over-densities (dark) and under-densities (light) have a
characteristic size of order l

For instance, in the context of stochastic uniform (i.e., non-fractal) mass
density fields (both continuous and discrete) in d-dimensions, a complete
classification in terms of the scaling properties of the relative normalized mass
variance σ2(R) in spheres at large scales R can be given most conveniently in
terms of S(k). In fact, while scaling conditions of σ2(R) are related to non-
local integral properties of C2CC (r), it is simple to show that the same conditions
can be translated into local scaling properties of S(k) at small k. In particular,
this kind of analysis of the PS at small k permits the classification of any
uniform spatial mass distribution into only three classes:

• Substantially Poisson, if the large R behavior of σ2(R) is analogous to that
of a Poisson SPP with appropriate average density i.e., σ2(R) ∼ R−d. This
case is found when S(k) ∼ k0 at small k (small k white noise condition);

• Critical homogeneous mass densities i.e., mass distributions whose fluc-
tuations are similar to those of thermodynamic critical phenomena (e.g.
a simple fluid at the gas-liquid critical point). In this case σ2(R) ∼ R−α



98 3 The Power Spectrum and the Classification of SSF

Fig. 3.8. Correlated Gaussian field with a single exponential cut-off. In this case
l = 200 and L = 512. Structures have a characteristic size of order of the dimension
of the box.

with 0 < α < d. This translates in a small k behavior of the PS given by
S(k) ∼ kα−d i.e., diverging in this limit.

• Super-homogeneous (or hyper-uniform) mass distributions. In this case
σ2(R) ∼ R−α with α > d. This case can be seen as a condition of large
scale stochastic order. It can be shown also that, in any case, α ≤ d + 1
i.e., there is no stochastic mass distribution with α > d + 1. The related
small k behavior of the PS is S(k) ∼ kβ with β = α − d if d < α < d + 1,
and β ≥ 1 if α = d + 1.

This last class of mass distribution is very important in cosmology as we will
discuss in more detail in Chap. 6. All standard models of the primordial mass
density fluctuations fix, as the small k limit condition for the PS, S(k) ∼ k,
which means a super-homogeneous distribution with the limit of the smallest
possible real space fluctuations for a stochastic system. For this reason we
have further illustrated this class of systems through the presentation of two
explicit examples: (1) a regular lattice array of particles which shows well the
link between the condition of super-homogeneity and large scale order; (2) an
example from statistical physics known as “one component plasma”. In the
high temperature phase, it presents a PS behaving as S(k) ∼ k2 at small k. In
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this physical example the super-homogeneity condition for the fluctuations is
linked to screening condition of long range interactions. In Chap. 7 we discuss
further a generalization of this system which gives S(k) ∼ k at small k.

Finally we have completed the presentation of the continuous Gaussian
stochastic fields started in Chap. 2, through the introduction of the Fourier
representation, which makes simpler the explicit calculation of its statistical
properties. Furthermore this Fourier representation leads to the introduction
of a simple recipe for “building” a stationary Gaussian stochastic field with
an arbitrary correlation function (or the equivalent PS).



4 Fractals

4.1 Introduction

In the last twenty years the introduction and the development of fractal
geometry has allowed us to classify and study a large variety of structures
in nature which are intrinsically irregular and self-similar [150, 151]. From a
mathematical point of view this situation corresponds to the fact that these
structures are singular at every point and at any scale. This property can
be characterized in a quantitative way through the use of new mathematical
and statistical methods whose application is usually called fractal analysis.
However, given these subtle geometrical properties, it is clear that formulating
a theory for the “physical” origin of these structures is going to be a very
challenging task. This is actually one of the objectives of current activity in
the field of modern statistical physics [79].

The main difference between the “popular” fractals like coast-lines, moun-
tains, clouds, lightning etc. and the self-similarity shown by thermodynamical
critical phenomena is that criticality at phase transitions occurs only with
an extremely accurate fine tuning of the relevant thermodynamical param-
eters (e.g. temperature, pressure, etc.) at the critical point (as for the Ising
model discussed in Chap. 2) [3, 148]. In the most common fractal structures
observed in nature, fractal properties are instead developed spontaneously by
the dynamical formation process, for a large range of the physical parameters
of the system. However, before developing a complete physical description of
the dynamical evolution and appearance of irregular and complex structures,
one must have a clear way to characterize mathematically the relevant ge-
ometrical properties of self-similar distributions. This is the task of fractal
geometry.

The fact that we are traditionally accustomed to describe physical sys-
tems in terms only of regular functions has crucial consequences on the type
of questions we ask and on the methods we use to answer them. If one has
never been exposed to the subtleness of strongly irregular structures, it is
natural that mathematical regularity is not even questioned and it is an or-
dinary working hypothesis. Only after the aforementioned introduction and
developments of fractal geometry has it become possible to test and determine
if a physical process characterized by intrinsic fluctuations may be described
by “smooth” mathematics or whether it requires a fractal description. From
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the point of view of stochastic processes and fields, many fractal mass distri-
butions can be seen as special cases where the ensemble average density ρ0 is
zero and fluctuations are large at any scale. For this reason the estimation of
statistical quantities, such as the average density in a finite sample, becomes
then a subtle and complex task which should be considered with great care.

In this chapter we present and discuss some basic properties of fractal
objects1. We do not intend here to present a mathematically rigorous intro-
duction to the field of fractals, for which we address the reader to the book by
Mandelbrot [151] and the one by Falconer [83]. In the Appendix B we explain
some simple algorithms to generate fractal distributions, while in Chap. 5 we
generalize the concept of fractals (point distributions) to strongly irregular
measure densities (i.e. multifractals).

4.2 The Metric Dimension

The question which we would like to tackle is how we can describe and charac-
terize irregular structures such as the ones shown in Fig. 1.2, Fig. 2.3, and in
Figs. 4.1–4.4 (see Appendix B for explanation of the generation algorithms).
The standard mathematical tools which are based on regular functions do
not apply for these systems. Self-similarity, which implies that at smaller or
larger scales the geometrical structure shows the same degree of complexity
present at the original scale, makes it impossible to define a spatial deriva-
tive. As a result self-similarity is incompatible with mathematical regularity,
with the exception of trivial cases such as a straight line. This lack of analyt-
icity has deep consequences on the geometrical and statistical tools used to
characterize these structures. It imposes radical changes of the mathematical
perspective and of the description framework.

The metric dimension is the most important concept introduced to de-
scribe these intrinsically irregular systems. There is a large variety of defini-
tions of the metric dimension but in the most of cases of interest they give
the same result [83, 151]. Basically it measures the rate of increase of the
“mass” of the set with the size of the volume in which it is measured. The
most widely used definition for practical analysis is the box dimension or ca-
pacity. Let us focus on a set of points (i.e. geometrical structures) S ⊂ IRII p,
where IRII p is the p-dimensional space. The definition of the box dimension of
a set S ⊂ IRII p is given by

DB = lim
ε→0

log N(ε)
log(1/ε)

(4.1)

where N(ε) is the minimum number of p-dimensional boxes of size ε needed to
cover completely the set S. If we apply this definition on idealized smooth ob-
jects such as a line, a square or a cube we readily find respectively N(ε) ∼ ε−1,
1 We have used, in the first part of this chapter, the Ph.D Thesis by A.P. Siebesma

[213].
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Fig. 4.1. Random walk in d = 3, projected on the x-y plane. The fractal dimension
is D = 2

N(ε) ∼ ε−2, N(ε) ∼ ε−3 and thus for the dimension DB = 1, 2, 3 respectively,
as expected. Note that, if the set is covered with boxes of size ε (neighbor-
hoods), one obtains a coarse-grained picture of the set up to a scale ε.

The box dimension can be interpreted as a simplified version of the true
metric dimension: the Hausdorff dimension [83, 151]. To define the Hausdorff
dimension of a subset S ⊂ IRII p, let us consider a covering of the set by p-
dimensional neighborhoods the ith of which has a linear size εi. The Hausdorff
dimension DH is the critical dimension at which the Hausdorff measure HdHH (ε)
passes from zero to an infinite value:

HdH (ε) = inf
∑

i

εd
i

ε→0

→
{

0 if d > DH

∞ if d < DH
(4.2)

and where the infimum extends over all the possible coverings subject to the
constraint that any εi ≤ ε. It is quite easy to see that DB ≤ DH where the
equality holds if the infimum of (4.2) implies a coverage of ε-neighborhoods
all with the same linear size ε. As already mentioned, in almost every case of
interest the equality holds.

The definition proposed by Mandelbrot for a fractal [151] is “A fractal
is a set for which the Hausdorff dimension strictly exceeds the topological
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Fig. 4.2. Random trema dust in d = 2 with D = 1.8

Fig. 4.3. Levy flight in d = 3 with D = 1.0
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Fig. 4.4. Example of fractal growth phenomenon in the diffusion limited aggre-
gation model, one of the most studied self-organized fractals in physics. A particle
follows a Brownian motion in space until it has a collision with the central structure.
At this point the particle sticks to the structure and another particle starts from a
faraway point. The cluster represented in the figure contains 50.000 particles. The
various colours are related to different physical properties (Elaboration and photo
by B.B. Mandelbrot and C.J.G. Evertsz.)
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dimension”. The topological dimension can be simply defined as the number
of independent directions in which one can move around a given point of the
set. As a result the examples reported in Fig. 2.3, Fig. 1.2 in the Appendix B
are indeed fractals. The Cantor set for instance has a topological dimension
0 since it consists of a set of isolated points while its Hausdorff dimension
is strictly positive. Smooth idealized forms like a plane and a cube, where
the topological dimension equals the Hausdorff dimension, are non-fractal
and are called commonly homogeneous or compact. Whenever a set has a
non-integer Hausdorff dimension it is a fractal. This is a sufficient but not
a necessary condition. For example, the set of points visited by an ordinary
random walk (see Chap. 2) has an integer Hausdorff dimension 2 while its
topological dimension is 0 (if one considers the continuous trajectory the
topological dimension is 1).

From here on we focus our attention on distributions of isolated points
(or particles) representing a fractal or an homogeneous set which is the real
subject of interest for cosmological applications. Strictly speaking a set of
isolated particles, whose microscopic density can always be written as

ρ(r) =
∑

i

δ(r − ri) ,

where ri is the position of the ith particle of the system, has a topological
dimension equal to zero. However, given a connected fractal or homogeneous
set of points of arbitrary metric and topological dimension, it can be repre-
sented with an arbitrary accuracy through a set of isolated points. In fact,
one can always cover the original set with a grid of spacing Λ, and occupy
with a single point at its center each cell of the grid whose intersection with
the original set is not empty. In this way we obtain a set of isolated points
(zero topological dimension) whose box dimension, for instance, is equal to
that of the original set if measured using boxes with size ε > Λ. It is clear
that Mandelbrot’s definition of a fractal for this kind of point distribution
no longer applies because the metric dimension is larger than the topological
one, even in the case in which the original set, from which the distribution of
isolated points is obtained, is homogeneous (for instance, a surface in d = 2
or a volume in d = 3). Of course, the distribution of isolated points repre-
sents well the fractal properties of the original set only on scales larger than
Λ, which for this reason is usually called the lower cut-off. This means that,ffff
given a distribution of isolated particles, as for example a galaxy survey, the
determination of the fractal dimension is the main tool to study the degree
of irregularity of the point distribution.

Another method used to determine the fractal dimension is the mass
versus radius method. Loosely speaking, it consists in measuring the total
properly defined mass M of an object, seen from an occupied point of the
distribution, as a function of its linear size R. This corresponds to the most
intuitive idea of fractality. If the mass M scales as
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lim
R→∞

M(R) ∼ RD (4.3)

then the exponent D is called the mass-length dimension. For self-similar
systems D is usually equal to the box dimension, i.e. D = DB = DH ≤ d
(where d is the spatial dimension) in most cases. In particular this definition
is very useful in the case of the distribution of isolated particles (e.g. galaxy
surveys) for which M(R) can be measured, for example, by the number of
points (galaxies) inside a sphere of radius R around a given point of the dis-
tribution, i.e. it is a conditional quantity. Clearly the amplitude of M(R) in
(4.3) depends on the lower cut-off Λ. Hereafter we mainly consider determi-
nations of the fractal dimension via the average mass-length relation (MLR)
and related tools (see also [102]).

4.3 Conditional Density

Many random fractal sets can be generated by stochastic algorithms which
are spatially stationary, i.e. which generate point distributions whose statis-
tical properties are translationally invariant [151, 153]. We will restrict our
discussion to this kind of fractal. For such a fractal set any observer is a-
priori statistically equivalent to any other one (i.e., the expected values are
independent of his position)2. Moreover the algorithm generating the fractal
set is also statistically isotropic. In this sense one might try to apply the
statistical tools introduced for homogeneous mass distributions obtained for
the SSP case. However, as shown by (4.3), a fractal with dimension D < d,
has a mass (i.e. number of points) which grows more slowly than the vol-
ume; therefore the average density in any sample of volume V of the system
vanishes when V → ∞. This means that a fractal set of points is asymp-
totically empty. Consequently, if we take a randomly placed finite volume in
an infinite fractal distribution of isolated particles it contains typically no
points. This implies that only conditional correlation functions of the type
〈ρ̂(r1)ρ̂(r2) . . .〉p of the stochastic density ρ̂(r) of points are well defined for a
fractal distribution of points. The symbol 〈 . . .〉p adopted for the average has
the same meaning as in Chap. 2: in principle it is the conditional ensemble
average over all the possible realizations ρ(r) of the density of points with
the functional probability density P[ρ(r)]. Supposing the ergodicity of the
stochastic process or algorithm generating the fractal point distribution, if
only one realization of the fractal is available, the average can be performed
2 In this sense a fractal satisfies a weaker version of the cosmological principle

(which states that all points in space should be equivalent), the so-called condi-
tional cosmological principle [151], where the isotropy of the structure plus the
non-analytical character of the distribution ensure the equivalence of all points
without imposing strict homogeneity (or uniformity) of the distribution (see
[18, 47, 151, 223] for further discussion).
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as a conditional volume average given by (2.49) in Chap. 2. If this average
is restricted to the points inside a finite portion of the whole infinite fractal,
we have only a statistical estimator of the correlation function.

We can define the property of statistical isotropy in a more precise way.
Let us focus on the three-dimensional case. Let N(φ̂, Ω; r) be the number of
points contained in a portion of a sphere of radius r, which covers a solid
angle Ω in the direction φ̂. We define as a statistically isotropic fractal, a
structure for which [47, 88, 90, 151, 223]

〈N(φ̂, Ω; r)〉p = B
Ω

4π
rD , (4.4)

with B independent of φ̂ and Ω. Clearly, because of the intrinsically irregular
nature of a fractal, characterized by both large voids and structures (i.e.
clusters of points), the behavior of N(φ̂, Ω; r) from a single observer presents
sensible deviations from (4.4) at all scales. In fact, the presence of voids and
structures at any scale creates local anisotropies which are erased only in the
conditional average over all possible observers. The statistical properties of
these deviations depend, in general, on the specific morphological properties
of the distribution considered, and not only on the fractal dimension, as we
are going to discuss below [88, 151, 153, 223].

As aforementioned, when one considers a self-similar point distribution,
fractal properties are defined above a lower cut-off Λ. In a distribution of
isolated particles the amplitude B in (4.4) is a measure of Λ. More precisely,
since B is the average number of points (particles) in the unitary sphere
around an occupied point (see Sect. 4.3.3), it is directly a measure of ΛD

[47, 88, 90, 223]. A point distribution can also have an upper cut-off Rs which
is the spatial scale up to which self-similarity is detectable. For instance, in
the case of a fractal set in a finite volume, Rs is the typical size of this
volume. In particular it may be the scale marking a cross-over from fractal
to non-fractal uniform behavior: in this case Rs may be identified with λ0,
the homogeneity scale defined in Chap. 2. Therefore, usually, when fractality
is detected in real geometrical structures and/or point distributions (4.4) is
valid in the finite range of scale Λ < r < Rs. Given (4.4) it is simple to see
that the conditional average is expressed as [47, 223]

〈ρ̂(r)〉p ≡ Γ (r) =
DB

4π
rD−3 . (4.5)

We use both the symbols 〈ρ̂(r)〉p and Γ (r) for the conditional average density
to match with the notations used by [47, 190, 223]. Equation (4.5) can be
generalized to spaces with d-dimensions:

Γ (r) = Ar−γ with γ = d − D , (4.6)

with D < d and A is a constant. The exponent γ is called the co-dimension
of the fractal. Operatively, the conditional average density in (4.5) represents
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the average density of particles measured in a shell of finite thickness ∆r at
distance r from an occupied point (with ∆r � r), and then averaged over all
the points contained in the sample (see Chap. 9 and Appendix F).

We may use also the integrated conditional density Γ ∗(r) which is defined
as

Γ ∗(r) =
3

4πr3

∫
C

∫∫
(r)

Γ (r′)d3r′ , (4.7)

where C(r) is the sphere of radius r. In practice the latter quantity measures
the conditional density in a sphere of radius r rather than in a spherical shell
as for Γ (r). For this reason it smooths out the rapidly varying fluctuations
of Γ (r) estimated in a finite sample and it is a more stable quantity.

4.3.1 Conditional Density and Smooth Radial
Particle Distributions

In this section we show that a power-law average conditional density can be
found not only in fractal particle distributions, but also in finite but large
samples of smooth spherically symmetric (radial) particle systems [36]. This
implies that, even though the functions Γ (r) and Γ ∗(r) are the primary
tools to investigate the fractal and self-similar properties of a distribution
of particles with the same mass, one should analyze also other properties
as, for instance, the box-counting dimension, three-point correlations or the
conditional variance in spheres (see below) to test whether the power-law
correlations correspond to fractality.

Let us consider a unitary mass particle distribution in d-dimensions

ρ(r) =
∑

i

δ(r − ri) ,

defined by the following radial anisotropic Poisson algorithm in a spherical
volume of radius Rs. Let us partition the total volume into small volume
elements dV , and let us occupy the volume element around the point r with
a particle with a radial probability A/rαdV with 0 < α < d (we choose
dV (r) so that A/rαdV (r) � 1 everywhere in the volume) or leave it empty
with the complementary probability 1 − A/rαdV . Clearly, at small r, say
below a certain λ � Rs (lower cut-off), we have to cut-off to a constant
value the radial probability in order to have it well defined in any volume
element. Moreover, we choose 0 < α < d in order to have an infinite number
of point-particles in the infinite volume limit Rs → ∞. Note that there is
no correlation between the probabilities of occupying two different volume
elements. This corresponds to an anisotropic radial (or radial density profile)
generalization of the Poisson distribution introduced in Chap. 2. Clearly the
unconditional density behaves as

〈ρ(r)〉 =
A

rα
. (4.8)
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We now use a simple argument to obtain an estimate of Γ ∗(r) for λ �
r � Rs. The results found for Γ ∗(r), apart from differences in the numerical
coefficients, hold also for Γ (r). Let us suppose, for simplicity, that Rs is an
integer multiple of r, and partition the space into a sequence of spherical
shells of thickness 2r, i.e. the nth shell covers the distance between (2n− 2)r
and 2nr from the origin. Moreover, we will consider the density in each shell
to be constant, in such a way that in the nth shell its value is given by
〈ρ(2nr)〉. The result obtained with the following argument are valid also for
Rs/r non-integer and in agreement with that obtained by a more rigorous
treatment. If n � 1 a generic particle belonging to the nth shell will observe,
within a distance r from it, a number of particles

NnNN (r) 	 C(r)
A

(2nr)α
=

ΩdA

2d
n−α(2r)d−α (4.9)

where C(r) = Ωdr
d is the volume of the d-dimensional sphere of radius r

(and Ωd is the whole solid angle). Moreover there are

MnMM (r) 	 Ωdd(2nr)d−12r
A

(2nr)α
= ΩdAdnd−α−1(2r)d−α (4.10)

of such “observers” in the same nth shell. More rigorously, since the average
density of particles in a shell is not constant (4.8), one should write

MnMM (r) =
ΩdAd

d − α

∫ 2nr

(2

∫∫
n−2)r

dr rd−α−1 (4.11)

which is well approximated by (4.10) for n � 1. Therefore the average con-
ditional number of particles seen within a distance r by another particle of
the system is

〈N(r)〉p 	
∑Rs/r

n=1 MnMM (r)NnNN (r)∑Rs/r
n=1 MnMM (r)

. (4.12)

Note that
∑Rs/r

n=1 MnMM (r) is the total number of particles in the system, which,
instead of performing the sum using the (4.11) or (4.10), may be directly
evaluated by integrating in the sphere of radius Rs (4.8). In this way we
obtain

Rs/r∑
n=1

MnMM (r) =
d

d − α
ΩdARd−α

s . (4.13)

We can now evaluate the numerator of (4.12) by using (4.9) and (4.10). This
leads to

〈N(r)〉p 	 ΩdA(d − α)
2d

Rα−d
s (2r)2(d−α)

Rs/r∑
n=1

nd−2α−1 . (4.14)
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The next step consists in approximating the sum in (4.14) with the following
integral:

Rs/r∑
n=1

nd−2α−1 	
∫ Rs/r

1

∫∫
dxxd−2α−1 . (4.15)

At this point we have to distinguish two cases (see Figs. 4.5–4.6):

1. 0 < α ≤ d
2 (see Fig. 4.5): in this case the integral of (4.15) is divergent

for Rs → ∞ and r fixed. Therefore in the limit of large Rs/r, we can
approximate it as∫ Rs/r

1

∫∫
dxxd−2α−1 	 1

d − 2α

(
Rs

r

)d−2α

. (4.16)

This leads to

〈N(r)〉p 	 ΩdA(d − α)
22α(d − 2α)

R−α
s (2r)d . (4.17)

Since by definition Γ ∗(r) = 〈N(r)〉p /C(r), we can write

Γ ∗(r) 	 2d−2αA(d − α)
d − 2α

R−α
s . (4.18)

Thus we arrive at the result that, if 0 < α < d
2 , the conditional density

is independent of r and depends on the upper cut-off Rs (i.e. the size of
the system) following the scaling relation R−α

s , i.e. it goes to zero in the
infinite volume limit with the same exponent as the average radial density.
In the case α = d/2 the integral of (4.15) diverges only logarithmically,
leading to logarithmic corrections to this result.

Fig. 4.5. Right panel : Density profile in d = 3, with a power-law density decay (as
1/r) from the center. In the left panel is shown the behavior of the density computed
from the center (solid line) and of the conditional average density: 〈n(r)〉p shows
an almost flat behavior as a function of scale (which corresponds to homogeneity)
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Fig. 4.6. Right panel : Density profile in d = 3, with a power-law density decay
(as 1/r2) from the center. In the left panel is shown the behavior of the density
computed from the center (solid line) and of the conditional average density: 〈n(r)〉p
shows a power-law behavior with the exponent predicted by (4.21)

2. d
2 < α < d (see Fig. 4.6): in this case the distribution becomes empty
more rapidly than in the first case, and the integral of (4.15) converges to
a constant in the limit of Rs → ∞ and r fixed. Therefore in the limit of
large Rs/r we can make the approximation:

∫ Rs/r

1

∫∫
dxxd−2α−1 	 1

d − 2α
. (4.19)

As a consequence, the conditional average number of particles is

〈N(r)〉p 	 2d−2αΩdA(d − α)
d − 2α

Rα−d
s r2(d−α) , (4.20)

and the function Γ ∗(r) will be

Γ ∗(r) 	 2d−2αA(d − α)
d − 2α

Rα−d
s rd−2α . (4.21)

This results implies that the conditional density decays with r as ∼ rd−2α

with an amplitude proportional to Rα−d
s . Since in this case the average

conditional density decays with r as a power-law with an exponent between
−d and 0, it could be confused with a fractal of dimension D = 2(d − α).
The main difference with a real fractal consists in the following: in the
fractal case the amplitude does not depend on the system size, while in
the smooth radial particle distribution it goes to zero when the size of the
system goes to infinity. Finally, we notice that in the case where d

2 < α < d,
since the integral (4.19) converges in the infinite volume limit, the behavior
of the conditional density is dominated by the first shells. Therefore in a
more rigorous approach, we should separate these first contributions from
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the rest and analyze them more carefully. This would lead to a difference
in the numerical coefficients in (4.21), but leaves the scaling in r and Rs

unchanged.
This specific problem of how to distinguish between a radial density profile
and a fractal set can be very relevant in cosmology, in particular for the in-
terpretation of clustering in N-body simulations of gravitational clustering.
Indeed in this context a power-law behavior of the two-point correlation
function is observed in a finite range of scales whether this corresponds to
a fractal nature of structures, rather than to a number of several spherical
symmetrical density profiles, is a point which must be carefully investi-
gated. We consider an example of such a situation in the following section.

4.3.2 Statistically Homogeneous and Isotropic Distribution
of Radial Density Profiles

We consider distributing N points in a correlated manner using a prescription
similar to the one used in [166, 167]. Specifically we distribute points in NcNN
“clusters”, each cluster containing NgNN points. Particles are attached to each
cluster with a probability which depends on the distance from the center so
that each cluster has a radial density profile ρ(r) ∼ r−1. The free parameter is
the average mass (number of particles) per cluster 〈NgNN 〉. This implies that the
number of “clusters”, which are randomly distributed, is NcNN = N/〈NgNN 〉 and
their average separation is given by 〈Λ〉 = 0.55(1/NcNN )1/3. The clusters can
have a distribution of masses (number of points inside) which is described,
for example, by an exponential behavior

p(NgNN ) ∼ exp(−NgNN /〈NgNN 〉)
and have a spatial extension of about 〈Λ〉. This means that the NgNN points be-
longing to the ith cluster are distributed in a spherically symmetric way with
a uniform probability to find a point in the interval [0, 〈Λ〉] from the clus-
ter’s center. This represents the situation where each cluster has a spherically
symmetric density profile with ρ(r) ∼ r−2 (see Fig. 4.7–4.8) In Fig. 4.9 we
show the behavior of the conditional density for various realizations of such
a distribution, obtained by changing the average mass of each cluster 〈NgNN 〉.
We note that such distributions are useful to capture the essential elements
of the so-called “halo” models in cosmology for the large scale distribution
of matter (see e.g. [50] for a review).

4.3.3 Nearest Neighbor Probability Density for Radial
and Fractal Point-Particle Distributions

As shown in Chap. 2, in the case of particle distributions with no correlations
between the positions of different particles (i.e. generalized Poisson distribu-
tions), the PDF of the first nearest neighbor (nn) distance is given by (2.71).
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Fig. 4.7. A three-dimensional distribution of 323 points with the prescription roles
discussed in the text. Clusters have an average mass of 〈NgNN 〉 = 20. This is an
orthogonal projection on the x-y plane

For a radial Poisson particle distribution one can study rigorously the prob-
ability distribution of the distance between a particle and its first nearest
neighbor (nn). This quantity is relevant for applications in astrophysics, for
instance in the study of the statistical properties of the gravitational force in
radial distributions of massive objects (e.g. cluster of stars). In fact, as it will
be shown in Chap. 14, the contribution to the force felt by a particle of the
system due to its first nn is, in many cases of interest, the dominant one, and
it is directly determined by the statistics of the nn distance. Furthermore,
as explained below, the result found for smooth radial distributions is useful
also for the statistics of the same quantity for fractal particle distributions.

For a three-dimensional radial Poisson distribution with average spatial
density 〈ρ(r)〉 = Ar−α in a finite volume of size Rs, we have seen in the
previous subsection that Γ (r) = Cr−γ with γ = 0 and C ∼ R−α

s if 0 < α ≤
3/2, while 0 < γ = 2α − 3 < 3 and C ∼ Rα−3

s if 3/2 < α < 3. At this
point, since there is no correlation between the positions of different particles
in order to find the PDF of the nn distance we can repeat the reasoning
presented in Chap. 2 leading to that of an isotropic Poisson distribution.
This results again in (2.71) with the appropriate Γ (r), i.e.
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Fig. 4.8. As in the previous figure, but now with 〈NgN 〉 = 50

ω(r) = 4πCr2−γ exp
(
− 4πC

3 − γ
r3−γ

)
. (4.22)

As expected, this function satisfies the normalization condition∫ ∞

0

∫∫
drω(r) = 1 ,

and can be extended easily to any dimension d. Given the PDF (4.22), it is
simple to calculate the average nn distance through the formula

〈Λ〉 =
∫ ∞

0

∫∫
dr r ω(r) . (4.23)

In our case this gives

〈Λ〉 =
(

3 − γ

4πC

) 1
3−γ

ΓeΓΓ

(
4 − γ

3 − γ

)
, (4.24)

where ΓeΓΓ (x) is the Euler gamma function.
As we will discuss in Chap. 14 (4.22) works well also in the case of a

stochastic fractal particle distribution, at least in the range of small distances
r < 〈Λ〉. As shown in previous sections, for a fractal distribution we have
again Γ (r) = C r−γ with γ = 3 − D and C = DB

4π which is independent of



116 4 Fractals

r

Γ(
r)

0.0001 0.001 0.01 0.10.0001 0.001 0.01 0.1

1000010000

1e+061e+06

o1
o10
o20
o50
γ =−1

Fig. 4.9. Behavior of the conditional density for various realizations of a statisti-
cally homogeneous and isotropic distribution of radial density profiles (see text),
obtained by changing the average mass of each cluster (from left to right the aver-
age mass for cluster increases from 1 to 50). Note that because 〈ρ(r)〉 ∼ r−2 we get
Γ (r) ∼ r−1

Rs as shown in previous sections. Therefore, from (4.24) we can write the
following approximation for the average nn distance:

〈Λ〉 	
(

1
B

) 1
D

ΓeΓΓ

(
1 +

1
D

)
. (4.25)

4.4 The Two-Point Conditional Density

As already mentioned, the fractal dimension is the primary global statistical
quantity to measure in an intrinsically irregular structure displaying fluctua-
tions at all scales. More information, about the morphology, can be obtained
by studying other many-point statistical properties. The average MLR gives
us the density of points in spheres or spherical shells at distance r and thick-
ness ∆r from an occupied point. However this statistical tool is not able to
account for other more complex morphological properties such as, for ex-
ample, the void size distribution around a point of the system, and other
measures of the degree of isotropy around a single point. In order to analyze
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Fig. 4.10. A simplified scheme for an anisotropic (left panel) versus isotropic (right
panel) point distribution (as seen from an “average” point which is the center of
the spherical shell). The conditional density fixes the number of points which there
are, on average, in a given shell in a given shell at distance r from an occupied
point (which, in this example, is fixed to be the same in both spherical shells). The
two-point conditional density can discriminate between the two situations shown
in the figure

these properties, it is necessary to use at least the conditional two-point cor-
relation function. In Fig. 4.10 a simple schema is given which illustrates this
point: three-point analysis is needed to characterize morphological proper-
ties and quantify the anisotropy of structures. In the context of stochastic
fractal particle distributions the principal three-point correlation function is
the two-point conditional density. Through it we can describe the “level” of
isotropy of the distribution around a generic point of the system, and the
effect of self-similar fluctuations on various physical properties such as, for
instance, the gravitational force exerted by the system on a fixed point (see
Chap. 14). Such a quantity plays a basic role in the determination of the
average quadratic gravitational force acting on a point (see Chap. 14) and
on many quantities measurable in galaxy samples (see Chap. 8).

It is possible to show that statistical translation and rotational invariance,
together with fractal scale-invariance, lead to the following ansatz, which is
verified rigorously for the fractal point distribution generated by a random
walk and numerically for many other fractal particle distributions [34]:

Γ (2)(r1, r2) 	 〈ρ̂(r1)〉p〈ρ̂(r2)〉p L
(

r1

r2
, θ

)
, (4.26)

where Γ (2)(r1, r2) is the non-diagonal part of the two-point conditional den-
sity 〈ρ̂(r1)ρ̂(r2)〉p as defined in Sect. 2.5.1 (2.53–2.55), and
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L
(

r1

r2
, θ

)
= 1 + g

(
r1

r2
, θ

)
(4.27)

with

lim
r1/r2→0 , r2/r1→0

g

(
r1

r2
, θ

)
= 0 . (4.28)

This approximation will be useful in Chap. 8 and Chap. 14.

4.5 The Conditional Variance in Spheres

Let us now consider the conditional variance of the number of points N(R) in
a generic sphere C(R) of radius R and its relation with the three-point cor-
relation function, i.e. with the two-point conditional density. The normalized
conditional variance is defined as (2.58)

σ2
p(R) =

〈
N2(R)

〉
p
− 〈N(R)〉2p

〈N(R)〉2p
≡
〈
∆N2(R)

〉
p

〈N(R)〉2p
. (4.29)

Using (4.26) we obtain

〈N(R)2〉p =
∫

C

∫∫
(R)

∫
C

∫∫
(R)

〈ρ̂(r1)〉p〈ρ̂(r2)〉p
[
1 + g

(
r1

r2
, θ

)]
d3r1d

3r2

= 〈N(R)〉2p +
∫

C

∫∫
(R)

∫
C

∫∫
(R)

Γ (r1)Γ (r2)g
(

r1

r2
, θ

)
d3r1d

3r2 (4.30)

which shows that for a fractal particle distribution for which Γ (r) ∼ rD−3, if
g
(

r1
r2

, θ
)

is not exactly zero, we have

〈∆N2(R)〉p ∝ 〈N(R)〉2p (4.31)

at all scales. This is due to the fact that, because of the scale-invariance of
the fractal structure, g is a function only of the ratio r1/r2 [88, 90, 223].
Note again that the value of constant of proportionality in (4.31) is related
to three-point properties and can be smaller than one: here what matters is
the behavior as a function of scale.

We stress the basic difference in this respect between the behavior of a
fractal distribution and that of an homogeneous (or uniform) one (i.e. with,
as discussed in Chap. 2, a well defined mean density ρ0 > 0), no matter
what the nature of correlations. In fact, as we have seen in Chap. 2, in this
latter case we have always that σ2

p(R) → 0 at large scales. Therefore the
behavior given by (4.31) is typical only of fractals and it is a direct effect
of their intrinsic irregularities (while being still statistically stationary and
isotropic).
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4.6 Corrections to Scaling

Generally, for a stochastic fractal the average conditional mass-length relation
is exactly a power-law function (from (4.4)). As usual by “average” is meant
the ensemble average, or in the case in which ergodicity applies (usually the
case for statistically stationary and isotropic stochastic fractals), a volume
average in an infinite sample. In the case in which this average in a single
sample is limited to a finite number of observers, and in particular for a
single observer, there can be important fluctuations at any scale around the
power-law behavior in the estimators of Γ (r) and Γ ∗(r). In fact, as a fractal
is an intrinsically critical system with strong correlations on all scales, we
expect that the conditional density seen by a single point-particle shows large
fluctuations changing, for example, with the direction of observation φ̂ in
(4.4). These fluctuations, because of self-similarity, are present at any scale
as shown by (4.31) and are correlated in angle. This implies that the quantity

〈∆2N(|φ̂1 − φ̂2|;Ω, r)〉p =
〈(

N(φ̂1;Ω, r) − N(φ̂2;Ω, r)
)2
〉

p

(4.32)

depends on the angular distance between φ̂1 and φ̂2, and that it is of the
same order as 〈N2(φ̂, Ω; r)〉p. In other words, one has to consider that the
MLR from a single observer is determined by a sequence of fluctuations which
are present at all scales. For example one encounters, at any scale, structures
followed by large voids. These same fluctuations affect the behavior in r of
NiNN (φ̂, Ω, r) as measured from the ith point only. About this last fact we limit
here the discussion to the case in which Ω = 4π is the whole solid angle,
replacing NiNN (φ̂, Ω, r) simply by NiNN (r). However the results can be extended
easily to include the case of a smaller Ω. We can quantify these effects as a
modulating term around the expected average power-law behavior given by
(4.4). Therefore, in the observations from a single point in general one can
write

NiNN (r) = BrDfiff (r) . (4.33)

where fiff (r), the multiplicative correction to scaling, is a positive limited
function oscillating around 1, in such a way that the average over all the
observers gives (4.4): If we perform the ensemble conditional average (or the
volume one in the case of ergodicity and an infinite sample) of this fluctuating
term, we can smooth out its effect and, as written above, we have that

〈fiff (r)〉p = 1 , (4.34)

at all r. Thus the conditional density, averaged over all points of the infinite
sample, has a single power-law behavior. Hereafter we omit, for simplicity,
the subscript i.

Given (4.33) we may write (4.29) as

σ2
p(r) = 〈(f(r) − 1)2〉p = 〈f(r)2〉p − 1 , (4.35)
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where the last equality follows considering (4.34). An example is shown in
Fig. 4.11.
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Fig. 4.11. Conditional variance for a two-dimensional Sierpinski carpet (see
Fig. 4.12). The average has been performed over 100 random observers located on
points of the distribution. In the inset panel is shown the behavior of the average
MLR together with its errors

4.6.1 Correction to Scaling: Deterministic Fractals

As an interesting example of the multiplicative correction f(r) to the aver-
age power-law behavior of the conditional density, we consider the case of
deterministic fractals. In this case self-similarity is a concept stronger than
in stochastic fractals. In fact, it does not simply imply the scale-invariance
of the correlation functions, but also the fact that any finite portion of the
system, if appropriately magnified, reproduces exactly the whole structure3.
All the main methods to compute the fractal dimension D of a point set
define it through the asymptotic slope of a suitable curve (for example, the
average conditional density) in a log-log plot. In general, thermodynamic

3 Apart from the same magnification of the lower cut-off if the original structure
is not exactly a fractal but a so-called pre-fractal obtained by a finite number of
iterations of the deterministic fractal algorithm (see Appendix B).
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self-similar (i.e. critical) systems are characterized by an invariance with re-
spect to arbitrary magnifying factors, i.e. continuous self-similarity. However
a system could be invariant under a discrete set of dilation only: in such a
situation it is usual to say that it exhibits discrete scaling invariance (DSI)
[194, 215]. There are several examples in statistical physics of systems showing
DSI [11, 30, 215]. Formally DSI leads to a complex exponent of the scaling
quantities and log-periodic oscillations. Let us consider this point in more
detail.

From a mathematical point of view, self-similarity (see Sect. 2.8) implies
that a rescaling of a length r by a factor b

r′ = br (4.36)

leaves the correlation functions of the system, which describe its statistical
behavior, unchanged up to a rescaling that depends on b and not or r. In
particular for the conditional average number of points inside a sphere of
radius r, one has

〈N(r′)〉p = 〈N(br)〉p = 〈N(r)〉pA(b) (4.37)

where A is a pre-factor that does not depend on r. This means that a rescaling
of r gives rise exactly to the same function if 〈N〉p is also rescaled by the
appropriate constant A. As we have already seen, if we require (4.37) to be
satisfied for any value of b, the allowed functions are simple power-laws so
that

〈N(r)〉p = BrD (4.38)

where A(b) = bD. This is the case for most thermodynamic critical systems
and for many stochastic fractals.

However there are cases such as deterministic fractals, e.g. the Sierpinski
gasket (see Fig. 4.12 and Appendix B), where the condition of self-similarity
is satisfied only for a discrete set of values of b, even though N(r) is averaged
over all the points of the set. If N(r) is measured from a single observer this
effect is quite evident. In the case of the Sierpinski gasket we have b = 2n

where n can take any integer value. Quite generally, deterministic fractals
satisfy self-similarity for a set of scale factors b defined by

b(n) = bn
o (n = 1, 2, 3, . . .) , (4.39)

where b0 is a characteristic integer number. In this case (4.37) only holds at
discrete values of b

N(r′) = N(bn
o r) = A(bn

o )N(r) . (4.40)

Attempting to solve (4.40) with functions of the type

N(r) = f(r)rD (4.41)
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Fig. 4.12. The two dimensional Sierpinski gasket. This set is generated by ap-
plying an iterative fragmentation algorithm. At each iteration the set is divided
into 22 boxes, of which only one box is removed. The fractal dimension is then
D = log(3)/ log(2) = 1.585. In this example we have iterated the algorithm 10
times

by finding the conditions to be satisfied by f(r), we have

N(r′) = N(bn
o r) = f(bn

o r)(bn
o )DrD . (4.42)

If we want to have (4.40) satisfied with A(bn
o ) ∼ (bn

o )D, we have to set

f(bn
o r) = f(r) . (4.43)

Let us now consider the variable y = log(r). We have that

y′ = log(r′) = n log(bo) + y . (4.44)

If we call g(y) = f (r = ey), we can write

g(n log(bo) + y) = g(y) . (4.45)

This relation is satisfied by all functions which are periodic with respect to
the variable y = log(r) with period log(bo). This means that in the case of
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discrete scaling we expect a power-law modulated by a periodic function of
log(r). A nice example can be found in [30]. It is possible to show that the
periodic modulation of the power-law can be described by introducing an
imaginary part of the fractal dimension. In fact, we can set, for example, in
(4.45)

f(r) = 1 + a sin(DI log(r)) (4.46)

and
N(r) = BrDRf(r) . (4.47)

It is then possible to write

N(r) = BrDRRe(1 + ariDI ) , (4.48)

where Re(x) is the real part of x. For this reason DI is often called the
imaginary part of the fractal dimension of the set.

It is evident from the previous discussion that if the period of oscillations
around the average power-law behavior is large enough (i.e. comparable with
the sample size), and the amplitude is non-negligible, a clear determination of
the fractal dimension becomes an extremely difficult task via the unaveraged
MLR.

As an example, we consider now the determination of the MLR from one
point for the case of the Sierpinski gasket of Fig. 4.12. We compute the MLR
from the vertex point, and then we plot f(r) defined as

f(r) − 1 =
N(r) − 〈N(r)〉p

〈N(r)〉p . (4.49)

The oscillatory components can be clearly seen in Fig. 4.13. The period in
logarithmic space is p = 2π/ log10(2) ∼ 21, which means that in passing from
log(r) to log(r) + p, f(r) takes the same value. The amplitude of oscillations
is rather small with a = 0.1. We consider now a generic randomly chosen
point of the set and we compute numerically f(r). The result is shown in
Fig. 4.14. In this case the amplitude is larger (a ∼ 1) and it is more difficult
to identify a single component in the oscillations. Such a situation requires a
generalization of (4.46) to include further harmonics.

Let us now consider the conditional variance (Chap. 2) of a set which
presents log-periodic corrections to scaling of the type:

f(r) = 1 + a sin(b log(r) + φ) . (4.50)

Then from (2.58) (4.29) we obtain that the conditional variance is given by

σ2
p(r) = 〈(a sin(b log(r) + φ))2〉 =

a2

2
. (4.51)

Hence σ2
p(r) is related to the amplitude of the log-periodic oscillation and ul-

timately to three-point properties (see above). This means that 〈∆N(r)2〉p ≈
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Fig. 4.13. Behaviors of the quantity f(r) for the two dimensional Sierpinski gasket.
In this case the origin is the vertex of the set (i.e. the point (0,0) in the previous
figure). The oscillatory component can be clearly seen with period = 2π/ log10(2) ≈
20.87. The amplitude of the fluctuations is about 0.1. At small scales the signal is
dominated by shot noise. Such oscillations correspond to the sequence of voids of
increasing size which can been seen in the previous figure

〈N(r)〉2p at any scale, and hence the set is characterized by persistent log-log
fluctuations around the average power-law. On the other hand the typical
logarithmic size of voids is defined by b−1. The fact that the conditional vari-
ance is constant as a function of scale is another very particular property of
fractals. Note again that the value of a is not related in a simple manner to
the value of the fractal dimension.

4.6.2 Correction to Scaling: Random Fractals

As shown above, the presence of persistent oscillations, in the case of a deter-
ministic fractal, comes directly from the strong self-similarity of the set. Also
in the case of a stochastic fractal, the MLR from a single point belonging
to the set shows persistent oscillation with respect to the average power-law.
Unlike the case of deterministic fractals, these oscillations are not periodic.
In the general case of a stochastic fractal, we can write

f(r) ≡ f(log(r)) =
∫ ∞

−∞

∫∫
dωA(ω)eiω log(r) (4.52)
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Fig. 4.14. Behaviors of f(r) (see text) for the two dimensional Sierpinski gasket as
determined from various randomly chosen points of the structure. The oscillating
term can be described as a sum of different components. The amplitude of the
fluctuations is larger than in the previous case (dotted line) and it is systematically
higher

where A(ω) ∈ L2(−∞,+∞) (and such that f(r) > 0 at all r) is the spectrum
of the intrinsic fluctuations of the stochastic fractal (clearly A∗(ω) = A(−ω)
as f(r) is real). By the definition of f(r)

σ2
p(r) ∼

∫
dω |A(ω)|2 . (4.53)

Hence in this case there is no preferred period of oscillations: Fluctuations
are the superposition of log-waves of different amplitude and frequency. This
is clearly a simplified treatment of the problem, and other concepts, such as
“porosity”, have been introduced to describe fully this case. However our mo-
tivation here is to look for a simple scheme which allows us to compute some
observational quantities in the case of three-dimensional distributions of cos-
mological objects as for instance galaxies: for this purpose the approximation
given by (4.52) is quite satisfactory.

The log-oscillations may produce fluctuations in the measurement of the
dimension through the MLR from a single or a finite number of observers.
Such an effect is particularly important especially when oscillations have a
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large amplitude or a long-range period in logarithmic scale, compared to the
range of scales covered by the available samples. To give a simple example of
log-periodic oscillations in a random fractal, we have generated an artificial
sample with the random Cantor set (see Appendix B). In this case we have
used a fragmentation order equal to 5 and we have iterated the algorithm
12 times. In Fig. 4.15 we show the behavior of fiff (r) (4.49) related to the

log10(r)
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Fig. 4.15. Behavior of f(r) for a stochastic fractal (random Cantor set with D =
1.58). The amplitude is larger with respect to the case of the Sierpinski gasket and
there is no particular dominating frequency of oscillation

MLR from several randomly chosen points of the set. Oscillations are present
but there are waves of different logarithmic frequencies and it is not possi-
ble to clearly identify a dominating frequency. The relative amplitude of the
oscillations is of order 1. Since this fractal sample is finite we find that os-
cillations are still present, also for the average conditional density, but their
amplitude is reduced by a factor of ten, so they are almost negligible in the
average case.
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4.7 Fractal with a Crossover to Homogeneity

We now discuss a simplified approach to describe the change of the statistical
properties of a point-particle distribution which has a fractal behavior up to
a scale λ0 at which it has a crossover to homogeneity. Let us consider the
case of a sharp crossover of the type

Γ (r) =

⎧⎨⎧⎧
⎩
⎨⎨ DB

4π rD−3 for r < λ0

DB
4π λD−3

0 for r ≥ λ0 .
(4.54)

By neglecting the effect of the lower cut-off 〈Λ〉, we obtain that a possible
estimator (see Chap. 9 and Appendixes F-G for more detailed discussion of
estimators in finite samples) of the average density in a spherical sample of
radius Rs is

Γ ∗
EΓ (Rs) =

3
4πR3

s

∫ Rs

0

∫∫
Γ (r)d3r =

3
R3

s

DB

4π

[
λD

0

D
+

λD−3
0

3
(
R3

s − λ3
0

)]
, (4.55)

where the suffix E refers to the estimated quantity. Clearly we have that in
the infinite volume limit

lim
Rs→∞

Γ ∗
EΓ (Rs) = Γ (Rs) . (4.56)

An estimator of ξ(r) can be then written as

ξE(r) =
ΓEΓ (r)

Γ ∗
EΓ (Rs)

− 1 . (4.57)

We thus have ξE(r) < 0 for r > λ0 and with a power-law behavior only
for r � λ0. Note that the fact that ξE(r) is negative comes only as a conse-
quence of the finite sample estimation and does not correspond to a real “anti-
correlation”. Indeed, in the infinite volume limit, one may see that the system
is clustered and correlated for r ≤ λ0 and unclustered and uncorrelated at
larger distances: for this reason the asymptotic ξ(r) must be identically zero
at scales larger than λ0. This kind of finite-size effect must be carefully con-
sidered in the analysis of real measurements. While the approximation of
(4.54) is rather rough, it turns out to be very useful in many practical cases
because the residual two-point correlation in the regime r � λ0 can be neg-
ligible with respect to Poisson fluctuations. For this reason the distribution
is practically equivalent to an uncorrelated one for r > λ0 as described by
(4.54).

4.8 Correlation, Fractals and Clustering

In this section we relate the correlation properties of a particle distribu-
tion to its clustering features. Let us consider a particle distribution in a
d-dimensional sample of volume V . We can distinguish different cases:
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• The particles are distributed in a homogeneous (i.e. uniform) way in the
volume (see Chap. 2), i.e., the fractal dimension of the distribution is D =
d, and the homogeneity scale is smaller and independent of the system size
Rs = V 1/d. In this case the quantity V/N is sample independent and gives
the specific volume, i.e. the volume per particle. Therefore

l =
(

V

N

)1/d

gives the average distance between different particles. It is a well defined
quantity and is independent of the sample size Rs. Another important dis-
tance which is well defined for this distribution is the average nn distance
〈Λ〉 introduced both in Chap. 2 and in Sect. 4.3.3. As illustrated by the
approximation given by (2.71) the PDF of the nn distance, and as a conse-
quence its average value, are, at least as a first approximation, functions of
the average conditional density Γ (r). In particular the more positive is the
function Γ (r) is at small distances, the smaller is the average nn distance.
Therefore the ratio

λcl =
l

〈Λ〉 ≥ 1 , (4.58)

is a good parameter to characterize the degree of clustering in a distribution
of particles. The particle configuration for which the clustering parameter
λcl is the smallest possible is a cubic lattice for which it takes the value 1.
A completely uncorrelated statistically stationary Poisson distribution has
the smallest degree possible of correlation since particles are distributed
completely at random in the volume. In this case, in three dimensions (see
Sect. 4.3.3), we have

λcl =
(

4π

3

)1/3

Γ−1
eΓΓ

(
4
3

)
> 1 .

The fact that in the Poisson case λcl takes a larger value than in a lat-
tice can be simply explained by noticing that at short non-zero distances
the correlation function for a lattice is negative (see Chap. 3). In general
the larger is the correlation at short distances, the larger is the clustering
coefficient λcl and the stronger the clustering.

• In a fractal particle distribution with D < d the situation is completely
different and, clearly, clustering is much stronger than in any homogeneous
system. As we have already seen above, a fractal is asymptotically empty
in the sense that the conditional average number of particles 〈N(Rs)〉p in
a finite spherical volume of size Rs grows more slowly than the volume, i.e.

〈N(Rs)〉p = BRD
s with D < d ,

where B is an intrinsic coefficient related to the lower cut-off of the parti-
cle system. This implies that the average distance between particles l, as
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defined above, is a function of the sample size increasing as ∼R
1−D/d
s and

diverging in the infinite volume limit. On the other hand the average nn
distance is well defined and depends only on B and D, and other intrinsic
properties of the fractal system such as the lacunarity (see Sect. 4.3.3).
Therefore in a finite sample the parameter λcl defined by (4.58) depends
on the sample size and diverges in the infinite volume limit. This means
that the degree of clustering of a fractal particle distribution is infinitely
larger than in any homogeneous distribution.
On the other hand, the approximation (4.25) allows us to compare the de-
gree of clustering of two fractal samples with the same number of particles
N in the same spherical volume V . This equation shows that, neglecting
the variation of the value of the Euler gamma function at different D, in
this case the average nn distance is smaller in a distribution with a smaller
fractal dimension . This is simply verified by considering that B = N/V D/d

with N, V, d fixed equal for both fractals (see Fig. 4.16). Consequently, in
general the smaller the fractal dimension the higher is considered the de-
gree of clustering. This is illustrated by the four different cases in d = 2 in
Fig. 4.17.
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Fig. 4.16. The “clustering” can be described by the fractal dimension. In this
figure is shown the average distance between nearest neighbors 〈Λ〉 as a function
of the fractal dimension (D = 0.5, 1.0, 1.5, 2.0). The number of points and the
sample volume are the same in all cases
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Fig. 4.17. For the same number of point-particles in the same volume, the fractal
dimension is a measure of the “intensity” of clustering for fractal objects. In these
simulations we have fixed the number of points as well as the volume of the sample.
The fractal dimension takes the values D � 0.5, 1.0, 1.5, 2, in d = 2, from top left
to bottom right. The clustering increases when the fractal dimension decreases

4.9 Probability Distribution of Mass Fluctuations
in a Fractal

In Chap. 2 we have seen that, for homogeneous (i.e. spatially uniform) mass
density fields in d dimensions with a well defined ρ0 > 0, the mass M(R)
contained in a sphere of radius R is a stochastic variable, whose behavior can
be summarized as follows:

• if the correlation length rc of the system, as defined in Sect. 2.3.2, is finite
(i.e. if the connected correlation function ξ̃(r) decreases sufficiently rapidly
to zero), then the central limit theorem can be applied, and for R � rc
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the stochastic mass M(R) can be considered as a Gaussian variable with
mean ρ0V (R) (where V (R) ∼ Rd is the volume of the sphere of radius R)
and variance proportional to (R/rc)d;

• if rc → ∞ (i.e. ξ̃(r) decreases slowly to zero as in a thermodynamic critical
phenomenon) the central limit theorem is no longer valid, and consequently
there is no finite scale beyond which M(R) can be considered to have a
Gaussian behavior. Its mean is again ρ0V (R), but its variance is propor-
tional to Ra with d < a < 2d.

In both cases, the “local” average density defined by

ρ(R) =
M(R)
V (R)

can be considered self-averaging (i.e. with a PDF δ (ρ(R) − ρ0)) for R � λ0,
where λ0 is the homogeneity scale (e.g. defined by ξ(r) ≤ 1 for r ≥ λ0).
In fact, because of the normalization of ρ(R) with respect to M(R), the
asymptotic behavior of its PDF is governed by the law of large numbers, for
the application of which it is sufficient that ξ̃(r) → 0 for r → ∞. However,
despite this fact, in the case in which rc → ∞, there is no spatial scale beyond
which ρ(R) displays a Gaussian behavior.

For a fractal mass density the situation is even more radical. As shown
in this chapter, a fractal mass distribution is characterized by being asymp-
totically empty, but shows large conditional fluctuations decreasing slowly
on average in space because of strong correlations. Therefore both the cor-
relation length and the homogeneity scale diverge for a fractal, and M(R),
which on average is non-zero only as a conditional quantity (i.e. as seen from
a spatial point occupied by a particle of the system), is strongly fluctuating
at any scale. We have seen in fact that 〈M(R)〉p = BRD (where D < d is
the fractal dimension and B a coefficient related to the lower cut-off of the
density field) and 〈

M2(R)
〉

p
= CR2D

with C > B2. This means that relative fluctuations in M(R) are persistent
and statistically self-similar at any scale. Therefore since rc → ∞, as in a
homogeneous (uniform) critical system, the central limit theorem does not
hold, and consequently M(R) does not in general have a Gaussian behavior
at any R. Moreover, since in a fractal also λ0 → ∞, there is no finite length
scale beyond which the PDF of the conditional “local” density

ρ(R) =
M(R)
V (R)

can be well approximated by the self-averaging PDF δ (ρ(R) − ρ0) where
ρ0 = 0 is the asymptotic average mean value. This is true even though the
law of large numbers can be shown to imply asymptotically that
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lim
R→∞

p (ρ(R)) = δ (ρ(R)) , (4.59)

where p (ρ(R)) is the PDF of the variable ρ at distance R from the occupied
origin of coordinates. The problem is that at any R larger than the lower
cut-off of the system we have

〈ρ(R)〉p ∼ RD−d

and 〈
ρ2(R)

〉
p
∼ R2(D−d) ,

which imply the asymptotic limit (4.59), but at any finite R the estimate of
the mean gives an infinite relative error with respect to the limit and with
relative fluctuations of order one.

In the case of a fractal, because of the intrinsic self-similarity, an im-
portant role in its statistical characterization is played by the study of the
statistics of the multiplicative mass fluctuations from an occupied point
f(R) = M(R)/ 〈M(R)〉p. In fact, as we have seen, in a stochastic fractal
the statistical properties of f(R) do not depend on R, while in a uniform
mass distribution its PDF goes toward the self-averaging form δ (f(R) − 1)
when R increases beyond the homogeneity scale λ0.

The analysis of all these quantities can be very useful in studying the sta-
tistical properties of observational samples of point-particle distributions, as,
for example, those given by galaxy redshift surveys. Studying the statistics,
such as the Gaussianity or the self-averaging properties, of integrated quanti-
ties such as M(R) or ρ(R) at finite scales, or the change in the PDF of f(R),
can give much insight into the correlation properties of the mass density field
studied and help to classify it and characterize its properties correctly.

4.10 Intersection of Fractals

Let us suppose we have two independent stochastic fractal sets in the same
space. An interesting question, which can be relevant in certain problems, is
whether they intersect one each other, and in this case what the main features
are of this intersection [213]. The answer was given by Mandelbrot [151] as
a simple rule which states that the co-dimension of the intersection of two
independent fractal sets S1 and S2, with dimension D1 and D2 respectively,
embedded in the d-dimensional space is equal to the sum of the co-dimensions
of the two sets:

d − DI = (d − D1) + (d − D2) , (4.60)

where DI is the fractal dimension of the intersection set: DI ≡ D(S1 ∩ S2).
Hence we can write for the dimension DI :

DI = D1 + D2 − d . (4.61)
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Note that this rule holds also in the case of the intersection of two stochastic
distributions of isolated points, if we use the following rule to determine the
intersection. Let us suppose we know the lower cut-offs Λ1 and Λ2 < Λ1 of
the two distributions. At this point we can cover the space with a grid of cells
of size Λ1, and define the intersection as the set of cells in which both points
of the first and of the second point distributions appear.

A simple explanation of (4.61) can be given as follows. Consider two in-
dependent stochastic fractal sets S1 and S2 embedded in the d-dimensional
space. Let us divide the space into boxes of size ε (in the case of point dis-
tributions ε must taken to be larger than the lower cut-off). If we consider a
particular box, the probability pi that it contains points of the set Si is equal
to NiNN (ε)/NtotNN , i.e. the number of boxes containing points of the set divided
by NtotNN , the total number of boxes. Since for a fractal of dimension Di we
have that NiNN (ε) ∼ ε−Di we can write:

pi(ε) =
NiNN (ε)
NtotNN

∝ εd−Di . (4.62)

Because of the randomness of the fractal this argument holds for each box.
In the hypothesis of mutual independence of the two intersecting fractals, we
readily find the probability pI(ε) that a box contains points of both fractal
sets:

pI(ε) = p1(ε)p2(ε) ∝ ε2d−D1−D2 . (4.63)

In the limit of small ε we find for the total number of boxes NIN containing
points of both sets:

NIN (ε) = pI(ε)NtotNN ∝ εd−D1−D2 . (4.64)

By taking into account the definition of the “box dimension”, we find:

DI = D1 + D2 − d . (4.65)

This rule is the generalization of the rule valid for regular geometrical man-
ifolds, e.g. the intersection of two non-parallel planes (D1 = D2 = 2) in
three-dimensional space (d = 3) is a line (DI = 1). The case in which DI < 0
(for example by intersecting a fractal with D1 < 2 in d = 3 with a line
D2 = 1) must be interpreted in the following way: the real fractal dimension
of the intersection set is zero, but we can distinguish such sets of zero dimen-
sion by different scalings of NIN (ε) going to zero as ε does so. A discussion
about this property can be also found in [47]. It must be noted that (4.65) is
valid also in the cases in which one of the two intersecting set is not a random
fractal, but a deterministic fractal or an homogeneous set. The only essential
point is that the sets S1 and S2 considered are independent.
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4.11 Morphology and Voids

The concept of lacunarity has been introduced to further characterize fractal
structures and in particular their voids [151]. However the definition of a
“void” in space with d > 1 can be subtle and arbitrary (while in d = 1
its definition is evident an unique). For example one may consider spherical
voids, but sometimes cubical or more anisotropic definitions can be more
appropriate. Let us suppose we generate a fractal set with a lower cut-off
Λ0 > 0 (i.e. a so-called pre-factor). For example, we can consider a random
Cantor set in d = 1 (see Appendix B) obtained by a finite number of iterations
of the fragmentation algorithm. In this case it is possible to measure a void
in units of λ0 and to define unambiguously the lacunarity coefficient F as

Nr(λ > Λ) = FΛ−D (4.66)

where Nr(λ > Λ) is the number of voids with size λ > Λ and D is the
fractal dimension of the set. The scaling behavior is completely determined by
the fractal dimension, as shown by (4.66). However the lacunarity coefficient
F , takes different value for different fractals with the same dimension. An
example is shown in Fig. 4.18.

4.12 Angular and Orthogonal Projection of Fractal Sets

Let us now define the angular correlation function (ACF) which is very use-
ful for the study of a fractal distribution of points. The definition we give
holds both for fractal and homogeneous sets. This quantity is closely related
to the two-point conditional density, i.e. to the three-point correlation func-
tion: in fact, we are looking for the probability that, given an occupied point
(the “observer”), we find a pair of structure points with a certain angular
separation θ. The ACF is defined in the following way: given a spherical sam-
ple of radius Rs (with Rs → ∞) with the observer at the center, we look
for the probability of finding a pair of structure points with a certain angu-
lar separation θ, and then we consider an average over different observers.
That is

Γ (θ) = A(Rs)
∫

C

∫∫
(Rs)

∫
C

∫∫
(Rs)

〈ρ̂(r1)ρ̂(r2)〉p δ(ang(r1, r2) − θ)d3r1dr3r2 ,

(4.67)
where the integral is performed in the spherical sample of radius Rs and
ang(r1, r2) is the angle between the two vectors. The coefficient A(Rs) is an
appropriate normalization factor chosen in order to have, for example,∫ π

0

∫∫
dθΓ (θ) = 1 .
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A

B

Fig. 4.18. Construction of two different deterministic Cantor sets with the same
fractal dimension. The generator of the upper one consists of two segments of size
1/4 while the generator of the lower one consists of three segments of size 1/9. The
fractal dimension is the same and D = 1/2: The two sets are distinguished by their
different lacunarity

We note two important limitations for the case of real samples (for which
we have in mind the galaxy catalogs discussed in Chap. 8): (i) The volume
of integration C(Rs) and the radius Rs are finite, and may change from one
sample to another. (ii) It is often not possible to perform the average given
by (4.67) because only angular coordinates are given. In this case we may
only compute the non-average quantity, i.e. ΓiΓΓ (θ) from a single point i. Such
a quantity in a fractal set of points can be strongly affected by finite size
effects and intrinsic fluctuations as already shown for NiNN (R) from a single
observer. Therefore the estimator ΓiΓΓ (θ) of the ACF from a single observer
i in the case of fractal set can be substantially different from its ensemble
value. On the other hand, in the case of a homogeneous set of points, we
expect instead that for a scale Rs much larger than the homogeneity scale, we
obtain a good estimator of the ACF even from a single observer. However an
important difference of the ACF with respect to three-dimensional correlation
functions such as the two-point conditional density must be pointed out: even
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in measurements from only one point, in order to find the angular correlation
at a given angle, one has to perform an average considering all pairs of points
(galaxies) which lie at a certain angular separation θ. This gives an additional
source of smoothening for the signal. In this respect the angular dependence of
the ACF is well estimated also by ΓiΓΓ (θ), even though a trace of the fractal self-
similar fluctuations remains at any scale Rs [47, 223]. For what concerns the
problem of finite size effects on the projection of a fractal, while the angular
dependence can be recovered also with the measurement from a single point
(although some important finite size effects must be taken into account –
see below), the amplitude4 of ΓiΓΓ (θ) is strongly perturbed by the intrinsic
oscillations. This point will be discussed in more detail in Chap. 10.

Let us consider the angular conditional density in more detail. First of
all we introduce a theorem about the properties of the orthogonal projection
of a fractal which will be useful to study the more complicated case of the
angular projection. Orthogonal projections preserve the sizes of objects in the
perpendicular direction. If an object of fractal dimension D, embedded in a
space of dimension d, is projected orthogonally on a plane (of dimension d−1)
it is possible to show that the projection has dimension D′ with [47, 83, 151]

D′ = D if D < d − 1 ;
(4.68)

D′ = d − 1 if d − 1 ≤ D ≤ d .

This explains, for example, why clouds which have fractal dimension D ≈ 2.5,
give rise to a compact shadow of dimension D′ = 2. The angular projection is
a more subtle problem because it mixes different length scales. Nevertheless
the theorem given by (4.68) can be extended to the case of angular projections
in the limit of small angles (θ � 1) for which the related portion of the surface
of the sphere can be considered flat. Therefore considering small angles θ we
can write that θ scales as

N(θ) = BaθDa (4.69)

where, according to (4.68) Da = D′ and Ba is related to the angular lower
cut-off of the distribution. Equation (4.69) holds from every occupied point,
and in the case of a homogeneous distribution in three dimensions we have
Da = 2. We define [47] the conditional average density as

Γ (θ) =
1

S(θ)
dN(θ)

dθ
=

BDa

2π
θ−γa (4.70)

where S(θ) is the differential solid angle element (S(θ) ≈ 2πθ for θ � 1)
and from (4.69) γa = 2 − Da is the angular correlation exponent (angular
co-dimension). The last equality holds in the limit θ < 1 where the angu-
lar problem can be treated as a two-dimensional Euclidean projection. We
refer to [164] for a discussion about the measurement of the ACF in galaxy
catalogs.
4 In the case of galaxies the amplitude of the angular correlation function is fixed

by the number counts as a function of apparent magnitude (see Chap. 10).
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4.12.1 On the Uniformity of the Angular Projection

We discuss in this section important finite size effects which can occur in
the angular projection of a fractal set, and in particular we make an explicit
reference to the case of galaxies [70]. The main result is that, if one takes
finite size effects properly into account, a set of dimension 2 (or larger) in
3-dimensional space can have a non-fractal and quite homogeneous projection
onto the celestial globe. Clearly if D > 2 (or more generally D > d−1, d being
the spatial dimension) one may obtain quite uniform angular distributions.
We will explain this result below and put it into perspective with known
mathematical results. Depending on how finite size effects are taken into
account, sometimes the projection will be homogeneous and sometimes it will
be fractal. In particular, we will argue that there is no contradiction between
observing a fractal of dimension 2 in the three-dimensional space and a
uniform projection of equal size points onto the celestial globe. We discuss
this problem in relation to the projection of galaxies and to the uniformity
of angular galaxy catalogs (see Chap. 8).

In order to explain the “projection paradox” and to put it into context,
we first explain some mathematical aspects of the problem. As already men-
tioned, a set A in IRII 3 is said to have Hausdorff dimension D if it can be
covered by sets Si,δ of diameter less than δ in such a way that the “Hausdorff
measure”

Hs(A) = lim inf
δ→0

∑
i

(diamSi,δ)s (4.71)

is zero for s > D and infinite for s < D and D is the Hausdorff dimension.
For s = D one can have HD(A) = ∞ or HD(A) < ∞. Thus, if the Hausdorff
dimension is D, then HD(A) can be finite or infinite. When D is an integer
and HD(A) is finite, one can decompose A into a regular part (consisting
of piecewise rectifiable sets of dimension D, such as lines or sheets) and a
singular part consisting of “dust” (see [83] Sect. 6.2 and [159] Sect. 9). For
non-integer D the regular part is absent. Almost every projection of the
regular part onto a D-dimensional plane is of positive measure, while all
projections of the singular part (which is the interesting case for the study of
galaxies) have measure 0, i.e., they are very small. Finally, if HD(A) is infinite,
then a clever method, called the “Venetian blind construction” shows that
the projection onto any subspace can be prescribed, and can be essentially
anything we want. For example, one can construct a set in the 3-dimensional
space whose projection onto all two-dimensional planes is a “sundial” in the
sense that it shows the hour (minutes, and seconds) of the current time in
Roman numerals (see [83] Sect. 6.3).

Thus, in the light of a strict mathematical definition the projection has
positive measure (and hence relatively smooth) only in the cases when D > 2
or when D = 2 and either H2 = ∞ or A has a regular part. In this last
case, the set A must contain rectifiable “lines” or “sheets.” We disregard this
situation as physically irrelevant because galaxies are considered as points or
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tiny disks in this analysis and thus form a “dust-like,” i.e., irregular set. This
is not the whole story, because some finite size effects come into play in a
subtle way. In order to clarify this point, we first work with 1-dimensional sets
in a 2-dimensional space and then illustrate the extension to 2-dimensional
sets in 3-space.

We say that a set (of points, which in this context we think of as galaxies)
has an effective dimension 1 inside a physical space of dimension 2 at length
scale r if the mean number n(r)dr of galaxies between distance r and r + dr
from an occupied point goes like Cdr, where C is a constant. Integrating
from 0 to r we find for the total number of points, N :

N(r) =
∫ r

0

∫∫
dr′ n(r′) ∼ Cr , (4.72)

and this is characteristic of the distribution of a set of dimension 1.
We next study what happens when we project such a set onto the celestial

globe (the unit circle in the case of a 2-dimensional universe). If the galaxies
are considered just as a countable set of points, the question of the measure of
their projection makes no sense, since it is equal to 0 by definition. However
this is not what one means by the dimension of an experimentally measured
set, in which there is in any case only a finite number of points [73]. In fact,
dimension is experimentally a notion which holds only over a certain range of
scales. Even taking this into account, the mathematical theorem cited above
tells us that the projected density has zero measure when H1 is finite and
the set is singular.

