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Preface

This is the third volume in a series of books on the general topics of Supersym-
metric Mechanics, with the first and second volumes being published as Lecture
Notes in Physics Vol. 698, Supersymmetric Mechanics – Vol. 1: Supersymmetry,
Noncommutativity and Matrix Models (ISBN: 3-540-33313-4), and Lecture Notes
in Physics Vol. 701, Supersymmetric Mechanics – Vol. 2: The Attractor Mechanism
and Space Time Singularities (ISBN: 3-540-34156-0).

The aim of this ongoing collection is to provide a reference corpus of suitable,
introductory material to the field, by gathering the significantly expanded and edited
versions of all tutorial lectures, given over the years at the well-established annual
INFN-Laboratori Nazionali di Frascati Winter School on the Attractor Mechanism,
directed by myself.

The present set of notes results again from the participation and dedication of
prestigious lecturers, such as Iosif Bena, Sergio Ferrara, Renata Kallosh, Per Kraus,
Finn Larsen, and Boris Pioline. As usual, the lectures were subsequently carefully
edited and reworked, taking into account the extensive follow-up discussions. The
present volume emphasizes topics of great recent interest, namely general concepts
of attractors in supersymmetric gravity and black holes.

A two-parameter family of spherically symmetric, static, asymptotically flat,
electrically charged singular metrics in d = 4 is described by the so-called Reissner-
Nördstrom solution. It may be rigorously shown that the spherically symmetric so-
lution of N = 2, d = 4 Maxwell-Einstein supergravity represented by an extremal
Reissner-Nördstrom black hole preserves one-half of the supersymmetry isome-
tries out of the eight related to the asymptotical limit given by the N = 2, d = 4
Minkowski background.

When approaching the event horizon of the black hole, one gets a restoration of
the previously lost four additional supersymmetries, hence reobtaining a maximally
symmetric N = 2 metric background, namely the 4-d Bertotti-Robinson AdS× S2

black hole metric.
In the earlier book Supersymmetric Mechanics – Vol. 2, a general dynamical

principle was considered, namely the “attractor mechanism”, which governs the
dynamics inside the moduli space, with supersymmetry being related to dynami-
cal systems with fixed points describing the corresponding equilibrium state and
the stability properties. If this mechanism holds, in approaching some fixed values,

v



vi Preface

which depend solely upon the electric and magnetic charges of the theory, the orbits
of the dynamical evolution lose all memory of their initial conditions, and yet the
overall dynamics remains fully deterministic. Historically, the first attractor example
in supersymmetric systems emerged from the consideration of extreme black holes
in N = 2, d = 4,5 Maxwell-Einstein supergravities coupled with matter multiplets.
In the present volume, some of the founders of the research in this field, interact-
ing among themselves, as well as with younger collaborators, yield a pedagogical
introduction to the subject.

In his lectures, Iosif Bena (co-authored by Nick Warner) gives an introduc-
tion to the construction and analysis of three-charge configurations in string the-
ory and supergravity and describes the corresponding implications for the physics
of black holes in string theory. Sergio Ferrara (co-authored by Mike Duff) re-
views some recently established connections between the mathematics of black
hole entropy in string theory and that of multipartite entanglement in quantum in-
formation theory, a topic that could be of great interest also for experimental test-
ing and perhaps even for potential applications. The lectures by Renata Kallosh
(co-authored by Stefano Bellucci, Sergio Ferrara, and Alessio Marrani) provides
a pedagogical, introductory review of the Attractor Mechanism (at work in two
different 4-dimensional frameworks: extremal black holes in N = 2 supergravity
and N = 1 flux compactifications. AdS3 black holes and their connection to two-
dimensional conformal field theories via the AdS/CFT correspondence are the sub-
ject of the lectures by Per Kraus, including background material on gravity in
AdS3, in the context of the holographic renormalization. Also Finn Larsen in his
lectures yields a pedagogical introduction to the attractor mechanism, in particu-
lar in five dimensions, concentrating chiefly on supersymmetry-preserving black
holes in five dimensions, both with and without spherical symmetry, being mo-
tivated essentially by the consideration of black rings, as well as rotating black
holes. Pioline in his contribution “Black Holes, Topological Strings and Quantum
Attractors” reviews recent developments on the relation between the macroscopic
entropy of four-dimensional BPS black holes and the microscopic counting of
states.

I wish to thank all lecturers and participants of the School for contributing to
create an almost magical atmosphere to progress in the learning and the further re-
searching in this absolutely fascinating topic. I wish to thank most warmly Mrs.
Silvia Colasanti for her generous efforts in the secretarial work and in various orga-
nizational aspects. My gratitude goes to INFN and in particular to Mario Calvetti for
supporting the School. In welcoming our brand new daughter Erica, my thoughts go
to my wife Gloria and our beloved Costanza, Eleonora, and Annalisa for providing
me everyday joy, without which I could never have accomplished this effort.

Frascati, December 2007 Stefano Bellucci
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Black Holes, Black Rings, and their Microstates

Iosif Bena and Nicholas P. Warner

Abstract In this review article, we describe some of the recent progress towards
the construction and analysis of three-charge configurations in string theory and
supergravity. We begin by describing the Born-Infeld construction of three-charge
supertubes with two dipole charges and then discuss the general method of con-
structing three-charge solutions in five dimensions. We explain in detail the use of
these methods to construct black rings, black holes, as well as smooth microstate
geometries with black hole and black ring charges, but with no horizon. We present
arguments that many of these microstate geometries are dual to boundary states that
belong to the same sector of the D1-D5-P CFT as the typical states. We end with an
extended discussion of the implications of this work for the physics of black holes
in string theory.

1 Introduction

Black holes are very interesting objects, whose physics brings quantum mechanics
and general relativity into sharp contrast. Perhaps the best known, and sharpest,
example of such contrast is Hawking’s information paradox [1, 2]. This has provided
a very valuable guide and testing ground in formulating a quantum theory of gravity.
Indeed, it is one of the relatively few issues that we know must be explained by a
viable theory of quantum gravity.

String theory is a quantum theory of gravity and has had several astounding
successes in describing properties of black holes. In particular, Strominger and
Vafa have shown [3] that one can count microscopic configurations of branes and
strings at zero gravitational coupling and exactly match their statistical entropy to
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2 I. Bena and N. P. Warner

the Bekenstein-Hawking entropy of the corresponding black hole at large effective
coupling.

Another way to understand the Strominger-Vafa entropy matching is via the AdS-
CFT correspondence1 [4, 5, 6]. One can make a black hole in string theory by putting
together D5 branes and D1 branes and turning on momentum along the direction
of the D1s. If one takes a near horizon limit of this system, one finds a bulk that
is asymptotic to AdS3 × S3 × T 4, and which contains a BPS black hole. The dual
boundary theory is the two-dimensional conformal field theory that lives on the
intersection of the D1 branes and the D5 branes and is known as the D1-D5-P CFT.
If one counts the states with momentum Np and R-charge J in this conformal field
theory, one obtains the entropy

S = 2π
√

N1N5Np − J2, (1)

which precisely matches the entropy of the dual black hole [7, 8] in the bulk.
A very important question, with deep implications for the physics of black holes,

is: “What is the fate of these microscopic brane configurations as the effective cou-
pling becomes large?” Alternatively, the question can be rephrased in AdS-CFT lan-
guage as: “What is the gravity dual of individual microstates of the D1-D5-P CFT?”
More physically, “What do the black-hole microstates look like in a background that
a relativist would recognize as a black hole?”

1.1 Two-Charge Systems

These questions have been addressed for the simpler D1-D5 system2 by Mathur,
Lunin, Maldacena, Maoz, and others [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24]; see [25, 26] for earlier work in this direction, and [27, 28] for a
review of that work. They found that the states of that CFT can be mapped into two-
charge supergravity solutions that are asymptotically AdS3 × S3 ×T 4 and have no
singularity. These supergravity solutions are determined by specifying an arbitrary
closed curve in the space transverse to the D1 and D5 branes and have a dipole mo-
ment corresponding to a Kaluza-Klein monopole (KKM) wrapped on that curve.3

Counting these configurations [9, 29, 30, 31, 32] has shown that the entropy of the
CFT is reproduced by the entropy coming from the arbitrariness of the shape of the
closed curve.

While the existence of such a large number of two-charge supergravity solu-
tions might look puzzling – again, these BPS solutions are specified by arbitrary

1 Historically the AdS-CFT correspondence was found later.
2 Throughout these lectures we will refer to the D1-D5 system and its U-duals as the two-charge
system, and to the D1-D5-P system and its U-duals as the three-charge system.
3 A system that has a prescribed set of charges as measured from infinity often must have additional
dipole charge distributions. We will discuss this further in Sect. 2, but for the present, one should
note the important distinction between asymptotic charges and dipole charges.
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functions – there is a simple string-theoretic reason for this. By performing a series
of S and T dualities, one can dualize the D1-D5 configurations with KKM dipole
charge into configurations that have F1 and D0 charge, and D2-brane dipole mo-
ment. Via an analysis of the Born-Infeld action of the D2 brane, these configurations
were found by Mateos and Townsend to be supersymmetric, and moreover to pre-
serve the same supersymmetries as the branes whose asymptotic charges they carry
(F1 and D0 charge), independent of the shape of the curve that the D2 brane wraps
[33, 34, 35]. Hence, they were named “supertubes.” Alternatively, one can also du-
alize the D1-D5 (+ KKM dipole) geometries into F1 string configurations carrying
left-moving momentum. Because the string only has transverse modes, the config-
urations carrying momentum will have a non-trivial shape: Putting the momentum
into various harmonics causes the shape to change accordingly. Upon dualizing, the
shape of the momentum wave on the F1 string can be mapped into the shape of the
supertube [36].

Thus, for two-charge system, we see that the existence of a large number of
supergravity solutions could have been anticipated from this earlier work on the
microscopic two-charge stringy configurations obtained from supertubes and their
duals. In Section 2, we will consider three-charge supertubes and discuss how this
anticipated the discovery of some of the corresponding supergravity solutions that
are discussed in Section 3.

1.2 Implications for Black-Hole Physics

An intense research programme has been unfolding over the past few years to try
to see whether the correspondence between D1-D5 CFT states and smooth bulk
solutions also extends to the D1-D5-P system. The crucial difference between the
two-charge system and the three-charge system (in five dimensions) is that the latter
generically has a macroscopic horizon, whereas the former only has an effective
horizon at the Planck or string scale. Indeed, historically, the link between mi-
crostate counting and Bekenstein-Hawking entropy (at vanishing string coupling)
was first investigated by Sen [37] for the two-charge system. While this work was
extremely interesting and suggestive, the result became compelling only when the
problem was later solved for the three-charge system by Strominger and Vafa [3].
Similarly, the work on the microstate geometries of two-charge systems is extremely
interesting and suggestive, but to be absolutely compelling, it must be extended to
the three-charge problem. This would amount to establishing that the boundary D1-
D5-P CFT microstates are dual to bulk microstates – configurations that have no
horizons or singularities, and which look like a black hole from a large distance,
but start differing significantly from the black hole solution at the location of the
would-be horizon.

String theory would then indicate that a black hole solution should not be viewed
as a fundamental object in quantum gravity but rather as an effective “thermody-
namic” description of an ensemble of horizonless configurations with the same
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Fig. 1 An illustrative description of Mathur’s conjecture. Most of the present research efforts go
into improving the dictionary between bulk and boundary microstates (the dotted arrow), and into
constructing more microstate geometries

macroscopic/asymptotic properties (see Fig. 1). The black hole horizon would be
the place where these configurations start differing from each other, and the classi-
cal “thermodynamic” description of the physics via the black hole geometry stops
making sense.

An analogy that is useful in understanding this proposal is to think about the air
in a room. One can use thermodynamics and fluid mechanics to describe the air as
a continuous fluid with a certain equation of state. One can also describe the air
using statistical mechanics, by finding the typical configurations of molecules in
the ensemble, and noticing that the macroscopic features of these configurations are
the same as the ones found in the thermodynamic description. For most practical
purposes, the thermodynamic description is the one to use; however, this descrip-
tion fails to capture the physics coming from the molecular structure of the air. To
address problems like Brownian motion, one should not use the thermodynamic ap-
proximation but the statistical description. Similarly, to address questions having to
do with physics at the scale of the horizon (like the information paradox) one should
not use the thermodynamic approximation given by the black hole solution, but one
should use the statistical description given by the microstate configurations.

This dramatic shift in the description of black holes has been most articu-
lately proposed and strongly advocated by Mathur and is thus often referred to
as “Mathur’s conjecture.” In fact, one should be careful and distinguish two vari-
ants of this conjecture. The weak variant is that the black hole microstates are
horizon-sized stringy configurations that have unitary scattering but cannot be de-
scribed accurately using the supergravity approximation. These configurations are
also sometimes called “fuzzballs.” If the weak Mathur conjecture were true then
the typical bulk microstates would be configurations where the curvature is Planck
scale and hence cannot be described in supergravity. The strong form of Mathur’s
conjecture, which is better defined and easier to prove or disprove, is that among
the typical black hole microstates there are smooth solutions that can be described
using supergravity.

Of course, the configurations that will be discussed and constructed in these notes
are classical geometries with a moduli space. Classically, there is an infinite number
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of such configurations that need to be quantized before one can call them microstates
in the strictest sense of the word. In the analogy with the air in a room, these ge-
ometries correspond to classical configurations of molecules. Classically, there is an
infinite number of such configurations, but one can quantize them and count them
to find the entropy of the system.

Whichever version of the conjecture is correct, we are looking for stringy con-
figurations that are very similar to the black hole from far away and start differing
from each other at the location of the would-be horizon. Thus black hole microstates
should have a size of the same order as the horizon of the corresponding black hole.
From the perspective of string theory, this is very a peculiar feature, since most of
the objects that one is familiar with become smaller, not larger, as gravity becomes
stronger. We will see in these lectures how our black hole microstates manage to
achieve this feature.

If the strong form of this conjecture were true then it would not only solve
Hawking’s information paradox (microstates have no horizon, and scattering is uni-
tary) but also would have important consequences for quantum gravity. It also might
allow one to derive ’t Hooft’s holographic principle from string theory, and might
even have experimental consequences. A more detailed discussion about this can be
found in Sect. 9.

1.3 Outline

As with the two-charge systems, the first step in finding three-charge solutions that
have no horizon and look like a black hole is to try to construct large numbers of
microscopic stringy three-charge configurations. This is the subject of Sect. 2, in
which we review the construction of three-charge supertubes – string theory objects
that have the same charges and supersymmetries as the three-charge black hole [38].

In Sect. 3, we present the construction of three-charge supergravity solutions cor-
responding to arbitrary superpositions of black holes, black rings, and three-charge
supertubes of arbitrary shape. We construct explicitly a solution corresponding to a
black hole at the center of a black ring and analyze the properties of this solution.
This construction and the material presented in subsequent sections can be read in-
dependently of Sect. 2.

Section 4 is a geometric interlude devoted to Gibbons-Hawking metrics and
the relationship between five-dimensional black rings and four-dimensional black
holes. Section 5 contains the details of how to construct new microstate solutions
using an “ambipolar” Gibbons-Hawking space, whose signature alternates from
(+,+,+,+) to (−,−,−,−). Even though the sign of the base-space metric can
flip, the full eleven-dimensional solutions are smooth.

In Sect. 6, we discuss geometric transitions and the way to obtain smooth hori-
zonless “bubbling” supergravity solutions that have the same type of charges and
angular momenta as three-charge black holes and black rings. In Sect. 7, we con-
struct several such solutions, finding, in particular, microstates corresponding to
zero-entropy black holes and black rings.
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In Sect. 8, we use mergers to construct and analyze “deep microstates,” which
correspond to black holes with a classically large horizon area. We find that the
depth of these microstates becomes infinite in the classical (large charge) limit and
argue that they correspond to CFT states that have one long component string. This
is an essential (though not sufficient) feature of the duals of typical black-hole mi-
crostates (for reviews of this, see [39, 40]). Thus the “deep microstates” are either
typical microstates themselves, or at least lie in the same sector of the CFT as the
typical microstates.

Finally, Sect. 9 contains conclusions and an extensive discussion of the implica-
tions of the work presented here on for the physics of black holes in string theory.

Before beginning, we should emphasize that the work that we present is part of
a larger effort to study black holes and their microstates in string theory. Many
groups have worked at obtaining smooth microstate solutions corresponding to
five-dimensional and four-dimensional black holes, a few of the relevant refer-
ences include [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. Other
groups focus on improving the dictionary between bulk microstates and their
boundary counterparts, both in the two-charge and in the three-charge systems
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 56]. Other groups focus on small
black holes4 and study their properties using the attractor mechanism [58] or relat-
ing them to topological strings via the OSV conjecture [59]. Reviews of this can be
found in [60, 61], and a limited sample of work that is related to the exploration
presented here can be found in [62, 63, 64, 65, 66, 145, 146, 147, 148, 149].

2 Three-Charge Microscopic Configurations

Our purpose here is to follow the historical path taken with the two-charge system
and try to construct three-charge brane configurations using the Born-Infeld (BI)
action. We are thus considering the intrinsic action of a brane, and we will not
consider the back-reaction of the brane on the geometry. The complete supergravity
solutions will be considered later.

There are several ideas in the study of D-branes that will be important here. First,
one of the easiest ways to create a system with multiple, different brane charges is to
start with a higher-dimensional brane and then turn on electromagnetic fields on that
brane so as to induce lower-dimensional branes that are “dissolved” in the original
brane. We will use this technique to get systems with D0-D2-D4-D6 charges below.

In constructing multi-charge solutions, one should also remember that the equa-
tions of motion are generically non-linear. For example, in supergravity the Maxwell

4 These black holes do not have a macroscopic horizon, but one can calculate their horizon area
using higher order corrections [57]. This area agrees with both the CFT calculation of the entropy
and also agrees (up to a numerical factor) with the counting of two-charge microstates. Hence, one
could argue (with a caveat having to do with the fact that small black holes in IIA string theory on
T 4 receive no corrections) that small black holes, which from the point of view of string theory are
in the same category as the big black holes, are, in fact, superpositions of horizonless microstates.
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action can involve Chern-Simons terms, or the natural field strength may involve
wedge products of lower degree forms. Similarly, in the BI action there is a highly
non-trivial interweaving of the Maxwell fields and hence of the brane charges. In
practice, this often means that one cannot simply lay down independent charges:
Combinations of fields sourced by various charges may themselves source other
fields and thus create a distribution of new charges. In this process, it is important
to keep track of asymptotic charges, which can be measured by the leading fall-off
behavior at infinity, and “dipole” distributions that contribute no net charge when
measured at infinity. When one discusses an N-charge system, one means a system
with N commuting asymptotic charges, as measured at infinity. For microstate con-
figurations, one often finds that the systems that have certain charges will also have
fields sourced by other dipole charges. More precisely, in discussing the BI action
of supertubes we will typically find that a given pair of asymptotic charges, A and
B, comes naturally with a third set of dipole charges, C. We will therefore denote
this configuration by A−B →C.

2.1 Three-Charge Supertubes

The original two-charge supertube [33] carried two independent asymptotic charges,
D0 and F1, as well as a D2-brane dipole moment; thus we denote it as a F1-D0→D2
supertube. It is perhaps most natural to try to generalize this object by combining
it with another set of branes to provide the third charge.5 Supersymmetry requires
that this new set be D4 branes. To be more precise, supertubes have the same syper-
symmetries as the branes whose asymptotic charges they carry, and so one can nat-
urally try to put together F1-D0 → D2 supertubes, F1-D4 → D6 supertubes, and
D0-D4 → NS5 supertubes obtain a supersymmetric configuration that has three
asymptotic charges: D0, D4, and F1, and three dipole distributions, coming from
D6, NS5, and D2 branes wrapping closed curves. Of course, the intuition coming
from putting two-charge supertubes together, though providing useful guidance, will
not be able to indicate anything about the size or other properties of the resulting
three-charge configuration.

Exercise 1. Show that the supertube with D2 dipole charge and F1 and D0 charges
can be dualized into an F1-D4 → D6 supertube, and into a D0-D4 → NS5
supertube.

To investigate objects with the foregoing charges and dipole charges one has to
use the theory on one of the sets of branes and then describe all the other branes
as objects in this theory. One route is to consider tubular D6-branes6 and attempt

5 One might also have tried to generalize the F1-P dual of this system by adding a third type of
charge. Unfortunately, preserving the supersymmetry requires this third charge to be that of NS5
branes and, because of the dilaton throat of these objects, an analysis of the F1-P system similar to
the two-charge one [9] cannot be done.
6 Tubular means it will only have a dipole charge just like any loop of current in electromagnetism.
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to turn on world-volume fluxes to induce D4, D0, and F1 charges. As we will see,
such a configuration also has a D2 dipole moment. An alternative route is to use
the D4 brane non-Abelian Born-Infeld action. Both routes were pursued in [38],
leading to identical results. Nevertheless, for simplicity we will only present the
first approach here.

One of the difficulties in describing three-charge supertubes in this way is the
fact that the Born-Infeld action and its non-Abelian generalization cannot be used
to describe NS5 brane dipole moments. This is essentially because the NS5 brane is
a non-perturbative object from the perspective of the Born-Infeld action [67]. Thus,
our analysis of three charge supertubes is limited to supertubes that only have D2
and D6 dipole charge. Of course, one can dualize these to supertubes with NS5 and
D6 dipole charges or to supertubes with NS5 and D2. Nevertheless, using the action
of a single brane, it is not possible to describe supertubes that have three charges
and three dipole charges. For that, we will have to wait until Sect. 3, where we will
construct the full supergravity solution corresponding to these objects.

2.2 The Born-Infeld Construction

We start with a single tubular D6-brane and attempt to turn on worldvolume fluxes
so that we describe a BPS configuration carrying D4, D0, and F1 charges. We will
see that this also necessarily leads to the presence of D2-brane charges, but we will
subsequently introduce a second D6-brane to cancel this.

The D6-brane is described by the Born-Infeld action

S = −T6

∫
d7ξ

√
−det(gab +Fab), (2)

where gab is the induced worldvolume metric, Fab = 2πFab, T6 is the D6-brane
tension, and we have set α ′ = 1. The D6 brane also couples to the background RR
fields through the Chern-Simons action:

SCS = T6

∫
exp

(
F +B

)
∧ ∑

q
C(q). (3)

By varying this with respect to the C(q), one obtains the D4-brane, D2-brane, and
D0-brane charge densities:

Q4 = 2π T6 F (4)

Q2 = 2π T6

(
1
2

F ∧F

)
(5)

Q0 = 2π T6

(
1
3!

F ∧F ∧F

)
. (6)

To obtain the quantized Dp-brane charges, one takes the volume p-form on any
compact, p-dimensional spatial region, R, and wedges this volume form with Qp
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and integrates over the spatial section of the D6 brane. The result is then the Dp-
brane charge in the region R.

The F1 charge density can be obtained by varying the action with respect to
the time-space component of NS-NS two form potential, B. Since B appears in the
combination F +B, one can differentiate with respect to the gauge field:

Q1 =
∂L

∂B0i
=

∂L

∂F0i
=

∂L

∂ �̇A
= �π, (7)

which is proportional to the canonical momentum conjugate to the vector poten-
tial, �A.

Our construction will essentially follow that of the original D2-brane supertube
[33], except that we include four extra spatial dimensions and corresponding fluxes.
We take our D6-brane to have the geometry R

1,1 ×S1 ×T 4, and we choose coordi-
nates (x0,x1) to span R

1,1 and (x6,x7,x8,x9) to span the T 4. The S1 will be a circle
of of radius r in the (x2,x3) plane, and we will let θ be the angular coordinate in this
plane. We have also introduced factors of 2π in (4), (5), (6) and (7) to anticipate the
fact that for round tubes everything will be independent of θ , and so the integrals
over θ will generate these factors of 2π . Thus the D-brane charge densities above
are really charge densities in the remaining five dimensions, and the fundamental
string charge is a charge density per unit four-dimensional area. Note also that the
charges, Q, are the ones that appear in the Hamiltonian and are related to the num-
ber of strings or branes by the corresponding tensions. These conventions will be
convenient later on.

Since the S1 is contractible and lies in the non-compact space-time, any D-brane
wrapping this circle will not give rise to asymptotic charges and will only be dipo-
lar. In particular, the configuration carries no asymptotic D6-brane charge due to its
tubular shape. To induce D0-branes we turn on constant values of F1θ , F67, and
F89. Turning on F1θ induces a density of D4-branes in the (x6,x7,x8,x9) plane,
and since these D4 branes only wrap the T 4, their charge can be measured asymp-
totically. The fields F67, and F89 similarly generate dipolar D4-brane charges. To
induce F1 charge in the x1 direction we turn on a constant value of F01. It is also
evident from (5) that this configuration carries asymptotic D2-brane charges in the
(x6,x7) and (x8,x9) planes and dipolar D2-brane charge in the (x1,θ) direction. The
asymptotic D2-brane charges will eventually be canceled by introducing a second
D6-brane. This will also cancel the dipolar D4-brane and D2-brane charges, and we
will then have a system with asymptotic F1, D0, and D4 charges and dipolar D2 and
D6 charges.

With these fluxes turned on we find

S = −T6

∫
d7ξ

√(
1−F 2

01

)
r2 +F 2

1θ

√(
1+F 2

67

)(
1+F 2

89

)
, (8)

where we use polar coordinates in the (x2,x3) plane, and the factors of r2 come from
gθθ . By differentiating with respect to F01, we find
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Q1 = 2πT6
F01r2

√(
1−F 2

01

)
r2 +F 2

1θ

√(
1+F 2

67

)(
1+F 2

89

)
. (9)

The key point to observe now is that if we choose

F01 = 1 (10)

then r2 drops out of the action (8). We will also choose

F67 = F89. (11)

We can then obtain the energy from the canonical Hamiltonian:

H =
∫

Q1F01 −L (12)

=
∫ [

Q1 +2πT6|F1θ |+2πT6|F1θF67F89|
]

(13)

=
∫

[Q1 +Q4 +Q0] . (14)

The last two integrals are taken over the coordinates (x1,x6,x7,x8,x9) of the D6-
brane. The radius of the system is determined by inverting (9):

r2 =
Q1

2πT6

F1θ
1+F67F89

=
1

(2πT6)2

Q1Q2
4

Q0 +Q4
. (15)

If we set Q0 = 0 then (15) reduces (with the obvious relabeling) to the radius for-
mula found for the original D2-brane supertube [33]. From (14), we see that we
have saturated the BPS bound, and so our configuration must solve the equations of
motion, as can be verified directly.

Exercise 2. Minimize the Hamiltonian in (12) by varying the radius, r, while keep-
ing the F1, D0, and D4 charges constant. Verify that the configuration with the
radius given (15) solves the equations of motion.

Supersymmetry can also be verified precisely as for the original D2-brane su-
pertube [33]. The presence of the electric field, F01 = 1, causes the D6-brane to
drop out of the equations determining the tension and the unbroken supersymmetry.
Indeed, just like the two-charge system [34], we can consider a D6-brane that wraps
an arbitrary closed curve in R

4; the only change in (8) and (9) is that r2 will be
replace by the induced metric on the D6 brane, gθθ . However, when F01 = 1 this
does not affect (13) and (14), and therefore the configuration is still BPS. Moreover,
if F1θ is not constant along the tube, or if F67 and F89 remain equal but depend
on θ the BPS bound is still saturated.

Hence, classically, there exists an infinite number of three-charge supertubes with
two dipole charges, parameterized by several arbitrary functions of one variable
[38]. Four of these functions come from the possible shapes of the supertube, and
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two functions come from the possibility of varying the D4 and D0 brane densities
inside the tube. Anticipating the supergravity results, we expect three-charge, three-
dipole charge tubes to be given by seven arbitrary functions, four coming from
the shape and three from the possible brane densities inside the tube. The proce-
dure of constructing supergravity solutions corresponding to these objects [68, 69]
will be discussed in the next section, and will make this “functional freedom” very
clear.

As we have already noted, the foregoing configuration also carries non-vanishing
D2-brane charge associated with F1θF67 and F1θF89. It also carries dipolar D4-
brane charges associated with F67 and F89. To remedy this we can introduce one
more D6 brane with flipped signs of F67 and F89 [70]. This simply doubles the
D4, D0, and F1 charges, while canceling the asymptotic D2 charge and the dipo-
lar D4-brane charges. More generally, we can introduce k coincident D6-branes,
with fluxes described by diagonal k× k matrices. We again take the matrix-valued
field strengths F01 to be equal to the unit matrix, in order to obtain a BPS state.
We also set F67 = F89 and take F1θ to have non-negative diagonal entries to pre-
clude the appearance of D4-branes. The condition of vanishing D2-brane charge
is then

Tr F1θ F67 = Tr F1θF89 = 0. (16)

This configuration can also have D4-brane dipole charges, which we may set to zero
by choosing

Tr F67 = Tr F89 = 0. (17)

Finally, the F1 charge is described by taking Q1 to be an arbitrary diagonal ma-
trix with non-negative entries.7 This results in a BPS configuration of k D6-branes
wrapping curves of arbitrary shape. If the curves are circular, the radius formula
is now given by (15) but with the entries replaced by the corresponding matrices.
Of course, for our purposes we are interested in situations when we can use the
Born-Infeld action of the D6 branes to describe the dynamics of our objects. Since
the BI action does not take into account interactions between separated strands of
branes, we will henceforth restrict ourselves to the situations where these curves are
coincident. In analogy with the behavior of other branes, if we take the k D6-branes
to sit on top of each other, we expect that they can form a marginally bound state.
In the classical description, we should then demand that the radius matrix (15) be
proportional to the unit matrix. Given a choice of magnetic fluxes, this determines
the F1 charge matrix Q1 up to an overall multiplicative constant that parameterizes
the radius of the combined system.

Since our matrices are all diagonal, the Born-Infeld action is unchanged except
for the inclusion of an overall trace. Similarly, the energy is still given by H =∫

Tr [Q1 +Q4 +Q0].

7 Quantum mechanically, we should demand that Tr Q1 be an integer to ensure that the total number
of F1 strings is integral.
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Consider the example in which all k D6-branes are identical modulo the sign of
F67 and F89 so that both F1θ and F67F89 are proportional to the unit matrix.8

Then, in terms of the total charges, the radius formula is

r2 =
1

k2 (2πT6)
2

Qtot
1 (Qtot

4 )2

Qtot
0 +Qtot

4
. (18)

Observe that after fixing the conserved charges and imposing equal radii for the
component tubes, there is still freedom in the values of the fluxes. These can be
partially parameterized in terms of various non-conserved “charges,” such as brane
dipole moments. Due to the tubular configuration, our solution carries non-zero D6,
D4, and D2 dipole moments, proportional to

QD
6 = T6 r k

QD
4 = T6 r Tr F67

QD
2 = T6 r Tr F67 F89 ≡ T6 r k2. (19)

When the k D6-branes that form the tube are coincident, k2 measures the local D2
brane dipole charge of the tube. It is also possible to see that both for a single tube,
and for k tubes identical up to the sign of F67 and F89, the dipole moments are
related via:

QD
2

QD
6

=
k2

k
=

Qtot
0

Qtot
4

. (20)

We will henceforth drop the superscripts on the Qtot
p and denote them by Qp. One

can also derive the microscopic relation, (20), from the supergravity solutions that
we construct in Sect. 3.4. In the supergravity solution, one has to set one of the three
dipole charges to zero to obtain the solution with three asymptotic charges and two
dipole charges. One then finds that (20) emerges from are careful examination of the
near-horizon limit and the requirement that the solution be free of closed timelike
curves [71].

If F67 and F89 are traceless, this tube has no D2 charge and no D4 dipole mo-
ment. More general tubes will not satisfy (20) and need not have vanishing D4
dipole moment when the D2 charge vanishes. We should also remark that the D2
dipole moment is an essential ingredient in constructing a supersymmetric three-
charge tube of finite size. When this dipole moment goes to zero, the radius of the
tube also becomes zero.

In general, we can construct a tube of arbitrary shape, and this tube will gener-
ically carry angular momentum in the (x2,x3) and (x4,x5) planes. We can also
consider a round tube, made of k identical D6 branes wrapping an S1 that lies for
example in the (x2,x3) plane. The microscopic angular momentum density of such
a configuration is given by the (0,θ) component of the energy-momentum tensor:

8 One could also take TrF67 = TrF89 = 0 to cancel the D2 charge, but this does not affect the
radius formula.
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J23 = 2π r T0θ = 2πT6 k r2
√

(1+F 2
67)
(
1+F 2

89

)
. (21)

Now recall that supersymmetry requires F67 = F89 and that Tr(F67F89) = Q0/Q4,
and so this may be rewritten as:

J23 = 2πT6 k r2
(

1+
Q0

Q4

)
=

1
2πT6

Q1 Q4

k
, (22)

where we have used (18). It is interesting to note that this microscopic angular mo-
mentum density is not necessarily equal to the angular momentum measured at in-
finity. As we will see in the next section, from the full supergravity solution, the
angular momenta of the three-charge supertube also have a piece coming from the
supergravity fluxes. This is similar to the non-zero angular momentum coming from
the Poynting vector, �E ×�B, in the static electromagnetic configuration consisting of
an electron and a magnetic monopole [72].

Note also that when one adds D0 brane charge to a F1-D4 supertube, the angu-
lar momentum does not change, even if the radius becomes smaller. Hence, given
charges of the same order, the angular momentum that the ring carries is of order the
square of the charge (for a fixed number, k, of D6 branes). For more general three-
charge supertubes, whose shape is an arbitrary curve inside R

4, the angular momenta
can be obtained rather straightforwardly from this shape by integrating the appro-
priate components of the BI energy-momentum tensor over the profile of the tube.

A T-duality along x1 transforms our D0-D4-F1 tubes into the more familiar D1-
D5-P configurations. This T-duality is implemented by the replacement 2πA1 →X1.
The non-zero value of F1θ is translated by the T-duality into a non-zero value of
∂θX1. This means that the resulting D5-brane is in the shape of a helix whose axis
is parallel to x1. This is the same as the observation that the D2-brane supertube T-
dualizes into a helical D1-brane. Since this helical shape is slightly less convenient
to work with than a tube, we have chosen to emphasize the F1-D4-D0 description
instead. Nevertheless, in the formulas that give the radius and angular momenta of
the three-charge supertubes, we will use interchangingly the D1-D5-P and the D0-
D4-F1 quantities, related via U-duality N0 → Np, N4 → N5, and N1 → N1, with
similar replacements for the Qs.

Exercise 3. Write the combination of S-duality and T-duality transformations that
correspond to this identification of the D1-D5-P and F1-D4-D0 quantities.

2.3 Supertubes and Black Holes

The spinning three-charge black hole (also known as the BMPV black hole [73])
can only carry equal angular momenta, bounded above by:9

9 In Sect. 3.4, we will re-derive the BMPV solution as part of a more complex solution. This bound
can be seen from (1) and follows from the requirement that there are no closed time-like curves
outside the horizon.
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J2
1 = J2

2 ≤ N1N5NP. (23)

For the three-charge supertubes, the angular momenta are not restricted to be equal.
A supertube configuration can have arbitrary shape, and carry any combination of
the two angular momenta. For example, we can choose a closed curve such that the
supertube cross-section lies in the (x2,x3) plane, for which J23 �= 0 and J45 = 0. The
bound on the angular momentum can be obtained from (22):

|J| = 1
2πT6

Q1 Q4

k
≤ 1

2πT6
Q1 Q4 = N1 N4, (24)

where we have used k ≥ 1 since it is the number of D6 branes. The quantized
charges10 are given by Q1 = 1

2π N1, Q4 = (2π)2T6N4. We therefore see that a single
D6 brane saturates the bound and that by varying the number of D6 branes or by
appropriately changing the shape and orientation of the tube cross section, we can
span the entire range of angular momenta between −N1N4 and +N1N4. Since (24)
is quadratic the charges, one can easily exceed the black hole angular momentum
bound in (23) by simply making Q1 and Q4 sufficiently large.

One can also compare the size of the supertube with the size of the black hole.
Using (24), one can rewrite (18) in terms of the angular momentum:

r2 =
J2

Q1 (Q0 +Q4)
, (25)

Now recall that the tension of a D-brane varies as g−1
s and that the charges, Q0 and

Q4, appear in the Hamiltonian (14). This means that the quantization conditions on
the D-brane charges must have the form Q j ∼ Nj/gs. The energy of the fundamental
string is independent of gs and so Q1 ∼ N1, with no factors of gs. If we take N0 ≈
N1 ≈ N4 ≈ N then we find:

r2
tube ∼ gs

J2

N2 . (26)

From the BMPV black hole metric [73, 74], one can compute the proper length
of the circumference of the horizon (as measured at one of the equator circles) to be

r2
hole ∼ gs

N3 − J2

N2 . (27)

The most important aspect of the (26) and (27) is that for comparable charges and
angular momenta, the black hole and the three-charge supertube have comparable
sizes. Moreover, these sizes grow with gs in the same way. This is a very counter-
intuitive behavior. Most of the objects we can think about tend to become smaller
when gravity is made stronger and this is consistent with our intuition and the fact
that gravity is an attractive force. The only “familiar” object that becomes larger
with stronger gravity is a black hole. Nevertheless, three-charge supertubes also

10 These charges are related to the charges that appear in the Hamiltonian by the corresponding
tensions; more details about this can be found in [38].
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become larger as gravity becomes stronger! The size of a tube is determined by a
balance between the angular momentum of the system and the tension of the tubular
brane. As the string coupling is increased, the D-brane tension decreases, and thus
the size of the tube grows at exactly the same rate as the Schwarzschild radius of the
black hole.11

This is the distinguishing feature that makes the three-charge supertubes (as
well as the smooth geometries that we will obtain from their geometric tran-
sitions) unlike any other configuration that one counts in studying black hole
entropy.

To be more precise, let us consider the counting of states that leads to the black
hole entropy “à la Strominger and Vafa.” One counts microscopic brane/string con-
figurations at weak coupling where the system is of string scale in extent, and
its Schwarzschild radius even smaller. One then imagines increasing the gravita-
tional coupling; the Schwarzschild radius grows, becoming comparable to the size
of the brane configuration at the “correspondence point” [75] and larger thereafter.
When the Schwarzschild radius is much larger than the Planck scale, the system
can be described as a black hole. There are thus two very different descriptions
of the system: as a microscopic string theory object for small gs, and as a black
hole for large gs. One then compares the entropy in the two regimes and finds
an agreement, which is precise if supersymmetry forbids corrections during the
extrapolation.

Three-charge supertubes behave differently. Their size grows at the same rate
as the Schwarzschild radius, and thus they have no “correspondence point.” Their
description is valid in the same regime as the description of the black hole. If by
counting such configurations one could reproduce the entropy of the black hole, then
one should think about the supertubes as the large gs continuation of the microstates
counted at small gs in the string/brane picture and therefore as the microstates of the
corresponding black hole.

It is interesting to note that if the supertubes did not grow with exactly the
same power of gs as the black hole horizon, they would not be good candidates
for being black hole microstates, and Mathur’s conjecture would have been in
some trouble. The fact that there exists a huge number of configurations that do
have the same growth with gs as the black hole is a non-trivial confirmation that
these configurations may well represent black-hole microstates for the three-charge
system.

We therefore expect that configurations constructed from three-charge super-
tubes will give us a large number of three-charge BPS black hole microstates. Never-
theless, we have seen that three-charge supertubes can have angular momenta larger
than the BPS black hole and generically have J1 �= J2. Hence, one can also ask if
there exists a black object whose microstates those supertubes represent. In [38], it
was conjectured that such an object should be a three-charge BPS black ring, de-
spite the belief at the time that there was theorem that such BPS black rings could
not exist. After more evidence for this conjecture came from the construction of

11 Note that this is a feature only of three-charge supertubes; ordinary (two-charge) supertubes
have a growth that is duality-frame dependent.
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the flat limit of black rings [71], a gap in the proof of the theorem was found [76].
Subsequently the BPS black ring with equal charges and dipole charges was found
in [77], followed by the rings with three arbitrary charges and three arbitrary dipole
charges [68, 78, 79]. One of the morals of this story is that whenever one encounters
an “established” result that contradicts intuition, one should really get to the bottom
of it and find out why the intuition is wrong or to expose the cracks in established
wisdom.

3 Black Rings and Supertubes

As we have seen in the D-brane analysis of the previous section, three-charge su-
pertubes of arbitrary shape preserve the same supersymmetries as the three-charge
black hole. Moreover, as we will see, three-charge supertube solutions that have
three dipole charges can also have a horizon at large effective coupling, and thus
become black rings. Therefore, one expects the existence of BPS configurations
with an arbitrary distribution of black holes, black rings, and supertubes of arbitrary
shape. Finding the complete supergravity solution for such configurations appears
quite daunting. We now show that this is nevertheless possible and that the entire
problem can be reduced to solving a linear system of equations in four-dimensional,
Euclidean electromagnetism.

3.1 Supersymmetric Configurations

We begin by considering brane configurations that preserve the same supersymme-
tries as the three-charge black hole. In M-theory, the latter can be constructed by
compactifying on a six-torus, T 6, and wrapping three sets of M2 branes on three or-
thogonal two-tori (see the first three rows of Table 1). Amazingly enough, one can

Table 1 Layout of the branes that give the supertubes and black rings in an M-theory duality frame

Brane 0 1 2 3 4 5 6 7 8 9 10

M2 � � � � � � � ↔ ↔ ↔ ↔
M2 � � � � � ↔ ↔ � � ↔ ↔
M2 � � � � � ↔ ↔ ↔ ↔ � �
M5 � yμ (σ) ↔ ↔ � � � �
M5 � yμ (σ) � � ↔ ↔ � �
M5 � yμ (σ) � � � � ↔ ↔

Vertical arrows �, indicate the directions along which the branes are extended, and horizontal ar-
rows, ↔, indicate the smearing directions. The functions, yμ (σ), indicate that the brane wraps a
simple closed curve in R

4 that defines the black-ring or supertube profile. A star, �, indicates that
a brane is smeared along the supertube profile, and pointlike on the other three directions.
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add a further three sets of M5 branes while preserving the same supersymmetries:
Each set of M5 branes can be thought of as magnetically dual to a set of M2 branes
in that the M5 branes wrap the four-torus, T 4, orthogonal to the T 2 wrapped by
the M2 branes. The remaining spatial direction of the M5 branes follows a simple,
closed curve, yμ(σ), in the spatial section of the five-dimensional space-time. Since
we wish to make a single, three-charge ring we take this curve to be the same for all
three sets of M5 branes. This configuration is summarized in Table 1. In [68], it was
argued that this was the most general three-charge brane configuration12 consistent
with the supersymmetries of the three-charge black-hole.

The metric corresponding to this brane configuration can be written as

ds2
11 = ds2

5 +
(
Z2Z3Z−2

1

) 1
3 (dx2

5 +dx2
6)

+
(
Z1Z3Z−2

2

) 1
3 (dx2

7 +dx2
8)+

(
Z1Z2Z−2

3

) 1
3 (dx2

9 +dx2
10), (28)

where the five-dimensional space-time metric has the form:

ds2
5 ≡−(Z1Z2Z3)

− 2
3 (dt + k)2 +(Z1Z2Z3)

1
3 hμνdyμdyν , (29)

for some one-form field, k, defined upon the spatial section of this metric. Since we
want the metric to be asymptotic to flat R

4,1 ×T 6, we require

ds2
4 ≡ hμνdyμdyν , (30)

to limit to the flat, Euclidean metric on R
4 at spatial infinity, and we require the

warp factors, ZI , to limit to constants at infinity. To fix the normalization of the
corresponding Kaluza-Klein U(1) gauge fields, we will take ZI → 1 at infinity.

The supersymmetry, ε, consistent with the brane configurations in Table 1 must
satisfy: (

1l−Γ056
)

ε =
(
1l−Γ078) ε =

(
1l−Γ09 10) ε = 0. (31)

Since the product of all the gamma-matrices is the identity matrix, this implies

(
1l−Γ1234) ε = 0, (32)

which means that one of the four-dimensional helicity components of the four di-
mensional supersymmetry must vanish identically. The holonomy of the metric,
(30), acting on the spinors is determined by

[ ∇μ , ∇ν ] ε =
1
4

R(4)
μνcd Γcd ε, (33)

where R(4)
μνcd is the Riemann tensor of (30). Observe that (33) vanishes identically

as a consequence of (32) if the Riemann tensor is self-dual:

12 Obviously one can choose add multiple curves and black hole sources.
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R(4)
abcd =

1
2
εcd

e f R(4)
abe f . (34)

Such four-metrics are called “half-flat.” Equivalently, note that the holonomy of a
general Euclidean four-metric is SU(2)×SU(2) and that (34) implies that the holon-
omy lies only in one of these SU(2) factors and that the metric is flat in the other
factor. The condition (32) means that all the components of the supersymmetry upon
which the non-trivial holonomy would act actually vanish. The other helicity com-
ponents feel no holonomy and so the supersymmetry can be defined globally. One
should also note that SU(2) holonomy in four-dimensions is equivalent to requiring
that the metric be hyper-Kähler.

Thus we can preserve the supersymmetry if and only if we take the four-metric
to be hyper-Kähler. However, there is a theorem that states that any metric that is
(i) Riemannian (signature +4) and regular, (ii) hyper-Kähler, and (iii) asymptotic
to the flat metric on R

4 must be globally the flat metric on R
4. The obvious con-

clusion, which we will follow in this section, is that we simply take (30) to be the
flat metric on R

4. However, there are very important exceptions. First, we require
the four-metric to be asymptotic to flat R

4 because we want to interpret the object
in asymptotically flat, five-dimensional space-time. If we want something that can
be interpreted in terms of asymptotically flat, four-dimensional space-time then we
want the four-metric to be asymptotic to the flat metric on R

3 × S1. This allows
for a lot more possibilities and includes the multi-Taub-NUT metrics [80]. Using
such Taub-NUT metrics provides a straightforward technique for reducing the five-
dimensional solutions to four dimensions [46, 81, 82, 83, 84].

The other exception will be the subject of subsequent sections of this review:
The requirement that the four-metric be globally Riemannian is too stringent. As
we will see, the metric can be allowed to change the overall sign since this can be
compensated by a sign change in the warp factors of (29). In this section, however,
we will suppose that the four-metric is simply that of flat R

4.

3.2 The BPS Equations

The Maxwell three-form potential is given by

C(3) = A(1) ∧dx5 ∧dx6 +A(2) ∧dx7 ∧dx8 +A(3) ∧dx9 ∧dx10, (35)

where the six coordinates, xA, parameterize the compactification torus, T 6, and
A(I), I = 1, 2, 3, are one-form Maxwell potentials in the five-dimensional space-
time and depend only upon the coordinates, yμ , that parameterize the spatial di-
rections. It is convenient to introduce the Maxwell “dipole field strengths,” Θ(I),
obtained by removing the contributions of the electrostatic potentials

Θ(I) ≡ dA(I) +d
(
Z−1

I (dt + k)
)
, (36)
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The most general supersymmetric configuration is then obtained by solving the
BPS equations:

Θ(I) = �4 Θ(I), (37)

∇2ZI =
1
2

CIJK �4

(
Θ(J)∧Θ(K)

)
, (38)

dk +�4dk = ZI Θ(I), (39)

where �4 is the Hodge dual taken with respect to the four-dimensional metric hμν ,
and structure constants13 are given by CIJK ≡ |εIJK |. It is important to note that if
these equations are solved in the order presented above, then one is solving a linear
system.

At each step in the solution-generating process one has the freedom to add ho-
mogeneous solutions of the equations. Since we are requiring that the fields fall
off at infinity, this means that these homogeneous solutions must have sources in
the base space, and since there is no topology in the R

4 base, these sources must
be singular. One begins by choosing the profiles, in R

4, of the three types of M5
brane that source the Θ(I). These fluxes then give rise to the explicit sources on the
right-hand side of (38), but one also has the freedom to choose singular sources for
(38) corresponding to the densities, ρI(σ), of the three types of M2 branes. The
M2 branes can be distributed at the same location as the M5 profile and can also
be distributed away from this profile (see Fig. 2). The functions, ZI , then appear in
the final solution as warp factors and as the electrostatic potentials. There are thus
two contributions to the total electric charge of the solution: The localized M2 brane
sources described by ρI(σ) and the induced charge from the fields, Θ(I), generated
by the M5 branes. It is in this sense that the solution contains electric charges that are
dissolved in the fluxes generated by M5 branes, much like in the Klebanov-Strassler
or Klebanov-Tseytlin solutions [85, 86].

Fig. 2 The first two steps of the procedure to construct solutions. One first chooses an arbitrary
M5 brane profile and then sprinkles the various types of M2 branes, either on the M5 brane profile
or away from it. This gives a solution for an arbitrary superposition of black rings, supertubes, and
black holes

13 If the T 6 compactification manifold is replaced by a more general Calabi-Yau manifold, the CIJK

change accordingly.
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The final step is to solve the last BPS equation, (39), which is sourced by a
cross term between the magnetic and electric fields. Again there are homogeneous
solutions that may need to be added and this time, however, they need to be adjusted
so as to ensure that (29) has no closed time-like curves (CTC’s). Roughly one must
make sure that the angular momentum at each point does not exceed what can be
supported by local energy density.

3.3 Asymptotic Charges

Even though a generic black ring is made from six sets of branes, there are only three
conserved electric charges that can be measured from infinity. These are obtained
from the three vector potentials, A(I), defined in (35), by integrating �5dA(I) over
the three-sphere at spatial infinity. Since the M5 branes run in a closed loop, they do
not directly contribute to the electric charges. The electric charges are determined
by electric fields at infinity and hence by the functions ZI (36). Indeed, one has:

ZI ∼ 1+ c1
QI

ρ2 + . . . , ρ → ∞, (40)

where c1 is a normalization constant (discussed below), ρ is the standard, Euclidean
radial coordinate in R

4 and the QI are the electric charges. Note that while the M5
branes do not directly contribute to the electric charges, they do contribute indirectly
via “charges dissolved in fluxes,” that is, through the source terms on the right-hand
side of (38).

To compute the angular momentum it is convenient to write the spatial R
4 as

R
2 ×R

2 and pass to two sets of polar coordinates, (u, θ1) and (v, θ2) in which the
flat metric on R

4 is:

ds2
4 =

(
du2 +u2 dθ 2

1

)
+
(
dv2 + v2 dθ 2

2

)
. (41)

There are two commuting angular momenta, J1 and J2, corresponding to the compo-
nents of rotation in these two planes. One can then read off the angular momentum
by making an expansion at infinity of the angular momentum vector, k, in (29):

k ∼ c2

(
J1

u2

(u2 + v2)2 + J2
v2

(u2 + v2)2

)
+ . . . , u,v → ∞, (42)

where c2 is a normalization constant. The charges, QI , and the angular momenta,
J1, J2, need to be correctly normalized in order to express them in terms of the
quantized charges. The normalization depends upon the eleven-dimensional Planck
length, �p, and the volume of the compactifying torus, T 6. The correct normalization
can be found [68] and has been computed in many references. (For a good review,
see [87].) Here we simply state that if L denotes the radius of the circles that make
up the T 6 (so that the compactification volume is V6 = (2πL)6), then one obtains
the canonically normalized quantities by using
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c1 =
�6

p

L4 , c2 =
�9

p

L6 . (43)

For simplicity, in most of the rest of this review we will take as system of units
in which �p = 1 and we will fix the torus volume so that L = 1. Thus one has
c1 = c2 = 1.

3.4 An Example: A Three-Charge Black Ring
with a Black Hole in the Middle

By solving the BPS equations, (37), (38) and (39), one can, in principle, find the
supergravity solution for an arbitrary distribution of black rings and black holes.
The metric for a general distribution of these objects will be extremely complicated,
and so to illustrate the technique we will concentrate on a simpler system: A BMPV
black hole at the center of a three-charge BPS black ring. An extensive review of
black rings, both BPS and non-BPS can be found in [88]. Other interesting papers
related to non-BPS black rings include [89, 90, 91, 92].

Since the ring sits in an R
2 inside R

4, it is natural to pass to the two sets of polar
coordinates, (u, θ1) and (v, θ2) in which the base-space metric takes the form (41)
We then locate the ring at u = R and v = 0 and the black hole at u = v = 0.

The best coordinate system for actually solving the black ring equations is the
one that has become relatively standard in the black-ring literature (see, for example,
[77]). The change of variables is:

x = − u2 + v2 −R2
√

((u−R)2 + v2)((u+R)2 + v2)
, (44)

y = − u2 + v2 +R2
√

((u−R)2 + v2)((u+R)2 + v2)
, (45)

where −1 ≤ x ≤ 1, −∞ < y ≤ −1, and the ring is located at y = −∞. This system
has several advantages: it makes the electric and magnetic two-form field strengths
sourced by the ring have a very simple form (see (47)), and it makes the ring look
like a single point while maintaining separability of the Laplace equation. In these
coordinates, the flat R

4 metric has the form:

ds2
4 =

R2

(x− y)2

(
dy2

y2 −1
+
(
y2 −1

)
dθ 2

1 +
dx2

1− x2 +
(
1− x2)dθ 2

2

)
. (46)

The self-dual14 field strengths that are sourced by the ring are then:

Θ(I) = 2 qi (dx∧dθ2 −dy∧dθ1). (47)

14 Our orientation is εyxθ1θ2 = +1.
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The warp factors then have the form

ZI = 1+
QI

R
(x− y)− 2 CIJK qJqK

R2

(
x2 − y2)− YI

R2

x− y
x+ y

, (48)

and the angular momentum components are given by:

kψ =
(
y2 −1

)
g(x,y)− A (y+1), kφ =

(
x2 −1

)
g(x,y) ; (49)

g(x,y) ≡
(

C
3

(x+ y)+
B
2
− D

R2(x+ y)
+

K
R2(x+ y)2

)
(50)

where K represents the angular momentum of the BMPV black hole and

A ≡ 2
(
∑qI) , B ≡ 2

R

(
QIq

I) , (51)

C ≡ −8 CIJK qIqJqK

R2 , D ≡ 2 YIq
I . (52)

The homogeneous solutions of (39) have already been chosen so as to remove any
closed timelike curves (CTC).

The relation between the quantized ring and black-hole charges and the parame-
ters appearing in the solution are:

QI =
NI �6

p

2L4R
, qI =

nI �3
p

4L2 , YI =
NBH

I �6
p

L4 , K =
JBMPV �9

p

L6 , (53)

where L is the radius of the circles that make up the T 6 (so that V6 = (2πL)6) and �p

is the eleven-dimensional Planck length.
As we indicated earlier, the asymptotic charges, NI , of the solution are the sum of

the microscopic charges on the black ring, NI , the charges of the black hole, NBH
I ,

and the charges dissolved in fluxes:

NI = NI +NBH
I +

1
2

CIJK nJnK . (54)

Exercise 4. Derive this expression for the charge from the asymptotic expansion of
the ZI in (48). Derive the relation between the parameters qI and the quantized M5
charges nI in (53) by integrating the magnetic M-theory four-form field strength
around the ring profile. (See, for example, [87] in order to get the charge normal-
izations precisely correct.)

The angular momenta of this solution are:

J1 = JΔ +
(

1
6

CIJK nInJnK +
1
2

NIn
I +NBH

I nI + JBMPV
)

, (55)
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J2 = −
(

1
6

CIJK nInJnK +
1
2

NIn
I +NBH

I nI + JBMPV
)

, (56)

where

JΔ ≡ R2L4

l6
p

(
∑nI) . (57)

The entropy of the ring is:

S =
2πA

κ2
11

= π
√

M (58)

where

M ≡ 2 n1n2N1N2 +2 n1n3N1N3 +2 n2n3N2N3 − (n1N1)2

−(n2N2)2 − (n3N3)2 −4 n1n2n3 JT . (59)

and

JT ≡ JΔ +nINBH
I =

R2L4

l6
p

(
∑nI)+nINBH

I . (60)

As we will explain in more detail in Sect. 5.6, black rings can be related to four-
dimensional black holes, and (59) is the square root of the E7(7) quartic invariant
of the microscopic charges of the ring [56]; these microscopic charges are the nI ,
the NI , and the angular momentum JT . More generally, in configurations with mul-
tiple black rings and black holes, the quantity multiplying n1n2n3 in M should
be identified with the microscopic angular momentum of the ring. There are sev-
eral ways to confirm that this identification is correct. First, one should note that
JT is the quantity that appears in the near-horizon limit of the metric and, in par-
ticular, determines the horizon area and hence entropy of the ring as in (58). This
means that JT is an intrinsic property of the ring. In the next section, we will dis-
cuss the process of lowering a black hole into the center of a ring and we will
see, once again, that it is JT that represents the intrinsic angular momentum of
the ring.

The angular momenta of the solution may be re-written in terms of fundamental
charges as:

J1 = JT +
(

1
6

CIJK nInJnK +
1
2

NIn
I + JBMPV

)

J2 = −
(

1
6

CIJK nInJnK +
1
2

NIn
I +NBH

I nI + JBMPV
)

. (61)

Notice that in this form, J1 contains no contribution coming from the combined
effect of the electric field of the black hole and the magnetic field of the black ring.
Such a contribution only appears in J2.
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3.5 Merging Black Holes and Black Rings

One can also use the methods above to study processes in which black holes and
black rings are brought together and ultimately merge. Such processes are interest-
ing in their own right, but we will also see later that they can be very useful in the
study of microstate geometries.

It is fairly straightforward to generalize the solution of Sect. 3.4 to one that de-
scribes a black ring with a black hole on the axis of the ring but offset above the ring
by a distance, a = αR, where R is radius of the ring. (Both a and R are measured
in the R

4 base.) This is depicted in Fig. 3. The details of the exact solution may be
found in [93], and we will only summarize the main results here.

The total charge of the combined system is independent of α and is given by
(54). Similarly, the entropy of the black ring is still given by (58) and (59) but now
with JT defined by:

JT = JΔ +
nINBH

I

1+α2 ≡ R2L4

l6
p

(
∑nI)+

nINBH
I

1+α2 . (62)

The horizon area of the black hole is unmodified by the presence of the black ring
and, in particular, its dependence on α only comes via JT . Thus, for an adiabatic
process, the quantity, M , in (59) must remain fixed, and therefore JT must remain
fixed. This is consistent with identifying JT as the intrinsic angular momentum of
the ring.

The two angular momenta of the system are:

J1 = JT +
(

1
6

CIJKnInJnK +
1
2

NIn
I + JBMPV

)
, (63)

J2 = −
(

1
6

CIJKnInJnK +
1
2

NIn
I +

NBH
I nI

1+α2 + JBMPV
)

. (64)

If we change the separation of the black hole and black ring while preserving the
axial symmetry, that is, if we vary α , then the symmetry requires J1 to be conserved.
Once again we see that this means that JT must remain fixed.

Fig. 3 The configuration
black ring with an off-set
black hole on its axis. The
parameter, α , is related to
the angle of approach, δ , by
α ≡ cotδ

δ

R

αR
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The constancy of JT along with (62) imply that as the black hole is brought near
the black ring, the embedding radius of the latter, R, must change according to:

R2 =
l6
p

L4

(
∑nI)−1

(
JT − nINBH

I

1+α2

)
. (65)

For fixed microscopic charges this formula gives the radius of the ring as a function
of the parameter α . The black hole will merge with the black ring if and only if R
vanishes for some value of α . That is, if and only if

JT ≤ nINBH
I . (66)

The vanishing of R suggests that the ring is pinching off; however, in the physical
metric, (29), the ring generically has finite size as it settles onto the horizon of the
black hole. Indeed, the value of α = tanζ at the merger determines the latitude, ζ ,
at which the ring settles on the black hole. If it occurs at α = 0 then the ring merges
by grazing the black hole at the equator.

At merger (R = 0), one can see that J1 = J2 and so the resulting object will have
J1 = J2 given by (63). This will be a BMPV black hole, and its electric charges are
simply given by (54). We can therefore use (1) to determine the final entropy after
the merger. Note that the process we are considering is adiabatic up to the point
where the ring touches the horizon of the black hole. The process of swallowing
the ring is not necessarily adiabatic, but we assume that the black hole does indeed
swallow the black ring, and we can then compute the entropy from the charges and
angular momentum of the resulting BMPV black hole.

In general, the merger of a black hole and a black ring is irreversible, that is, the
total horizon area increases in the process. However, there is precisely one situation
in which the merger is reversible, and that requires all of the following to be true:

1. The ring must have zero horizon area (with a slight abuse of terminology we will
also refer to such rings as supertubes).

2. The black hole that one begins with must have zero horizon area, i.e. it must be
maximally spinning.

3. The ring must meet the black hole by grazing it at the equator.
4. There are two integers, P̄ and PBH such that

NI =
P
nI and NBH

I =
PBH

nI , I = 1,2,3. (67)

If all of these conditions are met then the end result is also a maximally spinning
BMPV black hole and hence also has zero horizon area.

Note that the last condition implies that

NI ≡ NI +
1
2

CIJK nJ nK =
(P+n1 n2 n3)

nI , (68)

and therefore the electric charges of black ring and its charges dissolved in fluxes
( 1

2 CIJK nJ nK) must both be aligned exactly parallel to the electric charges of the
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black hole. Conversely, if conditions 1–3 are satisfied, but the charge vectors of the
black hole and black ring are not parallel then the merger will be irreversible. This
observation will be important in Sect. 8.

4 Geometric Interlude: Four-Dimensional Black Holes
and Five-Dimensional Foam

In Sect. 3.1, we observed that supersymmetry allows us to take the base-space
metric to be any hyper-Kähler metric. There are certainly quite a number of in-
teresting four-dimensional hyper-Kähler metrics, and in particular, there are the
multi-centered Gibbons-Hawking metrics. These provide examples of asymptoti-
cally locally Euclidean (ALE) and asymptotically locally flat (ALF) spaces, which
are asymptotic to R

4/Zn and R
3 × S1, respectively. Using ALF metrics provides

a smooth way to transition between a five-dimensional and a four-dimensional
interpretation of a certain configuration. Indeed, the size of the S1 is usually a
modulus of a solution, and thus is freely adjustable. When this size is large com-
pared to the size of the source configuration, this configuration is essentially five-
dimensional; if the S1 is small, then the configuration has a four-dimensional
description.

We noted earlier that a regular, Riemannian, hyper-Kähler metric that is asymp-
totic to flat R

4 is necessarily flat R
4 globally. The non-trivial ALE metrics get

around this by having a discrete identification at infinity but, as a result, do not
have an asymptotic structure that lends itself to a space-time interpretation. How-
ever, there is an unwarranted assumption here: One should remember that the
goal is for the five-metric (29) to be regular and Lorentzian, and this might be
achievable if singularities of the four-dimensional base space were canceled by
the warp factors. More specifically, we are going to consider base-space metrics
(30) whose overall sign is allowed to change in interior regions. That is, we are
going to allow the signature to flip from +4 to −4. We will call such metrics
ambipolar.

The potentially singular regions could actually be regular if the warp factors,
ZI , all flip sign whenever the four-metric signature flips. Indeed, we suspect that
the desired property may follow quite generally from the BPS equations through
the four-dimensional dualization on the right-hand side of (38). Obviously, there
are quite a number of details to be checked before complete regularity is proven,
but we will see below that this can be done for ambipolar Gibbons-Hawking
metrics.

Because of these two important applications, we now give a review of Gibbons-
Hawking geometries [80, 94] and their elementary ambipolar generalization. These
metrics have the virtue of being simple enough for very explicit computation and
yet capture some extremely interesting physics.
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4.1 Gibbons-Hawking Metrics

Gibbons-Hawking metrics have the form of a U(1) fibration over a flat R
3 base:

hμνdxμdxν = V−1
(

dψ +�A ·d�y
)2

+V
(
dx2 +dy2 +dz2) , (69)

where we write�y = (x, y, z). The function, V , is harmonic on the flat R
3 while the

connection, A = �A ·d�y, is related to V via

�∇×�A = �∇V. (70)

This family of metrics is the unique set of hyper-Kähler metrics with a tri-holomo-
rphic U(1) isometry.15 Moreover, four-dimensional hyper-Kähler manifolds with
U(1)×U(1) symmetry must, at least locally, be Gibbons-Hawking metrics with an
extra U(1) symmetry around an axis in the R

3 [95].
In the standard form of the Gibbons-Hawking metrics, one takes V to have a

finite set of isolated sources. That is, let�y( j) be the positions of the source points in
the R

3 and let r j ≡ |�y−�y( j)|. Then one takes:

V = ε0 +
N

∑
j=1

q j

r j
, (71)

where one usually takes q j ≥ 0 to ensure that the metric is Riemannian (positive
definite). We will later relax this restriction. There appear to be singularities in the
metric at r j = 0; however, if one changes to polar coordinates centered at r j = 0
with radial coordinate to ρ = 2

√
|�y−�y( j)|, then the metric is locally of the form:

ds2
4 ∼ dρ2 +ρ2 dΩ2

3, (72)

where dΩ2
3 is the standard metric on S3/Z|q j |. In particular, this means that one must

have q j ∈Z and if |q j|= 1 then the space looks locally like R
4. If |q j| �= 1, then there

is an orbifold singularity, but since this is benign in string theory, we will view such
backgrounds as regular.

If ε0 �= 0, then V → ε0 at infinity and so the metric (69) is asymptotic to flat R
3×

S1, that is, the base is asymptotically locally flat (ALF). The five-dimensional space-
time is thus asymptotically compactified to a four-dimensional space-time. This a
standard Kaluza-Klein reduction and the gauge field, �A, yields a non-trivial, four-
dimensional Maxwell field whose sources, from the ten-dimensional perspective,
are simply D6 branes. In Sect. 5.6 we will make extensive use of of the fact that
introducing a constant term into V yields a further compactification, and through
this we can relate five-dimensional physics to four-dimensional physics.

15 Tri-holomorphic means that the U(1) preserves all three complex structures of the hyper-Kähler
metric.
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Now suppose that one has ε0 = 0. At infinity, in R
3 one has V ∼ q0/r, where

r ≡ |�y| and

q0 ≡
N

∑
j=1

q j. (73)

Hence spatial infinity in the Gibbons-Hawking metric also has the form (72), where

r =
1
4
ρ2, (74)

and dΩ2
3 is the standard metric on S3/Z|q0|. For the Gibbons-Hawking metric to be

asymptotic to the positive definite, flat metric on R
4 one must have q0 = 1. Note

that for the Gibbons-Hawking metrics to be globally positive definite, one would
also have to take q j ≥ 0 and thus the only such metric would have to have V ≡ 1

r .
The metric (69) is then the flat metric on R

4 globally, as can be seen by using the
change of variables (74). The only way to get non-trivial metrics that are asymptotic
to flat R

4 is by taking some of the q j ∈ Z to be negative.

4.2 Homology and Cohomology

The multi-center Gibbons-Hawking (GH) metrics also contain 1
2 N(N−1) topologi-

cally non-trivial two-cycles, Δi j, that run between the GH centers. These two-cycles
can be defined by taking any curve, γi j, between �y(i) and �y( j) and considering the
U(1) fiber of (69) along the curve. This fiber collapses to zero at the GH centers,
and so the curve and the fiber sweep out a 2-sphere (up to Z|q j | orbifolds). See

Fig. 4. These spheres intersect one another at the common points �y( j). There are
(N−1) linearly independent homology two-spheres, and the set Δi(i+1) represents a
basis.16

y(i)

y(j)

y(k)

ij
ΔΔ jk

R3

Fig. 4 This figure depicts some non-trivial cycles of the Gibbons-Hawking geometry. The behavior
of the U(1) fiber is shown along curves between the sources of the potential, V . Here the fibers
sweep out a pair of intersecting homology spheres

16 The integer homology corresponds to the root lattice of SU(N) with an intersection matrix given
by the inner product of the roots.
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It is also convenient to introduce a set of frames

ê1 = V− 1
2 (dψ +A), êa+1 = V

1
2 dya, a = 1,2,3. (75)

and two associated sets of two-forms:

Ω(a)
± ≡ ê1 ∧ êa+1 ± 1

2
εabc êb+1 ∧ êc+1, a = 1,2,3. (76)

The two-forms, Ω(a)
− , are anti-self-dual, harmonic and non-normalizable, and they

define the hyper-Kähler structure on the base. The forms, Ω(a)
+ , are self-dual and can

be used to construct harmonic fluxes that are dual to the two-cycles. Consider the
self-dual two-form:

Θ≡
3

∑
a=1

(
∂a
(
V−1 H

))
Ω(a)

+ . (77)

Then Θ is closed (and hence co-closed and harmonic) if and only if H is harmonic
in R

3, i.e. ∇2H = 0. We now have the choice of how to distribute sources of H
throughout the R

3 base of the GH space; such a distribution may correspond to
having multiple black rings and black holes in this space. Nevertheless, if we want
to obtain a geometry that has no singularities and no horizons, Θ has to be regular,
and this happens if and only if H/V is regular; this occurs if and only if H has
the form:

H = h0 +
N

∑
j=1

h j

r j
. (78)

Also note that the “gauge transformation”

H → H + c V, (79)

for some constant, c, leaves Θ unchanged, and so there are only N independent
parameters in H. In addition, if ε = 0 then one must take h0 = 0 for Θ to remain
finite at infinity. The remaining (N − 1) parameters then describe harmonic forms
that are dual to the non-trivial two-cycles. If ε �= 0 then the extra parameter is that
of a Maxwell field whose gauge potential gives the Wilson line around the S1 at
infinity.

Exercise 5. Show that the two-form, Θ, defined by (77) and (78) is normalizable
on standard GH spaces (with V > 0 everywhere). That is, show that Θ square
integrable: ∫

Θ∧Θ < ∞, (80)

where the integral is taken of the whole GH base space.

It is straightforward to find a local potential such that Θ = dB:

B ≡V−1 H (dψ +A)+�ξ ·d�y, (81)
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where
�∇×�ξ = −�∇H. (82)

Hence, �ξ is a vector potential for magnetic monopoles located at the singular points
of H.

To determine how these fluxes thread the two-cycles, we need the explicit forms
for the vector potential, B, and to find these we first need the vector fields, �vi, that
satisfy:

�∇×�vi = �∇
(

1
ri

)
. (83)

One then has:

�A =
N

∑
j=1

q j �v j, �ξ =
N

∑
j=1

h j �v j. (84)

If we choose coordinates so that �y(i) = (0,0,a) and let φ denote the polar angle in
the (x, y)-plane, then:

�vi ·d�y =
(

(z−a)
ri

+ ci

)
dφ , (85)

where ci is a constant. The vector field, �vi, is regular away from the z-axis but has
a Dirac string along the z-axis. By choosing ci, we can cancel the string along the
positive or negative z-axis, and by moving the axis we can arrange these strings to
run in any direction we choose, but they must start or finish at some�y(i), or run out
to infinity.

Now consider what happens to B in the neighborhood of �y(i). Since the circles
swept out by ψ and φ are shrinking to zero size, the string singularities near�y(i) are
of the form:

B ∼ hi

qi

(
dψ +qi

(
(z−a)

ri
+ ci

)
dφ
)
−hi

(
(z−a)

ri
+ ci

)
dφ ∼ hi

qi
dψ. (86)

This shows that the vector, �ξ , in (81) cancels the string singularities in the R
3. The

singular components of B thus point along the U(1) fiber of the GH metric.
Choose any curve, γi j, between �y(i) and �y( j) and define the two-cycle, Δi j, as in

Fig. 4. If one has V > 0 then the vector field, B, is regular over the whole of Δi j

except at the end-points,�y(i) and�y( j). Let Δ̂i j be the cycle Δi j with the poles excised.
Since Θ is regular at the poles, then the expression for the flux, Πi j, through Δi j can
be obtained as follows:

Πi j ≡
1

4 π

∫

Δi j

Θ =
1

4 π

∫

Δ̂i j

Θ =
1

4 π

∫

∂ Δ̂i j

B

=
1

4 π

∫ 4π

0
dψ

(
B|y( j) −B|y(i)

)
=
(

h j

q j
− hi

qi

)
. (87)

We have normalized these periods for later convenience.
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On an ambipolar GH space where the cycle runs between positive and negative
GH points, the flux, Θ, and the potential B are both singular when V = 0, and so this
integral is a rather formal object. However, we will see in Sect. 6.3 that when we ex-
tend to the five-dimensional metric, the physical flux of the complete Maxwell field
combines Θ with another term so that the result is completely regular. Moreover, the
physical flux through the cycle is still given by (87). We will therefore refer to (87)
as the magnetic flux even in ambipolar metrics, and we will see that such fluxes are
directly responsible for holding up the cycles

5 Solutions on a Gibbons-Hawking Base

5.1 Solving the BPS Equations

Our task now is to solve the BPS equations (37), (38), (39) but now with a Gibbons-
Hawking base metric. Such solutions have been derived before for positive-definite
Gibbons-Hawking metrics [79, 96], and it is trivial to generalize to the ambipolar
form. For the present, we will not impose any conditions on the sources of the BPS
equations.

In Sect. 4.2, we saw that there was a simple way to obtain self-dual two-forms,
Θ(I), that satisfy (37). That is, we introduce three harmonic functions, KI , on R

3 that
satisfy ∇2 KI = 0, and define Θ(I) as in (77) by replacing H with KI . We will not,
as yet, assume any specific form for KI .

Exercise 6. Substitute these two-forms into (38) and show that the resulting equa-
tion has the solution:

ZI =
1
2

CIJK V−1 KJKK +LI , (88)

where the LI are three more independent harmonic functions.

We now write the one-form, k, as:

k = μ (dψ +A)+ω (89)

and then (39) becomes:

�∇×�ω = (V�∇μ−μ�∇V )− V
3

∑
I=1

ZI
�∇
(

KI

V

)
. (90)

Taking the divergence yields the following equation for μ :

∇2μ = V−1 �∇ ·
(

V
3

∑
I=1

ZI
�∇

KI

V

)
, (91)
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which is solved by:

μ =
1
6

CIJK
KIKJKK

V 2 +
1

2 V
KILI +M, (92)

where M is yet another harmonic function on R
3. Indeed, M determines the anti-

self-dual part of dk that cancels out of (39). Substituting this result for μ into (90)
we find that ω satisfies:

�∇×�ω = V�∇M−M�∇V +
1
2

(
KI�∇LI −LI

�∇KI
)

. (93)

The integrability condition for this equation is simply the fact that the divergence of
both sides vanish, which is true because KI , LI , M, and V are harmonic.

5.2 Some Properties of the Solution

The solution is thus characterized by the harmonic functions KI , LI , V , and M.
The gauge invariance, (79), extends in a straightforward manner to the complete
solution:

KI → KI + cI V,

LI → LI −CIJK cJ KK − 1
2

CIJK cJ cK V,

M → M− 1
2

cI LI +
1

12
CIJK

(
V cI cJ cK +3 cI cJ KK) , (94)

where the cI are three arbitrary constants.17

The eight functions that give the solution may also be identified with the eight
independent parameters in the 56 of the E7(7) duality group in four dimensions:

x12 = L1, x34 = L2, x56 = L3, x78 = −V,

y12 = K1, y34 = K2, y56 = K3, y78 = 2 M. (95)

With these identifications, the right-hand side of (93) is the symplectic invariant of
the 56 of E7(7):

�∇×�ω =
1
4

8

∑
A,B=1

(yAB
�∇xAB − xAB

�∇yAB). (96)

17 Note that this gauge invariance exists for any CI J K , not only for those coming from reducing
M-theory on T 6.
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We also note that the quartic invariant of the 56 of E7(7) is determined by:

J4 = −1
4
(x12y12 + x34y34 + x56y56 + x78y78)2 − x12x34x56x78

− y12y34y56y78 + x12x34y12y34 + x12x56y12y56 + x34x56y34y56

+ x12x78y12y78 + x34x78y34y78 + x56x78y56y78, (97)

and we will see that this plays a direct role in the expression for the scale of the
U(1) fibration. It also plays a central role in the expression for the horizon area of a
four-dimensional black hole [97].

In principle, we can choose the harmonic functions KI , LI , and M to have sources
that are localized anywhere on the base. These solutions then have localized brane
sources, and include, for example, supertubes and black rings in Taub-NUT [46, 82,
83, 84], which we will review in Sect. 5.5. Such solutions also include more general
multi-center black hole configurations in four dimensions, of the type considered by
Denef and collaborators [98, 99, 100].

Nevertheless, our focus for the moment is on obtaining smooth horizonless so-
lutions, which correspond to microstates of black holes and black rings, and we
choose the harmonic functions so that there are no brane charges anywhere, and all
the charges come from the smooth cohomological fluxes that thread the non-trivial
cycles.

5.3 Closed Time-Like Curves

To look for the presence of closed time-like curves in the metric, one considers
the space-space components of the metric given by (28), (29), and (69). That is,
one goes to the space-like slices obtained by taking t to be a constant. The T 6 di-
rections immediately yield the requirement that ZIZJ > 0, while the metric on the
four-dimensional base reduces to:

ds2
4 = −W−4 (μ(dψ +A)+ω

)2

+W 2V−1(dψ +A
)2 +W 2V

(
dr2 + r2dθ 2 + r2 sin2 θ dφ 2), (98)

where we have chosen to write the metric on R
3 in terms of a generic set of spherical

polar coordinates, (r,θ ,φ) and where we have defined the warp-factor, W , by:

W ≡ (Z1 Z2 Z3)1/6. (99)

There is some potentially singular behavior arising from the fact that the ZI , and
hence W , diverge on the locus, V = 0 (see (88)). However, one can show that if
one expands the metric (98) and uses the expression, (92), then all the dangerous
divergent terms cancel and the metric is regular. We will discuss this further below
and in Sect. 5.4.
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Expanding (98) leads to:

ds2
4 = W−4 (W 6V−1 −μ2)

(
dψ +A− μ ω

W 6V−1 −μ2

)2

− W 2 V−1

W 6V−1 −μ2 ω2

+W 2V
(
dr2 + r2dθ 2 + r2 sin2 θ dφ 2)

=
Q

W 4V 2

(
dψ +A− μ V 2

Q
ω
)2

+W 2V

(
r2 sin2 θ dφ 2 − ω2

Q

)

+W 2V (dr2 + r2dθ 2), (100)

where we have introduced the quantity:

Q ≡W 6 V −μ2 V 2 = Z1Z2Z3V −μ2 V 2. (101)

Upon evaluating Q as a function of the harmonic functions that determine the solu-
tion, one obtains a beautiful result:

Q = −M2 V 2 − 1
3

M CIJKKI KJ Kk −M V KI LI −
1
4

(KILI)2

+
1
6

VCIJKLILJLK +
1
4

CIJKCIMNLJLKKMKN (102)

with CIJK ≡ CIJK . We can straightforwardly see that when we consider M-theory
compactified on T 6, then CIJK = |εIJK |, and Q is nothing other than the E7(7) quar-
tic invariant (97) where the xs and ys are identified as in (95). This is expected from
the fact that the solutions on a GH base have an extra U(1) invariance and hence can
be thought of as four-dimensional. The four-dimensional supergravity obtained by
compactifying M-theory on T 7 is N = 8 supergravity, which has an E7(7) symme-
try group. Of course, the analysis above and in particular equation (102) are valid
for solutions of arbitrary five-dimensional U(1)N ungauged supergravities on a GH
base. More details on the explicit relation for general theories can be found in [101].

Exercise 7. Check that Q is invariant under the gauge transformation (94)

Observe that (100) only involves V in the combinations W 2V and Q and both of
these are regular as V → 0. Thus, at least the spatial metric is regular at V = 0. In
Sect. 5.4, we will show that the complete solution is regular as one passes across the
surface V = 0.

From (100) and (28), we see that to avoid CTCs, the following inequalities must
be true everywhere:

Q ≥ 0, W 2 V ≥ 0,
(
ZJ ZK Z−2

I

) 1
3 = W 2Z−1

I ≥ 0, I = 1,2,3. (103)

The last two conditions can be subsumed into:

V ZI =
1
2

CIJK KJ KK +LI V ≥ 0, I = 1,2,3. (104)
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The obvious danger arises when V is negative. We will show in the next sub-section
that all these quantities remain finite and positive in a neighborhood of V = 0, de-
spite the fact that W blows up. Nevertheless, these quantities could possibly be neg-
ative away from the V = 0 surface. While we will, by no means, make a complete
analysis of the positivity of these quantities, we will discuss it further in Sect. 6.5,
and show that (104) does not present a significant problem in a simple example.
One should also note that Q ≥ 0 requires ∏I (V ZI) ≥ μ2V 4, and so, given (104),
the constraint Q ≥ 0 is still somewhat stronger.

Also note that there is a danger of CTCs arising from Dirac-Misner strings in
ω . That is, near θ = 0, π the −ω2 term could be dominant unless ω vanishes on
the polar axis. We will analyze this issue completely, when we consider bubbled
geometries in Sect. 6.

Finally, one can also try to argue [48] that the complete metric is stably causal
and that the t coordinate provides a global time function [102]. In particular, t will
then be monotonic increasing on future-directed non-space-like curves, and hence
there can be no CTCs. The coordinate t is a time function if and only if

−gμν∂μ t ∂ν t = −gtt = (W 2V )−1(Q−ω2) > 0, (105)

where ω is squared using the R
3 metric. This is obviously a slightly stronger condi-

tion than Q ≥ 0 in (103).

5.4 Regularity of the Solution and Critical Surfaces

As we have seen, the general solutions we will consider have functions, V , that
change sign on the R

3 base of the GH metric. Our purpose here is to show that such
solutions are completely regular, with positive definite metrics, in the regions where
V changes sign. As we will see, the “critical surfaces” where V vanishes are sim-
ply a set of completely harmless, regular hypersurfaces in the full five-dimensional
geometry.

The most obvious issue is that if V changes sign, then the overall sign of the
metric (69) changes, and there might be whole regions of closed time-like curves
when V < 0. However, we remarked above that the warp factors, in the form
of W , prevent this from happening. Specifically, the expanded form of the com-
plete, eleven-dimensional metric when projected onto the GH base yields (100).
Moreover

W 2 V =
(
Z1 Z2 Z3 V 3) 1

3 ∼
(
(K1 K2 K3)

2
) 1

3
(106)

on the surface V = 0. Hence W 2V is regular and positive on this surface, and there-
fore the space-space part (100) of the full eleven-dimensional metric is regular.

There is still the danger of singularities at V = 0 for the other background fields.
We first note that there is no danger of such singularities being hidden implicitly in
the �ω terms. Even though (90) suggests that the source of �ω is singular at V = 0, we
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see from (93) that the source is regular at V = 0, and thus there is nothing hidden in
�ω . We therefore need to focus on the explicit inverse powers of V in the solution.

The factors of V cancel in the torus warp factors, which are of the form (ZIZJ

Z−2
K )

1
3 . The coefficient of (dt +k)2 is W−4, which vanishes as V 2. The singular part

of the cross term, dt k, is μ dt (dψ +A), which, from (92), diverges as V−2, and so
the overall cross term, W−4dt k, remains finite at V = 0.

So the metric is regular at critical surfaces. The inverse metric is also regular at
V = 0 because the dt dψ part of the metric remains finite, and so the determinant is
non-vanishing.

This surface is therefore not an event horizon even though the time-like Killing
vector defined by translations in t becomes null when V = 0. Indeed, when a metric
is stationary but not static, the fact that gtt vanishes on a surface does not make it an
event horizon (the best known example of this is the boundary of the ergosphere of
the Kerr metric). The necessary condition for a surface to be a horizon is rather to
have grr = 0, where r is the coordinate transverse to this surface. This is clearly not
the case here.

Hence, the surface given by V = 0 is like a boundary of an ergosphere, except
that the solution has no ergosphere18 because this Killing vector is time-like on both
sides and does not change character across the critical surface. In the Kerr metric,
the time-like Killing vector becomes space-like and this enables energy extraction
by the Penrose process. Here there is no ergosphere and so energy extraction is not
possible, as is to be expected from a BPS geometry.

At first sight, it does appear that the Maxwell fields are singular on the surface
V = 0. Certainly the “magnetic components” Θ(I) (see (77)) are singular when V =
0. However, one knows that the metric is non-singular, and so one should expect the
singularity in the Θ(I) to be unphysical. This intuition is correct: One must remember
that the complete Maxwell fields are the A(I), and these are indeed non-singular at
V = 0. One finds that the singularities in the “magnetic terms” of A(I) are canceled
by singularities in the “electric terms” of A(I), and this is possible at V = 0 precisely
because gtt goes to zero, and so the magnetic and electric terms can communicate.
Specifically, one has, from (36) and (81):

dA(I) = d

(
B(I) − (dt + k)

ZI

)
. (107)

Near V = 0 the singular parts of this behave as:

dA(I) ∼ d

(
KI

V
− μ

ZI

)
(dψ +A)

∼ d

(
KI

V
− K1 K2 K3

1
2 V CIJK KJ KK

)
(dψ +A) ∼ 0. (108)

18 The non-supersymmetric smooth three-charge solutions found in [103] do nevertheless have
ergospheres [103, 104].
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The cancelations of the V−1 terms here occur for much the same reason that they do
in the metric (100).

Therefore, even if V vanishes and changes sign and the base metric becomes neg-
ative definite, the complete eleven-dimensional solution is regular and well behaved
around the V = 0 surfaces. It is this fact that gets us around the uniqueness theorems
for asymptotically Euclidean self-dual (hyper-Kähler) metrics in four dimensions,
and as we will see, there are now a vast number of candidates for the base metric.

5.5 Black Rings in Taub-NUT

Having analyzed the general form of solutions with a GH base, it is interesting to
re-examine the black ring solution of Sect. 4 and rewrite it in the form discussed
in Sect. 5.1 with a trivial GH base (with V = 1

r ). We do this because it is then
elementary to generalize the solution to more complicated base spaces and most
particularly to a Taub-NUT base. This will then illustrate a very important technique
that makes it elementary to further compactify solutions to four-dimensional space-
times and establish the relationship between four-dimensional and five-dimensional
quantities. For pedagogical reasons, we will focus on the metric details on the field
strengths and the moduli can be found in [84].

Exercise 8. Show that the black ring warp factors and rotation vector, when written
in usual R

4 coordinates

ds2 = dr̃2 + r̃2 (dθ̃ 2 + sin2 θ̃dψ̃2 + cos2 θ̃dφ̃ 2) (109)

are given by:

ZI = 1+
QI

Σ̃
+

1
2

CIJKqJqK r̃2

Σ̃2

k = − r̃2

2Σ̃2

(
qIQI +

2q1q2q3r̃2

Σ̃

)(
cos2 θ̃ dφ̃ + sin2 θ̃ dψ̃

)

− JT
2r̃2 sin2 θ̃

Σ̃(r̃2 + R̃2 + Σ̃)
dψ̃, (110)

where CIJK = 1 for (IJK) = (123) and permutations thereof,

Σ̃≡
√

(r̃2 − R̃2)2 +4R̃2r̃2 cos2 θ̃ , (111)

and JT ≡ Jψ̃ − Jφ̃ .

In the foregoing, we have written the solution in terms of the ring charges, QI ,
and, as we have already noted, for the five-dimensional black ring, these charges
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differ from the charges measured at infinity because of the charge “dissolved” in the
M5-brane fluxes. The charges measured at infinity are QI = QI + 1

2CIJKqJqK . We
will also make a convenient choice of units in which G5 = π

4 , and choose the three
T 2s of the M-theory metric to have equal size.

Exercise 9. Show that in these units the charges QI , QI, and qI that appear in the su-
pergravity warp factors are the same as the corresponding quantized brane charges.

Hint 1: Begin by relating G11 and G5 using the torus volumes.

Hint 2: You can cheat and use the relation between the charges in the supergrav-
ity formula and the integer quantized charges derived in [68] and summarized in
(53). If you feel like doing honest character-building work, find the M2 charges by
integrating F7 over the corresponding S3 ×T 2 ×T 2 at infinity; find the M5 charges
by integrating F4 over the corresponding T 2×S2, where the S2 goes around the ring.

Hint 3: You can find the M5 dipole charges most easily if you use a coordinate
system centered at Σ = 0 described in (120).

From (65), the radius of the ring, R̃, and is related to JT by

JT = (q1 +q2 +q3)R̃2. (112)

We now perform a change of coordinates, to bring the black ring to a form that
can easily be generalized to Taub-NUT. Define

φ = φ̃ − ψ̃, ψ = 2ψ̃ , θ = 2θ̃ , ρ =
r̃2

4
, (113)

where the ranges of these coordinates are given by

θ ∈ (0,π), (ψ,φ) ∼= (ψ +4π,φ) ∼= (ψ,φ +2π). (114)

Exercise 10. Verify that when V = 1
ρ , the coordinate change (113) transforms the

metric in the first line of (116) to that of flat R
4.

In the new coordinates, the black-ring metric is

ds2 = −(Z1Z2Z3)−2/3(dt + k)2 +(Z1Z2Z3)1/3hmndxmdxn,

ZI = 1+
QI

4Σ
+

1
2

CIJKqJqK ρ
4Σ2 ,

k = μ (dψ +(1+ cosθ)dφ)+ω,

μ = − 1
16

ρ
Σ2

(
qIQI +

2q1q2q3ρ
Σ

)
+

JT

16R

(
1− ρ

Σ
− R

Σ

)
,

ω = − JTρ
4Σ(ρ +R+Σ)

sin2 θdφ , (115)
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with

hmndxmdxn = V−1 (dψ +(1+ cosθ)dφ)2 +V
(
dρ2 +ρ2 (dθ 2 + sin2 θdφ 2)) ,

V =
1
ρ

, Σ =
√

ρ2 +R2 +2Rρ cosθ , R =
R̃2

4
. (116)

Exercise 11. Check that the solution (115) has the form described in Sect. 5.1 with
the eight harmonic functions:

KI = − qI

2Σ
, LI = 1+

QI

4Σ
,

M =
JT

16

(
1
R
− 1

Σ

)
, V =

1
ρ

. (117)

We should also note for completeness that the conventions we use here for these
harmonic functions are those of [84] and differ from those of [79] by various factors
of two. When R

4 is written in Gibbons-Hawking form, the ring is sitting at a distance
R along the negative z-axis of the three-dimensional base. Adding more sources on
the z axis corresponds to making concentric black rings [79, 105].

Exercise 12. Show that adding sources on the same side of the origin in the R
3 base

of (116), correspond to rings that sit in the same R
2 inside R

4. Show that rings that
sit in orthogonal R

2s inside R
4 correspond to sources sitting on opposite sides of

the origin of the R
3 base of (116).

To change the four-dimensional base metric into Taub-NUT one simply needs to
add a constant, h, to the harmonic function V :

V = h+
1
ρ

. (118)

Since the functions in the metric are harmonic, equations (88), (89), (92), (93), and
(117), still imply that we have a supersymmetric solution. Actually, in order to avoid
both Dirac string singularities and closed time-like curves, the relation (112) be-
tween JT and the dipole charges must be modified to:

JT

(
h+

1
R

)
= 4(q1 +q2 +q3). (119)

This is discussed in detail in [82, 83, 84] and in later sections here, but it follows
because the absence of singularities in ω puts constraints on the sources on the
right-hand side of (93).

For small ring radius (or for small h), R � h−1, this reduces to the five-
dimensional black ring described earlier. We now wish to consider the opposite
limit, R � h−1. However, to keep “the same ring” we must keep all its quantized
charges fixed, and so (119) means h + 1

R must remain constant. We can think of
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this as keeping the physical radius of the ring fixed while changing its position in
Taub-NUT: The ring slides to a point where the physical ring radius is the same as
the physical size of the compactification circle. In the limit where R is large, the
black ring is far from the Taub-NUT center, and it is effectively wrapped around an
infinite cylinder. In other words, it has become a straight black string wrapped on a
circle and, from the four-dimensional perspective, it is point-like and is nothing but
a four-dimensional black hole.

To see this in more detail, we consider the geometry in the region far from the
tip, that is, for ρ � 1, where we can take V = h. We also want to center the three-
dimensional spherical coordinates on the ring, and so we change to coordinates such
that Σ is the radius away from the ring. We then have:

dρ2 +ρ2 (dθ 2 + sin2 θdφ 2)= dΣ2 +Σ2 (dθ̂ 2 + sin2 θ̂dφ 2) , (120)

and

ρ =
√

Σ2 +R2 −2RΣcos θ̂ , cosθ =
Σcos θ̂ −R

ρ
. (121)

Taking R → ∞, at fixed (Σ, θ̂ , φ̂) and h+ 1
R , we find that the metric is:

ds2 = −
(
Z̃1Z̃2Z̃3

)−2/3 (dt̃ + μ̃dψ)2

+
(
Z̃1Z̃2Z̃3

)1/3 (
dr2 + r2(dθ̂ 2 + sin2 θ̂dφ̂ 2)+dψ2) , (122)

where

Z̃I ≡
ZI

h
, μ̃ ≡ μ

h
, r ≡ hΣ, t̃ ≡ t

h
. (123)

Note that the spatial section of (122) is precisely R
3 ×S1. When written in terms of

the coordinate r the metric functions become:

Z̃I =
1
h

+
QI

4r
+

CIJKqJqK

8r2 , μ̃ = − JT

16r
− qIQI

16r2 − q1q2q3

8r3 , ω = 0. (124)

This is precisely the four-dimensional black hole found by wrapping the black string
solution of [71] on a circle.

As noted in [56], the entropy of the five-dimensional black ring takes a simple
form in terms of the quartic invariant of E7(7):

S = 2π
√

J4, (125)

where J4 is given by (97) with

x12 = Q1, x34 = Q2, x56 = Q3, x78 = 0,

y12 = q1, y34 = q2, y56 = q3, y78 = JT = Jψ̃ − Jφ̃ . (126)

Hence, the “tube angular momentum” JT plays the role of another charge in the
four-dimensional black hole picture. From the five-dimensional perspective, JT is
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the difference of the two independent angular momenta and is given by (112). Upon
compactification on the Taub-NUT circle, JT represents the momentum around that
circle and, as is very familiar in Kaluza-Klein (KK) reduction, a KK momentum
becomes a conserved charge in the lower dimension.

It has long been known that maximal supergravity in four dimensions has E7(7)
duality group and that the general entropy for the corresponding class of four-
dimensional black holes can be expressed in terms of the quartic invariant [97].
The observation in [56] thus provided the first clue as to the relationship between
five-dimensional black rings and four-dimensional black holes. We now examine
this relationship in more detail.

5.6 Parameters, Charges and the “4D-5D” Connection

As we have seen, the ability to introduce a constant, h, into V as in (118) enables us
to interpolate between configurations in five-dimensional space-time and configura-
tions in four-dimensional space-time. For small h, the Taub-NUT circle is very large
and the configuration behaves as if it were in a five-dimensional space-time while,
for large h, the Taub-NUT circle is small and the configuration is effectively com-
pactified. The first connection between a five-dimensional configuration and such a
four-dimensional solution was made in [46], where the simple two-charge supertube
[33] was put in Taub-NUT, and was related to a two-centered, four-dimensional con-
figuration of the type previously analyzed in [98, 99, 100]. One can also consider a
four-dimensional black hole that has a non-trivial KKM charge, and that sits at the
center of Taub-NUT. When the KKM charge is one, this black hole also has two in-
terpretations, both as a four-dimensional and as a five-dimensional black hole [81].
Since one can interpolate between the five-dimensional and the four-dimensional
regimes by changing the moduli of the solution, one can give microscopic descrip-
tions of black rings and black holes both from a four-dimensional perspective and
from a five-dimensional perspective. This is called the “4D-5D” connection. This
connection enables us to relate the parameters and charges appearing in the five-
dimensional description of a system to those appearing in the four-dimensional de-
scription. We now examine this more closely, and we will encounter some important
subtleties. To appreciate these, we need to recall some of the background behind the
BPS black ring solutions.

One of the reasons that makes the BPS black ring solution so interesting is that
it shows the failure of black-hole uniqueness in five dimensions. To be more spe-
cific, for the round (U(1)×U(1) invariant) BPS black ring solution there are only
five conserved quantities: the two angular momenta, J1, J2, and the three electric
charges, QI , as measured from infinity. However, these rings are determined by
seven parameters: QI , qI , and JT . We have seen how these parameters are related
to details of the constituent branes and we have stressed, in particular, that the qI

are dipole charges that, a priori, are not conserved charges and so cannot be mea-
sured from infinity in five dimensions. As discussed in Sect. 3.4, the true conserved
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charges in five dimensions are non-trivial combinations of the fundamental “brane
parameters,” QI , qI , and JT .

5.6.1 5D Dipole Charges and 4D Charges

In discussing the conserved charges of a system there is a very significant assump-
tion about the structure of infinity. To determine the charges one integrates various
field strengths and their duals on certain Gaussian surfaces. If one changes the struc-
ture of infinity, one can promote dipoles to conserved charges or lose conserved
charges. One sees this very explicitly in the case of Taub-NUT space (116): by turn-
ing a constant piece in harmonic function V , one replaces the S3 at infinity of R

4

by an S2 ×S1. In particular, the “dipole” charges, qI , of the five-dimensional black-
ring become conserved magnetic charges in the Taub-NUT space. This is evident
from the identification in (126) in which the xAB and yAB, respectively, represent
conserved electric and magnetic charges measured on the Gaussian two-spheres at
infinity in R

3. More generally, from (95), we see that the leading behavior of each
of the eight harmonic functions, KI , LI , M, and V yields a conserved charge in the
Taub-NUT compactification.

In terms of the thermodynamics of black holes and black rings, the conserved
charges measured at infinity are thermodynamic state functions of the system and
the set of state functions depends upon the asymptotic geometry of the “box” in
which we place the system. If a solution has free parameters that cannot be measured
by the thermodynamic state functions then these parameters should be thought of
as special properties of a particular microstate, or set of microstates, of the system.
Thus, in a space-time that is asymptotic to flat R

4,1, one cannot identify the mi-
crostates of a particular round black-ring solution by simply looking at the charges
and angular momenta at infinity. Moreover, given a generic microstate with certain
charges it is not possible to straightforwardly identify the black ring (or rings) to
which this microstate corresponds. The only situation in which one can do this is
when there exists a box in which one can place both the ring and the microstate,
and one uses the box to define extra state functions that the two objects must share.
Putting these objects in Taub-NUT and changing the moduli such that both the ring
and the microstate have a four-dimensional interpretation allows one to define a box
that can be used to measure the “specialized microstate structure” (i.e. the dipoles),
as charges at infinity in four dimensions.

A good analogy is the thermodynamics and the kinetic theory of gases. The
conserved charges correspond to the state functions while the internal, constituent
brane parameters correspond to details of the motions of molecules in particular
microstates. The state functions are non-trivial combinations of parameters of mi-
crostate but do not capture all the individual microstate parameters. If the box is a
simple cube then there is no state function to capture vorticity, but there is such a
state function for a toroidal box.

Thus solutions come with two classes of parameters: Those that are conserved
and can be measured from infinity and those that represent particular, internal
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configurations of the thermodynamic system. There are two ways in which one
can hope to give a microscopic interpretation of black rings. One is to take a near-
horizon limit in which the black ring solution becomes asymptotically AdS3 ×S3 ×
T 4 [56, 78] and to describe the ring in the D1-D5-P CFT dual to this system. The
other is to focus on the near-ring geometry (or to put the ring in Taub-NUT) and
describe it as a four-dimensional BPS black hole [56, 82, 84, 106], using the micro-
scopic description of 4D black holes constructed given in [107, 108].

