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Preface

This book is based upon the lectures delivered from 18 to 22 June 2007 at the
INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by
Stefano Bellucci, with the participation of prestigious lecturers, including
S. Ferrara, M. Gnaydin, P. Levay, T. Mohaupt, and A. Zichichi. All lectures were
given at a pedagogical, introductory level, a feature which is reflected in the spe-
cific “flavor” of this volume, which has also benefited much from the extensive
discussions and related reworking of the various contributions.

This is the fourth volume in a series of books on the general topics of super-
symmetry, supergravity, black holes, and the attractor mechanism. Indeed, based on
previous meetings, three volumes have already been published:

BELLUCCI S. (2006). Supersymmetric Mechanics – Vol. 1: Supersymmetry,
Noncommutativity and Matrix Models. (vol. 698, pp. 1–229). ISBN: 3-540-33313-4.
Berlin, Heidelberg: Springer Verlag (Germany). Springer Lecture Notes in Physics
Vol. 698.

BELLUCCI S., S. FERRARA, A. MARRANI. (2006). Supersymmetric Mechan-
ics – Vol. 2: The Attractor Mechanism and Space Time Singularities. (vol. 701,
pp. 1–242). ISBN-13: 9783540341567. Berlin, Heidelberg: Springer Verlag (Ger-
many). Springer Lecture Notes in Physics Vol. 701.

BELLUCCI S. (2008). Supersymmetric Mechanics – Vol. 3: Attractors and Black
Holes in Supersymmetric Gravity. (vol. 755, pp. 1–373). ISBN-13: 9783540795223.
Berlin, Heidelberg: Springer Verlag (Germany). Springer Lecture Notes in Physics
755.

In this volume, we have included two contributions originating from short pre-
sentations of recent original results given by participants, i.e., Wei Li and Filipe
Moura.

I thank all the lecturers and participants for contributing to the success of the
School, which prompted the publication of this volume. I also thank Mrs. Silvia
Colasanti for her generous efforts in the secretarial work and in various organiza-
tional aspects. My gratitude goes to INFN and in particular to Mario Calvetti for
supporting the School. At this special time for me and my family, with the birth

v



vi Preface

of our longed for daughter Maristella recently and happily occurred, my thoughts
go to my wife Gloria and our beloved Costanza, Eleonora, Annalisa, and Erica for
supporting and encouraging me every day: their love gave me strength to complete
this volume.

April 2010 Stefano Bellucci
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Péter Lévay
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Chapter 1
SAM Lectures on Extremal Black Holes in d D 4
Extended Supergravity

Stefano Bellucci, Sergio Ferrara, Murat Günaydin, and Alessio Marrani

Abstract We report on recent results in the study of extremal black hole attractors
in N D 2, d D 4 ungauged Maxwell–Einstein supergravities.

For homogeneous symmetric scalar manifolds, the three general classes of attrac-
tor solutions with non-vanishing Bekenstein–Hawking entropy are discussed. They
correspond to three (inequivalent) classes of orbits of the charge vector, which sits
in the relevant symplectic representationRV of the U -duality group. Other than the
1
2

-BPS one, there are two other distinct non-BPS classes of charge orbits, one of
which has vanishing central charge.

The complete classification of the U -duality orbits, as well as of the moduli
spaces of non-BPS attractors (spanned by the scalars which are not stabilized at
the black hole event horizon), is also reviewed.

Finally, we consider the analogous classification for N > 3-extended, d D 4

ungauged supergravities, in which also the 1
N

-BPS attractors yield a related moduli
space.

1.1 Introduction

In the framework of ungauged Einstein supergravity theories in d D 4 space–time
dimensions, the fluxes of the two-form electric-magnetic field strengths determine
the charge configurations of stationary, spherically symmetric, asymptotically flat
extremal black holes (BHs). Such fluxes sit in a representationRV of the U -duality1

group G4 of the underlying d D 4 supergravity, defining the embedding of G
into the larger symplectic group Sp .2n;R/. Moreover, after the study of [2], for

1Here U -duality is referred to as the “continuous” version, valid for large values of the charges, of
the U -duality groups introduced by Hull and Townsend [1].
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2 S. Bellucci et al.

symmetric scalar manifolds G4

H4
(see (1.1) below) the fluxes belong to distinct classes

of orbits of the representationRV, i.e., theRV-representation space ofG4 is actually
“stratified” into disjoint classes of orbits. Such orbits are defined and classified by
suitable constraints on the (lowest order, actually unique) G-invariant I built out of
the symplectic representation RV.

For all N > 3, d D 4 supergravities the scalar manifold of the theory is an
homogeneous symmetric space G4

H4
. Thus, for such theories some relations between

the coset expressions of the aforementioned orbits and different real (non-compact)
forms of the stabilizer H4 can be established [3]. It is here worth remarking that
the “large” charge orbits (having I ¤ 0) support the Attractor Mechanism [4–8],
whereas the “small” ones (having I D 0) do not.

Recently, a number of papers have been devoted to the investigation of extremal
BH attractors (see, e.g., [9–90]; for further developments and refs., see also, e.g.,
[91–95]), essentially because new classes of solutions to the so-called Attractor
Equations were (re)discovered. Such new solutions have been found to determine
non-BPS (Bogomol’ny–Prasad–Sommerfeld) BH horizon geometries, breaking all
supersymmetries (if any).

The present report, originated from lectures given at the School on Attractor
Mechanism (SAM 2007), held on June 18–22, 2007 at INFN National Laborato-
ries in Frascati (LNF), Italy, is devoted to an introduction to the foundations of the
theory of U -duality orbits in the theory of extremal BH attractors in N D 2, d D 4

MESGT’s based on symmetric manifolds. Also N > 3-extended, d D 4 supergrav-
ities, as well as the issue of moduli spaces of attractor solutions, will be briefly
considered. Our review incorporates some of the more recent developments that
have taken place since SAM2007.

The plan of the report is as follows.
Section 1.2 is devoted to the treatment of N D 2, d D 4 MESGT’s based on

symmetric scalar manifolds.
In Sect. 1.2.1 we review some basic facts about such theories, concerning their

“large” charge orbits and the relations with the extremal BH solutions to the
corresponding Attractor Eqs.

Thence, Sect. 1.2.2 reports the general analysis, performed in [3], of the three
classes of extremal BH attractors of N D 2, d D 4 symmetric magic2 MESGT’s,
and of the corresponding classes of “large” charge orbits in the symplectic repre-
sentation space of the relevant d D 4 U -duality group. In particular, the 1

2
-BPS

solutions are treated in Sect. 1.2.2.1, while the two general species of non-BPS
Z ¤ 0 and non-BPS Z D 0 attractors are considered in Sect. 1.2.2.2.

The splittings of the mass spectra of N D 2, d D 4 symmetric magic MESGT’s
along their three classes of “large” charge orbits [3], and the related issues of

2 These theories were called “magical” MESGT’s in the original papers. In some of the recent
literature they are referred to as “magic” MESGT’s which we shall adopt in this review.
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massless Hessian modes and moduli spaces of attractor solutions, are considered
in Sect. 1.2.3.3

Section 1.2.4 deals with the crucial result that the massless Hessian modes of
the effective BH potential VBH of N D 2, d D 4 MESGT’s based on symmetric
scalar manifolds at its critical points actually correspond to “flat” directions. Such
“flat” directions are nothing but the scalar degrees which are not stabilized at the
event horizon of the considered d D 4 extremal BH, thus spanning a moduli space
associated to the considered attractor solution. Nevertheless, the BH entropy is still
well defined, because, due to the existence of such “flat” directions, it is actually
independent on the unstabilized scalar degrees of freedom.

Actually, moduli spaces of attractors solutions exist at least for all ungauged
supergravities based on homogeneous scalar manifolds. The classification of such
moduli spaces (and of the corresponding supporting “large” orbits of U -duality for
N > 3, d D 4 supergravities is reported in Sect. 1.3.

Section 1.4 concludes the present report, with some final comments and remarks.

1.2 N D 2, d D 4 Symmetric MESGT’s

1.2.1 U -Duality “Large” Orbits

The critical points of the BH effective potential VBH for allN D 2 symmetric special
geometries in d D 4 are generally referred to as attractors. These extrema describe
the “large” configurations (BPS as well as non-BPS) of N D 2; 6; 8 supergravities,
corresponding to a finite, non-vanishing quartic invariant I4 and thus to extremal
BHs with classical non-vanishing entropy SBH ¤ 0 . The related orbits in the RV of
the d D 4 U -duality groupG4 will correspondingly be referred to as “large” orbits.
The attractor equations for BPS configurations were first studied in [4–7], and flow
eqs. for the general case were given in [8].

Attractor solutions and their “large” charge orbits in d D 5 have been recently
classified for the case of all rank-2 symmetric spaces in [24].

In [3] the results holding for N D 8, d D 4 supergravity were obtained also
for the particular class of N D 2, d D 4 symmetric Maxwell–Einstein supergravity
theories (MESGT’s) [96–98], which we will now review. Such a class consists of
N D 2, d D 4 supergravities sharing the following properties:

1. Beside the supergravity multiplet, the matter content is given only by a certain
number nV of Abelian vector multiplets.

3 In the present report we do not consider the otherN D 2, d D 4MESGT’s with symmetric scalar
manifolds, given by the two infinite sequences SU.1;1Cn/

U.1/�SU.1Cn/
and SU.1;1/

U.1/
� SO.2;2Cn/

SO.2/�SO.2Cn/
. These

theories are treated in detail in the two Appendices of [3].
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2. The space of the vector multiplets’ scalars is an homogeneous symmetric special
Kähler manifold, i.e., a special Kähler manifold with coset structure

G4

H4

� G

H0 � U.1/; (1.1)

where G � G4 is a semisimple non-compact Lie group and H4 � H0 �U.1/ is
its maximal compact subgroup (mcs) (with symmetric embedding, as understood
throughout).

3. The charge vector in a generic (dyonic) configuration with nV C 1 electric and
nV C 1 magnetic charges sits in a real (symplectic) representation RV of G of
dim .RV/ D 2 .nV C 1/.

By exploiting such special features and relying on group theoretical considera-
tions, in [3] the coset expressions of the various distinct classes of “large” orbits (of
dimension 2nV C 1) in the RV-representation space of G were related to different
real (non-compact) forms of the compact group H0. Correspondingly, the N D 2,
d D 4 Attractor Eqs. were solved for all such classes, also studying the scalar mass
spectrum of the theory corresponding to the obtained solutions.

The symmetric special Kähler manifolds of N D 2, d D 4 MESGT’s have been
classified in the literature (see, e.g., [99, 100] and refs. therein). All such theories
can be obtained by dimensional reduction of the N D 2, d D 5 MESGT’s that
were constructed in [96–98]. The MESGT’s with symmetric manifolds that orig-
inate from d D 5 all have cubic prepotentials determined by the norm form of the
Jordan algebra of degree three that defines them [96–98].

The unique exception is provided by the infinite sequence (n 2 N [ f0g, nV D
nC r D nC 1) [101]

In W SU.1; 1C n/

U.1/� SU.1C n/
; r D 1; (1.2)

where r stands for the rank of the coset throughout. This is usually referred to as
minimal coupling sequence, and it is endowed with quadratic prepotential. It should
be remarked that theN D 2minimally coupled supergravity is the only (symmetric)
N D 2, d D 4MESGT which yields the pureN D 2 supergravity simply by setting
n D �1 (see, e.g., [76] and refs. therein).

Only another infinite symmetric sequence exists, namely (n 2 N [ f0;�1g,
nV D nC r D nC 3)

IIn W SU.1; 1/
U.1/

� SO.2; 2C n/

SO.2/ � SO.2C n/
; r D 3: (1.3)

This one has a d D 5 origin and its associated Jordan algebras are not simple. It is
referred to as the “generic Jordan family” since it exists 8n 2 N [f0;�1g. The first
elements of such sequences (1.2) and (1.3) correspond to the following manifolds
and holomorphic prepotential functions in special coordinates:
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I0 W SU.1; 1/
U.1/

; F.t/ D � i
2

�
1 � t2

� I (1.4)

II�1 W SU.1; 1/� SO.2; 1/
U.1/� SO.2/ D

�
SU.1; 1/

U.1/

�2

; F .s; t/ D st2I (1.5)

II0 W SU.1; 1/� SO.2; 2/
U.1/ � SO.2/� SO.2/ D

�
SU.1; 1/

U.1/

�3

; F .s; t; u/ D stu: (1.6)

It is here worth remarking that the so-called t3 model, corresponding to the follow-
ing manifold and holomorphic prepotential function in special coordinates:

SU.1; 1/

U.1/
; F.t/ D t3; (1.7)

is an isolated case in the classification of symmetric SK manifolds (see, e.g., [102];
see also [103] and refs. therein), but it can be thought also as the “t3 degeneration”
of the stu model (see, e.g., [50]; see also Sect. 1.2.4 for a treatment of models I0

and t3).
As mentioned, all manifolds of type I correspond to quadratic prepotentials

(Cijk D 0), and all manifolds of type II correspond to cubic prepotentials (in spe-
cial coordinates F D 1

3Š
dijkt

i tj tk and therefore Cijk D eKdijk , where K denotes
the Kähler potential and dijk is a completely symmetric rank-3 constant tensor).
The 3-moduli case II0 is the well-known stu model [104, 105] (see also, e.g., [77]
and refs. therein), whose noteworthy triality symmetry has been recently related to
quantum information theory [106–120].

Beside the infinite sequence II, there exist four other MESGT’s defined by sim-
ple Euclidean Jordan algebras of degree three with the following rank-3 symmetric
manifolds:

III W E7.�25/

E6�U.1/
I (1.8)

IV W SO�.12/
U.6/

I (1.9)

V W SU.3;3/
S.U.3/�U.3//

D SU.3;3/
SU.3/�SU.3/�U.1/

I (1.10)

VI W Sp.6;R/
U.3/

: (1.11)

The N D 2, d D 4 MESGT’s whose geometry of scalar fields is given by the man-
ifolds III–VI are called “magic”, since their symmetry groups are the groups of
the famous Magic Square of Freudenthal, Rozenfeld and Tits associated with some
remarkable geometries [121–123]. The fourN D 2, d D 4magic MESGT’s III–VI,
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as their d D 5 versions, are defined by four simple Euclidean Jordan algebras JO
3 ,

JH
3 , JC

3 and JR
3 of degree 3 with irreducible norm forms, namely by the Jordan

algebras of Hermitian 3 � 3 matrices over the four division algebras, i.e., respec-
tively over the octonions O, quaternions H, complex numbers C and real numbers
R [96–98, 124–127].

By denoting with nV the number of vector multiplets coupled to the supergrav-
ity one, the total number of Abelian vector fields in the considered N D 2, d D 4

MESGT is nV C 1; correspondingly, the real dimension of the corresponding scalar
manifold is 2nV D dim .G/ � dim .H0/ � 1. Since the 2 .nV C 1/-dim. vector of
extremal BH charge configuration is given by the fluxes of the electric and magnetic
field-strength two-forms, it is clear that dimR .RV/ D 2 .nV C 1/.

Since H0 is a proper compact subgroup of the duality semisimple group G, one
can decompose the 2 .nV C 1/-dim. real symplectic representationRV ofG in terms
of complex representations ofH0, obtaining in general the following decomposition
scheme:

RV �! RH0
CRH0

C 1C C N1C D RH0
C 1C C c:c:; (1.12)

where “c:c:” stands for the complex conjugation of representations throughout, and
RH0

is a certain complex representation of H0.
The basic data of the cases I–VI listed above are summarized in Tables 1.1

and 1.2.
It was shown in [2] that 1

2
-BPS orbits ofN D 2, d D 4 symmetric MESGT’s are

coset spaces of the form

O 1
2 �BPS D G

H0

;

dimR

�
O 1

2 �BPS

�
D dim .G/ � dim .H0/ D 2nV C 1 D dimR .RV/ � 1: (1.13)

Table 1.1 Data of the two sequences of symmetric N D 2, d D 4 MESGT’s

I II

G SU.1; 1C n/ SU.1; 1/ � SO.2; 2C n/

H0 SU.1C n/ SO.2/ � SO.2C n/

r 1 3

dimR

�
G

H0�U.1/

�
2.n C 1/ 2 .nC 3/

nV nC r D nC 1 nC r D nC 3

RV .2 .n C 2//R .2 .n C 4//R
RH0 .n C 1/C .n C 2 C 1/C
dimR .RV/ 2 .nC 2/ 2 .nC 4/

dimR

�
RH0

�
2.n C 1/ 2 .nC 3/

RV

#
RH0 C 1CC

Cc:c:

.2 .n C 2//R
#

.n C 1/C C 1CC
Cc:c:

.2 .n C 4//R
#

.n C 2 C 1/C C 1CC
Cc:c:
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Table 1.2 Data of the four magic symmetricN D 2, d D 4MESGT’s. 140
R is the rank-3 antisym-

metric tensor representation of Sp.6;R/. In
�
3; 30

�
C the prime distinguishes the representations

of the two distinct SU.3/ groups

III W JO
3 IV W JH

3 V W JC
3 VI W JR

3

G E7.�25/ SO�.12/ SU.3; 3/ Sp.6;R/
H0 E6 SU.6/ SU.3/ � SU.3/ SU.3/

r 3 3 3 3

dimR

�
G

H0�U.1/

�
54 30 18 12

nV 27 15 9 6

RV 56R 32R 10R 140
R

RH0 27C 15C

�
3; 30

�
C 6C

dimR .RV/ 56 32 20 14

dimR

�
RH0

�
54 30 18 12

RV

#
RH0 C 1CC

Cc:c:

56R

#
27C C 1CC

Cc:c:

32R

#
15C C 1CC

Cc:c:

10R

#�
3; 30

�
C C 1CC

Cc:c:

140
R

#
6C C 1CC

Cc:c:

We need to consider the N D 2 Attractor Eqs.; these are nothing but the critical-
ity conditions for the N D 2 BH effective potential [6, 128]

VBH � jZj2 CGi NiDiZDNiZ (1.14)

in the corresponding special Kähler geometry [8]:

@iVBH D 0 ” 2ZDiZ C iCijkG
j NjGk NkD NjZD NkZ D 0;8i D 1; : : : ; nV:

(1.15)
Cijk is the rank-3, completely symmetric, covariantly holomorphic tensor of special
Kähler geometry, satisfying (see, e.g., [129])

D NlCijk D 0; DŒlCi �jk D 0; (1.16)

where the square brackets denote antisymmetrization with respect to the enclosed
indices.

For symmetric special Kähler manifolds the tensor Cijk is covariantly constant:

DiCjkl D 0; (1.17)

which further implies [97, 99]

Gk NkGr NjCr.pqCij /kC NkNi Nj D 4

3
G.qjNiCjijp/: (1.18)

This equation is simply the d D 4 version of the “adjoint identity” satisfied by all
(Euclidean) Jordan algebras of degree three that define the corresponding MESGT’s
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in d D 5 [97, 99]:

dr.pqdij /kd
rkl D 4

3
ıl

.qdijp/: (1.19)

Z is the N D 2 “central charge” function, whereas fDiZgiD1;:::;nV is the set
of its Kähler-covariant holomorphic derivatives, which are nothing but the “matter
charge” functions of the system. Indeed, the sets4 fq0; qi ; p

0; pig 2 R2nVC2 and
fZ;DiZg 2 CnVC1 (when evaluated at purely .q; p/-dependent critical values of
the moduli) are two equivalent basis for the charges of the system, and they are
related by a particular set of identities of special Kähler geometry [21, 22, 128].
The decomposition (1.12) corresponds to nothing but the splitting of the sets
fq0; qi ; p

0; pi g (fZ;DiZg) of 2nV C 2 (nV C 1) real (complex) charges (“charge”
functions) in q0; p

0 (Z) (related to the graviphoton, and corresponding to 1C Cc:c:)
and in fqi ; p

i g (fDiZg) (related to the nV vector multiplets, and corresponding to
RH0

C c:c:).
In order to perform the subsequent analysis of orbits, it is convenient to use “flat”

I -indices by using the (inverse) nV-bein ei
I of G

H0�U.1/
:

DIZ D ei
IDiZ: (1.20)

By switching to “flat” local I -indices, the special Kähler metric Gi Nj (assumed to
be regular, i.e., strictly positive definite everywhere) will become nothing but the
Euclidean nV-dim. metric ıIJ . Thus, the attractor eqs. (1.15) can be “flattened” as
follows:

@IVBH D 0 ” 2ZDIZ C iCIJKı
J J ıKKDJZDKZ D 0; 8I D 1; : : : ; nV:

(1.21)
Note that CIJK becomes an H0-invariant tensor [130]. This is possible because
Cijk in special coordinates is proportional to the invariant tensor dIJK of the d D 5

U -duality groupG5. G5 andH0 correspond to two different real forms of the same
Lie algebra [97].

As it is well known, 1
2

-BPS attractors are given by the following solution [8] of
attractor eqs. (1.15) and (1.21):

Z ¤ 0; DiZ D 0 , DIZ D 0; 8i; I D 1; : : : ; nV: (1.22)

Since the “flattened matter charges” DIZ are a vector of RH0
, (2.90) directly

yields that 1
2

-BPS solutions are manifestly H0-invariant. In other words, since the
N D 2, 1

2
-BPS orbits are of the form G

H0
, the condition for the .nV C 1/-dim.

complex vector .Z;DiZ/ to be H0-invariant is precisely given by (2.90), defining
N D 2, 1

2
-BPS attractor solutions.

4 We always consider the “classical” framework, disregarding the actual quantization of the ranges
of the electric and magnetic charges q0, qi , p0 and pi . That is why we consider R2nVC2 rather than
the .2nV C 2/-dim. charge lattice O�.p;q/.
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Thus, as for theN D 8, d D 4 attractor solutions (see, e.g., [3] and refs. therein),
also for the N D 2, d D 4 1

2
-BPS case the invariance properties of the solutions

at the critical point(s) are given by the maximal compact subgroup (mcs) of the
stabilizer of the corresponding charge orbit, which in the present case is the compact
stabilizer itself. Thus, at N D 2 1

2
-BPS critical points the following enhancement

of symmetry holds:
S �! H0; (1.23)

where here and below S denotes the compact symmetry of a generic orbit of the real
symplectic representation RV of the d D 4 duality group G.

However, all the scalar manifolds of N D 2, d D 4 symmetric MESGT’s have
other species of regular critical points VBH (and correspondingly other classes of
“large” charge orbits).

Concerning the N D 2, d D 4 symmetric MESGT’s, the rank-1 sequence I has
one more, non-BPS class of orbits (with vanishing central charge), while all rank-3
aforementioned cases II–VI have two more distinct non-BPS classes of orbits, one
of which with vanishing central charge.

The results about the classes of “large” charge orbits ofN D 2, d D 4 symmetric
MESGT’s are summarized in Table 1.3.5

Table 1.3 “Large” orbits of N D 2, d D 4 symmetric MESGT’s
1
2

-BPS orbits
O 1

2 �BPS D G
H0

Non-BPS, Z ¤ 0 orbits
Onon�BPS; Z¤0 D G

OH

Non-BPS, Z D 0 orbits
Onon�BPS; ZD0 D G

QH

I
SU.1; nC 1/

SU.nC 1/
� SU.1; nC 1/

SU.1; n/

II SU.1; 1/� SO.2; 2C n/

SO.2/� SO.2C n/
SU.1; 1/� SO.2; 2C n/

SO.1; 1/� SO.1; 1C n/
SU.1; 1/� SO.2; 2C n/

SO.2/� SO.2; n/

III
E7.�25/

E6

E7.�25/

E6.�26/

E7.�25/

E6.�14/

IV
SO�.12/

SU.6/

SO�.12/

SU �.6/

SO�.12/

SU.4; 2/

V
SU.3; 3/

SU.3/� SU.3/

SU.3; 3/

SL.3;C/

SU.3; 3/

SU.2; 1/� SU.1; 2/

VI
Sp.6;R/

SU.3/

Sp.6;R/

SL.3;R/

Sp.6;R/

SU.2; 1/

5 We should note that the column on the right of Table 2 of [2] is not fully correct.
Indeed, that column coincides with the central column of Table 1.3 of the present paper (by

disregarding case I and shifting n ! n � 2 in case II), listing the non-BPS, Z ¤ 0 orbits of
N D 2, d D 4 symmetric MESGT’s, which are all characterized by a strictly negative quartic E7-
invariant I4. This does not match what is claimed in [2], where such a column is stated to list the
particular class of orbits with I4 > 0 and eigenvalues of opposite sign in pair.

Actually, the statement of [2] holds true only for the case I (which, by shifting n ! n � 1,
coincides with the last entry of the column on the right of Table 2 of [2]). On the other hand, such
a case is the only one which cannot be obtained from d D 5 by dimensional reduction. Moreover,
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1.2.2 Classification of Attractors

The three classes of orbits in Table 1.3 correspond to the three distinct classes of
solutions of the N D 2, d D 4 Attractor Eqs. (1.15) and (1.21).

1.2.2.1 1
2
-BPS

As already mentioned, the class of 1
2

-BPS orbits corresponds to the solution (2.90)
determining N D 2, 1

2
-BPS critical points of VBH. Such a solution yields the

following value of the BH scalar potential at the considered attractor point(s) [8]:

VBH; 1
2 �BPS D jZj21

2 �BPS C
h
Gi NiDiZD NiZ

i

1
2 �BPS

D jZj21
2 �BPS : (1.24)

The overall symmetry group at N D 2 1
2

-BPS critical point(s) is H0, stabilizer of
O 1

2 �BPS D G
H0

. The symmetry enhancement is given by (1.23). For such a class of
orbits

I4; 1
2 �BPS D jZj41

2 �BPS > 0: (1.25)

1.2.2.2 Non-BPS

The two classes of N D 2 non-BPS “large” charge orbits respectively correspond
to the following solutions of N D 2 attractor eqs. (1.15):

non-BPS, Z ¤ 0:

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:̂

Z ¤ 0;

DiZ ¤ 0 for some i 2 f1; : : : ; nVg ;

I4;non�BPS;Z¤0 D �
�

jZj2non�BPS;Z¤0

C
�
Gi NjDiZD NjZ

�

non�BPS;Z¤0

	2

D �16 jZj4non�BPS;Z¤0 < 0I

(1.26)

it is the only one not having non-BPS, Z ¤ 0 orbits, rather it is characterized only by a class of
non-BPS orbits with Z D 0 and I4 > 0.
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non-BPS, Z D 0:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

Z D 0;

DiZ ¤ 0 for some i 2 f1; : : : ; nVg ;

I4;non�BPS;ZD0 D
�
Gi NjDiZD NjZ

�2

non�BPS;ZD0
> 0:

(1.27)

In the treatment given below, we will show how the general solutions of
(1.15), respectively determining the two aforementioned classes ofN D 2 non-BPS
extremal BH attractors, can be easily given by using “flat” local I -coordinates in
the scalar manifold.

In other words, we will consider the “flattened” attractor eqs. (1.21), which can
be specialized in the “large” non-BPS cases as follows:

non-BPS, Z ¤ 0: 2ZDIZ D �iCIJKı
J J ıKKDJZDKZI (1.28)

non-BPS, Z D 0: CIJKı
J J ıKKDJZDKZ D 0: (1.29)

Thus, by respectively denoting with OH ( QH ) the stabilizer of the N D 2, non-BPS,
Z ¤ 0 (Z D 0) classes of orbits listed in Table 1.3, our claim is the following: the
general solution of (1.28)–(1.29) is obtained by retaining a complex charge vector

.Z;DIZ/ which is invariant under Oh (
Qh

U.1/
), where Oh ( Qh) is the mcs of OH ( QH ).6

As a consequence, the overall symmetry group of the N D 2, non-BPS, Z ¤ 0

(Z D 0) critical point(s) is Oh (
Qh

U.1/
). Thus, at N D 2, non-BPS, Z ¤ 0 (Z D 0)

critical point(s) the following enhancement of symmetry holds

N D 2, non-BPS, Z ¤ 0 W S �! Oh D mcs
� OH

�
I

N D 2, non-BPS, Z D 0 W S �! Qh
U.1/

D mcs. QH/
U.1/

:

(1.30)

It is worth remarking that the non-compact group OH stabilizing the non-BPS,
Z ¤ 0 class of orbits of N D 2, d D 4 symmetric MESGT’s, beside being a real

6 Indeed, while H0 is a proper compact subgroup of G, the groups OH , QH are real (non-compact)
forms of H0, as it can be seen from Table 1.3 (see also [131, 132]). Therefore in general they
admit a mcs Oh, Qh, which in turn is a (non-maximal) compact subgroup of G and a proper compact
subgroup of H0.

It is interesting to notice that in all cases (listed in Table 1.3) G always admits only two real
(non-compact) forms OH , QH of H0 as proper subgroups (consistent with the required dimension
of orbits). The inclusion of OH , QH in G is such that in all cases OH � SO.1; 1/ and QH � U.1/ are
different maximal non-compact subgroups of G.
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Table 1.4 Stabilizers and corresponding maximal compact subgroups of the “large” classes of
orbits of N D 2, d D 4 symmetric MESGT’s. OH and QH are real (non-compact) forms of H0, the
stabilizer of 1

2
-BPS orbits

H0 OH QH Oh � mcs
� OH

�
Qh0 � mcs. QH/

U.1/

I SU.nC 1/ � SU.1; n/ � SU.n/

II
SO.2/

�
SO.2C n/

SO.1; 1/

�
SO.1; 1C n/

SO.2/

�
SO.2; n/

SO.1C n/

SO.2/

�
SO.n/

III E6 � E6.�78/ E6.�26/ E6.�14/ F4 � F4.�52/ SO.10/

IV SU.6/ SU �.6/ SU.4; 2/ USp.6/

SU.4/

�
SU.2/

V SU.3/ � SU.3/ SL.3;C/
SU.2; 1/

�
SU.1; 2/

SU.3/

SU.2/

�
SU.2/ � U.1/

VI SU.3/ SL.3;R/ SU.2; 1/ SO.3/ SU.2/

(non-compact) form ofH0, is isomorphic to the duality groupG5 ofN D 2, d D 5

symmetric MESGT’s.7

Since the scalar manifolds of N D 2, d D 5 symmetric MESGT’s are endowed
with a real special geometry [96–98], the complex representation RH0

of H0

decomposes in a pair of irreducible real representations .R Oh C 1/R’s of Oh D
mcs. OH/   H0 (see Sect. 1.2.2.2, and in particular (1.31)). As we will see below,
such a fact crucially distinguishes the non-BPS, Z ¤ 0 and Z D 0 cases.

The stabilizers (and the corresponding mcs’s) of the non-BPS,Z ¤ 0 andZ D 0

classes of orbits of N D 2, d D 4 symmetric MESGT’s are given in Table 1.4.

Non-BPS, Z ¤ 0

Let us start by considering the class of non-BPS, Z ¤ 0 orbits of N D 2, d D 4

symmetric MESGT’s.
As mentioned, the “flattened matter charges” DIZ are a vector of RH0

. In
general, RH0

decomposes under the mcs Oh � OH as follows:

RH0
�! �

R Oh C 1
�

C
; (1.31)

7 Such a feature is missing in the N D 2, d D 4 symmetric MESGT’s whose scalar manifolds
belong to the sequence I given by (1.2), simply because such theories do not have a class of non-
BPS, Z ¤ 0 orbits.
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where the r.h.s. is made of the complex singlet representation of Oh and by another
non-singlet real representation of Oh, denoted above with R Oh. As previously men-
tioned, despite being complex, .R Oh C 1/C is not charged with respect to U.1/
symmetry because, due to the five-dimensional origin of the non-compact stabilizer
OH whose mcs is Oh, actually .R Oh C1/C is nothing but the complexification of its real

counterpart .R Oh C 1/R. The decomposition (1.31) yields the following splitting of
“flattened matter charges”:

DIZ �!
�
D OIZ;D OI0

Z
�
; (1.32)

where OI are the indices along the representationR Oh, and OI0 is the Oh-singlet index.
By considering the related attractor eqs., it should be noticed that the rank-3 sym-

metric tensor CIJK in (1.28) corresponds to a cubic H0-invariant coupling .RH0
/3.

By decomposing .RH0
/3 in terms of representations of Oh, one finds

�
RH0

�3 �! �
R Oh
�3 C �

R Oh
�2

1C C .1C/
3 : (1.33)

Notice that a termR Oh .1C/
2 cannot be in such a representation decomposition, since

it is not Oh-invariant, and thus not H0-invariant. This implies that components of the
form C OI OI0

OI0
cannot exist. Also, a term like .1C/

3 can appear in the r.h.s. of the

decomposition (1.28) since as we said the Oh-singlet 1C , despite being complex, is
not U.1/-charged.

It is then immediate to conclude that the solution of N D 2, d D 4 non-BPS,
Z ¤ 0 extremal BH attractor eqs. in “flat” indices (1.28) corresponds to keeping
the “flattened matter charges”DIZ Oh-invariant. By virtue of decomposition (1.33),
this is obtained by putting

D OIZ D 0; D OI0
Z ¤ 0; (1.34)

i.e., by putting all “flattened matter charges” to zero, except the one along the
Oh-singlet (and thus Oh-invariant) direction in scalar manifold. By substituting the
solution (1.34) in (1.28), one obtains

2ZD OI0
Z D �iC OI0

OI0
OI0

�
D OI0

Z
�2 Z¤0, D OI0

Z D � i
2

C OI0
OI0

OI0

Z

�
D OI0

Z
�2

(1.35)

+
ˇ
ˇ
ˇD OI0

Z
ˇ
ˇ
ˇ
2

0

B
@1 � 1

4

ˇ
ˇ
ˇC OI0

OI0
OI0

ˇ
ˇ
ˇ
2

jZj2
ˇ
ˇ
ˇD OI0

Z
ˇ
ˇ
ˇ
2

1

C
A D 0

m
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ˇ
ˇ̌
D OI0

Z
ˇ
ˇ̌2 D 4

jZj2
ˇ
ˇ̌
C OI0

OI0
OI0

ˇ
ˇ̌2

I (1.36)

this is nothing but the general criticality condition of VBH for the 1-modulus case
in the locally “flat” coordinate OI0, which in this case corresponds to the Oh-singlet
direction in the scalar manifold. Such a case has been thoroughly studied in non-flat
i -coordinates in [21].

All N D 2, d D 4 symmetric MESGT’s (disregarding the sequence I having
Cijk D 0) have a cubic prepotential (F D 1

3Š
dijkt

i tj tk in special coordinates), and
thus in special coordinates it holds thatCijk D eKdijk , withK and dijk respectively
denoting the Kähler potential and the completely symmetric rank-3 constant tensor
that is determined by the norm form of the underlying Jordan algebra of degree three
[97]. In the cubic nV D 1-modulus case, by using (1.18) it follows that

�
G1s1s

�3 jC1s1s1s j2 D jC1f1f1f j2 D 4

3
; (1.37)

where the subscripts “s” and “f” respectively stand for “special” and “flat”, denoting
the kind of coordinate system being considered. By substituting (1.37) in (1.36) one
obtains the result ˇ̌

ˇD OI0
Z
ˇ̌
ˇ
2 D 3 jZj2 : (1.38)

Another way of proving (1.38) is by computing the quartic invariant along the
Oh-singlet direction, then yielding

I4;non�BPS;Z¤0 D �16 jZj2non�BPS;Z¤0 : (1.39)

The considered solution (1.34)–(1.36), (1.38) is the N D 2 analogue of the
N D 8, d D 4 non-BPS “large” solution discussed in [23], and it yields the fol-
lowing value of the BH scalar potential at the considered attractor point(s) [21, 23]:

VBH;non�BPS;Z¤0 D 4 jZj2non�BPS;Z¤0 : (1.40)

Once again, as for the non-BPS N D 8 “large” solutions, we find the extra factor 4.
From the above considerations, the overall symmetry group at N D 2 non-BPS,

Z ¤ 0 critical point(s) is Oh, mcs of the non-compact stabilizer OH of Onon�BPS;Z¤0.

Non-BPS, Z D 0

Let us now move to consider the other class of non-BPS orbits of N D 2, d D 4

symmetric MESGT’s.
It hasZ D 0 and it was not considered in [2] (see also Footnote 4). We will show

that the solution of the N D 2, d D 4, non-BPS, Z D 0 extremal BH attractor eqs.



1 SAM Lectures on Extremal Black Holes in d D 4 Extended Supergravity 15

(1.29) are the “flattened matter charges”DIZ which are invariant under
Qh

U.1/
, where

Qh is the mcs of QH , the stabilizer of the class Onon�BPS;ZD0 D G
QH

.
Differently from the non-BPS, Z ¤ 0 case, in the considered non-BPS, Z D 0

case there is always a U.1/ symmetry acting, since the scalar manifolds of N D 2,
d D 4 symmetric MESGT’s all have the group Qh of the form

Qh D Qh0 � U.1/; Qh0 �
Qh

U.1/
: (1.41)

The compact subgroups Qh0 for all N D 2, d D 4 symmetric MESGT’s are listed
in Table 1.4. In the case at hand, we thence have to consider the decomposition of
the previously introduced complex representationRH0

under the compact subgroup
Qh0   H0. In general, RH0

decomposes under Qh0   QH as follows:

RH0
�! �

W Qh0 C Y Qh0 C 1
�

C
; (1.42)

where in the r.h.s. the complex singlet representation of Qh0 and two complex non-
singlet representations W Qh0 and Y Qh0 of Qh0 appear. In general, W Qh0 , Y Qh0 and 1C are
charged (and thus not invariant) with respect to the U.1/ explicit factor appearing in
(1.41). The decomposition (1.42) yields the following splitting of “flattened matter
charges”:

DIZ �!
�
D QI 0

W
Z;D QI 0

Y
Z;D QI 0

0
Z
�
; (1.43)

where QI 0
W and QI 0

Y respectively denote the indices along the complex representations

W Qh0 and Y Qh0 , and QI 0
0 is the Qh0-singlet index.

Once again, the related N D 2, d D 4 non-BPS, Z D 0 extremal BH attrac-
tor eqs. (1.29) contain the rank-3 symmetric tensor CIJK, corresponding to a cubic
H0-invariant coupling .RH0

/3. The decomposition of .RH0
/3 in terms of represen-

tations of Qh0 yields

�
RH0

�3 �! �
W Qh0

�2 Y Qh0 C �
Y Qh0

�2
1C: (1.44)

When decomposed under Qh0, .RH0
/3 must be nevertheless Qh-invariant, and there-

fore, beside the Qh0-invariance, one has to consider the invariance under the U.1/
factor, too. Thus, terms of the form .W Qh0/

3, .Y Qh0/
3, W Qh0 .1C/

2, Y Qh0 .1C/
2 and .1C/

3

cannot exist in the Qh-invariant r.h.s. of decomposition (1.44).
Notice also that the structure of the decomposition (1.44) implies that compo-

nents of the cubic coupling of the form C QI 0
W QI 0

0
QI 0
0
, C QI 0

Y QI 0
0

QI 0
0

and C QI 0
0

QI 0
0

QI 0
0

cannot exist.

For such a reason, it is immediate to conclude that the solution of N D 2, d D 4

non-BPS, Z D 0 extremal BH attractor eqs. in “flat” indices (1.29) corresponds to
keep the “flattened matter charges” DIZ Qh0-invariant. By virtue of decomposition
(1.44), this is obtained by putting
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D QI 0
W
Z D 0 D D QI 0

Y
Z; D QI 0

0
Z ¤ 0; (1.45)

i.e., by putting all “flattened matter charges” to zero, except the one along the
Qh0-singlet (and thus Qh0-invariant, but notU.1/-invariant and therefore not Qh-invariant)
direction in the scalar manifold.

The considered solution (1.45) does not have any analogue in N D 8, d D 4

supergravity, and it yields the following value of the BH scalar potential at the
considered attractor point(s):

VBH;non�BPS;ZD0 D jZj2non�BPS;ZD0 C
h
Gi NiDiZDNiZ

i

non�BPS;ZD0

D
ˇ
ˇ̌
D QI 0

0
Z
ˇ
ˇ̌2

non�BPS;ZD0
: (1.46)

It is here worth remarking that in the stu model it can be explicitly computed that
[50, 77]

VBH;non�BPS;ZD0 D
ˇ̌
ˇD QI 0

0
Z
ˇ̌
ˇ
2

non�BPS;ZD0
D jZj21

2 �BPS D VBH; 1
2 �BPS: (1.47)

From above considerations, the overall symmetry group at N D 2 non-BPS,

Z D 0 critical point(s) is Qh0 D Qh
U.1/

, Qh being the mcs of the non-compact stabilizer
QH of Onon�BPS;ZD0.

The general analysis carried out above holds for all N D 2, d D 4 symmetric
magic MESGT’s, namely for the irreducible cases III–VI listed in Tables 1.2 and 1.3.
The cases of irreducible sequence I and of generic Jordan family II deserve suitable,
slightly different treatments, respectively given in Appendices I and II of [3].

1.2.3 Critical Spectra and Massless Hessian Modes of VBH

The effective BH potential VBH gives different masses to the different BPS-phases of
the considered symmetric N D 2, d D 4 MESGT’s. The fundamental object to be
considered in such a framework is the moduli-dependent 2nV �2nV Hessian matrix
of VBH, which in complex basis reads8 [21]

HVBH �

0

B
@
DiDjVBH DiD NjVBH

DjDNiVBH DNiD NjVBH

1

C
A �

0

B
@
Mij Ni Nj

N j Ni MNi Nj

1

C
A I (1.48)

8 The reported formulæ for Mij and Ni Nj hold for any special Kähler manifold. In the symmetric
case formula (1.49) gets simplified using (1.17).
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Mij � DiDjVBH D DjDiVBH

D 4iZCijkG
k NkD NkZ C iGk NkGl Nl �DjCikl

�
D NkZD NlZI

(1.49)

Ni Nj � DiD NjVBH D D NjDiVBH

D 2
h
Gi Nj jZj2 CDiZD NjZ CGl NnGk NkGm NmCiklC Nj Nm NnD NkZDmZ

i
I
(1.50)

MT D M;N � D N : (1.51)

By analyzing HVBH at critical points of VBH, it is possible to formulate general
conclusions about the mass spectrum of the corresponding extremal BH solutions
with finite, non-vanishing entropy, i.e., about the mass spectrum along the related
classes of “large” charge orbits of the symplectic real representation RV of the
d D 4 duality groupG.

Let us start by remarking that, due to its very definition (2.84), the N D 2 effec-
tive BH potential VBH is positive for any (not necessarily strictly) positive definite
metric Gi Ni of the scalar manifold. Consequently, the stable critical points (i.e., the
attractors in a strict sense) will necessarily be minima of such a potential. As already
pointed out above and as done also in [21,22], the geometry of the scalar manifold is
usually assumed to be regular, i.e., endowed with a metric tensor Gi Nj being strictly
positive definite everywhere.

1.2.3.1 1
2
-BPS

It is now well known that regular special Kähler geometry implies that all N D 2
1
2

-BPS critical points of all N D 2, d D 4 MESGT’s are stable, and therefore they

are attractors in a strict sense. Indeed, the Hessian matrix HVBH
1
2 �BPS

evaluated at such

points is strictly positive definite [8]:

Mij; 1
2 �BPS D 0;

Ni Nj ; 1
2 �BPS D 2 Gi Nj

ˇ
ˇ
ˇ

1
2 �BPS

jZj21
2 �BPS > 0;

(1.52)

where the notation “>0” is clearly understood as strict positive definiteness of
the quadratic form related to the square matrix being considered. Notice that the
Hermiticity and strict positive definiteness of HVBH

1
2 �BPS

are respectively due to the

Hermiticity and strict positive definiteness of the Kähler metric Gi Nj of the scalar
manifold.
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By switching from the non-flat i -coordinates to the “flat” local I -coordinates by
using the (inverse) Vielbein ei

I of the scalar manifold, (1.52) can be rewritten as

MIJ; 1
2 �BPS D 0;

NIJ ; 1
2 �BPS D 2ıIJ jZj21

2 �BPS > 0:

(1.53)

Thus, one obtains that in all N D 2, d D 4 MESGT’s the 1
2

-BPS mass spectrum
in “flat” coordinates is monochromatic, i.e., that all “particles” (i.e., the “modes”
related to the degrees of freedom described by the “flat” local I -coordinates) acquire
the same mass at 1

2
-BPS critical points of VBH.

1.2.3.2 Non-BPS, Z ¤ 0

In this case the result of [13] should apply, namely the Hessian matrix HVBH
non�BPS;Z¤0

should have nV C 1 strictly positive and nV � 1 vanishing real eigenvalues.
By recalling the analysis performed in Sect. 1.2.2, it is thence clear that such

massive and massless non-BPS, Z ¤ 0 “modes” fit distinct real representations of
Oh D mcs. OH/, where OH is the non-compact stabilizer of the class Onon�BPS;Z¤0 D
G
OH

of non-BPS, Z ¤ 0 “large” charge orbits.
This is perfectly consistent with the decomposition (1.31) of the complex repre-

sentation RH0
(dimRRH0

D 2nV) of H0 in terms of representations of Oh:

RH0
�! �

R Oh C 1
�

C
D �

R Oh C 1 CR Oh C 1
�

R
; dimR

�
R Oh
�

R
D nV � 1: (1.54)

As yielded by the treatment given in Sect. 1.2.2.2, the notation “.R Oh C1/C D .R Oh C
1 CR Oh C 1/R” denotes nothing but the decomplexification of .R Oh C 1/C, which is

actually composed by a pair of real irreducible representations .R Oh C 1/R of Oh.
Therefore, the result of [13] can be understood in terms of real representations

of the mcs of the non-compact stabilizer of Onon�BPS;Z¤0: the nV � 1 massless non-

BPS, Z ¤ 0 “modes” are in one of the two real R Oh’s of Oh in the r.h.s. of (1.54), say
the first one, whereas the nV C 1 massive non-BPS, Z ¤ 0 “modes” are split in the
remaining realR Oh of Oh and in the two real Oh-singlets. The resulting interpretation of
the decomposition (1.54) is

RH0
�!

0

@

�
R Oh
�

R

nV � 1 massless

1

AC
0

@

�
R Oh
�

R
C 1R C 1R

nV C 1 massive

1

A : (1.55)

It is interesting to notice once again that there is no U.1/ symmetry relating the two
realR Oh’s (and thus potentially relating the splitting of “modes” alongOnon�BPS;Z¤0),
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since in all symmetric N D 2, d D 4 MESGT’s Oh never contains an explicit factor
U.1/ (as instead it always happens for Qh!); this can be related to the fact that the
non-compact stabilizer is OH whose mcs is Oh.

1.2.3.3 Non-BPS, Z D 0

For the class Onon�BPS;ZD0 of “large” non-BPS, Z D 0 orbits the situation changes,
and the result of [13] no longer holds true, due to the local vanishing of Z.

In all magic N D 2, d D 4 MESGT’s the complex representation RH0
of H0

decomposes under Qh0 D mcs. QH/
U.1/

in the following way (see (1.42)):

RH0
�! W Qh0 C Y Qh0 C 1C; (1.56)

where in the r.h.s. the complex Qh0-singlet and the complex non-singlet represen-
tations W Qh0 and Y Qh0 of Qh0 appear. Correspondingly, the decomposition of the

H0-invariant representation .RH0
/3 in terms of representations of Qh0 reads (see

(1.44)) �
RH0

�3 �! �
W Qh0

�2 Y Qh0 C �
Y Qh0

�2
1C: (1.57)

Let us now recall that dimRRH0
D 2nV and dimR 1C D 2, and let us define

dimR W Qh0 � W Qh0 I

dimR Y Qh0 � Y Qh0 I

9
=

;
W W Qh0 C Y Qh0 C 2 D 2nV: (1.58)

Thus, it can generally be stated that the mass spectrum along Onon�BPS;ZD0 of all

magic N D 2, d D 4 symmetric MESGT’s splits under Qh0 D mcs. QH/
U.1/

as follows:

– The mass “modes” fitting the W Qh0 real degrees of freedom corresponding to the

complex (U.1/-charged) non- Qh0-singlet representation W Qh0 (which does not cou-

ple to the complex Qh0-singlet in the H0-invariant decomposition (1.57)) remain
massless.

– The mass “modes” fitting the Y Qh0 C 2 real degrees of freedom corresponding to

the complex (U.1/-charged) non- Qh0-singlet representation Y Qh0 and to the (U.1/-

charged) Qh0-singlet 1C all become massive.

The resulting interpretation of the decomposition (1.56) is

RH0
�!

0

@
W Qh0

W Qh0 massless

1

AC
0

@
Y Qh0 C 1C

Y Qh0 C 2 massive

1

A : (1.59)
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The interpretations (1.56) and (1.59) show that, even though the complex rep-
resentations W Qh0 , Y Qh0 and 1C of Qh0 are charged with respect to the explicit factor

U.1/ always appearing in Qh, this fact does not affect in any way the splitting of the
non-BPS, Z D 0 mass “modes”.

The critical mass spectra of the irreducible sequence SU.1;1Cn/
U.1/�SU.1Cn/

and of the

reducible sequence SU.1;1/
U.1/

� SO.2;2Cn/
SO.2/�SO.2Cn/

are treated in Appendices I and II of
[3], respectively.

Generally, the Hessian HVBH at regular N D 2, non-BPS critical points of VBH

exhibits the following features: it does not have “repeller” directions (i.e., strictly
negative real eigenvalues), it has a certain number of “attractor” directions (related
to strictly positive real eigenvalues), but it is also characterized by some vanishing
eigenvalues, corresponding to massless non-BPS “modes”.

A priori, in order to establish whether the considered N D 2, non-BPS critical
points of VBH are actually attractors in a strict sense, i.e., whether they actu-
ally are stable minima of VBH in the scalar manifold, one should proceed further
with covariant differentiation of VBH, dealing (at least) with third and higher-order
derivatives.

The detailed analysis of the issue of stability of both classes of regular non-BPS
critical points (Z ¤ 0 and Z D 0) of VBH in N D 2, d D 4 (symmetric) MESGT’s
was performed in [42]. In that paper it was found that, for all supergravities with
homogeneous (not necessarily symmetric) scalar manifolds the massless Hessian
modes are actually “flat” directions of VBH, i.e., that the Hessian massless modes
persist, at the critical points of VBH itself, at all order in covariant differentiation of
VBH. This is reported in the next section.

1.2.4 From Massless Hessian Modes of VBH to Moduli Spaces
of Attractors

InN D 2 homogeneous (not necessarily symmetric) andN > 2-extended (all sym-
metric), d D 4 supergravities the Hessian matrix of VBH at its critical points is in
general semi-positive definite, eventually with some vanishing eigenvalues (mass-
less Hessian modes), which actually are flat directions of VBH itself [39, 42]. Thus,
it can be stated that for all supergravities based on homogeneous scalar manifolds
the critical points of VBH which correspond to “large” black holes (i.e., for which
one finds that VBH ¤ 0) all are stable, up to some eventual flat directions.

As pointed out above, the Attractor Equations of N D 2, d D 4 MESGT with
nV Abelian vector multiplets may have flat directions in the non-BPS cases [39,42],
but not in the 1

2
-BPS one [8] (see (1.52) and (1.53) above).

Tables 1.5 and 1.6 respectively list the moduli spaces of non-BPS Z ¤ 0 and
non-BPS Z D 0 attractors for symmetric N D 2, d D 4 special Kähler geome-
tries, for which a complete classification is available [42] (the attractor moduli
spaces should exist also in homogeneous non-symmetric N D 2, d D 4 special
Kähler geometries, but their classification is currently unknown). The general “rule
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Table 1.5 Moduli spaces of non-BPS Z ¤ 0 critical points of VBH;ND2 in N D 2; d D 4

symmetric supergravities ( Oh is the maximal compact subgroup of OH ). They are the N D 2; d D 5

symmetric real special manifolds [42]
OH
Oh r dimR

II W R ˚ �nC2

.n D nV � 3 2 N[f0;�1g/ SO.1; 1/ � SO.1;nC1/

SO.nC1/

1.n D �1/
2.n > 0/

nC 2

III W JO
3

E6.�26/

F4.�52/

2 6

IV W JH
3

SU �.6/

USp.6/
2 14

V W JC
3

SL.3; C /

SU.3/
2 8

VI W JR
3

SL.3;R/

SO.3/
2 5

Table 1.6 Moduli spaces of non-BPS Z D 0 critical points of VBH;ND2 in N D 2; d D 4 sym-
metric supergravities (Qh is the maximal compact subgroup of QH ). They are (non-special) symmetric
Kähler manifolds [42]

QH
Qh D QH

Qh0 � U.1/
r dimC

I W Quadratic sequence
.n D nV � 1 2 N[f0g/

SU.1; n/

U.1/ � SU.n/
1 n

II W R ˚ �nC2

.n D nV � 3 2 N[f0;�1g/
SO.2; n/

SO.2/ � SO.n/
; n > 1

1.n D 1/

2.n > 2/
n

III W JO
3

E6.�14/

SO.10/ � U.1/
2 16

IV W JH
3

SU.4; 2/

SU.4/ � SU.2/ � U.1/
2 8

V W JC
3

SU.2; 1/

SU.2/ � U.1/
� SU.1; 2/

SU.2/ � U.1/
2 4

VI W JR
3

SU.2; 1/

SU.2/ � U.1/
1 2

of thumb” to construct the moduli space of a given attractor solution in the con-
sidered symmetric framework is to coset the stabilizer of the corresponding charge
orbit by its mcs. By such a rule, the 1

2
-BPS attractors do not have an associated

moduli space simply because the stabilizer of their supporting BH charge orbit is
compact. On the other hand, all attractors supported by BH charge orbits whose sta-
bilizer is non-compact exhibit a non-vanishing moduli space. furthermore, it should
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be noticed that the non-BPS Z ¤ 0 moduli spaces are nothing but the symmetric
real special scalar manifolds of the correspondingN D 2, d D 5 supergravity.

Nevertheless, it is worth remarking that some symmetric N D 2, d D 4 super-
gravities have no non-BPS flat directions at all.

The unique nV D 1 symmetric models are the so-called t2 and t3 models; they
are based on the rank-1 scalar manifold SU .1;1/

U.1/
, but with different holomorphic

prepotential functions.
The t2 model is the first element (n D 0) of the sequence of irreducible sym-

metric special Kähler manifolds SU .1;nC1/
U.1/�SU.nC1/

(nV D n C 1, n 2 N[f0g) (see,
e.g., [3] and refs. therein), endowed with quadratic prepotential. Its bosonic sector
is given by the .U.1//6 ! .U.1//2 truncation of Maxwell–Einstein-axion-dilaton
(super)gravity, i.e., of pure N D 4, d D 4 supergravity (see, e.g., [71] and [90] for
recent treatments).

On the other hand, the t3 model has cubic prepotential; as pointed out above,
it is an isolated case in the classification of symmetric SK manifolds (see, e.g.,
[102]; see also [103] and refs. therein), but it can be thought also as the s D t D u
degeneration of the stu model. It is worth pointing out that the t2 and t3 models are
based on the same rank-1 SK manifold, with different constant scalar curvature,
which respectively can be computed to be (see, e.g., [35] and refs. therein)

SU.1;1/
U.1/

; t2 model W R D �2I

SU.1;1/
U.1/

; t3 model W R D � 2
3
:

(1.60)

Beside the 1
2

-BPS attractors, the t2 model admits only non-BPS Z D 0 criti-
cal points of VBH with no flat directions. Analogously, the t3 model admits only
non-BPS Z ¤ 0 critical points of VBH with no flat directions.

For nV > 1, the non-BPS Z ¤ 0 critical points of VBH, if any, all have flat
directions, and thus a related moduli space (see Table 1.5). However, models with
no non-BPS Z D 0 flat directions at all and nV > 1 exist, namely they are the first
and second element (n D �1, 0) of the sequence of reducible symmetric special
Kähler manifolds SU .1;1/

U.1/
� SO.2;nC2/

SO.2/�SO.nC2/
(nV D n C 3, n 2 N[ f0;�1g) (see,

e.g., [3] and refs. therein), i.e., the so-called st2 and stu models, respectively. The
stu model ([104,105], see also, e.g., [77] and refs. therein) has two non-BPSZ ¤ 0

flat directions, spanning the moduli space SO .1; 1/ � SO .1; 1/ (i.e., the scalar
manifold of the stu model in d D 5), but no non-BPS Z D 0 massless Hessian
modes at all. On the other hand, the st2 model (which can be thought as the t D u
degeneration of the stu model) has one non-BPS Z ¤ 0 flat direction, spanning
the moduli space SO .1; 1/ (i.e., the scalar manifold of the st2 model in d D 5), but
no non-BPS Z D 0 flat direction at all. The st2 is the “smallest” symmetric model
exhibiting a non-BPS Z ¤ 0 flat direction.

Concerning the “smallest” symmetric models exhibiting a non-BPS Z D 0 flat
direction they are the second (n D 1) element of the sequence SU .1;nC1/

U .1/�SU.nC1/
and
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the third (n D 1) element of the sequence SU .1;1/
U .1/

� SO.2;nC2/
SO.2/�SO.nC2/

. In both cases,
the unique non-BPS Z D 0 flat direction spans the non-BPS Z D 0 moduli space
SU .1;1/

U .1/
� SO.2;1/

SO.2/
(see Table 1.6), whose local geometrical properties however

differ in the two cases (for the same reasons holding for the t2 and t3 models treated
above).

We conclude by recalling that in [133–135] it was shown that the N D 2, d D 5

magic MESGT’s defined by JC
3 ; J

H
3 and JO

3 are simply the “lowest” members of
three infinite families of unified N D 2, d D 5 MESGT’s defined by Lorentzian
Jordan algebras of degree > 3. The scalar manifolds of such theories are not homo-
geneous except for the “lowest” members. It would be interesting to extend the
analysis of [24] and [3] to these theories in five dimensions and to their descendants
in d D 5, respectively.

1.3 U -Duality “Large” Orbits and Moduli Spaces of Attractors
in N > 3-Extended, d D 4 Supergravities

In N > 3-extended, d D 4 supergravities, whose scalar manifold is always sym-
metric, there are flat directions of VBH at both its BPS and non-BPS critical points.
As mentioned above, from a group-theoretical point of view this is due to the fact
that the corresponding supporting BH charge orbits always have a non-compact
stabilizer [42, 61]. The BPS flat directions can be interpreted in terms of left-over
hypermultiplets’ scalar degrees of freedom in the truncation down to the N D 2,
d D 4 theories [39, 136]. In Tables 1.7 and 1.8 all (classes of) “large” charge orbits
and the corresponding moduli spaces of attractor solution inN > 3-extended,d D 4

supergravities are reported [61].

Table 1.7 “Large” charge orbits of the real, symplectic RV representation of the U -duality group
G supporting BH attractors with non-vanishing entropy in N > 3-extended, d D 4 supergravities
(n is the number of matter multiplets) [61]

1

N
-BPS orbits

G

H Non-BPS, ZAB ¤ 0 orbits
G

OH Non-BPS, ZAB D 0 orbits
G

QH

N D 3
SU.3; n/

SU.2; n/
�

SU.3; n/

SU.3; n � 1/

N D 4 SU.1; 1/ �
SO.6; n/

SO.2/� SO.4; n/
SU.1; 1/ �

SO.6; n/

SO.1; 1/� SO.5; n� 1/
SU.1; 1/ �

SO.6; n/

SO.2/� SO.6; n� 2/

N D 5
SU.1; 5/

SU.3/ � SU .2; 1/
� �

N D 6
SO�.12/

SU.4; 2/

SO�.12/

SU �.6/

SO�.12/

SU.6/

N D 8
E7.7/

E6.2/

E7.7/

E6.6/
�
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Table 1.8 Moduli spaces of BH attractors with non-vanishing entropy inN > 3-extended, d D 4

supergravities (h, Oh and Qh are maximal compact subgroups of H, OH and QH, respectively, and n is
the number of matter multiplets) [61]

1

N
-BPS

moduli space
H
h

Non-BPS, ZAB ¤ 0

moduli space
OH
Oh

Non-BPS, ZAB D 0

moduli space
QH
Qh

N D 3
SU.2;n/

SU.2/� SU .n/� U.1/
� SU.3; n� 1/

SU.3/� SU .n� 1/ � U.1/

N D 4
SO.4;n/

SO.4/� SO .n/
SO.1; 1/� SO.5; n� 1/

SO.5/� SO .n� 1/

SO.6; n� 2/

SO.6/� SO .n� 2/

N D 5
SU .2; 1/

SU .2/ � U.1/
� �

N D 6
SU.4; 2/

SU.4/� SU .2/� U.1/

SU�.6/

USp .6/
�

N D 8
E6.2/

SU .6/ � SU .2/

E6.6/

USp .8/
�

1.4 Conclusions

In the present report we dealt with results holding at the classical, Einstein super-
gravity level. It is conceivable that the flat directions of classical extremal BH attrac-
tors will be removed (i.e., lifted) by quantum (perturbative and non-perturbative)
corrections (such as those coming from higher-order derivative contributions to the
gravity and/or gauge sector) to the classical effective BH potential VBH. Conse-
quently, at the quantum level, moduli spaces for attractor solutions may not exist
at all (and therefore also the actual attractive nature of the critical points of VBH

might be destroyed). However, this may not be the case for N D 8.
In the presence of quantum lifts of classically flat directions of the Hessian matrix

of VBH at its critical points, in order to answer the key question: “Do extremal BH
attractors (in a strict sense) survive at the quantum level?”, it is thus crucial to
determine whether such lifts originate from Hessian modes with positive squared
mass (corresponding to attractive directions) or with negative squared mass (i.e.,
tachyonic, repeller directions).

The fate of the unique non-BPS Z ¤ 0 flat direction of the st2 model in pres-
ence of the most general class of quantum perturbative corrections consistent with
the axionic-shift symmetry has been studied in [80], showing that, as intuitively
expected, the classical solutions get lifted at the quantum level. Interestingly, in
[80] it is found that the quantum lift occurs more often towards repeller directions
(thus destabilizing the whole critical solution, and destroying the attractor in a strict
sense), than towards attractive directions. The same behavior may be expected for
the unique non-BPS Z D 0 flat direction of the n D 2 element of the quadratic
irreducible sequence and the n D 3 element of the cubic reducible sequence (see
above).
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Generalizing it to the presence of more than one flat direction, this would mean
that only a (very) few classical attractors do remain attractors in a strict sense at the
quantum level; consequently, at the quantum (perturbative and non-perturbative)
level the “landscape” of extremal BH attractors should be strongly constrained and
reduced.

Despite the considerable number of papers written on the Attractor Mechanism
in the extremal BHs of the supersymmetric theories of gravitation in past years, still
much remains to be discovered along the way leading to a deep understanding of
the inner dynamics of (eventually extended) space–time singularities in supergravi-
ties, and hopefully of their fundamental high-energy counterparts, such as d D 10

superstrings and d D 11 M -theory.
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Chapter 2
Lectures on Spectrum Generating Symmetries
and U-Duality in Supergravity, Extremal Black
Holes, Quantum Attractors and Harmonic
Superspace

Murat Günaydin

Abstract We review the underlying algebraic structures of supergravity theories
with symmetric scalar manifolds in five and four dimensions, orbits of their extremal
black hole solutions and the spectrum generating extensions of their U-duality
groups. For 5D, N D 2 Maxwell–Einstein supergravity theories (MESGT) defined
by Euclidean Jordan algebras, J , the spectrum generating symmetry groups are the
conformal groups Conf.J / of J which are isomorphic to their U-duality groups in
four dimensions. Similarly, the spectrum generating symmetry groups of 4D,N D 2

MESGTs are the quasiconformal groups QConf.J / associated with J that are iso-
morphic to their U-duality groups in three dimensions. We then review the work
on spectrum generating symmetries of spherically symmetric stationary 4D BPS
black holes, based on the equivalence of their attractor equations and the equations
for geodesic motion of a fiducial particle on the target spaces of corresponding 3D
supergravity theories obtained by timelike reduction. We also discuss the connec-
tion between harmonic superspace formulation of 4D,N D 2 sigma models coupled
to supergravity and the minimal unitary representations of their isometry groups
obtained by quantizing their quasiconformal realizations. We discuss the relevance
of this connection to spectrum generating symmetries and conclude with a brief
summary of more recent results.

2.1 Introduction

This review on spectrum generating symmetries in supergravity, extremal black
holes, U-duality orbits, quantum attractor flows and harmonic superspace is based
on four lectures given at the School on Attractor Mechanism (SAM 2007) in
Frascati, Italy. The lectures were titled:
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1. Very special real geometry, Jordan algebras and attractors
2. Very special complex geometry, Freudenthal triple systems and attractors
3. Conformal and quasiconformal extensions of U-duality groups as spectrum

generating symmetry groups
4. Harmonic superspace, quasiconformal groups and their minimal unitary repre-

sentations

I will follow closely the material covered in the lectures and discuss briefly the
results obtained since SAM 2007 at the end.

More specifically, Sect. 2.2 is a review of the U-duality symmetries of maxi-
mal supergravity in various dimensions. In Sects. 2.3 and 2.4 we review the N D 2

Maxwell–Einstein supergravity theories (MESGT) in five dimensions and the con-
nection between Jordan algebras of degree 3 and the MESGTs with symmetric
scalar manifolds. This is followed by a review of the symmetry groups of Jor-
dan algebras using the language of space–time symmetry groups and a complete
list of simple finite dimensional Jordan algebras and their automorphism (rotation),
reduced structure (Lorentz) and Möbius (conformal) groups. In Sect. 2.6 we review
the U-duality orbits of extremal black holes of 5D supergravity theories with sym-
metric target manifolds and discuss how these results lead to the proposal that 4D
U-duality groups act as spectrum generating symmetry groups of the corresponding
5D theories. Section 2.7 is an overview of the 4D MESGTs with symmetric tar-
get spaces and their connection with Freudenthal triple systems. This is followed
by a classification of the U-duality orbits of extremal black holes of N D 2 MES-
GTs with symmetric target manifolds and of N D 8 supergravity and the proposal
that the three-dimensional U-duality groups act as spectrum generating quasiconfor-
mal groups of the corresponding 4D theories. In Sect. 2.9 we summarize the novel
quasiconformal realizations of non-compact groups and their relation to Freuden-
thal triple systems. A precise and concrete implementation of the proposal that 3D
U-duality groups act as spectrum generating symmetry groups of the corresponding
4D theories within the framework of spherically symmetric stationary BPS black
holes is discussed in Sect. 2.10. We then review the connection between the har-
monic superspace formulation of 4D, N D 2 sigma models coupled to supergravity
and the minimal unitary representations of their isometry groups. For sigma mod-
els with symmetric target spaces we show that there is a remarkable map between
the Killing potentials that generate their isometry groups in harmonic superspace
and the minimal unitary representations of these groups obtained by quantizing
their quasiconformal realizations. Implications of this result are also discussed.
Section 2.12 is devoted to the M/superstring theoretic origins of N D 2 MESGTs
with symmetric target spaces, in particular, the magical supergravity theories. We
conclude with a brief discussion of the related developments that took place since
SAM 2007 and some open problems.
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2.2 U-Duality Symmetries of Maximal Supergravity in Various
Dimensions

The maximal possible dimension for Poincare supergravity is 11 dimensions [1].
Eleven-dimensional supergravity involves a Majorana gravitino field, the elf-bein
EA

M and an anti-symmetric tensor of rank three AMNP and was constructed in [2].
Lagrangian of its bosonic sector has a very simple form

L11 D 1

�2
11

�
� 1

2
ER � 1

48
E.FMNPQ/

2

�
p
2

3456
"MNPQRSTUVWX FMNPQ FRSTU AVWX C � � �

	
; (2.1)

where the ellipses denote terms that involve fermions, R is the scalar curvature, E
is the determinant of 11-dimensional elf-beinEA

M and FMNPQ is the field strength of
the antisymmetric three-form field AMNP with M;N;P; : : : D 0; 1; : : : ; 10.

Under dimensional reduction to d dimensions, 11-dimensional supergravity
results in the maximal supergravity with a global symmetry group E..11�d/.11�d//.
We shall refer to these global symmetry groups as the U-duality groups even
though the term was originally used for discrete subgroups of these continuous
groups which are believed to be non-perturbative symmetries ofM -theory toroidally
compactified to d dimensions [3].

In six dimensions maximal supergravity has the global symmetry groupE5.5/ D
SO.5; 5/ and the scalar fields of this theory parametrize the symmetric space

M6 D SO.5; 5/

SO.5/ � SO.5/ : (2.2)

In five dimensions the global symmetry group of maximal supergravity is E6.6/

under which all the vector fields transform in the irreducible 27-dimensional rep-
resentation of E6.6/. The scalar fields of the theory parametrize the symmetric
space

M5 D E6.6/

USp.8/
: (2.3)

U-duality group E6.6/ is a symmetry of the Lagrangian of ungauged maximal
supergravity in five dimensions.

In four dimensions the maximal ungauged supergravity has the U-duality group
E7.7/ as an on-shell symmetry under which field strengths of the 28 vector fields of
the theory and their magnetic duals transform in the 56-dimensional representation,
which is the smallest non-trivial representation of E7.7/. The 70 scalar fields of the
theory parametrize the symmetric space

M4 D E7.7/

SU.8/
: (2.4)
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Symmetry of the Lagrangian of ungaugedN D 8 supergravity theory in four dimen-
sions depends on the real symplectic section chosen. Dimensional reduction from
five dimensions leads to a symplectic section withE6.6/ �SO.1; 1/ symmetry of the
Lagrangian such that under E6.6/ electric field strengths transform in the reducible
representation .27C1/. There exist also symplectic sections leading to Lagrangians
with SL.8;R/ and SU �.8/ symmetry groups. In the latter two cases the electric
field strengths transform irreducibly in the 28-dimensional real representation of
SL.8;R/ or SU �.8/, respectively.

In three dimensions all the dynamical bosonic degrees of freedom of maximal
supergravity can be dualized to scalar fields parametrizing the symmetric space [4]

M3 D E8.8/

SO.16/
: (2.5)

2.3 5D, N D 2 Maxwell–Einstein Supergravity Theories

Certain matter coupled supergravity theories do admit global symmetry groups
which we shall also refer to as U-duality groups. In this section we shall study
the U-duality groups that arise in five-dimensionalN D 2Maxwell–Einstein super-
gravity theories (MESGT). Five-dimensional MESGTs that describe the coupling
of an arbitrary number of N D 2 (Abelian) vector multiplets to N D 2 supergrav-
ity were constructed long ago in [5–8]. The fields of the graviton supermultiplet
are the fünfbein em

� , two gravitini  i
� .i D 1; 2/, and a vector field A� (the “bare”

graviphoton). A vector multiplet consists of a vector field A�, two “gaugini” �i and
one real scalar �. The bosonic part of five-dimensionalN D 2MESGT Lagrangian
describing the coupling of .nV � 1/ vector multiplets has a very simple form1

e�1Lbosonic D �1
2
R � 1

4

ı
aIJF

I
��F

J�� � 1

2
gxy.@�'

x/.@�'y/

C e�1

6
p
6
CIJK"

�����F I
��F

J
��A

K
� ; (2.6)

where

I D 1; : : : ; nV

x D 1; : : : ; .nV � 1/
�; �; : : : D 0; 1; 2; 3; 4:

Note that we combined the “bare graviphoton” with the other vector fields and
labelled them with a single index I which runs from 1 to nV. e and R denote the

1 We use the conventions of [6].
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fünfbein determinant and scalar curvature of spacetime, respectively. F I
�� are field

strengths of the vector fields AI
�. The metric, gxy , of the scalar manifold M5 and

the “metric”
ı
aIJ of the kinetic energy term of vector fields both depend on the scalar

fields 'x . On the other hand, the completely symmetric tensor CIJK is constant as
required by local Abelian gauge symmetries of vector fields.

Remarkably, the entire 5D, N D 2 MESGT is uniquely determined by the
constant tensor CIJK [6]. In particular, geometry of the scalar manifold M5 is deter-
mined byCIJK as follows. One defines a cubic polynomial,V.h/, in nV real variables
hI .I D 1; : : : ; nV/ using the C-tensor,

V.h/ WD CIJKh
IhJhK (2.7)

and a metric, aIJ , of a nV dimensional ambient space CnV coordinatized by hI :

aIJ.h/ WD �1
3

@

@hI

@

@hJ
lnV.h/ : (2.8)

It can then be proven that the .nV � 1/-dimensional manifold, M5, of scalar fields
'x can be represented as an hypersurface defined by the condition [6]

V.h/ D CIJKh
IhJhK D 1; (2.9)

in this ambient space CnV.2 The metric gxy is simply the pull-back of (2.8) to M5:

gxy.'/ D
�
hI

xh
J
y aIJ

�
jVD1; (2.10)

where

hI
x D

r
3

2

@hI

@�x
jVD1

and the “metric”
ı
aIJ.'/ of kinetic energy term of the vector fields is given by the

componentwise restriction of the metric aIJ of the ambient space CnV to M5:

ı
aIJ.'/ D aIJ jVD1:

Riemann curvature tensor of the scalar manifold takes on a very simple form

Kxyzu D 4

3

�
gxŒugz�y C TxŒu

wTz�yw

�
; (2.11)

2 The ambient space CnV is the five-dimensional counterpart of the hyper Kähler cone of the twistor
space of the corresponding three-dimensional quaternionic geometry of the scalar manifold M3.
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where Txyz is a symmetric tensor that is the pull-back of the C-tensor to the
hypersurface

Txyz D hI
xh

J
yh

K
z CIJK : (2.12)

Since the Riemann curvature tensor Kxyzu depends only on the metric gxy and the
tensor Txyz it follows that the covariant constancy of Txyz implies the covariant
constancy ofKxyzu:

TxyzIw D 0 �! KxyzuIw D 0:

Therefore scalar manifolds M5 with covariantly constant T tensors are locally
symmetric spaces. If the scalar manifold M5 is homogeneous then the covariant
constancy of Txyz is equivalent to the “adjoint identity” for the C-tensor [6]:

C IJKCJ.MNCPQ/K D ıI
.MCNPQ/; (2.13)

where the indices are raised by the inverse
ı
aIJ of

ı
aIJ . Furthermore, cubic forms

defined by CIJK of N D 2 MESGT’s that satisfy the adjoint identity and lead to

positive definite metrics gxy and
ı
aIJ.'/ are in one-to-one correspondence with norm

forms of Euclidean (formally real) Jordan algebras J of degree 3 [6]. The scalar
manifolds of the corresponding MESGT’s are of the form

M5 D Str0.J /

Aut.J /
; (2.14)

where Str0.J / is the invariance group of the norm N of J and Aut.J / is its auto-
morphism group. These theories exhaust the list of 5D MESGTs with symmetric
target spaces G=H such that G is a symmetry of the Lagrangian [9]. Remarkably,
the list of cubic forms that satisfy the adjoint identity coincides also with the list
of Legendre invariant cubic forms that were classified more recently by mathemati-
cians [10]. Before we discuss the geometries ofN D 2MESGT’s defined by Jordan
algebras we shall take a detour and review some of the basic facts regarding Jordan
algebras of degree 3 in the next subsection. For details and further references on
Jordan algebras we refer to the monograph [11].

2.4 MESGT’s with Symmetric Target Spaces and Euclidean
Jordan Algebras of Degree 3

A Jordan algebra J over a field F is a commutative and non-associative algebra with
a product ı that satisfies

X ı Y D Y ıX 2 J; 8 X; Y 2 J; (2.15)

and
X ı .Y ıX2/ D .X ı Y / ıX2; (2.16)
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where X2 � .X ıX/. Given a Jordan algebra J , one can define a norm form

N W J ! R

that satisfies the composition property [12]

NŒ2X ı .Y ıX/� .X ıX/ ı Y � D N2.X/N.Y /: (2.17)

A Jordan algebra is said to be of degree, p, if its norm form satisfies N.�X/ D
�pN.X/, where � 2 R. A Euclidean Jordan algebra is a Jordan algebra for which
the condition X ıX C Y ı Y D 0 implies that X DY D 0 for all X; Y 2 J .
Euclidean Jordan algebras are sometimes called compact Jordan algebras since their
automorphism groups are compact.

As explained above, given a Euclidean Jordan algebra of degree 3 one can iden-
tify its norm form N with the cubic polynomial V defined by the C-tensor of a 5D,
N D 2MESGT with a symmetric scalar manifold [6]. Euclidean Jordan algebras of
degree 3 fall into an infinite family of non-simple Jordan algebras which are direct
sums of the form

J D R ˚ �.1;n�1/; (2.18)

where �.1;n�1/ is an n-dimensional Jordan algebra of degree 2 associated with a
quadratic norm form in n dimensions that has a “Minkowskian signature” .C;�;
: : : ;�/ and R is the one-dimensional Jordan algebra. This infinite family of reducible
Jordan algebras of degree 3 exists for any n and is referred to as the generic Jordan
family. The scalar manifolds of corresponding 5D, N D 2 MESGT’s are

M5.R ˚ �.1;n�1// D SO.n � 1; 1/

SO.n� 1/
� SO.1; 1/: (2.19)

An irreducible realization of �.1;n�1/ is provided by .n � 1/ (2Œn=2� � 2Œn=2�)
Dirac gamma matrices 	 i .i; j; : : : D 1; : : : ; .n � 1// of an .n � 1/ dimensional
Euclidean space together with the identity matrix 	0 D 1 and the Jordan product ı
being defined as one half the anticommutator:

	 i ı 	j D 1

2
f	 i ; 	j g D ıij 	0;

	0 ı 	0 D 1

2
f	0; 	0g D 	0;

	 i ı 	0 D 1

2
f	 i ; 	0g D 	 i : (2.20)

The quadratic norm of a general element X D X0	
0 CXi	

i of �.1;n�1/ is defined as

Q.X/ D 1

2Œn=2�
T r XX D X0X0 �XiXi ;



38 M. Günaydin

where
X � X0	

0 �Xi	
i :

The norm of a general element y ˚ X of the non-simple Jordan algebra J D R ˚
�.1;n�1/ is then simply

N.y ˚ X/ D yQ.X/; (2.21)

where y 2 R.
In addition to this generic reducible infinite family, there exist four simple

Euclidean Jordan algebras of degree 3. They are realized by Hermitian .3 � 3/-
matrices over the four division algebras A D R;C;H;O (reals R, complex num-
bers C, quaternions H and octonions O)

J D
0

@
˛ Z Y

Z ˇ X

Y X 	

1

A ; (2.22)

where ˛; ˇ; 	 2 R and X; Y;Z 2 A with the Jordan product being one half the
anticommutator. They are denoted as JR

3 , JC
3 , JH

3 , JO
3 , respectively. The corre-

spondingN D 2MESGTs are called “magical supergravity theories”[5]. The scalar
manifolds of the magical supergravity theories in five dimensions are the irreducible
symmetric spaces

JR
3 W M D SL.3;R/=SO.3/;

JC
3 W M D SL.3;C/=SU.3/;

JH
3 W M D SU �.6/=USp.6/;
JO

3 W M D E6.�26/=F4: (2.23)

The cubic norm form, N, of the simple Jordan algebras is given by the determi-
nant of the corresponding Hermitian .3 � 3/-matrices.

N.J / D ˛ˇ	 � ˛XX � ˇY Y � 	ZZ C 2Re.XYZ/: (2.24)

Re.XYZ/ denotes the real part of XYZ

Re.XYZ/ D Re.X.YZ// D Re..XY /Z/ D 1

2
.XYZ CXYZ/; (2.25)

where bar denotes conjugation in the underlying division algebra.
A real quaternionX 2 H can be expanded as

X D X0 CX1j1 CX2j2 CX3j3;

X D X0 �X1j1 � X2j2 �X3j3; (2.26)

XX D X2
0 CX2

1 CX2
2 CX2

3 ;
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where the imaginary units ji .i D 1; 2; 3/ satisfy

jijj D �ıij C 
ijkjk : (2.27)

A real octonionX 2 O has an expansion

X D X0 CX1j1 CX2j2 CX3j3 CX4j4 CX5j5 CX6j6 CX7j7;

X D X0 � X1j1 �X2j2 � X3j3 � X4j4 �X5j5 � X6j6 �X7j7; (2.28)

XX D X2
0 C

7X

AD1

.XA/
2;

where the seven imaginary units jA .A D 1; 2; : : : ; 7/ satisfy

jAjB D �ıAB C �ABC jC : (2.29)

The G2 invariant tensor �ABC is completely antisymmetric and in the conventions
of [13] its nonvanishing components take on the values

�ABC D 1 , .ABC/ D .123/; .471/; .572/; .673/; .624/; .435/; .516/: (2.30)

The bosonic content and scalar manifold of N D 6 supergravity is the same as
that of the N D 2 MESGT defined by the simple Euclidean Jordan algebra JH

3 [5],
namely

M5 D SU �.6/
USp.6/

: (2.31)

Therefore its invariant C-tensor is simply the one given by the cubic norm of JH
3 .

The C-tensor CIJK of N D 8 supergravity in five dimensions can be identified
with the symmetric tensor given by the cubic norm of the split exceptional Jordan
algebra JOs

3 [14, 15] defined over split octonions Os . The automorphism group of
the split exceptional Jordan algebra defined by 3 � 3 Hermitian matrices over the
split octonions Os

J s D

0

B
@
˛ Zs Y

s

Z
s
ˇ X s

Y s X
s
	

1

C
A ; (2.32)

whereX s; Y s; ZS are split octonions, is the noncompact group F4.4/ with the max-
imal compact subgroup USp.6/ � USp.2/. Its reduced structure group is E6.6/

under which the C-tensor is invariant. E6.6/ is the U-duality group of maximal
supergravity in five dimensions whose scalar manifold is

E6.6/=USp.8/:
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2.5 Rotation (Automorphism), Lorentz (Reduced Structure)
and Conformal (Möbius) Groups of Jordan Algebras

Above we reviewed briefly the connections between Jordan algebras of degree 3 and
supergravity theories. Jordan algebras were used in the very early days of spacetime
supersymmetry to define generalized spacetimes that naturally extend the descrip-
tion of four-dimensional Minkowski spacetime and its symmetry groups in terms of
2�2 complex Hermitian matrices. This was mainly motivated by attempts to find the
super analogs of the exceptional Lie algebras [16] before a complete classification
of finite dimensional simple Lie superalgebras was given by Kac [17].

As is well-known the twistor formalism in four-dimensional space–time .d D 4/

leads naturally to the representation of spacetime coordinates x� in terms of 2 � 2
Hermitian matrices over the field of complex numbers C:

x D x��
�: (2.33)

Hermitian matrices over the field of complex numbers close under the symmetric
anti-commutator product and form a simple Jordan algebra denoted as JC

2 . There-
fore one can regard the four-dimensional Minkowski coordinate vectors as elements
of the Jordan algebra JC

2 [16,18]. Then the rotation, Lorentz and conformal groups
in four dimensions correspond simply to the automorphism, reduced structure and
Möbius (linear fractional) groups of the Jordan algebra JC

2 [16, 18]. The reduced
structure group Str0.J / of a Jordan algebra J is simply the invariance group of its
norm form N.J /, while the structure group Str.J / D Str0.J /�SO.1; 1/ is defined
as the invariance group of N.J /modulo an overall nonzero global scale factor. This
correspondence was then used to define generalized space–times coordinatized by
elements of general Jordan algebras whose rotation Rot.J /, Lorentz Lor.J / and
conformal Conf.J / groups are identified with the automorphism Aut.J /, reduced
structure Str0.J / and Möbius Möb.J / groups of J [16, 18–20]. Denoting as JA

n

the Jordan algebra of n � n Hermitian matrices over the division algebra A and the
Jordan algebra of Dirac gamma matrices in d (Euclidean) dimensions as �.1;d/ we
list the symmetry groups of generalized space–times defined by simple Euclidean
(formally real) Jordan algebras in Table 2.1.