We may now analyze in more detail various aspects which come into
play when one considers the projection of galaxies onto the celestial globe.
The issues we discuss here are lacunarity , the role of taking into account
apparent sizes, and the influence of opacity. We first define these quantities.
As already mentioned, the lacunarity describes the size distribution of voids
in a fractal set. These voids can be large in a set of small dimension, but we
shall show that they can be arbitrarily small in the projection. The apparent
size problem has to do with whether we represent galaxies as points of equal
size, or apparent size. The first representation will be called pixel projection
and the second apparent size projection. Finally, opacity is related to the
following observational problem: We assume there is a limit to how close
together two galaxies can be observed, and this means that small opaque
disks are drawn around each observed galaxy.

We illustrate all these phenomena for a set of dimension 1 in 2-space. We
then generalize to the case of a set of dimension 2 in 3-space. Our example
is constructed as follows: Divide the unit square into 25 equal small squares
and fill the central square and the four corners (see Appendix B for more
details). We call this “pattern 0.” Similarly, we can fill 5 among 25 squares
by patterns 1, 2, and 3 as shown in Fig. 4.19.
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Fig. 4.19. The patterns 0 to 3 used to subdivide a five by five square. (From [70])

The fractal of Fig. 4.20 is then obtained by dividing the square recursively,
choosing at each level randomly one of the 4 patterns. (An even more homo-
geneous projection is obtained by choosing at level n the pattern (nmod 4)
of Fig. 4.19.) These fractals have dimension 1, finite Hausdorff measure H1,
and are of the singular type described above. Of course, space becomes quite
empty far away from the origin, but such fractals “block” the skylight in
almost all directions for an observer at the center, and hence he will see an
almost uniformly black sky as in Fig. 4.20. If the observer is not at a center,
but still on a “galaxy,” as we are, this argument continues to hold after a
sufficient number of iterations of the inverse cascade [213]. To understand
why the lacunarity decreases, we scale each point from the center to a fixed
distance: (x, y) �→ (x/r, y/r), where r = (x2 + y2)1/2. In Fig. 4.21, we blow
each “inner” point up to a position on the outer set of squares.

Since there is always one of 4 squares colored in each of the patterns 0–3,
we see that the apparent open space can be at most about 3/5th of what it

A fractal of dimension 1 in 2-space, and its projection onto a circle.
There are 7 levels of recursion. (From [70])
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Fig. 4.21. Five levels of the same fractal as in Fig. 4.20. Each “inner” feature
is scaled outward as shown by the lines for one feature. The corners contain the
same feature as the central square. The outermost features of the central square
are mapped as indicated by the radial lines. Going deeper into the recursion, each
successive feature is projected clockwise to the boundary until one reaches again
the corner squares in light gray which are mappings of the innermost feature. (From
[70])

was at the previous level. Thus we get an estimate that the maximal angular
void scales like (3/5)n as the number n of levels grows. There need not be
any sizeable voids in the projection of a set of dimension 1 in 2-space (or for
that matter, a set of dimension 2 in 3-space).

We next discuss how the projection onto the celestial globe can vary,
depending on whether we show apparent size (as in Fig. 4.21) or just a pixel
(as in the circle around Fig. 4.22). To simplify the discussion, we assume
that all galaxies are small spheres of fixed diameter ε. The projection of a

Fig. 4.22. The same as the previous figure, but now with “opaque” galaxies. Note
that the projected density on the unit circle becomes quite uniform. (From [70])
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galaxy at distance r has apparent size ∼ ε/r. One can view this in one of two
ways: Either the remote galaxies have very small projections (somehow less
than a pixel), or the close-by ones have very large projections. Note that we
discuss here for simplicity a universe of points of equal size. How big is the
area covered by these projections? Since

H1(A) = lim
δ→0

∑
i

diam(Si,δ) , (4.73)

and there are ∼C galaxies at a distance r and diam(Si,δ) = δ, we find that
the number of galaxies (∝ area of pixel projection) in a ring extending from
rmin to rmax is given by

N(rmin, rmax) ∼
∫ rmax

r

∫∫
min

dr′ C ∼ C(rmax − rmin) , (4.74)

while the projected area is∫ rmax

r

∫∫
min

dr′ C/r′ = C log (rmax/rmin) . (4.75)

(The area is smaller when the projected galaxies start to overlap, i.e., for
very fat rings.) These equations explain why projected galaxies drawn as
points (4.74) look more homogeneous after increasing the size of the annulus
(rmax, rmin) → λ(rmax, rmin); whereas a projection of the apparent area oc-
cupied by galaxies (4.75) is invariant under scaling transformations. In our
simple fractal model, homogenization occurs for shells with rmax > 54rmin

5.
At small radii, finite size effects dominate, as in Fig. 1 of [57]. Using smaller
sub-divisions in the construction of the example, one can lower the neces-
sary shell-width to rmax ∼ 2rmin. In the area projection, most of the area is
covered by close-by disks, because they are larger.

4.13 Summary and Discussion

In this chapter we have presented the class of spatial distributions of point
particles with unitary mass known as fractals. These mass distributions
are characterized by being asymptotically empty and by displaying strongly
correlated self-similar fluctuations at any length scale. This implies that they
are characterized by voids and structures of any length scale without an
intrinsic upper cut-off. The main effect of these strong correlations consists
in the fact that the “mass” seen by a point belonging to the density field on
average increases as RD, where D < d is called fractal dimension and d is the
5 Note that the homogenization resulting in a point projection (4.74) has been

used as proof for the homogeneity of the universe [57]. We thus see that the
reasoning in [57] is not conclusive.
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spatial dimension, while in ordinary uniform stochastic mass distributions
the same mass increases as Rd. Moreover, because of the strong internal
correlations, the relative fluctuations of mass with respect to the average is
constant at any spatial scale. All these “critical” behaviors are very different
from those observed in uniform mass distributions created by ordinary SSP or
SPP, such as random particle distributions with or without correlations. For
these reasons, many of the tools introduced in Chap. 2 for ordinary SSP and
SPP cannot be used to study fractal mass distributions, and new ones must
be considered: in particular, given that a fractal is asymptotically empty, only
conditional statistical quantities are well-defined.

The introduction of fractal analysis is very important also for another
task: let us suppose we have a sufficiently large but finite sample of a point-
particle distribution. A common approach consists in applying, for the statis-
tical analysis, directly the framework introduced in Chap. 2 for ordinary SPP.
However, as shown throughout this chapter, in the case in which the particle
distribution has fractal features, this kind of analysis will give spurious re-
sults. In fact the applicability of such a framework is based on the hypothesis
that the mass distribution becomes sufficiently uniform at a spatial scale well
within the sample size (implying in particular the existence of a well defined
average density ρ0 > 0). Therefore the fractal analysis can also be seen as the
first step for the classification of particle distributions. In fact the study of
the sample estimator of the conditional density 〈ρ(r)〉p ≡ Γ (r) can discrimi-
nate between a fractal behavior up to the sample size or a crossover toward
an uniform distribution at a scale (the so-called homogeneity scale) smaller
than the sample size. Even in the case of a crossover to homogeneity at
large scales the description of fractal properties up to a certain scale requires
the appropriate statistical tools for these strongly fluctuating scale-invariant
structures both at the level of data analysis and for their theoretical descrip-
tion. Only when fluctuations become very small can one use again the more
refined statistical analysis presented in Chaps. 2 and 3 based on connected
correlation functions and the power spectrum, without introducing strong
spurious distortions depending on the sample size. Finally, we would like to
stress again that the fractal analysis presented in this chapter represents a
powerful set of statistical tools, even if fractality is limited to a finite range of
scales smaller than the sample size presenting a crossover to a homogeneous
(uniform) behavior. In fact if we want to analyze morphological properties
of strongly correlated structures we have to use the set of tools presented in
this chapter. For these reasons we have discussed many features of a fractal
distribution ranging from the simple conditional density, to the angular and
three-point properties, from the statistical properties of the intersection of
two fractals to a characterization of the intrinsic self-similarity by studying
spatial fluctuations of conditional integrated quantities such as the “mass” in
a finite volume. For all these features a comparison with ordinary sufficiently
uniform SSP and SPP has been given.



5 Multifractals and Mass Distributions

5.1 Introduction

In the previous chapter we have seen how to detect and quantify strong
irregularities in point distributions through the introduction of fractal anal-
ysis. However sometimes large fluctuations appear as intrinsic features of
more general mathematical measures than simple distributions of equal mass
point-particles. There are different ways to associate a measure to a given
physical phenomenon, and usually one has to focus on some relevant quan-
tities defining the phenomenon itself, such as density of charges, mass or
potentials depending on the different physical processes considered. For ex-
ample, in the case of galaxy distributions one definition of the measure is
given by galaxy masses [190, 220]. As discussed below, it is possible to use a
mathematical framework to study in a unified approach the joint space and
mass distributions: the so-called multifractal (MF) formalism (see Fig. 5.1).

The MF analysis is a refinement and a generalization in the sense of mea-
sure theory of fractal analysis for simple sets of points which arises naturally
in the case of self-similar measures. In the more complex case of MF mea-
sure densities, simple fractal scaling properties can be different for points
embedded in regions with different levels of the measure density, and one has
to introduce a continuous set of exponents to characterize the system (the
MF spectrum ) [102, 171]. MF measures have a rich scaling structure and
MF analysis deals with the description of these complex structures. Multi-
fractality has been shown to exist in a wide variety of natural phenomena
such as: dynamical systems [29, 102, 106, 110], fully developed turbulence
[86, 161, 171], random resistor networks [6, 200] and wave functions of disor-
dered systems [41, 172, 192]. For a comprehensive discussion of the subject
see [171].

In this basic introduction to the field we firstly discuss the MF formal-
ism and illustrate it with simple examples of deterministic and random MF
measures [151, 201, 213]. We consider in more detail the properties of the
measure distribution and its relation to the galaxy-like “mass-function”. In
Chap. 11 we discuss an application of the MF formalism to the case of galaxy
and luminosity distributions, while in Chap. 12 we treat the case of galaxy
clusters.
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Fig. 5.1. A random multifractal obtained by the generalized Cantor set algorithm
(see text) in the two dimensional Euclidean space. (From [223])

5.2 Basic Definitions

The main characteristic of MF measures is that the scaling properties vary
from point to point depending on the value of their measure. Let us consider
a measure µx(ε) defined on the points x of a given space (e.g. IRII 3). The
quantity µx(ε) is defined as the measure (the mass) of a small volume of
linear size ε around the point x. If we define the point-wise dimension or
singularity exponent α as

lim
ε→0

µx(ε) ∼ εα(x) , (5.1)

then the characteristic feature of a MF measure is that α is fluctuating greatly
as a function of the position x.

A way to characterize a MF measure is by means of the generalized or
Renyi dimensions [102, 110, 171]. In order to define these dimensions let
us partition the space into a grid of cells of lattice constant ε. Let us also
suppose that the measure of the whole space is normalized to 1, as in usual
probabilistic measures. We then introduce a q-partition function of such a
discretized measure as
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Z(q, ε) ≡
∑

i

µi(ε)q , (5.2)

where µi(ε) is the measure in the ith box of the grid centered around the point
xi. The exponent q is called the structure parameter. The set of generalized
q-dimensions D(q) is then defined by the following limit relation

(q − 1)D(q) ≡ τ(q) ≡ lim
ε→0

log Z(q, ε)
log ε

(5.3)

implying a scaling behavior of the partition function Z(q, ε) for small ε

Z(q, ε) ∼ ετ(q) . (5.4)

Note that for q → 0 the partition function reduces to the number of ε-boxes
(i.e. cells) containing a non-zero measure. This is called the support of the
measure. Consequently D(q = 0) is nothing other than the box-counting
fractal dimension of the support of the total measure. On the other hand,
taking properly the limit q → 1 (i.e. before of taking ε → 0+ of (5.3)), we
can find D(1):

D(1) = lim
ε→0

∑
i µi(ε) log µi(ε)

log ε
. (5.5)

Since (5.5) is strictly related to the information entropy of the measure (see
Chap. 2) D(1) is usually called the information dimension. It is possible to
show that this gives the fractal dimension of the points on which the measure
is mostly concentrated [191].

5.3 Deterministic Multifractals

Let us consider the simplest example of a deterministic MF, which in many
respects can be considered the paradigm of any MF: the multiplicative deter-
ministic Cantor set (MDCR). In particular we present its binomial version
which is also called the binomial MF measure. We can define it by generaliz-
ing the simple algorithm defining the simple fractal deterministic Cantor set
(DCR, see Appendix B) by a procedure called curdling [151]. The construc-
tion is illustrated in Fig. 5.2. The domain of definition of the measure is the
one-dimensional segment [0, 1]. We start by defining on it a constant measure
density ρ = 1 in order to have, as usual, a unitary global measure. At this
point a recursive deterministic algorithm of modification of the measure is
defined as follows. The first iteration consists in dividing the unit interval
into the two pieces [0, 1/2) and [1/2, 1] of equal length, and then redistribut-
ing the total measure to have a measure µ1 > 0 on the first segment [0, 1/2)
(i.e. with a constant density 2µ1) and a measure µ2 > 0 on the second one
[1/2, 1] (i.e. with a constant density 2µ2) in such a way that µ1 + µ2 = 1 in
order to keep the right normalization of the total measure. We can suppose
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Fig. 5.2. First four iterations of the construction of a MF binomial measure with
µ1 = 1/5 and µ2 = 4/5. The one dimensional spatial coordinate is plotted on the
x-axis, while the y-axis shows the microscopic value of the measure

µ2 > µ1 without loss of generality. At the next iteration we apply the same
procedure to both the segments [0, 1/2) and [1/2, 1] independently of each
other. For example the segment [0, 1/2) is divided into the two sub-segments
[0, 1/4) and [1/4, 1/2) and the measure is redefined to be µ2

1 in the first sub-
segment (i.e. with a constant density 4µ2

1) and µ1µ2 in the second one (i.e.
with a constant density 4µ1µ2). Analogously the second segment of the first
iteration will be divided into two sub-segments [1/2, 3/4) and [3/4, 1] with
respective measures µ1µ2 and µ2

2. Note that the total measure of the system
is conserved. Henceforth after the second iteration, we have 4 intervals of
length 1/4 = (1/2)2, the left one with weight µ2

1, the two central ones each
one with weight µ1µ2, and the right one with weight µ2

2. Now it is simple to
repeat the algorithm for an arbitrary number of iterations. After an infinite
number of iterations we are left with a well defined binomial MF measure
[152, 191]. It is important to note that this algorithm defines a multiplicative
process. This is a common feature of many deterministic or stochastic fractal
and MF algorithms. In Fig. 5.3 we show the result obtained by iterating the
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Fig. 5.3. The same as in Fig. 5.2 but after 10 iterations (where µ1 = 1/5). Note
that the y-axis has now a log-scale

algorithm ten times. At the end we are left with N = 210 intervals of length

l = 2−10,
(

10
n

)
of which are of measure µn

1µ10−n
2 with n = 0, 1, . . . , 10.

Note that, after an arbitrary finite number of iterations the support of the
measure is compact (i.e. the whole segment [0, 1]) and hence D(0) = 1 which
corresponds to an homogeneous distribution of points in d = 1.

We easily find for the partition function after k iterations

Z(q, ε = 2−k) = (µq
1 + µq

2)
k = χ(q)k (5.6)

where χ(q) is defined to be the partition function after the first iteration and
is called the generator of the MF. Using (5.3) and (5.6) we find for D(q)

(q − 1)D(q) = − log2 χ(q) (5.7)

(see Fig. 5.4). Note that the generalized dimensions D(q) can be expressed
completely in terms of the generator alone, reflecting the fact that the whole
construction of the binomial measure is determined by the first iteration
through a multiplicative process. This property is generally shared by all
deterministic MF measures.

We can extend naturally the definition of the generalized Cantor set both
in the number of partitions of the first iteration and in the dimensionality
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Fig. 5.4. Generalized dimension D(q) for the binomial MF measure. Note that
D(q = 0) = 1 = d, hence the distribution has compact support

of the embedding space. In particular we can consider starting with the d-
dimensional cube [0, 1]⊗d with a total measure 1 and uniform density ρ = 1.
Then we can partition the cube in bd smaller cubes of equal linear size 1/b
and we can redefine the measure in each small cube in such a way to have
the value µi in the ith small cube (i.e. with a uniform density bdµi), with the
constraint of conserving the total measure (i.e. mass):

bd∑
i=1

µi = 1 .

At this point the following iterations of the algorithm are analogous to those
presented for the one-dimensional binomial Cantor set. The q-partition func-
tion Z(q, ε = b−k) after k iterations will be

Z(q, ε = b−k) = X(q)k ,

where the generator X(q) of this generalized version of the MF Cantor set is
simply given by

χ(q) =
bd∑

i=1

µq
i . (5.8)

For the generalized dimensions we then find

τ(q) ≡ (q − 1)D(q) = − logb χ(q) . (5.9)
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5.4 The Multifractal Spectrum

In this section we show how it is possible to extract information about the
distribution of singularity exponents α (5.1) directly from the generalized
dimensions D(q) [86, 106]. Consider a partitioning of a measure S with boxes
of size ε. Let NαNN (ε) be the number of boxes in which the measure is scaling as
µ(ε) ∼ εα (5.1) with α in the range [α, α+dα]. We can associate a dimension
f(α) with this subset which we call Sα

f(α) ≡ lim
ε→0

log NαNN (ε)
− log ε

(5.10)

implying a scaling behavior of NαNN (ε) in the limit of small ε

NαNN (ε) ∼ ε−f(α) . (5.11)

The partition function Z(q, ε) can be then rewritten in terms of α and f(α)
by splitting the sum ∑

i

µi(ε)q

into a sum over α of the sum over the sub-set Sα of all the boxes carrying
this singularity exponent

Z(q, ε) =
∑
α

∑
Sα

µi(ε)q ∼
∫

εqα−f(α)dα . (5.12)

For small ε we can apply the saddle point method to evaluate the integral in
(5.12). Doing so we find that such an integral is dominated by the minimum
of the exponent qα − f(α). We can then write, using (5.3),

τ(q) = qα(q) − f (α(q)) with f ′(α) = q
(5.13)

dτ(q)
dq

= α(q) .

Thus if we know the generalized dimensions D(q) we can find the f(α)-
spectrum simply by performing the Legendre transformation given by the
first of (5.13). The structure parameter q can be regarded as a “hunter”
of different singularities α. For q positive, high density boxes with strong
singularities are selected while for negative q weak singularities present in
the low density boxes are magnified. In this way a MF measure S consisting
of intertwined fractal subsets Sα can be decomposed.

In Fig. 5.5 we show the f(α)-curve of the binomial MF measure as illus-
trated in Fig. 5.2. For this case it is easy to derive an analytical expression
by applying the Legendre transformation (5.13)

f(α) = −c(α) log2 c(α) − [1 − c(α)] log2 [1 − c(α)] (5.14)
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Fig. 5.5. The f(α) spectrum corresponding to the binomial MF measure shown in
Figs. 5.2–5.4

with

c(α) =
α − αmin

αmax − αmin

αmin = − log2 µ1

αmax = − log2 µ2 .

One can in general relate some points of the f(α)-spectrum directly to
D(q). The maximum of the f(α) is given by f(α(q = 0)) = D(0). Indeed, in
the limit of ε → 0 a box of size ε contains a singularity α(q = 0) with probabil-
ity 1. By using τ(1) = 0 (normalization), we find directly for the information
dimension D(1) = f(α(q = 1)) = α(q = 1). This subset Sα(q=1) carries all
the measure. Further, for the strongest and the weakest singularities one has
in general that αmin = D(∞) and αmax = D(−∞). In some cases, as for
instance the binomial MF measure, one can also calculate the f(α)-spectrum
directly, i.e. without calculating first the partition function and then per-
forming a Legendre transformation. This histogram method [152] consists of
a direct counting of singularities given a particular partition. For the above
mentioned binomial measure we have after k iterations

N(αi) =
(

k
i

)
i = 0, 1, . . . , k (5.15)

boxes of size ε = 2−k with a singularity
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αi =
1
k

log2

(
µi

1µ
k−1
2

)
i = 0, 1, . . . , k . (5.16)

Substituting (5.15) in the definition of f(α) (5.10) and making the Stirling
approximation we get the same result as in (5.14).

Note that even in the case that the dimension of the support is compact
D(0) = d one has that the mass correlation dimension D(2) < D(0) when
the distribution is MF: the mass distribution is then characterized by non
trivial correlation even if the space distribution is homogeneous.

5.5 Random Multifractals

We now study the general properties of MF measures obtained by stochastic
algorithms or processes by studying directly the most famous example: the
generalized multiplicative random Cantor set (MRCS) [214]. One can define
a MRCS in d-dimensions as follows. Consider the usual d-dimensional cube
[0, 1]⊗d with unitary total measure and uniform density ρ = 1. As in the
deterministic version, we fragment the original cube into bd smaller cubes
of size 1/b. In the binomial MF measure the way of assigning measures to
the small fragmentation cube was unique. Instead in this case let us now
define m different ways of redistributing the measure in the smaller cubes
{µ1,γ , µ2,γ , . . . , µbd,γ} with γ = 1, . . . , m each one with the normalization
constraint (total measure conservation)

bd∑
i=1

µi,γ = 1 .

Let us give to each of these possibilities a probability pγ with

m∑
γ=1

pγ = 1 .

Note that each of the m different ways of partitioning the measure defines a
binomial MF measure whose generator is

χ(γ)(q) =
bd∑

i=1

µq
i,γ γ = 1, 2 . . . m . (5.17)

At the first iteration, as we have said, the original cube [0, 1]⊗d is fragmented
into the bd smaller ones each of size b−1, and one of the possible m redis-
tributions of the measure, say the γth, is performed with the corresponding
probability pγ . Therefore, after the first iteration our measure consists of
bd cubes of size b−1 filling the domain [0, 1]⊗d and of respective measures
{µ1,γ , µ2,γ , . . . , µbd,γ}. At the second iteration we repeat the recipe of the
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first one, independently of each other, to each of the cubic cells i of size b−1

and measure µi,γ in which the original measure was redistributed at the first
step, i.e., we fragment the ith cell of the first iteration into bd sub-cells of size
b−2. Then we redistribute its measure µi,γ among these sub-cells by extract-
ing once the possible m sets of weights, say the βth, with related probability
pβ . In this way the jth sub-cell of the ith cell will have a measure µi,γµj,β .
This procedure is repeated for each cell of the first iteration with independent
choices of the weights of redistribution of the measure. Note that in this way
the total measure is conserved. Therefore, once completed the second itera-
tion for each cell of the first step, the original measure consists of bd groups
of bd sub-cells of size b−2 with the measure fragmented and redistributed in
this multiplicative way. Further iterations are an obvious repetition of this
algorithm to each sub-cell of the last step.

As an example consider the simple one-dimensional case in its binomial
version, b = 2, where we have only three possible partitions of the measures:
(1) {1/2, 1/2} with probability 0 < p < 1, (2) {0, 1} with probability 1−p

2 ,
and (3) {1, 0} with probability 1−p

2 . Note that the partition (3) is the specular
version of (2), introduced to have a statistically isotropic algorithm. Therefore
(2) and (3) have the same generator of the related binomial MF measure.
Consequently this binomial algorithm has the two generators

χγ=1(q) = 2
(

1
2

)q

with p1 = p

(5.18)
χγ=2(q) = 1 with p2 = 1 − p

as shown in Fig. 5.6. In addition to that, permutations of each realization of
a generator appear with equal probability as indicated in the same figure in
order to make the stochastic algorithm statistically isotropic. Note that this
set is a generalized version of the random Cantor set discussed in Appendix B.
The generators are the same, with the difference that now there is a measure
associated to them.

Let us now compute τ(q) for the generalized MRCS as defined by (5.18).
Consider the partition function for a given realization of the kth iteration of
the fragmentation process

Z(q, εk = b−k) ≡ Z(q, εk) =
∑

i

µi(εk)q (5.19)

where µi(εk) denotes the measure in the ith box of size εk. If we take a frag-
mentation one step further, every box will fine-grain according to a generator
χγ(q) with a probability pγ independently of each other. The partition func-
tion of the (k + 1)th iteration can then be written down in a convenient way
by grouping together into subsets {i}γ all the terms which fine-grain with
the same generator

Z(q, εk+1) =
∑

γ

∑
{i}γ

µi(εk)qχ(γ)(q) . (5.20)
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Fig. 5.6. Upper panel : A schematic illustration of the generalized multiplicative
random Cantor set as given by (5.18). Note that the two permutations of χ2 appear
with equal probability. Lower panel : we show the first three iterations of a possible
realization of the set

It can be easily shown that for those values of q for which f(α(q)) > 0 we
have [191] ∑

{i}γ

µi(εk)q = pγZ(q, εk) . (5.21)

Substituting (5.20) gives

Z(q, εk+1) = Z(q, εk)
∑

γ

pγχ(γ)(q) (5.22)

which leads finally, using the definition of τ(q), to

τ(q) =
log

(∑
γ pγχ(γ)(q)

)
log(b−1)

=
log〈χ(q)〉
log(b−1)

{∀q ∈ IRII 3 | f(α(q)) > 0} (5.23)

where 〈 . . .〉 denotes the average over disorder. The result of (5.23) implies
that for a MRCS almost every realization gives the same τ(q), namely that
which would be obtained by averaging the partition functions over all different
realizations. One can easily show the scaling relation
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〈Z(q, εk+1)〉 = 〈Z(q, εk)〉〈χ(q)〉 (5.24)

of the averaged partition function by making use of the Markovian property
that the fragmentation of a box does not depend on its history. Equation 5.24
directly implies that

〈Z(q, εk)〉 = ε
τ(q)
k (5.25)

with the same τ(q) of (5.23).

5.6 Self-Similarity of Fluctuations and Multifractality
in Temporal Multiplicative Processes

As already mentioned random multiplicative processes appear in many prob-
lems related to the physics of disordered systems [191]. Let us focus on a
specific example of a random multiplicative process: the multiplicative ran-
dom walk. We show that in this simple case, fluctuations at a fixed time
between different trajectories due to different realizations of the noise are
characterized by a MF spectrum. These results have relevant implications for
various physical problems with a multiplicative structure.

Let us consider the random multiplicative process for the scalar function
ψt of the discrete variable t (time):

ψt+1 = e∆tψt = exp

⎛
⎝
⎛⎛

t∑
t′=0

∆t′

⎞
⎠
⎞⎞

ψ0 (5.26)

where ∆t is a dicotomic random variable whose PDF is

p(∆t) =
1
2
δ(∆t − ∆) +

1
2
δ(∆t + ∆) , (5.27)

and no correlation is supposed between the values at different times t. There-
fore each sequence of t values ∆0,∆1, . . . , ∆t−1 defines one and only one
trajectory of the multiplicative walker ψ up to the time t. The generalization
to more complex p(∆t) is quite simple [191]. We now describe the fluctuations
of this process in relation to the properties of self-similarity. If we fix as ini-
tial condition for all the trajectories ψ0 = 1, then the probability distribution
PtPP (ψt) for the values of ψt at time t is given by the log-binomial distribution

PtPP (ψt,k) =
(

1
2

)t (
t
k

)
, (5.28)

where
ψt,k = e(−t+2k)∆ , k = 0, 1, 2, . . . , t , (5.29)

are all the possible values that ψt can take. In other words (5.28) gives the
statistical weight of the whole set of trajectories such that ψt = ψt,k, with
the condition ψ0 = 1.
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The problem we consider now concerns the possible self-similar nature
of the fluctuations of this process. There are two kinds of fluctuations that
can be considered: (i) Noise fluctuations which refer to the different possible
values of ψt at a fixed time t for different sequences of the random process,
i.e. different trajectories. (ii) Time fluctuations which refer to the sequence
of values of ψt at different times t along a single trajectory.

Let us study the first case. In order to study the possible self-similar
character of noise fluctuations, we will map all the possible trajectories of ψt

onto the points x of the real interval [0, 1) in such a way that the process
described by (5.26) will correspond one to one to the multiplicative iterations
of the fragmentation and redistribution of a measure on this interval identical
to the binomial MF process. For this purpose it is useful to look at the tree
of all the possible trajectories as shown in Fig. 5.7.
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Fig. 5.7. Schematic view of the tree of all the possible trajectories (i.e. realization
of the disorder) for the multiplicative process defined by (5.26)–(5.27) up to a time
t = N . A trajectory is defined by the complete sequence of arrows connecting the
point at t = 0 to any other one at t = N

Our precise goal is to map an entire trajectory from t = 0 to t = N (with
N → ∞) onto a fragment of the whole interval x ∈ [0, 1) with a certain length
and measure (i.e. weight) in such a way that: (i) the length of the fragment
represents the statistical weight of the trajectory, (ii) the assigned measure,
uniformly distributed in the fragment, represents the value of ψN , and (iii)
the spatial disposition of the different fragments at time t = N represents the
level t = N of the tree of the trajectories. Since the probability of the noise at
each time step is simply given by (5.27), all the trajectories of the same length
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N have the same statistical weight (1/2)N . On the other hand the measure,
i.e. the value of ψN , fluctuates strongly from trajectory to trajectory.

The recipe to introduce such a representation is the following: let us sup-
pose that at time t a trajectory is represented by a fragment [a, b) ⊂ [0, 1)
with length b − a = (1/2)t, and uniformly distributed measure ψt (i.e. with
a constant measure density ψt

b−a ). At the next time step this trajectory splits
into two other trajectories depending on whether ∆t = ∆ (with related prob-
ability 1/2) or ∆t = −∆ (with the same related probability 1/2). There-
fore the segment [a, b) is fragmented into two parts

[
a, a+b

2

)
and

[
a+b
2 , b

)
of common length (1/2)t+1 and respective uniformly distributed measures
exp(−∆)ψt and exp(∆)ψt. Therefore for N = 0, since there is only one tra-
jectory with probability 1 and measure ψ0 = 1, the segment x ∈ [0, 1) will
be composed of only one fragment of length 1 (i.e. the whole segment itself)
and uniformly distributed measure ψ0 = 1. For N = 1 the segment x ∈ [0, 1)
will be composed of two fragments [0, 1/2) and [1/2, 1) representing the two
possible trajectories after one time step with respective uniformly distributed
measures exp(−∆)ψ0 and exp(∆)ψ0, and so on at further time steps.

Therefore at any time t the measure density function ψ(x; t) for x ∈ [0, 1),
representing all the possible trajectories up to t, is a very fluctuating piece-
wise constant function. This algorithm for N → ∞ defines a binomial MF
measure density ψ(x;N → ∞) in the segment x ∈ [0, 1). In particular, if at
any time step the measure density function ψ(x; t) is normalized in such a
way that the total measure in [0, 1) is 1 it is exactly identical to the binomial
MF measure presented in Sect. 5.3 where at each step the measure of a
fragment is redistributed into two sub-fragments of the same length with
weights exp(−∆)/[exp(−∆) + exp(∆)] and exp(∆)/[exp(−∆) + exp(∆)].

This means that at large time t, the set of the all possible values of ψt

settled on a segment in the most natural way, and best representing the tree
of the possible “histories”, i.e. the function ψ(x; t), gives rise to a complex
MF shape. In Fig. 5.8 we plot the value of the function ψ(x; t) at different
t = 0, 1, 2, 3, 4 as a function of the variable x ∈ [0, 1).

Up to now we have seen how to map the multiplicative random walk in
a MF fragmentation process, and in particular in a binomial MF measure.
An important point consists in finding an explicit formula to associate any
trajectory to the left extreme of the fragment representing it. To this aim we
introduce the characteristic function:

CtCC =
{

1 if ∆t = ∆
0 if ∆t = −∆

. (5.30)

Therefore given the trajectory Ct = {ψ0, ψ1, . . . , ψt}, the left extreme of the
related fragment will be:

x (Ct) =
t∑

t′=1

CtCC ′

(
1
2

)t
′

, (5.31)
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Fig. 5.8. Representation of the multiplicative process with ∆0 = loge(2) as a series
of non-normalized self-similar iterations for a distribution in the unit interval. A
crucial point for this representation is the mapping of all possible trajectories (i.e.
realizations of the disorder) onto the unit interval. This representation makes clear
the MF nature of the disorder fluctuations
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where the sum is done over the C
′
tCC related to the chosen trajectory.

It is important to note that at any time t the measure density function
ψ(x; t) contains much more information that the simple log-binomial prob-
ability distribution given by (5.28) and (5.29). In fact it explains also how
fluctuations between different trajectories of the same temporal length are
built.

Finally, taking the normalized measure density ψ(x; t) it is simple to per-
form the MF analysis giving that

τ(q) =
1

loge 2
[
loge(e

−q∆ + e−q∆) − loge(e
−q∆ − e−q∆)

]
. (5.32)

By performing the Legendre transformation we may then get the MF spec-
trum of exponents f(α).

We have therefore identified a metric (Fig. 5.8) with respect to which the
fluctuations of the process are described by a MF spectrum. These are the
noise fluctuations, namely those defined at fixed t for different configurations
of noise, i.e. different trajectories. It can be shown that time fluctuations
for a particular realization of the disorder do not possess properties of self-
similarity [191]. This implies that a careful distinction is in general necessary
between disorder and space fluctuations in multiplicative processes. Thus,
this example shows that, despite their apparent complexity, MF structures
have actually a very simple origin for multiplicative processes. For instance,
a multiplicative structure can be found in the fragmentation of eddies in
turbulence, but there are many other examples as discussed in [191].

5.7 Spatial Correlation in Multifractals

Consider a statistically isotropic stochastic MF measure embedded in a d-
dimensional space with an overall size R and a lower cut-off a. We are inter-
ested in the properties of the spatial correlation functions of the type

CmnCC (r) = 〈µ(x)mµ(x + r)n〉 ≡ R−d

∫
µ(x)mµ(x + r)ndx . (5.33)

It is possible to show that isotropic MF measures obey the following scaling
behavior in the range a � r � R [191]

CmnCC (r) ∼
(

R

a

)y ( r

a

)z

y = −τ(m + n) − d (5.34)
z = τ(m + n) − τ(m) − τ(n) − d ,

where τ(m) ≡ (m−1)D(m) as defined in Sect. 5.2. As a direct result we find
that the integrated correlation function scales with r as
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ImnII (r) ≡
∫ r

0

∫∫
CmnCC (y)yd−1dy ∼ rw

(5.35)
w = z + d = τ(m + n) − τ(m) − τ(n) .

So, if the scaling behavior of the moments represented by the τ(q) function is
known, then one can calculate easily the scaling behavior of the correlation
functions by using (5.35).

Let us consider two special cases. First if we set m = n = 0 then the corre-
lations of the geometry of the support of the measure are probed and (5.35)
reduces to the mass-length relation used to measure the fractal dimension
D(0) of ramified structures

I00II (r) =
〈∫ r

0

∫∫
ρ(x)ρ(x + y)yd−1dy

〉
∝ rD(0) , (5.36)

where ρ(x) is the microscopic density of points of the support of the measure.
Secondly if we choose m = n = 1 then the correlation of the measure itself is
probed and (5.35) gives

I11(r) =
〈∫ r

0

∫∫
µ(x)µ(x + y)yd−1dy

〉
∝ rD(2) . (5.37)

with D(2) being the correlation dimension [191].

5.8 Multifractals and “Mass” Distributions

In this section we show how to apply the MF formalism and analysis to dis-
tributions of point-particles carrying different masses (measures). The appli-
cation we have in mind, which is discussed in Chap. 11, is to the distribution
of galaxies and their observed luminosity (related to the mass). As explained
in Chap. 4, if one takes the masses of the particles all equal (say unitary), one
has a simple set of points that we call the support of the measure distribu-
tion. The question of the self-similarity versus homogeneity of a set of points
with equal mass can be exhaustively discussed in terms of the single corre-
lation exponent which corresponds to the fractal dimension of the support
of the measure distribution. Questions about multifractality and a complex
spectrum of dimensions instead become interesting and physically relevant
when the different masses are included and the entire matter distribution
considered [47, 190]. In the case of galaxies the measure density is defined
(see Chap. 11) by assigning to each galaxy a weight proportional to its mass.

Suppose that the total volume of the sample consists of a three-dimensional
cube of size L. The microscopic mass density can be written as usual

ρ(r) =
N∑

i=1

miδ(r − ri) , (5.38)
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where mi is the mass of the ith galaxy and N is the number of points in
the sample of volume V = L3. We assume that this distribution corresponds
to a measure defined on a set of points (the support) characterized by the
average conditional density Γ (r) ∼ rD−3 (Chap. 4). It is possible to define
the dimension-less normalized density function

µ(r) =
N∑

i=1

µiδ(r − ri) (5.39)

with µi = mi/MTMM and MTMM =
∑N

i=1 mi, the total mass in the sample. We
divide this volume into boxes of linear size l. We label each box by the index
i and construct for each box the function

µi(ε) =
∫
i

∫∫
th

∫∫
box

µ(r)d3r (5.40)

where ε = l/L and 0 < µi < 1.
Suppose at this point that we have a MF measure distribution in the

volume V , and we want to study the behavior of the number of boxes with
measure in the range µ to µ + dµ, having fixed the partitioning of the mea-
sure with boxes of size ε. Changing variables and using (5.1), the measure
distribution (5.11) becomes

NεNN (µ)dµ ∼ ε−f(α(µ)) 1
| log(ε)|

dµ

µ
. (5.41)

From this equation it follows that the distribution of the measure, at fixed
resolution ε, does not scale as a power-law in µ, because the exponent f(α(µ))
is a complex function of µ. The self-similarity of the distribution is recovered
by looking at the measure distribution as a function of the scale ε.

Suppose we fix the box size at the scale ε: in the application to galaxies
this can be taken to be the galactic scale, or the galaxy cluster scale. The
function NεNN (µ) is bell-shaped and convex with a maximum corresponding to
the point at which

∂NεNN (α)
∂µ

=
∂NεNN (α)

∂α

∂α

∂µ
= −(f ′(α) + 1)NεNN (α)

1
µ

= 0 , (5.42)

which corresponds to (
∂f(α)

∂α

)
αc

= −1 . (5.43)

The maximum of NεNN (µ) fixes the most probable value of µ. Beyond this
maximum the function can be well fitted by a power-law1. For still higher
1 In practice this is the only observable part of the measure distribution in the case

of galaxies because the higher values of α correspond to the smallest galaxies:
in any galaxy sample there is a lower cut-off on the intrinsic luminosity of the
objects.
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values of µ the function shows an exponential-like decay. The tail is fixed by
the point at which the derivative (5.43) has a maximum. This happens for
α = αmin, namely at the value corresponding to the box which contains the
maximum measure (i.e. the strongest singularity)

µ∗ ∼ εαmin . (5.44)

In order to compute the exponent characterizing the leading power-law be-
havior we study the derivative of log(NεNN (µ)) with respect to log(µ). We obtain

∂ log(NεNN (µ))
∂ log(µ)

= −
(

∂f(α)
∂α

+ 1
)

. (5.45)

We can try to fit (5.41) with a power-law function of µ, plus an exponential
tail. From (5.45) we can define an effective exponent δ, which depends explic-
itly on µ. This implies that the power-law approximation can be considered
as a local fit

δ = −
(

∂f(α)
∂α

+ 1
)

. (5.46)

This leads to δ = 0 for α = αc and δ = −1 for α0 such that f(α0) = D(0).
Locally we can expand f ′(α) in a power series of µ, so that the measure
distribution of (5.42) in a certain range of µ is well fitted by a power-law
function with a cut-off

N(µ) ∼ µδe−
µ

µ∗ . (5.47)

The exponent δ depends on the shape of the derivative of f(α), as well as on
the value of α around which one expands f(α). In various cases the value of
δ is in the range [−2,−1] [220].

5.9 Summary and Discussion

In conclusion we can distinguish between three different scenarios for a mea-
sure distribution as illustrated by Figs. 5.9–5.11.

• A non-fractal measure. Any analytic measure gives rise to a non-fractal
measure. As a result one finds D(q) = d, i.e. generalized dimensions are
equal to the embedding space dimension of the measure (see Fig. 5.9).
The f(α)-spectrum reduces to one point: each point of the measure has
the same trivial singularity exponent. A simple example is the following: A
uniform distribution on the unit interval. This corresponds to a generalized
Cantor set (5.8) with a generator where all the boxes have the same weight,
µi = b−1 for i = 1, . . . , b.

• An homogeneous fractal measure. In this case an homogeneous measure is
defined on a fractal set with dimension D (see Fig. 5.10). The measure is
homogeneous in the sense that the scaling properties do not change as a
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Fig. 5.9. Characteristics of a non-fractal homogeneous measure. In the upper panel
is shown the spatial behavior of the measure (or density), in the center panel the
D(q) exponents and in the lower panel the f(α)-spectrum
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function of position. As a result D(q) = D = D0 and f(α) = α = D = D0.
A simple example is a Cantor set (5.8) with a generator where the measure
of n(< b) boxes take the same non-zero value and where the remaining
bd − n boxes are omitted, µi = 1/n for i = 1, . . . , n.

• A multifractal measure. Here we have an inhomogeneous measure in the
sense that the scaling properties of the measure vary as a function of po-
sition (see Fig. 5.11). As a result one typically finds a D(q)-curve that is
varying with q and a f(α)-curve with a parabolic shape. A simple exam-
ple is given by a generalized Cantor (or random Cantor) set (5.8) with a
generator where the boxes have different weights µi.



Part II

Applications to Cosmology



6 Fluctuations in Standard Cosmological
Models: A Real Space View

6.1 Introduction

We start our foray into cosmology with a look at which instruments are used
to describe fluctuations in cosmology, and some of their properties. As we will
see the formalism used is essentially that described in the first two chapters
of part I of this book: stationary stochastic processes with fluctuations about
a well defined and positive mean density. We focus in particular on the fact
that at large scales the correlations described in standard cosmological mod-
els fall into the very special category of super-homogeneous systems, which
we discussed in Chap. 3 where we gave a general classification of all station-
ary stochastic mass density fields. This leads us in particular to emphasize
the description of these perturbations in real space, which gives a different
perspective to that usual in cosmology, where the k-space description is very
dominant. In the latter part of the chapter we briefly describe also the real
space features of the “acoustic” oscillations observed in recent years in the
cosmic microwave background radiation (CMBR).

We do not enter here into a detailed discussion of the physical theories
explaining the origin and evolution of the correlations studied, only very
briefly sketching, for example, the origin of the “scale-invariant” spectrum of
primordial fluctuations. A detailed treatment of these aspects can be found in
many standard textbooks on cosmology (see e.g., [170, 185]). Here our focus
is on the basic characteristics of these density fields from a statistical point
of view.

6.2 Basic Properties of Cosmological Density Fields

In standard theories of structure formation in cosmology the density field
in the early universe is described as a homogeneous (spatially uniform) and
isotropic matter distribution, with fluctuations characterized by specific cor-
relation properties (e.g., [185]). We have discussed in Chap. 2 the main char-
acteristics of this kind of stationary stochastic process. These fluctuations
are believed to be the initial seeds from which, through a complex dynamical
evolution, galaxies and galaxy structures have emerged. In particular the ini-
tial fluctuations are taken to have Gaussian statistics and a spectrum which
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is exactly, or very close to, the so-called Harrison-Zeldovich (HZ) [109, 252]
or “scale-invariant”1 power spectrum (PS). Since the fluctuations are Gaus-
sian, the knowledge of the PS, or its Fourier transform (FT), the real space
two-point correlation function, gives a complete statistical description of the
fluctuation field. The HZ type spectrum was first given a special importance
in cosmology with arguments for its “naturalness” as an initial condition for
fluctuations in the framework of the expanding universe cosmology. It is in
this context that the use of the term “scale-invariant” to designate it can be
understood. It subsequently gained in importance with the advent of infla-
tionary models in the eighties, and the demonstration that such models quite
generically predict a spectrum of fluctuations of this type. Since the early
nineties, when the COBE experiment [27] measured for the first time fluc-
tuations in the temperature in the CMBR at large angular separations, and
found results consistent with the predictions of models with a HZ spectrum
at such scales, the HZ type spectra have become a central pillar of standard
models of structure formation in the universe.

The HZ spectrum arises in cosmology through a particular condition ap-
plied to perturbations of Friedmann-Robertson-Walker (FRW) models, which
describe a uniform universe in expansion [91]. This condition – commonly re-
ferred to in cosmology as “scale-invariance” of the perturbations – gives rise
to a spectrum (commonly called the “scale-invariant” perturbation spectrum)
with P (k) ∼ k at small k. All current standard cosmological models of struc-
ture formation in the universe assume a spectrum exactly like this, or close
to it, as initial condition for perturbations in the universe. In such models
there is, at any time, a finite scale corresponding to the causal horizon, which
increases with time, and below which causal physics can act to modify the
spectrum. This causal physics depends, in general, on the details of the model,
i.e., on the nature of its content in matter and radiation (or other forms of
energy), until a characteristic time (the time when matter and radiation have
comparable densities), after which purely gravitational evolution takes over.
There are many variants on standard cosmological models, e.g., cold dark
matter (CDM), the currently favored one with a non zero cosmological con-
stant (ΛCDM) or the mixed dark matter (MDM), each of them leading to a
different form for the spectrum at smaller scales (i.e., large k) which can be
calculated. In CDM models (in which the predominant massive component
driving collapse under gravity is cold dark matter, and where “cold” refers to
the fact that the particles have little initial velocity dispersion) the PS decays
at small scales (large k) as a power-law in k with negative exponent, while in
hot dark matter (HDM) models (for which the prototype is a universe domi-
nated by light neutrinos) there is an exponential cut-off in the spectrum (due
essentially to the fact that the “hot” neutrinos wipe out structures at these
1 We use “scale-invariance” following the terminology used in the cosmological

literature. As we discuss below the term as used in this way has no relation to
the concept of scale-invariance in statistical physics (and as described in Chap. 2).
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scales with their large velocity dispersion). All of these models, however, have
the same “primordial” HZ spectrum P (k) ∼ k (or very close to it) on large
scales (i.e., small k), that is at scales which are large compared to the causal
scale at the time of matter-radiation equality. This latter scale is of course
much smaller than our present causal horizon (i.e., than the part of the uni-
verse we can probe today). This means, in particular, that these primordial
density correlations should be imprinted in the distribution of matter at very
large scales, and should in principle be detectable in the distribution of galax-
ies at very large scales, inside the present horizon. Until now the only probe of
the behavior of density fluctuations on such scales is through the temperature
variations in angle of the CMBR, as the angular correlations in temperature
fluctuations are coupled directly to the three dimensional density fluctuations
(see discussion in Sect. 6.6.1) [170]. From the COBE measurements [27] the
amplitude of the relative fluctuations is inferred to be ∼10−5 at these scales
(see also [26, 58, 107]).

Discussions of real space properties of the density fluctuations encoun-
tered in cosmology are extremely sparse in the literature on the subject. In
[185] it is noted that a very particular characteristic of HZ models is that
“on large scales the fluctuations have to be anti-correlated to suppress the
root mean square mass contrast on the scale of the Hubble length”. Indeed,
we will emphasize below the fact that these models are characterized at large
scales by a correlation function ξ(r) which has a negative power-law tail: de-
tecting it would be the real space equivalent of finding the turnover to HZ
behavior P (k) ∼ k. The preference for a k-space description in the cosmolog-
ical literature is probably rooted in the fact that the linear dynamics, which
are used to describe many problems in cosmology, are most naturally treated
in this space. While it is true of course that this description in k-space is
complete, this by no means implies that the complementary real space view
is redundant, as is well known in many contexts in physics. One of the points
of this chapter is to show that this complementary view of these models is
at the very least interesting and, as we see in the next chapter, potentially
useful.

A basic question we try to answer is the following: What “kind” of two-
point correlation function is the one corresponding to the HZ behavior in cos-
mological models ? We compare it to some different statistical homogeneous
and isotropic systems (see Chap. 3): (i) substantially Poisson distributions,
(ii) super-Poisson i.e., systems with a power-law and mainly positive correla-
tion function as in thermodynamical critical phenomena [148], and (iii) both
stochastic and deterministic particle distributions characterized by a sort of
long-range order (e.g., lattice or glass-like) [91, 92]. Through this comparison
we can classify HZ models in the third category. As discussed in Chap. 3, we
introduce the term super-homogeneous (or hyper-uniform [231]) to refer to
this kind of distribution, as their primary characteristic is that mass density
fluctuations decay at large scales faster than in a completely uncorrelated
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(Poisson) stochastic mass density field. For critical systems one has instead
a decay of the normalized mass variance which is slower than Poisson.

Formally the definition of this class of super-homogeneous distributions
is given by having a PS which satisfies the condition P (0) = 0, or equiv-
alently in real space that the integral of the two-point correlation function
ξ̃(r) over all space is zero. In the cosmological literature the latter property
of cosmological models is often noted, but its meaning (as a strong non-local
ordering condition on a stochastic process) is not completely appreciated, or
worse misunderstood as a trivial boundary condition applying to any cor-
related system. In the textbook [170], for example, it is “proved” that the
integral over all space of the correlation function ξ̃(r) vanishes independently
of its functional behavior. The error is in an implicit assumption made that
the number of particles in a large volume in a single realization converges
exactly to the ensemble average. This is not true because, in general, exten-
sive quantities, such as particle number in a volume, have fluctuations which
are increasing functions of the volume (e.g., Poisson, for which the integral
is not zero). A slightly different, but common, kind of misunderstanding of
the meaning of the vanishing of the integral of the correlation function is
evidenced in [130]. There it is affirmed to be “ . . . just a statement of mass
conservation: if galaxies are clustered on small scales, then on large scale
they must be “anti-clustered” to conserve the total amount of mass (number
of galaxies)”. This is a too deterministic interpretation of the condition of
super-homogeneity. In general, if the distribution of mass is described by a
stochastic process, there is no finite volume for which the mass is constant: in
fact, as shown in Chap. 3, fluctuations of extensive quantities like the mass
diverge at least as fast as the surface of the volume in which they are calcu-
lated2. Only fluctuations of intensive quantities like the mass density vanish
at large scales.

The source of confusion in the cosmological literature about this point
seems to be the so-called “integral constraint” in data analysis (see Sect. 6.5)
which imposes such a condition on the estimator of the correlation function
in a finite sample, due to the fact that the (unknown) average number of
points in such a sample is estimated by the (exactly known) number of points
in the actual sample. Despite their apparent similarity, these are different
conditions: the first (infinite volume) integral constraint provides non-trivial
physical information about the intrinsic probabilistic nature of fluctuations,
while the second is just an artifact of the boundary conditions which holds,
for a statistical estimator, in a finite sample independently of the nature of
the underlying correlations and independently of the size of the sample. We
will discuss this point in Sect. 6.5 below.
2 Note that it is true that a stochastic fluctuation field constructed starting from a

completely uniform mass density, by a dynamics which conserves mass “locally”,
is necessarily super-homogeneous. This does not imply that the distribution of
galaxies, for example, must be such a distribution.
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6.3 The Cosmological Origin of the HZ Spectrum

We describe firstly the physical argument3 that singles out the HZ spectrum
in cosmology, and why the term “scale-invariant” is applied to it. In a homo-
geneous FRW cosmology there is only one fundamental characteristic length
scale, the horizon scale RH(t). It is simply the distance light can travel from
the Big Bang singularity at t = 0 until any given time t in the evolution of
the universe. The HZ criterion can be written

σ2
M (R = RH(t)) = constant , (6.1)

i.e, it requires that the relative normalized mass variance at the horizon scale
be constant. Equivalently, given the proportionality of gravitational potential
to mass, it can be stated as the constraint that the normalized variance in the
gravitational potential be constant at the horizon scale. If we take any other
prescription than (6.1) (e.g., a Poisson distribution), such a description will
always break down in the past or future, as the amplitude of the perturbations
become arbitrarily large or small. It is in this specific sense that the resulting
PS is said to be “scale-invariant”: there is no characteristic scale at which
fluctuations at the horizon scale become large (or small), or put another way,
they have the same amplitude as a function of the only scale in the model.
As discussed in Chaps. 2–3, it has nothing to do with the same term as
understood in statistical physics. There scale-invariance is a characterization
not of the amplitude of fluctuations, but rather is associated to a particular
range of power-law behaviors in the correlation function.

More precisely the form of the HZ spectrum is arrived at from the condi-
tion (6.1) in the following way. We move necessarily to a k-space description,
as we need to include the dynamical evolution of the density field to infer
the PS inside the horizon today. Let δk(t) be the amplitude of the Fourier
component of the density contrast

δρ(r) =
ρ(r) − ρ0

ρ0

(where ρ0 is the positive average density) as a function of time. To every such
mode k we can associate a time tc at which it “enters the horizon”, i.e., at
which the wavelength 2πk−1 is equal in size to the horizon. Here we work (as
almost always in cosmology) with a k which is the FT with respect to the
spatial coordinates which do not change with the expansion, the so-called
“comoving” coordinates. In these coordinates the time at which the mode
enters the horizon is given by kη = 1 where η is the so-called “conformal” time
3 We choose here a particular (but commonly used) way of describing the HZ spec-

trum which allows us to avoid too much extra formalism [91]. For a commonly
used formulation preferred by many cosmologists, in terms of a constant “gauge
independent” potential, see for example [144].
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given by η =
∫

dt/a(t), with a(t) the scale factor describing the expansion of
all physical scales in the universe. (The horizon scale is simply RH(t) = a(t)η,
corresponding to horizon crossing criterion (k/a)RH(t) = 1.) The PS today
(at t = to, say) given by |δk(to)|2 can be written in term of the amplitude of
each mode k when it entered the horizon. In linear perturbation theory, in
the matter dominated universe (i.e., recent epochs), the mode evolves as

δk(to) =
(

a(to)
a(t)

)
δk(t) . (6.2)

In the matter dominated FRW cosmology we have a ∝ t2/3 and thus η ∝ t1/3,
so that the time tc(k) when the mode k crosses the horizon follows tc(k) ∝
1/k3 and therefore

δk(to) ∝ k2δk(tc) . (6.3)

The HZ choice for the primordial PS |δk(to)|2 ∝ k is then singled out by
imposing the criterion

k3|δk(tc)|2 = constant , (6.4)

which is identified as the normalized mass variance at the horizon scale η =
k−1 [170]. We note immediately, following the discussion in Chap. 3, that the
latter identification between k3|δk(tc)|2 and the normalized mass variance is
in fact valid only for power spectra kn with n < 1. Strictly speaking therefore
it is impossible to satisfy the HZ criterion as it is understood naively; or, to
put it another way, the HZ spectrum, that which satisfies (6.4), does not
satisfy the condition of exact “scale-invariance” since the mass variance at
the horizon scale (∝ η) is dominated in this case by the power at the cut-off
scale, not by the modes k ∼ η−1. Taking a spectrum k1−ε (ε > 0) one can get
arbitrarily close to satisfying the HZ criterion, but the condition of “scale-
invariance” (in the sense just explained) is not physically satisfiable (for n = 1
there are logarithmic corrections). To avoid this conclusion the criterion could
be refined to be that the mass variance in Gaussian spheres of radius of
the horizon size be constant in time. While it does allow a mathematically
coherent formulation, from a physical point of view it is an artificial way of
avoiding the problem, which is that the variance at a given real space scale
has nothing to do in principle with the amplitude of the PS at the inverse
scale for n ≥ 1. This is, as we have discussed in Chap. 3, a real physical
property of such systems, not a mathematical artifact.

The HZ spectrum can equivalently be characterized in term of fluctua-
tions in the gravitational potential, δφ(r), which are linked to the density
fluctuations δρ(r) via the gravitational Poisson equation 4:

4 We simplify here to Newtonian gravity, which becomes a good approximation on
sub-horizon scales. The comments given below can however be generalized to a
rigorous formulation of perturbations in a FRW model.
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∇2δφ(r) = −4πGδρ(r) . (6.5)

From this, transformed to Fourier space, it follows that the PS of the potential
PφPP (k) =

〈
|δφ̂(k)|2

〉
is related to the density PS P (k) as:

PφPP (k) ∼ P (k)
k4

.

The HZ spectrum corresponds therefore to PφPP (k) ∝ k−3; or, considering
the variance in real space spheres of the gravitational potential fluctuations,
which as for the density fluctuations is related to the PS, one finds that this
variance is constant as a function of R. This is the alternative form in which
the HZ condition is often formulated. Note that the Wiener-Khinchin theorem
(see Chaps. 2–3) requires that a well defined SSP δφ(r) has PφPP (k) ∼ ka with
a > −3 for k → 0, so that the HZ condition corresponds to the limiting
(disallowed) behavior. Equivalently the exact constancy of the variance of
the gravitational potential is in contradiction with (2.30) which requires that
the asymptotic variance be zero (in order to have a well defined mean about
which fluctuations are defined). The HZ spectrum can thus be seen as the
limiting behavior for the potential fluctuations to be treatable as an SSP.
That such a treatment is applicable to the potential fluctuations is however
not a physical requirement for what concerns the gravitational field. The work
of Chandrasekhar [43] (see Chap. 14) treats the gravitational force probability
distribution in a point set and, in particular, shows it to be well defined even
in the Poisson case, for which the potential fluctuations are not a well defined
SSP (n = 0). To treat the force field as an SSP requires only the weaker
condition P (k) ∼ kn with n > −1 for the mass density fluctuation field [91].

6.4 The Real Space Correlation Function
of CDM/HDM Models

All of the current “viable” standard type cosmological models have a “pri-
mordial” PS which is the HZ one (or very close to it) down to some arbitrarily
small scale (i.e., large k). During cosmological evolution causal physics mod-
ifies this spectrum at large k, corresponding roughly to the scales within the
causal horizon at that time. Around the time at which the matter in the
universe (with density scaling as 1/a3) begins to dominate over the radiation
(with density scaling as 1/a4), the evolution becomes purely gravitational at
all but the very smallest scales, while prior to this time it depends strongly
on the details of the particular model. As a result all such models are HZ for
k < keq, but “turn-over” at this scale to a PS decreasing as a function of k.
The form of the spectrum in this region depends on the details of the partic-
ular model. Since the scale k−1

eq , being the size of the causal horizon at the
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time of matter-radiation equality, is much smaller than the causal horizon to-
day, the primordial HZ PS is in principle detectable today. Indirect evidence
for its reality come from the measurements of temperature fluctuations in
the CMBR, which show a dependence on angular scale quite consistent with
the HZ spectrum, with the power-law spectrum P (k) ∼ kn giving a fit in the
range n = 1.1±0.5 [27]. The search to observe this “turn-over” to HZ behav-
ior directly in three dimensions in the distribution of matter at large scales –
a central prediction and check on such models – has so far proved elusive,
because of weak statistics at large scales in observations of the distribution
of galaxies. It is anticipated that forthcoming surveys, now being made [250]
or close to completion [180], will sample a range of scale large enough to in-
clude the theoretically predicted scale of the turn-over (see the discussion in
Chaps. 8–13). Let us now look at the characteristic real space features which
should be found in these galaxy surveys if the underlying behavior is HZ.

We consider first the connected two-point correlation function. In general
the FT of the PS of standard cosmological models must be done numerically.
Before doing so for some standard models we consider a simple PS which can
be Fourier transformed analytically, a HZ spectrum with a simple exponential
cut-off:

P (k) = Ake−
k

kc , (6.6)

where A is the amplitude and k−1
c the cut-off scale (in the cosmological

context kc ≈ keq). The correlation function is exactly given by

ξ̃(r) =
A

π2

(
3
k2

c
− r2

)
(

1
k2

c
+ r2

)3 . (6.7)

For r � rc ≡ k−1
c we have

ξ̃(r) 	 ξ̃(0) 	 3A

π
k4

c > 0 ,

changing at r ∼ rc to an asymptotic behavior ξ(r) ∼ −r−4. Note that the
correlation function does not oscillate, its only zero crossing being at r =√

3rc. Simply because of the condition P (0) = 0, which implies that the
integral of the correlation function must be zero, the correlation function
must change sign and in this case it only does so once and thus it remains
negative at large scales.

The normalized mass variance σ2(R) shows a corresponding change in
behavior from being approximately constant at small scales R < rc to a
lnR/R4 decay at large scales, as was shown in Chap. 3. Note that, unlike for
the normalized mass variance in spheres, there is no limit to the rapidity of
the decay of the correlation function. Despite the weakness of this correlation
at large scales, however, the variance in spheres does not behave like that of
a Poisson system, because of the balance between positive correlations at
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small scales and negative correlations at large scales imposed by the non-
local condition P (0) = 0 (see Chap. 3).

In cosmological HDM models the form of the PS is very similar to that
we have just considered with an exponential cut-off of the form [170]

P (k) ∼ k exp(−k/kc)3/2 . (6.8)

A numerical integration verifies that the main features of the two-point cor-
relation function are essentially unchanged.

For CDM models, the class by far favored in the last few years, the form
of the PS at k larger than the turn-over from HZ behavior is considerably
more complicated. In a linear analysis the PS of the CDM matter density field
decays below the turn-over with a power-law ∼k−3/2 until a larger k above
which it is more rapidly cut-off. Numerical studies of these models designed
to include the non-linear evolution bring further modifications, increasing
the exponent in the negative power-law regime of the PS at large k. We take
here an analytic approximation to the final PS given by [76], and computed
numerically the FT to obtain the two-point connected correlation function.
We also compute directly the normalized variance σ2(r) in spheres of radius
r as defined in Chap. 3. This form of the PS is given in terms of the various
cosmological parameters. Here we consider for simplicity the case with the
small baryon density set to zero (Ωb = 0), which gives a PS without the
oscillations reportedly detected in recent observations of the CMBR [26, 58,
107]. This structure is not of primary interest to us here because it can modify
the correlation function only at small scales (it arises from causal physics at
early times) and it will be treated in more detail in Sect. 6.6.2. In Figs. 6.1–6.2
we show respectively the behavior of the PS and of the correlation function for
two quite different values of the total matter density of the model Ω = 1, 0.2.
Minor differences will result in the case that there is a cosmological constant
ΩΛ = 0 [76].��

Let us now return to the discussion of the mass variance (see Chap. 3 and
particularly Sect. 3.4) and take a PS

P (k) = Akne−k/kc

(where A and kc are two constants). We consider n > −3 and take the cut-off
to satisfy the convergence properties of the Wiener-Khinchin theorem. It is
easy to check subsequently that the results we derive are not sensitive to the
form of this cut-off at large k. As discussed in Chap. 3 we may have three
different behaviors. To summarize clearly: For a power-law

P (k) ∼ kn for k → 0

(with an appropriate cut-off around the wavenumber kc) the normalized mass
variance in real spheres with radius R � kc is given by

1. For n < 1, σ2(R) ∼ 1/R3+n and the dominant contribution comes from
the PS modes at k ∼ R−1.
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Fig. 6.1. Behavior of the power spectrum for a CDM model with Ω = 1, 0.2
respectively. The two reference lines have exponents k , k−2. (From [91])

2. For n > 1, σ2(R) ∼ 1/R4 and the dominant contribution comes from the
PS modes at k−1

c .
3. For n = 1, we have the limiting logarithmic divergence with σ2(R) ∼

(ln R)/R4.

In Fig. 6.3 we show the behavior of the normalized mass variance, computed
in real-space spheres. We see again a clear convergence in both models to
the predicted 1/R4 (up to logarithmic corrections) behavior beyond the scale
characterizing the “turn-over” (i.e., at R � k−1

eq ).
The two simple real space characteristics of the distribution of matter

coming from the primordial HZ PS are thus a negative non-oscillating power-
law tail in the two-point correlation function ξ(r) ∼ −r−4, and a (lnR)/R4

decay in the variance of mass in spheres of large radius R. These are the
distinctive features of HZ type spectra in real space [91]. The relation to
the galaxy distribution involves however an additional sampling which can
change qualitatively these behaviors (see Chap. 13).
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remains negative (ξ̃(r) ∼ −r−4) at larger separations. The correlation function has
been normalized so that ξ̃(r0) = 1 for r0 = 5 Mpc. (From [91])

6.5 P (0) = 0 and Constraints in a Finite Sample

As we have mentioned in the introduction the physical meaning of the con-
straint P (0) = 0 is often missed in the cosmological literature because of a
confusion with the so-called “integral constraint”, which is another appar-
ently similar, but actually completely different constraint. Let us clarify this
point (see Chap. 9 and Appendix F).

The “integral constraint” refers in this context to a constraint which ap-
pears in the estimation of the correlation function in a finite sample (S, say).
It can take the form ∫

S

∫∫
d3r ξ̃E(r) = 0 (6.9)

where the subscript indicates that the integral is over the finite sample vol-
ume, and ξ̃E(r) is the value of the estimator of the correlation function
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Fig. 6.3. Behavior of the normalized mass variance in spheres for the two CDM
models Ω = 1, 0.2 and h = 0.5. The two vertical lines show the transition to the
ξ(r) ∼ r−4 behavior for the two models. The r−4 behavior is a clear and distinctive
feature corresponding to the P (k) ∼ k behavior. (From [91])

obtained by the statistical analysis of S. This is in general a quantity calcula-
ble from the sample whose ensemble average converges to the real correlation
function at any finite scale when the boundaries of the sample go to infinity.

While a condition like (6.9) resembles the super-homogeneity condition
P (0) = 0 (which imposes that the integral over all space of the (real) corre-
lation function is zero), the two are in fact in no way related. This is clear
from the fact that (6.9) will be true independently of what kind of underlying
distribution the sample is taken from. Its origin is simple: the mean density,
relative to which fluctuations are estimated, is estimated in the sample it-
self, for instance as the ratio of the number of objects in S and its volume.
Therefore, roughly speaking, the positive correlations measured relative to
this estimated density are constrained to be balanced by anti-correlations at
larger scales, giving rise to a constraint like (6.9). More specifically, in the
case of a stochastic distribution of identical particles, the (non diagonal part
of the) reduced two-point correlation function can be written exactly as
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ξ(r) =
〈ρ(r)〉p

ρ0
− 1 , (6.10)

where ρ(r) is the microscopic density given by (2.1), 〈ρ(r)〉p is the conditional
average density at distance r from an occupied point and ρ0 > 0 the ensem-
ble average unconditional mean density. Integrating this expression over the
volume of the sample S gives the relation

〈NSN 〉p − 〈NSN 〉 = ρ0

∫
S

∫∫
d3r ξ(r) (6.11)

where 〈NSN 〉p is the average number of points (e.g., galaxies) in the sample
volume, with a point at the origin by construction, while 〈NSN 〉 is the average
number of points in the same volume, but without the condition that there is
a point at the location of the observer. Now in a finite and spherical sample
the best estimate of 〈NSN 〉p and 〈NSN 〉 is simply given, for many choices of
the estimators (see Chap. 9 and Appendix F), in both cases by the actual
number of points NSN in the given sample. This implies that, independently of
the shape of ξ(r), its estimate ξE(r) in the same finite sample has to satisfy∫

S

∫∫
d3r 〈ξE(r)〉 = 0. (6.12)

In summary there are necessarily constraints on the estimator of the two-
point correlation function ξ̃E(r) measured in a finite sample, which may take a
form similar to the condition P (0) = 0 defining super-homogeneous distribu-
tions, but over a finite integration volume. These two kinds of constraint have
a completely different origin and meaning, one (P (0) = 0) describing an in-
trinsic property of the fluctuation field in a well-defined class of distributions,
the other (equation (6.9)) a property of the estimated correlation function
of any distribution as measured in a finite sample. Their formal resemblance
however is not completely without meaning and can be understood as fol-
lows: in a super-homogeneous distribution the fluctuations between samples
are extremely suppressed, being smaller than Poisson fluctuations; in a finite
sample a similar behavior is artificially imposed since one suppresses fluctu-
ations at the scale of the sample by construction by measuring fluctuations
only with respect to the “local” sample average density.

6.6 CMBR Anisotropies in Direct Space

One of the primary ways in which the spectrum we have just discussed is
probed is through the associated anisotropies in the CMBR. In this section
we briefly discuss these anisotropies, explaining how the “scale-invariant”
spectrum we have been examining is linked to these observations. Further,
in the spirit of our emphasis on a real-space view of the correlations in these
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models complementary to the usual reciprocal space one, we discuss how
the “acoustic” peak structure in the CMBR anisotropies gives rise to a very
particular feature of the correlations in angular space.

6.6.1 CMBR Anisotropies and the Matter Power Spectrum

The anisotropies of the CMBR represent one of the most important obser-
vations in modern cosmology. Since they were first detected by the COBE
[27] experiment in 1992, dramatic progress has been made in this domain
with a whole host of experiments probing them from large to small angular
scales (for a review see [115]). In 2003 the WMAP experiment [26] – the first
satellite experiment since COBE, giving full sky coverage with a calibration
accurate better than 0.5% and with a signal-to-noise ratio larger than one
up to l = 658 (i.e., about ∼0.3 degrees) – confirmed the picture which had
emerged since COBE of these anisotropies.