If one wants to describe black rings in the D1-D5-P CFT, it is, a priori, unclear
how the dipole charges, which are not conserved charges (state functions) appear
in this CFT. A phenomenological proposal for this has been put forth in [56], but
clearly more work remains to be done. Moreover, the obvious partition functions
that one can define and compute in this CFT [109, 110, 111], which only depend
on the charges and angular momenta, cannot be compared to the bulk entropy of a
particular black ring. One rather needs to find the ring (or rings) with the largest
entropy for a given set of charges and match their entropy to that computed in
the CFT.

Moreover, if one wants to describe the ring using a CFT corresponding to a four-
dimensional black hole, it is essential to identify the correct M2 charges of the ring.
The beauty of the brane description (or any other stringy description) of supertubes
and black rings is that it naturally points out what these charges are.

5.6.2 5D Electric Charges and their 4D Interpretation

There has been some discussion in the literature about the correct identification of
the charges of the black-ring system. In particular, there was the issue of whether the
QI or the QI are the “correct” charges of the black-ring. There is no dispute about the
charge measured at infinity, the only issue was the physical meaning, if any, to the
QI . In [112], it was argued that the only meaningful charge was the “Page charge”
that measures QI and not QI even when the Gaussian surface is small surface sur-
rounding the black ring. This is an interesting, mathematically self-consistent view,
but it neglects a lot of the important underlying physics. It also generates some con-
fusion as to the proper identification of the microscopic charges of the underlying
system. The competing view [68] is the one we have presented here: The QI rep-
resent the number of constituent M2 branes and the QI get two contributions, one
from the QI and another from the “charges dissolved in fluxes” arising from the M5
branes. It is certainly true that the QI and the qI are not conserved individually, but
they do represent critically important physical parameters.

This is easily understood in analogy with a heavy nucleus. The energy of the
nucleus has two contributions, one coming from the rest mass of the neutrons and
protons, and the other coming from the interactions between them. In trying to find
the “microscopic” features of the nucleus, like the number of nucleons, one obtains
an incorrect result, if one simply divides the total energy by the mass of a nucleon.
To find the correct answer one should first subtract the energy coming from interac-
tions and then divide the remainder by the mass of the nucleon.
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One of the nice features of Taub-NUT compactification and the “4D-5D” con-
nection is that it provides a very simple resolution of the foregoing issue in the
identification of constituent microscopic charges. If one simply compactifies M-
theory on T 6 × S1 from the outset, wrapping qI M5 branes on the S1 and each of
the tori as shown in Table 1, then the qI simply emerge as magnetic charges in four
dimensions as in (126). Similarly, the QI are, unambiguously, the conserved electric
charges of the system. This is also true of the Taub-NUT compactification of the
black ring, and the fact that we can adiabatically vary h in (118) means we can bring
the ring from a region that looks like M-theory on T 6 ×S1 ×R

3,1 into a region that
looks like M-theory on T 6 ×R

4,1 and still have confidence that the identification
is correct because M2 and M5 brane charges are quantized and cannot jump in an
adiabatic process. This establishes that the microscopic charges of the black ring are
not the same as the charges measured at infinity in the five-dimensional black ring
solution.

There are, of course, many situations where the rings cannot be put in Taub-
NUT, and one cannot obtain the microscopic charges using the 4D-5D connection.
The simplest example is the black ring with a black hole offset from its center [93]
that we reviewed in Sect. 3.5. However, based upon our experience with the single
black ring, we expect that the values of QI in the near-ring geometry will yield the
number of M2 brane constituents of each individual ring.

There has also been a proposal to understand the entropy of BPS black rings in
terms of microscopic charges, in which QI are interpreted as the M2 brane charges.
This is based on a four-dimensional black hole CFT with charges QI rather than QI ,
and with momentum Jψ rather than JT [106]. In order to recover the entropy formula
(58), (59), an important role in that description was played by a non-extensive zero
point energy shift of L0. In light of our analysis, it is rather mysterious why this gives
the right entropy, since we have shown explicitly that the relevant four-dimensional
black hole CFT is the one with charges QI , momentum JT , and no zero point shift of
L0. We should also note that the approach of [106] seems to run into problems when
describing concentric black rings because the total charge QA is not simply a sum of
the individual QA,i but gets contributions from cross terms of the form CABc qB

i qC
j .

The approach of [106] also appears not to correctly incorporate some of the higher
order corrections to the black ring entropy [113, 114].

One of the other benefits of the 4D-5D connection is that it also unites what
have been two parallel threads in research. Prior to this there had been extensive
and largely independent bodies of research on four-dimensional objects and upon
on five-dimensional objects. It is now evident that the four-dimensional two-center
solution corresponding to black rings and supertubes in Taub-NUT [46, 82, 83, 84]
is part of the family of multi-center solutions that have been explored by Denef
and collaborators [98, 99, 100]. In fact, one can also imagine putting in Taub-NUT
multiple concentric black rings of the type studied by Gauntlett and Gutowski in
[79, 105]. These descend in four dimensions to a multi-black hole configuration, in
which the center of the rings becomes a center of KKM charge one, the black rings
in one plane become black holes on the right of the KKM center, and the black rings
in the other plane becomes black holes on the left of this center.
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More generally, we expect that the 4D-5D connection will lead to a valuable
symbiosis. For example, the work on attractor flows in Calabi-Yau manifolds and
the branching of these flows could have important consequences for the bubbled
geometries that we will discuss in the next section.

6 Bubbled Geometries

6.1 The Geometric Transition

The main purpose of our investigation thus far has been to construct smooth hori-
zonless geometries starting from three-charge supertubes. We have seen that if one
considers a process in which one takes a three-charge, three-dipole charge supertube
to a regime where the gravitational back-reaction becomes important, the resulting
supergravity solution is generically that of a BPS black ring. Although black rings
are very interesting in their own right, they do have event horizons, and therefore do
not correspond to microstates of the boundary theory.

Hence it is natural to try to obtain microstates by starting with brane configu-
rations that do not develop a horizon at large effective coupling or alternatively to
consider a black ring solution in the limit where its entropy decreases and becomes
zero. However, the geometry of a zero-entropy black ring is singular. This singular-
ity is not a curvature singularity, since the curvature is bounded above by the inverse
of the dipole charges. Rather, the singularity is caused by the fact that the size of
the S1 of the horizon shrinks to zero size and the result is a “null orbifold.” One can
also think about this singularity as caused by the gravitational back-reaction of the
branes that form the three-charge supertube, which causes the S1 wrapped by these
branes to shrink to zero size.

Fortunately, string theory is very good at solving this kind of singularities, and
the mechanism by which it does is that of “geometric transition.” To understand
what a geometric transition is, consider a collection of branes wrapped on a certain
cycle. At weak effective coupling, one can describe these branes by studying the
open strings that live on them. One can also find the number of branes by integrating
the corresponding flux over a “Gaussian” cycle dual to that wrapped by the branes.
However, when one increases the coupling, the branes back-react on the geometry
and shrink the cycle they wrap to zero size. At the same time, the “Gaussian cycle”
becomes large and topologically non-trivial (see Fig. 5). The resulting geometry has
a different topology, and no brane sources; the only information about the branes
is now in the integral of the flux over the blown-up dual “Gaussian cycle.” Hence,
even if in the open-string (weakly coupled) description we had a configuration of
branes, in the closed-string (large effective coupling) description these branes have
disappeared and have been replaced by a non-trivial topology with flux.

Geometric transitions appear in many systems [86, 115, 116, 117]. A classic
example of such a system are the brane models that break an N = 2 superconformal
field theory down to an N = 1 supersymmetric field theory [86, 118]. Typically,
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Fig. 5 Geometric transitions: The branes wrap the large cycle and the flux through the Gaussian
(small, cycle measures the brane charge. In the open-string picture the small cycle has non-zero
size, and the large cycle is contractible. After the geometric transition the size of the large cycle
becomes zero, while the small cycle becomes topologically non-trivial

the N = 2 superconformal field theory is realized on a stack of D3 branes in some
Calabi-Yau compactification. One can then break the supersymmetry to N = 1
by introducing extra D5 branes that wrap a two-cycle. When one investigates the
closed-stringpicture, the two-cycle collapses and the dual three-cycle blows up (this
is also known as a conifold transition). The D5 branes disappear and are replaced
by non-trivial fluxes on the three-cycle. The resulting geometry has no more brane
sources, and has a different topology than the one we started with.

Our purpose here is to see precisely how geometric transitions resolve the sin-
gularity of the zero-entropy black ring (supertube) of Sect. 3. Here the ring wraps
a curve, yμ(σ), that is topologically an S1 inside R

4 (in Fig. 6, this S1 is depicted
as a large, blue cycle). The Gaussian cycle for this S1 is a two-sphere around the
ring (illustrated by the red small cycle in Fig. 6). If one integrates the field strengths
Θ(I) on the red Gaussian two-cycle, one obtains the M5 brane dipole charges of the
ring, nI .

After the geometric transition the large (blue) S1 becomes zero length, and the
red S2 becomes topologically non-trivial. Moreover, because the original topology
is trivial, the curve yμ(σ) was the boundary of a disk. When after the transition
this boundary curve collapses, the disk becomes a (topologically non-trivial) two-
sphere. Alternatively, one can think about this two-sphere (shown in Fig. 6 in green)
as coming from having an S1 that has zero size both at the origin of the space r = 0
and at the location of the ring. Hence, before the transition we had a ring wrapping

S1

S2

R4

S1

S2S2

I

Fig. 6 The geometric transition of the black ring: Before the transition, the branes wrap the large
(blue) S1; the flux through the Gaussian S2 (small, red) cycle measures the brane charge. After the
transition the Gaussian S2 (small, red) cycle is topologically non-trivial and of finite size and a new
(green) S2 appears, coming from the fact that the blue S1 shrinks to zero so that the disk spanning
the S1 becomes an S2. The resulting geometry has two non-trivial S2s and no brane sources
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a curve of arbitrary shape inside R
4, and after the transition we have a manifold that

is asymptotically R
4, and has two non-trivial two-spheres, and no brane sources.

Can we determine the geometry of such a manifold? If the curve has an arbitrary
shape the only information about this manifold is that it is asymptotically R

4 and
that it is hyper-Kähler, as required by supersymmetry.19 If the curve wrapped by
the supertube has arbitrary shape, this is not enough to determine the space that
will come out after the geometric transition. However, if one considers a circular
supertube, the solution before the transition has a U(1)×U(1) invariance, and so
one naturally expects the solution resulting from the transition should also have this
invariance.

With such a high level of symmetry, we do have enough information to determine
what the result of the geometric transition is:

• By a theorem of Gibbons and Ruback [95], a hyper-Kähler manifold that has
a U(1)×U(1) invariance must have a translational U(1) invariance and hence
must be Gibbons-Hawking.

• We also know that this manifold should have two non-trivial two-cycles, and
hence, as discussed in Sect. 4.1 it should have three centers.

• Each of these centers must have integer GH charge.
• The sum of the three charges must be 1, in order for the manifold to be asymp-

totically R
4.

• Moreover, we expect the geometric transition to be something that happens lo-
cally near the ring, and so we expect the region near the center of the ring (which
is also the origin of our coordinate system) to remain the same. Hence, the GH
center at the origin of the space must have charge +1.

The conclusion of this argument is that the space that results from the geomet-
ric transition of a U(1)×U(1) invariant supertube must be a GH space with three
centers, that have charges 1, +Q, −Q, where Q is any integer. As we have seen in
Sect. 5.5, equation (117), if we think about R

4 as a trivial Gibbons-Hawking metric
with V = 1

r , the black ring solution of Sect. 3.4 has a GH center at the origin, and the
ring at a certain point on the R

3 base of the GH space. In the “transitioned” solution,
the singularity of the zero-entropy black ring is resolved by the nucleation, or “pair
creation,” of two equal and oppositely charged GH points.

This process is depicted in Fig. 7. The nucleation of a GH pair of oppositely-
charged centers blows up a pair of two-cycles. In the resolved geometry, there are
no more brane sources, only fluxes through the two-cycles. The charge of the solu-
tion does not come from any brane sources but from having non-trivial fluxes over
intersecting two-cycles (or “bubbles”).

Similarly, if one considers the geometric transition of multiple concentric black
rings, one will nucleate one pair of GH points for each ring, resulting in a geometry

19 This might cause the faint-hearted to give up hope because of the theorem that the only such
manifold is flat R

4. This is the second instance when such theorems appear to preclude further
progress in this research programme (the first is discussed at the end of Sect. 2). As in the previous
example, we will proceed guided by the string-theory intuition, and will find a way to avoid the
theorem.
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Resolved SolutionNaive Solution

OO ring ba

Fig. 7 Geometric transition of supertube: The first diagram shows the geometry before the tran-
sition. The second shows the resolved geometry, where a pair of GH charges has nucleated at
positions a and b

with no brane sources, and with a very large number of positive and negative GH
centers. As we will see, these centers are not restricted to be on a line but can have
arbitrary positions in the R

3 base of the GH space, as long as certain algebraic
equations (discussed in Sect. 6.3) are satisfied.

There is one further piece of physical intuition that is extremely useful in under-
standing these bubbled geometries. As we have already remarked, GH points can be
interpreted, from a ten-dimensional perspective, as D6 branes. Since these branes
are mutually BPS, there should be no force between them. On the other hand, D6
branes of opposite charge attract one another, both gravitationally and electromag-
netically. If one simply compactifies M-theory on an ambipolar GH space, one can
only hold in equilibrium GH points of opposite charge at the cost of having large
regions where the metric has the wrong signature and CTCs. To eliminate these sin-
gular regions, one must hold the GH points apart by some other mechanism. In the
geometries we seek, this is done by having fluxes threading the bubbles: Collapsing
a bubble concentrates the energy density of the flux and increases the energy in the
flux sector. Thus a flux tends to blow up a cycle. The regular, ambipolar BPS con-
figurations that we construct come about when these two competing effects – the
tendency of oppositely charged GH points to attract each other and the tendency of
the fluxes to make the bubbles large – are in balance. We will see precisely how this
happens in Sect. 6.3.

Before proceeding to construct these solutions, we should note that there are two
other completely different ways of arriving at the conclusion that three-charge black
hole microstates can have a base given by a GH space with negative centers.

One direction, mostly followed by Mathur, Giusto, and Saxena [42, 43, 44] is
to construct microstates by taking a novel extremal limit of the non-extremal five-
dimensional black hole [119]. This limit produces a smooth horizonless geometries
that have a GH base with two centers, of charges N + 1 and −N. These geometries
have a known CFT interpretation and form a subset of the class described above. A
solution that is locally identical (but differs by a global identification of charges) was
also found in [45] by doing a spectral flow on a two-charge solution and extending
the resulting solution to an asymptotically flat one.

The second direction, followed by Kraus and one of the present authors is to
consider the four-dimensional black hole with D1-D5-KKM-P charges, when the
momentum is taken to zero. The resulting naive solution for the zero-entropy four-
dimensional black hole is singular and is resolved by an intriguing mechanism: The
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branes that form the black hole split into two stacks, giving a non-singular solution
[46]. One can then relate the black ring to a four-dimensional black hole by putting
it in a Taub-NUT background, as discussed in Sect. 5.6 and in [82, 83, 84], and
then the nucleation of a pair of oppositely charged GH centers corresponds, from a
four-dimensional point of view, to the splitting of the zero-entropy four-dimensional
black hole into two stacks of branes, giving a smooth resulting solution.

Hence, we have three completely independent routes for obtaining three-charge
microstates and resolving the singularity of the zero-entropy black ring, and all
three routes support the same conclusion: The singularity of the zero-entropy black
ring is resolved by the nucleation of GH centers of opposite charge. The solu-
tions that result, as well as other three-charge microstate solutions, are topologi-
cally non-trivial, have no brane sources, and are smooth despite the fact that they
are constructed using an ambipolar GH metric (with regions where the metric is
negative-definite).

6.2 The Bubbled Solutions

We now proceed to construct the general form of bubbling solutions constructed
using an ambipolar Gibbons-Hawking base [47, 48, 49]. In Sect. 4.2, we saw that
the two-forms, Θ(I), will be regular, self-dual, harmonic two-forms, and thus rep-
resentatives of the cohomology dual to the two-cycles, provided that the KI have
the form:

KI = kI
0 +

N

∑
j=1

kI
j

r j
. (127)

Moreover, from (87), the flux of the two-form, Θ(I), through the two-cycle Δi j is
given by

Π(I)
i j =

(
kI

j

q j
− kI

i

qi

)
, 1 ≤ i, j ≤ N. (128)

The functions, LI and M, must similarly be chosen to ensure that the warp factors,
ZI , and the function, μ , are regular as r j → 0. This means that we must take:

LI = �I
0 +

N

∑
j=1

�I
j

r j
, M = m0 +

N

∑
j=1

m j

r j
, (129)

with

�I
j = −1

2
CIJK

kJ
j kK

j

q j
, j = 1, . . . ,N ; (130)

m j =
1

12
CIJK

kI
j kJ

j kK
j

q2
j

=
1
2

k1
j k2

j k3
j

q2
j

, j = 1, . . . ,N. (131)
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Since we have now fixed the eight harmonic functions, all that remains is to solve
for ω in (93). The right-hand side of (93) has two kinds of terms:

1
ri

�∇
1
r j

− 1
r j

�∇
1
ri

and �∇
1
ri

. (132)

Hence ω will be built from the vectors �vi of (83) and some new vectors, �wi j, de-
fined by:

�∇×�wi j =
1
ri

�∇
1
r j

− 1
r j

�∇
1
ri

. (133)

To find a simple expression for �wi j, it is convenient to use the coordinates out-
lined earlier with the z-axis running through�y(i) and�y( j). Indeed, choose coordinates
so that�y(i) = (0, 0, a) and�y( j) = (0, 0, b) and one may take a > b. Then the explicit
solutions may be written very simply:

wi j = − (x2 + y2 +(z−a)(z−b))
(a−b) ri r j

dφ . (134)

This is then easy to convert to a more general system of coordinates. One can then
add up all the contributions to ω from all the pairs of points.

There is, however, a more convenient basis of vector fields that may be used
instead of the wi j. Define:

ωi j ≡ wi j +
1

(a−b)
(vi − v j +dφ) = −

(
x2 + y2 +(z−a+ ri)(z−b− r j)

)
(a−b) ri r j

dφ ,

(135)
These vector fields then satisfy:

�∇×�ωi j =
1
ri

�∇
1
r j

− 1
r j

�∇
1
ri

+
1
ri j

(
�∇

1
ri
−�∇

1
r j

)
, (136)

where
ri j ≡ |�y(i) −�y( j)| (137)

is the distance between the ith and jth center in the Gibbons-Hawking metric.
We then see that the general solution for �ω may be written as:

�ω =
N

∑
i, j

ai j �ωi j +
N

∑
i

bi �vi, (138)

for some constants ai j, bi.
The important point about the ωi j is that they have no string singularities what-

soever. They can be used to solve (93) with the first set of source terms in (132),
without introducing Dirac-Misner strings, but at the cost of adding new source terms
of the form of the second term in (132). If there are N source points, �y( j), then us-
ing the wi j suggests that there are 1

2 N(N−1) possible string singularities associated
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with the axes between every pair of points �y(i) and �y( j). However, using the ωi j

makes it far more transparent that all the string singularities can be reduced to those
associated with the second set of terms in (132), and so there are at most N possible
string singularities, and these can be arranged to run in any direction from each of
the points�y( j).

Finally, we note that the constant terms in (71), (127), and (129) determine the be-
havior of the solution at infinity. If the asymptotic geometry is Taub-NUT, all these
terms can be non-zero, and they correspond to combinations of the moduli. How-
ever, in order to obtain solutions that are asymptotic to five-dimensional Minkowski
space, R

4,1, one must take ε0 = 0 in (71), and kI
0 = 0 in (127). Moreover, μ must

vanish at infinity, and this fixes m0. For simplicity we also fix the asymptotic values
of the moduli that give the size of the three T 2s, and take ZI → 1 as r → ∞. Hence,
the solutions that are asymptotic to five-dimensional Minkowski space have:

ε0 = 0, kI
0 = 0, lI

0 = 1, m0 = −1
2

q−1
0

N

∑
j=1

3

∑
I=1

kI
j. (139)

It is straightforward to generalize these results to solutions with different asymp-
totics, and in particular to Taub-NUT.

6.3 The Bubble Equations

In Sect. 5.3, we examined the conditions for the absence of CTCs and in general the
following must be true globally:

Q ≥ 0, V ZI =
1
2

CIJK KJ KK +LI V ≥ 0, I = 1,2,3. (140)

As yet, we do not know how to verify these conditions in general, but one can learn
a great deal by studying the limits in which one approaches a Gibbons-Hawking
point, i.e. r j → 0. From this, one can derive some simple, physical conditions (the
Bubble Equations) that in some examples ensure that (140) are satisfied globally.

To study the limit in which r j → 0, it is simpler to use (98) than (100). In particu-
lar, as r j → 0, the functions, ZI , μ , and W limit to finite values while V−1 vanishes.
This means that the circle defined by ψ will be a CTC, unless we impose the addi-
tional condition:

μ(�y =�y( j)) = 0, j = 1, . . . ,N. (141)

There is also potentially another problem: The small circles in φ near θ = 0 or θ = π
will be CTCs if ω has a finite dφ component near θ = 0 or θ = π . Such a finite dφ
component corresponds precisely to a Dirac-Misner string in the solution, and so
we must make sure that ω has no such string singularities.

It turns out that these two sets of constraints are exactly the same. One can check
this explicitly, but it is also rather easy to see from (90). The string singularities in
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�ω potentially arise from the �∇(r−1
j ) terms on the right-hand side of (90). We have

already arranged that the ZI and μ go to finite limits at r j = 0, and the same is
automatically true of KIV−1. This means that the only term on the right-hand side
of (90) that could, and indeed will, source a string is the μ�∇V term. Thus removing
the string singularities is equivalent to (141).

One should note that by arranging that μ , ω , and ZI are regular one has also
guaranteed that the physical Maxwell fields, dA(I), in (107) are regular. Furthermore,
by removing the Dirac strings in ω and by requiring μ to vanish at GH points, one
has guaranteed that the physical flux of dA(I) through the cycle Δi j is still given by
(87) (and (128)). This is because the extra terms, d(Z−1

I k), in (107), while canceling
the singular behavior when V = 0, as in (108), give no further contribution in (87).

Thus the fluxes, Π(I)
i j , are well-defined and represent the true physical, magnetic flux

in the five-dimensional extension of the ambipolar GH metrics.
Performing the expansion of μ using (92), (127), (129), and (131) around each

Gibbons-Hawking point one finds that (141) becomes the Bubble Equations:

N

∑
j=1
j �=i

Π(1)
i j Π(2)

i j Π(3)
i j

qi q j

ri j
= −2

(
m0 qi +

1
2

3

∑
I=1

kI
i

)
, (142)

where ri j ≡ |�y(i)−�y( j)|. One obtains the same set of equations, if one collects all the
Dirac string contributions to ω and sets them to zero by imposing bi = 0 in (138).
If one adds together all of the bubble equations, then the left-hand side vanishes
identically, and one obtains the condition on m0 in (139). This is simply the condi-
tion μ → 0 as r → ∞ and means that there is no Dirac-Misner string running out to
infinity. Thus there are only (N −1) independent bubble equations.

We refer to (142) as the bubble equations because they relate the flux through
each bubble to the physical size of the bubble, represented by ri j. Note that for a
generic configuration, a bubble size can only be non-zero if and only if all three of
the fluxes are non-zero. Thus the bubbling transition will only be generically possi-
ble for the three-charge system. We should also note that from a four-dimensional
perspective these equations describe a collection of BPS stacks of branes, and are
thus particular case of a collection of BPS black holes. Such configurations have
been constructed in [98, 99, 100], and the equations that must be satisfied by the po-
sitions of the black holes are called “integrability equations” and reduce to the equa-
tions (142) when the charges are such that the five-dimensional solution is smooth.

6.4 The Asymptotic Charges

As in Sect. 3.3, one can obtain the electric charges and angular momenta of bub-
bled geometries by expanding ZI and k at infinity. It is, however, more convenient
to translate the asymptotics into the standard coordinates of the Gibbons-Hawking
spaces. Thus, remembering that r = 1

4ρ
2, one has
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ZI ∼ 1+
QI

4 r
+ . . . , ρ → ∞, (143)

and from (88) one easily obtains

QI = −2 CIJK

N

∑
j=1

q−1
j k̃J

j k̃K
j , (144)

where

k̃I
j ≡ kI

j −q j N kI
0, and kI

0 ≡
1
N

N

∑
j=1

kI
j. (145)

Note that k̃I
j is gauge invariant under (79).

One can read off the angular momenta using an expansion like that of (42). How-
ever, it is easiest to re-cast this in terms of the Gibbons-Hawking coordinates. The
flat GH metric (near infinity) has V = 1

r and making the change of variable r = 1
4ρ

2,
one obtains the metric in spherical polar coordinates:

ds2
4 = dρ2 +

1
4
ρ2

(
dθ 2 + sin2 θ dφ 2 +(dψ + cosθ dφ)2

)
. (146)

This can be mapped to the form of (41) via the change of variable:

u eiθ1 = ρ cos

(
1
2
θ
)

e
i
2 (ψ+φ), v eiθ2 = ρ sin

(
1
2
θ
)

e
i
2 (ψ−φ). (147)

Using this in (42) one finds that

k ∼ 1
4 ρ2

(
(J1 + J2)+(J1 − J2) cosθ

)
dψ + . . . . (148)

Thus, one can get the angular momenta from the asymptotic expansion of gtψ , which
is given by the coefficient of dψ in the expansion of k, which is proportional to μ .
There are two types of such terms, the simple 1

r terms and the dipole terms arising
from the expansion of V−1 KI . Following [48], define the dipoles

�D j ≡ ∑
I

k̃I
j �y

( j), �D ≡
N

∑
j=1

�D j. (149)

and then the expansion of k takes the form (148) if one takes �D to define the polar
axis from which θ is measured. One then arrives at

JR ≡ J1 + J2 =
4
3

CIJK

N

∑
j=1

q−2
j k̃I

j k̃J
j k̃K

j , (150)

JL ≡ J1 − J2 = 8
∣∣�D∣∣. (151)
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While we have put modulus signs around �D in (151), one should note that it does
have a meaningful orientation, and so we will sometimes consider �JL = 8�D.

One can use the bubble equations to obtain another, rather more intuitive expres-
sion for J1−J2. One should first note that the right-hand side of the bubble equation,
(142), may be written as −∑I k̃I

i . Multiplying this by�y(i) and summing over i yields:

�JL ≡ 8 �D = −4
3

CIJK

N

∑
i, j=1

j �=i

Π(I)
i j Π(J)

i j Π(K)
i j

qi q j �y(i)

ri j

= −2
3

CIJK

N

∑
i, j=1

j �=i

qi q j Π
(I)
i j Π(J)

i j Π(K)
i j

(�y(i) −�y( j))∣∣�y(i) −�y( j)
∣∣ , (152)

where we have used the skew symmetry Πi j = −Π ji to obtain the second identity.
This result suggests that one should define an angular momentum flux vector asso-
ciated with the i jth bubble:

�JL i j ≡−4
3

qi q j CIJK Π(I)
i j Π(J)

i j Π(K)
i j ŷi j, (153)

where ŷi j are unit vectors,

ŷi j ≡
(�y(i) −�y( j))∣∣�y(i) −�y( j)

∣∣ . (154)

This means that the flux terms on the left-hand side of the bubble equation actually
have a natural spatial direction, and once this is incorporated, it yields the contribu-
tion of the bubble to JL.

6.5 Comments on Closed Time-Like Curves
and the Bubble Equations

While the bubble equations are necessary to avoid CTCs near the Gibbons-Hawking
points, they are not sufficient to guarantee the absence of CTCs globally. Indeed,
there are non-trivial examples that satisfy the bubble equations and still have CTCs.
On the other hand, there are quite a number of important physical examples in which
the bubble equations do guarantee the absence of CTCs globally. For example, the
simplest bubbled supertube will be discussed in Sect. 7.1, and it has been shown
numerically in some examples that the bubble equations do indeed ensure the global
absence of CTCs. Some more complex examples that are free of CTCs are described
in Sect. 8.4. It is an open question as to how and when a bubbled configuration that
satisfies (142) is globally free of CTCs. In this section, we will make some simple
observations that suggest approaches to solving this problem.

First, we need to dispel a “myth” or, more precisely, give a correct statement of
an often mis-stated theorem that in a BPS solution of extremal black holes, all the
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black holes must have electric charges of the same sign. The physical intuition is
simple: If two BPS black holes have opposite charges, then they necessarily attract
both gravitationally and electromagnetically and cannot be stationary, and this time
dependence breaks the supersymmetry of the original BPS solutions. While this is
physically correct, there is an implicit assumption that we are not going to allow
physical solutions to have CTCs, changes in metric signature, or regions with com-
plex metrics. A simple example is to make a solution with BMPV black holes given
by the harmonic function:

ZI = Z ≡ 1+
Q
r1

− Q
r2

. (155)

We are not advocating that solutions like this, or ones with CTCs in general, should
be taken as physically sensible. Nevertheless, this solution does satisfy all the equa-
tions of motion. The point we wish to make is that if one takes a completely stan-
dard, multi-centered BPS solution one can get lots of CTCs or imaginary metric
coefficients, if one is sloppy about the relative signs of the distributed charges. For
this reason, one cannot expect to take a bubbled geometry and randomly assign
some flux parameters and expect to avoid CTCs even if one has satisfied the bubble
equations. Indeed, a bubbled analogue of the BMPV configuration (155) could eas-
ily satisfy the bubble equations thereby avoiding CTCs near the Gibbons-Hawking
points, only to have all sorts of pathology in between the two bubbled black holes.

There must therefore be some kind of positivity condition on the flux parame-
ters. One suggestion might be to look at every subset, S , of the Gibbons-Hawking

points. To such a subset one can associate a contribution, Q(S )
I , to the electric

charges by summing (144) only over the subset, S . One could then require that

the Q(S )
I have the same sign for all choices of S . This would exclude bubbled

analogs of (155), but it might also be too stringent. It may be that one can tolerate a
“mild failure” of the conditions on relative signs of electric charges if the Gibbons-
Hawking points are all clustered; the danger might only occur in “classical limits”
when some fluxes are very large so that the solution decomposes into two widely
separated “blobs” of opposite charge.

Another natural, and possibly related condition is to remember that given N
Gibbons-Hawking centers, the cycles are related to the root lattice of SU(N) and
the dual fluxes can be labeled by the weight lattice. In this language, the obvious
positivity condition is to insist that the fluxes all lie in the positive Weyl chamber of
the lattice. Moreover, when there are N1 positive and N2 negative GH points, it may
be more appropriate to think in terms of the weight lattice of a super Lie algebra,
SU(N1|N2). In this context, one can rewrite ZIV in a rather more suggestive manner:

ZI V = V − 1
4

CIJK

N

∑
i, j=1

Π(J)
i j Π(K)

i j
qi q j

ri r j
. (156)

With suitable positivity conditions on the fluxes, one can arrange all the terms with
qiq j < 0 to be positive. It is not clear why, in general, these terms dominate the terms
with qiq j > 0, but one can certainly verify it in examples like the one below.
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Consider the situation where all the flux parameters corresponding to a given
U(1) are equal and positive:

k1
j = a, k2

j = b, k3
j = c, a,b,c > 0, j = 1, . . . ,N. (157)

Also suppose that q j = ±1 and let P± be the subsets of integers, j, for which
±q j > 0. Define

V± ≡ ∑
j∈P±

1
r j

. (158)

Then one has
ZI V = V +4 hI V+ V−, (159)

where h1 ≡ bc, h2 ≡ ac, h3 ≡ ab.
For this flux distribution the bubble equations reduce to:

8 abc V−(�y =�y(i)) = (N −1) (a+b+ c) for all i ∈ P+, (160)

8 abc V+(�y =�y( j)) = (N +1) (a+b+ c) for all j ∈ P−. (161)

Multiply the first of these equations by r−1
i and sum, and multiply the second equa-

tion by r−1
j and sum, and one obtains:

V+ =
8 abc

(N −1) (a+b+ c) ∑
i∈P+

∑
j∈P−

1
ri j

1
ri

, (162)

V− =
8 abc

(N +1) (a+b+ c) ∑
i∈P+

∑
j∈P−

1
ri j

1
r j

. (163)

Now note that V = V+ −V− and use the foregoing expressions in (159) to obtain:

ZI V = ∑
i∈P+

∑
j∈P−

1
ri r j ri j

[
8 abc

(a+b+ c)

(
r j

(N −1)
− ri

(N +1)

)

+ 4 hI ri j

]
. (164)

Since a,b,c > 0 and N > 1, one has

8 abc
(N +1) (a+b+ c)

< 4 hI , I = 1,2,3, (165)

and thus the positivity of ZIV follows trivially from the triangle inequality:

r j + ri j ≥ ri. (166)

Note that it was relatively easy to prove positivity under the forgoing assump-
tions and that there was a lot of “wiggle room” in establishing the inequality. More
formally, one can show that (164) is uniformly bounded below in a large compact
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region, and so one can allow some variation of the flux parameters with j and still
preserve positivity. It would, of course, be very nice to know what the possible
ranges of flux parameters are.

7 Microstates for Black Holes and Black Rings

Having explored the general way to construct smooth three-charge bubbling solu-
tions that have charges and angular momenta of the same type as three-charge black
holes and black rings, we now turn to exploring such solutions in greater general-
ity. We will begin by describing several simple examples, like the simplest bubbled
black ring, or a bubbled black hole made of several bubbles. We will find that when
the number of bubbles is large, and the fluxes on them are generic, these solutions
have the same relation between charges and angular momenta as the maximally
spinning (zero-entropy) three-charge BPS black hole (J2 = N1N5Np). Moreover,
when all the GH centers except one are in the same blob, and one GH center sits
away from the blob, the solutions have the same charges, dipole charges and angular
momenta as a zero-entropy, three-charge BPS black ring. Thus, to any zero-entropy
black hole or any round three-charge supertube there corresponds a very large num-
ber of bubbled counterparts.

It is interesting to recall how the upper bound on the angular momentum is ob-
tained for the BMPV black hole: One takes a solution with J2 < N1N2N3 and imag-
ines spinning it faster. As this happens, the closed time-like curves (CTCs) inside the
horizon get closer and closer to the horizon. When J2 becomes larger than N1N2N3,
these CTCs sit outside the horizon, and the solution has to be discarded as unphysi-
cal. A similar story happens with the black ring. What is remarkable is that this re-
lation between the charges and angular momentum, which came from studying the
solution near the horizon of the black hole and black ring, also comes out from in-
vestigating horizonless solutions with a large number of bubbles and generic fluxes.
The fact that this coincidence happens both for black holes, and for black rings (as
well as for BPS black holes and rings in any U(1)N N = 2, five-dimensional, un-
gauged supergravity) is indicative of a stronger connection between black holes and
their bubbling counterparts.

Nevertheless, the fact that generic bubbling solutions correspond to zero-entropy
black holes or to zero-entropy black rings means that we have only found a special
corner of the microstate geometries. One might suspect, for example, that this fea-
ture comes from using a GH base space, and that obtaining microstates of positive-
entropy black holes might be impossible unless one considers a more general base
space. As we will see, this is not the case: We will be able to obtain microstates
of black holes with J2 < N1N2N3 by merging together zero-entropy black hole mi-
crostates and zero-entropy black ring microstates20.

20 Obviously, the term “zero-entropy” applies to the black hole and black ring whose microstate ge-
ometries we discuss and not to the horizonless microstate geometries themselves. Such horizonless
microstate geometries trivially have zero entropy.
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As we have seen in Sect. 3.5, unlike the merger of two BPS black holes, which
is always irreversible, the merger of a BPS black hole and a BPS black ring can be
reversible or irreversible, depending on the charges of the two objects. We therefore
expect the merger of microstates to result in an zero-entropy microstate or a positive-
entropy black-hole microstate, depending on the charges of the merging microstates.
Moreover, since the merger can be achieved in a Gibbons-Hawking base, we will
obtain positive-entropy black-hole microstates that have a Gibbons-Hawking base.
However, as we will see in the following sections, the merger process will be full of
surprises.

We will find there is a huge qualitative difference between the behavior of the
internal structure of microstates in “reversible” and “irreversible” mergers.21 A
“reversible” merger of an zero-entropy black-hole microstate and an zero-entropy
black-ring microstate produces another zero-entropy black-hole microstate. For re-
versible mergers we find the bubbles corresponding to the ring simply join the bub-
bles corresponding to the black hole, and form a bigger bubbled structure.

In an “irreversible” merger, as the ring bubbles and the black hole bubbles get
closer and closer, we find that the distances between the GH points that form the
black hole foam and the black ring foam also decrease. As one approaches the
merger point, all the sizes in the GH base scale down to zero while preserving
their relative proportions. In the limit in which the merger occurs, the solutions
have J1 = J2 <

√
Q1Q2Q3, and all the points have scaled down to zero size on the

base. Therefore, it naively looks like the configuration is singular; however, the full
physical size of the bubbles also depends on the warp factors, and taking these into
account one can show that the physical size of all the bubbles that form the black
hole and the black ring remains the same. The fact that the GH points get closer and
closer together implies that the throat of the solution becomes deeper and deeper
and more and more similar to the throat of a BPS black hole (which is infinite).

7.1 The Simplest Bubbled Supertube

As we have discussed in Sect. 6.1, we expect the solution resulting from the geomet-
ric transition of a zero-entropy black ring to contain three GH centers, of charges
q1 = 1, q2 = −Q and q3 = +Q. The integral of the flux on the Gaussian two-cycle
bubbled at the position of the ring gives the dipole charges of the latter, dI . It is use-
ful to define another physical variables f I , measuring the fluxes through the other
two-cycle:

dI ≡ 2
(
kI

2 + kI
3

)
, fI ≡ 2 kI

1 +
(

1+
1
Q

)
kI

2 +
(

1− 1
Q

)
kI

3. (167)

Note that dI and f I are invariant under (94).

21 With an obvious abuse of terminology, we will refer to such solutions as “reversible” and “ir-
reversible” mergers of microstates with the understanding that the notion of reversibility refers to
the classical black-hole and black-ring solutions to which the microstates correspond.
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The electric charges of the bubbled tube are:

QI = CIJK dJ f K , (168)

and the angular momenta are:

J1 = − (Q−1)
12 Q

CIJK dI dJ dK +
1
2

CIJK dI dJ f K , (169)

J2 =
(Q−1)2

24 Q2 CIJK dI dJ dK +
1
2

CIJK f I f J dK . (170)

In particular, the angular momentum of the tube is:

JT = J2 − J1 =
1
2

CIJK
(

f I f J dK −dI dJ f K)

+
(

3 Q2 −4 Q+1
24 Q2

)
CIJK dI dJ dK . (171)

When the size of the 2–3 bubble (between GH charges q2 and q3) is small, this
configuration can be thought of as the resolution of the singularity of the zero-
entropy supertube, and has the same charges, angular momenta, and size as the
naive zero-entropy black ring solution. In the bubble equations, the size of the 2–
3 bubble comes from a balance between the attraction of oppositely charged GH
points, and the fluxes that have a lot of energy when the cycle they wrap becomes
very small. Hence, both when Q is large and when d is much smaller than f the
solution approaches the naive zero-entropy black ring solution

Exercise 13. Verify that in the limit of large Q, as well as in the limit d/f → 0 equa-
tions (169) and (170) match exactly the charges and angular momenta of a three-
charge black ring of zero entropy.

One can also estimate, in this limit, the distance from the small 2–3 bubble to the
origin of space, and find that this distance asymptotes to the radius, RT , of the un-
bubbled black ring solution (as measured in the R

3 metric of the GH base), given by

JT = 4 RT (d1 +d2 +d3). (172)

7.2 Microstates of Many Bubbles

We now consider bubbled solutions that have a large number of localized centers and
show that these solutions correspond to maximally spinning (zero-entropy) BMPV
black holes, or to maximally spinning BPS black rings [51]. The ring microstates
have a blob of GH centers of zero total charge with a single GH center away from
the blob while the black hole microstates have all the centers in one blob of net GH
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charge one. We will see that this apparently small difference can very significantly
influence the solution of the bubble equations.

7.2.1 A Black-Hole Blob

We first consider a configuration of N GH centers that lie is a single “blob” and
take all these centers to have roughly the same flux parameters, to leading order in
N. To argue that such a blob corresponds to a BMPV black hole, we first need to
show that J1 = J2. If the overall configuration has three independent Z2 reflection
symmetries then this is trivial because the �D j in (151) will then come in equal and
opposite pairs, and so one has JL = 0. More generally, for a “random” distribution22

the vectors ŷi j (defined in (154)) will point in “random” directions and so the �JL i j

will generically cancel one another at leading order in N. The only way to generate
a non-zero value of JL is to bias the distribution such that there are more positive
centers in one region and more negative ones in another. This is essentially what
happens in the microstate solutions constructed and analyzed by [42, 43]. However,
a single generic blob will have J1 − J2 small compared to |J1| and |J2|.

To compute the other properties of such a blob, we will simplify things by taking
N = 2M + 1 to be odd and assume that q j = (−1) j+1. Using the gauge invariance,
we can take all of kI

i to be positive numbers, and we will assume that they have small
variations about their mean value:

kI
j = kI

0 (1+O(1)), (173)

where kI
0 is defined in (145). The charges are given by:

QI = −2 CIJK∑
j

q−1
j (kJ

j −q jNkJ
0) (kK

j −q jNkK
0 )

= −2 CIJK

(
∑

j
q−1

j kJ
j k

K
j −NkJ

0∑
j

kK
j −NkK

0 ∑
j

kJ
j +N2kJ

0kK
0 ∑

j
q j

)

= 2 CIJK

(
N2kJkK −∑

j
kJ

j k
K
j q−1

j

)

≈ 2 CIJK
(
N2 +O(1)

)
kJ

0kK
0 (174)

where we used (173) and the fact that |qi| = 1 only in the last step. In the large N
limit, for M theory on T 6 we have

Q1 ≈ 4N2k2
0k3

0 +O(1), Q2 ≈ 4N2k1
0k3

0 +O(1), Q3 ≈ 4N2
0 k1k3

0 +O(1). (175)

We can make a similar computation for the angular momenta:

22 Such a distribution must, of course, satisfy the bubble equations, (142), but this will still allow a
sufficiently random distribution of GH points.
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JR =
4
3

CIJK∑
j

q−2
j (kI

j −q jNkI
0) (kJ

j −q jNkJ
0) (kK

j −q jNkK
0 )

=
4
3

CIJK

(
∑

j
q−2

j kI
jk

J
j k

K
j −3NkI

0∑
j

q−1
j kJ

j k
K
j

+3N2kI
0kJ

0∑
j

kK
j −N3kI

0kJ
0kK

0 ∑
j

q j

)

≈ 4
3

CIJK
(
N −3N +3N3 −N3 +O(N)

)
kI

0kJ
0kK

0 , (176)

where we used the fact that, for a “well behaved” distribution of positive kI
i with

|q j| = 1, one has:

∑
i

q−1
i kJ

i kK
i =∑

i
qik

J
i kK

i ≈ kJ
0kK

0 , ∑
i

kI
i k

J
i kK

i ≈ NkI
0kJ

0kK
0 . (177)

Therefore we simply have:

JR ≈ 16N3k1
0k2

0k3
0 +O(N). (178)

Since JL ≈ 0 for a generic blob at large N, we therefore have at leading order:

J2
1 ≈ J2

2 ≈ 1
4

J2
R ≈ Q1Q2Q3, (179)

and so, in the large-N limit, these microstates always correspond to a maximally
spinning BMPV black hole.

Exercise 14. Show that at sub-leading order in N

J2
R

4Q1Q2Q3
−1 ∼ O

(
1

N2

)
. (180)

Interestingly enough, the value of JR is slightly bigger than
√

4Q1Q2Q3. How-
ever, this is not a problem because in the classical limit this correction vanishes.
Moreover, it is possible to argue that a classical black hole with zero horizon area
will receive higher-order curvature corrections, which usually increase the horizon
area; hence a zero-entropy configuration will have JR slightly larger then the max-
imal classically allowed value, by an amount that vanishes in the large N (classi-
cal) limit.

7.2.2 A Supertube Blob

The next simplest configuration to consider is one in which one starts with the blob
considered above and then moves a single GH point of charge +1 out to a very large
distance from the blob. That is, one considers a blob of total GH charge zero with a
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single very distant point of GH-charge +1. Since one now has a strongly “biased”
distribution of GH charges one should now expect J1 − J2 �= 0.

Again we will assume N to be odd and take the GH charge distribution to be
q j = (−1) j+1, with the distant charge being the Nth GH charge. The blob therefore
has 1

2 (N−1) points of GH charge +1 and 1
2 (N−1) points of GH charge −1. When

seen from far away one might expect this blob to resemble the three-point solution
described above with Q = 1

2 (N−1). We will show that this is exactly what happens
in the large-N limit.

To have the Nth GH charge far from the blob means that all the two-cycles, Δ j N ,
must support a very large flux compared to the fluxes on the Δi j for i, j < N. To
achieve this we therefore take:

kI
j = aI

0 (1+O(1)), j = 1, . . . ,N −1, kI
N = −bI

0 N. (181)

where

aI
0 ≡

1
(N −1)

N−1

∑
j=1

kI
j. (182)

We also assume that aI
0 and bI

0 are of the same order. The fluxes of this configuration
are then:

Π(I)
i j =

(
kI

j

q j
− kI

i

qi

)
, (183)

Π(I)
i N = −Π(I)

N i = −
(

kI
i

qi
+N bI

0

)
, i, j = 1, . . . ,N −1.

For this configuration one has:

kI
0 =

(N −1)
N

aI
0 −bI

0, k̃I
N = −(N −1) aI

0, (184)

k̃I
j = kI

j +q j (N bI
0 − (N −1) aI

0), j = 1, . . . ,N −1. (185)

Motivated by the bubbling black ring of [51] and Sect. 7.1, define the physical pa-
rameters:

dI ≡ 2 (N −1) aI
0, f I ≡ (N −1) aI

0 −2 N bI
0. (186)

Keeping only the terms of leading order in N in (144) and (150), one finds:

QI = CIJKdJ f K , (187)

J1 + J2 =
1
2

CIJK(dIdJ f K + f I f JdK)− 1
24

CIJKdIdJdK . (188)

Since the Nth point is far from the blob, we can take riN ≈ r0 and then the Nth
bubble equation reduces to:
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1
6

CIJK

N−1

∑
j=1

(
kI

j

q j
+N bI

0

) (
kJ

j

q j
+N bJ

0

) (
kK

j

q j
+N bK

0

)
q j

r0
= (N −1) ∑

I
aI

0.

(189)
To leading order in N this means that the distance from the blob to the Nth point, r0,
in the GH space is given by:

r0 ≈ 1
2

N2
[
∑

I
aI
]−1

CIJK aI
0 bJ

0 bK
0

=
1
32

[
∑

I
dI
]−1

CIJK dI (2 f J −dJ) (2 f K −dK) . (190)

Finally, considering the dipoles (149), it is evident that, to leading order in N, �D is
dominated by the contribution coming from the Nth point and that:

J1 − J2 = 8 |�D| = 8 N

(
∑

I
aI

0

)
r0 = 4 N3 CIJK aI

0 bJ
0 bK

0 (191)

=
1
8

CIJK dI (2 f J −dJ) (2 f K −dK) . (192)

Exercise 15. Verify that the angular momenta and the radius of this bubbling super-
tube ((187), (188), (190), and (192)) match those of the simplest bubbling supertube
described in Section 7.1 and therefore match those of a zero-entropy black ring.

Thus, the bubbling supertube of many centers also has exactly the same size, an-
gular momenta, charges and dipole charges as a zero-entropy black ring and should
be thought of a microstate of the later.

8 Mergers and Deep Microstates

As we have seen in Sect. 3.5, a merger of a zero-entropy black ring and a zero-
entropy black hole can produce both a zero-entropy black hole (reversible merger)
or a non-zero-entropy one (irreversible merger). We expect that in a similar fashion,
the merger of the microstates of zero-entropy black holes and zero-entropy black
rings should produce microstates of both zero-entropy and positive-entropy black
holes. Since we have already constructed zero-entropy black-hole microstates, we
will mainly focus on irreversible mergers and their physics. One can learn more
about reversible mergers of microstates in Sect. 6 of [53].

Even though the original black-ring plus black-hole solution that describes the
merger in Sect. 3.5 and [93] does not have a tri-holomorphic U(1) symmetry (and
thus the merger of the corresponding microstates cannot be done using a GH base),
one can also study the merger of black rings and black holes by considering a
U(1)×U(1) invariant solution describing a black ring with a black hole in the cen-
ter. As the ring is made smaller and smaller by, for example, decreasing its angular
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momentum, it eventually merges into the black hole. At the point of merger, this so-
lution is identical to the merger described in Sect. 3.5 with the black ring grazing the
black-hole horizon. Hence this U(1)×U(1) invariant solution can be used to study
mergers where the black ring grazes the black hole horizon at the point of merger.
As we have seen in Sect. 3.5, all the reversible mergers and some of the irreversible
mergers belong to this class.

In the previous section, we have seen how to create bubbled solutions corre-
sponding to a zero-entropy black ring and maximally spinning black holes. The
generic bubbled solutions with GH base have a U(1) symmetry corresponding to
JR ≡ J1 +J2, and if the GH points all lie on an axis then the solution is U(1)×U(1)
invariant. We can, therefore, study the merger of bubbled microstates by construct-
ing U(1)×U(1) invariant bubbling solutions describing a black ring with a black
hole in the center. By changing some of the flux parameters of the solution, one can
decrease the radius of the bubbling black ring and merge it into the bubbling black
hole to create a larger bubbling black hole.

In this section, we consider a bubbling black hole with a very large number of GH
centers, sitting at the center of the simplest bubbled supertube, generated by a pair
of GH points.23 We expect two different classes of merger solution depending upon
whether the flux parameters on the bubbled black hole and bubbled black ring are
parallel or not. These correspond to reversible and irreversible mergers, respectively.
The reversible mergers involve the GH points approaching and joining the black-
hole blob to make a similar, slightly larger black-hole blob [53]. The irreversible
merger is qualitatively very different and we will examine it in detail. First, however,
we will establish some general results about the charges and angular momenta of
the bubbled solutions that describe a bubbled black ring of two GH centers with a
bubbling black-hole at the center.

8.1 Some Exact Results

We begin by seeing what may be deduced with no approximations whatsoever. Our
purpose here is to separate all the algebraic formulae for charges and angular mo-
menta into those associated with the black hole foam and those associated with
the bubbled supertube. We will consider a system of N GH points in which the
first N − 2 points will be considered to be a blob and the last two points will have
qN−1 = −Q and qN = Q. The latter two points can then be used to define a bubbled
black ring.

Let k̂I
0 denote the average of the flux parameters over the first (N −2) points:

k̂I
0 ≡

1
(N −2)

N−2

∑
j=1

kI
j, (193)

23 Of course it is straightforward to generalize our analysis to the situation where both the supertube
and the black hole have a large number of GH centers. However, the analysis is simpler and the
numerical stability is better for mergers in which the supertube is composed of only two points,
and we have therefore focused on this.
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and introduce k-charges that have a vanishing average over the first (N −2) points:

k̂I
j ≡ kI

j − (N −2) q j k̂I
0, j = 1, . . . ,N −2. (194)

We also parameterize the last two kI-charges in exactly the same manner as for the
bubbled supertube (see (167)):

dI ≡ 2
(
kI

N−1 + kI
N

)
, (195)

f I ≡ 2 (N −2) k̂I
0 +

(
1+

1
Q

)
kI

N−1 +
(

1− 1
Q

)
kI

N .

One can easily show that the charge (144) decomposes into

QI = Q̂I +CIJK dJ f K , (196)

where

Q̂I ≡−2 CIJK

N−2

∑
j=1

q−1
j k̂J

j k̂K
j . (197)

The Q̂I are simply the charges of the black-hole blob, made of the first (N − 2)
points. The second term in (196) is exactly the expression, (168), for the charges of
a bubbled supertube with GH centers of charges +1, −Q and Q and k-charges (N−
2)k̂I

0, kI
N−1 and kI

N , respectively. Thus the charge of this configuration decomposes
exactly as if it were a black-hole blob of (N −2) centers and a bubbled supertube.

There is a similar result for the angular momentum, JR. One can easily show that:

JR = ĴR +dI Q̂I + jR, (198)

where

ĴR ≡ 4
3

CIJK

N−2

∑
j=1

q−2
j k̂I

j k̂J
j k̂K

j , (199)

and

jR ≡ 1
2

CIJK
(

f I f JdK + f IdJdK)− 1
24

(
1−Q−2) CIJK dIdJdK . (200)

The term, ĴR, is simply the right-handed angular momentum of the black-hole blob
made from N − 2 points. The “ring” contribution to the angular momentum, jR,
agrees precisely with J1 +J2 given by (169) and (170) for an isolated bubbled super-
tube. The cross term, dIQ̂I represents the interaction of the flux of the bubbled ring
and the charge of the black-hole blob. This interaction term is exactly the same as
that found in Sect. 3.5 and in [68, 79, 93] for a concentric black hole and black ring.

Thus, as far as the charges and JR are concerned, the complete system is behaving
as though it were a black-hole blob of (N − 2) points interacting with a bubbled
black ring defined by the points with GH charges ±Q and a single point with GH
charge +1 replacing the black-hole blob. Note that no approximations were made
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in the foregoing computations, and the results are true independent of the locations
of the GH centers.

To make further progress we need to make some assumptions about the config-
uration of the points. Suppose, for the moment, that all the GH charges lie on the
z-axis at points zi with zi < zi+1. In particular, the GH charges, −Q and +Q, are
located at zN−1 and zN , respectively.

With this ordering of the GH points, the expression for �JL collapses to:

JL =
4
3

CIJK ∑
1≤i< j≤N

qi q j Π
(I)
i j Π(J)

i j Π(K)
i j . (201)

This expression can then be separated, just as we did for JR, into a black-hole blob
component, a ring component, and interaction cross-terms. To that end, define the
left-handed angular momentum of the blob to be:

ĴL =
4
3

CIJK ∑
1≤i< j≤N−2

qi q j Π
(I)
i j Π(J)

i j Π(K)
i j . (202)

Note that

Π(I)
i j ≡

(
kI

j

q j
− kI

i

qi

)
=
(

k̂I
j

q j
− k̂I

i

qi

)
, 1 ≤ i, j ≤ N −2, (203)

and so this only depends upon the fluxes in the blob.
The remaining terms in (201) may then be written in terms of k̂I

j, dI , and f I

defined in (194) and (195). In particular, there are terms that depend only upon
dI and f I , and then there are terms that are linear, quadratic, and cubic in k̂I

j (and

depend upon dI and f I). The linear terms vanish because ∑N−2
j=1 k̂I

j ≡ 0, the quadratic

terms assemble into Q̂I of (197), and the cubic terms assemble into ĴR of (199). The
terms proportional to (199) cancel between the terms with j = N−1 and j = N, and
one is left with:

JL = ĴL −dI Q̂I + jL, (204)

where jL is precisely the angular momentum, JT , of the tube:

jL ≡ 1
2

CIJK
(
dI f J f K − f IdJdK)+

(
3 Q2 −4 Q+1

24 Q2

)
CIJK dIdJdK . (205)

Observe that (200) and (205) are exactly the angular momenta of a simple bubbled
ring, (169) and (170). Again, we see the cross-term from the interaction of the ring
dipoles and the electric charge of the blob. Indeed, combining (198) and (204), we
obtain:

J1 = Ĵ1 + j1, J2 = Ĵ2 + j2 −dI Q̂I , (206)

which is exactly how the angular momenta of the classical ring-hole solution in
Sect. 3.5 decomposed. In particular, the term coming from the interaction of the
ring dipole moment with the black hole charge only contributes to J2.
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Exercise 16. Check the decompositions (197), (199), and (204).

The results obtained above are independent of whether the blob of N − 2 points
is a BMPV black-hole blob, or a more generic configuration. However, to study
mergers we now take the blob to be a black-hole microstate, with ĴL = 0. The end
result of the merger process is also a BMPV black hole microstate, and so JL = 0.
Therefore, the exact merger condition is simply:

Ω ≡ 1
2

CIJK
(
dI f J f K − f IdJdK)+

(
3 Q2 −4 Q+1

24 Q2

)
CIJK dIdJdK −dI Q̂I

= 0. (207)

Using (171), this may be written:

JT −dI Q̂I = 0, (208)

which is precisely the condition obtained in Sect. 3.5 and [93] for a classical black
ring to merge with a black hole at its equator.

One should note that the argument that led to the expressions (204) and (205) for
JL, and to the exact merger condition, (207), apply far more generally. In particular,
we only needed the fact that the unit vectors, ŷi j, defined in (154), are all parallel
for j = N − 1 and j = N. This is approximately true in many contexts, and most
particularly if the line between the (N − 1)th and Nth points runs through the blob
and the width of the blob is small compared to the distance to the two exceptional
points.

One should also not be surprised by the generality of the result in (205). The
angular momentum, JT , is an intrinsic property of a black ring, and hence for a
zero-entropy black ring, JT can only depend on the ds and f s and cannot depend
on the black hole charges (that is, the k̂I

j). Therefore, we could have obtained (205)
by simply setting the black hole charge to zero, and then reading off JT from the
bubbling black ring solution of Sect. 7.1. Hence, one should think about the expres-
sion of JT in (171) as a universal relation between intrinsic properties of the bubbled
ring: JT , dI , and f I .

8.2 Some Simple Approximations

We now return to a general distribution of GH points, but we will assume that the
two “black ring points” (the (N − 1)th and Nth points) are close together but very
far from the black-hole blob of the remaining (N −2) points. Set up coordinates in
the geometric center of the black-hole blob, i.e. choose the origin so that

N−2

∑
i=1

�ri = 0. (209)
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Let r0 ≡ |�rN−1| be the distance from the geometric center of the blob to the first
exceptional point, and let r̂0 be the the unit vector in that direction. The vector,
�Δ ≡�rN −�rN−1, defines the width of the ring. We will assume that the magnitudes
Δ ≡ |�Δ| and r j ≡ |�r j| are small compared to r0. We will also need the first terms of
the multipole expansions:

1
|�rN−1 −�r j|

=
1
r0

+
�r j · r̂0

r2
0

+ . . . (210)

1
|�rN −�r j|

=
1
r0

+
(�r j −�Δ) · r̂0

r2
0

+ . . . . (211)

For simplicity, we will also assume that the two black-ring points (we will also call
these points “exceptional points”) are co-linear with the origin so that

rN ≡ |�rN | = r0 +Δ. (212)

The last two bubble equations are then:

γ
Δ
−

N−2

∑
j=1

q j α j

|�rN −�r j|
= ∑

I

(
N Q kI

0 − kI
N

)
, (213)

− γ
Δ

+
N−2

∑
j=1

q j β j

|�rN−1 −�r j|
= −∑

I

(
N Q kI

0 + kI
N−1

)
(214)

where kI
0 is given in (145) and

α j ≡
1
6

Q CIJK Π(I)
j N Π(J)

j N Π(K)
j N (215)

=
1
6

Q CIJK

(
kI

N

Q
−

kI
j

q j

) (
kJ

N

Q
−

kJ
j

q j

) (
kK

N

Q
−

kK
j

q j

)
, (216)

β j ≡
1
6

Q CIJK Π(I)
j (N−1) Π

(J)
j (N−1) Π

(K)
j (N−1) (217)

= −1
6

Q CIJK

(
kI

N−1

Q
+

kI
j

q j

) (
kJ

N−1

Q
+

kJ
j

q j

) (
kK

N−1

Q
+

kK
j

q j

)
, (218)

γ ≡ 1
6

Q2 CIJK Π(I)
(N−1) N Π(J)

(N−1) N Π(K)
(N−1) N =

1
48

Q−1 CIJK dI dJ dK . (219)

It is also convenient to introduce

α0 ≡
N−2

∑
j=1

q j α j, β0 ≡
N−2

∑
j=1

q j β j. (220)
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If one adds (213) and (214) then the terms involving γ cancel and using (211) one
then obtains:

N−2

∑
j=1

q j

[
α j

(
1
r0

+
(�r j −�Δ) · r̂0

r2
0

)
−β j

(
1
r0

+
�r j · r̂0

r2
0

) ]
=

1
2 ∑

I
dI . (221)

One now needs to perform the expansions with some care. Introduce the flux vector:

XI ≡ 2 f I −dI −4 (N −2) k̂I
0, (222)

and note that the fluxes between the blob and ring points are given by:

Π(I)
j (N−1) = −1

4

[
XI +Q−1 dI +4 q−1

j kI
j

]
, (223)

Π(I)
j N = −1

4

[
XI −Q−1 dI +4 q−1

j kI
j

]
. (224)

In particular, the difference of these fluxes is simply the flux through the two-cycle
running between the two ring points:

Π(I)
j N −Π(I)

j (N−1) =
dI

2 Q
= Π(I)

(N−1) N . (225)

For the ring to be far from the black hole, the fluxes Π(I)
j (N−1) and Π(I)

j N must be

large. For the ring to be thin (Δ � r0), these fluxes must be of similar order, or

Π(I)
(N−1) N should be small. Hence we are assuming that dI

2Q is small compared to XI .
We are also going to want the black hole and the black ring to have similar charges
and angular momenta, JR, and one of the ways of achieving this is to make f I , dI ,
and Nk̂I

0 of roughly the same order.
Given this, the leading order terms in (221) become:

N−2

∑
j=1

q j

[
(α j −β j)

r0
−α j

Δ
r2

0

]
=

1
2 ∑

I
dI . (226)

One can then determine the ring width, Δ, using (213) or (214). In particular, when
the ring width is small while the ring radius is large, the left-hand side of each of
these equations is the difference of two very large numbers of similar magnitude.
To leading order we may therefore neglect the right-hand sides and use the leading
monopole term to obtain:

β0
Δ
r0

≈ α0
Δ
r0

=
[ N−2

∑
j=1

q j α j

]
Δ
r0

≈ γ, (227)
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and hence (221) becomes:

−γ +
N−2

∑
j=1

q j (α j −β j) ≈
[

1
2 ∑

I
dI
]

r0. (228)

Using the explicit expressions for α j, β j, and γ , one then finds:

r0 ≈
[

4 ∑
I

dI
]−1[ 1

2
CIJK

(
dI f J f K − f IdJdK)

+
(

3 Q2 −4 Q+1
24 Q2

)
CIJK dIdJdK −dIQ̂I

]
. (229)

This is exactly the same as the formula for the tube radius that one obtains from
(172) and (171). Note also that we have:

r0 ≈
[
4 ∑

I
dI
]−1[

jL −dIQ̂I
]
, (230)

where jL the angular momentum of the supertube (204). In making the comparison
to the results of Sect. 3.5 recall that for a black ring with a black hole exactly in the
center, the embedding radius in the standard, flat R

4 metric is given by:

R2 =
l6
p

L4

[
∑dI

]−1 (
JT −dIQ̂I

)
. (231)

The transformation between a flat R
4 and the GH metric with V = 1

r involves set-
ting r = 1

4ρ
2, and this leads to the relation R2 = 4RT . We therefore have complete

consistency with the classical merger result.
Note that the classical merger condition is simply r0 → 0, which is, of course,

very natural. This might, at first, seem to fall outside the validity of our approxima-
tion; however we will see in the next section that for irreversible mergers one does
indeed maintain Δ, r j � r0 in the limit r0 → 0. Reversible mergers cannot however
be described in this approximation and have to be analyzed numerically.

8.3 Irreversible Mergers and Scaling Solutions

All the results we have obtained in Sect. 8.1 and 8.2 apply equally to reversible and
irreversible mergers. However, since our main purpose is to obtain microstates of
a BPS back hole with classically large horizon area, we now focus on irreversible
mergers.

We will show that an irreversible merger occurs in such a manner that the ring
radius, r0, the ring width, Δ, and a typical separation of points within the black-
hole blob all limit to zero while their ratios all limit to finite values. We will call
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these scaling solutions, or scaling mergers. As the merger progresses, the throat of
the solution becomes deeper and deeper, and corresponding redshift becomes larger
and larger. The resulting microstates have a very deep throat and will be called “deep
microstates.”

Using the solution constructed in the previous sections, we begin decreasing the
radius of the bubbled ring, r0, by decreasing some of its flux parameters. We take
all the flux parameters of the (N −2) points in the blob to be parallel:

kI
j = k̂I

0 = kI , j = 1, . . . ,N −2, (232)

Further assume that all the GH charges in the black-hole blob obey q j = (−1) j+1,
j = 1, . . . ,N −2. We therefore have

Q̂I = 2 (N −1)(N −3) CIJK kJkK , (233)

ĴR =
8
3

(N −1)(N −2)(N −3) CIJK kIkJkK .

Define:

μi ≡
1
6

(N −2−qi)−1 CIJK

N−2

∑
j=1
j �=i

Π(I)
i j Π(J)

i j Π(K)
i j

q j

ri j
, (234)

then the bubble equations for this blob in isolation (i.e. with no additional bubbles,
black holes or rings) are simply:

μi =
3

∑
I=1

kI , (235)

More generally, in any solution satisfying (232), if one finds a blob in which the μi

are all equal to the same constant, μ0, then the GH points in the blob must all be
arranged in the same way as an isolated black hole but with all the positions scaled
by μ−1

0

(
∑3

I=1 kI
)
.

Now consider the full set of N points with Δ, r j � r0. In Sect. 8.2, we solved the
last two bubble equations and determined Δ and r0 in terms of the flux parameters.
The remaining bubble equations are then:

(N −2−qi) μi +
αi

|�rN −�ri|
− βi

|�r(N−1)−�ri|
=

3

∑
I=1

(
(N −2−qi) kI +

dI

2

)
, (236)

for i = 1, . . . ,N −2. Once again we use the multipole expansion in these equations:

(N −2−qi) μi +
(αi −βi)

r0
− αi Δ

r2
0

=
3

∑
I=1

(
(N −2−qi) kI +

dI

2

)
, (237)

It is elementary to show that:

αi −βi =
1
8

( jL −dI Q̂I)+ γ− 1
8

(N −2−qi) CIJK dI kJ XK , (238)
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where XI is defined in (222). If one now uses this identity, along with (227) and
(230) in (237) one obtains:

(N −2−qi) μi −
1
r0

CIJK

[
1
8

(N −2−qi) dI kJ XK −
(

1− αi

α0

)
γ
]

≈ (N −2−qi)
3

∑
I=1

kI . (239)

Finally, note that:

α0 −αi = Q (N −2−qi) CIJK

[
1
32

(
XI − 1

Q
dI
) (

XJ − 1
Q

dJ
)

kK +
1
6

kI kJ kK
]
,

(240)

and so the bubble equations (236) reduce to:

μi ≈
(

3

∑
I=1

kI

)
+

1
r0

CIJK

[
1
8

dI kJ XK

−α−1
0 Q γ

(
1

32

(
XI − 1

Q
dI
) (

XJ − 1
Q

dJ
)

kK +
1
6

kI kJ kK
)

≈
(

3

∑
I=1

kI

)
+

1
r0

CIJK

[
1
8

dI kJ XK (241)

− α−1
0 Q γ

(
1

32
XI XJ kK +

1
6

kI kJ kK
) ]

, (242)

since we are assuming XI is large compared to Q−1dI .
Observe that the right-hand side of (241) is independent of i, which means that

the first (N −2) GH points satisfy a scaled version of (235) for a isolated, bubbled
black hole. Indeed, if �rBH

i are the positions of a set of GH points satisfying (235)
then we can solve (241) by scaling the black hole solution,�ri = λ−1�rBH

i , where the
scale factor is given by:

λ ≈ 1+
1
r0

(
3

∑
I=1

kI

)−1

CIJK

[
1
8

dI kJ XK

−α−1
0 Q γ

(
1

32
XI XJ kK +

1
6

kI kJ kK
) ]

. (243)

Notice that as one approaches the critical “merger” value, at which Ω = jL −
dIQ̂I = 0, (243) implies that the distance, r0, must also scale as λ−1. Therefore
the merger process will typically involve sending r0 → 0 while respecting the as-
sumptions made in our approximations (Δ, ri � r0). The result will be a “scaling
solution” in which all distances in the GH base are vanishing while preserving their
relative sizes.
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In [53], this picture of the generic merger process was verified by making quite
a number of numerical computations24; we urge the curious reader to refer to that
paper for more details. In Sect. 8.4, we will only present one very simple scaling
solution, which illustrates the physics of these mergers.

An important exception to the foregoing analysis arises when the term propor-
tional to r−1

0 in (241) vanishes to leading order. In particular, this happens if we
violate one of the assumptions of our analysis, namely, if one has:

XI ≡ 2 f I −dI −4 (N −2) kI ≈ 0, (244)

to leading order order in Q−1dI . If XI vanishes one can see that, to leading order,
the merger condition is satisfied:

Ω ≡ jL −dI Q̂I

=
1
8

CIJK dI
[

XJXK − 1
3

Q−2 (4 Q−1) dJdK −16 kJkK
]

(245)

≈ 0,

and so one must have r0 → 0. However, the foregoing analysis is no longer valid,
and so the merger will not necessarily result in a scaling solution.

An important example of this occurs when kI , dI , and f I are all parallel:

kI = k uI , dI = d uI , f I = f uI , (246)

for some fixed uI . Then the merger condition (245) is satisfied to leading order, only
when X ≡ (2 f −d −4 (N −2)k) vanishes.

For non-parallel fluxes it is possible to satisfy the merger condition, (245), while
keeping XI large, and the result is a scaling solution.

Even if it looks like irreversible mergers progress until the final size on the base
vanishes, this is an artifact of working in a classical limit and ignoring the quanti-
zation of the fluxes. After taking this into account, we can see from (241) that r0

cannot be taken continuously to zero because the dI , f I , XI , and kI are integers
of half-integers. Hence, the final result of an irreversible merger is a microstate of a
high, but finite, redshift and whose throat only becomes infinite in the classical limit.

In order to find the maximum depth of the throat, one has to find the smallest
allowed value for the size of the ensemble of GH points in the R

3 base of the GH
space. During the irreversible merger all the distances scale, the size of the ensemble
of points will be approximately equal to the distance between the ring blob and the
black hole blob, which is given by (230). Since jL −dIQ̂I is quantized, the minimal
size of the ensemble of GH points is given by:

24 A merger was tracked through a range where the scale factor, λ , varied from about 4 to well
over 600. It was also verified that this scaling behavior is not an artifact of axial symmetry. More-
over, in several numerical simulations the GH points of the black-hole blob were arranged along a
symmetry axis but the bubbled ring approached the black-hole blob at various angles to this axis;
the scaling behavior was essentially unmodified by varying the angle of approach.



74 I. Bena and N. P. Warner

r|min ≈
1

d1 +d2 +d3 . (247)

More generally, in the scaling limit, the GH size of a solution with left-moving
angular momentum JL is

r|min ≈
JL

d1 +d2 +d3 . (248)

Since the dI scale like the square-roots of the ring charges, we can see that in the
classical limit, r|min becomes zero and the throat becomes infinite.

8.4 Numerical Results for a Simple Merger

Given that most of the numerical investigations, and most of the derivations we have
discussed above use black hole microstate made from a very large number of points,
it is quite hard to illustrate explicitly the details of a microstate merger.

To do this, it is much more pedagogical to investigate a black hole microstate that
is made from three points, of GH charges −n, 2n + 1, and −n, and its merger with
the black ring microstate of GH charges −Q and +Q. This black-hole microstate
can be obtained by redistributing the position of the GH points inside the black-hole
blob considered in Sect. 8.3, putting all the +1 charges together and putting half of
the −1 charges together on one side of the positive center and the other half on the
other side25

We consider a configuration with 5 GH centers of charges

q1 = −12, q2 = 25, q3 = −12, q4 = −20, q5 = 20. (249)

The first three points give the black-hole “blob,” which can be thought as coming
from a blob of N − 2 = 49 points upon redistributing the GH points as described
above; the kI parameters of the black hole points are

kI
1 = q1k̂I

0, kI
2 = q2k̂I

0, kI
3 = q3k̂I

0, (250)

where k̂I
0 is the average of the kI over the black-hole points, defined in (193). To

merge the ring and the black hole microstates, we have varied k̂2
0 keeping k̂1

0 and
k̂3

0 fixed:

k̂1
0 =

5
2
, k̂3

0 =
1
3
, (251)

We have also kept fixed the ring parameters f I and dI :

d1 = 100, d2 = 130, d3 = 80, f 1 = f 2 = 160, f 3 = 350 (252)

25 Since the k parameters on the black-hole points are the same, the bubble equations give no
obstruction to moving black-hole centers of the same GH charge on top of each other.
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The relation between these parameters and the kI of the ring is given in (195), where
N −2 (the sum of |qi| for the black hole points) is now |q1|+ |q2|+ |q3| = 49.

The charges and JR angular momentum of the solutions are approximately

Q1 ≈ 68.4×103, Q2 ≈ 55.8×103, Q3 ≈ 112.8×103, JR ≈ 3.53×107, (253)

while JL goes to zero as the solution becomes deeper and deeper.
Solving the bubble equations (142) numerically, one obtains the positions xi of

the five points as a function of k̂2
0. As we can see from the Table 2, a very small

increase in the value of k̂2
0 causes a huge change in the positions of the points on the

base. If we were merging real black holes and real black rings, this increase would
correspond to the black hole and the black ring merging. For the microstates, this
results in the scaling described above: all the distances on the base become smaller,
but their ratios remain fixed.

Table 2 Distances between points in the scaling regime

k̂2
0 x4 − x3

x4 − x3

x2 − x1

x2 − x1

x3 − x2

x2 − x1

x5 − x4
JL H

0 3.0833 175.5 2225 1.001 2.987 215983 0.275
1 3.1667 23.8 2069 1.001 3.215 29316 0.278
2 3.175 8.65 2054 1.001 3.239 10650 0.279
3 3.1775 4.10 2049 1.001 3.246 5050 0.279
4 3.178 3.19 2048 1.001 3.248 3930 0.279
5 3.17833 2.59 2048 1.001 3.249 3183 0.279
6 3.17867 1.98 2047 1.001 3.250 2437 0.279
7 3.1795 0.463 2046 1.001 3.252 570 0.279
8 3.17967 0.160 2045 1.001 3.253 197 0.279

The parameter H ≡ Q1Q2Q3−J2
R/4

Q1Q2Q3
measures how far away the angular momentum of the result-

ing solution is from the angular momentum of the maximally spinning black hole with identical
charges. The value of k̂2

0 is varied to produce the merger, and the other parameters of the con-
figuration are kept fixed: Q = 20, q1 = q3 = −12, q2 = 25, k̂1

0 = 5
2 , k̂3

0 = 1
3 , d1 = 100, d2 =

130, d3 = 80, f 1 = f 2 = 160, f 3 = 350. Both the charges and JR remain approximately constant,
with JR ≈ 3.53×107.

Checking analytically that these solutions have no closed time-like curves is not
that straightforward, since the quantities in (140) have several hundred terms. How-
ever, in [53] it was found numerically that such closed time-like curves are absent
and that the equations (140) are satisfied throughout the scaling solution.

8.5 The Metric Structure of the Deep Microstates

The physical metric is given by (28) and (29) and the physical distances are related
to the coordinate distances on the the R

3 base of the GH space, d�y ·d�y via:
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ds2 = (Z1Z2Z3)1/3 V d�y ·d�y. (254)

The physical lengths are thus determined by the functions, ZIV , and if one has:

(Z1Z2Z3)1/3 V ∼ 1
r2 , (255)

then the solution looks as an AdS2 × S3 black hole throat. In the region where
the constants in the harmonic functions become important, this throat turns into
an asymptotically flat R

(4,1) region. Near the GH centers that give the black-hole
bubbles, the function Z1Z2Z3 becomes constant. This corresponds to the black-hole
throat “capping off”. As the GH points get closer in the base, the region where (255)
is valid becomes larger, and hence the throat becomes longer.

As one may intuitively expect, in a scaling solution the ring is always in the throat
of the black hole. Indeed, the term “1” on the right-hand side of (243) originates
from the constant terms in LI and M, defined in (129). In the scaling regime, this
term is sub-leading, which implies the ring is in a region where the 1 in the LI

(and hence the ZI) is also sub-leading. Hence, the ring lies in the AdS throat of the
black-hole blob.

Increasing the scale factor, λ , in (243) means that the bubbles localize in a smaller
and smaller region of the GH base, which means that the throat is getting longer
and longer. The physical circumference of the throat is fixed by the charges and
the angular momentum, and remains finite even though the blob is shrinking on
the GH base. Throughout the scaling, the throat becomes deeper and deeper; the
ring remains in the throat, and also descends deeper and deeper into it, in direct
proportion to the overall depth of the throat.

On a more mechanistic level, the physical distance through the blob and the phys-
ical distance from the blob to the ring are controlled by integrals of the form:

∫
(Z1Z2Z3 V 3)1/6 d�. (256)

In the throat, the behavior of this function is given by (255), and this integral is
logarithmically divergent as r → 0. However, the ZI limit to finite values at�r =�r j

and between two very close neighboring GH points in the blob, the integral has a
dominant contribution of the form

C0

∫
|(x− xi)(x− x j)|−1/2 dx, (257)

for some constant, C0, determined by the flux parameters. This integral is finite and
indeed is equal to C0 π . Thus we see that the throat gets very long but then caps off
with bubbles of finite physical size.
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8.6 Are Deep Microstates Dual to Typical Boundary Microstates?

As we have seen in Sect. 8.5, the throats of the deep microstates become infinite in
the classical limit. Nevertheless, taking into account flux quantization one can find
that the GH radius of microstates does not go all the way to zero but to a finite value
(247), which corresponds to setting JL = 1.

One can estimate the energy gap of the solution by considering the lightest pos-
sible state at the bottom of the throat and estimating its energy as seen from infinity.
The lightest massive particle one can put on the bottom of the throat is not a Planck-
mass object, but a Kaluza-Klein mode on the S3. Its mass is

mKK =
1

RS3
=

1

(Q1Q2Q3)
1
6

(258)

and therefore the mass gap in a microstate of size rmin in the GH base is:

ΔEr0 = mKK
√

g00|r=rmin = mKK(Z1Z2Z3)−1/3|r=rmin =
rmin

(Q1Q5QP)1/2
. (259)

For a ring-hole merger, rmin depends on the sum of the dI , and so its relation with
the total charges of the system is not straightforward. Nevertheless, we can consider
a regime where Q1 ∼ Q5 > QP, and in this regime the dipole charge that dominates

the sum in (248) is d3 ≈
√

Q1Q5
QP

. Hence

rmin =
JL

d3 ≈ JL

√
QP

Q1Q5
, (260)

Exercise 17. Show that the mass gap for a KK mode sitting on the bottom of the
throat at r ∼ rmin is

ΔErmin ≈
JL

Q1Q5
. (261)

This M-theory frame calculation is done in the limit Q1 ∼ Q5 > QP, which is
the limit in which the solution, when put into the D1-D5-P duality frame, becomes
asymptotically AdS3 × S3 ×T 4. As shown in [56], in this limit d1 + d2 + d3 ≈ d3,
which justifies going from (248) to (260).

For JL = 1, the mass gap computed in the bulk (261) matches the charge depen-
dence of the mass gap of the black hole [120]. Moreover, this mass gap should also
match the mass gap of the dual microstate in the D1-D5 CFT.

As is well known (see [39, 40] for reviews), the states of this CFT can be char-
acterized by various ways of breaking a long effective string of length N1N5 into
component strings. BPS momentum modes on these component strings carry JR.
The fermion zero modes of each component string allow it in addition to carry one
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unit of JL. The typical CFT microstates that contribute to the entropy of the three-
charge black hole have one component string [73]; microstates dual to objects that
have a macroscopically large JL have the effective string broken into many compo-
nent strings [9, 11, 56].

Hence, the only way a system can have a large JL is to be have many component
strings. The CFT mass gap corresponds to exciting the longest component string
and is proportional to the inverse of its length.

The formula (261) immediately suggests what the dual of a deep microstate
should be. Consider a long effective string of length N1N5 broken into JL component
strings of equal length. Each component string can carry one unit of left-moving an-
gular momentum, totaling up to JL. The length of each component string is

lcomponent =
N1N5

JL
, (262)

and hence the CFT mass gap is

ΔECFT ≈ JL

N1N5
. (263)

This agrees with both the JL dependence and the dependence on the charges of the
gap computed in the bulk. While we have been cavalier about various numerical fac-
tors of order one, the agreement that we have found suggests that deep microstates
of angular momentum JL are dual to CFT states with JL component strings. If this is
true, then the deepest microstates, which have JL = 1, correspond to states that have
only one component string, of length N1N5. This is a feature that typical microstates
of the three-charge black hole have, and the fact that deep microstates share this
feature is quite remarkable.

Our analysis here has been rather heuristic. It would be very interesting to exam-
ine this issue in greater depth by finding, at least, approximate solutions to the wave
equation in these backgrounds and performing an analysis along the lines of [9, 11].

9 Implications for Black-Hole Physics

9.1 Microstate Geometries

As we have seen, string theory contains a huge number of smooth configurations
that have the same charges and asymptotics as the three-charge BPS black hole in
five dimensions. Counting these configurations, or relating them to the states of the
boundary CFT, will allow one to prove or disprove the claim that black holes in
string theory are not fundamental objects, but rather a statistical way to describe
an ensemble of black-hole-sized configurations with no horizon and with unitary
scattering. This will help in establishing the answer to the key question “What is
the AdS-CFT dual of the states of the D1-D5-P system?” Nevertheless, even if a
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definitive answer may be hard to establish and prove, it is well worth exploring in
more detail the three (or four) possible answers to this question, particularly in light
of our current understanding of black hole microstates:

Possibility 1: One Bulk Solution Dual to Many Boundary Microstates

It is possible that some of the states of the CFT, and in particular the typical ones
(whose counting gives the black hole entropy) do not have individual bulk duals,
while some other states do. However this runs counter to all our experience with
the AdS-CFT correspondence: In all the examples that have been extensively stud-
ied and well-understood (like the D1-D5 system, Polchinski-Strassler [67], giant
gravitons and LLM [117, 121, 122, 123, 124], the D4-NS5 system [125, 126]) the
AdS-CFT correspondence relates boundary states to bulk states and boundary vacua
to bulk vacua.

It is logically possible that, for the D1-D5-P system only, the path integrals in the
bulk and on the boundary are related in the standard way via the AdS-CFT corre-
spondence, and yet all the boundary states that give the CFT entropy are mapped into
one black hole solution in the bulk. This possibility is depicted in Fig. 8. However,
this possibility raises a lot of questions. First, why would the D1-D5-P system be
different from all the other systems mentioned above. Moreover, from the micro-
scopic (or CFT) perspective, there is nothing special about having three charges:
One can map the boundary states in the D1-D5-KKM system in four dimensions to
the corresponding bulk microstates [46, 127, 128]. The only reason for which the
D1-D5-P system would be different from all the other systems would be the fact
that it has the right amount of charges to create a macroscopically large event hori-
zon in five dimensions. To have such divergently different behavior for the D1-D5-P
system in five dimensions would be, depending on one’s taste, either very deep or,
more probably, very bizarre.

Even if the typical states of the three-charge system correspond to one single
black hole, we have seen that besides this black hole there exists a huge number of
smooth solutions that also are dual to individual states of this CFT. Hence, according
to Possibility 1, some states of the CFT would have individual bulk duals and some
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others would not (they would be dual as an ensemble to the black hole). This dis-
tinction is very unnatural. One might explain this if the states dual to the black hole
and the ones dual to microstate geometries are in different sectors of the CFT, but
this is simply not the case. We have seen in Sect. 8.6 that the deep bulk microstates
correspond to boundary states that have one (or several) long component string(s).
Hence, they belong to the same CFT sector as the typical microstates. If typical mi-
crostates did not have individual bulk duals, then in the same sector of the CFT, we
would have both states with a bulk dual and states without one. While not obviously
wrong, this appears, at least, dubious and unjustifiable from the point of view of
the CFT.

Possibility 2: Typical Bulk Microstate Very Similar to Black Hole

It is possible that all the states of the CFT are dual to geometries in the bulk, but
the typical states are dual to geometries that have a horizon, and that only differ
from the classical black hole by some Planck-sized fuzz near the singularity. This
situation is depicted in Fig. 9.

This also has a few problems. First, there are arguments, [27, 28], that if the
microstates of the black hole only differ from the classical geometry near the sin-
gularity, it does not solve the information paradox. Putting such arguments on one
side, there is a more obvious objection: Possibility 2 means that typical microstates
would have horizons, and so it would seem that one would have to ascribe an entropy
to each microstate, which violates one of the principles of statistical mechanics. A
counterargument here is to observe that one can always ascribe an ad hoc entropy to
a microstate of any system simply by counting the number of states with the same
macroscopic properties. What really distinguishes a microstate from an ensemble is
that one has complete knowledge of the state of the former and that one has lost some
knowledge of the state in the latter. The counterargument asserts that the presence
of the horizon does not necessarily indicate information loss and that the complete
information might ultimately be extracted from something like the Hawking radia-
tion. Thus microstates could have a horizon if information is somehow stored and
not lost in the black hole. This is a tenable viewpoint and it is favored by a number
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of relativists, but it defers the issue of how one decodes the microstate information
to some unknown future physics, whereas string theory appears to be pointing to a
very interesting answer in the present.

There is also one of the objections raised in possibility 1: We have seen that some
CFT states corresponding to long component strings are dual to deep microstates
that have no horizon. If the second possibility is correct, then other states in the
same sector of the CFT would be dual to geometries that have a horizon and a sin-
gularity and are therefore drastically different. Moreover, for extremal black holes,
the distance to the horizon is infinite, while the distance to the cap of the microstates
is finite (though divergent in the classical limit). Hence, in the same sector of the
CFT, some states would be dual to supergravity solutions with an infinite throat,
while others would be dual to solutions with a finite throat. This again appears quite
dubious from the point of view of the CFT.

One can also think about obtaining the bulk microstate geometries by starting
from a weak-coupling microstate (which is a certain configuration of strings and
branes) and increasing the string coupling. During this process, we can imagine
measuring the distance to the configuration. If a horizon forms, then this distance
would jump from being finite to being infinite. However, for the smooth microstates,
this distance is always a continuous function of the string coupling and never be-
comes infinite. While the infinite jump of the length of the throat is a puzzling
phenomenon, equally puzzling is the fact that only some microstates would have
this feature, while some very similar ones would not.26

Possibility 3: Typical Bulk Microstate Differs from Black Hole
at the Scale of the Horizon

It is possible that all boundary microstates are dual to horizonless configurations.
The classical black hole geometry is only a thermodynamic description of the
physics, which stops being valid at the scale of the horizon, much like fluid me-
chanics stops being a good description of a gas at scales of order the mean free path.
For physics at the horizon scale, one cannot rely on the thermodynamic description
and has to use a “statistical” description in terms of a large number of microstates.
This possibility is depicted in Fig. 10.

Since these microstates have no horizon, they have unitary scattering but it takes a
test particle a very long time to escape from this microstate. Hence, if this possibility
is correct, the information paradox is reduced to nothing but an artifact of using a
thermodynamic description beyond its regime of validity. This possibility now splits
into two options, having to do with the appropriate description of the typical black
hole microstates:

Possibility 3A: Typical microstates cannot be described in supergravity and
require the full force of string theory.
Possibility 3B: Typical microstates can be described in supergravity.

26 We thank Samir Mathur for pointing out this argument to us.
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As we cannot, yet, explore or count large strongly-interacting horizon-sized con-
figurations of branes and strings using our current string theory technology, Possi-
bility 3A would be more challenging to establish or analyze. We therefore need to
examine Possibility 3B in great detail to see if it is true, or at least determine the
extent to which supergravity can be used. One way to do this is by counting the mi-
crostates, using for example counting techniques of the type used in [29, 30, 31, 32].
Another approach is to find the exact (or even approximate) dictionary between the
states of the CFT and the bubbled geometries in the bulk. Anticipating (or perhaps
speculating) a bit, one could imagine that, as a result of this investigation, one could
relate the number of bubbles of a deep microstate to the distribution of the momen-
tum on the long component string of the dual CFT state. Such a relation (which
could in principle be obtained using scattering experiments as in [11, 42]) would in-
dicate whether typical bulk microstates have large bubbles or Planck-sized bubbles
and would help distinguish between Possibilities 3A and 3B.

One of the interesting questions that needs to be addressed here is: What about
non-extremal black holes? All the arguments presented in this review in favor of
the third possibility have been based on supersymmetric black holes, and one can
legitimately argue that even if these black holes describe an ensemble of smooth
horizonless configurations, it may be that non-supersymmetric black holes (like the
ones we have in the real world) are fundamental objects and not ensembles. The
arguments put forth to support Possibility 3 for non-extremal black holes are rather
more limited. Indeed, on a technical level, it is much more difficult to find non-
supersymmetric, smooth microstate geometries, but some progress has been made
[103]. There are nevertheless some interesting physical arguments based primarily
on the phenomenon of charge fractionation.

The idea of charge fractionation [129, 130] is most simply illustrated by the fact
that when you put N1 D1 branes (or strings) in a periodic box of length L, then
the lowest mass excitation carried by this system is not of order L−1 but of order
(N1L)−1. The explanation is that the branes develop multi-wound states with the
longest effective length being of order N1L. Similarly, but via a rather more com-
plex mechanism, the lowest mass excitations of the D1-D5 system vary as (N1N5)−1.
This is called charge fractionation. It is this phenomenon that leads to the CFT mass



Black Holes, Black Rings and their Microstates 83

gap given in (263). The other important consequence of fractionation is that the cor-
responding “largest” natural physical length scale of the system grows as N1N5. One
of the crucial physical questions is how does the “typical” length scale grow with
charge. That is, what is the physical scale of the most likely (or typical) configu-
ration. It is believed that this will grow as some positive power of the underlying
charges, and this is the fundamental reason why it is expected that microstate ge-
ometries are “large” compared to the Planck scale and that microstate geometries
are not just relevant within a few Planck units of the singularity but extend to the
location of the classical horizon.

This argument can be extended to non-BPS systems. Configurations of multiple
species of branes also exhibit fractionation. For this reason, it is believed that, given
a certain energy budget, the way to get most entropy is to make brane-antibrane
pairs of different sorts.27 Putting together these different kinds of branes creates a
system with very light (fractionated) modes, whose mass is much much lower than
the Planck scale. These modes can then “extend” all the way to the horizon and have
to be taken into account when discussing physics at this scale.

One of the counterarguments to the third possibility is that one can collapse a
shell of dust and create a horizon at very weak curvatures, long before the black
hole singularity forms. Moreover, the larger the mass, the longer will be the time
elapsed between the formation of the horizon and the singularity. Hence, it naively
appears that the horizon cannot possibly be destroyed by effects coming from a sin-
gularity that is so far away. Nevertheless, if fractionation gives the correct physics,
then one can argue that as the mass of the incoming shell increases, the number
of brane-antibrane pairs that are created becomes larger, and hence the mass of the
“fractionated” modes becomes smaller; these modes will then affect the physics at
larger and larger scales, which can be argued to be of order the horizon size. In
this picture, the collapsing shell would reach a region where a whole new set of
very light degrees of freedom exist. Since these “fractionated” degrees of freedom
have a much larger entropy, the shell will dump all its energy into these modes,
which would then expand to the horizon and destroy the classical geometry up to
this scale. More details in support of these arguments can be found in [27, 28].

On the other hand, one may hope to preserve the status quo for non-extremal
black holes by arguing that fractionation is a phenomenon that is based on weakly
coupled D-brane physics and is not necessarily valid in the range of parameters
where the black hole exists. This, however, leaves one with the problem of explain-
ing why fractionation appears to be occurring in extremal black holes and why non-
BPS black holes should be any different. Indeed, if the classical solution for the
extremal black hole is proven to give an incorrect description of the physics at the
horizon when embedded into a quantum theory of gravity, it is hard to believe that
other similar, non-extremal solutions will give a correct description of the physics

27 This idea has been used in formulating microscopic brane-antibrane models for near-BPS black
holes [131, 132] and for black branes [133], and has recently received a beautiful confirmation in
the microscopic calculation of the entropy of extremal non-BPS black holes [134]. It has also been
applied to cosmology [135] and to understanding the Gregory Laflamme instability [136, 137]
microscopically [138, 139].
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at the horizon. It will be much more reasonable to accept that all the classical black
hole solutions are thermodynamic descriptions of the physics, which break down at
the scale of the horizon.

The most direct support for the smooth microstate structure of non-extremal
black holes would be the construction and counting of smooth, non-extremal ge-
ometries generalizing those presented here, like those constructed in [103]. Such
constructions are notoriously difficult and, barring a technical miracle in the con-
struction of non-BPS solutions, it is hard to hope that there will be a complete clas-
sification of such geometries in the near future. On the other hand, it is instructive
and encouraging to recall the developments that happened shortly after the original
state counting arguments of Strominger and Vafa for BPS black holes: There was
a lot of analysis of near-BPS configurations and confirmation that the results could
be generalized perturbatively to near-BPS states with small numbers of anti-branes.
This might prove fruitful here and would certainly be very useful in showing that
generic smooth microstate geometries are not special properties of BPS objects. It
would thus be interesting to try, either perturbatively, or perhaps through microstate
mergers, to create near-BPS geometries.

Finally, the fact that the classical black hole solution does not describe the physics
at the scale of the horizon seems to contradict the expectation that this solution
should be valid there since its curvature is very small. There are, however, circum-
stances in which this expectation can prove wrong. First, if a solution has a singu-
larity, it oftentimes does not give the correct physics even at a very large distance
away from this singularity because the boundary conditions at the singularity gener-
ate incorrect physics even in regions where the curvature is very low. Such solutions
therefore have to be discarded. A few examples of such solutions are the Polchinski-
Strassler flow [67] without brane polarization [140, 150], or the singular KK giant
graviton [121, 122, 123, 124, 141]. The reason why we do not automatically dis-
card black hole solutions is that their singularities are hidden behind horizons and
sensible boundary conditions can be imposed at the horizon. However, this does
not imply that all solutions with singularities behind horizons must be good: It only
shows that they should not be discarded a priori, without further investigation. What
we have tried to show is that if the third possibility is correct then the investigation
indicates that the classical BPS black-hole solution should not be trusted to give a
good description of the physics at the scale of the horizon.

9.2 A Simple Analogy

To understand Possibility 3 a little better, it is instructive to recall the physics of a
gas, and to propose an analogy between the various descriptions of a black hole and
the various descriptions of this gas.

For scales larger than the mean free path, a gas can be described by thermody-
namics, or by fluid mechanics. At scales below the mean free path, the thermody-
namic description breaks down, and one has to use a classical statistical description,
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in which one assumes all the molecules behave like small colliding balls. When the
molecules are very close to each other, this classical statistical description breaks
down, and we have to describe the states of this gas quantum mechanically. More-
over, when the temperature becomes too high, the internal degrees of freedom of
the molecules become excited, and they cannot be treated as small balls. There are
many features, such as shot noise or Brownian motion, that are not seen by the ther-
modynamic description, but can be read off from the classical statistical description.
There are also features that can only be seen in the full quantum statistical descrip-
tion, such as Bose-Einstein condensation.

For black holes, if Possibilities 3A or 3B are correct, then the AdS-CFT corre-
spondence relates quantum states to quantum states, and we expect the bulk dual
of a given boundary state to be some complicated quantum superposition of hori-
zonless configurations. Unfortunately, studying complicated superpositions of ge-
ometries is almost impossible, so one might be tempted to conclude that even if
Possibilities 3A or 3B are correct, there is probably no new physics one can learn
from it, except for an abstract paradigm for a solution to the information para-
dox. Nevertheless, we can argue by analogy to a gas of particles that this is not
the case.

Consider a basis for the Hilbert space of the bulk configurations. If this basis is
made of coherent states, some of the states in this basis will have a semiclassical
description in terms of a supergravity background. This would be very similar to the
situation explored in [117], where bubbled geometries correspond to coherent CFT
states. The supergravity solutions we have discussed in these notes are examples of
such coherent states. The main difference between the Possibility 3A and 3B has
to do with whether the coherent states that form a basis of the Hilbert space can
be described using supergravity or whether one has to use string theory to describe
them. By analogy with the gas, this is the difference between the regime where the
simple “colliding ball” model is valid, and the regime where one excites internal
degrees of freedom of the molecules.

If supergravity is a good description of most of the coherent states, we can argue
that we have constructed the black hole analogue of the classical statistical descrip-
tion of an ideal gas. Even if most of the coherent states can only be described in a
full string-theoretic framework, one can still hope that this will give the analogue of
a more complicated, classical statistical description of the gas. Both these descrip-
tions are more complete than the thermodynamic description, and for the gas, they
capture physics that the thermodynamic description overlooks. Apart from solving
the information problem, it would be very interesting to identify precisely what this
physics is for a black hole. Indeed, as we will explain below, it might lead to some
testable signature of string theory.

On the other hand, the black-hole analogue of the quantum statistical descrip-
tion involves a complicated and hard-to-study quantum superposition of microstates,
and is therefore outside our present theoretical grasp. One can speculate, again in
analogy with the ideal gas, that there are probably interesting physical phenom-
ena that can only be captured by this description and not by the classical statistical
description.
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We should also note that in [23] it has been argued that from the point of view
of the dual CFT, the difference between the typical microstates and the classical
black hole solution can only be discerned by doing a very atypical measurement or
waiting for a very long time.28 This is analogous to the case of a gas, where if one
waits for a very long time, of order the Poincaré recurrence time, one will observe
spikes in the pressure coming from very unlikely events, such as a very large number
of molecules hitting the wall at the same time. In the thermodynamic approximation
one ignores the small energy gap between microstates, and such phenomena are not
visible. The fact that the classical black hole geometry has an infinite throat and no
mass gap implies that this geometry will not display such fluctuations at very large
time-scales. Since the CFT does have a mass gap, and fluctuations at large scales
occur, one can argue [144] that the black hole gives a thermodynamic description of
the physics and not a microscopic one.

Since, by standard AdS-CFT arguments, a long time on the boundary corresponds
to a large distance into the bulk, one can argue that atypical CFT measurements
involving very long times correspond in the bulk to propagators that reach very
close to the black hole horizon [23]. Hence, this supports the intuition that one can
distinguish between different microstates by making experiments at the scale of
the horizon. Moreover, in a gas one can distinguish between the ensemble and the
microstates by making experiments at scales smaller than the mean free path. At
this scale, the thermodynamic description breaks down, and new phenomena that
cannot be captured by thermodynamics appear. By analogy, for the black hole we
have argued that the scale where thermodynamics breaks down is that of the horizon.
Therefore, both our arguments and the arguments of [23] indicate that experiments
made at the scale of the horizon should distinguish between a microstate and the
classical solution. While from the point of the dual CFT these experiments appear
to be very atypical, they might not be so atypical from the point of view of the
dual bulk. It would certainly be very interesting to propose and analyze in more
detail such gedanken experiments and explore more thoroughly the implications of
this fact.

The whole problem with finding experimental or observational tests of string
theory is that the string scale and the Planck scale are so far out of reach of present
accelerations. However, the ideas of fractionation and the present ideas about the
microstate structure of black holes show us that we can get stringy effects on very
large length scales. It would obviously be very exciting if we could make black
holes at the LHC and thereby test these ideas, but even if this were not to happen,
we may still be able to see some signature of stringy black holes within the next
decade. Indeed, the gravitational wave detectors LIGO and LISA are very likely
to detect the gravitational “ring-down” of merging black holes within the next few
years and, while the underlying computations will be extremely difficult, one might
reasonably hope that the microstate structure arising from string theory could lead
to a new, detectable and recognizable signature in the LIGO or LISA data.