Note that for Euclidean Jordan algebras �.1;d/ the automorphism, reduced struc-
ture and Möbius groups are simply the rotation, Lorentz and conformal groups of
.d C 1/-dimensional Minkowski spacetime. There exist the following special iso-
morphisms between the Jordan algebras of 2 � 2 Hermitian matrices over the four
division algebras and the Jordan algebras of gamma matrices:

JR
2 ' �.1;2/I JC

2 ' �.1;3/I JH
2 ' �.1;5/I JO

2 ' �.1;9/: (2.34)

The Minkowski spacetimes they correspond to are precisely the critical dimensions
for the existence of super Yang–Mills theories as well as of the classical Green–
Schwarz superstrings. These Jordan algebras are all quadratic and their norm forms
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Table 2.1 Complete list of simple Euclidean Jordan algebras and their rotation (automorphism),
Lorentz (reduced structure) and Conformal (linear fractional) groups

J Rot.J / Lor.J / Conf.J /

JR
n SO.n/ SL.n;R/ Sp.2n;R/
JC
n SU.n/ SL.n;C/ SU.n; n/

JH
n USp.2n/ SU �.2n/ SO�.4n/

JO
3 F4 E6.�26/ E7.�25/

�.1;d/ SO.d/ SO.d; 1/ SO.d; 2/

The symbols R, C, H, O represent the four division algebras. For the
Jordan algebras JA

n of n� n hermitian matrices over A the norm form
is the determinantal form (or its generalization to the quaternionic and
octonionic matrices)

are precisely the quadratic invariants constructed using the Minkowski metric. The
spacetimes defined by simple Jordan algebras of degree 3 can be interpreted as
extensions of Minkowskian spacetimes in critical dimensions by bosonic spinorial
coordinates plus a dilaton and the adjoint identity implies the Fierz identities for the
existence of the corresponding supersymmetric theories [21, 22].

We should note two important facts about Table 2.1. First, the conformal groups
of generalized space–times defined by Euclidean (formally real) Jordan algebras
all admit positive energy unitary representations. Hence they can be given a causal
structure with a unitary time evolution as in four-dimensional Minkowski space–
time [23, 24]. Second is the fact that the maximal compact subgroups of the
generalized conformal groups of formally real Jordan algebras are simply the com-
pact real forms of their structure groups (which are the products of their generalized
Lorentz groups with dilatations).

Conformal group Conf.J / of a Jordan algebra J is generated by translations
Ta, special conformal generators Ka, dilatations and Lorentz transformations Mab

(a;b 2 J ). Lorentz transformations and dilatations generate the structure algebra
str.J / of J [16, 19, 20]. Lie algebra conf.J / of the conformal group Conf.J / has a
3-grading with respect to the generator D of dilatations:

conf.J / D Ka ˚Mab ˚ Tb: (2.35)

Action of conf.J / on the elements x of a Jordan algebra J are as follows [20]:

Tax D a;

Mabx D fabxg; (2.36)

Kax D �1
2

fxaxg;

where fabxg is the Jordan triple product

fabxg WD a ı .b ı x/� b ı .a � x/C .a ı b/ ı x

a;b; x 2 J
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with ı denoting the Jordan product. They satisfy the commutation relations

ŒTa; Kb� D Mab;

ŒMab; Tc� D Tfabcg;
ŒMab; Kc� D Kfbacg;
ŒMab;Mcd� D Mfabcgd �Mfbadgc;

corresponding to the well-known Tits–Kantor–Koecher construction of Lie algebras
from Jordan triple systems [25–27]. The generatorsMab can be decomposed as

Mab D Da;b C La�b; (2.37)

whereDa;b are the derivations that generate the automorphism (rotation) group of J

Da;bx D a ı .b ı x/� b ı .a ı x/

and Lc denotes multiplication by the element c 2 J . The dilatation generator D is
proportional to the multiplication operator by the identity element of J .

Choosing a basis eI and a conjugate basis QeI of a Jordan algebra J transform-
ing covariantly and contravariantly, respectively, under the action of the Lorentz
(reduced structure) group of J one can expand an element x 2 J as

x D eIq
I D QeIqI :

In this basis one can write the generators of conf.J / as differential operators act-
ing on the “coordinates” qI [20]. These generators can be twisted by a unitary
character � and take on a simple and elegant form

TI D @

@qI
;

RI
J D �IK

JLq
L @

@qK
� �ıI

J ; (2.38)

KI D 1

2
IK

JLq
J qL @

@qK
C �qI ; (2.39)

where

IJ
KL WD ıI

Kı
J
L C ıI

Lı
J
K � 4

3
C IJMCKLM:

They satisfy the commutation relations

ŒTI ; K
J � D �RJ

I ; (2.40)

ŒRJ
I ; TK � D JL

IKTL; (2.41)

ŒRJ
I ; K

K � D �JL
IKK

L: (2.42)
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The generator of the rotation (automorphism) subgroup are simply

AIJ D RJ
I � RI

J : (2.43)

2.6 U-Duality Orbits of Extremal Black Hole Solutions of 5D
Supergravity Theories with Symmetric Target Manifolds
and Their Spectrum Generating Conformal Extensions

Orbits of the spherically symmetric stationary BPS black holes (BH) with non-
vanishing entropy under the action of U-duality groups of N D 2 MESGT’s with
symmetric target spaces were given in [14]. In the same work the orbits with non-
vanishing cubic invariants that are non-BPS were also classified. These latter orbits
describe extremal non-BPS black holes and corresponding solutions to the attrac-
tor equations were given in [28]. In this section we shall review the solutions to
the attractor equations in 5D MESGTs for extremal black holes, BPS as well as
non-BPS, following [28].

Let us denote the .n C 1/ dimensional charge vector in an extremal BH back-
ground as qI . It is given by

qI D
Z

S3

HI D
Z

S3

ı
aIJ �F J .I D 0; 1; : : : ; n/: (2.44)

The black hole potential [29, 30] that determines the attractor flow takes on the
following form for N D 2 MESGTs:

V.�; q/ D qI
ı
a

IJ
qJ ; (2.45)

where
ı
a

IJ

is the inverse of the metric
ı
aIJ of the kinetic energy term of the vector

fields. In terms of the central charge function

Z D qIh
I

the potential can be written as

V.q; �/ D Z2 C 3

2
gxy@xZ@yZ; (2.46)

where

@xZ D qIh
I
;x D

r
2

3
hI

x :



44 M. Günaydin

The critical points of the potential are determined by the equation

@xV D 2.2Z@xZ �p
3=2Txyzg

yy0

gzz0

@y0Z@z0Z/ D 0: (2.47)

The BPS attractors are given by the solutions satisfying [31, 32]

@xZ D 0 (2.48)

at the critical points. The non-BPS attractors are given by non-trivial solutions [28]

2Z@xZ D
r
3

2
Txyz@

yZ@zZ (2.49)

such that
@xZ � gxx0

@x0Z ¤ 0

at the critical points. Equation (2.49) can be inverted using the relation

qI D hIZ � 3

2
hI;x@

xZ: (2.50)

For BPS attractors satisfying @xZ D 0 this gives

qI D hIZ (2.51)

and for non-BPS attractors satisfying @xZ ¤ 0 we get

qI D hIZ � .3=2/3=2 1

2Z
hI;xT

xyz@yZ@zZ: (2.52)

Since the BPS attractor solution with non-vanishing entropy [31, 32] is given
by @xZD 0, which is invariant under the automorphism group Aut.J / of the
underlying Jordan algebra J , the orbits of BPS black hole solutions are of the form

OBPS D Str0.J /=Aut.J / (2.53)

and were listed in column 1 of Table 1 of [14] which we reproduce in Table 2.2.
The orbits for extremal non-BPS black holes with non-vanishing entropy are of

the form
Onon�BPS D Str0.J /=Aut.J.1;2//; (2.54)

where Aut.J.1;2// is a noncompact real form of the automorphism group of J and
were listed in column 2 of Table 1 of [14], which we reproduce in Table 2.3.

The entropy S of an extremal black hole solution of N D 2 MESGT with
charges qI is determined by the value of the black hole potential V at the attractor
points

S D .Vcritical/
3=4: (2.55)
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Table 2.2 Orbits of spherically symmetric stationary BPS black hole solutions in 5D MESGTs
defined by Euclidean Jordan algebras J of degree 3. U-duality and stability groups are given by
the Lorentz (reduced structure) and rotation (automorphism) groups of J

J OBPS D Str0.J /=Aut.J /
JR
3 SL.3;R/=SO.3/
JC
3 SL.3;C/=SU.3/
JH
3 SU �.6/=USp.6/

JO
3 E6.�26/=F4

R ˚ �.1;n�1/ SO.n� 1; 1/� SO.1; 1/=SO.n � 1/

Table 2.3 Orbits of non-BPS extremal black holes of N D 2 MESGT’s with non-vanishing
entropy in d D 5. The first column lists the Jordan algebras of degree 3 that define these theories.
The third column lists the maximal compact subgroups K of the stability group Aut.J.1;2//

J Onon�BPS D Str0.J /=Aut.J.1;2// K � Aut.J.1;2//
JR
3 SL.3;R/=SO.2; 1/ SO(2)
JC
3 SL.3;C/=SU.2; 1/ SU.2/ � U.1/

JH
3 SU �.6/=USp.4; 2/ USp.4/� USp.2/

JO
3 E6.�26/=F4.�20/ SO.9/

R ˚ �.1;n�1/ SO.n� 1; 1/� SO.1; 1/=SO.n � 2; 1/ SO.n� 2/

For N D 2 MESGTs defined by Jordan algebras of degree 3, the tensor CIJK is
an invariant tensor of the U-duality group Str0.J /. Similarly the tensor Tabc with
“flat” indices

Tabc D ex
ae

y

b
ez

cTxyz;

where ex
a is the n-bein on the n-dimensional scalar manifold with metric gxy is an

invariant tensor of the maximal compact subgroup Aut.J / of Str0.J /. In terms of
flat indices the attractor equation becomes

2Z@aZ D p
3=2Tabc@

bZ@cZ: (2.56)

Thus for BPS attractor solution @aZ D 0 one finds

SBPS D .VBPS/
3=4 D Z

3=2
BPS: (2.57)

For extremal non-BPS attractors @aZ ¤ 0, squaring the criticality condition one
finds

4Z2@aZ@aZ D 3

2
TabcTab0c0@bZ@cZ@

0
bZ@

0
cZ: (2.58)

Then using the identity

Ta.bcT
a
b0c0/ D 1

2
g.bcgb0c0/
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valid only for MESGTs defined by Jordan algebras of degree 3 one obtains

@aZ@aZ D 16

3
Z2: (2.59)

Hence the entropy of extremal non-BPS black holes are given by3

Snon�BPS D V
4=3

non�BPS D
�
Z2 C 3

2
@aZ@aZ

�3=4

D .3Znon�BPS/
3=2: (2.60)

By differentiating (2.47) one finds a general expression for the Hessian of the
black hole potential around the critical points

1

4
Dx@yV D 2

3
gxyZ

2 C @xZ@yZ � 2

r
2

3
Txyzg

zw@wZZ

CTxpqTyzsg
pzgqq0

gss0

@q0Z@s0Z

D 2

3

 

gxzZ �
r
3

2
Txzp@

pZ

! 

gyzZ �
r
3

2
Tyzq@

qZ

!

C @xZ@yZ: (2.61)

Thus for BPS critical points for which we have @xZ D 0 the Hessian is given
simply as

@x@yV D 8

3
gxyZ

2; (2.62)

which is the same result as in d D 4 [30]. Since the metric of the scalar manifold is
positive definite the above formula implies that the scalar fluctuations have positive
square mass reflecting the attractor nature of the BPS critical points.

For non-BPS extremal critical points of the black hole potential the Hessian has
flat directions and is positive semi-definite [28].

The orbits of BPS black hole solutions of N D 8 supergravity theory in five
dimensions were also given in [14]. The 1=8 BPS black holes with non-vanishing
entropy has the orbit

O1=8�BPS D E6.6/

F4.4/

D Str0.J
OS

3 /

Aut.JOS

3 /
; (2.63)

where OS stands for the split octonions and JOS

3 is the split exceptional Jordan
algebra. Note that in contrast to the exceptional N D 2 MESGT theory defined by
the real exceptional Jordan algebra that has two different orbits with nonvanishing

3 We should stress that both for BPS as well as extremal non-BPS black holes the quantities
appearing in the above formulas are evaluated at the corresponding attractor points.
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entropy the maximal supergravity has only one such orbit. On the other hand maxi-
mal supergravity theory admits 1/4 and 1/2 BPS black hole solutions with vanishing
entropy [33]. Their orbits under U-duality are [14]

O1=4�BPS D E6.6/

O.5; 4/sT16

; (2.64)

O1=2�BPS D E6.6/

O.5; 5/sT16

; (2.65)

where s denotes the semi-direct product and T16 is the group of translations trans-
forming in the spinor (16) of SO.5; 5/. Vanishing entropy means vanishing cubic
norm. Thus the black hole solutions corresponding to vanishing entropy has addi-
tional symmetries beyond the five-dimensional U-duality group, namely they are
invariant under the generalized special conformal transformations of the underly-
ing Jordan algebras. This is complete parallel to the invariance of light-like vectors
under special conformal transformations in four dimensional Minkowski spacetime
which can be coordinatized by the elements of the Jordan algebra JC

2 . Acting on
a black hole solution with non-vanishing entropy these special conformal transfor-
mations change their norms and hence the entropy. Hence the conformal groups of
Jordan algebras were proposed as spectrum generating symmetry groups of black
hole solutions of MESGTs defined by them [14, 15, 34, 35]. Since the conformal
groups of Jordan algebras of degree 3 are isomorphic to the U-duality groups of
the corresponding four dimensional supergravity theories obtained by dimensional
reduction this implies that the four-dimensional U-duality groups must act as spec-
trum generating symmetry groups of the corresponding five-dimensional theories.
Since it was first made, there have been several works relating black hole solutions in
four and five dimensions (4D/5D lift) [36–39] that lend support to the proposal that
four-dimensional U-duality groups act as spectrum generating conformal symmetry
groups of five-dimensional supergravity theories from which they descend.

2.7 4D, N D 2 Maxwell–Einstein Supergravity Theories
with Symmetric Target Spaces and Freudenthal
Triple Systems

Under dimensional reduction on a torus 5D, N D 2 MESGTs with .nV � 1/ vector
multiplets lead to 4D, N D 2 MESGTs with nV vector multiplets, with the extra
vector multiplet coming from the 5D graviton supermultiplet. The metric of the
target space of the four-dimensional scalar fields of dimensionally reduced theories
were first given in [6] in the so-called unbounded realization of their geometries.
More precisely, the resulting four-dimensional target spaces are generalized upper
half-spaces (tube domains) over the convex cones defined by the cubic norm. They
are parameterized by complex coordinates [6],

zI WD 1p
3
AI C ip

2
QhI ; (2.66)
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where AI denote the 4D scalars descending from the 5D vectors. Imaginary com-
ponents of zI are given by

QhI WD e�hI ; (2.67)

where � is the scalar field (dilaton) coming from 5D graviton and hI were defined
above. They satisfy the positivity condition

V. QhI / D CIJK
QhI QhJ QhK D e3� > 0:

Geometry of four-dimensionalN D 2 MESGTs obtained by dimensional reduc-
tion from five dimensions (R-map) was later referred to as “very special geome-
try” and studied extensively.4 The full bosonic sector of 4D theories obtained by
dimensional reduction from gauged 5D, N D 2 Yang–Mills Einstein supergravity
coupled to tensor multiplets and their reformulation in the standard language of
special Kähler geometry was given in [41], which we follow in our summary here,
restricting ourselves to the ungauged MESGT theory without tensors.

As is well-known one can interpret the nV complex coordinates zI of dimension-
ally reduced MESGTs as inhomogeneous coordinates of a .nV C 1/-dimensional
complex vector with coordinatesXA

XA D
�
X0

XI

�
D
�
1

zI

�
; (2.68)

where the capital Latin indices A;B;C; : : : run from 0 to nV. Taking as “prepoten-
tial” the cubic form defined by the C-tensor coming from five dimensions

F.XA/ D �
p
2

3
CIJK

XIXJXK

X0
(2.69)

and using the symplectic section

�
XA

FA

�
D
�
XA

@AF

�
�
 
XA

@F
@XA

!

(2.70)

one gets the Kähler potential

K.X;X/ WD � ln ŒiX
A
FA � iXAF A�

D � ln

"

i

p
2

3
CIJK.z

I � NzI /.zJ � NzJ /.zK � NzK/

#

; (2.71)

which agrees precisely with the Kähler potential obtained in [6]. The “period
matrix” that determines the kinetic terms of the vector fields in four dimensions

4 See for example [40] and the references therein.
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is given by

NAB WD F AB C 2i
Im.FAC /Im.FBD/X

CXD

Im.FCD/XCXD
; (2.72)

where FAB � @A@BF , etc. Components of the resulting period matrix NAB under
dimensional reduction are

N00 D �2
p
2

9
p
3
CIJKA

IAJAK � i

3

�
e� ı
aIJA

IAJ C 1

2
e3�

�
; (2.73)

N0I D
p
2

3
CIJKA

JAK C ip
3
e� ı
aIJA

J ; (2.74)

NIJ D �2
p
2p
3
CIJKA

K � ie� ı
aIJ : (2.75)

The prepotential (2.69) leads to the Kähler metric

gIJ � @I @JK D 3

2
e�2� ı

aIJ (2.76)

for the scalar manifold M4 of four-dimensional theory, where
ı
aIJ is the “metric” of

the kinetic energy term of the vector fields of the 5D theory. Above we denoted the
field strength of the vector field that comes from the graviton in five dimensions as
F 0

�� . The bosonic sector of dimensionally reduced Lagrangian can then be written as

e�1L.4/ D �1
2
R � gIJ .@�zI /.@�NzJ /C 1

4
Im.NAB/F

A
��F

��B

� 1

8
Re.NAB /


����FA
��F

B
�� : (2.77)

Since the complex scalar fields zI of the four-dimensional theory are restricted to
the domain V.Im.z// > 0, the scalar manifolds of 4D,N D 2MESGT’s defined by
Euclidean Jordan algebras J of degree 3 are simply the Köcher “upper half spaces”
of the corresponding Jordan algebras, which belong to the family of Siegel domains
of the first kind [42]. The “upper half spaces” of Jordan algebras can be mapped into
bounded symmetric domains, which can be realized as hermitian symmetric spaces
of the form

M4 D Conf.J /
fStrJ

; (2.78)

where Conf.J / is the conformal group of the Jordan algebra J and its maximal
compact subgroup fStrJ is the compact real form of its structure group Str.J /. The
Kähler potential (2.71) that one obtains directly under dimensional reduction from
five dimensions is given by the “cubic light-cone”

V.z � Nz/ D CIJK.z
I � NzI /.zJ � NzJ /.zK � NzK/; (2.79)
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which is manifestly invariant under the five-dimensional U-duality group Str0.J /

and real translations
Re.zI / ) Re.zI /C aI ;

aI 2 R;

which follows from Abelian gauge invariances of vector fields of the five-
dimensional theory. Under dilatations it gets simply rescaled. Infinitesimal action of
special conformal generatorsKI of Conf.J / on the “cubic light-cone” yields [15]

KIV.z � Nz/ D .zI C NzI /V.z � Nz/; (2.80)

which can be integrated to give the global transformation of the form

V.z � Nz/ H) f .zI / Nf .NzI /V.z � Nz/: (2.81)

This shows that the cubic light-cone defined by V.z � Nz/ D 0 is invariant under
the full conformal group Conf.J /. Furthermore, the above global conformal group
action leaves the metric gIJ invariant since it simply induces a Kähler transforma-
tion of the Kähler potential lnV.z � Nz/.

In N D 2 MESGTs defined by Euclidean Jordan algebras J of degree 3, one-to-
one correspondence between vector fields of five-dimensional theories (and hence
their charges) and elements of J gets extended, in four dimensions, to a one-to-one
correspondence between field strengths of vector fields plus their magnetic duals
and Freudenthal triple systems defined over J [6, 14, 15, 22, 34]. An element X of
Freudenthal triple system (FTS) F.J / [43, 44] over J can be represented formally
as a 2 � 2 “matrix”:

X D
0

@
˛ x

y ˇ

1

A 2 F.J /; (2.82)

where ˛, ˇ 2 R and x, y 2 J .
Denoting the “bare” four-dimensional graviphoton field strength and its magnetic

dual as F 0
�� and QF ��

0 , respectively, we have the correspondence

0

@
F 0

�� F I
��

QF ��
I

QF ��
0

1

A ”
0

@
e0 eI

QeI Qe0

1

A 2 F.J /;

where eI . QeI / are the basis elements of J (its conjugate QJ ). Consequently, one can
associate with a black hole solution with electric and magnetic charges (fluxes)�
q0; qI ; p

0; pI
�

of the 4D MESGT defined by J an element of the FTS F .J /

0

@
p0e0 pI eI

qI QeI q0 Qe0

1

A 2 F.J /: (2.83)
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Table 2.4 Scalar manifolds Md of N D 2 MESGT’s defined by Euclidean Jordan algebras J
of degree 3 in d D 3; 4; 5 dimensions. JA

3 denotes the Jordan algebra of 3 � 3 Hermitian matri-
ces over the division algebra A D R, C, H, O. The last row R ˚ �.1;n�1/ are the reducible
Jordan algebras which are direct sums of Jordan algebras �.1;n�1/ defined by a quadratic form Q

of Minkowskian signature and one-dimensional Jordan algebra R. eStr.J / and eConf.J / denote the
compact real forms of the structure group Str.J / and conformal group Conf.J / of a Jordan algebra
J . QConf .F.J // denotes the quasiconformal group defined by the FTS F.J / defined over J

M5 D M4 D M3 D
J Str0.J /=Aut.J / Conf.J /=eStr.J / QConf.F.J //= AConf.J /� SU.2/

JR
3 SL.3;R/=SO.3/ Sp.6;R/=U.3/ F4.4/=USp.6/� SU.2/

JC
3 SL.3;C/=SU.3/ SU.3; 3/=S .U.3/� U.3// E6.2/=SU.6/� SU.2/

JH
3 SU�.6/=USp.6/ SO�.12/=U.6/ E7.�5/=SO.12/� SU.2/

JO
3 E6.�26/=F4 E7.�25/=E6 � U.1/ E8.�24/=E7 � SU.2/

R ˚ �.1;n�1/

SO.n� 1; 1/� SO.1; 1/

SO.n� 1/

SO.n; 2/� SU.1; 1/

SO.n/� SO.2/� U.1/

SO.nC 2; 4/

SO.nC 2/� SO.4/

U-duality group G4 of such a four-dimensional MESGT acts as automorphism
group of the FTS F.J /, which is endowed with an invariant symmetric quartic
form and a skew-symmetric bilinear form. The entropy of an extremal black with
charges .p0; pI ; q0; qI / is determined by the quartic invariant Q4.q; p/ of F.J /.
With this identification the orbits of extremal black holes of 4D, N D 2 MESGT’s
with symmetric scalar manifolds were classified in [14, 45].

Upon further dimensional reduction to three dimensions (C-map) N D 2 MES-
GTs lead to N D 4, d D 3 quaternionic Kähler � models coupled to supergravity
[6, 46]. In Table 2.4 we give the symmetry groups of N D 2 MESGTs defined by
Euclidean Jordan algebras in d D 5; 4 and 3 dimensions and their scalar manifolds.
We should note that five and three-dimensional U-duality symmetry groups Str0.J /

and QConf.J /, respectively, act as symmetries of supergravity Lagrangians, while
four-dimensional U-duality groups Conf.J / are on-shell symmetries.

2.8 U-Duality Orbits of Extremal Black Holes of 4D, N D 2

MESGTs with Symmetric Scalar Manifolds and of N D 8

Supergravity and Their Spectrum Generating
Quasiconformal Extensions

The discussion of the orbits extremal black holes of extended supergravity theories
with symmetric scalar manifolds were covered in Sergio Ferrara’s lectures [47].
Referring to Ferrara’s lectures for details including the related recent developments
I will briefly summarize the results forN D 2 MESGTs andN D 8 supergravity in
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this section following [45]. As in the five-dimensional case, the 4D extremal black
hole attractor equations are simply the criticality conditions for the black hole scalar
potential which can be written as [29, 48]

VBH � jZj2 CGIJ .DIZ/.DJZ/; (2.84)

where Z is the central charge function. The criticality condition is [30]:

@IVBH D 0 (2.85)

implies

2ZDIZ C iCIJKG
JJGKKDJZDKZ D 0: (2.86)

CIJK is the completely symmetric, covariantly holomorphic tensor of special Kähler
geometry that satisfies

DLCIJK D 0; DŒLCI �JK D 0; (2.87)

where square brackets denote antisymmetrization. For symmetric special Kähler
manifolds the tensor CIJK is covariantly constant:

DICJKL D 0; (2.88)

which implies the four-dimensional counterpart of the adjoint identity [6, 49]

GKKGMJCM.PQCIJ /KCKIJ D 4

3
C.IJPGQ/I : (2.89)

The 1
2

-BPS attractors are given by the following solution of attractor equations [30]

Z ¤ 0; DIZ D 0 8 I D 1; : : : ; nV : (2.90)

The orbits of the 1/2-BPS black hole solutions with positive quartic invariants of
N D 2 MESGTs with symmetric target spaces were given in [14] and are listed in
column 1 of Table 2.5. In [14] a second family of orbits with non-vanishing quar-
tic invariants were also given. They correspond to non-BPS extremal black holes
and the respective solutions to the attractor equations were given in [45]. In addi-
tion there exist another family of non-BPS extremal black holes with non-vanishing
quartic invariant and vanishing central charge [45]. The complete list of orbits of
BPS and extremal non-BPS black holes is given in Table 2.5.

The orbits of black hole solutions of 4D N D 8 supergravity under the action of
U-duality groupE7.7/ were given in [14]. There exist two classes of non-degenerate
charge orbits of black hole solutions with non-vanishing quartic invariant I4 con-
structed from the electric and magnetic charges transforming in 56 of E7.7/ [14].
Depending on the sign of I4, one finds
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Table 2.5 Non-degenerate orbits of N D 2, D D 4 MESGTs with symmetric scalar manifolds.
Except for the first row all such theories originate from five dimensions and are defined by Jordan
algebras that are indicated in the first column

J
1
2 -BPS orbits
O 1

2�BPS

Non-BPS, Z ¤ 0 orbits
Onon�BPS;Z¤0

Non-BPS, Z D 0 orbits
Onon�BPS;ZD0

� SU.1; nC 1/

SU.nC 1/
� SU.1; nC 1/

SU.1; n/

R ˚ �.1;n�1/

SU.1; 1/˝ SO.2; 2C n/

SO.2/˝ SO.2C n/

SU.1; 1/˝ SO.2; 2C n/

SO.1; 1/˝ SO.1; 1C n/

SU.1; 1/˝ SO.2; 2C n/

SO.2/˝ SO.2; n/

JO
3

E7.�25/

E6

E7.�25/

E6.�26/

E7.�25/

E6.�14/

JH
3

SO�.12/

SU.6/

SO�.12/

SU�.6/

SO�.12/

SU.4; 2/

JC
3

SU.3; 3/

SU.3/˝ SU.3/

SU.3; 3/

SL.3;C/

SU.3; 3/

SU.2; 1/˝ SU.1; 2/

JR
3

Sp.6;R/

SU.3/

Sp.6;R/

SL.3;R/

Sp.6;R/

SU.2; 1/

I4 > 0 W O 1
8

�BPS D E7.7/

E6.2/

” 1

8
-BPS; (2.91)

I4 < 0 W Onon�BPS D E7.7/

E6.6/

” non-BPS. (2.92)

This is to be contrasted with the non-degenerate orbits of the exceptionalN D 2

supergravity with U-duality group E7.�25/, which has three non-degenerate orbits,
one BPS and two non-BPS one of which has vanishing central charge. On the other
hand, in N D 8 supergravity one has 1=4 and 1=2 BPS black holes with vanishing
entropy [33]. The “light-like” orbits of these BPS black hole solutions with vanish-
ing quartic invariant were given in [14]. There are three distinct cases depending
on the number of vanishing “eigenvalues” that lead to vanishing Q4. The generic
light-like orbit for which a single eigenvalue vanishes is

E7.7/

F4.4/sT26

; (2.93)

where T26 is a 26-dimensional Abelian subgroup of E7.7/ and s denotes semi-
direct product. The critical light-like orbit has two vanishing eigenvalues and
correspond to the 45-dimensional orbit

E7.7/

O.6; 5/s.T32 ˚ T1/
: (2.94)
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The doubly critical light-like orbit with three vanishing eigenvalues is given by the
28-dimensional quotient space

E7.7/

E6.6/sT27

: (2.95)

As discussed above, four-dimensional U-duality groups G4 were proposed as
spectrum generating conformal symmetry groups in five dimensions that leave a
cubic light-cone invariant. This raises the question, first investigated in [15], whether
the three-dimensional U-duality groups G3 could act as spectrum generating “con-
formal” groups of corresponding four-dimensional supergravity theories. It is easy
to show that there exist three-dimensional U-duality groups that do not have any
conformal realizations in general. Some other three-dimensional U-duality groups
do not admit conformal realizations on the 2nV C 2 dimensional space of the
FTS that defines the four dimensional theory. However as was shown in [15] the
three-dimensional U-duality groups G3 all have novel geometric realizations as
quasi-conformal groups on the vector spaces of FTS’s extended by an extra singlet
coordinate that leave invariant a generalized light-cone with respect to a quartic dis-
tance function. The quasiconformal actions of three-dimensional U-duality groups
G3 were then proposed as spectrum generating symmetry groups of correspond-
ing four-dimensional supergravity theories [15, 34, 35, 50–52]. We shall denote the
quasiconformal groups defined over FTS’s F extended by a singlet coordinate as
QConf.F/. If the FTS is defined over a Jordan algebra J of degree 3 we shall
denote the corresponding quasiconformal groups either as QConf.F.J // or sim-
ply as QConf.J /. The construction given in [15] is covariant with respect to the
automorphism group of the FTS, which is isomorphic to the 4D U-duality group of
the corresponding supergravity. For N D 2 MESGTs defined by Jordan algebras of
degree 3, quasiconformal group actions of their three-dimensional U-duality groups
G3 were given explicitly in [22], in a basis covariant with respect to U-duality
groupsG6 of corresponding six-dimensional supergravity theories.

2.9 Quasiconformal Realizations of Lie Groups
and Freudenthal Triple Systems

In this section we shall review the general theory of quasiconformal realizations of
noncompact groups over Freudenthal triple systems that was given in [15].

Every simple Lie algebra g of dimension greater than three can be given a
5-graded decomposition,5 determined by one of its generators �, such that grade
˙2 subspaces are one-dimensional:

g D g�2 ˚ g�1 ˚ g0 ˚ gC1 ˚ gC2; (2.96)

5 This is to be contrasted with the three grading of generalized conformal groups. No real forms of
exceptional Lie algebras G2; F4 and E8 admit such a three grading.



2 Lectures on Spectrum Generating Symmetries and U-Duality 55

where
g0 D h ˚� (2.97)

and
Œ�; t� D mt 8t 2 gm; m D 0;˙1;˙2: (2.98)

Given such a 5-graded Lie algebra it can be constructed over a Freudenthal triple
system F which we shall denote as g.F/ [44,53]. A Freudenthal triple system (FTS)
is defined as a vector space F equipped with a triple product .X; Y;Z/

.X; Y;Z/ 2 F 8 X; Y;Z 2 F (2.99)

that satisfies the identities

.X; Y;Z/ D .Y;X;Z/C 2 hX; Y iZ ;

.X; Y;Z/ D .Z; Y;X/ � 2 hX;ZiY ;
h.X; Y;Z/;W i D h.X;W;Z/; Y i � 2 hX;ZihY;W i ;

.X; Y; .V;W;Z// D .V;W; .X; Y;Z/C ..X; Y; V /;W;Z/

C .V; .Y;X;W /;Z/ : (2.100)

and admits a skew symmetric bilinear form

hX; Y i D �hY;Xi 2 R; 8 X; Y 2 F :

In the corresponding construction of g.F/ one labels the generators belonging to
subspace gC1 by the elements of F

UA 2 gC1 $ A 2 F (2.101)

and through the involution, that reverses the grading, elements of g�1 can also be
labeled by elements of F

QUA 2 g�1 $ A 2 F : (2.102)

Elements of g˙1 generate the full Lie algebra g.F/ by commutation. The generators
belonging to grade zero and grade ˙2 subspaces are labelled by a pair of elements
of F

ŒUA; QUB � � SAB 2 g0; (2.103)

ŒUA; UB � � �KAB 2 g2;

Œ QUA; QUB � � � QKAB 2 g�2:

Commutation relations of the generators of the Lie algebra g can all be expressed in
terms of the Freudenthal triple product .A;B; C /
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ŒSAB ; UC � D �U.A;B;C /; (2.104)

ŒSAB ; QUC � D � QU.B;A;C /;

ŒKAB ; QUC � D U.A;C;B/ � U.B;C;A/;

Œ QKAB ; UC � D QU.B;C;A/ � QU.A;C;B/;

ŒSAB ; SCD � D �S.A;B;C /D � SC.B;A;D/;

ŒSAB ; KCD � D KA.C;B;D/ �KA.D;B;C / ;

ŒSAB ; QKCD � D QK.D;A;C /B � QK.C;A;D/B ;

ŒKAB ; QKCD � D S.B;C;A/D � S.A;C;B/D � S.B;D;A/C C S.A;D;B/C :

Since the grade ˙2 subspaces are one-dimensional their generators can be written as

KAB WD KhA;Bi WD hA;BiK; (2.105)

QKAB WD QKhA;Bi WD hA;Bi QK: (2.106)

Now the defining identities of a FTS imply that

SAB � SBA D �2hA;Bi�; (2.107)

where � is the generator that determines the 5-grading

Œ�; UA� D UA; (2.108)

Œ�; QUA� D � QUA;

Œ�;K� D 2K;

Œ�; QK� D �2 QK;

and generates a distinguished sl.2/ subalgebra together with K; QK

ŒK; QK� D �2�: (2.109)

The 5-grading of g can then be recast as

g D QK ˚ QUA ˚ ŒS.AB/ C��˚ UA ˚K;

where

S.AB/ WD 1

2
.SAB C SBA/

are the generators of the automorphism group Aut.F/ of F that commute with �

Œ�; S.AB/� D 0: (2.110)
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The remaining non-zero commutators are

ŒUA; QUB � D S.AB/ � hA;Bi�; (2.111)

ŒK; QUA� D �2 QUA;

Œ QK;UA� D 2 QUA;

ŒS.AB/; K� D 0:

Every FTS F admits a completely symmetric quadrilinear form which induces a
quartic norm Q4. For an elementX 2 F the quartic norm is

Q4.X/ WD 1

48
h.X;X;X/;Xi; (2.112)

which is invariant under the automorphism group Aut.F/ of F generated by S.AB/.
As was shown in [15] one can realize the 5-graded Lie algebra g non-linearly as a

quasiconformal Lie algebra over a vector space T coordinatized by the elements X
of the FTS F plus an extra singlet variable x [15, 22]:

K .X/ D 0;

K .x/ D 2;

UA .X/ D A;

UA .x/ D hA;Xi ;
SAB .X/ D .A;B;X/ ;

SAB .x/ D 2 hA;Bi x;
QUA .X/ D 1

2
.X;A;X/� Ax;

QUA .x/ D �1
6

h.X;X;X/ ;Ai C hX;Aix;

QK .X/ D �1
6
.X;X;X/CXx;

QK .x/ D 1

6
h.X;X;X/ ;Xi C 2 x2:

(2.113)

The quasiconformal action of the Lie algebra g.F/ on the space T has a beautiful
geometric interpretation. To see this one defines the quartic norm of a vector X D
.X; x/ in the space T as

N4.X / WD Q4.X/ � x2; (2.114)

where Q4.X/ is the quartic norm ofX 2 F and then a “distance” function between
any two points X D .X; x/ and Y D .Y; y/ in T as

d.X ;Y/ WD N4.ı.X ;Y/; (2.115)

where ı.X ;Y/ is the “symplectic” difference of two vectors X and Y:

ı.X ;Y/ WD .X � Y; x � y C hX; Y i/ D �ı.Y;X /: (2.116)
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One can then show that the light-like separations with respect to this quartic distance
function

d.X ;Y/ D 0 (2.117)

is left invariant under quasiconformal group action [15]. In other words quasiconfor-
mal groups are the invariance groups of “light-cones” defined by a quartic distance
function.

2.10 3D U-Duality Groups as Spectrum Generating
Quasiconformal Groups of 4D Supergravity Theories
and Quantum Attractor Flows

As explained above the vector field strengths plus their magnetic duals of a 4D
supergravity defined by a Jordan algebra J of degree 3 are in one-to-one cor-
respondence with the elements of the Freudenthal triple F.J / defined over J .
The automorphism group of F.J / is the U-duality group G4 of the supergravity
defined by J and is isomorphic to the conformal group Conf.J / of J . Furthermore,
U-duality symmetry groupsG3 of the 3D supergravity theories they reduce to under
dimensional reduction are the quasiconformal groups QConf.J / of F.J /. The U-
duality groups of N D 2 MESGTs defined by Jordan algebras of degree 3 in five,
four and three dimensions are also the isometry groups of their scalar manifolds in
the respective dimensions. In five dimensions scalar manifolds are

M5 D Str0.J /

Aut.J /
;

where Str0.J / and Aut.J / are the reduced structure and automorphism groups of J ,
respectively. The scalar manifolds of these theories in four dimensions are

M4 D Conf.J /
fStr0.J / � U.1/;

where Conf.J / is the conformal group of the Jordan algebra J and fStr0.J / is the
compact form of the reduced structure group. Upon further dimensional reduction
to three dimensions they lead to scalar manifolds of the form

M3 D QConf.J /
eConf.J / � SU.2/

;

where QConf.J / is the quasiconformal group associated with the Jordan algebra J
and eConf.J / is the compact real form of the conformal group of J . The complete
list of the symmetric scalar manifolds in five, four and three dimensions are given
in Table 2.4.
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In the original proposal of [15] that the three-dimensional U-duality groups act as
spectrum generating quasiconformal groups of the corresponding four-dimensional
supergravity theories the extra singlet coordinate that extends the 56-dimensional
charge space (pA; qA) of black hole solutions ofN D 8 supergravity was interpreted
as the entropy s of the black hole. The light cone condition on the 57 dimensional
charge-entropy vector .pA; qA; s/ on whichG3 acts as a quasiconformal group then
gives the well-established relation between the entropy s to the quartic invariant Q4

constructed out of the charges

s2 D Q4.p
A; qA/:

A concrete and precise implementation of the proposal that three-dimensional
U-duality groups must act as spectrum generating quasiconformal groups of spher-
ically symmetric stationary BPS black holes of four-dimensional supergravity the-
ories, was given in [51, 52, 54] which we will summarize in this section.6 The basic
starting point of these works is the fact that the attractor equations [29, 56] for a
spherically symmetric stationary black hole of four-dimensional supergravity the-
ories are equivalent to the equations for geodesic motion of a fiducial particle on
the moduli space M�

3 of the three-dimensional supergravity obtained by reduc-
tion on a time-like circle. The connection between the stationary black holes of 4D
gravity coupled to matter and geodesic motion of a fiducial particle on the pseudo-
Riemannian manifold M3 coupled to gravity in three dimensions on a timelike
circle was first observed in [57].7 More specifically, a 4D supergravity theory with
symmetric scalar manifold M4 D G4=K4 reduces on a space-like circle to a 3D
supergravity with scalar manifold

M3 D G3

K3

;

whereK3 is the maximal compact subgroup of G3. The same theory dimensionally
reduced on a time-like circle leads to a theory with scalar manifold of the form [57]

M� D G3

H3

;

where H3 is a certain noncompact real form ofK3. Then the stationary, spherically
symmetric solutions of the four-dimensional equations of motion are equivalent to
geodesic trajectories on the three-dimensional scalar manifold M�

3 D G3=H3 [57].
ForN D 2MESGTs defined by Euclidean Jordan algebras of degree 3 the resulting
spaces M�

3 are para-quaternionic symmetric spaces of the form

6 See also [55].
7 This was used in [58, 59] to construct static and rotating black holes in heterotic string theory.
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Table 2.6 Number of supercharges nQ, 4D vector fields nV, scalar manifolds of supergravity
theories before and after reduction along a timelike Killing vector from DD 4 to DD 3, and
associated Jordan algebras J . Isometry groups of 4D and 3D supergravity theories are given by the
conformal, Conf.J /, and quasiconformal groups, QConf.J /, of J , respectively

nQ nV M4 M�
3 J

8 1 ; U.2; 1/

U.1; 1/ � U.1/
R

8 2
SL.2;R/

U.1/

G2;2

SO.2; 2/
R

8 7
Sp.6;R/

SU.3/ � U.1/

F4.4/

Sp.6;R/� SL.2;R/
JR
3

8 10
SU.3; 3/

SU.3/ � SU.3/ � U.1/

E6.2/

SU.3; 3/ � SL.2;R/
JC
3

8 16
SO�.12/

SU.6/ � U.1/

E7.�5/

SO�.12/ � SL.2;R/
JH
3

8 28
E7.�25/

E6 � U.1/

E8.�24/

E7.�25/ � SL.2;R/
JO
3

8 nC 2
SL.2;R/

U.1/
� SO.n; 2/

SO.n/� SO.2/

SO.nC 2; 4/

SO.n; 2/� SO.2; 2/
R ˚ �.1;n�1/

16 nC 2
SL.2;R/

U.1/
� SO.n� 4; 6/

SO.n� 4/� SO.6/

SO.n� 2; 8/

SO.n� 4; 2/� SO.2; 6/
R ˚ �.5;n�5/

24 16
SO�.12/

SU.6/ � U.1/

E7.�5/

SO�.12/ � SL.2;R
JH
3

32 28
E7.7/

SU.8/

E8.8/

SO�.16/
J

Os

3

M�
3 D QConf.J /

Conf.J / � SU.1; 1/; (2.118)

where Conf.J / is the isometry group of the scalar manifold M4 of the four-
dimensional theory. In Table 2.6 we reproduce a table from [51] giving a complete
list of supergravity theories whose four-dimensional isometry groups are conformal
groups Conf.J / of a Jordan algebra of degree 3 and the resulting scalar manifolds
M�

3 , which include all N 	 4 supergravity theories as well as N D 2 MESGTs
defined by Euclidean Jordan algebras.

For dimensionally reducing the DD 4 theory along a timelike direction one
makes the standard Kaluza–Klein-type ansatz [57]

ds2
4 D �e2U .dt C !/2 C e�2U ds2

3 ; (2.119)

which results in 3D Euclidean gravity coupled to scalars, vectors and fermions.
Vector fields in three dimensions can be dualized to scalars and the bosonic sector
is described simply by the three-dimensional metric ds2

3 and scalar fields �a. The
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three-dimensional scalar fields �a consist of the scalars coming from the 4D theory,
plus electric and magnetic potentials from the reduction of 4D vector fields AA

t

and their duals, plus the scale factor U and the twist potential dual to the shift !
defined in (2.119). The resulting manifold M�

3 of scalar fields can be thought of as
analytic continuation of the Riemannian manifoldM3 obtained from reduction on a
space-like circle.

For spherically symmetric configurations, the metric on three-dimensional slices
can be written as

ds2
3 D N 2.�/ d�2 C r2.�/



d�2 C sin2 � d�2

�
; (2.120)

where � is the radial coordinate that plays the role of time in radial quantization.
The bosonic part of the action then becomes

S D
Z

d�

�
N

2
C 1

2N

�
Pr2 � r2Gab

P�a P�b
�	
; (2.121)

where the dot denotes derivative with respect to � and Gab is the metric on M�
3 .

Thus four-dimensional equations of motion are equivalent to geodesic motion of a
fiducial particle on a real cone R � M�

3 over M�
3 . The equation of motion for the

lapse function N , which is an auxiliary field, imposes the Hamiltonian constraint

H D p2
r � 1

r2
Gabpapb � 1 � 0; (2.122)

where pr and pa are the canonical conjugates to r and �a, respectively. This con-
straint fixes the mass of the fiducial particle on the cone to be 1. Note that for BPS
black holes, one may choose N D 1; � D r; pr D 1. With this choice the problem
reduces to light-like geodesic motion on M�

3 , with affine parameter � D 1=r . The
magnetic and electric charges of the black hole are simply Noether chargesPA,QA

associated with the generators of 4D gauge transformations in the isometry group
G3 acting on M�

3 . These charges generate an Heisenberg subalgebra under Poisson
brackets

ŒPA;QB �PB D 2ıA
B K ; (2.123)

where the “central charge”K is the NUT charge of the black hole [39, 51, 52, 60].8

The conserved charge of the isometry that corresponds to rescalings of the time-time
component gt t of the metric is the ADM mass M that satisfies

ŒM;PA�PB D PA; ŒM;QA�PB D QA; ŒM;K�PB D 2K : (2.124)

8 The solutions with K ¤ 0 have closed timelike curves when lifted back to four dimensions,
as a consequence of the off-diagonal term ! D K cos �d� in the metric (2.119). Therefore real
four-dimensional black holes require taking the “central charge” K ! 0 limit.
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For supergravity theories whose scalar manifolds M�
3 D G3=H3 are homoge-

neous or symmetric spaces there exist additional conserved charges associated with
the additional isometries. For N D 2 MESGTs defined by Euclidean Jordan alge-
bras J of degree 3 the full isometry group of M�

3 is the quasiconformal group
QConf.J / that has a five grading with respect to the generatorM

qconf.J / D QK ˚ . QPA; QQA/˚ .conf.J /CM/˚ .PA;QA/˚K; (2.125)

where conf.J / is the Lie algebra of the 4D U-duality group Conf.J /, which
commutes with ADM mass generatorM .

For spherically symmetric stationary solutions, the supersymmetry variation of
the fermionic fields �˛ are of the general form [61]

ı�˛ D V ˛
i 


i ; (2.126)

where 
i is the supersymmetry parameter and V ˛
i is a matrix linear in the veloci-

ties P�a � @	
@


on M�
3 . For general N D 2 MESGTs reduced to d D 3, the indices

i D 1; 2 and ˛ D 1; : : : ; 2nV C 2 transform as fundamental representations of the
restricted holonomy group Sp.2;R/�Sp.2nV C 2;R/ of para-quaternionic geom-
etry. For supersymmetric backgrounds this variation vanishes for some non-zero 
i .
One can show that this is equivalent to the system of equations [39, 51, 52, 60]:

dzI

d�
D �eU Ci˛gIJ@J jZj; (2.127)

dU

d�
C i

2
K D �2eU Ci˛jZj ; (2.128)

where

Z.P;Q;K/ D eK=2
h
.QA � 2K Q�A/X

A � .PA C 2K�A/FA

i
(2.129)

is the central charge function.9

For vanishing NUT charge K , the above equations take the form of the standard
attractor flow equations describing the radial evolution of the scalars towards the
black hole horizon [29, 30, 56, 62, 63]

dU

d�
D �2eU jZj (2.130)

dzI

d�
D � eU gIJ @J jZj (2.131)

with the central charge function

9 The phase ˛ is to be chosen such that dU=d� is real.
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Z.P;Q;K D 0/ D eK=2
h
QAX

A � PAFA

i
:

The equivalence of attractor flow of N D 2 supergravity in d D 4 and supersym-
metric geodesic motion on M �

3 was pointed out in [64].
The scalar fields Q�A; �

A conjugate to the chargesPA andQA evolve according to

d�A

d�
D �1

2
e2U



.ImN /�1

�AB

�
h
QA � 2K Q�A � ŒReN �BC .P

C C 2K�C /
i

d Q�A

d�
D �1

2
e2U ŒImN �AB

�
PB C 2K�A

�
� ŒReN �AB

d�J

d�
; (2.132)

where NAB is the period matrix of special geometry [48].
For N D 2 MESGTs defined by Euclidean Jordan algebras J of degree 3 the

holonomy group of M�
3 is Conf.J / � Sp.2;R/ � Sp.2nV C 4;R/. The full phase

space is 8nV C 8-dimensional and for BPS black holes supersymmetry leads to
2nV C 1 first class constraints which reduce the dimension of the phase space to
4nV C 6 D .8nV C 8/ � 2.2nV C 1/. This reduced phase of BPS black holes
can be identified with the twistor space of M3 of complex dimension .2nV C 3/

[51, 52, 54, 65].
The twistor space of the scalar manifold

M3 D QConf.J /
eConf.J / � SU.2/

of dimensionally reduced N D 2 MESGT defined by a Jordan algebra J is

Z3 D QConf.J /
eConf.J / � SU.2/ � SU.2/

U.1/
D QConf.J /

eConf.J / � U.1/ : (2.133)

The quasiconformal group action of a group G extends to its complexification
[15]. Consequently, quasiconformal actions of three-dimensional U-duality groups
QConf.J / on the space with real coordinates X D .X; x/ extend naturally to the
complex coordinates Z D .Z; z/ of corresponding twistor spaces Z3 [54]. The
Kähler potential of the Kähler–Einstein metric of the twistor space is given precisely
by the “quartic light-cone” of quasiconformal geometry in these coordinates

K.Z;Z/ D ln d.Z;Z/ D ln


Q4.Z � Z/C .z � Nz C hZ;Zi/2� : (2.134)

The Kähler potential is manifestly invariant under the Heisenberg symmetry group
corresponding to “symplectic translations” generated by QA, PA and K . Under
the global action of “symplectic special conformal generators” QQA, QPA and QK the
quartic light-cone transforms as [15, 54]
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d.Z;Z/ H) f .Z; z/ Nf .Z; Nz/d.Z;Z/; (2.135)

which correspond to Kähler transformations of the Kähler potential (2.134) of the
twistor space and hence leaves the Kähler metric invariant. These results were first
established for quaternionic symmetric spaces [54] and there exist analogous Kähler
potentials for more general quaternionic manifolds invariant only under the Heisen-
berg symmetries generated by QA, PA and K that are in the C-map [65]. As will
be discussed in the next section, the correspondence established between harmonic
superspace formulation of 4D, N D 2 sigma models coupled to N D 2 supergrav-
ity and quasiconformal realizations of their isometry groups [66] implies that Kähler
potentials of quartic light-cone type must exist for all quaternionic target manifolds
and not only those that are in the C-map.

The quantization of the motion of fiducial particle on M�
3 leads to quantum

mechanical wave functions that provide the basis of a unitary representation of
the isometry group G3 of M�

3 . BPS black holes correspond to a special class of
geodesics which lift holomorphically to the twistor space Z3 of M�

3 . Spherically
symmetric stationary BPS black holes of N D 2 MESGT’s are described by holo-
morphic curves in Z3 [51, 52, 54, 65]. Therefore for theories defined by Jordan
algebras J of degree 3, the relevant unitary representations of the isometry groups
QConf.J / for BPS black holes are those induced by their holomorphic actions on
the corresponding twistor spaces Z3, which belong in general to quaternionic dis-
crete series representations [54]. For rank two quaternionic groups SU.2; 1/ and
G2.2/ unitary representations induced by the geometric quasiconformal actions were
studied in great detail in [54].

2.11 Harmonic Superspace, Minimal Unitary Representations
and Quasiconformal Group Actions

In this section we shall review the connection between the harmonic superspace
(HSS) formulation of 4D, N D 2 supersymmetric quaternionic Kähler sigma mod-
els that couple to N D 2 supergravity and the minimal unitary representations of
their isometry groups [66]. We shall then discuss the relevance of these results to the
proposal that quasiconformal extensions of U-duality groups of four-dimensional
N D 2 MESGTs must act as spectrum generating symmetry groups [15, 34, 51, 52,
54], which extends the proposal that the conformal extensions of U-duality groups
ofN D 2, d D 5MESGTs act as spectrum generating symmetry groups [14,15,34].
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2.11.1 4D, N D 2 � -Models Coupled to Supergravity in Harmonic
Superspace

The target spaces of N D 2 supersymmetric �-models coupled to N D 2 super-
gravity in four dimensions are quaternionic Kähler manifolds [61]. They can be
formulated in a manifestly supersymmetric form in harmonic superspace [67–70]
which we shall review briefly following [70]. In harmonic superspace approach the
metric on a quaternionic target space of N D 2 sigma model is given by a quater-
nionic potential L.C4/, which is the analog of Kähler potentials of complex Kähler
manifolds.

The N D 2 harmonic superspace action for the general 4n-dimensional quater-
nionic �-model has the simple form [70]10

S D
Z

d�.�4/dufQC̨DCCQC˛ � qC
i D

CCqCi C L.C4/.QC; qC; u�/g; (2.136)

where the integration is over the analytic superspace coordinates �; ui̇ . The hyper-
multiplet superfields QC̨.�; u/; ˛ D 1; : : : ; 2n and the supergravity hypermultiplet
compensators qC

i .�; u/; .i D 1; 2/ are analytic N D 2 superfields. The ui̇ ; .i D
1; 2/ are the S2 D SUA.2/

UA.1/
isospinor harmonics that satisfy

uCiu�
i D 1

andDCC is a supercovariant derivative with respect to harmonics with the property

DCCu�
i D uC

i :

The analytic subspace of the fullN D 2 harmonic superspace involves only half
the Grassmann variables with coordinates �M and ui̇

�M WD fx�
A; �

aC; N� PaCg; (2.137)

where
x

�
A WD x� � 2i� .i�� N�j /uC

i u�
j ;

�aC WD �ai uC
i ;

N� PaC WD N� Pai uC
i ;

� .i�� N�j /uC
i u�

j WD � .ai .��/a Pa N� Paj /uC
i u�

j ;

� D 0; 1; 2; 3I a D 1; 2I Pa D 1; 2:

10 The conventions for indices in this section are independent of the conventions of previous sec-
tions and follow closely the conventions used in [66]. The number of plus (+) or minus (�) signs
in a superscript or subscript denote the UA.1/ charges. If the UA.1/ charge n > 2, it is indicated as
.Cn/.



66 M. Günaydin

Furthermore the analytic subspace does not involve U.1/ charge �1 projec-
tions of the Grassmann variables and still closes under N D 2 supersymmetry
transformations. It satisfies a “reality condition” with respect to the conjugatione

Qx� D x�;

Q�C D N�C;
QN�C D ��C;

Qui˙ D �ui̇ ;

Qui̇ D ui˙; (2.138)

which is a product of complex conjugation and anti-podal map on the sphere
S2 [71].

The quaternionic potential L.C4/ is a homogeneous function in QC̨ and qC
i of

degree 2 and has U.1/-charge C4. It does not depend on uC and is, otherwise, an
arbitrary “real function” with respect to the involution e. We shall suppress the
dependence of all the fields on the harmonic superspace coordinates �M and ui̇ in
what follows.

The action (7.81) is of the form of Hamiltonian mechanics with the harmonic
derivativeDCC playing the role of time derivative [70–72] and with the superfields
QC and qC corresponding to phase space coordinates under the Poisson brackets

ff; gg�� D 1

2
˝˛ˇ @f

@QC˛

@g

@QCˇ
� 1

2

ij @f

@qCi

@g

@qCj
; (2.139)

˝˛ˇ and 
ij are the invariant antisymmetric tensors of Sp.2n/ and Sp.2/, respec-
tively, which are used to raise and lower indices

QC˛ D ˝˛ˇQC
ˇ
; (2.140)

qCi D 
ij qC
j ;

and satisfy11

˝˛ˇ˝ˇ� D ı˛
� ; (2.141)


ij 
jk D ıi
k: (2.142)

The quaternionic potential L.C4/ plays the role of the Hamiltonian and we shall
refer to it as such following [70].

Isometries of the �-model (7.81) are generated by Killing potentials KCC
A .QC;

qC; u�/ that obey the conservation law

@CCKCC
A C fKCC

A ;L.C4/g�� D 0 ; (2.143)

11 Note that the conventions of [70] for the symplectic metric, which we follow in this section,
differ from those of [73].
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where @CC is defined as

@CC D uCi @

@u�i
:

They generate the Lie algebra of the isometry group

fKCC
A ; KCC

B g�� D f C
AB KCC

C (2.144)

under Poisson brackets (2.139).
The “Hamiltonians” L.C4/ of all N D 2 �-models coupled to N D 2 supergrav-

ity with irreducible symmetric target manifolds were given in [70]. The quaternionic
symmetric spaces, sometimes known as Wolf spaces [74], that arise inN D 2 super-
gravity are of the non-compact type. For each simple Lie group there is a unique
non-compact quaternionic symmetric space. Below we give a complete list of these
spaces:

SU.n; 2/

U.n/ � Sp.2/ ;
SO.n; 4/

SO.n/ � SU.2/� Sp.2/ ;
USp.2n; 2/

Sp.2n/ � Sp.2/ ;
G2.C2/

SU.2/� Sp.2/ ;
F4.C4/

Sp.6/ � Sp.2/ ;
E6.C2/

SU.6/� Sp.2/ ;
E7.�5/

SO.12/� Sp.2/ ;
E8.�24/

E7 � Sp.2/ :

(2.145)

Given a target space G
H�Sp.2/

of N D 2 � model coordinatized by QC̨ and qC
i ,

every generator�A ofG maps to a functionKCC
A .QC; qC; u�/ such that the action

of KCC
A is given via the Poisson brackets (2.139). Furthermore, it can be shown

that the Hamiltonian L.C4/ depends only on QC̨ and the combination .qCu�/ �
qCi u�

i [70]
L.C4/ D L.C4/.QC; .qCu�// (2.146)

and can be written as

L.C4/ D P .C4/.QC/
.qCu�/2

: (2.147)



68 M. Günaydin

The fourth order polynomial P .C4/ is given by

P .C4/.QC/ D 1

12
S˛ˇ�ı Q

C˛QCˇQC�QCı ; (2.148)

where S˛ˇ�ı is a completely symmetric invariant tensor of H . In terms of matrices
ta
˛ˇ

D ta
ˇ˛
; a D 1; 2; : : : ; dim.H/ given by the action of the generatorsKCC

a of H

on the coset space generatorsKCC
i˛

fKCC
a ; KCC

i˛ g D tˇa˛K
CC
iˇ

(2.149)

the invariant tensor reads as [70]

S˛ˇ�ı D habt
a
˛ˇ t

b
�ı C˝˛�˝ˇı C˝˛ı˝ˇ� ; (2.150)

where hab is the Killing metric of H .
The Killing potentials that generate the isometry groupG are given by [70]

Sp.2/ W KCC
ij D 2.qC

i q
C
j � u�

i u�
j L.C4//; (2.151)

H W KCC
a D ta˛ˇQ

C˛QCˇ ; (2.152)

G=H � Sp.2/ W KCC
i˛ D 2qC

i Q
C̨ � u�

i .q
Cu�/@�̨L.C4/ ; (2.153)

where
@�̨ WD @

@QC˛
;

ta˛ˇ D ˝ˇ� t
�

a˛ :

The Killing potentials KCC
ij that generate Sp.2/ are conserved for any arbitrary

polynomial P .C4/.QC/. Since ta are also the representation matrices of the gen-
erators of H acting on QC˛ one finds that the fourth order polynomial P .C4/

is proportional to the quadratic “Casimir function” habKCC
a KCC

b
of H . Further-

more, P .C4/ can also be expressed in terms of Killing potentials of the coset space
generators, or in terms of the Sp.2/ Killing potentials as follows [70]:

P .C4/ D � 1

16

ij˝˛ˇKCC

i˛ KCC
jˇ

D �1
8
KCCijKCC

ij : (2.154)

2.11.2 Minimal Unitary Representations of Non-compact Groups
from Their Quasiconformal Realizations

Before discussing its relationship to the HSS formulation of N D 2 sigma models
given in the previous section, we shall review the unified construction of minimal
unitary representations of noncompact groups obtained by quantization of their
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geometric realizations as quasiconformal groups following [73] which generalizes
the results of [22, 75, 76].

Consider the 5-graded decomposition of the Lie algebra g of a noncompact
groupG of quaternionic type and label the generators such that

g D g�2 ˚ g�1 ˚ .h ˚�/˚ gC1 ˚ gC2;

g D E ˚E˛ ˚ .J a C�/˚ F ˛ ˚ F; (2.155)

where � is the generator that determines the 5-grading. Generators J a of h satisfy

ŒJ a; J b� D f ab
cJ

c ; (2.156a)

where a; b; : : : D 1; : : : ;D D dim.H/. We shall denote the symplectic representa-
tion by which h acts on the subspaces g˙1 as �

ŒJ a ; E˛� D .�a/˛ˇE
ˇ ; ŒJ a ; F ˛� D .�a/˛ˇF

ˇ ; (2.156b)

where E˛, ˛; ˇ; : : : D 1; : : : ; N D dim.�/ are generators that span the sub-
space g�1

ŒE˛ ; Eˇ � D 2˝˛ˇE (2.156c)

and F ˛ are generators that span gC1

ŒF ˛ ; F ˇ � D 2˝˛ˇF: (2.156d)

˝˛ˇ is the symplectic invariant “metric” of the representation �. The remaining
nonvanishing commutation relations of g are given by

F ˛ D ŒE˛ ; F �;

E˛ D ŒE ; F ˛�;

ŒE˛ ; F ˇ � D �˝˛ˇ�C 
�˛ˇ
a J a;

Œ�;E˛� D �E˛;

Œ�; F ˛� D F ˛;

Œ�;E� D �2E;
Œ�; F � D 2F;

(2.156e)

where 
 is a constant parameter whose value depends on the Lie algebra g. Note that
the positive (negative) grade generators form a Heisenberg subalgebra since

ŒE˛ ; E� D 0 (2.157)

with the grade C2 (�2) generator F.E/ acting as its central charge.
In the minimal unitary realization of noncompact groups [73], negative grade

generators are expressed as bilinears of symplectic bosonic oscillators �˛ satisfying
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the canonical commutation relations12

Œ�˛ ; �ˇ � D ˝˛ˇ (2.158)

and an extra coordinate y.13

E D 1

2
y2; E˛ D y �˛ ; J a D �1

2
�a

˛ˇ �
˛�ˇ : (2.159)

The quadratic Casimir operator of the Lie algebra h is

C2.h/ D �abJ
aJ b; (2.160)

where �ab is the Killing metric of the subgroup H , which is isomorphic to the
automorphism group of the underlying FTSF . The quadratic CasimirC2.h/ is equal
to the quartic invariant ofH in the representation �modulo an additive constant that
depends on the normal ordering chosen, namely

I4.�
˛/ D S˛ˇ�ı�

˛�ˇ ���ı D C2.h/C c; (2.161)

where c is a constant and
S˛ˇ�ı WD �a.˛ˇ�

a
�ı/:

The grade C2 generator F has the general form

F D 1

2
p2 C �.C2.h/C C/

y2
; (2.162)

where p is the momentum conjugate to the singlet coordinate y

Œy; p� D i (2.163)

and � and C are some constants depending on the Lie algebra g. The grade C1
generators are then given by commutators

F ˛ D ŒE˛; F � D ip �˛ C �y�1Œ�˛ ; C2�: (2.164)

If H is simple or Abelian they take the general form [73]

F ˛ D ip �˛ � �y�1Œ2 .�a/˛ˇ �
ˇJa C C� �

˛ �; (2.165)

12 In this section we follow the conventions of [73]. The indices ˛; ˇ; : : : are raised and lowered
with the antisymmetric symplectic metric ˝˛ˇ D �˝ˇ˛ that satisfies ˝˛ˇ˝	ˇ D ı˛	 and V ˛ D
˝˛ˇVˇ , and V˛ D V ˇ˝ˇ˛ .
13 In the corresponding geometric quasiconformal realization of the group G over an .N C 1/-
dimensional space this coordinate corresponds to the singlet of H .
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whereC� is the eigenvalue of the second order Casimir ofH in the representation �.
Furthermore, one finds

ŒE˛ ; F ˇ � D ��˝˛ˇ � 6�.�a/˛ˇJa; (2.166)

where � D � i
2
.yp C py/.14

For simple H the quadratic Casimir operator of the Lie algebra g can be
calculated simply [73]

C2.g/ D J aJa C 2C�

N C 1

�
1

2
�2 C EF C FE

�
� C�

N C 1
˝˛ˇ .E

˛F ˇ C F ˇE˛/:

(2.167)
The quadratic Casimir of sl.2/ generated by E;F and � can be expressed in terms
of the quadratic Casimir J aJa of H :

1

2
�2 C EF C FE D �.J aJa C C/� 3

8
(2.168)

as well as the contribution of the coset generatorsF ˛ andEˇ to C2.g/ to the Casimir
of g

˝˛ˇ .E
˛F ˇ C F ˇE˛/ D 8 �J aJa C N

2
C �C�N: (2.169)

Thus the quadratic Casimir of g reduces to a c-number [73]

C2.g/ D C

�
8�C�

N C 1
� 1

�
� 3

4

C�

N C 1
� N

2

C�

N C 1
� �C 2

�N

N C 1
(2.170)

as required by irreducibility of the minimal representation and is a general fea-
ture for minimal unitary realizations of all simple groups G obtained from their
quasiconformal realizations [22, 73, 75, 76].

2.11.3 Harmonic Superspace Formulation of N D 2

Sigma Models and Minimal Unitary Representations
of Their Isometry Groups

Let us now show that there is a precise mapping between the Killing potentials of
the isometry groupG of the sigma model in harmonic superspace and the generators
of its minimal unitary realization [66]. This is best achieved by rewriting the Killing
potentials in terms of SU.2/A invariant canonical variables, which are defined as

14 In the most general case, where H is not necessarily simple or Abelian, one finds that the
commutator of E˛ and F ˇ has the same form as above.
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follows

p
2qCi u�

i WD w; (2.171)p
2qCi uC

i WD pCC: (2.172)

The poisson brackets of qCi

fqCi ; qCj g D �1
2

ij (2.173)

imply that
fw; pCCg D �1: (2.174)

Under the conjugationewe have

e

eqCi D �qCi ;

ffui̇ D �ui̇ ;

which imply

eew D w; (2.175)

e

epCC D pCC: (2.176)

The Hamiltonian can then be written as

L.C4/ D 2P .C4/.QC/
w2

: (2.177)

The SUA.2/ invariant Killing potentials that generate the isometry group G are
then

Sp.2/ W M .C4/ WD MCCCC D KCC
ij uCi uCj D .pCC/2 � 2P .C4/.QC/

w2 ;

MCC D KCC
ij .uCi u�j C uCj u�i / D wpCC C pCCw;

M 0 D KCC
ij u�i u�j D w2;

H W KCC
a D ta˛ˇQ

C˛QCˇ ;

G=H � Sp.2/ W T .C3/
˛ WD TCCC

˛ D KCC
i˛ uCi D �p

2fpCCQC̨ � @�
˛ P .C4/.QC/

w g;
T C̨ D KCC

i˛ u�i D �p
2wQC̨:

(2.178)
Comparing the above Killing potentials of the isometry group G with the gen-

erators of the minimal unitary realization of G given above we have one-to-one
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Table 2.7 Correspondence between the quantities of the harmonic space formulation of N D 2

sigma models coupled to supergravity and the operators that enter in the minimal unitary
realizations of their isometry groups

� -Model with Minimal unitary
isometry group G in HSS representation of G

w y

pCC p

f ; g i Œ ; �

QC˛ �˛

P .C4/.QC/ I4.�/

KaCC D t a˛ˇQ
C˛QCˇ J a D �a˛ˇ�

˛�ˇ

TCCC
˛ D K

CC
i˛ uCi F ˛

TC
˛ D K

CC
i˛ u�i E˛

MCCCC F

M0 E

MCC �

correspondence between the elements of harmonic superspace (HSS) and those of
minimal unitary realizations (MINREP) given in Table 2.7.

The Poisson brackets (PB) f; g in HSS formulation go over to i times the com-
mutator Œ; � in the minimal unitary realization and the harmonic superfields w; pCC
corresponding to supergravity hypermultiplet compensators, that are canonically
conjugate under PB map to the canonically conjugate coordinate and momentum
operators y; p. Similarly, the harmonic superfields QC˛ that form N=2 conjugate
pairs under Poisson brackets map into the symplectic bosonic oscillators �˛ on the
MINREP side. One finds a normal ordering ambiguity in the quantum versions of
the quartic invariants. The classical expression relating the quartic invariant poly-
nomial P .C4/ to the quadratic Casimir function in HSS formulation differs from
the expression relating the quartic quantum invariant I4 to the quadratic Casimir
of H by an additive c-number depending on the ordering chosen. The consistent
choices for the quadratic Casimirs for all noncompact groups of quaternionic type
were given in [22, 73, 76].

Furthermore, the mapping between HSS formulation of N D 2 sigma models
and minimal unitary realizations of their isometry groups G extends also to the
equations relating the quadratic Casimir of the subgroupH to the quadratic Casimir
of Sp.2/ subgroup and to the contribution of the coset generators G=H � Sp.2/ to
the quadratic Casimir ofG modulo some additive constants due to normal ordering.

On the MINREP side we are working with a realization in terms of quantum
mechanical coordinates and momenta, while in HSS side the corresponding quan-
tities are classical harmonic analytic superfields. The above correspondence can
be extended to the full quantum correspondence on both sides by reducing the
4D N D 2 � model to one dimension and quantizing it to get a supersymmetric
quantum mechanics (with eight supercharges). The bosonic spectrum of the corre-
sponding quantum mechanics must furnish a minimal unitary representation of the
isometry group, which extends to a fully supersymmetric spectrum.
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2.11.4 Implications

The mapping between the formulation of N D 2, d D 4 quaternionic Kähler �
models in HSS and the minimal unitary realizations of their isometry groups
reviewed above is quite remarkable. It implies that the fundamental spectra of
the quantum N D 2, quaternionic Kähler � models in d D 4 and their lower
dimensional counterparts must fit into the minimal unitary representations of their
isometry groups. The fundamental spectra consist of states created by the action of
harmonic analytic superfields at a given point in analytic superspace with coordi-
nates �M on the vacuum of the theory. The above analysis shows that the states
created by purely bosonic components of analytic superfields will fit into the
minimal unitary representation of the corresponding isometry group. Since the
analytic superfields are unconstrained, the bosonic spectrum must extend to full
N D 2 supersymmetric spectrum (eight supercharges) by the action of the fermionic
components of the superfields.

The minimal unitary representations for general noncompact groups are the
analogs of the singleton representations of symplectic groups Sp.2n;R/ [73]. The
singleton realizations of Sp.2n;R/ correspond to free field realizations, i.e. their
generators can be written as bilinears of bosonic oscillators.15 As a consequence
the tensoring procedure becomes simple and straightforward for the symplectic
groups [77]. However, in general, the minimal unitary realization of a noncompact
group is “interacting” and the corresponding generators are nonlinear in terms of
the coordinates and momenta, which makes the tensoring problem highly nontriv-
ial. For the quantum N D 2 quaternionic Kähler � models one then has to tensor
the fundamental supersymmetric spectra with each other repeatedly to obtain the
full “perturbative” spectra. The full “nonperturbative” spectra in quantum HSS will,
in general, contain states that do not form full N D 2 supermultiplets, such as 1=2
BPS black holes, etc.

We should also stress that the fundamental spectrum is generated by the action
of analytic harmonic superfields involving an infinite number of auxiliary fields.
Once the auxiliary fields are eliminated the dynamical components of the superfields
become complicated nonlinear functions of the physical bosonic and fermionic
fields. Therefore the “fundamental spectrum” in HSS is in general not the simple
Fock space of free bosons and fermions.

The N D 2, d D 4 MESGT’s under dimensional reduction lead to N D 4,
d D 3 supersymmetric � models with quaternionic Kähler manifoldsM3 (C-map).
After T-dualizing the three-dimensional theory one can lift it back to four dimen-
sion, thereby obtaining an N D 2 sigma model coupled to supergravity that is in
the mirror image of the originalN D 2 MESGT. In previous sections we discussed
how quantizing spherically symmetric stationary BPS black hole solutions of 4D,
N D 2 MESGTs defined by Jordan algebras naturally lead to quaternionic discrete

15 For symplectic groups the quartic invariant vanishes and hence the minimal unitary realization
becomes a free field construction.
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series representations of their three dimensional U-duality groups QConf.J /. The
results summarized in this section suggest even a stronger result, namely, quan-
tized solutions (spectra) of a 4D, N D 2 MESGT, that allow dimensional reduction
to three dimensions, must fit into the minimal unitary representation of its three-
dimensional U-duality group and those representations obtained by tensoring of
minimal representations.

2.12 M/Superstring Theoretic Origins of N D 2 MESGTs
with Symmetric Scalar Manifolds

Both the maximal supergravity and the exceptional N D 2 MESGT defined by the
exceptional Jordan algebra JO

3 have exceptional groups of the E series as their
U-duality symmetry groups in five, four and three dimensions. The numbers of vec-
tor fields of these two theories are the same in five and four dimensions. However,
the real forms of their U-duality groups are different. In the Table 2.8 we list the
U-duality groups of the N D 2 exceptional MESGT and those of maximal N D 8

supergravity. Just like the N D 8 supergravity the fields of the exceptional N D 2

MESGT could not be identified with quarks and leptons so as to obtain a unified
theory of all interactions without invoking a composite scenario [5,78]. However, it
was observed that unlike the maximalN D 8 supergravity theory one might be able
to couple matter multiplets to the exceptional supergravity theory which could be
identified with quarks and leptons [5,78]. These two theories have a common sector
which is theN D 2MESGT defined by the quaternionic Jordan algebra JH

3 [5]. The
existence of the exceptional MESGT begs the question whether there exists a larger
theory that can be “truncated” to both the exceptional MESGT and the maximal
supergravity theory [78]. After the discovery of Green–Schwarz anomaly cancel-
lation and the development of Calabi–Yau technology this question evolved into
the question whether one could obtain the exceptional 4D and 5D MESGTs as low
energy effective theories of type II superstring theory or M-theory on some excep-
tional Calabi–Yau manifold [8]. In fact more generally one would like to know if
N D 2 MESGTs with symmetric target spaces can be obtained from M/superstring
theory on some Calabi–Yau manifold with or without hypermultiplet couplings. The
compactifications of M/Superstring theory over generic Calabi–Yau manifolds do
not, in general, lead to symmetric or homogeneous scalar manifolds in the corre-
sponding five or four-dimensional theories [79, 80]. In the mathematics literature
this was posed as the question whether Hermitian symmetric spaces could arise as
moduli spaces of deformations of Hodge structures of Calabi–Yau manifolds [81].
In particular, the difficulty of obtaining the exceptional moduli space E7.�25/

E6�U.1/
was

highlighted by Gross [81].
Using methods developed earlier in [82] Sen and Vafa constructed dual pairs of

compactifications of type II superstring withN D 2; 4 andN D 6 supersymmetries
in d D 4 by orbifolding T 4 � S1 � S1 [83]. Remarkably, the low energy effective
theory of one of the compactifications they study is precisely the magical N D 2
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Table 2.8 U-duality groups of the exceptional N D 2 MESGT defined by the exceptional Jordan
algebra and of the maximal N D 8 supergravity in five, four and three spacetime dimensions. In
the last column we list the U-duality group of theN D 2MESGT defined by JH

3 that is a common
sector of these two theories

d JO
3 MESGT N D 8 Supergravity JH

3 MESGT

5 E6.�26/ E6.6/ SU �.6/

4 E7.�25/ E7.7/ SO�.12/

3 E8.�24/ E8.8/ E7.�5/

MESGT defined by the quaternionic Jordan algebra JH
3 without any hypermulti-

plets [84, 85]. This follows from the fact that the resulting N D 2 theory has the
same bosonic field content as the N D 6 supergravity which they also obtain via
orbifolding. As was shown in [5], the bosonic sector of N D 6 supergravity and
the N D 2 MESGT defined by JH

3 are identical and their scalar manifold in d D 4

is SO�.12/=U.6/.16 This theory is self-dual with the dilaton belonging to a vec-
tor multiplet. In addition to the magical N D 2 MESGT defined by JH

3 , Sen and
Vafa gave several other examples of compactifications with N D 2 supersymmetry
and symmetric target manifolds in d D 4. One is the STU model coupled to four
hypermultiplets with scalar manifold

MV � MH D
�

SU.1; 1/

U.1/

	3

� SO.4; 4/

SO.4/ � SO.4/ ; (2.179)

which is also self-dual. Another theory they construct leads to N D 2 supergravity
belonging to the generic Jordan family defined by the Jordan algebra J D R˚�.1;6/

with the target space

MV D SO.6; 2/ � SU.1; 1/
SO.6/� U.1/ � U.1/

which is not self-dual.
A well-known theory with a symmetric target space that descends from type II

string theory is the FSHV model [86]. It is obtained by compactification on a self-
mirror Calabi–Yau manifold with Hodge numbers h.1;1/ D h.2;1/ D 11 and has the
4D scalar manifold

MV � MH D SO.10; 2/� SU.1; 1/
SO.10/� U.1/ � U.1/ � SO.12; 4/

SO.12/� SO.4/ (2.180)

corresponding to the MESGT defined by the Jordan algebra .R˚�.1;9// coupled to
12 hypermultiplets.

16 The authors of [83] appear to be unaware of this fact. It is easy to show that the resulting N D 2

supergravity with 15 vector multiplets can not belong to the generic Jordan family with the scalar
manifold SO.14;2/�SU.1;1/

SO.14/�U.1/�U.1/
.
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It was known for sometime (M. Günaydin and E. Sezgin, unpublished) that
there exists a six-dimensional .1; 0/ supergravity theory, which is free from gravita-
tional anomalies, with 16 vector multiplets, 9 tensor multiplets and 28 hypermulti-
plets, that parametrize the exceptional quaternionic symmetric space E8.�24/=E7 �
SU.2/.17 This theory reduces to the exceptional supergravity theory defined by JO

3

coupled to the hypermultiplets in lower dimensions. It has the 4D scalar manifold

MV � MH D E7.�25/

E6 � U.1/ � E8.�24/

E7 � SU.2/
and in three dimensions the moduli space becomes

E8.�24/

E7 � SU.2/ � E8.�24/

E7 � SU.2/ : (2.181)

The moduli space of the FSHV model is a subspace of this doubly exceptional
moduli space. The existence of an anomaly free theory in d D 6 that reduces to this
doubly exceptional theory whose moduli space includes that of the FSHV model
suggests strongly that there must exist an exceptional Calabi–Yau manifold such
that M/superstring theory compactified over it yields this doubly exceptional theory
as was argued in [84, 85].

Some important developments about the stringy origins of magical supergravity
theories that took place after SAM 2007 is summarized in the next section.

2.13 Recent Developments and Some Open Problems

Since they were delivered, a great deal of progress has been made on the main topics
covered in these lecture, which I will try to summarize briefly in this section.

We discussed at some length the proposals that four and three dimensional
U-duality groups act as spectrum generating conformal and quasiconformal groups
of five and four dimensional supergravity theories with symmetric scalar manifolds
respectively. Applying these proposals in succession implies that three-dimensional
U-duality groups should act as spectrum generating symmetry groups of the five-
dimensional theories from which they descend. Several results that have been
obtained recently lend further support to these proposals. The authors of [87, 88]
used solution generating techniques to relate the known black hole solutions of
simple five-dimensional ungauged supergravity and those of the 5D STU model to
each other and generate new solutions by the action of corresponding 3D U-duality
groups G2.2/ and SO.4; 4/, respectively. For simple ungauged 5D supergravity
similar results were also obtained in [89] and for gauged 5D supergravity in [90].

17 This theory remains anomaly free if one replaces the hypermultiplet sector with any 112 (real)
dimensional quaternionic sigma model.
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Attractor flows for non-BPS extremal black holes that are described by certain
pseudo-Riemannian symmetric sigma models coupled to 3D supergravity was car-
ried out in [91].18 Extremal BPS and non-BPS black holes of supergravity theories
with symmetric target spaces were also studied in [93, 94]. For a more complete
up-to-date list of references on extremal BPS and non-BPS attractors and their orbit
structures I refer to [47].

As we discussed above the quantization of the attractor flows of stationary spher-
ically symmetric 4D N D 2 BPS black holes leads to wave-functions that form
the basis of quaternionic discrete series representations of the corresponding 3D
U-duality groups QConf.J /. Unitary representations of two quaternionic groups
of rank two, namely SU.2; 1/ and G2.2/, induced by their geometric quasiconfor-
mal actions were studied in [54]. The starting point of the constructions of unitary
representations given in [54] are the spherical vectors with respect to the maximal
compact subgroupsSU.2/�U.1/ and SU.2/�SU.2/, respectively, under their qua-
siconformal actions. In a recent paper with Pavlyk [95] we gave a unified realization
of three-dimensional U-duality groups of all N D 2MESGTs defined by Euclidean
Jordan algebras of degree 3 as spectrum generating quasiconformal groups covariant
with respect to their 5D U-duality groups. The spherical vectors of quasiconformal
realizations of all these groups twisted by a unitary character with respect to their
maximal compact subgroups as well as their quadratic Casimir operators and their
values were also given in [95]. In a subsequent paper [96] we extended these results
to a unified realization of split exceptional groups F4.4/; E6.6/; E7.7/; E8.8/ and of
SO.n C 3;mC 3/ as quasiconformal groups that is covariant with respect to their
subgroups SL.3;R/; SL.3;R/�SL.3;R/; SL.6;R/;E6.6/ and SO.n;m/�SO.1; 1/,
respectively, and determined their spherical vectors. We also gave their quadratic
Casimir operators and determined their values in terms of � and the dimension nV

of the underlying Jordan algebras. For � D �.nV C 2/ C i� the quasiconformal
action induces unitary representations on the space of square integrable functions
in .2nV C 3/ variables, that belong to the principle series. For special discrete val-
ues of � the quasiconformal action leads to unitary representations belonging to
the discrete series and their continuations. For the quaternionic real forms of 3D
U-duality groups these discrete series representations belong to the quaternionic
discrete series.

As I discussed in Sect. 2.11, the minimal unitary representations of non-compact
groups are the analogs of the singleton representations of the symplectic groups
Sp.2n;R/. Now Sp.4;R/ is the covering group 4D anti-de Sitter or 3D conformal
group SO.3; 2/. For higher AdS or conformal groups the analogous representations
were referred to as doubletons [97, 98]. Singleton or doubleton representations of
AdS or conformal groups SO.d; 2/ are singular positive energy (lowest weight)
unitary representations, which are in the continuation of holomorphic discrete rep-
resentations. Even though they do not belong to the holomorphioc discrete series,

18 Preliminary results of this work was reported by Li [92] in this school after these lectures were
delivered.
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by tensoring singletons or doubletons one can obtain the entire holomorphic dis-
crete series representations of AdS or conformal groups. This fact lies at the heart
of AdS/CFT dualities [99]. In fact, the entire K–K spectrum of IIB supergravity over
AdS5 � S5 was obtained by tensoring the CPT invariant doubleton supermultiplet
repeatedly with itself in [98]. Again it was pointed out in [98] that the doubleton
supermultiplet decouples from the K–K spectrum as gauge modes and its field the-
ory is the conformally invariant N D 4 super Yang–Mills theory that lives on the
boundary of AdS5 which is the 4D Minkowski space. Similar results were obtained
for 11-dimensional supergravity on AdS4 � S7 [100] and on AdS7 � S4 [97].

Similarly, the minimal unitary representations of noncompact groups of quater-
nionic type do not belong to the quaternionic discrete series, but are in their singular
continuations [101]. I argued in Sect. 2.11 that the “fundamental spectrum” of
N D 2 sigma models coupled to supergravity with symmetric target manifolds
G=K � SU.2/ must belong to the minimal unitary representation of G obtained
by quantization of the geometric quasiconformal realization of G. On the other
hand quantization of the geodesic motion describing the dynamics of spherically
symmetric BPS black holes lead to wave functions belonging to the quaternionic
discrete series representations of G [54]. This implies that by tensoring minimal
unitary representations one should be able to obtain the quaternionic discrete series
representations. Decomposition of tensor products of minimal unitary represen-
tations into its irreducible pieces is much harder for general noncompact groups
since their minimal representations are, in general, not of the lowest weight type
and their realizations are non-linear (interacting)! This problem is currently under
investigation [102].