In standard cosmological theories the CMBR represents a bridge between
the very early universe and the universe as we observe it today (and in par-
ticular the galaxy structures which we will focus on in some of the subsequent
chapters). On the one hand the CMBR probes the very early hot universe at
extreme energies and the theories proposed – notably “inflation” – to explain
the origin of these perturbations. On the other hand the anisotropies reflect
the local very small amplitude perturbations which give the initial conditions
for the gravitational dynamics which should subsequently generate the galaxy
structures observed today.

In the CMBR one measures fluctuations in temperature on the sky i.e., on
the celestial sphere. We will not enter here into the detail of the physical the-
ory in standard models which link these temperature fluctuations to the mass
density field [170]. It is useful however for what follows to give the precise
relation between the two quantities (we follow the notation of [170], where
one can find a more detailed description of its derivation). The temperature
fluctuation field

T (θ, φ) − 〈T 〉
〈T 〉 ≡ δT

T
(θ, φ) ,

where θ , φ are the two angular coordinates, is conventionally decomposed in
spherical harmonics on the sphere:

δT

T
(θ, φ) =

∞∑
l=0

+l∑
m=−l

almYlmYY (θ, φ) . (6.13)

The variance of these coefficients alm is then related to the matter PS through

ClC ≡ 〈|alm|2〉 =
H4

0HH

2π

∫ ∞

0

∫∫
dk

P (k)
k2

|jl(kη)|2 (6.14)
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where jl is the spherical Bessel function and η 	 2H−1
0HH is a constant at

fixed time (H0HH is the Hubble constant today). Note that the ensemble av-
erage contains no dependence on m because of the assumption of statistical
isotropy.

With these definitions it is possible to show that the angular space cor-
relation function is given in terms of the ClC by

C(θ) ≡
〈

δT

T
(θ1, φ1)

δT

T
(θ2, φ2)

〉
=

1
4π

∞∑
l=0

(2l + 1)ClC PlPP (cos(θ)) (6.15)

where PlPP (cos(θ)) are the Legendre polynomials, and θ = θ2 − θ1.
Taking P (k) = Akn in (6.14) we get for n < 3,

ClC =
AHn+3

0HH

16
Γ (3 − n)

Γ 2[(4 − n)/2]
Γ (2l + n − 1)

Γ [(2l + 5 − n)/2]
. (6.16)

For n = 1, l = 2 one obtains

C2CC =
AH4

0HH

24
(6.17)

which is just the quadrupole moment. By measuring this one can probe di-
rectly the amplitude of the matter power spectrum A. The other multi-poles
are given by

ClC =
6C2CC

l(l + 1)
, (6.18)

so that the scale-invariant n = 1 spectrum corresponds to a constant value
of the quantity l(l + 1)ClC . For this reason it is usually in terms of this com-
bination of l and ClC that the data from the CMBR are represented.

In terms of mean square normalized temperature fluctuations one has
that5

(
∆T

T

)2

rms

≡
〈(

δT

T
(θ, φ)

)2
〉

≡ 1
4π

∞∑
l=2

(2l + 1)ClC , (6.19)

and (
∆T

T

)2

Q

≡ 5
4π

C2CC , (6.20)

where the quadrupole moment Q includes only the contribution for l = 2 in
(6.15). For n = 1, using the expressions above, one has

5 This expression is formally divergent but is always regularized by a small scale
cut-off. Note that the term corresponding to l = 1 has been assumed to be
removed as it is associated to the Earth’s motion with respect to the CMBR.
For more detailed formulas, which take into account also the angular resolution
of the insrtument, see [170].
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(∆T )rms

(∆T )Q
	 2.3 (6.21)

which can be compared with observations of CMBR anisotropies.
The COBE satellite gave the first measurement of the root mean square

fluctuations in the range of angular scale 15◦–165◦, and found [27](
∆T

T

)
rms

= (1.1 ± 0.2) × 10−5 . (6.22)

Further the quadrupole contribution to anisotropies was determined to be:(
∆T

T

)
Q

= (0.48 ± 0.15) × 10−5 . (6.23)

Using the relations above these are equivalent to n = 1.1 ± 0.5, A =
(24 Mpc/h)4.

It is interesting to comment on how the normalization obtained from
the CMBR is related to the amplitudes inferred from galaxy catalogs, or
other observations probing the fluctuations in matter today. One can roughly
parameterize a CDM-type PS today in the form

P (k) =
Akn

1 + (k/kc)m
(6.24)

assuming that n = 1. The index m controls the large k behavior, above the
characteristic “turn-over” at k = kc. These parameters (or similar ones in
other more complicated parameterizations of the PS today) are in principle
determined in any given theory, and one of the goals of numerical simulations
is to calculate them.

In any case the overall normalization from the CMBR ends up as an
overall normalization of the PS today, as in linear theory – valid for small
fluctuations at large scales – the spectrum undergoes a simple renormalization
between the time probed by the CMBR and today. In principle then one can
calculate, for example, the normalized mass variance in spheres using (6.24)
and determine whether this is consistent with observations today. In practice
such a direct matching does not work: the reason for this is ascribed to a
real difference between the correlation properties of what is probed through
galaxy observations (hot baryons) and dark matter, which dominates the
gravitational dynamics (and fluctuations) in these theories. This is what is
known as “biasing”. Phenomenologically such an effect is usually described
by the introduction of a single parameter (“linear bias”) giving the relative
amplitudes of the dark matter PS P (k) and that of visible matter PbPP (k):

PbPP (k) = b2P (k)

and analogously for the mass variance. We will return to discuss at length
in later chapters the problematic aspects of simple models justifying such a
parameterization.
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6.6.2 The Origin of Oscillations in the Power Spectrum

The main result of the COBE observations was that they permitted a mea-
surement of the amplitude of the primordial fluctuations and the large scale
exponent of perturbations. The latter in particular was in line with the HZ
spectrum predicted by inflation. In the last few years the exploration of the
anisotropies at small angular scales has led to the discovery of another pre-
dicted feature of these models, but now at smaller (“sub-horizon”) scales.
These are the so-called “acoustic” oscillations, or acoustic peaks. We first de-
scribe briefly their physical origin, and then turn to an analysis of their real
space counterpart. We show that this consists in a very localized feature in
the reduced two-point correlation function (see also [20, 136, 165]).

The physical description which gives rise to the oscillations is based on
fluid mechanics and gravity: when the temperature of the CMBR was greater
than 1000K, photons were hot enough to ionize hydrogen. The strong cou-
pling between the baryons and photons which results, means that they can be
described as a single fluid. Gravity attracts and compresses this fluid into the
potential wells associated with the local density fluctuations. Photon pressure
resists this compression and sets up acoustic oscillations in the fluid. Regions
that have reached maximal compression by recombination become hotter and
hence are now visible as local positive anisotropies in the CMBR [115]. Such
oscillations have been recently observed by [26, 58, 107].

The essential qualitative features of the oscillations in the photon-baryon
fluid can in fact be derived by neglecting the dynamical effects of gravity
and the (inertia of the) baryons. Perturbations in this fluid can be simply de-
scribed by a continuity equation and an Euler equation (see [115] for a recent
review on the subject). The description is given in Fourier space because per-
turbations are very small, and in linear perturbation theory different Fourier
modes evolve independently.

The appropriate continuity equation (which includes the effects of the
cosmological expanding background), at linear order in perturbations, and in
Fourier space, gives

Θ̇ = −1
3
kvγ (6.25)

where Θ = Θ(k, t) is the FT of the temperature fluctuation field

∆T

T
(θ)

(where we have assumed isotropy) and vγ is the photon fluid velocity. The
Euler equation, which is an expression of momentum conservation, gives

v̇γ = k Θ . (6.26)

Differentiating (6.25) and inserting in the Euler equation yields the simple
oscillator equation
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Θ̈ + c2
sk

2Θ = 0 . (6.27)

Thus the pressure gradients act as a restoring force to any initial perturbation
in the system which thereafter oscillates at the speed of sound. Physically
these temperature oscillations represent the heating and cooling of a fluid
that is compressed and rarefied by a standing acoustic wave. The solution of
(6.27) is given by

Θ(k, t) = Θ(0) cos(k s∗ + φ(k)) (6.28)

where s∗ = cst is the distance sound can travel up to the time t and φ(k) is a
relative phase. For large scales k s∗ � 1 the perturbation is frozen. On small
scales the amplitude of Fourier modes exhibit temporal oscillations. This
picture can be refined by considering the gravitational forcing, the inertia of
baryons and other smaller effects, but it does not change qualitatively. (These
other effects modify the spread and amplitude of the “peaks”).

The observed acoustic peak structure is obtained with one further ingre-
dient: coherence of the phases of the different modes, which means that these
temporal oscillations are associated to oscillation in k-space (at a fixed time).
Given such coherence, modes which arrive at the maximum or minimum of
oscillation at recombination (when the photons decouple and begin to travel
to us on straight lines) are seen as k-oscillations in the PS. In the cosmolog-
ical context – and in particular in the context of inflation – such coherence
between the modes is predicted generically in the initial conditions. This is
because the evolution of the modes outside the horizon (i.e., prior to the
phase we have described, which is the causal “sub-horizon” evolution) have
solutions which are a linear combination of a growing solution and a decaying
solution. For generic initial conditions imposed in the very early universe, the
former solution is dominant, and gives the temporal coherence of the modes.

6.6.3 A Simple Example of k-Oscillations

Using this coherence of the modes imposed in the initial conditions, it follows
from (6.28) that the PS (both in 2 and 3 dimensions) has oscillations, being
modulated by a term which goes as cos2(ak) with appropriate a. To illustrate
the effect of these oscillations let us consider the following simple PS:

P (k) = k e−k/kc (6.29)

and the corresponding one with k-oscillations

PoPP (k) = k e−k/kc cos2(ak) (6.30)

(see Fig. 6.4 where we set a = kc = 1 for simplicity). For both PS the real
space reduced two-point correlation function can be computed analytically.
For (6.29) we obtain

ξ̃(r) = 2
3 − r2

1 + 3 r2 + 3 r4 + r6
(6.31)
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while for (6.30) we get (see Fig. 6.5)

ξ̃o(r)=−2
r14 − 23175 − 9r12 + 25871r2 − 3r10 − 10635r4 − 805r8 + 5043r6

(5 + r2 + 4r)3(5 + r2 − 4r)3(1 + r2)3
.

(6.32)
The principal point to note is that while k-oscillations are de-localized, in real
space the correlation function shows a localized “bump”. This is not really
surprising: indeed the FT of an oscillating function is typically a localized
function.

6.6.4 Oscillations in the CDM PS

To see in further detail the relation between the PS in a CDM model and the
two-point correlation function in this case, we consider the approximation
of the CDM PS as given by [76]. The PS is in general a function of various
parameters – in particular, limiting our scope, of the dark matter density Ωc

and of the baryon density Ωb. In this case the amplitude of the k-oscillations
in the PS is controlled by Ωb; when its value is increased, the amplitude of the
oscillating term increases (see Fig. 6.6). The reduced two-point correlation
function ξ̃(r) can be obtained by a numerical FT of the PS (see Fig. 6.7). We



186 6 Fluctuations in Standard Cosmological Models: A Real Space View

r

-0.1

0.1

0.2

ξ(
r)

0 2 40 2 4 66 8 108 10

00

FT[kexp(-k)]

FT[kexp(-k)cos
2
(k)]

Fig. 6.5. Reduced two-point correlation functions corresponding to the power spec-
tra P (k) and PoPP (k) shown in the previous figure. The bump in ξo(r) is the feature
which arises due to the oscillations in k space

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

k

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

P
(k

)

Ω
c
=0.2, Ω

b
=0.02

Ω
c
=0.2, Ω

b
=1.0

Fig. 6.6. Power spectrum for a CDM model with Ωc = 0.2 and Ωb varying in the
range indicated



6.6 CMBR Anisotropies in Direct Space 187

10
0

10
1

10
2

10
3

r

10
-8

10
-6

10
-4

10
-2

10
0

|ξ
(r

)|

Ω
c
=0.2, Ω

b
=0.02

Ω
c
=0.2, Ω

b
=1.0

Fig. 6.7. Correlation function ξ̃(r) for a CDM model with Ωc = 0.2 and Ωb varying
in the range indicated

see that, just as in the previous simple example, the k-oscillations correspond
in real space to a well-localized bump-like feature in the correlation function.

6.6.5 Oscillations in the CMBR Anisotropies

We now return to the CMBR anisotropies and the oscillations as they are
manifested in these. For any given standard-type model, the ClC spectrum
can be calculated. In practice there are now several standardized numerical
codes [249] available which allow one to simply give the parameters of the
model and generate the spectrum. The angular correlation function of the
temperature fluctuations can then be simply reconstructed using (6.15).

As in the 3-d case, we restrict ourselves to the the two parameters Ωc and
Ωb. In particular we fix Ωc = 0.2 and then vary Ωb in the range [0.02, 0.2]
(and the amplitude of the k-oscillations). In Fig. 6.8 we show the behavior of
ClC (l(l + 1)) as a function of the angular wave-number l. In Fig. 6.9 we show
the same data in a log-log plot. We have included also, for comparison, an
example where the ClC are almost a power-law which decays as ∼ l−2 without
k-oscillations (more exactly we take ClC (l(l+1)) ∼ const., plus a smooth cut-off
at very large l). In Fig. 6.10 we show the corresponding angular correlation
function C(θ). We see that, just as in the 3-d examples, the effect of the
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oscillations is to introduce a localized “bump” structure. Figure 6.11 shows
in more detail the region around this bump.

6.7 Summary and Discussion

We have described in Sect. 6.3 the use of the term “scale-invariance” with
respect to fluctuations in cosmology: it refers to the fact that the variance
of the mass has an amplitude at the horizon scale which does not depend
on time. The PS associated with this behavior is that of a correlated sys-
tem with surface (sub-Poisson) fluctuations: a so-called super-homogeneous
distribution. This use of the term “scale-invariance” is therefore very differ-
ent to its (original) use in statistical physics. In this context it is associated
with a distinctly different class of distributions which have special proper-
ties with respect to scale transformations: typically critical systems, like a
liquid-gas coexistence phase at the critical point, which have a well defined
homogeneity scale and a reduced two-point correlation function which de-
cays as a non-integrable power-law: ξ(r) ∼ r−γ with 0 < γ < 3. In particular
the term scale-invariance does not in this usage have anything to do with
the amplitudes of fluctuations being independent of scale: the amplitudes of
fluctuations vary with scale, while the system is correlated at all scales.
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We have highlighted the fact that all current cosmological models will
share at large scales the characteristic behavior in real space of the HZ spec-
trum. Specifically we note primarily the very characteristic lattice-like behav-
ior of the variance in spheres σ2(R) ∼ R−4 (up to a small correction which
is formally logarithmic for the case of exact HZ), as well as the characteristic
negative (non-oscillating) power-law tail in the two-point correlation function
ξ(r) ∼ −r−4.

We have not at all discussed here so far observations of the distribution
of matter today, and in particular the degree to which they are compatible
with the models which we have described. It is a question we will consider
at length in Chaps. 8–12 and Chap. 13. The central point of our analysis
will in fact be to broaden the class of distributions used to describe galaxy
structures to include fractals, in which there is no well defined (sample inde-
pendent) mean density. Further we will discuss how observations of galaxy
catalogs actually show, up to the scales which can currently be robustly
probed without a priori assumptions of homogeneity, that there is no clear
convergence to a well defined density. Thus at these scales the models we
have described here cannot be used even at zeroth order to describe these
observed structures. This does not mean, however, that these models cannot
describe successfully galaxy structures: but to establish whether they can,
it must first be shown from observations that there is a clear crossover to-
ward homogeneity i.e., a scale beyond which the average density becomes a
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well-defined (i.e., sample-independent) positive quantity. These models then
predict that, on much larger scales (beyond the turn-over scale in the PS),
galaxy structures should present the super-homogeneous character of the HZ
type PS. Indeed this should in principle be a critical test of the paradigm
linking the measurements of CMBR on large scales [26, 27, 58, 107] to the
distribution of matter. Observationally a crucial question is the feasibility of
measuring the transition between these regimes directly in galaxy distribu-
tions. With large forthcoming galaxy surveys it may be possible to do so, but
this is a question which must address exactly the statistics of these surveys
and the exact nature of the signal in any given model. This is an issue we will
address only partially in this book. In particular we will look at one of the
important elements in it: the galaxy distribution is a discrete set of objects
whose properties are related in a non-trivial way to the ones of the underly-
ing continuous field. To understand the relation between the two, one has to
consider the additional effects related to sampling the continuous field. This
is intimately related to the problem of “biasing” between the distribution of
visible and dark matter, which we mentioned in Sect. 6.6.1 above. We will
discuss a simple (but canonical) model for this in Chap. 13, addressing in
particular how selection modifies the super-homogeneous properties of the
theoretical mass distribution at large scales.



7 Discrete Representation of Fluctuations
in Cosmological Models

7.1 Introduction

Having discussed the properties of standard cosmological models of mass
fluctuations, we turn to a different question in this chapter: how to produce
spatial distributions of point-particles which give a representation of these
correlations. This is interesting firstly from a purely heuristic point of view:
it answers the question as to what such mass density fields “look like”. It
is also of interest from a practical point of view: the primary instrument for
studying the problem of structure formation in cosmology is gravitational
N-body simulations, and in this context it is necessary to produce point
processes approximating the correlation properties of cosmological models of
primordial perturbations.

Dealing with this question leads us to two different approaches. On the
one hand we identify a system which is well known and much studied in
statistical physics, showing the same kind of correlations as in the cosmolog-
ical case: the one component plasma (OCP) which we have already briefly
described in our discussion in Chap. 3 of super-homogeneous systems. Here
we discuss a modification of such systems which may produce at thermal
equilibrium precisely the spectra of cosmological models at sufficiently large
scales (rather than simply the qualitative super-homogeneous feature). In the
second approach we analyze with complete generality the method currently
used to produce initial conditions for N-body simulation: the displacement
of points in an initial highly uniform – super-homogeneous – point process
(lattice or glass-like spatial distribution of point-particles) from their initial
positions in a way prescribed by the cosmological power spectrum. We derive
exact expressions for the power spectra of the point process obtained in this
way.

Before turning to the discussion of the two methods there is an impor-
tant point we briefly discuss: the cosmological spectra being considered are,
as we have emphasized, for continuous mass fields, and we are considering
their representation with a discrete set of identical massive point-particles.
We discuss first more precisely the sense in which a discrete point process
represents the continuous one.
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7.2 Discrete versus Continuous Density Fields

In order to take a spatial distribution of identical point-like masses (i.e., a
point process) as giving a representation of a continuous mass density field,
we need to specify explicitly how to relate the two. There is in fact no unique
prescription to pass from a discrete distribution of identical particles to a
continuous mass field [92].

A simple prescription is given by requiring that a physical smoothing
of the point process gives the continuous one. This corresponds to taking a
regularization of the Dirac delta function in the expression of the microscopic
density function (2.1) with a function WLW (r) with the property

WLW (r) = L−3WoWW
( r

L

)
,

∫
WoWW (r)d3r = 1 (7.1)

where L is the characteristic scale introduced by the regularization e.g., the
Gaussian function in three dimensions

WLW (r) =
(

1√
2πL

)3

exp
(
− r2

2L2

)
. (7.2)

For any finite value of L we can define a continuous density field ρL(r) as
the convolution of this function with the density field ρ(r) =

∑
i δ(r − ri) of

the point process:

ρL(r) =
∫

d3yWLW (|y − r|)ρ(r) =
∑

i

WLW (|ri − r|) . (7.3)

The pair correlation function of the continuous field obtained in this way
can then be written also as a double convolution integral of WLW (r) and the
correlation function for the point-particle density ρ(r). The singularity in
r = 0 in the latter i.e., the diagonal part (see Chap. 2) of the correlation
function of the point process, is thus also removed by the smoothing implied
by the regularization (7.3). The PS of this continuous field is then simply
given as

PLP (k) = |W̃LW (k)|2PDP (k) (7.4)

where W̃LW (k) is the FT of the regularization function WLW (r), and PDP (k)
is the PS of the point-particles distribution. In particular for the Gaussian
smoothing function (7.2) we have

PLP (k) = exp(−k2L2)PDP (k) . (7.5)

As we have already mentioned, the context in which such discrete represen-
tations of continuous fields of mass fluctuations are of interest in cosmology
is given by gravitational N-body simulations, where such a representation
must be given to the continuous theoretical density field (usually CDM). In
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particular the initial configuration of the N points must represent the ini-
tial conditions of the CDM field over some appropriate range of scales. The
way this is done in practice [12, 112, 246] is the following: one starts from a
“pre-initial” configuration, which is usually a perfect simple lattice, or some-
times a “glassy” configuration of identical particles obtained by running the
N-body code with the sign of gravity reversed1. In either case this pre-initial
configuration is understood to be a “sufficiently uniform” discretization of
a constant density background. Most importantly they are configurations
which are unstable equilibria – if unperturbed they evolve negligibly on the
timescales simulated. This configuration is then perturbed by applying to all
particles a displacement field which is prescribed by the PS of density pertur-
bations of the continuous model one wishes to represent. The prescription for
the displacements is given by the so-called “Zeldovich approximation” (ZA),
which is a perturbative solution to the equations describing the evolution of
a self-gravitating fluid in the Lagrangian formalism (see [38] for details). The
displacement field in the ZA is directly determined by the perturbed density
field, which one takes to be that one wishes to represent. We will explain
below in Sect. 7.7 that this is equivalent to taking a displacement field with
a PS for the displacement field given by P (k)/k2, which should generate a
PS P (k) of the final particle distribution. This is only true neglecting all the
effects associated to the discreteness – and fluctuations – in the “pre-initial”
distribution. The very general results we derive in the second part of this
chapter will allow us to include these effects and determine their importance.

It is interesting to note that in the case we have just described – generation
of initial conditions for N-body simulations by displacement of point-particles
off a lattice or glass – the continuous system is not necessarily represented
by the discrete distribution in the sense we defined above. One can seek a
function W̃ (k) which satisfies

|W̃ (k)|2 =
PDP (k)
P (k)

(7.6)

where P (k) is the theoretical model one wishes to represent and PDP (k) is
the PS of the discrete particle distribution obtained by the displacement
algorithm applied to the pre-initial particle configuration. However it is not
evident that a function W (r) (the FT−1 of W̃ (k)) can be defined which
corresponds to a localized function, describing a physical smoothing of the
massive point-particles.

The sense in which the discretization represents the continuous model is in
fact thus a much weaker one in this context. It is simply the requirement that
P (k) ≈ PDP (k) for some range of k i.e., that the theoretical PS be represented
well in k space in some range. For the case of the perfect lattice, which has no
power for k below the Nyquist frequency, taken as “pre-initial” configuration,
1 The latter is in fact essentially just a limiting case of the OCP, with a PS pro-

portional to k2 at small k.
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we will see in Sects. 7.7 and 7.8 that the displacement algorithm has a PS
which approximates extremely well the theoretical model below the Nyquist
frequency. This does not imply, as we have noted, that a smoothing of the
massive point-particles of the perturbed lattice in real space approximate well
the density field in real space of the theoretical field.

7.3 Super-Homogeneous Systems in Statistical Physics

We have emphasized in the previous chapter that the mass distributions de-
scribed by standard cosmological models are super-homogeneous, according
to the definition of this term given in Chap. 3. As discussed in Chap. 3, a sim-
ple cubic lattice of identical point-particles is the simplest example of a dis-
crete set of points which shows this super-homogeneous behavior (σ2 ∝ 1/R4)
of the normalized mass variance [125]. A better (for what concerns stochas-
ticity and statistical stationarity) example of the same kind of distribution
is the so-called shuffled lattice [91]; this is a lattice whose sites are indepen-
dently randomly displaced by a distance x in all directions from their initial
position according to some PDF p(x) of the displacement which has a finite
second moment. In this case, which we discuss below in Sect. 7.7.3, we find
P (k) ∼ k2 at small k and, consequently, again σ2(R) ∝ 1/R4 at large R.
The simple lattice, however, is not a stochastic SPP, and even the shuffled
lattice, though it is stochastic, is not spatially stationary and isotropic be-
cause the underlying lattice structure in general is not completely erased by
the shuffling [96].

To construct a statistically isotropic and homogeneous particle distribu-
tion with the same behavior of σ2(R) is non-trivial. A particular example,
in two dimensions, is the so-called “pinwheel” tiling of the plane [198, 199].
It is defined by a deterministic generation algorithm consisting in taking a
right angled triangle with sides of respective length one and two (and hy-
potenuse

√
5) and, at the first step, forming five similar square triangle of

sides 1/
√

5 and 2/
√

5 respectively as shown in Fig. 7.1. At the second step
we expand these new triangles, to the size of the original triangle, and repeat
the procedure ad infinitum, so that they cover the plane completely. Finally,
placing a point-particle randomly inside each elementary triangle will give
the super-homogeneous point process which is statistically isotropic (with a
continuous PS) [92], and whose PS is P (k) ∼ k2 at small k.

As discussed in Chap. 3 one context in which such isotropic distributions
are produced by a physical mechanism is in the study of the OCP, which is
simply a system of charged point-particles interacting through a repulsive 1/r
potential, in a uniform background which gives overall charge neutrality [22].
At thermal equilibrium, at sufficiently high temperature, this system has a
PS for the charge or mass fluctuations which has the behavior P (k) ∼ k2 as
k → 0. With respect to the problem of representation of cosmological mod-
els this suggets an interesting possibility: to seek a system whose equilibrium
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Fig. 7.1. Fragmentation step for the “pinwheel” tiling of the plane. (From [92])

two-point correlations are not simply in this same class of super-homogeneous
distributions, but which represents (in the sense described in Sect. 7.2 above)
the PS of the theoretical model. This is what we describe in the following
section. In principle once such a system is given, this gives a method (al-
ternative to the standard one we have briefly described above) of producing
appropriate initial conditions for N-body simulations: one simply needs to
simulate the thermal equilibrium of the N particles interacting through the
prescribed potential and take a typical equilibrium configuration.

7.4 HZ as Equilibrium of a Modified OCP

We have seen in Chap. 3 that the three-dimensional OCP equilibrium cor-
relations give surface fluctuations (〈∆N2〉 ∼ R2), but with a PS at small k
which goes like k2. By considering instead a repulsive 1/r2 potential, whose
FT is 2π2/k, we obtain, by following the screening argument shown in (3.46)–
(3.50), that

P (k) 	 k

2π2n2β
, for k ∼ 0 (7.7)

and
ξ(r) 	 − 1

2π4βn2

1
r4

(7.8)

for r � (2π2βm)−1. The change from the exponential decay of ξ(r) to a
power-law decay is a result of the different analyticity properties of the
two power-spectra: the k2 behavior is analytic at the origin, guaranteeing
a rapidly decaying behavior of its FT, while the k spectrum is not.

In the context of cosmological N-body simulations what one needs is not
simply the primordial HZ PS with some appropriate small scale cut-off: what
is simulated is only a part of the cosmological evolution, starting from a time
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at which the initial spectrum of fluctuations is already significantly modified
from its primordial form at large k. As we discussed in the previous chapter,
while purely gravitational evolution at these early times does not modify
the HZ spectrum, non-gravitational effects, present until the time when the
universe becomes dominated by matter, do so significantly. The nature of
these modifications depends on the details of the cosmological model, but in
all cases it affects only k larger than a characteristic keq corresponding to
the causal horizon at the “time of equality” (when matter starts to dominate
over radiation). One then has a PS of the form

P (k) = knf(k) (7.9)

with n exactly or very close to unity and f(k) such that f(0) = a > 0 (see
Fig. 6.1) and going to zero for k → ∞ in a model dependent way.

To produce such a spectrum as the equilibrium one of an OCP like system
requires further modification of the form of the interaction potential [92]. Just
like the standard OCP, an unmodified 1/r2 potential will give, in the weak-
coupling limit, a spectrum which becomes flat (i.e., Poisson like) at large
k. A crude guess of what potential would produce the behavior of a typical
cosmological model can be obtained by supposing that at small scales

1 + ξ(r) ≈ e−βV (r) (7.10)

which corresponds to completely neglecting collective effects (1+ξ represents
the relative probability, compared to completely random, of finding a particle
at distance r from a given one). Given that the desired fluctuations always
have small amplitudes (|ξ| � 1), we would then need to be in the regime
of temperature and scales such that |βV (r)| � 1, so that ξ(r) 	 −βV (r).
The potential should thus be attractive at smaller scales, as the system is
positively correlated at those scales. A k−2 behavior at large k, which is often
used (see Fig. 6.1) as an initial condition approximating cosmological models
(CDM type) in this regime (beyond the “turn-over”), may be obtained from
an attractive 1/r potential. For instance we can take

V (r) =
1
r2

− η
e−µr

r
. (7.11)

By modifying the parameters µ and η, as well as the temperature, both the
amplitude of the P (k) and the location of a change from a P (k) ∼ k−2 to
a behavior P (k) ∼ k for small k can be controlled. The potential (7.11) is
repulsive at short distances, but it may be necessary to make it more strongly
repulsive in order to ensure that the system is not unstable to collapse [205].

An assumed property of the primordial fluctuation density field in stan-
dard cosmological models is that it is Gaussian distributed. Since the density
field is inherently positive this assumption of Gaussianity is more properly
attributed to fluctuations (expected to be small) around the uniform density.
Small fluctuations in the discrete OCP are in fact also Gaussian to a good
approximation [156].
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7.5 A First Approximation to the Effect
of Displacement Fields

We now move on to a very wide-ranging study of the effect of superimposing
a generic displacement field, specified itself as a stationary stochastic process
with given correlation properties, on a generic spatial distribution of point-
particles. The motivation for this study comes from the method we briefly
described in Sect. 7.2 to generate initial configurations for N-body simula-
tions. We will recover from the results below the justification for the standard
method of building initial conditions as a special case. It corresponds in par-
ticular to the limit of small displacements, and to the neglect of the power
associated with the “pre-initial” configuration. Our results give analytical
forms for the more general case, allowing one to determine what precisely
are the initial conditions generated in this way. This can be important, for
example, in trying to understand the role played by effects which arise from
the discretization of the density field in these numerical simulations, an issue
which is unresolved and evidently important e.g. see [160, 216, 132, 12, 13, 14].

In Chap. 2 we have introduced the general framework for the study of
statistically stationary stochastic discrete or continuous processes. In partic-
ular, in order to characterize properly the internal spatial correlations of the
system, we have defined the two-point correlation function C2CC (r) (or equiv-
alently ξ̃(r) if ρ0 > 0) and the PS S(k) (or P (k) if again ρ0 > 0) which is
the Fourier counterpart. We now specialize the discussion to discrete SSPs of
particles with the same unitary mass, studying the problem of how a station-
ary stochastic displacement field affects the correlation properties of a given
point-particle distribution.

Before entering into a more detailed and rigorous discussion, we give a
simple argument which roughly describes the effect of a displacement field
on a“sufficiently uniform” distribution of point-particles. It is based on the
fact that a displacement process conserves the mass. Hence it must satisfy a
form of continuity equation. If we call ρin(r) the initial microscopic density
of particles and ρ(r) the final one after the application of the displacement
field u(r), we can write the continuity relation

ρ(r) − ρin(r) + ∇ · [ρin(r)u(r)] = 0 . (7.12)

Let the average density (which is not modified by the displacement field)
be ρ0 > 0. If ρin(r) is “sufficiently uniform” with respect to ρ(r), we can
approximate it with a truly uniform density field ρ0. With this approximation
we can rewrite (7.12) as

ρ(r) − ρ0 + ρ0∇ · u(r) = 0 . (7.13)

Taking as usual,

δρ(k) = FT

[
ρ(r) − ρ0

ρ0

]
, (7.14)
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and v(k) = FT [u(r)], we have:

|δρ(k)|2 = |k · v(k)|2 . (7.15)

If we suppose that the stochastic displacement field is statistically isotropic,
from (7.15) and (3.7), we can say that the PS of the particle distribution is
roughly proportional to k2 times the PS of the displacement field [12].

This argument is in fact precisely equivalent to that used in the setting
up the initial conditions of N-body simulations through the ZA as the dis-
placement field in this case obeys the continuity equation and the same two
approximations made in obtaining the result (7.15). The first consists in tak-
ing the initial microscopic density to be an exactly uniform continuous mass
field i.e., ρin(r) = ρ0. The second is that the displacements are small (i.e.,
that the k considered is less than the inverse of the typical displacement). In
the exact equations we will derive in this chapter describing the effect of the
displacement field on an initial point-process, we thus expect to find addi-
tional terms coming from the “granularity” of the initial particle distribution,
as well as corrections at large k (see [94, 95] for more details).

7.6 Displacement Fields: Formulation of the Problem

We start by considering a SPP in a volume V → ∞ with microscopic density

ρin(r) =
∑

i

δ(r − ri) ,

where ri is the position of the ith particle of the distribution. We assume
that the distribution has a finite homogeneity scale (i.e., that it is sufficiently
uniform at large scales) having a well defined positive average:

〈ρin(r)〉 = ρ0 > 0 ,

where 〈 . . .〉 is the usual ensemble average. In this case we can introduce the
FT of the so-called normalized density contrast field (7.14) the PS of which
is defined by (see Chap. 3)

PinPP (k) = lim
V →∞

〈
|δρ(k)|2

〉
V

.

Since the particle distribution is assumed to be statistically stationary in
space, the connected two-point correlation function is simply given by

ξ̃in(r) = FT−1[PinPP (k)] ,

where as usual FT−1 is the inverse Fourier transform as defined in Chap. 3.
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r i
u i r i u i+

Fig. 7.2. The figure illustrates the superposition of a stochastic displacement field
on a particle distribution. The particles pass, through the displacements (arrows),
from the old positions (white circles) to the new ones (black circles), and, conse-
quently, spatial correlations change

Let us now introduce a stationary stochastic displacement field which
moves each particle from its initial position. In general this displacement
process changes the correlation properties of the initial point-particle distri-
bution from PinPP (k) (or ξ̃in(r)) to a new P (k) (or a new ξ̃(r) = FT [P (k)]).
If we apply to the particle i the displacement ui, its position changes from
ri to ri + ui (see Fig. 7.2), therefore the final particle density field can be
written as

ρ(r) =
∑

i

δ(r − ri − ui) . (7.16)

A stochastic displacement field can be seen as a vectorial continuous stochas-
tic process. We can think to “attach” a displacement vector u(r) to each
spatial point r, even though it acts on the particle distribution only if r is
occupied by a point-particle. Therefore, in analogy with what has been dis-
cussed in Chap. 2 about scalar stochastic fields, we can say that the statistics
of the displacement field is completely determined by a probability density
functional Q[u(r)] which defines the probability of each possible realization
u(r) of the displacement field i.e., it defines the statistical ensemble of the
possible realizations of the displacement field with relative weights. If the dis-
placement field is statistically stationary in space the functional Q[u(r)] is
invariant under translations i.e., Q[u(r + r0)] = Q[u(r)] for any translation
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vector r0. Analogously, if the displacement field is statistically isotropic, the
functional Q[u(r)] is invariant under any spatial rotation.

We consider here the general case in which displacement-displacement
spatial correlations can be present in Q[u(r)]. However we assume that the
probability of a single realization of the displacement field u(r) in each point
of the space does not depend on the single realization of the initial config-
uration of the particle distribution. That is, we exclude the case in which
Q[u(r)] depends explicitly on the initial coordinates {ri} of the particles.2

This implies that the joint probability of having a specific initial microscopic
particle density ρin(r), and a specific realization u(r) of the displacement
field, factorizes into the product of the two independent probabilities. The
average of any functional A[u(r)] of the displacement field in one or more
spatial points is indicated with A, and can thus formally be written as:

A =
∫

D[u(r)]Q[u(r)]A[u(r)] , (7.17)

where D[u(r)] is the functional differential of the displacement field. This
formula is very similar to (3.53), of which it represents an extension to more
general probability density functionals and to vectorial fields. In particular if
A is a function only of the displacements {ui} applied to the points of the
space occupied by the point-particles of the initial particle distribution, then
the average can be limited to these displacements:

A =
∫

..

∫ ⎡
⎣
⎡⎡∏

j

dduj

⎤
⎦
⎤⎤

h({ui})A({ui}) , (7.18)

where we have indicated with h({ui}) the joint PDF of all the displacements
applied to the particles of the initial distribution. In general it depends para-
metrically on the initial positions of the particles. Note, however, that this
does not mean at all that the statistical weight Q[u(r)] of a given displace-
ment field u(r) depends on the single initial configuration of the particle
distribution. This is a subtle but important point to appreciate. Even though
we assume that the probability of having u(r) is independent of that of hav-
ing {ri}, the parametric dependence on the initial coordinates of the particles
in h({ui}) comes directly by its definition which is

h({ui}) =
∫

D[u(r)]Q[u(r)]
∏

i

δ (u(ri) − ui) , (7.19)

i.e., the parametric dependence on {ri} of h({ui}) comes only from the fact
that we are limiting the analysis of the displacement field to those spatial
points occupied by particles.
2 At most the ensemble properties of the displacement field can be related to

those of the ensemble of the initial point-particle distribution i.e., the correlation
functions characterizing the probability density functional Q[u(r)] can be related
to the correlation functions of the initial SPP.
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In the case of statistically stationary and isotropic displacement fields,
h({ui}) depends parametrically on the vectorial distances between all the
couples of points of the initial distribution and is invariant under spatial
rotations.

Finally, if we have a function of the final microscopic (i.e., after displace-
ments) density ρ(r) of the point-particles of the system, then the ensemble
average over all the possible final configurations of the particle distribution
is done by averaging both over the initial configurations 〈 . . .〉 and over all
the possible displacements as in (7.18). In fact the ensemble of all possible
final particle configurations is found by considering all possible initial config-
urations, and for each of these all final configurations obtained by applying
the ensemble of the displacement fields. Hence the correlation function of the
“displaced” particle distribution will be:

ξ̃(r) =

〈
ρ(r0 + r)ρ(r0)

〉
〈
ρ(r0)

〉2 − 1 . (7.20)

Given the assumption of statistical independence between the displacement
field and the initial point process, the order in which the two averages 〈 . . .〉
and ( . . .) are performed is arbitrary.

7.7 Effects of Displacements on One and Two-Point
Properties of the Particle Distribution

We can now study how two-point correlations change under the effect of the
displacement field. The aim of this section is to relate the new correlation
properties of the point-particle distribution to its old ones and to those of
the applied displacement field by using (7.20) and other similar relations. We
limit our discussion to the case of statistically stationary displacement fields
and initial particle distributions (i.e., point processes). Thus also the final
particle distribution will be statistically stationary.

Let us start from (7.16) and evaluate the average mass density. The next
step will consist in finding the transformation equation for the PS P (k) (or
equivalently the connected two-point correlation function ξ̃(r)) of the final
particle distribution.

Since the displacement process does not create or destroy any particle
and is statistically stationary, the average mass density remains equal to the
initial one ρ0: 〈

ρ(r)
〉

= ρ0 .

This can be also proved by direct calculation using that 〈ρin(r)〉 = ρ0. First
of all we note that (7.16) is a sum of terms depending only on a single
displacement. Therefore, in order to evaluate the displacement average ρ(r)
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we need only the one displacement PDF p(u). This is obtained using (7.18)
with, for instance, A({ui}) = δ(u1 − u) (i.e., by integrating h(ui) over all
but one of the displacements). Therefore we can write

ρ(r) =
∑

i

∫
ddui p(ui)δ(r − ri − ui) =

∑
i

p(r − ri) .

From this we obtain

〈
ρ(r)

〉
=

〈∑
i

p(r − ri)

〉
=

〈∫
ddy p(y)

∑
i

δ(y − r + ri)

〉
= ρ0

∫
ddy p(y) = ρ0 ,

where we have used the statistical spatial stationarity of ρin(r) (i.e., 〈ρin(r)〉=
〈ρin(y − r)〉 = ρ0).

We now face the problem of calculating the new two-point correlation
function ξ̃(r) and the new PS P (k). The key step is to calculate the average〈

ρ(r)ρ(r′)
〉

.

Since the product ρ(r)ρ(r′) is a sum of terms containing at most two different
displacements, we do not need to know the complete joint PDF h({ui}), but
only the two-displacement PDF f(u,v) which is obtained from h({ui}) by
integrating out all but two of the displacements, i.e., using (7.18) with

A({ui}) = δ(u1 − u)δ(u2 − v) .

In general f(u,v) will depend parametrically on the coordinates of the two
points of application of the displacements. In the hypothesis of a statisti-
cally stationary displacement field, f(u,v) will only depend parametrically
on the vector separation r between these two points. For this reason we write
it f(u,v) ≡ f(u,v; r) putting in explicit evidence this dependence3. Note
that the function f(u,v; r) carries much more information than the simple
knowledge of the average displacement u = u0 and the two-displacement
correlation matrix whose generic element is

Gµν(r − r′) =
(
u(µ)(r) − u

(µ)
0

)(
u(ν)(r′) − u

(ν)
0

)
with µ, ν = 1, . . . , d ,

(7.21)
where u(µ) is the µth component of the vector u. In fact Gµν(r − r′) is only
the average value of
3 If the stochastic displacement field is also statistically isotropic, f(u, v; r) will

depend on r in such a way that it is invariant under a rigid rotation of the con-
figuration formed by the two displacements u and v connected by the vector r.
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u(µ)(r) − u

(µ)
0

)(
u(ν)(r′) − u

(ν)
0

)
calculated with the PDF f(u,v; r) itself.

In general f(u,v; r) will satisfy the following limit conditions at r = 0:

f(u,v; 0) = δ(u − v)p(u) (7.22)
lim

r→∞ f(u,v; r) = p(u)p(v) . (7.23)

The former equation is trivial, while the latter says that the correlation
between displacements must go to zero as the separation between the points of
application goes to infinity. First of all let us evaluate the average of ρ(r)ρ(r′)
over the displacements:

ρ(r)ρ(r′) =
∑
i,j

∫ ∫
dduid

dujf(ui,uj ; rij)δ(r − ri − ui)δ(r′ − rj − uj)

=
∑
i,j

f(r − ri, r
′ − rj ; rij) , (7.24)

where rij = ri−rj . Note that the limit condition given by (7.22) permits the
evaluation of the average without separating the diagonal contribution i = j
from the non-diagonal part i �=�� j of the double sum in (7.24) by averaging
the former using the one-displacement PDF p(ui) and the latter using the
two-displacement PDF f(ui,uj ; rij) with i �=�� j.

At this point let us evaluate the average 〈 . . .〉 on the ensemble of initial
particle configurations. To this end we make the following consideration: if
we have a function of the initial configuration that can be written in the
form

∑
i,j φ(ri, rj), with φ(r, r′) a generic two-point function, we can write

rigorously〈∑
i,j

φ(ri, rj)

〉
≡
〈∫ ∫

ddraddrbφ(ra, rb)
∑
i,j

δ(ra − ri)δ(rb − rj)

〉

=
∫ ∫

ddraddrbφ(ra, rb)

〈∑
i,j

δ(ra − ri)δ(rb − rj)

〉

=
∫ ∫

ddraddrb 〈ρin(ra)ρin(rb)〉φ(ra, rb) . (7.25)

As shown in Chap. 2, we can write

〈ρin(ra)ρin(rb)〉 = ρ2
0

[
1 + ξ̃in(rab)

]
, (7.26)

where rab = ra − rb. Note that the diagonal part δ(r)/ρ0 of the connected
two-point correlation function ξ̃in(r) takes correctly into account the diagonal
term i = j of the sum over i, j of (7.25).
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By applying (7.25) and (7.26) to (7.24), we obtain:

〈
ρ(r)ρ(r′)

〉
= ρ2

0

∫ ∫
ddraddrb

[
1 + ξ̃in(rab)

]
f(r − ra, r′ − rb; rab) .

(7.27)
It is convenient to rewrite (7.27) by separating the two terms coming respec-
tively from the diagonal and the non-diagonal parts of ξ̃in(r), i.e. by writing

ξ̃in(r) = δ(r)/ρ0 + ξin(r) ,

where ξin(r), as usual, is the non-diagonal part of the initial connected two-
point correlation function of the particle distribution. By applying this pre-
scription, we obtain:

〈
ρ(r)ρ(r′)

〉
=ρ0δ(r−r′)+ρ++ 2

0

∫ ∫
ddraddrb [1 + ξin(rab)] f(r−ra, r′−rb; rab) .

(7.28)
Finally, the new connected two-point correlation function ξ̃(r) of the final
particle distribution will be given by

ξ̃(r) =

〈
ρ(r0 + r)ρ(r0)

〉
ρ2
0

− 1 , (7.29)

with the numerator taken from (7.28)4.
We have now all the ingredients to find the relation between the initial

and the final PS of the particle distribution. Let us start this analysis from
the simplest case of uncorrelated displacements; then we will come back to
the general case for other considerations and some examples.

7.7.1 Uncorrelated Displacements

In this section we focus on the analysis of the case of uncorrelated displace-
ments, that is the case in which the displacement applied to a given point
of the distribution does not depend on the displacements applied to other
points. Therefore the statistics of the stochastic displacement field is com-
pletely determined by the one-displacement PDF p(u) of the displacement
u applied to a generic point of the space. The joint PDF of n displacements
u1,u2, . . . ,un in n different points of the space factorizes as follows:

h(n)(u1,u2, . . . ,un) =
n∏

i=1

p(ui) . (7.30)

In particular for the two-displacement PDF, we can write

4 Note that from (7.29), as expected, one has that the diagonal part of ξ̃(r) is
again δ(r)/ρ0 as it must be for any particle distribution with average density ρ0.
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f(u,v; r) =
{

δ(u − v)p(u) for r = 0
p(u)p(v) for r �= 0�� . (7.31)

Note that f(u,v; r) is discontinuous at r = 0: as shown below this is not the
case for truly continuous correlated displacement fields (i.e., belonging to the
class of continuous SSP). We can now apply (7.31) to (7.28) in order to find
the two-point correlation function of the final system:

〈
ρ(r)ρ(r′)

〉
= ρ2

0+ρ0δ(r−r′)+ρ2
0

∫ ∫
ddraddrb p(r−ra)ξin(ra−rb)p(r′−rb) .

(7.32)
Note that, as, in this case, f(u,v; r) is discontinuous at r = 0, it has been
important to separate the contributions of the diagonal and the non-diagonal
part of ξ̃in(r) in (7.28). In fact, in this case, any element of the connected
two-displacement correlation matrix Gµν(r), given by (7.21), vanishes for any
r > 0 while

Gµν(0) = δµνU2
µU > 0

where U2
µU is the positive variance of the µth component of the single dis-

placement (i.e., Gµν(r) is discontinuous at r = 0). This is a very particular
case, as in truly correlated continuous SSP Gµν(r) is continuous5 everywhere
[100].

Recalling now that the PS P (k) = FT [ξ̃(r)] (Chap. 3), with ξ̃(r) given
by (7.29), we can Fourier transform (7.32) to obtain

P (k) =
1 − |p̂(k)|2

ρ0
+ |p̂(k)|2PinPP (k) , (7.33)

where p̂(k) is the characteristic function of the one-displacement PDF

p̂(k) = FT [p[[ (u)] ,

and we have used
FT [ξin(r)] = PinPP (k) − 1/ρ0 .

By definition p̂(0) = 1.
Equation (7.33) gives the relation between the PSs of the point-particle

distribution before and after the application of the uncorrelated displace-
ments field. First of all we note that, if the initial point process is the Poisson
one, then, as shown in Chap. 3, PinPP (k) = 1/ρ0. This implies P (k) = 1/ρ0

too, regardless of the form of p(u), i.e., the particle distribution is still Pois-
sonian after the application of the random displacement field. This is quite
easy to understand: as the displacement field is without correlations, it tends
to randomize the particle distribution, but the Poisson particle distribution
is already the most random possible SPP. In general it is evident that this
5 Including the case in which Gµν(r) diverges continuously for r → 0.
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kind of displacement field can neither increase the degree of correlation nor
introduce ordering in the particle distribution.

Secondly, we note that the right hand side of (7.33) is the sum of two
terms: the former (which we call the granularity term) is proportional to
the inverse average mass density of particles 1/ρ0, and is independent of the
initial PS of the particle distribution, while the latter depends on ρ0, only
through PinPP (k) which satisfies the condition PinPP (k → ∞) = 1/ρ0 because of
the diagonal term of ξ̃in(r).

If the initial point process is statistically isotropic as well as stationary,
then ξ̃in(r), as aforementioned, is a function only of r = |r| and PinPP (k) only
of k = |k|. Furthermore, if also the displacement field is statistically isotropic,
then u(µ) = 0 for each µ = 1, . . . , d, and p(u) depends only on u = |u|. This
implies that also P (k) depends only on k (and ξ̃(r) on r).

7.7.2 Asymptotic Behavior of P (k) for Small k

It is of interest to study the asymptotic behavior of (7.33) for k → 0. We
limit the discussion to the case in which both the point process generating
the initial particle distribution and the stochastic displacement field are sta-
tistically isotropic. As noted above, with this hypothesis PinPP (k) = PinPP (k),
p(u) = p(u), and P (k) = P (k).

The first step is to study the small k behavior of the characteristic function
p̂(k). By definition we have

p̂(k) =
∫

ddu e−ik·up(u) , (7.34)

therefore, as aforementioned p̂(0) = 1, and, as p(u) = p(u), p̂(k) = p̂(k). Let
us suppose that for large u we have

p(u) 	 Bu−β ,

where β > d because p(u) must be by definition integrable over all space
(β → +∞ includes any decay faster than any power, e.g., exponential). Using
this property and the definition of p̂(k), it is simple to show (see Appendix
A) that to the lowest order in k larger than zero, one has

p̂(k) 	 1 − Akα with
{

α = β − d if β ≤ d + 2
α = 2 if β > d + 2 (7.35)

where A > 0. This means that if the probability density function p(u) has a
finite variance u2 < +∞, then at the lowest orders in k, we have

p̂(k) 	 1 − Ak2 with A =
u2

2
.

If, instead, u2 = +∞, then
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p̂(k) 	 1 − Akβ−d with A > 0

characterizing the singular part of the Taylor expansion. In this case A is
completely determined by the large u tail of p(u) i.e., by β and B (see
Appendix A).

Note that in all cases 0 < α ≤ 2. This implies that for k � A1/α

1 − |p̂(k)|2 	 2Akα .

On the other hand, we have seen in Chap. 3 that for any homogeneous SPP
the PS for k → 0 behaves in general as PinPP (k) ∼ kb with b > −d. Therefore
we can draw the following conclusions for the small k behavior of P (k) in
(7.33):

1. Since α > 0 in all cases, if −d < b ≤ 0 or 0 < b < α, P (k) ∼ kb as for the
initial PS PinPP (k) in the initial particle distribution, and it is independent
of the displacement field. This is due to the fact that an uncorrelated
displacement field cannot destroy the strong correlations already present
in the system, as it tends only to increase the random noise in the system.

2. On the contrary if 0 < α ≤ b then, the small k behavior is completely
determined by the displacement field, resulting in P (k) ∼ kα. In fact, as
shown in Chap. 3, an SPP having b > 0 can be considered to show a sort
of long-range order which is partially destroyed by the noise injected into
the system by the uncorrelated displacement field if b ≥ α. In this respect,
note that if u2 = +∞ then α < 2. Thus, in this case, the randomization
of the system introduced by the uncorrelated displacement field is more
effective.

7.7.3 The Shuffled Lattice with Uncorrelated Displacements

In this subsection we present a specific but important example of the appli-
cation of the case just analyzed the random shuffling of a regular lattice of
particles (see Fig. 7.3). Its interest lies in the fact that a perturbed lattice, of
which this is the simplest case, often used as the initial condition for N-body
cosmological simulations.

In Chap. 3 we have shown that for a distribution of particles of unitary
mass occupying the sites of a regular cubic lattice, the PS is [253]

PinPP (k) = (2π)d
∑
H �=�� 0

δ (k − H) , (7.36)

where the sum runs over all the sites H of the reciprocal lattice [253] with
the exception of the origin 0. We recall that, if the lattice spacing of the
direct space lattice is l, each component of H is any integer multiple of 2π/l
including zero.

We can now apply (7.33) in order to find the final PS P (k) (see Fig. 7.4)
after the random shuffling (i.e., the random displacement field):
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Fig. 7.3. A randomly shuffled lattice in 3 dimensions. This is a projection on the
x-y plane along the z-axis. Each lattice site becomes a small square because of the
shuffling of the lattice chain along the z-axis

P (k) =
1 − |p̂(k)|2

ρ0
+ (2π)d

∑
H �=�� 0

|p̂(H)|2 δ (k − H) . (7.37)

Two important observations are the following: (1) the random shuffling in
general does not erase completely the presence of the so-called Bragg peaks
(i.e., the delta functions), but only modulates their amplitude and adds a con-
tinuous contribution typical of a truly stochastic point process6; (2) around
k = 0 (more precisely in the so-called first Brillouin zone [8] of the recip-
rocal lattice) PinPP (k) = 0 at any order. Consequently, as clear from (7.37),
in this region P (k) is determined by only the behavior of the characteristic
function p̂(k) of the displacement field. As shown above, if the displacement
field is statistically isotropic, p̂(k) ≡ p̂(k). Therefore, even though the lattice
is anisotropic, the shuffled one has isotropic mass fluctuations at large scales.
This implies that, while in a cubic lattice, because of its internal symmetry,
calculating

〈
∆N2(R)

〉
in spheres of radius R or in cubes of the same size

gives completely different scaling behavior in R (which can be considered a

6 The complete cancellation of the Bragg peaks contribution to P (k) is possible
only in the very particular case in which p̂(H) = 0 for every reciprocal lattice
vector.
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Fig. 7.4. Power spectrum of a shuffled lattice in d = 1, compared with a Poisson
distribution, and to a lattice with correlated critical displacements (P (k) ∼ k−0.5)

real pathology of regular lattices), after the shuffling, the scaling behavior in
R of

〈
∆N2(R)

〉
has the same exponent in the two cases.

Since in the first Brillouin zone P (k) is completely determined by p̂(k),
the asymptotic behavior at small k of P (k) can be summarized in Sect. 7.7.2
and in particular by the relation (7.35). In particular if the variance u2 of the
displacement field is finite, we find

P (k) ∼ k2 for k → 0 ,

independently of the particular form of p(u). This is a case of universal be-
havior for any displacement PDF p(u) ∼ u−α at sufficiently large u with
α > d + 2. In the case in which u2 diverges (i.e., d < α ≤ d + 2), this uni-
versality is lost, and we have P (k) ∼ ka with 0 < a < 2, with a one-to-one
correspondence between the exponents α and a as shown in Sect. 7.7.2. A
similar case of universality (see Sect. 2.10) is found in random walks with in-
dependent steps. In fact if the variance of the steps is finite (ordinary random
walks) the average quadratic distance

〈
∆x2(t)

〉
reached by the walker after

a large number t of steps satisfies the scaling relation
〈
∆x2(t)

〉 ∼ t indepen-
dently of the precise functional form of PDF of the single step. On the other
hand, if the single step variance is infinite (Levy flights) this is no longer true,〈
∆x2(t)

〉
being infinite, and the PDF of |∆x(t)| has a power-law tail with an

exponent in a one-to-one correspondence with that characterizing the tail of
the PDF of a single step.
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7.8 Correlated Displacements

Let us now return to (7.28), and consider the general case of a stationary
stochastic displacement field with correlations. In this case f(u,v; r) cannot
be factorized as in (7.31) for r > 0.

In order to write the equation of transformation of the PS let us recall
that ∫ ∫

ddrddr′e−i(k·r+k′·r′)ξ̃(r − r′) = (2π)dδ(k + k′)P (k) , (7.38)

and that, by definition, 〈
ρ(r)ρ(r′)

〉
= ρ2

0(1 + ξ̃(r)) . (7.39)

Furthermore, we define the functions f̂(k1,k2; r) and F (k1,k2; q) respec-
tively by the following FT’s:

f̂(k1,k2; r) =
∫ ∫

dduddv e−i(k1·u+k2·v)f(u,v; r) (7.40)

F (k1,k2; q) =
∫

ddr e−iq·r f̂(k1,k2; r) . (7.41)

The function f̂(k1,k2; r) is the characteristic function of the joint two-
displacement PDF. By definition f̂(k1,k2; r) satisfies the following limit con-
ditions:

f̂(0, 0; r) = 1 for any r ,

and
f̂(0,k; r) = f̂(k, 0; r) = p̂(k) for any r > 0 .

By using (7.38), (7.39), and (7.40), we can write:

P (k) =
1
ρ0

(
1 − 1

(2π)d

∫
ddq F (k,−k; q)

)

+
∫

ddr e−ik·r f̂(k,−k; r)
(
1 + ξ̃in(r)

)
− (2π)dδ(k) . (7.42)

Note that the term
1

(2π)d

∫
ddq F (k,−k; q)

must be treated with care: because of the properties of the inversion of
the Fourier transform, it cannot be substituted directly with f̂(k,−k; 0) if
f(u,v; r) is discontinuous at r = 0 as in the case of uncorrelated displace-
ments treated above. Instead it must be understood that

1
(2π)d

∫
ddq F (k,−k; q) = lim

r→0
f̂(k,−k; r) .
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More precisely, if f(u,v; r) is continuous at r = 0 i.e.,

lim
r→0

f(u,v; r) = f(u,v; 0) ≡ δ(u − v)p(u) ,

then we have
1

(2π)d

∫
ddq F (k,−k; q) = 1 .

This condition is valid in all the cases in which the stochastic displacement
field is a real continuous correlated stochastic process (see below the Gaus-
sian example). In fact, as aforementioned in Chap. 2, in this case there is a
theorem [100] saying that the two-displacement correlation function is con-
tinuous everywhere, being equal to the one-displacement variance at r = 0.
Thus, in the case of an uncorrelated stochastic displacement field this is no
longer true (it is not a truly correlated stochastic process, but a form of white
noise), and as already shown f(u,v; r) is discontinuous at r = 0, giving

1
(2π)d

∫
ddq F (k,−k; q) = |p̂(k)|2 .

With this prescription it is simple to recover (7.33) from (7.42) in the case of
uncorrelated displacements.

Instead, in the case of a really correlated stationary stochastic displace-
ment field, (7.42) can be rewritten:

P (k) =
∫

ddr e−ik·r f̂(k,−k; r)
(
1 + ξ̃(r)

)
− (2π)dδ(k) , (7.43)

or equivalently

P (k) = F (k,−k;k) +
1

(2π)d

∫
ddq F (k,−k; q)PinPP (k − q) − (2π)dδ(k) .

(7.44)
Equation (7.43) can be further simplified by noting that in the case of spatial
statistical stationarity, the effect of the displacement field on the PS of the
particle distribution does not depend separately on the couple of displace-
ments u and v applied at two points separated by the distance vector r, but
only on the relative displacement w = u − v. In fact let us call s(w; r) the
PDF that two points, separated by the distance vector r, undergo a relative
displacement w; clearly, by definition

s(w; r) =
∫ ∫

ddu ddv f(u,v; r)δ(w − u + v) . (7.45)

If we take the FT of (7.45) with respect to w, we have

ŝ(k; r) = f̂(k,−k; r) , (7.46)

where
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ŝ(k; r) =
∫

ddu e−ik·ws(w; r) .

Therefore (7.43) can be rewritten

P (k) =
∫

ddr e−ik·r ŝ(k; r)
(
1 + ξ̃in(r)

)
− (2π)dδ(k) . (7.47)

It is important to note that, while ξ̃in(r) depends on ρ0 (average num-
ber density of the particle distribution)7 at least through its diagonal part
δ(r)/ρ0, the probability density function f(u,v; r), in our hypothesis, is in
general supposed not to. Therefore, differently from the case of uncorrelated
displacements, both (7.43) and (7.44) can be divided into two parts, one de-
pendent on ρ0, and the other independent of it. Consequently, in (7.43) and
(7.44) there is a part depending on the discretization process and another
part independent of it. This is of importance in the context of gravitational
N-body simulations, in which the continuous density field of matter is usually
represented by a distribution of equal mass particles.

In the next subsection the general properties of a correlated displacement
field on a given particle distribution will be further clarified through the dis-
cussion of a very important example: the correlated Gaussian displacement
field. The mathematical treatment is simplified by the fact that (scalar) Gaus-
sian fields have already been extensively analyzed in Sects. 2.7 and 3.6. This
case is also of particular interest because of the application to initial condi-
tion of cosmological N-body simulations, where Gaussianity of perturbations
(i.e., particle displacements) is assumed.

7.8.1 Correlated Gaussian Displacement Field

In this subsection we treat the case of a one-dimensional statistically sta-
tionary particle distributions ρin(x) perturbed by a statistically stationary
and isotropic stochastic displacement field u(x). The probability density func-
tional Q[u(x)] can be derived (see Sect. 3.6) to be

Q[u(x)] ∼ exp
[
−1

2

∫ +∞

−∞

∫∫ ∫ +∞

−∞

∫∫
dx dy u(x)K(|x − y|)u(y)

]
, (7.48)

where K(x) (depending only on |x| because of isotropy) is the positive definite
correlation kernel of the Gaussian displacement field. We have u = 0, because
of the supposed statistical isotropy.
7 It is simple to verify that if all the particles of the distribution have the same

non-unitary mass m > 0, the connected and normalized two-point correlation
function ξ̃in(r) of the microscopic mass density is independent of m. It coin-
cides with the connected and normalized two-point correlation function of the
microscopic number density.
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By applying the recipe presented in Sect. 3.6, it is simple to find the
connected two-displacement correlation function to be

g(x) ≡ u(x0 + x)u(x0) = FT−1

[
1

FT [K(x)]

]
, (7.49)

which depends only on |x|, and is a continuous function as u(x) is assumed
to be a continuous stochastic process. The joint two-displacement PDF can
be written as:

f(u, v;x) =
1

2π
√

g
√√

2(0) − g2(x)
exp

[
−g(0)(u2 + v2) − 2g(x)uv

2(g2(0) − g2(x))

]
, (7.50)

where g(0) = u2 ≡ v2 < +∞. It is simple to verify that, in order to have the
PDF (7.50) well defined at all x, the correlation function g(x) must satisfy
the following constraint:

|g(x)| ≤ g(0) for any x �= 0�� .

By taking the FT of (7.50) with respect to both u and v, we find the
following simple relation for f̂(k,−k;x)8:

f̂(k,−k;x) = e−k2(g(0)−g(x)) . (7.51)

Therefore the relation (7.43) between the PS of the particle distribution after
the application of the displacement field, and its initial correlation function
ξ̃in(x) will be

P (k) = e−k2g(0)

∫ +∞

−∞

∫∫
dx e−ikx+k2g(x)

(
1 + ξ̃in(x)

)
− 2πδ(k) . (7.52)

Note that since at large x both g(x) and ξ̃in(x) go to zero, the FT in (7.52)
is not well defined and contains a Dirac delta function contribution compen-
sating the last delta function term. This can be made clearer in the following
way. The Dirac delta function of (7.52) can be rewritten as:

2πδ(k) = 2πe−k2g(0)δ(k) = e−k2g(0)

∫ +∞

−∞

∫∫
dx e−ikx .

Using this relation, (7.52) can be recast in a form containing only well defined
FTs and no artificial delta function contribution:
8 Note that if the Gaussian displacement field is a truly continuous correlated

SSP and, consequently, limx→0 g(x) = g(0), then f̂(k,−k; 0) = 1. If instead
it is uncorrelated (i.e., g(x) = 0 for x = 0), then as shown in the previous


section, f̂(k,−k; 0) = exp[−k2g(0)] ≡ |p̂(k)|2, as p̂(k) = exp[−k2g(0)/2] is the
characteristic function of the one-displacement PDF.
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P (k) = e−k2g(0)

[∫ +∞

−∞

∫∫
dx e−ikx

(
ek2g(x) − 1

)
+
∫ +∞

−∞

∫∫
dx e−ikx+k2g(x)ξ̃in(x)

]
.

(7.53)
In cosmological applications the second FT contribution is neglected (see
for instance [227]). It is interesting to study the small k behavior of (7.53).
By considering that g(x) is a bounded function and using the relation
FT [ξ̃in(x)] = PinPP (k), we can write for k → 0:

P (k) 	 [1 − k2g(0)][PinPP (k) + k2ĝ(k)] +
k2

2π

∫ +∞

−∞

∫∫
dq ĝ(q)PinPP (k − q) (7.54)

where ĝ(k) = FT [g(x)] is the PS of the displacement. A similar relation can
be found in d > 1 and also in the case of non-Gaussian displacement fields.

Equation (7.54) is more complex than the result obtained in a naive way
in Sect. 7.7 by simply using the continuity equation for the conservation of
mass which led to:

P (k) = k2ĝ(k) .

We see that with respect to this simple approximation, even in the small k
limit (i.e., large scales), there are different corrections coming both from the
internal correlations of the initial mass distribution and from the interaction
between these and the internal correlation structure of the displacement field.

Before concluding this discussion about the Gaussian displacement field, it
is useful to observe that in order to extend the discussion to d > 1 dimensions,
even in the case of spatial statistical stationarity and isotropy, the more
general form of f(u,v; r) is much more complex. In fact in this case not only
parallel components of u and v can be correlated, but also the perpendicular
components. This leads to a displacement-displacement correlation matrix
depending on r and invariant under spatial rotations. In particular for a
d-dimensional spatially stationary Gaussian displacement field, we can write:

ŝ(k; r) ≡ f̂(k,−k; r) = exp

[
−

1,d∑
µ,ν

k(µ)k(ν)[Gµ,ν(0) − Gµ,ν(r)]

]
, (7.55)

where k(µ) is the µth component of k, and the displacement-displacement
correlation matrix Gµ,ν(r) is defined by (7.21). If moreover the Gaussian
displacement field is also isotropic then u0 = u = 0, and

Gµ,ν(r) = g‖(r) if µ = ν
Gµ,ν(r) = g⊥(r) if µ �=�� ν

However the general features of the effect of a Gaussian displacement field
are well described by the one-dimensional case we have analyzed.
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7.9 Summary and Discussion

In this chapter we have considered various aspects of the problem of how
to represent with a set of point-like masses the mass density fluctuations of
standard cosmological models. This problem is interesting because numeri-
cal simulations for the formation of structure through the action of gravity
require such a discrete representation of the initial fluctuations prescribed
by these models. In a first approach we have briefly described one method,
different from the standard one, which could in principle be used to gener-
ate these configurations: it involves determining the appropriate two-body
interaction potential which will lead to such correlations at thermal equilib-
rium. In the second part of the chapter we have given a thorough generalized
analysis of the procedure used in the standard method of generating such
configurations by the superimposition of a displacement field on an initial
point-particle configuration, usually taken to be a perfect lattice. We have
studied rigorously the changes induced in the two-point correlation proper-
ties of the particle distribution by the displacements. We have seen explicitly
that there are contributions to the PS (and to the two-point correlation func-
tion) additional to what is given by the usual naive result (and adapted in
the standard method), which in particular involves the approximations of
neglecting the correlation properties of the initial particle distribution and
from the finite (i.e., non-infinitesimal) size of the applied displacements. We
have distinguished the two cases of uncorrelated (i.e., random shuffling) and
correlated displacement fields, giving for both cases the rigorous equations
of transformation of the PS of the particle distributions. Moreover we have
studied in particular the specific cases of (1) the random shuffling of a regular
lattice array of particles, and (2) a correlated Gaussian displacement field.



8 Galaxy Surveys: An Introduction
to Their Analysis

8.1 Introduction

We now turn to observations. This is where the wider framework offered by
modern statistical physics to describe structures, which we have developed
in the first part of the book, becomes useful. In this chapter we will give a
brief basic introduction to the properties of galaxy surveys, and the funda-
mental features which must be taken into account in extracting information
from them about the correlation properties of the distribution of visible mat-
ter. We will then discuss how galaxy catalogs probing the three dimensional
distribution of matter, as they emerged in the eighties (see Fig. 1.3), made
it clear that there is good cause to place in question the assumption that
fluctuations become small at the scale of the surveys – recent catalogs (see
Fig. 1.4) have revealed even larger structures. This is an assumption which
is made in the standard analysis of this data, which uses the language of re-
duced correlation functions in which fluctuations are described with respect
to a well defined positive mean density. This mean density is taken from the
sample, which is thus implicitly assumed to have only very small fluctuations
itself with respect to the assumed true (asymptotic) mean density.

To undertake an analysis without the a priori assumption of homogeneity
in a given sample, one needs to consider the broader framework of statistically
stationary and isotropic distributions without a well defined mean density in
the finite sample, i.e. fractal-like distributions. It is the purpose of this chapter
to provide the general background and then motivation for such an analysis.
In the following two chapters we then describe the full details of this analysis
applied to galaxy catalogs. In particular in Chap. 9 we describe the use of the
average conditional density, which we use to probe the two-point properties,
and to detect the presence (or absence) of a cross-over to homogeneity within
the sample limit. In Chap. 10 we describe non-averaged statistics – number
counts from the origin in redshift and magnitude space – which allow one to
probe, again without the assumption of homogeneity (but with less accuracy),
the nature of the underlying distribution of visible matter at larger scales.