28 See [142, 143] for other interesting work in this direction.
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Black Hole Entropy and Quantum Information

M. J. Duff and S. Ferrara

Abstract We review some recently established connections between the mathemat-
ics of black hole entropy in string theory and that of multipartite entanglement in
quantum information theory. In the case of N = 2 black holes and the entanglement
of three qubits, the quartic [SL(2)]3 invariant, Cayley’s hyperdeterminant, provides
both the black hole entropy and the measure of tripartite entanglement. In the case
of N = 8 black holes and the entanglement of seven qubits, the quartic E7 invari-
ant of Cartan provides both the black hole entropy and the measure of a particular
tripartite entanglement encoded in the Fano plane.

1 Black Holes and Qubits

It sometimes happens that two very different areas of theoretical physics share the
same mathematics. This may eventually lead to the realization that they are, in fact,
dual descriptions of the same physical phenomena, or it may not. Either way, it
frequently leads to new insights in both areas. In this paper, the two areas in ques-
tion are black hole entropy in string theory and qubit entanglement in quantum in-
formation theory. Going one way, we shall learn that the entropy of the so-called
STU N = 2 black hole is given by the “hyperdeterminant”, a quantity first intro-
duced by Cayley in 1845 and which describes the tripartite entanglement of three
qubits [1, 2, 3]. Going the other way, we discover that the exceptional group E7, the
U-duality group of N = 8 supergravity, plays a part in the tripartite entanglement of
seven qubits [4, 5].

We begin in Sect. 2 with an interesting subsector of string compactification to
four dimensions which is provided by the STU model whose low energy limit is

M.J. Duff
The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ,
m.duff@imperial.ac.uk

S. Ferrara
Physics Department, Theory Unit, CERN, CH1211, Geneva23, Switzerland and INFN-Laboratori
Nazionale di Frascati, Via E. Fermi 40, 00044 Frascati, Italy, Sergio.Ferrara@cern.ch

Duff, M.J., Ferrara, S.: Black Hole Entropy and Quantum Information. Lect. Notes Phys. 755,
93–114 (2008)
DOI 10.1007/978-3-540-79523-0 2 c© Springer-Verlag Berlin Heidelberg 2008



94 M.J. Duff and S. Ferrara

described by N = 2 supergravity coupled to three vector multiplets. One may re-
gard it as a truncation of an N = 4 theory obtained by compactifying the heterotic
string on T 6 where S,T,U correspond to the dilaton/axion, complex Kahler form and
complex structure fields, respectively. It exhibits an SL(2,Z)S strong/weak coupling
duality and an SL(2,Z)T × SL(2,Z)U target space duality. By string/string duality,
this is equivalent to a Type IIA string on K3×T 2 with S and T exchanging roles
[6, 7, 8]. Moreover, by mirror symmetry this is in turn equivalent to a Type IIB string
on the mirror manifold with T and U exchanging roles. Another way to obtain this
model is by truncation of the N = 8 theory that results from T 7 compactification of
M-theory. Either way, the truncated theory has a combined [SL(2,Z)]3 duality and
complete S – T – U triality symmetry [9]. Alternatively, one may simply start with
this N = 2 theory directly as an interesting four-dimensional supergravity in its own
right, as described in Sect. 2.

The model admits extremal black holes solutions carrying four electric and mag-
netic charges, and we organize these 8 charges into the 2×2×2 hypermatrix, aABD,
and display the S – T – U symmetric Bogomolnyi mass formula [9]. Associated with
this hypermatrix is a hyperdeterminant, Det aABD, discussed in Sect. 3, first intro-
duced by Cayley in 1845 [10]. The black hole entropy, first calculated in [11], is
quartic in the charges and must be invariant under [SL(2,Z)]3 and under triality. The
main result of Sect. 4 is to show [1] that this entropy is given by the square root of
Cayley’s hyperdeterminant:

S = π
√
|Det aABD|. (1)

The hyperdeterminant also makes it appearance in quantum information theory
[12]. Let the three qubit system ABD (Alice, Bob amd Daisy) be in a pure state |Ψ〉,
and let the components of |Ψ〉 in the standard basis be aABD:

|Ψ〉 = aABD|ABD〉 (2)

or

|Ψ〉 = a000|000〉+a001|001〉+a010|010〉+a011|011〉
+ a100|100〉+a101|101〉+a110|110〉+a111|111〉 (3)

Then the three-way entanglement of the three qubits A, B and D is given by the
3-tangle [13]

τ3(ABD) = 4|Det aABD|. (4)

The 3-tangle is maximal for the GHZ state |000〉+ |111〉 [14] and vanishes for the
states p|100〉+q|010〉+r|001〉. The relation between three qubit quantum entangle-
ment and the Cayley hyperdeterminant was pointed out by Miyake and Wadati [12].

As far as we can tell [1], the appearance of the Cayley hyperdeterminant in these
two different contexts of stringy black hole entropy (where the aABD are integers
and the symmetry is [SL(2,Z)]3) and three-qubit quantum entanglement (where the
aABD are complex numbers and the symmetry is [SL(2,C]3) is a purely mathematical
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coincidence. Nevertheless, it has already provided fascinating new insights [1, 2, 3,
4, 5] into the connections between strings, black holes and quantum information1.

In Sect. 6 we extend the argument to the N = 8 case and, noting that

E7(7)(Z) ⊃ [SL(2,Z)]7 (5)

and
E7(C) ⊃ [SL(2,C)]7, (6)

show that the corresponding system in quantum information theory is that of seven
qubits (Alice, Bob, Charlie, Daisy, Emma, Fred and George). However, the larger
symmetry requires that they undergo at most tripartite entanglement of a very spe-
cific kind. As discussed in Sect. 8, the entanglement measure will be given by the
quartic Cartan E7(C) invariant [16, 17, 18, 19]. The entanglement may be repre-
sented by the Fano plane [20] which also provides the multiplication table of the
octonions. See also the interesting paper by Levay [5] who noted independently the
connection to the Fano plane.

2 The N = 2 STU Model

Consider the three complex scalars axion/dilaton field S, the complex Kahler form
field T and the complex structure field U

S = S1 + iS2

T = T1 + iT2

U = U1 + iU2. (7)

This complex parameterization allows for a natural transformation under the various
SL(2,Z) symmetries. The action of SL(2,Z)S is given by

S → aS +b
cS +d

, (8)

where a,b,c,d are integers satisfying ad − bc = 1, with similar expressions for
SL(2,Z)T and SL(2,Z)U . Defining the matrices MS, MT and MU via

MS =
1
S2

(
1 S1

S1 |S|2

)
, (9)

the action of SL(2,Z)S now takes the form

MS → ωS
T MSωS, (10)

1 A third application [15], not considered in this paper, is the Nambu-Goto string whose action is
also given by

√
|Det aABD| in spacetime signature (2,2).
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where

ωS =
(

d b
c a

)
, (11)

with similar expressions for MT and MU . We also define the SL(2,Z) invariant
tensors

εS = εT = εU =

(
0 1

−1 0

)
. (12)

Starting from the heterotic string, the bosonic action for the graviton gμν , dilaton
η , two-form Bμν four U(1) gauge fields Aa

S and two complex scalars T and U is [9]

ISTU =
1

16πG

∫
d4x

√
−ge−η

[
Rg +gμν∂μη∂νη− 1

12
gμλgντgρσHμνρHλτσ

+
1
4

Tr
(
∂MT

−1∂MT
)
+

1
4

Tr
(
∂MU

−1∂MU
)

− 1
4

FSμν
T (MT ×MU )FS

μν
]
. (13)

where the metric gμν is related to the four-dimensional canonical Einstein metric
gc
μν by gμν = eηgc

μν and where

Hμνρ = 3
(
∂[μBνρ] − 1

2 AS[μ
T (εT × εU )FSνρ]

)
. (14)

This action is manifestly invariant under T -duality and U-duality, with

FSμν →
(
ωT

−1 ×ωU
−1)FSμν , MT/U → ωT

T/U MT/U ωT/U , (15)

and with η , gμν and Bμν inert. Its equations of motion and Bianchi identities (but
not the action itself) are also invariant under S-duality (8), with T and gc

μν inert
and with (

FSμν
a

F̃Sμν
a

)
→ ω−1

S

(
FSμν

a

F̃Sμν
a

)
, (16)

where

F̃Sμν
a = −S2

[(
MT

−1 ×MU
−1)(εT × εU )

]a
b ∗FSμν

b −S1FSμν
a, (17)

where the axion field a is defined by

εμνρσ∂σa =
√
−ge−ηgμσgνλgρτHσλτ , (18)

and where S = S1 + iS2 = a+ ie−η .
Thus T -duality transforms Kaluza-Klein electric charges (FS

3, FS
4) into winding

electric charges (FS
1, FS

2) (and Kaluza-Klein magnetic charges into winding mag-
netic charges), U-duality transforms the Kaluza-Klein and winding electric charge
of one circle (FS

3, FS
2) into those of the other (FS

4, FS
1) (and similarly for the
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magnetic charges), but S-duality transforms Kaluza-Klein electric charge (FS
3, FS

4)
into winding magnetic charge (F̃S

3
, F̃S

4) (and winding electric charge into Kaluza-
Klein magnetic charge). In summary, we have SL(2, Z)T × SL(2, Z)U and T ↔ U
off-shell but SL(2, Z)S×SL(2, Z)T ×SL(2, Z)U and an S–T–U interchange on-shell.

One may also consider the Type IIA action ITUS and the Type IIB action IUST

obtained by cyclic permutation of the fields S,T,U. Finally, one may consider an
action [11] where the S, T and U fields enter democratically with a prepotential

F = STU (19)

which off-shell has the full STU interchange but none of the SL(2, Z). All four
versions are on-shell equivalent.

Following [9], it is now straightforward to write down an S–T–U symmetric
Bogomolnyi mass formula. Let us define electric and magnetic charge vectors αa

S
and β a

S associated with the field strengths FS
a and F̃ a

S in the standard way. The elec-
tric and magnetic charges Qa

S and Pa
S are given by

FS
a
0r ∼

Qa
S

r2 ∗FS
a
0r ∼

Pa
S

r2 , (20)

giving rise to the charge vectors

(
αa

S

β a
S

)
=

(
S(0)

2 M−1
T ×M−1

U S(0)
1 εT × εU

0 −εT × εU

)ab(
Qb

S

Pb
S

)
. (21)

For our purpose it is useful to define a 2×2×2 array aABD via

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a000

a001

a010

a011

a100

a101

a110

a111

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β 1
S

−β 2
S

−β 3
S

−β 4
S

α1
S

α2
S

α3
S

α4
S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

transforming as
aABD → ωS

A
A′ωT

B
B′ωU

D
D′aA′B′D′

. (23)

Then the mass formula is

m2 =
1
16

aT (MS
−1MT

−1MU
−1 −MS

−1εT εU − εSMT
−1εU − εSεT MU

−1)a.

(24)
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This is consistent with the general N = 2 Bogomolnyi formula [21]. Although all
theories have the same mass spectrum, there is clearly a difference of interpretation
with electrically charged elementary states in one picture being solitonic monopole
or dyon states in the other.

This 2× 2× 2 array aABD is an example of a “hypermatrix”, a term coined by
Cayley in 1845 [10], where he also introduced a “hyperdeterminant”.

3 Cayley’s Hyperdeterminant

In 1845, Cayley [10] generalized the determinant of a 2×2 matrix aAB to the hyper-
determinant of a 2×2×2 hypermatrix aABD

Det a = − 1
2
εA1A2εB1B2εD1D4εA3A4εB3B4εD2D3 aA1B1D1 aA2B2D2 aA3B3D3 aA4B4D4

= a2
000a2

111 +a2
001a2

110 +a2
010a2

101 +a2
100a2

011

− 2(a000a001a110a111 +a000a010a101a111

+ a000a100a011a111 +a001a010a101a110

+ a001a100a011a110 +a010a100a011a101)
+ 4(a000a011a101a110 +a001a010a100a111) (25)

= a2
0a2

7 +a2
1a2

6 +a2
2a2

5 +a2
3a2

4

− 2(a0a1a6a7 +a0a2a5a7 +a0a4a3a7 +a1a2a5a6 +a1a3a4a6 +a2a3a4a5)
+ 4(a0a3a5a6 +a1a2a4a7) (26)

where we have made the binary conversion 0, 1, 2, 3, 4, 5, 6, 7 for 000, 001, 010,
011, 100, 101, 110, 111.

The hyperdeterminant vanishes iff the following system of equations in six un-
knowns pA, qB, rD has a nontrivial solution, not allowing any of the pairs to be
both zero:

aABD pAqB = 0

aABD pArD = 0

aABDqBrD = 0 (27)

For our purposes, the important properties of the hyperdeterminant are that it is a
quartic invariant under [SL(2)]3 and under a triality that interchanges A, B and D.
These properties are valid whether the aABD are complex, real or integer.

One way to understand this triality is to think of having three different metrics
(Alice, Bob and Daisy)

(γA)A1A2 = εB1B2εD1D2 aA1B1D1 aA2B2D2

(γB)B1B2 = εD1D2εA1A2 aA1B1D1 aA2B2D2

(γD)D1D2 = εA1A2εB1B2 aA1B1D1 aA2B2D2 (28)
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Explicitly,

γ =

⎛
⎝ 2(a0a6 −a2a4) a0a7 −a2a5 +a1a6 −a3a4

a0a7 −a2a5 +a1a6 −a3a4 2(a1a7 −a3a5)

⎞
⎠ (29)

β =

⎛
⎝ 2(a0a3 −a1a2) a0a7 −a1a6 +a4a3 −a5a2

a0a7 −a1a6 +a4a3 −a5a2 2(a4a7 −a5a6)

⎞
⎠ (30)

α =

⎛
⎝ 2(a0a5 −a4a1) a0a7 −a4a3 +a2a5 −a6a1

a0a7 −a4a3 +a2a5 −a6a1 2(a2a7 −a6a3)

⎞
⎠ (31)

All are equivalent, however, since

det α = det β = det γ = −Det a (32)

If we make the identifications

a0 =
1√
2

(
−P0 +P2)

a1 =
1√
2

(
−Q0 +Q2)

a2 =
1√
2

(
P1 −P3)

a3 =
1√
2

(
Q1 −Q3)

a4 =
1√
2

(
−P1 −P3)

a5 =
1√
2

(
−Q1 −Q3)

a6 =
1√
2

(
−P0 −P2)

a7 =
1√
2

(
−Q0 −Q2) (33)

then we find the O(2,2) scalar products

2(a0a6 −a2a4) =
(
P0)2

+
(
P1)2 −

(
P2)2 −

(
P3)2

= P2

2(a1a7 −a3a5) = (Q0)
2 +(Q1)

2 − (Q2)
2 − (Q3)

2 = Q2

a0a7 −a2a5 +a1a6 −a3a4 =
(
P0Q0

)
+
(
P1Q1

)
+
(
P2Q2

)
+
(
P3Q3

)
= P.Q
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so

γ =

(
P2 P.Q

P.Q Q2

)
(34)

and

−Det a = P2Q2 − (P.Q)2

4 Black Hole Entropy

The STU model admits extremal black hole solutions satisfying the Bogomolnyi
mass formula. As usual, their entropy is given by one quarter the area of the event
horizon. However, to calculate this area requires evaluating the mass, not with the
asymptotic values of the moduli but with their frozen values on the horizon, which
are fixed in terms of the charges [22]. This ensures that the entropy is moduli-
independent, as it should be. The relevant calculation was carried out in [11] for the
model with the STU prepotential. The electric and magnetic charges of that paper
are denoted (p0, q0), (p1, q1), (p2, q2), (p3, q3). In these variables, the entropy is
given by

S = π
(

W (pΛ,qΛ)
)1/2

(35)

where

W
(

pΛ,qΛ

)
= − (p ·q)2 +4

((
p1q1

)(
p2q2

)
+
(

p1q1
)(

p3q3
)
+
(

p3q3
)(

p2q2
))

−4p0q1q2q3 +4q0 p1 p2 p3. (36)

The function W (pΛ, qΛ) is symmetric under transformations: p1 ↔ p2 ↔ p3 and
q1 ↔ q2 ↔ q3. For the solution to be BPS, we have to require W > 0.

If we make the identifications [1]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0

p1

p2

p3

q0

q1

q2

q3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a0

−a1

−a2

a4

−a7

a6

a5

−a3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

we recognize from (3) that
W = −Det a, (38)
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and hence the black hole entropy is given by

S = π
√
−Det a (39)

Some examples of supersymmetric black hole solutions [23] are provided by the
electric Kaluza-Klein black hole with α = (1,0,0,0) and β = (0,0,0,0); the elec-
tric winding black hole with α = (0,0,0,−1) and β = (0,0,0,0); the magnetic
Kaluza-Klein black hole with α = (0,0,0,0) and β = (0,−1,0,0); the magnetic
winding black hole with α = (0,0,0,0) and β = (0,0,−1,0). These are character-
ized by a scalar-Maxwell coupling parameter a =

√
3. By combining these 1-particle

states, we may build up 2-, 3- and 4-particle bound states at threshold [9, 23]. For
example α = (1,0,0,−1) and β = (0,0,0,0) with a = 1; α = (1,0,0,−1) and
β = (0,−1,0,0) with a = 1/

√
3; α = (1,0,0,−1) and β = (0,−1,−1,0) with

a = 0. The 1-, 2- and 3-particle states all yield vanishing contributions to Det a.
A non-zero value is obtained for the 4-particle example, however, which is just the
Reissner-Nordstrom black hole.

5 The N = 8 Generalization

The black holes described by Cayley’s hyperdeterminant are those of N = 2 su-
pergravity coupled to three vector multiplets, where the symmetry is [SL(2,Z)]3.
One might therefore ask whether the black hole/information theory correspondence
could be generalized. There are three generalizations we might consider:

(1) N = 2 supergravity coupled to l vector multiplets where the symmetry is
SL(2,Z)× SO(l − 1,2, Z), and the black holes carry charges belonging to the
(2, l +1) representation (l +1 electric plus l +1 magnetic).

(2) N = 4 supergravity coupled to m vector multiplets where the symmetry is
SL(2,Z)× SO(6,6 + m, Z), where the black holes carry charges belonging to
the (2,12+m) representation (m+12 electric plus m+12 magnetic).

(3) N = 8 supergravity where the symmetry is the non-compact exceptional group
E7(7)(Z), and the black holes carry charges belonging to the fundamental 56-
dimensional representation (28 electric plus 28 magnetic).

In all three cases, there exist quartic invariants akin to Cayley’s hyperdeterminant
whose square root yields the corresponding black hole entropy. If there is to be
a quantum information theoretic interpretation, however, it cannot just be random
entanglement of more qubits, because the general n qubit entanglement is described
by the group [SL(2,C)]n, which, even after replacing Z by C, differs from the above
symmetries (except when n = 3, which correspond to case (1) above with l = 3, the
case we already know).

We note, however, that

E7(7)(Z) ⊃ [SL(2,Z)]7 (40)
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and
E7(C) ⊃ [SL(2,C)]7, (41)

We shall now show that the corresponding system in quantum information theory is
that of seven qubits (Alice, Bob, Charlie, Daisy, Emma, Fred and George). However,
the larger symmetry requires that they undergo at most tripartite entanglement of a
very specific kind. The entanglement measure will be given by the quartic Cartan
E7(C) invariant [16, 17, 18, 19].

6 Decomposition of E7(7)

Consider the decomposition of the fundamental 56-dimensional representation of
E7(7) under its maximal subgroup

E7(7) ⊃ SL(2)A ×SO(6,6)

56 → (2,12)+(1,32) (42)

Further decomposing SO(6,6),

SL(2)A ×SO(6,6) ⊃ SL(2)A ×SL(2)B ×SL(2)D ×SO(4,4)

(2,12)+(1,32) → (2,2,2,1)

+(2,1,1,8v)+(1,2,1,8s)+(1,1,2,8c) (43)

Further decomposing SO(4,4),

SL(2)A ×SL(2)B ×SL(2)D ×SO(4,4) ⊃ SL(2)A ×SL(2)B ×SL(2)D

×SO(2,2)×SO(2,2)

(2,2,2,1)+(2,1,1,8v)+(1,2,1,8s)+(1,1,2,8c) →
(2,2,2,1,1)+(2,1,1,4,1)+(2,1,1,1,4)

+(1,2,1,2,2)+(1,2,1,2,2)+(1,1,2,2,2)+(1,1,2,2,2) (44)

Finally, further decomposing each SO(2,2)

SL(2)A ×SL(2)B ×SL(2)D ×SO(2,2)×SO(2,2) ⊃
SL(2)A ×SL(2)B ×SL(2)D ×SL(2)C ×SL(2)G ×SL(2)F ×SL(2)E

(2,2,2,1,1)+(2,1,1,4,1)+(2,1,1,1,4)

+(1,2,1,2,2)+(1,2,1,2,2)+(1,1,2,2,2)+(1,1,2,2,2) →
(2,2,2,1,1,1,1)+(2,1,1,2,2,1,1)+(2,1,1,1,1,2,2)+

(1,2,1,2,1,1,2)+(1,2,1,1,2,2,1)+(1,1,2,2,1,2,1)+(1,1,2,1,2,1,2)
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In summary,

E7(7) ⊃ SL(2)A ×SL(2)B ×SL(2)C ×SL(2)D ×SL(2)E ×SL(2)F ×SL(2)G (45)

and the 56 decomposes as

56 →
(2,2,1,2,1,1,1)

+(1,2,2,1,2,1,1)

+(1,1,2,2,1,2,1)

+(1,1,1,2,2,1,2)

+(2,1,1,1,2,2,1)

+(1,2,1,1,1,2,2)

+(2,1,2,1,1,1,2) (46)

An analogous decomposition holds for

E7(C) ⊃ [SL(2,C)]7. (47)

7 Tripartite Entanglement of 7 Qubits

We have seen that in the case of three qubits the tripartite entanglement is described
by [SL(2,C)]3, and that the entanglement measure is given by Cayley’s hyperde-
terminant. Now we consider seven qubits (Alice, Bob, Charlie, Daisy, Emma, Fred
and George) but where Alice has tripartite entanglement not only with Bob/Daisy
but also with Emma/Fred and also with George/Charlie, and similarly for the other
six individuals. So, in fact, each person has tripartite entanglement with each of the
remaining three couples:

|Ψ〉 =

aABD|ABD〉
+bBCE |BCE〉
+cCDF |CDF〉
+dDEG|DEG〉
+eEFA|EFA〉
+ fFGB|FGB〉
+gGAC|GAC〉 (48)
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Note that

(1) Any pair of states has an individual in common
(2) Each individual is excluded from four out of the seven states
(3) Two given individuals are excluded from two out of the seven states
(4) Three given individuals are never excluded

The entanglement may be represented by a heptagon with vertices A,B,C,D,E,F,G
and seven triangles ABD, BCE, CDF, DEG, EFA, FGB and GAC. See Fig. 1. Al-
ternatively, we can use the Fano plane. See Fig. 2. The Fano plane corresponds to
the multiplication table of the octonions as may be seen from the description of the
state |Ψ〉 given in Table 1.

Each of the seven states transforms as a (2,2,2) under three of the SL(2)s and
are singlets under the remaining four. Note that from (43) we see that the A-B-C
triality of Sect. 3 is linked with the 8v−8s−8c triality of the SO(4,4). For example,
interchanging A and B leaves |Ψ〉 invariant provided we also interchange C and
F. Individually, therefore, the tripartite entanglement of each of the seven states is

Fig. 1 The E7 entangle-
ment diagram. Each of the
seven vertices A,B,C,D,E,F,G
represents a qubit, and each
of the seven triangles ABD,
BCE, CDF, DEG, EFA, FGB,
GAC describes a tripartite
entanglement A

B

C

DE

F

G

FE

B G

C

A

D

Fig. 2 The Fano plane has seven points, representing the seven qubits, and seven lines (the circle
counts as a line) with three points on every line, representing the tripartite entanglement, and three
lines through every point
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Table 1 The entanglement of the state |Ψ〉 coincides with the multiplication table of the octonions

A B C D E F G

A D G −B F −E −C
B −D E A −C G −F
C −G −E F B −D A
D B −A −F G C −E
E −F C −B −G A D
F E −G D −C −A B
G C F −A E −D −B

given by Cayley’s hyperdeterminant. Taken together, however, we see from (46)
that they transform as a complex 56 of E7(C). Their tripartite entanglement must be
given by an expression that is quartic in the coefficients a,b,c,d,e,f,g and invariant
under E7(C). The unique possibility is the Cartan invariant I4, and so the 3-tangle is
given by

τ3(ABCDEFG) = 4|I4| (49)

If the wave-function (47) is normalized, then 0 ≤ τ3(ABCDEFG) ≤ 1.

8 Cartan’s E7(7) Invariant

The Cremmer-Julia [17] form of the Cartan E7(7) invariant may be written as

I4 = Tr (ZZ̄)2 − 1
4

(Tr ZZ̄)2 +4(P f Z +P f Z̄) (50)

and the Cartan form [16] may be written as

I4 = −Tr (x y)2 +
1
4
(Tr x y)2 −4(P f x+P f y). (51)

Here

ZAB = − 1

4
√

2
(xab + iyab)(Γab)AB (52)

and

xab + iyab = −
√

2
4

ZAB(ΓAB)ab (53)

The matrices of the SO(8) algebra are (Γab)AB, where (a b) are the 8 vector in-
dices and (A, B) are the 8 spinor indices. The (Γab)AB matrices can be considered
also as (ΓAB)ab matrices due to equivalence of the vector and spinor representations
of the SO(8) Lie algebra. The exact relation between the Cartan invariant in (51)
and Cremmer-Julia invariant [17] in (50) was established in [24, 25]. The quartic
invariant I4 of E7(7) is also related to the octonionic Jordan algebra JO

3 [19].
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In the stringy black hole context, ZAB is the central charge matrix, and (x,y) are
the quantized charges of the black hole (28 electric and 28 magnetic). The relation
between the entropy of stringy black holes and the Cartan-Cremmer-Julia E7(7) in-
variant was established in [18]. The central charge matrix ZAB can be brought to the
canonical basis for the skew-symmetric matrix using an SU(8) transformation:

Zab =

⎛
⎜⎜⎜⎜⎝

z1 0 0 0

0 z2 0 0

0 0 z3 0

0 0 0 z4

⎞
⎟⎟⎟⎟⎠

⊗
(

0 1

−1 0

)
(54)

where zi = ρieiϕi are complex. In this way, the number of entries is reduced from 56
to 8. In a systematic treatment in [26], the meaning of these parameters was clarified.
From 4 complex values of zi = ρieiϕi one can remove 3 phases by an SU(8) rotation,
but the overall phase cannot be removed; it is related to an extra parameter in the
class of black hole solutions [27, 28, 29]. In this basis, the quartic invariant takes the
form [18]

I4 =∑
i
|zi|4 −2∑

i< j
|zi|2|z j|2 +4(z1z2z3z4 + z̄1z̄2z̄3z̄4)

= (ρ1 +ρ2 +ρ3 +ρ4)(ρ1 +ρ2 −ρ3 −ρ4)(ρ1 −ρ2 +ρ3 −ρ4)
× (ρ1 −ρ2 −ρ3 +ρ4)+8ρ1ρ2ρ3ρ4(cosϕ−1) (55)

Therefore a 5-parameter solution is called a generating solution for other black holes
in N = 8 supergravity/M-theory. The expression for their entropy is always given by

S = π
√

|I4| (56)

for some subset of 5 of the 8 parameters mentioned above. Recently a new class
of solutions was discovered, describing black rings. The maximal number of pa-
rameters for the known solutions is 7. The entropy of black ring solutions found
so far was identified in [30, 31] with the expression (56) for a subset of 7 out of 8
parameters mentioned above.

Kallosh and Linde have shown that I4 depending on 4 complex eigenvalues can
be represented as Cayley’s hyperdeterminant of a hypermatrix aABD. To see this, we
note that in x, y basis only the SO(8) symmetry is manifest, which means that every
term in (51) is invariant only under SO(8) symmetry. However, it was proved in [16]
and [17] that the sum of all terms in (51) is invariant under the full SU(8) symmetry,
which acts as follows

δ
(

xab ± iyab

)
=
(

2Λ[a
[cδ b]

d] ± iΣabcd

)(
xcd ∓ iycd

)
. (57)

The total number of parameters is 63, where 28 are from the manifest SO(8) and
35 from the antisymmetric self-dual Σabcd =∗ Σabcd . Thus one can use the SU(8)
transformation of the complex matrix xab + iyab and bring it to the canonical form
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with some complex eigenvalues λI , I = 1, 2, 3, 4. The value of the quartic invariant
(51) will not change.

(
xab + iyab

)
can

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ1 0 0 0 0 0 0

−λ1 0 0 0 0 0 0 0

0 0 0 λ2 0 0 0 0

0 0 −λ2 0 0 0 0 0

0 0 0 0 0 λ3 0 0

0 0 0 0 −λ3 0 0 0

0 0 0 0 0 0 0 λ4

0 0 0 0 0 0 −λ4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(58)

The relation between the complex coefficients λI , the parameters xi j and ykl , the
matrix aABD and the black hole charges pi and qk [1] is given by the following
dictionary:

λ1 = x12 + iy12 = a111 + ia000 = −q0 − ip0

λ2 = x34 + iy34 = a001 + ia110 = −p1 + iq1

λ3 = x56 + iy56 = a010 + ia101 = −p2 + iq2

λ4 = x78 + iy78 = a100 + ia011 = p3 − iq3 (59)

If we now write the quartic E7(7) Cartan invariant in the canonical basis (xi j,yi j),
i, j = 1, . . . ,8:

I4 = −
(

x12y12 + x34y34 + x56y56 + x78y78

)2
−4

(
x12x34x56x78 + y12y34y56y78

)

+ 4
(

x12x34y12y34 + x12x56y12y56 + x34x56y34y56 + x12x78y12y78 + x34x78y34y78

+ x56x78y56y78

)
. (60)

then it may now be compared to Cayley’s hyperdeterminant (25). We find

I4 = −Det a (61)

The above discussion of E7(7) also applies, mutatis mutandis, to E7(C).
To understand better the entanglement, we note that as a result of (46) Cartan’s

invariant contains not one Cayley hyperdeterminant but seven! It may be written as
the sum of seven terms each of which is invariant under [SL(2)]3 plus cross terms.
To see this, denote a 2 in one of the seven entries in (46) by A, B, C, D, E, F, G. So
we may rewrite (46) as

56 = (ABD)+(BCE)+(CDF)+(DEG)+(EFA)+(FGB)+(GAC) (62)
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or symbolically
56 = a+b+ c+d + e+ f +g (63)

Then I4 is the singlet in 56×56×56×56:

J4 ∼ a4 +b4 + c4 +d4 + e4 + f 4 +g4+

2
[
a2b2 +b2c2 + c2d2 +d2e2 + e2 f 2 + f 2g2 +g2a2+

a2c2 +b2d2 + c2e2 +d2 f 2 + e2g2 + f 2a2 +g2b2+

a2d2 +b2e2 + c2 f 2 +d2g2 + e2a2 + f 2b2 +g2c2]

+8[bcd f + cdeg+de f a+ e f gb+ f gac+gabd +abce] (64)

where products like

a4 = (ABD)(ABD)(ABD)(ABD)

= εA1A2εB1B2εD1D4εA3A4εB3B4εD2D3 aA1B1D1 aA2B2D2 aA3B3D3 aA4B4D4 (65)

exclude four individuals (here Charlie, Emma, Fred and George), products like

a2 f 2 = (ABD)(ABD)(FGB)(FGB)

= εA1A2εB1B2εD1D4εF3F4εG3G4εD2B3 aA1B1D1 aA2B2D2 fF3G3B3 fF4G4B4 (66)

exclude two individuals (here Charlie and Emma) and products like

abce = (ABD)(BCE)(CDF)(EFA)

= εA1B2εB1C2εD1A4εC3E4εD3F4εE2F3 aA1B1D1 bB2C2E2 cC3D3F3 eE4F4A4 (67)

exclude one individual (here George).

9 The Black Hole Analogy

In the STU stringy black hole context [1, 2, 9, 11], the aABC are integers (corre-
sponding to quantized charges), and hence the symmetry group is [SL(2,Z)]3 rather
than [SL(2,C)]3. However, as discussed by Levay [3], there is a branch of quantum
information theory which concerns itself with real qubits, called rebits, for which
the aABC are real. (One difference remains, however: one may normalize the wave
function, whereas for black holes there is no such restriction on the charges aABC.)
It turns out that there are three reality classes which can be characterized by the
hyperdeterminant

1) Det a < 0

2) Det a = 0

3) Det a > 0 (68)
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Case (1) corresponds to the non-separable or GHZ class [14], for example,

|Ψ〉 =
1
2
(−|000〉+ |011〉+ |101〉+ |110〉) (69)

Case (2) corresponds to the separable (A-B-C, A-BC, B-CA, C-AB) and W
classes, for example

|Ψ〉 =
1√
3
(|100〉+ |010〉+ |001〉) (70)

In the string/supergravity interpretation [1], cases (1) and (2) were shown to corre-
spond to BPS black holes, for which half of the supersymmetry is preserved. Case
(1) has non-zero horizon area and entropy (“large” black holes), and case (2) to van-
ishing horizon area and entropy (“small” black holes), at least at the semi-classical
level. However, small black holes may acquire a non-zero entropy through higher-
order quantum effects. This entropy also has a quantum information interpretation
involving bipartite entanglement of the three qubits [2].

Case (3) is also GHZ, for example the above GHZ state (69) with a sign flip

|Ψ〉 =
1
2
(|000〉+ |011〉+ |101〉+ |110〉) (71)

In the string/supergravity interpretation, case (3) corresponds to non-BPS black
holes [2]. With four non-zero charges (q0, p1, p2, p3) in (59), for example, an ex-
treme but non-BPS black hole [23] may be obtained by flipping the sign [32] of one
of the charges. The canonical GHZ state

|Ψ〉 =
1√
2
|111〉+ 1√

2
|000〉 (72)

also belongs to case (3).
In the N = 8 theory, “large” and “small” black holes are classified by the sign

of I4:

1) I4 > 0

2) I4 = 0

3) I4 < 0 (73)

Once again, non-zero I4 corresponds to large black holes, which are BPS for I4 > 0
and non-BPS for I4 < 0, and vanishing I4 to small black holes. However, in contrast
to N = 2, case (1) requires that only 1/8 of the supersymmetry is preserved, while
we may have 1/8, 1/4 or 1/2 for case (2).

It is worth noting that the charge orbits corresponding to non-zero I4 are associ-
ated with the following cosets:

E7(7)

E6(2)
(74)



110 M.J. Duff and S. Ferrara

and
E7(7)

E6(6)
(75)

The large black hole solutions can be found [33] by solving the N = 8 classical
attractor equations [22] when at the attractor value the ZAB matrix, in normal form,
becomes

ZAB =

⎛
⎜⎜⎜⎜⎝

Zε 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

(76)

for positive I4 and

ZAB = eiπ/4|Z|

⎛
⎜⎜⎜⎜⎝

ε 0 0 0

0 ε 0 0

0 0 ε 0

0 0 0 ε

⎞
⎟⎟⎟⎟⎠

(77)

for negative I4. These values exhibit the maximal compact symmetries SU(6)×
SU(2) and USp(8) for the positive and negative I4, respectively.

If the phase in (55) vanishes (which is the case if the configuration preserves at
least 1/4 supersymmetry [26]), I4 becomes

I4 = λ1λ2λ3λ4, (78)

where we have defined λi by

λ1 = ρ1 +ρ2 +ρ3 +ρ4

λ2 = ρ1 +ρ2 −ρ3 −ρ4

λ3 = ρ1 −ρ2 +ρ3 −ρ4

λ4 = ρ1 −ρ2 −ρ3 +ρ4 (79)

and we order the λi so that λ1 ≥ λ2 ≥ λ3 ≥ |λ4|. The charge orbits for the small
black holes depend on the number of unbroken supersymmetries or the number of
vanishing eigenvalues. The orbit is [19, 26, 34]

E7(7)

H1,2,3
(80)

where

H1 = F4(4) � T26 λ1, λ2, λ3 �= 0, λ4 = 0 (1/8 BPS)

H2 = SO(5,6)� (T32 ×T1) λ1, λ2 �= 0, λ3, λ4 = 0 (1/4 BPS)

H3 = E6(6) � T27 λ1 �= 0, λ2, λ3, λ4 = 0 (1/2 BPS) (81)
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For N = 8, as for N = 2, the large black holes correspond to the two classes of
GHZ-type (entangled) states and small black holes to the separable or W
class.

10 Subsectors

Having understood the analogy between N = 8 black holes and the tripartite entan-
glement of 7 qubits using E7(7), we may now find the analogy in the N = 4 case
using SL(2)×SO(6,6) and the N = 2 case using SL(2)×SO(2,2).

For N = 4, as may be seen from (43), we still have an [SL(2)]7 subgroup but now
there are only 24 states

|Ψ〉 = aABD|ABD〉+ eEFA|EFA〉+gGAC|GAC〉 (82)

So only Alice talks to all the others. This is described by just those three lines
passing through A in the Fano plane. Then the equations analagous to (62) and
(63) are

(2,12) = (ABD)+(EFA)+(GAC) = a+ e+g (83)

and the corresponding quartic invariant, I4, reduces to the singlet in (2,12) ×
(2,12)× (2,12)× (2,12).

I4 ∼ a4 + e4 +g4 +2
[
e2g2 +g2a2 +a2e2] (84)

If we identify the 24 numbers (aABD,eEFA,gGAC) with (Pμ ,Qν) with μ ,ν = 0, . . .11,
this becomes [9, 27, 28, 29]

I4 = P2Q2 − (P.Q)2 (85)

which is manifestly invarinat under SL(2)×SO(6,6).
For N = 2, as may be seen from (43), we only have an [SL(2)]3 subgroup and

there are only 8 states
|Ψ〉 = aABD|ABD〉 (86)

This is described by just the ABD line in the Fano plane. This is simply the usual
tripartite entanglement, for which

(2,2,2) = (ABD) = a (87)

and the corresponding quartic invariant

I4 ∼ a4 (88)

is just Cayley’s hyperdeterminant

I4 = −Deta (89)
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11 Conclusions

We note that the 56-dimensional Hilbert space given in (46) and (48) is not a sub-
space of the usual 27-dimensional seven-qubit Hilbert space given by (2,2,2,2,2,2,2)
but rather a direct sum of seven 23-dimensional three-qubit Hilbert spaces (2,2,2).
This is, however, a subspace of the 37-dimensional seven-qutrit Hilbert space given
by (3,3,3,3,3,3,3). Under

[SL(3)]7 → [SL(2)]7 (90)

we have the decomposition

(3,3,3,3,3,3,3) →
1 term like (2,2,2,2,2,2,2)

7 terms like (2,2,2,2,2,2,1)

21 terms like (2,2,2,2,2,1,1)

35 terms like (2,2,2,2,1,1,1)

35 terms like (2,2,2,1,1,1,1)

21 terms like (2,2,1,1,1,1,1)

7 terms like (2,1,1,1,1,1,1)

1 term like (1,1,1,1,1,1,1) (91)

which contains

(2,2,1,2,1,1,1)

+(1,2,2,1,2,1,1)

+(1,1,1,2,2,1,2)

+(2,1,1,1,2,2,1)

+(1,2,1,1,1,2,2)

+(2,1,2,1,1,1,2) (92)

So the Fano plane entanglement we have described fits within conventional quantum
information theory.

The Fano plane also finds application in switching networks that can connect
any phone to any other phone. It is the 3-switching network for 7 numbers. How-
ever there also exists a 4-switching network for 13 numbers, a 5-switching network
for 21 numbers and generally an (n + 1)-switching network for (n2 + n + 1) num-
bers corresponding to the projective planes of order n [35]. It would be worthwhile
pursuing the corresponding quantum bit entanglements.

Exceptional groups, such as E7(7), have featured in supergravity, string theory,
M-theory and other speculative attempts at unification of the fundamental forces.
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However, it is unusual to find an exceptional group appearing in the context of qubit
entanglement. It would be interesting to see whether it can be subject to experimen-
tal test.
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Attractor Mechanism (AM) at work in two different 4-dimensional frameworks: ex-
tremal black holes in N = 2 supergravity and N = 1 flux compactifications. In
the first case, AM determines the stabilization of scalars at the black hole event
horizon purely in terms of the electric and magnetic charges, whereas in the second
context, the AM is responsible for the stabilization of the universal axion-dilaton
and of the (complex structure) moduli purely in terms of the RR and NSNS fluxes.
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1 Introduction

After the original papers [1, 2, 3, 4, 5] from the mid 90s dealing mostly with the
Bogomol’ny-Prasad-Sommerfeld (BPS) black holes (BHs), extremal BH attractors
have been recently widely investigated [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] (see also [54, 55, 56, 57, 58, 59,
60, 61, 62]). Such a renaissance is mainly due to the (re)discovery of new classes of
solutions to the attractor equations corresponding to non-BPS horizon geometries:
Certain configurations of moduli stabilized near the horizon of extremal BHs exist
which break supersymmetry. In addition, the stabilization of moduli in the context of
string theory has become a central issue of string cosmology. The attractor equations
used in the past for stabilizing moduli near the horizon of an extremal BH have
turned out to be useful in the context of flux vacua.

In this introduction, we will first briefly remind the basic structure of the BPS
BH attractors in N = 2, d = 4 supergravity. After that, we will outline the main
features of the recent developments in non-BPS extremal BH attractors and flux
vacua, a detailed description of which will be given in the subsequent sections.

A horizon extremal BH attractor geometry is in general supported by particu-
lar configurations of the 1× (2nV +2) symplectic vector of the BH field-strength
fluxes, i.e. of the BH magnetic and electric charges:

Q ≡
(

pΛ,qΛ

)
, pΛ ≡ 1

4π

∫

S2
∞
FΛ, qΛ ≡ 1

4π

∫

S2
∞
GΛ, Λ = 0,1, . . . ,nV , (1)

where, in the case of N = 2, d = 4 supergravity, nV denotes the number of Abelian
vector supermultiplets coupled to the supergravity one (containing the Maxwell vec-
tor A0, usually named graviphoton). Here FΛ = dAΛ and GΛ is the “dual” field-
strength two-form [63, 64].

BPS BH attractor equations fix the values of all moduli near BH horizon in terms
of the electric and magnetic charges. The most compact form of these equations
was given in [65], where the Kähler invariant period

(
YΛ,FΛ (Y )

)
was introduced

by multiplying the covariantly holomorphic period V (z, z̄) (see (25) below) on the
(complex conjugate of the) N = 2, d = 4 central charge function Z̄ so that

Z̄V ≡
(

YΛ ,FΛ (Y )
)

(2)

where YΛ = YΛ (z, z̄) and V =
(
LΛ, MΛ

)
. In terms of such variables, the BPS at-

tractor equations are very simple and state that at the BH horizon, the moduli (z, z̄)
depend on electric and magnetic charges so that equations

YΛ− ȲΛ = ipΛ, FΛ (Y )− F̄Λ (Ȳ ) = iqΛ (3)

are satisfied, and their solution defines moduli as functions of charges

zcr = zcr(p,q) , z̄cr = z̄cr(p,q). (4)
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BPS attractors equations (3) are equivalent to the condition of unbroken supersym-
metry: DZ = 0.

A simple way to derive the BH attractor equations, which also gives a clear link
to their use in the context of flux vacua, is by using the language of string the-
ory compactified on a Calabi-Yau threefold (CY3) [66, 67, 68]. One starts with the
Hodge decomposition of the 3-form flux (see (189) below)

H3 = −2Im[Z̄Ω̂3 − D̄iZ̄DiΩ̂3] =
∫

S2
∞
F̂+, (5)

where Ω̂3 is the covariantly holomorphic 3-form of the CY3, F̂+ is the self-dual 5-
form of type IIB string theory and S2

∞ is the 2-sphere at infinity, as in the definition
(1) (see e.g. [64]). By integration over a symplectic basis of 3-cycles of CY3 the
decomposition (5) can be brought to the form (see (140) below)

QT = −2Im[Z̄V − D̄iZ̄DiV ]. (6)

By inserting the condition of unbroken supersymmetry DiZ = 0 into the identities
(5) and (6), one obtains the BPS extremal BH attractor equations (3) in a stringy
framework:

H3 = −2Im[Z̄Ω̂3]DZ=0, (7)

or equivalently:
QT = −2Im

[
ZV
]

DZ=0 . (8)

This attractor equation presents a particular case of the criticality condition for the
so-called effective BH potential, ∂iVBH = 0, where (see definition (48) below)

VBH(z, z̄) ≡ |Z|2 +gi j (DiZ)D jZ. (9)

Another important feature of the BPS attractors is the relation between the second
derivative of VBH at the critical points ∂VBH = 0 and the metric gi j of the scalar
manifold (usually called moduli space in string theory), namely

(
∂i∂ jVBH

)
∂VBH =0

= 2
(

gi jVBH

)
∂VBH=0

. (10)

Since VBH at the supersymmetric critical point DZ = 0 (with non-vanishing entropy)
is strictly positive (VBH |DZ=0 = |Z|2DZ=0 > 0), (10) implies that all BPS attractors
are stable, at least as long as the metric of the moduli space is strictly positive def-
inite. Note that in the BPS case the condition of non-vanishing entropy requires
Z|DZ=0 �= 0.

The recent developments with non-BPS BH attractors can be described shortly
as follows. For extremal non-BPS BH solutions of N = 2, d = 4 supergrav-
ity one finds the mechanism of stabilization of moduli near BH horizon with
some properties of the same nature as in BPS case and some properties somewhat
different.
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Many nice features of the BH attractors in the past were associated with the
unbroken supersymmetry of BPS BHs. During the last few years the basic reason
for the attractor behaviour of extremal BHs has been discovered to be geometri-
cal1: extremal BHs (regardless their supersymmetry-preserving features) all have
moduli which acquire fixed values at the BH horizon independent of their values at
infinity! Their values at the horizon depend only on the electric and magnetic BH
charges. The existence of an infinite throat in the space-time geometry of extremal
BHs leads to an evolution towards the horizon such that the moduli forget their ini-
tial conditions at (spatial) infinity [14]. Since a Schwarzschild-type BH geometry
with non-vanishing horizon area is never extremal, this phenomenum never takes
place when solving the equations of motion for scalar fields in such a background:
Their values at the horizon depend on the initial conditions of the radial dynamical
evolution, because there are no coordinate systems with infinite distance from the
event horizon.

A simple qualifier of both BPS and non-BPS attractors remains valid in the form
of a critical point of the BH potential:

∂VBH = 0 : for BPS : DZ = 0, for non−BPS : DZ �= 0. (11)

The non-BPS attractor equations in the form generalizing (3) can be given sepa-
rately for the cases Z �= 0 and Z = 02.

In the case Z �= 0 one finds (see (157) below)

QT = −2Im

{[
ZV − i

2
Z

|Z|2
Ci jk

(
D jZ

)(
DkZ

)
DiV

]}

non−BPS,Z �=0

. (12)

Here, one starts with the identity (6) and replaces the second term using the ex-
pression for it derived from the non-BPS Z �= 0 criticality condition ∂VBH = 0. The
attractor equation (12) is a clear generalization of the BPS attractor equations (3),
(4), (5), (6), (7), (8) with Z �= 0: at DZ = 0 the second term in the right-hand side
(r.h.s.) of (12) vanishes, and it reduces exactly to (8) or its detailed form given by (3).

For both classes (Z �= 0 and Z = 0) of non-BPS attractors, the critical value of
VBH remains positive, since by definition VBH is a real, positive function in the scalar
manifold. However, the universal BPS stability condition (10) is not valid anymore
and one has to study this issue separately3.

1 We are grateful to A. Linde for this insight, see also [14].
2 The non-BPS BH attractor equations ∂VBH = 0 with the condition Z = 0, DZ �= 0 will be dis-
cussed later in the lectures.
3 In case that the critical Hessian matrix has some “massless modes” (i.e. vanishing eigenvalues),
one has to look at higher-order covariant derivatives of VBH evaluated at the considered point and
study their sign. Depending on the configurations of the BH charges, one can obtain stable or
unstable critical points.

Examples in literature of investigations beyond the Hessian level can be found in [10, 23,
24]. A detailed analysis of the stability of critical points of VBH in (the large volume limit of)
compactifications of Type IIA superstrings on CY3s has been recently given in [34].
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In the present review, we will consider only critical points of VBH ( 1
2 -BPS as well

as non-BPS) which are non-degenerate, i.e. with a finite, non-vanishing horizon
area, corresponding to the so-called “large” BHs4.

Due to the so-called Attractor Mechanism (AM) [1, 2, 3, 4, 5], the Bekenstein-
Hawking entropy [69, 70, 71, 72, 73] of “large” extremal BHs can be obtained by
extremizing VBH (φ , Q), where “φ” now denotes the set of real scalars relevant for
the AM, and Q is defined by (1). In N = 2, d = 4 supergravity, non-degenerate
attractor horizon geometries correspond to BH solitonic states belonging to 1

2 -BPS
“short massive multiplets” or to non-BPS “long massive multiplets”, respectively.
The BPS bound [74] requires that

MADM ≥ |Z|, (13)

where MADM denotes the Arnowitt-Deser-Misner (ADM) mass [75]. At the event
horizon, extremal BPS BHs do saturate such a bound, whereas the non-BPS ones
satisfy5

1
2

-BPS: 0 < |Z|H = MADM,H ;

non-BPS

⎧⎨
⎩

Z �= 0: 0 < |Z|H < MADM,H ;

Z = 0: 0 = |Z|H < MADM,H ,

(14)

where MADM,H is obtained by extremizing VBH (φ , Q) with respect to its dependence
on the scalars:

MADM,H (Q) =
√

VBH (φ ,Q)|∂φVBH=0. (15)

The (purely) charge-dependent BH entropy SBH is given by the Bekenstein-
Hawking entropy-area formula [5, 69, 70, 71, 72, 73]

SBH (Q) =
AH (Q)

4
= π VBH (φ ,Q)|∂φVBH=0 = πVBH (φH (Q) ,Q) , (16)

where AH is the area of the BH event horizon.
Non-degenerate, non-supersymmetric (non-BPS) extremal BH (and black string)

attractors arise also in N = 2, d = 5, 6 supergravity and in N > 2, d = 4, 5, 6
extended supergravities (see e.g. [19, 38, 40, 46, 49, 76, 77, 78, 79, 80], and

The issue of stability of non-BPS critical points of VBH in homogeneous (not necessarily sym-
metric) N = 2, d = 4 special Kähler geometries has been treated exhaustively in [36]. It was
derived that all non-BPS critical points of VBH in such geometries are stable, up to a certain num-
ber of “flat” directions (present at all order in the covariant differentiation of VBH ), which span
a certain moduli space, pertaining to the considered class of solutions of the attractor equations.
The results of [36] hold in general for any theory (not necessarily involving supersymmetry) in
which gravity is coupled to Abelian gauge vectors and with a scalar sigma model endowed with
homogeneous geometry (see further below in the present lectures).
4 For further elucidations, we refer the reader, e.g. to the recent lectures of Sen [47], where im-
portant aspects of BH attractors are presented: the microscopic string theory counting of states
explaining the macroscopic BH entropy and the treatment of higher-derivative terms in the actions.
5 Here and in what follows, the subscript “H” will denote values at the BH event horizon.
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Refs. therein). In the present lectures, we will focus on extremal BH attractors in
N = 2, d = 4 ungauged supergravity coupled to Abelian vector multiplets, where
the scalar manifold parameterized by the scalars is endowed with the so-called spe-
cial Kähler (SK) geometry (see Sect. 2).

Flux vacua (FV) became recently one of the new playgrounds for string theory, in
general, and in particular, in the context of moduli stabilization (for an introduction
to flux compactifications, see e.g. [81, 82, 83, 84, 85, 86] and Refs. therein).

The advances of observational cosmology and the emergence of the so-called
“standard cosmological model” enforce on string theory/supergravity a responsibil-
ity to address the current and future observations. This requires a solution of the
problem of moduli stabilization. In the early Universe, during inflation, all string
theory moduli but the inflaton have to be stabilized, in order to produce an effec-
tive four-dimensional General Relativity and also in order for inflation to explain
the cosmic microwave background observations. At the present time, all moduli
have to be stabilized in a four-dimensional de Sitter space to explain dark en-
ergy and acceleration of the Universe which took place during the last few billion
years.

The procedure of moduli stabilization in string theory consists of few steps.
One of the steps is the stabilization of moduli by fluxes in type IIB string theory,

determining d = 4FV, with effective N = 1 local supersymmetry and complex
structure moduli stabilized; an important feature of such a procedure is the non-
stabilization of the Kähler moduli. However, the largest contribution to the counting
of the Calabi-Yau vacua in the so-called String Landscape comes from the diversity
of FV.

Thus, it is still interesting to study the mechanism of stabilization of the axion-
dilaton and complex structure moduli in FV, ignoring the Kähler moduli. We will
deal with such a scenario, in the particular case in which the geometry of the com-
plex structure moduli is SK and not simply Kähler. In such a framework, it turns
out that the equations determining the FV configurations are closely related to the
abovementioned extremal BH attractor equations of N = 2, d = 4 supergravity.

In the studies of FV one can start with an F-theory flux compactification on
an elliptically fibered Calabi-Yau fourfold CY4 in the orientifold limit in which

CY4 = CY3×T 2

Z2
, where T 2 is the two-torus. In type IIB string theory, this is equivalent

to compactifying on the orientifold limit of CY3. The resulting low energy, d = 4 ef-
fective theory is N = 1 supergravity, where the information on string theory choice
of compactification is encoded into a flux superpotential W and a Kähler potential
K. As explained above, we assume that both flux superpotential W and Kähler po-
tential K depend only on the complex structure (CS) moduli of CY4, spanning the CS
moduli space M. Because of the orientifold limit of CY4, M has the product structure
M = MCS(CY3)×Mτ (see (200) further below), where MCS(CY3) (simply named
MCS further below) is the CS moduli space of CY3 and Mτ is the moduli space of
the elliptic curve T 2 spanned by the axion-dilaton τ (named t0 in the treatment of the
present lectures). Let us just mention here that in order to stabilize also the Kähler
moduli of CY4, one should incorporate the non-perturbative string effects (see e.g.
[87]), which however we will not discuss here.
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The potential in the effective N = 1, d = 4 supergravity theory, in the Planckian
units set equal to one, is given by [88, 89]

VN =1 = eK

(
h2,1(CY3)

∑
A=0

|DAW |2 −3|W |2
)

=
h2,1(CY3)

∑
A=0

|DAZ|2 −3|Z|2, (17)

where A = 0 refers to the axion-dilaton τ ≡ t0 and A = i ∈ {1, · · · ,h2,1(CY3)} to
the CS moduli ti of CY3 (h2,1 ≡ dim

(
H2,1 (CY3)

)
; see Sect. 4.1). We defined Z ≡

e
K
2 W , for the extremal BH attractors in N = 2, d = 4 supergravity, even if the

analogy is only formal, because in the present d = 4 framework with N = 1 local
supersymmetry there is no central charge at all.

The real Kähler potential of the effective N = 1, d = 4 supergravity theory reads
(see (231) below)

K = −ln〈Ω4,Ω̄4〉 = −ln
(
〈Ω1,Ω̄1〉

)
− ln

(
〈Ω3,Ω̄3〉

)
, (18)

where Ω4 is a nowhere vanishing holomorphic 4-form defined on CY4. In the orien-
tifold limit, Ω4 is a product of an appropriate holomorphic 3-form Ω3 of CY3 and
the holomorphic 1-form Ω1 of the torus T 2 (see Sect. 4.1.2).

The flux holomorphic superpotential W is defined as a section of the line bundle
L by [90, 91, 92] (see (232) below)

W ≡ Ze−
K
2 = 〈F4,Ω4〉 ≡

∫

CY4

F4 ∧Ω4, (19)

where F4 ∈ H4(CY4) is the 4-form flux.
In generic local “flat” coordinates of M (with 0 and A-indices, respectively, re-

ferring to the axion-dilaton and CS moduli of CY3), F4 enjoys the following Hodge
decomposition, which we present here in terms of Z for the sake of comparison
with its “BH-counterpart” (i.e. the Hodge decomposition (5) of the 3-form flux H3)
(Ω̂4 ≡ e

1
2 KΩ4; see definition (234) and (244) below):

F4 = 2Re
[
ZΩ̂4 −δAB (DBZ

)
DAΩ̂4 +δAB

(
D0DBZ

)
D0DAΩ̂4

]
. (20)

By imposing the supersymmetry-preserving condition DZ = 0 (formally identical
to the one appearing in the abovementioned theory of extremal BH attractors in
N = 2, d = 4 supergravity), the identity (20) becomes a supersymmetric FV At-
tractor equation. Indeed, the left-hand side (l.h.s.) depends on fluxes and the r.h.s.
depends on axion-dilaton and on CS moduli of CY3; thus, the solution stabilizes
the axion-dilaton and the CS moduli of CY3 purely in terms of fluxes: beside (7),
one gets

F4 = 2Re
[
ZΩ̂4 +δAB

(
D0DBZ

)
D0DAΩ̂4

]
DZ=0

. (21)

Let us now compare the supersymmetric FV Attractor Equations (21) with their
“BH-counterpart”, i.e. with the BPS extremal BH Attractor Equations (7).



122 S. Bellucci et al.

In the case of FV, instead of the imaginary part we have a real part of a somewhat
analogous expression: this is due to the fact that for FV one has a 4-form flux F4 on
a CY3 orientifold rather than of a 3-form flux H3 on CY3.

The other significant difference is in the second term in the r.h.s. of (21). This
term, absent in the BH case, is proportional to the second-order covariant derivative
of Z along the τ direction and one of the directions pertaining to the CS moduli of
CY3. In the BH case, there is a relation DiD jZ = iCi jkD

k
Z (see the second of (38)

below), and therefore the second covariant derivative of Z is not an independent
term for BH, differently from D0DIZ in the FV case, which is an independent term
in the decomposition of forms.

The absence of such a term in the BPS extremal BH Attractor Equations (7) does
not allow for non-degenerate BPS extremal BH attractors with vanishing central
charge: Indeed, on the BH side Z = 0 and DZ = 0 yield VBH = 0. This limit case
corresponds to a classical “small” extremal BH, exhibiting a naked singularity be-
cause the area of the BH event horizon vanishes. The Attractor Mechanism in such
a case simply ceases to hold, because for Z = 0 and DZ = 0 the BPS extremal BH
Attractor Equations (3) admit as unique solution Q = 0.

The same does not happen on the FV side. Indeed, by substituting Z = 0 and
DZ = 0 into the Hodge decomposition (20) does not generate any unconsistency:
The second term in the r.h.s. of (21) provides a consistent solution for superym-
metric Minkowski vacua (with DZ = 0 and VN =1 = 0). Of course, more general
supersymmetric solutions with Z �= 0 are allowed, and they correspond to super-
symmetric AdS FV (see e.g. [11, 93]).

The aim of the present paper is to show the Attractor Mechanism at work in two
completely different d = 4 frameworks: extremal BH in N = 2 supergravity and
N = 1 flux compactifications.

The plan of the paper is as follows.
In Sect. 2 we recall the fundamentals of the special Kähler geometry, underlying

the vector multiplets’ scalar manifold of N = 2, d = 4 ungauged supergravity, as
well as the complex structure moduli space of certain N = 1, d = 4 supergrav-
ities obtained by consistently orientifolding of N = 2 theories, such as Type IIB

compactified on CY3×T 2

Z2
.

Section 3 gives an introduction to the issue of the Attractor Mechanism in the
framework where it was originally discovered by Ferrara, Kallosh and Strominger
[1, 2, 3, 4, 5], namely in the stabilization of the vector multiplet’ scalars near the
event horizon of an extremal, static, spherically symmetric and asymptotically flat
BH in N = 2, d = 4 ungauged supergravity.

Section 3.1 presents the so-called “criticality conditions” approach to the At-
tractor Mechanism, in which the purely charge-dependent stabilized configurations
of the scalars at the BH horizon can be computed as the critical points of a certain
real positive BH effective potential VBH , whose classification is given in Sect. 3.1.1.
The stability of the critical points of VBH is then analyzed in Sect. 3.2, both in the
general case of nV moduli (Sect. 3.2.1) and in the 1-modulus case (Sect. 3.2.2).

Section 3.3 presents another, equivalent approach to the Attractor Mechanism,
recently named “New Attractor” approach. In Sect. 3.2.2 it is exploited in a general
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N = 2, d = 4 supergravity framework, by substituting the (various classes of) crit-
icality conditions of VBH into some geometrical identities of special Kähler geome-
try, expressing nothing but a change of basis between “dressed” and “undressed”
charges and derived in Sect. 3.3.1.

Section 3.4 implements the “New Attractor” approach in a stringy framework,
namely in Type IIB compactified on CY3. In Sect. 3.4.2 the (various classes of)
criticality conditions of VBH are inserted into some general identities (equivalent
to the identities derived in Sect. 3.3.1), expressing the decomposition of the real,
Kähler gauge-invariant 3-form flux H3 along the third Dalbeault cohomogy of CY3

and derived in Sect. 3.4.1.
Section 4 deals with the Attractor Mechanism in a completely different frame-

work, namely in N = 1, d = 4 ungauged supergravity obtained by consistently
orientifolding the N = 2 theory and thus mantaining a special Kähler geometry of
the manifold of the scalars surviving the orientifolding. In the considered example

of Type IIB associated with CY3×T 2

Z2
, the Attractor Mechanism determines the stabi-

lization of the universal axion-dilaton and of the complex structure moduli in terms
of the Ramond-Ramond (RR) and Neveu-Schwarz-Neveu-Schwarz (NSNS) fluxes.

Section 4.1 introduces the fundamentals of the geometry of (the moduli space of)
CY3 orientifolds: the vielbein and the metric tensor (Sect. 4.1.1), the relevant 1-, 3-
and 4-forms (Sect. 4.1.2), and the Hodge decomposition of the real, Kähler gauge-
invariant 4-form flux F4, unifying the RR 3-form flux F3 with the NSNS 3-form
flux H3 (Sect. 4.1.3).

Section 4.2 presents the so-called “criticality conditions” approach to the Attrac-
tor Mechanism in flux vacua (FV) compactifications of the kind considered above,
in which the (complex structure) moduli space is endowed with special Kähler ge-
ometry. The purely flux-dependent stabilized vacuum configurations of the axion-
dilaton and complex structure moduli can be computed as the critical points of a
certain real (not necessarily positive) FV effective potential VN =1. Since (differ-
ently from its BH N = 2 counterpart VBH ) VN =1 has no definite sign, the FV
attractor configurations can correspond to a de Sitter (dS, VN =1 > 0), Minkowski
(VN =1 = 0) or anti-de Sitter (AdS, VN =1 < 0) vacuum.

Finally, Sect. 4.3 implements the “New Attractor” approach to the Attractor
mechanism in the considered class of FV compactifications, in the case of supersym-
metric vacuum configurations. The supersymmetric criticality conditions of VN =1
are inserted into the Hodge decomposition of the 4-form flux F4, and the resulting
supersymmetric FV Attractor Equations lead to the classification of the supersym-
metric FV into three general families.

Two Appendices, containing technical details, conclude the lectures.

2 Special Kähler Geometry

In the present section, we briefly recall the fundamentals of the SK geometry un-
derlying the scalar manifold MnV of N = 2, d = 4 supergravity, nV being the
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number of Abelian vector supermultiplets coupled to the supergravity multiplet
(dimCMnV = nV ) (see e.g. [63, 64, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104]).

It is convenient to switch from the Riemannian 2nV -dim. parameterization of
MnV given by the local real coordinates {φ a}a=1,...,2nV

to the Kähler nV -dim. holo-
morphic/antiholomorphic parameterization given by the local complex coordinates{

zi,zi
}

i,i=1,...,nV
. This corresponds to the following unitary Cayley transformation:

zk ≡ ϕ2k−1 + iϕ2k
√

2
, k = 1, . . . ,nV . (22)

The metric structure of MnV is given by the covariant (special) Kähler metric
tensor gi j (z,z) = ∂i∂ jK (z,z) , K (z,z) being the real Kähler potential.

Usually, the nV ×nV Hermitian matrix gi j is assumed to be non-degenerate (i.e.
invertible, with non-vanishing determinant and rank nV ) and with strict positive
Euclidean signature (i.e. with all strictly positive eigenvalues) globally in MnV . We
will so assume, even though we will be concerned mainly with the properties of gi j
at those peculiar points of MnV which are critical points of VBH .

It is worth remarking here that various possibilities arise when going beyond the
assumption of global strict regular gi j, namely:

– (locally) not strictly regular gi j, i.e. a (locally) non-invertible metric tensor, with
some strictly positive and some vanishing eigenvalues (rank < nV );

– (locally) non-regular non-degenerate gi j, i.e. a (locally) invertible metric tensor
with pseudo-Euclidean signature, namely with some strictly positive and some
strictly negative eigenvalues (rank = nV );

– (locally) non-regular degenerate gi j, i.e. a (locally) non-invertible metric tensor
with some strictly positive, some strictly negative, and some vanishing eigenval-
ues (rank < nV ).

The local violation of strict regularity of gi j would produce some kind of “phase
transition” in the SKG endowing MnV , corresponding to a breakdown of the 1-dim.
effective Lagrangian picture (see [5, 105] and also [18] and [80]) of d = 4 (extremal)
BHs obtained by integrating all massive states of the theory out, unless new massless
states appear [5].

The previously mentioned N = 2, d = 4 covariantly holomorphic central charge
function is defined as

Z (z,z;q, p) ≡ QεV (z,z) = qΛLΛ (z,z)− pΛMΛ (z,z) = e
1
2 K(z,z)QεΠ(z)

= e
1
2 K(z,z)

[
qΛXΛ (z)− pΛFΛ (z)

]
≡ e

1
2 K(z,z)W (z;q, p) , (23)

where ε is the (2nV +2)-dim. square symplectic metric (subscripts denote dimen-
sions of square sub-blocks)
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ε ≡

⎛
⎝

0nV +1 −InV +1

InV +1 0nV +1

⎞
⎠ , (24)

and V (z,z) and Π(z), respectively, stand for the (2nV +2)× 1 covariantly holo-
morphic (Kähler weights (1,−1)) and holomorphic (Kähler weights (2,0)) period
vectors in symplectic basis:

DiV (z,z) =
(
∂ i −

1
2
∂ iK

)
V (z,z) = 0, DiV (z,z) =

(
∂i +

1
2
∂iK

)
V (z,z)

�

V (z,z) = e
1
2 K(z,z)Π(z) , DiΠ(z) = ∂ iΠ(z) = 0, DiΠ(z) = (∂i +∂iK)Π(z) ,

Π(z) ≡
(

XΛ (z)

FΛ (X (z))

)
= exp

(
−1

2
K (z,z)

)(LΛ (z,z)

MΛ (z,z)

)
,

(25)

with XΛ (z) and FΛ (X (z)) being the holomorphic sections of the U(1) line (Hodge)
bundle over MnV . W (z;q, p) is the so-called holomorphic N = 2, d = 4 central
charge function, also named N = 2 superpotential.

Up to some particular choices of local symplectic coordinates in MnV , the co-
variant symplectic holomorphic sections FΛ (X (z)) may be seen as derivatives of an
holomorphic prepotential function F (with Kähler weights (4,0)):

FΛ (X (z)) =
∂F (X (z))

∂XΛ . (26)

In N = 2, d = 4 supergravity the holomorphic function F is constrained to be
homogeneous of degree 2 in the contravariant symplectic holomorphic sections
XΛ (z), i.e. (see [64] and Refs. therein)

2F (X (z)) = XΛ (z)FΛ (X (z)) . (27)

The normalization of the holomorphic period vector Π(z) is such that

K (z,z) = −ln
[
i
〈
Π(z) ,Π(z)

〉]
≡−ln

[
iΠT (z)εΠ(z)

]

= −ln
{

i
[
X

Λ (z)FΛ (z)−XΛ (z)FΛ (z)
]}

, (28)

where 〈·, ·〉 stands for the symplectic scalar product defined by ε.
Note that under a Kähler transformation

K (z,z) −→ K (z,z)+ f (z)+ f (z) (29)
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( f (z) being a generic holomorphic function), the holomorphic period vector trans-
forms as

Π(z) −→Π(z)e− f (z) ⇔ XΛ (z) −→ XΛ (z)e− f (z). (30)

This means that, at least locally, the contravariant holomorphic symplectic sections
XΛ (z) can be regarded as a set of homogeneous coordinates on MnV , provided the
Jacobian complex nV ×nV holomorphic matrix

ea
i (z) ≡ ∂

∂ zi

(
Xa (z)
X0 (z)

)
, a = 1, . . . ,nV (31)

is invertible. If this is the case, then one can introduce the local projective symplectic
coordinates

ta (z) ≡ Xa (z)
X0 (z)

, (32)

and the SKG of MnV turns out to be based on the holomorphic prepotential F (t)≡(
X0
)−2

F (X). By using the t-coordinates, (28) can be rewritten as follows (Fa (t) =
∂aF (t) , ta = ta, F a (t) = Fa (t)):

K (t, t) = −ln
{

i
∣∣X0 (z(t))

∣∣2 [2(F (t)−F (t)
)
− (ta − ta)

(
Fa (t)+F a (t)

)]}
.

(33)

By performing a Kähler gauge-fixing with f (z) = ln
(
X0 (z)

)
, yielding that X0

(z) −→ 1, one thus gets

K (t, t)|X0(z)−→1 = −ln
{

i
[
2
(
F (t)−F (t)

)
− (ta − ta)

(
Fa (t)+F a (t)

)]}
.
(34)

In particular, one can choose the so-called special coordinates, i.e. the system of
local projective t-coordinates such that

ea
i (z) = δ a

i ⇔ ta (z) = zi (+ci,ci ∈ C
)
. (35)

Thus, (34) acquires the form

K (t, t)|X0(z)−→1,ea
i (z)=δ a

i
= − ln

{
i
[
2
(
F (z)−F (z)

)
−
(

z j − z j
)

×
(
F j (z)+F j (z)

)]}
. (36)

Moreover, it should be recalled that Z has Kähler weights (p, p) = (1,−1), and
therefore its Kähler-covariant derivatives read

DiZ =
(
∂i +

1
2
∂iK

)
Z, DiZ =

(
∂ i −

1
2
∂ iK

)
Z. (37)
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The fundamental differential relations of SK geometry are6 (see e.g. [64]):
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

DiZ = Zi;

DiZ j = iCi jkgkkDkZ = iCi jkgkkZk;

DiD jZ = DiZ j = gi jZ;

DiZ = 0,

(38)

where the first relation is nothing but the definition of the so-called matter charges
Zi, and the fourth relation expresses the Kähler-covariant holomorphicity of Z. Ci jk

is the rank-3, completely symmetric, covariantly holomorphic tensor of SK geome-
try (with Kähler weights (2,−2)) (see e.g.7 [64, 99, 100, 101, 102, 103]):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci jk =
〈
DiD jV,DkV

〉
= eK (∂iNΛΣ)D jXΛDkXΣ

= eK
(
∂iXΛ)(∂ jXΣ)(∂kXΞ)∂Ξ∂ΣFΛ (X) ≡ eKWi jk, ∂ lWi jk = 0;

Ci jk = DiD jDkS , S ≡−iLΛLΣIm(FΛΣ) , FΛΣ ≡ ∂FΛ
∂XΣ ,FΛΣ ≡ F(ΛΣ);

Ci jk = −igil f
l
ΛD jDkLΛ, f

l
Λ

(
DL

Λ
s

)
≡ δ l

s ;

(39)

DiCjkl = 0 (covariant holomorphicity);

Ri jkl = −gi jgkl −gilgk j +CikpC jlpgpp(usually named SKG constraints) ;

D[iCj]kl = 0,

where the last property is a consequence, through the SKG constraints and the co-
variant holomorphicity of Ci jk, of the Bianchi identities for the Riemann tensor Ri jkl
(see e.g. [99, 100]), and square brackets denote antisymmetrization with respect to
enclosed indices. For later convenience, here it is worth writing the expression for
the holomorphic covariant derivative of Ci jk:

DiCjkl = D(iCj)kl = ∂iCjkl +(∂iK)Cjkl +Γ m
i j Cmkl +Γ m

ik Cm jl +Γ m
il Cm jk. (40)

It is worth recalling that in a generic Kähler geometry Ri jkl reads

6 Actually, there are different (equivalent) defining approaches to SK geometry. For subtleties and
further elucidation concerning such an issue, see e.g. [106] and [107].
7 Notice that the third of (39) correctly defines the Riemann tensor Ri jkl , and it is actually the
opposite of the one which may be found in a large part of existing literature. Such a formulation
of the so-called SKG constraints is well defined, because, as we mention at the end of Sect. 3.2, it
yields negative values of the constant scalar curvature of (nV = 1-dim.) homogeneous symmetric
compact SK manifolds.
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Ri jkl = gmn
(
∂ l∂ j∂mK

)
∂i∂ n∂kK −∂ l∂i∂ j∂kK = gkn∂iΓ

n
l j = gnl∂ jΓ

n
ki ,

Ri jkl = R jilk (reality),

Γ l
i j = −gll∂ig jl = −gll∂i∂ l∂ jK = Γ l

(i j),

(41)

where Γi j
l stand for the Christoffel symbols of the second kind of the Kähler

metric gi j.
In the first of (39), a fundamental entity, the so-called kinetic matrix NΛΣ (z,z)

of N = 2, d = 4 supergravity, has been introduced (see also (168) further below).
It is an (nV +1)× (nV +1) complex symmetric, moduli-dependent, Kähler gauge-
invariant matrix defined by the following fundamental Ansätze of SKG, solving the
SKG constraints (given by the third of (39)):

MΛ = NΛΣLΣ, DiMΛ = N ΛΣDiL
Σ. (42)

By introducing the (nV +1)× (nV +1) complex matrices (I = 1, . . . ,nV +1)

f ΛI (z,z) ≡
(

DiL
Λ (z,z) ,LΛ (z,z)

)
, hIΛ (z,z) ≡

(
DiMΛ (z,z) ,MΛ (z,z)

)
, (43)

the Ansätze (42) univoquely determine NΛΣ (z,z) as

NΛΣ (z,z) = hIΛ (z,z)◦
(

f−1)I
Σ (z,z) , (44)

where ◦ denotes the usual matrix product, and
(

f−1
)I
Σ f ΛI = δΛ

Σ ,
(

f−1
)I
Λ f ΛJ = δ I

J .
The covariantly holomorphic (2nV +2)× 1 period vector V (z,z) is symplecti-

cally orthogonal to all its Kähler-covariant derivatives:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈V (z,z) ,DiV (z,z)〉 = 0;
〈
V (z,z) ,DiV (z,z)

〉
= 0;

〈
V (z,z) ,DiV (z,z)

〉
= 0;

〈
V (z,z) ,DiV (z,z)

〉
= 0.

(45)

Morover, it holds that

gi j (z,z) = −i
〈

DiV (z,z) ,D jV (z,z)
〉

= −2Im(NΛΣ (z,z))DiL
Λ (z,z)DiL

Σ (z,z) = 2Im(FΛΣ (z))DiL
Λ (z,z)DiL

Σ (z,z) ;
(46)〈

V (z,z) ,DiD jV (z,z)
〉

= iCi jkgkk 〈V (z,z) ,DkV (z,z)
〉

= 0. (47)
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3 Extremal Black Hole Attractor Equations in NNN = 2, d = 4
(ungauged) Supergravity

3.1 Black Hole Effective Potential and “Criticality
Conditions” Approach

In N = 2, d = 4 supergravity the “effective BH potential” reads [3, 4, 64]

VBH (z,z;q, p) = |Z|2 (z,z;q, p)+gi j (z,z)DiZ (z,z;q, p)D jZ (z,z;q, p)

= I1 (z,z;q, p) � 0, (48)

where I1 is the first, positive-definite real invariant I1 of SK geometry (see e.g.
[23, 64]). It should be noticed that VBH can also be obtained by left-multiplying
the SKG vector identity (146) by the 1× (2nV +2) complex moduli-dependent vec-
tor − 1

2 QM (N ); indeed, since the matrix M (N ) is symplectic, one finally gets
[3, 4, 64]

VBH (z,z;q, p) = −1
2

QM (N )QT . (49)

It is interesting to remark that the result (49) can be elegantly obtained from the SK
geometry identities (146) by making use of the following relation (see [19], where
a generalization for N > 2-extended supergravities is also given):

1
2

(M (N )+ iΩ)V = iΩV ⇔ M (N )V = iΩV , (50)

where V is a (2nV +2)× (nV +1) matrix defined as follows:

V ≡
(
V,D1V , . . . ,DnV V

)
. (51)

By differentiating (48) with respect to the moduli, the criticality conditions of VBH

can be easily shown to acquire the form [5]

DiVBH = ∂iVBH = 0 ⇔ 2ZDiZ +g j j (DiD jZ)D jZ = 0. (52)

These are the what one should rigorously refer to as the N = 2, d = 4 supergravity
Attractor Equations (AEs).

In the present work, we will call AEs also some geometrical identities evaluated
along the criticality conditions of the relevant “effective potential”. Indeed, both
for extremal BHs attractors in N = 2, d = 4 supergravity and for FV attractors
in N = 1, d = 4 supergravity (at least for the one coming from some peculiar
compactifications of superstrings: See Sect. 4), there exist two different approaches
to determining the attractors:

(i) the so-called criticality conditions approach, based on the direct solution of the
conditions giving the stationary points of the relevant “effective potential”;
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(ii) the so-called new attractor approach, based on the solution of some funda-
mental geometrical identities evaluated along the criticality conditions of the
relevant “effective potential”.

Such two approaches are completely equivalent. Depending on the considered
frameworks, it can be convenient to exploit one approach rather than the other (see
e.g. [26] for an explicit case).

By using the relations (38), the N = 2 AEs (52) can be recast as follows [5]:

DiVBH = ∂iVBH = 2ZDiZ + iCi jkg jlgkm (DlZ
)

DmZ. (53)

Equation (53) are nothing but the relations between the N = 2 central charge func-
tion Z (graviphoton charge) and the nV matter charges Zi (coming from the nV

Abelian vector supermultiplets), holding at the critical points of VBH in the SK scalar
manifold MnV . As is seen, the tensor Ci jk plays a key role.

It is known that static, spherically symmetric, asymptotically flat extremal BHs
in d = 4 are described by an effective d = 1 Lagrangian ([5], [105], and also [18] and
[80]), with an effective scalar potential and effective fermionic “mass terms” terms
controlled by the field-strength fluxes vector Q defined by (1). The “apparent”
gravitino mass is given by Z, whereas the nV × nV gaugino mass matrix Λi j reads
(see the second Ref. of [101, 102, 103])

Λi j = −iDiZ j = Ci jkgkkZk = Λ(i j). (54)

Note that Λi j is part of the holomorphic/anti-holomorphic form of the 2nV × 2nV

covariant Hessian of Z, which is nothing but the holomorphic/anti-holomorphic
form of the scalar mass matrix. The supersymmetry order parameters, related to
the mixed gravitino-gaugino couplings, are given by the matter charge (function)s
DiZ = Zi (see the first of (38)).

By assuming that the Kähler potential is regular, i.e. that |K| < ∞ globally in
MNV (or at least at the critical points of VBH ), one gets that

∂iVBH = 0 ⇔ 2WDiW + ieKWi jkg jlgkm (DlW
)

DmW = 0. (55)

3.1.1 Classification of Critical Points of VBH

Starting from the general structure of the criticality conditions (55) and assuming
also the non-degeneracy (i.e. VBH |∂VBH=0 > 0) condition, the critical points of VBH

can be classified in three general classes, analyzed in the next three Subsubsubsects.

Supersymmetric ( 1
2 -BPS)

The supersymmetric ( 1
2 -BPS) critical points of VBH are determined by the constraints

(sufficient but not necessary conditions for (55))
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Z �= 0,DiZ = 0,∀i = 1, . . . ,nV . (56)

The horizon ADM squared mass at 1
2 -BPS critical points of VBH saturates the

BPS bound:

M2
ADM,H, 1

2−BPS
= VBH, 1

2−BPS =
[
|Z|2 +gi j (DiZ)D jZ

]
1
2−BPS

= |Z|21
2−BPS > 0. (57)

Considering the N = 2, d = 4 supergravity Lagrangian in a static, spherically
symmetric, asymptotically flat extremal BH background, and denoting by ψ and λi,
respectively, the gravitino and gaugino fields, it is easy to see that such a Lagrangian
contains terms of the form (see the second and third Refs. of [101, 102, 103])

Zψψ;

Ci jkgkk (DkZ
)
λiλ j;

(DiZ)λiψ.

(58)

Thus, the conditions (56) imply the gaugino mass term and the λψ term to vanish at
the 1

2 -BPS critical points of VBH in MnV . It is interesting to remark that the gravitino
“apparent mass” term Zψψ is in general non-vanishing, also when evaluated at the
considered 1

2 -BPS attractors; this is ultimately a consequence of the fact that the
extremal BH horizon geometry at the 1

2 -BPS (as well as at the non-BPS) attractors
is Bertotti-Robinson AdS2 ×S2 [108, 109, 110].

Non-supersymmetric (non-BPS) with Z �= 0

The non-supersymmetric (non-BPS) critical points of VBH with non-vanishing cen-
tral charge are determined by the constraints

Z �= 0,DiZ �= 0,at least for some i ∈ {1, . . . ,nV} , (59)

which, substituted in (55), yield:

DiZ = − i

2Z
Ci jkg jlgkm (DlZ

)
DmZ, ∀i = 1, . . . ,nV ;

�

DiZ =
i

2Z
Ci jkgl jgmk (DlZ)DmZ, ∀i = 1, . . . ,nV ,

(60)

in turn implying that

gii (DiZ)DiZ = − i

2Z
Ci jkgiig jlgkm (DiZ

)(
DlZ

)
DmZ

=
i

2Z
Ci jkgiigl jgmk (DiZ)(DlZ)DmZ.

(61)
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Such critical points are non-supersymmetric ones (i.e. they do not preserve any
of the 8 supersymmetry degrees of freedom of the asymptotical Minkowski back-
ground), and they correspond to an extremal, non-BPS BH background. They are
commonly named non-BPS Z �= 0 critical points of VBH .

AEs (55) and conditions (59) imply

(
Ci jk

)
non−BPS,Z �=0 �= 0, for some (i, j,k) ∈ {1, . . . ,nV}3 . (62)

By using (60) and the so-called SK geometry constraints (see the third of (39)),
the horizon ADM squared mass corresponding to non-BPS Z �= 0 critical points of
VBH can be elaborated as follows:

M2
ADM,H,non−BPS,Z �=0 = VBH,non−BPS,Z �=0 =

[
|Z|2 +gi j (DiZ)D jZ

]
non−BPS,Z �=0

=

{
|Z|2

[
1+

1

4 |Z|4
Rkrnsg

kmgtrgnlgus (DtZ)(DuZ)
(
DlZ

)
DmZ+

+
1

2 |Z|4
[
gi j (DiZ)D jZ

]2
]}

non−BPS,Z �=0

. (63)

As far as gi j is strictly positive-definite globally (or at least at the non-BPS

Z �= 0 critical points of VBH ), M2
ADM,H,non−BPS,Z �=0 does not saturate the BPS bound

([9, 14, 16]):

M2
ADM,H,non−BPS,Z �=0 = VBH,non−BPS,Z �=0

=
[
|Z|2 +gi j (DiZ)D jZ

]
non−BPS,Z �=0

> |Z|2non−BPS,Z �=0 .
(64)

Starting from (63), one can introduce and further elaborate the so-called non-BPS
Z �= 0 supersymmetry breaking order parameter as follows:

(0 <)Onon−BPS,Z �=0 ≡
[

gi j (DiZ)D jZ

|Z|2

]

non−BPS,Z �=0

= −
[

i

2Z |Z|2
Ci jkgiig jlgkm (DiZ

)(
DlZ

)
DmZ

]

non−BPS,Z �=0

=

[
i

2Z |Z|2
Ci jkgiigl jgmk (DiZ)(DlZ)DmZ

]

non−BPS,Z �=0

,

(65)

where (61) were used. Since it holds that
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[
gi j (DiZ)D jZ

|Z|2

]

non−BPS,Z �=0

=

{
1

4 |Z|4
Rkrnsg

kmgtrgnlgus (DtZ)(DuZ)
(
DlZ

)
DmZ

+
1
2

[
gi j (DiZ)D jZ

|Z|2

]2
⎫⎬
⎭

non−BPS,Z �=0

,

(66)

Onon−BPS,Z �=0 defined by (65) can equivalently be rewritten as follows:

Onon−BPS,Z �=0 =
[

1

4 |Z|4
gi jCiknC jrsg

nlgkmgtrgus (DtZ)(DuZ)
(
DlZ

)
DmZ

]

non−BPS,Z �=0

.

(67)
Equation (67) imply that

M2
ADM,H,non−BPS,Z �=0 = VBH,non−BPS,Z �=0 = |Z|2non−BPS,Z �=0

[
1+Onon−BPS,Z �=0

]

=

{
|Z|2

[
3−2

R (Z)
gi jCiknC jrsg

nlgkmgtrgus (DtZ)(DuZ)
(
DlZ

)
DmZ

]}

non−BPS,Z �=0

,

(68)

where the sectional curvature (see e.g. [111] and [112])

R (Z) ≡ Ri jklg
iig j jgkkgll (D jZ)(DlZ)

(
DiZ

)
DkZ (69)

was introduced.
Now, by using the relations of SK geometry it is possible to show that

DmDiCjkl =
[
Dm,Di

]
Cjkl = DmD(iCj)kl = DmD(iCjkl)

= 3Cp(klCi j)ngnngppCnpm −4g(l|mC|i jk)

�

Cp(klCi j)ngnngppCnpm =
4
3

g(l|mC|i jk) +Em(i jkl),

(70)

where we introduced the rank-5 tensor

Emi jkl = Em(i jkl) ≡
1
3

DmDiCjkl =
1
3

DmD(iCjkl) = Cp(klCi j)ngnngppCnpm

− 4
3

g(l|mC|i jk) = gnnR(i|m| j|nCn|kl) +
2
3

g(i|mC| jkl),

(71)

where the SK geometry constraints were used, as well. Now, by recalling the crit-
icality conditions (55) of VBH , and by using (60), one gets that at non-BPS, Z �= 0
critical points of VBH it holds that
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2ZDiZ

=
i

4Z2 Ei(sntu)g
pngqsgrtgvu (DpZ)(DqZ)(DrZ)DvZ

+
i

3Z2 (DiZ)Cntugpngrtgvu (DpZ)(DrZ)DvZ.

(72)

By using (65), (72) and (65), with a little effort it is thus possible to compute that

M2
ADM,H,non−BPS,Z �=0 = VBH,non−BPS,Z �=0 = |Z|2non−BPS,Z �=0 [1+Onon−BPS,Z �=0]

= |Z|2non−BPS,Z �=0

×

⎧⎨
⎩4− 3

4

⎡
⎣ 1

|Z|2
Ei(klmn)gi jgkkgllgmmgnn

(
DjZ

)
(DkZ)(DlZ)(DmZ)DnZ

N3 (Z)

⎤
⎦

non−BPS,Z �=0

⎫⎬
⎭ ,

(73)

where we defined the complex cubic form

N3 (Z) ≡Ci jkgiig j jgkk (DiZ)(D jZ)DkZ. (74)

Now, by comparing (73) with (48) and by recalling the definition (69), one ob-
tains the following relations to hold at the non-BPS, Z �= 0 critical points of VBH :

3
4

⎡
⎣ 1

|Z|2
Ei(klmn)gi jgkkgllgmmgnn

(
D jZ

)
(DkZ)(DlZ)(DmZ)DnZ

N3 (Z)

⎤
⎦

non−BPS,Z �=0

−1

=

[
R (Z)

2 |Z|2 gtu (DtZ)DuZ

]

non−BPS,Z �=0

= 2

[
R (Z)

gi jCiknC jrsg
nlgkmgtrgus (DtZ)(DuZ)

(
DlZ

)
DmZ

]

non−BPS,Z �=0

.

(75)

Let us now consider the case of homogeneous symmetric SK manifolds, in which
the Kähler-invariant Riemann-Christoffel tensor Ri jkl is covariantly constant8. From
this it follows that [96]:

DmRi jkl = 0 ⇔ DiCjkl = D(iCj)kl = 0 ⇒ DmDiCjkl = 0 ⇔ DmDiC jkl = 0. (76)

This implies the global vanishing of the tensor Ei jklm, yielding [96]

8 Indeed, due to the reality of Ri jkl in any Kähler manifold, it holds that

DmRi jkl = 0 ⇔ DmRi jkl = 0.
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Cp(klCi j)ngnngppCnpm =
4
3

g(l|mC|i jk) ⇔ gnnR(i|m| j|nCn|kl) = −2
3

g(i|mC| jkl). (77)

By recalling (72) and (74), one obtains the following noteworthy relation, holding
in homogeneous symmetric SK manifolds:

(
Z |Z|2

)
non−BPS,Z �=0

=
i
6

[N3 (Z)]non−BPS,Z �=0 , (78)

implying that
[

N3(Z)
Z

]
non−BPS,Z �=0

has vanishing real part and strictly negative imag-

inary part, given by −6 |Z|2non−BPS,Z �=0. By recalling (67), (78) implies the value of
the supersymmetry breaking order parameter at non-BPS, Z �= 0 critical points of
VBH in homogeneous symmetric SK manifolds to be

Onon−BPS,Z �=0 = 3 =⇒ Δnon−BPS,Z �=0 = 0. (79)

By recalling (73), one thus finally gets that

M2
ADM,H,non−BPS,Z �=0 = VBH,non−BPS,Z �=0 = 4 |Z|2non−BPS,Z �=0 =

2
3

i

[
N3 (Z)

Z

]

non−BPS,Z �=0

,

(80)

where in the last step we used the relation (78). The result VBH,non−BPS,Z �=0 =
4 |Z|2non−BPS,Z �=0 has been firstly obtained, by exploiting group-theoretical methods,
in [21].

Finally, by recalling (75) and using (78) and (80), one obtains the following re-
lation, holding for homogeneous symmetric SK manifolds:

R (Z)|non−BPS,Z �=0 = −6 |Z|4non−BPS,Z �=0 . (81)

It is worth pointing out that, while (76) (holding globally) are peculiar to ho-
mogeneous symmetric SK manifolds, (78), (79), (80), (81) hold in general also for
homogeneous non-symmetric SK manifolds, in which the Riemann-Christoffel ten-
sor Ri jkl (and thus, through the SK constraints, Ci jk) is not covariantly constant.
Indeed, as obtained in [28] for all the considered non-BPS, Z �= 0 critical points of
VBH in homogeneous non-symmetric SK manifolds it holds that

[
Ei(klmn)gi jgkkgllgmmgnn

(
D jZ

)
(DkZ)(DlZ)(DmZ)DnZ

]
non−BPS,Z �=0

= 0, (82)

which actually seems to be the most general (necessary and sufficient) condition in
order for (78), (79), (80), (81) to hold. Finally, it should be stressed that in [10] the
result (79) and thus VBH,non−BPS,Z �=0 = 4 |Z|2non−BPS,Z �=0 was obtained for a generic
SK geometry with a cubic holomorphic prepotential (corresponding to the large
volume limit of Type IIA on Calabi-Yau threefolds), at least for the non-BPS, Z �= 0
critical points of VBH satisfying the Ansatz
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zi
non−BPS,Z �=0 = pit (p,q) , ∀i = 1, . . . ,nV , (83)

where the zi
non−BPS,Z �=0s are the critical moduli, and t (p,q) is a purely charge-

dependent quantity.
Furthermore, it is worth noticing that the general criticality conditions (52) of

VBH can be recognized to be the general Ward identities relating the gravitino mass
Z, the gaugino masses DiD jZ and the supersymmetry-breaking order parameters
DiZ in a generic spontaneously broken supergravity theory [113, 114, 115]. Indeed,
away from 1

2 -BPS critical points (i.e. for DiZ �= 0 for some i), the AEs (52) can be
re-expressed as follows (see also [32]):

(
Mi jh

j)
∂VBH=0 = 0, (84)

with

Mi j ≡DiD jZ +2
Z[

gkk (DkZ)
(
DkZ

)] (DiZ)(D jZ) ,( Kähler weights(1,−1)), (85)

and
h j ≡ g j jD jZ,(Kähler weights(−1,1)). (86)

For a non-vanishing contravariant vector h j (i.e. away from 1
2 -BPS critical points, as

pointed out above), (84) admits a solution iff the nV ×nV complex symmetric matrix
Mi j has vanishing determinant (implying that it has at most nV − 1 non-vanishing
eigenvalues) at the considered (non-BPS) critical points of VBH (however, notice that
Mi j is symmetric but not necessarily Hermitian, and thus in general its eigenvalues
are not necessarily real). Such a reasoning holds for all non-BPS critical points of
VBH , i.e. for the classes II and III of the presented classification.

In general, non-BPS Z �= 0 critical points of VBH in MnV are not necessarily
stable, because the 2nV × 2nV (covariant) Hessian matrix (in (z,z)-coordinates) of
VBH evaluated at such points is not necessarily strictly positive-definite. An explicit
condition of stability of non-BPS Z �= 0 critical points of VBH can be worked out in
the nV = 1 case (see [17, 18, 26]).

In general, (58) and conditions (59) imply the gaugino mass term, the λψ term
and the gravitino “apparent mass” term Zψψ to be non-vanishing, when evaluated
at the considered non-BPS Z �= 0 critical points of VBH .

Non-supersymmetric (non-BPS) with Z = 0

The non-supersymmetric (non-BPS) critical points of VBH with vanishing central
charge are determined by the constraints

Z = 0, DiZ
Z=0= ∂iZ �= 0, at least for some i ∈ {1, . . . ,nV} , (87)

which, substituted in (55), yield:
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Ci jkg jlgkm (DlZ
)

DmZ
Z=0= Ci jkg jlgkm

(
∂ lZ

)
∂mZ = 0, ∀i = 1, . . . ,nV . (88)

Such critical points are non-supersymmetric ones, but, differently from the class
II considered above, they correspond to an extremal, non-BPS BH background in
which the horizon N = 2, d = 4 supersymmetry algebra is not centrally extended.
They are commonly named non-BPS Z = 0 critical points of VBH .

The horizon ADM squared mass corresponding to non-BPS Z = 0 critical points
of VBH does not saturate the BPS bound ([9, 14, 16]):

M2
ADM,H,non−BPS,Z=0 = VBH,non−BPS,Z=0

=
{

gi j (∂iZ)∂ jZ
}

non−BPS,Z=0
>
(
|Z|2

)
non−BPS,Z=0

= 0,
(89)

as far as gi j is strictly positive-definite globally (or at least at the considered critical
points of VBH ). Equation (88) suggest the following sub-classification of non-BPS
Z = 0 critical points of VBH :

(III.1) Critical points determined by the conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z = 0,

DiZ
Z=0= ∂iZ �= 0,at least for some i ∈ {1, . . . ,nV} ,

Ci jk = 0,∀i, j,k,

(90)

directly solving (88) and thus AEs (55). This is the only possible case for nV = 1.
In particular, non-BPS Z = 0 critical points of VBH do not exist at all in the nV = 1

case of the so-called “d-SK geometries”, whose stringy origin is e.g. Type IIA on
CY3 in the large volume limit of CY3 (see e.g. [10]). Indeed, in such a case in special
projective coordinates (with Kähler gauge fixed such that X0 ≡ 1) the holomorphic
prepotential F and Wi jk, respectively, read

F = di jkziz jzk;

Ci jk = eKdi jk,

(91)

and thus, for |K| < ∞ at least at the considered critical points of VBH , the third of
conditions (90) cannot be satisfied.

(III.2) Critical points determined by the conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z = 0,

DiZ
Z=0= ∂iZ �= 0, at least for some i ∈ {1, . . . ,nV} ,

Ci jk �= 0, at least for some (i, j,k) ∈ {1, . . . ,nV}3 ,

(92)

for which (88), and thus AEs (55), are not trivially solved.
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In general, non-BPS Z = 0 critical points of VBH in MnV are not necessarily
stable, because the 2nV × 2nV (covariant) Hessian matrix (in (z,z)-coordinates) of
VBH evaluated at such points is not necessarily strictly positive-definite. An explicit
condition of stability of non-BPS Z = 0 critical points of VBH can be worked out in
the nV = 1 case [26].

In general, (58) and conditions (56) imply the λψ term to be non-vanishing and
the gravitino “apparent mass” term Zψψ to vanish, when evaluated at the considered
non-BPS Z = 0 critical points of VBH , characterized by vanishing (class III.1) or
non-vanishing (class III.2) gaugino mass terms.

Non-BPS Z = 0 attractors in the so-called st2 and stu models [116, 117] have
been recently studied in [43], and their relation with the 1

2 -BPS attractors has been
analyzed in light of the uplift to N = 8, d = 4 supergravity.

3.2 Stability of Critical Points of VBH

3.2.1 nV-Moduli

In order to decide whether a critical point of VBH is an attractor in strict sense, one
has to consider the following condition:

HVBH
R

≡ HVBH
ab ≡ DaDbVBH > 0 at DcVBH =

∂VBH

∂φ c = 0 ∀c = 1, . . . ,2nV , (93)

i.e. the condition of (strict) positive-definiteness of the real 2nV ×2nV Hessian ma-
trix HVBH

R
≡ HVBH

ab of VBH (which is nothing but the squared mass matrix of the
moduli) at the critical points of VBH , expressed in the real parameterization through
the φ -coordinates. Since VBH is positive-definite, a stable critical point (namely, an
attractor in strict sense) is necessarily a(n at least local) minimum, and therefore it
fulfills the condition (93).

In general, HVBH
R

may be block-decomposed in nV ×nV real matrices:

HVBH
R

=

(
A C

C T B

)
, (94)

with A and B being nV ×nV real symmetric matrices:

A T = A ,BT = B ⇔
(

HVBH
R

)T
= HVBH

R
. (95)

In the local complex (z,z)-parameterization, the 2nV × 2nV Hessian matrix of
VBH reads

HVBH
C

≡ HVBH

î ĵ
≡

⎛
⎝

DiD jVBH DiD jVBH

D jDiVBH DiD jVBH

⎞
⎠=

⎛
⎝

Mi j Ni j

Ni j Mi j

⎞
⎠ , (96)
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where the hatted indices ı̂ and ĵ may be holomorphic or antiholomorphic. HVBH
C

is the
matrix actually computable in the SKG formalism presented in Sect. 2 (see below,
(98) and (99)).

In general, 1
2 -BPS critical points are (at least local) minima of VBH , and therefore

they are stable; thus, they are attractors in strict sense. Indeed, the 2nV × 2nV (co-
variant) Hessian matrix HVBH

C
evaluated at such points is strictly positive-definite [5]:

(DiD jVBH) 1
2−BPS = (∂i∂ jVBH) 1

2−BPS = 0,

(
DiD jVBH

)
1
2−BPS

=
(
∂i∂ jVBH

)
1
2−BPS

= 2
(

gi jVBH

)
1
2−BPS

= 2 gi j

∣∣∣
1
2−BPS

|Z|21
2−BPS > 0,

(97)

where here and below the notation “ > 0′′ (“ < 0′′) is understood as strict positive-
(negative-)definiteness. The Hermiticity and (strict) positive-definiteness of the (co-
variant) Hessian matrix HVBH

C
at the 1

2 -BPS critical points are due to the Hermiticity
and – assumed – (strict) positive-definiteness (actually holding globally) of the met-
ric gi j of the SK scalar manifold being considered.