Several novel results were obtained regarding the stringy origins of magical
supergravity theories since SAM 2007. In [103] the hyper-free N D 2 string mod-
els based on asymmetric orbifolds with N D .4; 1/ world-sheet superconformal
symmetry using 2D fermionic construction were given. Among these models two
of them correspond to two of the magical supergravity theories, namely the JC

3

MESGT with the moduli space

M4 D SU.3; 3/

SU.3/� SU.3/� U.1/

and the JH
3 theory with the moduli space

M4 D SO�.12/
U.6/

:

In [104], Bianchi and Ferrara reconsidered the string derivation of FSHV model
over the Enriques Calabi–Yau and argued that the exceptional supergravity the-
ory defined by octonionic JO

3 admits a string interpretation closely related to the
Enriques model. They show that the uplift of the exceptional MESGT to d D 6 has
16 Abelian vectors which is related to the rank of Type I and heterotic strings.
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In mathematics literature, Todorov gave a construction of Calabi–Yau n-folds
whose moduli spaces are locally symmetric spaces [105]. This family of CY man-
ifolds of complex dimension n are double covers of the projective n dimensional
spaces ramified over 2nC 2 hyperplanes. They have the Hodge numbers

h.n�p;p/ D
�
n

p

�2

and have the second Betti numbers

b2 D
�
.2nC 2/

2

�
C 1:

Type IIB superstring theory compactified over such a CY threefold constructed by
Todorov leads to the magicalN D 2MESGT defined by the complex Jordan algebra
JC

3 with vector moduli space

M4 D SU.3; 3/

SU.3/� SU.3/� U.1/

coupled to .h.1;1/ C1/D 30 hypermultiplets. Todorov promises a sequel to his paper
in which he would show that there are no instanton corrections to the moduli space
of this Calabi–Yau manifold.

The fact that some N D 2 MESGTs with symmetric target spaces, in particu-
lar the magical supergravity theories, can be obtained from M/Superstring theory is
of utmost importance. It implies that the corresponding supergravity theories have
quantum completions and discrete arithmetic subgroups of their U-duality groups
will survive at the non-perturbative regime of M/Superstring theory [3]. The rele-
vant unitary representations of the spectrum generating symmetry groups will then
be some “automorphic representations”. If and how some of the results obtained
for continuous U-duality groups extend to their discrete subgroups is a wide open
problem.

Another open problem is the quantization of 4D, N D 2 sigma models
that couple to supergravity in harmonic superspace and their lower dimensional
descendents.
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Chapter 3
Attractors, Black Holes and Multiqubit
Entanglement

Péter Lévay

Abstract Recently a striking correspondence has been established between quan-
tum information theory and black hole solutions in string theory. For the intriguing
mathematical coincidences underlying this correspondence the term “Black Hole
Analogy” has been coined. The basic correspondence of the analogy is the one
between the entropy formula of certain stringy black hole solutions on one hand
and entanglement measures for qubit and qutrit systems on the other. In these lec-
ture notes we develop the basic concepts of multiqubit entanglement needed for a
clear exposition of the Black Hole Analogy. We show that using this analogy we can
rephrase some of the well-known results and awkward looking expressions of super-
gravity in a nice form by employing some multiqubit entangled states depending on
the quantized charges and the moduli. It is shown that the attractor mechanism in
this picture corresponds to a distillation procedure of highly entangled graph states
at the black hole horizon. As a further insight we also find a very interesting con-
nection between error correcting codes, designs and the classification of extremal
BPS and non-BPS black hole solutions.

3.1 Introduction

In a recent series of papers [1–5] some interesting multiple relations have been
established between quantum information theory and the physics of stringy black
hole solutions. The activity in this field has started with the observation of Duff [1]
that the macroscopic black hole entropy for the BPS STU model can be expressed
as an entanglement invariant characterizing three-qubit entanglement. Later Kallosh
and Linde [2] have shown that for this model the different classes of black hole
solutions correspond to the so called stochastic local operations and classical
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communication (SLOCC) classes of entanglement types characterizing three-qubit
entanglement. As a next step in [3] it has been shown that the well-known process
of moduli stabilization based on the supersymmetric attractor mechanism [6–9] in
the entanglement picture corresponds to a distillation procedure of a GHZ-like state
with maximum tripartite entanglement. This nice correspondence is based on the
similar symmetry properties of the corresponding physical systems. For the STU
model the symmetry group in question is SL.2;R/˝3 coming from the structure of
the moduli space SL.2;R/=U.1/ � SL.2;R/=U.1/ � SL.2;R/=U.1/, and for the
quantum information theoretic scenario it is the group SL.2;C/˝3 related to the
SLOCC group GL.2;C/˝3. Due to the very special structure of the STU model at
first sight it seems that this black hole analogy should run out of steam for black
hole solutions corresponding to moduli spaces not exhibiting a product structure.
However, later work [4, 5, 10] originating from the insight of Kallosh and Linde [2]
revealed that the black hole entropy as a function of the 56 charges (28 electric
and 28 magnetic) expressed in terms of Cartan’s quartic invariant occurring in the
context of N D 8, d D 4 supergravity [11] with moduli space E7.7/=SU.8/ can
be understood as a special type of entangled system of seven qubits based on the
discrete geometry of the Fano plane consisting of seven points and seven lines.
Moreover, different types of consistent truncations of this N D 8, d D 4 model
in the entanglement picture can be understood via restriction to entangled subsets of
the Fano plane. For example the STU model arising as a consistent truncation with
eight charges (four electric and four magnetic) is obtained by keeping merely one
point of the Fano plane.

Based on recent results in the mathematics literature [12, 13] it was conjec-
tured [5] that discrete geometric structures associated with the exceptional groups
occurring in the magic square of Freudenthal and Tits might show up in other
entangled systems which in turn can provide interesting connections to magic super-
gravities. In this context see the interesting paper of Duff and Ferrara [14] stretching
the validity of the black hole analogy to the realm of black hole solutions in d D 5

based on the groupE6.6/ connected to the bipartite entanglement of three qutrits.
Interestingly these striking mathematical coincidences can be related to classi-

cal error correcting codes. For example the possibility for extending the black hole
analogy further to theN D 8, d D 4 context is intimately connected to the classical
.7; 3; 1/ Hamming code. This is a code consisting of 16 codewords of 7 bits, encod-
ing 4 message bits. The code, capable of correcting 1 bit flip errors, is connected to
the incidence structure of the Fano plane. One of the aims of these lecture notes is
to show that all the relevant information concerning the structure of the E7.7/ sym-
metric black hole entropy formula and the correspondingU -duality transformations
can nicely be derived from the properties of the Hamming code [5].

Classical error correcting codes have their corresponding quantum counterparts.
In the rapidly evolving field of quantum information theory the theory of quantum
error correcting codes based on some well-known classical ones is under intense
scrutiny these days. Hence it is an interesting idea to check whether the elements
of quantum error correction can be found in the black hole context. In our recent
paper [15] on the structure of BPS and non-BPS extremal black hole solutions in the
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STU model we have shown that a formalism based on the idea of error correction can
really give some additional insights. We have shown that the black hole potential can
be expressed as one-half the norm of a suitably chosen three-qubit entangled state
containing the quantized charges and the moduli. The extremization of the black
hole potential in terms of this entangled state amounts to either suppressing bit flip
errors (BPS-case) or allowing very special types of flips transforming the states
between different classes of non-BPS solutions. We have illustrated our results for
the example of a D2–D6 system. In this case the bit flip errors were corresponding
to sign flip ones of the charges originating from the number of D2 branes. It turned
out that after moduli stabilization the states depending entirely on the charges are
maximally entangled graph-states (of the triangle graph) well-known from quantum
information theory.

The aim of these lecture notes is twofold. First we would like to present a detailed
derivation of these results. Second we would like to introduce the reader having
expertise in the field of stringy black hole solutions also to the existing theory of
multipartite quantum entanglement. In order to achieve this task we start by care-
fully developing the basic concepts of multiqubit entanglement needed for a clear
exposition of the black hole analogy. We presented slightly more results from quan-
tum information theory than needed for understanding the applications within the
realm of stringy black holes. These extra results might serve as a good starting point
for the reader to get some inspiration for developing the analogy further. We hope
that these entanglement based observations provide some additional insight into the
development of this interesting field.

3.2 Bipartite Systems

3.2.1 Pure States

In this section we start reviewing the basic properties of multipartite entangled sys-
tems. The standard references for the material reviewed here are of Nielsen and
Chuang [16] and Bengtsson and Zyczkowski [17].

Let us consider a quantum system consisting of two subsystems A and B. More-
over, let us suppose that the systems have been in contact for some time and the
interactions resulted in a joint system AB characterized by a complete set of prop-
erties. Let us now look at the subsystems A and B inside AB. If it is impossible
to assign our complete set of properties also to both constituents individually then
we say the system AB is entangled. Alternatively, we can define a composite sys-
tem to be not entangled if and only if it is possible for both constituents to posses
the complete set of properties. After giving a precise mathematical meaning to this
physical situation it can be shown that this definition for a composite system of dis-
tinguishable particles being not entangled is equivalent to the separability of the
wave function representing the composite system in Hilbert space. More precisely,
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let us consider the situation where the Hilbert spaces representing systems A and B
are HA and HB with dimensions M and N respectively. Then the physical state of
the combined system AB is generally represented as

j� i D
MX

aD1

NX

bD1

�abjaiA ˝ jbiB 2 HA ˝ HB; (3.1)

where the states jaiA and jbiB form an orthonormal base for HA and HB respec-
tively. If it is possible to find two states j i 2 HA and j'i 2 HB such that

j� i D j i ˝ j'i (3.2)

then we say that the system AB is not entangled or separable.
How to find a criteria for checking whether a bipartite state such as (3.1) is entan-

gled or not? A standard way of checking is based on the Schmidt decomposition. The
main idea is that using the singular value decomposition of the M �N matrix �ab

it is possible to find a new set of basis vectors for HA and HB such that

j� i D
minfM;N gX

iD1

ri jiiA ˝ jiiB: (3.3)

The positive real numbers ri , i D 1; 2; : : :minfM;N g are the Schmidt coefficients
of the state. If the number of nonzero Schmidt coefficients is strictly greater than 1
then j� i is entangled otherwise it is separable.

It is instructive to recast the mathematical process of finding the Schmidt form of
a particular bipartite state in the language of reduced density matrices. The density
matrix corresponding to the pure state of (3.1) is j� ih� j. One can then define the
reduced density matrices %A and %B as follows

%A D TrBj� ih� i; %B D TrAj� ih� i; (3.4)

where TrA;B refers to taking the partial trace with respect to the corresponding sub-
system. Using these definitions one can check that the matrix representation of %A

and %B in the basis jaiA and jbiB is

%Aaa0 D .�� �/aa0 ; N%Bbb0 D .� ��/bb0 ; (3.5)

where the overline refers to complex conjugation. From this form it is clear that the
nonzero eigenvalues of %A and %B are the same moreover, the square roots of these
nonnegative eigenvalues (their number is precisely minfM;N g) gives the Schmidt
coefficients ri . The new basis vectors (the Schmidt basis) are obtained by finding
the eigenvectors of %A and %B equivalent to finding the local unitary transforma-
tions U 2 U.M/ and V 2 U.N/ transforming the corresponding reduced density
matrices to the diagonal form. Notice that the basis vectors jiiA and jiiB appearing
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in (3.3) are merely the ones from this new set of basis vectors which correspond to
the common nonzero eigenvalues of %A and %B.

From this two important results follow. First, a pure bipartite state j� i is entan-
gled if and only if the corresponding reduced density matrices are mixed (i.e. their
ranks are greater than 1). Alternatively j� i is separable if and only if the reduced
density matrices representing the states of subsystems A and B inside AB are pure,
i.e. are of rank 1. As a second result, since the ranks of %A and %B and the particular
values of ri are invariant under local unitary transformations we have learnt that
the entanglement properties of a bipartite system are invariant under local unitary
transformations of the form

j� i 7! .U ˝ V /j� i; U ˝ V 2 U.M/� U.N/: (3.6)

Hence the classification of different entanglement types of bipartite systems is
effected by calculating the Schmidt rank, i.e. the rank of either of the reduced
density matrices. States j� i and j˚i with different Schmidt ranks belong to inequiv-
alent entanglement classes under the group of local unitary transformationsU.M/�
U.N/. Moreover, states with a fixed rank but different values of ri indicate further
refinement of different entanglement types.

The next question is: given the numbers ri how to quantify bipartite entan-
break glement? It turns out that a useful measure of bipartite entanglement is the
von-Neumann entropy of j� i defined as follows:

S.�/ D �Tr%A log2 %A D �Tr%B log2 %B D �
minfM;N gX

iD1

r2
i log2 r

2
i : (3.7)

Alternatively one can define a whole class of entanglement measures the Rényi
entropies as (since the nonzero eigenvalues of %A and %B are the same in the
following we leave the subscripts from %)

S˛.�/ D 1

1 � ˛
log2 Tr%˛ ; ˛ D 1; 2; : : : : (3.8)

Notice that lim˛!1S˛.�/ D S.�/, i.e. the limit ˛ ! 1 corresponds to the von-
Neumann entropy. Note, that sometimes the quantities Tr%˛, ˛ D 2; 3 : : : are also
used to quantify bipartite entanglement. For an N � N density matrix particularly
important is the quantity N

N �1
.1 � Tr%2/ which is called the concurrence squared.

Since for a pure state %2 D % then regarding % as the reduced density matrix coming
from a bipartite state j� i the concurrence can be used as a measure of entanglement.
Obviously for separable states the concurrence is zero. For unnormalized states the
concurrence is

C2 � N

N � 1


.Tr%/2 � Tr%2

�
: (3.9)

The simplest of all bipartite systems is the one of two qubits. In this case HA '
HB D C2, and the matrix �ab of (3.1) is a 2 � 2 one. In this case
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j� i D
X

a;bD0;1

�ab jabi; where jabi D jai ˝ jbi 2 C2 ˝ C2: (3.10)

Since for 2 � 2 matrices we have .TrM/2 � TrM 2 D 2DetM then using (3.5), and
(3.9) with N D 2 we have

C2 D 4Det%A D 4Det%B D j2Det� j2: (3.11)

For normalized states (Tr%A D Tr%B D 1/ it is easy to show that

0 
 C.�/ D 2jDet� j 
 1: (3.12)

For separable states like 1
2
.j00iCj01iCj10iCj11i/D 1p

2
.j0iCj1i/ 1p

2
.j0iCj1i/,

C D 0, and for maximally entangled states, like the Bell-state 1p
2
.j01i C j10i/ we

have C D 1. Notice that in the first case %A D%B D 1
2

�
1 1

1 1

�
hence %2 D%, i.e. they

are pure states, and in the second %A D%B D 1
2

�
1 0

0 1

�
hence they are maximally

mixed ones.
By diagonalizing the reduced density matrices it is straightforward to show that

the two Schmidt coefficients are

r2˙ D 1

2
.1˙

p
1 � C.�/2/; (3.13)

and the von-Neumann entropy is

0 
 S.�/ D �r2C log2 r
2C � r2� log2 r

2� 
 1: (3.14)

Since under the local unitary group U.2/ � U.2/ the matrix � transforms as
� 7! U�V T it is obvious that the concurrence C D 2jDet� j is left invariant as it
has to be. Intuitively it is clear that entanglement should not be changed under local
manipulations. Hence being invariant under local unitaries the concurrence, the
von-Neumann entropy (and similarly the Rényi entropies) are good entanglement
measures for the two-qubit system.

From the previous discussion we have learnt that the Schmidt rank is invariant
under the local unitary group U.M/ � U.N/, hence using such transformations
separable states cannot be converted to entangled ones and vice versa. However,
this property is also preserved by a more general set of local transformations. Such
transformations are of the form GL.M;C/ � GL.N;C/, i.e. they are the complex
linear invertible transformations. Although these transformations are not preserving
the norm of entangled states, but in spite of this they still have found their important
place in quantum information theory. The transformations of the form GL.N;C/ �
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GL.M;C/ are called transformations of stochastic local operations and classical
communication or SLOCC transformations in short.

The motivation for their occurrence in quantum information theory is as follows.
Let us imagine the subsystems A and B of the combined system AB characterized by
the entangled state j� i are spatially separated but the entanglement between them is
still preserved. Now A and B can exploit their entanglement by using local manipu-
lations, moreover they can inform each other on the results of their local actions via
using classical communication channels (e.g. ordinary phones). The quantum proto-
cols arising in this way can be used for the processing of quantum information. The
most spectacular example of this kind is quantum teleportation of an unknown state
from A to B. In a particular type of protocols one is interested in local manipulations
effected by A and B that can convert an arbitrary state j� i to another prescribed
one j˚i not with certainty but with some probability of success in either direction.
Such transformations are not necessarily unitary but they are certainly invertible.
These transformations supplemented by the usual classical channels are the ones
of SLOCC transformations. Of course measurements being projectors are excluded
from the set of SLOCC transformations. In order to implement such transformations
one imagines A and B having their corresponding local environments EA and EB.
Under the unitary evolutions of EA and EB corresponding to some local manipula-
tions the embedded systems A and B are not necessarily evolve unitarily and they
can give rise to local GL.M;C/ � GL.N;C/ transformations.

The entanglement classes under the SLOCC group for two qubits are very sim-
ple. We have merely two classes: the separable class of rank 1 and the entangled
one of rank 2. These classes are characterized by the conditions C D 0 and C ¤ 0

respectively since the relevant SLOCC group in this case is GL.2;C/ � GL.2;C/
acting in the form

j� i ! .A˝B/j� i; � 7! A�BT; A˝B 2 GL.2;C/�GL.2;C/; (3.15)

can change the nonzero values of C, but they cannot change the rank. By comparison
under the action of the subgroup of transformations of local unitariesU.2/�U.2/we
have infinitely many classes labelled by different values of C that are left invariant.
A very important subgroup of SLOCC transformations is the one of determinant
one transformations, i.e. SL.2;C/ � SL.2;C/. They are obviously leaving invariant
the concurrence C.

3.2.2 Mixed States

Having discussed the entanglement properties of bipartite pure states now we turn
to the problem of mixed state entanglement. Mixed states for a bipartite system
AB are characterized by a density matrix % W HA ˝ HB ! HA ˝ HB which is
Hermitian, positive semidefinite and having trace one. There are many possible ways
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of expressing a particular % as a mixture of pure states. A general decomposition is
of the form

% D
KX

j D1

sj j�j ih�j j; where j�j i 2 HA ˝ HB;

KX

j D1

sj D 1; (3.16)

with nonnegative real numbers sj , and the states j�j i; j D 1; 2; : : :K are normal-
ized but not necessarily orthogonal. Moreover,K can even be greater than NM the
dimension of HA˝HB. Of course being a Hermitian matrix, among decompositions
of the (3.16) form we have the canonical one

% D
MNX

iD1

�i j i ih i j; where j ii 2 HA ˝ HB;

MNX

iD1

�i D 1; (3.17)

in terms of the nonnegative eigenvalues �i and eigenvectors j i i now spanning an
orthonormal basis. This non uniqueness of the density matrix % can be expressed in
a precise way using the mixture theorem [18,19] stating that a density matrix having
the canonical form of (3.17) can also be written in the form of (3.16) if and only if
there exists a K �K unitary matrix U such that

j�j i D 1p
sj

MNX

iD1

Uj i

p
�i j i i: (3.18)

Given % this theorem provides all the possible ways in which our mixed state density
matrix can be expressed as an ensemble of pure states. Observe that the matrix U
is not acting on the Hilbert space HA ˝ HB but on vectors whose components are
state vectors. Notice also that in (3.18) only the first MN columns of U appear, the
remainingK�NM columns are merely added to be able to refer to the matrix as an
unitary one. This theorem tells us that the pure states that can make up the ensemble
for % are linearly dependent on the MN vectors that make up the eigenensemble.

For a bipartite system AB it is clear that the vectors j�j i 2 HA ˝ HB that make
up the ensemble for % can both be entangled or separable pure states. We adopt the
definition that % is entangled if it cannot be represented as a mixture of separable
pure states. A measure of mixed state entanglement which will be of some interest
for us is the entanglement of formation Ef .%/ defined as

Ef .%/ D inf
KX

j D1

sjS.�j /; (3.19)

where S is the von-Neumann entropy as defined in (3.7) and the infimum is taken
over all pure-state ensembles for %.
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Let us now specialize again to the important case of two qubits, and define the
Wootters spin flip Q% of our 4 � 4 density matrix % W C2 ˝ C2 ! C2 ˝ C2 as

Q% � "˝ "%T"˝ "; " D
�
0 1

�1 0
�
: (3.20)

Define the generalization of the concurrence C.%/ for mixed states as [20]

0 
 C.%/ � maxf0;1 �2 �3 �4g 
 1; (3.21)

where 1 	 2 	 3 	 4 are the square roots of the eigenvalues of the matrix
Q%%. (It turns out that the eigenvalues of % Q% are nonnegative real numbers.) Now one
can prove that

Ef .%/ D �R2C log2R
2C �R2� log2R

2�; R2˙ D 1

2

�
1˙p

1 � C.%/
�
: (3.22)

Hence states with C.%/ D 0 (Ef .%/ D 0) are separable and states with C.%/ ¤ 0

(Ef .%/ ¤ 0) are entangled. (Compare (3.22) with the pure state result of (3.13)–
(3.14).) One can show that specifying to a pure state % D j� ih� j (3.21) gives back
the pure state concurrence C.�/, and the entanglement of formation in this case is
Ef .�/ D S.�/.

As an example let us consider the two-qubit mixed state density matrix

% D 1

4
.1 � x/I C xj˚ih˚ j D 1

4

0

B
B
@

1C x 0 0 2x

0 1 � x 0 0

0 0 1 � x 0

2x 0 0 1C x

1

C
C
A;

j˚i D 1p
2
.j00i C j11i/; (3.23)

where x 2 Œ0; 1�. Then one calculates 1 D .1 C 3x/=4 and 2 D 3 D 4 D
.1 � x/=4 hence this density matrix is separable for x 
 1=3 and for x > 1=3 it
is entangled. Moreover, for the entangled states the value of their concurrence is
C.%/ D .3x � 1/=2. The maximum value is achieved for x D 1 which is a pure
state j˚ih˚ j. Notice also that the maximally mixed state % with x D 0 is separable.
Hence in this case mixedness and entanglement are complementary notions.

3.2.3 Real Bipartite Pure States

We will see that in the black hole analogy the states we are interested in are real ones,
meaning that they are either having real (integer) amplitudes, or they are complex
states local unitary equivalent to ones with real amplitudes.
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First we discuss real two-qubit states as the ones

j� i D
1X

A;BD0

�ABjABi; with

�
�00 �01

�10 �11

�
2 M.2;R/: (3.24)

These are called “rebits” in the literature [21]. Notice that we have switched to the
comfortable labelling scheme for the amplitudes as �AB where the first index refers
to the first subsystem (Alice) and the second index to the second one (Bob). Let us
choose a basis in M.2;R/ regarded as a vector space over R as follows

E0 D
�
1 0

0 1

�
; E1 D

�
0 1

�1 0
�
; E2 D

�
0 1

1 0

�
; E3 D

�
1 0

0 �1
�
: (3.25)

Then we can write �
�00 �01

�10 �11

�
D

3X

mD0

�m

1p
2
Em; (3.26)

where

�0 D 1p
2
.�00 C �11/; �1 D 1p

2
.�01 � �10/;

�3 D 1p
2
.�00 � �11/; �2 D 1p

2
.�01 C �10/: (3.27)

Alternatively one can write

j� i D
3X

mD0

�mjmi; (3.28)

where jmi; m D 0; 1; 2; 3 defines the so called Bell basis, e.g. j2i D 1p
2
.j01i C

j10i/ e.t.c. Notice that (3.24) and (3.28) give rise to an expansion with respect to a
separable and entangled basis respectively.

Motivated by (3.20) let us now define for an arbitrary elementM ofM.2;R/ the
Wootters spin flip operation as

QM � �"M T" D .DetM/M�1: (3.29)

Then we can write the formula for the concurrence of (3.11) as

C D 2jDet� j D jTr. Q��/j D jTr.�"�T"/j; (3.30)
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where

Tr. Q��/ D "A1A2"B1B2�A1B1
�A2B2

D �
�00 �01 �10 �11

�

0

B
B
@

0 0 0 1

0 0 �1 0
0 �1 0 0

1 0 0 0

1

C
C
A

0

B
B
@

�00

�01

�10

�11

1

C
C
A: (3.31)

For two rebits with amplitudes aAB and bAB this motivates the definition of the
bilinear form

� W M.2;R/ �M.2;R/ ! R (3.32)

.a; b/ 7! a � b D
3X

��D0

g��a
�b� D "A1A2"B1B2aA1B1

bA2B2
;

where a� � .a0; a1; a2; a3/T D .a00; a01; a10; a11/
T, and g�� corresponds to the

matrix "˝ " with the explicit form as appearing in (3.31).
The analogue of the SLOCC subgroup SL.2;C/ � SL.2;C/ for the real case is

SL.2;R/ � SL.2;R/ acting on the amplitudes as

� 7! A�BT; A ˝ B 2 SL.2;R/ � SL.2;R/: (3.33)

Since AT"A D " the bilinear form of (3.32) is obviously left invariant by the
SL.2;R/ � SL.2;R/ action.

Notice also that

2Det� D 2.�00�11 � �01�10/ D �2
0 C �2

1 � �2
2 � �2

3 : (3.34)

Hence in the entangled Bell basis the SLOCC subgroup is SO.2; 2/ ' SL.2;R/ �
SL.2;R/. Hence working in the Bell basis jmi,mD 0; 1; 2; 3 rather than the compu-
tational base jABi, A;B D 0; 1 the bilinear form is given by the SO.2; 2/ invariant
form.

In closing this subsection we remark that the basis vectors Em, m D 0; 1; 2; 3 of
(3.25) can be regarded as matrix representatives of the basis vectors e0; e1; e2; e3 of
the algebra of split-quaternions Hs. Then an arbitrary element x 2 Hs correspond-
ing to an element X 2M.2;R/ can be expressed as

P3
mD0 xmem. In this picture

the Wootters spin flip corresponds to the conjugation in Hs Nx 7! QX , and the norm
N.x/ D x Nx 7! DetX is related to the entanglement measure the concurrence.
Moreover defining the bilinear form

hx; yi � N.x C y/ �N.x/ �N.y/; (3.35)
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we see that it corresponds to the SLOCC invariant bilinear form of (3.32), i.e.
hx; yi 7! Tr.X QY /. This interesting correspondence between the algebra of split-
quaternions and the entanglement properties of two rebits will be useful for estab-
lishing further results in the stringy black hole context.

3.2.4 Real Bipartite Mixed States

In the case of quantum mechanics with states represented by Hermitian operators
acting on a finite dimensional vector space over the complex numbers we know that
an arbitrary operator represented by aK�K matrix can be split into its antisymmet-
ric and symmetric parts of dimension K.K � 1/=2 and K.K C 1/=2 respectively.
The real vector space of Hermitian operators (representing the physical states) takes
advantage of both the antisymmetric and symmetric parts since a Hermitian oper-
ator H can be written as H DS C iA. However, when considering operators in
quantum mechanics over the real numbers physical states are represented by merely
the symmetric part, i.e. H D S .

The consequence of this is that when combining two subsystems based on the
spaces HA of dimension M and HB of dimension N , the composite space of sym-
metric matrices of dimension MN.MN C 1/=2 based on the MN dimensional tensor
product space has the structure

SAB D .SA ˝ SB/˚ .AA ˝ AB/; (3.36)

where SA and AA, etc., refers to the symmetric (antisymmetric) subspaces respec-
tively. Hence joint states with components in AA ˝AB are automatically entangled
since product states cannot have a component of this form.

For the special case of a rebit, density matrices are symmetric hence they are
spanned merely by the three symmetric matrices E0, E2 and E3 of (3.25) corre-
sponding to the split quaternionic basis vectors e0;2;3. For two rebits the density
matrix is a 4 � 4 symmetric matrix with 10 independent components which can be
spanned by the 9 combinations of the formE˛ ˝Eˇ where ˛; ˇ D 0; 2; 3 belonging
to SA ˝ SB and the combination E1 ˝ E1 D " ˝ " belonging to AA ˝ AB. Any
state containing a component proportional to "˝ " is necessarily entangled relative
to the real vector space because on the individual spaces HA and HB the states have
no components proportional to ".

These observations motivate the following definition for the mixed state concur-
rence for rebits

0 
 C.%/ D jTr.%"˝ "/j 
 1: (3.37)

Notice, however that this definition is not merely the restriction of (3.21) to real
density operators. In order to show this just take the density matrix

% D 1

4
.I ˝ I � "˝ "/; (3.38)
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to calculate the complex concurrence (3.20) giving zero, but the real concurrence
(3.37) is giving the value one. Hence this state is separable in complex quantum
mechanics but maximally entangled in its real version. The complex separability is
obvious from the decomposition

% D 1

2

�
1

2
.I C i"/˝ 1

2
.I C i"/C 1

2
.I � i"/˝ 1

2
.I � i"/

�
: (3.39)

which is of course not a legitimate mixture in the real case.
Notice also that using the notation of (3.32) the real concurrence of (3.37) can

also be written in the alternative form

C.%/ D jg��%
�� j D j%�

�j: (3.40)

It can also be shown that the real entanglement of formation, defined via a similar
process as in the complex case, is also given by (3.22) with the important differ-
ence that now we have to substitute the real mixed state concurrence in the relevant
formula.

3.3 Multipartite Systems

3.3.1 Pure States, Three Qubits

For multipartite systems we have n subsystems the states of which are represented
by finite dimensional Hilbert spaces VA, VB , VC : : : , etc., with dimensions dA,
dB, dC; : : : . A vector with d components is called a qudit. Frequently investigated
examples involve the cases of dA D dB D dC D � � � D 2 (multiqubit systems) and
dA D dB D dC D � � � D 3 multiqutrit ones, or their combinations. In this paper we
restrict our attention to multiqubit systems. In particular we will be interested in 3, 4
and 7 qubit systems which have some relevance to the physics of stringy black hole
solutions.

Let us first discuss three-qubit systems. A pure state j� i of three-qubits can be
written in the form

j� i D
1X

A;B;C D0

�ABCjABCi; jABCi D jAi˝jBi˝jC i 2 VA ˝VB ˝VC ; (3.41)

where VA ˝VB ˝VC D .C2/˝3 ' C8. We are interested in classifying states of dif-
ferent entanglement types [22]. There are two classification schemes of importance
to quantum information theory. The first is based on the notion of local unitary
equivalence and the second one on equivalence under stochastic local operations
and classical communication (SLOCC). According to the first scheme
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j� i � j˚i iff j� i D .U ˝ V ˝W /j˚i; U ˝ V ˝W 2 U.2/˝3: (3.42)

In words: two states are equivalent iff there exist local unitary transformations trans-
forming one state to the other. The set of equivalence classes provides one possible
set of different entanglement types. However, for practical purposes a coarse grain-
ing of these entanglement classes was needed by enlarging the group from U.2/ to
GL.2/ � GL.2;C/. The SLOCC equivalence classes are defined as

j� i ' j˚i iff j� i D .A ˝ B ˝ C/j˚i; A ˝ B ˝ C 2 GL.2/˝3: (3.43)

Clearly local unitary equivalence implies SLOCC equivalence but not in the other
way.

It turns out that there are only two SLOCC entanglement types of genuine three-
qubit entanglement or in other words three qubits can be entangled in two different
ways. The two different SLOCC equivalence classes are represented by the states

jGHZi D 1

2
.j000i C j111i/; jW i D 1p

3
.j001i C j010i C j100i/: (3.44)

The first is called the Greenberger–Horne–Zeilinger (GHZ) state. This state rep-
resents states of maximal three-partite entanglement. Such states will play an
important role in establishing a three-qubit interpretation of black hole solutions
in the STU model.

The remaining entanglement classes describe separable states. They are either
of type A.BC/, B.AC/ and C.AB/, i.e. they are the biseparable states, or they are
completely separable states of the form .A/.B/.C /. For example the state

jA.BC/i D 1p
2

j0i.j01i C j10i/; (3.45)

is biseparable, and the one j000i is separable.
How can we understand these classes in terms of polynomial invariants that mea-

sure different types of tripartite entanglement? Based on reduced density matrices it
is easy to define local unitary invariants that differentiate between different types of
biseparable cases.

For this purpose let us define the reduced density matrices

%1 D Tr23j� ih� j; %2 D Tr13j� ih� j; %3 D Tr12j� ih� j; (3.46)

where from now on we refer to subsystems A;B;C as 1; 2; 3. These states are one-
qubit mixed states represented by 2 � 2 matrices. However, we can also form two-
qubit density matrices

%23 D Tr1j� ih� j; %13 D Tr2j� ih� j; %12 D Tr3j� ih� j: (3.47)
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These are 4 � 4 matrices. As we see all these density matrices are coming from the
pure state j� ih� j. Based on the results of (3.5), (3.9) and (3.11) it is clear that
the quantities 0 
 4Det%1;2;3 
 1 are entanglement measures of biseparability. For
example a three-qubit state j� i is 1.23/ separable if and only if 4Det%1 D 0. Hence
it is useful to define the quantities

�1.23/ D 4Det%1; �2.13/ D 4Det%2; �3.12/ D 4Det%3: (3.48)

These measures of biseparability are obviously U.2/� U.4/ invariants where U.2/
is acting on the qubit whose separability properties we are interested in. Notice
that all three measures taken together (forming, e.g. their arithmetic mean) measure
.1/.2/.3/ separability and having the invariance group U.2/� U.2/� U.2/.

Apart from biseparability we can also ask the question: how much 1 and 2 are
entangled within the tripartite system 123? In order to answer this question we note
that this property is described by the entanglement of formation of (3.22) or the
mixed state concurrence of (3.21) of the density matrix %12. Since this quantity is
again coming from a bipartite split 1.23/ of the form C2 ˝ C4 the 4 � 4 density
matrix %12 can have at most two nonzero eigenvalues. (See the discussion after
(3.5).) These two nonzero eigenvalues of %12 are the same as the ones of %3. As a
result when calculating the mixed state concurrence (3.21) we obtain two eigenval-
ues1 and2. Then one can show that the mixed state concurrence squared in this
special case is

C 2
12 � C 2.%12/ D Tr.%12 Q%12/� 212: (3.49)

It is interesting to observe at this point that according to (3.31)–(3.32) and (3.49) for
the special mixed state coming from a three-qubit state we can symbolically write

C 2.%/ D %��%�� � 212; (3.50)

which is to be compared with the square of (3.40), i.e. C 2.%/ D .%
�
�/

2 found for a
general mixed state of two rebits.

Similarly to C12 one can form the quantities C23 D C.%23/ and C13 D C.%13/.
Let us now define the two-tangles as

�12 D C 2
12; �13 D C 2

13; �23 D C 2
23: (3.51)

An important question to be asked is the following: how the quantities �1.23/, �12 and
�13 are related to each other? Can it happen for example that 1 is entangled with 23
taken together but at the same time 1 is not entangled with 2 and 3 individually? To
a mind trained in classical relationships this question seems absurd. For example we
cannot imagine a mother loving both of her kids taken together but not loving them
individually. A classical tripartite state of the mother and her two kids of that kind
is impossible. However, the GHZ state is precisely of this kind. Indeed a calculation
shows that

�1.23/ D 1; �12 D �13 D 0; (3.52)
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exemplifying precisely this absurd situation. On the other hand the jW i state of
(3.44) shows a trade-off between different types of tangles, since for this state one
finds

�1.23/ D �12 C �13: (3.53)

Let us now define the residual tangle or three-tangle �123 as the quantity

�123 � �1.23/ � �12 � �13 D �2.13/ � �12 � �23 D �3.12/ � �13 � �23: (3.54)

Indeed, this definition makes sense since according to a calculation �123 is permu-
tation invariant as clearly expressed by the second and the third of the equalities of
(3.54). An explicit expression for the three-tangle is given by the formula [23]

0 
 �123 D 4jD.�/j D 412 
 1; (3.55)

where

D.�/ � �2
000�

2
111 C �2

001�
2
110 C �2

010�
2
101 C �2

011�
2
100

� 2.�000�001�110�111 C �000�010�101�111

C�000�011�100�111 C �001�010�101�110

C�001�011�110�100 C �010�011�101�100/

� 4.�000�011�101�110 C �001�010�100�111/ (3.56)

is called Cayley’s hyperdeterminant [24]. From the definition of �123 or from
(3.52)–(3.53) one can see that

�123.GHZ/ D 1; �123.W / D 0; (3.57)

hence for the GHZ state the residual tangle is of the maximum value. From (3.54)
and (3.55) for a general three-qubit state we get the Coffmann–Kundu–Wootters
inequalities [23]

�12 C �13 
 �1.23/; �12 C �23 
 �2.13/; �13 C �23 
 �3.12/: (3.58)

These inequalities describe how entanglement as a resource can be distributed
between three parties. Sometimes these relations are called entanglement monogamy
relations reflecting the fact that entanglement cannot be shared for free.

Now we would like to discuss the invariance properties of the three-tangle �123

of (3.55). First we observe that Cayley’s hyperdeterminant D.�/ of (3.56) can be
expressed in the following form

� 2D.�/ D "A1A3"B1B2"C1C2"A2A4"B3B4"C3C4

��A1B1C1
�A2B2C2

�A3B3C3
�A4B4C4

: (3.59)
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This form is not reflecting the permutation invariance ofD.�/ since it is of the form

D.�/ D �1
2
"A1A3"A2A4

�
�A1

� �A2

� �
�A3

� �A4

�
; (3.60)

(here we have used the definition of (3.32)) where the first qubit is playing a special
role. Hence a final formula for �123 where qubit A is singled out is

�123 D 4j �.�0 � �1/
2 � .�0 � �0/.�1 � �1/

� j; (3.61)

here �0 � �0BC and �1 � �1BC . Now it is straightforward to check that the
basic expression of (3.56) is permutation invariant hence our expression (3.61) is
unchanged with qubit B or qubit C playing a special role (we could have used the
alternative definitions�0 � �A0C and �1 � �A1C or �0 � �AB0 and�1 � �AB1

in (3.61)).
Our expression (3.61) clearly shows that �123 is invariant under SLOCC trans-

formations (see (3.43)) with A˝B ˝ C 2 SL.2;C/� SL.2;C/� SL.2;C/. Indeed,
under transformations of the form I ˝ B ˝ C �123 is invariant due to the definition
of the � bilinear form (see (3.32)). Moreover, (3.60) as the determinant of the 2 � 2
matrix �A � �A0 is clearly invariant under transformations of the form A ˝ I ˝ I .

It is important to realize that for the full SLOCC group GL.2;C/˝3 the quan-
tity �123 is not invariant but picks up a factor corresponding to the determinants of
the matrices A;B; C. However, the two genuine three-qubit entanglement classes
labelled by �123 ¤ 0 (GHZ-class) and �123 D 0 (W-class) are obviously invariant
under the full SLOCC group. (Here we assumed that all types of separable states
are excluded, i.e. we are looking merely at the states having �1.23/ ¤ 0, �2.13/ ¤ 0

and �3.12/ ¤ 0.)
Now for our later discussion of Cartan’s quartic invariant as an entanglement

measure within the context of N D 8, d D 4 extremal black hole solutions we
introduce some more notation. For two 3-qubit states with amplitudes �ABC and
˚ABC where qubit A plays a special role let us introduce the quartic form

Q.�;˚/ � "A1A3"B1B2"C1C2"A2A4"B3B4"C3C4

��A1B1C1
�A2B2C2

˚A3B3C3
˚A4B4C4

: (3.62)

It is clear that
Q.�; �/ D �2D.�/: (3.63)

Let us now consider two 3-qubit states with amplitudes �ABC and˙ADE made of five
different qubits A;B;C;D;E with qubit A as the common one. For this situation
we employ a new notation

�2˙2 � Q.�;˙/ D "A1A3"B1B2"C1C2"A2A4"D3D4"E3E4

��A1B1C1
�A2B2C2

˙A3D3E3
˙A4D4E4

: (3.64)
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We can easily remember the structure of this quantity by writing it into the form

�2˙2 � .�0 ��0/.˙1 �˙1/�2.�0 ��1/.˙0 �˙1/C .�1 ��1/.˙0 �˙0/; (3.65)

where we have again used (3.32). As a shorthand notation we sometimes use the
alternative expression

�4 � Q.�; �/ D �2D.�/: (3.66)

For three 3-qubit states with integer amplitudes �ABC , ˙ADE and �AF G formed
out of seven qubits A;B;C;D;E; F;G it turns out that the quantity

�4 C˙4 C�4 C 2
�
�2˙2 C˙2�2 C˙2�2

�
; (3.67)

will play an important role within the context of N D 4, d D 4 extremal black holes
with U -duality group SL.2;Z/ � SO.6; 6;Z/.

In closing this subsection we comment on the geometry of three-qubit entangle-
ment [25]. Let us single out as usual qubit A, then define two four-vectors Z� and
W � � D 0; 1; 2; 3 as

0

B
B
@

Z0

Z1

Z2

Z3

1

C
C
A �

0

B
B
@

�000

�001

�010

�011

1

C
C
A ;

0

B
B
@

W 0

W 1

W 2

W 3

1

C
C
A �

0

B
B
@

�100

�101

�110

�111

1

C
C
A : (3.68)

These two four vectors define a plane in C4. The geometry of three-qubit entangle-
ment can be described as the geometry of the manifold of two planes in C4 which
is just the Grassmannian Gr.4; 2/. Since the four vectors Z and W are defined
up to a nonzero complex number we can alternatively regard the pair .Z;W / as
a line in CP3. Hence for each three-qubit state we can associate a line in CP3.
The coordinates describing such lines are the Plücker coordinates defined as

P�� � Z�W � �Z�W �: (3.69)

Then the three-tangle �123 can be written in the nice form

�123 D 2jP��P�� j: (3.70)

On C4 we have the bilinear form of (3.32) at our disposal. A vector N� 2 C4

satisfying the quadratic constraint N � N D 0 is called null. In the CP3 picture
such vectors give rise to a quadric surface in CP3. The geometry of three-qubit
entanglement can be analysed by clarifying the relationship between this quadric
and the lines corresponding to our three-qubit states. It turns out that lines inter-
secting the fixed quadric at two points are belonging to the GHZ class, and lines
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touching the quadric at one point are the ones of the W-class. The lines which are
lying inside the quadric are of two types corresponding to the biseparable classes
B.AC/ and C.AB/. These cases precisely correspond to P�� being either self-dual
or anti-self-dual. The biseparable case A.BC/ is represented by a point in CP3 off
the quadric. The totally separable class corresponds to the degenerate situation of a
point lying on the quadric.

3.3.2 Pure States, Four Qubits

A four qubit state can be written in the form

j� i D
1X

A;B;C;DD0

�ABCDjABCDi;

jABCDi � jAi ˝ jBi ˝ jC i ˝ jDi 2 VA ˝ VB ˝ VC ˝ VD; (3.71)

where VA;B;C;D � C2. Let the subgroup of stochastic local operations and classical
communication representing admissible fourpartite protocols be SL.2;C/˝4 acting
on j� i as

j� i 7! .A ˝ B ˝ C ˝ D/j� i; A;B; C;D 2 SL.2;C/: (3.72)

Our aim in this subsection is to give a unified description of four-qubit states
taken together with their SLOCC transformations and their associated invariants.
As we will see states and transformations taken together can be described in a uni-
fied manner using the group SO.4; 4;C/. This point of view is based on the idea
of a dual characterization of four-qubits as states and at the same time as trans-
formations. Entangled states representing configurations of quantum entanglement
in this picture are also regarded as operators. An entangled state is a pattern of
entanglement, however this pattern of entanglement can also be regarded as a one
acting on other patterns of entanglement to produce new kind of entanglement. Such
considerations will play an important role in the description of the fundamental rep-
resentation of E7 in terms of seven three-qubit systems, and the 112 generators of
E7 not belonging to the subgroup SL.2/˝7 in terms of seven four-qubit ones.

Let us introduce the 2 � 2 matrices

E00 D
�
1 0

0 0

�
; E01 D

�
0 1

0 0

�
; E10 D

�
0 0

1 0

�
; E11 D

�
0 0

0 1

�
: (3.73)

Then we can arrange the 16 complex amplitudes appearing in �ABCD in a 4 � 4

matrix in three different ways
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1X

ABCDD0

�ABCDEAC ˝EBD D

0

B
B
@

�0000 �0001 �0010 �0011

�0100 �0101 �0110 �0111

�1000 �1001 �1010 �1011

�1100 �1101 �1110 �1111

1

C
C
A (3.74)

1X

ABCDD0

�ABCDEAB ˝ ECD D

0

B
B
@

�0000 �0001 �0100 �0101

�0010 �0011 �0110 �0111

�1000 �1001 �1100 �1101

�1010 �1011 �1110 �1111

1

C
C
A D

�
X Y

W Z

�

1X

ABCDD0

�ABCDEAB ˝ EDC D

0

B
B
@

�0000 �0010 �0100 �0110

�0001 �0011 �0101 �0111

�1000 �1010 �1100 �1110

�1001 �1011 �1101 �1111

1

C
C
A D

�
XT Y T

W T ZT

�

where the 2 � 2 matrices X; Y;W;Z are introduced merely to illustrate the block
structure of the relevant matrices. Notice also that the first matrix is obtained by
arranging the components of X; Y;W;Z as the first, second, third and fourth rows.

It is useful to define a new set of 4 � 4 matrices by multiplying these by " ˝ "

from the right, i.e.

D1.�/ D
1X

A;B;C;DD0

�ABCDEAC "˝ EBD"; (3.75)

D2.�/ D
1X

A;B;C;DD0

�ABCDEAB"˝ ECD"; (3.76)

D3.�/ D
1X

A;B;C;DD0

�ABCDEAB"˝ EDC": (3.77)

These matrices can be regarded as matrix representatives of maps acting on pairs of
qubits associated to a four-qubit state j� i, i.e.

D1.j� i/ W VC ˝ VD ! VA ˝ VB ; (3.78)

D2.j� i/ W VB ˝ VD ! VA ˝ VC ; (3.79)

D3.j� i/ W VB ˝ VC ! VA ˝ VD: (3.80)

Then using the definition of the Wootters spin-flip operation (3.20) we can define
three 8 � 8 matrices representing a four-qubit state as follows

RI .�/ D
�

0 DI .�/

� QDI .�/ 0

�
; I D 1; 2; 3: (3.81)
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These are matrix representations of j� i regarded as an operator intertwining differ-
ent pairs of qubits. The carrier space of R1 is .VA ˝ VB/ ˚ .VC ˝ VD/, of R2 is
.VA ˝ VC / ˚ .VB ˝ VD/ and of R3 is .VA ˝ VD/ ˚ .VB ˝ VC /. Obviously this
construction is related to 8v � 8s � 8c triality of SO.4; 4;C/.

How to also include the SLOCC subgroup SL.2;C/˝4 into this picture? An
infinitesimal transformation of this kind is of the form

A ˝ B ˝ C ˝ D D I ˝ I ˝ I ˝ I C ˛"˝ I ˝ I ˝ I C I ˝ ˇ"˝ I ˝ I

CI ˝ I ˝ 	"˝ I C I ˝ I ˝ I ˝ ı"C � � � ; (3.82)

where the 2 � 2 matrices ˛; ˇ; 	; ı are symmetric, hence having three independent
components. The dots are indicating omission of terms of higher order. In this way
we have identified the Lie-algebra sl.2/with the space of symmetric complex matri-
ces over the two-dimensional complex vector space V , hence we have sl.2/ D S2V .
The necessity of the special form ˛"; ˇ"; 	"; ı" used in (3.82) is verified by notic-
ing that the infinitesimal form of A"AT D " valid for SL.2/ matrices implies that
.˛"/"C ".˛"/T D 0, i.e. ˛ D ˛T. The set of infinitesimal SL.2/˝4 transformations
is characterized by 12 complex parameters and a four-qubit state j� i by 16 com-
plex ones. Hence altogether we have 28 complex parameters that should give rise to
three 8-dimensional representations of the Lie-algebra so.4; 4;C/. This conjecture
is easily verified by filling in the block diagonal entries of (3.81) in the following
way:

R1.˛; ˇ; 	; ıI�/ D
�
˛"˝ I C I ˝ ˇ" D1.�/

� QD1.�/ 	"˝ I C I ˝ ı"

�
; VAB ˚ VCD ;

(3.83)

R2.˛; ˇ; 	; ıI�/ D
�
˛"˝ I C I ˝ 	" D2.�/

� QD2.�/ ˇ"˝ I C I ˝ ı"

�
; VAC ˚ VBD ;

(3.84)

R3.˛; ˇ; 	; ıI�/ D
�
˛"˝ I C I ˝ ı" D3.�/

� QD3.�/ ˇ"˝ I C I ˝ 	"

�
; VAD ˚ VBC ;

(3.85)

where we also indicated the structure of the representation space on which these
matrices act. (We used the shorthand notation VAB � VA ˝VB , etc.) These matrices
are indeed belonging to the Lie-algebra so.4; 4;C/ since

RIG CGRT
I D 0; I D 1; 2; 3; where G D

�
"˝ " 0

0 "˝ "

�
; (3.86)

and after using the Bell-base in the relevant two-qubit spaces, G can be converted
to a matrix with four C1 and four �1 in the diagonal (see (3.27) and (3.34)).
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Let us now discuss briefly the structure of invariants [26, 27] under the SLOCC
subgroup SL.2/˝4. Let us define the quantities

L � DetD1.�/; M � DetD2.�/; N � DetD3.�/: (3.87)

They are of fourth order in the amplitudes of j� i. Then it can be shown that they
are SL.2/˝4 invariants. However, since 8v �8s �8c triality links the representations
D1;D2 and D3 they are not independent. One can show that

M D L C N : (3.88)

Let us chose L and M as the independent invariants. In fact they are also alge-
braically independent. It turns out that we have four algebraically independent
SL.2/˝4 invariants. We can easily find a third one by experimenting with a structure
similar to the one of Cayley’s hyperdeterminant

"A1A3"B1B2"C1C2"D1D2"A2A4"B3B4"C3C4"D3D4

��A1B1C1D1
�A2B2C2D2

�A3B3C3D3
�A4B4C4D4

: (3.89)

In this formula qubitA is again playing a special role, hence similar to (3.60)–(3.61)
it can be written in the form

2
�
.�0 ı �0/.�1 ı �1/� .�0 ı �1/

2
�
; (3.90)

where the ı bilinear form is now with respect to the 8 � 8 matrix " ˝ " ˝ " since
the vectors �0 � �0BCD and �1 � �1BCD are having now eight components.
However, since "˝ "˝ " is antisymmetric the terms �0 � �0 and �1 � �1 are zero.
Hence we are left with an invariant of second order in the amplitudes of the form
�0 � �1. Using the explicit form of this quantity let us define the invariant

I1 D 1

2
.�0�15 � �1�14 � �2�13 C �3�12 � �4�11 C �5�10 C �6�9 � �7�8/;

(3.91)

where in order to see the structure of this invariant more clearly we switched to
decimal labelling of the 16 amplitudes. It is important to realize (by converting back
to binary labelling) that I1 is also permutation invariant. Let us define as our second
basic invariant the fourth order combination

I2 D 1

6
.4I 2

1 C 2L � 4M/: (3.92)

The choice for this strange looking combination will be motivated later. For the third
basic invariant we just take L, i.e.

I3 � L: (3.93)
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There is a fourth basic algebraically independent invariant I4 which is of order 6.
In order to construct it let us denote the rows of the matrix of (3.74) by x; y;w; z
regarded as four-vectors. Then using our bilinear form � of (3.32) we can write I1 in
the alternative form

I1 D 1

2
.x � z � y � w/: (3.94)

Then defining the duals of the four-vectors x; y;w; z as

x�
� D �
����y

�w�z� ; y�
� D 
����x

�w�z� ;

w�
� D �
����x

�y�z� ; z�
� D 
����x

�y�w�; (3.95)

we can define an SL.2/˝4 invariant as

I4 D 1

2
.x� � z� � y� � w�/: (3.96)

However, since the definition of the dual is based on the special role for qubit A, I4

is not invariant under permutations of the four qubits.
For our later discussion of E7 and Cartan’s quartic invariant it is important to

realize that our basic invariants I1; I2; I3; I4 can easily be obtained in the nice uni-
fied SO.4; 4;C/ representation of four-qubits and their SLOCC subgroup SL.2/˝4.
For this purpose just take the 8 � 8 matrix R � R1.�/ of (3.81) and calculate the
invariants of R. Since on the block off-diagonal matrix R the SLOCC subgroup
SL.2/˝4 as the space of block diagonal matrices acts naturally one expects to get all
of our invariants in a very simple way. For example one observes that

TrR2 D �2Tr.D1
QD1/ D �8I1; Det.R/ D L2 D I 2

3 ; Pf.RG/ D L D I3:

(3.97)

Notice that the last equality relates the Pfaffian of the 8 � 8 antisymmetric matrix
RG to the invariant I3, where G is defined by (3.86). Similarly calculating Tr.R4/,
Tr.R6/ and combining these invariants one can recover all of our algebraically
independent invariants.

We will not discuss here the full SLOCC classification of four qubits. We just
remark that the basic result states [28] that four qubits can be entangled in nine
different ways. It is to be contrasted with the two entanglement classes obtained
for three qubits. It can be shown that a generic state of four qubits can always be
transformed to the form

jGabcd i D a C d

2
.j0000i C j1111i/C a � d

2
.j0011i C j1100i/

C b C c

2
.j0101i C j1010i/C b � c

2
.j0110i C j1001i/; (3.98)

where a; b; c; d are complex numbers. This class corresponds to the GHZ class
found in the three-qubit case. For this state the reduced density matrices obtained
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by tracing out all but one party are proportional to the identity. This is the state with
maximal four-partite entanglement. Another interesting property of this state is that
it does not contain true three-partite entanglement. A straightforward calculation
shows that the values of our invariants .I1; I2; I3; I4/ occurring for the state jGabcd i
representing the generic SLOCC class are

I1 D 1

4
Œa2 C b2 C c2 C d 2�; I2 D 1

6
Œ.ab/2

C .ac/2 C .ad/2 C .bc/2 C .bd/2 C .cd/2�; (3.99)

I4 D 1

4
Œ.abc/2 C .abd/2 C .acd/2 C .bcd/2�; I3 D abcd; (3.100)

hence the values of the invariants .4I1; 6I2; I
2
3 ; 4I4/ are given in terms of the ele-

mentary symmetric polynomials in the variables .x1; x2; x3; x4/ D .a2; b2; c2; d 2/.
Let us finally comment on the structure of the hyperdeterminant D4 for the

four-qubit system. As we already know for two-qubit systems the determinant
D2 D�00�11 � �01�10 is related to the concurrence of (3.12) as C D 2jD2j char-
acterizing two-qubit entanglement. Similarly for three-qubits we have seen that the
basic quantity is the three-tangle �123 D 4jD3j which is related to the hyperdeter-
minantD3 of (3.56) of a 2�2�2 tensor formed from the eight complex amplitudes
�ABC . D3 is an irreducible polynomial in the eight amplitudes which is the sum
of 12 terms of degree four. It is known that the next item in the line namely the
hyperdeterminant D4 of format 2 � 2 � 2 � 2 is a polynomial of degree 24 in the
16 amplitudes �ABCD which has 2,894,276 terms. It can be shown that D4 can be
expressed in terms of our fundamental invariants in the form

256D4 D S3 � 27T 2 (3.101)

where

S D .I 2
4 � I 2

2 / C 4.I 2
2 � I1I3/; T D .I 2

4 � I 2
2 /.I

2
1 � I2/ C .I3 � I1I2/

2:

(3.102)
In order to relate D4 to our unifying SO.4; 4;C/ structure for four qubits one can
prove that D4 is just the discriminant of the polynomial

pŒI1; I2; I3; I4I�� � �4 � .4I1/�
3 C .6I2/�

2 � .4I4/�C I 2
3 ; (3.103)

where � are the doubly degenerate eigenvalues obtained from the characteristic
polynomial Det.R � �1/ of the matrix RDR1.�/ of (3.81). Moreover, on the
generic class jGabcd i the value of D4 can be expressed as

D4 D 1

256
˘i<j .xi � xj /

2 D 1

256
V.a2; b2; c2; d 2/2; (3.104)

where .x1; x2; x3; x4/ � .a2; b2; c2; d 2/ and V is the Vandermonde determinant.
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3.4 Error Correction, Hadamard Matrices and Graph States

3.4.1 Errors

In this subsection we briefly summarize some more background material from quan-
tum information theory needed later to establish a three-qubit interpretation of BPS
and non BPS black hole solutions in the STU model. As we know a qubit is an
element of a two-dimensional complex vector space C2 with basis vectors (compu-
tational base) denoted by j0i and j1i. These correspond to the usual basis vectors
that are eigenvectors of the Pauli matrix �3. This operator is conventionally denoted
by Z and is called the phase flip operator. Hence we have

Zj0i D j0i; Zj1i D �j1i: (3.105)

The Pauli matrix �1 (conventionally denoted by X ) is used to represent bit flips

X j0i D j1i; X j1i D j0i: (3.106)

The orthogonal projectors P˙ are defined as

P˙ D 1

2
.I ˙ Z/; (3.107)

where I is the 2 � 2 unit matrix.
In quantum information theory, especially in quantum error correction the dis-

crete Fourier or Hadamard transformed base is often used. The Hadamard trans-
formed basis vectors are denoted by jN0i and jN1i and defined as

jN0i D 1p
2
.j0i C j1i/; jN1i D 1p

2
.j0i � j1i/: (3.108)

They are sometimes alternatively denoted by jCi and j�i since they are eigenvectors
of the bit flip operator X with eigenvalues ˙1. These basis vectors can also be
defined by introducing the unitary operator of Hadamard transformation

jN0i D H j0i; jN1i D H j1i; i.e. H D 1p
2

�
1 1

1 �1
�
: (3.109)

Since HXH D Z and HZH D X the operator X is acting on the Hadamard trans-
formed base as a phase flip operator and vice versa. The important corollary of this
observation is that in the theory of quantum error correction once we have found
a means for correcting bit flip errors using a discrete Fourier transform the same
technique can be used for correcting phase flip ones.
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For three-qubit systems we use the Hadamard transformationH˝3 D H ˝H ˝
H represented by the 8 � 8 matrix

H˝3 D 1p
8

0

BB
B
B
B
BB
B
B
B
B
@

1 1 1 1 1 1 1 1

1 �1 1 �1 1 �1 1 �1
1 1 �1 �1 1 1 �1 �1
1 �1 �1 1 1 �1 �1 1

1 1 1 1 �1 �1 �1 �1
1 �1 1 �1 �1 1 �1 1

1 1 �1 �1 �1 �1 1 1

1 �1 �1 1 �1 1 1 �1

1

CC
C
C
C
CC
C
C
C
C
A

: (3.110)

Labelling the rows of this matrix in the binary form one can verify that we have for
example

j110i D 1p
8
.j000iCj001i�j010i�j011i�j100i�j101iCj110iCj111i/ (3.111)

coming from the sign combinations of the seventh row. Adding and subtracting the
first and last rows of the matrixH˝3 reveals that

1p
2
.j000i C j111i/ D 1

2
.j000i C j011i C j101i C j110i/; (3.112)

1p
2
.j000i � j111i/ D 1

2
.j111i C j100i C j010i C j001i/: (3.113)

This shows that the relative phase of the states j000i and j111i in a multipartite
superposition can be detected in the Hadamard transformed base via a parity check
(in (3.112) the number of 1’s is even and in (3.113) it is odd). This is a crucial
observation for developing quantum error correcting codes [16, 29, 30].

3.4.2 The .7; 4; 3/ Hamming Code, Designs and Steiner
Triple Systems

Quantum error correcting codes [16] are quantum versions of the well-known
classical error correcting codes developed in the middle of the twentieth century.
Concerning quantum errors we will only need the elementary observations having
already been discussed in the previous paragraph. However, for an entanglement
based understanding of the E7.7/ symmetric macroscopic black hole entropy for-
mula within the context of N D 8, d D 4 supergravity we have to learn something
more about classical linear codes, Steiner triple systems and designs [31].
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For this purpose let us delete the first column of the Hadamard matrix of (3.110),
and let us replace the �1s with 0s in the remaining 8 � 7 matrix. Alternatively we
can replace the C1s with 0s and the �1s with 1s. Then we obtain the following
matrices which are complements of each other

0

B
BB
B
B
B
BB
B
B
B
@

1 1 1 1 1 1 1

0 1 0 1 0 1 0

1 0 0 1 1 0 0

0 0 1 1 0 0 1

1 1 1 0 0 0 0

0 1 0 0 1 0 1

1 0 0 0 0 1 1

0 0 1 0 1 1 0

1

C
CC
C
C
C
CC
C
C
C
A

;

0

B
BB
B
B
B
BB
B
B
B
@

0 0 0 0 0 0 0

1 0 1 0 1 0 1

0 1 1 0 0 1 1

1 1 0 0 1 1 0

0 0 0 1 1 1 1

1 0 1 1 0 1 0

0 1 1 1 1 0 0

1 1 0 1 0 0 1

1

C
CC
C
C
C
CC
C
C
C
A

: (3.114)

Our aim is to regard the rows of these matrices as seven binary digit codewords
encoding messages of four digits. For this purpose let us now regard the first, sec-
ond and fourth digits as check digits. The remaining ones are the message digits.
Hence for example the codeword .0; 1; 0; 1; 0; 1; 0/ encodes the message 0010 and
the check digits are 011.

Now we would like to send four message bits through a noisy channel. For this
purpose we encode our 16 possible 4 digit message bits into our 16 seven digit long
codewords as discussed above. The encoding procedure explained above can also
be described formally as the one using the generator matrix G

G �

0

BB
B
B
B
BB
B
B
@

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

1

CC
C
C
C
CC
C
C
A

(3.115)

by acting with it on the 4 digit m message vector regarded as a column vector as
Gm. For example 1101 is encoded into the codeword 1010101/. Let us suppose that
the noisy channel has the effect of flipping merely one of the seven bits. The receiver
would like to know whether the seven bit sequence received by here is corrupted or
not. Moreover, if it is corrupted she would like to correct it unambiguously. In order
to see that she can perform this task just notice that all of our codewords are differing
from each other at least in three digits. If we define the Hamming distance between
two codewords as the number of places in which the codewords differ we see that all
pairs of our codewords have distance at least three. Now if one error is made in the
transmission then the received binary sequence will still be closer to the original one
than to any other. As a result the received sequence can be unambiguously corrected
by choosing the codeword from the list which is the closest to it.
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A nice way of describing the decoding process is effected by employing the
parity check matrix

H D
0

@
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

1

A; (3.116)

which is composed of the fifth, third and second lines of the second matrix of
(3.114). As we see the columns of H contain the binary representation of the integers
1; 2; 3; 4; 5; 6; 7 labelling the digits of the codewords from the left to the right. It is
straightforward to check that all of our 16 codewords are annihilated by H, i.e. for
a word w we have HwT D .000/mod2. However, for a corrupted codeword w C ek

with the kth digit of w is flipped the parity check H.wCe/T D HeT gives the binary
representation of k, hence the error can be corrected unambiguously. The code we
have just described is the .7; 4; 3/Hamming code. The notation refers to the number
of digits of the codeword, the number of message digits and the Hamming distance.

The Hamming code has an important and intimate connection to designs and
Steiner triple systems. A .v; k; �/ design is a collection of k element subsets (called
blocks) of a v-element set S, where k <�, such that each pair of elements of S
occur together in exactly � blocks. Such a design is also known as a balanced
incomplete block design (BIBD). The adjective “balanced” refers to the existence
of �, and “incomplete” refers to the requirement that k <� (so that no blocks con-
tain all the elements). As an example of a BIBD let us consider seven numbers
S � f1; 2; 3; 4; 5; 6; 7g. Let us form groups from these blocks that are triples as

.246/ .145/ .347/ .123/ .257/ .167/ .356/: (3.117)

Then we see that kD 3< v D 7, and each pair of numbers occur together in exactly
� D 1 blocks. Hence the arrangement as given by (3.117) is a (7,3,1) BIBD. A
.v; 3; 1/ design is called a Steiner triple system (STS). Hence our example in (3.117)
is also a STS. It is an important theorem that a STS exists if and only if v � 1 or 3
mod 6.

One can also show that if a .v; k; �/ design has b blocks then each element occurs
in precisely r blocks, where

�.v � 1/ D r.k � 1/; and bk D vr: (3.118)

The incidence matrix of a .v; k; �/ design is the b � v matrix Iij which is 1 if the
i th block contains the j th element, and 0 otherwise. In our example b D 7, hence
the incidence matrix is a 7 � 7 matrix which is just the first matrix of (3.114) after
omitting its first row. Hence 7 of the nontrivial codewords of the .7; 4; 3/ Hamming
code define a .7; 3; 1/ STS.

It can be shown that generally the number of blocks is greater than or equal
the number of points of S, i.e. b 	 v. BIBDs for which b D v are called symmetric
BIBDs. Note that for a symmetric design we have r D k hence every block contains
k elements, and at the same time every element is in k blocks. Moreover every pair
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of elements is in � blocks and every pair of blocks intersect in � elements. Obviously
our .7; 3; 1/ design is symmetric, since the number of blocks and the number of
elements of S are both 7. Moreover, the number of elements in a block is 3, and
every element is in three blocks. One can also see that every pair of blocks intersect
in just one element.

Designs of the form .n2 CnC1; nC1; 1/where n 	 2 are called finite projective
planes of order n. It is easy to check that these designs are automatically symmetric.
Moreover, the elements and blocks of such designs mimic the properties of points
and lines in projective geometry, namely any two lines intersect in one point, and
any two points lie on a unique line. The .7; 3; 1/ design of (3.117) is a projective
plane of order 2. This is called the Fano plane. Instead of the representation as given
by (3.117) it is instructive to have the pictorial representation as given by Fig. 3.1.

We see that we have seven points and seven lines, and each line is containing
three points, and three lines intersect in a unique point. The complements of the
lines are called quadrangles. We have seven quadrangles, and every pair of points is
contained in exactly two quadrangles. It is easy to see that the seven points and the
seven quadrangles form a .7; 4; 2/ design. Generally if we have a design .v; k; �/
D with blocks B1; : : :Bb , then the sets Bi D S � Bi form a .v; v � k; �0/ design
D which is called the complementary design, provided �0 D b � 2r C � > 0. Our
design of quadrangles (the .7; 4; 2/ one)

.1357/ .2367/ .1256/ .4567/ .1346/ .2345/ .1247/ (3.119)

forms the complementary design to the one of lines (the .7; 3; 1/ one). Clearly the
incidence matrix of the .7; 4; 2/ design of quadrangles is given by the 7 � 7 matrix
obtained from the second matrix of (3.114) after omitting the first line. We will show
later that the .7; 3; 1/ design will play an important role in the construction of the
56-dimensional fundamental representation of E7 in terms of seven tripartite states
formed from seven qubits, and the complementary .7; 4; 2/ design will be relevant
for the construction of the 133-dimensional adjoint representation. It will turn out

32

5

4

617

Fig. 3.1 The Fano plane with seven points and seven lines. The set of triples labelling the
lines gives rise to the .7; 3; 1/ design. The complements of triples (quadrangles) define the
complementary .7; 4; 2/ design
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that the seven quadrangles of the .7; 4; 2/ design will give rise to seven 4-qubit states
formed from seven qubits describing the 7� 16 D 112 E7 generators not belonging
to the 7 � 3 D 21 dimensional SLOCC subalgebra sl.2/˚7.

The last topic we would like to discuss here is the connection found between
Hadamard matrices (that formed the basis of our construction of the .7; 4; 3/
Hamming code) andBIBDs. A Hadamard matrix of order n is a matrix with entries
˙1 satisfying HH T DHTH DnI . It is known that if there exist a Hadamard
matrix H of order n > 2, then n must be a multiple of 4. Moreover, an impor-
tant theorem states that a Hadamard matrix of order 4m exists if and only if a
.4m� 1; 2m� 1;m� 1/ design exists. FormD 2 we get our design .7; 3; 1/ which
is according to this theorem clearly connected to the Hadamard matrix of order 8 of
(3.110) which formed the basis of our constructions.

The tensor product construction yielding (3.110) can obviously continued to
produce Hadamard matrices of order 2m. Another simple method for construct-
ing Hadamard matrices is Paley’s method. Take a prime number of the form
p D 4m�1. Form the set of squares of the numbers 1; 2; 3; : : : .p� 1/=2modulop.
The .p� 1/=2 different numbers obtained in this way are called quadratic residues
modulo p. The remaining .p � 1/=2 numbers are the quadratic non-residues mod-
ulo p. For example take p D 7 which is of the desired form. Then the quadratic
residues are 1; 2; 4 and the quadratic nonresidues are 3; 5; 6. One can define the
Dirichlet character �.n/ modulo p as the function which takes the value C1 for
quadratic residues, �1 for quadratic nonresidues, and 0 for integers being multiples
of p. Then let us form the matrix

Q˛ˇ D �.ˇ � ˛/; ˛; ˇ D 1; 2; : : : p D 4m � 1: (3.120)

For example for p D 7 we get the matrix

Q D

0

B
B
BB
B
B
B
B
B
@

0 1 1 �1 1 �1 �1
�1 0 1 1 �1 1 �1
�1 �1 0 1 1 �1 1

1 �1 �1 0 1 1 �1
�1 1 �1 �1 0 1 1

1 �1 1 �1 �1 0 1

1 1 �1 1 �1 �1 0

1

C
C
CC
C
C
C
C
C
A

: (3.121)

Now according to Paley the matrix

˝ �
�
1 E

ET Q � I

�
; (3.122)

where E is the row vector containing p 1s and I is the p � p identity matrix is a
Hadamard matrix. Hence for our case with p D 7 we have
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˝ D

0

B
B
BB
B
B
B
B
BB
B
@

1 1 1 1 1 1 1 1

1 �1 1 1 �1 1 �1 �1
1 �1 �1 1 1 �1 1 �1
1 �1 �1 �1 1 1 �1 1

1 1 �1 �1 �1 1 1 �1
1 �1 1 �1 �1 �1 1 1

1 1 �1 1 �1 �1 �1 1

1 1 1 �1 1 �1 �1 �1

1

C
C
CC
C
C
C
C
CC
C
A

: (3.123)

Notice that this Hadamard matrix is clearly cyclic unlike our one of (3.110). Replac-
ing the �1s with 0s then omitting the first row and column (moreover, for later
convenience putting the last row to the first place), we get

0

B
B
BB
B
B
B
BB
@

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

1

C
C
CC
C
C
C
CC
A

(3.124)

the incidence matrix of a .7; 3; 1/ symmetric BIBD which is again just the Fano
plane with a different labelling used for its points. The permutation which takes the
points of Fig. 3.1. to this new Fano plane is (2)(4)(16)(375). It is well-known that
the symmetry group of the Fano plane is of order 168, hence the number of different
Fano planes is 7Š=168 D 30. It is also known that the space of Fano planes is
consisting of two different orbits with respect to the alternating groupA7, consisting
of 15–15 Fano planes. Since the permutation taking the Fano plane of Fig. 3.1. to
the new one is an odd one these two descriptions are inequivalent with respect to the
group A7.

3.4.3 Graph States

Let us finally introduce the notion of a graph state [32] which will play a dominant
role in the classification of extremal BPS and non-BPS black hole solutions in the
STU model. Consider a simple graph G which contains neither loops nor multiple
edges. Let us denote its vertices by V its edges by E. The main idea is to prepare
n-qubits (their number is the same as the number of vertices V ) in some initial
vector j i 2 C2 ˝ � � � ˝ C2 and then couple them according to some interaction
pattern represented by G. It turns out that the interaction pattern can be completely
specified by G if it is of the form
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U I
xy D e�igxyHI

xy ; HI
xy D I ˝ � � � I ˝ Zx ˝ I � � � I ˝ Zy ˝ I � � � ˝ I:

(3.125)
Here gxy are coupling constants which are the same for every pair of vertices

x; y 2 V . Notice that HI
xy is the Ising Hamiltonian operating only between the

vertices x; y 2 V that are linked by an edge E. The statement is that the interaction
pattern assigned to the graphG in which the qubits interact according to some two-
particle unitaries chosen from a commuting set of interactions is up to phase factors
and local Z rotations is the one of (3.125). In the theory of graph states the initial
state j i associated to the graph G is a separable one which is usually of the form
j00 � � �0i, but we can choose any one of the 2n Hadamard transformed basis vectors.
For convenience the unitary operators appearing in the definition of a graph state are
not the ones of (3.125) but rather the combination

Uxy.gxy/ D e�igxy=4eigxyZx=4eigxyZy=4U I
xy.gxy=4/: (3.126)

Here the operators having a particular label are merely acting on the corresponding
qubit, on the remaining ones the unit matrix is operating. Notice thatUxy is the same
as the Ising one up to a phase and two Z rotations. The unitary Uxy with gxy � �

is just the controlled phase gate

Uxy � Uxy.�/ D .PC/x ˝ Iy C .P�/x ˝ Zy D

0

B
B
@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1

C
C
A ; (3.127)

where only the relevant 4� 4 part of the 2n � 2n matrix was displayed. Now we can
define a graph state as

jGi �
Y

fx;yg2E

Ux;y j00 � � �0i D
Y

fx;yg2E

Ux;y j C C � � � Ci; (3.128)

Such states for n D 3 based on the triangle graph will be appearing in connection
with non-BPS solutions with the central chargeZ ¤ 0.

3.5 STU Black Holes

Having discussed all the basic results we need from the theory of multiqubit
entanglement now we start applying these for obtaining additional insight into the
structure of extremal stringy black hole solutions. As a first example to show how
such techniques can be used we embark in a detailed analysis of the well-known
black hole solutions in the STU model. We consider ungaugedN D 2 supergravity
in d D 4 coupled to n vector multiplets. The n D 3 case corresponds to the STU
model. The bosonic part of the action (without hypermultiplets) is
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S D 1

16�

Z
d 4x

p
jgjf�R

2
CG

a Nb@�za@� Nz Nbg��

C .ImNIJFIFJ C ReNIJFI �FJ /g (3.129)

Here FI , and �FI , I D 1; 2; : : : ; n C 1 are two-forms associated to the field
strengths FI

�� of n C 1 U.1/ gauge-fields and their duals. The za a D 1; : : : ; n

are complex scalar (moduli) fields that can be regarded as local coordinates on
a projective special Kähler manifold M. This manifold for the STU model is
SL.2;R/=U.1/� SL.2;R/=U.1/� SL.2;R/=U.1/. In the following we will denote
the three complex scalar fields as

z1 � S D S1 C iS2; z2 � T D T1 C iT2; z3 � U D U1 C iU2: (3.130)

With these notations we have

G1N1 D GSS D 1

4S2
2

; G2N2 D GT T D 1

4T 2
2

; G3N3 D GU U D 1

4U 2
2

; (3.131)

with the other components like G11, GN1 N1 and G1N2, etc., are zero. The metric above
can be derived from the Kähler potential

K D � ln.�8U2T2S2/ (3.132)

as G
a Nb D @a@ NbK . In order to ensure the positivity of eK (needed later) we demand

that S , T and U should have negative imaginary parts.
For the STU model the scalar dependent vector couplings ReNIJ and ImNIJ

take the following form

ReNIJ D

0

B
B
@

2U1T1S1 �U1T1 �U1S1 �T1S1

�U1T1 0 U1 T1

�U1S1 U1 0 S1

�T1S1 T1 S1 0

1

C
C
A ; (3.133)

ImNIJ D U2T2S2

0

B
B
BB
B
B
@

1C
�

S1

S2

�2 C
�

T1

T2

�2 C
�

U1

U2

�2 � S1

S2
2

� T1

T 2
2

� U1

U 2
2

� S1

S2
2

1

S2
2

0 0

� T1

T 2
2

0 1

T 2
2

0

� U1

U 2
2

0 0 1

U 2
2

1

C
C
CC
C
C
A

: (3.134)

We note that these scalar dependent vector couplings can be derived from the
holomorphic prepotential

F.X/ D X1X2X3

X0
; XI D .X0; X0za/; (3.135)
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via the standard procedure characterizing special Kähler geometry [33]. For the
explicit expressions for NIJ for general cubic holomorphic potentials see the recent
paper of Ceresole et al. [34].

For the physical motivation of (3.129) we note that when type IIA string theory
is compactified on a T 6 one recoversN D 8 supergravity in d D 4 with 28 vectors
and 70 scalars taking values in the symmetric spaceE7.7/=SU.8/. ThisN D 8model
with an on shell U-duality symmetry E7.7/ has a consistent N D 2 truncation with
four vectors and three complex scalars which is just the STU model [35].

Now we briefly recall the basic facts concerning static, spherically symmetric,
extremal black hole solutions associated to the (3.129) action. Let us consider the
static spherically symmetric ansatz for the metric

ds2 D e2Udt2 � e�2U
�

c4

sinh4c�
d�2 C c2

sinh2c�
d˝2

	
; (3.136)

here U � U.�/, c2 D 2ST , where S is the entropy and T is the temperature of
the black hole. The coordinate � is a “radial” one, at infinity (� ! 0) we will be
interested in solutions reproducing the Minkowski metric. d˝2 is the usual metric of
the unit two-sphere in terms of polar coordinates � and '. Our extremal black holes
will correspond to the limit c ! 0, i.e. having vanishing Hawking temperature.
Putting this ansatz into (3.129) we obtain a one-dimensional effective Lagrangian
for the radial evolution of the quantities U.�/, za.�/, as well as the electric �I .�/,
and magnetic �I .�/ potentials defined as [36]

FI
t
 D @
 �

I ; GI t
 � �i ImNIJ .�F/Jt
 � ReNIJFJ
t
 D @
�I ; (3.137)

L.U.�/; za.�/; Nz Na.�// D
�

dU
d�

�2

CGa Na
d za

d�

dNz Na

d�
C e2UVBH.z; Nz; p; q/; (3.138)

and the constraint

�
dU
d�

�2

CGa Na
d za

d�

dNz Na

d�
� e2UVBH.z; Nz; p; q/ D c2: (3.139)

Here our quantity of central importance is the Black Hole potentialVBH is depending
on the moduli as well on the quantized charges defined by

pI D 1

4�

Z

S2

FI ; qI D 1

4�

Z

S2

GI : (3.140)

Its explicit form is given by

VBH D 1

2

�
pI qI

� �.�C ���1�/IJ �.���1/JI
�.��1�/IJ .��1/IJ

��
pJ

qJ

�
; (3.141)
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where the matrices � D ReN and � D ImN are the ones of (3.133) and (3.134).
The explicit form of ��1 is

��1 D 1

U2T2S2

0

B
B
@

1 S1 T1 U1

S1 jS j2 S1T1 S1U1

T1 S1T1 jT j2 T1U1

U1 S1U1 T1U1 jU j2

1

C
C
A : (3.142)

An alternative expression for VBH can be given in terms of the central charge of
N D 2 supergravity, i.e. the charge of the graviphoton.

VBH D ZZ CGa Nb.DaZ/.D NbZ/; (3.143)

where for the STU model

Z D eK=2W D eK=2.q0 CSq1 CTq2 CUq3 CUTSp0 �UTp1 �USp2 �TSp3/;

(3.144)
and Da is the Kähler covariant derivative

DaZ D .@a C 1

2
@aK/Z: (3.145)

Here W.U; T; S/ � W.U; T; S Ip; q/ is the superpotential.
For extremal black hole solutions (c D 0) the geometry is given by the line

element

ds2 D e2Udt2 � e�2U
�

d�2

�4
C 1

�2
.d�2 C sin2�d'2/

	
: (3.146)

The requirement for the solution to have finite horizon area is

e�2U !
�
A

4�

�
�2; as � ! �1; (3.147)

which using the new variable r D �1=� is yielding for the near horizon geometry
the AdS2 � S2 form

ds2 D
�
4�

A

�
r2dt2 �

�
A

4�

��
dr2

r2
C .d�2 C sin2�d'2/

	
: (3.148)

A particularly important subclass of solutions are the double-extremal solutions
[37–39]. These solutions have everywhere-constant moduli. These black holes pick
up the frozen values of the moduli that extremize the black hole mass at infinity. The
frozen values of the scalar fields are the ones at the horizon. These solutions are of
Reissner–Nordström type with constant scalars defined by the critical point of the
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black hole potential VBH

@aVBH D 0; zfix.p; q/ D z1 D zhorizon: (3.149)

For such double-extremal black hole solutions the value of A in (3.148) the area of
the horizon is defined by the value of the black hole potential at the horizon [36]

A

4�
D VBH.zhorizon; Nzhorizon; p; q/: (3.150)

Although our considerations in the following sections can obviously generalized
for solutions of more general type [40–43], in order to simplify presentation in the
following we restrict our attention to this particular subclass of double-extremal
solutions.

3.5.1 The Black Hole Potential as the Norm
of a Three-Qubit State

In order to exhibit the interesting structure of the black hole potential (3.141) first
we make some preliminary definitions. As was observed by Duff [1] it is useful to
reorganize the charges of the STU model into the eight amplitudes of a three-qubit
state

j i D
1X

l;k;j D0

 lkj jlkj i jlkj i � jliU ˝ jkiT ˝ jj iS ; (3.151)

where �
p0 p1 p2 p3

q0 q1 q2 q3

�
D
�
 000  001  010  100

� 111  110  101  011

�
: (3.152)

Notice, however that our identification of the amplitudes of the three-qubit state and
the charges is slightly different from the one used by Duff [1]. Moreover, we have
introduced the convention of labelling the qubits from the right to the left. Also we
will regard the first, second and third qubits as the ones associated to some fictitious
subsystems S (Sarah), T (Tom), and U (Ursula). The state j i is a three-qubit
state of a very special kind. First of all unlike the one of (3.41) this state defined by
the charges need not have to be normalized. Moreover, the amplitudes of this state
are not complex numbers but integers. In the following we will refer to this state
as the reference state. Now we are going to define a new unnormalized three-qubit
state j� i which is depending on the charges and also the moduli [3]. This new state
will be a three-qubit state with eight complex amplitudes. However, as we will see
it is really a real three-qubit state, since it is SU.2/˝3 equivalent to a one with eight
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real amplitudes [3]. So this state is equivalent to an entangled unnormalized one
composed of three rebits (see Sect. 3.2.3).

In order to motivate our definition of the new state j� i we notice that

VBH D �1
2

1

U2T2S2

h j
�jU j2 �U1

�U1 1

�
˝
�jT j2 �T1

�T1 1

�
˝
�jS j2 �S1

�S1 1

�
j i: (3.153)

In order to prove this calculate the 8�8matrix in the middle with rows and columns
labelled in the binary form 000; 001; 010; 011; 100; 101; 110; 111, and regard j i
as the column vector . 000;  001; : : : ;  111/

T and h j the corresponding row vec-
tor. It is straightforward to see that the resulting expression is the same as the one
that can be obtained using (3.133), (3.134), (3.141) and (3.142). For establishing
this result note, however the different labelling of rows and columns of matrices
in (3.141) (which is based on the symplectic structure) and (3.153) (based on the
binary labelling).

Now we define the state j� i as

j�.U; T; S Ip; q/i D ei˚ eK=2

�
U �1

�U 1

�
˝
�
T �1

�T 1

�
˝
�
S �1

�S 1

�
j i: (3.154)

With the choice for the phase factor ei˚ D e�3i�=4 the resulting matrices in the three-
fold tensor product are all SL.2;C/ ones. They are explicitly given by

AS � e�i�=4

p�2S2

�
S �1

�S 1

�
D ei�=4 1p

2

�
1 i

1 �i
�

1p�S2

��S2 0

�S1 1

�
; (3.155)

BT � e�i�=4

p�2T2

�
T �1

�T 1

�
D ei�=4 1p

2

�
1 i

1 �i
�

1p�T2

��T2 0

�T1 1

�
; (3.156)

CU � e�i�=4

p�2U2

�
U �1

�U 1

�
D ei�=4 1p

2

�
1 i

1 �i
�

1p�U2

��U2 0

�U1 1

�
: (3.157)

With this notation we have j� i D CU ˝BT ˝ASj i. This means that the states j� i
for all values of the moduli are in the SL.2;C/˝3 orbit of the reference state j i
of (3.151) defined by the charges. This means that the value of the three-tangle
of �123 (3.55) is the same for both j i and j� i. Obviously the state j� i is an
unnormalized three-qubit one with eight complex amplitudes. However, according
to (3.155)–(3.157) it is not a genuine complex three-qubit state but rather a one
which is SU.2/˝3 equivalent to a real one. This should not come as a surprise since
the symmetry group associated with the STU model is not SL.2;C/˝3 but rather
SL.2;R/˝3.