We will discuss here both three-dimensional (redshift) surveys and two-
dimensional (angular) catalogs. We describe in particular the importance of
selection effects and biases: the galaxies included in a survey are strongly con-
ditioned by the fact that the sample is selected by the very special observer
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who is located in our galaxy. The most important effect comes from the fact
that surveys are limited by the flux of light received by the observer and not
that emitted by the galaxies. A survey is thus a (complicated) convolution
of galaxy positions and luminosities. There are also several other effects re-
lated to the particular position of the observer which we will briefly discuss.
The construction of volume-limited (VL) subsamples, which we describe, is
a way of correcting for these selection effects, and gives samples which are
most appropriate for a real space statistical analysis of correlation proper-
ties without assumptions about the properties of the underlying distribution.
There can also be numerous biases intrinsic to the method of galaxy selec-
tion (e.g. systematic loss of bright galaxies due to photometric limitations, or
of low-surface brightness galaxies due to telescope sensitivity). Such effects,
which are not taken into account in the construction of VL samples, must be
considered in the interpretation of the results.

Having given this basic introduction to galaxy surveys and the construc-
tion of samples for analysis, we turn to considering their striking features:
that they reveal the existence of structures on very large scales, up to the
limits of current surveys (see Figs. 1.3–1.4). We describe why results obtained
with the standard analysis – using instruments which build in the assumption
of homogeneity at the scale of the sample – can lead to misleading results
and we give the clear prime facia case for an analysis of galaxy correlations
without this underlying assumption.

8.2 Basic Assumptions and Definitions

The elementary object of our discussion is a galaxy, which is characterized
by, among other parameters, its space position and its luminosity. We may
define the microscopic number density as in Chaps. 2 and 4:

n(r) =
∑

i

δ(r − ri) , (8.1)

where the sum extends to galaxies of any luminosity. We call this microscopic
density n(r) instead of the usual ρ(r) in order to make clear that in this
context we deal only with the number of objects and not with their mass
(different galaxies can have very different masses).

In general, one should consider the joint conditional probability of finding
a galaxy of luminosity L at distance r from another galaxy, i.e. the (ensemble)
conditional average number of galaxies 〈ν(L, r)〉pd3rdL with luminosity in
the range [L,L + dL] and in the volume element d3r at distance r from an
observer located on a galaxy. The function 〈ν(L, r)〉p can have a complex
dependence on r and L. However here we make for the moment a greatly
simplifying assumption, as a zero order approximation, that

〈ν(L, r)〉p = φ(L) × 〈n(r)〉p . (8.2)
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The function 〈n(r)〉p is the average conditional density which, as already
discussed in Chaps. 2–4, when multiplied by d3r gives the probability that,
given a galaxy in the origin, there is another galaxy in the volume element
d3r around the position r. The function φ(L) is the luminosity function (or
probability density functional – PDF) such that φ(L)dL gives the probability
that a randomly chosen galaxy has luminosity in the range [L,L + dL].

By writing 〈ν(r, L)〉p as a product of the conditional space density and
the luminosity function, we have implicitly assumed that galaxy positions
are independent of galaxy luminosity. Although there is clear evidence that
there is a correlation between them (e.g. [32]), it has been tested that this is
nevertheless a reasonable assumption in the galaxy catalogs available so far
(e.g. [140, 223]). We will return subsequently in Chap. 11 to this approxima-
tion, and consider an analysis which tests its validity.

The galaxy luminosity function (see Chap. 11) has been found to have a
shape characterized by a power-law behavior at faint luminosity, followed by
an exponential cut-off at the bright end [32]:

φ(L) = ALδe−
L

L∗ . (8.3)

This is the so-called Schechter function [211] with parameters L∗ (luminosity
cut-off) and δ (power-law exponent) which can be determined experimentally
(see Chap. 11). The pre-factor A is the normalization constant for the lumi-
nosity PDF. Note that in models in which δ < −1, (8.3) is not integrable in
L = 0. For this reason, in this case, an observationally justified lower cut-off
for the luminosities Lmin > 0 is introduced (as in a given survey one cannot
measure arbitrarily faint objects) guaranteeing the normalization of φ(L). If
δ > −1 the constant A is automatically fixed by δ and L∗, while for δ ≤ −1
the normalization A depends also on the luminosity lower cut-off Lmin.

We note that in the literature about galaxy structures (e.g. [185] equation
5.128), instead of (8.2) one usually writes

〈ν(L, r)〉pdL = φ∗

(
L

L∗

)δ

e−
L

L∗
dL

L∗ (8.4)

for the mean number of galaxies per unit volume with luminosity in the range
[L,L + dL]. In this case, φ∗ (number of galaxies per unit volume) is taken to
be a constant and hence a purely Poisson nature of the galaxy distribution
(i.e. 〈n(r)〉 is a constant independent of r) is implicitly assumed. We will
work, instead, with a formulation which takes explicitly into account the
possibility that the spatial galaxy distribution (in a given sample) is not
simply Poisson-like.

8.3 Galaxy Catalogs and Redshift

Galaxy catalogs providing information about the distribution of galaxies at
large scales are divided in two classes: two-dimensional and three-dimensional.
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In the first “angular catalogs” the angular position on the sky of the galaxies
is measured, given by two angular coordinates, conventionally α (right ascen-
sion which is in the range 0◦ ≤ α ≤ 360◦) and the declination δ (such that
−90◦ ≤ δ ≤ 90◦). Beyond this the galaxy’s apparent magnitude m (de-
fined below) is measured, which is directly related to the flux received by
the observer from the galaxy. As galaxies have a very wide range of intrinsic
luminosities – varying over six orders of magnitude – these catalogs are a
projection over a very wide range of distances, giving thus only an indirect
probe of the full three dimensional distribution.

For what concerns the three dimensional distribution, much more infor-
mation is given by so-called “redshift surveys”. In addition to what is given in
an angular catalog – from which the galaxies are in fact chosen – the redshift
of the galaxies

z =
λo − λe

λe
(8.5)

is also measured. This is the relative difference of the wavelength of spectral
lines observed in the spectrum of the galaxy λo and in the laboratory λe

(see e.g. [206]). The linear Hubble law [118] relates this redshift (for small
redshifts z � 1) to the absolute distance of a given object, measured with
other methods (for example “standard candles”, i.e. objects of approximately
constant intrinsic luminosity):

r =
c

H0HH
z (8.6)

where c is the speed of light, H0HH is an experimentally determined parameter
and r is the distance. Using (8.6) one can infer the distance of the galaxy
from its redshift, and thus obtain a three dimensional map. If H0HH is measured
in km/sec/Mpc1 then r is given in Mpc. Recent estimations of the Hubble
constant give 55 ≤ H0HH ≤ 75 km/sec/Mpc (e.g. [226]). It is common to define
a dimensionless parameter h (with 0.55 ≤ h ≤ 0.75) and hence to write
H0HH = 100h km/sec/Mpc.

The linear Hubble law (8.6) is valid only at low redshift. It is important
to note that it is an experimental fact [17], which can be made use of with-
out assuming a cosmological model. Its canonical interpretation is in terms
of the framework of Friedmann-Robertson-Walker (FRW) models of the ex-
panding universe (see [17, 18] for a good discussion of the assumptions in
these models about the physical origin of redshift). In different cosmological
models based on the FRW metric, the relation r = r(z) becomes non-linear
when the redshift is of order 0.1÷ 0.2, where the basic parameter which con-
trols redshift dependence is the deceleration parameter q0 (see Appendix C
where we discuss the main features of the different FRW models). In most of
what follows we make use only of (8.6) as we discuss primarily low redshift
samples (z ≤ 0.1 – see Fig. 8.1) for which the linearity of the Hubble law is
1 1Mpc � 3 × 1022 m.
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well established experimentally [226]. When we consider deeper samples (in
particular in Chap. 10) we discuss the effect of cosmological corrections to
this relation and how such corrections change the results of the analysis of
correlation properties at very large scales.
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Fig. 8.1. The distance-redshift relation in different FRW models (i.e. for different
values of the deceleration parameter q0) together with the linear law. At small
redshift z ≤ 0.1 all models are very well approximated by the linear behavior

Another important correction to the Hubble law (8.6) is the effect of
possible proper motions on the determination of the real distance of a given
galaxy. If an object has a velocity vp with respect to the pure Hubble flow,
induced by the presence of matter in its “local” neighborhood, then this
peculiar motion gives an additional contribution which adds to the (global)
Hubble redshift. In the limit vp � c, we may write [113]

vp = c
zobs − zcos

1 + zcos
(8.7)

where zobs is the galaxy’s measured redshift and zcos = z is its cosmological
redshift given by unperturbed Hubble flow, and vp is here the component
of the motion along the line of sight. The fact that galaxies have indeed
proper motions is another well-established observation [218]. At small scales
these thus give rise to systematic distortions of the redshift distribution with
respect to the space distribution. In most of what we describe here, this effect
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will be neglected and thus it needs to be born in mind that the correlation
properties we derive are “in redshift space”. On the relevant distance scales
(r > 10 Mpc) the effect of peculiar motions is in general small given the fact
that the measured velocities do not exceed vp 	 500 ÷ 1000 km/s.

8.4 Volume Limited Samples

A galaxy of intrinsic luminosity L and at distance r from the observer will be
seen to have an apparent flux defined as (in the three-dimensional Euclidean
space)

f =
L

4πr2
. (8.8)

By historical convention the incoming apparent flux f from an object is given
in terms of the apparent magnitude m defined as

m = −2.5 log10 f + C (8.9)

where C is a constant fixed by convention (see e.g. [185] and Chap. 10).
Analogously, the absolute magnitude M is defined in relation to the intrinsic
luminosity L of the object by

M = −2.5 log10 L + C ′, (8.10)

where the constant C ′ is related to C of (8.9) by a simple variable trans-
formation (see [185]). From (8.8) it follows that the difference between the
apparent and the absolute magnitudes of an object at distance r is (at rela-
tively small distances, neglecting relativistic effects, and properly normalized
[185])

m − M = 5 log10 r + 25 (8.11)

where r, the luminosity distance (see Appendix C), is expressed in Mega-
parsecs.

A redshift survey consists usually in measuring the redshift of all galaxies
with a flux f greater than a certain limiting value flimff , or equivalently (8.9)
with apparent magnitude m brighter than apparent magnitude limit mlim

(i.e. m ≤ mlim), given by (8.9) with f = flimff in a certain region of the sky
defined by a solid angle Ω. Thus in this kind of survey there is an important
selection effect: the sensitivity in absolute luminosity (or equivalently in ab-
solute magnitude) varies as a function of distance. At each distance r there is
a specific lower limit to the intrinsic luminosity L(r) that can be seen at that
distance. This lower limit in the intrinsic luminosity (see Fig. 8.3) is usually
expressed in terms of an upper limit M(r) for the absolute magnitude of the
faintest galaxy which can be seen at distance r by using (8.10) and (8.11):

M(r) = mlim − 5 log10 r − 25 . (8.12)
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At a distance r only galaxies with absolute magnitude such that M <
M(r) are observed. Hence, in particular, at large distances intrinsically faint
objects are not observed whereas they are detected at smaller distances.

When one sets out to analyze the spatial statistical properties of galaxy
distributions, it is evidently necessary to take this effect into account. There is
a simple well known procedure to do so which gives a sample that is not biased
by this luminosity selection effect. This consists in the construction of the so-
called VL samples (see Figs. 8.2–8.3). A VL sample is constructed by fixing a
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Fig. 8.2. Left panel : Cone diagram for a magnitude limited sample (SSRS2; dis-
tances are in Mpc/h). Right panel : Volume limited sample of the same survey
(M = −19.5). The depletion at large distances in the magnitude limited sample is
the selection effect we are discussing

maximal distance RV L and by taking all the galaxies at a distance r < RV L

and with absolute magnitude M > MV LMM ≡ M(RV L) where M(RV L) is given
by (8.12) with r = RV L. In this way we obtain a subsample in which there is
no incompleteness due to observational luminosity selection effects [47, 55], as
it contains all galaxies satisfying: m ≤ mlim, M ≥ MV LMM and r ≤ RV L. Note
that the depth of a VL sample RV L is not, in general, the effective distance
Rs up to which it is possible to perform a reliable statistical analysis. This is
a point we will discuss in the next chapter.

In some surveys (e.g. LCRS, SDSS, etc.) there are two cuts in apparent
magnitude: the survey includes all galaxies (or a fraction of them as in LCRS)
in a certain sky area, whose apparent magnitude m is in a certain interval
(m1

lim ≤ m ≤ m2
lim). Such a selection means that one cannot measure galaxies

fainter than a certain limit, as usual, but also galaxies brighter than the
second limit: A VL sample is then identified by two cuts in distances: R1

V L ≤
r ≤ R2

V L. The two corresponding cuts in absolute magnitude are

M1
V LMM = m1

lim − 5 log10 R1
V L − 25 (8.13)

M2
V LMM = m2

lim − 5 log10 R2
V L − 25 (8.14)
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Fig. 8.3. Absolute magnitude versus distance diagram for a magnitude limited
sample (in this example the SSRS2 redshift catalog). Observed galaxies lie in the
region defined by the curve M = mlim − 5 log10 r − 25 where mlim = 15.5 in this
case. Some volume-limited samples (with MV LMM = −16 ,−19 ,−21) are also reported:
they occupy a rectangular surface in this diagram

and clearly M2
V LMM > M1

V LMM . Such a situation reduces both the number of points
and the effective volume of the VL samples.

While the effect we have just discussed is the most important selection
effect in redshift surveys, it is by no means the only one. The relation (8.12)
is, as we noted, true only at small redshift and for deeper samples there are
corrections corresponding to the modification of the relation between physical
distances and redshift in different cosmological models (see Appendix C).
A related further effect is the following: redshift surveys measure flux in a
fixed band of wavelengths, which corresponds (because of the redshift) to a
different (red-shifted) range of wavelengths in the rest-frame of the observed
galaxy. When one reconstructs the absolute flux to construct a VL sample
through the procedure previously discussed, one must take this into account,
by relating the flux in the galaxy rest-frame to that in the observer rest-
frame. To do so requires knowledge of the emission spectrum of the galaxy,
and leads to a corrected (“k-corrected”) expression

MV LMM = mlim − 5 log10 RV L − 25 − K(z) (8.15)
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where the term K(z) is often taken also to include the relativistic corrections
to the distance-redshift relation. While in the largest modern survey (SDSS
[248]) spectral information is available allowing a reliable reconstruction of
this correction, in most other redshift surveys the correction is applied quite
crudely in an average manner which assumes some simple hypotheses about
the spectral properties of the galaxy population sampled from. Like the rel-
ativistic corrections to distance, these corrections are negligible for a large
part of our analysis and we will return to discuss them when we consider
deep samples, and un-averaged statistics which are particularly sensitive to
them.

A further related assumption made in this reconstruction of an unbiased
VL sample is that we are sampling from the same distribution of galaxies
as a function of depth, i.e. that the effect of galaxy evolution (including
e.g. mergers of galaxies) is negligible. While again, at low redshift, this is a
reasonable hypothesis well supported by observation, it is not so for deeper
samples. We will return also to these corrections in Chap. 10 and Appendix D.

8.5 The Discovery of Large Scale Structure
in Galaxy Catalogs

Angular catalogs are simple to make compared to redshift catalogs. They are
essentially just photographs of the galaxies on the sky, in which the flux from
each galaxy point can be inferred from the exposure of the plate. Redshift
surveys require the measurement of galaxy spectra, and the determination of
an associated redshift, which is a much more involved procedure. Thus while
angular surveys with millions of points and covering substantial portions of
the sky were available already in the sixties, redshift surveys containing a
substantial number of points (of order of thousands) only emerged in the late
seventies. Since then there has been continual and dramatic development in
both types of surveys, with the number of objects rising by several orders of
magnitude. Large redshift surveys from the nineties contain of the order of
hundreds of thousands of galaxies (but over small regions of the sky), while
the state-of-the-art SDSS survey will provide, in the coming years, about one
million galaxy redshifts over a quarter of the sky.

It has been the advent of redshift surveys of galaxies since the late sev-
enties that defined and opened up the problem of “large scale structures”.
While the angular catalogs which had been previously available showed a very
isotropic distribution, with structures/clustering evident only on a relatively
small scale (a few Mpc2), the three dimensional surveys revealed structures

2 For reference: the size of a typical galaxy is less than 0.1 Mpc/h, a distance which
is of the order of the typical mean separation between neighboring galaxies. By
the “local universe” – where relativistic effects are negligible – is usually meant
a region of radius of order of 100 Mpc/h about the earth. The Hubble radius
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at much larger scales, something which had not been anticipated from the
angular data. Indeed up to scales of some tens and even hundreds of Mpc
structures have been observed in the three-dimensional distribution of galax-
ies – which appear to form a network of filaments with large voids in between.
In Fig. 8.4 is shown the distribution of galaxies in a sample from the SSRS2
survey [52], one of the important redshift surveys of the nineties. Alongside it
is shown what the same sample would be expected to look like in the absence
of spatial correlations. In Fig. 8.5 is shown a sample from the CfA2 redshift
survey [158], also from the nineties. This was a larger version of the CfA1
survey [119] which was one of the catalogs which revealed the first evidence
for large structures (see also Fig. 1.3). In Fig. 8.6 is shown a sample from the
data publically available at the time of writing from the SDSS survey (see
also Fig. 1.4).

To date there is no clear visual evidence, as one can see from these figures,
of an upper cut-off to the size of galaxy structures. We show also in Fig. 8.7
an image of the APM angular catalog. One sees in this case little apparent
sign of large scale structures in the three dimensional maps, which one infers
must be “washed out” by the projection onto the celestial sphere.

8.6 Standard Characterization of Galaxy Correlations
and the Assumption of Homogeneity

The first studies of galaxy distributions produced the primary result that the
reduced two-point correlation function is well approximated, in the range of
scales from about 0.1 Mpc/h to 10 Mpc/h, as a simple power-law [232]

ξ(r) ∼
(

r

r0

)−γ

(8.16)

with γ ≈ 1.8 and r0 ≈ 4.7 Mpc/h. This result, obtained in the late sixties,
has been confirmed by many other authors in many different redshift surveys
(e.g. [55]), in particular in the much larger samples we have just discussed in
which larger scale structures became evident.

In terms of the discussion presented in Chap. 4 (see also Chap. 9) the rela-
tion (8.16) implies that (i) at small scales, from 0.1 Mpc/h to about 5 Mpc/h,
galaxy structures are fractal-like and that (ii) the homogeneity scale λ0, which
marks the transition from the highly fluctuating regime to a regime of small
amplitude fluctuations and weak correlations, is λ0 ≈ 5 Mpc/h. This trend to
homogeneity at such a scale is in apparent agreement with the structure-less
angular data (see Fig. 8.7), but it is puzzling with respect to the much larger

i.e. the scale corresponding to the size of the visible universe in FRW models, is
of the order of a few times 103 Mpc/h. The new generation of galaxy surveys will
sample well the distance scale between one hundred and one thousand Mpc/h.
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Fig. 8.4. Upper panel: Projection in galactic coordinates of the southern sky red-
shift survey (SSRS2): The earth is in the point (0,0). The survey covers a solid
angle in the sky of about 1.13 sr. and it contains 3600 galaxies. The large scale
structure visible in the middle of the survey is known as the “southern wall” [52].
(Distances are in Mpc/h). Bottom panel: An artificial realization of a random point
distribution with the same selection effects as those in the SSRS2 catalog. To mimic
the effect of a magnitude-limited sample, each point has been assigned an absolute
magnitude using a Schechter probability distribution. The point is then included
in the “survey” if its apparent magnitude for the “observer” point is brighter than
the survey limit 15.5
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Fig. 8.5. As the upper panel of the previous figure but for the CfA2 South redshift
survey: in this case there are 4390 galaxies with magnitude mB(0) ≤ 15.5 covering
20h ≤ α ≤ 4h in right ascension and −2.5◦ ≤ δ ≤ 90◦. The large scale structure in
the middle is called the “Perseus-Pisces chain” [120]

structures observed in the three-dimensional data where, as shown in Figs.
8.4, 8.5 and 8.6, one may see voids of size one order of magnitude larger
than 5 Mpc/h: From this perspective it seems that the presence or absence
of structures in the data is irrelevant for the determination of r0.

Thus, according to this analysis, the length r0 identified through the anal-
ysis with the amplitude of the reduced correlation function is a real physical
length scale characterizing the galaxy distribution. This interpretation was,
however, soon complicated by the fact that while the exponent γ was ob-
served to be relatively stable, the scale r0 was not measured always to be the
same. By the nineties it became evident that this variation was real, and it
was observed that it was primarily associated with a variation of the absolute
magnitude cut in the sample. A systematic tendency was noted for brighter
galaxy samples to show a larger value of r0 [28, 56, 168, 173, 250]: in the
SSRS2 catalog [28], for example, values of r0 in the range 4÷ 15 Mpc/h have
been measured. For galaxy clusters – which are brighter still – values of r0 in
the range 20÷ 25 Mpc/h were found [9]. This led to the modified interpreta-
tion of r0 as a real physical scale characterizing galaxy distributions, but with
a value that depends on galaxy luminosity. This is the so-called “luminosity
bias” effect. Alongside these observations a theory was developed (the theory
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Fig. 8.6. This is a two dimensional slice of thickness 5 Mpc/h of a volume limited
sample extracted from the first data release of the SDSS [250]: The earth is in the
point (0,0) and the empty region up to ∼100 Mpc/h is due to a selection effect and
hence it is artificial. In this case there is no bias neither due to luminosity selection
effects, nor to orthogonal projection distortions: Structures of hundreds Mpc are
still visible (distances are in Mpc/h). The small square at the bottom right has a
side of 5 Mpc/h

of “bias”) which attempted to explain such an effect “biasing” the correlation
properties of different objects (see Chap. 13).

We will return in Chaps. 9–12 to the general question of the dependence
of the clustering in the galaxy distribution on galaxy luminosity. We will
also discuss in Chap. 13 properties of the simplest model of “biasing” in
the literature on galaxy correlations. Here we wish to put aside such an
interpretation of these data, and return to a more fundamental point: the
intrinsic assumption of homogeneity built in when one uses the reduced two-
point correlation function to characterize the data of a finite sample. The
variation of r0 can, as we will now explain, be easily understood also as a
manifestation of inhomogeneity at the scale of the corresponding samples.
This does not discount the possible dependence of such a scale (if it is well
defined and independent of the sample size) on galaxy luminosity, but it
makes clear that the question of homogeneity must be disentangled from
question of the dependence of correlation properties on luminosity.

The reduced two-point correlation function is (see Chap. 9 and Ap-
pendixes F-G)



232 8 Galaxy Surveys: An Introduction to Their Analysis

Fig. 8.7. The APM angular galaxy catalog [149]. Note that from this catalog the
large scale three-dimensional structures are washed out by projection effects. This
survey covers 4300 square degrees. Black squares correspond to bright stars where
observations are not possible

ξ(r) =
Γ (r)
〈n〉 − 1 , (8.17)

where Γ (r) = 〈n(r)〉p is the average conditional density. When the ensemble
mean density 〈n〉 is estimated in a finite sample it is estimated through the
actual density in the sample, i.e. N/V , where N is the number of points in
the sample of volume V .

It is simple to show that an increase of the measured r0 in deeper samples
can be due simply to the fact that homogeneity is not yet reached within the
limits of the samples. Consider a cubic sample of identical galaxies of size L
and suppose that the system reaches homogeneity at scales larger than L.
Let us suppose we have two subsamples of respective size L1 and L2 with
L1 < L2 < L. Since the system is assumed to be clustered up to scales larger
than L the estimate of 〈n〉 in the two subsamples, respectively n1 and n2,
will satisfy n1 > n2. On the other hand the estimate of Γ (r) does not depend
strongly of the subsample size because it requires only local measurements
around each galaxies, and moreover, since the system is clustered and tending
far away to homogeneity, it is a decreasing function of r. The two values of
r0 inferred in the two subsamples, defined by ξ(r0) = 1, will be given by

Γ (r1
0) = n1 Γ (r2

0) = n2 . (8.18)

Therefore, as Γ (r) is a decreasing function of r, we obtain r1
0 < r2

0.
Thus it is clear – beyond the simple visual evidence that fluctuations

remain large up to scales comparable to the size of galaxy samples – that
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it is essential in the approach to the characterization of galaxy distributions
to start from a framework which does not assume a priori homogeneity of
the distribution within the sample limits. Only in this way we will be able
to properly characterize the distributions and disentangle the question of
luminosity dependence from that on sample depth. Further evidently it is
crucial to have a correct characterization of galaxy clustering before setting
out to build a theory to explain it.

8.7 Summary and Discussion

We have briefly described here the way in which galaxy surveys probe the un-
derlying galaxy distribution. Redshift surveys have revealed structures com-
parable to the size of these surveys, with a visual impression of the presence
of significant fluctuations up to their limits. This fact alone makes it clearly
interesting to place in question the assumption usually made implicitly in
analyzing such samples that the distribution approximates very well homo-
geneity at scales smaller than those of the samples. Further there are clear
indications coming from the standard analysis that this implicit assumption
can be questioned: as we have explained the observed variation of the scale
r0 has a very simple explanation in terms of a finite size effect in a distribu-
tion that has not reached homogeneity at the relevant scales. In the following
chapters we describe the analysis of galaxy surveys with statistical instru-
ments which do not depend on the assumption of small scale homogeneity,
and which allow one to test for such homogeneity subsequently. We will return
after this to the question of luminosity dependence in galaxy clustering.



9 Characterizing the Observed Distribution
of Visible Matter I: The Conditional Average
Density in Galaxy Catalogs

9.1 Introduction

In this chapter we discuss in detail the analysis of the basic properties of
the spatial distribution of galaxies, focusing in particular on the use of, and
results obtained with, the conditional average density.

We first address the purely methodological question of how to analyze
finite samples without the a priori assumption of homogeneity, and in doing
so how to test the hypothesis of homogeneity. We describe how the condi-
tional average density can be used to characterize the correlation properties
of distributions, irrespective of whether the condition of spatial uniformity
(i.e. homogeneity) is fulfilled or not. We consider various simple cases which
can be envisaged – a simple fractal behavior up to the limits of the sample, a
simple fractal with a cross-over to homogeneity within the scales probed by
the sample – and how these are distinguished by this statistic. In each case
an appropriate procedure for the determination of the two-point correlation
properties is outlined.

In the second part of this chapter we turn to the actual estimation of
the conditional average density. We discuss finite size effects, and how they
should be taken into account: we argue that a specific estimator (the so-
called full-shell (FS) estimator) is an appropriate estimator for an analysis
in which the assumption of homogeneity is not built in. Other widely used
estimators build in implicitly assumptions about the distribution at the scale
of the sample which can give rise to uncontrolled observational errors (see
also Appendix G).

We then discuss some results of the application of this estimator of the
conditional density to real galaxy catalogs. Up to the scale which can be
currently very robustly probed in this way – of the order of 20 Mpc/h – a
behavior consistent with a simple fractal is found, with no definite indication
for the existence of a cross-over to homogeneity. The SDSS survey which
is currently underway will provide much larger samples appropriate for this
analysis, which will allow the homogeneity scale to be definitively detected
in this way (or extend the lower bound we give to much larger scales).
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9.2 The Conditional Average Density in Finite Samples

As already discussed in the first part of the book, the conditional average
density Γ (r) ≡ 〈n(r)〉p (defined by (2.51)) is the basic two-point correlation
function which is well defined in both the case of distributions with a well
defined positive mean density, and those (like fractals) in which there is no
such sample independent mean density. It is thus the primary instrument for
the analysis we wish to perform of galaxy samples, in which we do not make
the prior assumption that the underlying galaxy distribution is homogeneous.

We consider its behavior for particle distributions belonging to the fol-
lowing quite broad class. We suppose them to be characterized principally
by two length scales: the homogeneity scale λ0 and the correlation length
rc. The former is the scale characterizing the transition to homogeneity, or
equivalently, separating a regime of large fluctuations from a regime of small
fluctuations. We suppose further that, in the large fluctuation regime, the
correlations have a power-law behavior, i.e. the particle distribution has at
scales r � λ0 the features of a simple fractal (see Fig. 9.1). The second scale
rc is the length, as understood generally in statistical physics [116] and de-
fined in Sect. 2.3.2, measuring the spatial persistence of correlation between
density fluctuations independently of their amplitude. We do not assume a
priori that either of these scales are finite, but from their definition it follows
that rc > λ0. Thus we can have:

(i) λ0 = ∞, rc = ∞: pure fractal distributions.
(ii) λ0 < ∞, rc = ∞: distributions with a well defined mean density, rel-

ative to which there are fluctuations which are “critical”-type i.e. long-range
correlated (see classification in Sect. 6.6.1). In this case it is the fluctuation
field, rather than the whole particle distribution, which has fractal properties.

(iii) λ0 < ∞, rc < ∞: distributions with a well defined mean density,
relative to which there are fluctuations which are uncorrelated (“substantially
Poisson” in the classification in Sect. 3.4 ) beyond the scale rc. In this category
we can also formally include the case of “super-homogeneous” distributions
(see Sect. 3.5), if we identify rc as the characteristic scale at which fluctuations
attain the “super-homogeneous” behavior (i.e. surface fluctuations).

Included in this class of distributions is therefore both the sub-class of fluc-
tuations described by standard cosmological models (as discussed in Chap. 6),
and intrinsically irregular distributions such as fractals. The results we now
derive can easily be generalized to distributions with a more complex sequence
of scaling behaviors, with the introduction of appropriate additional length
scales e.g. to include distributions in which the regime of strong clustering is
not simply fractal.

Given these assumptions on the class of distributions, we can write more
explicitly the form of the conditional density Γ (r):

Γ (r) = A

[(
r

λ0

)D−d

f

(
r

rc

)
+ 1

]
, (9.1)
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Fig. 9.1. Behavior of the average conditional density for the two principal cases
considered: (1) Dashed line: Fractal with a crossover toward homogeneity λ0 < Rs

(where Rs is the sample size). (2) Solid line: Pure fractal structure in the sample,
i.e. λ0 > Rs

where d is the spatial dimension and 0 < D < d is the fractal dimension
characterizing the region of strong fluctuations. The function f(x) is called
the cut-off function and satisfies the following limit conditions: f(0) = 1,
and it decreases rapidly to zero for x � 1, e.g. f(x) = e−x. In the case of
a super-homogeneous distribution, we have an additional condition on f(x)
in order to guarantee that the integral of Γ (r) − 〈n〉 (where 〈n〉 > 0 is the
unconditional average density) over all the space is zero (see Sect. 3.5). In this
case, therefore, rc can be seen also as the distance beyond which this integral
converges sufficiently rapidly. The meaning of the constant A changes in the
two cases in which (i) λ0 < +∞ or (ii) λ0 → +∞. In the first case A = 〈n〉,
i.e. it is given by the “unconditional” average density (see Chap. 2). Instead
in the second “fractal” case we have (see Chap. 4)

A =
BD

4πλd−D
0

so that
Γ (r) =

BD

4π
rD−d . (9.2)
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Note that in the case (i) the amplitude of Γ (r) depends on “global” features
of the particle distribution such as the average density and the homogeneity
scale, while in the fractal case (ii) the amplitude depends on the small scale
properties of the distribution, as (see Chap. 4) B is roughly a measure of the
average distance between nearest neighbors.

Therefore we can divide the total range of spatial scales roughly into three
regimes:

1. r � λ0: In this range the particle distribution displays fractal features
(or, in more general, is strongly irregular with large fluctuations). Fluctu-
ations are so large and strongly correlated that it is impossible to obtain
a good estimate of the intrinsic unconditional average density 〈n〉 by an-
alyzing only this range of scales. This implies that the estimate of the
reduced correlation function ξ(r) obtained by studying only these scales,
without knowledge of the behavior at larger scales, is very problematic.
Consequently, in order to characterize properly the intrinsic statistical and
spatial behavior it is necessary to use the framework of the fractal analysis
introduced in Chap. 4 even though, on scales larger than λ0, the system
becomes “smooth”.

2. λ0 � r � rc: On these scales fluctuations are small and a good estimate
of 〈n〉 by the analysis at this scale is possible. However correlation between
fluctuations has still a slow power-law behavior. Observations limited to
this range of scales cannot give a good estimate of the cut-off of correla-
tions. From the analysis of such observations an artificial cut-off due to
the integral constraint (see Sect. 6.5) can, however, be introduced at the
larger accessible scales. More details on this point can be found in the
analysis below of finite size effects.

3. r � rc: If P (0) > 0, the system has in this range of scales essentially the
same statistical properties as a Poisson distribution (substantially Pois-
son case), with fluctuations on these scales which can be considered un-
correlated and completely random. In the super-homogeneous case (i.e.
P (0) = 0) this is the range of scales over which the long-range ordered
(lattice-like) nature of fluctuations starts to be evident.

Before passing to the discussion of the statistical analysis in finite samples,
it is important to point out that even though we dispose of data about the
particle distribution over a wide set of scales ranging from well below λ0 to
well beyond rc, the best statistical tools to characterize the distribution can
change with scale (see Fig. 9.2). For instance if we are interested in a com-
plete statistical and morphological characterization of the behavior on dis-
tances smaller than λ0 the fractal framework (e.g. mass-length, box counting,
conditional variance, void-lacunarity analysis, etc.) is the most appropriate.

We now move to the analysis of the behavior of estimates of Γ (r) in
a finite sample of size Rs. In this discussion we consider only the average
behavior of the estimator in many such samples (of size Rs with N points): in
particular we neglect the effects of variance and bias (possible offset between
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Fig. 9.2. Analysis with the conditional density discriminates between systems
with intrinsically large fluctuations at all scales, and those in which there is a
scale λ0 characteristic of homogeneity (defining a regime of small fluctuations).
The subsequent step in the study of fluctuations is to use the appropriate statistical
tools for each case: for strong clustering this means the conditional variance, box
counting, and other suitable statistical quantities introduced in Chaps. 4–5; for
weak clustering the reduced two-point correlation, unconditional variance, power
spectrum, and other quantities defined in Chaps. 2–3

and estimator and its ensemble value) which we will discuss in Sect. 9.5 below,
where we discuss the practical question of estimation in a single sample (see
also Appendixes F and G).

In general if Rs is the sample size and N the typical number of particles
in it seen by the observer (e.g. from the earth in case of galaxy distribution)
we can write the following general form for the “average” estimator of the
conditional density:

ΓEΓ (r) = A

(
N,Rs,

Rs

λ0

)[(
r

λ0

)D−d

f

(
r

rc

)
+ 1

]
, (9.3)

where now the amplitude A depends on the characteristics of the sample. In
particular, following our discussion above, we expect that dimensionally it
has the following behavior

A

(
N,Rs,

Rs

λ0

)
=

N

ΩRd
s

A′
(

Rs

λ0

)
, (9.4)

where Ω is the solid angle covered by the sample, which we take to be a
portion of a sphere. The function A′(y) will have the following limit behaviors:

A′(y) → 1 for y → ∞. (9.5)

and
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A′(y) → Ω

Ω′ y
d−D for y → 0 , (9.6)

where Ω′ is a geometrical factor connected to Ω, (which in a spherical sample
of radius Rs gives Ω′ = (3/D)Ω) since the average number of points in such
a sample is given by N(Rs) = BRD

s ).

9.3 Sample Size Smaller than the Homogeneity Scale

We consider first the case that Rs < λ0 (see Fig. 9.1). This includes both
the case of a pure fractal distribution and the case of a distribution with a
well defined homogeneity scale, but when the sample considered is smaller
than this scale. Hereafter we will study the three-dimensional case i.e. d = 3,
and suppose that the sample is a sphere of radius Rs. We have seen that in
this case we expect the simple power-law behavior of (9.2), with a sample
size independent pre-factor B = 〈N(Rs)〉p/RD

s . As discussed in Chap. 4, this
factor B is related in a simple way to the average distance between nearest
neighbor points in the system. This is again the average behavior in finite
samples of this quantity, and neglects the systematic and stochastic errors
there will be in estimations from a single sample, which are discussed in Sect.
9.5 below.

9.3.1 The Reduced Correlation Function for a Particle
Distribution with Fractal Behavior in the Sample

We consider now what one obtains in this same case (Rs � λ0) by estimating
the reduced two-point correlation function ξ(r). This is an extension of the
discussion in Chap. 8 of the variation of the scale r0 (defined by ξ(r0) = 1)
in real galaxy catalogs.

A typical estimator ξE(r) of the reduced two-point correlation function
ξ(r) is given by

ξE(r) =
ΓEΓ (r)
nRs

− 1 . (9.7)

where nRs
is the estimate of the mean density in the sample. To get the

average behavior of the estimator we take the mean value of nRs
in a spherical

sample of size Rs which, given that we are in the limit Rs < λ0, is simply
given by

nRs
=

〈N(Rs)〉p
V (Rs)

≡ Γ ∗(Rs) =
3B

4π
RD−3

s (9.8)

where we have used (9.2) in writing the last equality. Therefore, using also
the expression for ΓEΓ (r) we have

ξE(r) =
D

3

(
r

Rs

)D−3

− 1 . (9.9)
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From (9.9) it follows that r0 (defined as ξE(r0) = 1) is a linear function of
the sample size Rs

r0 =
(

D

6

) 1
3−D

Rs . (9.10)

Thus, in the case that r0 is measured in samples whose size is smaller than
the homogeneity scale λ0, it is a quantity which is sample dependent, re-
lated in a simple way to this size. We stress that this is an average behavior
which should hold as a mean over many samples, not a deterministic relation
between r0 measured in individual samples of differing sizes. Note that the
amplitude of ΓEΓ (r) is related to the lower cut-off (roughly given by average
distance between nearest neighbors 〈Λ〉), while the amplitude of ξE(r) is re-
lated to the upper cut-off (sample size Rs) of the distribution (see Fig. 9.3).
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Fig. 9.3. The estimator of the reduced two-point correlation function for a fractal
with dimension D = 2 in d = 3, in two different samples: the first one has size
Rs = 20 and the second Rs = 50. The amplitude of ξE(r) depends on the sample
size and clearly also the distance-scale r0 where ξE(r0) = 1

Another point which is important to note is the following: if one estimates
in this case the fractal dimension by fitting ξE(r) with a power-law, there
can be a systematic effect which alters the value of D. In fact, while ΓEΓ (r)
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is a simple power-law over the entire range probed (r < Rs), ξE(r) is a
power-law only for r � r0 or ξE � 1, as can be seen from (9.9). At larger
separations there is a clear deviation from the power-law behavior. This break
in the behavior is due to the finite size of the sample, and evidently does not
correspond to any real change in the correlation properties. Note indeed that
for any spherical volume V the estimator (9.9) of the reduced two-point
correlation function has to satisfy the integral-constraint∫

V

∫∫
ξE(r)r2dr = 0 (9.11)

which is just a boundary condition in this case. In general any estimator of
ξ(r) will be subject to similar constraints, reflecting the fact that the density
estimate comes from the sample itself. It is easy to see that if one estimates
the exponent at distances r ∼< r0, one systematically obtains a higher value
of the correlation exponent (i.e. smaller value of the fractal dimension) due
to the break in ξE(r) in a log-log plot. More precisely we can compute the log
derivative of (9.9) with respect to log(r), writing D− 3 as γ and its estimate
with γ′:

γ′ =
d(log(ξE(r))

d log(r)
=

2rγ
0 r−γ

2rγ
0 r−γ − 1

γ (9.12)

where r0 is defined by (9.10). The tangent to ξE(r) at r = r0 has a slope
γ′ = 2γ.

This is a point which, as we discuss in Sect. 9.6 below, is important in the
analysis of real galaxy catalogs: It explains a notable discrepancy between
the values for the fractal dimension obtained in the literature on galaxy and
cluster catalogs: γ ∼ 2 from the ξ(r) analysis [55], compared with γ ∼ 1 with
the Γ (r) analysis [223].

9.4 Sample Size Greater Than the Homogeneity Scale

We now consider the case that there is a cross-over to homogeneity i.e. λ0 <
∞, and that the sample size is sufficiently large to probe this scale i.e. Rs > λ0

(see Fig. 9.1).
Using (9.1)–(9.5), and defining nRs

= N/V with V = 4πR3
s/3, it is simple

to see that the behavior of ΓEΓ (r) is a power-law up to the scale λ0, and then
flattens i.e. we have⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪

⎪
⎨⎨
⎪⎪⎪⎩⎪⎪

ΓEΓ (r) = A′
(

Rs

λ0

)
nRs

(
r

λ0

)D−3

for 〈Λ〉 ≤ r � λ0

ΓEΓ (r) 	 A′
(

Rs

λ0

)
nRs

	 〈n〉 for λ0 � r ≤ Rs

. (9.13)

Note that
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A′
(

Rs

λ0

)
nRs

is the estimate from the sample of the asymptotic mean density 〈n〉. It is, in
general, different from nRs

as A′
(

Rs

λ0

)
= 1 only asymptotically. The differ-

ence comes from the fact that the density in the sample is implicitly condi-
tioned on the fact that there is a point at the origin where is the observer (e.g.
our galaxy for galaxy surveys). Thus this difference is one which depends on
the correlation properties which one does not know. It is a difference, however,
which decreases as the ratio Rs/λ0 increases.

Taking the estimate of 〈n〉 to be given as in (9.8), an estimator of the
reduced two-point correlation function is

ξE(r) =
ΓEΓ (r)

A′
(

Rs

λ0

)
nRs

− 1 =
(

r

λ0

)D−3

f

(
r

rc

)
. (9.14)

Note that we now have that the amplitude of ξE(r) is determined by the ho-
mogeneity scale λ0, which has been previously extracted from the functional
behavior of ΓEΓ (r). Therefore it is a real physical scale, rather than being
sample dependent as in the previous case (Rs < λ0). The relation between
the scales r0 and λ0 is determined by the function f(x), and will generally
be a coefficient of order one.

We now consider case by case the difference generic behaviors of f(x).

9.4.1 Critical Case

We consider first the case of a critical system, i.e. λ0 � Rs < rc, which
includes both the case of a truly critical system (rc = ∞) or the case of a
system with a finite correlation length greater than the sample size.

In this case ξE(r) shows a power-law behavior on scales r � Rs

ξE(r) ≈
(

r

λ0

)−γ

: (9.15)

The correlation between (positive and negative) fluctuations about the av-
erage density has no intrinsic characteristic scale beyond which is effectively
cut-off. The only intrinsic scale of the system is then λ0, the length-scale
around which Γ (r) flattens and the fluctuations with respect to the average
become small.

Note that any estimator of ξE(r) introduces an artificial cut-off at r 	 Rs.
For example if we use (9.7) we have the constraint coming from the estimation
of the sample average: if we use nRs

= Γ (Rs) then we get |ξE(Rs)| = 0. If
instead we use nRs

= Γ ∗(Rs) we have that the integral constraint (9.11) must
be satisfied: This is simply, as we have discussed, an effect of the boundary
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Fig. 9.4. Behavior of the absolute value of the estimator |ξE(r)| of the two-point
reduced correlation function for a critical system in two different samples with size,
respectively, Rs = 10, 100. Note that the negative part (i.e. for distances larger than
the sharp cut-off) is due to a finite-size effect (integral constraint) which becomes
important at scales of order Rs

condition: the fact that ξE(r) must be negative beyond a certain scale does
not imply that the system becomes anti-correlated.

As a simple example, consider the case of a power-law correlation function
of the type

ξ(r) =
A

1 + (r/Λ)γ
(9.16)

for which we show in Fig. 9.4 the behavior of ξE(r) obtained using (9.7) and
nRs

= Γ ∗(Rs) in two spherical samples respectively with size Rs = 100, 200
(the cut-off scale is Λ = 0.01, the power-law exponent γ = 1, and the ampli-
tude A = 100). The artificial distortion of the estimator occurs always at a
scale comparable with the sample size.

9.4.2 Substantially Poisson Case

Next we consider the case of a substantially Poisson distribution, i.e. λ0, rc <
Rs. For the estimated reduced correlation function we have again (9.14) with
f(r/rc) now a rapidly decaying function for r > rc. The aim of the analysis
with ξE(r) would then be to determine the scale rc at which the function



9.4 Sample Size Greater Than the Homogeneity Scale 245

f(r) is cut-off. In such analysis it is crucial to keep in mind the boundary
effects in the estimation of ξE(r) mentioned above, coming from the integral
constraint. Such constraints force the estimated correlation function to decay
rapidly, at the scale of the sample. It is thus crucial in identifying the cut-off
length rc to determine that it is robust to changes in the sample size.

9.4.3 Super-Homogeneous Case

Finally for the case of super-homogeneous distributions we can also determine
a scale rc characterizing the behavior of the reduced correlation function,
above which it decays faster that 1/rd, e.g. as 1/r4 in standard cosmological
models (see Chap. 6). This alone is, however, not enough to determine that
the distribution is super-homogeneous: for this one needs to study the be-
havior of integrated quantities, as discussed in Chap. 3. In particular the
most characteristic real space feature of these distributions is manifest in the
sub-Poisson behavior of the unconditional normalized mass variance. This
quantity σ2(R) (see Chaps. 2–3) shows the behavior R−α with d < α ≤ d+1
and where d is space dimension (see Fig. 9.5). This corresponds in k space
to that fact that the power spectrum presents a tail for k → 0 which goes as
kn with 0 < n < 1 if d < α < d + 1, and n ≥ 1 if α = d + 1.

9.4.4 Some Remarks

Following this lengthy analysis of the behavior of the average conditional
density in a finite sample we can draw some important conclusions. In a
finite sample with sufficient statistics the average conditional density is the
primary tool suitable to investigate the two-point correlation properties of
the particle distribution independently of whether the homogeneity scale of
the system is greater or smaller than the sample size (see Figs. 9.1–9.2). This
is due to the fact that, as shown better in the next section, the estimator
of Γ (r) at least in full shells, is an average of only local quantities (the
conditional densities from single observers) with no a priori assumptions on
their behavior, and consequently it is only weakly affected by the finiteness
of the sample. Instead the estimate of the reduced correlation function ξ(r),
being strongly dependent at any r on the estimate of the “global” average
density (which can be strongly dependent on the sample size as it is well
defined only in the limit of an infinite sample) can be affected and distorted
from the real behavior by the finite size of the sample. More precisely, if the
estimator of Γ (r) does not display a clear flattening toward the asymptotic
average density before the maximal available distance, the estimator of ξ(r)
will show spurious cut-off properties. Therefore a correct procedure for the
statistical analysis of a given finite sample is to study, first of all, the estimator
of Γ (r), which gives good information about the correlation properties in
the region of strong clustering (i.e. well before the flattening region). Only
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Fig. 9.5. Behavior of unconditional normalized mass variance for a realization of
the one-component plasma model (see Chap. 3) which shows its super-homogeneity
in decreasing faster than for a Poisson distribution

as a second step, and only if the estimator of Γ (r) flattens well before the
maximal size available for the statistical analysis, should we estimate ξ(r)
in order to investigate the correlation properties also in the flattening region
of the average conditional density. Finally, we recall that in all cases the
estimate of ξ(r), as explained in Sect. 6.5, is always affected, at the largest
scales available, by the distortion due to the so-called “integral constraint”.

9.5 Estimating the Average Conditional Density
in a Finite Sample

We now consider the question of how practically to estimate the average
conditional density in a finite sample without introducing artificial distortions
to the intrinsic behavior. The central question here is what the properties are
of different estimators i.e. how well they approximate the true underlying
behavior of this quantity as a function of scale. For the case (which is ours)
where one wishes to analyze the sample without making the assumption of
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homogeneity, we explain that the most controlled procedure (the standard
one in statistical physics [102]) is to use the so-called full-shell (FS) estimator.

9.5.1 Estimators of the Average Conditional Density

An estimator of a statistical quantity should have the property that it con-
verges to the ensemble average value of the quantity as the volume of the
sample becomes infinite. A stronger requirement of an estimator is that it
should be unbiased, which means that also the ensemble average of the es-
timator in the finite volume is equal to the true ensemble average of the
estimated quantity. Typically estimators are not unbiased, but show system-
atic offsets (i.e. bias) with respect to the true (ensemble) value of the quantity
[126]. Such effects will depend in some way on the relation between the scale
at which the estimator is calculated and the size of the sample, becoming
important as the scale of the sample is approached.

We introduce now two classes of estimators of the conditional density
Γ (r) in a finite sample respectively with and without bias. This discussion
gives the basis for our conservative choice of using FS estimates for this
quantity.

1. Given a finite sample of N points in a volume V one class of estimators
of the average conditional density is defined by

Γ
(1)
EΓ (r) =

N∑
i=1

ni(r)wi (9.17)

where the sum is over all the N points in the sample, and ni(r) is the
numerical density in the spherical shell between radii r − ∆

2 and r + ∆
2

around the ith point. i.e.

ni(r) =
∆NiNN (r)
4πr2∆

,

where ∆NiNN (r) is the number of point in the spherical shell, and where we
have used the approximation 4π

3 [(r + ∆/2)3 − (r − ∆/2)3] 	 4πr2∆. The
coefficient wi in (9.17) is a weight (which can also depend on r) which is
normalized so that

N∑
i=1

wi = 1 ∀r > 0 .

It is clear that, for any reasonable weighting scheme, this estimator is a
good one for the conditional density, in the weak sense that it approaches
the true value of this quantity as the sample becomes infinite (because of
the assumption of ergodicity), and as the shell thickness ∆ goes to zero. It
is easy to see, however, that the estimator is not in general unbiased. This
is so because the density in spherical shells is calculated in the same way,
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irrespective of whether they lie completely inside the sample volume or
not. If any of the weights wi is different from zero for particles i for which
the spherical shell is not completely contained in the sample, the estimator
is clearly negatively biased as it tends systematically to underestimate the
conditional density. For instance this is the case in which we give an equal
weighting to all the sample points, i.e. wi = 1/N for i = 1, . . . , N . Clearly
this bias becomes more and more important as the distance r approaches
the sample size (as more and more shells fall outside the sample volume).
Estimating the effect of this negative bias is not possible without making
a priori assumptions about the correlation properties of the system. A
systematic bias whose amplitude is in general unknown in thus introduced.

2. A second class of estimators can be written in the same form:

Γ
(2)
EΓ (r) =

N∑
i=1

ni(r)wi , (9.18)

but where, now, ni(r) is the numerical density only in the portion of the
spherical shell around the point i contained in the sample limits, i.e.

ni(r) =
∆NiNN (r)
∆ViVV (r)

, (9.19)

where ∆NiNN (r) is the same as in the previous class and ∆ViVV (r) is the volume
of the portion of the spherical shell contained in the sample. The weights
wi have the same general properties as in the previous case.
If we assume the hypothesis of statistical stationarity and isotropy of the
particle distribution at all scales (which is in general an a priori hypothe-
sis), we can say that, for any choice of wi, the estimator (9.18) is not only
a good one in the infinite sample volume limit, but is also unbiased1.
However without knowing a priori the correlation properties of the system
at all scales (the determination of which is in fact the target of this kind
of study!), it is impossible to control the statistical errors if wi are taken
non-zero for those spherical shells only partially contained in the sample.
This problem is of course, along with the bias, also present for the previous
class of estimators.
We consider this problem a little more explicitly. Let us suppose that we
know a priori that the particle distribution is Poisson-like on the spatial
scale r. We then expect that the typical statistical fluctuations of ni(r),
given by (9.19), with respect to its average value Γ (r), is proportional to
[∆ViVV (r)]−1/2 = [Ωir

d−1∆]−1/2, where Ωi is the solid angle of the portion
of the spherical shell contained in the sample.
On the other hand let us suppose now that we know a priori that the
particle distribution on the same scale r is fractal-like with dimension D <

1 This is true strictly only when we neglect the implicit condition that there is
a point (our galaxy) at the apex of the sample i.e. we assume that three point
correlation properties are sufficiently weak at the scale of the sample.
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d. In this case, as a fractal is strongly fluctuating at all scales (see Chap.
4), we expect to have a typical statistical fluctuation of ni(r) with respect
to Γ (r) proportional to rD−d (i.e. with the same scale dependence of Γ (r)
itself), and depending on the solid angle Ωi of the part of the spherical
shell contained in the sample in such a way that the fluctuation increases
if this angle is decreased. Therefore we find a very different behavior to
that in the Poisson case. Moreover, in order to evaluate the typical error
between Γ

(2)
EΓ (r) and Γ (r), it is necessary to know the correlation matrix

CijCC (r) between ni(r) and nj(r) depending on both distances rij = |ri−rj |
and r. This quantity can change essentially arbitrarily with the correlation
properties of the system. In the fractal case we expect CijCC (r) for fixed rij

and r to be in general larger than in a Poisson-like distribution.
Thus we see that, in the case that the correlation properties of the system
are a priori unknown, the statistical errors of estimators of the conditional
density (or indeed any other quantity) become intrinsically uncontrollable
when r approaches the sample size.

There is then a simple choice to make in choosing a weighting scheme:
either one excludes or includes shells which partially overlap with the sample
volume [47, 223]. The former choice leads naturally to the so-called full-shells
estimator, which is (9.18) (or equivalently (9.17)), with wi(r) = 1

Nc(r)
if the

spherical shell about the point i is fully included in the volume, and NcNN (r) is
the number of such points at radius r, and wi = 0 otherwise. The variance
in this estimator can be estimated from the sample itself, without using
any further assumption about the underlying distribution, by considering
the measured fluctuations in the full shell density about different points.
No particular hypothesis on the spatial correlation needs to made about the
underlying distribution. In particular no hypothesis is made about whether
the distribution becomes homogeneous (i.e. uniformly distributed) at any
scale.

The use of this estimator is very restrictive: it allows us only to extract
information up to, at most, the scale corresponding to the largest sphere
which can be inscribed in the survey volume. Given the non-spherical geom-
etry of almost all surveys this corresponds to a much smaller scale than the
simple depth of the survey. Estimators which incorporate information from
shells partially overlapping the survey volume allow one to get estimates of
the average conditional density at much deeper scales. Further such estima-
tors are practically much easier to implement, as they can be calculated by
pair counting algorithms (see Appendix G). To estimate their variance one
must necessarily make implicit assumptions about the correlation properties
of the distribution on scales where only partially contained shells give a sig-
nificant contribution to the estimator. It is evidently not incorrect in itself to
use such estimators – practically they are usually easier to implement – but
great caution should be used in interpreting the results obtained with them
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beyond the scale up to which the FS estimator can be calculated i.e. beyond
the radius of the largest sphere which can be inscribed in the sample.

9.5.2 Effective Depth of Samples

In the discussion above we have introduced a scale Rs characterizing the
size of the finite sample, without specifying what this scale is. Galaxy sam-
ples are never spherical, so what this scale is must be specified. Effectively
the meaning of Rs is simply the scale up to which the two-point correlation
function can be reliably inferred from the sample. Evidently what scale this
corresponds to depends on what one means by “reliably”. In the discussion
just above we have given an answer to this question: if one does not want
to introduce strong a priori assumptions about the nature of the underlying
distribution, the scale Rs is determined by the radius of the largest sphere
about a galaxy which can be completely inscribed within the sample bound-
aries (see Fig. 9.6) [47, 223]. It is not necessarily identical with this radius,
since of course there is a rapid diminution in the number of independent
spheres as this scale is approached, which means an increase in variance of
the estimator. We will give a stricter criterion for determining practically in
a real sample the upper cut-off for the reliable estimation of the conditional
density in the next section.

For the moment we will identify Rs with the radius of the largest inscribed
sphere, which we will refer to as the “effective depth” of the sample for the
analysis of its correlation properties which we will perform. Different VL
samples, extracted from the same catalog, have different values of Rs. The
deeper is the VL sample, the greater is its Rs. The effective depth for the
whole catalog is then the largest Rs in any VL sample. It is not difficult
to calculate Rs for the case of a sample which is a single angular slice. For
a catalog with the limits in right ascension α1 ≤ α ≤ α2 and declination
δ1 ≤ δ ≤ δ2 we have that

Rs =
Rd sin(δθ/2)
1 + sin(δθ/2)

(9.20)

where δθ = min(α2 − α1, δ2 − δ1), and Rd is the real radial depth of the
sample.

9.6 The Average Conditional Density (FS) in Real
Galaxy Catalogs

We now turn, finally, to real data. Our aim here is not to treat this question
exhaustively – we refer the reader to [47, 193, 223] and [40, 46, 49, 57, 157,
210, 247] for an extended discussion – but rather to give an example of the
implementation of the methods we have discussed. The example we choose
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Fig. 9.6. Upper part: A typical cone diagram for a wide angle galaxy catalog (e.g.
CfA, SSRS, Perseus-Pisces). The depth of the VL sample considered is RV L = Rd.
The effective depth is Rs and it corresponds to the radius of the maximum sphere
fully contained in the sample volume (Rs ∼< Rd). Bottom part: A typical cone
diagram for a narrow angle galaxy catalog (e.g. LCRS, ESP). In this case Rs  Rd

(from [223])

– the CfA2 galaxy catalog – is also a catalog which allows us to obtain ro-
bust bounds on the scale of homogeneity which are representative of what
is feasible with current data, using these methods. Other more recent and
larger catalogs, in particular the 2dF catalog and early SDSS data, do not
allow us actually to derive stricter limits, despite the much larger number of
measured redshifts. This is because they contain contiguous pieces of very
small solid angle. Thus the effective depth we have defined above remains
small. In the case of 2dF there is the further problem that the selection
criteria and completeness of the survey are very inhomogeneous over the an-
gles covered, making it intrinsically difficult to measure correlation properties
without making the a priori hypothesis of homogeneity. This limitation on



252 9 The Conditional Average Density in Galaxy Catalogs

this analysis will be relaxed radically in the next years, with the advent of
large samples from the SDSS survey.

In Table 9.1 we report some characteristics of the main galaxy redshift
surveys completed up to now. There are several important redshift surveys

Table 9.1. Volume limited catalogs characterized by the following parameters: Ω
(in steradians) is the solid angle Rs (in Mpc/h) is the radius of the largest sphere
that can be contained in the catalog volume (which gives the limit of statistical
validity of the sample), N is the number of objects, and 〈R〉 (Mpc/h) is the average
depth (defined for example to be the typical distance of an M∗ galaxy) of the
catalog. (Adapted from [47, 140, 221, 223])

Sample Ω (sr) Rs N 〈R〉
CfA1 1.6 20 1845 30
CfA2 1.23 30 4390 60
Perseus-Pisces 0.9 25 3301 60
SSRS1 1.75 25 1773 30
SSRS2 1.13 30 3600 60
Stromlo-APM 1.3 40 1797 150
LEDA 4π 50 ∼8000 60
IRAS1.2Jy 4π 40 5313 60
ESP 0.006 10 3175 300
LCRS 0.12 20 ∼3 · 104 300
SDSS-DR1 0.14 20 ∼105 300
2dF 0.05 20 ∼2.5 · 105 300

(LCRS, ESP, 2dF and the early data release of SDSS) whose average depth
(i.e. the distance at which the selection function of the survey has its maxi-
mum – see Sect. 10.4 Chap. 10) is about 300 Mpc/h. Their effective depth as
we have defined it, however, does not substantially differ with respect to that
of the surveys with a much lesser depth (e.g. CfA2 and SSRS2 ), but greater
coverage in solid angle. The great improvement we can anticipate with SDSS
is due to the fact that it will cover a solid angle Ω ∼ π, at a large average
depth. Further it will do this with an accurate photometry in 5 bands.

The CfA2 South galaxy sample [120] contains 4390 galaxies with mag-
nitude mB(0) ≤ 15.5 covering 20h ≤ α ≤ 4h in right ascension and
−2.5◦ ≤ δ ≤ 90◦ in declination. This part of the sky includes regions where
the galactic extinction has been measured to be important, which needs to
be corrected for. For the purposes of comparison of our results with the
analysis carried out by [173] we perform these corrections in exactly the
same way as these authors, by excluding the same regions: 20h ≤ α ≤ 21h ,
3h ≤ α ≤ 4h , 21h ≤ α ≤ 2h, b > −25◦, and 2h ≤ α ≤ 3h and b > −45◦

where b is the galactic latitude. The catalog contains a large super-cluster
called the Perseus-Pisces chain and it reveals large voids in the foreground



9.6 The Average Conditional Density (FS) in Real Galaxy Catalogs 253

Table 9.2. Volume limited samples of the CfA2-South survey. RV L (in Mpc/h)
is the depth of the VL sample, MV LMM is the absolute magnitude limit of the VL
sample, N the number of galaxies in the sample n = N/V where V = (Ω/3)R3

V L

and Ω is the solid angle of the catalog, Rs (Mpc/h) is the effective depth and D is
the estimated fractal dimension in the range [〈Λ〉, Ru]. (From [137])

Sample RV L MV LMM N Rs n 〈Λ〉 Ru D

VL185 60.2 −18.5 724 13.0 1.3 · 10−2 0.5 7 2.0
VL19 74.9 −19.0 622 18.0 6.0 · 10−3 0.7 8 1.8
VL195 92.9 −19.5 520 18.5 2.5 · 10−3 1.2 12 1.9
VL20 115 −20.0 292 24.0 7.5 · 10−4 3.0 15 1.9
VL205 141.7 −20.5 132 29.6 2.0 · 10−4 6.0 20 1.8

and background of this super-cluster. The complex galaxy structures found in
this catalog have been described by [120]. Note that all the wide angle redshift
surveys (i.e. CfA1, SSRS1, SSRS2, Perseus-Pisces) have shown comparable
fluctuations.

In Table 9.2 we report the features of the considered VL samples, charac-
terized by successive limits in absolute magnitude with a step of 0.5 magn.
The distances have been computed from the linear Hubble law

r = cz/H0HH where H0HH = 100h km/sec/Mpc and 0.5 < h < 1 ,

and the absolute magnitude from the standard relation M = m−5 log10 r(1+
z) − 25 − Kz, where for the k-correction we have taken K = 3 (as in [173]).
The results of our analysis are extremely weakly dependent on this latter
correction, as they are on modifications to the r − z relation corresponding
to different cosmological models, simply because the maximum redshift is so
small (z < 0.05).

Before discussing the results, let us recall that there are two important
physical scales defining the range in which we can reliably infer the underly-
ing correlation properties: (i) The upper cut-off Rs (or effective depth) which
we have discussed at length above; and (ii) A lower cut-off 〈Λ〉, which is the
average distance between nearest galaxies, and which is related to the number
of points contained in the sample. It is simply the scale below which the be-
havior of the conditional density is dominated by the sparseness of the points
(i.e. the shot noise). In the average conditional density Γ (r) this regime is
characterized by highly fluctuating behavior, while in the integrated condi-
tional average density Γ ∗(r) (i.e. conditional density in complete spheres) it
is manifest as 1/r3 decay away from any finite value.

In Fig. 9.7 Γ ∗(r) is plotted for each of the five samples reported in
Table 9.2. The error bars displayed correspond to the variance on 20 “boot-
strap” re-samplings of each sample2. The behavior of these errors can also
2 For a sample with N points, a random integer is generated between 1 and N

for each point. Those points with the same number are discarded to produce
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Fig. 9.7. The conditional average density Γ ∗(r) in complete spheres in the different
VL samples of the CfA2-South galaxy sample. The error bars displayed correspond
to the variance measured for 20 bootstrap re-sampling of each sample. The values
of the power-law fit are reported in Table 9.2. In the inserted panel we show the
average distance between the centers of the spheres (see text): the dashed-dotted
line corresponds to the curve 〈d〉 = 2r where 〈d〉 is the average separation between
the centers of the spheres and r is the depth. (Adapted from [137])

be understood in terms of the two limits we discussed above: Since there
are typically no points at sufficiently small distances in the neighborhood
of any given one, we expect Γ (r) to fluctuate back and forth to zero, and
Γ ∗(r) to decay away from any finite value as the inverse of the volume, i.e.,
Γ (r) ∼ 1/r3. In some cases fluctuations are large also at r ∼ Rs because
here one is averaging about just a few well separated galaxies, one of which
is removed in the re-sampling. It is important to note that although the be-
havior of these errors is related to the two cut-offs, they cannot be taken to
be measurement errors for these effects, which are systematic. At small scales
the real behavior of the average conditional density is determined by the real
lower cut-off and is intrinsically highly fluctuating no matter how well sam-
pled; at large scales no re-sampling of the points around a single galaxy can
tell us what the intrinsic variance is in the quantity measured from different
independent points.

the sub-sample. An alternative way of estimating errors of Γ (r) is to measure
directly the dispersion in the different ni(r) (9.17) over which the average is
performed.
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An examination of the Fig. 9.7 shows that beyond a scale, which grows
with the depth of the VL sample, there is in each case a rather well defined
power-law, until a scale near to the upper cut-off Rs at which, in some sam-
ples, it shows a deviation toward a flatter behavior. The first scale is just
the lower cut-off 〈Λ〉 due to sparseness discussed above. It can be checked
quantitatively that its increase in the deeper samples scales with the grow-
ing mean distance between points. To perform a fit to these curves we also
need to take account of the systematic effect as one approaches r ∼ Rs, not
included in the bootstrap errors, due to the non-averaging. In principle we
cannot know how large the error at this scale is since we do not know the real
variance in the density at this scale. The criterion we may use to place an
upper cut-off up to which we assume this systematic effect is not important
is a simple one: We require that in the sample there are a sufficient number
of non-overlapping spheres we can average over. The quantitative meaning of
this can be read off from the figure inserted in Fig. 9.7 as the point where the
average distance becomes equal to twice the depth. Obviously this scale Ru

grows with sample size and we see it reaches a maximum of about 20 Mpc/h
in our deepest VL sample.

The striking feature of all the samples is that they exhibit a fairly well
defined behavior, consisting of two regimes. Beyond a certain scale, which
varies from sample to sample, the behavior in each of them is fairly well de-
fined and, we find, well-fitted by a power-law with effective fractal dimension
D ≈ 2 for all the samples. The behavior at smaller r can be well understood
in terms of the lower cut-off discussed above. This can be clearly seen by
looking also at Γ ∗(r) in each of the samples. The break in each plot occurs
in the same range as that in which Γ (r) changes from a highly fluctuating
behavior to a well-defined one. In each of the samples we perform a best fit
to the dimension D in the range of scales [〈Λ〉, Ru] (see Table 9.2). Our result
is that the dimension is D = 1.9 ± 0.1 in this range of scales probed by the
samples i.e. from 0.5 Mpc/h to 20 Mpc/h.

The normalization of the conditional average density in different VL sam-
ples depends on the luminosity selection function of the sample considered.
We will discuss this procedure further in the next section. Essentially, mak-
ing the assumption of independence of the space and luminosity distributions
given (8.2) in Chap. 8, i.e.

ν(M, r) = Γ (r) · φ(M) =
DB

4π
rD−3 · φ(M) (9.21)

where the luminosity function φ(M) (now in terms of magnitudes) has been
normalized to unity, i.e. ∫ Mmin

−∞

∫∫
φ(M)dM = 1

and MlimMM is the faintest absolute magnitude contained in the sample. We can
associate to a VL sample limited at MV LMM a luminosity factor:
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Φ(MV LMM ) =
∫ MV L

−∞

∫∫
φ(M)dM . (9.22)

The normalization of the space density is then (see Fig. 9.8).

ΓnormΓΓ (r) =
Γ (r)

Φ(MV LMM )
=

DB

4π
rD−3 · 1

Φ(MV LMM )
. (9.23)

From (9.23), we can estimate the parameter B of the distribution. We find
B ≈ (12±2Mpc/h)−D, which agrees very well with the value found in various
other catalogs [223].
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Fig. 9.8. The conditional average density Γ ∗(r) in complete spheres shown in the
previous figure but normalized as discussed in the text

Beyond a distance between 20 and 30 Mpc/h we cannot reliably infer
average properties of the galaxy distribution from the CfA2 South catalog
alone. We will discuss in the next chapter what can be inferred at larger scales
from the analysis of un-averaged quantities like the number counts N(< r)
from the origin.

Let us return now to the standard ξ(r) analysis: Our findings of power-
law correlations without evidence for a cut-off imply that the normalization
to a mean density to derive a “correlation length” is conceptually flawed.
Calculationally, however, there is nothing wrong with deriving such a scale,
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and the results should be perfectly consistent (numerically) with those given
here. In Table 9.2 we list the estimations of the volume density n in each
of the VL samples (see Fig. 9.9). Using this as our normalizing density and
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Fig. 9.9. Standard ξ(r) analysis for the same sample shown in Fig. 9.7 obtained by
using the full-shell estimator, and using the normalizing average density reported in
Table 9.2. This gives values for r0 in the VL samples shown of approximately from 4
to 10 Mpc/h. Note that the dotted line has slope of −γ = −1.8, while by considering
the conditional density one gets D = 2. This explanation for this discrepancy is
given in Sect. 9.3.1 above

the values of B and D from the measured Γ ∗(r), we obtain r0 in the range
5 ÷ 10 Mpc/h. To invoke the additional hypothesis of luminosity selection
bias (see Chap. 13) to explain all the variation of the observed r0 is very
problematic unless one has first clarified the role of the intrinsic variance in
the densities to which one is normalizing to obtain r0.