On the other hand, non-BPS critical points of VBH does not automatically fulfill
the condition (93), and a more detailed analysis [21, 18] is needed.

Using the properties of SKG, one obtains:

Mi j ≡ DiD jVBH = D jDiVBH = 4iZCi jkgkk (DkZ
)
+ i(D jCikl)gkkgll (DkZ

)(
DlZ

)
;

(98)

Ni j ≡ DiD jVBH = D jDiVBH = 2
[
gi j |Z|

2 +(DiZ)
(

D jZ
)

+ glnCiklC jmngkkgmm (DkZ
)
(DmZ)

]
, (99)

with D jCikl given by (40). Clearly, evaluating (98) and (99) constrained by the 1
2 -

BPS conditions DiZ = 0,∀i = 1, . . . ,nV , one reobtains the results (97). Here, we
limit ourselves to point out that further noteworthy elaborations of Mi j and Ni j can
be performed in homogeneous symmetric SK manifolds, where D jCikl = 0 globally
[21], and that the Kähler-invariant (2,2)-tensor glnCiklC jmn can be rewritten in terms
of the Riemann-Christoffel tensor Ri jkm by using the so-called “SKG constraints”
(see the third of (39)) [18]. Moreover, the differential Bianchi identities for Ri jkm
imply Mi j to be symmetric (see comment below (39) and (40)).

Thus, one gets the following global properties:

M T = M , N † = N ⇔
(

HVBH
C

)T
= HVBH

C
, (100)

implying that

(
HVBH

C

)†
= HVBH

C
⇔ M † = M , N T = N ⇔ M = M , N = N . (101)
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It should be stressed clearly that the symmetry but non-Hermiticity of HVBH
C

actually
does not matter, because what one is interested in are the eigenvalues of the real form
HVBH

R
, which is real and symmetric, and therefore admitting 2nV real eigenvalues.

The relation between HVBH
R

expressed by (94) and HVBH
C

given by (96) is ex-
pressed by the following relations between the nV × nV sub-blocks of HVBH

R
and

HVBH
C

[17, 29]: ⎧⎪⎪⎨
⎪⎪⎩

M =
1
2

(A −B)+
i
2

(
C +C T

)
;

N =
1
2

(A +B)+
i
2

(
C T −C

)
,

(102)

or its inverse ⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A = ReM +ReN ;

B = ReN −ReM ;

C = ImM − ImN .

(103)

The structure of the Hessian matrix gets simplified at the critical points of VBH ,
because the covariant derivatives may be substituted by the flat ones; the critical
Hessian matrices in complex holomorphic/antiholomorphic and real local parame-
terizations, respectively, read

HVBH
C

∣∣∣
∂VBH=0

≡

⎛
⎝ ∂i∂ jVBH ∂i∂ jVBH

∂ j∂ iVBH ∂ i∂ jVBH

⎞
⎠

∂VBH=0

=

⎛
⎝M N

N M

⎞
⎠

∂VBH=0

; (104)

HVBH
R

∣∣∣
∂VBH=0

=
∂ 2VBH

∂φ a∂φ b

∣∣∣∣
∂VBH=0

=

⎛
⎝

A C

C T B

⎞
⎠

∂VBH=0

. (105)

Thus, the study of the condition (93) finally amounts to the study of the eigenvalue

problem of the real symmetric 2nV ×2nV critical Hessian matrix HVBH
R

∣∣∣
∂VBH=0

given

by (105), which is the Cayley-transformed of the complex (symmetric, but not nec-

essarily Hermitian) 2nV ×2nV critical Hessian HVBH
C

∣∣∣
∂VBH=0

given by (104).

3.2.2 1-Modulus

Once again, the situation strongly simplifies in nV = 1 SKG.
Indeed, for nV = 1 the moduli-dependent matrices A , B, C , M , and N intro-

duced above are simply scalar functions. In particular, N is real, since C trivially
satisfies C = C T . The stability condition (93) can thus be written as

HVBH
R

≡ DaDbVBH > 0,(a,b = 1,2) at DcVBH =
∂VBH

∂φ c = 0 ∀c = 1,2, (106)
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and (98) and (99) respectively simplify to

M ≡ D2VBH = 4iZCg−1DZ + i(DC)g−2 (DZ
)2

; (107)

N ≡ DDVBH = DDVBH = 2
[
g |Z|2 + |DZ|2 + |C|2 g−3 |DZ|2

]
, (108)

DC being given by the case nV = 1 of (40):

DC = ∂C +[(∂K)+3Γ]C = ∂C +[(∂K)−3∂ ln(g)]C

=

⎧
⎪⎨
⎪⎩

∂ +

⎡
⎢⎣∂ ln

⎛
⎜⎝ eK

(
∂∂K

)3

⎞
⎟⎠

⎤
⎥⎦

⎫
⎪⎬
⎪⎭

C, (109)

where the nV = 1 Christoffel connection

Γ = −g−1∂g = −∂ ln(g) (110)

was used. It is easy to show that the stability condition (106) for critical points of
VBH in nV = 1 SKG can be equivalently reformulated as the strict bound

N |∂VBH=0 > |M |∂VBH=0 . (111)

Let us now see how such a bound can be further elaborated for the three possible
classes of critical points of VBH .

1
2

-BPS

M 1
2−BPS ≡ D2VBH

∣∣
1
2−BPS =

[
3ZD2Z +g−1 (D3Z

)
DZ
]

1
2−BPS = 0;

(112)

N 1
2−BPS ≡ DDVBH

∣∣
1
2−BPS =

[
2g |Z|2 +g−1

∣∣D2Z
∣∣2]

1
2−BPS

= 2
(

g |Z|2
)

1
2−BPS

.

(113)

Equations (112) and (113) are nothing but the 1-modulus case of (97), and they
directly satisfy the bound (111). Thus, consistently with that stated above, the
1
2 -BPS class of critical points of VBH actually is a class of attractors in strict sense
(at least local minima of VBH ).
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Non-BPS, Z �= 0

Mnon−BPS,Z �=0 ≡ D2VBH
∣∣
non−BPS,Z �=0

= −2
{

g−1ZDZ
[
g−2 |C|2 Dln(Z)+gDln(C)

]}
non−BPS,Z �=0

= i
{

Cg−3 (DZ
)2
[
g−2 |C|2 Dln(Z)+gDln(C)

]}
non−BPS,Z �=0

;

(114)

Nnon−BPS,Z �=0 ≡ DDVBH
∣∣
non−BPS,Z �=0 = DDVBH

∣∣
non−BPS,Z �=0

= 2

{
|DZ|2

[
1+

5
4

g−3 |C|2
]}

non−BPS,Z �=0
.

(115)

Equation (114) yields that

|M |2non−BPS,Z �=0

= 4

{
|DZ|4

[
|C|4 g−6 +

1
4

g−4 |DC|2 +2g−3Re
[
C
(
DC

)
Dln(Z)

]]}

non−BPS,Z �=0
.

(116)

By substituting (115) and (116) into the strict inequality (111), one finally obtains
the stability condition for non-BPS, Z �= 0 critical points of VBH in nV = 1 SKG [17]:

Nnon−BPS,Z �=0 > |M |non−BPS,Z �=0 ; (117)

�

1+
5
4

(
|C|2 g−3

)
non−BPS,Z �=0

>

√[
|C|4 g−6 +

1
4

g−4 |DC|2 +2g−3Re
[
C
(
DC

)(
DlnZ

)]]

non−BPS,Z �=0
. (118)

As is seen from such a condition, in general (DC)non−BPS,Z �=0 is the fundamental
geometrical quantity playing a key role in determining the stability of non-BPS,
Z �= 0 critical points of VBH in 1-modulus SK geometry.

Non-BPS, Z = 0

Mnon−BPS,Z=0 ≡ D2VBH
∣∣
non−BPS,Z=0 = i

[
g−2 (∂C)

(
∂Z
)2
]

non−BPS,Z=0
;

(119)

Nnon−BPS,Z=0 ≡ DDVBH
∣∣
non−BPS,Z=0 = 2 |∂Z|2non−BPS,Z=0 ,

(120)



Extremal Black Hole and Flux Vacua Attractors 143

where (92) and (90) have been used. Equation (119) yields that

|M |non−BPS,Z=0 =
[
g−2 |∂C| |∂Z|2

]
non−BPS,Z=0

. (121)

By substituting (120) and (121) into the strict inequality (111), one finally obtains
the stability condition for non-BPS, Z = 0 critical points of VBH in nV = 1 SKG:

Nnon−BPS,Z=0 > |M |non−BPS,Z=0 ; (122)

�
2g2

non−BPS,Z=0 > |∂C|non−BPS,Z=0 . (123)

Even though the stability condition (123) have been obtained by correctly using (92)
and (90), holding at the non-BPS, Z = 0 critical points of VBH , in some cases it may
happen that, in the limit of approaching the non-BPS, Z = 0 critical point of VBH ,
in DC (given by (109)) the “connection term” [(∂K)+3Γ]C is not necessarily sub-
leading with respect to the “differential term” ∂C. Thus, the condition (123) can be
rewritten as follows:

2
(
∂∂K

)2

non−BPS,Z=0
> |{∂ +[(∂K)−3∂ ln(g)]}C|non−BPS,Z=0

=

∣∣∣∣∣∣∣

⎧⎪⎨
⎪⎩

∂ +

⎡
⎢⎣∂ ln

⎛
⎜⎝ eK

(
∂∂K

)3

⎞
⎟⎠

⎤
⎥⎦

⎫⎪⎬
⎪⎭

C

∣∣∣∣∣∣∣
non−BPS,Z=0

.
(124)

Remark

Let us consider the 1-modulus stability conditions (117) and (123) and (124). It is
immediate to realize that they are both satisfied when the function C is globally
covariantly constant:

DC = ∂C +[(∂K)+3Γ]C = 0, (125)

i.e. for the so-called homogeneous symmetric (dimC = nV = 1) SK geometry [95,

96], univoquely associated to the coset manifold SU(1,1)
U(1) . Such a SK manifold can

be twofold characterized as:

(i) the n = 0 element of the irreducible rank-1 infinite sequence SU(1,1+n)
U(1)⊗SU(1+n) (with

nV = n + rank = n + 1), or equivalently the n = −2 element of the reducible
rank-3 infinite sequence SU(1,1)

U(1) ⊗ SO(2,2+n)
SO(2)⊗SO(2+n) (with nV = n + rank = n + 3).

In such a case, SU(1,1)
U(1) is endowed with a quadratic holomorphic prepotential

function reading (in a suitable projective special coordinate, with Kähler gauge
fixed such that X0 = 1; see [21] and Refs. therein)

F (z) =
i
2

(
z2 −1

)
. (126)
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By recalling the first of (39), such a prepotential yields C = 0 globally (and thus
(125)), and, therefore, by using the SKG constraints (i.e. the third of (39)) it
yields also the constant scalar curvature

R ≡ g−2R = −2, (127)

where R ≡ R1111 denotes the unique component of the Riemann tensor. As ob-
tained in [21], quadratic (homogeneous symmetric) SK geometries only admit
1
2 -BPS and non-BPS, Z = 0 critical points of VBH . Thus, it can be concluded that
the 1-dim. quadratic SK geometry determined by the prepotential (126) admits
all stable critical points of VBH .

(ii) the rank-1 s = t = u ≡ z degeneration of the so-called stu model [116, 117] (n =
0 element of the reducible rank-3 infinite sequence SU(1,1)

U(1) ⊗ SO(2,2+n)
SO(2)⊗SO(2+n) ),

or equivalently the rank-1 s = t ≡ z degeneration of the so-called st2 model
(n = −1 element of SU(1,1)

U(1) ⊗ SO(2,2+n)
SO(2)⊗SO(2+n) ), or also as an isolated case in the

classification of homogeneous symmetric SK manifolds (see e.g. [118]). In such
a case, SU(1,1)

U(1) is endowed with a cubic holomorphic prepotential function read-
ing (in a suitable projective special coordinate, with Kähler gauge fixed such
that X0 = 1; see e.g. [21] and Refs. therein)

F (z) = ρz3, ρ ∈ C, (128)

constrained by the condition Im(z) < 0. It admits an uplift to pure N = 2
supergravity in d = 5. By recalling the first of (39), such a prepotential yields
C = 6ρeK (and thus (125)), and consequently it also yields the constant scalar
curvature

R ≡ g−2R = g−2
(
−2g2 +g−1 |C|2

)
= −2

3
, (129)

where the SKG constraints (i.e. the third of (39)) and the global value9 |C|2
g−3 = 4

3 have been used. As it can be computed (see e.g. [32]), the 1-dim.
SK geometry determined by the prepotential (128) admits, beside the (stable)
1
2 -BPS ones, stable non-BPS Z �= 0 critical points of VBH . Thus, it is another
example in which all critical points of VBH actually are attractors in a strict
sense.

Clearly, the quadratic and cubic homogeneous symmetric 1-modulus SK geome-
tries (respectively determined by holomorphic prepotentials (126) and (128)) are
not the only ones (with nV = 1) admitting stable non-BPS critical points of VBH . For
instance, as studied in [26], the 1-modulus SK geometries of the moduli space of the
(mirror) Fermat CY3 quintic M ′

5 and octic M ′
8 admit, in a suitable neighbourhood

of the LG point, stable non-BPS (Z �= 0) critical points of VBH .
It is worth remarking that recent works [33, 36, 46] gave a complete treatment

of the issue of stability of non-BPS attractors in the framework of homogeneous

9 The global value |C|2 g−3 = 4
3 for homogeneous symmetric cubic nV = 1 SK geometries is yielded

by the nV = 1 case of (77).
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SKGs, finding that the massless modes of the non-BPS Hessian matrix actually are
“flat directions” of VBH at the considered class of critical points. This means that
non-BPS attractors in N = 2, d = 4 supergravity have a related moduli space,
spanned by those moduli which are not stabilized at the BH horizon. However, it
should be pointed out that such an emergence of moduli spaces do not violate the
Attractor Mechanism and/or the determinacy of BH thermodinamical properties,
because the non-BPS BH entropy simply does not depend on the scalar degrees of
freedom spanning the moduli space of the considered class (Z �= 0 or Z = 0) of
non-BPS critical points of VBH . Such considerations hold also for N > 2-extended,
d = 4 supergravities (where also BPS attractors can have a related moduli space),
and in general in all theories with a homogeneous (not necessarily symmetric) scalar
manifold [33, 40, 46, 49].

3.3 NNN = 2, d = 4 General Formulation

3.3.1 Special Kähler Geometry Identities

We will now derive some important identities of the SK geometry [9, 14, 17, 18, 23,
119] of the scalar manifold of N = 2, d = 4 ungauged supergravity. Such identities
extend the results obtained by Ferrara and Kallosh in [3].

Let us start by considering the covariant antiholomorphic derivative of Z; by
recalling the definition (23) and using the second of Ansätze (42), one gets

D jZ = qΛDiL
Λ− pΛNΛΔD jL

Δ
. (130)

The contraction of both sides with gi jDiLΣ then yields

gi j (DiL
Σ)D jZ = qΛgi j (DiL

Σ)D jL
Λ− pΛNΛΔgi j (DiL

Σ)D jL
Δ
. (131)

By exploiting the symmetry of NΛΣ and its inverse (see (44) and (167) further below,
as well), recalling the first of the Ansätze (42), and using the result of SK geometry
(see e.g. [64])

gi j
(

DiL
Λ
)

D jL
Σ = −1

2
(ImN )−1|ΛΣ−L

Λ
LΣ, (132)

Equation (131) can be further elaborated as follows:

gi j
(

DiL
Σ
)

D jZ = qΛ

[
−1

2
(ImN )−1|ΣΛ−LΣLΛ

]
− pΛNΛΔ

[
−1

2
(ImN )−1|ΣΔ−LΣLΔ

]

= −1
2

(ImN )−1|ΣΛ qΛ−LΣ
(

LΛqΛ−MΛpΛ
)

+
1
2

(ImN )−1|ΣΔ (ReNΔΛ) pΛ +
i
2

pΣ

=
i
2

pΣ−LΣZ +
1
2

(ImN )−1|ΣΔ (ReNΔΛ) pΛ− 1
2

(ImN )−1|ΣΛ qΛ. (133)
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Now, by subtracting to the expression (133) its complex conjugate, one gets

pΛ = 2Re
[
iZLΛ + igi j (DiZ)D jL

Λ
]

= −2Im
[
ZLΛ +gi j (DiZ)D jL

Λ
]
. (134)

On the other hand, by using the second of Ansätze (42), the contraction of both
sides of (130) with gi jD jMΣ analogously yields

gi j (DiMΣ)D jZ = qΛgi j (DiMΣ)D jL
Λ− pΛNΛΔgi j (DiMΣ)D jL

Δ

= qΛgi jN ΣΔ

(
DiL

Δ
)

D jL
Λ− pΛNΛΔgi jN ΣΞ

(
DiL

Ξ)D jL
Δ
.

(135)

Once again, by exploiting the symmetry of NΛΣ and its inverse, recalling the first
of the Ansätze (42), and using (132), (135) can be further elaborated as follows:

gi j (DiMΣ)D jZ = qΛN ΣΔ

[
−1

2
(ImN )−1|ΔΛ−L

Δ
LΛ
]
− pΛNΛΔN ΣΞ

×
[
−1

2
(ImN )−1|ΞΔ−L

Ξ
LΔ
]

= −1
2

(ImN )−1|ΔΛ (ReNΣΔ)qΛ

+
i
2

qΣ−MΣZ +
1
2

(ImN )−1|ΞΔ (ReNΣΞ)(ReNΛΔ) pΛ

+
1
2

(ImNΛΣ) pΛ.

(136)

Thence, by subtracting to the expression (136) its complex conjugate, one gets

qΛ = 2Re
[
iZMΛ + igi j (DiZ)D jMΛ

]
= −2Im

[
ZMΛ +gi j (DiZ)D jMΛ

]
. (137)

By expressing the identities (134) and (137) in a vector Sp(2nV +2)-covariant
notation, one finally gets

⎛
⎝

pΛ

qΛ

⎞
⎠ = −2Im

⎡
⎢⎣Z

⎛
⎝

LΛ

MΛ

⎞
⎠+gi jDiZ

⎛
⎜⎝

D jL
Λ

D jMΛ

⎞
⎟⎠

⎤
⎥⎦ , (138)

or in compact form

QT = −2Im
[
ZV +gi j (DiZ)D jV

]
, (139)

where we recalled the definitions (1) and (25) of the (2nV +2)×1 vectors QT and
V , respectively.

It is worth pointing out that the vector identity (139) has been obtained only by
using the properties of the SK geometry. The relations yielded by the identity (139)
are 2nV +2 real ones, but they have been obtained by starting from an expression for
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DiZ, corresponding to nV complex, and therefore 2nV real, degrees of freedom. The
two redundant real degrees of freedom are encoded in the homogeneity (of degree 1)
of the identity (139) under complex rescalings of the symplectic BH charge vector
Q; indeed, by recalling the definition (23) it is immediate to check that the r.h.s. of
identity (139) acquires an overall factor λ under a global rescaling of Q of the kind

Q −→ λQ, λ ∈ C. (140)

The summation of the expressions (133) and (136) with their complex conju-
gates, respectively, yields

(ImN )−1|ΔΛ (ReNΔΣ) pΣ− (ImN )−1|ΛΣ qΣ = 2Re
[
ZLΛ +gi j (DiZ)D jL

Λ
]

;

(141)[
ImNΛΣ +(ImN )−1|ΞΔ (ReNΛΞ)ReNΣΔ

]
pΣ− (ImN )−1|ΔΣ (ReNΛΔ)qΣ

= 2Re
[
ZMΛ +gi j (DiZ)D jMΛ

]
.

(142)

In order to elaborate a shorthand notation for the obtained SKG identities (134),
(137) and (141), (142), let us now reconsider the starting expressions (133) and
(136), respectively, reading

[
δΛ
Σ − i(ImN )−1|ΛΔ ReNΔΣ

]
pΣ + i(ImN )−1|ΛΣ qΣ

= − 2iL
Λ

Z −2igi j
(

D jZ
)

DiL
Λ;

(143)

− i
[
(ImN )−1|ΞΔ (ReNΛΞ)ReNΣΔ + ImNΛΣ

]
pΣ

+
[
δΣ
Λ + i(ImN )−1|ΔΣ ReNΛΔ

]
qΣ = −2iMΛZ −2igi j

(
D jZ

)
DiMΛ.

(144)

Thus, the identities (143) and (144) may be recast as the following fundamental
(2nV +2)× 1 vector identity, defining the geometric structure of SK manifolds [9,
14, 17, 18, 23, 119]:

QT − iεM (N )QT = −2iV Z −2igi j
(

D jZ
)

DiV. (145)

The (2nV +2)× (2nV +2) real symmetric matrix M (N ) is defined as [3, 4, 64]

M (N ) = M (ReN , ImN )

≡
(

ImN +(ReN )(ImN )−1 ReN −(ReN )(ImN )−1

−(ImN )−1 ReN (ImN )−1

)
, (146)

where NΛΣ is defined by (44). It is worth recalling that M (N ) is symplectic with
respect to the symplectic metric ε, i.e. it satisfies ((M (N ))T = M (N ))



148 S. Bellucci et al.

M (N )εM (N ) = ε. (147)

By using (28), (45), (46) and (47), the identity (145) implies the following
relations: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

〈
V,QT − iεM (N )QT

〉
= −2Z;

〈
V ,QT − iεM (N )QT

〉
= 0;

〈
DiV,QT − iεM (N )QT

〉
= 0;

〈
DiV ,QT − iεM (N )QT

〉
= −2DiZ.

(148)

There are only 2nV independent real relations out of the 4nV +4 real ones yielded
by the 2nV + 2 complex identities (145). Indeed, by taking the real and imaginary
part of the SKG vector identity (145) one respectively obtains

QT = −2Re
[
iZV + igi j

(
D jZ

)
DiV

]
= −2Im

[
ZV +gi j (DiZ)D jV

]
; (149)

εM (N )QT = 2Im
[
iZV + igi j

(
D jZ

)
DiV

]
= 2Re

[
ZV +gi j (DiZ)D jV

]
. (150)

Consequently, the imaginary and real parts of the SKG vector identity (145) are
linearly dependent one from the other, being related by the (2nV +2)× (2nV +2)
real matrix

εM (N ) =

⎛
⎝

(ImN )−1 ReN −(ImN )−1

ImN +(ReN )(ImN )−1 ReN −(ReN )(ImN )−1

⎞
⎠ . (151)

Put another way, (149) and (150) yield

Re
[
ZV +gi j

(
D jZ

)
DiV

]
= εM (N ) Im

[
ZV +gi j

(
D jZ

)
DiV

]
, (152)

expressing the fact that the real and imaginary parts of the quantity ZV +gi j
(

D jZ
)

DiV are simply related through a finite symplectic rotation given by the matrix
εM (N ) (see (168) further below), whose simplecticity directly follows from the
symplectic nature of M (N ). Equation (152) reduces the number of independent
real relations implied by the identity (145) from 4nV +4 to 2nV +2. Two additional
real degrees of freedom are scaled out by the complex rescaling (140).

This is clearly consistent with the fact that the 2nV + 2 complex identities (145)
express nothing but a change of basis of the BH charge configurations, between the
Kähler-invariant 1×(2nV +2) symplectic (magnetic/electric) basis vector Q defined
by (1) and the complex, moduli-dependent 1× (nV +1) matter charges vector (with
Kähler weights (1,−1))

Z (z,z) ≡ (Z (z,z) ,Zi (z,z))i=1,...,nV
. (153)
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It should be recalled that the BH charges are conserved due to the overall
(U(1))nV +1 gauge-invariance of the system under consideration, and Q and Z (z,z)
are two equivalent basis for them. Their very equivalence relations are given by the
SKG identities (145) themselves. By its very definition (1), Q is moduli-independent
(at least in a stationary, spherically symmetric and asymptotically flat extremal BH
background, as is the case being treated here), whereas Z is moduli-dependent, since
it refers to the eigenstates of the N = 2, d = 4 supergravity multiplet and of the nV

Maxwell vector supermultiplets.

3.3.2 “New Attractor” Approach

The evaluation of the (real part of the) fundamental SK geometrical identities (138)
and (139) along the constraints determining the various classes of critical points
of VBH in MnV allows one to obtain a completely equivalent form of the AEs for
extremal (static, spherically symmetric, asymptotically flat) BHs in N = 2, d = 4
ungauged supergravity, which may be simpler in some cases (see also [26] for the
treatment of an explicit case).

(I) Supersymmetric ( 1
2 -BPS) critical points. By evaluating the identities (138) and

(139) along the constraints (56), one obtains
⎛
⎝

pΛ

qΛ

⎞
⎠= −2Im

⎡
⎣eK/2Z

⎛
⎝

XΛ

FΛ

⎞
⎠
⎤
⎦

1
2−BPS

, (154)

or in compact form

QT = −2Im
[
eK/2ZΠ

]
1
2−BPS

.

Equations (154) and (155) are equivalent, purely algebraic forms of the
1
2 -BPS extremal BH AEs, given by the (partly differential) conditions (56). By
inserting as input the BH charge configuration Q ≡

(
pΛ, qΛ

)
and the covari-

antly holomorphic sections LΛ and MΛ of the U(1)-bundle over MnV , (154)
and (155) give as output (if any) the purely charge-dependent 1

2 -BPS critical

points

(
zi

1
2 -BPS

(p,q) , zi
1
2 -BPS

(p,q)
)

of VBH .

By looking at (154) and (155), it is easy to realize that 1
2 -BPS critical points

of VBH with Z = 0 (which are degenerate, yielding VBH, 1
2 -BPS = 0) correspond

to the trivial case of all vanishing magnetic and electric BH charges. This
means that (static, spherically symmetric, asymptotically flat) extremal BHs
with 1

2 -BPS attractor horizon scalar configurations with Z = 0 (i.e. with no
central extension of the N = 2, d = 4 horizon supersymmetry algebra) cannot
be described by the classical extremal BH Attractor Mechanism encoded by
(154) and (155). They are a particular case of the so-called “small” extremal
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BHs, which are classically degenerate, acquiring a non-vanishing, finite hori-
zon area and entropy only taking into account quantum/higher-derivative cor-
rections.

It is worth pointing out that (154) and (155) are purely algebraic ones,
whereas (56) are (partly) differential, and thus, in general, more complicated
to be solved. Consequently, at least in the 1

2 -BPS case, the “new attractor”
approach is simpler of the “criticality conditions” approach to the search of
critical points of VBH .

(II) Non-BPS Z �= 0 critical points. By evaluating the identities (138) and (139)
along the constraints (59) and (60), one obtains
⎛
⎝

pΛ

qΛ

⎞
⎠

= 2Im

⎧
⎨
⎩eK/2

⎡
⎣Z

⎛
⎝

X
Λ

FΛ

⎞
⎠+

i
2

Z

|Z|2
Ci jkgiig j jgkk (DjZ)(DkZ)

⎛
⎝

DiXΛ

DiFΛ

⎞
⎠
⎤
⎦
⎫
⎬
⎭

non−BPS,Z �=0

,

(155)

or in compact form

QT = 2Im

{
eK/2

[
ZΠ+

i
2

Z

|Z|2
Ci jkgiig j jgkk (D jZ)(DkZ)DiΠ

]}

non−BPS,Z �=0

.

(156)

Equations (155) and (156) are equivalent forms of the non-BPS Z �= 0 ex-
tremal BH AEs, given by the (partly differential) conditions (59) and (60). By
inserting as input the BH charge configuration Q, the covariantly holomorphic
sections LΛ and MΛ, the Kähler potential K (and consequently the contravari-
ant metric tensor gi j) and the completely symmetric, covariantly holomorphic
rank-3 tensor Ci jk, (155) and (156) give as output (if any) the purely charge-

dependent non-BPS Z �= 0 critical points
(

zi
non-BPS,Z �=0 (p, q) , zi

non-BPS,Z �=0

(p, q)
)

of VBH . Notice that, different from (154) and (155), (155) and (156)

are not purely algebraic. Thus, in the non-BPS Z �= 0 case the (computational)
simplification in the search of critical points of VBH obtained by exploiting the
“new attractor” approach rather than the “criticality conditions” approach is
model dependent.

It is interesting to point out that, as is evident by looking for instance at
(156), at the non-BPS Z �= 0 critical points of VBH the coefficients of Π and
DiΠ in the AEs have the same holomorphicity in the central charge Z, i.e.
they can be expressed only in terms of Z and DiZ, without using Z and DiZ.
Such a fact does not happen in a generic point of MnV , as is seen from the
global identity (139). As is evident, the price to be paid in order to obtain the
same holomorphicity in Z at the non-BPS Z �= 0 critical points of VBH is the
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fact that the coefficient of DiΠ is not linear in some covariant derivative of Z
any more, also explicitly depending on the rank-3 covariantly antiholomorphic
tensor Ci jk.

(III) Non-BPS Z = 0 critical points. By evaluating the identities (138) and (139)
along the constraints (87) and (88), one obtains

⎛
⎝

pΛ

qΛ

⎞
⎠ = 2Im

⎧⎨
⎩eK/2

⎡
⎣gi j

(
∂ jZ

)⎛⎝
DiXΛ

DiFΛ

⎞
⎠
⎤
⎦
⎫⎬
⎭

non−BPS,Z=0

, (157)

or in compact form

QT = 2Im
{

eK/2
[
gi j
(
∂ jZ

)
DiΠ

]}
non−BPS,Z=0

. (158)

Equations (157) and (158) are equivalent forms of the non-BPS Z = 0 ex-
tremal BH AEs given by the (partly differential) conditions (87) and (88). By
inserting as input the BH charge configuration Q, the covariantly holomorphic
sections LΛ and MΛ, and the Kähler potential K (and consequently the con-
travariant metric tensor gi j), Equations (157) and (158) give as output (if any)

the purely charge-dependent non-BPS Z = 0 critical points
(

zi
non-BPS,Z=0 (p,q) ,

zi
non-BPS,Z=0 (p,q)

)
of VBH . Different from (154) and (155), and similar to

(155) and (156), Equations (157) and (158) are not purely algebraic. Thus, in
the non-BPS Z = 0 case the (computational) simplification in the search of
critical points of VBH obtained by exploiting the “new attractor” approach
rather than the “criticality conditions” approach is model dependent.

3.4 Type IIB Superstrings on CY3

3.4.1 Hodge Decomposition of HHH 3

We consider Type IIB superstring theory compactified on a Calabi-Yau threefold
(CY3) [64, 66, 67, 68, 120, 121], determining an effective N = 2, d = 4 ungauged
supergravity with a number nV of Abelian vector multiplets. Within such a frame-
work, the CY3 has a complex structure (CS) moduli space (of complex dimension
nV = h2,1 ≡ dim

(
H2,1 (CY3)

)
, where H2,1 is the (2,1)-cohomology group of the con-

sidered manifold), which is a special Kähler (SK) manifold.
We introduce a10 b3-dim. real (manifestly symplectic-covariant) basis of the

third real11 cohomology H3 (CY3,R), given by the set of real 3-forms
{
αΛ, βΛ}

10 b3 = 2h2,1 +2 is the so-called third Betti number of the CY3.
11 In the strict quantum regime, one should consider the third integer cohomology H3 (CY3,Z). The
present (semi)classical treatment deal with the large charges limit and thus consistently consider
real, unquantized, rather than integer, quantized quantities.
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(Λ = 0,1, . . . ,h2,1 throughout) satisfying12

∫

CY3

αΛ∧αΣ = 0,

∫

CY3

βΛ∧βΣ = 0,

∫

CY3

αΛ∧βΣ = δΣ
Λ . (159)

By Poincarè-duality on CY3, we may correspondingly introduce the b3-dim. real
(manifestly symplectic-covariant) basis of the third real homology H3 (CY3,R),
given by the set of real 3-cycles

{
AΛ, BΛ

}
satisfying

∫

AΛ
αΣ = δΛ

Σ ,
∫

AΛ
βΣ = 0,

∫

BΛ
αΣ = 0,

∫

BΛ
βΣ = −δΣ

Λ . (160)

The CY3 is endowed with a (nowhere-vanishing) holomorphic 3-form

Ω3 (z) ≡ XΛ (z)αΛ−FΛ (z)βΛ ∈ H3,0 (CY3) , (161)

where “z” denotes the functional dependence on the CS moduli
{

zi,zi
}

(i =

1, . . . ,h2,1 throughout), and
{

XΛ, FΛ
}

stands for the basis of symplectic holomor-
phic fundamental periods of Ω3 around the 3-cycles

{
AΛ, BΛ

}
, respectively:

XΛ (z) ≡
∫

AΛ
Ω3 (z) , FΛ (z) ≡

∫

BΛ
Ω3 (z) . (162)

Ω3, as well as its fundamental periods, has Kähler weights (2,0):

DiΩ3 = ∂iΩ3 +(∂iK)Ω3,

DiΩ3 = ∂ iΩ3 = 0,
(163)

where K is the real Kähler potential in the h2,1-dim. SK CS moduli space of CY3.
Type IIB compactified on CY3 is characterized by a real 5-form

Z ≡ FΛαΛ−GΛβΛ, (164)

where FΛ is the space-time 2-form given by the Abelian field-strengths (Λ = 0
pertains to the graviphoton, whereas Λ = i corresponds to the Maxwell vector su-
permultiplets), and GΛ is the corresponding “dual” space-time 2-form, in the sense
of Legendre transform:

GΛ ≡ δL

δFΛ = (ReNΛΣ)F Σ +
1
2

(ImNΛΣ)
∗F Σ. (165)

∗F Σ denotes the Hodge ∗-dual of FΛ, defined in components as follows (the space-
time indices μ , ν run 0,1,2,3 throughout):

12 Recall that the ∧ (“wedge”) product among odd-forms is odd, whereas the one among even-
forms (and among odd- and even-forms) is even.



Extremal Black Hole and Flux Vacua Attractors 153

∗FΛ
μν ≡ 1

2
εμνρσFΛ|ρσ =

1
2

GρλGστεμνρσFΛ
λτ , (166)

where εμνρσ is the d = 4 completely antisymmetric Ricci-Levi-Civita tensor, and
Gμν is the d = 4 space-time completely contravariant metric tensor. L stands for the
(bosonic sector of the) N = 2, d = 4 ungauged supergravity Lagrangian density:

L = −R
2

+gi j

(
∂μzi)(∂νz j

)
Gμν +

1
4

(ImNΛΣ)GμλGνρFΛ
μνF

Λ
λρ

+
1
4

(ReNΛΣ)GμλGνρFΛ
μν

∗FΛ
λρ . (167)

The Hodge ∗-duality acts as a symplectic Sp(2h1,2 +2,R) rotation on the basis{
αΛ, βΛ}:

(∗αΛ

∗βΛ

)
= S

(
αΛ

βΛ

)
, S ≡−εM (N ) , S T εS = ε. (168)

where ε is the (2h1,2 +2)-dim. symplectic metric defined in (24), M (N ) is the
real, symplectic matrix defined by (146). Notice that S is nothing but the opposite
of the matrix given by (151). It can be shown that Z is Hodge ∗-self-dual:

∗Z = Z . (169)

Whenever the relevant integrations over internal manifold CY3 and over space-
time make sense, manifestly symplectic-covariant magnetic and electric charges can
be introduced as the asymptotical “space-dressings” of a suitable contraction of Z
over the symplectic 3-cycles of CY3, i.e. as the asymptotical fluxes of the space-
time 2-forms corresponding to the components of Z along the symplectic basis{

AΛ, BΛ
}

of H3 (CY3,R), respectively:

pΛ ≡ 1
4π

∫

AΛ×S2
∞
Z =

1
4π

∫

AΛ×S2
∞

(
F ΣαΣ−GΣβΣ)=

1
4π

∫

S2
∞
FΛ;

qΛ ≡ 1
4π

∫

BΛ×S2
∞
Z =

1
4π

∫

BΛ×S2
∞

(
F ΣαΣ−GΣβΣ)=

1
4π

∫

S2
∞
G Λ,

(170)

where S2
∞ denotes the 2-sphere at spatial infinity13.{

pΛ, qΛ
}

can be seen as the components (along the real symplectic basis{
αΛ, βΛ} of H3 (CY3,R)) of the real flux 3-form H3, defined as the asymptoti-

cal “space-dressing” of Z :

H3 ≡
1

4π

∫

S2
∞
Z = pΛαΛ−qΛβΛ ∈ H3 (CY3,R) . (171)

13 Consistently with (a proper subset of) the solutions of N = 2, d = 4 ungauged supergravity, the
space-time metric is assumed to be static, spherically symmetric, and asymptotically flat. In such
a framework, “spatial infinity” corresponds to r → ∞, where r is the radial coordinate.



154 S. Bellucci et al.

{
pΛ, qΛ

}
are the physical charges, and they are conserved, due to the overall

(U(1))h2,1+1 gauge symmetry of the considered framework. They, respectively,
are the magnetic and electric charges of the (U(1))h2,1+1 gauge group of the
(symplectic) real parameterization of H3 (CY3, R), which however is not the only
possible one.

Indeed, in general the third real cohomology H3 (CY3,R) can be Hodge-
decomposed along the third Dalbeault cohomogy of CY3 as follows:

H3 (CY3,R) = H3,0 (CY3)⊕s H2,1 (CY3)⊕s H1,2 (CY3)⊕s H0,3 (CY3) , (172)

corresponding to perform a change of basis from the symplectic real basis to the
Dalbeault basis: {

αΛ,βΛ
}
−→

{
Ω3,DiΩ3,DiΩ3,Ω3

}
. (173)

The subscript “s” in in (172) stands for the semidirect cohomological sum, due to
the fact that (some of the) cohomologies in the r.h.s. of the Hodge decomposition
(172) have non-vanishing intersections. Indeed, as it can be checked by recalling
(45), (46) and (159), the following results hold:

∫

CY3

Ω3 ∧Ω3 = 0,
∫

CY3

Ω3 ∧DiΩ3 = 0,
∫

CY3

Ω3 ∧DiΩ3 = 0,

∫

CY3

Ω3 ∧Ω3 = −ie−K ⇔ K = −ln

(
i
∫

CY3

Ω3 ∧Ω3

)
,

∫

CY3

(DiΩ3)∧D jΩ3 = 0,

∫

CY3

(DiΩ3)∧D jΩ3 =
[
∂ j∂iln

(
i
∫

CY3

Ω3 ∧Ω3

)]∫
CY3

Ω3 ∧Ω3

= −∂ j∂iK
∫

CY3

Ω3 ∧Ω3 = ie−Kgi j

�

gi j = −∂ j∂iln

(
i
∫

CY3

Ω3 ∧Ω3

)
= −

∫

CY3

(DiΩ3)∧D jΩ3

∫

CY3

Ω3 ∧Ω3

.

(174)

In particular, the second line of (174) allows one to write the covariant derivatives
of Ω3 (which are the basis of H2,1 (CY3)) as follows:

DiΩ3 =

(
∂i −

∫
CY3

(∂iΩ3)∧Ω3∫
CY3

Ω3 ∧Ω3

)
Ω3. (175)

It is worth pointing out that the 2h2,1 +2 3-forms
{
Ω3,DiΩ3,DiΩ3,Ω3

}
i=1,...,h2,1

are

all the possible ((2,0) and (0,2))-Kähler-weighted independent 3-forms which can
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be defined on CY3 in the considered framework. This is due to the two fundamental
relations

D jDiΩ3 = gi jΩ3; (176)

DiD jΩ3 = iCi jkgklDlΩ3 = D(iD j)Ω3, (177)

which are the translation, in the language of forms on CY3, of the third and second
of (38), respectively. Notice that the third of (38) and (176) hold in a generic Kähler
framework, whereas the second of (38) and (177) in general hold only in SK geome-
try. Due to (177), the completely symmetric, covariantly holomorphic tensor Ci jk of
SK geometry can be obtained by intersecting the elements of the basis of H2,1 (CY3)
with their covariant derivatives (and normalizing with respect to the intersection of
H3,0 (CY3) and H0,3 (CY3)):

Ci jk = C(i jk) = −i

∫
CY3

(DiD jΩ3)∧DkΩ3∫
CY3

Ω3 ∧Ω3
= eK

∫

CY3

(DiD jΩ3)∧DkΩ3. (178)

According to the Hodge-decomposition (172) implemented through the change
of basis (173), the charges undergo the following change of basis:
{

pΛ,qΛ

}
−→

{
Z3,0 (z, p,q) ,Z2,1

i (z,z, p,q) ,Z1,2
i

(z,z, p,q) ,Z0,3 (z, p,q)
}

, (179)

where the complex, (CS) moduli-dependent quantities on the r.h.s. are defined as
follows:

Z3,0 (z; p,q) ≡
∫

CY3

H3 ∧Ω3 (z) =
1

4π

∫

CY3

(∫
S2
∞
Z

)
∧Ω3 (z)

= XΛ (z)qΛ−FΛ (z) pΛ = W (z; p,q) ;

(180)

Z2,1
i (z,z; p,q) ≡

∫

CY3

H3 ∧ (DiΩ3)(z,z) =
∫

CY3

(∫
S2
∞
Z

)
∧ (DiΩ3)(z,z)

=
(

DiX
Λ
)

(z,z)qΛ− (DiFΛ)(z,z) pΛ = (DiW )(z,z; p,q) ;

(181)

Z1,2
i

(z,z; p,q) ≡ Z2,1
i (z,z; p,q); (182)

Z0,3 (z; p,q) ≡ Z3,0 (z; p,q). (183)

As can be seen, Z3,0 (z; p,q) and Z2,1
i (z,z; p,q) are, respectively, nothing but the

N = 2, d = 4 holomorphic central charge function W (z; p,q), also named N = 2
superpotential (see (23) and comments below), and its covariant derivatives, intro-
duced à la Gukov-Vafa-Witten (GVW) [90, 91] also in the considered N = 2, d = 4
framework. In other words, (180) defines the holomorphic central extension of
the N = 2, d = 4 local supersymmetry algebra, whereas (180) defines in a ge-
ometrical way the charges of the other field strength vectors, orthogonal to the
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graviphoton.
{

Z3,0,Z2,1
i ,Z1,2

i
,Z0,3

}
correspond to electric and magnetic charges

of the (U(1))h2,1+1 gauge group of the complex Dalbeault parameterization of
H3 (CY3, R). Their dependence on moduli can be understood by taking into ac-
count that they refer to the supermultiplet eigenstates, which are moduli-dependent
(as already pointed out below (152)). They satisfy the following model-independent
sum rules [3]:

(∣∣Z3,0
∣∣2 +gi jZ2,1

i Z1,2
j

)
eK = −1

2

(
pΛ,qΛ

)
M (N )

(
pΣ

qΣ

)
= I1 (z,z; p,q)

= VBH (z,z; p,q) � 0;

(184)

(∣∣Z3,0
∣∣2 −gi jZ2,1

i Z1,2
j

)
eK = −1

2

(
pΛ,qΛ

)
M (F )

(
pΣ

qΣ

)
= I2 (z,z; p,q) � 0,

(185)

where M (N ) is the real, symplectic matrix defined by (146), F ≡ FΛΣ = ∂ΣFΛ,
M (F ) = M (N → F ). I1 and I2 are the first and second lowest-order (quadratic
in charges) invariants of SK geometry. As far as the metric gi j of the SK CS moduli
space is regular, I1 has positive signature and it is nothing but the “BH effective
potential” VBH , whereas I2 has signature (1,h2,1). Since the considered extremal
BH background is static (and spherically symmetric), the undressed charges pΛ

and qΛ are conserved in time, and so are the dressed charges
{

Z3,0,Z2,1
i ,Z1,2

i
,Z0,3

}

(which however, through their dependence on scalars, do depend on radial
coordinate).

The real, Kähler gauge-invariant 3-form H3 can be thus Hodge-decomposed as
follows (γ1,γ2,γ3,γ4 ∈ C)

H3 = eK

⎡
⎢⎢⎢⎢⎣

γ1

(∫
CY3

H3 ∧Ω3

)
Ω3 + γ2gi j

(∫
CY3

H3 ∧ (DiΩ3)
)

D jΩ3+

+γ3g ji
(∫

CY3

H3 ∧DiΩ3

)
D jΩ3 + γ4

(∫
CY3

H3 ∧Ω3

)
Ω3

⎤
⎥⎥⎥⎥⎦

= eK

⎡
⎢⎣
γ1WΩ3 + γ2gi j (DiW )D jΩ3+

+ γ3g ji (DiW
)

D jΩ3 + γ4WΩ3

⎤
⎥⎦ , (186)

where (180), (181), (182), (183) were used. The r.h.s. of the Hodge-decomposition
(186) is the most general Kähler gauge-invariant combination of all the possible
((2,0) and (0,2))-Kähler-weighted independent 3-forms for Type IIB on CY3s. The
overall factor eK (with Kähler weights (−2,−2)) is necessary to make the r.h.s.
of the identity (186) Kähler gauge-invariant. The reality condition H 3 = H3 im-
plies γ3 = γ2 and γ4 = γ1. The complex coefficients γ1 and γ2 can be determined by
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computing
∫

CY3
H3 ∧Ω3 and

∫
CY3

H3 ∧DlΩ3, using the identity (186) and recalling
(180), (181), (182), (183) and the intersections (174). By doing so, one obtains:

W =
∫

CY3

H3 ∧Ω3 = eKγ1W
∫

CY3

Ω3 ∧Ω3 = iγ1W ⇔ γ1 = −i;

DlW =
∫

CY3

H3 ∧DlΩ3 = eKγ2gi j (DiW )
∫

CY3

D jΩ3 ∧DlΩ3 = −iγ2DlW ⇔ γ2 = i.

(187)

Thus, the complete Hodge-decomposition of the real flux 3-form H3 of Type IIB
on CY3s reads

H3 = −ieK
[
WΩ3 −gi j (DiW )D jΩ3 +g ji (DiW

)
D jΩ3 −WΩ3

]

= −2Im
[
ZΩ̂3 −g ji (DiZ

)
D jΩ̂3

]
, (188)

where in the second line we recalled the definition of the N = 2, d = 4 covari-
antly holomorphic central charge function Z (z,z, p,q) (with Kähler weights (1,−1))
given by (23) (see also (37)), and introduced the covariantly holomorphic (3,0)-form
Ω̂3 (with Kähler weights (1,−1)) on CY3:

Z (z,z; p,q) ≡ e
K(z,z)

2 W (z; p,q) ,

DiZ = e
K
2 DiW, DiZ = 0;

(189)

Ω̂3 (z,z) ≡ Ω3√
i
∫

CY3
Ω3 ∧Ω3

= e
K(z,z)

2 Ω3 (z) ,

DiΩ̂3 = e
K
2 DiΩ3, DiΩ̂3 = 0.

(190)

Let us now compare the Hodge-decomposition identity (188) with the real part
(138) and (139) of the SK geometrical identities (145). It is immediate to realize that
the identity (188) is nothing but the translation, in the language of forms of Type IIB
on CY3 (i.e. in a particular stringy framework) of the identity (138) and (139), which
is the real part of the fundamental identities (145), holding for any SK geometry,
irrespective of its microscopic/stringy origin.

3.4.2 “New Attractor” Approach

The evaluation of the Hodge-decomposition identity (188) along the constraints de-
termining the various classes of critical points of VBH in MnV (which in the consid-
ered stringy framework is nothing but the CS moduli space of CY3) allows one to
obtain a completely equivalent form of the AEs for extremal (static, spherically sym-
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metric, asymptotically flat) BHs in the particular framework in which N = 2, d = 4
ungauged supergravity is obtained by compactifying Type IIB on CY3. As already
pointed out in the treatment at macroscopic level, in some cases such equivalent
forms of AEs may be simpler to solve than the AEs obtained by exploiting the
“criticality conditions” approach (see Sect. 3.1).

(I) Supersymmetric ( 1
2 -BPS) critical points. By evaluating the Hodge-decompo-

sition identity (188) along the constraints (56), one obtains

H3 = −i
[
eK (WΩ3 −WΩ3

)]
1
2−BPS

= −2Im
(
ZΩ̂3

)
1
2−BPS .

(191)

Equation (191) is the translation, for Type IIB on CY3, of (154) and (155),
which in turn are equivalent, purely algebraic forms of the 1

2 -BPS extremal
BH AEs, given by the (partly differential) conditions (56). By recalling (172)
and (173), (191) implies that at 1

2 -BPS critical points of VBH the real flux 3-
form H3 of Type IIB on CY3 has vanishing components along the Dalbeault
third cohomologies H2,1 (CY3) and H1,2 (CY3). This can be understood easily
by recalling (181):

DiW = 0, ∀i ⇐⇒

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫

CY3

H3 ∧DiΩ3 = 0,∀i;

�∫

CY3

H3 ∧DiΩ3 = 0,∀i.

(192)

Thus, at 1
2 -BPS critical points of VBH H3 is “orthogonal” (in the sense of

(192), as understood below, as well) to all the 3-forms which are basis elements
of H2,1 (CY3) and H1,2 (CY3).

Consequently, the complete supersymmetry breaking at the horizon of
(static, spherically symmetric, asymptotically flat) extremal BHs in N =
2, d = 4 supergravity as low-energy, effective theory of Type IIB on CY3

can be traced back to the non-vanishing “intersections” (defined by (181) and
(182)) of H3 with H2,1 (CY3) and H1,2 (CY3). Moreover, in light of (180), the
1
2 -BPS non-degeneracy condition W1

2 -BPS �= 0 corresponds to a condition of

non(-complete)- “orthogonality” between H3 and Ω3, basis of H3,0 (CY3):

W �= 0 ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫

CY3

H3 ∧Ω3 �= 0;

�∫

CY3

H3 ∧Ω3 �= 0.

(193)

(II) Non-BPS Z �= 0 critical points. By evaluating the Hodge-decomposition iden-
tity (188) along the constraints (59) and (60), one obtains
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H3 = 2Im

[
ZΩ̂3 +

i
2

Z

|Z|2
Ciklg

i jgkkgll (DkZ
)(

DlZ
)

D jΩ̂3

]

non−BPS,Z �=0

,

(194)

Equation (194) is the translation, for Type IIB on CY3, of (155) and (156),
which in turn are equivalent forms of the non-BPS Z �= 0 extremal BH AEs,
given by the (partly differential) conditions (59) and (60).

By recalling (172) and (173), (194) implies that at the non-BPS Z �= 0 criti-
cal points of VBH the real flux 3-form H3 of type IIB on CY3 has components
along H0,3 (CY3) and H2,1 (CY3) with the same holomorphicity in the holo-
morphic central charge Z. In other words, such components can be expressed
only in terms of Z and DiZ, without using Z and DiZ. Such a fact does not
happen in a generic point of the CS moduli space of CY3, as is seen from the
global Hodge-decomposition identity (188). As is evident, the price to be paid
in order to obtain the same holomorphicity in Z at the non-BPS Z �= 0 critical
points of VBH is the fact that the component of H3 along H2,1 (CY3) is not lin-
ear in some covariant derivative of Z any more, also explicitly depending on
the rank-3 covariantly antiholomorphic tensor Ci jk. By recalling (180), (181),
(182), (183), this can be understood by considering the translation of (60) in
the language of (3-)forms of Type IIB on CY3:

∫

CY3

H3 ∧DiΩ3 =
i

2
∫

CY3
H3 ∧Ω3

Ci jkgl jgmk
(∫

CY3

H3 ∧DlΩ3

)

×
∫

CY3

H3 ∧DmΩ3, ∀i = 1, . . . ,nV . (195)

Equation (195), holding at non-BPS Z �= 0 critical points of VBH , expresses
the “intersections” of H3 with H1,2 (CY3) (i.e. the components of H3 along
H2,1 (CY3); see (186)) non-linearly in terms of “intersections” of H3 with
H3,0 (CY3) and H2,1 (CY3), which can all be expressed only in terms of Z and
DiZ, without using Z and DiZ.

(III) Non-BPS Z = 0 critical points. By evaluating the Hodge-decomposition iden-
tity (188) along the constraints (87) and (88), one obtains

H3 = −ieK
[
−gi j (∂iW )D jΩ3 +g ji

(
∂ iW

)
D jΩ3

]

= 2Im
[
g ji
(
∂ iZ

)
D jΩ̂3

]
,

(196)

Equation (196) is the translation for Type IIB on CY3 of (157) and (158), which
in turn are equivalent forms of the non-BPS Z = 0 extremal BH AEs, given by
the (partly differential) conditions (87) and (88). By recalling (172) and (173),
(196) implies that at non-BPS Z = 0 critical points of VBH , in an opposite
fashion with respect to the case of 1

2 -BPS critical points of VBH , the real flux
3-form H3 of Type IIB on CY3 has vanishing components along the Dalbeault
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third cohomologies H3,0 (CY3) and H0,3 (CY3). This can be understood easily
by recalling (180):

W = 0 ⇐⇒

⎧⎨
⎩

∫
CY3

H3 ∧Ω3 = 0;
�∫

CY3
H3 ∧Ω3 = 0.

(197)

Thus, at non-BPS Z = 0 critical points of VBH H3 is “orthogonal” (in the sense
of (197), as understood below, as well) to Ω3 and Ω3, basis of H3,0 (CY3) and
H0,3 (CY3), respectively. Moreover, in light of (181) and (182), the non-BPS
Z = 0 non-degeneracy condition (at least for strictly positive-definite gi j at the
considered critical points of VBH )

(DiW )non−BPS,Z=0 �= 0,at least for some i ∈ {1, . . . ,nV} (198)

corresponds to a condition of non(-complete)-“orthogonality” between H3

and the DiΩ3s, basis elements of H2,1 (CY3):

DiW �= 0,at least for some i ∈ {1, . . . ,nV}⇐⇒⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫

CY3

H3 ∧DiΩ3 �= 0, ,at least for some i ∈ {1, . . . ,nV} ;

�∫

CY3

H3 ∧DiΩ3 �= 0,at least for some i ∈
{

1, . . . ,nV
}

.

(199)

4 Flux Vacua Attractor Equations in NNN = 1, d = 4 Supergravity
from Type IIB on CY3×T2

ZZZ2

4.1 CY3 Orientifolds

We consider Type IIB superstring theory compactified on a CY3 orientifold with
O3/O7-planes (as in the GPK-KKLT model [87, 122]), determining an N = 1, d =
4 supergravity as effective, low-energy theory. Within such a framework, we will
derive FV AEs14, similar to what is done in Sect. 3.4 for extremal BH AEs in ef-
fective N = 2, d = 4 supergravity from Type IIB on CY3. We will mainly follow
[9, 92, 93]. In our treatment, the relevant moduli moduli space M of the CY3 orien-
tifold is the one composed by the (direct) product of the CS moduli space (of com-
plex dimension h2,1 ≡ dim

(
H2,1 (CY3)

)
, which is a SK manifold, and the 1-dim.

Kähler manifold parameterized by the universal axion-dilaton. We will denote the

14 In [123] the FV Attractor Mechanism has been shown to act also in the landscape of non-Kähler
vacua emerging in the flux compactifications of heterotic superstrings.
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CS moduli by
(

xi,xi
)

i=1,...,h2,1
≡
(

ti, ti
)

i=1,...,h2,1
(not to be confused with the pro-

jective coordinates in the SK CS moduli space) and the axion-dilaton by τ ≡ t0:

M = Mt0 ⊗MCS. (200)

No Kähler structure (KS) moduli will be considered in our treatment of the classical
FV Attractor Mechanism; indeed, in the considered framework the stabilization of
KS moduli requires quantum perturbative or non-perturbative mechanisms, such as
worldsheet instantons and gaugino condensation (see e.g. [87]).

4.1.1 Vielbein and Metric Tensor in the Moduli Space

We start by defining the structure of the (h2,1 +1)-dim. Kähler manifold spanned by
the CS moduli and the axion-dilaton. Its Kähler potential can be written as follows
(Λ = 1, . . . ,h2,1,h2,1 +1 throughout15):

K (t, t) = −ln
[
−i
(

t0 − t0
)]

− ln

[
i
∫

CY3

Ω3 (x)∧Ω3 (x)
]

= −ln

[∫
CY3

[
t0Ω3 (x)∧Ω3 (x)−Ω3 (x)∧ t0Ω3 (x)

]]

= −ln
[(

t0 − t0
)(

X
Λ (x)FΛ (x)−XΛ (x)FΛ (x)

)]
,

(201)

where Ω3 is the holomorphic (3,0)-form defined on CY3. Thus, one can write:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K (t, t) = K1

(
t0, t0

)
+K3 (x,x) ;

K1

(
t0, t0

)
≡−ln

[
−i
(

t0 − t0
)]

;

K3 (x,x) ≡−ln
[
i
(

X
Λ (x)FΛ (x)−XΛ (x)FΛ (x)

)]
.

(202)

The reality condition on K1 and K3 yields the conditions

Imt0 > 0, Im
(

XΛ (x)FΛ (x)
)

> 0. (203)

The metric of the whole moduli space is given by (a = 0,1, . . . ,h2,1 throughout)

15 Notice the different range of the symplectic (capital Greek) indices in the present treatment
of Type IIB on CY3 orientifold with O3/O7-planes with respect to the range 0,1, . . . ,h2,1 of the
previous treatment of Type IIB on CY3. In general, the reference to the graviphoton degree of
freedom “0” is lost, due to the orientifolding truncation of the low-energy, effective supergravity.
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gab (t, t) = ∂ b∂aK (t, t) = ∂ b∂a

[
K1

(
t0, t0

)
+K3 (x,x)

]
, (204)

yielding
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g00 = −
(

t0 − t0
)−2

= e
2K1

(
t0,t0

)
;

g0i = 0 = gi0;

gi j = ∂ j∂iK3 (x,x) .

(205)

In our treatment, we will make extensive use of the local “flat” coordinates in
M (denoted by capital indices A = 0,1, . . . ,h2,1 throughout), defined as usual by

(gabgac = δ c
b
, gabgcb = δ c

a )

gab (t, t) ≡ eA
a (t, t)eB

b (t, t)δAB ⇔ gab (t, t) ≡ ea
A (t, t)eb

B (t, t)δAB, (206)

where eA
a (t, t) is the local vielbein in M, and ea

A (t, t) is its inverse (eA
a eb

A = δ b
a , eA

a ea
B =

δA
B ). Due to (205), the h2

2,1 +2h2,1 +1 components of the vielbein eA
a =

{
e0

0,e
0
i ,e

I
0,e

I
i

}

(I = 1, . . . ,h2,1 throughout), defined by (206), satisfy the following set of Equations:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣∣e0
0 (t, t)

∣∣∣
2
+ eI

0 (t, t)eJ
0
(t, t)δIJ = −

(
t0 − t0

)−2
;

e0
0 (t, t)e0

i
(t, t)+ eI

0 (t, t)eJ
i
(t, t)δIJ = 0;

e0
i (t, t)e0

j
(t, t)+ eI

i (t, t)eJ
j
(t, t)δIJ = ∂ j∂iK3 (x,x) ,

(207)

admitting as a solution16:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣e0
0 (t, t)

∣∣∣2 = −
(

t0 − t0
)−2

⇐ e0
0 (t, t) =

(
t0 − t0

)−1
= ie

K1

(
t0,t0

)
= e0

0

(
t0, t0

)
;

eI
0 (t, t) = 0, ∀I = 1, . . . ,h2,1;

e0
i (t, t) = 0, ∀i = 1, . . . ,h2,1;

eI
i (t, t)eJ

j
(t, t)δIJ = ∂ j∂iK3 (x,x) .

(208)

By inverting (206) one gets

δAB = ea
A (t, t)eb

B (t, t)gab (t, t) ⇔ δAB = eA
a (t, t)eB

b (t, t)gab (t, t) , (209)

16 Notice that the solutions given by (208) and (211) are clearly not unique. Indeed, for a given
metric, one can always transform the vielbein and its inverse by a Lorentz transformation, which
however will not affect the metric itself.
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which by (205) implies that the h2
2,1 +2h2,1 +1 components of the inverse vielbein

ea
A =

{
e0

0,e
i
0,e

0
I ,e

i
I

}
, defined by (206), satisfy the set following set of Equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
(

t0 − t0
)−2 ∣∣∣e0

0 (t, t)
∣∣∣
2
+ ei

0 (t, t)e j
0
(t, t)∂ j∂iK3 (x,x) = 1;

−
(

t0 − t0
)−1

e0
I
(t, t)+ ei

0 (t, t)e j
I
(t, t)∂ j∂iK3 (x,x) = 0;

−
(

t0 − t0
)−2

e0
I (t, t)e0

J
(t, t)+ ei

I (t, t)e j
J
(t, t)∂ j∂iK3 (x,x) = δIJ ,

(210)

admitting as a solution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣e0
0 (t, t)

∣∣∣
2
= −

(
t0 − t0

)2
=
∣∣∣e0

0 (t, t)
∣∣∣
−2

;

⇑

e0
0 (t, t) =

(
t0 − t0

)
= −ie

−K1

(
t0,t0

)
=
[
e0

0

(
t0, t0

)]−1
= e0

0

(
t0, t0

)
;

ei
0 (t, t) = 0, ∀i = 1, . . . ,h2,1;

e0
I (t, t) = 0, ∀I = 1, . . . ,h2,1;

ei
I (t, t)e j

J
(t, t)∂ j∂iK3 (x,x) = δIJ ,

(211)

implying, by (206), that the components of the inverse metric tensor of M read as
follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g00 = −
(

t0 − t0
)2

= e
−2K1

(
t0,t0

)
=
(
g00

)−1
;

g0i = 0 = gi0;

gi j : gi j∂ j∂kK3 (x,x) = δ i
k, gi j∂ k∂iK3 (x,x) = δ j

k
.

(212)

Moreover, it should be noticed that actually eI
i = eI

i (x,x) and ei
I = ei

I (x,x), as ob-
tained by differentiating with respect to the axion-dilaton t0 the fourth Equation of
the systems of solutions (208) and (211), respectively:

{[
∂0eI

i (t, t)
]

eJ
j (t, t)+ eI

i (t, t)∂0eJ
j (t, t)

}
δIJ = 0;

�
⎧⎨
⎩

∂0eI
i (t, t) = 0,

∂0eI
i
(t, t) = 0 ⇔ ∂ 0eI

i (t, t) = 0;

�
eI

i = eI
i (x,x) ; (213)
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{[
∂0ei

I (t, t)
]

e j
J
(t, t)+ ei

I (t, t)∂0e j
J
(t, t)

}
∂ j∂iK3 (x,x) = 0;

�⎧⎪⎨
⎪⎩

∂0ei
I (t, t) = 0,

∂0ei
I
(t, t) ⇔ ∂ 0ei

I (t, t) = 0;

�
ei

I = ei
I (x,x) .

In the following treatment, we will use the solutions (208) and (211) of the sys-
tems of (207) and (210), respectively, i.e. we will assume that a system of local
“flat” coordinates in M defined by (206) and (209) always exists such that the cor-
responding vielbein and its inverse are given by (208) and (211) (implemented by
(4.1.1)), in turn consistent with the covariant and contravariant metric tensor of M
given by (205) and (212), respectively.

4.1.2 1-, 3- and 4-Forms on CY3×T2

ZZZ2

Next, we introduce the Ramond-Ramond (RR) and Neveu-Schwarz-Neveu-Schwarz
(NSNS) flux 3-forms of Type IIB on CY3 orientifold (with O3/O7-planes) as
follows:

RR : F3 ≡ pΛ
f αΛ−q f |ΛβΛ ∈ H3 (CY3,R) ;

NSNS : H3 ≡ pΛ
h αΛ−qh|ΛβΛ ∈ H3 (CY3,R) ,

(214)

where we introduced the 1× (2h2,1 +2) symplectic vector of RR and NSNS fluxes
(charges), respectively:

QRR ≡
(

pΛ
f ,q f |Λ

)
;

QNSNS ≡
(

pΛ
h ,qh|Λ

)
,

(215)

and
{
αΛ,βΛ} is the b3-dim. real (manifestly symplectic-covariant) basis of the third

real cohomology H3 (CY3,R), satisfying (159). In the considered framework, the
flux 3-forms defined by (214) can be unified in the t0-dependent, complex flux 3-
form

G3
(
t0)≡ F3 − t0H3 =

(
pΛ

f − t0 pΛ
h

)
αΛ−

(
q f |Λ− t0qh|Λ

)
βΛ ∈ H3 (CY3,C; t0) ,

(216)
thus determining the GVW N = 1, d = 4 holomorphic superpotential as follows:

W (t) ≡
∫

CY3

G3
(
t0)∧Ω3 (x) =

∫

CY3

F3 ∧Ω3 (x)− t0
∫

CY3

H3 ∧Ω3 (x)

= q f |ΛXΛ (x)− pΛ
f FΛ (x)+qh|Λ

(
−t0XΛ (x)

)
− pΛ

h

(
−t0FΛ (x)

)
.

(217)
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The second line of (217) suggests to redefine the holomorphic (3,0)-form in the
“NSNS sector” as follows:

Ω3,NS (t) ≡−t0Ω3,RR (x) = −t0Ω3 (x) . (218)

Since in Type IIB on the considered CY3 orientifold the flux 3-forms F3 and H3 form
the SL

(
2,H3 (CY3,R)

)
-doublet

F̂ ≡

⎛
⎝

F3

H3

⎞
⎠ ∈ SL

(
2,H3 (CY3,R)

)
, (219)

correspondingly, one can introduce the SL
(
2,H3,0 (CY3; t)

)
-doublet

Ξ(t) ≡

⎛
⎜⎝

Ξ1 (x) ≡Ω3 (x)

Ξ2 (t) ≡−t0Ω3 (x)

⎞
⎟⎠ ∈ SL

(
2,H3,0 (CY3; t)

)
. (220)

By exploiting such a manifest SL(2)-covariance, (201) and (217) can be rewritten
as follows:

K (t, t) = −ln

[∫
CY3

[
Ξ1 (x)∧Ξ2 (t)−Ξ2 (t)∧Ξ1 (x)

]]
; (221)

W (t) =
∫

CY3

[F3 ∧Ξ1 (x)+H3 ∧Ξ2 (t)] =
∫

CY3

F̂T ∧Ξ(t) . (222)

Thus, the N = 1, d = 4 covariantly holomorphic central charge function of Type
IIB on CY3 orientifold with O3/O7-planes can be introduced:

Z (t, t) ≡ e
1
2 K(t,t)W (t) = e

1
2 K(t,t)

∫

CY3

G3
(
t0)∧Ω3 (x) (223)

=

∫
CY3

F̂T ∧Ξ(t)√∫
CY3

[
Ξ1 (x)∧Ξ2 (t)−Ξ2 (t)∧Ξ1 (x)

] (224)

=

(
q f |Λ− t0qh|Λ

)
XΛ (x)−

(
pΛ

f − t0 pΛ
h

)
FΛ (x)

√(
t0 − t0

)(
X

Λ (x)FΛ (x)−XΛ (x)FΛ (x)
) , (225)

with Kähler weights (1,−1) with respect to K (t, t):

DaZ (t, t) = ∂aZ (t, t)+
1
2

(∂aK (t, t))Z (t, t) ;

DaZ (t, t) = ∂ aZ (t, t)− 1
2

(
∂ aK (t, t)

)
Z (t, t) = 0.

(226)
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Now, we can perform an unifying simplification of notation by using the lan-
guage of 4-forms on Calabi-Yau 4-folds (CY4); in such a framework, Type IIB
on CY3 orientifold with O3/O7-planes can be described by 4-forms defined on

CY4 = CY3×T 2

Z2
, where T 2 denotes the “auxiliary” 2-torus, whose complex modu-

lus is the universal-axion dilaton τ ≡ t0. Thus, beside the b3-dim. real (manifestly
symplectic-covariant) basis

{
αΛ, βΛ} of H3 (CY3,R) (satisfying (159)), one can

introduce the 2-dim. basis {α, β} of H1
(
T 2,R

)
, satisfying

∫

T 2
α ∧α = 0 =

∫

T 2
β ∧β ,

∫

T 2
α ∧β = 1, (227)

and the holomorphic (1,0)-form Ω1
(
t0
)

on T 2:

Ω1
(
t0)≡−t0α +β ∈ H1,0 (T 2) . (228)

By recalling (161), it is thus possible to define an holomorphic (4,0)-form on

CY4(=
CY3×T 2

Z2
, as always understood in treatment below) as follows:

Ω4 (t) ≡ Ω1
(
t0)∧Ω3 (x) = XΛ (x)β ∧αΛ− t0XΛ (x)α ∧αΛ

−FΛ (x)β ∧βΛ + t0FΛ (x)α ∧βΛ. (229)

Instead of using the complex, t0-dependent flux 3-form G3
(
t0
)
∈ H3

(
CY3,C; t0

)
defined by (4.1.2.3), the RR and NSNS flux 3-forms can be unified elegantly by
introducing the real flux 4-form

F4 ≡ −α ∧F3 +β ∧H3 =
(

pΛ
h β − pΛ

f α
)
∧αΛ

−
(
qh|Λβ −q f |Λα

)
∧βΛ ∈ H4 (CY4,R) . (230)

By using (159), (161), (227), (228), (229) and (230), (221), (222), (223), (224)
can be elegantly rewritten as follows:

K (t, t) = −ln

(∫
CY4

Ω4 (t)∧Ω4 (t)
)

; (231)

W (t) =
∫

CY4

F4 ∧Ω4 (t) ; (232)

Z (t, t) = e
1
2 K(t,t)

∫

CY4

F4 ∧Ω4 (t) =

∫
CY4

F4 ∧Ω4 (t)√∫
CY4

Ω4 (t)∧Ω4 (t)
=
∫

CY4

F4 ∧ Ω̂4 (t, t) ,

(233)

where in (233) we defined the covariantly holomorphic 4-form on CY4:
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Ω̂4 (t, t) ≡ e
1
2 K(t,t)Ω4 (t) = e

1
2 K1

(
t0,t0

)
e

1
2 K3(x,x)Ω1

(
t0)∧Ω3 (x)

= Ω̂1

(
t0, t0

)
∧ Ω̂3 (x,x) ; Ω̂1

(
t0, t0

)
≡ e

1
2 K1

(
t0,t0

)
Ω1
(
t0) ;

(234)

Ω̂3 (x,x) is the covariantly holomorphic 3-form on CY3, defined by (190); it has
Kähler weights (1,−1) with respect to the Kähler potential K3 (x,x) of the SK CS
moduli space MCS of CY3:

DiΩ̂3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂iΩ̂3 +
1
2

(∂iK3)Ω̂3 = e

1
2

K3
DiΩ3

=
1√

i
(

X
Δ
FΔ−XΔFΔ

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣∂iXΛ−

(
X

Σ∂iFΣ−
(
∂iXΣ)FΣ

)

X
Ξ

FΞ−XΞFΞ
XΛ

⎤
⎦αΛ+

−

⎡
⎣∂iFΛ−

(
X

Σ∂iFΣ−
(
∂iXΣ)FΣ

)

X
Ξ

FΞ−XΞFΞ
FΛ

⎤
⎦βΛ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

;

DiΩ̂3 = ∂ iΩ̂3 −
1
2

(
∂ iK3

)
Ω̂3 = 0;

DiDjΩ̂3 = iCi jkgklDlΩ̂3; DiDjΩ̂3 = g jiΩ̂3;

D0Ω̂3 = 0; D0Ω̂3 = 0.

(235)

On the other hand, Ω̂1

(
t0, t0

)
is the covariantly holomorphic 1-form on T 2, defined

by the second line of (234); it has Kähler weights (1,−1) with respect to the Kähler

potential K1

(
t0, t0

)
of the Kähler 1-dim. moduli space Mt0 of T 2, spanned by the

universal axion-dilaton τ ≡ t0:

D0Ω̂1 = ∂0Ω̂1 +
1
2

(∂0K1)Ω̂1 = e
1
2 K1 D0Ω1 = ieK1Ω̂1 =

(
t0 − t0

)−1
Ω̂1;

�
Ω̂1 = −ie−K1D0Ω̂1 ⇔ Ω̂1 = ie−K1D0Ω̂1 ⇔ D0Ω̂1 = −ieK1Ω̂1;

D0Ω̂1 = ∂ 0Ω̂1 −
1
2

(
∂ 0K1

)
Ω̂1 = 0;

D0D0Ω̂1 = 0; D0D0Ω̂1 = g00Ω̂1 = e2K1Ω̂1 = −
(

t0 − t0
)−2

Ω̂1;

DiΩ̂1 = 0; DiΩ̂1 = 0.

(236)

Resultingly, the covariantly holomorphic 4-form Ω̂4 (t, t) on CY4 = CY3×T 2

Z2
, defined

by the first line of (234), has Kähler weights (1,−1) with respect to the whole
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Kähler potential K (t, t) = K1

(
t0, t0

)
+K3 (x,x) of the (h2,1 +1)-dim. moduli space

M = Mt0 ⊗MCS. of CY4 (recall (200)):

DaΩ̂4 (t, t) = ∂aΩ̂4 (t, t)+
1
2

(∂aK (t, t))Ω̂4 (t, t) ;

DaΩ̂4 (t, t) = ∂ aΩ̂4 (t, t)− 1
2

(
∂ aK (t, t)

)
Ω̂4 (t, t) = 0,

(237)

implying that
DbDaΩ̂4 (t, t) = gbaΩ̂4 (t, t) . (238)

4.1.3 Hodge Decomposition of FFF4

Now, in order to derive the Hodge-decomposition17 of the real flux 4-form F4,

we have to determine all the possible independent 4-forms on CY4(= CY3×T 2

Z2
,

as always understood throughout). Due to (237) and (238), it is easy to real-
ize that, up to the third order of covariant differentiation included, the possi-
ble independent 4-forms ((1,−1)-Kähler weighted with respect to K) on CY4 are
Ω̂4, DaΩ̂4, DaDbΩ̂4, DaDbDcΩ̂4 and DaDbDcΩ̂4.

As can be realized by considering (269), (270), (271), (272) of Appendix I,
DaDbΩ̂4 cannot be expressed in terms of DaΩ̂4 (as instead it happens in the extremal
BH case, see (177)), and all the independent, (1,−1)-Kähler-weighted 4-forms on
the considered CY4 are given by the 2h2,1 +2 forms

Ω̂4, D0Ω̂4, DiΩ̂4, D0DiΩ̂4. (239)

The third covariant derivatives of Ω̂4 do not add any other independent 4-form, and
so also all the other higher order covariant derivatives of Ω̂4. Thus, the possible
candidates along which one might decompose the real flux 4-form F4 are the 4-

forms given by (239) and their complex conjugated Ω̂4, D0Ω̂4, DiΩ̂4, D0DiΩ̂4.
The “intersections” among the elements of the set of 4-forms Ω̂4, D0Ω̂4, DiΩ̂4,

D0DiΩ̂4, Ω̂4, D0Ω̂4, DiΩ̂4 and D0DiΩ̂4 in generic local “curved” and in lo-
cal “flat” coordinates of M are given in Appendix II. By using such results, the
real, Kähler gauge-invariant 4-form F4 can be thus Hodge-decomposed as follows
(η1, . . . ,η6 ∈ C)

F4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1

(∫
CY4

F4 ∧ Ω̂4

)
Ω̂4 +η2δAB

(∫
CY4

F4 ∧
(
DAΩ̂4

))
DBΩ̂4+

+η3δAB

(∫
CY4

F4 ∧D0DAΩ̂4

)
D0DBΩ̂4 +η4δBA

(∫
CY4

F4 ∧D0DAΩ̂4

)
D0DBΩ̂4+

+η5δBA

(∫
CY4

F4 ∧
(

DAΩ̂4

))
DBΩ̂4 +η6

(∫
CY4

F4 ∧ Ω̂4

)
Ω̂4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(240)

17 For an elegant and detailed derivation of the Hodge-decomposition of F4 using methods of
algebraic geometry, see e.g. Sect. 2 of [93].
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=

⎡
⎢⎣
η1ZΩ̂4 +η2δAB (DAZ)DBΩ̂4 +η3δAB (D0DAZ)D0DBΩ̂4+

+η4δBA
(
D0DAZ

)
D0DBΩ̂4 +η5δBA

(
DAZ

)
DBΩ̂4 +η6ZΩ̂4

⎤
⎥⎦ , (241)

where (233) was used, also implying:
∫

CY4

F4 ∧DaΩ̂4 = DaZ,
∫

CY4

F4 ∧DaDbΩ̂4 = DaDbZ;

∫

CY4

F4 ∧DAΩ̂4 = DAZ,
∫

CY4

F4 ∧DADBΩ̂4 = DADBZ.

(242)

The r.h.s. of the Hodge-decomposition (241) is the most general Kähler gauge-
invariant combination of all the possible ((1,−1) and (−1,1))-Kähler-weighted

independent 4-forms for Type IIB on CY4 = CY3×T 2

Z2
. The reality condition F4 =

F4 implies η4 = η3, η5 = η2 and η6 = η1. The (a priori) complex coefficients
η1, η2 and η3 can be determined by computing

∫
CY4

F4 ∧ Ω̂4,
∫

CY4
F4 ∧DAΩ̂4 and∫

CY4
F4 ∧D0DAΩ̂4, and using the identity (241) and recalling (233), (242) and the

“intersections” in local “flat” coordinates (281), (282), (283), (284). By doing so,
one obtains:

Z =
∫

CY4

F4 ∧ Ω̂4 = η1Z
∫

CY4

Ω̂4 ∧ Ω̂4 = η1Z ⇔ η1 = 1;

DCZ =
∫

CY4

F4 ∧DCΩ̂4 = η2δAB (DAZ)
∫

CY4

(
DBΩ̂4

)
∧DCΩ̂4

= −η2δABDAZδCB = −η2DCZ ⇔ η2 = −1;

D0DCZ =
∫

CY4

F4 ∧D0DCΩ̂4 = η3δAB (D0DAZ
)∫

CY4

(
D0DBΩ̂4

)
∧D0DCΩ̂4

= η3δABδCBD0DAZ = η3D0DCZ ⇔ η3 = 1. (243)

Thus, the complete Hodge-decomposition of the real, Kähler gauge-invariant 4-form

F4 of Type IIB on CY3×T 2

Z2
in generic local “flat” coordinates18 in M reads

F4 = 2Re
[
ZΩ̂4 −

(
D

A
Z
)

DAΩ̂4 +
(

D
0
D

A
Z
)

D0DAΩ̂4

]
(244)

= 2Re

⎡
⎢⎢⎣

ZΩ̂1 ∧ Ω̂3 −
(

D0Z
)
Ω̂1 ∧ Ω̂3 −

(
D

I
Z
)
Ω̂1 ∧DIΩ̂3+

+
(

D
0
D

I
Z
)
Ω̂1 ∧DIΩ̂3

⎤
⎥⎥⎦ . (245)

18 For the analogous expression in generic local “curved” coordinates in M, see (285), (286), (287),
(288).
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4.2 NNN = 1, d = 4 Effective Potential and “Criticality
Conditions” Approach

The potential of N = 1, d = 4 supergravity (from Type IIB on CY3×T 2

Z2
), which acts

as effective potential for the FV attractors, is given by (17), which we repeat here
[88, 89]:

VN =1 = eK
[
−3 |W |2 +gabDaWDbW

]
= −3 |Z|2 +gabDaZDbZ

= −3 |Z|2 −
(

t0 − t0
)2

|D0Z|2 +gi j
(

tk, tk
)

DiZD jZ � 0.
(246)

At a glance, the first difference between the “BH effective potential” VBH given
by (48) and the “FV effective potential” VN =1 given by (246) concerns their sign.
Indeed, VBH is positive-definite and it can be recognized as the first, quadratic in-
variant of SK geometry; through the Bekenstein-Hawking entropy-area formula, it
is related to the classical entropy and to the area of the event horizon of the consid-
ered extremal (static, spherically symmetric, asymptotically flat) BH. On the other
hand, VN =1 does not have a definite sign, and critical points of VN =1 can exist with
VN =1 � 0:

(1) VN =1|∂VN =1=0 > 0 corresponds to De Sitter (dS) vacua;
(2) VN =1|∂VN =1=0 = 0 determines Minkowski vacua;
(3) VN =1|∂VN =1=0 < 0 corresponds to anti De Sitter (AdS) vacua.

By differentiating (246) with respect to the moduli and recalling (232) and (238),
one obtains the general criticality conditions of VN =1 (∀a = 0,1, . . . ,h2,1):

DaVN =1 = ∂aVN =1 = 0;

�

eK
[
−3WDaW +gbc (DaDbW )DcW +gbc (DbW )DaDcW

]

= eK
[
−2WDaW +gbc (DaDbW )DcW

]
= 0;

�
−2WDaW +gbc (DaDbW )DcW = 0,

(247)

where, as in the case of extremal BH attractors in N = 2, d = 4 supergravity, we
assumed the Kähler potential to be regular, i.e. that |K| < ∞ globally in M (or at
least at the critical points of VN =1).

Equation (247) are the what one should rigorously refer to as the N = 1, d = 4

FV AEs (in Type IIB on CY3×T 2

Z2
). By recalling (212), they can finally be rewritten as

DaVN =1 = ∂aVN =1 = 0 ⇔−2WDaW +g00 (DaD0W )D0W

+gi j (DaDiW )D jW = 0,∀a = 0,1, . . . ,h2,1. (248)
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Let us specify such FV AEs for the two classes of (local “curved”) indices; with
some elaborations, one obtains:

a = 0 (axion-dilaton direction in M) :

D0VN =1 = ∂0VN =1 = 0 ⇔−2WD0W +g jk (D0D jW )DkW = 0;
(249)

a = i ∈ {1, . . . ,h2,1} (CS directions in M) :

DiVN =1 = ∂iVN =1 = 0

�

−2WDiW +g00 (DiD0W )D0W +g jk (DiD jW )DkW = 0;

�

−2WDiW + e−2K1 (D0DiW )D0W − e−K1g jkCi jlg
lm (D0DmW

)
DkW = 0.

(250)

Thus, despite the presence of the universal axion-dilaton direction in the (h2,1 +1)-
dim. Kähler moduli space M, (250) yields that the tensor Ci jk, defined in the
h2,1-dim. SK CS moduli space MCS � M, still plays a key role. The FV AEs

(249) and (250) of N = 1, d = 4 supergravity from Type IIB on CY3×T 2

Z2
re-

late, at the critical points of the “FV effective potential” VN =1 (given by (246)),
the N = 1, d = 4 holomorphic superpotential W , the supersymmetry order pa-

rameters DiZ = e
1
2 KDiW and the axino-dilatino-CS modulino mixings D0DiZ =

e
1
2 K D0DiW , which is part of the (h2,1 +1) × (h2,1 +1) modulino mass matrix

Λab ≡ DaDbZ = e
1
2 KDaDbW (note that in the considered N = 1, d = 4 frame-

work the axino-dilatino and the h2,1 CS modulinos play the role of the nV = h2,1

CS modulinos in the context of N = 2, d = 4 supergravity from Type IIB on CY3).
It is worth pointing out that Λab is part of the holomorphic/anti-holomorphic form
of the (2h2,1 +2)× (2h2,1 +2) covariant Hessian of Z, which is nothing but the
holomorphic/anti-holomorphic form of the scalar (axion-dilaton+CS moduli, in the

stringy description as Type IIB on CY3×T 2

Z2
) mass matrix.

The structure of the criticality conditions (248) and (249) and (250) suggests the
classification of the critical points of VN =1 into two general classes:

(I) The supersymmetric (SUSY) critical points of VN =1, determined by the differ-
ential constraints

DaW = 0,∀a = 0,1, . . . ,h2,1, (251)

which directly solve the conditions (248) and (249) and (250). By substituting
the SUSY FV constraints (251) into the expression (246) of VN =1, one ob-
tains that SUSY dS critical points of VN =1 (i.e., independently on the stability,
SUSY dS FV described by a classical FV Attractor Mechanism encoded by –
the criticality conditions of – the potential VN =1) cannot exist, because

VN =1,SUSY = −3
(

eK |W |2
)

SUSY
= −3 |Z|2SUSY � 0. (252)
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(II) The non-supersymmetric (non-SUSY) critical points of VN =1, determined by
the differential constraints

⎧⎪⎨
⎪⎩

DaW �= 0, (at least) for some a ∈ {0,1, . . . ,h2,1} ;

∂aVN =1 = 0,∀a = 0,1, . . . ,h2,1.

(253)

The expression (246) of VN =1 suggests that a priori such critical points of
VN =1 are of all possible species (dS, Minkowski, AdS).

4.3 Supersymmetric Flux Vacua Attractor Equations

In the present subsection, we will concentrate on the SUSY critical points of VN =1,
determining the supersymmetric FV AEs in N = 1, d = 4 supergravity from Type

IIB on CY3×T 2

Z2
. This can be achieved respectively by evaluating the Hodge identities

(244), (245) and (285), (286), (287), (288) at the SUSY FV constraints (251).
The evaluation of the identities (244), (245) and (285), (286), (287), (288)

along the constraints (251), respectively, yields the supersymmetric FV AEs in

N = 1, d = 4 supergravity from Type IIB on CY3×T 2

Z2
in local “flat” coordinates19:

F4 = 2Re
[
ZΩ̂4 +δAB

(
D0DBZ

)
D0DAΩ̂4

]
SUSY

= 2Re
[
ZΩ̂1 ∧ Ω̂3 +δ IJ

(
D0DJZ

)
Ω̂1 ∧DIΩ̂3

]
SUSY

= 2eK1+K3Re
[
WΩ1 ∧Ω3 +δ IJ

(
D0DJW

)
Ω1 ∧DIΩ3

]
SUSY

.

(254)

Notice that, as in (254), as well as in the treatment below, the subscript “SUSY”
denotes the evaluation at the SUSY FV constraints (251).

Furthermore, (254) can be further elaborated by computing that

(
D0DJW

)
SUSY =

(
e j

J∂ jD0W
)

SUSY
=
(

e j
Je0

0∂ jD0W
)

SUSY
=
(

e j
Je0

0∂0D jW
)

SUSY

=
{

e j
J (τ− τ)

[
∂ j∂0W +

1
2

(∂ jK3)∂0W

]}

SUSY

=

⎧⎨
⎩e j

J (τ− τ)

⎡
⎣−qh|Λ∂ jX

Λ + pΛ
h ∂ jFΛ

+
1
2

(
X

Σ∂ jFΣ−FΣ∂ jXΣ
)

X
Δ

FΔ−FΔXΔ

(
qh|ΞXΞ− pΞ

h FΞ
)
⎤
⎦
⎫⎬
⎭

SUSY

.

(255)

19 For the analogous expression in generic local “curved” coordinates in M, see (289).
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The structure of the SUSY FV AEs (254) suggests the classification of the SUSY
critical points of VN =1 in three general classes:

(I) Type “(3,0)” SUSY FV, determined by the constraints (251) and by the further
conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WSUSY �= 0;[
gi j
(

D0D jW
)
Ω1 ∧DiΩ3

]
SUSY

= 0;

�

∀Λ = 1, . . . ,h2,1 +1 :

⎧⎪⎨
⎪⎩

[
gi j
(

D0D jW
)

DiX
Λ
]

SUSY
= 0;

[
gi j
(

D0D jW
)

DiFΛ

]
SUSY

= 0.

(256)

Because of

VN =1,SUSY,(3,0) = −3
(

eK |W |2
)

SUSY,(3,0)
< 0, (257)

the class “(3,0)” of SUSY FV is composed only by AdS FV. In this case, the
SUSY FV AEs read as follows:

F4 = 2Re
[
ZΩ̂4

]
SUSY,(3,0) =

= 2Re
[
ZΩ̂1 ∧ Ω̂3

]
SUSY,(3,0) = 2

(
eK1+K3

)
SUSY,(3,0) Re

[
WΩ1 ∧Ω3

]
SUSY,(3,0) ;

(258)

Notice that for such a class of SUSY FV the condition of consistence of
(258) is WSUSY �= 0. In other words, Minkowski (VN =1 = 0) SUSY FV satis-
fying the constraints (251) and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WSUSY = 0;[
gi j
(

D0D jW
)
Ω1 ∧DiΩ3

]
SUSY

= 0;

�

∀Λ = 1, . . . ,h2,1 +1 :

⎧
⎨
⎩

[
gi j
(

D0D jW
)

DiXΛ
]

SUSY
= 0;

[
gi j
(

D0D jW
)

DiFΛ

]
SUSY

= 0.

(259)

are not described by the classical FV Attractor Mechanism encoded by the
SUSY FV AEs (254). Indeed, such Equations, when evaluated along the con-
straints (259) simply return all (RR and NSNS) vanishing fluxes.

It is worth pointing out that, beside the substitution of “Im” with “Re” and
the doubling of the vector dimension due to the SL(2,R)-doublet of RR and
NSNS (3-form) fluxes, the “(3,0)” SUSY FV AEs (258) are very close to
the SUSY extremal BH AEs in N = 2, d = 4 supergravity, given by (154)
and (155).
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(II) Type “(2,1)” SUSY FV, determined by the constraints (251) and by the further
conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WSUSY = 0; [
gi j
(

D0D jW
)
Ω1 ∧DiΩ3

]
SUSY

�= 0;

�

(at least) for some Λ ∈ {1, . . . ,h2,1 +1} :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
gi j
(

D0D jW
)

DiXΛ
]

SUSY
�= 0;

and/or[
gi j
(

D0D jW
)

DiFΛ

]
SUSY

�= 0.

(260)

Because of

VN =1,SUSY,(2,1) = −3
(

eK |W |2
)

SUSY,(2,1)
= 0, (261)

the class “(2,1)” of SUSY FV is composed only by Minkowski FV. In this
case, the SUSY FV AEs read as follows:

F4 =
[
δAB (D0DAZ

)
D0DBΩ̂4 +δBA

(
D0DAZ

)
D0DBΩ̂4

]
SUSY,(2,1)

= 2Re
[(

t0 − t0
)

gi j
(

D0D jZ
)
Ω̂1 ∧DiΩ̂3

]
SUSY,(2,1)

= 2Re
[
e0

0ei
Ie

j
J
δ IJ

(
D0D jZ

)
Ω̂1 ∧DiΩ̂3

]
SUSY,(2,1)

= 2
(
eK1+K3

)
SUSY,(2,1) Re

[
e0

0ei
Ie

j
J
δ IJ

(
D0D jW

)
Ω1 ∧DiΩ3

]
SUSY,(2,1)

.

(262)

It is worth observing that the SUSY FV constraints (251) and the condition
WSUSY,(2,1) = 0 imply

(∂aW )SUSY,(2,1) = 0,∀a = 0,1, . . . ,h2,1;

�
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂0W )SUSY,(2,1) =
(
−qh|ΛXΛ + pΛ

h FΛ
)

SUSY,(2,1) = 0;

∀i = 1, . . . ,h2,1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂iW )SUSY,(2,1) =
[
q f |Λ∂iXΛ− pΛ

f ∂iFΛ− τ
(
qh|Λ∂iXΛ− pΛ

h ∂iFΛ
)]

SUSY,(2,1)
= 0;

�(
qh|Λ∂iXΛ− pΛ

h ∂iFΛ
)

SUSY,(2,1) =
[

1
τ

(
q f |Λ∂iXΛ− pΛ

f ∂iFΛ

)]
SUSY,(2,1)

,

(263)

where we used the fact that τ �= 0 is a necessary (but not sufficient) condition
for the (assumed) regularity of K1 in Mt0≡τ � M (or at least in the considered
critical points of VN =1). Thus, (255) can be further elaborated as follows:
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(
D0DJW

)
SUSY,(2,1) =

(
e j

J∂ jD0W
)

SUSY,(2,1)

=
(

e j
Je0

0∂ j∂0W
)

SUSY,(2,1)
=
(

e j
Je0

0∂0∂ jW
)

SUSY,(2,1)

=
[
e j

J (τ− τ)∂ j∂0W
]

SUSY,(2,1)
=
{

e j
J (τ− τ)

(
−qh|Λ∂ jX

Λ + pΛ
h ∂ jFΛ

)}
SUSY,(2,1)

=
{
−e j

J
(τ− τ)

τ

(
q f |Λ∂ jX

Λ− pΛ
f ∂ jFΛ

)}

SUSY,(2,1)
,

(264)

where in the last line we used (263). Furthermore, by using (4.3.10) with some
elaborations, one obtains that

WSUSY,(2,1) = 0

(∂0W )SUSY,(2,1) = 0

}
⇒
(

q f |ΛXΛ− pΛ
f FΛ

)
SUSY,(2,1)

= 0, (265)

and therefore at the class “(2,1)” of SUSY critical points of VN =1 the “RR
sector” q f |ΛXΛ− pΛ

f FΛ and the “NSNS sector” –
(
qh|ΛXΛ− pΛ

h FΛ
)

of the holo-
morphic superpotential W vanish separately.

By looking at the “(2,1)” SUSY FV AEs (262), it is interesting to note
that “(2,1)” SUSY FV do not have a counterpart in the theory of extremal
BH attractors in N = 2, d = 4 supergravity. Indeed, as implied by the SUSY
extremal BH AEs (154) and (155), the classical extremal BH Attractor Mecha-
nism in N = 2, d = 4 supergravity is not consistent with SUSY critical points
of VBH also having W = 0, and thus determining VBH = 0. In such a case, the
SUSY extremal BH AEs (154) and (155) simply yield all (magnetic and elec-
tric) BH charges vanishing.

Contrarily to the extremal BH attractors in N = 2, d = 4 supergravity,
and as yielded by the “(2,1)” SUSY FV AEs (262), the classical FV Attractor
Mechanism allows for stabilization of (axion-dilaton+CS) moduli in the SUSY
case with vanishing gravitino mass ZUSY =

(
eKW

)
SUSY = 0.

(III) Type “(3,0)+(2,1)” SUSY FV, determined by the constraints (262) and by the
further conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WSUSY �= 0;

[
gi j
(

D0D jW
)
Ω1 ∧DiΩ3

]
SUSY

�= 0;

�

(at least) for some Λ ∈ {1, . . . ,h2,1 +1} :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
gi j
(

D0D jW
)

DiX
Λ
]

SUSY
�= 0;

and/or[
gi j
(

D0D jW
)

DiFΛ

]
SUSY

�= 0.

(266)
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Because of

VN =1,SUSY,(3,0)+(2,1) = −3
(

eK |W |2
)

SUSY,(3,0)+(2,1)
< 0, (267)

the class “(3,0)+(2,1)” of SUSY FV is composed only by AdS FV. For such a
class of SUSY FV the FV AEs are simply given by (254) (which can be further
elaborated by considering (255)), constrained by (266).

In [11] examples of SUSY FV of all the classes considered above (“(3,0)”,
“(2,1)”, and “(3,0) + (2,1))” have been explicitly checked to satisfy the corre-
sponding SUSY FV AEs of N = 1, d = 4 supergravity from Type IIB on CY3×T2

Z2
,

in a model with h2,1 = 1, where CY3 is the so-called Fermat sixtic hypersurface.

5 Some Recent Developments on Extremal
Black Hole Attractors

In these lectures, we have described the general theory of attractors for a generic
N = 2, d = 4 SK geometry, both in the supergravity language and in terms of Type
IIB superstrings compactified on Calabi-Yau threefolds. We have then described,
in a similar way, the Attractor Mechanism arising in N = 1, d = 4 flux vacua,
focussing on the case of (the F-theory limit of) compactifications of Type IIB on
Calabi-Yau orientifolds (see also [123] for an extension to the landscape of non-
Kähler vacua emerging in the flux compactifications of heterotic superstrings).

In the last years, more results have been obtained for the non-BPS extremal d = 4
BH attractors, especially with regard to symmetric N = 2 SK geometries and to
N > 2 extended theories.

The classification of the charge orbits of the U-duality [124] groups support-
ing attractors with non-vanishing entropy was performed in [76] (see also [19])
and [21], respectively for N = 8 and N = 2 symmetric supergravities, whereas
the corresponding moduli spaces were found and studied, respectively, in [36] and
[33]. Furthermore, the classification of attractors for N = 3, 4 (along with the
corresponding maximal compact symmetries) was performed in [80]. Notice that
the N = 6 theory has the same attractors, orbits and related moduli spaces of the
quaternionic magic N = 2 model [21, 125].

For the sake of completeness we report here the charge orbits and the moduli
space20 of attractors for all 3 ≤ N ≤ 8, d = 4 supergravities (for the treatment of
extremal BHs in such theories, see e.g. [117, 126, 127, 128, 129, 130]), including
the cases N = 3, 4, 5, not exhaustively discussed in literature.

All d = 4 theories with N even can be uplifted to d = 5, and their U-duality
group admits a unique quartic invariant (see e.g. [131]). All such supergravities
have a non-BPS attractor solution whose moduli space coincide with the d = 5 real

20 The scalar manifolds of 3 ≤ N ≤ 8, d = 4 supergravities can be found e.g. in [80].
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scalar manifold. This is the non-BPS solution with non-vanishing central charge
matrix ZAB (A, B = 1, . . . ,N ), which breaks the d = 4 R-symmetry to the d = 5 R-
symmetry. Since the cases N = 6, 8 have been treated in [19, 21, 33, 36, 80],
let us now consider the case N = 4; as previously mentioned, its attractors with
non-vanishing entropy (and the corresponding maximal compact symmetries) have
been classified in [80]. The non-BPS attractor with ZAB �= 0 breaks the d = 4 R-
symmetry SU (4) ∼ SO(6) down to the d = 5 R-symmetry USp(4) ∼ SO(5), and
the maximal compact symmetry exhibited by the solution is USp(4)⊗ SO(n−1),
where n denotes the number of matter multiplets coupled to the supergravity one.
The other non-BPS attractor solution of N = 4, d = 4 supergravity has ZAB = 0;
thus, the d = 4 R-symmetry SU (4) is unbroken, and the corresponding maximal
compact symmetry is SU (4)⊗SO(n−2).

On the other hand, the d = 4 theories with N odd (= 3, 5) cannot be uplifted
to d = 5, and their U-duality group admits a unique quadratic invariant (see e.g.
[131]). The case N = 3 admits only 1

3 -BPS and non-BPS ZAB = 0 attractors with
non-vanishing entropy; notice that such a result is similar to the one obtained for the
N = 2 symmetric sequence of SK manifolds based on quadratic holomorphic pre-
potential (see [21], [36] and Refs. therein), and it is ultimately due to the aforemen-
tioned fact that the N = 3, d = 4 U-duality group SU (3,n) has a unique quadratic
(rather than quartic) invariant. N = 5 is peculiar, as discussed in [80], in such a
case only the 1

5 -BPS attractor has non-vanishing entropy (this solution splits in BPS
and non-BPS Z = 0 ones when performing the N = 5 → N = 2 truncation of the
theory [80]).

By knowing the real, symplectic representation R (with dimR = r) of the U-
duality group G in which the charge vector Q sits, the orbits of R supporting attrac-
tors with non-vanishing entropy can be computed; their dimension is always r−1,
because they are defined by a fixed, non-vanishing value of the unique U-invariant
of the theory. For (N = 2 symmetric and) 3≤N ≤ 8, d = 4 supergravities such or-
bits are homogeneous symmetric manifolds of the form G

H
(H = H ,Ĥ ,H̃ , respec-

tively, for BPS, non-BPS ZAB �= 0 and non-BPS ZAB = 0); the corresponding moduli
space is given by the symmetric manifold H

h , where h (= h, ĥ, h̃, respectively) is the
maximal compact subgroup of H. It is worth remarking that the ( 1

N −)BPS moduli
spaces of 3 ≤ N ≤ 8, d = 4 supergravities all are quaternionic Kähler manifolds;
such a geometrical property can be understood by noticing that in the supersym-
metry reduction down to N = 2 such spaces are spanned by the hypermultiplets’
scalar degrees of freedom [131, 33].