Using (3.153) now we are ready to write the black hole potential in the following
nice form

VBH D 1

2
jj� jj2: (3.158)
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Here the norm is defined using the usual scalar product in C8 ' C2 ˝C2 ˝C2 with
complex conjugation in the first factor. Since the norm is invariant under U.2/˝3

our choice of the phase factor ei˚ is not relevant in the structure of VBH. In the fol-
lowing for the sake of calculational simplicity we set in (3.154) ˚ � 0. However,
in this convenient “gauge” the three-tangle �123 for the charge-dependent j i and
the charge and moduli-dependent j� i will no longer be the same. Hence the charge
and moduli-dependent j� i in the “gauge” ˚ � 0 will be in the same SLOCC (i.e.
GL.2;C/˝3) but not in the same SL.2;C/˝3 orbit as the charge-dependent refer-
ence state j i. Moreover, we could have defined a new moduli dependent real state
instead of the complex one j� i by using merely the SL.2;R/ matrices of (3.155)–
(3.157) for their definition. However, we prefer the complex form of (3.154) since
it will be useful later.

It is instructive to write out explicitly the amplitudes of our complex three-qubit
state j� i. After recalling the definition of the superpotential W.U; T; S/ of (3.144)
they are

�000 D eK=2W.U ; T ; S/; �111 D �eK=2W.U; T; S/; (3.159)

�110 D eK=2W.U; T; S/; �001 D �eK=2W.U ; T ; S/; (3.160)

�101 D eK=2W.U; T ; S/; �010 D �eK=2W.U ; T; S/; (3.161)

�011 D eK=2W.U ; T; S/; �100 D �eK=2W.U; T ; S/: (3.162)

We can summarize this as

�lkj D .�1/lCkCj eK=2Wlkj ; where W101 � W.U; T ; S/; etc: (3.163)

Notice also that we have the property

�000 D ��111; �110 D ��001; �101 D ��010; �011 D ��100: (3.164)

Using this in (3.158) we can write VBH in the alternative form

VBH D eK
�
jW.U; T; S/j2 C jW.U; T; S/j2 C jW.U; T ; S/j2 C jW.U ; T; S/j2

�
;

(3.165)

in agreement with the result found in (A.39) of the Appendix of Kallosh et al. [44].
As a next step we would like to clarify the meaning of the complex amplitudes

�lkj . For this we have to look at the structure of covariant derivatives. Using (3.145)
we haveDaW D @aW C .@aK/W so for example

DSW.U; T; S/ D W.U; T; S/

S � S
: (3.166)
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Since the nonzero components of the Christoffel symbols are

� S
SS D 2

S � S
; � T

T T D 2

T � T ; � U
U U D 2

U � U ; (3.167)

we have [44]

DSDTW.U; T; S/ D W.U; T ; S/

.S � S/.T � T / ; DSDSW.U; T; S/ D 0; etc:

(3.168)
It is convenient to introduce flat covariant derivatives. Let ı Oa ONb be the flat

Euclidean metric. Then we define the vielbein e Oa
a via the expressionG

a Nb D e Oa
ae

ONbNbı Oa ONb .
Using (3.131) we get for the nonzero components of the inverse vielbein

eS
OS D i.S � S/ D �2S2;

eT
OT D i.T � T / D �2T2; (3.169)

eU
OU D i.U � U / D �2U2:

The flat covariant derivatives are defined byD Oa D ea
OaDa. Using (3.166) and (3.169)

we see that

D OS�111 D i�110; D OT�111 D i�101; D OU�111 D i�011; (3.170)

D OS�111 D D OT�111 D D OU�111 D 0: (3.171)

It is straightforward to verify that the action of the operators D Oa and D ONa on the
remaining amplitudes follows the same pattern. We can neatly summarize their
action after defining the raising and lowering operators S˙

SCj0i D j1i; SCj1i D 0; S�j0i D 0; S�j1i D j0i: (3.172)

Hence the flat covariant derivatives are transforming between the eight amplitudes
�lkj and the combinations like I˝I˝S˙ are transforming between the eight basis
vectors jlkj i of the three qubit state j� i. In fact one can verify that

1

i
D OS j� i D .I ˝ I ˝ SC/j� i; �1

i
D OS j� i D .I ˝ I ˝ S�/j� i; (3.173)

1

i
D OT j� i D .I ˝ SC ˝ I /j� i; �1

i
D OT j� i D .I ˝ S� ˝ I /j� i; (3.174)

1

i
D OU j� i D .SC ˝ I ˝ I /j� i; �1

i
D OU j� i D .S� ˝ I ˝ I /j� i: (3.175)

Hence the flat covariant derivatives are acting on our three-qubit state j� i as the
operators of projective errors known from the theory of quantum error correction
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(see Sect. 3.4.1). Alternatively one can look at the action of the combination
.D Oa �D ONa/=i

1

i
.D OS �D OS /j� i D .I ˝ I ˝X/j� i; etc:; (3.176)

where I ˝ I ˝X is the operator of bit-flip error acting on the first qubit.
Having clarified the meaning of the entangled three-qubit state j� i and the flat

covariant derivatives as error operations acting on it, in light of these result in the
next section we would like to obtain some additional insight on the structure of BPS
and non-BPS black hole solutions.

3.5.2 BPS and Non-BPS Solutions

As it is well-known [36,44,45] the extremization of the black-hole potential (3.143)
with respect to the moduli yields the following set of equations

@aVBH D eK
�
Gb Nc.DaDbW /D NcW C 2.DaW /W

�
D 0; (3.177)

@ NaVBH D eK
�
G

Nbc.D NaD NbW /DcW C 2.D NaW /W
�

D 0: (3.178)

Assuming W ¤ 0 expressing D NaW from (3.178), and substituting the resulting
expression back to (3.177) yields an equation [45] of the form

M b
a .DbW / D 0: (3.179)

For the STU-model for the matrixM b
a we get the following expression

0

B
@

4�7�0 � �4�3 � �5�2
T2

S2
�6�2

U2

S2
�6�4

S2

T2
�5�1 4�7�0 � �6�1 � �4�3

U2

T2
�5�4

S2

U2
�3�1

T2

U2
�3�2 4�7�0 � �6�1 � �5�2

1

C
A ;

where we used the decimal notation .�000; : : : ; �111/ D .�0; : : : ; �7/. Express-
ing the covariant derivatives DaW in terms of the corresponding amplitudes using
(3.170) and (3.171), we obtain the explicit expression for (3.179)

.2�7�0 � �5�2 � �4�3/�6 D 0; (3.180)

.2�7�0 � �4�3 � �6�1/�5 D 0; (3.181)

.2�7�0 � �6�1 � �5�2/�3 D 0: (3.182)

Recall also that �7�˛ D � N�˛ where ˛ D 0; 1; : : : ; 7 which is just the decimal form
of (3.164). The determinant of M b

a is
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1

4
DetM D j�0j2.4j�0j2 � j�1j2 � j�2j2 � j�4j2/ � j�1�2�4j2: (3.183)

Using these results we can conclude that there are two different types of solutions
for Z ¤ 0.

I. BPS solutions

�1 D �2 D �4 D 0; DetM ¤ 0: (3.184)

II. Non-BPS solutions

j�0j2 D j�1j2 D j�2j2 D j�4j2; DetM D 0: (3.185)

Notice that the amplitudes �0 D �000 and �7 D �111 are playing a special
role in the STU model. Indeed they are related to the central charge and its complex
conjugate as

Z D ��7; Z D �0: (3.186)

For the type of solutions considered here Z ¤ 0, hence the corresponding ampli-
tudes are never zero. We should remark, however at this point that there are solutions
belonging to a third class [46,47]: the ones withZ � 0. The structure of these solu-
tions has recently been studied in the context of the STU-model [48]. In the next
sections we are focusing merely on classes I and II where an interpretation of known
results in the language of quantum information theory is straightforward. It is easy
to extend our considerations also to the third class however, we postpone the investi-
gation of these solutions for the special case of the D2–D6 system until Sect. 3.5.6.
Until then let us try to find a quantum information theoretic interpretation for the
two types of solutions found above.

3.5.3 Entanglement and BPS Solutions

We know that for BPS black holes at the horizon (r D 0) we have DaZ � 0. From
the amplitudes of (3.184) and their complex conjugates we see that the only non-
vanishing amplitudes of j� i at the horizon are �000 and �111, hence for the BPS
case

j�.0/i D Zj000i �Zj111i: (3.187)

This state is of the generalized GHZ form of maximal tripartite entanglement (see
(3.44)). The form of the black hole potential at the horizon is

VBH D 1

2
.j�000j2 C j�111j2/ D jZj2 D M 2

BPS: (3.188)

Notice, that for double-extremal black holes (3.187) and (3.188) are valid even away
from the horizon. However, for BPS solutions of more general type j� i as a function
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of � (or r) is of the general form of (3.154) with the moduli S.�/, T .�/ and U.�/
being solutions for the equations of motion for the moduli [40–43]. Of course these
solutions at the horizon (r D 0) will again be attracted to the very special form
of j� i as dictated by (3.187)–(3.188). Hence the first interpretation of the attractor
mechanism for the BPS case is that of a quantum information theoretic distillation
of a GHZ-like state (3.187) at the horizon from a one of the general form (3.151).
As we reach the horizon the conditions

DSZ D DTZ D DUZ D 0; Z ¤ 0: (3.189)

guarantee that

�110 D �101 D �011 D �001 D �010 D �100 D 0; (3.190)

hence we are left merely with the GHZ components �000 and �111.
Equations (3.190) can be used to express the stabilized values of the moduli in

terms of the charges [38]. For obtaining also some geometric insight we proceed as
follows [3]. First we define the following set of four-vectors

nS D

0

B
B
@

1

T

U

TU

1

C
C
A ; nT D

0

B
B
@

1

S

U

US

1

C
C
A ; nU D

0

B
B
@

1

S

T

ST

1

C
C
A : (3.191)

Notice that these are null with respect to our metric (3.32), i.e. n �n D 0 due to their
tensor product structure (e.g. nS D .1; U /t ˝ .1; T /t ). Then we obtain for the BPS
constraints the following form

.S�S � �S / � nS D 0; (3.192)

.T �T � �T / � nT D 0; (3.193)

.U �U � �U / � nU D 0 (3.194)

and their complex conjugates. Here the charge four-vectors are defined as

�S D

0

B
B
@

p0

p2

p3

q1

1

C
C
A ; �S D

0

B
B
@

p1

q3

q2

�q0

1

C
C
A ; (3.195)

�T D

0

B
B
@

p0

p1

p3

q2

1

C
C
A ; �T D

0

B
B
@

p2

q3

q1

�q0

1

C
C
A ; (3.196)
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�U D

0

B
B
@

p0

p1

p2

q3

1

C
C
A ; �S D

0

B
B
@

p3

q2

q1

�q0

1

C
C
A : (3.197)

Notice that due to our labelling convention of the reference state (3.151) with ampli-
tudes  lkj we have �S �  lk0, �S �  lk1, �T �  l0j , etc. After algebraic
manipulations it can be shown that (3.192)–(3.194) can be satisfied provided

.S�S � �S /
2 D 0; .T �T � �T /

2 D 0; .U �U � �U /
2 D 0; (3.198)

meaning that these vectors are also null, i.e. they are lying on the corresponding
quadric surface of CP3 (see the discussion following (3.69)). From these quadratic
equations the stabilized values of the moduli are

S.0/ D .�S � �S /C i
p�D

.�S � �S /
;

T .0/ D .�T � �T /C i
p�D

.�T � �T /
; (3.199)

U.0/ D .�U � �U /C i
p�D

.�U � �U /
:

Notice that in these equations we have chosen the positive sign since according to a
calculation

jS�1 � �1j2 D �1
2

.�.T / � �.T //.�.U / � �.U //

.�.S/ � �.S//
; (3.200)

hence the quantities .�S � �S / can be chosen negative, hence the imaginary parts of
the frozen values for the moduli are indeed negative. Notice also that the quantity
S�S � �S defines a line in CP3, and the solution S.0/ of (3.199) gives the intersec-
tion points of this line with the fixed quadric surface of null vectors defined by the
bilinear form of (3.32).

Having calculated the attractor values for the moduli we can obtain the explicit
form of the three-qubit state of (3.187). The result is

j�.0/i D .�D/1=4Œeiı j000i � e�iı j111i�: (3.201)

Here

D D .p ı q/2 � 4Œ.p1q1/.p
2q2/C .p1q1/.p

3q3/C .p2q2/.p
3q3/�

C 4p0q1q2q3 � 4q0p
1p2p3; (3.202)

where pıq D p0q0 Cp1q1 Cp2q2 Cp3q3, is Cayley’s hyperdeterminant of (3.56)
and
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tan ı D p�D p0

2p1p2p3 � p0.p ı q/ : (3.203)

For the BPS solution to be consistent we have to require �D>0 otherwise the scalar
fields are real and the Kähler potential is not defined. Using (3.150) and (3.188) and
the Bekenstein–Hawking entropy formula S D A=4 we get the well-known result

S D�
p�D: (3.204)

Notice however, that apart from reproducing the result of Behrndt et al. [38] we
have also calculated a useful quantity namely our entangled three-qubit state at the
horizon. As we will see in the following this quantity will give us extra information
on the nature of both BPS and non-BPS solutions.

As an important special case (to be also discussed later in the non-BPS context)
let us consider the D2–D6 system [44]. In this case q0 D p1 D p2 D p3 D 0

and the superpotential is of the form W D UTSp0 C Sq1 C Tq2 C Uq3. Using
(3.201)–(3.203) the three-qubit entangled state at the horizon is

j�.0/i D i
p
2.�p0q1q2q3/

1=4.j000i C j111i/; (3.205)

where �p0q1q2q3 > 0. Equation (3.205) is just the (unnormalized) canonical GHZ-
state. Notice that for the charge dependent reference state j i of (3.151) D. / D
4p0q1q2q3 < 0, but D.�.0// D .�000�111/

2 D �4p0q1q2q3 > 0. This change
of sign is due to our choice of “gauge” ˚ � 0 in (3.154). From (3.187) we see
that for this D2–D6 system the value of the central charge at the horizon is [34]
Z D �ip2.�p0q1q2q3/

1=4.
Until this point we have discussed a quantum information theoretic reinterpreta-

tion of the attractor mechanism for BPS black-hole solutions. In this picture we
are looking at the dynamical system as a one starting from the asymptotically
Minkowski geometry where j�.r/i is of the general form (3.154), and when reach-
ing the horizon with AdS2 � S2 geometry one is left with j�.0/i, a GHZ-like
state.

However we have an alternative way of interpretation. In this picture one is start-
ing from the horizon with the state j�.0/i. We know that this state is of the GHZ (i.e.
maximally entangled) form of (3.187). According to (3.189) and the interpretation
of the action of the flat covariant derivatives as error operators (see (3.173)–(3.175))
we see that in the BPS case our GHZ-state j�.0/i is protected from bit flip errors.
The BPS conditions of (3.189) are precisely the ones of suppressing the bit flip
errors for the three-qubit state j�.0/i characterizing the extremal BPS black-hole
solution. Notice also that bit flips in the computational base correspond to phase
flips in the Hadamard transformed base (see Sect. 3.4.1). Using the definition of
(3.110) we can write (3.205) in the form

j�.0/i D i.�p0q1q2q3/
1=4Œj000i C j011i C j101i C j110i�: (3.206)
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Hence the observation that for the state j�.0/i bit flip errors in the computational
base are suppressed also means that errors of the form

.I ˝ I ˝X/j�.0/i D i.�p0q1q2q3/
1=4Œ000i � j011i � j101i C j110i� (3.207)

changing the relative phase of the states in the Hadamard transformed base are not
allowed. Moreover it is instructive to consider the state (3.206) together with the
“reference” state j i which is also depending merely on the charges

j i D p0j000i C q3j011i C q2j101i C q1j110i: (3.208)

Hence for the D2–D6 system the charge dependent state resulting from moduli sta-
bilization (3.206) is arising from the reference state (3.208) via discrete Fourier
(Hadamard) transformation and uniformization of the amplitudes. Moreover, a com-
parison of (3.207) with (3.208) suggests that these bit flip errors are somehow
connected to sign flip errors of the charges corresponding to D2 branes. This
conjecture will be verified in the next subsection.

3.5.4 Entanglement and Non-BPS Solutions

In order to gain some insight into the structure of non-BPS solutions provided by
quantum information theory we consider the specific example of the D2–D6 system.
By minimizing the effective potential the solutions to the moduli are [44]

S D ˙i
r
q2q3

p0q1

; T D ˙i
r
q1q3

p0q2

; U D ˙i
r
q1q2

p0q3

; p0q1q2q3 > 0;

(3.209)

where the sign combinations not violating the positivity of eK are

f.�;�;�/; .�;C;C/; .C;�;C/; .C;C;�/g: (3.210)

In the work of Kallosh et al. [44] it was also checked that these solutions are forming
stable attractors, meaning that the extremum of the black hole potential is also a
minimum. In the following we would like to use these solutions to calculate j�.0/i
and study its behavior with respect to bit flip errors.

For the .�;�;�/ class straightforward calculation gives the result

�000 D �111 D � ip
8
.p0q1q2q3/

1=4fsgn.p0/ � sgn.q3/� sgn.q2/ � sgn.q1/g;
(3.211)

�011 D �100 D � ip
8
.p0q1q2q3/

1=4fsgn.p0/ � sgn.q3/C sgn.q2/C sgn.q1/g;
(3.212)
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�101 D �010 D � ip
8
.p0q1q2q3/

1=4fsgn.p0/C sgn.q3/� sgn.q2/C sgn.q1/g;
(3.213)

�110 D �001 D � ip
8
.p0q1q2q3/

1=4fsgn.p0/C sgn.q3/C sgn.q2/� sgn.q1/g:
(3.214)

For definiteness we consider the case p0 > 0; q1 > 0; q2 > 0; q3 > 0 which is
compatible with the constraint p0q1q2q3 > 0. In this case we obtain the state

j�.0/i��� D !fj000i � j001i � j010i � j011i � j100i � j101i � j110i C j111ig;
(3.215)

where

! D ip
2
.p0q1q2q3/

1=4: (3.216)

From this state we see thatZ D ��111 D �! in agreement with (4.16) of Ceresole
et al. [34]. In the Hadamard transformed basis this state takes the form

j�.0/i��� D �i.p0q1q2q3/
1=4fj000i � j011i � j101i � j110ig: (3.217)

Comparing (3.206) and (3.217) we see that the basic difference between the BPS
and non-BPS case is the change of sign in the combination p0q1q2q3 and also the
appearance of a nontrivial relative phase between the Hadamard transformed basis
vectors.

Let us now consider the class .�;C;C/. Since for the .�;�;�/ class we had
q1S2 D �sgn.q1/

p
q1q2q3=p0, q2T2 D �sgn.q2/

p
q1q2q3=p0, and q3U2 D

�sgn.q3/
p
q1q2q3=p0 then going from the class .�;�;�/ to the one of .�;C;C/

amounts to changing the signs of q1 and q2. (Remember our convention of labelling
everything from the right to the left.) As a result according to (3.212) the amplitudes
�011 and �100 will be positive and the remaining ones are negative. The resulting
state in this case is of the form

j�.0/i D !f�j000i�j001i�j010iCj011iCj100i�j101i�j110i�j111ig (3.218)

or in the Hadamard transformed base

j�.0/i�CC D �i.p0q1q2q3/
1=4fj000i � j011i C j101i C j110ig: (3.219)

We can summarize these observations for all classes of non-BPS attractors with
Z ¤ 0 for the D2–D6 system as

j�.0/i�ˇ˛ D �i.p0q1q2q3/
1=4fj000i C 	 j011i C ˇj101i C ˛j110ig; (3.220)
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where .	; ˇ; ˛/ D f.�;�;�/; .�;C;C/; .C;�;C/; .C;C;�/g. Notice also that
for example

.I ˝ I ˝X/j�.0/i��� D j�.0/iCC�;
.I ˝ I ˝X/j�.0/i�CC D j�.0/iC�C; e:t:c: (3.221)

This means that the bit flip operators I ˝ I ˝ X , I ˝ X ˝ I and X ˝ I ˝ I are
transforming in between the admissible classes of (3.210). The rule of transforma-
tion is: those class labels that are in the same slot as the bit flip operator X are not
changed, while the remaining ones are flipped.

What about physics? The non-BPS black holes corresponding to attractors of
a D2–D6 system can be characterized by the four three-qubit entangled states of
(3.220) depending merely on the charges. This equation should be taken together
with the other charge-dependent state of (3.206). It is clear from (3.221) that the
error operation on the first qubit which is changing the signs of ˇ and 	 (the entries
of the second and third slots) is corresponding to a sign change of q2 and q3 (the
second and third) of the charges in the reference state (3.208). Generally a bit flip
error on the j th qubit corresponds to a sign flip of the kth an l th charge qk and ql

where j ¤ k ¤ l , and j; k; l D 1; 2; 3.
At this point we can obtain an additional insight into the BPS case as well. Look-

ing back at (3.207) which again corresponds to sign flips of charges q2 and q3, we
understand that in the BPS case sign flips of these kind are suppressed. Although
these sign flips are not changing the sign of the combination p0q1q2q3 they are not
allowed due to supersymmetry. On the other hand for non-BPS black holes flipping
the signs of a pair of charges corresponds to changing the sign of the number ofD2
branes. (Negative number of branes correspond to positive number of antibranes of
the same kind.) These transformations can be regarded as bit flip errors transform-
ing one non-BPS solution to the other. Moreover, according to (3.173)–(3.175) we
also see that these bit flip errors have their origin in the action of the flat covariant
derivatives on our moduli dependent entangled state of (3.154).

In closing this section we make an additional interesting observation. As we have
already realized for the BPS case, at the horizon the form of the three-qubit entan-
gled state will be of very special form. For the D2–D6 system it is proportional to
the canonical GHZ state. What about the non-BPS case? Comparing (3.205) for the
BPS and (3.215) for the non-BPS .�;�;�/-class we see that unlike the GHZ state
(3.215) does not seem to be related to any three-qubit state of special importance
in quantum information theory. However, the state of (3.215) is a particularly nice
example of a graph-state [32]. Graph states are under intense scrutiny these days
due to the special role they are playing in quantum error correction, and in the study
of correlations in wave functions of many body systems. Here we would like to show
that the non-BPS states associated to the classes of (3.210) are (unnormalized) graph
states based on the simple triangle graph.

In order to see this let us recall the results of Sect. 3.4.3 and take an equilateral
triangle. Now associate to its vertices the two-dimensional complex Hilbert spaces
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HS, HT and HU of Sarah, Tom and Ursula. Let us now chose a particular two-qubit
state from each of these spaces. First let us define

j˙iS D 1p
2
.j0iS ˙ j1iS/;

j˙iT D 1p
2
.j0iT ˙ j1iT/; (3.222)

j˙iU D 1p
2
.j0iU ˙ j1iU/;

which are just the Hadamard transformed states jN0i and jN1i of the ones j0i and j1i,
and associate to the triangle graph the three-qubit state

j � ��i � j�iU ˝ j�iT ˝ j�iS: (3.223)

As we know a graph state is arising by specifying the interactions between the states
of the vertices along the three edges of the triangle. For graph states the interactions
are of the following form

VTS D I ˝ I ˝ PC C I ˝ Z ˝ P�;
VU T D I ˝ PC ˝ I C Z ˝ P� ˝ I: (3.224)

VUS D I ˝ I ˝ PC C Z ˝ I ˝ P�;

where for the definitions of the 2 � 2 matrices P˙ and Z see (7.84) and (3.105).
Now it is straightforward to check that the graph state

jGi��� D VTSVU TVUS j � ��i; (3.225)

is up to the factor
p
8! is precisely the state of (3.215). Moreover, had we chosen

the state
j � CCi D j�iU ˝ jCiT ˝ jCiS (3.226)

as the starting state attached to the corresponding vertices of the triangle graph we
would have obtained the other graph state

jGi�CC D VTSVU T VUS j � CCi; (3.227)

which is up to �p
8! is just the state of (3.218) corresponding to the non-BPS

class .� C C/. The remaining cases are obtained by permutation of the signs .� C
C/. Hence we managed to demonstrate that the entangled states corresponding to
non-BPS black hole solutions for the D2–D6 system characterized by the condition
Z ¤ 0 are just graph states associated to the simple triangle graph.
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3.5.5 N D 8 Reinterpretation of the STU-Model: Density
Matrices

In this subsection using some more results from quantum information theory we
would like to comment on the embedding of the solutions of the d D 4,N D 2 STU-
model in d D 4, N D 8 supergravity [35]. As we have seen the Z ¤ 0 extremal
black-hole solutions of the STU-model can be given a nice interpretation in terms
of a moduli and charge-dependent pure three-qubit entangled state. How to describe
the embedding of these solutions in the ones of N D 8 supergravity? In the next
section we will see that one way to do this is to consider the pure state tripartite
entanglement of seven qubits [4, 5, 10]. However, here we would like to describe
the solutions in the N D 8 context using mixed three-qubit states, characterized by
a density matrix with special properties.

The main idea is to associate the matrix of the central charge ZAB; A;B D 0;

1; : : : ; 7 to a bipartite system consisting of two indistinguishable fermionic subsys-
tems with 2M D N D 8 single-particle states. This system is characterized by the
pure state

j�i D
2M�1X

A;BD0

ZAB Oc�
A Oc�

Bj˝i 2 A.C2M ˝ C2M /; (3.228)

where

f OcA; Oc�
Bg D ıAB ; f OcA; OcBg D 0; f Oc�

A; Oc�
Bg D 0; A;B D 0; : : : 2M � 1:

(3.229)
Here Z is a 2M � 2M complex antisymmetric matrix, OcA and Oc�

A are fermionic
annihilation and creation operators, j˝i is the fermionic vacuum and the symbol A
refers to antisymmetrisation [49, 50]. It can be shown [49] that the normalization
condition h�j�i D 1 implies that 2TrZZ� D 1. However, since our states in the
black hole analogy are unnormalized we do not need this condition.

As was demonstrated in the literature [49] local unitary transformations U ˝ U

with U 2 U.2M/ acting on C2M ˝ C2M do not change the fermionic correlations
and under such transformationsZ transforms as

Z 7! UZU T: (3.230)

In the black hole context for 2M D N D 8 the group U.8/ is the automorphism
group of the N D 8, d D 4 supersymmetry algebra.

Since the fermions are indistinguishable, the reduced one-particle density matri-
ces are equal and have the form [51]

� D ZZ�: (3.231)

(For normalized states we have �D 2ZZ� in order to have Tr�D 1. However,
for unnormalized states, our concern here, we prefer to swallow the factor of 2
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in (3.231).) However now we cannot pretend that any of the one-particle density
matrices describes the properties of precisely the first or the second subsystem.
� describes the properties of a randomly chosen subsystem that cannot be better
identified [52]. A useful measure describing fermionic entanglement for M D 2

(which corresponds to N D 4 supergravity) is [49, 50]

� � 8jZ01Z23 �Z02Z13 CZ03Z12j D 8jPf.Z/j: (3.232)

For normalized states 0 
 � 
 1. ForM >2 similar measures related to the Pfaffian
in higher dimensions have also been considered [53]. A fermionic analogue of the
usual Schmidt decomposition of (3.3) can also be introduced. According to this
result [49] (which is just a reinterpretation of an old result of Zumino [54]) there
exists an unitary matrix U 2 U.2M/ such that

 D UZUT;  D
M�1M

j D0

�j "; " D
�
0 1

�1 0
�
: (3.233)

The number of nonzero complex numbers �j ; j D 0; 1; : : : ;M � 1 is called the
Slater rank of the fermionic state. A fermionic state is called entangled if its Slater
rank is greater than 1. For M D 2 a sufficient and necessary condition for having
Slater rank 1 states is the vanishing of �, i.e. the Pfaffian of Z (see (3.232)). (For
M > 2 similar conditions can be found in the literature [53, 55].) Such states can
always be written in terms of one Slater determinant, i.e. in this case ZAB is a
separable bivector. Note, that to the process of obtaining the block diagonal form
(3.233) in the black hole picture corresponds the one of finding the canonical form
of the central charge matrix ZAB.

One can alternatively characterize bipartite entanglement by the entropies of von
Neumann and Rényi of (3.7) and (3.8). Similar to our treatment of Sect. 3.2.1 for
fermionic states one calculates the eigenvalues j�j j2 of the reduced density matrix
� of (3.231). Then the entropies have the form (compare with (3.7)–(3.8))

S1 D 1 �
M�1X

j D0

j�j j2log2j�j j2; S˛ D 1C 1

1 � ˛
log2

M�1X

j D0

j�j j2˛ : (3.234)

The fact that for fermionic systems these entropies satisfy the bound 1 
 S˛

can be traced back to the fact that for fermionic density matrices the so-called
generalized Pauli principle holds [50]. This is to be contrasted with the lower bound
0 
 S˛ coming from (3.14) which holds for all bipartite systems with distinguish-
able subsystems. Some special cases of S˛ are often encountered, for example the
quantity

Tr�2 D
M�1X

j D0

j�j j4; (3.235)

is called the purity of the mixed state �. Obviously one has S2 D �log2ŒTr�2�.
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Let us now consider the central charge matrix in the N D 8 theory

ZAB D f ˙
AB Q˙ � h˙;ABP

˙ ; A; : : : ˙ D 1; : : : 8; A < B; < ˙;

(3.236)
where the charge vector .Q˙ ; P˙ / is forming the fundamental representation of
E7.7/. The beins f ˙

AB .�/ and hAB;˙ .�/ are depending on the 70 scalar fields of
the cosetE7.7/=SU.8/. The black hole potential forN D 8, d D 4 supergravity has
the following form [35]

VBH.�IQ;P / D ZABZ
AB D TrZZ� D 1

2
Tr�; (3.237)

where subscripts A;B label an 8 and superscripts label an N8 of SU.8/. Hence Z
AB

refers to the complex conjugate of the central charge. (Summation is understood
only for A < B .) Notice that using (3.231) we have also introduced the (unnormal-
ized) reduced density matrix. It is hermitian � D ��, positive � 	 0, however now it
is not satisfying the additional normalization condition Tr� D 1. Equation (3.237)
has to be compared with our previous result of (3.158). Both of these equations
express the black hole potential as half of the “norm” of a moduli and charge depen-
dent state. However, for the N D 8 case it is a mixed state. Since the N D 2 STU
model can be regarded as a consistent truncation of the N D 8 case, one might sus-
pect that the mixed state � is somehow related to the pure one � of (3.154). Using
the result of Ferrara and Kallosh [35] we can easily establish the desired relation-
ship. Indeed it has been shown that the algebraic attractor equations of the N D 8

theory can be identified with the corresponding N D 2 attractor equations, under
the correspondence

�0 D iZ; �1 D D OSZ; �2 D D OTZ; �3 D D OUZ: (3.238)

Using (3.144), (3.159), (3.164) and (3.170)–(3.171) we can identify these with the
components of j� i of (3.154) as

i�0 D �111; i�1 D �001; i�2 D �010; i�3 D �100: (3.239)

We emphasize that these components are not all independent but related to each
other via (3.164).

Now we use instead of the labeling A;BD 0; 1; : : : 7 the binary one of 000;
001; : : : ; 111 to write the density matrix in the form

� D
1X

lkj D0

j�lkj j2jlkj ihlkj j D jZj2Œj000ih000j C j111ih111j�C � � � : (3.240)

Here the vectors jlkj i are the eigenvectors of the matrix ZZ� depending on the
remaining charges and moduli. In this way we managed to represent � as a mixed
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state, where the eight weights appearing in the mixture are determined by the
eight moduli-dependent amplitudes of the pure state of the STU model. They are
multiplying the three-qubit pure states jlkj ihlkj j the mixture is composed of.

However, as we already know from (3.16) a density matrix as a convex lin-
ear combination of different types of pure states can be written in many different
ways [18,19]. The one based on the eigenvectors of � is just one of them. Of course
the “quantum” ensembles to be considered here has to be chosen from the subclass
compatible with the U -duality groupE7.7/. It would be nice to establish an explicit
correspondence between consistent truncations [4,5] of theN D 8model other than
the N D 2 STU one and these alternative decompositions of �.

The possibility of interpreting � D ZZ� as a mixed three-qubit state depending
on the 56 charges and 70 moduli fields has further illuminating aspects. It is well-
known that the entropy formula for regular N D 8 black holes in four dimensions
can be given in terms of the square root of the magnitude of the unique Cartan–
Cremmer–Julia quartic invariant J4 [35, 56, 57] constructed from the fundamental
56 of the groupE7.7/. Using the definition of � J4 can be expressed as

J4 D Tr�2 � 1

4
.Tr�/2 C 8RePf.Z/; � D ZZ�: (3.241)

Notice that the terms contributing to J4 are the purity (3.235) (which is related
to Renyi’s entropy S2), one-fourth of the norm squared and eight times the real
part of a quantity similar to the fermionic entanglement measure � of (3.232). All
these terms are invariant under the subgroup SU.8/ of local unitary transformations.
However, their particular combination is invariant under the larger group E7.7/ as
well. It is tempting to interpret J4 as an entanglement measure for a special subclass
of three-qubit mixed states. Apart from the fact that � is an 8 � 8 matrix the three-
qubit reinterpretation will also be justified in the next section where we show that
the 56 of E7 can be described in terms of seven 3-qubit states. We note in this
context that finding a suitable measure of entanglement for mixed states is a difficult
problem. We remark that the only explicit formula known is the celebrated one
of Wootters for two-qubit mixed states [20] the one we have already discussed in
(3.22). J4 might possibly serve as an entanglement measure for three-qubit mixed
states having doubly degenerate eigenvalues which is related to the fact that the
purification of � is the fermionic entangled state of (3.228).

Using this density matrix picture let us now look at the BPS and non-BPS solu-
tions as embedded in the correspondingN D 8 ones. According to (3.238)–(3.239)
for the BPS case we have

�0 ¤ 0; �1 D �2 D �3 D 0; S D �jZj2BPS; (3.242)

where the central charge is calculated at the attractor point. The corresponding
density matrix has the form

�BPS D jZj2BPSfj000ih000j C j111ih111jg; (3.243)



3 Attractors, Black Holes and Multiqubit Entanglement 137

which is a state of Slater rank 1. Hence for BPS states the corresponding fermionic
purification (3.228) can be expressed using ZAB as a separable bivector. This state
is consisting of merely one Slater determinant expressed in terms of two states with
eight single particle states.

For the non-BPS case we have

j�0j D j�1j D j�2j D j�3j ¤ 0; S D 4�jZj2nonBPS; (3.244)

with the corresponding mixed state

�NBPS D jZj2
X

lkj

jlkj ihlkj j; (3.245)

which is a state of Slater rank 4. According to Schliemann et al. [49] a fermionic
state is called entangled if and only if its Slater rank is strictly greater than 1. Hence
class I solutions correspond to non-entangled, and class II solutions correspond to
entangled fermionic purifications. We have to be careful however, not to conclude
that BPS solutions are represented by non-entangled fermionic purifications and
non-BPS solutions with entangled ones. This is because we have not analysed solu-
tions of class III namely the ones with Z � 0. For these solutions we have [48] for
example

�0 D 0; �1 ¤ 0; �2 D 0; �3 D 0; (3.246)

hence these solutions also give rise to Slater rank 1 (i.e. non-entangled) states. This
is because from the N D 8 perspective N D 2 non-BPS ZD 0 solutions are orig-
inated from the N D 2 BPS ones by simply exchanging the eigenvalues j�0j2 and
j�1j2 of �.

3.5.6 A Unified Picture for the D2–D6 System

In order to make the picture complete, let us also include for the D2–D6 system the
non-BPS solutions of type III. For such solutions we have Z � 0. Let us chose the
signs for the charges as follows [34]

p0 < 0; q3 < 0; q2 < 0; q1 > 0: (3.247)

For this combination the solutions are [48]

S D � i

q1

�; T D i

q2

�; U D i

q3

�; � D
r

�q1q2q3

p0
: (3.248)

A calculation of the three-qubit entangled state (3.154) shows that

j� iq1>0 D i
p
2.�p0q1q2q3/

1=4.j001i C j110i/: (3.249)
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It is a GHZ-like state obtained from the canonical GHZ state corresponding to the
BPS solutions by applying the bit flip error operation I ˝ I ˝X . This is consistent
with our interpretation that non-vanishing covariant derivatives of Z at the attractor
point (in this case DSZ ¤ 0) are represented by bit flip errors. By permutation
symmetry the remaining two cases with the sign of q2 and then the sign of q3 is
chosen to be positive will result in the states

j� iq2>0 D i
p
2.�p0q1q2q3/

1=4.j010i C j101i/; (3.250)

and
j� iq3>0 D i

p
2.�p0q1q2q3/

1=4.j100i C j011i/; (3.251)

corresponding to bit flip errors I˝X˝I andX˝I˝I (DTZ ¤ 0 andDUZ ¤ 0).
In the Hadamard transformed basis the connection between sign flip errors of

charges and phase flip errors is displayed explicitly. In this case we have

j� iq1>0 D i.�p0q1q2q3/
1=4fj000i � j011i � j101i C j110ig: (3.252)

Comparing this with the corresponding state for the BPS solution (p0<0; q3>0;

q2>0; q1>0)

j� iq3>0;q2>0;q1>0 D i.�p0q1q2q3/
1=4fj000i C j011i C j101i C j110ig: (3.253)

and the reference state

j i D p0j000i C q3j011i C q2j101i C q1j110i; (3.254)

clearly shows that at the attractor point the phase flip error I ˝ I ˝ Z in the
Hadamard transformed base transforming the BPS solution to the non-BPS Z D 0

one corresponds to a simultaneous sign flip in the charges q2 and q3.
Now we realize that there is a possibility to present a unified formalism for the

characterization of all extremal black hole solutions found for the D2–D6 system.
In order to do this let us call the charge configuration related to the BPS case the
standard one. Hence for the standard configuration we have

p0 < 0; q3 > 0; q2 > 0; q1 > 0: (3.255)

Our aim is to describe all the remaining classes of solutions as deviations from this
one. This viewpoint is justified by the fact that for the BPS solutions bit flip errors
corresponding to sign changes of charges are suppressed, but for the remaining non-
BPS cases they are not. Let us define a map

.sgn.p0/; sgn.q3/; sgn.q2/; sgn.q1// 7! .d; c; b; a/; d; c; b; a D 0; 1

(3.256)
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in the following way. For the standard configuration we define .dcba/ � .0000/.
The occurrence of 1s in some of the slots is indicating a sign flip of the correspond-
ing charge with respect to the standard configuration. Hence for example the class
label .0110/ refers to the state of (3.252) with the signs of the charges q3 and q2 have
been changed. (Compare (3.252) and (3.253).) Then recalling our result in (3.220)
for the remaining non-BPS classes of solutions we define

j�.0/idcba D i Œ�.�1/dp0q1q2q3�
1=4feid�j000i C eic� j011i

C eib� j101i C eia� j110ig: (3.257)

BPS (class I) solutions have the label .0000/, no charge flips. For class II solutions
a quick check shows that the class .1000/ corresponds to our state of (3.217), and
the one with label .1011/ to the one of (3.219). This class can be characterized with
and odd number of sign flips. In the first case only one charge has been flipped
(p0), in the second three (p0, q2 and q1). For class III (non-BPS, Z D 0) solutions
correspond to states like (3.252) with class label .0110/. They have an even number
of sign flips.

Notice also that classes I and III have the same charge orbit structure [47] (that
correspond to two separated branches of a disconnected manifold)and both of them
have an even number of charge flip errors. Class II solutions have two subclasses.
Its is also useful to recall that the configuration with one charge error is known to be
upliftable to a d D 5BPS solution, and the other ones with three errors are upliftable
to d D 5 non-BPS ones [34].

There is however an important distinction to be made between charge flip errors
and bit flip errors. We have a nice correspondence between bit flip errors and sign
flip ones only for the D2-brane charges q1; q2 and q3. The sign flip error of the
D6-brane charge p0 cannot be understand in terms of quantum information theory
within the STU model. However, by embedding this model into the N D 8 one we
have seen that the class p0<0 corresponds to mixed states with fermionic purifi-
cation having Slater rank 1, and p0>0 with fermionic purifications having Slater
rank 4. Notice also that from (3.158) and (3.257) we immediately obtain the result
(see (4.20) of the paper of Ceresole et al. [34]).

VBH.0/ D 2jp0q1q2q3j1=2 D
p

jDj: (3.258)

We remark that the dual situation for extremal black hole solutions (i.e. the D0–
D4) system is showing similar features. In this case states very similar to the ones
of (3.257) can be introduced. This class of states will contain the basis states j111i,
j100i, j010i and j001i, i.e. states with opposite parity than the ones of (3.257). Of
course our interpretation in terms of charge and bit flip errors still survives.
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3.5.7 Real States in the STU Model

As we have seen the states occurring in the STU model are real states meaning that
they are either real or local unitary equivalent to real ones. Let us consider now a
pure real realization of our state of (3.154)

j O�.U; T; S Ip; q/i � CU ˝ BT ˝ AS j i; (3.259)

where now we omit the phase factors and the unitary matrices from the expressions
of (3.155)–(3.157). So for example we have

AS D 1p�S2

��S2 0

�S1 1

�
: (3.260)

Then we can write [3]

M 2
BPS D 1

8
.jj O� jj2 � Tr. O%T U "˝ "/ � Tr. O%SU"˝ "/� Tr. O%ST"˝ "//: (3.261)

The first term is just 1
8

times the norm of our entangled state, i.e. 1
4

times the black
hole potential (see (3.158)). The remaining terms can be related to the real concur-
rence calculated for the reduced density matrices after the single qubits S , T and U
are traced out respectively (see (3.37)).

Since j O� i and j� 0i are unitarily related we have jj O� jj2 D jj� 0jj2. Moreover, the
extremal BPS mass squared can also be written in the form [3] M 2

BPS.0/ D 1
2
C.0/

where C.0/ D 1
3
.CST.0/CCT U .0/CCSU.0// is the average real concurrence. Hence

the entropy for the BPS STU black hole can be written in the alternative forms [3]

SBH D �

2

p
O�STU.0/ D �

2
C.0/ D �

2
jj O�.0/jj2: (3.262)

Notice that in these expressions all quantities are expressed in terms of the real mod-
uli dependent three-qubit state j O�i calculated with the frozen values at the horizon.
Of course due to the SL.2;R/ invariance of the three-tangle we have O�STU D �STU

so it has the same value, no matter we use the reference state j i with integer or the
one j O� i with moduli dependent real amplitudes. However, the norm and the average
real concurrence depends on the values of the moduli in a nontrivial way. Indeed the
combination in (3.261) of these quantities gives M 2

BPS to be extremized. However,
quite remarkably according to (3.262) all three quantities are frozen to the same
value at the horizon.

Let us try to understand these results using our example of the D2–D6 system.
After tracing out one of the qubits the universal formula of (3.257) for the reduced
density matrices gives the form
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%ST D .�ıp0q1q2q3/
1=4

0

B
B
@

1 0 0 	ı

0 1 ˛ˇ 0

0 ˛ˇ 1 0

	ı 0 0 1

1

C
C
A; (3.263)

%SU D .�ıp0q1q2q3/
1=4

0

B
B
@

1 0 0 ˇı

0 1 ˛	 0

0 ˛	 1 0

ˇı 0 0 1

1

C
C
A; (3.264)

%T U D .�ıp0q1q2q3/
1=4

0

B
B
@

1 0 0 ˛ı

0 1 	ˇ 0

0 	ˇ 1 0

˛ı 0 0 1

1

C
C
A; (3.265)

where
˛ D ei�a; ˇ D ei�b; 	 D ei�c ; ı D ei�d ; (3.266)

with .dcba/ being the binary labels of the corresponding state of (3.257). For the
non-BPS class II solutions (Z ¤ 0) these density matrices are of the form (see for
example the choices .1000/ and .1011/)

% D
p
p0q1q2q3.I ˝ I ˙ "˝ "/: (3.267)

On the other hand for BPS solutions, and non-BPS ones with Z D 0 we have

% D
p

�p0q1q2q3.I ˝ I ˙X ˝X/: (3.268)

We would like to transform these states to the purely real basis obtained by acting
with the matrices CU ˝ BT ˝ As of (3.260) on the reference state of (3.151). First
notice that the two-qubit density matrices of (3.267)–(3.268) are in the Hadamard
transformed base. In order to transform back to the computational base note that
HXH D Z , HZH D X and H"H D �". Hence (3.267) will be the same but
(3.268) is changed to %0 ' .I ˝ I ˙ Z ˝ Z/. To obtain the form of our density
matrices in the real base we have to further transform these matrices with U ˝ U
where

U D 1p
2

�
1 i

1 �i
�

(3.269)

see the unitary matrices occurring in (3.155)–(3.157). Since U�"U D iX and
U�ZU D i" after the transformation O% D U� ˝ U�%0U ˝ U we get the final result

O% D
p
p0q1q2q3.I ˝ I ˙X ˝X/ (3.270)
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for all the one-qubit reduced density matrices of the non-BPS (Z ¤ 0) case and

O% D
p

�p0q1q2q3.I ˝ I ˙ "˝ "/ (3.271)

for the BPS and non-BPS Z D 0 ones.
According to the results of Sect. 3.2.4 these mixed two-rebit states are separable

for the non-BPS Z ¤ 0 cases and entangled for the BPS and the non-BPS Z D 0

ones. Now using (3.37) for the BPS case it is easy to show that at the attractor point
we have

jj O�.0/jj2 D C.0/ D
p

O�STU.0/ D 4
p

�p0q1q2q3 (3.272)

giving rise to (3.262) as claimed. Hence the three quantities namely the norm
squared, the average real concurrence and the square-root of the three-tangle gives
rise to the same value at the attractor point. Notice however, that for non-BPSZ ¤ 0

solutions we have C.0/ D 0, but jj O�.0/jj2 D p O�STU.0/ ¤ 0. Hence the tripartite
entanglement present in the graph states corresponding to these types of non-BPS
solutions is sensitive to the loss of one of the qubits (i.e. for tracing them out).
Notice that these states are the ones that can be obtained from the BPS ones by an
odd number of sign flips.

3.5.8 Summary

Let us summarize the main results we have found from the entanglement interpreta-
tion of the STU model. We have introduced a three-qubit entangled pure state which
is depending on the charges and the moduli (3.154). The different components of
this pure state are obtained by replacing in the superpotentialW some of the moduli
with their complex conjugates (see (3.159)–(3.162)). In terms of this unnormalized
pure state the black hole potential can be written as one-half the norm of this state
(3.158). The flat covariant derivatives with respect to the moduli are acting on this
pure state as bit flip errors (3.173)–(3.175). In other words: the representatives of
the flat moduli dependent covariant derivatives at the attractor point are the bit flip
errors. Using our entangled state BPS and non-BPS (Z D 0) solutions can be char-
acterized as the ones containing only GHZ components or their bit-flipped versions
(3.190), (3.201), (3.205) and (3.249)–(3.251).

For non-BPS (Z ¤ 0) solutions the corresponding states have amplitudes with
equal magnitudes (3.185), meaning that these states are linear combinations of all
states with suitable phase factors as expansion coefficients. For the D2–D6 (and its
dual D2–D6) systems the expansion coefficients are just positive or negative signs,
and the corresponding states are graph states. For the D2–D6 (D0–D4) systems in
the Hadamard (discrete Fourier) transformed base the states at the attractor point
show a universal behaviour (see (3.257)). The bit flip errors in this base corre-
spond to phase flip ones, which correspond to the sign flips of the charges q1; q2; q3,
(p1; p2; p3). For BPS solutions bit flips are suppressed, but for non-BPS solutions
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they are not. We managed to embed the N D 2 STU model characterized by a
three-qubit pure state to the N D 8 one characterized by a three-qubit mixed one.
These mixed states have fermionic purifications. Fermionic purifications with Slater
rank 1 describe BPS, and the ones with Slater rank 4 non-BPS solutions. In the STU
truncation for the D2–D6 system these classes correspond to the charge configura-
tions with p0 < 0 and p0 > 0 respectively. Finally we remark that the nice universal
behavior we have found (see (3.257) and its D0–D4 analogue) are also physically
relevant cases that correspond to stable minima of VBH [44, 47, 58], i.e. they are all
attractors in a strict sense.

3.6 N D 8 Supergravity and the Tripartite Entanglement
of Seven Qubits

3.6.1 The Representation Space for the 56 of E7

In Sect. 3.5.5, we have discussed the embedding of theN D 2 STU model inN D 8

supergravity. This model can be obtained from 11-dimensional M -theory or type
IIA string theory via compactification on a seven- or six-dimensional torus. We
have learnt that the N D 2 STU truncation can be described as a one characterized
by a pure three-qubit state coming from a mixed three-qubit one which is related to
the N D 8 model. In this picture the N D 8 model which has 56 charges (28 elec-
tric and 28 magnetic) and 70 scalar (moduli) fields truncates to the N D 2 STU one
which has eight charges (four electric and four magnetic) with six scalar fields (three
complex ones). The STU truncation in the entanglement representation amounts to
regarding the density matrix related to the N D 8 model as a mixture of pure states
corresponding to its canonical form (see (3.17)). However, there are other consistent
truncations. For example we also have the possibility to truncate to N D 4 super-
gravity with SL.2/ � SO.6; 6/ symmetry which is a maximal subgroup of the E7.7/

on shell symmetry group. Though we have the freedom to consider other decom-
positions of the density matrix related to the canonical one via a suitable unitary
transformation (see (3.18)), however, it is not at all obvious how to do this consis-
tently to get other truncations. Hence in this section we chose a different route and
try to describe the black hole solutions ofN D 8 supergravity with a pure entangled
state with more than three qubits.

Our success with the three-qubit interpretation of the STU model is clearly
related to the underlying SL.2;R/˝3 symmetry group of the corresponding N D 2

supergravity which can be related to real states or rebits which are also transform-
ing according to the .2; 2; 2/ of the complex SLOCC subgroup SL.2;C/˝3 of a
three-qubit system. However, in the N D 8 context the symmetry group in question
is E7.7/ which is not of the product form hence a qubit interpretation seems to be
impossible. However, we know that the 56 charges of the N D 8 model are trans-
forming according to the fundamental 56-dimensional representation of E7.7/. We
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can try to arrange these 56 charges as the integer-valued amplitudes of a reference
state. This is the same starting point as the one we adopted in (3.151). However, 56
is not a power of 2 so the entanglement of this reference state if it exists at all should
be of unusual kind. A trivial observation is that 56 D 7 � 8 hence the direct sum of
seven copies of three-qubit state spaces produces the right count. Moreover, a multi-
qubit description is possible if the complexification ofE7.7/, i.e.E7.C/ contains the
product of some number of copies of the SLOCC subgroup SL.2;C/. Since the rank
of E7 is seven we expect that it should contain seven copies of SL.2;C/ groups.
Hence this 56-dimensional representation space might be constructed as some com-
bination of tripartite states of seven qubits. From the work of Duff and Ferrara we
know that this construction is indeed possible. The relevant decomposition of the 56
of E7 with respect to the SL.2/˝7 subgroup is [4]

56 ! .2; 2; 1; 2; 1; 1; 1/C .1; 2; 2; 1; 2; 1; 1/C .1; 1; 2; 2; 1; 2; 1/

C .1; 1; 1; 2; 2; 1; 2/C .2; 1; 1; 1; 2; 2; 1/

C .1; 2; 1; 1; 1; 2; 2/C .2; 1; 2; 1; 1; 1; 2/: (3.273)

Let us now replace formally the 2s with 1s, and the 1s with 0s, and form a 7 � 7

matrix by regarding the seven vectors obtained in this way as its rows. The result we
get is the incidence matrix of the Fano plane in the cyclic (Paley) realization (see
(3.124)). Hence the multiqubit state we are searching for is some sort of generalized
graph state associated with the graph of the Fano plane. More precisely here we are
having a multiqubit state associated with not a graph but a design (BIBD) a creature
we are already familiar with from Sect. 3.4.2.

Though the realization with a cyclic incidence matrix is particularly appealing
however, we would rather use the other realization based on (3.110) since it is
directly related to Hamming’s error correcting code (3.114). From the physical point
of view our choice is justified by our success of characterizing the BPS and non-BPS
black hole solutions of the STU truncation within an error correcting framework.

Let us then use the first of the two matrices of (3.114) as the incidence matrix of
the Fano plane, i.e. our .7; 3; 1/ design. Let us reproduce here this incidence matrix
with the following labelling for the rows (r) and columns (c)

0

B
B
B
BB
B
B
B
BB
B
@

r=c A B C D E F G

a 0 1 0 1 0 1 0

b 1 0 0 1 1 0 0

c 0 0 1 1 0 0 1

d 1 1 1 0 0 0 0

e 0 1 0 0 1 0 1

f 1 0 0 0 0 1 1

g 0 0 1 0 1 1 0

1

C
C
C
CC
C
C
C
CC
C
A

7!

0

B
B
BB
B
B
B
BB
@

aBDF

bADE

cCDG

dABC

eBEG

fAFG

gCEF

1

C
C
CC
C
C
C
CC
A

; (3.274)

where we also displayed the important fact that this labelling automatically defines
the index structure for the amplitudes of seven 3-qubit states formed out of seven
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qubits A;B;C;D;E; F;G (Alice, Bob, Charlie, Daisy, Emma, Fred and George).
This convention also fixes the labelling of lines and points of the Fano plane, see
Fig. 3.2.

Moreover, according to Fig. 3.3. to the points we can associate qubits, i.e. two-
dimensional complex vector spaces VA; VB ; : : : ; VG and to the lines three-qubit
systems, i.e. vector spaces VBDF ; VADE ; : : : ; VCEF where for example VBDF �
VB ˝ VD ˝ VF .

Let us now make a list of the three-qubit Hilbert spaces H� , � 2 Z3
2 � .000/

H100 D V2 ˝ V4 ˝ V6 D VB ˝ VD ˝ VF aBDF .246/;

H010 D V1 ˝ V4 ˝ V5 D VA ˝ VD ˝ VE bADE .145/;

H110 D V3 ˝ V4 ˝ V7 D VC ˝ VD ˝ VG cCDG .347/;

H001 D V1 ˝ V2 ˝ V3 D VA ˝ VB ˝ VC dABC .123/; (3.275)

H101 D V2 ˝ V5 ˝ V7 D VB ˝ VE ˝ VG eBEG .257/;

H011 D V1 ˝ V6 ˝ V7 D VA ˝ VF ˝ VG fAF G .167/;

H111 D V3 ˝ V5 ˝ V6 D VC ˝ VE ˝ VF gCEF .356/:

Here the correspondence between the three-qubit amplitudes and the Steiner triples
(3.117) is also indicated. Notice also that the ordering of the spaces H� is related to

e

f

gb
d

C

E

G A F

B

c a

D

Fig. 3.2 Our labelling convention for the points and lines of the Fano plane

VE

VC
VB

VG VA VF

VD

Fig. 3.3 The Fano plane with two-dimensional complex vector spaces (qubits) attached to its
points
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the ordering of the nontrivial codewords of the first matrix of (3.114) according to
the rule

1; 2; 3; 4; 5; 6; 7 ! .100/; .010/; .110/; .001/; .101/; .011/; .111/;

which is the reverse binary labelling.
Now we fix our convention for the representation space of the 56 of E7 in terms

of the spaces H� as

H � H001 ˚H010 ˚ H011 ˚ H100 ˚ H101 ˚ H110 ˚ H111

VABC ˚VADE ˚ VAF G ˚ VBDF ˚ VBEG ˚ VCDG ˚ VCEF ; (3.276)

i.e. we switch back to the usual binary labelling.

3.6.2 The Generators of E7

The Lie-algebra of E7.C/ has 133 complex dimensions. According to the decom-
position of (3.276) we have sl.2;C/˚7 as a subalgebra of complex dimension
7� 3 D 21. These 21 generators are acting on H according to the pattern of (3.276)
via the well known action of the SLOCC subgroup.

How to define the remaining 112 generators, and how do they act on H? Let us
consider the complements of the lines of the Fano plane of Fig. 3.3. These seven
sets of four points form seven quadrangles. Moreover, we know from (3.119) that
these quadrangles form the complementary .7; 4; 2/ design to the .7; 3; 1/ Steiner
triple system (3.117) on which our construction of the representation space H was
based. Since we have already attached to the points of the Fano plane qubits, and this
assignment automatically defined our three-qubit states corresponding to the lines,
it then follows that the quadrangles define seven 4-qubit states. They are forming
the 112-dimensional complex vector space

W � VDEFG ˚ VBCFG ˚ VBCDE ˚ VACEG ˚ VACDF ˚ VABEF ˚ VABDG; (3.277)

which we can hopefully use as the space of E7 generators not belonging to the
SLOCC subalgebra. Let us denote the basis vectors of the corresponding four-qubit
spaces in the computational base as .TACEG ; : : : ; TABDG/. This means that for
example T1011 for one of the subspaces with a fixed index structure corresponds
to the amplitude of the four-qubit state j1011i having zeros everywhere except at
the entry 1011. The indication that we are on the right track for defining the e7 alge-
bra via four-qubit states is coming from the possibility of defining the Lie-bracket
on W according to the pattern

ŒTACEG ; TBC 0F G0 � D ˚.ACEG;BC 0FG0/"CC 0"GG0TABEF ; (3.278)
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e101

e001 e110

e011
e100

e010

e111

Fig. 3.4 The octonionic multiplication table represented by the Fano plane. The seven octonionic
units e001; : : : ; e111 are multiplied according to the orientation given to the lines. For example
e010e110 D e100

where in this example the pair CG is the one occurring in both of the quadrangles
ACEG and BCFG. Indeed, the map underlying this example is the unique SLOCC
equivariant map up to scalar and it must be nonzero due to the properties of a
semisimple Lie-algebra. The map˚ is restricted by the antisymmetry and the Jacobi
identity, however the crucial restriction on˚ is coming from the observation that the
Fano plane also serves as a nice mnemonic for the octonionic multiplication table
(Fig. 3.4).

Hence if the seven quadrangles are corresponding to the seven imaginary octo-
nionic units it can be shown that the map ˚ can take the values ˙1 on the set of
pairs of quadrangles.

Let us label the four-qubit states associated with quadrangles according to the
rule

W D W001 ˚ W010 ˚ W011 ˚ W100 ˚ W101 ˚ W110 ˚ W111; (3.279)

i.e. the four-qubit states T� belonging to the subspace W� has the same label as their
complementary three-qubit states belonging to the subspace H� . For example T 101

is belonging to the subspace W101 having the index structure T 101
ACDF . Since the

upper index defines the structure of the lower ones uniquely we can safely omit it,
hence it can be shown that the final result for the commutator for our 112 generators
has the form

ŒT� ; T
 � D ˚.�; �/T�C
 ; (3.280)

where the explicit form for ˚.�; �/ is arising from the octonionic multiplication
rule e�e
 D ˚.�; �/e�C
 as defined again by the Fano plane. Note, that in (3.280)
it is understood that pairs of common implicit indices are contracted by two "s as in
(3.278).

Now let us discuss the commutators involving also the remaining 21 generators.
Define the sl.2/ generators as maps acting on the corresponding qubits. For example
the ones acting on qubit A have the form

sAA0 � 1

2
.EAA0"C EAA0"/; (3.281)
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where for the definitions see (3.73). (The labelsAA0 correspond to the three possible
generators s00; s11 and s01 D s10.) Then the commutator of the elements of sl.2/˚7

with the ones belonging to W of (3.279) is defined by the action of the SLOCC
group on the relevant indices of the four-qubit states. Hence for example TACEG

transforms as a .2; 1; 2; 1; 2; 1; 2/ under sl.2/˚7.
Since the commutators for the sl.2/˚7 subalgebra are the usual ones based on

the realization of (3.281), the only type of commutator we have not discussed yet
is the one of the form ŒTDEFG; TD0E 0F 0G0 �, i.e. the ones where the index structure
of the four-qubit states coincides. Since according to Sect. 3.3.2 four-qubit states
taken together with their SLOCC groups acting on them can be described by the
so.4; 4;C/ algebra this commutator can be easily found. It is

ŒTDEFG; TD0E 0F 0G0 � D "DD0"EE 0"FF 0SGG0 C "DD0"EE 0"GG0SFF 0

C "DD0"FF 0"GG0SEE 0 C "EE 0"FF 0"GG0SDD0; (3.282)

where SGG0 � .0; 0; 0; 0; 0; 0; sGG0/, etc.
Finally let us summarize the structure we have found. Let

W000 � sl.2/˚7: (3.283)

Define the 133-dimensional complex vector space as

W �
M

�2Z3
2

W� D W000 ˚W (3.284)

with the Lie-bracket Œ � as defined above. Then [5, 12, 13]

e7 D .W; Œ �/: (3.285)

As we see W has a deep connection with the division algebra of octonions, in
technical terms e7 as a vector space has an octonionic grading.

3.6.3 The Generators of e7 as a Set of Tripartite
Transformations

In this subsection we would like to describe the 56 of e7 in terms of tripartite trans-
formations. In other words we would like to construct the action of the e7 generators
on the representation space H given by the direct sum form of (3.276). Obviously
the action of the sl.2/˚7 generators is defined by a decomposition similar to the one
of (3.273). The only thing we have to modify is the positions for the dublets. Indeed
(3.273) is based on the Paley form of the Hadamard matrix, but our decomposition
of H is based on the form which is related to the classical Hamming code. So we
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have to put the dublets into the slots where in the Hamming code we have 1s. (See
the first code of (3.114).)

So we are left with a definition for the action of the 7 � 16 generators belonging
to the subspaceW . Let us consider one of the quadrangles, e.g. DEFG forming one
of the blocks of the complementary design. To this quadrangle we associate the 16
generators T 001

DEFG. In order to see how these generators act let us write H in the
following form

H D VABC ˚VA ˝.VDE ˚VFG/˚VB ˝.VDF ˚VEG/˚VC ˝.VDG ˚VEF/: (3.286)

Now according to the triality construction of (3.78)–(3.81) to the abstract generators
T 001

DEFG we can associate three different 8 � 8 representations

RI .T
001

DEFG/ D
�

0 DI .T
001

DEFG/

� QDI .T
001

DEFG/ 0

�
; (3.287)

where the 4 � 4 blocks have the form

D1.T
001

DEFG/ D EDF "˝ EEG" W VF G ! VDE ;

D2.T
001

DEFG/ D EDE"˝EF G" W VEG ! VDF ; (3.288)

D3.T
001

DEFG/ D EDE"˝EGF " W VEF ! VDG :

From this it is clear that the 56 � 56 matrix R representing T 001
DEFG is of the form

R.T 001/ D

0

B
B
B
B
BB
B
B
B
@

0 0 0 0 0 0 0

0 0 I ˝D1 0 0 0 0

0 �I ˝ QD1 0 0 0 0 0

0 0 0 0 I ˝D2 0 0

0 0 0 �I ˝ QD2 0 0 0

0 0 0 0 0 0 I ˝D3

0 0 0 0 0 �I ˝ QD3 0

1

C
C
C
C
CC
C
C
C
A

;

(3.289)

where for simplicity we left the indices DEFG corresponding to the 16 different
matrices implicit. They can be recovered from (3.288). From (3.288) we see that the
entanglement transformation can be written as a 7 � 7 diagonal matrix with entries
.0; I˝D1;�I˝ QD1; I˝D2;�I˝ QD2; I˝D3;�I˝ QD3/ times a 7�7 permutation
matrix corresponding to the permutation .1/.23/.45/.67/.

The following set of 16 matrices we try to find is R.T 010
BCF G/. This choice corre-

sponds to the set of generators belonging to the subspace W010. The complement of
BCFG is the line ADE, hence we write down another decomposition starting with
VADE

VADE˚VA˝.VBC ˚VF G/˚VD˝.VBF ˚VCG/˚VE ˝.VBG˚VCF /: (3.290)
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This space is related to our representation space by some permutation changing the
blocks H� and at the same time exchanging some of the qubits. Clearly apart from
these permutations and the change of labels DEFG ! BCFG the basic structure of
the representation is the same. Proceeding as before we get for R.T 010/

0

BB
B
B
B
B
BB
B
@

0 0 I ˝D1 0 0 0 0

0 0 0 0 0 0 0

�I ˝ QD1 0 0 0 0 0 0

0 0 0 0 0 .I ˝D2/12 0

0 0 0 0 0 0 .I ˝D3/12

0 0 0 �.I ˝ QD2/12 0 0 0

0 0 0 0 �.I ˝ QD3/12 0 0

1

CC
C
C
C
C
CC
C
A

:

(3.291)

Here for example

.I˝D2.T
010
BCF G//12 D .I˝EBC "˝EF G"/12 D EBC "˝I˝EF G": (3.292)

This matrix can again be written as the product of a diagonal matrix times the matrix
representing the permutation .2/.13/.46/.57/.

Let us now find the representation matrix R.T 011
BCDE/. Since the complement of

the quadrangle BCDE in this case is AFG we have a decomposition starting with
VAFG of the form

VAFG ˚VA ˝ .VBC ˚VDE/˚VF ˝ .VBD ˚VCE/˚VG ˝ .VBE ˚VCD/: (3.293)

Now the permutation exchanging the different three-qubit state spaces is .3/.12/.47/
.56/ and the matrix R.T 011/ is

0

B
B
B
B
B
BB
B
B
@

0 I ˝D1 0 0 0 0 0

�I ˝ QD1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 .I ˝D2/13

0 0 0 0 0 .I ˝D3/13 0

0 0 0 0 �.I ˝ QD3/13 0 0

0 0 0 �.I ˝ QD2/13 0 0 0

1

C
C
C
C
C
CC
C
C
A

:

(3.294)

Here for example

.I ˝D3.T
011

BCDE//13 D .I ˝EBC"˝EED"/13 D EED"˝EBC"˝ I: (3.295)

Proceeding similarly the remaining generators can be constructed. (For some sub-
tleties however, see [5]). The basic observation is that the generators in question
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are always of the form consisting of a block-diagonal matrix containing tripartite
transformations times a permutation. The structure of the permutation is uniquely
determined by the action of the Z3

2 label � of T � on the Z3
2 label �(mod 2) of the

componentH
 corresponding to the tripartite state in the direct sum of H in (3.276).
Notice, that the generators we have constructed are the ones having a block diago-
nal structure with respect to our choice H for the representation space. By working
out the corresponding permutations one can see that the representation matrices of
the remaining generators T 100, T 101, T 110 and T 111 are not block diagonal ones.
Clearly for the representatives of T 001, T 010 and T 011 the block-diagonal struc-
ture consisting of a 24-dimensional and a 32-dimensional block corresponds to the
decomposition

56 ! .2; 12/˚ .1; 32/; (3.296)

with respect to the maximal subgroup SL.2;C/ � SO.6; 6;C/.
Notice that the .2; 12/ part of the representation space H consists of the ampli-

tudes of the form

0

@
dABC

bADE

fAF G

1

A 2 H.2;12/ � H001 ˚ H010 ˚ H011; (3.297)

and the .1; 32/ part of the ones

0

B
B
@

aBDF

eBEG

cCDG

gCEF

1

C
C
A 2 H.1;32/ � H100 ˚ H101 ˚ H110 ˚ H111: (3.298)

We see that the .2; 12/ space consists of all the amplitudes sharing qubit A in com-
mon, and the .1; 32/ one of all the ones excluding qubitA. Moreover, for the .2; 12/
part the 3 � 16 D 48 generators corresponding to the quadrangles DEFG, BCFG
and BCDE are all built up from quantities of the form I ˝Dr , r D 1; 2; 3, with the
2 � 2 identity matrix acting on qubit A is the dummy label for the action of SL.2/A
(3 generators). The remaining 6�3 generators are coming from the diagonal blocks
not displayed in (3.289), (3.291), (3.294). On the other hand the .1; 32/ part is built
up from quantities like

I ˝ EDE"˝EF G"; EDE"˝ I ˝ EF G"; EF G"˝ EDE"˝ I; (3.299)

with the corresponding permutations of the lettersD;E;F;G related to triality and
similar expressions involving the remaining quadrangles BCFG and BCDE.

It is also clear that by looking back to the explicit form of the operators R.T 001/

((3.276) and (3.289)) we can understand the further decomposition

.2; 12/˚ .1; 32/ ! .2; 2; 2; 1/˚ .2; 1; 1; 8v/˚ .1; 2; 1; 8s/˚ .1; 1; 2; 8s/; (3.300)
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with respect to the inclusion SL.2/� SL.2/� SL.2/� SO.4; 4/ � SL.2/� SO.6; 6/.
The main conclusion of this subsection is that the generators of e7.C/ can be

written as combinations of tripartite entanglement transformations. Some of them
are of SLOCC form (the ones operating in the diagonal blocks) and the others
are establishing correlations between the different tripartite states. Notice also that
the representation theoretic details are entirely encoded in the .7; 3; 1/ design and
its complementary .7; 4; 2/ one, which are related to lines and quadrangles of the
smallest discrete projective plane: the Fano plane. Moreover, all these designs are
described in a unified form in the nontrivial codewords of the .7; 4; 1/ Hamming
code (3.114). The Hamming code in turn is clearly related to the Hadamard matrix
(3.110) which is the discrete Fourier transform on three-qubits. Since Hadamard
transformations of this kind played a crucial role in our obtaining a nice charac-
terization of BPS and non-BPS solutions to the STU truncation, this gives a hint
that black hole solutions of more general type might be understood in a framework
related to error correcting codes. In order to gain more insight into such issues now
we turn to the structure of the E7.7/ symmetric black hole entropy formula related
to Cartan’s quartic invariant of (3.241).

3.6.4 Cartan’s Quartic Invariant as an Entanglement Measure

Let us now consider the problem of finding an appropriate measure of entanglement
for the tripartite entanglement of our seven qubits. We have seen that there are seven
tripartite systems associated to the seven lines of the Fano plane. Moreover, we
know that the unique SL.2;C/˝3 and triality invariant for three-qubit systems is �123

related to Cayley’s hyperdeterminant (3.56). Since we have seven tripartite systems
we are searching for anE7.C/ invariant which is quartic in the amplitudes and when
it is restricted to any of the subsystems corresponding to the lines of the Fano plane
gives rise to Cayley’s hyperdeterminant. Based on a result of algebraic geometry
[13] which states that there is an invariant quartic form on H which is also the
uniqueW.E7/ (the Weyl group ofE.7/) invariant quartic form, whose restriction to
the lines of the Fano plane is proportional to Cayley’s hyperdeterminant. From this
result it follows that this quartic invariant we are searching for should contain the
sum of seven copies of the expression for Cayley’s hyperdeterminant.

The invariant in question is of course Cartan’s quartic invariant J4 well-known
from studies concerning SO.8/ supergravity [57, 59–61], the one we have already
referred to in (3.241). J4 is the singlet in the tensor product representation 56�56�
56 � 56. Its explicit form in connection with stringy black holes with their E7.7/

symmetric area form [60] is given either in the Cremmer-Julia form [59] in terms
of the complex 8 � 8 central charge matrix Z (rewritten in (3.241)) or in the Cartan
form [57] in terms of two real 8� 8 ones P and Q containing the quantized electric
and magnetic charges of the black hole. Its new form in terms of the 56 complex
amplitudes of our seven qubits has been calculated by Duff and Ferrara [4]
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J4 D 1

2
.a4 C b4 C c4 C d 4 C e4 C f 4 C g4/

C 2


a2b2 C b2c2 C c2d 2 C d 2e2 C e2f 2 C f 2g2 C g2a2

C a2c2 C b2d 2 C c2e2 C d 2f 2 C e2g2 C f 2a2 C g2b2

C a2d 2 C b2e2 C c2f 2 C d 2g2 C e2a2 C f 2b2 C g2c2
�

C 8Œaceg C bcfg C abef C defg C acdf C bcde C abdg�; (3.301)

where we have used the definitions from (3.65)–(3.66) and we have for example

bcde D "A1A3"B3B4"C2C3"D1D2"E1E4"G2G4bA1D1E1
cC2D2G2

dA3B3C3
eB4E4G4

:

(3.302)
Notice that according to our labelling convention as given by (3.264)–(3.270) the
terms containing four tripartite systems can be written symbolically as

aceg D  100 110 101 111;

bcfg D  010 110 011 111;

abef D  100 010 101 011;

defg D  001 101 011 111; (3.303)

acdf D  100 110 001 011;

bcde D  010 110 001 101;

abdg D  100 010 001 111:

Notice that the sum of the Z3
2 labels always gives .000/ mod 2 corresponding to

the fact that the resulting combination has no Z3
2 “charge”, i.e. it is belonging to the

singlet of E7 as it has to be. The remaining terms of J4 containing two and one tri-
partite states obviously share the same property. Do not confuse however, the upper
indices, e.g. in  001 with the lower ones occurring in (3.41), e.g.  ABC . Upper
indices label the superselection sectors, i.e. the different types of tripartite systems
and lower indices label the components with respect to the basis vectors. So for
example  001

ABC is just another notation for dABC according to the labelling scheme
of (3.275). However, it is interesting to realize that the sum of the lower indices
(regarded as elements of Z3

2) occurring in the terms of the expression for Cayley’s
hyperdeterminant (3.56) gives again .000/. Moreover, some of the combinations in
(3.303) are having the same form as the ones in (3.56). This coincidence might be
an indication that using the 56 amplitudes in the purely Z3

2 labelled form  �
ijk

, the
quartic invariant J4 can be expressed in a very compact form reflecting additional
symmetry properties.

Another important observation is that the terms occurring in the (3.301) expres-
sion for J4 can be understood using the dual Fano plane. To see this note, that the
Fano plane is a projective plane hence we can use projective duality to exchange the
role of lines and planes. Originally we attached qubits to the points, and tripartite
systems to the lines of the Fano plane. Now we take the dual perspective, and attach
the tripartite states to the points and qubits to the lines of the dual Fano plane see
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bADE

eBEG

gCEF

fAFG

aBDF

dABC cCDG

Fig. 3.5 The dual Fano plane. To its points now we attached three-qubit states with the repre-
sentative amplitudes indicated. To the lines we associate the common qubits these tripartite states
share

Fig. 3.5. In the ordinary Fano plane the fact that three lines are intersecting in a
unique point corresponded to the fact that any three entangled tripartite systems
share a unique qubit. In the dual perspective this entanglement property corresponds
to the geometric one that three points are always lying on a unique line. For example
let us consider the three points corresponding to the tripartite states belonging to the
subspaces H� , with � D .001/; .010/; .011/. According to (3.275) to these sub-
spaces correspond the amplitudes d , b, and f . Looking at Fig. 3.5 these amplitudes
define the corresponding points lying on the line dbf . This line is defined by the
common qubit these tripartite states share, i.e. qubit A.

In the dual Fano plane we have seven points, with seven tripartite states attached
to them. The corresponding entanglement measures are proportional to seven copies
of Cayley’s hyperdeterminant, then in J4 we have the terms a4; b4; c4; d 4; e4; f 4

and g4. We also have seven lines with three tripartite states on each of them. We can
group the 21 terms of the form a2b2, etc., into seven groups associated to such lines.
According to the explicit formula (3.67) they are describing the pairwise entangle-
ment between the three different tripartite systems (sharing a common qubit). For
example for the line dbf we have the terms b2d 2, d 2f 2 and b2f 2 describing such
pairwise entanglements. Finally we have seven quadrangles (as complements to the
lines) with four entangled tripartite systems. They are precisely the ones as listed in
(3.303) giving rise to the last seven terms in J4. Hence the terms in J4 are of three
type

POINT $ 1 TRIPARTITE STATE $ a4; : : :;

LINE $ 3 TRIPARTITE STATES $ .b2d 2; d 2f 2; b2f 2/; : : :;

QUADRANGLE $ 4 TRIPARTITE STATES $ aceg; : : :: (3.304)

It is useful to remember that the tripartite states forming lines are sharing a qubit,
and the tripartite ones forming the quadrangles which are complements to these lines
are excluding the corresponding ones.
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We have already seen that the truncation of our system with seven tripartite states
to a single tripartite one yields the three-tangle �3 D 4jD. /j as the natural measure
of entanglement. Here  can denote any of the amplitudes from the set  � ; � 2
Z2

3 � .000/. In the black hole analogy where instead of the complex amplitudes of
 we use integer ones corresponding to the quantized charges the scenario we get
is the one of the STU model which we have already discussed in Sect. 3.5. In this
case the black hole entropy is given by the formula

S D �
p

jD. /j D �

2

q
�

.1/
3 (3.305)

i.e. it is related to the three-tangle � .1/
3 � �123. The upper index indicates that we

have merely one tripartite system. The geometric picture suggested by our use of
the dual Fano plane is that of a truncation of the entangled design to a single point.

Consider now a truncation of the seven qubit system to one of the lines of the
dual Fano plane Fig. 3.5. Let us take for example the line dbf . As the measure of
entanglement for this case we define

�
.3/
3 D 2jb4 C d 4 C f 4 C 2.b2d 2 C d 2f 2 C b2f 2/j; (3.306)

where the notation � .3/
3 indicates that now we have three tripartite states. Now we

write the state corresponding to the line dbf in the form

j i D
X

ABCDEFGD0;1

jAi ˝ .dABC jBC i C bADE jDEi C fAF G jFGi/: (3.307)

This notation clearly displays that this state is an entangled one of qubit A with the
remaining ones .BC /.DE/.FG/. Recalling that on this state the .2; 12/ of SL.2/�
SO.6; 6/ acts we can write this as

j i D
X

A�

 A�jAi ˝ j�i; A D 0; 1; � D 1; 2; : : : ; 12: (3.308)

Let us discuss the role the group SL.2/� SO.6; 6/ plays in the quantum information
theoretic context. SL.2/ corresponds to the usual SLOCC protocols. The second one
SO.6; 6/ contains two different types of transformations. One set corresponds to the
remaining part of the SLOCC group, i.e. SL.2/˝6 (18 generators). The other set
defines transformations transforming states between the different tripartite sectors
with different Z3

2 charge. As we know these transformations are generated by three
sets of four-qubit states (3 � 16 generators).

Denote by  the 2� 12 matrix of (3.308). For its components A� we introduce
the notation
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p� �  0� D
0

@
d0BC

b0DE

f0F G

1

A; q� �  1� D
0

@
d1BC

b1DE

f1F G

1

A: (3.309)

Now we employ the notation

pq � G��p
�q� D p�q� � d0 � d1 C b0 � b1 C f0 � f1; �; � D 1; 2; : : : ; 12;

(3.310)
where the 12 � 12 matrix G with 4 � 4 blocks as elements has the form

G D
0

@
"˝ " 0 0

0 "˝ " 0

0 0 "˝ "

1

A; (3.311)

and the Plücker coordinates

P�� � p�q� � p�q�; (3.312)

to get for the invariant � .3/
3 the following expression

�
.3/
3 D 2jP��P

�� j D 4j.pp/.qq/� .pq/2j: (3.313)

In the black hole analogy using for p� and q� instead of complex numbers integers
corresponding to quantized charges of electric and magnetic type the measure of
entanglement in (3.306) can be related to the black hole entropy

S D �

2

q
�

.3/
3 ; (3.314)

coming from the truncation of the N D 8 case with E7.7/ symmetry to the N D 4

one [4, 44, 62] with symmetry group SL.2/ � SO.6; 6/.
From the 2 � 12 matrix  of (3.308) we can form the one % �   � which is

just the reduced density matrix of qubitA the one all of our tripartite systems share.
(See (3.4)–(3.5).) From (3.11) we know that for normalized states h j i D 1 the
measure

0 
 �1.234567/ D 4P˛ˇP
˛ˇ D 4jDet%j 
 1; ˛; ˇ D 1; 2; : : : ; 12; (3.315)

i.e. the concurrence squared gives information on the degree of separability of qubit
A from the rest of the system. Here unlike in (3.313) summation is understood with
respect to the 12 � 12 unit matrix.

Now we can prove that for normalized states

0 
 �
.3/
3 
 1: (3.316)
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Indeed after noticing that

"˝ " D UU T ; U D 1p
2

0

B
B
@

1 0 0 1

0 i i 0

0 �1 1 0

i 0 0 �i

1

C
C
A 2 SU.4/ (3.317)

with the help of U we can transform the four components of the amplitudes
d0BC ; : : : ; f1F G to the so-called magic base [20] consisting of the four famous Bell-
states with suitable phase factors included. (Algebraically this is the base related
to biquaternions, the complex generalization of the split-quaternions discussed in
Sect. 3.2.3.) Then we have � .3/

3 D 2jP˛ˇP
˛ˇ j where P ˛ˇ refers to the components

of the Plücker matrix in the magic base and summation is now with respect to ı˛ˇ .
Since % D   � is invariant with respect to this transformation  !  U where
U D U ˚ U ˚ U the expression in (3.315) is not changed. Using (3.315) and the
triangle inequality

0 
 4jP˛ˇP
˛ˇ j 
 4P˛ˇP

˛ˇ 
 1; (3.318)

hence we get (3.316).
An immediate consequence of this is that � .3/

3 vanishes for systems where qubit
A is separable from the rest. Similar conclusions can be drawn from the vanishing
of the six quantities (based on the remaining six qubits) defined accordingly. The
six new quantities � .3/

3 are vanishing when any qubit located at the vertices of the
Fano plane is separable from the tripartite systems associated with the three lines the
qubit is lying on. It is important to realize however, that one can also get � .3/

3 D 0 by
choosing b100 D b010 D b001 D d100 D d010 D d001 D f100 D f010 D f001 D
1=3. This state corresponds to the situation of choosing three different tripartite
states belonging to the class of the jW i state of (3.44). These tripartite states are
genuine entangled three-qubit ones which retain maximal bipartite entanglement
when any one of the three qubits is traced out.

Having discussed the truncation to a line of the dual Fano plane, now we consider
the complementary situation, i.e. truncation to a quadrangle. By a quadrangle as
usual we mean the complement of a line. We have seen that there is a complementary
relationship between the entanglement properties as well. Three tripartite systems
associated to a line share a common qubit, and four tripartite systems associated to
the complement of this line exclude precisely this qubit. Hence we are expecting
this relationship to be manifest in the special form of an entanglement measure
characterizing this situation.

As an example let us consider again the line dbf and its complement the
quadrangle aceg. We define the quantity

�
.4/
3 D 2ja4Cc4Ce4Cg4C2.a2c2Ca2e2Ca2g2Cc2e2Cc2g2Ce2g2/C8acegj:

(3.319)



158 P. Lévay

Here the notation � .4/
3 refers to the situation of entangling four tripartite systems.

In the following we prove that � .4/
4 is the entanglement measure characterizing the

configuration complementary to the one of the previous subsection.
The first observation is a group theoretic one. The amplitudes b, d and f are

transforming according to the .2; 12/ and the complementary ones a, c, e and g
according to the .1; 32/ of SL.2/ � SO.6; 6; /, i.e. they are spinors under SO.6; 6/.
This fact is clearly displayed in our explicit matrix representation equations (3.289),
(3.291) and (3.294). Hence our invariant � .4/

3 should also be regarded as the singlet
in the symmetric tensor product of 4 spinor representations of SO.6; 6/.