9.6.1 Normalization of the Average Conditional
in Different VL Samples

We return in this section to give a little more detail on the procedure used for
normalizing the different VL samples. The question we address here concerns
the estimation of the average conditional density in different VL samples
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characterized by different MV LMM and then its normalization to the luminosity
function3. If we are able to normalize the amplitude of the average conditional
density in different VL samples by considering the appropriate luminosity fac-
tor (which depends on the integral of the luminosity function and not on the
pre-factor of the space conditional density), this implies that the assumption
described by (8.2) is a good working hypothesis.

Using (8.2) we may then write, for a constant fractal dimension D, the
conditional average number of galaxies as a function of distance as

〈N(< R;> LV L)〉p =
∫ R

0

∫∫ ∫ ∞

L

∫∫
V L

〈ν(r, L)〉pdLd3r = BV LRD (9.24)

where N(< R;> LV L) is the number of galaxies in a sphere of radius R
and with intrinsic luminosity larger than LV L, and BV L is the amplitude of
the number counts in a VL sample with absolute faint luminosity limit at
L = LV L. From the behavior of (9.24) one may easily determine the value
of the fractal dimension. Clearly one may compute Γ ∗(r) (see Chap. 4) by
simply dividing (9.24) for the sample volume. Alternatively one may compute
the differential counts in shells which are simply related to the conditional
density Γ (r) (see Chap. 4).

From (8.2) and (9.24) it follows that

B = BV L
1

Lδ+1∗

(∫ ∞

y

∫∫
V L

yδe−ydy

)−1

. (9.25)

where we have put y = L/L∗ and hence yV L = LV L/L∗. In a given red-
shift survey we have seen that one may construct several VL samples which
are defined by different cuts in absolute magnitude MV LMM (i.e. in LV L) and
hence different cuts in distance RV L. In Table 9.3 we report some values of
BV L determined in the CfA2 galaxy sample (from [140]). The fact that BV L

decreases when the modulus of the absolute magnitude is increased, has a
straightforward meaning: given a certain volume of space, the probability to
find only very bright galaxies (e.g. M < −20) is lower than the probability
to find both faint and relatively bright galaxies (e.g. M < −19).

In such an analysis, one has to consider that, the larger is the distance
cut, the brighter is the average absolute magnitude of the galaxies contained
in the sample. This is a systematic effect which is intrinsic to the way VL
samples have been built. In such a situation it may happen that the mea-
sured statistical property changes in different VL (for example the amplitude
of the correlation function). Then one would like to establish whether such
differences are due to the difference in the luminosity of the galaxies con-
sidered or due to some sample-size dependent effects. In order to distinguish
3 As shown by (8.10) a upper limit in absolute magnitude corresponds to an lower

limit in absolute luminosity LV L.
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Table 9.3. Values of BV L estimated in volume limited samples. The absolute
magnitude cut is at MV LMM . In the third column is shown the determined value for
the parameter ΦV L (see Sect. 9.6.2) where we have used M∗MM = −19.1 and δ = −1.00
as parameters of the luminosity function. (From [140])

MV LMM BV L ΦV L

−18.0 0.7 ± 0.1 0.9 ±0.1
−19.0 0.4 ± 0.05 1.6 ±0.2
−19.5 0.17 ± 0.02 1.5 ±0.2
−20.0 0.06 ± 0.01 1.8 ±0.3

between these two effects one may proceed as follows. Given a single VL sam-
ple, one may consider additional cuts in absolute magnitude and/or distance
if one wants to check, for example, some possible distance versus luminosity
effects. This is actually the basic test for what concerns the so-called “lu-
minosity bias” (see below): to cut a VL sample into two distance slices (e.g.
0 < r < RV L/2 and RV L/2 < r < RV L) and then to consider some statistical
measure in the two sub-samples obtained in this way. If there is a luminosity
dependent effect one should see no change of the statistical properties, while
if some statistics depend on the depth of the sample, the effect should be
clearly visible.

9.6.2 Estimation of the Conditional Average Luminosity Density

An important quantity which can be determined in a VL sample is the con-
ditional average luminosity density in a sphere of radius R and volume V (R)
defined as

〈j(< R)〉p =
1

V (R)

∫ R

0

∫∫ ∫ ∞

0

∫∫
L〈ν(r, L)〉pdLd3r (9.26)

which is R dependent as long as the space average conditional density does
not flatten clearly. Considering the simple hypothesis (8.2) we obtain that
(in the case D = const.)

〈j(< R)〉 ≡ j(10)
(

R

10h−1

)D−3

, (9.27)

in L
× Mpc−3, where L
 is the solar luminosity and

j(10) =
3
4π

L∗(10h−1)D−3ΦV L

∫ ∞

y

∫∫
V L

yδ+1e−ydy , (9.28)

and we have defined
ΦV L =

BV L∫∞
y

∫∫
V L

yδe−ydy
. (9.29)
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Note that, according to (9.27), if, in the considered range of scales, the frac-
tal dimension is smaller than 3 the conditional average luminosity density is
a sample-size dependent quantity. Otherwise for D = 3, with weak fluctua-
tions and correlations, one obtains the estimator of the unconditional average
luminosity density.

In Table 9.3 we report an example of the determination of BV L and ΦV L

in various VL samples of the CfA2-South redshift survey. While BV L varies
over more than one order of magnitude, ΦV L is almost constant confirm-
ing the fact that B, defined by (9.25), is almost independent of the cut in
magnitude considered. The results very weakly depend on the cosmological
parameters assumed in the reconstruction of distances and absolute mag-
nitudes from measured redshifts and apparent magnitude (see below). The
values quoted correspond to the Mattig relation with q0 = 0.5 (see Appendix
C), but the results do not sensibly change for any other reasonable choice of
q0 as the redshifts involved are very small (z ≤ 0.05). Note that a significant
dependence of j(10) on the cut in magnitude of the VL can come only from
the factor

∫∞
y

∫∫
V L

yδ+1e−ydy in (9.28). In fact if δ < −2 this integral is divergent
for yV L → 0. Instead if

y
δ > −2 the same integral depends only marginally on

yV L [140]. For the relevant values considered here (δ 	 −1), therefore, this
dependence is marginal.

9.6.3 Measuring the Average Mass Density Ω
from Redshift Surveys

In cosmology a quantity of importance is the mean density of visible matter.
Evidently this is a quantity which is well defined only in the case that there
is a well determined transition to homogeneity. What we do here is make this
explicit, giving an estimate of this parameter as a function of the homogeneity
scale λ0 (defined appropriately below). Further details can be found in [140].
Essentially we use the previous results on the average conditional luminosity
density, making the same assumptions, to derive an estimate of the average
mass density. As in the previous section, given a value of (or lower bound on)
the homogeneity scale in a clustered mass distribution, it is straightforward
to obtain the corresponding value (or upper bound on) the total mass density,
once one has an appropriate estimate of the global mass to luminosity ratio.

Taking the values quoted in Table 9.3, from which we infer the average
value 〈ΦV L〉 = 1.4 ± 0.4, we obtain the numerical value (9.28)

j(10) ≈ (2 ± 0.6) × 108 hL
/Mpc3 . (9.30)

The fractal dimension D is given by the slope of 〈N(< r)〉p as a function of
r in a VL sample. Hereafter we adopt for illustrative purpose the following
simplified form:

Γ (r) =
DB

4π

{
rD−3 for r < λ0

λD−3
0 for r ≥ λ0
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with D = 2. Note that by changing the definition of the homogeneity scale
λ0, according to the different possibilities give in Chap. 2, we will obtain
slightly different numerical estimates.

For a given λ0 we now find the mass density parameter in units of the
critical density ρc = 2.78 ·1011h2 M
MM /Mpc3 where M
MM is the solar mass, and
as a function of a specified global mass-to-luminosity ratio (in solar and h
units), to be

Ωm

(
λ0,

M
L
)

= 〈j(< λ0)〉ML
1
ρc

= [(6 ± 2) × 10−4]
M
L h−1

(
10h−1

λ0

)
, (9.31)

where we have used (9.27). Note that because estimates of M/L are linearly
dependent on h, and λ0 is measured in units of Mpc/h, (9.31) is in fact
independent of the Hubble constant.

Let us now consider further our estimate of Ωm. Taking first the estimate
M/L ≈ 10h in the B-band as derived by [81], which corresponds to a global
mass to luminosity ratio typical of spiral galaxies, we obtain

Ωm(λ0) ≈ 6 × 10−3

(
10h−1

λ0

)
. (9.32)

With λ0 ≈ 10 Mpc/h we obtain the value Ωg ≈ 6 × 10−3 of the standard
treatment (see e.g. [185]). On the other hand we can determine the mass to
luminosity ratio which would give a critical mass density Universe. Again,
for a given λ0 we find (M

L
)

crit

≈ 1600h

(
λ0

10h−1

)
, (9.33)

so that again the canonically quoted value of (M/L)crit ≈ 1600h corresponds
to the homogeneity scale λ0 ≈ 10 Mpc/h (e.g. [185]).

Galaxy clusters have been much studied in recent years, and they are
believed to probe well the global mass to luminosity ratio, for which the
observed value is (M/L)c ≈ 300h in the B-band (i.e. [114]). Taking this
value one obtains

Ωm(λ0) ≈ (0.18 ± 0.06)
(

10h−1

λ0

)
. (9.34)

The value resulting for the same reference value λ0 = 10 Mpc/h is thus Ωm ≈
0.2 [74, 185]. Note that by using such an high value for the M/L ratio, we are
assuming that this is the typical value associated to all the galaxies, instead of
using the number density (or luminosity density) of galaxy clusters in (9.34).

Using the lower bound λ0 ≈ 20 Mpc/h obtained above from the analysis
of the CfA2 South redshift survey, we obtain the upper bound Ωm ≤ 0.1 on
the total mass density (see Fig. 9.10).
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There are some interesting remarks that can be made given this result.
One of the important cosmological implications of the measurement of the
mass density comes from the comparison of its value with the standard Big
Bang nucleosynthesis (SBBN) limits on the baryon density of the universe,
which give

ΩSBBN
b h2 ≈ 0.019 ± 0.004

[169]. While this comparison results in the inference of the existence of non-
baryonic dark matter given the usually supposed value for the homogeneity
scale, as Ωm � ΩBBN

b , it is interesting to view our result as suggesting
another possible solution for this difference: it provides a possible “window
of consistency” for the two values. Using the estimate obtained above in
(9.34), we find that for the homogeneity scale

λSBBN
0 = (0.3 ± 0.15)M/LMpc

the dark matter in the Universe can be purely baryonic with its global density
satisfying the constraints of SBBN. Conversely an homogeneity scale larger
than this value would be inconsistent with the theory of SBBN. Adopting
the value (M/L)c ≈ 300h, we find
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λSBBN
0 = (90 ± 45)h Mpc

which, for h = 0.65, corresponds to

λSBBN
0 = (60 ± 30) Mpc,

which allows potential compatibility even for values of λ0 as small as our
estimation λ0 = 20 Mpc/h ≈ 30 Mpc (for h = 0.65).

Various other methods are commonly used to estimate the mass density of
the Universe. One based on galaxy clusters is obtained by observations which
constrain the fraction of hot baryonic X-ray emitting gas to the total mass in
clusters. By adopting the hypothesis that the rest of the mass may be non-
baryonic this gives, when one uses the nucleosynthesis upper bound on Ωb, a
cosmological upper bound on the total mass Ωm ≤ 0.3. Further, taking most
of this mass to be non-baryonic one infers a value of Ωm consistent with
the value from the direct estimate. In the present context we note simply
that, if the scale λ0 is larger than the value standardly assumed, the total
mass density may be much lower and the dark mass in clusters may quite
consistently be baryonic [140].

9.7 Summary and Discussion

We have considered here the use of the average conditional density to de-
scribe the correlation properties of galaxies, without the prior assumption
of homogeneity. We have explained that this analysis allows one to probe
for various generic behaviors – fractality pure and simple, fractal or more
general strongly irregular and clustered behavior followed by a cross-over to
homogeneity. We have then discussed the practical aspects of the estimation
of this quantity in real galaxy samples, explaining the motivation for using
the so-called FS estimator which restricts generally the effective depth one
can probe to much smaller than the simple depth of the catalog. Turning to
real galaxy samples we have given results for the conditional density in the
CfA2-South catalog, which shows a behavior clearly indicative of a simple
fractal clustering up to a scale of at least 20 Mpc/h, with fractal dimension
close to two. This is an extremely conservative conclusion, based on only the
most statistically robust results. We refer the reader to [223] for a discussion
of a similar analysis in other catalogs. In the last part of the chapter we have
also shown several further applications of the conditional density to real data,
in particular showing how our analysis modifies standard quantities like the
luminosity density and mass density of visible matter into ones which explic-
itly depend on the homogeneity scale (which we have failed to detect with our
methods). In the next chapter we turn to un-averaged statistics, which give
less statistically robust results, but allow one to access much larger scales in
real galaxy catalogs.



10 Characterizing the Observed Distribution
of Visible Matter II: Number Counts
and Their Fluctuations

10.1 Introduction

In this chapter we continue our discussion of the analysis of the correlation
properties of galaxy distributions, with methods that do not make (but can
test for) the assumption that the underlying distribution of galaxies is homo-
geneous at the scales probed by the galaxy survey. We consider here statistics
which do not contain averages over different galaxies as centers, but which
are un-averaged, i.e. all with respect to a single observer (on earth). In par-
ticular we consider galaxy counts as a function of radial distance, and as a
function of apparent magnitude.

Following the same structure as the previous chapter, we first discuss the
theoretically predicted behavior of these quantities – both the average en-
semble value and the variance about this average. As noted above, in this
context the data are given with respect to a single observer, and the av-
erage and variance calculated observationally are with respect to a set of
samples constructed by considering different parts of the sky. Just as in the
previous chapter we consider the theoretical behaviors both in simple frac-
tal distributions and in distributions with a well defined homogeneity scale.
In this context we will focus on the generic features which can be used to
probe clearly the difference between the case of a fractal and a homogeneous
distribution of any type at the sample scale, but we will be less systematic
than in the previous chapter in treating the latter case, limiting ourselves to
the pure (uncorrelated) Poisson case and the critical case. We focus on two
distinguishing tests. Firstly there is the slope of the average number counts,
which is directly related to the fractal dimension (with D = 3 indicating
a homogeneous distribution). Secondly there is the behavior of the relative
fluctuations about this average: in a fractal they are (almost) independent of
scale, while in any homogeneous distribution they rapidly decrease, typically
exponentially.

Most of our analysis will consist in determining the expected behavior
of the counts in magnitude limited catalogs. As discussed in Chap. 8 these
contain much greater numbers of points than redshift catalogs in which one
can compute real space counts, because the latter requires the extra step of a
spectroscopic measurements to determine the redshift. We will make the con-
siderable simplification here of limiting our analysis to Euclidean space, and
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of neglecting evolutionary effects and the so called k-corrections, discussed
briefly in Chap. 8. This means that, just as in the previous chapter, our
analysis applies well only in the local universe, up to at most a few hundred
Mpc. For these magnitude counts – which can probe extremely deep sam-
ples – it is interesting and important to go beyond this approximation, and
in Appendixes C-D we present some of the relevant considerations in this di-
rection. In particular we consider the effect of cosmological and k-corrections.

In the latter part of this chapter we turn to observations in real galaxy
catalogs. Given the assumptions in our analysis, it is appropriate only to
consider counts at modest distances, i.e. the bright end in magnitudes. The
data in real and magnitude space are very consistent: their average behavior
is well fit by an effective fractal dimension D ≈ 2.5, larger than that found
in the analysis of the data we considered in the previous chapter, while their
fluctuations appear to continue to be large – to the limits of the samples
we consider (typically ∼100 Mpc/h). While the origin of these fluctuations
may be due to effects other than large scale structures (calibration problems
or photometric errors) the results can also be interpreted as indicating a
continuation of the strongly irregular inhomogeneous behavior observed at
smaller scales with the analysis described in the previous chapter. We discuss
the apparent change in the best-fit dimension – inconsistent with a simple
fractal behavior, and possibly indicative of a tendency to homogeneity – and
conclude that future observations will be required to confirm whether this is
a real average behavior.

10.2 Number Counts in Real Space

A number count in real space is simply the number of points found in a
sample as a function of distance. We assume that we are considering VL
samples in which selection effects with respect to the observer are absent.
Given that the origin of the counts is on a point (our galaxy) the expected
behavior is simply determined by the conditional average density integrated
over the geometry of the sample. Correspondingly the variance in the number
count will be determined by the variance in the conditional average density
(i.e. the conditional variance). One wants therefore to compute simply the
average counts 〈N(< R; > LV L)〉p (where N(< R; > LV L) is defined in
Sect. 9.6.1), and the average quadratic fluctuation〈∆N2(< R; > LV L)〉p ≡
〈N2(<R; >LV L)〉p − 〈N(<R; >LV L)〉2p [90].

The expected behaviors of these quantities are given in the ensemble sense.
For a Poisson distribution, using the hypothesis (8.2) for the joint spatial and
luminosity distribution of galaxies, we obtain easily (see Chap. 2):

〈N(<R; >LV L)〉p =
4πn0R

3

3

∫ ∞

L

∫∫
V L

dLφ(L)
(10.1)
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σ2
p(R;>LV L) ≡ 〈N2(<R; >LV L)〉p − 〈N(<R; >LV L)〉2p

〈N(<R; >LV L)〉2p
∼ R−3 ,

where n0 is the unconditional average number density and φ(L) is the PDF of
the luminosity of a randomly chosen galaxy. The typical relative fluctuation
between N(< R; > LV L) seen by a single observer and the average over all
the possible observers (i.e. the first of (10.1)) increases with R as R

3
2 . For any

homogeneous point distribution (i.e. with a well defined average density and
homogeneity scale λ0) with correlations, in general, σ2

p(R) decreases with R,
with the rate of decrease depending on the exact behavior of the two and
three-point correlation function. The relevant formulas can be derived easily
from the discussion of the mass variance in Chap. 2, and will be given below
for the “critical” case when we discuss this case for the counts in magnitude.

For the case of a simple fractal distribution with dimension D and average
conditional density

〈n(r)〉p =
DB

4π
rD−3

we obtain qualitatively different behaviors (see Chap. 4):

〈N(<R; >LV L)〉p = BRD

∫ ∞

L

∫∫
V L

φ(L)dL

(10.2)

σ2
p(R;>LV L) ≡ 〈N2(<R; >LV L)〉p − 〈N(<R; >LV L)〉2p

〈N(< R;> LV L)〉2p
∼ const. ,

on scales sufficiently large that shot noise can be neglected.
There are thus two different basic tests which can be performed with

number counts to probe the underlying distribution. On the one hand, by
measuring the average conditional counts, the fractal dimension may be es-
timated. On the other hand one can study the fluctuations, and we expect a
qualitatively different behavior in the case of a fractal or homogeneous distri-
bution. For a fractal we expect that fluctuations from a single observer with
respect to the average are (almost) proportional to the average itself at any
scale (see Chap. 4), i.e. the relative fluctuations are approximately constant
as a function of scale, in contrast to the decay of this quantity in any homoge-
neous distribution. This difference just comes from the fact that in a fractal
there are large scale-invariant fluctuations (and in particular large voids) at
all scales, while in a homogeneous distributions fluctuations and correlations
have a characteristic scale, and become small as one goes to scales larger
than the homogeneity scale. Thus this is a very clear cut test which can in
principle be used to distinguish the two cases (or variants thereof).
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10.3 Number Counts as a Function
of Apparent Magnitude

In this section we discuss the counts of galaxies as a function of apparent flux
(or apparent magnitude) and their fluctuations. These are interesting statis-
tical quantities to determine in view of the fact that angular galaxy catalogs
contain millions of objects and can sample volumes of great depth of space.
Despite the fact that there is the intrinsic convolution of space and luminosity
properties which is difficult to disentangle, one can perform a series of tests
to probe the intrinsic character of fluctuations in these samples. To this end
we now derive the expected behavior of the average counts and their variance
for different categories of distributions. For clarity we consider the Poisson
case separately first, as it contains most of what is needed to understand the
behavior in the more general homogeneous case with correlation. Secondly we
consider both the cases of a pure fractal distribution and homogeneous distri-
butions with critical fluctuations. In all cases we will use the approximation
(8.2) of statistical independence between the position and the luminosity of
a galaxy (we will go beyond this hypothesis in the next chapter). Moreover
we will call N(> f) the stochastic number of galaxies with an apparent flux
larger than f , and with

n(f) = −dN(> f)/df

the stochastic density of galaxies with a flux f .

10.3.1 Poisson Distribution

Let us now suppose to have an ensemble of angular catalogs, where we may
estimate the ensemble average. The ensemble conditional average number of
galaxies 〈n(f)〉pdf with apparent flux in the interval [f, f + df ] is then given
with complete generality by

〈n(f)〉p =
∫ ∞

0

∫∫
dLφ(L)

∫
d3r〈n(r)〉pδ

(
f − L

4πr2

)
, (10.3)

where the spatial integral is over all space. For the conditional integrated
number of galaxies with flux larger than f (averaged over an ensemble of
realizations) we simply have

〈N(> f)〉p =
∫ ∞

f

∫∫
df ′〈n(f ′)〉p =

∫ ∞

0

∫∫
dLφ(L)

∫
d3r〈n(r)〉pΘ

(
L

4πr2
− f

)
,

(10.4)
where Θ(x) is the Heaviside step function.

Let us now make the assumption that the galaxies are spatially distributed
as an isotropic Poisson particle distribution (see Chap. 2) of average number
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density n0 > 0. We know that in this case 〈n(r)〉p = n0 at any r, therefore
from (10.4) we have that

〈N(> f)〉p =
∫ ∞

f

∫∫
df ′〈n(f ′)〉p = n0C1f

− 3
2 , (10.5)

where
C1 =

1
3
√

4π

∫ ∞

0

∫∫
dLφ(L)L3/2 . (10.6)

If for φ(L) we use the usual Schechter function (8.3), then C1 will be depen-
dent on its luminosity cut-off L∗ and the normalization amplitude A. Thus
the conditional average differential counts are given by

〈n(f)〉p = − d

df
〈N(> f)〉p =

3n0

2
C1f

− 5
2 . (10.7)

The average value of the square of the integrated counts is given with
complete generality by

〈N2(> f)〉p =
∫ ∞

0

∫∫
dL1

∫ ∞

0

∫∫
dL2φ(L1)φ(L2) (10.8)

∫
d3r1

∫
d3r2〈n(r1)n(r2)〉pΘ

(√
L1

4πf
− r1

)
Θ

(√
L2

4πf
− r2

)
.

Since in an isotropic Poisson distribution 〈n(r1)n(r2)〉p = n2
0 +n0δ(r1 −r2),

by using also (10.5), we obtain

〈N2(> f)〉p − 〈N(> f)〉2p = n0C2f
− 3

2 , (10.9)

where we have defined

C2 = 4π
∫ ∞

0

∫∫
dL1

∫ ∞

0

∫∫
dL2φ(L1)φ(L2)

∫ ∞

0

∫∫
dxx2Θ

(√
L1

4π
− x

)
Θ

(√
L2

4π
− x

)
x .

(10.10)
With φ(L) as given by (8.3) C2 depends on L∗ and A.

From (10.5) and (10.9) we obtain that

σ2
p(f) ≡ 〈N2(> f)〉p − 〈N(> f)〉2p

〈N(> f)〉2p
=

C2

C2
1

1
n0

f
3
2 . (10.11)

Thus in the limit f → 0 we find that σ2
p(f) decreases as f

3
2 . This is just the

flux counterpart of the well known law δN/N ∼ N−1/2 ∼ r−3/2, describing
the decay of the Poisson noise in real space (see Chap. 2), but now translated
into the space of apparent flux.
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We can easily convert these expressions into magnitude space. From (8.9)
we have f = K · 10−0.4m where K is a constant (see (10.31) below). Hence
we have (see Fig. 10.1)

〈N(< m)〉p = n0C1K
− 3

2 100.6m . (10.12)
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Fig. 10.1. Behavior of the differential average counts n(m) = d 〈N(< m)〉p/dm

(in unit of magn−1deg−2 where the magnitude is measured in bins of 0.2) as a
function of apparent magnitude in a Poisson distribution, where we have used
φ(L) = δ(L − L∗) as luminosity PDF. Note that the exponent of the counts is
α = D/5 = 0.6 as expected. The average is performed over 100 angular fields of a
single realization

Analogously, from (10.11) we easily obtain the normalized conditional
variance in magnitude space:

σ2
p(m) =

〈N2(< m)〉p − 〈N(< m)〉2p
〈N(< m)〉2p

=
C2

C2
1

K
3
2

n0
10−0.6m , (10.13)
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This quantity is thus exponentially decreasing, a behavior which should be,
in principle, easy to detect in real samples if one has a sufficiently large range
of magnitudes available (see Fig. 10.2).
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Fig. 10.2. Behavior of the square root of the normalized conditional variance
(10.13) as a function of apparent magnitude in a Poisson distribution (for details
see the caption of the previous figure)

10.3.2 Simple Fractal Distribution

Let us now consider the case of a fractal distribution. For this calculation we
need to use the full three-point correlation function (or two-point conditional
density) whose expression is unknown for the general case. Hence firstly we
write the general expressions and then we use a simple approximation for
the two-point conditional density as in Chap. 4 (see [34]) to determine some
useful quantities to be compared with observations.

For the average counts, by considering (10.4) as for the Poisson case, and
using (9.21), we readily obtain that for a fractal with dimension D

〈N(> f)〉p = Q1f
−D

2 , (10.14)
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where we have defined

Q1 =
B

(4π)
D
2

∫ ∞

0

∫∫
dLφ(L)LD/2 . (10.15)

Analogously to the Poisson case, with φ(L) given by (8.3) Q1 depends on
A and L∗. Clearly in the limit D = 3 we recover (10.5) and (10.6) with
n0 = DB/(4π) for the Poisson case. By using again f = K 10−0.4m, it is
straightforward to derive the behavior in magnitude space

〈N(< m)〉p = Q1K
−D

2 10
D
5 m . (10.16)

The difference with respect to the Poisson case, and in general with respect
to any correlated homogeneous particle distribution, lies in the slopes of the
counts: in the fractal case the increase of the counts with apparent magnitude
is slower since the system is, on average, emptier. The pre-factor in (10.16)
has a well-defined constant value, as already discussed in the Poisson case
(see Fig. 10.3).
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Fig. 10.3. Behavior of the differential average counts n(m) as a function of apparent
magnitude in an artificial fractal distribution with dimension D = 2.1, that is
α = D/5 = 0.42 (see Fig. 10.1 for more details)

We can now evaluate the average square value of the counts 〈N2(> f)〉p
using the general relation (10.8). Some hypotheses are necessary in order to
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evaluate the integrals in that equation, and we use the same approximations
as in (4.26)–(4.28) for the two-point conditional density 〈n(r1)n(r2)〉p (see
Chap. 4). Then from (10.4) and (10.8) in this hypothesis we obtain

〈N2(> f)〉p − 〈N(> f)〉2p = Q2f
−D (10.17)

where we have defined

Q2 =
(

DB

4π

)2 ∫ ∞

0

∫∫
dL1

∫ ∞

0

∫∫
dL2φ(L1)φ(L2) (10.18)

∫ √
L1
4π

0

∫∫
dx1

∫ √
L2
4π

0

∫∫
dx2x

D−1
1 xD−1

2

∫
4

∫∫
π

dΩ1

∫
4

∫∫
π

dΩ2g

(
x1

x2
, θ

)
,

where dΩi, with i = 1, 2, is the differential solid angle of xi and θ is the
angle between x1 and x2. Again using for φ(L) (8.3), Q2 will depend on A
and L∗. Equation (10.17) shows the persistent character of fluctuations which
are proportional to 〈N(> f)〉p for any value of f . By passing from f to m
with the usual relation, this can also be explicitly shown by computing the
normalized conditional variance in magnitude space:

σ2
p(m) ≡ 〈N(< m)2〉p − 〈N(< m)〉2p

〈N(< m)〉2p
=

Q2

Q2
1

> 0 , (10.19)

which is independent of m (i.e. f). The value of the constant in this relation
is determined by three-point properties of the fractal (see Sect. 4.4). This
constancy translates in magnitude space the scale-invariant nature of the
fluctuations characterizing every fractal in real space (see Fig. 10.4).

Thus, when normalized to the average, the fluctuations in the number
counts in apparent magnitude are constant as a function of apparent magni-
tude, while in the Poisson case they decrease exponentially. (As mentioned in
a fractal the behavior of such a quantity depends on three-point properties
which control the rate of decrease).

10.3.3 Effect of Long-Ranged Correlations
in Homogeneous Distributions

Let us now finally consider the case in which the system is homogeneous
beyond a certain finite scale with average density n0 > 0, but presents scale-
invariant density fluctuations about the average (the “critical” case of our
classification in Chaps. 2 and 3). This is the case where the correlation length
rc, which is usually defined as the scale beyond which ξ(r) is exponentially
damped (see Chap. 2), is divergent. That is, ξ(r) ∼ r−α where 0 < α < 3 and
ξ(r) < 1 (the case ξ(r) � 1 can be included in the previous fractal behavior).

Recall (see Chap. 2) that in the definition of l-point conditional densities
for any l the contribution of the origin of coordinates is not considered, so
that
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Fig. 10.4. Behavior of the square root of the normalized conditional variance σ2
p(m)

as a function of apparent magnitude in a fractal distribution. The different lines
correspond to different realizations of the same particle distribution with fractal
dimension D = 2.1 in d = 3. At bright magnitudes there is the additional con-
tribution from Poisson noise (i.e. shot noise) due to sparseness of points, while at
faint (large) magnitudes one observes only the effect of the intrinsic scale-invariant
fluctuations of a fractal making the variance almost constant in m

〈n(r)〉p = n0[1 + ξ(r)] . (10.20)

In this case the density fluctuations around the average are scale-invariant
and a density field ρ(r), defined by

ρ(r) = [n(r) − n0] , (10.21)

can be considered as like a fractal field whose 1-point conditional density is
n0ξ(r) ∼ r−γ , and D = 3 − γ is the fractal dimension. For the same reason
the quantity

〈(n(r1) − n0) (n(r2) − n0)〉p = n2
0

[
ξ̃(r12) + ζ(r1, r2, r12)

]
(10.22)

is analogous to the two-point conditional density of the fractal case. Therefore
one can impose the equivalent of (4.26)–(4.28) to the present case:

ξ(r12) + ζ(r1, r2, r12) = ξ(r1)ξ(r2)L(r1/r2, θ) , (10.23)
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where θ is the angle between r1 and r2, and L(r1/r2, θ) is the lacunarity
function of the fractal fluctuation field (see Chap. 4). Thus we can write

〈n(r1)n(r2)〉p − 〈n(r1)〉p 〈n(r2)〉p = n0δ(r1 − r2) +

n2
0ξ(r1)ξ(r2)g(r1/r2, θ) , (10.24)

where the term in δ(r1 − r2) is due to the diagonal part of ξ̃(r12) and
g(r1/r2, θ) is related to the lacunarity function through (4.27). As shown
below, this term is important only for γ ≥ 3/2 (i.e. D ≤ 3/2). In the case of
a purely fractal point distribution this contribution, due to the constant and
positive background density, was omitted because in that case it is always
irrelevant at sufficiently large scales. At this point we can evaluate count fluc-
tuations around the average both in a spatial VL sample (for large R) and a
flux limited one (for small f).

First of all, we obtain (considering only the dominant contribution):

〈N(<R; >LV L)〉p ∼ R3 (10.25)

and
〈N(> f)〉p ∼ f− 3

2 . (10.26)

Moreover, if γ < 3/2, we have

σ2
p(R) ∼ R−2γ and σ2

p(f) ∼ fγ , (10.27)

while if γ ≥ 3/2 the contribution from δ(r1 − r2) in (10.24) dominates, and
the same result as in the Poisson case is obtained.

In terms of magnitude one finds:

σ2
p(m) ∼ 10−0.4γ m for γ < 3/2

(10.28)
σ2

p(m) ∼ 10−0.6m for γ ≥ 3/2 .

Therefore, also in the case of a homogeneous, but long-range correlated, point
distribution, the normalized fluctuations of the counts around the average
decay exponentially with apparent magnitude. We have only a difference of
the decay rate for the two cases γ ≥ 3/2 and γ < 3/2. In the former case,
because of the rapid decay of ξ(r) at large scales, the behavior is the same as in
the Poisson case without correlations. The same behavior is also found in the
case of more rapid decay of ξ(r). In the latter case the damping of normalized
fluctuations is slower as correlations become important. Clearly for both cases
the average counts should behave as 100.6m. We conclude that the only case
in which persistent and scale-invariant normalized counts fluctuations can be
observed, is the case of a purely fractal point distribution extending to the
probed scales [90].
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10.4 Normalization of the Magnitude Counts to Real
Space Properties in Euclidean Space

In this section we consider the normalization of counts of galaxies as a func-
tion of distance in a VL sample to the counts as a function of magnitude
in a flux-limited catalog. We will treat explicitly the case of a pure frac-
tal distribution with fractal dimension 0 < D < 3 and average conditional
density

〈n(r)〉p =
DB

4π
rD−3 .

With D = 3, and by using that

DB

4π
= n0 ,

we obtain the behavior of a Poisson particle distribution of average density
n0 (i.e. 〈n(r)〉p = n0). Moreover we will again make use of the approxima-
tions (8.2) and (8.3) consisting in the statistical separation of position and
luminosity of all galaxies, and the assumption of the Schechter function for
the luminosity PDF.

This is an interesting exercise which can be useful for the study of galaxy
counts at bright apparent magnitudes and low redshifts. We derive in this
case some useful formulas for the analysis of real samples. Note that for higher
redshift (z > 0.1) and faint apparent magnitudes (m > 16) one has to take
into account relativistic corrections which we have not considered here. In
Appendix C we discuss both the distance redshift and magnitude redshift
relations in FRW models.

10.4.1 Average Distance

By using (8.2) and (8.3) it is simple to show that the average distance r(f)
which can be associated to a galaxy of observed apparent flux f is (in the
small redshift approximation z � 1)

r(f) =
4π

∫∞
0

∫∫
ALδe−

L
L∗

∫∞
0

∫∫
drBrDδ

(
f − L

4πr2

)
4π

∫∞
0

∫∫
ALδe−

L
L∗

∫∞
0

∫∫
drBrD−1δ

(
f − L

4πr2

) , (10.29)

which gives

r(f) =
ΓeΓΓ

(
D+3

2 + δ
)

ΓeΓΓ
(

D+2
2 + δ

) ( L∗
4πf

) 1
2

, (10.30)

where ΓeΓΓ is the Euler gamma function. The relation between the apparent
flux f and the apparent magnitude m is1 given by [185]

1 The relation between L∗ and M∗MM is given by [185] L∗ = 100.4(M�−M∗)L� where
M�MM = 4.58 is the absolute magnitude of the Sun and L� is its intrinsic luminosity.
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f =
L∗

4π(10 pc)2
100.4(M∗−m) . (10.31)

We can re-express (10.30) in terms of m by denoting, for simplicity, the
average distance r(m) = r (f(m))

r(m) =
h

105

ΓeΓΓ
(

D+3
2 + δ

)
ΓeΓΓ

(
D+2

2 + δ
)10−(0.2M∗)10(0.2m) , (10.32)

where, from now on, distances are expressed in Mpc/h. For example, by
taking M∗MM = −19.5, h = 1, δ = −1 and D = 2.5 we have

r(m) = 0.08 · 10(0.2m) . (10.33)

Using instead D = 3 (Poisson case) the pre-factor in (10.32) changes, and we
obtain

r(m) = 0.09 · 10(0.2m) . (10.34)

which is of the same order of magnitude. Hence the pre-factor is a slowly
varying function of the fractal dimension.

10.4.2 Normalization of Distance to Magnitude Counts

Let us now consider the normalization of the counts in space to the ones
in apparent magnitude. By differentiating (10.14) with respect to f , and
using (8.3), the average differential number counts of a system with fractal
dimension D, per steradian, can be written as:

〈n(f)〉p =
d〈N(f)〉p

df
=

DB

4π

1
2(4π)D/2

L
δ+ D+2

2∗ C1f
−D+2

2 (10.35)

where we have defined

C1 = ΓeΓΓ

(
δ +

D + 2
2

)
. (10.36)

The average distance r(f) associated to the apparent flux f is given by
(10.30), which we can rewrite as

r(f) =
C2CC

C1

(
L∗
4πf

) 1
2

. (10.37)

where

C2CC = ΓeΓΓ

(
D + 3

2
+ δ

)
. (10.38)

By differentiating (10.37) and inverting the relation, we obtain
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df(r)
dr

=
−2L∗
4πr3

(
C1

C2CC

)2

. (10.39)

Let us now define 〈N(r)〉ML
p = 〈N(f(r))〉p, where f = f(r) is given by solving

(10.39), and where we have used the superscript ML to refer to a magnitude
limited sample. We can then write

d〈N(r)〉ML
p

d〈r〉 ≡ d〈N(f)〉p
df

df

d〈r〉 =
DB

4π
Lδ+1
∗

(
C1

C2CC

)−D

C2CC 〈r〉D−1 . (10.40)

Now, assuming (8.2) and (8.3), and considering the case that we observe
all galaxies without any limit on the absolute magnitude (indicated with the
superscript all), we have

1
4π

d〈N(r)〉p
dr

all

=
B

4π
rD−1ALδ+1

∗ C3CC , (10.41)

where
C3C = ΓeΓΓ (δ + 1) . (10.42)

In a real VL we have a cut-off in absolute magnitude and hence

1
4π

d〈N〉V L
p

dr
=

CV L
4C

C3CC

1
4π

d〈N〉all
p

dr
(10.43)

where
CV L

4C =
∫ ∞

L

∫∫
V L

φ(L)dL . (10.44)

Hence from (10.43) and (10.40) we obtain that

d〈N〉ML
p

dr

(
1
4π

d〈N〉V L
p

dr

)−1

=
(

C1

C2CC

)−D

C2CC

(
1

CV L
4C

)
≈ 1

CV L
4C

(10.45)

as C1 ≈ C2CC ≈ 1 . By using (10.45) we can transform the galaxy counts as
a function of apparent magnitude into counts as a function of the (average)
distance and then we may normalize them to the counts in a VL sample.
This is a further test to check the consistency of the assumption in (8.2), and
possibly, to extend the real space analysis to magnitude space.

10.5 Galaxy Counts in Real Catalogs

We now turn to real data, considering the counts in real space first before
turning to the much more copious magnitude space data. Just as in the
previous chapter we do not attempt to treat here exhaustively the data avail-
able which can be used to give observational constraints on these quantities.
Rather we take some representative data sets which give an indication of the
typical results which can obtained from current data.
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10.5.1 Real Space Counts

For this case we consider the same survey – the CfA2 survey – which has
been presented in some detail in Sect. 9.6 of the previous chapter. We have
cut a given VL sample (limited by M ≥ −19.5) in several angular slices, with
similar solid angle, and we have considered the behavior of the integrated
non-average radial counts in each of the slices. Then we have performed the
average between the various determinations (each normalized to its solid
angle). The results (see Fig. 10.5) show a highly fluctuating behavior. The
best-fit slopes of the counts in the individual samples vary in the range from
2 to 3.5 (depending also on the range of scale considered) with an average
slope D ≈ 2.6 obtained through a best fit of the exponent of a single power
law. The behavior of the fluctuations is quantified in Fig. 10.6, which shows
the conditional variance as a function of scale, calculated using the same
set of samples. The conditional variance shows an almost constant behavior
up to about 20 Mpc/h. It then decreases up to around 50 Mpc/h with a
scaling as a function of distance similar to that of a Poisson distribution,
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Fig. 10.5. Behavior of the radial counts of galaxies (10.2) per unit of solid angle
(deg−2) as a function of the radius (measured in Mpc/h) in a VL sample of the
CfA2 survey (in this case MV LMM = −19.5). The different lines correspond to different
angular slices of the survey, while the line labeled with “average” represents the
average behavior and its best fit with a single power law gives an effective fractal
dimension D = 2.6. Note the highly fluctuating behavior of these counts over most
of the range, with some suggestion of a decrease in their amplitude as the sample
depth (∼100 Mpc/h) is approached
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Fig. 10.6. Behavior of the square root of the normalized conditional variance (10.2)
of the radial counts of galaxies in the VL sample shown in Fig. 10.5 of the CfA2
survey. For comparison the behavior is given for a Poisson distribution in a sample
with the same geometry and the same number of points

possibly due to a sparseness effect in the observation from a single observer.
It then stays constant between 50 and 70÷80 Mpc/h, indicating possibly the
persistence of some strong irregularity, and finally it shows further decrease
in the last bins. Whether this decrease is a sign of a transition toward a more
homogeneous and uniform behavior on larger scales, or whether it is just a
local non averaged large scale fluctuation (e.g. a coherent wall) cannot be
determined from this single sample.

In Chap. 9 we saw evidence from the analysis of real samples with the
conditional density of scale invariance characterized by a fractal dimension
D ≈ 2, extending at least up to a scale ∼20 Mpc/h. What we see here in
the number counts probes scales which are slightly larger. What we find
could be indicative of a continuing scale invariance up to ≈40 Mpc/h. The
average number count shows, however, a best-fit with a single power law
to a fractal dimension which is significantly larger, with D ≈ 2.5. This can
be indicative of either a slow transition to homogeneity or as a cross-over
between two different fractal regimes. We will see that the same higher slope
is also indicated by the number counts in magnitude space.

In interpreting these results it has to be remembered that the number
counts are un-averaged over observers, in contrast to the conditional density
estimations in VL samples (as explained in Chap. 9) which are effectively
number counts averaged over many different observers (for different regions
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of the sky, for the regime in which our results are robust). Thus they are
less reliable probes of the average behavior. Further they are more sensitive
to many systematic errors: in particular the slope of the counts relative to
the observer can be changed by any systematic effect which depends on the
distance from the observer. For example Teerikorpi et al. [228] have studied,
using the KLUN sample of 5171 spiral galaxies with Tully-Fisher distance
moduli, the radial space distribution of galaxies out to a distance of about
100/h Mpc. They have used a method based on photometric Tully-Fisher
distances, independent of redshift, to construct the number density distribu-
tion. The result is that at larger distances the radial distribution shows a
dimension about D = 2.2.2

On the other hand, while such a systematic effect could be at the origin
of the difference in the observed effective fractal dimension, it would not be
expected to have any effect on the behavior of the fluctuations. It is not
difficult to show that such a continuous rescaling of distances with respect
to the origin should leave the qualitative behavior (constant or decreasing in
m) of the conditional variance unchanged: what these behaviors depend on
is how the fluctuations behave as a function of the number of points in the
volume probed.

However, apart from the fact that the known effects of this kind (cosmo-
logical and k-corrections discussed in Appendix D) should not be important
at the distance scales we are discussing, there is some further evidence that
the increase of effective dimension found by fitting the counts through a sin-
gle power-law may indeed be a real average behavior: In particular we note
that, in two real samples which allow one to access with the average condi-
tional density slightly larger scales than the CfA2 sample, we have used for
our “robust” constraint in the previous chapter, one finds an indication for
a similar flattening [223]. In Figs. 10.7–10.8 are shown results for averaged
quantities in the LEDA database [176] and the PSCZ redshift survey [209].
In both cases a change in the behavior, consistent with what we see in the
number counts, is observed around 20 Mpc/h.

Applying the same strict criteria as in the previous chapter to these
last two samples – imposing that the behavior must be averaged over non-
overlapping regions – reduces however the “robust” range to only slightly
above the scale of ∼20 Mpc/h. Our conclusion is thus that we need to see if
this behavior is found in larger forthcoming surveys, in particular the SDSS
survey over a significant portion of the sky.
2 In [19] a method is developed to estimate the fractal dimension based on the

consideration of the behavior of non-averaged galaxy counts in one-dimensional
cylinders which has the advantage that it allows to probe very deep distances.
The average, as for the angular case, can be performed over many cylinders.
The fractal dimension is estimated to be D = 2.1 ± 0.1 for a cylinder of length
100Mpc/h.
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Fig. 10.7. The conditional average density Γ ∗(r) for samples constructed from the
LEDA database [176] cut in apparent magnitude at m = 14.44. At scales larger than
20Mpc/h, there is an apparent change of slope with a best fit fractal dimension
D ≈ 2 interpolating to D ≈ 2.5 at larger scales. While the first slope at small scale
is well defined for more than a decade, the range of scales is very limited at large
distances and finite size effects – due to systematically poorer averaging at larger
scales – may be important. Larger surveys, in particular the SDSS survey, will allow
unambiguously to determine if this is the real average behavior or a cross-over to
homogeneity. (Adapted from [67])

Let us remark finally on the evidence we see in Figs. 10.5–10.6 for a
decrease of the fluctuations toward the sample size: all the subsamples appear
to converge just at the limits of the sample to a common number density, with
a suggestion also of a larger slope. This kind of behavior would be indicative
of a greater degree of homogeneity at this scale. We note however that there
is still a large variance – of order unity – at this scale. Further examination
of the sample also shows that the notable increase in the counts at this depth
corresponds in fact to a single feature in this sample – a large structure known
as the Perseus-Pisces super-cluster. Thus what we observe could not appear
to characterize an average behavior of the sample. Once again to conclude
on the indications for a tendency to homogeneity we see in the range we can
probe with these counts – up to ∼100 Mpc/h, we believe it is appropriate to
await the determination of truly averaged quantities at this scale from future
data.
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Fig. 10.8. The average conditional number of galaxies 〈N(< R)〉p in balls of radius
R (which is equivalent to the integral of Γ ∗(r) in the same sphere) for a VL sample
from the PSCZ redshift survey [209]. Again in this case there is evidence for a
change in slope consistent with that seen in Fig. 10.7

10.5.2 Magnitude Space Counts

Counts of galaxies as a function of apparent magnitude are among the most
time-honored observations in cosmology [117, 118]. For a long time their de-
termination has been considered to be of great importance to cosmology, as a
potentially powerful test to measure the global geometry of the universe: we
discuss here only the Euclidean case, valid for the modest depths to which we
limit ourselves, but in more general one can predict the expected behavior of
the average counts in different cosmological models, which predict deviations
from the Euclidean counts at very large scales. After many years of extensive
programs of observation, this promise has not been fulfilled as many more
fundamental problems with the interpretation of (average) number counts
have emerged: the data cannot be explained to a first approximation, over
any range of scales, by any purely cosmological model with a well defined
mean density of galaxies, but rather the data must be interpreted in terms
of an evolution – originally unanticipated – of the relevant galaxy popula-
tions. For example the mismatch between the bright (near) and the faint
(far) counts is a long-standing problem. This leads to the hypothesized faint
blue galaxy excess (e.g. [99]): if one normalizes the counts with the ampli-
tude of the luminosity function found in nearby redshift samples, one must
postulate the existence of a very large population of faint blue galaxies to
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explain the faint end data in the B-band. This problem is reflected in the
uncertainties in the determination of the amplitude of the galaxy luminos-
ity function parametrized as a power-law followed by an exponential cut-off
φ(L) = φ∗Lδ exp(−L/L∗) (see Chap. 11) which has three free parameters.
Over the past two decades there have been numerous estimates of these pa-
rameters (see e.g. [146] for a recent discussion) with the result that the expo-
nent δ is determined with good precision (∆δ/δ ≈ ±0.15) while the typical
luminosity shows a significant variation of about 40%, and of the normaliza-
tion of about 50%. For this reason our knowledge of the average luminosity
density has an uncertainty of about 60% (see discussion in Chap. 8).

In this analysis of number counts, just as in the ξ(r) analysis of redshift
surveys, the underlying assumption of homogeneity is always made, i.e. it is
always assumed that the number count of galaxies, without taking evolution
into account, should be that of a homogeneous population. When fluctua-
tions due to large scale structure are considered, it is in the framework of
distributions with a well defined mean density at the scales probed. Thus, for
example, many attempts have been made to explain the large variation of the
amplitude of the luminosity function, known as the normalization problem,
both theoretical by [78, 131] and observational by [69, 146, 158, 162, 163],
but always within the framework of an homogeneous (Poisson-like) galaxy
distribution. The possibility is considered that local clustering could be at
the origin of this problem, but then a normalization of the counts at an in-
termediate range of magnitude is sought where in turn it is assumed that the
effect of galaxy large scale structures should be less important.

Alongside these problems in the average counts of galaxies, large fluctu-
ations from field to field in the sky and from survey to survey, both at faint
and bright counts, and in different spectral bands, have been reported (e.g.
[7, 31, 51, 149, 189, 236]). These fluctuations can be as large as a factor of
two. There has been controversy as to whether these fluctuations are due to
real clustering or to differences in the magnitude zero point of the various
surveys [7, 31, 189, 242]. It is, in fact, possible that discrepancies among these
surveys are not due mostly to differences in photometric systems or in data
reduction effects, but rather to real effects, i.e. large scale structures. This is
the possibility which we consider explicitly here.

Before proceeding let us recall what we have found in Sect. 10.3 above:
when relativistic correction, k-corrections and evolutionary effects are ne-
glected (i.e. an approximation which should be valid for the bright end of the
counts) we have the following relation between real-space and magnitude-
space counts: if N(< r) ∼ rD then

N(m) = A10αm = A10
D
5 m (10.46)

where the normalization constant A is related to the parameters of the lu-
minosity function and of the average conditional density. In the case of an
uniform distribution D = 3 and thus α = 3/5 = 0.6. It is clear that if one
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considers the possibility that the exponent α may have a value other than
0.6, and even depends on scale, then the normalization problem takes on a
completely different perspective: at small scales (bright end) one may fit the
counts with a different pre-factor than that obtained by imposing α = 0.6.
This is the procedure that is naturally followed for the counts if one ana-
lyzes them in the broader framework which we have applied to the real space
counts and the conditional average density. An observed value of α other
than 0.6 then gives an indirect measure of the effective fractal dimension,
with a normalization of the luminosity function as described in Sect. 10.3.
On the other hand there may be subtle selection effects, related to errors
in the measurement of apparent magnitudes, which can slightly change the
counts slope, as for example the Eddington bias discussed by [229].

Let us now consider some data sets. The largest and best data sets are
in fact those at the intermediate and fainter magnitudes, which we have im-
plicitly excluded from our analysis. We concentrate on the bright magnitude
data i.e. a range of magnitude which in real space corresponds roughly to
the same range of distances [0,100] Mpc/h where there are complete redshift
data. Unfortunately this data is relatively limited, and not excellent in terms
of its photometric quality. More accurate CCD calibrated data will however
become available in the near future in particular from SDSS.

We consider first the Catalogs of Groups and Cluster of Galaxies (CGCG)
[82, 254] which contains 27,837 objects with mZw ≤ 15.7m, the limit where
Zwicky estimated that this catalog was complete. This is the “target” catalog
used for the measurements of the CfA redshift survey. The north galactic
hemisphere (b > 20◦) has a total solid angle of Ω ≈ 3.6 sr, and the south
galactic hemisphere (b < −20◦) Ω ≈ 1.6 sr. The magnitudes are given in the
Zwicky system and the error is estimated to be 0.3m up to 15.0m, and then
increasing up to ∼1m at the very faint end [23]. We have computed counts
as a function of apparent magnitude in 14 angular fields, which cover the
total solid angle of the survey, and have then calculated their average and
variance, shown in Fig. 10.9. The best fit to the slope up to mZw ≤ 15.0 gives
α = 0.50 ± 0.02 which, interpreted as a measure of the fractal dimension of
the distribution, gives D ≈ 2.5. In the figure we also note that the variance
as a function of apparent magnitude is approximately constant. This result,
interpreted in terms only of intrinsic large fluctuations, as discussed above, is
the behavior expected in strongly irregular and scale-invariant distributions,
and thus gives further grounds for the interpretation of the slope in terms of
the fractal dimension. Further these results are in line with the behavior we
saw in the real space counts in the previous section. In this case, however, we
see no evidence for a decrease in the fluctuations at any scale.

Next we consider the Lyon-Meudon extragalactic database (LEDA) (see
[175, 176, 177, 204]) for which we also gave some redshift space results above.
This survey has a high level of completeness up to an apparent magnitude
BT = 15.0m, where BT is the B-magnitudes reduced in the RC3-system [176].
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Fig. 10.9. Differential number counts n(m) (in unit of magn−1deg−2) in the
CGCG. The slope and error bars have been computed by averaging the counts in
the 14 angular slices considered in this analysis. The best fit for mZw ≤ 15.0 with
slope α = 0.50 ± 0.02 is also reported

Up to this limit the sample contains ≈60000 objects. Paturel and coworkers
have pointed out that the counts do not agree with the “Euclidean” value
of α = 0.6 in a series of papers (see e.g. [175, 204] and references therein)
and they have related such a departure from homogeneity to the presence
of a two dimensional large scale structure (“local super-cluster”) in the local
universe. This point of view qualitatively coincides with the connection of
the counts slope with real space structures, which we may characterize in
terms of the fractal dimension. We have done the same tests as for CGCG,
in this case dividing the total solid angle of ≈10 sr in 20 angular slices 3 of
solid angle Ω ≈ 0.5 sr each. The results of the calculation of the average and
variance of the counts in these regions is shown in Fig. 10.9 for the range
11.5m ≤ Bt ≤ 14.5m. The best-fit slope is α = 0.50±0.02, the same as found
by [204]. This again is consistent with our previous findings, corresponding
to a fractal dimension D ≈ 2.5.
3 We have considered only the sample cut at |b| > 20◦ in order to avoid the region

with high galactic extinction, and we have limited ourselves to BT ≤ 14.4m, in
order to avoid possible systematic errors which may be important at the faint
end (see discussion in [23]).
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Fig. 10.10. Differential number counts (in unit of magn−1deg−2) as a function of
apparent magnitude in LEDA. The average has been performed between 20 angular
slices. The best fit in the range [12m, 14.5m] is also reported. The tendency to a
flattening at faint magnitudes ∼> 15.0m is due to the incompleteness of the sample

Finally we consider another smaller data set, a survey of bright galaxies by
[31] in the blue (16m < BJ < 21m) and red (15m < R < 19.5m) pass-bands
performed over 145 deg2. This is a survey which has much better calibration
properties, as it has been calibrated against a fair density of CCD standards.
The photometric systematic error is ≤0.1m over the whole magnitude domain.
Given these good characteristics the data allows a more reliable study of the
field to field fluctuations. The survey consists of seven fields, four in the
southern galactic cap (SGC) and three in the northern one (NGC). The
southern fields are 90% complete for Bj ≤ 21m and the northern fields are
90% complete for Bj ≤ 20m, and so we have limited the analysis at Bj ≤
20.0m in both the SGC and NGC: up to this limit the survey contains 46663
galaxies. We have computed the integral number counts in each of the seven
fields, and then we have made an average over the different fields (see Fig.
10.11). The average slope of the counts we find is about α = 0.51 ± 0.02 in
the range 15.2m ≤ B ≤ 20m, in agreement with that found by the authors
of the survey in [31]. The fluctuations in Fig. 10.11 show a behavior which
is quite consistent with that we have seen in the previous samples: from
magnitude ≈18m to the limit at ≈20m the amplitude of fluctuations is roughly
constant, with no detectable sign of decrease. The decreasing larger amplitude
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Fig. 10.11. Differential average number counts (in units of magn−1deg−2) as a
function of apparent magnitude in the catalog [31]. The average has been performed
over 7 fields. The best fit in the range [15.2m, 20m] is also reported: its slope is
α = 0.51 ± 0.02

at the very bright end is due to the additional shot noise term (as the number
of points in the field is very small).

All these data sets thus give a possibly consistent picture when interpreted
in terms of scale-invariant distributions, both in terms of the apparent per-
sistence of fluctuations at all scales with an amplitude which is independent
of scale, and in terms of their average behavior which is well fitted by a single
fractal dimension D ≈ 2.5. Many similar results have been published in the
literature and we refer to [146] for a recent review of the subject. It is interest-
ing to note – but beyond our scope to treat in detail here as we have limited
ourselves to the bright end where the interpretation of the counts should be
relatively simple – that at faint end the exponent α deviates from 0.6, but
not in a way which can be explained by cosmological corrections (i.e. by the
non-Euclidean geometry of the FRW models). In fact the whole range from
the bright to the faint end can be fit very well by the same value α ≈ 0.5. The
interpretation of such a behavior in terms of a continuing fractal behavior is
however more delicate, as at faint magnitudes one must necessarily consider
the possible effects of space-geometry, k-corrections and galaxy evolution.

10.6 Summary and Discussion

We have seen in this chapter that number counts, in real and mganitude
space, provide, in principle, a large scale probe of the nature of the underlying
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distribution of galaxies. We have focused on the case that the distances
probed are relatively small (up to ∼100 Mpc/h), as in this case we can ne-
glect effects of the non-trivial geometry of cosmological models, k-corrections
and evolutionary effects in the galaxy distribution. The interpretation of the
counts in this range is then straightforward, probing simply the distribution
of galaxies on this scale. The slope of the counts give a direct measure of
the effective fractal dimension of the distribution, while the fluctuations in
these counts (measured in different fields seen by the observer) give a direct
probe of the fractal or homogeneous nature of the distribution depending on
their behavior as a function of scale or the apparent magnitude: in a pure
fractal particle distribution these fluctuations are independent of scale (also
in apparent magnitude space) while, in any distribution with small fluctu-
ations about a mean density well defined at the scales probed, they decay
(exponentially when expressed in terms of apparent magnitude).

Examining some representative real data we find that a possible consistent
picture emerges: a best-fit fractal dimension of D ≈ 2.5, with the behavior of
the fluctuations in the counts that can be ascribed in principal (and with weak
evidence at the moment) to a fractal-like nature of fluctuations on this scale.
This behavior describes the galaxy distribution at scales starting from a little
larger than those probed by the redshift data we discussed in the previous
chapter, and extends up to ∼ 100 Mpc/h. It is qualitatively consistent with
that observed in these samples, but the measured fractal dimension is larger,
meaning either a cross-over to a different fractal regime or a slow transition
to homogeneity. Several caveats, however, need to be given: because counts
are not averaged over different observers (in contrast to the redshift data
analyzed with the conditional density) it is quite conceivable that this is
not a true average behavior, but represents a local fluctuation around us. In
this case, we emphasize, the conclusion is still that the galaxy distribution is
characterized by large fluctuations at this scale (∼100 Mpc/h) and thus that
it is essential to use the statistical instruments (which do not build in the
assumption of homogeneity) we have introduced to characterize it in this and
the preceeding chapters. Further, as mentioned, it must be born in mind that
there may be other, purely observational, systematic effects which could be
at the origin of such observed large fluctuations e.g. magnitude calibration
problems (see also [229]). This is an issue about which there has been a
certain amount of controversy [7, 31, 189, 242]. Observations forthcoming in
the next years will allow us to determine with much greater reliability in a
well averaged way the correlation properties of the galaxy distribution up
to several hundred Mpc/h, and these questions will decisively be answered.
What is learned from this about the relation between number counts and
averaged quantities will be of great use also in attempts to use number counts
to extend constraints on the galaxy distribution to even larger scales.



11 Luminosity in Galaxy Correlations

11.1 Introduction

Galaxy luminosities vary over many orders of magnitude, with typical sur-
veys sampling galaxies with absolute magnitude in the range [−12,−23]. In
Chaps. 8 and 9 we have discussed solely the spatial correlation properties of
galaxies, without considering explicitly their luminosity (other than in the
construction of volume limited samples). In Chap. 10 we have analyzed also
the problem of number counts in apparent magnitude space. However in all
three chapters we have made the assumption that spatial position and lumi-
nosity are uncorrelated i.e. we have made the assumption given in (8.2) of
Chap. 8 of separability of the dependence on space position and luminosity.
We mentioned that such an assumption is in fact, for what we have done
so far, a good approximation. It is well known, however, that it is not valid
absolutely. That luminosity – and other galaxy properties such as morphol-
ogy – are correlated with position is in fact well known: for example larger
(brighter) galaxies are found preferentially in clusters, while smaller (fainter)
galaxies do not show such a tendency.

In this chapter we discuss a more general framework which allows an anal-
ysis of galaxy correlations without this assumption. This approach is based
on the concept of multifractality discussed in Chap. 5. This is a mathematical
framework which allows one to detect and characterize how luminosity and
space correlation properties are intertwined. In particular it links together in
a broader picture the two principal quantities we have considered for space
and luminosity properties, the conditional average density and the luminosity
function (LF). As in Chap. 8 we focus on the low redshift range, and we do
not discuss the complexities of higher redshift where effects such as evolution
and relativistic ones are expected to become important.

The important point about this formalism is that it allows, as in the
previous chapters, the study of correlation properties without the prior as-
sumption of homogeneity. We can characterize with it the luminosity depen-
dence of clustering, even when this clustering is strong, associated with large
fluctuations at the scale of the sample. The crucial point in this respect is
that in this case the quantities of interest are scaling exponents rather than
amplitudes. Luminosity dependence of clustering is described by a spectrum
of (multifractal – MF) exponents, and not by a different amplitude of the
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reduced two-point correlation function. As we discussed in Chap. 9 the stan-
dard analysis with the reduced two-point correlation function gives the latter
kind of description of the dependence on luminosity. In particular the phe-
nomenon of “luminosity segregation” or “luminosity bias” corresponds to
the observation that r0 (which is directly related to the amplitude of the
reduced two-point correlation function) varies for different luminosities. As
we have discussed at the end of Chap. 9 such a variation in amplitude can
be interpreted also as a possible manifestation of the fact that the different
samples have different densities, because the underlying distribution still has
large fluctuations at the corresponding scales. We will return to this question
in the next chapter, where we discuss the interpretation of a very similar
phenomenon in catalogs of galaxy clusters.

11.2 Standard Methods for the Estimation
of the Luminosity Function

Before discussing the MF description let us briefly review the standard meth-
ods usually adopted for the estimation of the galaxy luminosity function.
There are several methods to determine the LF, defined as the number of
galaxies of luminosity L per unit of volume and of luminosity. [32]. In some
cases, special emphasis is placed on the systematic differences in the LF for
the various Hubble types1. Here we are interested in the determination of the
general LF defined as the sum over all Hubble types. All the methods we are
going to describe in this first section are based on the assumption that the
luminosity and space density are not correlated.

The so-called classical method to determine the LF is based on the a-priori
hypothesis of homogeneity (spatial uniformity) of the galaxy distribution in-
side a given sample: the average density n0 of galaxies in space is constant and
well defined and correlations can be neglected, i.e. one assumes (8.4). Under
this assumption one just makes a histogram normalized to the observed num-
ber of galaxies with absolute magnitude in a given range and from it derives
the LF. This method is clearly highly sensitive to spatial inhomogeneities and
correlations in the distribution of galaxies which may distort the shape of the
LF and cause n0 to fluctuate from sample to sample. For this reason many
authors in the past excluded a region of a given catalog containing strong
“inhomogeneities” in the galaxy distribution (e.g. the Virgo cluster [85]).

More refined methods to measure the LF aim to separate the determi-
nation of the shape from that of the amplitude, i.e. one uses the less strin-
gent condition given by (8.2) rather than (8.4), so that φ(L) is a normalized
PDF, i.e. with unit integral over all luminosities. The so-called inhomogeneity-
independent methods have been developed with the aim of determining only
the shape of the LF. The basic idea is to consider the ratio of galaxies having
1 This refers to Hubble’s classification of galaxy types.
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intrinsic luminosity between L and L + dL to the total number of galaxies
brighter than L. If one assumes the statistical independence of space and
luminosity distributions (8.2) then one can derive that

dV dL〈ν(L, r)〉p
dV

∫∞
L

∫∫
dL′〈ν(L′, r)〉p

=
dL 〈n(r)〉pφ(L)

〈n(r)〉p
∫∞

L

∫∫
dL′φ(L′)

=

dLφ(L)
Φ(L)

= −d log Φ(L) , (11.1)

where now φ(L) is a normalized PDF with amplitude independent of the
average density of galaxies and where we have called

Φ(L) =
∫ ∞

L

∫∫
dL′φ(L′) .

By measuring the first expression of (11.1), with the hypothesis of statistical
independence between spatial coordinates and luminosity of galaxies, one
can obtain directly Φ(L), and by simple differentiation φ(L). Note that this
method is valid also if the spatial distribution is fractal (i.e., 〈n(r)〉p ∼ rD−3))
provided the correlation between space and luminosity distributions can be
neglected.

Usually this LF is then fit by an analytic function. The most popular fit is
the one proposed by Schechter given by (8.3) [211] where the experimentally
determined parameters are L∗, the cut-off, φ∗, the normalization constant2

and δ the exponent. The LF has been measured by several authors in different
redshift surveys and the agreement between the various determinations in
very different volumes is excellent. Typical current best fit parameters are
δ = −1.23 and M∗

bjMM + 5 log h = −19.72 (see [146] for an up to date review).
Other more sophisticated methods have been introduced more recently to

fit the observations of the luminous distribution of galaxies. For example a
maximum likelihood method which allows for a generic LF shape and which
can take into account also evolutionary effects, and measurements uncertain-
ties [33]. The overall normalization cannot however be determined by this
procedure. For this purpose a method called minimum variance estimation
is often used [54]: this method requires in fact both the assumption of in-
dependence between space and luminosity distributions, given by (8.2), and
the assumption that the average space density is a well defined quantity well
inside the samples considered.

11.3 Multifractality, Luminosity and Space Distributions

Observationally, there are many indications that the location of certain galax-
ies is correlated with their intrinsic luminosity: the different distribution of
2 When the assumption of purely Poisson distribution is made – i.e. when (8.2)

is replaced by (8.4). In the more general case of (8.2) the amplitude is just a
normalization factor such that the LF becomes a PDF.
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bright elliptical and faint spiral galaxies mentioned in the introduction being
one of the most evident cases. However from a statistical point of view one
usually does not take into account the possible correlation between space and
luminosity distributions. This case can be studied quantitatively with the MF
formalism. The MF analysis proceeds now along the lines explained in Chap.
5: the microscopic density function can be written as

µ(r) =
N∑
i

µiδ(r − ri) (11.2)

where the sum is extended to the N objects (galaxies) contained in a given
volume and µi is the weight of the ith point located at ri. The weights are
thus taken to be proportional to the intrinsic luminosities of the galaxies and
normalized so that

∑N
i µi = 1. By using the MF technique one can then

measure the spectrum of exponents f(α) and the generalized MF dimensions
D(q). This approach has been applied in some galaxy catalogs [47, 223] and
the result is that there is evidence for MF, albeit weak due to the small num-
ber of points in the samples analyzed. Let us now see the usefulness of the MF
in relation to the various statistical and morphological properties of galaxy
clustering: in this context the strongest (weakest) singularities correspond to
the most (less) luminous galaxies.

The relation between the properties of the f(α) spectrum and real space
correlations is straightforward. The exponent that describes the (power-law)
behavior of the number density (i.e. the conditional average density discussed
in Chap. 9 of the microscopic density (11.2) with all µi = 1) is given by D−3
where D is the fractal dimension, of the support (see Chap. 5) of the MF
distribution. Therefore, in terms of the multifractal spectrum of dimensions,
it is given by D(0) − 3 which is related to the maximum of f(α): clearly
this includes the possibility of having D(0) = 3, i.e. an homogeneous and
uniform support. Varying α one may explore the different singularities of the
distribution, i.e. the correlation properties of different types of galaxies.

A simple way to understand the MF behavior is shown in Fig. 11.1: by
defining a threshold in the measure and considering only those singularities
which lie above it, we select only the largest peaks in the measure distribution:
the set defined by these peaks has a different fractal dimension to that of the
set defined by the entire distribution, or any other set defined by a different
threshold. If the distribution is MF the fractal dimension decreases as the
threshold increases3: in fact, given that the generalized MF spectrum is, in
3 We note that, strictly speaking, the presence of the cut-off in the threshold

can lead (for a certain well defined value of the cut-off itself) to the so-called
multiscaling behavior of the MF measure [135]. In fact, the presence of a lower
cut-off in the calculation of the generalized correlation function affects the single-
scaling regime of χ(ε, q) for a well determined value of the cut-off αcut−off such
that αcut−off < αc, and this function exhibits a slowing varying exponent pro-
portional to the logarithm of the scale ε.
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Fig. 11.1. Simple example of a multifractal measure in one dimension. The
strongest singularities lie in the largest clusters. The multifractal spectrum is com-
puted in a way substantially equivalent to changing the measure (i.e. luminosity)
threshold, i.e. by selecting peaks of different height

general, convex with the maximum at the dimension of the support, one
expects that the stronger are the singularities of the field the smaller is their
fractal dimension.