Following [131] and [80], the relation among the signs of the U-invariant I2

(quadratic in charges) or I4 (quartic in charges) of the considered supergravity and
the various BH charge orbits is (for the N = 8 case see also [19, 76, 78, 132, 133,
134, 135]):

N = 3 :

⎧
⎨
⎩

1
3
−BPS : I2 > 0;

non−BPS,ZAB = 0 : I2 < 0;
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N = 4 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4
−BPS : I4 > 0;

non−BPS,ZAB �= 0 : I4 < 0;

non−BPS,ZAB = 0 : I4 > 0;

N = 5 :
1
5
−BPS : I2 ≷ 0(sign does not matter);

N = 6 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
6
−BPS : I4 > 0;

non−BPS,ZAB �= 0 : I4 < 0;

non−BPS,ZAB = 0 : I4 > 0;

N = 8 :

⎧⎨
⎩

1
8
−BPS : I4 > 0;

non−BPS,ZAB �= 0 : I4 < 0.

(268)

In Tables 1 and 2 we, respectively, list all charge orbits supporting extremal BH
attractors with non-vanishing classical Bekenstein-Hawking [69, 70, 71, 72, 73]
entropy (i.e. corresponding to the so-called “large” BHs) and their corresponding
moduli spaces for 3 ≤ N ≤ 8, d = 4 supergravities.

Some of the above results hold also for a generic (non-symmetric nor eventu-
ally homogeneous) N = 2, d = 4 SK geometry based on a cubic holomorphic
prepotential (usually named SK d-geometry [104]). For instance, for any SK d-
geometry of N = 2, d = 4 supergravity coupled to n Abelian vector multiplets, the
so-called D0-D6 BH charge configuration supports only non-BPS Z �= 0 attractors,
whose moduli space is (n−1)-dimensional, and it is given by the corresponding
N = 2, d = 5 scalar manifold, endowed with real special geometry [34]. It is worth
pointing out here that the existence of n− 1 massless modes of the 2n× 2n (real

Table 1 Charge orbits of the real, symplectic R representation of the U-duality group G supporting
BH attractors with non-vanishing entropy in 3 ≤ N ≤ 8, d = 4 supergravities

1
N

-BPS orbits
G
H

Non-BPS, ZAB �= 0 orbits
G

Ĥ
Non-BPS, ZAB = 0 orbits

G

H̃

N = 3
SU(3,n)
SU(2,n)

–
SU(3,n)

SU(3,n−1)

N = 4
SU(1,1)

U(1)
⊗ SO(6,n)

SO(4,n)
SU(1,1)
SO(1,1)

⊗ SO(6,n)
SO(5,n−1)

SU(1,1)
U(1)

⊗ SO(6,n)
SO(6,n−2)

N = 5
SU(1,5)

SU(3)⊗SU (2,1)
– –

N = 6
SO∗(12)
SU(4,2)

SO∗(12)
SU∗(6)

SO∗(12)
SU(6)

N = 8
E7(7)

E6(2)

E7(7)

E6(6)
–
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Table 2 Moduli spaces of BH attractors with non-vanishing entropy in 3 ≤ N ≤ 8, d = 4 super-
gravities (h, ĥ and h̃ are maximal compact subgroups of H , Ĥ and H̃ , respectively)

1
N

-BPS moduli

space
H

h

Non-BPS, ZAB �= 0

moduli space
Ĥ

ĥ

Non-BPS, ZAB = 0

moduli space
H̃

h̃

N = 3
SU(2,n)

SU(2)⊗SU (n)⊗U (1)
–

SU(3,n−1)
SU(3)⊗SU (n−1)⊗U (1)

N = 4
SO(4,n)

SO(4)⊗SO(n)
SO(1,1)⊗ SO(5,n−1)

SO(5)⊗SO(n−1)
SO(6,n−2)

SO(6)⊗SO(n−2)

N = 5
SU (2,1)

SU (2)⊗U (1)
– –

N = 6
SU(4,2)

SU(4)⊗SU (2)⊗U (1)
SU∗(6)
USp(6)

–

N = 8
E6(2)

SU (6)⊗SU (2)
E6(6)

USp(8)
–

from of the) Hessian matrix of the BH effective potential VBH at its non-BPS Z �= 0
critical points was shown in [10] to hold in any SK d-geometry of N = 2, d = 4 su-
pergravity coupled to n Abelian vector multiplets. However, the issue of the stability
of the non-BPS Z �= 0 critical points of VBH (as well as of the non-BPS Z = 0 ones)
in non-homogeneous SK d-geometry has not been thoroughly investigated so far21.

Let us finally remark that it is also possible to relate the flat directions of non-
BPS attractor solutions in N = 2, d = 4 symmetric supergravities with the flat
directions of ( 1

N -)BPS and non-BPS attractors in N > 2, d = 4 theories [33].
Moreover, the moduli spaces of extremal BH attractors with non-vanishing entropy
in supergravity theories in d = 5 and d = 6 have been found and their relations with
the corresponding Attractor Equation in d = 4 studied in [40] and [49].
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Appendix I

Up to the third order of covariant differentiation included, the possible independent
4-forms ((1,−1)-Kähler weighted with respect to K) on CY4 beside Ω̂4 are:

DaΩ̂4 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = 0 :

D0Ω̂4 =
(
D0Ω̂1

)
∧ Ω̂3 = ieK1Ω̂1 ∧ Ω̂3 =

(
t0 − t0

)−1
Ω̂1 ∧ Ω̂3;

a = i :

DiΩ̂4 = Ω̂1 ∧DiΩ̂3 = e

1
2

K3
Ω̂1 ∧DiΩ3 = e

1
2

K3
Ω̂1 ∧ [∂iΩ3 +(∂iK3)Ω3]

=
1√

i
(

XΔFΔ−XΔFΔ

) Ω̂1 ∧

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣∂iXΛ−

(
XΣ∂iFΣ−

(
∂iXΣ)FΣ

)

XΞFΞ−XΞFΞ
XΛ

⎤
⎦αΛ+

−

⎡
⎣∂iFΛ−

(
XΣ∂iFΣ−

(
∂iXΣ)FΣ

)

XΞFΞ−XΞFΞ
FΛ

⎤
⎦βΛ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(269)

DaDbΩ̂4 = D(aDb)Ω̂4 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a,b) = (0,0) : D0D0Ω̂4 = 0;
(a,b) = (0, i) :
D0DiΩ̂4 = D0Ω̂1 ∧DiΩ̂3

=
1

(
t0 − t0

)√
i
(

X
Δ
FΔ−XΔFΔ

) Ω̂1 ∧

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣∂iXΛ−

(
X

Σ∂iFΣ−
(
∂iXΣ)FΣ

)

X
Ξ

FΞ−XΞFΞ
XΛ

⎤
⎦αΛ+

−

⎡
⎣∂iFΛ−

(
X

Σ∂iFΣ−
(
∂iXΣ)FΣ

)

X
Ξ

FΞ−XΞFΞ
FΛ

⎤
⎦βΛ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

;

(a,b) = (i, j) :

DiDjΩ̂4 = Ω̂1 ∧DiDjΩ̂3 = iCi jkgklΩ̂1 ∧DlΩ̂3

= −e−K1Ci jkgklD0Ω̂1 ∧DlΩ̂3 = −e−K1Ci jkgklD0DlΩ̂4

= −e−K1Ci jkgklDlD0Ω̂4 = −i
(

t0 − t0
)

Ci jkgklDlD0Ω̂4.

(270)
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DaDbDcΩ̂4 = D(aDbDc)Ω̂4 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a,b,c) = (0,0,0) : D0D0D0Ω̂4 = 0;

(a,b,c) = (0,0, i) : D0D0DiΩ̂4 = 0;

(a,b,c) = (0, i, j) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D0DiD jΩ̂4 = D0Ω̂1 ∧DiD jΩ̂3

= −eK1Ci jkgklΩ̂1 ∧DlΩ̂3

= −eK1Ci jkgklDlΩ̂4 = i
(

t0 − t0
)−1

Ci jkgklDlΩ̂4;

(a,b,c) = (i, j,k) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DiD jDkΩ̂4 = −i
(

t0 − t0
)(

DiCjkl
)

glmDmD0Ω̂4+

−i
(

t0 − t0
)

Cjklg
lmDiDmD0Ω̂4

= −i
(

t0 − t0
)(

DiCjkl
)

glmD0DmΩ̂4+

−i
(

t0 − t0
)

Cjklg
lm
(

D0Ω̂1

)
∧DiDmΩ̂3

= −i
(

t0 − t0
)(

DiCjkl
)

glmD0DmΩ̂4 − i
(

t0 − t0
)

Ci jkD0Ω̂4.

(271)

DaDbDcΩ̂4 = DaD(bDc)Ω̂4 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a,b,c) =
(
0,0,0

)
: D0D0D0Ω̂4 = 0;

(a,b,c) =
(
0,0, i

)
: D0D0DiΩ̂4 = g00DiΩ̂4 = −

(
t0 − t0

)−2
DiΩ̂4 = e2K1 DiΩ̂4;

(a,b,c) =
(
0, i, j

)
: D0DiDjΩ̂4 = 0;

(a,b,c) =
(
l,0,0

)
: DlD0D0Ω̂4 = 0;

(a,b,c) =
(
l,0, i

)
: DlD0DiΩ̂4 = gilD0Ω̂4;

(a,b,c) =
(
l, i, j

)
:

DlDiDjΩ̂4 = iCi jkgkkΩ̂1 ∧DlDkΩ̂3

= gkkCi jkClmkgmmΩ̂1 ∧DmΩ̂3

= gkkCi jkClmkgmmDmΩ̂4

SKG constraints=
(

Ril jmgmm +δm
j gil +δm

i g jl

)
DmΩ̂4.

(272)
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Since the covariant derivatives of Ω̂4 are often considered in local “flat” coor-
dinated in M, below we write the independent ones, up to the third order included,
by recalling (208) and (211) (implemented by (4.1.1)), (205) and (212), and (269),
(270), (271), (272):

DAΩ̂4 :

⎧⎪⎨
⎪⎩

A = 0 : D0Ω̂4 = ea
0DaΩ̂4 = e0

0

(
D0Ω̂1

)
∧ Ω̂3 = Ω̂1 ∧ Ω̂3;

A = I : DIΩ̂4 = ea
I DaΩ̂4 = ei

IDiΩ̂4 = ei
I

(
Ω̂1 ∧DiΩ̂3

)
.

(273)

DADBΩ̂4 = D(ADB)Ω̂4 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A,B) = (0,0) : D0D0Ω̂4 = ea
0eb

0DaDbΩ̂4 =
(

e0
0

)2
D0D0Ω̂4 = 0;

(A,B) = (0, I) : D0DIΩ̂4 = ea
0eb

I DaDbΩ̂4 = e0
0ei

ID0DiΩ̂4 = D0Ω̂1 ∧DIΩ̂3 = Ω̂1 ∧DIΩ̂3;

(A,B) = (I,J) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DIDJΩ̂4 = ea
I eb

JDaDbΩ̂4

= ei
Ie

j
JDiDjΩ̂4 = ei

Ie
j
J

(
Ω̂1 ∧DiDjΩ̂3

)

= −ei
Ie

j
Je−K1Ci jkgklD0DlΩ̂4 = iCIJKδKKΩ̂1 ∧DKΩ̂3

= iCIJKδKKD0Ω̂1 ∧DKΩ̂3.

(274)

DADBDCΩ̂4 = D(ADBDC)Ω̂4 :⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A,B,C) = (0,0,0) : D0D0D0Ω̂4 = ea
0eb

0ec
0DaDbDcΩ̂4 =

(
e0

0

)3
D0D0D0Ω̂4 = 0;

(A,B,C) = (0,0, I) : D0D0DIΩ̂4 = ea
0eb

0ec
I DaDbDcΩ̂4 =

(
e0

0

)2
ei

ID0D0DiΩ̂4 = 0;

(A,B,C) = (0, I,J) :

⎧⎪⎨
⎪⎩

D0DIDJΩ̂4 = ea
0eb

I ec
JDaDbDcΩ̂4 = e0

0ei
Ie

j
JD0DiD jΩ̂4

= ie0
0ei

Ie
j
J

(
t0 − t0

)−1
Ci jkgklDlΩ̂4 = iCIJKδKKDKΩ̂4;

(A,B,C) = (I,J,K) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DIDJDKΩ̂4 = ea
I eb

Jec
KDaDbDcΩ̂4 = ei

Ie
j
Jek

KDiD jDkΩ̂4

= −iei
Ie

j
Jek

K

(
t0 − t0

)(
DiCjkl

)
glmD0DmΩ̂4+

−iei
Ie

j
Jek

K

(
t0 − t0

)
Ci jkD0Ω̂4

= i(DICJKL)δLLD0DLΩ̂4 + iCIJKD0Ω̂4.

(275)
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DADBDCΩ̂4 = DAD(BDC)Ω̂4 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
A,B,C

)
=
(
0,0,0

)
: D0D0D0Ω̂4 = ea

0
eb

0ec
0DaDbDcΩ̂4 = e0

0

(
e0

0

)2
D0D0D0Ω̂4 = 0;

(
A,B,C

)
=
(
0,0, I

)
: D0D0DIΩ̂4 = ea

0
eb

0ec
I DaDbDcΩ̂4

= e0
0
e0

0ei
ID0D0DiΩ̂4 = e0

0
e0

0ei
Ig00DiΩ̂4 = DIΩ̂4;

(
A,B,C

)
=
(
0, I,J

)
: D0DIDJΩ̂4 = ea

0
eb

I ec
JDaDbDcΩ̂4 = e0

0
ei

Ie
j
JD0DiDjΩ̂4 = 0;

(
A,B,C

)
=
(
L,0,0

)
: DLD0D0Ω̂4 = ea

L
eb

0ec
0DaDbDcΩ̂4 = el

L

(
e0

0

)2
DlD0D0Ω̂4 = 0;

(
A,B,C

)
=
(
L,0, I

)
: DLD0DIΩ̂4 = ea

L
eb

0ec
I DaDbDcΩ̂4

= el
L
e0

0ei
IDlD0DiΩ̂4 = el

L
e0

0ei
IgilD0Ω̂4 = δILD0Ω̂4;

(
A,B,C

)
=
(
L, I,J

)
:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

DLDIDJΩ̂4 = ea
L
eb

I ec
JDaDbDcΩ̂4 = el

L
ei

Ie
j
JDlDiDjΩ̂4

= el
L
ei

Ie
j
JgkkCi jkClmkgmmDmΩ̂4

SKG constraints in local “flat” coords.
=

(
δM

J δIL +δM
I δJL

)
DMΩ̂4.

(276)

Appendix II

The “intersections” among the elements of the set of 4-forms Ω̂4, D0Ω̂4, DiΩ̂4,

D0DiΩ̂4, Ω̂4, D0Ω̂4, DiΩ̂4 and D0DiΩ̂4 in generic local “curved” and in local “flat”
coordinates of M, respectively, read as follows:

∫

CY4

Ω̂4 ∧ Ω̂4 = 0,
∫

CY4

Ω̂4 ∧D0Ω̂4 = 0,
∫

CY4

Ω̂4 ∧DiΩ̂4 = 0,

∫

CY4

Ω̂4 ∧D0DiΩ̂4 = 0;
∫

CY4

Ω̂4 ∧ Ω̂4 = 1;

∫

CY4

Ω̂4 ∧D0Ω̂4 = 0,
∫

CY4

Ω̂4 ∧DiΩ̂4 = 0,
∫

CY4

Ω̂4 ∧D0DiΩ̂4 = 0;

(277)

∫

CY4

DiΩ̂4 ∧D jΩ̂4 = 0,
∫

CY4

DiΩ̂4 ∧D0Ω̂4 = 0,
∫

CY4

DiΩ̂4 ∧D0D jΩ̂4 = 0;

∫

CY4

DiΩ̂4 ∧D jΩ̂4 = −gi j;∫

CY4

DiΩ̂4 ∧D0Ω̂4 = 0,
∫

CY4

DiΩ̂4 ∧D0D jΩ̂4 = 0;

(278)
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∫

CY4

D0Ω̂4 ∧D0Ω̂4 = 0,
∫

CY4

D0Ω̂4 ∧D0DiΩ̂4 = 0;

∫

CY4

D0Ω̂4 ∧D0Ω̂4 = −e2K1 =
(

t0 − t0
)−2

;

∫

CY4

D0Ω̂4 ∧D0DiΩ̂4 = 0;

(279)

∫

CY4

D0DiΩ̂4 ∧D0D jΩ̂4 = 0;

∫

CY4

D0DiΩ̂4 ∧D0D jΩ̂4 = e2K1gi j = −
(

t0 − t0
)−2

gi j.

(280)

∫

CY4

Ω̂4 ∧ Ω̂4 = 0,
∫

CY4

Ω̂4 ∧D0Ω̂4 = 0,
∫

CY4

Ω̂4 ∧DIΩ̂4 = 0,

∫

CY4

Ω̂4 ∧D0DIΩ̂4 = 0;
∫

CY4

Ω̂4 ∧ Ω̂4 = 1;

∫

CY4

Ω̂4 ∧D0Ω̂4 = 0,
∫

CY4

Ω̂4 ∧DIΩ̂4 = 0,
∫

CY4

Ω̂4 ∧D0DIΩ̂4 = 0;

(281)

∫

CY4

DIΩ̂4 ∧DJΩ̂4 = 0,
∫

CY4

DIΩ̂4 ∧D0Ω̂4 = 0,
∫

CY4

DIΩ̂4 ∧D0DJΩ̂4 = 0;

∫

CY4

DIΩ̂4 ∧DJΩ̂4 = −ei
Ie

j
J
gi j = −δIJ;

∫

CY4

DIΩ̂4 ∧D0Ω̂4 = 0,
∫

CY4

DIΩ̂4 ∧D0DJΩ̂4 = 0;

(282)

∫

CY4

D0Ω̂4 ∧D0Ω̂4 = 0,

∫

CY4

D0Ω̂4 ∧D0DIΩ̂4 = 0;

∫

CY4

D0Ω̂4 ∧D0Ω̂4 = −
∣∣e0

0

∣∣2 e2K1 = −1;

∫

CY4

D0Ω̂4 ∧D0DIΩ̂4 = 0;

(283)

∫

CY4

D0DIΩ̂4 ∧D0DJΩ̂4 = 0;

∫

CY4

D0DIΩ̂4 ∧D0DJΩ̂4 =
∣∣e0

0

∣∣2 ei
Ie

j
J
e2K1gi j = δIJ .

(284)
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Appendix III

The complete Hodge-decomposition of the real, Kähler gauge-invariant 4-form F4

of Type IIB on CY3×T 2

Z2
in generic local “curved” coordinates in M reads as follows:

F4 =

⎡
⎢⎢⎣

ZΩ̂4 −gab (DaZ)DbΩ̂4 +
∣∣∣e0

0

∣∣∣
2

gab (D0DaZ)D0DbΩ̂4+

+
∣∣∣e0

0

∣∣∣
2

gba
(
D0DaZ

)
D0DbΩ̂4 −gba

(
DaZ

)
DbΩ̂4 +ZΩ̂4

⎤
⎥⎥⎦

= 2Re
[
ZΩ̂4 −gab (DbZ

)
DaΩ̂4 +

∣∣e0
0

∣∣2 gab (D0DbZ
)

D0DaΩ̂4

]
(285)

= 2Re

⎡
⎢⎢⎢⎢⎢⎢⎣

ZΩ̂1 ∧ Ω̂3+

+
(

t0 − t0
)2 (

D0Z
)
Ω̂1 ∧ Ω̂3 −gi j

(
D jZ

)
Ω̂1 ∧DiΩ̂3+

+
(

t0 − t0
)

gi j
(

D0D jZ
)
Ω̂1 ∧DiΩ̂3

⎤
⎥⎥⎥⎥⎥⎥⎦

(286)

= 2Re

⎡
⎢⎢⎢⎢⎢⎢⎣

ZΩ̂1 ∧ Ω̂3+

−
∣∣∣e0

0

∣∣∣
2 (

D0Z
)
Ω̂1 ∧ Ω̂3 − ei

Ie
j
J
δ IJ

(
D jZ

)
Ω̂1 ∧DiΩ̂3+

+e0
0
ei

Ie
j
J
δ IJ

(
D0D jZ

)
Ω̂1 ∧DiΩ̂3

⎤
⎥⎥⎥⎥⎥⎥⎦

(287)

= 2eK1+K3Re

⎡
⎢⎢⎢⎢⎢⎢⎣

WΩ1 ∧Ω3+

−
∣∣∣e0

0

∣∣∣
2 (

D0W
)
Ω1 ∧Ω3 − ei

Ie
j
J
δ IJ

(
D jW

)
Ω1 ∧DiΩ3+

+e0
0
ei

Ie
j
J
δ IJ

(
D0D jW

)
Ω1 ∧DiΩ3

⎤
⎥⎥⎥⎥⎥⎥⎦

. (288)

The evaluation of such identities along the constraints (251) yields the super-

symmetric FV AEs in N = 1, d = 4 supergravity from Type IIB on CY3×T 2

Z2
in local

“curved” coordinates:

F4 =
[
ZΩ̂4 +

∣∣e0
0

∣∣2 gab (D0DaZ)D0DbΩ̂4 +
∣∣e0

0

∣∣2 gba (D0DaZ
)

D0DbΩ̂4 +ZΩ̂4

]
SUSY

= 2Re
[
ZΩ̂4 +

∣∣e0
0

∣∣2 gab (D0DbZ
)

D0DaΩ̂4

]
SUSY
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= 2Re
[
ZΩ̂1 ∧ Ω̂3 +

(
t0 − t0

)
gi j
(

D0D jZ
)
Ω̂1 ∧DiΩ̂3

]
SUSY

= 2Re
[
ZΩ̂1 ∧ Ω̂3 + e0

0ei
Ie

j
J
δ IJ

(
D0D jZ

)
Ω̂1 ∧DiΩ̂3

]
SUSY

= 2eK1+K3 Re
[
WΩ1 ∧Ω3 + e0

0ei
Ie

j
J
δ IJ

(
D0D jW

)
Ω1 ∧DiΩ3

]
SUSY

. (289)
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Lectures on Black Holes
and the AdS3/CFT2 Correspondence

P. Kraus

Abstract We present a detailed discussion of AdS3 black holes and their connection
to two-dimensional conformal field theories via the AdS/CFT correspondence. Our
emphasis is on deriving refined versions of black hole partition functions that in-
clude the effect of higher derivative terms in the spacetime action as well as non-
perturbative effects. We include background material on gravity in AdS3, in the
context of holographic renormalization.

1 Introduction

The fact that string theory is able to provide a successful microscopic description of
certain black holes provides strong evidence that it is a consistent theory of quantum
gravity. Correctly reproducing the Bekenstein-Hawking entropy formula S = A/4G
from an explicit sum over states indicates that the right microscopic degrees of free-
dom have been identified. Since string theory also reduces to conventional general
relativity (coupled to matter) at low energy, it seems to provide us with a coherent
theory encompassing both the microscopic and macroscopic regimes. Needless to
say, however, there is still much to be learned about the full implications of string
theory for quantum gravity.

One approach to deepening our understanding is to examine the string theory
description of black holes with improved precision. This program has been highly
fruitful so far. The earliest successful black hole entropy matches, following [1],
appeared somewhat miraculous, the emergence of the Bekenstein-Hawking formula
from the microscopic side not becoming apparent until all the last numerical fac-
tors were accounted for. The precise agreement seemed even more astonishing once
additional features like rotation and non-extremality were included. It was even-
tually understood that the essential ingredients on the two sides are the near hori-
zon AdS region of the black hole geometry, and the low energy CFT describing
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the underlying branes, and this (among other observations) led to the celebrated
AdS/CFT correspondence [2, 3]. This improved understanding largely demystifies
the nature of the entropy matching, as we will discuss in these lectures. One of our
goals here will be to show how just a few basic features, like the existence of a
near horizon AdS region with the appropriate symmetries, is enough to make the
agreement manifest, even in rather complicated contexts, and including incorporat-
ing subleading corrections to the area law formula.

A survey of the examples in which there is a precise microscopic accounting
of black entropy reveals the near ubiquitous appearance of a near horizon AdS3

factor (possibly after a suitable duality transformation).1 In these examples, the dual
theory is a two-dimensional CFT, for which there are powerful results constraining
the spectrum of states. By contrast, in other examples such as AdS5 black holes, it
has so far only been possible to compute the entropy up to at best numerical factors.
For this reason, here we will be focussing on AdS3 examples.

The AdS3/CFT2 correspondence can be stated as an equivalence between parti-
tion functions

ZAdS = ZCFT . (1)

The connection with black hole entropy arises when we examine this relation in
the high energy regime, where the left-hand side is dominated by an asymptotically
AdS3 black hole: the BTZ black hole [5, 6]. General properties of conformal field
theories imply that the asymptotic density of states will agree between the two sides,
as we will discuss in what follows.

A more ambitious goal is to try to demonstrate exact agreement in (1). On the
gravitational side, this will involve incorporating many new contributions beyond
that of a single large black hole. One way to think of defining ZAdS is as a Eu-
clidean path integral. At finite temperature, the contributing Euclidean geometries
should have a boundary that is a two-dimensional torus, to match with the standard
finite temperature description of the boundary CFT. A typical bulk geometry that is
thereby included is one whose topology is a three-dimensional solid torus. Such a
geometry appears in the path integral weighted by its Euclidean action, which in-
cludes (if we are trying to be exact) contributions from an infinite series of higher
derivative terms in the spacetime Lagrangian. That is not all though, since we also
need to include all possible excitations on top of the geometry, allowing for particle,
string, and brane states that can wind around the solid torus. After all these contri-
butions have been taken into account one can hope to match the exact CFT partition
function.

In these notes, we will discuss to what extent this program can be carried out.
This will involve a careful study of gravity in asymptotically AdS3 spacetimes, and
its string theory realization. We organize our presentation by starting with a fairly
generic setup and then becoming progressively more specific. As we will see, once
we start adding more structure, like supersymmetry, to the problem, and refine our

1 For a recent example without such an AdS3 factor see [4]. But note that in this example, the
microscopic counting is not under complete control and interestingly still involves relating the
system to another system which does have an AdS3 region.
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definitions of the partition functions in (1), it is possible to go a significant distance
in demonstrating exact agreement between the gravitational and CFT descriptions.

Let us describe the outcome of our analysis in a bit more detail. In a two-
dimensional CFT we have independent temperatures for the left and right movers;
we label the inverse left(right) moving temperature as τ ∼ 1/TL (τ ∼ 1/TR). Further,
in the CFT there is a spectrum of left and right moving conserved charges, and we
can turn on chemical potentials for these charges, zI and z̃I . Allowing for nonzero
potentials lets us study charged black holes. To study black hole entropy, we are
interested in the high temperature behavior of the partition function, and we will see
that it has the structure

lnZ =
iπ
τ

( c
12

−2CIJzIzJ

)
− iπ

τ

(
c̃

12
−2C̃IJ z̃iz̃J

)

+ exponentially suppressed terms.
(2)

Here c and c̃ are the left and right moving central charges, and CIJ and C̃IJ are
matrices appearing in the CFT current algebra. On the gravity side, if we use the
two-derivative approximation to the spacetime action and discard the exponentially
small terms, we will reproduce the area law for the entropy of a general rotating,
charged black hole. But we can go considerably further: the parameters c, etc., can
be computed exactly by relating them to anomalies. The corrections to these pa-
rameters encode the effect of higher derivative terms in the spacetime action, and
lead to corrections to the area law. Indeed, by transforming (2) into an expression
for the degeneracy as a function of charges (i.e. relating the canonical ensemble to
the microcanonical ensemble via a Laplace transform) we deduce a series of 1/Q
corrections to the degeneracy, as in [7, 8]. The suppressed terms in the second line
of (2) will arise, in the gravitational description, from including fluctuations around
black hole geometries, and from summing over inequivalent black holes.

As we proceed, it will become clear that terms on the first and second lines
of (2) are of a rather different nature. The top line can be established on general
grounds, using the relation to anomalies. In particular, this can be achieved even for
non-BPS and nonextremal black hole, and so a class of area law corrections for such
black holes are under excellent control.2 Also, our method of derivation will make it
manifest that the black hole and CFT entropies agree in these cases. The second line
of (2), however, is much more context dependent and further can only be computed
explicitly when we define Z to be a supersymmetric partition function (an index).

In Sect. 2, we begin with pure gravity in asymptotically AdS3 spacetimes. We
review how to properly define the gravitational action by including boundary terms,
and then review the construction of the boundary stress tensor dual to the stress ten-
sor of the CFT. In two-derivative gravity, this stress tensor obeys a Virasoro algebra
with the central charge of Brown and Henneaux [9]. We then generalize to higher

2 Here we mean that we can consider non-supersymmetric black hole solutions to an underlying
supersymmetric theory. Corrections can be computed also for theories with no underlying super-
symmetry (as we will discuss in Sect. 2) but explicit knowledge of the full Lagrangian is needed
in these cases.
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derivative theories of gravity and show how to obtain the generalized central charge.
It turns out that the central charge can be found by a simple extremization principle.
With these results in hand, we turn to computing the entropy of BTZ black holes in
general higher derivative theories. A crucial role here is played by the construction
of BTZ as a quotient of AdS, and its relation to a thermal AdS geometry via a mod-
ular transformation. This analysis will establish the agreement between the black
hole and CFT entropies once the central charges have been shown to agree.

In Sect. 3 we add gauge fields into the mix and show how these are dual to cur-
rents in the boundary CFT. A central role is played by bulk Chern-Simons terms,
since these turn out to completely determine the currents. Turning on flat connec-
tions for our gauge fields allows us to incorporate charged black holes. We then
discuss the role of a Chern-Simons term for the gravitational field and show how
it is used to deduce the difference between the central charges of the left and right
moving sectors of the CFT.

The two specific string theory constructions that we will consider are reviewed in
Sect. 4: the D1-D5 system giving rise to five-dimensional black holes with near hori-
zon geometry AdS3 ×S3, and wrapped M5-branes yielding four-dimensional black
holes with near horizon geometry AdS3 × S2. To read off the exact central charges
for these systems, we will use a combination of anomalies and supersymmetry. In
particular, this will allow us to derive the exact corrections to the classical central
charges, and hence derive a class of corrections to the black hole area law. The main
emphasis is in showing how these exact results can be obtained even without know-
ing the explicit form of all higher derivative terms in the spacetime action. A nice
application of this formalism is to small black holes dual to fundamental heterotic
strings, and we will show how to derive the worldsheet central charges from gravity.

In Sects. 5, 6, 7, 8 we turn to the computation of the full partition function from
the gravitational point of view. In order to have a chance of making an exact com-
putation we focus on the elliptic genus, which is a particular partition function in-
variant under smooth deformations of the theory, due to bose-fermi cancellations.
We review its main properties in Sect. 5, and then show in Sects. 6 and 7 how these
properties emerge in the gravity description. Much of our discussion will follow the
work of Dijkgraaf et al. [10] on the “Farey tail” description of the elliptic genus
for the D1-D5 system. This gives a beautiful example of the matching between the
CFT and gravity versions of the elliptic genus, including the effects of summing
over geometries. Section 8 shows how to incorporate the effects of BPS excitations
of top of the background geometries being summed over in the path integral. These
include both supergravity fluctuations from Kaluza-Klein reduction, as well as non-
perturbative brane states. In our brief discussion of the latter, following [11] we
note how the appearance of both branes and anti-brane BPS states leads to the OSV
formula [12] relating the AdS partition function to that of the topological string.

1.1 General References

In these lectures, we focus on one particular aspect of black hole physics, namely,
the computation of the entropy/partition function of AdS3 black holes, and our
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presentation is based mainly on [13, 14]. There are of course many other major
issues that we will not touch on substantially, such as the information paradox, the
black hole singularity, and black holes in other dimensions. There are a number of
excellent pedagogical treatments of various aspects of black holes in string theory
that complement the material discussed here. An incomplete list is [15, 16, 17, 18,
19, 20, 21].

2 Gravity in Asymptotically AdS3 Spacetimes

2.1 Action and Stress Tensor

In this section, we consider pure gravity in three dimensions in the presence of
a negative cosmological constant. This theory is described by an Einstein-Hilbert
action supplemented by boundary terms

I =
1

16πG

∫
d3x

√
g

(
R− 2

�2

)
+ Ibndy. (3)

The need for, and explicit form of, the boundary terms in the action will become
clear as we proceed. We work in Euclidean signature and follow the curvature con-
ventions of Misner, Thorne, and Wheeler.

One solution of the equations of motion is AdS3,

ds2 =
(
1+ r2/�2)dt2 +

dr2

1+ r2/�2 + r2dφ 2. (4)

AdS3 is homogeneous space of constant negative curvature. It has maximal sym-
metry, the isometry group being SL(2, C) ∼= SL(2, R)L × SL(2, R)R as will be
reviewed later. The metric (4) is written in so-called global coordinates that cover
the entire manifold. AdS3 will play the role of the vacuum of our theory, in that it
has the lowest mass of any solution. In fact, we will see that it is natural to assign it
the negative mass M = − �

8G .
A more general one-parameter family of solutions is the non-rotating BTZ black

hole [5, 6],

ds2 =

(
r2 − r2

+
)

�2 dt2 +
�2

(
r2 − r2

+
)dr2 + r2dφ 2. (5)

After rotating to Lorentzian signature, it is evident that this describes a black with
event horizon at r = r+, and Bekenstein-Hawking entropy

S =
A

4G
=

πr+

2G
. (6)

Note that if we set r2
+ = −�2 we recover (4). The black hole solution (5) can be

further generalized by adding charge and rotation; we will have much more to say
about this.
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By examining the large r behavior, it is apparent that the solution (5) asymptoti-
cally approaches AdS3. We now want to state the precise conditions under which a
metric can be said to be asymptotically AdS3. This is a standard type of question in
general relativity, and can be approached from different viewpoints. Our focus will
be on demanding the existence of a well-defined action and variational principle. A
motivation for this from the point of view of AdS/CFT is that the action takes on a
well-defined meaning as giving, in a suitable semiclassical limit, the partition func-
tion of the CFT; indeed this is essentially the fundamental definition of the AdS/CFT
correspondence. We would also like to include as large a class of metrics as possi-
ble. Furthermore, we have the freedom to adjust the boundary terms in (3) to make
the action finite and stationary when the Einstein equations are satisfied.

To analyze this problem, it is convenient to work in coordinates where the metric
takes the form (Gaussian normal coordinates)

ds2 = dη2 +gi jdxidx j. (7)

Here gi j is an arbitrary function of xi (i = 1,2) and the radial coordinate η . The
allowed values of η are unbounded from above, although there may be a minimal
value imposed by smoothness considerations. Now, it is apparent that the action
written in (3) will diverge due to the large η integration, and so we regulate the
integral by imposing a cutoff at some fixed value of η , which we eventually hope to
take to infinity.

In terms of (3) the bulk term in the action (3) appears as, after an integration
by parts,

IEH =
1

16πG

∫
d2xdη

√
g
(

R(2) + (TrK)2 −TrK2 −2Λ
)
− 1

8πG

∫

∂M
d2x

√
gTrK,

(8)
where R(2) is the Ricci scalar associated with gi j. K is the extrinsic curvature, de-
fined as

Ki j =
1
2
∂ηgi j. (9)

All indices are raised and lowered by gi j and its inverse.
The variation of the boundary term contains a contribution δ∂ηgi j. This term

spoils a variational principle in which we hold fixed the induced metric on ∂M
but not its normal derivative. This is rectified by adding to the action the Gibbons-
Hawking term

IGH =
1

8πG

∫

∂M
d2x

√
gTrK. (10)

We now consider the variation of the action with respect to gi j. The variation will
consist of two terms: a bulk piece that vanishes when the equations of motion are
satisfied, and a boundary piece. Assuming that the equations of motion are satisfied,
a simple computation gives

δ (IEH + IGH) = − 1
16πG

∫

∂M
ddx

√
g
(
Ki j −TrKgi j)δgi j. (11)
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The boundary stress tensor (which in the AdS/CFT correspondence is dual to the
CFT stress tensor) is defined in terms of the variation as

δ I =
1
2

∫

∂M
d2x

√
gT i jδgi j, (12)

and so we have at this stage

T i j = − 1
8πG

(
Ki j −TrKgi j) , (13)

which is a result derived by Brown and York [22]. Although we derived this result
in the coordinate system (3), the result (13) is valid in any coordinate system, where
gi j is the induced metric on the boundary, and Ki j is the extrinsic curvature.

We now incorporate the specific features of asymptotically AdS spacetimes,
which will require the addition of a second boundary term. From the basic solu-
tions (4) and (5) it is evident that we should allow metrics that grow as r2 at infinity.
Translating to the η coordinate, this implies a growth e2η/�. By studying the Ein-
stein equations one finds that the general solution has subleading terms down by
powers of e−2η/�. We therefore write a “Fefferman-Graham expansion” [23] for the
metric as

gi j = e2η/�g(0)
i j +g(2)

i j + . . . . (14)

Omitted terms fall off at least as e−η/�. g(0)
i j is the “conformal boundary metric”; it

is clearly defined only up to Weyl transformations induced by a redefinition of η . It
is this metric that we wish to identify with the metric of the boundary CFT.

Given g(0)
i j , the subleading terms in the expansion (14) are found by solving Ein-

stein’s equations. Here we just note the following important relation that arises (see
e.g. [24]):

Tr(g(2)) =
1
2
�2R(0), (15)

where indices are lowered and raised with g(0)
i j and its inverse g(0)i j.

Upon removal of the large η regulator, it is clear that the g(0)
i j plays the role of

the boundary metric, and so it is natural to seek a variational principle in which g(0)
i j

is held fixed, while the subleading parts of (14) are allowed to vary.3 However, our
action IEH + IGH fails on two counts. First, using (11) it is not hard to check that the

variation of g(2)
i j appears explicitly, and second that (11) diverges in the large η limit.

Both these problems are solved by adding to the action the “counterterm” [25, 26]

Ict = − 1
8πG�

∫

∂M
d2x

√
g. (16)

3 In higher dimensional AdS spacetimes a finite number of subleading terms are determined alge-

braically in terms of g(0)
i j and are therefore also kept fixed. See, e.g., [24]
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Once this is included, it is straightforward to check that the on-shell variation of the
action takes the form

δ I =
1
2

∫
d2x

√
g(0) T i jδg(0)

i j , (17)

with

Ti j =
1

8πG�

(
g(2)

i j −Tr(g(2))g(0)
i j

)
. (18)

This is our AdS3 stress tensor. The stress tensors for higher dimensional spacetimes
can be found in the literature [26, 27], and additional related work appears in [28,
29, 30, 31, 32].

Note that the stress tensor has a nonzero trace [25],

Tr(T ) = − 1
8πG�

Tr(g(2)) = − �

16πG
R(0), (19)

where we used (15). This is the Weyl anomaly. In fact, the stress tensor defined
here obeys all the properties of a stress tensor in CFT and we can thereby read
off the central charge by comparing to the standard form of the Weyl anomaly,
Tr(T ) = − c

24π R. This gives the central charge originally derived by Brown and
Henneaux [9],

c =
3�

2G
. (20)

In the absence of the Weyl anomaly, we can think of g(0) as specifying a confor-
mal class of metrics, and the action is independent of the particular representative
we choose. But when the Weyl anomaly is nonvanishing, we need to choose a spe-
cific representative. Another way to understand the Weyl anomaly is that although
we succeeded in making the variation (17) finite, it is not hard to check that the
action itself can suffer from a divergence linear in η . To cancel this divergence we
are forced to add another counterterm that depends explicitly (and linearly) on our
large η cutoff. The Weyl anoomaly can then be read off from the transformation of
this term under a shift in the cutoff.

2.2 Virasoro Generators

To simplify the discussion, it is now convenient to take g(0)
i j to be a flat metric on

the cylinder and to work in complex coordinates. We thus take g(0)
i j dxidx j = dwdw

with w ∼= w+2π . When we write w = σ1 + iσ2 we will think of σ2 as the imaginary
time direction. The stress tensor now has components

Tww =
1

8πG�
g(2)

ww, Tww =
1

8πG�
g(2)

ww. (21)

Tww (Tww) is holomorphic (anti-holomorphic) as a consequence of the Einstein
equations.
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The Virasoro generators are defined in the usual fashion as contour integrals

Ln −
c

24
δn,0 =

∮
dw e−inwTww

L̃n −
c̃

24
δn,0 =

∮
dw einwTww.

(22)

Looking ahead, we have allowed for an independent rightmoving central charge c̃,
although at this stage c = c̃. The generators obey the Virasoro algebra

[Lm,Ln] = (m−n)Lm+n +
c

12
(m3 −m)δm+n, (23)

and likewise for the L̃n. To establish this one studies the transformation of the stress
tensor under the coordinate transformations that preserve the form of g(0). The in-
finitesimal transformation law is then used to derive the algebra (23).

Mass and angular momentum in AdS3 are related to the Virasoro charges as

L0 −
c

24
=

1
2
(M�− J), L̃0 −

c̃
24

=
1
2
(M�+ J). (24)

As a simple example consider the BTZ metric (5). We find g(2)
ww = g(2)

ww = r2
+/4,

and hence

L0 = L̃0 =
�

16G

(
1+

r2
+

�2

)
, (25)

or

M =
r2
+

8G�2 , J = 0. (26)

Note that the pure AdS3 metric (4) has L0 = L̃0 = 0, which is simply a consequence
of its invariance under the SL(2, R)L ×SL(2, R)R group of isometries generated by
L0,±1 and L̃0,±1.

2.3 Generalization to Higher Derivative Theories [13, 33, 34]

In the preceding we have been working with a two derivative action. In the context
of string theory, or any other sensible approach to quantum gravity, this will just be
the leading part of a more general effective action containing terms with arbitrary
numbers of derivatives. If we are to make precise statements about such physical
quantities as black hole entropy we need a systematic way of including the effect of
higher derivative terms. For example, we no longer expect the entropy-area relation
S = A/4G to hold in the general case. On the face of it, even if we knew the explicit
form of the action it would seem to be highly nontrivial to repeat the previous anal-
ysis and extract physical quantities. But in fact the problem is much easier than it
first appears.
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Using the fact that in three dimensions the Riemann tensor can be expressed in
terms of the Ricci tensor, we may write an arbitrary higher derivative action as

I =
1

16πG

∫
d3x

√
gL (gμν ,∇μ ,Rμν)+ Ibndy. (27)

In fact, there is one additional term that can be added, a gravitational Chern-Simons
term related to the possibility of c �= c̃ that is being suppressed in (27). We will come
back to it later.

We now ask how to derive the generalized version of the central charge formula
(20). Because AdS3 is maximally symmetric we know that it will be a solution of
our higher derivative theory, but we need to determine the length scale �. To proceed,
we write pure AdS3 in the following coordinates

ds2 = �2(dη2 + sinh2 ηdΩ2
2), (28)

so that � only appears as an overall factor. In (28) � is of course a constant, but
to determine its value it is useful to consider a local variation of compact support,
� → � + δ�(x). When the equations of motion are satisfied the action should be
stationary under such a variation. The variation of the action computed around (28)
takes a very simple form as follows from the fact that all tensorial quantities are
covariantly constant on AdS3. A moment’s thought then shows that the variation
takes the form

δ I =
1

16πG

∫
d3x

∂
∂�

(
√

gL )δ�(x). (29)

So the equations of motion imply that
√

gL should be at an extremum with respect
to rigid variations of �. Given the explicit form of L we then need “only” solve an
algebraic equation to determine �.

Now we turn to the determination of the central charge. Conformal invariance
implies the general relation Tr (T ) = − c

24π R(0). Consider (17) in the context of

an infinitesimal Weyl transformation, δg(0)
i j = 2δωg(0)

i j , applied to a metric whose

boundary is conformal to S2,

δ I =
1
2

∫
d2x

√
g(0) T i jδg(0)

i j = − c
24π

δω
∫

d2x
√

g(0) R(0) = − c
3
δω. (30)

To extract c we evaluate (27) on the metric (28). L is a constant on this solution
since AdS3 is homogeneous, and so

I =
�3L

4G

∫
dη sinh2 η + Ibndy. (31)

The integration is divergent at large η and so we impose a cutoff η ≤ ηmax and
write

∫
dη sinh2 η =− 1

2ηmax + 1
4 sinh(2ηmax). Now, Ibndy is built out of the induced

metric on the boundary. Assuming it is local, we can arrange it to subtract off the
sinh(2ηmax) term but not the linear term. Indeed, as we discussed below (20) the lin-
ear divergence is the Weyl anomaly, which (like all anomalies) cannot be subtracted
by local counterterms. So even after adding Ibndy the action diverges as
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Idiv = −�3L

8G
ηmax. (32)

Next, observe that a shift of ηmax implements a Weyl transformation, δω = δηmax.
We can therefore equate (30) with the variation of (32) to obtain4 [13, 33]

c =
3�3L

8G
. (33)

Recall that L should be evaluated at the extremum of
√

gL . But given (28) we
see that

√
gL ∝ �3L , so we can equally well say that we are extremizing c. We

have now derived the c-extremization principle: the central charge is obtained by
the value of (33) at its extremum.

Another version of (33) is also useful. Extremization of
√

gL implies

3L +2�2 ∂L

∂�2 = 0. (34)

Since all covariant derivatives vanish on the background we can ignore them for the
purposes of this computation and write L = L (gμν ,Rμν). Given (28) we have that
�2 appears in gμν but not in Rμν . This together with the fact that all indices in L
must be contracted, implies

�2 ∂L

∂�2 = −Rμν
∂L

∂Rμν
= − 2

�2 gμν
∂L

∂Rμν
, (35)

where we also used Rμν = 2
�2 gμν for (28). Using (34) and (35) we can rewrite (33)

as [13, 34]

c =
�

2G
gμν

∂L

∂Rμν
. (36)

This is the most convenient form for the AdS3 central charge. As a quick check,
if we return to the action (3) we find ∂L

∂Rμν
= gμν and so we recover the Brown-

Henneaux central charge, c = 3�/2G.
We will now show how to use this result to derive the entropy of a BTZ black

hole in a general higher derivative theory of gravity.

2.4 Thermal AdS Partition Function

The AdS/CFT correspondence is fundamentally a relation between partition func-
tions

ZAdS(g(0) = ZCFT (g(0)). (37)

4 Note that Ref. [33] also considers the effect of higher derivatives on conformal anomalies in
higher dimensions.



204 P. Kraus

Here, we have just indicated the dependence on the metric, although more generally
other data will enter in as well. Modulo the Weyl anomaly, g(0) labels a conformal
class of boundary metrics.

In this section, we will consider the case in which g(0) is the flat metric on a torus
of modular parameter τ . We write the line element of the boundary in complex
coordinates as ds2 = dwdw, with

w ∼= w+2π ∼= w+2πτ. (38)

ZCFT can either be evaluated as a path integral on the torus (assuming that there
exists a Lagrangian formulation of the theory) or in the canonical formulation as

ZCFT (τ,τ) = Tr
[
e2πiτ(L0− c

24 )e−2πiτ(L̃0− c̃
24 )
]
. (39)

If fermions are present in the theory, we also need to specify their periodicities
around the two cycles of the torus. As written, (39) implies anti-periodic boundary
conditions around the time circle; periodic fermions are incorporated by including
(−1)F in the trace, where F is the fermion number. By trading the Virasoro charges
for mass and angular momentum according to (24), we see that the imaginary part
of τ plays the role of inverse temperature, while the real part is a chemical potential
for angular momentum.

Now consider ZAdS. We can again write a canonical formula like (39), but now
its implementation is problematic since we lack a satisfactory description of the
Hilbert space in the gravitational language. At low energies, the Hilbert space is
well understood as comprising a gas of particles moving on AdS, but at suffi-
ciently high energies we encounter black hole solutions. Black hole solutions are
clearly not to be interpreted as individual states of the theory (since they carry
entropy), and so it is not altogether clear how to include them in the trace. The
situation is more satisfactory in the path integral formulation, where we can in-
clude the black holes as additional saddle points of the functional integral, weighted
by their action. Ultimately, since ZCFT is well defined, we hope to use it to shed
light on the Hilbert space of the gravitational theory, including the black hole
regime.

We will therefore attempt to make sense of

ZAdS(τ,τ) =∑e−I . (40)

The summation is supposed to run over all saddle points of the full effective action
I (which in principle includes all corrections coming from string and loop correc-
tions), such that the boundary metric has modular parameter τ . One subtle point,
whose importance will become clear as we proceed, is that certain saddle points
that are just coordinate transformations of other saddle points will appear as distinct
terms in the summation. This is the analogue of the fact that in ordinary gauge theo-
ries we can treat gauge transformations that are nontrivial on the boundary as global
symmetries: we are not forced to demand that physical states are invariant under
such gauge transformations.
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Another important point is that we will regard I as capturing the complete local
part of the effective action. This action can in principle be computed in flat space-
time and then evaluated on the asymptotically AdS backgrounds appearing in (40).
But this is not the whole story, as can be appreciated intuitively by thinking in terms
of field theory Feynman diagrams. Geometries contributing to (40) have a periodic
imaginary time direction, and there are contributions from Feynman diagrams that
wind around the time direction. Such diagrams clearly are not incorporated in the
local effective action I. Instead, we have to incorporate their effects as additional
saddle points in (40). In fact, there is a clean way of isolating these effects via their
behavior in τ . Local terms contribute to lnZ linearly in τ and τ , while the nonlocal
terms are exponentially suppressed for Im(τ) → 0. We will see this explicitly as we
proceed.

The simplest saddle point is just pure AdS3 suitably identified. We take the AdS3

metric (4) and define w = φ + it/�, with w identified as in (38). We know on account
of maximal symmetry that this is a saddle point of I, even taking into account all
higher derivative corrections. What is the value of I evaluated on this solution? Since
we do not know the explicit form of I we need to proceed indirectly. The idea is to
integrate (17). To use (17) we need to work in coordinates with fixed periodicity, so
we define

z =
i− τ
τ− τ

w− i− τ
τ− τ

w, (41)

obeying z ∼= z+2π ∼= z+2πi. τ now appears in the metric,

ds2 =
∣∣∣∣
1− iτ

2
dz+

1+ iτ
2

dz

∣∣∣∣
2

. (42)

Writing out (17) in the z coordinates, and then converting back to w coordi-
nates gives

δ I = 4π2i(−Twwδτ +Twwδτ) . (43)

Using that L0 = L̃0 = 0 for this geometry, we know from (22) that

Tww = − c
48π

, Tww = − c̃
48π

. (44)

This yields the action

Ithermal =
iπ
12

(cτ− c̃τ). (45)

We can summarize the above computation as saying that we have determined the
exact low temperature behavior of ZAdS. In particular, as Im(τ) → ∞ we have

lnZAdS(τ,τ) = − iπ
12

(cτ− c̃τ)+(exponentially suppressed terms). (46)

This conclusion follows since we have incorporated all local terms in the effective
action, along with the fact that L0 and L̃0 have a gap in their spectrum above 0
(this in turn follows from the fact that AdS effectively acts like a finite size box.)
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The exponentially suppressed terms are down by at least e2πi(Δτ−Δ̃τ), where Δ is the
gap in the L0 spectrum. The contribution of these suppressed terms depends on the
precise theory under consideration (e.g. on the field content in addition to gravity),
and so we postpone incorporating them until later.

We’ll now show that the high temperature behavior of the partition function is
governed by black holes. To illustrate the basic point in the simplest context, let
us consider the non-rotating black hole metric (5). In order to avoid a conical sin-
gularity at r = r+ we need to make the identification t ∼= t + 2π�2/r+. In other
words, τ = i�/r+. Note that we have thereby identified the Hawking temperature
as T = r+/(2π�2). So for τ purely imaginary the non-rotating black hole metric
contributes to the partition function as long as we set r+ = i�/τ .

Next, we need to compute the action of the black hole to see if and when it
dominates the thermal AdS geometry. As we will now show, after a judicious change
of coordinates the needed computation becomes equivalent to that yielding (45). We
define

w′ = −w
τ

, r′ =
�

r+

√
r2 − r2

+ (47)

with w′ = φ ′ + it ′/�. Then, the black hole metric (45) becomes

ds2 = (1+ r′2/�2)dt ′2 +
�2dr′2

1+ r′2/�2 + r′2dφ ′2, (48)

which is just the pure AdS3 metric. But now we have the identifications w′ ∼= w′ +
2π ∼= w′ + 2πτ ′, with τ ′ = −1/τ . In other words, we have shown the equivalence
(up to coordinate transformation) of thermal AdS with modular parameter τ and a
black hole with modular parameter τ ′ = −1/τ:

Thermal AdS with τ ⇔ Black hole with τ ′ = −1/τ. (49)

Of course, so far we have only established this for pure imaginary τ , but we will
generalize in due course.

Now, the action is invariant under the coordinate transformation (47), so we can
immediately conclude that the black hole action is

IBT Z =
iπ
12

(cτ ′ − c̃τ ′) = − iπ
12

(
c
τ
− c̃

τ

)
. (50)

This results shows that at high temperature, Im(τ) → 0+, the black hole has less
action than thermal AdS and hence will dominate the partition function.

Equation (50) gives the exact high temperature behavior of the partition function;
specifically, the part of lnZ linear in τ−1,

lnZ =
iπ
12

(
c
τ
− c̃

τ

)
+(exponentially suppressed terms). (51)

Let us use this derive an expression for the entropy S at high temperature. From (39)
we can write in the saddle point approximation
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lnZ = S +2πiτ
(

L0 −
c

24

)
−2πiτ

(
L̃0 −

c̃
24

)
. (52)

We further have

L0 −
c

24
=

1
2πi

∂ lnZ
∂τ

= − c
24τ2

L̃0 −
c̃

24
= − 1

2πi
∂ lnZ
∂τ

= − c̃

24τ2 .

(53)

From this we read off the entropy as

S = 2π
√

c
6
(L0 −

c
24

)+2π

√
c̃
6

(
L̃0 −

c̃
24

)
. (54)

This is the Cardy formula. This formula in fact gives the high temperature behavior
of the entropy of any CFT, assuming unitarity and a gapped spectrum of L0 starting
at 0. The standard derivation of the Cardy formula is based on modular invariance
and precisely parallels the gravitational approach adopted here; so the agreement
between the gravity and CFT sides is unsurprising. Indeed, this shows that the high
temperature entropy is guaranteed to agree between the two sides provided that the
central charges agree.

In the context of two-derivative gravity, formula (54) can be written as S = A/4G.
But with higher derivative terms included this is no longer the case. More generally,
we have Wald’s entropy formula [35, 36, 37, 38]

S = − 1
8G

∫

hor
dx
√

h
δL

δRμναβ
εμνεαβ . (55)

In fact, (54) and (55) are equivalent.5 This can be shown using (36); for details, the
reader is directed to [13, 34].

Consider the restricted case in which c = c̃. Recall that the value of c is deter-
mined by extremizing the function (33). We can translate this into an extremization
principle for the entropy. Specifically, S is determined by extremizing the function
(54) while holding fixed L0 − c

24 and L̃0 − c̃
24 (from (24) this is the same as holding

fixed the dimensionless mass and angular momentum).
Next, to set the stage for a more general discussion let us examine the relation

between thermal AdS3 and the BTZ black hole from a more geometrical perspective.
Thermal AdS3 clearly has the topology of a solid torus. The boundary is a two-
dimensional torus. On the boundary torus there are two independent noncontractible
cycles, which we can take to be Δφ = 2π , and Δt/� =−2πiτ (we are just considering
the case of pure imaginary τ for the moment). Now consider allowing these cycles
to move off the boundary torus into the bulk geometry. It is then clear that the φ
cycle is contractible in the bulk while the t cycle is not.

5 Actually, (54) is a bit more general in that (55) only applies when c = c̃.
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BTZ Thermal AdS

t

φ

φ

t

Fig. 1 Relation between BTZ and thermal AdS3

The coordinate transformation (47) that relates thermal AdS3 to BTZ inter-
changes φ and t, so for BTZ we find that it is the t cycle that is contractible in
the bulk, while the φ cycle is noncontractible. This is illustrated in Fig. 1.

The generalization of this story involves rotating black holes. To deal with this
efficiently it is advantageous to describe the BTZ black hole as a quotient of AdS.

2.5 BTZ Black Holes as Quotients [39]

Euclidean AdS3 can be written

ds2 =
dρ2 +dzdz

ρ2 . (56)

Now consider the matrix

g =
(
ρ + zz/ρ z/ρ

z/ρ 1/ρ

)
. (57)

detg = 1, so g ∈ SL(2, C). Actually, g can be written as g = hh† with h ∈ SL(2, C).
Since g is invariant under h→ h f with f ∈ SU(2), we see that the space of g matrices
can be identified with the coset SL(2, C)/SU(2). The line element (56) is the same
as the natural line element on the coset,

ds2 =
1
2

Tr(g−1dgg−1dg). (58)

Since this is invariant under h → αh, α ∈ SL(2, C), we see that Euclidean AdS3

has an SL(2, C) group of isometries.
The BTZ black hole is obtained from AdS3 by making SL(2, C) identifications,

h ∼= γh. Since we can always redefined h as h = αh′, we see that γ is only defined
up to conjugation by SL(2, C). So without loss of generality we can take γ to be
diagonal and write

γ =
(

e−iπτ 0
0 eiπτ

)
. (59)
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In terms of coordinates, this implies the identification (ρ,z)∼= (e−iπ(τ−τ)ρ, e−2πiτz).
Now write z = e−iw so that at the boundary (ρ = 0) we have the identification w ∼=
w + 2πτ . This identifies τ in (59) as the modular parameter of the boundary torus.
In other words, quotienting AdS3 by γ yields thermal AdS3:

ds2 =
(
1+ r2/�2)dt2 +

dr2

1+ r2/�2 + r2dφ 2 (60)

with the identification w ∼= w+2π ∼= w+2πτ , where w = φ + it/�.
To construct an “SL(2, Z) family of black holes” [10, 40], we consider the mod-

ular transformed version of (59)

γ =

(
e−iπ aτ+b

cτ+d 0

0 eiπ aτ+b
cτ+d

)
, (61)

with (a,b,c,d) ∈ Z and ad−bc = 1. This is a geometry whose conformal boundary
has modular parameter aτ+b

cτ+d . But, as we illustrated in a simplified context above, if
we change coordinates we can bring the modular parameter back to τ . The action
for this geometry can be read off from (45),

I(τ,τ) =
iπ
12

[
c

(
aτ +b
cτ +d

)
− c̃

(
aτ +b
cτ +d

)]
. (62)

Note the unfortunate notation in which the same symbol c appears with two differ-
ent meanings. These SL(2, Z) black holes will make an appearance later as saddle
points of the Euclidean path integral.

For completeness, we will explicitly write the metric of the rotating BTZ black
hole, generalizing (5). Start from (56) and write

z =
(

r2 − r2
+

r2 − r2
−

)1/2

exp

{
r+ + r−

�
(φ + it/�)

}

ρ =
(

r2
+ − r2

−
r2 − r2

−

)1/2

exp
{ r+

�
φ + ir−t/�

} (63)

with r+ real and r− imaginary. The metric is then

ds2 =

(
r2 − r2

+
)(

r2 − r2
−
)

r2�2 dt2 +
�2r2

(
r2 − r2

+
)(

r2 − r2
−
)dr2 + r2

(
dφ + i

r+r−
�r2 dt

)2
.

(64)
The modular parameter is

τ =
i�

r+ + r−
. (65)

The action is given by (50). The event horizon is at r = r+ and the entropy is given
by (54) with
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L0 −
c

24
=

(r+ − r−)2

16G�
, L̃0 −

c̃
24

=
(r+ + r−)2

16G�
. (66)

To get the Lorentzian black hole we replace t by it and continue r− to real values.
Note that the Virasoro charges (64) are then real. Extremal black holes correspond
to r− = ±r+.

3 Charged Black Holes and Chern-Simons Terms

An important generalization is to allow our black holes to carry charge. We will
see that this comes about in an elegant fashion. To begin, we will consider a collec-
tion of U(1) gauge fields. Besides the usual Maxwell term, since we are working
in an odd-dimensional spacetime our gauge fields can have Chern-Simons terms.
We will find that the Chern-Simons terms are needed in order for the charge to be
nonzero. Indeed, the charge comes entirely from the Chern-Simons terms. Later,
we will indicate where these Chern-Simons originate from the higher dimensional
string/M-theory viewpoint. Our presentation follows [14]. Additional relevant work
on Chern-Simons theory includes [41, 42].

3.1 U(1) Gauge Fields in AdS3

Let us first consider the case of a single U(1) gauge field. A Chern-Simons term in
three spacetime dimensions is, in differential form language,

ICS =
ik
8π

∫

M
AdA. (67)

The normalization was chosen so that the constant k will be identified with the level
of a corresponding current algebra. A gauge transformation is δA = dΛ. ICS is not
gauge invariant but instead varies by a boundary term:6 δ ICS = ik

4π
∫
∂M ΛdA.

The gauge field admits an expansion analogous to (14),

A = A(0) + e−2η/�A(2) + . . . , (68)

and we choose the gauge Aη = 0. Analysis of the field equations (including the
effect of Maxwell type terms) shows that A(0) is a flat connection; that is, the field
strength corresponding to (3.2) falls off as e−2η/�. For this reason, all the results
we derive below for the currents and stress tensor will be valid in the presence of
arbitrary higher derivative terms for the gauge fields. The flatness of A(0) implies
that only the Chern-Simons terms yields nonzero boundary variations.

In analogy with (17) a boundary current is obtained from the on-shell variation
of the action with respect to A(0),

6 Note that the equations of motion will still be gauge invariant.
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δ I =
i

2π

∫

∂AdS
d2x

√
g(0)JαδA(0)

α . (69)

We now need to define the appropriate variational principle that yields the equations
of motion for our gauge field. For definiteness, consider the pure AdS geometry (4).
Naively, one might guess that in the variational principle, one could hold fixed both

A(0)
t and A(0)

φ . But this is too strong, since there will then typically be no smooth
solutions of the equations of motion with the assumed boundary conditions. The
issue is the holonomy around the contractible φ circle, expressed by

∫
dφAφ . When

we contract the circle we need the holonomy to either vanish or match onto an

appropriate source to avoid a singularity. So it is only A(0)
t that can take generic

values. If we define w = φ + it/� as usual, then an appropriate variational principle

is to hold fixed either A(0)
w or A(0)

w but not both. The sign of k will determine which
component to hold fixed.

Let us assume that k is positive. Then we claim that to derive the equations of
motion we should demand that the action be stationary under variations that hold

fixed A(0)
w . That is to say, we demand that (69) take the form

δ I =
i

2π

∫

∂AdS
d2w

√
g(0)JwδA(0)

w . (70)

But we can readily check that the variation of (67) does not take this form. However,
we still have the freedom to add boundary terms to the action. If we add to the action
the term

Ibndy
gauge = − k

16π

∫

∂AdS
d2x

√
ggαβAαAβ (71)

then the variation of the action does take the form (70) with

Jw =
1
2

Jw =
ik
2

A(0)
w . (72)

Another way to say this is that Jw = 0, which means that our current is purely left-
moving.

Note that the boundary term (71) depends on the metric, and so will contribute
to the stress tensor. This in contrast to the topological term (67). A straightforward
computation yields

T gauge
αβ =

k
8π

(
A(0)
α A(0)

β − 1
2

A(0)γA(0)
γ g(0)

αβ

)
, (73)

or, in complex coordinates,

T gauge
ww =

k
8π

A(0)
w A(0)

w ,

T gauge
ww =

k
8π

A(0)
w A(0)

w ,

T gauge
ww = T gauge

ww = 0.

(74)
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The index (0) on the gauge field reminds us that boundary expressions strictly refer
to just the leading term in the expansion (68) for the bulk gauge field. In the follow-
ing, we will reduce clutter by dropping this index.

We can now see why the sign of k is important; if we took k negative (74) would
imply that the energy is unbounded below. The case of k negative needs to handled
differently, by flipping the sign of the boundary term (71). The same analysis then
yields a purely rightmoving current.

Turning to the general case of multiple U(1) gauge fields, we write the action as

I =
i

8π

∫
d3x

(
kIJAIdAJ − k̃IJÃIdÃJ

)
− 1

16π

∫

∂AdS
d2x

√
ggαβ (kIJAIαAJβ

+k̃IJÃIα ÃJβ
)
. (75)

Both kIJ and k̃IJ are symmetric matrices with positive eigenvalues. The IJ indices
on kIJ versus k̃IJ are independent, and so can take different ranges.

In conformal gauge, the gauge fields contribute to the currents and stress tensor as,

T gauge
ww =

1
8π

kIJAIwAJw +
1

8π
k̃IJÃIwÃJw,

T gauge
ww =

1
8π

kIJAIwAJw +
1

8π
k̃IJÃIwÃJw,

T gauge
ww = T gauge

ww = 0, (76)

JI
w =

i
2

kIJAJw, JI
w = 0,

J̃I
w = 0, J̃I

w =
i
2

k̃IJÃJw.

The modes of the currents are defined as

JI
n =

∮
dw
2πi

e−inwJI
w, J̃I

n = −
∮

dw
2πi

einwJ̃I
w. (77)

By writing out the formulas for the changes in the stress tensor and currents under
a variation of the gauge field, we can infer the commutation relations

[
Lm,JI

n

]
= −nJI

m+n

[
JI

m,JJ
n

]
=

1
2

mkIJδm+n,
(78)

and likewise for the tilded generators.

3.2 Spectral Flow

Together with the Virasoro algebra (23), the algebra (78) admits a so-called spectral
flow automorphism that will play an important role. For arbitrary parameters ηI the
algebra is preserved under
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Ln → Ln +2ηIJ
I
n + kIJηIηJδn,0 (79)

JI
n → JI

n + kIJηJδn,0.

From our explicit formulas for the generators we see that this is equivalent to

AIw → AIw +2ηI . (80)

This constant shift of the gauge potentials is equivalent to shifting the periodicities
of charged fields. In particular, since the phase factor acquired by a particle of charge
JI

0 taken around the AdS cylinder is

eiJI
o
∮

dwAIw , (81)

we see that the shift (80) induces the the phase e4πiJI
i ηI .

From now on we will use another normalization for the gauge charges by defining

qI = 2JI
0, q̃I = 2J̃I

0, (82)

where the 2 is introduced for convenience.

3.3 Nonabelian Gauge Fields

Besides the U(1) gauge fields, in the main cases of interest from the string theory
perspective we will also have SU(2) gauge fields. From the higher dimensional
point of view we will be considering either AdS3×S2 or AdS3×S3 geometries. The
spheres have isometry group SO(3)∼= SU(2)R or SO(4)∼= SU(2)L×SU(2)R, and we
then have the associated Kaluza-Klein gauge fields. To show that these gauge fields
have three-dimensional Chern-Simons terms is somewhat subtle but can be derived
by a careful consideration of the background flux configuration that supports the
sphere [43, 44, 45].

The SU(2)L Chern-Simons term is

ICS = − ik
4π

∫
d3xTr

(
AdA+

2
3

A3
)

, (83)

with A = Aa iσa

2 . Invariance of the path integral under large gauge transformation
fixes k to be an integer. The SU(2)R Chern-Simons term is taken with the opposite
sign, as above. As before, in order to get purely left or right moving currents we need
to add a boundary tern. This has the same form as (71) except that we sum over
the group indices. We will just be considering solutions in which A(0)a and Ã(0)a

are nonvanishing only for a = 3. We can then easily incorporate the corresponding
currents into the previous discussion by extending the I index to include I = 0,
and write

A(0)3 = AI=0, k = k00, k0,I>0 = kI>0,0 = 0, (84)

and likewise for the tilded counterparts. All the formulas (76) now carry over.
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3.4 Supersymmetry

We now discuss one important implication of supersymmetry. In two dimensions,
we characterize the amount of supersymmetry by the number of left and right mov-
ing supercharges, (NL, NR). Here the focus will be on theories with either (0,4) or
(4,4) supersymmetry. Supersymmetry then implies the existence of an SU(2) R-
symmetry that rotates the supercharges into one another (the 4 supercharges trans-
form as two doublets). In the (4,4) case we have SU(2)L×SU(2)R R-symmetry. The
R-symmetry currents correspond to the SU(2) gauge fields in (3.17).

Of central importance to us is that the supersymmetry algebra relates the level of
the SU(2) current algebra k to the central charge c as c = 6k. When we recall that k
appears in (83), we see that determining the exact central charge is equivalent to de-
termining the SU(2) Chern-Simons term. Of course, in the (0,4) case this argument
only gives us the right moving central charge, but we will see momentarily how a
related argument gives the left moving central charge.

3.5 Gravitational Chern-Simons term [46]

The left and right moving central charges of a two-dimensional CFT are indepen-
dent and need not be equal. However, if c �= c̃ it is not possible to couple such
a theory to gravity in a diffeomorphism invariant fashion: there is a gravitational
anomaly [47, 48, 49]. To write the anomaly we can work in terms of the connection
1-forms, defined as Γi

j = Γi
jkdxk, where Γi

jk are the usual Christoffel symbols. The
breakdown of diffeomorphism invariance is signaled by the non-conservation of the
stress tensor:7

∇iT
i j = −i

c− c̃
96π

gi jεkl∂k∂mΓm
il . (85)

Equivalently, under an infinitesimal diffeomorphism, xi → x′i = xi − ξ i(x), the ef-
fective is not invariant but instead changes by

δ Ie f f = −i
c− c̃
96π

∫
Tr(vdΓ), (86)

with vi
j = ∂ jξ i.

To reproduce this from the AdS point of view, we need a term in the bulk that
varies under diffeomorphisms. Further, the variation should be a pure boundary
term, otherwise the bulk theory will be inconsistent. Up to boundary terms, there
is a unique possibility, the gravitational Chern-Simons term [50, 51, 52]:

ICS(Γ) = −iβ
∫

Tr

(
ΓdΓ+

2
3
Γ3
)

. (87)

7 Alternatively, one can add a local counterterm to render the stress conserved but non-symmetric.
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Under an infinitesimal diffeomorphism δΓ = dv+[Γ, v], so

δ ICS = −iβ
∫

∂AdS
Tr(vdΓ). (88)

Comparing with (86) we read off

β =
c− c̃
96π

. (89)

The full stress tensor in the presence of the gravitational Chern-Simons term is dis-
cussed in [46, 53, 54].

We now know how to compute both central charges of the (0,4) theory. The co-
efficient of the SU(2) Chern-Simons term gives us c̃, while the gravitational Chern-
Simons term gives us c− c̃. The reason why this is useful is that (at least in the
cases we will consider) the Chern-Simons terms arise at tree level and one-loop,
but receive no other corrections, and hence we can determine them exactly. In par-
ticular, we can determine the central charges without knowledge of the full effec-
tive action including higher derivative terms. This is to be contrasted with the non-
supersymmetric case, where the c-extremization procedure discussed in Sect. 2.3,
while efficient, does require the explicit action as an input.

4 String Theory Constructions

We will now review two standard constructions of AdS3 geometries in string theory.
The first, and best known, example is realized as the near horizon geometry of the
D1-D5 system [1] (for reviews see [16, 19]). This yields AdS3×S3×M4, where M4

is T 4 or K3. The second example [55] is realized in terms of wrapped M5-branes,
and yields AdS3 ×S2 ×M6, with M6 being T 6, K3×T 2, or CY3.

4.1 D1-D5 System

To describe the brane construction, we first work at weak string coupling and con-
sider IIB string theory on R4,1×S1×M4. We wrap N5 D5-branes on S1×M4, and N1

D1-brane on S1. This setup preserves 8 of the original 32 supercharges. When the
length scale associated with M4 is small compared to the S1 the low energy dynam-
ics of the system is described by a theory on the 1+1 dimensional intersection. The
standard weak coupling open string quantization yields a U(N1)×U(N5) supersym-
metric gauge theory, which flows to a nontrivial CFT in the infrared, with (4,4) susy.
We want to know the left and right moving central charges. The easiest way to com-
pute these is by using anomalies (see Sect. 5.3.1 of [16]). Focus on the left moving
side, say. As we have discussed previously, the existence of 4 supercharges means
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that the CFT has an SU(2) R-symmetry. The level k of the corresponding current
algebra is related to the central charge by c = 6k. The current algebra also implies
that the R-symmetry currents are anomalous when coupled to external gauge fields,8

DwJa
w =

ik
2
∂wAa

w. (90)

Chiral anomalies are related to topology and are invariant under smooth deforma-
tions of the theory. In our context, the level k is an integer, which can equally well
be evaluated in the weak coupling gauge theory description valid in the UV. The
anomaly arises from one loop diagrams. This is a fairly straightforward computa-
tion, and the result is that k = N1N5. The same analysis holds for the right movers.
We conclude that the exact central charges are c = c̃ = 6N1N5. Note how little went
into this result: We just needed to know that in the IR we have (4,4) susy, and that
the IR theory is reached via RG flow from the UV gauge theory.

Next, we recall the anomaly inflow mechanism [56], which will be useful in re-
lating the CFT central charges to those of the AdS3 theory. Note that the D1-D5
system is localized at a point in the 4 noncompact spatial dimensions, and hence is
invariant under the corresponding SO(4) group of rotations. If we write SO(4) ∼=
SU(2)L×SU(2)R, we identify the left and right moving SU(2) R-symmetry groups.
We can think of the SO(4) as acting on the vector space normal to the brane world-
volume (the so-called normal bundle). We can further allow the SO(4) rotations to
vary over the worldvolume, which leads to an SO(4) gauge theory. Now, we know
from (90) that in general the worldvolume theory on the brane is not invariant under
such local SO(4) transformations, the effective action instead varies as

δ Ibrane = − i
4π

∫
d2w

(
DwJa

wΛ
a +DwJ̃a

wΛ̃
a) , (91)

where we have written the result in terms of the SU(2)L ×SU(2)R parameters.
On the other hand, from the point of view of the full ten dimensional string

theory these gauge transformations are just coordinate transformations (or, more
accurately, local Lorentz transformations), but it is well known that the full theory
is nonanomalous. Indeed, otherwise the IIB string theory would be inconsistent,
since we are talking about a potential breakdown of diffeomorphism invariance.
So something must be canceling the variation of the brane effective action. Now, the
entire theory consists of the theory on the branes coupled to the bulk ten dimensional
fields. We, therefore, conclude that the bulk theory must have an SO(4) variation
that cancels that of the brane theory. The details of this have been worked out in
various examples [43, 44] (although not explicitly for the D1-D5 system, to our
knowledge), and we will examine this in more detail in our next example. One finds
that there is an inflow of current from the bulk region onto the branes that reproduces
the anomalous divergence of the brane current. Here, we will just take for granted

8 There is some choice in the form of the right-hand side due to the freedom to add non-gauge
invariant local counterterms to the action.
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that such a cancelation indeed takes place for the D1-D5 system coupled to the IIB
theory.

We now turn to the supergravity description of the D1-D5 system. The starting
point is the action of IIB supergravity. We will only write down the dependence on
the metric, dilaton, and RR 3-form field strength, since the other fields will be van-
ishing in the solution. In particular, this means that we need not concern ourselves
with the subtleties associated with the self-duality of the 5-form field strength.

I =
1

2κ2
10

∫
d10x

√
Ge−2Φ

(
R+4(∂Φ)2 +

1
2

e2Φ|G3|2
)

. (92)

The action is written in Euclidean signature and in terms of the string frame metric.
The equations of motion admit the following solution representing the D1-D5

system,

ds2 = (Z1Z5)−1/2(dt2 +dx2
5)+(Z1Z5)1/2dxidxi +(Z1/Z5)1/2ds2

M4

G3 = 2Q5ε3 +2iQ1e−2Φ �6 ε3 (93)

e−2Φ = Z5/Z1.

Here ε3 is the volume form on the unit 3-sphere, and �6 is the Hodge dual in six
dimensions. The branes intersect over (t,x5), and we denote the four noncompact
spatial direction by xi. The harmonic functions Z1,5 are

Z1,5 = 1+
Q1,5

r2 , Q1 =
(2π)4gN1α ′3

V4
, Q5 = gN5α ′. (94)

To isolate the near horizon geometry we drop the 1 from the harmonic functions,
and arrive at

ds2 =
r2

�2 (dt2 +dx2
5)+

�2

r2 dr2 + �2dΩ2
3 +(Q1/Q5)1/2ds2

M4

G3 = 2Q5(ε3 + i�6 ε3) (95)

e−2Φ = Q5/Q1.

with
�2 = (Q1Q5)1/2. (96)

A change of coordinates brings the (t,x5,r) part of the metric to the form (4),9

and so we recognize the geometry as AdS3 ×S3 ×M4.
According to the Brown-Henneaux formula (20) the central charge is given by

c = 3�
2G . Here G refers to the three dimensional Newton’s constant, which we com-

pute as

9 Actually, since in our case x5 is compact we only get (4) locally. To get precisely (4) one should
instead start with a rotating version of the D1-D5 metric [57, 58, 59, 60].
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G = G10
1

V7
= 8π6α ′4g2e2Φ 1

2π2�3(Q1/Q5)V4
. (97)

Therefore
c = 6N1N5, (98)

in agreement with the microscopic result.
We now ask why the microscopic and supergravity computations of the central

charges agree. Underlying the agreement is the conjectured AdS/CFT duality be-
tween the two descriptions, but it is more satisfying to give a direct argument using
just known facts. The key to this will be the relation between c and k, as well as the
anomaly inflow mechanism. Compare the weak coupling description of our system,
as a bound state of branes sitting in an ambient flat spacetime, to the supergravity
description, as a near horizon AdS geometry joined to an asymptotically flat region.
We can think of interpolating between these two pictures by dialing the string cou-
pling. In the brane description we convinced ourselves that the chiral anomaly of
the brane theory was canceled by the bulk theory via an inflow of current. Now con-
sider what happens as we increase the string coupling. The brane anomaly is fixed
in terms of the integer k and hence does not change, implying also that the bulk in-
flow is unchanged as we increase the coupling. But in the supergravity description
we join this same asymptotic bulk geometry onto the near horizon region. In the
supergravity picture, we separate the two regions by an artificial border. It is clear
that the current flows smoothly across the border, and there are no sources or sinks
of currents there. We conclude that the current inflow from the asymptotic region
must precisely equal that into the near horizon region. But now, putting things to-
gether, we have found that the anomaly of the brane theory must precisely match
the AdS current inflow. Since both are determined by a parameter k, it must be the
case that kCFT = ksugra, which is what we were trying to establish. To summarize,
the matching of k, and hence c, between the CFT and gravity descriptions is dictated
by anomaly cancelation. A mismatch between the two would imply that IIB string
theory is anomalous, which we know not to be the case.

This does not yet explain why our gravity computation yielding (98) agrees ex-
actly with the CFT result, since we started from the two-derivative approximation to
the supergravity action. Our anomaly argument really applies to the full action, with
all higher derivative terms included. But in general, instead of using c = 3�/2G, we
should instead use (36), which in general receives correction from higher derivative
terms. However, the spirit of the anomaly argument suggests that we are better off
computing k. We will now outline this computation.

To compute k we need to find the coefficient of the Chern-Simons term (83). The
importance of this term is that under a gauge transformation, δA = dΛ+ [Λ, A],
we have

δ ICS = − ik
4π

∫

∂AdS
Tr(ΛdA). (99)

This is the result for one of the SU(2) factors of the SO(4) gauge group; the other
factor gives the same result except with a flipped sign. Our strategy is then to simi-
larly compute the gauge variation of (92) and compare this to (99) to read off k.
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This turns out to be more subtle than one might have expected. We will sketch
the main points, directing the reader to [45] for a more thorough treatment. The
first step is to identify the SO(4) gauge fields, which we recall are the Kaluza-Klein
gauge fields associated with rotations of the S3. Instead of the pure AdS3 ×S3 ×M4

metric in (95) we make the replacement

dΩ2
3 → (dyi −Ai jy j)(dyi −Aikyk), (100)

with y1,2,3,4 obeying ∑4
i=1 yiyi = 1. The 1-forms Ai j =−A ji are the KK gauge fields,

and are allowed to have dependence on the AdS coordinates (t,x5,r). To be more
precise, we just impose this form of the metric asymptotically as we approach the
AdS boundary. Note that the metric is invariant under

Ai j → dΛi j +[Λ,A]i j, yi → yi +Λi jy j. (101)

Given this asymptotic form of the metric, we also need to specify the asymptotic
form of G3, generalizing that in (95). This is where the subtlety lies. We need G3 to
be closed and to have a fixed integral over S3, since this is the D5-brane charge. We
might also try to have G3 invariant under (101). If so, we would then find that the
action is gauge invariant (i.e. invariant under δA = dΛ+ [Λ, A]), as follows from
the diffeomorphism invariance of (92) combined with the invariance under (101). It
turns out that it is not possible to satisfy all these conditions simultaneously, and the
best one can do is to find a G3 that varies under (101) as

δG3 =
1
4

Q5Tr
(
dΛdA−dΛ̃dÃ

)
. (102)

While this implies that the action (92) is not gauge invariant, it can be shown that
the variation is a boundary term, so the equations of motion are gauge invariant. In
particular, the explicit computation yields

δ I = − ik
4π

∫

∂AdS
Tr
(
ΛdA− Λ̃dÃ

)
, (103)

with k = N1N5. This then reproduces c = 6k = 6N1N5.
To complete this circle of ideas we should now show that this conclusion is un-

changed under the addition of higher derivative terms to (92). This has not yet been
demonstrated explicitly. Here we will just note that the condition that the action
varies only by a boundary term greatly restricts the form of the action and makes it
plausible that there are no further corrections. In any case, in the example discussed
in the next section involving M5-branes we will give the complete derivation.

4.2 Wrapped M5-Branes

Our other example of an AdS3 geometry arises from wrapping M5-branes on a
4-cycle in M6, where M6 can be T 6, K3 × T 2 or CY3. Starting from the eleven
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dimensional M-theory compactified on M6, this produces a string like object in
the five noncompact directions. We further compactify the direction along the
string, to leave four noncompact directions. This system was studied extensively in
[55, 61].

Letting ΩI be a basis of 4-cycles in M6, we take the M5-brane to wrap P =
pIΩI . At low energies the theory on the resulting string flows to a CFT with (0,4)
susy. The left and right moving central charges can be computed by studying the
massless fluctuations of the M5-brane, including the self-dual worldvolume 3-form
field strength. The result of this analysis is

c = CIJK pI pJ pK + c2I pI , c̃ = CIJK pI pJ pK +
1
2

c2I pI . (104)

CIJK denotes the number of triple intersections of the three 4-cycles labeled by I, J,
K (note that three 4-cycles generically intersect over a point in six dimensions.) c2

is the second Chern class of M6 which we can expand in a basis of 4-forms with
expansion coefficients c2I . For our purposes, the main point is that CIJK and c2I

are certain topological invariants, and so we see that the central charges are moduli
independent.

Instead of studying the fluctuation problem, we can compute the central charges
from the anomaly inflow mechanism [43, 44]. The relevant anomalies are those with
respect to the right moving SU(2) R-symmetry, and with respect to worldvolume
diffeomorphisms. The relevant terms in the eleven dimensional action are

2κ2
11I =

∫
d11x

√
g

(
R+

1
2
|F4|2

)
+

i
6

∫
A3 ∧F4 ∧F4

+
i(2κ2

11)
2/3

3 ·26 · (2π)10/3

∫
A3 ∧

[
TrR4 − 1

4
(TrR2)2

]
. (105)

The terms in the first line are the standard two derivative bosonic terms. In the
second line, we have written a particular eight derivative term. Of course, there are
an infinite series of other higher derivative terms (see [62, 63, 64, 65, 66, 67, 68,
69, 70] for some general results), but the important point is that in (105) we have
written the only two Chern-Simons terms (i.e. the only terms involving an explicit
appearance of A3). Demanding that the action be gauge invariant up to boundary
terms only allows these two Chern-Simons terms, and their coefficients are fixed
by a combination of supersymmetry and 1-loop computations in the dimensionally
reduced IIA theory. Alternatively, the anomaly inflow computation we will now
describe can be viewed as another derivation of these coefficients.

We now reduce the action to five dimensions in the presence of the M5-brane.
This gives various terms, including

2κ2
5 I =

∫
d5x

√
g

(
R+

1
4

GIJFI
μνFJμν

)
+

i
6

∫
CIJKAI ∧FJ ∧FK

+
iκ2

5

192π2 c2I pI
0

∫
A∧TrR∧R. (106)
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Here AI are 1-form potentials, obtained by expanding A3 = AI ∧ JI where JI are a
basis of (1, 1) forms. The M5-brane defines a particular magnetic charge with re-
spect to a linear combination of gauge fields that we have called A. pI

0 defined so that
pI =

(
− 1

2π
∫

S2 F
)

pI
0, where (locally) F = dA. GIJ is a metric on the vectormultiplet

moduli space, whose form can be found in, e.g, [71]. It turns out to be convenient
to choose units with κ2

5 = 2π2, and so we do this from now on. This simplifies the
relation between integrally conserved charges and flux integrals.

Both Chern-Simons terms in (106) contribute to the current inflow and hence to
the central charges (104). By counting powers of gauge fields we can see that the
AFF term yields the terms in the central charges cubic in the pI , while the ARR term
yields the linear terms.

It turns out that the cubic term is more difficult to obtain. The idea is that one
needs to carefully define the action (106) in the presence of the string source, which
naively acts as a delta function source. After smoothing out the source and defining
the AFF term appropriately, one indeed reproduces the cubic terms in c and c̃. We
direct the reader to [43, 44] for the analysis. We will shortly carry out a correspond-
ing analysis in the near horizon geometry of the string, and reproduce this result in
a simpler way. Right now we just emphasize that only the AFF Chern-Simons term
is needed for the result.

Turning to the ARR term in the second line of (106), we now show how to com-
pute the linear terms in the central charges. We first need to rewrite the action. Since
the string is magnetically charged, A is not globally defined. The correct version of
the Chern-Simons term corresponds to integrating by parts,

I = − ic2I pI
0

384π2

∫
F ∧Tr

(
ΓdΓ+

2
3
Γ3
)

. (107)

Now perform a coordinate transformation δΓ = dv+[Γ,v],

δ I = − ic2I pI
0

384π2

∫
F ∧Tr(dv∧dΓ). (108)

In the present context, we are thinking about the string as a localized source, so
dF = 0 except at the string, where it is a delta function in the transverse space.
Hence if we integrate (108) by parts, as well as integrate over the transverse space,
we obtain

δ I = − ic2I pI

192π

∫
Tr(vdΓ). (109)

v and Γ are 5× 5 matrices, since they originated as the connection in five dimen-
sions. We can write them in block diagonal form, corresponding to the conections on
the tangent and normal bundles with respect to the string worldvolume. Taking v to
act on the tangent space, the variation (109) corresponds to a gravitational anomaly,
and by comparing with (88) and (89) we read off

c− c̃ =
1
2

c2I pI . (110)
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Now taking v to act in the transverse space we obtain the “normal bundle anomaly”.
From the worldvolume point of view this is the same as the SU(2) R-symmetry
anomaly. Relabeling in SU(2) language: Γab → Ãab = εabcÃc (and similarly relabel-
ing v as Λ̃) the variation becomes

δ I =
ic2I pI

48π

∫
Tr(Λ̃dÃ). (111)

Comparing with (103) we read off k̃ = c2I pI/12, or c̃ = 1
2 c2I pI . We remind the

reader that this is just the contribution linear in pI . Combining this result with (110),
we correctly reproduce the linear terms in (104).

The success of the anomaly inflow computation in reproducing the microscopic
central charges can be thought of as a consistency check. Any mismatch would
imply that M-theory is quantum mechanically inconsistent in the presence of M5-
branes. From a practical standpoint, if we accept that anomalies should cancel, the
inflow method is a very efficient means of extracting the central charges, since we
only need to know the Chern-Simons terms in the effective action, and these are
highly constrained.

We now shift gears and turn to the analysis in the near horizon region. The asymp-
totically flat solution of the five dimensional theory (106) is

ds2 =
(

1
6

CIJKHIHJHK
)−1/3 (

−dt2 +dx2
4

)
+
(

1
6

CIJKHIHJHK
)2/3 (

dr2 + r2dΩ2
2

)

AI =
1
2

pI(1+ cosθ)dφ

HI = X
I +

pI

2r
. (112)

The vectormultiplet moduli also take nontrivial values that we have not written out.
See, e.g., [13].

To examine the near horizon geometry we write

r =
1
6CIJK pI pJ pK

2z2 . (113)

For z → ∞ we then find the following AdS3 ×S2 geometry

ds2 = �2−dt2 +dx2
4 +dz2

z2 +
1
4
�2dΩ2

2 (114)

with

� =
(

1
6

CIJK pI pJ pK
)1/3

. (115)

The Brown-Henneaux computation of the central charge applied to this case gives
(recalling G5 = κ2

5 /8π = π/4)
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c =
3�

2G3
=

3π�3

2G5
= CIJK pI pJ pK . (116)

This result, along with the form of the solution, can alternatively be derived by the
method of c-extremization as described earlier.

As expected, (116) yields the leading large charge contribution to the central
charge. We now turn to the AdS computation of the exact central charges using
anomalies. As we have discussed, this reduces to determining the exact coefficients
of the gauge and gravitational Chern-Simons terms in the three dimensional effec-
tive action. That is, given

ICS =
ik̃
4π

∫
Tr

(
ÃdÃ+

2
3

Ã3
)
− iβ

∫
Tr

(
ΓdΓ+

2
3
Γ3
)

(117)

we can read off
c̃ = 6k̃, c− c̃ = 96πβ . (118)

The three dimensional Chern-Simons terms descend from those in eleven dimen-
sions, (105), or equivalently in five dimensions, (106). To read off the desired terms
we can consider the following metric deformation of AdS3 ×S2

ds2 = ds2
AdS +

1
4
�2 (dyi − Ãi jy j)(dyi − Ãikyk

)
, (119)

with ∑3
i=1(y

i)2 = 1. This identifies the 1-forms Ãi j as the SO(3) ∼= SU(2) gauge
fields appearing in (117). We also need to give the 2-form potential supporting the
solution. From (112) the undeformed solution has FI = dAI = − 1

2 pIεS2 , where εS2

is the volume form on the unit two-sphere. We want a generalization consistent with
SO(3) gauge invariance. Since the metric is invariant under

yi → yi +Λi jy j

Ãi j → Ãi j +dΛi j +[Λ,A]i j, (120)

where Λi j =−Λ ji depends only on the AdS coordinates, we also demand this of FI .
FI must also be closed and have a fixed integral over the S2 fibre, since this integral
gives the 5-brane charge. The unique solution to this problem is [43, 44, 45]

FI = −1
2

pI (4πe2) (121)

with

e2 =
1

8π
εi jk(DyiDy j − F̃ i j)yk

Dyi = dyi − Ãi jy j (122)

F̃ i j = dÃi j − ÃikÃk j.
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e2 is known as the “global angular 2-form”. The AFF term in (106) will now yield
Ã dependent terms. To work these out, a very useful formula is [72]

∫
e(1)

0 ∧ e2 ∧ e2 = −1
2

(
1

2π

)2 ∫
Tr

(
ÃdÃ+

2
3

Ã3
)

, (123)

where the integral on the left(right) is over five(three) dimensions. e(1)
0 is defined by

writing e2 = de(1)
0 , which can always be done locally since e2 is closed. The AFF

term then yields (recall κ2
5 = 2π2)

ICS =
i

24π2

∫
CIJKAI ∧FJ ∧FK =

i
24π

CIJK pI pJ pK
∫

Tr

(
ÃdÃ+

2
3

Ã3
)

. (124)

This yields the coefficient of the Chern-Simons terms cubic in pI . Indeed, compar-
ing with (117) and using (118) we correctly read off the cubic terms in the central
charges (104).

The linear terms come from the Chern-Simons term in the second line of (106).
We can follow the same steps as led to (107). The difference is that in the near
horizon geometry there is no explicit string source, but rather a smooth geometry,
and so dF = 0 everywhere, without delta function singularities. After performing
the S2 integration, (107) splits into two terms corresponding to Chern-Simons terms
for the SO(3) ∼= SU(2) connection, and the AdS3 Christoffel connection,

ICS =
ic2I pI

48π

∫
Tr

(
ÃdÃ+

2
3

Ã3
)
− ic2I pI

192π

∫
Tr

(
ΓdΓ+

2
3
Γ3
)

. (125)

Note that the relative factor of 4 between these two terms is purely due to our use
of SU(2) conventions for Ã. From (125) we correctly read off the linear terms in the
central charges.

We again want to stress that this computation yields the exact central charges,
and that we did not need to know the full action to carry it out. Knowledge of the
Chern-Simons terms suffices, since they give us the anomalies, and supersymmetry
connects these to the central charges. The fact that we found exact agreement with
the microscopic central charges was explained already in terms of the anomaly in-
flow mechanism. The match is necessary to preserve diffeomorphism invariance of
M-theory in the presence of M5-branes. Even though the agreement was guaranteed
to occur, it is still satisfying to see it working in explicit detail.

Now that we have verified the exact matching of the microscopic and gravita-
tional central charges, we know that the entropy of an uncharged black hole is given
by (54) and that it matches with the CFT entropy. This matching includes sublead-
ing corrections to the Bekenstein-Hawking area law, as encoded in the corrections
to the central charge. It further applies to non-BPS and non-extremal black holes.
Historically, the result for the corrected entropy of the BPS black holes was first
obtained in [73, 74, 75] by explicitly constructing the black hole solutions in super-
gravity supplemented by certain R2 terms. Surprisingly, this gives the exact result
even though R4 and higher type terms are not incorporated. However, the method
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of [73, 74, 75] is not successful in capturing the corrected entropy of non-BPS and
non-extremal black holes [76].

We should note that our results so far are only valid to leading order in L0 and
L̃0, and furthermore does not allow for the inclusion of charge. In the remainder of
these lectures, we will show to how generalize in these directions.

4.3 Small Black Holes and Heterotic Strings

We have seen from anomalies that the bulk AdS3 theory exactly reproduces the mi-
croscopic central charges (104). Since this result is exact, it can be used even in cases
where the bulk geometry is highly curved and the two-derivative approximation to
the action is no longer valid. It is especially interesting to consider examples where
the microscopic theory is as simple as possible, so that we have good control over
the microscopic entropy counting. Such “small black holes” have been the subject
of much recent discussion, e.g. [7, 8, 13, 77, 78, 79, 80, 81, 82, 83]

A good example is to consider M6 = K3×T 2 and to wrap the M5-brane on K3.
In this case only a single magnetic charge pI is nonzero, and hence CIJK pI pJ pK = 0.
This implies that in the two derivative approximation, where c = 3�

2G , the size of the
AdS3 geometry shrinks to zero. However, from (104) we see that including higher
derivatives yields c = 24p and c̃ = 12p, where we used c2(K3) = 24. Strictly speak-
ing, our supergravity analysis tells us that if there is a finite size AdS3 geometry,
then its central charges are as stated. To actually demonstrate the existence of the
geometry require more detailed consideration of the explicit supergravity equations
of motion, including higher derivatives. The state-of-the-art at the moment is to in-
clude just the supersymmetric completion of certain R2 terms, and to show that a
stabilized geometry indeed results [73, 74, 75]. While working out the precise solu-
tion is an important challenge, we would like to emphasize that getting the central
charges right is not too dependent on the details, since symmetries and anomalies
are enough to determine them.

The connection with the heterotic string is obtained by using heterotic/IIA dual-
ity. This duality interchanges the M5-brane (NS5-brane in the IIA language) with
an elementary heterotic string. The magnetic charge p becomes the winding number
of the heterotic string around an S1. The 24 leftmoving transverse bosonic oscilla-
tors of a heterotic string yield c = 12; and the 8 rightmoving transverse bosonic and
fermionic oscillators yield c̃ = 12. Taking into account the winding number, we see
precise agreement with the supergravity side. From our discussion so far, this means
that we will find agreement in the entropies from the Cardy formula (54). Note that
this agreement pertains even for non-supersymmetric and nonextremal states (both
left and right movers excited).

5 Partition Functions and Elliptic Genera

So far we have discussed black hole entropy at the level of the Cardy formula. We
now try to go further in establishing the AdS/CFT relation
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ZAdS = ZCFT . (126)

In this section, we discuss the definitions and properties of the CFT partition func-
tions that we will subsequently aim to reproduce from AdS.

In full generality, we can imagine defining ZCFT by tracing over the CFT Hilbert
space weighted by e−βH and an arbitrary string of operators. In principle such an
object has a dual AdS definition, but in practice it will be intractable to actually
compute. Rather than including all possible operators, it is more tractable to just
focus on conserved charges, since these are more easily identifiable on the gravity
side. If we define the CFT on a circle, the two most obvious conserved charges are
energy and momentum, related to the Virasoro charges as10

H = L0 −
c

24
+ L̃0 −

c̃
24

, P = L0 − L̃0. (127)

The most basic partition function is thus

Z = Tr
[
e−βH+iμP

]
= e

iμ(c−c̃)
24 Tr

[
e2πiτ(L0− c

24 )−2πiτ(L̃0− c̃
24 )
]
, (128)

with τ = (μ + iβ )/2π . If fermions are present we also need to specify their period-
icity around the circle.

Now suppose that our CFT also has conserved currents, JI and J̃I . Although we
use the same index I for both, the number of left moving (holomorphic) currents JI

is independent of the number of right moving (anti-holomorphic) currents J̃I . We
can generalize our partition function by adding chemical potentials for the corre-
sponding conserved charges qI and q̃I ,

Z = Tr
[
e2πiτ(L0− c

24 )−2πiτ(L̃0− c̃
24 )e2πizIqI

e−2πiz̃I q̃I
]
. (129)

The path integral version of the partition function (5.4) is,

ZPI =
∫

[DΦ] e−I− i
2π
∫
(Aμ Jμ+Ãμ J̃μ ), (130)

where the CFT is defined on the torus. The external gauge fields appearing in (130)
are related to the chemical potentials in (129),

zI = −iτ2AIw, z̃I = iτ2ÃIw, (131)

where τ = τ1 + iτ2. Further, the the path integral and canonical versions are related as

Z = e−
π
τ (z2+z̃2)ZPI , (132)

with z2 = kIJzIzJ , (kIJ is defined in (78)), and similarly for z̃2.

10 P is the same as what we earlier called J, the AdS angular momentum.
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To derive (131) and (132), it is most instructive to consider a simple example of
a free scalar field. This example will also allow us to discuss the modular behavior
of our partition functions.

5.1 Free Scalar Field Example

Consider a free compact boson of radius 2πR. We use the conventions of [84] and
set α ′ = 1. We define the partition function

Z(τ,z, z̃) = (qq)−1/24Tr
[
qL0 qL̃0 e2πizpL e2πiz̃pR

]
, (133)

with

L0 =
p2

L

4
+Losc

0 , L̃0 =
p2

R

4
+ L̃osc

0 (134)

pL =
n
R

+wR, pR =
n
R
−wR.