Our second observation is based on the black hole analogy. Let us relate our
(unnormalized) amplitudes a; b; : : : ; g to the quantized charges of the E7.7/ sym-
metric area form [60] of the black hole. In this case we have 7 � 8 D 56 integers
regarded as amplitudes of a seven qubit system associated to the entangled design
defined by the Fano plane. These amplitudes correspond to the two 8 � 8 antisym-
metric matrices of charges P and Q. Then the Cartan form of our quartic invariant
J4.P ;Q/ is [57]

J4.P ;Q/ D �Tr.QPQP/C 1

4
.TrQP/2 � 4 .Pf.P/C Pf.Q// : (3.320)

(Compare this form with the one of (3.244) given in terms of the central charge
matrix.) In the context of toroidal compactifications of M-theory or type II string
theory the antisymmetric matrices P and Q may be identified as [63]

Q D
0

@
ŒD2�mn ŒF1�m Œkkm�m

�ŒF1�m 0 ŒD6�

�Œkkm�m �ŒD6� 0

1

A;

P D
0

@
ŒD4�mn ŒNS5�m Œkk�m
�ŒNS5�m 0 ŒD0�

�Œkk�m �ŒD0� 0

1

A; m; n D 1; : : : 6: (3.321)

Here, ŒD2�mn denotes a D2 brane wrapped along the directions mn of a six-
dimensional torus T 6. ŒD4�mn corresponds to D4-branes wrapped on all directions
but mn, Œkk�m denotes a momentum state along direction m, Œkkm�m a Kaluza–
Klein five-monopole localized along the direction m, ŒF1�m a fundamental string
winding along direction m, and ŒNS5�m a NS5-brane wrapped on all directions but
m. Then the N D 4 truncation where

Q D
0

@
0 ŒF1�m Œkkm�m

�ŒF1�m 0 0

�Œkkm�m 0 0

1

A ; P D
0

@
0 ŒNS5�m Œkk�m

�ŒNS5�m 0 0

�Œkk�m 0 0

1

A; (3.322)

should corresponds to the case of our truncation to a line (e.g. the one dbf ). In
this case our � .3/

3 is just the quartic invariant with respect to SL.2/ � SO.6; 6/. The
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complementary case

Q D
0

@
ŒD2�mn 0 0

0 0 ŒD6�

0 �ŒD6� 0

1

A ; P D
0

@
ŒD4�mn 0 0

0 0 ŒD0�

0 �ŒD0� 0

1

A ; (3.323)

of the N D 2 truncation should correspond to our restriction to quadrangles (e.g.
the one aceg). The resulting quartic invariant, also based on the Jordan algebra [63]
JH

3 should be related to our � .4/
3 . For an explicit proof of our claim what we need is

a correspondence between the amplitudes a; b; : : : g and the components of P and
Q. This would also establish an explicit connection between our 56 of E7 in terms
of seven qubits and the one of Cartan [57] in terms of the antisymmetric matrices P
and Q.

In order to prove our claim by establishing this correspondence in these special
cases we proceed as follows. We already know that our expression for the entangle-
ment measure associated with J4 should give the three-tangle �123 when restricting
to a point of the dual Fano plane. Let us consider this point to be g, i.e. the amplitude
gCEF . We arrange the 2 � 4 complex amplitudes of gCEF in Q and P as follows

P D

0

B
B
@

g001 0 0 0

0 g010 0 0

0 0 g100 0

0 0 0 g111

1

C
C
A˝ "; Q D

0

B
B
@

g110 0 0 0

0 g101 0 0

0 0 g011 0

0 0 0 g000

1

C
C
A˝ ":

(3.324)
Then from (3.66) we get

J4 D �D.g/ D 1

2
g4; (3.325)

Hence it is natural to define a normalized measure of entanglement for our seven
qubit system as

�7 � 4jJ4j: (3.326)

Indeed, for normalized states truncation to a single tripartite system gives rise to
the three-tangle �123 satisfying the constraint 0 
 �123 
 1. Moreover, for the
important special case of putting GHZ states to the seven vertices of the dual Fano
plane (a000 D a111 D b000 D � � � D g111 D 1=

p
14) we get �7 D 1.

In the black hole analogy however, the amplitudes are integers and no normal-
ization condition is used. The special case having only g ¤ 0 is the case of the STU
model. Notice that the amplitudes gCEF are occurring as the entries in the canoni-
cal form of the antisymmetric matrices P and Q. Hence we expect that this special
choice will be reflected in our choice for filling in the missing entries of the matrices
P and Q in the more general cases. For normalized states truncation to the tripartite
systems bdf lying on a line of the dual Fano plane we choose
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P D

0

B
B
@

0 0 0 f T
0

0 0 0 bT
0

0 0 0 dT
0

�f0 �b0 �d0 0

1

C
C
A ; Q D

0

B
B
@

0 0 0 � Qf1

0 0 0 � Qb1

0 0 0 � Qd1Qf T
1

QbT
1

QdT
1 0

1

C
C
A : (3.327)

Here the elements of these matrices are 2 � 2 matrices constructed as follows. As
we have stressed in our chosen arrangement the role of qubits C, E, and F are spe-
cial. These qubits are contained in the corresponding three-qubit amplitudes dABC ,
bADE and fAF G . We split the eight components of these amplitudes into two 2 � 2
matrices based on the positions of the special qubits (CEF) they contain

d0 D dAB0; d1 D dAB1; b0 D bAD0;

b1 D bAD1; f0 D fA0G ; f1 D fA1G : (3.328)

In order to check that 4jJ4.P ;Q/j restricted to the line dbf indeed gives back our
expression for � .3/

3 of (3.306) we note that in this case we can write J4 in the form

J4 D 4Det.XT Y / � .Tr.XT Y //2; X D
0

@
dT

0

bT
0

f T
0

1

A ; Y D
0

@
Qd1Qb1

Qf1

1

A : (3.329)

Using the identity valid for 2 � 2 matrices

Det.ACB/ D DetAC DetB C Tr.A QB/ (3.330)

and grouping the terms we get 4jJ4.P ;Q/j D �
.3/
3 .

Finally we consider the complementary situation, i.e. restriction to the quadran-
gle aceg. Let us consider the matrices

P D

0

BB
@

g001" cT
1 eT

1 0

�c1 g010" aT
1 0

�e1 �a1 g100" 0

0 0 0 g111"

1

CC
A ; Q D

0

BB
@

g110" �Qc0 �Qe0 0

QcT
0 g101" �Qa0 0

QeT
0 QaT

0 g011" 0

0 0 0 g000"

1

CC
A :

(3.331)
Here the elements of these matrices are again 2 � 2 matrices. The tripartite systems
with amplitudes cCDG , eBEG and aBDF are again containing our special qubits C,
E and F. The matrices occurring in the entries of P and Q are

c0 D c0DG; c1 D c1DG ; e0 D eB0G ; (3.332)

e1 D eB1G ; a0 D aBD0; a1 D aBD1:
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Then a straightforward but tedious calculation shows that using P and Q of (3.331)
we get

4jJ4.P ;Q/j D �
.4/
3 : (3.333)

Notice that the structure of the matrices P and Q follows the pattern

0

B
B
@

� GD GB GA
DG � DB DA
BG BD � BA
AG AD AB �

1

C
C
A ;

0

B
B
@

7 6 5 3

6 7 4 2

5 4 7 1

3 2 1 7

1

C
C
A ; (3.334)

where the symbol � refers to the positions for the amplitudes gCEF composed from
the special qubits CEF (see also (3.324)). For the meaning of the decimal labels just
convert the binary ones of (3.275) and use the associated amplitudes. Notice also
that the split of the relevant amplitudes to two four component ones, e.g. aBD0

and aBD1 corresponds to the structure of split-octonions. To get some hints for
this connection see the similar construction of SO.2; 2/ and the split quaternions
in (3.34)–(3.35).

Using these results it is clear now that in the black hole analogy truncation to a
line of our entangled system corresponds to the one of truncating the N D 8 case
with moduli space E7.7/=SU.8/ to the N D 4 one with moduli space .SL.2/=U.1//
� .SO.6; 6/=SO.6/ � SO.6//. Moreover, the truncation to a quadrangle comple-
mentary to this line gives rise to the N D 2 truncation [64] with the moduli space
being SO�.12/=U.6/. It is also known [47] that the manifold SO�.12/=U.6/ is the
largest one which can be obtained as a consistent truncation of the N D 8, d D 4

supergravity based on E7.7/=SU.8/.

3.7 Conclusions

Recently there has been much progress in two seemingly unrelated fields of theoreti-
cal physics. One of them is quantum information theory which concerns the study of
quantum entanglement and its possible applications such as quantum teleportation,
cryptography and computing. The other is the physics of stringy black holes which
has provided spectacular results such as the black hole attractor mechanism and
the microscopic calculation of the black-hole entropy related to the nonperturbative
symmetries found between different string theories. In these lecture notes we have
shown that there are some interesting mathematical coincidences between these dif-
ferent strains of knowledge. The results we have established here are intriguing
mathematical connections arising from the similar symmetry properties of entan-
gled systems and the web of dualities in string theory. In order to refer to such
coincidences Duff and Ferrara coined the term the black hole analogy. We hope that
we have convinced the reader that this analogy can be quite useful in repackaging
some of the well-known results and awkward looking expressions of supergravity
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into a nice form by employing some multiqubit entangled states depending on the
charges and the moduli. Moreover, this repackaging has given hints for understand-
ing extremal BPS and non-BPS solutions within an error correction based picture.
At the moment we are not aware whether this nice picture will survive or not in
more general scenarios. In order to settle this issue these generalizations should be
explored further.

In this respect note the very interesting connection we have found between error
correcting codes (classical and quantum) and the classification of black-hole solu-
tions. It is a well-known mathematical fact that error correcting codes are related to
designs. Here we also established connections between designs (the .7; 3; 1/ design
and its complement) and the representation theory of the exceptional group E7.
However, for duality symmetries in string theory (due to quantization of charge) the
interesting objects are merely suitable discrete subgroups like the one in our case:
E7.Z/. Other discrete symmetry groups are also occurring in this context as auto-
morphism groups of designs, for example in our case the 168 element symmetry
group of the Fano plane (i.e. the simple groupL2.7/ ' L3.2/). To cap all this at the
attractor point we can have multiqubit (or qudit) states of very special type (graph
states) attached to the vertices of the corresponding designs. (See (3.257) and our
example with the STU truncations based on the dual Fano plane.) The charge codes
of these states might be connected to further discrete symmetries. Since design the-
ory is also linked to the structure of finite simple groups, structures which in turn can
be related to string theory [65] and black hole solutions [66] this ideas are definitely
worth exploring.

Acknowledgement Financial support from the Országos Tudományos Kutatási Alap (grant num-
bers T047035, T047041) is gratefully acknowledged.
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25. P. Lévay, Phys. Rev. A 71, 012334 (2005)
26. J-G. Luque, J-Y. Thibon, Phys. Rev. A 67, 042303 (2003)
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Chapter 4
From Special Geometry to Black Hole
Partition Functions

Thomas Mohaupt

Abstract These notes are based on lectures given at the Erwin-Schrödinger Insti-
tute in Vienna in 2006/2007 and at the 2007 School on Attractor Mechanism
in Frascati. Lecture I reviews special geometry from the superconformal point
of view. Lecture II discusses the black hole attractor mechanism, the underly-
ing variational principle and black hole partition functions. Lecture III applies
the formalism introduced in the previous lectures to large and small BPS black
holes in N D 4 supergravity. Lecture IV is devoted to the microscopic descrip-
tion of these black holes in N D 4 string compactifications. The lecture notes
include problems which allow the readers to develop some of the key ideas by
themselves. Appendix A reviews special geometry from the mathematical point of
view. Appendix B provides the necessary background in modular forms needed for
understanding S-duality and string state counting.

4.1 Introduction

Recent years have witnessed a renewed interest in the detailed study of supersym-
metric black holes in string theory. This has been triggered by the work of H. Ooguri,
A. Strominger and C. Vafa [1], who introduced the so-called mixed partition func-
tion for supersymmetric black holes, and who formulated an intriguing conjecture
about its relation to the partition function of the topological string. The ability to
test these ideas in a highly non-trivial way relies on two previous developments,
which have been unfolding over the last decade. The first is that string theory
provides models of black holes at the fundamental or ‘microscopic’ level, where
microstates can be identified and counted with high precision, at least for supersym-
metric black holes [2–4]. The second development is that one can handle subleading
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contributions to the thermodynamical or ‘macroscopic’ black hole entropy. The
macroscopic description of black holes is provided by solutions to the equations
of motion of effective, four-dimensional supergravity theories, which approximate
the underlying string theory at length scales which are large compared to the string,
Planck and compactification scale. In this framework subleading contributions man-
ifest themselves as higher derivative terms in the effective action. For a particular
class of higher derivative terms in N D 2 supergravity, which are usually referred
to as ‘R2-terms’, it is possible to construct exact near-horizon asymptotic solutions
and to compute the black hole entropy to high precision [5, 6]. The subleading cor-
rections to the macroscopic entropy agree with the subleading contributions to the
microscopic entropy, provided that the area law for the entropy is replaced by Wald’s
generalized formula, which applies to any diffeomorphism invariant Lagrangian [7].

The main tools which make it possible to handle the R2-terms are the super-
conformal calculus, which allows the off-shell construction of N D 2 supergravity
coupled to vector multiplets, and the so-called special geometry, which highly con-
strains the vector multiplet couplings. The reason for this simplification is that
scalars and gauge fields sit in the same supermultiplet, so that the electric–magnetic
duality of the gauge fields imprints itself on the whole multiplet. As a result the com-
plicated structure of the theory, including an infinite class of higher derivative terms,
becomes manageable and transparent, once all quantities are organised such that
they transform as functions or vectors under the symplectic transformations which
implement electric–magnetic duality. This is particularly important if the N D 2

supergravity theory is the effective field theory of a string compactification, because
string dualities form a subset of these symplectic transformations.

In these lectures we give a detailed account of the whole story, starting from
the construction of N D 2 supergravity, proceeding to the definition of black hole
partition functions, and ending with microscopic state counting. In more detail, the
first lecture is devoted to special geometry, the superconformal calculus and the con-
struction ofN D 2 supergravity with vector multiplets, including theR2-terms. The
essential concept of gauge equivalence is explained using non-supersymmetric toy
examples. When reviewing the construction of N D 2 supergravity we focus on the
emergence of special geometry and stress the central role of symplectic covariance.
Appendix A, which gives an account of special geometry from the mathematical
point of view, provides an additional perspective on the subject. Lecture II starts
by reviewing the concept of BPS or supersymmetric states and solitons. Its main
point is the black hole variational principle, which underlies the black hole attractor
equations. Based on this, conjectures about the relation between the macroscop-
ically defined black hole free energy and the microscopically defined black hole
partition functions are formulated. We do not only discuss how R2-terms enter into
this, but also give a detailed discussion of the crucial role played by the so-called
non-holomorphic corrections, which are essential for making physical quantities,
such as the black hole entropy, duality invariant.

The second half of the lectures is devoted to tests of the conjectures formulated
in Lecture II. For concreteness and simplicity, I only discuss the simplest string
compactification with N D 4 supersymmetry, namely the compactification of the
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heterotic string on T 6. After explaining how the N D 2 formalism can be used
to analyse N D 4 theories, we will see that N D 4 black holes are governed by
a simplified, reduced variational principle for the dilaton. There are two different
types of supersymmetric black holes in N D 4 compactifications, called ‘large’ and
‘small’ black holes, and we summarize the results on the entropy for both of them.

With Lecture IV we turn to the microscopic side of the story. While the counting
of 1

2
-BPS states, corresponding to small black holes, is explained in full detail, we

also give an outline of how this generalises to 1
4

-BPS states, corresponding to large
black holes. With the state degeneracy at hand, the corresponding black hole par-
tition functions can be computed and confronted with the predictions made on the
basis of the macroscopically defined free energy. We give a critical discussion of the
results and point out which open problems need to be addressed in the future. While
Appendix A reviews Kähler and special Kähler geometry from the mathematical
point of view, Appendix B collects some background material on modular forms.

The selection of the material and the presentation are based on two principles.
The first is to give a pedagogical account, which should be accessible to students,
postdocs, and researchers working in other fields. The second is to present this
field from the perspective which I found useful in my own work. For this rea-
son various topics which are relevant or related to the subject are not covered in
detail, in particular the topological string, precision state counting for other N D 4

compactifications and for N D 2 compactifications, and the whole field of non-
supersymmetric extremal black holes. But this should not be a problem, given that
these topics are already covered by other excellent recent reviews and lectures notes.
See in particular [40] for an extensive review of the entropy function formalism and
non-supersymmetric black holes, and [9] for a review emphasizing the role of the
topological string. The selection of references follows the same principles. I have not
tried to give a complete account, but to select those references which I believe are
most useful for the reader. The references are usually given in paragraphs entitled
‘Further reading and references’ at the end of sections or subsections.

At the ends of Lectures I and IV, I formulate exercises which should be instruc-
tive for beginners. The solutions of these exercises are available upon request. In
addition, some further exercises are suggested within the lectures.

4.2 Lecture I: Special Geometry

Our first topic is the so-called special geometry which governs the couplings of
N D 2 supergravity with vector multiplets. We start with a review of the Stückelberg
mechanism for gravity, explain how this can be generalized to the gauge equiva-
lence between gravity and a gauge theory of the conformal group, and then sketch
how this can be used to construct N D 2 supergravity in the framework of the
superconformal tensor calculus.
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4.2.1 Gauge Equivalence and the Stückelberg Mechanism
for Gravity

The Einstein–Hilbert action

SŒg� D � 1

2�2

Z
dnx

p�gR (4.1)

is not invariant under local dilatations

ıg�� D �2.x/g�� : (4.2)

However, we can enforce local dilatation invariance at the expense of introducing a
‘compensator’. Let �.x/ be a scalar field, which transforms as

ı� D 1

2
.n � 2/�: (4.3)

Then the action

QSŒg; �� D �
Z

dnx
p�g

�
�2R � 4

n� 1

n� 2
@��@

��

�
(4.4)

is invariant under local dilatations. If we impose the ‘dilatational gauge’

�.x/ D a D const.; (4.5)

we obtain the gauge fixed action

QSg:f: D �a2

Z
dnx

p�gR: (4.6)

This is proportional to the Einstein–Hilbert action (4.1), and becomes equal to it if
we choose the constant a to satisfy a2 D 1

2�2 .

The actions SŒg� and QSŒg; �� are said to be ‘gauge equivalent’. We can go from
SŒg� to QSŒg; �� by adding the compensator �, while we get from QSŒg; �� to SŒg�
by gauge fixing the additional local scale symmetry. Both theories are equivalent,
because the extra degree of freedom � is balanced by the additional symmetry.

There is an alternative view of the relation between SŒg� and QSŒg; ��. If we
perform the field redefinition

g�� D �.n�2/=4 Qg�� ; (4.7)

then
SŒg� D QSŒ Qg; ��: (4.8)
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Conversely, starting from QSŒ Qg; ��, we can remove � by a field-dependent gauge
transformation with parameter exp./ D b

	
, where b D const. The field redefi-

nition (4.7) decomposes the metric into its trace (a scalar) and its traceless part
(associated with the graviton). This is analogous to the Stückelberg mechanism for
a massive vector field, which decomposes the vector field into a massless vector
(the transverse part) and a scalar (the longitudinal part), and which makes the action
invariant under U.1/ gauge transformations.

We conclude with some further remarks:

1. The same procedure can be applied in the presence of matter. The compensator
field has to be added in such a way that it compensates for the transformation of
matter fields under dilatations. Derivatives need to be covariantized with respect
to dilatations. (We will see how this works in Sect. 4.2.2.)

2. It is possible to write down a dilatation invariant action for gravity, which only
involves the metric and its derivatives, but this action is quadratic rather than
linear in the curvature:1

SŒg� D
Z

d4x
p�g

�
R��R

�� � 1

3
R2

�
: (4.9)

This actions contains terms with up to four derivatives. These and other higher
derivative terms typically occur when quantum or stringy corrections to the
Einstein–Hilbert action are taken into account.

3. When looking at QSŒg; ��, one sees that the kinetic term for the scalar � has the
‘wrong’ sign, meaning that the kinetic energy is not positive definite. This signals
that � is not a matter field, but a compensator.

4.2.2 Gravity as a Constrained Gauge Theory of the Conformal
Group

Let us recall some standard concepts of gauge theory. Given a reductive2 Lie algebra
with generators XA and relations ŒXA; XB � D f C

ABXC , we define a Lie algebra
valued gauge field (connection)

h� D hA
�XA: (4.10)

The corresponding covariant derivative (frequently also called the connection) is

D� D @� � ih�; (4.11)

1 In contrast to other formulae in this subsection, the following formula refers specifically to n D 4

dimensions.
2 A direct sum of simple and abelian Lie algebras.
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where it is understood that h� operates on the representation of the field on which
D� operates. The field strength (curvature) is

RA
�� D 2@Œ�h

A
�� C 2hB

Œ�h
C
��f

A
BC : (4.12)

We now specialize to the conformal group, which is generated by translations
P a, Lorentz transformationsM ab , dilatationsD and special conformal transforma-
tions Ka. Here a; b D 0; 1; 2; 3 are internal indices. We denote the corresponding
gauge fields (with hindsight) by ea

�; !
ab
� ; b�; f

a
� , where � is a space–time index.

The corresponding field strength are denotedR.P /a�� ,R.M/ab
�� ,R.D/�� ,R.K/a�� .

So far the conformal transformations have been treated as internal symmetries,
acting as gauge transformations at each point of space–time, but not acting on
space–time. The set-up is precisely as in any standard gauge theory, except that our
gauge group is not compact and wouldn’t lead to a unitary Yang–Mills-type theory.

But now the so-called conventional constraints are imposed, which enforce that
the local translations are identified with diffeomorphisms of space–time, while the
local Lorentz transformations become Lorentz transformations of local frames:

1. The first constraint is
R.P /a�� D 0: (4.13)

It can be shown that this implies that local translations act as space–time diffeo-
morphisms, modulo gauge transformations. As a result, the M-connection !ab

�

becomes a dependent field, and can be expressed in terms of the P-connection ea
�

and the D-connection b�:

!ab
� D !.e/ab

� � 2eŒa
� e

b��b�; (4.14)

!.e/ c
�b D 1

2
e a

� .�˝ c
ab C˝ c

b a C˝c
ab/; (4.15)

˝c
ab D e�

a e
�
b

�
@�e

c
� � @�e

c
�

�
; (4.16)

where ea
�e

�
a D ı�

�:

2. The second constraint imposes ‘Ricci-flatness’ on the M-curvature:

e�
bR.M/ab

�� D 0: (4.17)

This constraint allows to solve for the K-connection:

f a
� D 1

2
e�a

�
R�� � 1

6
Rg��

�
; (4.18)

where
Rab

�� WD R.!/ab
�� WD 2@Œ�!

ab
�� � 2!ac

Œ�!
db
�� �cd (4.19)

is the part of the M-curvature which does not involve the K-connection:

R.M/ab
�� D R.!/ab

�� � 4f
Œa

Œ�
e

b�

��
: (4.20)
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By inspection of (4.15) and (4.19) we can identify !.e/ab
� with the spin connec-

tions, Rab
�� with the space–time curvature, ea

� with the vielbein and ˝c
ab

with the

anholonomity coefficients.3 While !ab
� and f a

� are now dependent quantities, the
D-connection b� is still an independent field. However, it can be shown that b� can
be gauged away using K-transformations, and the vielbein ea

� remains as the only
independent physical field. Thus we have matched the field content of gravity. To
obtain the Einstein–Hilbert action, we start from the conformally invariant action
for a scalar field �:

S D �
Z

d4xe�.Dc/
2�; (4.21)

where .Dc/
2 D D�D

� is the conformal D’Alambert operator. In the K-gauge
b� D 0 this becomes

S D
Z

d4xe

�
@��@

�� � 1

6
R�2

�
: (4.22)

As in our discussion of the Stückelberg mechanism, we can now impose the D-gauge
� D �0 D const. to obtain the Einstein–Hilbert action. Observe that the kinetic term
for � has again the ‘wrong’ sign, indicating that this field is a compensator. Note
that the Einstein–Hilbert action is obtained from a conformal matter action, and not
from a Yang–Mills-type action with Lagrangian � .R.M/ab

��/
2. As we have seen

already in the discussion of the Stückelberg mechanism, such actions are higher
order in derivatives, and become interesting once we want to include higher order
corrections to the Einstein–Hilbert action.

4.2.3 Rigid N D 2 Vector Multiplets

Before we can adapt the method of the previous section to the case ofN D 2 super-
gravity, we need to review rigidly supersymmetric N D 2 vector multiplets. An
N D 2 off-shell vector multiplet has the following components:

�
X;�i ; A�jYij

�
: (4.23)

X is a complex scalar and �i is a doublet of Weyl spinors. TheN D 2 supersymme-
try algebra has the R-symmetry group SU.2/�U.1/, and the index i D 1; 2 belongs
to the fundamental representation of SU.2/. A� is a gauge field, and Yij is an SU.2/-

triplet (Yij D Yji) of scalars, which is subject to the reality constraint Y
ij D Yij.4 All

together there are eight bosonic and eight fermionic degrees of freedom.

3 The anholonomity coefficients measure the deviation of a given frame (choice of basis of tangent
space at each point) from a coordinate frame (choice of basis corresponding to the tangent vector
fields of a coordinate system).
4 SU.2/ indices are raised and lowered with the invariant tenor "ij D �"ji.
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If we build an action with abelian gauge symmetry, then the gauge field A� will
only enter through its field strength F�� D 2@Œ�A��, which is part of a so-called
restricted5 chiral N D 2 multiplet

X D �
X;�i ; F

�
�� ; : : : jYij ; : : :

�
; (4.24)

where the omitted fields are dependent. F �
�� is the anti-selfdual part of the field

strength F�� . The selfdual part FC
�� resides in the complex conjugate of the

above multiplet, together with the complex conjugate scalar X and fermions of the
opposite chirality.

We take an arbitrary number n C 1 of such multiplets and label them by
I D 0; 1; : : : ; n. The general Lagrangian is given by a chiral integral over N D 2

superspace,

Lrigid D
Z

d4�F.XI /C c.c.; (4.25)

where F.XI / is a function which depends arbitrarily on the restricted chiral super-
fields XI but not on their complex conjugates. Restricting the superfield F.XI / to
its lowest component, we obtain a holomorphic function F.XI / of the scalar fields,
called the prepotential. The bosonic part of the resulting component Lagrangian is
given by the highest component of the same superfield and reads

Lrigid D i.@�FI@
�X

I � @�F I@
�XI /C i

4
FIJF

�I
�� F

�J j�� � i

4
F IJF

CI
�� F

CJ j�� :

(4.26)

Here X
I

is the complex conjugate of XI , etc., and

FI D @F

@XI
; FIJ D @2F

@XI @XJ
; etc. (4.27)

The equations of motion for the gauge fields are6

@�

�
G

�j��
I �G

Cj��
I

�
D 0; (4.28)

@�

�
F

�j��
I � FCj��

I

�
D 0: (4.29)

Equations (4.28) are the Euler–Lagrange equations resulting from variations of the
gauge fields AI

�. We formulated them using the dual gauge fields

5 While a general chiral N D 2 chiral multiplet has 16C 16 components, a restricted chiral multi-
plet is obtained by imposing additional conditions and has only 8C 8 (independent) components.
Moreover, the anti-selfdual tensor field F�

�� of a restricted chiral multiplet is subject to a Bianchi
identity, which allows to interpret it as a field strength.
6 As an additional exercise, convince yourself that you get the Maxwell equations if the gauge
couplings are constant.
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G
˙j��
I WD 2i

@L
@F I˙

��

: (4.30)

Equations (4.29) are the corresponding Bianchi identities. The combined set of
field equations is invariant under linear transformations of the 2nC 2 field strength
.F I˙; Gİ /

T . Since the dual field strength are dependent quantities, we would like
to interpret the rotated set of field equations as the Euler–Lagrange equations and
Bianchi identities of a ‘dual’ Lagrangian. Up to rescalings of the field strength,
this restricts the linear transformations to the symplectic group Sp.2n C 2;�/.
These symplectic rotations generalize the electric–magnetic duality transformations
of Maxwell theory.7

Since GI�
�� / FIJF

J �
�� , the gauge couplings FIJ must transform fractionally

linearly:
� ! .W C V�/.U CZ�/�1; (4.31)

where � D .FIJ/ and �
U Z

W V

�
2 Sp.2nC 2;�/: (4.32)

This transformation must be induced by a symplectic rotation of the scalars. This is
the case if .XI ; FI /

T transforms linearly, with the same matrix as the field strength.
Quantities which transform linearly, such as the field strength .F I˙

�� ; G
˙
I j��

/T

and the scalars .XI ; FI /
T are called symplectic vectors. A function f .X/ is called

a symplectic function if
f .X/ D Qf . QX/: (4.33)

Note that the prepotential F.X/ is not a symplectic function, but transforms in a
rather complicated way. However, we can easily construct examples of symplectic
functions, by contracting symplectic vectors. The following symplectic functions
will occur in the following:

K D i
�
XIF I � FIX

I
�
; (4.34)

F �
�� D XIG�

I j�� � FIF
I�
�� : (4.35)

The scalar part of the action (4.26) can be rewritten as follows:

Lrigid
scalar D �NIJ@�X

I@�XJ ; (4.36)

where

NIJ D �i �FIJ � F IJ
� D @2K

@XI@X
J
: (4.37)

7 To see this more clearly, take FIJ to be constant and restrict yourself to one single gauge field.
The resulting Sp.2;�/ ' SL.2;�/ mixes the field strength with its Hodge dual.
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NIJ can be interpreted as a Riemannian metric on the target manifold of the scalars
XI , which we denote M . In fact, NIJ is a Kähler metric with Kähler potential
(4.34). Thus the scalar manifold M is a Kähler manifold. Moreover, M is a non-
generic Kähler manifold, because its Kähler potential can be expressed in terms
of the holomorphic prepotential F.XI /. Such manifolds are called ‘affine special
Kähler manifolds.’

An intrinsic definition of affine special Kähler manifolds can be given in terms
of the so-called special connection r (which is different from the Levi–Civita con-
nection of the metric NIJ). This is explained in Appendix A. Equivalently, an affine
special Kähler manifold can be characterised (locally) by the existence of a so-called
Kählerian Lagrangian immersion

˚ W M ! T �
�

nC1 ' �
2nC2: (4.38)

In this construction the special Kähler metric of M is obtained by pulling back a
flat Kähler metric from T ��nC1. In other words, all specific properties of M are
encoded in the immersion˚ . Since the immersion is Lagrangian, it has a generating
function, which is nothing but the prepotential: ˚ D dF . The immersed manifold
M is (generically) the graph of a map XI !WI D FI .X/, where .XI ;WI / are
symplectic coordinates on T ��nC1. Along the immersed manifold, half of the coor-
dinates of T ��nC1 become functions of the other half: the XI are coordinates on
M while the WI can be expressed in terms of the XI using the prepotential as
WI D @F

@XI . We refer the interested reader to Appendix A for more details on the
mathematical aspects of this construction.

4.2.4 Rigid Superconformal Vector Multiplets

The superconformal calculus provides a systematic way to obtain the Lagrangian
of N D 2 Poincaré supergravity by exploiting its gauge equivalence with N D 2

conformal supergravity. This proceeds in the following steps:

1. Construct the general Lagrangian for rigid superconformal vector multiplets
2. Gauge the superconformal group to obtain conformal supergravity
3. Gauge fix the additional transformations to obtain Poincaré supergravity

One can use the gauge equivalence to study Poincaré supergravity in terms of con-
formal supergravity, which is useful because one can maintain manifest symplectic
covariance. In practice one might gauge fix some transformations, while keeping
others intact, or use gauge invariant quantities.

As a first step, we need to discuss the additional constraints resulting from rigid
N D 2 superconformal invariance. Besides the conformal generators P a, M ab, D,
Ka, the N D 2 superconformal algebra contains the generators A and V  of the
U.1/�SU.2/ R-symmetry, the supersymmetry generatorsQ and the special super-
symmetry generators S . Note that the superconformal algebra has a second set of
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supersymmetry transformations which balances the additional bosonic symmetry
transformations.

The dilatations and chiral U.1/ transformations naturally combine into com-
plex scale transformations. The scalars have scaling weight w D 1 and U.1/ charge
c D �1:

XI ! �XI ; � D j�je�i	 2 ��: (4.39)

Scale invariance of the action requires that the prepotential is homogenous of
degree 2:

F.�XI / D �2F.XI /: (4.40)

Geometrically, this implies that the scalar manifoldM of rigid superconformal vec-
tor multiplets is a complex cone. Such manifolds are called ‘conical affine special
Kähler manifolds’.

4.2.5 N D 2 Conformal Supergravity

The construction of N D 2 supergravity now proceeds along the lines of the N D 0

example given in Sect. 4.2.2. Starting from (4.25), one needs to covariantize all
derivatives with respect to superconformal transformations. The corresponding
gauge fields are: ea

� (Translations), !ab
� (Lorentz transformations), b� (Dilata-

tions), f a
� (special conformal transformations), A� (chiral U.1/ transformations),

Vj
�i (SU.2/ transformations), i

� (supersymmetry transformations) and �i
� (special

supersymmetry transformations).
As in Sect. 4.2.2 one needs to impose constraints, which then allow to solve for

some of the gauge fields. The remaining, independent gauge fields belong to the
Weyl multiplet, �

ea
�;  

i
�; b�; A�;Vj

�i jT �
ab; �

i ;D
�
; (4.41)

together with the auxiliary fields T �
ab

(anti-selfdual tensor), �i (spinor doublet) and
D (scalar). The only physical degrees of freedom contributed to Poincaré super-
gravity from this multiplet are the graviton ea

� and the two gravitini  i
�. The other

connections can be gauged away or become dependent fields upon gauge fixing.
While covariantization of (4.25) with respect to superconformal transformations

leads to a conformal supergravity Lagrangian with up to two derivatives in each
term, it is also possible to include a certain class of higher derivative terms. This
elaborates on the previous observation that one can also construct a Yang–Mills
like action quadratic in the field strength. The field strength associated with the
Weyl multiplet form a reduced chiral tensor multiplet W ab, whose lowest compo-
nent is the auxiliary tensor field T �

ab . The highest component contains, among other
terms, the Lorentz curvature, which after superconformal gauge fixing becomes
the anti-selfdual Weyl tensor �C�

���� . By contraction of indices one can form the

(unreduced) chiral multiplet W 2 D W abW
ab , which is also referred to as ‘the’
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Weyl multiplet. While its lowest component is OA D .T �
ab
/2, the highest compo-

nent contains, among other terms, the square of the anti-selfdual Weyl tensor.
Higher curvature terms can now be incorporated by allowing the prepotential to
depend explicitly on the Weyl multiplet:F.XI / ! F.XI ; OA/. Dilatation invariance
requires that this (holomorphic) function must be (graded) homogenous of degree 2:

F.�XI ; �2 OA/ D �2F.XI ; OA/: (4.42)

We refrain from writing down the full bosonic Lagrangian. However it is instructive
to note that the scalar part, which is the analogue of (4.21) reads

8�e�1Lscalar D i
�
F ID

aDaX
I � FID

aDaX
I
�
: (4.43)

Here Da is the covariant derivative with respect to all superconformal transforma-
tions.

4.2.6 N D 2 Poincaré Supergravity

Our goal is to construct the coupling of n vector multiplets toN D 2 Poincaré super-
gravity. The gauge equivalent superconformal theory involves the Weyl multiplet
and nC 1 vector multiplets, one of which acts a compensator. Moreover, one needs
to add a second compensating multiplet, which one can take to be a hypermultiplet.
The second compensator does not contribute any physical degrees of freedom to the
vector multiplet sector. This is different for the compensating vector multiplet. The
physical fields in the N D 2 supergravity multiplet are the graviton ea

�, the gravitini
 i

� and the graviphoton F�� . While the first two fields come from the Weyl mul-
tiplet, the graviphoton is a linear combination of the field strength of all the n C 1

superconformal vector multiplets:

F �
�� D XIG�

I j�� � FIF
I�
�� : (4.44)

At the two-derivative level, one obtains T �
�� D F�

�� when eliminating the auxiliary
tensor by its equation of motion. Note, however, that once higher derivative terms
have been added, this relation becomes more complicated, and can only be solved
iteratively in derivatives.

While all nC1 gauge fields of the superconformal theory correspond to physical
fields of the Poincaré supergravity theory, one of the superconformal scalars acts
as a compensator for the complex dilatations. Gauge fixing imposes one complex
condition on nC 1 complex scalars, which leaves n physical complex scalars. Geo-
metrically, the scalar manifold of the Poincaré supergravity theory arises by taking
the quotient of the ‘superconformal’ scalar manifold by the action of the complex
dilatations.
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To see what happens with the scalars, we split the superconformal covariant
derivative D� into the covariant derivative D�, which contains the connections
for M;D;U.1/; SU.2/, and the remaining connections. Then the scalar term (4.43)
becomes

8�e�1Lscalar D i
�
F IDaDaX

I � FIDaDaX
I
�

� i
�
FIX

I � F IX
I
��1

6
R �D

�
: (4.45)

In absence of higher derivative terms, the only other term containing the auxiliary
field D is

8�e�1Lcomp D �

�
1

6
RC 1

2
D

�
; (4.46)

where � depends on the compensating hypermultiplet. The equation of motion for
D is solved by8

1

2
� D i

�
FIX

I � F IX
I
�
: (4.47)

When substituting this back,D cancels out, and we obtain

8�e�1.Lscalar C Lcomp/ D i
�
F IDaDaX

I � FIDaDaX
I
�

C
�
i
�
FIX

I � F IX
I
���

�1
2
R

�
: (4.48)

The second line gives the standard Einstein–Hilbert term, in Planckian unitsGN D1,

8�e�1L D �1
2
RC � � �; (4.49)

once we impose the D-gauge

i
�
FIX

I �XIF I

�
D 1: (4.50)

Geometrically, imposing the D-gauge amounts to taking the quotient of the scalar
manifold M with respect to the (real) dilatations XI ! j�jXI . The chiral U.1/
transformations act isometrically on the quotient, and therefore we can take a fur-
ther quotient by imposing a U.1/ gauge. The resulting manifold M D M=�� is
the scalar manifold of the Poincaré supergravity theory. It is a Kähler manifold,
whose Kähler potential can be expressed in terms of the prepotential F.XI /. The
target manifolds of vector multiplets of in N D 2 Poincaré supergravity are called
‘(projective) special Kähler manifolds.’

8 Thus, at the two-derivative level, D just acts as a Lagrange multiplier. This changes once higher-
derivative terms are added, but we won’t discuss the implications here.
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To see how the geometry of M arises, consider the scalar sigma model given by
the first line of (4.48)

8�e�1Lsigma D i
�
D�FID�X

I � D�X
ID�F I

�
(4.51)

D �NIJD�X
ID�X

J
; (4.52)

where
NIJ D 2ImFIJ D �i.FIJ � F IJ/; (4.53)

and

D�X
I D .@� C iA�/X

I ; D�X
I D .@� � iA�/X

I ; (4.54)

D�FI D .@� C iA�/FI ; D�F I D .@� � iA�/F I : (4.55)

We imposed the K-gauge b� D 0, so that only the U.1/ gauge field A� appears
in the covariant derivative. This gauged non-linear sigma model is the only place
where A� occurs in the Lagrangian. A� can be eliminated by solving its equation
of motion

A� D 1

2

�
F I

$
@� X

I �XI $
@� FI

�
: (4.56)

Substituting this back, we obtain the non-linear sigma model

8�e�1Lsigma D � �NIJ C eK.NX/I .NX/J
�
@�X

I@�X
J

DW �MIJ@�X
I@�X

J
: (4.57)

Here we suppress indices which are summed over:

.NX/I WD NIJX
J ; etc:

The scalar metric MIJ has two null directions

XIMIJ D 0 D MIJX
J
: (4.58)

This does not imply that the kinetic term for the physical scalars is degenerate,
because MIJ operates on the ‘conformal scalars’ XI , which are subject to dilata-
tions and U.1/-transformations. We have already gauge-fixed the dilatations by
imposing the D-gauge. We could similarly impose a gauge condition for the U.1/
transformations, but it is more convenient to introduce the gauge invariant scalars

ZI D XI

X0
: (4.59)
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One of these scalars is trivial, Z0 D 1, while the others zi D Zi , i D 1; : : : ; n

are the physical scalars of the Poincaré supergravity theory. Using the transver-
sality relations (4.58) and the homogeneity of the prepotential, we can rewrite the
Lagrangian in terms of the gauge-invariant scalars ZI :

8�e�1Lsigma D �gIJ @�Z
I@�Z

J
;

where

gIJ D � NIJ

.ZNZ/
C .NZ/I .NZ/J

.ZNZ/2
: (4.60)

Note that we have used the homogeneity of the prepotential to rewrite it and its
derivatives in terms of the ZI :

F.X/ D .X0/2F.Z/; FI .X/ D X0FI .Z/; FIJ.X/ D FIJ.Z/; etc.

One can show that gIJ has the following properties:

1. gIJ is degenerate along the complex direction ZI , or, in other words, along the
orbits of the ��-action. We will call this direction the vertical direction. As we
will see below the vertical directions correspond to unphysical excitations.

2. gIJ is non-degenerate along the horizontal directions, which form the orthogonal
complement of the horizontal direction with respect to the non-degenerate metric
NIJ. As we will see below, this implies a non-degenerate kinetic term for the
physical scalars.

3. gIJ is positive definite along the horizontal directions if and only if NIJ has sig-
nature .2; 2n/ or .2n; 2/. This corresponds to the case where NIJ has opposite
signature along the vertical and horizontal directions. We need to impose this to
have standard kinetic terms for the physical scalars.

4. gIJ can be obtained from a Kähler potential which in turn can be expressed by
the prepotential of the underlying superconformal theory:

gIJ D @2K

@ZI @ZJ
; K D � log

�
i
�
FIZ

I �ZIF I

��
:

Here it is understood that we only set Z0 D 1 at the end.

Since Z0 D 1, and, hence, @�Z
0 D 1, the Lagrangian only depends on in the

physical scalars zi D Zi , i D 1; : : : ; n. Following conventions in the literature, we
distinguish holomorphic indices i and anti-holomorphic indices i when using the
physical scalars zi , despite that we do not make such a distinction for XI , ZI , etc.

Thus the complex conjugate of zi D Zi is denoted zi D Z
i
.

To express the Lagrangian in terms of the physical scalars, we define

F.z1; : : : ; zn/ WD F.Z0; Z1; : : : ; Zn/:
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The Lagrangian only depends on the horizontal part of gIJ , which is denoted gij ,
and which is given by

gij D @2K

@zi@zj
(4.61)

with Kähler potential

K D � log
�
2i.F � F/� i.zi � zi /.Fi C F i /

�
; (4.62)

where Fi D @F
@zi . The Lagrangian takes the form

8�e�1Lsigma D �gij @�zi@�zj :

Geometrically, we have performed a quotient of the rigid superconformal scalar
manifoldM by the��-action and obtained the metric gij of the scalar manifoldM
of the Poincaré supergravity theory in terms of special coordinates zi . Metrics and
manifolds obtained in this way are called ‘projective special Kähler metrics’ and
‘projective special Kähler manifolds,’ respectively. One can reformulate the theory
in terms of general holomorphic coordinates, but we will not pursue this here. The
special coordinates are physically distinguished, because they are the lowest com-
ponents of Poincaré vector multiplets. They are also natural from the geometrical
point of view, because they can be defined in terms of intrinsic properties of M , as
explained in more details in Appendix A.

Since the zi are not part of a symplectic vector, the action of the symplectic
transformations in the scalar sector is complicated. Therefore it is often more con-
venient to work on the rigid scalar manifold M using the ‘conformal scalars’ XI

and the symplectic vector .XI ; FI /
T . As we have seen, the superconformal and

the super Poincaré theory are gauge-equivalent, and we know how to go back and
forth between the two. The advantage of the superconformal picture is that there
is an equal number of gauge fields and scalars, which all sit in vector multiplets.
Therefore symplectic transformations act in a simple way on the scalars.

Let us finally have a brief look at the higher derivative terms. We expand the
function F.XI ; OA/ in OA:

F.XI ; OA/ D
1X

gD0

F .g/.XI / OAg : (4.63)

While F .0/.XI / D F.XI / is the prepotential, the functions F .g/.XI / with g > 0
are coupling functions multiplying various higher derivative terms. The most promi-
nent class of such terms are

F .g/.XI /.�C�
����/

2.T �
��/

2g�2 C c.c.; (4.64)
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where �C�
���� is the anti-selfdual Weyl tensor and T �

�� is the anti-selfdual auxiliary
field in the Weyl multiplet. To lowest order in derivatives, this field equals the anti-
selfdual graviphoton field strengthF�

�� . Therefore such terms are related to effective
couplings between two gravitons and 2g � 2 graviphotons.
N D 2 supergravity coupled to vector multiplets (and hypermultiplets) arises by

dimensional reduction of type-II string theory on Calabi–Yau threefolds. Terms of
the above form arise from loop diagrams where the external states are two gravitons
and 2g � 2 graviphotons, while an infinite number of massive strings states runs in
the loop. It turns out that in the corresponding string amplitudes only genus-g dia-
grams contribute, and that only BPS states make a net contribution. Moreover these
amplitudes are ‘topological’: upon topological twisting of the world sheet theory the
couplings F .g/.XI / turn into the genus-g free energies (logarithms of the partition
functions) of the topological type-II string. This means that the couplingsF .g/.XI /

can be computed, at least in principle.

Further Reading and References

Besides original papers, my main sources for this lecture are the 1984 Trieste lec-
ture notes of de Wit [10], and an (unpublished) Utrecht PhD thesis [11]. Roughly the
same material was covered in Chap. 3 of my review [12]. Readers who would like to
study special geometry and N D 2 supergravity in the superconformal approach in
detail should definitely look into the original papers, starting with [13,14]. Electric–
magnetic duality in the presence of R2-corrections was investigated in [15, 16],
and is reviewed in [12]. Special geometry has been reformulated in terms of gen-
eral (rather than special) holomorphic coordinates [17–19]. We will not discuss this
approach in these lectures and refer the reader to [20] for a review of N D 2 super-
gravity within this framework. The intrinsic definition of special Kähler geometry
in terms of the special connection r was proposed in [21]. The equivalent charac-
terisation by a Kählerian Lagrangian immersion into a complex symplectic vector
space is described in [22]. The resulting modern formulation of special geometry
was used systematically in [23–25] to explore the special geometry of Euclidean
supersymmetric theories. Key references about the topological string and its role in
computing couplings in the effective action are [26] and [27]. See also [9, 28] for a
review of the role of the topological string for black holes.

4.2.7 Problems

Problem 4.1. The Stückelberg mechanism for gravity.

Compute the variation of the Einstein–Hilbert action

SŒg� D � 1

2�2

Z
dnx

p�gR (4.65)



182 T. Mohaupt

and the variation of the action

QSŒg; �� D �
Z

dnx
p�g

�
�2R � 4

n� 1

n� 2
@��@

��

�
(4.66)

under local dilatations

ıg�� D �2.x/g�� ; ı� D 1

2
.n � 2/�: (4.67)

You can use that

ı
p�g D �np�g;

g��R�� D �2.n � 1/r2: (4.68)

You should find that (4.66) is invariant while (4.65) is not, as explained in Lecture I.
Convince yourself that you can obtain (4.65) from (4.66) by gauge fixing.

If you are not familiar with the Stückelberg mechanism, use what you have
learned to make the action of a free massive vector field invariant with respect to
local U.1/ transformations.

Problem 4.2. Einstein–Hilbert action from conformal matter.

Show that the Einstein–Hilbert action (4.65) can be obtained from the conformally
invariant matter action

S D �
Z

d4xe�D2
c�; (4.69)

where D2
c D D�D

� is the conformal D’Alambert operator, by gauge fixing the K-
and D-transformations.

Instruction: the scalar field � is neutral under K-transformations and transforms
with weight w D 1 underD�. Its first and second conformally covariant derivatives
are

D�� D @�� � b��; (4.70)

D�D
a� D .@� � 2b�/D

a� � !ab
� Db� C f a

� �: (4.71)

The K-connection f a
� appears in the second line because the D-connection b�

transforms non-trivially under K. Note that b� is the only field in the problem
which transforms non-trivially under K, and that D2� is invariant under K. The
K-transformations can be gauged fixed by setting b� D 0. (In fact, it is clear that b�

will cancel out of (4.69). Why?) Use this together with the result of Problem 4.1 to
obtain the Einstein–Hilbert action (4.65) by gauge fixing (4.69).
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4.3 Lecture II: Attractor Mechanism, Variational Principle,
and Black Hole Partition Functions

We are now ready to look at BPS black holes in N D 2 supergravity with vector
multiplets. First we review the concept of a BPS state.

4.3.1 BPS States

The N -extended four-dimensional supersymmetry algebra has the following form:

fQA
˛ ;Q

CB
P̌ g D 2�

�

˛ P̌ı
ABP�;

fQA
˛ ;Q

B
ˇ g D 
˛ˇZ

AB :

A; B; : : : D 1; : : : ; N label the supercharges, which we have taken to be Weyl
spinors. The generatorsZAB D �ZBA are central, i.e. they commute with all gen-
erators of the Poincaré Lie superalgebra. On irreducible representations they are
complex multiples of the unit operators. One can then skew-diagonalise the anti-
symmetric constant matrix ZAB , and the skew eigenvalues Z1; Z2; : : : are known
as the central charges carried by the representation. The eigenvalue of the Casimir
operatorP�P� is �M 2, whereM is the mass. Using the algebra one can derive the
BPS inequality

M 2 	 jZ1j2 	 jZ2j2 	 � � � 	 0;

where we have labeled the central charges according to the size of their absolute
values. Thus the mass is bounded from below by the central charges. When-
ever a bound on the mass is saturated, some of the supercharges operate trivially
on the representation, and therefore the representation is smaller than a generic
massive representation. Such multiplets are called shortened multiplets or BPS mul-
tiplets. The extreme case is reached when all bounds are saturated, M D jZ1j D
jZ2j D � � � . In these representations half of the supercharges operate trivially, and
the representation has as many states as a massless one. These multiplets are called
short multiplets or 1

2
-BPS multiplets.

Here are some examples of N D 2 multiplets:

1. M > jZj: these are generic massive multiplets. One example is the ‘long’ vector
multiplet, which has 8C 8 on-shell degrees of freedom.

2. M D jZj: these are short or 1
2

-BPS multiplet. Examples are hypermultiplets and
‘short’ vector multiplets, which both have 4 C 4 on-shell degrees of freedom.
The short vector multiplet is the ‘Higgsed’ version of the massless vector multi-
plet discussed earlier in these lectures.9 The long vector multiplet combines the

9 This has 8C 8 off-shell degrees of freedom and 4C 4 on-shell degrees of freedom.
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degrees of freedom of a hypermultiplet and a short vector multiplet. This shows
that one cannot expect that the number of BPS multiplets is conserved when
deforming the theory (by moving through its moduli space of vacua), because
BPS multiplets can combine into non-BPS multiplets. However the difference
between the number of hypermultiplets and short vector multiplets is preserved
under multiplet recombination and has the chance of being an ‘index’.

Let us give some examples of N D 4 multiplets:

1. M > jZ1j > jZ2j: these are generic massive multiplets. The number of states is
28.10

2. M D jZ1j > jZ2j: these are called intermediate or 1
4

-BPS multiplets. One quar-
ter of the supercharges operate trivially, and they have (a multiple of)
26 states.

3. M D jZ1j D jZ2j: these are short or 1
2

-BPS multiplets, with (a multiple of) 24

states. One example are short N D 4 vector multiplets which have 8C 8 states,
as many as a masslessN D 4 vector multiplet. Short or massless multiplets have
the same field content as an large N D 2 vector multiplet, or, equivalently, as a
short or massless N D 2 vector multiplet plus a hypermultiplet.

Finally, there can of course also be singlets under the supersymmetry algebra,
states which are completely invariant. Such states are maximally supersymmetric
and can therefore be interpreted as supersymmetric ground states.

Further Reading and References

This section summarises basic facts about the representation theory of Poincaré Lie
superalgebras, which can be found in textbooks on supersymmetry, i.p. in Chap. II
of [29] and Chap. 8 of [30].

4.3.2 BPS Solitons and BPS Black Holes

One class of BPS states are states in the Hilbert space which sit in BPS representa-
tions. They correspond to fundamental fields in the Lagrangian, which transform in
BPS representations of the supersymmetry algebra. Another class of BPS states is
provided by non-trivial static solutions of the field equations, which have finite mass
and are non-singular. Such objects are called solitons and interpreted as extended
particle-like collective excitations of the theory.

10 We are referring here to representations of the algebra generated by the supercharges. Irreducible
representations of the full Poincaré Lie superalgebra are obtained by replacing the lowest weight
state by any irreducible representation of the little group. Their dimension is therefore a multiple
of 28 .
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Because of the finite mass condition they have to approach Minkowski space
at infinity11 and can be classified according to their transformation under the
asymptotic Poincaré Lie superalgebra generated by the Noether charges. If this
representation is BPS, the soliton is called a BPS soliton. The corresponding field
configuration admits Killing spinors, i.e. there are choices of the supersymmetry
transformation parameters 
.x/ such that the field configuration is invariant:

ı�.x/˚.x/
ˇ
ˇ
˚0.x/

D 0:

Here˚ is a collective notation for all fundamental fields, and˚0 is the invariant field
configuration. The maximal number of linearly independent Killing spinors equals
the number N of supercharges. Solutions with N Killing spinors are completely
invariant under supersymmetry and qualify as supersymmetric ground states.12

Generic solitonic solutions of the field equations do not have Killing spinors and
correspond to generic massive representations. Solitonic solutions with N

n
Killing

spinors are invariant under 1
n

of the asymptotic symmetry algebra and correspond
to 1

n
-BPS representations.13

The particular type of solitons we are interested in are black hole solutions
of N D 2 supergravity. Black holes are asymptotically flat, have a finite mass,
and are ‘regular’ in the sense that they do not have naked singularities. For static
four-dimensional black holes in Einstein–Maxwell type theories with matter, the
BPS bound coincides with the extremality bound. Therefore BPS black holes are
extremal black holes, with vanishing Hawking temperature. Since this makes them
stable against decay through Hawking radiation, the interpretation as a particle-like
solitonic excitation appears to be reasonable.

We will restrict ourselves in the following to static, spherically symmetric 1
2

-BPS
solutions of N D 2 supergravity with n vector multiplets. Such solutions describe
single black holes.14 As a first step, let us ignore higher derivative terms and work
with a prepotential of the form F.X/.

In an asymptotically flat space–time, we can define electric and magnetic charges
by integrating the flux of the gauge fields over an asymptotic two-sphere at infinity:

�
pI

qI

�
D
� H

F I
��d2˙��

H
GI j��d2˙��

�
: (4.72)

By construction, the charges form a symplectic vector .pI ; qI /
T . The central charge

under the asymptotic Poincaré Lie superalgebra is given by the charge associated

11 We only consider theories where Minkowski space is a supersymmetric ground state.
12 Minkowski space is a trivial example. Here all Killing spinors are constant (in linear coordi-
nates).
13 More precisely, the collective modes generated by the broken supersymmetries fall into such
representations.
14 There are also static multi-black hole solutions, which we will not discuss here.
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with the graviphoton:

Z D
I

F �
��d2˙�� D

I �
F I�

�� FI �G�
I j��X

I
�

d2˙�� D pIFI .1/�qIX
I .1/:

(4.73)
This is manifestly invariant under symplectic transformations. By common abuse of
terminology, the symplectic function

Z D pIFI � qIX
I

is also called the central charge, despite that it is actually a function of the scalars
which are in turn functions on space–time.

A static, spherically symmetric metric can be brought to the following form:15

ds2 D �e2g.r/dt2 C e2f .r/.dr2 C r2d˝2/; (4.74)

with two arbitrary functions f .r/, g.r/ of the radial variable r . We also impose that
the solution has four Killing spinors. In this case one can show that g.r/ D �f .r/.
For the gauge fields and scalars we impose the same symmetry requirements as for
the metric. Therefore each gauge field has only two independent components, one
electric and one magnetic, which are functions of r :

F I
tr D F I

E .r/; F I
�	 D F I

M .r/:

Here t ; r; �; � are tangent space indices.16

The physical scalar fields zi can be functions of the radial variable r , zi D zi .r/.
In order to maintain symplectic covariance, we work in the gauge-equivalent super-
conformal theory and use the conformal scalars XI . It turns out to be convenient to
rescale the scalars and to define

Y I .r/ D Z.r/XI .r/;

where Z.r/ is the ‘central charge’. Note that

jZj2 D ZZ D Z
�
pIFI .X/ � qIX

I
�

D pIFI .Y / � qIY
I ;

where we used that FI is homogenous of degree one.
In the following we will focus on the near-horizon limit. In the isotropic coor-

dinates used in (4.74), the horizon is located at r D 0. The scalar fields show a

15 The solution can be constructed without fixing the coordinate system, but we present it in this
way for pedagogical reasons.
16 If we use world indices, F I

M depends on the angular variables. This dependence is trivial in the
sense that it disappears when the tensor components are evaluated in an orthonormal frame.
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very particular behaviour in this limit: irrespective of their ‘initial values’ zi .1/ at
spatial infinity, they approach fixed point values zi� D zi .pI ; qI / at the horizon.
This behaviour was discovered by Ferrara, Kallosh and Strominger and is called
the black hole attractor mechanism. The fixed point values are determined by the
attractor equations, which can be brought to the following, manifestly symplectic
form:  

Y I � Y I

FI � F I

!

�
D i

�
pI

qI

�
:

Here and in the following ‘�’ indicates the evaluation of a quantity on the horizon.
Depending on the explicit form of the prepotential it may or may not be possible
to solve this set of algebraic equations to obtain explicit formulae for the scalars as
functions of the charges. The remaining data of the near-horizon solution are the
metric and the gauge fields. The near-horizon metric takes the form

ds2 D � r2

jZ�j2 dt2 C jZ�j2
r2

dr2 C jZ�j2d˝2
.2/;

where Z� is the horizon value of the central charge,

jZ�j2 D
�
pIFI .Y / � qIY

I
�

� :

The near horizon geometry is therefore AdS2 � S2, with curvature radius R D
jZ�j2. This is a maximally symmetric space, or more precisely the product of two
maximally symmetric spaces. The gauge fields become covariantly constant in the
near horizon limits, i.e., they become fluxes whose strength is characterized by the
charges .pI ; qI /. In suitable coordinates17 one simply has

F I
E D qI ; F I

M D pI :

AdS2 � S2, supported by fluxes and constant scalars is a generalisation of the
Bertotti–Robinson solution of Einstein–Maxwell theory.

This generalised Bertotti–Robinson solution is not only the near horizon solu-
tion of BPS black holes, but also an interesting solution in its own right. It can be
shown that it is the most general static fully supersymmetric solution (eight Killing
spinors) of N D 2 supergravity with vector multiplets. Note that the attractor equa-
tions follow from imposing full supersymmetry, or, equivalently, the field equations.
Thus in a Bertotti–Robinson background the scalars cannot take arbitrary values.
This is easily understood by interpreting the solution as a flux compactification
of four-dimensional supergravity on S2. Since S2 is not Ricci flat, flux must be
switched on to solve the field equations. The dimensionally reduced theory is a

17 Essentially, r ! 1
r

combined with a rescaling of t . In these coordinates it becomes manifest that
the metric is conformally flat.
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gauged supergravity theory with a non-trivial scalar potential with a non-degenerate
AdS2 ground state and fixed moduli.

The BPS black hole solution, which has only four Killing spinor, interpolates
between two supersymmetric ground states with eight Killing spinors. At infinity it
approaches Minkowski space, and in this limit the values of the scalars are arbitrary,
because the four-dimensional supergravity theory has no scalar potential and a mod-
uli space of vacua, parameterised by the scalars. At the horizon we approach another
supersymmetric ground state, but here the scalars have to flow to the fixed point val-
ues dictated by the attractor equations. The black hole solution can be viewed as
a dynamical system for the radial evolution of the scalars18 from arbitrary initial
values at r D 1 to fixed point values at r D 0.

For completeness we mention that not all flows correspond to regular black holes.
For non-generic choices of the charges (typically when switching off sufficiently
many charges) the scalar fields can run off to the boundary of moduli space. In these
cases jZ�j2 becomes zero or infinity, so that there is no black hole horizon. The orig-
inal derivation of the attractor equations was in fact motivated by this observation: if
one imposes that the scalars do not run off to infinity at the horizon, this implies that
the solution must approach a supersymmetric ground state, which in turn implies
that the geometry is Bertotti–Robinson and that the scalars take fixed point values.
In this context the attractor equations were called stabilisation equations, because
they forbid that the moduli run off.

There can also be more complicated phenomena if the flow crosses, at finite
r , a line of marginal stability, where the BPS spectrum changes, or if it runs into
a boundary point or other special point in the moduli space. We will concentrate
on regular black hole solutions here, and make some comments on so-called small
black holes later.

The attractor behaviour of the scalars is important for the consistency of black
hole thermodynamics. The laws of black hole mechanics, combined with the Hawk-
ing effect, suggest that a black hole has a macroscopic (thermodynamical) entropy
proportional to its area A:

Smacro D A

4
:

The corresponding microscopic (statistical) entropy is given by the state degener-
acy19

Smicro D log #fMicrostates corresponding to given macrostateg:

Both entropies should be equal, at least asymptotically in the semi-classical limit
(which, for non-rotating black holes, is the limit of large mass and charges). There-
fore it should not be possible to change the area continuously. This is precisely what
the attractor mechanism guarantees.

18 The other non-trivial data, namely metric and gauge fields can be expressed in terms of the
scalars.
19 The macrostate of a black hole is given by its mass, angular momentum and conserved charges.
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From the near horizon geometry we can read off that the area of the black hole
is A D 4�jZ�j2. The entropy is given by the following symplectic function of the
charges:

Smacro D A

4
D �jZj2� D �jpIFI .X/ � qIX

I j2� D �
�
pIFI .Y / � qIY

I
�

� :

Further Reading and References

For a general introduction to solitons (and instantons), see for example the book
by Rajaraman [31]. The idea to interpret extremal black holes as supersymmetric
solitons is due to Gibbons [32] (see also [33]). There are many good reviews on
BPS solitons in string theory, in particular [34] and [35]. The black hole attractor
mechanism was discovered by Ferrrara, Kallosh and Strominger [36]. This section is
heavily based on a paper written jointly with Cardoso, de Wit and Käppeli [6], where
we proved that the attractor mechanism is not only sufficient, but also necessary for
1
2

-BPS solution, and that the Bertotti–Robinson solution is the only static solution
preserving full supersymmetry.

We mentioned that not all attractor flows correspond to regular black holes solu-
tions. One phenomenon which can occur is that the solution becomes singular before
the horizon is reached (i.e. the solution becomes singular at finite values of r .)
In string theory such singularities can usually be explained by a breakdown of
the effective field theory. In particular, for domain walls and black holes in five-
dimensional string compactifications it has been shown that one always reaches an
internal boundary of moduli space before the singularity forms [37, 38]. When the
properties of the internal boundary are taken into account, the solutions becomes
regular.20 In four dimensions the variety of phenomena appears to be more com-
plex. There are so-called split attractor flows, which correspond to situations where
the flow crosses a line of marginal stability [39]. This has the effect that solutions
which look like single-centered black hole solutions when viewed form infinity, turn
out to be complicated composite objects when viewed from nearby. The role of lines
of marginal stability has been studied recently in great detail in [40].

While we only consider BPS black holes in these lectures, many features also
hold for non-BPS extremal black holes. This was already observed in [41], and has
become a major field of activity starting from [42, 43]. Black holes which are not
BPS but still extremal can be described in terms of first order flow equations [44–
47]. Alternatively, they can be described in terms of harmonic maps, which provides
an interesting link to Hessian and para-complex geometry and allows to construct
multi-centered extremal non-BPS solutions systematically [48]. The structure of
non-BPS attractors in has been studied extensively in recent years [40, 49, 50].

20 At internal boundaries one typically encounters additional massless states, and this changes the
flow corresponding to the solution.
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4.3.3 The Black Hole Variational Principle

Almost immediately after the black hole attractor mechanism was discovered, it
was observed that the attractor equations follow from a variational principle. More
recently it has been realized that this variational principle plays an important role
in black hole thermodynamics and can be used to relate macrophysics (black hole
solutions of effective supergravity) to microphysics (string theory, and in particular
BPS partition functions and the topological string) in an unexpectedly direct way.

To explain the variational principle we start by defining the ‘entropy function’

˙.Y; Y ; p; q/ WD F.Y; Y / � qI .Y
I C Y

I
/C pI .FI C F I /;

where F.Y; Y / is the ‘free energy’

F.Y; Y / D �i.FIY
I � Y IF I /:

The terminology will become clear later. If we extremize the entropy function with
respect to the scalars, the equations characterising critical points of ˙ are precisely
the attractor equations:

@˙

@Y I
D 0 D @˙

@Y
I

”
 
Y I � Y I

FI � F I

!

�
D i

�
pI

qI

�
:

And if we evaluate the entropy function at its critical point, we obtain the entropy,
up to a conventional factor:

�˙� D Smacro.p; q/:

The geometrical meaning of the entropy function becomes clear if we use the special
affine coordinates

xI D ReY I ;

yI D ReFI .Y /; (4.75)

instead of the special coordinates Y I D xI C iuI . The special affine coordinates
.qa/ D .xI ; yI /

T have the advantage that they form a symplectic vector. In spe-
cial affine coordinates, the special Kähler metric can be expressed in terms of a
real Kähler potential H.xI ; yI /, called the Hesse potential. The Hesse potential is
related to the prepotential by a Legendre transform, which replaces uI D ImY I by
yI D Re.Y I / as an independent field:

H.xI ; yI / D 2
�

ImF.xI C iuI .x; y// � yI uI .x; y/
�
;
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where

yI D @ImF

@uI
:

If we express the entropy function in terms of special affine coordinates, we find:

˙.x; y; q; p/ D 2H.x; y/ � 2qIx
I C 2pIyI ;

where
2H.x; y/ D F.Y; Y / D �i.FIY

I � Y IF I /:

Thus, up to a factor, the Hesse potential is the free energy. The critical points of the
entropy function satisfy the black hole attractor equations, which in special affine
coordinates take the following form:

@H

@xI
D qI ;

@H

@yI

D �pI :

The black hole entropy is obtained by substituting the critical values into the entropy
function:

Smacro.p; q/ D 2�

�
H � xI @H

@xI
� yI

@H

@yI

�

�
:

This shows that, up to a factor, the macroscopic black hole entropy is Legendre
transform of the Hesse potential. Note that at the horizon the scalar fields are deter-
mined by the charges, so that the charges provide coordinates on the scalar manifold.
More precisely, the charges are not quite coordinates, because they can only take
discrete values, but by the attractor equations they are proportional to continuous
quantities which provide coordinates. The attractor equations can be rewritten in the
form �

2uI

2vI

�
D
�
pI

qI

�
; (4.76)

where uI D ImY I and vI D ImFI . It can be shown that .uI ; vI / is another sys-
tem of special affine coordinates. Thus the attractor equations specify a point on
the scalar manifold in terms of the coordinates .uI ; vI /. The extremisation of the
entropy function can be viewed as a Legendre transform from one set of special
affine coordinates to another.

The special affine coordinates .xI ; yI / also have a direct relation to the gauge
fields, which even holds away from the horizon. By the gauge field equations of
motion in a static (or stationary) background the scalars .xI ; yI / are proportional to
the electrostatic and magnetostatic potentials .�I ; �I /:

�
2xI

2yI

�
D
�
�I

�I

�
:
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Thermodynamically, the electrostatic and magnetostatic potentials are the chemical
potentials associated with the electric and magnetic charges in a grand canonical
ensemble.

Further Reading and References

The black hole variational principle described in this section was formulated by
Behrndt et al. in [51]. The reformulation in terms of real coordinates is relatively
recent [52]. The relation of the black hole variational principle to the work of
Ooguri, Strominger and Vafa [1] will be explained in the following sections. Sen’s
entropy function (see [40] for a review and references), which can be used to
establish the attractor mechanism for general extremal black holes, irrespective of
supersymmetry and details of the Lagrangian, can be viewed as a generalisation
of the entropy function discussed here, in the sense that the two entropy functions
differ by terms which vanish in BPS backgrounds [53].21

Another variational approach to extremal black holes is based on the black hole
effective potential [41]. The idea is to use the symmetries of static, spherically
symmetric black holes to reduce the dynamics to the one of particle moving in an
effective potential. This does not rely on supersymmetry and has become, besides
Sen’s entropy function, the second approach for studying the attractor mechanism
for non-BPS black holes [42]. The two approaches are related because they both
rely on using symmetry properties to obtain an effective lower description, see [53]
for details.

4.3.4 Canonical, Microcanonical and Mixed Ensemble

For a grand canonical ensemble, the first law of thermodynamics takes the following
form:

ıE D T ıS � pıV C �iıNi :

Here E is the energy, T the temperature, S the entropy, p the pressure, V the vol-
ume, �i the chemical potential and Ni the particle number of the i -th species of
particles. In relativistic systems the particle number is replaced by the conserved
charge under a gauge symmetry. For a general stationary black hole, the first law of
black hole mechanics has the same structure:

ıM D �S

2�
ıAC !ıJ C �I ıqI C �I ıp

I :

HereM is the mass, �S the surface gravity,A the area, ! the rotation velocity, J the
angular momentum, and �I ; �I ; p

I ; qI are the electric and magnetic potentials and

21 To be precise, Sen’s formalism is based on an entropy function which is based on the ‘mixed’
rather than the ‘canonical’ ensemble. This is explained in the next section.
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charges. The Hawking effect and the generalized second law of thermodynamics
suggest to take the formal analogy between thermodynamics and black hole physics
seriously. In particular, the Hawking temperature of a black hole is T D �S

2�
, which

fixes the relation between area and entropy to be S D A
4

.
In thermodynamics we consider other ensembles as well. The canonical ensem-

ble is obtained by freezing the particle number while the microcanonical ensemble
is obtained by freezing the energy as well. In general, the result for a thermodynam-
ical quantity will depend on the ensemble one uses. However, all ensembles give the
same result in the thermodynamical limit.

We will only discuss non-rotating black holes, ! D 0. The analogous ensemble
in thermodynamics does not seem to have a particular name, but, by common abuse
of terminology, we will call this the canonical ensemble. Moreover, we only con-
sider extremal black holes, with zero temperature. For �S D 0 the first law does not
give directly a relation between mass and entropy, but we can interpret extremal
black holes as limits of non-extremal ones. The independent variables in the canon-
ical ensemble are the potentials .�I ; �I / / .xI ; yI /. This ensemble corresponds to
a situation where the electric and magnetic charge is allowed to fluctuate, while the
corresponding chemical potentials are prescribed. The ensemble obtained by fixing
the electric and magnetic charges is called the microcanonical ensemble. Here the
independent variables are .pI ; qI / / .uI ; vI /.

At the microscopic (‘statistical mechanics’) level, all three ensembles are charac-
terised by a corresponding partition function. The microcanonical partition function
is simply given by the microscopic state degeneracy:

Zmicro.p; q/ D d.p; q/;

where d.p; q/ is the number of microstates of a BPS black hole with chargespI ; qI .
The microscopic (statistical) entropy of the black hole is

Smicro.p; q/ D logd.p; q/:

The partition function of the canonical ensemble is obtained by a formal discrete
Laplace transform:

Zcan.�; �/ D
X

p;q

d.p; q/e�.q	�p�/: (4.77)

This relation can be inverted (formally):

d.p; q/ D
I

d�d�Zcan.�; �/e��.q	�p	/ :

These partition functions are supposed to provide the microscopic description of
BPS black holes. The macroscopic description is provided by black hole solutions
of the effective supergravity theory, through the attractor equations, the macroscopic
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entropy and the entropy function. The variational principle suggests that the Hesse
potential should be interpreted as the BPS black hole free energy with respect to the
microscopic ensemble. This leads to the conjecture

e2�H.	;�/ � Zcan D
X

p;q

d.p; q/e�ŒqI 	I �pI �I �; (4.78)

or, using special coordinates instead of special affine coordinates:

e�F.Y;Y / � Zcan D
X

p;q

d.p; q/e�ŒqI .Y I CY
I

/�pI .FI CF I /�: (4.79)

Here ‘�’ means asymptotic equality in the limit of large charges, which is the semi-
classical and thermodynamic limit. Ideally, one would hope to find an exact relation
between macroscopic and microscopic quantities, but so far there is only good evi-
dence for a weaker, asymptotic relation. We can formally invert (4.78), (4.79) to
obtain a prediction for the state degeneracy in terms of the macroscopically defined
free energy:

d.p; q/ �
Z

dxdye�˙.x;y/ �
Z

dY dY j detŒImFKL�je�˙.Y;Y /

Observe that this formula is manifestly invariant under symplectic transformations,
because

dxdy WD
Y

I;J

dxI dyJ D .dxI ^ dyI /
top

is the natural volume form on the scalar manifold (the top exterior power of the
symplectic form dxI ^ dyI ), and ˙.x; y/ is a symplectic function.22 Note that
there is a non-trivial Jacobian if we go to special coordinates.

By the variational principle, the saddle point value of �˙ is the macroscopic
entropy. Therefore it is obvious that microscopic and macroscopic entropy agree to
leading order in a saddle point evaluation of the integral:

eSmicro.p;q/ D d.p; q/ � eSmacro.p;q/.1C��� /:

However, in general the microscopic entropy (defined through state counting) and
the macroscopic entropy (defined geometrically through the area law) will be dif-
ferent. The reason is that the macroscopic entropy is the Legendre transform of
the canonical free energy, while the microcanonical and canonical partition func-
tions are related by the Laplace transform (4.77). The Legendre transform between
canonical free energy and macroscopic entropy provides the leading order approx-
imation of this Laplace transform. In other words, the macroscopic entropy is not

22 Observe that the relevant scalar manifold isM rather than M .
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computed in the microcanonical ensemble, and we can only expect it to agree with
the microscopic entropy in the thermodynamical limit.

The Mixed Ensemble

We will now consider the so-called mixed ensemble, where the independent vari-
ables are pI and �I . This corresponds to a situation where the magnetic charge is
fixed while the electric charge fluctuates and the electrical potential is prescribed.
This ensemble has the disadvantage that the independent variables do not form
a symplectic vector, which obscures symplectic covariance. However, the mixed
ensemble is natural in the functional integral framework, and one obtains a direct
relation between black hole thermodynamics and the topological string.

The partition function of the mixed ensemble is obtained from the microcanon-
ical partition function through a Laplace transform with respect to half of the
variables:

Zmix.p; �/ D
X

q

d.p; q/e�q	 ;

d.p; q/ D
I
Zmix.p; �/e��q	 :

Let us discuss this ensemble from the macroscopic point of view. In our pre-
vious treatment of the variational principle, we extremized the entropy function
with respect to all scalar fields/potentials at once. This extremisation process can
be broken up into several steps. The ‘magnetic’ attractor equations

Y I � Y
I D ipI

fix the imaginary parts of the Y I :

Y I D 1

2
.�I C ipI /:

If we substitute this into ˙ we obtain a reduced entropy function:

˙.�; p; q/mix D Fmix.p; �/ � qI�
I ;

where
Fmix.p; �/ D 4 ImF.Y; Y /

is interpreted as the free energy in the mixed ensemble. ˙mix can be interpreted
as the entropy function in the mixed ensemble, because there is a new, reduced
variational principle in the following sense: if we extremize˙mix with respect to the
remaining scalars �I D 1

2
ReY I , then we obtain the remaining ‘electric’ attractor

equations:
FI � F I D qI :
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If this is substituted back into the mixed entropy function, we obtain the macro-
scopic entropy:

Smacro.p; q/ D �˙mix;�:

The extremisation of the mixed entropy function defines a Legendre transform
between the mixed free energy and the entropy. Note that the mixed free energy
is the imaginary part of the prepotential.

The mixed free energy should be related to the mixed partition function. One
conceivable relation is the original ‘OSV-conjecture’

e�Fmix.p;	/ � Zmix.p; �/: (4.80)

To leading order in a saddle point approximation the variational principle guarantees
that macroscopic and microscopic entropy agree. But one disadvantage of the mixed
ensemble is that the independent variables pI ; �I do not form a symplectic vector.
Therefore symplectic covariance is obscure.

Let us then compare (4.80) to the symplectically covariant conjecture (4.79)
involving the canonical ensemble. Since the variational principle can be broken up
into two steps, we can perform a partial saddle point approximation of (4.79) with
respect to the imaginary parts of the scalars and obtain

d.p; q/ �
Z

d�
p

j det ImFIJ je�ŒFmix.p;	/�q	�:

This can be formally inverted with the result:

p
��e�Fmix.p;	/ � Zmix D

X

q

d.p; q/e�qI 	I

: (4.81)

Thus by imposing symplectic covariance we predict the presence of a non-trivial
‘measure factor’ in the mixed ensemble.

Further Reading and References

The idea to interpret the (partial) Legendre transform of the black hole entropy as a
free energy (in the mixed ensemble) is due to Ooguri, Strominger and Vafa [1] and
has triggered an immense number of publications which elaborate on their observa-
tion. Our presentation, which is based on [53], uses the variational principle of [51]
to reformulate the ‘OSV-conjecture’ in a manifestly symplectically covariant way.

4.3.5 R2-Corrections

Non-trivial tests of conjectures about state counting and partition functions depend
on the ability to compute subleading corrections to the macroscopic entropy. Such
corrections are due to quantum and stringy corrections to the effective action, which
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manifest themselves as higher derivative terms. Within the superconformal calcu-
lus one class of such terms can be handled by giving the prepotential an explicit
dependence on the lowest component of the Weyl multiplet. Incidentally, in type-II
Calabi–Yau compactifications the same class of terms is controlled by the topologi-
cally twisted world sheet theory. Therefore these higher derivative couplings can be
computed, at least in principle.

It is possible to find the most general stationary 1
2

-BPS solution for a general

prepotential of the form F.XI ; OA/, at least iteratively. Here we restrict ourselves to
the near-horizon limit of static, spherically symmetric single black hole solutions.

It is convenient to introduce rescaled variables Y I D ZXI and � D Z
2 OA, and by

homogeneity we get a rescaled prepotential F.Y I ; � / D Z
2
F.XI ; OA/. The near

horizon solution is completely determined by the generalized attractor equations

 
Y I � Y

I

FI .Y; � / � F I .Y ; � /

!

�
D i

�
pI

qI

�
; �� D �64: (4.82)

This is symplectically covariant, because .Y I ; FI .Y; � //
T is a symplectic vector.

The variable � is invariant and takes a particular numerical value at the horizon.
The geometry is still AdS2 � S2, but the radius and therefore the area is modified
by the higher derivative corrections:

A D 4�jpIFI .X; OA/ � qIX
I j2� D 4�

�
pIFI .Y; � / � qIY

I
�

� :

But this is not the only modification of the entropy, because in theories with higher
curvature terms the entropy is not determined by the area law. Wald has shown by
a careful derivation of the first law of black hole mechanics for generally covariant
Lagrangians (admitting higher curvature terms) that the definition of the entropy
must be modified, if the first law is still to be valid. Entropy, mass, angular momen-
tum and charges can be defined as surface charges, which are the Noether charges
related to the Killing vectors of the space–time. The entropy is given by the integral
of a Noether two-form over the event horizon:

S D
I
Q:

The symmetry associated with this Noether charge is the one generated by the
so-called horizontal Killing vector field. For static black holes this is the timelike
Killing vector field associated with the time-independence of the background, while
for rotating black holes it is a linear combination of the timelike and the axial Killing
vector field. In practice the Noether charge can be expressed in terms of variational
derivatives of the Lagrangian with respect to the Riemann tensor:

S D
I

ıL
ıR����

"��"��

p
hd2˝2:
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Here "�� is the normal bivector, normalized to "��"
�� D �2 and

p
hd2˝ is the

induced volume element of the horizon. If one evaluates this formula for N D 2

supergravity with prepotential F.Y I ; � /, the result is

Smacro D �

�
.pIFI .Y; � / � qIY

I /� 256Im

�
@F

@�

��

�
: (4.83)

This is the sum of two symplectic functions. The first term corresponds to the area
law while the second is an explicit modification. This modification is crucial for the
matching of subleading contributions to the macroscopic and microscopic entropy
in string theory.
R2-corrections can be incorporated into the variational principle in a straightfor-

ward way. One defines a generalized Hesse potential as the Legendre transform of
(two times the imaginary part of) the prepotential F.Y I ; � /:

H.x; y; �; � / D 2
�

ImF.Y I ; � / � yI uI
�
;

where

yI D ReFI .Y
I ; � / D @ImF.Y I ; � /

@uI
:

The canonical free energy is

F.Y; Y / D 2H.x; y/ D �i.Y I
FI � Y IF I /� 2i.�F� � �F � /:

Here and in the following we adopt a notation where we usually suppress the depen-
dence on � , unless where we want to emphasize that R2-corrections have been
taken into account. The entropy function takes the form

˙.x; y; p; q/ D 2.H � qx C py/;

where H is now the generalized Hesse potential. It is straightforward to show that
the extremization of this entropy function gives the attractor equations (4.82), and
that its critical values gives the entropy (4.83): Smacro D �˙�.

Further Reading and References

R2-corrections to BPS solutions of N D 2 supergravity with vector (and hyper)
multiplets were first obtained in [5] in the near horizon limit. The comparison with
subleading corrections to state counting in N D 2 string compactifications [3, 4]
showed that is crucial to use Wald’s modified definition of the black hole entropy
[7]. This approach assumes a Lagrangian which is covariant under diffeomorphisms,
and identifies the correct definition of the entropy by imposing the validity of the
first law of black hole mechanics. The entropy is found to be a Noether surface
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charge, which can be expressed in terms of variational derivatives of the Lagrangian
[54]. The full derivation is quite intricate, and while no concise complete review
is available, some elements of it have been reformulated in [55] from a more con-
ventional gauge theory perspective. Otherwise, see [12] for a more detailed account
on Wald’s entropy formula and its merits in string theory. Sen’s entropy function
formalism [40] is based on Wald’s definition of black hole entropy.

The general class of stationary 1
2

-BPS solutions in N D 2 supergravity with R2-
terms was described in [6]. The generalisation of the black hole variational principle
to include R2 terms was found in [52].

4.3.6 Non-holomorphic Corrections

There is a further type of corrections which need to be taken into account, the
so-called non-holomorphic corrections. One way of deducing that such correc-
tions must be present is to investigate the transformation properties of the entropy
under string dualities, specifically under S-duality and T-duality. We will dis-
cuss an instructive example in Sect. 4.4.3. The consequence is that the entropy
and the attractor equations can only be duality invariant, if there are additional
contributions to the entropy and to the symplectic vector .Y I ; FI .Y; � //, which
cannot be derived from a holomorphic prepotential F.Y; � /. This is related to
a generic feature of string-effective actions and their couplings. One has to dis-
tinguish between two types of effective actions. The Wilsonian action is always
local and the corresponding Wilsonian couplings are holomorphic functions of the
moduli (in supersymmetric theories). The other type of effective action is the gen-
erating functional of the scattering amplitudes. If massless modes are present this
is in general non-local, and the associated physical couplings have a more compli-
cated, non-holomorphic dependence on the moduli. Both types of actions differ by
threshold corrections associated with the massless modes, which can be computed
by field theoretic methods. The supergravity actions which we have constructed
and discussed so far are based on a holomorphic prepotential and have to be inter-
preted as Wilsonian actions. Their couplings are holomorphic, and they are different
from the physical couplings, which can be extracted from string scattering ampli-
tudes. The Wilsonian couplings are not necessarily invariant under symmetries,
such as string dualities, whereas the physical couplings are. The same distinc-
tion between holomorphic, but non-covariant quantities and non-holomorphic, but
covariant quantities occurs for the topological string, which is the tool used to com-
pute the couplings. Here the non-holomorphicity arises from the integration over the
world-sheet moduli space, and it is encoded in the holomorphic anomaly equations.