As discussed in Chap. 4 (see Fig. 4.17) the fractal dimension is a measure
of the “intensity” of clustering for fractal objects: The clustering increases
when the fractal dimension decreases. It is in this sense that the clustering
properties of the most massive and luminous elliptical galaxies are different.
In fact, massive galaxies are mostly found in rich clusters while field galaxies
are usually spirals or gas rich dwarfs. These observational properties are
consistent with a MF picture of the galaxy distribution, i.e. with a self-
similar behavior of the whole visible matter distribution. The largest peaks
are located in the largest clusters and they should show correspondingly
a smaller fractal dimension (see Fig. 11.2). This behavior can be related
to the different correlation exponent found by correlation analysis for the
elliptical, lenticular and spiral galaxies: In fact the observational evidence is
that the correlation exponent is higher for elliptical than for spiral galaxies
(see discussion in [220]).

In the MF description of galaxy luminosity-space correlation some well-
known observational facts, e.g. the giant-to-dwarf ratio depends on the envi-
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Fig. 11.2. One-dimensional generalized multiplicative random Cantor set with
compact support (see Chap. 5). One the y-axis it is reported the measure density,
while the x-axis corresponds to the spatial coordinate. Largest fluctuations belong
to large “clusters” and the smaller ones are more uniformly distributed. In the inset
panel it is shown a “zoom” of a small region of the distribution

ronmental density, are naturally described. In fact, dwarf galaxies can belong
to the rich clusters where giants lie, but they can also be in small groups.
Hence what is known in the literature as “morphological-segregation”, i.e. the
fact that galaxies of different type are distributed differently in space, can
be understood precisely in terms of the self-similar character of the whole
matter distribution.

The relationship between f(α) and the LF (measure distribution) has
been discussed in Sect. 5.8: indeed it has been shown that, if the underlying
distribution has a MF nature with a certain f(α) spectrum, the probabil-
ity, once the spatial scale is fixed, of finding an object with singularity µ is
proportional to a power-law function with an exponential cut-off, i.e. whose
shape is very well represented by the Schechter functional behavior: this re-
sult is very weakly dependent on the specific shape of f(α). In this case the
galaxy LF can be interpreted as a complementary aspect of the MF nature
of the galaxy distribution.

Finally it is interesting to note that for a more physical interpretation one
would like to express these properties in terms of galaxy mass rather than
magnitude or luminosity. The mass of each galaxy is generically assumed to
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be related to its absolute luminosity through a relation

M = k(i)Lβ (11.3)

where k is the “mass to light ratio” which depends on the galaxy morpho-
logical type i. In relation to MF properties what is important is that there
is a large range of galaxy masses (varying by a factor of order 106 or more).
The variation of k produces only small effects on a logarithmic scale. The
exponent β, which typically has a value β ≈ 1 [81], is more important. A
different value of β does not change the MF nature of the mass distribution,
but it does modify the parameters of the spectrum [47, 190, 223].

11.4 Summary and Discussion

In this chapter we have applied the MF analysis introduced in Chap. 5 to the
galaxy space-luminosity distribution. Such a scheme gives us a mathematical
framework to treat the full space-luminosity distribution in a unified way
without assuming a-priori that the luminosity and position of galaxies are
uncorrelated, and further without assuming a-priori the spatial homogeneity
of galaxy distribution. The galaxy luminosity function and space density are
then linked to the MF spectrum of generalized exponents. Hence the MF
picture provides a mathematical framework to describe the different strong
clustering of brighter and fainter galaxies: in this context it is natural to ex-
pect that the massive galaxies are mostly located in large clusters, as well as
a number of other properties compatible with observations (e.g. morphologi-
cal segregation). The quantitative characterization of the different clustering
properties of galaxies of different luminosity is therefore expressed in terms of
a spectrum of scaling exponents of the measure density one can associate to
the available set of galaxies rather than in terms of amplitudes of the reduced
two-point correlation function (see discussion in Chap. 4 and Fig. 4.17). In
particular brighter galaxies should have a larger correlation exponent (i.e.
smaller fractal dimension) than fainter ones. This is a new and different per-
spective for the description of the statistical properties of different “peaks”
of the mass distribution with respect to the canonical one where peaks are
given by a selection on a Gaussian field (see Chap. 13). Whether very faint
galaxies, or low surface brightness ones, which are difficult to observe, may fill
the voids of brighter galaxies so that the whole distribution is homogeneous,
is an open problem. This can very well be the case and it would correspond
to the MF measure having a compact support4. However there is observa-
tional evidence [37] that low-surface brightness galaxies are located around
the same structures as bright galaxies.

4 In [71] a simple model of this type is described.



12 The Distribution of Galaxy Clusters

12.1 Introduction

In this chapter we turn to catalogs of galaxy clusters, in which there has been
much observational and theoretical interest in parallel to that in galaxies. We
consider what the relation is between the correlation properties of clusters and
those of the galaxy distribution from which they are selected. In particular we
discuss in a simplified way both the case of an underlying galaxy distribution
which is fractal-like up to the scales probed by the sample, and the case
where there is a cross-over to homogeneity. We then discuss the “galaxy-
cluster” mismatch problem, which is very analogous to the “luminosity bias”
we have discussed previously: when the correlation properties of clusters are
characterized with the reduced two-point correlation function, one finds that
its form is very similar to that of galaxies – with approximately the same
exponent – but that its amplitude is higher. Thus the value of r0 – interpreted
as a real physical scale characterizing the cluster distribution – is larger than
its value for galaxies. Just as for the case of “luminosity bias”, in the fractal
framework, this behavior can be simply understood as giving evidence for the
absence of a well defined mean density at least up to the sample scale: clusters,
as they are brighter objects, probe greater depths than available single galaxy
distributions, and an increase in r0 would also be associated to a decrease in
the mean density. Further the fact that the exponent remains the same as
that in the galaxy distribution suggests a possible simple interpretation in
terms of a continuing fractal to scales larger than those on which we could
place a good constraint (see Chap. 9) from galaxy catalogs alone.

Just as for galaxies both angular and redshift catalogs of clusters have
been constructed from observations. In the case of clusters the redshift one
considers is an average redshift. This latter is obtained by measuring the
redshift of several galaxies which are members of the same “cluster”. It is
important to note that numerous different observational strategies for the
definition of a galaxy cluster have been used: sometimes they have been
identified in optical angular catalogs, in other cases they are selected by a
criterion based, for example, on X-ray observations [208]. Theoretically clus-
ters are believed to be gravitationally bound (and approximately virialized)
systems of galaxies and dark matter, but it is not feasible observationally to
use such a definition by probing the relation between kinetic and potential
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energy. We do not discuss here the details of different methods used to define
a cluster of galaxies. We treat the problem from a purely statistical point
of view, pointing out the principal statistical properties of the new set of
“points” defined by galaxy clusters.

12.2 Cluster Correlations and Multifractality

Given a point distribution one can identify a “cluster” as a group of points in
the simple visual way shown in Fig. 12.1: this is the empirical method used in
the construction of early cluster catalogs. This means identifying high local
density regions in the point distribution, considering volumes of a certain size
centered on the density “peak” and selecting a cluster when the number of
points in the volume exceeds a certain defined value. The question is then to
understand the relation between this new set, and in particular its correlation
properties, and the original one.

Empirical construction of a catalog of clusters (right panel) from one of
galaxies (left panel)

To define the problem more precisely from a statistical point of view,
the simple sampling shown in Fig. 12.1 must be refined. For simplicity we
consider that the sample volume is a box of size L. We may cover such a
volume with a regular grid with spacing � � L, which gives (L/�)3 cells in
three-dimensional space. The set “clusters” is then defined as the set of cells
in which the number of points exceeds a given lower limit: clearly the grid
spacing � must be appropriately chosen as this gives the physical dimension
of a cluster. Such a procedure corresponds to coarse-graining the galaxy dis-
tribution (sometimes called also “point decimation”), and then considering
a threshold in the number of points contained in each coarse-grained cell. In
this way we have identified a set of points (with coordinates given by the
centers of the cells) and to each point we can associate a measure given by
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the number of points contained in the cell. Thus, we can study the complete
correlations of this measure distribution by applying the multifractal (MF)
formalism discussed in Chap. 5. In this context, we define the normalized
density function for the point (galaxy) distribution as

µ(r) =
N∑

i=1

µiδ(r − ri) (12.1)

with µi = 1/N , where N is the number of points (galaxies) of the original
set contained in the sample volume. We label each box of the superimposed
grid of spacing � by the index i and construct for each box the function

µi(ε) =
∫
i

∫∫
th

∫∫
box

µ(r)dr , (12.2)

where clearly 0 < µi < 1 and ε = �/L. This procedure defines a discretized
measure density suitable for the MF analysis presented in Chap. 5. The frac-
tal dimension of the cluster distribution with a given richness corresponds
approximately to a certain value of the moment q > 0, and then essentially
to a certain threshold in the number of points. Its scaling behavior is de-
scribed by the corresponding value of the f(α) spectrum. Changing the value
of q > 0 one considers a sampling strictly related to that consisting of select-
ing clusters of different richness.

As explained below, the fact that the exponent characterizing the decay of
the two-point correlation function of galaxies and clusters is nearly the same
is a clear sign that there is a very weak MF behavior in the sense explained
above, i.e that at least to a first approximation we may write, in the MF
analysis f(α) ≈ D for any value of α, where D is the fractal dimension
of the support observed in the analyzed sample. However, on the other hand,
the simple fractal picture can give us a natural and simple explanation of
the observation that the exponent of the two-point correlation function of
galaxies and clusters is the same as clusters represent a coarse-grained view
of galaxy distribution.

Let us now consider two simple cases which may clarify some of these
points:

(i) Suppose that the original point distribution is a simple fractal with
dimension 0 < D < 3 up to a scale larger than the sample size L (see
Fig. 12.2). It is clear that the selection of the set “clusters” defined above
will change only the lower cut-off of the distribution: that is, the average
distance between first neighbor “clusters” is of the order of the cell size �. As
� changes only this cut-off can vary, as no other length scales is introduced
in the system. This means that in such a situation the point distribution
identified by “clusters” will show the same fractal properties as the original
set, i.e. with the same dimension D, except for the fact that the average
conditional density will have a smaller amplitude (i.e. the number density of
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Fig. 12.2. Left panels: In the bottom part it is shown a point distribution with
fractal correlation, while in the upper part the corresponding conditional average
density. Right panels: In the bottom part it is shown the “cluster” distribution
constructed as explained in the text, while in the upper part it is shown the corre-
sponding conditional average density. One may note that the lower cut-off and the
amplitude are different from the one on the left, but the exponent is the same

richest clusters is smaller than the number density of the poorest ones) and a
larger lower cut-off. Both the amplitude and the lower cut-off will depend on
the parameter �. The reduced two-point correlation function (which we recall
is sample size dependent in the case of a fractal distribution – see Chap. 9),
instead, will have the same amplitude for both sets because we have assumed
that the sample size is unchanged by the coarse graining procedure.

(ii) As a second simple example, we suppose that the original point dis-
tribution has fractal correlations up to a scale λ0 � L and then that it be-
comes purely Poisson-like, i.e. without any residual correlation (this set can be
constructed, for example, by making a grid of (L/λ0)3 independent fractal
structures with the same fractal dimension, each generated in a sample of size
λ0. Even in this case, the selection procedure defined above will not change
the unique length scale in the distribution, which is λ0: it will therefore not
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change the functional behavior of Γ (r), but only its amplitude along the lines
discussed for the pure fractal case. Thus Γ (r) for the cluster set will show
the same slope up to λ0 and then the same flattening for scales r > λ0 (see
Fig. 12.3). The amplitude of the reduced two-point correlation function does
not change as it is related to the unique length scale in the distribution given
by λ0.
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Fig. 12.3. Left panel : If galaxies are fractally distributed up to λ0 and Poisson-like
for R > λ0 (the figure shows results for an artificial distribution with these features),
galaxy clusters, identified by the procedure shown in Fig. 12.2, have a similar Γ (r),
but with a lower amplitude. The reduced two-point correlation correlation (right
panel) function is, on the other hand, unchanged between galaxies and clusters

There remains the question of whether the selection procedure discussed
here can change the “homogeneity” scale of the original set, while leaving the
exponent of the conditional density the same. The answer to this question
will in fact depend on details of the correlations in the original set. We will
return to this point in Sect. 12.4.

12.3 Galaxy Cluster Correlations

With respect to galaxy catalogs, cluster surveys offer the possibility of study-
ing the visible matter distribution in much larger volumes, reaching depths
beyond the redshift z ≈ 0.2, and extending over the whole sky. Using clusters,
one can trace the matter distribution with a smaller number of objects, in
a given volume, with respect to the galaxies. For example, in the northern
hemisphere there are ≈500 rich clusters up to z ≈ 0.15 which correspond
to ≈106 galaxies. The main problem of cluster catalogs is their incomplete-
ness, since clusters are usually identified as density enhancements in angular
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galaxy surveys (through an empirical procedure very similar to the one shown
in Fig. 12.1), and their distance is usually determined through the redshift
of one or two galaxy members. It is in fact clear that only the measurements
of the magnitude and the redshift of every cluster (and its member galaxies)
allow the construction of truly volume limited samples.

As for the galaxy distribution, the observations of large scale structures
defined by galaxy clusters, like super-clusters and voids, which extend up
to the limits of the samples investigated, raise a question mark about the
existence of a well-defined and sample-independent average density at the
scales of these samples. When these large scale inhomogeneities have been
attributed to some incompleteness in the surveys, better and more extensive
studies have usually confirmed the reality of these structures, making the
observed agglomerations sharper and leaving the voids empty. For instance,
Tully [234, 235], by investigating the spatial distribution of the Abell and
ACO clusters catalogs up to 300 Mpc/h, stressed that there are structures on
a scale of order of ∼300 Mpc/h lying in the plane of the local super-cluster.
Other authors found similar results [9, 21, 75, 77, 124, 145, 196].

For cluster distributions, the reduced two-point correlation function ξ(r)
is found to have a power-law behavior

ξ(r) ≈
(r0

r

)γ

. (12.3)

The exponent γ appears, generally, consistent with the value observed for
galaxies, i.e. γ ≈ 1.8. The value of r0 is higher than for galaxies, and is not
stable in different samples. In general, high values for r0 ≈ 20÷25 Mpc/h are
obtained for samples which contain the richer Abell/ACO clusters [9, 196] (see
Fig. 12.4), although some authors claim these are overestimates (finding r0 ≈
14 Mpc/h, e.g. [61]), produced by systematic biases present in the Abell/ACO
catalog. Lower values of r0 ≈ 13 ÷ 15 Mpc/h are obtained also from the
analysis of automated cluster catalogs (APM, EDCC) and from the cluster
catalogs selected from X-ray galaxy surveys. In conclusion, for the samples
analyzed so far we have 14 Mpc/h ∼< r0 ∼< 25 Mpc/h.

Clusters are then said to be more clustered than galaxies, for which r0 ≈
5 Mpc/h. This mismatch between galaxy and cluster correlations is another
puzzling feature of the usual analysis; clusters, in fact, are made by galaxies
and many of these are included in the galaxy catalogs for which the smaller
value of r0 is derived. To explain the mismatch it is necessary to assume that
fundamental differences between the cluster galaxies and the galaxies not
belonging to clusters. This concept has given rise to the so-called richness-
clustering relation1 [9] according to which, objects with different mass or
morphology segregate from each other and give rise to different correlation
properties. Such a relation is expressed as
1 The richness quantifies the number of galaxies contained, for example, in a sphere

of radius 1Mpc around the cluster’s center.
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Fig. 12.4. The reduced two-point correlation function ξ(r) for the Abell clusters:
note that ξ(r0) = 1 for r0 � 25 Mpc/h. (Adapted from [223])

r0i ≈ 0.4n̄
−1/3
i

where the index i refers to the system being considered, and ni is the es-
timation of its mean spatial density (see e.g. [10]). The richness dependent
amplitude of the correlation function increases monotonically from 10 Mpc/h
for poor clusters to 20–25 Mpc/h for rich clusters. This proposition leads
eventually to the peculiar feature that every object is slightly different from
any other and forms, on its own, a morphological class, which makes useless
the concept of correlation between objects without specification of the type
of objects considered.

In standard theoretical models, the fact that the most massive clusters,
which correspond to the rarest and highest fluctuations of the matter field,
exhibit a larger amplitude of the correlation function is interpreted in the
framework of the (luminosity) bias selection introduced by [123] and dis-
cussed in Chap. 13. Here we consider a different explanation: in the next
two subsections we describe the results of an analysis without the a-priori
assumption homogeneity. This allows us to present a simple interpretation of
observed cluster correlation based on the concept of coarse-graining.
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12.3.1 The Average Conditional Density for Galaxy Clusters

We now discuss the same analysis of galaxy clusters without the assump-
tion of homogeneity performed for galaxies (see discussion in Chap. 9). The
motivations are, also in this case, related to the fact that the assumption of
homogeneity within the sample size, on which the analysis leading to (12.3)
is based, is questionable in the samples observed in the last two decades. In
Fig. 12.5 we show the behavior of the conditional average density for Abell
clusters which shows power-law correlations, with almost the same exponent
(i.e. D ≈ 2) as that of galaxies, up to ∼ 50 Mpc/h. This fact suggests a sim-
ple interpretation that the galaxy cluster distribution, which has the same
fractal dimension as that of galaxies, can be seen as a “zooming out” of the
galaxy distribution, i.e. in terms of the example (i) of the previous section.

12.3.2 Galaxy-Cluster Mismatch

We may now give a simple explanation of the galaxy-cluster mismatch. If the
galaxy distribution is fractal (see Fig. 12.6) up to a large scale λ0, and the size
of the samples of galaxies and clusters are respectively Rg

s < λ0 and Rc
s < λ0,

the different value of the amplitude of ξ(r) obtained for galaxies and clusters
(rgg

0 and rcc
0 respectively) is obtained naturally. Indeed in this situation, as

discussed in Chap. 9, the amplitude of the reduced two-point correlation
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Fig. 12.5. The conditional average density Γ ∗(r) for the Abell clusters. (Adapted
from [223])
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Fig. 12.6. Clusters are brighter than galaxies so that cluster catalogs sample vol-
umes of space larger than those of galaxy surveys. In the interpretation discussed in
the text, based on fractal geometry, the difference between the “correlation lengths”,
as r0 is called in the cosmological literature (in reality it is a measure of the appar-
ent homogeneity scale) of galaxies and clusters (the galaxy-cluster mismatch) can
be simply ascribed to a difference in the depth of the respective catalogs. It is thus
understood as finite size effect

function is linearly (on average) related to the sample size Rs: given that, on
average, r0 ∝ Rs, it is simple to infer that the following relation should hold:

rcc
0

rgg
0

=
Rc

s

Rg
s

. (12.4)

The reasoning leading to (12.4) shows that the difference in the “correlation
lengths” (as r0 is widely referred to in the cosmological literature see Chap. 2)
of galaxies and galaxy clusters can be due to the different sample sizes of the
corresponding catalogs in the case in which the real homogeneity scale is at
least as large as the larger (cluster) sample size: this accounts well for the
results from the analysis of the Abell and ACO catalogs for clusters and CfA
for galaxies [47, 223].
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12.4 Luminosity Bias and the Richness-Clustering
Relation

In this section we clarify a closely related point concerning the interpretation
of the correlation properties of galaxies via the standard ξ(r) analysis: the
question we discuss concerns the kind of sampling which can give rise to a
linear amplification of the two-point correlation function in the regime of
strong clustering (i.e., ξ(r) � 1).

As already mentioned, it has been observed that in many observations the
amplitude of ξ(r) changes when different VL samples are considered [56, 28].
A VL sample is characterized by two related cuts in distance and in absolute
magnitude (i.e. intrinsic luminosity) with a systematic trend: the larger the
cut in distance the brighter are the galaxies in the sample. Let us call R1 >
R2 the two cuts in distance of two VL samples corresponding to cuts in
absolute magnitude M1 < M2MM , in the same magnitude limited survey. It is
thus observed2 that in a certain range of scales one has ξ1(r) > ξ2(r) (e.g.
[168, 250]), and that in the same range of scales the functional behavior of
ξ(r) is a power-law with the same exponent in both samples. We can envisage
two possible explanations: either sampling or finite size effects. Namely that
the brighter are the galaxies considered the larger is the amplitude of ξ(r),
or that the larger is the sample size then the larger is the amplitude of
ξ(r) because of a finite-size effect due to the variation of the sample depth.
While the latter is a typical finite-size effect present in the case of a fractal
distribution, as we have discussed at length, the first explanation has been
called “luminosity bias”. Let us consider further what this latter hypothesis
means in terms of correlation properties.

Consider first the following example. Suppose we have two kind of galaxies
of different mass, one of type A and the other of type B. Suppose further that
the mass of the galaxies of type A is twice that of type B. The proposition
“galaxies of different luminosity (masses) correlate in different ways” (in the
sense that they have different correlation amplitudes of the ξ(r) function) im-
plies that the physics of the origin of these correlations distinguishes between
a situation in which there is, in a region, a galaxy of type A or two galaxies
of type B close to one another. This would be a paradox if only gravity is
considered to form such correlations, as the gravitational interaction depends
only on the total mass.

A more specific meaning can be given as follows. Suppose that the galaxies
of type A have a smaller real homogeneity scale than that of the galaxies of
type B. The galaxies of type B are still then strongly correlated when the
galaxies of type A are almost uniformly distributed. This means that the
galaxies of type A should fill the voids of galaxies of type B.
2 Using ξ(r) without having previously tested that a crossover of the average con-

ditional density, as it should be as explained in Chap. 9, toward homogeneity is
present within the samples considered.
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In terms of the average conditional density, and by using a simple approx-
imation for the crossover to homogeneity (Chap. 4), we obtain (see Fig. 12.7):

r(Mpc)

Γ(
r)

0.1 1 10 1000.1 1 10 100
0.0010.001

0.010.01

0.10.1

11

1010

A
B

λ(Α)

λ(Β)

Fig. 12.7. Luminosity bias: in this example we have two kind of objects. Galaxies
A have power-law correlation up to λ(A) and then became uniformly distributed
in space. Galaxies B have the same behavior, but the power-law behavior is up to
λ(B) > λ(A). In this case the voids of B galaxies should be full of galaxies A

{
ΓA(r) = BArD−3 for〈Λ〉 ≤ r � λA

0

ΓA(r) = BA(λA
0 )D−3 forλA

0 � r ≤ Rs
, (12.5)

where 〈Λ〉 is a measure of the average first neighbor distance. Moreover,
analogously, we can write{

ΓB(r) = BBrD−3 for 〈Λ〉 ≤ r � λB
0

ΓB(r) = BB(λB
0 )D−3 for λB

0 � r ≤ Rs
. (12.6)

If Rs � λB
0 > λA

0 then we simply have that the amplitude of ξ(r) (for example
at the scale ξ(r0) = 1) has the following property

rA
0

rB
0

=
λA

0

λB
0

. (12.7)

In this case there is indeed an amplification of ξ(r) which is simply due to the
difference in the homogeneity scale of the two galaxy types [223]. Physically
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as we have noted, this model seems quite unrealistic (if gravity plays a central
role in the developments of correlations). Note that, in any case, the simplest
way to detect such a behavior is to measure the conditional density (for the
different galaxies).

Let us consider now “luminosity segregation” more generically. A simple
selection of a point set which describes more realistically the case of galaxy
samples is the following. Let us characterize each galaxy by its three space
coordinates xi and its luminosity, which we call hereafter measure µi. We then
have a point set {xi, µi} with, in general, a non-trivial measure distribution
and a given reduced two-point correlation function ξ(r). We now consider the
selection of points by using the measure. For example we put a threshold in
the measure µ and we select only points with µi > µ in a way such that the
selected set has a correlation function

ξS(r) = Aξ(r) � 1 (12.8)

where A is a constant.
Let us consider how the selection affects the conditional density, which

simply measures the number density of points around an average particle.
We can make the following hypothesis for its behavior in the full set (i.e. a
volume-limited sample cut at faint absolute magnitude, and hence containing
both faint and bright galaxies):

〈n(r)〉p � n0 for r ≤ λ0
(12.9)〈n(r)〉p ≈ n0 for r ≥ λ0

(making the hypothesis that the homogeneity scale is well inside the sample
volume). Thus our distribution is made of non-linear structures of size λ0

which we denominate “clusters”. Hence let us suppose we make a sampling
such that at small scales (r ≤ λ0) an average point continues to see the same
number density while at large scale the average density decreases. This means
that each particle inside a cluster sees the same number density of particles,
but that the number density of clusters has been decreased (in the infinite
volume limit). Doing this we have that for the selected set 〈n(r)〉Sp ≈ 〈n(r)〉p
if r � λ0, while the average density at large scales in the selected set is
nS

0 � n0. In this way a relation of the type (12.8) can be obtained. Such a
selection has to be made using the measure distribution and there must be
a correlation between space positions and measure. For example if we have
“clusters” of particles where µi � µ, and clusters with µi � µ only the latter
survive when we select using the threshold µ. Hence the linear amplification
in the strong clustering regime may be obtained with this very particular
sampling. Note this kind of sampling changes an intrinsic length scale of the
system: while the scale λ0 (which is interpreted as the typical cluster size) is
not changed by the selection, the original objects are typically separated by
a distance of order n

−1/3
0 which increases to (nS

0 )−1/3 after sampling.
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12.5 Summary and Discussion

The observational galaxy-cluster mismatch is at the origin of the concept of
bias which is a crucial ingredient in the theoretical and phenomenological
interpretation of matter density fields in cosmology [123]. We will discuss
this concept further in the next chapter. Here we have presented a different
interpretation of the relevant observations. The essential idea is that clusters
correspond to a distribution obtained by a coarse-graining of the galaxy dis-
tribution. We have explained that the coincidence of the exponents of the
power-law correlation function of galaxies and galaxy clusters can be easily
understood in this way, as well as the different amplitudes of the reduced
correlation function. In this explanation the observed mismatch of the corre-
lation functions is a finite size effect.



13 Biasing a Gaussian Random Field
and the Problem of Galaxy Correlations

13.1 Introduction

We have discussed at some length the problems of “luminosity bias” and the
related “galaxy-cluster mismatch” which arise from what is found obser-
vationally in the analysis of galaxies and galaxy clusters with the reduced
two-point correlation function ξ(r): a considerable variation of the amplitude
of this function measured on different kind of objects. We have proposed a
possible resolution which ascribes these observations to the sample depen-
dence of this statistical quantity, and not to an intrinsic difference between
the correlation properties of the different objects. This explanation posits that
the underlying distribution is still strongly fluctuating at the scales probed by
these samples, and that it is simply the sample dependence of the mean den-
sity which is giving rise to the observed variations of the amplitude of ξ(r).
In this chapter we go in an orthogonal direction and examine aspects of the
conceptual framework used predominantly in the cosmological community to
explain these observations: this is what is known as “bias”, which generically
covers the notion that the correlation properties of different kinds of objects
(in particular galaxies of differing luminosity, and galaxy clusters) are really
different. The core theoretical idea is that different kinds of objects corre-
spond to different kinds of selections on the underlying dark matter field
dominating the gravitational evolution of the universe. Our aim here is to
analyze just the simplest canonical model of bias, that introduced by Kaiser
[123] to explain the galaxy-cluster mismatch. Our main conclusion is that it is
very problematic in terms of its capacity to explain the relevant observations,
as it does not give rise to a scale-independent renormalization of either the
reduced two-point correlation function or the PS of the different objects. We
explain that these results should be valid for a generic model of bias, and not
just the specific one we analyze, and we consider the implications for models
of structure formation.

In the original model of bias [123] the underlying distribution of dark
matter is treated as a correlated Gaussian density field with a given two-
point correlation function ξ̃(r): the various visible objects, such as galaxies of
different luminosities or galaxy clusters, are interpreted as the peaks of the
matter distribution, which have collapsed by gravitational clustering. Differ-
ent kinds of objects are selected as peaks above a given threshold ν. A change
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in the threshold selects different regions of the underlying Gaussian field,
corresponding to fluctuations of differing amplitudes. The reduced two-point
correlation function of the selected objects is then that of the peaks ξ̃ν(r). It
is enhanced with respect to that of the underlying density field ξ̃(r) and such
an amplification goes in the direction of the observational results but only in
a qualitative way. Indeed we discuss some problematic aspects of this mecha-
nism: in particular the fact that the amplification of the correlation function
is in fact only linear in the regime in which ξ̃ν(r) � 1 [89]. In the region
of most observational relevance (where ξ̃ν(r) � 1) there is actually at least
an exponential and scale dependent distortion of the correlation function.
Furthermore we explain that the amplification of the correlation function by
biasing, i.e. by increasing the threshold, reflects simply that the distribution
of peaks is more clustered because peaks are exponentially sparser while their
size is only slightly modified.

We then discuss other subtle properties introduced by this selection mech-
anism for what concerns the power spectrum (PS). While threshold biasing of
a Gaussian random field does give rise to a linear amplification of the reduced
two-point correlation function at large distances, i.e. in the regime where cor-
relations are very weak, we show that, for standard cosmological models, this
does not translate directly into a linear amplification of the power spectrum
(PS) at small k [72]. For example, for standard cold dark matter (CDM) type
models (see Chap. 6) this means that the “turn-over” at small k of the original
PS disappears in the PS of the biased field for the physically relevant range
of the threshold parameter ν. In real space this difference is manifest in the
asymptotic behavior of the normalized mass variance in spheres of radius R,
which changes from the super-homogeneous behavior σ2(R) ∼ R−4, typical
of standard CDM models, to a Poisson-like behavior σ2

ν(R) ∼ R−3 (Chap. 3).
This qualitative change results from the extreme sensitivity of the condition of
super-homogeneity P (0) = 0 for the PS typical of all standards cosmological
models. While our quantitative results are specific to the simplest threshold
biasing model, we argue that our conclusions should be valid qualitatively for
a generic biasing mechanism involving a scale-dependent amplification of the
correlation function. At the end of the chapter we return then to the prob-
lem of the relative normalization of fluctuations at early times (i.e. CMBR
anisotropies) to fluctuations observed today (e.g. the galaxy distribution).

13.2 Biasing of Gaussian Random Fields

In this section the notion of biasing for a Gaussian random field is given
in mathematical terms. We then calculate biasing for some examples and
clarify the physical meaning of bias in the context of the cosmological litera-
ture [15, 123]. We consider a statistically homogeneous, isotropic and corre-
lated continuous Gaussian random field, δρ(x), with zero mean and variance
σ2 = 〈δρ(x)2〉 in a volume V as defined in Chap. 2. The marginal one-point
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probability density function of δρ (i.e. the a priori probability density that
the field has the value δρ in a randomly chosen point of space) is

p(δρ) =
1√
2πσ

e−
δ2
ρ

2σ2 .

The fraction of the volume V with δρ(x) ≥ νσ, is then

Q1(ν) =
∫ ∞

νσ

∫∫
p(δρ)dδρ . (13.1)

The correlation function between two values of δρ(x) at two points separated
by a distance r is given by ξ̃(r) = 〈δρ(x)δρ(x+rn)〉. By definition, ξ̃(0) = σ2,
is the one-point variance of the field. In this context, statistical homogeneity
implies that the mean ρ0, the variance σ2, and the correlation function, ξ̃(r),
do not depend on x. Isotropy means that ξ̃(r) does not depend on the direc-
tion n1. An important application consists in the application to cosmological
density fluctuations,

δρ(x) =
ρ(x) − ρ0

ρ0
,

where ρ0 = 〈ρ〉 is the average density; but the following arguments are com-
pletely general.2

Our goal is to determine the correlation function of local maxima from the
correlation function of the underlying density field. We simplify the problem
by computing the correlations of regions above a certain threshold νσ instead
of the correlations of maxima. However, these quantities are closely related
for values of ν significantly larger than unity [123]. We define the threshold
density, θν(x) by

θν(x) ≡ θ(δρ(x) − νσ) =
{

1 if δρ(x) ≥ νσ
0 else. (13.2)

Note the qualitative difference between δρ which is a weighted density field,
and θν which just defines a set of regions having equal weight (see Fig. 13.1).
The underlying idea is that one would like to relate the continuous density
field (for example the CDM one) to the distribution of galaxies: on sufficiently
large scales the galaxy distribution should represent a selection of a discrete
set from the underlying CDM Gaussian field. However the new density field
θν(x) does not correspond to a point distribution and a further discretiza-
tion of this new field is then necessary (see below). We note the following
1 In other words, we assume δρ(x) to be an isotropic Gaussian SSP as defined in

Chap. 2.
2 Clearly, cosmological density fluctuations can never be perfectly Gaussian since

ρ(x) ≥ 0 and thus δρ(x) ≥ −1, but, for small fluctuations, a Gaussian can be
a good approximation. Furthermore, our results remain at least qualitatively
correct also in the non-Gaussian case.
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Fig. 13.1. Note the qualitative difference between δρ(x) which is a weighted
density field (left panels), and the biased field θν(x) (right panels) which just defines
a new field having equal weight. In the upper part is shown the case of pure white
noise, while in the lower part is shown the case of a Gaussian field with small scale
correlations

simple facts concerning the threshold density, θν , which follow directly from
its definition, independently of the correlation properties of δρ(x):

〈θν〉 ≡ Q1(ν) ≤ 1 , (θν(x))n = θν(x) , (13.3)
〈θν(x)θν(x + rn)〉 ≤ Q1(ν) ,

〈θν(x)θν(x + rn)〉
Q1(ν)2

− 1 ≡ ξ̃ν(r) ≤ ξ̃ν(0) =
1

Q1(ν)
− 1 ,

θν′(x) < θν(x) , Q1(ν′)<Q1(ν) for ν′ > ν ,

ξ̃ν′(0) > ξ̃ν(0) for ν′ > ν . (13.4)

The difference between the sets θν for different values of ν is called biasing.
The enhancement of ξ̃ν(0) for higher thresholds has clearly nothing to do
with how “strongly clustered” the peaks are but is entirely due to the fact
that the larger is ν the lower is the fraction of points above the threshold (i.e.
Q1(ν′) < Q1(ν) for ν′ > ν). If we consider the trivial case of white Gaussian
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noise (ξ̃(r) = 0 for r > 0) the peaks are just spikes (see Fig. 13.1). When a
threshold νσ is considered the number of spikes decreases and hence ξ̃ν(0)
is amplified simply because they are much sparser and not because they are
“more strongly clustered”: we show in the following that also in the case of
a correlated field (ξ̃(r) �= 0 for�� r > 0) the importance of sparseness is crucial
in order to explain the amplification of ξ̃ν(r), even though, as shown below,
in this case it is somewhat related to clustering.

The joint two-point probability density P2(δρ, δ
′
ρ; r) depends on the dis-

tance r between x and x′, where δρ = δρ(x) and δ′ρ = δρ(x′). For Gaussian
fields P2 is entirely determined by the mean of δρ(x), and the two-point
correlation function ξ̃(r) [84, 203]:

P2(δρ, δ
′
ρ; r) =

=
1

2π
√

σ4 − ξ̃(r)2
exp

(
−σ2(δ2

ρ + δ′2ρ ) − 2ξ̃(r)δρδ
′
ρ

2(σ4 − ξ̃2(r))

)
. (13.5)

By definition

ξ̃(r) ≡ 〈δρ(x + rn)δρ(x)〉 =
∫ ∞

−∞

∫∫ ∫ ∞

−∞

∫∫
dδρdδ′ρδρδ

′
ρP2(δρ, δ

′
ρ; r) . (13.6)

The probability that both δρ and δ′ρ are larger than νσ is

Q2(ν, r) =
∫ ∞

νσ

∫∫ ∫ ∞

νσ

∫∫
P2(δρ, δ

′
ρ, r)dδρdδ′ρ ≡ 〈θν(x)θν(x + rn)〉 . (13.7)

The conditional probability that δρ(y) ≥ νσ, given δρ(x) ≥ νσ, where
|x − y| = r, is then just Q2(ν, r)/Q1(ν). The reduced two-point correlation
function for the stochastic variable θν(x), introduced above can be expressed
in terms of Q1 and Q2 by (see Chap. 2)

ξ̃ν(r) =
Q2(ν, r)
Q2

1(ν)
− 1 . (13.8)

Defining

ξ̃c(r) =
ξ̃(r)
σ2

as the normalized reduced two-point correlation function (i.e. ξ̃c(0) = 1), we
obtain

Q1(ν)2(ξ̃ν(r) + 1) =
1

2π
√

1 − ξ̃2
c

∫ ∞

ν

∫∫ ∫ ∞

ν

∫∫
dxdx′

× exp

(
− (x2 + x′2) − 2ξ̃c(r)xx′

2(1 − ξ̃2
c (r))

)
. (13.9)
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We note that the amplitude of ξ̃ν(r) does not give information about how
large the fluctuations are with respect to ρ0, but it rather describes the cor-
relation properties of the “fluctuations of the fluctuations”, that is the fluc-
tuations of the new field θν(x) around its average Q1(ν). Similar arguments
to those introduced for the original field can now be developed to character-
ize the typical scales of the new set defined by θν(x). In particular, one can
define a correlation length rc(ν) following the discussion in Chap. 2, by re-
placing ξ̃(r) with ξ̃ν(r). Like rc, rc(ν) does not depend on any multiplicative
constant in ξ̃ν(r), i.e. it does not depend on the amplitude of ξ̃ν(r). Moreover
a “homogeneity scale” r0(ν) can be defined as the scale such that ξ̃ν(r0) = 1
(see Chap. 2). The value of r0(ν) is given by the amplitude of ξ̃ν(r) and rep-
resents the minimal system size giving meaningful estimates of the average
density Q1(ν) and of r0(ν) itself; r0(ν) is the distance at which the condi-
tional density Q2(ν, r)/Q1(ν) begins to flatten toward Q1(ν). We show below
that while r0(ν) depends strongly on ν due to a sparseness effect, rc(ν) is
almost constant and equal to rc of the original field, i.e. the maximal size of
the structures does not depend on the threshold. We recall in this context the
fact that for any SSP the homogeneity scale r0 is related to the average value
ρ0 of the field, while the correlation length rc is independent (see Fig. 13.2) of
it and related only to the correlation properties of the normalized fluctuation
field δρ(x).

13.3 Biasing and Real Space Correlation Properties

Let us now study in detail the behavior of ξ̃ν(r) in terms of the properties
of ξ̃c(r). We start from (13.9) which defines ξ̃ν(r) as a function of ξ̃c(r). An
important step is to find a simple approximation for this integral expression.
For ν � 1 and for sufficiently large r, such that ξ̃c(r) � 1, it has been found
[195] that (13.9) can be approximated by

ξ̃ν(r) 	 exp
(
ν2ξ̃c(r)

)
− 1 . (13.10)

If, in addition, ν2ξ̃c(r) � 1 we find [195, 123]

ξ̃ν(r) 	 ν2ξ̃c(r) . (13.11)

Note that this last result is not obtained by the condition ξ̃c(r) � 1 and
separately ν � 1. These conditions are significantly weaker than the required
ν2ξ̃c(r) 	 ξ̃ν(r) � 1. A better approximation for ξ̃ν(r) is given [72] by

ξ̃ν(r) =

[√
1 + ξ̃c(r)
1 − ξ̃c(r)

exp

(
ν2 ξ̃c

1 + ξ̃c

)
− 1

]
(1 + o(ν−1)) . (13.12)

This approximation is obtained by expanding the full expression for ξ̃ν(r)
given in (13.9) in 1/ν, and further assuming only that



13.3 Biasing and Real Space Correlation Properties 319

0.0 0.2 0.4 0.6 0.8 1.0
0.0

10.0

20.0

Fig. 13.2. Gaussian fluctuation field in d = 1 with correlation up to a scale rc ≈ 0.1
super-imposed on a uniform background. The constant background density ρ0 (i.e
the average density) is smaller for the lower density field (ρ0 = 5) than for the upper
one (ρ0 = 20), but the correlation length is the same for the two distributions. The
amplitude of ξ̃(r) at the same r is clearly larger for the lower distribution than for
upper one: this is because the amplitude of the fluctuations with respect to the
average density is larger. The correlation length rc is finite and is related to the
greatest spatial extension of the structures (see Chap. 3). Beyond rc fluctuations
from the average density can be considered substantially Poisson and mutually
uncorrelated

ν

√
(1 − ξ̃c)/(1 + ξ̃c) � 1 .

It is a much better approximation than that of [195] both at small and larger
values of ξ̃c. In particular it gives an asymptotic behavior ξ̃ν ≈ (ν2 + 1)ξ̃c for
ν2ξ̃c � 1 which is a much closer to the exact behavior at typically relevant
values of ν (see Fig. 13.3).

Let us come back to the exact expression of ξ̃ν as a function of ν. Using the
expression for Q1(ν) given above, one can recast this after a simple change
of variables into the form

ξ̃ν(r) =

∫∞
ν

∫∫
dxe−x2/2

∫ ν

µ

∫∫
dye−y2/2

[
∫∞

ν

∫∫
dxe−x2/2]2

. (13.13)
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Fig. 13.3. Correlation function of a CDM type model, for a threshold ν = 3.
The approximations by Kaiser, Politzer & Wise (PW) and Durrer et al. (DGJSL –
(13.12)) together with the exact numerical integration are reported

where µ = (ν − ξ̃cx)/
√

1 − ξ̃2
c . In this form it is evident that ξ̃c(r) = 0 if and

only if ξ̃ν(r) = 0 and that sign[ξ̃ν(r)] = sign[ξ̃c(r)]. Taylor expanding this
expression about ξ̃c = 0, we find3

ξ̃ν(r) = b1(ν)ξ̃c(r) + b2(ν)ξ̃2
c (r) + . . . (13.14)

with

b1(ν) = e−ν2/2

∫∞
ν

∫∫
dxxe−x2/2

[
∫∞

ν

∫∫
dxe−x2/2]2

(13.15)

b2(ν) =
1
2
νe−ν2/2

∫∞
ν

∫∫
dx(x2 − 1)e−x2/2

[
∫∞

ν

∫∫
dxe−x2/2]2

. (13.16)

The first term gives the linear relation obtained by [123] as b1(ν) ≈ ν2 for
ν � 1, valid in the regime |ξ̃c| � 1 and |ξ̃ν | � 1. Note that the fact that
(13.12) is a much better approximation to (13.13) than (13.10) is made clear
by the fact that b1(1) ≈ 2.4. It is important to note that in the regime

3 For the expansion to all orders see [134].
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which is most relevant to observations, ξ̃ν ∼> 1, (13.11) does not apply and
ξ̃ν is actually exponentially enhanced. If this mechanism is the correct one
to explain the observed so-called galaxy-cluster mismatch we expect that the
connected two-point correlation function for clusters of galaxies to be thus
exponentially enhanced on scales where the correlation function of galaxies
ξ̃cc ∼> 1, i.e. r ∼< 20h−1Mpc. However this is not the case, as the observed
amplification is only linear. Therefore this model of bias does not appear
capable of explaining the simple amplification observed. It cannot be excluded
that some variant of this model might do so, but there is no evident reason
why one would expect ever to produce the scale-dependent effect required.
We note that, in contrast, the explanation proposed in Chap. 12 naturally
produces such an amplification.

Now we discuss some simple examples through which a better character-
ization of the meaning of r0(ν) and rc(ν) in the context of biasing can be
given. Let us start with a simple consideration: if the two-point correlation
function ξ̃(r) of the Gaussian field has a power-law tail and homogeneity scale
ρ0, we can write:

ξ̃(r) =
(

r

r0

)−γ

, for r � r0.

If, moreover, the threshold ν and the distance r are such that (13.11) holds
(i.e. such that ξ̃ν � 1) for the biased field θν(x), we have

ξ̃ν(r) =
(

r

r0(ν)

)−γ

.

The scales r0(ν) for different biases all satisfying the conditions for the va-
lidity of (13.11) are related by

r0(ν′) = r0(ν)
(

ν′

ν

)2/γ

.

Therefore we see simply that the homogeneity scale r0(ν) is very sensitive to
the value of the threshold ν.

In order to clarify further the behavior of the two length scales rc(ν) and
r0(ν) of the biased field θν(x) by changing the threshold ν, we first study
an example of a Gaussian density field with finite correlation length rc, and
which is well approximated by a power-law over a certain range of scales. For
instance we can take

ξ̃(r) =
σ2 exp(−r/rc)
[1 + (ksr)γ ]

,

with k−1
s � rc. The distance rc is approximately the correlation length as

defined as in Chap. 2. The length k−1
s can be seen as the smoothing scale

of the continuous field, in the sense that on scales r � k−1
s the field is

weakly fluctuating. In the region k−1
s � r � rc, the function ξ̃(r) is well
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approximated by the power-law(ksr)−γ . The correlation length, rc(ν) of the
biased field θν(x) for any value of ν, is given by the slope of log ξ̃ν(r) which
is clearly independent of the bias ν (see Fig. 13.4). This can also be obtained
from (13.9)–(13.10). For relatively small values of the threshold, ν � νc ≈
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Fig. 13.4. The behaviors of ξ̃(r) = σ2/[1 + (ksr)
γ exp(−r/rc)] (where γ = −2,

k−1
s = 0.01 and rc = 10) and ξ̃ν(r) are shown for different values of the threshold ν

in a semi-log plot. The slope of ξ̃ν(r) for r ∼> 50 is −1/rc, independent of ν i.e. the
correlation length of the system does not change for the sets above the threshold
(From [89])

(ksrc)γ/2 one finds r0(ν) � rc and r0(ν) ∼ k−1
s ν. On the other hand, if

ν � νc we have r0(ν) ∼ rc log(ν) and in this case the statistics is dominated
by shot noise (see below). For this reason we assume r0(ν) < rc(ν) in the
following.

We note that in the range of scales r ≤ r0(ν) the amplification of ξ̃ν(r)
is strongly non-linear in ν and scale dependent. Therefore, if the original
correlation function ξ̃(r) has a power-law behavior, ξ̃ν(r) does not for r ≤
r0(ν): this is better shown directly in the case in which rc → ∞. In this case
the correlation function of the original Gaussian field is

ξ̃(r) =
σ2

(1 + (rk−1
s )γ)

.

Clearly on scales k−1
s < r < rc the previous example does not differ from the

present one. The amplification of ξ̃ν for this example is plotted in Fig. 13.5. In
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order to investigate whether ξ̃ν(r) is of the form ξ̃ν(r) ∼ (r/r0(ν))−γν , we plot
−d log(ξ̃ν(r))/d log(r) ∼ γν in Fig. 13.6. Only in the regime where ξ̃ν(r) � 1
does γν become constant and roughly independent of ν. This behavior is
very different from the so-called galaxy-cluster mismatch where the linear
amplification is linear already at scales where both correlation functions of
galaxies and galaxy clusters are larger than 1 (see Chap. 12).
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Fig. 13.5. The behaviors of ξ̃(r) ∼ σ2/(1 + (ksr)
γ) (with γ = −2, k−1

s = 0.01)
and ξ̃ν(r) are shown for different values of the threshold ν in a log-log plot (From
[89])

Let us now clarify how the amplification of ξ̃ν(r) is related to the behavior
of the peak sparseness as a function of the threshold ν. For a Gaussian random
field, the peaks above a threshold ν have a mean size Dp(ν) and are separated
from each other by a mean distance Lp, which are respectively given by
[48, 237]:

Dp(ν) 	 D0(ks, rc)
ν

(13.17)

and
Lp(ν) 	 D0(ks, rc) exp(ν2/6)ν−2/3 (13.18)

so that
Lp

Dp
	 ν1/3 exp(ν2/6) for ν � 1 . (13.19)
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Fig. 13.6. The behavior of γν(r) is shown for different values of the threshold
ν for the correlation function shown in the previous figure. Clearly γν is strongly
scale dependent on all scales where ξ̃ν ∼> 1, corresponding to r < 1 in our units.
(From [89])

The size D0(ks, rc) is the typical linear size of persistence of the sign of the
fluctuation field and is given by

D2
0 =

∫ +∞
0

∫∫
dkP1PP (k)∫ +∞

0

∫∫
dkk2Q1(k)

(13.20)

where P1PP (k) is the Fourier transform of ξ̃(r) along a straight line in space
(in d = 1 it coincides with the PS P (k)). Equation (13.19) shows the strong
enhancement of the sparseness of peaks (object) with increasing ν. It is this
increase of sparseness which is at the origin of the amplification by biasing.
In the light of (13.9)–(13.10)–(13.19), we see that increasing ν corresponds
to a very particular sampling of fluctuations: the typical size of the surviving
peaks Dp is slowly varying with ν while the average distance between peaks
Lp is more than exponentially amplified, and finally the scale rc(ν), over
which the fluctuations are structured, is practically unchanged.

In summary, we have argued that bias does not influence significantly
the correlation length (rc(ν) 	 rc). It amplifies the correlation function ba-
sically because the mean density, Q1(ν), is reduced more strongly than the
conditional density, P2PP (ν, r)/Q1(ν). According to (13.13), this amplification
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is strongly non-linear in ξ̃(r) (exponential) at scales where ν2ξ̃c(r) ≥ 1 and
thus ξ̃ν(r) > 1.

13.4 Biasing and the Power Spectrum

We now discuss a different aspect of this model for bias. We are interested
in understanding the effect of such biasing on the PS of the biased sub-field
θν(x) [72]. In particular we are interested in the effect of biasing on Gaussian
fields representing the matter distribution in standard cosmological models.
As shown in Chap. 6, all these models share the same small k behavior
of the PS P (k) ∼ k. In Chap. 3 we have seen that this condition implies
that the matter distribution typical of these models is super-homogeneous,
that is with mass fluctuations increasing with scale more slowly than in a
Poisson one. In particular P (k) ∼ k at small k implies σ2(R) ∼ R−4 at
large R (while σ2(R) ∼ R−3 for a substantially Poisson matter distribution).
After an explanation of the effect of biasing on a general Gaussian field,
we focus on the case of a typical cosmological density field. In this context
we show that the PS of the biased field θν(x) is significantly distorted at
small k with respect to that of the original Gaussian field. In particular it
no longer tends to zero as k does so. This implies that, even though the
Gaussian field is super-homogeneous, the sub-field is substantially Poisson
(using the classification introduced in Chap. 3). Furthermore, it is shown
that, in this biasing scheme, for values of the threshold ν which are thought
to represent the relation between the visible matter and the total matter in
CDM models, the turn-over between the increasing part of the PS at small
k and decreasing part at large k disappears. This shows the usefulness of
determining from observations not just the PS of visible objects, but also
their real space correlation properties, as we are going to discuss.

Let us now start by considering how biasing changes the value of the PS at
k = 0 for a general Gaussian field. This modification changes the distribution
in relation to the classification we have given in terms of P (0) (see Chap. 3).
We call P (k) the PS of the original Gaussian field (i.e. the Fourier transform
(FT) of ξ̃c(r)) and PνPP (k) the PS of the biased sub-field θν(x) (i.e. the FT
of ξ̃ν(r)). We start by showing that there is a universal value of the biasing
threshold such that, for ν larger than this characteristic value, we have

PνPP (0) > P (0) (13.21)

independently of the shape of ξ̃c(r) (i.e. of P (k)). Let us start from (13.14),
and consider the expansion of ξ̃ν(r) up to second order in ξ̃c. From (13.15) it
is simple to show that b1(ν) is a positive and increasing function of ν, with the
asymptotic behavior b1(ν) 	 ν2 for large ν. Analogously it is simple to show
that also b2(ν) is a positive function of ν. Let us call νo 	 0.303 the value
of the threshold such that b1(νo) = 1. We can say that if ξ̃c is sufficiently
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small at all r, then ξ̃ν(r) > ξ̃c(r) always. This then implies (13.21) by direct
integration. Clearly this demonstration using the Taylor expansion (13.14)
only up to the second order is limited to the cases in which ξ̃c(r) � 1 at all
scales (recall that ξ̃c(r) ≤ 1 by definition). To show that there is a value of ν
above which (13.21) is indeed satisfied for all permitted values of ξ̃c (i.e. for
all permitted functions ξ̃c(r)), it suffices to find the threshold value ν1 ≥ νo

such that for all ν ≥ ν1 one has

sign

[
dξ̃ν(r)
dξ̃c(r)

− b1(ν)

]
= sign[ξ̃c] (13.22)

independently of ξ̃c. In fact, it is simple to show that this is a sufficient
condition in order to have the exact curve ξ̃ν(ξ̃c), given by (13.9), all above
the line ξ̃ν = ξ̃c for all ξ̃c. The value ν1 can be found numerically, using (13.9),
and the result is ν1 	 0.38.

Note that, if the condition given by (13.22) holds, this means simply
that, relative to the asymptotic (|ξ̃c| � 1 and |ξ̃ν | � 1) linearly biased
regime in which ξ̃ν ≈ b1(ν)ξ̃c, the anti-correlated regions are less amplified
(|ξ̃ν | < b1(ν)|ξ̃c|) than the positively correlated regions (|ξ̃ν | > b1(ν)|ξ̃c|).
Thus the integral over the biased correlation function is always positive, and
the bound given by (13.21) thus holds. Further it is easy to see that PνPP (0) is
finite if P (0) is: ξ̃ν is bounded for any value of ν, and, as we have just seen,
has the same convergence properties as ξ̃c at large distances. This implies
that, if the integral of ξ̃c over all space converges, then also that of ξ̃ν does.

In terms of the classification (see Chap. 3) of density fields through the
relation between the behavior of the PS at small k and the mass variance
at large r we thus draw the following conclusion: Both the critical (with
P (0) = ∞) and Poisson-like (with P (0) = const. > 0) Gaussian fields give
under biasing sub-fields θν(x) remaining in the same class; on the other hand
super-homogeneous Gaussian fields (with P (0) = 0) become substantially
Poisson (PνPP (0) = const. > 0).

To further clarify the breakdown of the super-homogeneous condition, let
us consider the following example. If we have a stochastic mass distribution,
and we perform a random sampling of this distribution, biased or not, this
process introduces a source of Poisson noise such that, if the original field is
super-homogeneous, the sampled sub-field becomes essentially Poisson. Con-
sider for example the case of a perfect lattice, which is a super-homogeneous
distribution (P (0) = 0, see Chap. 3) in which the normalized variance in a
sphere of radius R decays asymptotically as

σ2(R) =
〈(∆M(R))2〉
〈M(R)〉2 ∼ 1

R4
. (13.23)

The distribution obtained by taking (or rejecting) each point with probability
p (or 1 − p) is described by a simple binomial distribution, with a variance
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σ2(R) ∝ p(1 − p)
N

∝ 1
R3

(13.24)

(N being the mean number of points inside a sphere).
It is important to note that the present biasing scheme is a deterministic

process on a disordered system. In other words, once the stochastic realization
of the Gaussian field is given, the process to decide which parts of the field
survive on biasing (i.e. which are above the threshold) is not random, but
deterministic. Despite this feature, the effect produced by this deterministic
sampling is of the same kind of that given by a random sampling. This was
not evident a priori. It suggests that any kind of biasing, deterministic or ran-
dom, gives such a transformation of super-homogeneous fields into essentially
Poisson ones.

Let us now turn to the implications of this result for cosmological models.
Since such models have P (0) = 0 in the full matter PS, it is evident that we
cannot have the behavior

PνPP (k) ∝ b1(ν)P (k)

for small k which one would naively infer from the fact that

ξ̃ν(r) ≈ b1(ν)ξ̃c(r)

for large separations. Inevitably a non-linear distortion of the biased PS at
small k relative to the underlying one is induced. How important can the effect
be qualitatively for a realistic cosmological model? To answer this question
we consider the simple model PS

P (k) = Ake−k/kc .

The differences with a CDM model – which has the same linear Harrison-
Zeldovich (HZ – see Chap. 6) form at small k but a different (power-law)
functional form for large k – are not fundamental here, and this PS allows
us to calculate the correlation function ξ̃c analytically (see Chap. 6). This
greatly simplifies the numerical calculation of the biased PS PνPP (k), which
can be done by direct integration of (13.12). In Fig. 13.7 we show PνPP (k) for
various values of the threshold ν = 1, 2, 3. It shows a well defined flattening
for k → 0 even for a small value of the threshold ν. We see that the shape
of the PS at small k is completely changed with respect to the underlying
PS. Indeed the main feature of the latter in this range – a clear maximum
and “turn-over” – is completely modified. Qualitatively it is not difficult to
understand why this is so. The only characteristic scale in the PS (and also
in the correlation function) is given by the turn-over (specified in our case by
k = kc). On the other hand, the value of PνPP (0) is just the integral over all
space of ξ̃ν which is proportional to the overall normalization A and (since
it is strictly positive) must be given on dimensional grounds by Akc times
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Fig. 13.7. The PS PνPP (k) derived from the biased correlation function ξ̃ν(r) for
values of the threshold ν = 1, 2, 3 is shown. The underlying correlation function
which gives ξ̃c(r) is that derived from the P (k) = Ake−k/kc and the approximation
given in (13.12) for ξ̃ν is used. The clear distortion of the PS at small k is seen:
the “turn-over” in the underlying PS essentially disappears already for ν = 1. The
constants kc and A are fixed by ξ̃c(0) = 1 and by the requirement that ξ̃c(r) = 0
at r = 38 Mpc. The latter is taken as in a typical CDM model (see e.g. [170]). We
could alternatively fix the wave-number at the maximum of the PS. (From [72])

some function which depends on ν. For ν 	 1 this function is of order one,
so that PνPP (0) ∼ max[P (k)].

This last point is better illustrated by considering the integral

J3JJ (r, ν) = 4π
∫ r

0

∫∫
x2ξ̃ν(x)dx (13.25)

which converges to PνPP (0) = limr→∞ J3JJ (r, ν). In Fig. 13.8 the value obtained
for it by numerical integration of the exact expression given by (13.9) for
ξ̃ν(r) is shown for ν = 1, 2, 3. Also shown is the same integral for ξ̃c which
converges to P (0) = 0. While the latter decreases at large r, converging very
slowly to zero (as 1/r since ξ̃c(r) ∝ −1/r4 at large scales), the former all con-
verge toward a constant non-zero value. We see that the integral picks up its
dominant contribution from scales around (and above for ν = 1) r ∼ 10 Mpc
(see caption for explanation of the normalizations, which are irrelevant for the
present considerations). From the inset in the figure, which shows both ξ̃c(r)
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Fig. 13.8. The integral J3JJ (r) for the same underlying correlation function as in
Fig. 13.7 and for the same range of values of ν, calculated with the exact expres-
sion (13.13) for ξ̃ν(r). Also shown is the analogous integral of ξ̃c. While the latter
converges slowly to its asymptotic value of P (0) = 0, the other integrals converge
to constant non-zero PνPP (0). They are dominated by the range r ∼ 10 Mpc where,
as can be seen from the inset which shows both ξ̃c and each of the ξ̃ν(r), the corre-
lation functions ξ̃ν(r) are amplified non-linearly. The contribution from the highly
amplified region at small r is small (because of the r2 factor in the integral), which
also makes the approximation in calculating the PS with (13.12) very accurate, as
can be checked by comparing the asymptotic values with those of PνPP (0) in Fig. 13.7.
(From [72])

and ξ̃ν(r), we see that this is the range of scale at which the correlation func-
tion is non-linearly amplified. Moreover it is shown that the smaller scales at
which ξ̃ν(r) is most distorted relative to ξ̃c(r) do not contribute significantly
to J3JJ (because of the r2 factor). This fact also explains the accuracy of the
PS obtained using the approximation (13.12) for ξ̃ν(r), which can be seen by
comparing the asymptotic values of the integrals in Fig. 13.8 with PνPP (0) in
Fig. 13.7. Note that for ν = 1 the distortion away from linear is relatively
weak in the part of the correlation function which dominates the integral in
J3JJ (r, ν), and that there is even a non-negligible contribution from the larger
scales at which the correlation function amplification is extremely close to
linear.
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13.5 Summary and Discussion

Let us first summarize what we have found in our analysis of the model of
bias introduced in [123], and then consider what conclusions we can draw.
In particular we will return to the issue which we discussed in Sect. 6.6.1
of Chap. 6: the normalization of the fluctuations at large scales probed by
observations of the CMBR and those at smaller scales probed by observations
of the distribution of visible matter, in particular of galaxies and galaxy
clusters.

We have discussed the properties of the model in which one constructs
from a random Gaussian field δρ(x), by selection of fluctuations over a certain
positive amplitude threshold, another field θν(x). The former represents the
dark matter field, while the latter traces the correlation properties of a set of
objects. We have found that while r0(ν) (the homogeneity scale of the biased
field) depends strongly on ν – essentially due to a sparseness effect – rc(ν)
(the correlation length of the biased field) is almost constant and equal to rc

of the original field, i.e. the maximal size of the fluctuations structures does
not depend on the threshold. Further we have highlighted the fact that from
this model one obtains a relation

ξ̃ν′(r) ≈ b2(ν′, ν)ξ̃ν(r) (13.26)

only in the range of weak correlations (when ξ̃ν,ν′(r) � 1). The observed
galaxy-cluster mismatch and luminosity bias, discussed in Chap. 9 and
Chap. 12, correspond to such a linear amplification in a range of scales
r1 < r < r2 where ξ̃ν,ν′(r1) > 1 and ξ̃ν,ν′(r2) > 1. We have also considered
the behavior of the PS of the biased field θν(x). Focusing on cosmological
models for the dark matter field, with the super-homogeneous characteristics
we have discussed in Chap. 6, we have shown that this characteristic is in
fact modified. The biased field has a PS which does not tend to zero as k
does so. One of the implications of this is that the linear relation

PνPP (k) ≈ b2P (k) (13.27)

cannot hold at small k. This is a relation which one might tend to infer to
hold precisely at small k, from the fact that ξν(r) ≈ b2ξ(r) at large r (since
ξν(r) � 1 in this limit). Applying the biasing model to a typical cosmological
model we have shown in fact that the approximation (13.27) is not good in
any range of k. In particular we found that the “turn-over” in the underlying
PS to a HZ behavior (P (k) ∼ k) is completely obliterated in the PS of the
biased field.

In drawing conclusions from these findings various caveats need to be
stressed. Firstly there are some with respect to the specific model we have
analyzed. We note that the biased field θν(x) does not describe a set of
discrete objects. It is a continuous field which is different qualitatively also
from the underlying weighted density field δρ(x), in that it simply defines
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a set of equal weight. One could envisage discretizing it in various ways.
For example, the regions where θν(x) = 1 could be substituted by a set
of equal mass points with number density proportional to the length of the
connected region where θν(x) = 1. Or, alternatively, one could substitute each
connected non-zero region by a single point at its center, possibly with a mass
proportional to the mass in this region in the underlying dark matter field.
While such a discretization would evidently change the correlation properties
compared to those calculated, the important point is that we would expect
these changes only to be at small scales. Thus the conclusions we have drawn
on large scales (i.e. larger than the typical size of the selected regions) should
be valid.

A further more general caveat is that, even with the possible elabora-
tions for discretization we have just described, what we have examined is
still a specific model of bias. Since its introduction many variants and modi-
fications have been studied e.g. “stochastic bias” which introduced a further
stochasticity in the selection, “non-local bias” which relaxes the strictly local
relation of the selected and underlying field (see [179] for a review). More
recently, in the context of a popular phenomenological model for dark matter
clustering known as the “halo model” (for a review see [50]) biasing has been
reformulated as a probability for selection of objects in regions of dark mat-
ter aggregation (“halos”) of different mass. Fundamentally however all these
models share the central idea of the original one i.e. that of a selection, which
is essentially stochastic4. As we discussed in our consideration of the biased
PS, this factor alone is essentially what leads to the qualitative change in
the properties of the underlying and biased distribution. If, as in cosmologi-
cal models, the underlying distribution is super-homogeneous, the biased one
will not be. The reason for this is simplest to understand in real space, where
super-homogeneity corresponds to the fact that the fluctuations in mass in
a volume are proportional to the surface of the volume. The stochasticity of
the selection introduces necessarily a term in the variance proportional to the
volume, which then dominates. Thus the behavior of the PS corresponding
to this super-homogeneity must disappear in the biased field, as indeed is
observed in the specific model we have analyzed. The conclusion that the PS
is not linearly amplified beyond the “turn-over” should therefore be robust in
any bias model. A corollary of this is that the two-point correlation function
ξ(r) cannot be amplified linearly at all scales, and in particular we expect
that the rupture of the super-homogeneity can be understood as being due
generically to a scale-dependent modification of the correlation function (as
the PS at k = 0 is the integral of the correlation function). On the basis of
this analysis we cannot exclude, certainly, the possibility that, in a different
model, there may be linear amplification in some more extended range of
4 As discussed in Sect. 13.4 the Kaiser model we have discussed is actually a

deterministic selection on a stochastic field, but the net effect is like that of a
stochastic sampling.
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scales. However the examination of this model suggests no reason to expect
such a behavior other than in the region of weak correlation where an ap-
propriate Taylor expansion of the biased correlation function in terms of the
underlying one will probably be valid generically.
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Fig. 13.9. In this figure we show a typical CDM type power spectrum (solid
line) and the range associated to the primary observational constraints. The left
hand side, the Harrison Zeldovich part of the PS (P (k) ∼ k), is constrained by
observations of the anisotropies of the CMBR (dash-dotted box). Current galaxy
and galaxy cluster surveys gives constraints at smaller scales (dashed box). The
normalization of the amplitude of the galaxy or cluster PS to the one observed
in the CMBR is fundamentally important. It is usually determined by a linear
re-scaling on the y-axis, ascribed to the effect of bias. This simple assumption is
not consistent with the canonical model for the biasing of a Gaussian field, which
introduces a non-linear distortion both at small and large wave-number. This is
illustrated by the dashed line, which shows what is actually obtained for the PS of
the biased field. On small scales (large k) there is a non-linear distortion and at
large scales (small k) the behavior is typical of a substantially Poisson system with
P (k) ∼ const

We conclude thus that the findings we have made are for these essen-
tial points: neither the linear amplification of the correlation function ξ(r)
between galaxies and galaxy clusters, nor between galaxies of different lu-
minosities, can be explained naturally with the framework of biasing. If a
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particular model manages to produce such an approximate relation over a
range of scales (e.g. in a “halo” biasing model, where the selection probabil-
ity is determined a posteriori to fit the data) this is a inevitably a result of
a fine-tuning. Further the relation between the PS of the dark matter field
and that of discrete objects such as galaxies related as envisaged by such a
mechanism will generically not be linear for any k, and certainly will not be
linear beyond the “turn-over”. The importance of this latter point is consid-
erable: such a linear renormalization of the PS of galaxies and galaxy clusters
is in fact almost universally applied in cosmology (e.g. [141]). In the theory of
structure formation this is essential since it is through such a normalization
that one relates the fluctuations at large scales probed by observations of the
CMBR and those at smaller scales probed by observations of the distribu-
tion of visible matter (discussed in Sect. 6.6.1 of Chap. 6). As the central
aim of the theory of structure formation is in fact to relate these two kinds
of data – the “initial conditions” at large scales probed through the CMBR
and the observed properties of the distribution of visible matter today – the
importance of our conclusions is evident (see Fig. 13.9).

We mention finally one other point which follows from our analysis. We
have highlighted in Chap. 6 that the dark matter density field of standard
cosmological models has very specific and interesting properties in the context
of correlated systems i.e. it is what we call super-homogeneous. We have now
seen that biasing destroys this characteristic in visible matter. Does this mean
there is no direct trace of the super-homogeneity in galaxy distributions? The
answer is in the negative: we have seen that biasing does lead to a simple
linear amplification of the reduced two-point correlation function ξ(r) in the
region of weak correlations. At the same time we have seen in Chap. 6 that
the super-homogeneous behavior of the PS P (k) ∼ k gives ξ̃(r) ∼ −r−4

at large r (beyond the inverse of the turn-over scale in k space). Thus we
expect this characteristic behavior to survive biasing, and to describe the
correlation function of galaxies at sufficiently large scales. The amplitude
of the predicted correlation function in this region is very small, typically
∼10−2 ÷ 10−3 (see Fig. 6.2 in Chap. 6) and the detection of such a behavior
in current galaxy surveys is impossible (since typically one expects at least
an estimator variance of order 1/

√
N where N is the number of points – see

Appendixes F–G). With the full SDSS survey – containing a million galaxies –
it may however be possible to attain such a direct measurement, providing
that galaxy distribution becomes homogeneous well inside the sample size.
To determine whether it will be – after it is first established that the ξ(r)
analysis is the appropriate one – a detailed treatment is required of both
estimators of ξ(r) and the passage to the discrete distribution of galaxies
from the underlying model.



14 The Gravitational Field in Stochastic
Particle Distributions

14.1 Introduction

The knowledge of the statistical properties of the gravitational field in a
given distribution of point-particles is very useful in many cosmological and
astrophysical applications in which such particles are treated as elementary
objects. In particular it is useful in the context of stellar dynamics and of
cosmological N-body simulations to study the formation and the evolution of
structures from some initial mass density perturbations [12, 13, 14]. Similar
studies are useful in other domains of physics, such as the statistics of the
dislocation-dislocation interaction in the analysis of crystal defects in con-
densed matter physics [244]. Until now a complete study of this problem
has been accomplished only in the case of an uncorrelated Poisson parti-
cle distribution [43, 100]. Partial results have been found more recently in a
few other cases: 1) fractal point distribution [88], 2) radial density profile of
particles [62], and 3) in weakly correlated statistically homogeneous particle
distributions [93].