The partition function obeys the modular transformation rule

Z

(
aτ +b
cτ +d

,
z

cτ +d
,

z̃
cτ +d

)
= e

2πicz2
cτ+d e−

2πicz̃2
cτ+d Z(τ,z, z̃), (135)

as is readily verified by direct computation.
To explain the origin of the exponential prefactors in (135) we pass to a path

integral formulation. We consider

ZPI(τ,A) =
∫

DXe−I (136)

with

I =
1

2π

∫

T 2
d2σ

√
g

[
1
2

gi j∂iX∂ jX −Ai∂iX

]
(137)

and Ai = constant. To relate potentials appearing in (133) and (134), we use the
standard expression for the charges

pL = 2
∮

dw
2πi

i∂wX , pR = −2
∮

dw
2πi

i∂wX , (138)

and then equate the charge-dependent phases in the two versions. This yields

z = −iτ2Aw, z̃ = iτ2Ãw. (139)

We denoted the holomorphic part of the gauge field Ãw because, elsewhere in these
notes, this component arises from an independent bulk 1-form Ã.
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In the path integral formulation a modular transformation is a coordinate trans-
formation combined with a Weyl transformation, and so it is manifest that

ZPI

(
aτ +b
cτ +d

,
z

cτ +d
,

z̃
cτ +d

)
= ZPI(τ,z, z̃), (140)

where the transformation of z and z̃ just expresses the coordinate transformation.
What then is the relation between ZPI and Z? To find this, we just carry out the

usual steps that relate Hamiltonian and path integral expressions (e.g.
∫

DXe−I =
Tre−βH .) The only point to be aware of is that the Hamiltonian corresponding to the
action (137) is not the factor appearing in the exponential of (133) but differs from
this by a contribution quadratic in the potentials, as is verified by carrying out the
standard Legendre transformation. In particular, we find

ZPI(τ,z, z̃) = e
π(z+z̃)2

τ2 Z(τ,z, z̃). (141)

Combining (140) and (141) we see that the modular transformation law of Z must

be such to precisely offset that of e
π(z+z̃)2

τ2 . This is what (135) does.
To summarize, we have shown how to convert between the canonical and path

integral versions of the partition function. The latter makes the modular behavior
manifest. Furthermore, the analysis we performed is essentially completely general,
in that given an arbitrary CFT we can always realize the U(1) current algebra in
terms of free bosons.

5.2 Elliptic Genus

The partition function (129) receives contributions from all states of the theory.
This makes it intractable to calculate explicitly, except in favorable cases (such as
weak coupling limits). In a theory with enough supersymmetry, we can define a
more controlled object – the “elliptic genus” – which only receives contributions
from BPS states. The elliptic genus is a topological invariant, as we will review in a
moment, which allows it to be computed far more readily than the generic partition
function. Useful references include [10, 85, 86].

For definiteness, we now focus on a CFT with (0,4) susy. The elliptic genus is
defined as

χ(τ,zI) = TrR

[
e2πiτ(L0−c/24)e−2πiτ(L̃0−c̃/24)e2πizIqI

(−1)F̃
]
. (142)

The trace is over the Ramond sector, and F̃ is the fermion number, defined as
F̃ = 2J̃3

0 , where J̃3
0 is the R-charge. The insertion of (−1)F̃ imposes a bose-fermi

cancelation among all states except those obeying L̃0 − c̃/24 = 0 (the Ramond
ground states). The arguments here are the same as in the study of the Witten index
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in 4D supersymmetric field theories. Since only states with L̃0− c̃/24 = 0 contribute,
the elliptic genus does not depend explicitly on τ̄ . On the other hand, all leftmoving
states can contribute. The elliptic genus is invariant under smooth deformations of
the CFT. This follow from the quantization of the charges and of L0 − L̃0, together
with the fact that only rightmoving ground states contribute. We can therefore com-
pute the elliptic genus in the free limit of the CFT and then extrapolate it to strong
coupling and compare with a supergravity computation.

We now state the main general properties of the elliptic genus.

5.2.1 Modular Transformation

χ
(

aτ +b
cτ +d

,
zI

cτ +d

)
= e2πi cz2

cτ+d χ (τ,zI) . (143)

The same argument applies here as in (141).

5.2.2 Spectral Flow

The modes of the stress tensor and currents obey the algebra

[Lm,Ln] = (m−n)Lm+n +
c

12
(m3 −m)δm+n,0,

[Lm,JI
n] = −nJJ

m+n, (144)

[JI
m,JJ

n ] =
1
2

mkIJδm+n,0.

This is invariant under the spectral flow automorphism (79).
The spectral flow automorphism implies the relation

χ(τ,zI + �Iτ +mI) = e−2πi(�2τ+2�·z)χ(τ,zI), (145)

where mI obeys mIqI ∈Z, and we defined �2 = kIJ�I�J , � ·z = kIJ�IzJ . It also implies
that if we expand the elliptic genus as

χ(τ,zI) = ∑
n,rI

c(n,rI)e2πinτ+2πizI rI
, (146)

then the expansion coefficients are a function of a single spectral flow invariant
combination:

c(n,rI) = c

(
n− r2

4

)
. (147)

Here we defined r2 = kIJrIrJ , where kIJ denotes the inverse of kIJ .
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5.2.3 Factorization of Dependence on Potentials

We can explicitly write the dependence of the elliptic genus on the potentials zI .
The intuition behind this is that we can always separate the CFT into the currents
plus everything else, and the current part can be realized in terms of free bosons.
We have:

χ(τ,zI) =∑
μ I

hμ(τ)Θμ,k(τ,zI), (148)

with

Θμ,k(τ,zI) =∑
ηI

e
iπτ
2 (μ+2kη)2

e2πizI(μ I+2kIJηJ). (149)

We are using the shorthand notation

(μ +2kη)2 ≡ kIJ
(
μ I +2kIKηK

)(
μJ +2kJLηL

)
. (150)

The combined sum over μ I and ηI includes the complete spectrum of charges. The
sum over ηI corresponds to shifts of the charges by spectral flow, and so the sum
on μI is over a fundamental domain with respect to these shifts. A more intuitive
understanding of (148), (149) will emerge when we rederive these results from the
AdS side.

5.2.4 Farey Tail Expansion

The main observation of [10] was that upon applying the “Farey tail transform”, the
elliptic genus admits an expansion that is suggestive of a supergravity interpretation
in terms of a sum over geometries. We will essentially state the result here, referring
to [10] for the detailed derivation. The CFT discussion in [10] has recently been
adapted to the (0,4) context in [87].

The properties (143) and (145) are the definitions of a “weak Jacobi form” of
weight w = 0 and index k. Actually, the definition strictly applies when k is a single
number rather than a matrix, but we will still use this langauge.

The Farey tail transformed elliptic genus is

χ̃(τ,zI) =
(

1
2πi

∂τ −
1
4

∂ 2
z

(2πi)2

)3/2

χ(τ,zI), (151)

where ∂ 2
z = kIJ∂zI∂zJ . χ̃ is a weak Jacobi form of weight 3 and index k and admits

the expansion

χ̃ (τ,zI) = e
− πz2

τ2 ∑
Γ∞\Γ

1
(cτ +d)3 χ̂

(
aτ +b
cτ +d

,
zI

ct +d

)
, (152)
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with

χ̂(τ,zI) = e
πz2
τ2 ˆ∑

μ,μ̃,m,m̃

c̃
(
m,μ I)e2πi(m− 1

4 μ
2)τΘμ,k(τ,zI), (153)

and Θμ,k(τ,zI) was defined in (149). The hatted summation appearing in (153)
is over states with m− 1

4μ
2 < 0. From the gravitational point of view, these will

be states below the black hole threshold and the sum over Γ∞\Γ then adds the
black holes back in. In mathematical terminology (153) defines χ̂ as the “polar
part” of the elliptic genus. The coefficients c̃(m,μ I) in (153) are related to those in
(146) by

c̃
(
m,μ I)=

(
m− μ2

4

)3/2

c

(
m− μ2

4

)
, (154)

as follows from (151) and from using (147). The main point is that the transformed
elliptic genus χ̃ can be reconstructed in terms of its polar part χ̂ .

6 Computation of Partition Functions in Gravity:
Warmup Examples

We now turn to the gravitational computation of partition functions, particularly the
elliptic genus. One goal will be to see how the general properties described in the
previous section are realized in terms of the sum over geometries. For example,
we need to see how a sum over black hole geometries, with the precise weighting
factors specified by (152) and (153), arises in the AdS description.

Before considering the general problem of summing over geometries, it will be
helpful to get oriented by considering some examples. Again, for definiteness we
will focus on the (0,4) case, although the generalization to the (4,4) case is very
straightforward.

6.1 NS Vacuum

The NS vacuum is invariant under SL(2,R)×SL(2,R). In other words, it is invariant
under the full group of AdS3 isometries, which means that it is precisely global
AdS3,

ds2 = (1+ r2/�2)�2dt2 +
dr2

1+ r2/�2 + r2dφ 2. (155)

The contractibility of the φ circle forces the fermions to be anti-periodic in φ . In-
variance under the isometry group means that this geometry has

L0 = L̃0 = 0. (156)
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6.2 Spectral Flow to the R Sector

On the gravity side a rightmoving spectral flow (79) is implemented by a constant
shift in the gauge potentials (80), but now in terms of the rightmoving tilded version.
To get to the Ramond sector we want to flip the periodicity of the supercurrent. This
carries charge q̃0 = 1, and so we should take η̃0 = 1

2 . Therefore, a Ramond ground
states consists of the metric (155) with

Ã0w = 1, (157)

with fermions periodic in φ . The gauge field contribution (76) increases the Virasoro
charge from (156) to

L̃0 =
k̃
4

=
c̃

24
. (158)

Since the charge (77) is

q̃0 = k̃ =
c̃
6
, (159)

this is the maximally charged R vacuum state.11 To get the maximally negatively
charged R vacuum we flip the sign in (157). In the (4,4) case the leftmoving side is
treated analogously.

6.3 Conical Defects

A more general class of R vacua are the conical defect geometries [58, 59, 60]. For
these we take

ds2 =
(

1
N2 +

r2

�2

)
dt2 +

dr2
(

1
N2 + r2

�2

) + r2dφ 2, (160)

Ã0w =
1
N

,

with N ∈ Z. The angular coordinate φ has the standard 2π periodicity, and fermions
are taken to be periodic in φ .

To read off the Virasoro charges, we just note that by rescaling coordinates all
these geometries are locally equivalent to the N = 1 case discussed in the previous
example. In the N = 1 case the right moving stress tensor vanishes, and it will clearly
continue to vanish after rescaling coordinates. Thus (158) still applies and so L̃0 = k̃

4
as before. The R-charge is read off from (76) to (77) as

q̃0 =
k̃
N

. (161)

11 This bound on the charge can be seen from the supersymmetry algebra.
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Upper and lower bounds on N are given by the quantization of R-charge, so |N| ≤ k̃.
These conical defect geometries are singular at the origin unless the holonomy

is ±1, which corresponds to N = ±1. In the context of the D1-D5 system, the sin-
gular geometries are known to be physical in that the singularity corresponds to the
presence of N coincident Kaluza-Klein monopoles. Another way of viewing this is
that these singular geometries are special limits of the much larger class of smooth
RR vacua geometries that have been heavily studied in recent years [88, 89].

We also note that any of the R-vacua in (160) can be spectral flowed to the NS
sector to give chiral primary geometries.

6.4 Black Holes

We now consider black hole geometries, and give a simple derivation of the entropy
of charged black holes that incorporates higher derivative corrections. This will pro-
vide the generalization of (54). We again use the method of relating the black hole
to thermal AdS by a modular transformation. We will be considering a general, ro-
tating, non-extremal, charged black hole. All left and right moving charges will be
turned on.

The starting point is global AdS3, as in (155). The complex boundary coordinate
is w = φ + it/�, and we identify w ∼= w+2π ∼= w+2πτ . To add charge we also want
to turn on flat potentials for the gauge fields. Now, the φ circle is contractible in the
bulk, so to avoid a singularity at the origin, we need to set to zero the φ component
of all potentials. We therefore allow nonzero AIw = −AIw, and ÃIw = −ÃIw.

What is the action associated with this solution? From the discussion in Sect. 3,
we know the exact expressions for the stress tensor and currents

Tww = − k
8π

+
1

8π
A2

w +
1

8π
Ã2

w,

Tww = − k̃
8π

+
1

8π
A2

w +
1

8π
Ã2

w, (162)

JI
w =

i
2

kIJAJw,

J̃I
w =

i
2

k̃IJÃJw.

To obtain the exact action from these formulae we need to integrate the equation

δ I =
∫

∂AdS
d2x

√
g(0)

(
1
2

Tαβ δg(0)
αβ +

i
2π

JIαδAIα +
i

2π
J̃Iαδ ÃIα

)
. (163)

As we did to derive (43), we first need to switch to the z coordinates (41) that have
fixed periodicities. Doing this, then switching back to the w coordinates, we find

δ I = (2π)2i
[
−Twwδτ +Twwδτ +

τ2

π
JI

wδAIw +
τ2

π
J̃I

wδ ÃIw

]
const

. (164)
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The const subscript indicates that we keep just the zero mode part. Inserting (162)
into this equation we can now integrate and find our desired action as

I =
iπk
2

τ− iπ k̃
2

τ +πτ2
(
A2

w + Ã2
w

)
. (165)

A simpler derivation of this result is to just compute (165) by directly evaluating
the action on the solution. The gauge field contribution just comes from the bound-
ary terms in (75). The reason we proceeded in terms of (163) was to emphasize that
the result (162) is exact for an arbitrary higher derivative action, and also because
we will generalize this computation later.

The result (165) is the action for the AdS3 ground state with a flat connection
turned on. Next, we perform the modular transformation τ → −1/τ in order to
reinterpret the solution as a Euclidean black hole. This is implemented by

w →−w/τ, AIw →−τ̄AIw, ÃIw →−τÃIw. (166)

The action is of course invariant since we are just rewriting it in new variables. Using
τ/τ = 1−2iτ2/τ we can present the result as

I = − iπk
2τ

+
iπ k̃
2τ

− 2πiτ2
2 A2

w

τ
+

2πiτ2
2 Ã2

w

τ
+πτ2

(
A2

w + Ã2
w

)

= − iπk
2τ

+
iπ k̃
2τ

+
2πiz2

τ
− 2πiz̃2

τ
− π

τ2

(
z2 + z̃2) . (167)

This is the Euclidean action of a black hole with modular parameter τ and potentials
specified by zI and z̃I .

Our result (167) is the leading saddle point contribution to the path integral. As
we noted in (132) the canonical form of the partition function, defined as a trace, is
related to the path integral as

Z = e
− π

τ2
(z2+z̃2)

ZPI = e
− π

τ2
(z2+z̃2)∑e−I . (168)

The exponential prefactor cancels the last term in (167) so that

lnZ =
iπk
2τ

− iπ k̃
2τ

− 2πiz2

τ
+

2πiz̃2

τ
, (169)

on the saddle point. We define the entropy s by writing the partition function as

Z = ese2πiτ(L0−c/24)e−2πiτ(L̃0−c̃/24)e2πizIqI
e−2πiz̃IqI

, (170)

where we assume that Z is dominated by a single charge configuration with,
e.g., qI = 1

2πi
∂
∂ zI

lnZ.
Putting everything together we read off the black hole entropy as

s = 2π

√
c
6

(
L0 −

c
24

− 1
4

q2

)
+2π

√
c̃
6

(
L̃0 −

c̃
24

− 1
4

q̃2

)
. (171)
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The expression (171) gives the entropy for a general nonextremal, rotating, charged,
black hole in AdS3, including the effect of higher derivative corrections as incor-
porated in the central charges. Since we used the saddle point approximation the
formula is only valid to leading order in L0 − c

24 −
1
4 q2 (and the rightmoving ana-

logue), including the subleading contribution is the topic of the next section. It is
striking that we have control over higher derivative corrections to the entropy even
for nonsupersymmetric black holes.12 As in our discussion of the uncharged case,
the relation with anomalies implies that (171) is in precise agreement with the mi-
croscopic entropy counting coming from brane constructions.

7 Computation of Partition Functions in Supergravity

Let us now look at the supergravity computation of the elliptic genus. We’ll con-
sider both the canonical and path integral approaches, which are useful for making
manifest the behavior under spectral flow and modular transformation, respectively.
In keeping with the Farey tail philosophy [10], we first explicitly compute the con-
tribution to the elliptic genus from states below the black hole threshold. With this
in hand, we then note that black holes are readily included since they are just coor-
dinate transformations of solutions below the threshold. In this way we reproduce
the construction (152).

7.1 Canonical Approach

In the canonical approach we need to enumerate the allowed set of bulk solutions
and their charge assignments. For the elliptic genus, we consider states of the form
(anything, R-ground state), which have L̃0 = k̃

4 . There are three classes of such
states: smooth solutions in the effective three dimensional theory; states coming
from Kaluza-Klein reduction of the higher dimensional supergravity theory; and
non-supergravity string/brane states. Some members of the first class were discussed
above, and we will make a few comments on the other types of states later.

Just as was done on the CFT side (148), it is useful to factorize the dependence
on the potentials. In the gravitational context it is manifest that the stress tensor
consists of a metric part plus a gauge field part. Suppose we are given a state carrying
leftmoving charges (

L0 −
c

24
,qI
)

=
(
m,μ I) . (172)

We can apply spectral flow to generate the family of states with charges

12 A related observation is that the attractor mechanism, which plays an important role in estab-
lishing a near horizon AdS3 geometry, can also operate for non-supersymmetric black holes [90].
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L0 −
c

24
= m+ηIq

I + kIJηIηJ = m− 1
4
μ2 +

1
4
(μ +2kη)2

qI = μ I +2kIJηJ , (173)

where we are using the same shorthand notation as in (150). This class of states will
then contribute to the elliptic genus as

χ(τ,zI) = (−1)F̃ e2πiτ(m− 1
4 μ

2)Θμ,k(τ,zI), (174)

in terms of the Θ-function (149). Each such spectral flow orbit has a certain de-
generacy from the number distinct states with these charges. We call this degen-
eracy c(m− 1

4μ
2), where the functional dependence is fixed by the spectral flow

invariance, and we also include (−1)F̃ in the definition. We can now write down
the “polar” part of the elliptic genus, that is, the contribution below the black hole
threshold: m− 1

4μ
2 < 0. We then have

χ ′ (τ,zI) =∑′
m,μ c

(
m− 1

4
μ2
)
Θμ,k (τ,zI)e2πi(m− 1

4 μ
2)τ . (175)

In the canonical approach, it is easy to write down the polar part of the elliptic
genus in terms of the degeneracies c(m− 1

4μ
2). But the full elliptic genus also has

a contribution from black holes, and these are not easily incorporated since black
holes do not correspond to individual states of the theory. To incorporate black holes,
we need to turn to a Euclidean path integral, as we do now.

7.2 Path Integral Approach

In the path integral approach, we sum over bulk solutions with fixed boundary
conditions

χPI(τ,zI) =∑e−I . (176)

The action appearing in (176) is the full string/M-theory effective action reduced to
AdS3, though we fortunately do not require its explicit form to compute the elliptic
genus. In particular, in (176) we only sum over stationary points of I, since the
fluctuations have already been incorporated through higher derivative corrections to
the action.

The boundary conditions on the metric are that the boundary geometry is a torus
of modular parameter τ . zI fix the boundary conditions for the gauge potentials. As
derived in (139), the relation is, in conformal gauge,

AIw =
izI

τ2
. (177)

AIw is not fixed as a boundary condition. Since the potential z̃I is set to zero in the
elliptic genus, we also have the boundary condition
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ÃIw = 0. (178)

Now we turn to the allowed values of AIw and ÃIw. The allowed boundary values
of AIw are determined from the holonomies around the contractible cycle of the
AdS3 geometry. Recall that when we write w = σ1 + iσ2 we are taking σ1 to be the
2π periodic spatial angular coordinate. The corresponding cycle on the boundary
torus is contractible in the bulk, and so any nonzero holonomy must match onto an
appropriate source in order to be physical. The holonomy of a charge qI particle is

e
1
2 iqI ∫ dσ1AIσ1 = e

1
2 iqI ∫ dσ1(AIw+AIw). (179)

Choosing a gauge with constant AIw, we write the allowed values as

AIw = kIJμ I +2ηI −
izI

τ2
, qIηI ∈ Z, (180)

where we have written the charge of the source as μ I .
In the same way, we can determine the allowed values of ÃIw. In this case we

know that only geometries with L̃0 − c̃
24 = 0 contribute to the elliptic genus, and

so we do not include the spectral flowed geometries as we did above. Instead, we
just have

ÃIw = k̃IJ μ̃ I . (181)

Given the gauge fields, we know the exact stress tensor and also the exact currents.
We can therefore find the action by integrating

δ I =
∫

∂AdS
d2x

√
g(0)

(
1
2

Tαβ δg(0)
αβ +

i
2π

JIαδAIα

)

= (2π)2i
[
−Twwδτ +Twwδ τ̄ +

τ2

π
JI

wδAIw +
τ2

π
J̃I

wδ ÃIw

]
const

, (182)

as in Sect. 4.4. The result is

I = −2πiτ
(

Lgrav
0 − c

24

)
+2πiτ

(
L̃grav

0 − c̃
24

)

− iπ
2

[
τA2

w + τA2
w +2τAwAw

]
+

iπ
2

[
τÃ2

w + τÃ2
w +2τÃwÃw

]
. (183)

In verifying that (183) satisfies (182) one has to take care to consider only variations
consistent with the equations of motion and the assumed boundary conditions. We
maintain fixed holonomies by taking δAIw = −δAIw and δ ÃIw = −δ ÃIw. Also, the
variation of the complex structure must be taken with the gauge field fixed in the
z-coordinates introduced in (41).

The result (183) for the action agrees with (162) when the geometry is in the
ground state where AIw = −AIw and ÃIw = −ÃIw, but it is valid also more generally
in the presence of charged sources. In fact, it is equivalent to the canonical result
discussed in Sect. 7.1. To see this, we consider again the charge assignments (172).
Writing L0 = Lgrav

0 + Lgauge
0 = Lgrav

0 + 1
4μ

2 (and analogously for L̃0) we insert into
(183) and find
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I = −2πiτ
(

m− 1
4
μ2
)
− iπτ

2
(μ +2kη)2 −2πizI

(
μ I +2kIJηJ

)
− πz2

τ2
. (184)

Summing over the geometries below the black hole threshold we find

χ ′
PI (τ,zI) =∑′

m,μ c

(
m− 1

4
μ2
)

e−S

= e
πz2
τ2 ∑′

m,μ c

(
m− 1

4
μ2
)
Θμ,k(τ,zI)e2πi(m− 1

4 μ
2)τ (185)

= e
πz2
τ2 χ ′(τ,zI),

where χ ′ is the canonical result (175). As in (132), the overall exponential factor is
precisely the one we expect.

7.3 Including Black Holes

Black holes are readily included in the path integral approach since they are just
rewritten versions of solutions below the black hole threshold. Taking a solution
below the black threshold and performing the coordinate transformation w → aw+b

cw+d
generates a black hole. Using the manifest invariance of the action under such coor-
dinate transformations, the contribution of such a black is then

χPI(τ,zI) = χ ′
PI

(
aτ +b
cτ +d

,
zI

cτ +d

)
. (186)

On the other hand, from the relation (185) between χ ′
PI and χ ′ we have

χ ′
PI

(
aτ +b
cτ +d

,
zI

cτ +d

)
= e−2πi cz2

cτ+d e
πz2
τ2 χ ′

(
aτ +b
cτ +d

,
zI

cτ +d

)
. (187)

Thus the black hole contribution to χ is

χ(τ,zI) = e
− πz2

τ2 χPI(τ,zI) = e−2πi cz2
cτ+d χ ′

(
aτ +b
cτ +d

,
zI

cτ +d

)
. (188)

The next step is to sum over all inequivalent black holes to get the complete ellip-
tic genus. This means summing over the subgroup of Γ= SL(2, Z) corresponding to
inequivalent black holes or, more precisely, distinct ways of labeling the contractible
cycle in terms of time and space coordinates. As explained in [10] the inequivalent
cycles are parameterized by Γ∞\Γ; so it seems natural to write

χ(τ,zI) = ∑
Γ∞\Γ

e−2πi cz2
cτ+d χ ′

(
aτ +b
cτ +d

,
zI

cτ +d

)
. (189)
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However, as emphasized in [10], this cannot be correct since the sum is not conver-
gent. Instead we should compute not the elliptic genus but instead its Farey trans-
form, introduced in (151). This amounts to first replacing χ ′ by

χ̂ ′ (τ,zI) =∑′
m,μ c̃

(
m− 1

4
μ2
)
Θμ,k (τ,zI)e2πi(m− 1

4 μ
2)τ (190)

with c̃ defined as in (154). We interpret this as the polar part of a weak Jacobi form
of weight 3 and index k. Instead of (189) we therefore write

χ̂(τ,zI) = ∑
Γ∞\Γ

(cτ +d)−3e−2πi cz2
cτ+d χ̂ ′

(
aτ +b
cτ +d

,
zI

cτ +d

)
. (191)

7.4 High Temperature Behavior

The high temperature (τ2 → 0) behavior of (191) is governed by the free energy of
a BPS black hole. The leading exponential behavior can be read off from the term

(
a b
c d

)
=
(

0 −1
1 0

)
, m = 0, ηI = 0, μ I = kδ I0, (192)

which gives

χ̂(τ,zI) ≈ e−
2πiz2

τ + 2πikz0
τ . (193)

We can compare with (169) by performing the spectral flow z0 → z0 + 1
2 . This yields

ln χ̂(τ,zI) ≈
iπk
2τ

− 2πiz2

τ
. (194)

Noting that this agrees with the holomorphic part of (169), we find that the corre-
sponding entropy is is indeed that of a BPS black hole,

s = 2π

√
c
6

(
L0 −

c
24

− 1
4

q2

)
. (195)

This is just the leading part of the entropy and is insensitive to the distinction be-
tween the elliptic genus and its Farey-tail transformed version.

7.5 Summary

It is now helpful to summarize what has been achieved so far. In our CFT discussion
we noted that the CFT elliptic genus13 is completely determined by the spectrum of

13 Here when we say elliptic genus, we really mean its Farey tail transform.



240 P. Kraus

BPS states below the black hole threshold, and by the algebra of CFT currents.
By evaluating the Euclidean path integral, we then showed that the AdS elliptic
genus has precisely the same structure. Thus we have boiled the question of exact
agreement of the elliptic genera to the comparison of current algebras and BPS
states below the black hole threshold. To complete the computation these need to
be worked out. Some aspects of this problem on the AdS side are the subject of the
next section.

8 Computation of BPS Spectra

There are in general two types of BPS states to consider: supergravity states from
the Kaluza-Klein fluctuation spectrum of the higher dimensional theory reduced to
AdS3; and branes wrapping cycles of the internal compactification manifold. We do
not intend to give a full description of either here and restrict ourselves to sketching
some aspects.

8.1 Supergravity States

First consider the supergravity fluctuations. The starting point is either eleven di-
mensional supergravity on AdS3×S2×M6, or IIB supergravity on AdS3×S3×M4.
For definiteness, we focus on the former; the approach in the two cases is very simi-
lar. After reduction on M6 one has a five dimensional supergravity theory with some
number of vectormultiplets nV ; hypermultiplets nH ; and gravitino multiplets nS;14 in
addition to the gravity multiplet. The multiplicities of each multiplet are determined
by the Hodge numbers of M6, and are summarized in Table 1.

The next step is to expand in harmonics on the S2, to get an AdS3 spectrum of
fields. The modes appearing in the expansion of each field yields a representation of
the symmetry group, which includes the subgroup SL(2, R)L×SL(2, R)R×SU(2)R

corresponding to the AdS3 isometries and the R-symmetry. For the computation of
the elliptic genus we just need the spectrum of chiral primaries, which are those
modes obeying h̃ = 1

2 q̃0, where L̃0 = h̃ and J̃3
0 = 1

2 q̃0 are the SL(2, R)L and SU(2)R

Table 1 5-dimensional supergravity spectra

M6 nS nV nH

CY3 0 h1,1 −1 2h1,2 +2
K3×T 2 2 22 42
T 6 6 14 14

14 Gravitino multiplets are present for M6 = T 6 or K3×T 2 to capture the extra supersymmetry.
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Table 2 Spectrum of (non-singleton) chiral primaries for AdS3 ×S2 ×M6

s = h− h̃ degeneracy range of h̃ = 1
2 q̃0

1/2 nH 1/2,3/2, . . .
0 nV 1,2, . . .
1 nV 1,2, . . .
−1/2 nS 3/2,5/2, . . .
1/2 nS 3/2,5/2, . . .
3/2 nS 1/2,3/2, . . .
−1 1 2,3, . . .
0 1 2,3, . . .
1 1 1,2, . . .
2 1 1,2, . . .

weights. The value of L0 = h is unrestricted by the chiral primary condition, and
indeed we can generate a whole tower by application of L−1 to a lowest h state. The
details of the computation of this spectrum can be found in [91]15; we summarize
the result in Table 2. Since the chiral primaries form multiplets under SL(2, R)L

symmetry, in Table 2 we list the spectrum of single particle chiral primaries that are
also primary under the leftmoving SL(2, R); i.e. are annihilated by L1.

The tower of h̃ values correspond to the tower of spherical harmonics on S2. This
spectrum does not include the so-called singletons; we will come back to this point
momentarily.

Given this spectrum it is straightforward to work out the elliptic genus as

χsugra = Trchir. prim.

[
(−1)q̃0

qL0

]
(196)

where q = e2πiτ . The sum over states includes multiparticle contributions. The re-
sult is

χsugra(τ) = M(q)−Euler
∞

∏
n=1

(1−qn)nv+3−2ns
(
1−qn+1) , (197)

where the McMahon function is defined as

M(q) =
∞

∏
n=1

(1−qn)n, (198)

and “Euler” denotes the Euler number of M6.
Now we incorporate the singletons. Singleton modes are pure gauge configura-

tions that are nonetheless physical in the presence of the AdS3 boundary. To see why,
consider the case of a U(1) gauge field with Chern-Simons term. The configuration
Aw = ∂wΛ(w) is formally pure gauge, but from (74) it carries the nonzero stress ten-
sor Tww = k

8π (∂wΛ)2, and hence is physical. This is possible because the true gauge
transformations must vanish at the boundary and it is only those that leave the stress

15 The earlier references [92, 93] give incorrect ranges of h̄ that differ slightly from these.
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tensor invariant. The singleton states are described in the CFT as J−1|0〉, where J
is the current corresponding to A. We also have the SL(2, R) descendants of these
states.

A similar story holds for singletons associated with diffeomorphisms that are
nonvanishing at the boundary. These correspond to the states L−2|0〉 and SL(2, R)
descendants thereof. The explicit form of the diffeomorphisms is given in [9].

We can now work out the contribution of the singletons to the elliptic genus of the
(0,4) theory. If there are nL leftmoving currents then the contribution of singletons is

χsing
NS =

∞

∏
n=1

1
(1−qn)nL

1
(1−qn+1)

. (199)

We need to know the number of leftmoving currents, which involves knowing
the form of the AdS3 Chern-Simons terms. These can be worked out from reduction
of the eleven dimensional theory, and gives

nL =

⎧
⎨
⎩

5 T 6

21 K3×T 2

nV CY3

(200)

See [14] for the derivation.
We find the full result by multiplying (197) and (199):

χNS = χsugra
NS χsing

NS =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 T 6

1 K3×T 2

M(q)−Euler ∏∞
n=1(1−qn)3 CY3

(201)

We find that in the T 6 and K3×T 2 cases the singletons precisely cancel the dynami-
cal contribution (197). For the CY3 the dependence on nV cancelled. Note that these
conclusion are a result of cancelations between propagating states from Table 2 and
the singletons.

8.2 Contribution from Wrapped Branes

The final ingredient in the computation of the elliptic genus is the contribution from
wrapped branes. In the (0,4) theory corresponding to M-theory on AdS3 ×S2 ×M6,
these are M2-branes wrapped on 2-cycles of M6. In [11] it was shown that this com-
putation is equivalent to the Gopakumar-Vafa derivation [94, 95] of the topological
string partition function from M-theory, and this leads to the connection between the
black hole elliptic genus and the topological string. The main novelty is that both
M2-branes and anti-M2-branes turn out to preserve the same supersymmetry when
situated at opposite poles of the S2. The complete contribution then takes the form
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of an absolute square, which in turn leads to the OSV relation between ZBH and
|Ztop|2. There is much more that can be said here, but we refer the reader to [11, 87]
for more details.

To bring the story to its logical conclusion, one should now try to make the ex-
plicit comparison with the (0,4) CFT, analogous to what was done in [96]. This
requires an explicit result for the CFT elliptic genus, which is not available so far.
We again refer the reader to the references for what is presently known.

9 Conclusion

We hope to have given the reader an understanding of how to compute the entropy
of an AdS3 black hole, and compare with CFT. One main lesson is that the suc-
cess of most of the black hole/CFT entropy comparisons in the literature can be
traced back to the matching of symmetries and anomalies. This gives a better un-
derstanding of why the entropies agree, even at the subleading level, and for certain
non-supersymmetric black holes. We have also sketched the route by which one can
hope to make exact comparisons between black hole and CFT partition functions,
although much work remains to be done to bring this program to completion.

We conclude by mentioning a few open issues. In Sect. 4.3, we discussed how
the entropies of fundamental heterotic strings can be deduced from a gravitational
computation. The reader might be puzzled as to why we did not also consider the
seemingly simpler example of type II fundamental strings. In fact, the type II case,
rather than being simpler, is enigmatic. From the point of view of higher deriva-
tive terms in the spacetime action, the difference between the two cases is that R2

corrections are absent in the type II case. But it is such R2 terms that resolve the
naked singularity of the heterotic string, replacing it by a finite size horizon. One
also sees a crucial difference in our anomaly-based approach. In the type II case,
spacetime rotations couple non-chirally to the string worldsheet, hence there is no
anomaly inflow mechanism by which one can deduce the central charges. We are
therefore unable to compute the entropy on the gravitational side. It is an impor-
tant open problem as to whether higher derivative terms (e.g. R4 terms) resolve the
naked singularity of the type II string, and whether the microscopic entropy can be
reproduced.

Finally, one of the main motivations for undertaking an extensive study of black
entropy in string theory is to shed light on the resolution of the information para-
dox. The success of the AdS/CFT correspondence is usually interpreted to mean
that there is no information loss, since the boundary CFT has manifestly unitary
evolution, and so one can in principle track the explicit time evolution of any given
microstate. A truly satisfying resolution of the information paradox will involve
providing an analogous description in the bulk. In the context of the computations
described here, we would like to be able to compute the AdS partition functions
via an explicit sum over bulk states. The tools for such a computation are currently
being developed in the context of deriving bulk states dual to CFT microstates (for
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reviews see [89, 97]). It will be very illuminating to see how the same AdS parti-
tion function can be computed either by summing over black hole geometries or by
enumerating individual bulk states.
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The Attractor Mechanism in Five Dimensions

F. Larsen

Abstract We give a pedagogical introduction to the attractor mechanism. We be-
gin by developing the formalism for the simplest example of spherically symmetric
black holes in five dimensions which preserve supersymmetry. We then discuss the
refinements needed when spherical symmetry is relaxed. This is motivated by rotat-
ing black holes and, especially, black rings. An introduction to non-BPS attractors
is included, as is a discussion of thermodynamic interpretations of the attractor
mechanism.

1 Introduction

These lectures are intended as a pedagogical introduction to the attractor mecha-
nism. With this mission in mind, we will seek to be explicit and, to the extent possi-
ble, introduce the various ingredients using rather elementary concepts. While this
will come at some loss in mathematical sophistication, it should be helpful to stu-
dents who are not already familiar with the attractor mechanism and, for the experts,
it may serve to increase transparency.

A simple and instructive setting for studying the attractor mechanism is M-theory
compactified to five dimensions on a Calabi-Yau three-fold. The resulting low en-
ergy theory has N = 2 supersymmetry, and it is based on real special geometry. We
will focus on this setting because of the pedagogical mission of the lectures: real
special geometry is a bit simpler than complex special geometry, underlying N = 2
theories in four dimensions.

The simplest example where the attractor mechanism applies is that of a regular,
spherically symmetric black hole that preserves supersymmetry. In the first lecture,
we develop the attractor mechanism in this context and then verify the results by
considering the explicit black hole geometry.

F. Larsen
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In the second lecture, we generalize the attractor mechanism to situations that
preserve supersymmetry, but not necessarily spherical symmetry. Some representa-
tive examples are rotating black holes, multi-center black holes, black strings, and
black rings. Each of these examples introduces new features that have qualitative
significance for the implementation of the attractor mechanism. The approach will
follow the paper [1] rather closely, with the difference that here we include many
more examples and other pedagogical material that should be helpful when learning
the subject.

In the third lecture, we consider an alternative approach to the attractor mecha-
nism which amounts to seeing the attractor behavior as a result of an extremization
procedure, rather than a supersymmetric flow. One setting that motivates this view is
applications to black holes that are extremal but not supersymmetric. Extremization
principles makes it clear that the attractor mechanism applies to such black holes
as well.

Another reason for the interest in extremization principles is more philosoph-
ical: We would like to understand what the attractor mechanism means in terms
of physical principles. There does not yet seem to be a satisfactory formula-
tion that encompasses all the different examples, but there are many interesting
hints.

The literature on the attractor mechanism is by now enormous. As general refer-
ences let us mention from the outset the original works [2, 3, 4, 5] establishing the
attractor mechanism. It is also worth highlighting the reviews [6, 7] which consider
the subject using more mathematical sophistication than we do here. In view of the
extensive literature on the subject, we will not be comprehensive when referencing.
Instead, we generally provide just a few references that seem useful entry points
to the literature for the student of the subject. I apologize in advance to the many
authors on the subject that I fail to reference.

2 The Basics of the Attractor Mechanism

In this section, we first introduce a few concepts from the geometry of Calabi-
Yau spaces and real special geometry. We then review the compactification of
eleven-dimensional supergravity on a Calabi-Yau space and the resulting N = 2 su-
pergravity Lagrangian in five dimensions. This sets up a discussion of the attractor
mechanism for spherically symmetric black holes in five dimensions. We conclude
the lecture by giving explicit formulae in the case of toroidal compactification.

2.1 Geometrical Preliminaries

On a complex manifold with hermitian metric gμν̄ it is useful to introduce the Kähler
two-form J through

J = igμν̄dzμ ∧dzν̄ . (1)
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Kähler manifolds are complex manifolds with hermitian metric such that the cor-
responding Kähler form is closed, dJ = 0. The linear space spanned by all closed
(1,1) forms (modulo exact forms) is an important structure that is known as the
Dolbault cohomology and given the symbol H1,1

∂̄ . If we denote by JI a basis of this
cohomology, we can expand the closed Kähler form as

J = XIJI ; I = 1, . . . ,h11. (2)

This expansion is a statement in the sense of cohomology, so it should be understood
modulo exact forms.

Introducing the basis (1,1)-cycles Ω I we can write the expression

XI =
∫

Ω I
J ; I = 1, . . . ,h11, (3)

for the real expansion coefficients XI in (2). We see that they can be interpreted
geometrically as the volumes of (1,1)-cycles within the manifold. The XI are known
as Kähler moduli. In the context of compactification the Kähler moduli become
functions on spacetime, and so the XI will be interpreted as scalar fields.

One of several ways to define a Calabi-Yau space is that it is a Kähler manifold
that permits a globally defined holomorphic three-form. One consequence of this
property is that Calabi-Yau spaces do not have any (0, 2) and (2, 0) forms. For this
reason the (1, 1), cycles Ω I are in fact the only two-cycles on the manifold.

The two-cycles Ω I give rise to a dual basis of four-cycles ΩI , I = 1, . . . ,h11,
constructed such that their intersection numbers with the two-cycles are canonical
(Ω I ,ΩJ) = δ I

J . The volumes of the four-cycles are measured by the Kähler form as

XI =
1
2

∫

ΩI

J∧ J. (4)

The integral can be evaluated by noting that the two-form JI covers the space trans-
verse to the 4-cycle ΩI . Therefore

XI =
1
2

∫

CY
J∧ J∧ JI =

1
2

CIJKXJXK , (5)

where the integrals

CIJK =
∫

CY
JI ∧ JJ ∧ JK , (6)

are known as intersection numbers because they count the points where the four-
cycles ΩI , ΩJ , and ΩK all intersect.

2.2 The Effective Theory in Five Dimensions

We next review the compactification of M-theory on a Calabi-Yau manifold [8]. The
resulting theory in five dimensions can be approximated at large distances by N = 2
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supergravity. In addition to the N = 2 supergravity multiplet, the low energy theory
will include matter organized into a number of N = 2 vector multiplets and hyper-
multiplets. In discussions of the attractor mechanism, the hyper-multiplets decouple
and can be neglected. We therefore focus on the gravity multiplet and the vector
multiplets.

The N = 2 supergravity multiplet in five dimensions contains the metric, a vector
field, and a gravitino (a total of 8+8 physical bosons+fermions). Each N = 2 vector
multiplet in five dimensions contains a vector field, a scalar field, and a gaugino (a
total of 4 + 4 physical bosons+fermions). It is useful to focus on the vector fields.
These fields all have their origin in the three-form in eleven dimensions which can
be expanded as

A = AI ∧ JI ; I = 1, . . . ,h11. (7)

The JI are the elements of the basis of (1,1) forms introduced in (2). Among the h11

gauge fields AI , I = 1, . . . , h11, the linear combination

Agrav = XIA
I , (8)

is a component of the gravity multiplet. This linear combination is known as the
graviphoton. The remaining nV = h11 − 1 vector fields are components of N = 2
vector multiplets.

The scalar components of the vector multiplets are essentially the scalar fields
XI introduced in (3). The only complication is that, since one of the vector fields
does not belong to a vector multiplet, it must be that one of the scalars XI also does
not belong to a vector multiplet. Indeed, it turns out that the overall volume of the
Calabi-Yau space

V =
1
3!

∫

CY
J∧ J∧ J =

1
3!

CIJKXIXJXK , (9)

is in a hyper-multiplet. As we have already mentioned, hyper-multiplets decouple
and we do not need to keep track of them. Therefore, (9) can be treated as a con-
straint that sets a particular combination of the XIs to a constant. The truly inde-
pendent scalars obtained by solving the constraint (9) are denoted φ i, i = 1, . . . ,nV .
These are the scalars that belong to vector multiplets.

We now have all the ingredients needed to present the Lagrangean of the theory.
The starting point is the bosonic part of eleven-dimensional supergravity

S11 =
1

2κ2
11

∫ [
−R ∗1− 1

2
F ∧∗F − 1

3!
F ∧F ∧A

]
, (10)

where the four-form field strength is F = dA . The coupling constant is related to
Newton’s constant as κ2

D = 8πGD. Reducing to five dimensions, we find

S5 =
1

2κ2
5

∫ [
−R ∗1−GIJdXI ∧∗dXJ −GIJFI ∧∗FJ − 1

3!
CIJKFI ∧FJ ∧AK

]
,

(11)
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where FI = dAI and κ2
5 = κ2

11/V . The hodge-star is now the five-dimensional one,
although we have not introduced new notation to stress this fact.

The gauge kinetic term in (11) is governed by the metric

GIJ =
1
2

∫

CY
JI ∧∗JJ . (12)

It can be shown that

GIJ = −1
2
∂I∂J(lnV ) = − 1

2V

(
CIJKXK − 1

V
XIXJ

)
, (13)

where the notation ∂I = ∂
∂XI . Combining (5) and (9) we have the relation

XIX
I = 3V , (14)

and so (13) gives

GIJXJ =
1

2V
XI . (15)

The metric GIJ (and its inverse GIJ) thus lowers (and raises) the indices I,J =
1, · · · ,h11. It is sometimes useful to extend this action to the intersection numbers
CIJK so that, e.g., the constraint (9) can be be reorganized as

V 2 =
1
3!

CIJKXIXJXK , (16)

where all indices were either raised or lowered.
The effective action in five dimensions (11) was written in terms of the fields XI

which include some redundancy because the constraint (9) should be imposed on
them. An alternative form of the scalar term which employs only the unconstrained
scalars φ i is

Lscalar = − 1

2κ2
5

gi jdφ i ∧∗dφ j, (17)

where the metric on moduli space is

gi j = GIJ∂iX
I∂ jX

J . (18)

Here derivatives with respect to the unconstrained fields are

∂iX
I =

∂XI

∂φ i . (19)

So far we have just discussed the bosonic part of the supergravity action.
We will not need the explicit form of the terms that contain fermions. How-
ever, it is important that the full Lagrangean is invariant under the supersymmetry
variations
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δψμ =
[

Dμ(ω)+
i

24
XI
(
Γ νρ
μ −4δν

μΓ ρ)FI
νρ

]
ε, (20)

δλi = −1
2

GIJ∂iX
I
[

1
2
Γ μνFJ

μν + iΓ μ∂μXJ
]
ε, (21)

of the gravitino ψμ and the gauginos λi, i = 1, . . . ,nV . Here ε denotes the infinites-
imal supersymmetry parameter. Dμ(ω) is the covariant derivative formed from the
connection ω and acting on the spinor ε. The usual Γ -matrices in five dimen-
sions are denoted Γ μ ; and their multi-index versions Γ μν and Γ μνρ are fully anti-
symmetrized products of those.

2.3 A First Look at the Attractor Mechanism

We have now introduced the ingredients we need for a first look at the attractor
mechanism. For now, we will consider the case of supersymmetric black holes. As
the terminology indicates, such black holes preserve at least some of the supersym-
metries. This means δψμ = δλi = 0 for some components of the supersymmetry
parameter ε. A great deal can be learnt from these conditions by analyzing the ex-
plicit formulae (20), (21).

In order to make the conditions more explicit, we will make some simplifying
assumptions. First of all, we will consider only stationary solutions in these lectures.
This means we assume that the configuration allows a time-like Killing vector. The
corresponding coordinate will be denoted t. All the fields are independent of this
coordinate. The supersymmetry parameter ε satisfies

Γt̂ε = −iε, (22)

where hatted coordinates refer to a local orthonormal basis. In order to keep the
discussion as simple and transparent as possible, we will for now also assume radial
symmetry. This last assumption is very strong and will be relaxed in the following
lecture. At any rate, under these assumptions the gaugino variation (21) reads

δλi =
i
2

GIJ∂iX
I(FJ

mt̂ −∂mXJ)Γmε = 0, (23)

where m is the spatial index. We exploited that due to radial symmetry only the
electric components FI

mt̂ of the field strength can be nonvanishing. We next assume
that the solution preserve N = 1 supersymmetry so that (22) are the only projections
imposed on the spinor ε. Then Γ mε will be nonvanishing for all m and the solutions
to (23) must satisfy

GIJ∂iX
I (FJ

mt̂ −∂mXJ)= 0. (24)

This is a linear equation that depends on the bosonic fields alone. It essentially
states that the gradient of the scalar field (of type J) is identified with the electric
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field (of the same type). This identification is at the core of the attractor mechanism.
Later we will take more carefully into account the presence of the overall projection
operator GIJ∂iXI in (24). This operator takes into account that fact that no scalar
field is a superpartner of the graviphoton. This restriction arises here because the
index i = 1, . . . ,nV enumerating the gauginos is one short of the vector field index
I = 1, . . . ,nV +1.

The conditions (24) give rise to an important monotonicity property that controls
the attractor flow. To see this, multiply by ∂rφ i and sum over i. After reorganization
we find

GIJ∂rX
IFJ

rt̂ = GIJ∂rX
I∂rX

J ≥ 0. (25)

The quantity on the right-hand side of the equation is manifestly positively definite.
In order to simplify the left hand of the equation we need to analyze Gauss’ law for
the flux. For spherically symmetric configurations the Chern-Simons terms in the
action (11) do not contribute, so the Maxwell equation is just

d
(
GIJ

∗FJ)= 0. (26)

Using the explicit form of the metric for a radially symmetric extremal black hole
in five dimensions

ds2 = − f 2dt2 + f−1 (dr2 + r2dΩ 2
3

)
, (27)

the component form of the corresponding Gauss’ law reads

∂r
(
GIJr3 f−1FJ

rt̂

)
= 0. (28)

This can be integrated to give the explicit solution

GIJFJ
rt̂ = f · 1

r3 · const ≡ f · QI

r3 , (29)

for the radial dependence of the electric field. Inserting this in (25), we find the flow
equation

∂r(XIQI) = f−1r3GIJ∂rX
I∂rX

J ≥ 0. (30)

We can summarize this important result as the statement that the central charge,

Ze ≡ XIQI , (31)

depends monotonically on the radial coordinate r. It starts as a maximum in the
asymptotically flat space and decreases as the black hole is approached. This is the
attractor flow.

In order to analyze the behavior of (30) close to the horizon, it is useful to write
it as

r∂rZe = f−2r4 ε ≥ 0, (32)

where the energy density in the scalar field is
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ε = grrGIJ∂rX
I∂rX

J . (33)

According to the line element (27) an event horizon at r = 0 is characterized by the
asymptotic behavior f ∼ r2. Therefore, the measure factor f−2r4 is finite there. Im-
portantly, when f ∼ r2 the proper distance to the horizon diverges as

∫
0 dr/r. Since

the horizon area is finite, it means that the proper volume of the near horizon region
diverges. This is a key property of extremal black holes. In the present discussion,
the important consequence is that the energy density of the scalars in the near hori-
zon region must vanish or else they would have infinite energy and so deform the
geometry uncontrollably. We conclude that the right-hand side of (32) vanishes at
the horizon, i.e. the inequality is saturated there. We therefore find the extremization
condition

r∂rZe = 0, (at horizon). (34)

This is the spacetime form of the attractor formula.
There is another form of the attractor formula that is cast entirely in terms of the

moduli space. To derive it, we begin again from (24), simplify using Gauss’ law
(29), and introduce the central charge (31). We can write the result as

∂iZe =
√

g⊥gi j∂nφ j, (35)

where
√

g⊥ = f−3/2r3 is the area element, gi j is the metric on moduli space in-
troduced in (18), ∂n =

√
grr∂r is the proper normal derivative, and the φ j are the

unconstrained moduli. As discussed in the previous paragraph, the energy density
(33) must vanish at the horizon for extremal black holes. This means the contribution
from each of the unconstrained moduli must vanish by itself, and so the right-hand
side of (35) must vanish for all values of index i. We can therefore write the attractor
formula as an extremization principle over moduli space

∂iZe = 0, (at horizon). (36)

This form of the attractor formula determines the values XI
ext of the scalar fields at

the horizon in terms of the charges QI .
We can solve (36) explicitly. In order to take the constraint (9) on the scalars

properly into account, it is useful to rewrite the extremization principle as

DIZe = 0, (at horizon), (37)

where the covariant derivative is defined as

DIZe =
(
∂I −

1
3
(∂I lnV )

)
Ze =

(
∂I −

1
3V

XI

)
Ze = QI −

1
3V

XIZe. (38)

We see that QI ∝ XI at the attractor point, with the constant of proportionality deter-
mined by the constraint (16) on the scalar. We thus find the explicit result

Xext
I

V 2/3
=

QI(
1
3!C

JKLQJQKQL
)1/3

, (39)
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for the attractor values of the scalar fields in terms of the charges. As a side product
we found

Zext
e

V 1/3
= 3

(
1
3!

CJKLQJQKQL

)1/3

, (40)

for the central charge at the extremum.

2.4 A Closer Look at the Attractor Mechanism

Before considering examples, we follow up on some of the important features of
the attractor mechanism that we skipped in the preceding subsection: We introduce
the black hole entropy, we discuss the interpretation of the central charge, and we
present some details on the units.

2.4.1 Black Hole Entropy

Having determined the scalars XI in terms of the charges we can now express the
central charge (31) in terms of charges alone. It turns out that for spherically sym-
metric black holes the resulting expression is in fact related to the entropy through
the simple formula

S = 2π · π
4G5

·
(

1

3V 1/3
Zext

e

)3/2

. (41)

The simplest way to establish this relation is to inspect a few explicit black hole
solutions and then take advantage of near horizon symmetries to extend the result
to large orbits of black holes that are known only implicitly. The significance of the
formula (41) is that it allows the determination of the black hole entropy without
actually constructing the black hole geometry.

In view of the explicit expression (40) for the central charge at the extremum we
find the explicit formula

S = 2π · π
4G5

·
√

1
3!

CJKLQJQKQL, (42)

for the black hole entropy of a spherically symmetric, supersymmetric black hole in
five dimensions.

2.4.2 Interpretation of the Central Charge

In the preceding subsection, we introduced the central charge (31) rather formally
as the linear combination of charges that satisfies a monotonic flow. This charac-
terization can be supplemented with a nice physical interpretation as follows. The
eleven-dimensional origin of the gauge potential AI

t can be determined from the
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decomposition (7). It is a three-form with one index in the temporal direction and
the other two within the Calabi-Yau, directed along a (1,1)-cycle of type I. Such
a three-form is sourced by M2-branes wrapped on the corresponding (1,1)-cycle
which we have denoted Ω I . The volume of this cycle is precisely XI , according to
(3). Putting these facts together, it is seen that the central charge (31) is the total
volume of the wrapped cycles, with multiple wrappings encoded in the charge QI .
We can interpret the underlying microscopics as a single M2-brane wrapping some
complicated cycle Ω within the Calabi-Yau which can be characterized in terms of
a decomposition

Ω = QIΩ I , (43)

on the canonical cycles Ω I . Then the central charge is identified with the mass of
this M2-brane, up to an overall factor of the tension.

There is yet another interpretation of the central charge which takes as starting
point the N = 2 supersymmetry algebra

{
QA

α ,QB
β

}
= 2

(
δABPμ (Γ μ)αβ +δαβ εABZe

)
, (44)

where A,B = 1,2 distinguish the two supercharges. The last term on the right-hand
side (proportional to Ze) is the central term. It is introduced from a purely algebraic
point of view as a term that commutes with all other generators of the algebra. The
algebra is most usefully analyzed in the restframe where Pμ(Γ μ)αβ = P0(Γ 0)αβ .
Consider a state that is annihilated by one or more of the supercharges QA

α . Taking
expectation value on both sides with respect to this states, and demanding positive
norm of the state, we find the famous BPS inequality

M = |P0| ≥ Ze, (45)

with the inequality saturated exactly when supersymmetry is preserved by the state.
Supersymmetric black holes are BPS states, and so their mass should agree with the
algebraic central charge. In the preceding paragraph, we showed that the mass agrees
with the central charge introduced geometrically, so the alternate introductions of
the central charge agree.

2.4.3 Some Comments on Units and Normalizations

Let us conclude this subsection with a few comments on units. It is standard to intro-
duce the eleven-dimensional Planck length through κ2

11 = (2π)7l9
P. In this notation,

the five-dimensional Newton’s constant is

G5 =
π
4
· (2πlP)6

V
· l3

P, (46)

and the M2-brane tension is τM2 = 1
(2π)2�3

P
. The relation to standard string theory

units are lP = g1/3
s

√
α ′, and the radius of the M-theory circle is R11 = gs

√
α ′. Now,
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the physical charges QI were introduced in (29) as the constant of integration from
Gauss’ law, following standard practice in supergravity. Such physical charges are
proportional to quantized charges nI according to

QI =
(

V

(2πlP)6

)−2/3

· l2
P ·nI =

(
π

4G5

)−2/3

nI . (47)

The mass of the brane configuration is

M = τM2XInI =
1

l3
P

· V

(2πlP)6 · XI

V 1/3
·QI =

π
4G5

· XI

V 1/3
·QI . (48)

The formulae (47), (48) are the precise versions of the informal notions that the
charge QI counts the number of branes and that the central charge Ze agrees with the
mass. We see that there are awkward constants of proportionality, which vanish in
units where G5 = π

4 , and the volumes of two-cycles are measured relative to V 1/3.
In this first lecture, we will for the most part go through the trouble of keeping
all units around to make sure that it is clear where the various factors go. In later
lectures, we will revert to the simplified units.1 If needed, one can restore units by
referring back to the simpler special cases.

2.5 An Explicit Example

We conclude this introductory lecture by working out a simple example explicitly.
The example we consider is when the Calabi-Yau space is just a torus CY = T 6.
Strictly speaking a torus is not actually a Calabi-Yau space, if by the latter we mean
a space with exactly SU(3) holonomy. The issue is that for M-theory on T 6 the
effective five-dimensional theory has N = 8 supersymmetry rather than N = 2 su-
persymmetry as we have assumed. This means there are extra gravitino multiplets
in the theory which we have not taken into account. However, these gravitino mul-
tiplets decouple from the black hole background, and so it is consistent to ignore
them, in much the same way that we already ignore the N = 2 hypermultiplets. We
can therefore use the formalism reviewed above without any change.

In the explicit example, we will further assume that the metric on the torus is
diagonal so that the Kähler form takes the product form

J = i
(
X1dz1 ∧dz̄1 +X2dz2 ∧dz̄2 +X1dz3 ∧dz̄3) . (49)

Then the scalar fields XI with I = 1,2,3 are just the volumes of each T 2 in the
decomposition T 6 = (T 2)3. The only nonvanishing intersection numbers of these
two-cycles are C123 = 1 (and cyclic permutations). The constraint (9) on the scalars

1 In fact, the supersymmetry algebra (44) was already simplified this way to avoid overly heavy
notation.
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therefore takes the simple form

X1X2X3 = V . (50)

The volumes (5) of four-cycles on the torus are

X1 = X2X3 = V /X1 (and cyclic permutations). (51)

2.5.1 Attractor Behavior

The central charge (31) for this example is

Ze = X1Q1 +X2Q2 +X3Q3. (52)

According to the extremization principle, we can determine the scalar fields at the
horizon by minimizing this expression over moduli space. The constraint (50) can
be implemented by solving in terms of one of the XIs and then extremizing (52)
over the two remaining moduli. Alternatively, one can employ Lagrange multipliers.
Either way, the result for the scalars in terms of the charges is

Xext
1

V 1/3
=
(

Q2
1

Q2Q3

)1/3

=
Q1

(Q1Q2Q3)
1/3

(and cyclic permutations). (53)

These are the horizon values for the scalars predicted by the attractor mechanism.
They agree with the general formula (39). Below, we confirm these values in the
explicit solutions.

At the attractor point (53), the three terms in the central charge (52) are identical.
The central charge takes the value

Zext = 3(Q1Q2Q3)1/3. (54)

The black hole entropy (41) becomes

S = 2π · π
4G5

· (Q1Q2Q3)1/2 = 2π(n1n2n3)1/2. (55)

This is the entropy computed using the attractor formalism, i.e. without explicit
construction of the black hole geometry. At the risk of seeming heavy handed, we
wrote (55) both in terms of the proper (dimensionful) charges QI and also in terms
of the quantized charges nI .

The entropy formula (55) is rather famous, so let us comment a little more on
the relation to other work. The M2-brane black hole considered here can be iden-
tified, after duality to type IIB theory, with the D1–D5 black hole considered by
Strominger and Vafa [9]. In this duality frame, two of the M2-brane charges be-
come the background D-branes, and the third charge is the momentum p along the
D1-brane. Then (55) coincides with Cardy’s formula
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S = 2π
√

ch
6

, (56)

where the central charge c = 6N1N5 for the CFT on the D-branes and h = p for
the energy of the excitations. In the present lectures, we are primarily interested
in macroscopic features of black holes, and no further details on the microscopic
theory will be needed. For more review on this, consult e.g. [10, 11, 12].

2.5.2 Explicit Construction of the Black Holes

We can compare the results from the attractor computation with an explicit con-
struction of the black hole. The standard form of the M2-brane solution in eleven-
dimensional supergravity is

ds2
11 = H−2/3dx2

‖ +H1/3dx2
⊥. (57)

Here the space parallel to the M2-brane is

dx2
‖ = −dt2 +dx2

1 +dx2
2, (58)

when the spatial directions of the M2-brane have coordinates x1 and x2. The trans-
verse space dx2

⊥ is written similarly in terms of the remaining eight coordinates. The
function H can be any harmonic on the transverse space; the specific one needed in
our example is given below.

The harmonic function rule states that composite solutions can be formed by su-
perimposing three M2-brane solutions of the form (57) with cyclically permuted
choices of parallel space. The only caveat is that we must smear along all direc-
tions within the torus, i.e. the harmonic functions can depend only on the directions
transverse to all the different branes. This procedure gives the standard intersecting
M2-brane solution

ds2
11 =− f 2dt2 + f−1 (dr2 + r2dΩ 2

3

)
+

[(
H2H3

H2
1

)1/3 (
dx2

1 +dx2
2

)
+ cyclic

]
, (59)

where

f = (H1H2H3)−1/3. (60)

We introduced radial coordinates in the four spatial dimensions transverse to all the
branes. The harmonic functions are

HI = XI∞ +
QI

r2 ; I = 1,2,3. (61)

Comparing the intersecting brane solution (59) with the torus metric (49) we deter-
mine the scalar fields as
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X1

V 1/3
=
(

H2H3

H2
1

)1/3

(and cyclic permutations). (62)

The only remaining matter fields from the five-dimensional point of view are the
gauge fields

AI = ∂rH
−1
I dt ; I = 1,2,3. (63)

The scalar fields XI (62) depend in a non-trivial way on the radial coordinate r.
One can verify that the dependence is such that Ze = XIQI is a monotonic function of
the radii, but we will focus on the limiting values. The constants XI∞ in the harmonic
functions (61) were introduced in order to obtain the correct limit as r → ∞

X1 →
(

X2∞X3∞

(X1∞)2

)1/3

V 1/3 = X1
∞ (and cyclic permutations). (64)

We used the constraint (50) in the asymptotic space and the relation (51) for the
volumes of four-cycles. As the horizon (r = 0) is approached the moduli simplify to

X1

V 1/3
→ X1

hor

V 1/3
=
(

Q2Q3

Q2
1

)1/3

(and cyclic permutations). (65)

In view of (51), this agrees with the values (53) predicted by the attractor mechanism.
We can also compute the black hole entropy directly from the geometry (59). The

horizon at r = 0 corresponds to a three-sphere with finite radius R = (Q1Q2Q3)1/6.
Since VS3 = 2π2 for a unit three-sphere this gives the black hole entropy

S =
A

4G5
=

1
4G5

·2π2 ·R3 = 2π(n1n2n3)1/2. (66)

This explicit result for the black hole entropy is in agreement with (55) computed
from the attractor mechanism.

3 Black Ring Attractors

In this lecture, we generalize the discussion of the attractor mechanism to a much
larger class of stationary supersymmetric black solutions to the N = 2 theory in five
dimensions introduced in Sect. 2.2. By giving up spherical symmetry and allowing
for dipole charges, we can discuss multi-center black holes, rotating black holes
and, especially, black rings.

3.1 General Supersymmetric Solutions

In the last few years, many families supersymmetric solutions have been classified
by exploiting g-structures. The case considered in these lectures was analyzed in
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[13] (with vector multiplets added in [14] and the ungauged case exhibited in the
black ring papers [15, 16, 17, 18]). The result was that the most general supersym-
metric metric with a time-like Killing vector takes the form

ds2 = − f 2(dt +ω)2 + f−1ds2
4, (67)

where

ds2
4 = hmndxmdxn, (68)

is the metric of a four-dimensional base space, and ω is a one-form on that base
space. In the simplest examples, the base is just flat space, but generally it can be
any hyper-Kähler manifold in four dimensions. The matter fields needed to support
the solution are the field strengths FI = dAI given by

FI = d( f XI(dt +ω))+Θ I , (69)

and the scalar fields XI satisfying the sourced harmonic equation

(4)∇2( f−1XI) =
1
4

CIJKΘ J ·ΘK , (70)

on the base space. In these equations, Θ I is a closed self-dual two-form Θ I =∗4 Θ I

on the base. This two-form vanishes in the most familiar solutions, but in general
it must be turned on. For example, it plays a central role for black rings. The inner
product between two-forms is defined as the contraction

α ·β =
1
2
αmnβmn. (71)

The self-dual part of the one-form ω introduced in the metric (67) is sourced by Θ I

according to
dω + ∗4dω = − f−1XIΘ I . (72)

The general solution specified by (67), (68), (69), (70), (71), (72) is a bit im-
penetrable at first sight, but things will become clearer as we study these equations.
At this point, we just remark that the form of the solution given above has reduced
the full set of Einstein’s equation and matter equations to a series of equations that
are linear if solved in the right order: first specify the hyper-Kähler base (68) and
the self-dual two forms Θ I on that base. Then solve (70) for f−1XI . Determine the
conformal factor f of the metric from the constraint (9) and compute ω by solving
(72). Finally the field strength is given in (69).2

2 We need XI which can be determined from (5). On a general Calabi-Yau, this is a nonlinear
equation, albeit an algebraic one.
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3.2 The Attractor Mechanism Revisited

We next want to generalize the discussion of the attractor mechanism from the spher-
ical case considered in Sect. 2.3 to the more general solutions described above. Thus
we consider the gaugino variations

δλi =
i
2

GIJ∂iX
I
[

i
2

FJ
μνΓ μν −∂μXJΓ μ

]
ε, (73)

=
i
2

GIJ∂iX
I
[

FJ
mt̂Γ

m +
i
2

FJ
mnΓ mn −∂mXJΓ m

]
ε. (74)

In the second equation, we imposed the supersymmetry projection (22) on the spinor
ε. In contrast to the spherically symmetric case (23), there are in general both elec-
tric EI

m ≡ FI
mt̂ and magnetic BI

mn ≡ FI
mn components of the field strength. However,

as we explain below, it turns out that the magnetic field in fact does not contribute
to (74). Therefore we have

i
2

GIJ∂iX
I [EJ

m −∂mXJ]Γ mε = 0. (75)

Since this is valid for all components of ε, we find

GIJ∂iX
I [EJ

m −∂mXJ]= 0, (76)

just like (24) for the spherical symmetric case. In particular, we see that the gradient
of the scalar field is related to the electric field quite generally. Of course this can be
seen already from the explicit form (69) of the field strength, which can be written
in components as

EI
m ≡ FI

mt̂ = f−1∂m( f XI), (77)

BI
mn ≡ FI

mn = f XI(dω)mn +Θ I
mn. (78)

The point here is that we see how the relation (77) between the electric field and the
gradient of scalars captures an important part of the attractor mechanism even when
spherical symmetry is given up.

The key ingredient in reaching this result was the claim that the magnetic part
(78) does not contribute to the supersymmetry variation (74). It is worth explaining
in more detail how this comes about. The first term in (78) is of the form FI

mn ∝
XI(dω)mn. This term cancels from (74) because

GIJ∂iX
IXJ = 0, (79)

due to special geometry. Let us prove this. Lowering the index using the metric (15)
we can use (5) to find
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XI∂iX
I =

1
2

CIJKXJXK∂iX
I =

1
3!

∂i(CIJKXIXJXK) = 0. (80)

due to the constraint (9) on the scalars XI . This is what we wanted to show.
We still need to consider the second term in (78), the one taking the form

FI
mn ∝Θ I

mn. This term cancels from the supersymmetry variation (74) because the
supersymmetry projection (22) combines with self-duality of Θ I

mn to give

Θ I
mnΓ mnε = 0. (81)

In order to verify this, recall that the SO(4,1) spinor representation can be con-
structed from the more familiar SO(3,1) spinor representation by including Lorentz
generators from using the chiral matrix Γ 4 ≡ γ5 =−iγ0γ1γ2γ3. All spinors that sur-
vive the supersymmetry projection (22) therefore satisfyΓ 1234ε = ε by construction,
and this means the Θ12 term in (81) cancels the Θ34 term, etc.

After this somewhat lengthy and technical aside, we return to analyzing the con-
ditions (76). Following the experience from the spherically symmetric case, we
would like to trade the electric field for the charges, by using Gauss’ law. The La-
grangean (11) gives the Maxwell equation

d
(
GIJ

∗FJ)=
1
2

CIJKFJ ∧FK , (82)

with the source on the right-hand side arising from the Chern-Simons term. Consid-
ering the coefficient of the purely spatial four-form, we find Gauss’ law

∇m ( f−1EmI
)

= −1
8

CIJKΘ J ·ΘK . (83)

In arriving at this result, we must take into account off-diagonal terms in the metric
(67) due to the shift by ω of the usual time element dt. These contributions cancel
with the terms coming from the first term in the field strength (78). Effectively,
this means only the term of the form FI

mn ∼Θ I
mn remains, and it is those terms that

give rise to the inhomogenous terms in (83). The physical interpretation is that the
electric field is sourced by a distributed magnetic field which we may interpret as a
delocalized charge density.

We are now ready to derive the generalized flow equation. Multiplying (76) by
∂nφ i and contract with the base metric hmn, we find

∂mXIEmI = GIJ∂mXI∂mXJ , (84)

which can be reorganized as

∇m(XI f−1EmI)−XI∇m ( f−1EmI
)

= f−1GIJ∂mXI∂mXJ , (85)

and then Gauss’ law (83) gives
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∇m(XI f−1EmI) = f−1GIJ∂mXI∂mXJ − XI

8
CIJKΘ J ·ΘK . (86)

This is the generalized flow equation. In the case whereΘ I = 0 the right-hand side is
positive definite, and then the flow equation generalizes the monotonicity property
found in (30) to many cases without radial symmetry. However, the most general
case has nonvanishing Θ I , and such general flows are more complicated.

3.3 Charges

In order to characterize the more general flows with precision, it is useful to be more
precise about how charges are defined.

Consider some bounded spatial region V . It is natural to define the electric charge
in the region by integrating the electric flux through the boundary ∂V as

QI(V ) =
1

2π2

∫

∂V
dS f−1nmEmI , (87)

where nm is an outward pointing normal on the boundary. If we consider two nested
regions V2 ⊂V1, we have

QI(V1)−QI(V2) = − 1
16π2

∫
d4x

√
hCIJKΘ J ·ΘK , (88)

where the second step used Gauss’ law (83). This means the charge is monotonically
decreasing as we move to larger volumes. The reason that it does not have to be
constant is that in general the delocalized source on the right-hand side of (83)
contributes.

The central charge is constructed from the electric charges by dressing them with
the scalar fields. It was originally introduced in (31), but in analogy with the defini-
tion (87) of the electric charge in a volume of space, we may dress the electric field
by the scalars as well and so introduce the central charge in a volume of space as

Ze(V ) =
1

2π2

∫

∂V
dS f−1nmXIEmI . (89)

Considering again a nested set of regions, we can use (86) to show that the central
charge satisfies

Ze(V1)−Ze(V2) =
1

2π2

∫
d4x

√
h

[
f−1GIJ∇mXI∇mXJ − 1

8
CIJKXIΘJ ·ΘK

]
. (90)

When Θ I = 0 the central charge is monotonically increasing as we move outward.
This generalizes the result from the spherically symmetric case to all cases where the
two-forms vanish. When the system is not spherically symmetric there is no unique
“radius” but this is circumvented by the introduction of nested regions, which gives
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an orderly sense of moving “outwards”. Note that in general, we do not force the
nested volumes to preserve topology. In particular, there can be multiple singular
points, and these then provide natural centers of the successive nesting.

When the two-forms Θ I �= 0 the electric central charge (89) may not be mono-
tonic, and the flow equation does not provide any strong constraint on the flow.

In order to interpret the Θ Is properly, we would like to associate charges with
them as well. Since they are two-forms, it is natural to integrate them over two-
spheres and so define

qI = − 1
2π

∫

S2
Θ I . (91)

Since the two-forms Θ I are closed, the integral is independent under deformations
of the two-cycle and, in particular, it vanishes unless the S2 is non-contractible on the
base space. One way such non-trivial cycles can arise is by considering non-trivial
base spaces. For our purposes, the main example will be when the base space is
flat but endowed with singularities along one or more closed curves (including lines
going off to infinity). This situation also gives rise to noncontractible S2s because in
four Euclidean dimensions a line can be wrapped by surfaces that are topologically
a two-sphere.

The charges qI defined in (91) can be usefully thought as a magnetic charges.
In our main example of a flat base space with a closed curve, we may interpret
the configuration concretely in terms of electric charge distributed along the curve.
Since the curve is closed there is in general no net electric charge, but there will
be a dipole charge, and it is this dipole charge that we identify as the magnetic
charge (91).

In keeping with the analogy between the electric and magnetic charges, we would
also like to introduce a magnetic central charge. The electric central charge (89)
was obtained by dressing the ordinary charge (87) by the moduli. In analogy, we
construct the magnetic central charge

Zm(V ) = − 1
2π

∫

S2
XIΘ I . (92)

In some examples, this magnetic central charge will play a role analogous to that
played by the electric central charge in the attractor mechanism.

A general configuration can be described in terms of its singularities on the base
space. There may be a number of isolated point-like singularities, to which we assign
electric charges, and there may be a number of closed curves (including lines going
off to infinity), to which we assign magnetic charges.

In four dimensions, electric and magnetic charges are very similar: They are
related by electric magnetic duality, which is implemented by symplectic transfor-
mations in the complex special geometry. In five dimensions, the situation is more
complicated because the Chern-Simons term makes the symmetry between point-
like electric sources and string-like magnetic sources more subtle. Therefore, we
will need to treat them independently.
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3.4 Near Horizon Enhancement of Supersymmetry

There is another aspect of attractor behavior that we have not yet developed: The
attractor leads to enhancement of supersymmetry [19]. This is a very strong condi-
tion that completely determines the attractor behavior, even when dipole charges are
turned on.

The enhancement of supersymmetry means the entire supersymmetry of the the-
ory is preserved near the horizon. To appreciate why that is such a strong conditions,
recall the origin of the attractor flow: We considered the gaugino variation (74) and
found the flow by demanding that the various terms cancel. The enhancement of
supersymmetry at the attractor means each term vanishes by itself.

We first determine the supersymmetry constraint on the gravitino variation (20).
By considering the commutator of two variations [19], it can be shown that the near
horizon geometry must take the form AdSp × Sq. In five dimensions there are just
two options: AdS3 ×S2 or AdS2 ×S3.

The near horizon geometry of the supersymmetric black hole in five dimension
that we considered in Sect. 2.5 is indeed AdS2 × S3 [20] (up to global identifica-
tions). A more stringent test is the attractor behavior of the supersymmetric rotating
black hole. One might have expected that rotation would squeeze the sphere and
make it oblate, but this would not be consistent with enhancement of supersym-
metry. In fact, it turns out that, for supersymmeric black holes, the near horizon
geometry indeed remains AdS2 ×S3 [21] (up to global identifications).

There are also examples of a supersymmetric configurations with near horizon
geometry AdS3 ×S2. The simplest example is the black string in five dimensions. A
more general solution is the supersymmetric black ring, which also has near horizon
geometry AdS3 ×S2. Indeed, the extrinsic curvature of the ring becomes negligible
in the very near horizon geometry, so there the black ring reduces to the black string.
We will consider these examples in more detail in the next section.

The pattern that emerges from these examples is that black holes correspond to
point-like singularities on the base and a near horizon geometry AdS2 × S3 in the
complete space. On the other hand, black strings and black rings correspond to sin-
gularities on a curve in the base and a near horizon geometry AdS3 ×S2 in the com-
plete space. The two classes of examples are related by electric-magnetic duality
which, in five dimensions, interchanges one-form potentials with two-form poten-
tials and so interchanges black holes and black strings. This duality interchanges
AdS3 ×S2 with AdS2 ×S3.

So far, we have just considered the constraints from the gravitino variation (20).
The attractor behavior of the scalars is controlled by the gaugino variation (74)
which we repeat for ease of reference

δλi =
i
2

GIJ∂iX
I
[

FJ
mt̂Γ

mt̂ +
i
2

FJ
mnΓ mn −∂mXJΓ m

]
ε. (93)

Near horizon enhancement of supersymmetry demands that each term in this equa-
tion vanishes by itself, since no cancelations are possible when the spinor ε remains
general. Let us consider the three conditions in turn.
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The vanishing of the third term ∂mXJ = 0 means XJ is a constant in the near
horizon geometry. The attractor mechanism will determine the value of that constant
as a function of the charges.

The first term in (93) reads
∂iX

IEIm = 0, (94)

in terms of the electric field introduced in (77). In the event that there is a point-like
singularity in the base space, there is an S3 in the near horizon geometry. Integrating
the flux over this S3 and recalling the definition (87) of the electric charge, we
then find

∂iZe = 0, (95)

in terms of the electric central charge (31). This is the attractor formula (36), now
applicable in the near any point-like singularity in base space. We can readily deter-
mine the explicit attractor behavior as (39) near any horizon with S3 topology.

We did not yet consider the condition that the second term in (93) vanishes. This
term was considered in some detail after (78). There we found that the magnetic
field BI

mn = FI
mn has a term proportional to XI which cancels automatically from

the supersymmetry conditions, due to special geometry relations. However, there is
also another term in BI

mn which is proportional to Θ I
mn. This term also cancels from

the supersymmetry variation, but only for the components of the supersymmetry
generator ε that satisfy the projection (22). However, in the near horizon region
there is enhancement of supersymmetry and so the variation must vanish for all
components ε. This can happen if the two-forms Θ I take the special form

Θ I = kXI , (96)

where k is a constant (I-independent) two-form because then special geometry rela-
tions will again guarantee supersymmetry. The special form (96) will determine the
scalars completely.

Indeed, suppose that sources are distributed along a curve in the base space. Then
we can integrate (96) along the S2 wrapping the curve. This gives

qI = − 1
2π

∫

S2
Θ I = XI

ext · constant, (97)

for the dipole charges in the near horizon region. The constant of proportionality is
determined by the constraint (9) and so we reach the final result3

XI
ext =

qI

(
1
3!CJKLqJqKqL

)1/3
, (98)

for the scalar field in terms of the dipole charges. The result is applicable near singu-
larities distributed along a curve in the base space. In particular, this is the attractor
value for the scalars in the near horizon region of black strings and of black rings.

3 In this Sects. 3 and 4 we use the simplified units where V = 1 and G5 = π
4 . See Sect. 2.4 for

details on units.
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Our result (98) was determined directly in the near horizon region by exploiting
the enhancement of supersymmetry there. In the case where Θ I �= 0, we cannot
understand the entire flow as a gradient flow of the electric central charge Ze, nor
are the attractor values given by extremizing Ze. In fact, we can see that the attractor
values (98) amount to extremization of the magnetic central charge (92). However,
the significance of this is not so clear, since it is only the near horizon behavior that is
controlled by Zm, not the entire flow. It would be interesting to find a more complete
description of the entire flow in the most general case. For now, we understand the
complete flow when Θ I = 0, and the attractor behavior when Θ I �= 0.

There is in fact another caveat we have not mentioned so far. Our expression (39)
for the scalars at the electric attractor breaks down when CJKLQJQKQL = 0, and
similarly (98) for the magnetic attractor breaks down when CIJKqIqJqK = 0. In the
electric case, the issue has been much studied: the case where CJKLQJQKQL = 0
corresponds to black holes with area that vanishes classically. These are the small
black holes. In some cases, it is understood how higher derivative corrections to the
action modify the attractor behavior such that the geometry and the attractor values
of the scalars become regular [22, 23, 24, 25]. The corresponding magnetic case
CIJKqIqJqK = 0 corresponds to small black rings. This case has been studied less,
but it is possible that a similar picture applies in that situation.

3.5 Explicit Examples

In this subsection, we consider a number of explicit geometries. In each example
we first determine the attractor behavior abstractly, by applying the attractor mech-
anism, and then check the results by inspecting the geometry.

3.5.1 The Rotating Supersymmetric Black Hole

The simplest example of the attractor mechanism is the spherically symmetric black
hole discussed in detail in Sect. 2.5. The generalization of the spherically symmetric
solution to include angular momentum are the rotating supersymmetric black hole
in five-dimensions. This solution is known as the BMPV black hole [26].

Let us consider the attractor mechanism first. The rotating black hole is elec-
trically charged, but there are no magnetic charges, so the two-forms Θ I vanish in
this case. We showed in Sect. 3.2 that then the electric central charge Ze must be
monotonic just as it was in the nonrotating case. Extremizing over moduli space,
we therefore return to the values (53) of the scalars found in the nonrotating case.
Alternatively, we can go immediately to the general result (39) which is written for
a general Calabi-Yau three-fold. Either way, we see that the attractor values of the
scalars are independent of the black hole angular momentum. Since the rotation de-
forms the black hole geometry, this result is not at all obvious. The independence of
angular momentum is a prediction of the attractor mechanism.
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We can verify the result by inspecting the explicit black hole solution. The metric
takes the form (67) where the base space dx2

4 is just flat space R4 which can be
written in spherical coordinates as

dx2
4 = dr2 + r2(dθ 2 + cos2 θdψ2 + sin2 θdφ 2). (99)

Although the solution is rotating, it is almost identical to the nonrotating example
discussed in Sect. 2.5: The conformal factor f is given again by (60) where the
harmonic functions HI are given by (61). Additionally, the matter fields remain the
scalar fields (62) and the gauge fields (63). The only effect of adding rotation is that
now the one-forms ω are

ω = − J
r2 (cos2 θdφ + sin2 θdψ). (100)

As an aside, we note that the self-dual part of dω vanishes, as it must for solu-
tions with Θ I = 0, but the anti-selfdual part is non-trivial: It carries the angular
momentum.

Now, for the purpose of the attractor mechanism, we are especially interested
in the scalar fields. As just mentioned, these take the form (62) in terms of the
harmonic functions, independently of the angular momentum. This means they will
in fact approach the attractor values (53) at the horizon. In particular, the result is
independent of the angular momentum, as predicted by the attractor mechanism.

3.5.2 Multi-center Black Holes

From the supergravity point of view, the M2-brane solution (57) is valid for any har-
monic function H on the transverse space. Similarly, the intersecting brane solution
(59) (and its generalization to an arbitrary Calabi-Yau three-fold) remains valid for
more general harmonic functions HI . In particular, the standard harmonic functions
(61) can be replaced by

HI = XI∞ +
N

∑
i=1

Q(i)
I

|r− ri|2
. (101)

where ri are position vectors in the transverse space. We will assume that all Q(i)
I > 0

so that the configuration is regular.
The interpretation of these more general solutions is that they correspond to

multi-center black holes, i.e. N black holes coexisting in equilibrium, with their
gravitational attraction canceled by repulsion of the charges. The black hole cen-

tered at ri has charges {Q(i)
I }.

The attractor behavior of these solutions is the obvious generalization of the sin-
gle center black holes. The attractor close to each center depends only on the charges
associated with that center, because the charge integrals (87) are defined with respect
to singularities on the base manifolds. This immediately implies that the attractor
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values for the scalars in a particular attractor region are (39) in terms of the charges

{Q(i)
I } associated with this particular region.
The explicit solutions verify this prediction of the attractor mechanism because

the harmonic functions (101) are dominated by the term corresponding to a single
center in the attractor regime corresponding to that center.

In some ways, the multi-center solution is thus a rather trivial extension of
the single-center solution. The reason it is nevertheless an interesting and impor-
tant example is the following. Far from all the black holes, the geometry of the
multi-center black hole approaches that of a single center solution with charges

{QI} = {∑N
i=1 Q(i)

I }. Based on the asymptotic data alone, one might have expected
an attractor flow governed by the corresponding central charge Ze = XIQI , leading
to the attractor values for the scalars depending on the QI in a unique fashion, inde-
pendently of the partition of the geometry into constituent black holes with charges

{Q(i)
I }. The multi-center black hole demonstrates that this expectation is false: The

asymptotic behavior does not uniquely specify the attractor values of the scalars and
nor does it define the near horizon geometry and the entropy.

More structure appears when one goes beyond the focus on attractor behavior
and consider the full attractor flow of the scalars. As we discussed in Sect. 3.2, the
flow of the scalars is a gradient flow controlled by the electric central charge (this
is when the dipoles vanish). The central charge is interpreted as the total constituent
mass. For generic values of the scalar fields the actual mass of the configuration
is smaller, i.e. the black holes are genuine bound states. Now, in the course of the
attractor flow, the values of the scalars change. At some intermediate point, it may be
that the actual mass of the black hole is identical to that of two (or more) clusters of
constituents. This is the point of marginal stability. There the attractor flow will split
up, and continue as several independent flows, each controlled by the appropriate
sets of smaller charges. This process then continues until the true attractor basins
are reached. The total flow is referred to as the split attractor flow. It has interesting
features which are beyond the scope of the present lecture. We refer the reader to
the original papers [27, 28, 29] and the review [6].

3.5.3 Supersymmetric Black Strings

The black string is a five dimensional solution that takes the form

ds2
5 = f−1(−dt2 +dx2

4)+ f 2(dr2 + r2dΩ 2
2 ), (102)

where the conformal factor

f =
1
3!

CIJKHIHJHK , (103)

in terms of the harmonic function

HI = XI
∞ +

qI

2r
. (104)
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The geometry is supported by the gauge fields

AI = −1
2

qI(1+ cosθ)dφ , (105)

and the scalar fields
XI = f−1HI . (106)

The black string solution is the long distance representation of an M5-brane that
wraps the four-cycle qIΩI inside a Calabi-Yau threefold and has the remaining spa-
tial direction aligned with the coordinate x4. This configuration plays in important
role in microscopic considerations of the four dimensional black hole (see e.g. [30]).

The gauge field (105) corresponds to the field strength FI =−qI sinθdθdφ . This
is a magnetic field, with normalization of the charge in agreement with the one
introduced in (91). The black string is therefore an example where the two-forms
Θ I �= 0.

We should note that the metric (102) of the supersymmetric black string differs
from the form (67), assumed in the analysis in this lecture. The reason that a different
form of the metric applies is that the black string has a null Killing vector, whereas
(67) assumes a time-like Killing vector. Nevertheless, we can think of the null case
as a limiting case of the time-like one. Concretely, if there is a closed curve on the
base-space of (67), the black string is the limit where the curve is deformed such
that two points are taken to infinity, and only a straight line remains (i.e. the return
line is fully at infinity). This limiting procedure is how the simple black string arises
from the more complicated black ring solution (see following example).

Let us now examine the attractor behavior of the black string. In Sect. 3.4, we
showed that near horizon enhancement of supersymmetry demands that, at the at-
tractor, the two forms simplify to Θ I = kXI where k is a constant (I independent)
two-form. This condition was then showed to imply the expression (98) for the
scalars as functions of the magnetic charges.

We can verify the attractor behavior by inspection of the explicit solution. Taking
the limit r → 0 on the scalars (106), we find

XI
hor =

qI

( 1
3!CJKLqJqKqL)1/3

. (107)

This agrees with (98) predicted by the attractor mechanism.

3.5.4 Black Rings

As the final example, we consider the attractor behavior near the supersymmetric
black ring [15, 16, 17, 18]. This is a much more involved example, which in fact
was the motivation for the development of the formalism considered in this lecture.

The supersymmetric black ring is charged with respect to both electric charges
QI and dipole charges qI . Far from the ring the geometry is dominated by the electric
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charges, which have the slowest asymptotic fall-off, and the value of the charges can
be determined using Gauss’ law (87). The dipole charges are determined according
to (91) where the by S2 is wrapped around the ring. Since the two-forms do not
vanish they dominate the near horizon geometry and the near horizon values of the
scalar fields become (98), as they were for the black string.

We can verify the result from the attractor mechanism by inspecting the explicit
black ring solution. The metric takes the general form (67). The conformal factor f
is given by (60) in terms of functions HI which takes the form:

HI = XI∞ +
QI − 1

2CIJKqJqK

Σ
+

1
2

CIJKqJqK r2

Σ 2 , (108)

where

Σ =
√

(r2 −R2)2 +4R2r2 cos2 θ . (109)

Although HI plays the same role as the harmonic functions in other examples they
are in fact not harmonic: They satisfy equations with sources. The expression for Σ
vanishes when r = R, θ = π

2 , and arbitrary ψ . Therefore, the functions HI diverge
along a circle of radius R in the base space. This is the ring.

The full solution in five dimension remains regular, due to the conformal factor.
At large distances HI ∼ XI∞+ QI

r2 so the black ring has the same asymptotic behavior
as the spherically symmetric black hole considered in Sect. 2.5. This is because the
dipole charges die off asymptotically, and so HI differs from that of a black hole

only at order O
(

1
r4

)
. However, the dipole charges dominate close to the horizon.

The scalar fields in the supersymmetric black ring solution take the form

XI =
HI

( 1
3!C

JKLHJHKHL)1/3
. (110)

In the near horizon region where the “harmonic” functions HI diverge, the scalars
approach

XI =
qI

( 1
3!CJKLqJqKqL)1/3

. (111)

This is in agreement with the prediction (98) from the attractor mechanism.
In the preceding, we defined just enough of the black ring geometry to consider

the attractor mechanism. For completeness, let us discuss also the remaining fea-
tures. They are most conveniently introduced in terms of the ring coordinates

hmndxmdxn =
R2

(x− y)2

[
dy2

y2 −1
+(y2 −1)dψ2 +

dx2

1− x2 +(1− x2)dφ 2
]
, (112)

on the base space. Roughly speaking, the x coordinate is a polar angle x ∼ cosθ
that combines with φ to form two-spheres in the geometry. The angle along the ring
is ψ , and y can be interpreted as a radial direction with y →−∞ at the horizon. In
terms of these coordinates, the two form sources are
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Θ I = −1
2

qI(dy∧dψ +dx∧dφ). (113)

Integrating the expression along the S2s, we can verify that the normalization agrees
with the definition (91) of magnetic charges.

The final element of the geometry is the one-form ω introduced in (67). Its non-
vanishing components are

ωψ = − 1
R2 (1− x2)

[
QIq

I − 1
6

CIJKqIqJqK(3+ x+ y)
]
, (114)

ωφ =
1
2

XI∞qI(1+ y)+ωψ . (115)

In five dimensions there are two independent angular momenta which we can choose
as Jφ and Jψ . The one form (114), (115) gives their values as

Jφ =
π

8G5

(
QIq

I − 1
6

CIJKqIqJqK
)

, (116)

Jψ =
π

8G5

(
2R2XI∞qI +QIq

I − 1
6

CIJKqIqJqK
)

. (117)

These expressions will play a role in the discussion of the interpretation of the at-
tractor mechanism in the next section.

4 Extremization Principles

An alternative approach to the attractor mechanism is to analyze the Lagrangian di-
rectly, without using supersymmetry [31]. An advantage of this method is that the
results apply to all extremal black holes, not just the supersymmetric ones [32]. A
related issue is the understanding of the attractor mechanism in terms of the extrem-
ization of various physical quantities.

4.1 The Reduced Lagrangian

The attractor mechanism can be analyzed without appealing to supersymetry, by
starting directly from the Lagrangian. In this subsection, we exhibit the details.

We will consider just the spherically symmetric case with the metric

ds2 = − f 2dt2 + f−1(dr2 + r2dΩ 2
3 ). (118)

Having assumed spherical symmetry, it follows that the gauge field strengths take
the form (29). The next step is to insert the ansatz into the Lagrangian (11). The
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result will be a reduced Lagrangian that depends only on the radial variable. In
order to take advantage of intuition from elementary mechanics, it is useful to trade
the radial coordinate for an auxiliary time coordinate defined by

dr = −1
2

r3dτ ; ∂r = − 2
r3 ∂τ . (119)

Introducing the convenient notation

f = e2U , (120)

a bit of computation gives the reduced action

Ldτ =
[
−6(∂τU)2 −GIJ∂τXI∂τXJ +

1
4

e4U GIJQIQJ

]
dτ, (121)

up to overall constants.
Imposing a specific ansatz on a dynamical system removes numerous degrees of

freedom. The corresponding equations of motion appear as constraints on the re-
duced system. In the present setting the main issue is that the charges specified by
the ansatz are the momenta conjugate to the gauge fields. The correct variational
principle is then obtained by a Legendre transform which, in this simple case, sim-
ply changes the sign of the potential in (121). Thus the equations of motion of the
reduced system can be obtained in the usual way from the effective Lagrangean

L =
[
−6(∂τU)2 −GIJ∂τXI∂τXJ − 1

4
e4U GIJQIQJ

]
. (122)

It is instructive to rewrite the effective potential in (121) and (122). Using the
relations (14), (15), we can show the identity

GIJQIQJ =
2
3

Z2
e +GIJDIZeDJZe, (123)

where we used the definition (31) of the electric central charge Ze and (38) of the
covariant derivative on moduli space. The Lagrangean (122) can be written as

L = −6(∂τU)2 −GIJ∂τXI∂τXJ − 1
6

e4U Z2
e −

1
4

e4U GIJDIZeDJZe (124)

= −6

(
∂τU ± 1

6
e2U Ze

)2

(125)

− GIJ

(
∂τXI ± 1

2
e2U GIKDKZe

)(
∂τXJ ± 1

2
e2U GJLDLZe

)
±∂τ

(
e2U Ze

)
,

where we used4

4 We can verify this by writing DIZe = V 1/3∂I(V −1/3Ze). This amounts to changing into physical
coordinates before taking the derivative and then changing back.
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∂τXIDIZe = ∂τZe. (126)

Thus the Lagrangean can be written a sum of squares, up to a total derivative.
We can therefore find extrema of the action by solving the linear equations of
motion

∂τU = −1
6

e2U Ze, (127)

∂τXI = −1
2

e2U GIJDJZe. (128)

The second equation is identical to the condition (35) that the gaugino variations
vanish, as one can verify by identifying variables according to the various nota-
tions we have introduced. The first equation can be interpreted as the corresponding
condition that the gravitino variation vanish. To summarize, we have recovered the
conditions for supersymmetry by explicitly writing the bosonic Larangean as a sum
of squares so that extrema can be found by solving certain linear equations of mo-
tion. The analysis of these linear equations can now be repeated from Sect. 2.3. In
particular, finite energy density at the horizon (or enhancement of supersymmetry,
as discussed in Sect. 3.4) implies the conditions DIZe = 0, and these in turn lead to
the explicit form (40) for the attractor values of the scalars.

One of the advantages of this approach to the attractor mechanism is that it
applies even when supersymmetry is broken. To see this, consider solutions with
constant value of the scalar fields throughout spacetime ∂τXI = 0. Extremizing the
Lagrangian with respect to the scalar fields can then be found by considering just
the potential (123). Upon variation we find

(
2
3

GIJZe +DIDJZe

)
DJZe = 0. (129)

This equation is solved automatically for DJZe = 0. Such geometries are the super-
symmetric solutions that have been our focus. However, it is seen that there can also
be solutions where the scalars satisfy

2
3

GIJZe +DIDJZe = 0. (130)

Such solutions do not preserve supersymmetry, but they do exhibit attractor behavior.

4.2 Discussion: Physical Extremization Principles

In Sect. 3.4, we found that the attractor values are determined by extremizing one
of the two central charges. For Θ I = 0 they are determined by extremizing the
electric central charge (31) over moduli space ∂iZe = 0. On the other hand, for
Θ I �= 0, we should instead extremize the magnetic central charge ∂iZm = 0. These
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prescriptions are mathematically precise, but they lack a clear physical interpreta-
tion. It would be nice to reformulate the extremization principles in terms of physical
quantities.

Let us consider first the situation when Θ I = 0. As discussed in Sect. 2.4, the
electric central charge can be interpreted as the mass of the system. Therefore, ex-
tremization amounts to minimizing the mass. If we think about the attractor mech-
anism this way, the monotonic flow of the electric central charge amounts to a roll
down potential, with scalars ultimately taking the value corresponding to dynamical
equilibrium. In particular, if the scalars are adjusted to their attractor values already
at infinity (these configurations are referred to as “double extreme black holes”),
there is no flow because the configuration remains in its equilibirum.

A difficulty with this picture is the fact that the situation with Θ I �= 0 works very
differently even though the asymptotic configuration is in fact independent of the
dipole charges. We would like a physical extremization principle that works for that
case as well. The case where Θ I �= 0 is elucidated by considering the combination

Jψ − Jφ = R2XI∞qI = R2Zm, (131)

of the angular momenta (116), (117). This quantity can be interpreted as the intrin-
sic angular momentum of the black ring, not associated with the surrounding fields.
The interesting point is that extremizing Zm is the same as extremizing Jψ − Jφ
with R2 fixed. It may at first seem worrying that we propose extremizing angu-
lar momenta. For a black hole, these would be quantum numbers measurable at
infinity, and so they would be part of the input that specifies solution. However,
the black ring solution is different: We can choose its independent parameters as
qI , QI , R2 with the understanding that then the angular momenta Jφ and Jψ that
support the black ring must be those determined by (116), (117). The precise values
of Jφ and Jψ so determined depend on the scalars and the proposed extremization
principle is that the scalars at the horizon are such that the combination (131) is
minimal.

The proposed principle is quite similar to the extremization of the mass in the
electric case of supersymmetric black holes. In fact, the combination (131) of angu-
lar momenta that we propose extremizing in the magnetic case behaves very much
like a mass: it can be interpreted as the momentum along the effective string that
appears in the near ring limit [33, 34, 35].

In order to elevate the extremization of (131) to a satisfying principle, one would
need a geometric definition of the ring radius R that works independently of the ex-
plicit solution. Ideally, there should be some kind of conserved integral, akin to those
defining the electric charges, or the more subtle ones appearing for dipole charges
[36]. Another issue is that of more complicated multiple ring solutions, which are
characterized by several radii. This latter problem is completely analogous to the
ambiguity with assigning mass for multi-black hole solutions: the asymptotics does
not uniquely specify the near horizon behavior. We will put these issues aside for
now and seek an extremization principle that combines the extremization of (131)
in the magnetic case with extremization of the mass in electric case and works in
any basin of attraction, whether electric or magnetic in character.
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To find such a principle, recall that the black hole entropy (41) can be written in
terms of the central charge in the electric case. Accordingly, the extremization over
moduli space can be recast as5

∂iS = 0. (132)

The black ring entropy can be written compactly as

S = 2π
√

J4. (133)

For toroidal compactification6 J4 is the quartic E7(7) invariant, evaluated at argu-
ments that depend on the black ring parameters according to the identifications

J4 = J4(QI ,q
I ,Jψ − Jφ ). (134)

The black ring is thus related to black holes in four dimensions [33, 34].
In the present context, the point is that the extremization principle (132) applies

to both electric and magnetic attractors. This provides a thermodynamic interpre-
tation of the attractor mechanism. One obstacle to a complete symmetry between
the electric and magnetic cases is that near a magnetic attractor point one must ap-
ply (132) with QI , qI , and R fixed, while near an electric attractor it is QI and J that
should be kept fixed. In either case, these are the parameters that define the solution.

There is one surprising feature of the proposed physical extremization principle:
The entropy is minimized at the attractor point. This may be the correct physics: As
one moves closer to the horizon, the geometry is closer to the microscopic data.
It is also in harmony with the result that, at least in some cases, extremization
over the larger moduli space that includes multi-center configurations gives split
attractor flows that correspond to independent regions that have even less entropy
[27, 28, 29], with the end of the flow plausibly corresponding to “atoms” that have
no entropy at all [38, 39, 40].

We end with a summary of this subsection: We have proposed an extremization
principle (132) that applies to both the electric (black hole) and magnetic (black
ring) cases. A physical interpretation in terms of thermodynamics looks promising
at the present stage of development. In order to fully establish the proposed principle
one would need a more detailed understanding of general flows, including those
that have magnetic charges, and one would also need a more general definition of
charges.

Acknowledgements I thank Stefano Bellucci for organizing a stimulating meeting and Per Kraus
for collaboration on the material presented in these lectures. I also thank Alejandra Castro for read-
ing the manuscript carefully and proposing many improvements, and Josh Davis for discussions.