In the following we will describe a general formalism for incorporating non-
holomorphic corrections to the attractor equations and the entropy. This formalism
is model-independent (as such), but we should stress that it is inspired by the exam-
ple which we are going to discuss in Sect. 4.4.3. While it has been shown to work
in N D 4 compactifications, it is not clear a priori whether the non-holomorphic
modifications that are introduced are general enough to cover generic N D 2
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compactifications. Moreover, it should be interesting to investigate the relation
between this formalism and the holomorphic anomaly equation of the topological
string in more detail.

The basic assumption underlying the formalism is that all non-holomorphic mod-
ifications are captured by a single real-valued function ˝.Y; Y ; �; � /, which is
required to be (graded) homogenous of degree 2:

˝.�Y I ; �Y
I
; �2�; �

2
� / D j�j2˝.Y; Y ; �; � /:

We then define a generalized Hesse potential by taking the Legendre transform of
ImF C˝:

OH.x; y/ D 2
�
ImF.x C iu; � /C˝.x; y; �; � / � qx C p Oy�; (4.84)

where
OyI D yI C i.˝I �˝I /: (4.85)

Clearly, this modification is only non-trivial if˝ is not a harmonic function, because
otherwise it could be absorbed by redefining the holomorphic function F .

We now take the generalized Hesse potential as our canonical free energy and
define the entropy function

˙ D 2. OH � qx C p Oy/: (4.86)

By variation of the entropy function with respect to x; Oy we obtain the attractor
equations

@ OH
@x

D q;
@ OH
@ Oy D �p; (4.87)

and by substituting the critical values back into the entropy function we obtain the
macroscopic black hole entropy

Smacro D �˙� D 2�

 
OH � x @

OH
@x

� Oy @
OH

@ Oy

!

�
: (4.88)

In practice, one works with special coordinates rather than special affine coor-
dinates, because explicit expressions for subleading contributions to the couplings
are only known in terms of complex coordinates. In special coordinates the entropy
function has the following form:

˙.Y; Y ; p; q/ D F.Y; Y ; �; � /� qI .Y
I C Y

I
/C pI .FI C F I C 2i.˝I �˝I //;

with canonical free energy

F.Y; Y ; �; � /D�i.Y
I
FI �Y IF I/�2i.�F� ��F � /C4˝�2.Y I �Y I

/.˝I �˝I /:
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The attractor equations are

 
Y I � Y I

FI � F I C 2i.˝I C˝I /

!

D
�
pI

qI

�
;

and the entropy is

Smacro D �
�jZj2 � 256Im.F� C i˝� /

�
� : (4.89)

By inspection, the net effect of the non-holomorphic corrections is to replace F !
F C 2i˝ in the entropy function and in the attractor equations, but F ! F C i˝
in the definition of the Hesse potential and in the entropy.23

As before we can impose half of the attractor equations and go from the canonical
to the mixed ensemble. The modified mixed free energy is found to be

Fmix D 4.ImF C˝/:

Since the non-holomorphic modifications are enforced by duality invariance,
they are relevant for the conjectures about the relation between macroscopic quan-
tities (free energy and macroscopic entropy) and microscopic quantities (partition
functions and microscopic entropy).

Our basic conjecture is that the canonical free energy, including non-holomorphic
modifications, is related to the canonical partition function by

e2�H.x;y/ � Zcan D
X

p;q

d.p; q/e2�ŒqI xI �pI OyI �: (4.90)

In special coordinates, this reads

e�F.Y;Y / � Zcan D
X

p;q

d.p; q/e�ŒqI .Y I CY
I

/�pI . OFI C OF I /�: (4.91)

We can formally invert these formulae to get a prediction of the state degeneracy in
terms of macroscopic quantities:

d.p; q/ �
Z

dxd Oye�˙.x; Oy/ �
Z

dY dY��.Y; Y /e�˙.Y;Y /; (4.92)

where we defined

�˙.Y; Y / D j det


ImFKL C 2Re.˝KL ˙˝KL/

� j: (4.93)

23 As an exercise, the curious reader is encouraged to verify this statement by himself, starting from
the definition of the generalized Hesse potential and re-deriving all the formulae step by step.
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In saddle point approximation, we predict the following relation between the micro-
scopic and the macroscopic entropy:

eSmicro.p;q/ D d.p; q/ � eSmacro.p;q/

r
��
�C � eSmacro.p;q/.1C��� /:

Here we used that both the measure factor �� and the fluctuation determinant�C
are subleading in the limit of large charges.

We can also perform a partial saddle point approximation

d.p; q/ �
Z

d�
p
��.p; �/e�ŒFmix.	;p/�qI 	I �

and get a conjecture for the relation between the mixed free energy and the mixed
partition function:

p
��e�Fmix.p;	/ � Zmix D

X

q

d.p; q/e�qI 	I

: (4.94)

The conjecture put forward by Ooguri, Strominger and Vafa is

e�Fhol
mix.p;	/ � Z

.mix/
BH D

X

q

d.p; q/e�qI 	I

: (4.95)

This differs from (4.94) in two ways: (1) the measure factor �� is absent, and
(2) the mixed free energy does not include contributions from non-holomorphic
terms. Since these modifications are subleading, the black hole variational principle
guarantees that both formulae agree to leading order for large charges. As indicated
by our presentation, we expect that the measure factor and the non-holomorphic
contributions to the free energy are present, because they are needed for symplectic
covariance and duality invariance. In fact, the presence of subleading modifications
in (4.94) has been verified, and we will review this later.

The Relation to the Topological String

One nice feature of (4.95) is that provides a direct link between the mixed black
hole partition function and the partition function of the topological string. The cou-
pling functions F .g/.X/ in the effective action of type-II strings compactified on a
Calabi–Yau threefold are related to particular set of ‘topological’ amplitudes. If one
performs a topological twist of the world-sheet conformal field theory, the function
F .g/.X/ becomes the free-energies of the twisted theory on a world-sheet of genus
g. The generalized prepotential F.X; OA/ is therefore proportional to the all-genus
free energy, i.e., to the logarithm of the all-genus partition functionZtop of the topo-
logical string. As we have seen, the mixed free energy Fhol

mix is proportional to the
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imaginary part of F.X; OA/. Taking into account conventional normalization factors,
(4.95) can be rewritten in the following, suggestive form:

Zmix
BH � jZtopj2: (4.96)

However, general experience with holomorphic quantities in supersymmetric theo-
ries suggests that such a relation should not be expected to be exact, but should be
modified by a non-holomorphic factor.24 And indeed, work done over the last years
on state counting and partition functions in N D 2 compactifications, has estab-
lished that the holomorphic factorisation of the black hole partition function holds to
leading order, but is spoiled by subleading corrections. The underlying microscopic
picture is that the black hole corresponds, modulo string dualities, to a system of
branes and antibranes. To leading order, when interactions can be neglected, this
leads to the holomorphic factorisation.

Currently, the detailed microscopic interpretation of the modified conjecture
(4.91), (4.94) and its relation to the topological string is still an open question. In
the following two lectures, we will discuss how the general ideas explained in this
lecture can be tested in concrete examples.

Further Reading and References

This section is mostly based on [52], where we used the results of [56] to formulate
a modified version of the ‘OSV conjecture’ [1]. The relation between Wilsonian and
physical couplings in string effective actions was worked out in [57] and is reviewed
in [58]. Concrete examples for the failure of physical quantities of supersymmetric
theories to show holomorphic factorisation are provided by mass formulae (see, e.g.
[59]) and by the path integral measure of the non-critical string (see, e.g. [60] for
a discussion). The topological string can be used to derive the physical couplings
of N D 2 compactifications [26, 27]. In this case the non-holomorphic corrections
are captured by the holomorphic anomaly equations. The relation between these
and symplectic covariance in supergravity have been discussed in [61], while the
relevance of non-holomorphic corrections for black hole entropy was explained in
[56]. The role of non-holomorphic corrections for the microscopic aspects of the
OSV conjecture has been addressed in [62]. The ramifications of the OSV conjec-
ture for ‘topological M-theory’, and the role of non-holomorphic corrections in this
context have been discussed in [60, 63]. More recent work on the relation between
holomorphicity and modularity includes [64, 65].

References for tests of the OSV conjecture will be given in Lecture IV.

24 One example is the mass formula M2 D e�K jMj2 for orbifold models, where K is the Kähler
potential and M is the chiral mass which depends holomorphically on the moduli. In this case
the presence of the non-holomorphic factor e�K can be inferred from T-duality. Another example,
which has been pointed out to me by S. Shatashvili, is the path integral measure for strings. While
it shows holomorphic factorisation for critical strings, this is spoiled by a correction factor, namely
the exponential of the Liouville action, for the generic, non-critical case.
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4.4 Lecture III: Black Holes in N D 4 Supergravity

4.4.1 N D 4 Compactifications

The dynamics of string compactifications with N D 4 supersymmetry is consider-
ably more restricted than the dynamics of N D 2 compactifications. In particular,
the classical S- and T-duality symmetries are exact, and there are fewer higher
derivative terms. ThereforeN D 4 compactifications can be used to test conjectures
by precision calculations. We consider the simplest example, the compactification
of the heterotic string on a six-torus. This is equivalent to the compactification of
the type-II string on K3 � T 2, but we will mostly use the heterotic language.

The massless spectrum consists of the N D 4 supergravity multiplet (graviton,
four gravitini, six graviphotons, four fermions, one complex scalar, which is, in
heterotic N D 4 compactifications, the dilaton) together with 22 N D 4 vector
multiplets (one gauge boson, four gaugini, six scalars). Since the gravity multiplet
contains six graviphotons, the resulting gauge group is U.1/28 (at generic points of
the moduli space). The corresponding electric and magnetic charges each live on a
copy of the Narain lattice � D �22I6, which is an even self-dual lattice of signature
.22; 6/:

.p; q/ 2 � ˚ �:

Locally, the moduli space is

M ' SL.2;�/

SO.2/
˝ SO.22; 6/

SO.22/˝ SO.6/
;

where the first factor is parameterised by the (four-dimensional, heterotic) dilaton S ,

S D e�2	 C ia:

The vacuum expectation value of � is related to the four-dimensional heterotic string
coupling gS by eh	i D gS , and a is the universal axion (the dual of the universal
antisymmetric tensor field). The global moduli space is obtained by modding out by
the action of the duality group

SL.2;�/S ˝ SO.22; 6;�/T :

The T-duality group SO.22; 6;�/T is a perturbative symmetry under which the dila-
ton S is inert, and which acts linearly on the Narain lattice � . The S-duality group
SL.2;�/S is a non-perturbative symmetry, which acts on the dilaton by fractional
linear transformations,

S ! aS C ib

�icS C d
;

�
a b

c d

�
2 SL.2;�/; (4.97)



4 From Special Geometry to Black Hole Partition Functions 205

while it acts linearly on the charge lattice � ˚ � by

�
p

q

�
�!

�
a �28 b �28

c �28 d �28

��
p

q

�
: (4.98)

Using the Narain scalar product, we can form three quadratic T-duality invariants
out of the charges: p2; q2; p � q. Under S-duality these quantities form a ‘vector’,
i.e., they transform in the 3-representation, which is the fundamental representation
of SO.2; 1/ ' SL.2/. The scalar product of two such S-duality vectors is an S-
duality singlet. One particularly important example is the S- and T-duality invariant
combination of charges

p2q2 � .p � q/2;
which discriminates between different types of BPS multiplets. Recall that the
N D 4 algebra has two complex central charges. Short ( 1

2
-BPS) multiplets satisfy

M D jZ1j D jZ2j , p2q2 � .p � q/2 D 0;

whereas intermediate ( 1
4

-BPS) multiplets satisfy

M D jZ1j > jZ2j , p2q2 � .p � q/2 6D 0:

4.4.2 N D 4 Supergravity in the N D 2 Formalism

In constructing BPS black hole solutions, we can make use of the N D 2 formal-
ism. TheN D 4 gravity multiplet decomposes into theN D 2 gravity multiplet, one
vector multiplet (which contains the dilaton), and two gravitino multiplets (each
consisting of a gravitino, two graviphotons, and one fermion). Each N D 4 vec-
tor multiplet decomposes into an N D 2 vector multiplet plus a hypermultiplet.
We will truncate out the gravitino and hypermultiplets and work with the resulting
N D 2 vector multiplets. This means that we ‘loose’ four electric and four mag-
netic charges, corresponding the four gauge fields in the gravitino multiplets. But as
we will see we can use T-duality to obtain the entropy formula for the full N D 4

theory.
At the two-derivative level, the effective action is an N D 2 vector multiplet

action with prepotential

F.Y / D �Y
1Y a�abY

b

Y 0
; (4.99)

where
Y a�abY

b D Y 2Y 3 � .Y 4/2 � .Y 5/2 � � � � :
The dilaton is given by

S D �i
Y 1

Y 0
:
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The corresponding scalar manifold is (locally)

M ' SL.2;�/

SO.2/
˝ SO.22; 2/

SO.22/˝ SO.2/
;

with duality group SL.2;�/S ˝ SO.22; 2;�/T .
The prepotential (4.99) corresponds to a choice of the symplectic frame where

the symplectic vector of the scalars is .Y I ; FI .Y //
T . The magnetic and electric

charges corresponding to this frame are denoted .pI ; qI /. This symplectic frame
is called the supergravity frame in the following. Heterotic string perturbation the-
ory distinguishes a different symplectic frame, called the heterotic frame, which is
defined by imposing that all gauge coupling go to zero in the limit of weak string
coupling gS ! 0 (equivalent to S ! 1). In this frame p1 is an electric charges
while q1 is a magnetic charge. An alternative way of defining the heterotic frame is
to impose that the electric charges are those which are carried by heterotic strings,
while magnetic and dyonic charges are carried by solitons (wrapped five-branes).
The heterotic frame has the particular property that ‘there is no prepotential’ (see
also Appendix A). The symplectic transformation relating the heterotic frame and
the supergravity frame is p1 ! q1, q1 ! �p0. If one applies this transformation
to .Y I ; FI /

T , then the transformed Y I are dependent and do not form a coordinate
system on M (the complex cone over M ), while the transformed FI do not form
the components of a gradient.

Since one frame is not adapted to string perturbation theory while the other is
inconvenient, one uses a hybrid formalism, where calculations are performed in the
supergravity frame but interpreted in the heterotic frame. The vectors of physical
electric and magnetic charges are

q D .q0; p
1; qa/ 2 �;

p D .p0;�q1; p
a/ 2 �; (4.100)

where a; b D 2; : : :. In this parametrisation, the explicit expressions for the T-
duality invariant scalar products are

q2 D 2.q0p
1 � 1

4
qa�

abqb/;

p2 D 2.�p0q1 � pa�abp
b/;

p � q D q0p
0 � q1p

1 C q2p
2 C q3p

3 C � � � ; (4.101)

where

pa�abp
b D p2p3 � .p4/2 � .p5/2 � � � � ;

qa�
abqb D 4q2q3 � .q4/

2 � .q5/
2 � � � � : (4.102)

In the heterotic frame, S-duality acts according to (4.98), and the three quadratic
T-duality invariants transform in the vector representation of SO.2; 1/ ' SL.2/,
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where SO.2; 1/ is realised as the invariance group of the indefinite bilinear form
a1a2 � a2

3. The scalar product of two S-duality vectors is a scalar, and the quartic
S- and T-duality invariant of the charges is

q2p2 � .p � q/2 D �
q2; p2; p � q�

0

@
0 1

2
0

1
2
0 0

0 0 �1

1

A

0

@
q2

p2

p � q

1

A :

For a prepotential of the form (4.99) the attractor equations can be solved in
closed form, and the resulting formula for the entropy is

Smacro D �
p
p2q2 � .p � q/2: (4.103)

This formula is manifestly invariant under SL.2;�/S ˝ SO.22; 2;�/T , and we can
reconstruct the eight missing charges by passing to the corresponding invariant of
the full duality group SL.2;�/S ˝ SO.22; 6;�/T . This result agrees with the direct
derivation of the solution within N D 4 supergravity.

When using the prepotential (4.99) we neglect higher derivative corrections to
the effective action. Therefore the solution is only valid if both the string coupling
and the curvature are small at the event horizon. This is the case if the charges are
uniformly large in the following sense:

q2p2 � .p � q/2 � 1:

Note that if the scalars take values inside the moduli space25 then q2 < 0 andp2 < 0

in our parametrisation.
From the entropy formula (4.103) it is obvious that there are two different types

of BPS black holes in N D 4 theories:

	 If p2q2 � .p � q/2 6D 0 the black hole is 1
4

-BPS and has a finite horizon. These
are called large black holes.

	 If p2q2 � .p � q/2 D 0 the black hole is 1
2

-BPS and has a vanishing horizon.
These are called small black holes. They are null singular, which means that the
event horizon coincides with the singularity.

Further Reading and References

The conventions used in this section are those of [56]. See there for more informa-
tion and references about the relation betweenN D 4 andN D 2 compactifications.

25 The moduli space is realised as an open domain in�n, which is given by a set of inequalities. In
our parametrisation one of these inequalities is ReS D e�2� > 0, which implies that the dilaton
lives in a half plane (the right half plane). Solutions where ReS < 0 at the horizon are therefore
unphysical. Similar remarks apply to the other moduli.
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The entropy for large black holes in N D 4 compactifications was computed in
[66, 67] and rederived using the N D 2 formalism in [56].

4.4.3 R2-Corrections for N D 4 Black Holes

Let us now incorporate higher derivative corrections. Since no treatment within
N D 4 supergravity is available, it is essential that we can fall back onto theN D 2

formalism. One simplifying feature of N D 4 compactifications is that all higher
coupling functions F .g/.Y / with g > 1 vanish. The only higher derivative cou-
pling is F .1/.Y /, which, moreover, only depends on the dilaton S . The generalized
prepotential takes the following form:

F.Y; � / D �Y
1Y a�abY

b

Y 0
C F .1/.S/�:

In order to find duality covariant attractor equations and a duality invariant entropy,
we must incorporate the non-holomorphic corrections to the Wilsonian coupling
F .1/.Y /, which are encoded in a homogenous, real valued, non-harmonic function
˝.Y; Y ; �; � /.

One way to find this function is to compute the physical coupling of the curvature-
squared term in string theory. Since this coupling depends on the dilaton (but not on
the other moduli), it can receive non-perturbative corrections (though no perturba-
tive ones). At this point one has to invoke the duality between the heterotic string
on T 6 and the type-IIA string on K3 � T 2. Since the heterotic dilaton corresponds
to a geometric type-IIA modulus, the exact result can be found by a perturbative
calculation in the IIA theory. This calculation is one-loop, and can be done exactly
in ˛0, because there is no dependence on the K3-moduli.

Alternatively, one can start with the perturbative heterotic coupling and infer the
necessary modifications of the attractor equations and of the entropy by imposing S-
duality invariance. It turns out that there is a minimal S-duality invariant completion,
which in principle could differ from the full result by further subleading S-duality
invariant terms. But for the case at hand the minimal S-duality completion turns out
to give complete result.

At tree level, the coupling function F .1/ is given by

F
.1/

tree .S/ D c1iS; where c1 D � 1

64
:

We know a priori that there can be instanton corrections O.e�S /. The function
F .1/.S/ determines the ‘R2-couplings’

LR2 ' 1

g2
C����C

���� C�C����
QC���� ; (4.104)
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where C���� is the Weyl tensor, through g�2 ' ImF .1/ and � ' ReF .1/. There-
fore ImF .1/ must be an S-duality invariant function, whereas ReF .1/ must only
be invariant up to discrete shifts. According to (4.97), the linear tree-level piece is
not invariant. Restrictions on the functional dependence of F .1/ on S result from
the requirement that the S-duality transformation (4.97) of the dilaton induces the
symplectic transformation (4.98) of the symplectic vector .Y I ; FI /

T . This implies
that

f .S/ WD �i
@F .1/

@S

must transform with weight 2:

f

�
aS � ib

icS C d

�
D .icS C d/2f .S/:

A classical result in the theory of modular forms26 implies that f .S/, (and, hence,
F .1/) cannot be holomorphic. The holomorphic object which comes closest to
transforming with weight 2 is the holomorphic second Eisenstein series

G2.S/ D �4�@S�.S/;

where �.S/ is the Dedekind �-function.27 To obtain a function which transforms
with weight 2 one needs to add a non-holomorphic term and obtains the non-
holomorphic second Eisenstein series:

G2.S; S/ D G2.S/� 2�

S C S
:

This is the only candidate for f .S/. We will write f .S; S/ in the following, to
emphasize that this function is non-holomorphic. We need to check that we get
the correct asymptotics in the weak coupling limit S ! 1. Since F .1/ ! c1iS ,
we know that f .S; S/ must go to a constant. This is indeed true for the second
Eisenstein series (the non-holomorphic term is subleading):

G2.S; S/ ! �2

3
;

and therefore the minimal choice for f .S; S/ is

f .S; S/ D c1

3

�2
G2.S; S/:

26 We refer the reader to Appendix B for a brief review of modular forms and references.
27 Here G2.S/ is short for G2.iS/, etc.
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This can be integrated, and we obtain the non-holomorphic function

F .1/.S; S/ D �ic1

6

�

�
log �2.S/C log.S C S/

�
: (4.105)

This function generates a symplectic vector .Y I ; FI .Y; Y //
T with the correct

behaviour under S-duality. Moreover, the function pIFI .Y; Y / � qIY
I , which is

proportional to the area, is S-duality invariant. However F .1/.S; S/ is not S-duality
invariant, but transforms as follows:

F .1/.S; S/ ! F .1/.S; S/C ic1

6

�
log

��icS C d
�
:

This was to be expected, because derivatives (and, hence, integrals) of modular
forms are not modular forms but transform with additional terms. The function
F .1/.S; S/ was constructed by requiring that its derivative is a modular form of
weight 2. Therefore it does not quite transform as a modular form of weight zero
(modular function). In order to get an S-duality invariant function, we need to add a
further non-holomorphic piece:

F
.1/
phys.S; S/ D F .1/.S; S/C ic1

3

�
log.S C S/ D F .1/.S/hol C ic1

6

�
log.S C S/;

where

F
.1/
hol .S/ D �ic1

6

�
log �2.S/:

The invariant function F .1/
phys is the minimal S-duality completion of the R2-coupling

(4.104). An explicit calculation of this coupling in string theory shows that this is in
fact the full R2-coupling.

Since the entropy must be S-duality invariant, it is also clear that the correct way
of generalizing the holomorphic function F .1/.S/ in the entropy formula is28

Smacro D �
h
.pIFI .Y; Y /� qIY

I /C 4Im
�
�F

.1/
phys.S; S/

�i

� :

Note that the non-holomorphic modifications are purely imaginary. Therefore
they only modify the R2-coupling g�2 ' ImF .1/ and reside in a real-valued, non-
harmonic function˝ . In the following we find it convenient to absorb the holomor-
phic function �F .1/.S/ into ˝:

˝.S; S; �; � / D Im

�
�F .1/.S; S/C � ic1

3

�
log.S C S/

�

D Im

�
�F .1/.S/� � ic1

3

�
log.S C S/

�
: (4.106)

28 Remember �� D �64.
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This function encodes all higher derivative corrections to the tree-level prepotential.
We already mentioned that the holomorphicR2-corrections correspond to instan-

tons. To make this explicit we expand F .1/
hol .S/ for large S :

F
.1/
hol .S/ ' log �24.S/ D �2�S � 24e�2�S C O.e�4�S /:

This shows that theR2-coupling has a classical piece proportional to S , followed by
an infinite series of instanton corrections, which correspond to wrapped five-branes.

Further Reading and References

This section is based on [56]. The treatment of the non-holomorphic corrections
illustrates the general formalism introduced in [52]. In fact, the formalism is mod-
elled on this example, and it is not excluded that generic N D 2 compactifications
need more general modifications. The R2-term in the effective action for N D 4

compactifications was computed in [68].

4.4.4 The Reduced Variational Principle for N D 4 Theories

It is possible and in fact instructive to analyse the attractor equations and entropy
without using the explicit form of ˝ . Using that ˝ depends on the dilaton S , but
not on the other moduli T a ' .Y a=Y 0/, one can solve all but two of the attractor
equations explicitly. The remaining two ‘dilaton attractor equations’ are the only
ones which involve ˝ , and they determine the dilaton as a function of the charges.
Substituting the solved attractor equations into the entropy function, we obtain the
following, reduced entropy function:

˙.S; S; p; q/ D �q
2 � ip � q.S � S/C p2jS j2

S C S
C 4˝.S; S; �; � /: (4.107)

Extremisation of this function yields the remaining dilatonic attractor equations

@S˙ D 0 D @S˙ , Dilaton attractor equations,

and its critical value gives the entropy:

Smacro.p; q/ D �˙�.p; q/

D
 

�q
2 � ip � q.S � S/C p2jS j2

S C S
C 4˝.S; S; �; � /

!

j@S ˙D0

:

(4.108)
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The entropy function is manifestly S-duality and T-duality invariant, provided that
˝ is an S-duality invariant function.29

Further Reading and References

The observation that all but two of theN D 4 attractor equations can be solved, even
in presence of R2-terms, was already made in [56] and exploited in [69] and [52].

4.4.5 Small N D 4 Black Holes

Let us now have a second look at small black holes. For convenience we take them
to be electric black holes, p D 0. By this explicit choice, S-duality is no longer
manifest, but T-duality remains manifest. As we saw above, as long as ˝ D 0 the
area of a 1

2
-BPS black hole vanishes,A D 0, and therefore the Bekenstein–Hawking

entropy is zero, too. In fact, the moduli also show singular behaviour, and, in partic-
ular, the dilaton runs of to infinity at the horizon S� D 1. Thus small black holes
live on the boundary of moduli space.

The lowest order approximation to the R2-coupling is to take its classical part,

F .1/ ' log �24.S/ D �2�S C O.e�2�S /;

and to neglect all instanton and non-holomorphic corrections. In this approxima-
tion one can solve the dilatonic attractor equations explicitly. This results in the
following, non-vanishing and T-duality invariant area:

A D 8�

r
1

2
jq2j 6D 0:

Thus the R2-corrections smooth out the null-singularity and create a finite horizon.
We need to impose that jq2j � 1 in order that the dilaton S is large,30 which we
need to impose because we neglect subleading corrections to the R2-coupling. Note
that in contrast to the two-derivative approximation the dilaton is now finite at the
horizon. Thus not only the metric but also the moduli are smoothed by the higher
derivative corrections. The horizon area is small in string units, even though it is
large in Planck units. This motivates the terminology ‘small black holes.’

The resulting Bekenstein–Hawking entropy is

SBekenstein�Hawking D A

4
D 2�

r
1

2
jq2j:

29 1

SCS
.1; jS j2;�i.S � S// transforms as an SO.2; 1/ vector under S-duality, and therefore the

contraction with the vector .q2; p2; p � q/ gives an invariant.
30 In our parametrisation q2 < 0, if the horizon values of the scalars are inside the moduli space.
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However, since the area law does not apply to theories with higher curvature terms,
the correct way to compute the macroscopic black hole entropy is (4.83). Evaluating
this for the case at hand gives

Smacro D A

4
C correction D A

4
CA

4
D A

2
D 4�

r
1

2
jq2j:

In this particular case the correction is as large as the area term itself. Later we will
have the opportunity to confront both formulae with string microstate counting.

In the limit of large S the next subleading correction comes from the non-
holomorphic corrections / log.S C S/. We can still find an explicit formula for
the entropy:

Smacro D 4�

r
1

2
jq2j � 6 log jq2j;

which we will compare to microstate counting later.
If we include further corrections, ultimately the full series of instanton correc-

tions encoded in log �24.S/, we cannot find an explicit formula for the entropy
anymore. However, we know that the exact macroscopic entropy is given as the
solution of the extremisation problem for the dilatonic entropy function (4.107).
This can be used for a comparison with state counting.

Further Reading and References

The observation that R2-corrections smooth or ‘cloak’ the null singularity of small
black holes was made in [70]. This result follows immediately from [56].

4.5 Lecture IV: N D 4 State Counting and Black Hole Partition
Functions

The BPS spectrum of the heterotic string on T 6 consists of the excited modes of the
heterotic string itself, and solitons. Heterotic string states are labeled by 28 quantum
numbers: 6 winding numbers, 6 discrete momenta around T 6 and 16 charges of
the unbroken U.1/16 � E8 ˝ E8 gauge group. They combine into 22 left- and 6
right-moving momenta, which take values in the Narain lattice:

.pLIpR/ 2 �:

Modular invariance of the world sheet conformal field theory implies that the lattice
� must be even and selfdual with respect to the bilinear form p2

L � p2
R, which

has signature .C/22.�/6. From the four-dimensional point of view, the 28 left- and
right-moving momenta are the 28 electric charges with respect to the generic gauge
group U.1/16C6C6: q D .pLIpR/ 2 � .
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Similarly, the winding states of heterotic five-branes carry magnetic charges p 2
� � D � . If purely electric or purely magnetic states satisfy a BPS bound, they must
be 1

2
-BPS states, because p2q2 �p �q D 0 if either p D 0 or q D 0. However, there

are also dyonic solitonic states with q2p2 �p � q 6D 0, which are 1
4

-BPS. By string–
black hole complementarity, the BPS states with charges .p; q/ 2 � ˚� should be
the microstates of N D 4 black holes with the same charges. We will now discuss
how these states are counted and compare our results to the macroscopic black hole
entropy and free energy.

4.5.1 Counting 1
2
-BPS States

Without loss of generality, we take the 1
2

-BPS states to be electric, pD 0. Such
states correspond to excitations of the heterotic string, and are called Dabholkar–
Harvey states. Recall that the world-sheet theory of the heterotic string has two
different sectors. The left-moving sector consists of 24 world sheet bosons (using
the light cone gauge), namely the left-moving projections of the eight coordinates
transverse to the world sheet, and 16 bosons with values in the maximal torus
of E8 ˝ E8. The right-moving sector consists of the right-moving projections of
the eight transverse coordinates, together with eight right-moving fermions. This
sector is supersymmetric in the two-dimensional, world-sheet sense. World-sheet
supersymmetry combined with a condition on the spectrum of charges implies the
existence of an extended chiral algebra on the world-sheet, which is equivalent to
N D 4 supersymmetry in the ten-dimensional, space–time sense. The generators of
the space–time supersymmetry algebra are build exclusively out of right-moving
degrees of freedom. To obtain BPS states one needs to put the right-moving sec-
tor into its ground state, but still has the freedom to excite the left-moving sector.
A basis of such states is

˛i1�m1
˛i2�m2

� � � jqi ˝ 16; (4.109)

where ˛ik�ml
are creation operators for the oscillation modes of the string. The

indices ik D 1; : : : ; 24 label the directions transverse to the world-sheet of the
string, while mk D 1; 2; 3; : : : label the oscillation modes. q D .pLIpR/ D � are
the electric charges, which correspond to the winding modes, momentum modes and
U.1/16 charges. 16 denotes the ground state of the right-moving sector, which car-
ries the degrees of freedom of an N D 4 vector multiplet (with 16 on-shell degrees
of freedom). States of this form are invariant under as many supercharges as the
right-moving ground state, and therefore they belong to 1

2
-BPS multiplets. To be

physical, the state must satisfy the level matching condition,

N � 1C 1

2
p2

L D QN C 1

2
p2

R; (4.110)
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where N; QN are the total left-moving and right-moving excitation numbers. BPS
states have QN D 0, and therefore the excitation level is fixed by the charges:

N � 1C 1

2
p2

L D QN C 1

2
p2

R ) N D 1

2
p2

R � 1

2
p2

L � 1 D �q2 � 1 D jq2j � 1:
(4.111)

This is equivalent to the statement that the mass saturates the BPS bound. Note that
q2 < 0 for physical BPS states. For large charges we can use N � jq2j.

The problem of counting 1
2

-BPS states amounts to counting in how many ways a
given total excitation numberN � jq2j can be distributed among the creation oper-
ators ˛i�m. If we ignore the additional space–time index i D 1; : : : ; 24, this becomes
the classical problem of counting the partitions of an integer N , which was studied
by Hardy and Ramanujan. The space–time index i adds an additional 24-fold degen-
eracy, and we might say that we have to count partitions of N into integers with 24
different ‘colours’. Incidentally exactly the same problems arises (up to the over-
all factor 16 from the degeneracy of the right-moving ground state) when counting
the physical states of the open bosonic string. From the world-sheet perspective,
both problems amount to finding the partition function of 24 free bosons, which is
a standard problem in quantum statistics and conformal field theory.

The reader is encouraged to solve Problem 3, which is to derive the following
formula for the state degeneracy:

d.q/ D d.q2/ D 16

I
d�

ei�
q2

�24.�/
; (4.112)

where � D �1 C i�2 2 H, where H D f� 2 �j�2 > 0g is the upper half plane
and where �.�/ is the Dedekind �-function. The integration contour runs through
a strip of width one in the upper half plane, i.e., it connects two points � .1/ and
� .2/ D � .1/ C 1. Since the integrand is periodic under � ! � C 1 (which is a gen-
eral property of modular forms), this integration contour is effectively closed. (It
becomes a closed contour when going to the new variable e2� i
 , which takes values
in the interior of the unit disc.)

In its present form this expression is not very useful, because we want to know
d.q/ explicitly, at least asymptotically for large values of jq2j. This type of prob-
lem was studied already by Hardy and Ramanujan, and a method for solving it
exactly was found by Rademacher. For our specific problem with 24 ‘colours’ the
Rademacher expansion takes the following form:

d.q2/ D 16

1X

cD1

c�14Kl

�
1

2
jq2j;�1I c

�
OI13

 
4�

c

r
1

2
jq2j

!

; (4.113)

where OI13 D is the modified Bessel function of index 13, and Kl.l;mI c/ are the
so-called Kloosterman sums.
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Modified Bessel functions have the following integral representation:

OI�.z/ D �i.2�/�
Z �Ci1

��i1
dt

t�C1
etC z2

4t ;

and their asymptotics for Re.z/ ! 1 is

OI�.z/ � ez

p
2

� z

4�

���� 1
2

�
1 � 2�2 � 1

8z
C O.z�2/

�
:

We will not need the values of the Kloostermann sums, except thatKl.l;mI 1/ D 1.
In the limit of large jq2j the term with c D 1 is leading, while the terms with

c > 1 are exponentially suppressed

d.q2/ D 16 OI13

 

4�

r
1

2
jq2j

!

C O
�

e�jq2j� :

Using the asymptotics of Bessel functions, this can be expanded in inverse powers
of jq2j:

Smicro.q
2/ D logd.q2/ � 4�

r
1

2
jq2j � 27

4
log jq2jC15

2
log.2/� 675

32�jq2j C � � � :

The first two terms correspond to a saddle point evaluation of the integral represen-
tation (4.112): The first term is the value of integrand at its saddle point, while the
second term is the ‘fluctuation determinant’. The derivation of the first two terms
using a saddle point approximation of (4.112) is left to the reader as Problem 4.
A derivation of the full Rademacher expansion (4.113) can be found in the literature.

Further Reading and References

An excellent and accessible account on the Rademacher expansion can be found in
[71]. See in particular the appendix of this paper for two versions of the proof of the
Rademacher expansion. We have also borrowed some formulae from [72, 73], who
have studied the state counting for 1

2
-BPS states in great detail, including various

N D 4 and N D 2 orbifolds of the toroidal N D 4 compactification considered in
this lecture.

4.5.2 State Counting for 1

4
-BPS States

For the problem of counting 1
4

-BPS states the dual type-II picture of the N D 4

compactification is useful. Here all the heterotic 1
2

- and 1
4

-BPS states arise as wind-
ing states of the NS-five-brane. It is believed that the dynamics of an NS-five-brane
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is described by a string field theory whose target space is the world volume of the
five-brane. If one assumes that the counting of BPS states is not modified by interac-
tions, the problem of state counting reduces to counting states in a multi-string Fock
space. For 1

2
-BPS states the resulting counting problem is found to be equivalent to

the one described in the last section, as required by consistency. For 1
4

-BPS states
the counting problem is more complicated, but one can derive the following integral
representation:

d.p; q/ D
I

d�d�dv
ei�Œ�p2C�q2C.2v�1/pq�

˚10.�; �; v/
: (4.114)

This formula requires some explanation. Essentially it is a generalisation of (4.112),
where the single complex variable � has been replaced by three complex variables
�; �; � , which live in the so called rank-2 Siegel upper half space S2. In general the
rank-n Siegel upper half space is the space of all symmetric .n � n/-matrices with
positive definite imaginary part. This is a symmetric space,

Sn ' Sp.2n/

U.n/
;

which can be viewed as a generalisation of the upper half plane

H D Sp.2/

U.1/
D S1:

The group Sp.2n;�/ acts by fractional linear transformations on the .n � n/

matrices˝ 2 Sn,

˝ ! .A˝ C B/.C˝ CD/�1; where

�
A B

C D

�
2 Sp.2n/:

The discrete subgroup Sp.2n;�/ is a generalisation of the modular group Sp
.2;�/ ' SL.2;�/, and there is a corresponding theory of Siegel modular forms. A
Siegel modular form is said to have weight 2k, if it transforms as

˚.˝/ ! ˚
�
.A˝ C B/.C˝ CD/�1

� D .det.C˝ CD//k˚.˝/:

In the rank-2 case, we can parameterise the matrix ˝ as

˝ D
�
� v
v �

�
;

and positive definiteness of the imaginary part implies that

�2 > 0; �2 > 0; �2�2 � v2 > 0;

where � D �1 C i�2, etc.
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In the theory of rank-2 Siegel modular forms, the analogon of the weight-12
cusp form �24.�/ is the weight-10 Siegel cusp form ˚10.�; �; v/, which enters into
the state counting formula (4.114). Like modular forms, Siegel modular forms are
periodic in the real parts of the variables �; �; v. The integration contour in the
Siegel half space is along a path of the form � ! � C 1, � ! � C 1, v !
v C 1, which is effectively a closed contour since the integrand is periodical.31 The
state counting formula (4.114) is manifestly T-duality invariant. It is also formally
S-duality invariant, in the sense that S-duality transformations can be compensated
by Sp.4;�/ transformations of the integration variables.

As in the 1
2

-BPS case one would like to evaluate (4.114) asymptotically, in the
limit of large charges q2p2�.p�q/2 � 1. One important difference between˚10 and
�24 is that the Siegel cusp form has zeros in the interior of the Siegel half space S2,
namely at v D 0 and its images under Sp.4;�/. The v-integral therefore evaluates
the residues of the integrand. At v D 0, the asymptotics of ˚10 is

˚ 'vD0 v2�24.�/�24.�/:

The asymptotics at the other zeros can be found by applying Sp.4;�/

transformations.
If one sets the magnetic charges to zero, the residue at v D 0 is the only one

which contributes to (4.114). This can be used to derive the 1
2

-BPS formula (4.112)
as a special case of (4.114).32

For 1
4

-BPS states it can be shown that for large charges the dominant contribution
comes from the residue at

D D v C �� � v2 D 0;

while all other residues are exponentially suppressed. Neglecting the subleading
residues, one can perform the v-integral. The remaining integral has the following
structure:

d.p; q/ D
I

d�d�ei�.X0CX1/.�;�/�.�; �/: (4.115)

The parametrisation has been chosen such that X1 and � are subleading for large
charges.

This integral can be evaluated in a saddle point approximation, analogous to
(4.112). The leading term for large charges is given by the approximate saddle point
value of the integrand,

d.p; q/ � ei� X0j� D e�
p

p2q2�.pq/2
: (4.116)

This result is manifestly T- and S-duality invariant.

31 In the numerator one has to use that the Narain lattice is even selfdual.
32 Incidentally, the problem is equivalent to the factorisation of a genus-2 string partition function
into two genus-1 string partition functions.
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A refined approximation can be obtained as follows: one identifies the exact crit-
ical point of ei�X D ei�.X0CX1/, expands the integrand ei�X� to second order and
performs a Gaussian integral. This is different from a standard saddle point approx-
imation, where one would expand around the critical point of the full integrand
ei�X�. This modification is motivated by the observation that the critical point of
i�X agrees exactly with the critical point of the reduced dilatonic entropy function
(4.107), which gives the exact macroscopic entropy:

i�X� D �˙� D Smacro.p; q/:

At the critical point one has the following relation between the critical values of �; �
and the fixed point value of the dilaton:

�� D ijS�j2
S� C S�

; �� D i

S� C S�
:

One might think that the subleading contributions from � spoil the resulting
equality between microscopic and macroscopic entropy. However, these cancel
against the contributions from the Gaussian integration (the ‘fluctuation determi-
nant’), at least to leading order in an expansion in inverse powers of the charges:

eSmicro.p;q/ D d.p; q/ � e�˙�C��� D eSmacro.p;q/C���: (4.117)

This shows that the modified saddle point approximation is compatible with a sys-
tematic expansion in large charges. Moreover, there is an intriguing direct relation
between the saddle point approximation of the exact microscopic state degeneracy
(4.114) and the black hole variational principle.

Further Reading and References

The state counting formula for 1
4

-BPS states in N D 4 compactifications was pro-
posed in [74]. There several ways of deriving it were discussed, which provide very
strong evidence for the formula. Further evidence was obtained more recently in
[75], by using the relation between four-dimensional and five-dimensional black
holes [76]. While the leading order matching between state counting and black hole
entropy was already observed in [74], the subleading corrections were obtained in
[69] by using the modified saddle point evaluation explained above.

Another line of development is the generalisation from toroidal compactifica-
tions to a class of N D 4 orbifolds, the so-called CHL-models [77, 78]. The issue
of choosing integration countours is actually more subtle than apparent from our
review, see [79, 80] for a detailed account. For a comprehensive account of Siegel
modular forms, see [81].
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4.5.3 Partition Functions for Large Black Holes

The strength of this result becomes even more obvious when we use it to compare
the (microscopically defined) black hole partition function to the (macroscopically
defined) free energy.

One way of doing this is to the evaluate mixed partition function Zmix.p; �/ DP
q d.p; q/e

�qI 	I

using integral representation (4.114) of d.p; q/. The result can
be brought to the following form

Zmix.p; �/ D
X

shifts

q
Q�.p; �/e�Fmix.p;	/: (4.118)

Fmix is the black hole free energy, including all, both the holomorphic and the non-
holomorphic corrections:

Fmix.p; �/ D 1

2
.S C S/

�
pa�abp

b � �a�ab�
b
�

� i.S � S/pa�ab�
b

C 4˝.S; S; �; � /:

By imposing the magnetic attractor equations in the transition to the mixed ensem-
ble, the dilaton has become a function of the electric potentials and the magnetic
charges:

S D �i�1 C p1

�0 C ip0
:

The mixed partition functions is by construction invariant under shifts � ! � C
2i. The mixed free energy is found to have a different periodicity, and this manifests
itself by the appearance of a finite sum over additional shifts of � in (4.118). As
predicted on the basis of symplectic covariance, the relation between the partition
function and the free energy is modified by a ‘measure factor’ Q��, which we do
not need to display explicitly. This factor agrees with the measure factor �� in
(4.94), which we found by imposing symplectic covariance in the limit of large
charges:

Q�� � ��:

Since we already made a partial saddle point approximation when going from the
canonical to the mixed ensemble, we could not expect an exact agreement. It is
highly non-trivial that we can match the full mixed free energy, including the infi-
nite series of instanton corrections. Moreover, we have established that there is a
non-trivial measure factor, which agrees to leading order with the one constructed
by symmetry considerations.
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Further Reading, References, and Some Comments

The idea to evaluate the mixed partition function using microscopic state counting
in order to check the OSV conjecture for N D 4 compactifiactions was first used in
[82]. This confirmed the expectation that the OSV conjecture needs to be modified
by a measure factor once subleading corrections are taken into account. This result
was generalized in [52], where we showed that the measure factor agrees asymp-
totically with our conjecture which is based on imposing symplectic covariance.
Above, we pointed out that in (4.118) we obtain the full mixed Fmix, including the
non-holomorphic corrections. Of course, this way of organising the result is moti-
vated by our approach to non-holomorphic corrections, and it is consistent to regard
these contributions as part of the measure factor, as other authors appear to do.
Further work is needed, in particular on the role played by the non-holomorphic
corrections in the microscopic description, before we can decide which way inter-
preting the partition function is more adequate. Let us also mention that while we
specifically considered toroidal N D 4 compactifications in this section, all results
generalise to CHL models.

There has also been much activity on N D 2 compactifications over the last
years. Much of this work has focussed on establishing and explaining the asymptotic
factorisation

Zmix ' jZtopj2
predicted by the OSV conjecture [83–86]. The strategy pursued in these papers is to
use string-dualities, in particular the AdS3=CF T2-correspondence, to reformulate
the problem in terms of two-dimensional conformal field theory. In comparison to
the simpler N D 4 models, the relevant microscopic partition functions are related
to the so-called elliptic genus of the underlying CFT. Roughly, the elliptic genus
is a ‘BPS partition function’, i.e. a partition function which has been modified by
operator insertions such that it only counts BPS states. The main problem is to find
a suitable generalisation of the Rademacher expansion which allows to evaluate
these BPS partition functions asymptotically for large charges. The picture emerging
from this treatment is that the black hole can be described microscopically (modulo
string dualities) as a non-interacting state of branes and anti-branes. This explains
the asymptotic factorisation.

But as we have stressed throughout, non-holomorphic corrections are expected
to manifest themselves at the subleading level, which microscopically correspond
to interactions between branes and antibranes. And indeed, a more recent refined
analysis [40] has revealed the presence of a measure factor, which agrees with the
one found in [82] and [52] in the limit of large charges.

There is one further point which we need to comment on. During this lecture
we have tentatively assumed that ‘state counting’ means literally to count all the
BPS states. But, as we have mentioned previously, the BPS spectrum changes when
crossing a line of marginal stability. This is a possible cause for discrepancies
between state counting and thermodynamical entropy, because they are computed
in different regions of the parameter space. In their original work [1] therefore
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conjectured that the microscopical entropy entering into the OSV conjecture is an
‘index’, i.e. a weighted sum over states which remains invariant when crossing lines
of marginal stability. The detailed study of [72, 73] showed that it is very hard in
practice to discriminate between absolute versus weighted state counting. While
one example appeared to support absolute state counting, it was pointed out later
that there are several candidates for the weighted counting [40]. One intriguing pro-
posal is that the correct absolute state counting is in fact captured by an index, once
it is taken into account that states which are stable in the free limit become unstable
once interactions are taken into account [40].

In conclusion, the OSV conjecture appears to work well in the semi-classical
approximation, if supplemented by a measure factor. The concrete proposal dis-
cussed in these lectures works correctly in this limit. It is less clear what is the
status of the original, more ambitious goal of finding an exact relation [1], which
would have various ramifications, such as helping to find a non-perturbative defini-
tion of the topological string [1], formulating a mini-superspace approximation of
stringy quantum cosmology [87], studyingN D 1 compactifications via ‘topological
M-theory’ [60, 63], and approaching the vacuum selection problem of string theory
by invoking an ‘entropic principle’ [88–90].

4.5.4 Partition Functions for Small Black Holes

The counting of 1
2

-BPS states gave rise to the following microscopic entropy:

Smicro � log OI13

 

4�

r
1

2
jq2j

!

� 4�

r
1

2
jq2j � 27

4
log jq2j C � � � : (4.119)

This is to be compared with the macroscopic entropy. Including the classical part
of the R2-coupling and the non-holomorphic corrections, but neglecting instantons,
this is

Smacro D 4�

r
1

2
jq2j � 6 log jq2j C � � � : (4.120)

While the leading terms agree, the first subleading term comes with a slightly dif-
ferent coefficient. However, we have seen that both entropies belong to different
ensembles, so that we can only expect that they agree in the thermodynamical limit.
Since we have a conjecture about the exact (or at least asymptotically exact) rela-
tion between both entropies, we can check whether the shift in the coefficient of the
subleading term is predicted correctly. Our conjecture about the relation between
the canonical free energy and the canonical partition function predicts the following
relation (see Sect. 4.3.6):

Smicro D Smacro C log

r
��
�C :
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This shows that both entropy are indeed different if the measure factor �� and the
fluctuation determinant�C are different. For dyonic black holes we found that both
were equal, up to subleading contribution. Unfortunately our relation is not useful
for small black holes, because

�� D 0; up to non-holomorphic terms and instantons,

�C D 0; up to instantons:

Since the measure factor and the fluctuation determinant are degenerate (up to
subleading contributions) the saddle point approximation is not well defined. This
reflect that small black hole live on the boundary of moduli space.

We can still test our conjecture about the relation between the mixed partition
and the mixed free energy, in particular the presence of a measure factor and the
role of non-holomorphic contributions. This requires to evaluate

exp.Smicro/ D d.p1; q/ �
Z

d�
p
��.p1; �/e�ŒFmix.p1;	/�qI 	I �;

where a non-vanishing �� is obtained by including the non-holomorphic correc-
tions.33 We still neglect the contributions of the instantons.

The integral can be evaluated, with the result:

d.p1; q/ �
Z

dSdS

.S C S/14

r

S C S � 12

2�
exp

�
� �q2

S C S
C 2�.S C S/

	
:

(4.121)
Here the integrals over �a D �2; �3; : : : ; �27 have been performed and the remain-
ing integrals over �0 and �1 have been expressed in terms of the dilaton S . If we
approximate r

S C S � 12

2�
�
p
S C S;

this becomes the integral representation of a modified Bessel function.
Then our conjecture predicts

S
.predicted/
micro � log OI13� 1

2

 

4�

r
1

2
jq2j

!

� 4�

r
1

2
jq2j� 13

2
log jq2j C � � � ; (4.122)

while the entropy obtained from state counting is

Smicro � log OI13

 

4�

r
1

2
jq2j

!

� 4�

r
1

2
jq2j � 27

4
log jq2j C � � � : (4.123)

33 Remember that p1 is an electric charge for the heterotic string. We take q1 D 0, because this is
a magnetic charge.
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Thus there is a systematic mismatch in the index of the Bessel function, and while
the leading terms agree, the coefficients of the log-terms and all the following
inverse-power terms mismatch.

This result can be compared with the original OSV-conjecture, where one does
not have a measure factor, and where only holomorphic contributions to the free
energy are taken into account:

d.p1; q/ �
Z

d�e�ŒFOSV.p1;	/�qI 	I � � .p1/2 OI15

 

4�

r
1

2
jq2j

!

;

S
.predicted/
micro D 4�

r
1

2
jq2j � 31

4
log jq2j C log.p1/2 C � � � : (4.124)

In this case the index of the Bessel function deviates even more, and in addition
there is an explicit factor .p1/2 which spoils T-duality. This clearly shows that the
OSV conjecture needs to be modified by a measure factor.

When deriving (4.124), we have integrated over 28 potentials �I , as we have
done in our discussion of large black holes, and in (4.121). There is one subtlety
to be discussed here. The full N D 4 theory has 28 gauge fields, but we have
used the N D 2 formalism. Since we disregard the gravitini multiplets (and the
hypermultiplets), we work with a truncation to a subsector consisting of the N D 2

gravity multiplet and 23 vector multiplets. This theory only has 24 gauge fields, and
therefore it only has 24 electrostatic potentials �I . However, at the end we should
reconstruct the missing four gauge potentials, and as we have seen when recovering
the N D 4 entropy formula using the N D 2 formalism, this extension is uniquely
determined by T-duality. As we have seen this prescription works for large black
holes, but for small black holes we do not quite obtain the right index for the Bessel
function.

However, the correct index for the Bessel function is obtained when using the
unmodified OSV conjecture, but integrating only over 24 instead of 28 electrostatic
potentials:

d.p1; q/ �
Z

d�e�ŒFOSV.p1;	/�qI 	I � � .p1/2 OI13

 

4�

r
1

2
jq2j

!

; (4.125)

S
.predicted/
micro D 4�

r
1

2
jq2j � 27

4
log jq2j C log.p1/2 C � � � : (4.126)

Note that this does not cure the problem with the prefactor .p1/2, which is incom-
patible with T-duality. It is intriguing, but at the same time puzzling that the correct
value for the index is obtained by reducing the number of integrations. However, it
is not clear how to interpret this restriction. Moreover, it is unavoidable to include
a measure factor to implement T-duality, and this is very likely to have an effect on
the index.
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Further Reading and References

In this section, we followed [52], and compared the result with the calculation based
on the original OSV conjecture [72, 73]. Both approaches find agreement for the
leading term, but disagreement for the subleading terms. Moreover, when sticking
to the original OSV conjecture, the result is not compatible with T-duality. Fur-
ther problems and subtleties with the OSV conjecture for 1

2
-BPS black holes have

been discussed in detail in [72, 73]. One obvious explanation for these difficulties
is that in the ‘would-be leading’ order approximation small black holes are singu-
lar: they have a vanishing horizon area and the moduli take values at the boundary
of the moduli space. While the higher curvature smooth the null singularity, lead-
ing to agreement between macroscopic and microscopic entropy to leading order
in the charges, the semi-classical expansion is still ill defined, since one attempts
to expand around a singular configuration. Apparently one needs to find a different
way of organising the expansion, if some version of the OSV conjecture is to hold at
the semi-classical level. A more drastic alternative is that the OSV conjecture simply
does not apply to small black holes. But since the mismatch of the subleading cor-
rections appears to follow some systematics, there is room for hope. The situation
is less encouraging for the non-perturbative corrections coming form instantons. As
observed both in [72, 73] and in [52] the analytical structure of the terms observed
in microscopic state counting is different from the one expected on the basis of the
OSV conjecture.

4.5.5 Problems

Problem 4.3. Counting states of the open bosonic string.

In the light cone gauge, a basis for the Hilbert space of the open bosonic string
(neglecting the center of mass momentum) is given by

˛i1�m1
˛i2�m2

� � � j0i; (4.127)

where ik D 1; : : : ; 24 and mk D 1; 2; 3; : : :. States with the same (total) excitation
number n D m1 C m2 C : : : have the same mass. Incidentally, the problem of
counting states of the open bosonic string with given mass, is the same as counting
the number of 1

2
-BPS states for the heterotic string, compactified on T 6, with given

charges q 2 �Narain.
The number of states with given excitation number n is encoded in the partition

function
Z.q/ D Tr qN ; (4.128)

where the trace is over the Hilbert space of physical string states (light cone gauge),
q 2 �, andN is the number operator with eigenvalues n D 0; 1; 2; 3; : : :. Evaluation
of the trace gives
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Z.q/ D
 1Y

lD1

.1 � ql/

!�c

; jqj < 1; (4.129)

where c D D � 2 D 24 is the number of space–time dimensions transverse to the
string world sheet (the physical excitations). The number dn of string states at level
n is encoded in the Taylor expansion

Z.q/ D
1X

nD0

dnq
n: (4.130)

Verify that dn counts string states, for small n D 0; 1; 2; : : : Do this either for the
critical open bosonic string, c D 24, or for just one string coordinate, c D 1. The
latter is the classical problem of counting partitions of an integer. It is instructive to
evaluate dn both directly, by reorganising the product representation (4.129) into a
Taylor series, and by the integral representation of dn obtained by inverting (4.130).

Hints: Note that
Z.q/ D q��1.q/; (4.131)

where �.q/ D �24.q/ is the cusp form (� is the Dedekind eta-function). �.q/ is a
modular form of weight 12 and has the following expansion around the cusp q D 0:

�.q/ D q � 24q2 C 252q3 � 1472q4 C 4830q5 C O.q6/: (4.132)

�.q/ has no zeros for 0 < jqj < 1.
dn can be computed by a contour integral in the unit disc jqj < 1.

Problem 4.4. The asymptotic state density of the open bosonic string.

Given the information provided in Problem 4.3, compute the asymptotic number of
open bosonic string states dn for n ! 1. (You may restrict yourself to the case
c D 24, which corresponds to the critical dimension.)

Instructions:

1. The unit disc jqj < 1 can be mapped to the semi-infinite strip �1
2
< �1 <

1
2

,
�2 > 0 in the complex �-plane, � D �1 C i�2 by

q D e2� i
 : (4.133)

(Like other modular forms, � extends to a holomorphic function on the whole
upper half plane by periodicity in �1.)
Rewrite the contour integral for dn as a contour integral over � .

2. Use the modular properties of �.�/ to find the behaviour of the integrand close
to � D 0 from the known behaviour of �.�/ at � D i1 , q D 0. Show that for
n ! 1 the integrand has a sharp saddle point. Use this to evaluate the contour
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integral in saddle point approximation. (Expand the integrand to second order
around the saddle point and perform the resulting Gaussian integral.)

3. The correct result is
dn � Const. e4�

p
nn� 27

4 : (4.134)

A Kähler Manifolds and Special Kähler Manifolds

In this appendix we review Kähler manifolds and special Kähler manifolds from the
mathematical perspective. The first part is devoted to the basic definitions and prop-
erties of complex, hermitian and Kähler manifolds. For a more extensive review we
recommend the book by Nakahara [91], and, for readers with a stronger mathemat-
ical inclination, the concise lecture notes by Ballmann [92]. The characterisation
of complex and Kähler manifolds in terms of holonomy groups can be found in
[93]. The second part reviews special Kähler manifolds and is mostly based on
[21, 22] with supplements from [23–25]. A review of special geometry from a
modern perspective can also be found in [94].

A para-complex variant of special geometry, which applies to the target mani-
folds of Euclidean N D 2 theories has been developed in [23, 24]. The framework
of 
-Kähler manifolds, which has been employed in [25], is particularly suitable
for treating Euclidean supersymmetry and standard (Lorentzian) supersymmetry in
parallel.

A.1 Complex and Almost Complex Manifolds

Let M be a differentiable manifold of dimension 2n.

Definition 4.1. An almost complex structure I on M is tensor field of type .1; 1/
with the property that (pointwise)

I 2 D �Id:

In components, using real coordinates fxmjm D 1; : : : ; 2ng, this condition reads

Im
pI

p
n D �ım

n : (4.135)

Definition 4.2. An almost complex structure is called integrable if the associated
Nijenhuis tensor NI vanishes for all vector fields X; Y on M :

NI .X; Y / WD ŒIX; IY�C ŒX; Y � � I ŒX; IY� � I ŒIX; Y � D 0:



228 T. Mohaupt

The expression for NI in terms of local coordinates fxmg can be found by substi-
tuting the coordinate expressions X D Xm@m, Y D Y m@m for the vector fields.34

We will not need this explicitly.

Remark. The integrability of an almost complex structure is equivalent to the exis-
tence of local complex coordinates fzi ji D 1; : : : ; ng. An integrable almost complex
structure is therefore also simply called a complex structure.

Definition 4.3. A manifold which is equipped with an (almost) complex structure
is called an (almost) complex manifold.

Remark. The existence of an (almost) complex structure can be rephrased in terms
of holonomy. An almost complex structure is a GL.n;�/ structure, and a complex
structure is a torsion-free GL.n;�/ structure.

A.2 Hermitian Manifolds

Let .M; I / be a complex manifold and let g be a (pseudo-)Riemannian metric on
M .

Definition 4.4. .M; g; I / is called a hermitian manifold, if I generates isometries
of g:

I �g D g: (4.136)

Remark. Condition (4.136) is equivalent to saying that

g.IX; IY/ D g.X; Y /;

for all vector fields X; Y on M . In local coordinates the condition reads

gpqI
p
mI

q
n D gmn: (4.137)

Remark. If the metric is indefinite, .M; g; I / is called pseudo-hermitian, but we will
usually drop the prefix ‘pseudo-’.

On a hermitian manifold one can define the so-called fundamental two-form:

!.X; Y / WD g.IX; Y /;

or, in coordinates,
!mn D �gmpI

p
n: (4.138)

34 In fact, it is sufficient to substitute a basis of coordinate vector fields f@mg to obtain the
components Nmn D N.@m; @n/.
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Note that !mn D �!nm, because gmn is symmetric, while I satisfies (4.135) and
(4.137). Moreover the two-form ! is non-degenerate, because g is.

Equation (4.138) can be solved for the metric g or for the complex structure I :

gmn D !mkI
k
n ;

Im
n D �gmk!kn: (4.139)

Thus, if any two of the three data g (metric), I (complex structure) or ! (fundamen-
tal two-form) are given on a hermitian manifold, the third is already determined.

When we use complex coordinates fzig, the complex structure only has ‘pure’
components:

I i
j D iıi

j ; I i
j

D �iıi
j
:

For a hermitian metric the pure components vanish, gij D 0 and gij D 0. Only the
‘mixed’ components gij and gij D gij remain. Note that the matrix gij is hermi-
tian. The fundamental two-form also only has mixed components, and !ij D igij .
Thus in complex coordinates the matrices representing the metric and the fundamen-
tal two-form are hermitian and anti-hermitian, respectively, while in real coordinates
they are symmetric and antisymmetric, respectively.

On a hermitian manifold the metric

g D gij

�
dzi ˝ zj C dzj ˝ dzi

�

and the fundamental two-form

! D igij dzi ^ dzj D igij

�
dzi ˝ dzj � dzj ˝ dzi

�

can be combined into the hermitian form

� D gij dzi ˝ dzj D 1

2
.g � i!/:

The hermitian form defines a hermitian metric on the complexified tangent bundle
TM� ofM . All statements and formulae in this section apply irrespective of g being
positive definite or indefinite (but non-degenerate).

A.3 Kähler Manifolds

Definition 4.5. A Kähler manifold .M; g; I / is a hermitian manifold where the
fundamental form is closed:

d! D 0:

Remark. Equivalently, one can impose that the complex structure is parallel with
respect to the Levi–Civita connection,

r.g/I D 0:
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Comment: hermitian manifolds are characterised by ‘pointwise’ compatibility
conditions between metric, complex structure and fundamental form. For Kähler
manifolds one imposes a stronger compatibility condition: the complex structure I
must be parallel (covariantly constant) with respect to the Levi–Civita connection
r.g/. Since the metric g itself is parallel by definition of r.g/, parallelity of I is
equivalent to the parallelity of the fundamental form !. Moreover, it can be shown
that if ! is closed, it is automatically parallel with respect to r.g/.

The fundamental form of a Kähler manifold is called its Kähler form. It can be
shown that a Kähler metric can be expressed in terms of a real-analytic function, the
Kähler potential, by35

gij D @2K.z; z/

@zi@zj
:

The Kähler form can also be expressed as the second derivative of the Kähler
potential:

! D i@@K D igij dzi ^ dzj ; where @ D dzi@i ; @ D dzj @j

are the Dolbeault operators (holomorphic exterior derivatives).

Remark. If the metric g is positive definite, a Kähler manifold can be defined equiv-
alently as a 2n-dimensional manifold with a torsion-free U.n/ structure. Note that
U.n/ ' GL.n;�/ \ SO.2n/ � GL.2n;�/, which shows that U.n/ holonomy
implies that there is a connection such that both the metric and the complex struc-
ture are parallel.

Remark. If the metric is not positive definite, U.n/ is replaced by a suitable non-
compact form. Pseudo-hermitian manifolds with closed fundamental form are called
pseudo-Kähler manifolds. We have seen in the main text that the (conical affine spe-
cial) Kähler manifolds occurring in the construction of supergravity theories within
the superconformal calculus always have indefinite signature, because the compen-
sator of complex dilatations has a kinetic term with an inverted sign. We usually
omit the prefix ‘pseudo-’ in the following and in the main text.

A.4 Affine Special Kähler Manifolds

Special Kähler manifolds are distinguished by the fact that the Kähler potential
K.z; z/ can itself be expressed in terms of a holomorphic prepotential F.z/. The
intrinsic definition of such manifolds is as follows [21].

35 In fact, this might serve as yet another equivalent definition of a Kähler manifold.
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Definition 4.6. An affine special Kähler manifold .M; g; I;r/ is a Kähler manifold
.M; g; I / equipped with a flat, torsion-free connection r, which has the following
properties:

1. The connection is symplectic, i.e., the Kähler form is parallel

r! D 0:

2. The complex structure satisfies

drI D 0;

which means, in local coordinates, that

rŒmI
p

n�
D 0:

Remark. The complex structure is not parallel with respect to the special connection
r, but only ‘closed’ (regarding I as a vector-valued one-form). This, together with
the fact that r is flat shows that the connections r and r.g/ are different, except for
the trivial case of a flat Levi–Civita connection.

It can be shown that the existence of a special connection r is equivalent to
the existence of a Kählerian Lagrangian immersion ofM into a model vector space,
namely the standard complex vector space of doubled dimension [22]. Let us review
this construction in some detail.

The standard complex symplectic vector space of complex dimension 2n is
V D T ��n. As a vector space, this is isomorphic to �2n. Let zi be linear coor-
dinates on �n and wi be coordinates on Tz�

n. Then we can take .zi ;wi / as
coordinates on T ��n, and the symplectic form is

˝V D dzi ^ dwi :

If we interpret V as a phase space, then the zi are the coordinates and the wi

are the associated momenta. Symplectic rotations of .zi ;wi / give rise to different
‘polarisations’ (choices of coordinates vs. momenta) of V .

The vector space V can be made a Kähler manifold in the following way: start-
ing form the antisymmetric complex bilinear form ˝V one can define an hermitian
sesquilinear form 	V by applying complex conjugation in the second argument of
˝ , plus multiplication by i:

	V D i
�
dzi ˝ dwi � dwi ˝ dzi

�
:

The real part of 	V is a flat Kähler metric of signature .2n; 2n/:

gV D Re.	V / D i
�
dzi ˝sym dwi � dwi ˝sym dzi

�
;
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while the imaginary part is the associated Kähler form:

!V D Im.	V / D dzi ^ dwi � dwi ^ dzi :

Now consider the immersion of a manifold M into V . An immersion is a map
with invertible differential. An immersion need not be an invertible map, but it
can be made invertible by restriction. Invertible immersion are called embeddings.
(Intuitively, the difference between immersions and embeddings is that embeddings
are not allowed to have self-intersections, or points where two image points come
arbitrarily close.)

Definition 4.7. An immersion ˚ of a complex manifoldM into a Kähler manifold
is called Kählerian, if it is holomorphic and if the pullback g D ˚�gV of the Kähler
metric is nondegenerate.

Remark. Equivalently, one can require that the pullback of the hermitian form or of
the Kähler form is non-degenerate.

Definition 4.8. An immersion ˚ of a complex manifold M into a complex sym-
plectic manifold is called Lagrangian if the pullback of the complex symplectic
form vanishes, ˚�˝V D 0:

Remark. For generic choices of coordinates, a Lagrangian immersion˚ is generated
by a holomorphic function F on M , i.e. ˚ D dF .

It has been shown that for any affine special Kähler manifold of complex dimen-
sions n there exists36 a Kählerian Lagrangian immersion into V D T ��n. Moreover
every Kählerian Lagrangian immersion of an n-dimensional complex manifold M
into V induces on it the structure of an affine special Kähler manifold.

By the immersion ˚ , the special Kähler manifold M is mapped into V as the
graph37 of a map zi ! wi D @F

@zi , where F is the prepotential of the special Kähler
metric, which is the generating function of the immersion: ˚ D dF . Using the
immersion, one obtains ‘special’ coordinates on M by picking half of the coor-
dinates .zi ;wi / of V (say, the zi ). Along the graph, the other half of the coordinates
of V are dependent quantities, and can be expressed through the prepotential:
wi D wi .z/D @F

@zi . The special Kähler metric g, the Kähler form ! and the hermitian
form 	 on M are the pullbacks of the corresponding data gV ; !V ; �V of V under
the immersion.

Remark. For non-generic choices of ˚ the immersed M may be not a graph. Then
the zi do not provide local coordinates, the wi are not the components of a gradient,
and ˚ does not have a generating function, i.e., ‘there is no prepotential’.38 This

36 Locally, and if the manifold is simply connected even globally.
37 More precisely, the image is generically the graph of map. We comment on non-generic
immersions below.
38 In the physics literature, this phenomenon and its consequences have been discussed in detail in
[95, 96].
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is not a problem, since one can work perfectly well by using only the symplectic
vector .zi ;wi /. Moreover, by a symplectic transformation one can always make the
situation generic and go to a symplectic basis (polarisation of V ) which admits a
prepotential.

Remark. In the main text we denoted the component expression for the affine special
Kähler metric on M by NIJ instead of gij . The scalar fields XI correspond to the
special coordinates zi . More precisely, the scalar fields can be interpreted as com-
positions of maps from space–time into M with coordinate maps M  U ! �n.
The key formulae which express the Kähler potential and the metric in terms of the
prepotential are (4.34) and (4.37).

A.4.1 Special Affine Coordinates and the Hesse Potential

Kähler manifolds are in particular symplectic manifolds, because the fundamental
form is both non-degenerate and closed. The additional structure on affine special
Kähler manifolds is the special connection r, which is both flat and symplectic (i.e.
the symplectic form ! is parallel with respect to r.)39 As a consequence, there exist
r-affine (real) coordinates xi ; yi , i D 1; : : : ; n on M ,

rdxi D 0; rdyi D 0;

which are adapted to the symplectic structure,

! D 2dxi ^ dyi :

The relation between these special affine coordinates and the special coordinates zi

can be elucidated by using the immersion of M into V . We can decompose zi ;wi

into their real and imaginary parts:

zi D xi C iui ; wi D yi C ivi :

Then the Kähler form !V takes the form

!V D dxi ^ dyi C dui ^ dvi :

Using that the pullback of the complex symplectic form˝V vanishes, one finds that
the pullback of !V is40

! D ˚�!V D 2dxi ^ dyi :

39 It is of course also parallel with respect to the Levi–Civita connection r.g/, but the Levi–Civita
connection is not flat (except in trivial cases).
40 For notational simplicity, we denote the pulled back coordinates ˚�xi ; ˚�yi by xi ; yi .
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Thus the special real coordinates form the real part of the symplectic vector .zi ;wi /.
The real and imaginary parts of zi D xi C ui also form a system of real coordinates
onM , which is induced by the complex coordinate system zi , but not adapted to the
symplectic structure (since xi ; ui do not form a symplectic vector). The change of
coordinates

.xi ; ui / ! .xi ; yi /

can be viewed as a Legendre transform, because

yi D Re

�
@F

@zi

�
D @ImF

@Imzi
D @ImF

@ui

: (4.140)

The Legendre transform maps the imaginary part of the prepotential to the Hesse
potential

H.x; y/ D 2
�
ImF.x C iu.x; y// � uiy

i
�
:

A Hesse potential is a real Kähler potential, i.e., a potential for the metric, but based
on real rather than complex coordinates. Denoting the affine special coordinates by
fqaja D 1; : : : ; 2ng D fxi ; yi ji D 1; : : : ; ng, the special Kähler metric on M is
given by

g D @2H

@qa@qb
dqa ˝sym dqb :

The special connection present on an affine special Kähler manifold is not
unique. The U.1/ action generated by the complex structure generates a one-
parameter family of such connections. Each of these comes with its corresponding
special affine coordinates. The imaginary part .ui ; vi / of the symplectic vector
.zi ;wi / provides one of these special affine coordinate systems. The coordinate sys-
tems .xi ; yi / and .ui ; vi / both occur naturally in the construction of BPS black hole
solutions.

A.5 Conical Affine Special Kähler Manifolds and Projective
Special Kähler Manifolds

Definition 4.9. A conical affine special Kähler manifold .M; g; I;r; �/ is an affine
special Kähler manifold endowed with a vector field � such that

r.g/� D r� D Id: (4.141)

The condition r.g/� D Id implies that � is a homothetic Killing vector field, and that
it is hypersurface orthogonal. Then one can introduce adapted coordinates fr; vag
such that

� D r
@

@r
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and
g D dr2 C r2gab.v/dvadvb:

Thus M is a real cone. However, in our case M carries additional structures, and
� satisfies the additional condition r� D Id. It can be shown that this implies that
M has a freely acting U.1/ isometry, with Killing vector field I�. The surfaces
r D const. are the level surfaces of the moment map of this isometry. Therefore
the isometry preserves the level surfaces, and M � T ��nC1 has the structure of a
complex cone, with ��-action generated by f�; I �g.

One can choose special affine coordinates such that � has the form41

� D qa @

@qa
D xi @

@xi
C yi

@

@yi

: (4.142)

Moreover, it can be shown that the existence of a vector field � which satis-
fies (4.141) is equivalent to the condition that the prepotential is homogenous of
degree 2:

F.�zi / D �2F.zi /;

where zi ! �zi is the action of�� on the (conical) special coordinates fzig associ-
ated with the (conical) special affine coordinates fxi ; yig. In special coordinates, �
takes the form42

� D zi @

@zi
:

The quotient M D M=�� is a Kähler manifold which inherits its metric from M .
Manifolds which are obtained from conical affine special Kähler manifolds in this
way are called projective special Kähler manifolds. These are the scalar manifolds
of vector multiplets in N D 2 Poincaré supergravity. The corresponding conical
affine special Kähler manifold is the target space of a gauge equivalent theory of
superconformal vector multiplets. As we have seen from the physical perspective
one can go back and forth betweenM andM . Geometrically,M can be regarded as
a��-bundle overM . In turnM itself is embedded into V D T ��nC1, where nC1

is the complex dimensions of M . In the main text the D-gauge is fixed by imposing

�i.XIF I � FIX
I
/ D 1

on the symplectic vector .XI ; FI /. Geometrically, this means that .XI ; FI / is
required to be a unitary section of the so-called universal line bundle overM . Instead
of using unitary sections, one can also reformulate the theory in terms of holomor-
phic sections of the universal bundle. This is frequently done when working with
general (in contrast to special) coordinates, see [20]. For a more detailed account on
the universal bundle, see [25].

41 These are called conical special affine coordinates, but we will usually drop ‘conical’.
42 Note that this is equivalent to (4.142) if and only if the prepotential is homogenous of degree 2.
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In the main text we gave explicit formulae for various quantities defined on pro-
jective special Kähler manifolds in the notation used in the supergravity literature. In
particular, (4.61) and (4.62) are the expressions for the metric and Kähler potential
in terms of special coordinates on M . There we also discussed the relation between
the signatures of the special Kähler metrics on M and M The ‘horizontal’ met-
ric gIJ (4.60) vanishes along the vertical directions (the directions orthogonal to M
under the natural projection with respect to the special Kähler metric of M ), but
it is non-degenerate along the horizontal directions (the directions which project
orthogonally ontoM ). If the metric ofM is complex Lorentzian .�;�;˙; : : : ;˙/,
then the metric defined on M by projection is even positive definite. This defines
a projective special Kähler metric on M , for which an explicit formula in terms of
special coordinates is given by (4.61), (4.62).

B Modular Forms

Here we summarize some standard results on modular forms. See [97] for a more
detailed account. As we mentioned in the main text, the theory of Siegel modular
forms is a generalisation of the theory of ‘standard’ modular forms reviewed here.
Some facts are stated in the main text. For a detailed account on Siegel modular
forms see for example [81].

The action of the modular group PSL.2;�/ ' SL.2;�/=�2 on the upper half
plane H D f� 2 �jIm� > 0g is

� ! � 0 D a� C b

c� C d
; where

�
a b

c d

�
2 SL.2;�/:

The modular group is generated by the two transformations43

T W � ! � C 1; S W � ! �1
�
:

The interior of the standard fundamental domain for this group action is

F D
�
� 2 Hj � 1

2
< Re� <

1

2
; j� j > 1


:

The full domain is obtained by adding a point at infinity, denoted i1, and identify-
ing points on the boundary which are related by the group action. The point i1 is
called the cusp point.

43 The notation T and S is standard in the mathematical literature, and does not refer to T- or
S-duality. However, there are several examples where either T-duality or S-duality acts by
PSL.2;�/ transformations on complex fields.
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A function on H is said to transform with (modular) weight k:

�.� 0/ D .c� C d/k�.�/:

A function on H is called a modular function, a modular form, a cusp form, if it is
meromorphic, holomorphic, vanishing at the cusp, respectively.

The ring of modular forms is generated by the Eisenstein series G4; G6, which
have weights 4 and 6 respectively. The (normalized44) Eisenstein series of weight k
is defined by

Gk.�/ D .k � 1/Š

2.2�i/k

0X

m;n

1

.m� C n/k
;

where the sum is over all pairs of integers .m; n/ except .0; 0/. The sum converges
absolutely for k > 2 and vanishes identically for odd k. For k D 2 the sum is
only conditionally convergent, and one can define two functions with interesting
properties. The holomorphic second Eisenstein series is defined by

Gk.�/ D .k � 1/Š
.2�i/k

1X

nD1

1

nk
C

1X

mD1

 
.k � 1/Š

.2�i/k

X

n2�

1

.m� C n/k

!

;

with k D 2 (the same organisation of the sum can be used for k > 2). The non-
holomorphic second Eisenstein series is defined by

G2.�; �/ D � 1

8�2
lim

�!0C

 0X

m;n

1

.m� C n/jm� C nj�
!

:

Both are related by

G2.�; �/ D G2.�/C 1

8��2

:

While the non-holomorphicG2.�; �/ transforms with weight two, the holomorphic
function G2.�/ transforms with an extra term:

G2

�
a� C b

c� C d

�
D .c� C d/2G2.�/ � c.c� C d/

4�i
:

There is no modular form of weight two:G2.�/ is holomorphic but does not strictly
transform with weight two, while G2.�; �/ transforms with weight two but is not
holomorphic.

There is a unique cusp form �12 of weight 12, which can be expressed in terms
of the Dedekind �-function by

44 With these prefactors, the coefficients of an expansion in q D e2�i� are rational numbers. In fact,
they are related to the Bernoulli numbers.
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�.�/ D �24.�/;

where

�.�/ D �24.�/ D q

1Y

lD1

.1 � ql/�24;

�.�/ D q
1

24

1Y

lD1

.1 � ql/�1: (4.143)

The Dedekind �-function is a modular form of weight 1
2

with multiplier system, i.e.
a ‘modular form up to phase’:

�.� C 1/ D e
2�i
24 �.�/; �

�
�1
�

�
D p�i��.�/:

Modular forms are periodic under � ! � C 1 and therefore they have a Fourier
expansion in �1 D Re� . It is convenient to introduce the variable

q D e2i�
 :

In the main text we avoid using the variable q, because it might be confused with
the electric charge vector q 2 � . The transformation � ! q maps the semi-infinite
strip f� 2 �j j�1j 
 1; �2 > 0g � H onto the unit disc fq 2 �j jqj < 1g � �. In
particular, the cusp � D i1 is mapped to the origin q D 0. The Fourier expansion
in �1 maps to a Laurent expansion in q, known as the q-expansion.

The q-expansion of the cusp form �12 D �24 is

�24.q/ D q � 24q2 C 252q3 C � � � :

In the main text we express modular forms in terms of variables which live in right
half plane rather than in the upper half plane, e.g., the heterotic dilaton S , where
� D iS . For notational simplicity we then write �.S/ instead of �.iS/.
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Chapter 5
Complexity at the Fundamental Level

Antonino Zichichi

PURPOSE

Purpose of this lecture is to show that Complexity in the real world exists, no mat-
ter the Mass–Energy and Space–Time scales considered, including the fundamental
one.

To prove this it is necessary:

1. To identify the experimentally observable effects which call for the existence of
Complexity;

2. To analyse how we have discovered the most advanced frontier of Science: the
SM&B (Standard Model and Beyond);

3. To construct the platonic version of this frontier: i.e., what would be the ideal
platonic Simplicity.

It is often stated that Science is able to make predictions and that these predictions
are the source of the greatest achievements in human knowledge.

As we prove that Complexity exists at the fundamental level of scientific knowl-
edge, i.e., physics, it is necessary to establish the correct relation between Complex-
ity and Predictions.

5.1 The Basic Points on Complexity and Predictions

What are the experimental evidences for Complexity to exist, and for Predictions to
exist?
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5.1.1 Complexity

The experimental evidences for the existence of Complexity are two:

1. The Anderson-Feynman-Beethoven-type phenomena (AFB), i.e., phenomena
whose laws and regularities ignore the existence of the Fundamental Laws of
Nature from which they originate;

2. The Sarajevo-type effects, i.e., Unexpected Events of quasi irrelevant magnitude
which produce Enormous Consequences (UEEC).

5.1.2 Predictions

The experimental evidences for the existence of Predictions are the very many
results of scientific reproducible experiments.

Quantum Electro-Dynamics (QED) is the best example. The anomalous mag-
netic moments, in symbols (g – 2), of the electron (e) and of the muon (�):

.g � 2/e;�

are theoretically computed at an extraordinary level of precision (few parts in ten
billion parts for the electron) and are experimentally verified to be correct.

Can
.g � 2/e;�

be theoretically predicted before the discovery of the Maxwell equations and the
existence of QED? The answer is obviously no.

5.1.3 Complexity and Predictions

Predictions at the fundamental level of scientific knowledge depend on UEEC
events.

For example: it is the discovery of the laws governing electric, magnetic, and
optical phenomena (all totally unpredicted) which produced the mathematical struc-
ture called QED.

The mathematical structure was not discovered before the innumerable series of
UEEC events was found in electricity, magnetism, and optics. This series of UEEC
events allowed Maxwell to express 200 years of experimental discoveries in a set of
four equations.

The mathematical formalism comes after a totally unexpected discovery: an
UEEC event which no one was able to predict.

To our knowledge rigorous predictions exist only in Science. These predictions
are based on the mathematical description of the UEEC events. This description can
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either be the result of new mathematics (example the Dirac ı-function) or the use of
existing mathematical formalism (example: the Einstein use Ricci tensor calculus).

The UEEC event at the origin of the Dirac equation is the fact that the electron
was not a “scalar” particle but a spin 1=2 object.

The UEEC event at the origin of Einstein mathematical formulation of the
gravitational forces are the discoveries of

Galilei .F D mg/

and of

Newton

�
F D G

m1 �m2

R2
12

�

These are just two examples of the fact that the greatest steps in the progress of
Science come from totally unpredicted discoveries.

This is the reason why we need to perform experiments, as Galileo Galilei real-
ized 400 years ago. Even when we have a mathematical formalism coming from a
series of UEEC events, if this formalism opens a new frontier, as it is the case for
the Superworld, the experimental proof is needed to verify the validity of the new
theoretical frontier.

Today we have a reasonable mathematical formalism to describe the Super-
world, but in order to know if the Superworld exists we need the experimentally
reproducible proof for its existence.

5.2 AFB Phenomena from Beethoven to the Superworld

Let me now mention a few other examples of AFB phenomena in Science.

5.2.1 Beethoven and the Laws of Acoustics

Beethoven could compose superb masterpieces of music without any knowledge of
the laws governing acoustic phenomena. But these masterpieces could not exist if
the laws of acoustics were not there.

5.2.2 The Living Cell and QED

To study the mechanisms governing a living cell, we do not need to know the laws of
electromagnetic phenomena whose advanced formulation is QED. All mechanisms
needed for life are examples of purely electromagnetic processes. If QED was not
there, Life could not exist.



246 A. Zichichi

5.2.3 Nuclear Physics and the UEEC Events

This year is the centenary of the birth of Hideki Yukawa, the father of theoretical
nuclear physics. In 1935 the existence of a particle, with mass intermediate (this
is the origin of “mesotron” now “meson”) between the light electron, me, and the
heavy nucleon (proton or neutron),mN, was proposed by Yukawa [1].

This intermediate mass value was deduced by Yukawa from the range of the
nuclear forces. Contrary to the general wisdom of the time, Yukawa was con-
vinced that the particles known (electrons, protons, neutrons, and photons), could
not explain how protons and neutrons are bound into the extremely small dimensions
of a nucleus.

In order to make this “prediction,” Yukawa needed the Heisenberg uncertainty
principle: a totally unexpected theoretical discovery. The origin of it was the totally
unexpected discovery of the dual nature of the electron (wave and particle) and
of the photon (wave and particle). Heisenberg himself tried to explain the binding
forces between the proton and the neutron, via the exchange of electrons, in order
not to postulate the existence of a new particle.

The very light electron, me, could not stay in the very small dimension of the
nucleus. The author of the uncertainty principle and father, with Dirac and Pauli, of
Quantum Mechanics, did not realise this contradiction. The need for a new particle
was the reason.

What no-one was able to predict is the “gold-mine” hidden in the production, the
decay and the intrinsic structure of this “particle.” This “gold-mine” is still being
explored nowadays and its present frontier is the Quark-Gluon-Coloured-World
(QGCW) [2]. I have recently described [3] the unexpected conceptual developments
coming from the study of the production, the decay and the intrinsic structure of the
Yukawa particle.