As discussed by Chandrasekhar [43] one of the main problems of the
dynamics of a self-gravitating particle distribution concerns the statistical
analysis of the force acting on a single test particle of the system. In general,
it is possible to show that this force is composed of two different contribu-
tions: the first is due to the system as a whole and the second is due to
the influence of the immediate neighborhood of the particle. The former is a
smoothly varying function of position and time while the latter is subject to
relatively rapid fluctuations. These fluctuations are related to the underlying
statistical properties of the particle distribution: their effect can be evaluated
in a stochastic sense. We discuss here the problem of the computation of the
stochastic force probability density for a set of points with given statistical
properties.

The actual value of the gravitational force acting on a fixed “test” parti-
cle belonging to a given system, supposed arbitrarily to be at the origin of
coordinates due to all the other N system particles is

F = GM0MM

N∑
i=1

MiMM

|ri|3 ri (14.1)
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where MiMM is the mass of the ith particle, ri its position vector, and M0MM the
mass of the test particle (G is the gravitational constant). The sum in (14.1)
is extended to all the particles other than the test one, which are contained
in the system volume V (with V → ∞). The actual value of F clearly de-
pends on the nature of the local particle distribution, and hence, it will be
in general subjected to stochastic fluctuations. These fluctuations determine
a more or less broad force probability density function (PDF) P (F ). Clearly
if the point-particle stochastic system is statistically stationary (i.e., invari-
ant under spatial translation) the statistical properties of F do not depend
on the choice of the test particle. We will assume throughout this chapter
this stationarity as well as the statistical isotropy of the distribution. More-
over we assume that all particles have equal mass (MiMM = MjM = M for any
i, j = 0, N). Because of statistical isotropy the direction of F is completely
random with equal probability in each direction, i.e. P (F ) depends only on
F = |F |. Therefore we can limit the analysis to the PDF W (F ) of F . The
relation between W (F ) and P (F ) in three-dimensional space is simply

W (F ) = 4πF 2P (F ) . (14.2)

14.2 Nearest Neighbor Force Distribution

The simplest approximation in which one can evaluate the force F acting on
a fixed particle of the system is given by taking the contribution only due to
its nearest neighbor (nn) particle. We denote the PDF of this contribution by
WnnWW (F ). Even though this approximation is in general very crude and inac-
curate, the calculation of the nn contribution in some simple stochastic cases
is an instructive exercise which can help to elucidate some basic properties
of the total force distribution W (F ). For this simple exercise, we suppose
that we have a statistically stationary and isotropic (i.e. with no preferred
a priori position and direction in the statistical sense) fractal point-particle
distribution with fractal dimension D ≤ 3. Moreover we use the approxima-
tions given in Chap. 4 ((4.22)–(4.25)), which are quite strong for real fractals,
but for D = 3 are the exact expressions for the isotropic Poisson case (see
(2.64)–(2.66)). Therefore for D = 3 we will obtain the exact nn gravitational
interaction for the Poisson case.

If r is the distance between the fixed test particle and its nn we have

F = |F | =
GM2

r2
. (14.3)

Denoting, as usual (see Chap. 2), by ω(r) the PDF for the random variable
r, we can write

WnnWW (F )|dF | = ω(r)|dr| . (14.4)

By using (2.71) for the conditional average density
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Γ (r) ≡ 〈n(r)〉p =
DB

4π
rD−3 ,

and by replacing (14.3) in (14.4), we obtain

WnnWW (F ) =
D

2
F

D
2

〈F Λ〉F
−D+2

2 exp

[
−
(

F〈FF Λ〉
F

)D
2
]

, (14.5)

where we have defined

F〈FF Λ〉 = B
2
D GM2 =

GM2

〈Λ〉2
(

ΓeΓΓ

(
1 +

1
D

))2

, (14.6)

and 〈Λ〉 is the average distance between nn

〈Λ〉 =
∫ ∞

0

∫∫
dr r ω(r) .

In the limit F → ∞, we obtain the so called strong field approximation of
(14.5):

WnnWW (F ) 	 D

2
F

D
2

〈F Λ〉F
−D+2

2 . (14.7)

The strong field approximation, in practice, is quite good for F � F〈FF Λ〉.
Indeed, in this limit, the exponential factor in (14.5) can be assumed to be
equal to 1. The force F〈FF Λ〉 gives the order of magnitude of the interaction
separating the strong field from the weak field limit.

We can now compute the first and the second moment of the force dis-
tribution by introducing a lower cut-off l > 0 in the nn distance (i.e. l is
the minimal distance between nn particles). The effect of this cut-off can be
taken into account by introducing an exponential decay for F > l−2. Then
we can also study the limit l → 0. Hence we consider instead of (14.5)

WnnWW (F ) =
D

2
F

D
2

〈F Λ〉F
−D+2

2 exp

[
−
(

F〈FF Λ〉
F

)D
2
]

exp
(−l2F

)
. (14.8)

By using (14.8) we obtain that the average value of the force is

〈F 〉p =
∫ ∞

0

∫∫
dF FWnnWW (F ) ∼ 1

l2−D
. (14.9)

Hence in the limit l → 0 〈F 〉p is finite for D > 2, while it is infinite for D < 2.
The mean square force can be computed easily in the same way and gives

〈F 2〉p =
∫ ∞

0

∫∫
dF F 2WnnWW (F ) ∼ 1

l4−D
. (14.10)

In the limit l → 0,
〈
F 2

〉
p

is divergent for any possible value of the fractal
dimension D ≤ 3. Therefore the root mean square value (rms) of the force de-
pends strongly on the lower cut-off l. Consequently, in this context, we expect
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to see large fluctuations of the observed values of the total gravitational field
on different points of the system. This kind of divergence in the field moments
is due to the fact that considering l = 0, no lower limit in the nn distance
is imposed and the related gravitational force, being proportional to r−2, is
permitted to be arbitrarily large producing a power-law tail in WnnWW (F ). In
almost all physical problems it is quite reasonable to assume l > 0, in par-
ticular for the case of galaxy distribution (as galaxies are not point particles
but extended objects). In gravitational N-body simulations, for example, a
small scale smoothening of the gravitational force is always introduced. The
physical results derived are, however, verified to be independent of this lower
cut-off. The treatment of effects which depend on such a cut-off (e.g. tidal
interactions leading to the formation of binary systems) are beyond the scope
of the present treatment.

14.3 Gravitational Force PDF in a Poisson
Particle Distribution

Chandrasekhar [43] has considered the behavior of the PDF of the Newtonian
gravitational force P (F ) arising from a statistically isotropic Poisson distri-
bution of sources. He showed that applying the Markov method, it is possible
to compute exactly the PDF, known as the Holtzmark distribution, of the
gravitational force acting on a test particle in the system. We briefly summa-
rize the results of Chandrasekhar [43] for the computation of the Holtzmark
distribution obtained by the Markov method. We then focus our attention on
the strong and weak field limits (i.e. respectively F → ∞ and F → 0) deriv-
ing the approximate solutions in these cases. In particular, we show that in
the large F limit, the total force distribution reduces to the nn approximation
previously discussed.

In the case of a homogeneous and isotropic Poisson particle distribution,
because of spherical symmetry, the average gravitational force acting on one
particle due to the rest of the system vanishes. Any force acting on a particle
is due to fluctuations away from exact (i.e. deterministic) spherical symme-
try. Without lost of generality, let us suppose again that the particle from
which we are calculating the gravitational force is at the origin of the system
of coordinates. The force felt by this particle due to the other N particles
contained in the system volume V (e.g. a spherical volume) can be written

F =
N∑

i=1

GM2

|ri|3 ri =
∑

i

f(ri) (14.11)

assuming, again, that all the N particles have equal mass M . We want to
compute the probability P (F )d3F that the force in (14.11) takes a value in
the element d3F around F .
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The derivation of the PDF P (F ) for the Poisson case is simple and follows
similar arguments to the derivation of the central limit theorem discussed in
Chap. 2. If we call pc(r1, r2, . . . , rN ) the PDF for having the N particles in
(14.11) occupying respectively the points r1, r2, . . . , rN conditioned on the
fact that the origin of coordinates is occupied by another particle, we can
write

P (F ) =
∫

V

∫∫
. . .

∫
V

∫∫ (
N∏

i=1

d3ri

)
pc(r1, r2, . . . , rN ) δ

(∑
i

f(ri) − F

)
,

(14.12)
where the integrals extends over the system volume V , and the Dirac delta-
function picks up those particle configurations for which the sum of the f(ri)
is equal to F . In the particular case of a Poisson particle distribution the prob-
lem can be greatly simplified. In fact, since in a Poisson distribution there is
no correlation between the position of different particles, pc(r1, r2, . . . , rN )
reduces simply to the product

∏N
i=1 τ(ri) where τ(r) is simply the uncondi-

tional PDF for finding a generic system particle at the point r. Therefore, in
the Poisson case, the problem consists in the evaluation of

P (F ) =
∫

V

∫∫
. . .

∫
V

∫∫ (
N∏

i=1

d3ri τ(ri)

)
δ

(∑
i

f(ri) − F

)
. (14.13)

The PDF τ(r) in the homogeneous and isotropic Poisson case is just given
by 1/V where V is the system volume. In order to evaluate (14.13) it is more
convenient to study directly its Fourier transform (FT) P̃ (K) [170]:

P̃ (K) ≡
∫

d3F P (F ) exp (iK · F )

=
∫

V

∫∫
. . .

∫
V

∫∫ (
N∏

i=1

d3ri τ(ri)

)
exp

[
iK ·

∑
i

f(ri)

]

=
N∏

i=1

∫
V

∫∫
d3ri τ(ri) exp [iK · f(ri)]

=
(∫

V

∫∫
d3r τ(r) exp [iK · f(r)]

)N

. (14.14)

We now consider the large volume limit in which V → ∞ and N = nV , with
n > 0 being the (self-averaging) average number density characterizing the
Poisson distribution1 (see Sect. 2.4). In the statistically isotropic case (14.14)
can be rewritten as
1 Actually N can have statistical fluctuations from the average value nV , but it is

simple to show that, for a Poisson distribution, and more generally for correlated
uniform distributions (see Chap. 2), in the large V limit, they are vanishingly
small relative to nV and give negligible contributions to P (F ).
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V

∫∫
d3rτ(r) exp [iK · f(r)]

)N

=
(

1 − 1
V

∫
V

∫∫
d3r (1 − exp [iK · f(r)])

)nV

.

(14.15)
In the limit V → ∞ one can use the definition of the exponential function,
to obtain

P̃ (K) = exp
[
−n

∫
d3r (1 − exp(iK · f(r))

]
≡ exp [−nC(K)] (14.16)

where the integral extends over all space, giving

C(K) =
4
15

(2πGM2)3/2K3/2 ≡ (FoFF K)3/2 1
n

(14.17)

and

FoFF = (4/15)2/3(2πGM2)n2/3 =
GM2

〈Λ〉2 Γ 2
eΓΓ (4/3)25−2/3π

1
3 . (14.18)

The quantity FoFF is called the normalizing force. Note that because of the
statistical isotropy of the particle distribution P̃ (K) depends only on K =
|K|. Thus, by inverting the FT, we get

P (F ) = FT−1
[
P̃ (K)

]
=

1
(2π)3

∫
d3K exp

(
−iK · F − (FoFF |K|)3/2

)
,

(14.19)
which can be simply shown to depend only on F = |F |. Consequently, by
using (14.2) we can write

W (F ) =
H(β)
FoFF

(14.20)

where β = F/FoFF is the dimensionless force and

H(β) =
2

πβ

∫ ∞

0

∫∫
exp[−(x/β)

3
2 ]x sin(x)dx . (14.21)

This function is known as the Holtzmark distribution. The probability distri-
bution W (F ) is characterized by the following asymptotic scaling behaviors

W (F ) =

⎧⎪⎧⎧⎨⎪⎪
⎪
⎨⎨
⎩⎪⎪

4F 2

3πF 3
oF for F → 0

15
8 (2π)1/2F

3/2
oFF F−5/2 for F → ∞ .

(14.22)

In the Poisson case the nn approximation given by (14.5), and the ex-
act Holtzmark distribution (14.21) agree very well in the large F region (see
Fig. 14.1). The region where they differ most is when F → 0. This is due
to the fact that a weak force can arise only from a more or less symmet-
ric configuration of particles around the test one in which fluctuations are
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Fig. 14.1. Force distribution due to nearest neighbors and due to all particles
for a statistically stationary and isotropic Poisson sample in d = 3. The dotted line
represents the force distribution W (F ) computed by the nn approximation, while
the dashed line is the Holtzmark distributions numerically computed in a realization
of the Poisson process. The agreement is quite good at strong fields, while there is
a clear deviation at weak fields (F < F〈FF Λ〉)

determined by many particle effects, and hence the nn approximation fails.
Instead in the strong field limit we may almost neglect the contribution to
the force from far away points, because the main contribution is due to the
limit r → 0 in the elementary interaction (i.e. it comes from the nn). Note
that, as in the nn case, because of the behavior of W (F ) for F → ∞, 〈F 2〉
diverges. This is due to the singularity of the particle-particle gravitational
interaction at r = 0 together with the fact that in the Poisson distribution
there is no explicit positive minimal distance between particles (i.e. no lower
cut-off), as they are permitted to be at an arbitrarily small distance from
one another. If such a positive minimal distance l > 0 is added to the gener-
ation algorithm of the particle distribution, as an additional ingredient, then
W (F ) will be regularized at large F introducing effectively an upper cut-off
in F proportional to 1/l2. This results in the finiteness of any moment 〈Fm〉p
of the modulus of the force (in particular proportional to 1/l2m) with any
m ≥ 0.
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14.4 Gravitational Force in Weakly Correlated Particle
Distributions: the Gauss-Poisson Case

In this section we study the case of the so-called Gauss-Poisson (GP) point
process, which generates particle distributions characterized fully by their
two-point correlations, i.e. connected n-point correlation functions (or cu-
muants, see Chap. 2) vanish for n ≥ 3 [128, 217]. In this sense it can be seen
as the next step in correlated systems beyond the completely uncorrelated
Poisson distribution (see [93]). For the GP point process we try to general-
ize the method used by Chandrasekhar [43] for the Poisson case introducing
some approximations. Moreover we study the contribution to the total force
experienced by a particle due to its nn, in order to evaluate the weight of the
granular neighborhood of a fixed particle.

A GP point-particle distribution is built in the following way: first of all,
we take a Poisson distribution of particles with average density n0 > 0. The
next step is to choose randomly a fraction 0 < q ≤ 1 of these Poisson points
and to attach to each of them a new “daughter” particle in the volume element
d3r at a vectorial distance r from the “parent” particle with probability
p(r)d3r for each “parent” particle independently of the others [128, 217].
Therefore the net effect of this algorithm is the substitution of a fraction q of
the particles in the initial Poisson system with an equal number of correlated
binary systems. This kind of point distribution is evidently very useful in
physical applications characterized by the presence of binary systems.

The final average particle density of the GP distribution generated in this
way is evidently n = n0(1 + q). It is also simple to show that the connected
two-point correlation function is

ξ̃(r) =
δ(r)
n

+
2q

n(1 + q)
p(r) (14.23)

and that all the other connected n-point correlation functions with n ≥ 3
vanish [53]. All statistical information about a GP stochastic distribution is
contained in the knowledge of n and of ξ̃(r). For this reason the GP par-
ticle distribution can be seen as the discrete analog of continuous Gaussian
stochastic fields (see Sects. 2.7 and 3.6). Moreover since p(r) is a PDF, ξ̃(r)
is non-negative and integrable. In particular this implies that correlations
are positive and short ranged (i.e. with finite correlation length as defined
in Chap. 2). It is simple to show that (14.23) is finite: it is sufficient to use
the definition of the average conditional density 〈n(r)〉p of particles seen by
a generic particle of the system at a vectorial distance r from it without
counting the particle itself. As usual we write (see (2.52))

〈n(r)〉p = n[1 + ξ(r)] , (14.24)

where ξ(r) is the non-diagonal part of ξ̃(r). In the present case the conditional
average density can be evaluated as follows: the number of particles seen in
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average by the chosen particle in the origin in the volume element d3r around
r is nd3r if the chosen particle is neither a “parent” nor a “daughter” (i.e.
with probability (1− q)/(1 + q)) and nd3r + p(r)d3r if it is either a “parent”
or a “daughter” (i.e. with a complementary probability 2q/(1+q)). This gives
directly

〈n(r)〉p = n

[
1 +

2q

n(1 + q)
p(r)

]
,

which is equivalent to (14.23). Note that if p(r) depends only on r (i.e. if it
is spherically symmetric) then the particle distribution, in addition to being
spatially stationary (i.e. translational invariant), is also statistically isotropic
(i.e. rotationally invariant).

14.5 Generalization of the Holtzmark Distribution
to the Gauss-Poisson Case

We can now try to generalize the Holtzmark distribution to this correlated
case. Let us suppose we generate a GP distribution with fixed n > 0 and
0 < q ≤ 1 in a volume V . Let us choose the coordinate system so that
the origin is occupied by a particle of the distribution, and assume that
G = M = 1. As for the Poisson case in Sect. 14.3, we wish to calculate the
PDF P (F ) of the total gravitational field F acting on this point due to all
the other N particles in the system. As already seen in Sect. 14.3, once the
conditioned N -particle PDF pc(r1, r2, . . . , rN ) is known, P (F ) is formally
given by (14.12).

The problem is now more difficult since in the GP process, as the non-
diagonal two-point correlation ξ(r) is non-zero, pc(r1, r2, . . . , rN ) cannot be
written as a product of N one particle PDF’s as in the Poisson case. This
means it is not possible to apply the Markov method, used for the Pois-
son case, to evaluate the P (F ) exactly. We therefore introduce the following
approximation consisting in imposing the factorization

pc(r1, r2, . . . , rN ) =
N∏

i=1

τ(ri) , (14.25)

taking into account that, as ξ(r) is short ranged (being proportional to the
PDF p(r)), and that the higher order connected correlation functions vanish,
we can limit ourselves to using only the information about the conditional
density of particles around the occupied origin. Doing so we take into account
only the fact that on average the particle at the origin sees a density of
particles at the point r given by (14.24) with ξ(r) given by (14.23). This
gives τ(r) proportional to 〈n(r)〉p with an appropriate normalization:

τ(r) =
1 + 2q

n(1+q)p(r)

V + 2q
n(1+q)

. (14.26)
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Note that this is equivalent to approximating the given (statistically station-
ary) GP distribution seen by the particle in the origin with an inhomogeneous
and radial Poisson distribution (see Sect. 4.3.1) around it generated by the
following algorithm: once the space is partitioned in cells of volume d3r, the
cell around the point r is occupied by a particle with probability 〈n(r)〉p d3r

or stays unoccupied with the complementary probability 1 − 〈n(r)〉p d3r in-
dependently of the other cells.

This approximation makes it possible to use the Markov method to find
P (F ) which, in the limit V → +∞, can be shown to be given by

P (F ) =
1

(2π)3

∫
d3K exp (−iK · F − nCGP (K)) , (14.27)

where

CGP (K) = C(K) +
2q

n(1 + q)

∫
d3r p(r)

(
1 − exp

[
−i

K · r
r3

])
. (14.28)

The function C(K) is the analogue of CGP (K) for an isotropic Poisson dis-
tribution with the same average density n and is given by (14.17).

As shown below by a direct comparison with the results of numerical
simulations, this approximation is quite accurate. Note that the function
P̃ (K) = exp (−nCGP (K)) is the characteristic function (see Sect. 2.3.1) of
the stochastic force F . As aforementioned, if the PDF p(r) depends only on
r = |r|, the particle distribution is statistically isotropic. Consequently, as
for the Poisson case discussed in Sec. 14.3, P (F ) also depends on F = |F |
and P̃ (K) on K = |K|. This implies that the direction of F is completely
random while the PDF of F is given by (denoting p(r) by p(r) to show the
dependence only on r)

W (F ) ≡ 4πF 2P (F ) =
2F

π

∫ ∞

0

∫∫
dKK sin(KF ) × (14.29)

× exp

{
−4(2π)

3
2 nK

3
2

15
− 8πq

1 + q

∫ ∞

0

∫∫
drr2p(r)

[
1 − r2

K
sin

(
K

r2

)]}
.

14.5.1 Large F Expansion

We limit the rest of the discussion to the statistically isotropic case. As for
the Poisson distribution, it is not possible to find an explicit form of P (F ) (or
equivalently of W (F )). However we can connect its large F scaling behavior
to that of the simple Poisson case (14.22) and to the small r behavior of
p(r). The fundamental point is to use the general properties of the Taylor
expansion of the characteristic function P̃ (K) (see Appendix A) to the lowest
order greater than zero. In particular in this isotropic case we use the fact
that, if P (F ) 	 CF−α at large F (note that α > 3 in any case as P (F ) is a
normalizable PDF) then [121]
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P̃ (K) =
∫

d3F exp (iK · F ) P (F ) =

=
{

1 − 1
6F2K2 if α > 5

1 − aKα−3 if 3 < α ≤ 5 ,
(14.30)

where
F2 =

∫
d3F F 2P (F )

is the second moment of the force distribution, and a > 0 is a constant
characterizing the singular part of the Taylor expansion. It is possible to
show, using arguments similar to those explained in Appendix A, that the
constant a is given by

a = 4πC

∫ ∞

0

∫∫
dx x2−α

(
1 − sin x

x

)
. (14.31)

Note that α > 5 implies that F2 is finite, and that for the stationary and
isotropic Poisson case α = 9/2, so that

P̃ (K) 	 1 − 4n

15
(2πK)

3
2 .

Therefore our strategy is to find α by connecting the expansion given in
(14.30) to the form of p(r) and in particular to its small r behavior. Let us
suppose that p(r) 	 Brβ at small r (B > 0 and β > −3 as p(r) is a PDF of
a three-dimensional stochastic variable – see Chap. 2). It is quite simple to
show that at small K the integral

I(K;β) =
∫ ∞

0

∫∫
dr r2p(r)

[
1 − r2

K
sin

(
K

r2

)]

behaves as follows:

I(K;β) 	
{

c1K
3+β
2 if β < 1

c2K
2 if β ≥ 1 ,

(14.32)

For β = 1 there will be logarithmic corrections to (14.32). The two constants
c1 and c2 depend on p(r) in the following way:

c1 =
B

2

∫ ∞

0

∫∫
dx x− 5+β

2

(
1 − sin x

x

)
(14.33)

c2 =
1

24π

(
1
r4

)
,

where ( . . .) =
∫

d3r ( . . .) p(r) is the average over the PDF p(r). Consequently,
by inserting this result in (14.29), we can distinguish three possible asymp-
totic behaviors of P (F ):
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• For β > 0 the dominating part in P̃ (K) at small K is exactly the same as
in the stationary and isotropic Poisson case, i.e.

P̃ (K) 	 1 − 4n

15
(2πK)

3
2 , (14.34)

which implies P (F ) 	 (n/2)F−9/2 (or equivalently W (F ) 	 2πnF−5/2) at
large F . Note that not only the exponent, but also the amplitude, is found
to be the same as in the stationary and isotropic Poisson case with the
same unconditional average density.

• For β = 0 we have again substantially the same behavior as for the sta-
tionary and isotropic Poisson particle distribution, but the coefficient of
the first non-zero order term picks up an additional contribution from the
small scale two-point correlation ξ(r):

P̃ (K) 	 1 − 8πn

(
(2π)

1
2

15
+

c1q

n(1 + q)

)
K

3
2 , (14.35)

which implies again P (F ) 	 CF−9/2 at large F , with

C =
n

2
+

qB

1 + q
. (14.36)

which is larger than the coefficient found for an isotropic Poisson particle
distribution with the same average density n. In practice, from (14.29)
and (14.36), we have the same scaling behavior of W (F ) of the isotropic
Poisson distribution but with a larger average density

n′ = n +
2qB

1 + q
.

• For β < 0 the small K behavior of P̃ (K) is completely changed from the
isotropic Poisson case, being given by

P̃ (K) 	 1 − 8πc1q

1 + q
K

3+β
2 . (14.37)

This means (see (14.30)) that 2 − α = − 5+β
2 . Thus we can conclude that

at sufficiently large F we have

P (F ) 	 CF− 9+β
2 ,

or equivalently
W (F ) 	 4πCF− 5+β

2 ,

with
C =

q

1 + q
B . (14.38)
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14.5.2 Small F Expansion

The small F behavior of P (F ) can be connected to the large K behavior of
its FT. First note that

lim
K→+∞

4πI(K;β) = 4π
∫ +∞

0

∫∫
dr r2p(r) = 1 .

This simple observation implies (see (14.29)) that for any GP particle dis-
tribution, the asymptotically large K behavior of P̃ (K) is similar to that of
the isotropic Poisson case with the same average density, but with an ampli-
tude reduced by a factor exp(−2q/1+ q). Consequently the small F behavior
of W (F ) is the same as for the isotropic Poisson distribution but with an
amplitude reduced by the same factor exp(−2q/1 + q), i.e.

W (F ) 	 exp
(
− 2q

1 + q

)
4
3π

F−3
oFF F 2 , (14.39)

where FoFF is given by (14.18).

14.5.3 Comparison with Simulations

The validity of these theoretical results is supported by the analysis of nu-
merical simulations consisting in the generation of two kinds of GP particle

0,001 0,01 0,1
r
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0,1

10

ξ(
r)

0,010,01

0,010,01

11

100100

Box
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r
-2

Fig. 14.2. Connected two-point correlation function measured in a single real-
ization, with about 105 points in a box of volume V = 1 for the Gauss-Poisson
case where (Box) p(r) is a box − function with cut-off at 0.01 and the label PL
(power-law) corresponds to p(r) = (1/4πr0)(exp(−r/r0)/r2) with r0 = 0.01



348 14 The Gravitational Field in Stochastic Particle Distributions

distributions with two explicit choices of p(r) (see Fig. 14.2), for which the
PDF W (F ) of F is directly measured:

1. In the first case p(r) is chosen to simply be a positive constant up to a
fixed distance r0 and zero beyond this distance:

p(r) =
{ 3

4πr3
0

if 0 < r ≤ r0

0 if r > r0 .
(14.40)

or, in the notation of the previous section B = 3
4πr3

0
and β = 0, i.e., the

probability of attaching a “daughter” particle at a distance between r and
r + dr from its “parent” is 3r2dr/r3

0 if r ≤ r0 and zero for r > r0. As
shown above this choice of p(r) should give

W (F ) 	
(

2πn +
3q

r3
0(1 + q)

)
F− 5

2

at large F , i.e., with the same exponent but with a larger amplitude than
the pure isotropic Poisson case. At small F , as shown above, the asymp-
totic behavior of W (F ) is given by (14.39).

2. In the second case p(r) decays exponentially fast at large r but is singular
as r−2 at small r, i.e.

p(r) =
1

4πr0

exp(− r
r0

)
r2

. (14.41)

This choice of p(r) should give

W (F ) 	 q

r0(1 + q)
F− 5+β

2

at large F with β = −2. Again at small F (14.39) should be valid.

The results of these simulations for the large and the small F asymptotic
behaviors of W (F ) show good agreement (see Figs. 14.3 and 14.4) with the
theoretical predictions given in the previous section. Consequently the ap-
proximations used in these calculations appear to be valid. This suggests
that the scaling relations obtained for W (F ) at large and small F can be
extended to more general cases of correlated particle distributions.

14.5.4 Nearest-Neighbor Approximation
for the Gauss-Poisson Case

As for the Poisson case, we now analyze, for GP distributions in the sta-
tistically isotropic case, the importance of the first nn contribution to the
total force felt by a particle. To do this we use only the information that
the average conditional density 〈n(r)〉p (which depends only on r) seen by
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Fig. 14.3. Comparison between theoretical predictions (solid lines) and simulations
of the tails of the PDF of the modulus of the gravitational force W (F ) for the case
where p(r) is a box-function given by (14.40). The theoretical behaviors at small
and large fields (th) computed as explained in the text are shown as well. Finally
for comparison it is also shown the behavior of the Holtzmark distribution for a
Poisson distribution with the same number density

the particle in the origin is given by (14.24). Therefore we use, in this case, the
approximations given by (4.22) and (4.25), and follow exactly the same steps
as in the Poisson case. With 〈n(r)〉p replacing the simple n of the isotropic
Poisson case, we can write:

ω(r) =
(

1 −
∫ r

0

∫∫
ω(x)dx

)
4nπr2(1 + ξ(r)) , (14.42)

where
ξ(r) =

2q

n(1 + q)
p(r) .

Equation (14.42) can be solved to give

ω(r) = 4nπr2(1 + ξ(r)) exp
[
−4nπ

∫ r

0

∫∫
dx x2(1 + ξ(x))

]

By imposing p(r) 	 Brβ at small r and using again F = 1/r2 in order to
pass from ω(r) to WnnWW (F ), it is simple to see that WnnWW (F ) has the same
aforementioned scaling behavior at large F of W (F ) for all the permitted
values of β, with the same coefficient. Therefore also in the GP case we have
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Fig. 14.4. The same as in the previous figure, but for the case where p(r) is given
by (14.41), i.e. it has an exponential upper cut-off r0 at large r and is singular as
r−2 at small r

that the main contribution to the force felt by a particle in the system is
due to its first nn. This could have been expected as the main change intro-
duced passing from Poisson to a GP distribution involves the introduction of
additional density fluctuations in the neighborhood of any particle.

14.6 Gravitational Force in Fractal Point Distributions

Chandrasekhar’s derivation of P (F ) in the Poisson case cannot be extended
to the case of fractal distributions of particles with equal mass because such
structures are characterized by strongly correlated fluctuations at all scales.
In particular, in a fractal particle distribution, one can never use the basic
approximation (exact only in the Poisson case) on which Chandrasekhar’s
method is based, consisting in assuming the validity of the factorization
(14.25) of the joint N -particle (conditional and/or unconditional) PDF of
the positions of the N particles.

It is important to note that assuming (14.25) with

τ(r) ∼ rD−3
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and 0 < D < 3 does not represent at all a fractal distribution2, but rather
an anisotropic and radial Poisson distribution (see Sect. 4.3.1) defined by the
following algorithm: once the system volume is partitioned in elementary cells
of volume d3r, the cell around the point r is either occupied by a particle
with probability ArD−3d3r or unoccupied with complementary probability
1 − ArD−3d3r, each cell being considered independently of all others. Such
a radial and anisotropic Poisson distribution has a non-constant (uncondi-
tional) average density around the origin 〈n(r)〉 = ArD−3d3r. In this case,
in analogy to (14.20), one obtains

W (F ) =
H
(

F
FoFF , D

)
FoFF

, (14.43)

where
H(β,D) =

2
πβ

∫ ∞

0

∫∫
exp[−(xβ)

D
2 ]x sin(x)dx , (14.44)

and
FoFF = (4/15)2/D(2πGM2)A2/D , (14.45)

The main change due to the radial anisotropic structure is that the scaling
exponent in (14.44) is D/2 rather than 3/2 characterizing the stationary and
isotropic case. Hence in this case the tail of W (F ) has a slower decay (see
Fig. 14.5). It is important to stress that such a result is a bad approximation
for a real fractal particle distribution with 〈n(r)〉p = ArD−3, because by
neglecting correlations in a fractal, which is a super-correlated system, one
erases their essential features.

An important limit is the strong field one (F → ∞): In this case it is
possible to show that the force distribution of (14.44) can be reduced to the
one which can be derived under the nn approximation (14.5) with A = DB

4π .
In Fig. 14.5 these theoretical results for the radial Poisson distribution are
compared with estimates of W (F ) and WnnWW (F ) from numerical simulations
of a fractal particle distribution characterized by 〈n(r)〉p = ArD−3.

14.7 An Upper Limit in the Fractal Case

In order to get a first insight about the statistical behavior of the gravita-
tional force in a statistically stationary and isotropic fractal distribution with
particles of equal mass M , we focus here on the determination of an upper
limit to the total force acting on a generic particle of the system, that we
can think to occupy the origin of coordinates, due to all other sources at a
distance r between a lower limit l > 0 and an upper limit Rs. In the next
2 Note that the proportionality constant between τ(r) and rD−3 depends appro-

priately on the system volume V to guarantee the normalization of probability.
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Fig. 14.5. Force distribution due to the nearest neighbors (crosses) and to all the
field sources (diamonds) for a fractal distribution with D = 2.41 in d = 3 generated
by the random β-model algorithm. The dotted line represents the force distribution
WnnWW (F ) given by (14.5) while the dashed line represents W (F ) given by (14.43)–
(14.45) both valid for the radial Poisson case. Note that the theoretical WnnWW (F ) is
in quite good agreement with the analogous fractal quantity (in particular in the
range F > F〈FF Λ〉). Instead the theoretical W (F ) is quite different from the fractal
case. The reason is that, while (14.5) works quite well also for fractals, because
it is based on the approximation from the neighborhood of the particle at the
origin, in evaluating W (F ) we have omitted correlations at all scales, which is a
bad approximation for the fractal case

section we study the behavior of the second moment of the total force itself.
The force acting on the particle at the origin can be written

F (l, Rs) =
∑

l≤ri≤Rs

GM2

r3
i

ri , (14.46)

where the sum is extended to all particles in the system with a distance from
the origin satisfying l ≤ ri ≤ Rs. In a statistically stationary and isotropic
stochastic fractal distribution the direction of F is completely random. There-
fore we want to find the statistical properties of the modulus F . Clearly

F (l, Rs) ≤ S(l, Rs) =
∑

l<ri≤Rs

GM2

r2
i

.

We want to study the average value of S(l, Rs) with particular attention
to its dependence on l and Rs. In this respect, we note again that in many
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theoretical models and applications it is quite natural to consider the presence
of a finite lower limit l > 0, and that instead the relevant physical information
comes from the limit Rs → +∞.

Using the definition of the conditional density we have

〈S(l, Rs)〉p = GM2

〈 ∑
l<ri≤Rs

1
r2
i

〉
p

= 4πGM2

∫ Rs

l

∫∫
dr

Γ (r)
r2

r2 , (14.47)

where as usual for a fractal Γ (r) = 〈n(r)〉p = B D
4π rD−3 is the average con-

ditional density and D < 3 is the fractal dimension. In the determination of
(14.47) we have used that, for a general function g(r), one can write

∑
l<ri≤Rs

g(ri) =
∫

l<r

∫∫
≤Rs

d3r g(r)
∑

i

δ(r − ri) =
∫

l<r

∫∫
≤Rs

d3r g(r)n(r) .

(14.48)
Therefore when we take the ensemble average (which is “conditioned” on the
fact that the origin is occupied) with g(r) = 1/r2, we obtain (14.47).

As a consequence we can write

〈S(l, Rs)〉p = C

∫ Rs

l

∫∫
dr rD−3 , (14.49)

where C = DBGM2. We can now distinguish three cases:

1. If 0 < D < 2 (14.49) reduces to

〈S(l, Rs)〉p =
C

2 − D

(
1

l2−D
− 1

R2−D
s

)
.

Therefore in this case, if we keep fixed l and take Rs → +∞, the quantity
〈S(l, Rs)〉p converges to the finite limit

C

(2 − D)l2−D
.

Since 〈F (l, Rs)〉p ≤ 〈S(l, Rs)〉p, this means that for 0 < D < 2, in the in-
finite volume limit, with a fixed lower cut-off for the nn distances, the av-
erage modulus of the force converges to a finite value. If moreover the
system, as for many random fractals, has self-averaging properties, then
we can say that in this limit, any particle of the system is subject to a fi-
nite gravitational force and, consequently, has a finite acceleration. This is
somehow surprising, because, despite the “wild” mass fluctuations charac-
terizing a fractal system at any scale, the gravitational force stays constant
in the infinite volume (and mass) limit. The reason is that, if 0 < D < 2,
any particle sees on average that the system becomes empty sufficiently
rapidly on large scales.
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The limit l → 0 is instead singular, giving an infinite value for 〈S(l, Rs)〉p
for the simple reason that the elementary gravitational interaction GM2/r2

increases sufficiently rapidly when r goes to zero. For the same reasons sim-
ilar behaviors have been found above in more uniform mass distributions
such as Poisson and GP. As aforementioned, however, in many theoretical
and real applications one indeed considers a small scale cut-off l > 0.

2. If D = 2 we can write simply

〈S(l, Rs)〉p = C log
(

Rs

l

)
,

i.e. 〈S(l, Rs)〉p is a logarithmically divergent function of the ratio Rs/l.
3. Finally, if 2 < D < 3 we have

〈S(l, Rs)〉p =
C

D − 2
(
RD−2

s − lD−2
)

.

This means that in this case 〈S(l, Rs)〉p diverges when the limit Rs → ∞ is
taken, with l > 0 fixed. This does not mean that also 〈F (l, Rs)〉p diverges
in the same limit. Whether it does will depend on spatial correlations in the
system (for instance we know that for D = 3 in the Poisson case 〈F (l, Rs)〉p
is convergent in this limit, while in the GP case with ξ(r) ∼ r−2 at small
r it is divergent). However in the following section we will show that, in
the same limit,

〈
F 2(l, Rs)

〉
p

instead behaves qualitatively as 〈S(l, Rs)〉p
in all real fractals with D ∈ (0, 3].
In the limit l → 0 the quantity 〈S(l, Rs)〉p is convergent because the
singularity of the elementary gravitational interaction is regularized by
the behavior of 〈n(r)〉p around r = 0.

In Fig. 14.6 are shown two examples of the behaviour of S(l, Rs) for
fractals with dimensions D = 1.5 and D = 2.5 and for the Poisson case.

14.8 Average Quadratic Force in a Fractal

Since, as aforementioned, it is (at least so far) impossible to generalize the
Holtzmark distribution to the fractal case, we study here the rms force acting
on a generic particle of a random fractal point-particle distribution in three
dimensional Euclidean space. As in the previous section, we consider contri-
butions to the force experienced by the particle at the origin given due to all
the other particles between a minimal and a maximal distance, respectively
l and Rs, from the origin of coordinates. Thus let, as above, F (l, Rs) be this
total force given by (14.46). Under the assumption that the mass distribution
is statistically isotropic, we have, as in the previous section, that

〈F (l, Rs)〉p = 0 , (14.50)
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Fig. 14.6. Behavior of S(l, Rs), as a function of Rs with � fixed, for a fractal
distribution with D = 1.5, 2.5 and for the purely Poisson case

because the direction of F (l, Rs) is completely random. Therefore the main
statistical information about F comes from the average of its square modulus
which can be written as:

〈
F 2(l, Rs)

〉
p

= G2M4

〈 ∑
l≤|ri|≤Rs

∑
l≤|rj |≤Rs

cos(θij)
r2
i r2

j

〉
p

(14.51)

where θij is the angle defined between by ri and rj . This average can be
performed by applying the following general reasoning. Let us take a generic
two-point function φ(r, r′) and consider the quantity

A(V ) =

〈∑
i∈V

∑
j∈V

φ(ri, rj)

〉
p

, (14.52)

where the sums are extended to all the particles inside a given volume V .
The quantity A(V ) can be rewritten by considering that

∑
i∈V

∑
j∈V

φ(ri, rj) =
∫

V

∫∫ ∫
V

∫∫
d3rd3r′ φ(r, r′)n(r)n(r′) , (14.53)

where as usual n(r) =
∑

i δ(r − ri). Consequently, taking the conditional
average, we have

A(V ) =
∫

V

∫∫ ∫
V

∫∫
d3rd3r′ φ(r, r′) 〈n(r)n(r′)〉p , (14.54)



356 14 The Gravitational Field in Stochastic Particle Distributions

where 〈n(r)n(r′)〉p is the two-point conditional density defined in Sect. 2.5.1
and 4.4. Now it is convenient to separate in 〈n(r)n(r′)〉p the diagonal from
the non-diagonal part in r and r′: in fact, as shown in Sect. 2.5.1 (see (2.53)–
(2.55)) for r = r′ we have a singular Dirac delta-like contribution propor-
tional to 〈n(r)〉p:

〈n(r)n(r′)〉p = δ(r − r′) 〈n(r)〉p + Γ (2)(r, r′) , (14.55)

where Γ (2)(r, r′) is the regular non-diagonal part of the two-point conditional
density for r �=�� r′. This allows us to recast A(V ) in the following form:

A(V ) =
∫

V

∫∫
d3r φ(r, r) 〈n(r)〉p +

∫
V

∫∫ ∫
V

∫∫
d3rd3r φ(r, r′)Γ (2)(r, r′) . (14.56)

In the case of a fractal particle distribution of dimension D we have as usual
〈n(r)〉p = DB

4π rD−3. For what concerns the function Γ (2)(r, r′) we use the
relation introduced in [34] and discussed in Sect. 4.4 (see (4.26)):

Γ (2)(r, r′) = 〈n(r)〉p 〈n(r′)〉p L
( r

r′
, θ
)

, (14.57)

where θ is the angle between r and r′, and L ( r
r′ , θ

)
is the so-called lacunarity

function defined by (4.27)–(4.28).
By applying (14.55) and (14.57) to (14.51), we have

〈
F 2(l, Rs)

〉
p

= G2M4

[
DB

4 − D

(
1

l4−D
− 1

R4−D
s

)
+

8π2(DB)2
∫ Rs

l

∫∫ ∫ Rs

l

∫∫
dr dr′ rD−3r′D−3

∫ π

0

∫∫
dθ sin θ cos θL

( r

r′
, θ
)]

.

(14.58)

Note that in the case of a statistically isotropic Poisson particle distribution
(D = 3) the function L ( r

r′ , θ
) ≡ 1 for any r/r′ and θ; this implies that in

this case the second term of (14.58) identically vanishes and
〈
F 2(l, Rs)

〉
p

is
completely determined by the singular diagonal contribution to 〈n(r)n(r′)〉p,
i.e. δ(r−r′) 〈n(r)〉p. Instead for real fractals L ( r

r′ , θ
)

is never identically equal
to unity but converges to it (see (4.28)) only for r/r′ → 0,∞. This implies
that the second contribution is important, and, in the limit of fixed small but
positive l and large Rs, it can become dominant. Moreover it is important to
note that, as already pointed out in Sect. 4.4, such behavior of 〈n(r)n(r′)〉p
for a fractal implies that conditional mass fluctuations in regions of size R
are of the same order as the conditional average value of the mass itself in
the same region for any R. In other words, this form 〈n(r)n(r′)〉p takes into
account the fact that for a fractal there is no length scale beyond which we
can represent the system as a fluid with a well defined positive average mass
density with superimposed small perturbations.
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In order to simplify the discussion for fractal systems, we introduce a
simple approximation for L ( r

r′ , θ
)

assuming that it depends only on θ. Let
us rename, in this case L ( r

r′ , θ
) ≡ γ(θ). Note that γ(θ) is closely related

to the angular correlation function of the fractal distribution. Under this
assumption, we obtain

〈
F 2(l, Rs)

〉
p

= G2M4

[
DB

4 − D

(
1

l4−D
− 1

R4−D
s

)
+

8π2(DB)2C(D)

(∫ Rs

l

∫∫
dr rD−3

)2
⎤
⎦
⎤

, (14.59)

where
C(D) =

∫ π

0

∫∫
dθ γ(θ) sin θ cos θ . (14.60)

Since in general γ(θ) is large at small θ and small for θ 	 π then C(D) > 0.
As for S(l, Rs) we can distinguish three cases: (1) 0 < D < 2, (2) 2 < D < 3,
and (3) D = 2.

1. For 0 < D < 2 we have

〈
F 2(l, Rs)

〉
p

= α(B,D)
(

1
l4−D

− 1
R4−D

s

)
+

β(B,D)
(

1
l2−D

− 1
R2−D

s

)2

, (14.61)

where
α(B,D) = G2M4 DB

4 − D

and

β(B,D) = 8π2G2M4

(
DB

2 − D

)2

C(D) .

It is interesting to note that both terms for fixed small l > 0 and Rs →
∞ stay finite, similarly to S(l, Rs) in the previous section in the same
limit. In particular increasing Rs from l to +∞, the quantity

〈
F 2(l, Rs)

〉
p

increases from 0 to the asymptotic value

〈
F 2(l,+∞)

〉
p

=
α(B,D)

l4−D
+

β(B,D)
l4−2D

.

For very small l this asymptotic value is dominated by the first “diagonal”
term. The reason why

〈
F 2

〉
is finite is that, when D < 2, although the

system is characterized by large relative mass fluctuations at any scale,
the mass seen from any particle of the system increases too slowly with
distance, i.e., the system becomes empty too rapidly with distance, the
average conditional density 〈n(r)〉p decreasing more rapidly than 1/r.
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Instead for l → 0 the quantity
〈
F 2(l, Rs)

〉
p

diverges as lD−4 as the rapid
decrease of the conditional average density from the origin is not able
to regularize the singularity of the elementary gravitational interaction
GM2/r2 at r = 0. This behavior for l → 0 is shared by all three cases.

2. For 2 < D < 3
〈
F 2(l, Rs)

〉
p

= α(B,D)
(

1
l4−D

− 1
R4−D

s

)
+

β(B,D)
(
RD−2

s − lD−2
)2

. (14.62)

Therefore, fixing a small l > 0, we have that
〈
F 2(l, Rs)

〉
p

diverges for
Rs → +∞ as R2D−4

s . This divergence for large Rs is due to the fact
that, even though l is positive and the system is statistically stationary
and isotropic, the mass, and therefore the mass fluctuations, which in
a fractal are proportional to the mass itself, seen by any particle grow
rapidly enough to make

〈
F 2

〉
p

divergent. In other words at a certain scale
Rs the particle at the origin will see a global mass fluctuation in a certain
direction proportional to the average mass ∼RD

s generating a net force
∼RD−2

s in the same direction, and this is true for any sufficiently large
value of Rs. Note that this effect is completely due to the second term in
(14.62) which is the product of the typical strong three-point correlation
and fluctuation properties of a fractal. In fact for an isotropic Poisson
distribution (D = 3) this is no longer true because, as shown above, for
the case β = 0 the random mass fluctuations on the scale Rs seen by
an arbitrary particle increase only proportionally to ∼R

3/2
s in a certain

direction, giving rise to a small force fluctuation ∼R
−1/2
s in the same

direction.
More specifically, for a fractal, increasing Rs from l to +∞ at a first step〈
F 2(l, Rs)

〉
p

increases from zero following mainly the behavior of the first
term (which tends to converge to α

l4−D ) until around a distance r0 defined
by

r2D−4
0 	 α(B,D)

β(B,D)
1

l4−D
.

For Rs > r0 the quantity
〈
F 2(l, Rs)

〉
p

starts to diverge as β(B,D)R2D−4
s .

3. Finally for the marginal case D = 2 we have basically the same behavior
as before except that the divergence in Rs proportional to R2D−4 is now
logarithmic in Rs.

14.9 The General Importance of the Force-Force
Correlation

Up to now we have discussed only the statistical one-point properties of
the gravitational field in very different types of stochastic distributions of
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identical particles. In this context a characteristic shared by all the cases
considered is that the contribution to the gravitational force experienced
by a particle of the system due to its first nearest neighbor is dominant
in determining large values of the force, while all the other particles of the
distribution typically give a contribution at most of the same order. This
observation can lead to two different conclusions:

• the gravitational field is a rapidly fluctuating quantity in space from par-
ticle to particle;

• the gravitational clustering dynamics of the system on scales of order of
the nn average distance is governed by the nn interaction.

It would be incorrect to conclude that in general, on all scales, the gravi-
tational dynamics of the particle system is determined only by interactions
between each particle and its neighborhood: in fact we expect the large scale
distribution of mass to play a role. Let us consider this point in some more
details.

Let us start from the basic equation linking the gravitational field E(r)
and the matter density field ρ(r), the Poisson equation:

∇ · E(r) = −ρ(r) , (14.63)

where we have chosen the units, for simplicity, so that 4πG = 1. By taking
the average square modulus of the FT of (14.63), we can write〈

|k · Ẽ(k)|2
〉

=
〈|ρ̃(k)|2〉 , (14.64)

where Ẽ(k) = FT [E(r)] and, as usual, (̃k) = FT [ρ(r)]. On the right hand
side of (14.64) we have, up to a normalization, the PS of the mass density
field. Equation (14.64) implies that the PS of the gravitational field (consid-
ered as a scalar quantity, even though it is actually a 3× 3 matrix as E(r) is
a vector) is roughly k−2 times the PS of the mass density field. This implies
that two-point correlations on large spatial scales between the values of the
gravitational field at different points are much larger than those characteriz-
ing the density field. For instance by power counting it is simple to show that,
if on large scales the mass density field is substantially Poisson (see Chap.
3), then the two-point correlation function (which is actually a matrix) of
the gravitational field decays very slowly, as 1/r. In general, by a similar
power counting we can say that, if P (k) ∼ kn for k → 0 (recalling that we
require n > −3 in order to have a mass density field which is a well defined
three-dimensional stochastic process with a two-point correlation function
going to zero at large distance), then in general the two-point correlation
function of the gravitational field decays at large r as r−n−1. Note that even
for a super-homogeneous mass density field satisfying the Harrison-Zeldovich
condition P (k) ∼ k at small k, presenting, as shown in Chap. 3, a sort of
long range order, the correlation function of the gravitational field is mainly
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positive and decays slowly at large r as 1/r2. It is important also to note
that, as the PS of the gravitational field scales for small k as kn−2, there is
a limitation to the permitted PS of the mass density fluctuations in order to
have a gravitational field which is a well defined three-dimensional stochastic
process (i.e. with two-point correlation going to zero at large distance): since
to this aim we must have n − 2 > −3, we can deduce that the gravitational
field is well defined only if n > −1.

We can conclude that, in general, while the gravitational field fluctuates
greatly from particle to particle due to the large contribution from the nearest
neighbor, it nevertheless shows long range two-point correlation. This means
that the contribution to the force on a given particle from far away particles,
which varies slowly in space, is not negligible. In approaching the problem of
the gravitational dynamics of a stochastic particle distribution both aspects
have in principle to be taken into account.

14.10 Summary and Discussion

We have discussed the statistical properties of the gravitational force F acting
on a generic point in an uncorrelated Poisson particle distribution, a weakly
correlated Gauss-Poisson (GP) distribution, and a fractal distribution.

For the Poisson case we have given [43] the exact PDF of F whose main
features are the following: (1) for large values of F the statistical properties
are mainly determined by the contribution of the first nn particle, while at
small F the contribution of the system as a whole is important; (2) the
momenta 〈Fn〉p diverge for n ≥ 3/2 because there is no positive lower limit
for the distance between two nn particles to cut-off the singularity at r =
0. Introducing artificially a lower cut-off for the nn distance, the PDF is
regularized, making all the positive moments of F finite, but dependent on
the cut-off for n ≥ 3/2.

For the GP case only an approximate expression of the PDF of F is given,
based on the fact that the main difference, introduced by correlations, with
the Poisson case is in the neighborhood of any particle. This approximation
gives good agreement with the numerical data for the exact PDF, in both
regions of small and large F . The exponent characterizing the large F tail
of the PDF depends strongly on the way in which “daughter” particles are
attached to “parents”. More precisely, it depends on the small r region of the
connected two-point correlation function, i.e. on the PDF of the nn distance.
Depending on the same small r behavior of p(r), there is a power n ≤ 3/2
such that all the moments 〈Fm〉p for m > n diverge for analogous reasons
to those in the Poisson case, and for similar reasons they can be made finite
by introducing a lower cut-off in the nn distance. Instead for what concerns
the small F behavior of W (F ) of a GP particle distribution we have found a
universal relation with the small F behavior of the same function for a Pois-
son distribution with the same average density. This relation gives the same
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scaling exponent but with an amplitude smaller by a factor A < 1 which
depends on the parameter q of the GP distribution. All these theoretical pre-
dictions have been tested by direct comparison with the results of numerical
simulations of different types of GP distributions.

We have also studied the fractal case in the hypothesis of statistical sta-
tionarity and isotropy. Since a fractal is characterized by large mass fluc-
tuations and strong correlations at any scale, it is impossible to find a good
approximation for the PDF of F starting from the results for Poisson-like dis-
tributions. For this reason the study has been limited to the evaluation and
analysis of

〈
F 2(l, Rs)

〉
p

with particular attention given to the dependence on
the lower cut-off l and on the upper cut-off Rs of the distance between the
“test” particle at the origin and the other particles in the system. We have
seen that fixing a small l > 0, the dependence on Rs is different in the cases
in which the fractal dimension is D < 2 or 2 < D < 3 (with a marginal
case when D = 2). In the first case that

〈
F 2(l, Rs)

〉
p

remains as Rs goes to
infinity converging to an l dependent limit. This is due to fact that the condi-
tional mass density decreases sufficiently rapidly to prevent the strong mass
fluctuations (proportional at any scale to the entire average mass) making〈
F 2(l, Rs)

〉
p

divergent. Instead, if 2 < D < 3 this is no longer the case. In
fact at large Rs, it is simple to see that〈

F 2(l, Rs)
〉

p
∼ R2D−4

s .

Moreover, in all fractal cases with 0 < D < 3, the quantity
〈
F 2(l, Rs)

〉
p

diverges where l → 0 for analogous reasons to the Poisson case with an
exponent depending on D.

Finally we have analyzed briefly the general correlation properties of the
gravitational field, and in particular the behavior of the field-field two-point
correlation function in relation to the two-point statistical properties of the
mass density field of the particle distribution. The main result is that, even
though the values of the gravitational field (or force) acting on a system
particle fluctuate strongly from particle to particle because of the large con-
tribution from nearest neighbors, the long range nature of the elementary
gravitational interaction and the absence of a screening effect give field-field
correlations which are much more long-ranged than those of the mass density
field.
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Appendixes



A Scaling Behavior of the Characteristic
Function for Asymptotically Small Values of k

We study here the small k behavior of the characteristic function p̂(k) =
FT [p[[ (u)] of a general PDF p(u) of a vectorial random variable u in d-
dimensions. To do this we generalize the analysis given in Sect. 2.3.1 to the
case in which p̂(k) cannot be expanded to all orders in Taylor series, i.e.,
when some higher order moment of u diverges. In order to make the treat-
ment simple, we limit the discussion to the case in which u is a statistically
isotropic variable, i.e., when p(u) depends only on u = |u|, and thus we write
it as p(u). Consequently also p̂(k) depends only on k and can be written as
p̂(k). Let us assume that p(u) 	 Bu−β at sufficiently large u with B > 0
(β → +∞ includes decay behaviors faster than any power). Note that in
any case we require β > d in order to have that p(u) is a real PDF (i.e. an
integrable function of u).

First of all we rewrite the relation

p̂(k) =
∫

ddu p(u)e−ik·u , (A.1)

where the integral is over all space. Note that since p(u) is a PDF its nor-
malisation implies that

p̂(0) = 1 . (A.2)

We want to find the first correction to (A.2) at small k. In order to find
it, let us partition the Fourier integral (A.1) into the sum of two terms: (1)
the former is the integral over the sphere C(1/k) centered at the origin of
radius 1/k, and (2) the latter is the integral over the rest of space that we
call C(1/k):

p̂(k) =
∫
C

∫∫
( 1

k )
ddu p(u)e−ik·u +

∫
C

∫∫
( 1

k )
ddu p(u)e−ik·u . (A.3)

Let us now analyze the second term of (A.3) at small k. Since p(u) > 0, we
can write ∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
C

∫∫
( 1

k )
ddu p(u)e−ik·u

∣∣∣∣∣∣∣∣∣∣∣∣∣ ≤
∫
C

∫∫
( 1

k )
ddu p(u) ∼ kβ−d , (A.4)

as p(u) 	 Bu−β at large u.



366 A Scaling Behavior of the Characteristic Function

Let us now analyze the behavior of the first integral of (A.3). Since the
integral is limited to a finite sphere, we can develop the complex exponential
in Taylor series and take the sum outside the integral:∫

C

∫∫
( 1

k )
ddu p(u)e−ik·u =

∞∑
n=0

(−i)n

n!

∫
C

∫∫
( 1

k )
ddu p(u)(k · u)n . (A.5)

As p(u) depends only on the modulus u, every term in the sum in (A.5)
with odd n vanishes, and every other term with even n depends only on the
modulus k, i.e.∫

C

∫∫
( 1

k )
ddu p(u)e−ik·u =

∞∑
n=0

(−1)nA2nk2n

(2n)!

∫ 1
k

0

∫∫
du p(u)u2n+d−1 , (A.6)

where
A2n = Ωdd

∫
Ω

∫∫
d

dΩ (cos θ)2n > 0 ,

where Ωd is the complete solid angle in d-dimensions, dΩ its infinitesimal,
and θ the angle between k and u.

Let us suppose that d + m < β ≤ d + m + 1 with m an arbitrary non-
negative integer. It is simple to see that:

• All the integrals in the sum of (A.6) such that 2n ≤ m (i.e. 2n+d−β < 0)
converge to a finite positive constant in the limit k → 0. In view of (A.4),
the correction to this constant at small but finite k goes to zero as kβ−2n−d.

• Every integral with 2n > m, (i.e. 2n+d−β ≥ 0) diverges in the same limit
as k−(2n+d−β) (for the case in which 2n+d−β = 0 exactly, the divergence
in k is logarithmic).

These facts together with (A.4), allow us to conclude that, at small k to the
first non-zero leading order,

p̂(k) 	 1 − Akα , (A.7)

where α = 2 if β > d + 2 (i.e. if u2 < +∞). In this case, by direct analysis
of the small k Taylor expansion of p̂(k), it is simple to show that A = u2/2.
On the other hand, if d < β ≤ d + 2 we have α = β − d, with A > 0 which
depends on the singular part of the Taylor expansion. To find A, in this case,
as a function of B and β, we note that is given by:

A = lim
k→0

kd−β

[
1 −

∫
ddu p(u)e−ik·u

]
.

Noting that
∫

ddu p(u) = 1 and that p(u) is a symmetric function, we finally
can write:

A = B

∫
Ω

∫∫
dΩ

∫ +∞

0

∫∫
dxxd−1−β

(
1 − cos(t̂d · x)

)
,
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where Ω is the complete d-dimensional solid angle and dΩ its generic infinites-
imal element, and t̂d is the unit vector in the direction of the dth coordinate.

This kind of analysis can be generalized, in strict analogy with that given
above, to find the first singular part of the Taylor expansion in the case
β > d + 2.

A simple generalization is also possible for the case in which p(u) depends
on the modulus u of u only at sufficiently large values, which permits non-zero
odd moments of the PDF.



B Fractal Algorithms

In this appendix we briefly describe some simple algorithms used to gen-
erate fractal point sets with a given dimension. We refer to Chap. 4 for a
discussion of fractal geometry. We remark that, while changing the fractal
dimension is straightforward, it is difficult to tune higher order correlations
(or morphological properties) of the generated structures.

B.1 Cantor Set and Random Cantor Set

The construction of the triadic Cantor set is shown in Fig. B.1. We start with
the closed interval [0, 1]. This starting form C0CC at the 0-th stage of the con-
struction is called the initiator. The first stage of this construction consists
in cutting the initiator in three equal pieces and deleting the middle third.
This resulting C1 is the generator. We then proceed by removing the middle
thirds of the two remaining pieces, i.e. each line segment is replaced by a
scaled down version of the generator. When we apply this cascade procedure
ad infinitum we are finally left with a set of points C = limk→∞ Ck which
is the triadic Cantor set. Each piece of the set is, when we enlarge it appro-
priately, similar to the whole. This scale-invariance, which is rather obvious
in this case as it is explicit in the construction, is called self-similarity under
scale change. It is the basic feature of fractal structures.

The self-similarity in this example extends only to the length scale one.
This upper cut-off can be easily removed by constructing an inverse cascade.

0 1

Fig. B.1. The first three iteration steps of the construction of the triadic Cantor
set
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Fig. B.2. The first three iteration steps for the construction of the Sierpinski carpet

However in real cases (for example a computer generated cascade or fractals
existing in nature) self-similarity is satisfied only between an upper and a
lower cut-off.

One can create many different types of Cantor sets. Quite generally one
can define a Cantor set that is completely determined by a generator which
consists of b equal part of size 1/b and where n of these pieces are filled and
b − n are empty. For the triadic Cantor set one thus has b = 3 and n = 2.

In Fig. B.2 is shown the two-dimensional Cantor set also known as the
Sierpinski carpet. The initiator here is a square. At the first stage of the
construction one obtains the generator by dividing the square into four sub-
squares of linear size 1/2 of the original and deleting, for example, the one in
the top right. At the next stage the three remaining sub-squares are replaced
by three generators of linear size 1/2 of the original and so forth. Of course one
can build many different Sierpinski carpets through a generator that consists
of a grid of b2 sub-squares, n of them filled. For the triadic Cantor set we
observe that if we choose ε = (1/3)m ((with m an integer) then N(ε) = 2m

line segments of size ε are needed to cover the set. As a result we find for the
box dimension of the triadic Cantor set

DB = lim
m→∞

log(2)m

log(3)m
=

log(2)
log(3)

= 0.6309 . . . . (B.1)

Similarly we find for the Sierpinski carpet that N(ε) = 3m squares of linear
size ε = (1/2)m are needed to cover the set so that we find for the box
dimension

DB = lim
m→∞

log(3)m

log(2)m
=

log(3)
log(2)

= 1.585 . . . . (B.2)

In general a d-dimensional Cantor set defined by a generator with n occupied
boxes and bd − n empty boxes of size 1/b will have a box dimension

DB =
log(n)
log(b)

. (B.3)

We will now randomize the fractals introduced above and investigate their
properties. A simple example of a random Cantor set is shown in Fig. B.3.
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Fig. B.3. Schematic illustration of the construction of a random Cantor set. With
probability p (left) both sub-boxes become occupied and with probability 1 − p
(center and right) only one sub-box becomes occupied. These two last possibilities
have probability (1 − p)/2, as the two different orientations of the empty box are
possible

The construction of this set is defined by the three generators shown. At the
first iteration the initiator is fragmented according to the first generator in
n1 = 2 segments of size b = 1/2 with a probability p1 = p or according
to the other generators in n2 = 1 segment of size b = 1/2 with probability
p2 = 1−p. At the next step the same procedure is repeated for the remaining
segment(s) and so on. In general one can construct a random Cantor set using
m generators. Each generator is defined on a one dimensional lattice with base
b. The ith generator that consists of ni full boxes and b−ni empty ones, has a
probability of occurrence pi. Similarly one can define a two dimensional (and
three dimensional) random Cantor set with m generators, the ith generator
consisting of a two dimensional grid with b2 boxes with ni filled and b2 − ni

empty (see Fig. B.4).

Fig. B.4. The first two iteration steps of a random Cantor set in d = 2. In this
case b = 1/2 and the two generators have n1 = 2 and n2 = 4
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The fractal dimension of these sets can be computed as follows. Consider
an arbitrary realization at the kth iteration that consists of NkN boxes of linear
size εk = b−k. If we take the fragmentation process one step further every
box will fragment according to a generator i with probability pi. If k is large
enough so that NkN (εk) � 1 one can make use of the law of large numbers so
that we find for the number of boxes after k + 1 iterations

N(εk) =
∑

i

nipiN(εk) ≡ 〈n〉N(εk) . (B.4)

If we take the logarithm of both sides and use the definition of box dimension,
by considering that (B.4) is satisfied for N(ε) ∼ εD, we see that

DB =
log〈n〉
log b

. (B.5)

This result is easily proved equivalent to the self-averaging property. For the
random Cantor set of Fig. B.3 we thus find

DB =
log p1n1 + p2n2

log 2
=

log(1 + p)
log(2)

. (B.6)

B.2 Levy Flight

The Levy flight algorithm is a fractional random walk with a step size l drawn
from a probability distribution [151]

p(l) =
{

0 if l < l0
DlD0 l−(D+1) if l ≥ l0

. (B.7)

This distribution is such that the probability that the step length λ is larger
than l0 is given by

p(λ > l) =
(

l

l0

)−D

(B.8)

where D is the fractal dimension and l0 is the minimum step size which can
be scaled to any value. It can be shown that for D ≥ d − 1 this algorithm
produces an homogeneous distribution. An example is shown in Fig. 4.3

B.3 Random Trema Dust

The random trema dust (RTD) algorithm allows the construction of fractals
with tunable dimensions and morphology [150, 151, 153]. In its simplest form
it is given as follows in two dimensions. N points labelled n = 1 . . . N are
distributed randomly in the unit square (or cube in d-dimensions). Using
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these points as centers one creates voids by removing circular (or spherical
in d dimensions) regions of area (or volume in d dimensions) C/2n where
C is the co-dimension given by C = d − D, and D is the dimension of the
fractal desired (and thus 0 < C < d). Overlap is permitted of the voids with
one another and with the region outside the unit square. For C ≤ 2 (i.e.
D ≥ d − 2) it can be demonstrated that the probability of covering the unit
square is zero as N tends to infinity, and the limit set is a fractal, up to
an upper cut-off scale given by the size of the largest void. Numerically one
generates a fractal with a finite lower cut-off after N iterations by filling the
remaining volume randomly with a chosen density of points.

An important extension of the algorithm consists in replacing the circles
forming the voids by regions, called templates, with a different geometry but
the same area. Provided the area removed is conserved at each iteration
any such modification is allowed. The morphological properties of the final
set evidently depends on the choice of the template (while the dimension
D remains unchanged). An example is the replacement of the circle by a
chosen number of sub-circles (non-overlapping and with total area equal of
that of the original circle). In numerical implementation of this algorithm
(in two dimensions) one uses typically 105 to 106 iterations, which gives a
fractal ranging over about three decades. In Fig. 4.2 is shown an example of a
fractal generated in this way. It is clear that by increasing the number of sub-
circles in which one fragments the area at each iteration step, more and more
isotropic distributions are obtained. In this way the ratio between the size of
the maximum void and the size of the sample can be reduced, while the scaling
properties remain unchanged. As mentioned above scale-invariance is limited
to the range of scales smaller than the size of the maximum void, above
which one is biased by a finite size effect. This means that if we lower too
much the size of the maximum void by fragmenting into too many sub-circles,
then scaling is limited to a smaller range of scale. Therefore the “optimum”
number of sub-circles must be a compromise between: (i) the total number
of iteration steps, which determines the range of scale in which self-similarity
is established, and (ii) the number of random points to be distributed in the
regions not occupied by “voids”. By varying these parameters one may obtain
very isotropic structures which have uniform angular projections.



C Cosmological Models: Basic Relations

In Chap. 8 we have discussed the determination of statistical properties of the
galaxy distribution in the approximation of a Euclidean space-time, which is
a reasonable one at low redshifts. To extend this analysis to deeper galaxy
samples one has to make assumptions about the geometry of space-time: the
conversion of observational data, which give the angular coordinates, redshift
and apparent magnitude of galaxies, into physical quantities such as the ab-
solute magnitude and the distance depends on the cosmological model, which
is canonically based on the Friedmann-Robertson-Walker (FRW) metric. Any
given such model fixes the luminosity distance [206] as a function of redshift,
in terms of the cosmological parameters characterizing it, i.e., standardly the
Hubble constant H0HH , the cosmological constant Λ and the matter density
parameter ΩM . Since the dependence of the redshift-distance relation on the
Hubble constant is linear, an “incorrect” determination of H0HH corresponds to
an overall rescaling of the distance scale which does not affect the statistical
properties of the galaxy distribution. This is not true of Λ and Ω0 since they
induce a non-linear distortion of the distance scale. At small redshift (roughly
z < 0.1) the corresponding corrections are not important, but they become
so at increasing redshift.

This assumption of a particular set of cosmological parameters is impor-
tant at different points in the data analysis: (i) in the projection from redshift
space to real space (ii) in the computation of distances in real space (via e.g
the curvature scale) and finally (iii) in the construction of a volume limited
sample. In this Appendix we give the formulas needed for the application of
such corrections. In Appendix D we consider the effect of such corrections on
spatial galaxy counts.

In what follows we introduce some basic definitions and apply them to
realistic cases. We do not enter here into the details of FRW models of the
universe. We refer the interested reader to [17, 185, 206, 241] for a complete
introduction to this subject.
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C.1 Cosmological Parameters

The Hubble constant H0HH 1 is the constant of proportionality between redshift
and distance2:

z =
H0HH

c
d (C.1)

where c is the speed of light. H0HH is usually written as H0HH = 100h km
sec−1 Mpc−1 where h is a dimensionless number which at present is mea-
sured to be in the range 0.55 < h < 0.75 [226]. The inverse of the Hubble
constant is the Hubble time tH :

tH =
1

H0HH
= 9.8 × 108h−1yr (C.2)

and the Hubble distance is defined as

DH =
c

H0HH
= 3000h−1Mpc . (C.3)

In FRW models there are two (dimensionless) parameters which determine
the dynamics of the universe today, The mass density

ΩM ≡ 8πGρ0

3H2
0HH

(C.4)

where ρ0 is the mass density of the universe today, and G Newton’s constant
of gravitation. The second is the cosmological constant

ΩΛ ≡ Λc2

3H2
0HH

. (C.5)

The curvature of space is characterized by the parameter Ωk which is related
to the other two parameters by the constraint:

Ωk + ΩM + ΩΛ = 1 . (C.6)

Hence there are just two independent parameters which characterize the uni-
verse in these FRW models.