5 Although (41) was given in the spherically symmetric case, it can be generalized to include
angular momentum [37] (just subtract J2 under the square root. The argument given below carries
through.
6 This statement has an obvious alternate version that applies to general Calabi-Yau spaces.
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Lectures on Black Holes, Topological Strings,
and Quantum Attractors (2.0)

B. Pioline

Abstract In these lecture notes, we review some recent developments on the relation
between the macroscopic entropy of four-dimensional BPS black holes and the mi-
croscopic counting of states beyond the thermodynamical, large charge limit. After
a brief overview of charged black holes in supergravity and string theory, we give
an extensive introduction to special and very special geometry, attractor flows and
topological string theory, including holomorphic anomalies. We then expose the
Ooguri-Strominger-Vafa (OSV) conjecture which relates microscopic degeneracies
to the topological string amplitude, and review precision tests of this formula on
“small” black holes. Finally, motivated by a holographic interpretation of the OSV
conjecture, we give a systematic approach to the radial quantization of BPS black
holes (i.e. quantum attractors). This suggests the existence of a one-parameter gen-
eralization of the topological string amplitude and provides a general framework for
constructing automorphic partition functions for black hole degeneracies in theories
with sufficient degree of symmetry.

1 Introduction

Once upon a time regarded as unphysical solutions of General Relativity, black
holes now occupy the central stage. In astrophysics, there is mounting evidence of
stellar size and supermassive black holes in binary systems and in galactic centers
(see e.g. [1]). In theoretical particle physics, black holes are believed to dominate
the high energy behavior of quantum gravity (e.g. [2]). Moreover, the Bekenstein-
Hawking entropy of black holes is one of the very few clues in our hands about
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the nature of quantum gravity: Just as the macroscopic thermodynamical proper-
ties of perfect gases hinted at their microscopic atomistic structure, the classical
thermodynamical properties of black holes suggest the existence of quantized
micro-states, whose dynamics should account for the macroscopic production of
entropy.

One of the great successes of string theory is to have made this idea precise, at
least for a certain class of black holes which admittedly are rather remote from re-
ality: supersymmetric, charged black holes can indeed be viewed as bound states of
D-branes and other extended objects, whose microscopic “open-string” fluctuations
account for the macroscopic Bekenstein-Hawking entropy [3]. In a more modern
language, the macroscopic gravitational dynamics is holographically encoded in mi-
croscopic gauge theoretical degrees of freedom living at the conformal boundary of
the near-horizon region. Irrespective of the language used, the agreement is quanti-
tatively exact in the “thermodynamical” limit of large charge, where the counting of
the degrees of freedom requires only a gross understanding of their dynamics.

While the prospects of carrying this quantitative agreement over to more realistic
black holes remain distant, it is interesting to investigate whether the already re-
markable agreement found for supersymmetric extremal black holes can be pushed
beyond the thermodynamical limit. Indeed, this regime in principle allows to probe
quantum-gravity corrections to the low energy Einstein-Maxwell Lagrangian, while
testing our description of the microscopic degrees of freedom in greater detail.

The aim of these lectures is to describe some recent developments in this direc-
tion, in the context of BPS black holes in N ≥ 2 supergravity.

In Sect. 2, we give an overview of extremal Reissner-Nordström black holes,
recall their embedding in string theory and the subsequent microscopic derivation
of their entropy at leading order, and briefly discuss an early proposal to relate the
exact microscopic degeneracies to Fourier coefficients of a certain modular form.

In Sect. 3, we recall the essentials of special geometry and describe the “attractor
flow”, which governs the radial evolution of the scalar fields and determines the
horizon geometry in terms of asymptotic charges. We illustrate these results in the
context of “very special supergravities”, an interesting class of toy models whose
symmetries properties allow to get very explicit results.

In Sect. 4, we give a self-contained introduction to topological string theory,
which allows to compute an infinite set of higher-derivative “F-term” corrections in
the low energy Lagrangian. We emphasize the wave function interpretation of the
holomorphic anomaly, which underlies much of the subsequent developments.

In Sect. 5, we discuss the effects of these “F-term” corrections on the macro-
scopic entropy and formulate the Ooguri-Strominger-Vafa (OSV) conjecture [4],
which relates these macroscopic corrections to the micro-canonical counting.

In Sect. 6, based on [5, 6], we submit this conjecture to a precision test, in the
context of “small black holes”: These are dual to perturbative heterotic states and
can therefore be counted exactly using standard conformal field theory techniques.

Finally, in Sect. 7, motivated by a holographic interpretation of the OSV conjec-
ture put forward by Ooguri, Vafa, and Verlinde [7], we turn to the subject of “quan-
tum attractor flows”. We give a systematic treatment of the radial quantization of
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BPS black holes, and compute the exact radial wave function for a black hole with
fixed electric and magnetic charges. In the course of this discussion, we find evi-
dence for a one-parameter generalization of the usual topological string amplitude
and provide a framework for constructing automorphic partition functions for black
hole degeneracies in theories with a sufficient degree of symmetry, in the spirit (but
not the letter) of the genus-2 modular forms discussed in Sect. 2.5. This section is
based on [8, 9, 10, 11, 12, 13].

We have included a number of exercices, most of which are quite easy, which are
intended to illustrate, complement, or extend the discussion in the main text. The
dedicated student might learn more from solving the exercices than from pondering
over the text.

2 Extremal Black Holes in String Theory

In this section, we give a general overview of extremal black holes in Einstein-
Maxwell theory, comment on their embedding in string theory, and outline their
microscopic description as bound states of D-branes. We also review an early con-
jecture that relates the exact microscopic degeneracies of BPS black holes to Fourier
coefficients of a certain modular form. We occasionally make use of notions that
will be explained in later sections. For a general introduction to black hole thermo-
dynamics, the reader may consult e.g. [14, 15].

2.1 Black Hole Thermodynamics

Our starting point is the Einstein-Maxwell Lagrangian for gravity and a massless
Abelian gauge field in 3+1 dimensions,

S =
∫

d4x
1

16πG

[√
−g R− 1

4
F ∧�F

]
(1)

Assuming staticity and spherical symmetry, the only solution with electric and mag-
netic charges q and p is the Reissner-Nordström black hole

ds2 =− f (ρ) dt2 + f−1(ρ) dρ2 +ρ2 dΩ2 , F = p sinθdθ ∧dφ +q
dt ∧dρ

ρ2 (2)

where dΩ2 = dθ 2 + sin2 θ dφ 2 is the metric on the two-sphere, and f (ρ) is given
in terms of the ADM mass M and the charges (p,q) by

f (ρ) = 1− 2 GM
ρ

+
p2 +q2

ρ2 (3)
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For most of what follows, we set the Newton constant G = 1. The Schwarzschild
black hole is recovered in the neutral case p = q = 0.

The solution (2) has a curvature singularity at r = 0, with diverging curvature
invariant RμνRμν ∼ 4(p2 +q2)2/ρ8. When M2 < p2 +q2, this is a naked singularity
and the solution must be deemed unphysical. When M2 > p2 + q2 however, there
are two horizons at the zeros of f (ρ),

ρ± = M±
√

M2 − p2 −q2 (4)

which prevent the singularity to have any physical consequences for an observer
at infinity; see the Penrose diagram on Fig. 1. We shall denote by I, II, III the re-
gions outside the horizon, between the two horizons, and inside the inner horizon,
respectively. Since the time-like component of the metric changes sign twice be-
tween regions I and III, the singularity at ρ = 0 is time-like and may be imputed to
the existence of a physical source at ρ = 0. This is unlike the Schwarzschild black
hole, whose space-like singularity at ρ = 0 raises more serious concerns.

Near the outer horizon, one may approximate

f (ρ) =
(ρ−ρ+)(ρ−ρ−)

ρ2 ∼ (ρ+ −ρ−)
ρ2

+
r (5)

where ρ = ρ+ + r, and the line element (2) by

ds2 ∼
[
− (ρ+ −ρ−)

ρ2
+

r dt2 +
ρ2

+

(ρ+ −ρ−)
dr2

r

]
+ρ2

+ dΩ2
2 (6)

Fig. 1 Penrose diagram of
the non-extremal (left) and
extremal (right) Reissner-
Nordström black holes. Dot-
ted lines denote event hori-
zons, dashed lines represent
time-like singularities. The
diagram on the left should
be doubled along the dashed-
dotted line
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Defining t = 2ρ2
+τ/(ρ+ −ρ−) and r = η2, the first term is recognized as Rindler

space while the second term is a two-sphere of fixed radius,

ds2 =
4ρ2

+

ρ+ −ρ−
(
−η2dτ2 +dη2)+ρ2

+ dΩ2
2. (7)

Rindler space describes the patch of Minkowski space accessible to an observer
O with constant acceleration κ . As spontaneous pair production takes place in the
vacuum, O may observe only one member of that pair, while its correlated part-
ner falls outside O’s horizon. Hawking and Unruh have shown that, as a result, O
detects a thermal spectrum of particles at temperature T = κ/(2π), where κ is the
acceleration or “surface gravity” at the horizon [16, 17]. Equivalently, smoothness
of the Wick-rotated geometry τ → iτ requires that τ be identified modulo 2πi. In
terms of the inertial time t at infinity, this requires t ∼ t + iβ where β is the inverse
temperature

β =
1
T

=
4πρ2

+

ρ+ −ρ−
(8)

Given an energy M and a temperature T , it is natural to define the “Bekenstein-
Hawking” entropy SBH such that dSBH/dM = 1/T at fixed charges.

Exercise 1. By integrating (8), show that the entropy of a Reissner-Nordström black
hole is equal to

SBH = π
(

M +
√

M2 − p2 −q2
)2

= πρ2
+ (9)

Remarkably, the result is, up to a factor 1/(4G), just equal to the area of the
horizon:

SBH =
A

4G
(10)

This is a manifestation the following general statements, known as the “laws of
black hole thermodynamics” (see e.g. [15, 18] and references therein):

(0) The temperature T = κ/(2π) is uniform on the horizon;
(I) Under quasi-static changes, dM = (T/4G)dA+φdq+χd p;

(II) The horizon area always increases with time.

These statements rely purely on an analysis of the classical solutions to the action
(1) and their singularities. The modifications needed to preserve the validity of these
laws in the presence of corrections to the action (1) will be discussed in Sect. 6.2.

The analogy of (0), (I), (II) with the usual laws of thermodynamics strongly sug-
gests that it should be possible to identify the Bekenstein-Hawking entropy with
the logarithm of the number of micro-states which lead to the same macroscopic
black hole,

SBH = logΩ(M, p,q) (11)

where we set the Boltzmann constant to 1. In writing this equation, we took ad-
vantage of the “no hair” theorem which asserts that the black hole geometry, after
transients, is completely specified by the charges measured at infinity.
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Making sense of (11) microscopically requires quantizing gravity, which for us
means using string theory. As yet, progress on this issue has mostly been restricted
to the case of extremal (or near-extremal) black holes, to which we turn now.

2.2 Extremal Reissner-Nordström Black Holes

In the discussion below (3), we left out one special case, namely M2 = p2 + q2.
When this happens, the inner and outer horizons coalesce in a single degenerate
horizon at r =

√
p2 +q2, where the scale factor vanishes quadratically:

f (ρ) =

(
1−

√
p2 +q2

ρ

)2

∼ r2

p2 +q2 (12)

Such black holes are called “extremal”, for reasons that will become clear below. In
this case, defining r = (p2 +q2)/z, we can rewrite the near-horizon geometry as

ds ∼ (p2 +q2)
[
−dt2 +dz2

z2 +dΩ2
]

(13)

which is now recognized as the product of two-dimensional Anti-de Sitter space
AdS2 times a two sphere. In contrast to (6), this is now a bona-fide solution of (1).
The appearance of the AdS2 factor raises the hope that such “extremal” black holes
have an holographic description, although holography in AdS2 is far less understood
than in higher dimensions (see [19] for an early discussion).

An important consequence of f (r) vanishing quadratically is that the Hawking
temperature (8) is zero, so that the black hole no longer radiates: This is as it should,
since otherwise its mass would go below the bound

M2 ≥ p2 +q2, (14)

producing a naked singularity. Black holes saturating this bound can be viewed as
the stable endpoint of Hawking evaporation1, assuming that all charged particles are
massive. Moreover, the Bekenstein entropy remains finite

SBH = π(p2 +q2) (15)

and becomes large in the limit of large charge. This is not unlike the large degener-
acy of the lowest Landau level in condensed matter physics.

1 The evaporation end-point of neutral black holes is far less understood and, in particular, leads to
the celebrated “information paradox”.
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2.3 Embedding in String Theory

String theory compactified to four dimensions typically involves many more fields
than those appearing in the Einstein-Maxwell Lagrangian (1). Restricting to com-
pactifications which preserve N ≥ 2 supersymmetry in four dimensions, there
are typically many Abelian gauge fields and massless scalars (or “moduli”), to-
gether with their fermionic partners, and the gauge couplings in general have a
complicated dependence on the scalar fields. As a result, the static, spherically
symmetric solutions are much more complicated, involving in particular a non-
trivial radial dependence of the scalar fields. The first smooth solutions were con-
structed in the context of the heterotic string compactified on T 6 in [20], and
the general solution was obtained in [21] using spectrum-generating symmetries.
Charged solutions exhibit the same causal structure as the Reissner-Nordström
black hole and become extremal when a certain “BPS” bound, analogous to (14), is
saturated.

In fact, in the context of supergravity with N ≥ 2 extended supersymmetry,
the BPS bound is a consequence of unitarity in a sector with non-vanishing central
charge Z =

√
p2 +q2, see (43) below. The saturation of the bound implies that the

black hole preserves some fraction of the supersymmetry of the vacuum. Since the
corresponding representation of the supersymmetry algebra has a smaller dimension
that the generic one, such states are absolutely stable (unless they can pair up with
an other extremal state with the same energy) [22]. They can be followed as the
coupling is varied, which is part of the reason for their successful description in
string theory.

Another peculiarity of extremal black holes in supergravity is that the radial pro-
file of the scalars simplifies: Specifically, the values of the scalar fields at the hori-
zon become independent of the values at infinity and depend only on the electric
and magnetic charges. Moreover, the horizon area itself becomes a function of the
charges only2. This is a consequence of the “attractor mechanism”, which we will
discuss at length in Sects. 3 and 7. This fits in nicely with the fact that the num-
ber of quantum states of a system is expected to be invariant under adiabatic per-
turbations [23]. More practically, it implies that a rough combinatorial, weak cou-
pling counting of the micro-states may be sufficient to reproduce the macroscopic
entropy.

As a side comment, it should be pointed out that even in supersymmetric theories,
extremal black holes can exist which break all supersymmetries. In this case, the
electromagnetic charges differ from the central charge, and the extremality bound is
subject to quantum corrections. In this case, there may exist non-perturbative decay
processes whereby an extremal black hole may break into smaller ones. The subject
of non-supersymmetric extremal black holes has become of much interest recently,
see e.g. [24, 25, 26, 27, 28, 29, 30].

2 Although it no longer takes the simple quadratic form (15), at tree-level it is still an homogeneous
function of degree 2 in the charges.
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Exercise 2. Show that if black hole of mass and charge (M,Q) breaks up into two
black holes of mass and charge (M1,Q1) and (M2,Q2), then at least one of M1/Q1

and M2/Q2 must be smaller than M/Q. Conclude that quantum corrections should
decrease the ratio M/Q [29, 31].

2.4 Black Hole Counting via D-branes

The ability of string theory to account microscopically for the Bekenstein-Hawking
entropy of BPS black holes (15) is one of its most concrete successes. Since this
subject is well covered in many reviews, we will only outline the argument, referring
e.g. to [32, 33, 34, 35] for more details and references.

The main strategy, pioneered by Strominger and Vafa [3], is to represent the black
hole as a bound state of solitons in string theory, and vary the coupling so that the
degrees of freedom of these solitons become weakly coupled. The BPS property
ensures that the number of micro-states will be conserved under this operation.

Consider for exemple 1/8 BPS black holes in Type II string theory on T 6, or
1/4 BPS black holes on K3× T 2 [36]. Both cases can be treated simultaneously
by writing the compact 6-manifold as X = Y ×S1 ×S′1, where Y = T 4 or K3. Now
consider a configuration of Q6 D6-branes wrapped on X , Q2 D2-branes wrapped
on S1 × S′1, Q5 NS5-branes wrapped on Y × S1, carrying N units of momentum
along S1. The resulting configuration is localized in the four non-compact directions
and supersymmetric, hence should be represented as a BPS black hole in N = 8
or N = 4 supergravity3. Its macroscopic entropy can be computed by studying
the flow of the moduli with the above choice of charges, leading in either case to
((99) below)

SBH = 2π
√

Q2 Q5 Q6 N (16)

The micro-states correspond to open strings attached to the D2 and D6 branes, in
the background of the NS5-branes. In the limit where Y × S′1 is very small, they
may be described by a two-dimensional field theory extending along the time and
S1 direction. In the absence of the NS5-branes, the open strings are described at low
energy by U(Q2)×U(Q6) gauge bosons together with bi-fundamental matter, which
is known to flow to a CFT with central charge c = 6Q2Q6 in the infrared (see [34]
for a detailed analysis of this point). In the presence of the NS5-branes, localized at
Q5 points along S′1, the D2-branes generally break at the points where they intersect
the NS5-branes. This effectively leads to Q5Q2 independent D2-branes, hence a
CFT with central charge ceff = 6Q2Q5Q6. The extremal micro-states correspond
to the right-moving ground states of that field theory, with N units of left-moving
momentum along S1. By the Ramanujan-Hardy formula ((201) below), also known
as the Cardy formula in the physics literature, the number of states carrying N units
of momentum grows exponentially as

3 As usual in AdS/CFT correspondence, the closed string description is valid at large value of the
t’Hooft coupling gsQ, where Q is any of the D-brane charges.
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Ω(Q2,Q5,Q6,N) ∼ exp

[
2π
√

ceff

6
N

]
∼ exp

[
2π
√

Q2 Q5 Q6 N
]

(17)

in precise agreement with the macroscopic answer (16).
While quantitatively successful, this argument has some obvious shortcomings.

The degrees of freedom of the NS5-branes have been totally neglected, and the
D2-branes stretching between each of the NS5-branes were treated independently.
A somewhat more tractable configuration can be obtained by T-dualizing along S′1,
leading to a bound state of D1-D5 branes in the gravitational background of Kaluza-
Klein monopoles [37]. The latter are purely gravitational solutions with orbifold
singularities, so in principle can be treated by worldsheet techniques.

Key to this reasoning was the ability to lift the 4-dimensional black hole to a
5-dimensional black string, whose ground-state dynamics can be described by a
two-dimensional “black string CFT”, such that Cardy’s formula is applicable. This
indicates how to generalize the above argument to 1/2-BPS black holes in N = 2
supergravity: any configuration of D0,D4 branes with vanishing D6-brane charge
in type IIA string theory compactified on a Calabi-Yau threefold X can be lifted
in M-theory to a single M5-brane wrapped around a general divisor (i.e. complex
codimension one submanifold) P, with N (the D0-brane charge) units of momen-
tum along the M-theory direction [38]. The reduction of the (0,2) tensor multiplet
on the M5-brane worldvolume along the divisor P leads to a (0,4) SCFT in 1 + 1
dimensions, whose left-moving central charge can be computed with some technical
assumptions on P:

cL = 6C(P)+ c2 ·P (18)

Here, C(P) is the self-intersection of P, while c2 is the second Chern class of X .
Using again Cardy’s formula, this leads to

Ω(P,N) ∼ exp

[
2π

√
N

(
C(P)+

1
6

c2 ·P
)]

(19)

To leading order, this reproduces the macroscopic computation in N = 2 super-
gravity, T-dual to (17),

SBH = 2π
√

Q0 C(Q4) (20)

We shall return to formula (19) in Sect. 6 (Exercise 17), and show that the subleading
contribution proportional to c2 agrees with the macroscopic computation, provided
one incorporates higher-derivative R2 corrections.

2.5 Counting NNN = 4 Dyons via Automorphic Forms

While the agreement between the macroscopic entropy and microscopic counting at
leading order is already quite spectacular, it is interesting to try and understand the
corrections to the large charge limit. Ideally, one would like to be able to compute the
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exact microscopic degeneracies for arbitrary values of the charges. Here, we shall
recall an interesting conjecture, due to Verlinde, Verlinde and Dijkgraaf (DVV),
which purportedly relates the exact degeneracies of 1/4-BPS states in N = 4 string
theory, to Fourier coefficients of a certain automorphic form [39]. This conjecture
has been the subject of much recent work, which we will not be able to pay justice
to in this review. However, it plays an important inspirational role for some other
conjectures relating black hole degeneracies and automorphic forms, which we will
develop in Sect. 7.

Consider the heterotic string compactified on T 6, or equivalently the type II string
on K3×T 2. The moduli space factorizes into

Sl(2,R)
U(1)

× SO(6,nv,R)
SO(6)×SO(nv)

(21)

with nv = 22. The first factor is the complex scalar in the N = 4 gravitational
multiplet, and corresponds to the heterotic axio-dilaton S, or equivalently to the
complexified Kähler modulus of T 2 on the type II side. Points in (21) related by
an action of the duality group Γ = Sl(2,Z)× SO(6,22,Z) are conjectured to be
equivalent under non-perturbative dualities.

The Bekenstein-Hawking entropy for 1/4-BPS black holes is given by [40]

SBH = π
√

(�qe ·�qe)(�qm ·�qm)− (�qe ·�qm)2 (22)

where �qe and �qm are the electric and magnetic charges in the natural heterotic po-
larization. (�qm,�qe) transform as a doublet of SO(6,nv) vectors under Sl(2). Equa-
tion (22) is manifestly invariant under the continuous group Sl(2,R)×SO(6,22,R),
a fortiori under its discrete subgroup Γ.

DVV proposed that the exact degeneracies should be given by the Fourier co-
efficients of the inverse of Φ10, the unique cusp form of Sp(4,Z) with modular
weight 10:

Ω(�qe,�qm) ?=
∫

γ
dτ

1
Φ10(τ)

e−i(ρ�q2
m+σ�q2

e+2ν�qe·�qm) (23)

Here, τ =
(
ρ ν
ν σ

)
parameterizes Siegel’s upper half plane Sp(4,R)/U(2) and γ is

the contour 0 ≤ ρ,σ ≤ 2π,0 ≤ ν ≤ π . One may think of τ as the period matrix of
an auxiliary genus 2 Riemann surface, with modular group Sp(4,Z). The cusp form
Φ10 has an infinite product representation

Φ10(τ) = ei(ρ+σ+ν) ∏
(k,l,m)>0

(
1− ei(kρ+lσ+m)

)c(4kl−m2)
(24)

where c(k) are the Fourier coefficients of the elliptic genus of K3,
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χK3(ρ,ν) = ∑
h≥0,m∈Z

c(4h−m2)e2πi(hρ+mz)

= 24

(
θ3(ρ,z)
θ3(ρ)

)2

−2

(
θ 4

4 (ρ)−θ 4
2 (ρ)

)
θ 2

1 (ρ,z)
η6(ρ)

. (25)

This shows that the Fourier coefficients obtained in this fashion are (in general non-
positive) integers.

The right-hand side of (23) is manifestly invariant under continuous rotations in
SO(6,22,R), hence under its discrete subgroup SO(6,22,Z). The invariance under
Sl(2,Z) is more subtle and uses the embedding of Sl(2,Z) inside Sp(4,Z); using
the modular invariance of Φ10,

Φ10
[
(Aτ +B)(Cτ +D)−1]= [det(Cτ +D)]10 Φ10(τ) , (26)

one can cancel the action of Sl(2,Z) by a change of contour γ → γ ′, and deform γ ′
back to γ while avoiding singularities.

As a consistency check on this conjecture, one can extract the large charge be-
havior of Ω(�qe,�qm) by computing the contour integral in (23) by residues and obtain
agreement with (22) [39].

Exercise 3. By picking the residue at the divisor D = ρσ + ν − ν2 ∼ 0 and using
Φ10 ∼ D2 η24(ρ ′)η24(σ ′)/det12(τ) where ρ ′ =− σ

ρσ−ν2 , σ ′ =− ρ
ρσ−ν2 , reproduce

the leading charge behavior (22). You may seek help from [39, 41].

A recent “proof” of the DVV conjecture has recently been given by lifting 4D
black holes with unit D6-brane charge to 5D and using the Strominger-Vafa relation
between degeneracies of 5D black hole and the elliptic genus of the Hilbert scheme
(or symmetric orbifold) Hilb(K3) [42]. We will return to this 4D/5D lift in Sect. 3.5.
The conjecture has also been generalized to other N = 4 “CHL” models with dif-
ferent values of nv in (21) [43, 44, 45]. More recently, the Sp(4,Z) symmetry has
been motivated by representing 1/4-BPS dyons as string networks on T 2, which lift
to M2-branes with genus 2 topology [46]. Despite this suggestive interpretation, it
is fair to say that the origin of Sp(4) remains rather mysterious. In Sect. 7, we will
formulate a similar conjecture, which relies on the 3-dimensional U-duality group
SO(8,24,Z) obtained by reduction on a thermal circle, rather than Sp(4).

3 Special Geometry and Black Hole Attractors

In this section, we expose the formalism of special geometry, which governs the
couplings of vector multiplets in N = 2, D = 4 supergravity. We then derive the
attractor flow equations, governing the radial evolution of the scalars in spherically
BPS geometries. Finally, we illustrate these these constructions in the context of



294 B. Pioline

“very special” supergravity theories, which are simple toy models of N = 2 su-
pergravity with symmetric moduli spaces. We follow the notations of [47], which
gives a good overview of the essentials of special geometry. Useful reviews of the
attractor mechanism include [48, 49, 50].

3.1 NNN = 2 SUGRA and Special Geometry

A general “ungauged” N = 2 supergravity theory in 4 dimensions may be obtained
by combining massless supersymmetric multiplets with spin less or equal to 2:

(i) The gravity multiplet, containing the graviton gμν , two gravitini ψα
μ , and one

Abelian gauge field known as the graviphoton;
(ii) nV vector multiplets, each consisting of one Abelian gauge field Aμ , two gaug-

ini λα , and one complex scalar. The complex scalars zi take values in a projec-
tive special Kähler manifold MV of real dimension 2nV .

(iii) nH hypermultiplets, each consisting of two complex scalars and two hyperi-
nis ψ, ψ̃ . The scalars take values in a quaternionic-Kähler space MH of real
dimension 4nH .

Tensor multiplets are also possible, and can be dualized into hypermultiplets with
special isometries. At two-derivative order, vector multiplets and hypermultiplets
interact only gravitationally4. We will concentrate on the gravitational and vector
multiplet sectors, which control the physics of charged BPS black holes. Neverthe-
less, we will encounter hypermultiplet moduli spaces in Sect. 7.3.1, when reducing
the solutions to three dimensions.

The couplings of the vector multiplets, including the geometry of the scalar
manifold MV , are conveniently described by means of a Sp(2nV + 2) principal
bundle E over MV and its associated bundle EV in the vector representation of
Sp(2nV + 2). The origin of the symplectic symmetry lies in electric-magnetic du-
ality, which mixes the nV vectors Aμ and the graviphoton Aμ together with their
magnetic duals. Denoting a section Ω by its coordinates (XI ,FI), the antisymmetric
product

〈Ω,Ω′〉 = XIF
′
I −X

′IFI (27)

endows the fibers with a phase space structure, derived from the symplectic form
〈dΩ, dΩ〉 = dXI ∧dFI .

The geometry of the scalar manifold MV is completely determined by a choice
of a holomorphic section Ω(z) = (XI(z),FI(z)) taking value in a Lagrangian cone,
i.e. a dilation invariant subspace such that dXI ∧ dFI = 0. At generic points, one
may express FI in terms of their canonical conjugate XI via a characteristic function
F(XI) known as the prepotential:

4 This is no longer true in “gauged” supergravities, where some of the hypermultiplets become
charged under the vectors.
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FI =
∂F
∂XI , F

(
XI)=

1
2

XIFI . (28)

The second relation reflects the homogeneity of the Lagrangian and implies that F
is an homogeneous function of degree 2 in the XI . At generic points, the sections
XI (I = 0 . . .nV ) may be chosen as projective holomorphic coordinates on MV –
equivalently, the nV ratios zi = Xi/X0 (i = 1 . . .nV ) may be taken as the holomorphic
coordinates; these are known as (projective) special coordinates. Note however that
a choice of F breaks manifest symplectic invariance, so special coordinates may not
always be the most convenient ones.

Exercise 4. Show that a symplectic transformation (XI ,FI) → (FI ,−XI) turns the
prepotential into its Legendre transform.

Once the holomorphic section Ω(z) is given, the metric on MV is obtained from
the Kähler potential

K
(
zi, z̄i)= − logK (X , X̄) , K(X , X̄) = i

(
X̄ IFI −XIF̄I

)
(29)

This leads to a well-defined metric gi j̄ = ∂i∂ j̄K , since under a holomorphic rescal-

ing Ω → e f (zi)Ω, K → K − f (z)− f̄ (z̄) changes by a Kähler transformation.
Equivalently, Ω should be viewed as a section of EV ⊗L where L is the Hodge
bundle over MV , namely, a line bundle whose curvature is equal to the Kähler form;
its connection one-form is just Q = (∂iK dzi −∂īK dzī)/(2i). The rescaled section
Ω̃ = eK /2Ω is then normalized to 1, and transforms by a phase under holomorphic
rescalings of Ω. For later purposes, it will be convenient to introduce the derived
section Ui = DiΩ̃ = ( f I

i , hiI) where

f I
i = eK /2DiX

I = eK /2 (∂iX
I +∂iK XI) (30)

hiI = eK /2DiFI = eK /2 (∂iFI +∂iK FI) (31)

The metric may thus be reexpressed as

gi j̄ = −i〈Ui,Ū j̄〉 = i
(

f I
i h̄ j̄I −hiI f̄ I

j̄

)
(32)

After some algebra, one may show that the Riemann tensor on MV takes the form

Ri j̄kl̄ = gi j̄gkl̄ +gil̄gk j̄ − e2K CikmC̄ j̄l̄n̄gmn̄ (33)

where Ci jk is a holomorphic, totally symmetric tensor5

Ci jk = e−K 〈DiUj,Uk〉 (34)

5 We follow the standard notation in the topological string literature, which differs from [47] by a
factor of eK .
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The foregoing formalism was in fact geared to produce a solution of (33), which
embodies the constraint of supersymmetry and may be taken as the definition of a
projective special Kähler manifold.

The kinetic terms of the nV +1 Abelian gauge fields (including the graviphoton)
may also be obtained from the holomorphic section Ω as

LMaxwell =− ImNIJ F I ∧�F J +ReNIJ F I ∧F J

= Im
[

¯NIJ F I− ∧� F J−]+ total der.
(35)

where F I− = (F I − i � F I)/2, I = 0 . . .nV is the anti-self dual part of the field-
strength, and NIJ is defined by the relations

FI = NIJXJ , hiI = ¯NIJ f J
i (36)

In terms of the prepotential F and its Hessian τIJ = ∂I∂JF ,

NIJ = τ̄IJ +2i
(Imτ ·X)I (Imτ ·X)J

X · Imτ ·X (37)

While ImτIJ has indefinite signature (1, nV ), ImNIJ is a negative definite matrix,
as required for the positive definiteness of the gauge kinetic terms in (35).

Exercise 5. For later use, prove the relations

K = − log
[
−2XI [ImN ]IJX̄J] , f I

i [ImN ]IJXJ = 0 (38)

In order to study the invariance of (35) under electric-magnetic duality, it is useful
to introduce the dual vector

GI;μν =
1
2
∂LMaxwell

∂F I;μν = [ReN ]IJ F J +[ImN ]IJ �F I (39)

Under symplectic transformations, N transforms as a “period matrix” N → (C +
DN )(A+BN )−1, while the field strengths (F I−,G−

I = ¯NIJF J−
μν ) transform as a

symplectic vector, leaving (35) invariant. The electric and magnetic charges (pI ,qI)
are measured by the integral on a 2-sphere at spatial infinity of (F I−,G−

I ) and
transform as a symplectic vector too.

One linear combination of the nV +1 field-strengths, the graviphoton

T−
μν = −2i eK /2 XI [ImN ]IJF

J−
μν = eK /2 (XIG−

I −FIF
I−) (40)

plays a distinguished rôle, as its associated charge measured at infinity

Z = eK /2 (qIX
I − pIFI

)
≡ eK /2W (X) (41)

appears as the central charge in N = 2 supersymmetry algebra,

{
Qi

α , Q̄α̇ j
}

= Pμσ
μ
αα̇δ

i
j ,

{
Qi

α ,Q j
β

}
= Zεi jεαβ (42)
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In particular, there is a Bogomolony-Prasad-Sommerfeld (BPS) bound on the mass

M2 ≥ |Z|2 m2
P (43)

where mP is the (duality invariant) 4-dimensional Planck scale, which is saturated
when the state preserves 4 supersymmetries out of the 8 supersymmetries of the
vacuum.

3.2 NNN = 2 SUGRA and String Theory

There are several ways to obtain N = 2 supergravities in 4 dimensions from string
theory. Type IIB string compactified on a Calabi-Yau three-fold Y leads to N = 2
supergravity with nV = h2,1(Y ) vector multiplets and nH = h1,1(Y )+ 1 hypermul-
tiplets. The scalars in MV parameterize the complex structure of the Calabi-Yau
metric on Y . The associated vector fields are the reduction of the 10D Ramond-
Ramond 4-form on the various 3-cycles in H3(Y,R). The holomorphic section Ω is
then given by the periods of the holomorphic 3-form Ω (abusing the notation) on a
symplectic basis (AI ,BI) of H3(Y,R):

XI =
∫

AI
Ω , FI =

∫

BI
Ω (44)

The Kähler potential on the moduli of complex structures is just

K = − log

[
i
∫

Y
Ω∧ Ω̄

]
(45)

which agrees with (29) by Riemann’s bilinear identity. As we shall see later, it is
determined purely at tree-level and can be computed purely in field theory. The
central charge of a state with electric-magnetic charges pI ,qI may be rewritten as

Z =

∫
γ Ω√

i
∫

Y Ω∧ Ω̄
(46)

where γ = qIAI − pIBI and is recognized as the mass of a D3-brane wrapped on a
special Lagrangian 3-cycle γ ∈ H3(Y,Z).

On the other hand, the scalars in MH parameterize the complexified Kähler struc-
ture of Y , the fluxes (or more appropriately, Wilson lines) of the Ramond-Ramond
two-forms along Heven(Y,R), as well as the axio-dilaton. The axio-dilaton, zero and
six-form RR potentials form a “universal hypermultiplet” sector inside MH . In con-
trast to the vector-multiplet metric, the hyper-multiplet metric receives one-loop and
non-perturbative corrections from Euclidean D-branes and NS-branes wrapped on
Heven(Y ).
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The situation in type IIA string compactified on a Calabi-Yau three-fold Ỹ is re-
versed: the vector-multiplet moduli space describes the complexified Kähler struc-
ture of Ỹ , while the hypermultiplet moduli space describes its complex structure,
together with the Wilson lines of the Ramond-Ramond forms along Hodd(Ỹ ) and
the axio-dilaton. As in IIB, the vector-multiplet moduli space is determined at tree-
level only, but receives α ′ corrections. Letting J = BNS + iωK be the complexified
Kähler form, γA be a basis of H1,1(Ỹ ,Z), and γA the dual basis of H2,2(Ỹ ,Z), the
holomorphic section Ω (not to be confused with the holomorphic three-form on Ỹ )
is determined projectively by the special coordinates

XA/X0 =
∫

γ A
J , FA/X0 =

∫

γA

J∧ J (47)

In the limit of large volume, the Kähler potential (in the gauge X0 = 1) is given by
the volume in string units,

K = − log
∫

Ỹ
J∧ J∧ J (48)

originating from the cubic prepotential

F = −1
6

CABC
XAXBXC

X0 + . . . (49)

Here, CABC are the intersection numbers of the 4-cycles γA,B,C. At finite volume,
there are corrections to (49) from worldsheet instantons wrapping effective curves
in H+

2 (Ỹ ,Z), to which we will return in Sect. 4.3. The central charge following from
(49) is

Z = eK /2X0
(

q0 +qA

∫

γA
J− pA

∫

γA

J∧ J− p0
∫

Ỹ
J∧ J∧ J

)
(50)

so that q0,qA, pA, p0 can be identified as the D0,D2,D4 and D6 brane charge, re-
spectively.

While (49) expresses the complete prepotential in terms of the geometry of Ỹ , the
most practical way of computing it is to use mirror symmetry, which relates type IIA
compactified on Ỹ to type IIB compactified on Y , where (Y,Ỹ ) form a “mirror pair”;
this implies in particular that h1,1(Y ) = h2,1(Ỹ ) and h1,1(Ỹ ) = h2,1(Y ) (see [51] for
a review).

On the other hand, the tree-level metric on the hypermultiplet moduli space MH

in type IIA compactified on Ỹ may be obtained from the vector-multiplet metric MV

in type IIB compactified on the same Calabi-Yau Ỹ , by compactifying on a circle S1

to 3 dimensions, T-dualizing along S1 and decompactifying back to 4 dimensions.
We shall return to this “c-map” procedure in Sect. 7.3.1.

Finally, another way to obtain N = 2 supergravity in 4 dimensions is to com-
pactify the heterotic string on K3× T 2. Since the heterotic axio-dilaton is now a
vector-multiplet, MV now receives loop and instanton corrections, while MH is
determined purely at tree-level (albeit with α ′ corrections).
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3.3 Attractor Flows and Bekenstein-Hawking Entropy

We now turn to static, spherically symmetric BPS black hole solutions of N = 2
supergravity. The assumed isometries lead to the metric ansatz

ds2 = −e2U dt2 + e−2U (dr2 + r2dΩ2
2

)
(51)

where dΩ2
2 = dθ 2 + sin2 θ dφ 2 is the round metric on S2, and U depends on r

only. We took advantage of the BPS property to restrict to flat 3D spatial slices6.
Moreover, the scalars zi in the vector multiplet moduli space are taken to depend
on r only. The gauge fields are uniquely determined by the equations of motion and
Bianchi identities:

F I− =
1
2

[
pI − i[ImN ]IJ (qJ − [ReN ]JK pK)] ·

[
sinθ dθ ∧dφ − i

e2U

r2 dt ∧dr

]

(52)

where (pI ,qI) are the magnetic and electric charges, and [ImN ]IJ = [ImN ]−1
IJ .

Assuming that the solution preserves half of the 8 supersymmetries, the gravitino
and gaugino variations lead to a set of first-order equations [49, 53, 54, 55]7

r2 dU
dr

= |Z| eU (53)

r2 dzi

dr
= 2 eU gi j̄∂ j̄|Z| (54)

where Z is the central charge defined in (41). These equations govern the radial
evolution of U and zi(r), and are usually referred to as “attractor flow equations”,
for reasons which will become clear shortly. The boundary conditions are such that
U(r → ∞) → 0 at spatial infinity, while the vector multiplet scalars zi go to their
vacuum values zi

∞. The black hole horizon is reached when the time component of
the metric gtt = e2U vanishes, i.e. at U = −∞.

Defining μ = e−U so that r2dμ/dr = −|Z|, the second equation may be cast in
the form of a gradient flow, or RG flow,

μ
dzi

dμ
= −gi j̄∂ j̄ log |Z|2 (55)

As a consequence, |Z| decreases from spatial infinity, where μ = 1, to the black hole
horizon, when μ →+∞. The scalars zi therefore settle to values zi

∗(p,q) which min-
imize the BPS mass |Z|; in particular, the vector multiplet scalars are “attracted” to a

6 This condition may be relaxed, if one allows for a non-trivial profile of the hypermultiplets [52].
7 We shall provide a full derivation of (53), (54) in Sect. 7, but for now we accept them and proceed
with their consequences.
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Fig. 2 Radial flow for the
Gaussian one-scalar model,
for charges (p0, p1, q1, q0) =
(4, 1, 1, 2). All trajectories
are attracted to z∗ = X1/X0 =
(1−3i)/10 at r = 0
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fixed value at the horizon, independent8 of the asymptotic values zi
∞, and determined

only by the charges (pI ,qI). This attractor behavior is illustrated in Fig. 2 for the case
of the Gaussian one-scalar model with prepotential F =−i[(X0)2−X1)2]/2, whose
moduli space corresponds to the Poincaré disk |z|< 1. It should be noted that the at-
tractor behavior is in fact a consequence of extremality rather than supersymmetry,
as was first recognized in [55].

We shall assume that the charges (pI ,qI) are chosen such that at the attractor
point, Z = Z∗ �= 0, since otherwise the solution becomes singular. Equation (53)
may be easily integrated near the horizon,

μ = e−U ∼ |Z∗|/r (56)

Defining z = |Z∗|2/r, it is easy to see that the near-horizon metric becomes AdS2 ×
S2, as in (13), where the prefactor (p2 + q2) is replaced by |Z∗|2. The Bekenstein-
Hawking entropy is one quarter of the horizon area,

SBH =
1
4
·4π lim

r→0
e−2U r2 = π|Z∗|2 (57)

This is a function of the electric and magnetic charges only, by virtue of the attractor
mechanism, except for possible discrete labels (or “area codes”) corresponding to
different basins of attraction.

We shall now put these results in a more manageable form, by making use of
some special geometry identities discussed in Sect. 3. First, using the derived section
Ui = ( f I

i ,hiI) defined in (30) and the property (36), one easily finds

8 In some cases, there can exist different basins of attraction, leading to a discrete set of possible
values zi

∗(p,q) for a given choice of charges. This is typically connected with the “split attractor
flow” phenomenon [56].



Lectures on Black Holes, Topological Strings and Quantum Attractors (2.0) 301

∂iZ = f I
i (qI − ¯NIJ pJ)− 1

2
Z∂iK , ∂īZ =

1
2

Z∂īK (58)

so that
∂i|Z|
|Z| =

1
2

(
∂iZ
Z

+
∂iZ̄
Z̄

)
=

1
Z

f I
i

(
qI − ¯NIJ pJ) (59)

This allows to rewrite (54) as

r2 dzi

dr
= −

√
Z
Z̄

eU gi j̄ f̄ J
j̄

(
qI −NIJ pJ) (60)

The stationary value of zi at the horizon is thus obtained by setting the right-hand
side of this equation to zero, i.e.

f J
i

(
qI − ¯NIJ pJ)= 0 (61)

The rectangular matrix f I
i has a unique zero eigenvector, given by the second equal-

ity in (38). Hence, (61) implies

qI − ¯NIJ pJ = C ImNIJXJ (62)

Contracting either side with X̄ I and using the first equation in (38) allows to compute
the value of α ,

C = −2Z̄ eK /2 (63)

Moreover, using again (36), one may rewrite (62) and its complex conjugate, equiv-
alently as two real equations

pI = Im
(
CXI) , qI = Im(CFI) (64)

while the Bekenstein-Hawking entropy (57) is given by

SBH =
π
4
|C|2e−K (X ,X̄) =

iπ
4
|C|2

(
X̄ IFI −XIF̄I

)
(65)

Making use of the fact that near the horizon, e−U ∼ |Z∗|/r, it is convenient to rescale
the holomorphic section Ω = (XI , FI) into

(
Y I

GI

)
= 2i r e

1
2 K (X ,X̄)−U

√
Z̄
Z

(
XI

FI

)
(66)

in such a way that

e−K (Y,Ȳ ) = 4r2e−2U , argW (Y ) = π/2 (67)

where we defined, in line with (29) and (41),

K(Y,Ȳ ) =
[
i
(
Ȳ IGI −Y IḠI

)]
= e−K (Y,Ȳ ) , W (Y ) = qIY

I − pIGI (68)
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In this fashion, we have incorporated the geometric variable U into the symplectic
section (Y I , GI) and fixed the phase. In this new “gauge”9, which amounts to setting
C ≡ i, (64) and (57) simplify into

(
pI

qI

)
= Re

(
Y I

GI

)
(69)

SBH =
π
4

K(Y,Ȳ ) =
iπ
4

[
Ȳ IGI −Y IḠI

]
(70)

These equations, some times known as “stabilization equations”, are the most conve-
nient way of summarizing the endpoint of the attractor mechanism, as will become
apparent in the next subsection.

3.4 Bekenstein-Hawking Entropy and Legendre Transform

A key observation for later developments is that the Bekenstein-Hawking entropy
(69) is simply related by Legendre transform10 to the tree-level prepotential F . To
see this, note that the first equation in (69) is trivially solved by setting Y I = pI + iφ I ,
where φ I is real. The entropy is then rewritten as

SBH =
iπ
4

[
(Y I −2iφ I)GI − (Ȳ I +2iφ I)ḠI

]
(71)

=
iπ
2

[F(Y )− F̄(Ȳ )]+
π
2
φ I [GI + ḠI

]
(72)

where, in going from the second to the third line, we used the homogeneity of the
prepotential, Y IGI = 2F(Y ). On the other hand, the second stabilization equation
yields

qI =
1
2

(
GI + ḠI

)
=

1
2i

(
∂F
∂φ I −

∂ F̄
∂φ I

)
(73)

Thus, defining
F (pI ,φ I) = −π Im

[
F(pI + iφ I)

]
(74)

the last equation in (72) becomes

SBH(pI ,qI) = 〈F (pI ,φ I)+π φ IqI〉φ I (75)

where the right-hand side is evaluated at its extremal value with respect to φ I . In
usual thermodynamical terms, this implies that F (pI , φ I) should be viewed as the
free energy of an ensemble of black holes in which the magnetic charge pI is fixed,

9 This is an abuse of language, since the scale factor is a priori not a holomorphic function of zi.
10 This was first observed in [57] and spelled out more clearly in [4].
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but the electric charge qI is free to fluctuate at an electric potential πφ I . The impli-
cations of this simple observation will be profound in Sect. 5.3, when we discuss
the higher-derivative corrections to the Bekenstein-Hawking entropy.

Exercise 6. Apply this formalism to show that the entropy of a D0-D4 bound state in
type IIA string theory compactified on a Calabi-Yau three-fold, in the large charge
regime, is given by

SBH = 2π
√

−CABC pA pB pCq0 (76)

and compare to (20).

Exercise 7. Show that the Bekenstein-Hawking entropy (70) can be obtained by ex-
tremizing

Σp,q(Y,Ȳ ) = −π
4

[K(Y,Ȳ )+2i[W (Y )−W̄ (Ȳ )]] (77)

with respect to Y, Ȳ , where K(Y, Ȳ ) and W (Y ) are defined in (68) [7, 58]. Observe
that (75) is recovered by extremizing over Re(Y ).

Exercise 8. Define the Hesse potential Σ(φ I , χI) as the Legendre transform of the
topological free energy with respect to the magnetic charges pI,

Σ
(
φ I ,χI

)
=
〈

F
(

pI ,φI
)
+π χI pI〉

pI (78)

Show that the dependence of Σ on the electric and magnetic potentials (φ I , χI) is
identical (up to a sign) to that of the black hole entropy SBH on the charges (pI , qI).
Compare to Σp,q in the previous Exercise.

3.5 Very Special Supergravities and Jordan Algebras

In the remainder of this section, we illustrate the previous results on a special class
of N = 2 supergravities, whose vector-multiplet moduli spaces are given by sym-
metric spaces. These are interesting toy models, which arise in various truncations
of string compactifications. Moreover, they are related to by analytic continuation
to N > 2 theories, which will be further discussed in Sect. 7.

The simplest way to construct these models is to start from 5 dimensions [59]:
the vector multiplets consist of one real scalar for each vector, and their couplings
are given by

S =
∫

d5x
√
−g

(
R−Gi j∂μφ i∂μφ j)− ◦

aAB FA ∧� FB +
1

24

∫
CABC AA ∧FB ∧FC

(79)

where the Chern-Simons-type couplings CABC are constant, for gauge invariance.
N = 2 supersymmetry requires the real scalar fields φ i to take value in the cubic
hypersurface M5 = {ξ , N(ξ ) = 1} in an ambient space ξ ∈ R

nV +1, where
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N(ξ ) =
1
6

CABC ξA ξB ξC (80)

The metric Gi j is then the pull-back of the ambient space metric aABdξAdξB to M5,
where

aAB = −1
2
∂ξA∂ξB N(ξ ) (81)

The gauge couplings
◦
aAB are instead given by the restriction of aAB to the hyper-

surface M5. Upon reduction from 5 dimensions to 4 dimensions, using the standard
Kaluza-Klein ansatz

ds2
5 = e2σ (dy+Bμdxμ)2 + e−σgμνdxμdxν (82)

the Kaluza-Klein gauge field Bμ provides the graviphoton, while the constraint
N(ξ ) = 1 is relaxed to N(ξ ) = e3σ . Moreover, ξA combine with the fifth compo-
nents aA of the gauge fields AA into complex scalars tA = aA + iξA = XA/X0, which
are the special coordinates of a special Kähler manifold M4 with prepotential

F = N(XA)/X0 (83)

In general, neither M5 nor M4 are symmetric spaces. The conditions for M5 to
be a symmetric space were analyzed in [59] and found to have a remarkably simple
interpretation in terms of Jordan algebras: these are commutative, non-associative
algebras J satisfying the “Jordan identity”

x◦ (y◦ x2) = (x◦ y) · x2 (84)

where x2 = x◦ x (see e.g. [60] for a nice review).

Exercise 9. Show that the algebra of n×n hermitean matrices with product A◦B =
1
2 (AB+BA) is a Jordan algebra.

Jordan algebras were introduced and completely classified in [61] in an attempt
to generalize quantum mechanics beyond the field of complex numbers. The ones
relevant here are those which admit a norm N of degree 3 – rather than giving the
axioms of the norm, we shall merely list the allowed possibilities:

(i) One trivial case: J = R, N(ξ ) = ξ 3

(ii) One infinite series: J = R⊕Γ where Γ is the Clifford algebra of O(1,n− 1),
N(ξ ⊕ γ) = ξγaγbηab

(iii) Four exceptional cases: J = Herm3(D), the algebra of 3×3 hermitean matrices

ξ =

⎛
⎝
α1 x3 x̄2

x̄3 α2 x1

x2 x̄1 α3

⎞
⎠ where αi are real and xi are in one of the four “division

algebras” D = R,C, the quaternions H or octonions O. In each of these cases,
the cubic norm is the “determinant” of ξ
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Table 1 Invariance groups associated to degree 3 Jordan algebras. The lower 4×4 part is known
as the “Magic Square”, due to its symmetry along the diagonal [62]

J Aut(J) Str0(J) Conf(J) QConf(J)

R 1 1 Sl(2, R) G2(2)

R⊕Γn−1, 1 SO(n−1) SO(n−1, 1) Sl(2)×SO(n, 2) SO(n+2, 4)

JR

3 SO(3) Sl(3, R) Sp(6) F4(4)

JC

3 SU(3) Sl(3, C) SU(3, 3) E6(+2)

JH

3 USp(6) SU∗(6) SO∗(12) E7(−5)

JO

3 F4 E6(−26) E7(−25) E8(−24)

N(ξ ) = α1α2α3 −α1x1x̄1 −α2x2x̄2 −α3x3x̄3 +2Re(x1x2x3) (85)

For JC

3 , this is equivalent to the determinant of an unconstrained 3× 3 real
matrix, and for JH

3 to the Pfaffian of a 6×6 antisymmetric matrix.

To each of these Jordan algebras, one may attach several invariance groups, summa-
rized in Table 1:

(a) Aut(J), the group of automorphisms of J, which leaves invariant the structure
constants of the Jordan product;

(b) Str(J), the “structure” group, which leaves invariant the norm N(ξ ) up to a
rescaling; and the “reduced structure group” Str0(J), where the center has been
divided out;

(c) Conf(J), the “conformal” group, such that the norm of the difference of two
elements N(ξ −ξ ′) is multiplied by a product f (ξ ) f (ξ ′); as a result, the “cubic
light-cone” N(ξ −ξ ′) = 0 is invariant;

(d) QConf(J), the “quasi-conformal group”, which we will describe in Sect. 7.5.

In the case ii) above, Aut(J), Str(J) and Conf(J) are just the orthogonal group
SO(n−1), Lorentz group SO(n−1,1) and conformal group SO(n, 2) times an extra
Sl(2) factor.

The relevance of these groups for physics is as follows: choosing N(ξ ) in (80) to
be equal to the norm form of a Jordan algebra J, the vector-multiplet moduli spaces
for the resulting N = 2 supergravity in D = 5 and D = 4 are symmetric spaces

M5 =
Str0(J)
Aut(J)

, M4 =
Conf(J)

S̃tr0(J)×U(1)
, (86)

where S̃tr0(J) denotes the compact real form of Str0(J). In either case, the group in
the denominator is the maximal subgroup of the one in the numerator, which guaran-
tees that the quotient has positive definite signature. The resulting spaces are shown
in Table 2, together with the ones which appear upon reduction to D = 3 on a space-
like and time-like direction respectively, to be discussed in Sect. 7.5 below. The first
column indicates the number of supercharges in the corresponding supergravity: the
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above discussion applies strictly speaking to cases with 8 supercharges (i.e. N = 2
supersymmetry in 4 dimensions), but other cases can also be reached with similar
techniques, using different real forms of the Jordan algebras above11.

The Str0(J) invariance of the metric on M5 is indeed obvious from (81) above.
The Conf(J) invariance of the metric on the special Kähler space M4 is manifest
too, since the Kähler potential following from (83) is proportional to the log of the
“cubic light-cone”,

K (z, z̄) = − logN(zi − z̄i) , (87)

invariant under Conf(J) up to Kähler transformations. Such special Kähler spaces
are known as hermitean symmetric tube domains and are higher dimensional ana-
logues of Poincaré’s upper half plane.

It should be pointed out that there also exist D = 4 SUGRAs with symmetric
moduli space which do not descend from 5 dimensions: they may be described by
a generalization of Jordan algebras known as “Freudenthal triple systems”, but we
will not discuss them in any detail here. Similarly, there exist D = 3 supergravity
theories with symmetric moduli spaces which cannot be lifted to 4 dimensions.

In general, it is not known whether these very special supergravities arise as
the low-energy limit of string theory. All except the exceptional JO

3 case can be
obtained formally by truncation of N = 8 supergravity, but it is in general unclear
how to consistently enforce this truncation. A notable exception is the case based
on J = Γ9,1, which is realized in type IIA string theory compactified on a freely
acting orbifold of K3× T 2, or a CHL orbifold of the heterotic string on T 6 [64].
The model with J = JC

3 arises in the untwisted sector of type IIA compactified on
the “Z-manifold” T 6/Z3 [65], but there are also massless fields from the twisted
sector. We shall mostly use these theories at toy models in the sequel and assume
that discrete subgroups Str0(J,Z) and Conf(J,Z) remain as quantum symmetries of
the full quantum theory, if it exists.

3.6 Bekenstein-Hawking Entropy in Very Special Supergravities

As an illustration of the simplicity of these models, we shall now proceed and com-
pute the Bekenstein-Hawking entropy for BPS black holes with arbitrary charges,
following [8]. A key property which renders the computation tractable is the fact
that the prepotential (83) obtained from any Jordan algebra is invariant (up to a
sign) under Legendre transform in all variables, namely,

〈N(XA)/X0 +XAYA +X0Y0〉XI = −N(Y )/Y 0 (88)

11 For example, the cubic invariant of E6(6) appearing in N = 8 supergravity can be obtained from
(85) by replacing the usual octonions O by the split octions Os, whose norm xx̄ has split signature
(4,4); see [63] for a recent discussion.
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Exercise 10. Show that (88) is equivalent to the “adjoint identity” for Jordan al-
gebras, X �� = N(X)X where X �

A = 1
2CABCXBXC is the “quadratic map” from J to

its dual.

In fact, just imposing (88) leads to the same classification (i),(ii),(iii) as above.
This was shown independently in [66], as a first step in finding cubic analogues of
the Gaussian, invariant under Fourier transform (see [67] for a short account).

Exercise 11. Check by explicit computation that for the “STU” model, (1/X0)
eN(XA)/X0

is invariant under Fourier transform, namely,

∫
dX0dX1dX2dX3

X0 exp

[
i
X1X2X3

h̄X0 + iXIYI

]
=

h̄
Y 0 exp

[
ih̄

Y1Y2Y3

Y0

]
(89)

Conclude that the semi-classical approximation to this integral is exact. Hint: per-
form the integral over X1,X2,X0,X3 in this order.

In order to compute the Bekenstein-Hawking entropy, we start from the “free
energy” (74)

F (p,φ) =
π

(p0)2 +(φ 0)2

{
p0
[
φA p�

A −N(φ)
]
+φ 0

[
pAφ �

A −N(p)
]}

(90)

To eliminate the quadratic term in φA, let us change variables to

xA = φA − φ 0

p0 pA , x0 = [(p0)2 +(φ 0)2]/p0 (91)

Moreover, we introduce an auxiliary variable t, such that upon eliminating t we
recover (90):

SBH = π

〈
−N(xA)

x0 +
p�

A + p0qA

p0 xA − t
4

(
x0

p0 −1

)
−
(
2N(p)+ p0 pIqI

)2

t (p0)2

〉

{xI ,t}
(92)

Extremizing over xI now amounts to Legendre transforming N(x)/x0, which accord-
ing to (88) reproduces −N(y)/y0 where yI are the coefficients of the linear terms in
xI , so

SBH = π

〈
4

N[p�
A + p0qA]
(p0)2t

− [2N(p)+ p0 pIqI ]2

t (p0)2 +
t
4

〉

t

(93)

Finally, extremizing over t leads to

SBH =
π
p0

√
4N[p�

A + p0qA]− [2N(p)+ p0 pIqI ]2 (94)

The pole at p0 = 0 is fake: Upon Taylor expanding N[p�
A + p0qA] in the numerator

and further using the homogeneity of N, its coefficient cancels. The final result gives
the entropy as the square root of a quartic polynomial in the charges,
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SBH = π
√

I4(pI ,qI) (95)

where

I4
(

pI ,qI
)

= 4p0N (qA)−4q0N
(

pA)+4qA
� p�

A −
(

p0q0 + pAqA
)2

(96)

The fact that this quartic polynomial is invariant under the linear action of the
four-dimensional “U-duality” group Conf(J) on the symplectic vector of charges
(pI , qI) follows from Freudenthal’s “triple system construction”. Several examples
are worth mentioning:

• For the “STU” model with N(ξ ) = ξ 1ξ 2ξ 3, the electric-magnetic charges trans-
form as a (2,2,2) of Conf(J) = Sl(2)3, so it can be viewed as sitting at the 8
corners of a cube; the quartic invariant is known as Cayley’s “hyperdeterminant”

I4 = −1
2
εABεCDεabεcdεαγεβδqAaαQBbβQCcγQDdδ (97)

This has recently been related to the “three-bit entanglement” in quantum infor-
mation theory12 [68, 69, 70].

• More generally, for the infinite series, where the charges transform as a (2, n) of
Sl(2)×SO(2,n), the quartic invariant is

I4 = (�qe ·�qe)(�qm ·�qm)− (�qe ·�qm)2 (98)

Up to a change of signature of the orthogonal group, this is the quartic invariant
which appears in the entropy of 1/4-BPS black holes in N = 4 theories (22).

• In the exceptional JO

3 case, I4 is the quartic invariant of the 56 representation of
E7(−25). Replacing O by the split octonions Os, one obtains the quartic invariant
of E7(7), which appears in the entropy S = π

√
I4 of 1/8-BPS states in N = 8

supergravity [71],

I4(P,Q) = −Tr(QPQP)+
1
4

(TrQP)2 −4 [Pf(P)+Pf(Q)] (99)

where the entries in the antisymmetric 8×8 matrices Q and P may be identified
as [8]:

Q =

⎛
⎜⎝

[D2]i j [F1]i [kkm]i

−[F1]i 0 [D6]

−[kkm]i −[D6] 0

⎞
⎟⎠ , P =

⎛
⎜⎝

[D4]i j [NS5]i [kk]i
−[NS5]i 0 [D0]

−[kk]i −[D0] 0

⎞
⎟⎠ ,

(100)

12 According to Freudenthal’s construction, the electric and magnetic charges naturally arrange

themselves into a square (rather than a cube)

(
p0 pI

qI q0

)
, where the diagonal elements are in R while

the off-diagonal ones are in the Jordan algebra J. This suggests that the “three-bit” interpretation
of the STU model may be difficult to generalize.
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Here, [D2]i j denotes a D2-brane wrapped along the directions i j on T 6, [D4]i j

a D4-branes wrapped on all directions but ij, [kk]i a momentum state along di-
rection i, [kkm]i a Kaluza-Klein 5-monopole localized along the direction i on
T 6, [F1]i a fundamental string winding along direction i, and [NS5]i a NS5-brane
wrapped on all directions but i.

Exercise 12. Show that in the N = 4 truncation where only the [F1], [kk], [NS5],
[kkm] charges are retained, (99) reduces to the quartic invariant (22) under Sl(2)×
SO(6,6). Similarly, in the N = 2 truncation where only [D0], [D2], [D4], [D6] are
kept show that one obtains the quartic invariant of a spinor of SO∗(12), based on
the Jordan algebra JH

3 .

The intermediate (93) also has an interesting interpretation: it is recognized as
1/p0 times the entropy S5D = π

√
N(Q)− J2 of a five-dimensional BPS black hole

with electric charge and angular momentum

QA = p0qA +CABC pB pC (101)

2JL =
(

p0)2
q0 + p0 pAqA +2N(p) (102)

The interpretation of these relations is as follows: When the D6-brane charge p0

is non-zero, the 4D black hole in Type IIA compactified on Ỹ may be lifted to
a 5D black hole in M-theory on Ỹ × T Np0 , where T N denotes the 4-dimensional
Euclidean Taub-NUT space with NUT charge p0; at spatial infinity, this asymptotes
to R

3×S1, where the circle is taken to be the M-theory direction. Translations along
this direction at infinity conjugate to the D0-brane charge q0 and become SU(2)
rotations at the center of T N, where the black hole is assumed to sit. The remaining
factors of p0 are accounted for by taking into account the R

4/Zp0 singularity at
the origin of T N [72]. The formulae (101) extend this lift to an arbitrary choice of
charges in a manifestly duality invariant manner.

Exercise 13. Using the fact that the degeneracies of five-dimensional black holes on
K3×S1 are given by the Fourier coefficients of the elliptic genus of Hilb(K3), equal
to 1/Φ10, show that the DVV conjecture (23) holds for at least one U-duality orbit
of 4-dimensional dyons in type II/K3× T 2 with one unit of D6-brane and some
amount of D0,D2-brane charge. You might want to seek help from [42].

4 Topological String Primer

In the previous sections, we were concerned exclusively with low energy super-
gravity theories, whose Lagrangian contains at most two-derivative terms. This is
sufficient in the limit of infinitely large charges, but not for more moderate val-
ues, where higher derivative corrections start playing a role. In this section, we
give a self-contained introduction to topological string theory, which offers a prac-
tical way to compute an infinite series of such corrections. Sections 4.1 and 4.2
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draw heavily from [73]. Other valuable reviews of topological string theory in-
clude [74, 75, 76, 77, 78].

4.1 Topological Sigma Models

Type II strings compactified on a Kähler manifold X of complex dimension d are
described by an N = (2,2) sigma model

S = 2t
∫

d2z
(

gi j̄∂φ
i∂̄ φ j̄ +gi j̄∂̄ φ

i∂φ j̄ + iψ ī
−Dψ i

−giī

+ iψ ī
+D̄ψ i

+giī +Riī j j̄ψ i
+ψ ī

+ψ j
−ψ

j̄
−

)
(103)

where φ is a map from a two-dimensional genus g Riemann surface Σ to X , ψ i
± is a

section of K1/2
± ⊗φ ∗(T 1,0X), ψ ī

± is a section of K1/2
± ⊗φ ∗(T 0,1X), and we denoted

by K+ the canonical bundle on Σ (i.e. the bundle of (1,0) forms) and K− the anti-
canonical bundle (of (0,1) forms). The factor of t (the string tension) is to keep track
on the dependence on the overall volume of X .

This model is invariant under N = (2,2) superconformal transformations gener-

ated with sections α± and α̃± of K1/2
± , acting e.g. as

δφ i = i
(
α−ψ i

+ +α+ψ i
−
)

, δφ ī = i
(
α̃−ψ ī

+ + α̃+ψ ī
−

)
(104)

This implies chirally conserved supercurrents G± of conformal dimension 3/2,
which together with T and the current J generate the N = 2 superconformal
algebra,

G+(z) G−(0) =
2c
3

1
z2 +

(
2J
z2 +

∂J +2T
z

)
+ reg (105)

J(z)J(0) =
c
3

1
z2 + reg (106)

The current J appearing in the OPE (105) generates a U(1) symmetry, such that G±
have charge Q = ±1 while T and J are neutral. In the (doubly degenerate) Ramond
sectors R±, the zero-modes of the supercurrents generate a supersymmetry algebra

(
G+

0

)2 =
(
G−

0

)2 = 0 ,
{

G+
0 ,G−

0

}
= 2

(
LR±

0 − c
24

)
(107)

Unitarity forces the right-hand side to be positive on any state. Moreover, the N = 2
algebra admits an automorphism known as spectral flow, which relates the NS and
R sectors:

JR±
0 = JNS

0 ∓ c
6

, LR±
0 = LNS

0 ∓ 1
2

JNS
0 +

c
24

(108)
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The unitary bound Δ ≥ c/24 in the R sector therefore implies a bound Δ ≥ |Q|/2
after spectral flow. States which saturate this bound have no short distance singu-
larities when brought together and thus form a ring under OPE, known as the chiral
ring of the N = 2 SCFT. Applying the spectral flow twice maps the NS sector back
to itself, with (Δ,Q) → (Δ−Q + c

6 ,Q∓ c
3 ). In particular, the NS ground state is

mapped to a state with (Δ,q) = ( c
6 ,∓ c

3 ) in the chiral ring. For a Calabi-Yau three-
fold, starting from the identity we thus obtain two R states with (Δ,q) = (3/8,±3/2)
and one NS state with (Δ,q) = (3/2,±3): these are identified geometrically as the
covariantly constant spinor and the holomorphic (3,0) form, respectively.

The spectral flow (108) above can be used to “twist” the N = 2 sigma model
into a topological sigma model: for this, bosonize the U(1) current J = i

√
3∂H so

that the spectral flow operator becomes

Σ± = exp

(
±i

√
3

2
H(z)

)
(109)

with (Δ = 3/8,Q = ±3/2). The topological twist then amounts to adding a back-

ground charge ±
∫ √

3
2 H R(2): Its effect is to change the two-dimensional spin L0

into a linear combination L0 ∓ 1
2 J0 of the spin and the U(1) charge. Under this op-

eration, choosing the + sign, ψ i
+ becomes a section of φ ∗(T 1,0X), i.e. a worldsheet

scalar, whereas ψ ī
+ becomes a section of K+ ⊗ φ ∗(T 0,1X), i.e. a worldsheet one-

form; simultaneously, the supersymmetry parameters α− and α̃− become a scalar
and a section of K−1, respectively. Alternatively, we may choose the − sign in (108),
where instead ψ i

+ would become a section of K+⊗φ ∗(T 1,0X), while ψ ī
+ would turn

into a worldsheet scalar. In either case, it is necessary that the canonical bundle K
be trivial, in order for the correlation functions to be unaffected by the twist: This is
achieved only when computing particular “topological amplitudes” in string theory,
which we will discuss in Sect. 5.1.

Since the sigma model (103) has (2,2) superconformal invariance, it is possible
to twist both left and right-movers by a spectral flow of either sign. Only the relative
choice of sign is important, leading to two very distinct-looking theories, which we
discuss in turn:

4.1.1 Topological A-Model

Here, both ψ i
+ and ψ ī

− are worldsheet scalars and can be combined in a scalar χ ∈
φ ∗(T X). On the other hand, ψ i

− and ψ ī
+ become (0,1) and (1,0) forms ψ i

z̄ and ψ ī
z on

the worldsheet. The action is rewritten as

S = 2t
∫

d2z
(

gi j̄∂φ i∂̄ φ j̄ +gi j̄∂̄ φ i∂φ j̄ + iψ ī
zD̄χ igiī + iψ ī

z̄Dχ īgiī −Riī j j̄ψ i
z̄ψ ī

zχ jχ j̄
)

(110)
It allows for a conserved “ghost” charge where [φ ] = 0, [χ] = 1, [ψ] = −1 and is
invariant under the scalar nilpotent operator Q = G+,
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{
Q,φ I}= χ I , {Q,χ I} = 0 ,

{
Q,ψ i

z̄

}
= i∂̄ φ i −χ jΓi

jkψ
k
z̄ (111)

The action (110) is in fact Q-exact, up to a total derivative term proportional to the
pull-back of the Kähler form ωK = igi j̄dφ i ∧dφ j̄, complexified into J = B+ iωK by
including the coupling to the NS two-form:

S = −i{Q,V}− t
∫

Σ
φ ∗(J) (112)

where V is the “gauge fermion”

V = t
∫

d2z gi j̄

(
ψ i

z̄∂φ j̄ +ψ j̄
z ∂̄ φ i

)
(113)

This makes it clear that the theory is independent of the worldsheet metric, since the
energy momentum tensor is Q-exact:

Tαβ = {Q,bαβ} , bαβ =
∂V

∂gαβ (114)

Moreover, the string tension t appears only in the total derivative term so, in a sector
with fixed homology class

∫
Σ φ ∗(J), the semi-classical limit t → 0 is exact. The path

integral thus localizes13 to the moduli space of Q-exact configurations,

∂z̄φ i = 0, ∂zφ ī = 0, (115)

i.e. holomorphic maps from Σ to X . Moreover, the local observables of the A-model
OW = WI1...Inχ I1 . . .χ In , where WI1...Indφ I1 . . .dφ In is a differential form on X of de-
gree n, are in one-to-one correspondence with the de Rham cohomology of X , since
{Q,OW} = −OdW . Due to an anomaly in the conservation of the ghost charge, cor-
relators of l observables vanish unless

l

∑
k=1

deg(Wk) = 2d(1−g)+2
∫

Σ
φ ∗(c1(X)) (116)

The last term vanishes when the Calabi-Yau condition c1(X) is obeyed. For Calabi-
Yau threefolds, at genus 0 the only correlator involves three degree 2 forms,

〈OW1OW2OW3〉 =
∫

W1 ∧W2 ∧W3 + ∑
β∈H2+(X)

e−t
∫
β J

∫

β
W1

∫

β
W2

∫

β
W3 (117)

13 Localization is a general feature of integrals with a fermionic symmetry Q: decompose the
space of fields into orbits of Q, parameterized by a Grassman variable θ times its orthogonal
complement; since the integrand is independent of θ by assumption, the integral

∫
dθ vanishes by

the usual rules of Grassmannian integration. This reasoning breaks down at the fixed points of Q,
which is the locus to which the integral localizes.
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At genus 1, only the vacuum amplitude, known as the elliptic genus of X is non-
zero. In Sect. 4.2, we will explain the prescription to construct non-zero amplitudes
at any genus, by coupling to topological gravity.

4.1.2 Topological B-Model

The other inequivalent choice consists in twisting ψ ī
± into worldsheet scalars valued

in T X0,1, while ψ i
+ and +ψ i

− are (0,1) and (1,0) forms valued in T X1,0. Defining
η ī = ψ ī

+ +ψ ī
−, θi = giī(ψ ī

+ −ψ ī
− and taking ψ i

± as the two components of a one-
form ρ i, the action may be rewritten as

S = i t{Q,V}+ t W (118)

where

V =
∫

Σ
d2z gi j̄

(
ρ i

z∂̄ φ j̄ +ρ i
z∂̄ φ j̄

)
(119)

W = −
∫

Σ
d2z

(
θiDρ i +

i
2

Riī j j̄ ρ
i ∧ρ j η īθkgk j̄

)
(120)

and the nilpotent operator Q = G− acts as

{
Q,φ i}= 0 ,

{
Q,φ ī

}
= −η ī ,

{
Q,η ī

}
= {Q,θi} = 0 ,

{
Q,ρ i}= −idφ i

(121)

Again, the energy-momentum tensor is Q-exact, so that the model is topological.
It is also independent of the Kähler structure of X and has a trivial dependence on
t, since (apart from contributions from the Q-exact term) t may be reabsorbed by
rescaling θ → θ/t. The semi-classical limit t → ∞ is therefore again exact, and
the path integral localizes on the fixed points of Q, which are now constant maps,
dφ i = 0. After localization, the path integral then reduces to an integral over X .

The observables of the B-model are in one-to-one correspondence with degree
(p,q) polyvector fields

V = V
j1... jq

ī1...īp
dz̄ī1 . . .dz̄īp ∂z j1 . . .∂z jq ∈ H p (X ,ΛqT 1,0X

)
(122)

via dz̄ī ∼ η ī,∂z j ∼ θ j, since {Q,OV} = −O∂̄V . There are now two conserved ghost
charges, and the anomaly in the ghost number conservation requires that

l

∑
k=1

pk =
l

∑
k=1

qk = d(1−g) (123)

For example, at genus 0, the only vanishing correlator on a Calabi-Yau three-fold
involves three (1,1) polyvector fields V i

j̄ . Using the holomorphic (3,0) form, these
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are related to (2,1) forms Ωi jlV l
k̄

parameterizing the complex structure of X . The
three-point function is

〈OV1OV2OV3〉 =
∫

X
V i1

j̄1
V i2

j̄2
V i3

j̄3
Ωi1i2i3 dz̄ j̄1 ∧dz̄ j̄2 ∧dz̄ j̄3 ∧Ω (124)

giving access to the third derivative of the prepotential.

4.2 Topological Strings

Due to the conservation of the ghost number, we have seen that, from the sigma
model alone, the only non-vanishing topological correlators are the three-point func-
tion on the sphere and the vacuum amplitude on the torus. It turns out that the cou-
pling to topological gravity allows to lift this constraint and define arbitrary n-point
amplitudes at any genus.

Recall that in bosonic string theory, genus g amplitudes are obtained by intro-
ducing 6g−6 insertions of the dimension 2 ghost (or, rather, “antighost”) b of dif-
feomorphism invariance, folded with Beltrami differentials μk ∈ H1(Σ,T 1,0Σ):

Fg =
∫

Mg

〈
6g−6

∏
k=1

(b,μk)

〉
(125)

where
(b,μ) =

∫

Σ
d2z

[
bzzμz

z̄ +bz̄z̄ μ̄ z̄
z

]
(126)

This effectively produces the Weil-Peterson volume element on the moduli space
Mg of complex structures on the genus g Riemann surface Σ (compactified à la
Deligne-Mumford). Since b has ghost number −1, this exactly compensates the
anomalous background charge.

After the topological twist, which identifies the BRST charge Q with (say) G+, it
is natural to identify b with G−, in such a way that the energy-momentum tensor is
given by T = {Q,b}= {G+,G−}. Hence, the genus g vacuum topological amplitude
may be written as

Fg =
∫

Mg

〈
3g−3

∏
k=1

(G−,μk) (G±, μ̄k)

〉
(127)

where the upper (resp., lower) sign corresponds to the A-model (resp., B-model).
Scattering amplitudes may be obtained by inserting vertex operators with zero ghost
number; these may be obtained by “descent” from a ghost number 2 operator O(0),

dO(0) =
{

Q,O(1)
}

, dO(1) =
{

Q,O(2)
}

(128)

Prominent examples of O(0) are of course Wiīχ iχ ī in the A-model and V ī
jη īθ j in the

B-model. These describe the deformations of the Kähler and complex structures,
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respectively. Arbitrary numbers of integrated vertex operators
∫

d2z O(2) can then
be inserted in (127) without spoiling the conservation of ghost charge number.

Weighting the contributions of different genera by powers of the “topological
string coupling” λ , namely,

Ftop =
∞

∑
g=0

λ 2g−2Fg (129)

we obtain obtain a perturbative definition of the A and B-model topological strings.
Since the worldsheet is topological, the target space theory has only a finite number
of fields, so it is really more a field theory than a string theory. In fact, the tree-level
scattering amplitudes can be reproduced by a simple action X , known as “holomor-
phic Chern-Simons” in the A-model and “Kodaira-Spencer” in the B-model; these
describe the fluctuations of Kähler and complex structures, respectively. We refer
the reader to [79] for an extensive discussion of these theories.

4.3 Gromov-Witten, Gopakumar-Vafa
and Donaldson-Thomas Invariants

We now concentrate on the topological vacuum amplitude (129) of the A-model
on a Calabi-Yau threefold X . Up to holomorphic anomalies that we discuss in the
next section, Ftop can be viewed as a function of the complexified Kähler moduli
tA =

∫
γA J. In the large volume limit (or more generally, near a point of maximal

unipotent monodromy), it has an asymptotic expansion

Ftop = −i
(2π)3

6λ 2 CABCtAtBtC − iπ
12

c2AtA +FGW (130)

where CABC are the triple intersection numbers of the 4-cycles γA dual to γA, and
c2A =

∫
γA

c2(T (1,0)X) are the second Chern classes of these 4-cycles. The first two
terms in (130) are perturbative in α ′, while FGW contains the effect of worldsheet
instantons at arbitrary genus,

FGW = ∑
g≥0

∑
β∈H+

2 (X)

Ng,β e2πiβAtA
λ 2g−2 (131)

where the sum runs over effective curves β = βAγA with βA ≥ 0, and Nβ
g are (con-

jecturally) rational numbers known as the Gromov-Witten (GW) invariants of X . It
is possible to re-organize the sum in (131) into

FGW = ∑
g≥0

∑
β∈H+

2 (X)
∑
d≥1

ng,β
1
d

[
2sin

(
dλ
2

)]2g−2

e2πidβAtA
(132)
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The coefficients ng,β are known as the Gopakumar-Vafa (GV) invariants and are
conjectured to always be integer: indeed, one may show that the contribution of a
fixed βA in (132) arises from the one-loop contribution of a M2-brane wrapping the
isolated holomorphic curve βAγA in X [80, 81]. The GV invariants can be related to
the GW invariants by expanding (132) at small λ and matching on to (131), e.g. at
leading order λ−2,

N0,β = ∑
d|βA

d3 n0,βA/d (133)

which incorporates the effect of multiple coverings for an isolated genus 0 curve.
It should be noted that the sum in (131) or (132) includes the term β = 0, which

corresponds to degenerate worldsheet instantons. It turns out that the only non-
vanishing GV invariant at genus 0 is n0,0 = − 1

2χ(X), hence

Fdeg = −1
2
χ(X) ∑

d≥1

1
d

[
2sin

(
dλ
2

)]2

≡−1
2
χ(X) f (λ ) (134)

The function f (λ ), known as the Mac-Mahon function, may be formally manipu-
lated into

f (λ ) = −∑
d≥1

eidλ

d(1− eidλ )2
= −

∞

∑
d=1

∞

∑
n=1

n qnd

d
=

∞

∑
n=1

n log(1−qn) (135)

where q = eiλ . The last expression converges in the upper half plane Im(λ ) > 0,
and may be taken as the definition of the Mac-Mahon function, suitable in the large
coupling limit λ → i∞.

Exercise 14. Check that the coefficient of qN in the Taylor expansion of exp(− f )
counts the number of three-dimensional Young tableaux with N boxes.

In order to analyze its contributions at weak coupling t = −iλ → 0, let us com-
pute its Mellin transform14

M(s) =
∫ ∞

0

dt
t1−s f (t) = −

∫ ∞

0

dt
t1−s

∞

∑
d=1

∞

∑
n=1

n
d

e−ndt (136)

Exchanging the integral and sums, the result is simply expressed in terms of Euler
Γ and Riemann ζ functions,

−
∞

∑
d=1

∞

∑
n=1

n
d

(nd)−sΓ(s) = −ζ (s−1)ζ (s+1)Γ(s) (137)

The function f (t) itself may be obtained conversely by

14 The following argument, due to S. Miller (private communication), considerably streamlines the
computation in [6].



Lectures on Black Holes, Topological Strings and Quantum Attractors (2.0) 319

f (t) =
1

2πi

∫

Re(s)=s0

M(s) t−s (138)

where the contour is chosen to lie to the right of any pole of M(s). Moving the
contour to the left and crossing the poles generate the Laurent series expansion
of f (t).

To perform this computation, recall that Γ(s) has simple poles at s = −n,n =
0,1, . . . with residue (−1)n/n!. Moreover, ζ (s) has a simple pole at s = 1, and “triv-
ial” zeros at s =−2,−4,−6, . . .. The trivial zeros of ζ (s−1) and ζ (s+1) cancel the
poles of Γ(s) at odd negative integer, leaving only the simple poles at even strictly
negative integer, a double pole at s = 0 and a single pole at s = 2. Altogether, re-
turning to the variable λ = it,we obtain the Laurent series expansion

f (λ ) =
ζ (3)
λ 2 +

1
12

log(iλ )−ζ ′(1)+
∞

∑
g=2

B2gB2g−2λ 2g−2

(2g−2)!(2g−2)(2g)
(139)

where we further used the relation ζ (3− 2g) = −B2g−2/(2g− 2) (g ≥ 2) between
the values of ζ and Bernoulli numbers.

The leading term, proportional to ζ (3), leads to a constant shift −1/2χ(X)ζ (3)
in the tree-level prepotential, and can be traced back to the tree-level R4 term in the
10-dimensional effective action, reduced along X [82, 83, 84]. The terms with g ≥ 2
were first computed using heterotic/type II duality [85] and impressively agree with
an independent computation of the integral over the moduli space Mg [86],

∫

Mg

c3
g−1 = − B2gB2g−2λ 2g−2

(2g−2)!(2g−2)(2g)
(140)

The logarithmic correction in (139) originates from the double pole of M(s) at s = 0
and has no simple interpretation yet. It is nevertheless forced, if one accepts that the
correct non-perturbative completion of the degenerate instanton series is the Mac-
Mahon function [5, 6].

For completeness, let us finally mention the relation to a third type of topologi-
cal invariants, known as Donaldson-Thomas invariants nDT (qA,m) [87]: these count
“ideal sheaves” on X , which can be understood physically as bound states of m D0-
branes, qA D2-branes wrapped on qAγA ∈ H2(Z) and a single D6-brane. S-duality
implies [88, 89] that the partition function of Donaldson-Thomas invariants is re-
lated to the partition function of Gromov-Witten invariants by [90, 91]

∑
qA∈H2(Z),m∈Z

nDT (qA,m) eitAqA
qm = exp

[
FGW (t,λ )− χ

2
f (λ )

]
(141)

where q = −eiλ . Such a relation may be understood from the fact that a curve may
be represented either by a set of a equations (the Donaldson-Thomas side) or by
an explicit parameterization (the Gromov-Witten side). This conjecture has been
recently proven for any toric three-fold X [92].
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4.4 Holomorphic Anomalies and the Wave Function Property

In the previous subsection, we assumed that the topological amplitude was a func-
tion of the holomorphic moduli ti only. This is naively warranted by the fact that the
variation of the anti-holomorphic moduli t̄ ī results in the insertion of an (integrated)
Q-exact operator, φī = {G+, [Ḡ+, φ̄ī]}. By the same naive reasoning, one would ex-

pect that the n-point functions C(g)
i1...in

be independent of t̄, and equal to the n-th order
derivative of the vacuum amplitude Fg with respect to ti1 , . . .tin . Both of these ex-
pectations turn out to be wrong, due to boundary contributions in the integral over
the moduli space of genus g Riemann surfaces. By analyzing these contributions
carefully, Berschadsky, Cecotti, Ooguri, and Vafa [79] (BCOV) have shown that the
t̄ i derivative of Fg is related to Fh<g at lower genera via15

∂̄īFg =
1
2

e2K C̄ī j̄k̄g j j̄gkk̄

(
D jDkFg−1 +

g−1

∑
h=1

(D jFh)(DkFg−h)

)
(142)

where DiFg = (∂i − (2−2g)∂iK )Fg, as appropriate for a section of L 2−2g, where
L is the Hodge bundle defined below (29). In (142), the first term on the right-hand
side originates from the boundary of Mg where one non-contractible handle of Σ is
pinched, whereas the second term corresponds to the limit where a homologically
trivial cycle vanishes, disconnecting Σ into two Riemann surfaces with genus h and
g− h. A similar identity can be derived for n-point functions. Moreover, the latter
are indeed obtained from the vacuum amplitude by derivation with respect to ti,
provided one uses a covariant derivative taking into account the Levi-Civita and
Kähler connections:

C(g)
i1...in

=

⎧⎪⎨
⎪⎩

Di1 . . .DinFg for g ≥ 1,n ≥ 1

Di1 . . .Din−3Cin−1in−1in for g = 0,n ≥ 3

0 for 2g−2+n ≤ 0

(143)

where Ci jk is the tree-level three-point function. The resulting identities may be
summarized by defining the “topological wave-function”

ΨBCOV = λ
χ
24−1 exp

[
∞

∑
g=0

∞

∑
n=0

1
n!

λ 2g−2C(g)
i1...in

xi1 . . .xin

]
(144)

Note that ΨBCOV does not incorporate the genus 1 vacuum amplitude. In terms of
this object, the identities (142) (or rather their generalization to n-point functions)
and (143) are summarized by the two equations

∂t̄ i =
λ 2

2
e2K C̄ī j̄k̄g j j̄gkk̄ ∂ 2

∂x j∂xk −gī jx
j
(
λ

∂
∂λ

+ xk ∂
∂xk

)
(145)

15 When g = 1, the holomorphic equation becomes second order and can be read off from (145)
below.
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∂ti = Γk
i jx

j ∂
∂xk −∂iK

(
χ
24

−1−λ
∂
∂λ

)
+

∂
∂xi −∂iF1 −

1
2λ 2 Ci jkx jxk (146)

By rescaling xi → λxi,Ψ→ e f1(t)ΨV where f1(t) is the holomorphic function in the
general solution

F1 = −1
2

log |g|+
(

nV +1
2

− χ
24

+1

)
K + f1(t)+ f̄1(t̄) (147)

of the holomorphic anomaly equation for F1, E. Verlinde [93] was able to recast
(145), (146) in a form involving only special geometry data,

∂t̄ i =
1
2

e2K C̄ī j̄k̄g j j̄gkk̄ ∂ 2

∂x j∂xk +gī jx
j ∂
∂λ−1 (148)

∇i −Γk
i jx

j ∂
∂xk =

1
2
∂ti log |g|+ 1

λ
∂
∂xi −

1
2

e−2K Ci jkx jxk (149)

where

∇i = ∂i +∂iK

(
xk ∂

∂xk −λ
∂
∂λ

+
nV +1

2

)
(150)

Here, |g| = det(gi j̄). The implications of these equations were understood in [94]
and further clarified in [9, 93, 95]: Ψ(t, t̄;x,λ ) should be thought of as a single state
|Ψ〉 in a Hilbert space, expressed on a (t, t̄)-dependent basis of coherent states,

ΨV (t, t̄;x,λ ) =(t,t̄)
〈
xi,λ |Ψ

〉
(151)

This is most easily explained in the B-model, where (x,λ−1) and their complex
conjugate can be viewed as the coordinates of a 3-form γ ∈ H3(X ,R) on the Hodge
decomposition

γ = λ−1Ω+ xiDiΩ+ xīDīΩ̄+ λ̄−1Ω̄ (152)

The space H3(X ,R) admits a symplectic structure

ω = i e−K
(

gi j̄dxi ∧dx̄ j̄ −dλ−1 ∧dλ̄−1
)

(153)

inherited from the anti-symmetric pairing (α,β ) =
∫

X α ∧ β , which leads to the
Poisson brackets between the coordinates

{
λ−1, λ̄−1}= i eK ,

{
xi, x̄ j̄

}
= −igi j̄ (154)

The phase H3(X ,R) may be quantized by considering functions (or rather half-
densities, to account for the zero-point energy) of (λ−1,xi) and representing λ̄−1

and x̄ī as derivative operators,

λ̄−1 = −eK ∂
∂λ−1 , x̄ī = eK gī j ∂

∂x j (155)
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The resulting wave function Ψ(t, t̄;λ ,x) carries a dependence on the “background”
variables (t, t̄) since the decomposition (152) does depend on these variables via Ω.
A variation of t and t̄ generically mixes (λ−1,x) with their canonical conjugate and
so may be compensated by an infinitesimal Bogolioubov transformation, reflected in
(148), (149). In fact, we can check that these two equations are hermitean conjugate
under the inner product

〈Ψ′|Ψ〉 =
∫

dxidx̄īdλ−1dλ̄−1|g| e−
nV +1

2 K

exp
(
−e−K xigi j̄ x̄

j + e−K λ−1λ̄−1
)
Ψ

′∗ (t, t̄; x̄, λ̄
)
Ψ(t, t̄;x,λ )

(156)

which is the natural inner product arising in Kähler quantization. In contrast to Ψ
and Ψ′ separately, the inner product is background independent (and, in fact, a pure
number), by virtue of the anomaly equations.

Exercise 15. Show that in the harmonic oscillator Hilbert space, the wave functions
in the real and oscillator polarizations are related by (abusing notation)

f (q) =
∫

da† eia†q
√

2+q2/2−(a†)2/2 f (a†) =
∫

da e−iaq
√

2−q2/2+a2/2 f (a) (157)

Conclude that the inner product in oscillator basis is given by
∫

dq f ∗(q)g(q) =
∫

dada† e−aa†
f ∗(a)g(a†) (158)

This observation suggests that there exists a different background independent
polarization obtained by choosing a real symplectic basis γ I ,γI of three-cycles in
H3(X ,Z), and expanding

γ = pIγI +qIγ I (159)

The symplectic form is now just ω = dqI ∧ d pI , so H3(X ,R) can be quantized by
considering functions of pI and representing qI as i∂/∂ pI ; equivalently, one may
introduce a set of coherent states |pI〉 and define the wave function in the “real”
polarization,

ΨR(pI) = 〈pI |Ψ〉. (160)

This is related to the wave function in the Kähler polarization by a finite Bogo-
lioubov transformation16

ΨR(pI) =
∫

dxi dλ 〈pI |xi,λ 〉 ΨV (t, t̄;λ ,x) (161)

The overlap of coherent states 〈pI |xi, λ 〉 is a solution of the equations hermitian-
conjugate to (148), (149) [9, 93],

16 A precursor of this formula was already found in [79], although not recognized as such.
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〈pI |xi,λ 〉 = e−(nV +1)K /2
√

detgi j̄ exp

[
−1

2
pI τ̄IJ pJ +2ipI [Imτ]IJ

(
λ−1XI + e−K /2xi f I

i

)

+ i
(
λ−2XI [Imτ]IJXJ +2λ−1e−K /2xi f I

i [Imτ]IJXJ + e−K xi f I
i [Imτ]IJ f J

j x j
)]

(162)

While the topological wave function in the real polarization has the great merit of
being background independent, it is nevertheless not canonical, since it depends on
a choice of symplectic basis. As usual in quantum mechanics, changes of symplectic
basis are implemented by the metaplectic representation of Sp(2nV + 2) (or rather,
of its metaplectic cover). In particular, upon exchanging A and B cycles, ΨR(pI)
is turned into its Fourier transform, which is the quantum analogue of the classical
property discussed in Exercise 4 on page 14.

For completeness, let us mention that there exists a different “holomorphic” po-
larization, intermediate between the Kähler and real polarizations, where the topo-
logical amplitude is a purely holomorphic function of the background moduli ti,
satisfying a heat-type equation analogous to the Jacobi theta series [9]. Moreover,
for “very special supergravities”, the holomorphic anomaly equations can be traced
to operator identities in the “minimal” representation of the three-dimensional du-
ality group QConf(J); this is analogous to the case of the Jacobi theta series, where
the Siegel modular group Sp(4,Z) plays the role of QConf(J). This hints at the ex-
istence of a one-parameter generalization of the topological string amplitude, which
we return to in Sect. 7.5.3.

5 Higher Derivative Corrections and Topological Strings

In this section, we return to the realm of physical string theory and explain how
a special class of higher derivative terms in the low-energy effective action can
be reduced to a topological string computation. We then discuss how these terms
affect the Bekenstein-Hawking entropy of black holes and formulate the Ooguri-
Strominger-Vafa conjecture, which purportedly relates the topological amplitude to
the microscopic degeneracies.

5.1 Gravitational F-Terms and Topological Strings

In general, higher derivative and higher genus corrections in string theory are very
hard to compute: The integration measure on supermoduli space is ill-understood
beyond genus 2 (see [96] for the state of the art at genus 2), and the current com-
putation schemes (with the exception of the pure spinor superstring, see e.g. [97])
are non-manifestly supersymmetric, requiring to evaluate many different scattering
amplitudes at a given order in momenta.
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Fortunately, N = 2 supergravity coupled to vector multiplets has an off-shell
superspace description, which greatly reduces the number of diagrams to be com-
puted, and also provides a special family of “F-term” interactions, which can be ef-
ficiently computed. The most convenient formulation starts from N = 2 conformal
supergravity and fixes the conformal gauge so as to reduce to Poincaré supergravity
(see [50] for an extensive review of this approach). The basic objects are the Weyl
and matter chiral superfields,

Wμν(x,θ) = Tμν −
1
2

Rμνρσεαβθασλρθβ + . . . (163)

ΦI(x,θ) = XI +
1
2
F I

μνεαβθασμνθβ + . . . (164)

where α,β = 1,2. Tμν is an auxiliary anti-selfdual tensor, identified by the (tree-
level) equations of motion as the graviphoton (40). From W , one may construct the
scalar chiral superfield

W 2(x,θ) = TμνT μν −2εi jθ iσμνθ jRμνλρT λρ − (θ i)2(θ j)2RμνλρRμνλρ + . . .
(165)

where the anti-self dual parts of R and T are understood. Starting with any holomor-
phic, homogeneous of degree two function F(ΦI , W 2), regular at W 2 = 0,

F(ΦI ,W 2) ≡
∞

∑
g=0

Fg(ΦI)W 2g (166)

(where Fg is homogeneous of degree 2−2g) one may construct the chiral integral

∫
d4θd4x F(Φ,W 2) = Stree +

∫ ∞

∑
g=1

Fg(XI)
(
g R2T 2g−2 +2g(g−1)(RT )2T 2g−4

)
+ . . .

(167)
which reproduces the tree-level N = 2 supergravity action based on the prepotential
F0, plus an infinite sum of higher derivative “F-term” gravitational interactions (plus
non-displayed terms). F(ΦI , W 2) is known as the generalized prepotential.

In order to compute the coefficients Fg(XI), one should compute the scattering
amplitude of 2 gravitons and 2g−2 graviphotons in type II (A or B) string theory at
leading order in momenta compactified on a Calabi-Yau threefold X . This problem
was studied in [98], where it was shown (as anticipated in [79]) that it reduces to a
computation in topological string theory. We now briefly review the argument.

The graviphoton originates from the Ramond-Ramond sector; taking into ac-
count the peculiar couplings of RR states to the dilaton, Fg is identified as a
genus g amplitude17. Perturbative contributions from a different loop order or non-
perturbative ones are forbidden, since the type II dilaton is an hypermultiplet. The
graviton vertex operator (in the 0 superghost picture) is

17 When X is K3-fibered, and in the limit of a large base, one can obtain the generalized prepotential
from a one-loop heterotic computation [85, 99].
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V (0)
g = hμν(∂Xμ + ip ·ψ ψμ)(∂̄Xμ + ip · ψ̃ ψ̃μ)eipX (168)

The vertex operator of the graviphoton (in the −1/2 superghost picture) is

V (−1/2)
T = εμ pνe−(φ+φ̃)/2 (Sσμν S̃ Σ+Σ̃∓ + cc

)
eipX (169)

where S, S̃ are spin fields in the 4 non-compact dimensions, and Σ± is the spec-
tral flow operator (109) in the N = (2,2) SCFT. The insertion of 2g− 2 gravipho-

tons induces a background charge
∫ √

3
2 H R(2), which induces the topological twist

L0 → L0 − 1
2 J. The same process takes place in the SCFT describing the 4 non-

compact directions. As a result, the bosonic and fermionic fluctuation determinants
cancel. Moreover, choosing the polarizations of the graviton and graviphotons to be
anti-self-dual, only the ψψψ̃ψ̃ terms in (168) contribute after summing over spin
structures and cancel against the contractions of the spin fields SS̃.

Now we turn to the cancelation of the superghost charge: The integration over su-
permoduli brings down 2g− 2 powers of the picture-changing operator eφTF × cc,
where TF = G+ + G− is the supercurrent. In order to cancel the superghost back-
ground charge 2g − 2, it is therefore necessary to transform g − 1 of the 2g − 2
graviphoton vertex operators in the +1/2 picture. In total, we thus have 3g− 3 in-
sertions of TF . By conservation of the U(1) charge, it turns out that only the G− and
G̃± parts of TF and T̃F contribute. Finally, we reach

Ag = (g!)2
∫

Mg

〈
3g−3

∏
a=1

(μaG−)
(
μ̃aG̃±

)〉
= (g!)2Fg (170)

where the upper (lower) sign corresponds to type IIB (resp. IIA). We conclude that
the generalized prepotential Fg(X) in type IIA (B) string theory compactified on X is
equal to the all genus vacuum amplitude (129) of the A (resp. B)-model topological
string. The precise identification of the variables is

Ftop =
iπ
2

FSUGRA , tA =
XA

X0 , λ =
π
4

W
X0 (171)

To be more precise, the vacuum topological amplitude Fg(t, t̄), computes the phys-
ical R2T 2g−2 coupling; it differs from the the holomorphic “Wilsonian” coupling
Fg(X) appearing in (167) due to the contributions of massless particles. It is of-
ten assumed that these contributions are removed by taking t̄ → ∞ keeping t fixed;
it would be interesting to determine whether this is indeed equivalent to going to
using the real polarized topological wave function (161).

For completeness and later reference, let us mention that, by a similar reasoning,
the topological B-model (resp. A) in type IIA (resp. B) computes higher-derivative
interactions between the hypermultiplets, of the form [98]

S̃ =
∫

d4x
∞

∑
g=1

F̃g(X)
[
g(∂∂S)2(∂Z)2g−2 +2g(g−1)(∂∂S∂Z)2(∂Z)2g−4] (172)
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where (S,Z) describes the universal hypermultiplet. It is also an interesting open
problem to construct an off-shell superfield formalism which would describe all
these interactions at once as F-terms.

5.2 Bekenstein-Hawking-Wald Entropy

In general, higher derivative corrections affect the macroscopic entropy of black
holes in two ways:

(i) they affect the actual solution, and in particular the relation between the horizon
geometry and the data measured at infinity;

(ii) by modifying the stress-energy tensor, they change the relation between geom-
etry and entropy.
Moreover, since subleading contributions to the statistical entropy are non-
universal, comparison with the microscopic result requires

(iii) specifying the statistical ensemble implicit in the low-energy field theory.

As far as (i) is concerned, and provided we restrict to BPS black holes, the fact
that the generalized N = 2 supergravity has an off-shell description simplifies the
computation drastically: The supersymmetry transformation rules are the same as
at tree-level; Cardoso, de Wit, and Mohaupt [100, 101, 102, 103] (CdWM) have
shown that the horizon geometry is still AdS2 ×S2, while the value of the moduli is
governed by the a generalization of the stabilization (69),

Re(Y I) = pI , Re(GI) = qI , W 2 = 28 (173)

where GI is now the derivative of the generalized prepotential, GI = ∂F(Y,W 2)/∂Y I .
As far as (ii) is concerned, Wald [104] has given a general prescription for ob-

taining an entropy functional that satisfies the first law18 of thermodynamics, in the
context of a Lagrangian L (R) with a general dependence on the Riemann tensor:

SBHW = 2π
∫

Σ

∂L

∂Rμνρσ
εμνερσ √

h dΩ (174)

where h is the induced metric on the horizon Σ, and εμν is the binormal.

Exercise 16. Show that for L = − 1
16πG R, (174) reduces to the usual Bekenstein-

Hawking area law.