Let me just quote the most relevant ones: chirality-invariance, spontaneous sym-
metry breaking (SSB), symmetry breaking of fundamental invariance laws (P, C, T),
anomalies, and “anomaly-free condition,” existence of a third family of fundamen-
tal fermions, gauge principle for non-Abelian forces, instantons and existence of
a pseudoscalar particle made of the quanta of a new fundamental force of Nature
acting between the constituents of the Yukawa particle.

It is considered standard wisdom the fact that nuclear physics is based on per-
fectly sound theoretical predictions. People forget the impressive series of UEEC
events discovered in the Yukawa gold mine.

Let me quote just three of them:

1. The first experimental evidence for a cosmic ray particle believed to be the
Yukawa meson was a lepton: the muon.

2. The decay-chain: � ! � ! e was found to break the symmetry laws of Parity
and Charge Conjugation.

3. The intrinsic structure of the Yukawa particle was found to be governed by a new
fundamental force of Nature, Quantum ChromoDynamics: QCD.
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5.2.4 Nuclear Physics and QCD

Proton and neutron interactions appear as if a fundamental force of nature is at
work: the nuclear force, with its rules and its regularities. These interactions ignore
that protons and neutrons are made with quarks and gluons.

Nuclear physics does not appear to care about the existence of QCD, although
all phenomena occurring in nuclear physics have their roots in the interactions of
quarks and gluons. In other words, protons and neutrons behave like Beethoven:
they interact and build up nuclear physics without “knowing” the laws governing
QCD.

The most recent example of Anderson-Feynman-Beethoven-type phenomenon:
the World could not care less about the existence of the Superworld.

5.3 UEEC Events, from Galilei up to Present Days

In Fig. 5.1 there is a sequence of UEEC events from Galilei to Fermi–Dirac and
the “strange particles.” In Figs. 5.2–5.4, from Fermi–Dirac to the construction of the
Standard Model and in Fig. 5.5 a synthesis of the UEEC events in what we now call
the Standard Model and Beyond (SM&B).

‘UEEC’
TOTALLY UNEXPECTED DISCOVERIES

FROM GALILEI TO FERMI-DIRAC AND THE ‘STRANGE’ PARTICLES

I Galileo Galilei discovery of F = mg.
II Newton discovery of F = G

m1 . m2

R12
2

III

IV Planck discovery of          h    0.
V Lorentz discovers  that space and time cannot be both real.
VI

VII Rutherford discovers the nucleus.
VIII Hess discovers the cosmic rays.
IX Dirac discovers his equation, which opens new horizons,

including the existence of the antiworld.
X Fermi discovers the weak forces.
XI Fermi and Dirac discover the Fermi–Dirac statistics.
XII The ‘strange particles’ are discovered in the Blackett Lab.

Maxwell discovers the unification of electricity,
magnetism and optical phenomena, which allows him to
conclude that light is a vibration of the EM field.

Einstein discovers the existence of time-like and space-
like worlds. Only in the time-like world, simultaneity
does not change with changing observer.

Fig. 5.1 “UEEC” totally unexpected discoveries. From Galilei to Fermi–Dirac and the “Strange”
Particles
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Fig. 5.2 From Fermi–Dirac to now

A few cases (seven) where I have been directly involved are summarised in
Fig. 5.6.

Each UEEC event is coupled with a despite, to emphasize the reason why the
event is unexpected.

The SM&B is the greatest synthesis of all times in the study of the fundamental
phenomena governing the Universe in all its structures.



5 Complexity at the Fundamental Level 249

Fig. 5.3 Details from Fig. 5.2, concerning SU.2/L and U.1/Y.

Fig. 5.4 Details from Fig. 5.2, concerning SU.3/c.

The basic achievements of the SM&B have been obtained via UEEC events;
moreover, the SM&B could not care less about the existence of Platonic Simplicity.
An example is shown in Fig. 5.7 where the straight line (small dots) would be the
Platonic simple solution toward the Unification of all Fundamental Forces. But the
effective unification is expected to be along the sequence of points (the big ones)
calculated using the Renormalization Group Equations (RGEs) [4].
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SM&B

THE STANDARD MODEL AND BEYOND

RGEs ( i (i 1, 2, 3); mj (j q, l, G, H)) :
GUT ( GUT 1/24) & GAP (1016 1018) GeV.
SUSY (to stabilize mF/mp     10–17).
RQST (to quantize Gravity).

Gauge Principle (hidden and expanded dimensions).
— How a Fundamental Force is generated: SU(3); SU(2); U(1) and Gravity.

The Physics of Imaginary Masses: SSB.
— The Imaginary Mass in SU(2)´U(1) produces masses (mW±; mZ0; mq;

ml), including mg = 0.
— The Imaginary Mass in SU(5)     SU(3)´SU(2)´U(1) or in any higher (not

containing U(1) Symmetry Group       SU(3)´SU(2)´U(1) produces
Monopoles.

— The Imaginary Mass in SU(3)c generates Confinement.

Flavour Mixings & CP ¹ , T ¹ .
— No need for it but it is there.

Anomalies & Instantons.
— Basic Features of all Non-Abelian Forces.

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Note: q   º   quark and squark;

l   º   lepton and slepton;
G  º   Gauge boson and Gaugino;
H  º   Higgs and Shiggs;   

mF  º   Fermi mass scale;
mP  º   Planck mass scale;   
k   º   quadrimomentum;
C  º   Charge Conjugation;
P  º   Parity;
T  º   Time Reversal;
¹  º   Breakdown of Symmetry
         Operators.

RGEs º   Renormalization Group Equations;
GUT  º   Grand Unified Theory;

SUSY º   Supersymmetry;
RQST º   Relativistic Quantum String Theory;
SSB   º   Spontaneous Symmetry Breaking.

f (k2).

The five basic steps in our understanding of nature.     The renormalization group
equations (RGEs) imply that the gauge couplings (ai) and the masses (mj) all run
with k2. It is this running which allows GUT, suggests SUSY and produces the need
for a non point-like description (RQST) of physics processes, thus opening the way
to quantize gravity.   All forces originate in the same way: the gauge principle.  .

Imaginary masses play a central role in describing nature.    The mass-eigenstates
are mixed when the Fermi forces come in.   The Abelian force QED has lost its
role of being the guide for all fundamental forces. The non-Abelian gauge forces
dominate and have features which are not present in QED.

Fig. 5.5 SM&B the standard model and beyond

Platonic Simplicity for the unification of all forces (see Addendum 1) and Pla-
tonic Supersymmetry for the existence of the Superworld (see Addendum 2) are
violated at every corner in the process of construction of the SM&B [5], as reported
in Addendum 3. These violations are the proof that Complexity exists at the funda-
mental level of scientific knowledge where we have proved that AFB phenomena
and UEEC events are present. The conclusion is that Complexity exists at the ele-
mentary level. In fact, starting from Platonic Simplicity, the SM&B needs a series
of “ad hoc” inputs [5].
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UEEC EVENTS
IN THE CONSTRUCTION OF THE

SM&B ∫  MY PERSONAL EXPERIENCE

Antimatter
despite S-matrix and C, P, CP, T breakings.

Nucleon Time-like EM structure
despite S-matrix.

No quarks in violent (pp) collisions
despite scaling.

Meson mixings
θV ¹ θPS : (51º) ¹ (10º) ¹ 0 despite SU(3)uds.

Effective energy: the QCD-light
despite QCD.

The running of a1 a2 a3 versus energy at a point EGU.
(1979) (1991) despite straight line convergence.

EGM

The 3rd lepton, HL (now called t) with its own neutrino,
nHL (now called nt),
despite the abundance of neutrinos: ne and nμ.

1

2

3

4

5

6

7

Fig. 5.6 UEEC events in the construction of the SM&B � my personal experience

5.4 Seven Definitions of Complexity

People speak of “Complexity” as a source of new insights in physics, biology, geol-
ogy, cosmology, social sciences and in all intellectual activities which look at the
world through the lens of a standard analysis in terms of either Simplicity or Com-
plexity. But “Complexity” is ill-defined, as shown by the existence of at least seven
definitions of Complexity.

DEFINITION NUMBER 1

Complexity is a property of systems that are somewhere in between a completely
random and a completely regular state, often described by a highly nonlinear set of
equations but sometimes not describable by equations at all.

DEFINITION NUMBER 2

Bad ones:

1. Chaos.
2. The need for lengthy calculations.
3. The need for many distinct variables.
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The points have a sequence of 100 GeV in energy. The last point where the
‘ideal’ platonic straight line intercepts the theoretical prediction is at the energy
of the Grand Unification. This corresponds to EGU = 1016.2 GeV. Other detailed
informationon the theoretical inputs: the number of fermionic families, NF , is 3;
the number of Higgs particles, NH , is 2. The input values of the gauge couplings
at theZ0-mass is 3 (MZ) = 0.118 0.008; the other input is the ratio of weak
and electromagnetic couplings also measured at theZ0-mass value: sin2

W(MZ)
= 0.2334 0.0008.

±

±

Fig. 5.7 ‘Ideal’ platonic straight line intercepting the theoretical prediction at the energy of the
Grand Unification

Better ones:

4. Unexpected difficulty when attempting to describe something in a precisely
formulated theory.

5. What is left over after all systematic approaches failed.
6. But it could also be that: Complexity is an excuse for sloppy thinking.

DEFINITION NUMBER 3

The Complexity of a theory (problem) is the minimum amount of computer time
and storage required to simulate (solve) it to a specified level of precision.
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DEFINITION NUMBER 4

If we admit that biological or linguistic evolution, or financial dynamics are complex
phenomena, then their typical dynamics is somehow between strong chaos (i.e., pos-
itive Lyapunov exponents) and simple orbits (i.e., negative Lyapunov exponents). In
other words, Complexity (or at least some form of it) is deeply related to the edge of
chaos (i.e., vanishing maximal Lyapunov exponent). As the edge of chaos appears
to be related paradigmatically to an entropy index “q” different from unity, there
must be some deep connection between Complexity and generalized entropies such
as “Sq.”

DEFINITION NUMBER 5

From the mathematical point of view:

	 A problem can be polynomial, which means that it is not too hard to predict
surprises.

	 A problem can be NP or NP-complete, which represent different degrees of
difficulty in predicting surprises.

– Surprises means: UEEC event.
– That degree of difficulty can be associated with the level of Complexity.

DEFINITION NUMBER 6

A system is “complex” when it is no longer useful to describe it in terms of its
fundamental constituents.

DEFINITION NUMBER 7

The simplest definition of Complexity: “Complexity is the opposite of Simplicity.”
This is why we have studied the platonic Standard Model (Addendum 1) and its
extension to the platonic Superworld (Addendum 2).

These seven definitions of Complexity must be compared with the whole of our
knowledge (see later) in order to focus our attention on the key features needed to
study our real world.

5.5 Complexity Exists at all Scales

The Logic of Nature allows the existence of a large variety of structures with their
regularities and laws which appear to be independent from the basic constituents
and fundamental laws of Nature which govern their interactions.
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Fig. 5.8 Complex systems

But, without these laws it would be impossible to have the real world which is
in front of us and of which we are part of. A series of complex systems is shown in
Fig. 5.8.

As you can see, we go from traffic flux, to the internet network, to earthquakes
and seismicity, to social and economic systems, to the behavior of financial markets,
to the study of cosmological structures, and so on.

There is no question that nature shows structures which are considered complex
on the basis of AFB and UEEC events (as shown in Fig. 5.9).

The only certainty about Complexity is the existence of the experimentally
observable effects: UEEC & AFB. These effects exist at all scales, and therefore
Complexity exists at all scales, as illustrated in Fig. 5.9.
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Fig. 5.9 The complexity axis

5.6 Science, from Planck to Complexity

Four centuries of Galilean research work based on Reductionism, i.e., on the iden-
tification of the simplest elements in the study of Nature, has allowed us to get the
greatest achievement of Science, i.e., the so called Standard Model and its extension
(SM&B), illustrated before in Fig. 5.5.

This extension predicts the Grand Unification Theory, the existence of the
Superworld and the resolution of the quantum-gravity problem via the power-
ful theoretical structure of Relativistic Quantum String Theory (RQST). All these
developments started 30 years ago when a great scientific novelty came; all exper-
imental discoveries obtained with our powerful accelerators were to be considered
only matters of extremely low energy.

The scale of energy on which to direct the attention to understand the Logic that
rules the world, from the tiniest structures to the galactic ones, had to be shifted
at a much higher level: to the mass–energy named after Planck, EPlanck, something
like 17 powers of ten above the Fermi scale, EFermi, that already seemed to be an
extremely high level of energy.

Now, after 30 years, it comes about the novelty of our time, illustrated in
Fig. 5.10: Complexity exists at the fundamental level [5]. In fact, AFB and UEEC
events exist at all scales, as reported in Chap. 5.

This result is corroborated from the mathematical structure (the only one) to be
in a position of describing all that happens at the Planck scale: the RQST.

This mathematical structure produces innumerable minima of energy, named
Landscape.
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FROM PLANCK TO COMPLEXITY

30 years ago & Now

EPlanck Complexity
at the

fundamental level

Fig. 5.10 From Planck to complexity

The theoretical discovery of the Landscape (Leonard Susskind) [6], has been fol-
lowed by another formidable discovery in mathematical physics: the most rigorous
model of RQST (Raphael Bousso and Joseph Polchinski) is NP-complete (Michael
R. Douglas and Frederik Denef) [7].

This discovery corroborates all that we have put in evidence during the last
5 years [8–11]: Complexity exists at the fundamental level [5].

We do not know what will be the final outcome of String Theory.
What we know is that: “The world appears to be complex at every scale.

Therefore, we must expect a continued series of surprises that we cannot easily
predict.”

5.7 The Two Asymptotic Limits: History and Science

The real world seems characterized by two basic features, which are one on the
opposite side of the other: Simplicity and Complexity.

It is generally accepted that Simplicity is the outcome of Reductionism, while
Complexity is the result of Holism.

The most celebrated example of Simplicity is Science while the most celebrated
example of Complexity is History.

Talking about asymptotic limits, the general trend is to consider History as the
asymptotic limit of Holism and of Complexity; Science as the asymptotic limit of
Reductionism and of Simplicity, as illustrated in Fig. 5.11.

The Logic of Nature allows the existence of Science (the asymptotic limit of Sim-
plicity) and of History (the asymptotic limit of Complexity), which share a property,
common to both of them.

It is interesting to define Science and History in terms of this property, probably
the only one, which they share; i.e., Evolution.

	 Science is the Evolution of our Basic Understanding of the laws governing the
world in its Structure � EBUS.

	 History is the Evolution of the World in its Real Life � EWRL.

In Table 5.1 we compare these two supposedly asymptotic limits – History and Sci-
ence – on the basis of “What if ?”; a condition elaborated by the specialists in what
is now known as “virtual history” [12].
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THE GENERAL TREND

Holism
?

Reductionism
?

The whole
of our knowledge

(illustrated in figure 13)
Mathematics

Rigorous Logic

Predictions

SIMPLICITYCOMPLEXITY

SCIENCEHISTORY

Fig. 5.11 The general trend

On the basis of “What if?” these specialists conclude that the world would not be
as it is, if one, or few, or any number of “What if?” had not been as History tells us.
This is not the case for Science. The world would have exactly the same laws and
regularities, whether Galileo Galilei or somebody else had discovered

F D mg ‹;

and so on for all the other scientific discoveries.
It is in the consequences of “What if?” that the two asymptotic limits of Sim-

plicity and Complexity seem to diverge, despite the fact that the sequence of “What
if?” in Science belongs to the “totally unexpected events” (UEEC) exactly like the
others listed in the column of History.

5.8 Conclusions

We have proved that AFB and UEEC – which are at the origin of Complexity, with
its consequences permeating all our existence, from molecular biology to life in all
its innumerable forms up to our own, including History – do exist at the fundamental
level [8–11] and [5].

It turns out that Complexity in the real world exists, no matter the mass–energy
and space–time scales considered.

Therefore, the only possible prediction is that:

	 Totally Unexpected Effects should show up.
	 Effects, which are impossible to be predicted on the basis of present knowledge.
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Table 5.1 “What if?”
In history � EWRL In science � EBUS

I What if Julius Caesar had been
assassinated many years before?

I What if Galileo Galilei had not
discovered that F D mg‹

II What if Napoleon had not been
born?

II What if Newton had not
discovered that F D G

ml �m2

R212

III What if America had been
discovered few centuries later?

III What if Maxwell had not
discovered the unification of
electricity, magnetism and optical
phenomena, which allowed him to
conclude that light is a vibration of
the EM field?

IV What if Louis XVI had been able
to win against the “Storming of the
Bastille”?

IV What if Planck had not discovered
that h ¤ 0

V What if the 1908 Tunguska Comet
had fallen somewhere in Europe
instead of Tunguska in Siberia?

V What if Lorentz had not discovered
that space and time cannot be both
real?

VI What if the killer of the Austrian
Archduke Francisco Ferdinand had
been arrested the day before the
Sarajevo event?

VI What if Einstein had not
discovered the existence of
time-like and space-like real
worlds? Only in the time-like
world, simultaneity does not
change, with changing observer.

VII What if Lenin had been killed
during his travelling through
Germany?

VII What if Rutherford had not
discovered the nucleus?

VIII What if Hitler had not been
appointed Chancellor by the
President of the Republic of
Weimar Paul von Hindenburg?

VIII What if Hess had not discovered
the cosmic rays?

IX What if the first nuclear weapon
had been built either by Japan
before Pearl Arbour (1941) or by
Hitler in 1942 or by Stalin in 1943?

IX What if Dirac had not discovered
his equation, which opens new
horizons, including the existence
of the antiworld?

X What if Nazi Germany had
defeated the Soviet Union?

X What if Fermi had not discovered
the weak forces?

XI What if Karol Wojtyla had not
been elected Pope, thus becoming
John Paul II?

XI What if Fermi and Dirac had not
discovered the Fermi–Dirac
statistics?

XII What if the USSR had not
collapsed?

XII What if the “strange particles” had
not been discovered in the Blackett
Lab?

We should be prepared with powerful experimental instruments, technologically at
the frontier of our knowledge, to discover Totally Unexpected Events in all labora-
tories, the world over (including CERN in Europe, Gran Sasso in Italy, and other
facilities in Japan, USA, China, and Russia). All the pieces of the Yukawa gold
mine could not have been discovered if the experimental technology was not at the
frontier of our knowledge.
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Example: the cloud-chambers (Anderson, Neddermeyer), the photographic emul-
sions (Lattes, Occhialini, Powell), the high power magnetic fields (Conversi, Pancini,
Piccioni), and the powerful particle accelerators and associated detectors for the dis-
covery – the world over – of the intrinsic structure of the Yukawa particle (quarks
and gluons). This means that we must be prepared with the most advanced technol-
ogy for the discovery of totally unexpected events like the ones found in the Yukawa
gold mine.

The mathematical descriptions, and therefore the predictions come after an
UEEC event, never before.

Recall:

	 The discoveries in Electricity, Magnetism, and Optics (UEEC).
	 Radioactivity (UEEC).
	 The Cosmic Rays (UEEC).
	 The Weak Forces (UEEC).
	 The Nuclear Physics (UEEC).
	 The Strange Particles (UEEC).
	 The three Columns (UEEC).
	 The origin of the Fundamental Forces (UEEC).

The present status of Science is reported in Fig. 5.12.
It could be that Science will be mathematically proved to be “NP-complete.” This

is the big question for the immediate future [13].
It is, therefore, instructive to see how Science fits in the whole of our knowledge

as reported in Fig. 5.13.

Fig. 5.12 The present status of Science
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Fig. 5.13 Science fits in the whole of our knowledge

Fig. 5.14 The time-sequence of Language – Logic – Science

Let me point out that Science is the consequence of us being the only form
of leaving matter endowed with Reason, from where the sequence of Language–
Logic–Science has been originated [14]. The time-sequence of Language–Logic–
Science is shown in Fig. 5.14.

The experimental evidence is that UEEC events dominate our life as the evolu-
tion of the world in its real life (EWRL � History) and the evolution of our basic
understanding of the laws governing the world (EBUS � Science) do show.
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The present status of physics is confronted with Ten Challenges, see Addendum
4). The next UEEC event must be outside these Ten Challenges. We should be aware
of the fact that it would be great if, for the first time in the 400 years of Galilean
Science, the sequence of UEEC events could enjoy a formidable stop.

The final question is: why the greatest achievements of Science have always been
originated by totally unexpected events?

Addendum 1: The Platonic Grand Unification

The simplest way to have a Platonic Grand Unification is to have one and only one
basic fundamental particle, B. This particle must obey the very simple symmetry
law which puts fermions and bosons on the same basis. This basic fundamental
particle B can therefore exist either as being a boson BB or as being a fermion BF.
To this Symmetry Law we add the Gauge Principle and the SSB, which represent
the conceptual structure of the Standard Model.

The Gauge Principle corresponds to a special property of the energy density. The
Lagrangian has to contain quantities which obey the following invariance property:
in ordinary four-dimensional space–time and in intrinsic spaces with 1, 2, and 3
complex dimensions we can perform changes in the Lagrangian. These changes do
not affect the energy density, provided that these changes follow the group proper-
ties of Poincare (for the ordinary four dimensional Space–Time) and U(1), SU(2),
SU(3) for the intrinsic spaces, with 1, 2, 3 complex dimensions. The Lagrangian
must contain scalar fields with imaginary masses, in order to produce the SSB
mechanism.

A synthesis of the Platonic Grand Unification and the deviations needed is
reported in Fig. 5.15.

Let us consider first BB. The fundamental forces exist because a basic fundamen-
tal boson BB exists. Figure 5.16 illustrates the simple sequence which generates all
known forces of nature.

At the bottom of Fig. 5.16 there is the QFD force, illustrated in Fig. 5.17. The
“platonic” Simplicity suffers a further deviation.

In fact, we need to introduce many complications. The quarks and the leptons are
“mixed.”

This mixing is indicated by the index m, while the indices “u” and “d” refer to
the two types of flavors (up-type) and (down-type) which are present in each of the
three families: 1, 2, 3. There is a further complication.

The two mixings for the “up” and the “down” flavors must be different. In the
case of the quark, this mixing is experimentally measured. In the case of the leptons,
the experimental results are with nearly half a century of delay, compared with the
quark case.

Mixing and violation of symmetry laws (for charge conjugation, C, parity, P, and
the product of the two, CP) are well-established in the quark case. In the leptonic
sector, only future experiments will tell us if the same symmetry laws are violated.
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Fig. 5.15 Platonic Grand Unification and the needed deviations

BB

Gauge particle
J = 1 h

Higgs scalar
J = 0 & imaginary mass

SSB

T º Tensor
J = 2h

It does not
distinguish
Bosons
from

Fermions

U(1) SU(2)

SSB

SU(3)

QCD
It does not

distinguish the
6 Flavours of Quarks

123

14243

QFDQED

It does not
distinguish the
12 Flavours.

Only Electric Charge

BG BHBT

(see Fig.17)

Fig. 5.16 The simple sequence generating all known forces of nature
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Fig. 5.17 The QFD force

Fig. 5.18 Deviations needed from the Platonic Simplicity

There is no known reason why all these details – mixing of states and symmetry
law violations – are needed. They have been experimentally discovered and show
how many deviations from the simple “platonic” structure are needed. So far we
have developed the sequence of Platonic Deviations from Simplicity, starting from
the basic fundamental boson BB.

We now consider the basic fundamental fermion BF and show in Fig. 5.18 the
deviations needed from the Platonic Simplicity. The BF must have “quark” and
“lepton” flavors, repeated three times, with two flavors each time. There are three
families of quarks and leptons. The total number of flavors is 12: 6 for quarks, 6 for
leptons.
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We postulate the same number of quarks and leptons for Simplicity. It will then
be found that this is a necessary and sufficient condition in order to have “anomaly
free” theories. This is an important ingredient in theoretical model building. The
“anomaly-free condition” explains why the number of fundamental quark-fermions
must be equal to the number of fundamental lepton-fermions. This allows a theoret-
ical prediction to be made for the existence of the heaviest quark, in addition to the
b-quark in the 3rd family of elementary fermions, the top-quark.

Why so many quarks and leptons? The answer will probably come from the
superspace with 43 dimensions compactified into (3C 1).

The quark sector interacts with two forces, QCD and QED, while the lepton
sector interacts using only QED. The QFD force comes into play only after all
the mixings come in. No one knows why all these deviations from the Platonic
Simplicity are needed.

The bold symbols, QCD, QED in the column

BF
q

indicate that the six quark flavors interact via these two forces. In the lower part of
the same column, the “mixing” indicates that the quark states are no longer “pure”
states. They are “mixed”; only these mixed states

�
qu

m

�
1; 2; 3

and
�
qd

m

�
1; 2; 3

interact via the QFD forces.
The column later

BF
`

has the same structure, but the “mixings” are not the same as in the “quark” column.
Furthermore, no one knows at present if the symmetry CP is violated as it is in

the quark case. This is why in the box CP ¤ there is a question mark. Another detail
needs to be specified.

In the quark case, the CP symmetry breaking, CP ¤, has been experimentally
established not to be via the basic Standard Model mechanism, SSB.

A further deviation from simplicity.
In the leptonic case, we do not know if the CP symmetry is violated. It could be

it is. In this case it will be interesting to know if it follows the SSB mechanism.
All these question marks are evidence of further deviations from the simple

Platonic descriptions of natural phenomena.
The synthesis of the Platonic Grand Unification and the deviations needed is

reported again in Fig. 5.15.

Addendum 2: The Platonic Supersymmetry

The Platonic concept of Supersymmetry is schematically reported in Fig. 5.19,
where the basic point for a Platonic concept of Supersymmetry is given; i.e., the
only fermions with spin (1/2 h) allowed to exist would be the “gauginos.”
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Fig. 5.19 The Platonic concept of Supersymmetry

If the only allowed fermions would be the “gauginos,” there would be no way to
have quarks and leptons.

Our fermions are not the gauginos. A deviation is needed. And this is the first
one. Our fermions are in fact of two classes: quarks and leptons. Another devia-
tion is needed to introduce quarks and leptons. And this is not enough: one family
would not suffice. We need another deviation, the third one, in order to produce
three families. Once again this is not enough.

We need a further deviation: the fundamental fermions became mixed when the
weak forces are switched on. This fourth deviation is followed by another one, the
fifth: the mixing of states in the quark sector and in the leptonic sector is different.

Having proved that Platonic Simplicity is not at work in the Grand Unification
and in the law of supersymmetry we go on illustrating a few examples of other devi-
ations from Platonic Simplicity in the detailed construction of the Standard Model
(SM). These deviations are coupled to UEEC events.

Addendum 3: Examples of UEEC Events in the Construction
of the Standard Model and Beyond

The Standard Model (SM) is the greatest synthesis of all times in the study of funda-
mental phenomena governing the Universe in its microscopic structure. We will see
that the basic achievements of the SM have been obtained via UEEC events; more-
over, the SM could not care less about the existence of Platonic Simplicity. Platonic
Simplicity is violated at every corner in the process of construction of the SM.
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Fig. 5.20 The front-page of the volume “Subnuclear Physics - the first 50 years”

The conclusion is that Complexity exists at the elementary level. In fact, starting
from Platonic Simplicity, the Standard Model needs a series of “ad hoc” inputs.
These inputs are the proof that at the fundamental level of scientific knowledge
there is experimental evidence for the existence of the AFB phenomena and the
UEEC events.

On page 209 of my book (whose front-page is reported in Fig. 5.20) “Subnuclear
Physics – the first 50 years” [15] the following sentence is quoted: “Copying is easy,
logical reasoning is difficult.” The author being Gerardus ’t Hooft, Erice 1997.

With his statement, my friend Gerardus ’t Hooft, worded his view on the progress
made, and progress still to be made, in theoretical physics.

On the occasion of his 60th Anniversary Celebrations I gave my own testimony
on the validity of ’t Hooft’s statement in experimental physics [2]. In fact, in exper-
imental physics as well, it is not enough to have an original idea. My great teacher,
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Patrick Blackett, used to tell us, young fellows of his group: “We experimentalists
are not like theorists: the originality of an idea is not for being printed in a paper,
but for being shown in the implementation of an original experiment.” To reach the
level of performing an original experiment corresponds to bring “logical reasoning”
to its asymptotic limit of reality.

Thus, both in theory and in experiment, the progress of physics is due to those
who have the perseverance of not only having an original idea, but of investigating
its logical structure in terms of its consequences. At the end of this series of creative
steps what is always found is an UEEC event.

A few cases where I have been directly involved are summarized in Fig. 5.6.
Each UEEC event is coupled with a despite, in order to emphasize the reason why
the event is unexpected.

	 The third lepton. UEEC event no. 1

In the late fifties, I realized that the (�–�) case was unique. This is why the muon
was so obviously present everywhere. If a new lepton of 1 GeV mass (or heav-
ier) would have been there, no one would have seen it; if the n was not there, the
only way to have muons was via electromagnetic production processes. If a third
lepton, heavier than the muon existed, its production could be via electromagnetic
processes.

In fact, even if another meson existed in the heavy mass region, and was strongly
produced in all proton accelerators, this meson would strongly decay into many
pions. A third lepton could not easily be produced as decay-product of heavy
mesons.

The absence of a third lepton in the so many final states produced in high energy
interactions at CERN and other proton accelerators was not to be considered a fun-
damental absence, but a consequence of the fact that a third lepton could only be
produced via electromagnetic processes, as for example “time-like” photons in (pNp)
or (eCe�) annihilation.

The uniquencesses of the (�–�) case sparked the idea of searching for a third
lepton in the appropriate production processes. This is how the study for the correct
production and decay processes in order to search for a third lepton started [16].

I did not limit myself to discussing this topic with a few colleagues; I followed
Blackett’s teaching. And this is how I realized that the best “signature” for a heavy
lepton would have been “e�” acoplanar pairs; this is how I invented the “preshower”
to improve electron identification by many orders of magnitude; this is why I studied
how to improve muon identification; this is how I experimentally established that the
best production mechanism could not be (pNp), but (eCe�) annihilation.

If the ADONE energy would have been increased, as firmly requested by me, we
would have discovered here in Frascati, first of all the

J= 

and than the third lepton.
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	 Matter–Antimatter Symmetry. UEEC event no. 2

In the sixties, the need to check the symmetry between nuclear matter and antimatter
came to the limelight.

The reason being the apparent triumph of the S-matrix theory to describe strong
interactions and the violation of the “well-established” symmetry operators (C, P,
CP, T) in weak interactions and in the K-meson decay physics.

When the discovery of scaling in Deep Inelastic Scattering (DIS) and the non-
breaking of the protons in high-energy collisions come in the late sixties, the basic
structure of all RQFT were put in serious difficulties, and therefore the validity of the
celebrated CPT theorem. On the other hand, the basic reason why nuclear antimatter
had to exist was CPT.

In the early sixties the first example of nuclear antimatter, the antideuteron, had
been searched for and found not to be there at the level of one antideuteron per 107

pions produced.
I did not limit myself to the saying that it would have been important to build a

beam of negatively charged “partially separated” particles in order to have a very
high intensity.

I did not limit myself to suggesting a very advanced electronic device in order to
increase, by an order of magnitude, the accuracy for time-of-flight (TOF) measure-
ments.

I did bring all my ideas to the point of full implementation in a detailed exper-
iment, where the antideuteron was found, thus proving nuclear matter–antimatter
symmetry. Therefore, credence could be given to CPT and to RQFT.

The matter–antimatter symmetry is related to the basic distinction between
matter and mass. This is illustrated in Fig. 5.21 in a very synthetic form.

From the Greeks who associated “stability” of matter with “heaviness” to our
present understanding, the number of Sarajevo-type events is really impressive.

There are in fact seven decades of developments which started from the antielec-
tron and C-invariance and brought us to the discovery of nuclear antimatter and to
the unification of all gauge forces with all deviations from simplicity.

These steps are reported in Fig. 5.22, which looks as complex and full of devia-
tions from simplicity as a page of History (EWRL), despite being a page of Science
(EBUS).

	 The nucleon time-like electromagnetic structure (form factors).

UEEC event no. 3
For a long time QED was taken as the ideal model to describe a fundamental

force of nature, such as the nuclear forces (proposed by Yukawa) and the weak
forces (proposed by Fermi). The mathematical description of these forces had to be
like QED, i.e., a RQFT. Many unexpected experimental discoveries started to cre-
ate difficulties; these discoveries included the violation of the symmetry operators
(parity P, charge conjugation C, and time reversal T), mentioned in UEEC no. 2.



5 Complexity at the Fundamental Level 269

Fig. 5.21 The matter–antimatter symmetry related to the basic distinction between matter and
mass

This is how the scattering matrix, S, become the way out. But the S-matrix was the
negation of RQFT.

In fact, the field concept involves a larger set of functions than those derived by
the analytic continuation of the S-matrix. But no one knew (and even now knows)
how to construct fields purely in terms of analytic scattering amplitudes. Scattering
amplitudes are “on the mass shell” while fields imply extension to “off the mass
shell.”

Form factors are not scattering amplitudes, nevertheless they do exist and they are
due to the virtual phenomena produced by all possible interactions (strong, electro-
magnetic, and weak). The conjectured analyticity properties of the nuclear scattering
matrix are a very restricted concept, if compared with the concept of a “field.”

S-matrix theory is not designed to describe experiments in which interactions
between particle states do take place while momentum measurements are being per-
formed. In other words all the physics due to “virtual processes” fell outside the
physics described by the S-matrix theory, which had a period of large success in the
description of strong interactions [43].

This apparent triumph of the S-matrix [43] put in serious troubles the founda-
tions of RQFT. On the other hand these theories were restricted to be of Abelian
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THE INCREDIBLE STORY
TODISENTANGLE THE ORIGINOF THE STABILITY OF MATTER
SEVENDECADES FROMTHE ANTIELECTRONTOANTIMATTER

ANDTHE UNIFICATIONOF ALL GAUGE FORCES

• The validity of C invariance from 1927 to 1957.
After the discovery by Thomson in 1897 of the first example of an elementary particle, the

Electron, it took the genius of Dirac to theoretically discover the Antielectron thirty years after
Thomson.
1927 Dirac equation [17]; the existence of the antielectron is, soon after, theoretically

predicted. Only a few years were needed, after Dirac’s theoretical discovery, to
experimentally confirm (Anderson,Blackett and Occhialini [18]) the existence of
the Dirac antielectron.

1930-1957 Discovery of the C operator [(charge conjugation) H. Weyl and P.A.M. Dirac
[19]]; discovery of the P Symmetry Operator [E.P. Wigner, G.C. Wick and A.S.
Wightman [20, 21]]; discovery of the T operator (time reversal) [E.P. Wigner, J.
Schwinger and J.S. Bell [22, 23, 24, 25]]; discovery of the CPT Symmetry
Operator fromRQFT (1955-57) [26].

1927-1957 Validity of C invariance: e+ [18]; p [27]; n [28]; K 2
0

K 2
0

3 [29] but see LOY
[30].

• The new era starts: C ; P ; CP (*) .
1956 Lee & Yang P ; C [31].
1957 Before the experimental discovery of P & C , Lee, Oehme, Yang (LOY)

[30] pointoutthat the existence of the secondneutral K-meson, 3 , is proof
neither of C invariance norof CP invariance. Flavourantiflavourmixing does not
imply CP invariance.

1957 C.S. Wu et al. P ; C [32]; CP ok [33].
1964 K 2

0 2 KL : CP [34].
1947-1967 QEDdivergences & Landau poles.
1950-1970 The crisis of RQFT& the triumphof S-matrix theory (i.e. the negationof RQFT).
1965 Nuclear antimatter is (experimentally) discovered [35]. See also [36].
1968 The discovery [37] at SLAC of Scaling (free quarks inside a nucleon at very high

q2) butin violent (pp) collisions no free quarks at the ISRare experimentally found
[38]. Theorists consider Scaling as being evidence for RQFT not to be able to
describe the Physics of Strong Interactions. The only exception is G. ’t Hooftwho
discovers in 1971 that the -function has negative sign for non-Abelian theories
[15].

1971-1973 = ; ‘t Hooft; Politzer; Gross & Wilczek. The discovery of non-Abelian gauge
theories. Asymptotic freedomin the interaction between quarks and gluons[15].

1974 All gauge couplings 1 2 3 run with q2 but they do not converge towards a
unique point.

1979 A.P. & A.Z. point out that the new degree of freedom due to SUSY allows the
three couplings 1 2 3 , to converge towards a unique point [39].

1980 QCD has a ‘hidden’ side: the multitude of final states for each pair of interacting
particles: (e+e ; pp ; p; Kp; p; pp; etc. )
The introduction of the Effective Energy allows to discover the Universality
properties [40] in the multihadronic final states.

1992 All gauge couplings converge towards a unique point at the gauge unification
energy: EGU 1016 GeV with GU 1/24 [41, 42] .

1994 The Gap[4] between EGU& the String Unification Energy: ESU EPlanck .
1995 CPT loses its foundations at the Planck scale (T.D. Lee) [43].
1995-1999 No CPT theorem from M-theory (B. Greene) [44].
1995-2000 A.Z. points out the need for new experiments to establish if matter-antimatter

symmetry or asymmetry are at work.
44444444
(*) The symbol stands for ‘Symmetry Breakdown’.

Fig. 5.22 Seven decades of developments leading to the discovery of nuclear antimatter and the
unification of all gauge forces

nature, since the non-Abelian ones were shrouded by even more mystifying prob-
lems. The “prediction” was that the “time-like” electromagnetic structure of the
nucleon had not been there. A totally unexpected result [44, 45] came with the
experiment performed at CERN to study the annihilation process between a proton
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and an antiproton (Npp) giving rise to a “virtual photon” (	 ) transforming into an
electron–antielectron pair (eCe�). The corresponding reaction is Npp ! 	 ! eCe�.

The experimental results [44,45] proved that the nucleon had a very large “time-
like” electromagnetic form factor: totally unexpected.

	 The proton does not break into three quarks despite 1968 Panofsky.

UEEC event no. 4
When in 1968 I heard Pif (W.K.H.) Panofsky reporting in Vienna on (ep) deep-

inelastic-scattering, whose immediate consequence was that “partons” inside a
proton behaved as “free” particles, I did not limit myself to the saying that it would
have been interesting to check if, in violent (pp) collisions, “free” partons were
produced.

As the “partons” were suspected to be the quarks earlier suggested by M. Gell-
Mann and G. Zweig (we now know that partons can also be gluons), the experiment
needed was a search for fractionally charged particles in the final states of violent
(pp) interactions at the CERN ISR.

To perform the experiment, a new type of plastic scintillator was needed, with
very long attenuation length because the counters had to be put inside a very big
magnet. These scintillators did not exist on the market. We studied the problem and
built the most powerful and sensitive scintillators. The result was that free quarks
were not produced, despite the violent (pp) collisions.

	 The mesonic mixings: �PS ¤ �V ¤ 0. UEEC event no. 5

The problem of concern in the physics of strong interactions was the “mixing” in
meson physics. It was necessary to know why this mixing was there and why the
vector mesons (�; !; �) did not show the same behavior as the pseudoscalar mesons
(�; �; �0).

At the end of the “logical reasoning” in terms of experimental searches never
conducted before (Fig. 5.23 is the cover-page of a volume dedicated to this topic),
the result was that the mesonic mixing was there and the two mixing angles were
drastically different: �PS ¤ �V.

This is what Dick Dalitz defined the most significant results from all mesonic
physics [46].

Let me show Fig. 5.24 which illustrates the difference existing between the two
mesonic mixing angles, pseudoscalar and vector: �PS ¤ �V . They should both be
zero if SU .3/uds was a good Symmetry.

The existence of instantons was not known. They came after the discovery that
�PS ¤ �V. A strong supporter of my experiment was Richard Dalitz, to whom I
would like to dedicate the results reported in Fig. 5.24.

Let me go back to “logical reasoning” in experimental physics. I did not limit
myself to the saying that the most appropriate way to study this problem [(eCe�)
colliders did not yet exist], was to measure with the best possible accuracy the
electromagnetic decay rates of the vector mesons
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Fig. 5.23 The cover-page of a volume dedicated to “logical reasoning” in terms of experimental
searches

.� ! eCe�/;
.! ! eCe�/;
.� ! eCe�/;

and to see if the heaviest meson (known at that time with the symbol X0) was
decaying into two 	 ’s (X0 ! 		).

These were times when experimental physics was dominated by bubble cham-
bers. I designed and built a nonbubble-chamber detector, NBC; it consisted of an
original neutron missing mass spectrometer coupled with a powerful electromag-
netic detector which allowed to clearly identify all final states of the decaying
mesons into (eCe�) or (		) pairs. The mass of the meson (be it pseudoscalar or
vector) was measured by the neutron missing mass spectrometer. The two “mixing
angles,” the pseudoscalar �pS and the vector �V, where directly measured (with-
out using the masses) to be, not as expected by SU.3/uds, i.e., �PS D �V D 0,
but, �PS ¤ 0; �V ¤ 0 and totally different �PS ¤ �V. Many years were needed for
Gerardus ’t Hooft instantons to explain why �PS ' 10ı and �V ' 51ı.

	 The Gribov QCD light. UEEC event no. 6

When the physics of strong interactions finally became the physics of quarks and
gluons, QCD had a problem, defined by Gribov as being its “hidden side”: i.e., the
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Fig. 5.24 The difference existing between the two mesonic mixing angles, pseudoscalar and
vector

large number of different final states produced by different pairs of interacting par-
ticles, such as (�p, pp, pp, Kp, eCe�; �p, �p, ep, etc.). I did not limit myself to
suggesting that a totally different approach was needed to put all these final states
on the same basis. I found what this basis could be and this is how the “Effec-
tive Energy” became the correct quantity to be measured in each interaction. The
“Effective Energy” was not predicted by QCD.

To perform this study, it was necessary to analyze tens of thousands of (pp) inter-
actions at the ISR. This was done despite all the difficulties to be overcome. And
this is how what Vladimir Gribov defined the QCD light was discovered (Figs. 5.25
and 5.26).
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Fig. 5.25 The spectrum of the (pp) reaction. The horizontal axis is for the fractional energy of the
pion (also called Feynman x), while the vertical axis is for the number of pions having fractional
energy xF

Gribov pointed out what follows. Newton discovered that QED light is the sum
of different colors. In QCD we have quarks and gluons interacting and producing
Jets made of many pions, as for example in the (pp) reaction

pp ! � CX

whose spectrum is shown in Fig. 5.25. The horizontal axis is for the fractional energy
of the pion (also called Feynman x), while the vertical axis is for the number of pions
having fractional energy xF.
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Fig. 5.26 The “effective energy” at the origin. The same initial state (pp) produces many final
states with different “effective energies”

p � p ! �C CX

Nominal Energy of the (pp) collision D p
s D 24GeV

The spectrum reported in Fig. 5.25 is an example of QCD light.
The “effective energy” shown in Fig. 5.26 is at its origin, despite being totally

unexpected. In fact the same initial state (pp) produces many final states each one
having different “effective energy,” called Ehad in Fig. 5.26.

Each Ehad has a given �-spectrum. The sum of all these spectra gives the total
spectrum of Fig. 5.25. If, instead of (pp) we study other initial states, purely hadronic
(kp), (pp) or mixed (lepton-hadron) (ep) (�p) (�p) and even (	p), no matter what the
initial states is, the only relevant quantity is the “effective energy.” Each “effective
energy” produces the same �-spectrum in analogy with the QED light of given
color.
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So, when a new problem appears, the only way out is to bring the logical reason-
ing – be it of experimental, theoretical or technical nature – to the deepest level of
consequences. At the very end of this “logical reasoning” what is found is a UEEC
event: i.e., a result which was totally unexpected.

This is how progress is made in the most advanced frontier of reductionism:
physics.

	 The Grand Unification in the Real World. UEEC event no. 7

We now move toward the unification of all fundamental forces. This is really a set
of UEEC events, as we will see in this chapter.

The grand unification in the real world depends on how the gauge couplings
(˛1˛2˛3) change with energy. It is this change which allows the fundamental forces
to converge toward a unique origin.

The mathematical structure describing this “change” is a system of coupled dif-
ferential non linear equations, called the “renormalization group equations,” RGEs,
reported later.

	 The Renormalization Group Equations.

The lines in Fig. 5.27 are the result of calculations executed with a supercomputer
using the following system of equations:

�
d˛i

d�
D bi

2�
˛2

i C
X

j

bij

8�2
˛j˛

2
i : (5.1)

This is a system of coupled nonlinear differential equations (RGEs) that describes
the Superworld, from the maximum level of energy (Planck scale) to our world at
the minimum of energy.

The results reported in Fig. 5.27 are the most exact use of the renormaliza-
tion group equations for the running of the three gauge couplings ˛1˛2˛3. The
unification of all forces and the threshold, where to find the first particle of the
Superworld, with its problems are reported in Figs. 5.27 and 5.28, respectively.

During more than 10 years (from 1979 to 1991), no one had realized [47] that
the energy threshold for the existence of the Superworld was strongly dependent on
the “running” of the masses. This is now called: the EGM effect (from the initials
of Evolution of Gaugino Masses).

To compute the energy threshold using only the “running” of the gauge couplings
(˛1, ˛2, ˛3/ corresponds to neglecting nearly three orders of magnitude in the energy
threshold for the discovery of the first particle (the lightest) of the Superworld [48],
as illustrated in Fig. 5.28.

This is just a further example of comparison between the “Platonic” Simplicity
and the “real world,” when we deal with the Grand Unification.

Talking about supersymmetry, there is another important step: how we go from
pure theoretical speculations to phenomenology. This is not an easy task.
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Fig. 5.28 Predictions for the SUSY threshold lower bound

The proof is given in Fig. 5.29 where it is shown how many important properties
of the physics to be described have been neglected by some authors (AdBF) [47]
whose claim was to “predict” the energy scale at which supersymmetry is broken.

In order to attempt to give such a prediction, there are at least five “details” to be
taken into account, as reported in the last five columns (6–10) of Fig. 5.29.

It is interesting to study the point where the three gauge couplings meet (the GUT
point). This is neither at the “String Unification Point,”ESU, nor at the Planck scale,
as reported in Fig. 5.30.

There is in fact a “gap” of few orders of magnitudes between these points. A
detailed study of this gap has been performed by ACZ [4].

In Fig. 5.7, there is a different way of reporting the results obtained using the
same (5.1) mathematical structure (RGEs). The three axis are the gauge couplings
˛1˛2˛3 and the other details are given in the figure caption.

After we have published these results [37], the (˛1˛2˛3) graph has been given
the name of “action space.” In this space we have emphasized the “straight” line as
being the one which would naively be considered the “platonic” way of imagining
the changes of ˛1˛2˛3 in order to meet at the same point EGUT.
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Fig. 5.29 Difficulties in supersymmetry, when going from pure theoretical speculations to
phenomenology

Fig. 5.30 The point where the three gauge couplings meet (the GUT point)
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The “Platonic” Simplicity would indicate the series of points making up the
straight line as the platonic ideally simple solution. The real solution is the sequence
of points which totally deviate from the straight line.

The points have a sequence of 100 GeV in energy. The last point where the
“ideal” platonic straight line intercepts the theoretical prediction is at the energy of
the Grand Unification. This corresponds toEGU D 1016:2 GeV. Other detailed infor-
mation on the theoretical inputs: the number of fermionic families, NF, is 3; the
number of Higgs particles, NH, is 2. The input values of the gauge couplings at
the Z0-mass is ˛3 (MZ/ D 0:118 ˙ 0:008; the other input is the ratio of weak
and electromagnetic couplings also measured at the Z0-mass value: sin2 �W.MZ/ D
0:2334˙ 0:0008.

Finally, in Fig. 5.31 we show how the Planck energy could go down to the Fermi
energy scale if one extra dimension could be compactified, as suggested by Ignatios
Antoniadis.

The “origin of space–time” is indicated immediately aboveEGUT since it is there
where all theoretical speculations stop to be coupled with even a very small amount
of experimental finding.

In fact, even EGUT is the result of extrapolation (using the most accurate mathe-
matical description) from 102 GeV up to 1016 GeV, i.e., over 14 orders of magnitude
in energy.

Fig. 5.31 The Planck energy could go down to the Fermi energy scale if one extra dimension
could be compactified
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Addendum 4: The Ten Challenges of Subnuclear Physics
(Figs. 5.32 and 5.33)

Fig. 5.32 The Ten Challenges of Subnuclear Physics, front page



282 A. Zichichi

Fig. 5.33 The Ten Challenges of Subnuclear Physics, the list
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Chapter 6
Non-supersymmetric Attractors in Symmetric
Coset Spaces

Wei Li

Abstract We develop a method of constructing generic black hole attractor solu-
tions, both BPS and non-BPS, single-centered as well as multi-centered, in a large
class of 4D N D 2 supergravities coupled to vector-multiplets with cubic prepoten-
tials. The method is applicable to models for which the 3D moduli spaces obtained
via c�-map are symmetric coset spaces. All attractor solutions in such a 3D mod-
uli space can be constructed algebraically in a unified way. Then the 3D attractor
solutions are mapped back into four dimensions to give 4D extremal black holes.

6.1 Introduction

The attractor mechanism for supersymmetric (BPS) black holes was discovered in
1995 [1]: at the horizon of a supersymmetric black hole, the moduli are completely
determined by the charges of the black hole, independent of their asymptotic values.
In 2005, Sen showed that all extremal black holes, both supersymmetric and non-
supersymmetric (non-BPS), exhibit attractor behavior [2]: it is a result of the near-
horizon geometry of extremal black holes, rather than supersymmetry. Since then,
non-BPS attractors have been a very active field of research (see for instance [3–
8, 10–15, 41]). In particular, a microstate counting for certain non-BPS black holes
was proposed in [16]. Moreover, a new extension of topological string theory was
suggested to generalize the Ooguri–Strominger–Vafa (OSV) formula so that it also
applies to non-supersymmetric black holes [17].

Both BPS and non-BPS attractor points are simply determined as the critical
points of the black hole potential VBH [7, 18]. However, it is much easier to solve
the full BPS attractor flow equations than to solve the non-BPS ones: the supersym-
metry condition reduces the second-order equations of motion to first-order ones.
Once the BPS attractor moduli are known in terms of D-brane charges, the full BPS
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attractor flow can be generated via a harmonic function procedure, i.e., by replacing
the charges in the attractor moduli with corresponding harmonic functions:

tBPS.x/ D t�BPS

�
pI ! H I .x/; qI ! HI .x/

�
: (6.1)

In particular, when the harmonic functions .H I .x/;HI .x// are multi-centered, this
procedure generates multi-centered BPS solutions [19].

The existence of multi-centered BPS bound states is crucial in understanding
the microscopic entropy counting of BPS black holes and the exact formulation
of OSV formula [20]. One can imagine that a similarly important role could be
played by multi-centered non-BPS solutions in understanding non-BPS black holes
microscopically. However, the multi-centered non-BPS attractor solutions have not
been constructed until [21], on which this talk is based. In fact, even their existence
has been in question.

In the BPS case, the construction of multi-centered attractor solutions is a simple
generalization of the full attractor flows of single-centered black holes: one needs
simply to replace the single-centered harmonic functions in a single-centered BPS
flow with multi-centered harmonic functions. However, the full attractor flow of a
generic single-centered non-BPS black hole has not been solved analytically, due to
the difficulty of solving second-order equations of motion. Ceresole et al. obtained
an equivalent first-order equation for non-BPS attractors in terms of a “fake super-
potential,” but the fake superpotential can only be explicitly constructed for special
charges and asymptotic moduli [22,23]. Similarly, the harmonic function procedure
was only shown to apply to a special subclass of non-BPS black holes, but has not
been proven for generic cases [11].

In this talk, we will develop a method of constructing generic black hole attrac-
tor solutions, both BPS and non-BPS, single-centered as well as multi-centered, in
a large class of 4D N D 2 supergravities coupled to vector-multiplets with cubic
prepotentials. The method is applicable to models for which the 3D moduli spaces
obtained via c�-map are symmetric coset spaces. All attractor solutions in such a
3D moduli space can be constructed algebraically in a unified way. Then the 3D
attractor solutions are mapped back into four dimensions to give 4D extremal black
holes.

The outline of the talk is as follows. Section 6.2 lays out the framework and
presents our solution generating procedures; Sect. 6.3 focuses on the theory of
4D N D 2 supergravity coupled to one vector-multiplet, and shows in detail how
to determine the attractor flow generators; Sect. 6.4 then uses these generators
to construct single-centered attractors, both BPS and non-BPS, and proves that
generic non-BPS solutions cannot be generated via the harmonic function proce-
dure; Sect. 6.5 constructs multi-centered solutions, and shows the great contrasts
between BPS and non-BPS ones. We end with a discussion on various future
directions.
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6.2 Framework

6.2.1 3D Moduli Space M3D

The technique of studying stationary configurations of 4D supergravities by dimen-
sionally reducing the 4D theories to 3D non-linear �-models coupled to grav-
ity was described in the pioneering work [24]. The 3D moduli space for 4D
N D 2 supergravity coupled to nV vector-multiplets is well-studied, for example
in [25–28]. Here we briefly review the essential points.

The bosonic part of the 4D action is

S D � 1

16�

Z
d4x

q
�g.4/

h
R � 2Gi Nj dt i ^ �4dNt Nj � F I ^GI

i
; (6.2)

where I D 0; 1; : : : ; nV, and GI D .ReN /IJF J C .ImN /IJ � F J . For a theory
endowed with a prepotential F.X/, NIJ D FIJ C 2i .ImF �X/I .ImF �X/J

X �ImF �X where FIJ D
@I @JF.X/ [28]. We will consider generic stationary solutions, allowing non-zero
angular momentum. The ansatz for the metric and gauge fields are

ds2 D �e2U .dt C !/2 C e�2U gabdxadxb; (6.3)

AI D AI
0.dt C !/C AI ; (6.4)

where gab is the 3D space metric and bold fonts denote three-dimensional fields
and operators. The variables are 3nV C 2 scalars fU; t i ; Nt Ni ; AI

0g, and nV C 2 vectors
f!;AI g.

The existence of a time-like isometry allows us to reduce the 4D theory to a 3D
non-linear �-model on this isometry. Dualizing the vectors f!;AI g to the scalars
f�;BI g, and renaming AI

0 as AI , we arrive at the 3D Lagrangian, which is a non-
linear �-model minimally coupled to 3D gravity:1

L D 1

2

p
g
�

�1
�

R C @a�
m@a�ngmn

�
; (6.5)

where �n are the 4.nV C1/moduli fields fU; t i ; Nt Ni ; �; AI ; BI g, and gmn is the metric
of the 3D moduli space M3D, whose line element is

ds2 D dU 2 C 1

4
e�4U

�
d� C AI dBI � BI dAI

�2 C gi Nj .t; Nt /dt i � dNt Nj

C 1

2
e�2U

h�
ImN�1

�IJ
�

dBI C NIKdAK
�

�
�

dBJ C N JLdAL
�i
: (6.6)

1 Note that the black hole potential term in 4D breaks down into kinetic terms of the 3D moduli,
thus there is no potential term for the 3D moduli.
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The resulting M3D is a para-quaternionic-Kähler manifold, with special holon-
omy Sp.2;R/�Sp.2nV C 2;R/ [29]. It is the analytical continuation of the
quaternionic-Kähler manifold with special holonomy USp.2;R/ � USp.2nV C
2;R/ studied in [26]. Thus the vielbein has two indices .˛; A/, transforming under
Sp.2;R/ and Sp.2nV C 2;R/, respectively. The para-quaternionic vielbein is the
analytical continuation of the quaternionic vielbein computed in [26]. This proce-
dure is called the c�-map [29], as it is the analytical continuation of the c-map in
[25, 26].

The isometries of the M3D descends from the symmetry of the 4D system. In
particular, the gauge symmetries in 4D give the shift isometries of M3D, whose
associated conserved charges are

qI d� D JAI D PAI � BIP� ; p
I d� D JBI

D PBI
C AIP� ; ad� D J� D P� ;

(6.7)

where the fP� ; PAI ; PBI
g are the momenta. Here � is the affine parameter defined

as d� � ��3sin �d�d�. .pI ; qI / are the D-brane charges, and a the NUT charge. A
non-zero a gives rise to closed time-like curves, so we will set a D 0 from now on.

6.2.2 Attractor Flow Equations

The E.O.M. of 3D gravity is Einstein’s equation:

Rab � 1

2
gabR D �Tab D �

�
@a�

m@b�
ngmn � 1

2
gab@c�

m@c�ngmn

�
(6.8)

and the E.O.M. of the 3D moduli are the geodesic equations in M3D:

rara�n C � n
mp@a�

m@a�p D 0: (6.9)

It is not easy to solve a non-linear �-model that couples to gravity. However,
the theory greatly simplifies when the 3D spatial slice is flat: the dynamics of the
moduli are decoupled from that of 3D gravity:

Tab D 0 D @a�
m@b�

ngmn and @a@
a�n C � n

mp@a�
m@a�p D 0: (6.10)

In particular, a single-centered attractor flow then corresponds to a null geodesics in
M3D: ds2 D d�md�ngmn D 0.

The condition of the 3D spatial slice being flat is guaranteed for BPS attrac-
tors, both single-centered and multi-centered, by supersymmetry. Furthermore, for
single-centered attractors, both BPS and non-BPS, extremality condition ensures
the flatness of the 3D spatial slice. In this paper, we will impose this flat 3D spatial
slice condition on all multi-centered non-BPS attractors we are looking for. They
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correspond to the multi-centered solutions that are directly “assembled” by single-
centered attractors, and have properties similar to their single-centered constituents:
they live in certain null totally geodesic sub-manifolds of M3D. We will discuss the
relaxation of this condition at the end of the paper.

To summarize, the problem of finding 4D single-centered black hole attractors
can be translated into finding appropriate null geodesics in M3D, and that of finding
4D multi-centered black hole bound states into finding corresponding 3D multi-
centered solutions living in certain null totally geodesic sub-manifold of M3D.

The null geodesic that corresponds to a 4D black hole attractor is one that termi-
nates at a point on the U ! �1 boundary and in the interior region with respect to
all other coordinates of the moduli space M3D. However, it is difficult to find such
geodesics since a generic null geodesic flows to the boundary of M3D. For BPS
attractors, the termination of the null geodesic at its attractor point is guaranteed
by the constraints imposed by supersymmetry. For non-BPS attractor, one need to
find the constraints without the aid of supersymmetry. We will show that this can be
done for models with M3D that are symmetric coset spaces. Moreover, the method
can be easily generalized to find the multi-centered non-BPS attractor solutions.

6.2.3 Models with M3D Being Symmetric Coset Spaces

A homogeneous space M is a manifold on which its isometry group G acts transi-
tively. It is isomorphic to the coset space G=H, with G being the isometry group and
H the isotropy group. For M3D D G=H, H is the maximal compact subgroup of G
when one compactifies on a spatial isometry down to .1; 2/ space, or the analytical
continuation of the maximal compact subgroup when one compactifies on the time
isometry down to .0; 3/ space.

The Lie algebra g has Cartan decomposition: g D h ˚ k where

Œh;h� D h; Œh;k� D k: (6.11)

When G is semi-simple, the coset space G=H is symmetric, meaning:

Œk;k� D h: (6.12)

The building block of the non-linear �-model with symmetric coset space M3D

as target space is the coset representative M , from which the left-invariant current
is constructed

J D M�1dM D Jk C Jh; (6.13)

where Jk is the projection of J onto the coset algebra k. The lagrangian density of
the �-model with target space G=H is then given by Jk as

L D Tr.Jk ^ �3Jk/: (6.14)
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The symmetric coset space has the nice property that its geodesics M.�/ are
simply generated by exponentiation of the coset algebra k:

M.�/ D M0ek
=2 with k 2 k; (6.15)

where M0 parameterizes the initial point of the geodesic, and the factor 1
2

in
the exponent is for later convenience. A null geodesic corresponds to jkj2 D 0.
Therefore, in the symmetric coset space M3D, the problem of finding the null
geodesics that terminate at attractor points is translated into finding the appropriate
constraints on the null elements of the coset algebra k.

The theories with 3D moduli spaces M3D that are symmetric coset spaces
include: D-dimensional gravity toroidally compactified to four dimensions, all 4D
N > 2 extended supergravities, and certain 4D N D 2 supergravities coupled to
vector-multiplets with cubic prepotentials. The entropies in the last two classes are
U-duality invariant. In this talk, we will focus on the last class. The discussion on
the first class can be found in [21].

6.2.3.1 Parametrization of M3D

The symmetric coset space M3D D G=H can be parameterized by exponentiation
of the solvable subalgebra solv of g:

M3D D G=H D esolv with g D h ˚ solv (6.16)

The solvable subalgebra solv is determined via Iwasawa decomposition of g. Being
semi-simple, g has Iwasawa decomposition: g D h ˚ a ˚ n, where a is the maximal
abelian subspace of k, and n the nilpotent subspace of the positive root space ˙C
of a. The solvable subalgebra solv D a ˚ n. Each point �n in M3D corresponds
to a solvable element ˙.�/ D esolv, thus the solvable elements can serve as coset
representatives.

We briefly explain how to extract the values of moduli from the coset represen-
tative M . Since M is defined up to the action of the isotropy group H, we need to
construct from M an entity that encodes the values of moduli in an H-independent
way. The symmetric matrix S defined as

S � MS0M
T (6.17)

has such a property, where S0 is the signature matrix.2 Moreover, as the isometry
group G acts transitively on the space of matrices with signature S0, the space of

2 In all systems considered in the present work, the isotropy group H is the maximal orthogonal
subgroup of G: HS0H T D S0, for any H 2 H. Therefore, S is invariant under the H-action
M ! MH.
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possible S is the same as the symmetric coset space M3D D G=H. Therefore, we
can read off the values of moduli from S in an H-independent way.

The non-linear �-model with target space M3D can also be described in terms
of S instead of M . First, the left-invariant current of S is JS D S�1dS , which is
related to Jk by

JS D S�1dS D 2
�
S0M

T
��1

Jk
�
S0M

T
�

(6.18)

The lagrangian density in terms of S is thus L D 1
4

Tr.JS ^ �3JS /. The equation of
motion is the conservation of current:

r � J D r � .S�1rS/ D 0; (6.19)

where we have dropped the subscript S in JS , since we will only be dealing with
this current from now on.

6.2.4 Example: nV D 1

In this talk, we will perform the explicit computation only for the simplest case: 4D
N D 2 supergravity coupled to one vector-multiplet. The generalization to generic
nV is straightforward. The 3D moduli spaceM3D for nV D 1 is an eight-dimensional
quaternionic kähler manifold, with special holonomy Sp.2;R/�Sp.4;R/. Com-
puting the killing symmetries of the metric (6.6) with nV D 1 shows that it is a coset
space G2.2/=.SL.2;R/� SL.2;R//.3 Figure 6.1 shows the root diagram of G2.2/ in
its Cartan decomposition.

The six roots on the horizontal and vertical axes fLḣ ; L
3
h ; Lv̇ ; L

3
vg generate

the isotropy subgroup H D SL.2;R/h � SL.2;R/v. The two vertical columns of
eight roots a˛A generate the coset algebra k, with index ˛ labeling a spin-1=2
representation of SL.2;R/h and index A a spin-3=2 representation of SL.2;R/v.

The Iwasawa decomposition, g D h ˚ solv with solv D a ˚ n, is shown
in Fig. 6.2. The two Cartan generators fu; yg form a, while n is spanned by
fx; � ;A0;A1;B1;B0g. fu; yg generates the rescaling of fu; yg, where u � e2U ,
and fx; � ;A0;A1;B1;B0g generates the translation of fx; �; A0; A1; B1; B0g [27].

The moduli space M3D can be parameterized by solvable elements:

˙.�/ D e.ln u/u=2C.ln y/yexxCAI AI CBI BIC�� : (6.20)

The symmetric matrix S can then be expressed in terms of the eight moduli �n:

S.�/ D ˙.�/S0˙.�/
T; (6.21)

3 Other work on this coset space has appeared recently, including [30–32].
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which shows how to extract the values of moduli from S even when S is not
constructed from the solvable elements, since it is invariant under H-action.

6.3 Generators of Attractor Flows

In this section, we will solve 3D attractor flow generators k as in (6.15). We will
prove that extremality condition ensures that they are nilpotent elements of the
coset algebra k. In particular, for nV D 1, both BPS and non-BPS generators are
third-degree nilpotent. However, despite this common feature, kBPS and kNB differ
in many aspects.

6.3.1 Construction of Attractor Flow Generators

6.3.1.1 Construction of kBPS

Since the 4D BPS attractor solutions are already known, one can easily obtain the
BPS flow generator kBPS in the 3D moduli space M3D.

The generator kBPS can be expanded by coset elements a˛A as kBPS D a˛AC
˛A,

where C ˛A are conserved along the flow. On the other hand, since the conserved
currents in the homogeneous space are constructed by projecting the one-form
valued Lie algebra g�1 � dg onto k, a procedure that also gives the vielbein:
Jk D g�1dgjk D a˛AV

˛A, the vielbein V ˛A are also conserved along the flow:
d

d


�
V ˛A

n
P�n
� D 0. Since both the expansion coefficients C ˛A and the vielbein V ˛A

transform as .2; 4/ of SL.2;R/h � SL.2;R/v and are conserved along the flow, they
are related by

C ˛A D V ˛A
n

P�n (6.22)

up to an overall scaling factor.
In terms of the vielbein V ˛A, the supersymmetry condition that gives the BPS

attractors is V ˛A D z˛V A [29, 32, 33]. Using (6.22), we conclude that the 3D BPS
flow generator kBPS has the expansion

kBPS D a˛Az˛CA: (6.23)

A 4D supersymmetric black hole is labeled by four D-brane charges
.p0; p1; q1; q0/. A 3D attractor flow generator kBPS has five parameters fCA; zg.
As will be shown later, z drops off in the final solutions of BPS attractor flows,
under the zero NUT charge condition. Thus the geodesics generated by kBPS are
indeed in a four-parameter family.
kBPS can be obtained by a twisting procedure as follows. First, define a k0

BPS
which is spanned by the four coset generators with positive charges under SL.2;R/h:

k0
BPS � a1AC

A (6.24)
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then, conjugate k0
BPS with lowering operator L�

h :

kBPS D e�zL�
h k0

BPSezL�
h : (6.25)

Using properties of k0
BPS, it is easy to check that kBPS is null:

jkBPSj2 D 0: (6.26)

More importantly, kBPS is found to be third-degree nilpotent:

k3
BPS D 0: (6.27)

A natural question then arises: Is the nilpotency condition of kBPS a result of
supersymmetry or extremality? If latter, we can use the nilpotency condition as a
constraint to solve for the non-BPS attractor generators kNB. We will prove that this
is indeed the case.

6.3.1.2 Extremality Implies Nilpotency of Flow Generators

We will now prove that all attractor flow generators, both BPS and Non-BPS, are
nilpotent elements in the coset algebra k. It is a result of the near-horizon geometry
of extremal black holes.

The near-horizon geometry of a 4D attractor is AdS2 � S2, i.e.

e�U !
p
VBHj�� as � ! 1: (6.28)

As the flow goes to the near-horizon, i.e., as u D e2U ! 0, the solvable element
M D e.ln u/u=2C � � � is a polynomial function of � :

M.�/ � u�`=2 � �`; (6.29)

where �` is the lowest eigenvalue of u.
On the other hand, since the geodesic flow is generated by k 2 k via M.�/ D

M0ek
=2,M.�/ is an exponential function of � . To reconcile the two statements, the
attractor flow generator k must be nilpotent:

k`C1 D 0; (6.30)

where the value of ` depends on the particular moduli space under consideration. In
G2.2/=SL.2;R/2, by looking at the weights of the fundamental representation, we
see that ` D 2, thus

k3 D 0: (6.31)
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The nilpotency condition of the flow generators also automatically guarantees
that they are null:

k3 D 0 H) .k2/2 D 0 H) Tr.k2/ D 0: (6.32)

6.3.1.3 Construction of kNB

To construct non-BPS attractor flows, one needs to find third-degree nilpotent ele-
ments in the coset algebra k that are distinct from the BPS ones. In the real
G2.2/=SL.2;R/2, there are two third-degree nilpotent orbits in total [34]. We have
shown that kBPS D e�zL�

h k0
BPSezL�

h , with k0
BPS spanned by the four generators with

positive charge under SL.2;R/h.
Since there are only two SL.2;R/’s inside H, a natural guess for kNB is that

it can be constructed by the same twisting procedure with SL.2;R/h replaced by
SL.2;R/v:

kNB D e�zL�
v k0

NBe
zL�

v with k0
NB � a˛aC

˛a; ˛; a D 1; 2; (6.33)

where k0
NB is spanned by the four generators with positive charge under SL.2;R/v.

Using properties of k0
NB, one can easily show that kNB defined above is indeed

third-degree nilpotent:
k3

NB D 0 (6.34)

That is, kNB defined in (6.33) generates non-BPS attractor flows in M3D.
A 4D non-BPS extremal black hole is labeled by four D-brane charges

.p0; p1; q1; q0/. Similar to the BPS case, the 3D attractor flow generator kNB has
five parameters fC ˛a; zg. As will be shown later, z can be determined in terms of
fC ˛ag using the zero NUT charge condition, thus the geodesics generated by kNB

are also in a four-parameter family.

6.3.2 Properties of Attractor Flow Generators

We choose the representation ofG2.2/ group to be the symmetric 7�7matrices that
preserve a non-degenerate three-form wijk such that �is � wijkwstuwmno


jktumno is a
metric with signature .4; 3/ and normalized as �2 D 1. We decompose 7 as 3˚ N3˚1
of SL.3;R/ and choose the non-zero components of w, 3 ^ 3 ^ 3, N3 ^ N3 ^ N3 and
3 ˝ N3 ˝ 1, as

w D dx1 ^ dx2 ^ dx3 C dy1 ^ dy2 ^ dy3 � 1p
2

dxa ^ dya ^ dz; (6.35)

which gives � D dxadya�dz2. Written explicitly, an element ofG2.2/ Lie algebra is
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g D

0

B
@

A
j1

i1

i1j2kvk

p
2wi1


i2j1kwk �Ai2
j2

�p
2vi2

�p
2vj1

p
2wj2

0

1

C
A: (6.36)

Here A is a traceless 3 � 3 matrix. The signature matrix S0 is thus Diag
Œ1;�1;�1; 1;�1;�1; 1�.

The real G2.2/ group has two third-degree nilpotent orbits. In both orbits, k2 is
of rank 2 and has Jordan form with two blocks of size 3. Thus k2 can be written as

k2 D
X

a;bD1;2

vavT
bcabS0 (6.37)

with va null and orthogonal to each other: va � vb � vT
aS0vb D 0, and cab depends

on the particular choice of k. Therefore, k can be expressed as

k D
X

aD1;2

�
vawT

a C wavT
a

�
S0; (6.38)

where each wa is orthogonal to both va: wa � vb D 0, and wa satisfies wa � wb D cab .
Next we solve for va and wa for kBPS and kNB and compare their properties.

6.3.2.1 Properties of kBPS

The null space of k2 is five-dimensional, with va spanning its two-dimensional
complement. For kBPS, vBPS

a and wBPS
a in (6.38) are solved in terms of CA and z.

In basis (6.36), from inspection of k2
BPS, we find that vBPS

a can always be chosen
to have the form:4

vBPS
1 D .V1;��1V1; 0/ vBPS

2 D
�
�V2; �1V2;

p
2
�
; (6.39)

where �1 is a 3D signature matrix � D DiagŒ1;�1;�1�, and Va are two three-vectors
satisfying

V1 � V1 D 0; V1 � V2 D 0; V2 � V2 D �1: (6.40)

We drop the superscript “BPS” for Va here since, as will be shown later, vNB
a can

also be written in terms of Va, though in a slightly different form. Note that for kBPS,
V2 is defined up to a shift of V1: V2 ! V2 � cV1, since any linear combination of
vBPS

a forms a new set of vBPS
a .

4 There are some freedom on the choice of .va;wa/: a rotational freedom: .va;wa/!
.Rabvb; Rabwb/ with R orthogonal; and a rescaling freedom: .va;wa/ ! .var;wa=r/.



6 Non-supersymmetric Attractors in Symmetric Coset Spaces 301

Written in twistor representation,5 Va are given by the twistors z and u as

V
˛ˇ

1 D 2z˛zˇ ; V
˛ˇ

2 D z˛uˇ C zˇ u˛; (6.41)

where we have used the rescaling freedom to set z1u2 � z2u1 D 1. Note that for
kBPS, the twistor u is arbitrary, due to the shift freedom of V2.

The condition wBPS
a � vBPS

b
D 0 dictates that wBPS

a has the form:

wBPS
1 D �

W BPS
1 ; �1W

BPS
1 ; 0

�
; wBPS

2 D �
W BPS

2 ; �1W
BPS

2 ; 0
�

(6.42)

with W BPS
a solved as

�
W BPS

1 ;W BPS
2

�˛ˇ D
�
P ˛ˇ� u� ; P

˛ˇ� z�

�
; (6.43)

where the totally symmetric P ˛ˇ� is defined in terms of CA as

P 111 D C 1; P 112 D C 2; P 122 D C 3; P 222 D C 4: (6.44)

In summary, vBPS
a span a one-dimensional space (since u is arbitrary) and wBPS

a span
a four-dimensional space.

6.3.3 Properties of kNB

.vNB
a ;wNB

a / are solved in terms of fC ˛a; zg. The forms of vNB
a are only slightly

different from those of vBPS
a :

vNB
1 D .V1; �1V1; 0/ ; vNB

2 D
�
V2;��1V2;

p
2
�
; (6.45)

where Va are the same three-vectors given in (6.41), with one major difference: the
twistor u is no longer arbitrary, but is determined by C ˛a as

u D u2

u1
D C 22

C 12
(6.46)

5 With the inner product of two three-vectors defined as Va � Vb � V T
a �1Vb, the twistor

representation of a three-vector V D .x; y; z/ can be chosen as

�V D x�0 C y�3 C z�1 D
�
x C y z

z x � y

�
:
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since the V2 in vNB
a no longer has the shift freedom.

The forms of wNB
a are also only slightly different from the BPS ones (6.42):

wNB
1 D �

W NB
1 ;��1W

NB
1 ; 0

�
; wNB

2 D �
W NB

2 ; �1W
NB

2 ; 0
�

(6.47)

with W NB
a solved in terms of fC ˛a; z; ug as

�
W NB

1

�˛ˇ D u˛uˇ C �
C 11u2 � C 12u1

�
z˛zˇ ; (6.48)

�
W NB

2

�˛ˇ D
�

z˛uˇ C u˛zˇ
�

C �
C 21 � C 11z � 3u1

�
z˛zˇ : (6.49)

Since the value of u imposes an extra constraint on the vectors wNB
a via (6.46), wNB

a

span a three-dimensional space instead of a four-dimensional one as in the BPS case
(6.43). In summary, in contrast to the BPS case, vNB

a span a two-dimensional space
and wNB

a span a three-dimensional one.

6.4 Single-Centered Attractor Flows

Having solved the attractor flow generators for both BPS and non-BPS case, we
are ready to construct single-centered attractor flows. A geodesic starting from arbi-
trary asymptotic moduli is given byM.�/ D M0ek
=2, which gives the flow of S as
S.�/ D M0ek
S0M

T
0 , which in turn can be written as S.�/ D eK.
/S0, whereK.�/

is a matrix function. From now on, we use capital K to denote the matrix function
which we exponentiate to generate attractor solutions.

The current of S is

J D S�1rS D S0

�
rK C ŒrK;K�C 1

2
ŒŒrK;K�;K�C � � �

�
S0: (6.50)

The equation of motion is the conservation of currents: r � .S�1rS/ D 0, which is
solved by K.�/ being harmonic:

r2K.�/ D 0; H) K.�/ D k� C g: (6.51)

g parameterizes the asymptotic moduli. Using the H-action, we can adjust g such
that g 2 k, and g has the same properties as the flow generator k, namely, g3 D 0

and g2 is of rank 2. Therefore, for single-centered flow given by S.�/ D eK.
/S0,
the harmonic matrix functionK.�/ has the same properties as the flow generator k:

K3.�/ D 0 and K2.�/ rank 2: (6.52)

To find the harmonic K.�/ that satisfies the constraints (6.52), recall that the
constraints dictate K.�/ to have the form:
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K.�/ D
X

aD1;2

�
va.�/wa.�/

T C wa.�/va.�/
T
�
S0 (6.53)

with va.�/ being null and wa.�/ orthogonal to vb.�/ for all � . Then the constraints
(6.52) can simply be solved by choosing va.�/ to be the constant null vectors
va.�/ D va and wa.�/ to be harmonic vectors which are everywhere orthogonal
to vb:

wa.�/ D wa� Cma with wa � vb D ma � vb D 0: (6.54)

The two 7-vectors wa’s contain the information of the black hole charges, and the
two 7-vectorsma’s contain that of asymptotic moduli.

To summarize, the single-centered attractor flow starting from an arbitrary asymp-
totic moduli is generated by S.�/ D eK.
/S0, with harmonic matrix function
K.�/ D k� C g where

k D
X

aD1;2

h
vawT

a C wavT
a

i
S0 and g D

X

aD1;2

h
vam

T
a CmavT

a

i
S0: (6.55)

Since k and g share the same set of null vectors va and both wa and ma are
orthogonal to vb , g has the same form as that of flow generator k, namely:

gBPS D a˛Az˛GA; gNB D e�zL�
v .a˛aG

˛a/ ezL�
v ; (6.56)

which guarantees that g is also third-degree nilpotent. Moreover, that g and k have
the same form implies ŒŒk; g�; g� D 0, thus the current is reduced to

J D S0.k C 1
2
Œk; g�/S0

r2
Or (6.57)

from which we can solve va and wa in terms of charges and asymptotic moduli.
Now that we are able to construct arbitrary attractor flows in the 3D moduli space,

we can lift them to the 4D black hole attractor solution. First, in representation given
by (6.36), the 4D moduli t D x C iy can be extracted from the symmetric matrix S
via

x.�/ D �S35.�/

S33.�/
; y D

s
S33.�/S55.�/ � S35.�/2

S33.�/2
(6.58)

and u D e2U via

u D 1
p
S33.�/S55.�/ � S35.�/2

: (6.59)

Since both k and g are third-degree nilpotent, S.�/ is a quadratic function of � .
Moreover, since g has the same form as k, S.�/ is composed of harmonic functions
of � : HA.�/ � CA� C GA for BPS attractors and H˛a.�/ � C ˛a� C G˛a for



304 W. Li

non-BPS attractors.6 Generic single-centered attractor flows with arbitrary charges
and asymptotic moduli can thus be generated. The attractor moduli are read off from
S.�/ with � ! 1, and asymptotic moduli with � ! 0.

The D-brane charges can be read off from the charge matrix defined as Q �
1

4�

R r � J . The 4D gauge currents sit in the current J D S�1rS as

.J31; J51; J72; J12; J32/ D
�p

2JB0
;�p

2JB1
;
2

3
JA1 ;

p
2JA0 ;�2J�

�
: (6.60)

Therefore Q relates to the D-brane charge .p0; p1; q1; q0/ and the vanishing NUT
charge a by

.Q31;Q51;Q72;Q12/ D
�p

2p0;�p
2p1;

2

3
q1;

p
2q0

�
; Q32 D �2a D 0:

(6.61)

6.4.1 Single-Centered BPS Attractor Flows

As an example, a single-centered BPS black hole constructed by lifting the attractor
solution in M3D is shown in Fig. 6.3. It has D-brane charges .p0; p1; q1; q0/D .5; 2;

7;�3/. The four flows, starting from different asymptotic moduli, terminate at the
attractor point .x�

BPS; y
�
BPS/ with different tangent directions. The reason is that the

mass matrix of the black hole potential VBH at the BPS critical point has two identi-
cal eigenvalues, thus there is no preferred direction for the geodesics to flow to the
attractor point.

We now discuss in detail how to determine kBPS and gBPS for given charges and
asymptotic moduli. There are nine parameters in kBPS and gBPS: fCA; GA; zg, since
the twistor u is arbitrary. On the other hand, there are eight constraints in a given
attractor flow: four D-brane charges .pI ; qI /, the vanishing NUT charge a, and
the asymptotic moduli .x0; y0; u0/.7 We will use these eight constraints to fix CA

and GA in kBPS and gBPS, leaving the twistor z unfixed.
Integrating the current (6.57) for BPS case produces five coupled equations:

QBPS D S0

�
kBPS C 1

2
ŒkBPS; gBPS�

�
S0; (6.62)

6 Space prohibits listing the rather lengthy result of S.�/, readers can consult (6.2) and (6.3) of
[21] for BPS attractors, and (6.28) for non-BPS ones.
7 The asymptotic value of u can be fixed to an arbitrary value by a rescaling of time and the radial
distance. We will set u0 D 1.
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Fig. 6.3 BPS flow with charge .p0; p1; q1; q0/D .5; 2; 7;�3/ and attractor point .x�; y�/D
.0:329787; 0:788503/. The initial points of each flow are given by .x1 D 1:5; y1 D 0:5/; .x2 D 2;

y2 D 4/; .x3 D � 0:2; y3 D 0:1/; .x4 D � 1; y4 D 3/

where ŒkBPS; gBPS� D hC;Gi�, with hC;Gi � C 1G4 �3C 2G3 C3C 3G2 �C 4G1,
and � � � 4

1Cz2 e�zL�
h LC

h ezL�
h .

In order to show that the BPS flow can be expressed in terms of harmonic func-
tions: H.�/ D Q� C h, with Q � .pI ; qI / and h � .hI ; hI /, we will solve gBPS

in terms of h instead of .x0; y0; u0/. h relates to the asymptotic moduli by

.x0; y0; u0/BPS D .x; y; u/�BPS.Q ! h/ (6.63)

and there is one extra degree of freedom to be fixed later.
First, for later convenience, we separate from gBPS a piece that has the same

dependence on .h; z/ as kBPS on .Q; z/:

gBPS D gBPS;h C with gBPS;h � kBPS.Q ! h; z/; (6.64)

that is, gBPS;h D a˛Az˛GA
h withGA

h � CA.Q ! h/. We can use the unfixed degree
of freedom in h to set hC;Ghi D 0, so that (6.62) simplifies into

QBPS D S0

�
kBPS C 1

2
ŒkBPS; �

�
S0: (6.65)
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 can then be determined using the three constraints from (6.63) and the zero NUT
charge condition in (6.65): D a˛Az˛EA with E1 D � E3 D � 1

1Cz2 and E2 D
� E4 D z

1Cz2 . The form of  will ensure that the twistor z drops off in the final
attractor flow solution written in terms ofQ and h.

The remaining four conditions in the coupled equations (6.65) determine CA

as functions of D-brane charges and the twistor z: CA DCA.Q; z/.8 Then GA
h

are given by GA
h

DCA.Q ! h; z/. The product hCA; GA
h

i is proportional to the
symplectic product of .pI ; qI / and .hI ; hI /:

hCA; GA
h i D 2

1C z2
< Q; h >; where < Q; h >� p0h0 Cp1h1 �q1h

1 �q0h
0:

(6.66)
The condition hCA; GA

h
i D 0 is then the integrability condition on h:< Q; h >D 0.

BPS attractor flows in terms of .pI ; qI / and .hI ; hI / are obtained by substituting
solutions of CA.Q; z/ and GA

h
.h; z/ into the flow of S.�/. The attractor moduli are

determined by the charges as

x�
BPS D � p0q0 C p1 q1

3

2


.p1/2 C p0 q1

3

� ; y�
BPS D

q
J4.p0; p1; q1

3
; q0/

2


.p1/2 C p0 q1

3

� ; (6.67)

where J4.p
0; p1; q1; q0/ is the quartic E7.7/ invariant:

J4.p
0; p1; q1; q0/ D 3.p1q1/

2 �6.p0q0/.p
1q1/�.p0q0/

2 �4.p1/3q0 C4p0.q1/
3

(6.68)
thus J4.p

0; p1; q1

3
; q0/ is the discriminant of charges. Charges with positive (neg-

ative) J4.p
0; p1; q1

3
; q0/ form a BPS (non-BPS) black hole. The attractor value

of u is u�
BPS D 1=

q
J4.p0; p1; q1

3
; q0/. The constraint on h from u0 D 1 is then

J4.h
0; h1; h1

3
; h0/ D 1. The attractor moduli (6.67) match those from Type II string

compactified on diagonal T 6, with q1 ! q1

3
.