C.1.1 Comoving (Radial) Distance

The comoving (radial) distance DC to an object observed at redshift z is
given by

DC = DH

∫ z

0

∫∫
dy

E(y)
(C.7)

where
E(z) =

√
ΩM (1 + z)3 + Ωk(1 + z)2 + ΩΛ . (C.8)

All other distances can be simply expressed in terms of DC .
1 The subscript “0” refers to the present epoch.
2 We use here the terminology and some of the results of [113], which gives a clear

and compact review of distance measures in cosmology.
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C.1.2 Comoving (Transverse) Distance

The comoving transverse distance DM is simply related to the radial distance
DC :

DM =

⎧⎪⎧⎧⎨⎪⎪
⎪
⎨⎨
⎩⎪⎪

DHsinh
(√

ΩkDC/DH

)
Ωk > 0

DC Ωk = 0
DHsin

(√|Ωk|DC/DH

)
Ωk < 0 .

(C.9)

The comoving distance between two objects at the same redshift but sep-
arated by an angle δθ is given by DMδθ. For ΩΛ = 0 there is an analytic
solution for DM :

DM = DH

2
[
(2 − ΩM )(1 − z) − (2 − ΩM )

√
1 + ΩMz

]
Ω2

M (1 + z)
. (C.10)

C.1.3 Luminosity Distance

The luminosity distance DL is defined by

DL =

√
L

4πS
(C.11)

where L the bolometric luminosity (i.e. integrated over all frequencies) and
S is the apparent bolometric flux. There is a simple relation between DL and
DM :

DL = (1 + z)DM . (C.12)

C.1.4 Magnitude

The apparent magnitude m of an object (in a photometric bandpass) is de-
fined to be the ratio of the apparent flux of that source to the apparent flux
of the bright star Vega. The distance modulus (DM) is defined as

DM = 5 log
(

DL

10pc

)
. (C.13)

It corresponds to the magnitude difference between an object’s observed pho-
tometric flux and what it would be if it were at 10pc. Finally the absolute
magnitude M is given by

m = M + DM + k(z) (C.14)

where k(z) is the k-correction (see Chap. 8).
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C.2 Cosmological Corrections in the Analysis
of Redshift Surveys

We consider three canonical cosmological models:

• FMD: “flat matter dominated” with Ωtot = ΩM = 1 (ΩΛ = 0)
• FLD: “flat Lambda dominated” with Ωtot = 1, ΩM = 0.3, ΩΛ = 0.7
• OBD: “open baryon dominated” with Ωtot = ΩM = 0.05 (ΩΛ = 0) ((i.e., a

matter density equal to the baryon density inferred from nucleosynthesis).

Cosmological corrections enter in various places in the calculations described
in Chaps. 8–12.

(1) The determination of absolute magnitudes, for the construction of VL
samples. Here it is the luminosity distance (C.11) which enters in the relation
between apparent and absolute magnitude (C.14):

M(z) = m(z) − 5 log DL − 25 − k(z) (C.15)

where DL is in Mpc (C.12).
(2) The determination of the volume measure as a function of z. This

enters when we distribute the “uniform” random sets for the measurement
of correlation functions, and also when we examine the number counts to try
to infer information about galaxy counts. The relevant quantity here is the
comoving volume which is given by

dVCVV = D2
MdΩdDC (C.16)

with respect to which the number densities of non-evolving objects should be
constant.

(3) The determination of distances between points for the calculation of
correlation functions (and in particular for the pair counts). Here we use
again the comoving distance, but now measured between two points rather
than with respect to the origin as for DM .

C.2.1 Flat Cosmologies: FMD and FLD

For flat cosmologies we have DM = DC , and in terms of these the simple
Euclidean volume element dVCVV = D2

MdDMdΩ. Thus in these cases we need
only calculate for each galaxy the comoving distance DM given by

DM = DH

∫ z

0

∫∫
dz√

ΩM (1 + z)3 + ΩΛ

(C.17)

which can be written as

DM = DH

∫ z

0

∫∫
dz√

1 + ΩM (3z + 3z2 + z3)
. (C.18)
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Doing a Taylor expansion for 3ΩMz � 1 we find

DM = DE

[
1 − 3ΩM

4
z − ΩM

4
(1 − 9ΩM

4
)z2 + . . .

]
. (C.19)

where DE = DHz is the Euclidean distance. We can rewrite this in terms of
the “deceleration parameter” [206]

qo =
ΩM

2
− ΩΛ =

3
2
ΩM − 1 (C.20)

as

DM = DE

[
1 − 1

2
(1 + qo)z +

1
6
(1 + qo)(1 + 3qo)z2 + . . .

]
. (C.21)

For FMD we can use the Mattig relation which is the exact expression for
(C.17) when ΩΛ = 0, and is valid also for the case Ωtot �= 1:��

DM = DH

2
[
(2 − ΩM )(1 − z) − (2 − z)

√
1 + ΩMz

]
Ω2

M (1 + z)
(C.22)

or equivalently, in terms of qo it is

DM = DH

[
qoz + (qo − 1)(

√
1 + 2qoz − 1)

]
q2
o(1 + z)

(C.23)

which Taylor expanded for 2qoz � 1 gives

DM = DE

[
1 − 1

2
(1 + qo)z +

1
2
qo(1 + qo)z2 + . . .

]
. (C.24)

In general the Mattig formula must agree with the exact expression we had
above for the case qo = 1/2, so one would expect (C.24) to agree with (C.21)
above. The fact that they disagree at quadratic order is due to the fact that
we have done a different expansion in the two cases (one before integration,
the other after).

Hence we may proceed as follows. To calculate DM use the Mattig relation
in its full form for FMD (with qo = 0.5) while for FLD use the expansion to
linear order of the exact expression (C.21) i.e.,

DM ≈ DE

[
1 − 1

2
(1 + qo)z

]
(C.25)

with qo = −0.55. This agrees extremely well with the result obtained by
numerical integration of the full expression even up to a redshift of almost
z ∼ 1 (plausibly given the smallness of the quadratic correction in (C.21)).
Once we have DM , the volume element in these coordinates is, as has been
noted, the Euclidean one and (2) and (3) are dealt with completely by working
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everywhere with α, δ and DM (z) as spherical coordinates in flat space. It is in
these coordinates that the random points of artificial catalogs, useful in many
applications (e.g. when computing the correlation function by pair counting),
should be generated, the number counts examined for their dimension, and
the distances between points calculated (as the Euclidean distance in the
corresponding rectilinear system x, y, z).

C.2.2 Open Model: OBD

First DM is given by the Mattig relation, with qo = 0.025 ≈ 0. For (2) and
(3) we need also DC , which is related in an open cosmology to DM by

DM =
DH√

1 − ΩM

sinh
[√

1 − ΩMDC

DH

]
. (C.26)

Now DC is given by

DC = DH

∫ z

0

∫∫
dz

(1 + z)
√

1 + ΩMz
(C.27)

which one can expand in ΩMz, and then integrate over z (without expanding
also in z) to find, at linear order in ΩMz,

DC = DH

[(
1 +

1
2
ΩM

)
ln(1 + z) − 1

2
ΩMz

]
(C.28)

which expanded in z gives

DC = DHz

[
1 − 1

2
(1 + qo)z +

1
3
(1 + qo)z2

]
(C.29)

which expanded in the argument of the sinhx = x− x3/3! + .. keeping terms
to order z3 gives

DM = DHz

[
1 − 1

2
(1 + qo)z +

1
6
(1 + 4qo)z2 + ..

]
(C.30)

which we note agrees with the expansion of the exact expression (C.21) for
the flat case, up to terms of order q2

oz3 which we have neglected here. This is
so since they are both effectively expansions at small z and qoz of the Mattig
relation.



D Cosmological and k-Corrections
to Number Counts

In Appendix C we have given the formulas which are needed to compute the
distance-redshift and magnitude-redshift relations for Friedmann-Robertson-
Walker (FRW) models. In the analysis of real data which we have discussed in
Chaps. 9–12 we have restricted ourselves to low redshifts at which the effect
of these corrections is negligible. To extend our methods to higher redshift
these corrections must of course be taken into account. As discussed briefly
in Chap. 9 there are also other corrections which must be considered in this
case – specifically the so-called k-corrections, as well as possible evolutionary
corrections (which should take into account the effect of the intrinsic evolution
of the objects being observed).

In principle the calculation of all these corrections is possible and the
methods we have described can then be generalized relatively straightfor-
wardly to much deeper samples. In this appendix we consider very briefly
one question which is of importance when one undertakes such an analysis:
to what extent are the results obtained sensitive to the corrections applied?
Clearly the answer to this question needs to be quantified and taken into
account when interpreting the results obtained.

To illustrate a little more we consider here the case of the exponent of
clustering as inferred from number counts in real space, which we discussed in
Chap. 10. Our conclusion is that, at larger redshift, the dimension inferred is
in fact very sensitive to what is assumed about both cosmological and k-
corrections. This is important in practice because the dimension observed
in such counts (e.g. in the ESP survey [210]) have sometimes been used as
evidence for homogeneity. We find that the uncertainty in the corrections can
actually change the inferred dimension very significantly (see also [138] for
more detail).

D.1 k-Corrections

In order to construct a volume limited (VL) sample we need to determine
the absolute magnitude M of a galaxy at redshift z from its observed ap-
parent magnitude m. This requires in general the assumption of a particular
cosmological model and the application of an appropriate k-correction:
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M = m − 5 log(DL(z)) − 25 − k(z) (D.1)

where now we explicitly use the luminosity distance (see Appendix C)
DL(z) = DM (1 + z) in FRW models, where DM is the comoving distance
(see Appendix C). By the Euclidean case we mean the choice DL = (c/HoHH )z.

The k-correction is required to account for the fact that, because of red-
shift, the flux from a galaxy in the observed band of wave-lengths comes from
a different (bluer) range of its emission spectrum. Depending on the spectral
properties of the galaxy this means that it may appear to have an absolute
magnitude brighter or fainter than it would if it were at lower redshift. The
appropriate correction can in principle be determined from observations of
the spectral properties of galaxies, and they have been calculated for various
galaxy types as a function of redshift (e.g. see [87]). When applying them
to a redshift survey, we usually need to make various assumptions as we do
not have all the necessary information. In particular in most redshift surveys
there has been no measure permitting the determination of galaxy types.
This is currently changing radically with the advent of multi-band photome-
try. SDSS, in particular, observes in five photometric bands which allows an
accurate direct determination of the k-correction.

D.2 k-Corrections and the Radial Number Counts

It is not difficult to understand how k-corrections – whether themselves cor-
rect or incorrect – can affect the radial number counts (Chap. 10) systemat-
ically. The number count from a single point in a VL sample corresponding
to an absolute magnitude limit MlimMM can be written schematically as

N i(< R) =
∫ R

0

∫∫
ni(r)d3r

∫ Mlim

−∞

∫∫
φ(M, r)dM (D.2)

where ni(r) is the galaxy density as seen from the origin (our galaxy), and
φ(M, r) is the appropriately normalized luminosity function (LF) in the radial
shell at r. If all corrections have been appropriately performed this function
should be independent of r (neglecting evolution) i.e. the fraction of galaxies
brighter than a given absolute magnitude is independent of r. In this case
the second integral is just an overall normalization and the exponent of the
number counts in the VL sample shows the behavior of the true (average)
with 〈N(< R)〉p ∼ RD corresponding to the average behavior 〈n(r)〉p ∼ rD−3

(for a fractal of dimension D, or homogeneous distribution with D = 3). The
effect of applying different k-corrections (or cosmological corrections, as we
will see below) through the relation (D.1) is effectively to change the number
count through the LF φ(M, r). Using an inappropriate correction will induce a
spurious r dependence in this function, which can distort the relation between
radial dependence of the number counts and the density.
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When one applies a k-correction and observes a significant change in the
number counts, there are thus two possible interpretations – (i) that one has
applied the physical correction required to recover the underlying behavior for
the galaxy number density, or (ii) that one has distorted the LF to produce
a radial dependence unrelated to the underlying density. How can one check
which interpretation is correct? Consider the effect of applying a k-correction
which is too large. To a good approximation the net effect is a linear shift in
the magnitude M with redshift, so that M → M − kz. The second integral
in (D.2) can in this case be written

∫ Mlim

−∞

∫∫
φp(M + kz)dM =

∫ Mlim+kz

−∞

∫∫
φp(M)dM (D.3)

where φp denotes the physical, redshift independent LF: This is a function
whose shape is well known to be fitted by a very flat power-law with an
exponential cut-off at the bright end (see Chap. 11). If the upper cut-off of
the integral is MlimMM + kz, one can see from (D.2), taking z ∼ r, that the
number count picks up an additional contribution going as RD+1, so that we
expect the slope to increase by one power at some sufficiently large scale. As
we go to the brighter end of the luminosity function, where it turns over, the
fractional number of galaxies being added by the correction is even greater
and we expect to see a growing effect on the slope with depth of sample. To
illustrate the effect in a quantitative we have computed the integral (D.2)
numerically for a distribution ρ(r) which has an average D = 2 behavior in
Euclidean coordinates, taking φ(M, r) = φp(M + k(z)), where φp(M) is the
luminosity function and k(z) the average k-correction of the type k(z) = az
where a 	 3 (see Fig. D.1)[138].

D.3 Dependence on the Cosmological Model

What about the dependence on cosmological model? The effect of changing
cosmological model (and in particular the deceleration parameter qo) is two-
fold: (i) it changes the relation between redshift and the co-moving distance in
which we should see homogeneity, and (ii) it changes the absolute magnitude
through relation (D.1). The effect of the former is relatively minor for the
modest redshifts we consider here (z < 0.3), increasing the slope by at most
about 0.2. The latter effect has the same form as that of the k-correction
since, at linear order in redshift,

DL = DE

[
1 +

1
2
(1 − qo)z + . . .

]
(D.4)

where
DE = (c/HoHH )z (D.5)
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Fig. D.1. A plot of average number counts in a survey with the LF of the ESP sur-
vey (α = 1.2 and M∗ = −19.6), if the underlying distribution has fractal dimension
D = 2 in Euclidean coordinates, with an unphysical shift to the LF correspond-
ing to the linear k-correction discussed in the text. The different VL samples are
labeled according to the cut in absolute magnitude (i.e. VL20.5 corresponds to a
cut at M = −20.5). The distance r is that for the flat FRW cosmology (qo = 0.5).
At scales r ∼> 300 Mpc/h we see that the effect is to produce an exponent D ≈ 3,
increasing systematically to larger values as we go to deeper VL samples with an
absolute magnitude cut M ∼> M∗. (From [138])

is the Euclidean distance, and therefore from (D.1) we see that it is equiv-
alent to an effective linear k-correction with keff = 5(1 − qo)/2 ln 10. So in
the example shown in Fig. D.1, taking any FRW model with a sub-critical
matter density essentially adds an even larger k-correction to the one already
considered and leads to steeper slopes with an even more unstable behavior
as a function of depth [138].



E Fractal Matter in an Open FRW Universe

E.1 Introduction

As discussed in Chap. 9 at small scales (up to ∼20 Mpc/h) it is well estab-
lished that the distribution of galaxies is fractal to a very good approxima-
tion. Beyond this scale, with currently available data, it is not possible to
definitively conclude on whether this behavior continues – as suggested by
the full analysis of number counts described in Chap. 10 – or whether there
is indeed the clear convergence to homogeneity expected in standard cosmo-
logical models. It is evidently a question which must be settled empirically
by future data, in particular by the full SDSS survey.

Despite the naturalness of envisaging the possibility that such a behavior
might continue to larger scales, reflection in this direction is usually impeded
by the conviction that it is incompatible with the very framework of standard
theories (see e.g. [49]), and in particular with the high degree of isotropy of
the cosmic microwave background radiation – CMBR – (i.e. [27, 58, 107]).
With respect to the latter we note that in standard models the origin of
radiation and baryonic matter is completely separate, with the latter being
created in a dynamical process (“baryogenesis”) completely distinct from
the origin of the primordial radiation bath. The isotropy of the latter is
therefore not fundamentally tied to the distribution of the matter, and the
only real constraint is how much any such distribution actually perturbs the
radiation. In this Appendix, which draws extensively on [139] (where further
details can be found), we describe a model which illustrates that this supposed
incompatibility of a fractal matter distribution, even extending to arbitrarily
large scales, and the Friedmann-Robertson-Walker (FRW) framework is not
well founded. The central point is that the self-gravity of a fractal, because it
is asymptotically empty, becomes negligible at a finite scale compared to the
effect of expansion associated to a homogeneous component. This means that
it can actually be treated above a finite scale as a perturbation to a FRW
cosmology. We discuss the case that the only homogeneous component is the
radiation of the CMBR, and give an overview of the cosmological history of
this model in which we suppose the baryonic matter is fractally distributed at
all scales (in the initial conditions). While this specific simple model has since
been ruled out by CMBR data at degree and smaller scales (which are not
in accord with the observations of the the acoustic oscillations discussed in
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Sect. 6.6.1) it is important conceptually and may be useful in further model
building in this direction.

A fractal is a self-similar and intrinsically fluctuating distribution of points
at all scales, which appears to preclude the description of its gravitational
dynamics in the framework of the FRW solutions to general relativity [185].
The problem is often stated as being due to the incompatibility of a fractal
with the cosmological principle, where this principle is identified with the
requirement that the matter distribution be isotropic and homogeneous [49].
This identification is in fact very misleading for a non-analytic structure like
a fractal, in which all points are equivalent statistically, satisfying what has
been called the conditional cosmological principle [47, 150, 151, 153]. The
obstacle to applying the FRW solutions has in fact solely to do with the lack
of homogeneity. One of the properties of a fractal of dimension D, however,
is that the average density of points in a radius r about any occupied point
decreases as rD−3, so that asymptotically the mass density goes to zero. An
approximation which therefore may describe the large scale dynamics of the
universe in the case that the matter has such a distribution continuing to
all scales is given by neglecting the distribution of matter at leading order,
relative to the small but homogeneous component coming from the CMBR.
We will now show that is indeed a good perturbation scheme, and calculate
the physical scale characterizing its validity.

E.2 Friedmann Solution in an Empty Universe

Consider first the standard FRW model with contributions from matter and
radiation, for which the expansion rate is

H2(t) =
(

ȧ

a

)2

=
8πG

3
(
ρrad + ρmat

)− k/a2 (E.1)

where a(t) is the scale factor for the expansion, and ρrad ∝ 1/a4 is the
radiation density, and ρmat ∝ 1/a3 the (homogeneous) matter density. The
constant is

k = −H2
oH a2

o(1 − Ωr − Ωm) ,

where HoH (ao) is the expansion rate (scale factor) today and Ωr (Ωm) is
the ratio of the radiation (matter) energy density today to the “critical”
density ρc = 3

8πGH2
oH . The sign of k determines whether the universe is closed

(k > 0) or open (k < 0), with k = 0 corresponding to a “critical” spatially
flat universe. Given the temperature of the CMBR [27], we have1 Ωrh

2 ≈
2.3 × 10−5 (where h is the Hubble constant in units of 100 Mpc/km/s, with
a typical measured value of h ≈ 0.65 – see Chap. 8). If we make the simple

1 We will neglect here, for simplicity, the minor modifications due to massless or
low mass neutrinos, which can easily be incorporated in our analysis.
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and natural assumption that galaxies trace the mass distribution the value
of Ωm depends directly on the determination of the scale of the cross-over
to homogeneity. If the observed fractal distribution continues to a scale λ0,
above which it turns over to homogeneity, one has (see Chap. 9)

Ωm = Ω10

(
10
λ0

)3−D

(E.2)

where Ω10 is the average density of matter (relative to critical) in a sphere
of radius 10 Mpc/h about a galaxy, D is the fractal dimension, and λ0 is
measured in Mpc/h. For λ0 sufficiently large that Ωm <

√
Ωr the ρm term

in (E.1) is always sub-dominant, and there is no matter dominated era. For
simplicity we now consider the limit in which λ0 → ∞. Solving for the scale
factor we then have

a(t) = ao

√
2HoHH Ω

1
2
r t

√(
1 +

1 − Ωr

2Ω
1
2
r

HoHH t

)
(E.3)

which shows how the early time radiation dominated behavior (a ∝ t
1
2 )

changes to the linear law a ∝ t at t ≈ 2H−1
oH

√
Ωr (redshift z ∼ 1/

√
Ωr where

1 + z = ao/a). We now discuss how in each of these two phases (dominated
respectively by the radiation and curvature) the fractal can be treated as a
perturbation to this solution.

When we make numerical evaluations below we will use data from galaxy
catalogs as discussed in Chap. 9, which give D ≈ 2 and Ω10 = 0.007. The
latter assumes a mass to luminosity ratio of 10h, in solar units, (that esti-
mated for a typical spiral galaxy [81]). Note that since

√
Ωr = 0.005h this

value only requires λ0 > 10 Mpc/h for a direct transition from radiation to
curvature domination. If instead we take the global mass to luminosity ratio
to be that estimated in clusters (≈300h) we require λ0 > 250 Mpc/h.

E.3 Curvature Dominated Phase

First consider the curvature dominated phase. The radiation is negligible and,
at scales well within the horizon, we can use Newtonian gravity to describe
the solution and its perturbations when the self-gravity of the matter is in-
cluded. The leading solution is simply the free expansion of the fractal, with
every point moving radially away from its neighbor at a constant velocity
proportional to its distance i.e. ṙ = HoHH r(to) = H(t)r(t). To estimate the
deviation from this flow due to the self-gravity of the fractal, we take a point
in the flow and integrate the work done against gravity along its trajectory
(in the leading order unperturbed flow). If the particle moves from an initial
position Ro, where it feels a total gravitational acceleration F (Ro), to a final
position R = xRo, this work done (per unit mass) is simply
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W (Ro, x) = F (Ro) · Ro

(
1 − 1

x

)
.

The integral is performed along the unperturbed trajectory using the fact that
the force on the chosen point simply scales as 1/x2. A sufficient condition for
the Hubble flow to apply to a good approximation at all subsequent times
is simply that W (Ro, x = ∞) be much less than the kinetic energy of the
particle i.e.

F (Ro) · Ro � 1
2
H2

oH R2
o . (E.4)

Noting that the force at the origin of the flow was implicitly taken to be zero,
we see that the validity of the criterion (E.4) will be determined in a fractal
by the difference between the gravitational force on two occupied points as a
function of the distance between them. The gravitational force on a point in
a fractal has been discussed in Chap. 14. Its behavior can be understood as
the sum of two parts, a local or “nearest neighbors” piece due to the smallest
cluster (characterized by the lower cut-off � in the fractal) and a component
coming from the mass in other clusters. The latter is bounded above by the
scalar sum of the forces

〈|F |〉 ≤ lim
L→∞

∫ L

�

∫∫
Gρm(r)

r2
4πr2dr ∼ LD−2 (E.5)

so that for D < 2 it is convergent, while for D > 2 it may diverge. If there
is a divergence, it is due to the presence of angular fluctuations at large
scales, described by the three-point correlation properties of the fractal. For
the difference in the force between two points the local contribution will be
irrelevant well beyond the scale �, while it is easy to see that the “far-away”
contribution will now converge as LD−3, and its being non-zero is a result
of the absence of perfect spherical symmetry. Noting that as a function of
distance R between points this component is bounded above by the same
behavior as the force, we write

〈|F (R)|R��〉 = A3
GM(R)

R2
∝ RD−2 (E.6)

where the pre-factor A3 contains non-trivial information about the three-
point correlation function of the fractal. These convergence properties of the
relative force on two points are enough to draw a simple conclusion from the
criterion (E.4): For a fractal in Hubble flow there is always a scale above
which its evolution will be well described by continued Hubble flow for all
subsequent times.

We now apply this to the Universe, and estimate the physical scale today
Ro up to which the unperturbed “no matter” Hubble flow can be maintained
right through the curvature dominated era. Given that this era begins at a
redshift z ≈ 1/

√
Ωr ≈ 200h, we require
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F (R)R|z=200h ≈ (200h)F (Ro)Ro <
1
2
H2

oH R2
o → Ro > 20Ω10(200h)A3 .

(E.7)
What is observed is the Hubble flow with deviations (peculiar velocities) only
at “cluster” scales ∼Mpc. Taking our estimate for Ω10 we thus require A3 ∼<
1/20h. A fractal with a very weak three point correlation is one which has a
very isotropic angular projection, so if the Universe is indeed a fractal a small
value of A3 would be expected. It is simple also to derive an expression for
the peculiar velocity (small compared to the Hubble flow velocity vH) which
implies a simple linear relation, just as in standard perturbed homogeneous
cosmology [218], between the local force and the velocity perturbation

(∆v/vH)(R) ∝ (F (R)/R) .

This relation, for which there is apparently observational support, is usually
used to determine an unknown constant (the “bias” factor [218] – see discus-
sion in Chap. 13). In the present framework it can in principle be used to
extract information about the total mass density and the constant A3, which
in turn can be related to angular data (and ultimately measured directly in
forth-coming redshift surveys).

Here we have assumed that the fractal extends to arbitrarily large scales.
For a finite λ0 the analysis can be easily modified, by breaking the integrals
at the appropriate scale. The part from scales greater than λ0 will give a
contribution which can be re-absorbed within the Hubble flow, while the
perturbation will maintain the same scaling at smaller scales. The central
point which we emphasize is that the scale Ro is only indirectly related in
this case to the homogeneity scale, and remains finite as λ0 → ∞.

We have thus seen that an open FRW universe is always a good approx-
imation beyond some finite scale if matter is distributed as a simple fractal
up to an arbitrarily large scale. In particular such an open model – because
it is dominated by the kinetic energy of the Hubble flow – can explain nat-
urally how large structures can co-exist with an almost perfect Hubble flow.
We further note a few other of its striking features: (i) Since the Universe
is to a good approximation in completely free expansion at large scales with
a(t) ∝ t, we have a deceleration parameter qo ≈ 0. This is a good fit to
recent supernovae observations [187]. Rather than being due to the effect of
an unknown “anti-gravitational” component which mysteriously cancels the
decelerating effect of the matter on the expansion, the effect is due to the de-
cay toward zero of the matter density on such scales. (ii) The expansion age
of the Universe is to = H−1

oH ≈ 10h−1 ≈ 15 billion years, larger by 50% than
in the standard matter dominated case. This value is comfortably consistent
with the estimated age of globular clusters (the oldest known astrophysical
objects) 11.5 ± 1.3 billion years [42]. (iii) The size of the horizon today is
RH(to) ≈ − 1

2cH−1
oH lnΩr ≈ 20, 000 Mpc/h, a factor of about three larger

than in the standard case.
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E.4 Radiation Dominated Era

So far we have considered the model only in the curvature dominated era
i.e. back to redshift z ≈ 200h. For this last point above however we have
extrapolated the model back to the radiation dominated era, assuming that
the effect of the matter distribution can also be consistently treated as a
correction in this epoch to the FRW solution without matter. We now justify
this assumption, and then discuss some of its consequences for a specific
cosmology of this type. For the former we simply treat the fractal as a set of
perturbations to the energy density in a manner analogous to the way such
perturbations may be treated in the standard framework. There the criterion
one would use to apply the uniform Hubble flow to describe the growth of the
horizon is simply that such perturbations be small at the horizon scale i.e.
δρ
ρ |hor be small (where ρ is the homogeneous energy density i.e. that in the
radiation). In a fractal perturbations are non-analytic and δρ has no meaning
as defined in the standard case. We can however write down the mean mass
(or energy) at the scale of horizon about an occupied point. Taking this as
the appropriate δρhor is clearly the right adapted criterion, as the fractal is
simply made of voids and structures, and voids clearly will not perturb the
flow. We thus require that the fractal obey

δH(z) ≡ ρmat

ρrad
|hor(z) =

1
1 + z

Ω10

Ωr

(
10

RH(z)

)3−D

< 1 (E.8)

where for ρmat we have taken the mass inside the (comoving) horizon RH(z)
at redshift z. In the radiation dominated era (for z > 1/

√
Ωr) we have

RH(z) ≈ cH−1
o

z
√

Ωr
. At z = 103 this gives RH ≈ 600 Mpc so that, for a frac-

tal with D = 2, we have at this redshift δH ≈ Ω10. In order that the fractal
matter be indeed a small correction at this redshift we require, approximately,
Ω10 < 1, which holds comfortably even if there is much more dark matter
than we assumed in obtaining our estimate Ω10 ≈ 0.01. We can thus con-
tinue to use the FRW solution back to an arbitrary redshift for a fractal
distribution of matter extending to the corresponding scales, provided that
the condition (E.8) holds.

To make a link with central observations in cosmology such as the CMBR
and nucleosynthesis, we need to specify a precise model. In the spirit of this
approach we now consider here a radical (but very simple) possibility for a
cosmology which makes use of the results we have presented: We consider a
universe which at very early times (deep in the radiation dominated era) is
a radiation bath at a given temperature with superimposed fractal pertur-
bations in baryon number up to the arbitrarily large scale λ0, and down to
some scale Λ. Note that positing a very different distribution for matter and
radiation does not represent a loss of simplicity in comparison to standard
models, which generically envisage the (almost) homogeneously distributed
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matter as coming from a dynamical process (“baryogenesis”) completely dis-
tinct from the origin of the primordial radiation bath. Instead of fixing the
initial condition on a homogeneous baryon to photon ratio (nB/nγ ∼ 10−9),
with some independent superimposed spectrum of analytical fluctuations, we
specify our fractal in baryon number from the properties observed in the
distribution of visible matter at large scales today. This is the appropriate
normalization given that these perturbations are simply frozen at all but very
small scales in the curvature dominated era. In particular we take D = 2 and
the normalization of the mass given by Ω10. Interestingly, stated in terms of
the parameter δH above, these values correspond to the special case that δH

is constant, and of order one. Below the lower cut-off scale � we take the dis-
tribution to be smoothed, with the corresponding density Ω10(10/�) (where
� is the comoving scale given in units of Mpc/h). A natural lower bound for
this scale is that characterizing the baryon diffusion (up to the corresponding
time), which will smooth any inhomogeneity at smaller scales.

E.5 Fluctuations in the CMBR

The fluctuations in the temperature of the CMBR depend on the “intrinsic”
fluctuations imprinted at time of decoupling of the photons, plus the fluctu-
ations induced in their propagation from their last scattering. We consider
here only the former as they are typically the dominant effect for perturba-
tions which are essentially frozen on the scales we are interested in. Relative
to the standard critical or near critical mass universe there are two main fea-
tures to note here. First, photon decoupling will be modified greatly: While
in the standard case there is a global baryon density which determines the
time/temperature of decoupling, here the relevant baryon density varies enor-
mously – for a photon in a void it is zero, while for one in a structure it is the
local density of baryons associated with the lower cut-off scale �, a density
which can be several orders of magnitude greater than in the standard case
(if we take � as small as the baryon diffusion distance). However, since the de-
coupling temperature is only logarithmically sensitive to this parameter, the
decoupling of photons in structures will still occur around redshift z ∼ 103.
On the other hand, if the scale λ0 is so large that there are voids of the order
of the horizon scale at this time (at z = 103 we found RH ≈ 600 Mpc), most
photons will decouple at the much earlier time of electron-positron annihila-
tion since after this time they find themselves in a neutral environment. Thus
the “thickness” of the surface of last scattering will be very much greater than
in the standard case, essentially consisting of two stages of “void decoupling”
(at a redshift of ∼109) and “structure decoupling” at redshifts comparable
to the standard one.

The other main difference relative to the standard case is that, because of
the extremely low background density in the model, the effect of the hyper-
bolic geometry is much greater. In particular, at high redshift (z

√
Ωr � 1),
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the angle θ subtended by a scale of given physical size �θ is

θ ≈ �θ/H−1
oH
√

Ωr ,

which means that the physical scale corresponding to 1◦ on the sky is 104 Mpc
i.e. of the order of the horizon scale today, and a factor of about 100 larger
than in the standard case. Considering the possibility that the fractal extends
to such enormous scales, we can make a naive estimate of the amplitude of
fluctuations on the microwave sky: Adapting the Sachs-Wolfe formula as de-
rived for the standard case of analytical fluctuations, the maximum amplitude
of temperature variation between two photons sub-tending some angle should
be estimated by the energy density fluctuation represented by a structure at
the corresponding physical scale. At 10◦ on the sky we then have

δT

T
|10o ∼ 1

3
δρ

ρ
(�10, zd) =

1
3

ρB(�10)
ρradn(zd)

=
1

1 + zd

ΩB(�o)
3Ωr

|to
≈ Ω10

zd
(E.9)

where zd is the decoupling redshift. Thus, the largest effect will come from
the photons which decouple last, for which this maximum amplitude will be
∼10−5, which is comparable to the average amplitude observed at this scale
by COBE [27]. On the other hand, for a modest value of the crossover scale
to homogeneity (e.g. λ0 ∼ 100 Mpc/h), the effect of the fractal distribution
of matter on the photons at decoupling will only be visible at scales much
smaller even than those which will be probed future missions. A detailed
study of the perturbations induced by propagation of photons through an
expanding structure of this kind – requiring techniques quite different to the
standard ones treating analytical perturbations – will be required to see if it
is possible to produce perturbations at the levels observed by experiment at
the angles which have been probed to date.

E.6 Other Remarks

Finally a few brief comments on nucleosynthesis and structure formation. The
cooling rate of the plasma is the same as in the standard case, and the results
of nucleosynthesis will depend on the local baryon to entropy ratio, which as
discussed above is related to the scale Λ. If this scale is larger or comparable
to the horizon scale at nucleosynthesis the amount of helium produced will
not differ much from the standard case – it is essentially independent of the
baryon to entropy ratio – while the residual densities of deuterium etc. will
be lower. For a smaller (i.e. sub-horizon) Λ the effect of inhomogeneities will
be important, but a reliable calculation for the effect becomes very difficult
to perform. It is unlikely however to modify the tendency for lower values of
the “trace” elements, since this arises due to the fact that the elements are
synthesized in denser regions compared to the standard case. If, on the other
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hand, the fractal (up to a finite sub-horizon λ0) is formed after nucleosyn-
thesis, the appropriate value for the local density would be that at λ0. We
note that for modest values of this scale (λ0 ∼ 50 ÷ 100 Mpc/h) this would
correspond to standard nucleosynthesis if there is ratio of dark to visible
baryons comparable to the mass to light ratio inferred in clusters. Clearly
some physics quite different to that at work in standard models would be
required to make it possible to generate such a structure between nucleosyn-
thesis and the curvature dominated era when (as we have noted) the structure
gets frozen in at all but small scales.



F Errors in Full Shell Estimators

We calculate here the typical errors for the full shell (or full-sphere) estima-
tors of the conditional density and reduced two-point correlation function,
and for the average density and unconditional mass variance. We derive ex-
plicit formulas for the Poisson distribution, which will apply also in the case
of weakly correlated distributions. In Appendix F we discuss some of the
common (other than full-shell) estimators used in the literature.

We suppose that we have a finite sample of N particles in a volume
V , extracted from a point distribution which is statistically stationary and
isotropic (Chap. 2). Given a certain function F of the number density n(r),
let us call as usual 〈F 〉 the ensemble average and F the volume average in
the finite sample. Analogously we call 〈F 〉p the conditional ensemble average
and (F )p the conditional volume average in the sample. The quantities F and
(F )p are the statistical estimators of 〈F 〉 and 〈F 〉p respectively. Moreover we
assume that the quantities 〈n〉, ξ(r) and the other correlation functions are
self-averaging quantities of the ensemble (i.e. volume averages in the infinite
volume limit are equal to the ensemble averages). We call n, Γ ∗

EΓ (r), ΓEΓ (r) and
ξE(r) the estimators in the sample of 〈n〉 Γ ∗(r), Γ (r) and ξ(r) respectively.
We analyze now the errors between these estimators and their real (ensemble)
averages.

F.1 Bias and Variance of Estimators

In general a statistical estimator XV of an average quantity X (defined in
a single realization by the infinite volume limit) in a volume V is simply a
quantity calculable from the finite sample. The only condition which it must
satisfy, in order to be a valid estimator, is that it must approach the true
ensemble value of X as the sample boundaries go to infinity i.e.

lim
V →∞

XV = X . (F.1)

Another, stronger, condition one can impose on an estimator is that its
ensemble average in the finite volume be equal to the ensemble average i.e.

〈XV 〉 = X . (F.2)
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An estimator is referred to as unbiased if this condition is satisfied. If it is
not satisfied it means that there is some systematic offset in the finite volume
relative to the real ensemble value (bias). Typically we are estimating quan-
tities which depend on a length scale (e.g. a two-point correlation function
as a function of separation), and such bias will then depend on the ratio of
this scale to the characteristic scale (or scales) of the sample. Whether there
is bias in an estimator, and what it is, depends on the statistical properties
of the ensemble, and must be calculated for any given case. For measure-
ment purposes it is obviously important to know the possible biases of the
estimator in consideration. It is usually only possible to calculate such biases
analytically in very particular cases (e.g. Poisson process). The variance of an
estimator is simply

〈
X2

V

〉− 〈XV 〉2, i.e. it measures fluctuations with respect
to 〈XV 〉 (whether biased or not). The bias of an estimator can be supposed
irrelevant if it is small compared to this variance.

F.2 Unconditional Average Density

The most common estimator of the unconditional average density is evidently

n =
N

V
.

Note that, even applied to an essentially uniform distribution with a well
defined mean density 〈n〉, this is generically a biased estimator: since there
is always a point (our galaxy) at the apex of the sample, the average density
measured in this way is actually the conditional density. It is simple to show
that

〈n〉 = 〈n〉
[
1 +

1
V

∫
V

∫∫
d3r ξ̃(r)

]
. (F.3)

This is related to the integral constraint on the estimator of the reduced
two-point correlation function ξ̃(r) discussed in Sect. 6.5 of Chap. 6. Only
for the case of a Poisson distribution it is therefore unbiased. Evidently the
effect becomes relatively less important as the scale of the sample increases.
On scales sufficiently larger than the homogeneity scale λ0 the effect becomes
negligible on the amplitude of the correlation function, but it may still affect
the estimation of the correlation length rc (see Chap. 9).

Let us evaluate the error between n and 〈n〉, neglecting this bias i.e.
neglecting the effect of the implicit condition that the apex of the sample
is an occupied point. The ensemble variance of the number of particles in a
volume V is (see Chap. 2):

〈
N2(V )

〉− 〈N(V )〉2 = 〈n〉2
∫

V

∫∫
d3r

∫
V

∫∫
d3r′ ξ̃(|r − r′|) . (F.4)

Our estimate of the error δn = E(n, 〈n〉) is then given by
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E2(n, 〈n〉) 	 n2

V 2

∫
V

∫∫
d3r

∫
V

∫∫
d3r′ ξ̃E(|r − r′|) . (F.5)

In the Poisson case we simply have ξ̃(r) = δ̃(r)/ 〈n〉 and then δn 	
√

N
V or

δn

n
	 1√

N
.

An alternative estimator is given by the mass density in the largest sphere
which can be inscribed in the sample (which coincides only for a spherical
sample). It is biased for the same reason in the previous case (but with a bias
which is more difficult to quantify). Its variance for the Poisson case is given
by the same expression, except that N is now the average number of points
in the sphere. Thus it has a larger variance.

F.3 Conditional Number of Points in a Sphere

The average number of points in a sphere C(R) of radius R around an occu-
pied point can, in general, be written as (see Chap. 2)

〈N(R)〉p = 〈n〉 ‖C(R)‖ + 〈n〉
∫

C

∫∫
(R)

d3rξ(r) (F.6)

where ‖C(R)‖ = (4π/3)R3 is the volume of the sphere. The sample estimate
of 〈N(R)〉p is

(N(R))p =
1

NcNN (R)

Nc(R)∑
i=1

NiNN (R) , (F.7)

where NiNN (R) is the number of points in a sphere of radius R around the point
i, and NcNN (R) is the number of “centers” over which one takes the sample
average, i.e for which the sphere of radius R is completely included in the
sample volume. For example, in a cubic volume of size L, for an homogeneous
point distribution with homogeneity scale much smaller than R, one has
approximately

NcNN (R) = n(L − 2R)3 	 N

(
1 − n

6R

L

)
. (F.8)

In other geometrically regular samples there is a similar behavior with a
sharp decrease of NcNN (R) when R approaches the sample size. The quan-

tity
√
〈N2(R)〉p − 〈N(R)〉2p gives the order of the difference between a single

NiNN (R) and 〈N(R)〉. Using (2.59) one obtains

A2(R) ≡ 〈
N2(R)

〉
p
− 〈N(R)〉2p = (F.9)

〈n〉2
∫

C

∫∫
(R)

d3r

∫
C

∫∫
(R)

d3r′
[
ξ̃(|r − r′|) + ζ̃(r, r′, |r − r′|) − ξ(r)ξ(r′)

]
,

where ζ̃(r, r′, |r − r′|) is the reduced three point correlation function.
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In order to estimate the characteristic deviation δ(N(R))p of (N(R))p

with respect to 〈N(R)〉p, we have to distinguish two regimes:

1. If R is sufficiently small so that the spheres around the NcNN (R) centers
do not overlap significantly (in practice R < n−1/3, with the condition
ξ(r) � 1 on these scales), then we can write:

E2
(
(N(R))p, 〈N(R)〉p

)
	 A2(R)

NcNN (R)
. (F.10)

2. If the spheres overlap significantly and NcNN (R)‖C(R)‖ > V (in practice R >
n−1/3 again with the condition ξ(r) � 1 on these scales) then spheres with
centers at a distance ∆ < R see almost the same set of particles. For this
reason, in this case the effective number of centers will be ≈ V/‖C(R)‖.
Therefore

E2
(
(N(R))p, 〈N(R)〉p

)
	 ‖C(R)‖

V
A2(R) . (F.11)

In a Poisson distribution ζ̃(r, r′, |r − r′|) = ξ̃(r)ξ̃(r′) (see Chap. 2), and
therefore in this case one can write:

δ(N(R))p 	

⎧⎪⎧⎧⎨⎪⎪
⎪
⎨⎨
⎩⎪⎪
√

n
Nc(R)‖C(R)‖ ∼ R3/2 ifR < n−1/3

‖C(R)‖
V

√
N ∼ R3 ifR > n−1/3

. (F.12)

F.4 Integrated Conditional Density

By definition (see Chap. 4) we have that the integrated conditional density
(i.e. the conditional density measured in balls rather than in shells) can be
written as (see Fig. F.1)

Γ ∗(R) =
〈N(R)〉p
‖C(R)‖ .

Consequently its estimator takes the form

Γ ∗
EΓ (R) =

(N(R))p

‖C(R)‖ .

Therefore, recalling the discussion in the previous section, it is very simple
to see that:

1. If the spheres do not overlap (R < n−1/3 when ξ(r) � 1) then they can
be considered as independent and one has

δΓ ∗
EΓ (R) =

√
1

NcNN (R)‖C(R)‖2
A2(R) . (F.13)
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Fig. F.1. Estimation of the integrated conditional density: given a point of the
distribution one counts the number of points contained in a ball of radius r and
divides it by the volume V (r) of the ball. Repeating the procedure for all points
in the sample for which the ball of radius r is inside the sample volume (full-shell
estimator), and making the average of all these determinations, one obtains the
estimation of Γ ∗(r)

2. In the case in which the spheres overlap and NcNN (R)‖C(R)‖ > V (R >
n−1/3 when ξ(r) � 1) then

δΓ ∗
EΓ (R) =

√
‖C(R)‖

V
A2(R) . (F.14)

Repeating the arguments leading to (F.12) we have for a Poisson distri-
bution

δΓ ∗
EΓ (R) �

⎧⎪⎧⎧⎨⎪⎪
⎪
⎨⎨
⎩⎪⎪

√
n

Nc(R)‖C(R)‖ ∼ R−3/2 if R < n−1/3

1
V

√
N = δn ∼ const if R > n−1/3

(F.15)

F.5 Conditional Average Density in Shells

The function Γ (r) = 〈n(r)〉p can be written as

Γ (r) =
〈N(r + ∆r)〉p − 〈N(r)〉p

‖C(r,∆r)‖ , (F.16)



400 F Errors in Full Shell Estimators

where C(r,∆r) is the spherical shell of radius r and thickness ∆r, and
‖C(r,∆r)‖ =

[
4π
3 (r + ∆r)3 − 4π

3 r3
] 	 4πr2∆r is its volume. Its estimator

is (see Fig. F.2)

Fig. F.2. Estimation of the conditional density in shells: given a point of the
distribution one counts the number of points contained in a spherical shell of radius
r and thickness ∆r and divides it by the volume ∆V (r) of the shell. Repeating that
procedure for all points in the sample for which the shell is inside the sample
volume (full-shell estimator), and making the average of all these determinations,
one obtains the estimation of Γ (r)

ΓEΓ (r) =
(N(r + ∆r))p − (N(r))p

‖C(r,∆r)‖ =
1

NcNN (r + ∆r)

Nc(r+∆r)∑
i=1

ΓiΓΓ (r) , (F.17)

where ΓiΓΓ (r) = (NiNN (r + ∆r) − NiNN (r)) /‖C(r,∆r)‖ is the density of points in
the shell C(r,∆r) around the center i1.

Very often logarithmic shells ∆r = αr with α � 1 are used. Analogously
to the case of Γ ∗

EΓ (r), the typical fluctuation of ΓiΓΓ (r) from a single center and
the “real” Γ (r) is given by:
1 More precisely this is the estimator of the conditional density at a distance

r + ∆r/2. However in what follows we neglect this correction, as it is irrelevant
for the results on the noise estimation.
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δΓiΓΓ (r) 	
√

B(r)
‖C(r,∆r)‖ , (F.18)

where

B(r) ≡ 〈
∆N2(r)

〉
p
− 〈∆N(r)〉2p = (F.19)

〈n〉2
∫

C

∫∫
(r+∆r)

d3r1

∫
C

∫∫
(r+∆r)

d3r2

[
ξ̃(|r − r′|) + ζ̃(r, r′, |r − r′|) − ξ̃(r)ξ̃(r′)

]
.

We can repeat the arguments developed for Γ ∗
EΓ (r) and thus we find:

1. If the shells overlap only slightly 2

NcNN (r + ∆r)‖C(r,∆r)‖ < V ,

and we find from (F.17)–(F.18)

δΓEΓ (r) =

√
δΓiΓΓ (r)

NcNN (r + ∆r)
. (F.20)

2. If the shells overlap significantly and NcNN (r + ∆r)‖C(r,∆r)‖ > V then the
“effective” number of centers is V/‖C(r,∆r)‖. Hence

δΓEΓ (r) =

√
δΓiΓΓ (r)‖C(r,∆r)‖

V
. (F.21)

Note that now the crossover between the two regimes occurs at a distance rco

larger than in the case of Γ ∗(r) and that it is a function also of ∆r. Again
if one has good estimators of ξ and ζ one can deduce δΓEΓ (r) for any kind of
stationary and uniform distribution.

In analogy with the case of Γ ∗
EΓ (r) we find in Poisson-like distributions:

δΓEΓ (r) 	

⎧⎪⎧⎧⎨⎪⎪
⎪
⎨⎨
⎩⎪⎪
√

n
Nc(r+∆r)‖C(r,∆r)‖ ∼ r−3/2 if r < rco

1
V

√
N = δn ∼ const. if r > rco

. . (F.22)

As in the case of Γ ∗
EΓ (r), in the first regime, if ∆r � r, NcNN (r + ∆r) 	 N(1 −

6r/V 1/3) 	 N . Therefore rco is given approximately by the equation

r2
co =

1
4πn∆r

. (F.23)

This is valid also in the case of non-zero but weak correlations. Note that
the Poisson case can be considered a lower limit for any correlated stationary
and isotropic distribution far from super-homogeneity.
2 In a weakly correlated homogeneous distribution this means roughly

N
(
1 − 6r

L

)
4πr2∆r < V .
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F.6 Reduced Two-Point Correlation Function

One estimator of ξ(r) in full shells is given simply by

ξE(r) =
ΓEΓ (r)

n
− 1 . (F.24)

The error (or absolute difference) between ξE(r) and ξ(r), can be found by
the propagation of errors:

δξE(r) 	 δΓEΓ (r)
n

+
ΓEΓ (r)

n2 δn . (F.25)

Therefore we can write

ξE(r) 	 ξ(r) +
δΓEΓ (r)

n
+ (ξE(r) + 1)

δn

n
. (F.26)

The first perturbative term is an oscillating (noise-like) term and the second
is a “shift plus a stretch”. Note that both terms have the same amplitude over
most of the range, with the first typically dominating at small separations
(e.g. for the Poisson case (F.22)). Therefore when the signal ξE(r) is smaller
than this noise-like term we get a bad estimation of the real ξ(r).

To illustrate these results more explicitly we generate a Poisson distri-
bution of 106 points in a cubic box of unitary side. We then compute the
estimators of the conditional density and of the reduced two-point correla-
tion function ξE(r) by using (F.17) and (F.24). In Fig. F.3 we show the result,
together with the estimation of the errors as explained above. There is very
good agreement both in the region where r < n−1/3 and r > n−1/3 where
the plateau shown by (F.22) is evident.

Let us now discuss the effect of the integral constraint, which is a bound-
ary condition imposed on the estimator ξE(r) due to our ignorance of the
ensemble average density. In a spherical sample of radius Rs, we have that
we may estimate the average density as n = Γ ∗

EΓ (Rs). Therefore

ξE(r) =
ΓEΓ (r)

Γ ∗
EΓ (Rs)

− 1 . (F.27)

This implies that ∫
C

∫∫
(Rs)

d3r ξE(r) = 0 . (F.28)

As has been mentioned, this is an artificial constraint due to the fact that
the average density is given by the sample estimator (see Chap. 6). Equation
(F.27) then becomes

ξE(r) = ξ(r) +
δΓEΓ (r)
Γ ∗

EΓ (Rs)
+ ΓEΓ (r)

δΓ ∗
EΓ (Rs)

(Γ ∗
EΓ (Rs))2

. (F.29)
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Fig. F.3. Behavior of the absolute value of the reduced two-point correlation func-
tion |ξE(r)| for a Poisson distribution. The conditional density has been estimated
by averaging over 2× 104 points. The length scale 〈Λ〉c marks the average distance
between nearest neighbors. The curves |ξp(r)| and the “asymptotic noise” show the
theoretical behavior of the noise

Therefore we can re-write (F.28) as

0 =
∫

C

∫∫
(Rs)

d3r ξE(r) =
∫

C

∫∫
(Rs)

d3r ξ(r) +
∫

C

∫∫
(Rs)

d3r
δΓEΓ (r)
Γ ∗

EΓ (Rs)
+

δΓ ∗
EΓ (Rs)

(Γ ∗
EΓ (Rs))2

∫
C

∫∫
(Rs)

d3r ΓEΓ (r) . (F.30)

The second and the third terms have the same amplitude. However the second
term is noise-like (oscillating) and we can neglect it. Thus we can say that
the distortion introduced by the integral constraint becomes significant at
the distance Ric such that∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
C

∫∫
(Ric)

d3r ξE(r)

∣∣∣∣∣∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣∣ δΓ ∗

EΓ (Rs)
(Γ ∗

EΓ (Rs))2

∣∣∣∣∣∣∣∣∣∣
∫

C

∫∫
(Ric)

d3r ΓEΓ (r) (F.31)



404 F Errors in Full Shell Estimators

This implies that
δΓ ∗

EΓ (Ric)
(Γ ∗

EΓ (Ric))2

∫
C

∫∫
(Ric)

d3r ΓEΓ (r) (F.32)

is of the same order as the intrinsic term
∫

C

∫∫
(Ric)

d3r ξ(r).



G Non Full-Shell Estimation of Two Point
Correlation Properties

In Chap. 9 (Sect. 9.5) we have discussed the problem of the estimation in a
finite sample of the conditional average density Γ (r). We explained why, for
an analysis in which one wants to minimize the a priori assumptions made
about the nature of the underlying distribution, an appropriate estimator is
the full-shell (FS) one. This choice bounds the scale at which one can ex-
tract constraints on this quantity to below the radius of the largest sphere
which can be inscribed in the sample volume. Typically, because of the non-
spherical geometry of galaxy samples, this is a scale which is much smaller
than the largest separation between pairs of galaxies. The estimators of the
reduced two-point correlation function ξ(r) used standardly in the cosmolog-
ical literature extend to this latter scale. Any such estimator ξE(r) can be
converted to an estimator

ΓEΓ (r) = n̄E (1 + ξE(r)) (G.1)

for Γ (r), where n̄E is an estimator for the mean density. Thus one can use
these same estimators straightforwardly to extend the analysis with the FS
estimator of the conditional density to larger scales. In this appendix we de-
scribe briefly1 the most common recipes used for ξE(r), and discuss their
relative merits when converted to estimators of Γ (r). As they are pair count-
ing algorithms they are actually much easier to implement practically in a
sample of arbitrary geometry than the FS estimator (which requires a deter-
mination of the distances of all points to the boundaries). Thus, for practical
purposes, using them may be a short-cut for the analysis we have described.
We emphasize again, however, that great care must be taken in interpreting
the results obtained with them from around the scale at which partial shells
begin playing an important role in these estimators, i.e. beyond the scale up
to which one can calculate the FS estimator. From that scale the variance
(and, as we discuss below, also the bias in some cases) of such estimators is
calculable only in very simple cases (e.g. for the uncorrelated Poisson case),
and completely uncontrolled for a broader class of distributions (in particular
irregular ones).

1 We draw here considerably on the much more detailed treatment of estimators
given in [128].
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G.1 Estimators with Simple Weightings

Let us consider first estimators which can be cast in the form

ξE(r) =
1

n̄E

∑
i

ni(r)wi(r) − 1 with
∑

i

wi(r) = 1 (G.2)

where ni(r) = ∆NiNN (r)/∆ViVV (r), with ∆NiNN (r) the number of points in the
volume ∆ViVV defined by the intersection between the sample and a shell of
radius r and thickness ∆ centered on the occupied point i. The wi(r) are
(normalized) weights in the sum, which runs over all points in the sample, and
n̄E is an estimator of the mean density in the sample (e.g. n̄E = n̄ = N/V ).
The FS estimator for ξ(r) is given by the weightings: wi(r) = 1

Nc(r)
if the

spherical shell about the point i is fully enclosed in the sample, and NcNN (r) is
the number of such points at radius r, wi = 0 otherwise.

Using (G.2) in (G.1) we obtain the second class of estimators for Γ (r)
considered in Sect. 9.5 of Chap. 9. As discussed there these are unbiased
estimators for Γ (r) (up to an implicit assumption about the weakness of
three-point correlations). The same is not true for the corresponding estima-
tors (G.2) of ξ(r). This is because of the introduction of the estimator n̄E of
the mean density. As discussed in Appendix F even the simplest estimator
n̄E = n̄ = N/V is not an unbiased quantity. Further in general we cannot
write the equality

lim
∆→0

〈
ni(r)
n̄E

〉
=

〈n(r)〉p
〈n̄E〉 (G.3)

which would be required to reduce all bias to that of the estimator of n̄E .
This is because the fact that the mean density is estimated from the sample
itself leads to built-in constraints linking the measured correlations determin-
istically to the mean density. In particular we have the constraints∑

j

∆NiNN (rj) = N − 1 ∀i . (G.4)

Generically this kind of constraint is referred to as the integral constraint (see
also Sect. 6.5 of Chap. 6). It is manifest in a very simple way if one estimates
the mean density as

n̄E = Γ ∗
EΓ (Rc) = (3/R3

c)
∫ Rc

0

∫∫
ΓEΓ (r)r2dr (G.5)

where ΓEΓ (r) is the estimator of Γ (r) (which does not require a determination
of the mean density) and Rc is a chosen scale, which (i) depends on the sample
size, and (ii) is much larger than the homogeneity scale λ0 (at which Γ (r)
is observed to flatten). This is a good estimate of the mean density as it
converges to the true mean (unconditional) density as the sample goes to
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infinity. (For the FS estimator one would take naturally Rc = Rs). One then
has the constraint ∫ Rc

0

∫∫
ξE(r)r2dr = 0 . (G.6)

In this case (and generically) therefore the estimated reduced correlation
function (for this class of estimators) in any sample is therefore distorted
systematically (i.e. biased) relative to the real correlation function at scales
comparable to the sample size.

Going beyond FS estimators a simple estimator is given by an equal
weighting of all centers i.e. wi = 1

N in (G.2), where N is the total num-
ber of points in the sample, and taking n̄E = (N − 1)/V (excluding the
point at the origin). This is known as the Rivolo estimator. Given that it
gives equal weight to partial and full shells, it clearly will generically have
a variance with respect to the ensemble value which increases strongly at
scales comparable to Rs. To estimate it numerically the simplest method is
to distribute randomly and without correlation an additional set of points
(i.e. a Poisson distribution of points) over the sample volume. It can then be
estimated as

ξR
E(r) =

NRN

NDN (NDN − 1)

∑
i

Di(r)
Ri(r)

− 1 (G.7)

where Di(r) (Ri(r)) is the number of data (random) point in the distance
range (r − ∆/2, r + ∆/2) from the point i, and NDN (NRN ) is the number of
data (random) points in the volume.

A very widely used estimator for ξ(r) used in the cosmological literature
is the one introduced by Davis & Peebles [55]. It is very simple to calculate
numerically as it is given by

ξDP
E (r) =

2NRN

NDN − 1
DD(r)
DR(r)

− 1 (G.8)

where DD (DR(r)) is the number of data-data (data-random) pairs with
separation in the range (r − ∆/2, r + ∆/2). It is easy to verify that this
corresponds to (G.2) with the choice of weighting wi(r) = ∆ViVV (r)/

∑
i ∆ViVV (r),

and n̄E = (N − 1)/V . This is thus a weighting scheme which weights the
partial shells in proportion to their volume. This may compensate in certain
distributions for the additional variance associated to the partial shells.

The (non-zero) bias and variance of this estimator has been calculated
[143] for an uncorrelated Poisson point distribution. The variance at large
scales is proportional to 1/

√
N , as for the the FS estimator considered in

Appendix F.

G.2 Other Pair Counting Estimators

We mention two other estimators which are often considered in the cosmolog-
ical literature, but which cannot be cast in the form of (G.2). Both of them
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have been shown [143] to be unbiased estimators for the Poisson process, and
the second of them to minimize the variance for this same case.

The first is the so-called “natural” estimator which can be estimated in a
finite sample as

ξN
E (r) =

NRN (NRN − 1)
NDN (NDN − 1)

DD(r)
RR(r)

− 1 . (G.9)

It can formally be cast in the form of (G.2) by dropping the normalization
condition on the weights, as it can be shown to correspond to the weighting

wi =
1
N

∆ViVV

4πr2∆

V

V̄ (r)
(G.10)

where V̄ (r) is the mean volume of the overlap of the sample volume with itself
displaced by a vector of length r (the mean is with respect to randomization
over this vector’s direction). This geometrical factor appears whenever one
does a random-random pair counting since one can show that

RR(r) = n2
RV̄ (r)4πr2∆ (G.11)

where nR is the mean density of random points. This estimator thus gives
a weight to each partial shell which is proportional to its volume but then
inversely weighted in proportion to the displaced sample overlap volume V̄ (r).
Note that the normalization condition on the “weights” is recovered in the
limit that the sample volume goes to infinity, so that the estimator is indeed
a good one for ξ(r).

Note that this estimator can equivalently be cast in the more general form
than (G.2) as

ξ̄E(r) =
∑

i

ni(r) − n̄w(r)
n̄w(r)

wi(r)
∑

i

wi(r) = 1 (G.12)

with

wi(r) =
∆ViVV (r)∑
i ∆ViVV (r)

w(r)−1 =
V

V̄ (r)

∑
i ∆ViVV

(4πr2∆)N
. (G.13)

The function w(r) effectively modifies the estimation of the mean density as a
function of scale (n̄ = N/V ). With respect to the Davis & Peebles estimator,
the modification thus changes only how the mean density is estimated as
a function of scale. Effectively the estimator changes the effective volume
(V → V/w(r)) over which the N points would be distributed to estimate the
mean.

The second estimator is the one introduced by Landy & Szalay [143] which
is given by

ξLS
E (r) =

NRN (NRN − 1)
NDN (NDN − 1)

DD(r)
RR(r)

− 2
NRN − 1

NDN

DR(r)
RR(r)

+ 1 . (G.14)
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It cannot be written in the simple forms used above but requires a further
generalization of the form (G.12) to

ξ̄E(r) =
1

n̄w(r)

∑
i

[ni(r) − n̄v(r)]wi(r)
∑

i

wi(r) = 1 (G.15)

in terms of which it is given by the same expressions as for (G.13), and
v(r) = 2 − w(r). Since w(r) → 1 in the infinite volume limit, we recover in
both cases the correct result (ξ(r)) in this limit. Here therefore one changes
not only the overall density normalization as a function of the scale, but
also uses a different estimate of the mean density with respect to which the
fluctuations are estimated.

The Landy-Szalay (LS) estimator is popular in the cosmological literature
because it is the minimal variance estimator for a Poisson distribution of
points, with a variance which is proportional to 1/N rather than 1/

√
N for

the other estimators considered.

G.3 Estimation of the Conditional Density Beyond Rs

We have noted that any of these estimators can be used to estimate the
conditional density Γ (r) through (G.1). Those in the first section are biased
as estimators of ξ(r), but unbiased as estimators of Γ (r). Given the facility
with which it can be calculated the Davis & Peebles one i.e.

ΓDP
EΓ (r) = 2nR

DD(r)
DR(r)

, (G.16)

where nR is the density of the random points, is a convenient choice if one
wishes to extend the conditional density analysis to scales beyond Rs (where
the FS estimator terminates). We have underlined that the subtlety in its
interpretation beyond this scale lies in the unknown character of its variance
in a wider class of distributions.

The estimators we have considered in Sect. G.2 have the property of being
unbiased estimators of ξ(r) for a Poisson process, with the LS estimator
having the further property of a reduced variance in this case. Converted to
an estimator of Γ (r) through (G.1) with n̄E = n̄ = N/V , the LS estimator
can be written, from (G.15), as

ΓEΓ (r) =
1

w(r)

∑
i

[ni(r) + 2n̄(1 − w(r))] wi(r) (G.17)

with wi(r) and w(r) given as in (G.13). This would appear inevitably there-
fore to be a biased estimator for Γ (r). Further there is no reason to expect
the fact that it is corresponds to a minimum variance estimator of ξ(r)
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for the Poisson case to mean that its variance will be any more control-
lable for a wider class of distributions (in particular irregular distributions).
To extend the conditional density estimation to scales larger than Rs using
pair-counting algorithms, our recommendation is, therefore, to use the DP
estimator (G.16).



H Estimation of the Power Spectrum

Let us recall the basics of the power spectrum (PS) analysis. We suppose
that the sample is periodic in a volume VuVV , with VuVV much larger than the
homogeneity scale. As discussed at length in Chap. 3 only in this case is it
meaningful to study correlations between density fluctuations with respect
to the average density. The survey volume V ∈ VuVV contains N galaxies at
positions ri, and the galaxy density contrast is

δn(r) =
n(r)

n̄
− 1 (H.1)

where n(r) =
∑N

i=1 δ(r−ri) and where n is the estimator of the average num-
ber denisty which, for simplicity, we take to be equal to the ensemble average
number density. Expanding the density contrast in its Fourier components
we have

δk =
1
V

∫
V

∫∫
δn(r) exp−ikr d3r =

1
N

∑
jεV

eikrj − W (k) , (H.2)

where
W (k) =

1
V

∫
V

∫∫
W (r)e−ikrd3r (H.3)

is the Fourier transform of the survey window function W (r), defined to be
unity inside the survey region, and zero outside. The variance of δk is

〈|δk|2
〉

=
1
N

+
1
V

PcPP (k) . (H.4)

The first term is the usual shot noise term which comes from the diagonal
term of ξ̃(r) (see Chap. 2). The second term is the Fourier transform ξ̂(k)
of the non-diagonal part of the reduced two-point correlation function of the
infinite system, convoluted with the square modulus of the sample window
function (e.g. [173]).

PcPP (k) =
1

(2π)3

∫
ξ̂(k′)|W (k − k′)|2d3k′ , (H.5)

which can be written as
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PcPP (k) =
∫

ξ̂(k′)F (k − k′)d3k′ , (H.6)

where
F (k − k′) =

1
(2π)3

|W (k − k′)|2 . (H.7)

In practice, one averages the spectrum over k-shells of thickness ∆ ≤ 2π/Rs:

PaPP (k) =
1

k2∆

∫ k+∆

k

∫∫
P̃cPP (k′)k′2dk′ (H.8)

As in the case of the estimation of the reduced two-point correlation
function ξ̃(r), the fact that the average density comes from the sample itself
results in a artificially built-in constraint on the PS. One would anticipate
that the effect of this in the PS would be to suppress power at small k. Indeed
this is what is imposed if the constraint on the estimator of P (k) takes the
same form as the integral constraint discussed in Appendix G. As discussed
in Chap. 6 (Sect. 6.5) such a suppression of power at small k in a finite
sample should not be confused with true super-homogeneous behavior of the
distribution. To establish this through a PS analysis one needs to be sure
that such behavior is truly independent of the sample size.

In the estimation of the PS we have an additional complication when the
sample shape is not spherical [2]. We are able to estimate only the convolu-
tion of the PS with the sample window function as given by (H.5)–(H.6). In
general the window function has sharp edges in real space which may intro-
duce spurious oscillations in the PS. To disentangle the effect of the window
function is very delicate, in particular in the case that the sample is a small
angular slice of a sphere (i.e. as for many galaxy redshift surveys). Even for
a distribution with weak correlations it is to be recommended that the PS
analysis be complemented by a real space analysis of correlations.

Finally it is interesting to note what happens when the PS analysis is ap-
plied in the case where the distribution is fractal, i.e. without having tested
that the average density in the sample is a well defined positive quantity.
In such a situation the PS shows the same finite size effects which we have
discussed for the reduced two-point correlation function (see Chap. 9) [222].
More specifically, in the case we consider a fractal of dimension D in a spher-
ical sample of radius Rs it is simple to show that [222]

PEP (r) ≈ ak(Rs, D)
R3−D

s

kD
− bk(Rs, D)

k3

where ak(Rs, D) and bk(Rs, D) are oscillating functions. This implies that
(i) the amplitude depends explicitly on the sample size and (ii) the PS does
not present a single power-law behavior but has a cut-off a scales of order Rs.
This latter feature is the counterpart of the “integral constraint” discussed
in Chap. 9 for the reduced two-point correlation function.
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one-component-plasma 10, 88–90, 98,
193, 195–198, 246

ordinary point process 32

phase transitions 5, 39, 58, 59, 80, 83,
101

pinwheel tiling 196, 197
Poisson
– anisotropic distribution 109, 113,

114
– distribution 28, 31, 44–47, 49, 50,

52, 53, 72, 170, 171, 173, 174, 244, 402
– equation 172
– law 46
– noise 47
– power spectrum 77, 198
– substantially 46
power spectrum 73–76, 78, 83
– definition 74–76
– estimator 411
– oscillations 183–185, 187
probability density functional 32

radial density profiles 109, 111–114
random trema dust 104, 372
random walk 64, 66, 68, 103, 211
redshift definition of 221, 222
regular point process 32
renormalization group 4, 5
Renyi dimensions 144
richness-clustering relation 304, 308

sandpile model 6
scale transformations 4, 5
scale-invariance 58–60, 72, 189
– discrete 121, 123
scale-invariant power spectrum 167,

168, 171, 179, 181, 189
scaling correction to 119, 120, 123, 124
Schechter function 221, 293
self-organization 3
self-similarity 5, 58–62, 72, 102, 108,

119–121, 124, 142
Shannon entropy 55, 69, 70
shot noise 47, 253, 411, 412
shuffled lattice 10, 196, 209–211, 217

Sierpinski carpet 120, 370
Sierpinski gasket 121–126
Sloan digital sky survey 225, 227, 228,

231, 235, 251, 252, 333
southern sky redshift survey 225, 226,

228–230
spherical harmonics 180
spin glasses 3
stationary point process 28, 31–35, 41,

44–50, 54, 71, 72
stationary stochastic process 27,

29–35, 40–43, 46, 55, 71, 72, 91
statistical
– homogeneity 33, 35
– isotropy 33, 35
– stationarity 31, 34, 35, 91
– translation invariance 31
structure factor 74
sub Poisson 80, 83
substantially Poisson 46, 78, 83, 97,

169, 236, 238, 244, 319, 325, 326, 332
super Poisson 80, 83, 169
super-homogeneity 43, 46, 314
super-homogeneous
– condition 80, 83, 90, 98, 196, 314
– distribution 9, 80, 83–85, 88, 89, 98,

169, 170, 179, 189, 196, 236–238, 245,
246, 325–327, 330

turbulence 6
two-point reduced correlation function
– bump 185, 187, 189
– estimator 240, 402

uniformity scale 28

volume limited samples 220, 225–227,
250, 251, 253–255, 257–260

white noise 77, 95, 316, 317
Wick theorem 57, 94
Wiener-Khinchin theorem 75, 93, 173,

175
window function 78, 79, 81–83, 411

Zeldovich approximation 195, 200



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