While the N = 2 corrected Lagrangian does not have such a simple form,
CdWM adapted Wald’s construction and found a simple result generalizing (70)

SBHW =
iπ
4

(
Ȳ IGI −Y IḠI

)
− π

2
Im [W∂W F ] (175)

18 The validity of the zero-th and second law was discussed in [105, 106].
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where the right-hand side should be evaluated at the attractor point (173).
It should be emphasized that this result takes into account the contributions of

the F-terms only; at a given order in momenta, there surely are other “D-terms”
interactions which would contribute to the thermodynamical entropy. The results
below suggest that such contributions should cancel for BPS black holes: a beautiful
proof has been given in [107] but it assumes that the black hole can be lifted to 5
dimensions.

5.3 The Ooguri-Strominger-Vafa Conjecture

As noticed in [4], using the homogeneity relation Y IGI +W∂W F = 2F , it is possible
to perform the same manipulation as in (72) and rewrite the entropy (175) as a
Legendre transform

SBHW =
iπ
4

[
(Y I −2iφ I)GI − (Ȳ I +2iφ I)ḠI

]
+

iπ
4

[W∂W F −W̄∂W̄ F̄ ] (176)

=
iπ
2

(F − F̄)+
π
2
φ I(GI + ḠI) (177)

= F (pI ,φ I)+πφ IqI (178)

of the “topological free energy” F (pI ,φ I), which now incorporates the infinite se-
ries of higher derivative F-term corrections,

F (pI ,φ I) = −π Im
[
F(Y I = pI + iφ I ;W 2 = 28)

]
(179)

In fact, there are now general arguments [107, 108] to the effect that the Bekenstein-
Hawking-Wald entropy is equal the Legendre transform of the Lagrangian evaluated
on the near-horizon geometry; in the case of N = 2 supergravity, the equality of this
Lagrangian with the topological free energy F (p,φ) was checked recently in [28].

As argued by OSV, the simplicity of (178) strongly suggests that the thermo-
dynamical ensemble implicit in the BHW entropy is a “mixed” ensemble, where
magnetic charges are treated micro-canonically but electric charges are treated
canonically; the thermodynamical relation (178) should then perhaps be viewed as
an approximation of an exact relation between two different statistical ensembles

∑
qI∈Λel

Ω(pI ,qI)e−πφ IqI ?= eF (pI ,φ I) (180)

where Ω(pI , qI) are the “microcanonical” degeneracies of states with fixed charges
(pI ,qI), and the sum runs over the lattice Λel of electric charges. Making use of
(179), the right-hand side may be rewritten as

∑
qI∈Λel

Ω
(

pI ,qI
)

e−πφ IqI ?=
∣∣Ψtop

(
pI + iφ I ,28)∣∣2 (181)
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or, conversely,

Ω(pI ,qI)
?=
∫

dφ I |Ψtop(pI + iφ I ,28)|2eπφ
IqI (182)

It should be stressed that going from the “OSV fact” (75) to the OSV conjecture
(181) involves a considerable leap of faith which should not be taken lightly.

In its strongest form, the conjecture provides a way to compute the exact mi-
croscopic degeneracies Ω(pI , qI) from the topological string amplitude F(X ,W 2).
However, this would most likely require extending the definition of F(X ,W 2) to in-
clude non-perturbative contributions in W . Conversely, one may hope to understand
the non-perturbative completion of the topological string from a detailed knowledge
of black hole degeneracies. The weaker, more concrete form of the OSV conjec-
ture states that the relation (182) should hold asymptotically to all orders in inverse
charges.

The conjecture calls for some immediate remarks:

• While the formula (182) at first sight seems to treat electric and magnetic charges
differently, it is nevertheless invariant under electric-magnetic duality, provided
the topological amplitude Ψtop transforms in the metaplectic representation of
the symplectic group (see Exercise 18 on page 57 below). Thus, Ψtop should be
understood as the topological wave function ΨR(pI) in the real polarization [93],
which may be different from the t̄ → ∞ limit, as stressed below (171).

• Upon analytically continuing φ I = iχ I , the right-hand side of (182) defines the
Wigner function associated to the quantum state Ψtop (we shall return to this
observation in Sect. 7). As is well known in quantum mechanics, it is not definite
positive, so if the strong conjecture is to hold, Ω(p,q) should probably refer to an
index rather than to an absolute degeneracy of states. This fits well with the fact
that Ψtop contains only information about F-term interactions, which is probably
insufficient to encode the absolute degeneracies.

• Due to charge quantization, the left-hand side of (181) is formally periodic under
imaginary shifts φ I → φ I + 2ikI , kI ∈ Z, which is not the case of the right-hand
side |Ψtop|2. This can be repaired by replacing (181) by

∑
qI∈Λel

Ω(pI ,qI)e−πφ IqI ?= ∑
kI∈Λ∗

el

Ψ∗ (pI −2kI − iφ I) Ψ
(

pI +2kI + iφ I) (183)

without affecting the converse statement (182). The right-hand side of this equa-
tion is reminiscent of a theta series. Similar averaging have indeed been found
to occur in some non-compact models [109, 110]. Note however that this aver-
aging renders the prospect of recovering the non-perturbative generalization of
Ψtop from Ω(pI ,qI) more uncertain.

• The sum on the left-hand side of (181) does not appear to converge, which re-
flects the thermodynamical instability of the mixed ensemble. Moreover, specify-
ing the integration contour in (182) would require understanding the singularities
of the topological amplitude. These subtleties do not affect the weak form of the
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conjecture, since the saddle point approximation to (182) is independent of the
details of the contour.

• A variant of the OSV conjecture (182) has been proposed in [58], which involves
an integral over both XI and X̄ I , or equivalently a thermodynamical ensemble
with fixed electric and magnetic potentials (see Exercise 7 on page 23). It would
be interesting to demonstrate the equivalence of this approach with the one based
on the holomorphic polarization of the topological amplitude [93].

The OSV conjecture has been successfully tested in the case of non-compact
Calabi-Yau manifolds of the form O(−m)⊕O(2g−2+m)→ Σg, where Σ is a genus
g Riemann surface [109, 110]: BPS states are counted by topologically twisted SYM
on N D4-brane wrapped on a 4-cycle O(−m) → Σ, which is equivalent to 2D Yang
Mills (or a q-deformation thereof, when g �= 1). At large N, the partition function of
2D Yang-Mills indeed factorizes into two chiral halves [111], which indeed agree
with the topological amplitude computed independently. Exponentially suppressed
corrections to the large N limit of 2D Yang-Mills have been studied in [112] and
seem to call for a “second quantization” of the right-hand side of (181). For N = 4
and N = 8 compactifications on K3×T 2 and T 6, the formula (182) has been com-
pared to the prediction for dyons degeneracies based on U-dualities, and agreement
has been found in the semi-classical approximation [113]. More recently, several
“derivations” of the weak form of the OSV conjecture have been given, using an
M2− M̄2 or D6− D̄6 representation of the black hole, and some modular proper-
ties of the partition function [114, 115, 116, 117]. These approaches make it clear
that the strong form of the conjecture cannot hold and suggest possible sources of
deviations from the “modulus square” form.

In the next section, we shall present a precision test of the OSV conjecture in
the context of small black holes in N = 4 and N = 2 theories, whose microscopic
counting can be made exactly.

6 Precision Counting of Small Black Holes

In order to test the OSV conjecture, one should be able to compute subleading cor-
rections to the microscopic degeneracies Ω(p,q). Due to subtleties in the “black
string” CFT description of 4-dimensional black holes, it has not been hitherto possi-
ble to reliably compute subleading corrections to (17) for generic BPS black holes.

On the other hand, the heterotic string has a variety of BPS excitations which
can be counted exactly using standard wordsheet techniques. Since these states are
only charged electrically (in the natural heterotic polarization), their Bekenstein-
Hawking entropy evaluated using tree-level supergravity vanishes. This means that
higher derivative corrections cannot be neglected, and indeed, upon including R2

corrections to the effective action, a smooth horizon with finite area is obtained.
We refer to these states as “small black holes” to be contrasted with “large black
holes” which have non-vanishing entropy already at tree level. This section is based
on [5, 6, 118].
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6.1 Degeneracies of DH States and the Rademacher Formula

The simplest example to study this phenomenon is the heterotic string compacti-
fied on T 6. A class of perturbative BPS states, known as “Dabholkar-Harvey” (DH)
states, can be constructed by tensoring the ground state of the right-moving super-
conformal theory with a level N excitation of the 24 left-moving bosons and adding
momentum n and winding w along one circle in T 6 such that the level matching
condition N −1 = nw is satisfied [119, 120]. The number of distinct DH states with
fixed charges (n,w) is Ω(n,w) = p24(N), where p24(N) is the number of partitions
on N into the sum of 24 integers (up to an overall factor of 16 corresponding to
the size of short N = 4 multiplets, which we will always drop). Accordingly, the
generating function of the degeneracies of DH states is

∞

∑
N=0

p24(N) qN−1 =
1

Δ(q)
, (184)

where Δ(q) is Jacobi’s discriminant function

Δ(q) = η24(q) = q
∞

∏
n=1

(1−qn)24 (185)

In order to determine the asymptotic density of states at large N − 1 = nw, it is
convenient to extract d(N) from the partition function (184) by an inverse Laplace
transform,

p24(N) =
1

2πi

∫ ε+iπ

ε−iπ
dβ eβ (N−1) 16

Δ(e−β )
. (186)

where the contour C runs from ε− iπ to ε + iπ , parallel to the imaginary axis. One
may now take the high temperature limit ε → 0 and use the modular property of the
discriminant function

Δ
(

e−β
)

=
(

β
2π

)−12

Δ(e−4π2/β ). (187)

As e−4π2/β → 0, we can approximate Δ(q) ∼ q and write the integral as

p24(N) =
16
2πi

∫

C
dβ

(
β
2π

)12

eβ (N−1)+4 π2
β (188)

This integral may be evaluated by steepest descent: the saddle point occurs at β =
2π/

√
N −1, leading to the characteristic Hagedorn growth

p24(N) ∼ exp(4π
√

nw) (189)

for the spectrum of DH states.
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To calculate the sub-leading terms systematically in an asymptotic expansion at
large N, one may recognize that (188) is proportional to the integral representation
of a modified Bessel function,

Îν(z) = −i(2π)ν
∫ ε+i∞

ε−i∞

dt
tν+1 e(t+z2/4t) = 2π ( f racz4π)−ν Iν(z) (190)

We thus obtain
Ω(n,w) = p24(N) ∼ 24 Î13

(
4π

√
nw
)

. (191)

Using the standard asymptotic expansion of Îν(z) at large z

Îν(z) ∼2ν
( z

2π

)−ν− 1
2

[
1− (μ−1)

8z
+

(μ−1)
(
μ−32

)
2!(8z)2

−
(μ−1)

(
μ−32

)(
μ−52

)
3!(8z)3 + . . .

]
, (192)

where μ = 4ν2, we can compute the subleading corrections to the microscopic en-
tropy of DH states to arbitrary high order,

logΩ(n,w) ∼ 4π
√

|nw|− 27
4

log |nw|+ 15
2

log2− 675

32π
√

|nw|
− 675

28π2|nw| − . . .

(193)
This is still not the complete asymptotic expansion of Ω(n,w) at large charge.

Exponentially suppressed corrections to (191) can be computed by using the Rade-
macher formula (see [121] for a physicist account)

Fν(n) =
∞

∑
c=1

r

∑
μ=1

cw−2Kl(n,ν ,m,μ ;c) ∑
m+Δμ<0

Fμ(m)

|m+Δμ |1−wÎ1−w

[
4π
c

√
|m+Δμ |(n+Δν)

]
.

(194)

In this somewhat formidable expression, Fμ(m) denote the Fourier coefficients of a
vector of modular forms

fμ(τ) = qΔμ ∑
m≥0

Fμ(m)qm μ = 1, . . . ,r (195)

which transforms as a finite-dimensional unitary representation of the modular
group of weight w < 0, with

fμ(τ +1) = e2πiΔμ fμ(τ) (196)

fμ(−1/τ) = (−iτ)wSμν fν(τ) (197)

The coefficients Kl(n,ν ,m,μ ;c) are generalized Kloosterman sums, defined as
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Kl(n,ν ;m,μ ;c) ≡ ∑
0<d<c;d∧c=1

e2πi d
c (n+Δν ) M(γc,d)−1

νμ e2πi a
c (m+Δμ ) (198)

where

γc,d =

(
a (ad −1)/c

c d

)
(199)

is an element of Sl(2,Z) and M(γ) its matrix representation. For c = 1 in particular,
we have:

Kl(n,ν ,m,μ ;c = 1) = S−1
νμ (200)

Going back to (194), we see that the growth of the Fourier coefficients is determined
only by the Fourier coefficients of the “polar” part Fμ(m) where m+Δμ < 0, as well
as some modular data. The Ramanujan-Hardy formula

Fμ(n) ∼ exp

[
2π
√

ceff

6
n

]
(201)

is reproduced by keeping the leading term c = 1 only, using Δ = ceff/24, w =
−ceff/2 and the asymptotic behavior (192). The terms with c > 1 also grow ex-
ponentially, but at a slower rate than the term with c = 1. They therefore contribute
exponentially suppressed contributions to logFν(n).

Applying (194) to the case at hand, we have the convergent series expansion

Ω(n,w) = 24
∞

∑
c=1

c−14 Kl(nw+1,0;c) Î13

(
4
c
π
√

|nw|
)

(202)

6.2 Macroscopic Entropy and the Topological Amplitude

We now turn to the macroscopic side, and determine the Bekenstein-Hawking-Wald
entropy for a BPS black hole with the above charges. Since the attractor formalism is
tailored for N = 2 supergravity, one should first decompose the spectrum in N = 2
multiplets: the N = 4 spectrum decomposes into one N = 2 gravity multiplet, 2
gravitino multiplets and nV = 23 vector multiplets (not counting the graviphoton).
Provided the charges under the 4 vectors in the gravitino multiplets vanish, the N =
2 attractor mechanism applies.

The topological amplitude F1 has been computed in [122] and can be obtained as
the holomorphic part of the R2 amplitude at one-loop,

fR2 = 24log
(
T2|η(T )|4

)
(203)

where T, U denote the Kähler and complex structure moduli of the torus T 2. All
higher topological amplitudes Fg for g > 1 vanish for models with N = 4 super-
symmetry. We therefore obtain the generalized prepotential
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F(XI ,W 2) = −1
2

23

∑
a,b=2

Cab
XaXbX1

X0 − W 2

128πi
logΔ(q) (204)

where Cab is the intersection matrix on H2(K3), T = X1/X0 and q = e2πiT . The
appearance of the same discriminant function Δ(q) as in the microscopic heterotic
counting (184) is at this stage coincidental.

Identifying p1 = w, q0 = n and allowing for arbitrary electric charges q0, qi=2..23,
the black hole free energy (179) reduces to

F (φ I , pI) = −π
2

Cab
φ aφ b p1

φ 0 − log |Δ(q)|2 (205)

where

q = exp

[
2π
φ 0

(
p1 + iφ 1)

]
. (206)

The Bekenstein-Hawking-Wald entropy is then obtained by performing a Legendre
transform over all electric potentials φ I , I = 0, . . .23. The Legendre transform over
φ a=2..23 sets φ a = (φ 0/p1)Cabqb, where Cab is the inverse of the matrix Cab. We
will check a posteriori that in the large charge limit, it is consistent to approximate
Δ(q) ∼ q, whereby all dependence on φ 1 disappears. We thus obtain

SBHW ∼
〈[

−π
2

Cabqaqb

p1 φ 0 +4π
p1

φ 0 +πφ 0q0

]〉

φ0
(207)

The extremum of the bracket lies at

φ 0
∗ =

1
2

√
−p1/q̂0 , q̂0 ≡ q0 +

1
2p1 Cabqaqb (208)

so that at the horizon the Kähler class ImT ∼
√

−p1q̂0 is very large, justifying our
assumption. Evaluating (207) at the extremum, we find

SBH ∼ 4π
√

Q2/2 , Q2 = 2p1q0 +Cabqaqb (209)

in agreement with the leading exponential behavior in (193), including the precise
numerical factor. Note that the argument up to this stage is independent of the OSV
conjecture and relies only on the classical attractor mechanism in the presence of
higher derivative corrections. The fact that the Bekenstein-Hawking entropy of small
black holes comes out proportional to

√
Q2/2 was argued in [123, 124, 125], based

ongeneral scaling arguments. The precise numerical agreement was demonstrated
in [118], although with hindsight it could also have been observed by the authors
of [38]. This agreement indicates that the tree-level R2 coupling in the effective
action of the heterotic string on T 6 (or, equivalently, large volume limit of the 1-
loop R2 coupling in type IIA/K3×T 2) is sufficient to cloak the singularity of the
small black hole behind a smooth horizon. This is in fact confirmed by a study of
the corrected geometry [125, 126, 127].
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6.3 Testing the OSV Formula

We are now ready to test the proposal (182) and evaluate the inverse Laplace trans-
form of exp(F ) with respect to the electric potentials,

ΩOSV (p) =
∫

dφ 0 dφ 1 d22φ a 1
|Δ(q)|2 exp

[
−π

2
Cab

φ aφ b p1

φ 0 +πφ 0q0 +πφ aqa

]

(210)
Due to the non-definite signature of Cab, the integral over φ a diverges for real values.
This may be avoided by rotating the integration contour to ε + iR for all φs. The
integral over φ a is now a Gaussian, leading to

ΩOSV (Q) =
∫

dφ 0 dφ 1
(

φ0

p1

)11 1
|Δ(q)|2 exp

(
−1

2
Cabqaqb

p1 φ 0 +q0φ 0
)

(211)

where we dropped numerical factors and used the fact that det C = 1. The asymp-
totics of Ω is independent of the details of the contour, as long as it selects the
correct classical saddle point (208) at large charge. Approximating again Δ(q) ∼ q,
we find the quantum version of (207),

ΩOSV (Q) ∼
∫

dφ 0 dφ 1
(

φ0

p1

)11

exp

(
−1

2
Cabqaqb

p1 φ 0 −4π
p1

φ 0 +q0φ 0
)

(212)

The integral over φ 1 superficially leads to an infinite result. However, since the free
energy is invariant under φ 1 → φ 1 +φ 0, it is natural to restrict the integration to a
single period [0, φ 0], leading to an extra factor of φ 0 in (212). The integral over φ 0

is now of Bessel type, leading to

ΩOSV (Q) = (p1)2 Î13

(
4π
√

Q2/2

)
(213)

in impressive agreement with the microscopic result (191) at all orders in 1/Q.
Some remarks on this computation are in order:

• Note that the extra factor (p1)2 in (213) is inconsistent with SO(6,22,Z) duality,
which requires the exact degeneracies to be a function of Q2 only. Moreover,
the agreement depends crucially on discarding the non-holomorphic correction
proportional to logT2 in F1. Both of these issues call for a better understanding
of the relation between the physical amplitude and the topological wave function
in the real polarization. It should be mentioned that an alternative approach has
been developped by Sen, keeping the non-holomorphic corrections but using a
different statistical ensemble [128, 129].

• The “all order” result (213) depends only on the number of N = 2 vector mul-
tiplets, as well as on the leading large volume behavior of F1 ∼ q/(128πi). By
heterotic/type II duality, this term is mapped to a tree-level R2 interaction on
the heterotic side, which is in fact universal. We thus conclude that in all N = 2
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models which admit a dual heterotic description, provided higher genus Fg>1 and
genus 0,1 Gromov-Witten instantons can be neglected, the degeneracies of small
black holes predicted by (182) are given by

ΩOSV (Q) ∝ Î nV +3
2

(
4π
√

Q2/2

)
, (214)

where nV is the number of Abelian gauge fields, including the graviphoton. We
return to the validity of the assumption in the next subsection.

Exercise 17. Applying a similar argument to large black holes with p0 = 0, as-
suming that only the large-volume limit of F1 contributes, shows that the OSV
conjecture (182), in the saddle point approximation, predicts [5, 6]

Ω(pA,qA) ∼±1
2
|detCab(p)|−1/2

(
Ĉ(p)/6

) nV +2
2 × Î nV +2

2

(
2π
√

−Ĉ(p)q̂0/6

)

(215)
where

CAB(p) = CABC pC, C(p) = CABC pA pB pC, Ĉ(p) = C(p)+ c2A pA , (216)

and compare to the microscopic counting (19).

• In order to see whether the strong version of the OSV conjecture has a chance to
hold, it is instructive to change variable to β = π/t in (186) and rewrite the exact
microscopic result as

Ωexact(Q) =
∫

dt t−14 exp
(πnw

t

)
Δ(e−4πt)

(217)

On the other hand, it is convenient to change variables in the OSV integral (211)
to τ1 = φ 1/φ 0, τ2 = −p1/φ 0, with Jacobian dφ 0dφ 1 = 8(p1)2dτ1dτ2/τ3

2 , lead-
ing to

ΩOSV (Q) ∼
∫

dτ1 dτ2 τ−14
2

exp
(

πnw
τ2

)

|Δ(e−2πτ2+2πiτ1) |2 (218)

Despite obvious similarities, it appears unlikely that the two results are equal
non-perturbatively.

• Just as the perturbative result (191), the result (213) misses subleading terms in
the Rademacher expansion (202). It does not seem possible to interpret any of
the terms with c > 1 as the contribution of a subleading saddle point in either
(188) or (211).

Despite these difficulties, it is remarkable that the black hole partition function
in the OSV ensemble, obtained from purely macroscopic considerations, reproduces
the entire asymptotic series exactly to all orders in inverse charge. Recent develop-
ments show that this agreement is largely a consequence of supersymmetry and
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anomaly cancelation for black holes which have an AdS3 region [107, 130, 131]
(see also the lectures by P. Kraus [132] in this volume).

6.4 NNN = 2 Orbifolds

We conclude this section with a few words on small black holes in N = 2 orbifolds,
referring to [5, 6] for detailed computations. We find that the agreement found in
N = 4 models broadly continues to hold, with the following caveats:

• In contrast to N = 4 cases, the neglect of Gromov-Witten instantons is harder
to justify rigorously: when χ(X) �= 0, the series of point-like instantons contri-
bution becomes strongly coupled in the regime of validity of the Rademacher
formula, q̂0 � Ĉ(p). The strong coupling behavior is controlled, up to a logarith-
mic term, by the Mac-Mahon function (135), which is exponentially suppressed
in this regime. The logarithmic term in (139) may be reabsorbed into a redefini-
tion of the topological string amplitude Ψtop → λχ/24Ψtop. As for non-degenerate
instantons, they are exponentially suppressed provided all magnetic charges are
non zero. This is unfortunately not the case for the small black holes dual to the
heterotic DH states, whose Kähler classes are attracted to the boundary of the
Kähler cone at the horizon.

• For BPS states in twisted sectors of N = 2 orbifolds, we find that the instanton-
deprived OSV proposal appears to successfully reproduce the absolute degenera-
cies, equal to the indexed degeneracies, to all orders. For untwisted DH states of
the OSV prediction appears to agree with the absolute degeneracies of untwisted
DH states to leading order (which have the same exponential growth as twisted
DH states) but not at subleading order (as the subleading corrections in the un-
twisted sector are moduli-dependent, and uniformly smaller than in the twisted
sectors). The indexed degeneracies are exponentially smaller than absolute de-
generacies due to cancelations of pairs of DH states, so plainly disagree with the
OSV prediction.

7 Quantum Attractors and Automorphic Partition Functions

In this final chapter, we elaborate on an intriguing proposal by Ooguri, Verlinde, and
Vafa [7] to interpret the OSV conjecture as a holographic duality between the usual
Hilbert space of black hole micro-states quantized with respect to global time, and
the Hilbert space of stationary, spherically symmetric geometries quantized with
respect to the radial direction. Although we shall find some difficulties in imple-
menting this proposal literally, this line of thought will prove fruitful in suggesting
non-perturbative extensions of the OSV conjecture. In particular, we shall find tan-
talizing hints of a one-parameter generalization of the topological string amplitude
in N = 2 theories, and obtain a natural framework for constructing automorphic
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black hole partition functions (in cases with suitably large U-duality groups) which
go beyond the Siegel modular forms discussed in Sect. 2.5. This chapter is based
on [8, 9, 10, 11, 12, 13].

7.1 OSV Conjecture and Quantum Attractors

In order to motivate this approach, recall that, after analytically continuing φ I = iχ I

to the imaginary axis, the right-hand side of the OSV conjecture (182)

Ω
(

pI ,qI
)
∼
∫

dχ IΨ∗
top(pI +χ I)Ψtop

(
pI −χ I)eiπχ IqI ≡WΨtop(pI ,qI) (219)

could be interpreted as the Wigner distribution associated to the wave function Ψtop.
In usual quantum mechanics, the Wigner distribution Wψ(p, q) is a function on
phase space associated to a wave function ψ(q), such that quantum averages of
Weyl-ordered operators on ψ are equal to classical averages of their symbols with
respect to Wψ ,

〈ψ|O(p̂, q̂)|ψ〉 =
∫

d p dq Wψ(p,q) O(p,q) (220)

Moreover, when ψ satisfies the Schrödinger equation, W satisfies the classical
Liouville equation to leading order in h̄; the Wigner distribution is thus a useful
tool to study the semi-classical limit. The above observation thus begs the question:
What is the physical quantum system of which Ψtop is the wave function19, and how
does it encode the black hole degeneracies?

Exercise 18. Show that

Wψ̃(pI ,qI) = Wψ

(qI

2
,2pI

)
(221)

where ψ̃(φ) =
∫

dχ eiπχφ ψ(χ) is the Fourier transform of ψ .

In order to try and answer this question, it is useful to reabsorb the dependence
on the charges (pI ,qI) into the state itself, by defining

Ψ±
p,q(χ) ≡ e±iπqχΨ±

top(χ∓ p) ≡V±
p,q ·Ψtop(χ) (222)

Equation (220) is then rewritten more suggestively as an overlap of two wave
functions,

Ω(p,q) ∼
∫

dχ [Ψ−]∗p,q(χ) Ψ+
p,q(χ) (223)

On the other hand, recall that the near horizon geometry AdS2×S2, written in global
coordinates as

19 Or, to paraphrase Ford Prefect, what is the Question to the Answer Ψtop?
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σ

τ

t

τ

Fig. 3 Left: the cylinder amplitude in string theory can be viewed either as a trace over the
open string Hilbert space (quantizing along τ channel) or as an inner product between two wave
functions in the closed string Hilbert space (quantizing along σ ). Right: The global geometry of
Lorentzian AdS2 has the topology of a strip; its Euclidean continuation at finite temperature be-
comes a cylinder. τ and t are the global and Poincaré time, respectively

ds2 = |Z∗|2
(
−dτ2 +dσ2

cos2 σ
+d2Ω

)
(224)

has two distinct conformal boundaries at σ = 0, π , respectively; its Euclidean sec-
tions at finite temperature have the topology of a cylinder (see Fig. 3).

Exercise 19. Check that the metric (224) is equivalent to (13) upon changing coor-
dinates τ = arctan(z + t)− arctan(z− t), σ = arctan(z + t) + arctan(z− t). Map
out the portion of the global geometry covered by the Poincaré coordinates z, t.

With this in mind, it is tempting to view (223) as an analogue of open/closed
duality for conformal field theory on the cylinder,

Tr e−πtHopen = 〈B′|e− π
t Hclosed |B〉 (225)

where |B〉 and |B′〉 are closed string boundary states. The right-hand side of (223),
analogue of the closed string channel, is identified with the partition function of
quantum gravity on AdS2×S2 in radial quantization along the space-like coordinate
σ , with boundary conditions at σ = 0, π specified by the “boundary states” Ψ±

p,q,
while the left-hand side, analogue of the open string channel, is recognized as a trace
of the identity operator in a sector of the Hilbert space for quantization along the
global time coordinate τ , with fixed charges pI ,qI (the absence of an analogue of the
Hamiltonians Hopen and Hclosed can be traced to diffeomorphism invariance, which
requires physical states to be solutions of the Wheeler-De Witt equation H|ψ〉= 0).
It should be stressed that the Hilbert spaces for time-like and radial quantization are
distinct, just like the open string and closed string Hilbert spaces are different.

For this interpretation to make sense, it should of course be possible to view Ψtop

as a state in the Hilbert space for radial quantization. This is, at least superficially,
consistent with the wave function interpretation of Ψtop discussed in Sect. 4.4 and
would in fact provide a nice physical interpretation of this otherwise mysterious
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quantum mechanical behavior. Moreover, the functional dimension, nV + 1, of the
Hilbert space hosting Ψtop, is roughly in accordance with the number of complex
scalars zi varying radially in the black hole geometry. This leads one to expect
that Ψtop may provide a radial wave function for the vector-multiplet scalars in a
truncated Hilbert space where only static, spherically symmetric BPS configura-
tions are kept. Such a “mini-superspace” truncation is usually hard to justify but
may hopefully be suitable for the purpose of computing indexed degeneracies of
BPS black holes, in the same way as the Ramond-Ramond ground states in the
closed string channel control the growth of the index in the open string Ramond
sector.

This brings us to the problems of (i) quantizing the attractor flow (53), (54),
(ii) showing that the resulting Hilbert space is the correct habitat for Ψtop, and (iii)
finding a physical principle that selects Ψtop among the continuum of states in that
BPS Hilbert space. Answering these questions will be the subject of the rest of this
chapter. Before doing so, several general remarks are in order:

• The idea of radial quantization of static black holes has a long history in the
canonical gravity literature, e.g. [133, 134, 135, 136, 137, 138]. The main new
ingredients here are supersymmetry, which may provide a better justification for
the mini-superspace approximation, and holography, which offers the possibil-
ity to reconstruct the spectrum of the global time Hamiltonian from the overlap
of two radial wave functions. The quantization of BPS configurations has been
considered recently in various set-ups and found to agree with gauge theory com-
putations [139, 140, 141, 142, 143, 144].

• The “channel duality” argument is in line with the usual AdS/CFT philosophy
that the black hole micro-states should be described by “gauge theoretical” de-
grees of freedom living on the boundary of AdS2. Contrary to higher dimensional
AdS spaces, the conformal quantum mechanics describing AdS2 is still largely
mysterious, and the above approach is a possible indirect route towards deter-
mining its spectrum.

• One usually assumes that black hole micro-states can be described only in terms
of the near horizon geometry. The above proposal to quantize the whole attractor
flow seems to be at odds with this idea. A possible way out is that the topological
wave function be a fixed point of the quantum attractor flow. In the sequel, we
will study the full quantum attractor flow, from asymptotic infinity to the horizon,
as a function of the Poincaré radial coordinate r (rather than the “global radial
coordinate σ”, which is well defined only near the horizon).

• The analogy between global AdS2 and open strings explained below (225) can be
pushed quite a bit further: due to pair production of charged particles, a black hole
may fragment in different throats, analogous to the joining and splitting interac-
tions of open strings [145] (see [146] for a perturbative approach to this problem).
The study of exponentially suppressed corrections to the partition function in cer-
tain non-compact Calabi-Yau threefolds suggests that the attractor flow should
be “second quantized” to allow for this possibility [112]. Note that the process
whereby two ends of an open string join to form a closed string does not seem to
have a black hole analogue.
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• Finally, let us mention that further interest for the quantization of attractor flows
stems from the relation between black hole attractor equations and the equations
that determine supersymmetric vacua in flux compactifications (see e.g. [26] for
a recent discussion). Upon double analytic continuation, one may hope to relate
the black hole wave function to the wave function of the Universe and address
vacuum selection in the Landscape [7]. There are however many difficulties with
this idea that we shall not discuss here. At any rate, it will be clear that our
discussion of radial quantization bears many similarities with “mini-superspace”
approaches to quantum cosmology.

7.2 Attractor Flows and Geodesic Motion

The most convenient route to quantize the attractor flow, or more generally perform
the radial quantization of stationary, spherically symmetric black holes, is to use the
equivalence between the equations governing the radial evolution of the fields in
four dimensions, and the geodesic motion of a fiducial particle on an appropriate
pseudo-Riemannian manifold [147]. This equivalence holds irrespective of super-
symmetry, so we consider the general two-derivative action for four-dimensional
gravity coupled to scalar fields zi and gauge fields AI

4,

S4 =
1
2

∫ [√
−γ R[γ] d4x+gi j dzi ∧ �dz j −FI ∧

(
tIJ �FJ +θIJ ∧FJ

)]
. (226)

Here, γ denotes the four-dimensional metric, gi j the metric on the moduli space
M4 where the (real) scalars zi take their values, FI = dAI

4 and the (positive defi-
nite) gauge couplings tIJ and angles θIJ are in general functions of zi. In (226), we
have dropped the contribution of the fermionic fields, but we shall reinstate them
in Sect. 7.3 below when we return to a supersymmetric setting. Moreover, since the
pseudo-Riemannian manifold already arises under the sole assumption of stationar-
ity, we begin by relaxing the assumption of spherical symmetry.

7.2.1 Stationary Solutions and KK∗ Reduction

A general ansatz for stationary metrics and gauge fields is

γμνdxμdxν = −e2U (dt +ω)2 + e−2Uγijdxidxj , AI
4 = ζ Idt +AI

3 . (227)

where the three-dimensional metric γij, one-forms AI
3, ω and scalar U, ζ I , zi, are

general functions of the coordinates xi on the three-dimensional spatial slice. Since
all these fields are independent of time, one may reduce the four-dimensional action
(226) along the time direction and obtain a field theory in three Euclidean dimen-
sions. This process is analogous to the usual Kaluza-Klein reduction, except for the
time-like signature of the Killing vector ∂t , which leads to unusual sign changes in
the three-dimensional action.
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Just as in usual Kaluza-Klein reduction, the one-forms AI
3 and ω can be dualized

into axionic scalars ζ̃I , σ , using Hodge duality between one-forms and pseudo-
scalars in three dimensions. Thus, the four-dimensional theory reduces to a gravity-
coupled non-linear sigma model

S3 =
1
2

∫ (√
g3 R[g3] d3x+gab dφ a ∧�dφ b

)
(228)

whose target manifold M ∗
3 includes the four-dimensional scalar fields zi together

with U, ζ I , ˜zetaI , σ . The metric gab on M ∗
3 has indefinite signature and can be ob-

tained by analytic continuation (ζ I , ζ̃I)→ i(ζ I , ζ̃I) [147, 148] from the (Riemannian)
three-dimensional moduli space M3 arising in standard, spacelike Kaluza-Klein re-
duction (see e.g. [149])

ds2
M ∗

3
=2dU2 +gi j dzidz j +

1
2

e−4U
(

dσ +ζ Idζ̃I − ζ̃Idζ I
)2

− e−2U
[
tIJ dζ Idζ J + tIJ

(
dζ̃I +θIKdζK

)(
dζ̃J +θJLdζ L

)] (229)

where tIJ ≡ [t−1]IJ . Importantly, M ∗
3 always possesses (at least) 2n + 2 isometries

corresponding to the gauge symmetries of AI , ÃI ,ω , as well as rescalings of time t.
The Killing vector fields generating these isometries read

pI = ∂ζ̃I
−ζ I∂σ , qI = −∂ζ I − ζ̃I∂σ , k = ∂σ , (230a)

M = −
(
∂U +ζ I∂ζ I + ζ̃ I∂ζ̃ I +2σ∂σ

)
(230b)

and satisfy the Lie-bracket algebra

[pI ,qJ ] = −2δ I
J k (231a)

[M, pI ] = pI , [M,qI ] = qI , [M,k] = 2k (231b)

In general, stationary solutions in four dimensions are therefore given by harmonic
maps from the three-dimensional slice, with metric γij, to the three-dimensional
moduli space M ∗

3 , such that Einstein’s equation in three-dimension is fulfilled,

Rij[γ] = gab

(
∂iφ a∂j φ b − 1

2
∂kφ a ∂lφ b γkl γij

)
(232)

Moreover, the Killing vectors pI ,qI ,k,M give rise to conserved currents, whose con-
served charges will be identified with the overall electric and magnetic charges,
NUT charge and ADM mass of the configuration.

7.2.2 Spherical Symmetry and Geodesic Motion

Now, let us restrict to spherically symmetric, stationary solutions: The spatial slices
can be parameterized as
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γijdxidxj = N2(ρ)dρ2 + r2(ρ)
(
dθ 2 + sin2 θ dφ 2) (233)

while all scalars on M ∗
3 become functions of ρ only. After dropping a total deriva-

tive term, the three-dimensional sigma-model action reduces to classical mechanics,

S1 =
∫

dρ
[

N
2

+
1

2N

(
r
′2 − r2 gab φ

′a φ
′b
)]

(234)

where the prime denotes a derivative with respect to ρ . This Lagrangian describes
the free motion of a fiducial particle on a cone20 C = R

+ ×M ∗
3 over the three-

dimensional moduli space M3. The lapse N is an auxiliary field; its equation of
motion enforces the mass shell condition

r
′2 − r2 gab φ

′a φ
′b = N2 (235)

or equivalently, the Wheeler-De Witt (or Hamiltonian) constraint

HWDW = (pr)2 − 1
r2 gab pa pb −1 ≡ 0 (236)

where pr, pa are the canonical momenta conjugate to r,φ a.
Solutions are thus massive geodesics on the cone, with fixed mass equal to 1. In

particular, the phase space describing the set of stationary, spherically symmetric
solutions of (226) is the cotangent bundle T ∗C of the cone C .

As is most easily seen in the gauge N = r2, the motion separates into geodesic
motion on the base of the cone M ∗

3 , with affine parameter τ such that dτ =
dρ/r2(ρ), and motion along the radial direction r,

(pr)2 − C2

r2 −1 ≡ 0 , gab pa pb ≡C2 (237)

where pr = r′ = ṙ/r2 and pi = r2φ ′i = φ̇ i; here the dot denotes a derivative with
respect to τ . It is interesting to note that the radial motion is governed by the same
Hamiltonian as in [152] and therefore exhibits one-dimensional conformal invari-
ance. This is a consequence of the existence of the homothetic Killing vector r∂r on
the cone C .

7.2.3 Extremality and Light-Like Geodesics

The motion along r is easily integrated to

r =
C

sinh(Cτ)
, ρ =

C
tanhCτ

(238)

20 A similar mechanical arises in mini-superspace cosmology [150, 151].
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Assuming that the sphere S2 reaches a finite area A at the horizon τ = ∞ so that
e−2U r2 → A/(4π), one may rewrite the metric (227) as [27]

ds2 ∼ C2

sinh2(Cτ)

(
−4π

A
(dt +ω)2 +

A
4π

dτ2
)

+
A

4π
d2Ω (239)

The horizon at τ = ∞ is degenerate for C2 = 0, and non-degenerate for C2 > 0,
corresponding to extremal and non-extremal black holes, respectively. We conclude
that extremal black holes correspond to light-like geodesics on M ∗

3 (it is indeed
fortunate that M ∗

3 is a pseudo-Riemannian manifold so that light-like geodesics do
exist).

Exercise 20. Show that the extremality parameter C is related to the Bekenstein–
Haw-king entropy and Hawking temperature by C = 2SBHTH.

Setting C = 0 in (237), we moreover see that r = ρ = 1/τ , and therefore that the
spatial slices in the ansatz (227) are flat. We could therefore have set N = 1, r =
1/τ from the start, and obtained the action for geodesic motion on M3 in affine
parameterization,

S′1 =
∫

dτ
1
2

gab φ̇ a φ̇ b (240)

While one may dispose of the radial variable r altogether, it is however advantageous
to retain it for the purpose of defining observables such as the horizon area, AH =
4πe−2U r2|U→−∞ and the ADM mass M = r(e2U −1)|U→0.

7.2.4 Conserved Charges and Black Hole Potential

As anticipated by the notation in (7.13a), the isometries of M3 imply conserved
Noether charges,

qI dτ = −2e−2U
[
tIJdζ J +θIJtJL

(
dζ̃L +θLMdζM

)]
+2kζ̃I

pI dτ = −2e−2UtIL
(

dζ̃L +θLMdζM
)
−2kζ I (241)

k dτ = e−4U
(

dσ +ζ Idζ̃I − ζ̃ IdζI

)

(as well as M, whose precise form we will not need) identified as the electric, mag-
netic and NUT charges pI ,qI ,k. Their algebra under Poisson bracket is the same as
algebra of the Killing vectors under Lie bracket,

{pI ,qJ}PB = −2δ I
J k , {M, pI}PB = pI , {M,qI}PB = qI , {M,k}PB = 2k

(242)
In particular, the electric and magnetic charges satisfy an Heisenberg algebra, the
center of which is the NUT charge k. The latter is related to the off-diagonal term in
the metric (227) via ω = k cosθ dφ . When k �= 0, the metric
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ds2
4 = −e2U (dt + k cosθ dφ)2 + e−2U (dρ2 + r2(ρ)

[
dθ 2 + sin2 θ dφ 2]) (243)

has closed timelike curves along the compact φ coordinates near θ = 0, all the way
from infinity to the horizon. Bona fide 4D black holes have k = 0, which corresponds
to a “classical” limit of the Heisenberg algebra (242).

Using the conserved charges (241), one may express the Hamiltonian for affinely
parameterized geodesic motion on M ∗

3 as

H ≡ pagab pb =
1
2

[
p2

U +
1
4

pzigi j pz j − e2UVBH + k2e4U
]

(244)

where pU , pzi are the momenta canonically conjugate to U,zi,

VBH(p,q,z) = −1
2

(
q̂I −θIJ p̂J) tIK (q̂K −θKL p̂L)− 1

2
p̂ItIJ p̂J (245)

and
p̂I = pI +2kζ I , q̂I = qI −2kζ I , (246)

For k = 0, the motion along ζ I , ζ̃I ,σ separates from that along U,zi, effectively
producing a potential for these variables. Following [55], we refer to VBH as the
“black hole potential”, but it should be kept in mind that it contributes negatively
to the actual potential V = −e2UVBH +k2e4U governing the Hamiltonian motion. In
Fig. 4, we plot the potential V for N = 2 supergravity with one minimally coupled
vector multiplet.

7.2.5 The Universal Sector

As an illustration, and a useful warm-up for the symmetric case discussed in
Sect. 7.5 below, it is instructive to work out the dynamics in the “universal sector”,

Fig. 4 Potential governing
the radial evolution of
the complex scalar in
the same model as in
Fig. 2 and same charges,
at U = 0. The potential
has a global maximum at
z∗ = X1/X0 = (1−3i)/10
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which encodes the scale U , the graviphoton electric and magnetic charges, and the
NUT charge k. The resulting pseudo-quaternionic-Kähler manifold is the symmetric
space M ∗

3 = SU(2,1)/Sl(2)×U(1), an analytic continuation of the quaternionic-
Kähler space M3 = SU(2,1)/SU(2)×U(1), which describes the tree-level cou-
plings of the universal hypermultiplet in 4 dimensions. It is obtained via c-map
from a trivial moduli space M4 corresponding to the prepotential F = −i(X0)2/2.
The Hamiltonian (244) becomes

H =
1
8
(pU )2 − 1

4
e2U

[
(pζ̃ − kζ )2 +(pζ + kζ̃ )2

]
+

1
2

e4U k2 (247)

The motion separates between the (ζ̃ ,ζ ) plane and the U direction, while the NUT
potential σ can be eliminated in favor of its conjugate momentum k = e−4U (σ̇ +
ζ ˙̃ζ − ζ̃ ζ̇ ). The motion in the (ζ̃ ,ζ ) plane is that of a charged particle in a constant
magnetic field. The electric, magnetic charges, and the angular momentum J in the
plane (not to be confused with that of the black hole, which vanishes by spherical
symmetry)

p = pζ̃ +ζk, q = pζ − ζ̃k, J = ζ pζ̃ − ζ̃ pζ (248)

satisfy the usual algebra of the Landau problem,

{p,q}PB = 2k, {[J, p}PB = q, {J,q}PB = −p (249)

where p and q are the “magnetic translations”. The motion in the U direction is
governed effectively by

H =
1
8
(pU )2 +

1
2

e4U k2 − 1
4

e2U [p2 +q2 −4kJ
]
= C2 (250)

The potential is depicted on Fig. 5 (left). At spatial infinity (τ = 0), one may im-
pose the initial conditions U = ζ = ζ̃ = a = 0. The momentum pU at infinity is
proportional to the ADM mass, and J vanishes, so the mass shell condition (247)
becomes

M2 +2k2 −
(

p2 +q2)= C2 (251)

Extremal black holes correspond to C2 = 0; in this low dimensional example are
automatically BPS, as we shall see in the next section. Equation (251) is then the
BPS mass condition, generalized to non-zero NUT charge. Note that for a given
value of p,q, there is a maximal value of k such that M2 remains positive.

At the horizon U → −∞, τ → ∞, the last term in (247) is irrelevant, and one
may integrate the equation of motion of U , and verify that the metric (227) becomes
AdS2 ×S2 with area

A = 2π(p2 +q2) = 2π
√

(p2 +q2)2 (252)

in agreement with the Bekenstein-Hawking entropy of Reissner-Nordström black
holes (15).
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Fig. 5 Left: Potential governing the motion along the U variable in the universal sector. The hori-
zon is reached at U →−∞. Right: Root diagram of the SU(2,1) symmetries in the universal sector

Since the universal sector is a symmetric space, there must exist 3 additional
conserved charges, so that the total set of conserved charges can be arranged in an
element Q in the Lie algebra g3 = su(2,1) (or rather, in its dual g∗3),

Q =

⎛
⎝

M + iJ/3 Ep − iEq, iEk

Ep′ + iEq′ −2iJ/3 −(Ep + iEq)
−iEk′ −(Ep′ − iEq′) −M + iJ/3

⎞
⎠ (253)

where M,Ep ≡ p0,Eq ≡ q0,Ek ≡ k have been given in (7.12a) and J = ζ∂ζ̃ − ζ̃ ∂ζ .
The remaining Killing vectors can be easily found [13],

Ep′ = −ζ̃ ∂U − (σ +2ζ ζ̃ )∂ζ +
[

e2U +
1
2
(3ζ 2 − ζ̃ 2)

]
∂ζ̃ +

[
ζ
(

e2U +
1
2
(ζ 2 + ζ̃ 2)

)
−σζ̃

]
∂σ

Eq′ = ζ∂U −
[

e2U +
1
2
(3ζ̃ 2 −ζ 2)

]
∂ζ − (σ −2ζ ζ̃ )∂ζ̃ +

[
ζ̃
(

e2U +
1
2
(ζ 2 + ζ̃ 2)

)
+σζ

]
∂σ

Ek′ = −σ∂U +

[(
e2U +

1
2
(ζ 2 + ζ̃ 2)

)2

−σ 2

]
∂σ

−
[
ζ̃
(

e2U +
1
2
(ζ 2 + ζ̃ 2)

)
+σζ

]
∂ζ +

[
ζ
(

e2U +
1
2
(ζ 2 + ζ̃ 2)

)
−σζ̃

]
∂ζ̃

The physical origin of these extra symmetries are the Ehlers and Harrison transfor-
mations, well known to general relativists [153]. It is easy to check that these Killing
vectors satisfy the Lie algebra of SU(2,1), whose root diagram is depicted on Fig. 5.
The Casimir invariants of Q can be easily computed:

Tr(Q2) = H , det(Q) = 0 (254)

The last condition ensures that the conserved quantities do not overdetermine the
motion. The co-adjoint action Q → hQh−1 of G3 on g∗3 relates different trajecto-
ries with the same value of H. The phase space, at fixed value of H, is therefore a
generic co-adjoint orbit of G3, of dimension 6 (the symplectic quotient of the full
8-dimensional phase space by the Hamiltonian H). By the Kirillov-Kostant
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construction, it carries a canonical symplectic form such that the Noether charges
represent the Lie algebra g3.

As we have just seen, extremal solutions have H = 0. The standard property of
3×3 matrices

Q3 −Tr(Q)Q2 +
1
2
[Tr(Q2)− (TrQ)2]Q−det(Q) = 0 (255)

then implies that Q3 = 0, as a matrix equation in the fundamental representation;
more intrinsically, in terms of the adjoint representation, this is equivalent to

[Ad(Q)]5 = 0 (256)

Thus, Q is a nilpotent element of order 5 in g∗3. This condition is invariant under
the co-adjoint action of G3. We conclude that the classical phase space of extremal
configurations is a nilpotent coadjoint orbit21 of G3. By the general “orbit philoso-
phy” [154], the quantum Hilbert space then furnishes a “unipotent” representation
of G3, obtained by quantizing this nilpotent co-adjoint orbit. As we shall see in
Sect. 7.5, this fact extends to the BPS Hilbert space in very special supergravities,
where M ∗

3 is a symmetric space.

7.3 BPS Black Holes and BPS Geodesics

Up till now, our discussion did not assume any supersymmetry. In general, however,
the KK∗ reduction of the fermions gives extra fermionic contributions in (228), such
that the resulting non-linear sigma model has the same amount of supersymmetry
as its four-dimensional parent. Moreover, the spherical reduction of the fermions
preserves half of the supersymmetries. This leads to the action for a supersymmetric
spinning particle moving on C , schematically

S1 =
∫

dτ
[
gabφ̇ aφ̇ b +gab ψaDτψb +Rabcdψaψbψcψd

]
(257)

This Lagrangian is supersymmetric for any target space, but has N-fold extended
supersymmetry when C admits N − 1 complex structures J(i) (i = 1, . . . ,N − 1).
The supersymmetry variations of the fermions are then of the form

δεψa =
N−1

∑
i=0

ε(i)J(i)a
b φ̇ b +O(ψ2) (258)

with J(0)a
b = δ a

b the identity operator. Moreover, the existence of a homothetic
Killing vector r∂r implies that the action S1 should be superconformally invariant.

21 It is a peculiarity of this model that the dimension of this nilpotent orbit is the same – 6 – as that
of the generic semi-simple orbits. In general, nilpotent orbits can be much smaller than the generic
ones.
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BPS solutions in four dimensions correspond to special trajectories on M ∗
3 , for

which there exist a non-zero ε(i) such that the right-hand side of (258) vanishes.
This puts a strong constraint on the momentum pa = gabφ̇ b of the fiducial particle,
which defines a “BPS” subspace of the phase space T ∗(C ). The symplectic structure
on this BPS phase space can then be obtained using Dirac’s theory of Hamiltonian
constraints. Due to the existential quantifier ∃ε(i) �= 0, it is sometimes convenient to
extend the phase space by including the Killing spinor ε(i), we shall see an example
of this in Sect. 7.3.2. In theories with N ≥ 2 supersymmetry in 4 dimensions, black
holes may preserve different fractions of supersymmetry, associated to different or-
bits of the momentum p under the holonomy group of C . Correspondingly, there
will be different BPS phase spaces, nested into each other.

7.3.1 Attractor Flow and BPS Geodesic Flow in NNN = 2 SUGRA

After this deliberately schematic discussion, we now specialize to N = 2 supergrav-
ity, and show that the attractor flow (53),(54) is indeed equivalent to BPS geodesic
flow on the three-dimensional moduli space M ∗

3 .
As explained in Sect. 3, N = 2 supersymmetry determines the metric on M4

(now denoted gij̄, to take into account the complex nature of the vector multiplet
moduli) and gauge couplings θIJ − itIJ ≡ NIJ in terms of a prepotential F(X) via
(29), (37). The scalar manifold M3 obtained by Kaluza-Klein reduction to three
dimensions is now a quaternionic-Kähler space, usually referred to as the “c-map”
of the special Kähler manifold M4 [149, 155]. The analytically continued M ∗

3 ,
with metric (229) is a pseudo-quaternionic-Kähler space, which we shall refer to as
the “c∗-map” of M4. While M3 has a Riemannian metric with special holonomy
USp(2)×USp(2nV + 2), M ∗

3 has a split signature metric with special holonomy
Sp(2)× Sp(2nV + 2). For convenience, we will work with the Riemannian space
M3 and perform the analytic continuation at the end.

In order to determine the couplings of the corresponding fermions, one should in
principle reduce the four-dimensional fermions along the time direction, then fur-
ther on the spherically symmetric ansatz (233). For our present purposes, however,
it is sufficient to recall that the quaternionic-Kähler space M3 equivalently arises
as the target space of a N = 2 supersymmetric sigma model in 3 + 1 dimensions,
coupled to gravity [156]. Upon reducing the action and supersymmetry transforma-
tions of [156] along three flat spatial directions, one obtains a N = 4 supersymmetric
sigma model in 0+1 dimensions, which must be identical to the result of the spher-
ical reduction. The supersymmetry variations are then simply

δεφ a = O(ψ) , δεψAA′
= V AB′

a φ̇ aεA′
B′ +O(ψ2) (259)

Here, V AA′
(A = 1, ..,2nV +2 and A′ = 1,2) is the “quaternionic viel-bein” afforded

by the decomposition

TCM3 = E ⊗H (260)
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of the complexified tangent bundle of M3, where E and H are complex vector bun-
dles of respective dimensions 2nV + 2 and 2. Similarly, the Levi-Civita connection
decomposes into its USp(2) and USp(2nV +2) parts p and q,

ΩBB′
AA′ = pA′

B′ε
B
A +qA

BεB′
A′ (261)

where εA′B′ and εAB are the antisymmetric tensors invariant under USp(2) and
USp(2n). The viel-bein V controls both the metric and the three almost complex
structures on the quaternionic-Kähler space,

ds2 = εA′B′ εAB V AA′ ⊗V BB′
, Ωi = εA′B′ (σ i)B′

C′ εAB V AA′ ∧V BC′
(262)

(where σ i, i = 1,2,3 are the Pauli matrices) and is covariantly constant with respect
to the connection (261).

From (259), it is apparent that supersymmetric solutions are obtained when V AA′

has a zero right-eigenvector,

SUSY ⇔ ∃εA′ �= 0 / V AA′
εA′ = 0 (263a)

⇔ ∀A,B , εA′B′ V AA′
V BB′

= 0 (263b)

For fixed εA′
, these are 2nV + 2 conditions on the velocity vector φ̇ a at any point

along the geodesic, removing half of the degrees of freedom from the generic tra-
jectories. In particular, the conditions (263b) imply that

εABεA′B′V AA′
V BB′

= 0 = H , (264)

and therefore that a BPS solution is automatically extremal. For the universal sector
discussed in Sect. 7.2.5, where nV = 0, this is actually a necessary and sufficient
condition for supersymmetry.

For the case of the c-map M3, the quaternionic viel-bein was computed explicitly
in [149]. After analytic continuation, one obtains

V AA′
=

⎛
⎜⎜⎜⎝

iu v

ea iEa

−iĒ ā ēā

−v̄ iū

⎞
⎟⎟⎟⎠ (265)

where ea = ea
i dzi is a viel-bein of the special Kähler manifold, ea

i ēājδaā = gij, and

u = eK /2−U XI
(

dζ̃I +NIJdζ J
)

(266)

v = −dU +
i
2

e−2U
(

dσ +ζ Idζ̃I − ζ̃ IdζI

)
(267)

Ea = e−U ea
i gij f̄ I

j

(
dζ̃I +NIJdζ J

)
(268)
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Expressing dζ I , dζ̃I , dσ in terms of the conserved charges (241), the entries in the
quaternionic viel-bein may be rewritten as

u = − i
2

eK /2+U XI
[
qI −2kζ̃I −NIJ(pJ +2kζ J)

]
dτ , (269)

v = −dU +
i
2

e2U k dτ (270)

ea = ea
i dzi , (271)

Ea = − i
2

eU eaigij f̄ I
j

[
qI −2kζ̃I −NIJ(pJ +2kζ J)

]
dτ (272)

Now, return to the supersymmetry variation of the fermions (259): the existence of
εB′

A′ such that δψAA′
vanishes implies that the first column of V has to be proportional

to the second, hence

− dU
dτ

+
i
2

e2U k = − i
2

eiθ eK /2+U XI
(

qI − kζ̃I −NIJ(pJ + kζ J)
)

(273)

dzi

dτ
= − i

2
eiθ eU gij f̄ I

j

(
qI − kζ̃I −NIJ(pJ + kζ J)

)
(274)

where the phase θ is determined by requiring that U stays real. These equations may
be rewritten as

− dU
dτ

+
i
2

e2U k = − i
2

eiθ eU Z ,
dzi

dτ
= −ieiθ |Z|

Z
eU gij∂j|Z| (275)

where Ẑ is the “generalized central charge”

Ẑ(p,q,k) = eK /2 [q̂IX
I − p̂IFI

]
(276)

and p̂I , q̂I have been defined in (246). For vanishing NUT charge, we recognize
the attractor flow (53), (54). The equivalence between the attractor flow equations
on M4 and supersymmetric geodesic motion on M3 was in fact observed long ago
in [157] and is a consequence of T-duality between black holes and instantons, after
compactifying to three dimensions [158, 159].

This concludes our proof that BPS geodesics, characterized by the BPS con-
straints (263a), indeed describe stationary, spherically symmetric BPS black holes.

7.3.2 Swann Space and Twistor Space

While the analysis in the previous section identified the BPS subspace of the phase
space T ∗M ∗

3 (namely, the solution to the quadratic constraints (263b)), the non-
linearity of the BPS constraints makes it difficult to obtain its precise symplectic
structure. We now show that, by lifting the geodesic motion on the quaternionic-
Kähler M ∗

3 to a higher-dimensional space, namely the Swann space S , it is possible
to linearize these constraints.
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The Swann space is a standard construction, which relates quaternionic-Kähler
geometry in dimension 4nV +4 to hyperkähler geometry in 4nV +8 dimensions [160].
Namely, let πA′

(A′ = 1,2) be complex coordinates in the vector bundle H over M3,
and S be the total space of this bundle. S admits a hyperkähler metric

ds2
S = |Dπ|2 +R2 ds2

M3
. (277)

where
DπA′

= dπA′
+ pA′

B′πB′
, R2 ≡ |π|2 = |π1|2 + |π2|2 (278)

In fact, R2 is the hyperkähler potential of (277), i.e. a Kähler potential for all com-
plex structures. Being hyperkähler, S has holonomy USp(2nV +4); the correspond-
ing covariantly constant vielbein V ℵ (where ℵ∈{A,A′} runs over two more indices
than A) can be simply obtained from the quaternionic vielbein V AA′

on the base M3

via
V A = V AA′

πA′ , V A′
= DπA′

(279)

The viel-bein V ℵ gives a set of (1,0)-forms on S (for a particular complex struc-
ture), which together with V̄ , span the cotangent space of S . The fermionic varia-
tions in the corresponding sigma model split into

δεψℵ = V ℵε + . . . , δε̄ψ̄ℵ̄ = V̄ ℵε̄ + . . . (280)

Moreover, the metric (277) has a manifest SU(2) isometry, and homothetic Killing
vector R∂R = πA′∂πA′ + π̄A′∂π̄A′ . Geodesic motion on S is therefore equivalent to
geodesic motion on the base M3, provided one restricts to trajectories with zero
angular momentum under the SU(2) action (and disregard the motion along the
radial direction R2 = |π|2). By suitable SU(2) rotation, BPS geodesics on S can be
chosen to be annihilated by δε , and so correspond to

∀ℵ , V ℵ = 0 (281)

Using (279), this entails

V AA′
πA′ = 0 , DπA′

= 0 (282)

The first condition reproduces the BPS condition (7.45a) on M3 upon identifying22

πA′
with the Killing spinor εA′ , while the second can be shown to follow from the

Killing spinor conditions in four dimensions, consistently with this identification.
The condition (281) shows that BPS trajectories are such that the momentum vector
is anti-holomorphic at every point. These BPS constraints are clearly first class, and
therefore the extended BPS phase space is the Swann space S itself, equipped with
its Kähler form.

22 In particular, the radius R of the Swann space S is equal to the norm of the Killing spinor and
must be carefully distinguished from the radius r of the cone S .
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While the Swann space has a clear physical motivation, the fiber being identified
with the Killing spinor, the fact that one must restrict to R

×× SU(2) invariant tra-
jectories means that it is somewhat too large. In fact, one may perform a symplectic
reduction – more precisely, a Kähler quotient – with respect to U(1)⊂ SU(2) while
keeping most of the pleasant properties of the Swann space. The result, known as the
twistor space Z , retains one of the three complex structures of S , which is suffi-
cient for exposing half of the N = 4 supersymmetries of (257). To exhibit the struc-
ture of Z , it is useful to choose the following coordinates on the unit sphere in R

4,

eiϕ =
√

π2/π̄2 , z = π1/π2. (283)

where ϕ is the angular coordinate for the Hopf fibration U(1) → S3 → S2 and z
is a stereographic coordinate on S2 = CP

1. In these coordinates, the metric (277)
rewrites as

ds2
S = dR2 +R2

[
Dφ 2 +

DzDz̄
(1+ zz̄)2 +ds2

M3

]
(284)

where

Dz ≡ dz− 1
2
(p1 + ip2)−2p3z− 1

2
(p1 − ip2)z2 , (285)

Dφ ≡ dφ +
i

2(1+ zz̄)
(z[dz̄− (p1 + ip2)]− z̄[dz− (p1 − ip2)]−2ip3(1− z̄z))

and pi = σA′B′
(i) p(A′B′). The connection term in Dz is sometimes known as the pro-

jectivized USp(2) connection. The twistor space Z is the Kähler quotient of S
by U(1) rotations along φ [161]; its metric is therefore given by the last two terms
in (284)

ds2
Z =

|Dz|2
(1+ z̄z)2 +ds2

M3
. (286)

The space Z is itself an S2 bundle over M3 and carries a canonical complex struc-
ture, which is an integrable linear combination of the triplet of almost complex
structures on M3. It will also be important that Z carries a holomorphic contact
structure X (proportional to the one-form Dz), inherited from the holomorphic sym-
plectic structure on the hyperkähler cone S .

For later purposes, it will be useful to have an explicit set of 2nV +3 complex co-
ordinates (ξ I , ξ̃I ,α) on the twistor space Z , adapted to the Heisenberg symmetries,
i.e. such that the Killing vectors pI , qI , k in (230a) take the standard form

pI = ∂ξ̃I
−ξ I∂α + c.c. , qI = −∂ξ I − ξ̃I∂α + c.c. , k = ∂α + c.c. (287)

while the holomorphic contact structure takes the canonical, Darboux form,

X = dα + ξ̃Idξ I −ξIdξ̃ I (288)
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Such a coordinate system has been constructed recently in [11], from which we
collect the relevant formulae. The complex coordinates (ξ I , ξ̃I ,α) are related to the
coordinates U,zi, z̄ī,ζ I , ζ̃I , σ on the quaternionic-Kähler base, as well as the fiber
coordinate z ∈ CP1, via the “twistor map”

ξ I = ζ I +2i eU+K (X ,X̄)/2 (zX̄ I + z−1XI) (289a)

ξ̃I = ζ̃I +2i eU+K (X ,X̄)/2 (z F̄I + z−1 FI
)

(289b)

α = σ +ζ I ξ̃I − ζ̃Iξ I (289c)

These formulae were derived in [11] by using the projective superspace description
of the c-map found in [162]. A key feature of these formulae is that, for a fixed
point on the base, the complex coordinates ξ I , ξ̃I ,α depend rationally on the fiber
coordinate Z ; said differently, the fiber over any point on the base is rationally in
Z . This is a general property of twistor spaces, which allows for the existence of the
Penrose transform relating holomorphic functions on Z to harmonic-type functions
on M3, a topic which we shall return to in Sect. 7.4.3.

The Kähler potential on Z in these coordinates was also computed in [11]
and reads

KZ =
1
2

log

{
Σ2
[

i
2
(ξ I − ξ̄ I),

i
2
(ξ̃I − ¯̃ξI)

]
+

1
16

[
α− ᾱ +ξ I ¯̃ξI − ξ̄ I ξ̃I

]2
}

+ log2 .

(290)
where ΣBH(φ I ,χI) is the Hesse potential defined in Exercise 8 on page (8). In partic-
ular, KZ is a symplectic invariant, but, as we shall see in Sect. 7.5, it can be invariant
under an larger group which mixes ξ I , ξ̃I with α .

The Swann space can be recovered from the twistor space Z by supplementing
the coordinates ξ I , ξ̃I ,α with one complex coordinate λ (a coordinate in the O(−1)
bundle over Z ). The hyperkähler potential on S and the coordinates πA′

in the R
4

fiber are then obtained by

R2 = |λ |2 eKZ ,

(
π1

π2

)
= 2λ eU

(
z

1
2

z−
1
2

)
. (291)

Using the twistor map (and its converse, which can be found in [11]), it was shown
that the holomorphy condition (281) for supersymmetric geodesics on S allows
to fully integrate the motion, reproducing known spherically symmetric black hole
solutions.

7.4 Quantum Attractors

We now discuss the radial quantization of stationary, spherically symmetric geome-
tries in four dimensions, using the equivalence between the radial evolution equa-
tions and geodesic motion of a fiducial particle on the cone C = R

+ ×M ∗
3 . For
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brevity, we drop the cone direction and restrict to motion along M ∗
3 . We start with

some generalities in the non-supersymmetric set-up, and then restrict to the BPS
sector of N = 2 supergravity.

7.4.1 Radial Quantization of Spherically Symmetric Black Holes

Based on the afore-mentionned equivalence, a natural path towards quantization is
to replace functions on the classical phase space T ∗(M ∗

3 ) by square integrable func-
tions Φ on M ∗

3 and impose the quantum version of the mass-shell condition (237),

[
Δ3 +C2] ΦC(U,zi,ζ I , ζ̃I ,σ) = 0 (292)

Here Δ3 is the Laplace-Beltrami operator on M ∗
3 , the quantum analogue of the

Hamiltonian −H. In writing this, we have ignored the fermionic degrees of freedom,
which we shall discuss in the next Sect. 7.4.2, and possible quantum corrections to
the energy C2. In practice, we are interested in wave functions which are eigenmodes
of the electric and magnetic charge operators given by the differential operators
in (230a),

ΦC(U,zi,ζ I , ζ̃I ,σ) = ΦC,p,q(U,zi) ei(pI ζ̃I−qIζ I) (293)

which is then automatically a zero eigenmode of the NUT charge k. Note however
that, due to the Heisenberg algebra (231a), it is impossible to simultaneously diag-
onalize the ADM mass operator M, unless either pI or qI vanish. Equation (292)
then implies that the wave function ΦC,p,q(U, zi) should satisfy a quantum version
of (244), [

−∂ 2
U −Δ4 − e2UVBH(p,q,z)−C2] ΦC,p,q(U,zi) = 0 (294)

where Δ4 is now the Laplace-Beltrami on the four-dimensional moduli space M4.
The wave function ΦC,p,q(U, zi) describes the quantum fluctuations of the scalars
zi as a function of the size eU of the thermal circle (i.e. effectively as a function of
the distance to the horizon). Importantly, the wave function is not uniquely specified
by the charges and extremality parameter, as the condition (294) leaves an infinite
dimensional Hilbert space; this ambiguity reflects the classical freedom in choosing
the values of the 4D moduli at spatial infinity.

An important aspect of any quantization scheme is the definition of the inner
product: as in similar instances of mini-superspace quantization, the L2 norm on
the space of functions on C is inadequate for defining expectation values, since it
involves an integration along the “time” direction U at which one is supposed to
perform measurements. The customary approach around this problem is to recall
the analogy of (294) with the usual Klein-Gordon equation and to replace the L2

norm on M ∗
3 by the Klein-Gordon norm (or Wronskian) at a fixed time U :

〈Φ|Φ〉 =
∫

dzi dζ I dζ̃I dσ Φ∗ ↔
∂U Φ (295)
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By construction, this is independent of the value of U chosen to evaluate it. A se-
vere drawback of this inner product is that it is not positive definite. This also has
a standard remedy in the case of the Klein-Gordon equation, which is to perform
a “second quantization” and replace the wave function Φ by an operator; a simi-
lar procedure can be followed here, in analogy with “third quantization” in quan-
tum cosmology [163]. This procedure should presumably be relevant for describing
multi-centered solutions. Fortunately, for BPS states this problem is void, since, as
we shall see in Sect. 7.4.3, the Klein-Gordon product (295) is positive definite when
restricted to this sector.

7.4.2 Supersymmetric Quantum Mechanics and BPS Hilbert Space

In the presence of fermionic degrees of freedom, the general discussion in the pre-
vious subsection must be slightly amended. Upon quantization, the fermions ψa in
(257) become Dirac matrices on the target space M ∗

3 , and the wave function is now
valued in L2(M ∗

3 )⊗Cl, where Cl is the Clifford algebra of M ∗
3 . Equivalently, one

may represent the fermion ψa as a differential dφ a in the exterior differential alge-
bra on M ∗

3 and view the wave function as an element of the de Rham complex of
M ∗

3 , i.e. as a set of differential forms of arbitrary degree [164]. The Wheeler-De
Witt (292) now selects eigenmodes of the de Rham Laplacian d �d with eigenvalue
−C2; in particular, for extremal black holes, the wave function becomes an element
of the de Rham cohomology of M ∗

3 . These subtleties do not affect the functional di-
mension of the Hilbert space, and there still exists a continuum of states with given
electric and magnetic charges.

In the presence of extended supersymmetry, however, it becomes possible to look
for quantum states which preserve part of the supersymmetries. The simplest exam-
ple is supersymmetric quantum mechanics on a Kähler manifold [165, 166, 167]: the
de Rham complex is refined into the Dolbeault complex, and states annihilated by
one-half of the supersymmetries are elements of the Dolbeaut cohomology H p,0(X),
isomorphic to the sheaf cohomology group H0(X ,Ωp). In more mundane terms,
this means that the BPS wave functions are holomorphic differential forms of arbi-
trary degree, in particular, the functional dimension of the BPS Hilbert space is now
dim(X)/2, half the dimension of the Hilbert space for generic ground states.

We now turn to the case of main interest for us, supersymmetric quantum me-
chanics on a quaternionic-Kähler manifold23 Classically, we have seen in (7.45a)
that supersymmetric solutions are those for which the quaternionic viel-bein V AA′

has a zero eigenvector εA′ . If we disregard the Killing spinor, the BPS condition is
summarized by the quadratic equations in (7.45b). Since V AA′

/dτ is equal to the
momentum of the fiducial particle, this is naturally quantized into

∀A,B ,
[
εA′B′

∇AA′ ∇BB′ +κ εAB

]
Φ = 0 (296)

23 This system first appeared in the context of monopole dynamics in N = 2 gauge theories [168].
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where we allowed for a possible quantum ordering ambiguity κ . Here, ∇AA′ =
V a

AA′∇a is the covariant derivative on M ∗
3 , rotated by the inverse quaternionic

viel-bein.
On the other hand, we have seen that it was possible to work in an extended

phase space which includes the Killing spinor εA′ , and describes geodesic motion
on the Swann space S . The supersymmetry condition (281) is now linear in the
momentum Vℵ and is naturally quantized into

∀ℵ , ∂̄ℵΦ′ = 0 (297)

where ∂̄ℵ are partial derivatives with respect to a set of antiholomorphic coordinates
z̄ℵ̄ on S . Thus, wave functions on the extended phase space are just holomorphic
functions on S (or more accurately, elements of the sheaf cohomology of S ).

Since the classical geodesic motions on M ∗
3 and S are equivalent only for trajec-

tories with vanishing SU(2) momentum, it should be possible to generate a solution
of the second-order differential equation (296) from a holomorphic function on S ,
by projecting on R

××SU(2) invariant states. Part of this projection can already be
taken care of by restricting to homogeneous functions of fixed degree −k on S , or
equivalently to sections of O(−k) on Z .

7.4.3 Quaternionic Penrose Transform and Exact BPS Wave Function

Remarkably, there does exist a mathematical construction valid for any quaternionic-
Kähler manifold, sometimes known as the quaternionic Penrose transform [11, 169,
170], which performs exactly this task, namely takes an element of H1(Z ,O(−2))
to a solution of (296). This is an analogue of the more familiar Penrose transform
which maps sections of H1(CP

3,O(−2) to massless spin 0 fields on R
4 [171]. Using

the complex coordinate system introduced in Sect. 7.3.2, it is easy to provide an ex-
plicit integral representation of this transform, where the element of H1(Z ,O(−2))
is represented by a holomorphic function g(ξ I , ξ̃I ,α) in the trivialization λ = 1 [11]:

Φ
(

U,za, z̄ā,ζ I , ζ̃I ,σ
)

= e2U
∮

dz
z

g
(
ξ I , ξ̃I ,α

)
, (298)

In this formula, ξ I , ξ̃I ,α are to be expressed as functions of the coordinates on M3

and z via the twistor map (289a). The integral runs over a closed contour which
separates z = 0 from z = ∞. In [11], it was shown that the left-hand side of (298)
is indeed a solution of the system of second-order differential equations (296) with
with a fixed value for κ = −1. Moreover, the Klein-Gordon inner product on M3

(295) may be rewritten in terms of the holomorphic function g as

〈Φ|Φ′〉 =
∫

dξ Idξ̃Idα dξ̄ Id ¯̃ξIdᾱ e−2(nV +1)KZ g
(
ξ I , ξ̃I ,α

)
g′
(
ξ I , ξ̃I ,α

)
(299)
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where the integral runs over values of ξ I , ξ̃I , α, ξ̄ I , ¯̃ξI , ᾱ such that the bracket in
(290) is strictly positive. In particular, the inner product (299) is positive definite, as
announced at the end of Sect. 7.4.1.

There also exist versions of (298), (299) appropriate to sections of H1(Z ,O(−k))
for any k > 0, which are mapped to sections of Λk−2(H) satisfying first-order dif-
ferential equations [11].

Thus the problem of determining the radial wave function of BPS black holes is
reduced to that of finding the appropriate section of H1(Z , O(−2)). For a black
hole with fixed electric and magnetic charges qI , pI and zero NUT charge, the only
eigenmode of the generators (287) is, up to normalization, the “coherent state”

gp,q(ξ I , ξ̃I ,α) = ei(pI ξ̃I−qIξ I) . (300)

These states are delta-normalizable under inner product (299) (possibly regulated
by analytic continuation in k) and become normalizable after modding out by the
discrete Heisenberg group24.

Applying the Penrose transform (298) to the state (300), we find

Φp,q(U,za, z̄ā,ζ I , ζ̃I ,σ) = eipI ζ̃I−iqIζ I
e2U

∮
dz
z

exp
[
eU (zZ̄ + z−1Z)

]
, (301)

where Z is the central charge (41) of the black hole. After analytic continuation
(ζ I , ζ̃I) to i(ζ I , ζ̃I) and (pI ,qI) to −i(pI ,qI), the integral may be evaluated in terms
of a Bessel function,

Φ(U,za, z̄ā,ζ I , ζ̃I ,σ) = 2π eipI ζ̃I−iqIζ I
e2U J0

(
2eU |Z|

)
(302)

This is the exact radial wave function for a black hole with fixed charges (pI ,qI), at
least in the supergravity approximation25.

Since the Bessel function J0 decays like cos(w)/
√

w at large values of |w|, we see
that the phase of the BPS black hole wave function is stationary at the classical at-
tractor point zi

p,q, and becomes flatter and flatter in the near-horizon limit U →−∞,
while the modulus decays away from these points as a power law. The occurrence
of large quantum fluctuations in the near horizon limit may seem at odds with the
attractor behavior for BPS black holes, but is in fact perfectly consistent with the
picture of a particle moving in an inverted potential V = −e2UVBH , as discussed in
Sect. 7.2.4. It is a reflection of the infinite fine-tuning of the asymptotic conditions
which is necessary for obtaining an extremal black hole.

Returning to the original motivation explained in Sect. 7.1, we observe that the
wave function (302) bears no obvious relation to the topological string amplitude.
One may, however, try to rescue the suggestion in [7] by noting that there is in
principle an even smaller subspace of the Hilbert space L2(S ), corresponding to
“tri-holomorphic” on S ; we shall remain deliberately vague about the concept of

24 Scaling arguments show that the norm grows as a power of p,q, rather than exponentially.
25 In the presence of R2-type corrections, the geodesic motion receives higher-derivative correc-
tions, and it is no longer clear how to quantize it.
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“tri-holomorphy” here, referring the reader to [172] for some background on this
subject, but merely assume that it divides the functional dimension by a factor of
four. If so, this “super-BPS” Hilbert space of triholomorphic functions on S would
have functional dimension nV + 2, and be the natural habitat of a one-parameter
generalization of the topological wave function [9]. One would also expect some
quaternionic analogue of the Cauchy integral in (298), which would map the space
of tri-holomorphic functions on S to functions on M3 annihilated by certain differ-
ential operators. In the symmetric cases studied in the next Section, we shall indeed
be able to construct a “super-BPS” Hilbert space, of functional dimension nV + 2,
which carries the smallest possible unitary representation of the duality group.

7.5 Very Special Quantum Attractors

We now specialize the construction of Sect. 7.4.2 to the case of very special N = 2
supergravities which we introduced in Sect. 3.5. Our goal is to produce a framework
for constructing duality-invariant black hole partition functions, applicable both for
these N = 2 theories and their N = 4,8 variants.

7.5.1 Quasiconformal Action and Twistors

Recall that the vector-multiplet moduli space of very special supergravities are her-
mitean symmetric tube domains (86), built out of the invariance groups of Jordan
algebras J with a cubic norm N. The result of the c-map [173] and c∗ map [147]
constructions are still symmetric spaces, of the form

M3 =
QConf(J)

C̃onf(J)×SU(2)
, M ∗

3 =
QConf(J)

Conf(J)×Sl(2)
(303)

Here, QConf(J) is the “quasi-conformal group” associated to the Jordan algebra
J (in its quaternionic, rank 4 real form), and C̃onf(J) is the compact real form of
Conf(J); these spaces can read off from Table 2 on page 26.

The terminology of “quasi-conformal group” refers to the realization found
in [174] of G = QConf(J) as the invariance group of the zero locus N4(Ξ, Ξ̄) = 0
of a homogeneous, degree 4 polynomial N4 in the variables Ξ = (ξ I , ξ̃I ,α) (of re-

spective degree 1,1,2) and Ξ̄ = (ξ̄ I , ¯̃ξI , ᾱ):

N4(Ξ; Ξ̄) =
1
2

I4

(
ξ I − ξ̄ I , ξ̃I − ¯̃ξI

)
+
(
α− ᾱ + ξ̄ I ξ̃I −ξ I ¯̃ξI

)2
(304)

More precisely, there exists an holomorphic action of G on Ξ such that N4(Ξ, Ξ̄)
gets multiplied by a product f (Ξ) f̄ (Ξ̄). In (304), I4 is the quartic invariant (96) of the
group Conf(J)⊂ QConf(J) associated to the Jordan algebra J, acting linearly on the

symplectic vectors (ξ I , ξ̃I) and (ξ̄ I , ¯̃ξI). By analogy with the “conformal realization”
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of Conf(J), leaving the cubic light-cone N(zi − z̄i) invariant, this is called the quasi-
conformal realization of G.

Group theoretically, the origin of this action is clear: the group G admits a
5-graded decomposition, corresponding to the horizontal axis in the two-dimensional
projection of the root diagram of G shown in Fig. 6),

G = G−2 ⊕ G−1 ⊕ G0 ⊕ G+1 ⊕ G+2

≡ {k′} ⊕ {p′I ,q
′I} ⊕ {TA,SA,DB

A} ⊕ {pI ,qI} ⊕ {k} (305)

In particular, the top space G+2 is one-dimensional, therefore G+1 ⊕G+2 form an
Heisenberg algebra with center G+2, which we identify with the Heisenberg al-
gebra [pI ,qJ ] = 2kδ I

J of electric, magnetic, and NUT isometries (242). The grade
0 space is G0 = Conf(J)×U(1) = {TA,SA,DB

A}. Symmetrically, G−1 ⊕G−2 form
an Heisenberg algebra [p′I ,q

′J ] = 2k′δ I
J with one-dimensional center G−2. Together

with G−2 = {k′} and G+2 = {k}, the center H = DA
A = [k,k′] of G0 generates an

SU(2) subgroup which commutes with Conf(J), and yields the above 5-grading
above. Finally, Conf(J) acts linearly on G+1 ∼ {pI ,qI} in the usual way, leaving
G+2 ∼ {k} invariant. Since the H charge is additive, the sum P = G−2 ⊕G−1 ⊕G0

closes under commutation, and is known as the Heisenberg parabolic subgroup P
of G. The quasi-conformal realization of G is then just the action on P\G by right
multiplication; it may be twisted by a unitary character χ of P, i.e. by considering
functions on P\G which transform by χ under the right action of G (mathematically,
this is the induced representation from the parabolic P to G with character χ , see
e.g. [175] for an introduction to this concept).

To be completely explicit, the generators in G+1 ⊕G+2 act on functions of Ξ as

EpI = ∂ξ̃I
−ξ I∂α , EqI = −∂ξ I − ξ̃I∂α , Ek = ∂α , (306)

while the generator k′ in G−2 acts as

Ek′ =
(
−1

4
∂ I4

∂ ξ̃I
−αξ I

)
∂ξ I +

(
1
4
∂ I4

∂ξ I −αξ̃I

)
∂ξ̃I

+
1
2
(I4 −2α2)∂α − kα (307)

Fig. 6 Two-dimensional
projection of the root diagram
of the quasi-conformal group
associated to a cubic Jordan
algebra J (when J = R, this is
the root diagram of G2). The
five-grading corresponds to
the horizontal axis. The long
roots are singlets, generating
a SU(2, 1) universal
subgroup, while the short
roots are valued in the Jordan
algebra J
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where I4 = I4(ξ I , ξ̃I) and k is a complex number parametrizing the character χ . The
rest of the generators can be obtained by commutation and Conf(J) rotations.

Comparing (304) and (290) and recalling that the Hesse potential Σ for symmet-
ric spaces is the square root of the quartic invariant I4, it is manifest that the log of
the “quartic light-cone” (304) is just the Kähler potential (290) of the twistor space
Z = GC\PC of the quaternionic-Kähler space M3; therefore, the quasi-conformal
realization is nothing but the holomorphic action of QConf(J) on the twistor space
Z . For integer values of the parameter k, this representation belongs to the “quater-
nionic discrete series” representation of G [176], a quaternionic analogue of the
usual discrete series for Sl(2).

We conclude that for very special supergravities, the BPS Hilbert space carries
a unitary representation of the three-dimensional U-duality group G = QConf(J),
given by the “quaternionic discrete series” or “quasi-conformal realization” of G.

7.5.2 Penrose Transform and Spherical Vector

In Sect. 7.4.3, we have seen that there is a Penrose transform which takes holomor-
phic functions on Z to a function on M3 annihilated by some second-order differ-
ential operator. In the present symmetric context, there is an a priori different way
of producing a function Φ on G/K from a vector f ∈ H in a unitary representation
of G: for any e ∈ G, take

Φ(e) = 〈 f |ρ(e)| fK〉 (308)

where fK is a fixed K-invariant vector in H . Since fK is invariant under K, Φ
descends to the quotient G/K. This construction is standard in representation theory,
where fK is referred to as a spherical vector (see again [175]).

Not surprisingly, the geometric and algebraic constructions are in fact equivalent,
as we illustrate in the simplest case of the universal sector G = SU(2,1)/SU(2)×
U(1). The quartic invariant in this case is the square of a quadric, I4 = 1

2 (ξ 2 + ξ̃ 2)2.
Using (307) one may check that

fK(ξ , ξ̃ ,α) =
(

1+ξ 2 + ξ̃ 2 +α2 +
1
2

I4

)−k/2

(309)

is the unique vector invariant under SU(2)×U(1). Acting with ρ(e) where e ∈ G is
parameterized by U,ζ , ζ̃ ,σ , one obtains

[ρ(e) fK ](ξ , ξ̃ ,α) =
[
e2U +(ξ̃ − ζ̃ )2 +(ξ −ζ )2 + e−2UN4(ξ , ξ̃ ,α;ζ , ζ̃ ,σ)

]−k/2

(310)

Thus, we conclude that BPS wave functions, in the unconstrained Hilbert space H ,
are given by
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Φ(U,ζ , ζ̃ ,σ) =
∫

f̄ (ξ̄ , ¯̃ξ , ᾱ) dξ̄ d ¯̃ξ dᾱ[
e2U +( ¯̃ξ − ζ̃ )2 +(ξ̄ −ζ )2 + e−2UN4(ζ , ζ̃ ,σ , ξ̄ , ¯̃ξ , ᾱ;)

]k/2

(311)
By evaluating the contour integral by residues, one may easily show that, for k = 2,
the function Φ in (308) agrees with the Penrose transform (298) of the function

g(ξ , ξ̃ ,α) =
∫

f̄ (ξ̄ , ¯̃ξ , ᾱ) dξ̄d ¯̃ξdᾱ

(α− ᾱ + ¯̃ξξ − ξ̃ ξ̄ )2 + 1
4

[
(ξ − ξ̄ )2 +(ξ̃ − ¯̃ξ )2

]2 (312)

This operator which intertwines between the space of functions g(ξ , ξ̃ , α) and

f̄ (ξ̄ , ¯̃ξ , ᾱ) is an example of the “twistor transform” (not to be confused with
the Penrose transform), which maps sections of H1(Z ,O(−k)) to sections of
H1(Z ,O(−4− k) [177].

7.5.3 The Minimal Representation vs. the Topological Amplitude

At the end of Sect. 7.4.3, we pointed out that the functional dimension of the BPS
Hilbert space H1(Z ,O(−2)), 2nV +3, was too large to accommodate the topolog-
ical string amplitude, which depends on nV + 1 variables. In the symmetric case, it
is natural to ask whether there are smaller representations than the quasi-conformal
realization, which could provide the natural habitat for the topological string ampli-
tude.

In fact, it is known in the mathematics literature that the quasiconformal rep-
resentation, for low values of the parameter k, is no longer irreducible [176]. In
particular, the symplectic space V = {ξ I , ξ̃I} admits a sequence of subspaces
V ⊃ X ⊃ Y ⊃ Z, defined by homogeneous polynomial equations of degree 4,3 and
2, respectively such that each of them is preserved by the quasi-conformal action
of G. Here, X is the locus where the quartic invariant I4(ξ , ξ̃ ) vanishes, Y ⊂ X is
the locus where the differential dI4 vanishes; finally, Z ⊂ Y is the locus where the
irreducible component of the Hessian of I4 (viewed as an element of the symmetric
tensor product V ⊗S V ) transforming in the adjoint representation of Conf(J) van-
ishes, a condition which we’ll denote d2 I4 = 0. As shown in [176], each of the
subspaces X, Y, Z, supplemented with the variable α and for the appropriate choice
of k, furnishes an irreducible unitary representation of G, of functional dimension
2nV +3, 2nV +2, (5nV +3)/3 and nV +2 variables, respectively. By the “orbit phi-
losophy”, these are associated by to nilpotent co-adjoint orbits of nilpotency order
5,4,3,2, respectively.

The smallest of those, known as the minimal representation of G, is of partic-
ular importance to us, as its dimension nV + 2 is just one more than the num-
ber of variables appearing in the topological amplitude. This representation plays
a distinguished role in mathematics, being the smallest unitary representation of
G and an analogue of the metaplectic representation of the symplectic group.
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In physics, the minimal representation of Sl(3) was used in the early days for
strong interactions [178], and more recently in an attempt at quantizing BPS mem-
branes [179, 180]. Its relevance to black hole physics was suggested in [181] and
expounded in [8, 10].

As first observed in the case of E8(8) in [181], the minimal representation can
be obtained by quantizing the symplectic space26 V of the quasi-conformal real-
ization was acting, namely replacing ξ̃I → i∂ξ I and fixing the ordering ambiguities
so that the algebra of QConf(J) is preserved. An independent construction, valid
for all simply laced cases, was given in [182, 183]; a recent unified approach us-
ing the language of Jordan algebra and Freudenthal triple systems can be found
in [184, 185].

In order to extract physical information from wave functions in the minimal rep-
resentation, just as in the quasiconformal case it is necessary to embed them in the
non-BPS Hilbert space, i.e. map them into functions on M3 by some analogue of
the Penrose transform. As explained in the previous subsection, this may be done
once a spherical vector fK is found. A slight complication is that the minimal rep-
resentation for non-compact groups in the quaternionic real form (as opposed to the
split real form) do not admit a spherical vector; rather, the decomposition of the
minimal representation under the maximal compact group K = C̃onf(J)× SU(2)
has a “ladder” structure, whose lowest component (or “lowest K-type”) transforms
in a spin27 (nV −3)/6 representation of SU(2). Replacing fK in (308) by this lowest
K-type, one obtains a section of a symmetric power of H on M3. The wave function
of the lowest K-type can be computed explicitely in a mixed real-holomorphic po-
larization [13]; in the semi-classical approximations, all components of the K-type
behave as

fK(aA,b†,x) ∼ exp

[
−x2

2
+

I3(aA)
b† +2ix

√
I3(aA)

b†

]
(313)

where fK(aA,b†,x) is related to fK(ξ 0,ξA,α) by a certain Bogolioubov opera-
tor [13]. We take the fact that fK reduces to the classical topological amplitude
exp(I3(aA)/b†) in the limit x → 0 as a strong indication that the minimal represen-
tation is the habitat of a one-parameter generalization of the standard topological
amplitude.

Further evidence for this claim comes from the fact the holomorphic anomaly
(148) obeyed by the usual topological amplitude follow from the quadratic identi-
ties in the universal enveloping algebra of the minimal representation of G, upon
restriction to the “Fourier-Jacobi group” P/U(1), where U(1) is the subgroup gen-
erated by the Cartan generator H ∈ G0 [9]. This is in precise analogy with the heat
equation satisfied by the classical Jacobi theta series,

[
i∂τ −∂ 2

z

]
θ1(τ,z) = 0 (314)

26 This is sometimes referred to as “quantizing the quasi-conformal action”, which may cause some
confusion since the quasi-conformal realization is quantum mechanical already.
27 For nV < 3, the lowest K-type is a singlet of SU(2) but non-singlet of Conf(J).
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which follows from quadratic relations in the minimal (i.e. metaplectic) represen-
tation of Sp(4) ⊃ Sl(2). In this restriction, the generator k ∈ G+2 becomes central
and can be fixed to an arbitrary non-zero value, reducing the total number of vari-
ables from nV +2 down to nV +1. The usual topological amplitude ΨR(pI) should
then arise as a “Fourier-Jacobi” coefficient of a “generalized topological amplitude”
Ψgen(pI , k) at k = 1. The extension of these considerations to realistic cases without
symmetry, possibly along the lines explained at the end of Sect. 7.4.3, would clearly
have far-reaching consequences for the enumerative geometry of Calabi-Yau spaces.

7.6 Automorphic Partition Functions

We now return to our original motivation for investigating the radial quantization
of BPS black holes, namely, the construction of partition functions for black hole
micro-states consistent with the symmetries of the problem. We shall mainly con-
sider the toy model case of very special N = 2 supergravities but will briefly dis-
cuss the applications to N = 4 and N = 8 supergravity at the end of this section.

In the previous sections, we discussed how the mini-superspace radial quanti-
zation of BPS black holes gives rise to Hilbert spaces of finite functional dimen-
sion, furnishing a unitary representation of the three-dimensional duality group
G3 = QConf(J). It is natural to expect that G3 should serve as a spectrum-generating
symmetry for black hole micro-states [8, 174, 186, 187]. Indeed, it already serves
as solution-generating symmetry at the classical level, although it mixes bona-fide
black holes with solutions with non-zero NUT charge k. Thus, we propose that the
black hole indexed degeneracies Ω(p, q) be given by Fourier coefficients of an au-
tomorphic form Z on the three-dimensional moduli space M3 = G(Z)\G/K. More
specifically, consider

Ω(pI ,qI ;U,zi, z̄ī) =
∫

dζ I dζ̃I dσ e−ipI ζ̃I+iqIζ I
Z(U,zi, z̄ī;ζ I , ζ̃I ,σ) (315)

where the integral runs over a fundamental domain 0 ≤ (ζ I , ζ̃I ,σ) ≤ 2π of the dis-
crete Heisenberg group. The left-hand side is in principle a function of U, zi, z̄ī: one
should view Z as the partition function in a thermodynamical ensemble with elec-
tric and magnetic potentials ζ I and ζ̃I , temperature T = e−U mP and values (zi, z̄ī) for
the vector-multiplet moduli at infinity. Provided Z is annihilated by appropriate dif-
ferential operators, the dependence on U,zi, z̄ī will be entirely fixed by the charges
pI ,qI , and leave an overall factor identified as the actual black hole degeneracy:

Ω(pI ,qI ;U,zi, z̄ī) = Ω(pI ,qI) Φp,q(U,zi, z̄ī) (316)

Now, there is a natural way to construct an automorphic form which satisfies these
requirements: for e ∈ G, take

Z(e) = 〈 fZ|ρ(e)| fK〉 (317)
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where ρ is a unitary representation of G, K a spherical vector and fZ a G(Z)-
invariant vector in this representation. This last condition guarantees that Z(g) so
defined is a function on G(Z)\G/H. We comment on ways to compute fZ below.
In particular, one may take for ρ the quasi-conformal representation described in
Sect. 7.5.1: the function Φp,q in (316) is then just the black hole wave function
(302) (with the dependence on ζ I and ζ̃I stripped off), while the integer degenera-
cies Ω(p, q) are encoded in the G(Z)-invariant vector fZ. In this case, it is known
that the Fourier coefficients have support only on charges with I4(pI ,qI) ≥ 0 [188].
One could also consider smaller representations associated to the subspaces X,
Y or Z of V : the coefficients Ω(p, q) would then have support on charges with
I4(p, q) = 0, dI4 = 0 or d2I4 = 0, and would presumably be relevant for “small”
black holes with 3, 2 and 1 charges, respectively.

Thus, we have reduced the problem of computing the black hole partition func-
tion to that of constructing a G(Z)-invariant vector in a unitary representation ρ
of the three-dimensional duality group G(Z) [8]. This is a difficult problem, but
there is a powerful mathematical method, known as the Strong Approximation The-
orem, which allows to address this question (see [175] for a pedestrian introduction
to these techniques): this theorem states that functions on G(Z)\G(R) are equiva-
lent to functions on G(A)/G(Q), where A is the field of adeles, i.e. the (restricted)
product of R times the p-adic number fields Qp for all prime p, with Q being di-
agonally embedded in this product. Since G(Q) is the maximal compact subgroup
of G(A), the problem of finding fZ is reduced to that of finding the spherical vec-
tor over each p-adic field. This point of view has been applied to find the G(Z)-
invariant vector of the minimal representation for simply laced groups in the real
form in [189]. It would be very interesting to construct the automorphic forms at-
tached to quasi-conformal representation and see whether their Fourier coefficients
have the required exponential growth.

We close this section by noting that the construction of automorphic partition
functions outlined in this section can also be applied, after suitable analytic continu-
ation, to the case of N = 4 and N = 8 supergravity, which have a clear string the-
ory realization. While the three-dimensional moduli space is no longer quaternionic-
Kähler, there are still unitary representations associated to the symplectic space V
and its subspaces X, Y, Z, and one can still define Fourier coefficients of the type
(315). For N = 8 supergravity, we expect that exact degeneracies of 1/8-BPS, 1/4-
BPS and 1/2-BPS black holes to be given by automorphic forms of E8(8) based on
V, Y, Z, respectively (since the 1/4 and 1/2 BPS conditions are dI4(p, q) = 0 and
d2I4(p, q) = 0, respectively [186]). For N = 4 supergravity, we expect 1/4-BPS
states to be counted by an automorphic form of SO(8, nv +2) (where nv is the num-
ber of N = 4 vector multiplets in 4 dimensions). This proposal is distinct from the
genus 2 partition function outlined in Sect. 2.5, and would have to be consistent
with it at least in the large charge regime. In this respect, it is interesting to remark
(see Exercise 21 below) that Sp(4) can be viewed as a “degeneration” of the three-
dimensional U-duality group QConf(J) (for any J), upon collapsing all electric and
magnetic charges pI and qI to just two charges p, q. Thus, our proposal has the
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potential to resolve differences between black holes which have the same continu-
ous U-duality invariant but sit in different orbits of the discrete U-duality group.

Exercise 21. Show that the root diagram of Sp(4) is “tic-tac-toe”-shaped. Compare
to the root diagram of QCon f (J) in Fig. 6 on page 359.

8 Conclusion

In these lectures, we have reviewed some recent attempts at generalizing the mi-
croscopic counting of BPS black holes beyond leading order. Our main emphasis
was on the conjecture by Ooguri, Strominger, and Vafa, which relates the micro-
scopic degeneracies of four-dimensional BPS black holes to the topological string
amplitude, which captures an infinite series of higher derivative corrections in the
macroscopic, low energy theory.

By analyzing the case of “small” black holes, which can be easily counted in
the heterotic description, we have found that the topological amplitude captures the
microscopic degeneracies with impressive precision. At the same time, it is clear that
some kind of non-perturbative generalization of the topological string is required, if
one wants to obtain exact agreement for finite charges.

Motivated by the “holographic” interpretation of the OSV conjecture as a channel
duality between radial and time-like quantization, we studied the quantization of the
attractor flow for stationary, spherically symmetric black holes; this was achieved
by reformulating the attractor flow as a BPS geodesic flow on the moduli space in
three dimensions. Using the Penrose transform, we were able to compute the exact
radial wave function for BPS black holes with fixed electric and magnetic charges,
in the supergravity approximation. It would be interesting to try and include the
effect of higher derivative corrections, as well as relax the assumption of spherical
symmetry.

Contrary to the suggestion in [7], the BPS wave function bears little ressemblance
to the topological string amplitude. There is, however, evidence from the symmet-
ric space case that there exists a “super-BPS” Hilbert space which can host the
topological string wave function or rather a one-parameter generalization thereof.
In the general non-symmetric case, this generalized topological amplitude should
be viewed as a tri-holomorphic function over the quaternionic-Kähler moduli space
(or rather, the Swann space thereof). Using T-duality between the vector-multiplet
and hyper-multiplet branches in 3 dimensions, it is natural to expect that it should
encode instanton corrections to the hypermultiplet geometry in 4 dimensions [190].

These considerations lend support to the idea that the three-dimensional dual-
ity group should play a role as a spectrum-generating symmetry for 4-dimensional
black holes. Our framework suggests that the black hole degeneracies should
be indeed be related to Fourier coefficients of automorphic forms for the three-
dimensional U-duality group G, attached to the representations of G which appear
in the radial quantization of stationary, spherically symmetric BPS black holes. It
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would be interesting to construct these automorphic forms explicitly and have a
handle on the growth of their Fourier coefficients, similar to the Rademacher for-
mula for modular forms of Sl(2,Z).

The most direct application of our framework is to BPS black holes in the FHSV
model, since this is a quantum realization of the very special N = 2 supergrav-
ity with J = R⊕Γ9,1; in this case, we expect that the black hole partition function
is an automorphic form of SO(4, 12, Z), which would be very interesting to con-
struct. With some minor amendments, our framework also applies to N = 4 and
N = 8 backgrounds in string theory, whose three-dimensional U-duality groups
are SO(8, 24, Z) and E8(8)(Z). In the N = 4 case, our proposal differs from the
DVV formula, which relies on an automorphic form of Sp(4, Z) but has the poten-
tial to distinguish black holes which have the same continuous U-duality invariant
but sit in different orbits of the discrete U-duality group. For N = 8, the entropy
of 1/8-BPS BPS black holes in a certain orbit was computed using the 4D/5D lift
in [8, 191]. It would be interesting to see whether an agreement with these formulae
can be reached at least for certain orbits.

The extension of these ideas to general N = 2 string theories, possibly using the
monodromy group of X as a replacement for the U-duality group, is of course the
most challenging and potentially rewarding problem, as it is bound to unravel new
relations between number theory, algebraic geometry, and physics.
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