Now we will prove that the BPS attractor flows constructed above can indeed
be generated by the “naive” harmonic function procedure, namely, by replac-
ing charges Q in the attractor moduli with the corresponding harmonic functions
Q�Ch. First, using the properties of, the flow of t D xCiy can be generated from
the attractor moduli by replacing kBPS with the harmonic function kBPS� C gBPS;h:

tBPS.�/ D t�BPS

�
kBPS ! k� C gBPS;h

�
: (6.69)

Then, since kBPS and gBPS;h share the same twistor z, this is equivalent to replacing
CA with harmonic functionsHA.�/ D CA�CGA

h
while keeping the twistor z fixed

8 See (6.18) of [21] for the full solutions.
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tBPS.�/ D t�BPS

�
CA ! CA� CGA

h ; z
�
: (6.70)

Finally, since CA is linear inQ andGA
h

linear in h, and since z drops off after plug-
ging in the solutions CA.Q; z/ and GA

h
.h; z/, we conclude that the flow of tBPS.�/

is given by replacing the charges Q in the attractor moduli with the corresponding
harmonic functionsQ� C h:

tBPS.�/ D t�BPS.Q ! Q� C h/: (6.71)

6.4.2 Single-Centered Non-BPS Attractor Flows

A non-BPS attractor flow with generic charges and asymptotic moduli can be gen-
erated using the method detailed earlier. Figure 6.4 shows an example of non-BPS
attractor flow with charges .p0; p1; q1; q0/ D .5; 2; 7; 3/. Note that J4.5; 2; 7=3; 3/

< 0, so this is indeed a non-BPS black hole.
Unlike the BPS attractor flows, all non-BPS flows starting from different asymp-

totic moduli reach the attractor point with the same tangent direction. The reason is,

(x*,y*)

(x5,y5)

(x4,y4)

(x1,y1)

(x2,y2)

(x3,y3)
–0.5 0.5 1.0 1.5

x

1

2

3

4

5

y

Fig. 6.4 Non-BPS flow with charges .p0; p1; q1; q0/D .5; 2; 7; 3/ and attractor point .x�; y�/D
.�0:323385; 0:580375/. The initial points of each flow are given by: .x1 D 0:539624; y1 D
5:461135/; .x2 D 1:67984; y2 D 0:518725/; .x3 D � 0:432811; y3 D 0:289493/; .x4 D 1:28447;

y4 D 1:49815/; .x5 D � 0:499491; y5 D 0:181744/
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unlike the BPS case, the mass matrix of the black-hole potential VBH at a non-BPS
critical point has two different eigenvalues. The common tangent direction for the
non-BPS flows corresponds to the eigenvector associated with the smaller mass.

Now we discuss how to determine kNB and gNB for given D-brane charges and
asymptotic moduli. Unlike the BPS case, there are only eight parameters in kNB and
gNB: the two twistors fz; ug and fC ˛a; G˛ag under the constraints u D C 22

C 12 D G22

G12 .
On the other hand, there are still eight constraints in a given non-BPS attractor flow
as in the BPS case. Therefore, while kBPS and gBPS can parameterize black holes
with arbitrary .pI ; qI / and .x0; y0/ while leaving fz; ug free, all the parameters in
kNB and gNB, including fz; ug, will be fixed.

Another major difference from the BPS case is that

ŒkNB; gNB� D 0 (6.72)

guaranteed by the form of vNB
a and wNB

a . Thus the charge equation (6.62) becomes
simply

QNB D S0.kNB/S0: (6.73)

Unlike the BPS case, gNB does not enter the charge equations, thus cannot be
used to eliminate the dependence on the twistor z. The three degrees of freedom
in gNB are simply fixed by the asymptotic moduli .x0; y0/ and u0 D 1, without
invoking the zero NUT charge condition. The four D-brane charges equations in
(6.73) determine C ˛a DC ˛a.Q; z/,9 which then fixes u via u D C 22

C 12 . Finally, the
zero NUT charge condition imposes a degree-six equation on twistor z:

p0z6 C6p1z5 �.3p0 C4q1/z
4 �4.3p1 �2q0/z

3 C.3p0 C4q1/z
2 C6p1z�p0 D 0:

(6.74)
Similar to the BPS case, the full non-BPS attractor flow can be generated from the

attractor moduli by replacing C ˛a with the harmonic function H˛a.�/ D C ˛a� C
G˛a, while keeping z fixed as in (6.70):

tNB.�/ D t�NB.C
˛a ! C ˛a� CG˛a; z/: (6.75)

However, there are two important differences. First, the harmonic functions H˛a

have to satisfy the constraint:10

H 22.�/

H 12.�/
D u D C 22

C 12
D G22

G12
: (6.76)

9 See (6.35) of [21] for the full solution.
10 This does not impose any constraint on the allowed asymptotic moduli since there are still three
degrees of freedom in G˛a to account for .x0; y0; u0/. We will see later that its multi-centered
counterpart helps impose a stringent constraint on the allowed D-brane charges in multi-centered
non-BPS solutions.
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Second, unlike the BPS flow, a generic non-BPS flow cannot be given by the
“naive” harmonic function procedure:

tNB.�/ ¤ t�NB.Q ! Q� C h/: (6.77)

The reason is that the twistor z in a non-BPS solution is no longer free as in the BPS
case, but is determined in terms of D-brane charges via (6.74). Thus replacing Q
with Q� C h, for generic Q and h, would not leave z invariant. That is, replacing
C ˛a in the attractor moduli with harmonic functions H˛a.�/ is not equivalent to
replacing the chargesQ with H DQ� C h as in the BPS case (6.71).

It is interesting to find the subset of non-BPS single-centered flows that can
be constructed via the “naive” harmonic function procedure. The nV D 1 system
can be considered as the STU model with the three moduli .S; T; U / identified.
Since the STU model has an SL.2;Z/3 duality symmetry at the level of E.O.M.,
the nV D 1 system has an SL.2;Z/ duality symmetry coming from identifying these

three SL.2;Z/’s, namely, O� D
�
a b

c d

�
˝
�
a b

c d

�
˝
�
a b

c d

�
with ad � bc D 1.

The modulus t D xC iy transforms as t ! O� t D atCb
ctCd

, and the transformation on
the charges is given by [35].

Given an arbitrary chargeQ, there exists a transformation O�Q such thatQD O�Q

Q40 for some D4–D0 charge system Q40 D .0; p1; 0; q0/. The solution of (6.74)

with charge QD O�QQ40 has a root z D a˙p
a2Cc2

c
, independent of Q40. Thus for

arbitrary h40 D .0; h1; 0; h0/, replacingQ withQ�C O�Qh40 would leave the twistor
z invariant. We thus conclude that the non-BPS single-centered attractor flows that
can be generated from their attractor moduli via the “naive” harmonic function pro-
cedure are only those with .Q; h/ being the image of a single transformation O� on
a D4–D0 system .Q40; h40/:

tNB.�/ D t�NB.
O�Q40 ! O� Q40� C O� h40/: (6.78)

6.5 Multi-Centered Attractor Flows

Similar to the single-centered attractor solutions, the multi-centered ones are con-
structed by exponentiating harmonic matrix functionsK.x/:

S.x/ D eK.x/S0: (6.79)

Recall that for single-centered attractors, using the H-action on g, K.�/ D k� C g

can be adjusted to have the same properties as the flow generator k as in (6.52). For
BPS multi-centered solutions, supersymmetry guarantees that the matrix function
K.x/ also has the same properties as the generator k:

K3.x/ D 0; and K2.x/ rank 2: (6.80)
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We will impose these constraints on all non-BPS multi-centered solutions as well,
since presently we are more interested in the multi-centered solutions that are
“assembled” by individual single-centered attractors and thus have similar prop-
erties to their single-centered constituents. It is certainly interesting to see if there
exist non-BPS multi-centered solutions with K.x/ not sharing the constraints (6.80)
satisfied by the flow generator kNB.

The harmonic matrix functionK.x/ satisfying all the above constraints is solved
to be

K.x/ D
X

i

ki

jx � xi j C g; (6.81)

where

ki D
X

aD1;2

h
va.wa/

T
i C .wa/i v

T
a

i
S0 and g D

X

aD1;2

h
vam

T
a CmavT

a

i
S0

(6.82)
with va being the same two constant null vectors in single-centered k, and the
7-vectors .wa/i contain the information of the D-brane charges of center-i , and
the two 7-vectors ma’s contain that of asymptotic moduli. Both .wa/i and ma are
orthogonal to vb . Since va only depends on the twistor fz; ug, and wa are linear in
CA or C ˛a, the above generating procedure is equivalent to replacing CA and C ˛a

with the multi-centered harmonic functionsHA.x/ and H˛a.x/ while keeping the
twistor fz; ug fixed.

6.5.1 Multi-centered BPS Attractors

Using Qi to denote the charge matrix of center-i , we have 5N coupled equations
from Qi D 1

4�

R
i
r � J :

QBPS;i D S0

0

@kBPS;i C 1

2
ŒkBPS;i ; gBPS�C 1

2

X

j



kBPS;i ; kBPS;j

�

jxi � xj j

1

AS0: (6.83)

We now show in detail how to determine kBPS;i and gBPS for given charges and
asymptotic moduli using (6.83). There are 4.N C 1/ C 1 parameters in kBPS;i and
gBPS: fCA

i ; G
A; zg, since the twistor u is arbitrary. Different from the single-centered

BPS case, there are also 3N � 3 degrees of freedom from the positions of centers
on L.H.S. of (6.83). On the other hand, there are 5N C 3 constraints in a given BPS
multi-centered attractor: 4N D-brane charges .pI

i ; qI;i /,N vanishing NUT charges,
the asymptotic moduli .x0; y0/ and u0 D 1. We will use these 5N C 3 constraints
to fix the 4.N C 1/ parameters fCA

i ; G
Ag in kBPS;i and gBPS, and impose N � 1

constraints on the distances between the N centers, while leaving the twistor z free.
First, integrating r � J over the sphere at the infinity gives the sum of the above

N matrix equations: Qtot
BPS D S0.k

tot
BPS C 1

2
Œktot

BPS; gBPS�/S0, which is the same as the
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charge equation for a single-center attractor with charge Qtot
BPS. This determines g

to be g D gh C , same as the single-centered case as in (6.64), using the three
asymptotic moduli .x0; y0; u0/ and the constraint of zero total NUT charge. The h’s
are fixed by the asymptotic moduli and the integrability condition< Qtot

BPS; h >D 0.
It is easy to see that the solutions of CA

i are simply given by the single-centered
solutions CA D CA.Q; z/ with Q replaced by Qi . Thus the flow generator of each
center kBPS;i (given by kBPS;i D a˛Az˛CA

i ) satisfies

QBPS;i D S0.kBPS;i C 1

2
ŒkBPS;i ; �/S0; (6.84)

which is the multi-centered generalization of the single-centered condition (6.65).
Using the solutions of kBPS;i and gBPS, the charge equations (6.83) become

QBPS;i D S0

 

kBPS;i C 1

2
ŒkBPS;i ; �

C
�
< QBPS;i ; h > C

X

j

< QBPS;i ;QBPS;j >

jxi � xj j
	
�

!

S0 (6.85)

from which we subtract (6.84) to produce the integrability condition

< QBPS;i ; h > C
X

j

< QBPS;i ;QBPS;j >

jxi � xj j D 0: (6.86)

The sum of the N equations in the integrability condition (6.86) reproduces the
constraint on h: < Qtot

BPS; h > D 0. Thus the remaining N � 1 equations impose
N � 1 constraints on the relative positions between the N centers. The angular

momentum J, defined via !i D 2
ijkJ
j xk

r3 as r ! 1, is non-zero:

J D 1

2

X

i<j

xi � xj

jxi � xj j hQBPS;i ;QBPS;j i: (6.87)

Thus we have shown that our multi-centered BPS attractor solutions reproduce those
found in [19]. Same arguments as in the single-centered BPS case shows that multi-
centered BPS attractors can be generated by replacing the charges in the attractor
moduli with corresponding multi-centered harmonic functions:

tBPS.x/ D t�BPS

 

QBPS !
X

i

QBPS;i

jx � xi j C h

!

: (6.88)
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6.5.2 Multi-centered Non-BPS Attractors

A multi-centered non-BPS attractor has 3.NC1/C2 parameters inside its non-BPS
generators fkNB;i ; gNBg: fC ˛a

i ; G˛ag under the constraint (6.89) plus two twistors
fz; ug. Given fkNB;i ; gNBg in terms of fC ˛a

i ; G˛a; z; ug, the non-BPS multi-centered
solution is the same as the single-centered one with H˛a.�/ replaced by multi-

centered harmonic functionsH˛a.x/ D P
i

C ˛a
ijx�xi j CG˛a satisfying the constraint

u D H 22
i .x/

H 12
i .x/

D C 22
i

C 12
i

D G22

G12
: (6.89)

However, the process of determining kNB;i and gNB in terms of charges and asymp-
totic moduli for a non-BPS multi-centered attractor is very different from its BPS
counterpart.

The reason is that the charge equations for a non-BPS multi-centered solution
simplifies a great deal since

ŒkNB;i ; kNB;j � D 0 and ŒkNB;i ; gNB� D 0 (6.90)

guaranteed by the forms of .wNB
a /i and mNB

a . Therefore, the 5N equations (6.83)
decouple into N sets of five coupled equations:

QNB;i D S0.kNB;i/S0: (6.91)

As in the single-centered non-BPS case, gNB does not enter the charge equations
(6.91), and its three degrees of freedom can be completely fixed by the given asymp-
totic moduli .x0; y0/ and u0 D 1without using the zero NUT charge condition. More
importantly, unlike BPS multi-centered solutions, the positions of centers xi do not
appear in the charge equations (6.91), thus receive no constraint: all centers are
free. Finally, since we are using the remaining 3N C 2 parameters fC ˛a; z; ug to
parameterize a N -centered attractor solution under 5N constraints coming from
charge equations (6.91), there need to be 2N �2 constraints imposed on the D-brane
charges.

As in the BPS multi-centered attractors, solutions of C ˛a
i are given by the

single-centered non-BPS solutions C ˛a DC ˛a.Q; z/ with Q replaced by Qi . The
solutions of twistors z and u are the same as the single-centered ones with charges
QNB replaces byQtot

NB. Among the aforementioned 2N � 2 constraints,N � 1 come
from demanding that all centers have the same twistor z, which follows from the
zero NUT charge condition at each center, and the otherN � 1 come from demand-
ing that they have the same twistor u as in (6.89). Solving these 2N � 2 constraints
shows that all the charges fQNB;i g are the image of a single duality transformation
O� on a multi-centered D4–D0 system fQNB;40;ig:

QNB;i D O�QNB;40;i : (6.92)
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The charges at different centers are all mutually local

hQNB;i ;QNB;j i D 0: (6.93)

Like non-BPS single-centered attractors, the generic non-BPS multi-centered
attractors cannot be generated via the “naive” harmonic function procedure, except
for those with fQNB;i ; hg being the image of a single O� on a pure D4–D0 system
fQNB;40;i ; h40g:

tNB.x/ D t�NB

 
O�QNB;40 !

X

i

O�QNB;40;i

jx � xi j C O� h40

!

: (6.94)

In summary, the non-BPS multi-centered attractors are drastically different from
their BPS counterparts: there is no constraint imposed on the positions of the centers,
but instead on the allowed chargesQNB;i : they have to be mutually local. The result
is that the centers can move freely, and there is no intrinsic angular momentum in
the system.

6.6 Conclusion and Discussion

In this talk, we summarized the construction of generic single-centered and multi-
centered extremal black hole solutions in theories whose 3D moduli spaces are
symmetric coset spaces. In this construction, all attractors, both BPS and non-
BPS, single-centered as well as multi-centered, are treated on an equal footing. The
single-centered black hole attractors correspond to those null geodesics in M3D that
are generated by exponentiating appropriate nilpotent elements in the coset algebra.
The multi-centered black hole attractors are given by 3D solutions that live in cer-
tain null totally geodesic sub-manifolds of M3D. The construction of multi-centered
attractors, even that of non-BPS ones, is merely a straightforward generalization of
the single-centered construction.

We presented a detailed computation in the theory of 4D N D 2 supergravity
coupled to one vector-multiplet, whose 3D moduli space is the symmetric coset
space G2.2/=SL.2;R/2. The attractor flow generators are third-degree nilpotent ele-
ments in the coset algebra. We explicitly constructed generic attractor solutions,
both single-centered and multi-centered, and showed that while the BPS attrac-
tors can be generated from the attractor moduli via the “naive” harmonic function
procedure, the generic non-BPS attractors cannot be generated this way.

In the nV D 1 model, besides the BPS generator, there is only one extra third-
degree nilpotent orbit to serve as non-BPS flow generators. Hence there is only one
type of non-BPS single-centered attractor. In models with bigger symmetric moduli
spaces, there should be more than one type of non-BPS generator. These would
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give rise to different types of non-BPS attractor flows, which might have different
stability properties.

All multi-centered non-BPS attractors constructed in this work follow from
the ansatz in which 3D gravity is assumed to decouple from the moduli. The
multi-centered non-BPS black holes are found to be very different from their BPS
counterparts: the charges of all centers are constrained to be mutually local, while
the positions of centers are completely free. Thus the non-BPS multi-centered
attractor is not a “bound state” and carries no intrinsic angular momentum.

We would like to construct true multi-centered non-BPS “bound states”, i.e.,
solutions with constraints on the positions of centers but not on the charges. There
are two possible ways to achieve this. First, one could adopt a more general ansatz
in which 3D gravity is coupled to the moduli. For axisymmetric configurations, the
inverse scattering method could be used to perform an exact analysis. One could
also search in models with bigger moduli spaces. It is very likely that in bigger
moduli spaces, there exist true multi-centered non-BPS “bound states” even within
the ansatz with 3D gravity decoupled from moduli. We are also interested in the
possibility of generating multi-centered non-BPS solutions with each center having
different types of non-BPS generators kNB.

Finally, with the hope of studying non-BPS extremal black holes in 4D N D 2

supergravity coupled to nV vector-multiplets with more generic pre-potential, we
would like to generalize our method to non-symmetric homogeneous spaces, and
even to generic moduli spaces eventually.
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Chapter 7
Higher-Order String Effective Actions
and Off-Shell d D 4 Supergravity

Filipe Moura

Abstract We study higher-derivative corrections to supergravity theories and their
supersymmetrization, concentrating on theories in d D 4.

7.1 Introduction and Plan

Remarkable results have been achieved recently on black hole physics in string the-
ory, among which the microscopic interpretation of the entropy and the attractor
mechanism. Supersymmetry has played a crucial role in these results.

Black holes can appear already at the supergravity level, when string theories are
compactified and (nonperturbative) p-branes are wrapped around nontrivial cycles
of the compactification manifold. But black holes can also be formed from elemen-
tary perturbative string excitations; however, in this case the area of their horizons
vanishes at the supergravity level (these are called small black holes). In order to
prevent a naked singularity and get a finite horizon area, one needs to consider the
effect of higher-order string corrections to supergravity. These terms appear in string
theory effective actions as ˛0 corrections, both at string tree level and higher string
loops. They also affect classical black holes, since they introduce corrections to the
supergravity equations of motion.

These are some reasons that motivate us to study higher-derivative corrections
to supergravity theories and their supersymmetrization. This is what we do in the
following, concentrating on theories in d D 4.
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We begin by reviewing four-dimensional superspace supergravity. We present
curved superspace geometry, for arbitrary N , including torsion, curvature and
Bianchi identities. We motivate the choice of torsion constraints.

Next we move to the particular cases of N D 1; 2. In both cases we show how
Poincaré supergravity can be obtained from conformal supergravity by introduc-
ing a nonconformal constraint. We see how different choices of this nonconformal
constraint lead to different versions of the Poincaré off-shell theory, with distinct
compensating multiplets and sets of auxiliary fields. For those versions of N D 1; 2

supergravities known as “old minimal”, we present the solutions to the Bianchi iden-
tities, their field content and we show how to write superspace actions for these
theories and their extensions using chiral densities and chiral projectors.

We then apply this formalism to the supersymmetrization of higher-derivative
terms in N D 1; 2 supergravities. As a concrete application, we study the supersym-
metrization of R4 terms, which are required as string corrections to those theories.
We write down the R4 terms which appear in the ˛03 type II and heterotic super-
string effective actions. In d D 4 there are two of these terms. One of them is the
square of the Bel-Robinson tensor. We work out its N D 1; 2 supersymmetriza-
tions, and we verify for both cases, with this term, that some auxiliary fields can
be eliminated and some cannot. We identify these auxiliary fields and we interpret
these results, which should be generalized to other supersymmetric higher-derivative
terms, in terms of the breaking of conformal supergravity we discussed before.

The other R4 term cannot be directly supersymmetrized, as in N D 1 it violates
chirality. We show how to circumvent this problem in N D 1 and we argue that it
should not be possible in N D 8.

We conclude by discussing possible applications of these results to open prob-
lems on black holes in string theory.

7.2 Superspace Geometry

7.2.1 Vielbein, Connection, Torsion and Curvature

Curved superspace is a manifold parameterized by the usual commuting x-space
coordinates x�, plus a set of anticommuting spinorial coordinates, their number
depending on the number of space-time dimensions in question and the number of
supersymmetries N . In four dimensions, we have

z˘ D
�
x�; �a

A; �
a
PA

�
(7.1)

with � D 0; : : : ; 3, A; PA D 1; 2, a D 1; : : : ;N .
Symmetries that are manifest in curved superspace are general supercoordinate

transformations, with parameters �, and tangent space (structure group) transfor-
mations, with parameters MN . Curved superspace coordinates transform under
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general reparameterizations as

z˘ ! z0˘ D z˘ C �˘ (7.2)

with �˘ D
�
��; �a

A; �
a
PA

�
defined as arbitrary functions of z˘ . �� corresponds

to the usual x-space diffeomorphisms (Einstein transformations); �a
A; �

a
PA

are their
supersymmetric extension: the local supersymmetry transformations.

The main geometric objects of curved superspace are the supervielbein EM
˘ and

the superconnection ˝P
N . These objects transform under general supercoordinate

transformations as

ıEN
˘ D �@E

N
˘ C

�
@˘ �


�
EN

 ; (7.3)

ı˝N
M D �˘@˘˝

N
M C

�
@�

˘
�
˝N

˘M : (7.4)

The supervielbein relates the curved indices to the tangent space group ones,
which we take to be SO.1; 3/ � U.N /, with parameters MN D .mn; BbAa;

 PBb PAa
/. These parameters can still be decomposed in Lorentz and U(N ) parts as

BbAa D 
baBA C 
BA
eba;  PBb PAa D 
ba PB PA C 
 PB PAeba; (7.5)

satisfying

BA D AB ;  PB PA D  PA PB ; A PAB PB D 2" PA PBAB C 2"AB PA PB D �
B PBA PA:

The U(N ) parameters can still be decomposed into SU(N ) and U(1) parts:

eba D ba � 1

2

ba; 

a
a D 0: (7.6)

About our choice of structure group, two remarks must be made. Although the
superconformal algebra is SU.2; 2jN /, the superspace we have introduced is per-
fectly adequate for the description of conformal supergravity. This is because from
the additional parameters of SU.2; 2jN /, special conformal boosts get absorbed
into general coordinate transformations, while Weyl (dilatations) and special super-
symmetry transformations will appear as extra symmetries.

In principle we could have chosen some other structure group: if we wanted a
superspace formulation that mimicked the x-space formulation of general relativity,
the natural choice of structure group would rather contain the orthosymplectic group
OSp(1; 3j4) instead of the Lorentz group, but this would lead to problems. Indeed,
any superspace formulation of supergravity requires the introduction of too many
fields, through the supervielbeins and the superconnections. The gauge invariances
of the theory allow one to eliminate some of the degrees of freedom, but that is still
not enough. In order to have a plausible theory, in any superspace formulation one
needs to put constraints on covariant objects, so that the excess of fields (some of
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them of spin exceeding two) can be eliminated. It can be shown (for instance, in [1])
that with such a choice of tangent group one would not be able to put an adequate
set of constraints that could remove all the unwanted fields. The largest group that
allows that set of constraints is precisely the one we took.

The supervielbein and superconnection transform under the structure group as

ıEN
˘ D �EM

˘ N
M ; (7.7)

ı˝N
M D �@

N
M C˝S

M
N
S C˝N

R
R
M .�/.MCR/.N CR/ : (7.8)

The superconnection is a structure algebra-valued (i.e., in the Lie algebra of the
structure group) object, which can of course also be decomposed in its Lorentz and
U(N ) parts. Specifically, the Lorentz part˝Lor N

M is written as

˝Lor N
M D

0

B
@
˝n

m 0 0

0 � 1
4
˝mn

 .�mn/
A
B 0

0 0 1
4
˝mn

 .�mn/
PA
PB

1

C
A : (7.9)

Having the superconnection, we define a supercovariant derivative:

D D @ C 1

2
˝MN

 JMN ; rM D E
MD: (7.10)

JMN are the generators of the structure group (.�mn/
A
B ; .�mn/

PA
PB in the spino-

rial representation of the Lorentz group). We define the (super)torsions T P
MN and

(super)curvaturesRPQ
MN as

T R
MN D E

M

�
@E

˘
N

�
ER

˘ C˝R
MN � .�/MN .M $ N/

D E
M

�
DE

˘
N

�
ER

˘ � .�/MN .M $ N/ ; (7.11)

RRS
MN D E

ME
˘
N

n
@˝

RS
˘ C˝RK

 ˝S
˘K � .�/˘ . $ ˘/

o

D E
ME

˘
N

n
D˝

RS
˘ � .�/˘ . $ ˘/

o
: (7.12)

The curvatures are structure algebra-valued and, therefore, can also be decomposed
in their Lorentz and U(N ) parts. Because of (7.9), we have

RMNC PCD PD D 2
 PC PDRMNCD C 2
CDRMN PC PD ;

RMNmn D �1
2
�CD

mn RMNCD � 1

2
�

PC PD
mn RMN PC PD : (7.13)

From the definitions (7.10), (7.11) and (7.12) we have, for the supercommutator
of covariant derivatives,
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ŒrM ;rN g D T R
MNrR C 1

2
RRS

MNJRS: (7.14)

Torsions and curvatures satisfy Bianchi identities. One of the most important
consequences of these identities is the fact that the curvatures can be expressed
completely in terms of the torsions. This statement, known as Dragon’s theorem [2],
is also a consequence of the curvatures being Lie-algebra valued. This fact has no
place in general relativity, where curvatures and torsions are independent, and one
can constrain the torsion to vanish leaving a nonvanishing curvature. In superspace,
the torsion is the main object determining the geometry. The curvature Bianchi iden-
tity is therefore redundant; all the information contained in it is also contained in the
torsion Bianchi identity, which is written as

� .�/.MCN /R rRT
F

MN C .�/.N CR/M T S
NRT

F
SM C .�/.N CR/M RF

NRM

C .�/MN rNT
F
MR � .�/NR T S

MRT
F
SN � .�/NR RF

MRN

� rMT
F

NR C T S
MNT

F
SR CRF

MNR D 0: (7.15)

7.2.2 Variational Equations

Arbitrary variations of supervielbein and superconnection are given by [3]

HN
M D E

M ıE
N
 ; ˚

P
MN D E

M ı˝
P
N : (7.16)

From (7.11) and (7.16), we derive the arbitrary variation of the torsion:

ıT R
MN D �HS

MT
R
SN C .�/MN HS

NT
R
SM C T S

MNH
R
S

�rMH
R
N C .�/MN rNH

R
M C ˚R

MN � .�/MN ˚R
NM : (7.17)

By matching (7.16) to the variations under general coordinate and structure group
transformations, one can solve for HN

M and ˚P
MN in terms of the transformation

parameters, torsions and curvatures as

HN
M D �PT N

PM C rM �
N CN

M ; ˚
P
MN D �QRP

QMN � rM
P
N : (7.18)

Until a gauge for the general coordinate and structure group transformations has not
been fixed, any solution forHN

M and ˚P
MN is valid up to the transformations

ıHN
M D rM

Q�N � �PT N
PM ; ı˚

P
MN D Q�QRP

QMN ; (7.19)

ıHN
M D e

N

M ; ı˚
P
MN D rM

e
P

N : (7.20)
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Even fixing those gauges does not fix all the degrees of freedom of HN
M [4–6].

Namely, H D �1
4
Hm

m remains an unconstrained superfield and parameterizes the
super-Weyl transformations, which include the dilatations and the special supersym-
metry transformations.

7.2.3 Choice of Constraints

As we previously mentioned, the superspace formulation of supergravity requires
the introduction of too many fields, some of those having spins higher than 2. The
only natural way to eliminate the undesired fields and get only those belonging to
an irreducible representation of supersymmetry is to place constraints in the theory.
Since those constraints should be valid in any frame of reference, they should be
put only in covariant objects; and since, as we saw, we can express the curvatures
in terms of the torsions, we choose to put the constraints in the torsions. Therefore,
using the gauge freedom from (7.17), we analyze, from lower to upper dimensions,
which torsions we can constrain.

At dimension 0, we have the torsion parts T abm
AB , T abm

A PB and their complex

conjugates. Considering the flat superspace limit for T abm

A PB , we write

T abm

A PB D �2i"ab�m

A PB C QT abm

A PB : (7.21)

From (7.17), one finds [7] that the only parts of the torsion which cannot be absorbed
by Hm

n , HAb
aB , HAb

a PB and their complex conjugates are

QT ab

A PBC PC D QT ab

A PBC PC ; T
ab

ABC PC D T
ab

ABC PC ; (7.22)

QT ab

A PBC PC being traceless in a; b. Since these fields have spin greater than two and

therefore it would be impossible to describe any dynamics in their presence, we set
them to zero:

QT ab

A PBC PC D 0; T
ab

ABC PC D 0: (7.23)

One must emphasize that these are the only constraints which have to be postulated
(i.e., no other choice could be made to these specific parts of the torsion). All the
other constraints are conventional, which means they must exist, but other choices
could have been made. Conventional constraints correspond to redefinitions of the
supervielbein and superconnection.

We are then left with

T abm

A PB D �2i"ab�m

A PB ; T
abm
AB D 0: (7.24)
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As we will see, in N D 1; 2 theories the constraint T abm
AB D 0 has a geometrical

meaning, and will be called “representation preserving”. The constraint in T abm

A PB is
just conventional.

At dimension 1
2

, it can be shown that, by adequate choices of the suitable parts
of HM

N and ˚P
MN [7], we may set

TAa PBb PC c D 0; TAaBbCc D 0; T amn
A D 0: (7.25)

At dimension 1, an appropriate redefinition of the Lorentz connection through an
adequate choice of ˚p

mn gives the usual constraint in Riemannian geometry

T p
mn D 0: (7.26)

Also, an adequate choice of ˚b
ma allow us to constrain Rc PC

Ccab
, and to have

T bCa

C PC B
D ˇT Cba

C PC B
: (7.27)

This constraint establishes an identity between two a priori different superfields.
The numerical parameter ˇ depends on the choice that was made for Rc PC

Ccab
, but it

will have no impact on the theory, since this is a conventional constraint.
The Bianchi identities are valid, no matter which constraints we have. But once

some of the torsions are constrained, the Bianchi identities become equations for
the unconstrained torsions and curvatures. These equations are not independent, and
need to be solved systematically. This has been achieved, in conformal supergravity,
for arbitrary N [5]. One can conclude that off-shell conformal supergravity exists
and is consistent for N 
 4. For N 	 6, an off-shell theory is not consistent [5, 6].
That does not rule out on-shell theories, but those have not been found. For N D 5

nothing has been concluded. Thus for N > 4 the situation is rather unclear. We will
only review the N D 1; 2 cases, because those are the ones we will need. For a more
complete discussion the reader is referred to [6].

In N D 1; 2 one can put chirality constraints in superfields. An antichiral
superfield ˚::: satisfies

ra
A˚��� D 0 (7.28)

(the hermitian conjugated equation defines a chiral superfield). This constraint on
the superfield must be compatible with the solution to the Bianchi identities; an
integrability condition must be verified (that is why general chiral superfields only
exist for N D 1; 2, as we will see; for other values of N , a chirality condition may
result only from the solution to the Bianchi identities, in the superfields introduced
in this process).

N D 1; 2 Poincaré supergravities can be obtained from the corresponding con-
formal theories by consistent couplings to compensating multiplets that break
superconformal invariance and local U(N ). There are different possible choices of
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compensating multiplets, leading to different formulations of the Poincaré theory.
What is special about these theories is the existence of a completely off-shell
formalism. This means that, for each of these theories, a complete set of auxil-
iary fields is known (actually, there exist three known choices for each theory). In
superspace this means that, after imposing constraints on the torsions, we can com-
pletely solve the Bianchi identities without using the field equations [5,8], and there
is a perfect identification between the superspace and x-space descriptions. We will
review how is this achieved for the “old minimal” N D 1; 2 cases.

7.3 N D 1 Supergravity in Superspace

7.3.1 N D 1 Superspace Geometry and Constraints

N D 1 superspace geometry is a simpler particular case of the general N case we
saw in the previous section. Namely, the internal group indices a; b; � � � do not exist.
The structure group is at most SO.1; 3/ � U.1/ (in the Poincaré theory we will
consider, it is actually just the Lorentz group). To write any U(N ) valued formula
in the N D 1 case, one simply has to decompose that formula under U(N ) and take
simply the group singlets.

Specific to N D 1; 2 are the representation-preserving constraints, required by
the above mentioned integrability condition for the existence of antichiral super-
fields, defined by (7.28). For N D 1, these constraints are the following:

T
PC

AB D 0; Tm
AB D 0: (7.29)

Conventional constraints allow us to express the superconnection in terms of the
supervielbein. Namely, the constraint Tmnp D 0 allow us to solve for the bosonic
connection ˝p

mn, exactly as in general relativity. Constraints T C
AB D 0 allow us to

solve for ˝C
AB , and T

PC
A PB D 0, for ˝ PC

A PB . But in N D 1 supergravity one can even

go further, and solve for the supervielbein parts with bosonic tangent indices E˘
n in

terms of the other parts of the supervielbein. The conventional constraints that allow

for that are Tm

A PB D �2i�m

A PB , T PC
A PB � 1

4
Tmn

A .�mn/
PC
PB D 0.

In Sect. 7.2.3, we required a stronger constraint, which in N D 1 language is
written as Tmn

A D 0. We can still require that as a conventional constraint, if we
take for structure group SO.1; 3/ � U.1/. In the formulations in which U(1) is not
gauged, only the constraints above are taken for the conformal theory, but an extra
constraint will be necessary in order to obtain the Poincaré theory. We will analyze
the possible cases next.
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7.3.2 From Conformal to Poincaré Supergravity

To obtain N D 1 Poincaré supergravity from conformal supergravity, we must
adopt constraints which do not preserve the superconformal invariance. However,
we must not break all superconformal invariance, since that would be equivalent
to fixing all the superconformal gauges, and we would be left only with the fields
which are inert under superconformal gauge choices, i.e., the fields of the Weyl
multiplet em

� ,  A
� and A�. As we will see, this will be the case either with gauged

or with ungauged U(1).

7.3.2.1 Ungauged U(1)

To determine the nonconformal constraints, we must first determine the transforma-
tion properties of the supervielbeins and superconnections.

In Lorentz superspace, the super Weyl parameter L is complex. We define

E 0˘
A D eLE˘

A ; E
0˘
PA D eLE˘

PA
: (7.30)

Since, with our choice of constraints, supervielbeins and superconnections can
all be expressed in terms of the spinor vielbeins, we only need these transformation
properties; conventional constraints are valid for any set of vielbeins and, therefore,
they are automatically satisfied when one replacesE˘

A ,E˘
PA by their rescaled values.

Then it can be proven [9] that the representation preserving constraints are invariant
under (7.30). If these constraints were not invariant under Weyl transformations,
then chiral multiplets could not exist in the background of conformal supergravity.

A complex scalar superfield can be decomposed in local superspace into chiral
and linear parts. After breaking part of the super-Weyl group, the parameters L;L
will be restricted such that a linear combination of them will be either chiral or
linear. In the first case, one needs a dimension 1

2
constraint; in this second, one of

dimension 1. The only left unconstrained objects of dimension 1
2

and 1 are, respec-
tively, the torsion component Tm

Am and the superfield R D RAB
AB . These superfields

transform under the super-Weyl group as
�r2 D rArA

�
[9, 10]

T 0m
Am D eL

�
Tm

Am C 2rA

�
2LCL

��
; R0 D 3

�
r2 C 1

3
R

�
e2L: (7.31)

We can break the super Weyl invariance by imposing as a constraint

Tm
Am D 0: (7.32)

For that to be consistent, we must impose that 2LC L is antichiral:

rA

�
2LC L

� D 0: (7.33)
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What is left from the super-Weyl group is the so-called Howe–Tucker group [4]: the
supervielbeins transforming as in (7.30), with L;L satisfying (7.33).

This constraint leads to the “old minimal” formulation of N D 1 Poincaré super-
gravity [11, 12]. To the Weyl multiplet of conformal supergravity we are adding a
compensating chiral multiplet with 8C 8 components.

Another possibility to break the super Weyl invariance is to set the constraint
R D 0; the remaining super Weyl invariance contains a parameter L that now is an
antilinear superfield: r2L D 0. This constraint leads to the nonminimal formulation
of N D 1 Poincaré supergravity [13]. To the Weyl multiplet of conformal super-
gravity we are adding a compensating linear multiplet having 12C 12 components.
This way, we have fermionic auxiliary fields.

Both constraints can be generalized. On dimensional grounds, the most general
nonconformal constraint one may take is given by [9, 10]

C D �1
3
RC nC 1

3nC 1
rATm

Am �
�
nC 1

3nC 1

�2

T Am
m T n

An D 0: (7.34)

n is a numerical parameter. This constraint transforms, for small L, as

ıC D 2LC � 2

�
r2 � 2 nC 1

3nC 1
T Am

m rA

��
L � nC 1

3nC 1

�
2LC L

��
: (7.35)

For a generic choice of n, the constraint R D 0 is necessary and we have a nonmin-
imal formulation. Taking n D �1

3
corresponds to the “old minimal” formulation

we saw.
Another interesting case occurs by taking n D 0: onlyLCL appears in ıC , such

that the (axial) U(1) local gauge invariance, which we did not include in the structure
group, is actually conserved, with parameter L � L. This corresponds to the “new
minimal” (also known as “axial”) formulation of N D 1 Poincaré supergravity [14],
in which one introduces a compensating tensor multiplet having 8C 8 components.

Whichever constraint we choose, the irreducible parameter invariance of the
resulting geometry corresponds to the compensating multiplet. This invariance
allows for redefinition of torsions and, after gauge-fixing, for the fields of the
compensating multiplet to appear in the final theory, with the original symmetry
completely broken. These are very generical features, which we will also meet in
the formulation of the N D 2 theory.

7.3.2.2 Gauged U(1)

Let’s now start from a SO.1; 3/ � U.1/ superspace. From (7.8), the fermionic part
of the U(1) connection transforms under U(1) as (A is a “flat” index):

ı˝A D �rA �˝A (7.36)
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while, from (7.16), under a general transformation we have

ı˝A D ˚A �HM
A ˝M : (7.37)

In U(1) superspace, after fixing the constraints it can be shown [5] that one has
HAB D 1

2
"ABH , ˚A D 3

2
rAH , H D �1

4
Hm

m being an unconstrained superfield
defined in Sect. 7.2.2 which parameterizes the super-Weyl transformations. Overall,
˝A transforms as

ı˝A D rA

�
3

2
H �

�
C
�
1

2
H �

�
˝A: (7.38)

From this transformation law, by setting the constraint ˝A D 0, we see that we
break the superconformal and local U(1) symmetries and restrict the combination
3
2
H� to a compensating chiral multiplet. This is the “old minimal” formulation of

N D 1 Poincaré supergravity [11, 12]. Other formulations have a treatment similar
to the ungauged U(1) case. From now on, by N D 1 Poincaré supergravity we
always mean the “old minimal” formulation with n D �1=3.

7.3.3 The Chiral Compensator and the Chiral Measure

The superspace approach we have discussed has the inconvenience of involving a
large number of fields and a large symmetry group. This way, one must put con-
straints and choose a particular gauge to establish the compatibility to the x-space
theory (see Sect. 7.3.5). There is an approach which uses from the beginning fewer
fields and a smaller symmetry group (holomorphic general coordinate transfor-
mations) [1, 9, 10, 15–17]. In this approach we take two chiral superspaces with
complex coordinates .y�; �/; .y�; �/, which are related by complex conjugation.
In four-component spinor notation, � D 1

2
.1C	5/�; � D 1

2
.1�	5/�. One also has

1

2

�
y� C y�

� D x�; y� � y� D 2iH� .x;�/ : (7.39)

This way, the imaginary part of the coordinates y�; y� is interpreted as an axial
vector superfield, while the real part is identified with real spacetime. One has then
in the combined 8C 4 dimensional space .y�; y�; �; �/ a 4C 4 dimensional hyper-
surface defined by y� � y� D 2iH�.y� C y�; �; �/. When one shifts points by a
coordinate transformation, the hypersurface itself is deformed in such a way that the
new points lie on the new hypersurface. These hypersurfaces, each characterized by
the superfieldH�.y� C y�; �; �/, represent each a real superspace like the one we
have been working with.
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The holomorphic coordinate transformations form a supergroup. If one puts no
further restriction on their parameters, one is led to conformal supergravity. How-
ever, Poincaré supergravity is described by the very natural subgroup of unimodular
holomorphic transformations, which satisfy

sdet
@ .y�0; � 0/
@ .y�; �/

D 1: (7.40)

One can take Poincaré supergravity is a gauge theory with the gravitational super-
fieldH�.x; �/ as a dynamical object and the supergroup of holomorphic coordinate
transformations being the gauge group [16]. But one can also remove the constraint
(7.40) and handle arbitrary holomorphic transformations at the cost of the appear-
ance of a compensating superfield. In the “old minimal” n D �1=3 theory, this
superfield, which we define as '.y�; �/, is holomorphic and is called the chiral
compensator. It transforms as [9, 10]

' .y�; �/ D
�

sdet
@ .y�0; � 0/
@ .y�; �/

	 1
3

'
�
y�0; � 0� : (7.41)

One can then find a coordinate system in which '.y�; �/ D 1. Clearly, all the holo-
morphic coordinate transformations preserving this gauge are unimodular; this way,
we recover the gauge group of Poincaré supergravity. Poincaré supergravity is then
a theory of two dynamical objects [15] – the gravitational superfield H�.x�; �; �/

and the chiral compensator '.y�; �/ – transforming under the supergroup of holo-
morphic coordinate transformations, and defined in real superspaces, given by the
hypersurfaces above.

The chiral compensator allows us to define an invariant chiral measure in super-
space. Since

d 4yd 2� D sdet
@ .y�; �/

@ .y�0; � 0/
d 4y0d 2� 0; (7.42)

we have
'3 .y�; �/ d 4yd 2� D ' 03 �y�0; � 0�d 4y0d 2� 0: (7.43)

We define then the chiral density [3, 9, 10, 17] as


 D '3: (7.44)

From the transformation law of ', one can see that 
 transforms under supercoordi-
nate transformations with parameters � as

ı
 D �@

�

�.�/

�
: (7.45)

Instead of choosing the gauge ' .y�; �/ D 1, it is more convenient to choose
a Wess–Zumino gauge for H�, in which this superfield is expressed only in terms
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of the physical and auxiliary fields from the supergravity multiplet. After fixing the
remaining gauge freedom, the same is valid for 
.

7.3.4 Solution to the Bianchi Identities in “old minimal” N D 1
Poincaré Supergravity

The full off-shell solution to the Bianchi identities, given the representation-
preserving and conventional constraints in Sect. 7.3.1 and the nonconformal con-
straint Tm

Am D 0, is standard textbook material which we do not include here [8,18].
The results, in our conventions, may be seen in [19]. It can be shown that, as a result

of Tm
Am D 0 and the conventional constraint T PC

A PB � 1
4
Tmn

A .�mn/
PC
PB D 0, one actu-

ally has simply T m
Am D 0 and actually recovers the conventional constraint from the

approach with gauged U(1).
The off-shell solutions are described in terms of the supergravity superfieldsR D

RAB
AB , Gm, WABC , their complex conjugates and their covariant derivatives. R and

W PA PB PC are antichiral:
rAR D 0; rAW PA PB PC D 0: (7.46)

In N D 1, chiral superfields may exist with any number of undotted indices (but
no dotted indices). Chiral projectors exist; when acting with them on any superfield
with only undotted indices, a chiral superfield always results. For scalar superfields
the antichiral projector is given by

�r2 C 1
3
R
�
.

The torsion constraints imply the following off-shell differential relations (not
field equations) between the N D 1 supergravity superfields:

rAG
A PB D 1

24
r PBR; (7.47)

rAWABC D i
�
r

B PA
G

PA
C C r

C PA
G

PA
B

�
; (7.48)

which, together with the torsion conventional constraints, imply the relation

r2R � r2
R D 96irnGn: (7.49)

7.3.5 From Superspace to x-Space

Another special feature of pure N D 1 four-dimensional supergravity is that its
action in superspace is known. It is written as the integral, over the whole super-
space, of the superdeterminant of the supervielbein [1, 3]:

LSG D 1

2�2

Z
E d 4� ;E D sdetEM

 : (7.50)
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On dimensional grounds, this is the only possible action. The 1
2�2 factor is necessary

to reproduce the x-space results; in principle, one could multiply this action by any
dimension zero unconstrained scalar, but that object does not exist. In this action,
and in actions written as d 4� integrals, the indices of the �-variables are curved,
i.e., they vary under Einstein transformations.

In order to determine the component expansion of this action, the best is cer-
tainly not to determine directly all the components of E, but rather to determine the
component expansion of the supergravity superfields. For that, we use the method
of gauge completion [18, 20]. The basic idea behind it is to relate in superspace
some superfields and superparameters at � D 0 (which we symbolically denote
with a vertical bar on the right) with some x space quantities, and then to require
compatibility between the x space and superspace transformation rules [11, 12].

We make the following identification for the supervielbeins at � D 0 EN
˘

ˇ
ˇ:

EN
˘

ˇ
ˇ
ˇ D

2

6
4
em

�
1
2
 A

�
1
2
 

PA
�

0 ıA
B 0

0 0 ı
PA
PB

3

7
5 : (7.51)

In the same way, we gauge the fermionic superconnection at order � D 0 to zero
and we can set its bosonic part equal to the usual spin connection:

˝n
�m

ˇ
ˇ D !n

�m .e;  / ; ˝
n
Am

ˇ
ˇ ; ˝n

PAm

ˇ
ˇ
ˇ D 0: (7.52)

The spin connection is given, in N D 1 supergravity, by

!n
�m .e;  / D !n

�m.e/� i

4
�2
�
 �A�

A PA
m  n

PA
�  �A�

nA PA 
m PA

C  mA�
A PA
�  n

PA

C  � PA�
A PA
m  n

A �  � PA�
nA PA mA C  m PA�

A PA
�  n

A

�
: (7.53)

!n
�m.e/ is the connection from general relativity. We also identify, at the same order
� D 0, the superspace vector covariant derivative (with an Einstein indice) with
the curved space covariant derivative: D�

ˇ
ˇ D D�. These gauge choices are all

preserved by supergravity transformations.
As a careful analysis using the solution to the Bianchi identities and the off-shell

relations among the supergravity superfields R;Gn;WABC shows, the component
field content of these superfields is all known once we know

R
ˇ
ˇ ; rAR

ˇ
ˇ ; r2R

ˇ
ˇ ; G

A PA
ˇ
ˇ ; rAGB PA

ˇ
ˇ̌
; r PArAGB PB

ˇ
ˇ̌
; WABC j ; rDWABC

ˇ
ˇ :

All the other components and higher derivatives ofR;G
A PA;WABC can be written

as functions of these previous ones. In order to determine the “basic” components,
first we solve for superspace torsions and curvatures in terms of supervielbeins and
superconnections using (7.51) and (7.52); then we identify them with the off-shell
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solution to the Bianchi identities [9, 18, 20]:1

R
ˇ̌ D 4 .M C iN / ; G

A PA
ˇ̌ D 1

3
A

A PA; WABC j D �1
4
 

PC
A B PC C

� i

4
A

PC
A  B PC C

:

Rj and Gmj are auxiliary fields. A�, a gauge field in conformal supergravity,
is an auxiliary field in Poincaré supergravity. The (anti)chirality condition on R;R
implies their � D 0 components (resp. the auxiliary fields M � iN;M C iN ) lie in
antichiral/chiral multiplets (the compensating multiplets); (7.47) shows the spin-1/2
parts of the gravitino lie on the same multiplets (because, as we will see in the next
section, rAGB PB , at � D 0, is the gravitino curl) and, according to (7.49), so does
@�A�.

rAR
ˇ
ˇ;rAGB PA

ˇ
ˇ also come straightforwardly from comparison to the solution

to the Bianchi identities [9,19]. Finding r2R
ˇ
ˇ;r PArAGB PB

ˇ
ˇ;rDWABC

ˇ
ˇ is a bit more

involved: one must identify the (super)curvature Rmn
�� with the x-space curvature

Rmn
�� , multiply by the inverse supervielbeins E�

ME
�
N , identify with the solution

to the Bianchi identities for RMN and extract the field contents by convenient
index manipulation. The field content of these components will include the Rie-
mann tensor in one of its irreducible components, respectively the Ricci scalar,
the Ricci tensor and the selfdual Weyl tensor (WABCD WD � 1

8
WC

�����
��
AB�

��
CD ,

W�
���� WD 1

2
.W���� ˙ i

2
"�


��W�
�� /). The full results are derived in [19]; at the
linearized level,

r2R
ˇ
ˇ D �8R C : : : ; rAr PAGB PB

ˇ
ˇ
ˇ D �1

2
�

�

A PA�
�

B PB

�
R�� � 1

4
g��R

�
C : : : ;

rAWBCD

ˇ
ˇ D �1

8
WC

�����
��
AB�

��
CD C : : : ; r2W 2

ˇ
ˇ D �2W2C C : : : ; (7.54)

r PAW PB PC PD
ˇ̌
ˇ D �1

8
W�

�����
��

PA PB�
��

PC PD C : : : ; r2
W

2
ˇ̌
ˇ D �2W2� C : : : (7.55)

Knowing these components, we can compute, in x-space, any action which
involves the supergravity multiplet. In order to do that, we need to know how to
convert superspace actions to x-space actions.

Consider the coupling of a real scalar superfield to supergravity given by

L D 1

2�2

Z
E˚d 4� D 3

4�2

Z �
E

R

�
r2 C 1

3
R

�
C E

R

�
r2 C 1

3
R

�	
˚d 4�

D 3

4�2

Z  

�1
4

D
2
E

R

!��
r2 C 1

3
R

�
˚

	
d 2� C h:c:: (7.56)

1  B
�� D D� 

B
� � D� 

B
� is the gravitino curl.
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DA D �
E�1

�M
A

rM is the superspace covariant derivative with an Einstein index. In

the previous equation, the operator d2� D � 1
4
D

2
should apply to all the integrand,

and not only to E. But, knowing that we can choose the gauge (7.51), we have
DAj D rAj and therefore, to order � D 0, we have

D PA

�
1

R

�
r2 C 1

3
R

�	ˇˇ
ˇ
ˇ D r PA

�
1

R

�
r2 C 1

3
R

�	ˇˇ
ˇ
ˇ D 0: (7.57)

A “rigid” or “curved” superfield whose � D 0 component vanishes in any frame
is identically zero (for a proof see [1]). Therefore, we conclude that we have

D PA

h
1

R

�
r2 C 1

3
R
�i

D 0, and we may write (7.56).

In the particular gauge (7.51), we can write the chiral density (7.44) as


 D 1

4

D
2
E

R
: (7.58)

The proof of this fact requires the knowledge of the solution of the supergravity
constraints in terms of unconstrained superpotentials [15]. Indeed, one of these pre-
potentials is identical to the chiral compensator. Equation (7.58) is obtained from
expressing the supertorsions in terms of the prepotentials [9, 10].

The expansion in components of the chiral density is derived, in the same gauge,
by requiring that 2
j D e and using its transformation law (7.45) [17]. In its expres-
sion, the �-variables carry Lorentz indices. In these new �-variables, the coefficients
of the �-expansion of chiral superfields are precisely their covariant derivatives
[6, 18]. A chiral superfield has no � ’s in its expansion. This makes superspace inte-
gration much easier. For N D 1; 2, when we write full superspace integrals the
�-variables carry Einstein indices, but when the integrals are in half superspace
(d 2� in N D 1, d 4� in N D 2), they carry Lorentz indices. Therefore, one finally
has for (7.56)

L D � 3

4�2

Z



��
r2 C 1

3
R

�
˚

	
d 2� C h:c:: (7.59)

By writing (7.56) on this form, one can identify the lagrangian of supergravity
minimally coupled to a chiral field [18, 21]. The lagrangian of pure supergravity is
simply obtained by taking ˚ D 1.

7.4 N D 2 Supergravity in Superspace

7.4.1 N D 2 Conformal Supergravity

The N D 2Weyl multiplet has 24C24 degrees of freedom. Its field content is given
by the graviton em

� , the gravitinos  Aa
� , the U(2) connection e̊ab

� , an antisymmetric
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tensor Wmn which we decompose as W
A PAB PB D 2" PA PBWAB C 2"ABW PA PB , a spinor

a
A and, as auxiliary field, a dimension 2 scalar I . In superspace, a gauge choice

can be made (in the supercoordinate transformation) such that the graviton and
the gravitinos are related to � D 0 components of the supervielbein (symbolically
EN

˘

ˇ
ˇ):

EN
˘

ˇ̌
ˇ D

2

66
6
4

em
�

1
2
 Aa

�
1
2
 

PAa
�

0 �ıA
Bı

a
b

0

0 0 �ı PA
PBı

a
b

3

77
7
5
: (7.60)

In the same way, we gauge the fermionic part of the Lorentz superconnection at
order � D 0 to zero and we can set its bosonic part equal to the usual spin
connection:

˝n
�m

ˇ
ˇ D !n

�m .e;  
a/ ; ˝n

Aam

ˇ
ˇ ; ˝n

PAam

ˇ
ˇ
ˇ D 0: (7.61)

The U(2) superconnection e̊ab
˘ is such that e̊ab

�

ˇ
ˇ D e̊ab

� . The other fields are the
� D 0 component of some superfield, which we write in the same way.

The chiral superfield WAB is the basic object of N D 2 conformal supergravity,
in terms of which its action is written. Other theories with different N have an
analogous superfield (e.g.,WABC in N D 1).

In U(2) N D 2 superspace there is an off-shell solution to the Bianchi identities.
The torsions and curvatures can be expressed in terms of superfields WAB , YAB ,
U ab

A PA, Xab , their complex conjugates and their covariant derivatives. Of these four
superfields, only WAB transforms covariantly under super-Weyl transformations.
The other three superfields transform non-covariantly; they describe all the non-
Weyl covariant degrees of freedom in the transformation parameter H , and can be
gauged away by a convenient (Wess–Zumino) gauge choice. Another nice feature
of N D 2 superspace is that there exists, analogously to the N D 1 case, a chiral
density 
 which allows us to write chiral actions [22].

7.4.2 Degauging U(1)

The first step for obtaining the Poincaré theory is to couple to the conformal the-
ory an abelian vector multiplet (with central charge), described by a vector A�, a
complex scalar, a Lorentz-scalar SU(2) triplet and a spinorial SU(2) doublet. The
vector A� is the gauge field of central charge transformations; it corresponds, in
superspace, to a 1-form A˘ with a U(1) gauge invariance (the central charge trans-
formation). This 1-form does not belong to the superspace geometry. Using the
U(1) gauge invariance we can set the gauge A˘ j D �

A�; 0
�
. The field strength

F˘˙ is a two-form defined as F˘˙ D 2DŒ˘ A˙g or, with flat indices, FMN D
2rŒM AN g CT P

MNAP . It satisfies its own Bianchi identitiesDŒ� F˘˙g D 0 or, with
flat indices,

rŒM FNP g C T
Q

MN jFQjP g D 0: (7.62)
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Here we split the U(2) superconnection e̊ab
˘ into a SU(2) superconnection˚ab

˘ and
a U(1) superconnection '˘ ; only the later acts on A˘ : e̊ab

˘ D ˚ab
˘ � 1

2
"ab'˘ . One

has to impose covariant constraints on its components (like in the torsions), in order
to construct invariant actions:

F ab
AB D 2

p
2"AB"

abF; F ab

A PB D 0: (7.63)

By solving the FMN Bianchi identities with these constraints, we conclude that they
define an off-shell N D 2 vector multiplet, given by the � D 0 components of the

superfields A�; F; F
a
A D i

2
F

PAa

A PA
; F a

b
D 1

2

�
�rB

b
F a

B C FX
a

b C FXa
b

�
. F a

b

ˇ
ˇ is an

auxiliary field; F a
a D 0 if the multiplet is abelian (as it has to be in this context).

F is a Weyl covariant chiral superfield, with nonzero U(1) and Weyl weights. A
superconformal chiral lagrangian for the vector multiplet is

L D
Z

F 2d 4� C h:c:: (7.64)

In order to get a Poincaré theory, we must break the superconformal and local
abelian (from the U(1) subgroup of U(2) – not the gauge invariance of A�) invari-
ances. For that, we set the Poincaré gauge F D F D 1. As a consequence, from the
Bianchi and Ricci identities we get

'a
A D 0; F A

a D 0: (7.65)

Furthermore, U ab

A PA is an SU(2) singlet, to be identified with the bosonic U(1)
connection (now an auxiliary field):

U ab

A PA D "abU
A PA D "ab'

A PA: (7.66)

Other consequences are

F
A PAB PB D p

2i


"AB

�
W PA PB C Y PA PB

�C " PA PB .WAB C YAB/
�
; (7.67)

F a
b D Xa

b ; (7.68)

Xab D Xab : (7.69)

(7.67) shows thatWmn is now related to the vector field strength Fmn. Ymn emerges
as an auxiliary field, like Xab (from (7.68)). We have, therefore, the minimal field
representation of N D 2 Poincaré supergravity, with a local SU(2) gauge symmetry
and 32C 32 off-shell degrees of freedom:

em
� ;  

Aa
� ; A�; ˚

ab
� ; Ymn; Um; 

a
A; Xab ; I: (7.70)

Although the algebra closes with this multiplet, it does not admit a consistent
lagrangian because of the higher-dimensional scalar I [23].
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7.4.3 Degauging SU(2)

The second step is to break the remaining local SU(2) invariance. This symmetry can
be partially broken (at most, to local SO(2)) through coupling to a compensating so-
called “improved tensor multiplet” [24,25], or broken completely. We take the later
possibility. There are still two different versions of off-shell N D 2 supergravity
without SO(2) symmetry, each with different physical degrees of freedom. In both
cases we start by imposing a constraint on the SU(2) parameter Lab which restricts
it to a compensating nonlinear multiplet [26] (at the linearized level, ra

AL
bc D 0).

From the transformation law of the SU(2) connection ı˚ab
M D �rML

ab we can get
the required condition forLab by imposing the following constraint on the fermionic
connection:

˚abc
A D 2"ab�

c

A: (7.71)

This constraint requires introducing a new fermionic superfield �a
A. We also intro-

duce its fermionic derivatives P and Hm. The previous SU(2) connection ˚ab
� is

now an unconstrained auxiliary field. The divergence of Hm is constrained, though,
at the linearized level by the condition rmHm D 1

3
R � 1

12
I , which is equivalent

to saying that I is no longer an independent field. This constraint implies that only
the transverse part of Hm belongs to the nonlinear multiplet; its divergence lies in
the original Weyl multiplet. From the structure equation (7.12) and the definition
(7.71), we can derive off-shell relations for the (still SU(2) covariant) derivatives
of �a

A. Altogether, these component fields form then the “old minimal” N D 2

40 C 40 multiplet [27]: em
� ;  

Aa
� ; A�; ˚

ab
� ; Ymn; Um; 

a
A; Xab ;Hm; P; �

a
A. This is

“old minimal” N D 2 supergravity, the formulation we are working with. The final
lagrangian can be found in [26, 28]. The other possibility (also with SU(2) com-
pletely broken) is to further restrict the compensating non-linear multiplet to an
on-shell scalar multiplet [29]. This reduction generates a minimal 32C 32multiplet
(not to be confused with (7.70)) with new physical degrees of freedom. We will not
further pursue this version of N D 2 supergravity.

7.4.4 From N D 2 SU(2) Superspace to x-Space

Our choices for torsion constraints in N D 2 are very similar to the ones for generic
N presented in Sect. 7.2.3, the only difference being that, like in N D 1, we have
the representation-preserving constraints T abm

AB ; TAaBb PC c D 0. In conformal super-
gravity, all torsions and curvatures can be expressed in terms of the basic superfields
WAB , YAB , U

A PA,Xab . After breaking of superconformal invariance and local U(2),
the basic superfields in the Poincaré theory become the physical field WAB and the
auxiliary field �a

A [30]. All torsions and curvatures can be expressed off-shell in
terms of these superfields, their complex conjugates and derivatives [28]. WAB j, at
the linearized level, is related to the field strength of the physical vector field A�
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(the graviphoton): from (7.67),

WAB j D � i

2
p
2
�mn

ABFmn � YAB � i

4
�mn

AB

�
 Cc

m  nCc C  
PC c

m  
n PC c

�
: (7.72)

Xab D 1
2

�
r PAa � 2� PAa

�
�

b

PA
, YAB D � i

2

�
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A C 2�a
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�
�Ba, P D ir PAa� PAa
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A PA D 1
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�
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A� PAa
C ra

PA
�Aa C 4�a

A� PAa

�
, ˚ab

A PA
D i
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�
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A�
b

PA
� ra

PA�
b

A � 4�a

A�
b

PA

�
,

HA PA D �ira
A� PAa C ira

PA�Aa, Aa D �irA
b
Xab are auxiliary fields at � D 0;

I D ir PAa PAa � irAaAa is a dependent field. In the linearized approximation,

WBCAaj D i

2
rBaWCA j � i

6
."BCAa C "BACa/

ˇ
ˇ
ˇ
ˇ D �1

4
 ABCc C : : : ;

Y
BC PAa

ˇ̌ D � i

2
r PAa

YBC

ˇ
ˇ̌
ˇ D �1

8
 

BC PAa
C : : : ;

WABCD j D
�
i

4
rb

ArBb � 2YAB

�
WCD

ˇ
ˇ
ˇ
ˇ D �1

8
WC

�����
��
AB�

��
CD C : : : ; (7.73)

P
AB PA PB

ˇ̌ D
�
i

8
rb

ArBbY PA PB C h:c:

�ˇˇ̌
ˇ : : : D 1

2
�

�

A PC�
�

B PD

�
R�� � 1

4
g��R

�
: : : ;

Rj D
�
i

4
r PAar PB

a W PA PB � 1

4
rAarb

AXab C h:c:

�ˇˇ
ˇ
ˇC : : : D �R C : : :

7.4.5 The Chiral Density and the Chiral Projector

The action of N D 2; d D 4 Poincaré supergravity is written in superspace as

LSG D � 3

4�2

Z

d 4� C h:c:: (7.74)

The expansion of the chiral density 
 in components, which allows us to write chiral
actions, can be seen in [28]. From the solution to the Bianchi identities one can
check that the following object is an antichiral projector [6]:

rAarb
A

�
rB

a rBb C 16Xab

�
� rAarB

a

�
rb

ArBb � 16iYAB

�
: (7.75)

When one acts with this projector on any scalar superfield, one gets an antichiral
superfield (with the exception of WAB , only scalar chiral superfields exist in curved
N D 2 superspace; other types of chiral superfields are incompatible with the solu-
tion to the Bianchi identities). Together with 
, this projector allows us to write more
general actions in superspace.



7 Higher-Order String Effective Actions and Off-Shell d D 4 Supergravity 337

7.5 Superstring ˛03 Effective Actions and R4 Terms in d D 4

In d D 4, there are only two independent real scalar polynomials made from four
powers of the Weyl tensor [31], given by

W2CW2� D WABCDWABCDW PA PB PC PDW PA PB PC PD; (7.76)

W4C C W4� D
�
WABCDWABCD

�2 C
�
W PA PB PC PDW PA PB PC PD

�2

: (7.77)

We now write the effective actions for type IIB, type IIA and heterotic super-
strings in d D 4, after compactification from d D 10 in an arbitrary manifold,
in the Einstein frame (considering only terms which are simply powers of the Weyl
tensor, without any other fields except their couplings to the dilaton, and introducing
the d D 4 gravitational coupling constant �):

�2

e
LIIB

ˇ
ˇ
ˇ
ˇ
R4

D ��.3/
32

e�6	˛03W2CW2� � 1

211�5
e�4	˛03W2CW2�; (7.78)

�2

e
LIIA

ˇ
ˇ
ˇ
ˇ
R4

D ��.3/
32

e�6	˛03W2CW2�

� 1

212�5
e�4	˛03 
�W4C C W4�

�C 224W2CW2�
�
; (7.79)

�2

e
Lhet

ˇ
ˇ
ˇ̌
R2CR4

D � 1

16
e�2	˛0 �W2C C W2�

�C 1

64
.1 � 2�.3// e�6	˛03W2CW2�

� 1

3 � 212�5
e�4	˛03 
�W4C C W4�

�C 20W2CW2�
�
: (7.80)

These are only the moduli-independentR4 terms from these actions. Strictly speak-
ing not even these terms are moduli-independent, since they are all multiplied
by the volume of the compactification manifold, a factor we omitted for sim-
plicity. But they are always present, no matter which compactification is taken.
The complete action, for every different manifold, includes many other moduli-
dependent terms which we do not consider here: we are mostly interested in a T 6

compactification.
At string tree level, for all these theories in d D 4 only W2CW2� shows up.

Because of its well known d D 10 SL.2;Z/ invariance, in type IIB theory only the
combination W2CW2� is present in the d D 4 effective action (7.78). In the other
theories, W4C C W4� shows up at string one loop level. For type IIA, the reason
is the difference between the left and right movers in the relative GSO projection
at one string loop, because of this theory being nonchiral. Heterotic string theories
have N D 1 supersymmetry in ten dimensions, which allows corrections to the
sigma model already at order ˛0, including R2 corrections (forbidden in type II
theories in d D 10). Because of cancelation of gravitational anomalies, another R4
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contribution is needed in heterotic theories, which when reduced to d D 4 gives rise
to (7.76) and (7.77).

Next we consider the supersymmetrization of these R4 terms in d D 4.

7.5.1 N D 1; 2 Supersymmetrization of W2
CW2

�

The supersymmetrization of the square of the Bel-Robinson tensorW2CW2� has been
known for a long time, in simple [19, 32] and extended [33, 34] four dimensional
supergravity.

7.5.1.1 N D 1

In N D 1, the lagrangian to be considered is (˛ is a numerical constant)

LSG C LR4 D 1

2�2

Z
E
�
1C ˛�6W 2W

2
�
d 4�: (7.81)

From (7.54) and (7.55), the ˛ term represents the supersymmetrization of W2CW2�.
To compute the variation of this action, we obviously need the constrained variation
of WABC . The details of this calculation are presented in [19], and so is the final

result for
R
ıŒE.1C˛�6W 2W

2
/�d 4� , which we do not reproduce here again. From

this result, the R;R field equations are given by

R D 6˛�6 W
2r2W 2

1 � 2˛�6W 2W
2

D 6˛�6W
2r2W 2 C 12˛2�12W

4
W 2r2W 2: (7.82)

From (7.49), we can easily determine rnGn. This way, auxiliary fields belonging
to the compensating chiral multiplet can be eliminated on-shell. This is not the case
for the auxiliary fields which come from the Weyl multiplet (Am), as we obtained,
also in [19], a complicated differential field equation for Gm.

7.5.1.2 N D 2

Analogously to N D 1, we write the N D 2 supersymmetric R4 lagrangian in
superspace, using the chiral projector and the chiral density, as a correction to the
pure supergravity lagrangian [34] (˛ is again a numerical constant):

LSG C LR4 D
Z



�
� 3

4�2
C ˛�4

�
rAarb

A

�
rB

a rBb C 16Xab

�

� rAarB
a

�
rb

ArBb � 16iYAB

��
W 2W

2
i
d 4� C h:c:: (7.83)

From the component expansion (7.73), the ˛ term clearly contains eW2CW2�.
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At this point we proceed with the calculation of the components of (7.83) and
analysis of its field content. For that, we use the differential constraints from the
solution to the Bianchi identities and the commutation relations. The process is
straightforward but lengthy [34]. The results can be summarized as follows: with the
correction (7.83), auxiliary fields Xab ,  PC c , Y PA PB , Um and ˚ab

m get derivatives, and
the same should be true for their field equations; therefore, these superfields cannot
be eliminated on-shell. We also fully checked that superfields P andHm do not get
derivatives (with the important exception of rmHm) and, therefore, have algebraic
field equations which should allow for their elimination on shell. The only auxiliary
field remaining is �a

A. We did not analyze its derivatives because that would require
computing a big number of terms and, for each term, a huge number of different
contributions. Its derivatives should cancel, though: otherwise, we would have a
field (�a

A) with a dynamical field equation while having two fields obtained from its
spinorial derivatives (P and the transverse part of Hm) without such an equation.
�a

A, like P and transverse Hm, are intrinsic to the “old minimal” version of N D 2

supergravity; they all belong to the same nonlinear multiplet. The physical theory
does not depend on these auxiliary fields and, therefore, it seems natural that they
can be eliminated from the classical theory and its higher-derivative corrections.

7.5.2 N D 1 Supersymmetrization of W4
C C W4

�

For the term W4C C W4� there is a “no-go theorem”, which goes as follows [35]:
for a polynomial I.W/ of the Weyl tensor to be supersymmetrizable, each one of
its terms must contain equal powers of WC

���� and W�
���� . The whole polynomial

must then vanish when either WC
���� or W�

���� do.
The derivation of this result is based on N D 1 chirality arguments, which

require equal powers of the different chiralities of the gravitino in each term of a
superinvariant. The rest follows from the supersymmetric completion. That is why
the only exception to this result is W2 D W2C C W2�: in d D 4 this term is part
of the Gauss–Bonnet topological invariant (it can be made equal to it with suitable
field redefinitions). This term plays no role in the dynamics and it is automatically
supersymmetric; its supersymmetric completion is 0 and therefore does not involve
the gravitino.

The derivation of [35] has been obtained using N D 1 supergravity, whose
supersymmetry algebra is a subalgebra of N > 1. Therefore, it should remain
valid for extended supergravity too. But one must keep in mind the assumptions
which were made, namely the preservation by the supersymmetry transformations
ofR-symmetry which, for N D 1, corresponds to U(1) and is equivalent to chirality.
In extended supergravity theoriesR-symmetry is a global internal U .N / symmetry,
which generalizes (and contains) U(1) from N D 1.

Preservation of chirality is true for pure N D 1 supergravity, but to this the-
ory and to most of the extended supergravity theories one may add matter cou-
plings and extra terms which violate U(1) R-symmetry and yet can be made
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supersymmetric, inducing corrections to the supersymmetry transformation laws
which do not preserve U(1) R-symmetry.

Having this in mind [36], we consider a chiral multiplet, represented by a chiral
superfield ˆ (we could take several chiral multiplets˚i , which show up after d D 4

compactifications of superstring and heterotic theories and truncation to N D 1

supergravity, but we restrict ourselves to one for simplicity), and containing a scalar
field ˚ D ˆj, a spin� 1

2
field rAˆj, and an auxiliary field F D �1

2
r2ˆ

ˇ
ˇ. This

superfield and its hermitian conjugate couple to N D 1 supergravity in its simplest
version through a superpotential

P .ˆ/ D d C aˆ C 1

2
mˆ2 C 1

3
gˆ3 (7.84)

and a Kähler potentialK
�
ˆ;ˆ

� D � 3
�2 ln

�
� ˝.ˆ;ˆ/

3

�
, with

˝
�
ˆ;ˆ

� D �3C ˆˆ C cˆ C Ncˆ: (7.85)

In order to include the term (7.77), we take the following effective action:

L D � 1

6�2

Z
E

�
˝
�
ˆ;ˆ

�C ˛03
�
bˆ

�r2W 2
�2 C Nbˆ

�
r2
W

2
�2
�	
d 4�

� 2

�2

�Z

P .ˆ/ d 2� C h:c:

�
: (7.86)

If one expands (7.86) in components, one does not directly get (7.77), but one
should look at the auxiliary field sector. Because of the presence of the higher-
derivative terms, the auxiliary field from the original conformal supermultiplet Am

also gets higher derivatives in its equation of motion, and therefore it cannot be
simply eliminated [19, 34]. Because the auxiliary fields M;N belong to the chiral
compensating multiplet, their field equation should be algebraic, despite the higher
derivative corrections [19,34]. That calculation should still require some effort; plus,
those M;N auxiliary fields should not generate by themselves terms which violate
U(1) R-symmetry: these terms should only occur through the elimination of the
chiral multiplet auxiliary fields F; NF . This is why we will only be concerned with
these auxiliary fields, which therefore can be easily eliminated through their field
equations [21]. The final result, taking into account only terms up to order ˛03, is

�2LF;F D �15e .3C c Nc/
.3C 4c Nc/2

�
m Na˚ Cma˚

� �
c˚ C Nc˚�

C e
2c3 Nc3 C 60c2 Nc2 C 117c Nc � 135

.3C 4c Nc/3 a Na˚˚

� 36˛03e
�
b Nc �r2W 2

�2ˇ̌
ˇC Nbc

�
r2
W

2
�2
ˇ̌
ˇ
ˇ

�



7 Higher-Order String Effective Actions and Off-Shell d D 4 Supergravity 341

�a Na Cm Na˚ Cma˚ C g Na˚2 C ga˚
2 Cmm˚˚

.3C 4c Nc/2

� 3˛03a Na74c
2 Nc2 C 192c Nc � 657
.3C 4c Nc/4 ˚˚

�
b Nc �r2W 2

�2ˇˇ
ˇ
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This way we are able to supersymmetrize W4C CW4�, although we had to introduce
a coupling to a chiral multiplet. Since from (7.54) and (7.55) the factor in front of

W4C (resp. W4�) in (7.87) is given by �144b Nca Na
.3C4c Nc/2 (resp. �144 Nbca Na

.3C4c Nc/2 ), for this supersym-

metrization to be effective, the factors a from P .˚/ in (7.84) and c from˝
�
˚;˚

�

in (7.85) (and of course b from (7.86)) must be nonzero.

7.5.2.1 W4
C C W4

� in Extended Supergravity

W4C C W4� must also arise in extended d D 4 supergravity theories, for the rea-
sons we saw, but the “no-go” result of [35] should remain valid, since it was
obtained for N D 1 supergravity, which can always be obtained by truncating
any extended theory. For extended supergravities, the chirality argument should be
replaced by preservation by supergravity transformations of U(1), which is a part of
R-symmetry.

N D 2 supersymmetrization of W4C CW4� should work in a way similar to what
we saw for N D 1. N D 2 chiral superfields must be Lorentz and SU(2) scalars but
they can have an arbitrary U(1) weight, which allows supersymmetric U(1) breaking
couplings.

A similar result should be more difficult to implement for N 	 3, because there
are no generic chiral superfields. Still, there are other multiplets than the Weyl,
which one can consider in order to couple to W4C C W4� and allow for its super-
symmetrization. The only exception is N D 8 supergravity, a much more restrictive
theory because of its higher amount of supersymmetry. In this case one can only take
its unique multiplet, which means there are no extra matter couplings one can con-
sider. We have shown that the N D 8 supersymmetrization of W4C C W4�, coupled
to scalar fields from the Weyl multiplet, is not allowed even at the linearized level
[37]. In N D 8 superspace one can only have SU(8) invariant terms, and we argued
W4C C W4� should be only SU.4/ ˝ SU.4/ invariant. If that is the case, in order
to supersymmetrize this term besides the supergravity multiplet one must introduce
U -duality multiplets, with massive string states and nonperturbative states. The fact
that one cannot supersymmetrize in N D 8 a term which string theory requires
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to be supersymmetric, together with the fact that one needs to consider nonper-
turbative states (from U -duality multiplets) in order to understand a perturbative
contribution may be seen as indirect evidence that N D 8 supergravity is indeed in
the swampland [38]. We believe that topic deserves further study.

7.6 Applications to Black Holes in String Theory

String-corrected black holes have been a very active recent topic of research, for
which one needs to know the string effective actions to a certain order in ˛0. Top-
ics which have been studied include finding ˛0-corrected black hole solutions by
themselves, but also studying their properties like the entropy. One of the biggest
successes of string theory was the calculation of the microscopic entropy of a class
of supersymmetric black holes and the verification that this result corresponds pre-
cisely to the macroscopic result of Bekenstein and Hawking. Clearly it is very
important to find out if and how this correspondence extends to the full string
effective action, without ˛0 corrections.

Because of different ˛0 corrections each quantity gets, typically the entropy does
not equal one quarter of the horizon area for black holes with higher derivative
terms. In order to compute the entropy for these black holes, a formula has been
developed by Wald [39]. When this formula is applied to extremal (not necessarily
supersymmetric) black holes, one arrives at the entropy functional formalism devel-
oped by Sen (for a complete review see [40]). This formalism can be summarized as
follows: one considers a black hole solution from a lagrangian L with gravity plus
some gauge fields and massless scalars in d dimensions. The near horizon limit of
such black hole corresponds to AdS2 �Sd�2 geometry, with two parameters v1; v2.
Also close to the horizon, the gauge fields are parameterized by sets of electric .ei /

and magnetic .pa/ charges, and the scalar fields by constants us. The parameters
.u; v; e;p/ are up to now arbitrary and, therefore, the solution is off-shell. Next we
define the function (to be evaluated in the near horizon limit)

f .u; v; e;p/ D
Z

Sd�2

p�gLd˝d�2:

The on-shell values of u; v; e for a given theory are found through the relations

@f

@us

D 0;
@f

@vj

D 0;
@f

@ei

D qi ;

which also reproduce the equations of motion. Then, using Wald’s formulation, Sen
derived the black hole entropy, given by

S D 2�

�
ei

@f

@ei

� f

�
:
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This process has been verified for extremal (supersymmetric or not) black holes in
generic d dimensions. In particular, it has been tested with off shell formulations
of supergravity [41] (these formulations are known for N D 1 in d D 4 or N D 2

in d D 4; 5; 6). When one considers black holes in these theories, auxiliary fields
must also be considered in f , necessarily as independent fields (since for this func-
tional we take an a-priori off-shell solution). As we have seen, when considering
theories with higher-derivative corrections, some of these auxiliary fields can still
be eliminated, but others become dynamical. Clearly a precise knowledge of the
behavior of the different auxiliary fields, like we have studied, is essential if one
wishes to determine the higher-derivative corrections to black hole properties such
as the entropy.

A particularly well studied case [42] (which has been reviewed in this volume
[43]) is that of BPS black holes in d D 4;N D 2 supergravity coupled to n vector
multiplets, to which are associated n scalar fields XI and n vector fields AI

�. The
holomorphic higher-derivative corrections associated to these black holes are given
as higher genus contributions to the prepotential, in the form of a function

F.XI ; OA/ D
1X

gD0

F .g/.XI / OAg ; (7.88)

OA being a scalar field which, in our conventions, is given by OA D W ABWAB

ˇ
ˇ. From

(7.72), one sees that OA is related to the square of the selfdual part of the gravipho-
ton field strength F�� , but also to the square of the auxiliary field YAB (which, as
we saw, may become dynamical in the presence of higher-derivative terms). From
(7.73), one immediately sees that a lagrangian containing F.XI ; OA/ as an F -term
includes W2 terms, each multiplied by terms depending on moduli and on powers
of either F�� or Ymn. These Ymn factors may generate terms with higher powers of
the Weyl tensor W���� .

After some rescaling (in order to have manifest symplectic covariance), OA
becomes the variable � , which at the horizon takes a particular numerical value
(� D �64 in the conventions of [43]). This value is universal, independent of the
model taken (i.e., for any functionF.XI ; OA/ of the form (7.88)), as long as the black
hole solution under consideration is supersymmetric. There may exist other near-
horizon configurations (corresponding to nonsupersymmetric black holes) which
extremize the entropy function but correspond to different attractor equations and
different values for � . These values are not universal: each solution has its own
(constant) � .

The generalized prepotential (7.88) does not represent the full set of higher
derivative corrections one must consider in a supersymmetric theory in d D 4, even
for a black hole solution. There are also the nonholomorphic corrections, which are
necessary for the entropy to be invariant under string dualities, as discussed in [43].
At the time, the way to incorporate these corrections into the attractor mechanism
is still under study. On general grounds, if � is coupled to the nonholomorphic
corrections, then it should in principle get a different value. This (still unknown)
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different value for � should also in principle depend on the model which we are
taking. Because of this nonuniversality, we cannot simply take a general expression
for the nonholomorphic corrections: we really need each term, to the order we are
working, in the effective action. For that, in the cases when auxiliary fields (namely
� ) exist and are part of the higher derivative correction terms (as studied in [44]),
we must know exactly their behavior in the presence of such corrections, in the way
we presented on the first part of these notes.

7.7 Summary and Discussion

We computed the R4 terms in the superstring effective actions in four dimensions.
We showed that besides the usual square of the Bel-Robinson tensor W2CW2�, the
other possible R4 term in d D 4, W4C C W4�, was also part of two of those actions
at one string loop. We then studied their supersymmetrization.

For W2CW2� we wrote down its supersymmetrization directly in N D 1 and
N D 2 superspace, taking advantage of the off-shell formulation of these theories.
The terms we wrote down were off-shell; in both cases we tried to obtain the on-
shell action by eliminating the auxiliary fields. We noticed that some auxiliary fields
could be eliminated, while others couldn’t.

A careful analysis shows that, in both cases we studied, the auxiliary fields that
can be eliminated in the supersymmetrization of W2CW2� come from multiplets
which, on-shell, have no physical fields; while the auxiliary fields that get derivatives
come from multiplets with physical fields on-shell (the graviton, the gravitino(s)
and, in N D 2, the vector). Our general conjecture for supergravity theories with
higher derivative terms, which is fully confirmed in the “old minimal” N D 1; 2

cases with W2CW2�, can now be stated: the auxiliary fields which come from mul-
tiplets with on-shell physical fields cannot be eliminated, but the ones that come
from compensating multiplets that, on shell, have no physical fields, can. In order to
get more evidence for it, the analysis we made should also be extended to the other
different versions of these supergravity theories, and with other higher derivative
terms.

We moved on to try to supersymmetrize W4C C W4�, but we faced a previous
result stating that supersymmetrization could not be achieved because in N D 1 it
would violate chirality, which is preserved in pure supergravity. The way we found
to circumvent this problem was to couple W4C CW4� to a chiral multiplet and, after
eliminating its auxiliary fields, obtain that same term on-shell. We worked this out
in N D 1 supergravity and the same should be possible in N D 2. For N D 8 that
should not be possible any longer, because there are no other multiplets we could use
to couple to W4CCW4� that could help us: the Weyl multiplet is the only one allowed
in this theory. This is a sign that N D 8 supergravity is indeed in the swampland.

We ended by discussing applications of these results to black holes in string
theory, namely the attractor mechanism and the calculation of the black hole entropy
in the presence of higher derivative terms. We considered extremal black holes in
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d dimensions, through Sen’s entropy functional formalism, and in particular BPS
black holes in d D 4;N D 2 supergravity. In all cases we concluded that, having
those applications in mind, when auxiliary fields exist, one needs to know exactly
their behavior in the presence of such higher derivative corrections.
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